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Résumé

Ces travaux de thèse portent sur la conception et sur la caractérisation expérimentale
de résonateurs opto-phononiques. Ces structures permettent le confinement simul-
tané de modes optiques et de vibrations mécaniques de très haute fréquence (plusieurs
dizaines jusqu’à plusieurs centaines de GHz). Cette étude a été effectuée sur des sys-
tèmes multicouches à l’échelle nanométrique, fabriqués à partir de matériaux semi-
conducteurs de type III-V. Ces derniers ont été caractérisés par des mesures de spec-
troscopie Raman de haute résolution.

Grâce aux méthodes expérimentales et aux outils numériques développés, nous
avons pu explorer de nouvelles stratégies de confinement pour des phonons acous-
tiques au sein de super-réseaux nanophononiques, à des fréquences de résonance de
l’ordre de 350 GHz. En particulier, nous avons étudié les propriétés acoustiques de
deux types de résonateurs planaires. Le premier est basé sur la modification adiaba-
tique du diagramme de bande d’un cristal phononique unidimensionnel. Dans le deux-
ième système, nous utilisons les invariants topologiques caractérisant ces structures
périodiques, afin de créer un état d’interface entre deux miroirs de Bragg phononiques.

Nous nous sommes ensuite intéressés à l’étude de cavités opto-phononiques per-
mettant le confinement tridimensionnel de la lumière et de vibrations mécaniques de
haute fréquence. Nous avons mesuré par spectroscopie Raman les propriétés acous-
tiques de résonateurs phononiques planaires placés à l’intérieur de cavités optiques
tridimensionnelles, de type micropiliers. Enfin, la dernière partie de cette thèse
porte sur l’étude théorique des propriétés optomécaniques de micropiliers GaAs/AlAs.
Nous avons effectué des simulations numériques par éléments finis, nous permettant
d’expliquer les mécanismes de confinement tridimensionnel de modes acoustiques et
optiques dans ces systèmes, et de calculer les principaux paramètres optomécaniques.
Les résultats de cette étude démontrent que les micropilier GaAs/AlAs possèdent des
caractéristiques prometteuses pour de futures expériences en optomécanique, telles
que des fréquences de résonance acoustiques très élevées, de hauts facteurs de qualités
mécaniques et optiques à température ambiante, ou encore de fortes valeurs pour les
facteurs de couplage optomécaniques et pour le produit Q · f .

Mots-clefs: Nanophononique, spectroscopie Raman, optomécanique, super-
réseaux, photoélasticité, invariants topologiques, cavité adiabatique, résonateurs
acoustiques, micropiliers, méthode des éléments finis.
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Abstract

The work carried out in this thesis addresses the conception and the experimen-
tal characterization of opto-phononic resonators. These structures enable the con-
finement of optical modes and mechanical vibrations at very high frequencies (from
few tens up to few hundreds of GHz). This study has been carried out on mul-
tilayered nanometric systems, fabricated from III-V semiconductor materials. These
nanophononic platforms have been characterized through high resolution Raman scat-
tering measurements.

The experimental methods and the numerical tools that we have developed in this
thesis have allowed us to explore novel confinement strategies for acoustic phonons
in acoustic superlattices, with resonance frequencies around 350 GHz. In particular,
we have studied the acoustic properties of two nanophononic resonators. The first
acoustic cavity proposed in this manuscript enables the confinement of mechanical
vibrations by adiabatically changing the acoustic band-diagram of a one-dimensional
phononic crystal. In the second system, we take advantage of the topological invari-
ants characterizing one dimensional periodic structures, in order to create an interface
state between two phononic distributed Bragg reflectors.

We have then focused on the study of opto-phononic cavities allowing the si-
multaneous confinement of light and of high frequency mechanical vibrations. We
have measured, by Raman scattering spectroscopy, the acoustic properties of pla-
nar nanophononic structures embedded in three-dimensional micropillar optical res-
onators. Finally, in the last sections of this manuscript, we investigate the optome-
chanical properties of GaAs/AlAs micropillar cavities. We have performed numerical
simulations through the finite element method that allowed us to explain the three-
dimensional confinement mechanisms of optical and mechanical modes in these sys-
tems, and to calculate the main optomechanical parameters. This work shows that
GaAs/AlAs micropillars present very interesting properties for future optomechan-
ical experiments, such as very high mechanical resonance frequencies, large optical
and mechanical quality factors at room temperature, and high values for the vacuum
optomechanical coupling factors and for the Q · f products.

Keywords: Nanophononics, Raman scattering spectroscopy, Optomechanics,
superlattices, photoelasticity, topological invariants, adiabatic cavity, acoustic res-
onators, micropillars, finite element method.
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Motivation

The mechanical motion of atoms plays an essential role in the description of basic
phenomena encountered in condensed matter physics, such as ultrasound and heat
transport [1]. Furthermore, phonons, the elementary quanta of mechanical vibrations,
dramatically affect the behavior of other fundamental excitations in solid state physics,
such as photons and electrons. Indeed, phonons play a central role in the study of
electronic transport, scattering processes, and intra-band relaxation of carriers in
semiconductor materials [2].

Over the last decades, the control of photons and electrons has led to major tech-
nological advances for the transfer and the manipulation of energy and information
[3, 4]. The control of mechanical vibrations has also been a very active field of research
over the last years, and its further development could have significant consequences
over a broad range of technological applications [5–7].

The phononic spectrum that is nowadays investigated spans over a wide range
of frequencies. For example, millihertz mechanical waves are relevant for the study
of geological events such as earthquakes [8], while phonons with frequencies over
one terahertz are of particular interest for the study of heat transport in solid state
media [5, 9]. In this thesis we will focus on the control of mechanical vibrations with
frequencies spanning from few tens up to few hundreds of GHz. The general objective
of this work consists in investigating novel nanophononic confinement methods in
one-dimension, and to move progressively toward the three-dimensional confinement
of phonons and photons.

Nanostructured systems offer the possibility to engineer the behavior of phonons
in the GHz-THz range. The finite dimensions of the considered systems dramatically
modifies the dispersion relation of mechanical vibrations, their spatial profile, and
the phononic density of states [6, 10]. The control of mechanical vibrations at the
nanoscale, or nanophononics, is relevant in other research fields, such as nanoelectron-
ics [11]. Indeed, the modification of the dispersion relation for acoustic phonons, the
main carriers of heat in semiconductor materials, and the enhancement of surfaces
and interfaces scattering events, leads to a reduction of the thermal conductivity in
nanostructured devices [6]. Understanding the mechanisms leading to the decreasing
of heat conduction in these systems is particularly interesting for the development of
future efficient thermal management strategies [12]. Heat conduction at the nanoscale
is also widely investigated for renewable energy harvesting. Indeed, reducing the
thermal conductivity through nanopatterning would allow to fabricate materials with
enhanced thermoelectric properties [10]. Simple nanophononic structures such as one
dimensional superlattices [13], or more sophisticated nanostructured devices based
on phononic crystals and metamaterials [14, 15] have been developed to control the
propagation of heat carriers.
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Motivation

The development of high frequency phononic resonators at the nanoscale is cru-
cial for the conception of future nano-electromechanical systems (NEMS). Micro-
electromechanical systems (MEMS) are widely used in everyday technology as sensors
and actuators [16]. With the field of microelectronics which is pushing down the size
of the developed devices below the sub micrometer scale, the technology of MEMS
could be progressively replaced by nano-electromechanical systems [17]. These struc-
tures have promising applications, for example for the development of highly sensitive
force and mass sensors [18, 19]. Nanomechanical resonators are also studied in the
context of cavity optomechanics, a research field aiming to control the interactions
between a confined optical mode and a mechanical degree of freedom [20]. Scal-
ing down the size of optomechanical resonators allows to increase their mechanical
resonance frequencies. Optomechanical systems presenting high frequency mechan-
ical resonances are desirable for sensing applications, since it allows to increase the
performances of optomechanical-based accelerometers and mass detectors [21]. Ad-
ditionally, these systems have drawn significant attention in the context of quantum
optomechanics [22, 23]. Indeed, the development of high frequency optomechanical
resonators would facilitate the preparation and the manipulation of systems in their
mechanical quantum ground state [24]. As a direct consequence, an increasing num-
ber of nano-optomechanical platforms with mechanical resonances in the few GHz
range are nowadays investigated [20]. Well established designs in nanophononics,
such as phononic cystals, are now used in cavity optomechanics for optimizing the
confinement of mechanical vibrations [25, 26]. The work presented in this manuscript
is relevant in this context, since we will present nanostructured cavity designs that
allow to localize simultaneously light and ultra-high frequency mechanical vibrations.

The control of mechanical waves achieved in nanophononics could also be useful
in the context of quantum technologies in the solid state. Mechanical vibrations have
been investigated in order to couple to different quantum systems, such as nitrogen
vacancy (NV) centers [27], superconducting circuits [28], or quantum dots [29]. This
opens the possibility of using phonons for manipulating and exchanging quantum
information between qubits. In this thesis, we study nano-mechanical oscillators that
have the potential to interface qubits with confined mechanical waves.

The development of new characterization tools for the experimental study of the
acoustic properties of nanophononic resonators is an active field of research. The inter-
action between light and phonons is a powerful tool for studying mechanical vibrations
in the GHz/THz range. Indeed, several optical-based techniques can be implemented
for this purpose, such as Raman scattering spectroscopy [30], optical interferometric
and Brownian motion measurements [31], or pump-probe coherent phonon generation
and detection [32, 33]. Picosecond acoustics is used for non-destructive testing, for
the characterization of thin films and layered semiconductor structures [34, 35], and
for non-invasive studies and imaging techniques of biological matter [36, 37]. In this
work we focus our experimental efforts on the development of a high resolution Ra-
man scattering set-up that allowed us to characterize the structures presented in this
manuscript.

Acoustic nanometric superlattices enabled the study and the control of acoustic
phonons in the GHz/THz regime [38]. The description of mechanical vibrations in
these structures is usually carried out in a Bloch wave formalism, and their dispersion
relations are represented through acoustic band diagrams [39]. Periodic layered media
have been employed for the study of acoustic phenomena such as the Hartman effect
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for phonons [38] or slow acoustic modes [40]. They are also the fundamental building
block for the design of nanophononic devices such as acoustic mirrors [41], or planar
cavities [42] that confine mechanical modes in the GHz/THz regime.

The confinement of mechanical vibrations in layered systems is of particular rele-
vance in nanophononics. Indeed, these high frequency phononic cavities can be used
as monochromatic acoustic generators and detectors, or as spectral filters [43]. Fur-
thermore, layered acoustic systems and nanophononic cavities are nowadays studied
for understanding the coupling mechanisms between confined high frequency phonons
and electronic transitions in optoelectronic systems, such as VCSELs [44]. The inter-
actions between acoustic waves and gain media could allow to modulate the emission
properties of these nanometric lasers in the GHz regime [45]. Additionally, these
nanophononic structures constitute a fundamental building block of SASERs [46],
that is, sources for coherent and intense sound waves with nanometric wavelengths
[47]. The confinement of acoustic phonons in superlattice based acoustic resonators
constitutes the core of this thesis. So far, the localization of mechanical vibrations in
layered nanophononic structures has been essentially implemented through the tradi-
tional Fabry-Perot design [48]. These acoustic cavities are fabricated by embedding an
acoustic spacer between two phononic distributed Bragg reflectors (DBRs). However,
acoustic superlattices offer the possibility of exploring other confinement strategies in
the GHz/THz range, that are inspired from designs used in optical cavities. Propos-
ing new strategies for the localization of acoustic phonons in the hypersonic range
constituted our first research line.

The first approach that we have investigated relies on the fabrication of a
nanophononic cavity by progressively perturbing the periodicity of a superlattice.
In this way, we adiabatically modify the phononic dispersion relation of the periodic
medium, and create a confined state that is smoothly localized.

The second addressed strategy is the development of acoustic cavities based on
topological invariants. The study of topological phases has become a very active re-
search field for the control of wave propagation. In optics, topological edge states
are investigated for the creation of robust and unidirectional waveguides [49]. Similar
works have been performed in macroscopic acoustics [50]. Despite the fact that the-
oretical studies have also been carried out in nanophononics [51], topological phases
have not yet been experimentally used for engineering high frequency mechanical
vibrations.

The confinement strategies discussed above enable the localization of acoustic
phonons only in one dimension of space. However, current fabrication techniques
allow to realize three-dimensional resonators out of these planar structures. The
second line of research addressed in this manuscript is the confinement of light and
mechanical vibrations in systems of higher dimensions.

The confinement of light and hypersound in one-dimensional nanophononic struc-
tures is a strategy that has already been explored. For instance, embedding a planar
acoustic cavity inside an optical cavity allows to confine optical modes at the position
of the nanophononic resonator. This greatly facilitate its characterization by opti-
cal means [42]. Current fabrication techniques enable the realization of micropillar
resonators from these planar structures. These systems are well known for localizing
optical modes in the three dimensions of space [52]. They are currently studied for
fabrication of semiconductor lasers [53], single photon sources [54], or to study the
dynamics of cavity polaritons [55]. However, the interactions between the mechani-
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cal modes inside a nanophononic resonator and three dimensionally confined optical
modes have not been studied yet. We will address this question by performing Raman
scattering measurements on micropillar resonators embedding acoustic cavities.

Pump-probe coherent phonon generation and detection allowed to demonstrate
that a planar GaAs/AlAs Fabry-Perot resonator can simultaneously localize acous-
tic phonons at resonance frequencies around 20 GHz, and optical modes in the near
infrared range [56]. By fabricating micropillar cavities out of these one-dimensional
structures, it is possible to obtain three-dimensional optomechanical resonators op-
erating at unprecedentedly high mechanical frequencies compared to state-of-the-art
optomechanical systems [20]. Furthermore, theoretical models have been proposed to
study the behavior of tripartite systems, where a confined phonon mode is strongly
coupled to a mechanical mode and an electronic two-level system [57]. The layered
nanophononic systems considered here are interesting for this purpose, since they are
obtained from III-V semiconductor materials in which quantum dots can be readily
integrated.

The three-dimensional confinement of phonons in GaAs/AlAs micropillars hav-
ing resonance frequencies around 20 GHz has been recently demonstrated through
pump-probe experiments [58]. Although the optical properties of these resonators are
well known, these recent experimental advances in the study of the mechanical and
optomechanical properties of these systems demand theoretical investigations. We
performed numerical simulations in order to understand the confinement mechanisms
of acoustic phonons in these resonators and to evaluate the main optomechanical
parameters.

The manuscript is organized in six chapters. Chapter 1 is dedicated to the intro-
duction of the basic concepts that are used for engineering the behavior of mechanical
vibrations in layered nanophononic systems. In particular, we will recall the working
principles of one-dimensional acoustic superlattices and phononic Fabry-Perot cavi-
ties.

In Chapter 2, we will present the main optical characterization techniques that can
be used for probing the acoustic properties of nanophononics resonators. We will start
by presenting the physical mechanisms of inelastic light scattering from mechanical
waves, and we will recall the relevant selection rules for Raman scattering spectroscopy
on layered systems. We will also explain the characterization of these systems through
Raman scattering can be greatly facilitated by engineering the optical environment
of nanophononic resonators. Finally, we will briefly present two other experimental
techniques that are widely used in nanophononics and optomechanics: pump-probe
coherent phonon generation and detection, and Brownian motion measurements.

In Chapter 3, we present the work carried out for the development of novel
nanophononic one-dimensional structures. We will detail the design of the first acous-
tic system that we have characterized, where we localize a mechanical mode by adia-
batically breaking the periodicity of a superlattice. We will then move to the confine-
ment of phonons using topological invariants. For each system, we will present the
experimental results obtained by Raman scattering spectroscopy. The analysis of the
probed spectra will be carried out with the help of numerical simulations based on a
photoelastic model.

In Chapter 4, we will present a technique that allows the measurement of Raman
signals generated by acoustic cavities embedded in optical micropillar resonators,
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which confine light in the three dimensions. We will investigate the effect of the
cavity finite lateral dimensions on the probed spectra.

In Chapter 5, we will present the numerical simulations that we have carried out for
understanding the mechanical and optomechanical properties of micropillars. We will
first recall the experimental works that allowed to demonstrate the full confinement
of both mechanical and optical fields in these systems. We will then explain the main
mechanisms leading to the localization of the phononic mode in a micropillar, that we
have investigated through the finite element method. Furthermore, we will present
the estimations of optomechanical parameters that we have determined through this
numerical method.

Finally, we will terminate this manuscript with a general conclusion, where we
will summarize the main advances reported in this manuscript. We will also propose
future perspectives of this work.
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Chapter 1

Fundamentals of phonon
engineering

In this chapter we introduce the fundamentals of phonon engineering in one-
dimensional structures. We present the relation between band structures and re-
flectivity properties of periodic systems, and the engineering of distributed Bragg
reflectors and nanocavities.

1.1 Periodic structures for propagation control
In solid state physics, a crystal is a periodic arrangement of elementary constituents
in space (e.g. atoms, ions or molecules) [1]. Such a periodic arrangement is described
by a primitive cell (or unit cell) and a Bravais lattice. To obtain the crystalline
structure, it is sufficient to know the configuration of the elementary constituents in
the primitive unit cell and to translate it along the Bravais lattice.

The geometry and composition of this regular medium determines its electronic
behavior. Indeed, an electron propagating in a crystal, described by its wavefunc-
tion, experiences a periodic potential caused by the elementary constituents [1, 2].
As a direct consequence, the electronic properties are described by band diagrams.
This electronic dispersion relation is constituted by bands, corresponding to energy
intervals for which the electrons can propagate, and gaps, i.e. intervals for which the
propagation of electrons in the crystal is forbidden. Electronic band diagrams are
usually represented in the first Brillouin zone, the primitive unit cell of the reciprocal
crystal lattice [1, 2].

The optical analog of an electronic crystal is a photonic crystal. The periodic
electronic potential is "mimicked" by introducing a modulation of the dielectric func-
tion [59, 60]. This periodic arrangement can be carried out in one, two, or three
dimensions. The atoms or ions relevant in an electronic crystal are now replaced by
materials with different dielectric constants and with minimal light absorption. Such
a mapping between electrons and light propagating in periodically modulated media
is possible because of the strong analogies between the equations governing their prop-
agation [59–61]. In particular, due to reflections and interference processes occurring
in a photonic crystal, these systems reproduce for optical waves several phenomena
observed in their electronic counterpart [59]. The physical notions and vocabulary
used to describe their properties are inherited from the ones used for electrons in
crystals [59, 61]. For example, the optical dispersion relation of a photonic crystals
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is also constituted by bands. Furthermore, it can also present frequency intervals in
which light cannot propagate, i.e. optical gaps.

One significant difference between electronic and photonic crystals is the scale of
the modulation, quantified by the size of the unit cell. For metals or semiconductor
materials, the lattice constants are usually in the ångström range [1]. In the case of
photonic crystals, in general the unit cell is comparable to the optical wavelengths for
which the system is designed. For example, the optical lattice parameter is on the
order of 100 nm for near infrared frequencies, whereas it can be in the cm range for
microwaves.

A well known class of photonic crystals are one-dimensional periodic stacks of
dielectric materials [59]. In these superlattices, the linear dispersion relation of light is
folded into the photonic crystal’s reduced Brillouin zone. This folding is accompanied
by the opening of optical minigaps at the center and at the edges of the Brillouin
zone. These multilayer systems are nowadays widely used for the fabrication of optical
components such as highly reflective mirrors, Fabry-Perot interferometers and optical
filters [62]. Additionally, they are also used to realize optical cavities in the solid-
state, i.e. structures that allow to confine optical modes in one or more directions
of space. Solid-state optical cavities are essential in optoelectronic applications. For
example, they play a central role in the fabrication of vertical cavity surface emitting
lasers [63] (VCSELs) or they can be interfaced with light emitting diodes [64] (LED)
to improve their emission properties. Furthermore, optical cavities are also crucial
in fundamental research. Indeed, since the proposition of Yablonovitch to control
light emission processes with photonic crystals [60], they have been implemented to
demonstrate that light-matter interactions can be dramatically modified in solid-state
systems [65, 66].

The concepts developed in the field of photonic crystals can be transposed to
phonons. Indeed, both light and mechanical wave dynamics are ruled by a wave
equation. Therefore, the interference effects, which are at the heart of a photonic
crystal’s functioning, can also be obtained in an acoustic medium. The modulation in
the dielectric function is now replaced by a modulation in the elastic properties of the
system. Instead of considering the optical indices of refraction, a phononic crystal is
obtained by stacking materials with contrasting acoustic impedances (i.e. the product
of the mass density with the speed of sound), and with minimal sound absorption, in
a periodic fashion. As in the case of an electronic or a photonic crystal, the dispersion
relation of this phononic system is described by a band diagram, in which gaps can
open, preventing the propagation of mechanical waves in the corresponding frequency
intervals.

The first experimental characterizations of nano-acoustic superlattices have been
carried almost 40 years ago. In 1979, Narayanamurti et al. first studied the acoustic
transmission properties of a "dielectric phonon filter" constituted by a periodic stack-
ing of GaAs/AlGaAs layers [67]. They observed a drop in the transmission spectrum
of the superlattice, associated to acoustic Bragg reflections occuring in the phononic
band gap of the system. One year later, Colvard et al. unambiguously evidenced
the folding of acoustic phonons dispersion relation in superlattices through Raman
scattering experiments [68]. Since then, the theoretical and experimental study of
these systems has become a very active field of research [39, 69]. In the early 90s,
the concepts of two-dimensional and three-dimensional phononic crystals presenting
complete gaps were introduced, dramatically increasing the possibilities of sound ma-
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nipulation [70, 71]. This was inspired by the proposition of Yablonovitch in optics, and
initially motivated for the control of phonon propagation, the development of novel
mechanical insulation strategies, and by the investigation of localization effects caused
by disorder. Phononic crystals have been implemented in a great variety of systems,
and designed to manipulate mechanical vibrations in the sonic (102-103 Hz) [72, 73],
ultrasonic (104-106 Hz) [74, 75] and hypersonic (GHz) [76, 77] frequency ranges [78].
Their applications are very diverse, and span from acoustic isolators [79], phononic
waveguides [80] or sound manipulation [81], to heat propagation management [82].

Recently, the simultaneous confinement of light and mechanical vibrations and
their interactions has drawn significant attention. In phoxonic crystals, also called
optomechanical crystals, materials and geometry are chosen in such a way that simul-
taneous confinement of photonic and phononic modes is possible [83, 84], leading to
strong interactions between the two fields [85]. Periodically patterned media are nowa-
days a class of optomechanical resonators [20]. Optomechanical crystals, have been
implemented, for example, for the investigation of systems approaching or reaching
their quantum mechanical ground state [24], sensing [86], or optomechanically induced
transparency [87].

One-dimensional superlattices are one of the simplest examples of phononic crys-
tals. They are the fundamental building block for the realization of more complex
acoustic systems. In this thesis we have explored novel confinement methods for acous-
tic phonons based on these layered acoustic media. Since the mechanical vibrations
studied here are in the hypersonic range, the layer thicknesses involved are on the
order of few nanometers. Molecular beam epitaxy (MBE) is a very well adapted fab-
rication technique for the growth of acoustic superlattices operating in this frequency
range. Indeed, it allows to fabricate semiconductor heterostructures with layer thick-
nesses of few nanometers, with atomic monolayer resolution and with sharp interfaces
[88], an essential requirement for nanophononic applications. Optical characterization
techniques have demonstrated to be particularly well suited for probing the properties
of layered nanophononic systems, operating in the GHz-THz regime.

1.2 One-dimensional phononic crystals
In this section, we present in detail the main features of one-dimensional nanophononic
superlattices. We will first provide a qualitative description of their behavior. We will
then introduce an analytical model, allowing to derive the acoustic dispersion relation
of these systems.

1.2.1 Acoustic superlattices: a first description
The nanophononic superlattices studied in this work are obtained by stacking layers
of materials with contrasting acoustic impedances in a periodic fashion [39]. The
characteristic layer thicknesses involved are on the order of few nanometers. In this
work, we focus on solid state systems, in which acoustic phonons in the hypersonic
range can propagate.

The presence of any atomic defect with a size comparable to the considered
phononic wavelengths can significantly affect the acoustic properties of the super-
lattice [89]. Monolayer thickness fluctuations that appear during the fabrication pro-
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cess, in particular at the interface between the two different materials, can become
dispersion or localization centers for the mechanical waves.

Figure 1.1 – Phonon Dispersion relations in bulk GaAs and AlAs, reproduced from
[90]. The diamond symbols correspond to experimental data obtained through neu-
tron scattering. The continuous lines correspond to ab-initio calculations. In the right
panels the density of states for the two considered bulk materials are represented.

Semiconductor epitaxy fabrication techniques are well suited for the realization of
high quality nanophononic structures. GaAs and AlAs are widely used in optoelec-
tronics, and a significant know-how has been developed for the fabrication of layered
systems based on these materials. Nowadays, GaAs and AlAs have become a model
material combination for the realization of nanophononic structures. This is in par-
ticular due to the small lattice mismatch between these two III-V semiconductors,
and to the fact that their bulk phononic properties are well known. All the samples
presented in this manuscript were fabricated by MBE with alternating layers of these
two materials, or of their alloys.

Figure 1.1 shows the phonon dispersion relations of GaAs and AlAs bulk materials
[90]. GaAs and AlAs both have a zinc blende crystal structure, with two atoms per
unit cell. The dispersion relation is therefore constituted by three acoustic phonon
branches (i.e. the three low energy curves, equal to 0 at the Γ point) and three
optical phonon branches. For both acoustic and optical phonons, two of the three
branches are assigned to transverse phonons (i.e. the wave vector q is orthogonal
to the mechanical wave polarization) and the other one is associated to longitudinal
phonons.
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We now provide a first qualitative description of a superlattice’s acoustic behav-
ior in order to understand its main features. It is worth noting here the hypothesis
considered when studying all the planar systems presented in this manuscript. The
mechanical waves that we are considering are longitudinal acoustic phonons, propa-
gating along the [001] direction for both materials. Furthermore, we consider that
the acoustic waves have linear dispersion relations in the bulk media. This is the
case as long as the mechanical frequency is small, below ≈ 650 GHz (corresponding
to ≈ 2.7 meV) [91–93]. This condition is verified for all the systems studied here.

ω ω

qq

ZA

ZB

d

π/d π/d0 0

z

A B

(a)

(b)

(c) (d)

Figure 1.2 – Schematic representation of band diagram formation in an acoustic
superlattice. (a): Sketch of a periodic stacking of two materials A and B along the z
direction. The red dashed rectangle indicates the considered unit cell, with a length
d. The colors indicate layers of different materials. (b): Periodic modulation of
acoustic impedances in the phononic crystal. (c): Dispersion relation for longitudinal
mechanical waves propagating in the superlattice, when A = B. (d): Dispersion
relation for longitudinal mechanical waves propagating in the superlattice, when A 6=
B. In Panels (c) and (d) the red curves correspond to the band diagram before
being folded into the reduced Brillouin zone. The black curve indicates the folded
dispersion relation. The vertical black dashed line indicates the boundary of the
superlattice reduced Brillouin zone. Notice in (d) the opening of acoustic minigaps
at the zone center and zone edge of the Brillouin zone.

We consider the infinite superlattice represented in Figure 1.2, Panel (a). The
colors indicate layers of two materials A and B. They are characterized by their
acoustic impendances Z = v × ρ, where v is the speed of sound and ρ is the material
density. The red rectangle indicates the unit cell for this periodic arrangement, with
a geometric size d, containing two layers of thicknesses d1 and d2.

Let us suppose first that all the layers are constituted by the same material, i.e.
A = B. In this case, longitudinal acoustic phonons can propagate in a bulk medium
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without any perturbation. Their dispersion relation is a straight line, and its slope
corresponds to the speed of sound for longitudinal waves. Since we chose a unit cell
(which in this case is somewhat arbitrary), we can fold the unperturbed acoustic
dispersion in the corresponding superlattice Brillouin zone, as shown in Figure 1.2.c.
As the characteristic length d of the superlattice unit cell is larger than the lattice
parameters of the considered materials, the Brillouin zone associated to the phononic
crystal is smaller than the ones of the bulk media. We therefore refer to it as the
reduced Brillouin zone.

We now consider that A 6= B. Therefore, we have ZA 6= ZB, as plotted in Panel
(b). We suppose, for this qualitative description, that the impedance contrast is weak,
i.e. ZA

ZB
≈ 1. We suppose that a longitudinal mechanical plane wave propagates inside

the superlattice with a wave vector q along the z direction. Since the modulation is
small, this situation is equivalent to the one described in a nearly free electron model
for electronic band structures. We first consider the acoustic wavevectors that match
the Bragg condition q = n × π/d. In this case, the weak reflections occurring at
the interfaces between two consecutive layers can constructively interfere. This will
depend in fact also on the inner geometry of the superlattice unit cell (that is, the
relative thicknesses of materials A and B). The result, in the stationary regime, is
that the mechanical vibrations take the form of standing waves for these particular
wavevectors. As in the case of electrons propagating in a weak electronic potential
[94], this leads to the opening of acoustic minigaps in the band diagram, as shown
in Panel (d) of Figure 1.2. No mechanical state propagating along the z direction
can exist in the structure with a frequency falling inside an acoustic minigap. For
wave vectors having values far from the Bragg condition, these interference effects do
not occur, and the superlattice presents a linear dispersion relation characterized by
an effective sound speed. The latter can be folded back in the superlattice reduced
Brillouin zone, as shown in Figure 1.2.d.

The existence of acoustic minigaps is of paramount importance in this work, as
we will see in the following chapters. In these frequency ranges, acoustic superlattices
can be considered as perfect reflectors for longitudinal mechanical waves. Their span
is determined by the acoustic impedance constrast between the constitutive materials
and the layer thicknesses chosen to design the superlattice.

In this section, we have given a first description of a one-dimensional superlattice.
Its main characteristics are summarized in Panel (d) of Figure 1.2. In the next section,
we provide a more rigorous model, widely used in nanophononics [38, 39], that was
originally derived by Colvard et al. [95]. It allows to calculate the acoustic band
diagram of a superlattice, in a way similar to the Kronig-Penney model for electronic
band structures.

1.2.2 Phononic band diagrams
In Figure 1.3 we show the calculated folded band diagram of a GaAs/AlAs superlat-
tice, reproduced from [95]. The figure shows the dispersion relation for longitudinal
acoustic waves. In this model, the superlattice is considered to be constituted by a
linear chain of atoms. The GaAs and AlAs layers are constituted by 5 and 4 atomic
monolayers, respectively. The folded optical branches in the two materials are sepa-
rated by a wide frequency interval, preventing the propagation of optical phonons in
the whole structure. For the low frequency longitudinal acoustic phonons, acoustic
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minigaps open. Far from the center and the edge of the reduced Brillouin zone, the
dispersion relation is linear. An effective sound speed, derived from the constituent
materials and from geometrical parameters, can be calculated [39, 96].

Figure 1.3 – Phononic band diagrams calculated by considering linear-chain models.
The mechanical waves considered here are the longitudinal ones. The Brillouin zones
represented are the ones of the bulk materials and of the superlattice (the smaller
one). In the bulk Brillouin zone, the dashed lines correspond to the AlAs dispersion
relation, and the solid lines show the one for GaAs. In the superlattice Brillouin zone,
the solid lines correspond to the folded dispersion relation. The image is reproduced
from [95].

We now derive the acoustic dispersion relation of a superlattice. We consider the
structure represented in Figure 1.4, where the [001] direction is indicated by the z
axis. The layers have thicknesses of da and db, respectively. The total unit cell has a
length d. In the frequency ranges that we are considering, the bulk mechanical waves
present a linear dispersion relation. In the model that we present below, the crystals
are considered as elastic continua. The wave equation describing the propagation of
mechanical vibrations reads:

∂

∂t

(
ρ(z)∂u(z, t)

∂t

)
= ∂

∂z

(
C11(z)∂u(z, t)

∂z

)
(1.1)

where u(z, t) corresponds to the displacement along the z axis, whereas ρ and C11
are the mass density and the stiffness constant for longitudinal modes along the [001]
crystal direction, respectively. Considering that in each layer the material parameters
are homogeneous, the equation becomes:

ρj
∂2u(z, t)
∂2t

= Cj
∂2u(z, t)
∂2z

(1.2)
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where the j subscripts indicate the material properties in the jth layer. We are seeking
harmonic solutions in time. Furthermore, the system is translation invariant in the
x and y directions. For a wave that is propagating with a wavevector q along the z
direction, we look for solutions having the form:

u(z, t) = u(z)× eiωt (1.3)

d

G
aA
s

A
lA
s

z

y

x

da db

0

-db da db

1 32

Figure 1.4 – Schematic representation of a superlattice. The dashed red rectangle cor-
responds to the superlattice unit cell. The colors indicate layers of different materials.
The propagation axis z is indicated.

Inside a layer j, the spatial part u(z) can be locally decomposed in two counter-
propagating plane waves:

uj(z) = Aje
ikjz +Bje

−ikjz (1.4)
where kj is the local wavevector of the plane wave in layer j. We now use boundary
conditions at different interfaces between the layers 1,2 and 3, shown in Figure 1.4.
The origin is marked by a vertical solid red line. The boundary conditions are the
continuity of stress and displacement between two consecutive layers. They read as:

uj(bj) = uj+1(bj) (1.5)
and

Cj
∂uj
∂z

∣∣∣∣
bj

= Cj+1
∂uj+1

∂z

∣∣∣∣
bj

(1.6)

In the equations shown above, bj indicates the interface between the layers j and
j + 1. For layers 1 and 2, Equation 1.4 becomes:

u1(z) = A1e
ik1z +B1e

−ik1z (1.7)
and

u2(z) = A2e
ik2z +B2e

−ik2z (1.8)

For layer 3 we apply the Bloch theorem. Since the system is periodic, the mechan-
ical solution can be put in the form:

u(z) = eiqzφ(z) (1.9)
φ(z) is the part of the Bloch wave with the same periodicity d as the acoustic

superlattice. Therefore, the mechanical wave in layer 3 can be written as:
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u3(z) = eiqd × (A1e
ik1(z−d) +B1e

−ik1(z−d)) (1.10)

We consider Equation 1.7, Equation 1.8, and Equation 1.10. By applying the
boundary conditions at the interfaces between layer 1 and layer 2, and between layer
2 and layer 3, we find:

A1 +B1 = A2 +B2

C1k1(A1 −B1) = C2k2(A2 −B2)
A2e

ik2da +B2e
−ik2da = eiqd(A1e

−ik1db +B1e
ik1db) (1.11)

C2k2(A2e
ik2da −B2e

−ik2da) = C1k1e
iqd(A1e

−ik1db −B1e
ik1db)

where kjvj = ω. The parameter vj is the speed of sound in the material j, with
vj =

√
Cj/ρj . We find a homogeneous linear system of four equations with four

unknowns. This system has a non-trivial solution if its determinant is equal to 0. By
expressing this condition, we find the dispersion relation of the superlattice between
ω and q [38, 39]:

cos(qd) = cos

(
ω

(
da
va

+ db
vb

))
− ε2

2 sin
(
ω
da
va

)
sin

(
ω
db
vb

)
(1.12)

with
ε = ρbvb − ρava

(ρbvbρava)1/2 (1.13)

The parameter ε represents the phononic modulation in the superlattice due to
the difference in acoustic impedances between the consecutive layers.

