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Ernst M. Rasel
Professeur des Universités, Leibniz Universität Hannover Directeur de thèse
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ABSTRACT

Modern physics relies on two distinct fundamental theories, General Relativity and
Quantum Mechanics. Both describe on one hand macroscopic and cosmological
phenomena such as gravitational waves and black holes and on the other hand

microscopic phenomena as superfluidity or the spin of particles. The unification of these
two theories remains, so far, an unsolved problem. Interestingly, candidate Quantum
Gravity theories predict a violation of the principles of General Relativity at different
levels. It is, therefore, of a timely interest to detect violations of these principles and
determine at which level they occur.

Recent proposals to perform Einstein Equivalence Principle tests suggest a dramatic
performance improvement using matter-wave atomic sensors. In this context, the design
of the input states with well defined initial conditions is required. A state-of-the-art test
of the universality of free fall (UFF) would, for example, require a control of positions
and velocities at the level of 1µm and 1µm.s−1, respectively. Moreover, size-related
systematics constrain the maximum expansion rate possible to the 100µm.s−1 level. This
initial engineering of the input states has to be quite fast, of the order of few hundred ms
at maximum, for the experiment’s duty cycle to be metrologically-relevant.

In this thesis, fast transport and manipulation protocols of Bose-Einstein condensates
(BEC) with an atom chip devices are proposed relying on reverse engineering techniques
with shortcut-to-adiabaticity protocols. This technique provides the possibility to engineer
transport ramps with specific desired initial and final conditions. The robustness of such
an implementation was presented in the context of a realistic experimental configuration.
Optimized sequences, involving the characterization of the excited modes of the BEC
after transport have been proposed to constrain the size of the BEC to few hundred
microns after few seconds with a expansion energy as low as few tens of pK. Such
protocols have been successfully transferred to the microgravity Quantus-2 drop tower
experiment, to the sounding rocket space BEC mission Maius-1 and to the cold atom
laboratory (CAL) on board of the International Space Station.

Moreover, detrimental systematic effects stemming from position and velocity offsets
of two clouds of atoms used as test masses in an interferometric measurement motivate
a specific engineering of the input states. Optimal Control Theory (OCT) schemes were
presented to co-locate and reduce the size oscillations of two thermal clouds of different
Rb isotopes in a magnetic trap configuration. This method, implemented at the 10-
meter-long atomic fountain at Stanford University in the group of Prof. Mark Kasevich,
dramatically improved the starting conditions of the UFF test .
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Also on the non-degenerate ensembles side, Optimized sequences, relying on size
excitations of a molasses-cooled ensemble, have been proposed to increase the phase-
space density by an order of magnitude hinting towards a more efficient subsequent
evaporation. In the context of increased sensitivity with BEC matter-wave interferome-
ters, higher atom numbers is of a particular interest. This optimized sequence has been
studied in realistic dipole trap configurations.

In the case of degenerate mixtures, the interaction effects were taken into account
to find the different ground state configurations of the system in different interaction
regimes. A scaling theory was developed to efficiently describe the dynamics of a two-
component BEC in time-dependent harmonic traps and compare its outcome to the
solution of the mean field Gross-Pitaevskii equation. Based on this, the implementation
of a delta-kick collimation stage was proposed to constrain the expansion of the matter-
waves to the 100µm.s−1 level. The influence of the interaction between the degenerate
mixture has been highlighted in the context of matter wave atomic sensors. With all
these tools at hand, the initial conditions requirements of a competitive UFF test with
state-of-the-art techniques are theoretically met.
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La physique moderne repose sur deux théories fondamentales distinctes, la relativité
générale et la mécanique quantique. Toutes les deux décrivent d’une part les phénomènes
macroscopiques et cosmologiques tels que les ondes gravitationnelles et les trous noirs
et d’autre part les phénomènes microscopiques comme la superfluidité ou le spin des
particules. L’unification de ces deux théories reste, jusqu’à présent, un problème non
résolu. Il est intéressant de noter que les différentes théories de gravité quantique
prédisent une violation des principes de la relativité générale à différents niveaux. Il est
donc hautement intéressant de détecter les violations de ces principes et de déterminer à
quel niveau elles se produisent.

De récentes propositions pour effectuer des tests du principe d’équivalence d’Einstein
suggèrent une amélioration spectaculaire des performances en utilisant des capteurs
atomiques à ondes de matière. Dans ce contexte, il est nécessaire de concevoir des
états d’entrée de l’interferomètre avec des conditions initiales bien définies. Un test de
pointe de l’universalité de la chute libre (Universality of Free Fall en anglais (UFF) )
nécessiterait, par exemple, un contrôle des positions et des vitesses avec une précision
de l’ordre de 1µm et 1µm.s−1, respectivement. De plus, les systématiques liées à la
taille du paquet d’ondes limitent le taux d’expansion maximum possible à 100µm.s−1. La
création initiale des états d’entrée de l’interféromètre doit être assez rapide, de l’ordre de
quelques centaines de ms au maximum, pour que le temps de cycle de l’expérience soit
pertinent d’un point de vue métrologique.

Dans cette thèse, des protocoles de transports et de manipulations rapides des con-
densats de Bose-Einstein (CBE) avec un dispositif à puce atomique sont proposés sur
la base de techniques de rétroingénierie avec des protocoles de raccourcis adiabatiques.
Cette technique offre la possibilité de concevoir des rampes de transports avec des condi-
tions initiales et finales spécifiques souhaitées. Des séquences optimisées, impliquant
la caractérisation des modes excités du CBE après transport ont été proposées pour
limiter la taille du CBE à quelques centaines de microns après quelques secondes avec
une énergie d’expansion aussi faible que quelques dizaines de pK. De tels protocoles
ont été transférés avec succès à l’expérience en microgravité Quantus-2 dans la tour de
chute libre à Bremen, à la mission CBE embarqué sur missile Maius-1 et au laboratoire
d’atomes froids (CAL) à bord de la Station spatiale internationale.

De plus, les effets systématiques préjudiciables dus aux décalages en positions et en
vitesses de deux nuages d’atomes dans une mesure d’interférométie motivent la création
d’états spécifiques. Des protocoles basés sur la théorie du contrôle optimal (TCO) ont été
présentés pour co-localiser et réduire les oscillations en taille de deux nuages thermiques
de différents isotopes du Rubidium dans une configuration de piège magnétique. Cette
méthode, appliquée à une configuration expérimentale réaliste, a amélioré de façon
spectaculaire les conditions de départ pour un test de l’universalité de la chute libre dans
le cas de la fontaine atomique de 10 mètres de long de l’Université de Stanford dans le
groupe du professeur Mark Kasevich.

Des séquences optimisées, s’appuyant sur l’excitation de la taille d’un ensemble
d’atomes refroidis par mélasse optique, ont été proposées pour augmenter la densité
dans l’espace des phases d’un ordre de grandeur. Dans le cadre de l’augmentation de la
sensibilité d’une mesure basée sur la technologie de l’interféromètrie à ondes de matière,
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un nombre d’atomes plus élevé dans le CBE est particulièrement intéressant.
Dans le cas de mélanges dégénérés, les effets d’interaction ont été pris en compte

pour trouver les différentes configurations d’état fondamental du système dans différents
régimes d’interaction. Une théorie de lois d’échelle a été développée pour décrire effi-
cacement la dynamique d’un CBE à deux composantes dans des pièges harmoniques
dépendant du temps et comparer les résultats obentus à la résolution de l’équation de
Gross-Pitaevskii dans le cadre de la théorie du champ moyen. Sur cette base, la mise en
œuvre d’une étape de collimation à l’infini a été proposée pour limiter l’expansion des
ondes de matière au niveau de 100µm.s−1. L’influence de l’interaction entre le mélange
de deux espèces a été mise en évidence dans le contexte de capteurs atomiques à ondes
de matière. Avec tous ces outils théoriques à portée de main, les conditions initiales
d’un test compétitif de l’universalité de la chute libre avec les techniques actuelles sont
remplies.
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Die moderne Physik stützt sich auf zwei verschiedene fundamentale Theorien, die
Allgemeine Relativitätstheorie und die Quantenmechanik. Beide beschreiben einerseits
makroskopische und kosmologische Phänomene wie Gravitationswellen und Schwarze
Löcher und andererseits mikroskopische Phänomene wie Suprafluidität oder den Spin
von Teilchen. Die Vereinheitlichung dieser beiden Theorien ist ein bisher ein ungelöstes
Problem. Interessanterweise prognostizieren potentielle Kandidaten für Theorien einer
Quantengravitation eine Verletzung der Prinzipien der Allgemeinen Relativitätstheorie
auf verschiedenen Ebenen. Es ist daher von erheblichem Interesse, Verstöße gegen diese
Grundsätze zu entdecken und festzustellen, auf welcher Ebene sie auftreten.

Jüngste Vorschläge versprechen ein signifikantes Potential von Sensoren basierend
auf Materiewellen für Tests des Einstein Äquivalenzprinzips. In diesem Zusammenhang
ist die Gestaltung der Eingangszustände mit klar definierten Ausgangsbedingungen
erforderlich. Ein hochmoderner Test der Universalität des freien Falles (UFF) würde
beispielsweise eine Kontrolle der Positionen und Geschwindigkeiten auf dem Niveau von
1µm und 1µm.s−1 erfordern. Darüber hinaus schränken Systematiken, die im Bezug
zur Größe des atomaren Ensembles stehen, die maximal mögliche Expansionsrate auf
das Niveau von 100µm.s−1 ein. Dieses anfängliche Engineering der Eingangszustände
muss recht schnell, maximal in der Größenordnung von wenigen hundert ms, erfolgen,
damit die Repetitionsrate des Experiments meteorologisch relevant ist.

In dieser Arbeit werden schnelle Transport- und Manipulationsprotokolle von Bose-
Einstein-Kondensaten (BEC) mit Atomchips vorgeschlagen, die sich auf Reverse En-
gineering Techniken mit Shortcut-to-Adiabaticity-Protokollen stützen. Diese Methode
bietet die Möglichkeit, Transportrampen mit spezifisch gewünschten Anfangs- und
Endbedingungen zu konstruieren. Die Robustheit einer solchen Implementierung wurde
im Rahmen einer realistischen experimentellen Konfiguration dargestellt. Optimierte
Sequenzen, welche die Charakterisierung der angeregten Moden des BEC nach dem
Transport beinhalten, wurden vorgeschlagen, um die Größe des BEC nach wenigen
Sekunden auf wenige hundert Mikrometer mit einer Expansionsenergie von nur weni-
gen zehn pK zu begrenzen. Solche Protokolle wurden erfolgreich im Fallturmexperiment
Quantus-2, in der Höhenforschungsraketen-BEC-Mission Maius-1 und dem Kalte-Atome-
Labor (CAL) an Bord der Internationalen Raumstation angewandt.

Darüber hinaus erfordern nachteilige systematische Effekte, die sich aus Positions-
und Geschwindigkeitsabweichungen zweier Atomwolken ergeben, welche als Testmassen
in einer interferometrischen Messung verwendet werden, eine spezifische Realisierung
der Eingangszustände. Optimal Control Theory (OCT) Schemata wurden vorgestellt,
um die Größenschwankungen von zwei thermischen Wolken verschiedener Rb-Isotope
in einer Magnetfallen-Konfiguration zu reduzieren. Diese Methode, die am 10 Meter
hohen atomaren Fontäne der Stanford University in der Gruppe von Prof. Mark Kasevich
implementiert wurde, verbesserte die Startbedingungen für den UFF-Test signifikant.

Ebenfalls im Kontext nicht-degenerierter Ensembles wurden optimierte Sequen-
zen vorgeschlagen, die sich auf Größenanregungen eines melassegekühlten Ensembles
stützen. Damit kann die Phasenraumdichte um eine Größenordnung zu erhöht werden,
was eine effizientere anschließende evaporative Kühlung ermöglicht. Im Zusammen-
hang mit der erhöhten Empfindlichkeit bei BEC-Materialwellen-Interferometern sind
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insbesondere höhere Atomzahlen von Interesse. Diese optimierte Sequenz wurde in
realistischen Dipolfallenkonfigurationen untersucht.

Im Falle von degenerierten Gemischen wurden die Interaktionseffekte berücksichtigt,
um die unterschiedlichen Grundzustandskonfigurationen des Systems in verschiede-
nen Interaktionsregimes zu finden. Eine Skalierungstheorie wurde entwickelt, um
die Dynamik eines Zweikomponenten-BEC in zeitabhängigen harmonischen Fallen
effizient zu beschreiben, und das Ergebnis wurde mit der Lösung der Groß-Pitaevskii-
Gleichung verglichen. Darauf aufbauend wurde die Implementierung einer Delta-Kick-
Kollimationsstufe vorgeschlagen, um die Ausdehnung der Materiewellen auf die 100µm.s−1

Ebene zu begrenzen. Der Einfluss der Wechselwirkung innerhalb des degenerierten
Gemisches wurde im Zusammenhang mit Materiewellen-Atomsensoren aufgezeigt. Mit
all diesen Werkzeugen werden die Ausgangsbedingungen für einen wettbewerbsfähigen
UFF-Test mit modernsten Techniken theoretisch erfüllt.
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1.1 The theory of everything

1.1.1 General relativity and Quantum theory

Modern physics was born at the beginning of the last century, when observations of

the nature of light changed the conception of our world. Fifty years earlier, considered

as the culmination of classical physics, Maxwell’s equations seemed to reflect all the

1
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properties of light described initially by Huyghens, Young and Fresnel. The behaviour of

light that seemed to have been well understood at the end of the 19th century was then

called into question by some observations. The frequency distribution of the light emitted

by a heated black body, the photoelectric effect and the discrete nature of the spectra

absorbed or emitted by a gas could not be explained. Our understanding of today’s world

in physics is the result of two fundamental theories developed at the beginning of the

20th century. The introduction of the idea that the speed of light does not depend on the

observer and by admitting a maximum speed of propagation for all information gave the

basis of the theory of relativity. Extended to the description of the effects of gravitation,

the theory of general relativity [1–3] describes macroscopic phenomena and gives a new

conception of space and time as well as of our entire universe. The unification of the

two classical theories of light, treated first in a purely corpuscular way by Newton who

interpreted light as a flow of particles and secondly as a wave, led to the idea of the

duality of light and paved the way for quantum theory [4–6]. The notions of particles and

waves, which cannot be dissociated, provide a thorough understanding of the microscopic

effects induced by weak, strong and electromagnetic interactions. Both fundamental

theories, General Relativity and quantum mechanics were initiated by the work of A.

Einstein [7–10] and were tested several times in their respective fields, without showing

any deviation. On the one hand, quantum theory explains phenomena such as the laser

effect, superconductivity, the tunnel effect, and the existence of spin, to mention just

a few. These effects led to everyday powerful applications such as lasers, transistors,

computers, medical imaging by magnetic resonance and atomic clocks, for instance. On

the other hand, the mathematical formalism of general relativity predicts and explains

phenomena such as gravitational waves, the effect of gravitation on time and is the

basis for the current understanding of black holes. Well known practical everyday-life

instruments, based on the Global Positioning System (GPS), benefit from both theoretical

approaches. Quantum physics is involved in the definition of time through atomic clocks

and general relativity is involved in signal triangulation.

1.1.2 Einstein Equivalence Principle tests (EEP)

Up to now, the unification of these two models, by incorporating the effects of gravitation

into the quantum world, remains an unresolved problem. So far, general quantum gravity

theories [11], unifying all non-gravitational interactions with gravity, like the string

theory or the quantum loop theory, predict a violation of the fundamental principles

of general relativity synthesized by the Einstein Equivalence Principle (EEP), at some

2
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particular scale [11, 12]. It is consequently of fundamental importance to search for a

possible violation of the pillars of general relativity [13].

The EEP test consists in three different parts, and a violation of one of these three

tests directly implies a violation of the two others:

• The Local Lorentz Invariance (LLI) stipulates that the result of any non-gravitational

experiment performed in a freely falling frame has to be independent of the velocity

and the orientation of this frame.

In 1881, before the discovery of the theory of general relativity, A. Michelson and E.

Morley conducted an experiment aimed at detecting the existence of the aether [14],

a supposed material support of the vibrations of an electromagnetic wave such

as light. With a series of measurements of the speed of light in two orthogonal

directions [15], A. Michelson and E. Morley were aiming for a difference. The

negative result brought them to reconsider the existence of the aether. Tests of

the isotropy of space [16, 17], time-dilation [18, 19] and anisotropy of light propa-

gation [20–22] have been carried out. The last test did not show any evidence of a

possible violation with an accuracy at the level of ∆c / c = 10−17 [23].

• The Local Position Invariance (LPI) stipulates that such an experiment depends

neither on the position where the experiment is carried out, nor when this one is

done.

General relativity predicts that a set of different clocks in different gravitational

fields, because of their different speeds and their different positions, tick at slightly

different rates. The measurement of the red shift is a consequence of this phenom-

ena. A clock on Earth ticks slower than a clock on the Moon. Two clocks located

initially at the same position, i.e. in the same gravitational potential, ticking at

the same rate, ν and then transported in different gravitational potential, with a

difference ∆U , show a frequency difference ∆ν such as

∆ν

ν
= ∆U

c2 . (1.1)

In 1980, a test of general relativity with the measurement of the frequency of

two hydrogen masers, one on ground and the other one in space, at a distance of

10 000 km, showed an agreement with theory with an accuracy of 7 .10−5 [24]. More

recently, on ground, a comparison of data taken over eight years between various

hydrogen masers and the frequencies of three separate Cesium fountain clocks
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and one of Rubidium at SYRTE have been reported in [25]. The Local position

invariance coefficients have been measured to a precision of up to parts in 10−11

with respect to the cosmic microwave background rest frame.

• The Universality of Free Fall (UFF), also called weak equivalence principle (WEP),

stipulates that the trajectories of test masses only depend on their initial positions

and velocities. This test does not depend on the constitution (protons or neutrons

for instance), forms, charges (positive, neutral or negative) or spins (up or down) of

the test masses.

High-precision measurements, based on fundamentally different classical and

quantum tests, have been performed and include ground and space experiments.

The difference in acceleration of two test bodies yield to defined the so-called

“Eötvös ratio" given by

η= 2
a1 −a2

a1 +a2
, (1.2)

where a1 and a2 are the accelerations of the two masses. One example of test is

the torsion balance [26–28]. This experiment is based on the measurement of the

torsion of two test masses attached to a rigid and mass-less frame with a relative

accuracy at the level of 10−13 in the Eötvös coefficient [29–31]. A second example

is the lunar laser telemetry experiment [32–34]. This test measures the distance

between the moon and the earth and gives an information on the free fall toward

the sun of these two celestial bodies with a relative accuracy at the level of 10−13

in the Eötvös coefficient [35].

The MICROSCOPE mission [36] takes advantages of the very quiet environment

that space can offer and holds the state-of-the-art in inaccuracy of the UFF test.

This experiment, performed with material test masses of different compositions (ti-

tanium and platinum) freely falling in the same orbit around the Earth, measures

the force required to maintain in equilibrium the two test masses. In this experi-

ment, the relative acceleration has been measured with an accuracy at the level of

level of δ(Ti,Pt)= [−1± 9 (stat) ± 9 (syst)] .10−15 (1σ statistical uncertainty) [36].

Recent proposals were made to test the UUF with matter-wave atom interferom-

eters with an inaccuracy around 10−15. The principle of such tests relies on the

measurement of the phase shift due to the different accelerations of two isotopes

in free fall, either on ground in tall fountains [37–40], or in space within the STE-

QUEST - satellite Space-Time Explorer and QUantum Equivalence principle Space
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Test - candidate mission [41, 42] for example. In both cases, the aim is to maximize

the free fall time. To measure such a violation of the UFF at the femto-
level in the Eötvös ratio, one has to define the differential position and
velocity of the two isotopes at a level better than 1 nm and 1 nm.s−1, res-
pectively [40]. Recent proposals [43] relax these requirements to a level
of 1µm and 1µm.s−1 [37, 44]. Finding manipulation protocols at this level
of control of the atomic samples constitutes one of the main motivations
of this thesis.

1.2 Matter-wave interferometers

Matter-wave atom interferometers are based on the diffraction of atoms generated by

light pulses. In the 90’s fringes have been observed by the diffraction of Helium atoms in

a Young’s double slit geometry [45]. At that time, atom interferometers had been set up

and operated by various groups [46–51] and they have since become a common technique

in physics laboratories.

The principle of the matter-wave interferometer can be explained in a very simple

way in the context of a two-level atom. An atom initially in a ground level, |a〉, is placed

in a quantum superposition between two levels, |a〉 and |b〉, and follows different paths.

The paths are then brought back together and give rise to interferences indicating the

different phase accumulated along the different paths influenced by the different forces

acting on the atomic wave packet.

The high sensitivity of matter-wave interferometers has been widely used for funda-

mental physics tests and has been used so far to measure the fine structure constant

[52–55], the gravitational constant [56–58] and topological phases [59–63]. Atomic prop-

erties such as the electric polarizability [64–66] and the atom and neutron neutrality

[67, 68] have been tested. Ambitious proposals proposed matter-wave atom interferome-

ters to test general relativity and to detect the gravitational waves [69–76], which were

detected in 2016 for the first time with the laser interferometer LIGO [77]. Einstein

Equivalence Principle tests have been performed and tested the Local Lorentz Invariance

[78] and the Universality of Free Fall [38, 39, 79–84]. Atom interferometers technology

have been so far developed to measure inertial forces such as in a gravimeter [85–91],

gradiometer [56, 89, 92, 93] and gyroscope [94–102]. Miniaturized and portable payloads

have already been developed [103–107] and commercialized [108–110]. With the devel-

opment of quantum entanglement [62, 63, 111–116] and quantum squeezing [117, 118],
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Quantum Metrology [119–121] promises to develop measurement techniques with a

better precision than within a classical framework.

One of the most common atom interferometery schemes relies on the Mach-Zehnder

type configuration [122]. In optics, a coherent polarized laser beam is separated with a

beam-splitter, reflected with mirrors and then recombined with a beam-splitter to finally

interfere. With matter-waves [49], the wave function of an atom is split in a coherent

superposition of two distinct states, |a〉 and |b〉, retro-reflected and then superimposed

to interfere. In this case the different steps are driven by laser pulses instead of optics

elements. The two states are coupled by a two-photon transition undergoing so-called

Rabi oscillations [122].

In the example of a gravity acceleration measurement with a Mach-Zehnder scheme,

as shown in Fig. 1.1, the initial wave function
∣∣ψ〉 = |a〉 is equally split between the

two states with a π/2-pulse and extra momentum is transferred to one part of the

superposition. The two states, |a, p〉 and |b, p+δp〉 follow different paths and after a

time duration T, a π-pulse is applied to deflect the matter-wave beams. The two new

states, |a, p+δp〉 and |b, p〉 continue to evolve and are recombined after another time

duration T, when a final π/2 pulse is applied and the two paths are brought back at each

of the two ports of the interferometer. At first order, the phase difference accumulated is

proportional to the gravity acceleration experienced by the atoms, g, the effective wave

number, ke f f = δp/~, and to the square of the total time spent in the interferometer, Ti

∆φ= ke f f g T2
i . (1.3)

Tests of the Universality of Free Fall involve differential acceleration measurements

of two test masses. This goal can be pursued either with identical atoms in different

internal states [83, 123, 124] or isotopes like 87Rb and 85Rb [37, 39, 125], or with different

atoms, 87Rb and K [38, 41, 42, 81, 126] or 87Rb and Yb [40], for instance. In this case the

sensitivity of the differential acceleration of an atom interferometer [126, 127] is given

by

∆a =
√

2tc

N
1

C ke f f T2
i

, (1.4)

where tc denotes the cycle time of the experiment. The final precision of the atom

interferometer is indeed increased by averaging over many cycles. N represents the

number of atoms which participate to the measurement. In the shot noise limit the

sensitivity scales as 1/
p

N . An increase of the total atom number is then beneficial to the

measurement. C is the contrast of the measurement varying between 0 and 1. ke f f T2
i
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⇡/2 ⇡ ⇡/2

t = 0 t = T t = 2T

|a, p
↵ |a, p

↵

|b, p + �p
↵

|a, p + �p
↵

|b, p
↵

g

Figure 1.1: Mach-Zehnder type atom interferometer. The different pulses, π/2 at time
0, π at time T and π/2 at time 2T split, mirror and recombine the two paths. The time
interaction with the light defines the phase of the Rabi oscillation between the states |a〉
and |b〉

. The trajectory of the two path shown are in the ideal case g=0.

is proportional to the interferometer area. An increase of this total quantity yields an

increase of the area covered and in the information achieved by the different arms of the

two interferometer, and thus benefits to the sensitivity.

The maximum drift time of an atom interferometer is limited by the atom optics in

use but also by the temperature and density regime of the atomic ensembles. Cold atoms

and Bose-Einstein condensates are two interesting candidates featuring low expansion

rates, which allows to observe them for relatively long times (few ms to several seconds).

1.3 Cold atoms and Bose-Einstein condensates

1.3.1 A brief history of cold atoms

Since the mid-1980s, atomic physics has undergone spectacular developments thanks to

experiments in which small clouds of atoms are immobilized, suspended in vacuum, and

cooled to temperatures of only a few billionths of a degree above absolute zero [128–132].
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These developments have allowed to probe phenomena related to the most intimate laws

of quantum physics [133].

Those experiments are mainly based on laser technology and largely benefit from the

advent of this technology over the past 60 years, leading to an incredible development

in many fields of physics, including cold atom physics through atom-light interactions.

The laser, literately a light amplifier based on stimulated emission, was developed after

the maser (in the microwave domain) invented by J. P. Gordon, H. J. Zeiger, and C. H.

Townes in 1953 [134]. The first laser was made in 1960 by T. H. Maiman [135] based on

the theoretical work of C. H. Townes and A. L. Schawlow [136]. One of the most exciting

technologies combining quantum mechanics, cold atomic samples and laser physics is

certainly the atomic clock used for an accurate definition of time [137, 138].

Experimentally, cooling and trapping atomic samples requires specific sequences we

are going to introduce in a non extensive way thanks to the model of a two level atom and

more specifically for the Rubidium-87 isotope, largely considered in this thesis. In typical

experiments, a beam of atoms emerges from an oven with a velocity of about 300 m.s−1

at room temperature1. The beam of atoms passes through a Zeeman slower, where a

laser in resonance with the atomic transition propagates in the direction opposite to the

atomic flux. An atom travelling initially at a velocity v undergoes cycles of absorption

of counter-propagating photons and isotropic spontaneous emissions, thus yielding to a

deceleration process. In a Zeeman slower an inhomogeneous magnetic field compensates

the Doppler effect and avoids, after a few cycles only, an off-resonance between the

atoms and the laser. In the case of an atom of 87Rb of mass m=1.45 .10−27 kg with a

laser characterized by the wavelength λ= 780 nm, at each cycle the atom has its speed

decreased by the recoil velocity, vR = h/(mλ) ' 6 mm.s−1, corresponding to a cooling

of approximately 100 nK. It takes typically 3 ms over 1 m to slow down an atom from

300 m.s−1 to 10 m.s−1, equivalent to a temperature of 0.3 K. Other methods involve a

chirp to accommodate the laser frequency to the Doppler effect.

The next step commonly used to cool atomic samples has been proposed by A. Ashkin

in 1970 [140]. At a temperature close to 1 K, the atomic sample is cold enough to be

trapped in a magneto-optical-trap (MOT) [141–149] where the atoms can be cooled

further down thanks to the radiation pressure. The cooling principle is based again on

the Doppler effect and on pairs of counter-propagating resonant beams red-detuned

from the atomic transition, i.e. for δ= (ωL −ω0)< 0, where ωL is the light frequency and

1At thermal equilibrium the atom distribution follows Boltzmann’s statistics, with a temperature T
such that 3kBT = m〈v〉2 [139].
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ω0 is the atomic resonance frequency. An atom moving with a velocity v is most likely

subject to absorb an up-coming photon due to the resonance condition ωL+kv ≈ω0, where

k = 2π/λ), than to absorb a photon from the co-propagating beam, for which the resonance

condition is not fulfilled since then ωL − kv < ω0. The atom undergoes again cycles of

photon absorption and isotropic spontaneous emission. This technique is referred to as

the molasses cooling technique. It is important to note that an atom initially at rest

has the same probability to absorb a photon from both directions, limiting therefore the

cooling temperature. In 1985 S. Chu and A. Ashkin reported the cooling of a Sodium

gas at a temperature of T = 240µK [150], corresponding approximately to the quantum

limit of the transition used, with kBT ' hΓ/2, where 1/Γ is the life time of the excited

state. In comparison, in the case of 87Rb, the Doppler cooling limit is 140µK. In addition,

the optical molasses only provides an average force but does not trap atoms. After some

cycles of absorption and emission, due to their erratic trajectories, atoms are finally

ejected from the molasses environment. The MOT configuration takes advantages of an

inhomogeneous magnetic field, inducing an extra energy level splitting. The absorption of

photons depends now on the position of the atoms in space. The combination of molasses

beams with a magnetic trap leads an atom to feel the sum of both a dissipative - cooling

effect - and a restoring - trapping effect - force.

Some years after, subsequent studies have shown that temperatures below the

Doppler limit and beyond theoretical models derived at that time can be accessed. In

1988, the group of W. D. Phillips reported the measurement of a temperature of 43±20µK,

significantly below the Doppler cooling limit with a gas of Sodium [151]. This effect is

nowadays referred as sub-Doppler cooling. One can more particularly cite the Sisyphus

cooling scheme, where a degenerate atomic ground state is split by the presence of an

electromagnetic field. In an optical molasses the interference of the two lasers leads

to a standing wave, where the potential energy seen by an atom is modulated. Optical

pumping gives the possibility to create cycles where an atom with non-zero velocity

climbs the periodic potential hill and is then pumped to the bottom of the hill each half

period of the standing wave. At each cycle the atom looses energy until not being able

to climb the hill anymore. For 87Rb, sub-Doppler cooling gives the possibility to cool an

atomic ensemble to a few µK. In 2000, the group of S. Chu demonstrated the possibility to

cool neutral atoms thanks to 3D-sideband cooling. They demonstrated this principle with

a sample of 3 .108 Cesium atoms cooled and spin polarized in 10 ms. They observed at

minimum a 2D temperature of 210 nK [152]. For the developments of methods for cooling

and trapping atoms with lasers, Steven Chu, Claude Cohen-Tannoudji and William D.

9
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Phillips were awarded the 1997 Nobel Price in Physics [128–130].

In 1924 with the collaboration of S. N. Bose, A. Einstein described the statistical

distribution of identical particles with an integer spin, today referred as bosons [153].

