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Résumé

Contexte

Ce travail de thèse s’inscrit dans le domaine de la mécanique des �uides numérique et a été réalisé
dans le cadre du dispositif CIFRE (Convention Industrielle de Formation par la REcherche) de l’ANRT
(Association Nationale de la Recherche et de la Technologie) sponsorisé par l’entreprise pétrolière et
gazière Total. L’objectif initial était d’étudier les apports et les limitations des méthodes dites “par-
ticulaires” pour l’étude des écoulements polyphasiques. Devant l’ampleur de la tâche, il a été très
rapidement décidé de se concentrer exclusivement sur la comparaison de deux méthodes d’origine
particulaire de nature très di�érente mais ayant un fort potentiel dans la modélisation des prob-
lèmes polyphasiques [Huang 2015, Wang 2016, Li 2016] : la méthode Smoothed Particle Hydrodynamics
(SPH) et la méthode de Boltzmann sur réseau (Lattice Boltzmann Method - LBM). Ces deux méthodes
numériques sont principalement utilisées pour résoudre, par des moyens complètement distincts, les
équations de Navier-Stokes. Ces équations, dans le cas monophasique d’un �uide faiblement com-
pressible avec une viscosité constante, sont rappelées ci-dessous dans leur formulation eulérienne et
accompagnées d’une équation d’état pour obtenir un système fermé :




∂ρ
∂t + ρ∇ ·u = 0,
ρ ∂u

∂t + ρ∇ · (u ⊗ u) = −∇p + µ∇2u + ρд,

p = f (ρ),
où ρ est la densité, µ est la viscosité,u est le vecteur vitesse,p est le tenseur de pression, д est le terme de
gravité et f est une équation d’état reliant la pression à la densité. La première équation est l’équation
de continuité alors que la seconde est celle de bilan de quantité de mouvement.

Figure 1: Discrétisation d’une vague avec et sans maillage.

Outre leurs potentialités intrinsèques pour modéliser les problèmes polyphasiques, nous avons dé-
cidé de restreindre notre champ d’étude à ces deux méthodes pour plusieurs raisons. Concernant SPH,
nous voulions capitaliser sur l’expérience acquise avec cette méthode durant les deux années précé-
dant le début de ce doctorat [Douillet-Grellier 2016c, Douillet-Grellier 2016b, Douillet-Grellier 2016a,
Pramanik 2016, Das 2016, Pan 2018]. Pour LBM, il s’agit d’une demande de Total qui était déjà intéressé
par cette méthode pour l’étude des écoulements en milieux poreux et qui souhaitait continuer d’explorer
les possibilités o�ertes par LBM.

SPH est une méthode sans maillage lagrangienne introduite à la �n des années 1970 pour des appli-
cations en astrophysique [Lucy 1977, Gingold 1977] puis étendue à la mécanique des �uides standard.
SPH peut être vue de deux façons : d’abord, il s’agit d’une technique de discrétisation d’équations aux
dérivées partielles comme celles de Navier-Stokes, mais c’est aussi un système Hamiltonien discret
composé de points matériels de masse constante dont l’évolution est suivie dans le temps. L’aspect
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Figure 2: Une simulation SPH 3D de rupture de digue avec obstacle (extrait de [Pan 2015]).

purement sans maillage de SPH permet de se libérer de certaines contraintes liées à l’utilisation d’un
maillage. Cependant, cela a aussi un coût. En e�et, puisqu’il n’y a pas de connectivité prédé�nie entre
les particules, une recherche des plus proches voisins doit être e�ectuée à chaque pas de temps ce qui est
un frein à l’e�cacité numérique du code. Parmi les nombreuses applications de la méthode SPH, on peut
citer l’astrophysique [Springel 2010], l’hydrodynamique [Violeau 2016], la géophysique [Libersky 1991,
Bui 2008, Douillet-Grellier 2016c, Douillet-Grellier 2016a] et l’infographie [Ihmsen 2014]. Des revues
très complètes ont été publiées sur le sujet [Monaghan 2012, Price 2012, Shadloo 2016].

Figure 3: Une simulation LBM 2D d’écoulement monophasique à travers un milieu poreux (faite avec
Palabos - www.palabos.org).

LBM, quant à elle, provient de deux origines distinctes : la théorie cinétique des gaz avec vitesses
discrètes et la méthode des gaz sur réseau avec des automates cellulaires (Lattice Gas Cellular Au-
tomata i.e. LGCA ou LGA [Frisch 1986a]). A la �n des années 1980, les fonctions de densités de
probabilités ont été introduites dans LGCA donnant ainsi naissance à la LBM. Cette méthode con-
siste à résoudre l’équation de Boltzmann dans un espace de vitesses discrètes ce qui est équivalent
à résoudre les équations de Navier-Stokes pour des nombres de Mach et de Knudsen assez faibles
(c’est ce qu’on appelle l’expansion multi-échelle de Chapman-Enskog [Viggen 2009]). En pratique,
LBM se distingue des autres méthodes pour di�érentes raisons. D’abord, elle opère sur un réseau
uniforme (réseau carré ou hexagonal principalement). Ensuite, elle se base sur un algorithme local,
composé d’opérations arithmétiques simples sans termes di�érentiels, ce qui rend le code court, rapide
et bien adapté à l’exécution parallèle [Harting 2005]. En�n, les méthodes traditionnelles de mécanique
des �uides numérique nécessitent le calcul de variables macroscopiques (vitesse, pression, densité)

www.palabos.org
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alors que LBM suit l’évolution de fonctions de densité de probabilité de présence de particules à
une position, une vistesse et un instant donnés [Benzi 1992]. LBM est utilisée depuis plus de 15 ans
pour la simulation d’écoulement dans des géométries complexes, dans les milieux poreux en partic-
ulier [Cancelliere 1990, Ferreol 1995, Ahrenholz 2006, Guo 2002a].

Outre les cas de validations classiques, il a fallu choisir un cas d’application cible qui soit à la
fois pertinent dans le cadre des activités de Total et simulable avec les deux méthodes. Dans un pre-
mier temps, nous avions pensé aux écoulements dans les milieux poreux mais la littérature étant déjà
abondante sur le sujet, SPH apparaissait peu compétitive sur cette problématique (au delà de la sim-
ple faisabilité) par rapport à LBM. Finalement, nous avons préféré nous concentrer sur le problème
des écoulements dits à bouchons (slug �ows en anglais) dans des conduites. Ce régime d’écoulement
se caractérise par l’émergence de bulles, qui occupent la majeure partie ou l’entièreté de la conduite,
séparées entre elles par des phases pures ou quasi-pures de liquide comme montré sur la Fig. 4. Ces
bulles peuvent mesurer jusqu’à plusieurs dizaines de mètres. C’est un régime qui est donc naturellement
intermittent. Les écoulements à bouchons se retrouvent dans de nombreuses applications scienti�ques
et industrielles [Hewitt 2010] telles que les installations de transferts thermiques ou les équipements
d’extraction de solvants mais aussi en météorologie. Dans le cadre de l’industrie pétrolière, on peut les
retrouver dans les pipelines qui acheminent le pétrole et le gaz jusqu’aux ra�neries où ces écoulements
intermittents sont hautement indésirables [Sausen 2012]. Ce type d’écoulement est connu pour endom-
mager les installations (phénomènes du marteau d’eau, étou�ement de compresseurs, débordement
dans les séparateurs) et pour réduire l’e�cacité du transport des �uides.

(a) (b) (c)

Figure 4: Exemples d’écoulements à bouchons. (a) Schéma d’un écoulement à bouchons dans une
conduite oblique. (b) Simulation SPH 2D d’un écoulement à bouchons dans une conduite verticale. (c)
Exemple d’une conduite endommagée à cause d’un écoulement à bouchons.

Les mécanismes qui génèrent ces écoulements intermittents sont bien connus. Dans le cas d’une
conduite horizontale, les bouchons dits “hydrodynamiques” (hydrodynamic slugging) sont induits par
l’instabilité de Kelvin-Helmholtz. Dans certaines conditions de vitesses super�cielles et de géométrie,
des vagues de liquide apparaissent causant ainsi une augmentation locale de la vitesse du gaz et une
diminution locale de la pression. Dès lors, une force de succion engendre une augmentation du niveau
de liquide jusqu’à atteindre le haut de la conduite créant ainsi un bouchon. Une méthode classique pour
éviter l’apparition d’un bouchon hydrodynamique est l’utilisation de cartes de régimes d’écoulement,
comme par exemple sur la Fig. 5 qui permettent d’opérer dans des conditions où les bouchons ont très
peu de chances de se former.

Dans le cas d’une conduite non-horizontale, des écoulements intermittents à bouchons peuvent



4 Résumé

(a) (b)

Figure 5: (a) De haut en bas : écoulement strati�é (strati�ed), intermittent (intermittent), dispersé (dis-
persed) et brumeux (mist) (b) Exemple de carte de régimes d’écoulement adaptée de [Taitel 1976].

être engendrés par les e�ets combinés de la gravité et de la géométrie du terrain sur lequel la conduite
repose [Sánchez-Silva 2013]. Certaines géométries de conduites, comme les coudes, peuvent piéger le
liquide qui s’accumulera jusqu’à atteindre la partie supérieure de la conduite créant ainsi un bouchon
qui sera emporté par l’écoulement de manière périodique (terrain slugging). En outre, des bouchons
peuvent aussi se former dans les tubes prolongateurs (risers) qui relient le fond de la mer avec une plate-
forme pétrolière. Brièvement, un bouchon de liquide peut se former à la base du tube prolongateur
bloquant ainsi le gaz qui arrive. A cause de la pression qui va en augmentant, le liquide commence à
remplir le tube formant ainsi un bouchon qui engorge le séparateur placé à la sortie du tube. En�n,
des bouchons peuvent aussi être générés par des changements de débit ou à cause d’un piston racleur
(pigging).

La question principale lorsqu’on étudie les écoulements à bouchons dans le cadre décrit ci-dessus est
de savoir si, oui ou non, ces bouchons se forment et de chercher un ou plusieurs critères qui contrôlent
leur apparition [Zhang 2017]. Le cas échéant les quantités d’intérêt sont la taille, le temps de transit et
la fréquence de ces bouchons. La compréhension de la formation des écoulements intermittents est un
domaine de recherche actif depuis des années. Dans ce contexte, les approches de type CFD (Computa-
tional Fluid Dynamics) [Lu 2015, Pedersen 2017] sont un outil précieux pour prédire ces phénomènes
dans l’industrie pétrolière.

Au niveau industriel, les premières simulations [Taitel 1980, Viggiani 1988, Sarica 1991] ont été
menées dans le milieu des années 1980. De nos jours, dans l’industrie du pétrole, deux logiciels com-
merciaux sont en compétition pour la simulation des écoulements intermittents : OLGA développé
par le groupe SPT [Bendiksen 1991] et LedaFlow proposé par Kongsberg [Kongsberg 2014]. Une com-
paraison détaillée de ces deux programmes [Belt 2011] conclut que ces deux codes sont également
performants pour des cas simples mais qu’ils ont des soucis pour simuler les cas complexes avec une
phase gazeuse dominante. D’un point de vue académique, di�érents modèles et méthodes ont déjà
été considérés pour simuler les problèmes d’écoulements à bouchons. Parmi ceux-ci, on peut citer la
méthode du volume de �uide (volume-of-�uid) [Taha 2004, Al-Hashimy 2016], la méthode des lignes
de niveaux (level-set) [Fukagata 2007, Lizarraga-García 2016], LBM [Yu 2007], SPH [Minier 2016] ou
l’approche des champs de phase (phase �eld) [He 2008, Xie 2017]. Cependant, ces techniques ont été
appliquées en général à des problèmes de micro-�uidique. Il apparaissait donc intéressant dans le cadre
de cette thèse d’explorer les apports et les limitations de SPH et LBM dans le cadre de la simulation
d’écoulements à bouchons pour l’industrie pétrolière.
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Objectifs

Le cadre général étant ainsi posé, on peut synthétiser les objectifs de la thèse autour de 3 axes.

1. Rappeler les fondements mathématiques des méthodes SPH et LBM en les replaçant dans
le paysage des méthodes dites “particulaires”.

2. Comparer les formulations polyphasiques de SPH et LBM sur des cas de références ainsi
que sur des cas simples d’écoulements à bouchons.

3. Choisir la méthode la plus adaptée et compléter l’étude par la simulation de cas appliqués
et expérimentaux.

Plan du manuscrit

Ce manuscrit de thèse va s’articuler autour de cinq chapitres :

Le chapitre 1 sera l’occasion de faire un récapitulatif sur les méthodes particulaires. En e�et, l’appellation
“particulaire” pouvant recouvrir un grand nombre de cas (lagrangien, eulérien, avec/sans maillage, dis-
cret/continu, général/spéci�que), il est nécessaire d’y apporter une dé�nition claire. On rappellera donc
les grand principes des méthodes particulaires sans maillage ainsi que ceux des méthodes particulaires
plus atypiques. En�n, on proposera une classi�cation des ces méthodes où l’on pourra retrouver SPH
et LBM.

Le chapitre 2 sera exclusivement consacré à l’état de l’art de la méthode SPH. On présentera en
détail la dérivation de l’interpolation SPH ainsi que la discrétisation des équations classiques de la
mécanique des �uides. On s’arrêtera sur les procédures de stabilisation inhérentes à SPH mais aussi
sur les conditions aux limites et l’intégration temporelle. En�n, le chapitre se conclura sur une revue
des formulations polyphasiques disponibles pour SPH avec un accent particulier sur l’approche CSF
(Continuum Surface Force) proposée par [Hu 2006] qu’on utilisera dans le reste du manuscrit.

Le chapitre 3 présentera l’état de l’art de la méthode LBM. On s’intéressera en particulier à l’expansion
de Chapman-Enskog ce qui nous amènera à expliquer la dérivation complète des équations de LBM
en partant de l’équation de Boltzmann. On passera également en revue, les principales conditions aux
limites disponibles et quelques variantes de LBM. On terminera, comme pour la chapitre précédent,
sur une revue comparative des principales formulations polyphasiques en détaillant plus précisément
l’approche des gradients de couleur [Reis 2007], qui sera la méthode utilisée dans la suite de ce docu-
ment.

Le chapitre 4 entrera dans le cœur du sujet, en proposant une comparaison de deux formulations
polyphasiques choisies pour SPH et LBM : la méthode du gradient de couleur en LBM et la méthode
CSF pour SPH. On mènera donc une étude comparative des deux approches, dans un premier temps
sur une collection de cas tests variés : cavité entrainée, montée par capillarité, bulles statiques et insta-
bilités de Rayleigh-Taylor. Puis, on poursuivra la comparaison sur des cas d’écoulements à bouchons
périodiques ainsi qu’avec des conditions au limites entrée/sortie.

Le chapitre 5 ne concernera que SPH et permettra d’explorer plus profondément le potentiel de SPH
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pour simuler di�érents types de régimes d’écoulements et les transitions entre ces régimes, mais aussi
des cas d’écoulements intermittents, avec des ratios de densité et de viscosité et une géométrie plus
proche de la réalité du terrain. On poursuivra avec une étude paramétrique de l’impact d’un terme
correctif d’interface sur les simulations précédentes. En�n, on présentera pour �nir une comparaison
avec des données expérimentales.

Contributions

On peut résumer les contributions propres à la thèse en quelques points détaillés ci-dessous. On rappelle
qu’il s’agit d’une thèse industrielle, les contributions sont donc davantage pratiques et appliquées que
théoriques.

1. Construction d’un code SPH/LBM polyphasique Pour les besoins de cette thèse, il a donc fallu
écrire deux codes, un pour SPH et un pour LBM. Il a été choisi de travailler avec le langage Fortran,
accéléré en utilisant OpenMP. Les codes sont hébergés sur la plateforme de développement de To-
tal à Houston (git, bitbucket, JIRA) et sont donc formatés et bâtis selon les standards en vigueur au
sein des équipes de développement de Total. Ils utilisent quelques fonctions utilitaires provenant de
la bibliothèque d’imagerie sismique de Total. Le pré-processeur est le même pour les deux codes, il
s’agit du programme en accès libre pyck (https://github.com/brucedjones/pyck). Il a
été écrit par moi-même et un ancien collègue en Python/C++ (via swig) dans le cadre d’un précédent
projet sponsorisé par Total. Le post-traitement est e�ectué avec Paraview pour la partie visualisation
et MATLAB pour la génération de graphes en tout genre. Les �chiers d’entrée/sortie sont au format
VTK (ASCII et binaire sont supportés). Les deux codes partagent la même structure de données : deux
types dérivés (derived types) contenant respectivement tous les tableaux requis pour les calculs (densité,
vitesse, . . . ) et tous les paramètres nécessaires à la simulation. D’abord, ces deux types dérivés sont
initialisés, alloués puis remplis avec les valeurs lues dans les �chiers d’entrée. Ensuite, une boucle en
temps va appliquer l’algorithme SPH ou LBM (calcul des variables macroscopiques, calcul des dérivés
temporelles, application des conditions aux limites et intégration en temps) en opérant sur les types
dérivés. Cette boucle en temps produit, à intervalles réguliers, un �chier de sortie VTK qui est utilisé
pour le post-traitement. Il y a cependant quelques di�érences notables entre les deux codes. D’abord,
SPH repose sur une décomposition de domaine pour e�ectuer la recherche des plus proches voisins
nécessaire à chaque itération. Cette méthode permet de chercher les particules voisines d’une particule
donnée seulement dans les cellules adjacentes à celle qui contient la particule courante et pas dans tout
le domaine. De plus, toujours dans une optique d’optimisation, le code SPH procède à un tri régulier
des particules dans les tableaux a�n de limiter les accès mémoires distants. Le code LBM ayant par
nature un algorithme local, on a fait usage autant que possible de la vectorisation des opérations pour
accélérer les calculs. On a limité l’écriture de boucles sur les composantes d’un tableau au maximum
(exceptées celles accélérées par OpenMP) pour travailler directement sur la globalité du réseau quand
c’était possible. Concernant l’e�cacité respective des deux codes, LBM reste une méthode bien plus
rapide que SPH et cela malgré les progrès importants réalisés sur le sujet dans la communauté SPH. En
e�et, on rappelle que LBM est basé sur un réseau et donc la connectivité entre les nœuds est connue, a
priori, alors que SPH est une méthode purement lagrangienne. On doit donc e�ectuer une recherche
des plus proches voisins à chaque pas de temps pour chaque particule. Pour information, le code LBM
est environ 4 fois plus rapide que le code SPH (1.03.10−6s/nœud pour LBM contre 3.85.10−6s/particule
pour SPH) sur un ordinateur portable équipé d’un processeur Intel Core i7 de 2.9 GHz à 4 coeurs et de
16 Gb de RAM. Ces chi�res sont à prendre avec précaution puisque les codes ne sont pas optimisés et
ne sont donc pas réprésentatifs du potentiel HPC de LBM et SPH.

https://github.com/brucedjones/pyck
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2. Conditions aux limites d’entrée/sortie polyphasiques Lors de nos investigations, nous avons
rapidement réalisé que nous allions avoir besoin d’implémenter des conditions aux limites d’entrée/sortie.
En e�et, les conditions aux limites périodiques ne su�sent pas à simuler tous les cas possibles car elles
sont di�ciles à mettre en œuvre d’un point de vue expérimental. Il est beaucoup plus naturel de tra-
vailler avec des conditions aux limites d’entrée/sortie. Dans notre cas, l’objectif est de pouvoir injecter
en entrée deux phases simultanément avec des vitesses super�cielles di�érentes et d’avoir une con-
dition de pression en sortie. Ajoutons que si en entrée, on connait le pro�le de l’écoulement a priori,
en sortie cela n’est pas le cas du tout, on peut avoir des bulles plus ou moins grosses ou des phases
pures. Pour SPH, après avoir épluché la littérature sur le sujet, nous avons décidé de partir des idées
proposées par [Tafuni 2018, Alvarado-Rodríguez 2017] pour le cas monophasique et de les étendre au
polyphasique. L’apport étant le traitement des variables à l’interface, voir Sect. 4.2 pour les détails. Cette
approche est basée sur l’utilisation de zones tampons contenant des particules à l’entrée et à la sortie du
domaine. Pour LBM, nous avons choisi d’étendre les conditions d’entrée/sortie de Zou-He [Zou 1997]
avec un traitement spéci�que pour le champ de couleur, voir Sect. 4.1 pour plus de précisions. L’idée
consiste à travailler avec les fonctions de distributions totales du modèle des gradients de couleur et
de leur appliquer l’algorithme classique proposé par Zou-He. Ensuite, il faut redistribuer ces quantités
en prenant en compte la valeur du champ de couleur. Il faut ajouter qu’ayant utilisé une fonction
d’équilibre particulière, il a fallu re-dériver la méthode de Zou-He avec cette fonction ce qui ajoute un
terme correctif supplémentaire. Tout comme pour SPH, on verra que ces conditions aux limites ne sont
pas parfaites mais ont le mérite d’être stables (surtout en sortie) pour une assez large plage de nom-
bres de Reynolds et de ratios de densité et de viscosité. En outre, elles sont plutôt simples à implémenter.

3. Validation et comparaison des formulations Une fois les codes écrits, il a fallu les valider sur
une collection de cas tests classiques monophasiques et polyphasiques : bulle statique, instabilité de
Rayleigh-Taylor, cavité entraînée et montée par capillarité. Nous avons choisi de mener cette campagne
de validation en parallèle pour SPH et LBM a�n de pouvoir comparer les résultats des deux méthodes.
Nous avons ensuite poussé la comparaison sur des cas d’écoulements à bouchons périodiques, comme
montré par exemple sur la Fig. 6, ainsi qu’avec des conditions aux limites de type entrée/sortie. A notre
connaissance, une telle étude comparative, présentée dans le Chap. 4, n’avait pas été faite par le passé.
Nous insistons sur le fait que les formulations adoptées pourraient probablement être améliorées en im-
plémentant des techniques plus avancées, disponibles dans la littérature. La principale conclusion de ce
travail est que, d’après nos résultats, LBM est plus précise et possède un meilleur ordre de convergence
que SPH mais est très limitée par sa zone de stabilité. Plus clairement, quand les conditions de stabilité
de LBM sont remplies, celle-ci est plus performante que SPH mais ces conditions réduisent fortement
le champ d’applications de la méthode, que ce soit en terme de nombre de Reynolds ou de ratios de
densités et/ou de viscosités. Étant donné que nous voulions poursuivre notre étude des écoulements
dans les conduites sur des cas plus réalistes sortant a priori de la zone de stabilité de LBM, nous avons
décidé de ne poursuivre ce travail qu’avec SPH.

4. Étude de l’applicabilité de SPH à des cas plus réalistes Dans le Chap. 5, nous avons choisi
de ne conserver que SPH et de prolonger notre étude à des cas plus réalistes. Nous entendons par “plus
réalistes” des cas avec des vitesses plus importantes, des géométries plus proches du terrain et des ratios
de densités et de viscosités de type gaz/pétrole. Dans un premier temps, on s’est donc attaché à explorer
plus largement la carte d’écoulement de la Fig. 5, en s’intéressant aux autres régimes d’écoulement
(strati�é, dispersé, brumeux) et aux transitions de l’un à l’autre, comme montré sur la Fig. 7. Dans un
second temps, on s’est intéressé à des cas d’écoulements à bouchons de type hydrodynamique et de
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(a) SPH

(b) LBM

Figure 6: Distribution des phases (gauche) et champs de vitesse normalisés (droite) à l’état stationnaire
périodique pour Re = 50.

terrain pour montrer le potentiel de la méthode sur ce créneau. En�n, nous terminons avec des simu-
lations de cas réels pour lesquels nous avons des résultats expérimentaux et auxquels nous pouvons
nous comparer directement. Une fois, de plus, à notre connaissance, un tel travail n’était pas disponible
dans la littérature existante.

Figure 7: Distribution des phases pour di�érents types de régimes d’écoulements simulés avec SPH
avec des ratios de densités et de viscosité de type air/eau.

5. Étude paramétrique de l’in�uence d’un terme correctif SPH En utilisant la formulation SPH
polyphasique proposée par [Hu 2006], nous avons vite été contraints, comme suggéré dans la littérature,
d’ajouter un terme correctif du type, F corra = ε

∑
b ∈Λa ,b<Ωa

(
1
Θ2
a
+ 1

Θ2
b

)
∇awab , pour éviter une fragmen-

tation non-physique de l’interface. Ce terme est contrôlé par un paramètre libre ε . Le lien entre ce
paramètre et des valeurs physiques n’est pas clair [Szewc 2016]. Dans la Sect. 5.4, nous avons donc
regardé l’impact de cette force corrective sur les simulations SPH précédentes, pour di�érentes valeurs
de ε . Nous avons notamment remarqué que cette force peut in�uer sur le caractère intermittent de
l’écoulement et qu’il doit donc être utilisé avec précaution.

6. Exploration de considérations entropiques en LBM En�n, au cours de la thèse, nous nous
sommes également intéressés à la LBM pour les équations d’advection-di�usion 1D avec l’opérateur
BGK. Il s’agit ici seulement d’une amorce de travail qui est présentée dans l’Appendice C. On arrive
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notamment à obtenir un théorèmeH à partir de considérations entropiques. Cela nous permet d’obtenir
une évaluation �ne de la dissipation d’entropie, que l’on véri�e via des expériences numériques, mais
aussi de réinterpréter l’opérateur de collision BGK comme le gradient d’une fonctionnelle lagrangienne
associée à un problème de minimisation. Il conviendrait de pousser l’analyse plus loin, notamment en
2D, nous n’avons, malheureusement, pas eu le temps d’aller jusque là.

Limitations

Aspect HPC La comparaison des vitesses d’exécution des deux méthodes ne sera pas abordée. En e�et,
nous avons implémenté les méthodes pour qu’elles s’exécutent le plus rapidement possible mais nous
n’avons pas eu le temps de prendre en compte les avancées algorithmiques les plus récentes sur ce
sujet, ni d’ajouter une couche MPI (Message Passing Interface), pour l’accélération multi-machine, ni de
porter le code sur GPU (Graphics Processing Unit). Cela ne nous permet pas d’émettre un avis valable
sur cette thématique.

Simulations 2D Pour des raisons pratiques (temps de calcul, simplicité), toutes nos simulations sont
réalisées en 2D. Le passage en 3D ne pose pas a priori d’obstacles majeurs, cela requiert juste une
implémentation plus lourde, une attention particulière pour certains problèmes géométriques et une
nouvelle campagne de validation. Nous n’avons pas eu le temps d’aller jusque là.

TurbulenceOn ne prendra pas en compte les phénomènes turbulents. Il existe des moyens d’implémenter
des modèles de turbulences dans les méthodes SPH et LBM et il serait intéressant de pousser l’analyse
plus loin en intégrant ces modèles, en particulier pour les quelques cas à haut Reynolds présentés
ci-après. Nous pensons que la viscosité turbulente pourrait avoir un e�et stabilisant sur les champ de
pression.

Publications

Ce travail de recherche a donné lieu à 4 publications (2 journaux, 2 conférences) :
- Douillet-Grellier, T., De Vuyst, F., Calandra, H., & Ricoux, P. (2018). Simulations of intermittent

two-phase �ows in pipes using smoothed particle hydrodynamics. Computers & Fluids.
- Douillet-Grellier, T., De Vuyst, F., Calandra, H., & Ricoux, P. (2018). In�uence of the spurious

interface fragmentation correction on the simulation of �ow regimes. In Proceedings of the
International 13th SPHERIC Workshop, June 26-28, Galway, Ireland.

- De Vuyst, F. & Douillet-Grellier, T. (2018). Entropic considerations on the LBGK model for
advection-di�usion. In Proceedings of 39th Ibero-Latin American Congress on Computational
Methods in Engineering (CILAMCE), November 11-14, Paris, France.

- Douillet-Grellier, T., Leclaire, S., Vidal, S., Bertrand F. & De Vuyst, F. (2019). Comparison of
multiphase SPH and LBM approaches for the simulation of intermittent �ows. Computational
Particle Mechanics.

En outre, 2 publications (2 conférences) sur des thématiques SPH débutées avant le doctorat ont aussi
eu lieu pendant la thèse :

- Pramanik, R., Pan, K., Jones, B. D., Albaiz, A., Williams, J. R., Douillet-Grellier, T., & Pourpak,
H. (2017). Numerical Simulation of Fracture Propagation in Layered Rock. In Proceedings of 51st
US Rock Mechanics/Geomechanics Symposium, June 25-28, San Francisco, California, USA.

- Raymond, S. J., Jones, B. D., Pramanik, R., Pan, K., Douillet-Grellier, T. & Williams, J. R. (2017).
On the e�cacy of augmenting SPH simulations of mixed-mode failure with the Material Point
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Method. In Proceedings of the SPHERIC Beijing International Workshop, October 17-20, Beijing,
China.



Introduction

Context

This doctoral thesis comes within the scope of computational �uid dynamics and has been undertaken
thanks to the CIFRE (Convention Industrielle de Formation par la REcherche) funding provided by the
ANRT (Association Nationale de la Recherche et de la Technologie) and sponsored by the french oil and
gas company Total. The initial goal was to study the contributions and limitations of “particle” methods
for the simulation of multiphase �ows. In order to reduce the scope of investigations, it has been quickly
decided to focus exclusively on the comparison of two particle-based methods from very di�erent origins
but with a strong potential to model multiphase �ow problems [Huang 2015, Wang 2016, Li 2016] : the
Smoothed Particle Hydrodynamics (SPH) method and the Lattice Boltzmann Method (LBM). These
methods are mainly used to solve, by di�erent means, the Navier-Stokes equations. These equations,
for a single phase weakly compressible �uid with a constant viscosity, are recalled hereafter in their
Eulerian formulation alongside an equation of state to close the system :




∂ρ
∂t + ρ∇ ·u = 0,
ρ ∂u

∂t + ρ∇ · (u ⊗ u) = −∇p + µ∇2u + ρд,

p = f (ρ),

where ρ is the density, µ is the viscosity, u is the velocity, p is the pressure, д is the gravity term et f is
an equation of state linking density and pressure. The �rst and second equations are respectively the
continuity and the momentum equations.

Figure 8: Meshbased and meshless discretization of a wave.

Beyond their intrinsic abilities to model multiphase problems, we have decided to restrain our
scope of research to two methods for several reasons. For SPH, we wanted to take advantage of
the experience acquired with this method during two years before the beginning of this doctoral
work [Douillet-Grellier 2016c, Douillet-Grellier 2016b, Douillet-Grellier 2016a, Pramanik 2016, Das 2016,
Pan 2018]. Concerning LBM, it was a Total request who was already interested by this method for porous
media �ows applications and wanted to keep exploring the potential of LBM.

SPH is a Lagrangian meshfree method introduced in the late 70’s for astrophysics applications [Lucy 1977,
Gingold 1977] and later expanded to standard �uid mechanics. SPH can be seen from two di�erent per-
spectives. On one hand, it is a way to discretize partial di�erential equations such as the Navier-Stokes
equations. On the other hand, it is a discrete Hamiltonian system composed of material points of con-
stant mass that are tracked in time. Its pure meshless nature allows to get rid of many issues associated
with meshing. However, it comes at some expenses too. Since there is no connectivity between par-
ticles, a neighbor searching procedure has to be carried for every particle at every time step, which
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Figure 9: A 3D SPH dambreak simulation (taken from [Pan 2015])

is a serious bottleneck for code e�ciency. Among the numerous applications of SPH, we can men-
tion astrophysics [Springel 2010], hydrodynamics [Violeau 2016], geophysics [Libersky 1991, Bui 2008,
Douillet-Grellier 2016c, Douillet-Grellier 2016a] and computer graphics [Ihmsen 2014]. Some extensive
reviews have been published [Monaghan 2012, Price 2012, Shadloo 2016].

Figure 10: A 2D LBM single �ow through porous media simulation (done with Palabos - www.
palabos.org)

LBM originates from two distinct approaches: the kinetic gas theory with discrete velocities and the
lattice gas cellular automata method (LGCA or LGA [Frisch 1986a]). In the late 80’s, probability density
functions were introduced within LGCA, giving birth to LBM. It consists in solving the Boltzmann equa-
tion in a discrete velocity space, which has been proven to be equivalent to solving the Navier-Stokes
equations in the limit of low Mach and Knudsen numbers (as can be shown by a multiscale Chapman-
Enskog expansion [Viggen 2009]). In practice, LBM distinguishes itself from other methods for several
reasons. First, the LBM operates on an uniform lattice (mostly square or hexagonal lattices). Then, LBM
o�ers a local algorithm involving simple arithmetic operations with no di�erential terms, which makes
it short, fast and particularly well suited for parallel execution [Harting 2005]. Finally, traditional CFD
methods are based on the calculation of macroscopic variables (velocity, pressure, density) whereas
LBM tracks the evolution of probability distribution functions of the presence of particles at a given
location, speed and time [Benzi 1992]. LBM has been used for decades for �ow simulations in complex
geometries, especially in porous media [Cancelliere 1990, Ferreol 1995, Ahrenholz 2006, Guo 2002a].

Apart from generic validation cases, we had to choose a target application case which is relevant
regarding Total’s interests and possible to simulate with both methods. Initially, we thought about

www.palabos.org
www.palabos.org
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porous media �ows but the literature was already abundant on that topic and SPH appeared less
competitive for this kind of problems compared to LBM. In the end, we have decided to focus on the
simulation of slug �ows in pipes (also known as plug �ow). This �ow regime is characterized by the
emergence of large bubbles that can �ll most of or all the pipe which are separated by pure or almost
pure liquid phases as shown on Fig. 11. Theses bubbles can measure up to tens of meters. Therefore,
it is a regime that is naturally intermittent. Slug �ows can be encountered in numerous industrial and
scienti�c applications [Hewitt 2010] such as chemical and heat transfer systems or solvent extraction
equipment but also in meteorology. One of the main examples is the transportation of oil and gas (or
oil and water) from reservoirs to re�nery facilities through pipelines in the petroleum industry. In that
case, these patterns are highly undesirable [Sausen 2012] because they are known to damage facilities
(separators �ooding, compressors starving, water hammer phenomenon) and to reduce �ow e�ciency.

(a) (b) (c)

Figure 11: Examples of slug �ows. (a) Schematic fo a slug �ow in an oblique pipe. (b) 2D SPH simulation
of a slug �ow in a vertical pipe. (c) Example of a damaged pipe because of slug �ow regime.

The mechanisms of generation of slug �ows are well known. On one hand, in the case of horizontal
pipes, “hydrodynamic” slugs are induced by the Kelvin-Helmholtz instability. Under certain velocity
and geometry conditions, liquid waves can grow in the �ow causing a local increase of the gas velocity
and a local decrease of the pressure. Consequently, a suction force starts to move the interface higher
until reaching the top of the pipe and forming a slug. A common way to avoid the appearance of
hydrodynamic slugs is to use �ow regime maps such as the one shown on Fig. 12 to operate with �ow
conditions that are unlikely to generate them.

On the other hand, intermittent �ows can be caused by the combined e�ects of gravity and terrain
geometry on which the pipe lies [Sánchez-Silva 2013]. The path of the pipe can have low spots, like
elbows, in which the liquid is trapped. It accumulates until reaching the top of the pipe and it is then
carried away by the �ow forming a slug. Alternatively, severe slugging can occur in risers. In a nutshell,
a liquid slug begins to form at the riser base blocking the incoming gas. Moved by the increasing gas
pressure, the liquid �lls up the riser forming a slug that �ood the separator at the end of the riser.
Additionally, slugging can be generated by a �ow rate change or by pigging. The main question when
studying slugging is to know whether or not it will occur and eventually to �nd the criterion that
triggers its formation [Zhang 2017]. If it does, the quantities of interest are the size of slugs and their
transit time and frequency. The understanding of the formation of intermittent �ow patterns has been a
lively research area for years. In this context, Computational Fluid Dynamics (CFD) softwares [Lu 2015,
Pedersen 2017] emerged as a useful tool to predict the appearance of a slug �ow regime in the oil and
gas industry.
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(a) (b)

Figure 12: (a) From top to bottom : strati�ed �ow, intermittent �ow, dispersed �ow and mist �ow. (b)
Example of a �ow regime map adapted from [Taitel 1976].

At the industrial level, the �rst simulations [Taitel 1980, Viggiani 1988, Sarica 1991] were done in
the mid 80’s. Nowadays, in the oil and gas industry, two commercial software products are competing
for slugging simulation : OLGA developed by SPT group [Bendiksen 1991] and LedaFlow, proposed by
Kongsberg [Kongsberg 2014]. A detailed comparison of both codes [Belt 2011] concludes that although
performing equally well on simple cases, they have trouble to simulate complex cases with a domi-
nant gas phase. From an academic perspective, di�erent models and methods have been used for slug
�ow modeling, for example volume-of-�uid [Taha 2004, Al-Hashimy 2016], level-set [Fukagata 2007,
Lizarraga-García 2016], lattice Boltzmann method (LBM) [Yu 2007], smoothed particle hydrodynamics
(SPH) [Minier 2016] or phase �eld [He 2008, Xie 2017], but these are applied on micro�uidic problems
for the most part. It appeared to be of interest within this doctoral work to explore the contributions
and limitations of SPH and LBM for the simulation of slug �ows in pipes.

Objectives

The general framework has been described, we can now detail the 3 main goals of this thesis.

1. Recall the mathematical foundations of SPH and LBM and place them in the landscape
of particle-based methods.

2. Compare the multiphase formulations of SPH and LBM on reference cases as well as on
slug �ows cases.

3. Choose the most adapted method and extend the study to applied and experimental cases.

Manuscript outline

This Ph.D manuscript will be composed of 5 chapters :

Chapter 1 will be the opportunity to present an overview of particle-based methods. Indeed, the
designation “particle-based” or “particle” can cover a large number of cases (Lagrangian/Eulerian, mesh-
based/meshless, discrete/continous, general/speci�c). It is necessary to provide a clear de�nition of what
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we mean by particle methods. We will therefore recall the main principles of meshless particle methods
and non-standard particle methods. Finally, we will propose a classi�cation which will include SPH
and LBM.

Chapter 2 will be exclusively devoted to the state of the art of the SPH method. We will present
in details the derivation of the SPH interpolation and the SPH approximation of the Navier-Stokes
equations. Along the way, we will notably describe the stabilization procedures inherent with SPH,
the boundary conditions and the time integration scheme. This chapter will end on a review of the
available multiphase SPH formulations with a particular focus on the CSF (Continuum Surface Force)
approach proposed in [Hu 2006] that will be used later in this work

Chapter 3 will present the state of the art of the LBM. We will focus in particular on the Chapman-
Enskog expansion which will lead to the full derivation of the LBM equations starting from Boltzmann
equation. We will also review the main boundary conditions and LBM variants available in the litera-
ture. As in the previous chapter, we will conclude with a comparative review of the multiphase LBM
formulations especially detailing the color gradient model [Reis 2007] which will be used in the rest of
the document.

Chapter 4 will get to the heart of the matter proposing a comparison of the two chosen multiphase
formulations : the color gradient method for LBM and the CSF method for SPH. To begin, we will work
on a collection of various test cases : lid-driven cavity, capillary rise, static bubbles, Rayleigh-Taylor
instability. Then, we will continue our study on periodic slug �ows cases and �nally on slug �ows cases
generated using inlet/outlet boundary conditions.

Chapter 5 will concern exclusively SPH and will let us explore more precisely the potential of SPH to
simulate di�erent �ow regimes and �ow regimes transitions but also intermittent �ows cases with high
density and viscosity ratios and more realistic geometry. We will then carry on a parametric study on
the in�uence of a spurious interface corrective term on the previously presented SPH results. Finally,
we will conclude with a comparison with experimental data.

Contributions

We summarize the contributions of this doctoral work hereafter. We remind that this is an industry-
sponsored thesis so that the contributions are more practical and applied than theoretical.

1. Building of a multiphase SPH/LBM code For the needs of this work, we had to write two codes :
one for SPH and one for LBM. It was decided to develop these codes using the Fortran language accel-
erated with OpenMP. These codes are hosted on the Total development platform located in Houston
and are therefore formatted and built according to the company standards. They use some utility func-
tions contained in the Total seismic imaging library. The pre-processor is the same for both codes, it
is the open-source program called pyck (https://github.com/brucedjones/pyck) that
was developed by myself and a colleague in Python/C++ (via swig) during a previous Total-sponsored
project. Post-processing is performed using Paraview for visualization and MATLAB to generate the
di�erent plots presented in this work. Input and output �les use the VTK format (ASCII and binary are
supported). Both codes share the same data structure that consists of two derived types. One holds all
the arrays required for the calculations (density, velocity, . . . ) and the other one holds all the parameters
of the simulation. Then, a time loop will perform the required algorithmic operations of SPH and LBM

https://github.com/brucedjones/pyck
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(macroscopic variables calculation, rate terms computation, boundary conditions, time integration) on
the derived types. This time loop generates an output VTK �le at regular instants that is used for post-
processing. However, there are several di�erences between the codes. First, SPH uses a decomposition
domain in order to achieve a faster nearest neighbor search that is needed for every particle at each time
step. This technique allows to only search for neighboring particles of a given particle in the adjacent
cells of the cell containing the current particle and not in the whole domain. In addition, to optimize
data access, we also regularly sort the arrays so that particles that are close in space are close in memory.
the LBM algorithm being local by nature, we made use of vectorization wherever possible in order to
quicken the calculations. We have preferred to work directly on the whole arrays in a vectorized oper-
ations except when the loop is OpenMP accelerated. Concerning the computational e�ciency of both
codes, we can say that LBM remains much faster than SPH despite the important progresses made in
the SPH community. Indeed, we remind that LBM is based on a lattice so that the connectivity between
nodes is known a priori whereas SPH being purely Lagrangian, a nearest neighbor search is needed
for every particle at every time step. For information, our LBM code is roughly 4 times faster than our
SPH code (1.03.10−6s/node for LBM versus 3.85.10−6s/particle for SPH) on a laptop equipped with an
Intel Core i7 processor of 2.9 GHz with 4 cores and 16 Gb of RAM. These numbers are indicative and
should be taken with caution since the codes are not optimized and therefore are not representative of
the HPC potential of LBM and SPH.

2. Multiphase inlet/outlet boundary conditions During our investigations, we rapidly realized that
we would need to implement inlet/outlet boundary conditions. Indeed, periodic boundary conditions
are not enough to simulate all the possible cases because they are complicated to setup experimentally.
It is much more natural to work with inlet/outlet boundary conditions. In our case, the goal is to inject
two phases simultaneously at the inlet with di�erent super�cial velocities and to impose a constant
pressure at the outlet. In addition, at the inlet, we know the �ow pro�le a priori whereas at the outlet
it is not the case, we can have bubbles or pure phases. For SPH, after looking at the existing literature,
we have decided to use the ideas developed in [Tafuni 2018, Alvarado-Rodríguez 2017] for the single
phase case and extend them to the multiphase context. Our contribution is the interface treatment,
see Sect. 4.2 for more details. This approach is based on the use of bu�er areas at the inlet and the
outlet of the domain to hold entering and leaving particles. For LBM, we have chosen to extend Zou-He
boundary conditions [Zou 1997] with a speci�c treatment for the color �eld, see Sect. 4.1 for more
precision. The main idea is to work with the total distribution function of the color gradient model and
to apply them the original Zou-He algorithm. Then, we need to redistribute these quantities among
the phases using the color �eld value. Moreover, because we used a special equilibrium distribution
function, we had to re-derive the Zou-He method with that particular function which led to an addi-
tional corrective term. These SPH and LBM multiphase boundary conditions are not optimal but they
deliver what we expect with a reasonable accuracy and more importantly are stable for a broad range
of Reynolds numbers and density and viscosity ratios. On top of that, they are quite simple to implement.

3. Validation and comparison of formulations Once written the codes, we needed to validate them
on a collection of reference single phase and multiphase test cases : static bubbles, Rayleigh-Taylor
instability, lid-driven cavity and capillary rise. We led that validation campaign in parallel for SPH and
LBM in order to compare the results of both methods. Then, we extended the comparison on periodic
slug �ows cases, as shown for example on Fig. 13, as well as with inlet/outlet boundary conditions. To
the best of our knowledge, such a comparison, presented in Chap. 4, was not available in the current
literature. We stress that the SPH and LBM formulations adopted for this work could certainly be im-
proved using more elaborate techniques available in the literature. The main conclusion of this work is
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that, according to our results, LBM is more accurate and possesses a better order of convergence than
SPH but is limited by its quite narrow area of stability. More clearly, when the stability conditions of
LBM are met, it is more e�cient than SPH. However, these stability conditions strongly reduce the �eld
of application of the method in terms of Reynolds numbers or density/viscosity ratios. Our goal is to
extend our analysis further and to simulate more realistic cases which are outside of LBM stability area.
In consequence, we have decided to pursue this work with SPH only.

4. Study of SPH applicability to more realistic cases. In Chap. 5, we have chosen to keep working

(a) SPH

(b) LBM

Figure 13: Phases distribution (left) and normalized velocity �elds (right) at (periodic) steady state for
Re = 50.

only with SPH and to extend our study to more realistic cases. More precisely, we mean cases with
higher inlet velocities, close-to-reality geometries and oil/gas-like density and viscosity ratios. First, we
explored in details the �ow map of Fig. 12 by simulating multiple cases, di�erent �ow regimes (strati�ed,
mist, dispersed) and the transitions between these regimes as shown for example on Fig. 14. Second, we
worked on hydrodynamic and terrain slugging cases with realistic proportions. Finally, we conclude
this chapter with the comparison between SPH simulations and experimental data. Once again, to the
best of our knowledge, this was not available before in the literature.

5. Parametric study of a corrective term for multiphase SPH When using the multiphase SPH

Figure 14: Phases distribution for di�erent �ow regimes simulated with SPH with air/water-like density
and viscosity ratios.

formulation proposed in [Hu 2006], we were quickly forced, as suggested in the literature, to use a
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corrective term de�ned by F corra = ε
∑
b ∈Λa ,b<Ωa

(
1
Θ2
a
+ 1

Θ2
b

)
∇awab to avoid a spurious interface frag-

mentation. This term is controlled by a free parameter ε . The link between this parameter and physical
values is not clear [Szewc 2016]. In Sect. 5.4, we have looked at the impact of this corrective force on
the previously presented SPH simulations for di�erent values of ε . In particular, we have noted that
this force can act on the intermittent character of the �ow regime and must be used with caution.

6. Exploration of entropic considerations of LBM During this doctoral work, we got interested
in LBM for 1D advection-di�usion equations with the BGK operator. It is only an early work that is
presented in Appendix C. In particular, we are able to obtain anH theorem from entropic considera-
tions. It allows us to derive �ne estimation of the entropy dissipation that we confront with numerical
experiments and also to propose a reinterpretation of the BGK collision operator as the gradient of
speci�c Lagrangian functional associated with a minimization problem. It would be interesting to push
the analysis further, in 2D especially, but we did not got the time to go that far.

Limitations

HPCaspects In this Ph.D dissertation, we will not discuss the computational e�ciency of both methods.
Indeed, we have implemented SPH and LBM so that they execute as fast as possible but we did not have
the time to take into account the latest progresses on the subject, nor to add an MPI (Message Passing
Interface) layer for multimachine parallelization, nor to port the code to GPU (Graphics Processing Unit).
In consequence, we cannot venture a justi�ed opinion on this matter.

2D simulations For practical reasons (computation time, simplicity), all our simulations are done
in 2D. Switching to 3D simulations is not a major obstacle, it only requires a heavier implementation, a
particular attention for certain geometrical issues and a new validation campaign. We did not have the
time to go this far.

Turbulence We did not take into account turbulent phenomena in the models we have used. It is
possible to add turbulence models in SPH and LBM and it would be interesting to push the analysis
further integrating those models. It would be of particular interest for the few high Reynolds cases
presented later in this document because we believe that the turbulent viscosity would help to stabilize
the SPH pressure �elds.
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- Douillet-Grellier, T., De Vuyst, F., Calandra, H., & Ricoux, P. (2018). Simulations of intermittent
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- Douillet-Grellier, T., De Vuyst, F., Calandra, H., & Ricoux, P. (2018). In�uence of the spurious

interface fragmentation correction on the simulation of �ow regimes. In Proceedings of the
International 13th SPHERIC Workshop, June 26-28, Galway, Ireland.

- De Vuyst, F. & Douillet-Grellier, T. (2018). Entropic considerations on the LBGK model for
advection-di�usion. In Proceedings of 39th Ibero-Latin American Congress on Computational
Methods in Engineering (CILAMCE), November 11-14, Paris, France.

- Douillet-Grellier, T., Leclaire, S., Vidal, S., Bertrand F. & De Vuyst, F. (2019). Comparison of
multiphase SPH and LBM approaches for the simulation of intermittent �ows. Computational
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Moreover, 2 extra publications (2 conferences) related to an SPH project started before the thesis also
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- Pramanik, R., Pan, K., Jones, B. D., Albaiz, A., Williams, J. R., Douillet-Grellier, T., & Pourpak,
H. (2017). Numerical Simulation of Fracture Propagation in Layered Rock. In Proceedings of 51st
US Rock Mechanics/Geomechanics Symposium, June 25-28, San Francisco, California, USA.

- Raymond, S. J., Jones, B. D., Pramanik, R., Pan, K., Douillet-Grellier, T. & Williams, J. R. (2017).
On the e�cacy of augmenting SPH simulations of mixed-mode failure with the Material Point
Method. In Proceedings of the SPHERIC Beijing International Workshop, October 17-20, Beijing,
China.
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In this chapter, we will give a general overview of particle methods. Note that we consider the term
particle in a very broad sense : methods based on a particle description of the continuum or involving
a numerical representation of physical particles or leaning on material points that are described as
particles will be considered. At this point, it is necessary to distinguish two categories of particle
methods : meshbased particle methods and meshfree particle methods. Indeed, particle methods are
not always meshfree, the most notorious example is the Lattice Boltzmann Method (LBM). Most of the
particle methods being meshless, a large part of this chapter will be devoted to this topic.

It is di�cult to provide a clean classi�cation of particle methods. Several criteria can be considered :
the type of formulations of the partial di�erential equations (PDE) (strong/weak, local/global), the
physical principles (deterministic, probabilistic), the type of approximation functions and decomposition
basis (intrinsic/extrinsic basis, type of test/trial functions) and so on. Many methods could �t in one or
several categories or in none of them.

First, a review of the theory of meshless particle methods will be presented. Then, a brief summary
of other particle methods will follow. Finally, an attempt to classify these methods will conclude this
chapter. Note that the content of this chapter has been inspired from [Fries 2004, Nguyen 2008].

1.1 Meshless particle methods

Traditional methods like the �nite element method have been introduced in the 1950’s and have become
the most popular and commonly used tool in engineering simulations. These methods are based on a
mesh that is a division of space into non-overlapping discrete elements. The element connectivity is
known in advance and does not change throughout the simulation. The interpolation functions needed
to approximate the solution are subsequently built upon this mesh. The accuracy and the stability of
these methods is directly connected with the quality of the mesh (element type, regularity, distorsion,
etc).

As a consequence, these meshbased approaches require a very �ne mesh in order to capture certain
problems involving very local dynamics, abrupt variations or even discontinuities such as the simula-
tion of fragmentation, cracks initiation and propagation, impacts, multiphase �ows or �uid-structure
interactions. Moreover, in the case of large deformations, the deterioration of the mesh leads to insta-
bilities and errors. These di�culties have been overcome by using �ner meshes or by using remeshing
procedures, both being computationally expensive. Indeed, remeshing is a very challenging topic espe-
cially in 3D and it requires the projection of variables between successive meshes leading to numerical
errors.

The emergence of meshless methods originated from these mesh-related issues. The idea that it
could be more advantageous to discretize a continuum by only a set of points (particles) led to the
appearance of the �rst meshless methods [Gingold 1977]. Meshless methods have been applied to a
large variety of �elds (and scales) of science : from chemistry to earth sciences through astrophysics
and hydrodynamics. In general, meshless methods will feature the following properties [Liu 2009] :

1. The node connectivity is computed at every iteration. This is the main reason why meshless
methods can easily handle large deformations and moving discontinuities. No mesh or remeshing
of any kind is needed. However, meshless methods are in general considerably more expensive
than meshbased methods and often rely on a good Nearest Neighbor Search (NNS) algorithm to
increase the computational e�ciency.

2. The meshfree discretization is simpler than to generate a mesh and can accurately represent
complex geometries. This is a major plus when it comes to interact with CAD (Computer Aided
Design) softwares and during the pre-processing phase.
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3. In general, The adaptivity (h-adaptivity) of meshless methods is easy to address, since it only
consists in adding more particles in the model.

4. Most meshless methods do not satisfy the Kronecker delta property which causes di�culties to
impose boundary conditions compared to meshbased methods.

1.1.1 Some reminders and de�nitions

1.1.1.1 Trial and test functions

De�nition 1.1.1 (Strong form of a PDE). Let’s consider a Partial Di�erential Equation (PDE) on Ω ⊂ Rd
(d is the dimension) with a boundary Γ de�ned by the di�erential operator L and a linear form f .

Lu(x) = f (x) , ∀x ∈ Ω,
u(x) = ū(x) , ∀x ∈ Γ. (1.1.1)

Eq. (1.1.1) is the strong form of the PDE.

De�nition 1.1.2 (Trial functions). If we have a set of N nodes i located at position xi , let’s assume that
u can be expressed as follows :

u(x) ≈ uh(x) =
N∑
i=1

Φi (x)ui , (1.1.2)

where Φi : Ω 7→ R are the trial functions (also called shape functions), ui = u(xi ) are the nodal values at
node i . Note that trial functions are also called shape functions.

De�nition 1.1.3 (Residual error). Replacing u with uh in the PDE yields :

εh(x) = Luh(x) − f (x). (1.1.3)

εh is the residual error. This residual is non zero due to the approximation.

De�nition 1.1.4 (Weak form of a PDE). Multiplying Eq. (1.1.1) by arbitrary functions Ψ and integrating
over Ω, it gives : ∫

Ω
ΨLuh(x)dΩ =

∫
Ω
Ψ f (x)dΩ , ∀Ψ. (1.1.4)

The weak form is obtained by applying an integration by parts (depends on L, a boundary integral on Γ

appears).

De�nition 1.1.5 (Test functions). Arbitrary functions Ψ used to obtain the weak form of the PDE are
called the test functions. The test functions are usually projected on a basis of arbitrary nodal coe�cients
δui as follows :

Ψ(x) =
N∑
i=1

Ψi (x)δui . (1.1.5)

De�nition 1.1.6 (Weighted residuals). A system of equations is built by setting εh orthogonal (in the
sense of 〈u,v〉 =

∫
Ω
uvdΩ) to the set of test functions Ψ.∫

Ω
ΨεhdΩ = 0 then

∫
Ω
Ψ

(
Luh(x) − f (x)

)
dΩ, (1.1.6)

∫
Ω
Ψ

[
L

(
N∑
i=1

Φi (x)ui
)
− f (x)

]
dΩ = 0. (1.1.7)

In order for all the integrals of Eq. (1.1.6) and (1.1.7) to be de�ned, restrictions have to be applied to Ψ and
Φ. They have to be Cn−1 where n is the order of derivatives in L.
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The choice of trial functions Φ and test functions Ψ will engender a family of meshless and meshbased
numerical methods.

1.1.1.2 Partition of unity and consistency

De�nition 1.1.7 (Polynomial basis). A polynomial basis of order n in dimension d is de�ned as :

p(x) = {
xa, |a | ≤ n

}
, (1.1.8)

with aT = (a1, . . . ,ad ) and xa (xa1
1 . . . x

ad
d . For example, if d = 1 and n = 2, then pT = (1, x, x2) and if

d = 2 and n = 2, then pT = (1, x,y, x2, xy,y2)
De�nition 1.1.8 (Consistency). The consistency of an approximation refers to the highest polynomial
order which can be represented exactly with a given numerical method. Given an approximation of the
form of Eq. (1.1.2), it is consistent of order n if the following condition is satis�ed :

N∑
i=1

Φi (x)p(xi ) = p(x) , ∀x ∈ Ω, (1.1.9)

with p the polynomial basis of order n de�ned in Eq. (1.1.8).

De�nition 1.1.9 (Partition of Unity). The set of trial functions Φ satisfying Eq. (1.1.9) is then called a
Partition of Unity (PU) of order n. As an example, the partition of unity of order 0 satis�es

∑
i Φi (x) = 1

(hence the name partition of unity). This property is also called completeness (or reproducibility). It is the
ability for an approximation to exactly reproduce a polynomial at a certain order.

De�nition 1.1.10 (Kronecker delta property). Let’s consider a set of N nodes i located at position xi , the
shape (or trial) functions Φi (x) satisfy the Kronecker delta property if :

Φi (x j ) = δi j . (1.1.10)

1.1.1.3 Kernel functions

De�nition 1.1.11 (Kernel functions). In the rest of the document, it will be often referred to kernel
functions (also called weight functions or window functions depending on the context). They are de�ned as

w : Rd × R+ 7→ R+.