We now investigate the effect of each part of the dispersion relation. We first
consider only the first term in Equation 1.12 [39]:

cos(qd) = cos

(
ω

(
da
va

+ db
vb

))
(1.14)

It can also be expressed as:

qd = ±ω1
v

+ 2pπ (1.15)

with
v = vavb

(1− β)vb + βva
(1.16)

and
β = db

d
(1.17)

In Equation 1.15, p is an integer. This expression describes a linear dispersion
relation folded in the first Brillouin zone (as the one represented in Figure 1.2.c), with
a slope, that is, an effective group velocity, given by v. The folded dispersion relation
crosses the Brillouin zone center and edge for the frequencies:

Ωm = mπv

d
(1.18)
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where m is an even (odd) integer number for the crossings at the center (edge) of the
Brillouin zone. The effect of the second term in Equation 1.12, corresponding to the
acoustic impedance modulation, is to open acoustic minigaps centered at the frequen-
cies Ωm. The amplitude of the acoustic minigaps can be approximately determined
as [39]:

∆Ωm = 2εv
d
sin

(
mπ

2
(1− β)vb − βva
(1− β)vb + βva

)
(1.19)

Notice that the absolute value of Ωm and the width of the acoustic minigaps are
inversely proportional to d. Therefore, by decreasing the period thickness of the
system, we increase the span and the central frequency of the minigaps. Choosing
material combinations with a large ε value also allows to widen the forbidden frequency
intervals.

The choice of the individual layer thicknesses determines both the spectral position
of the acoustic minigaps and their span. It is worth noting that for any fraction of
constitutive materials in the unit cell (that is ∀β ∈]0, 1[) there will always be open
acoustic minigaps in a one-dimensional superlattice. This is in particular true for the
acoustic minigap located at Ω1, that is, the first forbidden frequency interval at the
zone edge of the reduced Brillouin zone [97]. Nevertheless, some minigaps can be
closed, depending on the design of the system, as can be deduced from Equation 1.19.

In Figure 1.5, we show the calculated dispersion relation for a GaAs/AlAs (λ4 ,
λ
4 )

superlattice. It was determined by implementing a transfer matrix method for acous-
tic waves and by considering the Bloch wave character of the eigensolutions. The
design frequency considered here is f0 = 350 GHz. The parameter λ in the (λ4 ,

λ
4 )

nomenclature describing the design of the superlattice corresponds to the wavelength
of a mechanical plane wave propagating at a frequency f0 in the considered materi-
als. The layers thicknesses in the unit cell are therefore dGaAs = λGaAs

4 = 3.414 nm
and dGaAs = λGaAs

4 = 4.043 nm. The material parameters used for the numerical
calculations (both mechanical and optical) are shown in Table 1.1.

Materials Density g/cm3 Speed of sound (m s−1) Index of refraction
GaAs 5.35 4780 3.54
AlAs 3.77 5660 2.96

Table 1.1 – Mechanical and optical properties of GaAs and AlAs [38, 98].

In Fig. 1.5.a we observe that the two first zone edge (ZE) acoustic minigaps are
open, whereas the two zone center (ZC) ones are closed. This is evidenced in Panels
(b) and (c), where we plot a detailed view of the first zone center and zone edge
minigaps, respectively. The design frequency f0 is located at the center of ZE[1], that
is, 2πf0 = Ω1. The (λ4 ,

λ
4 ) design is in fact the one that maximizes the span of the

first zone edge minigap. Note that this is a standard choice in photonics. For the
superlattice considered here, this forbidden frequency interval has a span of ≈ 40 GHz.

As we mentioned before, for a frequency value located in an acoustic minigap no
Bloch modes with a real value of q can be found. Nevertheless, Bloch wave eigenstates
can still be determined inside the acoustic minigaps, but with complex q values, i.e.
the modes are evanescent waves. The imaginary part of the wave vector corresponds
to the decay length κ−1 of the state. In a semi-infinite system, we can consider a

15



Fundamentals of phonon engineering

longitudinal mechanical plane wave that is incident on an acoustic superlattice, with
a frequency falling inside an acoustic minigap. Since its propagation is forbidden
inside the layered periodic medium, the mechanical amplitude exponentially decays
in a spatial region given by 1/κ. κ is maximal for frequency values located at the center
of the acoustic minigaps, and increases with the acoustic impedance contrast between
the constitutive materials. The incident mechanical wave is completely reflected by
the acoustic superlattice, which behaves as a perfect acoustic mirror.
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Figure 1.5 – (a): Calculated band diagram of a (λ4 ,
λ
4 ) GaAs/AlAs superlattice, folded

in the reduced Brillouin zone. The dashed line indicates the spectral position of the
design frequency f0. The ZE[i] and ZC[i] indicate the zone edge and zone center
acoustic minigaps, respectively. (b): Detailed view of the closed ZC[1] minigap,
around 700 GHz. (c): Detailed view of the open ZE[1] minigap, around 350 GHz. The
orange and magenta dots indicate the first zone edge upper and lower eigenmodes,
respectively.

In Panel (c) we can see that when q approaches the zone edge, the two visible
bands progressively flatten. When the wave vector reaches the value π

d
, the group

velocity becomes ∂ω
∂q

= 0. The two corresponding eigenmodes are standing waves
and do not transport energy. They are marked by an orange and a magenta dot in
the dispersion relation. The high frequency and low frequency modes have resonance
frequencies of 370 GHz and 330 GHz, respectively.

We plot their spatial displacement field profiles in Figure 1.6, where we can see the
position of their nodes and antinodes. In the figure we also defined a centrosymmetric
unit cell for the superlattice indicated by the red rectangle, with a central AlAs
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layer. The two modes have similar local wave vectors. However, they have different
spatial distributions since they are orthogonal eigenmodes. In particular, they need
to respect the symmetry properties of the superlattice, that is, they are symmetric or
antisymmetric with respect to the mirror symmetry plane (black vertical line) located
at the center of the defined unit cell. Therefore, there are only two possible spatial
profiles. One standing wave presents a node in the middle of the unit cell (Panel (b)),
whereas the other one presents an antinode (Panel (a)).

The existence of eingenmodes with a standing wave spatial profile that bound
acoustic minigaps will play an important role for the design of topological acoustic
cavities, as we will see in Chapter 3. Indeed, the topological phase of a superlattice
can be deduced from the symmetry properties of these modes.
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Figure 1.6 – Displacement fields of the high frequency (Panel (a), orange curve)
and low frequency (Panel (b), magenta curve) standing wave modes bounding the
first zone edge acoustic minigap. The amplitudes of normalized displacement are
indicated by the left axis. The square black lines show the profile of the acoustic
impedances in the layers (right axis). The colors indicate the layers of AlAs (green)
and GaAs (blue). The red square corresponds to the chosen symmetric unit cell. The
black vertical line indicates the mirror symmetry plane mentioned in the main text.

1.3 Acoustic Distributed Bragg Reflectors
Acoustic superlattices are idealized one-dimensional crystals with infinite spatial ex-
tent. Therefore, these systems cannot be realized experimentally. Nevertheless, struc-
tures presenting an acoustic periodic modulation over a finite region of space can be
fabricated. A schematic representation is given in Figure 1.7, where the layered
medium is embedded in bulk GaAs.

Since the system is of finite size along z, we can study its acoustic transmission and
reflection properties. Indeed, we can send an incident acoustic wave, for example from
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Figure 1.7 – Diagram of an acoustic distributed Bragg reflector embedded in bulk
GaAs. The structure is constituted by 5.5 layer pairs.

the left GaAs substrate, and measure the reflected and transmitted field intensities as
function of frequency. Since the structure is one-dimensional, the propagation of the
incident acoustic waves can be simulated by using an implementation of the transfer
matrix method.
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Figure 1.8 – (a): Acoustic band diagram of a (λ4 ,
3λ
4 ) superlattice. The design fre-

quency f0 = 350 GHz is located at the center of ZC[1]. (b): Acoustic reflectivity
spectrum of the corresponding (λ4 ,

3λ
4 ) acoustic superlattice. Each acoustic stop band

can be associated to an acoustic minigap in the superlattice band diagram.

In Figure 1.8.b we show the calculated reflectivity spectrum for a structure con-
stituted by 24.5 GaAs/AlAs layers pairs embedded in a bulk matrix, as represented
in Figure 1.7. The layer thicknesses are 12 nm and 3.4 nm for the AlAs and GaAs
layers, respectively. This geometry corresponds to a (λ4 ,

3λ
4 ) periodic stack for a design

frequency f0 = 350 GHz. The band diagram of the corresponding infinite superlat-
tice is plotted in Figure 1.8.a. The frequency f0 is located at the center of the ZC[1]
acoustic minigap. The (3λ

4 ,
λ
4 ) design is in fact the one that maximizes the span of this

particular forbidden frequency interval [97]. In this minigap, a maximal value of the
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acoustic reflectivity is reached at its center and it can be approximated by Equation
1.20 for a large number of periods [99]:

R = 1− 4Z2N +O(Z4N) (1.20)
with Z = ZAlAs

ZGaAs
, which corresponds to the acoustic impedance contrast. For a DBR

constituted by 10 layer pairs, the DBR reflectivity is around 0.9. By doubling the
layer pair number, it reaches a value of 0.998.

The high reflectivity frequency intervals visible in Panel (b), also called stop bands,
can be associated to the acoustic minigaps generated in the corresponding infinite pe-
riodic structure. They are due to constructive interferences between the successive
back reflections occurring at the interfaces between the different semiconductor lay-
ers. These finite size structures operate as acoustic distributed Bragg reflectors for
longitudinal mechanical waves, in strong analogy with their optical counterpart.
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Figure 1.9 – Acoustic reflectivity of a DBR as function of increasing pair number
around ZC[1]. The curves have been vertically shifted for clarity. The parameter N
indicates the number of layer pairs inside the simulated DBR.

Outside of these frequency regions, the reflectivity spectrum drops significantly
and presents fast oscillations, called Bragg oscillations. Their number between two
acoustic stop bands increases with the number of bilayers in the DBR.

In Figure 1.9, we plot the acoustic reflectivity around the first ZC for a (λ4 ,
3λ
4 )

DBR with different number of layer pairs N . As expected from Equation 1.20, the
acoustic reflectivity at the center of the stop band increases with N and the number of
Bragg oscillations increases. Finally, the reflectivity values in this frequency interval
progressively converge to one. For a sufficiently large number of layer pairs, an acoustic
DBR becomes a highly reflective phononic mirror over frequency ranges corresponding
to the acoustic stop-bands. This property is extremely useful for the conception of
other phononic systems, such as acoustic cavities.
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1.4 Phononic Fabry-Perot cavities
Because of the existence of stop bands, acoustic DBRs can be used to control the
propagation of longitudinal mechanical waves. In particular, by introducing a defect
inside such a periodic stack, we can realize an acoustic Fabry-Perot resonator, such
as the one represented in Figure 1.10. The system can also be considered to be
constituted by two DBRs enclosing a spacer layer. Such phononic resonators confine
a discrete set of mechanical modes in one direction with resonance frequencies falling
in the acoustic stop bands of the implemented DBRs.

An acoustic cavity can be fabricated from two (λ4 ,
3λ
4 ) DBRs designed at a fre-

quency f0. As mentioned before, this geometry maximizes the span of the acoustic
stop band associated to the first ZC minigap centered at f0. We can then introduce a
spacer between the two acoustic mirrors that verifies the standard resonance condition
for a Fabry-Perot cavity:

dspacer = p
f0

2vspacer
(1.21)

where p is an integer. The confined mode eigenfrequency is in this case located at the
center of the considered stop band. This resonant state has the form of a standing
wave, and its mechanical energy is spatially concentrated at the spacer position.
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Figure 1.10 – Schematic diagram of an acoustic cavity embedded in a GaAs matrix.
The number of layer pairs in the DBRs is arbitrary here and has been chosen for
clarity.

In Figure 1.11.a, we show the simulated spatial profile of a confined mechanical
mode, calculated through the transfer matrix method. The plotted quantity is the
modulus of the displacement field |u(z)| inside the structure. The amplitude of the
displacement is normalized to the amplitude of the field inside the bulk matrix. The
system is constituted by two (λ4 ,

3λ
4 ) AlAs/GaAs DBRs designed for f0 = 350 GHz,

embedding a λ
2 GaAs spacer (that is, p = 1 in Eq. 1.21). Each DBR contains 17.5

layer pairs. The displacement amplitude is greatly enhanced inside the spacer and
the mode exponentially decays inside the two DBRs. Its spatial profile |u(z)| presents
two maxima in the spacer of the cavity.

In Figure 1.11.b, we can see that the confined mode eigenfrequency is falling at the
center of the first ZC acoustic minigap of the associated superlattice. This is indicated
by the dashed green line. In the reflectivity curve (Figure 1.11.c), we observe a sharp
dip located in the middle of the stop band. This feature marks the existence of the
confined mode at a resonance frequency of f0 = 350 GHz (corresponding to an energy
of 1.45 meV).
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Figure 1.11 – Confined mechanical mode spatial profile and reflectivity curve of a λ
2

cavity. The mirrors have a (λ4 ,
3λ
4 ) geometry. (a): Confined mechanical mode spatial

profile (red curve, left axis) and acoustic impedance (grey curve, right axis) as function
of the position in the structure. The GaAs spacer is at the center of the plot. (b):
Acoustic band diagram of the (λ4 ,

3λ
4 ) superlattice, without any spacer. The vertical

green dashed line indicates the spectral position of the corresponding confined cavity
mode inside the first ZC minigap. (c): Cavity acoustic reflectivity, between 250 GHz
and 450 GHz. The sharp dip in the acoustic stop band marks the existence of the
confined mechanical mode at a resonance frequency of 350 GHz.
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The mechanical field confinement strength of a cavity is quantified by its mechan-
ical quality factor (Qm). It corresponds to the ratio Qm = 2π×Emech/∆Ecycle

mech. Emech
and ∆Ecycle

mech are the resonator mechanical energy and the mechanical energy lost per
cycle of field oscillation, respectively. Furthermore, the quality factor value is propor-
tional to the maximal field intensity, when the cavity is excited with a monochromatic
plane wave resonant with the confined mode. Therefore, it quantifies the intensity en-
hancement obtained inside an acoustic resonator. The quality factor can be calculated
from the reflectivity curve of the acoustic structure. By considering the resonance fre-
quency f0 and the full width half maximum (FWHM) Γ of the Lorentzian reflectivity
dip, it is given by Qm = f0

Γ .
In the case represented in Figure 1.11, we find Qm = 5600. The considered FWHM

decreases when either the reflectivity or the spacer thickness dspacer are increased. This
is clearly visible in the following equation [99, 100]:

Γ = −
vs × ln(

√
RLRR)

dspacer + lDBR
(1.22)

where RL and RR are the reflectivities of the right and left DBRs. The parameter vs
is the speed of sound in the spacer and lDBR corresponds to the penetration depth of
the confined mode inside the DBRs. The lifetime of the confined phonons is given by
1/Γ.
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Figure 1.12 – Acoustic reflectivity curves for a λ
2 cavity with increasing layer pairs

number (N) in each DBR. The curves have been shifted vertically for clarity.

In Figure 1.12 we plot the simulated reflectivity curves for a λ
2 cavity when the

number of DBR layer pairs is increased. We observe that the reflectivity dip FWHM in
the stop band decreases. This is due to the fact that we are increasing the reflectivity
of the acoustic mirrors at the confined mode resonance frequency. Similarly to what
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we observed for the case of a bare acoustic DBR in Figure 1.9, the acoustic stop band
boundaries get better and better defined and the number of Bragg oscillations around
the stop band increases.

The resonance frequency of the confined mechanical mode can be tuned by varying
the thickness of the spacer. In Figure 1.13 we show the evolution of the resonance
frequency as a function of this parameter, starting from a λ

2 cavity. The mechani-
cal mode is red-shifted, since the overall size of the resonator increases, whereas the
acoustic stop-band remains unaltered, since it depends solely on the DBRs’ geome-
try. When the reflectivity dip disappears into the Bragg oscillations, a second dip,
associated to the first order cavity mode, appears in the stop band and progressively
reaches its center. When represented by its displacement modulus |u(z)|, the spatial
profile of this confined mode presents three maxima inside the spacer. In this plot,
the Fabry-Perot resonance condition smoothly changes from dcav = λ

2 to dcav = λ.
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Figure 1.13 – Acoustic reflectivity curves for an acoustic cavity when changing the
spacer size. dcav is indicated next to each reflectivity curve. The layer pairs number
is of 13.5 in each DBR.

Acoustic Fabry Perot resonators have been extensively studied in the field of
nanophononics for the confinement of acoustic phonons in the hypersonic range. Nev-
ertheless, other confinement methods have been explored in layered media. One ex-
ample are mechanical modes that are spatially confined at the interface between a
DBR and air. In particular, if the periodic stacking is terminated by the layer with the
weaker acoustic impedance, surface modes can appear [101, 102]. They are spectrally
located inside the acoustic DBR stop bands. Therefore, these modes exponentially
decay in the periodic semiconductor medium, and because their mechanical frequency
are in the hundreds of GHz range, they cannot propagate in air. Furthermore, since
a DBR/air interface acts as a perfect reflector with zero stress boundary condition,
asymmetric Fabry-Perot cavities can be designed. By placing an acoustic spacer be-
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tween a DBR and air, confined mechanical modes can be generated and have been
experimentally investigated [103]. Finally, the localization of acoustic phonons has
also been demonstrated in Tamm plasmon resonators. In this case, the studied cavity
was constituted by a DBR on which a thin gold layer was deposited. The optical
and the mechanical modes were simultaneously confined at the interface between the
metal and the dielectric structure [104].

As we will see in Chapter 3, we investigated novel localization strategies for high
frequency phonons. The Fabry-Perot design presented here is completely analogous
to the one that can be used for the fabrication of optical dielectric cavities. In this
work we will take further advantage of the recent designs proposed for localization of
photons to develop novel mechanical resonators.

The lack of trivial transducers to generate and detect acoustic phonons in the hy-
personic range has motivated the development of optical methods to study the dynam-
ics of these mechanical vibrations. For example, measuring the Raman spectra gener-
ated by confined acoustic phonons allows us to study the properties of nanophononic
resonators. In fact, it is this experimental technique that we have implemented for
the investigation of new confinement methods in planar systems, presented in Chapter
3. In the next chapter, we will introduce the main experimental methods allowing
to probe mechanical vibrations in the temporal and spectral domain, by interfacing
acoustic and optical fields.

1.5 Conclusion
In this chapter, we introduced the main concepts for acoustic waves manipulation
in the hypersonic range with one-dimensional layered systems. We first introduced
the working principles of acoustic superlattices, by providing an intuitive description
and a more quantitative theoretical model. We have then studied how we can take
advantage of concepts such as acoustic band diagrams and minigaps to design basic
nanophononic devices, that is, acoustic DBRs and nanocavities. These notions will
constitute the building blocks for the structures studied along this thesis. In Chapter
3 we will use them for the development of novel one-dimensional confinement strate-
gies. In Chapters 4 and 5, we will study three-dimensional resonators fabricated
from DBR based nanophononic resonators. In the next chapter, we will describe the
main experimental techniques used in order to probe the confinement properties of
nanophononic cavities.
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Chapter 2

Optical measurements of acoustic
phonons

Optical measurements are particularly useful for the characterization of nanophononic
systems. This is due to the fact that the properties of light propagating in a solid-state
medium can be affected by the presence of a mechanical wave. By measuring the signa-
tures of this interaction, it is possible to study the acoustic properties of nanophononic
systems. In this chapter we introduce the main experimental optical techniques that
are relevant for the characterization of layered nanophononic resonators. We will first
start by recalling the physical mechanisms leading to the inelastic scattering of light
induced by phonons. We will then present how, by performing Raman scattering
experiments, we can probe the acoustic properties of nanophononic layered systems.
We will also see that, by confining the incident and the scattered optical fields, these
measurements can be greatly facilitated. We will then introduce the working princi-
ples of two other experimental methods particularly useful for the study of phononic
systems in the hypersonic range. The first one is pump-probe coherent phonon gen-
eration and detection, and the second one is Brownian motion measurements. The
latter experimental technique is widely used in cavity optomechanics. We will provide
a brief presentation of this research field in the last sections of this chapter.

2.1 Raman scattering: phonon spectroscopy

Spectroscopic optical measurements have been implemented for the study of high
frequency mechanical systems since the early days of nanophononics. The inelastic
scattering of light induced by acoustic phonons in a periodic medium generates char-
acteristic spectral features [95]. They can be interpreted by comparing them to the
acoustic band diagram of the associated superlattice. Furthermore, Raman scattering
has also demonstrated to be useful for probing the confinement of acoustic cavities op-
erating in the GHz/THz range [42]. The measurements on planar structures reported
in this manuscript have been obtained through this technique.

In this section, we will review the basic concepts on which this experimental tech-
nique is based. In particular, we will provide a description of the interactions between
light and mechanical vibrations, based on a photoelastic model. We will then explain
how to enhance and relax the Raman scattering selection rules by engineering the
optical environment of an acoustic structure.
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2.1.1 The Photoelastic model
The experimental characterization of the systems presented in this manuscript relies
on the interactions between light and mechanical vibrations. When a semiconductor
sample is illuminated, part of the incident electromagnetic radiation is reflected at the
surface of the solid state medium. The rest is transmitted and propagates inside the
semiconductor material, and several light-matter interactions take place. For example,
if the energy of the incident photons is higher than the fundamental electronic gaps,
they can induce electronic transitions from the filled valence band up to the conduction
band. Part of the incident light is absorbed, and can be dissipated as heat, or re-
emitted through photoluminescence.

Light can also be scattered by inhomogeneities present in the medium. If the
scattered photons have the same energy as the incident ones, this process is elastic
scattering, or Rayleigh scattering [105]. On the contrary, if there is a change in the
optical frequencies, it corresponds to an inelastic scattering process. In particular,
the propagation of mechanical waves inside a material provokes inelastic scattering
of light. It is this interaction, which tends to be weaker than photoluminescence or
light reflection, that we will use for characterizing our acoustic systems. To explain
its origin, we start this section by providing a macroscopic description of Raman
scattering in a bulk solid-state medium, adapted from reference [2].

We consider an electromagnetic wave propagating in a semiconductor material.
The associated electric field can be written as:

−→
E (r, t) = −→E i(ωi,

−→
ki )× cos(

−→
ki · −→r − ωit) (2.1)

with ki and ωi the incident optical wavevector and angular frequency, respectively.
The propagation of light in the solid state medium induces a polarization wave. The
polarization field and the electric field are linked by the electric susceptibility tensor
of the material:

−→
Pi(ωi,

−→
ki ) = χ(ωi,

−→
ki )
−→
Ei(ωi,

−→
ki ) (2.2)

The mechanical modes inside the bulk material can be put in the form of plane
waves. Atomic displacements can be expressed as:

−→u (r, t) = −→u (ω0,
−→q )× cos(−→q · −→r − ω0t) (2.3)

The mechanical waves in the solid-state medium will affect the dielectric tensor.
By assuming an adiabatic approximation, i.e. the electrons adiabatically follow the
displacement of the crystal atoms, the dielectric tensor can be expressed as a function
of −→u (r, t). Furthermore, the mechanical displacements present in the crystal are
considered to be small. Therefore, the crystal electric susceptibility can be Taylor
expanded as:

χ(ωi,
−→
ki ,
−→u ) = χ0(ωi,

−→
ki ) + ∂χ

∂−→u

∣∣∣∣
0

−→u + ... (2.4)

where the label 0 indicates the situation where no phonons are propagating. We keep
only the first term in the previous expansion, which represents the electric suscepti-
bility modulation induced by the mechanical wave where only one phonon is involved.
By considering Equations 2.2 and 2.4, and by expressing the wave equation for the
electric field, we find [105]:
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∇2−→E − n2

c2
∂2−→E
∂2t

= 1
ε0c2

∂2−→P ind(−→r , t)
∂2t

(2.5)

Where c, ε0 and n are the speed of light in vacuum, the vacuum permittivity
and the material refractive index, respectively. The polarization term in the previous
equation −→P ind can be expressed as:

−→
P ind(−→r , t,−→u ) = 1

2
∂χ

∂−→u

∣∣∣∣
0

−→u (ω0,
−→q )−→E i(ωi,

−→
ki )×{

cos[(−→ki +−→q ) · −→r − (ωi + ω0)t] + cos[(−→ki −−→q ) · −→r − (ωi − ω0)t]
} (2.6)

This term corresponds to a polarization field induced by the optical wave in the
presence of the mechanical vibration. It is due to the perturbation of the material
optical properties induced by the mechanical wave, as expressed in Equation 2.4.

In the second line of Equation 2.6 there are two plane wave terms: one oscillat-
ing at an angular frequency ωi + ω0 and the other one at a frequency ωi − ω0. The
two oscillating terms contained in −→P ind behave as two source terms of scattered op-
tical fields [105], verifying the energy and wavevector conservation. One generates an
optical plane wave with a scattered frequency ωs = ωi + ω0 and with a wavevector−→
k s = −→k i +−→q . This is called the anti-Stokes component. The other one generates a
Stokes component with a scattered frequency ωs = ωi − ω0 and with −→k s = −→k i −−→q .

The intensity of the scattered fields depends on the scattered radiation polarization
−→e s as

∣∣∣−−→Pind · −→e s∣∣∣2 [2]. If we consider an incident wave having a polarization −→e i, the
scattered intensity is proportional to [2]:

Is ∝
∣∣∣∣∣−→e s · ∂χ∂−→u

∣∣∣∣
0

−→u (ω0) · −→e i
∣∣∣∣∣
2

(2.7)

The scattered light intensity is proportional to the squared mechanical vibration
amplitude. Furthermore, the result of the previous equation is that for some partic-
ular choices of light polarizations and experimental configurations, the scattered field
intensities might vanish [2]. These are called the Raman scattering selection rules.

The generation of inelastically scattered light is therefore due to a modulation
of the material dielectric properties. This is caused by the atomic displacements
occurring inside the considered system, in the presence of a mechanical wave. The
description provided above is valid for optical phonons [38, 106]. In the case of acoustic
phonons, the interaction between light and mechanical vibrations is mainly mediated
by the photoelastic effect [39]. We follow here the description of this process for
layered acoustic systems as described in He et al. [107]. It is worth noting that in the
literature, several conventions exist to describe the photoelastic effect. In this work,
we choose the one used in the aforementioned reference. We introduce the dielectric
tensor εij = χij + δij, with δij the Kronecker delta. The change in the susceptibility
tensor, or equivalently in the relative dielectric tensor, is in this case induced by
the strain fields associated to the acoustic wave. Considering the components of the
displacement −→u in a (−→x 1, −→x 2, −→x 3) reference frame, the strain tensor is defined as:

ηij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.8)
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The effect of mechanical strain is quantified by the photoelastic fourth rank tensor,
and can be expressed as a change in the inverse dielectric tensor (also called the
impermeability tensor), given by [108]:

∆ε−1
ij =

∑
kl

pijklηkl (2.9)

For materials with a cubic crystal structure such as AlAs and GaAs, we can
directly write the change of the dielectric tensor as (n is the material’s scalar index
of refraction) [109–111]:

∆εij = −n4∑
kl

pijklηkl (2.10)

We now consider a layered periodic medium. As mentioned before, we focus on
longitudinal acoustic phonons propagating along the [001] direction in AlAs/GaAs
structures. We therefore have purely longitudinal scalar strain fields ∂u(z)

∂z
. Further-

more, the incident external optical field is perpendicular to the sample surface, as
represented in Figure 2.1. Additionally, in our experiments we will collect the scat-
tered field in a backscattering configuration. The relevant photoelastic component is
in this case p1133 for each material [107]. In a superlattice the photoelastic constants
depend on the z direction since we have alternating layers of different materials. We
introduce the photoelastic parameter p(z) = −n4p1133(z) [107, 111].
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Figure 2.1 – Schematic diagram of the electromagnetic incident field during a Raman
scattering experiment on a semi infinite superlattice.

In this configuration, the polarization field that is induced by the interaction with
acoustic phonons through the photoelastic effect will be parallel to the orientation of
the incident electric field −→Eiext (the x direction in Figure 2.1). Also in this case, the
inelastic scattering of light is generated by a modulation of the materials dielectric
properties due to the presence of acoustic phonons. We can write for example the
polarization component source term giving rise to anti-Stokes Raman signals. We
denote the complex incident electric field Ei(z, t) = e−iωitEi(z) and the complex
displacement field u(z, t) = e−iω0tu(z) inside the layered structure. The anti-Stokes
polarization component can be written as [107]:

P (z, t) = p(z)∂u(z)
∂z

Ei(z, t) (2.11)

Finally, it is possible to calculate the Raman scattering cross section by performing
the sum [69, 107]:

σ(ω) ∝
∣∣∣∣∣∣
∫
Ei(z)× p(z)× ∂u(z)

∂z
× E∗s (z) dz

∣∣∣∣∣∣
2

(2.12)

28



Optical measurements of acoustic phonons

Equation 2.12 expresses the spatial overlap integral of the incident optical field, the
scattered optical field, the strain induced by the longitudinal mechanical waves and
the photoelastic constant of each layer in the periodic medium. The quantity E∗s (z)
corresponds to the complex conjugate of the optical scattered field spatial profile.

Equation 2.12 is central in this work, since it can be used to calculate the Ra-
man cross sections of all the one-dimensional systems studied here. Throughout this
manuscript we will compare the experimental results to theoretical Raman spectra.

2.1.2 A microscopic description
A microscopic description is useful to understand the different steps involved in Ra-
man scattering. In particular it shows that three types of particles are involved:
the incident and the scattered photons, the absorbed or emitted phonons, and the
semiconductor electrons. Since the successive interactions are weak, we can find the
scattering probability by applying a perturbation theory [2, 112]. We will consider
here a Stokes process in a bulk medium. The scattering probability is given by the
following equation, when the energy of the involved transitions are close to electronic
resonances [2, 113]:

Pscatt(ωs, ωi) =
(2π
}

) ∣∣∣∣∣∑
nn′

〈i|Ĥe−R(ωs)|n′〉 〈n′|Ĥe−latt(ωphon)|n〉 〈n|Ĥe−R(ωi)|i〉
[}ωi − (En − Ei)] [}ωi − }ωphon − (En′ − Ei)]

∣∣∣∣∣
2

× δ(}ωi − }ωphon − }ωs)
(2.13)

The previous equation describes a process that can be divided in three steps:

• An incident photon excites the semiconductor from an initial state |i〉 to an in-
termediate state |n〉 by creating an electron-hole pair. This coupling is described
by the electron-radiation Hamiltonian Ĥe−R (step 1) in Figure 2.2).

• The electron hole pair undergoes a transition from the state |n〉 to the state |n′〉,
via its coupling to the lattice. The electron-phonon interaction is described by
Ĥe−latt. During this process, one phonon is emitted or absorbed (step 2)).

• The exciton recombines radiatively by emitting the scattered photon. The final
electronic state is the same as the initial one (step 3)). The electron-photon
interaction Hamiltonian is again involved in this transition.

The electrons play an essential role, since they mediate the interaction between
photons and phonons. Nevertheless, their final state is the same as their initial one.
The electromagnetic radiations in the visible range have an associated wavevector
that is very small (≈ 105cm−1) with respect to the typical Brillouin zone sizes for
semiconductor materials (≈ 108cm−1). Therefore, the states that are involved in the
Raman scattering process are usually located at the center of the crystal Brillouin
zone.

For the electron-photon interaction, the Hamiltonian can be expressed in the sim-
plified form [2]:

Ĥe−R = e

mc

−→
A · −̂→p (2.14)
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The quantities e, m and c are the charge of the electron, its mass, and the velocity
of light, respectively. −→A is the vector potential of the electromagnetic field and −̂→p is
the electron momentum operator.

For the electron-phonon coupling, since we are interested here in longitudinal
acoustic phonons, we can consider a deformation potential interaction. In this case,
the perturbation of the electronic bands eigenenergies is due to the strain field induced
by the mechanical wave.

The microscopic description or Raman scattering also implies in a bulk material
the conservation of energy and wavevector for the overall process. However, this is
not the case for each step. In particular, the successive electronic transitions can be
virtual, i.e. they can occur without conservation of energy, as represented in Figure
2.2. Nevertheless, the wavevector conservation is verified at each step.

The denominators in Equation 2.13 can become resonant if the energies of the in-
cident or scattered photons matches the one of an electronic transition. The intensity
of the Raman signal is in this case greatly enhanced. Increasing the Raman signals
can also be achieved by engineering the system’s photonic environment, for example
by placing the system inside an optical cavity. In this case it is the electron-photon
terms that become resonant, as we will see in the next sections.
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Figure 2.2 – Schematic diagram of the Stokes Raman scattering process as explained
in the main text. Image adapted from reference [114]. The upper an lower parabolic
curves show the electronic conduction and valence bands, respectively. The plain
lines correspond to involved transitions and are labeled by 1), 2) and 3). The relevant
states are also marked. The vertical arrow indicates the frequency of the scattered
phonon. Notice that the transitions occur without conservation of energy. The states
involved in the process are located close to the center of the crystal Brillouin zone.

2.1.3 Raman scattering on superlattices
The calculation of the Raman scattering cross sections will be performed by using
Equation 2.12 obtained with a photoelastic model, in Section 2.1.1.

The Raman scattering experiments presented in this manuscript have been carried
out with optical fields in the near infrared range (NIR). Inside a material with an
index of refraction n ≈ 3, this corresponds to a wavelength around 300 nm. The
semiconductor layers for phononic systems operating at 300 GHz have thicknesses in
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the range of few nanometers. Since the optical wavelength is here much larger than the
characteristic acoustic unit cells, we will consider the acoustic structures as effective
bulk media for light in the NIR range. The effective bulk dielectric constant is given
by [107]:

εeff = εGaAs
LGaAs
Ltot

+ εAlAs
Ltot − LGaAs

Ltot
(2.15)

where LGaAs corresponds to the total length of GaAs layers and Ltot is the full length of
the system. We define the effective index of refraction as neff = √εeff . Therefore the
incident and the scattered optical fields can be taken as plane waves in this effective
medium. We consider that they will propagate perpendicular to the layers, that is:

Ei/s(z) ∝ ezki/s (2.16)

Furthermore, the energy of a longitudinal phonon with a frequency of 300 GHz is
around 1.2 meV, that is much smaller than the one of a NIR photon (≈ 1.2 eV). Hence,
the incident and scattered fields verify |ki| ≈ |ks|. We consider two experimental
geometries: the backscattering (BS) and the forward scattering (FS) configurations.
They are represented in the diagram below:

Forward scattering Backscattering

Figure 2.3 – Schematic diagrams of forward scattering and backscattering configu-
rations. The red and green arrows indicate the incident laser and the scattered field,
respectively.

We can replace in Equation 2.12 the electric field spatial profiles by Equation 2.16.
In a forward scattering geometry, the Raman cross section becomes (ki = ks):

σ(ω) ∝
∣∣∣∣∣∣
∫
p(z)× ∂u(z)

∂z
dz
∣∣∣∣∣∣
2

(2.17)

and in a backscattering geometry (ki = −ks):

σ(ω) ∝
∣∣∣∣∣∣
∫
p(z)× e2ikz × ∂u(z)

∂z
dz
∣∣∣∣∣∣
2

(2.18)
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q = 2ki

Figure 2.4 – Experimental Raman spectra reproduced from [115]. The red and green
symbols have been added to the original figure for clarity. (b): Raman spectrum
probed in backscattering geometry. (c): Raman spectrum probed in forward scat-
tering geometry. The experimental configurations are schematically represented next
to each curve and the laser wavelength is indicated. The inset shows the calculated
dispersion relation of the superlattice. The red and green lines indicate the modes
verifying q = 2ki and q = 0 respectively.