Below a critical temperature a significant fraction of bosons occupy the lowest atomic

quantum state of the system. At this stage, these atoms share the same phase and

behave the same way to create a macroscopic coherent quantum state, the Bose-Einstein

condensate. Experimentally, this stage is reached using the so-called “evaporative cool-

ing" technique. It consists in decreasing the trap depth U of the external potential, where

an atomic ensemble is confined at the temperature T, keeping constant the dimension-

less ratio U / (kBT). At each step of the evaporative cooling process, the atoms with the

highest energy “evaporate", i.e. are ejected from the trap. After re-thermalization the

atomic ensemble reaches a new equilibrium temperature T ′ < T and the trap depth is

decreased again. Typically, at the cost of decreasing by three orders of magnitude the

initial atom number, the cloud enters the quantum degenerate regime. This condensation

phenomenon was first observed in 1995 [154] at the University of Colorado, Boulder

in the NIST-JILA laboratory by the team of E. Cornell and C. Wieman with a gas of

Rubidium 87 cooled down to 170 nK. Shortly afterward W. Ketterle at MIT showed

important properties of Bose-Einstein condensates with Sodium 23.

In 2001, for their achievements E. Cornell, C. Wieman, and W. Ketterle received the

Nobel Prize in Physics [132, 155]. In the simplest case of ultracold temperatures, the

condensed state can be described by the non-linear Schrödinger equation also known as

the Gross-Pitaevskii equation.

1.3.2 The different regimes

In the case of a trapped atomic gas, different regimes can be identified depending on the

gas density, n, and on the temperature T as shown in the Fig. 1.2. Within the gas, two

characteristic distances are in competition, the average distance between the particles,

d ∼ n−1/3, and the spatial extension of the atomic translational wave packet estimated

with the thermal de Broglie wavelength

λdB =
√

2π~2

mkBT
, (1.5)

where m is the mass of the atom. In the case of high temperatures, d À λdB, and the

atomic ensemble can be described by distinguishable point-like particles [156] interacting

though elastic collisions and described within the classical kinetic theory based on Boltz-
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mann’s equation [157]. Within this description, different regimes can be distinguished by

the quantification of the collision rate. A direct comparison between the average distance

between the particles and the mean free path of the atoms

λmfp =
1p

2 nσ
, (1.6)

where σ is the elastic scattering cross section, draws two limits. On one hand the regime

where λmfp À d is described as the collision-less regime. On the other hand the case

λmfp ¿ d is described by hydrodynamics fluid laws where the particles undergo a large

number of collisions such that local equilibrium is rapidly established [158–160].

v
�dB

a b c d

BEC

Figure 1.2: Bose-Einstein condensation. (a) High temperatures. The classical gas is
described with the kinetic theory. (b) Low temperature. The wave nature of the particles
appears, each particle is described by a wave function with a characteristic spatial exten-
sion given by λdB. (c) Critical temperature T = TC. The wave-packets overlap and start to
form a macroscopic quantum state. (d) Zero temperature. Formation of the macroscopic
quantum state: The Bose-Einstein condensate. In the mean field approximation each
atom of the condensate behaves similarly and shares a global phase. This figure is
adapted from [156].

By cooling the atomic ensemble, the de Broglie wavelength and therefore the ex-

tension of the wave packet of each atom increases. When the ensemble is cooled to the

point where λdB is comparable to inter-atomic separation d, the atomic wave packets

start to overlap and the atoms start to become indistinguishable. In physics, the de

Broglie’s relation λ= h/p asserts that all matter has an associated wave, and can exhibit

wave-like behavior, the wave–particle duality [161]. The de Broglie thermal wavelength

can therefore be interpreted as the position uncertainty associated with the momentum

distribution. Cooling further down the atomic ensemble leads to the creation of a macro-

scopic quantum states. In the case of bosonic ensemble, the critical temperature is given

by
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Tc =
(

n
ζ(3/2)

)2/3 h2

2πkB
, (1.7)

where n denotes the bosons density, ζ the zêta function of Riemann, h the Planck constant

and kB the Boltzmann constant.

1.3.3 BEC interferometry

While the phase accumulated between the two paths of an atom interferometer is

proportional to the time spent in the interferometer Ti and to the total effective wave

number ke f f , two main strategies show up to increase the sensitivity of the measurement:

(i) the increase of the momentum transfer [162–164] and (ii) the increase of the time spent

in the interferometer [83, 165–168]. The two strategies come with different challenges.

On one hand, large momentum transfer requires high laser powers to be sufficiently

detuned and suppress spontaneous emission during the momentum transfer. On the other

hand, the increase of the interferometer time up to seconds requires very low expansion

temperatures of the cloud, an experimental setup of several meters long or microgravity

operation. Only few experiments today meet these constrains [39, 40, 165, 169–171] and

motivate the need of a microgravity environment such as a drop tower [168, 172], a

zero-g parabolic flight [173], a sounding rocket [174], the International Space Station

[175] or a satellite space mission [41], as shown in Fig. 1.3.

Figure 1.3: Different micro-gravity environments. From left to right, the Bremen drop
tower experiment, the zero-g-Airbus A310, the launch of the Maius-1 sounding rocket,
the International space station (ISS) and the CAL experiment. The different pictures
were respectively taken from [174–180]

Recent proposals to test foundations of physics propose Bose-Einstein condensates as

sources of atom interferometry sensors [41, 181]. Due to its narrower velocity distribution

and smaller size compared to thermal ensembles, Bose-Einstein condensates offer the

possibility to improve the efficiency of a beam splitter and thus to increase the contrast
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of the matter wave interferometer [182]. Moreover, the compact size of a BEC initially

and through the expansion decreases the systematic effects resulting from spatially

dependent wave-front aberrations when the different laser-pulses are applied [106, 183–

185]. This last effect is a leading systematics while testing the EEP. To give an order

of magnitude, competitive UFF tests at the η = 10−15 limit the expansion rate of the

used atomic ensembles to 100µm.s−1. The delta-kick collimation (DKC) technique allows

to efficiently slow down the expansion of atomic clouds [186, 187]. Adapting schemes
relying on DKC to realistic cases and to dual-species BEC sources is another
motivation of this thesis.

The mean field energy of BECs is a challenge while using them in the metrology

field. For long-time free-space interferometers, however, this energy is dissipated in few

tens of seconds. BEC machines with high repetition rates (105 condensed atoms/s), as

demonstrated in the QUANTUS project [168], for instance, allow for a metrogically-

significant use of a transportable BEC experiment.

1.4 Objectives of the thesis

A violation of the UFF is detected by a non-zero differential acceleration of the different

test masses. A differential mismatch in position, velocities and temperature expansion

rate between the two test masses lead to gravity-gradients coupling systematics and

wave-front aberrations effects. These effects are the leading systematics to date in

realized or projected UFF tests. It is therefore crucial to carefully engineer the atomic

source initial conditions.

More precisely, performing a quantum test of the UFF on ground with an accuracy

at the level of η= 10−15 [40] relies on the possibility to define the differential position

and velocity of the two test masses at a level better than 1µm and 1µm.s−1, respec-

tively [37, 43, 44]. Moreover, the expansion rates of the two clouds have to not exceed

100µm.s−1, equivalent to an expansion energy of 70 pK. Last but not least, the duty

cycle of the experiment is typically constrained to a maximum of 10 s, speaking for a fast

implementation despite the challenging requirements.

In this thesis, the aim is to tackle these objectives in the most realistic way possible.

In most of the cases, a direct successful comparison between the proposed theoretical

methods and experimental results was taking place. Different schemes were found

mainly realize the following objectives:

1. Controlled transports of a BECs over large distances in realistic experi-
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mental configurations. This is performed with Shortcut-to-adiabaticity (STA)

protocols giving the possibility to engineer transport ramps thanks to the reverse

engineering technique with specific desired final positions in time frames dramati-

cally faster than what an adiabatic transformation would require. These protocols

have been implemented in the microgravity atom chip-based experiment Quantus-2

where the transport of a BEC mm away from the chip surface was successful in

100 ms time and with a residual oscillation of few µm.s−1. Comparable transport

and manipulation protocols were developed and implemented within of the first

space BEC experiment realized in 2017 on board of the MAIUS sounding rocket.

2. Control of the expansion velocity of a single atomic species with the
Delta-kick-collimation (DKC) technique. Optimized sequences, involving the

characterization of the excited modes of the BEC after transport are proposed such

that the size of the BEC is constrained to few hundred of microns after few seconds

with a expansion energy as low as few tens of pK.

3. The generalization of points (1) and (2) to the simultaneous manipulation
of two species. Optimal Control theory (OCT) protocols are developed to tackle

the case of a non interacting mixture of two thermal clouds. The results of it

were successfully put in practice in the Stanford 10-m fountain. A study of the

collimation of an interacting BEC mixture where the interaction between the two

species can be controlled with Feshbach resonances is done.

1.5 Thesis outline

My doctoral work started during the summer of 2015. At that time the Quantus-2 drop

tower experiment required theoretical support to control the dynamics of the produced

Bose-Einstein condensates. In parallel, the Maius sounding rocket mission entered its

calibration phase.

• In this context, chapter 2 summarizes studies of the magnetic transport of a BEC

away from an atom chip surface. Due to the proximity of the atoms to the chip

surface, high magnetic field gradients makes it possible to create a BEC of 105

atoms within 1 s [168]. Close to the chip, nevertheless, the proximity of the BEC to

the surface in high trap frequencies is far from being favorable for an interferometry

sequence. It is then required to transport the BEC in a lower trap frequency

14
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configuration and in a lower noise environment. In this chapter we introduce

the reverse engineering technique to engineer Shortcut-to-adiabaticity transport

ramps. The transport is then analyzed with a semi-classical approach and the

Gross-Pitaevskii equation is used to describe the evolution of the wave-function

and its excitations. Experimental results of the Quantus-2 drop tower experiment

and Maius-1 sounding rocket are discussed in this chapter.

In a later phase of my PhD, I have been invited to join the team of M. Kasevich for a

three-month research stay at Stanford. During this exchange, the development of OCT

protocols and an N-particle simulation tool was done.

• Chapter 3 starts with a description of the Optimal Control Theory and of the

aforementioned N-particle simulation tool. These theoretical approaches are then

applied in the context of two applications. The first one is the transport of two

non-interacting thermal ensembles in the case of the experiment at Stanford.

Optimized sequences are then proposed for their specific experimental setup. The

second application proposes a new sequence to increase the phase space density

of an atomic ensemble. The aim of this study is to highlight the possibility to

reach Bose-Einstein condensation with higher atom numbers. The idea is currently

adapted to be tested in an experimental setup in Hanover.

Motivated by the different competitive UFF tests proposals, the rest of my doctoral

research has been dedicated to the generalization of the previous concepts to the study

of a two-component quantum fluid.

• In chapter 4 different ground state configurations of a bosonic degenerate mixture

are presented. A study of the dynamics is then conducted with a comparison

between a semi-classical approach and the simulation using Gross-Pitaevskii

equations. The last section of this chapter proposes a sequence of twin atomic

lenses to significantly reduce the expansion temperature of the two species in

interaction and the control of the shape of the two condensates is discussed in the

context of precise measurements.

A last chapter finally summarizes the results of the thesis and highlights some

perspectives of future studies.
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CHAPTER 2. OPTIMIZED MANIPULATION OF A SINGLE-SPECIES CONDENSATE

In this chapter, I present a detailed theoretical analysis of the implementation of

shortcut-to-adiabaticity protocols for the fast transport of neutral atoms with atom

chips. The objective is to engineer transport ramps with durations not exceeding a

few hundred milliseconds to provide metrologically-relevant input states for an atomic

sensor. Aided by numerical simulations of the classical and quantum dynamics, I study

the behavior of a Bose-Einstein condensate in an atom chip setup with realistic anhar-

monic trapping. A realistic atom chip model is described in section 2.2. Details on the

implementation of fast and controlled transports over large distances of several millime-

ters, i.e. distances 1000 times larger than the size of the atomic cloud, are presented. A

subsequent optimized release and collimation step demonstrates the capability of the

transport method to generate ensembles of quantum gases with expansion speeds in the

pico-Kelvin regime. The performance of this procedure is analyzed in terms of collective

excitations reflected in residual center of mass and size oscillations of the condensate. I

further evaluate the robustness of the protocol against experimental imperfections. The

theory is developed in section 2.3 and the results are shown in section 2.4. In section 2.5,

I present the results of the STA protocols obtained by the experimental team of the

Quantus 2 drop-tower experiment where my contribution to this work was to deliver

a current control STA sequence to transport the BEC over a millimeter within 150 ms.

As part of the MAIUS-1 sounding rocket project I also present the results of the experi-

mental Maius 1 team where my contribution consisted in interpreting the observed data

with simulations of the BEC dynamics. A significant part of the results presented in this

chapter has been the subject of recent papers [174, 188, 189], for which I was a co-author.

2.1 Introduction

Recent proposals for the implementation of fundamental tests of the foundations of

physics assume Bose-Einstein condensates (BEC) [190, 191] as sources of atom interfer-

ometry sensors [40, 42, 125, 181]. In this context, atom chip devices have allowed to build

transportable BEC machines with high repetition rates, as demonstrated within the

Quantus project for instance [168, 172]. The proximity of the atoms to the chip surface is,

however, limiting the optical access and the available interferometry time necessary for

precision measurements. This justifies the need of well-designed BEC transport protocols

in order to perform long-baseline, and thus precise, atom interferometry measurements.
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The controlled transport of atoms is a key ingredient in many experimental platforms

dedicated to quantum engineering. Neutral atoms have been transported as thermal

atomic clouds [192–194], condensates [195, 196], or individually [197, 198], using mag-

netic or optical traps. Transport of ions with electromagnetic traps has also been achieved

recently [199, 200]. In all those experimental realizations, the transport was performed

in 1D. When solving the transport problem, it is tempting to first consider the most

trivial solution: the adiabatic transport. Yet, besides the fact that the adiabatic solution

is far from optimal, it is usually not possible to implement it due to typical experimental

constraints. Close to an atom chip surface for example, fluctuations of the chip currents

constitute an important source of heating for the atoms, which can lead ultimately to the

destruction of the BEC. A nearly adiabatic, and therefore slow, transport is consequently

unpractical in most cases. Pioneering theoretical work on fast transport was reported

in [201] and shortcut-to-adiabaticity (STA) protocols were proposed [202] to implement

fast, non-adiabatic transport with well defined boundary conditions. Such a reduction of

the time overhead can be promising as well for scalable quantum information processing

in certain architectures [203, 204]. On the theoretical side, the protocols that have been

proposed relied either on optimal control [205, 206], counterdiabatic driving [207, 208] or

reverse engineering [209] and the validity of a variety of such fast transport protocols for

BECs was established beyond the mean-field regime [210, 211]. Besides the transport in

harmonic traps, the transport in the presence of anharmonicities [212–214] or the issues

related to robustness have been extensively discussed [215]. Experimentally, it is worth

noting that STA transport protocols were successfully implemented for BECs [216] and

for trapped ions in phase space [217].

The optimization proposed here is found using a reverse engineering method applied

to a simplified one-dimensional approximation of the system’s classical equations of

motion. This solution is then tested numerically in a full three-dimensional quantum

calculation using a time-dependent mean-field approach [218, 219]. Our results are then

analyzed in terms of residual center-of-mass and size oscillations of the condensate

density distribution in the final trap, at the end of the transport. We then propose to

implement a subsequent holding step whose duration is precisely controlled in order

to minimize the expansion rate of the BEC in directions where a delta-kick collimation

(DKC) procedure [165, 167, 186, 187] is not efficient. This DKC step towards the pK

regime is necessary for atom interferometry experiments lasting several seconds. The

conclusion of this chapter is that, with the conjugation of (i) a controlled transport,

(ii) a controlled holding time, and (iii) a well-designed final DKC step, it is possible to
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displace BECs by millimeters and to reach expansion speeds in the pK regime. Indeed,

the practical implementation we are discussing here leads to an optimal final expansion

temperature of 2.2 pK.

The outline of the chapter is as follows: in section 2.2 we describe the architecture of

the atom chip and of the magnetic bias field creating the time-dependent potential for the

atoms, with strong confinement in two dimensions. We also give the values of currents,

bias field, and wire sizes that realize this time-dependent trap. In section 2.3 we present

the theoretical models we are using and their associated numerical implementations, as

well as the reverse engineering technique we have adopted. In section 2.4 we give the

results of our numerical investigations on the performance of the controlled transport

and expansion of the condensate. We also discuss here the robustness of the proposed

protocol. Conclusions and prospective views are given in the final section 2.6.

2.2 Scheme and atom chip model

2.2.1 Scheme

In this section we introduce the atom chip model and the trapping potential used in the

present study. Atom chips designed for the manipulation of neutral atoms are insulating

substrates with conducting micro-structures such as metal wires [195, 220, 221]. The

wire geometry design can easily be adapted for a particular application [222]. DC wire

currents generate inhomogeneous magnetic fields which can be used to trap atoms near

the chip surface where high magnetic field gradients produce high trap frequencies and

enable fast evaporation. This allows high-flux BEC creation of typically 105 atoms/s

[168].

We consider here the case of a Z-shaped chip configuration [223], as shown in Fig. 2.1,

in the presence of a time-dependent homogeneous magnetic bias field Bbias(t). If the

bias field varies slowly, the spins of the atoms remain adiabatically aligned with the

total magnetic field. In the weak field approximation and in the absence of gravity, the

trapping potential can be expressed as

V (R, t)= mF gF µB B(R, t), (2.1)

where µB is the Bohr magneton, gF is the Landé factor, mF is the azimuthal quantum

number, and B(R, t) is the total magnetic field. The three-dimensional spatial position is

denoted by R≡ (X ,Y , Z). As shown in Ref. [192], a temporal variation of the magnetic
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2.2. SCHEME AND ATOM CHIP MODEL

field can be used to transport the atoms. Our goal here is to design and test a fast

transportation scheme for a realistic setup. We show how the implementation of such a

scheme is feasible by specializing our discussion to the hyperfine state |F = 2,mF = 2〉 of

the ground 5S1/2 state of 87Rb as a study case. This hyperfine state is a low-field seeking

state with gF =+1/2 [224].
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Figure 2.1: Left panel: Schematic representation of the chip configuration and of the
displacement of the BEC. Other panels: (a) and (b) show two cuts of the initial trapping
potential V (R,0) in the (Y Z) and (XY ) planes, respectively. (c) and (d) show similar cuts
of the trapping potential V (R, t f ) at the end of the transport procedure corresponding
to the time t = t f . The dashed black lines in panels (b) and (d) serve to illustrate the
tilt angle θ(t) of the principal axis x and y of the trap in the (XY ) plane. The associated
energy color scales are given on the right side, in µK.

2.2.2 Chip model

The Z-shaped wire is represented schematically on the left side of Fig. 2.1. In a first

approximation the wires are considered as infinitely thin. The two wires aligned along

the Y -axis are 16 mm long. The wire along X measures 4 mm. They carry a DC current

Iw = 5 A. The magnetic bias field Bbias(t) points along Y and its magnitude varies

between Bbias(0)= 21.5 G (initially) and Bbias(t f )= 4.5 G (at the end of the displacement).

These parameters are close to those used in the Quantus experiment [168] and we used
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the Biot and Savart law to develop an analytic model of the Z-chip. The approximation

of infinitely thin wires leads to errors in the magnetic field calculation very close to

the atom chip, where the finite size of the atom chip wires can play a role. In such

configurations finite element calculations have to be considered [225], but it is not the

case in our setup.

Slices of the initial trapping potential V (R,0) at time t = 0 in the (Y Z) and (XY )

planes are shown in panels (a) and (b) of Fig. 2.1, respectively. As shown in the left panel

of Fig. 2.1, Z denotes the distance to the chip surface. The atoms are initially trapped at

a distance Zi ≈ 0.45 mm from the chip surface directly under the origin of the axes. The

shape of the trap seen in panel (a) shows a strong confinement in the Y and Z directions

with similar trap frequencies νY (0) and νZ(0). On the contrary, the cigar shape seen in

panel (b) reveals that νX (0) ¿ νY (0) ≈ νZ(0). The initial trap is thus characterized by

a strong two dimensional confinement in the Y and Z directions. The initial potential

shows a small tilt angle θ(0)= θi ≈ 1.53 deg in the (XY ) plane. In Fig. 2.1, the positions

of the initial and final potential minima are marked by a white ‘+’ sign. The trapping

potential V (R, t f ) obtained at the end of the transport (t = t f ) is shown in panels (c)

and (d) of Fig. 2.1. At this time the minimum of the potential is located at a distance

Z f ≈ 1.65 mm from the chip surface and is again centered in the (XY ) plane. The BEC

transport takes place over a total distance Z f −Zi ≈ 1.2 mm. This distance is much larger

than the typical size of the BEC, of a few µm. The comparison of panels (a) and (c),

and of panels (b) and (d) shows that during the transport the depth of the trap along Y
and Z decreases a lot while remaining of the same order of magnitude along X . Thus,

at t f the aspect ratio is not as large as initially, and νX (t f ) < νY (t f ) ≈ νZ(t f ). The tilt

of the potential has increased to θ(t f ) = θ f ≈ 12.5 deg. In order to calculate the three

eigenfrequencies of the rotated trap, one can diagonalize the Hessian matrix associated

to the potential [226]. This allows to rotate the coordinate system by the tilt angle θ(t),
and to define the new coordinates r ≡ (x, y, z), with z = Z, associated with the three

eigen-axes of the trap at any time t. The rotated axes x and y are shown as black dotted

lines in Figs. 2.1b and 2.1d.

2.3 Theoretical model

In the harmonic approximation the trapping potential generated by the chip can be

written as

V (r, t)= 1
2

m
[
ω2

x(t)x2 +ω2
y(t)y2 +ω2

z(t)(z− zt)2] , (2.2)
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where zt denotes the position of the minimum of the trap along the z-axis at time t and

ωα(t)= 2π ·να(t) for α= x, y or z. For a more precise description of the trap, the lowest

order anharmonic term (cubic) along z should be included, yielding the anharmonic

potential

Va(r, t)=V (r, t)+ 1
3

mω2
z(t)

(z− zt)3

L3(t)
, (2.3)

where L3(t) determines the characteristic length associated with this third order anhar-

monic term. For typical chip geometries as reported in Ref. [168], the cubic term is by far

the largest correction to the harmonic order.

Fig. 2.2 shows the different trap parameters used in this study such as the position of

the minimum of the trap along the z-axis, zt (panel a), the trapping frequencies νx, νy

and νz (panel b), the parameter L3 (panel c), and the tilt angle θ (panel d). zt is shown as

a function of the experimentally tunable parameter Bbias while all other parameters are

shown as a function of zt for the sake of simplicity. In table 2.1, we give the coefficients

of the different forms of Padé fits (2.4) used for these quantities.

f (t)= A0 + A1 Bbias(t)+ A2 B2
bias(t)

1+C1 Bbias(t)+C2 B2
bias(t)

, (2.4a)

g(t)= 1
2π

√√√√ A0 + A1 zt(t)+ A2 z2
t (t)

1+C1 zt(t)+C2 z2
t (t)

, (2.4b)

h(t)= A0 + A1zt(t)+ A2 z2
t (t)

1+C1 zt(t)+C2 z2
t (t)

, (2.4c)

i(t)= A0 + A1 zt(t)+ A2z2
t (t)+ A3 z3

t (t)
1+C1 zt(t)+C2 z2

t (t)
. (2.4d)

2.3.1 Semi-classical approach

It is well known that, if the potential remains (to a good approximation) harmonic at all

time, the average position of the condensate follows Newton’s classical equation of motion

according to the Ehrenfest theorem [228]. Since the potential minimum in the X - and

Y -directions remains at the origin, the instantaneous position of the center-of-mass of

the BEC will fulfill Xa(t)=Ya(t)= 0= xa(t)= ya(t) during the entire propagation. Along z,

in the harmonic approximation and in the absence of gravity, the center-of-mass position

Za(t)= za(t) simply follows

z̈a(t)+ω2
z(t) (za(t)− zt)= 0 . (2.5)
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Fitting Coefficients

Quantity Form A0 A1 A2 A3 C1 C2

νx -3.2354 44066 2.1609 106 – 1061.0 7.8991 105

νy f (t) 1.1455 3.8222 104 4.8131 107 – -340.38 4.9526 104

θ 28.915 -2.4456 104 5.1197 106 – 1992.0 -8.4329 105

νz g(t) 1.4008 106 -6.5543 108 – – -4.5229 104 5.5027 106

L−1
3 h(t) 4.1633 104 -1.2821 107 – – -1.7284 104 6.4326 106

Bbias i(t) 1.7253 105 1.5058 107 -5.1633 1010 1.6122 1013 1.7553 1011 -1.2814 1012

Table 2.1: Parameters used for the simulations of the atom chip.

In practice, to take into account the eventual influence of anharmonicities we consider

that the classical transport trajectory za(t) is a solution of the anharmonic equation

z̈a(t)+ω2
z(t) (za(t)− zt)

(
1+ za(t)− zt

L3(t)

)
= 0 , (2.6)

in agreement with Eq. (2.3).

The collective excitations, also named size dynamics of the condensate, are treated

using a semi-classical approach. This approach is described in [229–231] and we just give

here the main steps of the calculation. We start from an atomic density distribution given

initially (at time t = 0) by the Thomas-Fermi approximation[231]. This approximation

consist on neglecting the kinetic term of the time independent Gross-Pitaevskii equation,

µψ(~r,0)=
[
− ~2

2m
~∇2
~r +U(~r,0)+N g|ψ(~r,0)|2

]
ψ(~r,0), (2.7)

with µ the chemical potential, U the external potential, m the mass of the atom and g is

related to the s-wave scattering length of 87Rb, a, by the relation

g = 4π~2a
m

. (2.8)

The classical density of the cloud is then expressed in the Thomas-Fermi approxima-

tion as:

ρ(~r,0)= N|ψ(~r,0)|2 =


µ−U(~r,0)

g
if U(~r,0)≤µ

0 otherwise,
(2.9)

where the chemical potential µ is found by the normalization conditionÑ
ρ(~r,0) d~r = N . (2.10)
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Figure 2.2: (a) Position zt (in mm) of the minimum of the trap with respect to the chip
surface (z-direction) as a function of the magnetic bias field Bbias (in G). Note that
Bbias = 21.5 G at time t = 0 and that Bbias = 4.5 G at the end of the displacement (time
t = t f ). The two horizontal dashed lines mark the values of the initial and final trap-
to-chip distances zi and z f , respectively. (b) Trapping frequencies νx (thick green line),
νy (dashed red line) and νz (thin blue line) in Hz (log scale) as a function of zt (in mm).
(c) Anharmonic coefficient L3 (in mm) as a function of zt (in mm). (d) Tilt angle θ (in
degrees) as a function of zt (in mm). For the simulations presented later in the chapter,
we use accurate analytical fits of the quantities plotted here using second- or (when
necessary) third-order Padé approximants [227].
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In the case of an external harmonic trap this yields

µ= ~ω̄(0)
2

15Na

√
mω̄(0)

~

2/5

, (2.11)

where ω̄(0)= [
ωx(0)ωy(0)ωz(0)

]1/3 is the geometric mean of the three oscillator frequen-

cies. The sizes of the initial BEC along the directions x, y and z are characterized by the

lengths Rx(0), Ry(0) and Rz(0) given by

Rα(0)= aosc

(
15Na
aosc

)1/5 ω̄(0)
ωα(0)

for α ∈ {x, y, z} , (2.12)

with aosc = [
~/

(
mω̄(0)

)]1/2 the average quantum-mechanical length scale of the 3D

harmonic oscillator.

We now introduce the classical force seen by each atom of the BEC as a sum of the

gradient of the external potential confining the cloud and the gradient of the mean field

interaction describing the repulsion force within the condensate

~F(~r, t)=−~∇[
U(~r, t)+ gρ(~r, t)

]
. (2.13)

In the case of a harmonic trap, in the TF approximation the parabolic shape of the cloud

remains unaltered and the cloud just experiences a dilatation or a compression, which

can be described by three scaling coefficients, λα(t). The size and shape evolution of the

cloud is then given by the set of equations

Rα(t)=λα(t) Rα(0) , (2.14)

and

ρ(~r, t)= ρ
(
~r ′,0

)
λx(t)λy(t)λz(t)

. (2.15)

In this expression the coordinates~r and~r ′ are defined as

~r = x~ux + y~uy + z~uz and ~r ′ = x
λx(t)

~ux + y
λy(t)

~uy + z
λz(t)

~uz . (2.16)

Finally, Newton’s law applied to the size dynamics yields

λ̈α(t)+ω2
α(t)λα(t)= ω2

α(0)
λα(t)λx(t)λy(t)λz(t)

. (2.17)

These “scaling laws” assume that the BEC keeps its parabolic shape at all time and

that the condensate follows adiabatically the rotation of the trap in the (XY ) plane. The
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right hand side of Eq.2.17 describes the coupling of the three directions through the

mean field term of the GPE equation and explains why the size evolution couples the

three directions in the general case. Knowing the parabolic shape of the wave function,

these three typical sizes Rα(t) can be related to the three widths ∆α(t) (i.e. the standard

deviations in the directions α= x, y and z) of the BEC wave function. After calculation

we find

∆α(t)= Rα(t)p
7

. (2.18)

Numerically, we also evaluate these three widths ∆x(t), ∆y(t) and ∆z(t) from the solution

of the time-dependent Gross-Pitaevskii equation.

2.3.1.1 Collective excitation modes.

We use the scaling approach Eq. (2.17) to describe the characteristic size excitations of

the BEC which arise in the final trap at the end of the transport protocol, due to the fast

anisotropic trap decompression over the transport. These excitations can be described as

a sum of different collective modes with different amplitudes [229, 230, 232–237].

The first low lying collective excitation modes of a BEC in a cigar shape potential are

well known [232]. They can be easily described if we approximate the atom chip trapping

potential at time t f by

V (r, t f )≈ 1
2

mω2
⊥

(
η2x2 + r2

⊥
)

, (2.19)

where r⊥ =
√

y2 + z2 and ω⊥ =ωy(t f )≈ωz(t f ). The trap aspect ratio is denoted here by

η=ωx(t f ) /ω⊥. For a low degree of excitation, these modes form a basis of six possible

excitations, as depicted schematically in Fig. 2.3.

Dx, D⟂ Q1 Q2 MScxy

Figure 2.3: Schematic representation of the excitation dynamics of the condensate for
the first lowest excitation modes. From left to right: the dipole oscillations Dx and D⊥,
the first quadrupole mode Q1, the scissors mode Scxy, the second quadrupole mode Q2,
and the monopole mode M.
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These modes are associated with specific, characteristic frequencies [232]

ωDx = ηω⊥ =ωx(t f ), (2.20a)

ωD⊥ = ω⊥, (2.20b)

ωQ1 = [
2+3η2/2+δ/2

]1/2
ω⊥, (2.20c)

ωQ2 =
p

2 ω⊥, (2.20d)

ωScxy = [
1+η2]1/2

ω⊥, (2.20e)

ωM = [
2+3η2/2−δ/2

]1/2
ω⊥ (2.20f)

where δ= [9η4−16η2+16]1/2. The dipole modes D⊥ and Dx show a classical oscillation of

the center of mass of the condensate at the trap frequencies ωD⊥ =ω⊥ and ωDx = ηω⊥ =
ωx(t f ), respectively. The first quadrupole mode Q1 shows a simultaneous expansion of

the two strong axes, while the weak axis is compressed. In the second quadrupole mode,

Q2, the weak axis does not oscillate and the size oscillations are only present along the

two strong axes. The scissors mode Scxy shows the effect of the trap rotation about the

direction of transport, and the monopole mode M, also called breathing mode, shows

an alternating compression and expansion of the condensate in the three directions in

phase.