These functions need to ful�ll the following requirements :
1. Normalization ∫

Ω
w(x,h)dΩ = 1. (1.1.11)

2. Compact support of size h
h is the dilatation parameter or smoothing length1. This size is critical to establish the accuracy and
the stability of the solution (like the mesh resolution in FEM).

w(x,h) = 0 for |x | > κh, (1.1.12)

where κ is a �xed number that controls the size of the compact support.

1It has been recently pointed out in [Dehnen 2012, Violeau 2014] that the parameter h is not a good measure of the kernel
support, the authors suggest the use of the kernel standard deviation instead, σ 2 = 1

D

∫
Ω
|x |2w(x,h)dΩ. This gives a �nite

value even for the Gaussian kernel and is good estimator of the number of particles within the support.
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3. Positive on its support

w(x,h) ≥ 0 for |x | ≤ κh. (1.1.13)

4. Monotonic decrease
5. Dirac delta function condition as h → 0

lim
h→0

w(x,h) = δ (x). (1.1.14)

6. Even (symmetric) function (thus the derivative is odd)

w(x,h) = w(y − x,h), (1.1.15)
∇w(x,h) = −∇w(y − x,h). (1.1.16)

7. Su�ciently smooth (C1 at least for most methods).

While these requirements seem quite restrictive, there is actually an in�nity of functions satisfying
them. The most simple one being the Gaussian function, but splines functions or the so-called Wendland
functions also satisfy those properties. These functions will be detailed in the discussion on SPH in
Chap. 2.

In most methods, Eulerian kernels are used. It means that the support shape does not change with
the deformation and that it is required to look for particles within the support at each time step for
each particle (NNS). On the other hand, one could consider Lagrangian kernels which support would
deform as the material deforms but for which the neighbors within the support domain stay the same
throughout the simulation as shown on Fig. 1.1. In general, Lagrangian kernels are more stable than
Eulerian kernels (reduced tensile instability) but they are limited to small deformation because of the
distortion of the support domain.

Deformation

(a) Lagrangian kernel keeps the same neighbor-
hood with deformation

Deformation

(b) Eulerian kernel keeps the same shape under
deformation

Figure 1.1: Lagrangian kernels (a) and Eulerian kernels (b)

Following the presentation order used in [Fries 2004, Nguyen 2008], the commonly used shape
functions will be introduced �rst. Then, according to the values of the trial and test functions, the main
meshless particle methods based on a PU will be reviewed. Finally, particle methods that are based on
another formalism will be presented.

1.1.1.4 Commonly used shape functions

For comparison purposes, the building of a PU for meshbased is brie�y reminded hereafter.

De�nition 1.1.12 (Meshbased shape functions). Let’s consider a domain Ω divided into non-overlapping
�nite elements forming a mesh composed of N located at position xi . Let’s impose that the shape functions
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are polynomials Φi (x) = pT (x)ai where p is the polynomial basis of order n de�ned in Eq. (1.1.8) and ai
are unknown coe�cient vectors. Under these conditions, Φi (x) are expressed as follows :

Φi (x) = pT (x)ai with
©«
a1
...

an

ª®®¬
=

©«
pT (x1)
...

pT (xN )

ª®®¬

−1

. (1.1.17)

Proof. In order to compute the unknown coe�cients, the Kronecker delta property is imposed for each
shape function. ∀i, j = 1 . . .N , it yields :

Φi (x j ) = δi j ,
pT (x j )ai = δi j ,

©«
pT (x1)
...

pT (xN )

ª®®¬
©«
a1
...

aN

ª®®¬
= I ,

©«
a1
...

aN

ª®®¬
=

©«
pT (x1)
...

pT (xN )

ª®®¬

−1

.

Note that the PU consistency at order n is not imposed directly but is automatically satis�ed by the
shape functions.

The Moving Least Squares (MLS) method was introduced in [Lancaster 1979] for interpolating
scattered data. This method helps to generate smooth approximations to �t a cloud of points and was
extended to surface generation.

De�nition 1.1.13 (MLS shape functions). Let’s consider a set of N nodes i located at position xi . The
MLS shape functions Φi (x) are expressed are follows :

Φi (x) = pT (x)
[
N∑
i=1

w(x − xi )p(xi )pT (xi )
]−1 N∑

i=1
w(x − xi )p(xi ), (1.1.18)

wherew is a weight function as described in Sec .1.1.1.3.

Proof. There are at least three di�erent ways to obtain the MLS shape functions :
1. by minimization of a weighted least squares functional

Let’s de�ne uloc (x,x0) the local approximation of u around x0 ∈ Ω. In other words, one can

write uloc (x,x0) =
{

u(x) ∀x ∈ Ω, |x − x0 | < ρ
0 otherwise . Assuming that uloc can be decomposed on

a polynomial basis such that uloc ≈ pT (x)a(x0), the goal is to compute the unknown vector a(x0)
by minimizing a weighted discrete L2 error norm Jx0(a) =

∑N
i=1w(x − xi )

[
pT (x)a(x0) − ui

]2.
2. by using a Taylor series expansion

The function u is equal for x = xi to u(xi ) =
∑+∞
|a |=0

(xi−x )a
|a | Dau. Assuming that the shape

functions are expressed as Φi (x) = pT (x)a(x)w(x − xi ), one can obtain a solvable system of
equations for a(x).

3. by direct imposition of the PU consistency conditions
Assuming Φi (x) = pT (x)a(x)w(x−xi ) and imposing

∑
i Φi (x)p(xi ) = p(x) also leads to a solvable

system of equations for a(x).
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Whatever the method used, the result is always the same and the MLS approximation2 is expressed as :

uh(x) = pT (x)
[
N∑
i=1

w(x − xi )p(xi )pT (xi )
]−1 N∑

i=1
w(x − xi )p(xi )ui . (1.1.19)

A matrix must be inverted wherever the MLS shape functions are to be evaluated. This is clearly a
drawback of MLS because of the computational cost and the possibility that this matrix may be singular.
MLS shape functions are a partition of unity but they do not satisfy the Kronecker delta property. At
every node, there is more than one shape function , 0 as shown on Fig. 1.2. Computed values of a
meshfree approximation are not nodal values. To have the real values of the approximated function
at a point, all in�uences of shape functions which are non-zero here have to be added up. This aspect
makes imposition of boundary conditions di�cult.

0 2 4 6 8 10
0

0.5

1
sum of shape functions: PU

(a)

0 2 4 6 8 10

−0.5

0

0.5

(b)

0 2 4 6 8 10
−2

−1

0

1

(c)

Figure 1.2: MLS shape functions (a) and their 1st (b) and 2nd (c) derivatives

Shape functions are smooth and are polynomial-like, but the derivatives have a more and more
non-polynomial character as seen on Fig. 1.2. This causes problems when integrating the integral
expressions of the weak form. In addition, the �rst derivative of the shape functions equals 0 at its
corresponding node which leads to numerical instabilities. The derivatives of the shape functions form
a partition of nullity.

The Reproducing Kernel Particle Method (RKPM) comes from the theory of wavelets, where func-
tions are represented as a combination of dilatation and translation of a single wavelet and was intro-
duced in the mid 90’s [Liu 1995]. The basic idea is to reproduce a function through integration over the
domain.

De�nition 1.1.14 (RKPM shape functions). Let’s consider a set of N nodes i located at position xi . The
RKPM shape functions Φi (x) are expressed are follows :

Φi (x) = pT (x)
[
N∑
i=1

p(xi )pT (xi )w(x − xi )∆Vi
]−1 N∑

i=1
p(xi )w(x − xi )∆Vi , (1.1.20)

wherew is a weight function as described in Sec .1.1.1.3.

2If p(x) = 1 then Φi (x) = w (x−xi )∑n
i w (x−xi ) is the Shepard function (Shepard �lter). Hence, the so-called Shepard’s method is a

subcase of MLS.
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Proof. The RKPM approximation is de�ned as :

uh(x) =
∫
Ωy

K(x,y)u(y)dΩy . (1.1.21)

One can observe that if K(x,y) is the Dirac function δ (x −y) then u is exactly reproduced. Contrary to
MLS, RKPM is built on a continuous approximation. The kernel function K which acts as a continuous
shape functions must satisfy the consistency of PU at ordern. One can notice that ifK(x,y) = w(x−y) (w
is a weight function (also called window function)) then the approximation fails to reproduce constant
functions, this is why a correction fonction C is added so that K(x,y) = C(x,y)w(x −y)3. It yields :

uh(x) =
∫
Ωy

C(x,y)w(x −y)u(y)dΩy . (1.1.22)

Similarly to MLS, there are three di�erent ways to compute C(x,y) :
1. by a direct calculation

Assuming u(x) can be expressed as polynomial function of order n, u(x) = pT (x)a. Hence, it
follows :

p(x)u(x) = p(x)pT (x)a, (1.1.23)∫
Ωy

p(y)w(x −y)u(y)dΩy =
∫
Ωy

p(y)pT (y)w(x −y)dΩy .a. (1.1.24)

The approximation uh(x) = pT (x)a can then be substituted in the system of equations for a.
2. by minimization of a weighted least squares functional (see MLS in Def. 1.1.13)
3. by using a Taylor series expansion (see MLS in Def. 1.1.13)

In all cases, the following approximation is obtained :

uh(x) = pT (x)
[∫

Ωy

p(y)pT (y)w(x −y)dΩy
]−1 ∫

Ωy

p(y)w(x −y)u(y)dΩy . (1.1.25)

To evaluate this continuous expression, numerical integration must be employed. This step leads to the
discrete version4 :

uh(x) = pT (x)
[
N∑
i=1

p(xi )pT (xi )w(x − xi )∆Vi
]−1 N∑

i=1
p(xi )w(x − xi )u(xi )∆Vi . (1.1.26)

Just like MLS, a matrix must be inverted wherever the RKPM shape functions are used which adds an
important computational cost. In general, this matrix (and this is also true for MLS) is symmetric and pos-
itive de�nite and is inverted using a LU, QR or SVD decomposition algorithm. The invertibility (and the
condition number) of the matrix is connected to the regularity of the particle distribution [Fries 2004].

3Setting C(x,y) = 1 leads to the SPH formulation.
4As highlighted in [Belytschko 1996, Li 2002, Fries 2004, Nguyen 2008], if ∆VI = 1 then RKPM is the same as MLS.

Although ∆VI = 1 is a pretty bad approximation for an integral, it is an interesting result since it connects methods from
di�erent origins.
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1.1.2 Meshless particle methods based on a partition of unity

The shape functions are calculated through a partition of unity (RKPM, MLS) as described previously.
In Eq. (1.1.2), the solution u(x) is approximated on a basis of nodal values ui . This is called an intrinsic
basis. It is possible to decompose the solution on another basis or to enrich this intrinsic basis. In that
case, the basis is called extrinsic. In addition to choosing an intrinsic or an extrinsic basis, one also has
to pick a set of test functions Ψ to solve the weak form of the PDE. Setting Ψ as Dirac functions leads
to a class of methods called point collocation methods and the weak form reduces to the strong form
of the PDE. Using any other functions for Ψ leads to Galerkin methods (Bubnov-Galerkin if Φ = Ψ,
Petrov-Galerkin otherwise).

1.1.2.1 Intrinsic Basis

In the case of an intrinsic basis, it is recalled that the approximation of u is uh =
∑N

i=1 Φiui where ui
are the nodal values and Φi the shape functions.

Collocation Methods In the case of a collocation method, the test functions are chosen equal to the
Dirac functions Ψi (x) = δ (x −xi ). In that particular case, the weak form of the PDE (Eq. (1.1.7)) reduces
to the strong form of the PDE (Eq. (1.1.1)):

Luh(xi ) = f (xi ) with xi ∈ Ω,
u(xi ) = ū(xi ) with xi ∈ Γ.

(1.1.27)

Collocation methods are convenient because no integration is needed to build the system of equa-
tions5. This removes an error source in the computation. In addition, shape functions are only evaluated
at particles position. However, they require the computation of high-order derivatives of the shape func-
tions which can be costly. As a consequence, the shape functions generally needs to be Ck continuous
where k is the highest derivative order in L. Moreover, accuracy and robustness are generally lower
than other methods and, as stated before, the imposition of boundary conditions is also less natural
than in meshbased methods.

The most famous meshless collocation method is certainly the SPH method [Gingold 1977] and
its (numerous) variants (to name two of them : Corrected SPH (CSPH) [Bonet 2000], Moving Least
Squares SPH (MLSPH) [Dilts 1999, Dilts 2000]). The SPH method will be fully presented in Sect. 2.
Other meshfree collocation methods include the Finite Point Method (FPM) [Oñate 1996] and a special
case of the Meshfree Local Petrov Galerkin method [Atluri 2005]. More recently, the Moving Particle
Semi-Implicit (MPS) method which is closely related to SPH has been introduced in [Gotoh 2005].

Galerkin Methods If di�erent functions are used for the test and trial functions, then a Petrov-
Galerkin method is obtained, if not a Bubnov-Galerkin method is obtained.

Di�use Element Method The oldest Bubnov-Galerkin method is the so-called Di�use Element
Method (DEM, not to be mistaken with the Discrete Element Method) [Nayroles 1992]. it was originally
presented as a generalization of the FEM. The fundamental idea is to replace the FEM element-wise ap-
proximation by a weighted least squares �tting on a neighborhood of points surrounding the evaluated
location (hence, DEM uses the MLS shape functions). In other words, the DEM uses “�nite elements”
made of a unique integration point, a variable number of nodes and a di�use domain of in�uence. From

5Let’s consider a simple di�erential equation of the form a Üu+b Ûu+cu+d = 0. Using a collocation method for this problem
leads to the following discretized equation

[
a
∑
i ÜΦi + b

∑
i ÜΦi + c

∑
i Φi

]
ui + d = 0 which is equivalent to a system Ku = f .
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this viewpoint, FEM is just a special case of DEM where the weight function is constant over the sub-
domain. However, DEM has some major issues. First of all, the solution is projected on a polynomial
basis assuming spatially constant coe�cients which leads to an incorrect evaluation of the derivatives
(and not integrable). Then, they used a low-quality quadrature to compute the integrals introducing
numerical errors. Finally, the boundary conditions are not properly enforced. Due to these problems,
the classic DEM does not pass the patch test and a speci�c variant called the Petrov-Galerkin DEM
(PGDEM) was introduced [Krongauz 1997] to overcome these di�culties. DEM has been mainly applied
to �uid problems.

Element Free Galerkin The Element-Free Galerkin (EFG) method was introduced in [Belytschko 1994].
It uses MLS shape functions to build its approximation. Unlike DEM, EFG presents the following fea-
tures :

1. A correct derivation of the shape functions
2. A better evaluation of the integrals by using more integration points arranged in a cell structure
3. A correct enforcement of boundary conditions by using Lagrange multipliers

The underlying cell structure is of primary importance in the EFG method since it helps to know which
points are contributing to the quadrature and also it provides a support for this quadrature. It should
be pointed out that a variant of EFG replaces the matrix inversion by a Gram-Schmidt orthogonaliza-
tion [Lu 1994] which is not faster nor slower but more accurate. EFG has been mostly applied to solid
mechanics involving moving discontinuities, in particular fracture growth problems. Compared to EFG,
FEM is in general faster (up to some orders of magnitude) but FEM can’t properly solve the type of
problems EFG is applied to. Another Bubnov-Galerkin method that is worth mentioning is the Method
of Finite Spheres (MFS) [De 2000] which, once again, can be seen a special case of the Meshfree Local
Petrov Galerkin (MLPG) method.

Meshless Local Petrov Galerkin The Meshfree Local Petrov Galerkin (MLPG) [Atluri 2005] is more
a concept than a method in itself. It is based on a local weak form on the PDE. A local weak form is
similar to global weak form except that it is built over local subdomains Ωi with local boundaries Γi .
For MLPG, the local subdomains Ωi are assumed to be the compact supports of the weight functions
wi . This is a major di�erence with previous methods based on weak forms which used a background
mesh or a cell structure for their integration. MLPG can be considered a “truly meshless” method. The
MLPG method is very versatile as it can make use of any type of shape functions and test functions,
giving birth to a family of derived methods.

1. Ψi (x) = δ (x − xi ) : This is a collocation method. The local weak forms reduce to the strong form
of the PDE.

2. Ψi (x) = χΩi : Using characteristic functions for the test functions leads to the so-called subdomain
collocation (similar to the Finite Volume method in the meshbased world).

3. Ψi (x) = Φi (x) : Trial and test functions being the same, it boils down to a Bubnov-Galerkin
method similar to DEM or EFG but built on a local weak form instead of global weak form.

4. Ψi (x) = εi (x) : The test functions is equal to the local residual error in the sense of the discrete
least squares. This leads to the so-called Least Squares Meshfree Method (LSMM) [Park 2001].

5. Ψi (x) = fundamental solution of the PDE : Using the fundamental solution of the PDE as a test
function (i.e the solution of Lu(x) = δ (x)) leads to the Local Boundary Integral Equation method
(LBIE) [Zhu 1998]. This last method is a local and meshless equivalent of the well known Boundary
Element Method [Katsikadelis 2002]. These methods, although e�cient, are limited to problems
where a fundamental solution is available.
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6. Ψi (x) = wi (x − xi ) : Using the weight functions as test functions is convenient because it allows
to simplify the local weak form as the weight functions vanish on the local boundaries.

1.1.2.2 Extrinsic basis

It is recalled that the use of an extrinsic basis consists in decomposing the solution on basis that is not (or
not only) a basis of nodal values. In other words, the approximation of the solution u is uh =

∑N
i=1 ΦiUi

where Φi are the shape functions and Ui are functions whose choice depends on the problem solved.

Partition of UnityMethod The Partition of Unity Method (PUM) [Babuska 1996] and all its variants
(Partition of Unity FEM (PUFEM)[Melenk 1996], Generalized FEM (GFEM) [Strouboulis 2001], Extended
FEM (XFEM) [Belytschko 2001]) can be both meshbased (hence the name FEM in their names) or
meshfree and are all based on the use of extrinsic basis. The basic approximation is the following:

uh(x) =
N∑
i=1

Φi (x)
L∑
j=1

pj (x)vi j , (1.1.28)

where L is the number of nodes/particles of the extrinsic basis, Φi (x) shape functions based on the MLS
or the RKPM approach, vi j are unknowns nodal coe�cients and pj (x) the extrinsic basis. It could be
made of monomials, Taylor or Lagrange polynomials or any convenient functions.

It should be emphasize that special enhancement functions to treat a speci�c case like a singularity
for example are easily incorporated through the extrinsic basis. This technique requires a priori knowl-
edge of the solution. For example, if one knows that locally the solution has a sinusoidal behavior, it
is possible to add a sin(x) to the basis to capture it. In addition, this can be used to properly enforce
boundary conditions by incorporating well-chosen functions to the basis. The use of an extrinsic basis
is also a way to facilitate p-adaptivity (regions with di�erent orders of consistency). However, it intro-
duces more unknowns in the problem. An exhaustive theoretical description of the PUM is developed
in [Babuška 2003].

hp-clouds The hp-clouds method has been introduced in [Duarte 1996b, Duarte 1996a]. The main
idea behind the conception of this method is to consider the h-adaptivity and the p-adaptivity directly
in the approximation of the solution. It is written as :

uh(x) =
N∑
i=1

Φi (x)
(
ui +

L∑
j=1

pj (x)vi j
)
, (1.1.29)

with pj (x) the extrinsic basis, formed of polynomials and/or enhancement functions. These functions
are introduced to capture special properties such as discontinuities, singularities, boundary layers or
others. The freedom of choice of the extrinsic basis is what facilitates the p-adaptivity. Indeed, one can
keep the same number of particles (or clouds in this case if one considers the node and its neighbors
in the compact support of the kernel function) while increasing the order of consistency of the PU
by adjusting the extrinsic basis. This is done without introducing discontinuities contrary to classic
shape functions. Similarly, for h-adaptivity (inherent to meshless methods) is also simple. One can
just add more particles in the region of interest with smaller compact supports (smaller clouds) while
keeping the same shape functions. It should be pointed out that an hybrid meshfree/meshbased variant
of hp-clouds has been developed in [Oden 1998].
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1.1.3 Non-standard meshless particle methods

1.1.3.1 Sibsonian/Non-Sibsonian shape functions

The natural interpolation is based on the well-known Voronoi cells and was introduced in [Sibson 1980]
for data analysis. A Voronoi cell is de�ned as follows :

Vi = {x ∈ Ω, |x − xi | < |x − x j |,∀i , j}. (1.1.30)

The shape functions are de�ned as :
Φi (x) = Ai (x)

A(x) , (1.1.31)

where Ai (x) is the area of the intersection of Vi and Vx and A(x) is the area of the Voronoi cell Vx of
x . The support of those shape functions is complex but can be computed. They are used as both test
and trial functions in the weak form of the PDE (so they can be classi�ed in the Bubnov-Galerkin type
of method) leading to the Natural Element Method (NEM) [Sukumar 1998]. It is also possible to use
non-Sibsonian functions (faster to compute) as shown in [Belikov 1997]. At this point, the Meshless
Finite Element Method (MFEM) that also uses non-Sibsonian interpolation should be mention although
the meshfree concepts are only used to build the shape functions [Idelsohn 2003].

1.1.3.2 Coupled meshbased/meshless approaches

The Reproducing Kernel Element Method (RKEM) was introduced in [Liu 2004, Li 2004, Lu 2004]. The
idea is to mix the best features of meshbased and meshless methods. To achieve that, smooth �nite
element shape functions are introduced to obtain a higher continuity of the interpolation. The basic
approximation in RKEM is the following :

uh(x) =
Nelements∑

e=1

[∫
Ωe

K(x −y)dΩe

(Nnodes∑
i=1

N ∗e ,i (x)u(xe ,i )
)]
, (1.1.32)

where N ∗e ,i are global partition polynomials of the FEM approximation that are C∞ on the domain (in
contrast with Ne ,i = N ∗e ,i χe , classic C0 shape functions). K(x −y) is computed like in the RKPM method.
The shape functions that obtained are, in general, way more complex than FEM shape functions, thus
more costly to compute. The Moving Particle Finite Element Method (MPFEM) is based on the same
idea [Hao 2002].

Another good example of trying to mix the properties of meshless and meshbased method is
the Material Point Method (MPM) [Sulsky 1994]. It is based on the Fluid Implicit Particle method
(FLIP) [Brackbill 1986] (based itself on the Particle In Cell (PIC) method [Harlow 1955]). MPM uses a
background mesh and a set of particles. The equations of motion are solved on the mesh while all the
other computations (constitutive equations, integration scheme) are performed on the particles. The
communication between the mesh and the particles is achieved through interpolation. At the end of
each time step the grid is reset to its original position.

1.1.3.3 Speci�c approaches

Some methods were explicitly designed to solve certain class of problems. Among them are the Finite
Volume particle Method (FVPM) [Hietel 2000] which is built for solving conservation laws. In a nutshell,
instead of using characteristic functions for the test functions as in the classic Finite Volume Method
(FVM), Shepard functions are used. Another example of meshless methods developed to solve the
conservation laws is the Finite Mass Method (FMM) [Gauger 2000] which is based on a discretization
of mass instead of space.
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1.1.3.4 Generalizations

A good example of a method that generalizes an existing one is the Generalized Finite Di�erence Method
(GFDM) which derives from the classic Finite Di�erence Method (FDM) but that allows the nodes to
placed arbitrary in the domain. It enables the possibility to deal with unstructured meshes and irregular
grids and o�ers a better discretization. The weight functions are computed through the Least Squares
approach (MLS) or by using Radial Basis Functions (RBF). It is also worth mentioning the Radial Basis
Function (RBF) method is based on the interpolation of the same name [Buhmann 2003]. It yields an
approximation of the form uh(x) = ∑N

i=0 aiwi (x − xi ) where ai are appropriate weight coe�cients and
wi is a set of radial basis functions (i.e. a real function that veri�eswi (x) = wi (|x |)). It appears that RBF
is a generalization of collocation methods such as SPH. Finally, the Local Regression Estimator method
(LRE) has been introduced in [Dilts 2003] and is a generalization of the MLS method.

1.1.4 Related issues

1.1.4.1 Integration

One major drawback of meshfree Galerkin methods is the numerical integration of the weak form. It
is due to the non-polynomial form of most meshless shape functions. Consequently, exact integration
is di�cult or impossible for most meshless methods. Several techniques exist :

1. Direct nodal integration
Integrals are evaluated at the nodes that also serve as integration points :

∫
Ω
f (x)dΩ =

N∑
i=1

f (xi )∆Vi . (1.1.33)

In general the quadrature weights ∆Vj are volumes associated with the nodeXi . Nodal integration
methods are very similar to collocation methods. Some stabilization techniques exist (least squares
stabilization, stress points). In general, methods based on nodal and stress point integration are
employed in dynamic problems and where large deformations are expected.

2. Support-based integration
The integration is performed on the support domain or on the intersection of overlapping sup-
ports. It is a natural choice for MLPG methods since they are based on local weak forms.

3. Background mesh or cell structure
The domain is divided into integration cells over which a Gaussian quadrature is performed. This
is a convenient and well known method but it results in the loss of the pure meshfree character
of the method.

1.1.4.2 Boundary conditions

The main issue for imposing boundary conditions in meshless methods is the lack of Kronecker delta
property. Several generic techniques have been proposed to overcome that issue :

1. Introduction of Lagrange multipliers
This well known method is very e�cient but an extra system has to be solved to �nd the values
of the multipliers resulting in an increased computational cost.

2. Penalty approach or Nitsche’s method
It consists in the introduction of an extra boundary integral in the weak form to satisfy the
boundary conditions (or several extra integrals in the case of the Nitsche’s method).

3. Coupling with FEM or another meshbased method
Meshbased method can handle boundary conditions very easily, so coupling with these methods
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to treat the boundary is a natural option as shown on Fig. 1.3. There are several commonly used
coupling techniques such as ramp functions, imposed reproducing conditions, bridging scales or
again Lagrange multipliers for example.

meshfree
area

meshbased
area

meshbased
boundary conditions

Figure 1.3: Meshbased/meshfree coupling for imposing boundary conditions

4. Transformation method
This method consists in an arbitrary imposition of the boundary conditions directly on the
approximation uh but it requires the inversion of an N × N matrix each time a shape function is
evaluated.

5. Enrichment of the basis
As pointed out in the extrinsic basis section, the addition of well chosen function can help to
recover the Kronecker delta property and thus facilitate the imposition of boundary conditions.

6. Boundary collocation
This method is the simplest, it consists in taking the boundary imposition equation uh(xbc ) =∑N

i=1 Φi (xbc )ui as an equation of the total system of equations. This is directly taken from the FEM
approach, although the lack of Kronecker delta property involves an important computational
cost.

7. D’Alembert principle
This technique consists in introducing generalized variables and a Jacobian matrix to project the
residual of the PDE into the admissible solution space.

8. (for internal boundaries like cracks) Modi�cation of the weight functions
The main approaches are the visibility method, the di�raction method and the transparency
method. See [Fries 2004] for details.

1.2 Other particle methods

There are still a number of particle methods that haven’t been treated in this section because they do
not emerge from a partition of unity. The methods discussed hereafter are from very di�erent origins
but can all be classi�ed as particle methods.

1.2.1 Molecular Dynamics

The Molecular Dynamics method (MD) is one of the most used particle method in the scienti�c com-
munity. It has been applied to a wide variety of problems such as mechanical engineering, aerospace
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engineering, electrical engineering and others. The concept behind MD is based on scale. It states that
the mechanical behaviors observed at a given scale are governed by the mechanical behaviors at a
lower scale and so that if it is possible to simulate a system at, let’s say, nanoscale, all the observable
behaviors at macroscale will naturally emerge. This approach is also called Direct Numerical Simu-
lation (DNS) and has become more and more attractive with the development of High Performance
Computing (HPC). The idea is then to take into account the four main forces of the universe (strong
interaction, Coulomb force, weak interaction and gravity) and only those ones and to simulate a set
of atoms. Currently, simulations up to several billions atoms can be achieved which is far from being
enough to replace all the other existing numerical methods.

One famous conceptually derived method from MD is the Discrete Element Method (DEM). It is very
similar to MD but include rotational degrees of freedoms and contact laws between particles. Generally
applied to solids or granular �ows, DEM is governed by Newton’s motion laws. Plasticity and fracture
models are included through speci�c interaction and contact laws between the particles.

In order to address problems that are beyond the current capabilities of MD in terms of spatial and
temporal scales, the Dissipative Particle Dynamics (DPD) method was introduced by simplifying the
interaction forces between particles. It has then been enriched with SPH concepts to become Smoothed
Dissipative Particle Dynamics (SDPD) [Español 2003].

1.2.2 Vortex method

The Vortex Method (VM) is based on the vorticity velocity formulation of the Lagrangian Navier-Stokes
equations (in contract with the widely used pressure velocity formulation). The vorticity is de�ned as
ω = ∇×u. The fundamental idea of this method is to discretize this vorticity-based Navier-Stokes system
by a �nite set of particles. A comparison between VM and SPH has been done in [Colagrossi 2016].

1.2.3 Peridynamics method

The Peridynamics method comes from a simple assessment : when a material has a discontinuity,
typically a crack, the use of partial di�erential equations is not relevant since partial derivatives do
not exist on singularities. Hence, the classic theory of continuum mechanics cannot be applied. This is
the reason why Peridynamics is based on an integral theory of continuum mechanics which is de�ned
even in the presence of singularities. Peridynamics is a non local extension of solids mechanics that
enables the inclusion of discontinuities. As an example, the equation of motion in this theory is :

ρ Üu =
∫
H
f (u ′ −u,x ′ − x)dV ′ + b(x, t), (1.2.1)

where x is the position vector in the reference con�guration, ρ is density, u is displacement, and b

is a prescribed body force density. H is a neighborhood of x with radius h, where h is the horizon
(cut-o� distance). The prime superscript denotes the transformed con�guration and f are the pairwise
forces that de�nes the constitutive equations of the material. Thus, Peridynamics is a state-based theory
where operators act on quantities in the reference con�guration to transform then into quantities in the
deformed con�guration. It has been shown in [Ganzenmuller 2015] that CSPH in its total Lagrangian
formulation (Lagrangian kernel) is a special case of Peridynamics. SPH can be seen as the simplest
meshless discretization (nodal integration) of Peridynamics. This is a very interesting result since it
connects methods from di�erent backgrounds. Both are meshless Lagrangian methods based on integral
formulations but SPH relies on curve �tting to approximate derivatives whereas Peridynamics uses
pair interactions instead of PDEs.
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1.2.4 Lattice Boltzmann Methods

This class of methods will be fully described later in this document in Chap. 3.

1.3 Classi�cation of particle methods

(next page)
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General PDE
Lu = f

Cauchy-Navier equations (1830)
ρ ∂2x

∂t 2 + = ∇ ·σ + F
ε = (1/2)(∇u + ∇uT )

σ = Cε

Molecular Interactions
Strong and weak interactions

Coulomb forces
Gravity forces

Navier Stokes equations (1845)
∂ρ
∂t + ∇ · (ρu) = 0

∂ρu
∂t + ∇ · (ρuu) = ∇ · P + ρg

Boltzmann equation (1872)
∂t f + v · ∇x f + a · ∇v f = C(f )

Lattice Boltzmann
Method (1988)

Uniform mesh, discrete velocities

Vortex Method (1973)
Vorticity-based

formulation of Lagrangian NS

Peridynamics (2000)
Integral theory of

continuum solid mechanics

Speci�c methods
Discretization of �uid

conservation laws :
FVPM (2000), FMM (1997), ...

Molecular Dynamics (1955)
Intermolecular and

interatomic potentials

Discrete Element Method (1971)
Collection of spherical particles +
Physical and contact laws/forces

Weighted Residuals Method (1950s)
u ≈ uh = ϕT û

=⇒
∫
Ω
Ψ(Luh − f )dΩ =

∫
Ω
ΨεdΩ = 0

Trial functions ϕ ? Test functions ψ ?

Finite Element Method (1970s)
Ω = non overlapping �nite elements

ϕi (x ) = pT (x )ai
Kronecker δ property : ϕi (x j ) = δi j

=⇒ PU

Reproducing Kernel
Particle Method (1995)

uh =
∫
Ω
C(x, y)w (x − y)u(y)dΩ
=⇒ PU

Moving Least Squares (1979)
uh (x ) = pT (x )a(x )

mina(x )
∑
i w (x − xi )[pT (xi )a(x ) − ui ]2

=⇒ PU

Partition of Unity (PU)
uh = ϕT û∑
i ϕi (x ) = 1

Non-Standard methods
-Sibsonian/non-Sibsonian functions

NEM (1995), MFEM (2002)
-Coupled meshbased/meshless

RKEM (2004), MPM (1998)
-Generalized methods

GFDM (1980s) (gen .of FD), RBF
(1970s) (gen. of collocation meth-
ods), LRE (2000s) (gen. of MLS), ...

Intrinsic Basis
ûi = ui

Test function Mesh-based Mesh-free
ψi = δ (x − xi ) FDM (1930s) SPH (1977), FPM (1996), MLPG (1998)
ψi = χΩi FVM (1970s) MLPG (1998)

ψi = ϕi
Bubnov-Galerkin (1970s)
DG (1970s)

Di�useEM (1992), EFG (1994), MLPG (1998)
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The Smoothed Particle Hydrodynamics (SPH) method was introduced in 1977 in [Lucy 1977, Gingold 1977]
and is one of the oldest meshless methods. Among the numerous applications of SPH, one can �nd astro-
physics [Springel 2010], hydrodynamics, geophysics [Libersky 1991, Bui 2008, Douillet-Grellier 2016c,
Douillet-Grellier 2016a] and computer graphics [Ihmsen 2014]. Some excellent reviews have been pub-
lished [Monaghan 2012, Price 2012, Violeau 2016, Shadloo 2016].

Let’s consider an arbitrary distribution of point mass particles. The main question SPH tries to
answer is : how does one compute the local density of this set of points ? There are several approaches
to this question leading to di�erent numerical methods. SPH uses a weighted summation over the
nearby particles given by :

ρ(x) =
N∑
b=1

mbw(x − xb ,h), (2.0.1)

where w is a weight function (speci�ed later in this document) whose dimension is the inverse of a
volume and h the parameter that measures the rate of fall-o� of w . This formula is the fundamental
idea behind SPH and is illustrated on Fig. 2.1. Detailed concepts and descriptions of this method can be
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École Centrale de Nantes Examinateur

Laure Quivy
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Figure 2.1: In SPH, density is computed using data from neighboring particles within a certain radius r .
The number of neighboring particles is under-estimated compared to a real SPH application.

found by Monaghan [Monaghan 1992], Liu and Liu [Liu 2003a] and Violeau [Violeau 2012].

2.1 Derivation of the SPH interpolation

2.1.1 Continuous interpolation

The SPH is based on the following simple identity1:

A(x) =
∫
Ω
A(y)δ (x −y)dΩ , ∀ x ∈ Ω ⊂ RD, (2.1.2)

1This is in fact the de�nition of the neutral element of the convolution operation. Indeed, if we introduce the convolution
operation (∗) of two functions f and д as :

(f ∗ д)(x) =
∫
Ω
f (y)д(x −y)dΩ = (д ∗ f )(x). (2.1.1)

Therefore, the Dirac function is introduced as (f ∗ δ ) = f
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where A is a vector function of the position vector x , Ω is the volume of the integral containing the
point x , and δ (x − x ′,h) is the Dirac function. A Dirac function is not continuous, thus for practical
considerations we will approximate it with an interpolation kernel, denoted w(x −y,h). This kernel is
a regular function that has a compact or in�nite support (condition (1.1.12)). The size of the support,
when �nite, is measured by the length parameter h called the smoothing length2. Moreover, we have
limh→0w(x −y,h) = δ (x −y) (condition (1.1.14)). It is then possible to approximate the Dirac function
by the smoothing kernel. It yields

Ã(x) =
∫
Ω
A(y)w(x −y,h)dΩ , ∀ x ∈ Ω ⊂ RD . (2.1.3)

The accuracy of this expression can be evaluated by performing a Taylor series expansion around x :

A(y) = A(x) − (y − x) ·∇A + 1
2 (y − x) ⊗ (y − x) ·∇

2A + O(|y − x |3). (2.1.4)

Using the approximation de�ned in (2.1.3), the Taylor expansion becomes:

Ã(x) = A(x)
∫
Ω
w(y − x,h)dΩ − ∇A ·

∫
Ω
(y − x)w(y − x,h)dΩ

+
1
2∇

2A ·
∫
Ω
(y − x) ⊗ (y − x)w(y − x,h)dΩ +

∫
Ω
O(|y − x |3)w(y − x,h)dΩ.

(2.1.5)

In order to be �rst order accurate, it is needed that :
∫
Ω
w(y − x,h)dΩ = 1, (2.1.6)∫

Ω
(y − x)w(y − x,h)dΩ = 0. (2.1.7)

The �rst condition corresponds to condition (1.1.11). The second condition is more di�cult to satisfy
unless we impose that the kernel is central symmetric (or isotropic) on Ω :

w(y − x,h) = w(|y − x |,h). (2.1.8)

In that case, the integrand is anti-symmetric and therefore the integral vanishes3. This corresponds to
condition (1.1.15) (and as a consequence (1.1.16)).

2Note that unless otherwise mentioned, the smoothing length will be considered constant.
3A simple variable change y − x = x −y leads to :

∫
Ω
(y − x)w(y − x,h)dΩ =

∫
Ω
(−(y − x))w(−(y − x),h)dΩ = −

∫
Ω
(y − x)w(y − x,h)dΩ. (2.1.9)

In a more general way, we do have :
∫
Ω
A(y − x) ((y − x) ⊗ . . . ⊗ (y − x))︸                          ︷︷                          ︸

2n+1 times

w(y − x,h)dΩ = 0,

∫
Ω
A(y − x) ((y − x) ⊗ . . . ⊗ (y − x))︸                          ︷︷                          ︸

2n times

∇w(y − x,h)dΩ = 0.
(2.1.10)



42 Chapter 2. Smoothed particle hydrodynamics

The fourth term4 in Eq. (2.1.5) is a O(h4). The third term5 is O((y − x)2). It yields :

Ã(x) = A(x) + 1
2∇

2A ·
∫
Ω
(y − x) ⊗ (y − x)w(y − x,h)dΩ + O(h4),

Ã(x) = A(x) + O(h2).
(2.1.12)

The gradient of the functionA at the position of particlea is evaluated as follows starting from Eq. (2.1.2) :

∇Ã(x) =
∫
Ω
∇A(y)w(x −y,h)dΩ,

=

∫
Ω
∇(A(y)w(x −y,h))dΩ −

∫
Ω
A(y)∇w(x −y,h)dΩ,

=
������������∮

∂Ω
A(y)w(x −y,h)ndΓ +

∫
Ω
A(y)∇w(x −y,h)dΩ,

=

∫
Ω
A(y)∇w(x −y,h)dΩ,

(2.1.13)

where ∂Ω is a the boundary of ω and n is the normal directed towards the exterior. Several comments
have to be made here. First, the Gauss theorem and the fact that ∇w(x − y,h) is an odd function
(Eq. (1.1.16)) have been used in the calculations. Second, in order to eliminate the boundary integral,
it is assumed that the point x is far enough from ∂Ω so that w(x − y,h) vanishes due to its compact
support. This is the root cause of the di�culties to impose boundary conditions in SPH. On Fig. 2.4,
one can observe how the quality of the interpolation is compromised at the boundaries of the domain.
Applying the gradient operator to Eq. (2.1.12), we immediately obtain :

∇Ã(x) = ∇A(x) + O(h2). (2.1.14)

In a similar way, the divergence operator is de�ned as :

∇ · Ã(x) =
∫
Ω
A(x) ·∇w(y − x,h)dΩ. (2.1.15)

and is 1st order accurate :
∇ · Ã(x) = ∇ ·A(x) + O(h2). (2.1.16)

We now de�ne the scalar product between two continuous vector functions A and B as follows :

〈A , B〉 =
∫
Ω
A(y) ·B(y)dΩ (2.1.17)

4Indeed, we havew(y−x,h) = O(1), therefore
∫
Ω
O(|y−x |3)w(y−x,h)dΩ =

∫
Ω
O(|y−x |3)dΩ = O(|y−x |4). In addition,

|y − x | is always less then h so it is correct to say that the approximation is in fact up to O(h2).
5∫

Ω
(y −x) ⊗ (y −x)w(y −x,h)dΩ is an isotropic tensor of order 2. Indeed, (y −x) ⊗ (y −x) is symmetric andw(y −x,h)

is isotropic because of Eq. (2.1.8). In consequence, all the non diagonal terms are zero (anti-symmetric integrands). Moreover,∫
Ω
|y − x |2w(y − x,h)dΩ = D

∫
Ω
(y − x)2i |2w(y − x,h)dΩ. We can write :

∫
Ω
(y − x) ⊗ (y − x)w(y − x,h)dΩ = I

D

∫
Ω
|y − x |2w(y − x,h)dΩ. (2.1.11)

In the case of a Gaussian kernel (see Sect. 2.1.2), it yields :
∫
Ω
(y − x) ⊗ (y − x)w(y − x,h)dΩ = I

D
α(D)π

D/2hD+2D
2 =

h2

2 .

Recently, the smoothing error has been exactly evaluated in [Violeau 2019].
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Moreover, the interpolated operators still verify some usual properties of gradients and divergences
such as linearity and skew-adjointness i.e. :

〈Ã , (∇ · B̃)〉 = −〈(∇Ã) , B̃〉. (2.1.18)

However, the interpolated operators do not comply with the common laws of di�erential calculus. For
example, if A is a matrix and B a vector, �∇ · (ATB) ,

(�∇ ·A)
·B +A : ∇̃B. In consequence, the Gauss

theorem is not satis�ed neither, which is an important fact to understand SPH consistency issues.
Finally, it is obvious that the approximation and the operator commutes i.e. ∇Ã = ∇̃A and ∇ · Ã =�∇ ·A. The main SPH interpolants are gathered in Tab. 2.1.

Operator Continuous SPH Operator Accuracy
Vector A(x) Ã(x) =

∫
Ω
A(y)w(x −y,h)dΩ O(h2)

Gradient ∇A(x) ∇Ã(x) =
∫
Ω
A(y)∇w(x −y,h)dΩ O(h2)

Divergence ∇ ·A(x) ∇ · Ã(x) =
∫
Ω
A(x) ·∇w(y − x,h)dΩ O(h2)

Table 2.1: Continuous SPH Interpolants

2.1.2 Kernel functions
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Figure 2.2: Several SPH kernels (a) and their 1st (b) and 2nd (c) derivatives

A smoothing function must satisfy the conditions presented in Sect. 1.1.1.3. The easiest way to
ensure that the kernel is symmetric (condition (1.1.15)), is to impose w(y − x,h) = w(|y − x |,h) which
is the case for all kernels used in SPH simulations. In addition, the normalization condition (1.1.11)
leads to the introduction of normalization factors that depend on the number of dimensions. Di�erent
smoothing functions have been tested in the SPH method. Traditional SPH studies all employ either a
cubic or a quintic polynomial as the kernel function w . Both polynomial functions mimic a Gaussian
distribution function but have the advantage that the compact space is bounded. The maximum value
of R = |x − y |/h for which w is not zero will be denoted κ. From now on, w(x − y,h) will always be
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Kernel w(x −y,h) α(D)

Gaussian (κ = ∞) α(D) exp(−R2/2) 1
hD




1/√2π if D = 1
1/(2π ) if D = 2
1/(2π )3/2 if D = 3

Cubic (κ = 2) α(D)



1
4 (2 − R)3 − (1 − R)3 if 0 ≤ R ≤ 1
1
4 (2 − R)3 if 1 ≤ R ≤ 2
0 if 2 ≤ R

1
hD




2/3 if D = 1
10/(7π ) if D = 2
1/π if D = 3

Quintic (κ = 3) α(D)



(3 − R)5 − 6(2 − R)5 + 15(1 − R)5 if 0 ≤ R ≤ 1
(3 − R)5 − 6(2 − R)5 if 1 ≤ R ≤ 2
(3 − R)5 if 2 ≤ R ≤ 3
0 if 3 ≤ R

1
hD




1/120 if D = 1
7/(478π ) if D = 2
1/(120π ) if D = 3

Quintic Wendland (κ = 2) α(D)
{ (

1 − R
2
)4 (1 + 2R) if 0 ≤ R ≤ 2

0 if 2 ≤ R
1
hD




3/4 if D = 1
7/(4π ) if D = 2
21/(16π ) if D = 3

Table 2.2: Examples of kernel functions with R = |x −y |/h and D the dimension

denoted w(|x − y |,h) to ensure condition (2.1.8). Four examples of kernel functions are presented in
Tab. 2.2 and shown on Fig. 2.2 along with their 1st and 2nd derivatives.

All these kernels have their �rst derivatives equal to zero and their second derivatives strictly
negative when R = 0. In consequence, as shown on Fig. 2.2, they are bell-shaped. A straightforward
consequence of the symmetry properties of the kernel (Eqs. (1.1.15),(1.1.16) and (2.1.10)) is that the
kernel support is rotationally invariant which implies that the support of the kernel is a D-sphere.
Recently, it has been shown that pairing instability in SPH simulations is due to the positivity of the
Fourier transform of the kernels [Robinson 2009, Dehnen 2012]. In consequence, it is recommended
to use the Wendland kernels whose Fourier transforms are positive [Wendland 1995]. For a detailed
analysis on how to build smoothing functions for SPH, see [Liu 2003b].

2.1.3 Discrete interpolation

In SPH, a continuum domain is modeled as a collection of particles. However unlike other particle
methods such as DEM, these particles are not physical particles such as dust, powder, sand or water
droplets, they are material points6 bearing kinematic and thermodynamic quantities and evolving with
time. We consider particles with a constant mass. We can write for any particle a :

Va =
ma

ρa
. (2.1.19)

Although this volume is not necessarily constant since most SPH simulations are applied for weakly
compressible �ows, this volume will barely vary. Hence it is possible to introduce the mean diameter
da de�ned as :

da =
D
√
Va . (2.1.20)

At t = 0, the particles are in general arranged as a lattice so da can be identi�ed as the initial particle
separation ∆p (the equivalent of the grid size in mesh-based method). In general, the ratio between the

6By material point, it is referred to any (possibly macroscopic) body that can be described at the geometrical level by a
set of three independent coordinates that are coinciding with the coordinates of its center of inertia. They are not point-sized
and possess a volume and a mass [Violeau 2012]
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smoothing length h and the inter-particular distance ∆p lies between 1 and 2 :

h

∆p
∈ [1, 2]. (2.1.21)

However, note that there is no golden rule in that regard and it is perfectly viable to set h
∆p to a value

superior to 2. As stated before, this is due to the fact that h is not a good measure of the kernel support,
the standard deviation σ should be used instead (hence, the large variation of the number of neighbors
in Tab. 2.3 which lacks meaning). All quantities related to a particle do not explicitly depend on space.
They only depend on time and on their particle label (which refers to the particle initial position). They
are governed by the evolution of their Lagrangian derivatives :

ÛAa =
DAa(t)
Dt

. (2.1.22)

In particular, the velocity is ua = Dxa (t )
Dt . Let’s consider a �nite set of N particles. The integral can be

discretized by replacing it with a summation over the particles (approximation by a Riemann sum).

Ã(x) =
∫
Ω
A(y)w(|x −y |,h)dΩ,

≈
N∑
b=1

A(y)w(|x − xb |,h)Vb =

N∑
b=1

mb

ρb
A(y)w(|x − xb |,h) = Â(x).

(2.1.23)

From Eq. (2.1.23), if one sets A = ρ, Eq. (2.0.1) is obtained. Smoothing kernels have a compact support
(see (1.1.12)), then by denoting Λ the set of particles within the compact support of the kernel function
centered on x7, the summation is reduced to :

Â(x) =
∑
b ∈Λ

A(xb )
mb

ρb
w(|x − xb |,h). (2.1.24)

It is possible to estimate the number of particles within Λ. The cardinal number of Λ is :

card(Λ) = Vcompact support

Vparticle
=
VD-sphereκh

D

∆pD
=

(
κh

∆p

)D 2πD/2

nΓ (D/2) . (2.1.25)

These values can be calculated using Eq. (2.1.21) and are presented in Tab. 2.3. These values that quantify

Kernel D = 1 D = 2 D = 3
Gaussian ∞
Cubic/Wendland [4,8] [12,50] [33,269]
Quintic [6,12] [28,114] [114,905]

Table 2.3: Estimation of the number of neighbors in an SPH simulation for h
∆p = [1, 2].

the number of interactions with neighboring nodes/particles are higher in SPH than in traditional mesh-
based methods which is a clear disadvantage of SPH (and in general of particle mesh-less methods).
Moreover, the particles in Λ moves with time and both the cardinal number and the elements in Λ are
changing with time. Thus, SPH requires advanced neighbor searching algorithms in order to identify
the particles in Λ. The length κh should be chosen such that a reasonably large number of neighbor

7Similarly, we will later denote Λa the set of particles within the compact support of the kernel function centered on xa .
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particles exist, so that a su�cient number of particles are taken into account in the summations. Thus,
the parameter κ is not a completely free parameter, but should be chosen high enough such that each
particle has a su�ciently high number of surrounding neighbors. On the other hand, κ should be as
small as reasonably possible in order to minimize computational time. Applying the discretization
technique used to obtain Eq. (2.1.24), it is possible to deduce the discretized gradient and divergence
operators.

∇Â(x) =
∑
b ∈Λ

Ab
mb

ρb
∇w(|x − xb |,h), (2.1.26)

∇ · Â(x) =
∑
b ∈Λ

Ab
mb

ρb
·∇w(|x − xb |,h). (2.1.27)

Finally, once again, the approximation and the discrete operator commutes i.e. ∇Â = ∇̂A and ∇ · Â =�∇ ·A.
Now that we have de�ned discrete SPH interpolants, one might be tempted to provide an estimation

of the error induced by the discretization. However, it depends on the particle position. Thus it is
much more complicated to evaluate than the error induced by the continuous SPH interpolants. When
the particle distribution is assumed to be evenly distributed, it is reasonably simple to provide an
estimation of the error and we will do so hereafter. This will give us a lower bound of the desired error
estimation. When the particles are disordered, the discrete interpolation error can be evaluated by a
Monte Carlo statistical calculation assuming a random distribution. Nevertheless, this approach will
only lead to an upper bound of the desired error since the particles, although disordered, are far from
being randomly distributed. Moreover, particles distribution is governed by the �uids equations and
therefore is not constant in space time and so is the error. This complicates the estimation of the discrete
interpolation error that remains an open question until now. This error estimation is strongly inspired
from [Violeau 2012]. In the case of a Cartesian distribution of the particles, the error is :

e(F (.)) =
∑
b ∈Λ

F (xb )Vb −
∫
Ω
F (y)dΩ. (2.1.28)

Particles are arranged in a Cartesian grid, so their volume and their separation are constant : Va = Vp
and da = ∆p. In addition, all the coordinates xb are multiple of ∆p. It is possible to apply the multi-
dimensional Poisson formula8 to F as follows :

∑
mi ∈ZD

F (m1∆p, . . . ,mD∆p) = 1
∆pD

∑
ki ∈ZD

f̂

(
k1

2π
∆p
, . . . ,kD

2π
∆p

)
,

∑
mi ∈ZD

F (m1∆p, . . . ,mD∆p) = 1
∆pD

∑
ki ∈ZD

f̂ (k1K, . . . ,kDK) ,

Vp
∑
b ∈Λ

F (xb ) =
1

∆pD

∑
ki ∈ZD

f̂ (k1K, . . . ,kDK) ,

(2.1.30)

with K = 2π
∆p the wave number and F̂ (w) =

∫ ∞
−∞ f (t) exp(−iw · t)dt . We immediately notice that F̂ (0) =

8We remind here the more common Poisson formula in 1D. For a continuous function f (t) going to 0 for t → ±∞, we
have: ∑

m∈Z
f (mT ) = 1

T

∑
k ∈Z

f̂

(
k

2π
T

)
, (2.1.29)

where f̂ (w) =
∫ ∞
−∞ f (t) exp(−iwt)dt is the traditional Fourier transform of f . It has been preferred here to use the traditional

hat notation for the Fourier transform but it should not be confused with the SPH discretization used above.
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∫
Ω
F (y)dΩ. So we can write :

e(F (.)) =
∑

ki ∈ZD\{0}
f̂ (k1K, . . . ,kDK) . (2.1.31)

Replacing F (.) by A(.)w(|x − .|,h), we obtain e(A(.)w(|x − .|,h)) which is equal to e(A(x − .)w(|.|,h)) by
a simple variable translation. Using Eq. (2.1.4) at �rst order:

A(x − .) = A(.) − (.) ·∇A + O(|.|2). (2.1.32)

The error can then be expressed:

e(A(.)w(|x − .|,h)) = e(A(x − .)w(|.|,h)) = A(x)e(w(|.|,h)) − e(w(|.|,h)(.))∇A + e(O(|.|2)w(|.|,h)).
(2.1.33)

Using Eq. (2.1.31), we can compute some terms of the above equations :
{
e(w(|.|,h)) =

∑
ki ∈ZD\{0} ŵ (|k1K, . . . ,kDK |) =

∑
ki ∈ZD\{0} ŵ

(
k̄K

)
,

e(w(|.|,h)(.)) = 0,
(2.1.34)

with ek =
1
k̄
(k1, . . . ,kD ) and k̄ =

√∑
i k

2
i . The second error term is zero becausew(|x |,h)x is a real odd

function and therefore its Fourier transform’s real part is zero and also its integral is zero. Furthermore,
the last term e(O(|.|2)w(|.|,h)) is O(h2) in the worst case scenario. We now have :

e(A(x − .)w(|.|,h)) = A(x)
∑

ki ∈ZD\{0}
ŵ

(
k̄K

)
+ O(h2). (2.1.35)

The Fourier transform of the kernels are strongly decreasing towards zero. As an example, we provide
the Fourier transforms of the 1D nondimensionalized Gaussian, Cubic, Quintic and Wendland kernels
(denotedW whereW = w/α(D), see Tab.2.2) in Tab. 2.49.

Kernel Ŵ (q)
Gaussian

√
π exp

(
−h2q2

4

)
Cubic 3

2

(
2
hq sin

(
hq
2

))4

Quintic 120
(

2
hq sin

(
hq
2

))6

Wendland 30
h6q6

(
h2q2 + 1

2hq sin(2hq) − 2 sin(hq)2)

Table 2.4: Fourier transforms of the nondimensionalized kernels in 1D. Note that Ŵ (0) =∫
Ω
w(y,h)α(D)dΩ = 1α(D) for all kernels by construction (see Eq. (1.1.11)).

In fact, we can reasonably state that when k̂K > 10
h , ŵ(k̂K) < 0.01. Using Eq. (2.1.21), this condition

on k̄ becomes :
k̄ <

10∆p
2πh ≈ 1. (2.1.36)

9One may remark that only the Gaussian and Wendland kernels have a fully decreasing Fourier transforms.
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Therefore, it yields :

e(A(x − .)w(|.|,h)) = A(x)Dŵ (K) + O(h2), (2.1.37)

e(A(x − .)w(|.|,h)) = A(x)Dŵ
(
10
h

)
+ O(h2), (2.1.38)

e(A(x − .)w(|.|,h))
A(x) ≈ 0.01D + O(h2). (2.1.39)

(2.1.40)

We now can see the ambiguous role of the smoothing length in the error estimation. The higher h, the
lower Fourier transform of the kernel (if the Fourier transform of the kernel is fully decreasing which is
only the case for the Gaussian and Wendland kernels) and the lower the error because more neighbors
are used which reduces the statistical error. But in the meantime, the higher h, the higher O(h2) and
therefore the higher the error because the approximation of the Dirac functions with a Gaussian-type
kernel is becoming more and more erroneous. There is an optimum value for h that depends on the
particle distribution and on the interpolated quantityA. When no particles is on the edge of the domain
and still in the case of the Cartesian grid, it is possible to use the second Euler-Maclaurin formula to
obtain a better estimation of the error [Violeau 2012] :

e(A(.)w(|x − .|,h)) = O
((
∆p

h

)N )
, (2.1.41)

where N is a kernel dependent value10. All in all, the global error of the SPH approximation is the
following :

Â(x) = A(x) + O(h2) + O
((
∆p

h

)N )
. (2.1.42)

It is possible to extend this result to an arbitrary particle distribution [Quinlan 2006]. Clearly, this
ambiguous role of the smoothing length in the SPH formulation is a major drawback of the method.

