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Résumé

Ce travail entreprend d’évaluer l’évolution de l’acquisition phonologique par des étudiants

français des contrastes anglais /I/-/i:/ et /U/-/u:/. Le corpus étudié provient d’enregistrements

de conversations spontanées menées avec des étudiants natifs. 12 étudiants, 9 femmes

et 3 hommes, ont été suivis lors de 4 sessions espacées chacune d’un intervalle de six

mois. L’approche adoptée est résolument quantitative, et agnostique quant aux théories

d’acquisition d’une deuxième langue (par exemple Flege (2005), Best (1995), Kuhl et al.

(2008)). Afin d’estimer les éventuels changements de prononciation, une procédure au-

tomatique d’alignement et d’extraction des données acoustiques a été conçue à partir du

logiciel PRAAT (Boersma & Weenink (2013)). Dans un premier temps, deux autres logiciels,

SPPAS (Bigi (2012a)) et P2FA (Yuan & Liberman (2008)) avaient aligné les transcriptions

des enregistrements au phonème près. Plus de 90 000 voyelles ont ainsi été analysées. Les

données extraites sont constituées d’informations telles que le nombre de syllabes du mot,

de sa transcription acoustique dans le dictionnaire, de la structure syllabique, des phonèmes

suivant et précédant la voyelle, de leur lieu et manière d’articulation, de leur appartenance

ou non au même mot, mais surtout des relevés formantiques de F0, F1, F2, F3 and F4. Ces

relevés formantiques ont été effectués à chaque pourcentage de la durée de la voyelle afin de

pouvoir tenir compte des influences des environnements consonantiques sur ces formants.

Par ailleurs, des théories telles que le changement spectral inhérent aux voyelles (Nearey &

Assmann (1986), Nearey (2012), Assmann et al. (2012)), ou des méthodes de modélisation

du signal telles que la transformation cosinoïdale discrète (Harrington (2010)) requièrent

que soient relevées les valeurs formantiques des voyelles tout au long de leur durée. Sont

successivement étudiées la fiabilité de l’extraction automatique, les distributions statistiques

des valeurs formantiques de chaque voyelle et les méthodes de normalisation appropriées

aux conversations spontanées. Les différences entre les locuteurs sont ensuite évaluées

en analysant tour à tour et après normalisation les changements spectraux, les valeurs for-
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mantiques à la moitié de la durée de la voyelle et les transformations cosinoïdales. Les

méthodes déployées sont les k plus proches voisins, les analyses discriminantes quadratiques

et linéaires, ainsi que les régressions linéaires à effets mixtes. Une conclusion temporaire de

ce travail est que l’acquisition du contraste /I/-/i:/ semble plus robuste que celle de /U/-/u:/.

Mots-clefs : réalisations vocaliques, acquisition phonologique, deuxième langue, ap-

proche quantitative, analyses formantiques, méthodes de normalisation, modélisation du

signal.

Summary

This study undertakes to assess the evolution of the phonological acquisition of the

English /I/-/i:/ and /U/-/u:/ contrasts by French students. The corpus is made up of

recordings of spontaneous conversations with native speakers. 12 students, 9 females and 3

males, were recorded over 4 sessions in six-month intervals. The approach adopted here is

resolutely quantitative, and agnostic with respect to theories of second language acquisition

such as Flege (2005), Best (1995) or Kuhl et al. (2008). In order to assess the potential

changes in pronunciations, an automatic procedure of alignment and extraction has been

devised, based on PRAAT (Boersma & Weenink (2013)). Phonemic and word alignments

had been carried out with SPPAS (Bigi (2012a)) and P2FA (Yuan & Liberman (2008))

beforehand. More than 90,000 vowels were thus collected and analysed. The extracted data

consist of information such as the number of syllables in the word, the transcription of its

dictionary pronunciation, the structure of the syllable the vowel appears in, of the preceding

and succeeding phonemes, their places and manners of articulation, whether they belong to

the same word or not, but also especially of the F0, F1, F2, F3 and F4 formant values. These

values were collected at each centile of the duration of the vowel, in order to be able to

take into account of the influences of consonantal environments. Besides, theories such as
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vowel-inherent spectral changes (Nearey & Assmann (1986), Nearey (2012), Assmann et al.

(2012)), and methods of signal modelling such as discrete cosine transforms (Harrington

(2010)) need formant values all throughout the duration of the vowel. Then the reliability of

the automatic procedure, the per-vowel statistical distributions of the formant values, and

the normalization methods appropriate to spontaneous speech are studied in turn. Speaker

differences are assessed by analysing spectral changes, mid-temporal formant values and

discrete cosine transforms with normalized values. The methods resorted to are the k nearest

neighbours, linear and quadratic discriminant analyses and linear mixed effects regressions.

A temporary conclusion is that the acquisition of the /I/-/i:/ contrast seems more robust than

that of the /U/-/u:/ contrast.

Key-words: vocalic realizations, phonological acquisition, second language, quantitative

approach, formant analysis, normalization methods, signal modelling.
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Introduction

The main purpose of this study is to compare the acquisition over time by French students

of two English phonological contrasts, /i:/-/I/ and /u:/-/U/. The data used consist of

recordings of task-driven spontaneous conversations between French learners of English

from Université Paris Diderot and American or British assistants as part of the LONGDALE

project (Goutéraux (2013)). 11 learners were recorded over three sessions at six-month

intervals, and 12 learners over four sessions, also at six-month intervals. The approach

adopted is resolutely quantitative and data-driven. An automatic process, based on two

aligners, the SPeech Phonetization Alignment and Syllabification (SPPAS, Bigi (2012b),

Bigi & Hirst (2012)), and the Penn Phonetics Lab Forced Aligner Toolkit (P2FA, Yuan &

Liberman (2008)), was designed to extract information for all the vowels pronounced by the

learners, not only the four phonemes, /I/, /i:/, /U/ and /u:/, under study. The extracted data

for each vowel contains extra-linguistic, linguistic and acoustic information, available in two

92,000 × 542 spreadsheets (one for each aligner). The procedure of data extraction was also

applied to three subcorpora: two subcorpora from recordings of the 12 learners who took

part in all four sessions, with read lists of English words on the one hand, and a text read in

French on the other; and another subcorpus of spontaneous conversations of native English

speakers.

This brief introductory chapter has three aims: (i) to situate our investigation among the

dominant frameworks in Second Language Acquisition (SLA); (ii) to discuss the perspective
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followed to analyse our data; (iii) to outline how the chapters of this work partially contribute

to the analysis of the interlanguage.

Theories in SLA

The source language (SL) of this study, French, features vowels, /i/ and /u/, which

theories in Second Language Acquisition call “similar” (c.f. in particular Flege (1995), Flege

(2005)) to these two contrasts. The French learners’s task, represented in figure 1, therefore

consists in dissassociating the two contrasts in the Target Language (TL). Such a parallel

process, such a phonological symmetry between the SL and the TL make it possible to

/i:/

/i/

/I/

/u:/

/u/

/U/

FRENCH

ENGLISH

Fig. 1: Parallelism in the phonemic structures of the two contrasts

validate, or invalidate, the predictions of most SLA models, which only factor in phonemic

structures when assessing the difficulty of acquisition. These models traditionally posit

prosodically bijective predictions, whereby acquiring a given prosodic level in a target

language is correlated to the structures of that same prosodic level already accessible to

the learner. For phonemes, this is the case with models such as Kuhl et al. (2008) Native

Language Magnet Theory expanded (henceforth, NLMe), or Flege (1995) Speech Learning

Model (SLM), or Best (1995) Perceptual Assimilation Model (PAM). In the case at hand

here, the predictions of such models form the Null Hypothesis, and can be formulated in the

following way:
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H0 : no differences exist in the acquisition of the two contrasts

/i:/-/I/ and /u:/-/U/.

The potential influence of extra-phonemic parameters such as phonemic or lexical frequency,

syllabic structure, phonological neighbourhood, the existence and number of minimal pairs,

etc., is therefore generally not taken into account. However, outside the field of SLA,

formalizations of inter-level interactions exist: for instance, exemplar theories (Pierrehumbert

(2001), Bybee (2007), Bybee (2010)) relate phonemic pronunciation to frequency of use;

prosodic positions have been shown to influence the realization of phonemes (Keating et al.

(2004)); syllabic structure and places of articulation have been shown to be connected (Tabain

et al. (2004)); phonemic processing and speech-errors likewise depend upon phonological

neighbourhood density and clustering coefficients (the similarities between phonological

neighbours, Chan & Vitevitch (2010)).

Main purposes

The original goals of the study were therefore twofold: to establish whether the /I/-

/i:/ and /U/-/u:/ contrasts followed the same patterns of acquisition; and to establish

whether extra-phonemic parameters might play a role in that acquisition. It is particularly

in order to provide an answer to this second question that the nature and the purpose of

this work evolved. In the process of fine-tuning the PRAAT (Boersma (2001)) scripts that

generated the TextGrids from which the data was extracted, and as the quantity of collected

information kept growing and growing, the nature of the research evolved from a perhaps

more classic, results-driven, purpose-oriented study to one concerned with methods of

processing and visualizing information. The unique nature of the extracted data, being

altogether longitudinal, conversational and focused on vocalic realizations, demanded that

specific methods of treatment and visualization be devised.
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By being longitudinal, the collected information makes it possible to trace the various

steps of the evolution of the learners’ interlanguage, and more specifically of the quality of

their vocalic realizations. Positing the existence of an “interlanguage” implies the existence

of a transition between multiple states. These states have been investigated for consonants (c.f.

e.g. Strik et al. (2007) for an example with computer assisted language learning), disfluences

(Brand & Götz (2013)) or prosody (c.f. e.g. Trouvain & Barry (2007)), but less frequently

for vowels (c.f. Gnevsheva (2015)). Longitudinal studies are particularly appropriate to

unveil the properties of interlanguage, but such studies on learners’ pronunciations are rare:

Abrahamsson (2003) investigated the evolution of the production of Swedish codas by three

Chinese learners in conversational speech, and demonstrated a U-shaped curve of acquisition.

The present focus on vocalic realizations, also in conversational speech, challenges the

possibility of resorting to the same methods of acoustic analyses as those used in experiments

based on recorded lists of words. A lot of production studies focusing on vowel realizations

thus resort to embedding the vowels in controlled consonantal environments such as /hVd/

(c.f. e.g. Hillenbrand et al. (1995), Ferragne & Pellegrino (2010), Clopper et al. (2005))

in order to minimalize and predict the potential influence of the consonants on the vowels’

formants values.

Along the way, and because of the unique combination of features (longitudinal, con-

versational and on vocalic realizations), the purposes of the study therefore mutated, from

an SLA contribution to proposals on how to visualize, process and analyze the complex,

multi-layered data. Some of the major concerns this study of learners’ vocalic realizations

tries to address are the following: to provide reproducible protocols for the investigation of

vocalic realizations on the basis of recordings; to determine the best processing treatments

of acoustic data that make it possible to retain the maximum amount of information while

preserving the specificities of conversational speech; to design methods of concisely and

effectively representing longitudinal data for several speakers.
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The philosophy of this work is resolutely neutral and unassuming, and based on a quanti-

tative, data-driven approach. The methods used to process the information are compared to

one another with the sole purposes of clarity and computational efficiency – not of obtaining

results, not of rejecting or accepting the Null Hypothesis.

Chapter content

Chapter 1 details the procedures used to extract information from the original recordings;

specifies what sort of information was collected; provides the explanations why these types

of data were collected; and attempts to assess the quality of the extraction for the parts of

the data which are not directly related to the phonemic categories of vocalic realizations.

Chapter 1 is the answer to the original question whether extra-phonemic parameters might

play a role in the acquisition of the phonemic contrasts /I/-/i:/ and /U/-/u:/. Do different

prosodic categories, such as syllable or words, permeate interlanguage? To find out, syllables

and words also had to be aligned by the two aligners used, and collected for each vocalic

realization collected. With the potentially infinite variety of consonantal environments

pertaining to conversational speech, some sort of control had to be introduced too. This goal

led to the retrieval of formant values at each centile of the vowels’ durations, in keeping with

theories such as vowel inherent spectral change (VISC, Nearey & Assmann (1986), Morrison

& Nearey (2006), Hillenbrand (2012), Morrison (2012)) or mathematical transformations

of the raw signal in Hertz such as discrete cosine transforms (DCT, Harrington (2010)).

But in order to distinguish, within the formant values, what exactly pertained to natural

formant transitions from what might pertain to interlanguage, bases for comparison, i.e.

native references, were needed. This realization led in turn to the creation of the native

subcorpus, using the same procedure as the one applied to the main corpus and the two

LONGDALE subcorpora. In an attempt to assess the quality of the automatic alignment

and of the automatic extracted data – a recurring concern in this work –, missing values in
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the datasheets are investigated, along with the natures of the syllabic structures. These are

verified and compared to the pronouncing dictionaries used by the aligners and the algorithm

designed in this work. Finally, a study of the durations of the vowels and of speech rate aims

at assessing the quality of both the extraction and the learners’ discourses.

Chapter 2 sets out to determine whether certain aspects of interlanguage independent

from speakers’ idiosyncrasies exist – more specifically, whether cross-speaker patterns of

acquisition of the two /I/-/i:/ and /U/-/u:/ contrasts exist. It begins by ensuring that the

formant values on all centiles are within reasonable ranges. In keeping with studies of vowel

inventories, such as Al-Tamimi & Ferragne (2005) or Gendrot & Adda-Decker (2007), how

the phonemes are distributed in the vocalic trapezoid is investigated, and compared with

native both French and English native values. The length of the /I/-/i:/ and /U/-/u:/ vectors

is measured against the convex hulls linking the outermost vowels in the F1/F2 space. The

skewness in the distribution of the phonemic categories is then also surveyed, based on the

assumption that the gaps in the frequencies of occurrences between the different vocalic

categories is very likely to exert influence on the learners’ interlanguage. This observation

led to a comparison of the various methods of normalization, in order to find out which suits

best a dataset with uneven number of occurrences across the phonemic categories.

The acquisition of a language being often a very different experience from one learner to

another, chapter 3 focuses on trying to specify the evolution of the interlanguage of each of

the 12 speakers who took part in all four sessions of the LONGDALE project. The theory of

VISC is applied to the main corpus and to the native subcorpus, and the lengths of the learners’

vectors starting at 20% of the vowels’ durations, and ending at 80% in the F1/F2 vocalic

space are compared to their native counterparts. In a further attempt to assess the states of

acquisition, the robustness of the findings are tested by looking at the standard deviations

of the vectorial values. With a growing body of evidence pointing to actual differences in

the acquisition of the four phonemes under study, a machine learning classification method,
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the k-nearest neighbours, was run on the main corpus, with a native dataset from Peterson

& Barney (1952) used as the training set. Confusion matrices are then investigated, more

specifically the phonemic distributions of the predictions for /I/, /i:/, /U/ and /u:/. This

experiment making it hard to visualize the longitudinal evolution of the interlanguage, a

study using linear mixed-effects regressions was then carried out. The formant values and

their standard deviations served as response variables, and the effect of session, i.e. the

evolution over time, was investigated. Models predicting several sorts of changes were

compared, and the acquisition of the four phonemes showed different evolutions. Finally,

the entire signals for the first three formants were modelled using DCTs, and comparisons

were there again made with native values. The dispersions of /U/ and /u:/ were greater,

and the acquisition of /u:/ in particular seemed to be less robust than those of the other

phonemes. The chapter ends on an ultimate comparison of models based on mid-temporal

formant values on the one hand, and on DCTs on the other. From this comparison, one

of the strongest recommendations of this work is formulated – that DCTs are particularly

appropriate for the study of conversational data.





Chapter 1

Corpus and Data

This chapter details the procedure implemented to obtain the data which is analyzed in

chapter 2.

1.1 Corpus

Subsection 1.1.1 describes the profile and background of the participants of the study.

Subsection 1.1.2 details the content and characteristics of the recordings.

1.1.1 Participants and metadata

25 participants, 20 women and 5 men, were recorded between September 2009 and May

2013 as part of the LONGDALE project (Goutéraux (2013)). Metadata was collected from

a form the participants filled in themselves. There are two sets of participants, all of them

students from Université Paris Diderot.

The first set comprises students, 8 females and 2 males, who completed three sessions.

The second set is made up of the students, 10 females and 3 males, who attended all four

recording sessions. Of lesser interest perhaps, but still worthy of note, is the fact that students

whose ID number are inferior to 110 were recorded in September 2009 for Session 1, June
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Table 1.1: Summary of the participants’ metadata

Student ID Sex Number of sessions Native languages Days spent in ESC

DID0014 Male 4 French, Vietnamese 37
DID0020 Female 3 French 380
DID0024 Female 4 French 7
DID0035 Female 4 French 7
DID0039 Female 4 French 0
DID0062 Female 4 French 14
DID0068 Male 4 French 14
DID0071 Female 4 French 44
DID0096 Female 4 French 35
DID0106 Female 4 French 44
DID0108 Female 4 French 3
DID0119 Female 3 French 30
DID0126 Female 3 French 400
DID0127 Female 3 French 7
DID0128 Female 4 French 7
DID0129 Female 3 French 7
DID0135 Female 4 French 7
DID0138 Female 3 French 270
DID0145 Female 3 French 30
DID0146 Female 3 French 30
DID0156 Male 3 French, Greek 30
DID0168 Male 4 French 14
DID0213 Male 3 French 450

or November 2010 for Session 2, April 2011 for Session 3, and May 2012 for Session 4.

Students with ID numbers superior to 110 were recorded one year later: in September 2010

for Session 1, October 2011 for Session 2, April 2012 for Session 3 and finally May 2013 for

Session 4.

All students were beginning a three-year course in English at Université Paris Diderot

at the time of recording of their first session. This was a second course or a minor for

three participants: student DID0213’s major was history; student DID0138 had obtained a

Bachelor in biology; and student DID0035, a Master in sociology.

None of the participants reported proficiency in any other language than French or

English, except student DID0156 who reported Greek as her native language, along with
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French; and student DID0014, who reported Vietnamese and French as native languages,

and said he spoke French, Vietnamese and English at home. The number of days spent in an

English-speaking country (ESC) was also collected after each session, but reported numbers

did not change between the first and the last session.

Two students, DID0128 and DID0213, took the Test of English as a Foreign Lan-

guage (TOEFL), and reported a score of 107/120 and 111/120 respectively. Other students

(DID0014 and DID0024) reported scores without mentioning what test or examination they

had been taking. Table 1.1 summarizes the participants’ metadata.

1.1.2 Recordings and tasks

All 82 interviews were recorded in an individual stereo 16-bit resolution sound file at a

sampling rate of 44100 Hz captured in an uncompressed, pulse code modulation format using

an Apex435 large diaphragm studio condenser microphone with cardioid polar pattern. They

all begin with an interview of the learner conducted by a native speaker. The learner was

then presented with a task which changed with the session (cf. below). The native speaker

and the learner each had a microphone, and were recorded on a separate channel, although

some crossover between the two channels happened (e.g. the interviewer’s utterances were

recorded on the interviewee’s channel). The interviews were not conducted in a deaf room:

the quality therefore varied greatly from one recording to another, or from one moment during

the interview to another, with background noises such as footsteps, cars or distant chatter

sometimes audible. The recordings lasted 656 seconds on average, with great per-speaker

and per-session variability, as shown in figure 1.1. The comparatively shorter aggregated

duration for Session 4 displayed in figure 1.1b can be explained if we recall the lower number

of participants for that session: 13 students, against 25 for all other three sessions. However,

too much importance should not be granted to total recording durations. Section 1.2 will

present a more accurate assessment of learners’ actual speaking time and speech rate.
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Fig. 1.1: Aggregated per-session summary of recording durations.

Tasks and questions asked changed at each session. The design of the tasks and questions

replicated those of the Louvain International Database of Spoken English Interlanguage

(LINDSEI, Brand & Kämmmerer (2006)).

Sessions 0 & 2

In session 1 and 2, participants were to answer one of the three following questions:

1. Suppose you have time and money to travel or move to a different country/city, where

will you go? Why? How will you organise your new life?

2. Can you tell me about an important event, experience or meeting which has made a

difference or changed your life in the past six months?

3. Do you feel creative? Tell me about a work of art you would like to create or participate

in: a play, a film, a musical event, a book, a painting, a computer game, etc. How

would you go about it?

Figure 1.2 shows how many students selected one of the three possible subjects in the two

sessions. Question 2 was overwhelmingly chosen in Session 1, only to be discarded in
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Fig. 1.2: Number of students who chose to answer questions 1, 2 or 3 in Sessions 1 & 2.

Session 2. Besides, out of the 5 students who chose task 3 (“Do you feel creative?”) in

Session 1, only one, DID0062, answered the question. The other four spoke of a film they

had seen, and therefore failed to answer the question in a relevant manner. The same mistake

did not happen again with any of the 10 students (who sometimes turned out to be the same,

in the case of speakers DID0035, DID0106, DID0119 & DID0128) whose chose to answer

that question in Session 2. This fact may serve as an indication of a certain improvement in

understanding tasks formulated in English after a year at university studying the language.

Session 3

In session 3, the interviewers were requested to read the following prompt:

You are going to see four works of art (paintings), one after the other. I’d like you to react to

each of them quite spontaneously and tell me how you feel about them.

They were also given the following optional additional questions:

• Can you justify, explain why you like or dislike picture one, two, three, four?

• Which of these four pictures would you like to have at home, in your room?

• If you were to take one of those pictures to illustrate a book you want to write, which

one would you choose?
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The four paintings they were to describe were shown to the participants in the following

order1:

1. Carnation, Lily, Lily, Rose, by John Singer Sargent (1885-1886).

2. Nude, Appledore, Isle of Shoals, by Childe Hassam (1913).

3. Carcass of Beef, by Chaim Soutine (1925).

4. The Garden, by Andreas Schulze (2009).

Recordings of Session 3 were the longest on average: they lasted 704 seconds, against

452s., 607s. and 694s.2 for Sessions 1, 2 and 4 respectively. Student DID0020’s interview

in Session 3 was by far the longest (1571s.): student DID0024’s fourth session, the second

longest recording in the corpus, lasted 1200s., i.e. it was 5 minutes shorter.

Session 4

In session 4, the participants had to perform a map task as designed by Anderson Anderson

et al. (1991). Figure A.1 in section A.1 shows the two maps that were given to the learner

and the native speaker. The maps share common landmarks, but some of these landmarks

are unique to each map. The map that was given to the learner contains an itinerary, with

a starting point and a finishing point. The native speaker was given the map without the

itinerary. This informational gap aimed at eliciting questions from the learner.

Of interest also for this study are the extra reading tasks the learners were given at the

end of this session. The students were asked to read lists of words featuring all the vowels

in English. These words were grouped according to the vowels they contained. They were

also asked to read a short text in French. Both this list and the text in French can be found

in Appendix A. The recordings of the 13 students who completed these tasks have also

been analyzed, and the acoustic information extracted from the text in French and the list of

1 Three of the four paintings that were presented are copyrighted and may not be reproduced here.
2 All means were calculated using the respective number of participants in each session, i.e. 25 in all

sessions but Session 4, which had 13 participants.
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Table 1.2: Summary of the participants’ chosen tasks for Sessions 1 & 2 and individual
recording durations.

Student ID
Question answered in: Total recording time (in s.)

Session 1 Session 2 Session 1 Session 2 Session 3 Session 4

DID0014 2 3 544 628 1055 849
DID0020 2 2 439 465 1571 NA
DID0024 2 1 298 607 758 1200
DID0035 3 3 589 754 858 530
DID0039 2 3 648 755 887 581
DID0062 3 1 605 491 621 622
DID0068 2 2 586 624 915 520
DID0071 2 1 327 630 974 652
DID0096 2 1 574 483 758 1000
DID0106 3 3 317 601 1003 289
DID0108 2 3 326 631 879 536
DID0119 3 3 462 874 403 NA
DID0126 2 3 468 828 524 NA
DID0127 2 1 367 533 520 NA
DID0128 3 3 411 919 869 718
DID0129 2 1 652 349 413 NA
DID0135 2 1 731 431 513 NA
DID0138 2 3 504 868 935 NA
DID0145 2 1 429 803 827 NA
DID0146 2 1 407 787 437 NA
DID0156 2 1 522 658 556 NA
DID0168 2 3 388 572 818 834
DID0213 2 1 714 891 505 NA
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English words serves as reference for native formant values and phonological knowledge of

the target language respectively.

Finally, in all sessions, the students were asked questions about their personal and

academic projects, and, from Session 2 onwards, what they thought about the course they

had been following.

Table 1.2 lists the questions the learners chose to answer in sessions 1 & 2, as well as the

duration of each recording. A per-speaker graphical representation of these durations can be

found in figure 1.3.
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Fig. 1.3: Per-speaker recording durations.

1.2 Workflow

The purpose of this section is to detail the method that was implemented in order to obtain

the final database. Section 1.2.1 presents the procedure from the original sound files to the

final multitier TextGrids. The main script to generate the data is described in section 1.2.2;
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the resulting TextGrids are presented in section 1.2.3; details for the final .csv spreadsheet

can be found in section 1.2.4.

1.2.1 Global procedure

The goal to reach when designing the alignment process was to obtain a high number of

automatically aligned transcriptions in an efficient way. One key aspect was that aligners

naturally work best with native speech. It was therefore critical that alignment errors due to

learners’ mispronunciations should be contained. It was decided that the best course would

be to feed the aligners as short extracts as possible in order to minimize the risk of a domino

effect, whereby an alignment error might spread and create other errors in the extract.

The initial documents consisted of the original recordings and their transcriptions. The

transcriptions were compliant with the requirement of the LONGDALE project, and contained

XML-like tags that flagged events such as speakers’ turns, overlapping speech, whispers,

laughter. Transcribers had also been instructed to mark certain aspects of pronunciation such

as pauses or “the” pronounced /i:/. The exact guidelines can be found in Appendix B. The

following paragraphs present the procedure for a single recording. The procedure is also

summarized visually in figure 1.4.

First a Python script (later, a more efficient Perl script) edited out all tags, punctuation

marks and pronunciation-related flags, and formatted the text so that lines contained no more

than 80 characters. The corresponding recording was then downsampled to 16kHz. The

reason is that the two aligners used, the SPeech Phonetization Alignment and Syllabification

(SPPAS, Bigi (2012b), Bigi & Hirst (2012)), and the Penn Phonetics Lab Forced Aligner

Toolkit (P2FA, Yuan & Liberman (2008)), both require 16kHz sampling (P2FA recommends

11kHz but accepts 16kHz). The sound file was therefore downsampled from 44kHz to 16kHz

using Sox (Bagwell (2018)), and then opened in Audacity (version 2.1.0), where a Label

Track was created. It was then played in Audacity, and a label was added at the end of
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every 80-character line. The labels were then exported in Audacity to a two-colum textfile

containing the time stamps corresponding to each line of the transcription file. Another

Python script (later a far simpler bash line) deleted one column along with any labels that

may have been added while listening to the file. At that stage, two files had been obtained:

the 80-character transcription file, and the label file with the time stamp. The latter contained

exactly one line less than the former. Both files were then fed to a Praat script (Boersma

& Weenink (2013)), which created a TextGrid. Version 5.4.08 was used to perform the

calculations. The script (PRAAT01) added boundaries at times matching the time stamps

from the label file, and labeled the newly created interval with the corresponding line from

the transcription file. This yielded a coarsely aligned TextGrid, which was then manually

edited: the recording and the TextGrid were opened in Praat, and boundaries were added or

adjusted manually. Boundaries were added with the two following concerns: (i) to select

speech which was likely to be correctly aligned; (ii) to obtain reasonably short sequences.

Noisy parts, extreme overlapping speech, non-existing expressions, grunts, coughs, fits of
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Fig. 1.5: Kernel density plot of short interval durations.
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laughter, were therefore labeled as non-exploitable in the TextGrid, and boundaries were

added, sometimes in the middle of sentences. When adding a boundary, the spectrogram

was visible. More often than not, mid-sentence boundaries mark the beginning of easily

recognizable phonemes, especially voiceless plosives or fricatives. Boundaries were added

with no considerations of meaning or syntax. The average duration of these intervals over

the whole corpus is 0.95 second, and 24,398 such intervals were created and processed. The

maximum duration of their corresponding sound files is 3.69 seconds. Figure 1.5 shows the

kernel density plot of the durations of these short manually aligned intervals. Figure 1.6
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Fig. 1.6: Per-speaker aggregated durations of extracted speech.

shows the aggregated duration of the learners’ speech actually extracted and analyzed, i.e.

with pauses, backchanneling, grunts, laughter and the interviewer’s own speech, removed.

These durations correspond to the sum of the length of each short .wav file for each speaker

in each session. At that point, the TextGrid has three tiers: one for the learner’s transcription,

one for the native speaker’s, and an empty tier. Once this lengthy procedure was over,

the newly adjusted TextGrid and the original recording were fed into another Praat script
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(PRAAT02), which did two things: (i) it created a sound file and a corresponding transcription

file for each selected interval in the main file. The transcription file is a simple .txt file

containing the label of its matching interval in the main TextGrid. Both the sound file and

this transcription file were put in a subfolder. Intervals corresponding to non-exploitable

passages were left aside; (ii) each pair of .txt and sound file was indexed with the number

of the interval in the main file they corresponded to. After the completion of the script, the

subfolder therefore contained as many short .txt and sound files as intervals selected for

analysis in the main TextGrid.

The next step was to align these transcriptions with their sound files automatically. The

first aligner used was SPPAS. The version used for processing the files was v1.7.0. One

setting was modified from default, Syllabification, in which an interval tier was used,

“PhnTokAlign”, and not the default “TokensAlign”. This was to ensure syllabic alignment on

the phonemic tier, not on the word tier. SPPAS takes .txt and .wav files as input and returns

PRAAT TextGrids with tier intervals aligned on phonemic and syllabic boundaries. For

syllabic alignment, SPPAS uses an algorithm based on a set of rules which ranks phoneme

classes according to their likelihood to be in onset or coda position. However, as v1.7.0 did

not ship with an algorithm for English syllables3, the built-in list of rules for French was

adapted for English phonemes. The modification can be checked in section C.3 in appendix C.

The reasoning underlying these changes is that French syllabic structures may have an effect

on English realizations at the phonemic level. Having SPPAS syllabify learners’ utterances

using its own built-in algorithm for French provides the means to test this assumption. The

syllabifying processes are explained in more detail in section 1.6. Once the subfolder was

processed, it contained a merged TextGrid with tiers for phonemes, syllables and words. The

second aligner used in this study was P2FA (v1.002), which is based on version 3.4 of the

Hidden Markov Model Toolkit (HTK, Young et al. (2006)). Just like SPPAS, P2FA uses a

3 Earlier versions did, but unfortunately syllabification in English cannot work with rules that only access
the phonemic level. One simple example can show this: “present” (v.) ⇒ /pri."zent/ – “present” (adj.) ⇒
/"prez.@nt/.
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.txt file (but with a capitalized transcription) and a .wav file as inputs. A simple bash script:

(i) capitalized the transcription files; (ii) downsampled the sound files; and (iii) ran P2FA in

the entire subfolder. P2FA returns a TextGrid with word and phoneme alignment for each

sound file.

Finally, another homemade4 PRAAT script (PRAAT03) performed the following things:

(i) it reintegrated the merged SPPAS TextGrid and the P2FA TextGrid into the original main

TextGrid (from which the short intervals had been extracted); (ii) parsed the SPPAS and

P2FA phonemic tiers and collected acoustic information (cf. section 1.2.3 below) about each

phoneme; (iii) retrieved the pronunciation of each word from the Longman Pronunciation

Dictionary (LPD, Wells (2008)); (iv) created dedicated syllabic tiers, a process described in

the next section 1.2.2.

This workflow was applied to all 82 recordings. 92,332 SPPAS-aligned and 92,059

P2FA-aligned vowels5 were automatically extracted. The next subsections detail the process

of extraction: section 1.2.2 describes the structure of PRAAT03; the structure of the Praat

multitier TextGrid obtained is described in section 1.2.3; the dataframes and their headers

are detailed in section 1.2.4.

1.2.2 PRAAT03

All the data collected for analysis in the following chapters comes from script PRAAT03.

This section explains how the script works in detail.

PRAAT03 has three6 main loops: (i) loop 1 parses the TextGrid file names in the subfolder;

retrieves the index, contained in those names, which matches the interval number in the

main TextGrid; selects the SPPAS merged TextGrids and the P2FA TextGrids; copies and

pastes their boundaries and labels to the main file at the indexed interval number; deletes

4 “Homemade” is not perfectly accurate. A lot of inspiration was drawn from Mietta Lennes’s scripts,
especially in terms of what could be done.

5 The reasons why the total count of vowels differ between SPPAS and P2FA are explained below.
6 Technically, there is a fourth loop, as the script is able to process several main files in the same folder.
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micro-intervals (i.e. intervals with durations inferior to 0.001 second caused by tiny variations

in interval timing when extracting and concatenating the short files from and to the main

file). (ii) the second loop scans the SPPAS-aligned phonemic tier of the multitier TextGrid

created in the first loop; retrieves its pronunciation in the LPD for each phoneme at the

beginning of a word; looks for English syllable boundaries in the succeeding phonemes; adds

a syllable boundary on the specifically added dedicated tier if the phoneme is the syllable

coda; identifies whether the current phoneme is the syllable nucleus, i.e. whether it is a

vowel; if so, a .csv textfile is appended with information of a form extensively presented in

Appendix D and explained in section 1.2.4. (iii) the third loop is the P2FA version of the

second loop. The only significant difference is that the French syllable tier had to be inferred

from its SPPAS-generated counterpart.

The script adds 9 tiers – i.e. tiers which were not created by the aligners and imported from

the shorter TextGrids: for both aligners, the English syllable tiers, the LPD pronunciation

syllable tiers and the stress tiers (referred to below as the “English syllable tiers”). For

P2FA, the French syllable tier is inferred from the SPPAS French syllable tier. Finally, the

Pairwise Variability Indices (PVI) tiers, which fuse adjacent consonants and vowels together

regardless of syllable or word boundaries. The order of creation varies: the English syllable

tiers are created at run-time, and so is the P2FA French syllable tier. However, this tier

requires SPPAS tiers to have been created prior to its creation, which explains why the loop

dedicated to SPPAS tiers must take place before the loop dedicated to P2FA tiers. The

consonantal and vocalic intervals for the PVI tiers are calculated for each main TextGrid

after completion of the two aligners’ loops. Table 1.3 summarizes the origin of each tier and

what their dependencies are. Word and phoneme tiers were aligned by the aligners’ internal

algorithms. English syllable and stress tiers are created in PRAAT03, with boundaries aligned

on the LPD syllabic transcriptions. PVI tiers essentially consist in duplicating the phonemic

tiers of the two aligners and then merging adjacent intervals featuring the same manner
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Table 1.3: Summary of tier names, sources and dependencies

Tier Number Tier Name Boundary Source Dependencies

1 Student Manual None
2 Assistant Manual None
3 Empty N/A N/A
4 P2FA: phonemes P2FA Student
5 P2FA: words P2FA Student
6 P2FA: FS PRAAT03 SPPAS: FS
7 P2FA: ES PRAAT03 P2FA: phonemes
8 P2FA: LPDS PRAAT03 P2FA: ES
9 P2FA: Stress PRAAT03 P2FA: ES
10 SPPAS: phonemes SPPAS Student
11 SPPAS: words SPPAS Student
12 SPPAS: FS SPPAS SPPAS: phonemes
13 SPPAS: ES PRAAT03 SPPAS: phonemes
14 SPPAS: LPDS PRAAT03 SPPAS: ES
15 SPPAS: Stress PRAAT03 SPPAS: ES
16 PVI: SPPAS PRAAT03 SPPAS: phonemes
17 PVI: P2FA PRAAT03 P2FA: phonemes

of articulation (reduced to vowels or consonants only). The French syllable tiers feature

crucial differences, from one aligner to the other, in the way they were generated. Compared

to P2FA, SPPAS features an extra syllabifying algorithm based on a set of user-definable

rules (c.f. section C.3). The SPPAS-aligned French syllable tier was generated from the

default French rules provided with SPPAS, but modified to remove sounds specific to French

(e.g. nasal vowels), and to include specifically English sounds (e.g. interdental fricatives or

/h/). The list of English phonemes, converted from the list of French phonemes natively

provided by SPAAS, can be found in section C.3. The P2FA-aligned French syllable tier was

generated by PRAAT03 from the SPPAS-aligned French syllable tier. To understand how it

was generated, a closer look at how the data was collected is necessary. The rough outlines

of the process and the obstacles that were encountered are explained in the paragraph below.

The acoustic parameters used to extract the pitch, the formants and the intensity are

standard: they follow the recommendations of the PRAAT manual. The code (c.f. section C.4)

used to generate pitch, formant and intensity values is sex-dependent. For pitch analysis, the



1.2 Workflow 25
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Fig. 1.7: Representation of the intervals scanned (dotted arrows) by PRAAT03 on the
phonemic tier for either aligner (SPPAS or P2FA). When a vowel is parsed (grey
rectangles), the corresponding labels of the other tiers are retrieved (circled nodes), and
the aligner’s dataframe is appended. Cx and Vx index consonants and vowels respectively.

time step was set to 0; the pitch-floor, to 75 Hz for men, 100 for women; the pitch ceiling

was set to 300 Hz for men, 500 Hz for women. In formant analyses, the time step was also

set to 0; the maximum number of formants per frame was 5; the maximum frequency was set

to 5,500 Hz for women, and 5,000 Hz for men; the window length was kept at its default

value of 0.025 second, with a pre-emphasis of 50 Hz.

This paragraph7 focuses on the processes taking place in loops (ii) (for SPPAS) and (iii)

(for P2FA), briefly described above, and presents some of the coding obstacles that were

encountered. The procedure common to both aligners is symbolically represented in fig-

ure 1.7. Each interval on a given aligner’s phonemic tier is parsed by PRAAT03. The moment

when a given phoneme is scanned in either loop is defined as the Time Reference Point

(henceforth, TRP). Data collection, i.e. the appending of the aligner’s .csv dataframe, takes

place when the currently parsed phoneme is a vowel. This entails that a lot of calculations

are made on the first phoneme of a given word, e.g. its duration, its CELEX frequency, its

7 What follows will probably suit the more technically inclined readers best.
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numbers of syllables in French, in the LPD or in the aligner’s dictionary. Syllabification in

particular has to be carried out before the nucleus is parsed, even though syllable boundaries

have not yet been created in the TextGrid: each vowel, i.e. each datapoint, must include the

total number of syllables contained in the word it appears in (columns LPDSC and SC, c.f.

section 1.2.3). As the word’s phonemes get parsed, i.e. as the TRP moves forward from one

Table 1.4: Correspondences between the different transcription systems

IPA LPD SPPAS P2FA
/æ/ & { AEx
/e/ e E EHx
/I/ I I IHx
/@/ @ @ AH0
/6/ Q A AAx
/2/ V V AHx
/U/ U U UHx
/i:/ i: i: IYx
/u:/ u: u UWx
/3:/ œ: 3:r ERx
/A:/ A: A AAx
/O:/ O: O: AOx
/aI/ aI aI AYx
/aU/ aU aU AWx
/eI/ eI eI EYx
/OI/ OI OI OYx
/I@/ I@ Ir IHxR
/e@/ e@ Er EHxR
/U@/ U@ Ur UHxR
/D/ D D DH
/T/ T T TH
/N/ N N NG
/S/ S S SH
/tS/ tS tS CH
/Z/ Z Z ZH
/dZ/ dZ dZ JH
/j/ j j Y

interval to the next, PRAAT03 must identify whether the current phoneme is a coda, in order

to create a boundary on the TextGrid. This process is made more complicated by two factors:

(i) the differences in transcription systems, shown in table 1.4. These differences require

checks for matches between transcription systems to be made, since English syllabification is

indicated by the LPD transcription, but parsed phonemes are transcribed in either SAMPA or

ARPAbet8. (ii) the variations in numbers of syllables, often caused by the diverging degrees

of rhoticity between the British (LPD) and American (SPPAS & P2FA) dictionaries. This
8 This issue is compounded by the fact that stress and syllabification in the LPD transcription are indicated

by numbers (“1”, “2” or “3” for primary, secondary and tertiary stress) or forward slashes (“/”) respectively.
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issue is discussed in greater detail in section 1.6.2. Code-wise, the key to align syllables

correctly is to identify both syllabic nuclei and codas, regardless of how they are transcribed.

This identification was harder with vowels than with consonants, but variations happened

with the latter too: intervocalic /t/ and /d/ are flapped in the CMUPD used by SPPAS (e.g.

“water” is transcribed /w O: 4 3:r/, /"wO:R@~/, with “4” indicating a flap, but the /t/ is not

transcribed as flapped in either the LPD or the CMUPD used by P2FA). With such hurdles,

errors are likely - and happened. Section D.4 lists all the words whose vowels9 feature differ-

ent numbers of syllables between the LPD and the aligner’s CMUPD, listed in the LPDSC and

the SC columns (c.f. section 1.2.3): 1,45010 monophthongs have syllable count mismatches

in the SPPAS-generated dataset, with 1,318 monophthongs in the P2FA-generated dataset.

These two figures account for 2.18% and 2.05% of the total number of monophthongs as

aligned by SPPAS and P2FA respectively. More details about these mismatches can be found

in section 1.6.

The next two sections present the resulting documents (c.f. figure 1.4) generated by

PRAAT03: first, the multitier TextGrid, then the .csv spreadsheets based on the SPPAS and

P2FA alignments.

1.2.3 The multitier TextGrid

This section lists the 17 tiers of the final TextGrids generated by PRAAT03. These final

TextGrids are aligned with the original recordings of the students in each session. Figure 1.8

is a screenshot of a short section of one of the 102 final TextGrids after running SPPAS,

P2FA and PRAAT03.

The 17 tiers respectively correspond to: (i) Transcription of the learner’s speech / the

short interval extracted with PRAAT02. (ii) Transcription of the native speaker’s speech.

The string retrieved by PRAAT03 from the dictionary therefore contained metaphonemic information which
needed to be both stored (for syllable placement) and dispensed with (for phoneme parsing and matching).

9 More precisely, monophthongs, since the focus of this work is on monophthongs.
10 This number applies to monophthongs with durations longer than 0.03s., see section 2.1 for details).
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(iii) Empty tier. Tiers 4 to 9 are P2FA-aligned mirrors of SPPAS-aligned tiers 10 to 15:

(iv) P2FA-aligned phonemic tier. (v) P2FA-aligned word tier. (vi) P2FA-aligned French

syllabic tier with manners of articulation (MOA) – based on the SPPAS algorithm for

French syllables (V=vowel, O=occlusives, F=fricatives, N=Nasals, G=Glides). classes

(C=consonants, V=vowel). (vii) P2FA-aligned English syllabic tier, using the same MOA-

based transcription. (viii) LPD-based phonetic transcription of the current P2FA-aligned

syllable. (ix) Stress of the current P2FA-aligned syllable (Primary/secondary/tertiary stress,

unstressed or monosyllabic). (x) SPPAS-aligned phonemic tier. (xi) SPPAS-aligned word tier.

(xii) SPPAS-aligned French syllabic tier with manners of articulation. (xiii) SPPAS-aligned

English syllabic tier. (xiv) LPD-based phonetic transcription of the current SPPAS-aligned

syllable. (xv) Stress of the current SPPAS-aligned syllable. (xvi) SPPAS-aligned consonantal

and vocalic intervals (regardless of word and syllable boundaries); this tier is to calculate

pairwise variability indices. (xvii) P2FA-aligned consonantal and vocalic intervals. The first,

second and third tiers are the exact same as those from the main original TextGrid. The first

tier is therefore the one that was adjusted manually, and the one from which the shorter sound

files and TextGrids to be used by the two aligners were extracted. The numbers of intervals

of this tier correspond to header REFINT in the final dataframes (c.f. section 1.2.4): with

possible differences in transcriptions and syllable counts from one of the three dictionaries to

another, these intervals are the only truly firm basis on which cross-comparisons between

the two aligners can be made: they are a necessary (but more often than not, not sufficient)

condition to the accurate retrieval of a given vowel in a given recording. Word and phonemic

tiers (i.e. tiers 4 & 5 for P2FA, and 10 & 11 for SPPAS) are imported straight from the

TextGrids created by the aligners, and merged into the main TextGrid. All other tiers are

created by PRAAT03, although at different moments in the script (c.f. section 1.2.2). If we

exclude tiers 2 & 3, which are neither affected by PRAAT03 nor useful for the current purpose

of our analyses, 1 tier out of 14 preexisted PRAAT03 (tier 1), 3 were imported from SPPAS
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(the phoneme tier, the word tier, the French syllable tier), 2 from P2FA (the phoneme and

word tiers), and the rest were created by PRAAT03 based on the aligners’ boundaries.