2.3.2 Reverse engineering protocols

We present here the method of reverse engineering, used to find a perturbation-free

transport of the center of mass of the BEC [238, 239] within a shortcut-to-adiabaticity

(STA) approach. This reverse engineering protocol works as follows: We set the classical

trajectory of the atoms, za(t), according to fixed boundary conditions, which have to be

fulfilled experimentally to ensure an optimized transport, i.e. initially and finally the

center of mass has to be at rest, at the position of the minimum of the trap. This leads to

the following boundary conditions

za(0)= zi ża(0)= 0 z̈a(0)= 0 , (2.21)

za(t f )= z f ża(t f )= 0 z̈a(t f )= 0 , (2.22)

where zi and z f denote the initial and final positions, respectively. To account for experi-

mental constraints, we also wish the trap to be at rest initially and finally. We therefore

impose

zt(0)= zi żt(0)= 0 z̈t(0)= 0 , (2.23)

zt(t f )= z f żt(t f )= 0 z̈t(t f )= 0 . (2.24)
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The conditions on the second derivatives of the positions are imposed to enforce smooth

magnetic field changes. Inserting these last six constraints in Newton’s equations Eq. (2.5)

or Eq. (2.6) shows that they are equivalent to the additional four constraints

z(3)
a (0)= 0 z(4)

a (0)= 0 , (2.25)

z(3)
a (t f )= 0 z(4)

a (t f )= 0 , (2.26)

where the exponent (n) denotes the nth time derivative. These four extra boundary

conditions Eq. (2.25) - Eq. (2.26) can be seen as additional robustness constraints against

oscillations of the center of mass of the BEC in the final trap. The simplest polynomial

solution to the ten boundary conditions is the polynomial function of order nine

za(t)= zi + (z f − zi)
[
126u5 −420u6 +540u7 −315u8 +70u9 ]

, (2.27)

where u = u(t) denotes the rescaled time t/t f . The second derivative of the polynomial

function Eq. (2.27) presents a sine-like variation due to the presence of an acceleration

stage followed by a deceleration step. This suggests a non-trivial Ansatz for za(t) in the

form

za(t)= zi +
( z f − zi

12π

)[
6v−8sin(v)+sin(2v)

]
, (2.28)

whose second derivative presents a similar sine-like shape, and where

v = v(t)= 2π
(
1+a u+b u2

1+a+b

)
t
t f

, (2.29)

is a ‘chirped’ function of time. The constants a and b act here as two additional control

parameters, making this solution more powerful than the simple polynomial one1. These

parameters can be optimized to limit the impact of the anharmonic term in Eq. (2.3) in

order to recover a BEC at rest after the transport. Note that, according to Eq. (2.6), to

limit the anharmonic effects, one has to fulfill the following criterium

χ(t)=
∣∣∣∣ za(t)− zt

L3(t)

∣∣∣∣¿ 1 , ∀t. (2.30)

The elaborate form Eq. (2.28) of za(t) is used in Sec. 2.4 with a = −1.37 and b = 0.780.

With such parameters the maximum value reached by χ(t) during the transport is 0.03

while it reaches 0.09 without any chirp (i.e. for a = b = 0). Once za(t) is defined, one

can extract the time evolution of the minimum of the trap, zt(t), using Eq. (2.5) in
1In the case of the polynomial ansatz one can increase the degree of the polynomial function to add

some tunable control parameter such as the control of the position, velocity or acceleration of the particle
at t f /2 for example.
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combination with the fit of the angular trap frequency along the z-axis, see Eq. (2.4b).

Thanks to this simple but accurate form chosen for the fit of ωz it is easy to infer the

evolution of the minimum of the trap zt(t) as a function of za(t) and its derivatives, by

solving analytically the simple second order polynomial equation

(C2 z̈a − A1) z2
t + (A1za +C1 z̈a − A0) zt + (z̈a + A0za)= 0 . (2.31)

Technically, since the trap minimum position zt(t) is related to Bbias(t) unambiguously,

see Eq. (2.4d), a straightforward experimental implementation of such protocols can

easily be implement in a real experiment.

It can be noted that the reverse engineering protocol is not limited to harmonic traps.

Out of Eq. (2.4b), Eq. (2.4c) and Eq. (2.6), it is possible to infer a trajectory for the trap

minimum zt(t) dealing with the real trap configuration. As before the form of the fits

describe accurately the behavior of the angular trap frequency and of the cubic term

L3 and this gives the possibility to infer the evolution of the minimum of the trap zt(t)

as a function of za(t) and its derivatives, by solving analytically a simple fourth order

polynomial equation. In the rest of the study we concentrate on the case where the

reverse engineering technique is used to design a transport ramp in a pure harmonic

trap configuration and we study the detrimental effects of the anharmonicities of the

trap.

2.4 Theoretical Results

The results of the transport protocol realized with the atom chip arrangement described

in the preceding sections are presented for a total displacement duration of 75 ms. The

consequences of this manipulation are evaluated for the position of the wave packet

center, denoted as the “classical” degree of freedom, as well as for the size dynamics of

the BEC.

2.4.1 Control of the BEC position dynamics

In Figure 2.4(a), the atomic cloud position is shown during and after the implementation

of the STA protocol in the cases of a chip trap assumed to be harmonic (thin solid blue

line) and more realistically including the cubic term of Eq. (2.3) (dashed red line). In both

cases, the classical solution of Newton’s equation is indistinguishable from the average

position of the wave packet solution of the Gross-Pitaevskii equation. The position of the
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Figure 2.4: BEC position during and after the STA transport ramp. The vertical dashed
line signals the end of the transport time and the beginning of the in-trap oscillations.
The upper plot (a) depicts the evolution of the position expectation value za of the BEC
as a function of time in the case of a linear ramp (solid green), the harmonic trap case
(thin blue curve) and the case with a cubic term (dashed red line). The lower graph
(b) shows the deviation from the trap position zt for better visibility of the STA ramp
results. The Gross-Pitaevskii solutions computed by my colleague S. Amri are indicated
at chosen times by the empty squares (harmonic case) and the plain circles (cubic term
included) symbols. In the latter case, the non-adiabatic transport is reflected in residual
oscillations of the wave packet in the final trap. Their amplitude is, however, remarkably
low (0.7µm).

atomic cloud during the transport is plotted in the left part of the figure. The dashed

vertical line signals the end of the displacement and the beginning of a holding period
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in the final trap. The upper panel (a) of the graph shows the appropriateness of the

transport ramp to guide the atoms over more than 1.2 mm with no noticeable residual

center of mass oscillations. To be more convinced that the STA ramp works out thanks to

the careful optimization described in the previous section and not because the transport

time is long enough to approach the adiabatic limit, we also plot the classical solution for

the same displacement time but with a linear ramp (green solid line). The contrast with

the optimized solutions is clear, with large residual oscillations with an amplitude of the

order of 100µm after t f = 75 ms. This clearly shows that the chosen ramp duration is far

from the adiabatic time scale, which would trivially bring the atoms at rest in the final

trap.

The STA ramp devised in this case allows for the position of the atomic cloud to

deviate from the trap position during the transport. This becomes visible in Fig. 2.4(b),

which shows the offset [za(t)−zt] between the position of the BEC and the time-dependent

trap center. In this graph, the Gross-Pitaevskii solutions are indicated at chosen times by

empty black squares (harmonic potential) and by plain red circles (cubic term included).

For the chosen ramp time, the maximum offset is about 14µm. This relatively large offset

is responsible for limiting the quality of the transport, as quantified by the amplitude

of residual oscillations in the anharmonic case (dashed red line and circles). Indeed,

the harmonic solution found for the BEC trajectory by solving Eq. (2.5) becomes less

appropriate the more the atoms explore trap anharmonicities which show up when

leaving the trap center. This effect is clearly noticed when comparing the holding trap

oscillations in Fig. 2.4(b) between the harmonic case (no visible residual oscillations) and

the one with a cubic term, which shows an oscillation amplitude of about 0.7µm around

the trap center. It is interesting to note that the chirp introduced in Eq. (2.29) drastically

reduces the residual oscillations of the BEC. Indeed, the oscillation amplitude would

reach approximately 6µm with a = b = 0. Similarly, with no chirp, the same oscillation

amplitude of 0.7µm would require a ramp time t f > 300 ms. The quantum mechanical

solution found by computing the average position of the BEC wave function rigorously

lies on the Newtonian trajectory in both cases. This was predictable in the harmonic

case since it is a consequence of Ehrenfest’s theorem applied to our problem. Indeed the

non-linear term in the GPE equation play a role only for the size of the wave-packet but

doesn’t change the mean position of this one in the case a pure harmonic trap. One can

also notice that the quantum mechanical solutions are following here the Newtonian

trajectory in the anharmonic case. This is because the anharmonic effect is small for

such a transport time of 75 ms and the quantum correction from the Ehrenfest theorem
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is negligible.

In order to quantitatively assess the magnitude of the anharmonic term during the

transport, we plot in Fig. 2.5(a) the maximum offset to the trap center reached by the

BEC as a function of the ramp time t f . The solid curve is again corresponding to the

Newton’s equation solution and the red dots are depicting the Gross-Pitaevskii solution.

As expected, short ramps lead to atomic positions departing further from the trap center

in both the classical and quantum case since the adiabaticity criterion is less respected.

The larger this spatial offset is, the higher the magnitude of the cubic term in Eq. (2.3) is,

the worse the harmonic trap-based reverse engineering for the chip trap trajectory is,

and the larger the final residual oscillations are. This is perfectly visible when analyzing

Fig. 2.5(b) giving the magnitude of the cubic term (in percent) relative to the one of the

harmonic term. As a consequence, the residual oscillation amplitudes shown in Fig. 2.5(c)

are larger for shorter ramp times, as expected.

In all cases, the quantum solution is in a good agreement with the classical one,

leading to the conclusion that regarding the position of the wave packets, BECs can here

be safely treated as classical point-like particles. As a result, knowing the maximum

oscillation amplitude tolerated in an experiment, one can implement our treatment to

find the fastest transport ramp.

2.4.2 Robustness of the STA protocol

To assess the practical feasibility of the proposed fast BEC transport, it is necessary

to estimate the impact of small experimental imperfections. The present robustness

study, therefore, characterizes the residual oscillation amplitude induced by ramp timing

errors, denoted here by δtf , and offsets δBbias in the time-dependent magnetic bias field

applied to drive the chip trap. Both noise sources are considered independent.

Considering the more complete case where cubic potential terms are present, we use

Newton’s equations Eq. (2.6), where ωz, zt and L3 are implicit functions of Bbias(t). The

average position of the condensate can be written as

za(t)= z0
a(t)+εz(t), (2.32)

where z0
a(t) denotes the unperturbed trajectory. A lowest order perturbative treatment

applied to Newton’s equation Eq. (2.6) yields

ε̈z +ω2
z(t)(εz −δzt)+δω2

z(z0
a − zt)+

ω2
z(t)

L3(t)
(z0

a − zt)2 = 0, (2.33)
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Figure 2.5: Offset to adiabaticity and its impact on the transport as a function of ramp
times. The maximum distance reached by the atomic cloud relative to the trap center
is plotted in (a), the anharmonicity (cubic potential term) magnitude in percents of the
harmonic potential term is depicted in (b) and the consecutive amplitude of the residual
oscillations is shown in (c). The longer the transport duration, the more the system
tends to the adiabatic limit, the smaller these oscillations caused by the cubic term. The
Newtonian trajectories (solid blue curves) agree very well with the full GP solutions (red
dots). The black star marks the ramp time t f = 75 ms used in this study.

where δzt and δωz denote first order perturbations to the trap position and to the trap

frequency, respectively. In the following, we solve Eq. (2.33) for the harmonic (i.e. L3 →∞)

and anharmonic trapping cases.

Figure Fig. 2.6 shows the residual oscillation amplitude as a function of the pertur-

bations δBbias in panel (a) and δt f in panel (b). This figure confirms the robustness of

our transport method. Indeed, for typical δBbias of the order of δBbias = 1 mG of control

error in the bias field only leads to an offset of about 0.5µm in the final position of the
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Figure 2.6: Residual oscillation amplitude of the BEC in the final trap as a function
of a magnetic field offset (a) or timing errors in the applied ramp (b). Both harmonic
(solid blue curve) and anharmonic (dashed red curve) cases are considered. For typical
state-of-the-art cold atom experiments, the level of control should be sufficient to ensure
errors smaller than 1µm. The black stars mark the results obtained for a ramp time
t f = 75 ms taking into account the anharmonicities of the potential in the case where
both t f and Bbias are perfectly controlled.

BEC. Moreover, the same order of infidelity in the final position of the BEC requires

ramp timing errors better than 1 ms, a limit which is easily matched experimentally.

Both limits are therefore considered to be safely within state-of-the-art capabilities of

standard cold-atom laboratories.

2.4.3 Dynamics of the atomic cloud size

In this section, the time-dependent spatial density distribution of the transported BEC is

considered. By applying a similar treatment as reported in [238, 239] but in the context

of important trap decompression in non-harmonic trap, it is possible to suppress residual
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Figure 2.7: Size dynamics of the BEC wave packet. In the left panels (a), (b) and (c),
the standard deviations of the spatial density distributions are calculated for the time-
dependent condensate wave function for the three principal axes. The solid blue curve
is the solution of the scaling approach, the empty black circles are found by solving
the Gross-Pitaevskii equation in the harmonic case and the red circles correspond
to the more realistic case of the anharmonic trapping potential. The dashed green
line is the most complete case including anharmonicities and trap rotation during the
transport. The right column shows the averaged probability densities along x (graph d),
y (graph e) and z (graph f) calculated by solving the Gross-Pitaevskii equation for the
anharmonic case with trap rotation, revealing the collective oscillations connecting the
three directions. The dark red regions are associated with density maxima and the dark
blue regions correspond to low atomic densities. The last plot (f) is shifted with respect
the trap position zt. The dashed white lines show the expected BEC position in the three
directions as a function of time. The vertical dashed lines mark the end of the transport
(t f = 75 ms) and the beginning of the holding period.
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holding trap oscillations of the wave packet center as well as size excitations after the

transport. This is achieved, however, at the cost of a long transport time. In this chapter,

we would like to highlight the potential of atom chip-generated STA protocols in the

metrological context, i.e. with fast enough transport to allow for short duty cycles.

The gallery in Fig. 2.7 shows typical BEC wave packet size oscillations occurring

during and after the transport ramp considered in the last section. An adiabatic or long

enough transport would bring the BEC to its ground state in the final holding trap,

reflected in trivial flat lines starting at 75 ms for the three sizes of the left panel. We

observe instead a breathing of the wave packet in the three space directions with the

largest amplitude occurring in the weak frequency axis x. Although the transport is

performed in our simulations solely in the z direction, we clearly witness a size oscillation

of the atomic wave packet in the two other directions due to the mean-field interactions

connecting all spatial directions.

The left panel of Fig. 2.7 illustrates the results of simulations based on the scaling

approach (harmonic approximation, solid blue curve) on one hand and on a numerical

solution of the Gross-Pitaevskii equation in the harmonic case (black empty squares)

on the other. The influence of the anharmonicities and the anharmonicities with the

rotation during the transport in the Gross-Pitaevskii equation is shown with the solid

red circles and the dashed green line respectively. These Gross-Pitaevskii simulations

were performed by my colleague S. Amri.

Qualitatively, the four configurations show a similar behavior. The numerical results

being similar with and without the cubic term suggests that our trade-off ramp time

versus anharmonicities magnitude, previously made for the atomic cloud center, is

conclusive regarding BEC size dynamics as well. This is one of the main results of this

study since it demonstrates the benign effect of anharmonicities in typical atom chip

traps even with fast STA non-adiabatic transports.

The right panel of Fig. 2.7 is a density plot complementing the left part with the

density probability distribution during the transport and for 150 ms of holding time. The

quasi-cylindrical symmetry of the trap is reflected in the collective excitation modes

observed. Indeed, the strongly trapped directions y and z are subject to in phase size

oscillations. The size along the weak axis x is subject to larger-amplitude size oscillations

since the trapping frequency is weak along this axis. The excited modes responsible for

these oscillations will be identified by the quantitative study of next section.
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2.4.4 Collective excitations and optimization of the expansion
dynamics

2.4.4.1 Collective excitations in the holding trap

To gain insight into the impact of the transport speed on the collective excitation of the

BEC in the final trap, we plot in Figs. 2.8(a) and 2.8(c) the extracted BEC size oscillations

resulting from the ramp of Eq. (2.28) for a total transport time of 75 ms and 750 ms,

respectively. In order to compare to analytical results, we consider a cylindrical symmetry

suggested by Fig. 2.2(b) where νy is chosen to be strictly equal to νz. We plot the sizes

normalized to the ones at the end of the transport in the directions x (solid blue line) and

y or z (dashed red line) as a function of the holding time thold = (t− t f ) in the final trap.

In both cases, the final holding time is chosen to be 500 ms and one easily notices the

complex shape of the residual size oscillations for the fast ramp compared to the slower

one, where a simple periodic evolution of the size of the BEC is obtained. This difference

occurs due to the rapid variation of the trap aspect ratio in the fast ramp. Indeed, in the

transport of Fig. 2.8(a), the aspect ratio (ωx/ω⊥) varies by one order of magnitude in 10 ms

only, when a similar variation happens in 100 ms for the slow transport of Fig. 2.8(c).

In Fig. 2.8(b) and (d) we plot the Fourier transforms of the Thomas Fermi radii Rx(t)
and Ry(t) in Log scale, as a function of the oscillation mode frequency ν for the two cases

mentioned previously of t f = 75 ms and 750 ms. These graphs reveal the main collective

modes and their harmonics present in the holding trap after the end of the transport.

The vertical dashed lines in these plots denote the analytically found collective excitation

frequencies according to the treatment described in Sec. 2.3 and reported in [232]. This

treatment is an approximation in the case of small perturbations. It is clearly not valid

for the faster transport reported here in the case of a 75 ms ramp . It is, nevertheless, a

useful indicator to identify the excitation modes presenting the largest magnitude.

The slow ramp is characterized by the presence of a single quadrupole mode Q1

explaining the simple periodicity of the size oscillation behavior, with the two strong

axes in phase and the weak axis out of phase. Note that the oscillation magnitude is,

in this case, quite negligible, the size departing only by about 1% from the one at the

end of the transport. The fast transport ramp is, however, exciting several collective

modes explaining the more complex size oscillation periodicity and the larger amplitude

variation to about ±70% change relative to the final transport size in the weak axis x.

This analysis is useful on many levels. The predominance of the quadrupole Q1

mode, suggests, for example, the optimization we discuss in the next section. By taking
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Figure 2.8: Upper panel: Size excitation dynamics after the transport of the BEC as a
function of the holding time thold = (t− t f ) in the final trap. Two realizations of the same
ramp are considered: a fast transport with t f = 75 ms (left column) and a slow transport
with t f = 750 ms (right column). Lower panel: Fourier transform of the Thomas-Fermi
radii Rx(t) and Ry(t) of the BEC in Log scale as a function of the mode frequency ν. For
both panels, the solid blue curves are used for the weak axis x and the dashed red ones
for the two strong axes y and z. The vertical dashed lines in (b) and (d) correspond to the
three low-lying excitations modes Q1, Q2 and M calculated following the treatment of
Ref. [232].

advantage of the symmetry of certain modes, one can also imagine, in further studies,

designing a transport protocol forbidding or enhancing them.

2.4.4.2 Optimization of the expansion dynamics

The designed quantum states studied in this chapter would serve as an input of a

precision atom interferometry experiment [240]. In such measurements, it is beneficial

to work with the slowest cloud expansion possible since this increases the maximum

interferometry time available, with an impact on the density threshold for detection and

hence, on the sensitivity of the atomic sensor [241]. Moreover, long free evolution times of

several seconds are beneficial for micro-gravity [41, 167, 173, 175, 242, 243] and atomic

fountain experiments [39, 40, 125]. To largely reduce the expansion rate of the atomic

samples, the delta-kick collimation (DKC) technique [165, 167, 186, 187] is commonly

39



CHAPTER 2. OPTIMIZED MANIPULATION OF A SINGLE-SPECIES CONDENSATE

applied. It consists in re-trapping an expanding cloud of atoms for a brief duration in

order to align its phase-space density distribution along the position coordinate axis,

therefore minimizing its momentum distribution width in preparation for a further

expansion. This is in analogy with the collimating effect of a lens in optics and DKC is

often referred to as an atomic lens. The principle and the analogy with optics is shown in

Fig. 2.9. It is worth noticing that the phase-space density is conserved in such a process

which does therefore not achieve a cooling in the sense of reducing the phase-space

density. This method was successfully implemented and led to record long observation

times of several seconds [165, 244].

If the trap is anisotropic, as the quasi-cylindrical case considered in this section,

the lensing effect is different in every direction and would typically be negligible in the

weak frequency axis when the two others are well collimated. To overcome this problem,

we take advantage of the collective excitations described in the preceding section to

release the BEC at a well-defined time, soon after a maximum size amplitude of the weak

trapping direction such that the subsequent expansion velocity is naturally reduced. This

timing is chosen such that the kinetic energy associated with the natural re-compression

of the cloud is quickly balanced by the repulsive mean-field interaction energy which

naturally leads to an expansion of the cloud in this direction. In our case the strategy

is therefore to choose the appropriate timing of the holding time to collimate the BEC

along the weak-axis [186] and then to apply a second delta-kick after letting the BEC

expand along the two strong axis.

To illustrate this optimization, we consider in this section the case of a transport from

zi ' 0.45 mm to z f ' 1.35mm in 75 ms. This transport is realized with the chip DC current

Iw = 5 A and a bias magnetic field which varies between Bbias(0)= 21.6 G (initially) and

Bbias(t f ) = 5.9 G (at the end of the displacement). The final trap is characterized by

the frequencies νx = 12.5 Hz, νy = 50 Hz and νz = 49.5 Hz. This is realized following

the reverse engineering technique described in Sec. 2.3. The final trap is used to hold

the atoms after the end of the transport. The result of this optimization is shown in

Fig. 2.10(a) where the blue curves show the variation of the size of the released BEC

in the x-direction for three different holding times of 29.4, 31.4 and 33.4 ms. A natural

choice is to consider the switch-off time of 31.4 ms leading to a collimated subsequent

free expansion. Indeed, a holding time slightly below leads to an immediate fast increase

of the condensate size (see the dash-dotted blue line in Fig. 2.10(a)) while a holding time

slightly above leads to a transient compression of the BEC (see the dashed blue line in

Fig. 2.10(a)) soon followed by a very fast expansion.
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Figure 2.9: Principle of the pulsed delta-kick collimation (DKC) technique. Represen-
tation of the size and phase space evolution of the cloud as a function of the time for
different lens duration, i.e. the time the atom are re-trapped, in analogy with optics. The
effect of the initial free expansion is shown in orange. The blue dashed line depicts the
configuration where the cloud is collimated at the end of the lens, i.e. aligned with the
spatial axis in the phase space representation. The green and red curves show the effect
of the lens when this one is too short in time, i.e. for a divergent lens, or too long in time,
i.e. for a convergent lens, respectively, compared to the collimated configuration in blue.

Following the intermediate and optimal choice thold = 31.4 ms, after 100 ms of free

expansion the mean field interaction energy is almost entirely in the form of kinetic

energy and an atomic lens (DKC pulse) can be applied. It is realized by switching-on

a cylindrical trap of frequencies νx = 1.7 Hz and νy = νz = 7.2 Hz for ∆tlens = 4.84 ms,

created with a DC current of intensity Iw = 0.1 A and a magnetic bias field of Bbias =
0.12 G, leaving the trap minimum at z f = 1.35mm. The collimation effect is dramatic in

the y and z-directions (red dashed line and green dash-dotted line in Fig. 2.10(b)). The

expansion observed after the application of the DKC pulse corresponds to an average
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Figure 2.10: Transport, holding, release and magnetic lensing of a BEC to pK expansion
velocities. Panel (a): Effect of the release timing from the holding trap in the weak
trapping direction x. The choices of 29.4 ms (dash-dotted blue curve), 31.4 ms (solid blue
curve) or 33.4 ms (dashed blue curve) illustrate different expansion behaviors (diverging,
collimated and focused, respectively). This timing has a little effect on the released size
dynamics of the two strong axes y and z, not shown here for the sake of clarity. Panel (b):
Full sequence with transport, holding, release and delta-kick collimation leading to an
average, over the three spatial directions, expansion rate at the pK level. The naturally
collimated case of panel (a) is chosen (solid blue line). A free expansion of 100 ms is
necessary before applying the DKC pulse lasting for 4.84 ms in a {1.7, 7.2, 7.2} Hz trap.
This pulse has a negligible effect on the x-axis expansion due to the weak frequency in
this direction, but it collimates well the atomic cloud in the y and z directions (dashed
red line and dash-dotted green line). The resulting expansion speeds are 22.2µm/s
(5.2 pK), 8.7µm/s (0.8 pK) and 8.2µm/s (0.7 pK) in the x, y and z-directions, respectively.
This amounts to a global expansion temperature of 2.2 pK only. Without the collective
excitations (i.e. for an adiabatic transport in the x direction, thin blue dotted curve
representing ∆x as a function of time), the collimation performance is much worse,
leading to a global expansion temperature of 555 pK. Panel (c): Optimal parameters
search by scanning the holding and lens durations. The white star marks the optimal
values leading to an expansion temperature of 2.2 pK shown in (b).

speed in the three spatial directions of about 25.3µm/s, equivalent to a temperature of

2.2 pK.
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In analogy with the common definition of temperature in Maxwell-Boltzmann statis-

tics [139], we define the expansion temperature by

3
2

kBT = m
2

[(
d∆x
dt

)2
+

(
d∆y
dt

)2
+

(
d∆z
dt

)2]
, (2.34)

in 3D and by
1
2

kBT = m
2

(
d∆α
dt

)2
, (2.35)

in 1D, where α= {x, y, z}.

Fig. 2.10(c) finally shows the robustness of the procedure in case of timing errors for

the holding time thold and for the lens duration ∆tlens. With timing errors as large as

0.5 ms the expansion temperature remains below 20 pK. This demonstrates the marginal

influence of relatively large timing errors for the 3D collimation effect proposed here.

To illustrate the importance of taking advantage of the collective oscillations, we

plot in the same figure the virtual case of an adiabatic transport in the x-direction (thin

dotted blue line). If one applies a mere adiabatic decompression as suggested by this

latter curve, the expansion temperature would be much larger, higher than 550 pK,

even if we consider very well collimated y and z-directions, the x-direction being hardly

affected by the magnetic lens. It is therefore crucial to control the release timing of the

BEC in order to implement low-velocity expansions.

2.5 Micro-gravity experimental implementation

In this section 2.5, I present an overview of some experimental results of the QUANTUS

collaboration (acronym from the German consortium name: Quanten Gase unter Schw-

erelosigkeit). Some additional results can be found in Refs. [84, 167, 168, 172, 174, 242,

245–249]. This cold atom space-oriented research is a collaboration between the Physics

Institutes from the University of Hanover, Ulm, Hamburg, Bremen (ZARM), Humboldt

and the Max-Planck Institute in Garching supported by the German Space Agency

(DLR) [243]. My contribution was to deliver STA ramps to the Quantus 2 microgravity

drop tower experiment based in Bremen [244, 250–252], and to propose a theoretical

interpretation of the measured data of the Maius 1 sounding-rocket mission [174].

2.5.1 The Quantus 2 drop tower experiment

The Quantus 2 drop tower experiment is based in Bremen in the facility of the Center

of Applied Space Technology and Microgravity (Germ: Zentrum für angewandte Raum-
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fahrttechnologie und Mikrogravitation (ZARM)). The microgravity-based experiment can

be either dropped from the top or catapulted from the bottom of the 145 meter height

tower. The available micro-gravity free fall experimental time is approximately 4.5 s in

the dropped configuration, or 9 s in the catapulted configuration.

The apparatus is based on a multilayer atom chip technology [168, 192, 220, 221, 244].

A realistic atom chip model, based on finite element calculations has been developed

by the Quantus 2 team and accurately calibrated based on ground and micro-gravity

experimental measurements [253].

A BEC of Rubidium 87 is created close to the atom chip surface at approximately

200µm within 1 s [168] in a 2π. (25 ; 565 ; 570) Hz trap. Experimentally, to circumvent

the problems of the very large initial mean-field energy and of the atomic loss close to the

chip surface caused by the current fluctuations [254], a transport away from the atom

chip surface is required. Adiabatic solutions are excluded due to the limited amount of

micro-gravity time. A fast transport of the cloud is then required.

STA protocols I theoretically investigated were implemented ramping down the bias

magnetic field, thus transporting the BEC away from the chip surface in a shallower

trap configuration of frequencies 2π. (10 ; 28 ; 25) Hz, at approximately 1.5 mm from the

chip. The protocol was pretty successful leading to residual oscillations of the BEC center

of mass at an amplitude as low as 4µm. At this position even though the mean field

energy is reduced by a least an order of magnitude, the remaining mean field interaction

energy brings the BEC to expand with an expansion temperature of some nK.

At the end of the transport a subsequent magnetic lens is applied after 80 ms of

free expansion to reduce the temperature expansion to below 100 pK in 3D and BECs

have been observed with some 105 atoms after 2.7 s of free expansion time giving the

possibility in the future to perform interferometry sequences during this time. A detailed

description of these experimental results can be found in the chapter 6 “Magnetic Lensing

in Microgravity”, of the PhD thesis of J. Rudolph [244], in the chapter 6 “Magnetic lensing

of the condensate” in the PhD thesis of C. Grzeschik [251] and in the chapter “Center of

mass motion” in the PhD thesis of T. Sternke [252]”.

The possibility to reduce the expansion temperature of the cloud to such record low

temperatures relies on small residual COM excitation of the BEC at the final position

where detrimental center-of-mass motions limit the efficiency of the magnetic lens. The

post-transport ramp is followed by a holding time sequence used principally to collimate

the weak axis while the magnetic lens collimates the two strong axis, as explained in

section 2.4.4.2. In this setup, a robust STA ramp has been engineered to transport the
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BEC over 1.3 mm within 150 ms. The figure Fig. 2.11 shows the results of the center-

of-mass oscillation of the BEC in the final trap, ω= 2π.25 Hz emphasizes by a Time of

Flight (TOF) of 80 ms (red circle) fitted with a sinusoidal function (blue). The data have

been taken by W. Herr, C. Deppner, M. Cornelius and P. Stromberger. The amplitude

oscillation of the BEC position of approximately 50µm after 80 ms TOF correspond

approximately to 4µm of residual position amplitude oscillation in the final trap.
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Figure 2.11: Result of the center-of-mass motion after the STA ramp in the Quantus-2
experiment. The experimental data are shown after 80 ms TOF at different time in the
final trap (red circles) and fitted with a sinusoidal fit function. The amplitude oscillation
of the BEC position of approximately 50µm after 80 ms TOF correspond approximately
to 4µm of residual position amplitude oscillation in the final trap.