The photoelastic integrals expressed above allow to determine the acoustic modes
that will be Raman active in a superlattice. For a backscattering geometry they verify
q = 2ki = 4πneff

λlaser
, where q is the phonon wave vector and λlaser is the laser wavelength

in vacuum. For a forward scattering geometry, the Raman active modes are the
ones matching the condition q = 0. These are the usual wave vector conservation
conditions found for Raman scattering on bulk materials (for processes verifying ki ≈
ks). However, because we have reduced the system’s translation invariance by stacking
layers of different materials, they are now applied to the folded superlattice dispersion
relation. This is illustrated in Figure 2.4, reproduced from [115]. This figure shows
experimental results obtained on an a-Si:Ha-SiNx:H amorphous DBR sample, with
unit cell length of d = 110Å. Two experimental Raman spectra measured around the
open first ZC acoustic minigap are reported: one was measured in a BS configuration
(spectrum (b)) and the other one in FS (spectrum (c)). The inset shows the dispersion
relation of the sample. The crossings between the dispersion relation and the vertical
red line (q = 2ki) correspond to the modes that are Raman active in a backscattering
geometry. The modes generating the Raman peaks shown in Figure 2.4.b are indicated
with red arrows. The two crosses next to them evidence other mechanical modes
studied through Raman scattering by changing the wavelength of the laser (not shown
here). By changing ki it is therefore possible to access different parts of the acoustic
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dispersion relation. The green line shows the Raman active modes that can be Raman
active in FS geometry (q = 0). The corresponding probed spectrum is shown in
Figure 2.4.c. One Raman peak is visible, associated to one of the two standing
wave eigenmodes bounding the ZC[1] minigap. However, the other does not induce
any Raman peak. This can be understood by considering that these two modes
have different spatial symmetries, as explained in section 1.2.2. By calculating the
photoelastic overlap integral, the Raman cross section vanishes for one of the two
modes.

As we have seen in Section 1.4, by introducing a defect inside a DBR, we can
fabricate a phononic resonator. The system can be designed in such a way that the
confined state appears in a Brillouin zone center minigap, as it will be the case for all
the planar systems studied here. The wave vector conservation shows that this mode
will be Raman active in a forward scattering configuration.

In Raman scattering experiments it is very important to minimize the collection of
unwanted signals. Indeed, Raman cross sections are generally weaker than the ones of
other light-matter interactions, such as photoluminescence or Rayleigh scattering [2,
116]. The latter are in fact sources of unwanted spectral features in the measurements.
Furthermore, the stray light induced by the excitation laser is a major source of noise
in the experimental data.

A technique that is widely used in nanophononics in order to dramatically enhance
the intensity of the measured Raman peaks is to modify the optical environment
of the acoustic structure. This greatly facilitates the measurement of the Raman
spectra. Furthermore, this allows to access simultaneously the BS and FS signals in
a backscattering configuration, as presented in the next section.

2.2 Engineering optical fields for Raman scatter-
ing

Layered structures can be used in optics for the fabrication of optical cavities that
confine modes in one or more directions of space [117, 118]. One method developed
over the years in nanophononics to facilitate Raman scattering spectroscopy experi-
ments is to embed the acoustic structure inside a one-dimensional optical cavity [42].
Indeed, this design has two consequences:

• The strong enhancement of the Raman signals generated inside the acoustic
superlattice. The presence of the photonic microcavity shapes the optical den-
sity of states. If the incident and scattered fields are resonant with the optical
cavity, their intensity is greatly increased. This leads to an enhancement of the
Raman scattering cross sections.

• Relaxing the selection rules of backscattering and forward scattering geometries.
In particular, this configuration allows to simultaneously probe the Raman peaks
associated to mechanical modes with q = 0 and q = 2ki in a backscattering
geometry configuration (q = 0 is the wavenumber of the phonons and ki the one
of the laser).

In the following sections we will review the main features of the optical Fabry-Perot
cavity. We will then describe the physical mechanisms that lead to the enhancement
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of the probed Raman spectra intensities and the relaxation of the Raman scattering
selection rules.

2.2.1 Optical Fabry-Perot resonators
The optical Fabry-Perot cavities used in this work are realized with semiconductor
materials. A fundamental building block to realize these systems are optical DBRs,
obtained by periodically stacking semiconductor layers with contrasting optical indices
of refraction. It is worth noting that the working principles of these systems are
completely analogous to the ones of their acoustic counterpart, presented in section
1.3.
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Figure 2.5 – Optical DBR-based Fabry-Perot cavity. (a): Structure of the considered
optical resonator. (b): Simulated intensity of the electric field for the confined mode
as function of the position in the system. Maximal values are reached inside the
spacer. The resonance wavelength is at 925 nm. Inset: schematics of the simulated
structure, showing its spatial asymmetry (see main text). The color legend indicates
the composition of the layers. The number of layers represented in the DBRs is
arbitrary.

Optical DBRs are widely used as high reflectivity dielectric mirrors [119]. In the
frame of this work we implemented them by fabricating multilayer heterostructures
based on GaAs/AlAs alloys. The two materials have refractive indices of 3.48 and
2.99, respectively. As in the case of nanophononic reflectors, optical stop-bands appear
in the optical reflectivity curve of these structures. They can be identified with the
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optical minigaps of the corresponding photonic infinite superlattices. In our systems,
we used the stop-band related to the first ZE optical minigap. The design maximizing
the span of this high reflectivity interval is the (λ4 ,

λ
4 ) geometry. Therefore, for the

fabrication of a DBR with a stop band centered at a vacuum wavelength λ0, we chose
layer thicknesses given by:

di = λ0

4ni
(2.19)

where di and ni correspond to the layer thickness and index of refraction for the two
considered materials.

By enclosing a spacer between two optical (λ4 ,
λ
4 ) DBRs we obtain an optical Fabry-

Perot cavity. At normal incidence, to optimize the confinement of a mode at a res-
onance vacuum wavelength λ0, the thickness of the spacer dspacer has to match the
Fabry-Perot resonance condition dspacer = p λ0

2nspacer
where p is an integer number.

Figure 2.5 shows the simulated spatial profile of a confined mode inside an opti-
cal Fabry-Perot cavity. These calculations are performed by using a transfer matrix
method. In Figure 2.5.a, we show the structure of the considered cavity, represented
by using the indices of refraction of the semiconductor materials. The cavity consists
of a (3λ

2 ) Al0.95Ga0.05As spacer enclosed between two (λ4 ,
λ
4 ) DBRs. The size of the

spacer has been chosen to confine an optical mode at λ0 = 925 nm. The electric field
intensity for the confined optical mode is shown in Figure 2.5.b. We can see that the
mode is localized inside the optical spacer.
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Figure 2.6 – Simulated reflectivity of an optical cavity. The system is constituted
by two (λ4 ,

λ
4 ) Al0.1Ga0.9As/Al0.95Ga0.05As DBRs separated by a (3λ2 ) Al0.95Ga0.05As

spacer. The resonance wavelength is at 925 nm, indicated by the vertical arrow.

The inset to Figure 2.5.b shows a sketch of the system. Notice that the structure is
asymmetric. The left DBR is in contact with air, whereas the other one is in contact
with the GaAs substrate. To compensate the weaker impedance mismatch at the
Al0.95Ga0.05As/substrate interface with respect to the one between Al0.1Ga0.9As and
air the left DBR has 14 layer pairs, whereas the right one has 18. Figure 2.6 shows
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the corresponding reflectivity curve of this structure. The sharp dip in the stop band
marks the presence of the confined optical mode.

The optical field intensity enhancement is quantified by the optical quality factor
(Q) of the cavity. It can be determined from the reflectivity curve, by calculating the
ratio between the resonance frequency f0 and the FWHM δf of the reflectivity dip.
In the case of the considered structure, we find Q = 1970.
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Figure 2.7 – Schematic in-plane dispersion relation of an optical cavity, as a function
of the in-plane wavevector component k//. The red and blue dot indicate the condition
of Double Optical Resonance for which the intensities of the Stokes Raman signals are
maximal (see Section 2.2.2). Inset: Diagram showing the incidence angle θ and the
components k// and kz inside the spacer. The color legend indicates the composition
of the layers. The Al0.95Ga0.05As spacer is represented in pink for clarity.

In a more general way, the optical resonance frequency is dependent on the in-
cidence angle θ of the incoming wave. If the incidence angle is different from 0 (as
shown in the inset to Figure 2.7), the wavenumber ~k of the confined mode inside the
cavity spacer is not purely oriented along the z axis. We can decompose ~k = ~kz + ~k//,
where ~k// is the component parallel to the surface of the structure, that we call the
in-plane component, and ~kz is the normal one. The more we increase θ, the more
~k// increases. The optical field is resonant with the cavity if the z component of the
wavevector complies with the condition [120]:

kz = p
π

nspacerdspacer
(2.20)

The total wavevector satisfying the dispersion relation of light:

(c/nspacer)
√
k2
z + k2

// = ω (2.21)
c being the speed of light and ω the angular frequency of the confined mode. We find
that ω as function of k// is given by:

ω(k//) = (c/nspacer)

√√√√(p π

nspacerdspacer

)2

+ k2
// (2.22)
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The more we increase the incidence angle θ, the more the confined mode reso-
nance frequency increases. The dispersion relation in Equation 2.22 is schematically
represented in Figure 2.7. This property of optical Fabry-Perot cavities is very useful,
as we will see below, to enhance Raman scattering signals.

An optical cavity allows to enhance the intensity of a resonant optical field inside
the spacer. An acoustic structure can play the role of an optical spacer between
two (λ4 ,

λ
4 ) Al0.1Ga0.9As/Al0.95Ga0.05As optical DBRs. Indeed, as explained in section

2.1.3, the wavelengths of NIR optical modes are much larger than the layer dimensions
of acoustic cavities operating in the hundreds of GHz range. The phononic structure
can be approximated as an effective homogeneous optical spacer, with a dielectric
constant given by Equation 2.15. We suppose that the acoustic system total length
matches the condition Ltot = pλ0/(2neff ). In this case, we obtain a structure where
the phonons inside the acoustic system interact with strongly enhanced optical fields.
Such a configuration is schematically shown in Figure 2.8. Each layer of material
in the acoustic structure "sees" a constant amplitude of the confined electric field.
Raman intensities can be calculated by considering the standing wave character of
the incident and scattered fields in the photoelastic overlap integral (Equation 2.12).

Placing acoustic structures inside an optical resonator enhances the intensity of
the Raman signals and enables the observation of Raman peaks associated to phonons
with q = 0 in a BS configuration. In Chapter 3, the samples that will be presented
have all been fabricated in this configuration. In the two following sections we will
detail how the presence of the optical cavity affects the Raman cross section and the
selection rules.
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Figure 2.8 – Diagram of an acoustic structure embedded inside an optical Fabry-Perot
resonator. This design is the one used for all the systems presented in this chapter.
Notice the asymmetry in the number of layers between the left and right DBRs to
balance their reflectivities (see main text). The color scale in the figures indicate the
materials used in each layer.

2.2.2 Enhancing Raman intensities
The enhancement of the Raman signal intensities for acoustic structures embedded
in an optical cavity can be explained by considering the equations describing the
inelastic scattering of light, as given by Equation 2.13. We recall below the probability
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of Raman scattering for a Stokes process, i.e. emission of a phonon. We denote, as
before, ωi and ωs the angular frequencies of the incident and scattered fields:

Pscatt(ωs, ωi) =
(2π
}

) ∣∣∣∣∣∑
nn′

〈i|Ĥe−R(ωs)|n′〉 〈n′|Ĥe−latt(ωphon)|n〉 〈n|Ĥe−R(ωi)|i〉
[}ωi − (En − Ei)] [}ωi − }ωphon − (En′ − Ei)]

∣∣∣∣∣
2

× δ(}ωi − }ωphon − }ωs)
(2.23)

In Equation 2.23 the incident and scattered optical fields play a role in the terms
〈n|ĤeR(ωi)|i〉 and 〈i|ĤeR(ωs)|n′〉, respectively. They correspond to the virtual transi-
tions in which an exciton is created by absorbing an incoming photon of energy }ωi,
and to the re-emission of an outgoing scattered photon of energy }ωs.

We suppose that the optical resonator optimally confines two optical modes having
resonances at ωe and ωc, respectively. Furthermore, we consider that ωe = ωi and
ωc = ωs. Under this condition, Equation 2.23 presents two resonant terms for the
optical fields, that is, an incoming and an outgoing resonance. The incident photons
and the scattered ones being resonant respectively with an excitation and a collection
mode, we call this condition the Double Optical Resonance (DOR) [121].

It is possible to simultaneously reach both resonances in a planar system using a
DBR based cavity. In order to find this condition we use here the dispersion relation
of the Fabry-Perot resonator as function of k//, as represented in Figure 2.7. We are
considering a Stokes process, i.e. ωs = ωi−ωphon, with ωphon the angular frequency of
the considered phonons involved in the scattering process. We suppose that ωs = ωc
occurs at the bottom of the dispersion relation, i.e. for k// = 0 (normal collection,
θ0 = 0). To find this condition, the samples that we have studied are fabricated
with an in-plane thickness gradient. The optical resonance frequencies depend on the
position at which the laser impinges on the sample. When displacing the laser spot
on the surface of the structure, the whole dispersion relation shown in Figure 2.7 is
translated vertically. For a given ωi and ωphon, we can therefore find a position for
which ωs = ωc. Furthermore, we can find an incidence angle θ0 6= 0, i.e. a mode with
a in-plane component k0//, for which ωi = ωe. This allows us to be in DOR. The blue
and red dots in Figure 2.7 schematically mark the spectral position of the excitation
and collection modes, respectively.

The frequency shift induced by a mechanical mode resonant at 300 GHz is small
with respect to the optical frequency of NIR optical fields (≈ 300 THz). Hence, the
DOR incidence angle θ0 is small for the experiments described here, around 10◦.
Therefore, we consider that we are almost at normal incidence also for the excitation
field. As a consequence, if we couple to the excitation or the collection mode a resonant
plane wave with an electric field amplitude of 1 V/m, we get the same standing wave
for the two modes inside the spacer (i.e. the acoustic cavity) given by:

Einc(z) = Emax (exp(ikz) + exp(−ikz)) (2.24)

where Emax corresponds to the amplification factor of the electric field inside the
cavity. k is the wavenumber respecting the resonance condition k = p× π

Ltot
. Finally,

|Emax|2 being proportional to Q, we consider that the excitation and the collection
mode have the same Q-factor in DOR condition.
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In Equation 2.23, we can calculate the 〈n|ĤeR(ωi)|i〉 matrix term by considering a
dipolar interaction for ĤeR [69]. The excitation mode has the form given by Equation
2.24. The value of 〈n|ĤeR(ωi)|i〉 is proportional to Emax, and the scattering probability
becomes proportional to |Emax|2. Therefore, the Raman scattering cross section is
multiplied by a factor of Q [69]. Additionnally, the confinement of the resonant
scattered field further increases the scattering probability [69]. By taking into account
the enhancement of the two confined modes, the Raman scattering cross section is
enhanced by a factor of Q2 [69, 122]. By maximizing the confinement of the excitation
and collection modes, the Raman scattering cross section is greatly increased with
respect to the case where no optical cavity is present. Typical experimentally achieved
values of Raman scattering signal enhancement are of the order of 104−106. [123–125]

By retaking the spatial profile of the confined optical modes, as expressed in
equation 2.24, and inserting it in the photoelastic overlap integral (see Section 2.1.1,
Equation 2.12), the Raman scattering cross section can be written as [38]:

σRaman ∝ Q2 ×

∣∣∣∣∣∣
∫

(2 + exp(2ikz) + exp(−2ikz))× p(z)× ∂u(z)
∂z

dz
∣∣∣∣∣∣
2

(2.25)

In this expression the Q2 term corresponds to the enhancement factor due to
optical confinement. The first term in the overlap integral (i.e. the term between
brackets) corresponds to the product of the incident and the scattered field spatial
profiles. A we will see in the next section, it is the standing wave character of these
two fields that will allow us to probe the acoustic modes with q = 0 in a backscattering
configuration.

2.2.3 Relaxing the rules of backscattering
We now investigate the effect on the Raman signals of having the acoustic cavity
interacting with a standing wave optical mode. Equation 2.25 can be rewritten in the
form [38]:

σRaman ∝ Q2 × |ABS + AFS|2 (2.26)

with

ABS =
∫

(exp(2ikz) + exp(−2ikz))× p(z)× ∂u(z)
∂z

dz
and

AFS =
∫

2× p(z)× ∂u(z)
∂z

dz

On one hand, in ABS we observe that the optical field gives rise to oscillatory
terms inside the overlap integral. It is this ABS term that gives rise to Raman peaks
related to mechanical modes with q ≈ 2ki for an acoustic superlattice, with q being
the wavevector of the mechanical mode and ki the one of the incident laser. As already
mentioned in the introduction, these Raman peaks are usually visible in a backscatter-
ing configuration for a bare acoustic structure. These modes are still Raman active in
this configuration if the system is embedded in a Fabry-Perot resonator. On the other
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hand, we can see that in AFS, the optical field generates a constant term (the factor
of 2). According to the description of the photelastic model given in the introduction,
this overlap integral shows that mechanical modes with q ≈ 0 are also Raman active.
These Raman peaks that are only measurable in a forward scattering geometry for a
bare acoustic cavity are now also visible in a backscattering configuration.

An intuitive picture to explain that backscattering and forward scattering Ra-
man signals are now simultaneously visible is to consider that the incident and the
scattered photons are "trapped" in the Fabry-Perot resonator. Therefore, they are
reflected back and forth several times by the optical mirrors before escaping. Since
the scattered photons can tunnel through any of the two DBRs, we are able to observe
both the backscattering and forward scattering Raman signals in both measurement
configurations [69].

The experimental configuration allowing to reach the double optical resonance
condition for Stokes Raman signals is shown in Figure 2.9. The red arrow indicates
the incident optical field with a frequency ωi, which is resonant with the excitation
mode. The green vertical arrow indicates the scattered light with a frequency ωs,
which is resonant with the collection mode. It is collected at normal incidence with
respect to the sample surface. In the first section of Chapter 3, we will present in
detail the experimental Raman set-up that we have implemented in order to fully take
advantage of the DOR condition. This was carried out for characterizing the planar
nanophononic resonators studied in this manuscript.

Substrate

ωiωs

Acoustic
structure

θ0

Figure 2.9 – Experimental configuration allowing to reach the DOR condition in a
backscattering geometry, for Stokes Raman signals. The acoustic structure embedded
in the optical cavity is indicated. The incident field (red arrow) and the scattered
field (green arrow) are resonant with the optical cavity excitation mode and the col-
lection mode, respectively. The Raman signals are collected at normal incidence. The
incidence angle θ0 has been exaggerated with respect to real experimental conditions,
for clarity.

Embedding acoustic systems in an optical cavity therefore greatly facilitates the
measurement of confined phonons, since Raman signals are enhanced, and the FS
and BS components can be probed simultaneously in a backscattering geometry ex-
perimental configuration. The design presented in Figure 2.8 has been systematically
implemented for all the samples characterized in this work.
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Raman scattering spectroscopy is a powerful technique for probing the mechani-
cal properties of acoustic layered systems. Nevertheless, other experimental methods
can be used for this purpose. For example, pump-probe coherent phonon genera-
tion and detection has been widely implemented for the study of these structures.
The first experimental demonstration of phononic three-dimensional confinement in
AlAs/GaAs micropillars has been obtained through this experimental technique, as
detailed in Chapter 5. This was the result of a collaboration between our group and
the team of Alejandro Fainstein at the Centro Atómico Bariloche & Instituto Balseiro
in Argentina.

2.3 Coherent phonon generation and detection:
phonon dynamics

Pump-probe experimental techniques for the generation and detection of acoustic
phonons were inroduced by the group of Humphrey J. Maris in the 80’s [126, 127].
This method involves the use of ultrafast pulsed lasers to create and measure coherent
mechanical oscillations in the hypersonic range. This is in contrast to Raman scat-
tering experiments, where the probed mechanical vibrations are induced by thermal
fluctuations inside the sample.

The principle of the experiment is represented in Figure 2.10. A pulsed laser emits
picosecond (ps) or femtosecond (fs) light pulses with a repetition rate in the range
of tens of MHz. Each pulse passes through a beam splitter which divides it into two
beams: a strong pump pulse and a weak probe. Each one takes a different path in
the set-up and plays a different role.

• The pump pulse reaches the sample first, at a time t1. Light induces the gen-
eration of a mechanical pulse. This light-matter interaction can be mediated
by several mechanisms, such as thermoelasticity, deformation potential, elec-
trostriction, or piezoelectricity [128]. The strain pulse propagates, and even-
tually decays after some time. While the acoustic waves are present inside the
sample, they modulate the optical properties of the system, for example through
the photoelastic effect as explained in Section 2.1.1.

• The weaker probe pulse is delayed in the set up, as represented in Figure 2.10.
It reaches the studied system at a time t2 = t1 + ∆t, where ∆t is the delay be-
tween the two pulses. Part of it is reflected, and its intensity is measured with
a photodetector. The probe pulse probes the instantaneous optical reflectivity
R(t1 + ∆t) [128]. We can continuously change ∆t between the pump and the
probe, by using a mechanical delay line. Therefore, we can reconstruct the tem-
poral evolution of the optical reflectivity (∆R

R
= R(t)−R0

R0
) induced by the strain

pulse. The changes in this parameter induced by acoustic phonons are usually
weak, and a lock-in synchronous detection scheme is usually implemented to
improve the signal-to-noise ratio.

By following the optical reflectivity time trace, we can probe the evolution of the
mechanical waves generated by the pump pulse. We present some typical experimen-
tal results obtained through pump probe measurements on a GaAs/AlAs phononic
DBR, reproduced from [129]. The DBR was designed in order to have the first ZC

41



Optical measurements of acoustic phonons

D
el

ay
 li

n
e

Detector (ΔR/R)

ps pulsed

laser

S
am

p
le

 h
ol

de
r

S
am

p
le

 

Probe

Pump

Figure 2.10 – Schematic diagram of a pump-probe experimental set-up.

acoustic minigap centered at a frequency of ≈ 1 THz. The evolution of the optical
reflectivity time trace is shown in Figure 2.11.a. The measurement was carried out
with a femtosecond pulsed laser at a wavelength of 740 nm.

The pump reaches the sample at t = 0, where a strong reflectivity variation can
be observed. This is associated to the electronic excitation of the sample, and the
slow variation in the time evolution is related to temperature change and electron-
hole recombination processes inside the sample [129]. On top of this low frequency
evolution, we observe rapid oscillations which are provoked by the coherently gen-
erated acoustic phonons. After having removed the slow frequency components and
the part of the time trace where the electronic contributions dominate the temporal
evolution, the signal is Fourier transformed, as shown in Figure 2.11.b. Several sharp
peaks are visible, and can be associated to mechanical modes verifying q = 2ki and
q = 0, as indicated in the band diagram represented in the inset to Figure 2.11.b.
Notice the similarities with peaks usually observed in Raman scattering experiments,
as presented in Section 2.1.3.

In the presented measurements, coherent mechanical oscillations verifying q = 2ki
and q = 0 have been simultaneously generated and probed in a DBR. Furthermore,
pump probe experiments are a powerful technique for studying nanophononic res-
onators. Indeed, from the decay of the measured temporal traces, it is possible to
measure the mechanical damping rates of the studied confined modes [43]. In a more
general way, this technique is a powerful tool for studying the dynamics of mechanical
vibrations in complex nanophononic layered systems [38].

In this section we have introduced pump-probe coherent phonon generation and
detection, usually implemented in the context of picosecond ultrasonic experiments
and in nanophononics for the study of phonon dynamics. In the next section, we
describe another technique that allows to probe the mechanical motion of a system
by using the simultaneous confinement of an optical and acoustic mode. This method
was developed in the context of cavity optomechanics.
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Figure 2.11 – Pump-probe measurements on an acoustic superlattice. Images repro-
duced from [129]. (a): Time trace of optical reflectivity measured on a superlattice.
The inset shows a detailed view of the reflectivity oscillations. (b): Fourier transform
of the reflectivity temporal evolution, after having removed the low frequency compo-
nents. The red circles and blue rectangle indicate the peaks associated to mechanical
modes verifying q = 2ki and q = 0, respectively. The inset shows the band diagram
of the associated superlattice.

2.4 Optomechanical systems
If a system constitutes simultaneously a mechanical and an optical resonator, it is
possible to study how one resonant mechanical vibration couples to an optical con-
fined field. As we will see in Chapter 5, GaAs/AlAs planar systems can be etched into
micropillars, which constitute three-dimensional optomechanical resonators. Three-
dimensional optomechanical platforms have been widely studied in cavity optome-
chanics, in particular for probing and manipulating the mechanical motion associated
to a confined acoustic mode [20]. In this section, we will introduce the fundamen-
tal concepts that will allow us to optimize and engineer micropillar optomechanical
resonators, based on a Fabry-Perot design.

2.4.1 Optomechanical interaction
The simplest example where an optomechanical interaction takes place is represented
in Figure 2.12. The considered Fabry-Perot resonator is constituted by two metallic
mirrors separated by a distance L, that confine an optical mode at a frequency ωcav
with a quality factor given by Qcav = ωcav

Γcav
. One of the two mirrors is attached to

a spring and can oscillate at a mechanical resonance frequency ωm. Its mechanical
damping rate is given by Γm. In this simple picture, the mechanical and optical
degrees of freedom are not independent. For example, the mechanical oscillation will
change the optical resonance frequency by modifying the size of the cavity. This will
modulate the intensity of the optical field stored in the resonator in time. Reciprocally,
this modification of the light field inside the resonator will induce a dynamic backation
on the mechanical motion [130]. Indeed, the change in the intracavity power induces
a delayed variation in the optical forces exerted on the movable mirror. As in the
case of pump-probe experiments, these optical forces can have multiple origins, such
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as radiation pressure [131], electrostriction [132] or photothermal effects [133]. The
mechanical oscillation is therefore affected by the backaction of the optical field. This
bi-directional interaction is quantified by the optomechanical coupling factor gom [130].

Laser
ωcav

Γcav

ωm

Γm
x(t)

gom

Figure 2.12 – Schematic diagram of an optomechanical resonator. The optical and
mechanical resonance frequencies are noted ωcav and ωm, respectively. The quantities
Γm and Γcav are the mechanical and optical dampings. The grey arrow indicates the
mechanical motion of the resonator, coupled to the light field through gom.

Optomechanical coupling between light and mechanical vibrations has been stud-
ied in a great variety of three-dimensional resonators. Their scale ranges from macro-
scopic objects such as macroscopic mirrors of few kilograms used in gravitational
interferometers [134], down to ultracold atom ensembles trapped inside optical cavi-
ties [135]. The development of micro- and nano-fabrication techniques has allowed the
realization of a plethora of solid state optomechanical systems. Among these micro-
and nano-resonators, some frequently used architectures are microdisks [136] and mi-
crotoroids [137], one-dimensional [138, 139] and two-dimensional photonic crystals
[140], membranes [141], nanobeams [142], clamped mirrors [143] or nanorods [144], to
name a few.

2.4.2 Probing and manipulating the mechanical motion
The existence of an interaction between the optical and mechanical fields allows to
precisely read the mechanical motion of the system through optical measurements.
We consider the previous Fabry-Perot resonator case. The equation of motion of the
mechanical harmonic oscillator (i.e. the mirror attached to the spring) is:

m
d2x(t)

d2t
+mΓm

dx(t)
dt +mω2

mx(t) = Fext(t) (2.27)

where m is the mass of the mechanical harmonic oscillator, x(t) is the mechanical
displacement, and Fext is the sum of forces applied to the system. Expressing equation
2.27 in the frequency space (x(ω) = χ(ω)Fext(ω)) allows to write the mechanical
susceptibility of the harmonic oscillator as:

χ(ω) = [m(ω2
m − ω2)− iΓmωm]−1 (2.28)
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In the absence of externally applied forces, the system is still subjected to thermal
fluctuations represented by a force Fth(t) which is a random variable [20]. To charac-
terize the Brownian motion of the system, one can measure the noise power spectral
density (PSD) Sxx(ω) of x(t). The Wiener-Khinchin theorem states that the PSD can
be found by performing the Fourier transform of the signal autocorrelation function
[145]. In the classical limit, the fluctuation-dissipation theorem relates the PSD to
the imaginary part of the oscillator susceptibility as [20]:

Sxx(ω) = 2kbT
ω

Im(χ(ω)) (2.29)

where kb is the Boltzmann constant and T is the resonator temperature.
One way to probe the optomechanical system’s motion is to take advantage of

the coupling between light and the mechanical vibration, as represented in Figure
2.13. The fluctuation x(t) (Figure 2.13.a) changes the optical resonance frequency
ωcav(x). We denote ω0

cav as the optical eigenfrequency when x = 0. Assuming a small
mechanical motion, this is quantified by the optomechanical coupling term:

gom = −∂ω
0
cav

∂x
(2.30)

The optomechanical coupling is here due to the motion of the oscillating mirror,
which changes the length of the optical cavity. This corresponds to a geometrical
deformation of the system, and results in gom = ω0

cav

L
. Notice that we have introduced

here the term gom by considering the effect of the mechanical motion on the optical
mode. In order to illustrate the bi-directional nature of this interaction, we can express
the optical radiation pressure force acting on the movable mirror as a function of gom
as Fopt = Nphot~gom [132]. Nphot is the number of photons stored in the cavity. From
this expression, it is also clear that one way to neglect the effect of the optical forces
in order to probe the Brownian motion is to keep the optical laser power low.

The mechanical motion modulates the spectral position of the optical reflectivity
curve (Figure 2.13.b) in time by a quantity ∂ω(x(t)) that is proportional to gom. This
temporal dependence of the optical reflectivity R(t) can be monitored by sending
an incident laser with an intensity I0 and by measuring the reflected intensity. To
maximize the sensitivity, the laser frequency is set so that it falls on the flank of
the reflectivity curve, where the slope is maximal. We denote with ∆ = ωcav − ωl
the detuning between the incident laser ωl and the cavity resonance frequency. The
fluctuations of mechanical motion are transduced into fluctuations of optical intensity
I(t) = R(t)I0. Without considering the shot noise or other noises introduced by the
laser, the power spectral density of the reflected optical intensity Spp is related to the
one of the mechanical resonator as [146, 147]:

Spp(ω) = a(I0, gom,∆,Γcav)Sxx(ω) (2.31)

The factor a indicates the optomechanical transduction. One can then measure
the PSD of I(t), which reveals the noise spectrum of the mechanical oscillator. From
this measurement, it is possible to probe the mechanical properties of the optome-
chanical resonator, such as its mechanical eigenfrequency and the mechanical damping
rate (Figure 2.13.c). This experimental technique allows to perform very precise dis-
placement measurements. For example, Brownian motion measurements performed
on GaAs microdisks operating at mechanical resonance frequencies around 3 GHz
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reached sensitivities of ≈ 10-16m/
√
Hz [147] down to ≈ 10-17m/

√
Hz [136]. These

values are determined by the experimental noise introduced during the measurement
and by the optical, mechanical, and optomechanical parameters of the considered
resonator.

x(t)

t

Spp(ω)

ωωm

Γm

t1t3

t2
ωlaserR

0

ω

(a) (b) (c)

ωcav
0

Figure 2.13 – Schematic sequence of Brownian motion measurement. (a): temporal
evolution of the mechanical oscillator fluctuations x(t). We consider that the oscil-
lator is at rest when x = 0. The vertical colored lines indicate the value of x(t) at
three different instants t1, t2, and t3. (b): Optical reflectivity curves of the optome-
chanical system at the three different times t1, t2, and t3. Their colors indicate the
corresponding times shown in Panel (a). The laser is spectrally located on the flank
half minimum of the blue reflectivity curve (i.e. x(t2) = 0). The reflected intensity
is modulated in time by the mechanical motion. (c): PSD of the measured optical
reflected signal from the mechanical oscillator. This reveals the mechanical properties
of the system.

The Brownian motion can be monitored through optical measurements. Notice
however that the laser beam probes the mechanical fluctuations as long as its power
is kept low. Indeed, by increasing this parameter, the optical forces become more
and more important, inducing a modification in the mechanical behavior of the sys-
tem. The dynamical effects of the optical forces have two major consequences on the
mechanical oscillator properties, which can be quantitatively described by different
theoretical models [20, 148, 149].

The first one is a modification of the oscillator spring constant. The mechani-
cal frequency of the system will be increased (hardening of the spring) or decreased
(softening), depending on the detuning ∆. This is called the "optical spring effect"
[130].

The second one is a modification of the oscillator damping rate. A "thermody-
namic" description can be provided by considering the delay between the mechanical
motion x(t) and the temporal evolution of the optical forces [149]. For example, the
optical forces do not respond instantaneously to a geometrical change of the resonator,
since the photons are trapped inside the cavity for a given lifetime τ [148]. The ef-
fect of this temporal delay is that the optical force can provide (i.e. positive work)
or extract (i.e. negative work) mechanical energy from the oscillator. This effect is
quantified by the effective damping rate Γtot = Γm+Γopt and by the mechanical mode
effective temperature [20, 148]:
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Teff = Γm
Γtot

T0 (2.32)

where T0 is the bath temperature. The sign of the optomechanical damping rate
Γopt depends on the detuning ∆. In particular, for ∆ < 0, Γopt < 0 [20]. The overall
damping rate is therefore decreased and the mechanical motion amplitude is increased
by work provided through the optical forces. Eventually, by increasing the optical
power of the pump laser, Γtot = 0 and we reach the power threshold for the onset
of mechanical self oscillations [149]. On the contrary, when ∆ < 0, Γopt > 0 [20].
In this case, the mechanical oscillator is cooled by the optomechanical interaction.
Eventually, the system is cooled down to very low effective temperatures (i.e. there
are few phonons in the mechanical mode). In this case, a quantum description of the
system is necessary, in particular for describing the minimal phononic population that
can be reached inside the confined mechanical mode [150].

The manipulation of the mechanical mode can also be interpreted in terms of
inelastic light scattering induced by the confined mechanical mode [151, 152]. The
process is represented in Figure 2.14 for a cooling configuration. The laser is repre-
sented by a black vertical line, spectrally positioned at a wavelength ωl = ωcav − ωm.
As we have seen before, the Raman process induced by the confined vibration pro-
duces both a Stokes and an anti-Stokes component, corresponding to the blue and red
line in Figure 2.14, respectively. However, in this case the photons will preferentially
scatter into the component of higher energy since they are resonant with the confined
optical mode. Scattering a photon to a higher frequency implies the absorption of a
phonon from the mechanical resonator. Since the rate of the anti-Stokes process is
higher than the one of the Stokes process, this leads to an overall sideband cooling of
the confined mechanical mode.

ωωlaser

R
ωsωas

Figure 2.14 – Schematic principle of optomechanical cooling of a resonator. The
laser (black vertical line) is on the red detuned flank of the optical reflectivity. The
antistokes component is resonant with the confined optical mode. This enhances the
anti-Stokes scattering rate with respect to the Stokes one.