The reasons why these tiers were created are given in section 1.4, and the error-prone

obstacles that were encountered are described in section 1.6.

1.2.4 The generated dataframes

Section D.1 gives the names of the 542 columns of the two final dataframes. There is

one dataframe for each aligner, but the names of the columns are common to the two files, in

order to make comparisons, and script-writing, easier. This section explains the content of

each column.

The first dataframe is based on SPPAS-aligned data, which was extracted from tiers 10

to 15 of the multitier TextGrid (c.f. section 1.2.3 and figure 1.8). Likewise, the second

dataframe is based on P2FA-aligned data, extracted from tiers 4 to 9 of the multitier TextGrid.

Each dataframe is the end result of a dedicated loop in PRAAT03: the second loop in the

case of SPPAS-aligned data, the third loop for P2FA-aligned data (c.f. section 1.2.2). The

two dataframes are interchangeable: their only difference is the aligner used to extract

the data, with all the changes this entails, especially with respect to the aligner-dependent

transcription method. Because transcriptions vary (c.f. section 1.4 for details), the safest

way to cross-reference data between the two dataframes (i.e. to ensure the correct retrieval

of a given vowel in a given word in a given recording) is by using the very last column of

both dataframes, REFINT, which indexes the interval number of the first tier in the multitier

TextGrid: recall from section 1.2 that this number corresponds to the short TextGrids from

which alignment was accomplished, and which the two aligners therefore have in common.

The first four columns (SPEAKER, SEX, SESSION, and WORD) are self-explanatory – WORD

corresponds to the label of the interval of the SPPAS-aligned word tier at the current
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TRP11.The fifth column, CLXFREQ, gives the frequency of use of the word as mentioned in

CELEX2 (Baayen et al. (1995)). Column LPDPRON gives the transcription of the LPD pro-

nunciation of the word; the next column, PRON, the pronunciation of the word in the aligner’s

transcription method. LPDSC and SC indicate the word’s number of syllables according to

the transcription of the LPD or of the aligner respectively. Likewise, columns 10 & 11,

LPDPHONEME and PHONEME, list the phoneme (i.e. the vowel) being scanned. The next six

columns provide data on the syllable structure the phoneme is the nucleus of: columns 13

(ESYLLSTRUC), 15 (ECVSTRUC) & 17 (ESKELS) deal with English syllables, whereas columns

14 (FSYLLSTRUC), 16 (FCVSTRUC) & 18 (ESKELS) deal with French syllables. xSYLLSTRUC

columns encode the manner of articulation of the syllable’s phoneme in the following fash-

ion: “O” for “occlusives”, “F” for “fricatives”, “N” for “nasals”, “G” for “glides”, “L” for

“liquids” and “V” for vowels (e.g. “strings” would be encoded as “FOLVNF”). xCVSTRUC

columns subsume all consonantal MoAs under a “C” category (e.g. “strings” would be

encoded as “CCCVCC”). Finally, xSKELS12 columns compounds all adjacents “Cs” into a

single “C” (e.g. “strings” would be encoded as “CVC”, i.e. a closed syllable). Whether

the vowel’s syllable is stressed is shown in STRESS; STRESS can be of values “MONO” for

monosyllabic words, “PRIMARY” if the syllable carries the primary stress, “SECONDARY”

and “TERTIARY” for secondary and tertiary stresses, or “UNSTRESSED”. Column 20,

PHONDUR, measures the vowel’s duration. The next one, LOCINFILE, locates the begin-

ning of the SPPAS vowel interval, while INTNB corresponds to the interval number of the

phoneme’s interval on the phoneme tier. INTENSITY gives the mean intensity of the SPPAS-

aligned vowel from 10% of the vowel’s duration to 90%. In the next eight columns, six

give the preceding (PHONBEFORE) and succeeding (PHONAFTER) phonemes, along with their

MoAs(BEF/AFTMOA), PoAs(BEF/AFTPOA) and voice features. Columns 25 & 30, PRECOART

and POSTCOART address coarticulatory effects: if the vowel is preceded or succeeded: (i) by
11 Recall that the TRP is the beginning of the interval on the phonemic tier which is currently scanned by

PRAAT03 (c.f. section 1.2.2 for more details).
12 “SKEL” stands for “skeletal”.
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a silence, these columns will return NONE; (ii) by a phoneme belonging to the same word,

they will return INTERNAL; (iii) by a phoneme not belonging to the same word, EXTERNAL.

The next column, EPENTHETIC, is an experimental set-up aimed at capturing learners’ grunts

and nasal fillers. If an interval on the SPPAS-aligned phonemic tier is empty and lasts more

than 0.1 second, measurements are taken at t1 = t + 0.05, t2 = t + 0.1, t3 = t + 0.15 and

t4 = t +0.2. Pitch is then measured at these four time locations, along with intensity, which

is averaged over from t1 to t4. EPENTHETIC, which returns a Boolean-like value (“YES”

or “NO”), will return “YES” if mean intensity is superior to 40, and F0 readings exist at

all four time points. The specific coding to obtain the value can be found in section C.2.

TOTALDUR gives the total duration of the recording. The next 500 columns can be read in

the following manner: (i) the aligner, SPPAS or P2FA, is specified; (ii) the formant (F0, F1,

F2, F3 or F4) is specified; (iii) the number that follows gives the relative time location in

the vowel where the formant was extracted. For example, SPPASF167 gives the F1 value

67% into the SPPAS-aligned vowel; P2FF34 gives the F3 value 4% into the P2FA-aligned

vowel. BIRTHYEAR gives the learner’s birthyear, and ESCDAYS indicates the number of days

the learner reported spending in an English-speaking country. Finally, the last three columns

give the duration of the word the vowel appears in (WD); the cumulative number of phonemes

per parsed syllable, mostly a debugging feature, with NPW; and the interval number of the

first tier in the multitier TextGrid (REFINT). After the execution of PRAAT03, an important

change to the files is made: the value “–undefined–” is changed to “-1”. “–undefined–” is

the value assigned by PRAAT when the programme cannot perform a task. In this case, all

“–undefined–” values. The reason why the “–undefined–” is changed to “-1” is because a

numeric value is preferable to a string of character when importing the dataset to R: “-1”

as a numeric value is consistent with the values of the columns in which the “–undefined–”

values were (c.f. figure 1.9 and below. If these replacements are theoretically consistent, they

also have valuable pragmatic consequences: with “-1” values, loading the datasets into an R
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Fig. 1.9: Per-centile undefined F0 and F4 values. Top row: count; bottom row: propor-
tion. Left panel: F0; right panel: F4.

environment using fread (Dowle & Srinivasan (2017)) considerably reduces computation

times13. The total number of undefined values for SPPAS was 1,813,210; for P2F, 1,424,200.

These numbers being so high in appearance, further study was required.

For SPPAS, 98.4% of those values (1,780,146) can be found in F0 columns. Likewise,

98.2% (i.e. 1,401,993) of all undefined values in the P2FA dataset are F0 values. The rest of

the undefined values can be found predominantly among F4 values (32,998 and 22,165 for

SPPAS and P2FA respectively; undefined F1,F2 and F3 values are insignificant: 24 and 14

each.). Figure 1.9 shows the distribution of undefined F0 and F4 values across the centiles

of vocalic durations using both aligners. The bulk of the undefined values take place at the

onset of the vowel, where the proportion of undefined values almost reaches 40% for SPPAS

(24.2% for P2FA). Half-way through the vowel, at the 50th centile, the proportion drops down

to 14.3% (11.5% for P2FA). At the end of the vowel, it rises back to 20.7% (24.3% for P2FA).

13 On our computer, loading one dataset with “–undefined–” values takes more than two minutes – less than
nine seconds with “-1” values. . . .
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Overall, 19.3% of all SPPAS F0 values are undefined, against 15.2% for P2FA. It is not the

purpose of this study, which will focus on F1, F2 and, to a lesser extent, F3, to investigate the

reasons why PRAAT returned so many undefined F0 values. A cursory look at the data did not

reveal any consistent patterns: no specific vowels or consonantal environments seem to be

more likely to trigger undefined values14.

Along the main .csv dataframe, PRAAT03 created three other .csv files:

1. a duration file, in order to calculate the duration of the short, manually aligned TextGrid

(cf. section 1.2.1 and figure 1.5);

2. a file containing the series of words pronounced by all speakers in all sessions, along

with their location in each file (column LOCINFILE) for easy retrieval;

3. a file with the duration of the SPPAS- and P2FA-aligned consontal and vocalic in-

tervals, in order to calculate the pairwise variability indices; each datapoint also

features the number of phonemes pronounced in each interval, in order to calculate the

Control/Compensation Index;

The headers of all these files can be found in section D.3. The same files were generated for

the reading task in English (The Selfish Giant) and in French (with no P2FA-aligned data in

this case, since P2FA does not support French). The same procedures of alignment and data

extraction was applied to three subcorpora, detailed in the next section.

1.3 Sub-corpora

The workflow described in section 1.2 was applied to three subcorpora:

1. a list of words to be read, which can be found, along with the given instructions, in

section A.2.1;

14 An immediate assumption to explain the phenomenon, especially at the onsets of vowels, would be that
missing values are due to the misalignments of phonemic boundaries after initial, potentially aspired plosives:
the ensuing late Voice Onset Time (VOT) could have been interpreted as part of the vowel already, rather than
part of the plosive itself. Unfortunately, this does not seem to be supported by the data. But as said above - this
was only looked at in a cursory way.
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2. a text in French, also to be read: the translation of Oscar Wilde’s the Selfish Giant

(1888), which can be found in section A.2.2;

3. a set of recordings from native speakers, taken from various podcasts.

The rationale behind these subcorpora is twofold: first, using native speakers’ recordings

will provide a basis to assess the quality of the workflow. Should implausible formant

values be found for vowels pronounced by native speakers, then they cannot be attributed

to the French learners’ potential errors, but rather to the procedure itself. Second, these

subcorpora provide bases for useful comparisons: the list of English words theoretically tests

the students’ phonological knowledge of the vocalic system of English (in Chomskyan terms,

their competence); the text in French provides the students’ base formant values of their

native system. This is particularly useful to investigate the differences between their native

/i/ and /u/ on the one hand, and their realizations of /i:/-/I/ and /u:/-/U/ on the other;

finally, the English speakers’ recordings will provide the basis for comparing the values of

natives and learners in spontaneous connected speech. These values will be prefered over

those found in various studies (c.f. e.g. Ferragne & Pellegrino (2010), Hillenbrand et al.

(1995)) with different eliciting methods (mostly recorded /hVd/ words). As the recordings of

List of words French Text Native Speakers

Number of speakers 13 13 15
Number of vowels (SPPAS) 1750 2902 4273
Number of monophthongs (SPPAS) 1310 – 3380
Number of vowels (P2FA) 1750 – 4283
Number of monophthongs (P2FA) 1303 – 3314

Table 1.5: Summary of the subcorpora data

the list of words and the text in French were made during Session 4, the thirteen speakers are

those who took part in all four sessions (c.f. table 1.1). 83,019 substitutions of “–undefined–”,

i.e. 6% of all formant cells across all centiles, were made in the SPPAS-aligned data of

the native speakers’ subcorpus; in the P2FA-aligned subcorpus, 63,328 substitutions, i.e.
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4.6%, were made. For the reading subcorpus, the numbers of subsitutions are 29,823 (5.7%)

and 16,740 (3.2%) in the SPPAS-aligned and P2FA-aligned data respectively. In the French

reading corpus, 3,426 “–undefined–” cells, amounting to 1.36% of all cells, were replaced.

Finally, the breakdown of accents in the native speakers’ subcorpus, later on refered to as

the Native Speakers Subcorpus (NSS), the following: four male and female British speakers,

one male Irish speaker, one female Scottish speaker, one female American speaker and

four male American speakers. These accents were encoded in the SPEAKER column under

the following labels respectively: NATBRIT, NATIREL, NATSCOT and NATUSMI. In terms of

collected data, the NSS and the reading lists in English feature the same number of datasets

(one SPPAS-aligned and one P2FA-aligned) and columns as the main learner corpus. Only

the French reading corpus is different, since it has no corresponding P2FA-aligned tiers in

the TextGrids, and no P2FA-based dataset, since P2FA does not handle French. Also, the

formant values were only retrieved at every decile of the vowels’ durations. The columns of

the dataset specific to the French reading corpus can be found in section D.2.

1.4 Theoretical justifications

This section provides the technical, then theoretical and linguistic, justifications for the

type of data that were collected.

One first remark must be made about the format of the data structure. There are two

main reasons for the choice of a univariate (long) format, as opposed to a multivariate (wide)

format. The first reason lies in the technical impossibility of obtaining a univariate format,

because the number of occurrences of each phoneme in each session is highly variable. This

state of affairs is fortunate: coding-wise, the way PRAAT03 parses the aligned phonemes in

the TextGrids harmoniously corresponds to the requirements of a univariate format. This

issue is also compounded by the extraction of (among other variables) five different formant

values at every centile of a vowel’s duration. Such a number of variables would make a
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wide format unreadable. The second reason is less a matter of happenstance: Linear Mixed

Effects Regression (LMER) analyses, which will be carried out in section 3.4, require the

data structure to be in long format (Long (2012)).

Several columns in the data frame presented in Appendix D serve as control entries to en-

sure that the data collected for each aligner is correct. This is the case for instance of P2FWORD,

P2FPHONATTRP, or P2FMATCH: since PRAAT03 parses the SPPAS-aligned phonemes, controls

were necessary to ensure that P2FA-aligned phonemes were also correctly retrieved. LPDPHON

and LPDSYLLPRON are also control entries: LPDPHON is the output of a complex PRAAT03

procedure that accesses a .txt file version of the LPD. It is from UKPRON that the theoretical

syllable structure (ESYLLSTRUC) is derived. Likewise, in order to narrow down the source

of potential errors during the (lengthy) debugging phase, LPDSYLLPRON made it possible

to ensure that the syllable-aligning procedure in PRAAT03, which led to the creation of

Tiers 12 & 13 in the final TextGrid, was correct. On a side-note, the designing of this

procedure in the development stage of PRAAT03 was particularly excruciating, and required

that control entries such as LPDSYLLPRON be devised. The main reason why aligning sylla-

bles based on the LPD pronunciation was so difficult, and therefore error-prone, is that, as

described above, SPPAS uses SAMPA as a transcription alphabet, and American as the base

language, whereas the LPD uses the International Phonetic Alphabet (IPA), and Southern

British English as the base language. This difference entailed that correspondences between

phonemes, on which correct syllable alignment crucially relies, were far from obvious:

rhoticity (as seen in figure 1.8 with “favourite”), conventions for /i:/, /I/ or /i/, /t/- or /d/-

flaps are some of the obstacles that the procedure had to overcome.

Why, then, take the trouble to align syllables? One of the main reasons is that phonotactics

in both French and English exerts influence on segmental realizations. One way to explain

the role of syllables in French is to adopt generativist terminology. It can be said that French

features three archiphonemes, /E/, /EU/ and /O/, which are underspecified for height. Height
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specification depends on whether the syllable has a coda or not (i.e. is closed or open): thus

/E/ will tend to be pronounced /e/ in open syllables, as in “cocher” (/koSe/), /E/ in closed

syllables (“cochère”, /koSEö/); likewise with /EU/ and /O/, as in “ceux” (/sø/) and “seul”

(/sœl/), and “saut” (/so/) and “sol” (/sOl/) respectively. Of course, numerous exceptions

exist (e.g. “fée” /fe/ vs. “fait” /fE/, “jeûne” /Zøn/ vs. “jeune” /Zœn/ or “saute” /sot/ vs.

“sotte” /sOt/, to name but a few), but the principle holds in other numerous instances as well.

Likewise, although in an arguably stricter fashion, in English, lax vowels only appear in

closed syllables. One question therefore arises, which justified collecting the theoretical

English syllabic structure (ESYLLSTRUC) and the algorithm-based, SPPAS-generated, French

syllabic structure(FSYLLSTRUC): are instances of English /e/, or /O:/, possibly even /6/,

influenced by the syllabic structure in which they appear? This non-trivial issue will be

addressed in future research. The difference between columns FSYLLSTRUC, FCVSTRUC and

FSKELS15 lies in the granularity of consonantal labelling: MoA-based labels from FSYLL

such as “O” for “Occlusive”, “F” for “Fricative”, “N” for “Nasal”, etc., are all subsumed to

“C” (for “Consonant”) in FCVSTRUC. Consonantal clusters disappear in FSKELS: a CCCVCC

syllabic structure (as in “straps”) in FCVSTRUC will be labelled “CVC” in FSKELS. The

reason why such simplifications were made lies in the following theoretical questions: do

all consonants affect vocalic realizations in the same manner? Likewise, to what extent do

consonant clusters affect these realizations? The answer to the first question is arguably

trivially negative (cf. e.g. Hillenbrand et al. (2001) for the influence of plosives and /h/ in

initial and final syllable position on English vowels), and therefore entails that the manners

and places of articulation, along with the voicing feature, of preceding and suceeding

consonants had to be listed in order to control their influences on vocalic realizations. This is

the raison d’être of columns PHONBEFORE (i.e. the preceding phoneme), BEFMOA (the MoA

of the phoneme before the vowel), BEFPOA (the PoA of the phoneme before), BEFVOICE (the

15The same applies to ESYLL, ECVSTRUC and ESKELS.
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voicing feature of the phoneme before), PHONAFTER (the succeeding phoneme)16, AFTMOA,

(the MoA of the phoneme after), AFTPOA (the POA of the phoneme after) and AFTVOICE (the

voicing feature of the phoneme after). To answer the second question, bases for comparisons

needed to be provided: if different statistical correlations can be found, for a given type

of vowel, between that vowel’s formant values and the three types of consonant labelling,

then the labelling method whose model displays the lowest deviance should be kept. The

influence of consonant clusters on vocalic formant signals will be addressed indirectly in

chapter 3 where vowel-inherent spectral change (section 3.2) and discrete cosine transforms

(section 3.5) will be investigated.

This section having detailed the theoretical justifications underlying the design of the

extracting scripts and the structure of the generated dataset, a crucial question now arises:

what treatment were context-dependent labels given? The answer is provided in the next

section.

1.5 Vowel reductions and weak forms

This section explains the achievements, compromises and shortcomings of labelling

phonemes likely to undergo vowel reduction. The main issue that was encountered with

labelling weak forms is that weak forms are caused by two different sorts of context. The

first type of context is phonological: this is the case of instances of “the” pronounced /Di/

when preceding a vowel, and /D@/ when preceding a consonant. By the same logic “to” is

usually pronounced /tu/ before a vowel, /t@/ before a consonant. These weak forms are

easy to hard-code into a PRAAT script that can retrieve the content of the succeeding interval,

as described in figure 1.7. It is technically impossible, however, to infer weak forms when

these are induced by syntactic or semantic conditions. Cases such as the reduction of “had”

16 The plan is also potentially to investigate the equation of locus for the vowels of French non-native
speakers. Do we observe the same coarticulation as for natives? The results in datasets could be used to answer
this question in the future.
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from /hæd/ to /h@d/ in sentences where “had” serves as an auxiliary, or cases of stranded

prepositions, cannot be predicted: the workflow as it stands is blind to syntax and semantics.

No attempt at overcoming this hurdle was made. An ambitious venue of research would

be to merge syntactic tree-taggers into PRAAT-generated TextGrids in order to predict the

ideal pronunciation of vowels likely to adopt weak forms. The following paragraphs study in

detail the transcriptions of the vocalic nuclei of two very frequent words in the corpus, “the”

and “to”.

For now, when not coded in PRAAT, phonologically induced weak forms can also be

deducted in R by replacing the strings in LPDPHONEME when conditions are met in PHONAFTER.

This solution is much handier than hard-coding in PRAAT, which would require a lengthy

generation of all the grids and datasets. Besides, it enables interested researchers to amend

the mistakes of programmers: if weak forms of “the” have indeed been properly coded in

PRAAT03, this is not the case of “to”, whose weak forms must therefore be determined in R

scripts17.

Now it looks as if SPPAS attempted to implement weak forms in its computations. The

reason why that may be the case is that both “the” and “to” are ascribed different transcriptions

(these transcriptions can be found in the PHONEME column in the SPPAS dataset). “The” is

transcribed as either /t@/, /t2/ (sic) or /ti:/ (sic); “to” is at times transcribed /T@/, at times

/TI/ (sic), at times /Tu/ (sic). What logic did the algorithm follow? It is very unlikely that

the succeeding phonemes were taken into account. Table 1.6 gives the number of times

“the” (in the left table) and “to” (in the right table) were given one of their three respective

transcriptions for each phonemes succeeding them18. The pronunciation of the vocalic nuclei

of the 2,874 occurrences of “the” can be broken down as follows: 1,995 /@/, 325 /2/ and
17 This option is not only more convenient, but also much simpler than in PRAAT. Two lines of code suffice.
18 As the first row of the two tables shows, it would be more accurate to speak of succeeding intervals:

these phonemes are technically the retrieved strings of the intervals following the parsed vowels. That interval
may occasionally be empty. In the P2FA-aligned data, empty intervals are also sometimes labelled “sp”.
P2FA-aligned being somewhat shorter than SPPAS-aligned ones, P2FA will detect “sp” intervals where SPPAS
will see a continuing vowel. This explains the discrepancies in numbers for the empty or “sp”-labelled rows
between table 1.6 and table 1.7.
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Table 1.6: Distribution of the pronunciations of the SPPAS-aligned nuclei in “the”
(left table) and “to” (right table) against the succeeding phoneme (transcriptions are in
SAMPA).

@ I u

8 327 216
3:r 1 1 0
@ 3 15 14

@U 0 2 0
A 1 0 0
D 5 121 53
E 0 6 4
I 1 20 5

O: 2 4 3
S 0 9 5
T 2 10 8
V 3 4 9
aI 0 7 2
b 42 40 46
d 75 14 37

dZ 3 4 3
eI 2 4 2
f 14 7 46
g 108 17 81
h 7 25 40
i 1 22 13

i: 0 7 2
j 0 14 4
k 17 16 12
l 53 7 24

m 40 42 24
n 11 3 6
p 15 28 26
r 7 27 39
s 126 26 27
t 44 49 57

tS 1 6 8
v 2 4 6
w 23 4 41
{ 0 3 6

@ V i:

257 57 80
3:r 3 0 4
@ 9 0 21

@U 15 0 18
A 6 1 10
D 55 29 29
E 12 0 28
I 7 3 8

O: 3 0 7
S 10 1 5
T 35 5 7
V 11 0 27
aI 7 0 7

aU 0 0 1
b 118 9 8
d 27 5 5

dZ 4 1 3
eI 1 0 2
f 176 19 17
g 31 2 11
h 32 8 9
i 9 3 11

i: 3 0 4
j 25 1 53
k 149 8 39
l 89 53 19

m 115 8 5
n 24 8 9
p 149 11 9
r 106 33 5
s 288 23 38
t 58 19 38

tS 15 0 1
u 1 0 0
v 4 2 3
w 127 15 6
z 1 0 0
{ 13 0 7

554 /i:/; the 2,382 nuclei of “to” are transcribed 617 times as /@/, 895 times as /I/ and 870

times as /u/. However, the table shows no clear pattern indicating that the transcriptions
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Fig. 1.10: F1 and F2 values of the SPPAS-aligned vocalic nuclei of “the” (left plot) and
“to” (right plot).

for either words are selected on the basis of the succeeding phonemes, thereby emulating
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the phonological rules of vowel reduction. Considering that at run-time, SPPAS has access

to the acoustic data from PRAAT, another solution to explain the choices of transcriptions is

to have a look at the distribution of those transcriptions as a function of acoustic data. The

simplest parameters are mid-temporal F1 and F2 values. Figure 1.10 plots the F1 values in

Hertz of the nuclei of “the” (in the left panel) and of “to” (in the right panel) against their

F2 values, both taken in the middle of the vowels’ durations. Graphic examination reveals

a pattern for “the”: the locations in the vocalic trapezoid of the nuclei is consistent with

their transcripions. Instances of /i:/ exoectedly feature high F2 values and low F1 values;

/@/-transcribed nuclei have higher F1 values and lower F2 values than the previous ones; and,

also expectedly, tokens with /2/ have roughly the same F2 values, with however a greater

aperture of the mouth than their /@/ counterparts, and therefore higher F1 values. The picture

is completely different for the nuclei of “to”, whose transcriptions look more chaotic. No

consistent pattern is apparent. In order to confirm these observations, a linear discriminant

analysis (henceforth, LDA) using R package MASS (Venables & Ripley (2002)) was carried

out. Although the dependent variable, i.e. the transcription of the nuclei, is categorical, a

simpler logistic regression to classify the instances was not possible because the variable

has more than two categories. A leave-one-out cross-validation was implemented simply

by setting the CV argument to true in the lda command. The results bear out the insights

provided by the observation of the plots: the LDA for “the” returns a classification rate of

75.6%, against a mere 47.8% for “to”. These findings are arguably all the more robust as the

distribution of the three categories are more imbalanced in the case of “the”, with a clear bias

in favour of instances of /@/ (69.4% of all occurrences for /@/, against 11.3% and 19.3%

for /2/ and /i:/ respectively); the proportions are more even with “to”: 27.9%, 37.6% and

36.5% for /@/, /I/ and /u/ respectively. It goes without saying that this does not mean that

the transcriptions of “to” as listed in the PHONEME column of the SPPAS-based dataset are

random: all that can be concluded is that these transcriptions are not selected on the basis of
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mid-temporal F1 and F2 values. Neither does it mean that the apparent logic of transcriptions

of “the” is one that takes into account the values of F1 and F2.

Do weak forms or alternative transcriptions exist in the P2FA-aligned data? The situation

is slightly different in that for instance, there is no variation in the transcriptions of “to”, whose

nucleus is transcribed as UW1, the ARPAbet equivalent of a stressed /U/. Transcriptions

of “the” however follow the same patterns as the SPPAS-aligned cases. The possible

transcriptions are AH0 (/@/), AH1 (/2/) and IY0 (unstressed /I/). The 2,778 occurrences of

“the” are respectively distributed across those three categories as follows: 66.4%, 14.6% and

19%. Just as in the cases of SPPAS-aligned instances of “the”, no apparent pattern emerges

Table 1.7: Distribution of the pronunciations of the P2FA-aligned nuclei in “the” (left
table) and “to” (right table) against the succeeding phoneme (transcriptions are in
ARPAbet).

AH0 AH1 IY0

79 104 86
AA1 2 0 11
AA2 2 0 1
AE1 3 0 9
AE2 0 0 3
AH0 3 0 21
AH1 2 1 31
AO1 1 1 6
AY0 1 0 7
AY1 0 0 3

B 99 3 8
CH 12 0 3

D 24 3 2
DH 12 9 9

EH1 2 0 34
ER0 2 1 2
ER1 0 0 2
EY0 1 0 0
EY1 0 0 1

F 152 9 2
G 24 1 12

HH 21 3 9
IH0 4 0 6
IH1 2 3 9
IH2 2 0 4
IY1 0 1 3
JH 4 0 2
K 115 7 27
L 104 37 11

M 107 8 3
N 36 2 2

OW1 3 1 28
P 123 7 3
R 88 31 6
S 260 12 6

SH 11 0 0
T 72 5 11

TH 31 2 1
V 5 1 1
W 119 11 3
Y 22 2 49
Z 1 0 0

sp 293 140 92

when inspecting the phonemes succeeding P2FA-aligned nuclei of “the”. These succeeding

phonemes are listed in table 1.7. When looking at the corresponding mid-temporal F1 and

F2 values, however, the same correlation appears between the label and the formant values,
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as figure 1.11 shows. The same LDA run on the P2FA-aligned instances of “the”, with
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Fig. 1.11: F1 and F2 values of the P2FA-aligned vocalic nuclei of “the”.

the transcription given in the PHONEME column as the categorical dependent variable, and

raw mid-temporal F1 and F2 values as the continuous predictors, returns a rate of correct

classification of 77.4% – slightly higher than in the cases of SPPAS-aligned “the”.

To conclude this brief section on vowel reductions and weak forms, let it be reminded

that no syntax- or semantics- induced vowel reductions have been implemented in the corpus.

Changes caused by the nature of the following phones, whether consonants or vowels, were

hard-coded by SPPAS and P2FA in the case of “the”, but not in the case of “to”. It was

here found that the chosen transcriptions for “the” are consistent with formantic values; for

this word, the strings listed in the PHONEME column, which was generated by the aligners

themselves, reflect an acoustic reality, but not a normative, linguistically desirable target.

These desirable targets are defined as functions of the nature of the following sounds, a

feature that was implemented in PRAAT03 for “the”, and “the” only. These desirable targets

are listed in the PRAAT03-generated LPDPHONEME column. Expanding the same logic of

taking the succeeding sounds into account to words such as “to” is nonetheless easily feasible

in R scripts. Future research should endeavour to explain the variations in transcriptions by

SPPAS for other words such as “was”, for instance, but especially to make syntactic and



1.6 Syllabification: technical details 45

semantic information available either at alignment run-time, or at extraction run-time. Only

then will vowel reductions and weak forms be properly implemented.

1.6 Syllabification: technical details

This section summarizes the issues and challenges raised by syllabification while building

the corpus. The previous section and figure 1.8 have already briefly presented the issues at

hand from the point of view of the output. Many obstacles had to be overcome in order to

create accurate syllabic tiers: the differences in encoding alphabets and base accents between

the transcription systems and the variations within those transcription systems turned out to

be quite formidable coding challenges. How these hurdles were overcome, along with an

assessment of the overall performance of the solutions adopted, is presented in section 1.6.1.

Section 1.6.2 details the causes of the remaining errors.

1.6.1 Coding principles and challenges for syllabification

Screenshot 1.8 encapsulates all the issues of the project. One first issue is that of

the transcription convention each aligner chooses. Although both aligners use the Carnegie

Mellon University Pronouncing Dictionary (CMUPD, Weide (1994)), P2FA uses an ARPAbet

symbol set, while SPPAS uses SAMPA19. For the reader’s convenience, the first three lines of

table 1.4 have been reproduced below to illustrate the differences in the sets coding the vowels.

Machine-readable symbol sets have been invented to represent IPA-like transcriptions with

characters. Two types of problems arose: the existence of symbols that corresponded to

supra-segmental features (i.e. stress marks and syllable divisions); the choice of character

strings may not be the same from one conventional system to the other. Similar issues are

described in the documentation of the CELEX (Baayen et al. (1995)). In the CELEX, they

19 More precisely, SPPAS’s developper Brigitte Bigi converted the CMUPD to X-SAMPA.
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Table 1.8: Correspondences between the different transcription systems (shortened
version)

IPA LPD SAMPA (SPPAS) ARPAbet (P2FA)

/æ/ & { AEx
/e/ e E EHx
/I/ I I IHx

created their own system to make sure they only had one ASCII character per representation

of phoneme. PRAAT03 deals with a much more complex situation where: (i) suprasegmental

marks may correspond to the initial ASCII character before the representation of a phoneme;

(ii) the representation of a phoneme corresponds to a variable number of ASCII characters.

(i) shows that this is not a bijective phoneme-to-ASCII character mapping. The script was

programmed to capture the segmental transcriptions between the suprasegmental marks to

align the LPD transcriptions with the various word tokens20.

(ii) is far from being a trivial issue: although both aligners are based on the CMUPD, there

is no bijective relationship between the ARPAbet and SAMPA transcriptions because reduced

vowels may vary. For instance, the word “civilization” is transcribed “sIv@lizeIS@n” in

SAMPA (i.e. /sIv@li"zeIS@n/, and “S IH2 V AH0 L AH0 Z EY1 SH AH0 N” in ARPAbet (i.e.

/sIv@l@"zeIS@n"/). When the TRP is at the /@/ of the second syllable on the SPPAS-phoneme

tier, the only way to make sure that the corresponding P2FA-aligned phoneme is the one in

the second syllable, as opposed to that of the third syllable, is by keeping track of syllable

counts and syllable structures (as given by the LPD). Besides, it is worth noting that in this

example (as in many other instances), SPPAS-aligned /i/ is matched in the third syllable by

P2FA-aligned /@/: correspondences between the two aligners based on phonemes only are

therefore insufficient.

In order to overcome those obstacles, multiple checks had to be used, loosely inferred

from linguistic principles. One first check was to determine at the beginning of every word

20 This roughly corresponds to procedure GetWellsPron from line 2922 of PRAAT03 onwards.
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how many syllables that word features in the three systems. This was carried out by retrieving

the three transcriptions, and counting the number of vocalic nuclei in the strings. Because

once again the transcription systems are different and one same phoneme can be transcribed

with different numbers of ASCII characters, three procedures were designed – one for each

transcription system. The procedures store all the different types of possible vowels that may

occur within their respective transcription method. Once the syllable counts were calculated,

the exact location of syllable boundaries had to be determined. Once again, the key issue was

to come up with a way to guarantee that the phoneme at the TRP would be safely identified

across the three systems. Multiple checks had to be implemented because of the differences

in transcriptions of rhotic vowels – the LPD giving non-rhotic transcriptions, SPPAS and

P2FA giving rhotic ones but with variations within their own dictionaries – but also because

of variously encoded phenomena such as flapping. Flapping was problematic because it

undermines the intuition that correspondences for consonants are more easily determined

than for their vocalic counterpart. This intuition quickly turned out to be wrong: not only

did the case of the transcription matter (for instance, “t” in SAMPA is “T” in ARPAbet,

while “T” in SAMPA is “TH” in ARPAbet), but /R/, transcribed “4” in SAMPA, can either

correspond to a “d” or “t” in the LPD – i.e. a “T” or “D” in ARPAbet. Several constructs were

therefore designed in PRAAT03: metaphonemes, metaonsets and metacodas. These constructs

served the purpose of unifying all possible transcriptions under a single label which could

then be cross-identified regardless of the system adopted. A metaphoneme in the script

was fundamentally a list of attributes attached to transcription-dependent phonemes based

on their MoAs, PoAs and voice features. At the beginning of every word, when syllable

boundaries are established, the metaphonemic features of both codas and onsets are stored

so that when the phoneme at the TRP, and the phoneme after it in the next interval, have

metaphonemic properties that match both those of the pre-stored metacoda and metaonset
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respectively, a syllable boundary was added21. Because of the multiple issues caused by

the variations in transcriptions, another check was added: the number of phonemes of every

word was also stored as soon as one began. A counter kept track of the number of phonemes

parsed in every transcription system, and the number of phonemes before a syllable boundary

was also calculated beforehand. The combination of all these checks made for a relatively

error-proof system as shown in table 1.9. The table gives the number of phonemes featuring

Table 1.9: Table of skeletal syllabic structures for SPPAS (top table) and P2FA (bottom
row)

C CV CVC CVCV CVCVC CVVC V VC VVC

1 1 19802 35027 3 2 11 13236 19158 29

CV CVC CVCV CVCVC CVCVVC CVV CVVC V VC VVC VVCVCVC

1 19117 32106 4 6 1 1 11 13670 20153 20 11

one of the listed skeletal syllabic structures, as retrieved from the ESKELS column. This

means that the number of syllables and words featuring a particular syllabic structure is

lower. Of particular interest here are the structures containing two syllabic nuclei. In the

SPPAS-aligned data, the affected words are the following: “bodies” and “ladies” (CVCV);

“schedules” and “there’ll” (CVCVC); “ideas”, “las” and “Korean” (CVVC); and “different”,

“several”, “favorite” (US spelling), “favourite” (UK spelling) and “Orpheus” (VVC). These

last cases, except for “Orpheus”, are all instances of issues caused by rhoticity and the status

of /r/ (coda or onset or part of the nucleus) in the transcriptions. For the P2FA-aligned data,

the words containing syllables with two nuclei are the following: “bodies”, “Glasgow” and

“ladies” (CVCV); “question”, “learn” and “there’ll” (CVCVC); “consensual” (CVCVVC);

“jewelry” (CVV); “several”, “different”, “favorite”, “difference” and “Orpheus” (VVC);

and “education” (VVCVCVCVC). These anomalies amount to 45 datapoints in the SPPAS-

aligned data, out of 87,269 datapoints (vowels with durations shorter than 0.03 were excluded

from that grand total), i.e. 0.05% of all datapoints; and 54 out of 85,100 datapoints in the

21 Adding an interval on any given tier is always a delicate operation in PRAAT03, since if an interval
boundary already exists where one is added, the script crashes.
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P2F-aligned data, i.e. 0.06% of the entire dataset. Bearing in mind that these numbers count

instances of vowels, these error rates were deemed acceptable and no further improvement of

the algorithms were undertaken after reaching those targets22.

Having attempted to explain the principles and challenges underlying syllabification, the

following subsection deals with the errors that remain and attempts to explain their causes.

1.6.2 Errors in syllabification

In order to check the consistency of the syllable divisions in the different methods, two

variables associated to each token were generated. These two variables indicate the number

of syllables of the LPD transcription and of the aligner transcription respectively. In each

dataframe, they are listed under columns n°8 LPDSC and n°9 SC. An R script23 retrieved

the number of discrepancies in syllable division. Somehow that discrepancies exist is not

exclusively attributable to the transcription systems used by the aligners, and should come as

no surprise. Syllabification theories themselves are complex, and at times contradictory. For

instance, the two main reference pronouncing dictionaries used in Europe, the LPD and the

English Pronouncing Dictionary (EPD, Jones et al. (2011)), have conflicting conceptions and

transcriptions for syllable divisions. The LPD thus favours the MaxCoda rule for stressed

syllables (Wells (1990)), i.e. as many consonants as possible are attached to codas; whereas

the EPD follows the Maximum Onset Principle (MOP) (c.f. Ballier (2014)) – the exact other

way round. A word like “country” will be syllabified /k2ntr.i/ in the LPD, /k2n.tri/ in the

EPD. French speakers are more likely to adopt an EPD-like MOP syllable division (c.f. Dell

(1973)). However, regardless of these theoretical tenets followed by the two dictionaries, the

fact remains that English has more CVC patterns (Cutler et al. 1995, Levelt et al. (1999)).

22 Of course, there is room for improvement. The cases of “bodies” and “ladies” for instance are errors
most likely caused by improper plural suffixation. Why the suffixation procedure failed in those cases is itself
most likely due to the flapping of <d> before the suffix. Assuming this explanation is correct, amending
the suffixation procedure for the two occurrences of “bodies” and the single occurrence of “ladies” was not
cost-effective – if this work was to ever see the light of day.

23 This script can be found in Appendix C.5.
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The list of words with mismatches in syllable counts can be found in section D.4. These

mismatches are those caused by a discrepancy between the phoneme counts as calculated

from the LPD transcription on the one hand (listed in the LPDSC column) , and as calculated

from the aligner’s transcription on the other (listed in the SC column). In total, there 2.13% of

all datapoints feature a syllabic mismatch in the SPPAS-aligned data (i.e. 1,857 datapoints),

and 2.34% of all P2FA-aligned datapoints (1,988 datapoints). Once again, these numbers

refer to datapoints, that is to say to vowels, not to words or syllables. The numbers of words

is much lower, 597 words for the SPPAS-aligned data, and 549 for the P2FA-aligned data,

out of 68,212 and 66,621 respectively (i.e. 0.88% and 0.82% of the total number of words).

The ten most frequent words featuring syllabic mismatches are plotted in figure 1.12. As an
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Fig. 1.12: Number of occurrences of words featuring syllabing mismatches. Left panel:
SPPAS-aligned data; right panel: P2FA-aligned data.

indication, “actually” in the SPPAS-aligned data accounts for 13.1% of all the 748 words

featuring syllabic mismatches; in the P2FA-aligned data, “actually” and “feel” each account

for 9.9% of the 1,016 mismatching words. The question now is then the following: for

those words, is the mismatch systematic or does it only occasionally occur within each

word category? These proportions are plotted in figure 1.13. In the SPPAS-aligned data,

“australia”, “idea” and “literature” have 100% of their occurrences featuring a mismatch



1.6 Syllabification: technical details 51

between the number of syllables determined by the LPD in the LPDSC column, and that in

the SC column, determined from the transcribed pronunciation provided by the aligner. In

the P2FA-aligned data, “feel” “I’ll”, “idea”, “literature” and “states” also feature syllabic

mismatches in all their occurrences. These cases are of lesser interest because they are

based on localized misinterpretations or hard-coded discrepancies in transcriptions due to

differences in the rhoticity of the varieties of English taken into account in the dictionaries.

An example of the former case in SPPAS is “idea”, transcribed as /aI"dI@/ in the LPD and

correctly labelled as disyllabic. SPPAS however transcribed it as /aI"di:@/, so that PRAAT03

failed to analyze /i:@/ as a single diphthong, and therefore ascribed the word three syllables.

The same logic applied, unfortunately, to “I’ll” in the P2FA-aligned data: this contraction

was misinterpreted by PRAAT03 as a disyllabic word because of the superscripted /@/24.

An example of differences in rhoticity is that of “literature”. SPPAS gives the following
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Fig. 1.13: Per-word proportions of occurrences of mismatches.

transcription: /l I 4 3:r @ tS 3:r/, whose IPA equivalent is /"lIR3~:r@tS3~:/. PRAAT03 correctly
24 This is also the of “feel”, transcribed as /fi:@l/ in the LPDPRON column of the two datasets. . . But for some

reason, its number of syllables in the SPPAS-aligned dataset is correctly listed as 1 in the LPDSC column. . . But
as 2 in the same column of the P2FA-aligned dataset. . . Besides being an appeal to the reader’s indulgence, this
example lifts the veil on the complexity of the syllabifying process. Another instance of such an unexpected
discrepancy between two values which the two datasets are supposed to share is “states” – here again, it is
correctly listed as a monosyllabic in the SPPAS-aligned dataset. But according the P2FA-aligned dataset, the
LPD says this word has 0 syllable.
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interprets the transcription as one of a four-syllable word. Likewise, P2FA gives an ARPAbet

transcription of /L IH1 T ER0 AH0 CH ER0/ for the word, which is also interpreted as a four-

syllable word. However, the LPD transcription, being British, is the following: /"lItr.@tS.@/25

– that of a three-syllable word. All words whose occurrences are systematic mismatch can

also be easily corrected, in one fell swoop. Words featuring variations, on the other hand,

cannot be, because the two aligners somehow change the transcriptions of the same words

from one occurrence to the other.

How then to account for those mismatches? The study of one particular case, that

of the transcriptions of “interesting” is particularly revealing. Such a case “mid-stream”

Fig. 1.14: Example of a varying transcription: on row 10, SPPAS chooses two different
transcriptions for “interesting”.

transcription change is illustrated in figure 1.14. Note that when listening to the file, neither

occurrence sounds like a four-syllable word. The first occurrence displays four syllables –

/Int3:r@stiN/, whereas the second occurrence only displays two – /Intr@stiN/. It is unclear

why such variability in the transcriptions is observed, even when inspecting the spectrograms.

The LPD version used by PRAAT03 only uses one entry for “interesting”, namely /"Intr.@st.IN/,

25 This transcription abides by the principles posited in Wells (1990). The affricate is not split (principle
n°3). MaxCoda is posited for the stressed syllable (principle n°1). In cases where the two adjacent syllables
have the same stress level, the consonant goes in coda position of the preceding syllable (principle n°2).
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and it always contains three syllables. The SPPAS version of the CMUPD lists three entries

for “interesting”: .

1. Int3:r@stiN (/"Int3~:r@stIN/)

2. Int3:ristiN (/"Int3~:ristIN/)

3. Intr@stiN (/"Intr.@st.iN/)

The first two options feature four syllables in total, while the last one, just like the LPD

transcription, has three. All three entries26 are present in the dataset. SPPAS can read

customized orthographic transcriptions that point to a specific realization (for instance,

we could have <intresting> to force a trisyllabic realization). In our case, “interesting” is

spelt identically, so that the variation probably has to be attributed to the acoustic models

implemented in SPPAS27. Likewise, P2FA uses two transcriptions:

1. IH1 N T R AH0 S T IH0 NG (/"Intr.@st.IN/)

2. IH1 N T ER0 AH0 S T IH0 NG (/"Int3~:r@stIN/)

Is there a way to determine the criteria used by the two aligners to select one entry rather

than another28? There are 15 and 25 instances of “interesting” transcribed with four syllables

in the SPPAS- and P2FA- aligned datasets respectively. Seven of these instances are common

to the two corpora. Conversely, for the three-syllable versions of “interesting”, there are

88 common instances out of the 109 SPPAS-aligned ones and the 96 P2FA-aligned ones.

Another word worth investigating because it appears in the list of the 10 most frequent words

with syllabic mismatches for the two aligners, and also features instances with and without

mismatches, is “history”. It is transcribed as a disyllabic in the LPD, /"hIs.tri/. In the SPPAS-

aligned data, it is at times transcribed as a disyllabic (/hIstri:/) or a trisyllabic (/hIst3:ri:/).