2.5.2 The MAIUS-1 sounding rocket mission

On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, 110 experiments

central to matter-wave interferometry have been realized in space [174]. At 3:30 AM the

first man-made Bose-Einstein condensate in space has been observed. The experimental

apparatus description can be found in [174, 255]. The results shown in this section were
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measured by D. Becker, M. D. Lachmann, S. T. Seidel, H. Ahlers, A. N. Dinkelaker, J.

Grosse, O. Hellmig, H. Müntinga, V. Schkolnik, T. Wendrich, A. Wenzlawski, B. Weps, T.

Franz, D. Lüdtke, M. Popp, M. Erbe, A. Kohfeldt, H. Duncker, A. Kubelka-Lange and M.

Krutzik, who have designed, built and tested the apparatus. D. Becker, M. D. Lachmann,

S. T. Seidel evaluated the data.

My contribution to this work [174] consists in the interpretation of the analyzed

data supported by simulations based on Newton’s equation and on the scaling approach,

previously described in section 2.3.1.

In Fig. 2.12, a part of the analyzed experimental results obtained in space and so far

published in [174] are presented. In the same context than described before, the BEC of

Rubidium 87 created close to the atom chip at some hundred of microns from the chip

surface is displaced at a millimeter distance away over a 50 ms transport duration with a

sigmoidal current ramp. In panel (a) we show the position along the z-direction and with

respect to the chip surface, of the BEC imaged after 50 ms of free expansion for different

holding times in the final trap. In panel (b), we present the BEC position without any

holding after the transport for different free expansion times in different Zeeman states

of the F = 2 manifold (mF = 0 grey triangles and mF = 2 black and green circles). Despite

the strong effect of preparation and transport on the motion of the BEC, the trajectories

of the center of mass of the BEC demonstrate only a small scatter in the experimental

data for different Zeeman states of the F = 2 manifold as shown on panel (b). In general

it is convenient to transfer the atoms to the state mF = 0 to avoid detrimental effects,

such as residual acceleration, in the presence of residual magnetic field. The green points

of panel (a), observed after 50 ms of release are reported on panel (b). The purple dashed

line represents a correlated sinusoidal (panel a) and linear (panel b) fit of the position of

the BEC for different holding and free expansion times at the end of the 50 ms transport.

The purple-shaded area indicates the 95% confidence level with respect to the numerical

simulations, which used the expected atomic-chip potential. The data presented here

have been measured over a total time of two minutes, when the sounding rocket was

travelling over a hundred of kilometers in space. As shown by the purple dashed line the

center-of-mass motion (COMM) of the BEC away from the chip after release, panel (b), is

almost identical for the different Zeeman states, showing a nice reproducibility of the

COMM.

Panels (c) and (d) show the corresponding Thomas-Fermi radii for different holding

times and free expansion times of the BEC in the different mF states. Each data point

has been re-normalized with respect to its detected atom number. The blue and red colors
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Figure 2.12: Result of the COMM and size evolution of the Maius-1 sounding rocket [174]:
Evolution of the BEC after its transport away from the atom chip in different mF states.
Panels (a) and (c): Position and Thomas-Fermi radii of the BEC after 50 ms of free
expansion time for different holding times. Panels (b) and (c): Position and Thomas-
Fermi radii of the BEC for different free evolution times without any holding.

indicate the two different axis of the camera. The error bars indicate the uncertainties of

the fit of the BECs’ images. More information can be found in [174].

The realistic atom chip model developed by the Quantus 2 team has been fully adapted

and accurately calibrated to the Maius 1 experimental setup. The model includes the
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current-carrying wire structures and coil configurations. In each panel the blue (red) lines

and blue (red) shaded areas show the theoretical behavior I could predict for the BEC.

The lines denote the expected behavior based on the expected currents in the different

multi-layers of the atom chip and coils used to perform the different experiments. The

shaded area has been theoretically calculated using the atom chip model and simulates

the expected impact of the circuitry. The different current values are reasonably modified

(a few percents) according to the expected batteries and current driver performance of

the experimental payload during the flight around the expected ones.

The simulated behavior of the position of the BEC in panel (a) and (b) agree well

with the experimental data points and differ only by a slight underestimation of the

oscillation amplitude corresponding to a slight velocity offset. This offset may result

in the limited knowledge of the current driver behavior when the trap is switched off.

This step has been considered infinitely fast in the simulation. The complicated shape

oscillation of the BEC in the final trap shown in panel (c) is reflected by the theory. The

tiny shaded area in panels (c) and (d) lead to the conclusion that the shape evolution

of the BEC is not a consequence of current noise fluctuations but a consequence of the

trap decompression, consequence itself of the transport as described in section 2.4.3. This

result is confirmed in panel (d). The reduction of the mean field energy by an order of

magnitude at the end of the transport brings the BEC to expand to about a 1 millimeter

total size after 300 ms, corresponding to a few nK for the expansion temperature.

2.6 Conclusion and outlook

While BEC creation on atom chips was demonstrated with competitive high-flux of 105

BEC atoms/second as a source of metrology-oriented experiments [168], the necessary

displacement of the atoms far from the chip surface constrained the use of this technique

due to the long times needed to bring atoms at desired positions without detrimental

center of mass and size excitations. In this chapter, we demonstrated a shortcut-to-

adiabaticity set of protocols based on reverse engineering that solves this speed issue.

This proposal includes characteristic mean-field interactions in non-harmonic traps

and their coupled effects in the three spatial dimensions even for a 1D transport of a

degenerate bosonic gas in the case of fast and big trap decompression. To illustrate the

appropriateness of our theoretical proposal, we considered the commonly used Z-chip

wire geometry combined with a bias homogeneous magnetic field. The study is carried

out considering atom-chip-characteristic cubic anharmonic terms in the rotating trapping
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potentials which manipulate the atoms. Although the STA protocols are inspired by

harmonic traps and Newton’s equations, the validity of our recipe is supported by solving

a scaling approach and mean field equations for interacting BEC ensembles. With the

help of analytical and numerical models, we were able to engineer fast atomic transport

ramps in few tens of ms and to carry a trade-off study between speed and accepted

residual excitations at the target position imposed by non-ideal realistic trap profiles.

This trade-off showed the benign effect of typical atom chip anharmonicities on the

transport speeds. For the sake of experimental implementation, the efficiency of this

proposal was tested against typical deviations in the main control parameters (magnetic

field and timing errors) showing an excellent degree of robustness. Landmark effects of

BEC physics as collective excitations were considered and analyzed. The results of this

latter investigation revealed the benign character of collective excitations compared to

the single particle approach on one hand, and the potential for optimization one could

benefit from by using these collective excitations on the other.

Combining all the aforementioned tools, this theoretical study, applied to the Quantus-

2 experiment, exhibited the possibility to precisely transport an atom-chip-generated

BEC for several mm with a µm control level. Delta-kick atom chip collimation prepares

this ensemble in a regime of a pK expansion rate thanks to the collective excitations

acquired during the transport ramp. Similar temperatures have been achieved in the

experiment where the real trap configuration allowed an expansion temperature of only

a few tens of pK [244]. This highly controlled BEC source concept required only a few

hundreds of ms (about 300 ms) when implemented in a state-of-the-art atom chip BEC

machine [168, 242]. These specifications make of the proposed arrangement an exquisite

and novel source concept to feed a highly precise atom interferometer. This would allow to

unfold the already promising potential (mobility, autonomy and low power consumption)

of atom chip-based atomic sensors in the metrology field [256]. Further directions would

involve the implementation of optimal control theory tools [205, 206, 257] to consider

arbitrary potential profiles and even faster manipulations while allowing for larger

intermediate excitations.

The methods developed in this chapter and published in Ref. [188] are also directly

applicable for optimizing the manipulation of cold atomic ensembles in optical dipole

traps. One should also note the possibility to generate “painted potentials” [258] with

these traps, which is of a particular interest as a future complementary control tool in

shortcut-to-adiabaticity protocols, as discussed explicitly in Ref. [259] for the combined

transport and expansion of BECs.
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In this chapter two problems of a timely significance for precision measurements

involving the transport and manipulation of thermal ensembles are treated. The

first one is the dual-transport of a laser-cooled mixture of two species with different

masses starting at different kinematic conditions. The study case considered is the

isotopes pair of rubidium: (87Rb and 85Rb). Indeed, the position and velocity offsets of the

two clouds of atoms when used in an interferometric measurement couple with various

residual gradients and forces leading to important systematics as highlighted in the

general introduction of the thesis. This problem was the subject of a 3-month internship

I had in the group of Prof. Mark Kasevich (Stanford University) and more precisely at

the 10-meter atomic fountain experiment. The long-term goal of this experiment is to
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perform tests of the Einstein Equivalence Principle to an unprecedented level of accuracy.

For this purpose, the control of the position and velocity of the two-species sample at the

end of the transport is crucial [260–262]. Moreover, an optimization of the expansion

energy of the two species at the end of the transport protocol is performed.

The second problem consists in enhancing the phase-space density of thermal clouds

before evaporation. Indeed, the number of atoms in a BEC relies on the starting number

of particles in the initial thermal ensemble. Since the inaccuracy of an interferometric

phase measurement involving a BEC is proportional to the inverse of the square root of

the atom number [263], this number being low directly impacts the performance of an

experiment. Over the recent years within the QUANTUS project [167, 168], increasing

the initially trapped atoms number by one order of magnitude led to the same enhance-

ment factor for the condensed particle numbers. Motivated by this scaling, we propose to

combine here the traditional optical molasses technique with a "delta-kick" collimation

stage of the pre-evaporated cloud to enhance the phase space density by one order of

magnitude.

Besides an N-particle modelling of the thermal ensembles, Optimal Control Theory

(OCT) protocols are performed in this study. Both methods are presented in the next

section before applying them to the two problems introduced above.

3.1 Theoretical tools

3.1.1 Optimal Control Theory

The aim of optimal control theory is to bring a dynamical system from one state to

another, while minimizing a cost functional1. The modern version of OCT was born

with the Pontryagin’s Maximum Principle (PMP) in the late 1950s [264, 265]. Originally

applied to problems of space dynamics, OCT is nowadays a key tool to study a large

spectrum of applications in both classical [265, 266] and quantum physics [267–270].

In the Pontryagin formulation, solving an optimal control problem is equivalent to

finding extremal trajectories which are solutions of a generalized Hamiltonian system.

These trajectories satisfy the maximization condition of the PMP as well as specific

boundary conditions [265–267]. The implementation of the PMP is far from being trivial

and numerical control algorithms have been developed to approximate the optimal

solution [271]. Among others, we can mention the GRAPE (GRadient Ascent Pulse
1In literature, the different cost functionals are also known as total payoff functional, running payoff

functional and terminal payoff functional.
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Engineering) and Krotov algorithms both gradient-based [266, 271–273], which are

nowadays standard tools in physics. OCT has been applied with success to quantum

systems since the 1980s in domains extending from molecular physics and nuclear

magnetic resonance to quantum information science and atom interferometry [274–280].

The application of OCT to BEC dynamics has also been explored in different contexts.

Using the Gross-Pitaevskii equation, the optimal coherent manipulation of a BEC has

been investigated in a series of studies [206, 275, 281–284]. The transport of cold atoms

has also been optimized for simple models in combination with invariant-based inverse

methods [174, 215, 285, 286].

To introduce the technique, we will highlight the different steps of the OCT proto-

col in the next sections to solve the transport of two classical particles in a 1D trap.

Subsequently, OCT will be used to solve the problem of a dual-species input atom inter-

ferometer in the real trap configuration specific to the 10-meter long tower at Stanford

in the group of Mark Kasevich [37, 125, 165, 287, 288].

3.1.1.1 1D Transport

We begin our discussion by considering the control of the dynamics of two particles

in harmonic traps whose minimum positions and trap frequencies are adjustable by a

time-dependent control parameter, c(t). The dynamic is described by Newton’s equations

z̈1(t)+ω2
1
[
c(t)

](
z1(t)− zsag,1

[
c(t)

])= 0, (3.1a)

z̈2(t)+ω2
2
[
c(t)

](
z2(t)− zsag,2

[
c(t)

])= 0, (3.1b)

where the trap minima are zsag,1/2 and the trap frequencies are ω1/2 for species 1 and 2,

respectively. In this study, we limit ourselves to the case of a single control parameter c(t)
common to both species. While more than one control parameter can be used to optimize

a situation in an experiment, it is simpler to rely only on one.

For a given time evolution of the control parameter, Eq. (3.1) describes the trajectory

of the particles, z1(t) and z2(t). Depending on the evolution of the control parameter, the

system may react very differently. In practice, the value of the control parameter can be

chosen at each time t, which leads to an infinite number of hidden control variables. This

approach of imposing the evolution of the control parameter is the opposite of reverse

engineering, which imposes the trajectory of the particle and searches for the associated

evolution of the control parameter.
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We first rewrite the two second-order differential equations Eq. (3.1) as four first

order coupled differential equations

~̇X (t)=


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

=


x2(t)

−ω2
1[c(t)]

(
x1(t)− zsag,1[c(t)]

)
x4(t)

−ω2
2[c(t)]

(
x3(t)− zsag,2[c(t)]

)

 , (3.2)

where

~X (t)=


x1(t)
x2(t)
x3(t)
x4(t)

≡


z1(t)
ż1(t)
z2(t)
ż2(t)

 . (3.3)

In the following, without loss of generality, we impose the particles to be at rest at

t = 0, the initial conditions being

~X (0)=


zi,1

0

zi,2

0

=


zsag,1

[
c(0)

]
0

zsag,2
[
c(0)

]
0

 (3.4)

and

~̇X (0)=


0

0

0

0

 . (3.5)

We want to achieve a new state of equilibrium at the end of the transport protocol,

defined by the final boundary conditions

~X (t f )=


z f ,1

0

z f ,2

0

=


zsag,1

[
c(t f )

]
0

zsag,2
[
c(t f )

]
0

 (3.6)

and

~̇X (t f )=


0

0

0

0

 . (3.7)
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3.1.1.2 Cost functional

The purpose of the OCT protocol is to minimize a cost functional Jtot defined by the sum

of a terminal cost, Jter, and a current cost, Jrun. The terminal cost is designed to ensure

that the final state is the desired state, which in our case is the final equilibrium state

imposed by minimizing the total energy at the end of transport for both species. The

running cost can be designed to optimize the transformation of the system in time. It

can be used to find the minimum time of a process or to account for certain experimental

constraints. In our case, in order to imitate the design of the STA ramp (see section 2.3.2),

we chose to derive the case where the running cost limits the transient excitation of the

two particles in the trap. The different cost functionals chosen are as follows

Jtot = Jter +
∫ t f

0
Jrundt , (3.8a)

Jter = 1
2
ω2

1
[
c(t f )

](
x1(t f )− zsag,1

[
c(t f )

])2 + 1
2

x2
2(t f )

+ 1
2
ω2

2
[
c(t f )

](
x3(t f )− zsag,2

[
c(t f )

])2 + 1
2

x2
4(t f ) , (3.8b)

Jrun = wr

2t f

(
ω2

1
[
c(t)

](
x1(t)− zsag,1

[
c(t)

])2 +ω2
2
[
c(t)

](
x3(t)− zsag,2

[
c(t)

])2)
, (3.8c)

where wr represents the weight of the running cost in relation to the weight of the

terminal cost equal to 1. In this parametrization, the OCT protocol gives more importance

to optimize the terminal cost function when wr ¿1, or the running cost, when wr À 1.

The objective of the cost functional could also be to optimize the total duration of the

process, for example. In this case, the following cost function could be added

J′
run = wr2

t f
. (3.9)

In principle, there is no limit to the number of running cost functionals one can use.

3.1.1.3 The Pontryagin Hamiltonian

We now introduce the appropriate Pontryagin Hamiltonian of the system. The Pontryagin

Hamiltonian [265, 266], H p, is by definition given by

H p = ~P . ~̇X − Jrun , (3.10)
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where ~P is the adjoint state, also called the generalized momentum. If ~P is written as

~P (t)=


p1(t)
p2(t)
p3(t)
p4(t)

 , (3.11)

the Pontryagin Hamiltonian reads as

H p = p1(t) x2(t)− p2(t)ω2
1[c(t)]

(
x1 − zsag,1[c(t)]

)
+ p3(t) x4(t)− p4(t)ω2

2[c(t)]
(
x3 − zsag,2[c(t)]

)
− wr

2t f

(
ω2

1[c(t)]
(
x1(t)− zsag,1[c(t)]

)2 +ω2
2[c(t)]

(
x3(t)− zsag,2[c(t)]

)2
)

.

(3.12)

The theory behind the PMP is complex and will not be described here for the sake of

simplicity. The details of this theory can be found in [264, 265]. Here, we simply extract

the main ingredients necessary for the present optimization scheme. The evolution of

the adjoint state is given by the coupled differential equations

~̇P (t)=



ṗ1(t)

ṗ2(t)

ṗ3(t)

ṗ4(t)


=



−∂H p

∂x1

−∂H p

∂x2

−∂H p

∂x3

−∂H p

∂x4


=



p2(t)ω2
1[c(t)]+ wr

t f
ω1[c(t)]2 (

x1(t)− zsag,1[c(t)]
)

−p1(t)

p4(t)ω2
2[c(t)]+ wr

t f
ω2[c(t)]2 (

x3(t)− zsag,2[c(t)]
)

−p3(t)


, (3.13)

where the boundary condition of the adjoint state at t f reads as

~P (t f )=



p1(t f )

p2(t f )

p3(t f )

p4(t f )


=



(
−∂Jter

∂x1

)
t=t f(

−∂Jter

∂x2

)
t=t f(

−∂Jter

∂x3

)
t=t f(

−∂Jter

∂x4

)
t=t f


=



−ω2
1[c(t f )]

(
x1(t f )− zsag,1[c(t f )]

)
−x2(t f )

−ω2
2[c(t f )]

(
x3(t f )− zsag,2[c(t f )]

)
−x4(t f )


. (3.14)

Note that the Pontryagin Hamiltonian Eq. (3.12) and the evolution equation of the adjoint

state Eq. (3.13) depend on the running cost and only the boundary condition Eq. (3.14) of

the adjoint state depends on the terminal cost function.
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3.1.1.4 Optimal control algorithm

I use a first-order standard gradient algorithm that is adapted to the control problem

under consideration. The optimization procedure is given by the following steps:

(i) First we choose an arbitrary initial control ramp c(t), such as a linear ramp

c(t)= t/t f for instance ;

(ii) We then deduce the trap dynamics by calculating the two trap motions zsag,1/2(t)
and the two trap frequencies ω1/2(t);

(iii) Using the Verlet method [289], we then solve Eq. (3.2) to simulate the dynamics of

the particles from the initial time t = 0 to the final time t = t f ;

(iv) We calculate the adjoint state ~P (t f ) at the end of the transport using Eq. (3.14)

and we propagate ~P (t) backward in time until t = 0 using Eq. (3.13) ;

(v) Finally, we add a first order correction to the control ramp by replacing the control

function c(t) by c(t)+δc(t), where the correction is δc(t) = ε (∂H p/∂c), ε being a

small positive constant.

At each iteration the procedure brings the final state closer to the target state and the

procedure repeats until convergence is achieved.

3.1.1.5 Experimental considerations

Experiments can be limited by the rate of change of a given control parameter, such as

a magnetic field for example. We bypass this problem by ensuring a smooth and more

robust variation of the control parameter at initial and final times where the first and

second derivative are imposed to be zero. For this we choose to impose

c(t)= c0 +
(
c f − c0

)[
10

(
u(t)

u f −u0

)3
−15

(
u(t)−u0

u f −u0

)4
+6

(
u(t)−u0

u f −u0

)5]
(3.15)

where u(t), the new control parameter, is a continuous function of time, starting

at time t = 0 with u0 = u(0) and ending at time t = t f with u f = u(t f ). This definition

naturally imposes the following boundary conditions for the control parameter

c(0) = c0 c(t f ) = c f

ċ(0) = 0 and ċ(t f ) = 0

c̈(0) = 0 c̈(t f ) = 0

(3.16)
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Note that a consequence of these boundary conditions imposed on c(t) is that similar rela-

tionships apply to all trap parameters such as trap positions zsag,1/2 and trap frequencies

ω1/2. The optimization procedure we have adopted therefore uses the function u(t), from

which we can calculate the optimal control parameter using Eq. (3.15). In section 3.1.1.4,

the control function, u(t), is replaced by u(t)+δu(t), where the correction is

δu(t)= ε
(
∂H p

∂c

)
×

(
∂c
∂u

)
. (3.17)

It can be notice that other flexible approaches have been introduced in the literature

to circumvent this problem [206]

3.1.1.6 Comparison between STA and OCT

As indicated in section 2.3.2, the STA protocol is based on the reverse engineering

technique. In this approach, the trajectory z(t) is chosen, based on the knowledge of a

boundary condition that this trajectory has to fulfill. In the equation mz̈ = F(z, ż, t; c),

the only remaining unknown function is then the control parameter c(t), and the reverse

engineering technique extracts its evolution from the imposed trajectory. It is therefore

important to understand that the key point of this technique is the ability to solve this

equation, either analytically or numerically. In the general case, we need at least the

same number of independent control parameters (currents, powers, voltages) as functions

to be controlled (trajectory, size, energy). Mathematically, this corresponds to solving n
equations with n unknowns. In the case of the control of two independent particles with

a single control parameter, only specific configurations would provide the possibility to

use the reverse engineering technique to design a transport for both species.

Unfortunately, this is not always the case experimentally. In a recent publication

[257], we proposed OCT to solve the transport of a BEC from an initial ground state

configuration to another. While STA techniques are able to solve the classical trajectory

of the BEC, it is nevertheless difficult to control the BEC’s shape oscillations using STA

in the case of a single control parameter. On the other hand, in cases where there are

many control parameters, although it may be possible in theory to express the different

quantities of interest according to independent control parameters and vice versa, it

may remain difficult to experimentally assess the impact of each control parameter. A

good example to consider is the case of experiments on atom chips, where the number of

possible wires and structures results in a large space of tunable parameters. Note that

to overcome uncertainty problems during characterization measurements, robustness

techniques have also been developed [215].
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3.1.2 Model of a thermal ensemble of N particles

The aim of this section is to provide theoretical tools to describe the dynamics of a gas

of N particles at temperature T where the average distance between the particles is

greater than the size of the wave packet characterized by the de Brolgie wavelength (see

section 1.3.2). Within this approach, each particle is considered as "billiard balls"[156].

3.1.2.1 Properties of a thermal cloud

In the classical thermodynamic equilibrium where atoms can be considered as point

particles, a thermal cloud is described by the Maxwell Boltzmann’s distribution. In the

case of a harmonic trap at time t = 0, the spatial and velocity density distributions are

Gaussian, following

n0(r)=
exp

(
−

3∑
i=1

r2
i

2σ2
r i (0)

)

(2π)3/2
3∏

i=1
σr i (0)

, (3.18a)

ñ0(v)=
exp

(
−

3∑
i=1

v2
i

2σ2
vi (0)

)

(2π)3/2
3∏

i=1
σvi (0)

, (3.18b)

where (r1, r2, r3)≡ (x, y, z) and (v1,v2,v3)≡ (vx,vy,vz). These distributions are character-

ized by the spatial and velocity widths

σr i (0)=
√

kBT
mω2

i
and σvi (0)=

√
kBT
m

, (3.19)

where T denotes the temperature of the cloud, kB is the Boltzmann constant, m is the

mass of the atom and ωi is the frequency of the trap in the direction i ∈ {x, y, z}. It can be

seen that the velocity distribution is always isotropic while the isotropy or anisotropy of

the spatial distribution depends on the angular trap frequencies. We note d0(r,v) the

total density probability in phase space

d0(r,v)= n0(r)× ñ0(v), (3.20)

which represents the probability to find a particle at position r with a velocity v.
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3.1.2.2 Scaling approach

As described in [159, 290], in the case of a pure harmonic trap, the phase space dynamics

of a cloud can be described by the set of coupled differential equations

b̈i(t)+ω2
i (t) bi(t)−ω2

i (0)
θi(t)
bi(t)

+ξ
(
θi(t)
bi(t)

− 1
bi(t)

∏
j b j(t)

)
ω2

i (0)= 0 , (3.21a)

θ̇i(t)+2
ḃi(t)
bi(t)

θi(t)+ 1
τ(t)

(
θi(t)− 1

3

∑
j
θ j(t)

)
= 0 , (3.21b)

where the scaling parameter bi(t) denotes the dilation factor of the cloud and where θi(t)
is an effective temperature in the ith direction. The variable ωi(t) refers to the tunable

external angular trap frequency while ωi(0) refers to its initial value, with which the

cloud has been created initially at equilibrium. This set of equations takes into account

two effects, first the mean-field interaction through

ξ= Emf

Emf +kBT
, (3.22)

where Emf is the mean-field interaction energy and T the temperature of the cloud. It

also takes collision effects into account through

τ(t)= τ0 ×
(∏

j
b j(t)

)
×

(1
3

∑
k
θk(t)

)
, (3.23)

where τ0 is the average time of collision at equilibrium. The mean-field energy Emf [160]

is defined as

Emf =
4π~2a Nn0(0)p

2 m
, (3.24)

where a is the s-wave scattering length, N the total atom number, m the atomic mass

and n0(0) the central initial density of the 3D distribution. The average time between

collisions at equilibrium τ0 = 5/(4γ) [159] is defined by the classical collision rate at the

cloud center γ, where

γ= 2p
2π

Nn0(0)σs

√
kBT
m

. (3.25)

In this last expression σs = 4πa2 is the scattering cross section for identical bosons.

The time evolution of the characteristic spatial and velocity widths of the phase space

density are described by the scaling laws

σr i (t)=σr i (0)×bi(t) , (3.26a)

σvi (t)=
√
σ2

vi (0)×θi(t)+σ2
r i (0)× ḃ2

i (t) (3.26b)
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In the collision-less regime we can neglect the mean-field interactions, yielding to

ξ→ 0 and τ0 →∞. We can then simplify the set of coupled differential equations Eq. (3.21)

which become

b̈i(t)+ω2
i (t) bi(t)=

ω2
i (0)

b3
i (t)

, (3.27a)

θi(t)= 1
b2

i (t)
. (3.27b)

It is also interesting to note that in the case of an isotropic trap the set of equations

Eq. (3.21) can be simplified and rewritten as

b̈i(t)+ω2
i (t) bi(t)=ω2

i (0)

(
1−ξ
b3

i (t)
+ ξ

bi(t)
∏

j b j(t)

)
, (3.28a)

θi(t)= 1
b2

i (t)
, (3.28b)

which holds for a thermal gas in all collisional regimes.

3.1.2.3 N-particle representation of a thermal cloud

In the collision-less case, another numerical approach based on the evolution of N
classical particles can be considered. The evolution of each particle is described by

Newton’s law

mr̈=−~∇Uext , (3.29)

where Uext denotes the external potential. Each particle starts with a specific initial

condition
{
r(0),v(0)

}
, and is associated with a weight given by the probability distribution

d0
[
r(0),v(0)

]
. Numerically, these initial conditions can be defined on a uniform grid along

the three directions r i ∈ {x, y, z}, both for the position and velocity, following

r i,m(0)= r i,min + (m−1)×δr i for m ∈ {1, ..., M} , (3.30)

vi,p(0)= vi,min + (p−1)×δvi for p ∈ {1, ...,P} , (3.31)

where δr i = (r i,max − r i,min) / (M−1) and δvi = (vi,max −vi,min) / (P −1) are the step sizes

of the spatial and velocity grids. Here, r i,min/max (vi,min/max) are the minimum and

maximum positions (velocities) in the direction r i ∈ {x, y, z}. M (P) is the number of

position (velocity) grid points.

In order to avoid the result of the simulation to be affected by the sampling method

as shown in Fig. 3.1(a), we randomize the initial position and velocity of each particle

61



CHAPTER 3. OPTIMIZED MANIPULATION OF THERMAL ENSEMBLES

Figure 3.1: (a) Left: Biased sampling. The black points denote the position of each particle
in phase space. They are equally distributed along the spatial and velocity axis. (b) Right:
Randomized sampling. The black points denote the randomized position of each particle
in phase space. They are non-equally distributed along the spatial and velocity axis. The
empty black circles denote the previous biased configuration of Panel (a).

as shown in Fig. 3.1(b). To this end, we introduce random parameters which sample the

initial coordinates around a uniform distribution.

Initially if the grids are not well chosen, with too large grids for instance, the biased

sampling technique can propagate particles with a zero total density probability and

the effective number of particles useful for the simulation is not optimized. A more

efficient way to simulate the dynamics of the particles is to randomly select each particle

according to the weight of its total density probability distribution. In this configuration,

a hypothetical particle with a zero total density probability cannot be chosen and all

particles contribute to the simulation. The algorithm procedure adopted follows the steps

below:

• (i) Choose a particle in phase space : {r i,m,vi,p}.

• (ii) Solve the ODE for the trajectory of the particle at each time steps with ini-

tial conditions {r0,v0} = {r i,m,vi,p}. At time t, the particle in phase space has the

coordinates {r i,m(t),vi,p(t)}.

• (iii) Reconstruction of the phase space density at each time step t. The initial

particle at position {r0,v0} with the weight d0(r0,v0) is then at position {r t,vt} with

the weight dt(r t,vt)= d0(r0,v0).
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3.2 Applications

3.2.1 Dual-source input state optimization

The aim of the Stanford experiment is to test the Universality of Free Fall (UFF) with

two isotopes of Rubidium, 87Rb and 85Rb [37, 125, 261, 262]. Other groups pursue this

goal with different atoms, 87Rb and K [38, 41, 81], 87Rb and Yb [40] or with identical

atoms in different internal states [83, 124]. For all these cases, the initial co-location

of the two test masses must be insured at a high level. Recently, the Stanford group

suppressed the relative phase shifts associated with non-constant gravity gradients

coupling to initial position and velocity offset to below 10−13 in the gravity gradient

systematic errors with the Frequency Shift Gravity Gradient (FSGG) compensation

method [37], an idea initially proposed in Ref. [43]. This technique was also successfully

applied in the group of G. M. Tino [44]. For competitive UFF tests at 10−15, however,

the co-location uncertainty must be at the level of the µm and the differential velocities

offset at the µm.s−1 level. This motivates the treatment developed below to prepare the

dual-source in a UFF test-compatible initial state.

3.2.1.1 Experimental configuration

The complete experimental setup has already been described in various PhD theses such

as Refs. [261, 262, 291]. For the sake of simplicity we only present in Fig. 3.2 a scheme of

the experimental realization.

The device is defined by a vertically oriented quadrupole trap characterized by a

quadrupole gradient ∇B = A, and by two pairs of horizontal coils to create a rotating bias

magnetic field B0, leading to a time-orbiting potential (TOP) trap designated by VTOP .