We will now introduce the usual notations within the SPH community. Let’s consider that the
SPH operators are computed at the location of particle a i.e. x = xa . Moreover, we will denote wab =

w(|xa − xb |,h) and Aa = A(xa). Exactly like in the continuous case, the interpolated discrete operators
verify some usual properties of gradients and divergences. In particular, the divergence operator and
the gradient operator are skew adjoint i.e. :

〈Âa , (∇ · B̂a)〉 = −〈(∇Âa) , B̂a〉. (2.1.43)

where, following Eq. (2.1.17), the scalar product between two discrete vector �elds A and B is de�ned
by :

〈Aa , Ba〉 =
∑
b ∈Λa

mb

ρb
Ab ·Bb (2.1.44)

The main discretized SPH interpolants are presented in Tab. 2.5.
In practice, it is possible to obtain alternative versions of the gradient and divergence SPH operators

by using simple identities such as :

∀k ∈ N,


∇A = ρk∇

(
A
ρk

)
+ A

ρk ·∇(ρk ) = 1
ρk ∇

(
Aρk

) − A
ρk ·∇(ρk ),

∇ ·A = ρk∇ ·
(
A
ρk

)
+ A

ρk ·∇(ρk ) = 1
ρk ∇ ·

(
Aρk

) − A
ρk ·∇(ρk ).

(2.1.45)
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Operator Discrete SPH Operator Accuracy

Vector A(xa) Â(xa) =
∑
b ∈Λa Ab

mb
ρb
wab O(h2) + O

((
∆p
h

)N )

Gradient ∇A(xa) ∇Â(xa) =
∑
b ∈Λa Ab

mb
ρb
∇awab O(h2) + O

((
∆p
h

)N )

Divergence ∇ ·A(xa) ∇ · Â(xa) =
∑
b ∈Λa Ab

mb
ρb

·∇awab O(h2) + O
((

∆p
h

)N )

Table 2.5: Discrete SPH Interpolants

Standard SPH Operator Identity Used (k ∈ N) Alternative SPH Operator (k ∈ N)

∇Â(xa ) =
∑
b ∈Λa Ab

mb
ρb
∇awab

ρk∇
(
A
ρk

)
+ A
ρk

·∇(ρk ) ∇+k Â(xa ) =
∑
b ∈Λa

mb
ρb

ρ2k
b Aa+ρ2k

a Ab

(ρaρb )k ∇awab

1
ρk
∇

(
Aρk

)
− A
ρk

·∇(ρk ) ∇−k Â(xa ) = − 1
ρ2k
a

∑
b ∈Λa

mb
ρb
(ρaρb )k (Aa −Ab )∇awab

∇ · Â(xa ) =
∑
b ∈Λa Ab

mb
ρb

·∇awab

ρk∇ ·
(
A
ρk

)
+ A
ρk

·∇(ρk ) ∇+k · Â(xa ) =
∑
b ∈Λa

mb
ρb

ρ2k
b Aa+ρ2k

a Ab

(ρaρb )k ·∇awab

1
ρk
∇ ·

(
Aρk

)
− A
ρk

·∇(ρk ) ∇−k · Â(xa ) = − 1
ρ2k
a

∑
b ∈Λa

mb
ρb
(ρaρb )k (Aa −Ab ) ·∇awab

Table 2.6: Alternative SPH Interpolants

These alternatives SPH interpolants are shown in Tab. 2.6. The alternative operators have di�erent
properties and the choice to use one or the other depend on the problem. “∇+k ” operators are anti-
symmetric with respect to a and b. In particular, the following approximations are often used :

∇+1 Â(xa) = ρa
∑
b ∈Λa

mb
Aa

ρ2
a
+
Ab

ρ2
b

∇awab , (2.1.46)

∇+1 · Â(xa) = ρa
∑
b ∈Λa

mb
Aa

ρ2
a
+
Ab

ρ2
b

·∇awab . (2.1.47)

Indeed, their anti-symmetric properties ensure exact conservation of the momentum. In addition, it is
the natural SPH operator obtained during the derivation SPH from variational principles [Vila 1999,
Bonet 2004]. On the other hand, the following operators are also used :

∇−1 Â(xa) = −
1
ρa

∑
b ∈Λa

mb (Aa −Ab )∇awab , (2.1.48)

∇−1 · Â(xa) = − 1
ρa

∑
b ∈Λa

mb (Aa −Ab ) ·∇awab . (2.1.49)

“∇−k ” operators are symmetric and the term (Aa−Ab ) ensures that they are exact for constant functions (in
contrast with Eq. (2.1.26)). Moreover, it is worthwhile adding that ∇+1 Â(xa) and ∇+k Â(xa) and ∇−k · Â(xa)
are skew adjoint i.e.

〈Âa , (∇−k · B̂a )〉 = −〈(∇+k Âa) , B̂a〉. (2.1.50)

10For the cubic spline kernel, N = 4. For the quintic spline kernel, N = 6. For the Wendland kernel, N = 6.
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Other operators like the curl operator or the Laplacian operator can derived the same way and can
be found in the literature ;

∇ ×A(xa) =
∑
b ∈Λa

Ab
mb

ρb
× ∇awab ,

∇2A(xa) = −2
∑
b ∈Λa

mb

ρb
(Aa −Ab )

xab

|xab |2
∇awab ,

∇(∇ ·A(xa)) = 2
∑
b ∈Λa

mb

ρb

[
((D + 2)Aab ·xab )

∇awab

|xab |2
− (xab ·∇awab ) (Aa −Ab )

]
,

with D the spatial dimension and xab = xa − xb . We will not go into details about second-order SPH
operators (and Laplacian operators in particular) as they will not be used in the rest of the document.
We recommend the reading of Sect. 6.2.1 of [Violeau 2012] on that aspect. However, we stress that the
properties of auto-adjointness of Laplacian SPH operators guarantee the veri�cation of the 2nd principle
of thermodynamics which is fundamental to address problems involving wall and interface frictions
such as the ones presented later in this work.

2.1.4 Numerical aspects

2.1.4.1 Consistency

The basic SPH formulation su�ers from consistency issues. A simple way to highlight this problem is
to insert the Taylor expansion of Eq. (2.1.4) truncated at order 2 into the discrete approximation de�ned
in (2.1.24) :

A(xa) = Aa

∑
b ∈Λa

mb

ρb
wab + ∇Aa ·

∑
b ∈Λa
(xa − xb )

mb

ρb
wab + O(|xa − xb |2). (2.1.51)

The above expression is fundamental to understand the consistency issues in SPH. The normalization
conditions (2.1.6) we have imposed on the kernel function are under a continuous form and are not
exactly satis�ed in its discrete form : ∑

b ∈Λa

mb

ρb
wab , 1,

∑
b ∈Λa
(xa − xb )

mb

ρb
wab , 0.

One can immediately notice that the basic SPH interpolation cannot even reproduce a constant function
exactly (see Fig. 2.4). Indeed, in general SPH is not a partition of unity. This is clearly shown on Fig. 2.3.
This is due to the negligence of certain boundary integrals (see Eq. (2.1.13)) and the approximation
of the integrals by Riemann sums. It is a disadvantage of standard SPH that can be overcome using
speci�c re-normalization techniques (see Sect. 2.4.5).

2.1.4.2 h-adaptivity

There are two distinct cases where one could need to use an adaptive resolution in an SPH simmulation.
First, in presence of strongly variable density �elds (which are common in astrophysics), it is mandatory
to dynamically adjust the smoothing length in compact and rare�ed areas to avoid having too many or
too few particles in the support. Second, in the case of simulations with incompressible and/or weakly
compressible �ows, it is a way to redirect the computational e�ort towards areas of interest saving
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Figure 2.3: SPH is not an exact partition of unity. (Cubic Spline kernel, ∆p = 1, h = 1)
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Figure 2.4: Basic SPH Consistency. (Cubic Spline kernel, ∆p = 0.01, h = 10)
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computation time. As with all numerical simulation methods, an optimum needs to be found between
accuracy and computational speed. On one hand, the particles need to be small enough so that result
is accurate, but on the other hand, the number of particles in a simulation should be limited for storage
and calculation reasons. Note that, in the SPH method, the adaptivity can be understood in two ways
ways. Indeed, it is possible to work with variable smoothing lengths h or variable massesm. In general,
a constant mass is imposed for the particles to ensure that mass is conserved throughout the simulation
(although some authors have investigated the case of a variable mass [Vila 1999]) so that the problem
is actually about a variable h. In principle, the initial separation of particles in an SPH calculation may
vary, so that more particles are placed where a higher resolution is needed. However, it is necessary to
ensure a correct number of neighbors for each particle. This can partly be alleviated by using a di�erent
smoothing length h for each di�erent particle (h-adaptivity) but this in turn makes the discretization
much more complex and gives potential di�culties at boundaries and free surfaces. In addition, it is
not known in advance where particles move to during the simulation: particles may start o� in a not-
so-eventful region but move into regions where a higher grid resolution would be desirable. Hence, the
introduction of two alternative approaches : �xed re�nement or dynamic re�nement. In other words, in
the case of �xed re�nement, if the area of interest in known in advance, it is possible to impose spatial
conditions to enable the re�nement. On the contrary, if the area of interest is not known in advance,
one has to de�ne dynamic criterion to enable the re�nement. Still, non-uniform particle distribution
are rarely seen in practical applications. However, developments have been done on this matter and
several formulations exist to treat a variable h within the SPH framework [Price 2008, Cossins 2010,
Chiron 2017] and even industrial applications start to emerge [Sarangi 2016].

2.1.4.3 Initial particle packing

Quantities related to a given particle are calculated as a linear combination of the contributions from
all neighboring particles. Hence, it is essential to start with initial conditions whose interpolation
properties are as accurate as possible. In addition, the initial particle setup should be as close as possible
to a con�guration that would arise by itself in an SPH simulation. A method for generating initial SPH
particle con�gurations should ful�ll the following key requirements:

1. Isotropy : The initial particle con�guration should be isotropic. No particular preferred direction
at any location should be imposed.

2. High Interpolation Accuracy : The initial packing should be locally uniform to minimize noise
in the SPH interpolation.

3. Versatility : The packing algorithm should be able to reproduce any spatial con�guration and
should not impose any requirement for symmetry.

Due to their well-known interpolation properties and ease of construction, the simplest setup schemes of-
ten arrange particles on a lattice or a grid. While there are many lattice con�gurations that could in prin-
ciple be used to produce SPH initial conditions, three popular con�gurations have arisen within the SPH
community : simple cubic lattice, cubic close-packed lattice and hexagonal close-packed lattice. The sim-
plest arrangement (and one of the most popular) is the cubic lattice con�guration, which has been shown
to be an unstable equilibrium con�guration and has strong preferred directions [Morris 1995]. Cubic
close-packed and hexagonal close-packed lattices represent the two optimal and most e�cient ways to
pack spheres of equal sizes; they are stable against random perturbation and thus much preferred to a
simple cubic lattice [Monaghan 1992]. Other packing con�gurations have emerged like the Weighted
Voronoi Tesselations (WVT) [Diehl 2012] (see Fig. 2.5) or bubble packing algorithms [Colagrossi 2012].
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As shown on Fig. 2.611, the initial particle packing can have a strong in�uence on the physical results.
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Figure 2.5: Cartesian (a) and WVT (b) packings of a circle

(a) Body-centered cubic (b) Face-centered cubic (c) Hexagonal close-packed (d) Circular (e) Random

Figure 2.6: Impact of the initial particle packing on the fracture pattern in the case of a 2D Brazilian
test simulated with SPH. This �gure shows unpublished simulation results obtained before this doc-
toral work during a previous Total-sponsored project and closely related to [Douillet-Grellier 2016a,
Das 2016].

11This �gure shows unpublished simulations done before this doctoral work during a previous Total-sponsored project
and closely related with [Douillet-Grellier 2016a, Das 2016].
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2.2 SPH approximation of Euler equations

This document will focus on the discretization of the Euler equations which are given by :

Dρ

Dt
= −ρ∇ ·u, (2.2.1)

Du

Dt
= − 1

ρ
∇p + д, (2.2.2)

De

Dt
= −p

ρ
∇ ·u, (2.2.3)

where ρ is the density, u is the velocity, p is the pressure tensor, д is the external body force per unit
mass, e is the internal energy and D/Dt = ∂/∂t + u · denotes the material derivative following the
motion. To close the system of equations formed by equations (2.2.1)–(2.2.2), a constitutive relation for
the evaluation of the pressure must be given. Alternatively, the energy equation (2.2.3) can be also used
to close the system. However, the most common method to calculate the pressure in SPH methods for
�uids is by using an equation of state that relates the pressure to the density :

p = p(ρ). (2.2.4)

The most used equation of state is the following :

p =
c2ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
, (2.2.5)

where γ is a constant exponent, c is the speed of sound in the medium and ρ0 is the initial density. The
value c in Eq. (2.2.5) can be chosen equal to the real speed of sound, but it is often convenient to choose
c in a numerical simulation much lower than the physical value. This allows for larger time steps to be
used in the numerical simulation, without a�ecting the result. This approach is known as the Weakly
Compressible SPH formulation (WCSPH). It is not a truly incompressible approach since the density
is allowed to vary because of the Lagrangian nature of the algorithm. This arti�cial compressibility
has to be as weak as possible and is controlled by the speed of sound c . Universal guidelines to set a
good value for c are not available. It is common to set a value and adjust it on a case by case basis.
In this work, given a reference length Lref and a reference speed Uref, the following formula, adapted
from [Morris 2000], was used :

c = max
(
Uref√
∆ρ
,

√
|д|Lref
∆ρ
,

√
µUref

ρ0Lref∆ρ

)
, (2.2.6)

with ∆ρ = 0.01 to enforce (not strictly) a maximum variation of 1% of the density �eld. Typically, choos-
ing γ = 7 gives a fairly accurate physical model for the properties of water at a constant temperature.
Note that setting γ = 1 reduces Eq. (2.2.5) to

p = c2(ρ − ρ0), (2.2.7)

which is a well-known equation of state used in SPH.

2.2.1 Continuity Equation

The basis of any Lagrangian method for �uid dynamics calculations, such as SPH, is the solution of
the equations of motion of a �uid particle along its trajectory. The time evolution of the density of a
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particle a with density ρa , along its trajectory through a velocity �eldua , follows from the conservation
of mass described in Eq. (2.2.1) :

Dρa
Dt
= −ρa∇ ·ua . (2.2.8)

There are two alternative approaches regarding the density calculation :
• Summation approach by using Eq. (2.0.1):

ρa =
∑
b ∈Λa

mbwab . (2.2.9)

• Evolution equation based on discretization of Eq. (2.1.48) :

Dρa
Dt
=

∑
b ∈Λa

mb (ua −ub ) ·∇awab . (2.2.10)

Eq. (2.2.10) does not require any time integration to know the density leading to more accurate
estimations. This is a remarkable feature of SPH to propose an exact, time independent solution of the
continuity equation. However, the advantage of using Eq. (2.2.10) is that it is an evolution equation that
can be solved together with the equations of motion of each particle. Therefore, it is computationally
more e�cient than solving Eq. (2.2.9), for which an additional nearest-neighbor search is required.
More importantly, Eq. (2.2.9) if used “as is” gives incorrect results for the density close to free surfaces
(where only a limited number of neighboring particles are present). Recently, a time integrated version
of Eq. (2.2.9) has been proposed in [Ferrand 2012] to remediate this issue so that it can be used to
solve free surface problems. In consequence, Eq. (2.2.10) or the aforementioned variant of Eq. (2.2.9) are
widely used to evaluate the density for the simulation of free surface �ows [Monaghan 1994].

Note than any of the operators shown in Tab. 2.6 could also be used with its associated pros and
cons. Similarly, applying equation (2.1.24) to the quantity ρk with k ∈ N, we get a generalized version
of equation (2.2.9):

ρa =
∑
b ∈Λa

mb

(
ρb
ρa

)k−1
wab . (2.2.11)

Let us now show how �uxes considerations will lead to a condition on the kernel function. If
we consider the continuity equation with volumes instead than densities12 : DVa

Dt = Va∇ ·u, we can
introduce the volume �ux qVba from particle b to particle a. Indeed, we can write:

DVa
Dt
=

∑
b ∈Λa

−mb

ρ2
a
(ua −ub ) ·∇awab︸                       ︷︷                       ︸

=qVba

. (2.2.12)

Let’s consider the case where two aligned particles a and b are moving towards the same direction with
|ua | < |ub |. Therefore, intuitively particle a will gain volume from particle b i.e. qVba > 0 which implies :

qVba =
−mb

ρ2
a
(ua −ub ) ·∇awab =

−mb

ρ2
a
(ua −ub ) ·

xab
|xab |︸                      ︷︷                      ︸

<0

w ′ab > 0. (2.2.13)

The above is true if w ′ab < 0 which corresponds to the monotonic decrease condition on the kernel
function imposed in Sect. 1.1.1.3.

12We remind that because ρ is > 0 by de�nition, we have : DVa
Va = −

Dρa
ρa .
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2.2.2 Momentum and Energy Equations

The momentum conservation equation describes the acceleration of a �uid particle on the left-hand-side
of Eq. (2.2.2) and the forces acting on the particle contained in the right-hand-side. The terms on the
right hand side denote the pressure gradient and the acceleration of gravity. For a particle a, Eq. (2.2.2)
becomes :

Dua
Dt
= − 1

ρa
∇pa + дa . (2.2.14)

Using Eq. (2.1.46) to discretize the pressure gradient in Eq. (2.2.2), the following equation is obtained:

− ∇pa
ρa
=

∑
b ∈Λa
−mb

(
pa

ρ2
a
+
pb

ρ2
b

)
∇awab

︸                        ︷︷                        ︸
=Fab/ma

, (2.2.15)

where Fab is the internal force from particle b to particle a. The reason of the use of the alternate
operators of type “∇+k ” to discretize this equation is now observable. Indeed, thanks to the odd nature
the kernel gradient:

Fab = −mamb

(
pa

ρ2
a
+
pb

ρ2
b

)
∇awab = −Fba . (2.2.16)

This is Newton’s third law which ensures conservation of the total momentum of an isolated system.
The form of Eq. (2.2.15) can be disturbing for two reasons. First, one might have expected a pressure
di�erence between pa andpb to calculate a pressure gradient, but instead one �nds an addition ofpa and
pb . Second, the right-hand side of Eq. (2.2.15) can be non-zero even if the pressure is uniform throughout
the domain (this is sometimes called the E0 error). To make this happen, it is su�cient that there are
�uctuations in the density: if there is a gradient in the density, then the contribution of a particle b is
not compensated by another particle and there will be a resulting net force on the particle a. This is
often called a “spurious force”, because it is not rooted in any physical pressure gradient but rather in
a non-uniform distribution of particles in the SPH simulation. It is precisely the “spurious force” that
induces a redistribution of particles. This eventually leads to a more uniform particle distribution as it
tends to smear out gradients in the particle density. One of the implications of this “intrinsic remeshing”
is that not all initial conditions represent stable con�gurations for the particles. Eq. (2.2.15) has the
property that it provides perfect linear and angular momentum conservation in a simulation in the
absence of any dissipation forces.

In the end, the discretized momentum equation for a particle a is obtained by adding the gravity
term дa = −дez13 to Eq. (2.2.15) :

Dua
Dt
= −

∑
b ∈Λa

mb

(
pa

ρ2
a
+
pb

ρ2
b

)
∇awab + д. (2.2.17)

The energy equation (2.2.3) for a particle a is :

Dea
Dt
= −pa

ρa
∇ ·ua . (2.2.18)

We remind that this equation can replace the equation of state to close the system (2.2.1)–(2.2.2). Con-
cerning the discretization of the above equation, it follows the exact same procedure as for the momen-

13This can be naturally extended to add any kind of body force to the simulation
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tum equation. We get :
Dea
Dt
= −pa

∑
b ∈Λa

mb

(
ua
ρ2
a
+
ub
ρ2
b

)
·∇awab . (2.2.19)

A common alternative form with convenient symmetry properties can be found through some algebra
[Violeau 2012] :

Dea
Dt
=

1
2

∑
b ∈Λa

mb
pa + pb
ρaρb

(ua −ub ) ·∇awab .

2.2.3 Alternative Lagrangian derivation of the SPH approximation

It is possible to obtain the discretized SPH �uid equations of the previous section using variationnal
principles based on the Lagrangian of a system of particles without going through the continuous Euler
equations. This approach was introduced in [Bonet 1999a, Bonet 2004, Oger 2007]. This document does
not intend to re-introduce the Lagrangian and Hamiltonian equations so that the basic formulations
will be admitted. One can �nd an extensive presentation of these concepts in the context of �uids
mechanics in [Violeau 2012]. Let’s just remind that the Lagrangian and the Hamiltonian directly derive
from the least action principle and that one can obtain the laws of mechanics from Lagrangian and/or
Hamiltonian considerations. The Lagrangian L of a particle system is the di�erence between the kinetic
energy of the system and the potential energy of the system and is given by :

L =
∑
b

1
2mbu

2
b −

∑
b

mbeb −
∑
b

mbдzb . (2.2.20)

The Hamiltonian H of a particle system is the sum between the kinetic energy of the system and the
potential energy of the system and is given by :

H =
∑
b

1
2mbu

2
b +

∑
b

mbeb +
∑
b

mbдzb . (2.2.21)

All the following calculations will be based on the Lagrangian but it is possible to reach the same
conclusion with the Hamiltonian, see [Bonet 2005] for more details. The discrete equations of motion
of each particle are provided by the Lagrange equations :

D

Dt

∂L

∂ua
=
∂L

∂xa
. (2.2.22)

The potential energy does not depend on ua so that we have :

∂L

∂ua
=maua . (2.2.23)

The right hand side of equation (2.2.22) can also be evaluated :

∂L

∂xa
= −

∑
b

mb
∂eb
∂xa
−

∑
b

mbд
∂zb
∂xa
,

= −
∑
b

mb
∂eb
∂ρb︸︷︷︸

=
pb
ρ2
b

combining Eqs. (2.2.8) and (2.2.18)

∂ρb
∂xa
−

∑
b

mbдδabez,

= −
∑
b

mb
pb

ρ2
b

∂ρb
∂xa
−maд. (2.2.24)
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Using Eq. (2.2.11), we can compute the partial derivative of the density with respect to the position :

∂ρb
∂xa
=ma

(
ρa
ρb

)k−1
∇awab + δab

∑
c

mc

(
ρc
ρa

)k−1
∇awac . (2.2.25)

Inserting Eq. (2.2.25) into Eq. (2.2.24), we obtain :

∂L

∂xa
= −

∑
b

mamb
ρk−1
a pb

ρk−1
b

∇awab −
∑
b ,c

mbmc
pb

ρ2
b

(
ρc
ρa

)k−1
δab∇awac

︸                                    ︷︷                                    ︸
=
∑
b mamb

ρk−1
b pa

ρk−1
a

∇awab +maд. (2.2.26)

Finally, the Lagrange equations (2.2.22) become:

Dua
Dt
= −

∑
b ∈Λa

mb
ρ2k
b pa + ρ

2k
a pb

(ρaρb )k+1 ∇awab + д. (2.2.27)

If we set k = 1, Eq. (2.2.11) becomes Eq. (2.2.9) and the above equation is equivalent to Eq. (2.2.17).
Moreover, deriving (2.2.11) with respect to time and using Dea

Dt =
pb
ρ2
b

Dρa
Dt , we can recover the discretized

energy equation. Thus, we have obtained the discretized SPH Euler equations from Lagrangian consid-
erations using operator de�ned in (2.2.9) for the density and (2.2.17).

Instead of considering (2.2.9) to evaluate the density, let’s use the “∇+k · ρa” operator from Tab. 2.6
to discretize the continuity equation. It gives:

Dρb
Dt
=

1
ρ2k−2
b

∑
c

mc (ρbρc )k−1(ub −uc ) ·∇bwbc , (2.2.28)

Dρb =
1

ρ2k−2
b

∑
c

mc (ρbρc )k−1(ub −uc )Dt ·∇bwbc , (2.2.29)

Dρb =
1

ρ2k−2
b

∑
c

mc (ρbρc )k−1(Dxb − Dxc ) ·∇bwbc , (2.2.30)

Dρb =
∑
a

1
ρ2k−2
b

∑
c

mc (ρbρc )k−1(δab − δac )∇bwbc ·Dxa . (2.2.31)

On the other hand, by de�nition of the di�erential, we do have : Dρb =
∑

a
∂ρb
∂xa

·Dxa . Thus, a term-wise
association leads to :

∂ρb
∂xa
=

1
ρ2k−2
b

∑
c

mc (ρbρc )k−1(δab − δac )∇bwbc . (2.2.32)

Inserting Eq. (2.2.32) into Eq. (2.2.24), we obtain :

∂L

∂xa
= −

∑
b ,c

mbmc
pb

ρ2k
b

(ρbρc )k−1(δab − δac )∇bwbc −maд, (2.2.33)

=
∑
b

mamb
pb

ρ2k
b

(ρaρb )k−1∇bwba −
∑
c

mamc
pa

ρ2k
a
(ρaρc )k−1∇awac , (2.2.34)

= −
∑
b

mamb
pb

ρ2k
b

(ρaρb )k−1∇bwab −
∑
b

mamb
pa

ρ2k
a
(ρaρb )k−1∇awab , (2.2.35)

= −
∑
b

mamb
paρ

2k
b + pbρ

2k
a

(ρaρc )k+1 ∇bwab . (2.2.36)
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If we insert the above equation into Eq. (2.2.22), we get Eq. (2.2.27) again. If we set k = 1, Eq. (2.2.28)
becomes Eq. (2.2.10) and the above equation is equivalent to Eq. (2.2.17).

Another way to obtain the same result while highlighting the important of the skew-adjointness of
the gradient and divergence operators is presented hereafter. The continuity equation can be discretized
as follows :

Dρa
Dt
= −ρa∇−k ·ua . (2.2.37)

Multiplying by Dt on both sides, we get:

Dρb = −ρb∇−k ·Dxb . (2.2.38)

In the case of an isolated system of particle, total energy is conserved i.e. DEtot = DEint + Fint ·Dx = 0.
Expanding the terms into summations over particles, we get :

∑
a,b

mb
∂eb
∂xa

·Dxa +
∑
a

Fa,int ·Dxa = 0. (2.2.39)

Once again combining Eqs. (2.2.8) and (2.2.18), we can write :

∑
a

Fa,int ·Dxa = −
∑
a,b

mb
pb

ρ2
b

∂ρb
∂xa

·Dxa, (2.2.40)

= −
∑
b

mb

ρb

pb
ρb

Dρb , (2.2.41)

=
∑
b

mb

ρb
pb∇−k ·Dxb , (2.2.42)

=
(discrete scalar product (2.1.44))

〈p̂a · (∇−k , Dxa)〉, (2.2.43)

=
(Eq. (2.1.50))

−〈(∇+k p̂a) , Dxa〉. (2.2.44)

All in all, we have ∀Dxa (using the discrete scalar product de�nition on the left hand side of the above
equation) :

〈( ρa
ma

Fa,int ) , Dxa〉 = −〈(∇+k p̂a) , Dxa〉. (2.2.45)

Therefore, we can write :
Fa,int
ma︸︷︷︸
=
Dua
Dt

= −∇
+
k p̂a

ρa
. (2.2.46)

We recover Eq. (2.2.27). As suggested in [Violeau 2012], the skew-adjointness property ensures that
operators are “compatible” in the SPH sense.

To conclude, the fact that SPH equations of motion directly derive from the Lagrangian and there-
fore from the least action principle enforces the conservation of the total momentum of an iso-
lated system. This property has been veri�ed in theory by several authors. Moreover, because the
Lagrangian is isotropic and time-invariant, linear momentum, angular momentum and energy are also
conserved (moreover, the formal calculations to verify the energy conservation uses once again the
skew-adjointness property of the “compatible” operators). These conservation properties are only guar-
anteed if the SPH operators are “compatible” in the SPH sense and if time is considered continuous.
The time discretization scheme has to chosen carefully to maintain these conservation properties.
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2.3 Key features

The basic SPH formulation of the Euler equations for a given particle a is the combination of equa-
tions (2.0.1), (2.2.17) and (2.2.7) :




ρa =
∑
b ∈Λa

mbwab ,

Dua
Dt
=

∑
b ∈Λa

mb

(
pa

ρ2
a
+
pb

ρ2
b

)
∇awab + д,

pa = c
2(ρa − ρ0).

(2.3.1)

This set of equations is generally referred as the Weakly-Compressible SPH. Note that we have dropped
the energy Eq. (2.2.3) since it is not coupled with the two others. This discretization contains the main
properties of SPH [Price 2011]. These are :

1. Exact, time-independent, solution of the continuity equation (unless Eq. (2.2.10) is used)
2. Advection is computed exactly, thanks to the Lagrangian formulation of SPH. The advection

term is di�cult to compute for Eulerian grid-based methods, so this a major plus for SPH.
3. Zero intrinsic numerical dissipation : Unless explicit dissipation terms are added, the method

will not dissipate or di�use energy arti�cially (this is actually a direct consequence of point 2.).
However, for some problems, dissipation terms are needed (shock problems). The user has full
control on the amount of dissipation added to the method.

4. Exact conservation of mass, momentum, angular momentum, energy and entropy : Thanks to the
nature of SPH (Lagrangian based, invariance to translations and rotations, Hamiltonian system),
these quantities are exactly conserved. Compared to Eulerian meshbased methods where for
example angular momentum conservation depends on the mesh, this is an important advantage.

5. Guaranteed minimum energy state for the particles : The minimum energy state in SPH can be
demonstrated from its Hamiltonian formulation. A simple example of that is the natural relax-
ation of randomly placed SPH particles. In other words, SPH has an intrinsic automatic remeshing
feature. This is the reason why SPH maintains a reasonably ordered particle distribution through
the simulation. Some alternative particle methods prefer to focus on exact derivative evalua-
tion rather than quantity conservation and therefore generate disordered particle distribution
(requiring expensive reordering procedures). It is not the case in SPH.

6. Resolution that follows mass : In SPH, the resolution is automatically adjusted to be higher where
the mass is. This is due to the �xed mass discretization. Computational e�ort is naturally focused
in dense areas.

On the other hand, the main drawbacks of SPH can be summarized as follows :
1. Non-local algorithm : SPH su�ers from a non-local algorithm which rests on a NNS at every

timestep. This makes the method slow and possibly cumbersome to implement.
2. Boundary Conditions : Because of the nature of the SPH method (meshless, Lagrangian), it not as

easy and natural as in other methods (meshbased in particularity) to impose boundary conditions
of any kind. It is partly due to the lack of a Kronecker delta property and also to the neglect of
the boundary integral in Eq. (2.1.13).

3. Order of convergence : The theoretical analysis of SPH consistency and error behavior is com-
plex [Mas-Gallic 1987, Moussa 2000, Lanson 2001, Fatehi 2011] and still under investigation [Zisis 2016,
Sigalotti 2016, Franz 2018] but in practical applications, the observed order of convergence is ≈ 1.

4. Weak AMR abilities : Adaptative Mesh Re�nement (AMR) is commonly used in meshbased meth-
ods to reduce the computational cost by concentrating resources on the areas of interest. Several
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attempts have been proposed for SPH in the literature but it remains a complex issue that is still
under investigation.

5. Explicit : SPH is an explicit method based on the CFL condition. It implies small timesteps so
it is not recommended for long runs. For more information on the time integration in SPH, see
Sect. sec:integration

6. Stabilization needed : SPH is a method that needs stabilization to be able to simulate real test
cases. Therefore using one of the existing stabilization techniques (see Sect. 2.4) causes the end
of the energy conservation.

In a nutshell, SPH is a method suitable for problems involving free surfaces, complex interfaces,
�uid structure interaction and multi-physics. To conclude this section, the simplest SPH algorithm is
shown in Algorithm 1.

Algorithm 1 The Smoothed Particle Hydrodynamics algorithm
1: for t ← t + ∆t do
2: for all particles a do
3: ρa ← 0
4: for all particles b do
5: if |xa −yb | < κh then . Nearest neighbor search
6: ρa ← ρa +mbwab . Eq. (2.0.1)
7: end if
8: end for
9: end for

10: for all particles a do
11: dua

dt ← 0
12: pa = c

2
s (ρa − ρ0) . Eq. (2.2.7)

13: for all particles b do
14: if |xa −yb | < κh then . Nearest neighbor search
15: dua

dt ← dua
dt +mb

(
pa
ρ2
a
+

pb
ρ2
b

)
∇awab . Eq. (2.2.17)

16: end if
17: end for
18: end for
19: for all particles a do . Time integration
20: ut+∆ta = uta + ∆t

dua
dt

21: x t+∆ta = x ta + ∆tu
t
a

22: end for
23: end for

2.4 Stabilization procedures

2.4.1 Arti�cial viscosity

It is very common to add a numerical dissipation term in a numerical method. It is useful to treat
shock problems or to make the simulated �uid viscous. This arti�cial viscosity term can be used as
a way to stabilize simulations since it removes the nonphysical phenomenon of particle penetration
and due to its dissipative nature it can be used to improve the numerical stability of the simulation.
The arti�cial viscosity term [Monaghan 1992, Monaghan 1997] consists of a linear term proportional
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to a dimensionless parameter αΠab to treat discontinuities [Monaghan 1985] and a quadratic term
proportional to the dimensionless parameter βΠab to prevent particle inter penetration [Lattanzio 1986].
We denote the term here by fa,arti�cial, which can act as the SPH discretization of the viscosity term in
order to stabilize the SPH simulation:

fa,arti�cial =
∑
b ∈Λa

mbΠab∇awab , (2.4.1)

where Πab is given by

Πab =

{−αΠab µab c̄ab+βΠab µ2
ab

ρ̄ab
uab ·xab < 0,

0 uab ·xab ≥ 0,
(2.4.2)

where

µab =
huab ·xab
|xab |2 + 0.01h2

, (2.4.3)

and c̄ab =
1
2 (ca + cb ), ρ̄ab = 1

2 (ρa + ρb ), uab = ua − ub , xab = xa − xb , αΠab = 1
2 (αΠa + αΠb ) and

βΠab =
1
2 (βΠa + βΠb ). ca denotes the speed of sound at particle a.

Unlike in Eulerian methods, SPH does not have any kind of numerical dissipation or di�usion so
the arti�cial viscosity term can be related to their physical meaning . αΠab and βΠab can be linked with
the bulk and shear viscosity of the Navier-Stokes equations [Murray 1996, Lodato 2010]. In conclusion,
αΠab and βΠab are not empirical parameters to discover but are set by the choice of �uid. For information,
the shear viscosity is ν = 1

10αΠabcsh and the bulk viscosity is µ = 5
3ν .

If one wants to add just the right amount of dissipation at shocks or discontinuities while removing
the impact of the extra term elsewhere, it is recommended to use a switch. The most famous ones are
the so-called Balsara switch [Balsara 1995], the Morris & Monaghan switch [Morris 1997b] and the
more recent Cullen & Dehnen switch [Cullen 2010].

The full momentum equation with arti�cial viscosity is given by :

Dua
Dt
= −

∑
b ∈Λa

mb

(
pa

ρ2
a
+
pb

ρ2
b

+ Πab

)
∇awab + д. (2.4.4)

It has to be mentioned that other viscosity models exist within the SPH community. The two main
approaches were developed respectively in [Monaghan 2006] and in [Morris 1997a]. The �rst one relies
on the local compression and expansion of the particle �eld whereas the second one is based on a
two-particles shear force. These two models were introduced after the original arti�cial viscosity model
and are derived from it. Other approaches to add dissipation in the SPH method also include Gudonov-
SPH schemes (exact Riemann solvers) or Riemann-SPH schemes (approximate Riemann solvers) which
are theoretically better for accuracy and viscosity control but that add a signi�cant computational
overhead [Inutsuka 2002].

To conclude, recent studies [Agertz 2007, Price 2008] have proven that if one works with non isother-
mal �ows (and therefore includes an energy or temperature equation in the governing equations), an
arti�cial thermal conductivity term is needed to properly capture the behavior of the �ow (especially
with contact discontinuities).

2.4.2 Physical viscosity

If the considered �uid problem involves a viscosity term 1
ρ∇ ·τ in Eq. (2.2.2) (with τ viscous stress

tensor), it is possible to discretize it in the SPH framework and to make it contribute to the stabilization
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of the SPH model by physically dissipating energy. Since, the viscosity term involves a second order
derivative, one could be tempted to use second order SPH interpolants mentioned in Footnote ?? but this
leads to errors especially at low resolution. Instead, it is more common to use the approach suggested
in [Morris 1997a]. Note that, in the case of an incompressible �uid with a constant viscosity, the viscous
term reduces to 1

ρ∇ ·τ =
µ
ρ∇2u = ν∇2u with µ the �uid viscosity and ν = µ

ρ the kinematic viscosity. It
reads :

νa∇2ua =
∑
b ∈Λa

mb (µa + µb )
ρaρb

xab ·∇awab

|xab |2 + η2 uab , (2.4.5)

where η = 0.01h is a safety factor to avoid a division by zero. If adding a physical viscosity is relevant,
this term can be enough to stabilize the SPH simulation depending on the context.

2.4.3 Tensile instability

(a) Initial particle positions (b) Particle positions at 100µs

Figure 2.7: The tensile instability phenomena after a velocity perturbation generating tensile stresses
in the medium (from [Swegle 1995])

The tensile instability phenomena in the SPH method is an inherent instability of the original SPH
method. It causes particles to clump together in a way that could resemble cracks or fracture but that
is in fact a numerical artifact. Tensile instability was a limitation of the SPH method when it was
introduced. Since then, it has been heavily studied in the literature, most notably in [Swegle 1995],
see Fig. 2.7. It shows that this instability only happens under tension. In the case of �uids, it is due to
negative pressures generated in the �ow. This induces clumping of particles that leads to an nonphysical
cavitation with generation of voids. It is connected to the “intrinsic remeshing” property of SPH. Indeed,
it is a disadvantage of using a pressure term to regularize the particle distribution. There are several
major corrections used to remove this instability.

1. introduce a background pressure p0 in Eq. (2.2.4) : p = p(ρ)+p0 [Phillips 1985]. p0 is chosen as the
minimum value to obtain non-negative pressure all over the domain. Inspired from [Morris 2000],
we recommend the following value

p0 = C
c2ρ0
γ
, (2.4.6)

where C ∈ [0, 1] is a constant that has to be adjusted on a case by case basis. Some authors
recommend C = 0.1 but we were not able to obtain stable simulations with such low values for
all the cases considered in this work. The background pressure helps stabilizing the simulations
but can lead to pressure noises if set too high [Violeau 2014]. In this work, we have not done
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an exhaustive sensitivity study and used the expression given in (2.4.6). It might be possible to
adjust more carefully the background pressure for each case to attenuate pressure oscillations.

2. use a more accurate but non-conservative gradient estimate [Morris 1996].
3. introduce an arti�cial repulsive force to prevent the clumping, this approach is generally used for

solids and described in [Monaghan 2000]. In a nutshell, it consists of adding a term (Rεa+Rεb )f nab
in the momentum equation where Rεa = −ε |pa |ρa

if pa < 0 (0 otherwise) and fab =
wab

w (∆d ,h) (with
n = 4 and ε = 0.2 for example).

4. subtract the nonphysical source term [Borve 2001].
There is another corrective term that can be added to reduce the impact of the tensile instability

and to smooth the particle distribution. It is the so-called XSPH correction. However, it tends to be less
and less used as its relevance is questioned. It forces particles to experience an averaged velocity. A
detailed analysis of the impact of the variation of these parameters on the quality of the results in SPH
for solids is given in [Das 2015].

2.4.4 Pairing Instability

During SPH simulations, it appears that even in the absence of tensile instability, particles tend to pair
together in an non physical way. The pairing instability (sometimes called particle clumping) is often
mixed with the tensile instability although they have di�erent origins. In the literature, it was originally
claimed that it is due to a change of sign in the the �rst and second derivatives of the kernel. However,
recent investigations tend to show that the pairing instability is solely due to the sign of the kernel
Fourier transform [Robinson 2009, Dehnen 2012]. Thus, the use of Wendland kernel functions whose
Fourier transforms do not change sign is a natural way to �x the issue.

2.4.5 Alternative formulations

Many researchers have developed their own SPH scheme with more or less success. It is impossible to
do a full review of all this alternative techniques and corrective terms. Among all of them, some have
reached a certain impact in the SPH community, especially the ones that aim to smooth the pressure
�elds. We will only mention the most commonly used approaches hereafter :

1. Restoring the consistency up to a certain order
SPH cannot even reproduce constant functions exactly. Therefore many authors proposed to
modify the kernel in order to restore consistency up to a given order. It is sometimes called
Corrected SPH (CSPH). For example, to restore 0th order consistency, one should use a Shepard
�lter where the density estimator is modi�ed as :

ρa =
∑
b ∈Λa

mbŵab , (2.4.7)

with ŵab = wab/
∑
b ∈Λa

mb
ρb
wab . An example of restored consistency of order 0 in SPH using

Shepard �lters is presented on Fig. 2.8. For higher orders, one need to use a Moving Least Squares
interpolation (MLSPH) but it is more computational expensive as it involves a matrix inver-
sion [Bonet 1999b, Colagrossi 2001]. For order 1 and for a given particle a, it reads

∇̃wab = La∇wab , (2.4.8)

where La =
(∑

b ∈Λa
ma
ρa
∇wab ⊗ (xb − xa)

)−1
. Examples of restored consistency of order 1 and 2

are shown on Fig. 2.9.
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Figure 2.8: Restoring SPH Consistency to order 0. (CSPH, Shepard �lter, Cubic Spline kernel, ∆p = 0.01,
h = 10)
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Figure 2.9: Restoring SPH Consistency to order 1 (top) and 2 (bottom) (MLSPH, Cubic Spline kernel,
∆p = 0.01, h = 10)
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2. Particle shifting
Introduced in [Xu 2009, Lind 2012, Mokos 2016], this method is used to maintain a good particles
distribution. At the end of every timestep, all particles are shifted by a well-chosen distance from
their original position to reduce the particles anisotropy. The most advanced version of shifting
(within the δ -SPH framework) has been proposed in [Sun 2019]. See Sect. 2.7.3 for more details.

3. Adding a density di�usion term in the continuity equation (δ -SPH)
This technique is called δ -SPH [Molteni 2009, Marrone 2011, Antuono 2012] and it consists in
adding a carefully designed density di�usion terms in the continuity and momentum equations
in order to smooth the density variation and therefore the pressure �eld. This di�usion terms,
that we will denote ∆1

SPH and ∆2
SPH , are added to Eq. (2.2.10) and Eq. (2.2.17) respectively and

are de�ned as follows :

∆1
SPH = δhc

∑
b ∈Λa

mb

ρb
ψab ·∇wab (2.4.9)

∆2
SPH = αhcρ0

∑
b ∈Λa

mb

ρb
πab∇wab (2.4.10)

with δ a free parameter that gives this approach its name and that is always set to 0.1, α a free
parameter generally set to 0.02 and :

ψab = 2(ρb − ρa)
xab
|xab |2

−
(
∆Lρa + ∆

Lρb

)
(2.4.11)

πab =
uab ·xab
|xab |2

(2.4.12)

where ∆Lρa =
∑
b ∈Λa

mb
ρb
(ρb − ρa)La∇wab and La =

(∑
b ∈Λa

ma
ρa
∇wab ⊗ (xb − xa)

)−1
.

This technique had a lot of success in the SPH community thanks to its simplicity and e�ciency
and is about to become a standard for single phase �ow simulations. For multiphase �ows, it is
still under investigation but recent progresses have been made [Hammani 2018].

4. Using Riemann solvers (eventually coupled with an ALE framework)
This approach has been developed in [Vila 1999]. It consists in replacing the classic particle
interactions with individual Riemann problems between each pair. In the same paper [Vila 1999],
the use of an Arbitrary Lagrangian Eulerian formulation (SPH-ALE) has also been suggested and
has been used for some applications [Marongiu 2010, Renaut 2015, Oger 2016, Hermange 2017]
with success.

5. Development of an incompressible SPH method (ISPH)
Originally proposed in [Cummins 1999], this method has been followed and extended by many re-
searchers [Hu 2007, Lind 2012]. It is based on a projection method to ensure the incompressiblity.
Please refer to [Violeau 2012] for more details.

Other extensions of SPH include turbulence models [Violeau 2007a, Violeau 2012], total Lagrangian
formulation for large deformations [Vidal 2007] and multiphase SPH which is the topic of the next
section. Beyond �uid mechanics, SPH formulations are available for other systems of PDEs (magneto-
hydrodynamics, shallow water equations or solid mechanics to name a few).

2.5 Boundary conditions

Because SPH is a collocation method, the treatment of boundary conditions is far from being trivial
and is an active area of research within the community. The SPH European Research Interest Com-
munity (SPHERIC) even made this topic one of its Grand Challenges for the development of the SPH
method (http://spheric-sph.org).

http://spheric-sph.org
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Ωf

Ωд
Λд

Γf д

Figure 2.10: Schematic of a ghost particle д (in black) and its associated support domain Λд (hatched
area) intersecting with the �uid domain Ωf (gray particles) and the ghost domain Ωд (white particles)
separated by Γf д .

Originally, in order to impose wall Boundary Conditions (BC), repulsive forces based on the Lennard-
Jones potential were used [Monaghan 2005]. However, it was shown in [Ferrand 2012] that it induces
strong spurious behaviors near the boundaries. Today, most models are imposing wall BC through the
use of ghost particles or mirror particles [Morris 1997a, Colagrossi 2003, Oger 2006, Yildiz 2009]. Re-
cently, a new approach using semi-analytical BC was introduced in [Ferrand 2012, Leroy 2014, Ferrand 2017,
Chiron 2017] for both wall and inlet/outlet BC. However, this semi-analytical approach is signi�cantly
more complex and time consuming, we preferred to present simpler approaches in view of the simple
test cases that we consider in this work.

2.5.1 Wall boundary conditions

The wall boundary conditions are modeled by introducing additional ghost SPH particles on the position
of the boundary. These particles are regularly distributed on the boundaries (to satisfy the impermeabil-
ity condition) and have a zero velocity to impose the no-slip condition. To prevent the inconsistency
between the density of inner particles and that of the wall, additional layers of dummy particles are
placed outside the domain so that the compact support of any �uid particle approaching the wall is full.

No slip In order to apply a no slip condition on the wall, a given ghost particle д carries prescribed
values for the pressure pw , density ρw and velocity uw that are de�ned as :

pwд =
1

Vдa

∑
a∈Ωf ∩Λд

pa
ma

ρa
wдa, (2.5.1)

ρwд =
1

Vдa

∑
a∈Ωf ∩Λд

ρa
ma

ρa
wдa, (2.5.2)

uwд =
−1
Vдa

∑
a∈Ωf ∩Λд

ua
ma

ρa
wдa, (2.5.3)

with Vдa =
∑

a∈Ωf ∩Λд
ma
ρa
wдa , Ωf the set of �uid particles and Λд the set of neighboring particles of

ghost particle д. A schematic drawn on Fig. 2.10 helps to visualize what is the intersection Ωf ∩ Λд .
Note that the velocity of the ghost particle uwд is obtained as opposite (negative) of the extrapolated
velocity of interior regular particles in order to prevent penetration of regular particles to the described
boundary while the pressure and density is simply extrapolated from the interior regular particles.



68 Chapter 2. Smoothed particle hydrodynamics

Free slip Concerning free slip condition on the wall, it is needed to distinguish the tangential pre-
scribed velocity uw ,t

д and the normal prescribed velocity uw ,n
д . It reads :

pwд =
1

Vдa

∑
a∈Ωf ∩Λд

pa
ma

ρa
wдa, (2.5.4)

ρwд =
1

Vдa

∑
a∈Ωf ∩Λд

ρa
ma

ρa
wдa, (2.5.5)

uw ,t
д =

1
Vдa

∑
a∈Ωf ∩Λд

ua
ma

ρa
wдa, (2.5.6)

uw ,n
д =

−1
Vдa

∑
a∈Ωf ∩Λд

ua
ma

ρa
wдa . (2.5.7)

Moving wall If one wants to prescribe a given velocityup to apply a so-called moving wall condition,
the prescribed values are de�ned as :

pwд =
1

Vдa

∑
a∈Ωf ∩Λд

pa
ma

ρa
wдa, (2.5.8)

ρwд =
1

Vдa

∑
a∈Ωf ∩Λд

ρa
ma

ρa
wдa, (2.5.9)

uwд = 2up − 1
Vдa

∑
a∈Ωf ∩Λд

ua
ma

ρa
wдa . (2.5.10)

2.5.2 Other boundary conditions

Inlet/Outlet boundary conditions The inlet/outlet boundary condition is a very useful set of bound-
ary conditions for the study of a large variety of �uid problems. Numerous inlet/outlet SPH formulations
are currently available in the literature [Federico 2012, Ferrand 2012, Dong 2014, Khorasanizade 2016,
Kunz 2016, Tafuni 2018]. The main issue being with inlet/outlet boundary condition is that it results
in spurious re�ected waves of signi�cant amplitude that can a�ect negatively the simulation. Some
treatments can remedy at least partially to this issue such as non re�ecting boundary conditions but
they require a more complex implementation [Lastiwka 2009, Marrone 2013].

Periodic boundary conditions Periodic boundary conditions are useful to reduce the size of the
computational domain. In the case of SPH, the only modi�cation need to introduce this kind of boundary
conditions is to allow the particles from one side of the domain to interact with particles of the other
side of the domain. This ensures that the quantities will be transmitted from one side to the other.
Moreover, when a particle crosses the domain periodic frontier; it has to be copied and reintroduced “as
is” from the other periodic frontier. When the domain is not continuously packed with particles across
the periodic boundary, no extra treatment is need. Otherwise, in order to avoid incomplete kernels,
one must ensure the consistency of the packing across the periodic boundary. Indeed, if the packing is
not consistent across the periodic boundary, voids can appear within the packing which could lead to
incorrect results.

Rigid bodies and �oating objects If the �oating object or rigid body moves under the in�uence of
the solid/�uid, its wall-bounded particles have to move with it. Their positions are not updated using
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classic SPH equations, but rather their equation of motion is given by the actual motion of the structure.
In order to solve the equations of motion of the structure one needs to know its total mass, its center
of mass and its moments of inertia around the three axes passing through the center of mass. For more
details, see for example [Pan 2015].

2.6 Time integration

As with other numerical methods, any time integration scheme could be used. However, it is in generally
advised to use a symplectic integrator in SPH. Indeed, the conservative nature of symplectic integrators
give them a strong advantage as opposed to non-symplectic schemes even with higher orders. Non-
symplectic schemes might be more accurate for the �rst iterations but the error can increase afterwards
if not chosen carefully. SPH numerical stability generally imposes very small timesteps, thus, it is
fundamental to ensure the conservation of quantities over a run. In practice, it is also possible to use
a non-symplectic integrator but with very low dissipation over time, 4th order Runge-Kutta schemes
are a good choice for example [Grenier 2009b, Chiron 2017]. Regarding symplectic integrators, both
the Velocity Verlet and Predictor-Corrector leapfrog schemes have proven popular. In this work, the
Predictor-Corrector leapfrog scheme was adopted. The algorithm is described hereafter. For every
particle a,

1. Predictor Step

un =

{
u0 if t = 0,
un−

1
2 + ∆t

2
Du
Dt

n−1 if t > 0.
(2.6.1)

2. Compute ρna and pna using the corresponding expressions in equation (4.2.6).
3. Evaluate Du

Dt
n using the momentum equation in (4.2.6).

4. Corrector Step

un+
1
2 =

{
un + ∆t

2
Du
Dt

n if t = 0,
un−

1
2 + ∆t DuDt

n if t > 0,
(2.6.2)

xn+1 = xn + ∆tun+
1
2 . (2.6.3)

The time step ∆t has to respect the Courant-Friedrichs-Lewy (CFL) criteria to ensure a stable
evolution of the system e.g.

∆t = min
(
∆tvisc,∆tgrav,∆tspeed

)
, (2.6.4)

where, following [Morris 2000], we have




∆tvisc = 0.125 h2ρ0

µ ,

∆tgrav = 0.25
√

h
|д | ,

∆tspeed = 0.25 h
c .

(2.6.5)

A recent article [Violeau 2014] investigated in detail what is the maximum admissible timestep in
the WCSPH context.

2.7 Multiphase SPH

There are two steps to extend SPH to multiphase �ows. First, the SPH approximation has to be adapted
to be able to handle density and viscosity discontinuities. Second, a surface tension force has to be
added to the model. Numerous attempts to develop speci�c multiphase methods for SPH have been
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done over the years (recent examples for bed sedimentation can be found in [Fourtakas 2014], for oil
spills [Violeau 2007b] or for the Kevin-Helmotz instability [Price 2008]). An exhaustive review of SPH
formulations for multiphase �ows is given in [Tartakovsky 2015]. Moreover, the key challenges for
future developments of multiphase SPH are discussed in the last section of [Violeau 2016]. Note that we
will only mention immiscible multiphase SPH models in this section, other approaches such as mixture
models (for example [Fonty 2019b, Fonty 2019a]) will not be described here.

2.7.1 Main formulations

Thanks to its success in modeling single phase �ows, SPH has quickly been extended to be applied to
multiphase �ows simulations [Monaghan 1995]. Indeed, the Lagrangian nature makes the capture of the
interface dynamics easier than Eulerian meshbased methods. However, the basic SPH model of Eq. (2.3.1)
is not suited for large density ratios. It has been reported [Colagrossi 2003, Hu 2006, Violeau 2016,
Grenier 2009a, To�ghi 2013] that, because of the squared density term in the denominator, nonphysical
voids appear at the interface. Moreover, using Eq. (2.2.10) leads to a smoothing of the density at the
interface which is undesirable. Three main approaches have been proposed to remedy these issues.

1. [Colagrossi 2003] suggests to use the SPH interpolants ∇+k Â with k = 0. It leads to the following
set of interpolants :

∇+0 Â(xa) =
∑
b ∈Λa

mb

ρb
(Aa +Ab ) ∇awab , (2.7.1)

∇+0 · Â(xa) =
∑
b ∈Λa

mb

ρb
(Ab −Aa) ∇a ·wab . (2.7.2)

However, this approach is not adapted to high density ratio (typically air/water) since the density
is still computed through the continuity equation which leads to conservation errors and it also
su�ers from inconsistencies between the velocity and the density �elds.

2. Derived from variational principles, [Hu 2006] proposes to use a slightly di�erent version of
Eq. (2.2.9) (borrowed from [Español 2003]) :

ρa =ma

∑
b ∈Λa

wab . (2.7.3)

The di�erence is that the density evaluation for a given particle a does not take into account
the masses of neighboring particles which allows the treatment of density discontinuities. The
corresponding discretized gradient and divergence operators in this formalism are given by :

∇A(xa) =
∑
b ∈Λa

(
Aa

Θ2
a
+
Ab

Θ2
b

)
Θa∇awab , (2.7.4)

∇ ·A(xa) =
∑
b ∈Λa

(
Aa

Θ2
a
+
Ab

Θ2
b

)
Θa∇a ·wab , (2.7.5)

where Θa =
ρa
ma

. This approach allows to circumvent the issue of density smoothing at the
interface since a direct summation is used14. Moreover, they also proposed a modi�ed version of
the viscosity term of Eq. (2.4.5) based on the inter-particle averaged shear stress [Flekkoy 2000]

14However, it cannot be used “as is” for free surface �ows, one needs to use a time integrated version of
Eq. (2.7.3) [Ferrand 2012, Ghaitanellis 2017].
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and given by :

νa∇2ua =
1
ma

∑
b ∈Λa

2νaνb
νa + νb

(
1
Θ2
a
+

1
Θ2
b

)
xab ·∇awab

|xab |2 + η2 uab , (2.7.6)

where η = 0.01h is a safety factor to avoid a division by zero. This model is quite simple to
implement and reasonably e�cient and stable to handle large density and viscosity ratios. It is
the formulation that will be used in the rest of this work.

3. In [Grenier 2009a], a new volumetric formulation, also based on variational principles, was in-
troduced to handle multiphase �ows in SPH. First, the density is computed using the density
summation but completed with a Shepard �lter. It boils down to Eq. (2.4.7) except that the sum-
mation is only done on particles of the same phase. It is written as :

ρa =
∑

b ∈Λa∩Ωa
mbŵab , (2.7.7)

with ŵab = wab/Sa , Sa =
∑
b ∈Λa Vbwab , Va the volume of particle a and Ωa the set of particles

belonging to the same phase as particle a. The continuity equation is discretized using the volume-
based approach. It gives :

d log(V /V 0)
dt

=
1
Sa

∑
b ∈Λa
(ub −ua) , (2.7.8)

whereV 0 is the initial volume of the particles. Then it is possible to deduce the discretized gradient
operator and the viscous term in this formalism :

∇A(xa) =
∑
b ∈Λa

Vb

(
Aa

Sa
+
Ab

Sb

)
∇awab , (2.7.9)

νa∇2ua =
1
Va

∑
b ∈Λa

Vb
2νaνb
νa + νb

(
1
Sa
+

1
Sb

)
xab ·∇awab

|xab |2 + η2 uab . (2.7.10)

This formulation returns accurate results with cleaner pressure �elds than the other formulations
but su�ers from inconsistency between the density and the velocity �elds just like [Colagrossi 2003].
Moreover, it is limited to low Reynolds number because the viscous term does not su�ce to sta-
bilize the scheme.