In the P2FA-aligned dataset, it comes up alternatively as two-syllable /HH IH1 S T R IY0/

or three-syllable /HH IH1 S T ER0 IY0/. There are 40 SPPAS-aligned disyllabic instances,

26 The choice of vowels for these transcriptions will not be discussed here.
27 Brigitte Bigi in SPPAS 1.7 uses Julius by default.
28 The focus here is on the variations in syllable numbers, so the study of the vocalic qualities of the third

syllable of SPPAS-aligned four-syllable versions of “interesting” will be left to further research.
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against 46 P2FA-aligned one. 30 of these occurrences are common to the two datasets.

In the case of the trisyllabic versions, 37 of the 53 and 47 SPPAS- and P2FA- aligned

occurrences are shared across the two datasets. Further research on other words would be

required to find out whether the aligners select given transcriptions according to detectable

criteria. The common instances are too few to assume any relationship between the processes

underlying the selection of the transcriptions. However, the logic underlying the variations

in transcriptions is common to both words “interesting” and “history”: in both cases, the

statuses of /3:/ and /r/ are at the heart of the decision process29.

This section has attempted to show how syllabification was made in the TextGrids and

how the syllable counts were determined. It is hoped that the obstacles encountered, the

problems that remain, and possibly some solutions to solve them, have been described here in

a clear enough way. It is now time to deal with preliminary analyses regarding the durations

of the phones and the leareners’ speech rates.

1.7 Preliminary analyses

Section 1.7.1 provides an analysis of the formant tracks extracted from the spectrogram

visible in figure 1.8, as well as a presentation of the distribution of the vowels’ durations

(regardless of their quality); section 1.7.2 assesses the learners’ speech rates.

1.7.1 Formant tracks and vowel durations

This section serves as a preliminary investigation of the accuracy of the automatic

extraction procedure. The formant tracks of the vowels shown in figure 1.8 are compared

to the data gathered by PRAAT03. The top row of figure 1.15 shows the formant tracks of

29 Incompetence is hereby declared regarding issues in rhoticity, and the syllabic status of /r/. In its four-
syllable LPD transcription of “history”, /r/ is attached to the coda: /"hIs.t@r.i/. For “interesting”, /r/ is an
onset: /"Int.@.rest.IN/. Why this is the case, whether it matters on the decision process – are questions best left
to experts in rhoticity.
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vowel /eI/ in “favorite” for F1, F2 and F3, while the bottom row shows /U/ in “book”.

The values are obtained from the SPPAS-aligned and P2FA-aligned phonemic tiers for

speaker DID0108 in session 2. Visual inspection reveals that the formants’ curves in the

spectrogram of figure 1.8 and those of figure 1.15 for /eI/ (in the top row) seem to match to

a certain extent. The case looks different for /U/ in “book”. The formant tracks obtained via

PRAAT03 seem to be more precise than what can be observed in the spectrogram. Assuming

this impression is correct, it may be explained by the differences in duration between the

two examples. In practice, the procedure of extracting formant values at 100 relative time

locations, regardless of the vowel’s duration, normalizes these durations. As far as automatic

extraction is concerned, however, no other solution could be adopted. Taking measurements

at absolute steps of 5 milliseconds, for instance, would have resulted in discrepancies in the

number of columns in the .csv file from one vowel to another. As shown in table 1.10 and

figure 2.3, in the case of absolute five-millisecond steps, 20 columns would have been needed

on average (0.1/0.005) – a procedure less precise than 100 measurements at relative time

locations.

The durations of vowels feature almost no scatter: only 778 SPPAS-aligned vowels are

longer than 0.5 second, out of 92,458 in total; this number drops to 480 for P2FA-aligned

vowels. 26 and 19 vowels are longer than a second with SPPAS and P2FA respectively. This

relative absence of spread can be seen in the upper panel of figure 2.3, which shows the

boxplots of SPPAS- and P2FA- aligned vowels’ durations, along with their kernel densities.

The minimal value for SPPAS-aligned vowels is 9.74×10−6 (“it’s”, DID0108, session 3).

One other vowel has a similar value: 4.17×10−6 for “I” (speakers DID0068 in session 3).

These values are clearly the sign of a misalignment30. Although nothing is mentioned in

their respective documentations, the two aligners seem to have a cut-off duration threshold

under which no vowel is recognized (the anomaly mentioned above set aside). The cut-off

30 Fine-tuning the interval alignment and repeating the procedure several times on these files did not iron out
the anomaly. Its cause remains unknown for the time being.
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Table 1.10: Minimum and maximum vowel durations (in seconds)

SPPAS P2FA French

S
P

O
N

TA
N

E
O

U
S

Minimum: 9.74×10−6 0.01 NA
Maximum: 1.62 1.55 NA
µ: 0.107 0110 NA
σ : 0.095 0.087 NA
m: 0.08 0.09 NA

R
E

A
D

IN
G

Minimum: 0.03 0.03 1.53×10−6

Maximum: 1.09 0.78 0.41
µ: 0.20 0.18 0.10
σ : 0.13 0.08 0.06
m: 0.17 0.17 0.08

thresholds are 0.03 second for SPPAS, and 0.01 second for P2FA. Evidence for this is the

following: using R v3.2.0 (R Core Team (2015)), no entries are returned for SPPAS durations

under 0.029 second; at 0.030, 4,909 entries are listed. The same phenomenon applies to

P2FA: at 0.009, no vowels are returned; 11 when the threshold is set at 0.01. In the case of

P2FA, this low threshold at 0.01 seems mostly theoretical, however. The real cut-off point

seems to be 0.030 – the same as SPPAS. At 0.029, 94 P2FA-aligned vowels are returned. At

0.030, the number rises to 4,192. This phenonemon is clearly visible in the bottom panel of

figure 2.3.

Boxplots and density plots for the vowel durations of reading tasks can be seen in

figure E.1.

1.7.2 Speech rate

Speech rate is often used as a measure of proficiency (e.g. Towell et al. (1996), O'Brien

et al. (2007)). It is usually calculated by counting the number of syllable nuclei which is then

by the duration of the word (cf. Towell (2002), de Jong & Wempe (2009) and the references

therein) or by the number of syllables pronounced by second (cf. Dellwo & Wagner (2003)).

There are several ways to define speech rate. One is to calculate the average number of words
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per seconds; this method being dependent on the lexicon used, whose distribution in terms

of length is itself can vary considerably, it is not adopted here; another way is to count the

number of syllables; one last way is to count the number of phones. Those last two ways are

investigated here.

Syllables per second

Figure 1.17 plots the number of syllables against the aggregated durations of all five

sessions (session 1, session 2, session 3, session 4 and the reading task in French), using

both the SPPAS- and P2FA-aligned intervals. As is clear from visual inspection, the two

variables seem to be strongly linearly correlated. This is confirmed by the Pearson cor-

relation coefficient: rSPPAS = 0.9986165;rP2FA = 0.9951977. A simple linear regression
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Fig. 1.17: Scatter-plot of the number of syllables against the aggregated syllables
durations; squares: SPPAS-aligned intervals; circles: P2FA intervals; grey dashed line:
regression line for the P2FA-based model; black dotted line: regression line for the
SPPAS-based model.

was calculated to predict the number of syllables based on their durations for both aligners.
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Table 1.11: Statistics of the SPPAS and P2FA linear models for the syllable-based and
phoneme-based calculations of per-session speech rates.

F d f p R2 Intercept Slope

S
Y

L
L

A
B

L
E SPPAS 721.3 1 0.001384 0.9972 143.45 3.9007

P2FA 206.7 1 0.004802 0.9904 1252. 52 4.2222

P
H

O
N

E
M

E SPPAS 209.9 1 0.00473 0.9906 4612.48 8.9173
P2FA 96 1 0.01026 0.9796 7380.78 9.5294

A significant regression equation was found in the case of both aligners, as displayed in

table 1.11 (in the first two top rows). A one-second increase in the duration of a given

session therefore corresponds to a 3.9007 increase in the number of syllables pronounced

in that session for SPPAS-aligned intervals, and to a 4.2222 increase for P2FA-aligned

intervals. These very close findings for the two aligners can be accounted for by the fact that

differences in alignment result in differences in phonemic intervals, but not in the number of

syllables. From this it can be infered that the time gaps between SPPAS-aligned intervals

and P2FA-aligned intervals are only marginal. No effect from sessions is visible: speech

rate did not evolve from one session to another. The two simple linear models that were

calculated did not include, of course, the values for the reading task in French. That the

values for the reading task in French fit the regression lines may serve as an indication of

a certain syllable-based isochrony. If we apply the equation for calculating the residuals:

e = y− ŷ to French values, we obtain: eSPPAS = 2901− (3.9007× 542.93+ 143.45) and

eP2FA = 2901− (4.222×542.93+1252.52), i.e. eSPPAS = 639.74 and eP2FA =−643.77. In

the case of the SPPAS linear model, the maximum absolute residual value is 445.87 (in

session 2); eSPPAS is roughly 50% as high as the maximum absolute residual value. The P2FA

linear model is more clear-cut: the maximum absolute residual value is 845.564 (session 2),

and the second highest residual value is 691.005 (session 3); in other words, eP2FA is lower

than two residuals out of four. These two observations are arguably strong arguments in
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favour of some sort of syllabic isochrony in the learners’ spontaneous speech. This hypothesis

will have to be further investigated in future research.

Phones per second
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Fig. 1.18: Scatter-plot of the number of phonemes against the aggregated phonemes
durations; squares: SPPAS-aligned intervals; circles: P2FA intervals; grey dashed line:
regression line for the P2FA-based model; black dotted line: regression line for the
SPPAS-based model.

At first sight, the findings from the previous section do not seem to be borne out if the speech

rate is calculated from the number of pronounced phonemes, rather than on the number

of pronounced syllables. Along the same lines as the previous figure, figure 1.18 plots

the number of phonemes against the aggregated durations of all five sessions (session 1,

session 2, session 3, session 4 and the reading task in French). The Pearson correlation

coefficients for the SPPAS and P2FA values are rSPPAS = 0.9953 and rP2FA = 0.9897. Two

linear models were also calculated, and their statistics can be found in the bottom row of

figure 1.10. In this instance: eSPPAS = 6371− (8.9173× 542.93+ 4612.48) and eP2FA =
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6371−(9.5294×542.93+7380.78, i.e. eSPPAS =−3082.95 and eP2FA =−6183.57731. The

maximum absolute values of the residuals in the SPPAS and the P2FA models are 1874.53

(in session 2) and 2709.9 (also in session 2). It would therefore not be reasonable to assume

some sort of continuity between the durations of phonemes in the reading task in French and

those in the recordings of spontaneous speech. At least the French values for the calculation

of speech rate based on the number of phonemes per second are not predictable by the linear

models to the same extent as they can be from the syllable-based linear models. In terms of

acquisition, this could be interpreted as a paradigmatic shift away from the native language,

and therefore as evidence of acquisition32. This seeemingly further reinforces the assumption

that there may exist syllable-based isochrony: the overall picture is however more complex.

Table 1.12 shows that the speech rate in French is higher than the speech rate in English,

with more syllables and more phonemes pronounced per second in French than in English .

However, the table synthesises session speech rates to the detriment of individual variation,

which is hidden behind the aggregated data. Still, these rates roughly correspond to the

slopes of the model lines plotted in figure 1.17 and 1.18. The greater number of syllables per

second in French (5.31 vs. 3.93 and 4.49 on average for SPPAS and P2FA respectively) can

be accounted for by the smaller number of phonemes per syllables in French than in English

(2.20 against 2.5). Unsurprisingly, more phonemes are articulated per second in the learners’

native language: on average, 9.77 phonemes per second for SPPAS, 11.08 for P2FA, and

11.65 in the French data. The question therefore arises of whether the syllabic speech rate is a
31The reader will have noticed that 6371 is not a multiple of 13, while 13 participants completed the reading

task in French, and the number of phonemes can be reasonably be assumed to be the same from one participant
to the other. This is however not the case because of the title, “le géant égoïste”, which some participants chose
to read, and others did not. The same remark of course applies to the total number of syllables, 2901. The
aggregated durations on the x-axis of both figures 1.17 and 1.18 are also the same: the aggregated durations of
syllables are the same as those of the phonemes that make up the syllables.

32 This of course raises the crucial issue of temporal cues in the recognition of phonemes in English.
Depending on the dialects (cf. Morrison (2008) and the references therein), the difference between /i:/ and /I/
is one of quality exclusively, not one of quality and length, making the “:” symbol redundant in the transcription.
This problem is compounded by teaching practices in France, where /i:/ is often referred to as “le i long” – the
long “i”. Regardless of whether this is a correct way of teaching the pronunciation of this vowel, in this state of
affairs, our observed gaps between the durations of French and English phonemes are evidence of some sort of
acquisition, namely the taking into account – right or not – of temporal cues.
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Table 1.12: Speech rates in syllables per second (top row) and phonemes per second
(bottom row) for SPPAS- and P2FA-aligned spontaneous speech and the reading task in
French; third row: number of phonemes per syllable (i.e. the ratio of the second and first
row); fourth row: average phoneme durations; last row: standard deviations of phoneme
durations.

SPPAS P2FA French

Session 1 Session 2 Session 3 Session 4 Session 1 Session 2 Session 3 Session 4

SYLLABLE/S. 3.90 3.99 3.87 3.95 4.52 4.57 4.31 4.54 5.31
PHONEME/S. 9.88 9.85 9.32 10.02 11.38 11.19 10.29 11.46 11.65
PH. PER SYLL. 2.54 2.47 2.41 2.53 2.52 2.45 2.39 2.52 2.20
AVG. PH. DUR. 0.101 0.102 0.107 0.100 0.088 0.089 0.097 0.087 0.086
PH. DUR. σ 0.086 0.102 0.097 0.084 0.064 0.066 0.082 0.066 0.056

simple translation of the characteristics of the phonemes – whether the whole is other than the

sum of its components. Attempting to answer this question by looking at speech rates only is

far from trivial. One first reason is that the only adjustable variable is of course phoneme

duration. The last row of table 1.12 shows greater standard deviations in English phoneme

durations than in French. Such greater variability can however have several explanations: (i)

it could simply be an effect of the acquisition process, and of articulatory difficulties; (ii) the

available data are of fundamentally different natures: the greater stability in French could

be an effect of reading, as opposed to producing spontaneous sentences; (iii) temporal cues

matter more in English than in French (cf. e.g. Hillenbrand et al. (2000)): the higher standard

deviations may therefore simply be a consequence of improved mastery of English; (iv) the

apparent predictability of the French syllabic speech rate from the English data, and the

similarly apparent impredictability of the French phonemic speech rate, could be an artefact

of the corpus size: 6,371 phonemes were collected in total for the French reading task, when

the smallest number of phonemes, in Session 1, reaches 39,518. An analysis of speech rates

without more data, access to spectral specificities or speakers’ idiosyncrasies therefore seems

unlikely to provide a satisfying answer to the question of whether French speakers somehow

resyllabify their productions in English.

This cursory, homemade approach mostly aimed at checking the consistencty of the two

aligners . More detailed analyses of rhythm should factor out tasks, probably distinguishing
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the cut off point from initial monologal situations of the interviews to final dialogues for the

LINDSEI-inspired tasks. It may well be the case that the speech rate is not consistent over

time for some speakers as accommodation seems to have played a role for some of the files

investigated in (Burin & Ballier (2017)).

1.8 Conclusion

In this chapter, the processes by which the data was generated have been detailed. A grand

total of 81 TextGrids, one for each of the 23 learners across the three or four sessions they

took part in, have been created, with tiers for the alignments carried out by the two aligners

SPPAS anf P2FA, and for the pronunciations listed by the LPD. French and English syllable

boundaries have also been emulated, making it possible for future research to investigate

possible acoustic cues, and the influence of syllabic templates on vocalic realizations. Parallel

to this process, two main datasets, one for each aligner, centralized extra-linguistic, linguistic

and acoustic information for all the vowels aligned in the TextGrids. The two spreadsheets

contain 92,330 (for SPPAS) and 92,091 (for P2FA) datarows, each row corresponding to one

extracted vowel. Each vowel has 542 attached cells for data on the speaker, the session, the

word, the duration, the formant values taken at each centile of the vowel’s duration, etc. The

same workflow, of generating TextGrids and centralized spreadsheets, was also applied to

three subcorpora: a homemade subcorpus of native speakers with 4,542 and 4,586 vowels

extracted for SPPAS and P2FA respectively; a subcorpus of a list of English words recorded

by the learners as part of the LONGDALE project, whose spreadsheets contain information

for 1,750 for each aligner; and finally a subcorpus for the vowels extracted from a French

text read by the participants, also as part of the LONGDALE project. Since the recordings

are in French, only SPPAS could align it, and information for 2,901 vowels was collected.

Unlike the three other corpora, however, formant values were extracted not at each centile of

the vowels’ durations, but at each decile.
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Some observations were also made about the quality and reliability of the information that

was collected: F0 and F4 for instance were shown to feature more undefined values than the

three other formants. The processes underlying the labelling decisions of the aligners have

also been tentatively shed light on, although “black box” effects undeniably remain. “The”

for example seems to see its vowel labelled by both aligners according to formant-based

decisions. This potent feature however is not applied across the board, and a word almost

equally as frequent and subject to vowel reductions as “to” does not benefit from it. An

assessment of the quality of the syllabification alignments, along with the complex processes

required to carry them out, has been undertaken. A lot of mismatches were found to have been

caused by discrepancies between the American-based dictionaries used by the aligners on the

one hand, and the British-based dictionary used by PRAAT03 for syllabification on the other.

However, in cases not so rare, alternative pronunciations, mostly involving variable syllabic

statuses for /r/, either as a coda or an onset33, were selected by the aligners. Future research

will have to determine along what guidelines the choices for one transcription over another

are made. Finally, preliminary analyses were made of formant tracks, vowel durations and

speech rates, in an attempt to assess the viability of the extraction procedures regardless of

vowel qualities. These vowel qualities, and especially those of the monophthongs, are the

main focus of the next chapter.

33 c.f. footnote 29.





Chapter 2

Speaker-independent Analyses

This chapter analyses the vowels collected following the procedures described in chap-

ter 1, without taking into account the cross-speaker differences. This means that acoustic

analyses will compound formant values regardless of the learners who pronounced the

vowels. The first section details technical preliminaries such as the parts of R codes which

are recurring across various scripts, or the colours chosen to represent vowels. The second

section aims at assessing the accuracy of the automatic alignment and extraction. The third

section investigates the disparities, such as formant standard deviations or lexical distribution,

between the monophthongs. The fourth section deals with issues in normalization: it de-

scrives the obstacles and theoretical contradictions underlying normalization methods applied

to the sort of corpus under study (i.e. spontaneous learner speech), while experimenting

with a procedure to study the effects of normalization on corpus analysis. The final section

investigates the connection between the Euclidean distances of the /I/-/i:/ and /U/-/u:/

contrasts in the vowel space, and the surface of that vowel space.
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2.1 Technical Preliminaries

In the following pages, the same R code will have been used to extract and analyze

data. Because it was established in section 1.7.1 that both SPPAS and P2FA had minimal

thresholds for vowel durations, under which no vowels were recognized, only the phonemes

lasting longer than the minimal duration (0.03s.) will be taken into account.

Calculations were always made on both datasets, i.e. the SPPAS-aligned and the P2FA-

aligned datasets. However, comparing the differences is not always justified – especially

when they are small or even non-existent. In those cases, results using the SPPAS-aligned

dataset are presented. Choosing SPPAS as the default dataset makes sense, since part of the

P2FA data, especially the data related to syllabic structure, is inferred from SPPAS-generated

alignments (c.f. section 1.2.2).

When selecting vowels for study in either dataset, the transcription system from the LPD

was used. The reason why the LPD transcription was chosen is that SPPAS and P2FA use

SAMPA and ARPAbet respectively (c.f. table 1.4). Cross-comparisons between the two

datasets are therefore much easier to make by resorting to their common transcription system.

Another reason is that the LPD provides a British-based pronunciation, whereas the CMUPD

versions of the aligners are American-based. With learners’ interlanguage being more likely

to be unstable, it makes sense to use the more complex vocalic system (i.e. the British one)

as reference: should learners try to contrast “dog” and “door”1, for instance, their endeavour

(or success!) will be taken into account. The ARPAbet and SAMPA versions of the CMUPD

are also coarser grained in their transcriptions than the LPD. One example is the absence of

“happy”-tensing /i/ in the SPPAS transcriptions: “easy” is thus transcribed /i:zi:/2. Perhaps

more crucially, there is more consistency in the labeling of vowels by the LPD than by either

of the two aligners. The next paragraph explains why.

1 “Dog” is transcribed /d O: g/ and /D AO1 G/ in SPPAS and P2FA respectively; “door”, /d O: r/ and /D
AO1 R/.

2 No stress marks exist either. The exact transcription in the dictionary is the following: /i: z i:/.
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The main source of inconsistency is the observed variety of labels for the same vowels

in the same words. There are 770 monosyllabic words in the SPPAS dataset (taking the

SC column as the base reference, not LPDSC). 39 of these words have their nucleus labeled

in more than one manner. The issue is that a lot of these variations cannot be ascribed to

reduced values: “and” shows 1,456 entries as strong form (/æ/), 576 as weak form (/@/).

The vowel in “was” is labeled /@/ 381 times; /2/ 87 times; but also /A/ 166 times, and /O:/

14 times. The nucleus of “will” may well be labeled /@/ 65 times, and /I/ 78 times, but

there is no clear syntactic or semantic reason in the occurrences that may explain the choice

of one pronunciation over the other. The vowel in “the” is transcribed as /@/ 1,995 times,

555 times as /i:/, and 325 times as /2/. Sometimes, the vowels chosen in weak forms3

are not consensual: in “been”, /I/ appears 79 times, and /@/, 19 times. . . “Just” appears as

/dZ2st/ 67 times, and 256 times as /dZIst/. “Your” has 32 occurrences under /U/, 12 under

/O:/; but “you’re” is listed under /U/ 38 times, and under /u/ 22 times. . . Such variations

are not limited to potentially reducible function words: “want” is transcribed /wAnt/ 46

times, /wO:nt/, 77 times; “walk” shows as both /wAk/ and /wO:k/ 14 times each. . . When

it comes to polysyllabic words, 41 words out of a total of 1,271 words feature vowels with

alternative pronunciations. “Accent” is transcribed as /"æksent/ 25 times, /"æks@nt/ 2 times;

“upset” is listed as /?@p"set/ one time; <-ed> can be transcribed /Id/ or /@d/: 9 times in

“started” for the former, 13 times for the latter. “Because” features an alternation of /O:/

(491 times) and /2/ (193 times) on the second syllable. The P2FA alignment is overall as

subject to variations as the SPPAS alignment: for monosyllabic words, 42 words out of a

total of 769 feature at least two different pronunciations of their nucleus. This is the case of

“your” (/jO:r/ 12 times and /jUr/ 29 times), “you’re” (/jUr/ 49 times, /ju:r/ 14 times), “them”

(/Dem/ 114 times, /D@/ 15 times), “the” (/D@/ 1,844 times, /D2/ 405 times, /Di/ 529 times),

“if” (/If/ 184 times, /@f/ 77 times). . . If 98 out of 1,195 disyllabic words contain a vowel

with more than two pronunciations, the explanation seems to be different, however: a lot

3 A choice, once again, which is not clearly determined by the context in which the words appear.
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of these mismatches can be attributed to either vowel reductions, e.g. “wasn’t”, or changes

in stress patterns due to the grammatical nature of the words (e.g. “subject”, “contrast”,

“conflict”. . . ) “Began” however is transcribed as /bi"gæn/ 3 times, and /bI"gæn/ three times

too; “because” is listed as /bi"k2z/ 635 times, and as /bi"kO:z/ 12 times. From the perspective

of this work, alternations in either aligner between /I/ and /i(:)/ in words like “because”

are problematic, because they sever the link between the lax/tense feature of vowels and

the syllabic structure they appear in: it is traditional and consensual to consider that lax

vowels only appear in closed syllables. If that view were to be challenged in a data-driven

approach like this study, the starting point would be to adopt a tagging system that preserves

the link between phonemes and syllabic structure. This is one more argument in favour

of using the LPDPHONEME column in both datasets. Finally, it is worth noting that it was

possible to exert control, through PRAAT03, over the LPDPHONEME labels, in a way that

was not possible with the aligner-dependent PHONEME column. For instance, occurrences of

“the” were labeled as /Di/ when preceding a vowel sound, /D@/ otherwise. This introduces a

normative aspect which is not necessarily undesirable when dealing with specialized learners

of English who are likely to end up teaching the language themselves. For all these reasons,

i.e. cross-comparisons between the two datasets, consistencies in the labelling of vowels, and

manual control through PRAAT03, it was deemed reasonable to base vocalic analyses on the

LPDPHONEME column, rather than on the aligners’ PHONEME column.

As this study focuses on monophthongs, diphthongs and triphthongs were excluded

from the data. Section C.6 provides the piece of R code common to all the scripts used to

obtain the results detailed below. This common piece of code loads the datasets using fread

(Dowle & Srinivasan (2017)); excludes the vowels whose duration is shorter than 0.03s.;

and only selects monophthongs in the remaining datapoints. Figure 2.1 lists the per-session,

per-aligner number of monophthongs thus collected, along with their respective proportions

across all sessions in the bottom panel. The labels of these vowels are from the LPDPHONEME
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Fig. 2.1: First four panels: per-session, per-aligner count of LPDPHONEME monoph-
thongs; bottom panel: per-aligner proportion of each LPDPHONEME monophthong across
all sessions.

columns, for all the reasons mentioned above. The distribution of vowels across the four

sessions is roughly the same. The total numbers of monophthongs for each aligner are the

following: 66,470 SPPAS-aligned monophthongs, and 64,407 P2FA-aligned monophthongs.

The disproportions in numbers from one vowel to another are worthy of attention: /I/ and

/@/ account for 38% of all the SPPAS-generated data, and 33.4% of all the P2FA-generated

data. This skewness in phonemic distribution is an issue that will be discussed in further

detail when dealing with normalization (c.f. section 2.4). One final note needs to be made

æ a: e 3: @ I i: i 6 O: 2 U u: u

Fig. 2.2: Colour codes of phonemes used in graphs

about the colour codes used in graphs representing the monophthongs. The same colours are

applied to the same monophthongs, and are displayed in figure 2.2. These colour codes try to
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respect some sort of logic (low front vowels in blue, high front vowels in green, rhotic vowels

with a slightly darker shade, central vowels in dark colours, etc.), and make the contrasts

which will be focused on, i.e. /i:/-/I/ and /u:/-/U/ more visible.

2.2 Assessing alignment and extraction quality

One of the first questions that needs to be dealt with before proceeding forward is that of

the accuracy of the alignment and formant extraction4. The extraction procedure described

in Chapter 1 tentatively tackled this issue through the study of speech rate (cf. Section 1.7.2).

However, the specifics of spectral analyses have yet to be addressed. Two structural obstacles

lie in our way: (i) the very nature of the corpus, i.e. connected speech; phonation, speech

rates and their related coarticulatory effects are likely to affect formants in a way that might

compromise their extraction. Besides, although laughter, hesitation markers, coughs and

overlaps have been carefully excluded from the segments under study, clear-cut boundaries

between words or between silent and noisy moments were at times difficult to establish. (ii)

That the corpus is also a learner corpus compounds these difficulties, as formant instability

within a vowel category cannot but be a feature of learner speech. With high dispersion a

defining and expected characteristic of the learners’ vowels’ formants, sorting out which

outlying formant values pertain to genuine idiosyncratic pronunciations, and which pertain

to errors in automatic extraction, is no easy task. The next section, section 2.2.1, aims at

assessing the latter, i.e. automatic extraction, by exploring the number of formants with

plausible values.

4 In general, no technical distinction will be drawn in the following paragraphs between “extraction” and
“alignment”. While we are well aware that “alignment” refers to the process of creating an interval boundary at
a given location in the sound signal, and “extraction” to the process of retrieving acoustic data from a particular
location in the signal, the fact that these two processes are intrinsically linked (the acoustic data will depend on
the chosen point in the signal) means, for our purposes here, that assessing the quality of one is assessing the
quality of the other. The two terms will therefore be used interchangeably in this section.
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2.2.1 Assessment with predefined formant ranges

One way to look at the problem of the accuracy of automatic extraction is to find out the

number of centiles, for each vowel, whose F1, F2 and F3 values fall within a predefined range

which would include all potentially realistic values, and exclude straightforwardly abnormal

ones. The arbitrary cut-off values adopted here were the following: F1 ∈ [250,850];F2 ∈

[500,2500];F3 ∈ [1500,3500]. These values were chosen after cross-referencing data in

phonetic research. Sundberg (1977, p. 109) states that “[The range] in adult males averages

approximately from 250 to 700 hertz for the first formant and from 700 to 2,500 hertz for

the second” 5. In their study of journalistic broadcast speech by French and German native

speakers, Gendrot & Adda-Decker (2005) chose gender-, language- and vowel- specific

ranges for the automatic extraction of formants (e.g. F1 values for male speakers pronouncing

French /i/ were to be superior to 300 Hz and inferior to 2050 Hz – 350 Hz and 2,400 Hz

for female speakers). Extreme F1 and F2 values for French, independently of gender, were

(in Hz) F1min = 300;F1max = 750 and F2min = 850;F2max = 2400. F3 was not taken into

account in their study. In their chapters on vowels, Ladefoged & Maddieson (1996) do not

specifically mention ranges of formants for vowels, but standard axes in graphs range from

200 Hz to 800 Hz for F1, and from 200 Hz to 2,500 Hz for F2
6. F3 is not mentioned either.

The rather low value selected as a minimum for F3 (1,500 Hz) can be explained by certain

constrictive gestures in French and rhotic English. Lip-rounding to produce /y/ causes F3 to

drop towards F2 values, from 3,000 to 2,000 Hz approximately (cf. Vaissière (2006, p. 75)).

Rhotic vowels in rhotic varieties of English, such as /3~:/ in “bird”, are also produced by

constricting anterior and posterior cavities in the vocal tract, which results in F3 values “well

5 Although the book deals with the acoustics of the singing voice, in context the remark above does not
restrictively apply to male singing voices.

6 Ladefoged & Maddieson (1996) give values outside the range chosen here (i.e. F1 /∈ [250,850];F2 /∈
[500,2500]), which may be worth mentioning: in Eastern Arrernte, /@/ features F1 values superior to 850 Hz
when preceded by /p/ and /t”/, and F2 values superior to 2,500 Hz when preceded by /k/ and /t

˚
/;
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below 2,000 Hz” (cf. Vaissière (2006, p. 76)). Finally, Benesty et al. (2007, p. 219) note that

“F3 goes as low as 1,900 Hz”.

Figure 2.3 shows the count (top row) and proportion (bottom row) of SPPAS-aligned

(left column) and P2FA-aligned (right column) phonemes whose F1, F2 and F3 values fall

within the ranges defined above. The x-axis increments each centile into the duration of the

phonemes. The phonemes analyzed were selected from the two aligners’ datasets using the

common R code described in section 2.1 and given in section C.6. Cursory graphic analysis

shows very few differences between the two alignment procedures. These similarities can

partially be explained by the inner structure of PRAAT03: SPPAS-aligned phonemes are

looped through in priority, and P2FA-aligned phonemes are then retrieved from the time

locations of the SPPAS-aligned phonemes. P2FA-aligned phonemes are therefore anchored

around SPPAS-aligned phonemes. Differences between the two transcriptions (ARPAbet

and SAMPA) are neutralized by the selection of LPDPHONEME (from the LPD, then) as the

tagging method in figure 2.3. With all this in mind, it may come as a surprise that looking

at the figure more into details does indeed reveal differences. Before approximately the

20th centile, SPPAS-aligned phonemes seem to feature fewer within-range formant values.

Past that 20th centile, the global shapes of the proportion curves look similar from one

aligner to the other, with the notable exception /u/. However, the specificity of the /u/

curve may be ascribed to the rarity of its occurrences: with only 210 and 201 occurences

in the entire SPPAS- and P2FA-aligned corpora respectively (c.f. section 2.1 and figure 2.1

for raw phonemic distributions and section 2.3 for more details on the lexical distribution

underlying phonemic count), /u/ is roughly 5 times as rare as the second rarest monophthong,

/U/, which occurs 1,018 and 983 times in the SPPAS and P2FA datasets. When it comes

to comparing the shapes of the proportion curves within each aligner, two curves stand out:

rather than the truncated, logarithmic shape all other proportion curves have, the /i:/ and /i/

curves feature a parabolic shape, with formant values more likely to be out-of-range around
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the mid-temporal point. With such distinctive differences, the question arises: what is the

cause of such a decrease in within-range formant values? Isolating each of the six conditions

of the pre-defined formant ranges, i.e. for F1, F2 and F3 to be superior to 250Hz, 500Hz

and 1500Hz, or inferior to 850Hz, 2,500Hz and 3,500Hz respectively and independently,

shows that in both datasets, 99% of F1, F2 and F3 formant values of vowels /i:/ and /i/ on

all centiles respect those conditions individually7 – except for the maximun F2 condition,

where the proportion drops to 92% in both datasets. The observed decrease of within-range

formant values for /i/ and /i:/ around the mid-temporal point can therefore be ascribed

predominantly to F2 values which are superior to 2,500Hz, rather than out-of-bounds on

either of the five other conditions. Still, as shown in figure 2.4, the overall mean proportion of
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Fig. 2.4: Scatterplot of the average proportion of within-range centiles against the
number of occurrences. Black: SPPAS-aligned data; grey: P2FA-aligned data.

centiles within the range of predefined of /i:/ is 72.3% in the SPPAS-aligned data, and 71.9%

in the P2FA-aligned data; for /i/, it is 78.6% and 77.4% respectively. These proportions
7 This means that, for instance, 99% of all F1 formant values of /i/ on all centiles in a given dataset are

superior to 250Hz.
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are the lowest among all monophthongs, and are still arguably high. If instead of 2,500Hz,

the cap for F2 is raised to 2,600Hz, the mean proportion of within-range centiles increases

substantially in high vowels, and even more in high front vowels: in the SPPAS-aligned

dataset, the mean proportions for /I/, /i:/, /i/, /u:/ and /u/ rise by 4.15%, 7.01%, 5.95%,

1.75% and 2.75%, to reach mean proportions of 89.2%, 79.3%, 84.6%, 85.9% and 82.9%;

in the P2FA-aligned dataset, by 4.81%, 7.49%, 6.78%, 1.66% and 2.56%, reaching mean

proportions of 90.7%, 79.3%, 84.2%, 88.7% and 88.2%. In both datasets, all other vowels

feature increases in mean proportions under 1% – including /U/, a characteristic which may

at this stage be considered as incipient evidence of the (correctly) central nature of this vowel

in the learners’ English. Raising the maximum value of F2 makes sense: certain studies

(e.g. Gendrot & Adda-Decker (2005), Tubach (1989)) mention high F2 values in French

(2,365Hz in the former, with no standard deviation reported; 2,456Hz for the latter, with a

standard deviation of 111Hz, i.e. potentially superior to 2,500Hz)8. Figure 2.4 also indicates

that no correlation exists between the number of centiles within the range of pre-defined

values and the number of occurrences of a given monophthong. This absence of correlation

entails that the quality of the vowels substantially contributes to the accuracy of the automatic

extraction. Looking at figure 2.4 again, the differences between the two aligners are more

vertical (i.e. due to differences in means) than horizontal (i.e. due to differences in numbers of

occurrences), with the exception of /I/ and /@/ (for reasons already hinted at in section 2.1).

Interestingly, when ordering these vertical distances, phonological distinctions appear: the

five greatest differences in means in increasing order are /A:/, /u:/, /U/, /O:/ and /u/ – back

vowels, with /U/ the exception. Conversely, the only back vowel with a small difference

8 Raising the F2 cap by another 100Hz to 2,700Hz returns the same gains in within-range centiles: mean
proportions of within-range centiles for /I/, /i:/, /i/, /u:/ and /u/ increase by 6.6%, 12.1% (!), 10.2% (!),
2.74% and 5.1% in the SPPAS-aligned dataset; the increases in the P2FA-aligned datasets are even more
substantial: 7.53%, 12.89% (!), 11.52% (!), 2.52% and 5.34%. Clearly the lower number of within-range
centiles in high vowels is due to abnormally high F2 values, rather than abnormal F1 or F3 values. It could make
sense to raise the F2 cap even beyond 2,700Hz: Hillenbrand et al. (1995)’s average F2 value for /i/ among
American female speakers is 2,761Hz. All in all, our original F2 cap of 2,500Hz can be argued to be somewhat
conservative.
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in means between the two aligners is /6/, which does not exist in American English, and

is therefore potentially neutralized by the learners. These relative disparities in the means

of proportions of within-range centiles between monophthongs arguably constitute further

evidence of the accuracy of the automatic extraction process: the emergence of phonological

distinctions in these disparities indicate that the distinctive formant profiles which establish

the unique quality of vowels have been preserved.

In this section, 8,726,900 F1, F2 and F3 values for the SPPAS-aligned dataset, and

8,510,000 for the P2FA-aligned dataset, came under study9. Regardless of vowel quality,

in total 88.6% of all formant values of the SPPAS-aligned monophthongs as measured on

each centile were within-range, i.e. were superior to 250Hz and inferior to 850Hz for F1, and

superior to 500Hz and inferior to 2,500Hz for F2, and superior to 1,500Hz and inferior to

3,500Hz for F3. In the P2FA-aligned dataset, the proportion is 90%. Although the arbitrary

nature of the cut-off values lends itself to discussion (considering the considerable varieties

and variations of languages and speakers), and although changing these values may yield

very different results (as was shown with raising the F2 cap), it is still contended here that the

formant values obtained through automatic extraction on each centile are very robust and

plausible, and may serve as the basis for further phonetic and phonological analysis. The

next section aims at consolidating this contention, and explores in further detail the accuracy

of the automatic process by looking at vowel trapezoids.

2.2.2 Vowel trapezoids

Another way of assessing the accuracy of the automatic extraction is by visually examin-

ing the distribution of monophthongs on the vowel trapezoid. Section 2.2.1 has demonstrated

the plausibility of the extracted F1, F2 & F3 values for each centile. But do these plausible val-

ues correspond to values in keeping with the phonemes that they are attached to? Figure 2.5

9 As per section 2.1, these figures exclude monophthongs longer than 0.03 second, and the diphthongs and
triphthongs of the datasets.
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Fig. 2.5: Vowel trapezoids from mean raw F1 and F2 values – Odd-numbered rows:
vowel trapezoids for male and female speakers from SPPAS-aligned (left) and P2FA-
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(1995)’s data for American speakers (left); Gendrot & Adda-Decker (2005)’s data for
French speakers (right).
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represents various vowel trapezoids across all monophthongs obtained from the means of

raw F1 & F2 values in Hertz. The conditions described in section 2.1 were implemented

and only the vowels matching those conditions were retained. Values were conflated across

speakers and sessions, but not gender. The dotted black line, and the continuous grey line

trace the convex polygon linking outermost points for female and male speakers respectively.

Two different methods were used to compute the F1 and F2 means: (i) in the first method,

the means were calculated from the mid-temporal values of F1 and F2 of each datapoint; the

results are shown in the odd-numbered rows of the first six rows in figure 2.5. (ii) in the

second method, the F1 and F2 means were calculated first by averaging over each F1 and F2

centile value on each datapoint, then by averaging all these means for each monophthong; the

obtained values are displayed in the even-numbered rows of the first six rows in figure 2.5.

The advantage of computing means this way is that this second method includes all F1 and

F2 values from all centiles, thereby making it possible to assess the accuracy of the formant

extraction process: implausible means would point to inaccurate extraction. Excluding

row 7 for the moment, the left column features SPPAS-aligned data while the right column

features P2FA-aligned data. The main corpus of recorded conversations between learners and

native assistants is used in the first four panels. The next eight panels display the trapezoids

obtained from the monophthongs extracted in two sub-corpora (c.f. section 1.3): (i) the

learners’ recorded lists of words10 (c.f. section A.2.1); (ii) natives’ spontaneous speech, with

no distinctions made between the varieties of accents (only differences in sex were taken

into account). Row number 7, the last row, plots the trapezoids from the values reported

in Hillenbrand et al. (1995) for American speakers in the left column, and from the values

reported in Gendrot & Adda-Decker (2005) for French speakers in the right column. These

two panels serve as references to compare the other twelve panels, which are all based on

data generated from PRAAT03.

10 The list of words being mostly a list of monosyllabic words, /u/ is not pronounced. Occurrences of /@/
come from “cancel”, “possible”, “quality”, “people”, “serious” and “oral”.
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From the perspective adopted in this section, i.e. not one where acquisition is considered11,

but one where the accuracy, or at least plausibility, of the obtained formant values is assessed,

the resulting trapezoids in figure 2.5 constitute solid evidence that the process that generated

the datasets from the two alignments made by SPPAS and P2FA works: all monophthongs

are correctly located, at least relatively to one another, in the vowel space; even from

an absolute point of view, the areas where they are plotted are in keeping with common

representations12, and seem to reflect their places of articulation in a plausible way. It is

hoped that these findings, along with those presented in section 2.2.1 justify the use of the

generated dataframes as basis for actual phonemic study.

2.3 Disparities in phonemic distributions

In this section, the distribution of each monophthong is investigated. Subsection 2.3.1

investigates the per-phoneme standard deviations of F1, F2 and, to a lesser extent, F3 values.

Subsection 2.3.2 likewise studies the disparities in Type/Token Ratios (henceforth, TTRs).

2.3.1 Standard deviations

This subsection investigates the standard deviations along the formant tracks of each

monophthong.

How distributed around a (hypothetical) centre are the formant values of each monoph-

thong? How much variation do the monophthongs feature? These questions need to be

answered: if averages of formant values over several occurrences are used in order to give a

representation of how a vowel was pronounced, some assessment of the accuracy of such

a method must be provided. But then another question arises: are mid-temporal measure-

11 These vowel trapezoids will be used again in section 2.5, which explores methods to assess acquisition
based on their surfaces.

12 Only raw data has here been used. Whether, and how, to normalize the data will be tackled in section 2.4.
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ments optimal? Considering that formant tracks are available in our corpora, shouldn’t it be

attempted to maximize the information taken into account in the representation of the vowels’

pronunciations? Figure 2.6 shows the standard deviations of F1, F2 and F3 values taken

at each centile for each monophthong and each aligner. The top row gives the per-centile,

per-phoneme F1 standard deviations, the bottom row, the F2 standard deviations (in Hertz in

both cases). The left column plots the SPPAS-aligned data,the right column the P2FA-aligned

data. The mean curves in each panel, i.e. the mean of standard deviations on each centile

regardless of the monophthongs, are shown in a thicker, continuous black line. The shapes of

the F1 curves, regardless of the aligner, clearly indicates greater variations at the onset of the

vowels. Their offset also shows a slight rise. These higher standard deviations can most likely

be ascribed to coarticulation, i.e. the influence of the consonantal environment embedding

the vowels. However, coarticulation seems to have a greater effect on F1 values than on F2

and F3, which show mostly regular standard deviations after approximately the 20th centile

onwards. The most unstable curve in all six panels of figure 2.6 is that of /u/. This is in

keeping with its count, the lowest of the corpus: its so few occurrences, combined with its

phonological status, i.e. of a vowel only present in unstressed (likely to be clipped) syllables,

the equally low number of words it appears in ((c.f. section 2.3.2 prevented the formation

of a cluster of stable formant values, and most likely explain the high and impredictable

standard deviations across all centiles. F3 standard deviations show, if not a reversal, at least

a substantial change, in the order of stability of monophthongs: the most dramatic example

of this change is /3:/, which features the lowest F2 standard deviations, one of the lowest F1

standard deviations, but the highest F3 standard deviations. It may not be that surprising that

the three vowels with the highest F3 dispersions, i.e. /3:/, /A:/ and /O:/ are all potentially

rhotic: rhoticization usually entails a lowering of the third formant (c.f. for instance Daven-

port & Hannahs (2013)). This lowering might in turn lead the F3 values to be confused with

F2 values, thereby explaining the rise in F3 standard deviations. Coarticulatory effects are the
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Fig. 2.6: Per-centile mean F1 and F2 standard deviations. Top row: F1 standard devi-
ations (in Hz); middle row: F2 standard deviations (in Hz); bottom row: F3 standard
deviations (in Hz); left column: SPPAS-aligned data; right colum: P2FA-aligned data.

main reason why formant values are generally measured at the mid-temporal point of the

duration of the vowel. The F2 curves feature fewer differences between onset, middle part

and offset of the vowel. The mean F2 curve for the P2FA-aligned data is even almost flat.

The mean values over all standard deviations, across all centiles and not including phonemic

differences, are the following: 178.3Hz and 349.5Hz for F1 and F2 in the SPPAS-aligned

data; 144.8Hz and 333.3Hz in the P2FA-aligned data.