In this section, we have introduced the principles of Brownian motion measurement
and the manipulation of mechanical motion through optomechanical interactions. In
the next section, we present the main parameters that are relevant in the previously
described experiments.
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2.4.3 Optomechanical parameters
We will start this section by addressing the question of the reduction point. In the
previous example, the motion of the mechanical resonator could be simply described
by a parameter x(t), that is, the displacement of the movable mirror with respect
to its resting position. In particular, the optomechanical coupling factor gom could
be calculated by considering this displacement. The situation is however different
in several optomechanical systems, where the displacement magnitude depends on
the position inside the resonator. This will be the case when we will study the
optomechanical properties of micropillars (Chapter 5). The spatial profile −→u (−→r ) can
take different values depending on the position −→r in the resonator. The necessity
of defining a reference displacement at a given reduction point is clear, in order to
describe the mechanical motion of the system. It is worth noting that the reduction
point is an arbitrary choice. In this work we will consider the point with maximal
displacement, located at a position −→r 0 in the resonator. Since we have defined a
reference displacement for the mode, the gom can be determined with respect to the
motion at this reduction point.

The choice of the reduction point leads to the definition of the effective mass
meff . We consider an optomechanical resonator with a mechanical frequency ωm and
with maximal amplitude displacement Umax. The effective mass is found by equating
the mechanical energy stored in the optomechanical oscillator to the energy of an
harmonic oscillator having a motion x(t) with an amplitude Umax, a frequency ωm
and a mass meff [147]. The effective mass, with the current choice of the reduction
point, is given by:

meff =
∫ 1

2ω
2
m‖−→u (−→r )‖2ρ(−→r )dV

1
2ω

2
mU

2
max

(2.33)

where the spatial integral is defined over the full optomechanical resonator, and ρ is
the local mass density.

The quantum description of an optomechanical resonator allows to define the
vacuum optomechanical coupling factor g0. This parameter is particularly useful
since it quantifies the strength of the optomechanical interaction independently of the
choice of the reduction point. To introduce it, we express the Hamiltonian of the
system as:

Ĥ = ~ωcav(x̂)â†â+ ~ωmb̂†b̂ (2.34)

where â† (b̂†) and â (b̂) are respectively the photon (phonon) creation and annihilation
operators. Notice that here we are considering an isolated optomechanical system
(no coupling to the environment). The term ωcav can be expanded with respect
to the motion of the reduction point as ωcav = ω0

cav − gomx̂. By considering that
x̂ = xzpf (b̂+ b̂†), the previous expression becomes [20]:

Ĥ = ~ω0
cavâ

†â+ ~ωmb̂†b̂− â†âgomxzpf (b̂+ b̂†) (2.35)

The last term corresponds to the interaction Hamiltonian. We have introduced
the zero point fluctuation amplitude, that is, the spread in position for a mechanical
state with zero phonons (〈0|x2|0〉 = x2

zpf ). This can be found as:

48



Optical measurements of acoustic phonons

xzpf =
√√√√ ~

2Ωmmeff

(2.36)

From the previous expression, it is clear that xzpf is also "point dependent", as it is
the case for gom. However, the product of the two does not depend on the displacement
magnitude at the reduction point [147]. This parameter is the vacuum optomechanical
coupling factor g0 = xzpf × gom. It therefore quantifies the optomechanical coupling
strength in an unambiguous way, in contrast to gom.

An optomechanical resonator is a system that presents simultaneously optical and
mechanical resonances. In the frame of this work, the considered optomechanical
systems are micropillars, that is, structures presenting mechanical resonances in the
GHz range and optical eigenfrequencies in the NIR. Optomechanical system presenting
GHz mechanical resonances are particularly suitable for both fundamental and applied
studies.

Optomechanical system can be prepared close to their mechanical ground state,
with an average phonon number n̄ < 1. This regime can be reached [153], or ap-
proached [24, 154], by placing the mechanical resonator in a cryogenic environment.
The optical forces can then be used to further cool down the mode and reach n̄ < 1
[24, 152, 154]. Furthermore, optomechanical interactions allow to probe the average
phonon number. Optomechanical systems with mechanical resonances in the MHz
range have been used to cool down a mode close to its ground state [152, 154]. How-
ever increasing the mechanical frequencies, by reaching the GHz range, is desirable.
Indeed, since the initial average phonon number satisfies nth = [e

~ωm
kbT −1]−1, increasing

the mechanical frequency allows to reach n̄ < 1 at higher temperatures. This facil-
itates the experimental preparation of optomechanical resonators in their quantum
regime of mechanical motion.

High mechanical frequencies are also relevant for metrology applications. For ex-
ample optomechanical resonators can be used as mass sensors[155]. In this context,
one possibility is to track the change in resonance frequency induced by the adsorption
of an analyte to be probed [156]. Increasing the mechanical resonance frequencies is
desirable since it allows to increase the sensitivity of the detector, i.e. the smallest de-
tectable mass change [17, 157]. Optomechanical systems have also been implemented
for the fabrication of force sensors and accelerometers [158]. In this case, a high
mechanical resonance frequency increases the frequency bandwidth of the detector
[86].

The optical resonance frequency is of particular relevance in the systems considered
in this work, since its design value will dramatically alter the optomechanical coupling
strength. We will consider that in our systems the optical resonance frequency can be
affected by the mechanical motion through geometrical and photoelastic effects, that
is [132]:

gom = −∂ω
0
cav(ε, G)
∂x

= −∂ω
0
cav(ε, G)
∂x

= −∂ω
0
cav(ε, G)
∂G

∂G

∂x︸ ︷︷ ︸
ggeoom

−∂ω
0
cav(ε, G)
∂ε

∂ε

∂x︸ ︷︷ ︸
gphotoom

(2.37)
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In the above equation the parameter G represents the geometry of the system,
whereas ε indicates the dielectric constant. The parameters ggeoom and gphotoom correspond
to the optomechanical coupling factors due to geometrical deformation and variation
in the dielectric tensor induced by strain. The systems considered in this manuscript
are constituted by GaAs and AlAs, and the optical mode is confined in a solid-state
environment. The nature of the used materials can give rise to significant photoelastic
contributions. In particular, the energy of the electronic gap at room temperature
in GaAs is at 1.42 eV, corresponding to an optical wavelength of 870 nm. Designing
our systems with an optical resonance energy close to the electronic transition allows
to dramatically enhance the photoelastic effect [159], and therefore gphotoom . This can
be understood from the Raman scattering picture, in which the inelastic scattering
probability becomes resonant under these conditions [121].

The optomechanical system is coupled to its mechanical and optical environment.
These couplings are quantified by the resonator quality factors: Qm and Qopt.

As already mentioned before, the optomechanical interactions allow to cool down
the mechanical confined mode. Lowering the phonon population of the mode relies
on an effective insulation of the system from the mechanical bath, in order to create
an energy gradient between the resonator and the environment. Maximizing Qm is
therefore crucial for preparing mechanical resonators in their quantum ground state.
This parameter is in fact also relevant in the opposite regime, where the mechani-
cal motion is amplified. Indeed, increasing Qm allows to decrease the optical power
threshold for which mechanical self oscillations occur [149]. Furthermore Qm is in-
volved in the calculation of the Q · f product. Maximizing this figure of merit is
relevant in quantum optomechanical applications, since it is related to the number
of coherent mechanical oscillations that the system can undergo in the presence of
thermal decoherence induced by the environment [20].

The optical quality factor Qopt is another crucial parameter for both mechanical
motion detection and manipulation. In the frame of Brownian motion measurements,
its role can be understood from Figure 2.13.b. The optical quality factor sets the
slope of the reflectivity curve. Therefore, increasing this parameter enhances the op-
tomechanical sensitivity. This facilitates the measurement of the mechanical oscillator
noise spectrum.

In the context of cooling the mechanical mode, maximizing the optical quality
factor increases the value of the optomechanical damping rate, allowing to reach lower
effective temperatures. In the opposite regime, it reduces the threshold laser power
for self oscillations [149]. These effects can be intuitively understood from the Raman
scattering picture (Figure 2.14), since increasing the optical quality factor enhances
the imbalance between the Stokes and anti-Stokes components.

2.5 Conclusion

In this chapter, we described the interactions taking place between acoustic phonons
and photons. The inelastic scattering of light induced by mechanical waves is of
paramount importance in this work, since it is this process that we have experi-
mentally studied through Raman scattering spectroscopy. We also have recalled the
main selection rules that are relevant for Raman scattering on superlattices and on
nanophononic cavities. Furthermore, we have explained how, by engineering the op-
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tical environment of acoustic structures, we could dramatically enhance the intensity
of the Raman signals and relax the selection rules on layered systems. This design has
been implemented in all the samples presented in this work, and allowed to greatly
facilitate their characterization.

In the following sections, we briefly presented two other experimental techniques
that are widely used to characterize mechanical resonators through optical means.
The first one is pump-probe coherent phonon generation and detection. This exper-
imental technique is particularly relevant in the context of this work, since the first
experimental demonstration of mechanical confinement in micropillars was obtained
through this method.

Pump-probe coherent phonon generation and detection is a complementary tech-
nique with respect to Raman scattering spectroscopy. In particular, it allows to char-
acterize systems in the few GHz range, frequencies that are very challenging to access
by Raman scattering spectroscopy. The Raman peaks would be spectrally located
very close the excitation laser line, making the stray light rejection difficult to carry
out. Notice however that in real experiments the pulse length used in pump-probe
experiments is not infinitesimally short. This limits the eigenfrequencies that can be
excited, which typically goes up to few THz with fs lasers. For probing the acoustic
properties of nanophononic resonators above this frequency range, Raman scattering
experiments are best suited.

Furthermore, pump-probe experiments can be used to measure the damping rates
of acoustic resonators, as explained before. Measuring these parameters is more diffi-
cult by Raman scattering, since the linewidth of the Raman peaks is often determined
by the resolution of the spectrometer. In the case of pump-probe experiments, this
measurement is only limited by the maximum delay between the pump and the probe.

The last technique that we introduced is Brownian motion measurements. This
method has been widely implemented in the context of cavity optomechanics. We first
presented the basic concepts of optomechanical interactions. We then explained how
to take advantage of the coupling between the confined optical and mechanical modes
in order to probe the thermal fluctuations of the mechanical resonator. We have
also briefly presented how to control the mechanical motion of the system through
optical forces. Finally, we have introduced some general parameters that are relevant
for the characterization of optomechanical resonators. In Chapter 5 we will present
numerical simulations that allowed us to estimate the magnitude of these quantities
for three-dimensional optomechanical resonators, that is, GaAs/AlAs micropillars.
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Chapter 3

Acoustic confinement: beyond the
Fabry-Perot resonator

The design of acoustic periodic media at the nanoscale enables the engineering of
acoustic wave propagation in the GHz/THz range. In particular, it allows the de-
velopment of novel confinement strategies in one dimension. Phononic Fabry-Perot
cavities nowadays constitute the canonical resonator used in nanophononics. In fact,
with few exceptions, no other confinement methods have been explored for GHz/THz
waves.

In this Chapter we present two structures that we have developed to control the
confinement of nano-mechanical vibrations. These designs provide additional knobs
to engineer the propagation of acoustic phonons in layered systems.

The first resonator relies on the fine control of a superlattice band structure.
It is inspired by cavity designs developed in optics to optimize the confinement of
electromagnetic modes. In this system we adiabatically break the spatial periodicity
of a superlattice. This allows to mimic the effect of a phononic potential and to
generate confined states.

For the second confinement method presented in this Chapter, we take advantage
of the topological properties of an acoustic periodic medium. In this case, we con-
catenate two acoustic superlattices in different topological phases, in order to create
an interface state between the two structures.

We will demonstrate the feasibility of these systems. In particular, we have fab-
ricated acoustic nanocavities based on the concepts introduced before, and we have
experimentally probed the existence of confined phononic states through Raman scat-
tering spectroscopy. All the samples presented in this section were realized at C2N
by Aristide Lemaître and Carmen Gomez Carbonell.

The Chapter is organized as follows:

• In Section 3.1 we will describe the Raman scattering spectroscopy experiment
that we have implemented in order to perform the measurements discussed in
this chapter.

• In Section 3.2, we will introduce the design of the adiabatic structure. The
experimental results are shown and compared to the photoelastic model, clearly
demonstrating the presence of a confined mode in our system.

• In Section 3.3 we will present the concepts used to create an interface state
between two acoustic superlattices, based on topological invariants. The exper-
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imental Raman scattering spectra obtained on this system are again compared
to numerical simulations.

• Finally, we will close this Chapter by some conclusive remarks.

3.1 Raman scattering set-up
The Raman scattering measurements discussed in this chapter were carried out using
the experimental set-up represented in Figure 3.1. The configuration of this experi-
ment has been designed to probe Stokes Raman peaks, as explained below.
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Figure 3.1 – Raman scattering experiment diagram in Stokes configuration. The
excitation beam is represented in red. The angle of incidence θ0 is indicated and
exaggerated with respect of real experimental conditions for clarity of the diagram.
The scattered light is represented in green. The dashed line in the spectrometer
represents the path of the light when it is used in its measurement configuration.
The short dotted line represents the path of the light when the entrance slit imaging
system is used.

The sample is excited by a tunable continuous wave (CW) NIR Ti:Sapph laser
(SolsTiS M-Squared, or Mira 900 Coherent used in CW), with a wavelength tuning
range going from 700 nm up to 1050 nm. The linewidth of the laser is smaller than
5 MHz, and the maximal output power is ≈ 400 mW. The wavelength of the laser
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is measured by a fibered wavelength meter (W5-5 HighFinesse GmbH). The SolsTiS
laser can be locked to the wavelength meter, in such a way that a wavelength drift
of the laser can be actively corrected. The power of the laser is controlled by a zero
order λ/2 waveplate combined with a linear polarizer.

The incident beam is focalized through a lens L1 having a focal length of 20 cm.
The size of the spot on the sample is of the order of 150 µm. The laser is incident on the
sample with an angle θ and the scattered light is collected at normal incidence. The
set-up is optimized to measure Stokes Raman signals under double optical resonance
(see Section 2.2), to enhance Raman signals at frequency shifts of ≈ 300 GHz.

The characterized structures are fabricated with a thickness gradient. This enables
to find a position in which the resonance frequency ωc of the collection mode at
normal incidence matches the frequency of the scattered photons ωs = ωi − ωphon.
The parameters ωi and ωphon are the frequencies of the incident laser and of the
mechanical mode that we are probing, respectively.

Before being focalized on the sample, the beam is deviated by a reflector also
mounted on a translation stage and a rotation mount. This reflector allows to carefully
choose the incidence angle θ of the excitation beam. As explained by Figure 2.7 of
Section 2.1, the setting of the incidence angle allows to find ωe = ωi, where ωe is
the frequency of the excitation mode. Controlling the incidence angle and the spatial
position at which the laser impinges the sample allows to set the DOR condition for
a given frequency shift in the Raman spectrum.

The inelastically scattered light is collected by a lens L2 with a focal distance of
10 cm, in order to be analyzed by a spectrometer. The collimated beam is focalized
at the entrance of a double monochromator (HRD 2 Jobin Yvon), in the plane of the
entrance slit S1. The focal length of L3 is 12.5 cm. The double monochromator is
equipped with a liquid N2 cooled Charge Coupled Device (CCD) (LN 100BR Detector
Excelon Princeton instruments).

In order to maximize the resolution of our measurement apparatus, the numerical
aperture of L3 has been chosen to match the one of the spectrometer such that the
surfaces of the gratings are fully illuminated. Furthermore, the width of the entrance
slit S1 ranges between 20 µm and 30 µm. Under optimal experimental conditions the
resolution measured for our spectrometer, taken as the full width half maximum of
a sharp laser line, is ≈ 7 GHz, corresponding to ≈ 0.2 cm−1 (i.e. ≈ 0.019 nm), at
900 nm.

We have implemented an imaging system that is essential for performing a first
alignment of the set-up. Indeed, we are collecting very weak Raman intensities. The
inelastically scattered light is measured at normal incidence from the sample. The
Raman signals spatially overlap the laser light that is elastically scattered at the
sample surface. An aperture can be used in the first monochromator stage for sliding
in a small mirror. This mirror is then used to image the plane of the slit S1. The
imaging system is constituted by a lens and a camera, and it allows to verify that
we are collecting the scattered light from the sample through the entrance slit. This
procedure enables us to get a first Raman spectrum that we can then further improve
by correcting the set-up alignment. Maximizing the stray light rejection is a crucial
step in high resolution Raman scattering experiments. In particular, remaining light
coming from the excitation laser is inevitably collected.

The double spectrometer is a major asset for minimizing the stray light collection,
since it allows to eliminate the spectral peak associated to the laser before it can reach
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the second stage and the CCD. Indeed, as a first spectrum is formed at the plane
between the two stages, the intermediate slit S2 can be used as a narrow bandpass
filter. By closing S2, the slit spectrally blocks the light directly coming from the
excitation laser (as represented in Figure 3.2.b). This filtering process is therefore
a powerful tool to improve the signal to noise ratio of our measurements and to get
spectrally closer to the excitation laser line.
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Figure 3.2 – (a): Schematics of the unfiltered Raman spectrum obtained at the
plane of the intermediate slit. The saturated signal represented on the left correponds
to the excitation laser. The three small peaks correspond to the Raman signals of
the acoustic cavity. (b): Schematics of the filtered Raman spectrum. The two red
rectangles indicate the action of the two intermediate slit blades when S2 is closed.
As explained in the main text, S2 acts as a bandpass filter, letting only the Raman
signal pass into the second stage of the spectrometer and be measured by the CCD.

The Stokes configuration of the set-up allows to spatially filter out the direct
reflection of the laser occurring at the sample surface. Indeed, being incident with a
small angle θ0 enables to block this reflection without preventing the collection of the
scattered light, as shown in Figure 3.1.

Figure 3.3 shows the Stokes Raman spectrum that we measured on an acoustic
Fabry-Perot resonator embedded in an optical cavity. The acoustic system is designed
to confine a mode around 250 GHz (corresponding to an energy of ≈ 1 meV). It is
made of two (λ4 ,

3λ
4 ) AlAs/GaAs DBRs and a (λ2 ) GaAs spacer. This corresponds

to thicknesses of 14.6 nm and 5.75 nm for the GaAs and AlAs layers in the DBRs,
respectively. The spacer thickness is 9.75 nm. As explained in Chapter 2 (Section
2.2), both forward scattering and back scattering Raman peaks are accessible with
our set-up due to the design of the sample.

The Raman spectrum presented here spans over several hundreds of GHz. In real
experimental conditions, in order to minimize the experimental noise, the intermediate
slit is closed so that frequency intervals on the order of 50 GHz can be accessed in one
measurement. Raman spectra such as the one shown in Figure 3.3 are reconstructed
from several subsequent measurements, for which the laser wavelength and power are
kept constant.

Panel (a) of Figure 3.3 shows the calculated acoustic reflectivity spectrum of the
structure. It was simulated by considering the nominal values of the resonator layer
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Figure 3.3 – Raman scattering spectrum measured on an acoustic Fabry-Perot res-
onator embedded in an optical cavity. (a): Simulated reflectivity of the Fabry-Perot
acoustic cavity as function of frequency. The labels ZC[1] and ZC[2] stand for first and
second Brillouin zone center acoustic minigaps. ZC[2] indicates the second Brillouin
zone edge minigap. (b): Experimental Stokes Raman spectrum. The frequency axes
are shown both in GHz and cm−1. The counts numbers are normalized by the power
of the laser and by the integration time. The magenta region highlights the spectral
position of the first Brillouin zone-center acoustic minigap. The light grey region
marks the frequency interval where a second group of Raman peaks is visible. The
Raman peaks marked with the labels (BS) and (FS) correspond to phononic modes
that would be Raman active in a backscattering and forward scattering geometry,
respectively, in the absence of optical confinement. The peak labeled by (CM+FS)
corresponds to the Raman signal generated by the confined acoustic mode and the
Raman active extended mode with q = 0.
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thicknesses. The reflectivity frequency axis has been rescaled by a global proportion-
ality factor, to account for the sample thickness gradient. The magenta area highlights
the spectral position of the first stop band at the Brillouin zone center. The existence
of a confined mode in this frequency interval is evidenced by the presence of a sharp
dip in the high reflectivity region.

The spectrum shown in Figure 3.3, Panel (b), was obtained for an excitation laser
wavelength of 892 nm and an incident power of 4.5 mW at room temperature. The
incidence angle θ0 was set to obtain a DOR condition for Raman peaks located at a
frequency shift ∆f around 250 GHz. In this spectrum two groups of peaks are visible:
a first triplet is observable at ∆f ≈ 260 GHz and another one at ∆f ≈ 520 GHz. The
observed Raman peaks widths are determined by the experimental resolution. From
the description of the Raman scattering selection rules for acoustic superlattices that
we recalled in Chapter 2, we can deduce the origin of the measured Raman peaks.
The first group corresponds to Raman signals located around the first ZC acoustic
minigap, as it can be seen in Panel (a). The two backscattering Raman peaks are
located outside of the ZC[1] acoustic stop band. They correspond to propagative
mechanical modes inside the structure, verifying the scattering condition q ≈ 2ki.
The main Raman peak (marked by the label CM+FS), well inside the ZC[1] acoustic
stop band, marks the presence of the confined acoustic mode (CM). Furthermore,
as explained in Chapter 2, there is also a Raman active extended mode located at
q ≈ 0, bounding the acoustic minigap. The forward scattering signal of this mode also
contributes to the probed Raman main peak. A measurement with higher resolution
would be required to distinguish the two signals.

The second group of peaks is located at twice the frequency shift of the first
one, in a frequency interval highlighted in grey in both panels. Similarly to what is
observed for the Raman peaks located around ZC[1], the central peak is associated to
mechanical modes verifying q ≈ 0, whereas the two others are generated by acoustic
phonons with q ≈ 2ki. In this case, the ZC[2] acoustic minigap is closed, due to the
choice of the layers thicknesses in the designed structure, and no acoustic stop band
is visible in the grey region of Panel (a). Assuming that the actual layer thicknesses
inside the sample correspond to their nominal values, the central peak is not generated
by a confined mode, but only by an extended mode located at q ≈ 0 in the acoustic
band diagram.

We have shown how a confined mode can be measured by means of Raman scat-
tering spectroscopy. The reported spectrum presents the Raman features predicted
by the photoelastic model. We used this set-up to probe the Raman spectra of sam-
ples presenting novel acoustic cavity designs, and to demonstrate the confinement of
mechanical vibrations in these systems.

3.2 Adiabatic confinement of acoustic phonons

In this section we describe the design of an acoustic cavity based on the local en-
gineering of band structures to confine an acoustic mode. The development of this
structure was inspired from works related to the confinement of light in defects intro-
duced within photonic resonators [160].
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3.2.1 Design of an adiabatic cavity
The realization of optical resonators that "smoothly" confine light takes place in the
framework of developping cavities with modal volumes of optical-wavelength dimen-
sions and maximal optical quality factors [161–163]. It was demonstrated that the
confinement in these devices is limited by the coupling of the localized state inside
the defect to radially propagative modes [164, 165]. This can be either caused by
the geometry of the system, or by the presence of unwanted imperfections in the fab-
ricated sample. One efficient design to overcome these issues in the optical domain
consists in introducing tapered regions where the periodicity of the photonic crystal is
progressively/adiabatically changed [165]. Such an adiabatic breaking of a photonic
crystals periodicity locally changes the optical band structure of the system, leading
to the creation of a confined state [160]. This approach allows for reduced optical
losses, hence increased optical quality factors, when going to three-dimensional con-
finement. Such band engineering of optical periodic structures has been adopted in
several optical systems, such as two-dimensional photonic crystal membranes [166],
nanobeams [167], waveguides [168] and micropillars [160, 169].

In this work, we take advantage of the possibility to create localized states by
adiabatically breaking the periodicity of an acoustic superlattice. In the structures
studied here, we progressively change the layer thicknesses in an acoustic DBR. The
effect of this transformation can be described by an adiabatic change of the system’s
local acoustic band diagram. This generates a confined mechanical state located where
the perturbation is introduced, usually at the center of the structure. Furthermore, by
changing the maximum thickness deviation from the periodic case, we can significantly
transform the spatial profile of the confined mode, leading to major variations in its
mechanical quality factor and Raman scattering cross section.

We start the conception of the adiabatic cavity by considering an acoustic
AlAs/GaAs DBR constituted by 28.5 layer pairs (i.e. 57 layers). The layer thicknesses
of AlAs and GaAs are t0AlAs = 12 nm and t0GaAs = 3.4 nm, respectively. By choosing
these thicknesses, we obtain a (3λ

4 ,
λ
4 ) acoustic DBR, with a maximally opened Bril-

louin zone center acoustic minigap centered at a frequency of ≈ 350 GHz.
We now introduce the adiabatic perturbation by gradually changing the layer

thicknesses in the central region of the DBR. The process is illustrated by the color
map in Panel (a) of Figure 3.4, where we have represented the structure of the adi-
abatic cavity. The green and blue layers indicate the AlAs and GaAs materials,
respectively.

We consider the represented system from the left side of the figure to the right
side. We leave the first 16 layers of the DBR unaltered. We then progressively change
the successive layer thicknesses. The envelope of the perturbation has the shape of a
sin2 function and a maximum amplitude of 7%. The adiabatic perturbation is applied
to the successive nadiab = 25 layers. We denote p as the index of the pth layer in the
perturbed part on the DBR. The parameter p is an integer number, going from 1 for
the first perturbed layer up to nadiab for the last one. The thickness tp of the pth layer
in the perturbed region is given by the relations:

tAlAsp = tAlAs0

(
1 + 0.07× sin2

(
(p− 1)× 1

nadiab − 1 × π
))

(3.1)

if the pth layer is an AlAs layer, and:
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Figure 3.4 – (a): Displacement profile of the confined acoustic mode inside the adi-
abatic structure. The color map shows the layers thicknesses adiabatic perturbation
inside the structure. Green and blue regions correspond to AlAs and GaAs layers,
respectively. The Inset shows the evolution of the local acoustic minigap as function
of the position in the sample. (b): Acoustic reflectivity for the adiabatic nanocavity
(cyan curve). The spectral position of the confined mode plotted in (a) is marked by
a cyan square. The acoustic reflectivity of the unperturbed DBR is shown by the red
dotted line.

59



Acoustic confinement: beyond the Fabry-Perot resonator

tGaAsp = tGaAs0

(
1 + 0.07× sin2

(
(p− 1)× 1

nadiab − 1 × π
))

(3.2)

if the pth layer is an GaAs layer. From the two equations presented above, the magni-
tude of the adiabatic perturbation progressively increases with p, reaches a maximal
value at the center of the structure, and then decreases again. Finally, after the adi-
abatically perturbed region, the rest of the structure is constituted by 16 unaltered
layers, represented in the rightmost part of the color map represented in Figure 3.4.a.

Since the maximal value of the adiabatic change is only of 7%, the perturbation
is implemented in such a way that the change in size between two consecutive unit
cells is small with respect to the nominal layer thicknesses of the initial DBR.

The presence of a confined state can be explained by locally applying the Bloch
mode formalism in the aperiodic part of the sample, and in particular for one period
of alternating AlAs/GaAs layer pairs [160, 170, 171]. We calculate for every pair of
AlAs/GaAs layers a local acoustic band diagram. The latter is obtained by calculating
the dispersion relation of an acoustic superlattice with layer thicknesses corresponding
to the ones of the considered unit cell. Therefore, local acoustic minigaps can be
determined for each layer pair, in particular in the adiabatically perturbed region
[171]. In the inset of Figure 3.4.a, we show the evolution of the first Brillouin zone
center band gap (yellow) as function of the position in the sample. The eigenfrequency
of the confined mode is represented by the dashed horizontal line. By progressively
increasing the thicknesses of the layers, we gradually redshift the position of the local
acoustic bandgap of the system. At the center of the perturbed region, the confined
mode is outside the bandgap and is therefore allowed to propagate. However, by
moving away from the center, the mode enters adiabatically into the bandgap and is
progressively reflected by the DBRs, leading to its confinement.

We compute the reflectivity of the system embedded in a GaAs matrix, as shown
with the cyan curve in Figure 3.4. We note the presence of a sharp dip inside the stop
band at 353 GHz (i.e. at ≈ 1.45 meV), corresponding to a confined mode. The dashed
red line represents the simulated reflectivity spectrum of a DBR without any adiabatic
perturbation. The calculated spatial profile of the confined mode (Figure 3.4, black
curve) is obtained through transfer matrix calculations. The displacement has been
normalized to the displacement amplitude in the GaAs substrate. This was carried
out in order to show the enhancement of the acoustic displacement amplitude induced
by the phononic resonator. The mode is confined at the center of the structure and
decays exponentially over ≈ 150 nm, beyond the adiabatically perturbed region.

The progressive transformation of the acoustic DBR band diagram enables the
"smooth" confinement of an acoustic mode. In fact, other examples of such band
engineering in acoustics can be found in the literature. Previous works report on
controlling the local phononic band diagram in the context of coupled acoustic res-
onators, i.e. structures where multiple Fabry-Perot-like cavities are coupled to mimic
the formation of bands [172]. These phononic molecules are well described by a tight
binding model, where each Fabry-Perot plays the role of an atom evanescently coupled
to its neighbors through the acoustic mirrors. Effective potentials can be introduced
by changing the resonance energy of the consecutive cavities [173]. In these cases
confined states can appear and they are distributed along several resonators. These
structures allowed to observe phenomena such as Wannier-Stark ladders, Bloch oscil-
lations, and confined phononic states in parabolic potentials [171, 174].
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The cavity designed here is also based on controlling the local band structure, but
its working principle can be mapped to a nearly-free electron model [1]. The semicon-
ductor interfaces reflect a small fraction of the incident acoustic wave, analogous to
the atoms of a crystal for electronic wavefunctions. We can therefore design acoustic
potentials without the need of concatenating several resonators separated by DBRs.
As in the case of optics, this new way of localizing mechanical modes with tapered
regions could lead to the development of three-dimensional mechanical resonators
with confinement properties overcoming the ones currently achieved with standard
Fabry-Perot designs [58, 175].

3.2.2 Characterization of the Adiabatic Cavity
We fabricated an adiabatic cavity structure by MBE, and we characterized it through
the Raman scattering spectroscopy set-up presented before (Figure 3.1). The sample
was fabricated on a (001) GaAs substrate. The design of the AlAs/GaAs acoustic
cavity follows the structure shown in Figure 3.4. The phononic system is embedded
between two (λ4 ,

λ
4 ) optical DBRs. The optical mirror in contact with air is constituted

by 14 Al0.1Ga0.9As/Al0.95Ga0.05As layer pairs, whereas the one in contact with the
substrate is made of 18 pairs. The adiabatic cavity confining a mode at ≈ 353 GHz
constitutes a 3λ/2 optical spacer of a Fabry-Perot cavity at a vacuum resonance
wavelength of ≈ 925 nm. The sample is fabricated with a thickness gradient enabling
us to tune the optical resonance in the ≈ 0.8 to 1 µm wavelength range by moving
the laser spot on the sample.

We first address the effect of the double optical resonance condition, as illustrated
in Figure 3.5. We performed an experiment where the DOR condition was optimized
for frequencies shifts of ≈ 350 GHz (Figure 3.5.a). The incidence angle was θ ≈ 11◦.
We then moved the laser spot on the structure by translating the sample. The power
of the laser and its wavelength were kept constant. For each position, we acquired
a Raman spectrum for a frequency shift interval centered at 360 GHz. As shown in
Figure 3.5.a, a group of Raman peaks is visible. When we move on the sample, we
observe a progressive increase in the intensity of the Raman signals. We then reach a
position where the spectrum is maximally enhanced, indicated by a red arrow, and we
then observe a progressive decrease of the signals when we further displace the spot.
The DOR condition is therefore matched when we measure maximal signal intensities.

We repeated the same experiment for a second group of Raman peaks, as shown
in Figure 3.5.b, which was probed on the same sample. The incidence angle was
increased to get a DOR condition at ∆f ≈ 700 GHz. The evolution of the Raman
spectra as function of the position of the laser spot is similar to the one observed in
Figure 3.5.a.

Figure 3.5 shows that by changing the experimental conditions, we can selectively
enhance the intensity of the probed Raman peaks in different frequency shift intervals
[121]. In particular, the frequency regions located around 360 GHz and 700 GHz
present several Raman spectral features. In order to further analyze our sample,
we have measured two Raman spectra on a larger frequency interval, ranging from
260 GHz up to 1170 GHz. They are plotted in Panel (b) of Figure 3.6.

We first consider the Raman spectrum represented by a black curve in Figure 3.6.
For this measurement, the laser wavelength was at 913.4 nm and the incident power
was 15.5 mW. This spectrum was obtained after having established a DOR around
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350 GHz through the incidence angle. The Raman peaks visible around this frequency
shift correspond to the ones shown in Figure 3.5.a.

The Raman peaks located around 350 GHz are enhanced by the DOR condition.
In contrast, out of resonance signals poorly couple to the collection mode, and their
intensities are strongly reduced. However, Raman features far from 350 GHz are
visible at higher frequency shifts. In particular, weak Raman signals are visible around
∆f ≈ 700 GHz. They correspond to the Raman peaks already shown in Panel (b) of
Figure 3.5. This is due to the relatively low quality factor of the optical Fabry-Perot
(Q = 1948). A small fraction of these out of resonance Raman signals can therefore
couple to the collection mode and appear in the spectrum.

The second Raman spectrum, plotted in red in Panel (b) of Figure 3.6, was mea-
sured after having reached the DOR condition around ≈ 700 GHz. By comparing the
signal magnitudes measured in the black and red curves, we find that by changing
the DOR condition, we enhanced the main peak located around ∆f ≈ 700 GHz by a
factor of 15. As expected, the relative intensities between the first and second group
of peaks are inverted with respect to the black curve discussed before. Furthermore,
by shifting the DOR condition at ≈ 700 GHz, a third group of peaks becomes visible
as shown by the inset to Panel (b).

In Panel (a) of Figure 3.6, we have represented the simulated reflectivity curve of
the adiabatic cavity. In this curve, the acoustic stop bands are clearly visible. They
present complex features due to the introduction of the adiabatic defect. However,
by comparing them to the unperturbed DBR, we can associate them to Brillouin
zone center or zone edge acoustic minigaps, as indicated by the labels. ZC[i] (ZE[i])
indicates that the stop band corresponds to the ith folded Brillouin zone center (zone
edge) minigap. In particular, we observe the ZC[1] acoustic stop band, already shown
in the Panel (b) of Figure 3.4, in which the sharp dip associated to the confined mode
is located. ZC[2] is closed, as for the case of a standard (λ4 ,

3λ
4 ) acoustic DBR. ZC[3]

is located around ≈ 1050 GHz.
We can now compare the reflectivity curve to the experimental Raman data. We

first consider the black curve. A very intense Raman peak is visible at 353 GHz
(marked by the label CM). Notice that this frequency corresponds to the confined
mode, as shown in Panel (a). This is evidenced by the dashed red line in Figure 3.6.
This very intense Raman peak marks the presence of the confined mode, demonstrat-
ing the existence of the adiabatically localized state described in Figure 3.4.

The other Raman features which are around the CM peak are associated to prop-
agative and extended modes along the structure. This can be understood from the fact
that they are spectrally located outside the ZC[1] acoustic minigap. In the absence of
an optical cavity, some of them would be Raman active in a backscattering geometry
whereas others would be visible in a forward scattering geometry. This point will be
addressed by comparing the experimental data to numerical simulations.

The red spectrum can be used to assign the second group of peaks. In particular,
we notice that no high reflectivity region in Panel (a) is present around these fre-
quencies. This evidences the fact that these Raman peaks are associated to extended
modes in the acoustic structure. Finally, the Raman peaks shown in the inset to Fig-
ure 3.6 are associated to both extended mechanical modes and higher order confined
modes in the ZC[3] acoustic minigap of the structure.