2.7.2 Surface tension models

In a multiphase problem, one needs to discretize the surface tension force term 1
ρ F

st in Eq. (2.2.2). There
are two main techniques to include a surface tension model within an SPH formulation, the pair-wise
force model and the color gradient approach :

1. the pair-wise force model (PF) [Tartakovsky 2016]
This model is based on the inclusion of a molecular-like pairwise interaction force F st

ab in the
discretized momentum equation (inside the summation). It reproduces the cause of the surface
tension i.e. attractive forces among particles of the same phase. It reads :

F st
ab =



− σα β cos

(
3π
2h |xa − xb |

)
xa − xb
|xa − xb |

, if |xa − xb | ≤ h,

0 , if |xa − xb | > h,

(2.7.11)
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where σα β de�nes the strength of the interaction between particle a of phase α and particle b of
phase β . Then, for a given particle a, one just needs to sum up all the contributions of neighboring
particles of the same phase :

F st
a =

∑
b ∈Λa∩Ωa

F st
ab , (2.7.12)

with Ωa the set of particles belonging to the same phase as particle a. More details about this
approach can be found in [Tartakovsky 2015].

2. the color gradient model (or continuum surface force (CSF) [Brackbill 1992, Lafaurie 1994])
This approach aims to simulate the e�ect of the surface tension i.e. the minimization of the
interface area. There are two variants of the CSF model in SPH [Morris 2000, Szewc 2013] : the
�rst one is based on the computation of the curvature of the interface and will be called CSF-κ
and the second one depends on the evaluation of the surface stress tensor and will be referred as
CSF-Π.

(a) In the CSF-κ variant, F st is expressed as :

F st
a = σ

α βκ
α β
a ñ

α β
a δa, (2.7.13)

where σα β is the surface tension coe�cient between phase α and phase β , κa = −∇ · ñα βa is
the curvature between phase α and phase β ,nα βa is the normal vector between phase α and
phase β andδa is a surface delta function set to be equal to |nα βa | and ñα βa = n

α β
a /|nα βa |. Then

depending on the multiphase formulation chosen, one needs to discretizenα βa 15 and κa . The
CSF-κ technique is highly dependent on the quality of the curvature computation (which is
a second order derivative and has to be handled with care [Adami 2010] if not errors occur
as shown on Fig. 2.12) and does not include natively a way to deal with contact line (contact
angle). A special treatment such as Contact Line Force (CLF) has to be added [Kunz 2015].
Moerover, CSF-κ is known to lack conservation of linear and angular momentum.

(b) In the CSF-Π variant, F st is expressed as :

F st
a = −∇ ·Πa, (2.7.16)

with Π the capillary pressure tensor de�ned by

Πa =
∑

α ,β |α<β
Π
α β
a , (2.7.17)

where α, β ∈ {1, . . . ,Nphases} and Πα β is expressed as

Πα β = −σα β
(
I − ñα β ⊗ ñα β

)
δα β , (2.7.18)

15Note that in SPH, the evaluation of normals is performed through the computation of the gradient of a color function χ

de�ned for a given particle a and a given phase α as

χαa =

{
1 if a ∈ phase α,
0 else.

(2.7.14)

The normal vector nα βa of particle a belonging to phase α to the interface αβ is then computed as nα βa = ∇χαa . For example,
following the formalism of [Hu 2006]. It would lead to :

n
α β
a = ∇χα βa =

∑
b ∈Λa

©«
χ
β
a

Θ2
a
+
χ
β
b

Θ2
b

ª®¬
Θa∇awab . (2.7.15)
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with ñα β the unit normal vector from phase α to phase β ,σα β the surface tension coe�cient
between phase α and phase β , δα β a well-chosen surface delta function set to be equal to
|nα βa | and I the identity matrix. Then depending on the multiphase formulation chosen,
one needs to discretize nα βa . In the case of a three-phase system with a wetting phase s , a
non wetting phase n and a solid phase s as described in Figure 2.11, the stress tensor reads
Πa = Πns

a +Π
ws
a +Π

nw
a . The CSF-Π approach has the advantage to be able to handle naturally

contact line (contact angles) and to be fully conservative. However, in SPH, this approach
can lead to instabilities at high resolution. Several treatments are available [Szewc 2013].
In particular, in [Hu 2006], it is recommended to use a modi�ed version of Πα β given by
Πα β = −σα β ( 1

D I − ñα β ⊗ ñα β
)
δα β (where D is the dimension). This leads to Tr

(
Πα β

)
= 0

and therefore, there is no negative spurious pressure contribution. In this work, despite this
correction, instabilities were still observed but only after a large number of iterations of a
static bubble test.

ΓnsΓws
Γ
nw

ñws ñns

ñnw Ωn

Ωs

Ωw

Figure 2.11: A triple point contact line between a non wetting phase Ωn , a wetting phase Ωw and a
solid phase Ωs with their associated unit normal vectors ñab and boundary lines Γab

(a) A static bubble simulated
with CSF-κ

(b) A static bubble simulated
with CSF-Π
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(c) Laplace’s law veri�cation

Figure 2.12: Comparison of CSF-κ and CSF-Π models for a static bubble test with 3600 particles. Note
that in that case, the curvature needed in CSF-κ has been computed without any caution leading to a
noisier pressure �eld.

2.7.3 Corrective terms

Several corrective procedures are available for mulitphase SPH formulation. Hereafter, we brie�y de-
scribe two of them as they will be used later in this work.
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First, the shifting technique for multiphase �ows introduced in [Mokos 2016] has also been used
to maintain a good particles distribution. At the end of every timestep, all particles are shifted by a
distance δr s from their original position. This shifting distance of a particle a is evaluated by doing

δr sa =

{ −Da∇Ca if a ∈ light phase,
−Da

(
∂Ca
∂s s + αn

(
∂Ca
∂n n − βn

))
if a ∈ heavy phase, (2.7.19)

whereCa =
∑
b ∈Λa

ma
ρa
wab is the particle concentration, ∇Ca =

∑
b ∈Λa

ma
ρa
(Cb −Ca)∇wab is the particle

concentration gradient, Da is the di�usion coe�cient, s and n are respectively the tangent and normal
vectors to the interface light/heavy phase (with n oriented towards the light phase), βn is a reference
concentration gradient (taken equal to its initial value) and αn is the normal di�usion parameter and is
set equal to 0.1. The di�usion coe�cient Da is computed as follows

Da = As |ua |∆t, (2.7.20)

where As is a parameter set to 2, ua is the velocity of particle a, and ∆t is the timestep.
Second, as reported by several authors [Colagrossi 2003, Grenier 2009a, Szewc 2013, Ghaitanellis 2017],

multiphase SPH can su�er from sub-kernel micro-mixing phenomena. Around the interface, within
a distance corresponding to the range of the kernel smoothing, particles have a tendency to mix. It
is due to the fact that there is no mechanism ensuring phases immiscibility in the surface tension’s
continuum surface stress model. As suggested by the previously mentioned authors, we introduce a
small repulsive force between phases as follows

F corra = ε
∑

b ∈Λa ,b<Ωa

(
1
Θ2
a
+

1
Θ2
b

)
∇awab , (2.7.21)

where ε = Lref
h for all simulations as suggested in [Szewc 2016] where Lref is a reference length, typically

the diameter for pipes. Note that the alternative formulation given by F corra = ε
∑
b ∈Λa ,b<Ωa

(
pa
Θ2
a
+

pb
Θ2
b

)
∇awab

with ε = 0.1 produces roughly the same force magnitude at the interface. The impact of this corrective
force is shown in Fig. 2.13 and a more exhaustive study can be found in [Douillet-Grellier 2018].

(a) Without Fcorr (b) With Fcorr

Figure 2.13: Example of the impact of F corr on a circular bubble rising under the in�uence of gravity.
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Models Advantages Drawbacks

PF

XFast computation
XIntrinsic contact line dynamics
XNo need for interface correction
XNo normal/curvature computation

×Complex and indirect link between
model parameters and macroscopic variables
×Few users

CSF-κ XStable at high resolution

×Normal/Curvature computation
×Extrinsic contact line dynamics
×Need for interface correction
×Not conservative

CSF-Π
XIntrinsic contact line dynamics
XFully conservative
XNo curvature computation

×Instabilities at high resolution
×Need for interface correction

Table 2.7: Summary of the di�erent multiphase SPH approaches

2.7.4 Summary

In this work, we will use the multiphase SPH formulation introduced in [Hu 2006] in association
with the CSF-Π approach for the surface tension force. This choice is guided by several reasons. First,
concerning the surface tension models, we preferred CSF-Π over CSF-κ because of its conservative
nature and the built-in ability to handle contact line dynamics. In addition, it avoids the computation
of the curvature. We have done some tests with the PF model but, at that time, there was no clear link
between the physical surface tension and the associated numerical parameter (it seems to have been
solved at the moment [Tartakovsky 2016]) which was an important drawback. Finally, with respect to
the formulations, we chose to use Hu and Adams formulation over Colagrossi’s because it was better
suited for high density ratios and over Grenier’s mostly because it was simpler and less computationally
expensive.
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The lattice Boltzmann method has been originated from two distinct approaches : the kinetic gas
theory with discrete velocities and the lattice gas cellular automata method (LGCA or LGA). In practice,
there are four main di�erences between the LBM and traditional continuum-based methods. First,
the LBM operates on an uniform lattice (square or hexagonal lattices). This avoids some problems
related with meshing. However, this comes at some expense. For example, LBM presents a �rst order
accuracy when dealing with curved boundaries (staircase discretization). Second, LBM presents a simple,
local, nature of the lattice Boltzmann equation. Indeed, the algorithm consists of a series of simple
arithmetic operations involving no di�erential terms. An LBM code is relatively short when compared
to a typical continuum based code, where the LBM algorithm is also particularly well suited to parallel
execution [Harting 2005]. Third, traditional CFD methods are based on the calculation of macroscopic
variables (velocity, pressure, density) whereas LBM tracks the evolution of Probability Distribution
Functions (PDF) and is built on microscopic models and mesoscopic kinetic equations [Benzi 1992,
Qian 1992, Boon 2003]. The macroscopic variables are computed through a moment integration of
the distribution. Finally, continuum based methods are built on Navier-Stokes equations (macroscale)
whereas LBM emerges from the Boltzmann equation (mesoscale). It is possible to derive the full set
of Navier-Stokes equations by applying the Chapman-Enskog expansion to the Lattice Boltzmann
Method [Viggen 2009, Viggen 2014, Li 2015]. Most of the following is inspired by the �rst chapter
of [Béchereau 2016] and [Viggen 2014].

3.1 Probability distribution functions

Let’s consider the mathematical modeling of a monatomic gas formed by a collection of n identical
interacting particles1 (where n is a big integer, let’s say 106 ≤ N ≤ 1023) in an euclidean space RN .
Assuming that the position x and the velocityv are enough to describe the state of a particle, the state
of the gas can be described by a probability distribution function (PDF) fn(x1,v1, . . . ,xn,vn) in the
phase space (RNx × RNv )n . This is a microscopic description.

One can then use Newton’s laws and describe the state of the gas and its evolution by forming a
huge system of 2n di�erential equations on the position and the velocity of the particles and also with
the interaction forces. Historically, particles were considered as hard spheres bouncing on each other
like in a pool game.

This model contains way too much information. In general, the model is simpli�ed by using a
kinetic approach of the gas. The state of the gas is then described by a distribution f (x,v, t), which
measures the probability of �nding particles in the phase space RNx × RNv . This function can be seen as
a generalization of density in both physical and velocity space. As an example, f (x,v, t)dv represents
the spatial density of particles within the velocity volume dv at v and f (x,v, t)dxdv is the mass of
particles within the velocity volumedv atv and the spatial volumedx atx . This mesoscopic description
leads to the Boltzmann equation.

This de�nition of distributions is enough to recover the fundamental properties of the �uid (density,
momentum, energy). In fact, these properties are computed as moments2 of the distribution acting as a

1Despite using the same word, in this section, the word “particles” will refer to physical particles such as atoms (hard
spheres model). This is di�erent from SPH particles which are material points bearing kinematic and thermodynamic
quantities.

2A distribution moment is an integral of the distribution over the velocity space and weighted by a function ofv .
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link between the mesoscopic and the macroscopic scales. These moments are de�ned as follows :

ρ(x, t) =
∫

f (x,v, t)dv, (0th moment - density)

ρu(x, t) =
∫

v f (x,v, t)dv, (1st moment - momentum)

ρE(x, t) = 1
2

∫
|v |2 f (x,v, t)dv, (2nd moment - energy density)

(3.1.1)

(3.1.2)

(3.1.3)

with u the macroscopic velocity of the �uid and E the speci�c energy of the �uid. Note that Eq. (3.1.3)
assumes that only the translational velocity contributes to the kinetic energy. This is only true for a
monatomic gas as assumed before.

At this point, it is useful to introduce the peculiar velocity ξ which is de�ned as the di�erence
between the particle velocityv and the �uid (average) velocity u 3 :

v = u + ξ . (3.1.4)

It is possible to decompose the energy density into two parts : the part induced by the peculiar velocity
ξ (also called the internal energy density ρe) and the part induced by the �uid velocity u :

ρE = ρe +
1
2ρ |u |

2, (3.1.5)

ρe(x, t) = 1
2

∫
|ξ |2 f (x,v, t)dv . (3.1.6)

The macroscopic quantity known as pressure p(x, t) is due to particles bouncing o� a given surface.
Because mass and momentum are conserved through elastic collisions, a particle with a given mass
and velocity hitting the surface will bounce keeping the same mass and with an opposite velocity. For
example, if the surface is in the x − y plane as shown on Figure 3.1 then the total massmv of particles
hitting the wall with a velocity ξ is :

mξ = f (x,v, t)dxdv . (3.1.7)

The in�nitesimal spatial volume dx can be expressed in function of the vertical velocity ξz as dx =
dxdyξzdt yielding :

mξ = ξz f (x,v, t)dvdxdydt . (3.1.8)

The change of momentum ∆pξ is then calculated as the total mass mξ multiplied by the velocity
di�erence before and after collision i.e. ∆ξz = ξz − (−ξz ) = 2ξz :

∆pξ =mξ∆ξz = 2ξ 2
z f (x,v, t)dvdxdydt . (3.1.9)

Among all particles with the above momentum, only those with a vz that points towards the wall have
to be counted. To clarify the idea, if the wall is in the half space z > 0, only particles with vz > 0
will contribute to the change of momentum, the others with vz > 0 are moving away from the wall.
Assuming that f is symmetric around ξ = 0, it yields :∫

ξz<0
∆pξ =

∫
∆pξ −

∫
ξz>0

∆pξ , (3.1.10)∫
ξz<0

∆pξ =
1
2

∫
∆pξ . (3.1.11)

3By de�nition, the peculiar velocity does not contribute to the momentum :
∫
ξ f dv =

∫
v f dv −u

∫
f dv = ρu − ρu = 0.

We even have
∫
ξn f dv = 0 if n is odd (antisymmetric integrand).
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z

ξ ξ

dx

dy

Figure 3.1: Particle hitting the x-y plane

The previous assumption of symmetry around the peculiar velocity is rooted in reality and is equiv-
alent to assume that the gas is in equilibrium. It is based on the observation that a gas at rest evenly
distributes the peculiar velocities around u (thermodynamic disorder according to the second law of
thermodynamics). As a consequence, the change of momentum due to particles collisions on the wall
is then : ∫

vz<0
∆pξ = dxdydt

∫
ξ 2
z f (x,v, t)dv . (3.1.12)

To obtain the pressure, one just needs to divide the change of momentum bydt to get the force (Newton’s
second law) and �nally by the area dxdy. In the end, we have p(x, t) =

∫
ξ 2
z f (x,v, t)dv . Applying this

reasoning for a wall placed in another plane, we would get the same result with ξx or ξy inside the
integral. Taking the average of those de�nitions 1

3 (ξ 2
x +ξ

2
y +ξ

2
z ) = 1

3 |ξ |2, the �nal expression for pressure
is obtained :

p(x, t) = 1
3

∫
|ξ |2 f (x,v, t)dv . (3.1.13)

Note that combining Eq. (3.1.13), Eq. (3.1.5) and Eq. (3.1.6), it yields :

p =
2
3ρe . (3.1.14)

The ideal gas equation of state is de�ned as follows :

p = ρ
kBT

m
, (3.1.15)

withm the mass,kB = 1.38×10−23 J/K the Boltzmann constant andT the temperature. It is also possible
to introduce the speci�c heat capacity at constant volume cV =

(
∂e
∂T

)
V

, the speci�c heat capacity at

constant pressure cp = cV + kB
m (for ideal gases only) and their ratio γ = cp

cV
:

cV =

(
∂e

∂T

)
V
=

3
2
kB
m
, (3.1.16)

cp =
kB
m
+ cV =

5
2
kB
m
, (3.1.17)

γ =
cp

cV
=

5
3 . (3.1.18)
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Note that for an arbitrary number D of dimensions, the above expressions are simply :

p =
1
D

∫
|ξ |2 f dv = ρkBT

m
=

2
D
ρe, (3.1.19)

cV =

(
∂e

∂T

)
V
=

D

2
kB
m
, (3.1.20)

cp =
kB
m
+ cV =

D + 2
2

kB
m
, (3.1.21)

γ =
cp

cV
=

D + 2
D
. (3.1.22)

For convenience, we will introduce here a notation for some particular moments of f :

M0 =

∫
f dv = ρ, (3.1.23)

M1 =

∫
v f dv = ρu, (3.1.24)

M2 =

∫
v ⊗ v f dv, (3.1.25)

M3 =

∫
v ⊗ v ⊗ v f dv, (3.1.26)

M∗3 =
1
2

∫
v |v |2 f dv, (3.1.27)

M∗4 =
∫
ξ ⊗ ξ ⊗ ξ ⊗ ξ f dv . (3.1.28)

In particular, it is interesting to expandM2 using Eq. (3.1.4). Indeed, we havev⊗v = (u+ξ )⊗(u+ξ ) :

M2 =

∫
(u ⊗ u +u ⊗ ξ + ξ ⊗ u + ξ ⊗ ξ ) f dv,

M2 = ρu ⊗ u +
∫
ξ ⊗ ξ f dv,

M2 = ρu ⊗ u − σ , (3.1.29)

where we have set σ = −
∫
ξ ⊗ ξ f dv . In a similar way, M∗3 can be written as follows :

M∗3 =
1
2

∫ (
u |u |2 +u |ξ |2 + 2ξ (ξ .u) + ξ |ξ |2) f dv,

M∗3 =
1
2ρu |u |

2 + ρue − σ .u + 1
2

∫
ξ |u |2 f dv,

M∗3 = ρuE − σ .u + q, (3.1.30)

where we have set q = 1
2
∫
ξ |ξ |2 f dv . It will also be useful later to expand M3 (in index notation as it

involves high order tensors) :

M3abcd =

∫
(uaubuc + uaξbξc + ubξaξc + ucξaξb ) f dv,

M3abcd = uaubuc

(∫
f dv

)
+ ua

(∫
ξbξc f dv

)
+ ub

(∫
ξaξc f dv

)
+ uc

(∫
ξaξb f dv

)
,

M3abcd = ρuaubuc + ua

(∫
ξbξc f dv

)
+ ub

(∫
ξaξc f dv

)
+ uc

(∫
ξaξb f dv

)
. (3.1.31)
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3.2 Equilibrium

Let us denote f eq the distribution when the gas is in equilibrium. We have seen before that when the
gas is at rest, it only depends on |ξ | so that we can write :

f eq(x,v, t) = f eq(|ξ |). (3.2.1)

We can naturally4 assume that f eq can be expressed under a Gaussian form as :

f eq(|ξ |) = A exp(−B |ξ |2), (3.2.2)

where A and B are constants to be determined using Eqs. (3.1.1) and, for example, (3.1.13).

ρ(x, t) =
∫

f eq(|ξ |)dv, (3.2.3)

=

∫
A exp(−B |ξ |2)dv, (3.2.4)

= A

∫ +∞

−∞
exp(−Bξ 2

x )dξx
∫ +∞

−∞
exp(−Bξ 2

y )dξy
∫ +∞

−∞
exp(−Bξ 2

z )dξz, (3.2.5)

= A
(π
B

) 3
2
. (3.2.6)

We now have :

f eq(|ξ |) = ρ
(
B

π

) 3
2

exp(−B |ξ |2). (3.2.7)

Then, f eq being symmetric around ξ , we can replace dv by
∫ 2π

0 dθ
∫ π

0 sin(ϕ)dϕ |ξ |2d |ξ | = 2π2|ξ |2d |ξ |
which yields :

p =
1
3

∫
|ξ |2 f eq(|ξ |)4π |ξ |2d |ξ |, (3.2.8)

=
4
3ρπ

(
B

π

) 3
2
∫ +∞

0
|ξ |4 exp(−B |ξ |2)d |ξ |

︸                            ︷︷                            ︸
=

3
√
π

8B5/2

, (3.2.9)

=
ρ

2B . (3.2.10)

So, we have B = ρ
2p which yields the following expression for the equilibrium distribution :

f eq(|ξ |) = ρ
(
ρ

2πp

)3/2
exp

(
− ρ2p |ξ |

2
)
. (3.2.11)

This formula is the Maxwell-Boltzmann distribution5. As shown on Fig. 3.2, the Maxwell-Boltzmann
distribution describes the distribution of velocities among particles in a gas in equilibrium.

Using Eq. (3.1.15), we could obtain a more common form of the Maxwell-Boltzmann distribution :

f eq(|ξ |) = ρ
(

m

2πkBT

)3/2
exp

(
− m

2kBT
|ξ |2

)
, (3.2.12)

f eq(|ξ |) = ρ
(

3
4πe

)3/2
exp

(
− 3

4e |ξ |
2
)
. (3.2.13)

4In the sense that it is natural solution of the Boltzmann Eq. (3.3.7) that will be introduced later.
5Another way to �nd this fundamental distribution is to look for the distribution that cancels the original collision

operator of Eq. (3.3.2)



3.2. Equilibrium 83

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LN
03

0
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d’origine particulaire SPH et LBM pour la
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François Bertrand
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préparée à l’École Normale Supérieure Paris-Saclay

Ecole doctorale n◦574 Mathématiques Hadamard (EDMH)
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Sébastien Leclaire
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École Polytechnique de Montréal Examinateur
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Figure 3.2: Histogram of the average speed distribution over 0.05s for N particles in a 1m × 1m box
(random velocity initialization) superposed with the exact value evaluated using Eq. (3.2.11). These
plots were obtained during this doctoral work implementing the SPH-based approach described
in [Simpson 1996].

Note that for an arbitrary number D of dimensions, the above expressions are simply :

f eq(|ξ |) = ρ
(
ρ

2πp

)D/2
exp

(
− ρ2p |ξ |

2
)
,

f eq(|ξ |) = ρ
(

m

2πkBT

)D/2
exp

(
− m

2kBT
|ξ |2

)
,

f eq(|ξ |) = ρ
(
D

4πe

)D/2
exp

(
−D4e |ξ |

2
)
.

(3.2.14)

(3.2.15)

(3.2.16)

In addition, the di�erent moments of the equilibrium distribution are the same as those de�ned for
standard distributions but taken in an equilibrium state. Because we know the expression of f eq, it
allows further developments for the equilibrium moments :

M
eq
0 =

∫
f eqdv = ρ, (3.2.17)

M
eq
1 =

∫
v f eqdv = ρu, (3.2.18)

M
eq
2 =

∫
v ⊗ v f eqdv = ρu ⊗ u − σ eq, (3.2.19)

M
eq
3 =

∫
v ⊗ v ⊗ v f eqdv,

M
eq
3 abcd = ρuaubuc + ua

(∫
ξbξc f

eqdv

)
+ ub

(∫
ξaξc f

eqdv

)
+ uc

(∫
ξaξb f

eqdv

)
,

M
eq
3 abcd = ρuaubuc + ρe

2
D
(uaδbc + ubδac + ucδab ), (3.2.20)

M
∗eq
3 =

1
2

∫
v |v |2 f eqdv = ρuE − σ eq ·u + qeq, (3.2.21)

M
∗eq
4 =

∫
ξ ⊗ ξ ⊗ ξ ⊗ ξ f eqdv,

M
∗eq
4 abcd = ρe

2 4
D2 (δabδcd + δacδbd + δadδbc ). (3.2.22)
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Note that we used technical details about isotropic tensors of order 2 and 4 in the above expressions,
see Appendix B.1 for more details.

3.3 Boltzmann Equation

The Boltzmann equation has been introduced by Boltzmann (1844-1906) [Boltzmann 1970] in 1872 and
is a fundamental di�erential equation in gas kinetic theory. It describes the behavior of a gas out of
equilibrium following a statistical approach. With x ∈ Ω ⊂ R3,v ∈ R3,a ∈ R3 and ∀t ∈ R+, it is written
as :

∂t f +v ·∇x f + a ·∇v f = Q(f , f ), (3.3.1)

with Ω a space domain, x the position,v the microscopic velocity and a the acceleration and t the time.
f is the particle distribution function (PDF) and is the unknown of the equation.

The fundamental concept brought by this equation is that irreversible macroscopic dynamics (here
f is a macroscopic variable because it is collective) can emerge from microscopic reversible dynamics.
The acceleration term in the Boltzmann equation corresponds to the contribution of external forces
and will not be considered in the following i.e. a = 0. Nevertheless, it should be taken into account
when including gravity e�ects for example. The velocity term corresponds to the streaming of the
particles. The right hand side Q(f , f ) of the equation is the collision term.

The original collision operator introduced by Boltzmann was only taking into account binary colli-
sions (one to one collisions) between hard spherical particles. It was also assumed that the collisions
were elastic and that the gas was submitted to a molecular chaos (implying that the velocities are
not correlated) without external forces. Under these hypothesis, the original collision operator was
expressed as a double integral over velocity space :

Q(f , f ) =
∫

dv

∫
B(Ω)|v1 −v2 |

(
f (v ′1)f (v ′2) − f (v1)f (v2)

)
dΩ, (3.3.2)

with dΩ the solid angle where particles are scattered and B the di�erential cross section of the collision.
The prime superscripts denote the quantity after collision (as opposed to before collision without a
prime subscript). The subscripts 1 and 2 denote particles 1 and 2 about to collide. We do not go further
in explaining this expression that will not be used in the following sections. This formulation was
cumbersome and alternatives were sought. A collision operator can have di�erent forms as long as it
ful�lls certain conditions :

1. It has to conserve mass, momentum and energy (if collisions are elastic which is the case for a
monatomic gas). ∫

Q(f , f )dv = 0, (3.3.3)∫
vQ(f , f )dv = 0, (3.3.4)∫
|v |2Q(f , f )dv = 0. (3.3.5)

2. it has to ensure that the distribution always evolves towards an equilibrium.
In 1954, Bhatnagar, Gross and Krook [Bhatnagar 1954] proposed the BGK collision operator that

satis�es the above conditions. It is written as follows :

Q(f , f ) = − f (x,v, t) − f eq(x,v, t)
τ

, (3.3.6)
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with τ the relaxation time for the distribution f to reach its equilibrium f eq. This operator is linear
and therefore easy to analyze and implement. It is widely used within the LBM community since its
introduction in the �eld by Qian in 1992 [Qian 1992]. However, this operator imposes that the thermal
e�ects and the viscous e�ects are of the same magnitude (Prandtl number is one). It is a limitation
when it comes to simulate non isothermal �ows for example. In the following, we will always consider
that the collision operator is the BGK operator, unless otherwise mentioned. Thus, we will work on the
following Boltzmann equation :

∂t f +v ·∇x f = −
f − f eq

τ
. (3.3.7)

We can now use the conditions imposed on Q(f , f ) in equations (3.3.3)–(3.3.5) to deduce the con-
servation of macroscopic quantities. From Eq. (3.3.3), it yields :∫

(∂t f +v ·∇x f )dv =
∫

Q(f , f )dv = 0, (3.3.8)

∂t

(∫
f dv

)
+ ∇x ·

(∫
v f dv

)
= 0, (3.3.9)

∂tρ + ∇x · (ρu) = 0, (3.3.10)

where we have been able to move the derivatives outside the integrals and to commute them with
v because t , x and v are independent variables. We recognize the mass conservation equation in
Eq. (3.3.10). Similarly for Eq. (3.3.4), we have :∫

v (∂t f +v ·∇x f )dv =
∫

vQ(f , f )dv = 0, (3.3.11)

∂t

(∫
v f dv

)
+ ∇x ·

(∫
v ⊗ v f dv

)
= 0, (3.3.12)

∂t (ρu) + ∇x ·M2 = 0, (3.3.13)
∂t (ρu) + ∇x · (ρu ⊗ u) = ∇x ·σ . (3.3.14)

We recognize the momentum conservation equation in Eq. (3.3.14) and it lets us identifyσ as the Cauchy
stress tensor. Finally, using Eq. (3.3.5), we can obtain :∫

|v |2 (∂t f +v ·∇x f )dv =
∫
|v |2Q(f , f )dv = 0, (3.3.15)

∂t

(∫
|v |2 f dv

)
+ ∇x ·

(∫
v |v |2 f dv

)
= 0, (3.3.16)

∂t (ρE) + ∇x ·M∗3 = 0, (3.3.17)
∂t (ρE) + ∇x · (ρuE) = ∇x · (σ ·u) − ∇x ·q. (3.3.18)

We recognize the energy conservation equation in Eq. (3.3.18) and it lets us identify q as the heat �ux.
From Eqs. (3.3.10)–(3.3.18), it is possible to recover Euler’s equations of �uid dynamics by assum-

ing that the distribution is at rest i.e. f = f eq (where f eq is the Maxwell-Boltzmann distribution of
Eq. (3.2.11)). Indeed, the Cauchy stress tensor and the heat �ux in an equilibrium state reduce to the
following expression :

σ eq = −
∫
ξ ⊗ ξ f eqdv = −pI , (3.3.19)

qeq =
1
2

∫
ξ |ξ |2 f eqdv = 0. (3.3.20)
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Therefore, Eqs. (3.3.14) and (3.3.18) become :

∂t (ρu) + ∇x · (ρu ⊗ u) = −∇xp, (3.3.21)
∂t (ρE) + ∇x · (ρuE) = −∇x · (pu), (3.3.22)

which, if combined with Eq. (3.3.10), are Euler’s equations.
It will be useful later in this document to gather Euler’s equations together and to expand several

derivatives :

∂tρ +u ·∇x ρ = −ρ∇x ·u, (3.3.23)

∂tu +u ·∇xu = −
∇xp
ρ
, (3.3.24)

∂te +u ·∇x e = −
p

ρ
∇x ·u . (3.3.25)

The last expression seems unusual but is in fact the resultant of the following calculations :

∂t ( ρE︸︷︷︸
=ρe+ 1

2 ρ |u |2 (3.1.5)

) + ∇x · ( ρE︸︷︷︸
=ρe+ 1

2 ρ |u |2 (3.1.5)

u) = −∇x · (pu),

∂t

(
ρe +

1
2ρ |u |

2
)
+ ∇x ·

(
u

(
ρe +

1
2ρ |u |

2
))
= −∇x · (pu),

(∂tρe + ∇x · (ρeu)) + ∂t
(
1
2ρ |u |

2
)
+ ∇x ·

(
1
2ρu |u |

2
)
= −∇x · (pu),

(∂tρe + ∇x · (ρeu)) + 1
2 |u |

2 (∂tρ + ∇x · (ρu))︸               ︷︷               ︸
=0 (3.3.10)

+u ρ (∂tu +u∇x ·u)︸               ︷︷               ︸
=−∇x p (3.3.24)

= −∇x · (pu),

(∂tρe + ∇x · (ρeu)) −u∇xp = −∇x · (pu),
∂tρe + ∇x · (ρeu) = −p∇x ·u,

∂te +u ·∇x e = −
p

ρ
∇x ·u .

Let’s remark that this last equation can also be interpreted as another way to write a well known
thermodynamic identity dE = −pdV .

3.4 Chapman-Enskog expansion

In order to �nd the Euler equations, an equilibrium state has been assumed. However, friction forces (and
consequently viscous stresses) are generated by an out-of-equilibrium state. Therefore, an approximate
solution of the Boltzmann equation in an out-of-equilibrium state has to be determined to recover the
Navier-Stokes equations. In 1916 and 1917, Chapman (1888-1970) [Chapman 1962] and Enskog (1884-
1947) [Enskog 1917] proposed a development (well explained in [Viggen 2014]) that allows to derive
the Navier-Stokes equations from the Boltzmann equation. It begins by a nondimensionalization of the
Boltzmann equation to introduce the Knudsen number Kn . Denoting L0 the characteristic length, V0
the characteristic velocity, T0 =

L0
V0

the characteristic time, Lmf p the mean free path between collisions
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and Tmf t =
Lmf p
V0

the mean free time between collisions, we can write :

t ′ =
t

T0
,

x ′ =
x

L0
,

v ′ =
v

V0
,

τ ′ =
τ

Tmf t
,

f ′ =
f

ρ

(
kBT

m

)D/2
(from Eq. (3.2.15)).

Inserting these de�nitions Eq. (3.3.7), it leads to :

1
T0����

��

ρ

(
m

kBT

)D/2
∂t ′ f

′ +
V0
L0����

��

ρ

(
m

kBT

)D/2
v ′ ·∇x ′ f ′ = − 1

Tmf t�
���

��

ρ

(
m

kBT

)D/2 f ′ − f ′eq

τ ′
,

��V0
L0
∂t ′ f

′ +��V0
L0
v ′ ·∇x ′ f ′ = − ��V0

Lmf t

f ′ − f ′eq

τ ′
,

Lmf t

L0
(∂t ′ f ′ +v ′ ·∇x ′ f ′) = −

f ′ − f ′eq

τ ′
,

Kn (∂t ′ +v ′ ·∇x ′) f ′ = −
f ′ − f ′eq

τ ′
. (3.4.1)

Kn is de�ned as the ratio between the mean free path of a particle and its characteristic length. It is a
measure of the continuity of the �ow :

• if Kn ≤ 0. 01, the �ow is continuous.
• if 0. 01 ≤ Kn ≤ 0. 1, the �ow is still continuous but exhibits discontinuities (the so-called Knudsen

�ow).
• if Kn ≥ 0. 1, the �ow is discontinuous (the so-called molecular �ow).

For example, the Navier-Stokes equations are based on a continuum hypothesis and are therefore not
valid anymore if Kn > 0.01. If Kn → 0, the �ow goes to equilibrium i.e. f ′ → f ′eq. Hence, we need
to consider the out-of-equilibrium terms to obtain the Navier-Stokes equations. It is then natural to
expand the distribution around its equilibrium. It is the Chapman-Enskog expansion. We can write this
expansion as follows (dropping the prime superscript as we go back to dimensionalized values) :

f = f eq + f1 + f2 + . . . (3.4.2)

The extra terms f1, f2 and so on have an order of magnitude related to the Knudsen number. We do
have fn = O(Kn

n ). We consider that all the newly introduced higher order distributions f1, f2 and so
forth do not contribute to the moments calculation since f and f eq already have the same moments.
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Thus, we assume6 ∀n ≥ 1 : ∫
fndv = 0, (3.4.3)∫

v fndv = 0, (3.4.4)

1
2

∫
|v |2 fndv = 0. (3.4.5)

To prepare the subsequent calculations, we also need the Cauchy stress tensor and the heat �ux ex-
pressed under the same form :

σ = σ eq + σ1 + σ2 + . . . , (3.4.6)
q = qeq + q1 + q2 + . . . , (3.4.7)

with ∀n ≥ 1, σn = −
∫
ξ ⊗ ξ fndv and qn =

1
2
∫
ξ |ξ |2 fndv . The expansion of f is not enough to close

the system. To properly do that, it is also needed to expand the time t in function of its relative order
of magnitude to Kn as follows :

t = t1 + t2 + . . . (3.4.8)
∂t = ∂t1 + ∂t2 + . . . (3.4.9)

We have adopted the same notation for the distribution expansion and for the time expansion. The
time expansion is a technique inherited from perturbation theory. Traditionally, t1 is seen as the time
scale related to fast dynamics like advection and t2 as the time scale related to slow dynamics like
di�usion. Note that the subscripts are again related to the order of magnitude of the terms, we still
have7 tn = O(Kn

n ) and ∂tn = O(Kn
n ) for n ≥ 1. We also need to state that ∇x = O(K1

n). Indeed, although
fast and slow dynamics occur at di�erent time scale, they occur at the same spatial scale. This will be of
primary importance when we will need to order the terms in function of their order of magnitude.

Hence, the Boltzmann Eq. (3.3.7) becomes :

(
∂t1 + ∂t2 + . . . +v ·∇x

) (f eq + f1 + f2 + . . .) = −1
τ
(f1 + f2 + . . .) , (3.4.10)

We can separate the 1st order terms and the 2nd order terms from Eq. (3.4.10) as follows :

1st order : ∂t1 f
eq +v ·∇x f eq = − f1

τ
, (3.4.11)

2nd order : ∂t2 f
eq + ∂t1 f1 +v ·∇x f1 = −

f2
τ
. (3.4.12)

6This is a strong assumption as the only natural constraint we have is :∫
Ψ(v)(f − f eq)dv = 0,∫

Ψ(v)(f1 + f2 + . . .)dv = 0,

∞∑
n=1

[∫
Ψ(v)fndv

]
= 0,

where Ψ(v) = 1,v, |v |2
7It makes sense as the term t0 would vanish because it is an equilibrium term where time does not matter.
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Since f1 does not contribute to the moments of the distribution, one can remark that by taking the
0th moment, 1st moment and 2nd moment of Eq. (3.4.11), we re-obtain Euler’s equations (which makes
sense since at 0th order, f = f eq) :

∂t1ρ + ∇x · (ρu) = 0, (3.4.13)
∂t1 (ρu) + ∇x · (ρu ⊗ u) = −∇xp, (3.4.14)
∂t1 (ρE) + ∇x · (ρuE) = −∇x · (pu), (3.4.15)

which we can rewrite exactly the same way as equations (3.3.23), (3.3.24) and (3.3.25) :

∂t1ρ +u ·∇x ρ = −ρ∇x ·u, (3.4.16)

∂t1u +u ·∇xu = −
∇xp
ρ
, (3.4.17)

∂t1e +u∇x e = −
p

ρ
∇x ·u . (3.4.18)

In a similar way, since f2 does not contribute to the moments of the distribution, by taking the 0th

moment, 1st moment and 2nd moment of Eq. (3.4.12), it yields :

∂t2ρ = 0, (3.4.19)
∂t2 (ρu) = ∇x ·σ1, (3.4.20)
∂t2 (ρE) = ∇x · (σ1 ·u) + ∇x ·q1. (3.4.21)

In order to recover the Navier-Stokes equations from the above equations, we need to compute the �rst
order perturbed moments σ1 and q1 and therefore f1. The only unknown in Eq. (3.4.11) is f1 and the
goal of the following calculations is to evaluate it. Dividing by f eq and using the properties of ln, we
get :

− τ

f eq
(
∂t1 f

eq +v ·∇x f eq) = f1
f eq ,

−τ (
∂t1 ln(f eq) +v ·∇x ln(f eq)) = f1

f eq . (3.4.22)

According to Eq. (3.2.16), we have :

ln(f eq) = ln(ρ) + D

2 ln
(
D

4π

)
− D

2 ln(e) − D

4e |ξ |
2. (3.4.23)

We can now compute the time derivative using a chain rule :

∂t1 ln(f eq) = ∂ρ ln(f eq)∂t1ρ + ∇u ln(f eq) · ∂t1u + ∂e ln(f eq)∂t1e,

=
1
ρ
∂t1ρ +

Dξ

2e · ∂t1u +

(
−D2e +

D

4e2 |ξ |2
)
∂t1e . (3.4.24)

Th same approach gives us the spatial derivative :

∇x ln(f eq) = ∂ρ ln(f eq)∇x ρ + ∇u ln(f eq) ·∇xu + ∂e ln(f eq)∇x e,

=
1
ρ
∇x ρ + Dξ

2e ·∇xu +
(
−D2e +

D

4e2 |ξ |2
)
∇x e . (3.4.25)

We can now insert equations (3.4.24) and (3.4.25) into Eq. (3.4.22) leading to :



90 Chapter 3. Lattice Boltzmann method

− f1
τ f eq =

D

2e (ξ ⊗ ξ )S +
ξ

e
∇x e

(
D |ξ |2

4e − D

2 − 1
)
,

where we have introduced the well known deviatoric strain tensor S = 1
2 (∇xu + ∇xuT ) − 1

D Tr(∇xu)I .
The technical development has been omitted for clarity but can be found in Appendix B.2. Finally, we
have :

f1 = −τ f eq
(
D

2e (ξ ⊗ ξ )S +
ξ

e
∇x e

(
D |ξ |2

4e − D

2 − 1
))
. (3.4.26)

It is now possible to compute the �rst order perturbed moments σ1 and q1.

σ1 = −
∫
ξ ⊗ ξ f1dv,

= pτ (∇xu + ∇xuT − 2
D

Tr(∇xu)I ),
= τ . (3.4.27)

We immediately recognize the deviatoric stress tensor τ with a shear viscosity µ = pτ = 2
D ρeτ and a

bulk viscosity µB = 0. In a similar way, for q1, we have :

q1 =
1
2

∫
ξ |ξ |2 f1dv,

= −D + 2
D

ρeτ
kB
m
∇xT ,

= −κ∇xT , (3.4.28)

where we used the ideal gas equation of state (3.1.19) to make the temperature gradient appear which
led to the introduction of the thermal conductivity κ = D+2

D ρeτ kBm . The mathematical details of the
calculation of σ1 and q1 have been omitted for clarity but can be found in Appendix B.3 and B.4. Now
that we have the values of σ1 = τ and q1 = −κ∇xT , we can insert them into Eqs. (3.4.20) and (3.4.21)
and perform the following operations :

(3.4.16) + (3.4.19),
(3.4.17) + (3.4.20),
(3.4.18) + (3.4.21).

It �nally yields the full formulation of the Navier-Stokes equations :

∂tρ + ∇x · (ρu) = 0,
∂t (ρu) + ∇x · (ρu ⊗ u) = −∇xp + ∇x ·τ ,
∂t (ρE) + ∇x · (ρuE) = ∇x · (σ ·u) + ∇x · (κ∇xT ) ,

(3.4.29)

where we have set the following parameters : shear viscosity µ = 2
D ρeτ , bulk viscosity µB = 0 and

thermal conductivityκ = D+2
D ρeτ kBm . It has to be emphasized that the values of these parameters depend

on the collision operator (BGK in this case) and on the assumption that the gas is monatomic. A well-
known disadvantage of the BGK operator for non-isothermal gases is that it enforces that the Prandtl
number Pr is one. Indeed, using Eq. (3.1.21) and the aforementioned expressions for κ and µ, we have :

Pr =
cpµ

κ
=

D+2
2 �

�kB
m

2
D��ρeτ

D+2
D ��ρeτ�

�kB
m

= 1. (3.4.30)



3.5. H -Theorem 91

This value is inherent with the BGK operator. For example, using the original collision operator of
Eq. (3.3.2), Pr = 2/3. We have performed the Chapman-Enskog expansion up to O(K2

n)which is enough
to recover the Navier-Stokes equations. However, it is possible to go further to higher orders leading to
what are called Burnett models. In practice for low Kn , the di�erence is negligible. We also have to add
that it is possible to recover the Navier-Stokes equations without using a Chapman-Enskog expansion.
See for example in [Landau 1990] or in Sect. 3.5.3 of [Violeau 2012].

3.5 H -Theorem

In 1872, Boltzmann [Boltzmann 1970] showed that when a given gas relaxes towards an equilibrium
state, a quantityH decreases monotonically with time. Indeed, if one considers the following quantity :

H(f (x,v, t)) =
∫
Ω×R3

f (x,v, t) ln(f (x,v, t))d3xd3v . (3.5.1)

TheH theorem claims that :
dH
dt
≤ 0. (3.5.2)

Assuming that f > 0, it is clear that the function f 7→ f ln(f ) is convex because its second derivative
is strictly positive. Hence,H(f ) admits a minimum f eq. This thermodynamic equilibrium is de�ned
by the Maxwell-Boltzmann distribution of Eq. (3.2.14). It was demonstrated in 1973 [Lanford 1975] that
the Boltzmann equation yields the H -theorem. The connection of the H -theorem with entropy and
the second law of thermodynamics is obvious. Indeed, according to this law, the entropy of an isolated
system can only grow with time and is therefore proportional to −H . During this thesis, we have brie�y
explored some entropic considerations about the BGK operator for advection-di�usion equations. This
work is presented in Appendix C.

3.6 Discretization

3.6.1 Velocity space discretization

The direct numerical resolution of the Boltzmann equation is costly. Indeed, in 3D, the equation has 7
dimensions. To overcome that issue and simplify the resolution, the velocity space is reduced to a set
of discrete velocities. The number and the direction of these discrete velocities is not free. The goal is
still to be able to recover the hydrodynamic behavior of the �ow while minimizing the number discrete
velocities to facilitate the numerical resolution. The most used networks are composed of 3 velocities in
1D, 9 velocities in 2D and 19 velocities in 3D. They are denoted D1Q3, D2Q9 and D3Q19 and are shown
on Figure 3.3. The notation DmQn (m dimensions, n velocities) is standard within the LBM community.

LetL be the lattice of discrete velocities andn its cardinal. ∀i ∈ {0 . . . (n−1)}, letvi ∈ L be a discrete
velocity and fi (x, t) = f (x,vi , t) the corresponding discrete distribution. With ∀x ∈ Ω,∀i ∈ 0 . . . (n− 1)
and ∀t ∈ R+, the Boltzmann equation then becomes :

∂t fi (x, t) +vi ·∇x fi (x, t) = Q(fi , fi ). (3.6.1)

Using the BGK operator, it can be rewritten as :

∂t fi (x, t) +vi ·∇x fi (x, t) = −
fi (x, t) − f

eq
i (x, t)

τ
. (3.6.2)

This equation is the (velocity) discretized Boltzmann equation. We now need to calculate the discretized
equilibrium distribution f

eq
i .
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v0
v+v−

(a) D1Q3

v0 v1

v5v2v6

v3

v7 v4 v8

(b) D2Q9 (c) D3Q19 (3×D2Q9)

Figure 3.3: Classic lattices

3.6.2 Discrete equilibrium

The thermodynamic equilibrium distribution f eq is the Maxwell-Boltzmann distribution. However, one
needs the discretized version f

eq
i in order to develop a numerical scheme.

f eq(x,v, t) = ρ
(

m

2πkBT

)D/2
exp

(
− m

2kBT
|v −u |2

)
,

= ρ

(
m

2πkBT

)D/2
exp

(
− m

2kBT
|v |2

)
exp

(
m

2kBT
(2v ·u − |u |2)

)
,

= ρ

(
m

2πkBT

)D/2
exp

(
− m

2kBT
|v |2

) [
1 + m(v ·u)

kBT
+
m2(v ·u)2

2k2
BT

2 − m |u |2
2kBT

]
+ O(u3),

= ρ

(
1

2πc2
s

)D/2
exp

(
− 1

2c2
s
|v |2

) [
1 + (v ·u)

c2
s
+
(v ·u)2

2c4
s
− |u |

2

2c2
s

]
+ O(u3),

= ρw(D)
[
1 + (v ·u)

c2
s
+
(v ·u)2

2c4
s
− |u |

2

2c2
s

]
+ O(u3),

where the speed of sound cs has been introduced. In the case of an isothermal, ideal gas, the equation
of state is p = ρkBT

m (Eq. (3.1.15)) so the speed of sound is given by :

c2
s =
∂p

∂ρ
=
kBT

m
. (3.6.3)

The equation of state becomes p = ρc2
s . In addition, the weights w(D) are de�ned as :

w(D) = exp
(
− |v |

2

2c2
s

)
/(2πc2

s
)D/2
. (3.6.4)

They depend on the choice of lattice L and their values are given in Tab. 3.18. Truncating at order 2,
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i 0 1 2
vi (0) (1) (-1)
wi 2/3 1/6 1/6

D1Q3 (cs = 1/√3)

i 0 1,2,3,4 5,6,7,8

vi (0,0) (0,±1)
(±1,0) (±1,±1)

wi 4/9 1/9 1/36
D2Q9 (cs = 1/√3)

i 0 1-6 7-18

vi (0,0,0)
(±1,0,0)
(0,±1,0)
(0,0,±1)

(0,±1,±1)
(±1,0,±1)
(±1,±1,0)

wi 1/3 1/18 1/36
D3Q19 (cs = 1/√3)

Table 3.1: Velocity sets and corresponding weight values for classic lattices

the discretized equilibrium distribution is ∀i ∈ {0 . . . (n − 1)} :

f
eq
i = ρwi (D)

[
1 + (vi ·u)

c2
s
+
(vi ·u)2

2c4
s
− |u |

2

2c2
s

]
. (3.6.6)

The discretized equilibrium distributions f
eq
i that we have just calculated in Eq. (3.6.6) also have dis-

cretized moments (denoted with a hat M̂) that must be equal to the continuous ones in order to recover
the hydrodynamics. This is necessary to be able to �nd the Navier-Stokes equations from the discretized
distributions. It yields :

M̂
eq
0 =

n−1∑
i=0

f
eq
i = M

eq
0 = ρ, (3.6.7)

M̂
eq
1 =

n−1∑
i=0

vi f
eq
i = M

eq
1 = ρu, (3.6.8)

M̂
eq
2 =

n−1∑
i=0

vi ⊗ vi f
eq
i = M

eq
2 = ρu ⊗ u + pI = ρu ⊗ u + ρc2

s I , (3.6.9)

M̂
eq
3 =

n−1∑
i=0

vi ⊗ vi ⊗ vi f
eq
i = M

eq
3 = ρuaubuc + ρc

2
s (uaδbc + ubδac + ucδab ), (3.6.10)

where we have use the isothermal equation of state p = ρc2
s . Note that Eq. (3.6.9) implies pI =

∑n−1
i=0 ξi ⊗

ξi f
eq
i . Inserting Eq. (3.6.6) into Eq. (3.6.7), it yields :

n−1∑
i=0

f
eq
i = ρ

(
n−1∑
i=0

wi (D) + u

c2
s
·
n−1∑
i=0

wi (D)vi +
u ⊗ u

2c2
s

:
(

1
c2
s

n−1∑
i=0

wi (D)vi ⊗ vi − I
n−1∑
i=0

wi (D)
))
,

= ρ.

8There are two ways to compute these values. The �rst one is to work at the continuous level and to enforce the three
distribution moments. Neglecting the 3rd order terms, it yields :

∫
ψ (v)f eqdv ≈ ρ

∫
ψ (v)w(D)

[
1 + (v ·u)

c2
s
+
(v ·u)2

2c4
s
− |u |

2

2c2
s

]
, (3.6.5)

where ψ (v) = 1,v,v ⊗ v,v ⊗ v ⊗ v . It leads to pseudo-Gaussian integrals that can be evaluated through a Gauss-Hermite
quadrature. On the other hand, it is also possible to enforce the moments on the discretized equilibrium distribution as shown
in the document.
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The above is only true if the following three conditions are satis�ed :

n−1∑
i=0

wi (D) = 1, (3.6.11)

n−1∑
i=0

viwi (D) = 0, (3.6.12)

n−1∑
i=0

vi ⊗ viwi (D) = c2
s I . (3.6.13)

Similarly, Eq. (3.6.8) leads to :

n−1∑
i=0

vi f
eq
i = ρ

©«

u

c2
s
·
n−1∑
i=0

wi (D)vi ⊗ vi

︸                      ︷︷                      ︸
=u

+

(
1 − |u |

2

2c2
s

) n−1∑
i=0

wi (D)vi

︸        ︷︷        ︸
=0

+
u ⊗ u

2c4
s

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi

ª®®®®®®¬
,

= ρu .

The above is only true if the following condition is satis�ed :

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi = 0. (3.6.14)

Eq. (3.6.9) leads to :

n−1∑
i=0

vi ⊗ vi f
eq
i = ρ

©«

(
1 − |u |

2

2c2
s

) n−1∑
i=0

vi ⊗ viwi (D)
︸               ︷︷               ︸

=c2
s I

+
u

c2
s

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi

︸                       ︷︷                       ︸
=0

+
u ⊗ u

2c4
s

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi ⊗ vi

ª®®®®®®®¬
,

= ρu ⊗ u + pI .

The above is only true if the following condition is satis�ed (expressed using index notation for conve-
nience due to the presence of a 4th order tensor) :

n−1∑
i=0

viavibvicvidwi (D) = c4
s (δabδcd + δacδbd + δadδbc ). (3.6.15)
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Eq. (3.6.10) leads to :

n−1∑
i=0

vi ⊗ vi ⊗ vi f
eq
i = ρ

©«

(
1 − |u |

2

2c2
s

) n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi

︸                       ︷︷                       ︸
=0

+
u

c2
s

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi ⊗ vi

︸                              ︷︷                              ︸
=c4

s (δabδcd+δacδbd+δadδbc )

,

+
u ⊗ u

2c4
s

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi ⊗ vi ⊗ vi

ª®®®®¬
,

=
u ⊗ u

2c4
s

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi ⊗ vi ⊗ vi + ρc
2
s (uaδbc + ubδac + ucδab ),

= ρuaubuc + ρc
2
s (uaδbc + ubδac + ucδab ).

The above equation is almost true if :
n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi ⊗ vi ⊗ vi = 0. (3.6.16)

Nevertheless, Eq. (3.6.6) does not feature any u3 term because we truncated it at O(u3), therefore we
cannot exactly reproduce M

eq
3 (the term ρuaubuc will be missing). In consequence, equation (3.6.10)

becomes :

M̂
eq
3 =

n−1∑
i=0

vi ⊗ vi ⊗ vi f
eq
i = ρc

2
s (uaδbc + ubδac + ucδab ), which is , M

eq
3 . (3.6.17)

The truncation of f eq
i at O(u3)may seem arbitrary but is in fact a way to limit the number of conditions

we obtain. In the end, we have the following constraints on the weights wi (D) :
n−1∑
i=0

wi (D) = 1,

n−1∑
i=0

viwi (D) = 0,

n−1∑
i=0

vi ⊗ viwi (D) = c2
s I ,

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi = 0,

n−1∑
i=0

viavibvicvidwi (D) = c4
s (δabδcd + δacδbd + δadδbc ),

n−1∑
i=0

wi (D)vi ⊗ vi ⊗ vi ⊗ vi ⊗ vi = 0.

(3.6.18)

For example for a D3Q19 lattice shown on Figure 3.3, the discrete velocities are given in Tab. 3.1. For
symmetry reasons, we have :{

w1 = w2 = w3 = w4 = w5 = w6(= w1−6),
w7 = w8 = w9 = w10 = w11 = w12 = w13 = w14 = w15 = w16 = w17 = w18(= w7−18).

(3.6.19)
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The symmetry condition can also be found through the zero conditions of Eq. (3.6.18). On the other
hand, the non-zero conditions can be expressed as :




w0 + 6w1−6 + 12w7−18 = 1,
2w1−6 + 8w7−18 = c

2
s ,

4w7−18 = c
4
s ,

2w1−6 + 8w7−18 = 3c4
s .

(3.6.20)

The solution9 of this system of four equations with four unknowns is :




w0 = 1/3,
w1−6 = 1/18,
w7−18 = 1/36,
cs = 1/√3.

(3.6.22)

3.6.3 Discrete Chapman-Enskog expansion

Looking at Eq. (3.6.2), we now have a (velocity) discretized lattice Boltzmann equation fully clari�ed
since we have just calculated f

eq
i . Using the same approach as Sect. 3.4, we still need to verify that we are

able to recover the Navier-Stokes equations from Eq. (3.6.2). In addition, because we used the isothermal
equation of state to introduce the speed of sound in Eq. (3.6.3), we will place ourselves in the case of an
isothermal �uid which implies no energy conservation equation. We recall that we have enforced the
values of the discretized equilibrium moments to be the same as the continuous equilibrium moments
in order to be able to recover the hydrodynamics in the previous section. Due to the truncation of f eq

i
at O(u3), we were able to exactly reproduce Meq

0 , Meq
1 , Meq

2 but not Meq
3 . Thus, we have :

M̂0 =
n−1∑
i=0

fi = M0 = ρ, (3.6.23)

M̂1 =
n−1∑
i=0

vi fi = M1 = ρu, (3.6.24)

M̂2 =
n−1∑
i=0

vi ⊗ vi fi = M2 = ρu ⊗ u + σ̂ , (3.6.25)

M̂3 =
n−1∑
i=0

vi ⊗ vi ⊗ vi fi = ρc
2
s (uaδbc + ubδac + ucδab ), (3.6.26)

(3.6.27)

9Note that, rigorously, we haven’t set (yet) ∆x = ∆t = 1 so that instead of ones, the velocity vectors should be populated
with ∆x

∆t leading to the following solution : 


w0 = 1/3,
w1−6 = 1/18,
w7−18 = 1/36,
cs = ∆x/

(
∆t
√

3
)
.