With standard deviations varying across centiles, one interesting question arises: what are

the centiles with the minimal variations? In other words, are there centiles where the formant

values of a given monophthong are optimized, i.e. feature minimal dispersion? Table 2.1

gives the minimal F1 and F2 standard deviations for each monophthong and each aligner,

along with the centiles where these minimal values are reached. Leaving aside the disparities
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SPPAS P2FA
F1 F2 F1 F2

Phoneme Minimal Centile Minimal Centile Minimal Centile Minimal Centile

/æ/ 137.66 100 276.13 64 140.41 79 269.31 46
/A:/ 147.60 89 317.79 38 137.81 82 302.85 87
/e/ 119.77 53 298.15 59 114.52 28 291.20 57
/3:/ 98.06 32 222.73 59 93.63 52 208.55 41
/@/ 148.10 60 329.73 32 128.55 39 327.57 13
/I/ 129.12 77 365.68 60 123.51 50 354.86 29
/i:/ 123.82 52 383.45 31 107.50 58 362.17 22
/i/ 126.15 36 348.21 4 119.61 26 339.15 1
/6/ 128.27 65 286.56 90 127.65 70 282.68 43
/O:/ 112.39 63 323.15 60 106.38 42 281.27 64
/2/ 137.02 85 281.90 64 134.53 74 273.06 44
/U/ 96.67 89 320.76 71 76.60 62 304.62 31
/u:/ 185.89 59 402.40 8 159.55 43 398.90 16
/u/ 107.39 93 371.19 8 145.47 88 360.63 6

Table 2.1: Per-phoneme minimal formant SDs and centile location

between sessions and speakers for now, table 2.1 shows that no clear picture emerges across

monophthongs or even across aligners: for instance, /i/ features low standard deviations

rather early in the pronunciation of the vowel, when /æ/ features them rather late. However,

having formant tracks for F1, F2, F3 means that a potentially “optimal” centile must exist: if at

each centile, the per-phoneme standard deviations for the three formants are multiplied, then

the centile with the lowest product can be called “optimal”, in the sense that dispersion will be

minimal at that centile. We define the Optimal Centile (henceforth, OC) as the centile with the

lowest product of the per-centile F1, F2 and F3 standard deviations for a given monophthong.

The R code to calculate the per-monopthong OCs can be found in section C.7 (it is presented

there as a function). As an example, figure 2.7 shows the per-phoneme, per-aligner OCs. No

clear trend, such as a phonological distinction or a range within which most OCs would lie,

seems to stand out either. The absence of general tendency may be due to the compounding

of words, speakers and sessions. The method will be used when investigating the per-speaker,

per-session data: in the case of a corpus with skewed distributions (c.f. section 2.4 and

figure 2.1), OCs seem to be a potentially effective work-around to overcome the disparities

in consonantal environments while preserving idiosyncracies, and results obtained with more
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Fig. 2.7: Optimal centiles for SPPAS-aligned data (top panel) and P2FA-aligned data
(bottom panel).

classic methods, such as using mid-temporal formant values, will be compared with findings

based on OCs.

This analysis of standard deviations would not be complete without a cursory compar-

ison with the two other English subcorpora, i.e. the list of words and the native speakers’

recordings (c.f. section 1.3). figure 2.8 plots the F1, F2 and F3 standard deviations of all

monophthongs for the three corpora. It could be reasonably expected that the ascending

order in standard deviations would be the following: the native conversations, the learners’
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list of words and finally the conversations. Dispersion should be the lowest among natives,

and indications of how to pronounce words in the list of words should have enticed learners

to produce consistent realizations of each monophthong. This, however, turned out not to

be the case, as can be seen on figure 2.8: if the native subcorpus does feature the lowest

standard deviations across all three formants, the main conversation corpus presents lower

SDs than the reading subcorpus, in spite of its much greater number of monophthongs.

Explaining these results is challenging: the underlying objective of reading lists is to tap

into the learners’ competence, i.e. their phonological knoweldge, but the objective may

have been compromised by the experimental design. Noise may have been created by the

phonographematic relations (c.f. e.g. “women”, “wolf”, “who”). Another assumption could

be that in conversations, learners tend to use a restricted number of words, and words whose

pronunciation is known. Before exploring the validity of this assumption in the next section,
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let it be remembered for now that SDs in the main corpus are remarkably limited (within

300-Hertz ranges) and consistent across centiles, with the exception of F1 SDs for /U/, /u:/

and /u/.

2.3.2 Type/Token Ratios

This section investigates the lexical disparities that underlie the distribution of phonemes

in the corpus: as seen in section C.6, the number of monophthongs varies greatly from one

number to another. The question therefore arises whether these disparities in the numbers of

occurrences can be accounted for by the nature (lexical or functional) and frequency of the

words where the phonemes appear. One way to look at phonemic and lexical distributions
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Fig. 2.9: Per-session, per-speaker types and tokens in the SPPAS-aligned data.

is to count the number of different words featuring a monophthong (types) and compare it

with the number of occurrences of the monophthong (tokens). Figure 2.9 plots the number of

types of monophthongs against the number of tokens for each session and each speaker in
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the SPPAS-aligned data13. Each datapoint corresponds to the number of tokens and types

of words containing a given monophthong in a given learner’s session. The learners’ IDs

were not included not to clog the graph. One clear trend emerges: the monophthongs are

distributed along the axes in the same way regardless of speakers and sessions. The lowest

Type/Token Ratios (TTRs) can be found in words containing /I/ and /@/. /U/, /u:/ and /u/

feature the lowest numbers of tokens, which indicates a very limited lexical distribution. /i:/

is consistently present among the monophthongs with the highest number of tokens. How do
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Fig. 2.10: Per-speaker types and tokens in the native speakers’ subcorpus.

these results fare with native values? The same R code was applied to the native speakers’

subcorpus, and is presented in figure 2.10. Because the subcorpus has fewer datapoints,

the scale of the graph were modified, leaving 2 /I/ and /@/ items off the chart, and one/æ/

datapoint. The figure shows that the per-monophthong distributions of types and tokens are

very similar, with the same vowels located in the same places of the graph. The similarities

between the the two corpora in the cases of /I/, /@/,/i:/ and /u:/ in particular are especially

visible. This is all the more striking as the native subcorpus is comparatively small, and made

up of random recordings from conversational podcasts.

13 Types and tokens being only marginally aligner-dependent, only the SPPAS data will be looked at in this
section.
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Fig. 2.11: Barplot of the proportions of the five most frequent words for each phoneme.
The figures on top of each panel indicate the cumulative sums of those proportions.

How, then, are the phonemes distributed across words? Figure 2.11 gives the proportions

of the five most frequent words for each phoneme. On top of each panel, the cumulative sum

of those five highest proportions is indicated. It can be seen that the lowest value for these

cumulative sums is that of /e/: 0.31, i.e. the five most frequent words featuring /e/ account
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for almost a third of the entire number of occurrences of that monophthong. All other sums

are higher than this. Figure 2.11 sheds excruciating light on vowel reduction issues: a case

in point is that of /æ/, whose five most frequent words (“and”, “that”, “have”, “can” and

“at”) are more often than not likely to undergo reduction to /@/. As things stand, the current

workflow is blind to the syntax. These crucial questions shall be set aside for now, as they

are but indirectly linked to the main purpose of this work. Vowel changes due to succeeding

phonemes have been taken into account in certain instances, however. This is the case for

instance with “the”, transcribed /D@/ when followed by a consonant, and /Di/. Note that the

number of occurrences are somewhat imbalanced: 2,650 occurrences of “the” are followed by

a consonant, for only 224 followed by a vowel. The same logic was applied to occurrences of

“to”, transcribed /tu/ when followed by a vowel (153 occurrences), and /t@/ when followed

by a consonant (2,229 occurrences). Connecting target pronunciation (i.e. to reduce the

vowel or not to reduce the vowel) to syntactic and contextual information will be kept for

future research. Let it be remembered, however, that all most frequent words but two (“first”

for /3:/ and “actually” for /u/) are function words. Their dominance is well-established: out

of the 70 words listed in figure 2.11, 16 are pure lexical words – the rest are function words.

Looking at /I/, /i:/, /i/, /U/, /u:/ and /u/ in more detail, interesting differences become

visible: firstly, the cumulative sums of i-sounds are much lower than those of u-sounds (0.38,

0.44 and 0.44 against 0.62, 0.6 and 0.84 respectively); secondly, u-sounds seem slightly more

likely to appear in non-function words than i-sounds (6 lexical words featuring u-sounds

are among the five most frequent words for the three u-sounds, against 4 for i-sounds), even

though this statement must be somewhat qualified: /u/ is comparatively much rarer (c.f.

figure 2.114), and all the five most frequent words in which it appears are lexical; thirdly, the

occurrences of /u:/ especially must be looked at bearing in mind that 42% of them appear in

the word “you” – a function word with a potentially reductible vowel.

14 This figure does not take into account the post-extraction changes made to the pronunciation of “to” –
changes to “the” having been made at extraction run time, they do appear there.
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All the differences mentioned above here and in the previous sections, of counts (c.f.

section 2.1), of alignments (c.f. section 2.2), of standard deviations (c.f. section 2.3.1), of

phonemic and lexical distributions (c.f. section 2.3.2 above) draw a complex picture which

focusing on phonemic contrasts exclusively conceals. Whether these differences exert an

influence on acquisition is a question which the rest of this work will try to answer. The next

section addresses the issue of acoustic treatment, i.e. of normalization, in the case of a corpus

featuring greatly varying numbers of occurrences for each monophthong.

2.4 Issues in normalization

This section discusses the utility of normalizing the data. After briefly introducing a few

normalization methods and presenting the theoretical requirements underlying those methods,

and how artificially constraining on a spontaneous speech corpus they may be, a procedure

to assess the potential bias normalizing introduces when analyzing a learners’ corpus.

2.4.1 Requirements of normalization

What vowel normalization method to adopt when dealing with skewed corpora? Common

normalization methods such as Nearey (1978), Lobanov (1971), Wand & Fabricius (2002)

are vowel-extrinsic, and require that acoustic measurements for all the vowels of a speaker’s

system be collected in roughly the same amount. Failure to do so will unduly skew the

results, since each normalized formant value is dependent on all the other formant values

either of the speaker (in the case of speaker-intrinsic methods), or of all speakers (in the

case of speaker-extrinsic methods). However, such requirements hardly match the realities

of language: phonemic differences are qualitative, i.e. categorical, but nothing obviates the

possibility of a skewed distribution of phonemes in a language. In fact, such skewness is the

norm, rather than the exception. Tambovtsev & Martindale (2007) have shown that phonemic
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frequencies follow a Yule-Simon distribution in 95 languages. Besides, the distribution of

phonemic frequencies in spoken or written corpora is not the same as the distributions in

the lexicon. In their study on conversational American English, (Mines et al., 1978, p. 221)

state that “[t]he top ten phonemes (in order /@, n, t, I, s, r, i, l, d, E/) account for 47% of all

the data”. As to the English lexicon, John Higgins15 finds that in the 1974 edition of the

Cambridge Advanced Learner’s Dictionary, the first ten most frequent phonemes are /I, t,

s, n, @, l, r, k, d, z/, in order, and that they account for 60.29% of all phonemes ; another

source16 compiling data from the Carnegie Mellon University Pronouncing Dictionary along

with Adam Kilgarriff’s unlemmatized frequency list for the British National Corpus lists /@,

n, r, t, I, s, d, l, i, k/ as the first ten most frequent phonemes, which account for 58.48% of all

phonemes.

There therefore exists a structural mismatch between the requirements of vowel nor-

malization and the realities of language. In these conditions, it seems impossible to study

vocalic realizations in spontaneous speech: whatever the chosen corpus, the numbers of

occurrences of each vowel are bound to be unevenly distributed, and the normalized values

of vowels, in the case of the most common vowel-extrinsic methods, are bound to be skewed.

However, such a mismatch raises another question in turn: could it be that by comparatively

inflating the numbers of occurrences of the rarest phonemes and decreasing those of the most

frequent ones, normalized values themselves provide a skewed and inaccurate representation

of the vowel space? Most studies (e.g. Hillenbrand et al. (1995), Ferragne & Pellegrino

(2010), Clopper et al. (2005)) resort to lists of words, with vowels usually embedded in

the same consonantic template /hVd/. But could it be that normalization might lead to

increasing or decreasing contrasts unduly? These methods can be argued to overlook the role

of phonological neighbourhood density and frequency: in English, there are 466 minimal

pairs distinguishing /I/ from /i:/ – 18 for /U/ and /u:/ (morphosyntactic variations included).
15http://myweb.tiscali.co.uk/wordscape/wordlist/phonfreq.html, retrieved on June 4, 2014.
16http://cmloegcmluin.wordpress.com/2012/11/10/relative-frequencies-of-english-phonemes/, retrieved on

June 4, 2014.
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Are speakers not aware of the necessity to enhance contrasts in high-density words, the

extent of the enhancement being itself dependent on the discourse context? Words with

high-density neighbourhoods have been shown to be processed differently from low-density

ones in children, adults and aphasic speakers. In all these cases, facilitating effects have been

observed (cf. e.g. Middleton & Schwartz (2010)). In the case of frequency, phonetic details

are processed by adults in a finer-grained way in high-frequency words than in low-frequency

ones (White et al. (2013)). Besides, prosodic positions have been shown to influence the real-

ization of phonemes (Keating et al. (2004)); phonemic processing and speech-errors likewise

depend upon phonological neighbourhood density and clustering coefficients (the similarities

between phonological neighbours, Chan & Vitevitch (2010)). Phonemic realizations are

therefore highly likely to depend upon super-phonemic parameters which normalization

methods somehow force out of consideration. Focusing, as so many studies have done, on

the /hVd/ template in experimentally balanced corpora, increases the likelihood of over-

looking parameters which may turn out to be crucial in understanding speech production

and perception. However, multiplying parameters makes cross-comparisons impossible,

and decreases the likelihood to account for the stable nature of phonemes without which

communication would be impossible. What will be tentatively studied here is the relevance of

using normalization methods without leveling out the numbers of occurrences of each vowel.

The issues mentioned above are of course compounded by the fact that the phonemes under

study here are non-native, and are therefore unstable in nature: within-speaker variations for

a given phoneme, possibly even for a given word, are to be expected, and this dispersion

must be taken into account in order to assess phonemic acquisition.

In order to illustrate the issue further, and to summarize the findings from sections 2.1

and section 2.3.1, figure 2.12 plots the F1 and F2 standard deviations, taken at mid-temporal

values for each monopthong and each aligner (SPPAS in black and P2FA in grey) using the

main learners’ corpus (top panel) and the natives’ subcorpus (bottom panel). The symmetry
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Fig. 2.12: Scatterplot of the mid-temporal F1 & F2 standard deviations of monophthongs
against their number of occurrences. Black: SPPAS-aligned data; grey: P2FA-aligned
data; top panel: main learners’ corpus; bottom panel: natives’ subcorpus.

between the two corpora, is once again all the more surprising as the numbers of occurrences

vary greatly from one corpus to the other. Such similarities, in both the distributions of

the standard deviations and in the proportions of the different monophthongs with respect

to the overall count may offer a solution to the harmonisation required by normalization

methods: the fact that the respective categories in the learner data come in proportions similar

to the native data that no normalization requiring even numbers of tokens in each phonemic
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category is needed. The view is even held here that such a normalizing procedure would

introduce a counter-productive bias, in that the natural skewness of phonemic distributions

found in spontaneous speech should be preserved, as it is contended it is bound to exert

influence on the acquisition of phonemic contrasts.

2.4.2 Phoneme-gating

This section studies the impact of normalizing acoustic data when attempting to assess

phonemic acquistion. A simple method, called “phoneme-gating”, is proposed: phonemes

with formant values inferior or superior to the respectively maximum and minimum values

of the corresponding phonemes from a native data set (here Peterson & Barney Peterson &

Barney (1952)) are then sorted according to whether they meet theseminimal and maximal

requirements. The procedure is applied to the datasets with four different methods of

normalization: Traunmüller’s Bark method (Traunmüller, 1990); the Bark Difference Metric

(Syrdal & Gopal, 1986) (henceforth, BDM); Nearey’s extrinsic method (Nearey, 1978); and

Lobanov’s method (Lobanov, 1971). For these calculations, the mid-temporal values of each

formant were adopted. The equations for each procedure of normalization are the following

(where Fv
i is the ith formant of a vowel v):

1. Bark: Zv
i =

26.81
(1+1960/Fv

i )
)−0.53

2. Bark Difference Metric: Zv
1/2 = ( 26.81

(1+1960/Fv
3 )
−0.53)− ( 26.81

(1+1960/Fv
1/2)

−0.53), where

Fv
1/2 is vowel v’s F1 or F2.

3. Nearey Extrinsic: Zv
i = log(Fv

i )− (µL
1 + µL

2 + µL
3 ), where µL

1 , µL
2 and µL

3 are the

log-means of the F1, F2 and F3 values of all vowels.

4. Lobanov: Zv
i =

Fv
i −x̄i
σi

, where x̄i is the mean of all the speaker’s ith formant values, and

σi their standard deviation.

Other methods of normalization exist (cf. Adank et al. (2004) for a review), but these four

were chosen because of their differences in their pre-requisites. Normalizing a given formant
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of a given vowel may or may not, depending on the method chosen, require data outside this

particular formant of a particular vowel. If no data outside of the formant under study is

needed for normalizing, the formant, the method is formant-intrinsic (i.e. collecting F2 data,

for instance, is not necessary to normalize F1) – formant-extrinsic otherwise. Likewise with

vowels, if studying a given vowel does not require collecting acoustic data on other vowels,

then the method is vowel-intrinsic – vowel-extrinsic otherwise. These differences create four

different categories of normalization methods: whether they are formant- or vowel- extrinsic

or intrinsic. There also exist speaker-extrinsic methods (cf. Morrison & Nearey (2006) or

Labov et al. (2006)). In our corpus however, the number of occurrences for each monophthong

varied greatly from one speaker and one session to another. All normalizing procedures

described below are therefore speaker-intrinsic. Each method retained here is representative

of one of these four categories, as shown in table 2.2. The computations were made using the

statistical software R R Core Team (2015), and the PhonTools Barreda (2014) package for the

last two methods, Lobanov and Nearey 2. The procedure experimented to compare various

Table 2.2: Reminder of the specificities of the normalization methods.

Method Vowel Formant
Bark Intrinsic Intrinsic
BDM Intrinsic Extrinsic
Lobanov Extrinsic Intrinsic
Nearey 2 Extrinsic Extrinsic

methods of normalization applied to our skewed corpus was the following: the data from

Peterson & Barney Peterson & Barney (1952)), which comes with the PhonTools Barreda

(2014)) package, was first normalized using the four methods of normalization. The first two

methods are not parts of the PhonTools package, but only require simple operations to be

applied on raw values. Before proceeding any further, let it be emphasized that this method

does NOT offer any objective insight on acquisition or pronunciation accuracy17 per se –

17 During the research phase, the same experiment was carried out on the native speakers’ subcorpus:
the proportions of phonemes with within-range formants were on average lower than with the learners’
corpus. . . One possible explanation could be that the native speakers’ subcorpus is made up of recordings of
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rather, it aims at showing that the results one may obtain, and the conclusion one may draw,

can be different whether one method of normalization or another is chosen. The procedure to

compare the normalization methods was the following. Firstly, sex-dependent minima and

maxima of the F1, F2 and F3 formant values for each vowel and each method of normalization

were calculated from the Peterson & Barney data. As their data consist of recordings of

10 vowels i.e. /æ/, /A:/, /e/, /3:/, /I/, /i:/, /O:/, /2/, /U/ and /u:/, these calculations

returned 10 (speaker-independent) minimal and maximal values for each formant, for each

of the two sexes and for each normalization method. Subsets of the main corpus were then

created by sex and session, and the F1, F2 and F3 mid-temporal values of each datapoint

of these subsets was normalized in turn, following the four methods. Finally, the obtained

normalized values were then checked against the corresponding (i.e. by formant, sex and

normalization procedure) minimal and maximal values of the native Peterson & Barney

data. The idea behind gating learners’ normalized formant values is twofold: (i) assess the

influence of normalization methods on acoustic analysis – if normalization methods return

varying results, then conclusions are not so much data-driven as method-driven; (ii) explore

whether a normalization-independent method existed which might shed light on phonemic

acquisition.

The counts and proportions of vowels whose formant values met the minimal and maximal

requirements for the corresponding normalization procedure are presented in figure 2.13.

One clear trend emerges from the figure: vowel-extrinsic methods of normalization (i.e.

Nearey extrinsic and Lobanov) return a higher number and a higher proportion of gated18

phonemes, 65.3% and 56.3% respectively, than vowel-intrinsic procedures, with 31.7% for

Bark and 42.7% for BDM in the case of the SPPAS-aligned data. For the P2FA-aligned data,

the proportions are 33.4%, 45%, 66.7% and 57.4% for the Bark, BDM, Nearey extrinsic

various accents (British, Scottish, Irish and American, c.f. section 1.3, which in all likelihood increases the
dispersion of formant values.

18 From now on, a phoneme whose formant values fall within the range of minimal and maximal values
defined by the Peterson & Barney data will be refered to as “gated”.
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Fig. 2.13: Per-normalization method counts and proportions of SPPAS-aligned (left
panel) and P2FA-aligned (right panel) phonemes meeting the minimal and maximal
requirements from the native Peterson & Barney data.

and Lobanov methods respectively. Great differences from one phoneme to another can be

observed too: /3:/ is consistently gated, with a mean proportion across all normalization

methods of 58.6% of within-range values for the SPPAS-aligned data, and 60.5% for the

P2FA-aligned data. All other phonemes feature proportions around 50%, between 48%

and 52%, except /A:/ (46.4% and 46.5% for the SPPAS-aligned and the P2FA-aligned data

respectively), and /u:/. /u:/ is the phoneme with the lowest proportion of gated values, with

38% and 40.5% for the two aligners respectively.
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In the more global perspective of this work, which aims at establishing whether the

acquisition of /I/-/i:/ and /U/-/u:/ follow similar patterns, these findings, and especially

the gap in numbers of gated values for /u:/ and the other phonemes, are only evidence to

a limited extent. The main issue is that an analysis may differ considerably depending on

the normalization method that was chosen19. To test this statement, the same experiment

was carried out using the native speakers’ subcorpus as the reference values, i.e. replacing

the Peterson & Barney data. To keep some consistency, only the native British speakers, 4

women and 4 men, were retained – for a total of 1,038 monopthongs for female speakers,

and 263 for male speakers. The greatest difference, however, is that the numbers of each

individual monophthong vary from one category to the other (c.f. figure 2.10). Once again,

the minimal and maximal values across speakers of the same sex were stored for each formant.

The numbers and proportions of gated monophthongs using these new reference values are

presented in figure 2.14. The counts and proportions of gated phonemes are greater than

when using the Peterson & Barney data. The remarks about how stricter and more exclusive

than vowel extrinsic ones vowel-intrinsic methods of normalization are seem to hold. Two

phonemes stand out because of their low proportions of gated datapoints, /3:/and/U/20.

The high proportion of gated datapoints in the case of /3:/ is all the more surprising as the

monophthong was the most gated one with the Peterson & Barney data (c.f. above). /U/

features comparatively lower proportions in the P2FA-aligned data than in the SPPAS-aligned

data (46.9% against 51.5%).

The overall results are summarized in figure 2.15, with a per-session breakdown. The

top row shows the mean proportions of gated phonemes using the Peterson & Barney (P &

B) data as reference. The bottom row shows those proportions using the native speakers’

corpus (NSS) as reference, restricted to its British elements21. In the top row, possibly the

most striking feature is that the differences between the two aligners are minimal. As to
19 Note that the effect of the aligner seems comparatively limited.
20 Bark-normalized /æ/ could also be worth mentioning, but it is only an outlier using the Bark method.
21 As mentioned in the caption of figure 2.15, the scales between the top and bottom rows vary.
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Fig. 2.14: Per-normalization method counts and proportions of SPPAS-aligned (left
panel) and P2FA-aligned (right panel) phonemes meeting the minimal and maximal
requirements from the native (British) speakers’ subcorpus.

the differences between normalization procedures, they seem to consist of simple vectorial

translations, except for the dip between session 3 and 4 in the case of BDM. In the bottom

row, the differences between the two aligners are more visible, with the caveat that the

y-axis covers a much shorter range (y ∈ [0.6,1] against y ∈ [0.1,1]) and that the proportions

are much higher using the native speakers’ subcorpus as reference than using the Peterson

& Barney data. This smaller range makes the permutations in the orders of normalization

methods (Lobanov being the procedure with the highest proportions of gated phonemes,
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Fig. 2.15: Per-normalization method, per-session means of proportions of gated
phonemes. Top row: using the Peterson & Barney (P & B) data as reference; bot-
tom row: using the (British) native speakers’ subcorpus (NSS). Scales vary.

and BDM being a close second) of relative importance, even though Bark does remain the

procedure with the lowest proportion of within-range phonemes regardless of the aligner and

of the referecne data. The results using the Peterson & Barney data are split along the 50%

mark: they are on average below the mark for vowel-intrinsic methods, and above for vowel-

extrinsic methods – a crucial threshold when attempting to assess acquisition. Two things

remain to explain, if only tentatively: (i) the overall higher proportions of gated phonemes

when normalizing the data with vowel-extrinsic methods; (ii) the higher proportion when the

native speakers’ subcorpus is used. The first point, and, to some extent, probably the second

point as well, may be explained by the fact that a bias is introduced by the overwhelmingly

numerous occurrences of /I/22. The overall results in the case of vowel-extrinsic methods

22 Another set-up for the experiment, which was actually tested, could have been to equalize the number of
phonemes for each speaker and each phoneme, as per the requirements of the normalization procedures. The
question then arises of which phonemes to select? With such a low number of /U/ and such a huge number of
/I/ (c.f. figure 2.1), the total count of monophthongs per speaker was bound to be determined by the lowest
number of occurrences of /U/ (this is not even speaking about per-speaker, per-session numbers). This means



102 Speaker-independent Analyses

will heavily depend on the accuracy and dispersion of the most frequent phonemes. This of

course also holds if the reference data, as is the case with the native speakers’ subcorpus,

itself features a bias matching the tested data. Note that this is the likeliest explanation to the

second point: a tempting justification to the greater proportions of gated phonemes in the case

of the native speakers’ subcorpus could be that since the reference data is spontaneous speech,

then dispersion is higher, and the minimal and maximal formant values of each monophthong

spread across a greater range. Interestingly, this is actually wrong: the Peterson & Barney

data has standard deviations at 201Hz, 637Hz and 519.5Hz for F1, F2 and F3 respectively

(regardless of sex). The SPPAS-aligned data has corresponding standard deviations of 172Hz,

418Hz and 304Hz – 155Hz, 427Hz and 300Hz for the P2FA-aligned data.

In conclusion to this section, it may be asserted that normalization methods, especially

vowel-extrinsic ones, at least when applied to learners’ data and spontaneous speech data23,

distort the data in a way that may drastically change the analysis. For this reason, and

those mentioned in footnote 22 and section 2.4.1, the adopted solution here is to resort

either to raw values24, or to the BDM-normalized values – these values presenting the

comparative advantage of including F3. For these reasons, vowel-extrinsic normalization

methods will not be used in the rest of this work. The procedure used to test the effect of

normalization, phoneme-gating, is probably not without flaws itself, at least in the way it was

implemented: speakers’ idiosyncrasies, including the reference speakers’, were not taken

that all occurrences of /U/ would have been selected on the one hand, while a wealth of /I/ remained on
the other. Random selection of a given number of occurrences for each monophthong was a solution that
was tried, but the problem was that formant values never converged even after thousands of random selection
loops. The results obtained would have therefore been totally random. This requirement that the numbers
of occurrences of each monophthong should be the same before normalizing is at the core of our contention
towards normalization: it is our view that the frequencies of phonemes vary greatly, and that combined with
word frequency, they form a complex and skewed system which normalization artificially distorts by equalizing
and neutralizing frequencies. A bias, in favour of the rarer phonemes, is therefore introduced, especially in
the case of vowel-intrinsic methods. The bias that our experimental design introduces is in our view the lesser
of two evils, as at least it is a bias which can be contended (c.f. figure 2.9 and figure 2.10) to be present in
spontaneous speech.

23 The combination of these two factors increases skewness in occurrences and dispersion in formant values.
24 Bark values can somehow be considered raw too, as they are simply translated from raw values. One

considerable advantage of using Bark data is that emulations of Bark-based experiments can be attempted.
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into account. Further research should carry out these tests speaker by speaker, in order to

confirm these concluding statements, and establish the robustness of phoneme-gating. The

next section offers a method to assess the acquisition of the /I/-/i:/ and /U/-/u:/ contrasts,

by investigating the relationship between the Euclidian distance in the vowel space of each

contrast’s vector and the surface of the vocalic trapezoid.

2.5 Contrasts and vowel space

This section investigates whether the locations and distributions of all the monophthongs

in the vowel space may yield useful information about the acquisition of a contrast. More

specifically, is there an observable, consistent relationship between the specific locations

of the contrastive vowels and the rest of the vowel space? This question is theoretically

motivated by the Theory of Adaptive Dispersion (henceforth, TAD; Liljencrants & Lindblom

(1972); Lindblom (1986)), which states that vowels in a given space are located in such a way

as to maximize contrasts and facilitate perception. This work is agnostic as to whether the

TAD prediction that the vowel space increases with the number of vowels of the language:

for instance, Al-Tamimi & Ferragne (2005) study French and two varieties of Arabic, and

show the prediction is likely to be borne out, whereas Gendrot & Adda-Decker (2007), using

the vowel inventories of eight languages, and do not find larger vowel spaces for languages

with greater counts of vowels. This agnosticism does not entail that the relationship between

vowel space and vowel inventory should not be investigated in SLA. After all, in order to

acquire the /I/-/i:/ and /U/-/u:/ contrasts, French learners of English need to create some

space in order to add sounds to their vowel inventory. It therefore seems legitimate to see if

their vowel space evolves in time. For these calculations, the vowel spaces were calculated

using mid-temporal formant values taken from the main corpora (SPPAS-aligned and P2FA-

aligned). The values were then normalized using the BDM method (c.f. section 2.4. The

vowel space is here defined as the area of the convex hull formed by the outermost vowels on
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P2FA-aligned /I/-/i:/ and /U/-/u:/ contrasts, against the vowel space, measured as the
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numbers; NSS: (British) native speakers’ subcorpus; Lists: subcorpus of lists of words;
P&B: Peterson & Barney (1952) data; Hillenbrand: Hillenbrand et al. (1995) data.

the F1/F2 axes, as was presented above in figure 2.5. As a reminder, in the BDM method, F1

values are calculated by subtracting the F1 value in Bark from the F3 value on each datapoint;

likewise for F2. The reason why the BDM method was used is that the results using it are

very similar to those using Bark values, while factoring in more information, i.e. F3
25.

The results are presented in figure 2.16, which plots the Euclidean distances of the /I/-/i:/

and /U/-/u:/ contrasts against the area of the vowel space. Values for female speakers are

represented in black, and in dark grey for male speakers. Three native sets have been used

for purposes of comparisons: the Peterson & Barney (1952) data; the Hillenbrand et al.

(1995) data; and the NSS, with vowels pronounced by the British speakers only. The first

25 In the case of TAD as in so many other instances, studies do not use standardized procedures. For instance,
Jongman et al. (1989) use Hertz F1, F2 and F3 values; Bradlow (1995) uses Hertz F1 and F2; Al-Tamimi &
Ferragne (2005) use Bark F1 and F2; Gendrot & Adda-Decker (2007) use F0-F1 x F2-F3 on a Bark scale.
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observation is that the type of vowel production (lists of words vs. spontaneous conversations)

seems to have an effect on the size of the vowel space: both the Hillenbrand et al. (1995) and

Peterson & Barney (1952) data feature the biggest polygonal areas (on the x-axis), but, rather

surprisingly, the learners’ lists of words rank third, in front of the British speakers’ corpus.

SPPAS-aligned and P2FA-aligned values show very few significant differences, as has often

been the case so far. Values for the /I/-/i:/ contrast distance are remarkably more consistent

than for /U/-/u:/. This consistency may well indicate awareness among learners of the targets

to aim for in the case of the /I/-/i:/ contrast, while the results for /U/-/u:/ are much more

chaotic. One argument supporting this assumption of a greater awareness of the /I/-/i:/ target

contrast distance is supported by the fact that sessions 4 are the sessions with the highest

contrast distances; as time went by, the values became closer and closer to native values,

especially when looking at NSS values in female speakers. Another argument comes from the

values of the subcorpus of lists of words. The comparatively high /I/-/i:/ contrast distances

may indicate over-correction: the differences between the two sounds were exaggerated. A

counter-argument to this hypothesis is that the formant values in the corpus have the highest

standard deviations across all corpora (c.f. section 2.3.1). Another note-worthy observation is

that distributions across the x-axis for either contrast remain roughly the same, i.e. the vowel

space does not seem to expand over time. The extent to which acquisition depends on the

expansion of the vowel space in order to acquire new contrasts could be a venue of research

to explore: for instance, Iverson & Evans (2009) showed that new contrasts were easier to

acquire the bigger the vowel inventory in the L1 was. Assuming a connection between vowel

space and vowel inventory (with the caveats mentioned in the first paragraph of this section),

one key of phonological and phonetic teaching might therefore be to work on the expansion

of the vowel space when either the L1 vowel inventory or the L1 vowel space is smaller than

in the L2: the surface of the French vowel space based on the Gendrot & Adda-Decker (2005)

data are 8.05 Bark2 for female speakers, and 5.69 Bark2 for male speakers; using the French
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subcorpus, with per-sex, per-phoneme averaged formant values, the surface of the vowel

space is 7.19 Bark2 for women, and 5.83 Bark2 for men – i.e. in either datasets, the surface

of the vowel space is smaller than the English native ones. The corpus of Englishspeakers

with the smallest surfaces is the NSS, with 7.01 Bark2 for women, and 6.12 Bark2 for boys.

2.6 Conclusion

This chapter looked at the specifics of phonemic data regardless of speakers’ idiosyn-

crasies. It was shown that monophthongs feature differences in counts (c.f. section 2.1),

per-centile extraction quality (c.f. section 2.2), differences in standard deviations (c.f. sec-

tion 2.3.1, and frequencies in the words where they appear (c.f. section 2.3.2). This hetero-

geneity, which stems from the very nature of the corpus (i.e. learners’ spontaneous speech)

makes it difficult to apply vowel-extrinsic normalization methods (c.f. section 2.4). Finally,

it was tentatively proved (c.f. section 2.5) that there may well be a relationship between

Euclidean distances of the /I/-/i:/ and /U/-/u:/ contrasts and the vowel space.

Nonetheless these complexities, induced by the nature of the corpus and by the sheer

amount of methods available to process the data, all seem to converge towards deep-rooted dif-

ferences in the acquisition of the /I/-/i:/ and /U/-/u:/ contrasts. But the speaker-independent

procedures implemented in this chapter may also conversely have contributed to creating

artificial differences which obscured similarities. The only way to find out whether this is the

case is by looking at the data speaker by speaker – this is what the next chapter undertakes.



Chapter 3

Speaker-dependent analyses

After analyzing the data from the main learner corpus from a systemic and holistic point

of view, the focus in this chapter is on the learners’ idiosyncrasies, and the specific evolution

of their pronunciations of monophthongs, and more particularly of /I/, /i:/, /U/ and /u:/.

Two main concerns will underlie the various studies undertaken here. The first concern

regards the existence, or not, of cross-speaker patterns of evolution. Can somehow the ability

to emulate native-like sounds be predicted? how fluctuating is it from one speaker, one

session, one vowel, to another? In order to answer these questions, and in the face of the

wealth of data that was collected (and only part of which wich will be exploited in this

work), choices of how to process the data had to be made. These choices are at the heart of

the second concern: the risks are high that the methods used to select and analyze the data

condition the results more than the data themselves. In other words, the likelihood to have

the results sway one way or another according to what pieces of information were selected,

and how those pieces of information were modelled, exists. In order to preserve neutrality,

how the data are going to be processed, and why they are going to be processed in a given

fashion, is specified beforehand. Let it be clear that the conclusions drawn at the end of the

previous chapter are here maintained: formant values are BDM-normalized because this

method of normalization integrates F3 values in a two-dimensional manner (F1 and F2). But
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measurements other than mid-temporal ones will be explored, in an attempt to capture as

much of the original signal as possible, and compare this information to native values when

possible.

After a few preliminary remarks about the selected datapoints and their distribution,

this logic of endeavouring to retain as much information as possible is first applied to the

study of vowel-inherent spectral changes. By focusing on the offset and onset of the vowel,

this theory challenges the traditional approach based on mid-temporal measurements. In

section 3.2, it is applied to the main learner corpus and the NSS. Native and learner values are

compared, along with their standard deviations. In section 3.3, a machine-learning algorithm,

the k-Nearest Neighbours is run on the corpus in order to explore the extent to which this

classification method manages to categorize the learners’ monophthongs accurately. Because

running the algorithm several times on the same data does not return the same classification

results, and because the training set used, i.e. the NSS, is different from the test set, making

cross-validation impossible, a procedure is devised to figure out the optimal k, i.e. the optimal

number of nighbours enabling the highest proportion of classification accuracy. Section 3.4 is

an attempt to model longitudinal acquisition by mixing continuous and categorical predictors.

Linear mixed-effect regressions provide the mathematical framework to do just that, and

different longitudinal models are compared. Finally, an attempt at studying the entire signals

is made by modeling them using discrete cosine transforms in section 3.5. Once again, the

learners’ datapoints are compared to the natives’ using another type of classification method,

quadratic analysis. This method is ultimately applied to models based on both discrete cosine

transforms and mid-temporal formant values, in order to establish their comparative added

values.
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3.1 Preliminary remarks

Because not all speakers in the main corpus took part in the last session, during which the

learners also read the lists of words (c.f. section A.2.1) and a text in French (c.f. section A.2.2),

this chapter will only investigate the specific evolution of the acquisition of the /I/-/i:/ and

/U/-/u:/ contrasts for students who took part in all sessions. The reasons behing this reduction

of the numbers of speakers are the following: (i) in terms of longitudinal study, a fourth

session makes the data more robust, and the analyses of possible evolutions more reliable. (ii)

If the idiosyncrasies of the learners’ pronunciations of vowels are to be assessed, comparing

their vowel productions in spontaneous conversations with their vowel productions in French

and in lists of words is extremely useful – if not necessary for the accuracy of the assessment.

It therefore makes more sense to focus on the learners for whom such data is available.
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Fig. 3.1: Per-session, per-speaker mean F1/F2 values for monophthongs in the BDM-
normalized vowel space; the size of the circles is proportional to the number of oc-
currences (sizes are relative). The total number of monophthong for each session is
indicated in each panel.
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The calculations will therefore be made for 9 female speakers and 3 male speakers (c.f.

section 1.1.1 for a reminder of the distribution of the participants). In order to present readable

results, the default aligner used for the data is SPPAS. Very few differences, if any, appeared

in the previous chapter between the two aligners. All R scripts, however, are P2FA-ready, and

interested readers may run them to see for themselves if any significant variations between the

two aligners might have been overlooked. The datapoints used throughout this chapter come

from the NSS, and the main learner corpus. When the focus of the different experiments is

on specific phonemes (most frequently on /I/, /i:/, /U/ and /u:/), the subsets are taken from

those two datasets. Because they form the basis of the study, it seems in order to have a look

at how the monophthongs are broken down across speakers and sessions. Figure 3.1 plots

the average mid-temporal, BDM-normalized F1 (y-axis) and F2 (x-axis) formants for each

speaker and each session. The size of the dots of each monophthong is proportional to its

number of occurrences. The same graph for native speakers can be found in figure 3.2. The

difference is that each panel does not provide the values of individual speakers, but rather

the average values of native speakers of the same sex and accent. Less standard accents

present in the NSS (c.f. section 1.3), such as the Irish and the Scottish accent, will not be

used as reference points in this chapter. Taking a look at the two figures (figure 3.1 and

figure 3.2) reveals an arguably very similar distribution of monophthongs: two categories

dominate the number of occurrences, /@/ and /I/. Other dominant phonemes, although to a

lesser extent, and in that order, are /i:/, /u:/ and then /æ/. These figures make a defining

feature of spontaneous speech (already described at length in the previous chapter) clear:

the distributions of tokens are unequal. This unavoidable characteristic is both an advantage

in that it most likely embraces the seemingly chaotic structure of natural spoken language,

and a disadvantage in that a bias is necessarily introduced when resorting to classification

algorithms. How well those algorithms manage to classify underrepresented monophthongs

such as, crucially for this study, /U/, is a major point of interest.
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After these preliminary remarks, it is now time to turn to the first speaker-dependent

analysis: vowel-inherent spectral changes.

3.2 Vowel Inherent Spectral Change

Vowel Inherent Spectral Change is the theory that states that vowel quality is a function

of the trajectories of formants throughout the duration of the vowel rather than their means

or mid-temporal values (c.f. Nearey & Assmann (1986), Nearey (2012), Assmann et al.

(2012) and the references therein). Morrison (2012) in particular shows how the onset+offset

model, i.e. the analyses of F1 and F2 both at the beginning and at the end of the vowel’s

duration, provides a better account of how vowels are perceived. Vowels are identified

by their vector in the F1/F2 space, with measurements often taken at 20% and 80% of the

duration. Investigating VISCs in learners’ productions may therefore shed light on the clarity

and quality of their vocalic pronunciations.

Figure 3.3 provides an example of VISC across all four sessions for speaker DID0014.

For each vowel, the initial and final coordinates of the vector in the F1/F2 space corresponds
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Fig. 3.3: Speaker DID0014’s Vowel Inherent Spectral Change for monophthongs
(Aligner: SPPAS).

to the F1 and F2 means at 20% and 80% of the vowel’s duration. These values were those

obtained from the SPPAS-aligned TextGrids. Although only an example, it is worth noting

that the /U/-/u:/-/u/ vectors are rather chaotic in either their locations (e.g. /u/ in session

1) or their lengths (e.g. /u/ and /u:/ in sessions 3 and 4). Another back rounded vowel,

/O:/, also features comparatively longer F1/F2 vectors, especially in sessions 3 & 4. Note

that the primary purpose of figure 3.3 consists in showing how relative to vocalic quality

the stability of formant values is over the vowel’s duration: recall that these values are

calculated regardless of the consonantal environment; that the number of occurrences varies

greatly from one phoneme to the other; and that so do the type/token ratios (TTRs) of the

words featuring these phonemes. These caveats paradoxically strengthen the validity of the

representation in figure 3.3: if certain means are found to be consistently higher or lower,

then it could arguably mean that consonantal environments, numbers of occurrences and

lexical variety only exert limited influence on VISCs, so that these VISCs may well provide
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a metric of vocalic invariance in learners’ pronunciations. The question therefore arises

whether when adopting this method of calculation (i.e. by conflating vowels independently

of the words they appear in), patterns emerge across speakers and sessions.

The answer to this question is investigated in section 3.2.1, where the means of onset-

to-offset distances (henceforth, OOD) for each vowel, each speaker and each session are

compared to their respective numbers of occurrences. The OOD is defined here as the

Euclidean distance separating the 20th centile (the onset) from the 80th centile (the offset)

in the F1/F2 space. For equivalent levels of phonemic acquisitions, the average OODs are

expected to show values in the same ranges across speakers. Anomalies such as the lengths

of the /u:/ and /u/ vectors in figure 3.3 will thus be detected. section 3.2.2 will take a look

at the standard deviations of the OODs, more specifically those of the /I/-/i:/ and /U/-/u:/

phonemes. Dispersion provides an accurate way to assess acquisition, and its per-speaker

consistency, or absence thereof, will be studied with respect to the number of tokens and

types – in order to account for the influences of the various consonantal environments.

3.2.1 Onset-to-offset distances and vowel tokens

Does measuring the OODs reveal any useful information regarding phonemic acquisition,

especially in a skewed corpus featuring a wide array of consonantal environments? Some

theoretic stability of the OODs regardless of these environments has got to be posited: if

none existed, then the link between phoneme-based understandability (arguably the very

foundation of oral communication) and acoustic information would be severed. The problem

is of course accrued when studying learners’ production, but investigating their OODs, and

how these might vary from one phoneme to another, is likely to shed light on the state of

their level of acquisition. In order to assess that state, the OODs were measured speaker

by speaker and phoneme by phoneme, and plotted against the number of types of syllables

the phonemes appear in. The formant values were normalized beforehand, using the Bark
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Fig. 3.4: Per-phoneme, per-speaker and per-session onset-to-offset distances (OODs)
against the number of syllable types.