We now compare the acquired experimental data to the results obtained through
numerical simulations. In Figure 3.7.a we show the calculated acoustic band diagram
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Figure 3.5 – Evolution of the Raman signal intensities when the laser spot is translated
on the sample. (a): First group of Raman peaks in Figure 3.6, located around the
first Brillouin zone center acoustic minigap. (b): Second group of Raman peaks in
Figure 3.6, located around the second Brillouin zone center acoustic minigap. Panels
(a) and (b) show this evolution at incidence angles θ optimized for signals located at
a frequency shift of ≈ 350 GHz and ≈ 700 GHz, respectively. The red arrows indicate
the position with maximal intensity for the Raman spectra.
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Figure 3.6 – (a): Simulated acoustic reflectivity spectrum of the adiabatic cavity. The
labels ZC[i] and ZE[i] indicate if the acoustic stop-band corresponds to a Brillouin zone
center or zone edge minigap. (b): Raman spectra measured on the adiabatic cavity.
The black and red curves show the spectra obtained when the double optical resonance
condition was optimized for signals located at≈ 350 GHz and≈ 700 GHz, respectively.
CM indicates the Raman peak associated to the adiabatically confined phononic mode.
The red curve has been vertically translated for clarity. Inset: detailed view of the red
spectrum for frequency shifts around 1000 GHz, where Raman peaks are also visible.
They are associated to the third zone center acoustic minigap (ZC[3]). The vertical
axis of the inset has been magnified a factor of 17.
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(black curve) of the DBR used during the conception of our sample, without any
adiabatic defect. The orange line shows the spectral position of the confined mode
and the acoustic minigap highlighted in grey corresponds to ZC[1]. In Panel (b), the
black curve shows a detailed view for the first group of peaks when the DOR was
optimized for ∆f ≈ 350 GHz (black curve in Panel (b) of Figure 3.6). The main
peak (CM) is the Raman signal corresponding to the confined phononic mode that
we highlighted in Figure 3.6. We observe that it is spectrally well located in the ZC[1]
acoustic minigap of the unperturbed DBR, also marked by a grey area.

The simulated spectrum is shown in 3.7.b (magenta curve). Transfer matrix cal-
culations are performed to find the spatial profiles of the optical mechanical modes
within the adiabatic cavity. We then compute the overlap integral of the photoelastic
model (Equation 2.12 in Chapter 2). The inset to the panel shows a detailed view of
this simulation in the frequency range indicated by the black arrows. The resolution
of the measurement is high enough to observe the different spectral features theoreti-
cally predicted, and each theoretical Raman peak can be assigned to an experimental
one. In particular, the very sharp and intense Raman peak observed in the simulated
spectrum is generated by the adiabatically confined acoustic mode. The measured
(CM) Raman peak is originated by the confined acoustic state. Notice that in this
plot, the calculated Raman spectrum does not take into account the experimental
resolution of our set-up. Furthermore, we are considering only the photoelastic con-
tribution p(z) of GaAs, that we consider constant in each layer. This is due to the fact
that we have carried out the experimental measurements at a wavelength of 913.4 nm
and that photoelastic constants present a resonant behavior when approaching elec-
tronic transitions in the materials [121]. The energy of the excitation laser is much
closer to the electronic transition of GaAs layers (occuring at ≈ 1.46 eV) than to the
ones of AlAs, occuring at higher energies. We can therefore neglect the photoelastic
contribution of AlAs layers.

These simulations allow us to determine which mechanical modes would be Raman
active in a forward or backscattering geometry for a bare acoustic cavity. In our
numerical simulations, we can set the ABS term of Equation 2.26 (see Section 2.2.3
of Chapter 2) equal to 0. In this case, part of the peaks visible in the magenta
curve of Figure 3.7 disappear. Through this technique we can assign the BS and
FS labels to the experimental peaks as shown in Figure 3.7. The mode at 369 GHz
is Raman active with no optical confinement in a forward scattering geometry. The
peaks located at 310 GHz and 380 GHz would normally be observed in a BS geometry.
They correspond to propagative mechanical modes essentially located in the DBRs.
The vertical dashed lines in Panel (a) and (b) of Figure 3.7 indicate the condition
q = 2ki, corresponding to the mechanical modes usually Raman active in BS for a
superlattice. We observe that the measured BS Raman peaks are red shifted with
respect to these frequencies. The introduction of an adiabatic defect therefore also
affects the spectral position of Raman peaks associated to extended modes, since it
increases the average thickness of the layers located at the center of the structure.

We can further compare the numerical simulations with the experimental data by
taking into account the experimental resolution of the set-up. In Figure 3.8, Panel (a),
we convoluted the simulated Raman spectrum with a Gaussian curve (2σ = 7 GHz,
magenta curve) and we compared it to the experimentally measured Raman peaks
(black curve) located at ∆f ≈ 350 GHz. In Panel (b), we carried out the same
comparison of the second Raman peaks group at ≈ 700 GHz. We notice that by taking
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Figure 3.7 – Comparison between theoretical photoelastic model and experimental
results. (a): The black curve shows the acoustic band diagram of the unperturbed
DBR calculated using the transfer matrix method. The orange line indicates the
spectral position of the confined mode. (b): The black curve is the experimental
data for the first group of peaks, located around the first minigap at the Brillouin
zone center. The magenta curve indicates the simulated Raman spectrum without
any convolution. The inset shows a detail of such a simulated curve, as indicated
by the arrows. The labels FS and BS indicate if the measured Raman peaks would
be active in a forward or backward scattering geometry in the absence of the optical
cavity. In both panels, the dashed red lines indicate the frequencies of the modes
verifying q = 2ki.
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into account the experimental resolution, the simulated spectra very well reproduce
all the features of the measured data. We stress the fact that for calculating the
theoretical spectra, we only used the sample design parameters. No further fitting
parameters were used apart from the FWHM of the convolution Gaussian curve and
global rescaling factors to account for the sample thickness gradient and the absolute
values of the Raman peak intensities. Such a good agreement accounts for the good
quality of the sample growth [176], and the validity of the design.

Small differences between the experiments and simulations are nevertheless visible
in the relative intensities of the peaks. Among the possibles reasons, we can mention
the DOR condition that we are using in our experiments. Indeed, the FWHM of
the optical collection mode is approximately 150 GHz. Different parts of the spectra
present different optical enhancements. This effect has not been taken into account
in our simulations. Furthermore, for the calculated spectrum we considered that all
the GaAs layers have the same photoelastic constant. However, this parameter is
intimately related to the electronic transitions and therefore to the thicknesses of the
layers [177]. This results in differences in the value of this parameter, and therefore
in the contributions to the Raman cross sections originating from different parts of
the structure [121]. Finally, a non-constant stray-light background is present in the
measurements.

3 0 0 3 5 0 4 0 0 4 5 0

0

1 0

2 0

3 0

6 0 0 6 5 0 7 0 0 7 5 0 8 0 0

0

4

8

1 2

Co
un

ts 
(ar

b. 
un

its)

F r e q u e n c y  s h i f t  ( G H z )

Co
un

ts 
(ar

b. 
un

its)

F r e q u e n c y  s h i f t  ( G H z )

9 1 0 1 1 1 2 1 3 1 4 1 5

( b )

F r e q u e n c y  s h i f t  ( c m - 1 )

( a )
2 1 2 2 2 3 2 4 2 5 2 6 2 7
F r e q u e n c y  s h i f t  ( c m - 1 )

Figure 3.8 – Comparison between the convoluted numerical simulations and exper-
imental data. (a): Raman peaks centered around 350 GHz. (b): Raman peaks
centered around 700 GHz. In both panels, the black curves correspond to the ex-
perimental data and the pink ones to the simulated spectra calculated through the
photoelastic model. For the two experimental curves, the DOR conditions where
optimized for frequency shifts of ≈ 350 GHz (Panel (a)) and ≈ 700 GHz (Panel (b)).

Having observed such a good agreement between the experimental data and the
theoretical results, we can perform numerical simulations to study the effect of the
design parameters on the cavity confinement properties. The results are shown in
Figure 3.9. We numerically investigated the confinement properties of the adiabatic
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cavity by studying the effect of the sin2 deformation of the thickness distribution.
We define α as the maximum adiabatic transformation in the system. For instance,
in the case of the experimentally studied structure that we described above, α = 7%.
In Panel (a) of Figure 3.9 the color map shows the evolution of reflectivity spectra of
the adiabatic cavity as a function of α. The white regions correspond to the ZC[1]
acoustic stop band centered at ≈ 350 GHz. Starting from a perfect DBR, we increase
α. A sharp dip appears and gradually red shifts inside the stop band from the high
energy side, reaching its center for α = 7% (cyan dashed line). By further increasing
α, a second sharp dip in the ZC[1] stop band appears, evidencing the presence of a
second confined mode. Both dips are clearly visble for α = 11% (dashed green line).
Eventually, by increasing α up to 15% (red dashed line), the first mode disappears
in the lower energy Bragg oscillations and the second one reaches the center of the
acoustic stop band.

The spatial profiles of the first and second confined mode are plotted in the insets
to Panel (b) (Figure 3.9). They have been calculated for α = 7% and α = 15%,
respectively. The eigenfrequencies of both modes are spectrally positioned at the
center of the stop band. Note that in terms of spatial profiles, the second mode
presents two maxima in the envelope of its displacement pattern. By changing the
magnitude of α it is possible to tune the value of the mechanical cavity eigenfrequency
and the spatial profile of the confined mode.

To characterize the mechanical resonator performance, in Panel (b) we studied
the evolution of the confinement properties of the two considered modes, as function
of the parameter α. We observe that the values of the mechanical quality factors
progressively increase when the mechanical eigenfrequencies approach the center of
the acoustic minigap. Maximal values for the mechanical quality factors of the first
and second mode are reached for α = 7% (Qmechanical = 1520, cyan square) and
α = 15% (Qmechanical = 1220, red triangle), respectively.

We compare this design to a standard Fabry-Perot resonator composed of 14 (λ4 ,
3λ
4 )

GaAs/AlAs layer pairs for each DBR, and one λ
2 AlAs spacer. The standard cavity

contains the same number of layers as the adiabatic structure. The quality factor
is Qmechanical = 1570, very close to the value obtained for an adiabatic cavity with
α = 7%. For the acoustic Fabry-Perot resonator, the effective length of the confined
mode is LFPeff = 92 nm. For the adiabatic cavity with α = 7%, the effective length
is LAdiabeff = 133 nm. This difference can be explained by considering that for an
adiabatic cavity the Bragg condition is reached in a smooth way when moving away
from the center of the structure, leading to a spatially extended mode. This is in
strong contrast with a standard Fabry-Perot resonator, where a localized mode is
generated by abruptly introducing a defect.

In Panel (c) of Figure 3.9 we plot the simulated Raman spectra around 350 GHz
for cavities with α = 7% (cyan curve), α = 11% (green curve) and α = 15% (red
curve). These theoretical spectra have been Gaussian convoluted as it has been done
in Figure 3.8 to account for the experimental resolution of the set-up. The resonance
frequencies of the first and second mode are marked in the three curves by a square
and a triangle, respectively. For α = 7% the first confined mode is clearly Raman
active (as already shown in Figure 3.7). For α = 11% both the first and the second
mode are present. However, as shown by the green curve, the only Raman active mode
is the first one. For α = 15%, the only existing confined mode is the second one. Also
in this case, no particular feature in the Raman spectrum indicates its presence. The
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Figure 3.9 – (a): Color map showing the evolution of the acoustic reflectivity spectra
for the adiabatic cavity as a function of α. The dashed cyan, green and red lines mark
the values of α corresponding to 7%, 11% and 15% adiabatic changes respectively.
(b): Evolution of the mechanical quality factor of the first and second confined mode
as a function of the adiabatic transformation. The points corresponding to α = 7%
and α = 15% are marked by a cyan square and a red triangle, respectively. Insets:
spatial profiles of the first (cyan curve) and second (red curve) confined mode for
α = 7% and α = 15%, respectively. (c): Simulated Raman spectra for α = 7% (cyan
curve), α = 11% (green curve) and α = 15% (red curve). An offset between the
spectra has been introduced for clarity. The square and triangle symbols indicate the
resonance frequencies of the first and second mode, respectively.
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second mode presents a different spatial symmetry in strain along the z direction with
respect to the first one. If we take the second confined mode, the overlap integral of
the photoelastic model gives a Raman scattering cross section equal to 0, resulting in
a Raman inactive mode. By tuning the parameter α it is thus possible to tailor the
spatial profile of the adiabatic confined mode and select its symmetry.

3.3 Topological nanocavities

In the previous section, we have presented a confinement strategy for acoustic phonons
based on the adiabatic transformation of a superlattice’s acoustic band diagram. In
fact this design follows a "traditional" approach used in nanophononics for confining
acoustic phonons and creating more complex devices. Indeed, the design of the system
is based on the dispersion relation of a periodic medium, and no other information
than the eigenenergies of the system is used.

In this section, we propose the design of another structure where an interface
state is created between two DBRs by taking advantage of the topological properties
of acoustic superlattices.

The study of topological phases has allowed to develop a new set of tools to de-
scribe periodic media, providing information that goes beyond the one contained in
the eigenenergies of the system, represented by band diagrams. It enabled the descrip-
tion of new states of matter [178], and an in-depth understanding of physical effects
in electronics related to the creation of edge states between topologically inequivalent
media. Examples of their applications can be found in the study of the Quantum Hall
Effect [179–183], or in the development of conducting polymers [184, 185]. These prin-
ciples have also been applied in optical [186–188] and in acoustic [189–193] periodic
media, for the study of interface states and for the investigation of topological unidi-
rectional edge states. In this section we present the conception and characterization
of topological acoustic cavities at the nanoscale.

3.3.1 Topological invariants for phononic interface states
The existence of the confined states studied in this section is predicted through topo-
logical invariants, which describe the topological phase of the system. Since the
building blocks of the systems studied here are planar acoustic superlattices, we con-
sider the Zak phase [194, 195], a topological invariant relevant for one-dimensional
periodic systems, that we briefly introduce below.

Let us consider an excitation in a periodic potential, such as an electron propagat-
ing along a direction z in a one-dimensional crystal having a lattice parameter a. The
electron eigenstates can be put in the form of Bloch waves ψn,k(z) = eikzun,k(z), where
un,k(z) corresponds to the periodic part of the wavefunction, k is the wavevector and
n is the nth band. We now consider an isolated band in the Brillouin zone, i.e. a
band that does not cross other bands. The Zak phase of this nth band is defined as a
one-dimensional Berry phase [196], that is [197]:

θZakn = i
∫ π/a

−π/a
〈un,k|∂k|un,k〉 dk (3.3)
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where ∂k is the partial derivative of a state with respect to k. To calculate the
Zak phase, we consider the scalar product A(q) = 〈un,k|∂k|un,k〉, called the Berry
connection, for the periodic part of each state represented in the band and we integrate
it over the full Brillouin zone.

Phonons propagating in one-dimensional periodic media are also described by band
diagrams. Zak phases can therefore be calculated for every band. As proposed by
C.T. Chan and co-workers, the Berry connection for an acoustic wave propagating in
a periodic medium can be found by calculating the overlap integral [192]:

∫
unit cell

1
2v2(z)ρ(z)u

∗
n,q(z)∂qun,q(z) dz (3.4)

where q is the wavevector of the phononic Bloch modes, whereas v(z) and ρ(z) corre-
spond to the sound velocity and to the mass density in the respective materials. Here
the spatial integral is carried out over one unit cell of the system and un,q indicates the
periodic part of the displacement field expressed in the Bloch formalism. Zak phases
of acoustic superlattices are relevant in this context since it is possible to relate their
values to a general condition determining the existence of an interface state between
two periodic structures. We state below such a general condition.

We consider two concatenated semi-infinite DBRs. We aim at creating a confined
state at the interface between the two structures, at a resonance frequency fres. In
order to have such a localized state, fres must fall in an acoustic minigap for each
of the two periodic media. In such a way, the state evanescently decays in both
acoustic mirrors. Furthermore, in order to get a localized mode, the reflection phases
from the individual reflectors require to fulfill a particular condition [198]. We denote
r = eiφ(f) the complex amplitude reflection coefficient inside an acoustic minigap of
the semi infinite DBR. The parameter φ(f) corresponds to the reflection phase of the
system, which depends on the frequency f of the incident wave. To get a confined
state inside the considered minigap, the reflection phases of the two acoustic mirrors
must add up to a multiple of 2π at the resonance frequency of the designed mode. If
we call φleft and φright the reflection phases of a left and a right semi infinite DBRs,
the condition to get a confined state between the two mirrors is [199]:

φleft(fres) + φright(fres) = 2mπ (3.5)
with m an integer. Notice that the condition described above is general to get an
interface state. It has been used to localize surface plasmons [200], electromagnetic
fields and electronic waves[201]. What we take advantage of here is the intimate
relation between the DBRs reflection phases and the Zak phases of the corresponding
infinite superlattices.

To illustrate that, let us start by an acoustic superlattice constituted by (λ0
4 ,

λ0
4 )

GaAs/AlAs layer pairs, designed to maximize the span of the first Brillouin zone edge
gap centered at a frequency f0 = 175 GHz. λ0 indicates the corresponding acoustic
wavelengths in the considered materials. The layer thicknesses fulfilling the (λ0

4 ,
λ0
4 )

geometry are:

dGaAs =vGaAs4f0

dAlAs =vAlAs4f0

(3.6)
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The total acoustic path length of one superlattice unit cell is half a phonon wave-
length, i.e. the thicknesses dGaAs and dAlAs obey:

dGaAs
vGaAs

+ dAlAs
vAlAs

= 1
2f0

(3.7)

We now perturb the acoustic superlattice by modifying both dGaAs and dAlAs.
However, we do it in such a way that the first Brillouin zone edge minigap stays
centered at the same f0, i.e. the two thicknesses verify Equation 3.7 for f0 = 175 GHz.
The perturbations of the two layers in one unit cell are therefore linked, and the layer
thicknesses after the perturbation can be written as:

dGaAs =vGaAs4f0
(1 + δ)

dAlAs =vAlAs4f0
(1− δ)

(3.8)

Where δ quantifies the perturbation of the two layers in the unit cell. For δ =
0, we find the unperturbed (λ0

4 ,
λ0
4 ) case. Notice that, according to Equation 3.8,

−1 < δ < 1. Indeed, δ = 1 and δ = −1 correspond to pure GaAs and AlAs slabs,
respectively. In Figure 3.10, we plot the band diagrams for three superlattices with
δ = −0.1, δ = 0 and δ = 0.1 (here we show these dispersion relations for q ∈ [−π

a
, π
a
]).

We observe that for δ = −0.1 and δ = 0.1, they look identical. By just considering
the dispersion relations of the two perturbed superlattices with δ = −0.1 and δ = 0.1
no difference in the acoustic behavior of these structures can be noted.
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Figure 3.10 – Acoustic band diagrams for δ = −0.1 (Panel (a)), δ = 0 (Panel (b))
and δ = 0.1 (Panel (c)). Notice that the first Brillouin zone center acoustic bandgap
closes for δ = 0. In the other two panels, this bandgap is highlighted by an orange
region.

We now focus on the first Brillouin zone center minigap, located at a frequency
2f0 = 350 GHz, and highlighted in Figure 3.10 by orange regions. For the (λ0

4 ,
λ0
4 )

72



Acoustic confinement: beyond the Fabry-Perot resonator

case (i.e. δ = 0), this gap is closed. We can follow the evolution of the spectral width
of this Brillouin zone center acoustic minigap when we vary the value of δ. This is
what is shown in Figure 3.11. The black and the red lines indicate the frequencies
of the two band edges enclosing the considered gap at q = 0. The frequency interval
between the black and red curves therefore corresponds to the span of the minigap.
The short dotted lines indicate the values of δ for which we plotted a band diagram
in the previous figure.
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Figure 3.11 – Band inversion of the second acoustic minigap around 350 GHz. We plot
the frequencies of the band edges bounding the minigap (red and black) as a function
of parameter δ, which describes the relative material composition of the superlattice
(see text). The insets show the evolution of the edge modes’ spatial profiles for q = 0
inside the superlattice. Green colors indicate a SL with δ < 0. Blue colors indicate
δ > 0. Dark (light) shades correspond to GaAs (AlAs) layers. The inset to the Figure
on the bottom left shows the choice of a centro-symmetric unit cell with the black
lines and the double arrow. A sign change in δ marks the transition between the
topological phases A (green layers) and B (blue layers) of the DBR. The transition
is characterized by an exchange in the symmetries of the Bloch modes at the upper
and lower band edge (shown in the insets), and is indicated by the vertical dashed
line. Accordingly, the Zak phases (0 and π values) of the two bands bounding the gap
exchange. The vertical dotted lines show the particular case of δ = ±0.1, chosen in
Figure 3.10.

The values of the Zak phase for the two bands located above and below the first
Brillouin zone center acoustic minigap are indicated in Figure 3.11. For δ < 0, the
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value of the Zak phase for the lower band is 0, whereas for the upper band it is π. The
Zak phases of the considered bands are here topological invariants in the sense that
by changing the value of δ, the considered bands are deformed in the Brillouin zone,
but the associated Zak phases do not change. The only way to change the values of
these parameters is to subject the system to a drastic transformation such as a band
inversion, where we close and reopen the gap located between the two considered
bands. This is indeed what we observe: after the band crossing, the values of the
Zak phases are inverted for the lower and upper bands. For δ < 0 we are in a given
topological phase. For δ > 0 we are in another one. For δ = 0, where the black
dashed line crosses the two curves, the Zak phase is not defined for neither of the two
bands. Therefore, we can say that for the particular case of δ = −0.1 and δ = 0.1,
even though the acoustic band gaps look the same, the two systems are not equivalent
since the only way to obtain one structure from the other is through band inversion
and therefore to change the topological phase of the system.

The relation between the reflection phases for a semi-infinite DBR terminated by a
centro-symmetric unit cell and the Zak phases of the corresponding superlattice can be
expressed in a formal way. In particular, it has been shown that sign of the reflection
phase for the first Brillouin zone centre acoustic minigap is given by [192, 193]:

sgn(φ) = e(i(θZak
0 +θZak

1 )) (3.9)

In the previous equation θZak0 and θZak1 are the Zak phases of the lowest acoustic
band (the one starting at f = 0) and of the band just below the first ZC acoustic
minigap, respectively. In other words, the reflection phase sign of a given acoustic
minigap is determined by the Zak phases of the bands that are below this frequency
interval.

In the case discussed before, for any value of δ, the Zak phase θZak0 of the lowest
band does not change. This can be understood from the fact that the first Brillouin
zone edge minigap always remains open. From these considerations, it is now clear
that we will have opposite signs for the reflection phases when δ < 0 and when δ > 0,
since the value of θZak1 will be different in these two conditions.

A key aspect of this topological transition is the fact that there is an associated
change in the spatial symmetries of the mechanical Bloch modes bounding the con-
sidered band gap, i.e. the edge modes represented at q = 0 in the lower and upper
bands. We have seen in Chapter 1 (see Section 1.2.2) that these modes are mechanical
standing waves. It has been shown in previous works that the symmetry properties
of these modes remain unaltered in a given topological phase [192, 193]. Considering
a centro-symmetric unit cell such as the one represented by the black lines in the
bottom left inset to Figure 3.11, for δ < 0 the Bloch mode at the lower (upper) band
edge has a symmetric (antisymmetric) displacement pattern. These symmetries ex-
change for δ > 0. The band inversion is therefore accompanied by an inversion in the
symmetry properties of the edge modes located at q = 0. The red curve therefore
indicates edge modes having a symmetric spatial profile, and the black one modes
having an antisymmetric profile with respect to the center of a centro-symmetric unit
cell (see insets to Figure 3.11).

The link between the topological properties of a superlattice and the reflectivity
property of the associated semi-infinite DBR now becomes clear. Let us suppose
that we terminate an infinite superlattice on one side to fabricate a semi-infinite
DBR. Furthermore, we consider that we terminate the superlattice at the interface
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between two consecutive unit cells. For a centro-symmetric unit cell this would mean
to terminate the superlattice by half a layer of GaAs. As a consequence, for δ < 0 the
lower energy edge state has an antinode at its end, and the reflection phase is 0. For
the upper state, the node indicates that the reflection phase is π. As a consequence,
the reflection phase evolves from 0 up to π accross the minigap. Correspondingly,
for δ > 0, the reflection phase goes from −π to 0, since the reflection phase is a
monotonically increasing function of the mechanical frequency [193]. The reflection
phases have opposite signs in the case of δ > 0 and δ < 0, as predicted by Equation
3.9.
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Figure 3.12 – (a): Spatial profile of the interface mode inside the topological struc-
ture. The color map schematically shows the structure of the system. The black
curve shows the spatial profile of the confined mode. Notice that the envelope of the
mode is maximal at the interface between the two DBRs. The green colors indicate
the layers of the DBR with δ = −0.1, the blue colors indicate the layers of the DBR
with δ = +0.1. Dark colors are layers of GaAs, light colors correspond to layers
of AlAs. (b): Simulated acoustic reflectivity curve computed by a transfer matrix
method. The sharp dip inside the high reflectivity region is spectrally located at the
frequency of the interface mode plotted in Panel (a). The inset to the Panel high-
lights the centro-symmetric unit cell chosen to terminate the semi-infinite DBRs. The
yellow line show the frontier separating the two structures. The black arrow marks
the interface layer between the DBRs.
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By concatening two DBRs with inverted bands and terminated by centro-
symmetric unit cells, we can create an interface state. An example of such a structure
is given in Figure 3.12, Panel (a), where we have concatenated two DBRs, the left one
with δ = −0.1 and the right one with δ = +0.1. The green and blue colors indicate
the DBRs in different topological phases. The dark colors indicate layers of GaAs,
whereas the light colors correspond to layers of AlAs. Because of the phase evolution
described before, by concatening two of these acoustic superlattices terminated by a
centro-symmetric unit cell, Equation 3.5 is automatically fulfilled at the center of the
considered bandgap. Indeed, the sum φleft + φright is negative for the low frequency
edge of the bangap, and positive in the upper edge. Necessarily, this sum is equal to
0 inside the gap.

Figure 3.12, Panel (b), shows the calculated acoustic phonon reflectivity spectrum
around the first Brillouin zone center acoustic minigap for the concatenated system.
The inset to Panel (b) highlights the termination of the two DBRs, where centro-
symmetric units cells have been used to terminate the structures. Clearly, a sharp
dip is present in the reflectivity curve, indicating an interface state at a resonance
frequency of 350 GHz. The spatial profile of the associated confined mode is plotted
in Figure 3.12, Panel (a). The envelope of the state has a maximum at the interface
between the two DBRs in different topological phases. This mode disappears if the
bands of the two DBRs are not band inverted according to Figure 3.11. We illustrate
that in Figure 3.13, where we plot the calculated acoustic reflectivity curve for a
system constituted by two DBRs, one with δ = −0.1 and the other one with δ = −0.3.
No dip in the high reflectivity region is visible. This shows that in this case we did not
generate an interface state between the two mirrors. Notice that the reflectivity curve
is not completely flat in the calculated acoustic stop band. This is due to the fact
that the DBR with δ = −0.3 presents a larger first ZC acoustic stop band than the
one with δ = −0.1. Therefore, if at the center of the stop band both DBRs present
high reflectivity values, on its edges the only efficient mirror is the one with δ = −0.3.

The design described above is an efficient way to create an interface state between
two DBRs. However, the notion of "interface" state used here is only true in terms of
the structures that are directly concatenated. Indeed, one could consider the system
described above solely for its materials. The interface layer indicated by the black
arrow in the inset of Figure 3.12 is constituted by GaAs. This layer between the two
DBRs can be considered as a λ

2 spacer for a mechanical wave with a frequency of 2f0 =
350 GHz. Indeed, for an acoustic wave propagating at a frequency f0 = 175 GHz, the
left and right acoustic mirrors are (λ0

4 (1 − δ), λ0
4 (1 + δ)) and (λ0

4 (1 + δ), λ0
4 (1 − δ))

GaAs/AlAs DBRs, respectively. Hence, for a mode at twice the frequency 2f0, for
which we denote λ the corresponding acoustic wavelength in the considered materials,
the mirrors constitute (λ2 (1−δ), λ2 (1+δ)) and (λ2 (1+δ), λ2 (1−δ)) DBRs. The interface
layer when we concatenate the two systems has a total thickness of λ

2 = 1/2(λ2 (1 −
δ) + λ

2 (1 + δ)). By stacking two DBRs terminated with centro-symmetric unit cells,
one can consider that we are obtaining a Fabry-Perot resonator between two different
mirrors.

Nevertheless, we can still take advantage of the link established in this section be-
tween the evolution of the reflection phases of the DBRs and the topological phases in
which these structures are. In particular, in the next subsection, we present how from
the concatenated system described above we create a localized state at the interface
of two DBRs, where the mode is confined between layers of different materials.
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Figure 3.13 – Acoustic reflectivity curve of a system constituted by two acoustic
DBRs, one with δ = −0.1 and the other one with δ = −0.3. Notice that in this case,
no confined mode is visible in the acoustic stop band of the structure.

3.3.2 Interface states

The resonance frequency of a topological interface state can be tuned across the acous-
tic minigap by redefining the last unit cell of each DBR. The procedure is described
on the left side of Figure 3.14. We start from centro-symmetric unit cells as repre-
sented by the sketch labelled (I). As explained before, the interface is formed by a
dark green layer and dark blue layer, both representing GaAs. Overall, the interface
layer behaves as a λ

2 spacer for phonons with a frequency of 350 GHz. We consider
for example a system containing 20 unit cells in each DBR with δleft = −0.1 on the
left phononic mirror and δright = +0.1 for the right DBR. The corresponding acoustic
reflectivity spectrum is shown Figure 3.14 by the red curve. This is the same system
as the one studied in Figure 3.12. As before, the topological interface state appears
at the center of the acoustic minigap at 350 GHz.

Next, we introduce a slight perturbation at the interface by adding an additional
thin layer of GaAs in the last layer of the left DBR (black layer), as shown by the
sketch (II). A particular situation is reached if the thickness of this thin layer is set
to ∆GaAs = (δright − δleft)vGaAs/(8f0). Together, the additional layer and the last
GaAs layer of the left DBR bounding the interface add up to the same thickness as
the last GaAs layer of the right DBR. In the sketch (II), at the interface, the dark
green and the thin black layer together thus equal the dark blue one. The relevance of
this particular perturbation is illustrated at the bottom of the figure, in sketch (III).
By redefining the position of the interface between the two topologically different
DBRs, the perturbation is equivalent to a change from centro-symmetric unit cells
to a standard GaAs/AlAs bilayer unit cell. In other words, in order to obtain the
semi-infinite DBRs contained in the cavity, the corresponding superlattices have been
terminated on one side by a bilayer unit cell. For a finite size system, the cavity can
therefore be considered as two concatenated DBRs, each one containing an integer
number of bilayer unit cells. As a consequence, the interface now directly connects
layers of different materials.
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Figure 3.14 – Left side: (I) Interface between two topologically different DBRs
terminated by centro-symmetric unit cells. (II) We add a thin layer of GaAs at the
interface (black), such that the rightmost layer of the left DBR becomes as thick as
the leftmost layer of the right DBR (i.e. we replace a dark green by a dark blue
layer). (III) This slight perturbation is equivalent to redefining the unit cell in which
we terminate the DBRs. The interface between the two DBRs now coincides with
the interface between two different materials. The latter presents the experimental
configuration. The yellow line shows how we define the interface between the DBRs.
Right side: Corresponding phonon reflectivity spectra of two concatenated DBRs
from different topological phases with 20 unit cells each (δ = −0.1 on the left and
δ = +0.1 on the right). From top to bottom we gradually tune the unit cells from
centro-symmetric (red) to bilayers (blue) by adding GaAs at the interface. Notice the
smooth redshift of the confined state inside the acoustic minigap. For better visibility
subsequent curves are vertically offset by 0.5.
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The corresponding reflectivity spectrum of the shifted system is shown by the blue
curve represented in Figure 3.14 and corresponds to our experimental implementa-
tion. The topological interface mode appears red-shifted from the bandgap center
as a consequence of the additional propagation phase introduced by the additional
perturbation layer.

Following this line of reasoning, it is possible to continuously tune the choice of
the terminating superlattice unit cells (i.e. the length of the thin black layer) through
intermediate cases. We show some of these intermediate cases in Figure 3.14 (black
curves) and observe that the resonance frequency indeed smoothly decreases from the
center of the acoustic bandgap to the red-shifted bilayers unit cell case.

In essence, by changing the unit cell symmetry we tuned the confined state eigen-
frequency inside the bandgap. This enables us to create an interface state that is
spatially localized between layers of different materials, and that cannot be consid-
ered as a confined acoustic mode in a Fabry-Perot resonator. In the next section, we
present the Raman scattering measurements that we performed on a sample fabri-
cated according to the design presented in this section. This allows to experimentally
demonstrate the existence of such topologically engineered interface states.

3.3.3 Characterization of the topological cavity
The phononic system that was experimentally characterized is constituted by two δ-
perturbed (λ4 ,

λ
4 ) acoustic DBRs, each one containing 20 pairs of GaAs/AlAs layers.

One mirror has been perturbed with δ = −0.1 and the other one with δ = +0.1.
The sample was designed to confine a mechanical mode at a resonance frequency of
354 GHz. The confined mode presents a maximum in its envelope at the interface
between two layers of different materials (i.e. bilayer unit cell). With the parameters
described above, the predicted mechanical quality factor for the interface state is of
the order of 1200. As in the case of the adiabatic structure, the sample was fabri-
cated by MBE on a (001) GaAs substrate. We characterized it by Raman scattering
spectroscopy at room temperature. The whole acoustic system is enclosed between
two optical DBRs. The two optical mirrors have the same structures as the ones
for the adiabatic cavity: the mirror in contact with air is made of 14 layer pairs of
Al0.1Ga0.9As/Al0.95Ga0.05As and the one in contact with the substrate of 18 layer pairs.
The acoustic structure constitutes a 2λ optical spacer, for a resonance optical vac-
uum wavelength of 940 nm. The sample is also fabricated with a thickness gradient,
allowing to tune the resonance wavelength of the collection mode over a wavelength
span of ≈ 0.83 to 1.05 µm.

Also for this sample, we first found the DOR condition for Raman peaks located
at frequency shifts of ≈ 350 GHz, as shown in Figure 3.15. Therefore, these Raman
spectra were obtained around the theoretical resonance frequency of the interface
state. We measured the intensity of the Raman signals when we change the laser spot
position on the structure. The result is similar to the one already observed for the
adiabatic cavity. The intensity of the Raman spectrum is maximal for one particular
position on the sample, as indicated by the vertical red arrow, due to the thickness
gradient of the system.

Once the double optical resonance was found for frequency shifts around 350 GHz,
we measured a Stokes Raman spectrum on a larger range of frequency shifts. The
experimental curve is shown in Figure 3.16. The laser was at a wavelength of 915 nm.
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Figure 3.15 – Evolution of the Raman signal intensities when the laser spot is trans-
lated on the sample. When the Raman intensities are maximal, we are at DOR
condition for frequencies around 350 GHz. The red arrow indicates the spectrum
measured in DOR condition.

The power of the incident laser was ≈ 20 mW. We observe that three groups of
Raman peaks are visible. The insets to the figure show detailed parts of the plot
as indicated by the black arrows. We compared this spectrum to simulations of the
Raman scattering cross section, to determine the spatial profile of the modes that
are Raman active. The signals measured for frequency shifts of ≈ 720 GHz and
≈ 1075 GHz (insets) correspond to extended modes. We will therefore focus on the
first triplet of peaks, highlighted by the red region in Figure 3.16. They correspond
to the Raman peaks already shown in Figure 3.15.