. (3.6.21)
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where we have set σ̂ = −∑n−1
i=0 ξi ⊗ ξi fi . The expansion in function of O(Kn

n ) is the same as in Sect. 3.4 :

fi = f
eq
i + fi1 + fi2 + . . .

t = t1 + t2 + . . .

∂t = ∂t1 + ∂t2 + . . .

σ̂ = σ̂ eq + σ̂1 + . . .

(3.6.28)

where we remind that σ̂ eq = pI = ρc2
s I =

∑n−1
i=0 ξi ⊗ ξi f eq

i . In addition, we still have :

fn = O(Kn
n ), ∀n ≥ 1,

tn = O(Kn
n ), ∀n ≥ 1,

∂tn = O(Kn
n ), ∀n ≥ 1,
∇x = O(K1

n).

(3.6.29)

Moreover, we have like in the continuous case, ∀n ≥ 1 :

n−1∑
i=0

fin = 0, (3.6.30)

n−1∑
i=0

v fin = 0. (3.6.31)

The discretized Boltzmann Eq. (3.6.2) becomes :

(
∂t1 + ∂t2 + . . . +v ·∇x

) (
f

eq
i + fi1 + fi2 + . . .

)
= −1

τ
(fi1 + fi2 + . . .) . (3.6.32)

We can separate the 1st order terms and the 2nd order terms from Eq. (3.6.32) as follows :

1st order : ∂t1 f
eq
i +v ·∇x f eq

i = −
fi1
τ
, (3.6.33)

2nd order : ∂t2 f
eq
i + ∂t1 fi1 +v ·∇x fi1 = −

fi2
τ
. (3.6.34)

By taking the 0th, 1st and 2nd moments of Eq. (3.6.33), we obtain :

∂t1ρ + ∇x · (ρu) = 0, (3.6.35)
∂t1 (ρu) + ∇x · (ρu ⊗ u) = −∇xp, (3.6.36)

∂t1

(
ρu ⊗ u + ρc2

s I
)
+ ∇x ·

(
ρc2

s (uaδbc + ubδac + ucδab )
)
= −1

τ

n−1∑
i=0

vi ⊗ vi f1n

︸           ︷︷           ︸
=M̂31

= −M̂31
τ
. (3.6.37)

On the other hand, the 0th and 1st moments of Eq. (3.6.34) :

∂t2ρ = 0, (3.6.38)
∂t2 (ρu) + ∇x · M̂31 = 0. (3.6.39)
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We can use Eq. (3.6.37) to compute M̂31. Before, we need to compute ∂t1

(
ρu ⊗ u + ρc2

s I
)

and
∇x ·

(
ρc2

s (uaδbc + ubδac + ucδab )
)

:

∂t1

(
ρu ⊗ u + ρc2

s I
)
= ∂t1(ρu ⊗ u) + ∂t1(ρc2

s I ),
= u∂t1(ρuT ) +uT ∂t1(ρu) −u ⊗ u∂t1ρ + c

2
s I∂t1ρ,

= −u∇x ·
(
ρu ⊗ u + ρc2

s I
) −uT (

ρu ⊗ u + ρc2
s I

)
,

+ (u ⊗ u)∇x · (ρu) − c2
s I∇x (ρu),

= −∇x · (ρu ⊗ u ⊗ u) − c2
s (u∇Tx ρ +uT∇x ρ) − c2

s I∇x (ρu), (3.6.40)
∇x ·

(
ρc2

s (uaδbc + ubδac + ucδab )
)
= c2

s (∇x · (ρu) + ∇Tx · (ρu)) + c2
s I∇x (ρu). (3.6.41)

Inserting Eqs. (3.6.40) and (3.6.41) into Eq. (3.6.37), we obtain :

M̂31 = −ρτc2
s (∇xu + ∇Txu) + τ∇x · (ρu ⊗ u ⊗ u). (3.6.42)

The second term should not be here. It is due to the truncation of f eq
i at O(u3) which led to an error

in M̂
eq
3 (term ρu ⊗ u ⊗ u missing). However, this term is negligible if u2 � c2

s (which is equivalent to
Ma2 � 1). Therefore, lattice Boltzmann simulations are only suited for subsonic �ows. If we neglect
this error term, we have :

M̂31 = −ρτc2
s (∇xu + ∇Txu),

= −pτ (∇xu + ∇Txu −
2
D

Tr(∇xu)I + 2
D

Tr(∇xu)I ),
= −τ̂ .

(3.6.43)

We again recognize the deviatoric stress tensor τ̂ with a shear viscosity µ = pτ = ρc2
sτ and a bulk

viscosity µB = 2
D µ. Finally, we can reassemble the equations :

(3.6.35) + (3.6.38),
(3.6.36) + (3.6.39),

leading to the Navier-Stokes equations :

∂tρ + ∇x · (ρu) = 0,
∂t (ρu) + ∇x · (ρu ⊗ u) = −∇xp + ∇x · τ̂ .

(3.6.44)

To conclude, the (velocity) discretized Boltzmann Eq. (3.6.2) coupled with conditions of Eq. (3.6.18) are
enough to recover the Navier-Stokes equations with a O(u3) error which is negligible for low Mach
numbers.

3.6.4 Time and space discretization

The last step to �nalize the derivation of the lattice Boltzmann method is to discretize Eq. (3.6.2) in time
and space. Eq. (3.6.2) is an hyperbolic partial di�erential equation so we can solve it as an initial value
problem along characteristics. It is therefore natural to write fi = fi (x(a), t(a)) with a the position
along the characteristic. The total di�erential of fi with respect to a :

d fi
da
= ∂t fi

dt

da
+ ∇x fi dx

da
. (3.6.45)
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If we impose the following conditions : {
dt
da = 1,
dx
da = vi .

(3.6.46)

Then Eq. (3.6.45) becomes :
d fi
da
= Q(f , f ) = − fi − f

eq
i

τ
. (3.6.47)

If we write fi as fi (x +via, t + a), then the �rst fundamental theorem of calculus gives us
∫ ∆t

0
dfi
da =

fi (x +vi∆t, t + ∆t) − fi (x, t). Therefore, we can write :

fi (x +vi∆t, t + ∆t) − fi (x, t) = −1
τ

∫ ∆t

0
fi (x +via, t + a) − f

eq
i (x +via, t + a). (3.6.48)

The 1st order discretization of the lattice Boltzmann equation consists in approximating the above
integral with a simple rectangle method10 :

fi (x +vi∆t, t + ∆t) − fi (x, t) = −∆t
τ

(
fi (x, t) − f

eq
i (x, t)

)
. (3.6.49)

We will expand the distribution fi (x +v∆t,v, t +∆t) with ∆t the timestep at order 2 (order 2 is enough
to recover Navier-Stokes). We have :

fi (x +vi∆t, t + ∆t) = fi (x +vi∆t, t) + ∆t∂t fi (x +vi∆t, t) + ∆t2

2 ∂t
2 fi (x +vi∆t, t) + O(∆t3),

= fi (x, t) + ∆tvi ·∇x fi (x, t) + ∆t2

2 vT
i ·∇2

x fi (x, t) ·vi + ∆t∂t fi (x, t) + ∆t2vi ·∇x ∂t fi (x, t),

+
∆t2

2 ∂t
2 fi (x, t) + O(∆t3),

= fi (x, t) + ∆t [∂t fi (x, t) +vi ·∇x fi (x, t)] + ∆t2

2 [v
T
i ·∇2

x fi (x, t) ·vi + 2vi ·∇x ∂t fi (x, t),
+ ∂t2 fi (x, t)] + O(∆t3).

After truncation and some reordering, we have the following expression :

fi (x +vi∆t, t + ∆t) − fi (x, t) = ∆t [∂t +vi ·∇x ] fi (x, t) + ∆t2

2 [∂t +vi ·∇x ]2 fi (x, t). (3.6.50)

We now have to perform one (last) Chapman-Enskog expansion on the following equation (combination
of Eqs. (3.6.49) and (3.6.50)) :

∆t [∂t +vi ·∇x ] fi + ∆t2

2 [∂t +vi ·∇x ]2 fi = −∆t
τ

(
fi (x +vi , t) − f

eq
i (x +vi , t)

)
. (3.6.51)

We use the usual expansions presented in Eq. (3.6.28). The 1st order terms projection yields :

1st order : ∂t1 f
eq
i +v ·∇x f eq

i = −
fi1
τ
. (3.6.52)

10Using a trapezoidal method, it is possible to obtain a second order discretization.
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Separating the 2nd order terms, we obtain :

∂t2 f
eq
i +

[
∂t1 +vi ·∇x

]
fi1 +

∆t

2
[
∂t1 +vi ·∇x

]2
f

eq
i = −

fi2
τ
,

∂t2 f
eq
i +

[
∂t1 +vi ·∇x

]
fi1+

∆t

2
[
∂t1 +vi ·∇x

]2
f

eq
i −

∆t

2
[
∂t1 +vi ·∇x

]2
f

eq
i = −

fi2
τ
− ∆t

2
[
∂t1 +vi ·∇x

]2
f

eq
i ,

∂t2 f
eq
i +

[
∂t1 +vi ·∇x

]
fi1 = −

fi2
τ
− ∆t

2
[
∂t1 +vi ·∇x

] [
∂t1 +vi ·∇x

]
f

eq
i︸                 ︷︷                 ︸

=− fi1τ

,

2nd order : ∂t2 f
eq
i +

(
1 − ∆t

2τ

) (
∂t1 fi1 +v ·∇x fi1

)
= − fi2

τ
. (3.6.53)

Following the same process described in Sect. 3.6.2, we obtain the exact same results with a tiny but
crucial modi�cation, the viscosity is now :

µ = ρc2
s

(
τ − ∆t

2

)
,

ν = c2
s

(
τ − ∆t

2

)
.

(3.6.54)

This equation is linked to the BGK operator. With another operator or with a second order discretization
(trapezoidal rule instead of rectangle rule)), the viscosity does not have the same expression. Eq. (3.6.54)

0 2 4 6 8 10 12 14

0.9

1

1.1

t

f i
/f

eq i

τ = 4 τ = 1 τ = 0.55 τ = 0.5

Figure 3.4: Variation of fi/f eq
i with the BGK operator for di�erent values of τ in the spatially homoge-

neous case

is unusual. One could wonder why a factor 1/2 suddenly appears. Assuming a spatially homogeneous
case, Eq. (3.6.49) can be rewritten as a sequence :

X t+1 − X t = −X
t − 1
τ
, (3.6.55)

where X = fi/f eq
i . This sequence can be studied in function of τ . As a consequence, as shown on

Figure 3.4, the stability of the BGK operator depends on the value of τ :
• if τ > 1, the distribution is under-relaxed, slowly evolving towards its equilibrium.
• if τ = 1, the distribution is fully relaxed to its equilibrium.
• if 1/2 < τ < 1, the distribution is over-relaxed, oscillating around its equilibrium with decaying

amplitudes.
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• if τ = 1/2, it is the linear stability limit.
• if τ < 1/2, the distribution is over-relaxed, oscillating around its equilibrium with increasing

amplitudes (i.e. diverging).
These instabilities have led to the introduction of di�erent collision operators. Among them, the Multiple
Relaxation Time (MRT) operator is one of the most famous and is presented in Sect. 3.9.

3.7 Units

When implementing the LBM on a computer, it is convenient to scale time and space so that the lattice
space step ∆x and lattice time step ∆t both equal one. Indeed, in that case, the lattice indexes are equal to
the lattice coordinates which greatly simpli�es the implementation. This choice leads to the emergence
of two di�erent systems of units on the lattice and in reality. The conversion between lattice units and
physical units is not a trivial discussion. In this section, the subscripts la and phys will refer respectively
to the lattice units and physical units. Thus, we have seen that, for convenience, ∆xla = 1 and ∆tla = 1,
so that Eq. (3.6.49) becomes the traditional lattice Boltzmann equation :

fi (x +vi , t + 1) − fi (x, t) = −
fi (x, t) − f

eq
i (x, t)

τ
, (3.7.1)

with ν = cs 2
la

(
τ − 1

2
)

and νB = 2
Dν . We remind that cs la depends on the lattice choice and is evaluated

solving the system formed by Eqs. (3.6.18)11. All the main properties and relevant physical quanti-
ties of the �uid must be translated from the lattice units to the physical units in order to provide an
interpretation of the results.

• Kinematic viscosity :

νla = cs
2
la

(
τ − 1

2

)
, (3.7.2)

νphys = νla
∆x2

phys

∆tphys
. (3.7.3)

• Velocity (and speed of sound) :

uphys = ula
∆xphys

∆tphys
, (3.7.4)

cs phys = cs la
∆xphys

∆tphys
. (3.7.5)

The above equations form a system where the only tunable parameter is the relaxation time τ since
cs phys and νphys and determined by the simulated �uid. Indeed, the physical time and space resolution

can be computed as ∆xphys =
cs la
cs phys

νphys
νla

and ∆tphys =
(

cs la
cs phys

)2 νphys
νla

12 A common practice is to relax the
constraint of the speed of sound so that a �ctitious physical speed of sound is used in the computation.
In that case, the system has an extra degree of freedom and both the relaxation time and the space step
can be freely chosen by the user. In general to maximize the time and space steps, it is recommended to

11Although for classic lattices like D1Q3, D2Q9, D3Q19 or D3Q27, it is simply cs la =
1√
3

as shown in Eqs. (3.6.22).
12This also gives us the classic version of the lattice Boltzmann kinematic viscosity :

ν = cs
2
phys∆tphys

(
τ − 1

2

)
. (3.7.6)
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have τ as small as possible. However, in the case of the BGK operator, it leads to instabilities, as shown
on Figure 3.4, that can be overcome by using a di�erent collision operator. Concerning the pressure
and the density, ∆xphys and ∆tphys are not su�cient for the conversion. A constant conversion factor
Cphys for the density is commonly used so that ρphys = Cphysρla. At rest, if it is assumed that ρ0la = 1
then Cphys = ρ0phys. Hence, it yields :

• Density :
ρphys = ρ0physρla. (3.7.7)

• Pressure :

pphys = pla
∆x2

phys

∆t2
phys

ρ0phys. (3.7.8)

An exhaustive explanation with numerical examples is given in [Latt 2008a]. We will drop the subscripts
la and phys in the rest of the document (unless necessary for understanding).

3.8 Key features

The Lattice Boltzmann method requires a lattice which is a uniform set of nodes. Each node carries a
de�ned number n of distribution functions fi (x, t) (with i = 0 . . .n − 1). These functions fi represent
the density of particles at the position x , at time t and with the velocityvi . The velocity vectors have to
satisfy a certain number of conditions and therefore have to be chosen carefully if one wants to recover
the proper hydrodynamic behavior. Example of the most common lattices for dimension 1, 2 and 3 are
shown on Figure 3.3. The macroscopic quantities are computed using the following relationships :

ρ(x, t) =
n−1∑
i=0

fi (x, t), (3.8.1)

u(x, t) =
∑n−1

i=0 vi fi (x, t)∑n−1
i=0 fi (x, t)

. (3.8.2)

The pressure p is computed using the ideal gas law : p = ρc2
s . Where the speed of sound cs depends

on the choice of velocity set, although for the most common lattices, it is cs = ∆x
∆t
√

3 . At every timestep,
the particles evolve towards a equilibrium state which is de�ned as follows :

f
eq
i = ρwi

[
1 + (vi ·u)

c2
s
+
(vi ·u)2

2c4
s
− |u |

2

2c2
s

]
, (3.8.3)

where the weightswi depend on the choice of lattice. Values for the classic lattices are given in Tab. 3.1.
The process at each time step and at each node is the following :

1. a collision step that consists in a relaxation with a characteristic time τ towards the equilibrium
distribution f

eq
i .

fi (x, t + ∆t) = fi (x, t) +Q(fi ). (3.8.4)

In the case of the BGK operator, it gives :

fi (x, t + ∆t) = fi (x, t) −
fi (x, t) − f

eq
i (x, t)

τ
. (3.8.5)

2. a streaming step to propagate the particles to the adjacent nodes.

fi (x +vi∆t, t + ∆t) = fi (x, t + ∆t). (3.8.6)
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(a) (b)

Figure 3.5: Collision (a) / Streaming (b)

This numerical procedure, illustrated in Figure 3.5, combined with a good choice of lattice is enough
to recover the mass and momentum conservation equations. The kinematic shear viscosity is computed
using ν = ∆tc2

s (τ − 1
2 ) and the kinematic bulk viscosity is νB = 2

Dν . The main advantages of the original
LBM approach are summarized hereafter :

1. Simplicity : it is a pseudocompressible method so there is no need to solve a Poisson equation.
All in all, the basic LBM algorithm is very simple and can be coded in less than 50 lines of code.

2. Computational e�ciency : Its pure local nature makes the LBM algorithm embarrassingly parallel
and suited for GPU

3. Boundary conditions : The LBM is build upon a lattice which makes the imposition of boundary
conditions e�cient and simple.

4. Mass and momentum conservation : Mass and momentum conservation are guaranteed in LBM.
5. Linear and accurate advection : Thanks to the linear nature of the BGK operator, advection is

accurately evaluated.
6. No numerical viscosity : In LBM there is no intrinsic dissipation meaning that user has full control

on the amount of dissipation included in the model.
7. Multiphase : LBM is particularly adapted for multiphase �ows problems and has several well

established multiphase formulations available.
8. Mesoscopic-based : LBM emerges from mesoscopic considerations and performs well in the

modeling of mesoscopic-based physics such as thermal e�ects.
On the other hand, there are also drawbacks in LBM, among them one can mention :
1. Stability : LBM is conditionally stable. its stability depends notably on the Mach number Ma and

the viscosity ν . Thus, LBM is not recommended “as is” for low viscosity (ν = 0 i.e. τ → 1/2) or
fast �ows (Ma = ( |u |cs )2 � 1).

2. Memory intensive : In general, LBM algorithms are memory bound which could be a bottleneck
for large problems.

3. Explicit : LBM is an explicit solver which leads to small timesteps and thus is not really adapted
for long runs.

4. Cartesian isotropic grid : LBM being build upon a lattice, it also leads to some disadvantages such
as the impossibility to re�ne a given area of the problem. However, this only true for the basic
LBM formulation, other LBM approaches are available to circumvent this issue.

In a nutshell, LBM is a numerical method that is recommended when one needs to discretize complex
geometries, subsonic �ows and/or multiphase �ows. To conclude this section, the simplest algorithm
of the method is shown in Algorithm 2.
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Algorithm 2 The Lattice Boltzmann Method algorithm
1: for t ← t + ∆t do
2: for all x nodes do
3: ρ ← 0
4: u ← 0
5: for i = 0 . . . (n − 1) do
6: ρ ← ρ + f ini ,x . Calculate macroscopic variables
7: u ← u +vi f

in
i ,x

8: end for
9: u ← u

ρ
10: for i = 0 . . . (n − 1) do
11: f ini ,x = f ini ,x +Q(f ini ,x ) . Collision step
12: f outi ,x+vi∆t

= f ini ,x . Streaming step
13: end for
14: end for
15: f in ← f out

16: end for

3.9 Alternative collision operators

3.9.1 Multiple relaxation time (MRT) operator

Unlike the BGK operator, the MRT operator o�ers the possibility to have a distinct relaxation time τi
for each discrete distribution fi . It was �rst introduced by D’Humières in 1992 [d’Humières 2002]. The
macroscopic variables are computed as follows :

m = Mf ,

meq = Mf eq,
(3.9.1)

withm a vector of length n containing the macroscopic variables, f a vector of length n containing the
discretized distribution fi . M is a square matrix whose values are computed through the imposition of
constraints on the moments of the distribution. Unlike the classic LBM formulation, because M must
be square, the number of moments must be equal to the number of distributions. Some moments are
conserved like the density or the momentum (hydrodynamic moments) whereas other are not (kinetic
moments). The equilibrium moments vectormeq can be directly computed without the need to compute
f eq �rst. The expressions of the discrete moment matricesM−1,M−1 along withmeq for the D2Q9 lattice
are explicitly given in Appendix A. The lattice Boltzmann equation with an MRT collision operator is :

f (x +v∆t,v, t + ∆t) − f (x,v, t) = −M−1S(m(x,v, t) −meq(x,v, t),
f (x +v∆t,v, t + ∆t) − f (x,v, t) = −M−1SM(f (x,v, t) − f eq(x,v, t), (3.9.2)

withS a diagonal matrix such thatSii = 1/τi . The challenging part of the MRT approach is to properly set
the τi . ForD2Q9, it is established that τ1, τ4 and τ6 do not need to be speci�ed because the corresponding
macroscopic variables (i.e. hydrodynamic moments) ρ, ρux and ρuy are recomputed at each timestep
due to conservation laws. They can be chosen arbitrarily (and set to 1 in general). The remaining
moments are not conserved and are called non-hydrodynamic moments or kinetic moments. They
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depend on the hydrodynamic ones. Through a Chapman-Enskog expansion, one can show that :

νB = ∆t

(
τ2 − 1

2

)
c2
s , (3.9.3)

ν = ∆t

(
τ8 − 1

2

)
c2
s , (3.9.4)

τ8 = τ9, (3.9.5)
τ5 = τ7. (3.9.6)

It follows that one can adjust the kinematic shear viscosity ν and the kinematic bulk viscosity νB
independently. In the end, the only free parameters are τ3 and τ5. A standard choice for the relaxation
times is :

S = diag(1.0, 1.4, 1.4, 1.0, 1.2, 1.0, 1.2, 1
τBGK

,
1

τBGK
). (3.9.7)

where τBGK is the value of the relaxation time in the BGK framework. The interest of the MRT approach
is the ability to set di�erent relaxation times for the kinetic moments. It is possible to optimize those
relaxation times to improve the stability of the method [Lallemand 2000, Ba 2016]. Two main criticisms
could be make for this approach. First, the results depend on the choice of relaxation times (no universal
results). Second, it is not rooted in kinetic theory and has little physical meaning.

3.9.2 Regularized operator

The regularized operator, introduced in [Latt 2007, Latt 2006], is based on a full reconstruction of the
distribution during the collision step :

fi (x +vi∆t, t + ∆t) = (f eq
i + f ∗i1) −

1
τ
f ∗i1, (3.9.8)

where f
eq
i and fi1 are the 0th and 1st order terms of the moments-based expansion of Eq. (3.6.28). f ∗i1 is

an approximation of fi1 and can be found through the Chapman-Enskog expansion. It is de�ned as :

f ∗i1 =
wi (D)

2c4
s
(vi ⊗ vi − c2

s I )
n−1∑
j=0

vj ⊗ vj (fj − f
eq
j ). (3.9.9)

The regularized lattice Boltzmann equation then becomes :

fi (x +vi∆t, t + ∆t) = f (0)i +

(
1 − 1

τ

)
f ∗i1. (3.9.10)

It has been show that under certain assumptions, the regularized operator is equivalent to the MRT
operator [Latt 2007].

3.10 Boundary conditions

Within the LBM framework, the main challenge with boundary conditions is to translate a condition
on the macroscopic variables to a condition on the distributions. Moreover, due to the nature of the
LBM algorithm, on the edges of the domain, some values of the discretized distributions are unknown
as show on Figure 3.6. A large variety of boundary conditions have been developed for LBM over
the years. To name a few: anti bounceback [Ginzburg 2003], no-slip (Inamuro) [Inamuro 1995] and
curved boundaries [Bouzidi 2001]. The bounceback boundary conditions have been extensively ana-
lyzed in [Dubois 2015]. A exhaustive presentation of the main boundary conditions in LBM is available
in [Walther 2016].
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f0
f1

f2

f3

f4

f5

f7

f6

f8

Figure 3.6: A boundary node in a D2Q9 lattice, the gray components are unknown

3.10.1 Periodic boundary conditions

Periodic boundary conditions are a fundamental tool in computational simulations because it allows to
reduce the size of the domain while maintaining the accuracy of the results. The concept is well know,
the �ow that leaves the domain at one end re-enters the domain at the other end. Let’s consider a D2Q9
lattice. On node R (on the right of the domain), the �ow is leaving the domain while on node L (on the left
of the domain), it is entering it. On node R, f R1 , f R5 and f R8 are unknown whereas on node L, f L3 , f L6 and
f L7 are unknown. One can impose periodic boundary conditions between node R and node L by setting :

f L3 = f̂ R1 ,

f L7 = f̂ R5 ,

f L6 = f̂ R8 ,

f R1 = f̂ L3 ,

f R5 = f̂ L7 ,

f R8 = f̂ L6 ,

with f̂ the distribution f after the collision step.

3.10.2 Full bounce-back boundary conditions

It has been observed in Lattice Gas Automata (LGA) that to impose a zero velocity condition (no-slip)
on a boundary node, it was enough to reverse the momentum of a particle which collides on a boundary
node. This idea has been extended to LBM in a very simple way. At a boundary node, one can just
impose the following :

fi = fī (3.10.1)

where ī denotes the index of the lattice velocity which is orientated in the direction opposite to the
lattice velocityvi

13.
The boundary node on which the distribution are bouncing can be part of the �uid domain (on grid

boundary condition or wet boundary, see Figure 3.7) or outside the �uid domain (mid-grid boundary
or dry boundary).

13For example, for a D2Q9, we have the following :

i = 0 =⇒ ī = 0,
i = 1 =⇒ ī = 3,
i = 2 =⇒ ī = 4,

i = 3 =⇒ ī = 1,
i = 4 =⇒ ī = 2,
i = 5 =⇒ ī = 7,

i = 6 =⇒ ī = 8,
i = 7 =⇒ ī = 5,
i = 8 =⇒ ī = 6.

.
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(a) t (b) t + 1/2 (c) t + 1

Figure 3.7: Full bounceback boundary condition

The bounceback step replaces the collision step for the concerned nodes. This boundary condition
is simple and easy to implement, though when used with a BGK operator the bounceback condition is
not machine accurate, and exhibits a 1st order error in velocity [He 1997].

3.10.3 Halfway bounce-back boundary conditions

The lack of accuracy of the bounceback boundary condition led the community to introduce another
version of the no-slip boundary condition called the halfway bounceback. It is very similar to the full
bounceback approach but in this case the distribution has its direction reversed before streaming.

(a) t (b) t + 1

Figure 3.8: Halfway bounceback boundary condition

The main di�erence with full bounceback boundary condition is that the condition is applied during
the streaming step and not the collision step. So that, the condition is e�ective one step earlier than
the full bounceback. For straight line boundaries, the half way bounceback is 2nd order accurate in
velocity but only 1st order for curved line boundaries [He 1997]. Moreover, one can notice that the
halfway bounceback is necessarily applied on a dry boundary and that the physical (wet) boundary of
the domain is located halfway between the boundary nodes and its neighbors (hence the name of the
method) as shown on Figure 3.8.
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3.10.4 Zou & He boundary conditions

In 1997, Zou and He [Zou 1997] introduced a new type of boundary conditions that allows to prescribe
a pressure or a velocity on a wall. Let’s consider a D2Q9 lattice and assume that one wants to impose
a normal velocity ux and a tangential velocity uy on the left wall. The known distribution are f0, f2,
f3, f4, f6 and f7 and the unknown distribution are f1, f5 and f8. Finally, the density ρ is unknown too.
Using the density and momentum constraints, it yields :

f1 + f5 + f8 = ρ − (f0 + f2 + f4 + f5 + f6 + f7),
f1 + f5 + f8 = ρux + f3 + f6 + f7,

f5 − f8 = ρuy − f2 + f4 − f6 + f7.

This is a system of 3 equations with 4 unknowns. We need an extra equation to close the system. The
idea of Zou & He is to decompose a given distribution into a equilibrium part and an o�-equilibrium
part :

fi = f
o�-eq
i + f

eq
i . (3.10.2)

Then, it is admitted that the bounceback rule still applies at the boundary for the normal distribution.
In the case of a left wall, it yields :

f
o�-eq

1 = f
o�-eq

3 ,

f1 − f
eq

1 = f3 − f
eq

3 .

This extra equation closes the system and it can now be solved. The solution is :

ρ =
1

1 − ux [f0 + f2 + f4 + 2(f3 + f6 + f7)],

f1 = f3 + f
eq

1 − f
eq

4 ,

f5 = f7 − 1
2 (f2 − f4) + 1

2 (f3 − f1) + 1
2 (ρux + ρuy ),

f8 = f6 +
1
2 (f2 − f4) + 1

2 (f3 − f1) + 1
2 (ρux − ρuy ).

In the case of a prescribed pressure, using the ideal gas law, it is equivalent to impose of prescribed
density. The procedure is the same. The prescribed density and one of the velocities are known, the
remaining velocity is obtained through the same method. However, one cannot impose both the pressure
and the velocity at the same time, the system would be over-constrained. This method is e�cient but
is hard to generalized to curved line boundaries and is unstable for high Reynolds numbers.

3.10.5 Body forces

The inclusion of body forces such as gravity within the lattice Boltzmann method framework is vital to
simulate many �ow problems. Apart from gravity, body forces are useful to drive a �ow in a periodic
domain for example. While other methods exist, the most common one has been introduced by Guo in
2002 [Guo 2002b]. It is based on a modi�cation of the lattice Boltzmann equation:

fi (x, t + 1) = fi (x, t) +Q(fi ) + Fi (x, t). (3.10.3)

Fi (x, t) is the nodal body force contribution in the direction given byvi . It is given by :

Fi (x, t) =
(
1 − 1

2τ

) (
vi −u
c2
s
+
vi ·u
c4
s

·vi

)
· F (x, t), (3.10.4)
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where F (x, t) is the body force applied on at node x at time t . Additionally, to compute the macroscopic
momentum, one should use :

ρu(x, t) =
n−1∑
i=0

vi fi (x, t) + F (x, t)
2 . (3.10.5)

It has been shown [Ladd 2001, Guo 2002b] that these modi�cations allows to recover the Navier-Stokes
equations with an external body force through a classic Chapman-Enskog expansion. Guo’s approach
is the most commonly used technique to incorporate an external force in an LBM scheme. How-
ever, other methods exist that can be more accurate. For example, coupling with the Finite Di�erence
method [Wagner 2006], generalizing Guo’s term [He 1998] or using the MRT operator [McCracken 2005].

3.11 LBM Variants

A wide range of LBM variants have been introduced over the years to overcome certain limitations
inherent with the classic LBM approach or to increase stability and/or accuracy. Here, two of them are
presented : the LBM for compressible �ows and the entropic LBM.

3.11.1 LBM for compressible �ows

Standard LBM is only available for low Mach numbers. Consequently, the �ow is always in a weakly com-
pressible regime. To overcome this limitation, a new class of LBM have been introduced in 2008 [Dellar 2008].
The Navier-Stokes-Fourier equations are expressed as follows :

∂tρ + ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu ⊗ u + pI ) = ∇ · S(T ,∇u),

∂t (ρs(ρ,T )) + ∇ · (ρs(ρ,T ))u + ∇ ·
(
q(T ,∇T

T

)
= σ ,

with T the temperature, s the speci�c entropy, S the viscous stress tensor, q the heat �ux and σ the
entropy source rate. The viscous stress tensor veri�es :

S(T ,∇u) = µ(T )τ (∇u) + µB(T )∇ · (uI ), (3.11.1)

with τ (∇u) = ∇u + (∇u)T − 2
3∇ · (uI ). Moreover, the heat �ux satis�es the Fourier law :

q = −κ(T )∇T , (3.11.2)

with µ is the dynamic viscosity, µB the bulk viscosity and κ the thermal conductivity.
These equations are completely describing the evolution of a Newtonian compressible �uid in-

cluding the thermal e�ects. The idea is to add an internal energy to the particles and a second set
of distributions дi . The �rst set of distributions fi will be used to recover the mass and momentum
conservation equations. The second set of distributions will help to recover the energy conservation
equations. The two sets of distributions do not have the same lattice nor the same relaxation times. The
collision operator is then modi�ed to couple the momentum and the energy which is a necessary step
to obtain good thermodynamic properties and a realistic Prandtl number.

3.11.2 LBM for low viscosity �ows

Classic LBM techniques are not able to properly simulate low viscosity �ows because of the inherent
numerical instabilities appearing when τ reaches 1/2. The main consequence is that simulation of high
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Reynolds �ows are not possible. In 2000, the so called Entropic LBM (ELBM) was introduced [Ansumali 2000].
The idea was to restore the second law of thermodynamics in LBM via the H -theorem to overcome
the previously mentioned limitations. The discretized Boltzmann equation is modi�ed and now reads :

fi (x +vi∆t,vi , t + ∆t) = fi (x,vi , t) + αβ(f eq
i (x,vi , t) − fi (x,vi , t)), (3.11.3)

with β = ∆t
2τ+∆t . The viscosity is now expressed as a function of β :

ν = c2
s∆t

(
1

2β −
1
2

)
, (3.11.4)

with β ∈ [0, 1]. The viscosity vanishes for β equals to 1.

f eq

f

f ∗

Figure 3.9: Maximum distribution value to satisfy theH -theorem

As seen on Figure 3.9, f ∗ is the maximal value of f after collision that still satis�es theH -theorem
(H decreasing) and therefore the second law of thermodynamics :

f ∗ = f + α(f eq − f ). (3.11.5)

The value of α is computed to ensure that :

H(f ∗) = H(f ), (3.11.6)

with H(f ) = ∑n−1
i=0 fi ln

(
fi
wi

)
(wi are the weights of the considered lattice). Once both α and f ∗ are

known, the distributions are updated according to :

f̂ = (1 − β)f + β f ∗ = f + αβ(f ∗eq − f ). (3.11.7)

At this point several remarks can be made. First, one can notice that if α = 2, the classic LBM
formulation is obtained and the distributions are in equilibrium. Second, it is important to discretize
H �rst and then to look for its minimum to obtain the ELBM formulation. otherwise, the Maxwell-
Boltzmann distribution and the classic LBM are obtained. Thanks to its thermodynamic properties,
ELBM is particularly well suited for turbulent �ows .

3.12 Multiphase LBM

In LBM multiphase �ow simulations, the �uid/�uid interface is not a sharp line but a di�use interface
with a de�ned thickness. The interface dynamics are controlled by the relative di�usion of each �uid
when approaching the contact line. Thanks to this smooth transition between the two phases, there
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is no singularity at the interface. On top of that, the no-slip condition is guaranteed. There is no
need to track the interface and its evolution naturally emerges from the simulation [Chen 1998]. The
use of the lattice Boltzmann method to study multiphase �ow can be dated back to the early days
of the lattice gas automata (LGA). The �rst extension of LGA to multiphase was introduced in 1986
in [Frisch 1986b]. Four main multiphase formulations are available for LBM : the pseudo-potential
model [Shan 1993], the free energy model [Swift 1995a], the mean �eld model [He 1999] and the color
gradient model [Gunstensen 1991]. We recommend the reading of [Liu 2015, Leclaire 2017] for those
looking for a detailed comparison of these techniques.

3.12.1 Color Gradient Model (CGM)

The present LBM approach is the two-phase model introduced in [Reis 2007] and completed with
the improvements proposed in [Leclaire 2012, Leclaire 2011] for the recoloring operator and the color
gradient. In addition, the contact angle ajustment is based on [Leclaire 2016, Xu 2017] and the corrective
procedure to properly recover Navier-Stokes equations is borrowed from [Ba 2016]. We work with 2
sets of distribution functions, one for each �uid. For the sake of clarity, we will place ourselves in the
frame of the D2Q9 framework. The associated velocity vectors arevi with i ∈ [0, 8] are those de�ned
for D2Q9 in Tab. 3.1. As traditionally done in LBM, we set the lattice time step ∆t and the lattice space
step ∆x to 1. The distribution functions for a �uid of color k (e.g. k = r for red and k = b for blue) are
denoted f ki (x, t), while fi (x, t) = f ri (x, t) + f bi (x, t) is used for the color-blind distribution function. In
the rest of this section, the integer subscript i is varying between [0, 8] while k is referring to the color
blue b or red r of the �uid. The lattice Boltzmann equation that describes the evolution of the system
is then :

f ki (x +vi , t + 1) = f ki (x, t) +Qk
i
(
f ki (x, t)

)
, (3.12.1)

where the collision operator Qk
i is the result of the combination of three sub operators (as previously

done in [Tolke 2002]) :

Qk
i = (Qk

i )(3)
[
(Qk

i )(1) + (Qk
i )(2)

]
. (3.12.2)

The Eq. (3.12.1) is solved using four consecutive steps which make use of the following operators :
1. Single phase collision step (see Sect. 3.12.1.1) :

f ki (x, t∗) = (Qk
i )(1)

(
f ki (x, t)

)
. (3.12.3)

2. Perturbation step (multiphase collision 1/2) (see Sect. 3.12.1.2) :

f ki (x, t∗∗) = (Qk
i )(2)

(
f ki (x, t∗)

)
. (3.12.4)

3. Recoloring step (multiphase collision 2/2) (see Sect. 3.12.1.3) :

f ki (x, t∗∗∗) = (Qk
i )(3)

(
f ki (x, t∗∗)

)
. (3.12.5)

4. Streaming step :
f ki (x +vi , t + 1) = f ki (x, t∗∗∗). (3.12.6)

We will now examine in detail these steps as well as the speci�c treatments for the imposition of
static contact angles and boundary conditions.
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3.12.1.1 Single phase collision operators (Qk
i )(1)

BGK operator The �rst sub operator, (Qk
i )(1) of Eq. (3.12.3), is the usual BGK operator for single

phase LBM. The distribution functions are relaxed towards a local equilibrium as follows :

(Qk
i )(1)(f ki ) = f ki − 1

τe�

(
f ki − f

k ,eq
i

)
,

(Qk
i )(1)(f ki ) = f ki − ωe�

(
f ki − f

k ,eq
i

)
,

(3.12.7)

where ωe� =
1
τe�

is the e�ective relaxation rate and τe� is the e�ective relaxation time. In practice, we
�rst calculate the �uid densities based on the 0th moment of the distribution functions :

ρk =
∑
i

f ki =
∑
i

f
k ,eq
i , (3.12.8)

where f
k ,eq
i are the equilibrium distribution functions. The total �uid density is given by ρ = ρr + ρb ,

while the total momentum is computed as the 1st moment of the distribution functions :

ρu =
∑
i

∑
k

f ki vi =
∑
i

∑
k

f
k ,eq
i vi , (3.12.9)

where u is the density weighted arithmetic average velocity of the �uid. The equilibrium distribution
functions f

k ,eq
i are de�ned in [Reis 2007] by :

f
k ,eq
i (ρk ,u,αk ) = ρk

(
ϕki +wi

[
3vi ·u +

9
2 (vi ·u)2 − 3

2 (u)
2
] )
. (3.12.10)

These equilibrium distribution functions f
k ,eq
i are chosen to satisfy mass and momentum conser-

vation and are based on the Maxwell-Boltzmann distribution. The weights wi are those of a standard
D2Q9 lattice shown in Tab. 3.1 while the values ϕki depend on the density ratio. They are expressed as
follows :

ϕki =



αk , i = 0
(1 − αk )/5, i = 1, 3, 5, 7
(1 − αk )/20, i = 2, 4, 6, 8

.

As introduced in [Grunau 1993] for two-phase �ows, the density ratio between red and blue �uids
is γ , and must be computed as follows to obtain a stable interface :

γ =
ρ0
r

ρ0
b

=
1 − αr
1 − αb

, (3.12.11)

where the superscript 0 refers to the initial value of the density. Besides, the pressure of the �uid of
color k is :

pk =
3ρk (1 − αk )

5 = ρk (cks )2. (3.12.12)

In Eq. (3.12.11), one of the αk is actually a free parameter. In practice, if we assume that the least
dense �uid is the blue one, we set a positive value for αb > 0 (0.2 in this paper) and so we are certain
that 0 < αb ≤ αr < 1 using Eq. (3.12.11). These parameters de�ne the value of the sound speed cks in
each �uid of color k [Reis 2007].

The e�ective relaxation parameter ωe� is chosen so that the evolution Eq. (3.12.1) allows to recover
the macroscopic Navier-Stokes equations for a single-phase �ow in the single-phase areas. This pa-
rameter depends on the �uid kinematic viscosity νk through the following formula: ωk = 1

/ (
3νk + 1

2
)
.
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However, when the viscosities of the �uids are di�erent, the relaxation parameters are also di�erent and
an interpolation procedure is needed to de�ne an e�ective relaxation parameter ωe� at the interface. It
is common to use a quadratic interpolation [Reis 2007, Grunau 1993]. In order to detect in which area
we are located (pure red �uid, pure blue �uid or interface), it is necessary to introduce a color �eld :

ψ =

(
ρr

ρ0
r
− ρb
ρ0
b

)/(
ρr

ρ0
r
+
ρb

ρ0
b

)
. (3.12.13)

The color �eldψ lies between −1 and +1. Within an interface, the color �eld is strictly between −1
and +1 whereas it is equal to −1 or +1 when located in an area that contains respectively only red �uid
or blue �uid. The relaxation factor ωe� in Eq. (3.12.1) is then evaluated as follows :

ωe� =




ωr , ψ > δ

fr (ψ ), δ ≥ ψ > 0
fb (ψ ), 0 ≥ ψ ≥ −δ
ωb , ψ < −δ

, (3.12.14)

in which δ is a free parameter and

fr (ψ ) = χ + ηψ + κψ 2,

fb (ψ ) = χ + λψ + νψ 2,
(3.12.15)

with :

χ = (2ωrωb )/(ωr + ωb ) ,
η = (2(ωr − χ ))/δ ,
κ = −η/(2δ ) ,
λ = (2(χ − ωb ))/δ ,
ν = λ/(2δ ) .

(3.12.16)

The parameter δ in�uences the thickness of the interface when the �uid viscosities are di�erent. The
larger δ , the thicker the �uid interface. There is a trade o� to �nd between robustness and interface
sharpness. It is set to 0.1 for all simulations in this paper. If the �uid viscosities are identical, δ is
ine�ective, because ωe� = ωr = ωb . Note that χ , η, κ, λ and ν are simply coe�cients and should not be
mistaken with thermal conductivity or kinematic viscosity for example despite the common symbols.

MRT operator Alternatively, for the �rst sub operator, (Qk
i )(1), one can use the MRT operator instead

of the BGK operator. This alternative operator is described in Sect. 3.9.1. In the CGM model, it reads as
follows :

(Qk
i )(1)(f ki ) = f ki −M−1SM

(
f ki − f

k ,eq
i

)
, (3.12.17)

where S is a diagonal matrix with Sii = si . Following [Leclaire 2014], ∀i ∈ [0 . . . 6] , si = λωe� while
s7 = s8 = ωe�. As in [Leclaire 2014], we choose λ = 4/5.

Proper recovery of Navier-Stokes equations It has been emphasized in several papers [Liu 2012,
Huang 2013, Leclaire 2013b] that the color gradient model does not fully recover the Navier-Stokes
equations. An unwanted error term arises in the momentum equations when the density ratio is not
one. Di�erent techniques have been proposed to attenuate this issue [Leclaire 2013b, Holdych 1998,
Huang 2013, Ba 2016]. In the present work, we use the correction introduced in [Ba 2016] for the MRT
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approach. It consists in two additions. First, a modi�ed equilibrium distribution functions based on
the 3rd order Hermite expansion of the Maxwellian distribution [Shan 2006, Li 2012] is used instead of
Eq. (3.12.10). It is expressed as follows :

f
k ,eq
i (ρk ,u,αk ) = ρkϕki +

ρkwi

( [
3vi ·u

[
1 + 1

2

(
3(cks )2 − 1

)
(3vi − 4)

]
+

9
2 (vi ·u)2 − 3

2 (u)
2
] )
. (3.12.18)

Second, a source term U k is added in Eq. (3.12.17). It reads :

U k = M−1Ck , (3.12.19)

where Ck =
[
0,Ck

1 , 0, 0, 0, 0, 0,Ck
7 , 0

]T . The components Ck
1 and Ck

7 are computed as follows :

Ck
1 = 3(1 − s1/2)(∂xQk

x + ∂yQ
k
y ),

Ck
7 = 3(1 − ωe�/2)(∂xQk

x + ∂yQ
k
y ),

with Qk
x = (1.8αk − 0.8)ρkux ,

Qk
y = (1.8αk − 0.8)ρkuy . (3.12.20)

In particular, the derivatives are evaluated using a 9-point isotropic �nite di�erence approximation
described shortly afterwards in Eq. (3.12.22).

3.12.1.2 Perturbation operator (Qk
i )(2)

In the color gradient model, surface tension forces are introduced by means of a perturbation operator
shown in Eq. (3.12.4) [Halliday 1998, Reis 2007, Gunstensen 1991]. To begin, it is needed to introduce
the color gradient F of the color �eld ψ (see Eq. (3.12.13)) that approximates the �uid-�uid interface
normal. It is written as :

F = ∇ψ . (3.12.21)

In this work, a bi-dimensional S2I4 (spatial order S = 2, isotropic order I = 4) discrete gradient operator
is used [Leclaire 2013a]. As shown in [Leclaire 2011], this kind of gradient operator enhances the accu-
racy of the color-gradient model signi�cantly while having the advantage to only rest on the nearest
neighboring nodes. It takes the following form :

∇д(x) ≈
∑
i

ξiviд(x +vi ), with ξi =



0, i = 0
1/3, i = 1, 3, 5, 7
1/12, i = 2, 4, 6, 8

. (3.12.22)

The perturbation operator, for the �uid k , is de�ned by :

(Qk
i )(2)(f ki ) = f ki +

∑
l

l,k

A

2 |Fkl |
[
wi
(F ·vi )2
|F |2 − Bi

]
, (3.12.23)

where :

Bi =



−4/27, i = 0
2/27, i = 1, 3, 5, 7
5/108, i = 2, 4, 6, 8

. (3.12.24)

The parameter A which can vary in space and time handles the coupling between both �uids and
is therefore linked with the surface tension coe�cient σ . It is possible to predict the surface tension σ
between the two �uids using only the basic parameters of the model. As explained in [Leclaire 2012],
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knowing the form of the expression describing the surface tension and performing simulations on
planar interfaces, one can derive an expression that links the surface tension across an interface to the
model parameters. For isotropic color gradients de�ned as in Eq. (3.12.22), the surface tension is set as
follows :

σ =
4
9

A

ωe�
. (3.12.25)

If σ and ωe� are �xed, one can obtain the value of A. Note that Eq. (3.12.25) is not universal and is
susceptible to change if one uses a di�erent color gradient or a di�erent gradient operator. It has been
shown in [Reis 2007] that the perturbation operator allows to recover, within the macroscopic limit,
the capillary stress tensor responsible for the surface tension forces in the macroscopic two-phase �ow
equations.

3.12.1.3 Recoloring operator (Qk
i )(3)

The recoloring operator (Qk
i )(3) of Eq. (3.12.5) is used to maximize the amount of �uid k at the interface

that is sent to the k �uid region. It guarantees the �uid’s immiscibility. It respects the principles of mass
and momentum conservation. The form of recoloring used in this paper is a combination of ideas taken
from [Latva-Kokko 2005] and [Halliday 2007] and fully developed in [Leclaire 2012]. It reads :

(Qr
i )(3)(f ri ) = ρr

ρ fi + β
ρr ρb
ρ2 cos(φi )

∑
k f

k ,eq
i (ρk , 0,αk ),

(Qb
i )(3)(f bi ) = ρb

ρ fi − β ρr ρbρ2 cos(φi )
∑

k f
k ,eq
i (ρk , 0,αk ),

(3.12.26)

where β ∈ [0 . . . 1] is a parameter controlling the interface thickness [Latva-Kokko 2005] that will be
set to 0.99 unless otherwise stated. cos(φi ) = (vi · F )/(|vi | |F |) is the cosine of the angle between the
color gradient F and the lattice direction vector vi . Note that for i = 0 or |F | = 0, there is a division
by 0. In such a case, we set the whole term equal to 0 to respect mass conservation.

3.12.1.4 Adjustment of the color gradient for static contact angles

Based on [Leclaire 2016], the imposition of a contact angle is performed using the method described
in [Xu 2017]. In order to properly describe the wetting boundary conditions, we divide the lattice nodes
in two categories Cf and Cs, each category being also subdivided in two subcategories Cfs, C�, Csf and
Css.
- Cf : the set of �uid lattice nodes

– Cfs : �uid lattice nodes in contact with at least one solid lattice node
– C� : �uid lattice nodes not in contact with any solid lattice node

- Cs : the set of solid lattice nodes
– Csf : solid lattice nodes in contact with at least one �uid lattice node
– Css : solid lattice nodes not in contact with any �uid lattice node

When computing the color gradient in the �uid (i.e. for lattice nodes ∈ Cf), the knowledge of the
color �eld at the boundary is required (i.e. for lattice nodes ∈ Csf) because Eq. (3.12.22) involves the
neighboring lattice nodes. Therefore, we need to extrapolate the color �eld to the boundary nodes, we
do so using the following expression :

∀x ∈ Csf, ϕ(x) =
∑
i

x+vi ∈Cfs

wiϕ(x +vi )ciα
/ ∑

i
x+vi ∈Cfs

wi . (3.12.27)
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It is now possible to evaluate the orientation of the color gradient in the �uid using the expression
hereafter :

n∗ =
∇ϕ(x)
|∇ϕ(x)| . (3.12.28)

Note that the exact same approach based on a color �eld is used in SPH, see Eq. (2.7.14).
In [Xu 2017], they use an 8th order isotropic stencil to compute the surface normal ns . In the

subsequent simulations, boundary surfaces are �at and normals are known so we directly input the
exact value. The correct color gradient orientation n depends on the prescribed contact angle θ and is
evaluated as follows :

n =




n1, if D1 < D2
n2, if D1 > D2
ns , if D1 = D2,

, (3.12.29)

where D1 and D2 are the Euclidean distances between the current unit normal vector n∗ and the two
possible theoretical unit normal vectors n1 and n2 of the interface at the contact line and are given by :

D1 = |n∗ − n1 |,
D2 = |n∗ − n2 |, (3.12.30)

with :

n1 =
(
ns
x cosθ − ns

y sinθ,ns
y cosθ + ns

x sinθ
)
,

n2 =
(
ns
x cosθ + ns

y sinθ,ns
y cosθ − ns

x sinθ
)
.

(3.12.31)

Finally, once n is known, the corrected color gradient value is computed by taking :

∇ϕ(x) = |∇ϕ(x)|n. (3.12.32)

3.12.2 Inter-particular potentials (Shan-Chen’s model)

The introduction of inter-particle potentials to model multiphase �ows in LBM has been done by Shan
and Chen [Shan 1993] based on their work on similar concepts for LGA. They propose to use a nearest-
neighbor interaction model to incorporate the e�ect of the inter-molecular potential. This interaction
model can be considered as an approximation of the Lennard-Jones potential. In practice, the Shan-Chen
(SC) force Ff −f for a Single-Component Multi-Phase (SCMP) system was originally written as :

Ff −f (x, t) = −Gψ (x, t)
∑
i

wiψ (x + vi , t)vi , (3.12.33)

with G a constant that controls the strength of the interaction force andψ the e�ective mass (which can
take several forms, for exampleψ = ρ0(1−exp(−ρ/ρ0))). This force can be implemented into the classic
LBM algorithm using a forcing term such as Guo’s approach described in Sect. 3.10.5. The “magic” of
the SC force is that a surface tension term emerges from the Taylor expansion of Ff −f . Indeed, it gives :

Ff −f = −G(c2
sψ∇ψ +

c4
s

2 ψ∇(∆ψ ) + ...). (3.12.34)

This 1st term leads to a modi�ed EOS p = ρc2
s +

G
2 c

2
sψ

2 (compared with Eq. (3.1.15)). The 2nd term
generates a surface tension. One can directly see a major drawback of the SC model : the coupling
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between G,ψ , the EOS and the surface tension. This coupling controls which densities can coexist for
a given G as shown on Figs. 3.10a14 and 3.10b.
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Figure 3.10: (a) Coexisting densities in function of G. (b) Density distribution accross the interface for
di�erent G.

It is possible to know in advance the coexisting densities for a given value of G using the Maxwell
reconstruction rule. This rule states the phase segregation happens only for a pressure pss where the
integral equals to zero which gives the equilibrium values of light and heavy densities

∫ Vl

Vh
pdV = ps (Vl −Vh), (3.12.37)

where Vh,Vl are the volumes of the light and heavy phase. Graphically, when adjusting the horizontal
pressure level, the two gray areas on Fig. 3.10c have to be equal. Using this setup and carrying out static
bubble tests, it is possible to deduce the surface tension coe�cient σ via the Laplace’s law as shown
on Fig. 3.11a. Note that by including another force Ff −s to handle the interaction between the �uids
and the solid boundary it is possible to impose a prescribed contact angle by adjusting Gs as shown on
Fig. 3.11b :

Ff −s (x, t) = −Gsψ (x, t)
∑
i

wis(x + vi , t)vi . (3.12.38)

The main advantage of this model is that it has a better physical meaning because the phase sep-
aration is governed by an inter-particle potential (instead of maximizing the color density gradient).
Moreover, computation is more e�cient and easily parallelizable since the algorithm involves local
interactions, and the interface is automatically computed which is also numerically more e�cient. Nev-
ertheless, the major drawback of this approach is the coupling between the parameters as explained

14ρc and Gc are the critical values. They are obtained by solving the following system :

∂ρp = 0,
∂2
ρp = 0. (3.12.35)

It yields :

ρc = ρ0 ln(2),
Gc = − 4

ρ0
.

(3.12.36)
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Figure 3.11: (a) Laplace’s law veri�cation for G = −5. From linear regression, σ = 0.05839l .u .. (b)
Contact angle in function of the value of Gs . (c) Example of spurious currents in the SC model for a
static bubble test.

before. This makes the SC model not “engineer-friendly” since one cannot set a given two-phase prob-
lem as simply as in classic methods. Moreover, as many other multiphase approaches, SC su�ers from
spurious currents as shown on Figure 3.11c.

3.12.3 Free-Energy Model

As shown in [Swift 1995a], it is important for a multiphase model to be consistent with thermodynamics.
In other words, the equation of state, pressure tensor, chemical potential, etc. must be derivable from
the free energy. The free-energy model was proposed in [Swift 1995b] and developed to overcome
the thermodynamic limitations of the previous multiphase LBM models. The following constraint is
imposed : ∑

i

f
eq
i vi ⊗ vi = pI + ρu ⊗ u, (3.12.39)

with pI the pressure tensor de�ned by p(x) = ρ ∂Ψ
∂ρ (x) −Ψ(x) and Ψ the free energy density de�ned as :

Ψ =

∫ (
ψ (ρ,T ) + σ2 |∇ρ |

2
)

dr , (3.12.40)

with σ a parameter that controls the surface tension. The �rst part of Eq. (3.12.40) represent the free
energy of of each �uid while the second term is related to the interface dynamics.

This constraint provides a convenient way to incorporate the free energy in LBM multiphase models.
The free energy model is a milestone in LBM because it relates the method to thermodynamics which
was an important step to apply it to multiphase �ow applications. This model generates a thin interface
and allows to simulate �uids with important density or viscosity ratios. Additionally, the surface tension
is controlled by an independent parameter. The main drawback of the free energy model is that it is
not Galilean invariant but this issue has been solved in [Pooley 2008]. Moreover, this model cannot
simulate �uids with simultaneous high density and high viscosity ratios. The use of a free energy to
simulate a physical system has been introduced in the so-called phase �eld theory which has been
used to simulate many kind of physical problems. Various models based the phase �eld theory for
multiphase LBM have been proposed over the years, among them, one of the most promising is the
stabilized di�use interface model introduced in [Lee 2010] and that can simulate density ratios up to
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1000 without spurious velocities and respecting the thermodynamics (at the cost of computational
e�ciency).

3.12.4 Mean-Field Model

Based on Enskog’s theory for dense �uids and mean-�eld theory, the mean-�eld model for multiphase
LBM was introduced in [He 1998]. The basic idea for this model is to use the mean-�eld theory to
describe the long-range attraction among particles and the Enskog’s theory for dense �uids to model
the short range repulsion. This approach allows the user to recover the mass, momentum and energy
equations and also the thermodynamics. The lattice Boltzmann mean �eld equation is written as :

fi (x +vi∆t, t + ∆t) − fi (x, t) = −χ
fi − f

eq
i

τ ∗ + 1/2 +
τ ∗

τ ∗ + 1/2Qi f
eq
i ∆t, (3.12.41)

with :
- χ the density-dependent collision probability determined by an equation of state. For example the

Van Der Waals EOS, χ = 1
1−bρ where b = 2πd3/3m with d the diameter andm the molecular mass.