Difference Metric (c.f. section 2.4.2). This method was chosen here because it factors in

the F3 values, and therefore reduces to two the number of dimensions needed to visualize

the three F1, F2 and F3 values. The number of types of syllables is a metric that makes it

possible to quantify the potential influence of different consonantal environments on the

OODs. The results were then compared to native values. They are presented in figure 3.4.

For these calculations, the /u/ and /i/ were merged into the /u:/ and /i:/ values respectively.

The data from the recorded list of words has been included too, even though the number of

syllable types is by definition static and dependent on the given list of words to read. Perhaps

more interestingly, the bottom right panel shows the values for native speakers. Arguably the

most striking facts from observing the figure are the similarities between the distributions

and values in the learners’ data, and those in the natives’, in spite of the reduced number

of datapoints: for most monophthongs, the relationship between the OODs and the number

of syllable types is the same, with /I/, /@/ and /e/ being the phonemes with the highest
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number of syllable types, and the lowest OODs. Back vowels seem to present longer OODs

and fewer syllable types. Two native OODs for /3:/ and /O:/ are higher than 1,000Hz, a

value no learner OODs reach. In terms of acquisition of the /I/-/i:/ and /U/-/u:/ contrasts,

figure 3.4 does not reveal any significant differences, and even seems to confirm that both

contrasts have been acquired, as the values are close to native values. The same calculations

were carried out with the numbers of tokens rather than the number of syllable types, and the

overall picture is the same.

However, a closer look at the data sheds light on a much more heterogeneous landscape.

To investigate further, the per-gender native OODs (i.e., from the NSS) were calculated. This

returned the following values for /I/-/i:/ and /U/-/u:/ respectively: 18.1 Bark, 18.9 Bark,

17.1 Bark and 17.9 Bark for native women; and 16.8 Bark, 17.9 Bark, 14.9 Bark and 16.5

Bark for native men. The same procedure, averaging the OODs for each monophthong was

the applied to each learner in each session. The next step was to calculate the difference

between the native OODs for the four phonemes and each learner’s OOD for each session.

The results are presented in figure 3.5. Each panel corresponds to one learner. The dotted

line marks the zero-difference value, i.e. the reference native line: above it, the learner’s

average OOD for a given phoneme is longer than the corresponding OOD; shorter when it

is below the dotted line. Values above the dotted lines may therefore indicate a degree of

articulatory overshooting and conversely, a degree of articulatory undershooting in the case

of values below the dotted lines. Native values are sex-dependent, so that the lines indicate

variations from the average native values of the corresponding sex. The first nine panels

feature the OOD lines of the nine female learners, with the last three panels featuring those

of the three male learners.

All /I/ and /i:/ OOD lines across all speakers are above native values. There is a tendency

among female learners to present shorter OODs for the /U/ and /u:/ phonemes. Overall,

there is much greater consistency in the /I/ and /i:/ OOD lines than in those for /U/ and
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Fig. 3.5: Per-session differences in average OODs between the learners’ and the natives’
for /I/, /i:/, /U/ and /u:/.

/u:/. Leaving per-session differences aside, the standard deviations across learners of the

same sex are the following, for the /I/, /i:/, /U/ and /u:/ phonemes respectively: 0.44 Bark,

0.42 Bark, 0.76 Bark and 0.80 Bark for women; 0.45 Bark, 0.32 Bark, 1.25 Bark and 0.54

Bark for men – the data for the latter being arguably less robust because of the lower number

of participants. All of this seems to indicate a difference in the acquisition of the /I/-/i:/ and

/U/-/u:/ contrasts. Looking at the absolute values of the distances to the native OOD values

further confirms this statement: the average absolute OOD difference to the native values for

/I/, /i:/, /U/ and /u:/ are the following: 0.70 Bark, 0.40 Bark, 1.14 Bark and 0.73 Bark for

female speakers; 0.50 Bark, 0.31 Bark, 1.08 Bark and 0.41 Bark for men. It is contended here

that these numbers constitute at least tentative evidence that the null hypothesis posited by

theories in SLA, whereby there should be no difference in the acquisition of the two contrasts,

can be rejected. However, further research can still be carried out to confirm or infirm these

findings using VISCs, for instance by adjusting the centiles used to calculate OODs. Similar
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results were obtained by using the 25th centile as the onset, and the 75th as the onset. The

R scripts were also run using P2FA as the main aligner, and no major differences with the

statements above were worth reporting.

However, these procedures and results do not really address the issue of the variety of the

consonantal environments, which are bound to affect the OODs in different ways. How to

take them into account while still using VISCs and trying to assess the state of acquisition of

the /I/-/i:/ and /U/-/u:/ contrasts is the object of the next subsection.

3.2.2 Standard deviations of OODs

This section takes a look at the relationship between the per-phoneme, per-speaker and

per-session standard deviations of the OODs, and the number of types and tokens of the

consonantal environments embedding the monophthongs. The focus will be exclusively on

/I/, /i:/, /U/ and /u:/. The expected relationship is the following: as the number of types and

tokens of syllabic templates increase, so should the standard deviations of the OODs. This is

because consonants preceding and succeeding a vowel exert influence on formant transitions,

and that OODs (admittedly depending on the centile where the measurements are taken – here

the 20th and 80th) are likely to be affected by those transitions: a higher number of syllabic

types, i.e. of consonantal environments likely to exert influence on formants at the 20th and

80th centiles, should therefore induce greater standard deviations of the F1/F2 Euclidean

distance between the onset and offset of the vowel. A consistent distance between the two

centiles on each formant in the same consonantal environment can reasonably be assumed to

be evidence of some acquisition. In other words, a higher number of syllabic types, i.e. of

consonantal environments likely to exert influence on formants at the 20th and 80th centiles,

should induce greater standard deviations of the F1/F2 Euclidean distance between the onset

and offset of the vowel. For this specific study, and just as in the previous section, formant

values were normalized beforehand using the BDM method. Figure 3.6 plots the standard
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Fig. 3.6: Standard deviations of the per-speaker, per-session OODs for /I/, /i:/, /U/
and /u:/ against syllable tokens and types.

deviations of the OODs for each speaker in each session against the number of syllable types

and tokens embedding /I/, /i:/, /U/ and /u:/. The shape of the dots indicate the session,

while the numbers on top of them give the speakers’ identification numbers. Looking at the

figure, the distribution of each phoneme is clearly dependent on the number of syllable types

and tokens. At first sight, the standard deviations of the OODs look more widespread in the

case of /U/ and /u:/ than for /I/ and /i:/. This is however only partially borne out by taking

a closer look: the global per-sex dispersions of the OOD standard deviations are similar

for all phones (around 0.35 Bark for women, and 0.42 Bark for men) except /U/, which in

both instances display higher dispersion values (0.69 Bark for female learners and 0.74 Bark

for male learners). Considering that syllables containing /U/ have the lowest numbers of

types and tokens, there is probably a frequency effect happening with this phoneme: the NSS

features the same global distribution of phonemes, with /U/ having the lowest numbers of

syllable types and tokens too. A reasonable assumption could therefore be that a lower input
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of /U/ sounds embedded in fewer syllable types and tokens leads to a less stable state of

acquisition, the scarcity of the input entailing higher dispersion. Surveying the per-sex means

of the dispersions and comparing them between learners and natives1 does not reveal any

significant differences likely to imply specific levels of acquisition between the phonemes:

the mean OOD standard deviations are mostly equivalent between the two categories of

speakers, with only /U/ in women, and /i:/ in men, which show substantial differences

(respectively 1.12 Bark among learners and 0.64 Bark among natives in the former case, and

1.26 Bark and 0.85 Bark in the latter case): /U/ features greater dispersion overall among

female learners, and so does /i:/ among male learners. . . Still, the data at hand and the
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Fig. 3.7: Per-session differences in OOD standard deviations between the learners’ and
the natives’ for /I/, /i:/, /U/ and /u:/.

focus on OOD standard deviations seem to reveal much less stability in the realizations, and

therefore arguably in the acquisition, of /U/. In a similar way to figure 3.5, figure 3.7 plots

1 The same plot as figure 3.6 for native speakers can be found in section E.2 (figure E.2).
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the evolution of the OOD standard deviations for each learner across the four sessions2. A

cursory graphic inspection leads to the conclusion that /U/ OOD standard deviations do seem

higher than the counterparts of other monophthongs. The means of the absolute values of the

differences between learners’ and native speakers’ OOD SDs across all speakers and sessions

are the following, for /I/, /i:/, /U/ and /u:/ and repsectively: 0.23 Bark, 0.30 Bark, 0.58 Bark

and 0.34 Bark for women; 0.35 Bark, 0.46 Bark, 0.62 Bark and 0.70 Bark for men. Once

again, the orders of magnitude vary substantially between the /I/-/i:/ and /U/-/u:/ contrasts.

The latter contrast features greater standard deviations on average, regardless of sex. Do

sessions have an effect? One way to answer this question could be to look at the evolution

of the distance to native OOD standard deviations. The mean differences from native OOD

standard deviations tend to decrease across female learners for all for monophthongs: /I/

(from 0.38 Bark to 0.20 Bark, 0.14 Bark and 0.20 Bark for sessions 1, 2, 3 and 4 respectively);

/i:/, although the values are higher and session 3 counters the tendency (0.74 Bark, 0.45

Bark, 0.67 Bark, 0.42 Bark); /U/ (0.83 Bark, 0.76 Bark, 0.46 Bark, 0.46 Bark); and /u:/

(0.52 Bark, 0.27 Bark, 0.17 Bark, 0.39 Bark), in spite of a spike in session 4, possibly due to

the much greater number of tokens. The data for male learners, which is less substantial, does

not further validate the small effect of sessions – the mean distances remain stable across the

sessions, except for /U/: /I/ is still the most stable monophthong (0.38 Bark, 0.39 Bark, 0.29

Bark, 0.33 Bark); /i:/ presents slightly increasing dispersions (0.25 Bark, 0.47 Bark, 0.61

Bark, 0.49 Bark); /u:/ has comparatively higher mean differences (0.60 Bark, 0.89 Bark,

0.70 Bark, 0.63 Bark), while /U/ starts at 0.75 Bark, drops to 0.31 Bark in session 2 and 0.34

Bark in session 3, only to rise again up to 1.46 Bark in the last session3.

The dispersion of the OODs which was looked at in this section reveals that /U/ is

by far the most volatile monophthong of the four vowels specifically under study. This

is all the more unexpected as /U/ is the monophthong embedded in the fewest types of
2 Speaker DID0128 only pronounced /U/ one time in session 1, hence the absence of a datapoint in panel

n°9.
3 These values are plotted against the number of tokens in figure E.3 of appendix F.
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syllables, and occurring the smallest number of times. This section also shed light on the

comparable instabilities of /i:/ and /u:/, with /I/ having the least dispersion. It is clear that

the realizations of the four phonemes present varying degress of dispersion, which begs the

question of a unified analysis. When it comes to acquisition, however, greater dispersion can

arguably signify a less stable state of acquisition. From that perspective, the greater instability

of OODs for /U/ and /u:/ against that of /I/ and /i:/, when compared to native dispersion,

is another indication that the two contrasts under study follow different learning curves. To

investigate this issue further, methods of pattern recognition could also be explored: this

exploration is the object of the next section.

3.3 k-Nearest Neighbours

Possibly one interesting way to assess phonemic acquisition would be to consider it as a

classification problem: considering the vowels in the BDM-normalized F1 / F2 space, to what

extent could machine-learning algorithms be trained to label them, and to what extent would

the predictions differ first from one phoneme to another, then from one session to the other?

One argument that makes this approach particularly appealing is that having a corpus of

native values (albeit a small one) is ideal if one is to consider methods of supervised learning:

those native values constitute the ideal labelled training data to infer the learners’ values

from. This section explores the success rate of a simple classification method, the k-Nearest

Neighbours (henceforth, KNN).

3.3.1 Method

There are several ways to implement classification on the main data: some key questions

to answer are the scope of the test sets (e.g. across all speakers or not, or across all sessions),

the number of classes (i.e. how many different phonemes should the classification operate
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on?), and of course the value of k. Here the dimensions taken into account are the BDM-

normalized F1 and F2 taken at the mid-temporal point because F3 is also factored in in the

computations. Mid-temporal measurements also limit potential influences of consonantal

environments. To keep those in check, and as will be the case in section 3.4, the original

goal was to take into account only the phones occurring in syllable templates also present

in the NSS. In order to assess longitudinal acquisition, and in order to preserve potential

idiosyncrasies but also to detect possible cross-speaker patterns, the test sets were split

between both speakers and sessions; no subsets of monophthongs were selected. This means

that a typical test set consists of all the monophthongs produced by a given speaker during

a given session, and embedded in a consonantal environment also present in the NSS. The

non-linear nature of KNN makes it possible to implement multiclass classification, provided

(as is the case here) that the classes do not overlap (i.e. not multilabel classification). The

training set was divided into two separate sets, one for each sex: the per-speaker, per-session

test sets were therefore classified along the labels of the training sets of the corresponding

sex.

Another key issue to address is of course that of which k value to select. Cross-validation,

a common method in medical sciences, is in this case not possible: the training sets are

distinct from the test sets. Randomly sub-sampling the learners’ datasets would besides make

very little theoretical sense – or at least a better solution exists, namely the resort to the NSS

as the training set. Cross-validation not being a viable option here, another procedure to

determine the optimal value of k had to be implemented. One way to go about doing so is

to operate KNN classifications with all values of k up to the rounded value of the square

root of the number of datapoints in both the training and test sets.
√

n, with n the number of

instances in both sets, is an empirical value commonly used (probably after (Duda et al., 2000,

Chapter IV)). For each KNN classification with k ∈ [1,
√

n], the proportion p of correctly
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labelled phonemes was stored, in each session for each speaker. The process4 is represented

in figure 3.8 for speaker DID0068 in Session 2, where the blue line plots the proportion p of

accurately classified monophthongs against each value of k.

One issue with scanning all the values of k from 1 to
√

n is that optimal values, i.e. values

of k for which the proportion of accurately labelled phonemes in the test set is the highest

may vary from one pass to another. This instability of results is likely due to even-numbered

values of k, where the majority vote can return a tie – and therefore arbitrary decisions

must be taken –, equal distances between datapoints, or all neighbours are from different

classes. In order to counter this instability of results, 1,000 parses were carried out, i.e. the

values of k were scanned from 1 to
√

n 1,000 times for each speaker in each session. For

each pass, the most frequent optimal k-value was selected: in other words, the k-value from

1 to
√

n returning the highest proportion of accurately labelled phonemes was computed

100 times, and stored, and the most frequent of these values was then retained for the final

comparisons. Before proceeding on to the results, another issue has to be addressed, that

of scaling. The space where the datapoints are located is the BDM-normalized F1/F2 space

– two dimensions with different measurement scales: although F1 and F2 feature roughly

equivalent standard deviations (1.42 and 1.45 Bark respectively), there are non negligible

discrepancies between their minimal values (2.4 vs. 0), maximal values (15.34 and 10.65),

and more importantly, their means (10.22 against 2.95). These different scales mean that

when computing the Euclidean distance between neighbours for the KNN algorithm, F1 will

have a greater influence on the calculated distance. Scaling is therefore required, and the

method chosen for standardization is the z-score: z = x−µ

σ
, with z the normalized value, x the

raw value, µ the mean of all values, and σ their standard deviations. All BDM-normalized

F1 and F2 values were thus standardized.

4 The process to determine optimal values of k and the design of figure 3.8 were taken directly from
daviddalpiaz.github.io.

https://daviddalpiaz.github.io/r4sl/k-nearest-neighbors.html
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An example of the entire process can be found in figure 3.8, which shows the case

of speaker DID0068, a male speaker, in session 2. In this instance, there are 618 phones

embedded in a syllable present in the NSS. The number of phones pronounced by native

male speakers is 1,289, so the total number of datapoints in both the training set and the

test set is 1,907. The top panel of figure 3.8 shows how the KNN algorithm was run on

those two sets with values of k varying from 1 to the integer value of
√

1,907, i.e. 43.

The y-axis indicates the global proportion of correctly labelled phonemes for each k-value.

The highest proportion in this example is 0.33, corresponding to a number of neighbours

k = 42. This value of k can be called “optimal” because it is the value returning the highest

classification accuracy. “Classification accuracy” is here to be understood as the proportion of

learners’ monophthongs correctly recognized by the KNN algorithm as the monophthong that

should have been produced given the word in which it appears; whether this identification

is “correct” or not is assessed by using the datapoints of the natives’ monophthongs as

references. However, as mentioned above, the optimal value of k can change if the process is

repeated in exactly the same way, so a procedure5 had to be found in order to determine a

more robust optimal k-value for each speaker in each session. The solution adopted here was

to loop the process of scanning k-values from 1 to
√

n 1,000 times, and to store the optimal

k-values after each pass. The different optimal values for speaker DID0068 in session 2 over

1,000 passes are plotted in the bottom panel of figure 3.8. How then to select a final, optimal

k-value? Arguably the logical thing to do is to take the value towards which k converges, if

any. In this case, the converging value is the most frequent over 1,000 passes. Figure 3.8

shows how relevant this method is: the optimal k-value obtained in the top panel (42) is

different from the most frequent value over 1,000 passes (23). Figure 3.9 shows how many

times k-values between 1 and
√

1,907 have been considered optimal after the 1,000 passes.

Interestingly, the value 42 was only found optimal 60 times. 4 values competed for the top

position as the most frequent value, 21, 22, 23 and 29. 23 came first with 182 occurrences,

5 The reader will remember that cross-validation is not a viable option.
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Fig. 3.8: Top panel: Proportions of correctly labelled phonemes against different values
of k (with k ⩽

√
n) for speaker DID0068 in Session 2 . The grey dotted line indicates the

highest proportion of correctly classified phonemes (regardless of their categories); the
vertical orange line indicates the optimal k value. Bottom panel: variations of optimal k
values across 1,000 passes; the red line indicates the most frequent value (here: 23).

against 174 for 21. This means that for speaker DID0068 in session 2, the optimal k-value is

23.

What sort of accuracy can be expected? There are many reasons why a low classification

accuracy, i.e. a low number of learners’ monophthongs being identified as what the learners

meant to pronounce based on the natives’ references, can occur. The first reason is that

the training sets and the test sets are separate. Another reason is the dispersion of learners’

values, and the discrepancy between their realizations and the native targets. An overall low

accuracy rate will dismiss the method as not efficient to detect potentially different rates

of phonemic acquisition. On the other hand, clear differences in proportions of accurate

labels from one monophthong to another should constitute evidence that discrepancies exist

in the state of acquisition for each phoneme. A possible method to assess classification
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Fig. 3.9: Barplot of the counts of optimal k-values over 1,000 KNN passes for speaker
DID0068 in session 2.

accuracy a priori is to run the algorithm on the native values, using, this time, cross-validation.

Originally, as briefly mentioned above, the NSS was chosen to serve as the training set. The

way cross-validation was performed on the datapoints is the following: the NSS was split

into two subsets, one for female speakers, another for male speakers. These two subsets

were then themselves separated according to the variety of spoken English. Only British and

American English were retained. The BDM-normalized F1 and F2 values were then scaled

using the z-score method described above. These subsets were then split into ten folds, using

the R caret package. Table 3.1 provides an example of a random sampling of the female

British speakers’ data into ten folds. The distribution of phonemic targets within each fold

matches that of the entire dataset. Within the folds, k was allowed to vary from 1 to
√

n, n

being the number of phones in the fold. As the folds were parsed, the global proportion of

accurately predicted phonemes was stored, along with the individual proportions for each

category. After the algorithm was run on all ten folds, and with k ∈ [1,
√

n], the optimal k

value, i.e. the number of nearest neighbours for which the classification accuracy was the

highest, was selected. The highest classification accuracy corresponds to the mean of the

correctly labelled phonemes of each fold. Then this entire process, starting from splitting
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Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold08 Fold09 Fold10

æ 18 19 19 18 19 18 19 19 18 19
A: 4 3 3 3 3 4 3 4 4 4
e 9 8 9 8 9 9 8 9 9 9
3: 3 3 3 2 2 2 2 3 3 2
@ 33 34 33 34 33 34 33 34 34 33
I 36 36 35 36 36 35 35 35 36 36
i: 20 20 20 20 20 20 20 20 20 20
6 14 14 14 14 14 14 13 14 13 14
O: 9 9 9 9 9 9 9 9 9 9
2 7 7 7 7 7 7 7 7 7 7
U 1 1 1 2 1 1 1 1 1 1
u: 10 10 9 9 10 9 9 10 10 9

Table 3.1: Example of 10 folds for the female British speakers: distribution of phonemic
targets. This extremely uneven distribution eventually led to forfeiting the NSS as the
training set.

one of the four sex- and accent-dependent datasets into ten folds, was repeated 100 times.

The mean global proportion of accurately predicted phonemes in the case of native British

women is 0.43; for British men, 0.37; and in the case of American native speakers, 0.30

and 0.34 for women and men respectively. These very low scores can be accounted for

first by the low number of occurrences (1628, 425, 221 and 307 for British women and

men, and American women and men respectively); then by the very unequal numbers of

occurrences from one phoneme to another. However, because these overall proportions of

classification accuracy were so low, and because the numbers of phonemes were so different

across categories (c.f. figure 3.2, with no /U/ in the dataset of male American speakers),

it was decided that another set of native monophthongs should be resorted to. The reader

interested in the results obtained from the NSS can refer to figure E.4 in section E.4, which is

the NSS-based equivalent of figure 3.10, detailed below, and to an example of a confusion

matrix based on the NSS (table E.1). What training set to use, then? Because of its easy

availability, and because it is based on various speakers whose individual data have not been

compiled, the Peterson & Barney (1952) set was used6. Cross-validation on the P & B corpus

6 Clearly the issue of what training to use is not a trivial one, and the question is far-reaching. Either option
at our disposal introduced a bias: resorting to the NSS corpus presented the advantage of remaining within the
realm of spontaneous conversation. After all, the gaps in the number of occurrences between monophthongs all
the more reflect, or so we argue, the reality of natural English as this gap is mirrored in the main learner corpus.
A cursory look at figure E.4, however, quickly reveals how of little use the obtained results are: the proportions
of accurately predicted /U/ and /u:/ are null in 2, out of 48, instances (4 sessions × 12 speakers). The issue is
that it is unclear whether these low ratings are the consequences of variable realizations on the learners’ part, or
of the limited numbers of native /U/ and /u:/ in the first place – which make it too exceptionally possible for the
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yields much more robust results: over 1,000 passes, the overall proportion of accurately

labelled monophthongs is 0.787 in both male and female speakers. One major difference

with the NSS is that the P & B corpus does not contain data for /6/ (as it is an American

corpus) and /@/.

3.3.2 Results
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Fig. 3.10: Proportion of correctly labelled phonemes in the BDM-normalized F1 /
F2 space using the KNN classification method. In each panel, the total number of
tokens n for each session is indicated, along with the optimal k-values and the global
proportion of accurately labelled phonemes. The grey dotted line indicates the frequency
of occurrence of the optimal k value over the 1,000 passes.

The results of the study are summarized in figure 3.10. The proportion of each phoneme

correctly labelled by the algorithm after 1,000 passes is plotted speaker by speaker and

algorithm to ascribe those predictions to the learners’ productions. On the other hand, the P & B corpus imposes
a variety of accent (American) and uses lists of recorded words with controlled consonantal environments
and balanced numbers of items in each phonemic category – features which do not reflect the spontaneous
conversation under study here. This is admittedly another form of bias, but at least the results (c.f. figure 3.10)
provide information on the learners’ productions only, and not on the possible flaws of the training set.
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session by session. The grey dotted line plots the frequency with which the optimal k value

between 1 and
√

n was selected over 1,000 passes. It provides a measure of robustness of the

results: the closer to one this value is, the less variation there is in the classification accuracies

of the phonemes. The lowest value is 0.199 (for speaker DID0062 in session 1), i.e. the

optimal k value of 23 was selected 199 times over the 1,000 passes. The maximal value is

0.977 (speaker DID0106 in session 3). On average, the optimal k values were selected 471

times; the dispersion is at 0.18. Such numbers can arguably show that the results are robust:

even the minimal number of occurrences is evidence of stability, since each value competes

with all other values from 1 to
√

n. The lowest value for n is 278 (speaker DID0024 in session

1), i.e. the smallest interval of possible k values is [1,16]. How correlated is the frequency of

occurrence of the optimal k value and the number of phonemes? One assumption could be

that the lower the number of phonemes to classify, the higher the frequency of the optimal

k value: with fewer values to test against, an optimal k value is more likely to emerge. It

turns out this is not the case, however: the Pearson coefficient is r = 0.35 – too weak a value

to assume a relationship between the phoneme counts and the frequency of occurrence of

the optimal k value over 1,000 passes. The panels figure 3.10 also display the total count of

monophthongs across all sessions (n), the most frequent k value returning the highest global

classification accuracy (k), along with the mean proportion of accurate labeling regardless

of phonemic categories (p). No clear pattern emerges from figure 3.10, except perhaps the

visibly higher proportions of /A:/ and /O:/. No evolution across sessions is observable. How

do monophthongs fare when compared to one another? A synthesis of these findings can

be found in table 3.2, which shows the per-phoneme means and standard deviations of the

classification accuracies across speakers and sessions. The proportion of accurately labelled

/O:/ is much higher (at 60%) than its closest competitor, /A:/. That these two monophthongs

are low back vowels may explain such relatively high rates of accurate predictions. Their

relative isolation in the vowel space, and their closeness to French sounds, may also contribute



130 Speaker-dependent analyses

æ A: e 3: I i: O: 2 U u: Mean

µ 0.25 0.49 0.24 0.18 0.37 0.21 0.60 0.22 0.37 0.20 0.31
σ 0.16 0.23 0.12 0.22 0.11 0.13 0.18 0.10 0.20 0.14 0.16

Table 3.2: Per-monophthong means (µ) and SDs (σ )of the KNN classification accura-
cies across speakers and sessions

to these high proportions. This assumption cannot be generalized to back vowels, since

/u:/ features a rather low chance of correct prediction, with 20%. Quite interestingly, the

two contrasts under study, /I/ – /i:/ and /U/ – /u:/, present the same proportions: 37% for

the short vowel, and 20% for its long counterpart. At first sight, then, the KNN algorithm

does not establish any clear differences in the acquisition of the two contrasts. However,

the standard deviations of /I/ (0.11), /i:/ (0.13), /U/ (0.2) and /u:/ (0.14) confirm what has

already been detected in the other sections: /I/ and /i:/ are consistently more stable than /U/

and /u:/ in spite of a greater number of occurrences (7959, 5294, 578 and 3358 respectively).

The slightly higher standard deviations in classification accuracies, along with the gaps in the

numbers of occurrences, reveal disparities across speakers and sessions. But these disparities

should not be exaggerated, as they are still quite subtle. Following these observations, the

question naturally arises whether a correlation exists between the number of occurrences and

the proportion of accurate predictions for each monophthong. Figure 3.11 gives graphical

evidence that it is not the case: the proportions of accurately labelled phonemes for each

speaker in each session were plotted against their respective numbers of occurrences, and

no relationship between the two parameters is visible. The Pearson correlation coefficient is

r =−0.09. No session effects are observable either. Within-phoneme values are randomly

distributed along the y-axis, which confirms the absence of correlation even at a finer-grained

level. These findings arguably demonstrate the validity of the procedure and its results: had

there been a correlation between classification accuracy and the number of occurrences,

cross-comparisons between monophthongs would have been unreliable. In other words, the

analysis of the classification is made possible because the differences in counts have been
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Fig. 3.11: Per-session, per-speaker proportions of correctly labelled phonemes (using
optimal k) against their numbers of occurrences.

effectively neutralized. Coming back to the results from figure 3.10, and their summary in

table 3.2, it looks as if the differences in proportions of monophthongs accurately predicted

by the algorithm are only marginal. Is this really the case, though?

Another approach worth adopting to assess whether resorting to the KNN algorithm

reveals any differences in the acquisition of /I/, /i:/, /U/ and /u:/ is to see what values the

monophthongs were predicted to have – in other words, to look at the confusion matrices.

Figure 3.12 plots the confusion matrices of all 12 speakers. The numbers inside each square

give the proportion of actual phonemes on the x-axis predicted to belong to the corresponding

category on the y-axis. The way these confusion matrices were computed is the following:

for each session and each speaker, the algorithm was run using the optimal k value, following

the procedure described in section 3.3.1. The resulting actual and predicted values were then

listed together for each speaker, and the confusion matrices were then computed over the four

sessions. No clear pattern emerges either upon observing the confusion matrices. However,

looking at the second most predicted phoneme which is not the actual phoneme for /I/, /i:/,

/U/ and /u:/ provides some insight: table 3.3 lists the best alternative predicted phonemes for

actual /I/, /i:/, /U/ and /u:/ for each speaker, and compares their percentages of predictions
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Fig. 3.12: Learners’ confusion matrices for KNN classification: the optimal k values
were retrieved for each session and per-session confusion matrices were then merged
for each speaker. The numbers inside the tiles indicate proportions (c.f. main text).

with those of the actual four phonemes. The number of occurrences of each phonemic target

for each speaker across the four sessions are also given as a reminder, in order to investigate

whether the total count exerted influence on the actual and alternate percentages. From here

onwards, “actual percentage” refers to the percentage of correctly identified phonemes, while

“alternate percentage” refers to the highest proportion of inaccurately predicted phonemes.

The phonemes different from the actual ones with the highest alternate percentages are

refered to as the “best alternates”.

Arguably, the most striking differences between the four phonemes lie in the consistency

of the lists of best alternates. In cases of inaccurate classifications, /I/ is overwhelmingly

predicted as /e/, with only one exception in speaker 24, for whom the best alternate is /i:/.

Likewise, the best alternate for /i:/ is /I/, except for speaker 108, whose best alternate for

/i:/ is /e/. Even when including the two exceptions, these best alternates are phonologically



3.3 k-Nearest Neighbours 133

Predictions (%)

Speaker Actual Count Alternate Actual Alternate

014 I 775 e 40.66 20.52
024 I 692 i: 47.54 16.04
035 I 734 e 48.09 21.25
039 I 860 e 47.09 23.72
062 I 473 e 31.08 36.58
068 I 535 e 44.67 21.12
071 I 626 e 42.01 36.10
096 I 511 e 29.16 33.46
106 I 723 e 34.02 32.92
108 I 636 e 15.57 45.44
128 I 779 e 36.20 37.23
168 I 615 e 26.99 44.72

Predictions (%)

Speaker Actual Count Alternate Actual Alternate

014 i: 557 I 27.65 46.14
024 i: 474 I 37.34 34.60
035 i: 522 I 13.60 45.98
039 i: 504 I 11.11 53.17
062 i: 331 I 9.67 44.71
068 i: 392 I 21.17 41.33
071 i: 387 I 15.24 42.12
096 i: 350 I 14.86 41.43
106 i: 426 I 19.48 45.07
108 i: 443 e 4.97 38.83
128 i: 511 I 32.68 40.70
168 i: 397 I 40.05 42.57

Predictions (%)

Speaker Actual Count Alternate Actual Alternate

014 U 50 O: 34.00 28.00
024 U 70 u: 31.42 27.14
035 U 53 u: 43.40 16.98
039 U 46 u: ~ O: 26.09 30.43
062 U 37 O: 27.03 37.83
068 U 34 e ~ I 41.18 17.65
071 U 23 e 56.52 21.74
096 U 35 O: 51.43 17.14
106 U 68 u: 35.29 25.00
108 U 40 e 25.00 35.00
128 U 38 u: 36.94 28.95
168 U 84 e 23.81 26.19

Predictions (%)

Speaker Actual Count Alternate Actual Alternate

014 u: 344 I 30.23 17.44
024 u: 307 I 19.22 23.45
035 u: 299 U 14.38 38.80
039 u: 380 U 11.05 32.89
062 u: 200 U 19.50 24.00
068 u: 198 I 17.68 22.22
071 u: 175 e 5.14 40.00
096 u: 212 U 15.57 25.47
106 u: 346 I 7.23 30.92
108 u: 216 e 1.85 44.44
128 u: 365 I 8.22 35.62
168 u: 316 I 6.33 43.35

Table 3.3: Comparison of the per-speaker percentages of the most frequently alternative
predicted phonemes (Alternate) for actual /I/, /i:/, /U/ and /u:/ with the proportions of
accurate identifications (Actual).

close to their actual counterparts: /e/ is a front vowel just like /I/, but with a sligtly wider

opening of the mouth. This process of a possible excessive aperture is reproduced with actual

/i:/, predicted as /I/ 11 out of 12 cases. The overall picture is much less consistent, from a

phonological point of view at least, in the case of /U/ and /u:/. /U/ has /u:/ as best alternate

in 4 out of 12 cases; /O:/ in three cases, with a draw between those two phonemes in one

instance. These eight cases present some phonological consistency, with /u:/ and /O:/ both

being rounded back vowels. With /U/ being a near-close, near-back rounded vowel7, /u:/

and /O:/ can be considered as predictions reasonably close to the actual phoneme. The four

remaining best alternates are /e/, with /I/ being an equally best alternate in one instance. The

7 The extent to which /U/ is rounded will not be discussed here. One tempting explanation for these two
best alternates is that learners may over-round their lips when pronouncing /U/. The data here do not seem to
support this assumption. BDM-normalized F2 values for female native speakers are much lower on average
than learners’ values: 2.88 Bark in the NSS and 3.67 Bark in the P & B corpus, against 3.93 Bark and 4.95
Bark in the conversations and reading lists respectively. For male speakers, the means are 4.30 Bark and 3.68
Bark for natives in the NSS and the P & B data respectively, and 3.28 and 4.90 for learners in conversations and
reading lists. With lip-rounding lenghtening the vocal tract, which in turn leads to a lowering of F2, it cannot be
said that learners tend to round their lips more than the natives, at least from these casual pieces of evidence.
Predictions of /U/ as either /u:/ or /O:/ may therefore not be attributable to excessive lip-rounding by learners.
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phonological distance, defined here as the number of shared phonological features, is great

between /U/ and /e/: apart from the similar aperture of the mouth, the lip-rounding feature

and the places of articulation are different, if not opposite. Such a variety in the selection of

best alternates for /U/, along with the phonological inconsistencies of these best alternates,

starkly contrasts with the uniform arrays of best alternates for /I/ and /i:/. This situation is

pointedly not unlike that of /u:/: one expected best alternate for this monophthong, mirroring

the best alternate for /i:/, would be /U/. /U/ is however the best alternate for /u:/ in only 4

out of all 12 cases. In the remaining cases, two front vowels, /e/ and /I/, come out as best

alternates, on 2 and 6 occasions respectively. The same remarks as /U/ can be made regarding

the phonological distance separating the best alternates from the actual monophthong. If the

overall proportions of accurate predictions are similar for /U/ and /u:/ on the one hand, and

for /I/ and /i:/ on the other, the phonological consistency of best alternates is greater for the

latter couple of phonemes, than for the former. This statement should be slightly qualified:

the gaps in consistencies only happen along the F2 axis, i.e. in terms of places of articulation,

rather than along the F1 axis, in degrees of mouth aperture. Conversely, consistent best

alternates only vary from their actual referent in terms of mouth aperture.

Another piece of information likely to reveal whether underlying differences exist between

/I/, /i:/, /U/ and /u:/ when it comes to classification accuracy using the KNN algorithm

is the proportion with which the best alternates were predicted. Whether the proportions

of prediction of the best alternates are higher than those for the actual phonemes may

also provide insight into those potential underlying differences. The proportions of actual

predictions are inferior to those of best alternates in: 5 cases for /I/; 11 cases for /i:/; 4 cases

for /U/; and 11 cases for /u:/. Based on these observations, a conclusion could be that the

two lax vowels are pronounced in a way which is closer to native values than their tense

counterparts. However, such a conclusion might be considered hasty if the two following

parameters are taken into account: (i) the count of phones, which is much lower for /U/,
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makes the comparison between /I/ and /U/ somewhat fragile. (ii) likewise for /i:/ and

/u:/, adding the actual and alternate predictions returns significant differences: for /u:/,

the summed proportions are higher than 50% of all predictions in only one instance. This

means that actual occurrences of /u:/ are predicted as phonemes other than /u:/ and the best

alternate in the majority of instances. The situation is radically different for /i:/, where the

summed proportions of actual and alternate predictions fall under 50% in one instance, and

are higher than 60% in 7 cases out of 12. Bearing in mind the consistency of best alternates

with /I/ and /i:/, it looks as if the experiment with the KNN algorithm confirms the existence

of differences in the levels of acquisition of /I/, /i:/, /U/ and /u:/.

Conclusion & future research

The experimental design of this section is unconventional: using a separate dataset as

training set is not something commonly done in the fields (e.g. behavioural sciences or

biology) that resort to KNN algorithms for research. It is however hoped here that the

theoretical reasoning underlying the choice to use the native P & B dataset will be found

sound. The results, i.e. the extent to which the actual occurrences of the monophthongs under

study were correctly predicted by the algorithm, reveal the complexity of the processes at

hand in conversational speech: no clear cross- or inter-speaker patterns, along with cross- or

inter-phonemic patterns have emerged. It is contended here that this absence of patterns only

partially due to the unconventional experimental set-up.

Once again, the results for /I/ and /i:/ are more robust and consistent than those for /U/

and /u:/ – albeit in a subtle way. These differences are far from being clear-cut, but the look

at the best alternates in the predictions make them apparent, and, arguably, significant. Once

again too, the differences in the number of occurrences across the four phonemes, with /U/

featuring the lowest count, question the validity of cross-comparisons. Let it be emphasized
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that such is the nature of conversational speech – a skewed distribution of tokens, and that

this bias must also be taken into account.

Finally, this study could be extended by including the corpus of the recorded text in

French: one way to go about investigating the quality of the learners’ realizations would

be to use the values of the French /i/ and /u/ as the training set, combined with those of

/I/, /i:/, /U/ and /u:/ of the P & B corpus in turn, and examine the way the occurrences in

the main corpus are predicted. Of course, another venue of research could also be to carry

out the exact same experiment, only with a considerably more substantial native corpus of

conversational speech.

Having resorted to the KNN algorithm to investigate potential differences in the states

of acquisition of /I/, /i:/, /U/ and /u:/, it is now time to take a look at linear mixed-effects

regressions, which are the object of the next section.

3.4 A longitudinal effect? An LMER analysis

This section uses linear mixed-effects regression (henceforth, LMER) to assess the

evolution of the acquisition of the /I/-/i:/ and /U/-/u:/ contrasts. The focus here will be

on longitudinal acquisition, i.e. the SESSION parameter in the main corpora will be used

as a time predictor. As there are no reasons to assume temporal change is linear, models

computing non-linear change with polynomials are also explored. However, with four

sessions, the number of fixed effects must be kept under that of observed values to avoid

saturated models (c.f. (Long, 2012, :119)). Because the order must be “at least two less than

the number of possible time points” (p. 323), only quadratic polynomials will be investigated

to model change over time. All calculations were made using the lme4 package (Bates et al.

(2015)). The response variables in the following sections are the Euclidean distance in the

vowel space from native values to learner values, and the difference between native and

learner OODs. Because they were extracted following the same procedure as the data in
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the main corpora, the native reference points are the gender-dependent means of the NSS

datapoints. Depending on the method used to analyze the fromant values (i.e. mid-temporal

measurements, VISCs or DCTs), the native values have been converted accordingly. Once

again, the formant values have been normalized using the BDM method, because it is vowel-

intrinsic, and because it factors in F3 values. The Euclidean distance between native mean

values and each learner’s datapoints provides an arguably reliable metric to assess actual

acquisition. LMERs have been chosen as the privileged method of multimodel analysis for

the following reasons: (i) simple linear models cannot be used because of the longitudinal

nature of the data. With per-subject repeated measures, the fundamental assumption that

datapoints must be independent is violated. (ii) the unequal number of items under each

level means there are a lot of missing values. LMERs can handle missing data. (iii) the

nested, hierarchical structure of the data calls for the analyses of between-groups (i.e. SEX or

LPDPHONEME), within-groups, between-subjects and within-subjects effects. LMERs make

these analyses possible. When comparing models, package AICcmodavg (Mazerolle (2017))

has also been used to compare the Akaike Information Criterion (AIC), the Deltas and the

weights of evidence.

In this study, two response variables, which echo the work done in sections 3.2.1 and 3.2.2,

are going to be investigated in turn: first, the distance between the BDM-normalized /I/,

/i:/, /U/ and /u:/ learners’ points in the F1/F2 vowel space, and the natives’, is investigated.

The natives’ formant values were averaged across all occurrences for each sex. The second

response variable is the difference in OODs between natives and learners (independently

from the location of the monophthongs in the vowel space). The datasets used to compare

the models work along the same lines: each datapoint includes the specific OOD difference

and the distance from the corresponding, sex-dependent, but also syllable-dependent mean

native vowel. As an example, each occurrence of /i:/ by a male learner will be compared to

the mean male /i:/ native values pronounced in the same syllable as the one it appeared in
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in the main corpus. The reason why learner values were compared to those obtained by the

natives in the same syllable rather than in the same word is because some words may contain

the same mophthong twice or more, e.g. “artistically” (/a:"tIstIk@li/), present in the corpus.

The two /I/ appear in syllables with different structures in terms of coda, onset and stress.

All these differences have not been formally modelled (i.e. categorical variables encoded

in the corpus such as xSYLLSTRUC, STRESS or xSKELS have not been used as effects in the

LMERs), but their potential influence was at least partially taken into account by calculating

learner-to-native distances from values for phones embedded in the same syllables – rather

than words only.

3.4.1 Purpose and issues: a warning

The main purpose of resorting to LMERs here is to carry out a longitudinal analysis, and

to investigate whether differences exist between the /I/, /i:/, /U/ and /u:/ vowels. If the

time predictor to use, i.e. SESSION, is straightforward, the highly nested and heterogeneous

nature of the data requires caution when selecting predictors. Emulation of longitudinal

analyses in other fields (e.g. medicine and behavioural sciences especially) was implemented

as rigorously as possible, but the unequal numbers of datapoints, the likelihood of hidden

interactions (within and between words, regardless of subjects, for instance), the potentially

high number of predictors likely to increase the model fit, and the corresponding exponential

increase in slope and intercept effets – all of this needs to be checked and controlled thor-

oughly. With these provisos in mind, the key issue here lies in the status of the categorical

variables LPDSYLL and WORD in the equation of the models. If these two variables could

arguably be considered as a static predictors, their potential independence from subjects

IDs, i.e. their non-nested nature, but also their sheer number of categories, make it unsafe

and difficult to use them as predictors. This state-of-affairs underpins the decision to re-

strict the corpus. In an attempt to work around, if not solve, these issues, the corpus was
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restricted to occurrences of /I/, /i:/, /U/ and /u:/ embedded in syllables which were also

in the NSS. Choosing LPDSYLL over WORD, i.e. only selecting the occurrences of /I/, /i:/,

/U/ and /u:/ in syllables also present in native occurrences of the matching sex, allows for

finer-grained analysis - and more datapoints (14,433 for matching syllables against 11,205

for matching words). This feature factors in, and neutralizes the issue of, the variety of

consonantal environments likely to exert influence on the formant values. This means that the

distance from each datapoint in the (BDM-normalized) F1/F2 space to the native datapoints

is based on syllable-specific, sex-dependent, values. This makes it possible for LPDSYLL,

i.e. the categorical variable listing all the syllables containing the occurrences of the four

monophthongs, not to be included as a predictor in the equations of the models, thereby

considerably reducing the amount of calculations. The extent to which this work-around to

account for the great variety of the data is a crucial point that will be discussed later. The

Session 1 Session 2 Session 3 Session 4
Speaker /I/ /i:/ /U/ /u:/ /I/ /i:/ /U/ /u:/ /I/ /i:/ /U/ /u:/ /I/ /i:/ /U/ /u:/

DID0014 98 74 5 50 102 68 5 43 259 173 18 53 191 158 8 142
DID0024 56 61 2 23 122 72 12 55 158 123 14 44 288 150 16 150
DID0035 144 97 8 46 180 142 7 92 165 103 8 48 116 70 11 76
DID0039 172 107 8 78 211 140 10 117 202 120 7 34 161 87 5 112
DID0062 91 87 7 7 74 68 11 21 110 70 3 28 118 68 4 114
DID0068 92 84 4 31 97 92 6 41 163 89 9 36 92 62 1 58
DID0071 77 51 2 17 108 86 2 38 220 117 5 28 107 77 4 61
DID0096 103 86 4 28 76 57 5 42 122 74 5 37 126 79 6 81
DID0106 86 69 3 27 159 97 12 69 216 134 24 67 134 76 7 123
DID0108 82 57 3 29 156 117 3 34 197 130 6 49 105 63 6 72
DID0128 74 54 0 51 219 143 14 77 182 104 12 72 169 142 6 110
DID0168 84 59 7 53 143 97 13 70 204 139 21 59 55 43 0 99

TOTAL 1159 886 53 440 1647 1179 100 699 2198 1376 132 555 1662 1075 74 1198

Table 3.4: Number of occurrences of /I/, /i:/, /U/ and /u:/ in the dataset of words
common to both the main corpus and the NSS.

per-speaker, per-session number of occurrences of each of the four monophthongs under

study is presented in table 3.4. Once again, the number of /U/ items is comparatively much

lower than the numbers of its counterparts, with no occurrences in two sessions, speakers

DID0128 and DID0168 in sessions 1 & 4 respectively. The total number of datapoints across

speakers and sessions is 14,433, which can be broken down as follows: 6,666 occurrences of

/I/, 4,516 occurrences of /i:/, 359 occurrences of /U/ and 2,892 occurrences of /u:/. The

total number of syllables common to both native and learner data is 168.
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In the next subsections, the details are provided of the theoretical questions and choices

underlying the designing of the LMER models. Issues regarding the response variables, the

fixed effects and the random effects will be dealt with in turn.