The potential associated with the TOP magnetic field BTOP is given by

VTOP =~µ ·~BTOP , (3.32)

where ~µ is the magnetic dipole moment of the atom given by the product of the Zeeman

sublevel number, mF , the Landé factor gF , and the Bohr magneton µB, with µ= mF gFµB.

We assume that the magnetic dipole remains aligned with the rotating magnetic field

and therefore

VTOP =µBTOP . (3.33)

The total TOP trap [292] created by the sum of the bias magnetic field B0 and the

quadrupole magnetic field Bquad = A
√
ρ2 +4z2 has a cylindrical shape, where the two
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Figure 3.2: Stanford bottom of fountain setup. The black circle denotes the vertically
oriented quadrupole trap responsible for the quadrupole gradient ∇B = A. The orange
lines and circle denote the two sets of horizontal coil pairs responsible for the rotating
bias magnetic field B0. In both graphs the upper trap denotes the initial trap along the
radial direction (left panel) and vertical direction (right panel). The two clouds of 87Rb (in
blue) and 85Rb (in red) are depicted in their initial trap configuration (A = 10.3 G.cm−1

and B0 =1.2 G, top) and in their final configuration (A = 10.3 G.cm−1 and B0 = 6.9 G,
bottom). While the bias field B0 increases, both clouds fall along the direction of gravity
(black arrow) and the trap frequencies decrease.

characteristic directions are indicated by the variables ρ for the radial direction and by

z for the vertical direction. In a pure quadrupole trap, the minimum of the trap is at

zero magnetic field and consequently Majorana spin flips [293] occur, causing atomic

losses. To avoid this problem, a bias magnetic field is switched on, leading to a minimum

trap translation of B0 /A position where the atoms would be ejected from the trap. The

direction of the bias magnetic field is rotated and applied in a non-adiabatic manner

such that the atoms are trapped in a non-zero magnetic field. Atoms passing through the

so-called circle-of-death at rdeath = B0 /A are then ejected out of the trap. In 1995, in the

group of E. Cornell, this setup led to the creation of the first BEC [154].

The experiment sequence begins with the creation of a cold Rubidium cloud, where
87Rb is prepared in |F = 2,mF = 2〉 (gF = 1/2) and 85Rb is prepared in |F = 3,mF = 3〉
(gF = 1/3) at a temperature of few micro-Kelvin (we choose T=1 µK for the simulation), in

a fixed trap defined by a quadrupole gradient of 10.3 cm/G (±5%) and an adjustable bias

rotating field of 1.2 G. While maintaining the quadrupole gradient constant, the rotating

bias magnetic field is tuned, from 1.2 G to 6.9 G to transport (only along the vertical axis)
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the two clouds in lower trap frequencies. This decompression induces a size oscillation of

the atomic clouds, which will be used later for the DKC technique to optimize the launch

in a blue detuned lattice. The next steps, which are not discussed here, are the launch

in the 10 meter long tube in a vertical blue detuned lattice, the DKC technique with a

vertical dipole trap, the interferometry sequence and the detection at the bottom of the

tower. The details of the sequences can be found in [262]. However, the following case

study will be limited to the transport and shape optimization of the two species prior to

the vertical launch.

3.2.1.2 Trap configuration

It can be shown that the total TOP magnetic field is given by

BTOP = 1
2π

√
B2

0 +B2
quad

∫ 2π

0

√
1+βcos(τ) dτ , (3.34a)

= 1
π

√
B2

0 +B2
quad

[√
1−β E

( −2β
1−β

)
+

√
1+β E

(
2β

1+β
)]

, (3.34b)

where

β= 2AB0ρ

B2
0 +B2

quad

, (3.35)

and E indicates the complete elliptic integral. More details can be found in [262, 292,

294, 295].

In the experimental configuration, changing the control parameter B0
2 only induces

a classical motion of the atoms along the vertical direction and maintains the classical

radial degrees of freedom unchanged. In parallel with the classical motion, the change of

the control parameter induces a cloud size excitation in both directions. In the following,

the classical trajectory of each cloud is described by the evolution of an equivalent

classical particle whose position is given by the average position of the cloud

〈z〉 =
∫ ∞

−∞
z n0(z)dz . (3.36)

At the position ρ = 0 the total TOP magnetic field reads

BTOP

∣∣∣
ρ=0

=
√

B2
0 +4A2z2 , (3.37)

leading, in the presence of gravity, to the total potential given by

VTOP (z)
∣∣∣
ρ=0

=µ
√

B2
0 +4A2z2 +m g z . (3.38)

2Here we consider the case where the parameter is not changed adiabatically
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The classical motion in the trap is given by the Newton’s law

mz̈
∣∣∣
ρ=0

=− 4µA2z√
B2

0 +4A2z2
−mg. (3.39)

A Taylor expansion close to the minimum of the potential gives valuable information

such as the expression of the position of the minimum of the trap, zsag, the frequency of

the trap, ωz, and the characteristic cubic length L3 defined by

VTOP (z)=VTOP (zsag)+ (z− zsag)2

2

(
d2VTOP

dz2

)
zsag

+ (z− zsag)3

6

(
d3VTOP

dz3

)
zsag

(3.40a)

=VTOP (zsag)+ 1
2

mω2
z

(
1+ z− zsag

L3

)
(z− zsag)2 , (3.40b)

The different quantities are given by

zsag[B0]= mgB0

2A
√

4A2µ2 −m2 g2
, (3.41a)

ωz[B0]= (4A2µ2 −m2 g2)3/4

µ
√

2AB0m
, (3.41b)

L3[B0]=
√

4A2µ2 −m2 g2

18AB0 gm

(
B2

0 +
m2 g2B2

0

4A2µ2 −m2 g2

)
. (3.41c)

Note that in the general case, the mass-dependence of the gravitational sag, zsag,

leads to a displacement of the trap minima for different species. The term (z− zsag)/L3

denotes the strength of the cubic term and serves to quantify the limit of the harmonic

trap approximation. If the amplitude oscillation, z− zsag, also also referred to as offset in

the following, is small enough, i.e. for

∣∣z− zsag
∣∣¿ L3 , (3.42)

the trajectory of the particle is limited to the harmonic part of the trap and can be

described by the equation

z̈+ω2
z[B0]

(
z− zsag[B0]

)= 0, (3.43)

If the strength of the cubic term is not negligible, the trajectory of the particle is governed

by

z̈ =− 4µA2

m
√

B2
0 +4A2z2

z− g. (3.44)
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The initial and final configurations of the trap are shown along the vertical axis in

Fig. 3.3a and Fig. 3.3b, respectively. The blue and red lines indicate the trap seen by 87Rb

and 85Rb, respectively. Following the same color code, the curved dashed lines show the

harmonic approximation and the positions of the minima of the two traps are highlighted

by the vertical dashed lines. Experimentally, the motion of the cloud is very limited

along the radial direction, and since the trap is harmonic over a wide range, as shown in

Fig. 3.4, we limit the Taylor expansion to the second order. Along this axis, the motion of

the cloud is described by Newton’s equation

ρ̈+ω2
ρ[B0] ρ = 0 , (3.45)

where ωρ denotes the radial angular trap frequency

ωρ[B0]= (4A2µ2 −m2 g2)1/4 (4A2µ2 +m2 g2)1/2

4µ
√

mAB0
. (3.46)
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Figure 3.3: Representation of the two traps along the vertical direction at the initial (a)
and final position (b). The blue and red lines denote the trap seen by 87Rb and 85Rb,
respectively. Following the same color code the harmonic approximation of both traps at
both positions are shown in dashed lines. The positions of the minima of the traps are
highlighted by vertical dashed lines.

Finally, Fig. 3.5 shows the evolution of the trap frequencies in both directions for both

species as a function of the bias magnetic field. The change of the control parameter B0

leads to a trap decompression. In Refs. [188, 291] this effect is used to reduce the cloud’s

kinetic expansion which will be further discussed in section 3.2.1.4.
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Figure 3.4: Representation of the two traps along the radial direction at the initial
position (a) and final position (b). The blue and red lines denote the trap seen by 87Rb
and 85Rb, respectively. Following the same color code the harmonic approximations are
shown as superimposed dashed lines. Both traps are centered at ρ = 0.

1 2 3 4 5 6 7

6

8

10

12

14

16

B0 (G)

ν z
(H

z)

a

1 2 3 4 5 6 7
3

4

5

6

7

8

9

10

B0 (G)

ν ρ
(H

z)

b

Figure 3.5: Evolution of the trap frequencies as a function of the bias magnetic field
along the vertical direction in panel (a) and along the radial direction in panel (b). The
blue line is for 87Rb and the red dashed line for 85Rb.

3.2.1.3 Optimal transport in the harmonic trap approximation

The OCT technique introduced in section 3.1.1 is now applied to study the vertical

transport of two classical particles of different mass in the harmonic trap approximation.

To this end, we fix the total duration of the transport to 150 ms and compare the results

of different protocols, where the weight of the running cost function wr takes the values:

0, 10−3, 10−2 and 10−1. The case wr = 0 denotes a protocol where nothing is done to limit
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the transient energy of the system. Fig. 3.6 shows the OCT results for different classical

particles trajectories, z87Rb in blue and z85Rb in red, together with the minima zsag of

their corresponding trap potentials (dashed). The impact of the transient excitation is

shown in the left panel of Fig. 3.7. As expected, the offset between the particle position

and the trap minimum decreases for large values of wr. In the panels a, b and c of Fig. 3.7

we compare the offset with a fixed value of wr (straight lines) to wr = 0 (dashed lines).

Without optimization of the transient energy, the maximum offset reaches -1.2 mm while

for wr = 10−1 the maximum offset has been divided by 2. To validate that the harmonic

approximation hold for the different protocols, it is necessary to compare the offset to

the cubic length of the trap given in Eq. (3.41c). The right panel of Fig. 3.7 shows that

even though the oscillation amplitude is reduced, the harmonic criterion Eq. (3.42) is not

fulfilled.
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Figure 3.6: Result of the OCT protocol for the transport in 150 ms of the two species. The
evolution of the two particles is shown in colored solid lines as well as their corresponding
trap minima in dashed colored lines, for different weights of the running cost function:
(a) wr = 0, (b) wr = 10−3, (c) wr = 10−2, (d) wr = 10−1. The larger the values of wr are, the
smaller the offset between the particle position and the trap position of each particle is.

To solve this problem, it would be natural to increase the weight of the running
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Figure 3.7: Result of the OCT protocol for the offset and the strength of the cubic term.
The left column shows the offset between the position of each particle to its corresponding
trap minimum for a 150 ms transport with different weights of the running cost function.
The offset is shown in colored straight lines and compared to an OCT protocol without
optimization of the offset (wr = 0), shown as dashed colored lines. The right column
depicts the strength of the cubic term for the corresponding transport. (a-d) wr = 10−3,
(b-e) wr = 10−2, (c-f) wr = 10−1. With increasing value of wr, the offset, and with that the
strength of the cubic term, is decreasing.

cost function. Figures Fig. 3.8 and Fig. 3.9, respectively, represent the position and

velocity offsets of the two particles at the end of the transport as a function of the OCT

iteration steps. For wr = 10−3, in panel (a), the offset in position is less than ±1µm with

a velocity offset less than 7µm/s, while for wr = 10−1, in panel (c), the position offset is

approximately ±25µm for the two species with a final velocity offset of -0.17 mm/s (for
87Rb) and -0.48 mm/s (for 85Rb). We can see here that the increase of the weight, wr,
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unfortunately leads to a final state out of equilibrium because the OCT algorithm then

prioritizes the minimization of the transient excitation energy, while missing the final

target state at t=150ms.
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Figure 3.8: Influence of the weight of the running cost function on the final position offsets
as a function of the number of OCT iterations. In colored straight lines: (a) wr = 10−3,
(b) wr = 10−2, (c) wr = 10−1. The dashed colored lines depict the case where wr = 0. The
same quantities are shown in the left and right panels, but with different scales. The
increase of the weight, wr, leads the OCT algorithm to miss the final equilibrium states,
the particles are displaced from their corresponding trap minimum.

Increasing the weight of the running cost function has another detrimental impact.

Experimentally, one has to take into account the maximum switch on/off time of the

control parameter for the implementation of such protocols. In Fig. 3.10 we show the

different evolutions of the optimal control parameter B0 for the different values of wr.
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Figure 3.9: Influence of the weight of the running cost function on the final velocity
as a function of the OCT iteration number. In colored straight lines: (a) wr = 10−3, (b)
wr = 10−2, (c) wr = 10−1. The dashed colored lines depict the case where wr = 0. The same
quantities are shown in the left and right panels, but with different scales. The increase
of the weight, wr, leads the OCT algorithm to miss the final equilibrium states, the final
velocities of the two particles are non-zero.

The optimization of the transient energy causes a sudden change of the control parameter

at the beginning and at the end of the protocol. Similar effects have been shown in [296].

Due to experimental limitations, such sudden changes are detrimental and have to be

avoided to insure the robustness of the ramp3.

A solution to limit the transient excitation energy and to avoid a sudden change in

3The rate change of a magnetic field depends on the experimental setup
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the control parameter B0 is to increase the total ramp time. We excluded this solution

because of the increase of cycle time of the experiment. The fact that it is impossible

to find a smooth ramp for the control parameter in time within the harmonic criterion

within a 150 ms ramp implies the necessity of designing OCT protocols in the real trap

configuration and is the subject of the next section.
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Figure 3.10: Time evolution of the control parameter B0(t) for the different weights wr
of the running cost function. The increase of the weigh, wr, leads to fast change of the
control parameter.

3.2.1.4 Optimal transport in the real trap configuration

In the actual trap configuration, it is necessary to rewrite the different equations of

the OCT protocol derived in section 3.1.1. The dynamics of the two particles along the

vertical axis are given by

z̈1 =− 4µ1A2z1

m1

√
B2

0 +4A2z2
1

− g , (3.47a)

z̈2 =− 4µ2A2z2

m2

√
B2

0 +4A2z2
2

− g . (3.47b)
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In the previous section, the OCT protocols had to restrain the offset such that the har-

monic approximation is feasible. However, in the following, we take the actual trap

configuration into account, such that the only target of the OCT protocol is the minimiza-

tion of the final energy of the classical system by bringing the two particles at rest in

their respective trap minimum. The cost function then reads as

Jtot = Jter = µ1

m1

√
B2

0 +4A2x2
1 + g x1 + 1

2
x2

2 +
µ2

m2

√
B2

0 +4A2x2
3 + g x3 + 1

2
x2

4 . (3.48)

The Pontryagin Hamiltonian, H p = ~P · ~̇X , is then

H p =p1x2 − 1
m1

4µ1A2√
B2

0 +4A2x2
1

x1 p2 − g p2

+ p3x4 − 1
m2

4µ2A2√
B2

0 +4A2x2
3

x3 p4 − g p4 ,
(3.49)

where the evolution of the adjoint state is given by

~̇P (t)=



ṗ1(t)

ṗ2(t)

ṗ3(t)

ṗ4(t)


=



−∂H p

∂x1

−∂H p

∂x2

−∂H p

∂x3

−∂H p

∂x4


=



4µ1A2B2
0

m1
(
B2

0 +4A2x2
1
)3/2 p2(t)

−p1(t)

4µ2A2B2
0

m2
(
B2

0 +4A2x2
3
)3/2 p4(t)

−p3(t)


, (3.50)

with the following boundary condition at t f

~P (t f )=



p1(t f )

p2(t f )

p3(t f )

p4(t f )


=−



(
∂Jter

∂x1

)
t=t f(

∂Jter

∂x2

)
t=t f(

∂Jter

∂x3

)
t=t f(

∂Jter

∂x4

)
t=t f


=



− 4µ1A2

m1

√
B2

0 +4A2x2
1(t f )

x1(t f )− g

−x2(t f )

− 4µ2A2

m2

√
B2

0 +4A2x2
3(t f )

x3(t f )− g

−x4(t f )


. (3.51)

Out of Eqs. (3.4), (3.47), (3.50), (3.51) and the OCT protocol steps discussed in sec-

tion 3.1.1.4 one can find the optimized evolution of the control parameter B0(t) for the

real trap configuration.
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3.2.1.5 Classical trajectories

We are now interested in the impact of the OCT protocol in the realistic trap configuration

case for different total times. Fig. 3.11 shows the evolution of the control parameter B0(t)
for different final times of the ramp. The black dashed line shows the evolution of the

control parameter for a final time of 1 s typical for an adiabatic dynamics. It is compared

to three transport times, t f = 200 ms (red curve), t f = 150 ms (blue curve) and t f = 100 ms

(gray curve). The decrease of the duration of the transport ramp results in an increase in

the transient kinetic energy, and results in an oscillation of the control parameter whose

number of oscillations and the amplitude depend on the duration of the ramp.
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Figure 3.11: Time evolution of the control parameter B0(t) for different transport dura-
tions. The horizontal time axis is rescaled to one using τ= t/t f . The black dashed line
represents a transport in 1 s, a typical time associated with an adiabatic dynamics. The
reduction of the total time of the ramp leads to fast oscillation of the control parameter.
Longer ramps lead to smooth evolution of the control parameter. The apparent complexity
of the ramp increases with fast ramps.

It can be noted that the fastest the ramp is the more abrupt is the change of the

control parameter. The impact of the non-harmonic part of the trap on the change of the
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control parameter is highlighted by the difference between the black dashed curve of

Figure 3.10 and the blue solid curved of Figure 3.11 where both control ramp have been

calculated for a transport time of 150 ms. The solution find out with the OCT protocol

is very similar but the amplitude oscillation is modified, in a non predictable way, to

compensate for the non-harmonic trap behavior shown in Figure 3.3.
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Figure 3.12: Result of the OCT protocol for the transport of two particles in the real
trap. Panels (a-d): Position of the two particles in solid lines and their corresponding
trap trajectories in dashed lines. Panels (e-h): Offset between the position of the particle
and the trap minimum. The transport times are (a,e): t f = 1 s, (b,f): t f = 200 ms, (c,g):
t f = 150 ms, (d,h): t f = 100 ms. In the same way than for the figure Fig. 3.11, fast ramps
lead to an increase of the offset and the number of oscillation in the trap.
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Figure 3.12 shows the impact of the different ramp duration on the trajectory of the

particles. The left column shows the trajectories of the particles in solid colored lines

and in dashed colored lines the corresponding trajectories of the trap minima. The right

panel represents the offset between the positions of the particles and the minimum of

the corresponding trap. For all cases, the OCT protocol brings the two particles from

their initial position to their final position at rest. A comparison between Fig. 3.12 panel

(c) and Fig. 3.6 panel (a) gives a quantitative idea of the impact of the anharmonic term.

In both cases the transport is performed in 150 ms with wr = 0.

3.2.1.6 Size excitations

Depending on the transport duration, the two thermal clouds do not follow the same

trajectory. The phase space evolution, described with a N-particles simulation, can be

optimized by modifying the final time of the ramp. In this section I study the impact of

the final time of the ramp on the final phase space distribution4. Fig. 3.13 and Fig. 3.14

show the distributions in phase space of the two thermal clouds along the vertical

direction denotes by z and the radial direction denotes by ρ, for different final times of

the protocol and at different times of the transport, τ = t/t f = 0, 0.25, 0.5, 0.75 and 1.

In each panel the horizontal axis represents the velocity in mm/s and the vertical axis

represents the position in mm denotes by z and ρ for simplicity. The horizontal dashed

lines represent the initial and final positions of the two clouds while the vertical dashed

line represents the zero velocity axis. In Fig. 3.13 the two initial positions are different

but are not distinguishable since ∆zsag(0)= 33µm. They are distinguishable at the end

of the transport, with ∆zsag(t f ) = 188µm. Along the radial direction, in Fig. 3.14, the

clouds are collocated at the same position and the change of the control parameter only

rotates the ellipsoid in phase space.

Due to the increase of the transient energy for fast ramps and to the non-harmonic

shape of the trap, cloud size expansions are maximized for fast transports. This can be

understood by looking at the trap (see Fig. 3.3), where the gradient of the potential is

smaller on the left side and stronger on the right side. For large offsets (see the right

panel Fig. 3.12), the clouds are collocated at positions where, on average, the confinement

is weaker and therefore the clouds expand more, compared to cases where the clouds

move near the minimum of the trap.

The strategy used to maximize the cloud launch efficiency in the optical lattice is

therefore not only to bring the clouds at rest, but also to align the longest (shortest)
4OCT protocol is applied for different final time of the ramp as shown before.
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Figure 3.13: Evolution of the distribution of the two thermal ensembles in phase space
along the vertical axis z for different total durations of the protocol at different moments
in time. In each plot, the vertical axis is the position z and the horizontal axis is the
velocity vz. From left to right, the results correspond to different values of t f and from top
to bottom to different values of τ= t/t f . (a-e): t f = 1 s, (f-j): t f = 200 ms, (k-o): t f = 150 ms,
(p-t): t f = 100 ms. The first line corresponding to τ= 0 shows the initial distribution. The
second to fourth lines represent the evolution of the two densities at 25%, 50% and 75%
of the total time of the transport. The last line corresponding to τ= 1 shows the final
distribution. In each panel the two horizontal top lines denote the initial average position
of the two clouds (not distinguishable) and the two bottom horizontal lines highlight
the final target positions of the two clouds. The vertical dashed line represents the zero
velocity axis.
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Figure 3.14: Evolution of the distribution of the two thermal ensembles in phase space
along the radial axis ρ for different total duration of the protocol at different moments in
time. In each plot, the vertical axis is the position ρ and the horizontal axis is the velocity
vρ. From left to right, the results correspond to different values of t f and from top to
bottom to different values of τ= t/t f . (a-e): t f = 1 s, (f-j): t f = 200 ms, (k-o): t f = 150 ms,
(p-t): t f = 100 ms. The first line corresponding to τ = 0 shows the initial distribution.
The second to fourth lines represent the evolution of the two densities at 25%, 50% and
75% of the total time of the transport. The last line corresponding to τ = 1 shows the
final distribution. In each panel the horizontal dashed lines denote the initial and final
average positions of the two clouds (identical) and the vertical dashed line represents
the zero velocity axis.
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ellipsoid axis in phase space along the spatial (zero-velocity) axis at the end of the

transport in order to minimize the expansion rate of the clouds. Experimentally, after

launching the two clouds into the optical lattice, it is possible to apply a dipole trap

acting mainly along the radial direction. More details about this process can be found

in [165].

In this configuration, we want the transport to minimize the expansion rates of the

clouds along the z and ρ axis in order to avoid atomic losses in the dipole trap, where

the size is limited to a few mm at a time when the clouds have spread during some

tens of ms. Fig. 3.15 shows the final characteristic sizes σz/ρ(t f ) and σvz/ρ (t f ) of the two

thermal ensembles as a function of the final time t f . The left panel is for the vertical

direction z and the right panel for the radial direction ρ. The first row is for the position

and the second row for the velocity.

For the total duration t f = 140 ms, the velocity distribution along z reaches a mini-

mum for both species, with σvz ' 2.4 mm/s, equivalent to a 1D temperature expansion5 of

59 nK for both species. Along the radial direction the expansion velocity of the clouds are

then limited to σvρ ' 4.6 mm/s and 4.7 mm/s for 87Rb and 85Rb, respectively, equivalent

to expansion temperatures of 225 nK and 234 nK for these two species. The resulting

expansion temperatures in 3D are T = 170 nK and 176 nK for 87Rb and 85Rb, respectively.

This can be compared to the case of a transport performed in 100 ms, where the expan-

sion velocity is maximum along the vertical direction, with σvz = 7.5 mm/s for 87Rb and

σvz = 8 mm/s for 85Rb, equivalent to 1D expansion temperatures of 595 nK and 657 nK,

respectively. In the radial direction we obtain for t f = 100 ms the sizes σvρ = 6.4 mm/s for
87Rb and σvρ = 6.8 mm/s for 85Rb, equivalent to 1D expansion temperatures of 431 nK

and 477 nK, respectively. The resulting temperatures in 3D would then be T = 486 nK

and T = 537 nK for 87Rb and 85Rb, respectively.

These results have to be compared with the initial temperature of the system,

T = 1µK. In the case of the final duration t f = 140 ms, the expansion temperature

of the two species is reduced by a factor 6.

Beyond this reduction of the expansion temperature of the two species, the great

advantage of the OCT protocol is to engineer a ramp aimed at optimizing the final

quantum state of the two species at their final position before the launch in the 10-meter

tower with the help of an optical lattice. In the context where one of the limitations to

the accuracy of the atom interferometer is the initial conditions, OCT is an interesting

tool to increase the robustness of the state preparation. In the future, other boundary

5The temperature is calculated in 1D according to kBT = mσ2
v [139].
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Figure 3.15: Characteristic sizes σz/ρ(t f ) and σvz/ρ (t f ) of the two thermal ensembles as
a function of the ramp time t f . The numerical simulation results are depicted by the
squares and circles for different final times of the OCT ramp. The different curves are
the result of a spline interpolation. The blue and red colors stand for 87Rb and 85Rb,
respectively.

conditions could also be implemented. To optimize the launch of the two species in the

optical lattice it could be required that both species end up with a specific final velocity.

The objective would be first to be in resonance with the upper lattice and thus avoid

atomic losses. In a second time, since the two species do not feel the same acceleration

at the launch, a well chosen final differential velocity could compensate this effect and

lead to identical trajectories. It is of particular interest in the context of testing the

Universality of Free Fall where gravity gradient between to test masses induced a

differential acceleration [37]. In the future OCT offers the possibility to design a ramp

to target the desired phase space distributions in addition to the classical requirement
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as already demonstrated theoretically in the case of the transport of a Bose-Einstein

condensate away from an atom chip surface [257]. Within the framework of multiples

initial states preparation OCT is a key tools to engineer robust sequences.

3.2.1.7 Conclusion

In summary, I have presented a detailed implementation of OCT protocols to solve

the problem of the transport of two non-interacting species, first in the case of a pure

harmonic trap configuration, where the impact of the running cost function has been

shown, and then in a real trap configuration. To increase the duty cycle of the experiment,

short transport ramps are required and the real trap configuration has to be considered.

Based on a N-particle simulation, I highlighted the possibility to design the phase space

distribution in real experimental configurations. In the context of engineering optimized

input state for precision measurements, OCT protocols is a key tool. Indeed, in the case

of realistic traps, I have demonstrated (i) the possibility to bring two independent atomic

ensembles at rest in their corresponding trap minimum, ∆zX = zX − zsag,X < 1µm X={85Rb,87 Rb
}
, distant by ∆zsag = zsag,87−zsag,85, without residual classical velocities, żX <

1µm.s−1, X= {85Rb,87 Rb
}

and (ii) the possibility to reduce the temperature expansion

of the two clouds from T = 1µK to approximately T = 170 nK. In the past, without the

implementation of OCT ramp, the Stanford team achieved an expansion temperature

of a 87Rb BEC as low as 50 pK in 2D [165]. The implementation of OCT could bring the

possibility to decrease even further this expansion temperature by the optimization of

the third axis dynamics. A specific change of the control parameter, calculated with the

OCT algorithm, would for example emphasize the Q1 excitation mode, particularly useful

to collimate two different axis as described in chapter 2.

The impossibility to design protocols limiting the classical transient energy and to

constrain the center-of-mass of the two clouds close to their respective trap minimum for

fast ramps led to necessity of considering the real trap configuration. This situation is

usually avoided as much as possible because anharmonicities directly impact the colli-

mation of the atomic ensembles, collimation required for long time atom interferometry.

The result of the OCT ramp with a total time of 140 ms shows the possibility to enhance

the interferometry time available by decreasing the expansion temperature by a factor

of 6. Even if the impact of the anharmonicities is higher than for longer ramps, the

collimation effect is maximized for this particular ramp time.
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3.2.2 Thermal cloud phase-space density optimization by
atomic lensing

Usual methods to increase the phase space density (PSD) of an atomic cloud rely on

a reduction of its temperature, i.e. the kinetic energy of the system. Magnetic optical

trapping combined with optical molasses allow for dramatic cooling of cold atomic

samples. In this section, we explore the possibility to increase the PSD even further by

shrinking the size of the molasses-cooled ensemble. The idea proposed here is to engineer

sequences combining cooling6 with focusing of the cloud sizes. In the context of precise

measurements with Bose-Einstein condensates, an increase of the initial phase-space

density of the gas before evaporative cooling leads to an increase of the atom number in

the BEC and therefore to a better sensitivity of the interferometer.

3.2.2.1 Principle

We consider a cloud of N = 107 atoms of Rubidium-87 initially at rest in a spherical trap

close to the recoil limit temperature T = 2µK. The purpose of this study is to increase

the phase space density of the cloud by implementing the specific sequence shown in

Fig. 3.16.

a

σr(0)

σr(tf )

σr

-∞ t0 texp tlens tf
t

Initial Equilibrium Expansion Lens Expansion

b

x

p
c d e

Figure 3.16: Diagram of principle for the atomic lensing effect. (a) Trapping and expan-
sion sequence. (b-e) Corresponding phase space dynamics.

6Here the term cooling refers to the technique of Doppler cooling and Sub-Doppler cooling introduced
in the first chapter.
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The blue curve in panel (a) shows the evolution of the characteristic spatial size of

the cloud σr(t) in a 3D isotropic trap for different trapping configurations separated with

vertical dashed lines. Initially, the cloud is at equilibrium in the trap with an initial size

σr(0), at time t = t0. The trap is then switched off and the cloud expands until t = texp,

when the trap is switched on again. In this trap, the cloud is out of equilibrium and

its size oscillates. At a specific time, denoted by tlens, the trap is switched off again.

The time tlens is chosen such that σ̇r(tlens) < 0, to spatially compress the cloud and

reach a minimum size at time t = t f . This step is called “lens” in analogy with classical

optics where a beam can be focused to a specific position after a converging lens. At this

time, highlighted with a red horizontal dashed line, the cloud is focused, and its spatial

extension, denoted by σr(t f ), is smaller than the initial one σr(0).

We show in panels (b-e) the characteristic phase space evolution of the cloud during

the different steps. The cloud, initially at rest, is represented by a circle in panel (b).

The same circular shape is represented in dashed lines on the two panels (c) and (e).

During the free expansion, an atom starting initially at a position r0 with a momentum

p0 moves freely in the direction given by the sign of p0, resulting in an elongation of the

distribution, leading to the ellipsoid shape shown in panel (c). The trap in then switched

on again and the atoms oscillate in the trap. For harmonic traps, the ellipsoid simply

rotates in phase space, as shown in panel (d). For an adequate timing, t = t f , one obtains

an alignment of the longest axis of the ellipsoid with the momentum axis, as shown in

panel (e). At this stage, the cooling techniques are applied [151, 152] in order to reduce

the cloud temperature to its initial value and to recover the same momentum width

than in (b), σp(t f )=σp(0). In the case where the cooling is fast enough (ellipsoid shape

hardly changed), the cloud phase-space density, features a smaller spatial extension,

σr(t f )<σr(0) for the same momentum width: its phase space density has increased. This

situation is represented by the red filled ellipsoid in panel (e). The maximum gain in

phase space density is then given by the ratio of the initial volume to the final volume of

the cloud

Gmax =
σ3

r (0)
σ3

r (t f )
. (3.52)

One could repeat this step multiple times until saturation of this gain.