- τ ∗ = τ/∆t with τ the relaxation parameter.
- Qi the collision operator

Qi =
(vi −u) · F

RT
.

- f
eq
i the equilibrium distribution

f
eq
i = wi

[
1 + vi ·u

RT
+
(vi ·u)2
2(RT )2 −

u2

2RT

]
.

- the macroscopic variables computed using

ρ =
∑
i

fi , ρu =
∑
i

fivi +
Fρ∆t

2 ,
3ρRT

2 =
∑
i

fi
(vi −u)2

2 .

Note that a time integration scheme of at least 2nd-order is necessary for these LBM multiphase
models [He 1998], otherwise, nonphysical properties such as spurious currents arise in simulations. The
mean-�eld LBM multiphase model is derived from kinetic theory with the inter-molecular potential
incorporated intrinsically. From this perspective, it inherits the fundamental feature of the inter-particle
potential model. At the same time, the mean �eld theory guarantees thermodynamic consistency. The
drawback of the mean �eld LBM multiphase model is that it cannot simulate multiphase �ows with high
density ratio. This drawback is likely due to the assumption that the density �eld across an interface
must be smooth. How to improve these mean-�eld LBM multiphase models to simulate high density
ratios �ows is still under investigation.

3.12.5 Summary

In this work, we choose to work with the Color Gradient Model described in Sect. 3.12.1 because among
the di�use interface approaches, it is the one with a thin interface compared to the pseudo potential
approach for example. In addition, the pseudo-potential model is cumbersome to use and to parameterize
because there is coupling between the basic parameters [Leclaire 2017]. The free energy model requires
solving a Poisson equation at every time step which is time consuming and the mean �eld approach is
limited to small density ratios [Prosperetti 2009]. Moreover, the color gradient model bene�ts from the
large body of veri�cation and validation cases available in the literature [Leclaire 2011, Leclaire 2012,
Leclaire 2013b, Leclaire 2014, Leclaire 2015, Leclaire 2016, Leclaire 2017].
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Models Advantages Drawbacks

CGM

XThin interface
XIndependent surface tension
XLocal conservation of
mass and momentum
XWidely used

×Interface tracking at each time step
×Small density ratios
×Anisotropic surface tension
×Spurious velocities

SC
XAutomatic interface tracking
XWidely used
XEasily parallelizable

×Small density ratios
×Thick interface
×Surface tension/EOS coupling
×Spurious velocities
×Thermodynamics inconsistent

Free-Energy

XThermodynamically consistent
XLiquid/liquid interface
XIndependent surface tension
XThin interface

×No Galilean invariant
×Small density ratios
×Small viscosity ratios
×Spurious velocities

Mean-Field
XThermodynamically consistent
XLocal conservation of
mass and momentum

×Small density ratios
×Spurious velocities

Table 3.2: Summary of the di�erent multiphase LBM approaches
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Our goal in this chapter is to propose a comparison of the multiphase SPH formulation presented
in [Hu 2006] and the color-gradient multiphase LBM formulation introduced in [Reis 2007], on a collec-
tion of standard 2D test cases and on the simulation of slug �ow regimes with periodic and inlet/outlet
boundary conditions. To the best of our knowledge, this is the �rst time such a comparison is presented.
We �rst detail the multiphase LBM and SPH formulations used in this work including surface tension
models and boundary conditions in Sects. 4.1 and 4.2. Then, we compare both approaches on a set
of validation cases : lid-driven cavity �ow, Rayleigh-Taylor instability, capillary rise and static bubble
tests with di�erent density and viscosity ratios. Finally, we extend the comparison to two cases of slug
�ows, one induced by gravity with periodic boundary conditions and the other one based on inlet/outlet
boundary conditions. This chapter is mainly adapted from [Douillet-Grellier 2019].

4.1 Multiphase LBM model

We stress that the LBM model described in this section will be the one used throughout this entire
manuscript. A summary of the model and its main features is shown on Tab. 4.1

Feature Choice Section/Reference

Multiphase model CGM Sect. 3.12.1 [Reis 2007, Leclaire 2012]
Collision operator MRT - Eq. (3.12.17) Sect. 3.9.1 and 3.12.1 [Leclaire 2014]
Surface tension CGM perturbation operator Sect. 3.12.1.2 [Leclaire 2011, Leclaire 2012]
Contact line Eqs. (3.12.27) to (3.12.32) Sect. 3.12.1.4 [Leclaire 2016, Xu 2017]
Galilean invariance recovery Eqs. (3.12.18) to (3.12.20) Sect. 3.12.1 [Ba 2016]
Wall boundary conditions Full bounce back Sect. 3.10.2
Inlet/outlet boundary conditions Zou-He Sect. 3.10.4 and 4.1 [Zou 1997]

Table 4.1: Summary of the LBM model considered in this manuscript

LBM formulation In this work, the immiscible multiphase LBM model based on a color gradient
approach and fully detailed in Sect. 3.12.1 has been used.

Multiphase inlet/outlet boundary conditions For multiphase LBM, the case of inlet/outlet bound-
ary conditions is particularly di�cult because speci�c treatments are needed to handle the interface
when the �uids are entering and/or leaving the domain. Being able to have e�cient inlet/outlet bound-
ary conditions is attractive because it extends the range of two-phase �ow simulations that could be
explored [Lou 2013, Li 2017, Huang 2017, Hou 2018, Tarksalooyeh 2018] and is mandatory for open
channels. Here, inlet/outlet boundary conditions are achieved using a modi�ed version of Zou-He
boundary conditions [Zou 1997]. The approach detailed in this chapter is very similar to what is de-
scribed for two-phase pressure boundary conditions in [Huang 2017]. First, we will describe how we
inject two phase �ows with two di�erent velocities ubinlet and urinlet from the north wall. The prescribed
velocity �elds vb ,in and vr ,in are designed so that vb ,in = ubinlet on blue boundary lattice nodes and
vb ,in = 0 on red boundary lattice nodes. Similarly, vr ,in = urinlet on red boundary lattice nodes and
vr ,in = 0 on blue boundary lattice nodes. It is then possible to generate a color-blind prescribed velocity
�eldv in = vb ,in +vr ,in. Following the classic Zou-He procedure described in [Zou 1997], we can then
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compute the modi�ed density and distribution functions. It reads :

ρin = 1
1+v in

y
(f0 + f1 + f3 + 2 (f2 + f5 + f6)) ,

f4 = f2 − 2
3ρ

inv in
y + H

in,

f7 = f5 +
1
2 (f1 − f3) − 1

2ρ
inv in

x − 1
6ρ

inv in
y − 1

2H
in,

f8 = f6 +
1
2 (f3 − f1) + 1

2ρ
inv in

x − 1
6ρ

inv in
y − 1

2H
in,

(4.1.1)

where H in is a corrective term that depends if we use Eq. (3.12.10) or Eq. (3.12.18) for the equilibrium. In
practice, to derive Zou-He boundary conditions, one has to solve a linear system where one term comes
from the equilibrium distribution function as shown in Sect. 3.10.4. If we use Eq. (3.12.18), we obtain
extra terms compared to the classical Zou-He approach due to the Hermite expansion. It is computed
as follows :

H in =




0 if we use Eq. (3.12.10),[
ϕ+1

2 3ρin(cbs )2 +
(
1 − ϕ+1

2

)
3ρin(crs )2 − ρin

]
1
3v

in
y if we use Eq. (3.12.18).

(4.1.2)

It is then needed to redistribute these quantities in function of the color �eld value :

ρb =
ϕ+1

2 ρin, ρr =
(
1 − ϕ+1

2

)
ρin,

f b4 =
ϕ+1

2 f4, f r4 =
(
1 − ϕ+1

2

)
f4,

f b7 =
ϕ+1

2 f7, f r7 =
(
1 − ϕ+1

2

)
f7,

f b8 =
ϕ+1

2 f8, f r8 =
(
1 − ϕ+1

2

)
f8.

(4.1.3)

Second, we will describe how we impose a constant pressure pout at the outlet located on the south
wall. The corresponding prescribed densities are ρb ,out = pout/(cbs )2 and ρr ,out = pout/(crs )2 . The
color-blind prescribed density is then ρout = ρb ,out + ρr ,out . In addition, we also have :

vout
x = 0
vout
y = 1

ρout (f0 + f1 + f3 + 2 (f4 + f7 + f8)) ,
f2 = f4 +

2
3ρ

outvout
y + H

out,

f5 = f7 − 1
2 (f1 − f3) − 1

2ρ
outvout

x +
1
6ρ

outvout
y − 1

2H
out,

f6 = f8 − 1
2 (f3 − f1) + 1

2ρ
outvout

x +
1
6ρ

outvout
y − 1

2H
out,

(4.1.4)

where Hout is evaluated as follows :

Hout =




0 if we use Eq. (3.12.10),

−
[
ϕ+1

2 3ρout(cbs )2 +
(
1 − ϕ+1

2

)
3ρout(crs )2 − ρout

]
1
3v

out
y if we use Eq. (3.12.18).

(4.1.5)

We can then redistribute these quantities similarly with what was done in Eq. (4.1.3) :

ρb =
ϕ+1

2 ρout, ρr =
(
1 − ϕ+1

2

)
ρout,

f b2 =
ϕ+1

2 f2, f r2 =
(
1 − ϕ+1

2

)
f2,

f b5 =
ϕ+1

2 f5, f r5 =
(
1 − ϕ+1

2

)
f5,

f b6 =
ϕ+1

2 f6, f r6 =
(
1 − ϕ+1

2

)
f6.

(4.1.6)

A test case has been setup to check the performance of these boundary conditions. Initial con�gura-
tion can be found in Fig. 4.1a and the simulation parameters are displayed on Tab. 4.2. The steady-state
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phases distribution is shown on Fig. 4.1b. One can observe a deformation after the inlet that is due to the
fact that we inject the heavy �uid 6 times faster that the light �uid and that velocity injection pro�les
are constant by phase. In Fig. 4.2 is shown the evolution of the inlet velocities and outlet pressure with
the number of iterations. Note that quantities have been averaged along the height of the pipe. We can
see that we are recovering the prescribed velocities v in

light and v in
heavy at the inlet after a transient period

with a maximum discrepancy ≤ 4% for the light phase and ≤ 0.5% for the heavy phase with respect the
prescribed quantities. Similarly, at the outlet, we recover the prescribed pressure pout after a transient
period with a maximum discrepancy � 0.001% with respect to the prescribed value. In Fig. 4.3, we
see the distribution of the color �eld, the inlet velocity and the outlet pressure along the height of the
pipe. It is possible to observe a velocity peak and a pressure peak located at the interface. In addition,
we provide the steady-state normalized pressure �eld p/pout after 50000 iterations on Fig 4.1c and we
can observe that there are moderate discrepancies at the interface at the inlet and the outlet. These
discrepancies are likely due to the fact that �uids are mixed at the interface resulting in governing
equations not being properly solved at this location. Moreover, slight discrepancies can be seen at
the walls due to boundary conditions. In addition, we can also add that there are pressure re�ections
between the inlet and the outlet for about 10000 iterations at the beginning of the simulation. Overall,
the previously described boundary conditions are giving satisfactory results and will be used later in
the chapter. However, we must state that although they are reasonably functioning, they can certainly
be improved using another approach.

L

H
v in
light

v in
heavy = 6v in

light
pout

Light Fluid

Heavy Fluid

(a)

(b)

(c)

(d)

Figure 4.1: (a) Initial con�guration sketch. (b) Phases distribution at steady-state after 50000 iterations.
(c) Normalized pressure �eldp/pout at steady-state after 50000 iterations. (d) Velocity �eld at steady-state
after 50000 iterations.
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Property Light Phase Heavy Phase Units

Density (ρ) 1.0 5.0 l .u .

Relaxation time (τ ) 1.0 0.7 l .u .

Viscosity (µ) 1.67 × 10−1 3.34 × 10−1 l .u .

Sound speed (cs ) 0.5773503 l .u .

Surface tension (σnw ) 2.2 × 10−4 l .u .

Contact angle (θc ) 90 ◦

Gravity (дz ) 0 l .u .

Space step (∆x ) 2.0 × 10−2 l .u .

Time step (∆t ) 1.33 × 10−3 l .u .

Domain size (Lx × Ly ) 500 × 50 l .u .

Inlet velocity (v in) 2.67 × 10−4 1.6 × 10−3 l .u .

Outlet pressure (pout) 0.48 l .u .

Table 4.2: Simulation parameters for the case shown on Fig. 4.1a (l .u . stands for lattice units).
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Figure 4.2: Evolution of selected quantities with the number of iterations
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Figure 4.3: Variation of selected quantities along the height of the pipe at steady state
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4.2 Multiphase SPH model

We stress that the SPH model described in this section will be the one used throughout this entire
manuscript. A summary of the model and its main features is shown on Tab. 4.3

Feature Choice Section/Reference

Continuity equation ρa =ma
∑
b ∈ΛaWab Sect. 2.7.1 [Hu 2006]

Momentum Equation

Du
Dt = − 1

ma

∑
b ∈Λa

(
pa I +Πa

Θ2
a
+

pb I+Πb
Θ2
b

)
∇aWab

+ 1
ma

∑
b ∈Λa

2µa µb
µa+µb

(
1
Θ2
a
+ 1

Θ2
b

)
xab · ∇aWab
|xab |2+η2 uab

+д

Sect. 2.7.1 [Hu 2006]

Surface tension/Contact line CSF-Π Sect. 2.7.2 [Lafaurie 1994, Szewc 2013]
Equation of state Tait : pa = c2

aρ0a
γa

[(
ρa
ρ0a

)γa − 1
]
+ p0 Sect. 2.2 [Monaghan 1994, Colagrossi 2003]

Kernel Quintic Wendland in Tab. 2.2 Sect. 2.1.2 [Wendland 1995, Dehnen 2012]
Smoothing length h/∆p = 1.5 or 2 (will be precised for each case) Eq. (2.1.21)
Background Pressure Eq. (2.4.6) and Eq. (4.2.2) Sect. 2.4.3 and 4.2 [Phillips 1985, Morris 2000]
Speed of sound Eq. (2.2.6) and Eqs. (4.2.2)-(4.2.3) Sect. 2.2 and 4.2 [Morris 2000, Zhang 2015]
Consistency 1st order restoration with Eqs. (2.4.7)-(2.4.8) Sect. 2.4.5 [Bonet 1999b, Colagrossi 2001]
Shifting Eqs. (2.7.19)-(2.7.20) Sect. 2.7.3 [Mokos 2016]
Interface correction Eq. (2.7.21) Sect. 2.7.3 [Szewc 2013, Szewc 2016]
Time integration Predictor-Corrector Leapfrog Sect. 2.6 and 4.2
Wall boundary conditions Fixed ghost particles Sect. 2.5.1
Inlet/outlet boundary conditions Bu�er-based Sect. 4.2 [Tafuni 2018]

Table 4.3: Summary of the SPH model considered in this manuscript

Governing equations The governing equations of the problem for a single incompressible �uid
phase consist of mass and momentum conservation equations in a Lagrangian system previously re-
called in Eqs. (2.3.1) associated two extra terms in the momentum equation, a viscosity term detailed
in Sect. 2.4.2 and the surface tension term explained in Sect. 2.7.2. In the end, the full set of governing
equations is given as




Dρ
Dt = −ρ∇ ·u,
Du
Dt = − ∇pρ + ν∇2u + F st

ρ + д,

p =
c2ρ0
γ

[(
ρ
ρ0

)γ
− 1

]
+ p0,

(4.2.1)

with u �uid velocity, ρ �uid density, ν the �uid kinematic viscosity, p �uid pressure, µ �uid dynamic
viscosity, д gravity, c �uid speed of sound (here constant), γ �uid adiabatic index, ρ0 �uid initial density
and p0 background pressure and D/Dt denotes the material derivative following the motion.

In the case of single phase problem, c and p0 are set using Eqs. (2.2.6) and (2.4.6). However, in the
multiphase context, these de�nitions are slightly modi�ed. Given a reference length Lref and a reference
speed Uref, the following formulas, taken from [Morris 2000], were used




cα = max
(
Uref√
∆ρ
,
√
|д |Lref
∆ρ ,

√
σ α β
ρ0α Lref

,
√

µαUref
ρ0α Lref∆ρ

)
, ∀α ∈ {1, . . . ,Nphases},

p0 = maxα ∈{1, ...,Nphases }
c2
α ρ0α
γα
,

(4.2.2)

with ∆ρ = 0.01 to enforce (not strictly) a maximum variation of 1% of the density �eld and σα β the
surface tension coe�cient between phase α and β . Nphases is the number of di�erent phases. In practice,
in the case of a two-phase simulation with a light phase and a heavy phase, we �rst compute the speed
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of sound of the heavy phase cheavy using Eq. (4.2.2) and we then compute the speed of sound of the
light phase clight doing :

clight = cheavy

√
cheavy2γlightρ0heavy

γheavyρ0light
(4.2.3)

This approach is taken from [Colagrossi 2003, Zhang 2015] and ensures that the pressure is continuous
at the interface. It leads clight >> cheavy when the density ratio is important, which makes the time step
smaller and the simulation longer.

SPH Formulation In this work, we use the formalism introduced in [Hu 2006] and described in
Sect. 2.7.1. Within this framework, we brie�y remind that :
- the continuity equation is directly solved using Eq. (2.7.3)
- the discretized pressure term − ∇paρa for a particle a is given by

−∇pa
ρa
= − 1

ma

∑
b ∈Λa

(
pa

Θ2
a
+

pb

Θ2
b

)
∇aWab , (4.2.4)

where the pressures pa and pb are computed using the equation of state (2.2.5)
- the discretized viscous term νa∇2ua for a particle a is obtained using Eq. (2.7.6)
- the discretized surface tension term F st

a
ρa

for a particle a is given by

F sta
ρa
= − 1

ma

∑
b ∈Λa

(
Πa

Θ2
a
+
Πb

Θ2
b

)
∇aWab , (4.2.5)

where the stress tensors Πa and Πb are computed using equations (2.7.17)-(2.7.18).
Finally, the set of Eqs. (4.2.1) becomes :




ρa =ma
∑
b ∈ΛaWab ,

Du
Dt = − 1

ma

∑
b ∈Λa

(
pa I +Πa

Θ2
a
+

pb I+Πb
Θ2
b

)
∇aWab

+ 1
ma

∑
b ∈Λa

2µa µb
µa+µb

(
1
Θ2
a
+ 1

Θ2
b

)
xab · ∇aWab
|xab |2+η2 uab

+д,

pa =
c2
aρ0a
γa

[(
ρa
ρ0a

)γa − 1
]
+ p0,

Dxa
Dt = ua .

(4.2.6)

Corrective terms In this chapter, three SPH correction procedures have been used for all subsequent
simulations1 :

- the kernel gradient correction to restore consistency up to order 1 using Eqs. (2.4.7) and (2.4.8)
- the particle shifting algorithm for multiphase �ows detailed in Sect. 2.7.3
- the interface correction procedure described in Sect. 2.7.3

Time Integration The time integration scheme chosen for the rest of the manuscript is the Predictor-
Corrector Leapgrog scheme described in Sect. 2.6. However, in the multiphase context, one needs to
add an extra constraint on the timestep that depends on the surface tension coe�cients. It reads :

∆t = min
(
∆tvisc,∆tgrav,∆tspeed,∆tst

)
, (4.2.7)

where ∆tvisc, ∆tgrav and ∆tspeed are de�ned in Eq. (2.6.5) and ∆tst = 0.25 minα ,β ∈{1, ...,Nphases }
√

h3ρ0
α

2πσ α β

1Except for the single phase simulations of Sect. 4.3.1 where no shifting or interface correction were used.
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Inlet bu�er Outlet bu�erFluid area

Inlet OutletReservoir

Heavy Fluid Particle
Light Fluid Particle

Figure 4.4: Schematic of the inlet/outlet implementation based on bu�ers.

Multiphase Inlet/Outlet Boundary Conditions Inlet/outlet BC have also been subject to many
investigations among SPH researchers. The main issue being that the naive way to implement those
inlet/outlet BC results in spurious re�ected waves [Lastiwka 2009, Dong 2014, Khorasanizade 2016,
Kunz 2016, Alvarado-Rodríguez 2017]. However, to the best of our knowledge, none of them addresses
the issue of inlet/outlet BC for multiphase �ows. The only known discussion on that matter is proposed
in [Fonty 2019a] but it uses a mixture multiphase SPH model which is not our case here. In this work,
it has been decided to use the idea presented in [Tafuni 2018] and adapt it to multiphase SPH. To this
end, the inlet and outlet boundaries are extended with a bu�er layer of size κh to ensure a full kernel
support as shown on Fig. 4.4. At the inlet, the goal is to inject the particles with a prescribed velocity
pro�le. On the contrary, at the outlet, the particles need to leave the domain smoothly while imposing
a prescribed pressure pro�le (or density since they are connected through Eq. (2.2.5)). On one hand, a
particle i in the inlet bu�er is moving with a prescribed velocity pro�le up and it carries the following
values of pressure pin , density ρin and velocity uin

pini =
1
Via

∑
a∈Ωf ∩Λi

pa
ma

ρa
Wia, (4.2.8)

ρini =
1
Via

∑
a∈Ωf ∩Λi

ρa
ma

ρa
Wia, (4.2.9)

uini = 2up − 1
Via

∑
a∈Ωf ∩Λi

ua
ma

ρa
Wia . (4.2.10)

with Via =
∑

a∈Ωf ∩Λi
ma
ρa
Wia and Λi the set of neighboring particles of inlet particle i . We remind that

all the di�erent set of particles are explicited in Fig. 2.10.
On the other hand, at the outlet, a particle o in the bu�er is moved according to a smoothed con-

vective velocity uconv . This idea is taken from [Alvarado-Rodríguez 2017]. For example, if the outlet
boundary is vertical and the �ow leaves along the x direction, it reads

uout ,convo =
1

V ′oa

∑
a∈Λo

ua
ma

ρa
Woa, (4.2.11)

with V ′oa =
∑

a∈Λo
ma
ρa
Woa the set of neighboring particles of outlet particle o. Note that in Eq. (4.2.11),

the summation is over the full kernel support Λo including �uid and outlet particles and not only over
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the intersection Ωf ∩ Λo . Besides, particle o also carries the following values of pressure pout , density
ρout and velocity uout

pouto = 2pp − 1
Voa

∑
a∈Ωf ∩Λo

pa
ma

ρa
Woa, (4.2.12)

ρouto = 2ρp − 1
Voa

∑
a∈Ωf ∩Λo

ρa
ma

ρa
Woa, (4.2.13)

vouto,x =
1

Voa

∑
a∈Ωf ∩Λo

va,x
ma

ρa
Woa, (4.2.14)

vouto,y =
−1
Voa

∑
a∈Ωf ∩Λo

va,y
ma

ρa
Woa, (4.2.15)

with Voa =
∑

a∈Ωf ∩Λo
ma
ρa
Woa , pp and ρp the prescribed pressure and density. Concerning the velocity,

note that null cross velocities (here vy ) are enforced to ensure a divergence free velocity �eld at the
outlet.

One last but important point is the treatment of the interface stressΠa introduced in equations (2.7.17)-
(2.7.18). After experimenting with di�erent approaches, we concluded that the best option is to explicitly
calculate the interface stress even within the bu�er areas (no extrapolation) to guarantee a clean inter-
face, especially at the outlet where the interface position is not known a priori. Similarly, we found that
it was more stable to extrapolate certain physical parameters (massma , speed of sound ca , viscosity νa ,
initial density ρ0a ) from the �uid area to the inlet/outlet bu�er areas.

In order to illustrate how this boundary condition implementation performs, a test case was simu-
lated where a strati�ed �ow (50% light upper phase and 50% heavy lower phase) is injected with the
following prescribed velocities : uд = 1.4 m/s and ul = 0.12 m/s. At the outlet, the prescribed pressure
is equal to the background pressure. The density ratio is 5 and the viscosity ratio is 2. Simulations are
done with the following resolutions L/∆r = 312, 444 and 704 which corresponds approximately to
10000, 20000 and 50000 particles. Several indicators are presented on Figures 4.5 to 4.7. By ’Normalized
Average Pressure/Velocity’, we mean that the pressure/velocity is averaged among all particles over a
distance of κh inside the �uid �ow and over 10 timesteps. Finally, it is divided by the prescribed value.

On Figures 4.5b, 4.6b and 4.7b, we note that the number of particles within the �uid �ow is main-
tained throughout the simulation. The prescribed velocity at the inlet is reasonably well reproduced
with an error that stays within ±5% for the light phase and ±15% for the heavy phase as shown on
Figures 4.5d, 4.6d and 4.7d. The di�erence between the two phases is likely due to the relatively low
number of particles (especially in the y direction) and to the case geometry where the heavy phase has
to push against the light phase causing more disturbances in the velocity �eld for the heavy phase. On
the other hand, at the outlet, the prescribed pressure is very well recovered with an maximum error
of ±1% as presented on Figures 4.5c, 4.6c and 4.7c. Besides, we observe that the errors are decreasing
when the number of particles increases. These boundary conditions are not optimal but they perform
reasonably well and are very easy to implement. One may notice that phases are distributed di�erently
at the outlet between SPH (Fig. 4.5a) and LBM (Fig. 4.1b). In fact, at the outlet, the di�erence is that
in LBM we impose a pure pressure condition whereas in SPH it is mix of pressure and convective
boundary conditions.
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Figure 4.5: Case L/∆r = 312 (10000 particles). (a) Evolution of the phases distribution at t = 1 s, t = 10 s
and t = 30 s (not at scale). (b) Evolution of the number of particles with time. (c) Evolution of the outlet
pressure with time. (d) Evolution of the inlet velocities with time.
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Figure 4.6: Case L/∆r = 444 (20000 particles). (a) Evolution of the phases distribution at t = 1 s, t = 10 s
and t = 30 s (not at scale). (b) Evolution of the number of particles with time. (c) Evolution of the outlet
pressure with time. (d) Evolution of the inlet velocities with time.
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Figure 4.7: Case L/∆r = 704 (50000 particles). (a) Evolution of the phases distribution at t = 1 s, t = 10 s
and t = 30 s (not at scale). (b) Evolution of the number of particles with time. (c) Evolution of the outlet
pressure with time. (d) Evolution of the inlet velocities with time.

4.3 Validation test cases

4.3.1 Lid-driven cavity �ow

The goal of this section is to validate the implementation of SPH and LBM for the single phase Navier-
Stokes case. The test case chosen for this purpose is the well-known 2D lid-driven cavity �ow problem
shown in Fig. 4.8. This is a common problem in the �uid mechanics community and numerous reference
solutions performed with di�erent numerical methods are available in the literature. In this case, we
use Ghia et al. solution as a reference [Ghia 1982]. Note that Ghia’s solution is also numerical. We must
add that this 2D �ow is �ctitious [Erturk 2009].

(0, 0)

(0, 1)

(1, 0)

(1, 1)

x

y

vx, vy = 0

vx, vy = 0

vx = Ulid, vy = 0

vx, vy = 0

Figure 4.8: The 2D lid-driven cavity �ow problem

The Reynolds number for this problem is de�ned as follows Re = UlidL
ν whereUlid is the lid velocity

imposed at the top boundary, ν is the kinematic viscosity and L is the characteristic length of the
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problem. The simulations were performed for Re = 100, 400, 1000 and 10000 and for 50 × 50 = 2500,
100× 100 = 10000 and 200× 200 = 40000 particles or nodes (respectively for SPH and LBM). h/∆p is set
to 2 for this case. The density is set to 1000 kg/m3, the velocity of the lid is Ulid = 0.1 l .u . for LBM and
1 m/s for SPH, the domain is Lx × Ly = 1 m × 1 m and the viscosity ν is adjusted to reach the desired
Reynolds number.

For LBM, due to stability issues, the MRT collision operator was used. The standard set of relaxation
times S de�ned in Eq. (3.9.7). In order to have stable results for at least one lattice size for every Reynolds
number, a speci�c setup was used where indicated (referred as LBM∗). The relaxation times are the
following :

S∗ = diag(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,ωe�,ωe�) (4.3.1)

and the lid velocity is increased U ∗lid = 0.4l .u ..
The velocity boundary condition at the top boundary has been applied using the procedure described

in Sect. 4.2 for SPH and in Sect. 4.1 for LBM. For the other boundaries, a no-slip boundary conditions has
been applied. The simulations are terminated when a steady state is reached (i.e.

√∑
a
|ρn+1
a −ρna |
ρna

< 1e−2

or after 60 s of real simulated time).

4.3.1.1 Re = 100

50 × 50 - Velocity (left) - Streamlines (right)

100 × 100 - Velocity (left) - Streamlines (right)

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.9: SPH results for Re = 100

50 × 50 - Velocity (left) - Streamlines (right)

100 × 100 - Velocity (left) - Streamlines (right)

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.10: LBM results for Re = 100

When Re = 100, the MRT operator for LBM with the standard relaxation times S is able to simulate
the test case for all grid resolutions that were considered. As shown in Fig. 4.13, both LBM and SPH
are able to reproduce the velocity �eld more and more accurately as the lattice/particles resolution is
increased. However, LBM always present a higher order of convergence (≈ 2 times faster). Moreover,



4.3. Validation test cases 133

LBM is the method that o�ers the best accuracy compared with Ghia et al.’s solution with an L2 dis-
crepancy of ≤ 0.025 for the 200 × 200 lattice resolution. On the other hand, the SPH method shows a
higher L2 discrepancy (at the boundaries in particular) with a maximum discrepancy of . 0.06 for the
200 × 200 particles resolution.

Concerning the spatial distribution of the �ow shown in Figs. 4.10 and 4.9, LBM shows the appear-
ance of two vortices at the two bottom corners of the domain which is in accordance with the theory.
On the contrary, SPH is not able to reproduce those two vertexes but instead has �ow perturbations in
the concerned areas.

50 × 50 - t = 2.48s 100 × 100 - t = 46.66s 200 × 200 - t = 54.31s

Figure 4.11: SPH streamlines for Re = 100 at selected timesteps

In Fig. 4.11, one can note that the two expected vertexes at the corners are in fact appearing during
the SPH simulations but they are highly unstable. They keep forming (together or independently) and
vanishing as the simulation progresses. It indicates that SPH captures an instability in the correct areas
but fails to reach a steady state thus the formation of spurious perturbations. Those vertexes being of
small intensity, their formation is probably a�ected by the boundary conditions.

LBM - 200 × 200 SPH - 200 × 200

Figure 4.12: Density �elds for Re = 100

The density �elds of the two methods for Re = 100 in Fig. 4.12 show that LBM has a smoother den-
sity �eld compared with SPH. As expected, due to the choice to use the weakly compressible approach,
SPH presents a noisy density �eld. It is expected that speci�c SPH density treatments available in the
literature would improve the quality of the density (and thus pressure) �eld. We can mention delta-SPH
models [Marrone 2011], SPH-ALE schemes (with Riemann solvers) [Inutsuka 2002, Oger 2016], turbu-
lence models or the incompressible SPH approach (ISPH - with a Poisson solver) [Hu 2007, Lind 2012].
These observations are valid for all four Reynolds numbers studied in this section.

4.3.1.2 Re = 400

For Re = 400, the MRT operator for LBM with the standard relaxation times S is able to simulate the
test case for all grid resolutions that were considered.
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Figure 4.13: Re = 100



4.3. Validation test cases 135

50 × 50 - Velocity (left) - Streamlines (right)

100 × 100 - Velocity (left) - Streamlines (right)

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.14: SPH results for Re = 400

50 × 50 - Velocity (left) - Streamlines (right)

100 × 100 - Velocity (left) - Streamlines (right)

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.15: LBM results for Re = 400

The superiority of LBM in terms of accuracy is magni�ed in that case. The LBM method shows more
accurate results that SPH for all resolutions considered as shown in Fig. 4.17. The maximum discrepancy
is always located at the domain’s boundaries. As an example, for the 200 × 200 resolution, both LBM
and SPH have a maximum di�erence with Ghia’s reference ≥ 8% at the right boundary whereas it is
≤ 2% and ≤ 5% inside the domain for LBM and SPH respectively.

Once again, LBM shows a better global accuracy for the same resolution and a higher order of
convergence than SPH as shown in Fig. 4.17. In particular, for the 200 × 200 resolution, the LBM L2
discrepancy on Vx along the vertical centerline is more than 3 times lower than the SPH one. For Vy
along the horizontal centerline, both methods have a comparable discrepancy.

The streamlines plots of Figs. 4.15 and 4.14 are showing that LBM correctly reproduces the existence
of two vertexes at the bottom corners of the domain. For the 50×50 case, a spurious vertex appears at the
top left corner of the domain and is likely due to the combination of boundary conditions (bounceback
+ Zou-He) at this location as it is smoothed out when the resolution increases.

On the other hand, the SPH results are not able to simulate an established vertex pattern at the
bottom corners. In the bottom right corner where the vertex is the strongest, for the 50×50 and 200×200
cases, a vertex appears to be growing but is either not at the correct location or not with the correct
amplitude. In fact, when looking at earlier streamlines plots as shown in Fig. 4.16, one can see that SPH
does generate vortices in the correct areas at selected instants during the simulation but they fail to
stabilize and are continuously appearing and disappearing.
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50 × 50 - t = 31.6s 100 × 100 - t = 58.17s 200 × 200 - t = 52.6s

Figure 4.16: SPH streamlines for Re = 400 at selected timesteps
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Figure 4.17: Re = 400
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50 × 50 - Velocity (left) - Streamlines (right)

100 × 100 - Velocity (left) - Streamlines (right)

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.18: SPH results for Re = 1000

50 × 50 - Velocity (left) - Streamlines (right)

100 × 100 - Velocity (left) - Streamlines (right)

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.19: LBM results for Re = 1000

4.3.1.3 Re = 1000

For Re = 1000, the MRT operator with the standard relaxation times S fails to give stable results for
the 50 × 50 resolution. However, when using another set of relaxation times S∗, one can obtain a stable
solution. The impact of empirically adjusting the relaxation times to "make it work" remains to be
investigated.

As in the previous cases, one can observe in Fig. 4.21 that LBM exhibits a better accuracy than SPH
for almost all resolutions. For the highest resolution, LBM has a maximum L2 discrepancy of ≈ 0.07.
For the same resolution, SPH gives a L2 discrepancy of ≈ 0.16. Besides, the LBM order of convergence
is still up to 2 − 3 times higher than the SPH one.

For this Reynolds number, it can be seen in Figs. 4.19 and 4.18 that SPH is capable of generating
a vertex pattern at the bottom right corner for the two highest resolutions but it is unstable for the
smallest resolution. Moderate deviations of the �ow indicating a potential growing vortex can be seen
at the bottom left corner. When looking at the streamlines of the SPH simulations, we observe that all
three resolutions are generating vertexes in the correct spots at selected instants but only the 200× 200
case manage to stabilize one at the bottom right corner.

As previously said for the smaller Reynolds numbers, LBM is again showing the appearance of the
two vertexes at the correct locations. An instability is growing at the top left corner but disappears at
the highest resolution.

For this Reynolds number, it can be seen in Figs. 4.19 and 4.18 that SPH is capable of generating
a vertex pattern at the bottom right corner for the two highest resolutions but it is unstable for the
smallest resolution. Moderate deviations of the �ow indicating a potential growing vortex can be seen at
the bottom left corner. When computing the streamlines for selected timesteps of the SPH simulations
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50 × 50 - t = 52.83s 100 × 100 - t = 50.50s 200 × 200 - t = 52.60s

Figure 4.20: SPH streamlines for Re = 1000 at selected timesteps

as shown in Fig. 4.20, it is seen that all three resolutions are generating vertexes in the correct spots
but only the 200 × 200 case manage to stabilize one at the bottom right corner.

As previously said for the smaller Reynolds numbers, LBM is again showing the appearance of the
two vertexes at the correct locations. An instability is growing at the top left corner but disappears at
the highest resolution.
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Figure 4.21: Re = 1000

4.3.1.4 Re = 10000

For Re = 10000, the MRT operator despite its superior stability properties compared to BGK is unable to
give stable results for none of the considered lattice resolutions. Even using the set of relaxation times
S∗, only the highest lattice resolution 200 × 200 prevents the simulation to blow up. In fact, Zou-he
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50 × 50 - Velocity (left) - Streamlines (right)

100 × 100 - Velocity (left) - Streamlines (right)

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.22: SPH results for Re = 10000

200 × 200 - Velocity (left) - Streamlines (right)

Figure 4.23: LBM results for Re = 10000

boundary conditions are known to be unstable at high Re and this is likely to be one the reasons the
LBM simulations fail for the lowest resolutions considered. It is possible to enhance the stability of the
velocity boundary conditions, see [Latt 2008b] for example.

For high Reynolds numbers, a �uid �ow is typically considered turbulent. Although in the case of
the lid-driven cavity �ow, this assertion is strongly questioned [Erturk 2009]. In addition, the �ow is not
bi-dimensional anymore. Since no LBM nor SPH models considered in this study include the e�ect of
turbulence and are bi-dimensional, results are to be taken with caution. In consequence, both methods
are showing larger errors than in the previous cases where Re was much smaller. Nevertheless, the
pattern is the same. As observed in Fig. 4.26, LBM always o�ers a much better accuracy than SPH for
the 200 × 200 resolution.

In Fig. 4.23, the LBM results are showing a high number of vertexes at the bottom right corner (5
vertexes), the bottom left corner (3 vertexes) and the top left corner (2 vertexes). This is not agreeing
with the theory where only 1 vertex is reported at the top left and bottom left corners and 2 vertexes
at bottom right corner. These spurious vertexes could be due to the use of the MRT operator with
relaxation times tuned based on a trial-and-error approach. The number of vortices is variable during
the simulation as shown in Fig. 4.25 where the number of vortices is correct. Extra vortices keep
appearing and disappearing throughout the simulation. No steady state is reached by the LBM in
this case. The SPH streamlines plots of Fig. 4.22 are not showing any vertex pattern until the highest
resolution is reached. For this 200 × 200 case, one can note the appearance of a vertex at the top left
corner, a small growing vertex at the bottom left corner and a growing vertex next to two very small
vertexes at the bottom right corner. Those vertexes are stable through the simulation unlike the one at
the bottom left corner as suggested by Figs. 4.24. Those �gures also show that at a smaller resolution,
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none of the expected vertexes are stable.

50 × 50 - t = 59.5s

100 × 100 - t = 46.56s

200 × 200 - t = 51.05s

Figure 4.24: SPH streamlines for Re = 10000 at
selected timesteps

200 × 200

Figure 4.25: LBM streamlines for Re = 10000
at selected timestep

4.3.2 Rayleigh-Taylor Instability

The Rayleigh-Taylor instability is a well-known two-phase problem in which a heavy �uid is placed on
top of a light �uid with a given interface shape and submitted to gravity. Several previous works have
reproduced this case with SPH or LBM, for example [Grenier 2009a, Szewc 2013, Banari 2012, Ba 2016].
The test case and its parameters are borrowed from [Grenier 2009a]. The computational domain is
twice as high as long, H × L with H = 2L and populated with 40000 nodes/particles. h/∆p is set to 1.5
for this case. The density ratio is 1.8 while the viscosity ratio is 1. Gravity is set д = 9.81 m/s−2 for
SPH and д = 1 × 10−4 l .u . and oriented downwards. Therefore, the viscosity ν is adjusted to match
the desired Reynolds number Re =

√
(H/2)3д

ν = 420. No surface tension is used. No slip boundary
conditions are applied to the walls. The interface is initialized as follows : y = 1 − sin(2πx). Time
t is non-dimensionalized by tд = 1/

√
д/H . The distribution of the two phases is shown at selected

timesteps in Fig. 4.27, superposed with results from [Grenier 2009a]. Both methods are able to simulate
the instability patterns as expected. Some di�erences are observable when t/tд ≥ 3 in particular when
the interface is strongly distorted. LBM grows instabilities slightly faster than SPH and is closer to the
behavior of the superposed Level-Set interface. On the other hand, our SPH results are naturally closer
to the other SPH interface extracted from [Grenier 2009a]. SPH appears to be more able than LBM (at
the same resolution) to capture �ner structures such the ones at t/tд = 5 located on both ends of the
mushroom-like shapes, but at an higher computational cost.
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Figure 4.26: Re = 10000

(a) SPH (b) LBM

Figure 4.27: Phase distribution of Rayleigh-Taylor instability at selected timesteps : t/tд = 1, 3 and
5. Superposed with SPH interface (in black) and with Level-Set interface (in red) both extracted
from [Grenier 2009a].
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4.3.3 Static bubble tests

In this section, the goal is to validate and compare the implementation of LBM and SPH surface tension
models respectively described in Sects. 3.12.1.2 and 2.7.2.

Square-to-droplet case The standard square-to-droplet test case is simulated and when a steady
state is reached, the pressure di�erence between the exterior and the interior of the bubble is measured
and compared to Laplace’s formula :

∆P =
σ

R
=
σ
√
π

a
, (4.3.2)

with ∆P the pressure di�erence, σ the surface tension coe�cient, R the bubble’s radius and a the lateral
dimension of the initial square bubble. Simulations are performed for three di�erent resolutions : 60×60,
100 × 100 and 200 × 200 nodes/particles. h/∆p is set to 2 for this case. Four di�erent combinations of
density and viscosity ratios were tested : ( ρheavy

ρlight
,
µheavy
µlight
) = (1, 1), (5, 2), (1000, 1000) and (1, 100). The

surface tension coe�cients and the corresponding Laplace numbers are summarized in Tab. 4.4. The
viscosity is then adjusted to match the Laplace number. Note that for each combination ( ρheavy

ρlight
,
µheavy
µlight
),

whatever the resolution, the viscosities (and the relaxations times in the case of LBM) are identical. The
whole domain is 1 m × 1 m and the lateral size of the initial square droplet is a = 0.33 m. The time is
normalized by tσ =

√
ρa3/σ . Note that, following [Leclaire 2015], parameter β in Eq. 3.12.26 is adjusted

when the resolution is increased taking the lowest resolution as a reference i.e. :

β = β60×60

(
∆x

∆x60×60

)5/8
, (4.3.3)

with β60×60 = 0.99.

Case ( ρheavy
ρlight
,
µheavy
µlight
) La =

σ ρheavya
µ2

heavy
σ SPH (N/m) σLBM

60×60 (l .u .) σLBM
100×100 (l .u .) σLBM

200×200 (l .u .)

(1, 1) 15 1.88 2.08 × 10−2 1.26 × 10−2 6.22 × 10−3

(5, 2) 15 1.88 1.67 × 10−2 1.01 × 10−2 4.98 × 10−3

(1000, 1000) 0.1 1.25 1.39 × 10−1 8.41 × 10−2 4.15 × 10−2

(1, 100) 0.0015 1.88 8.33 × 10−6 5.05 × 10−6 2.49 × 10−6

Table 4.4: Laplace numbers and surface tension values for each static bubble case.

Initially, when the density and viscosity ratios are set to one, one can observe in Fig. 4.28 the
deformation of an initial square bubble towards a circular bubble under the in�uence of the surface
tension. The Lagrangian/Eulerian di�erence between SPH and LBM is magni�ed in Fig. 4.28. We clearly
see that, in SPH, particles of each phase move to form a circular bubble over time whereas in LBM,
nodes are �xed and they switch phase to form the expect circular bubble. Besides, when the circular
bubble is stabilized, both methods present residual velocities around the interface as shown in Fig. 4.29.
However, those spurious currents are much more spread into the domain in SPH compared to LBM
where they are localized around the interface. Note that, in the LBM color gradient framework, it
is possible to signi�cantly reduce the amplitude of spurious currents by choosing a more isotropic
gradient operator [Leclaire 2011] but, as it involves second range neighbors, it is more computationally
expensive. For SPH, Hu and Adams’ formulation [Hu 2006] used in this chapter has been reported to
generate stronger spurious currents than other formulations [Kunz 2015].

In Fig. 4.30, the pressure pro�les at steady state for the di�erent resolutions and the di�erent density
and viscosity ratios considered are shown along with the corresponding L2 error plots. First, one can
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(a) t/tσ = 0.2 (b) t/tσ = 0.6 (c) t/tσ = 1.5

(d) t/tσ = 0.2 (e) t/tσ = 0.6 (f) t/tσ = 1.5

Figure 4.28: Evolution of the initial square bubble at selected timesteps. (a,b,c) SPH. (d,e,f) LBM.

Figure 4.29: Normalized velocity �eld |u |
|umax | for LBM (left) and SPH (right) at t/tσ = 1.5.
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clearly see that LBM is returning incorrect pressure values at the interface. Indeed, LBM presents non-
physical pressure peaks at the bubble’s interface that tend to grow with the number of nodes. In fact, in
the LBM color gradient method, the pressure is not well-de�ned at the interface. The pressure formula
of Eq. (3.12.12) does not make sense at the interface where �uids are mixed and there is no mixture
pressure de�ned in the considered framework. Hence, summing the �uid pressures is just an analytical
construction that depends on the density pro�les and the interface width. Thus, if we look at the LBM
L2 error along the whole horizontal centerline, we do not have mesh convergence since the error is
growing at the interface. However, when we restrict the calculation of the L2 error inside the bubble
(i.e. when 0.4 m < X < 0.6 m), we do obtain a negative slope indicating mesh convergence.

Next, analyzing the impact of the density and viscosity ratios, for the case where ( ρheavy
ρlight
,
µheavy
µlight
) =

(1, 1) in Figs. 4.30a and 4.30b, we get approximately the same order of convergence for both methods
(0.768 and 0.838 for LBM and SPH respectively) and the same error levels (≤ 1% at the bubble’s center)
even though SPH always has a slightly higher error level. Next, when the density and viscosity ratios
remains moderate (i.e. respectively up to 5 and 2 in Figs. 4.30c and 4.30d), both methods are under
2.5% error compared to the reference solution. Additionally, we see that LBM o�ers a better order of
convergence than SPH. In fact, LBM sees its order of convergence maintained (from 0.768 to 0.792)
compared to the previous case unlike SPH where it decreases (from 0.838 to 0.392). Moreover, LBM
is less accurate than SPH for the two lowest resolutions 60 × 60 and 100 × 100 but performs better
for the 200 × 200 case thanks to its higher order of convergence. Overall, although both methods are
returning satisfactory results for this case, we begin to observe a fall in performance whether it is for
the order of convergence (for SPH) or for the error levels (for LBM and SPH) because gradients at stake
are steeper. Then, for the high density ratio case where ( ρheavy

ρlight
,
µheavy
µlight
) = (1000, 1000) shown in Figs. 4.30e

and 4.30f, we can see that the order of convergence of SPH remains roughly the same compared to the
previous case (0.838 vs 0.778). The maximum error level is ≤ 6% i.e. higher than the �rst case. This
tends to indicate that when the density ratio increases, SPH is a quite robust and o�ers a reasonable
accuracy for the same order of convergence. On the other hand, LBM sees its order of convergence
not a�ected by the presence of this density ratio (0.759 vs 0.768) while maintaining approximately the
same error level. Finally, we looked at one last case, shown in Figs. 4.30g and 4.30h, where the density
ratio is equal to 1 and the viscosity ratio increased up to 100. One can immediately note that, for both
methods, the pressure pro�les are heavily impacted at the interface (oscillations) in particular for the
60 × 60 case. However, when looking at the pressure jump at the center of the bubble, LBM appears
very robust to the presence of such a strong viscosity ratio. Indeed, we see that the error levels are of
the same order than those of the �rst case and that the order of convergence is even higher (0.768 vs
0.891). It shows that re�ning the lattice strongly helps to stabilize the pressure �eld. On the contrary,
SPH appears more a�ected. The error levels are the highest of all four cases considered and the order of
convergence is inferior to the �rst case (0.838 vs 0.658). Moreover, the error does not seem to decrease
anymore exponentially with the number of particles although more simulations would be needed to
further check that statement.

To sum up, for limited density ratios and viscosity ratios, both methods are able to reproduce the
pressure jump predicted by Eq. (4.3.2) with a good accuracy and with steep and clean pressure/density
pro�les. When the density ratio increases up to 1000, SPH seems to be more resilient than LBM in the
sense that its order of convergence is not impacted by the presence of such a strong density ratio. LBM
seems less robust in the same situation. On the contrary, when the viscosity ratio goes up to 100, both
methods render perturbed pressure pro�les. However, it is SPH that appears to have more problem to
handle a strong viscosity ratio whereas LBM maintains its performance level.
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Figure 4.30: (a,c,e,g) Pressure pro�les at steady state for di�erent resolutions and di�erent density
and viscosity ratios. (b,d,f,h) Log-log L2 error plots as function of resolution (superposed with linear
regressions of slope S).
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Contact angle case In addition, we compared the ability of the previously described implementations
of SPH and LBM to impose a contact angle in a three phase problem (wetting phase,non-wetting
phase,solid phase). We consider a square domain (1 m×1 m) with an initial rectangular droplet (0.33 m×
0.165 m) discretized with 100 × 100 nodes/particles. h/∆p is set to 2 for this case. The density ratio
and the viscosity ratio between the �uid phases are set to one. For SPH, the surface tension coe�cient
between the wetting and non-wetting phase, denoted σnw , and the one between the wetting and the
solid phase, denoted σ sw , are both �xed and respectively set to σnw = 1.88 N/m and σ sw = 0 N/m. The
surface tension coe�cient between the non-wetting and the solid phase, σ sn , is adjusted to match the
desired contact angle θprescribed

c using the Young-Laplace equation θc = σ sw−σ sn
σnw . For LBM, we follow

the procedure described in Sect. 3.12.1.4. The surface tension coe�cient is set to σ = 1.26 × 10−2 l .u ..
Once a steady state is reached, the observed contact angle θobserved

c is measured and reported in Fig. 4.31.
The coe�cient of determination is ≥ 0.99 for both methods con�rming that can properly prescribed a
contact angle at the triple point. Finally, one can observe the normalized velocity �eld at steady state
for θprescribed

c = 150◦. The same comments made before are still valid, LBM spurious currents are less
spread throughout the domain than in SPH. This is likely due to the Lagrangian nature of SPH where
particles have to rearrange to match the simulated physics.
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Figure 4.31: Comparison between prescribed and observed contact angles for both SPH and LBM (density
and viscosity ratios are both equal to one).

Figure 4.32: Normalized velocity �eld for LBM (left) and SPH (right) for θprescribed
c = 150◦.
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4.3.4 Capillary Rise

The well-known capillary rise problem is a simple test case to further verify the ability of both models
to reproduce contact line dynamics. The problem is described in Figure 4.33. It consists of two �uids,
one on top of the other. Two vertical parallel plates are immersed in the �uids. Thanks to the action
of surface tension, the lower �uid will rise along the parallel plates forming a meniscus between them.
The lower liquid height reached at steady state follows Jurin’s law

HJ =
2σnw cosθc
(ρw − ρn)дD (4.3.4)

with σnw the surface tension coe�cient between the wetting and the non-wetting phase, θc the contact
angle, ρw and ρn the densities of the wetting and non-wetting phase, д the gravity and D = 4L

5 the
horizontal distance between the two plates (with L = 2.5cm).

For SPH, simulations were performed with four di�erent resolutions : 100 × 100, 140 × 140 and
223 × 223 particles. The surface tension coe�cient is set to 0.25 N/m. γ = 7.0 for both �uids. For
LBM, simulations were performed with four di�erent resolutions : 223 × 223, 316 × 316 and 447 × 447
nodes. h/∆p is set to 1.5 for this case. The surface tension coe�cient is set to 0.01 l .u .. The density and
viscosity ratios are both equal to one.

The �nal height of the lower �uid is then measured and reported in Figure 4.35. On Figure 4.34, one
can observe the �nal particle distributions for di�erent resolutions. The top and bottom boundaries are
modeled with non-slip conditions whereas the left and right boundaries are periodic.

4L D

LFluid 2

Fluid 1

Figure 4.33: The capillary rise problem

It is not completely fair to compare both methods on this case since we do not simulate the exact
same Reynolds number and because the geometry is not consistent. For example, the walls in SPH are
constituted with the minimum number of particles so that particles on one side do not interact with

(a) SPH (from left to right 10k and 50k particles) (b) LBM (from left to right 50k and 100k nodes)

Figure 4.34: Steady state results with for θc = 30◦
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Figure 4.35: Measured error between the �nal height of the lower �uid for di�erent resolutions and
di�erent contact angles

the particles on the other side which results in a changing geometry. Similarly in LBM, the physical
surface tension value changes2 as we increase the resolution (that is why on Fig. 4.34, the �uid level is
di�erent for LBM). In addition, because we have used periodic boundary conditions, we realized later
that there are actually two “Jurin’s law” in competition whereas Jurin’s law is assuming a �uid at rest
outside the column which is not the case here. However, regarding the results shown in Fig. 4.35, we
see that for both methods the behavior depends on the contact angle value. When the contact angle
is smaller, both methods are less e�cient in terms of convergence and/or accuracy. Moreover, for the
case 50k particles/nodes and θc = 60◦, LBM is much more accurate (2.5% vs 5%) than SPH while SPH
appears more resilient in front of low contact angle than SPH.

4.4 Intermittent two-phase �ows in pipes

In the following section, we extend our comparative study to two cases of intermittent two-phase �ows
in pipes for di�erent Reynolds numbers. The �rst one is periodic and gravity-driven while the second
one is generated by a velocity inlet and a pressure boundary condition respectively at the inlet and
outlet of the pipe.

4.4.1 Periodic case

In this section, we study the establishment of di�erent periodic two-phase �ow patterns under the
in�uence of gravity д starting from a given bubbly �ow. Following [Minier 2016], the initial con�gura-
tion is composed of 27.25% of light phase and 72.75% of heavy phase and is described in Fig. 4.36. All
physical properties and simulation properties are in Tab. 4.5. The heavy phase viscosity µl is adjusted
as function of the Reynolds number Re = дH 3

8ν 2
l

. The initial velocity �eld u is u(x,y) = д
2νl y(H − y).

Viscosity values and dimensionless numbers for each case are reported in Tabs. 4.6 and 4.7. No-slip
boundary conditions are applied to the walls. The simulations is done with 50000 nodes/particles for
t = 30 s. h/∆p is set to 2 for this case. Four di�erent Reynolds numbers were tested : Re = 10, 50, 100

2We remind that as described in Sect. 3.7, we can write : σphys = σla
∆x 3

phys
∆t 2

phys
ρ0phys.
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and 500. The phase distributions, pressure �elds and velocity �elds at �nal state are shown in Figs. 4.37,
4.39 and 4.40 respectively.

L = 6H

H L/12 H/2H/4
L/24

(periodic)
д

Figure 4.36: Initial con�guration sketch. The large bubbles radius is R = 0.2H and the small bubbles’
radius is R2 = R/3. The pipe height is H = 0.1 m.

Property Light Phase Heavy Phase Units

Density (ρ) 1.0 5.0 kg/m3

Viscosity (µ) µд = µl/2 µl Pa.s
Contact Angle (θc ) 0 ◦

Surface Tension (σnw ) 5.0968 × 10−2 N/m
Gravity (дx ) 1.0 m/s2

Space step (∆x ) 1.09 × 10−3 m
Domain size (Lx × Ly ) 0.6 × 0.1 m

(a) SPH

Light Phase Heavy Phase Units

1.0 5.0 l .u .

µд = µl/2 µl l .u .

0 ◦

2.11 × 10−2 l .u .

5.0 × 10−7 l .u .

1.09 × 10−3 l .u .

551 × 91 l .u .

(b) LBM

Table 4.5: Simulation parameters.

Case µд (Pa.s) µl (Pa.s)

1 (Re = 10) 8.84 × 10−3 1.77 × 10−2

2 (Re = 50) 3.95 × 10−3 7.91 × 10−3

3 (Re = 100) 2.79 × 10−3 5.59 × 10−3

4 (Re = 500) 1.25 × 10−2 2.50 × 10−3

(a) SPH

µд (l .u .) µl (l .u .) τд τl

6.86 × 10−2 3.43 × 10−1 1.014 0.706
7.67 × 10−2 1.53 × 10−2 0.730 0.592
5.42 × 10−2 1.08 × 10−2 0.663 0.565
2.43 × 10−2 4.85 × 10−2 0.572 0.529

(b) LBM

Table 4.6: Viscosity values for each case.

In Fig. 4.37, it is possible to see that both methods reproduce the same �ow pattern for all four Re
numbers considered. For 10 ≤ Re ≤ 100, we obtain a bubbly �ow composed of three di�erent Taylor
bubbles whereas for Re = 500, we have an annular �ow where the heavy phase is in contact with the
pipe and the light phase travels in the middle. For Re = 10, we observe that SPH present a bubbly �ow
where one bubble is clearly smaller than the two others. It is not the case in LBM where all bubbles
are identical within each case. Besides, for this case, we have heavy phase droplets than are captured
inside light phase bubbles. Note that these small bubbles are to be absorbed by the main �ow if the
simulation lasted longer because they are moving slower than their environment. For Re = 50 and
Re = 100, we obtain in all cases the same pattern made of three identical Taylor bubbles. Moreover,
as shown in Fig. 4.38, the bubbles’ shapes between SPH and LBM for 10 ≤ Re ≤ 100 are very similar.