The response variables

Originally the purpose was to find response variables likely to capture the essence of

“phonemic acquisition”. As was hopefully shown, if only tentatively, in the previous sections,

this essence is somewhat elusive, from both a theoretical and practical point of view. The two

response variables chosen here, i.e. the mid-temporal distance in the BDM-normalized F1/F2

space between learner and native values taken from monophthongs appearing in matching

syllables on the one hand, and the difference between native and learner OODs, with the same

constraints, on the other, aim to solve the issue by complementing one another and reducing

the number of parameters with possible intercept or slope effects, while still mirroring the

intrinsic complexity of the data. Technically the response variables were calculated using

the following procedure (only the steps common to the two response variables are described

here):

1. Selecting the speakers with four sessions, and the four phonemes (/I/, /i:/, /U/ and

/u:/);

2. normalizing the F1, F2 and F3 values at the 20th, 50th and 80th centiles using the BDM

method in the main corpus and the NSS;

3. merging the obtained datasets by their LPDSYLL columns, regardless of session occur-

rences: this means that any phoneme from the learner data will be included provided it

has a syllabic match in the native data. There is no condition that the phoneme and its

syllable structure should appear in all four sessions (this would in effect reduce the

dataset to a non-workable array of the most frequent words such as “it” and “too”);
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4. averaging over the per-speaker, per-session values. This returned a 190-row dataset:

one single /I/, /i:/, /U/ and /u:/ value per session and per speaker, with 2 missing

rows for speakers DID0128 and DID0168 (c.f. above). Averaging over all the different

syllable types is a necessary step to prevent nesting and uncontrollable subsampling.

Theoretically speaking, averaging captures what a phoneme is, i.e. the specific acoustic

signature common to all the phoneme’s occurrences regardless of contextual informa-

tion.

With all that done, however, one key issue from the perspective of this work remained: the

discrepancy between the numbers of occurrences from one phoneme to another is distinctive

enough to be highly problematic. How justified is it not to take into account this information?

The top panel of figure 3.13 plots the per-phoneme number of types against the per-phoneme
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Fig. 3.13: Top panel: Number of types against number of tokens; middle panel:
distance to native values in Bark (Response Variable 1) against the TTRs; bottom panel:
differences in OODs (Response Variable 2) against the TTRs.

number of occurrences. In all panels, each dot corresponds to a learner’s mean number of
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types and tokens of a given phoneme for a given session. The figure clearly shows that the

distribution of the dots in the Types/Tokens space is dependent on the phoneme type. The

major pitfall at this stage is the risk of self-confirmatory bias: if the researcher believes that

frequencies and varieties of uses matter, then somehow the information will be added in the

models; if she does not, i.e. if she believes only information at the phonemic level matters

when dealing with phonemic acquisition, then the information will be left aside. This stance

is that of most theories in SLA today. Two questions therefore arise: (i) how to include

linguistic, extra-phonemic information, such as types and tokens, knowing that they are

continuous variables? (ii) Can models based on LMERs disprove one or the other position

mentioned above?

At this stage of the research, in order to answer those questions, the only solution seems

to be to make TTRs, or tokens, or types, part of the response variable. However, if such a

solution can be argued to make some mathematical sense, it makes little theoretical sense:

not only would the response variable be too opaque, but the nature of the operation linking

the TTRs or their components to the response variable is unclear: if choosing types over

tokens, or vice versa, then part of of the linguistic information is left aside; if choosing TTRs,

then should they be multiplied, or divided, by the response variables? The middle panel

and bottom panel of figure 3.13 indicate that the TTRs of /U/ are in general higher, and

more distributed along the y-axis. Considering that the values of the two response variables

are a direct indication if not of acquisition, at least of closeness to native values, and that

the lower both these response variables are, the better, two options seem viable: one the

one hand, multiplying the response variables by the TTRs; on the other hand, dividing the

response variables by both the number of tokens and the number of types. In both cases,

the response variables of /U/ would be penalised. From a theoretical point of view, the first

solution is preferable: TTRs are a well-known parameter in linguistics. If multiplying TTRs

by the response variables makes them too opaque, at least that opacity is limited by the resort



3.4 A longitudinal effect? An LMER analysis 143

to another readable parameter. Besides, mathematically, the second solution would lead to

arguably extreme penalisation of /U/ values, as shown in figure E.5 (an optional graph in

section E.5). The first solution is therefore retained (it is more readable theoretically and less

extreme mathematically). But because of the resulting opacity, which may lend itself to not

illegitimate accusations of “data torture”, models using the plain, original response variables

will also be analyzed. From now on, the following terminology will be used:

1. RV1, response variable n°1, will refer to the distance between native and learner values

in the BDM-normalized F1/F2 space;

2. RV1c stands for the TTR-corrected RV1, i.e. the original RV1 value multiplied by the

TTR;

3. RV2, response variable n°2, will refer to the difference between the BDM-normalized

native and learner OODs;

4. RV2c refers to the TTR-corrected RV2, i.e. the product of RV2 and the corresponding

TTRs.

All non-corrected variables Figure 3.14 plots the resulting mean individual curves of the

four response variables for each phoneme in grey, with the mean curve for all speakers

in a thicker black line. The top row plots RV1, the second row, RV1c, the third row the

absolute value of RV2, and the fourth row the absolute value of RV2c. Examination of the

graphs shows greater dispersion for RV1, corrected or not, than for RV2. /U/ also clearly

stand out against the other phonemes for its much greater variability between speakers.

Corrected response variables also show less dispersion than their uncorrected counterparts,

without however totally changing the overall profiles of the responses: the level of applied

correction does not modify the data to a point where a link between the original data and

its corrected version could not be established. The effects of TTR-correction change from

one response variable to the other: in the case of RV1, correction increases discrepancies

between phonemes, especially for /U/, both in terms of overall curve shapes and values of



144 Speaker-dependent analyses

/I/ /i:/ /U/ /u:/

0.5
1.0
1.5
2.0
2.5

RV
1

/I/ /i:/ /U/ /u:/

0.4

0.8

1.2

RV
1C

/I/ /i:/ /U/ /u:/

-1

0

1

RV
2

/I/ /i:/ /U/ /u:/

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
-1.5
-1.0
-0.5
0.0
0.5
1.0

Session

RV
2C

Fig. 3.14: Per-session means of the 4 response variables, with mean individual lines (in
grey).

RV1. Conversely, RV2c flattens the mean curves and levels the differences in values between

phonemes. Both corrected response variables, however, seem to display less individual

dispersion than their uncorrected counterparts. This is especially visible with /u:/, whose

individual curves show great disparities between one another with the uncorrected response

variables; these disparities are leveled out with RV1c and RV2c. The graphs do not reveal

any unified temporal evolution. /I/ and /i:/ curves look very similar, with /u:/ featuring

a very similar outlook. When a slope is visible, as for instance with RV2 or the /U/ and

/u:/ curves, the general trend seems to be decreasing. The RV2c curves for /I/ and /i:/ look

like flat lines. This cursory visual analysis begs the question whether a longitudinal effect

exists, and if there is one, to what extent is it similar from one phoneme to another? These
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questions are the ones our resort to LMERs will be trying to answer. Let us finish this section

by mentioning that at the very least, the /U/ curves look dissimilar enough from their peers

for other phonemes to say suggest that the acquisition of /U/ is very likely to undergo a

specific evolution.

Having provided details about the response variables, it is now time to turn to fixed

effects.

3.4.2 Fixed and random effects

The main purpose here is to find out whether there exists a longitudinal effect, and the

extent to which a phoneme-dependent effect exists. Fixed effects need to be established

from a linguistic, theoretical point of view. The study being longitudinal, the time predictor

is SESSION. The SESSION values, originally “S001”, “S002”, “S003” and “S004” were

converted to a dummy numeric variable with values 0, 1, 2 and 3 respectively, so as to have

intercepts at Session 1. Because response variables are already sex-dependent, SEX is not

included as a fixed effect. The issue now is to determine the status of LPDPHONEME. It is

argued here that LPDPHONEME is not a fixed effect, as it does not apply to the population under

study (i.e. the learners). This is in keeping with longitudinal studies in other fields: treatment

studies in medical sciences typically compare the evolution of a response variable in a group

following a given treatment against a base-line group either following none or another. In

those instances, TREATMENT is used as a fixed effect because it exhausts the population under

study, i.e. the patients: one half of the population is following the treatment, the other half

is not. Likewise, in behavioural sciences, repeated measures of a response variable such

as reading scores will be modeled with fixed effects providing information on the students’

academic, social and/or ethnic backgrounds. Once again, these fixed effects categorize

the the population under study. This is (emphatically) not the case forLPDPHONEME, which

categorizes response variables. However, it still makes sense to assume that there might be
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differences both in intercepts and in slopes caused by either SESSION and/or LPDPHONEME.

The way this will be assessed is by modeling various time changes (none, linear or quadratic)

with per-phoneme response variables, i.e. by pre-selecting the datapoints corresponding

to a given phoneme and comparing models predicting various sorts of time changes. No

fixed effects have therefore been selected: LPDSYLL, pertains to the same sort of factors as

LPDPHONEME, and so do variables such as SYLLSTRUC, CVSTRUC or SKELS.

When it comes to random effects, random intercepts and slopes for every speaker are

posited by default when it is possible. The focus of the study being the influence of the time

predictor and/or of the static predictor on the response variables, random effects are selected

on two bases: (i) enabling model comparison; (ii) theoretical viability. The first provision

rests on the following advice by (Long, 2012, p. 324): “when considering the selection of

time transformations, the number of static predictors and random effects is held constant

among the models. (. . . ) The reason is that interpretations are clearer if there is one influence

on model fit”. This entails that a pure intercept model can only be compared to models with

intercept random effects. When the correlation between subjects and sessions is posited, it is

assumed that each learner starts with a given distance from the mean native values (intercept),

and as sessions unfold, this distance evolves in an idiosyncratic manner (slopes). Let it be

clearly stated at this point that both the method and the findings are exploratory, if only

because of the robustness of the NSS values, whose relatively small number implies their

means are but indicative.

It is now time to describe the models in detail.

3.4.3 Models

In order to steer clear from any potential risk to “torture the data”, the approach here has

resolutely been deductive rather than inferential: it is our view that the complexity of the data

should preclude results-driven approaches. The terminology in the equations below matches
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the conventional notation in algebraic formulas, with β being a component of fixed effects

and as such a regression coefficient; b a component of random effects marking individual

deviations from fixed effects; and ε being the random error, i.e. the regression error term.

The subscripts i and j indicate the speakers’ ID and the session time points respectively.

Table 3.5: Working hypotheses and statistical models

Name Working Hypothesis LMER Model

M1 Intercept effect of phonemes; no
over-time change

yi j = (β0 +b0i)+ εi j

M2 Linear change with random inter-
cepts

yi j = (β0 +b0i)+β1(SESSIONi j)+ εi j

M3 Quadratic change with random inter-
cepts

yi j = (β0 +b0i)+β1(SESSIONi j)+β2(SESSION2
i j)+ εi j

M4 Linear change with random slopes yi j = (β0 +b0i)+(β1 +b1i)SESSIONi j + εi j

M5 Quadratic change with random
slopes

yi j = (β0 +b0i)+(β1 +b1i)SESSIONi j +β2(SESSION2
i j)+ εi j

Table 3.5 summarizes the models compared. The R code snippets for the models can be

found in section C.8. Model n°1 predicts a phonemic, intercept effect only, with no over-time

changes (i.e., a flat line). M2 models linear change, with no random slopes. Likewise, M3

corresponds to quadratic time change with no random effects on curvature. M4 and M5

introduce random effects on slope and curvature. M1, M2 and M3 on the one hand, and

M4 and M5 on the other, will be compared together. Following (Long, 2012, p.246 and

ff.), in order to compare the models, the weight of evidence is used. the weight of evidence

is the probability that a model is the best approximating one in the set of models being

compared. Table 3.6 lists the best fitting models with respect to phonemes and response

variables. The weights of evidence are given in the column named AICcWt. The p-value is

the one obtained by carrying out a Shapiro-Wilk test on the residuals of the best fitting model.

p-values here correspond to the probability for the distribution of the residuals of the best

fitting model to follow a normal distribution. Low values, for instance inferior to α = 0.05,

indicate that even the best fitting model in the multimodel comparison somehow fails to

capture the data in a satisfactory manner. Low p-values are observed with corrected response
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Table 3.6: Per-phoneme, per-response variable results of the multimodel comparisons.
AICcWt: weight of evidence; p-value: p-value of the Shapiro-Wilk test carried out on
the residuals of the fitted models.

Phoneme Response Variable Model Number AICcWt p-value

I RV1 M2 0.71 0.38
I RV1 M4 0.70 0.84
I RV1c M3 0.95 0.58
I RV1c M5 0.99 0.24
I RV2 M3 0.71 0.99
I RV2 M5 0.80 0.91
I RV2c M3 0.60 0.04
I RV2c M5 0.73 0.86
i: RV1 M2 0.55 0.11
i: RV1 M4 0.68 0.14
i: RV1c M3 0.81 0.00
i: RV1c M5 0.95 0.00
i: RV2 M3 0.51 0.44
i: RV2 M5 0.51 0.35
i: RV2c M3 0.53 0.07
i: RV2c M5 0.56 0.14
U RV1 M1 0.65 0.70
U RV1 M4 0.79 0.85
U RV1c M1 0.41 0.05
U RV1c M4 0.70 0.30
U RV2 M2 0.46 0.47
U RV2 M4 0.80 0.23
U RV2c M1 0.51 0.02
U RV2c M4 0.79 0.04
u: RV1 M1 0.37 0.68
u: RV1 M5 0.53 0.18
u: RV1c M2 0.77 0.00
u: RV1c M4 0.79 0.00
u: RV2 M1 0.55 0.18
u: RV2 M5 0.60 0.17
u: RV2c M1 0.63 0.00
u: RV2c M5 0.65 0.32

variables exclusively: for /I/, the selected quadratic model for RV2ci8 features residuals that

most likely do not follow a normal distribution; likewise, for /i:/, RV1ci and RV1cs; for

/U/, RV1cs and RV2ci and RV2cs; for /u:/, RV1ci, RV1cs and RV2ci. One commonplace,

if opaque, way to solve the issue of non-normally distributed residuals, is to log-transform

the response variables. The obtained results can be found in table E.2: no improvements

8 The superscript letter will indicate what random effects were tested on the response variables: i, as in
RV1ci will refer to intercept random effects, i.e. tested in models M1, M2 & M3; s, as in RV1s, will refer to
intercept and slope random effects.
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have been made with respect to the distribution of the residuals. More models even show

non-normally distributed residuals9, so that the log-transformation does not improve the

models fits. 10 out of the 16 models using a corrected response variable present residuals

whose distribution is very likely not normal. In the rather conservative view held here, it

appears that the models as they have been defined fail to capture corrected data. At this

point of the research, this means that the considerable discrepancies in types and tokens that

are observed among the four phonemes under study cannot be modelled. How to do so is

best kept for future research, let it simply be reminded that it is contended here that these

discrepancies are linguistically significant, and should somehow be modelled. The (hopefully

temporary) failure to do so leads us to discard the models with corrected response variables,

and focus exclusively on the models predicting the plain response variables. Even without

factoring in the types and tokens of the phonemes, can differences in the modelled rates

of acquisition between the different phonemes be observed? This is the object of the next

section.

3.4.4 Results

This section discusses the results obtained from the predictions of the models using

uncorrected response variables. Figure 3.15 plots the observed (square dots) and fitted (lines)

responses variables for each session and each phoneme. The columns give the obtained

results for /I/, /i:/, /U/ and /u:/ respectively. Rows 1 & 3 correspond to response variables 1,

rows 2 & 4, to response variables 2. The top two rows show data with models using random

intercepts only; the bottom two rows show data using random slopes. As a reminder, the

lower the RV1, the closer it is to native values in the BDM-normalized F1 / F2 space. For

RV2, the closer to 0 (materialized by a dotted lines in panels in rows 2 & 4), the smaller

the difference between native and learner OODs. Odd-numbered rows are expected to be

9 Or rather, with very low probabilities of presenting normally distributed residuals.
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Fig. 3.15: Plots of the mean fitted response variables. Top row: RV1 with random
intercepts; row 2: RV2 with random intercepts; row 3: RV1 with random slopes; row
4: RV2 with random slopes. Square dots indicate the mean observed values across
speakers for each session. Lines show the fitted values. The dotted lines in rows 2 & 4
indicate a null distance between native and learner OODs.

rather similar to one another, and so are even-numbered rows: the change from random

intercepts to random slopes in the models should only return different predictions for highly

dispersed data. This is indeed the case for /I/ and /i:/, whose values are fitted by the same

linear or quadratic models regardless of random effects. /u:/ on the other hand has values so

dispersed (c.f. figure 3.14) that models change between models with random intercepts and

models with random slopes. /U/ however features no difference in choices of linearity for

RV2. This is surprising, considering the extreme variations between- and within-speakers.

It is hypothesized in this case that past a certain degree of dispersion, the deviation from

fitted values is so high that changes in random effects are only marginal. The evolutions of

/I/ and /i:/ seem pretty robust. They are all evolutions that tend towards native values. In

the case of RV1, the distance from native values decreases regularly with time. The mean
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observed values are close to the fitted line, with the variance of residuals at σ2 = 0.025 and

σ2 = 0.031 for /I/ and /i:/ respectively. The fitting deviation is slightly smaller with random

slopes models for the two phonemes, σ2 = 0.015 and σ2 = 0.030. The two types of best

fitting models, with either random intercepts or slopes, predict linear decreasing change for

/I/ and/i:/. The cases of /U/ and /u:/ are different. They feature differences between the

two sorts of models. Models with random intercepts predict no evolution over time for either

phoneme: unlike the regular decrease for /I/ and /i:/, a stagnation is predicted. Variances of

the residuals are also higher: σ2 = 0.17 for /U/ and σ2 = 0.052 for /u:/. The predictions

of models with random slopes offer different interpretations, however: the fitted values

of /U/ show the same decreasing line as /I/ and /i:/, albeit with a slightly gentler slope

(β1 =−0.046 against β1 =−0.072 and β1 =−0.052 respectively). The residual variances

are similar, σ2 = 0.17 for /U/ and σ2 = 0.044 for /u:/. The overtime evolution for the

latter is quadratic for models with random slopes, however, with β1 = 0.12, et β2 =−0.054.

With residual variances comparable in the two models, yet with different predictions, it is

difficult to give either solution prevalence and draw even tentative conclusions about the

acquisition of the two phonemes and the evolution of their distances from native values in the

BDM-normalized F1 / F2 space. A trend towards a reduction might exist, but the results are

arguably less robust than for /I/ and /i:/. With three phonemes (/I/, /i:/ and /U/) presenting

the same predictions across the two sorts of models (quadratic with a negative second-order

coefficient for /I/ and /i:/, linear with a positive slope coefficient for /U/), the results for

these three phonemes may be considered as more robust for the measurements of OODs (rows

2 & 4 of figure 3.15). If the findings are correct, then the evolution and state of acquisition of

these phonemes are different: both /I/ and /i:/ start with OODs inferior to native values, and

those OODs get nearer to native OODs from the second session onwards, and remain close

to native values. The fitted model of /U/ shows no such adjustment towards native values:

sessions 1 & 2 feature undershot OODs, with values in sessions 3 & 4 overshooting native
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values. No convergence towards native values is visible for the OODs of /U/ unlike those of

/I/, /i:/ – or /u:/: if the model with random intercepts predicts no change over time for /u:/,

with predicted values at β0 = −0.19, the mean observed value for session 4 sits at -0.014

Bark (against 0.078 and 0.040 for those of /I/ and /i:/ respectively). The model with random

intercepts is therefore probably more robust, with a residual variance of σ2 = 0.12 against

σ2 = 0.17 for the model with random intercepts. The fitted curve is quadratic with a positive

second order coefficient, β2 = 0.099, lending itself to the interpretation that after a lapse in

sessions 2 & 3, the OODs tended towards native values in the last recording session.

This coarse study may serve as basis for further exploration using LMERs. The focus was

here on time change, and on whether the rate of phonemic acquisition changed between /I/,

/i:/, /U/ and /u:/. The rate of acquisition was measured here both by the distance between

learner and native mid-temporal, BDM-normalized formant values in the F1 / F2 space, and

the differences between learner and native OODs. The findings seem quite robust with /I/

and /i:/, as very few differences exist between random intercept and slope models. For these

phonemes, the tendency is clear for measurements to get closer and closer to native values

with time. The fits of the models in the cases of /U/ and /u:/ are looser, with differences in the

predictive slopes between random intercept and slope models for the two measurements with

/u:/ and for the mid-temporal distance for /U/. The consistent predictions for OODs with

/U/ across the two types of models do not indicate better acquisition, but rather divergence

away from native values. However, the fitted decreasing slope of distances in both sorts

of models may indicate a degree of acquisition, but the substantial dispersion makes those

predictions less robust than in the case of /I/ and /i:/. With higher distances from native

values, but a possible improvement in OODs in the last session according to the random

slope model, the case of /u:/ offers a complex landscape. Added to the similarly contrasted

outlook of fitting models for /U/, it seems safe to assert that the LMER models used in this
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study contribute to show that the /I/–/i:/ distinction is better acquired than the /U/–/u:/

contrast.

The next and final section of this chapter deals with Discrete Cosine Transformations.

3.5 Discrete Cosine Transformations

This section uses Discrete Cosine Transformations to model formant tracks, and investi-

gates the differences with native values from the NSS. The first subsection justifies the resort

to these mathematical transformations; the second subsection describes the experimental

set-up and presents the results. Finally, a conclusion and venues of future research are given

in a third subsection.

3.5.1 Presentation and justification of DCTs

One key issue that this whole work has been trying to address is that of finding out

ways to represent and visualize unwieldy data. The structural complexity of conversational

speech, with vowels embedded in a wide array of consonantal environments, combined with

the wealth of information which scripts of automatic extraction enable to retrieve, make it

necessary to resort to mathematical methods simplifying the data while retaining as much

information as possible. The corpora under study here all feature formant measurements

at every centile of the vowels’ duration. For each formant, the measurements along the

time axis form a signal as in figure 1.15 in Chapter 2, or figure 3.16 below. This signal is

a formant track which can be mathematically approximated in several ways, by using for

instance quadratic polynomials, fractional polynomials, splines or trigonometric functions.

Provided the error rate is kept at a moderate level, modeling complex signals with such

known mathematical functions reduce the number of parameters to study – a considerable

advantage when dealing with a high number of parameters and datapoints.
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Fig. 3.16: Example of BDM-normalized F1 and F2 formant tracks (dots) with the
superimposed DCT-smoothed signal (lines).

With such an array of modeling options to choose from, the risk exists again to torture

the data, i.e. to adopt post hoc analyses that will return the desired results. Therefore

the modelling method adopted here is that described in Harrington (2010), the Discrete

Cosine Transformation (henceforth, DCT). For mathematical details, the reader is referred to

Harrington (2010) (pp. 304-305). In a nutshell, the idea is to sum sinusoids to reconstruct

the original signal, like discrete Fourier transforms. Technically, in DCTs, the sinusoids

have no phase, and so are cosine waves. Such a way to model the signal is meaningful

because the amplitudes of the first three cosine waves, named k0, k1 and k2, are “proportional

to the signal’s mean, slope and curvature respectively” (Harrington, 2010, p.305). From

the data-streamlining perspective developed here, this reduction of a one-hundred-point

signal to three coefficients is extremely valuable, when these signals must themselves be

integrated in further calculations, such a BDM-normalizations, themselves iterated over

speakers, phonemes and sessions. From a more theoretical and phonetic point of view,

using DCTs is in keeping with more recent research such as VISCs, already mentioned in

section 3.2: the VISC theory contends that the onset and offset of vowels are perceptually

crucial to their identification. By taking the entirety of the signal into account, DCTs make
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it possible to represent the specificities of each vowel more precisely. The extent to which

the common ground of each category of vowels, i.e. the particular features that differentiate

them from other categories, is preserved, especially in learners’ conversational speech, has

yet to be assessed.

Figure 3.16 shows the DCT-smoothed signal of BDM-normalized F1 and F2 in one

occurrence of /I/ for speaker DID0039 in Session 2. The dotted curve is the raw signal, i.e.

the 100 centiles that were collected when PRAAT03 parsed the vowel. The smoothed curves

can be reconstructed from the three amplitudes of the cosine waves, the DCT coefficients

k0, k1 and k2. When combined to BDM normalization, which includes F3 centiles, these

coefficients make a drastic reduction of datapoints possible: where 900 datapoints would

otherwise have to be computed (100 datapoints for each formant), BDM-normalized, DCT-

smoothed formant tracks for F1 and F2 only require. . . 6. Figure 3.17 details how the

smoothing procedure operates. It was generated using the R package emuR by Winkelmann

et al. (2016), and snippets from Harrington (2010). All DCT-related codes used later on

in this study were written using functions from the emuR package. In all panels, the x-axis

corresponds to the centiles of the duration of the vowel, while the y-axis indicates the formant

values in Bark. The left column plots the half-cycle cosine waves whose sums reconstruct the

signal: the more cosine waves are added, the more smoothing is obtained, but also the more

coefficients are needed. In this study, only the first three coefficients are retained. The top-left

panel shows that the first DCT coefficient, k0, corresponds to the mean value of the raw

signal (here, k0 = 3.88). The raw signal is the F1 raw signal from figure 3.16. The scaling in

figure 3.17 zooms in on F1, which explains the seemingly different shapes of the curves. But

the two F1 signals in both figures are the same. The right column of figure 3.17 displays the

progressive smoothing of the raw signal, plotted in dots. In the top-right panel, the smoothing

is coarse and virtually non-existent, since the first cosine wave is a flat-line corresponding to

the mean of the raw signal. In the middle right panel, the first two cosine waves from the
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Fig. 3.17: Left column: Half-cycle cosine waves after applying a DCT to the to the F1
raw signal of figure 3.16. Right column: Raw signal and DCT-smoothed signal with
incremented summing of the cosine waves. x-axis: centiles; y-axis: Bark.

left column have been summed, yielding a smoother curve. Finally, the bottom-right panel

features the curve corresponding to the sum of all the cosine waves from the left column.

The obtained smoothing, with only three coefficients, returns a satisfying fit of the raw signal.

The procedure to study each vowel is therefore the following: the raw formant tracks of

F1, F2 and F3, corresponding to 900 datapoints, are BDM-normalized into two F1 and F2

formant tracks, which include the F3 information; then a DCT is applied to these two formant
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tracks, limiting the number of cosine waves to three. Each of the BDM-normalized formant

track can be retrieved from the three DCT-coefficients from which the cosine waves can be

inferred, returning a total of 6 numbers to account for the original 900 datapoints of each

vowel.

It looks as if DCT-smoothing and BDM-normalization have the potential to reduce the

size of the data in a way that might still retain their finer-grained specificities. Having

explained how the two procedures synergize, it is now time to examine whether they are

relevant to assessing phonemic levels of acquisition.

3.5.2 Experimental design

This subsection explores the DCT coefficients of all speakers across all sessions for

phonemes /I/, /i:/, /U/ and /u:/, and compares them with the native values from the NSS.

Just like in previous sections, only monophthongs occurring in consonantal environments

also present in the NSS were retained. This condition reduced the number of tokens under

study to 11,323. They can be broken down as follows: 6,666 /I/; 1,511 /i:/; 359 /U/; and

2,787 /u:/. Each of these phonemes was then processed as per the guidelines described in

section 3.5.1, i.e. the formant tracks were BDM-normalized, and then a DCT was applied

to them. This returned 6×11,323 = 67,938 DCT coefficients, distributed across speakers,

sessions and phonemes in the same way as the original datapoints.

A first step was then to average the DCT coefficients of each phoneme over each speaker

and each session, yielding a total of 190 values for each DCT coefficient. A total of 192

(12 speakers×4 sessions×4 phonemes), but there were no occurrences of /U/ in session 1

of speaker DID0128 and session 4 of speaker DID0168. The left column of figure 3.18 plots

the mean values of k0 (first row), k1 (second row) and k2 (third row) for F1 (x-axis) and F2

(y-axis). Each dot corresponds to the values of a given phoneme (/I/ in black, /i:/ in grey,

/U/ in yellow and /u:/ in blue) for a given session (squares for session 1, circles for session
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2, triangles for session 3 and diamonds for session 4). Extreme values for each phoneme and

each DCT coefficient are linked into a polygon to make these extreme values more visible. A

look at the area of these convex hulls reveals discrepancies between phonemes. For k0, which

corresponds to the average value of a signal throughout the duration of a vowel, the area

are 2.00, 3.00, 7.13 and 6.24 Bark2 for /I/, /i:/, /U/ and /u:/ respectively. These numbers

indicate a much greater dispersion across speakers for /U/ and /u:/ than for /I/ and /i:/

regarding average signal values. The same observations can be made on the distribution of
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points for k1 values: the areas of the convex hulls for /I/, /i:/, /U/ and /u:/ are 0.21, 0.30,

2.52 and 0.75 Bark2 respectively. Compared to k0, however, the gap between /I/ and /i:/ on

the one hand, and /U/ on the other, is less wide in the case of k1. The situation is different

with k2, where the size of the convex hull for /I/ stands alone against those of /i:/, /U/

and /u:/. Bearing in mind that k0, k1 and k2 refer to the mean, slope and curvature of the

signal respectively, it is striking to see how consistently smaller the convex hulls of all three

DCT coefficients are for /I/ – in spite of its much greater number of occurrences. Means

and slopes are also much more consistent across speakers for /i:/ than for /U/ and /u:/.

However, looking at the areas of convex hulls is only a valid methodology if the extreme

points of the polygons are not isolated outliers. Graphic observation indicates that this is

probably not the case for the /U/ k1 and /i:/ k2 convex hulls, meaning that they could be

considered smaller than they are. Could the observed higher dispersions be the consequence

of specific distributions of consonantal environments? DCT coefficients encoding the entire

signal of each vowel for each BDM-normalized formant, and the signal beign subject to the

consonantal environment, a direct relationship between dispersion and at least the variety of

consonantal environments can be expected: the higher the number of different consonantal

environments, the greater the dispersion – the bigger the convex hulls. It looks as if this

is however not the case: the numbers of different consonantal environments for /I/, /i:/,

/U/ and /u:/ respectively are the following: 72, 39, 9 and 28. These numbers should be

measured against the counts of each vowel. A coefficient assessing the relative dispersion

for each vowel and each DCT coefficient could be the following: ci
k =

ni
syll×A ik

ni
phon

, with ni
syll

the number of different syllabic environments in which the vowel appears, ni
phon the number

of occurrences of phoneme i, and A i
k the area of the convex hull of the sets of per-speaker,

per-session means for a given DCT coefficient k. The smaller coefficient ci
k would be, the less

dispersed the values are. Table 3.7 shows the 12 dispersion coefficients10. An observation

common to all three DCT coefficients is that the dispersion coefficients cI
k are smaller than

10 These dispersion coefficient were all multiplied by 1,000 to make them more readable.
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c /I/ /i:/ /U/ /u:/

k0 18.14 51.77 111.08 54.12
k1 1.91 5.19 39.31 6.49
k2 0.85 7.67 13.02 4.03

Table 3.7: Dispersion coefficients for each vowel and each DCT coefficient

their counterparts of other vowels. Likewise, cU
k is much higher, while ci:

k and cu:
k reach similar

values. Arguably the most crucial DCT coefficients when it comes to accurate perception

of the phonemes are the first two – k1, i.e. the slope of the signals, potentially being a

major component of a VISC-based theoretical framework (c.f. section 3.2). Assuming, as is

contended here, that the dispersion coefficients disclose information on the stability of the

realizations of /I/, /i:/, /U/ and /u:/ across speakers and sessions, it looks as if three stages

can be distinguished: one of a more stable and advanced level of acquisition, indicative of

the situation for /I/; /i:/ and /u:/ might reveal a second, intermediary level, while /U/ seems

much less stable across speakers and sessions, thereby revealing a possible, lower and more

fragile state of acquisition.

These results, however, should be compared to native data. This is the object of the right

column of figure 3.18, which shows the per-speaker, per-session differences between their

average DCT coefficients for each BDM-normalized formants and the average native values.

The differences took the speakers’ sex into account, i.e. the learners’ values were subtracted

from native values of the corresponding gender. The red vertical and horizontal lines in each

panel indicate a null difference: the closer to them the dots are, the more native-like the

DCT coefficients are. Cursory observation would seem to bear out the findings established

in the previous paragraph: the /I/ values look more concentrated than those of the three

other phonemes. They are particularly centered around the 0-difference point for k1 and

k2. Once again, /U/ values are widely scattered in all directions. The validity of these

impressionistic remarks needs to be tested, however. The method used in order to do that is

the following: first, rather than dealing with means, the dataset with all 11,323 phonemes
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served as the basis for this part of the study. For each phoneme, the distance from the native

F1 and F2 values for k0, k1 and k2 was listed. As was the case above, these distances were

measured from the average values of native speakers of the same sex as the learners. This

procedure returned F1 and F2 coordinates for all phonemes, with specific coordinates for

each DCT coefficient (along the same principle as the right column of figure 3.18). The

points the furthest away from the origin were then stored. This returned three coordinates,

one for each DCT coefficient. For k0, the most distant phoneme from native values was an

/i:/, pronounced by speaker DID0035 in session 1; it is 10.66 Bark away from the origin.

For k1, the longest distance is 5.92 Bark, with an /i:/ pronounced by speaker DID0014 in

session 3. For k2, an /I/ by speaker 0096 in session 3 is 4.54 Bark away from the origin.

The idea was then to create circles around the origin, with varying radii, and to investigate

the points these circles included. The lengths of the radii are incremented proportions of

the longest distance, which gives both an upper limit to the lengths of the possible radii,

and an estimate of how far the outliers may be. The radial lengths were allowed to slide

from 5% to 25% of the pre-stored maximal distance, in increments of 0.1%. All the points

within these circles around the origin were then selected in turn. From these subsets of

datapoints, the intra-phoneme proportions of DCT coefficients were calculated: the intra-

phoneme proportions refer to the per-phoneme percentages which the subsets of within-range

datapoints represent in comparison to the entire set of the phoneme’s datapoints (including,

then, those outside the circles). Likewise, among all the datapoints within the circle, the

inter-phoneme proportions, i.e. the distribution of phonemes in those datapoints within the

circle, were also calculated. The results of such a procedure are presented in figure 3.19.

The right column plots the inter-phoneme proportions against the varying lengths of the

radii, expressed as percentages of the maximal distance from the native values. For a given

radius, i.e. a given x, the proportions of each phoneme in the subset of datapoints within

the circle are calculated. Figure E.6 in section E.7 provides a graphic explanation of the
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process at hand. The flat dotted lines provide the base proportions, i.e. the percentage of

each phoneme in the entire dataset: /I/ thus accounts for 58.9% of all monophthongs (6,666

occurrences); /i:/, 13.3% with 1,511 occurrences; /U/, 3.2% with 359 items; and /u:/ 24.6%

with 2,787 occurrences. Whether the inter-phoneme proportions are higher or lower than

the base proportions may give an indication of the state of acquisition of the phonemes: if

higher, then it means that more phonemes than expected in a given category are present in

the circle, i.e. the category is over-represented in the subset of datapoints around the origin

– their differences from native values are smaller, and therefore their acquisition may be

deemed better than the other categories. The inter-phoneme proportions of /I/ and /U/ are

consistently above the baseline for the three k0, k1 and k2 coefficients. The /U/ curve for

k0 dips slightly under the baseline as the radius of the circles increases, a counter-intuitive

trend possibly caused by the smaller number of occurrences. The inter-phoneme proportions
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of /i:/ for k0 and k1 are also above the baseline, although to a much lesser extent for the

latter coefficient. The curve is below the baseline, however, for k2. For all three coefficients,

the inter-phoneme proportions of /u:/ are under the baseline, meaning that the category is

under-represented in areas around the origin. The distance of its values for k0, k1 and k2 to

native values are overall greater than expected, and may therefore indicate a lower level of

acquisition. The right column plots the intra-phoneme proportions for each DCT coefficient

against the varying length of the radius of the circle subsetting the datapoints. In these cases,

the subset of points of a given phonemic category is compared to the size of all the points of

that category, including those outside the circle. The dotted vertical segments with matching

colors indicate at which radius length the cut-off points of 50% of the datapoints of the

category have been reached. The red segments mark the same cut-off point of 50%, but for

the entire dataset, regardless of the phonemic categories. This point will be refered to as the

Global Cut-Off Point (henceforth, GCOP). For the differences from native values for the

means of the signals, i.e. k0, all inter-phoneme proportions reach the cut-off points before

the GCOP except for /u:/. The same pattern takes place for the differences in the slopes of

the signals, i.e. for k1: /u:/ is singled out because it takes a circle with a longer radius to

capture half of its datapoints. For k2, both /i:/ and /u:/ have cut-off points with longer radii

than the GCOP. Combined with the findings on inter-phoneme proportions, it looks as if this

experimental design evidences a less robust state of acquisition for /u:/: the differences with

native values for the three coefficients reveal more dispersed values than could be expected

from the number of occurrences of this vowel: the differences with native values for the

three coefficients reveal more dispersed values than could be expected from the number of

occurrences of this vowel.

Is there, then a longitudinal effect, and do the speakers display the same patterns alto-

gether? One way to answer those questions is by looking at the per-session, per-phoneme

evolutions across the four sessions of each learner’s average DCT coefficients of /I/, /i:/, /U/
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Fig. 3.20: Per-session, per-speaker evolution of the absolute values of the differences
from native values for k0 and k1. First three rows: k0; last three rows: k1.

and /u:/. This is the object of figure 3.20, which plots the absolute means of the differences

from native values for the first two DCT coefficients k0 and k1. The reason why only the

first two coefficients were represented is twofold: (i) first, a 36-panel plot is harder to make

sense of and to read than a mere 24-panel one – that number already being high enough

to give an impression of clutter; (ii) k2 is arguably of lesser importance when it comes to

phonemic analysis: to the best of our knowledge, the curvature of the signal matters less

than its mean and slope for correct identification. The same dataset of 11,323 datapoints has
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been used. The interested reader can have a look at the same figure for k2 in figure E.711.

F1 is plotted in full lines whereas F2 is plotted in dotted lines. The first three rows plot the

differences from native values for k0, the last three rows for k1. The scales on the y-axis

for the two coefficients were deliberately kept identical in order to make cross-comparisons

possible. Clearly the amplitude of the curves are greater for k0 means than for k1, regardless

of the phonemic categories. Regarding k0, no cross-speaker, or phoneme-specific patterns

seem to emerge: the evolutions of the differences from native values are most likely purely

idiosyncratic. However, a longitudinal effect may well argue to take place in a few speakers,

namely speakers DID0014, DID0035, DID0068, and possibly DID0168. The situation

is somewhat different with k1, where patterns may be argued to exist. The F1 and (to a

greater extent) F2 curves for /U/ (i.e. the yellow ones) are distinguishably higher than their

counterparts in other phonemic categories. This seems to be the case for either formant in

seven out of twelve cases (DID0024, DID0035, DID0039, DID0062, DID0068, DID0106,

DID0108). In no instances are the curves for /I/ or /i:/ among the higher ones. It therefore

looks as if their signal slopes are closer to native ones – possibly the sign of a more advanced

state of acquisition.

3.5.3 DCTs vs. mid-temporal values

At this stage, one final question that needs to answered is that of the added value of DCTs.

After all, they are computationally more intensive than the widespread mid-temporal formant

values, so is there a reason to take the extra coding steps to extract the formant tracks and

use DCTs to analyze them? And, perhaps more crucially, to what extent do results obtained

from them change the analysis of phonemic acquisition, compared to results obtained from

mid-temporal values?

11 Unlike in figure 3.20, in figure E.7 the y-axis ranges from 0 to 1 (not 0 to 2).
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One exploratory method before going into more specific speaker-dependent details is to

compare phonemic classification using the two forms of data, i.e. DCTs vs. mid-temporal

formant values. These two forms will again be compared after BDM-normalization, using the

same dataset of 11,323 /I/, /i:/, /U/ and /u:/ phonemes embedded in syllables also present

in the NSS. In order to test the classification accuracy, a Quadratatic Discriminant Analysis

(henceforth, QDA) was used. QDAs work like logistic regressions in that they test the effect

of continuous dependent predictors (in this case, mid-temporal formant values and DCT

coefficients) on categorical response variables. However, logistic regressions are confined

to two classes for the dependent measures, a limitation which QDAs do not have. Another

option was Linear Discriminant Analysis, but this method has constraints on the equality of

covariances which the data at hand does not necessarily comply with. Besides, considering

the complexity of the data, it seems best to envisage non-linear classification rather than

linear classification. The exploration of the differences between the two forms of data starts

with sex-dependent, but speaker-independent, QDA. In order to assess the respective benefits

of each element in the analysis of the data, six two-dimensional models have been studied.

The second dimension of each model is the model itself with the duration of the phoneme, i.e.

column PHONDUR in the datasheet, included in the set of continuous predictors. All models

include the BDM-normalized F1 and F2 dimensions. They are summarized in table 3.8. These

Table 3.8: Models subjected to the QDA

Model Predictors

m1 Mid-temporal F1 + F2
m2 Mid-temporal F1 + F2 + Duration
m3 F1 k0 + F2 k0
m4 F1 k0 + F2 k0 + Duration
m5 F1 k1 + F2 k1
m6 F1 k1 + F2 k1 + Duration
m7 F1 k2 + F2 k2
m8 F1 k2 + F2 k2 + Duration
m9 F1 k0 + F1 k1 + F2 k0 + F2 k1
m10 F1 k0 + F1 k1 + F2 k0 + F2 k1 + Duration
m11 F1 k0 + F1 k1 + F1 k2 + F2 k0 + F2 k1 + F2 k2
m12 F1 k0 + F1 k1 + F1 k2 + F2 k0 + F2 k1 + F2 k2 + Duration

models are of increasing complexity, and progressively integrate the different combinations
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of DCT coefficients. With a maximum number of 7 predictors, the rule of thumb that the

number of parameters p should be inferior to the number n of datapoints divided by 5 (i.e.

n >= 5× p) is respected. The idea underlying such comparisons was to endeavour to identify,

as precisely as possible, the contributions of each parameter – i.e. mid-temporal F1 and F2,

all three DCT coefficients taken separately and together, and phoneme duration – to the

identification and classification of the four categories of phonemes under study. Unlike the

procedure commonly used, and in the wake of what was done in section 3.3, the training set

was made up of the occurrences of /I/, /i:/, /U/ and /u:/ in the NSS. The test set consisted

of the learners’ phonemes. All the predictors were scaled by z-score standardization within

the subset of datapoints for speakers of the same sex. A QDA was run for each model on

each sex separately, i.e. both the training set and test set were split into two to account for

sex differences. The R package used was the MASS package by Venables & Ripley (2002).

The distribution of the occurrences for each set is the following: 703 datapoints for female

speakers, 418 for male speakers in the NSS; in the main corpus, 8,508 for female speakers

and 2,815 for male speakers. One key issue to solve with such a procedure, i.e. using the

NSS as a training set, is that of the prior probabilities to input. The default values of prior

probabilities for a QDA using MASS are the respective proportions of each category in the

whole dataset. The priors for each sex in the two datasets are listed in table 3.9. Although

Table 3.9: Prior probabilities of the sex-specific datasets

Dataset I i: U u:

Female natives 0.66 0.16 0.02 0.16
Male natives 0.63 0.18 0.04 0.16
Female natives 0.60 0.13 0.03 0.24
Male natives 0.56 0.15 0.03 0.25

these proportions are not too dissimilar, the proportions of /u:/ in the learner corpus are

50% higher than in the NSS. What effect then do the priors have on the proportions of

accurate predictions after running QDAs? Figure 3.21 plots these proportions against the

twelve models presented in table 3.8. The relevant datapoints, i.e. the DCT coefficients,
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the mid-temporal formant values and the durations were all normalized beforehand within

each per-sex subset. The only differences between the different passes consisted in changing

the prior probabilities used for the train sets: in turn, the priors for the train and test sets

were used. The differences displayed in figure 3.21 are minor: in all instances, the shapes of

the curves are parallel, and sit at around the 60% mark of accurate predictions. Prediction

accuracy is lower for male speakers than for female speakers, a state of affairs most likely due

to the lower number of datapoints in both train and test sets for male speakers than for female

speakers. With such minimal differences, it was decided that the rest of the study aiming at

comparing the twelve models would resort to the default values of the prior probabilities, i.e.

those of the NSS, for the sake of simplicity. The next paragraph looks into more details at

how the prediction accuracies change across phonemes and models.
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Fig. 3.21: Per-model proportions of accurate identification using different prior proba-
bilities. FN: female natives; MN: male natives; FL: female learners; ML: male learners.