The optimization of the phase space density is first semi-analytically studied in the

case of a harmonic truncated trap and then validated in the case of a realistic Gaussian

(dipole) trap, where the effects of anharmonicities is present. In both cases we discuss

the impact of the sequence on atomic losses to asses the overall efficiency of the method.
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The total gain is then rewritten as

G =P · Gmax , (3.53)

where P denotes the fraction of atoms kept during the process.

3.2.2.2 Truncated harmonic trap approximation

In an optical trap, the dipole potential

Udip(r)=U0 · I(r). (3.54)

is proportional to the intensity I(r) of the laser field, with a proportionality factor U0

which depends on the optical properties of the atom [224]. The intensity

I(r)= 2P
πw2

0
exp

[
−2r2

w2
0

]
(3.55)

is a function of the waist w0 and of the power P of the laser beam. The proportionality

factor for alkaline atoms illuminated by an off-resonant laser reads

U0 =−πc2

2

[
2ΓD2

ω3
D2

(
1

ωD2 −ωL
+ 1
ωD2 +ωL

)
+ ΓD1

ω3
D1

(
1

ωD1 −ωL
+ 1
ωD1 +ωL

)]
(3.56)

and depends on the natural line widths (FWHM) ΓD1 and ΓD2 of the D1 and D2 lines of

Rubidium-87[224]. ~ωD1 and ~ωD2 denote the corresponding transition energies and ~ωL

denotes the photon energy addressed by the laser and characterized by its wavelength

λL = 2πc/ωL, where c denotes the speed of light in the vacuum.

We first approximate this trapping potential by a truncated harmonic trap character-

ized by the trap depth

Udepth =−2U0 P
πw2

0
, (3.57)

the trap frequency

ω0 =
√
−8U0 P

mπw4
0

, (3.58)

and the truncation radius

rR =
√

2Udepth

mω2
0

. (3.59)

The Fig. 3.17 represents the real trap potential (blue solid line) and its truncated

harmonic approximation (red dashed line). For this study we set the laser properties to
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Figure 3.17: Trap configuration: The dipole trap is represented in blue. The red dashed
line shows the harmonic trap truncated for |r| > rR . This truncation radius is highlighted
with two vertical black dashed lines. See text for the laser parameters.

P = 3 W, w0 = 117.6µm and λL = 1064 nm. In this configuration, the truncated harmonic

trap has a depth of 21µK, a trap frequency of 122.4 Hz and a truncated radius of rR =
83µm. The initial characteristic spatial width is σr(0)= 18.1µm. For a purely harmonic

trap, the characteristic spatial size evolution of the cloud is described by Eq. (3.21),

which, in the case of an isotropic trap, can be rewritten as shown in section 3.1.2.2 with

σr(t)=σr(0) ·b(t). The scaling coefficient b(t) follows

b̈(t)+ω2(t) b(t)= ω2
0

b3(t)
(3.60)

if ξ << 1, i.e. in the case where the mean-field energy Emf is negligible compared to

the thermal energy kBT of the cloud, as shown in Eq. (3.22). If this is not the case, the

scaling coefficient b(t) will follow

b̈(t)+ω2(t) b(t)=ω2
0

(
1−ξ
b3(t)

+ ξ

b4(t)

)
, (3.61)

where ξ= Emf / (Emf +kBT).

In both cases the variable ω(t) is the frequency of the trap at time t, using the

convention that ω(t) = 0 if the trap is off. In this expression we have also used ω0 for

the initial trapping frequency. The initial boundary conditions are as follows: b(0) = 1

and ḃ(0)= 0. For the parameters chosen above, we estimate Emf = 28.5 nK and ξ= 0.007

justifying safely neglecting the mean-field term.

In Fig. 3.18 we show the optimized evolution of the cloud characteristic size σr(t) for

two iterations of the optimization sequence following the steps describe in Figure 3.16.
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The lens duration is optimized such as the cloud focused with a size smaller than its

initial one at t = 0 after the lens have been turn off. In panel (a) we focus our attention

on the first iteration7, where the blue and red dashed lines show the evolution of σr(t),
described respectively by Eqs. (3.61) and (3.60). The cloud, initially at rest, is released

at t = 0 and expands to twice its initial size, indicated by the gray horizontal dashed

line. At t = 2.25 ms the potential is on again for ∆tlens = 2.40 ms, as highlighted by the

orange colored area. At t = 4.66 ms the trap is switched off and the cloud is focused at

t f ,1 = 4.84 ms. This first focusing time is highlighted by the black vertical line. At the

focus point the cloud size is σr(t f ,1)= 8.4µm and the spatial gain defined in Eq. (3.52) is

Gmax = 10. If nothing is done the cloud continues to expand, as shown by the dash-dotted

lines. It can be noted that the increase of the mean-field energy of approximately 10%

seen during this procedure does not lead to any discrepancy between the results obtained

from Eqs. (3.61) and (3.60).

To simplify the problem, we first assume the possibility of an instantaneous cool-

ing of the cloud leading to a new immediate thermal equilibrium. This instantaneous

cooling assumption leads to a discontinuity of the velocity distribution at the end of the

cooling step, at time t = t+f , while the spatial distribution remains unchanged. The new

characteristic sizes are given by

σr(t+f )=σr(t f ) , (3.62a)

σv(t+f )=σv(0) , (3.62b)

where, at time t+f , the spatial width in the new equilibrium situation can be written as

σr(t+f )= σr(0)
G

=
√

kBT
mG2ω2

0
=

√√√√ kBT
mω2

f

. (3.63)

This situation is analogous to a cloud held in a trap with a larger effective trap frequency,

ω f =Gω. After cooling, for t > t+f , the evolution of the cloud is described by

σr(t)=σr(t+f ) ·b(t) , (3.64a)

σv(t)=
√
σ2

v(0)
b2(t)

+σ2
r (t+f ) · ḃ2(t) , (3.64b)

where b(t) is given by Eq. (3.60) or Eq. (3.61), according to the value of ξ. The boundary

conditions at t = t+f read as b(t+f )= 1 and ḃ(t+f )= 0.
7Here iteration denotes one step of the process leading to a smaller cloud at the focused point
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Figure 3.18: Optimization of the phase space density for 107 atoms supposing an instan-
taneous cooling at the different focus points. Panel (a): The initial cloud is released and
left to expand to twice its initial size. The lens duration is optimized such as the cloud
focused at t f ,1 with a size smaller than its initial one at t = 0 after the lens have been
turn off represented by the horizontal dashed line. The blue (red) line shows the case
where the mean-field energy is neglected ( is not neglected) and where the dynamic is
described by Eq.3.60 (Eq.3.61). The blue and red dashed curves show the dynamic of the
size if the atomic ensemble is not cooled to its initial temperature at t f ,1. Panel b: The
proceed is reiterated to focus the cloud to a smaller size at t f ,2. For low atom number the
contribution of the mean-field energy can be neglected.

Panel (b) shows the situation where at the end of the first iteration we repeat the lens-

ing procedure. After the instantaneous cooling, the mean-field energy is Emf = 0.29µK

and ξ = 0.0066. The cloud at t = t f ,1 starts at rest and expands until twice its initial

size. At t = 7.38 ms the trap is on again for ∆tlens = 2.43 ms, leading to a second focusing

at time t f ,2 = 10 ms, with σr(t f ,2) = 4.1µm. At this stage a new equilibrium situation
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leads to Emf = 2.5µK and ξ= 0.38. It can be noted that after the first focus point a very

small discrepancy between the size evolutions described by Eq. (3.60) and Eq. (3.61).

The difference is caused by the increase of the mean-field energy at the end of the first

iteration.

Qualitatively, due to the repulsion between atoms, if we repeat the optimization

sequence, one can expect the interaction between atoms to increase at the focus point,

leading to a different behavior where the exact focus point is shifted in time and the

gain at the exact focus point is limited compared to the case where ξ¿ 1. To amplify this

effect, in Fig. 3.19 we show the exact same sequence as described above with 108 atoms

instead of 107. Initially Emf = 0.28µK and ξ = 6.6 10−3. At t = t f ,1, Emf = 2.9µK and

ξ= 0.42. At t = t f ,2, Emf = 24.5µK and ξ= 0.86. For the rest of the chapter the number

of atom is fixed to N=107.

Due to the expansion of the cloud and the limited size of the trap, atomic losses must

be taken into account when the trap is switched on. In our case

P = 1
Q

∫ rR

0
4π r2 dr

1
2

mω2r2

exp

[
− r2

2σ2
r (texp)

]
(
2πσ2

r (texp)
)3/2 , (3.65)

where

Q =
∫ ∞

0
4π r2 dr

1
2

mω2r2

exp

[
− r2

2σ2
r (texp)

]
(
2πσ2

r (texp)
)3/2 , (3.66)

and only P = 81% of the atoms in the cloud are trapped. This leads to a total gain at the

end of the first iteration, t = t f ,1, of G1 = 0.81 ·
(
18.1
8.4

)3
≈ 8 and at the end of the second

iteration, t = t f ,2, to G2 = 0.812 ·
(
18.1
4.1

)3
≈ 56. The gain is, therefore, still significant also

after counting the atoms dropping out of the truncated trap.

The approach described so far assumes some approximations: (i) The cloud is assumed

to keep its Gaussian shape at each step of the manipulation with an harmonic potential.

(ii) The cooling of the cloud at the focus point was assumed to be instantaneous. In order

to deliver a realistic recipe, we depart from the first approximation in section 3.2.2.3,

where the evolution of the particles is described by an N-particle simulation (arbitrary

shape) in a Gaussian dipole trap. The second approximation is a key point of the proposal

to increase the density in phase space. Indeed, if the cooling takes too long to bring the

atoms back to the initial temperature of 2µK, the efficiency of the sequences is worse. In

the following, we discuss the impact of cooling time on the maximum gain.
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Figure 3.19: Optimization of the phase space density for 108 atoms supposing an instan-
taneous cooling at the different focus points. Panel (a): The initial cloud is released and
left to expand to twice its initial size. The lens duration is optimized such as the cloud
focused at t f ,1 with a size smaller than its initial one at t = 0 after the lens have been
turn off represented by the horizontal dashed line. The blue (red) line shows the case
where the mean-field energy is neglected ( is not neglected) and where the dynamic is
described by Eq.3.60 (Eq.3.61). The blue and red dashed curves show the dynamic of
the size if the atomic ensemble is not cooled to its initial temperature at t f ,1. Panel b:
The proceed is reiterated to focus the cloud to a smaller size at t f ,2. In the case of higher
atom number it is not possible to neglect the mean-field term of Eq.3.61.

In Fig. 3.20, we show the evolution of the total gain, Gmax, as a function of the lens

duration, tlens, and of the free expansion time after the lens, texp, for the first iteration

of the technique presented in Fig. 3.18.

In this figure, we neglect the atomic losses at recapture, and the maximum gain is

therefore Gmax = 10. The blue color denotes cases where Gmax < 1. The three vertical
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Figure 3.20: Evolution of the maximum gain as a function of the lens duration and of the
post lens expansion time. The total atom number is fixed to N=107.

black dashed lines indicate respectively three cases of lens duration and of post-lens ex-

pansion time: (tlens, texp)= (2.43,0.18) ms case (1) ; (2.1,0.5) ms case (2) and (1.67,1.1) ms

case (3). For these three cases, the maximum gain is respectively 10, 8 and 5 when

cooling is instantaneous. The large area covered when going from case (1) to case (3)

proves the robustness of the proposed lensing technique for reaching high phase space

density gains, with Gmax > 5.

The time used to cool down the atomic ensemble impacts the size of the cloud. It can

be expected that for a rapid cooling, even if not instantaneous, the size evolution is well

described by the previous equations i.e. the gain should be similar to the one predicted

here with an instantaneous cooling. Fast cooling should therefore give the possibility

to increase the phase-space density by an order of magnitude, as depicted by case (1).

After reaching a minimum, the cloud size continues to increase and in the case of a very

long cooling time the gain could finally be lower than 1. To allow for an increase of the

cooling time without loosing too much in terms of phase-space density, the case number

(3) highlights the possibility to start the cooling process just at the end of the lensing

step during the expansion time. In this case the cooling process could take more than

1 ms to recover the initial temperature with a phase-space density 5 times higher than

initially.
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3.2.2.3 Dipole trap

We now take into account a realistic configuration of the trap. The potential is given by

the Eq. (3.54). Instead of the simplified truncated harmonic potential, we now simulate

the dynamics of N = 107 atoms in a realistic dipole trap following the method described

in 3.1.2.3.
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Figure 3.21: Initial phase space density in a dipole trap. The phase space is represented
by the N-particle simulation panel (b). The corresponding spatial and velocity distribu-
tions are respectively on panels (a) and (c) in blue. The red curves show the Gaussian
distributions calculated in the case of a purely harmonic trap as a comparison to the
ideal case.

In Fig. 3.21 we show the initial phase space density distribution (panel b) of the N
particles, along with the corresponding spatial and velocity distributions, respectively on

panels (a) and (c). The cloud, released at time t = 0, expands and Fig. 3.22 shows the phase

space distribution at t = texp. The two integrated spatial and velocity distributions are

shown again on panels (a) and (c). Here the red curves show the Gaussian distributions

calculated with Eq. (3.18) and Eq. (3.27) in the presence of a purely harmonic trap. It can

be noted that the spatial distribution of Fig. 3.22 is broader than in Fig. 3.21 while the

velocity distribution remains identical, reflecting the free expansion of the cloud. The

effect of the realistic trap is only seen when it is restarted. Due to the extension of the

cloud, some atoms see at this point the effect of the anharmonic part of the trap.
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Figure 3.22: Phase space distribution at t = texp after release from the dipole trap. The
phase space is represented by the N-particle simulation panel (b). The corresponding
spatial and velocity distributions are respectively on panels (a) and (c) in blue. The red
curves show the Gaussian distributions calculated in the case of a purely harmonic trap
as a comparison to the ideal case.

The Fig. 3.23 shows the situation at the end of the lens calculated in a purely harmonic

trap in panels (a-c), and in the dipole trap in panels (d-f). In the panels (a,c,e,f), the

red line represents the Gaussian spatial and velocity distributions calculated in the

case of purely harmonic trap. We can see the impact of the real trap in phase space

by comparing panel (d) with panel (b). Two curved tails are now present at the edge

of the expected ellipsoidal distribution. These tails can be qualitatively explained by

the different frequencies of the local harmonic traps perceived by each atom in the

distribution: The atoms constrained at the minimum of the trap perceive the harmonic

frequency ω0 and behave as in a purely harmonic trap. All the other atoms oscillate

in a trap where the frequency is a function of position. Over time, all the atoms in the

non-harmonic part of the trap dephase from the central part, leading to the tails seen in

panel (d).

In the realistic trap configuration, due to the limited expansion of the cloud, with

max(σr)' 2σr(0), no atoms are lost because of the expansion phase. To characterize the

performance decrease due to the anharmonicities, we now calculate the overlap of the
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Figure 3.23: Phase space distribution at t = tlens. The panel (a,b,c) show the configuration
of an ideal harmonic trap for the lens. The phase space is represented by the N-particle
simulation panel (b). The corresponding spatial and velocity distributions are respectively
on panels (a) and (c) in blue. The red curves show the Gaussian distributions calculated
in the case of a purely harmonic trap as a comparison to the ideal case. The panel (d,e,f)
show the configuration of a dipole trap for the lens. The phase space is represented by the
N-particle simulation panel (d). The corresponding spatial and velocity distributions are
respectively on panels (e) and (f) in blue. The red curves show the Gaussian distributions
calculated in the case of a purely harmonic trap as a comparison to the ideal case.
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spatial distribution in the pure harmonic case, denoted by G(r) and shown as a red line

in panel (f), to the realistic trap distribution one, denoted by D(r) and represented in

blue in panel (f). The percentage of atoms in the non-harmonic part of the dipole trap at

the end of the lensing step is then

L = 1−
∫ ∞

−∞

(
G(r) D(r)

)1/2
dr , (3.67)

where
(
G(r) D(r)

)1/2 denotes the cross distribution. The modified total gain is given by

G = (1−L ) ·Gmax . (3.68)

Strictly speaking these atoms are not physically lost in the process, they are still

in the trap but due to their different behavior they are not focused. For the specific

configuration shown in Fig. 3.23 the percentage of unfocused atoms is L = 10%. The

modified possible gain at the focus point is then only slightly degraded to G = 9.

3.2.2.4 Conclusion

To sum up this section, I have presented a sequence to increase the phase-space density

of an atomic sample. This possibility relies on rapid cooling processes at the focus point

in a few ms. In the case the cooling process take 1 ms, the phase space density is 5 times

higher than initially. This is the current state-of-the-art in the field [152]. The results

of the phase-space density gain have been shown in a harmonic truncated trap and in

a more realistic case of a dipole trap configuration including anharmonicities. In both

cases, atomic losses were taken into account together with an assessment of the impact

of the cooling duration. In addition, the sequence described here is not limited to initial

high cloud densities where the efficiency of the molasses cooling technique is limited but

would work as well in the case of lower atom numbers with larger cloud sizes leading to

an even more realistic experimental configurations.

3.3 Conclusion and outlook

In this chapter, two ways to improve the initial configurations of future atom interferom-

etry sources are proposed. A description of the theory tools was done with OCT protocols

based on Pontryagin’s Hamiltonians with a gradient method and an N-particle model

based on Newton’s equation. The first application showed how OCT protocols can help

prepare dual-source atom interferometer input states with well defined positions and
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velocities. Indeed, the initial positions, velocities and expansion temperatures have to

fulfill drastic requirements. This approach is illustrated in the case of a state-of-the-art

dual-species atom interferometer, the 10-meter fountain experiment of Stanford. As

discussed already, a possible extension of this work can be done to launch efficiently the

two species in the tower and limit atomic losses coming with the final conditions.

Also in the context of precision measurements, the second application tackled the

enhancement of the number of pre-evaporated atoms in a matter-wave interferometer.

Based on a semi-analytical approach and supported with a N-particle simulation, this

application paves the way to an increase in phase-space density of a cold gas in the case

of a truncated harmonic trap and then in a realistic dipole trap configuration. At first

order, one can estimate that an increase of one order of magnitude in the condensed atom

number is achievable. Such a significant increase of the atom number is important for

the sensitivity of interferometry measurements.
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In the previous chapters, we described manipulation protocols of single-species

Bose-Einstein condensates where a single macroscopic quantum state is occupied

by identical bosonic particles, as well as some solutions to the transport of non-

interacting pairs of thermal ensembles. In each case, we have shown the possibility of

controlling and reducing the expansion rates of the different ensembles. In this chapter,

we focus on bosonic mutually interacting BEC mixtures and how to collimate both

of them with the delta-kick collimation technique. We first describe the ground state

structure of the mixture in section 4.3, to solve later in section 4.4 its dynamics. Finally,

we show, in section 4.5, how to simultaneously engineer the expansion rates of the two

species by tuning the interactions between the two components of the mixture.

4.1 Introduction

Two-component quantum fluids have long been known to exhibit rich physical prop-

erties that are not accessible in single-component physics and have been the subject

of extensive studies over the past two decades [297–309]. Phase transitions and differ-

ent phase mixtures in multi-component systems are of great importance in various

fields of physics but also in chemistry and biology. Thanks to the simplicity of their

theoretical description, unlike other complex chemical and biological systems, dilute

multi-component Bose-Einstein condensates are an ideal candidate for studying these

phenomena. Shortly after the creation of the first Bose-Einstein condensate, these

studies were pioneered by the experimental work carried out in JILA [310, 311] and

MIT [312]. With the support of theoretical studies, these experimental works have shown

a wide range of interesting physical effects such as the topological properties of dif-

ferent ground and excited states [313–315], phase separations [303, 316–319], phase

transitions and symmetry breaking [304, 305], low-lying excitations [302] and collective

oscillations [320, 321], stability properties [306], Josephson-type oscillations [307, 322],

spin superfluidity [323–329] and spin supercurrent [330, 331] and this list is far form

being exhaustive.

Degenerate mixtures, including interactions between bosons, between fermions and

between bosons and fermions, are now produced in many laboratories worldwide using

different hyperfine states of the same atomic species [310, 320] or of different isotopes

of the same species such as 3He -4He [332], 6Li -7Li [333, 334], 85Rb -87Rb [335], 84Sr -
87Sr [336], 168Yb -174Yb [337], 86Sr -87Sr [338] or different elements such as 41K -87Rb [329,
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339–341], 23Na -40K [342], 40K -87Rb [343], 6Li -23Na [344], 6Li -87Rb [345], 6Li -40K [346],
87Rb -133Cs [347, 348], 6Li -133Cs [349], 84Sr -87Rb [350], 39K -87Rb [351], 23Na -87Rb [352],
6Li -174Yb [353], 23Na -39K [354], 166Er -164Dy [355].

In such systems, theoretical predictions require the knowledge of the different intra-

species and inter-species scattering lengths. The knowledge of the inter-species scattering

length is of particular interest for the understanding of the miscibility of interpenetrating

quantum fluids. It should also be noticed that it is sometimes possible and practical to

tune the different scattering lengths via an external magnetic field near a Feshbach

resonance [335, 354, 356]. This tunable parameter gives the possibility to study phase

transitions and symmetry breaking and is used later in this chapter to engineer optimized

dual-species atomic states for precision interferometry.

In spite of the high number of characteristic parameters (three scattering lengths,

two different atom numbers, different trap characteristics, etc.), two-component mixtures

could be classified in two general categories [297, 298, 316]. The first class includes

situations where the two centers of the wave packets spatially overlap respecting the

symmetry of the trap. In the literature this class of system is referred as “miscible

systems”. The second class contains only situations where the two components do not

overlap and where the density distributions of the two components spontaneously break

the symmetry of the trap. This class is referred as “immiscible systems”. In literature,

the miscible-immiscible criteria and the possibility of switching from one class to another

by changing the s-wave scattering length as well as the number of atoms have been

theoretically described using two-component GPE numerical simulations and compared

to semi-analytical models calculated in the Thomas-Fermi approximation. In the latter

case, in the same manner than for a single component, the Thomas-Fermi approximation

leads to neglecting the initial kinetic energy of both components [316].

Throughout this chapter, we focus on an ultra-cold pure bosonic mixture of 41K and
87Rb described by a two-component BEC at zero temperature in the miscible regime.

We assume that the different scattering lengths are real and that the interactions,

described within the limit of contact interactions, conserve the number of atoms of each

species i.e. there is no atomic loss. We will first describe typical ground state properties

in situations where the two species either may coexist together in some regions of

space i.e. overlapped or remain separated from each other in other regions [335]. In this

analysis we compare the results of the dual-species Gross-Pitaevskii equation to the

Thomas-Fermi approximation derived in section 4.3.1. We then propose an extension

of the scaling approach [229, 230] to describe the dynamics of a dual-species bosonic
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Bose-Einstein condensate and we compare this approximation with the results of a

numerical simulation of coupled Gross-Pitaevskii equations.

The main result of the chapter is the possibility to control the expansion rate of this

two-component superfuilds to an expansion temperature lower than 50 pK. Such a low

expansion energy is a prerequisite for an EEP test with an accuracy below 10−15 [41].

4.2 A dual-species Gross-Pitaevskii approach

In the general case of a two-component BEC in interaction, the dynamics is described by

the time-dependent coupled Gross-Pitaevskii equations

i~∂tψ1(~r, t)=
[
− ~2

2m1
~∇2
~r +U1(~r, t)+N1 g11|ψ1(~r, t)|2 +N2 g12|ψ2(~r, t)|2

]
ψ1(~r, t) , (4.1a)

i~∂tψ2(~r, t)=
[
− ~2

2m2
~∇2
~r +U2(~r, t)+N2 g22|ψ2(~r, t)|2 +N1 g12|ψ1(~r, t)|2

]
ψ2(~r, t) , (4.1b)

where ψi(~r, t) with i ∈ {1,2} denotes the wave function of the species number i. The

constants g i j are related to the respective scattering lengths, a11, a12 and a22 by the

relation

g i, j =
2π~2ai j

mi j
with mi j =

mim j

mi +m j
. (4.2)

Ni and Ui(~r, t) are the number of atoms and the external potential of the species i,
respectively. The last terms of Eq. (4.1a) and Eq. (4.1b) describe the coupling between the

two components. The normalization condition for each wave function is given by

Ñ ∣∣ψi(~r, t)
∣∣2 d~r = 1, i ∈ {1,2}. (4.3)

In the same way as for a single species component [231], the stationary solutions,

ψ1(~r,0) and ψ2(~r,0), are given by

ψ1(~r, t)=ψ1(~r,0) exp
[
−i

µ1t
~

]
, (4.4a)

ψ2(~r, t)=ψ2(~r,0) exp
[
−i

µ2t
~

]
, (4.4b)

where µi is the chemical potential of species i. The time independent coupled Gross-

Pitaevskii equations are then written as[
− ~2

2m1
~∇2
~r +U1(~r,0)+N1 g11|ψ1(~r,0)|2 +N2 g12|ψ2(~r,0)|2 −µ1

]
ψ1(~r,0)= 0 , (4.5a)[

− ~2

2m2
~∇2
~r +U2(~r,0)+N2 g22|ψ2(~r,0)|2 +N1 g12|ψ1(~r,0)|2 −µ2

]
ψ2(~r,0)= 0 . (4.5b)

100



4.3. THE DIFFERENT GROUND STATE STRUCTURES

4.3 The different ground state structures

4.3.1 The Thomas-Fermi (TF) approximation

4.3.1.1 General case

In the same way as for a single atomic species, in the TF approximation, the impact

of the kinetic term of each species is neglected in Eq. (4.5a) and Eq. (4.5b). From this

approximation, we can rewrite the previous set of differential equations as two linear

coupled equations for the two density profiles |ψ1(~r,0)|2 and |ψ2(~r,0)|2 as

µ1 =U1(~r,0)+N1 g11|ψ1(~r,0)|2 +N2 g12|ψ2(~r,0)|2 , (4.6a)

µ2 =U2(~r,0)+N2 g22|ψ2(~r,0)|2 +N1 g12|ψ1(~r,0)|2 . (4.6b)

In the case of a uniform potential and homogeneous gases, i.e. for |ψi(~r,0)|2 being

constant, the miscibillity criteria of the two condensates is given by the conditions [231,

308]

g11 > 0 , g22 > 0 and g11 g22 > g2
12 , (4.7)

where the first two conditions describe the stability of each species in a single atomic

species problem and the last condition forces the two species to overlap over the extent

of the uniform trap.

We illustrate in Fig. 4.1 the behavior of a mixture of two components, observed for

example in [335] with the two isotopes 85Rb and 87Rb, when the inter-species scattering

length is adjusted using a Feshbach resonance and we explain the results observed by

arguments based on repelling or attractive forces. For that, we define the quantity

∆= g11 g22 − g2
12 . (4.8)

In the first case shown in panel (a), ∆ < 0 and g12 < 0, which means that atoms of

different species attract each other more than they repel atoms of the same species. In

the same way as for a single species problem where the constant g ii < 0, the miscible

mixture of superfluids is unstable and collapses.

For smaller values of |g12|, such that g2
12 < g11.g22 and then ∆> 0, at least one of the

two single species interaction constants is dominant and the two superfluids overlap

is some region of space, as shown in panel (b). In this particular situation, g12 can be

either positive or negative. For a larger and positive value of g12, ∆ becomes negative

again and atoms of different species repel each other more than they repel atoms of the

same species, leading to a phase separation. The two superfluids no longer overlap. In
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g12
0

∆ < 0 ∆ > 0 ∆ < 0

a b c

Figure 4.1: Illustration of the behavior of a mixture of bosons when the inter-species
scattering length, a12, is tuned from negative to positive values.

this configuration one can find the two possible cases: The first one is when one species

is surrounding the other thus keeping the symmetry of the system and the second in an

immiscible case with the two species sitting side by side, thus breaking the symmetry of

the trap, as shown in panel (c).

4.3.1.2 Miscible case: general set of equations

In the following, we focus on the case described by the conditions of Eq. (4.7), and

therefore we have ∆ > 0. The purpose of this section is to derive a set of equations

describing the density distribution of each species in the different regions of space. We

introduce the notion of “domain" to distinguish the different regions and configurations.

A domain is by definition a region of space where either the two BECs overlap or where

only one BEC is present. Using Eq. (4.6a) and Eq. (4.6b) one can express the two atomic

densities as

|ψ1(~r,0)|2 = g22[µ1 −U1(~r,0)]− g12[µ2 −U2(~r,0)]
N1(g11 g22 − g2

12)

×Θ
[

g22[µ1 −U1(~r,0)]− g12[µ2 −U2(~r,0)]
N1(g11 g22 − g2

12)

]
, (4.9a)

|ψ2(~r,0)|2 = g11[µ2 −U2(~r,0)]− g12[µ1 −U1(~r,0)]
N2(g11 g22 − g2

12)

×Θ
[

g11[µ2 −U2(~r,0)]− g12[µ1 −U1(~r,0)]
N2(g11 g22 − g2

12)

]
, (4.9b)

where Θ[x] is the Heaviside function. We are interested in how the shape of these density

functions can be described in cases characterized by two or three domains of existence.

These two situations are represented schematically in Fig. 4.3 and Fig. 4.2 where, for

convenience, we illustrate the two configurations in 1D.

102



4.3. THE DIFFERENT GROUND STATE STRUCTURES

species 1 species 1 & 2 species 2species 1 & 2species 2

Domain A Domain BDomain B Domain CDomain C

0 RA−RA RB−RB RC−RC

r

Figure 4.2: Schematic representation of the two-species BEC configuration when three
different domains, labeled as domains C, B and A, can be defined.

species 1 & 2 species 2species 2

Domain B Domain CDomain C

0 RB−RB RC−RC

r

Figure 4.3: Schematic representation of the two-species BEC configuration when two
different domains, labeled as domains C and B, can be defined.

In the case of three domains, a single species is present in the center, labelled as

domain A. This domain is surrounded by a region where the two species overlap. This

overlapping region is domain B. It is surrounded by a region where only the second species

is present: this is domain C. In the following, we choose to note species 1 the species

present in domain A and species 2 the one present in domain C. In this configuration the

density of species 2 in domain A and the density of species 1 in domain C is zero. The

different domains are delimited by the separation radii RA, RB and RC.

In the case of two domains, we can see from Eq. (4.7) and Eq. (4.9) that the only

possible domains are domains B and C. The first species is therefore always in the

presence of the second one (domain B), while the second species has also its own domain

of existence (domain C).