150 Chapter 4. Comparison of multiphase formulations of SPH and LBM

Case Re =
дL3

y

8ν 2
l

La =
σ ρl Ly
µ2
l

Bo =
∆ρдL2

y
σ

1 10 82 0.7848
2 50 408 0.7848
3 100 816 0.7848
4 500 4077 0.7848

Table 4.7: Reynolds, Laplace and Bond numbers for each case.

Re = 10

Re = 50

Re = 100

Re = 500

Figure 4.37: Steady state for di�erent Re . SPH and LBM results are on the left and right columns
respectively.

Finally, as Re grows, the Taylor bubbles are getting slightly shorter and higher in size. For Re = 500, we
again see that LBM o�ers a perfectly symmetric annular pattern. On the contrary, the bottom heavy
phase layer in SPH is thicker than the top one. In general, LBM provides more symmetric results than
SPH because of its Eulerian nature.

Re = 10 Re = 50 Re = 100

Figure 4.38: Superposition of bubbles’ shapes obtained with SPH (blue) and LBM (red) for di�erent
Reynolds numbers.

In Fig. 4.39, we can see that for Re = 10, the pressure �elds is dominated by the captured droplets
of heavy phase inside the bubbles. For Re = 50 and 100, the pressure �eld reaches a maximum for SPH
inside the bubbles whereas for LBM it is at the interface. Nevertheless, as predicted by Laplace’s law,
the pressure is higher inside the light phase’s bubbles than in the heavy phase bulk. When looking at
the velocity �elds in Fig. 4.40, we see that they are also very similar. The same patterns surrounding
the bubbles can be observed. For the annular case where Re = 500, it is possible to see that the no-slip
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condition on the walls a�ects the �ow more strongly in LBM than in SPH which results in a �atter
velocity pro�le for the latter.

Re = 10

Re = 50

Re = 100

Re = 500

Figure 4.39: Normalized pressure �elds at steady state for di�erent Re . SPH and LBM results are on
the left and right columns respectively. Pressure is normalized by the maximum pressure inside the
bubbles.

Re = 10

Re = 50

Re = 100

Re = 500

Figure 4.40: Normalized velocity �elds at steady state for di�erent Re . SPH and LBM results are on the
left and right columns respectively.

For Re = 50 and Re = 100, where the SPH and LBM patterns are the closest, we compared the
density, velocity and pressure �elds along the centerline on Figs. 4.41 and 4.42. Note that because the
bubbles do not have the exact same position, we have shifted the LBM pro�les from a �xed distance
to be able to superpose the pro�les. On the density plots of Figs. 4.41a and 4.42a, the di�erent density
treatment in both methods clearly appears. In LBM, the density is smoothed at the interface whereas
in SPH, thanks to its Lagrangian nature, there is no interface smoothing in the density �eld because
a given particle belongs to one phase or not, there is no intermediate state. Concerning the pressure
�elds shown in Figs. 4.41b and 4.42b, we observe that LBM su�ers from the same overshoots at the
interface that were described and explained in Sect. 4.3.3. On the other hand, the SPH pressure �eld
is polluted with noise. Despite these discrepancies, both pro�les are very close. Finally, in Figs. 4.41c
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and 4.42c, we see the velocity pro�les in both methods have the same shape. The bubbles are moving
at a much higher speed than the surrounding �uid (about 30% faster). At each interface, the velocity
reaches a local minimum. The only di�erences between both pro�les is that in certain areas, the SPH
velocity peaks have a smaller amplitude than in LBM. For example, the bubble velocity is the same for
all three bubbles in LBM for Re = 50 whereas for SPH the last bubble travels about 10% faster than the
other ones. One last comment is that in LBM at the interface, the velocity �eld present non-physical
oscillations due to the �uids mixing at the interface. It is not the case in SPH because the pressure �eld
does not su�er from pressure overshoots and �uids are not mixed at the interface.
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Figure 4.41: CaseRe = 50. (a) Superposed densities. (b) Superposed normalized pressures. (c) Superposed
normalized velocities.
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Figure 4.42: Case Re = 100. (a) Superposed densities. (b) Superposed normalized pressures. (c) Super-
posed normalized velocities.

To conclude, we can add that SPH and LBM are both well capable of simulating the transition from
a given bubbly �ow to a slug �ow composed of Taylor bubbles for Re ≤ 500. To further assess their
relative performance, an extended comparison with other methods or with experimental data would be
of great interest. Note that we have limited our study to Re ≤ 500 because, for higher velocities and/or
smaller viscosities, we lie outside LBM stability region whether because the low Mach rule is violated
or because the relaxation time is too close from 0.5.
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4.4.2 Inlet/outlet case

In this section, we study the ability of both methods to simulate a predicted intermittent �ow regime.
We consider an horizontal pipe of diameter D = 1 m and length L = 10D. The light phase and heavy
phase are denoted with a д and l subscript respectively. The �ow enters from the inlet (left) and is
assumed to be strati�ed with given volume fractions for each phase αд = 0.2 and αl = 0.8. All the
physical properties are summarized in Tab. 4.8. Using these properties, it is possible to plot the �ow
regime map, see Fig. 4.443, and to pick an area to be investigated in the intermittent region. In this
area, we adjust the viscosity to choose two cases that correspond to Re = 125 and Re = 312.5. Viscosity
values and dimensionless numbers for each case are reported in Tabs. 4.9 and 4.10. Both cases were
simulated in 2D with 25000 nodes/particles. h/∆p is set to 2 for this case. The simulation time was 30 s.
At the inlet, each phase is injected with a constant velocity corresponding to its super�cial velocity
usд,l = αд,luд,l . At the outlet, a constant pressure equal to the initial pressure p0 is prescribed. Free slip
boundary conditions are applied on the top wall and no slip boundary conditions on the bottom wall (we
were not able to generate a slug �ow in LBM with no-slip boundary conditions on both walls). Since the
�ow map [Taitel 1976] assumed the light phase is a gas, it is reasonable to impose free slip boundary
conditions on the top wall because the gas is not supposed to stick to the wall. The initial setup is
presented in Fig. 4.43. The phases distributions for each case are shown in Fig. 4.45 along with the
associated plots showing the volume fraction evolution over time, the average pressure drop evolution
over time, the heavy/light phase velocity evolution over time respectively in Fig. 4.46, Fig. 4.48 and
Fig. 4.49. Note that unlike previous sections in which only the dimensionless numbers such as Re were
similar between SPH and LBM, in this section, we simulate the exact same test case in both methods. It
means when converting LBM lattice units from Tab. 4.8b to physical units following [Latt 2008a], one
can re-obtain the values shown in Tab. 4.8a.

L = 10m

D = 1m
uд

ul
p0

Light Fluid (αд)

Heavy Fluid (αl )

Figure 4.43: Initial con�guration sketch.

In Fig. 4.45, one can see snapshots of the phases’ distribution for both methods at selected timesteps.
It is clear that both methods are able to generate a slug �ow as predicted by the �ow map of Fig. 4.44.
However, LBM produces a much more regular intermittent �ow pattern with a lower slug frequency than
SPH. This can also be seen in Figs. 4.46 and 4.47. For example, for Re = 312.5, the LBM slug frequency
at the outlet is approximately 1.52 Hz whereas for SPH it is close to 3.22 Hz. The slug frequency seems
to remain roughly stable or to slightly increase (about +1.1 Hz for LBM and about +0.8 Hz for SPH for
the highest peak) when Re changes from 125 to 312.5 although it is less obvious in SPH periodograms
due to the noise and composition of the signal. It is expected that the slug frequency increases when
Re increases but we could not raise Re higher without making LBM simulations unstable (τ → 0 or
Ma → 1). In addition, SPH periodograms are noisier with 2 to 4 major frequency components unlike
LBM where one frequency clearly emerges. It indicates that SPH volume fraction signals are less regular
and are composed of signals with di�erent frequencies. Moreover, we can observe in both methods that
the point where the �rst slug appears is in general closer from the pipe entry when Re is smaller. This
is expected since when velocities are smaller at the entry, the �rst slug tends to form earlier in the pipe.

3In order to plot the map, one has to compute the Lockhart-Martelli [Lockhart 1949] parameter which depends on n,m,
Cд and Cl . In this study, we used n =m = 2 and Cд = Cl = 0.042
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Property Light Phase Heavy Phase Units

Density (ρ) 1.0 5.0 kg/m3

Viscosity (µ) µд = µl/2 µl Pa.s
Sound speed (cs ) 153.73 68.75 m/s
Surface Tension (σnw ) 0.01 N/m
Contact Angle (θc ) 90 ◦

Gravity (дz ) 5.556 m/s2

Space step (∆x ) 0.02 m
Time step (∆t ) 6.53 × 10−5 s
Domain size (Lx × Ly ) 10 × 1 m
Inlet velocity (u) 1.0416 6.25 m/s

(a) SPH

Light Phase Heavy Phase Units

1.0 5.0 l .u .

µд = µl/2 µl l .u .

0.5773503 l .u .

7.2 × 10−5 l .u .

90 ◦

1.6 × 10−5 l .u .

1.0 × 10−2 l .u .

2.4 × 10−4 l .u .

500 × 50 l .u .

1.25 × 10−2 7.5 × 10−2 l .u .

(b) LBM

Table 4.8: Simulation parameters.
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Figure 4.44: Flow regime map

Case µд (Pa.s) µl (Pa.s)

1 (Re = 125) 1.25 × 10−1 2.5 × 10−1

2 (Re = 312.5) 5 × 10−2 1 × 10−1

(a) SPH

µд (l .u .) µl (l .u .) τд τl

7.5 × 10−2 1.5 × 10−1 0.725 0.59
3.0 × 10−2 6.0 × 10−2 0.59 0.536

(b) LBM

Table 4.9: Viscosity values for each case.

Case Re =
Lyul
νl

La =
σ ρl Ly
µ2
l

Bo =
∆ρдL2

y
σ

1 125 0.8 2222
2 312.5 5 2222

Table 4.10: Reynolds, Laplace and Bond numbers for each case.
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(a) SPH - Re = 125 (b) LBM - Re = 125

(c) SPH - Re = 312.5 (d) LBM - Re = 312.5

Figure 4.45: (a, b) From top to bottom : snapshots at t = 4.7 s, 13.5 s, 25 s. (c, d) From top to bottom :
snapshots at t = 4.2 s, 16.4 s, 25.6 s.
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(c) SPH - Re = 312.5
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Figure 4.46: Evolution of the volume fractions at the outlet over time.
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Figure 4.47: Periodograms of the heavy phase volume fraction time series (in blue in Fig. 4.46). The
mean has been removed from the signal before performing the Fourier transform to remove the 0 Hz
frequency component.
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Figure 4.48: Evolution of the normalized pressure drops over time.



158 Chapter 4. Comparison of multiphase formulations of SPH and LBM

In Fig. 4.48, the raw and average pressure drops evolution over time for all the di�erent cases studied
are shown. One can notice that in all cases, the pressure drops are ≥ 0 on average (even though strong
oscillations are observed). We observe that both methods are returning the same average pressure drop
level around ≈ 0.01p0 for Re = 125 and ≈ 0.003p0 for Re = 312.5. However, for both methods the
pressure drop level slightly decreases when Re increases which is unlikely. It may be due to several
factors : the quality of the boundary conditions, the recirculation areas at the entry that tend to lower
the pressure and the averaging area chosen (i.e. 0.1 m (from the inlet) ×D). In addition, we see that SPH
plots present high frequency oscillations. This is a known issue in weakly compressible SPH where the
particles spatial distribution is directly linked to the density/pressure.
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Figure 4.49: Evolution of the normalized velocities over time.

In Fig. 4.49, the evolution over time of the heavy phase and light phase velocities within the whole
pipe are shown for all cases considered. After a transient period of ≈ 4 s, the light and heavy phase
velocities stabilize around a �xed value when a periodic state is reached. The main di�erence between
SPH and LBM on this aspect is that the �nal velocity values are higher in LBM than they are in SPH.
Overall, the average velocity �eld in LBM is 20%v in higher than in SPH. In our opinion, this is due to the
wall boundary conditions that are handled in a very di�erent way in both methods (full bounce back
approach in LBM and interpolation-based approach in SPH) and to the wetting boundary conditions
that is also handled di�erently. Those can strongly a�ect the �ow, especially in dynamic cases like the
ones considered in this section. From a general point of view, one can add that the oscillations observed
in Figs. 4.48 and 4.49 are gaining amplitude when Re increases in SPH whereas it is not the case in
LBM for which they tend to reduce. The major slug frequency being higher in SPH than in LBM tends
to indicate that the LBM contact angle imposition procedure results in a stickier wall behavior of the
bubbles, despite the fact that the global �ow velocity is higher in LBM than in SPH.
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In a nutshell, as predicted by Taitel and Dukler’s �ow map, both methods are capable to generate
a slug �ow pattern starting from the exact same simulation setup. Nevertheless, unlike all previous
test cases for which the results were globally similar, we obtain signi�cantly di�erent �ow patterns.
Indeed, SPH produces bigger bubbles and in a more irregular way compared to LBM. We tend to believe
that it is due to boundary conditions. In addition, we could not extend our study to higher Re number
because LBM was not stable anymore. Although, we tend to think that LBM is entitled to propose the
best solution, in particular because of its superior accuracy, its narrow stability range may be a serious
drawback to simulate two-phase �ows in pipes at realistic Re numbers.

4.5 Conclusion

In this chapter, we presented inlet/outlet boundary conditions for multiphase �ows for SPH by com-
bining ideas from [Tafuni 2018, Alvarado-Rodríguez 2017] and for LBM by extending LBM Zou-He
boundary conditions.

From a general point of view, we have con�rmed that LBM o�ers a better order of convergence and
a better accuracy than SPH although it su�ers from a more narrow stability range than SPH. In many
situations for which the Mach number is too high or the viscosity is too low, LBM will be unstable
contrary to SPH which is only controlled by the CFL condition. Note that research on the extension of
LBM to high Mach numbers is very active. In addition, SPH tends to generate pressure �elds that are
noisier than with LBM because of the Lagrangian behavior of particles whose position is directly linked
to pressure through the density evaluation. This problem has been the subject of many investigations
and several treatments are available (delta-SPH [Marrone 2011], SPH-ALE [Oger 2016], turbulence
models [Violeau 2007a] or ISPH [Hu 2007]). Moreover, LBM is more computationally e�cient than
SPH by construction.

On the multiphase aspects, both methods are very capable to simulate a variety of dynamic incom-
pressible multiphase �ow problems with good precision in the case of moderate density and viscosity
ratios. However, we have noted that, on one hand, SPH appears more robust for high density ratios than
LBM and, on the other hand, SPH has more trouble to handle high viscosity ratios than LBM. Another
di�erence is that, at the interface, the �uids are mixed resulting in a di�use interface whereas with SPH,
particles are a�ected to one phase or the other without any mixing. More speci�cally, both methods
have been able to simulate slug �ows where expected but, due to boundary conditions, there might be
di�erences in slug frequency and/or slug sizes.

To conclude, according to the results presented in this chapter, our recommendation would be to
use LBM when stability is not an issue and SPH otherwise.
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Our goal with this chapter is to contribute to the ongoing e�ort to show that SPH can be applied
to industrial cases. To this end, we used recent multiphase SPH features available in the literature to
simulate a set of close-to-industry test cases. To the best of our knowledge, the only previous SPH study
on the topic is available in [Minier 2016] and is focused on the transition from bubbly �ow to slug �ow
using periodic boundary conditions and a gravity-based driving force.

In this chapter, we �rst verify the ability of our SPH model to recover di�erent �ow regimes predicted
by Taitel and Dukler’s �ow map [Taitel 1976] and we study the transition processes between two �ow
patterns in sections 5.1 and 5.2. Then, in Sect. 5.3, we present two more realistic cases involving high
density and viscosity ratios. Next in Sect. 5.4, we come back on selected results of the previous sections
but this time studying the in�uence of the spurious interface correction detailed in Eq. (2.7.21) on these
results. Finally in Sect. 5.5, we conclude this chapter with a comparison with experimental data on real
cases of strati�ed and slug �ows.

SPH immiscible multiphase model For the following simulations, the immiscible multiphase SPH
model previously presented in Sect. 4.2 has been used.

5.1 Flow regimes

We consider an horizontal pipe of diameter D = 1m and length L = 10D. The light phase and heavy
phase are denoted with a д and l subscript respectively. The �ow enters from the inlet (left) and is
assumed to be strati�ed with equal volume fraction for each phase αд = αl = 0.5 (50% of heavy phase
and 50% of light phase). We stress that despite the use of volume fractions to describe the problem,
the �uids are not initially mixed. All the physical properties are summarized in Tab. 5.1. Using these
properties, it is possible to plot the �ow regime map, see Fig. 5.21, and to pick four cases, one in each
region, to be simulated. Those cases and their corresponding parameters are presented in Tab. 5.2 and
marked by di�erent symbols on Fig. 5.2. All cases were simulated in 2D with three di�erent resolutions
L/∆r = 312, 444 and 704 which corresponds approximately to 10000, 20000 and 50000 particles. h/∆p is
set to 2 for this case. The simulation time was 30 s. At the inlet, each phase is injected with a constant
velocity corresponding to its super�cial velocity usд,l = αд,luд,l . At the outlet, a constant pressure
equal to the background pressure is prescribed. The initial setup is presented on Fig. 5.1. The �nal
two-�ow patterns for the di�erent cases, the evolution of the volume fraction with time at the outlet
and the average pressure drop between both ends of the pipe is presented on Figs. 5.3 to 5.7. In addition,
the evolution of the velocity magnitude along the pipe’s length for each phase for the three particle
resolutions considered is shown on Figs. 5.8 and 5.9.

L = 10m

D = 1m
uд

ul
p0

Light Fluid (αд)

Heavy Fluid (αl )

Figure 5.1: The initial con�guration for all cases (not at scale).

1There exists a large variety of �ow regime maps to help characterize two-phase �ow regime in pipes. For the particular
case of horizontal pipes, one can mention Baker’s map [Baker 1953] and Barnea’s map [Barnea 1987]. In this work, Taitel
and Dukler’s map [Taitel 1976] has been used to predict �ow regimes. In order to plot the map, one has to compute the
Lockhart-Martelli [Lockhart 1949] parameter which depends on n, m, Cд and Cl . In this study, we used n = m = 2 and
Cд = Cl = 0.042
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Property Light Phase Heavy Phase Units

Density (ρ) 1 5 kg/m3

Viscosity (µ) 5 × 10−3 1 × 10−2 Pa.s
Adiabatic index (γ ) 7 7 -
Surface Tension (σnw ) 0.001 N/m
Contact Angle (θc ) 90 ◦

Gravity (дz ) -1 m/s2

Table 5.1: Physical Properties

Property Case 1 Case 2 Case 3 Case 4 Units

Flow pattern Mist Dispersed Intermittent Strati�ed -
Super�cial velocities (usд ,usl ) (4.9,0.06) (0.05,8) (0.25,2) (0.7,0.06) m/s
Reynolds number (Re = (u

s
д+u

s
l )D

νдαд+νlαl
) 1417.14 2300 642.86 217.14 -

Friedel Pressure Drop Prediction (∆pFriedel) 20.931 98.513 11.961 4.1 Pa

Table 5.2: Cases properties

10−2 10−1 100 101 102
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Figure 5.2: Flow regime map adapted from [Taitel 1976]
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For information purposes, Friedel correlation [Friedel 1979] has been used to evaluate the expected
pressure drops for the four considered cases of Fig. 5.2. These values reported in Tab. 5.2 are to be taken
with caution as the Friedel correlation has proven not to be very reliable for rectangular channels, sepa-
rated �ows and/or viscous �uids [Müller-Steinhagen 1986, Wambsganss 1992, Spedding 2006]. Besides,
on the same table, we also report the average Reynolds number for the considered geometry and �ow
conditions. Note that this is an average value. Depending on how it is computed, the Reynolds number
could be locally much higher than the given value.
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d’origine particulaire SPH et LBM pour la
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d’origine particulaire SPH et LBM pour la
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École Normale Supérieure Paris-Saclay Examinatrice
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École Polytechnique de Montréal Examinateur
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Figure 5.3: Results for case 1 (Mist �ow) : (a,b,c) Phases distribution at t = 30 s (not at scale). (d,e,f)
Evolution of the volume fractions at the outlet with time. (g,h,i) Evolution of the average pressure drop
at the outlet with time.

On Figs. 5.3a to 5.3c, one can observe that a mist �ow pattern where the heavy phase is scattered
by the light phase. It is con�rmed by Figs. 5.3d to 5.3f where we see that the light phase outlet volume
fraction goes to 1 after a transient period. Note that, in 3D, this mist pattern could be an annular �ow
under certain conditions. As the number of particles increases, Figs. 5.3g to 5.3i show that the pressure
drop level decreases and appears to stabilize around ≈ 100 Pa. This is higher than predicted by Friedel
correlation. Note that turbulence is not included in the present model whereas the Reynolds number Re
is becoming turbulent and that the turbulent viscosity would contribute to stabilize the pressure �eld.
For turbulence modeling in an SPH context, one can refer to [Shao 2005, Violeau 2007a, Rogers 2008]
or [Monaghan 2011].

On Figs. 5.4a to 5.4c, pictures show a typical dispersed bubbly �ow pattern where the light phase is
spread-out by the heavy phase. Figs. 5.4d to 5.4f support this claim as one can note that the heavy phase
outlet volume fraction quickly goes to 1 after a transient period. On Figs. 5.4g to 5.4i, the pressure drop
evolution with time presents large oscillations and its average level varies strongly with the particles’
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(a) L/∆r = 312 (b) L/∆r = 444 (c) L/∆r = 704

0 10 20 30
0

0.25

0.5

0.75

1

Time (s)

Vo
lu
m
e
Fr
ac
tio

n

Heavy Phase
Light Phase

(d) L/∆r = 312

0 10 20 30
0

0.25

0.5

0.75

1

Time (s)

Vo
lu
m
e
Fr
ac
tio

n

Heavy Phase
Light Phase

(e) L/∆r = 444

0 10 20 30
0

0.25

0.5

0.75

1

Time (s)
Vo

lu
m
e
Fr
ac
tio

n

Heavy Phase
Light Phase

(f) L/∆r = 704

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LN
03

0
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Florian De Vuyst
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Henri Calandra
Total E&P Co-encadrant

Philippe Ricoux
Massachusetts Institute of Technology Invité
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Figure 5.4: Results for case 2 (Dispersed �ow) : (a,b,c) Phases distribution at t = 30 s (not at scale). (d,e,f)
Evolution of the volume fractions at the outlet with time. (g,h,i) Evolution of the average pressure drop
at the outlet with time.
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resolution (from≈ 500 Pa to≈ 0 Pa). It even becomes negative at some instants testifying the occurrence
of important recirculation areas near the light phase inlet. It is also higher than what Friedel correlation
predicts. However, as stated before, turbulence e�ects are not taken into account whereas the Reynolds
number Re is typically turbulent. We believe the turbulent viscosity would help to stabilize the pressure
�eld.
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Henri Calandra
Total E&P Co-encadrant

Philippe Ricoux
Massachusetts Institute of Technology Invité
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École Polytechnique de Montréal Examinateur
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École Normale Supérieure Paris-Saclay Examinatrice
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Figure 5.5: Results for case 3 (Intermittent �ow) : (a,b,c) Phases distribution at t = 30 s (not at scale).
(d,e,f) Evolution of the volume fractions at the outlet with time. (g,h,i) Evolution of the average pressure
drop at the outlet with time.

On Figs. 5.5a to 5.5c, we can see that an intermittent �ow is established as expected. The intermittent
character of the �ow pattern is later con�rmed by the volume fraction time series of Figs. 5.5d to 5.5f
where we can see that the light phase volume fraction is strongly oscillating between 0.25 and 0. It
means that long bubbles are generated at a given frequency which corresponds to the de�nition of a
slug �ow. On Figs. 5.5g to 5.5i, the pressure drop average level decreases when the number of particles
increases, varying from ≈ 30 Pa to ≈ 5 Pa. Friedel correlation predicts a pressure drop of ≈ 10 Pa which
is of the same order of magnitude. It goes under 0 Pa during brief instants or during the transient phase
because of the recirculation areas near the inlet. As shown on Fig. 5.6, the intermittent �ow presented
in this plots would evolve towards a fully developed slug �ow if the pipe was longer.

Finally, on Figs. 5.7a to 5.7c, we observe a fully developed strati�ed �ow. Figs. 5.7d to 5.7f show that
the phase distribution is adjusting itself with time to reach a periodic steady state where the light phase
volume fraction is ≈ 0.25 and the heavy phase volume fraction is ≈ 0.75. The pressure drop evolution
presented on Figs. 5.7g to 5.7i show much smaller oscillations than the other cases because the �ow is
evolving at a smaller speed. Its average level goes from ≈ 7.5 Pa for the lowest resolution to ≈ 2.5 Pa
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(a) t = 10 s

(b) t = 20 s

(c) t = 30 s

Figure 5.6: Phases distribution at selected instants for case 3 (Intermittent �ow) with a pipe of 20 m
(L/∆r = 312, not at scale).
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Thèse présentée et soutenue à Cachan, le 7 octobre 2019, par

THOMAS DOUILLET-GRELLIER

Composition du Jury :

Damien Violeau
EDF R&D & LHSV Rapporteur

Ulrich Rüde
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Étude comparative des méthodes
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Sébastien Leclaire
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préparée à l’École Normale Supérieure Paris-Saclay

Ecole doctorale n◦574 Mathématiques Hadamard (EDMH)
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Figure 5.7: Results for case 4 (Strati�ed �ow) : (a,b,c) Phases distribution at t = 30 s (not at scale). (d,e,f)
Evolution of the volume fractions at the outlet with time. (g,h,i) Evolution of the average pressure drop
at the outlet with time.
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for the highest resolution. Friedel correlation gives an expected pressure drop of ≈ 4 Pa which is of the
same order of magnitude.

To sum up, one can observe that our current implementation of SPH is able to reproduce the two-
phase �ow patterns predicted by the �ow map of Fig. 5.2. Moreover, increasing the number of particles
helps to reduce the pressure �eld oscillations while reproducing the same physics.

Moreover, on Figs. 5.8 and 5.9, we provide plots showing the evolution of the velocity magnitude
along the pipe length at t = 30 s to verify that we do have a convergence of the velocity �eld when the
number of particles increases. To obtain these plots, the velocity magnitude has been averaged along
the pipe’s height for each phase. Note that, for the mist case (respectively the dispersed case), we do
not show the heavy phase velocity (respectively the light phase velocity) since there are not enough
particles of that phase to be considered within the pipe’s height. From a general point of view, what
we observed is that, as the resolution increases, the velocity �eld tends to become more stable solution,
presenting smaller oscillations and converging towards a steady state. This is particularly clear for the
strati�ed case of Figs. 5.8c and 5.9c. For the intermittent case, the velocity �eld also depends on the
distribution of the bubbles of light phase. For instance, the peak on Fig. 5.8b for the lowest resolution
corresponds to the tail of the bubble of Fig. 5.5a. This bubble just got formed and is self-adjusting its
shape under the e�ect of surface tension, hence the peak in velocity. Concerning the mist and dispersed
case of Figs. 5.9a and 5.8a, we do not recover the prescribed velocity of the dominant phase at the inlet.
It is because we average the velocity along the pipe’s height so that we include the recirculation areas
at the entry which tends to reduce the magnitude of the velocity �eld. It is di�cult to see a convergence
of the pressure drops’ evolution when re�ning the resolution in Figs. 5.3 to 5.7 because of the inherent
pressure noise due to the weakly compressible SPH and more importantly because of the pressure
waves re�ections at the boundaries. However, we can visually observe that convergence in the velocity
�eld especially for the steadier cases such as the strati�ed case.
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Figure 5.8: Heavy phase velocity magnitude along the pipe length at t = 30 s in function of the particle
resolution.
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Figure 5.9: Light phase velocity magnitude along the pipe length at t = 30 s as a function of the particle
resolution.

5.2 Flow transitions

Using the same geometry, �uid properties and �ow map as in the previous section, we picked four
di�erent paths from one �ow pattern to the other. For each path, we simulated four di�erent cases
that are marked with di�erent symbols on Fig. 5.10 and the corresponding parameters are shown on
Tab. 5.3. All cases were simulated in 2D with a particle resolution of L/∆r = 312 which corresponds
approximately to 10000 particles. h/∆p is set to 2 for this case. The simulation time was 30 s. At the inlet,
each phase is injected with a constant velocity corresponding to its super�cial velocity usд,l = αд,luд,l .
At the outlet, a constant pressure equal to the background pressure is prescribed. The �nal two-�ow
patterns for the di�erent cases, the evolution of the volume fraction with time at the outlet and the
average pressure drop between both ends of the pipe are shown on Figs. 5.11 to 5.14.

Property Path 1 Path 2 Path 3 Path 4 Units

Flow pattern Strati�ed to
Mist

Mist to
Intermittent

Strati�ed to
Intermittent

Intermittent to
Dispersed -

Super�cial velocities #1 (usд ,usl ) (1.0,0.06) (3.0,0.4) (0.3,0.15) (0.22,3.0) m/s
Super�cial velocities #2 (usд ,usl ) (1.5,0.06) (2.0,0.8) (0.25,0.25) (0.15,4.0) m/s
Super�cial velocities #3 (usд ,usl ) (2.5,0.06) (1.0,1.2) (0.2,0.6) (0.1,6.0) m/s
Super�cial velocities #4 (usд ,usl ) (3.5,0.06) (0.5,1.6) (0.2,1.0) (0.07,7.0) m/s
Reynolds number #1 (Re = (u

s
д+u

s
l )D

νдαд+νlαl
) 302.86 971.43 128.57 920.00 -

Reynolds number #2 (Re = (u
s
д+u

s
l )D

νдαд+νlαl
) 445.71 800.00 142.86 1185.71 -

Reynolds number #3 (Re = (u
s
д+u

s
l )D

νдαд+νlαl
) 731.43 228.57 642.86 1742.86 -

Reynolds number #4 (Re = (u
s
д+u

s
l )D

νдαд+νlαl
) 1017.14 600.00 342.86 2020.00 -

Table 5.3: Cases properties for the di�erent paths

On Figs. 5.11a to 5.11d, the transition from a strati�ed to a mist �ow (path 1) is shown. As the
super�cial velocity of the light phase increases from case #1 to case #4, the volume fraction of the
light phase is going to ≈ 1 while the volume fraction of the heavy �uid is going to 0. In between, we
can see that the heavy �uid layer is divided in pieces until being completely dispersed by the light
phase. Volume fractions plots of Figs. 5.11e to 5.11h show that the transition between the two patterns
goes through a phase of intermittent �ow where the heavy phase layer dislocates forming drops. On
Figs. 5.11i to 5.11l, the pressure drop level increases from ≈ 10 Pa to ≈ 150 Pa and present stronger and
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Figure 5.10: Four di�erent paths from one �ow pattern to another.
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Figure 5.11: Results for path 1 (Strati�ed to Mist) : (a,b,c,d) Phases distribution at t = 30 s (not at scale).
(e,f,g,h) Evolution of the volume fractions at the outlet with time. (i,j,k,l) Evolution of the average
pressure drop at the outlet with time.
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stronger oscillations while transitioning to the mist �ow pattern.
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Figure 5.12: Results for path 2 (Mist to Intermittent) : (a,b,c,d) Phases distribution at t = 30 s (not at
scale). (e,f,g,h) Evolution of the volume fractions at the outlet with time. (i,j,k,l) Evolution of the average
pressure drop at the outlet with time.

The transition from mist �ow to intermittent �ow (path 2) is presented on Figs. 5.12a to 5.12d.
From a quasi-mist �ow in case #1, we see that, as the heavy phase super�cial velocity increases, the
�uid becomes wavy and then evolves towards an intermittent �ow. This is magni�ed by the volume
fractions evolution plots of Figs. 5.12e to 5.12h where we see that the light phase dominant in case
#1 whereas the heavy phase is dominant in case #4. In all four cases, volume fractions are showing
signi�cant oscillations so that it is not obvious to qualify where the �ow becomes really intermittent.
This supports the well-known fact that �ow maps are only an indicative tool and that the transition
lines are not lines but smooth transitions areas. Concerning the pressure drop evolution of Figs. 5.12i
to 5.12l, we can see that the average level drops from ≈ 125 Pa to ≈ 25 Pa. The case #3 is particular
since in that case, super�cial velocities and volume fractions are the same, therefore it is a very stable
case where the pressure drop oscillations are the smallest.

On Figs. 5.13a to 5.13d, we present the phases distribution for the transition from a strati�ed �ow
pattern to an intermittent �ow pattern. As the heavy phase velocity increases, the heavy phase becomes
dominant and the interface with the light phase is more and more wavy near the outlet which pre�gures
the emergence of an intermittent �ow. Volume fractions plots shown on Figs. 5.13e to 5.13h support
that observation as the amplitudes of their oscillations are increasing when we move towards the
intermittent �ow pattern. On Figs. 5.13i to 5.13l, one can note that the pressure drops evolutions behave
similarly and their average level increases from ≈ 4 Pa to ≈ 8 Pa.
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Figure 5.13: Results for path 3 (Strati�ed to Intermittent) : (a,b,c,d) Phases distribution at t = 30 s (not
at scale). (e,f,g,h) Evolution of the volume fractions at the outlet with time. (i,j,k,l) Evolution of the
average pressure drop at the outlet with time.
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Figure 5.14: Results for path 4 (Intermittent to Dispersed) : (a,b,c,d) Phases distribution at t = 30 s (not
at scale). (e,f,g,h) Evolution of the volume fractions at the outlet with time. (i,j,k,l) Evolution of the
average pressure drop at the outlet with time.
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The transition from intermittent �ow to dispersed �ow is presented on Figs. 5.14a to 5.14d. The
�ow pattern evolves from a disturbed intermittent �ow that we could qualify of plug �ow towards
a dispersed �ow as the heavy phase velocity increases. On Figs. 5.14e to 5.14h, one can observe that
volume fractions time series are initially very unstable which is characteristic of an intermittent �ow.
The light phase and heavy phase volume fractions are going to ≈ 0 and ≈ 1 respectively as the dispersed
�ow pattern emerges. Concerning the pressure drops of Figs. 5.14i to 5.14l, as expected, it increases
from ≈ 75 Pa to ≈ 400 Pa with growing oscillations.

To conclude, we have explored the �ow map of Fig. 5.10 by simulating several cases located around
the transitions from one pattern to the other. We observed that the transition areas are not lines
but in fact smooth bands. Also, it appears that the intermittent �ow area gathers di�erent patterns
such as wavy �ows (in the lower part), slug �ows (in the center) and even plug �ows (in the upper
area). The pressure drop plots are providing useful information on the pressure �eld but are showing
strong variations which are due to the use of the weakly compressible formulation. This approach is
known to generate disturbances in the pressure calculations because of density and pressure are linked
through an equation of state (2.2.5). A truly incompressible SPH formulation would likely improve
this aspect. See [Hu 2007, Kunz 2015] for multiphase incompressible SPH models. Besides, the inlet,
outlet and wall boundary conditions that we have used are known to introduce spurious waves in the
�ow. We believe that implementing more accurate boundary conditions based on analytical considera-
tions [Ferrand 2012] and adapted to inlet/outlet for multiphase �ows could also improve the quality of
the results. Nevertheless, we think that these results show that SPH could be a complementary tool to
study the emergence of intermittent �ow patterns in pipes in industrial applications.

5.3 Applied cases with high density and viscosity ratios

In order to further demonstrate the potential of SPH to model intermittent �ows, we have simulated two
applied cases. The �uids considered for these cases are generic oil and natural gas whose properties are
indicated in Tab. 5.4. The two di�erent geometries corresponding to a hydrodynamic slugging case and
a terrain slugging case are shown on Fig. 5.15 and are discretized with resolutions L/∆r = 634 (≈ 10000
particles) and L/∆r = 687 (≈ 15000 particles) respectively. h/∆p is set to 2 for this case. Simulation times
are 0.05s and 0.25s respectively. Fluids are injected with super�cial velocities and volume fractions
given in Tab. 5.5. Note that we have chosen to work with a micro-geometry for computational and time
constraints while trying to preserve realistic proportions. Phases distributions for both cases are shown
on Figs. 5.16 and 5.17.

Property Gas Phase Oil Phase Units

Density (ρ) 1.6454 702.6926 kg/m3

Viscosity (µ) 1.27 × 10−5 4.19 × 10−4 Pa.s
Adiabatic index (γ ) 1.4 7 -
Surface Tension (σnw ) 0.02139 N/m
Contact Angle (θc ) 90 ◦

Gravity (дz ) -9.81 m/s2

Table 5.4: Physical Properties

On Fig. 5.16, it is possible to observe the typical formation process of a hydrodynamic slug. First,
from t = 0 s to t = 0.025 s, waves begin to grow. At t = 0.026 s, one the waves’ crest is high enough
to reach the top of pipe : a slug is formed. From t = 0.0275 s to t = 0.03 s, other waves reach the
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Figure 5.15: Geometrical con�gurations for the two applied cases (not at scale). (a) Hydrodynamic
slugging. (b) Terrain slugging.

Property Hydrodynamic slugging Terrain slugging Units

Volume fractions (αд ,αl ) (0.25,0.75) (0.25,0.75) m/s
Super�cial velocities (usд ,usl ) (0.35,0.76125) (0.35,0.76125) m/s

Table 5.5: Cases Properties

Figure 5.16: Phases distribution for the hydrodynamic slugging case (not at scale). From top to bottom,
at t = 0 s, 0.01 s, 0.02 s, 0.025 s, 0.026 s, 0.0275 s, 0.03 s, 0.035 s, 0.04 s and 0.05 s
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top of the pipe forming new slugs. After that, one can note that some slugs see their length reduced
and their height increased until occupying the whole pipe’s height. This example con�rms that SPH
can reproduce the dynamics of slug �ows with high viscosity and density ratios (here ≈ 32 and ≈ 427
respectively).
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Figure 5.17: (a) Phases distribution for the terrain slugging case. From left to right, at t = 0 s, 0.05 s,
0.1 s, 0.13 s, 0.188 s, 0.2 s and 0.25 s (b) Evolution of the volume fractions at the outlet with time. (c)
Fourier transform of the gas phase volume fraction time series (in red on (b))

On Fig. 5.17, we present the results of a "riser-like" case where the oil and gas mixture extracted
from the reservoir is lifted from the sea ground to the land. A slug �ow does not have the required
distance to grow in the initial descending part of the pipe. However, under the e�ect of gravity, slugging
begins to occur in the ascending part of the pipe. The evolution of volume fractions at the outlet of
Fig. 5.17b shows strong oscillations as expected in a slug �ow. When performing a Fourier transform
analysis on the gas phase volume fraction evolution as presented on Fig. 5.17c, one can see that one
frequency clearly dominates, thus suggesting that the slug frequency in that particular case geometry
would be around 226 Hz.

5.4 In�uence of the spurious interface fragmentation correction

In this section, we investigate the in�uence of the spurious interface correction proposed in [Szewc 2013]
on the previously shown SPH simulations. First in Sect. 5.4.1, we check its impact on the �ow regimes
simulations of Sect. 5.1 and we visually compare to a similar work done with phase �eld models [Xie 2017]
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in Sect. 5.4.2. Then in Sect. 5.4.3, we look at the in�uence of this interface correction on some dispersed
to intermittent and strati�ed to intermittent �ow transitions simulations of Sect. 5.2. Finally in Sect. 5.4.4,
we conclude with the e�ect of the correction on the terrain slugging shown on Fig. 5.17.

5.4.1 Flow Regimes

We consider the same case as before. It consists in an horizontal pipe of length L = 10 m and diameter
D = 1 m. Geometry is detailed on Fig. 5.1. A strati�ed �ow with 50% of heavy phase and 50% of light
phase is assumed at the inlet. Fluid properties are shown on Tab. 5.1. All simulations presented in this
section are in 2D. The simulation time was 30 s. For clarity purposes, in the rest of the section, Interface
Correction will be referred to as IC.
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Figure 5.18: Flow regime map adapted from [Taitel 1976]

First, we want to verify that our implementation is able to reproduce di�erent �ow regimes and how
the interface sharpness correction a�ects these results. To this end, �uids are injected with super�cial
velocities corresponding to four di�erent �ow regime cases : mist, dispersed, intermittent and strati�ed
as indicated on Fig. 5.18. At the outlet, we impose a constant pressure pro�le equal to the background
pressure. For this subsection, we consider a resolution L/∆r = 704 (≈ 50000 particles).

A visual comparison of the �nal �ow patterns at t = 30s with and without IC is shown on Fig. 5.19.
The evolution of the volume fraction with time at the outlet and the average pressure drop between
both ends of the pipe is presented on Fig. 5.20. By ’Average Pressure Drop’, we mean that the pressure
is averaged among all particles over a distance of κh inside the �uid �ow and over 10 timesteps. We
then do the subtraction between the inlet value and the outlet value.

On Fig. 5.19, we see that SPH is able to reproduce the �ow regimes predicted by Taitel & Dukler’s
�ow map. For the mist case on Fig. 5.19a, the light phase is going much faster than the heavy phase
and thus scatters the heavy phase as it progresses along the pipe. IC makes particles of a given phase
less miscible with other phase’s particles and contributes to the formation of larger droplets. For the
dispersed case on Fig. 5.19b, it is the heavy phase that goes faster than the light phase and it disperses
the light phase in very small bubbles. Most bubbles are composed of only one particle. This case is the
one that involves the highest velocities and we see that the in�uence of IC is mitigated by these high
velocities. One cluster of particles is formed in the last third of the pipe unlike the case without IC. On
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(a) Case 1 : Mist �ow (b) Case 2 : Dispersed �ow

(c) Case 3 : Intermittent �ow (d) Case 4 : Strati�ed �ow

Figure 5.19: Phases distribution at t = 30 s (not at scale). Top : without IC. Bottom : with IC.

the intermittent �ow case of Fig. 5.19c, we observe the emergence of a slug �ow pattern where large
bubbles are in formation. Note that we only present a snapshot of the simulation at t = 30 s but the
intermittent behavior of the �ow is perhaps more visible on Fig. 5.21b at an earlier simulation time. IC,
as shown in [Szewc 2016], attenuates the Kelvin-Helmholtz instability generated at the interface. As a
result, the interface is cleaner and phases are well separated. However, it is di�cult to say if it is closer
to reality or not without more information. Concerning the strati�ed case on Fig. 5.19d, we recover
the expected �ow pattern in both cases. The in�uence of IC is almost invisible for the strati�ed �ow.
Indeed, in that case, relative velocities are small so the micro-mixing phenomenon is less prominent.

On Fig. 5.20, it is possible to see the in�uence of IC on the volume fraction and average pressure drop
time series for all four cases considered. The main observation is that IC accentuates the oscillations
of the volume fractions series. It is particularly clear on Fig. 5.20e where the intermittent character
of the �ow is strongly emphasized by IC. On the other hand, IC does not seem to have a signi�cant
impact on the pressure drop variations. Those pressure drops are showing strong variations, especially
when the super�cial velocities are important (case 1 and case 2) and are apparently stabilizing around
a given level as time goes by. These plots should be taken with caution as the weakly compressible
SPH formulation is known to produce a noisy pressure �eld. Additionally, the pressure evaluation near
the inlet/outlet boundaries is necessarily in�uenced by the boundary conditions. Moreover, note that
turbulence is not included in the present model whereas the Reynolds number Re is typically turbulent
for case 1 and case 2 in particular and that the turbulent viscosity would contribute to stabilize the
pressure �eld.

5.4.2 Visual comparison with Xie et al.

In this subsection, we present on Fig. 5.21 a visual comparison with the results obtained with the phase
�eld method in [Xie 2017]. Fluids properties and geometry are the same one as in subsection 5.4.1 and
are shown on Tab. 5.1 and Fig. 5.1 respectively. Three di�erent �ow patterns were simulated : strati�ed,
intermittent and dispersed with heavy/light �uid volume fractions at the inlet of 20%/80%, 50%/50%
and 80%/20% respectively. Super�cial velocities are indicated on Fig. 5.2 for the corresponding cases 2,
3 and 4.

On Figs. 5.21a and 5.21c, we see that we obtain strati�ed and dispersed �ow patterns that are very
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(f) Case 3 : Intermittent �ow
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Figure 5.20: (a,c,e,g) Evolution of the volume fractions at the outlet with time. (b,d,f,h) Evolution of the
average pressure drop at the outlet with time.



180 Chapter 5. Multiphase SPH for the simulation of intermittent �ows in pipes

(a) Strati�ed �ow (b) Intermittent �ow

(c) Dispersed �ow

Figure 5.21: Visual comparison with Xie et al. [Xie 2017]. Top : Adapted from Fig. 4 of Xie et al. [Xie 2017]
(reproduced here with permission). Middle : without IC. Bottom : with IC.

similar to the ones obtained in [Xie 2017]. Concerning the slug �ow case of Fig. 5.21b, we obtain a
quite di�erent �ow pattern with or without IC than [Xie 2017]. However, we note that the phase �eld
simulation does not su�er from interface fragmentation and present a clear phase separation. This
tends to advocate in favor of the fact that the surface tension model (continuum surface force or stress)
as it is implemented today in SPH lacks a procedure that would ensure immiscibility. It explains why
some authors needed to introduce an IC force to impose it.

5.4.3 Flow Transitions

Hereafter, we look at how we transition from one �ow pattern to the other. Geometry and �uid prop-
erties are identical to the ones considered in Subsect. 5.4.1 and are shown on Fig. 5.1 and Tab. 5.1. We
focused on two speci�c paths, path 1 and path 2, that are indicated on Fig. 5.2. Path 1 corresponds to
the transition from strati�ed �ow to intermittent �ow and path 2 corresponds to dispersed �ow to
intermittent �ow.

At the inlet, �uid phases are injected with heavy/light �uid volume fractions of 50%/50% and with
super�cial velocities indicated on Fig. 5.2. At the outlet, a constant pressure pro�le equal to the back-
ground pressure is imposed. For this subsection, we considered a resolution L/∆r = 312 (≈ 10000
particles) in order to accelerate the calculations.

On Fig. 5.22, we see the evolution of the phases distribution in the pipe as we move from a strati�ed
�ow pattern to an intermittent �ow pattern. As the �uid velocities are increasing from Fig. 5.22a to 5.22d,
the heavy �uid occupies more and more space in the pipe and progressively imposes an intermittent
�ow pattern. Since the velocities considered here are reasonably low, the in�uence of IC is limited to
ensuring a clean interface.

On Fig. 5.23, we see the in�uence of IC is more prominent as we move towards the intermittent
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(a) #1 (b) #2

(c) #3 (d) #4

Figure 5.22: Results for path 1 (Strati�ed to Intermittent). Phases distribution at t = 30 s (not at scale).
Top : without IC. Bottom : with IC.

�ow pattern. Initially, both volume fractions time series are almost identical and the pressure drop is
smoother and slightly higher with IC than without IC. As velocities increase, we see that IC a�ects the
pressure drop variations rather strongly.

On Fig. 5.24, we see the evolution of the phases distribution in the pipe as we move from a dispersed
�ow pattern to an intermittent �ow pattern. When the velocities are getting smaller and smaller, we see
that clusters of light phase particles are beginning to appear. IC clearly favors the formation of these
clusters. The �nal pattern with IC could be classi�ed as a slug or plug �ow pattern as predicted by the
�ow map whereas without IC it is more likely to be classi�ed as a dispersed �ow pattern.

On Fig. 5.25, on the contrary to path 1 where velocities are lower, we observe that the in�uence of
IC is more visible on the volume fraction time series where oscillations are strongly ampli�ed. However,
on the pressure drops plots, we obtain roughly the same levels with and without IC.

5.4.4 High density and viscosity ratios

We will now present a more realistic case of slugging with steeper density and viscosity ratios. The �uids
considered for these cases are generic oil and natural gas whose properties are indicated in Tab. 5.4.
The oil phase and the gas phase are injected with a super�cial velocity of 0.7612 m/s and 0.35 m/s
respectively and a volume fraction of 25% and 75% respectively. Geometry is described on Fig. 5.15 and is
discretized with a resolution of L/∆r = 780 (≈ 20000 particles). Note that we have chosen to work with
a micro-geometry for computational and time constraints while trying to preserve realistic proportions
of a terrain slugging case. Phases distribution for di�erent values of ε are shown on Figs. 5.26.

On Fig. 5.26, we can observe the rather strong impact of IC on the phase distribution. Even during
the early timesteps of Figs. 5.26a, 5.26b and 5.26c, we note that the oil waves are not located at the same
positions which will result in di�erent slug locations.

After some time, the four simulations present di�erent �ow patterns and these di�erences are
ampli�ed when ε increases. Even when ε = 0.1Lref

h , we see that the �ow evolves di�erently.
We recall that, according to [Szewc 2016], for inviscid �uids (which is not the case here), ε & A

h + B

with A =
π ρдρl (uд−ul )2Lref

2(ρд+ρl ) and B = д‖ρд − ρl ‖ to suppress the interface instabilities. In this case, it
gives ε & 10. When ε is above this value, interface stabilities are indeed reduced but at the price of a
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Figure 5.23: Results for path 1 (Strati�ed to Intermittent). (a,c,e,g) Evolution of the volume fractions at
the outlet with time. (b,d,f,h) Evolution of the average pressure drop at the outlet with time.



5.4. In�uence of the spurious interface fragmentation correction 183

(a) #1 (b) #2

(c) #3 (d) #4

Figure 5.24: Results for path 2 (Dispersed to Intermittent). Phases distribution at t = 30 s (not at scale).
Top : without IC. Bottom : with IC.

modi�cation of the �ow evolution. Additionally, it also appears on these �gures that IC’s interaction
with the outlet boundary conditions importantly a�ect the �ow near the outlet, especially when ε is high
(which was not the case previously). Moreover, from a more general point of view, for micro-geometries
such as the one used in this example, surface tension is much stronger and seems to be enough to
ensure a reasonable immiscibility. Thus, the use of IC in this case can be questioned.

We can con�rm observations made by several authors before [Colagrossi 2003, Das 2009, Grenier 2009a,
Szewc 2013]. that, even in the presence of surface tension, particles at the interface tend to mix in what
appears to be a non-physical way. The reason of this fragmentation remains unclear and is generally
attributed to the lack of a procedure that ensures immiscibility in the surface tension model and/or
to the Lagrangian manifestation of the numerical di�usion at the interface. However, this interface
fragmentation is ampli�ed for low numbers of particles and for important density, viscosity and ve-
locity ratios (and thus linked with the Kelvin-Helmholtz instability). Other numerical methods do not
su�er from these issues (or under attenuated form) so that this interface fragmentation problem can
potentially reduce the growing use of SPH for multiphase applications. Therefore, it advocates in favor
of a search for a solution or a correction to prevent the interface fragmentation.

In the case of simulations of �ow regimes, the results show that the presence of the interface
correction force can strongly a�ect the �ow pattern. In general, it accentuates the intermittent character
of the �ow and can lead to an overestimation of the pressure drop.

To conclude, it is clear that the interface correction procedure is to be used with caution. On one
hand, it is employed to correct what appears to be a weakness in the multiphase SPH formulation and is
sometimes necessary to capture the intermittent character of a typical slug or plug �ow in particular for
low number of particles. On the other hand, it can strongly a�ects the �ow behavior which questions
the accuracy of the reproduced physics.
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Figure 5.25: Results for path 2 (Dispersed to Intermittent). (a,c,e,g) Evolution of the volume fractions at
the outlet with time. (b,d,f,h) Evolution of the average pressure drop at the outlet with time.
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(a) t = 0.01s (b) t = 0.03s

(c) t = 0.07s (d) t = 0.20s

Figure 5.26: Phases distribution. From left to right : ε = 0, ε = 0.1Lref
h ≈ 9, ε = Lref

h ≈ 90 and ε = 10Lref
h ≈

900
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5.5 Comparison with experimental data

To conclude this chapter, we propose two attempts to compare our SPH code with experimental data. The
main di�culty we have encountered is to �nd usable data to compare ourselves with. Initially, we tried
to use the commercial software Leda�ow2 to reproduce some results presented earlier in this manuscript
but we were never able to obtain a slug �ow with this program whereas the �ow map, SPH and LBM
all predicted the appearance of a slug �ow regime. We �nally managed to obtain utilizable data on two
�ow regimes experiments : a strati�ed �ow experiment presented in [Suzanne 1985, Fabre 1987] and a
slug �ow experiment described in [Ujang 2003] (respectively labeled Suzanne test case and Imperial test
case in the rest of this section). The geometrical con�gurations of the two cases are shown on Fig. 5.27
and the �uid properties on Tab. 5.6. Note that for stability reasons, we had to use an arti�cial viscosity
(with α = 0.1 and β = 0 in Eq. (2.4.2)) because the real viscosity term was not enough to stabilize the
simulation. The inlet velocities for the Suzanne test case and the Imperial test case are respectively
(uд,ul ) = (4.03 m/s, 0.39 m/s) and (uд,ul ) = (9.28 m/s, 1.222 m/s). All subsequent simulations are
performed with 100000 particles for 30 s for the Suzanne test case and 15 s for the Imperial test case.
h/∆p is set to 1.5 for this case.

L = 12m

D = 10cm
h = 3.8cm

uд
ul

p0
Air Phase (αд)

Water Phase (αl )

(a) Suzanne test case

L = 37m

D = 77.92mm
h = 38.96mm

uд
ul

p0
Air Phase (αд)

Water Phase (αl )

(b) Imperial test case

Figure 5.27: Geometrical con�gurations for the two experimental cases (not at scale).

Property Air Phase Water Phase Units

Density (ρ) 1.18 997.1 kg/m3

Viscosity (µ) 1.83 × 10−5 0.98 × 10−3 Pa.s
Adiabatic index (γ ) 1.4 7 -
Surface Tension (σnw ) 0.037 N/m
Contact Angle (θc ) 90 ◦

Gravity (дz ) -9.81 m/s2

Table 5.6: Physical Properties

2LedaFlow (http://www.ledaflow.com) is developed by SINTEF in collaboration with Total and ConocoPhilips
and commercialized by Kongsberg. It is based on the multi-�uid multi-�eld theory. It consists in solving multiphase hydro-
dynamic conservation equations in 1D on a mesh [Bonizzi 2009]. The behavior of the �uids is then extrapolated in other
dimensions using closure laws derived from laboratory experiments.

http://www.ledaflow.com
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5.5.1 Suzanne test case

The Suzanne test case is composed of a pipe of of length 12 m, height 10 cm and width 20 cm. The pipe is
supposed to have an upward inclination of 0.1% but it has been neglected in the subsequent simulations
because it was too small to be notable with the considered resolution. On Fig. 5.28, we provide snapshots
of the simulation at selected time steps and on Figs. 5.29 and 5.30, we show the comparison between
the SPH results and the experimental data extracted from [Suzanne 1985, Fabre 1987].

Figure 5.28: Phases distribution for the hydrodynamic slugging case (not at scale). From top to bottom,
at t = 0 s, 5 s, 10 s, 15 s, 20 s, 25 s and 30 s

On Fig. 5.28, we see that the SPH simulation produces a wavy strati�ed �ow with important vari-
ations of the water level towards the end of the pipe. On the other hand, the experiment produces
a classic strati�ed �ow. This discrepancy is likely due to the boundary conditions and the neglected
e�ects in SPH compared to the experiment (2D vs 3D, turbulence, friction, . . . ).

0 5 10 15 20 25 30
2

2.75

3.5

4.25

5
· 10−2

Time (s)

W
at
er

Le
ve
lh

l
(m

)

Experiment
SPH

(a) Evolution of the water level hl at x = 9.1 m with time.
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(b) Evolution of the average velocities by phase with time.

Figure 5.29: Comparison of SPH results with experimental data extracted from [Suzanne 1985,
Fabre 1987] (1/2)

First, on Fig. 5.29a, we can observe that SPH returns a water level at x = 9.1 m that varies around the
experimental value but the general trend seems to be a slow decrease during the 30 s of the simulation.
Second, Fig. 5.29b show the average velocity by phase in function of time compared to the experimental
value. There is good agreement between SPH and the experiment in that case although SPH tends
to slightly overestimate the water velocity and to underestimate the air velocity. We remind that the
experimental value shown on Fig. 5.29 is an average value over the simulated time.