Let it be reminded that for the time being, session and speaker differences are not factored

in. The results breaking down the proportions of accurate predictions by model, phoneme

and sex are displayed in figure 3.22, with each panel corresponding to a QDA run on one of

the models presented in table 3.8. The y-axis indicates the proportion of phonemes accurately

predicted by the QDA. The proportions were calculated by dividing the diagonal of the
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Fig. 3.22: Per-sex proportions of accurately classified phonemes after a QDA. Dotted
line: global proportion of accurate prediction regardless of sex or phonemic category.

confusion matrices for each sex after running the QDA by the total number of occurrences of

each phoneme for each sex as well. The dotted lines in each panel show the global proportion

of accurate prediction regardless of sex and phonemic differences. The first striking feature

of these results is that duration increases the proportion of correct identification for all models

(recall that even-numbered models add PHONDUR in their set of predictors). The differences

in rates of accuracy, sex and phonemes aside, are tiny: the global proportions range from

56.27% for m7 (i.e. only the curvatures of the F1 and F2 signals are factored in) to 63.30%

for m4 (i.e. the emulated means of the F1 and F2 signals with duration included)12. The m2

model, based on the phonemes’ durations and their mid-temporal F1 and F2 values, comes

a close third with a global proportion of accuracy at 63.09%. In-between m2 and m4, at

63.24%, comes m10, based on the first two DCT coefficients and duration. If Ockham’s

Razor is a principle to be adopted, then clearly a model based on the study of duration and

12 The table of results averaged over the male and female speakers can be found in table E.3 in section E.7.3.
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mid-temporal F1 and F2 formant values is the most efficient. The second best model in terms

of simplicity is m4. Of all three coefficients, k0 seems to be the most crucial one when it

comes to the identification of phonemes – admittedly hardly a surprising result since k0

emulates the mean of a formant’s signal. However, looking at the proportions of accurate

prediction for each phoneme reveals that the two seemingly most efficient models present a

major flaw, at least from the perspective defended here. Quite surprisingly, neither m2 nor

m4 manages to predict any of the 262 occurrences of /U/ by female speakers. This is all the

more surprising as they are even fewer instances of /U/ in the male learner corpus – 97 –, yet

the QDA correctly identifies 7. Interestingly enough, the first model where occurrences of

/U/ pronounced by female speakers are accurately predicted is m6, based on k2 only. Further

looking at the specifics of the per-phoneme predictions, it turns out that the best model for

predicting all phonemic categories is the last one, m12, which factors in duration and all DCT

coefficients, and is therefore also the most complex one. Even though it only ranks 4th, m12

features the highest proportions of prediction accuracy for phonemes with low numbers of

occurrences – especially /U/, with 3.05% among female speakers, and 18.56% among male

speakers. The former proportion, more than the latter, is of special interest for the purpose of

this discussion: clearly from the data displayed in figure 3.22, occurrences of /U/ pronounced

by female learners are highly unlikely to be accurately predicted by an NSS-based QDA. For

those particular cases, m12 outshines its competitors: the second and third best models, m11

and m10, accurately predict /U/ pronounced by female speakers in 1.53% and 1.15% of all

cases respectively. Considering that m12 is the most complex of all models, and apparently

the most able to predict all categories, how does it fare compared to the most streamlined

and commonplace one, i.e. m2?

At this stage, the issue here becomes a theoretical one, rather than a practical one.

After all, conclusions about phonemic acquisition can be drastically different if applying a

classification procedure like a QDA returns drastically different results whether the datapoints
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were preprocessed in one manner rather than in another: with no /U/ pronounced by female

speakers accurately predicted with the first two most efficient models (m2 and m4), it can

easily be infered that the acquisition of that particular phoneme is much less advanced than

the other three. Clearly here once again the major stumbling block is the difference in

counts and the skewed distribution of phonemes pertaining to the very nature of corpora

based on spontaneous speech: the fewer occurrences of a phoneme, the less likely it will

be correctly identified and predicted. In the view defended here, the case is very strong to

adopt whatever model is biased in favour of minority occurrences, at the expense of global

accuracy. The trade-off, it is argued, is minor from a purely practical point of view13: the

gap in the global proportion of accurate prediction is only 0.59% between m2 and m12. It

is, on the other hand, quite major from a theoretical one: m12 returns the highest proportion

for a phonemes most other models are not able to predict. The price to pay, the second

lowest proportion of accuracy for an already overrepresented phoneme, /I/, 0.59% in global

predictions, and admittedly considerably added complexity with the need to extract and

process all the formant tracks, still seems acceptable – it is in any case one that is strongly

recommended to be paid here. Having concluded from this exploratory experimental set-up

that four models, i.e. m2, m4, m10 and m12, return competitive, yet contradictory, results, it

is now time to investigate how they fare when it comes to longitudinal, speaker-dependent

analyses. Because the biggest difference between the first two models, i.e. the influence of

consonantal environments which m4, being based on the emulated mean k0 of the signal, is

comparatively more likely to be affected with than m2, has been neutralized by the design

– only phonemes embedded in syllables existing in the NSS; because m10, in spite of its

overall better performance at predicting the different categories, shows a rate of prediction

for occurrences of /U/ pronounced by female speakers which is 50% lower than m12; and in

order not to clutter the graphs with marginally useful comparisons, only m2 and m12 will be

investigated in the next paragraph.

13 Coding hurdles aside, of course.
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The comparisons between the per-speaker, per-session proportions of accurate predictions

by QDAs based on m2 and m12 are displayed in figure 3.23. The proportions obtained from

the mid-temporal formant values and the phonemes’ durations are plotted in full lines,

Session

0.
2

0.
4

0.
6

0.
8

1.
0 DID0014

Session

DID0024

Session

DID0035

Session

DID0039

Session

0.
2

0.
4

0.
6

0.
8

1.
0 DID0062

Session

DID0068

Session

DID0071

Session

DID0096

Session

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4

DID0106

Session

1 2 3 4

DID0108

Session

1 2 3 4

DID0128

Session

1 2 3 4

DID0168

I i: U u: m2 m12

p

Fig. 3.23: Per-speaker, per-session proportions of accurate predictions by QDA. Full
lines: QDA based on m2; dotted lines: QDA based on m12; red lines: global proportions
(regardless of phonemic categories).

whereas those obtained from the durations and the three DCT coefficients k0, k1 and k2 are

plotted with dotted lines. As usual, the x-axis and the y-axis indicate the session numbers

and the proportion between 0 and 1 respectively. Each panel gives the results obtained by

running the QDA on one given learner’s datapoints. The red lines mark the overall proportion

of correct classification across the four phonemes. Just as in the previous paragraphs, the

data was scaled across speakers in each dataset (i.e. the natives’ or the learners’), within each

sex. The prior probabilities were left at their default values in the MASS package, meanong

they correspond to the proportions of occurrences of each category in the sex-dependent

NSS subsets. The features common to all speakers are the clearly higher prediction accuracy
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for /I/ regardless of the models, and the globally similar global proportions, ranging from

0.40 for speaker DID0168 in session 4 to 0.84 for speaker DID0071 in session 3 in the

case of m2; and from 0.42 to 0.84 for the same speakers and sessions in m12. The overall

similarities between the results obtained from the two models must not conceal the following

discrepancies (the proportions for m2 are given first, then those for m12): /i:/ in speaker
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Fig. 3.24: QDA proportions of accurate predictions against the numbers of occurrences
of each phoneme in all sessions. Left: m2; right: m12.

DID0014’s session 4, 0.13 vs. 0.45; /u:/ for speaker DID0024’s session 3, 0.18 vs. 0.41; /U/

for speaker DID0039’s session 3, 0 vs. 0.43. More generally, the highest absolute difference

in proportions for /I/ is 0.16 (speaker DID0068 in session 1), a gap with arguably little

consequence on a diagnosis on phonemic acquisition. The differences is higher than 20%

in 5 instances (out of 48) in the case of /i:/, and in 4 instances for /U/, with a high mark of

43%, mentioned above; and only two instances for /u:/. All in all, these discrepancies are

somewhat circumscribed in frequency of occurrences, and limited in scope. How does the

respective counts of each phoneme in each session affect the classification rate? Figure 3.24

plots the per-speaker, per-phoneme proportions of each phoneme against their numbers of

occurrences for the two models. The respective Pearson correlation coefficients for /I/,

/i:/, /U/ and /u:/ in the m2 models are rI = 0.18, ri: = 0.31, rU = 0.08 and ru: = −0.26;
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in m12, rI = 0.21, ri: = 0.39, rU = 0.18 and ru: = −0.29. The plot and these coefficients

seem to indicate that the effect of the numbers of occurrences on prediction accuracy is

somewhat contained, and that phonemic categories do exert influence on this accuracy: the

cases in point are the instances when there are as many occurrences of /I/ and /i:/, above

the 50-occurrence mark. The consistency of the predictive proportions even when those two

categories share the same numbers of occurrences may also confirm a posteriori the validity

of this experimental set-up based on QDAs. It goes without saying, however, that other

parameters, such as syllable structure and lexical variety, are likely to exert influence on the

specificities of each phonemic category – a venue of research to be explored in the future.

3.5.4 Conclusion

This section has attempted two things: (i) first, to use DCTs in order to sketch the

learners’ various states of acquisition, and their evolutions for /I/, /i:/, /U/ and /u:/. (ii)

to assess the added value of the more computationally intensive DCTs compared to more

traditional approaches based on mid-temporal formant values. The method used to achieve

those two goals was to carry out QDAs in order to establish how accurately the phonemes

were predicted from native values. For the first purpose, the conclusion is not that different

from the findings of the previous sections, i.e. there is a very strong likelihood that a hierachy

exists between the levels of acquisition of the four phonemes under study. This hierarchy

may well be the following, in decreasing order: /I/; /i:/; /u:/; and lastly, /U/. One major

caveat to these results is that this hierarchy follows that of the number of occurrences of each

phoneme. The exact extent of this influence will have to be determined in future research, as

it is a pre-condition of any study of spontaneous speech that the corpus will end up featuring

unequal numbers of datapoints in each category. It will be once again emphasized here

that the respective proportions of each monophthong in the main learner corpus emulate

those obtained in the NSS. It is also once again contended here that frequency of occurrence
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is bound, somehow, to affect acquisition – a state of affairs that was tentatively observed

here. Regarding the added value of DCTs, it should be noted that mid-temporal formant

measurements return results that are predominantly similar to those obtained by using DCTs,

and possibly even overall more efficient. In terms of ratio of computational complexity to

efficiency, let it be clear that mid-temporal measurements well, win hands down. If the

findings of this section are anything to go by, DCTs should however not be discarded, since

they seem to be able to allow for more refined classifications and distributions. Further

research is needed to bear out the following statement, but it may well be the case that with

their modelling of consonantal environments and the better classification rates they enable for

underrepresented categories, the first three DCT coefficients are perfectly suited for corpora

based on spontaneous speech.

3.6 Conclusion

This chapter had set out to explore the individual evolutions of acquisition, in the hope

of finding cross-speaker patterns, along with differences in the learning slopes of the four

monophthongs focused on, i.e. /I/, /i:/, /U/ and /u:/. Various methods of data processing,

from mid-temporal formant measurements to VISCs and DCTs have been used, along with

different classification methods such as KNNs and QDAs, or modelization frameworks,

such as LMERs. In perhaps all instances, differences in the acquisition patterns of /I/, /i:/,

/U/ and /u:/ have been observed: different dispersions for each phoneme in the case of

VISCs in section 3.2, gaps in the predictive consistencies of best alternates in the case of

KNNs in section 3.3, varying slopes in the LMER models in section 3.4, discrepancies from

native values specific to each vowel in the case of DCTs in section 3.5. . . Let it be clear

however that no definitive statement (should such a thing as a “definitive statement” be

even possible) regarding the acquisition of /I/, /i:/, /U/ and /u:/ is here formulated. The

complexity of the data is a surface that has hardly been scratched: many parameters such
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as word frequency, syllabic structure, stress, MoAs and PoAs of preceding and succeeding

phonemes, all of which are available in the corpora, have not been factored in. To take but

an example, explaining away the substantial residuals observed in section 3.4 will probably

require (in future research) the addition of the WORD parameter – thereby demanding much

more processing power than what the models investigated here necessitated, because of the

unbound nature of the number of categories for this parameter. Another point is that infirming

the null hypothesis (c.f. the beginning of this chapter) by resorting to such chaotic data as

those extracted from spontaneous speech is, well, too easy. If anything, it is surprising that this

null hypothesis held so well. For in all cases where it was tentatively asserted that differences

in the acquisition of the four phonemes might exist, lingering doubts remained: that the

frequency of occurrences might make cross-phoneme comparisons unreliable, for instance;

or that varying arrays of consonantal environments and of lexical frequencies might challenge

the legitimacy of compounding such heterogeneous data in unifying calculations. Let this

chapter end, then, not only with the hope that the computations undertaken therein turn out

to be worthy and insightful, but also by a tip of the hat to the simple and potent elegance of

the null hypothesis and of analyses based on mid-temporal formant measurements.



Conclusion

This study was resolutely quantitative. An unreasonable amount of research time was

dedicated to designing procedures to extract relevant data from the 81 recordings of the

LONGDALE project. Chapter 1 endeavoured in its first sections to describe the raw recordings

and the participants, along with the processes that led to the extraction of the data. Multitier

PRAAT TextGrids were generated for each participants. They feature tiers aligned by two

aligners, SPPAS and P2FA, containing intervals with boundaries for words, English and

French syllables, and individual phonemes. Tiers containing the individual transcriptions and

syllables of each word as listed in the LPD have also been added, with boundaries defined

by each of te two aligners. The same TextGrids were also generated on three separate

subcorpora of lesser sizes: two sets of recordings, one of a list of English words, the other of

a text in French, made as part of the LONGDALE project, were also processed. A homemade

corpus of native spontaneous speech was also created. In total, 120 TextGrids have been

generated. Their phonemic tiers were then parsed by a script that extracted information for

each vowel. An ambition of exhaustivity existed, as with each vowel, on top of its label,

came 541 datapoints (86 for the supbcorpus in French) – a total to multiply by two, because

the process took place one time for each aligner (except for the French subcorpus which

was aligned using SPPAS only). The data extracted dealt with extra-linguistic information

such as the speaker, the session or the number of days spent abroad, linguistic information,

such as the word the vowel appeared in, the syllable, the syllable structure, the various

transcriptions (from either the aligner’s own dictionary or from the LPD), whether the
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syllable is stressed or not, the preceding and succeding phonemes, their places and manners

of articulation, and acoustic information, such as the first four formant values at each centile

of the vowel’s duration, its duration or its intensity. . . In total, by adding the vowels collected

based on the intervals created by the two aligners (i.e. these vowels are the same but with

slightly varying boundaries between the two alignments), a total number of 199,950 vowels

were extracted. Added together, and regardless of the aligners and subcorpora, the grand

total of cells available from all the datasheets amounts to 107,052,945. Regardless of the

quality of the collected vowels, what possible errors remained, what features based on the

collected information did the recordings have? These are the questions which the second

part of chapter 1 tried to answer. Failed extractions for certain formant values, explained or

unexplained variations in labelling by the aligners for frequent words, errors in syllabification

caused by discrepancies between dictionaries or recondite decision processes in the aligners’

algorithms were noted, along with detailed studies of the vowels’ durations and the learners’

speech rates.

All these preliminary analyses having been made regardless of vocalic categories, chap-

ter 2 was an attempt to describe the specificities of each vowel regardless of the speakers’

idiosyncrasies, in order to detect the possible existence of cross-speaker patterns of acquisi-

tion. The focus was on monophthongs exclusively. Before that, however, it was necessary to

try to assess the quality of the automatic extraction carried out along the lines of the previous

chapter. It was demonstrated that the formant values obtained through the procedure across

all the centiles were mostly within reasonably realistic ranges, from which it is contended

that the conclusion that the automatic extraction of those values was reliable can be drawn.

Then the average distribution of the monophthongs in the vocalic trapezoid was measured,

and compared to native values, and the lexical variety attached to each monophthong was

investigated. The overwhelming proportions of a few function words for certain phonemes

was noted, a characteristic which future research will have to take into account in a subtler
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way than was done here: the approach remained mostly blind to lexical variations. A study

of the dispersion of the values of F1, F2 and F3 across all centile led to the discovery of

disparities among vowels, with /U/ and /u:/ displaying higher dispersions than their counter-

parts. A tentative investigation was then carried out in order to devise a procedure that could

lead to retaining the most consistent, least dispersed, formant values for each vowel among

all the values on each centile. These gaps in dispersion, combined with the differences in

frequencies of occurrences between the monophthongs led to the question of how to process

the acoustic data. It was asserted that the most common methods of normalization, such as

the Lobanov method, were particularly suited for corpora where each phonemic category

was represented by the same number of tokens. On the other hand, they were ill-suited

for corpora based on spontaneous conversation, in which the skewness of the phonemic

distributions is a defining feature. In that respect, the similarities between the distributions of

the native corpus and those of the learner corpus suggested that the normalization methods to

use for spontaneous speech should be vowel-intrinsic, but formant extrinsic. This suggestion

was demonstrated by comparing the various methods of normalization to a corpus with

even distributions across phonemes, the P&B dataset (Peterson & Barney (1952)). The

comparative advantages of two vowel-intrinsic methods of normalization, Bark and Bark

Difference Metric (BDM) were determined, and a recommendation in favour of BDM was

made: the method makes it possible to integrate more information, i.e. the F3 signal, in a

simple way, by reducing a three-dimensional parameter (F1, F2, F3) to two (Z1 and Z2). The

chapter ends by investigating the relationship between contrast distances, i.e. the length of

the /I/-/i:/ vector in the BDM-normalized space on the one hand, and that of the /U/-/u:/

on the other, and the surface of the convex hulls linking the outermost vowels of the entire

inventory. This relationship, measured by the ratio of the vector length to the polygonal area,

was calculated for all English corpora, along with the P&B data. The consistency of the

results for /I/-/i:/ may indicate a greater awareness of the coarticulatory targets to reach
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for that contrast than for /U/-/u:/. The extent to which this assumed greater awareness is

evidence of a difference in acquisition has yet to be established in a firmer fashion.

Chapter 2 having unveiled a consistent cross-speaker pattern in the higher rates of

dispersion of tokens of /U/-/u:/, it was then time to take a look at each learner’s evolution

of the acquisition of the two contrasts. The first concern of chapter 3 was to compare the

vowel inherent spectral changes of each learner in each session, along with those taken from

the subcorpus of read lists of English words, to their native counterparts. Besides the added

value, with respect to the previous chapter, of focusing on the per-session, per-speaker means

of BDM-normalized F1 and F2 values, the focus on VISCs made it possible to take a look at

values other than mid-temporal ones: the starting and ending points of the VISCs in this work

were set at 20% and 80% of the vowels’ durations respectively. The lengths of the resulting

vectors for each speaker were compared to native values, with a more detailed look at the

four phonemes under study in each session. Even by considering each speaker individually,

the evidence is consistent that the onset-to-offset distances (regardless, however, of their

locations in the vocalic space) are closer to native values for both /I/-/i:/ than for /U/-/u:/.

Such results came to be interpreted as a strong argument against a similar acquisition of the

two contrasts. The findings were then further corroborated by the analyses of the standard

deviations of the OODs for each speaker in each session – as established in chapter 2, and in

spite of lower numbers of tokens, /U/-/u:/ feature higher standard deviations, even when

comparing with native values and when factoring type-to-token ratios. Could such findings

be confirmed by using classification algorithms? The idea was that if indeed some phonemic

targets are better acquired by the learners than others, then it can be reasonably assumed

that the phones emulating those categories would fare better when subjected to classification

algorithm.

The method chosen was the k-nearest neighbours. A set-up, later on used for quadratic

discriminant analyses, was designed, whereby instead of randomly sampling the data in
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even folds, and selecting training and test sets in turn among these folds, the training set

was the corpus of native speakers. The variables under study were the mid-temporal BDM-

normalized F1 and F2 values of each phone, but in order to keep potential consonantal

influences in check, only the phones appearing in syllabic structures also present in the native

data were selected. Because of the nature of the KNN method, 1,000 passes were carried

out on the phones of each speaker in each session in order to select the optimal k – i.e. the

value of k returning the highest classification accuracy. In each pass, k was allowed to vary

from 1 neighbour to
√

n neighbours, with n being the total number of phones for a given

speaker in a given session. Because of the skewed distribution of realizations of the different

phonemic categories in the native subcorpus, the training data consisted of the P&B data.

The results at first sight did not reveal any clear patterns that would support a rejection of the

null hypothesis: the four phonemes under study were classified with very equivalent success

rates. A look at the second best alternates, however, revealed phonological inconsistencies,

with /U/ and /u:/ quite often predicted to be front vowels. More crucially, for these two

phonemes, the prediction rate of the second best alternates were often higher than their own

prediction rate, therefore supporting, albeit tentatively, the idea that /U/ and /u:/ have values

less similar to native targets than /I/ and /i:/. These studies, however, did not really establish

anything regarding the truly longitudinal aspect of phonemic acquisition.

In order to check whether an effect existed, an experiment based on linear mixed-effects

regressions. Several models were compared, with temporal effects predicted in turn to be

either non-existent (flat curve), increasing or decreasing (slope), or evolving (quadratic).

Various response variables were investigated, mostly involving distances from native values –

either in the BDM-normalized F1/F2 space or in terms of standard deviations. Although the

results must be interpreted with great care, the consistency of the evolution towards native

values of the response variables in the case of /I/ and /i:/, when compared to the absence

of evolution or the greater distances from native values in the case of /U/ and /u:/, once
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again seems to suggest that the acquisition over time of /I/ and /i:/ is better than /U/ and

/u:/. In a final endeavour to establish whether the acquisitions of the two contrasts were

similar, the study of the entire signal of the first three formants throughout the duration of

the vowel was undertaken. In order to do so, the signals, emulated by the formant tracks

made up of the measurements at each centile of the vowels’ durations, had to be modelled.

This was done with discrete cosine transform, which allowed the reduction of the number

of parameters for each vowel from 300 to 6, after BDM normalization. Comparisons then

again were made with native values, after selection of the tokens embedded in syllables

also present in the native subcorpus. Using a procedure that takes into account the original

distributions of the phonemic categories, /u:/ was consistently found to be underrepresented

in the expected proportions of tokens similar to native values. From such findings the

conclusion was drawn, tentatively again, that the /I/-/i:/ contrast is acquired in a more

robust manner than the /U/-/u:/ contrast. How different would these findings have been if

mid-temporal formant values had been used instead? What are the advantages of resorting

to a much more intensive, coding-wise and computation-wise, method of analysis? These

crucial questions were addressed by comparing models based on either DCT coefficients or

mid-temporal values, with durations added as a variable in each combination. How similar

to native values the learners’ tokens were according to the processing method adopted was

established by running quadratic discriminant analyses. The influence across the board

of including the durations of vowels was demonstrated extremely clearly. Regarding the

efficiency in classification accuracy, the simpler models based on mid-temporal values fared

extremely well, but the full DCT model using all three coefficients shone by recognizing

tokens with very low prior probabilities.

Should, then, the null hypothesis that both /I/-/i:/ and /U/-/u:/ contrasts are acquired

at the same rate, be rejected or accepted? This work ultimately suggests, from a body of

tentatively corroborating evidence, that it should be rejected. A definitive answer, if there
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ever was to be one, should, it is contended, use spontaneous speech as data, because the

frequency of occurrences of tokens of given phonemic categories is bound to influence

acquisition. Because they maximize the quantity of information available for analysis, and

make it possible to handle skewed distributions (a defining feature of spontaneous speech),

DCTs should be the processing method of choice for further study. This is the conclusion

this work most vehemently asserts.

What further steps to take, then? In the face of the data collected, it looks as if the present

study has barely scratched the surface of what can be investigated. The influence of syllabic

structures, the alignment of which took so much research time; the role of word frequencies;

of lexical nature; of the tasks the students were accomplishing when recorded; none of these

parameters, although they are readily available in the data, have been investigated. Other

methods of visualization, such as kernel density plots, could be used14. LMERs could help

establish the role of tasks in the pronunciation. Diphthongs could also be analyzed, along

with the differences in realizations between allophonic /i:/ and /i/, or /u:/ and /u/. This

work ends, then, on a simple hope: that the collected data will be put to much better use than

it has been so far.

14 Ballier & Méli in Appendix F gives an attempt to use them.
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Appendix A

Extra tasks for Session 4

A.1 Map task

(from Anderson et al. (1991))
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Fig. A.1: Map task for Session 4. On the left, the map the learner was given, with an
instruction to guide the native speaker to the finish. On the right, the map the native
speaker was given.
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A.2 Reading lists

A.2.1 Reading task n°3: list of words

A: Read the following words:

1. ship, sick, milk, myth

2. step, shelf, friend, ready

3. bad, cab, hand, cancel

4. stop, rob, possible, quality

5. cub, rub, trunk, blood

6. full, put, look, good

7. staff, clasp, ask, dance

8. cross, long, off, origin

9. hurt, term, work, firm

10. seem, key, feel, people

11. weight, tape, great, day

12. ask, calm, spa, father

13. door, caught, law, broad

14. soap, soul, home, know

15. who, group, few, tune

16. ripe, night, buy, high

17. boy, noise, coin, royal

18. house, noun, crowd, now

19. beer, pier, fear, serious

20. wear, care, air, where

21. far, sharp, farm, heart

22. war, storm, for, born

23. floor, coarse, wore, oral

24. poor, tourist, pure, fury

B. Pronounce the following words, which have the same vowel as in:

1. KIT

him, big, village,

women, it

2. SEAT

sea, feet, field, see

3. PUT

put, wolf, good, look,

pull

4. SHOE

soon, do, soup, shoe,

too, pool

A.2.2 Reading task n°4: Le géant égoïste

Lisez le texte suivant:

Le géant égoïste, d’Oscar WILDE

Chaque après-midi, en revenant de l’école, les enfants allaient jouer dans le jardin du géant. C’était un grand et beau jardin au doux gazon

vert. Çà et là, sur le gazon, de belles fleurs brillaient comme des étoiles et il y avait douze pêchers qui, au printemps, se couvraient d’une

délicate floraison rose et blanche et à l’automne portaient de beaux fruits. Les oiseaux perchés sur les arbres chantaient si bien que les

enfants avaient coutume d’arrêter leurs jeux pour les écouter. « Comme nous sommes heureux ici ! » s’écriaient-ils souvent. [. . . ] Un

jour, le géant revint. [. . . ] « Que faites-vous là ? » cria-t-il d’une voix très bourrue. Et les enfants s’enfuirent. [. . . ] C’était un géant très

égoïste. [. . . ]

Un matin, le géant se prélassait dans son lit, lorsqu’il entendit une musique délicieuse. Elle était si douce à ses oreilles qu’il crut que

les musiciens du roi passaient par là. [. . . ] Il vit une scène stupéfiante.
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LONGDALE transcription guidelines

http://www.fltr.ucl.ac.be/fltr/germ/etan/cecl/Cecl-Projects/Lindsei/transnew.htm

1. Interview identification

DID03chiffres –S002

2. Speaker turns

Speaker turns are displayed in vertical format, i.e. one below the other. Whilst the letter ’A’ enclosed between angle brackets

always signifies the interviewer’s turn, the letter ’B’ between angle brackets indicates the interviewee’s (learner’s) turn. The end of each

turn is indicated by either </A> or </B>.

e.g.: <A> okay so which topic have you chosen </A>

<B> the film or play that I thought was particularly good or bad really </B>

3. Overlapping speech

The tag <overlap /> (with a space between "overlap" and the slash) is used to indicate the beginning of overlapping speech.

It should be indicated in both turns.

e.g.: <B> yeah I went on a bus to London once and I’ll never <overlap /> do it again </B>

<A> <overlap /> that’s even worse </A>

4. Punctuation

No punctuation marks are used to indicate sentence or clause boundaries.

5. Empty pauses

Empty pauses are defined as a blank on the tape, i.e. no sound, or when someone is just breathing. The following three tier

system is used: one dot for a ‘short’ pause (< 1 second), two dots for a ‘medium’ pause (1-3 seconds) and three dots for ‘long’ pauses (>

3 seconds).

e.g.: <B> erm .. it’s a British film there aren’t many of those these days </B>

6. Filled pauses and backchannelling

Filled pauses and backchannelling are marked as (eh) [brief], (er), (em), (erm), (mm), (uhu) and (mhm). No other fillers

should be used.

e.g.: <B> yeah . well Namur was warmer (er) it was (eh) a really little town </B>

7. Unclear passages
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A three tier system is used to indicate the length of unclear passages: <X> represents an unclear syllable or sound up to one

word, <XX> represents two unclear words, and <XXX> represents more than two words.

e.g.: <B> <X> they’re just begging <XX> there’s there’s honestly he did a course .. for a few weeks </B>

If transcribers are not entirely sure of a word or word ending, they should indicate this by having the word directly followed

by the symbol ‘<?>’.

e.g.: <B>: I went to see a<?> friend at university there and stayed </B>

Unclear names of towns or titles of plays for example may be indicated as ‘<name of city>’ or ‘<title of play>’.

e.g.: <B>: where else did we go er <name of city> it’s in Bolivia </B>

8. Truncated words

Truncated words are immediately followed by an equals sign.

e.g.: <B> it still resem= resembled the theatre </B>

9. Contracted forms

All standard contracted forms are retained as they are typical features of speech.

10. Non-standard forms

Non-standard forms that appear in the dictionary are transcribed orthographically in their dictionary accepted way: cos,

dunno, gonna, gotta, wanna and yeah.

11. Foreign words and pronunciation

Foreign words are indicated by <foreign> (before the word) and </foreign> (after the word).

e.g.: <B> we couldn’t go with er knives and so on <foreign> enfin </foreign> we were er </B>

As a rule, foreign pronunciation is not noted, except in the case where the foreign word and the English word are identical. If

in this case the word is pronounced as a foreign word, this is also marked using the <foreign> tag.

e.g.: <B> I didn’t have the erm . <foreign> distinction </foreign> </B>

12. Acronyms

If acronyms are pronounced as sequences of letters, they are transcribed as a series of upper-case letters separated by spaces.

e.g.: <B> yes not really I did sort of basic G C S E French and German </B>

If, on the other hand, acronyms are pronounced as words, they are transcribed as a series of upper-case letters not separated

by spaces.

e.g.: <A> mhm er you’re doing a MAELT </A>

13. Dates and numbers

Figures have to be written out in words. This avoids the ambiguity of, for example, “1901”, which could be spoken in a

number of different ways.

e.g.: <B> an awful lot of people complain and say well the grants were two thousand two hundred </B>

14. Nonverbal vocal sounds

Nonverbal vocal sounds are enclosed between angle brackets.

e.g.: <B> I hope so I’ve I’ve got some <coughs> friends out there </B>

e.g.: <B> so I went back into Breda . and sat down again <imitates the sound of a guitar> </B>

15. Contextual comments

Non-linguistic events are indicated between angle brackets only if they are deemed relevant to the interaction (if one of the

participants reacts to it, for example).



197

e.g.: <A> no it’s true it’s nice to have your own bathroom </A>

<somebody enters the room>

<B> hi </B>

16. Prosodic information: voice quality

If a particular stretch of text is said laughing or whispering for instance, this is marked by inserting <begin laughter> or

<begin whisper> immediately before the specific stretch of speech and <end laughter> or <end whisper> at the end of it.

e.g.: <B> <begin laughter> I don’t have to assess it I only have to write it <end laughter> </B>

17. Phonetic features

(a) Syllable lengthening

A colon is used to indicate that the preceding syllable is lengthened. Colons should not be inserted inside words.

e.g.: <B> that’s something I’ll I’ll plan to: to learn </B>

(b) Articles

-when pronounced as [ei], the article ‘a’ is transcribed as ‘a[ei]’;

e.g.: <B> and it’s about erm . life in a[ei] eh public school in America I think </B>

-when pronounced as [i:] the article ‘the’ is transcribed as ‘the[i:]’.

e.g.: <B> and the[i:] villa we were staying in was in one of the valleys </B>

18. Tasks

The three tasks making up the interview (set topic, free discussion and picture description) should be separated from each other.

This is done using the following tags: <S> (before the set topic), </S> (after the set topic), <F> (before the free discussion), </F> (after

the free discussion), <P> (before the picture description), </P> (after the picture description). These tags should occupy a separate line

and should not interrupt a turn.

e.g.: <S>

<A> did you . manage to choose a topic </A>

19. End

All interviews should end with the following tag (on a separate line): </h>

20. Questions?

If you have any questions regarding these transcription guidelines, don’t hesitate to get in touch with us!
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Code snippets

C.1 P2FA Bash script
This is the bash script used to downsample the original audio files to 16,000Hz using Sox, convert the transcriptions to upper case

(as required by P2FA), and execute the python script on a set of files in the folder.

#!/bin/bash
for txtf in *.txt
do

EXT=’.txt’
RAD=${txtf%$EXT}
P2F="$RAD-pp2fa"
dd if=$RAD.txt of=$P2F.txt conv=ucase
sox $RAD.wav -r 16000 -c 1 $P2F.wav
python2 /home/adrien/softs/p2fa/align.py $RAD.wav $P2F.txt $P2F.TextGrid

done

C.2 Calculation of EPENTHETIC
This is the experimental section of PRAAT03 that aims at detecting potential vocalic fillers after syllables at the end of words featuring

a consonantal coda.

startOfIntep1= startOfIntep + 0.05
startOfIntep2= startOfIntep + 0.1
startOfIntep3= startOfIntep + 0.15
startOfIntep4= startOfIntep + 0.2
select pitch
vF0e1 = Get value at time.. ’startOfIntep1’ Hertz Linear
vF0e2 = Get value at time.. ’startOfIntep2’ Hertz Linear
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vF0e3 = Get value at time.. ’startOfIntep3’ Hertz Linear
vF0e4 = Get value at time.. ’startOfIntep4’ Hertz Linear
select intensity
meanIntensity_ep = Get mean\ldots startOfIntep1 startOfIntep4 dB
if (min_int_ep>40 and vF0e1<>undefined and vF0e2<>undefined and

↪→ vF0e3<>undefined and vF0e3<>undefined)
epenthetic$="YES"
endif

C.3 Modified list of English phonemes for SPPAS syllabifi-

cation algorithm
The table below presents the English phonemic categories to be used by SPPAS algorithm-based syllabification. It is converted from

the built-in French categories in SPAAS. The symbol after PHONCLASS lists an English phoneme as represented in either the SAMPA

version of the CUMPD or the LPD (c.f. Table 1.4). The symbol next to it indicates the manner of articulation of the phoneme, which the

native system of rules in SPPAS uses to create syllabic boundaries.

# vowels (P)

PHONCLASS i V

PHONCLASS e V

PHONCLASS E V

PHONCLASS a V

PHONCLASS A V

PHONCLASS O V

PHONCLASS o V

PHONCLASS u V

PHONCLASS y V

PHONCLASS 2 V

PHONCLASS 9 V

PHONCLASS @ V

PHONCLASS EU V

PHONCLASS I V

PHONCLASS i: V

PHONCLASS u: V

PHONCLASS U V

PHONCLASS V

PHONCLASS aI V

PHONCLASS eI V

PHONCLASS OI V

PHONCLASS aU V

PHONCLASS @U V

PHONCLASS eU V

PHONCLASS O: V

PHONCLASS 3:r V

PHONCLASS V V

# glides (G)

PHONCLASS j G

PHONCLASS H G

PHONCLASS w G

# liquids (L)

PHONCLASS l L

PHONCLASS R L

PHONCLASS r L

# occlusives (O) PHONCLASS p O

PHONCLASS t O

PHONCLASS k O

PHONCLASS b O

PHONCLASS d O

PHONCLASS g O

PHONCLASS 4 O

# affricates (A)

PHONCLASS tS A

PHONCLASS dZ A

# nasals (N)

PHONCLASS N N

PHONCLASS n N

PHONCLASS m N

PHONCLASS N N

PHONCLASS J N

# fricatives (F)

PHONCLASS s F

PHONCLASS S F

PHONCLASS z F

PHONCLASS Z F

PHONCLASS v F

PHONCLASS f F

PHONCLASS D F

PHONCLASS T F

PHONCLASS h F
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C.4 Pitch in PRAAT03

The following piece of code can be found from line 228 onwards of PRAAT03. As per the PRAAT manual, the time step was set to 0;

the pitch-floor, to 75 Hz for men, 100 for women; the pitch ceiling was set to 300 Hz for men, 500 Hz for women.

if (sex$=="MALE")
maxfreq = 5000
minpitch = 75
maxpitch = 300
else
maxfreq = 5500
minpitch = 100
maxpitch = 500
endif
To Formant (burg)... 0 5 maxfreq 0.025 50
select Sound ’soundfile$’
To Pitch... 0 minpitch maxpitch
pitch = selected("Pitch")
select Sound ’soundfile$’
To Intensity... 75 0.001

C.5 Syllable check
This R script

{
library(data.table)
rm(list=ls(all=TRUE))

{
sppas <- as.data.frame(fread(’sppas-global.csv’, stringsAsFactor =

↪→ TRUE))
p2f <- as.data.frame(fread(’p2f-global.csv’, stringsAsFactor = TRUE))
# global$UKPHONEME[global$UKPHONEME==’’]<-"i"
#vv <- c(1:4,6:9,13:25,31:41)
#for (i in 1:length(vv)) {
# global[,vv[i]] <- factor(global[,vv[i]])
#}
# global <- na.omit(global)

}

}
{

# sppas
# cleaning data
# checking syllables
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table(sppas$ESKELS)
sppascompilesyllerrorsdf <- data.frame()
tl=length(dimnames(table(sppas$ESKELS))[[1]]);tl
for(i in 1:tl) {

if (dimnames(table(sppas$ESKELS))[[1]][i]!="CV" &
↪→ dimnames(table(sppas$ESKELS))[[1]][i]!="CVC" &
↪→ dimnames(table(sppas$ESKELS))[[1]][i]!="V" &
↪→ dimnames(table(sppas$ESKELS))[[1]][i]!="VC" ) {
tempdf <- sppas[sppas$ESKELS==dimnames(table(sppas$ESKELS))[[1]][i]

↪→ ,c(1,3,4,6,7,12,17,23)];tempdf
sppascompilesyllerrorsdf <- rbind(sppascompilesyllerrorsdf,tempdf);

}
}
# compilesyllerrorsdf
write.table(sppascompilesyllerrorsdf,file=’sppascompilesyllerrors.txt’,sep=’\t’,row.names=F,quote=F)

}
{

# p2f
# cleaning data
# checking syllables
table(p2f$ESKELS)
p2fcompilesyllerrorsdf <- data.frame()
tl=length(dimnames(table(p2f$ESKELS))[[1]]);tl
for(i in 1:tl) {

if (dimnames(table(p2f$ESKELS))[[1]][i]!="CV" &
↪→ dimnames(table(p2f$ESKELS))[[1]][i]!="CVC" &
↪→ dimnames(table(p2f$ESKELS))[[1]][i]!="V" &
↪→ dimnames(table(p2f$ESKELS))[[1]][i]!="VC" ) {
tempdf <- p2f[p2f$ESKELS==dimnames(table(p2f$ESKELS))[[1]][i]

↪→ ,c(1,3,4,6,7,12,17,23)];tempdf
p2fcompilesyllerrorsdf <- rbind(p2fcompilesyllerrorsdf,tempdf);

}
}
# compilesyllerrorsdf
write.table(p2fcompilesyllerrorsdf,file=’p2fcompilesyllerrors.txt’,sep=’\t’,row.names=F,quote=F)

}

npscheck<-sppas[sppas$NPW>4,c(1:4,17)]
write.table(npscheck,file=’npscheck.csv’,sep=’\t’,row.names=F,quote=F)
sppasp2fsc<-sppas[sppas$SPPASSC!=sppas$P2FSC,c(1:4)]
write.table(sppasp2fsc,file=’sppasp2fsc.csv’,sep=’\t’,row.names=F,quote=F)

<++>
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C.6 Common R code

This is the introductory snippet used in R scripts from chapter 2 onwards to extract monophthongs with durations longer than 0.03s.

fread (Dowle & Srinivasan (2017)) enables much faster loading times. Only monophthongs, as defined by the LPD, are selected (see the

reasons why in section 2.1). The levels of the obtained dataframes were reorganized to a more intuitive, alphabetical order. Colour codes

were also added, in order to ensure that monopthongs were assigned the same colours across all graphs.

{
rm(list=ls(all=TRUE))
# ordering levels by alpha order
alpha <- c("&", "A:", "e", ":", "@", "I", "i:", "i", "Q", "O:", "V", "U",

↪→ "u:", "u")
# for LaTeX conversion
tipa <- c("\textipa{\ae}", "\textipa{a:}", "\textipa{e}", "\textipa{3:}",

↪→ "\textipa{@}", "\textipa{I}", "\textipa{i:}", "\textipa{i}",
↪→ "\textipa{6}", "\textipa{O:}", "\textipa{2}", "\textipa{U}",
↪→ "\textipa{u:}", "\textipa{u}")

# for scatterplot3d use this:
tipa2 <- c("\\textipa{\\\\ae}", "\\textipa{a:}", "\\textipa{e}",

↪→ "\\textipa{3:}", "\\textipa{@}", "\\textipa{I}", "\\textipa{i:}",
↪→ "\\textipa{i}", "\\textipa{6}", "\\textipa{O:}", "\\textipa{2}",
↪→ "\\textipa{U}", "\\textipa{u:}", "\\textipa{u}")

# colour codes
colourstyles <- c("dodgerblue3", "dodgerblue4", "steelblue3",

↪→ "steelblue4", "black", "seagreen4", "seagreen3", "seagreen2",
↪→ "plum3", "plum4", "grey30", "firebrick4", "firebrick3",
↪→ "firebrick2")

# line styles
linestyles=rep(c(1:6),2)
linestyles <- append(linestyles,c(1:3))

#sppas
sppasglobal <- as.data.frame(fread(’$MYPATH’,stringsAsFactor = TRUE))
# let’s exclude too short durations
# clean sppas global
sppas <- sppasglobal[sppasglobal$PHONDUR>0.03,]

#p2f
p2fglobal <- as.data.frame(fread(’$MYPATH’,stringsAsFactor = TRUE))
# let’s exclude too short durations
# clean p2f global
p2f <- p2fglobal[p2fglobal$PHONDUR>0.03,]

# natives
sppasnatives <- as.data.frame(fread(’$MYPATH’,stringsAsFactor = TRUE))
sn <- sppasnatives[sppasnatives$PHONDUR>0.03,]
p2fnatives <- as.data.frame(fread(’$MYPATH’,stringsAsFactor = TRUE))
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pn <- p2fnatives[p2fnatives$PHONDUR>0.03,]

# lists of words
sppaslist <- as.data.frame(fread(’$MYPATH’,stringsAsFactor = TRUE))
sl <- sppaslist[sppaslist$PHONDUR>0.03,]
p2flist <- as.data.frame(fread(’$MYPATH’,stringsAsFactor = TRUE))
pl <- p2flist[p2flist$PHONDUR>0.03,]

# monopthongs
# sppas
sm <- sppas[sppas$PHONDUR>0.03,]
sm<-sm[!(sm$LPDPHONEME %in% c("", "aI@", "e@", "eI@", "i:@", "U@", "u@",

↪→ "eI", "aU", "@U", "aI", "OI", "I@", "O:R", ":", ":@", ":aI", "::",
↪→ "A", "QU")),]

sm$WORD <- gsub("it’ll", "it",sm$WORD)
sm$WORD <- gsub("it’s", "it",sm$WORD)
sm$WORD <- gsub("it’d", "it",sm$WORD)
sm$WORD <- factor(sm$WORD)
sm$LPDPHONEME <- factor(sm$LPDPHONEME)
sm$LPDPHONEME <- factor(sm$LPDPHONEME,levels=alpha)
# p2f
pm <- p2f[p2f$PHONDUR>0.03,]
pm<-pm[!(pm$LPDPHONEME %in% c("", "aI@", "e@", "eI@", "i:@", "U@", "u@",

↪→ "eI", "aU", "@U", "aI", "OI", "I@", "O:R", ":", ":@", ":aI", "::",
↪→ "A", "QU")),]

pm$LPDPHONEME <- factor(pm$LPDPHONEME)
pm$LPDPHONEME = factor(pm$LPDPHONEME,levels=alpha)
# natives
snm <-sn[sn$PHONDUR>0.03,]
snm<-snm[!(snm$LPDPHONEME %in% c("", "aI@", "e@", "eI@", "i:@", "U@",

↪→ "u@", "eI", "aU", "@U", "aI", "OI", "I@", "O:R", ":", ":@", ":aI",
↪→ "::", "A", "QU")),]

snm$LPDPHONEME <- factor(snm$LPDPHONEME)
snm$LPDPHONEME <- factor(snm$LPDPHONEME,levels=alpha)
pnm <-pn[pn$PHONDUR>0.03,]
pnm<-pnm[!(pnm$LPDPHONEME %in% c("", "aI@", "e@", "eI@", "i:@", "U@",

↪→ "u@", "eI", "aU", "@U", "aI", "OI", "I@", "O:R", ":", ":@", ":aI",
↪→ "::", "A", "QU")),]

pnm$LPDPHONEME <- factor(pnm$LPDPHONEME)
pnm$LPDPHONEME <- factor(pnm$LPDPHONEME,levels=alpha)
#list of words
slm <-sl[sl$PHONDUR>0.03,]
slm<-slm[!(slm$LPDPHONEME %in% c("", "aI@", "e@", "eI@", "i:@", "U@",

↪→ "u@", "eI", "aU", "@U", "aI", "OI", "I@", "O:R", ":", ":@", ":aI",
↪→ "::", "A", "QU")),]

slm$LPDPHONEME <- factor(slm$LPDPHONEME)
slm$LPDPHONEME <- factor(slm$LPDPHONEME,levels=alpha)
plm <-pl[pl$PHONDUR>0.03,]
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plm<-plm[!(plm$LPDPHONEME %in% c("", "aI@", "e@", "eI@", "i:@", "U@",
↪→ "u@", "eI", "aU", "@U", "aI", "OI", "I@", "O:R", ":", ":@", ":aI",
↪→ "::", "A", "QU")),]

plm$LPDPHONEME <- factor(plm$LPDPHONEME)
plm$LPDPHONEME <- factor(plm$LPDPHONEME,levels=alpha)
# vector for F1, F2 & F3
# F1 column numbers
F1 <- seq(39,534,5);F1
# F2 column numbers
F2 <- seq(40,535,5);F2
# F3 column numbers
F3 <- seq(41,536,5);F3

FF <- c(rbind(F1,F2,F3))
}

C.7 Code for Optimal Centiles
This code creates a function opticent, which returns the optimal centile of each monophthong, i.e. the centile with the lowest

product of F1, F2 and F3 standard deviations.