In Figure 3.17 (Panel (a), black curve), we plot a detailed view of the Raman
peaks highlighted in Figure 3.16.

In Panel (a) of Figure 3.17, we observe that the measured spectrum is consti-
tuted by a main peak located at ∆f = 360 GHz, labeled (B), and by two satellite
peaks located at frequency shifts of 323 GHz (labeled (A)) and 397 GHz (labeled (C)).
As before, to attribute these peaks to extended or confined modes we compare the
experimental spectrum to the simulated acoustic reflectivity curve obtained for the
structure, which is represented in Panel (b) of Figure 3.17. Peaks labelled (A) and (C)
fall outside the band gap of the acoustic DBRs and therefore correspond to extended
phonon modes. Their spatial profile is shown in Figure 3.17 (Panel (c) and (e)), su-
perimposed with the structure of the system. The peak labelled (B) falls in the high
reflectivity interval, where the sharp dip associated to the confined mode is located.
This Raman peak is generated by the interface mode confined in the structure. The
spatial profile of this confined mode is shown in Figure 3.17, Panel (d). It presents a
characteristic profile exponentially decaying into the DBRs.

The conclusive proof that the interface mode has been probed through Raman
scattering is achieved by calculating the Raman scattering cross section with a pho-
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Figure 3.16 – Raman spectrum measured on the topological structure. The two insets
show detailed regions of the measured plot, as indicated by the arrows. The vertical
axes of the insets have been magnified by factors of 80 and 500, as indicated in the
figure. The red region indicates the first triplet of Raman peaks. We will focus our
analysis on this part of the spectrum (see text).

toelastic model. As in the case of the adiabatic sample, due to the wavelength of the
excitation laser and the energies of the electronic transitions for GaAs and AlAs, only
the photoelastic contribution of the GaAs layers is considered. As in the case of the
adiabatic cavity, we stress that for this model we only used design parameters of the
sample. The result of these simulations are shown in Figure 3.17, Panel (a). The solid
magenta curve corresponds to the simulated data without any convolution. Under the
experimental curve (in black), the main simulated Raman peak is generated by the
interface state present inside the structure. We can see that other minor Raman peaks
are present around the main peak, and are associated to extended modes. They are
not resolved in the experimental curve.

To account for the experimental resolution, we convoluted the theoretical curve
with a Gaussian distribution with 2σ = 13 GHz. In this case, the FWHM of the
convolution is larger than the one used for the adiabatic cavity. This difference in
experimental resolution can be explained by considering a different alignment of the
set up for the measurements carried out here. The result of the convolution is shown
by the dashed red line in Figure 3.17, Panel (a). Evidently, the model captures all
features of the measured data. In particular, the relative heights and spectral positions
of the three peaks are in very good agreement.

In this section, we have shown that we are able to create a confined state inside
an acoustic layered structure by taking advantage of the Zak phases, which are de-
scribing the topological phase of a superlattice. Furthermore, by tuning the choice of
the unit cell describing the two concatenated semi-infinite DBRs, we can engineer the
mechanical resonance frequency of the interface state. This allowed us to fabricate
an acoustic cavity where the localized state lies between layers of different materi-
als. The implemented high resolution Raman scattering set-up and the experimental
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Figure 3.17 – (a): Experimental Raman spectrum (solid black) together with pho-
toelastic model calculation (solid magenta). The model calculation is convoluted with
a Gaussian (2σ = 13 GHz) to account for the finite experimental resolution (dashed
red). (A), (B) and (C) label the experimentally observed Raman peaks. The topolog-
ical interface mode at 360 GHz corresponds to peak (B) in the Raman spectrum. (b):
Simulated acoustic reflectivity of the sample calculated by a transfer matrix method.
Inset: schematic detail of the interface showing the asymmetric choice of the unit cell.
(c), (d) and (e): The color maps show the structure of the acoustic system. The
black curves show the calculated mechanical mode profiles corresponding to the peaks
marked by the labels (A) (Panel (c)), (B) (Panel (d)) and (C) (Panel (e)) in Panel
(a). Peak (B) originates from the topological interface mode, peaks (A) and (C) are
extended modes in the structure.
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techniques presented above allowed us to successfully probe the presence of such a
confined state.

The creation of such a topologically engineered confined state goes beyond the
modification of a bare dispersion relation to obtain a confined mode. By just consid-
ering the eigenfrequencies contained in the acoustic band diagrams, it is not possible to
predict the presence of this interface state between the concatenated systems. Topo-
logical invariants such as the Zak phase can therefore be used as a supplementary
degree of freedom to control the dynamics of acoustic phonons and to describe the
symmetry properties of the mechanical modes propagating inside layered systems.

3.4 Conclusion
In summary, in this chapter we have presented our experimental and theoretical work
on the development of novel confinement strategies for longitudinal acoustic phonons
in the GHz/THz range, going beyond the well established Fabry-Perot design used in
nanophononics.

To experimentally characterize these systems, we have implemented a high res-
olution Raman scattering experiment. We performed an engineering of the optical
environment in which the acoustic structure is probed. This enabled us to greatly
enhance the intensity of the measured Raman signals and to probe the full Raman
spectrum in a backscattering configuration.

Two systems have been studied in this work. The first one relies on the adiabatic
confinement of longitudinal acoustic phonons at a resonance frequency of 350 GHz by
progressively breaking the periodicity of an acoustic superlattice. We measured the
Raman spectrum of this system in different experimental configurations, in particular
by varying the DOR condition.

We determined theoretical Raman scattering cross sections of the considered sys-
tems by means of transfer matrix calculations and by using a photoelastic model,
that we have compared to the experimental data. This process allowed us to under-
stand in detail the origin of the different measured Raman peaks, and in particular
to demonstrate the existence of confined states in the considered system. We then
investigated the effect of the adiabatic transformation on the confinement properties
of the structure, in particular on the evolution of the mechanical quality factor and
on the spatial profile of the confined mode. A change in the adiabatic transformation
magnitude has major effects on the Raman activity of the confined state, as shown
through theoretical calculations.

In optics, the progressive transformation of a photonic crystal’s periodicity allows
to optimize the quality factor of three-dimensional resonators. The adiabatic confine-
ment of acoustic modes could be used for the development of future optomechanical
systems. Indeed, this strategy could be adopted in the prospect of maximizing the
confinement properties of three-dimensional mechanical resonators based on phononic
crystals.

The second system that has been investigated relies on the creation of a
nanophononic interface state based on the engineering of topological invariants. This
system was also experimentally characterized by high resolution Raman scattering
spectroscopy. We showed that corresponding photoelastic model calculations per-
fectly account for all major features of the measured Raman spectra, in particular
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the signature of the localized interface state at 360 GHz. Finally, by engineering the
interface between the two DBRs constituting our topological structure, we are able
to tune the frequency of the confined mode across the acoustic minigap. This work is
a first example where topological invariants are used as an additional knob to control
the dynamics of acoustic phonons in periodic layered media.

These new concepts for the manipulation of acoustic phonons extend the toolbox of
nanoscale phonon engineering. Moreover, the GaAs/AlAs based platforms presented
in this work are naturally compatible with previously studied optical structures, and
can host quantum wells and quantum dots. The study of these confined acoustic
phonons open further possibilities for the study of the interaction between quantum
emitters and localized mechanical vibrations.
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Chapter 4

Three-dimensional optical
confinement in acousto-optic
resonators

We have seen that one-dimensional layered systems can be implemented for the de-
velopment of novel confinement methods for high frequency acoustic phonons. Fur-
thermore, the optical environment of acoustic resonators can be engineered. This
is particularly useful in the framework of Raman scattering experiments, since the
measured signals can be enhanced by confining the incident laser light and the scat-
tered field. This can be realized by fabricating an optical cavity around the acoustic
resonator.

Planar GaAs/AlAs hetero-structures can be etched into micropillars, presenting
lateral sizes in the range of few micrometers. In this case, we obtain a system with
optical modes simultaneously confined both in the vertical and in the radial direction.

Micropillar cavities are widely used in non-linear optics, taking advantage of the
strong optical non-linearities in GaAlAs alloys [202, 203]. Furthermore, they have also
been employed for the study of light-matter interactions with electronic excitations
both in the strong and weak coupling regime. The confined optical mode can be
strongly coupled to excitonic systems such as quantum wells, for the realization of
optical simulators based on cavity polaritons [204], or for the development of polariton
lasers [205]. Furthermore, micropillars are used in solid state quantum optics for the
fabrication of highly efficient sources of indistinguishable single photons [206, 207].

In this chapter, we investigate the possibility of performing Raman scattering ex-
periments on these three-dimensional resonators. GaAs/AlAs micropillars have been
etched from a planar sample constituted by a topological acoustic cavity embedded
between two optical DBRs. We have carried out experiments that demonstrate the
feasibility of measuring the Raman scattering spectra produced by the acoustic res-
onator, through the discrete set of optical resonances of the micropillar. We also
show that, under particular conditions, the confinement of the optical mode induces
a heating of the sample, which leads to a non-linear dependence of the Raman scat-
tering intensity as a function of the incident laser power. This observation is a first
example of the effect of three-dimensional optical confinement on Raman scattering
measurements.

The chapter is organized as following:
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• In Section 4.1 we introduce the main properties of GaAs/AlAs micropillars as
optical resonators.

• In Section 4.2 we describe the heterostructure micropillar sample that we have
characterized and the experimental set-up that we have implemented for this
end.

• In Section 4.3 we present the experimental results that we obtained on these
resonators through Raman scattering spectroscopy.

• Finally, in Section 4.4 we summarize the concepts addressed in this chapter.

4.1 Optical properties of micropillars
In this section, we present a theoretical model allowing to describe the optical be-
havior of a micropillar. We then investigate the optical properties of these systems
numerically by performing finite element simulations, and experimentally through
optical reflectivity measurements.

4.1.1 Confined optical modes
The optical properties of micropillars can be studied both through analytical ap-
proaches and by performing numerical simulations. An analytical description, such
as the one given in reference [208] is particularly useful for understanding the confine-
ment mechanisms in these resonators. We briefly recall this approach. For simplicity,
we consider micropillars with circular section, as illustrated in Figure 4.1.a.
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nGaAsnair
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AlAs λ/4

GaAs λ/4

(a) (b)

Figure 4.1 – (a): Schematic diagram of a micropillar. (b): Principle of the analytical
derivation of the confined optical cavity modes. We first solve the propagations of
guided optical waves along an infinite GaAs cylinder. We then insert two mirrors at
the end of the cylindrical structure

The first step consists in finding the guided modes propagating inside an infinite
GaAs dielectric waveguide having a circular section, as schematically represented in
Figure 4.1.b. This is similar to the standard problem of waveguiding in fiber optics
[209]. The modes are found by solving Maxwell’s equations inside and outside the
optical waveguide. The solutions for each component of the electric and magnetic
field can be put in the form:
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Ei(r, φ, z) = ψEi (r)ei(ωt+lφ−βz)

Hi(r, φ, z) = ψHi (r)ei(ωt+lφ−βz)
(4.1)

where i indicates the considered spatial coordinate, β is the propagation constant
along the cylinder axis, and l is an integer number. To each mode, we can associate
an effective refractive index neff = βc

ω
, where c is the speed of light in vacuum.

Notice that no weak-guidance approximation is used [208]. By applying the boundary
conditions between air and the semiconductor material, we find a discrete set of guided
modes for which an optical wave with a frequency ω can propagate. For a given l,
several discrete solutions can be found, and they are indexed by n, a second integer
value. The modes present electric and magnetic components Ez and Hz along the z
direction. For some of them, the dominant field component along this axis will be
the magnetic one, whereas for others it will be the electric one. The first type of
modes are called the HEl,n modes, whereas the second ones are the EHl,n modes. For
instance, HE1,1 corresponds to the "monomode" solution, that is, the guided solution
that always exists in the cylinder, for any frequency and waveguide radius [208].

The second step is to introduce three dimensional confinement. This can be ob-
tained by "cutting" the infinite waveguide at two ends, and by placing two metallic
mirrors, as represented in Figure 4.1.b. The confined modes are localized between the
two mirrors because of the constructive interferences between counter-propagating
guided modes having the same radial profile. The resonance condition is the one of a
Fabry-Perot cavity, that can be expressed as

ω = pπc

neffL
(4.2)

where p is an integer number characterizing the longitudinal order of the confined
mode, and neff is the effective refractive index of the guided mode at the resonance
frequency of the confined mode. It represents the effect of the radial confinement in
the waveguide [120].

Finally, the metallic mirrors can be replaced by GaAs/AlAs DBRs, in order to
obtain a micropillar cavity. The intensity of the confined optical mode decays expo-
nentially along the z direction in the dielectric mirrors, similar to the case of a planar
Fabry-Perot system. Notice that this description holds because the transverse spatial
profiles of the optical modes in GaAs and AlAs waveguides are similar. Furthermore
this model is also valid because the values of the effective refractive indices are similar
than the ones found in the bulk materials[120, 208].

We obtain a three-dimensional resonator with a discrete set of optical resonances.
The fundamental optical mode is found from the guided mode HE1,1. The radial
profile of the electric field intensity for this mode is similar to a zeroth-order Bessel
function J0(r). Its resonance frequency increases when the radius of the micropillar is
decreased. This is shown in Figure 4.2.a, where the eigenenergies of the fundamental
optical mode and higher order harmonics have been calculated through the method
described above. The vertical axis of the plot indicates the energy difference between
the confined modes in the three dimensional case and the localized mode in the cor-
responding planar Fabry Perot cavity. For large radii, the optical eigenfrequencies
converge toward this value.

87



Three-dimensional optical confinement in acousto-optic resonators

In this work we have numerically simulated the optical properties of micropil-
lars using the Finite Element Method (FEM). This method allows to find numerical
approximations for the exact solutions of a partial differential equation (PDE). An
introduction to this method can be found in reference [210], for which we briefly recall
the basic principles here. We consider a physical problem described by a PDE defined
on a domain (such as a micropillar), with a given set of boundary conditions. Instead
of looking for u, the exact solution of the physical problem (for example the solution
of the Helmholtz equation), we search an approximate solution uH . In order to find
it, we discretize the domain by defining a mesh on the system. We then introduce a
set of basis functions ψi. We can define the ith basis function ψi as being "peaked"
around the node i of the mesh and being equal to zero for the other nodes. The
approximate solution can be written as a linear combination of the basis functions as
uH = ∑

i
uiψi. The coefficients ui are then found by using this expression of uH in the

variational formulation (also called the weak formulation) of the considered problem.
The finer the mesh, the closer the approximate solution will be to the exact one.
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Figure 4.2 – (a): Calculated resonance frequency of the confined optical modes
in a micropillar as a function of the micropillar radius using the analytical model.
The vertical axis shows the energy difference between the micropillar confined modes
eigenfrequencies and the localized mode in the corresponding planar Fabry Perot
cavity. Figure reproduced from [208]. (b): fundamental optical mode resonance
frequency as a function of radius, calculated by FEM. The violet line is a guide to
the eye connecting the simulated resonance frequencies. The inset shows the spatial
profile of the fundamental confined mode. The green arrow indicates the position of
the spacer.

In this work, we used a commercial software (COMSOL, Radio Frequency Module,
Eigenfrequency study) to perform numerical simulations based on FEM. The spatial
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profile of the fundamental optical mode (HE1,1) calculated through this technique
is shown in the inset to Panel (b) of Figure 4.2. The micropillar is constituted by
two DBRs (λ4 ,

λ
4 ), containing 10 GaAs/AlAs layer pairs in each mirror, enclosing a λ

2
GaAs spacer. The z axis indicates the revolution axis of the cylindrical structure. The
plotted quantity is the intensity of the electric field. We find the Bessel-like spatial
profile of the mode in the radial direction, and the exponential decay along the z axis.

In the same panel, we plot the evolution of the fundamental mode eigenfrequency
as a function of radius, obtained through the same numerical method. Similarly to
what was obtained with the analytical method, the resonance frequency blueshifts
when the radius is decreased.

In this section, we have presented the optical properties of a micropillar, that
can be found with an analytical model or by performing a finite element analysis.
In the next section, we briefly show how the confinement properties of these optical
resonators can be put in evidence by performing reflectivity experiments.

4.1.2 Probing the optical properties of micropillars
The properties of micropillars introduced in the previous section can be put in evidence
experimentally by studying how light couples to the discrete set of optical resonances.
This can be carried out by performing reflectivity measurements on these resonators.

In this case, we use a lens to focalize a collimated laser beam on the micropillar’s
top mirror. We measure the reflected light intensity while varying the incident laser
wavelength. When the laser is resonant with a confined optical mode, a sharp dip
appears in the reflectivity curve. An example of such a measurement is shown in
Figure 4.3.a. The inset to the figure schematically shows the configuration of the
measurement. The purple beam indicates the incident and the reflected laser beams.
Notice that in order to efficiently couple the laser to a given mode, the spatial profile
of the incident beam must match its radiation pattern in the free space. For the
fundamental mode, it corresponds approximately to a divergent Gaussian beam. In
the inset of Figure 4.3.a, we schematically represented the divergence of the radiation
pattern for the fundamental mode with the black lines.

The reflectivity curve shown in Panel (a) was probed on a circular micropillar
having a radius of 1.4 µm. It is constituted by two (λ4 ,

λ
4 ) Al0.95Ga0.05As/ Al0.10Ga0.90As

DBRs, enclosing a λ
2 Al0.10Ga0.90As spacer, for a resonance wavelength λ ≈ 940.5 nm.

There are 18 and 23 layer pairs for the top DBR and for the one in contact with the
substrate, respectively.

During the measurement, the incident power on the micropillar was ≈ 400 µW.
The size of the incident collimated beam was adapted to match the radiation pattern of
the fundamental mode, upon focalization on the micropillar. The reflected intensity
is normalized by the input optical intensity. In Figure 4.3.a, the reflectivity dip
associated to the confined mode is clearly visible. The contrast of the reflectivity
dip is around 80%. Since the losses from the top mirror are the same as the ones
for the bottom mirror (due to the asymmetry in the layer pair number between the
two mirrors), this high contrast value shows the good mode matching of the incident
laser with the fundamental cavity mode [211]. The oscillations that are visible in the
optical stop band outside the mode arise from Fabry-Perot interferences in the optical
set-up. By measuring the FWHM of the optical resonance, we find an optical quality
factor of 8500 for this micropillar.
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Figure 4.3 – (a): Measured normalized reflectivity on a micropillar. The diameter
of the resonator was 3.8 µm. The inset schematically shows the incident and reflected
laser fields on the micropillar (violet lines). The incoming beam is focalized by a
lens. In the micropillar diagram, the red regions indicate the GaAs rich layers, and
the yellow ones the AlAs rich ones. The black lines schematically indicate the free
space radiation pattern divergence of the fundamental optical mode. (b): Measured
evolution of the optical resonance wavelength as a function of the micropillar diameter.
The black line is a guide to the eye connecting the measured resonance wavelengths.
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In Panel (b) of Figure 4.3, we plot the evolution of the resonance wavelength for the
fundamental optical mode as a function of radius. This curve experimentally shows
the dependence predicted in Figure 4.2, that is, the resonance energy is blue-shifted
when the radius is decreased. This is accompanied by a decrease in the optical quality
factor. Indeed, when the radius is reduced, the intensity of the confined optical field
increases at the lateral surfaces of the micropillar. The fabrication defects present on
the sides will therefore induce optical losses [212].

T

(a)

(b)

Figure 4.4 – (a): Measured thermo-optic effect on a micropillar. The triangular
shape of the reflectivity dip, associated to the micropillar optical resonance, is clearly
visible. (b): Schematic diagram of the thermo-optic effect on the optical resonance
frequency of a micropillar. The color legend of the reflectivity curves indicates the red
shift of the optical mode when the laser wavelength is progressively increased. The
black triangular reflectivity dip indicates the observed shape of the probed reflectivity,
as shown in Panel (a).

The reflectivity curve obtained on a micropillar can strongly depend on the in-
tensity of the intracavity optical field [213]. In particular, at sufficiently high optical
powers, light absorption induces heating inside the sample. This rise in temperature
results in a change of the materials optical indices of refraction. Naturally, this will
affect the resonance frequency of confined optical modes. This thermo-optic effect
will induce a triangular shape of the reflectivity curve when the optical reflectivity is
probed with a laser scanning towards the long wavelength direction. This is what we
show in Panel (a) of Figure 4.4, where we plot the measured reflectivity curve on a
micropillar with a radius of 3.2 µm. The power of the laser was ≈ 5 mW. The trian-
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gular shape of the reflectivity curve is clearly visible. The width of the asymmetric
reflectivity dip is much larger than the FWHM of the Lorentzian reflectivity obtained
at low optical powers.

This effect can be understood by considering the following picture, described
schematically in Figure 4.4.b [147]. The high power laser scans the optical reso-
nance by moving towards long wavelengths. When light starts to couple in the cavity
mode, shown by the blue low power reflectivity curve, an increase in the refractive
indices occurs, due to the temperature rise of the resonator [147]. As a consequence,
the optical resonance frequency of the micropillar is red-shifted. By spectrally mov-
ing the laser further towards low energies (black points in the figure), we couple an
increasing quantity of optical power to the system, and the reflectivity curve is more
and more red shifted. Eventually, we reach a point where maximal optical power is
coupled to the resonator. In this case, the reflectivity curve cannot red shift anymore.
An increase in the wavelength decreases the optical power coupled to the mode. The
reflectivity curve abruptly blue shifts back to its initial position (blue curve), and the
probed reflectivity is 100%. This gives the curve its triangular shape. Therefore, we
can red-shift the resonance wavelength of the fundamental optical mode by sufficiently
increasing the intracavity optical power in a micropillar, through this thermo-optic
effect.

In this section, we have presented the optical characterization of micropillars
through reflectivity experiments, evidencing the effects of light absorption on the
resonance frequency of the micropillars. We will take advantage of this experimental
method to characterize the optical properties of the studied resonators.

4.2 Confinement of light and acoustic phonons in
micropillars

In this section, we present the structures that we have investigated by Raman scat-
tering spectroscopy. We will also describe the set-up that we have implemented for
probing anti-Stokes spectra.

4.2.1 Optical micropillars embedding acoustic resonators
The sample that we studied by Raman scattering spectroscopy in this chapter is
fabricated from a planar topological nanocavity embedded between two optical DBRs.
The localized acoustic state is confined at the interface between DBRs in different
topological phases, as described in Section 3.3. For the first phononic DBR, the
layer thicknesses are 9.3 nm for GaAs and 8.9 nm for AlAs. For the second mirror,
the thicknesses are 8.0 nm for the GaAs and 10.7 nm for AlAs layers, respectively.
Each acoustic DBR contains 16 layer pairs. The acoustic system plays the role of an
effective 2λ spacer for an optical resonator, constituted by two (λ4 ,

λ
4 ) Al0.95Ga0.05As/

Al0.10Ga0.90As DBRs. The optical mirror in contact with the substrate is made of 18
layer pairs. The top mirror contains only 14 layer pairs. For the optical mirrors, the
layer thicknesses are 69.2 nm and 81.1 nm for the Al0.10Ga0.90As and the Al0.95Ga0.05As
layers, respectively. The structure has been fabricated by MBE on a (001) substrate,
with a thickness gradient, as for the samples described in the previous chapter. The
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acoustic cavity is designed to confine a phononic mode at a nominal frequency of
≈ 300 GHz.
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Figure 4.5 – (a): Detailed view of the fabricated sample. The picture was taken with
an optical microscope after the lift-off process (see Figure 4.6). The vertical rows of
micropillars are clearly visible, with alternating square and circular resonators. When
moving in the vertical direction, the lateral dimensions decrease. (b): Evolution of the
micropillar lateral dimensions, for both square (blue) and circular (red) resonators,
obtained from the picture shown in Panel (a). The error bars indicate the spread in
the measured lateral sizes.

From this planar structure micropillar resonators have been etched. This was
carried out by Abdelmounaim Harouri and Isabelle Sagnes in the clean room facilities
of the C2N/CNRS. The sample presents micropillars with square and circular sections,
that are arranged in periodic arrays. Each array contains alternating rows of square
and circular micropillars, with decreasing lateral sizes. This can be seen in Panel (a)
of Figure 4.5, where we show a detailed view of one of these arrays. From this picture,
we measured the average dimensions of the fabricated microresonators. The results
are shown in Panel (b) of Figure 4.5.

The fabrication process is illustrated in Figure 4.6. The top part of the planar
cavity was covered with a thin film of SiN4. A positive photoresist was spin coated
on the sample. An optical lithography was then carried out. The photoresist was
exposed UV light through a patterned optical mask, which defined the lateral sizes
and shapes of the micropillars. The photoresist was then developped (Panel (a) in
Figure 4.6). A layer of Nickel was deposited on the photoresist (Panel (b)). After the
lift-off of the remaining photoresist (Panel (c)), a dry etching was carried out, leaving
only the areas that were protected by the Nickel hard mask (Panel (d)).

The lateral dimensions of the resonators are of few micrometers. The acoustic
wavelengths in the GaAs and AlAs layers, for frequencies around 300 GHz, are in the
range of few tens of nm. Hence, the lateral dimensions of the fabricated micropillars
are much larger than the characteristic wavelength of the studied acoustic cavity.
Therefore we will consider that the acoustic topological resonator embedded inside
the micropillar acts as a planar structure.

Furthermore, the acoustic system behaves as an effective spacer inside the mi-
cropillars. Therefore, the micropillar presents a discrete set of optical resonances, as
described in the previous section.

93



Three-dimensional optical confinement in acousto-optic resonators

Substrate

Photoresist SiN4 Ni

(a) (b) (d)(c)

Figure 4.6 – Micropillar fabrication process from a planar cavity. The DBRs cor-
respond to the optical mirrors. The black spacer is the acoustic resonator. (a):
Development of the spin-coated photoresist, after the exposition to UV light.(b):
Deposition of Ni metal film on the planar structure. (c): Lift-off of the remaining
photoresist.(d): Dry etching of micropillars.

4.2.2 Optical probing of micropillars acoustic properties

In the previous section, we described the fabrication process of micropillars embedding
an acoustic resonator. We present the experimental set-up that we implemented in
order to perform Raman scattering measurements on these systems. The experiment
is performed by measuring the anti-Stokes Raman spectra at normal incidence and at
room temperature.

A micropillar does not have a continuum of optical modes as is the case for a
planar optical cavity (see Section 2.2 in Chapter 2) that can be accessed by varying
the incidence angle. Therefore, we chose to perform an experiment aiming to excite
the micropillar and collect the Raman signals from the same fundamental optical
mode, as illustrated in Figure 4.7. Both the incident and the scattered beams are
normal to the surface of the micropillar, as schematically shown in the inset to Figure
4.7. In the case of the sample studied here, the optical mode enables the coupling
of the input laser and the collection of the Raman signal shifted by 350 GHz from
the laser line. Indeed, the optical quality factor of the planar cavity embedding the
acoustic resonator (prior to the etching) is of the order of 1000, corresponding to a
FWHM of ≈ 350 GHz. The optical quality factor of a micropillar is usually lower
than the one of the corresponding optical planar cavity [208, 212]. Therefore, it is
possible to simultaneously couple the laser and probe the Raman response through
the same mode. Notice however that the micropillars studied here have a rather large
lateral dimension. For example, most of the results presented in the next section have
been obtained on micropillars having a lateral size of ≈ 8 µm. According to the plot
in Panel (a) of Figure 4.2, the resonance energies of higher order modes are shifted
from the one of the fundamental mode by ≈ 1 meV. This corresponds to a frequency
shift of ≈ 250 GHz. Therefore, the anti-Stokes Raman signal can in principle couple
to higher order optical modes. Nevertheless, we will consider this simplified picture
where the incident laser and Raman scattered signals couple through the same optical
mode.
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Figure 4.7 – Principle of Raman scattering measurement through the fundamental
optical mode of the micropillar. The incident laser and the anti-Stokes signals both
couple to the fundamental optical mode. ωcav indicates the optical resonance fre-
quency of the optical mode. The inset to the figure shows a schematic representation
of the incident laser beam and the collected Raman signals. The micropillar structure
is schematically shown in the inset.

The schematic diagram of the experimental set-up is shown in Figure 4.8. The
incident laser is represented by a red beam. We used a tunable CW NIR Ti:Sapph
laser (SolsTiS M-Squared). The laser is connected to a wavelength meter (W5-5
HighFinesse GmbH), as before (see Figure 3.1, in Section 3.1), which is not shown
here for clarity. The laser beam is focalized on the sample with a lens of focal length
11 mm. With the collimated incident laser beam size, we estimated that the light
spot on the sample has a diameter of ≈ 15 µm, which is larger than the diameter of
the measured micropillars. Therefore, the coupling of the laser beam to the optical
modes of the studied resonators will be not optimal. The scattered light and the
reflected laser beam are then collimated by the same lens and focalized into the
double spectrometer for measuring the anti-Stokes spectra.

The sample is kept in a cryostat, in order to avoid any oxidation of the AlAs rich
layers contained in the micropillars. The cryostat is fixed on an X-Y translation stage
(Newport M-406) that allows to position the laser spot on the micropillars with a
resolution lower than 100 nm. This alignment is also carried out using the imaging
system represented in the bottom right of Figure 4.8. The represented beam splitter
can be slided on the path of the reflected beam in order to image the sample surface.

The experiment has been designed so that it can be also used to perform reflec-
tivity measurements. In this case, the intensity of the input laser is measured with
a photodetector. A mirror, represented by a dashed line in Figure 4.8, is added in
order to measure the intensity of the reflected laser with another photodetector. We
then plot the reflected light intensity from the micropillar (normalized by the incident
laser power) as a function of wavelength. The latter is measured with the wavelength
meter.

As explained in the previous chapter (Section 3.1), filtering the stray light coming
from the excitation laser is essential for performing Raman scattering measurements.
A major source of stray light in this configuration is the reflection of the laser on the
micropillar. In the previous experiments on planar cavities, the direct reflection was
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Figure 4.8 – Raman scattering experiment diagram at normal incidence on micropil-
lars. The excitation beam is represented in red. The focalization of the incident laser
and the collection of the scattered light occur through the same lens. The superpo-
sition of inelastically scattered light and reflected laser light is represented in green.
The dashed line in the spectrometer represents the path of the light on the gratings
and the mirrors. Under real experimental conditions, the highlighted iris is closed in
order to spatially filter out part of the stray light induced by the laser. The sample
is inside a vacuum chamber. The Figure shows a picture of an array of micropillars,
obtained with an optical microscope. The set-up can also be used to perform reflec-
tivity measurements. In this case a mirror, represented by a dashed line, is added to
collect the reflected laser light from the sample.
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spatially filtered by taking advantage of the small incidence angle (see Figure 3.1,
in Section 3.1). This strategy cannot be implemented in the current experimental
configuration, since in this case both the reflected laser beam and the Raman signals
propagate in normal direction with respect to the micropillar surface.

The reflected laser beam intensity does not present a constant spatial profile.
In Figure 4.9.a, we show the image of the reflected laser spot, recorded with an
infrared camera that was positioned behind the beam splitter where the filtering iris
is represented in Figure 4.8. In the real experiment, this corresponds to a distance of
≈ 1.5 m from the sample. We observe that the intensity of the reflected laser spot is
maximal in circular rings. The black lines schematically indicate the regions where the
laser intensity is minimal. This shape is visible only when the laser spot is positioned
on top of a micropillar. We therefore interpret it as a diffraction pattern, originating
from the fact that the laser spot at the surface of the sample is larger than the size
of the micropillar, similar to an Airy pattern obtained for a circular aperture.

(a) (b)

Figure 4.9 – (a): Recorded image of the reflected spot on a micropillar. The image
dimensions are 6.656 × 5.325 mm. The black circles highlight the minima observed
in the reflected spot. The red circles mark spatial areas selected by the filtering iris,
for which Raman spectra have been successfully probed. (b): Schematic diagram
showing the distribution of the diffracted laser (pink) and Raman (blue) fields for the
light spot shown in Panel (a). The optical mode containing the Raman signals should
have a Gaussian spatial profile, but we represented it uniformly for simplicity. The
red circles indicate the same positions as in the recorded image.

In contrast, the Raman signals couple to the free space from the micropillar.
We suppose that they do not couple to the micropillar higher order modes. In this
case, the Raman scattering signals propagates in the free space with a Gaussian-
like spatial profile, given by the fundamental optical mode of the micropillar. The
radial modulation observed in Figure 4.9.a is not present for the Raman signals. We
schematically represented these considerations in Figure 4.9.b. Therefore, in order to
maximally suppress the light coming from the reflected laser, we use a filtering iris on
the collection path of the experiment, schematically represented in Figure 4.8. The
iris is mounted on translation stages so that it can be precisely positioned on the
optical path. By closing it, we can select different parts of the spot that we probe
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with the spectrometer. By choosing spatial regions where the diffracted laser light is
minimal, we are able to measure Raman spectra on the micropillars. For example,
in Panel (a), we have represented two red circles indicating two selected positions
of the iris for which we were successfully able to probe the Raman response of the
microstructure for this laser spot. The red circles are reproduced in Panel (b) for
clarity. By placing the iris between the two red circles, the Raman spectra are no
visible, since they are completely covered by the laser stray light.

The experimental set-up presented in this section allowed us to measure Raman
scattering spectra of an topological acoustic nanocavity embedded in a micropillar.
In the next section, we will describe the results obtained on these systems.

4.3 Raman scattering in micropillars

As explained in the previous section, in these experiments the incident laser and the
scattered Raman signals couple to the discrete set of optical modes of the micropil-
lar. Measuring the reflectivity curve of the studied structure is therefore essential to
identify the resonance wavelengths of the modes. In Figure 4.10, we show an example
obtained on a square micropillar with ≈ 8 µm sides. The latter has the biggest lateral
size found in one array row, as shown on the right side of Figure 4.10. We see a
Lorentzian dip in the optical stop band, associated to the fundamental optical mode.
The resonance wavelength is ≈ 892.3 nm. The laser spot is larger than the size of
the micropillar. Therefore, the mode matching of the incident field with the confined
optical mode is not optimized. As a consequence, the contrast of the reflectivity dip
is 65%, which is lower than the value measured for the reflectivity curve shown in
Figure 4.3.a.

In Figure 4.11.a we show the measured Raman spectrum on a square micropillar.
The latter also has a lateral size of ≈ 8 µm, but the optical resonance wavelength of
the fundamental mode is at 911.6 nm. The measured Raman spectrum was obtained
by setting the incident laser wavelength at resonance with the optical mode, with
an input power of ≈ 15 mW measured just before the beam splitter C1 in Figure
4.8. The Raman curve is normalized by the laser power and by the integration time.
The negative frequency shift indicates that this plot corresponds to an anti-Stokes
spectrum. Three distinct Raman peaks are visible.

In Figure 4.11.b we plot the Raman spectrum obtained on the corresponding
planar topological structure. This spectrum was obtained on an area of the sample
which has not been etched during the fabrication process. The wavelength of the
laser is the same as for the spectrum in Panel (a). Numerical simulations based on
the photoelastic model for the one-dimensional structure show that the main Raman
peak is associated to the confined acoustic mode (not represented here). Its spectral
position matches the nominal resonance frequency of the acoustic mode (≈ 300 GHz,
that is ≈ 1.2 meV).

All the features of the spectrum probed on the planar structure are also visible in
the one obtained on the square micropillar, in which the acoustic structure behaves
as a planar phononic resonator. In particular, the Raman peak associated to the
confined mode is visible in the measurement performed on the microstructure. This
result shows that it is possible to probe the confined acoustic mode on these three-
dimensional optical resonators.
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Figure 4.10 – Reflectivity curve obtained on a square micropillar of ≈ 8 µm side. On
the right part of the figure, the red circle indicates a micropillar having this lateral
dimension in the sample picture shown in Figure 4.5. The dashed red line marks the
resonance wavelength of the micropillar. The power of the incident laser is 3 mW.