In regions where only one species is present, the density distribution is given by the
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single species component

|ψi(~r,0)|2 = µi

Ni g ii

[
1− Ui(~r,0)

µi

]
×Θ

[
1− Ui(~r,0)

µi

]
. (4.10)

According to the previous notation, the density distribution of species i with i ∈ {1,2} in

domain X with X ∈ {A,B,C} at position~r reads as

• In domain A: 
nA

1 (~r) = N1|ψ1(~r,0)|2 = µ1

g11

[
1− U1(~r,0)

µ1

]
,

nA
2 (~r) = N2|ψ2(~r,0)|2 = 0 .

(4.11)

• In domain B:
nB

1 (~r) = N1|ψ1(~r,0)|2 = g22[µ1 −U1(~r,0)]− g12[µ2 −U2(~r,0)]
g11 g22 − g2

12
,

nB
2 (~r) = N2|ψ2(~r,0)|2 = g11[µ2 −U2(~r,0)]− g12[µ1 −U1(~r,0)]

g11 g22 − g2
12

.
(4.12)

• In domain C: 
nC

1 (~r) = N1|ψ1(~r,0)|2 = 0 ,

nC
2 (~r) = N2|ψ2(~r,0)|2 = µ2

g22

[
1− U2(~r,0)

µ2

]
.

(4.13)

The different radii RX which marks the separation between the different domains are

defined by the cancellation of the density distributions, and read in Cartesian coordinates

as

nB
2 (RA,x,RA,y,RA,z)= 0 , (4.14a)

nB
1 (RB,x,RB,y,RB,z)= 0 , (4.14b)

nC
2 (RC,x,RC,y,RC,z)= 0 , (4.14c)

and in the case of isotropic traps in Spherical coordinates1 as

nB
2 (RA)= 0 , (4.15a)

nB
1 (RB)= 0 , (4.15b)

nC
2 (RC)= 0 . (4.15c)

1The two angular variables, θ and ψ, have been dropped out for simplicity, i.e. nB
2 (RA)≡ nB

2 (RA ,θ,ψ).
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In the same way as for single species, the chemical potential is expressed thanks to

the normalization conditions

N1 =
∫

VA

nA
1 (~r) d~r +

∫
VB

nB
1 (~r) d~r +

∫
VC

nC
1 (~r) d~r = f (µ1,µ2) , (4.16a)

N2 =
∫

VA

nA
2 (~r) d~r +

∫
VB

nB
2 (~r) d~r +

∫
VC

nC
2 (~r) d~r = g(µ1,µ2) , (4.16b)

where
∫

VX
nX

i (~r) d~r represents the integral of species density i in domain X.

4.3.1.3 The harmonic trap approximation

We are now interested in the particular case of harmonic external traps. Without loosing

generality, the traps are considered isotropic for reasons of simplicity and we intro-

duce two coefficients, γ1 and γ2, to express the two external potentials according to a

hypothetical mass m0 and frequency ω0, with

m1ω
2
1 = γ1 m0ω

2
0 , (4.17a)

m2ω
2
2 = γ2 m0ω

2
0 . (4.17b)

The objective of this section is to highlight the different density distributions in each

domain as well as the expressions of the different separation radii that are of particular

interest for the rest of the chapter. In the following the different densities read as

• In domain A: 
nA

1 (r) = µ1

g11

[
1− γ1

µ1

(
m0ω

2
0

2

)
r2

]
,

nA
2 (r) = 0 ,

(4.18)

• In domain B:
nB

1 (r) = g22µ1 − g12µ2

g11 g22 − g2
12

[
1− γ1 g22 −γ2 g12

g22µ1 − g12µ2

(
m0ω

2
0

2

)
r2

]
,

nB
2 (r) = g11µ2 − g12µ1

g11 g22 − g2
12

[
1− γ2 g11 −γ1 g12

g11µ2 − g12µ1

(
m0ω

2
0

2

)
r2

]
,

(4.19)

• In domain C: 
nC

1 (r) = 0 ,

nC
2 (r) = µ2

g22

[
1− γ2

µ2

(
m0ω

2
0

2

)
r2

]
,

(4.20)
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where the domain separations are defined by

R2
A = g11µ2 − g12µ1

g11γ2 − g12γ1

(
2

m0ω
2
0

)
, (4.21a)

R2
B = g22µ1 − g12µ2

g22γ1 − g12γ2

(
2

m0ω
2
0

)
, (4.21b)

R2
C = µ2

γ2

(
2

m0ω
2
0

)
. (4.21c)

In the case of only two domains, the densities of the two species are described by

Eq. (4.19) and Eq. (4.20), delimited by the radii given in Eq. (4.21b) and Eq. (4.21c). In

each case, the shape of each density distribution is a succession of parabolic branches,

with curvatures depending on the different trap parameters in each domain, γ1 and γ2,

on the different chemical potentials, µ1 and µ2, and on the three scattering lengths.

4.3.2 Study in the case of two domains in the TF approximation

We first concentrate on the case of two domains, for which an analytical expression of

the chemical potentials µ1 and µ2 can be found.

Species 2Species 2 Species 1 & 2
n1B

n2B
n1C=0
n2Cn1C=0

n2C

domain B  domain C  
-RB RB RC-RC

domain C  

r

Figure 4.4: Schematic representation of the atomic density distributions in the case of
two domains. The blue and red curves show respectively the density profiles of the first
and second species in their respective domains.
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4.3.2.1 Curvature of the densities

The curvatures of the density profiles are given by the second spatial derivative of the

density distributions. In domains B and C they are given by

∆nB
1 =− γ1 g22

g11 g22 − g2
12

(
1− g12

g22

γ2

γ1

)
m0ω

2
0 , (4.22a)

∆nB
2 =− γ2 g11

g11 g22 − g2
12

(
1− g12

g11

γ1

γ2

)
m0ω

2
0 , (4.22b)

∆nC
2 =− γ2

g22
m0ω

2
0 . (4.22c)

In the Fig. 4.4 we show the different possible curvatures of the density profiles of

each species. The curvature of the first species profile is negative in domain B with the

condition g12γ2 < g22γ1, while the curvature of the second species in this region depends

on the ratio χB = (g12γ1) / (g11γ2) : If χB < 1 this curvature is negative, represented by

the dashed red line ; If χB > 1 this curvature is positive, represented by the thin dotted

red line ; If χB = 0 there is no curvature, represented by the thick dotted red line. In

domain C, the only species present is the second species with a negative curvature, and

we recover the expected inverse parabola of the single component case.

4.3.2.2 Chemical potentials and atoms numbers

Thanks to the normalization condition given by Eq. (4.16a) and Eq. (4.16b) the total atom

number for both species can be written as

N1 = 8π
15

(
2

m0ω
2
0

)3/2
1

g11

 1

1− g2
12

g11 g22

(
µ1 − g12

g22
µ2

)5/2

(
γ1 − g12

g22
γ2

)3/2

 , (4.23a)

N2 = 8π
15

(
2

m0ω
2
0

)3/2
1

g22

µ
5/2
2

γ3/2
2

− g12

g11

1

1− g2
12

g11 g22

(
µ1 − g12

g22
µ2

)5/2

(
γ1 − g12

g22
γ2

)3/2

 , (4.23b)
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These equations can be inverted to find analytical expressions for the chemical potentials

µ1 = g12

g22
µ2 +

15
8π

N1 g11

(
1− g2

12

g11 g22

)(
m0ω

2
0

2

)3/2 (
γ1 − g12

g 22
γ2

)3/2
2/5

, (4.24a)

µ2 =
15

8π

(
N2 g22 +N1 g12

)(
m0ω

2
0

2

)3/2

γ3/2
2

2/5

. (4.24b)

4.3.3 Study in the case of three domains in the TF
approximation

The case of three domains can be treated similarly, but it is no longer possible to find an

analytical expression of the chemical potentials µ1 and µ2. The curvatures in domains A,

B and C are given by

∆nA
1 =− γ1

g11
m0ω

2
0 , (4.25a)

∆nB
1 =− γ1 g22

g11 g22 − g2
12

(
1− g12

g22

γ2

γ1

)
m0ω

2
0 , (4.25b)

∆nB
2 =− γ2 g11

g11 g22 − g2
12

(
1− g12

g11

γ1

γ2

)
m0ω

2
0 , (4.25c)

∆nC
2 =− γ2

g22
m0ω

2
0 . (4.25d)

As shown in Fig. 4.5, in the regions where only one of the two species is present, the

curvature of the density profile is negative. In the overlapping regions, depending on the

value of the coefficients (g22γ1 − g12γ2) and (g11γ2 − g12γ1) the density curvatures for

species 1 and 2 may be negative or positive.

4.4 Dynamics

In this section, we focus on the dynamics of the bosonic BEC mixtures which ground

states were calculated in the previous sections. Their mean-field dynamics is first de-

scribed by the time-dependent coupled Gross-Pitaevskii equations and later by the

Thomas-Fermi approximation, both being ultimately compared. For the sake of simplic-

ity, we limit the problems to harmonic isotropic traps. We first introduce the scaling
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Species 1 Species 2Species 2 Species 1 & 2 Species 1 & 2
n1A
n2A=0

n1B

n2B
n1B

n2B
n1C=0
n2C

n1C=0
n2C

domain A  domain B  domain C  
RB RCRA-RA-RB-RC

domain B  domain C  

r

Figure 4.5: Schematic representation of the atomic density distributions in the case of
three domains. The blue and red curves show respectively the density profiles of the first
and second species in their respective domains.

approach [229, 230] in spherical coordinates for one species and in a second step, we

propose an extension of this scaling approach for a dual-species bosonic BEC.

4.4.1 The time-dependent coupled Gross-Pitaevskii equations
in spherical coordinates

4.4.1.1 Case of a single species

In the case of a single species BEC, the time-dependent Gross-Pitaevskii equation

(TDGPE) reads as

i~∂tψ(~r, t)=
[
− ~2

2m
∇2
~r +U(~r, t)+N g|ψ(~r, t)|2

]
ψ(~r, t) , (4.26)

where the kinetic operator ∇2 is defined as

∇2
~r = ∂xx +∂yy +∂zz (4.27)

in Cartesian coordinates and as

∇2
~r = ∂rr + 2

r
∂r + 1

r2 sinθ

[
∂θ

(
sinθ∂θ

)
+ 1

sinθ
∂φφ

]
(4.28)

in spherical coordinates. Here r represents the radial coordinate and (θ,φ) are the usual

angular coordinates. Writing the wave function as a product of radial and angular parts

ψ(~r, t)= R(r, t) ·Yl,m(θ,φ) , (4.29)
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where in the particular case of a pure spherical trap, Yl,m(θ,φ) = Y0,0 = 1/
p

4π , the

TDGPE can simplified to

i~∂tR(r, t)=
[
− ~2

2m

(
∂rr + 2

r
∂r

)
+U(r, t)+ N g

4π
|R(r, t)|2

]
R(r, t) . (4.30)

To simplify the expression of the kinetic term, the following transformation is introduced

χ(r, t)= r ·R(r, t) . (4.31)

The TDGPE then becomes

i~∂tχ(r, t)=
[
− ~2

2m
∂rr +U(r, t)+ N g

4πr2 |χ(r, t)|2
]
χ(r, t). (4.32)

The normalization condition is given by∫ ∞

0
r2dr

∫ π

0
sinθdθ

∫ 2π

0
|ψ(~r, t)|2 dφ=

∫ ∞

0
r2 |R(r, t)|2 dr =

∫ ∞

0
|χ(r, t)|2 dr = 1 . (4.33)

4.4.1.2 The case of a dual-species BEC

In the case of a dual-species BEC, in spherical coordinates and in an isotropic harmonic

trap, the time-dependent coupled Gross-Pitaevskii equations (TDCGPE) read as

i~∂tχ1(r, t)=
[
− ~2

2m1
∂rr +U1(r, t)+ N1 g11

4πr2 |χ1(r, t)|2 + N2 g12

4πr2 |χ2(r, t)|2
]
χ1(r, t) , (4.34a)

i~∂tχ2(r, t)=
[
− ~2

2m2
∂rr +U2(r, t)+ N2 g22

4πr2 |χ2(r, t)|2 + N1 g12

4πr2 |χ1(r, t)|2
]
χ2(r, t) . (4.34b)

4.4.2 Scaling approach for a two-component BEC

In this section, inspired by the derivation of the scaling approach described in [229, 230]

for a single species, we propose a generalization of the method for a two-component

superfluid system. For the sake of generality, this approach is derived in Cartesian

coordinates.

4.4.2.1 Derivation of the scaling approach in the overlapping region

As shown in section 4.3, in the TF approximation the density distribution of each species

has a parabolic shape in each domain, with a positive or negative curvature in the

overlapping region. In the same way as for a single species, we introduce the force seen

by the particles of each species

~F1(~r, t)=−~∇
(
U1(~r, t)+N1 g11nD

1 (~r, t)+N2 g12nD
2 (~r, t)

)
, (4.35a)

~F2(~r, t)=−~∇
(
U2(~r, t)+N2 g22nD

2 (~r, t)+N1 g12nD
1 (~r, t)

)
. (4.35b)
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The time-dependent spatial density of the two species are given by

nD
1 (~r, t)= nD

1
(
~r ′,0

)
λD

1,x(t)λD
1,y(t)λD

1,z(t)
, (4.36a)

nD
2 (~r, t)= nD

2
(
~r ′,0

)
λD

2,x(t)λD
2,y(t)λD

2,z(t)
. (4.36b)

In this expression the coordinates~r and~r ′ are defined as

~r = x~ux + y~uy + z~uz and ~r ′ = x
λD

1,x(t)
~ux + y

λD
1,y(t)

~uy + z
λD

1,z(t)
~uz . (4.37)

The dimensionless scaling coefficients λD
i, j(t) with i ∈ {1,2} and j ∈ {x, y, z} describe the

expansion of the species i in the direction j. The exponent D denotes the presence of a

dual-species condensate. From EqEq. (4.9a) and Eq. (4.9b), the initial spatial densities in

the domain where the two species are present are given by

nD
1 (~r,0)= g22

[
µ1 −U1 (~r,0)

]− g12
[
µ2 −U2 (~r,0)

]
N1

(
g11 g22 − g2

12
) , (4.38a)

nD
2 (~r,0)= g11

[
µ2 −U2 (~r,0)

]− g12
[
µ1 −U1 (~r,0)

]
N2

(
g11 g22 − g2

12
) . (4.38b)

The equilibrium condition at time t = 0 gives ~F1(~r,0) = ~F2(~r, t) =~0. In the case of an

external harmonic trap,

U1 (~r, t)= 1
2

m1

(
ω2

1,x(t) x2 +ω2
1,y(t) y2 +ω2

1,z(t) z2
)
, (4.39a)

U2 (~r, t)= 1
2

m2

(
ω2

2,x(t) x2 +ω2
2,y(t) y2 +ω2

2,z(t) z2
)
, (4.39b)

the projection along the direction j ∈ {x, y, z} of the force acting on species i is given by

Fi, j(r j, t)=−miω
2
i, j(t) r j

+

 g ii

λD
i,x(t)λD

i,y(t)λD
i,z(t)


g i′ i′miω

2
i, j(0)− g12mi′ω

2
i′, j(0)(

g11 g22 − g2
12

)(
λD

i, j(t)
)2


 r j

+

 g12

λD
i′,x(t)λD

i′,y(t)λD
i′,z(t)


g iimi′ω

2
i′, j(0)− g12miω

2
i, j(0)(

g11 g22 − g2
12

)(
λD

i′, j(t)
)2


 r j (4.40)
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where i′ = 2 when i = 1 and i′ = 1 when i = 2, and where r j ≡ x, y, z. Newton’s law applied

in the overlapping region implies

λ̈D
i, j(t)=−ω2

i, j(t)λ
D
i, j(t)

+
[

g ii

λD
i,x(t)λD

i,y(t)λD
i,z(t)

{
g i′ i′miω

2
i, j(0)− g12mi′ω

2
i′, j(0)

mi
(
g11 g22 − g2

12
)
λD

i, j(t)

}]

+
[

g12

λD
i′,x(t)λD

i′,y(t)λD
i′,z(t)

{
g iimi′ω

2
i′, j(0)− g12miω

2
i, j(0)

mi
(
g11 g22 − g2

12
)
λD

i′, j(t)

}(
λD

i, j(t)

λD
i′, j(t)

)]
. (4.41)

4.4.2.2 Reminder on the single species scaling approach

In the case of a single species BEC, Eq. (4.41) simplifies to [229, 230]

λ̈S
j (t)=−ω2

j (t)λ
S
j (t)+

ω2
j (0)

λS
x (t)λS

y (t)λS
z (t)λS

j (t)
, (4.42)

where the exponent S denotes the case of a single species BEC. The atomic density is

given by

nS(~r, t)= nS (
~r ′,0

)
λS

x (t)λS
y (t)λS

z (t)
, (4.43)

where the initial spatial density is expressed as

nS (~r,0)= µ−U (~r,0)
N g

×Θ
[
µ−U (~r,0)

N g

]
. (4.44)

4.4.2.3 Per domain approach

The presence of different domains in BEC mixture imposes different assumptions in

these different domains for the scaling approach. This is because the atomic densities

of both species are described differently in each domain, depending on the presence of

either one or two species in a particular domain. In the case of three domains, the density

evolution in each domain is simply given by

• In domain A: {
nA

1 (~r, t) = N1nS
1 (~r, t) ,

nA
2 (~r, t) = 0 ,

(4.45)

• In domain B: {
nB

1 (~r, t) = N1nD
1 (~r, t) ,

nB
2 (~r, t) = N2nD

2 (~r, t) ,
(4.46)
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• In domain C: {
nC

1 (~r, t) = 0 ,

nC
2 (~r, t) = N2nS

2 (~r, t) .
(4.47)

Note also that, just like in the single species case where the first derivative of the TF

atomic density presents a discontinuity at the edge of the condensate, the present dual-

species approach does not prevent against such discontinuity of the densities at the

time-dependent radii RA(t), RB(t) and RC(t). These time-dependent frontiers are defined

as

RA(t)= RA(0)λS
1 (t) , (4.48a)

RB(t)= RB(0)λD
1 (t) , (4.48b)

RC(t)= RC(0)λS
2 (t) . (4.48c)

4.5 Results

We now illustrate the results of the two-components theory by applying it to a miscible

mixture of 87Rb and 41K atoms in the case of a pure harmonic isotropic trap. In the

following, we focus on the case where the intra-species scattering length of the two

species are constant but we allow the inter-species scattering length to be tuned via a

Feshbach resonance from negative to positive. The paper [341] reports the discovery of

two Feshbach resonances around 35 and 79 G in a mixture of 41K and 87Rb. Based on

these results, in table 4.1 we give the values of the different scattering lengths used for

the different simulations accessible with a Feshbach magnetic field below 100 G [341].

We will first show a comparison between the ground state densities predicted by the

time-independent coupled Gross-Pitaevskii equations (TICGPE) and by the Thomas-

Fermi (TF) approximation. We later compare the evolution of the densities of the two

species calculated via the time-dependent coupled Gross-Pitaevskii equations (TDCGPE)

with our generalized scaling approach in the particular case of two domains. In all

cases the numerical calculations based on the Gross-Pitaevskii equation have been

done following the split operator technique described in Appendix A in the case of the

linear Schrödinger equation. We will finally conclude on the possibility of controlling

the temperature expansion of the two species in a micro-gravity based experiment.

Unless stated differently, the external traps are defined throughout the chapter by

ω87Rb = 2π .50 Hz and ω41K = (
m87Rb

/
m41K

)1/2 .ω87Rb .
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87Rb 41K 87Rb – 41K

(a.u.) (nm) (a.u.) (nm) (a.u.) (nm) case

ba b 99.0 5.20 60.0 3.10

0 0 (i)
-56.7 -3.00 (ii)
-18.9 -1.00 (iii)
+18.9 +1.00 (iv)
+56.7 +3.00 (v)
+70.0 +3.70 (vi)

+163 [339] +8.62 (vii)

Table 4.1: Intra-species and inter-species scattering lengths used in the simulations.
a1 = a87Rb , a2 = a41K and a12 = a87Rb−41K . The corresponding Feshbach magnetic field can
be found in [341]. Each of the scattering length proposed in the table can be achieved
with a magnetic field below 100 G.

4.5.1 Ground state comparison between TF and GPE

In Fig. 4.6 and Fig. 4.7 we show how the inter-species interaction length impacts the

ground state density distribution for different atoms number: N = 105 and 106, in the

case of two distinct domains. The left and right panels depict different representations

of the wave function (see section 4.4.1.1). The representation |ψ(r, t = 0)|2, left panels,

and |χ(r, t = 0)|2 ∝ r2 . |ψ(r, t = 0)|2, right panels, accentuate the representation of the

density distribution of each BEC respectively close to the trap minimum, r → 0, or at

the edges of the distributions in the different domains, r → RA,B,C. Both representation

are interesting when comparing to the TF calculations, the left panels for the maximum

amplitude and the right panels for the domains sizes.

The blue and red colors represent the density distributions of 87Rb (blue) and 41K

(red). The solid and dashed lines depict respectively the results of the TICGPE and of

the TF approximation, where the different domain sizes RB and RC are represented by

vertical dotted-dashed and dashed lines, respectively.

As we could expect, both densities peaks at the center of the trap decrease the larger

the inter-species scattering length is, varying from a negative value in the second row,

where the inter-species interaction is attractive, to a positive value in the bottom row,

where this interaction is repulsive. At the same time the increase of the inter-species

scattering length leads to an increase of the size of each region. The radii of the two

density distributions match well with the predicted radii highlighted by the vertical
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Figure 4.6: Two-domains ground state calculation. Representation of the density dis-
tributions for the cases (i): First row to (v): Last row, (see table 4.1), for 105 atoms
of each species. The left and right panels show the density distributions in two rep-
resentations. The blue and red lines represent the distribution of 87Rb and 41K cal-
culated with the TICGPE (solid line) and the TF approximation (dashed line). The
harmonic traps are isotropic and their frequencies are respectively ω87Rb = 2π .50 Hz and
ω41K = (

m87Rb

/
m41K

)1/2 .ω87Rb

115



CHAPTER 4. OPTIMIZED MANIPULATION OF A DEGENERATE BOSONIC
MIXTURE

0

0.2

0.4

0.6

0.8

1
·10−16

∣ ∣ ψ
(r
,t

=
0)
∣ ∣2

(a
u−

3
)

87Rb GPE 41K GPE 87Rb TF 41K TF RB RC

a12= 0

0

0.5

1

·10−5

∣ ∣ χ
(r
,t

=
0)
∣ ∣2

(a
u−

1
)

a12= 0

0

0.2

0.4

0.6

0.8

1
·10−16

∣ ∣ ψ
(r
,t

=
0)
∣ ∣2

(a
u−

3
)

a12= - 56.7 a0

0

0.5

1

·10−5

∣ ∣ χ
(r
,t

=
0)
∣ ∣2

(a
u−

1
)

a12= - 56.7 a0

0

0.2

0.4

0.6

0.8

1
·10−16

∣ ∣ ψ
(r
,t

=
0)
∣ ∣2

(a
u−

3
)

a12= - 18.9 a0

0

0.5

1

·10−5
∣ ∣ χ
(r
,t

=
0)
∣ ∣2

(a
u−

1
)

a12= - 18.9 a0

0

0.2

0.4

0.6

0.8

1
·10−16

∣ ∣ ψ
(r
,t

=
0)
∣ ∣2

(a
u−

3
)

a12= 18.9 a0

0

0.5

1

·10−5

∣ ∣ χ
(r
,t

=
0)
∣ ∣2

(a
u−

1
)

a12= 18.9 a0

0 5 10 15
0

0.2

0.4

0.6

0.8

1
·10−16

r (µm)

∣ ∣ ψ
(r
,t

=
0)
∣ ∣2

(a
u−

3
)

a12= 56.7 a0

0 5 10 15
0

0.5

1

·10−5

r (µm)

∣ ∣ χ
(r
,t

=
0)
∣ ∣2

(a
u−

1
)

a12= 56.7 a0

Figure 4.7: Two-domains ground state calculation. Representation of the density dis-
tributions for the cases (i): First row to (v): Last row, (see table 4.1), for 106 atoms
of each species. The left and right panels show the density distributions in two rep-
resentations. The blue and red lines represent the distribution of 87Rb and 41K cal-
culated with the TICGPE (solid line) and the TF approximation (dashed line). The
harmonic traps are isotropic and their frequencies are respectively ω87Rb = 2π .50 Hz and
ω41K = (

m87Rb

/
m41K

)1/2 .ω87Rb
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lines.

In the case where both species do not interact with each other (corresponding to

a12 = 0), two independent distributions are created and the domains size, RB and RC, are

exactly equivalent to the TF radii of the two independent species. In addition, there is no

edge in the density distribution caused by a transition between one domain to another.
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Figure 4.8: Three-domains ground state calculation. Representation of the density dis-
tributions for the case (vi), (see table 4.1), for 105 atoms of each species. The left and
right panels show the density distributions in two representations. The blue and red
lines represent the distribution of 87Rb and 41K calculated with the TICGPE (solid line)
and the TF approximation (dashed line). The harmonic traps are isotropic and their
frequencies are respectively ω87Rb = 2π .50 Hz and ω41K = (

m87Rb

/
m41K

)1/2 .ω87Rb

While in the case of 106 atoms (Fig. 4.7) the overlap between the TF approximation

and the TICGPE is very convincing, in the case of 105 atoms (Fig. 4.6), for high values of

the inter-species scattering length the model leads a small discrepancy at large distance.

This can be understood at first glance in the case of a single species component problem

where the TF approximation holds when the quantum pressure (kinetic energy) term

−~2∇2(
p

n ) / (2m
p

n ) is negligible compared to the interaction energy g n(0) [231]. It thus

appears that, if L is the typical length scale on which the density distribution n(r) varies,

the TF approximation is valid when

L À ξh =
√

~2

2mgn(0)
. (4.49)
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Here ξh is the so-called healing length of the condensate. In the case of an harmonic

potential, the validity of the TF approximation can be expressed by the ratio between

the TF radius RTF and ξh. This condition can be written as

RTF

ξh
∝ N2/5 À 1 . (4.50)

For non-zero inter-species scattering length, a similar relations should hold for the atom

numbers of both species since it is for large atom numbers that the kinetic energy term

is negligible compared to the interactions terms. In the expression (4.50), RTF is now

replaced by the domain sizes RB and RC.
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Figure 4.9: Three-domains ground state calculation. Representation of the density dis-
tributions for the case (vi), (see table 4.1), for 106 atoms of each species. The left and
right panels show the density distributions in two representations. The blue and red
lines represent the distribution of 87Rb and 41K calculated with the TICGPE (solid line)
and the TF approximation (dashed line). The harmonic traps are isotropic and their
frequencies are respectively ω87Rb = 2π .50 Hz and ω41K = (

m87Rb

/
m41K

)1/2 .ω87Rb

The Fig. 4.8 and Fig. 4.9 show the configuration number (vi), characterized by the

existence of three domains for a total number of atoms 105 and 106, respectively. The

different domain sizes RA, RB and RC are respectively indicated via a dotted, dash-

dotted and dashed vertical line. The density distributions calculated with the TICGPE

and the TF approximation are shown in solid and dashed lines for the two species.

The agreement between the two approaches is reasonable, and for the same reasons as

mentioned previously the TF results improve with higher atom numbers.
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4.5.2 Comparison between the TDCGPE and the generalized
scaling approach

We would now like to check the accuracy of our generalized scaling approach in the case

of a free expansion of the two condensates. For this, we first calculate the expansion

dynamics using the time-dependent coupled Gross-Pitaevskii equations (TDCGPE) (4.34),

and then calculate the same expansion dynamics using the generalized scaling equations

(4.41) of the different ground state configurations, (i) to (v), shown in the Fig. 4.6 and

Fig. 4.7. For simplicity, we limit our study to the case of two domains and compare two

quantities of particular interest: The density profiles of the two condensates and their

characteristic sizes.

The figures Fig. 4.10 and Fig. 4.11 show the density profiles after 100 ms of free

expansion calculated with the TDCGPE (solid lines) and with the generalized scaling

approach (dashed lines) for the cases (i) to (v) (see table 4.1) for 105 and 106 atoms in

each species, respectively. In both figures, the first row depicts the case number (i) of

two independent BECs, used as a reference. As already stated previously for the ground

states, it can be noticed that at the domain separation the density predicted by the

scaling approach may become discontinuous.

In the cases (ii) and (iii) (second and third row), where the inter-species scattering

length is negative, the two species attract each other and this attraction limits the

expansion velocity of the two clouds compared to the case number (i) where the inter-

species interaction has been set to zero. This behavior is highlighted in Fig. 4.12, where

we show the evolution of the characteristic size of the two clouds calculated with the two

models.

In the case of the GPE simulation, the characteristic size evolution read as

∆R2(t)= 〈ψ(~r, t)
∣∣r2∣∣ψ(~r, t)〉−〈ψ(~r, t) |r|ψ(~r, t)〉2 . (4.51)

Because of the different domains the total characteristic size in the TF approximation

in the case of two domains and following the notation of the section 4.3 and sec:4.4 is
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given by

∆R2
1(t)=

Ñ r=λD
1,r(t) .RB

r=0
r 4 sin(θ)

nD
1

(
r
/
λD

1,r(t),0
)

(
λD

1,r(t)
)3 dθ dφ dr, (4.52a)

∆R2
2(t)=

Ñ r=λD
1,r(t) .RB

r=0
r 4 sin(θ)

nD
2

(
r
/
λD

2,r(t),0
)

(
λD

2,r(t)
)3 dθ dφ dr

+
Ñ r=λS

2,r(t) .RC

r=λD
1,r(t) .RB

r 4 sin(θ)
nS

1

(
r
/
λS

1,r(t),0
)

(
λS

1,r(t)
)3 dθ dφ dr, (4.52b)

for the first and second species. The limits of the integral highlight only the radial

component for clarity and follow the domain definition of section 4.4.

It can be noticed that the initial shape of the condensates is conserved and that the

density profiles described by the scaling approach overlap relatively well with the ones

predicted by the TDCGPE. During the expansion, the mean-field interaction energy

decreases, and both clouds become dilute. The impact of the atom number is shown in

Fig. 4.10 and Fig. 4.11, where, as expected, the increase of the atom number reduces the

significance of the kinetic energy term neglected in the scaling approach.

In the cases (iv) and (v) where the inter-species scattering length is positive, the two

species repel each other. The increase of the repulsion leads 41K to constrain 87Rb closer

to r = 0 and the size of the overlapping domain is smaller in case (v) than in case (iv).

At the same time, 41K is pushed out of the overlapping domain. This phenomenon is

highlighted by the decrease of the amplitude of the density probability distribution at

r = 0 and consequently to the increase of the density probability in the outer domain, i.e.
at RB < r < RC. The transfer of 41K from the overlapping to the outer domain comes with

an amplitude oscillation, recently observed in [329] in the immiscible regime. The shape

of the distribution is not conserved in the overlapping domain and the scaling approach,

which supposes TF parabolic shapes, fails to describe this oscillation, keeping only a kind

of averaged behavior.