# this function returns the "optimal centile"
# for each vowel, i.e. the centile where the
# product of F1, F2 and F3 standard deviations
# is the lowest
# it takes a dataframe with at least a column
# for vowels, and all formant values for each centile
# on the other columns (301 columns minimum in total)
# input arguments are of the form:
# df is the dataframe with the 301 columns
# vowel is an integer specifying the column number
# where the vowels in the df are stored
# f1 is a vector specifying the 100 F1 values column
# f2 is a vector specifying the 100 F2 values column
# f3 is a vector specifying the 100 F3 values column

opticent <- function(df,vowel,f1,f2,f3){

ssdf1 <- data.frame()
ssdf2 <- data.frame()
ssdf3 <- data.frame()
for (i in 1:length(levels(df[,vowel]))) {

# sd f1
sdftempf1 <- df[df[,vowel]==levels(df[,vowel])[i],f1]
svctempf1 <- apply(sdftempf1,2,sd)
ssdf1 <- rbind(ssdf1,svctempf1)
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# sd f2
sdftempf2 <- df[df[,vowel]==levels(df[,vowel])[i],f2]
svctempf2 <- apply(sdftempf2,2,sd)
ssdf2 <- rbind(ssdf2,svctempf2)

# sd f2
sdftempf3 <- df[df[,vowel]==levels(df[,vowel])[i],f3]
svctempf3 <- apply(sdftempf3,2,sd)
ssdf3 <- rbind(ssdf3,svctempf3)

}
# rearranging the dfs
ssdf1$LPDPHONEME <- levels(df[,vowel])
ssdf1$LPDPHONEME <- factor(ssdf1$LPDPHONEME)
ssdf1 <- ssdf1[,c(101,1:100)]
ssdf2$LPDPHONEME <- levels(df[,vowel])
ssdf2$LPDPHONEME <- factor(ssdf2$LPDPHONEME)
ssdf2 <- ssdf2[,c(101,1:100)]
ssdf3$LPDPHONEME <- levels(df[,vowel])
ssdf3$LPDPHONEME <- factor(ssdf3$LPDPHONEME)
ssdf3 <- ssdf3[,c(101,1:100)]
# F1 x F2 x F3
tempoc <- as.matrix(ssdf1[,c(2:101)]) *
as.matrix(ssdf2[,c(2:101)]) * as.matrix(ssdf3[,c(2:101)])
# minimal values for each phoneme
minv <- apply(tempoc,1,min)
# on which centile is that minimum value?
oc <- c()
for (i in 1:length(levels(df[,vowel]))) {

oc[i] <- which(tempoc[i,]==minv[i])
}

opticentdf <- data.frame(levels(df[,vowel]),oc)
return(opticentdf)

}

C.8 Multimodel Comparisons
The following code snippet was used in section 3.4.3 to compute LMER models and compare them.

{

m1 <- lmer(RV ~ 1 + ( 1 | SPEAKER),DATAFRAME,REML = FALSE)
m2 <- lmer(RV ~ SESSION + (1 | SPEAKER),DATAFRAME,REML = FALSE)
m3 <- lmer(RV ~ SESSION + I(SESSION^2) + (1 |

↪→ SPEAKER),DATAFRAME,REML = FALSE)
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m4 <- lmer(RV ~ SESSION + (SESSION | SPEAKER),DATAFRAME,REML = FALSE)
#non linear
m5 <- lmer(RV ~ SESSION + I(SESSION^2) + (SESSION |

↪→ SPEAKER),DATAFRAME,REML = FALSE)

}





Appendix D

Dataframes: column names and lists of

words

D.1 English dataframe

1. SPEAKER

2. SEX

3. SESSION

4. WORD

5. CLXFREQ

6. LPDPRON

7. PRON

8. LPDSC

9. SC

10. LPDPHONEME

11. PHONEME

12. LPDSYLL

13. ESYLLSTRUC

14. FSYLLSTRUC

15. ECVSTRUC

16. FCVSTRUC

17. ESKELS

18. FSKELS

19. STRESS

20. PHONDUR

21. ESDUR

22. FSDUR

23. LOCINFILE

24. INTNB

25. INTENSITY

26. PHONBEFORE

27. PRECOART

28. BEFVOICE

29. BEFMOA

30. BEFPOA

31. PHONAFTER

32. POSTCOART

33. AFTVOICE

34. AFTMOA

35. AFTPOA

36. EPENTHETIC

37. TOTALDUR

38. F01

39. F11

40. F21

41. F31

42. F41

43. F02

44. F12

45. F22

46. F32

47. F42

48. F03

49. F13

50. F23

51. F33

52. F43

53. F04

54. F14

55. F24

56. F34

57. F44

58. F05

59. F15

60. F25

61. F35

62. F45

63. F06

64. F16

65. F26

66. F36

67. F46

68. F07

69. F17

70. F27

71. F37

72. F47

73. F08

74. F18

75. F28

76. F38

77. F48

78. F09

79. F19

80. F29

81. F39

82. F49

83. F010

84. F110

85. F210

86. F310

87. F410

88. F011

89. F111

90. F211

91. F311

92. F411

93. F012

94. F112

95. F212

96. F312
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97. F412

98. F013

99. F113

100. F213

101. F313

102. F413

103. F014

104. F114

105. F214

106. F314

107. F414

108. F015

109. F115

110. F215

111. F315

112. F415

113. F016

114. F116

115. F216

116. F316

117. F416

118. F017

119. F117

120. F217

121. F317

122. F417

123. F018

124. F118

125. F218

126. F318

127. F418

128. F019

129. F119

130. F219

131. F319

132. F419

133. F020

134. F120

135. F220

136. F320

137. F420

138. F021

139. F121

140. F221

141. F321

142. F421

143. F022

144. F122

145. F222

146. F322

147. F422

148. F023

149. F123

150. F223

151. F323

152. F423

153. F024

154. F124

155. F224

156. F324

157. F424

158. F025

159. F125

160. F225

161. F325

162. F425

163. F026

164. F126

165. F226

166. F326

167. F426

168. F027

169. F127

170. F227

171. F327

172. F427

173. F028

174. F128

175. F228

176. F328

177. F428

178. F029

179. F129

180. F229

181. F329

182. F429

183. F030

184. F130

185. F230

186. F330

187. F430

188. F031

189. F131

190. F231

191. F331

192. F431

193. F032

194. F132

195. F232

196. F332

197. F432

198. F033

199. F133

200. F233

201. F333

202. F433

203. F034

204. F134

205. F234

206. F334

207. F434

208. F035

209. F135

210. F235

211. F335

212. F435

213. F036

214. F136

215. F236

216. F336

217. F436

218. F037

219. F137

220. F237

221. F337

222. F437

223. F038

224. F138

225. F238

226. F338

227. F438

228. F039

229. F139

230. F239

231. F339

232. F439

233. F040

234. F140

235. F240

236. F340

237. F440

238. F041

239. F141

240. F241

241. F341

242. F441

243. F042

244. F142

245. F242

246. F342

247. F442

248. F043

249. F143

250. F243

251. F343

252. F443

253. F044

254. F144

255. F244

256. F344

257. F444

258. F045

259. F145

260. F245

261. F345

262. F445

263. F046

264. F146

265. F246

266. F346

267. F446

268. F047

269. F147

270. F247

271. F347

272. F447

273. F048

274. F148

275. F248

276. F348

277. F448

278. F049

279. F149

280. F249

281. F349

282. F449

283. F050

284. F150

285. F250

286. F350

287. F450

288. F051

289. F151

290. F251

291. F351

292. F451

293. F052

294. F152

295. F252

296. F352

297. F452

298. F053

299. F153

300. F253
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301. F353

302. F453

303. F054

304. F154

305. F254

306. F354

307. F454

308. F055

309. F155

310. F255

311. F355

312. F455

313. F056

314. F156

315. F256

316. F356

317. F456

318. F057

319. F157

320. F257

321. F357

322. F457

323. F058

324. F158

325. F258

326. F358

327. F458

328. F059

329. F159

330. F259

331. F359

332. F459

333. F060

334. F160

335. F260

336. F360

337. F460

338. F061

339. F161

340. F261

341. F361

342. F461

343. F062

344. F162

345. F262

346. F362

347. F462

348. F063

349. F163

350. F263

351. F363

352. F463

353. F064

354. F164

355. F264

356. F364

357. F464

358. F065

359. F165

360. F265

361. F365

362. F465

363. F066

364. F166

365. F266

366. F366

367. F466

368. F067

369. F167

370. F267

371. F367

372. F467

373. F068

374. F168

375. F268

376. F368

377. F468

378. F069

379. F169

380. F269

381. F369

382. F469

383. F070

384. F170

385. F270

386. F370

387. F470

388. F071

389. F171

390. F271

391. F371

392. F471

393. F072

394. F172

395. F272

396. F372

397. F472

398. F073

399. F173

400. F273

401. F373

402. F473

403. F074

404. F174

405. F274

406. F374

407. F474

408. F075

409. F175

410. F275

411. F375

412. F475

413. F076

414. F176

415. F276

416. F376

417. F476

418. F077

419. F177

420. F277

421. F377

422. F477

423. F078

424. F178

425. F278

426. F378

427. F478

428. F079

429. F179

430. F279

431. F379

432. F479

433. F080

434. F180

435. F280

436. F380

437. F480

438. F081

439. F181

440. F281

441. F381

442. F481

443. F082

444. F182

445. F282

446. F382

447. F482

448. F083

449. F183

450. F283

451. F383

452. F483

453. F084

454. F184

455. F284

456. F384

457. F484

458. F085

459. F185

460. F285

461. F385

462. F485

463. F086

464. F186

465. F286

466. F386

467. F486

468. F087

469. F187

470. F287

471. F387

472. F487

473. F088

474. F188

475. F288

476. F388

477. F488

478. F089

479. F189

480. F289

481. F389

482. F489

483. F090

484. F190

485. F290

486. F390

487. F490

488. F091

489. F191

490. F291

491. F391

492. F491

493. F092

494. F192

495. F292

496. F392

497. F492

498. F093

499. F193

500. F293

501. F393

502. F493

503. F094

504. F194
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505. F294

506. F394

507. F494

508. F095

509. F195

510. F295

511. F395

512. F495

513. F096

514. F196

515. F296

516. F396

517. F496

518. F097

519. F197

520. F297

521. F397

522. F497

523. F098

524. F198

525. F298

526. F398

527. F498

528. F099

529. F199

530. F299

531. F399

532. F499

533. F0100

534. F1100

535. F2100

536. F3100

537. F4100

538. BIRTHYEAR

539. ESCDAYS

540. WD

541. NPW

542. REFINT

D.2 French dataframe

1. SPEAKER

2. SEX

3. SESSION

4. WORD

5. PHONEME

6. DURATION

7. LOCINFILE

8. INTENSITY

9. PHONBEFORE

10. PRECOART

11. BEFVOICE

12. BEFMOA

13. BEFPOA

14. PHONAFTER

15. POSTCOART

16. AFTVOICE

17. AFTMOA

18. AFTPOA

19. EPENTHETIC

20. TOTALDUR

21. SPPASMEANF010

22. SPPASMEANF110

23. SPPASMEANF210

24. SPPASMEANF310

25. SPPASMEANF410

26. SPPASMEANF020

27. SPPASMEANF120

28. SPPASMEANF220

29. SPPASMEANF320

30. SPPASMEANF420

31. SPPASMEANF030

32. SPPASMEANF130

33. SPPASMEANF230

34. SPPASMEANF330

35. SPPASMEANF430

36. SPPASMEANF040

37. SPPASMEANF140

38. SPPASMEANF240

39. SPPASMEANF340

40. SPPASMEANF440

41. SPPASF010

42. SPPASF110

43. SPPASF210

44. SPPASF310

45. SPPASF410

46. SPPASF020

47. SPPASF120

48. SPPASF220

49. SPPASF320

50. SPPASF420

51. SPPASF030

52. SPPASF130

53. SPPASF230

54. SPPASF330

55. SPPASF430

56. SPPASF040

57. SPPASF140

58. SPPASF240

59. SPPASF340

60. SPPASF440

61. SPPASF050

62. SPPASF150

63. SPPASF250

64. SPPASF350

65. SPPASF450

66. SPPASF060

67. SPPASF160

68. SPPASF260

69. SPPASF360

70. SPPASF460

71. SPPASF070

72. SPPASF170

73. SPPASF270

74. SPPASF370

75. SPPASF470

76. SPPASF080

77. SPPASF180

78. SPPASF280

79. SPPASF380

80. SPPASF480

81. SPPASF090

82. SPPASF190

83. SPPASF290

84. SPPASF390

85. SPPASF490

86. BIRTHYEAR

87. ESCDAYS

D.3 Subfiles

D.3.1 Duration file
Header of the file containing the duration of all the manually aligned TextGrid intervals:

1. SPEAKER
2. SESSION

3. LOCINFILE
4. SMALLDURATION

5. LABEL
6. INTERVAL
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D.3.2 Word file
Header of the file containing all the words pronounced by the learners:

1. SPEAKER
2. SESSION

3. WORD
4. LOCINFILE

D.3.3 PVI file
Header of the file containing the durations of all the vocalic and consonantal intervals as aligned by SPPAS or P2FA (NBPHON is the

number of phonemes each interval contains):

1. SPEAKER
2. SESSION
3. ALIGNER

4. LABEL
5. DURATION
6. NBPHON

7. LOCINFILE

D.3.4 Phoneme duration file
Header of the file containing the duration of each phoneme:

1. SPEAKER
2. SESSION

3. ALIGNER
4. PHONEME

5. DURATION
6. MOA

D.4 Syllable mismatches
This section provides the list of words that featured a mismatch between the number of syllables in

the LPD (listed in the LPDSC column) and that established by the aligner in the SC column. Section D.4.1

lists the mismatches in the SPPAS-aligned dataset, section D.4.2 the mismatches in the P2FA-aligned dataset.

D.4.1 SPPAS syllable mismatches

1. every

2. several

3. family

4. physically

5. globalized

6. angeles

7. us

8. fjords

9. references

10. partnership

11. passed

12. especially

13. mystery

14. interests

15. literally

16. discovery

17. julius

18. tolkien

19. eventually

20. korean

21. seventeenth

22. homeless

23. there’ll

24. ladies

25. machu

26. parents’

27. gelato

28. stuntman

29. actually

30. ideas

31. toward

32. personally

33. tv

34. minivan

35. fairytale

36. travelling

37. halloween

38. interested

39. usually

40. fire

41. practically

42. inspire

43. touched

44. ira
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45. monotheist

46. plosive

47. gru

48. idealized

49. radically

50. satisfied

51. tiring

52. inspiring

53. picchu

54. ireland

55. australian

56. australians

57. different

58. conference

59. devilish

60. interesting

61. probably

62. las

63. violent

64. simplest

65. bodies

66. separate

67. pyjamas

68. normally

69. medieval

70. plannning

71. national

72. actual

73. raphaelite

74. happier

75. scifi

76. theatre

77. compense

78. ok

79. familiar

80. dancing

81. britney

82. restaurant

83. eiffel

84. anti

85. applied

86. australia

87. uncomfortable

88. literature

89. junior

90. our

91. realize

92. california

93. happiest

94. listening

95. etcetera

96. gruffalo

97. families

98. phd

99. general

100. orpheus

101. realistic

102. philosophical

103. haywire

104. trying

105. generally

106. teachings

107. restaurants

108. uk

109. inspires

110. vertically

111. mcdonald’s

112. pretentions

113. theater

114. favorite

115. comfortable

116. history

117. usa

118. idea

119. favourite

120. scandinavian

121. towards

122. roll

123. frightening

124. hour

125. worried

126. interest

127. vowels

128. shakespeare

129. typically

130. hours

131. korea

132. lyrical

133. picadilly

134. violet

135. trainings

136. am

137. niagara

138. opera

139. parisian

140. blurry

D.4.2 P2FA syllable mismatches

1. states

2. actually

3. restaurant

4. sales

5. feel

6. applied

7. conference

8. natural

9. while

10. history

11. trying

12. angeles

13. idea

14. fjords

15. halloween

16. happiest

17. partnership

18. passed

19. practically

20. medieval

21. inspire

22. touched

23. vowels

24. jail

25. shakespeare

26. scale

27. steal

28. smile

29. hour

30. am

31. teachings

32. restaurants

33. physically

34. parents’

35. opera

36. australians

37. theater

38. australia

39. devilish

40. i’ll

41. mail

42. tv

43. minivan

44. us

45. simplest

46. style

47. towards

48. privilege
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49. every

50. frightening

51. general

52. favorite

53. national

54. ireland

55. ira

56. julius

57. happier

58. wild

59. child’s

60. seventeenth

61. satisfied

62. violet

63. families

64. male

65. it’ll

66. australian

67. anti

68. we’ll

69. toward

70. uncomfortable

71. personally

72. average

73. probably

74. las

75. fairytale

76. california

77. pale

78. family

79. interested

80. geographically

81. deals

82. foreigners

83. literally

84. desperate

85. died

86. actual

87. pre

88. philosophical

89. haywire

90. theatre

91. radically

92. listening

93. there’ll

94. ladies

95. sail

96. beverage

97. eiffel

98. they’ll

99. several

100. feels

101. comfortable

102. field

103. dale

104. junior

105. different

106. realize

107. scandinavian

108. violent

109. deal

110. separate

111. usually

112. tale

113. worried

114. difference

115. s

116. learned

117. fields

118. realistic

119. especially

120. korea

121. ourselves

122. traveling

123. ok

124. tiring

125. dancing

126. inspires

127. fails

128. mcdonald’s

129. blurry

130. ideas

131. pure

132. child

133. literature

134. globalized

135. usa

136. interesting

137. our

138. references

139. bodies

140. normally

141. roll

142. tales

143. mystery

144. interests

145. etcetera

146. mails

147. hours

148. orpheus

149. typically

150. eventually

151. idealized

152. lyrical

153. homeless

154. rationally

155. familiar

156. fail

157. niagara

158. vertically

159. parisian





Appendix E

Extra graphs and tables

This appendix contains figures that were optional to understanding the main body of text, but whose

observation may give further insight into the arguments it developed.

E.1 Extra-graphs for the French and English reading lists

E.2 Extra graphs: Onset-to-Offset Distances



218 Extra graphs and tables

SPPA
S

P2FA

0.1 0.2 0.3 0.4

Vowel durations (s.)

0.1 0.2 0.3 0.4

0.0
0.2

0.4
0.6

0.8

0 2 4 6 8

E
nglish:N

=1750
B

andw
idth:

0.018
French:N

=2901
B

andw
ith:0.0082

Vow
eldurations

(s.)

Density

SPPA
S

P2FA
FR

E
N

C
H

0 500 1500 2500

C
um

ulative
Frequency

D
istribution

Vow
eldurations

(s.)

Cumulative count

SPPA
S

(n=1750)
P2FA

(n=1750)
French

(n=2901)

0.00
0.02

0.04
0.06

0.08
0.10

0.12
0.14

0.16
0.18

0.20
0.22

0.24
0.26

0.28
0.30

0.32
0.34

0.36
0.38

0.40

M
edian

ofw
ord

counts
forFrench

M
edian

ofw
ord

counts
forE

nglish

Fig.E
.1:

Per-alignerdistribution
ofvow

eldurations
in

the
reading

tasks;m
edians

and
quartiles

(left);kerneldensity
plot(right);

cum
ulative

frequency
(bottom

).



E.3 Mean differences of OOD standard deviations 219

0 10 20 30 40

0
1

2
3

4

0
50

100
150

200
250

TYPES

TO
K

E
N

S

SD

I i: U u:

BRIT
BRIT

BRIT

BRIT

BRIT

BRIT

BRIT
BRIT BRIT

BRIT
BRIT

BRIT

BRIT

BRIT

BRIT
BRIT

BRIT

BRIT

BRIT

BRIT

BRITBRIT

BRIT

BRIT

BRIT

BRIT

BRIT

BRIT

BRITBRIT

IREL

IREL

IRELIREL SCOT

SCOT

SCOT

SCOT USMI

USMI
USMI

USMI

USMI
USMI

USMI

USMI

USMI

USMI

USMI

USMI

USMI

USMI
USMI

Fig. E.2: Standard deviations of the native OODs for /I/, /i:/, /U/ and /u:/ against
syllable tokens and types.

E.3 Mean differences of OOD standard deviations

E.4 KNN: results based on the NSS

æ a: e 3: @ I i: 6 O: 2 U u:

æ 43 1 12 6 16 9 1 9 2 9 0 2
a: 0 0 0 0 0 0 0 0 0 0 0 0
e 4 0 1 1 8 4 1 1 0 1 0 0
3: 0 0 0 0 0 0 0 0 0 0 0 0
@ 30 1 12 4 96 31 14 24 10 6 3 17
I 11 0 11 0 32 115 28 4 2 2 0 9
i: 0 0 1 0 3 25 52 2 0 0 1 16
6 0 6 0 0 4 2 1 18 2 2 0 0
O: 1 4 0 0 7 2 2 11 24 4 0 3
2 0 6 3 2 3 2 0 2 1 7 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0
u: 0 0 0 0 0 0 2 0 0 0 0 0

Table E.1: Confusion matrix of the last pass of the KNN algorithm on the British
female natives (NSS).
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Fig. E.3: Per-session, per-gender mean absolute values of the differences between
learners’ and native speakers’ OOD standard deviations against the number of tokens.

E.5 Corrected response variables
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Fig. E.4: Proportion of correctly labeled phonemes in the BDM-normalized F1 / F2
space using the KNN classification method with the NSS as a training set. In each
panel, the total number of tokens n for each session is indicated, along with the optimal
k-values and the global proportion of accurately labeled phonemes.
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Fig. E.5: Per-speaker corrected response variables by formulas. Top row: RV1; bottom
row: RV2; left column: the response variable is multiplied by the corresponding TTRs;
Right column: the response variable is divided by the product of the numbers of types
and tokens. The dotted line in each panel show the original response variable, the
continuous vertical line materializes the distance between the original response variable
and the corrected one.

E.6 Multimodel comparisons with log-transformed response

variables
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Table E.2: Per-phoneme, per- log-transformed response variable results of the multi-
model comparisons. AICcWt: weight of evidence; p-value: p-value of the Shapiro-Wilk
test carried out on the residuals of the fitted models.

Phoneme Response Variable Model Number AICcWt p-value

I RV1 M2 0.69 0.83
I RV1 M4 0.71 0.18
I RV1C M3 0.96 0.78
I RV1C M5 0.97 0.50
I RV2 M1 0.53 0.02
I RV2 M4 0.57 0.03
I RV2C M3 0.54 0.00
I RV2C M5 0.75 0.02
i: RV1 M2 0.52 0.61
i: RV1 M4 0.61 0.80
i: RV1C M3 0.88 0.06
i: RV1C M5 0.96 0.13
i: RV2 M1 0.55 0.00
i: RV2 M4 0.73 0.00
i: RV2C M1 0.45 0.00
i: RV2C M4 0.61 0.01
U RV1 M1 0.65 0.11
U RV1 M4 0.78 0.09
U RV1C M1 0.49 0.03
U RV1C M4 0.64 0.06
U RV2 M1 0.54 0.00
U RV2 M4 0.80 0.00
U RV2C M2 0.44 0.00
U RV2C M4 0.77 0.00
u: RV1 M1 0.41 0.91
u: RV1 M5 0.53 0.40
u: RV1C M3 0.74 0.24
u: RV1C M5 0.83 0.95
u: RV2 M1 0.71 0.00
u: RV2 M4 0.80 0.00
u: RV2C M1 0.45 0.02
u: RV2C M4 0.77 0.00

E.7 DCT: extra-graphs

E.7.1 Procedure to calculate intra- and inter- phoneme proportions

Figure E.6 explains the procedure in section 3.5.2, and especially how the results pre-

sented in figure 3.19 were obtained. The proportions are calculated from the points within

the circle whose radius is a proportion of the maximal distance.
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Fig. E.6: Explanations of the procedure to find the intra- and inter- phoneme proportions
in section 3.5.2. The radius of the circle is a proportion of the maximal distance from
the origin. Two circles have been drawn here: one with a radius amounting to 15% of
the maximal distance, the other 45%.

E.7.2 Per-session, per-speaker evolution of k2

E.7.3 QDA model results
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Fig. E.7: Per-session, per-speaker evolution of the absolute values of the differences
from native values for k2.

Model I i: U u: Global Proportion

m1 0.95 0.09 0.09 0.10 0.59
m2 0.96 0.16 0.10 0.20 0.63
m3 0.94 0.19 0.12 0.07 0.59
m4 0.96 0.15 0.12 0.19 0.63
m5 0.95 0.02 0.00 0.12 0.58
m6 0.95 0.12 0.00 0.14 0.60
m7 0.94 0.09 0.00 0.02 0.56
m8 0.94 0.16 0.00 0.09 0.59
m9 0.88 0.27 0.10 0.17 0.59
m10 0.93 0.20 0.11 0.25 0.63
m11 0.88 0.24 0.10 0.19 0.60
m12 0.92 0.22 0.11 0.23 0.62

Table E.3: Mean of the per-phoneme, per-model results for each sex of the QDAs
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Appendix G

Résumé en français

Ce travail entreprend d’évaluer l’évolution de l’acquisition phonologique par des étudiants

français des contrastes anglais /I/-/i:/ et /U/-/u:/. Le corpus étudié provient d’enregistrements

de conversations menées avec des étudiants natifs autour de tâches préalablement définies

dans le cadre du projet LONGDALE (Goutereaux 2013) entre l’université Paris Diderot et

l’université catholique de Louvain. 12 étudiants, 9 femmes et 3 hommes, ont été suivis lors de

4 sessions espacées chacune d’un intervalle de six mois. L’approche adoptée est résolument

quantitative, et agnostique quant aux théories d’acquisition d’une deuxième langue (par

exemple Flege 2005, Best 1995, Kuhl 2008). Celles-ci prédisent toutes des difficultés

identiques pour apprendre à prononcer ces deux contrastes, en raison de la symétrie entre

langue source (le français) et langue cible (l’anglais) : au son français /i/ correspondent les

sons similaires anglais /I/ et /i:/, de la même manière qu’au son français /u/ correspondent les

sons anglais /U/ et /u:/.

Le premier chapitre de la thèse s’attache à décrire les méthodes déployées afin de collecter

les données. Des analyses préliminaires indépendantes des qualités vocaliques sont aussi

effectuées. Afin d’estimer les éventuels changements de prononciation des voyelles de

ces deux contrastes par les étudiants français, une procédure automatique d’alignement et

d’extraction des données acoustiques a été conçue à partir du logiciel PRAAT (Boersma
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2001). Dans un premier temps, deux autres logiciels, le SPeech Phonetization Alignment

and Syllabification (SPPAS, Bigi (2012b), Bigi & Hirst (2012)), et le Penn Phonetics Lab

Forced Aligner Toolkit (P2FA, Yuan & Liberman (2008)) avaient aligné les transcriptions

des enregistrements au phonème près. Le script PRAAT écrit pour cette étude fit ensuite les

choses suivantes :

• récupérer la prononciation de chaque mot dans le dictionnaire Longman Pronunciation

Dictionary (Wells 2008) ;

• créer pour chaque aligneur des niveaux dans les fichiers d’alignement correspondant

aux découpages syllabiques de chaque mot; ce découpage syllabique a été effectué

selon les prononcitions établies dans le Longman Pronunciation Dictionary ;

• recueillir pour chaque voyelle, dans les intervalles alignés par chacun des deux

aligneurs, un ensemble qui se voulait exhaustif de données permettant de procéder aux

analyses acoustiques.

Ces données sont constituées d’informations telles que le nombre de syllabes du mot, de

la transcription acoustique du dictionnaires, des phonèmes suivant et précédant la voyelle,

de leur lieu et manière d’articulation, de leur appartenance ou non au même mot, mais

surtout des relevés formantiques de F0, F1, F2, F3 et F4. Ces relevés formantiques ont été

effectués à chaque pourcentage de la durée de la voyelle afin de pouvoir tenir compte des

influences des environnements consonantiques sur ces formants. Par ailleurs, des théories

telles que le changement spectral inhérent aux voyelles (Nearey & Assmann (1986), Morrison

& Nearey (2006), Hillenbrand (2012), Morrison (2012)), ou des méthodes de modélisation

du signal telles que la transformation cosinoïdale discrète (Harrington 2010) requièrent que

soient relevées les valeurs formantiques des voyelles tout au long de leur durée. À partir

des alignement générés par les deux aligneurs SPPAS et P2FA, des fichiers d’alignement

PRAAT de type “TextGrid” comportant des intervalles ajustés à chaque phonème, chaque

mot, chaque syllabe française, chaque syllabe anglaise et chaque groupe consonantique ou
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vocalique ont été créés pour chacun des 81 enregistrements disponibles dans le corpus (c.f.

figure 1.8 dans le chapitre 1). Les mêmes TextGrids ont été générés pour trois corpus de

taille inférieure : deux groupes d’enregistrements, l’un de listes de mots, l’autre d’un texte

lu en français, ont ainsi été traités. Un corpus de conversations spontanées de locuteurs

natifs a aussi été constitué indépendamment, et a suivi le même traitement. Au total, ce sont

donc 120 fichiers d’alignement qui ont été générés. Une ambition certaine d’exhaustivité a

dominé la collecte d’information pour chaque voyelle : outre sa catégorie phonémique, 541

informations supplémentaires (86 pour le corpus du texte lu en français) ont été récupérées.

Ce total doit qui plus est être multiplié par deux, puisqu’un tableau de données par aligneur a

été généré (sauf encore une fois pour le corpus du texte lu en français, celui-ci n’ayant été

aligné automatiquement que par SPPAS). Les informations extraites pour chaque voyelle sont

aussi bien extra-linguistiques, portant sur le locuteur, la session ou le nombre de jours passés

dans un pays de lanque anglaise, que linguistiques : ont ainsi été collectées des informations

telles que le mot et la syllabe dans lesquels la voyelle apparaît, les différentes transcriptions (

celles du dictionnaire propre à chaque aligneur d’un côté et celle du Longman Pronunciation

Dictionary de l’autre), l’accentuation de la syllabe, la structure syllabique, les phonèmes

précédant et suivant la voyelle, leur lieu et manière d’articulation. À ces informations doivent

s’ajouter les données purement acoustiques, telles que les valeurs formantiques, récupérées

à chaque pourcentage de la durée de la voyelle, sa durée, son intensité. . . Au total, si l’on

additionne les voyelles dont les données ont été récupérées à partir des intervalles créés

dans les fichiers d’alignement par les deux aligneurs (c’est-à-dire en prenant en compte

des voyelles dont l’alignement diffère d’un aligneur à l’autre), 199 950 voyelles ont été

extraites sur l’ensemble des corpus. Le nombre de cellules disponibles dans les tableaux

de données générés s’élève à 107 052 945. La deuxième partie du chapitre 1 s’attache à

étudier les erreurs d’extractions pour chaque formant et chaque centile, indépendamment

de la catégorie phonologique de chaque voyelle ; les variations, explicables ou non, dans
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l’étiquetage phonologique opéré par les aligneurs pour les voyelles de mots fréquents ; les

erreurs de syllabification dues aux décalages entre les transcriptions des dictionnaires, ainsi

que des analyses détaillées de la durée des voyelles et des débits d’élocution.

Après ces analyses préliminaires, qui ne tenaient pas compte des catégories phonologiques,

le chapitre 2 entreprend de décrire les spécificités de chaque catégorie phonologique, tous

locuteurs confondus. Seules les monophtongues sont étudiées. Avant de procéder aux

analyses acoustiques, une évaluation de la qualité des extractions acoustiques est effectuée.

Il est démontré qu’une majorité des valeurs formantiques de chaque monophtongue sur

chaque pourcentage de leur durée est comprise entre des intervalles (en Hertz) raisonnables

et réalistes. De cette étude le conclusion est tirée que l’extraction automatique opérée selon

la méthode décrite dans le chapitre précédent est bien fiable. La répartition des voyelles dans

le trapèze vocalique est ensuite étudiée, et comparée aux valeurs natives, ainsi que la variété

lexicale atenante à chaque monophtongue. Les proportions écrasantes de mots grammaticaux

pour certaines catégories a été notée, une caractéristique que la recherche ultérieure devra

prendre en compte d’une manière plus subtile que dans cette étude, l’approche adoptée

n’ayant guère inclus cette varitété lexicale. La dispersion des valeurs formantiques F1, F2

et F3 pour chaque pourcentage de la durée de la voyelle est ensuite analysée, et mène à

la découverte de dispersions supérieures pour les phonèmes /U/ et /u:/. Une procédure

exploratoire est mise en place afin de récupérer pour chaque formant et chaque voyelle le

centile dont les valeurs sont les moins dispersées. Ces décalages de dispersion entre les

différentes catégories, combinées à ceux entre les nombres d’occurrences respectifs, mènent

à se poser la question de la façon de traiter les données acoustiques. Les méthodes de

normalisation des valeurs formantiques habituellement préconisées, telles que la méthode

de Lobanov (Lobanov (1971)), sont généralement utilisées dans des corpus comportant des

effectifs égaux d’occurrences de chaque phonème. Dans le cadre d’analyses de conversations

spontanées, présentant par définition des effectifs inégaux, voire déséquilibrés, ce genre de
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méthode est inadapté. Ces déséquilibres étant similaires dans le corpus d’apprenants et dans

le corpus de natifs, il est préconisé d’utiliser une méthode de normalisation intrinsèque aux

phonèmes, plutôt qu’extrinsèque. La validité de cette suggestion est démontrée en comparant

les différentes méthodes et en les appliquant à un corpus aux effectifs rigoureusement égaux,

le corpus de Peterson & Barney (Peterson & Barney (1952)). Deux méthodes intrinsèques

sont ensuite comparées, la méthode Bark (Traunmüller (1990)) et la métrique de différence

en Bark (Syrdal & Gopal (1986)). Cette dernière est finalement recommandée, parce qu’elle

permet d’intégrer davantage d’information, notamment la F3, et réduit à deux dimensions des

données normalement tridimensionnelles. Le chapitre s’achève sur une étude des relations

entre la longueur, dans l’espace vocalique normalisé, des contrastes, à savoir /I/-/i:/ et

/U/-/u:/, et de la surface du polygone vocalique reliant les monophthongues entre elles.

Cette relation, mesurée par le quotient entre la distance du contraste et la surface du polygone

vocalique, a été établie pour tous les corpus (d’apprenants, de natifs, de listes de mots, et celui

de Peterson & Barney). La plus grande cohérence des mesures dans le cas de /I/-/i:/ que

dans celui de /U/-/u:/ semble indiquer une meilleure conception des cibles articulatoires à

atteindre. Il reste toutefois à établir dans quelle mesure cette meilleure conception des cibles

articulatoires constitue une preuve d’une meilleure acquisition phonologique des contrastes.

Le chapitre 2 ayant mis à jour des similitudes, indéepndantes des locuteurs, dans les taux

de dispersion de /U/-/u:/, il était temps de prendre en compte les spécificités de l’évolution

de l’acquisition phonologique des deux contrastes chez chaque apprenant. La première

préoccupation du chapitre 3 est de comparer les changements spectraux inhérents à chaque

occurrence vocalique, pour chaque apprenant dans chaque session, aux changements spec-

traux des locuteurs natifs. L’analyse de ces changements spectraux, normalisés en conformité

avec les recommendations du chapitre précédent, permet de prendre en compte des valeurs

formantiques autres que celles à la moitié de la durée de la voyelle : les points de départ et

d’arrivée des changements spectraux correspondent aux valeurs prises à 20% et 80% de la
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durée. Les longueurs de chaque vecteur ainsi obtenu sont ensuite comparées aux longueurs

chez les locuteurs natifs, une plus grande attention étant portée aux quatre phonèmes /I/, /i:/,

/U/ et /u:/. Il apparaît à ce stade qu’une plus grande cohérence dans les longueurs existe

dans le cas de /I/-/i:/ que dans celui de /U/-/u:/, indépendamment de leur localisation dans

l’espace vocalique normalisé. De tels résultats constituent une preuve notable de l’absence

de similarité entre les acquisitions phonologiques des deux contrastes. Cette conclusion pro-

visoire est corroborée par l’étude des dispersions des changements spectraux, où il est établi

que que les dispersions de /U/-/u:/ sont encore une fois supérieures à leurs homologues

/I/-/i:/, en dépit d’un nombre d’occurrences bien inférieur. Ces résultats peuvent-ils être

confirmés par des algorithmes de classification ? Si certaines cibles phonémiques sont mieux

acquises que d’autres, il semble raisonnable de supposer que ces catégories seront mieux

reconnues par de tels algorithmes.

La méthode de classification choisie est celle des k plus proches voisins. Un dispositif

expérimental spécifique, utilisé plus tard pour les analyses quadratiques discriminantes, a été

conçu de la façon suivante : au lieu de découper les données en échantillons aléatoires servant

tour à tour d’ensembles d’entraînement et de test, ce sont les valeurs des locuteurs natifs qui

servent d’ensemble d’entraînement. Les variables étudiées sont les valeurs formantiques

normalisées F1 et F2 prises à la moitié de la durée de chaque voyelle. Afin de contrôler

les influences potentielles des environnements consonantiques, seules les occurrences de

monophtongues apparaissant dans des structures syllabiques existant dans le corpus natif

furent retenues. En raison du mode calculatoire de la méthode des k pus proches voisins,

la sélection du k optimal s’est effectuée en appliquant l’algorithme 1 000 fois à tous les

phones de chaque locuteur à chaque session. Chaque passe faisait varier k de 1 à
√

n, où n

représente le nombre total de phones de la session. En raison de la répartition inégale des

occurrences de chaque catégorie phonologique, les valeurs natives choisies pour constituer

l’ensemble d’entraînement sont celles du corpus de Peterson & Barney. Au premier abord,
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rien dans les résultats n’indique de véritables différences dans les taux de classification

des quatre phonèmes étudiés. L’étude des meilleures solutions alternatives, c’est-à-dire

des prédictions phonémiques arrivant au deuxième rang des prédictions, révèle toutefois de

grandes incohérences phonologiques dans le cas de /U/ et /u:/, ces dernières étant souvent

prédites comme étant des voyelles frontales. Plus crucialement peut-être, ces prédictions

alternatives présentent des pourcentages d’identification supérieurs à ceux d’une identification

correcte. De tels résultats semblent renforcer l’idée que le contraste /I/-/i:/ est mieux acquis

que /U/-/u:/, mais à ce stade, aucune analyse véritablement longitudinale n’a été effectuée.

Afin d’établir l’existence d’un tel effet, une expérience est alors menée avec les régres-

sions linéaires à effets mixtes. Plusieurs modèles sont comparés, les effets temporels étant

tour à tour soit inexistants (l’évolution étant alors modélisée par une droite de pente 0),

soit augmentant ou décroissant de façon linéaire, soit évoluant à la manière d’une parabole.

Plusieurs variables de réponse furent étudiées, prenant en compte la plupart du temps la

distance séparant les valeurs normalisées de F1 et F2 chez les apprenants de celles des natifs,

ou bien les écarts-types de ces distances. Bien que ces résulats doivent être interpétés avec la

plus grande prudence, il en ressort qu’une évolution des valeurs vers les valeurs natives est

plus cohérente dans le cas de /I/ et /i:/ que dans /U/ et /u:/. Finalement, une analyse est con-

duite qui s’efforce de prendre en compte l’intégralité du signal, c’est-à-dire les cent relevés

formantiques effectués tout au long de la durée de la voyelle. Pour ce faire, une modélisation

du signal devait être effectuée, afin de réduire le nombre de variables à inclure dans les calculs.

La méthode retenue, qui suit Harrington (2010), est celle des transformations cosinusoïdales

discrètes, qui, appliqués aux relevés formantiques normalisés, permet de réduire le nombre

de paramètres pour une occurrence d’un phonème de 300 à 6. Les comparisons, ici aussi,

ont été menées avec les valeurs natives, après avoir restreint les occurrences à celles de

voyelles apparaissant dans des environnements consonantiques communs aux deux corpus.

À l’aide d’une procédure permettant de préserver les répartitions inégales des occurrences de
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chaque catégorie, /u:/ se révèle être systématiquement sous-représenté dans les proportions

attendues de phones similaires aux valeurs natives. Une conclusion provisoire est alors

encore que le contraste /I/-/i:/ est mieux acquis que /U/-/u:/. Ces résultats auraient-ils été

différents si les valeurs formantiques à la moitié de la durée de la voèyelle avaient été choisies

? Quels avantages les transformations cosinusoïdales, beaucoup plus exigentes en termes de

programmation et de calcul, présent-elles face aux valeurs formantiques classiques ? Afin de

répondre à ces questions cruciales, une comparaison est effectuée entre des modèles utilisant

tour à tour le signal transformé, les formants à mi-durée, ainsi que la durée de la voyelle. Les

similarités avec les valeurs natives furent établies en recourant à des analyses quadratiques

discriminantes. La nécessité d’inclure, afin d’obtenir de plus hauts taux d’identification, la

durée des voyelles fut établie de façon très robuste sur l’ensemble des modèles étudiés. Bien

que l’efficacité et la simplicité des modèles utilisant des valeurs formantiques prises à la

moitié de la durée de la voyelle, les modèles fondés sur les signaux modélisés permettent

une meilleure reconnaissance des catégories présentant un nombre d’occurrences peu élevé.

Cette étude recommande finalement vivement d’étudier davantage les corpus de conversa-

tions spontanées, en dépit de leur complexité. Il est aussi préconisé de maximiser la quantité

d’information traitée, et une méthode de normalisation intrinsèque telle que la métrique

de différence en Bark, combinée à des transformations cosinusoïdales discrètes, permet de

réduire considérablement le nombre de paramètres à prendre en compte tout en préservant

autant que possible les données originellement présentes. L’application de ces procédures

semble révéler des différences d’acquisition phonologique des contrastes /I/-/i:/ et /U/-/u:/.
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