On Fig. 5.30, we present a comparison between SPH and the Suzanne experiment on the kinematic
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(b) Evolution of the average y-velocity in the water phase at
x = 9.1 m with the height y of the pipe.
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(c) Evolution of the average x-velocity in the air phase at x =
9.1 m with the height y of the pipe.
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(d) Evolution of the average y-velocity in the air phase at x =
9.1 m with the height y of the pipe.

Figure 5.30: Comparison of SPH results with experimental data extracted from [Suzanne 1985,
Fabre 1987] (2/2)
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structure of the �ow. Indeed, we compare the distribution of the velocity components in the air phase
and in the water phase along the height of the pipe. On Fig. 5.30a, we see that both SPH and the
experiment show an increase of the longitudinal velocity of water phase from the bottom of the pipe to
the interface. Since we impose no-slip boundary conditions on the walls, it is expected that the velocity
is close to zero at y = 0 m. However, SPH strongly overestimates the velocity and we end up at the
interface with a water longitudinal velocity more than two times the one in the experiment. Concerning
Fig. 5.30b, we see that the water phase has a very small transversal velocity at that location. SPH is
in quite good agreement with the experiment up to y ≤ 2 cm and then returns di�erent results when
y ≥ 2 cm. As we get closer to the interface, the transversal velocity becomes positive in SPH whereas
it remains negative in the experiment. However, the magnitude of this transversal velocity is small
compared to the longitudinal one so the impact is moderate. On Fig. 5.30c, the longitudinal velocity of
the air phase presents a bell-shaped aspect comparable to the experiment, however the SPH estimation
is approximately 20% lower than in the experiment. Concerning the transversal air velocity shown on
Fig. 5.30d, it is almost zero in the experiment while in SPH it is not exactly the case. We have a positive
y-velocity near the interface and a negative one near the wall. Combined with Fig. 5.30b, it indicates
that the interface is rising in average at the considered location. Elsewhere, the transversal velocity is
negative, most likely due to the in�uence of gravity.

In a nutshell, we think that comparison demonstrates that SPH is producing reasonably accurate
results with credible physical behaviors. Nevertheless, the �ow appears more agitated than in the
experiment and that is likely due to the boundary conditions at then entry and exit of the pipe. In
addition, it would be interesting to re-run this case with more particles but the current state of the code
prevent us to do it in a reasonable amount of time.

5.5.2 Imperial test case

For the Imperial test case, we compare ourselves to the experimental data but also with numerical data
obtained with TransAT3 (taken from a presentation provided by Total, to the best of our knowledge no
papers were published following that presentation). In the experiment, the pipe is 37 m long. However,
given the computational e�ciency of our SPH code, it was not realistic to run such a case in a reasonable
amount of time. Therefore, we decided to run two SPH simulations : one with a 8 m pipe and another
with a 16 m pipe. In both cases, the number of particles is limited to 100000. Note that, the same approach
(reduce the pipe length) was used for the TransAT simulations. On Fig. 5.31, we show snapshots of the
simulations at selected time steps. On Figs. 5.32 and 5.33, we present the evolution of the water level
hl (normalized by the diameter D of the pipe) with time at di�erent locations in the pipe. Finally, on
Fig. 5.34, we show the evolution of the slug frequency in function of the position from the inlet in the
pipe. In [Ujang 2003], it was not clear how they compute the slug frequency. In the sake of fairness, we
decided to do the following : each time the normalized water level overcomes a threshold value, we
count it a slug. Then, we divide the number of slugs by the simulation/experiment time. Three di�erent
threshold values were considered : 1.65 h̄l

D , 1.75 h̄l
D and 1.85 h̄l

D where h̄l is the mean water level during
the simulation/experiment at the given location. We label this quantity slug frequency for clarity but
the term slug can clearly be questioned. Note that the same approach (using a threshold value) was
also used in the presentation from which we have extracted the TransAT results.

On Fig. 5.31, we see that we obtained very wavy �ows in both simulations. Large waves are appear-
ing at di�erent locations in the pipe but none of them actually reach the top of pipe to form a proper

3TransAT (https://www.transat-cfd.com) is a multi-scale �nite volume CFD solver developed by ASCOMP
AG Switzerland. It includes an original meshing approach called immersed surface technology and also comes with LES-based
models for turbulence modeling and level-set, VOF and phase �eld approaches for interface tracking [Lakehal 2013].

https://www.transat-cfd.com
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Figure 5.31: Phases distribution for the Imperial test case. From top to bottom, at t = 0 s, 5 s, 10 s and
15 s. The left column shows the results for a 8 m pipe and the right column the results for a 16 m pipe
(not at scale).

slug. As shown on Figs. 5.32 and 5.33, we see that it is also the case in the TransAT simulations and
the experiment, however they do reveal a more intermittent pattern with regular spikes of increasing
amplitude as we progress along the pipe. Up until x ≤ 1.46 m, there is a global agreement among all con-
sidered data on the average water level. After that, it is more di�cult to draw conclusions since signals
are quite di�erent. The main issue appears to be the incapacity of SPH (at the considered resolutions) to
reproduce the regular water level spikes. Indeed, the SPH water levels are indeed intermittent and they
do present spikes but much smaller in amplitude compared to the experiment and the TransAT simula-
tion. It is much more informative to look at Fig. 5.34. We see that the results depend on the threshold
value considered. For the lowest threshold values (1.65 h̄l

D and 1.75 h̄l
D ), we see that the 8 m long SPH

simulation provides approximately the correct slug frequencies except the one at x = 5.01 m which
is overestimated. The 16 m long SPH simulation is strongly underestimating the correct frequencies
for x ≤ 8 m but performs relatively well for x > 8 m. For the highest threshold (1.85 h̄lD ), the 16 m long
SPH simulation performs best. In all cases, the TransAT simulation returns roughly the same value
(0.4 Hz for x > 7 m) which means that in that case, whatever the threshold value, when the water level
overcomes the threshold, it is a spike of high amplitude (i.e. a slug). All in all, we think that those results
are encouraging concerning SPH especially given the numerous neglected phenomena between the
SPH results and the experiment.
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(b) x = 1.46 m
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(c) x = 2.86 m
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(d) x = 3.56 m
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(e) x = 5.01 m

Figure 5.32: Normalized water levels (hl/D) at di�erent positions x from the inlet in function of time
(1/2).
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(a) x = 5.695 m
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(b) x = 6.995 m
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(c) x = 13.319 m
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Figure 5.33: Normalized water levels (hl/D) at di�erent positions x from the inlet in function of time
(2/2).
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Figure 5.34: Evolution of the slug frequency in function of the position from the inlet for di�erent
threshold values.
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5.6 Conclusion

From theses simulations, we have con�rmed that SPH has a strong potential to model two-phase �ow
in pipes and to understand how one pattern evolves into another one. However, we believe that our
boundary conditions, although simple and easy to implement, are not optimal and that a semi-analytic
approach [Ferrand 2012] could improve the quality of the results. Similarly, pressure drops of our
simulations have reasonable levels that correspond to �ow velocities but are also presenting large
oscillations due to the weakly compressible approach. A truly incompressible formulation based on a
Poisson solver could remediate this issue but the most promising approaches regarding that matter are
the aforementioned δ -SPH and SPH-ALE (with Riemann solvers) formulations. Then, we have simulated
two cases of hydrodynamic slugging and terrain slugging involving high density and viscosity ratios to
demonstrate the applicability of multiphase SPH to more realistic problems. However, we were puzzled
by the in�uence of the spurious interface correction force and decided to explore its in�uence on the
previous results. We showed that although needed to properly capture the interface, it can strongly
a�ect the �ow and must be �nely tuned. Unfortunately, there is no clear rule to detail how to tune it
properly and it must be done by hand on a case to case basis. Finally, we propose a comparison with
experimental measurements and numerical results done with TransAT that show reasonable agreement
but failed to capture a proper slug �ow when expected. New runs with more particles woulds be useful
to ensure that it is not a resolution issue but the current state of the code prevents us to test it.

Albeit satisfactory, our results could certainly be improved. To this end, three main tasks can be
identi�ed. First, it would be interesting to verify if including the turbulence e�ects and increasing the
number of particles would stabilize the pressure �eld, especially for high Reynolds cases. For a general
point of view, the implementation of a multiphase δ -SPH scheme (like in [Hammani 2018] for example)
in our solver appears to be a mandatory task to smooth our density and pressure �elds. Then, it could
be interesting to clarify the in�uence of shifting on the results through a parameter study. Finally, more
comparisons with results obtained from other numerical methods, from di�erent experimental data
or from commercial software would be mandatory to further assess the potential interest of SPH in
slugging modeling.

Although in general slower than other numerical methods, this study intended to show that SPH,
thanks to its ease of handling interface dynamics, could be used in industrial applications to model
intermittent �ows and in particular slug and plug �ows with reliable results. This work hopes to serve
as a basis on which to build more complex SPH models including turbulence e�ects to capture the �ow
behavior with more accuracy.



Conclusions and perspectives

Summary This thesis aimed to explore the contributions and limitations of SPH and LBM in the
context of intermittent �ows in pipes. To this end, we have recalled the mathematical foundations of
these two methods while replacing them within the family of particle-based methods in Chaps. 1 to 3.
We have explained that SPH can be described from two distinct point of views. On one hand, it is a pure
meshless method based on the collocation approach used to discretize partial di�erential equations (see
Sects. 1.1.2.1, 2.1 and 2.2.3). On the other hand, SPH can be seen as a a �uid or solid dynamic problem
numerically represented by a system of material points (“particles”) using a regularizing function. LBM,
for its part, comes from a completely di�erent origin. It is a method devoted to �uid mechanics that
consists in solving the Boltzmann equation on a Cartesian grid in a discrete velocity space by tracking
the evolution of probability distribution functions. This approach has been proven equivalent to solving
the Navier-Stokes equations in the limit of low Mach and Knudsen numbers (as can be shown by a
multiscale Chapman-Enskog expansion, see Sect. 3.4). Then, the di�erent formulations for multiphase
modeling available for SPH (see Sect. 2.7) were discussed and some of them compared. It was then
decided to use an SPH model based the Hu and Adams formulation [Hu 2006] with a stress-based
surface tension model (CSF-Π) so that the computation of the curvature is avoided. Nevertheless, this
approach requires a speci�c correction treatment to avoid a spurious interface fragmentation. The same
comparison process has been done for LBM (see Sect. 3.12) and we have chosen to work with the CGM
model described in [Reis 2007, Leclaire 2012] because it is a versatile multiphase model with a thin
interface.

Then, we have carried out a validation campaign in parallel for both methods on several classic �uid
mechanics test cases (see Sect. 4.3) : lid-driven cavity �ow, capillary rise, Rayleigh-Taylor instability
and static bubbles. First, it is a way to verify that our implementations of SPH and LBM are producing
independently the correct results with the expected accuracy. Second, it allows us to compare SPH and
LBM with an analytical and/or a reference solution. In a nutshell, we have shown that from a general
point of view LBM produces more accurate results but at the price of a much more narrow stability range.
Indeed, LBM was often the limiting factor. In order to propose a side to side comparison of both methods,
we often had to adapt the parameters of the targeted test case (lower velocities, lower density ratios,
lower viscosity ratios, lower surface tension values) because LBM was unstable. In that regard, SPH
appears much more robust and �exible than LBM which, beyond accuracy, is an important advantage
from an engineering point of view. Next, in Sect. 4.4, we extended our comparison to the simulation of
intermittent �ows with moderate density and viscosity ratios (respectively 5 and 2), �rst with periodic
boundary conditions in a vertical pipe and then with inlet/outlet boundary conditions in an horizontal
pipe. The periodic case results shown good agreement between SPH and LBM. Once again, it would
have been interested to push the two methods further by increasing the Reynolds number (here limited
to 500) but we were limited by the LBM stability issues. Afterwards, we focused on inlet/outlet slug �ow
cases. To that end, we had to develop inlet velocity boundary conditions and outlet pressure boundary
conditions for SPH and LBM that suit our needs (see Sects. 4.1 and 4.2). For SPH, we have combined
ideas from [Tafuni 2018, Alvarado-Rodríguez 2017] and adapt them to the multiphase context. For LBM,
we have started from single phase Zou-He boundary conditions for velocity and pressure [Zou 1997]
and adapt them to the multiphase context following ideas already developed in [Huang 2017]. Whether
it is for SPH or LBM, the main challenges when developing these boundary conditions were to treat
the interface variables interpolation properly and to limit the spurious pressure oscillations. All in all,
we propose multiphase inlet/outlet boundary conditions for SPH and LBM that are reasonably accurate
for our needs and more importantly stable for the range of Reynolds numbers we are interested in.
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However, we are well aware that the accuracy and consistency of these aforementioned boundary
conditions could certainly be improved because they are not entirely satisfactory. There are pressure
wave re�ections of variable amplitude and spurious behaviors, although limited, are still observable
at the interface. In the end, the results of the inlet/outlet horizontal slug �ow test cases matched the
prediction of Taitel and Dukler’s �ow map in terms of �ow regime type but were signi�cantly di�erent
between SPH and LBM. In order to know which method was closer to reality, we wanted to compare to
reference results (whether analytical, experimental or from other methods). We looked for such results
in the literature without success, it is mainly because almost all results and/or �ow maps available
were done with air/water-like �uids which we cannot simulate with the LBM approach. We tried to use
a commercial software designed for slug �ow analysis called Leda�ow, but it did not generate a slug
�ow when it was predicted by Taitel and Dukler’s �ow map. Because of these LBM stability issues, we
decided for the next chapter to limit our study to SPH only. It would let us simulate more demanding
cases with di�erent geometries and higher Reynolds numbers and higher density and viscosity ratios.

Finally, in Chap. 5, we let LBM aside to focus exclusively on SPH. First, we have started by a much
more complete exploration of Taitel and Dukler’s �ow map (see Sects. 5.1 and 5.2). SPH simulations
were in good agreement with the �ow regimes predicted by the �ow map. In those cases, the pressure
drop evolution is a key quantity and although the qualitative behavior (increase/decrease) matched
the predictions, it presented strong oscillations. In addition, when compared to the Friedel correlation
for pressure drops in two phase �ows, we observed important discrepancies. Then, in Sect. 5.3, we
explored the ability of SPH to generate hydrodynamic and terrain slugging regimes for real �uids such
as oil and gas with good results. Next, in Sect. 5.4, we have redone all the previous SPH simulations
but this time varying the value of parameter ε which controls the interface correction term described
in Sect. 2.7.3. We have shown that this correction force can strongly in�uence the �ow regime in a
quantitative and qualitative way and that its use must be done with caution. Finally, in Sect. 5.5, we
proposed a comparison between SPH results and experimental data for real cases with moderate but
encouraging agreement.

Conclusions This work lets us draw some general conclusions on the di�erent aspects treated all
along this thesis manuscript. First, we can state that particle-based methods covers a wide range of
very di�erent methods. Therefore, the term is not well suited to describe a clearly de�ned family of
methods, it is too vague. For example, we would recommend “meshless” for SPH and “kinetic-based”
for LBM. In spite of its name, SPH does not really involve physical particles but calculation points that
happen to carry some material properties and is much better characterized by the absence of a mesh
than the so called particles. On the other hand, LBM is a class of methods by itself that looks like no
other and it is rather confusing to describe it as particle-based even if it rests on a particulate description
of the matter. LBM emerges from kinetic and statistical considerations that involves physical particles
but the link ends here. Indeed, despite their (debatable) common particle-based foundations, SPH and
LBM formulations (used in this work) have in fact very little in common. The main aspect that draw
them closer is probably their ease to handle multiphase �ows but this apparent ease comes from very
di�erent reasons.

Then, concerning the multiphase formulations of both methods, we can add a few comments. The
multiphase SPH formulation adopted for this work has been proven e�cient in many situations pre-
sented in the available literature and also in this work. It is reasonably accurate, robust and versatile.
We stress that being able to simulate in a stable way a large range of Reynolds numbers and density
and viscosity ratios does not mean that it achieves a good precision but only that the simulation can
run and returns visually credible results. This point can explain why SPH has been quite popular in the
computer graphics community which paradoxically was also a deterrent for scientists in the past. In
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addition, from an engineering point of view, there is a �stful of non-physical parameters to tune : mainly
the background pressure p0, the shifting parameterAs and the spurious interface correction parameter ε .
Their in�uence is far from negligible. Although we provide formulas to pre-compute these parameters,
one may need to manually tune them in certain situations which is not very handy. Finally, we add the
the stress-based approach for the surface tension model su�ers from instabilities in long runs when
the numbers of particles increases which is a serious drawback. As stated before, the curvature-based
approach does not su�er from this problem but is more computationally expensive and cumbersome
and requires a speci�c treatment for contact angle imposition. The multiphase LBM formulation used
in this work bene�ts from a large body of published literature to present its abilities. We con�rm that
aspect by showing that this formulation can accurately simulate several well-known �uid mechanics
problems. However, some limitations have to be highlighted. First (and this is inherent with LBM in
general), the fact that LBM uses lattice units that are not the physical ones can be troublesome and can
lead to human errors. There is a quite simple conversion procedure between real units and physical
units but it requires some arithmetic manipulations that have to be undergone with caution if one wants
to simulate the targeted problem. Otherwise, non-dimensionalization of the results is recommended.
There are a few free parameters (the interface thickness β , one of the α for surface tension, some MRT
relaxation times) but this is less tricky than in SPH since they have less impact on the simulation or
have known optimal values. The main issue we have encountered when using the multiphase LBM
formulation approach used here, and it has already been mentioned several times in this manuscript,
is the stability. From the point of view of a plain user of the method, it restricts strongly the range of
applications of the method (limited velocities, limited density/viscosity ratios). On another matter, our
experience shows that the implementation of multiphase SPH is harder and longer that the LBM one.

In fact, one of the most challenging parts of this doctoral work was probably to develop, test and
validate inlet/outlet boundary conditions for both methods but in particular for SPH. Indeed, for LBM,
it was quite natural to start from single-phase Zou-He boundary conditions. Then, adapting them to
multiphase context using the color �eld while taking into account the speci�c correction linked with
the Hermite-based equilibrium functions was reasonably simple and gave quickly functional results.
On the other hand, for SPH, it was much more di�cult and time consuming. Indeed, once the decision
was taken to work with bu�ers at both ends of the domain, we had to test multiple possibilities to de�ne
the quantities of the particles in the bu�er. In addition, in Chap. 5, the injection velocities are quite
high and so are the Reynolds numbers, so we had to ensure that the boundary conditions were stable
under these conditions.

The comparison of SPH and LBM presented in Chap. 4 is divided in two parts : the validation part
and the slug �ow part. The validation part teaches us information that one who is familiar with both
methods could reasonably expect. From a general point of view, whether it is single phase or multiphase,
LBM has a better order of convergence than SPH and is more accurate for the same resolution. It is not
simple to give reason why this is the case since the two methods are very di�erent but the fact that LBM
rests on a lattice with a known node connectivity strongly helps to get a good order of convergence.
Obviously, SPH pressure �elds depends on the particle spatial arrangement and are much more noisy
that in LBM which can also a�ect the quality of the results. In addition, SPH wall boundary conditions
that we have used in this work are based on an extrapolation from �uid particles to boundary particles
which is known to a�ect the order of convergence. In LBM, we used full bounceback which is cleaner.
Moreover, both methods present a deterioration of their abilities when simulation cases with more
demanding conditions (higher Re , higher density or viscosity ratios) especially at low resolution. In
some circumstances, LBM is not even able to run the case at the lowest resolution for the most “extreme”
cases because of stability issues. The slug �ow comparison part is also rich of teachings. The type of
boundary conditions plays a crucial role on the conclusions we can draw from the results. The periodic
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slug �ow case shows very good quantitative agreement between SPH and LBM. However, it is possible
to see di�erences in the velocity and pressure �elds at the boundary and at the interface in particular.
On the other hand, the inlet/outlet slug �ow cases is more di�erentiating than the previous case, in
particular the �ow evolution is not the same between both methods. Clearly, it is due to the di�erence
in the treatment of the boundary conditions which strongly a�ect the simulations.

The last part of this work which is devoted exclusively to SPH. Being freed of the stability issues
inherent with LBM has let us explore much more realistic cases by gradually increasing complexity. We
obtained results that were in agreement with the predictions of Taitel and Dukler’s �ow map. However,
the observed pressure drops were in general very noisy and not agreeing with the Friedel’s correlation.
This makes us think that the present SPH formulation cannot accurately predict the pressure drops
of the simulated test cases and therefore raises general doubts on the ability of the method to be used
“as is” to model slug �ow in a engineering context. Finally, the comparison with experimental and
numerical data in the last section of this work gives mitigate results. Although it shows that SPH
produces physically credible results, it does not fully agree with the experimental data. Of course, many
factors were neglected in the SPH simulations compared to the reality but it appears that boundary
conditions play a huge role in these discrepancies and need to be improved.

All in all, we believe that LBM in the formulation presented in this work, is not well suited for slug
�ow simulations because of its stability issues that prevent it to be applied to realistic cases involving
air-water like �uids and Re > 500. On the contrary, the present SPH formulation showed promising
capabilities in that regard although important problems remains to be overcome. In our opinion, the
demonstrated potential of using a tool based on SPH in complement to existing software such as
Leda�ow is worth continuing these investigations. It could help engineers have a better description of
the �ow regime in development in a given pipe and in particular help them improve their prediction of
slug �ow regimes to avoid the related undesired consequences.

Perspectives As of future perspectives regarding this work, we have identi�ed a few directions of
research where it would be of great interest to pursue investigations.

First, we have noticed two multiphase SPH formulations in the literature that would worth testing
but it was not done because we lacked time and/or we discovered the corresponding papers too late.
First, the formulation described in [Ghaitanellis 2017] which extends the re-normalization process
(initially introduced in the USAW framework) to the Hu & Adams formulation in association with
corrections for noisy pressure �elds looks very e�cient. In the end, the implementation appears more
complex but exhibits clean pressure �elds. In addition, they use USAW (Uni�ed Semi-Analytical Wall)
boundary conditions for wall boundary conditions that are much more e�cient that the ones used
in this work. Moreover, it appears that USAW boundary conditions are extendable to open boundary
conditions [Ferrand 2017] so that an extension to multiphase �ows is conceivable. Another approach
that caught our attention was the one brie�y presented in [Hammani 2018]. It is an extension of the δ -
SPH approach, brie�y described in Sect. 2.4.5 and that is becoming the standard in the SPH community,
to multiphase �ows in order, once again, to smooth out the pressure �elds in WCSPH. Actually, we
have implemented this formulation and tried to redo the simulations shown in Sect. 5.1. The pressure
�eld was indeed smoother but it id not fully eliminate the oscillations and the re�ections so we dropped
the idea. Regarding the smoothing of the density �eld in WCSPH, we could also try to include Riemann
solvers to solve each particles pair interaction and/or to use an SPH-ALE formulation [Oger 2016].
These density smoothing treatments could considerably help to improve the results by removing the
spurious pressure �uctuations that were observed in our simulations. In addition, as done in Sect. 2.7.21,
it would be interesting to further explore the in�uence of non-physical treatments such as the shifting
procedure on the results. Second, in our opinion, the next phase of this work should be focused on
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consolidating the con�dence we can have in the formulations by providing comparisons with more
reference cases and experimental data. It is not that easy to access usable experimental data so an
alternative would be to use an existing software based on another numerical method able to simulate
two-phase �ow problems such as slug �ows. In particular, in Sect. 4.4, it would be of great interest to
rely on trusted data to decide which method is more accurate. Similarly, in Chap. 5, having reference
solutions would help to determine more precisely the accuracy oh multiphase SPH when simulating
slug �ows. In the relation with what is aforementioned, it would also help to decide between SPH
formulations.

Third, although we do propose a comparison with experimental data in Sect. 5.5, there are a few
features that are missing in the codes to carry on a full comparison with real experiments. Obviously,
all our simulations are 2D and it is needed to extend our study to 3D to take into account inherent
3D e�ects that would for example allow us to simulate a real annular �ow. Additionally, there are
turbulence models available in the literature for SPH and LBM which could be integrated in the codes
to properly capture the related e�ects. As stated before, the turbulent viscosity would have a smoothing
e�ect on the pressure �elds that could bene�t the SPH simulations. Similarly, improving the model for
the boundary walls to take into account physical parameters such as roughness could also be considered.
On a purely computational aspect, we were often limited during this doctoral work by the calculation
time of SPH simulations. We had to use quite low numbers of particles to remain within acceptable time
limits for our runs. Adding an MPI layer to the SPH would help to circumvent this issue while taking
advantage of the multi-machines supercomputers available at Total. We believe that these modi�cations
of the code are reasonably easy to implement because already available in the literature but require
great care and extensive validation which are very time consuming and explains why we did not do it
during this work.





Appendix A

D2Q9 MRT matrixes

M =

©«

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
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M−1 =
1
36
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4 −4 4 0 0 0 0 0 0
4 −1 −2 6 −6 0 0 9 0
4 −1 −2 0 0 6 −6 −9 0
4 −1 −2 −6 6 0 0 9 0
4 −1 −2 0 0 −6 6 −9 0
4 2 1 6 3 6 3 0 9
4 2 1 −6 −3 6 3 0 −9
4 2 1 −6 −3 −6 −3 0 9
4 2 1 6 3 −6 −3 0 −9
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=
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=
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density (0th order)
energy (2nd order)

energy square (4th order)
momentum X-direction (1st order)

heat �ux X-direction (3rd order)
momentum Y-direction (1st order)

heat �ux Y-direction (3rd order)
diagonal stress (2nd order)

o�-diagonal stress (2nd order)
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Appendix B

Technical details in the
Chapman-Enskog expansion

B.1 Isotropic tensors of order 2 and 4

We remind that because f eq is rotationally invariant around ξ = 0, the moments integrals of the peculiar
velocity ξ must be isotropic. This is a consequence of the fact that anti-symmetric integrand cancels
the integrals over the whole domain. Isotropic tensors of order two are scalar multiple of the identity
tensor I [Je�reys 1931], so we can write

∫
ξaξb f

eqdv = AI . Moreover we also have
∫
|ξ |2 f eqdv =

D
∫
ξ 2
a f

eqdv [Wolfram 1986] :

∫
ξ ⊗ ξ f eqdv =

∫
ξaξb f

eqdv = I

∫
ξ 2
a f

eqdv︸        ︷︷        ︸
= 1
D

∫
|ξ |2f eqdv

=
1
D
I

∫
|ξ |2 f eqdv︸          ︷︷          ︸
=Dp=2ρe

.

Isotropic tensors of order four are always under the formM
∗eq
4 abcd = Aδabδcd+Bδacδbd+Cδadδbc [Je�reys 1931].

In addition, the symmetric terms are invariant to index order i.e.
∫
ξaξaξbξb f

eqdv =
∫
ξaξbξaξb f

eqdv =∫
ξbξaξbξa f

eqdv−
∫
ξbξbξaξa f

eqdv soA = B = C . Therefore, we haveM∗eq4 abcd = A(δabδcd+δacδbd+
δadδbc ). Using the following identity

∫
|ξ |4 f eqdv = D(D+2)

∫
ξaξaξbξb f

eqdv [Wolfram 1986], we can
write :

∫
ξ ⊗ ξ ⊗ ξ ⊗ ξ f eqdv =

∫
ξaξbξcξd f

eqdv︸                 ︷︷                 ︸
=
∫
ξaξaξb ξb f eqdv (δabδcd+δacδbd+δadδbc )

= (δabδcd + δacδbd + δadδbc )
∫

ξaξaξbξb f
eqdv︸                  ︷︷                  ︸

= 1
D(D+2)

∫
|ξ |4f eqdv

,

= (δabδcd + δacδbd + δadδbc )
1

D(D + 2)
∫
|ξ |4 f eqdv︸          ︷︷          ︸
=4ρe2 D+2

D

.
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B.2 Calculation of f1

− f1
τ f eq

=
1
ρ

(
∂t1ρ +v ·∇x ρ

)
+
Dξ

2e ·
(
∂t1u +v ·∇xu

)
+

(
−D2e +

D

4e2 |ξ |2
) (
∂t1e +v ·∇x e

)
,

=
1
ρ

(
∂t1ρ + (u + ξ ) ·∇x ρ

)
︸                      ︷︷                      ︸
=ξ · ∇x ρ−ρ∇x ·u (3.4.16)

+
Dξ

2e ·
(
∂t1u + (u + ξ ) ·∇xu

)
︸                      ︷︷                      ︸
=ξ · ∇xu− ∇x pρ (3.4.17)

+

(
−D2e +

D

4e2 |ξ |2
) (
∂t1e + (u + ξ ) ·∇x e

)
︸                     ︷︷                     ︸
=ξ · ∇x e− pρ ∇x ·u (3.4.18)

,

=
1
ρ
(ξ ·∇x ρ − ρ∇x ·u) + Dξ

2e · (ξ ·∇xu −
∇xp
ρ︸︷︷︸

= 2
D ∇x e+ 2e

Dρ ∇x ρ (3.1.14)

)

+

(
−D2e +

D

4e2 |ξ |2
)
(ξ ·∇x e −

p

ρ︸︷︷︸
= 2e
D (3.1.14)

∇x ·u),

=
1
ρ
(����ξ ·∇x ρ −����ρ∇x ·u) + Dξ

2e · (ξ ·∇xu − 2
D
∇x e −

�
�

�
�2e

Dρ
∇x ρ)

− D

2e (ξ ·∇x e −�����2e
D
∇x ·u) + D

4e2 |ξ |2(ξ ·∇x e −
2e
D
∇x ·u),

=
D

2e

©«
ξ · (ξ ·∇xu)︸        ︷︷        ︸
=(ξ ⊗ξ ) : ∇xu

− |ξ |2
D︸︷︷︸

= 1
D (ξ ⊗ξ )I

∇x ·u︸︷︷︸
=Tr(∇xu)
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+
ξ

e
∇x e

(
D |ξ |2

4e − D

2 − 1
)
,

=
D

2e

©«
1
2 ((ξ ⊗ ξ ) : ∇xu + (ξ ⊗ ξ ) : ∇xu︸          ︷︷          ︸

=(ξ ⊗ξ )T : ∇xuT =(ξ ⊗ξ ) : ∇xuT

) − 1
D
(ξ ⊗ ξ )I Tr(∇xu)

ª®®®¬
+
ξ

e
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(
D |ξ |2

4e − D

2 − 1
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,

=
D

2e (ξ ⊗ ξ )
(
1
2 (∇xu + ∇xu

T ) − 1
D

Tr(∇xu)I
)
+
ξ

e
∇x e

(
D |ξ |2

4e − D

2 − 1
)
,

=
D

2e (ξ ⊗ ξ )S +
ξ

e
∇x e

(
D |ξ |2

4e − D

2 − 1
)
,

where we have introduced the well known deviatoric strain tensor S = 1
2 (∇xu + ∇xuT ) − 1

D Tr(∇xu)I .
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B.3 Calculation of σ1

σ1 = −
∫
ξ ⊗ ξ f1dv,

= τ

©«
DS

2e

∫
(ξ ⊗ ξ ⊗ ξ ⊗ ξ )f eqdv + ∇x e

e

∫ (
D |ξ |2

4e − D

2 − 1
)
(ξ ⊗ ξ ⊗ ξ )f eqdv

︸                                              ︷︷                                              ︸
=0 (antisymmetric integrand)

ª®®®®®¬
,

=
τDS

2e

∫
(ξ ⊗ ξ ⊗ ξ ⊗ ξ )f eqdv,

σab1 =
(temporary index

notation for
4th order tensor)

τDScd
2e

∫
ξaξbξcξd f

eqdv︸                 ︷︷                 ︸
=M∗eq4 abcd=

4
D2 ρe2(δabδcd+δacδbd+δadδbc ) (equation (3.2.22))

,

=
τDScd

2e
4
D2 ρe

2(δabδcd + δacδbd + δadδbc ),

=
2ρeτ
D
(δabδcdScd︸      ︷︷      ︸
=δab Tr(S )=0

+δacδbdScd︸      ︷︷      ︸
=Sab

+δadδbcScd︸      ︷︷      ︸
Sab

),

σ1 =
(back to

tensor notation)

4ρeτ
D

S,

= pτ (∇xu + ∇xuT − 2
D

Tr(∇xu)I ),
= τ .

We immediately recognize the deviatoric stress tensor τ with a shear viscosity µ = pτ = 2
D ρeτ and a

bulk viscosity µB = 0.
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B.4 Calculation of q1

q1 =
1
2

∫
ξ |ξ |2 f1dv,

= −τ2

©«
DS

2e

∫
|ξ |2(ξ ⊗ ξ ⊗ ξ )f eqdv︸                          ︷︷                          ︸
=0 (antisymmetric integrand)

+
∇x e
e

∫ (
D |ξ |2

4e − D

2 − 1
)
|ξ |2(ξ ⊗ ξ )f eqdv
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= −τ∇x e2e
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(
D

4e

) ∫
|ξ |4(ξ ⊗ ξ )f eqdv︸                    ︷︷                    ︸

antisymmetric integrand
except on the diagonal

−
(
D

2 + 1
) ∫
|ξ |2(ξ ⊗ ξ )f eqdv︸                    ︷︷                    ︸

antisymmetric integrand
except on the diagonal
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I
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∫
|ξ |6 f eqdv −

(
D

2 + 1
)
I

D

∫
|ξ |4 f eqdv

)
,

= −τ∇x e2e

©«

1
4e I

∫
|ξ |6 f eqdv︸          ︷︷          ︸
=ρK6(D) 64e3

D3

−
(
D + 2

2D

)
I

∫
|ξ |4 f eqdv︸          ︷︷          ︸
=ρK4(D) 16e2

D2

ª®®®®®®®¬
,

= −8K6(D) − 4(D + 2)K4(D)
D3 ρeτ∇x e,

= − 4K6(D) − 2(D + 2)K4(D)
D2︸                          ︷︷                          ︸
=D+2

D

ρeτ
kB
m
∇xT ,

= −D + 2
D

ρeτ
kB
m
∇xT ,

= −κ∇xT ,

where we used the ideal gas equation of state (3.1.19) to make the temperature gradient appear which led
to the introduction of the thermal conductivityκ = D+2

D ρeτ kBm . Moreover, we introduced the coe�cients
K4(D) and K6(D) that depend on the evaluation of a Gaussian-type integral in D dimensions. Their
values are shown in Tab. B.1. For information, the evaluation of the integrals can be done by switching
to the D-spherical coordinate system and is detailed in Appendix B.5.

D 1 2 3 Formula
K4(D) 3/4 2 15/4 D

4 (D + 2)
K6(D) 15/8 6 105/8 D

8 (D + 2)(D + 4)

Table B.1: Values of K4 and K6 for D = 1,2,3
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B.5 Gaussian-type integrals in D dimensions

The evaluation of the integrals can be done by switching to the D-spherical coordinate system. If
x = (x1, x2, . . . , xD ) then the D-spherical coordinates are r =

√
x2

1 + x
2
2 + . . . + x

2
D and D − 1 angles ϕi .

In addition, we have dx = drdϕD−1
∏D−2

i=1 sin(ϕi )D−1−idϕi . In the end, we can write :

∫ ∞

−∞
|x |n exp(−a |x |2)dx = 2

∫ ∞

0
rn exp(−ar 2)rD−1dr

︸                          ︷︷                          ︸
known Gaussian integral

∫ π

0
dϕD−1︸       ︷︷       ︸

π (only forD>1)

D−2∏
i=1

∫ π

0
sin(ϕi )D−1−idϕi

︸                         ︷︷                         ︸
product of known Wallis’ integrals (only forD>1)

,

=
Γ(n+D2 )
a
n+D

2
π

D−2∏
i=1

√
πΓ(D−i2 )
Γ(D+1−i

2 )︸               ︷︷               ︸
only if D>1

.

If n is even (n = 2m) and using the properties of the Γ function, it simpli�es:∫ ∞

−∞
|x |2m exp(−a |x |2)dx =




Γ(m+ 1
2 )

am+
1
2
= 1

2mam+
1
2
Γ

(
1
2

)
︸︷︷︸
=
√
π
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i=0 (D + 2i) if D = 1,

Γ(m+D2 )
am+

D
2
π

∏D−2
i=1

√
π Γ(D−i2 )

Γ(D+1−i
2 ) =

π
D
2

2mam+
D
2

∏m−1
i=0 (D + 2i) × Γ

(
D

2

) D−2∏
i=1

Γ(D−i2 )
Γ(D+1−i

2 )︸                    ︷︷                    ︸
=Γ(1)=1 (terms simplify one by one)

if D > 1,

=
π

D
2

2mam+D2

m−1∏
i=0
(D + 2i) .
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In this appendix, we explore intrinsic entropy properties of Lattice Boltzmann methods with a BGK
collision model. For the sake of simplicity, we focus on a macroscopic one-dimensional convection-
di�usion equation. We show that the lattice BGK methods satisfy an entropy property for a particular
entropy functional. The BGK term is seen as the gradient of a Lagrangian functional, sum of the
entropy plus a 0th-moment equality constraint. We retrieve the standard numerical stability limit on
the numerical Knudsen number to get an entropy decay. We also exhibit the entropy dissipation source
terms and the entropy �uxes. Numerical experiments validate the theoretical results. Note that this
appendix has been published as a conference paper in the proceedings of XXXIX Ibero-Latin American
Congress on Computational Methods in Engineering (CILAMCE) that took place in November 2019 in
Paris and is authored by Florian De Vuyst and Thomas Douillet-Grellier [Vuyst 2018].

The kinetic origin of the LB method yields the question of the compatibility of the LB method
with the H -theorem. This topic has gained attention [Karlin 1998, Luo 2000] because it is strongly
connected to the stability properties of the method. In particular, in order to palliate the fact that classic
LB schemes do not verify the H -theorem, new LB formulations have been introduced based on the
construction of speci�c equilibria equipped with an H -theorem [Ansumali 2002] or entropy-controlled
schemes [Ansumali 2000, Boghosian 2001].

In the following, we study the entropy properties of the D1Q3 LBGK scheme applied to the 1D
advection-di�usion equation. First, we introduce the considered model and its relevant properties. Then,
we show how it satis�es a discrete H -theorem for a particular entropy functional. In this process, we
reinterpret the BGK operator as a gradient of a Lagrangian functional while exhibiting the entropy
dissipation source terms and the entropy �uxes. Our observations are validated through numerical
experiments. Moreover, equilibrium distributions are obtained from minimization principles.

C.1 LB method for the 1D advection-di�usion equation

Let’s consider the 1D advection-di�usion equation with a constant advection speed u ∈ R:

∂tρ + ∂x (ρu) − ν ∂2
xxρ = 0, x ∈ R, t > 0, (C.1.1)

with ρ = ρ(x, t) the density and ν the viscosity. The initial condition is ∀x ∈ R, ρ(x, t = 0) = ρ0(x)
where ρ0 is the initial density distribution. Additionally, we assume ν > 0 and we only consider positive
solutions of Eq. (C.1.1) such that ρ(x, t) ≥ 0.

Let us consider the D1Q3 lattice with its discrete velocities v = (v−,v0,v+)T = (−c, 0, c)T and its
discrete distribution vector f = (f−, f0, f+)T . The LB equations (LBE) are given hereafter in vector form

∂t f + Λ ∂x f = q(f ), (C.1.2)

where the source terms q is the collision term and with the diagonal and constant advection matrix Λ

de�ned by Λ = diag(−c, 0,−c)We connect the LBE (C.1.2) with the macroscopic Eq. (C.1.1) by imposing
the following constraints

〈f ,e〉 = ρ, 〈q(f ),e〉 = 0, (C.1.3)

where 〈., .〉 denotes the standard scalar product, and e = (1, 1, 1)T , q(f ) = (qi (f ))i .
The BGK collision model is de�ned as a relaxation term towards a discrete equilibrium distribution

f eq, i.e.

q(f ) = f eq − f

τ ′
, (C.1.4)
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with τ ′ > 0 a relaxation time.
It is also expected that f eq has the 0th-order moment property but also the 1st-order and 2nd-order

moment consistency properties. For a certain constant γ > 0, We can write

〈f eq,e〉 = ρ, 〈f eq,v〉 = ρu, 〈f eq,v2〉 = γ ρc2. (C.1.5)

C.2 Equilibrium distributions

In this section, we will obtain the equilibrium distributions associated with the entropy functional
de�ned in Eq. (C.2.1) from minimization principles.

C.2.1 Entropy functional

As shown in the previous section, consistency is obtained under the hypothesis of small �ow velocities.
Thus, it is always assumed that |u | � c . In particular, the inequality 1 − 3 |u |

2c < 1 holds. Therefore, the
following functional H (f ) is clearly strictly convex

H (f ) =
∑

i ∈{−,0,+}
hi (fi ), (C.2.1)

with hi de�ned as hi (fi ) = f 2
i
2 wi , i ∈ {−, 0,+} and w− =

1
1 − 3u

2c
, w0 = 1, w+ =

1
1 + 3u

2c
.

We call H (f ) an entropy for f . The entropy functional H of Eq. (C.2.1) can be rewritten

H (f ) = 1
2 〈D f , f 〉 = 1

2 ‖ f ‖
2
D . (C.2.2)

where D = diag( 1
1− 3u

2c
, 1, 1

1+ 3u
2c
)

Remark. Note that the 1st and 2nd derivatives of H are ∇H (f ) = D f and ∇2H (f ) = D respectively.

C.2.2 Entropy minimization problem

To begin, let us consider the constrained minimization problem

min
f =(f−,f0,f+)T

H (f ), (C.2.3)

subject to {
f ≥ 0,
〈f ,e〉 = ρ. (C.2.4)

The functional H is coercive, strictly convex and the admissible set is non-empty, closed and convex.
Therefore, there is a unique solution f eq to the problem (C.2.3-C.2.4). The functional φ for the equality
constraint is linear and de�ned by

φ(f ) = 〈f ,e〉 − ρ (C.2.5)

To this minimization problem, we associate a Lagrange multiplier λ ∈ R and the Lagrangian functional
L : R3 × R→ R expressed as

L (f , λ) = H (f ) + λ φ(f ). (C.2.6)

The necessary 1st order optimality conditions are given by the Euler-Lagrange equations

∇L (f eq, λ?) = ∇H (f eq) + λ? e = 0, (C.2.7)
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where λ? is the Lagrange multiplier lambda that satis�es the above equation. We can then write

D f eq + λ? e = 0, (C.2.8)

and we �nally obtain
f eq = −λ?D−1e = 0. (C.2.9)

From the 0th order moment condition 〈f ,e〉 = ρ we get λ? = −ρ, thus leading to the following solution

(f−)eq =
ρ

3 −
ρu

2c , (f0)
eq =

ρ

3 , (f+)
eq =

ρ

3 +
ρu

2c .

Remark. We have a natural consistency with both the convective and the di�usive terms of the advection-
di�usion equation, in the sense that ∑

i

vi (fi )eq = ρu, (C.2.10)
∑
i

(vi )2(fi )eq = γ ρc2 (C.2.11)

with γ = 2
3 .

C.2.3 Reinterpretation of the BGK collision term

We now focus on the collision term of the LBE. Let us choose the collision term as

q(f ) = − 1
τ ′

D−1∇f L (f , λ), (C.2.12)

with τ ′ > 0 a characteristic time of collision and L (f , λ) de�ned in Eq. (C.2.6). We can write

q(f ) = − 1
τ ′

D−1 (∇H (f ) + λ e) = f eq − f

τ ′
.

We retrieve the standard BGK collision term [Bhatnagar 1954].

Remark. The matrix D−1 in (C.2.12) can be viewed as a rescaling operator allowing us to return the
standard LBGK relaxation term. Because D is a positive de�nite matrix, the vector −D−1∇f L (f , λ) is still
a local descent direction for the functional L (., λ).

C.3 Discrete H -Theorem

C.3.1 Semi-discrete form

In this section, we derive a Lyapunov functional decay property similar to the well-known Boltzmann’s
H -theorem [Boltzmann 1970]. Let us multiply Eq. (C.1.2) on the left by ∇H (f )T . We obtain

∂tH (f ) + ∇H (f )T ·Λ ∂x f = ∇H (f )T ·q(f ), (C.3.1)
∂tH (f ) +

∑
i

(DΛ)ii ∂x (fi )2/2 = ∇H (f )T ·q(f ). (C.3.2)

Because H is convex and since f eq realizes the minimum of the optimization problem (C.2.3)-(C.2.4),
we get the entropy dissipation balance equation

∂tH (f ) +
∑
i

∂x [(DΛ)ii (fi )2/2] ≤ 1
τ ′
(H (f eq) − H (f )) ≤ 0.
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It is worth mentioning that the entropy dissipation is linked to the amount of nonequilibrium. In
the present particular case of quadratic functional, using a Taylor expansion leads to a �ner entropy
dissipation estimate as

∂tH (f ) +
∑
i

∂x [(DΛ)ii (fi )2/2] = 1
τ ′
(H (f eq) − H (f )) − 1

2τ ′ ‖ f − f eq‖2D . (C.3.3)

C.3.2 Discrete form

The time partial derivative is now discretized by the Euler explicit scheme. The lattice relaxation time
is chosen as τ = τ ′

∆t
.

C.3.2.1 Collision step

We �rst study the entropy property of the collision step. To simplify notations, we omit the dependency
in x position, and denote f at discrete time tn = n∆t by f n . The collision step on a time step ∆t reads

f̂ n = f n +
1
τ
(f eq,n − f n) . (C.3.4)

By multiplying on the left by 1
2 (D( f̂ n + f n)), we get

1
2 (D( f̂

n + f n)) · ( f̂ n − f n) = 1
2 ‖ f̂

n ‖2D −
1
2 ‖ f

n ‖2D,

= H ( f̂ n) − H (f n),

=
1
2τ (D( f̂

n + f n)) · (f eq,n − f n) . (C.3.5)

From (C.3.4) we can write
f̂ n + f n

2 = f n +
1
2τ (f

eq,n − f n) , (C.3.6)

so that
H ( f̂ n) − H (f n) = 1

τ
〈D f n, f eq,n − f n〉 + 1

2τ 2 ‖ f eq,n − f n ‖2D . (C.3.7)

The second term of the right hand side is anti-dissipative (nonnegative). This is due to the explicit Euler
discretization of the collision term. Regarding the right hand side, let us remark that

〈D f n, f eq,n − f n〉 = 〈D(f n − f eq,n + f eq,n), f eq,n − f n〉,
= −‖ f eq,n − f n ‖2D + 〈D f eq,n, f eq,n − f n〉. (C.3.8)

We recall that D f eq,n = ∇H (f eq,n) = −λ?e (see Eq. (C.2.7)). Since 〈e, f eq,n〉 = 〈e, f n〉 = ρ, we have
〈D f eq,n, f eq,n − f n〉 = 0. Therefore, we obtain

〈D f n, f eq,n − f n〉 = −‖ f eq,n − f n ‖2D (C.3.9)

and �nally
H ( f̂ n) − H (f n) = − 1

τ 2 (τ −
1
2 ) ‖ f

eq,n − f n ‖2D . (C.3.10)

We then get a local entropy dissipation proportional to ‖ f eq,n − f n ‖2, as soon as τ > 1
2 . We notice that

the numerical stability limit, τ > 1/2, is naturally recovered through entropic considerations.
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Furthermore, the following identity is veri�ed H (f n) = H (f eq,n) + 1
2 ‖ f n − f eq,n ‖2D . Then, we also

have the equivalent entropy balance

H ( f̂ n) − H (f n) = − 1
2τ 2 (τ −

1
2 ) (H (f

n) − H (f eq,n)) (C.3.11)

which is negative if τ > 1/2.

C.3.2.2 Transport step

Let us now consider the transport step. At a lattice node x and at instant tn+1, this reads

f n+1
i (x) = f̂ ni (x −vi∆t). (C.3.12)

In a �ux di�erence splitting script, it can be written in the equivalent form

f n+1
i (x) = f̂ ni (x) −

[
f̂ ni (x) − f̂ ni (x −vi∆t)

]
, (C.3.13)

leading to f n+1
0 (x) = f̂ n0 (x) and

f n+1
± (x) = f̂ n± (x) −

∆t

h

[
c f̂ n± (x) − c f̂ n± (x ∓ c∆t)

]
. (C.3.14)

Let us now consider the transport of entropy quantities. From (C.3.12), we get the conservation scheme

H (f n+1(x)) = H ( f̂ n(x)) − ∆t

h
[ϕn(x + h/2) − ϕn(x − h/2)] . (C.3.15)

where the numerical entropy �ux ϕn(x + h/2) = ϕn( f̂ (x), f̂ (x + h)) is given by

ϕn(x + h/2) = c h+( f̂+(x)) − c h−( f̂−(x + h)). (C.3.16)

C.3.3 Whole discrete entropy inequality

By combining entropy balances for both collision (C.3.10) and transport (C.3.15) steps, we get a discrete
entropy balance for the LBGK scheme:

H (f n+1(x)) − H (f n(x)) + ∆t

h
[ϕn(x + h/2) − ϕn(x − h/2)] = − 1

τ 2 (τ −
1
2 ) ‖ f

eq,n − f n ‖2D ≤ 0. (C.3.17)

C.4 Numerical experiments

As a numerical illustration of the behavior of Eq. (C.3.17), a couple of numerical experiments have
been undergone. The spatial domain is Ω = [0, 1] (in meters for example) and is closed with periodic
boundary conditions. Ω is discretized with 4000 lattice points, so that the space step h = 2.5 × 10−4 m.
Regarding the physical parameters, we have set the advection speedu = 0.1m/s and the speed of sound
c = 2 m/s. Consequently, the time step is dt = h/c = 2.5 × 10−4 s. The initial density pro�le to be
advected is chosen as piece-wise constant ρ0(x) = 1x ∈[1/3,2/3](x). Fig. C.1 shows the density pro�le at
t = 10 s and the corresponding entropy dissipation for two di�erent values of τ .

It is observed on both �gures that the entropy dissipation is strictly negative up to machine precision
as predicted by Eq. (C.3.17). Note that we have tested to compute the entropy dissipation asH (f n+1(x))−
H (f n(x))+ ∆t

h [ϕn(x + h/2) − ϕn(x − h/2)] or as − 1
τ 2 (τ − 1

2 ) ‖ f eq,n − f n ‖2D and that it gives exactly the
same results. The entropy dissipation is a good indicator of density changes and could eventually been
used as a tool to track discontinuities in a multi-�uid context.
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Figure C.1: Advection of a rectangular pro�le for 10s and its associated entropy dissipation for τ = 0.51
(a,b) and τ = 0.501 (c,d)
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C.5 Other entropy functionals

In this section, we will consider the case of other forms of entropy functionals with a particular focus
on the Kullback entropy.

C.5.1 General case

Let’s consider a convex function H : R3 → R with H ∈ C 2. Let’s call f eq the unique solution of the
minimization problem (C.2.3-C.2.4). One can write

∇H (f ) = ∇H (f eq) + (f − f eq) S̄(f ). (C.5.1)

with S̄(f ) =
∫ 1

0 ∇2H (f eq + t(f − f eq)) symmetric and positive-de�nite matrix.
Similarly to what was done in section C.2.3, we can de�ne the collision term q(f ) as follows

q(f ) = − 1
τ ′
[S̄(f )]−1∇f L (f , λ). (C.5.2)

where L is the same as in Eq. (C.2.6). This is equivalent to replace the rescaling operator D−1 in
Eq. (C.2.12) by [S(f )]−1. Therefore, using Eq. (C.5.1), we can expand Eq. (C.5.2).

q(f ) = − 1
τ ′
[S̄(f )]−1 (∇H (f ) + λe) = − 1

τ ′
(f − f eq)

We retrieve once again the standard BGK relaxation collision term. Moreover, by convexity of H and
because f eq is the minimum of H , we have the following inequality

〈∇H (f ),q(f )〉 ≤ 1
τ ′
(H (f eq) − H (f )) ≤ 0, (C.5.3)

which leads to an entropy inequality similar to Eq. (C.3.3).

C.5.2 Example of the Kullback entropy

Let’s consider the so called Kullback entropy function given by

h(f ) = f ln f − f . (C.5.4)

The convex kinetic entropy functional (analog to Eq. (C.2.1)) can then be introduced as follows

H (f ) = h(f−)
1 − 3u

2c
+ h(f0) +

h(f−)
1 + 3u

2c
. (C.5.5)

Under the low Mach number hypothesis Ma = |u |c � 1, it leads to the set of equilibrium distributions
given hereafter

f eq
− ≈ e−λ(1 −

3u
2c ), f

eq
0 ≈ e−λ, f

eq
+ ≈ e−λ(1 +

3u
2c ).

The constraint 〈f eq,e〉 = ρ gives
∑

i f
eq
i = ρ = 3e−λ + O(Ma2), then e−λ = ρ

3 + O(Ma2).
If we substitute e−λ by ρ

3 in Eq. (C.5.6) leads to the same equilibrium distributions of Eq. (C.2.10).
This suggests that whatever the convex kinetic entropy functional considered, we always approximately
end up on the same equilibrium distribution under the low Mach number hypothesis.
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C.6 Conclusion

In this appendix, we have shown that by considering a particular entropy functional, it is possible to
derive a discrete H -theorem for the LBGK scheme applied to the 1D advection-di�usion equation in
a non-standard way. A �ne evaluation of the entropy dissipation is presented where the dissipation
source terms due to the collision step and the entropy �uxes associated with the transport step are
exhibited. The quanti�cation of entropy dissipation is veri�ed by numerical experiments that con�rm
the theoretical results.

Through the exploration of the intrinsic entropic properties of this LBGK scheme, we have obtained
the equilibrium distribution by solving an entropic minimization problem and proposed a reinterpre-
tation of the BGK collision term as the gradient of the Lagrangian functional associated with this
minimization problem.

Finally, using the example of the Kullback entropy, we have obtained equilibrium distributions that
are approximately equal to the one obtained with a quadratic functional under the low Mach hypothesis.

Future work will be focused on extending our approach to more general entropy functionals, to 2D,
to di�erent collision operators and to non-periodic domains. We aim to improve the understanding of
the numerical stability conditions of the LBGK scheme using these entropic considerations.
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Titre : Étude comparative des méthodes d’origine particulaire SPH et LBM pour la simulation d’écoulements
polyphasiques intermittents dans des conduites

Mots clés : SPH, LBM, polyphasique, écoulement à bouchons

Résumé : L’objectif de cette thèse est d’étudier les
apports et les limitations de deux méthodes d’ori-
gine particulaire, SPH et LBM, dans le cadre de
la simulation des écoulements à bouchons dans
des conduites. Dans l’industrie pétrolière, ce type
d’écoulement, que l’on retrouve par exemple dans
les pipelines qui acheminent le pétrole et le gaz jus-
qu’aux raffineries, est connu pour endommager les
installations et pour réduire l’efficacité du transport
des fluides. Il est donc important de bien comprendre
leur formation. Nous avons donc implémenté ces
deux méthodes, ainsi que leurs variantes polypha-
siques, et avons mené une campagne de validation
et de comparaison afin de sélectionner la méthode
la plus adéquate, pour poursuivre ensuite avec des

simulations de cas plus appliqués et réalistes. Les
contributions présentées se concentrent principale-
ment sur trois axes. Tout d’abord, il a fallu construire
les codes de calcul nécéssaires, les valider puis com-
parer des différentes formulations polyphasiques dis-
ponibles pour SPH et LBM. Ensuite, nous avons
développé des conditions aux limites d’entrée/sortie
adaptées au contexte polyphasique pour être en
mesure d’injecter les fluides avec des vitesses im-
posées et de les évacuer du domaine avec un pres-
sion donnée. Enfin, nous avons simulé différents cas
d’écoulements à bouchons académiques avec SPH et
LBM, puis sur des cas appliqués avec des géométries
réalistes et des ratios de densité et de viscosité de
type air/eau avec SPH seulement.

Title : Comparative study of particle-based methods SPH and LBM for the simulation of multiphase slug flows
in pipes

Keywords : SPH, LBM, multiphase, slug flows

Abstract : The main objective of this thesis is to study
the contributions and limitations of two particle-based
methods, SPH and LBM, for the simulation of slug
flows in pipes. In the petroleum industry, these flow re-
gimes, found for example during the transportation of
oil and gas from reservoirs to refinery facilities through
pipelines, are highly undesirable because they are
known to damage facilities and to reduce flow effi-
ciency. Therefore, it is important to understand its for-
mation. We have implemented both methods, as well
as their multiphase variants, and have led a valida-
tion and comparison campaign in order to to select
the most suited method and to continue with simula-

tions of more applied and realistic cases. The main
contributions of this work can summarized in three
points. First, we had to write the necessary compu-
tation codes, validate them and compare the different
multiphase formulations available for SPH and LBM.
Then, we have developed inlet/outlet boundary condi-
tions adapted to the multiphase context so that we are
able to inject fluids with prescribed velocities and let
them exit he domain with a given pressure. Finally, we
have simulated different academic test cases of slug
flows with SPH and LBM and then on applied cases
with realistic geometries and air-water like density and
viscosity ratios with SPH only.
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