The obtained spectra are very similar, and no particular feature associated to
three-dimensional confinement of the optical mode is visible. We could expect that
[113, 214], since the spatial profile of the three-dimensionally confined optical mode
in a micropillar presents more Fourier components than the one-dimensional confined
field in a planar structure. The localized mode can be seen as a superposition of several
plane waves with k vectors oriented in different directions. This could render more
mechanical modes Raman active. The confinement effects of light might become more
apparent by decreasing the dimensions of the system, since the experimental results
presented in Figure 4.11.a have been obtained on a micropillar with a rather large
lateral size.

The second measurement that we performed consisted in studying the evolution
of the Raman spectra intensity when probing different circular micropillars with the
same lateral size (7.5 µm diameter). As explained before, the resonance frequency of
the confined optical mode depends on the position on the surface of the sample, since
the latter was grown with a thickness gradient. The characterized microresonators in
this experiment are evenly spaced. The measurement was carried out for micropillars
presenting resonance wavelength around 892 nm. The Raman scattering results are
represented as a color map in Panel (a) of Figure 4.12. In total, 12 circular micropillars
were studied.

The corresponding reflectivity curves were also measured. They are plotted as
a color map in Figure 4.12.b. Each pillar was labeled by a number, as indicated
by the vertical coordinates of the two panels. Notice however that the reflectivity
characterization was carried out only for one out of two micropillars. The contrast
for the reflectivity curves is around 60%.
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Figure 4.11 – Raman scattering spectra probed on a square micropillar (Panel (a))
and on the planar acoustic resonator (Panel (b)). The label CM indicates the Raman
peak associated to the confined acoustic mode in the topological structure.

The blue regions in Panel (b) correspond to the reflectivity dips associated to
the confined optical modes. The dashed red line is a guide to the eye showing the
evolution of the resonance wavelength. By moving on the surface of the sample, the
resonance wavelength evolves approximately linearly.

The black line in Panel (b) indicates the spectral position of the laser line used for
all the Raman scattering measurements, corresponding to an optical wavelength of
892.4 nm. Its power was kept constant for all the probed Raman spectra (≈ 5.7 mW).
The vertical blue line indicates the spectral position of the Raman peak associated to
the confined mode.

Panel (c) shows the Raman spectrum measured on the eighth micropillar (indi-
cated by the horizontal green line in Panel (a)). In the spectra, we show only two
of the three Raman peaks visible in Figure 4.11. This is due to the fact that in this
measurement the stray light was very intense at the frequency shifts where the third
Raman peak is located. The right Raman peak shown here corresponds to the one
generated by the confined acoustic state.

We compare the evolution of the reflectivity curve and of the Raman spectrum as
a function of pillar number. We observe that, when the fundamental optical mode
is spectrally located far from both the excitation laser line and the Raman signals,
the intensity of the Raman peaks is weak. This can be seen for example for the
first micropillar (on the bottom of both plots). We observe that by progressively
approaching the cavity mode resonance wavelength to the laser line and to the Ra-
man signals (Panel (b)), the intensity of the Raman signals progressively increases.
It reaches a maximum for the micropillar where the laser line is resonant with the
fundamental confined optical mode and where the Raman signals can couple, too.
This is indicated by the green horizontal lines in both panels. This clearly demon-
strates the strong dependence of the measured Raman intensities on the detuning of
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the fundamental optical mode wavelength with respect to the laser line and to the
probed Raman signals.
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Figure 4.12 – (a): Color map showing the evolution of the Raman spectra as a
function of pillar number (see main text).(b): Color map of the measured reflectivity
curves as a function of pillar number. By moving on the surface of the sample, we
change the optical resonance frequency. The vertical black line shows the spectral
position of the laser. The blue line shows the position of the Raman signals shifted
by a frequency of ≈ 300 GHz. The horizontal green line in both plots indicates the
micropillar for which we measured maximal Raman intensities. The diagonal dashed
red line is a guide to the eye showing the evolution of the mode resonance wavelength.
(c): measured Raman spectrum on pillar 8. The label CM indicates the Raman peak
associated to the confined acoustic mode.

In Section 4.1.2 of this chapter, we have seen that the optical resonance wave-
lengths of micropillars can be red-shifted by increasing the temperature of the mi-
cropillar. This can be carried out by increasing the intracavity optical power. Ac-
cording to the results shown in Figure 4.12 this effect will have an impact on the
intensity of the Raman signals.

We have probed Raman spectra when the excitation laser is blue detuned with
respect to the fundamental mode, as represented in the left inset to Figure 4.13. The
measurement was carried out on a square micropillar with a lateral size of 4.5 µm. A
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typical measurement is shown in the right panel of Figure 4.13, where the cavity mode
Raman peak is highlighted in grey. We then progressively increased the intensity of
the incident laser. For each optical power, we measured the intensity of the Raman
signal. This was carried out by finding the area under the Raman peak associated to
the confined acoustic mode. This value was normalized by the incident optical power.
The result is shown with the blue circles in Figure 4.13. We observe that when we
increase the power of the incident laser, the normalized Raman intensity decreases.
By way of comparison, we performed the same experiment on the planar cavity. In
this case, the intensity of the Raman signals increases linearly, as expected from
a spontaneous Raman scattering process [105]. Therefore, the normalized Raman
intensity probed on the planar structure is almost constant with incident power (blue
crosses).
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Figure 4.13 – Evolution of the Raman intensities on a planar cavity and on a mi-
cropillar as a function of incident power. The crosses indicate the normalized Raman
intensities measured on the planar cavity. The circles shown the same measurement,
but performed on a micropillar. The laser was set blue-detuned from the optical
resonance, as indicated in the left inset to the figure. The right inset shows a typ-
ical Raman spectrum, where the Raman peak associated to the confined mode is
highlighted.

We interpret this result by considering that for both the micropillar and the planar
cavity, the increase of the laser power is accompanied by an increase of the optical
intracavity power. This induces a heating of the sample through light absorption.
However, in the planar system, the structure is large and heat can be dissipated more
easily than in the case of a micropillar. Therefore, the temperature inside the three-
dimensional resonator increases more than in the case of the planar cavity, due to
its finite lateral dimensions. As explained in the previous section, in this case the
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resonance wavelength of the optical mode red-shifts when the power of the laser is
increased. In contrast with the case of the planar cavity, the coupling of the funda-
mental mode to the involved optical fields decreases, leading to an overall decrease
in the intensity of the probed Raman signals. This constitutes a first experimental
result where the behavior of these three-dimensional optical resonators is distinct with
respect to their planar counterpart.

4.4 Conclusion
In this section, we have presented first Raman scattering experimental results obtained
on nanophononic cavities embedded in micropillars. We first presented theoretical and
numerical models that describe the three-dimensional confinement of light in these
systems. After having recalled the fabrication process of these structures, we presented
the experimental set-up that allowed us to perform Raman scattering measurements
in an anti-Stokes configuration.

These first experimental results allowed to demonstrate that it is possible to probe
the acoustic properties of the nanophononic resonator embedded in the micropillar
through Raman scattering spectroscopy. This constituted a technical challenge, since
in the experimental configuration of the set-up, the reflected laser and the Raman
signals present a strong spatial overlap. Filtering the stray-light is therefore more
difficult here than in the case of the planar optical structures.

We then performed experimental measurements where we have varied the coupling
of the cavity mode with the laser line and the Raman signals. We have seen that by
changing this coupling, we induce strong variations in the intensities of the Raman
peaks. We then performed a Raman scattering measurement where we have varied
the intensity of the incident laser in order to increase the temperature inside the
resonator. This leads to a decrease of the Raman scattering intensities normalized by
the incident power, caused by the red-shifting of the cavity mode. This behavior has
not been observed on the planar structure, since heat is dissipated more efficiently
in this case. This constitutes a first experimental result where the three dimensional
shape of the micropillar induces a different behavior than its planar counterpart.

The confinement of light in micropillars has not lead for the moment to the ob-
servation of a distinct behavior in the Raman activity of the mechanical modes inside
the topological structure. However, an effect of the three dimensional localization of
light might be visible if the lateral dimensions of the micropillars are sufficiently de-
creased. Furthermore, by making the micropillar lateral dimensions comparable to the
periodicity of the acoustic resonator, we can expect to observe the effects of a three-
dimensional confinement of the mechanical modes. In particular, this can be done
by decreasing the resonance frequency of the confined acoustic mode. This is what
we carry out in the next chapter, where we numerically investigate the interactions
between light and three-dimensionally confined mechanical modes at 20 GHz.
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Chapter 5

Micropillars as optomechanical
resonators

Layered planar systems have demonstrated to be powerful platforms for controlling
the propagation of waves, both in optics and in nanophononics. Furthermore, these
periodic media enable the simultaneous localization of light and mechanical vibrations
in the same structure.

Throughout this manuscript, we have seen that by enclosing an acoustic cavity
between two optical DBRs, we can realize a system that confines NIR photons and
sub-THz acoustic phonons. As long as the periodicity of the acoustic system is small
with respect to the optical wavelength, the acoustic nanocavity plays the role of an
effective optical spacer. If the overall length Ltot of the acoustic cavity matches the
optical resonance condition for an optical Fabry-Perot cavity (Ltot = pλ/2, with p an
integer), the confined acoustic mode interacts with an enhanced optical field. This was
the case for the experiments carried out on the adiabatic and topological nanocavities,
as presented in Chapter 3, in order to facilitate the characterization of the acoustic
resonators through Raman scattering spectroscopy.

In the systems presented above, it is clear that the confined phononic modes’
properties are solely determined by the design of the acoustic resonator, since the
optical mirrors do not play any role in its localization. In other words, these systems
can be considered as being constituted by an acoustic resonator embedded inside
an optical cavity. Therefore, the acoustic properties of the phononic cavity such
as its resonance frequency or its quality factor can be tuned, to a certain extent,
independently from the optical parameters.

Further investigations on the optical and mechanical properties of GaAs/AlAs
layered systems demonstrated that it is possible to design cavities in such a way that
an optical and a mechanical mode are simultaneously confined by the same structure.
In particular, it was shown that a GaAs/AlAs planar optical microcavity optimized
to confine a mode in the NIR range is automatically optimized to localize an acoustic
mode at a frequencies of ≈ 20 GHz [56]. This is due to the intrinsic properties of the
used semiconductor materials.

As for the topological cavity embedded in an optical one, it is possible to fabricate
micropillar resonators out of these planar systems. Notice however that, in contrast
to the results presented in Chapter 4, we will have to consider here both the three-
dimensional localization of an optical and a mechanical mode inside the micropillar.
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The simultaneous three-dimensional confinement of light and sound in these sys-
tems is particularly relevant in cavity optomechanics. Indeed, this could lead to
the development of three-dimensional optomechanical resonators operating at very
high mechanical frequencies. Their optomechanical properties could be investigated
through Brownian motion experiments, and their mechanical motion could be manip-
ulated through optical forces, as presented in Chapter 2 (see Section 2.4). Finally,
these structures enable the integration of other systems such as quantum wells or
quantum dots. This would enable the possibility to explore the interactions of an
electronic excitation with an optical mode and a mechanical mode that are simulta-
neously confined.

As we have seen in Chapter 4, the optical behavior of micropillars has been ex-
tensively studied in the context of photonics and optoelectronics. In this Chapter we
investigate the mechanical and optomechanical properties of DBR-based GaAs/AlAs
micropillars by perfoming numerical simulations. The Chapter is organized as follows:
• In Section 5.1 we will first recall the experimental results that have shown the

simultaneous confinement of light and mechanical vibrations in one-dimensional
optical microcavities. We will then describe the measurements, obtained
through pump-probe coherent phonon generation and detection, that have evi-
denced the optomechanical properties of micropillars.

• In Section 5.2, we will compare the optical and mechanical properties of
GaAs/AlAs micropillars through numerical simulations.

• In Section 5.3 we will provide an explanation of the confinement mechanisms in a
micropillar. In particular, we will compare this system to a simplified resonator,
made of a single GaAs cylinder.

• In Section 5.4 we will investigate the main mechanical and optomechanical pa-
rameters of micropillars through finite element simulations. We will relate their
dependence as a function of design parameters to the confinement mechanisms
described in the previous section.

• Finally, we will conclude by summarizing the main results described in this
Chapter.

5.1 Towards three-dimensional confinement
The three-dimensional optomechanical confinement in micropillar structures was first
envisioned through theoretical considerations and experimental results obtained on
planar systems. In this section we present the main mechanisms leading to the si-
multaneous confinement of an optical and a mechanical mode in one dimension. We
then discuss the experimental results demonstrating acoustic confinement in three
dimensions observed in micropillars resonators.

5.1.1 Simultaneous confinement of light and sound in planar
cavities

The comparison between the intrinsic optical and mechanical properties of GaAs
and AlAs allows to rethink the simultaneous confinement of photons and phonons in
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planar Fabry-Perot designs [56]. We consider for example an optical cavity, designed to
confine an optical mode at a frequency f opt0 , constituted by two (λ4 ,

λ
4 ) DBRs enclosing

a GaAs λ
2 spacer. It has been evidenced that this structure also confines a mechanical

mode due to two peculiar properties of the GaAs/AlAs material combination. Two
"coincidences" in the mechanical and optical parameters lead to this simultaneous
localization. The first one is the fact that:

cAlAs
cGaAs

≈ vAlAs
vGaAs

≈ 1.2 (5.1)

where cAlAs and cGaAs are the speeds of light, whereas vAlAs and vGaAs are the speed of
longitudinal acoustic phonons in the two materials. Let us now consider the longitu-
dinal mechanical mode with a frequency fac0 = f opt0 × vGaAs

cGaAs
in the structure described

above. In the GaAs layers, this mode has the same wavelength as the confined optical
mode. Furthermore, due to Equation 5.1, the mechanical mode also has the same
wavelength as the confined optical mode in the AlAs layers. Therefore, the two op-
tical mirrors designed to operate as (λ4 ,

λ
4 ) DBRs at an optical resonance frequency

f opt0 also behave as (λ4 ,
λ
4 ) acoustic DBRs for an acoustic wave with a frequency fac0 .

Additionally, the GaAs spacer can also be considered as a λ
2 layer for the consid-

ered mechanical mode. Consequently, the presented optical cavity is automatically
optimized to operate as an acoustic Fabry-Perot cavity.

In Figure 5.1 we show the simulated optical and mechanical behavior of such a
system, each dielectric mirror being constituted by 18 layer pairs. As illustrated in
Figure 5.1.a, the structure confines an optical mode at f opt0 = 326 THz (corresponding
to a wavelength of ≈ 920 nm). By computing the acoustic reflectivity, we find that
the system also localizes a mechanical mode at a resonance frequency fac0 ≈ 18.3 GHz.
This is evidenced by the dip in the stop band in Figure 5.1.b.

The second "coincidence" corresponds to the fact that:

Zopt ≈ Zac ≈ 0.83 (5.2)

where Zopt and Zac are the optical and acoustic impedance contrasts, respectively.
Zopt is defined as nAlAs

nGaAs
, where nAlAs and nGaAs are the optical indices of refraction in

the respective materials. Zac is defined as ρAlAsvAlAs

ρGaAsvGaAs
, with ρ and v the densities and

the speeds of acoustic longitudinal phonons. As already mentioned in Chapter 1 (see
Section 1.3), the reflectivity of a DBR is given by R ≈ 1−4Z2N , where Z is the acoustic
or optical impedance contrast of the two materials, and N is the number of GaAs/AlAs
layer pairs in the structure. Due to Equation 5.2, the optical reflectivity of the DBRs
is equal to their acoustic reflectivity. Therefore, the confined mechanical and optical
modes decay in the same way in the mirrors. This is shown in Figure 5.1.c. Therefore,
a standard GaAs/AlAs Fabry-Perot resonator not only simultaneously confines an
optical mode and a mechanical mode, but also their spatial profiles overlap perfectly.
This will lead to strong optomechanical interactions between the two fields.

Notice that this "double coincidence" associated to the GaAs/AlAs material com-
bination is not only limited to Fabry-Perot systems. A planar acoustic cavity that
is resonant at 20 GHz and that is based on another design (e.g. the adiabatic or
topological cavities, presented in Chapter 3) would also optically confine a photonic
mode in the NIR. The simultaneous localization of light and sound in these systems
is therefore more general than the Fabry-Perot structure presented here, and paves
the way toward the design of other optomechanical systems.
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Figure 5.1 – (a): Simulated optical reflectivity curve of a planar GaAs/AlAs Fabry-
Perot cavity. The sharp dip in the stop band shows the confinement of an acoustic
mode at a frequency of 18.3 GHz. (b): Simulated acoustic reflectivity of the same
cavity. The dip in the stop band corresponds to the confinement of an optical mode
at a frequency of 326 THz, i.e. a wavelength of ≈ 920 nm. (c): Spatial profiles of
the confined optical (red curve) and mechanical (blue curve) modes in the considered
structure. The profile of the acoustic mode has been translated vertically for clarity.
The grey curve shows the dependence of the indices of refraction as a function of
position in the cavity.
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Putting in evidence the acoustic confinement properties of a planar optical cavity
operating in the NIR range is technically difficult by Raman scattering spectroscopy.
Indeed, a Raman peak located at a frequency shift of 20 GHz from the laser line is
difficult to resolve. Furthermore, stray-light rejection in this frequency shift range also
becomes a major challenge. Nevertheless, these experiments have been successfully
carried out by implementing spectral filtering techniques to improve the resolution of
the set-up and the stray light rejection [215, 216].

Coherent pump-probe phonon generation and detection have demonstrated to be
an efficient way to experimentally demonstrate the acoustic confinement properties of
planar systems, not only for its fundamental confined mode at a resonance frequency
of ≈ 20 GHz, but also for higher order harmonics [56]. A brief presentation of this
technique has been carried out in Section 2.3 of Chapter 2. Through this method,
it was possible to follow the dynamics of the coherently generated acoustic phonons
and to provide first values of the coupling strength between the confined optical
and mechanical modes. It was shown that this interaction was essentially mediated
through strong photoelastic effects at the considered wavelength (≈ 870 nm). It was
expressed as an optomechanical coupling factor gom = 83 Trad nm−1, at the reduction
point where the displacement is maximal [56].

(a) (b)

Figure 5.2 – Experimental Pump-probe results obtained on a planar Fabry-Perot
cavity. Images reproduced from [56]. (a): Measured differential reflectivity time
trace recorded during the experiment. The inset shows a detailed view of the same
temporal evolution filtered to display only frequency components > 10 GHz. (b):
Fourier transform amplitude of the measured temporal trace shown in Panel (a). The
insets show the displacement profiles of the confined acoustic modes corresponding to
the measured peaks at ≈ 20 GHz, ≈ 60 GHz and ≈ 100 GHz in the Fourier transform.

The simultaneous localization of photons and phonons, and their strong interaction
in planar nanocavities has been shown experimentally. Optomechanical experiments
often rely on the interactions between a single mechanical mode with one optical
mode. In this context, it is therefore necessary to confine both fields in the three
directions of space.

The next step was therefore to demonstrate a full three-dimensional confinement
of these modes when planar Fabry-Perot cavities are etched into micropillars. This
was successfully carried out, in the frame of a collaboration between our team and the
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group of Alejandro Fainstein, at the Centro Atómico Bariloche & Instituto Balseiro
in Argentina.

5.1.2 Opto-phononic micropillars
Planar GaAs/AlAs nanocavities allow the fabrication of three-dimensional optome-
chanical resonators. In this case, we obtain systems where optical and mechanical
modes are confined in both the vertical and radial directions. Optomechanical res-
onators capable of three-dimensionally confining NIR photons and phonons in the
GHz range are particularly relevant for:

• High frequency optomechanical experiments. As already mentioned in Chapter
2 (see Section 2.4.3), optomechanical systems with high mechanical resonance
frequencies are particularly interesting for the preparation of a mechanical mode
in its quantum ground state. We can consider for example a mechanical system
resonating at a frequency of 18 GHz, as it is the case of the micropillars studied
here. At a temperature of 4.2 K, accessible with usual liquid helium cryostats,
the average number of phonons in the confined mode is already n̄ ≈ 3.9 (obtained
with the Bose-Einstein distribution). An average phonon occupation number
n̄ ≤ 1 could be obtained by further cooling the system at T ≤ 1.4 K. Alter-
natively, optomechanical sideband cooling techniques could be implemented to
easily reach this regime.

• Interactions between confined acoustic phonons and excitonic systems.
GaAs/AlAs micropillars are used in cavity QED applications, where electronic
excitations confined in quantum dots or quantum wells are coupled to a local-
ized optical mode. Acoustic phonons propagating in these solid state systems
also interact with the confined electronic excitations. If this interaction could
be controlled, this would allow to use acoustic phonons as an additional knob to
engineer the coupling of quantum wells or quantum dots with their solid state
environment.

The first experimental technique used to put in evidence the three-dimensional
mechanical confinement in micropillars was pump-probe coherent phonon generation
and detection [58]. Similarly to the work carried out on planar cavities described in
the previous section, it was possible to probe the existence of a fundamental confined
mechanical mode at a resonance frequency of ≈ 20 GHz and its higher order harmonics
(Figure 5.3.b). Furthermore, a dependence of the optomechanical coupling strength
as a function of the device’s lateral dimensions was observed (Figure 5.3.d). This con-
firmed the existence of lateral confinement effects on the localized mechanical modes.
Finally, by following the temporal differential reflectivity traces for different lateral
sizes (Figure 5.3.c), it was possible to give estimations of the confinement lifetimes
for the considered phonons [58]. These results are in contrast to the experimental
measurements presented in Chapter 4. Indeed, the acoustic resonators presented in
the previous chapter were considered to be planar phononic structures. This was due
to the fact that the characteristic wavelengths of mechanical modes having resonance
frequencies around 300 GHz are very small with respect to the micrometric lateral
dimensions of the characterized resonators.
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(a) (b)

(c)

(d)

Figure 5.3 – Experimental Pump-probe results obtained on micropillars. Images re-
produced from [58]. The presented data was obtained in the frame of a collaboration
between our group and the team of Alejandro Fainstein, at the Centro Atómico Bar-
iloche & Instituto Balseiro in Argentina. (a): SEM image of a typical GaAs/AlAs
square micropillar characterized in this work. (b): Fourier transform amplitude of
the experimental differential reflectivity time trace measured on a micropillar (lateral
size L = 5 µm). The peak at ≈ 19 GHz corresponds to the fundamental confined
acoustic mode. Inset: measured time trace, filtered to show components with fre-
quencies between > 5 GHz and < 100 GHz (c): Evolution of mechanical lifetimes
for the L = 19 GHz and L = 58 GHz confined acoustic modes as a function of the
micropillar lateral size L. (d): Mechanical response intensity as a function of pillar
size for the three probed mechanical modes.
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Experimental measurements demonstrated the full confinement of mechanical
modes in micropillars and their optomechanical properties. Understanding the mech-
anisms that lead to the localization of phonons in these systems is therefore necessary.
Numerical simulations relying on the finite element method are particularly useful for
that. Furthermore, they allow to quantify the confinement properties of micropillars,
since optical and mechanical quality factors can be determined. Finally, the strength
of the optomechanical interactions, expressed as vacuum optomechanical coupling fac-
tors, can also be calculated. We present our results in the following sections of this
chapter.

5.2 Micropillar optical and mechanical confine-
ment, a comparison

The optical confinement properties of GaAs/AlAs micropillars have already been dis-
cussed in Chapter 4. As explained before, an intuitive picture to understand the
confinement mechanisms of an optical mode in a micropillar is to consider that the
system behaves as an optical Fabry-Perot resonator in the vertical direction. Due to
the high contrast between the indices of refractions of the semiconductor materials
and vacuum, the system also behaves as an optical waveguide in the radial direction,
leading to a full three dimensional confinement of an optical mode.

The three dimensional mechanical confinement in a micropillar could be thought
of in the same way: the two optical DBRs of the micropillar also behave as acoustic
mirrors in the vertical direction as explained in Section 5.1. In the radial direction, the
structure would also behave as an "acoustic waveguide", leading to a radial confine-
ment. This is due to the fact that high frequency acoustic phonons cannot propagate
in vacuum. They are therefore totally reflected at the vacuum/semiconductor material
interfaces.

Since the confinement mechanisms invoked above are quite similar for both fields,
we expect to have similar behaviors for the confined optical and mechanical modes.
We will see that it is indeed the case, but that differences also exist. The first step of
this numerical study is therefore to compare the mechanical behavior of a micropillar
with its optical one. In particular a comparison in the spatial profiles of the con-
fined mechanical and optical modes is instructive to understand the similarities and
differences between the two fields.

5.2.1 Spatial profile of confined modes
As mentioned throughout this Manuscript, the numerical calculations of the mechan-
ical and optical behavior of a one-dimensional system such as a planar cavity are pos-
sible through transfer matrix simulations. The situation is quite different in the case
of a three dimensional micropillar. In this case, the confined optical and mechanical
states cannot be found through standard transfer matrix calculations. Semi-analytical
models can be found in the literature for the study of the mechanical behavior of these
resonators [217]. However, the detailed description of the mechanical eigenmodes and
of the corresponding optomechanical coupling factors was not carried out. In this
work we have chosen to use FEM simulations (COMSOL, Structural Mechanics Mod-
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ule, Eigenfrequency study) to compute the eigensolutions and the spatial profiles of
the confined modes.

Consider a micropillar such as the one schematically represented in Figure 5.4.a. It
is constitued by two (λ4 ,

λ
4 ) optical DBRs made of 10 GaAs/AlAs layers pairs enclosing

a λ
2 GaAs spacer. The radius of the micropillar is 1.51 µm. The width of the spacer is

130 nm. By taking the limit case of a planar cavity, i.e. by considering only a vertical
confinement, we can estimate that both the mechanical and confined optical modes
have a wavelength of ≈ 260 nm, corresponding to resonance frequencies of ≈ 323 THz
and of ≈ 18.2 GHz for the optical and mechanical mode, respectively.

The micropillars simulated in this work have rotational symmetry. Furthermore,
we consider that both the optical and mechanical properties of GaAs and AlAs are
isotropic. Such assumptions allow us to simplify the modeling of the structure, as-
suming a 2D axisymmetric system described in cylindrical coordinates.

Figures 5.4.b and 5.4.c correspond to the simulated spatial profile of the confined
optical and mechanical modes, respectively. The calculations were carried out for a
system without substrate. The plotted physical quantities are

∣∣∣−→E (r, z)
∣∣∣2 and |−→u (r, z)|2

in the (O; ~r; ~z) plane, and normalized to the respective maxima of the considered
fields. In both cases, the z axis corresponds to the revolution axis of the micropillar.

For the optical mode (Figure 5.4.b), we find again what was described in Chapter
4: we observe a vertical modulation of

∣∣∣−→E ∣∣∣2, due to the vertical confinement of the
field by the two DBRs. The mode presents a minimum at the center of the spacer,
due to the choice of a λ

2 GaAs spacer. The smooth Bessel function distribution of
the electric field intensity in the radial direction is characteristic of the optical field’s
lateral confinement observed in cylindrical micropillars.

We now compare the mechanical and optical behavior of a micropillar. Notice
that the confined acoustic mode (Figure 5.4.c) presents analogies with the optical one.
Also in this case we observe a vertical confinement of the mode with an exponential
decay of the envelope of |−→u (r, z)|2 along the z direction. The two DBRs are playing
the role of (λ4 ,

λ
4 ) acoustic mirrors. The considered stop-band for the fundamental

confined phononic mode is the one associated to the first zone edge acoustic minigap.
Therefore, the (λ4 ,

λ
4 ) geometry optimizes the confinement of the acoustic mode in the

vertical direction, since it maximizes the span of the considered acoustic minigap, as
explained in Section 1.3 of Chapter 1. The zone center acoustic minigaps used in
Chapter 3 to confine acoustic modes are closed in the systems considered here.

The localized acoustic mode inside the micropillar also presents a "slow" Bessel-like
envelope in the radial direction, due to the lateral confinement of the phonons, in a
similar way as for the optical mode.

Nevertheless, in contrast to what is observed for the optical field, the confined
mechanical mode also presents a "fast" modulation in the radial direction. This dif-
ference in the spatial profiles of the optical and mechanical modes is highlighted in the
bottom parts of Panel (b) and Panel (c). Detailed views of the two confined modes
are plotted, corresponding to the regions marked by the dashed magenta rectangles
in the micropillars. In the detailed view of Panel (c), antinodes in the displacement
pattern are clearly visible and their intensity decays both in the vertical and radial
directions when moving away from the spacer center.

The existence of these antinodes is independent of the number of layer pairs in
the top and bottom DBRs. In Figure 5.5, we show the spatial profile of the confined
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Figure 5.4 – (a): Diagram of a cylindrical micropillar cavity on a substrate, formed
by two DBRs enclosing a spacer. (b): Normalized modulus square of the electric
field in a micropillar. The structure is constituted by two optical DBRs each with 10
GaAs/AlAs layer pairs enclosing a λ/2 spacer. The resonance wavelength is 921 nm.
Bottom part of the panel: detailed view of the confined optical mode in the micropillar
region marked by a dashed magenta square. (c): Normalized modulus square of the
displacement field in the same micropillar as (b). The mechanical resonance frequency
is 18.2 GHz. Bottom part of the panel: detailed view of the confined mechanical mode
in the micropillar region marked by a dashed magenta square. The green arrows in
(b) and (c) indicate the position of the spacer.
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acoustic modes for three micropillars, where we have varied the number of layer pairs
N for the top and bottom DBRs. The considered structures have the same radius.
We observe in Figure 5.5.a and 5.5.b, that the spatial profiles of the mechanical modes
are almost the same when we drastically changed the number of layer pairs.

Notice that by decreasing this parameter below N = 6, the mechanical mode
profile starts to be altered. This is shown in Figure 5.5.c, where the spatial profile of
the confined mode is plotted for N = 4. By comparing it to Figure 5.5.b, we notice in
particular that the displacement amplitudes at the top and bottom interfaces between
the micropillar and vacuum increase (indicated by black arrows in the two panels).
This is understood by considering that, as in the case of planar acoustic cavities, the
phonons are less and less confined in the vertical direction. The air/sample interfaces
play a more and more important role in the interference build up of the acoustic mode,
leading to its deformation.

The fast radial modulation of the confined acoustic mode presented in this sec-
tion is characteristic of the mechanical confinement in GaAs/AlAs micropillars. It
constitutes a clear distinction between the optical and mechanical behavior of this
optomechanical resonator. Other differences have been noted between the two fields,
in particular the dependence of their eigenfrequencies as a function of the micropillar
radius, as explained in the next section. We will see that these differences are related
to the finite lateral size of the structure, and to the existence of the Poisson’s ratio,
a mechanical parameter that couples the motion of the micropillar in the vertical
direction with the one in the radial direction.
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N = 12 N = 6 N = 4

Figure 5.5 – Spatial profiles of the confined mechanical mode as a function of pair
number. The plotted quantities in the color maps are the normalized displacement
modulus. N is the number of GaAs/AlAs layer pairs in the top and bottom DBRs.
From Panel (a) to Panel (c), the number of layer pairs is decreased from N = 12 to
N = 4. The green arrows indicate the position of the spacer. In Panel (b) and Panel
(c), the full structures are plotted in the vertical direction. The top and bottom
GaAs/vacuum interfaces are indicated by the black arrows. Panel (a) is a detailed
view of the micropillar around the spacer (top and bottom interface not visible), where
the spacer and 6 layer pairs for the top and bottom DBR are visible.
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5.2.2 Eigenfrequencies as a function of radius
In DBR-based micropillars, analogous confinement mechanisms for photons and
phonons occur in the vertical direction. However important distinctions can be noted,
such as the presence of a "fast" modulation observed in the radial direction for the
spatial profile of the mechanical mode. The second major difference that can be noted
when comparing the two confined modes is the dependence of their eigenfrequencies
on the radius of the micropillar. This dependence is shown in Figure 5.6.a for the
fundamental confined optical mode. As already mentioned in Chapter 4, we observe
that by decreasing the radius of the system we smoothly increase the eigenfrequency
of the optical eigenmode.
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Figure 5.6 – (a): Fundamental confined optical mode eigenfrequency as a function of
the micropillar radius. (b): Fundamental confined mechanical mode eigenfrequency
as a function of radius. The red line connects the eingenfrequencies located at the
centre of the successive branches.

The dependence of the mechanical mode eigenfrequency is dramatically different,
as shown in Figure 5.6.b. Indeed, if also in this case an overall increasing of the
mechanical eigenfrequency occurs when the radius of the micropillar decreases (indi-
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cated by the continuous red curve), this variation is not smooth as in the case of the
optical mode. In contrast, we observe a series of branches, suggesting the presence of
successive anticrossings, separated by a period of ≈ 100 nm. In each branch, between
two consecutive anticrossings, the resonance frequency of the confined mode strongly
depends on the radius of the micropillar. We have represented here their variation
over a frequency span of 100 MHz.
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Figure 5.7 – Confined mechanical mode profile as a function of the micropillar radius.
Bottom part of the figure: detailed view of the mechanical mode eigenfrequency
dependence as a function of R. Top part of the figure: spatial profiles of the confined
mechanical mode, for three different radii. The value n corresponds to the number
of antinodes present along the radial direction of the pillar. The magenta segments
indicate the line along which we counted the number of nodes. The green arrows
indicate the position of the spacer. The radii are marked by (A), (B) and (C) in
the bottom part of the figure, and the corresponding labels are indicated next to the
represented spatial profiles.

This sequence of avoided crossings is due to the coupling of different mechanical
degrees of freedom, as we will see in the next section. It is accompanied by an
evolution of the spatial profile of the confined mechanical mode. This variation is
shown in Figure 5.7. In the bottom part of the figure, we show a detailed view of the
confined mechanical mode eigenfrequency dependence as a function of the micropillar
radius. In the top part of the figure, we show the spatial profiles of the confined
modes calculated for three different radii. These radii are located at the center of
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three consecutive branches, as indicated in the bottom part of the figure by the arrows
(A), (B) and (C).

From Figure 5.7 we can see that the number of antinodes n in the spatial profiles
increases when the radius of the system is increased. To show that, we count their
number in the radial direction, along the lines indicated by the magenta segments
in the spatial profiles. They correspond to a GaAs spacer/AlAs interface, where
the antinodes’ intensities are maximal. The values of n are indicated below each
spatial profile. From these simulations, we can see that the number of antinodes in
the radial direction changes by one half every time we move from one branch to the
next. We stress the fact that the number of nodes in the confined mechanical mode
can be well studied when we choose three radii values located at the center of the
successive branches. By moving away from these central regions, we observe in our
calculations that the confined mode has a spatial profile which keeps the mechanical
energy localized at the center of the micropillar, with more and more complex shapes.

The presence of the fast radial modulation in the spatial profile of the confined
acoustic mode marks a clear distinction between the mechanical and optical behaviors
of a micropillar. This difference is confirmed when comparing the dependence of the
optical and mechanical resonance frequencies of the confined modes as a function of
the system radius. For the mechanical mode we observe successive anticrossings, that
are absent in the smooth dependence of the optical eigenfrequencies. Their existence
is accompanied by an increase in the number of antinodes along the radial direction
when raising R. The presence of anticrossings suggests the existence of coupling
mechanisms between displacements along different directions and elastic boundary
conditions that are absent in the optical case.