In each case, Fig. 4.12 shows that the characteristic sizes predicted by the scaling ap-

proach during the expansion of both clouds are in rather good agreement with the exact

calculation. This is a clear indication of the interest of such scaling approaches which are

numerically much less expensive than solving coupled time-dependent Gross-Pitaevskii

equations, but nevertheless this approach is not always sufficient to reconstruct accu-

rately the shape of the density profile for both species.
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Figure 4.10: Free expansion calculation. Representation of the density distributions for
the cases (i): First row to (v): Last row, (see table 4.1), for 105 atoms in each species after
100 ms of free expansion. The left and right panels show the density distributions in
two representations. The blue and red lines represent the distribution of 87Rb and 41K
calculated with the TDCGPE (solid line) and with the scaling approach (dashed line).
The harmonic traps are isotropic and their frequencies are respectively ω87Rb = 2π .50 Hz
and ω41K = (

m87Rb

/
m41K

)1/2 .ω87Rb

121



CHAPTER 4. OPTIMIZED MANIPULATION OF A DEGENERATE BOSONIC
MIXTURE

0

1

2

3

·10−21
∣ ∣ ψ

(r
,t
)∣ ∣2

(a
u−

3
)

87Rb GPE 41K GPE 87Rb TF 41K TF RB RC

a12 = 0

0

1

2

·10−8

∣ ∣ χ
(r
,t
)∣ ∣2

(a
u−

1
) a12 = 0

0

1

2

3

·10−21

∣ ∣ ψ
(r
,t
)∣ ∣2

(a
u−

3
)

a12= - 56.7 a0

0

1

2

·10−8

∣ ∣ χ
(r
,t
)∣ ∣2

(a
u−

1
)

a12= - 56.7 a0

0

1

2

3

·10−21

∣ ∣ ψ
(r
,t
)∣ ∣2

(a
u−

3
)

a12= - 18.9 a0

0

1

2

·10−8

∣ ∣ χ
(r
,t
)∣ ∣2

(a
u−

1
)

a12= - 18.9 a0

0

1

2

3

·10−21

∣ ∣ ψ
(r
,t
)∣ ∣2

(a
u−

3
)

a12= 18.9 a0

0

1

2

·10−8

∣ ∣ χ
(r
,t
)∣ ∣2

(a
u−

1
)

a12= 18.9 a0

0 200 400 600
0

1

2

3

·10−21

r (µm)

∣ ∣ ψ
(r
,t
)∣ ∣2

(a
u−

3
)

a12= 56.7 a0

0 200 400 600
0

1

2

·10−8

r (µm)

∣ ∣ χ
(r
,t
)∣ ∣2

(a
u−

1
)

a12= 56.7 a0

Figure 4.11: Free expansion calculation. Representation of the density distributions for
the cases (i): First row to (v): Last row, (see table 4.1), for 106 atoms in each species after
100 ms of free expansion. The left and right panels show the density distributions in
two representations. The blue and red lines represent the distribution of 87Rb and 41K
calculated with the TDCGPE (solid line) and with the scaling approach (dashed line).
The harmonic traps are isotropic and their frequencies are respectively ω87Rb = 2π .50 Hz
and ω41K = (

m87Rb

/
m41K

)1/2 .ω87Rb
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Figure 4.12: Characteristic size expansion. Evolution of the characteristic size of the
two clouds during 100 ms of free expansion for the cases (i):First row to (v):Last row,
(see table 4.1), for different atom numbers: 105 (left side) and 106 (right side). The
blue and red lines represent the sizes of the 87Rb and 41K condensates calculated with
the TDCGPE (solid line) and with the scaling approach (dashed line). The harmonic
traps are isotropic and their frequencies are respectively ω87Rb = 2π .50 Hz and ω41K =(
m87Rb

/
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)1/2 .ω87Rb

123



CHAPTER 4. OPTIMIZED MANIPULATION OF A DEGENERATE BOSONIC
MIXTURE

4.5.3 Application to dual-species twin atomic lensing to the
pico-Kelvin level

We tackle now the expansion damping for two interacting species, which is instrumental

for a dual atom interferometer testing the UFF. At few tens of pK expansion energy, it is

possible to realize a several-second atom interferometer with exquisite phase sensitivity.

We also focus on the density distributions of the two species when the different pulses are

applied in order to limit detrimental effects. For this purpose and in order to stay close to

experimental configurations we consider the case of 105 atoms in both condensates with

a tunable inter-species scattering length [340, 341, 357]. Up to now the external traps

are defined by ω87Rb = 2π .10 Hz and ω41K = (
m87Rb

/
m41K

)1/2 .ω87Rb .

We consider the case where, in presence of a Feshbach resonance, the inter-species

scattering length is zero, case (i), and the case where the Feshbach magnetic field is

off, the inter-species scattering length being then + 163 a.u., case (vii) [339]. In this last

case, the miscibility condition is not respected anymore and both species repel each other

more than they repel themselves. Such a situation leads the density oscillations that

propagate during the free expansion, as discussed in the previous section and shown in

Fig. 4.10 and Fig. 4.11. In the context of precision measurements, wave-front aberrations

due to the quality of the optics lead to detrimental effects and important systematics

in the phase measurement [86, 185, 358]. This problem is partially circumvented with

techniques based on deformable mirrors to compensate the wave-front aberration [185].

It is, nevertheless, a leading systematics in precision tests, more particularly a UFF

test. A distorted density profile of the atoms would similarly lead to dephasing since the

atoms of the two species explore different wave-front aberrations at different times.

Following the STE-QUEST satellite mission requirements and based on the sim-

ulations of the TDCGPE, we propose a sequence of free expansion and atomic lenses

for the dual-species in presence of a Feshbach magnetic field to insure a low expansion

temperature for both clouds and the conservation of the shape (a12 = 0). We then study

the impact of the size and shape distribution of the mixture when the Feshbach field is

turned off during the last expansion step dedicated to the interferometry sequence.

The result of the study is shown in Fig. 4.13. This figure shows the impact of a

sequence where the clouds are initially confined in an isotropic harmonic trap of 10 Hz

and 14.56 Hz respectively for 87Rb and 41K in presence of the Feshbach field with

a12 = 0. The sequence consists in a series of release and atomic lens to collimate the

two species in presence of the Feshbach magnetic field. At t = 0 the trap is turned off,
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and the clouds expand for 50 ms. The trap is then turned back on to its previous value

during ∆t = 2.3 ms (represented by the vertical dashed line in panel (e)). The sequence is

repeated a second time with a free expansion of 400 ms and a second lens of duration ∆t =
0.3 ms (represented by the vertical dash-dotted line). The sequence proposed in Fig. 4.13

has been optimized in the case (i), where a12 is fixed to zero, to limit the temperature

expansion of the two BECs. This case depicts the ideal case where the two species do

not interact with each other and where the density shape is conserved in time. This

configuration is used as a reference to describe the impact of the inter-species interactions

in the following.

The panels (a) to (d) show the density distributions 5 s after the second lens. In

panel (a), the Feshbach magnetic field is never switched off, while it is switched off

after 1 ms in panel (b), after 300 ms in panel (c), and after 1 s in panel (d). The different

characteristic size evolution, ∆r, are shown in panel (e) where the colored solid, dashed,

dotted and dash-dotted lines respectively denote the cases (a) to (d). The blue and red

colors respectively denote the two species, 87Rb and 41K. The corresponding velocities

and expansion temperatures are summarized in Table 4.2. The sequence proposed here

follows the expansion requirements to test the Universality of Free Fall at the 10−15

accuracy level [41]. Panels (b) to (d) show the impact of the strength of the inter-species

interaction on the two atomic density distributions, as compared to the case (a) where

this interaction disappears.

When the Feshbach field is turned off after 1 ms, the inter-species mean-field energy is

not negligible and the repulsion between the two species deforms the density distribution

of 87Rb, as shown in panel (b). In 3D, instead of the constant filled sphere we can expect

from panel (a), the density distribution of 87Rb is deformed with time to approach a

hollow sphere shape 5 s after the final release. This problem directly originates from the

interaction between the two species and can be solved if the Feshbach magnetic field

is kept on for some time after the second lens. Panels (c) and (d) show the impact of

these different durations, 300 ms and 1 s respectively. Because the sequence induces a

small focus of the 41K cloud after the second lens (see panel (e)), the total mean-field

energy is not reduced enough after 300 ms of free expansion and in this case, 5 s after the

second lens the density profile is still very close to the case shown in panel (b). Due to

the extremely low expansion temperature of the two species (tens of pK), even after 1 s

post-lens free expansion, a small impact of the inter-species repulsion is still noticeable,

as shown in panel (d).

Panel (e) highlights the impact of the mean-field energy on the characteristic sizes
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Figure 4.13: Dual species twin atomic lens. (a) to (d): Density distributions 5 s after the
second lens when the Feshbach field is switched off at different times: (a) no switch-off ;
(b) 1 ms after the second lens ; (c) 300 ms after the second lens ; (d) 1 s after the second
lens. (e) Result of the dual-species twin atomic lens sequence in terms of density size ∆r.
The solid, dashed, dotted and dash-dotted lines respectively correspond to the cases (a)
to (d), respectively. A first free expansion of 50 ms is followed by a first lens of duration
∆t = 2.3 ms, and then by a second free expansion stage of 400 ms during which the two
species expand before a final lens of duration ∆t = 0.3 ms which controls the expansion
rate of the two ensembles. The harmonic traps are isotropic and their frequencies are
respectively ω87Rb = 2π .10 Hz and ω41K = (

m87Rb

/
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)1/2 .ω87Rb
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a12 = 163 a0 after: Ideal case a12=0

1 ms 300 ms 1 s -

87Rb
∆v1D (µm/s) 62.9 61.2 59.3 58.8

T1D (pK)∗ 41.4 39.2 36.8 36.2

41K
∆v1D (µm/s) 53.5 54.5 55.9 55.7

T1D (pK)∗ 14.1 14.6 15.4 15.3

Table 4.2: Expansion speeds and temperatures expansion of the 41K and 87Rb BECs after
the second lens for different configuration shown in the figure Fig. 4.13. The different
temperatures are calculated in 1D Cartesian following : kBT1D = m∆v2

1D . The Feshbach
magnetic field is switched off at different timing after the second lens, 1 ms, 300 ms and
1 s. The last column represents the case, considered ideal, where the two BECs do not
interact with each other, a12=0.

of the BECs. A direct comparison between the solid and dashed lines indicates a faster

(respectively slower) expansion velocity of the 87Rb cloud (respectively 41K) in the case

where the Feshbach magnetic field in turn off 1 ms after the final release, compared to

the ideal case where a12 is always zero. The different expansion velocities can be found

in Table 4.2. This behavior is due to the repulsive inter-species force. On one hand the

outer species, here 87Rb, is repelled by the inner species, here 41K. The inner species

thus acts as a repulsive potential for the outer species and increases its expansion speed.

On the other hand, the outer species repels the inner one and acts an external repulsive

potential which constrains the expansion of the inner species. For a configuration where

the Feshbach field is turned off later, at 1 s for instance, the reduction of the mean-field

energy reduces this effect and, as expected, the size evolution of the two species is closer

to the ideal case where a12 = 0.

These different behaviors are shown in more detail in Fig. 4.14. The characteristic

size 2 s after the second lens of the 41K and 87Rb clouds is respectively around 170µm and

90µm while initially being 79µm and 32µm at the end of the second lens. After 2 s, the

mean-field interaction energy of both species is therefore reduced by more than an order

of magnitude and, as a consequence, the inter-species mean-field is also approximately

reduced by one order of magnitude. In Fig. 4.14 a direct comparison of the density

127



CHAPTER 4. OPTIMIZED MANIPULATION OF A DEGENERATE BOSONIC
MIXTURE

distributions for the cases where the Feshbach magnetic field is turned off after 1 ms

(first row) and after 2 s (second row) of free expansion after the second lens is shown for

different free expansion times referred as times of flight (TOF) in the different panels.

In each case, just after the lens the two species have the same density distributions as

seen in panels (a) and (e), which are identical. The panels (b,f), (c,g) and (d,h) show the

density distribution of the two species after 2 s, 6 s and 10 s respectively. While the shape

of the 87Rb BEC is deformed in the first row, in the second row its shape is conserved

and keeps its desired spherical filled form.
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Figure 4.14: Time evolution of the density distribution of the two species when the
Feshbach magnetic field is switch off 1 ms (first row) and 2 s (second row) after the
second lens. Density distributions of the two species at the end of the second lens: (a,e)
and 2 s: (b,f), 6 s: (c,g) and 10 s: (d,h) after the lens.

To summarize, in the same manner that non-ideal optics induce wave-front aberra-

tions and detrimental systematics in the phase measurement of an atom interferometer,

a significant change of the density profile with time will induce detrimental systemat-

ics. In this case the sensitivity of the measurement may not benefit anymore of long

time interferometers. Low expansion temperatures is not the only key point of an atom

interferometer. In cases where the clouds are dilute enough, with sizes here of some

hundred of microns, the repulsive strength is negligible and the shape of the density dis-

tribution remains constant over seconds. Engineering sequences where the inter-species

mean-field energy vanishes is then required to perform long time atom interferometers.
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In the context of long time atom interferometers, atomic lenses [186] is a key tool

widely used in the cold atom community [244, 291]. Until today, in each case the colli-

mation effect is reached by the action of an electric field, of a magnetic field or even of a

combination of both. A big limitation lies in the shape of the trap. To perfectly collimate

an atomic ensemble, thermal or BEC, harmonic traps are required for symmetry reasons.

In chapter 3, the impact of non-harmonic traps was shown in phase space. Out of the

results shown in Fig. 4.13, it seems feasible to engineer a sequence to protect the shape

of the inner species through its interaction with the second one. In Fig. 4.14 it can be

noticed that the shape of the inner species is conserved and keeps a spherical filled

density over 10 s of expansion, as shown in panels (a-d). Most of the traps, atom chip or

dipole traps, can be considered harmonic at their minimum over few hundred of microns

size. Nevertheless, as shown in chapter 2 and the present chapter, the collimation effect

can be obtained only after the transfer of the initial mean-field energy to kinetic energy.

This brings the BEC to some hundred of microns in size where the trapping potential is

usually far from being harmonic.

4.6 Conclusion

While recent proposals suggest BEC mixtures as a source for dual-species matter-wave

atom interferometers [41], the necessity to control both the expansion rates and the den-

sity profiles requires specific sequences of atomic lensing and tunable interactions [341].

In this chapter I compared the results of the ground state calculation with two different

models and I showed a good correspondence between the simulation of the dual-species

Gross-Pitaevskii equation and the Thomas-Fermi approximation in the case of two dis-

tinct and three distinct domains of existence of the condensates. In this chapter I also

provided an extension of the works proposed by Y. Castin and R. Dum [229] and by Y.

Kagan, E. L. Surkov and G. V. Shlyapnikov [230] to describe the expansion of a BEC

mixture. The derivation was provided in the general case and then applied in the case of

an isotropic trap with different atom numbers and inter-species scattering lengths. The

different cases were compared to the time dependent coupled Gross-Pitaevskii equations

and showed a good agreement for large atom numbers. A sequence for dual-species atom

interferometers was then found and proved the possibility to limit the expansion rate

of two interacting BECs of vastly different elements to few pK as required by the most

challenging UFF tests. A description of the impact of the inter-species scattering length

on the density profile was shown and discussed in the context of atom interferometry
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where the expansion rate has to be controlled through a twin lens sequence associated

with tunable interactions.
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CONCLUSION AND PERSPECTIVES

This thesis is dedicated to engineer quantum states required by precision matter-wave

atom interferometry. Different control techniques such as Shortcut-To-Adiabaticity (STA),

developed in Chapter 2, and Optimal Control Theory (OCT), developed in Chapter 3,

have been presented within a clear experimental context. Both techniques show the

possibility to control the position and velocity of one or two atomic clouds very precisely

to the µm and µm.s−1, respectively.

The theoretical study of delta-kick collimation and non-adiabatic trap decompression

techniques have shown the possibility to limit the expansion energy of one species or a

degenerate mixture down to the pico-Kelvin regime in Chapters 2 and 4.

In the context of optimizing the duty-cycle of atom interferometry experiments, the

total required time, in each configuration, is taken into account and suggestions to

improve on it were made.

As introduced at the beginning of this thesis, tests of the Universality of Free Fall

(UFF) with an accuracy at the level of 10−15 [40, 41] rely on one hand on the possibility

to preciselly define the differential position and velocity of the two test masses and on

the other hand on the control of the size dynamics of the two species. The sizes of the

different clouds have to expand with a maximum velocity of 100µm.s−1, equivalent to

an expansion temperature of tens of pico-Kelvins. It is only in the configuration where

a fast control of the classical and quantum motion is simultaneously present for the

two species that spurious phase shifts in the differential signal (coming from residual

mean-field energy, wave-front aberrations effects) can be avoided.
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The aim of Chapter 2 was to engineer fast transport ramps to control the final

classical degrees of freedom of Bose-Einstein condensates. This study was initiated by

experimental requirements from the Quantus-2 project [244, 251, 252]. The proximity

of the BEC to the atom chip surface leads to detrimental effects, such as interactions

with the chip surface, atomic losses because of current fluctuations in high trap frequen-

cies [254] and fast BEC expansion rates. All these reasons required the design of fast

and controlled transport ramps. The gauging of a theoretical atom chip model developed

by the Quantus-2 experimental team over the past four years gave us the possibility to

design a specific ramp corresponding to the desired final classic state. This theoretical

study was published in Ref. [188].

In Chapter 3, Optimal Control Theory (OCT) was applied to control the transport of

two non-interacting species. This study was initiated during my internship at Stanford

in the group of M. Kasevich to provide some answer to the problem of a combined input

state preparation in the 10-meter long tower [37]. Due to the complexity generated by

the presence of two species, the reverse engineering technique shown in Chapter 2

does not work anymore. Optimal Control Theory is then required. The evolution of the

control parameter is in agreement with the requirements of the experiment. It has been

designed to transport over a few millimeters the two atomic species and to bring them

simultaneously at rest in a lower frequency trap configuration. In the case presented

here, a smooth change of the magnetic field is required and the implementation of a

smooth evolution at the starting and ending point is proposed. In the future, more

elaborate techniques such as high frequency filtering could give the possibility to avoid

rapid changes of the control parameter during the transport.

One of the real advantage of OCT is the possibility to design optimized and robust

sequences of quantum state manipulation. The up-coming Maius-2 sounding rocket

mission, with an expected launch at the end of 2020, is designed for a mixture of species

on board, Potassium and Rubidium. Experimentally, during the flight the power of the

batteries are expected to decrease with time. In the same way the temperature change

can influence the efficiency of the different experiments foreseen. New technologies and

developments are thus required [254]. A ramp optimized for a specific set of parameters

and temperature is therefore subject to change and as a consequence the result of a

specific input state preparation too. OCT is a very interesting tool in this context. In the

same way as for the control of two species in Chapter 3, OCT can engineer a ramp to

transport BECs from different initial positions in different trap configurations to given

final positions. Each of these initial configurations, defined by a given set of battery
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powers or other parameters subject to change with time, would then be optimized with

a single ramp. Following this idea, the robustness of the control becomes a key point.

It is therefore interesting to study the limitations of the achieved transport and their

consequences for the experiment during the flight.

In the broader context of cold atom physics in microgravity, NASA’s Physical Science

Research Program has selected five proposals to run experimental sequences on the

multi-user facility “Cold Atom Lab” (CAL) on the International Space Station (ISS).

The CAL experiment provides for the first time a persistent quantum gas platform in

microgravity. The multi-user facility was developed and is currently operated by NASA’s

Jet Propulsion Laboratory [359].

Within the “Consortium for Ultracold Atoms in Space” led by Nicolas Bigelow from

the University of Rochester, different proposals to study cold atoms have been made.

Aiming to reach the “Coldest Spot in the Universe”, Shortcut-To-Adiabaticity (STA)

protocols are designed to engineer robust transport ramps in a similar way as described

in Chapter 2 [360]. Different designs accounting for low expansion rates of the BECs

are currently being tested. Until now, measurements have been made with the ramp

we have provided both to the CAL and Quantus-2 experiments [188]. Following the

research line of the Quantus-2 experiment, delta-kick collimation [165, 186, 187] is the

next step to be implemented. The sequence proposed is very close to the one described

in Chapter 2 and already implemented in the Quantus-2 experiment. Until now the

minimum expansion temperature of the BEC observed after release is lower than 100 pK

in Quantus-2 [244, 251, 252], and similar results are expected on the ISS. One of the

particularities of the design of CAL is the possibility to operate with Rubidium and

Potassium simultaneously. This gives the possibility to study two-components superfluids

and to test the Universality of Free Fall with different atomic species. The optimal control

theory tools developed in Chapter 3 are of particular interest in the context of one or

two components superfluids. After a description of different two-components regimes,

a generalized semi-classical approach was proposed in Chapter 4. This generalization

is based on the idea of independent domains where in some regions of space the two

BECs can overlap and in other regions of space only one BEC is present. The semi-

classical approach describes the evolution of the two components in their respective

domains as well as the evolution of the domain sizes. The proposed approach assumes

the conservation of the shape of the two condensates in their respective domains.

In a recent paper, following the same goals as in Chapter 2, we have shown how

OCT can engineer fast transport ramps to bring a degenerate quantum gas from one
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equilibrium state to another one far from the chip surface [257]. In the case of two

components in interaction, the results obtained in Chapter 3 for two non-interacting

cold ensembles are not sufficient and need to be generalized. This study can be divided

in different parts with, first of all the study of two classical particles with contact

interactions. Then, in addition to this classical motion, the quantum motion could be

described with the semi-classical approach proposed in Chapter 4. This approach, based

the definition of different domains, remains valid only if the number of domains and

if the shape of the condensates are conserved. A more rigorous approach would be the

numerical implementation of OCT directly on the evolution of the condensate wave

functions evolving according to the time-dependent Gross-Pitaevskii equation [206, 281].

In this case, highly demanding complex numerical simulations are required and the

convergence of the OCT algorithm highly depends on the initial test ramp. In each

case the algorithm optimizes the evolution of the control parameter until the desired

state is obtained. This initial test ramp could therefore be the one obtained using the

simpler scaling approach of Chapter 4, based on the different domain definitions. The

implementation of the different sub-parts thus brings the possibility to initiate the

algorithm with a pre-optimized solution. Starting with a solution closer to the desired

one can dramatically reduce the number of iteration steps and the calculation time of a

specific sequence.

The application to dual-species twin atomic lensing developed in Chapter 4 proposed

a solution to control the expansion temperature of a mixture of BECs. In this study,

the trap is considered with a spherical symmetry. On one hand, the high complexity

of atom chip structures gives the possibility to find specific configurations where the

trap frequencies are identical in all directions. On the other hand, the low expansion

rate of the two BECs after the lens require a pre-expansion sequence to release the

mean-field energy [165]. The sizes of the two BECs are therefore increased at the end

of these steps and the impact of the anharmonicities of the trap has to be taken into

account. In a similar context, the Quantus-2 setup has experimentally demonstrated

the possibility to collimate a Rubidium 87 BEC of some 105 atoms at an expansion

temperature lower than 100 pK [244, 251, 252]. The results and the understanding of the

impact of the real trap configuration are still under study at the moment in our group

in Hanover. Even though after the expansion the traps are not harmonic anymore, the

results obtained with the Quantus-2 experiment show high collimation capabilities but

with non-symmetric density shapes [244]. The impact of the interaction between the two

species discussed at the end of Chapter 4 on the shape deformation of the two BECs adds
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to the non-harmonic potential effects at the DKC step used to limit the size expansion.

The density distributions of the BECs are affected on one side by the inter-species mean-

field energy at small sizes and on the other side by the anharmonicities of the trap for

increased sizes. For each specific experiment a trade-off has therefore to be found.
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NUMERICAL SIMULATION OF THE LINEAR

SCHRÖDINGER EQUATION

The time evolution of an initial wave function ψ0(r) is described by the evolution operator

defined as

Û(t)= exp
(
−i

Ĥ t
~

)
, (A.1)

where Ĥ, the Hamiltonian of the system, is a sum of the kinetic operator T̂ and the

potential operator V̂ , where the wave function at time t reads as

ψ(r, t)= Û(t)ψ0(r) . (A.2)

In this thesis, the numerical results based on the GPE were obtained using the split-

operator method (SOM) [361, 362] in combination with the Fourier transformation

technique. At each time step ∆t, since the kinetic and potential operators do not commute,

the split operator method approximates the evolution operator Û(∆t). At first order, the

evolution operator for a single time step reads as follows

Û(∆t)= exp
(
−i

T̂∆t
~

)
exp

(
−i

V̂ ∆t
~

)
+O

(
∆t2) , (A.3)

where O
(
∆t2) represents the error made at each time step. In the work presented in

this thesis, we have used the second order split-operator method, in which the evolution

operator is given for a single time step propagation by

Û(∆t)= exp
(
−i

V̂ ∆t
2~

)
exp

(
−i

T̂∆t
~

)
exp

(
−i

V̂ ∆t
2~

)
+O

(
∆t3) , (A.4)
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where the error is now proportional to ∆t3. The separation of the kinetic operator and

the potential operator is of great numerical advantage because they are respectively

diagonal in momentum and in real space. To ensure a fast numerical simulation, the

technique adopted consists then in applying a combination of the appropriate operator

and of a Fourier transform of the wave function, where the Fourier transform is operated

by using a Fast Fourier Transform (FFT) algorithm. Starting with an initial test wave

function defined in real space, the time evolution is given by the sequence

ψ(r, t+∆t,1)= exp
(
−i

V̂ ∆t
2~

)
ψ(r, t,0) , (A.5a)

ψ(k, t+∆t,2)=F
[
ψ(r, t+∆t,1)

]
, (A.5b)

ψ(k, t+∆t,3)= exp
(
−i

T̂∆t
~

)
ψ(k, t+∆t,2) , (A.5c)

ψ(r, t+∆t,4)=F−1 [
ψ(k, t+∆t,3)

]
, (A.5d)

ψ(r, t+∆t,5)= exp
(
−i

V̂ ∆t
2~

)
ψ(r, t+∆t,4) , (A.5e)

where F and F−1 are the forward and backward Fourier transforms and the indices

[0-5] in the wave function denote the different numerical steps. The total propagation

of the wave function is obtained by repeating the previous sequence, i.e. by replacing

ψ(r, t,0) in Eq. (A.5a) by ψ(r, t,5) of Eq. (A.5e).

Two types of propagations can be distinguished: Imaginary time propagation [363,

364] and real time propagation [361, 362]. The imaginary time propagation technique

consists in changing the variable (t) to (−it) in the previous set of equations. In the

case of imaginary time propagation, the evolution operator is real and leads after con-

vergence to the lowest energy state of the system [363, 364]. In the protocol, to ensure

the conservation of the norm after each time step, the wave function is re-normalized

to 1 at the end of each iteration described by Eq. (A.5). In the case of a real time step

propagation, the evolution operator is complex and the dynamics of the wave function in

a time dependent potential can be described by the steps given above in the general case,

for t real.

Remark

In the case of the non-linear Schrödinger equation, one can numerically rewrite the

potential term, V, as a sum of the external potential Vext and the interaction potential

N g |ψ(r, t)|2 where the density, |ψ(r, t)|2, is evaluated at the previous time step. In this
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case the equation Eq.A.1 does not hold anymore but one can numerically follow the steps

of propagation described in Eq.A.5. Another technique to propagate the solution of the

non-linear Schrödinger equation can be found in [365].
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Titre : Ingénierie d’états atomiques pour l’interférométrie de précision
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Résumé : La physique moderne repose sur
deux théories fondamentales distinctes, la relati-
vité générale et la mécanique quantique. Toutes les
deux décrivent d’une part les phénomènes macro-
scopiques et cosmologiques tels que les ondes gra-
vitationnelles et les trous noirs et d’autre part les
phénomènes microscopiques comme la superfluidité
ou le spin des particules. L’unification de ces deux
théories reste, jusqu’à présent, un problème non
résolu. Il est intéressant de noter que les différentes
théories de gravité quantique prédisent une violation
des principes de la relativité générale à différents ni-
veaux. Il est donc hautement intéressant de détecter
les violations de ces principes et de déterminer à quel
niveau elles se produisent.
De récentes propositions pour effectuer des tests
du principe d’équivalence d’Einstein suggèrent une
amélioration spectaculaire des performances en uti-
lisant des capteurs atomiques à ondes de matière.
Dans ce contexte, il est nécessaire de concevoir

des états d’entrée de l’interferomètre avec des condi-
tions initiales bien définies. Un test de pointe de
l’universalité de la chute libre (Universality of Free
Fall en anglais (UFF) ) nécessiterait, par exemple,
un contrôle des positions et des vitesses avec une
précision de l’ordre de 1µm et 1µm.s−1, respecti-
vement. De plus, les systématiques liées à la taille
du paquet d’ondes limitent le taux d’expansion maxi-
mum possible à 100µm.s−1. La création initiale des
états d’entrée de l’interféromètre doit être assez ra-
pide, de l’ordre de quelques centaines de ms au maxi-
mum, pour que le temps de cycle de l’expérience soit
pertinent d’un point de vue métrologique. Dans cette
thèse j’ai développé des séquences optimisées s’ap-
puyant sur l’excitation du centre de masse et la de la
taille d’un ou plusieurs ensembles d’atomes refroidis
ainsi que dégénérés. Certaines séquences proposé
dans cette thèse ont déja été implémenté dans des
expériences augmentant de manière significative le
controle des ensembles atomiques.

Title : Engineered atomic states for precision interferometry

Keywords : Shortcut-to-Adiabaticity (STA), Optimal Control Theory (OCT), Thermal ensemble, Bose-Einstein
Condensates (BEC), BEC Mixtures, Atom chip

Abstract : Modern physics relies on two distinct fun-
damental theories, General Relativity and Quantum
Mechanics. Both describe on one hand macroscopic
and cosmological phenomena such as gravitational
waves and black holes and on the other hand micro-
scopic phenomena as superfluidity or the spin of par-
ticles. The unification of these two theories remains,
so far, an unsolved problem. Interestingly, candidate
Quantum Gravity theories predict a violation of the
principles of General Relativity at different levels. It
is, therefore, of a timely interest to detect violations
of these principles and determine at which level they
occur.
Recent proposals to perform Einstein Equivalence
Principle tests suggest a dramatic performance im-
provement using matter-wave atomic sensors. In this
context, the design of the input states with well defined

initial conditions is required. A state-of-the-art test of
the universality of free fall (UFF) would, for example,
require a control of positions and velocities at the level
of 1µm and 1µm.s−1, respectively. Moreover, size-
related systematics constrain the maximum expan-
sion rate possible to the 100µm.s−1 level. This initial
engineering of the input states has to be quite fast,
of the order of few hundred ms at maximum, for the
experiment’s duty cycle to be metrologically-relevant.
In this thesis I developed optimized sequences based
on the excitation of the center of mass and the size
excitation of one or two cooled atomic sample as well
as degenerated gases. Some sequences proposed in
this thesis have already been implemented in experi-
ments and significantly increase the control of atomic
ensembles.
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