5.3 Mechanical confinement mechanisms in mi-
cropillars

In the former sections, we highlighted major differences between the mechanical and
optical properties of a micropillar. In this section, we investigate the origin of these
differences through FEM simulations. In particular, we have studied the effect of the
Poisson’s ratio on the mechanical properties of a micropillar. In order to understand
the origin of the effects mentioned before, we propose a simplified model: a uniform
GaAs cylinder of height 2H and diameter 2R, surrounded by vacuum (Figure 5.8).
We take 2H = 130 nm, corresponding to the thickness of the micropillar GaAs spacer
considered in the previous sections.

The choice of such a simplification is motivated by considering that a simple GaAs
cylinder also behaves as a three-dimensional acoustic cavity. Indeed, for this system,
the confinement mechanism in the radial direction at r = R is the same as the one of
the micropillar more complex case. In the vertical direction, at Z = 0 and Z = 2H
acoustic phonons also undergo total reflection. Therefore, in this simplified model,
the top and bottom interfaces behave as perfect acoustic mirrors.

The advantage of this simplified model is that it allows to understand the effect
of the Poisson’s ratio, the parameter responsible for the coupling between different
mechanical degrees of freedom. In particular, we show that it is this coupling that
induces the generation of the fast radial modulation observed in the micropillars and
the anticrossings observed in Figure 5.6.b.
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Figure 5.8 – GaAs cylinder. No substrate is present. The dashed rectangle corre-
sponds to one section of the cylinder across the (O; ~r; ~z) plane.

In linear elasticity, the stress and the strain tensors are linked through the general-
ized Hooke’s law (with Einstein notation) σij = Cijklηkl. σij and ηkl correspond to the
components of the stress and the strain tensor, respectively. Cijkl are the components
of the stiffness tensor. In general, the stiffness tensor contains 21 independent com-
ponents. Considering an isotropic material, the stiffness tensor simplifies and relates
the stress to the strain component with the following relation:

ηij = 1 + ν

E
× σij −

ν

E
× δijσkk (5.3)

E is the Young modulus, δij the Kronecker delta and ν is the Poisson’s ratio. The
latter parameter describes the normal strain ηii induced in the direction i when a
stress σjj is applied in an orthogonal direction. We illustrate this by considering the 2
dimensional tensile testing represented in Figure 5.9. The deformation of the tensile
specimen is expressed in cartesian coordinates.

In this simple case the only stress component different from 0 (in the central part
of the sample) is the vertical component σ33. Applying Equation 5.3, we find that the
two strain components ηij 6= 0 are η11 = σ11

E
and η22 = −σ11×ν

E
, represented in Figure

5.9. In the expression of η22 the Poisson’s ratio quantifies the horizontal contraction
induced by uniaxial vertical tensile stress.

In the case of the cylinder represented in Figure 5.8, the Poisson ratio establishes
a coupling between vertical and radial mechanical degrees of freedom. To understand
the role of this parameter, we consider two limit cases. The first one is a "decoupled"
cylinder, where we set the Poisson’s ratio ν = 0. We then consider a second case
where ν = 0.31, the real value of the Poisson’s ratio in GaAs.

In both situations, the considered cylinder is surrounded by vacuum. We therefore
apply a free boundary condition to all the GaAs/vacuum interfaces. In terms of stress
components, such boundary conditions correspond to:

σzz = σzφ = σzr = 0 at Z = 0 and z = 2H
σrr = σzφ = σzr = 0 at r = R

(5.4)
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Figure 5.9 – Tensile testing diagram. Tensile specimen before (grey) and while σ11 is
applied (blue). The red arrows indicate the stress component σ11. The green arrows
correspond to the strain components η11 and η33 in the central part of the sample.

We first consider the case ν = 0. It is possible to analytically solve the elastic wave
equation by seeking a solution only confined in the vertical direction. This solution
that we call the "vertical decoupled mode" has the following displacement components:

ukr(r, z, φ) = ukφ(r, z, φ) = 0
ukz(r, z, φ) = A0 × cos(kz)

(5.5)

where k is the vertical wavenumber, and A0 is an arbitrary amplitude. In order to
comply with the free boundary conditions at Z = 0 and z = 2H, i.e. maximum
displacement amplitude at these boundaries, the vertical wavenumber satisfies k ×
2H = π [2π]. This solution is also the one found for an infinite planar structure (i.e.
cylindrical plate with an infinite radius).

It is also possible to solve the same problem for a purely radial displacement. We
call this mode the "radial decoupled mode" and the displacement field in the structure
has the following components:

uqz(r, z, φ) = ukφ(r, z, φ) = 0
uqr(r, z, φ) = B0 × J1(qr)

(5.6)

where q is the radial wavenumber, B0 is an arbitrary amplitude, and J1 designates the
Bessel function of the first kind. The discrete values of q can be determined so that
the mode complies with the free boundary conditions at r = R. These solutions are
also valid for the case of an infinite cylinder. The first 3 values of q are given below:

order of q value of q
1 1.8412/R
2 5.3314/R
3 8.5363/R
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The two types of solutions for ν = 0 are shown in Figure 5.10. The leftmost
simulations in Panel (a) and Panel (b) correspond to the fundamental vertical and
radial modes, respectively. Also in this case we used an FEM approach to find their
spatial profiles. The two considered decoupled modes have similar eigenfrequencies
for R = 75 nm, equal to ≈ 15.5 GHz.
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Figure 5.10 – Evolution of the mode spatial profiles when increasing the Poisson’s
ratio ν (from left to right), for a cylinder with R = 75.3 nm and 2H = 130 nm. Panels
(a) and (b) show the evolution of the vertical and radial-like modes, respectively.
The color scale corresponds to the normalized modulus of total displacement. The
arrows indicate the calculated displacement direction and intensity at different points
in the cylinder. The z axis corresponds to the revolution axis of the system. The
value of ν used for each simulation is indicated on top of every plot. The calculated
eigenfrequencies are reported on the bottom.

We then progressively increase the value of the Poisson’s ratio up to ν = 0.31, the
real value for GaAs. As shown in Panel (a) and Panel (b) of Figure 5.10, we observe
a progressive modification of the two modes spatial profiles showing simultaneously
vertical and radial components. Indeed, a Poisson’s ratio different from 0 implies that
a vertical stress simultaneously coexists with a non-zero radial strain component,
leading to a mode mixing between the two decoupled modes. As we can see in the
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Figure 5.11 – Eigenfrequencies of the decoupled (triangle symbols) and coupled modes
(circle symbols) as a function of the GaAs cylinder’s radius. The blue and the green
curves indicate the eigenfrequency dependence of the vertical and radial decoupled
modes (ν = 0), respectively. The magenta and the black dependences correspond
to the breathing and the volume conservative modes (ν = 0.31), respectively. The
spatial profiles of the considered modes are shown in the top part of the figure (FEM
simulations) for R = 75.3 nm, as shown by the arrows in the graph. This radius
value is marked by a vertical dashed line in the plot. The color scale indicates the
modulus of displacement. The black arrows schematically show the direction of the
displacement.
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evolution of the spatial profile of the two modes, antinodes appear at the air/vacuum
interfaces, satisfying the boundary conditions in both the vertical and the radial di-
rections. For the mode that was initially confined purely in the vertical direction the
eigenfrequency decreases when the Poisson’s ratio increases (Figure 5.10.a). In the
case of the mechanical mode with displacement components in the radial direction
when ν = 0, the eigenfrequency increases (Figure 5.10.b). For the low frequency cou-
pled mode (Figure 5.10, rightmost plot in Panel (a)), we have a "volume conservative
mode", since a compression in the vertical direction is accompanied by an expansion
of the cylinder in the radial one. For the high frequency coupled mode (Figure 5.10,
rightmost plot in Panel (b)), we find a "breathing mode", where a vertical expansion
is accompanied by a radial expansion.

The role played by the Poisson’s ratio in coupling different degrees of freedom is
confirmed when studying the dependence of the mechanical eigenfrequencies of the
coupled and decoupled modes as a function of the radius. We will focus here on the
vertical and radial decoupled modes (ν = 0), and on the coupled modes obtained with
ν = 0.31.

We first consider the case ν = 0. The vertical decoupled mode eigenfrequency as a
function of the cylinder’s radius is represented by the blue curve in Figure 5.11. The
resonance frequency of this mode does not depend on the radius of the cylinder, since
it is only affected by the height of the cylinder 2H.

The variation of the fundamental radial decoupled mode eigenfrequency (ν = 0)
is represented by the green curve in the same figure. In this case, when we increase
the radius of the cylinder the mechanical eigenfrequencies decrease. These values are
independent from the height of the considered system.

We now consider ν = 0.31. The eigenfrequencies of the coupled modes are shown
by the magenta curve for the breathing mode, and by the black curve for the volume
conservative mode. A clear anticrossing is present between the two curves for a radius
of ≈ 75 nm, marked by the vertical dashed line, where the two decoupled modes
(ν = 0) are degenerate. The spatial profiles of the modes calculated for this radius
are shown in the top part of Figure 5.11. The labels (A) and (B) indicate the profiles of
the decoupled modes, whereas the coupled modes are marked by the labels (C) for the
breathing mode, and (D) for the volume conservative mode. Their eigenfrequencies
are indicated in the graph of Figure 5.11. Far from the anticrossing, the coupled
mechanical modes spatial profiles and eigenfrequencies tend to replicate the ones of
the decoupled modes. This further confirms the role played by the Poisson’s ratio in
coupling the vertical and the radial modes found for ν = 0.

We now move to the case of a micropillar. Notice that the two considered systems
are not completely equivalent. In particular, in a micropillar the edges of the GaAs
spacer are not free in the vertical direction, as in the case of the GaAs cylinder. The
continuity of stress and displacement components apply at the interface between the
GaAs spacer and the surrounding AlAs layers. Naturally, these boundary conditions
will have a significant effect on the spatial profile of the confined mechanical mode.
Nevertheless, the coupling mechanisms due to the Poisson’s ratio that we have de-
scribed before for a cylinder also occur in the more complex case of a GaAs/AlAs
micropillar.

We start our analysis by considering ν = 0 for both GaAs and AlAs. We find
a mode that is confined purely in the vertical direction, due to the presence of the
two DBRs. This is analogous to the vertically confined mode in the GaAs cylinder
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(top left part of Figure 5.10.a). The spatial profile of this mode, represented by
the normalized displacement modulus, is shown in Figure 5.12.a. The only stress
components σij 6= 0 induced by this mechanical vibration are the vertical ones (σzz).
They are shown in Figure 5.12.b. When we progressively increase the Poisson’s ratio
for both materials, the existence of σzz 6= 0 implies a gradual modification of the
confined mode where both vertical and radial strain components are simultaneously
present. Such a confined mode complies with the vertical confinement induced by
the acoustic mirrors and the sample/vacuum boundary conditions, leading to the
generation of antinodes as observed in Figure 5.4.c in the displacement pattern. By
extending the reasoning carried out for the case of the GaAs cylinder, the effect of
the Poisson’s ratio is to induce a coupling between the vertically confined mode and
successive mechanical modes with a dominant radial component.

As in the case of the GaAs cylinder, the coupling between radial and vertical dis-
placements induced by the Poisson’s ratios also explains the existence of anticrossings
in the variation of the mechanical eigenfrequencies as a function of the micropillar ra-
dius. The black and magenta curves shown in Figure 5.11 correspond to half branches
in the dependence shown in Figure 5.6.b.

In Figure 5.7, we have seen that the number of antinodes increases when we in-
crease the radius R. According to the discussion carried out in this section, we can
understand this as an effect of the Poisson’s ratio. Indeed, this parameter couples the
vertically confined mode to the successive radial-like vibrating modes of the micropil-
lar, as evidenced by the sequence of anticrossings observed in Figure 5.6.b. This leads
to the increasing of the antinodes number observed in our simulations.
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Figure 5.12 – Spatial profile of the decoupled vertical mode in a micropillar. The
Poisson’s ratio is set to 0 for both GaAs and AlAs. In both panels the green arrows
show the position of the spacer.(a): The color map shows the modulus of normalized
total displacement. The yellow arrows show the direction of displacement.(b):The
color map shows the normalized vertical stress component σzz

In this section, we used FEM simulations to provide a description of the mecha-
nisms that lead to the confinement of an acoustic mode in a GaAs/AlAs micropillar.
In particular, we have evidenced the fact that it is the coupling of different mechan-
ical degrees of freedom, induced by the materials Poisson’s ratios, that explains the
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generation of the antinodes in the spatial profile of the confined mode inside a mi-
cropillar. Furthermore, this also leads to the generation of the successive anticrossings
observed in the dependence of the mechanical eigenfrequencies as a function of the
resonator radius. In the next section, we will take advantage of the developed models
to calculate some relevant optomechanical parameters.

5.4 Optomechanical properties of micropillars

In this section, we perform numerical simulations to calculate the mechanical qual-
ity factor and the vacuum optomechanical coupling factor g0. These parameters are
particularly relevant for optomechanical experiments such as Brownian motion mea-
surements or optomechanical sideband cooling (see Section 2.4.3 in Chapter 2). We
study their evolution when we change design parameters of the micropillar.

5.4.1 Mechanical quality factor

The results discussed in the previous sections have shown that the mechanical behavior
of an AlAs/GaAs micropillar depends on its geometry. For example, the confined
mode eigenfrequency and spatial profile vary with the structure’s lateral dimensions.
As a consequence, the way in which the mechanical energy is stored and dissipated
depends on the design parameters of the micropillar. This dissipation is quantified by
the mechanical quality factor Qm. This parameter describes how well the resonator
is isolated from its environment, since it corresponds to the quantity of mechanical
energy that is lost per cycle of oscillation.

In this section, we investigate the effect of two design parameters, the radius of
the micropillar and the number of AlAs/GaAs layer pairs in the DBRs, through our
FEM models. We start this discussion by addressing the dependence of Qm with the
radius of the micropillar over one branch of the dependence shown in Figure 5.6.b.
The number of GaAs/AlAs layer pairs in the top and bottom DBRs are called Ntop

and Nbot, respectively. In this study, we have considered two structures: one with
Ntop = Nbot = N = 10 and the other one Ntop = Nbot = N = 20.

A detailed view of the considered branch is shown in Figure 5.13.a for radii around
1.53 µm. The values of the mechanical eigenfrequencies are almost unaffected by the
number N of GaAs/AlAs layers in the top and bottom DBRs. In this dependence,
we can consider three different regions: a central one where the mechanical eigen-
frequencies weakly depend on the radius of the micropillar, and two others, located
at the edges of the branch, where the resonance frequencies strongly depend on this
parameter.

In order to calculate the value of the mechanical quality factor over the branch
plotted in Figure 5.13.a, we introduced dissipation of mechanical energy into the
GaAs substrate by introducing perfectly matched layers (PMLs) domains. This is
represented in Figure 5.14, where we show the implemented FEM model. No other
dissipation channels are considered. The value of Qm can be calculated considering
that Qm = Re(ωm)

2Im(ωm) , where ωm is the complex eigenfrequency found in the presence of
mechanical losses (the values plotted in Figure 5.13.a correspond to the real part of
the eigenfrequencies).
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We calculated the dependence of the mechanical quality factor of a micropillar as a
function of its radius for N = 10 and N = 20. The results are shown in Figure 5.13.b
and Figure 5.13.c for the two considered structures. In the case of N = 10, a minimum
of the mechanical quality factor is reached when we consider mechanical modes in the
central part of the dependence, where the eigenfrequencies weakly depend on the
lateral size of the resonator. The value of Qm increases for the modes located on the
edges of the branch. The situation is opposite in the case of N = 20: in this case a
maximum of the quality factor is reached in the regions where the eigenfrequencies
weakly depend on the radius.

We can explain the behavior of the mechanical quality factor in the two consid-
ered cases by studying the way in which the mechanical energy is stored inside the
resonator. In particular, we can calculate the fraction of energy stored in the radial
direction α with the following equation:

α = Eradial
mech

Emech
=
∫
pillar

1
2 × ω

2 |ur(r, φ, z)|2 × ρ× dV∫
pillar

1
2 × ω2‖−→u (r, φ, z)‖2 × ρ× dV (5.7)

where Emech is the total stored mechanical energy of the mode, Eradial
mech is the me-

chanical energy stored in the radial direction, ω is the mode eigenfrequency, ρ the
mass density, ‖−→u ‖ is the norm of total displacement, and |ur| is the modulus of ra-
dial displacement in the micropillar. We determined the value of α by implementing
Equation 5.7 in our numerical model, and we calculated its dependence over the con-
sidered branch for the two structures with N = 10 and N = 20, as shown in Figure
5.13.d.

The result of these calculations shows that over one branch, we can clearly distin-
guish two regions for both N = 10 and N = 20. At the center of the branch, where the
eigenfrequencies are weakly dependent on the micropillar radius, we observe that the
mechanical energy is mainly stored in the vertical direction. This region is marked in
grey in all panels of Figure 5.13. When we move far away from the anticrossings, into
the regions where the eigenfrequencies strongly depend on R, the fraction of radial
energy increases progressively. The mechanical mode therefore acquires an increasing
radial character, similarly to what is observed for the simplified model of a GaAs
cylinder. We marked in white those radii intervals.

We can now explain the behavior of the mechanical quality factors for N = 10
and N = 20 by considering independently the coupling to the substrate of the vertical
and radial components of the confined mode.

For a purely vertical confined mode such as the one represented in Figure 5.12,
the mechanical quality factor is determined by the acoustic reflectivity of the DBR
connected to the GaAs substrate (i.e. bottom DBR). In contrast, in the case of
mechanical modes having important radial components, the mechanical quality factor
is less sensitive to the reflectivity of the DBRs. In the case of N = 10, the quality
factor of the vertically confined mode is very low, due to the few number of GaAs/AlAs
layer pairs. Eventually, the quality factor of this mode is lower than of the decoupled
radial mode. As a consequence, the vertical-like modes represented in the grey region
of Figure 5.13.c have a lower mechanical quality factor than the modes with a mixed
vertical-radial spatial profile, represented in the white regions of the plots.

The situation is the opposite in the case of N = 20. The quality factor of the
vertical decoupled mode is higher than the value of the radial mode. In this case, we
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Figure 5.13 – (a): Detailed view of the considered branch showing the fundamental
mechanical mode eigenfrequency as a function of radius, with N = 20. (b): Mechan-
ical quality factor dependence as a function of radius over the branch plotted in Panel
(a), for a micropillar with N = 10 for the top and bottom DBRs. (c): Mechanical
quality factor as a function of radius, for a micropillar with N = 20. (d): Mechanical
radial energy fraction α stored in the fundamental confined mode as a function of the
radius of the micropillar, for N = 10 (black triangles) and N = 20 (red squares). In
all panels the grey region indicates the radius interval where the mechanical energy
is stored mainly in the vertical direction. White regions indicate the radii intervals
where α increases.
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Figure 5.14 – Diagram of the FEM model used to calculate the mechanical quality
factors of a micropillar. The colors correspond to the materials as indicated by the
legend. The green arrow marks the position of the spacer. Perfectly matched layers,
implemented to account for mechanical energy dissipation through the substrate, are
specified. The top and bottom DBRs are also indicated. For the structure represented
here, Ntop and Nbot are both equal to N = 10. The black dashed line indicates the
revolution axis of the structure, along z. The solid blue lines show the fixed con-
straint (i.e. zero displacement) boundary conditions applied to the perfectly matched
layers. The dotted red lines indicate the free stress boundary conditions applied to
the micropillar and to the substrate.
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therefore observe maximal values of the mechanical quality factor in the grey region
of Figure 5.13.d, where the modes are mainly vertical.

In both cases we observe that the calculated Qm strongly depends on the radius of
the system. Changes by a factor of 4 are observed for a change in R of approximately
50 nm. Therefore, the dependence of the mechanical quality factor as a function of the
radius of the micropillar is dramatically affected by the spatial profile of the considered
confined mode.

6 8 1 0 1 2 1 4 1 6 1 8 2 0

0

2

4

6

8

N u m b e r  o f  p a i r s  ( N )

Me
ch

. Q
-fa

cto
r Q

m (
x1

03 )

6 8 1 0 1 2 1 4 1 6 1 8 2 0
0
7

1 4
2 1
2 8

N u m b e r  o f  p a i r s  ( N )

Op
t. Q

-fa
cto

r (x
10

3 )

Figure 5.15 – Mechanical quality factor as a function of pair number N for the top
and bottom DBRs. The inset corresponds to the same dependence for the optical
quality factor. For both curves the micropillar radius is kept constant and is equal to
1.53 µm.

We then studied the dependence of Qm when N (Ntop = Nbot = N) is increased
(Figure 5.15), for a given value of the radius. We can compare it to the dependence
of the optical quality factor (Qopt) as a function of the same parameter (inset to the
figure). For the optical simulations, the micropillar is not in contact with a substrate,
but is embedded in air. In both cases, the quality factors increase in a similar way
when N is increased. This is due to the fact that by increasing the optical and
acoustic reflectivities of the mirrors, the energy losses along the vertical direction are
decreased. This behavior is analogous to the one observed in the corresponding planar
systems.

Notice however that the dissipation mechanisms through the DBRs are not the
same for the two fields. This is due to the fact that the mechanical energy is dissi-
pated through the substrate in our model. Therefore, for the mechanical mode, it is
the acoustic mirror connected to the substrate which is determinant for mechanical
damping, since it acts as the connecting medium to the substrate. In other words,
the mechanical energy can only be released towards the substrate through the bottom
DBR. Therefore, it is this part of the micropillar that limits the reached values for
the mechanical quality factor.

The minor role played by the top DBR in the acoustic confinement can be illus-
trated by considering two micropillars with different designs. The first one is modeled
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with Ntop = Nbot = 10 and the second one with Ntop = 6 and Nbot = 10. The cal-
culated mechanical quality factors obtained are of 290 and 280, respectively, showing
that the value of this parameter is essentially determined by the bottom mirror. Such
a behavior is in strong contrast with the case of the confined optical mode, where both
DBRs correspond to dissipation channels and play a crucial role in its confinement.
As a consequence, the confinement strength of the optical and mechanical modes can
be tuned independently by controlling the number of layer pairs in the top mirror.

In the case of N = 20, we reach a maximal value for the mechanical quality factor
equal to ≈ 8000 for a resonance frequency around 18 GHz. This gives a Q · f product
of ≈ 1014 Hz, which corresponds to an order of magnitude for this figure of merit that
is comparable to the ones reported for state-of-the-art optomechanical systems [26].

The numerical simulations described above enabled us to calculate the mechanical
quality factors. However, previous experimental and theoretical studies on high fre-
quency acoustic cavities have shown that scattering processes of acoustic phonons into
other mechanical modes due to anharmonicity effects, or dissipation mechanisms due
to the presence of surface/interface defects can be an important source of mechanical
energy losses [89, 147]. Furthermore, other dissipation processes as thermo-elastic ef-
fects or viscous damping if the mechanical resonator is surrounded by a fluid such as
air can also significantly affect the value of the mechanical quality factor [155]. These
effects have not been taken into account in our model, as only dissipation of mechan-
ical energy through the substrate is considered here. Nevertheless, these simulations
provide values for Qm comparable to experimental ones.

In reference [58], phonon lifetimes of confined acoustic modes in micropillars have
been experimentally measured. The probed systems were designed for confining modes
at comparable wavelengths using the same materials. The number of layer pairs and
the lateral dimensions are similar to the case of N = 20 considered in this section.
The studied micropillars in the experimental work have, however, a square section.
The mechanical quality factors that were measured range between 200 and 1000. As
shown in Figure 5.13.c, the simulated quality factors reported here range between
2000 and 8000, resulting in orders of magnitude that are compatible with respect to
the measured ones.

5.4.2 Optomechanical coupling factor
The simulations presented above allowed to describe the optical and mechanical be-
havior of micropillars. Through this numerical approach it is possible to calculate
the magnitude of the interaction between the fields. In this section, we present the
numerical simulations that we performed to calculate the vacuum optomechanical
coupling factor g0. This parameter quantifies the strength of the interaction between
the confined mechanical and optical modes, as presented in Chapter 2.

For the systems considered here, the value of g0 can be separated into two con-
tributions: the geometrical coupling factor ggeom0 and the photoelastic coupling factor
gphoto0 . The first term quantifies the optomechanical coupling related to the change
of the microcavity shape and dimensions. The second term accounts for the change
of the micropillar optical resonance frequency due to local changes of the indices of
refraction. These variations are caused by the photoelastic effect.

In the framework of these calculations we have left aside the geometrical cou-
pling factor contribution and focused only on the photoelastic one. Additionally, we
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consider only the photoelastic contributions in the GaAs layers. This hypothesis is
justified by considering that the photoelastic effect inside a material presents a res-
onant behavior when approaching an electronic transition of the system. As in the
case of the calculations performed for the Raman scattering cross section of planar
structures, we neglect the photoelastic effect in the AlAs.

The method implemented in our FEMmodel to calculate the g0 has been developed
in collaboration with the group of Ivan Favero, at the Laboratoire Matériaux et de
Phénomènes Quantiques. It can be summarized as following:

• We first calculate the confined optical mode in a micropillar where no mechanical
strain is present. We find an unperturbed angular eigenfrequency ω0.

• We simulate the spatial profile of the confined mechanical mode in the micropil-
lar. We denote the mechanical eigenfrequency Ωm. We calculate the mechanical
energy stored in the micropillar Emech. We can then determine the zero point
fluctuation xzpf as:

xzpf = xmax
2

√
~Ωm

2Emech
(5.8)

The xmax parameter corresponds to the displacement at the considered reduction
point. The reduction point in these calculations is the point having maximal
displacement intensity, located at the interface between the GaAs spacer and
an AlAs layer, at r = 0.

• We then determine the new eigenfrequency of the confined optical mode, af-
ter having perturbed the permittivity tensor components of the GaAs layers
through the photoelastic effect, with the spatial profile of the calculated me-
chanical mode. The gom is described by the change in frequency induced by a
differential displacement of the reduction point, as ∂ω

∂xmax
. Therefore, in order to

numerically implement this differential calculation, we normalize the spatial pro-
file of the mechanical field so that we consider small mechanical displacements.
We denote the new optical eigenfrequency ωperturb, that is affected by the nor-
malized displacement field. The optomechanical coupling factor is calculated as
gom = |ω0−ωperturb|

xmax
, where xmax is the normalized displacement at the reduction

point (i.e. the point of maximal displacement). The vacuum optomechanical
coupling factor can then be determined simply by calculating g0 = gom × xzpf .

In our model, the only components of the photoelastic tensor affecting the GaAs
dielectric tensor are p11 and p12.1 The values of these two parameters can be found
in the literature for a wavelength of 920 nm, and are p11 = 0.276 and p12 = 0.305
[218]. The shear strain components reach maximal values that are of the same order
of magnitude as the normal ones. However, the photoelastic constant p44 is one order
of magnitude smaller than p11 and p12 in GaAs, for optical wavelengths of ≈ 920 nm
[111]. We will neglect their contribution. In this case, the dielectric tensor of GaAs
is diagonal. Its components can be expressed as (see Equation 2.9 in Chapter 2):

1We have expressed here the photoelastic constants in contracted notation. The photoelastic
components pijkl become pij , with 11→1, 22→2, 33→3, 32→4, 31→5 and 21→6. The indices 1, 2
and 3 indicate here the radial, azimutal and height coordinates, respectively.
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ε11 = (1/n2 + p11η11 + p12η33)−1

ε22 = (1/n2 + p12η11 + p12η33)−1

ε22 = (1/n2 + p12η11 + p11η33)−1
(5.9)

In Figure 5.16, we report the values of g0 calculated for a micropillar constituted
by a 10 periods DBR on each side. The calculation was carried out over the branch
shown in Figure 5.13. As in the case of the calculations of the mechanical quality
factor, the variation of the confined mode spatial profile also leads to strong changes
in the value of g0, since it affects its spatial overlap with the localized optical mode.
The maximal values for the calculated g0 are reached for the mechanical states located
in the grey region of the plot, where the displacement is mainly vertical. For such
modes, the value of the g0 reaches values as high as 1 Mrad s−1, which are comparable
to values obtained for state-of-the-art optomechanical resonators [20, 25].
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Figure 5.16 – Vacuum optomechanical coupling factor g0 as a function of radius. The
grey region indicates the radii where the mechanical mode is mainly vertical. White
regions indicate the intervals where α increases.

The maximal value reached for the g0 is of the order of 1.025 Mrad s−1 for a radius
of 1.52 µm. The zero point fluctuation xzpf found for this radius is 0.6325 fm and the
effective mass meff is 1.16 pg.

Despite the strong radial modulation observed in the spatial profile of the confined
mechanical mode, the acoustic field still presents a large spatial overlap with the
localized optical mode, resulting in large vacuum optomechanical coupling factors.
However, we can see in Figure 5.16, that the value of this parameter strongly varies
with the radius of the micropillar. Indeed, the g0 drops by one order of magnitude
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over a variation of 50 nm in the radius of the micropillar. The value of the vacuum
optomechanical coupling factor in reference [58] was estimated to be in the MHz range.
This well corresponds to the calculated values in the central part of the plot.

5.4.3 Local optomechanical properties of micropillars
The calculation of the confined mechanical and optical mode profiles allowed to de-
termine global mechanical, optical, and optomechanical parameters. Indeed, the me-
chanical and optical quality factors correspond to scalar values describing the overall
micropillar energy losses. The vacuum optomechanical coupling factor quantifies the
global interaction strength between the confined optical and mechanical modes. Al-
though these parameters are particularly relevant for experiments as Brownian motion
measurements or sideband optomechanical cooling, other situations require a local de-
scription of the field distributions that are involved.

This is quite clear in solid-state cavity quantum electrodynamics. We can consider
the coupling between a confined optical mode and an excitonic system such as a
quantum well or a quantum dot embedded inside the micropillar spacer [54, 205]. In
order to get maximal interaction between the excitonic system and the optical mode,
the electronic transition must be resonant with the optical field, and the emitter must
be located in the regions of maximal electric field intensity

∣∣∣−→E ∣∣∣ [54].
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Figure 5.17 – Spatial profiles of the confined optical (Panel (a)) and mechanical
modes (Panel (b)) in a micropillar. The optical resonance wavelength is 925 nm. The
mechanical resonance frequency is 18.1 GHz. The plots are detailed views where the
λ spacer and 6 layer pairs of the top and bottom mirrors are visible.

We can consider a structure where an excitonic system would be engineered to
interact simultaneously with a confined photonic and phononic mode. In this case, we
can expect that the emission properties will be modified not only by the confinement
of an optical field, but also by the presence of a confined acoustic mode.

Acoustic phonons can couple to electronic transitions through deformation poten-
tial, as we have seen in Chapter 2. We can take advantage of this interaction in order
to couple an excitonic system to the confined mechanical mode. This was carried out
for example in the work reported by Munsch et al. [219], where a quantum dot was
coupled to the mechanical motion of nanowire resonator, with mechanical resonance
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frequencies in the MHz range. The local strength of this interaction is proportional
to the mechanical mode volumetric strain. To maximize the coupling of a quantum
emitter such as a quantum dot with the confined mechanical mode through this effect,
the two-level system should therefore be placed at the maximum of the ∆V/V field.
In Figure 5.17, we show the spatial profiles of the electric field (Panel (a)) and of the
volumetric strain (Panel (b)) for the confined optical and mechanical mode inside a
micropillar. The simulated structure corresponds to a λ spacer embedded between
two (λ4 ,

λ
4 ) optical DBRs, with 12 GaAs/AlAs layer pairs. In Figure 5.17.a, we can

see that the optical field presents a maximum in the middle of the spacer, indicated
by the green arrow. The spatial profile of the volumetric strain is shown in Panel
(b) of Figure 5.17. It is determined by the vertical and radial strain components
of the confined acoustic mode. The distribution of these strain components inside
the micropillar blurs the radial modulation discussed in the previous sections. As a
consequence, the antinodes observed for the displacement field (see Figure 5.4) are
not observed for the volumetric strain. Additionnally, this field distribution presents
a node at the center of spacer.
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Figure 5.18 – Spatial profiles of the confined modes inside a λ spacer . The fields
are plotted along z, at r = 0. The red curve shows the normalized electric field
modulus (left axis). The blue curve corresponds to the normalized volumetric strain
(right axis). The dashed horizontal red and blue lines indicate the origins for the
electric field modulus and for the volumetric strain, respectively. The vertical grey line
marks the center of the spacer, where the quantum emitter is placed to get maximal
interaction with the confined electric field. The orange area shows a position where
the quantum emitter would interact simultaneously with the confined optical and
mechanical modes.

From these spatial profiles, it is clear that by placing a quantum emitter such
as a quantum dot at the center of the micropillar (both in the vertical and radial
direction), the system is located at the maximum of the electric field, but at the
minimum of the volumetric strain profile. The quantum dot would not couple to
the confined mechanical mode. The quantity ∆V/V presents a maximum at the
sides of the λ spacer. It is therefore not possible in this optomechanical resonator to
simultaneously maximize the interactions of a semiconductor quantum dot with the
confined optical and mechanical modes. An optimized situation, where the quantum
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dot would interact with both the confined optical and mechanical mode has to be
found. This can be carried out by shifting the position of the quantum dot along
the z direction. In Figure 5.18, we show the spatial profiles of the confined optical
field (red curve) and of the volumetric strain (blue curve) for the confined mechanical
mode inside the spacer along z. The fields are shown for r = 0, the radial coordinate
for which both fields present maximal intensities. The fields have been normalized
by their maximal value. The vertical orange area indicates a position inside the
spacer where the magnitude of both normalized fields have equal magnitude. We
conclude that this would be an optimal position where to locate a quantum emitter
that simultaneously interacts with a confined optical and mechanical mode.

As explained before, current fabrication techniques allow to deterministically po-
sition a quantum emitter such as an InGaAs quantum dot at the local maximum of
the electric field [118, 220, 221]. By using the same fabrication techniques, it would be
therefore possible to precisely place a quantum dot inside the GaAs spacer in such a
way that it could interact simultaneously with both the confined optical and mechan-
ical modes. By measuring the photoluminescence spectrum of this quantum emitter
that couples to the confined optical mode, it would be possible to demonstrate that
its emission properties can also be engineered by controlling its surrounding acoustic
environment. Additionally, the simultaneous coupling of a quantum dot with a con-
fined mechanical and optical modes would be a first step toward the realization of
strongly coupled atom-cavity-mechanics systems. This would allow the implementa-
tion of enhanced optomechanical cooling schemes due to the presence of the two-level
system [222].

5.5 Conclusion

In this chapter we have studied the simultaneous confinement of photons and high
frequency phonons in GaAs/AlAs micropillars. We have recalled the experimental
results that demonstrated the co-localization of an optical and a mechanical mode
in planar systems and three dimensional resonators. We performed numerical simu-
lations through the finite element method, that enabled us to study the properties
of the confined mechanical mode. We have seen that while the confinement mecha-
nisms which lead to the localization of an acoustic mode are similar to the ones for its
optical counterpart, the spatial profile of the two fields and the dependence of their
resonance frequencies as a function of the radius of the micropillar present signifi-
cant differences. We have explained these differences by considering the effect of the
Poisson’s ratio on the acoustic behavior of a micropillar. This mechanical parameters
couples the vertically confined mode to the radial modes, as we have illustrated on a
simplified GaAs cylinder model. This leads to the generation of anticrossings in the
dependence of the mechanical eigenfrequencies as a function of the micropillar radius.
Furthermore, it induces the presence of a fast radial modulation in the displacement
field of the confined acoustic mode.

We have then studied the dependence of the mechanical quality factor and of the
optomechanical coupling rate as a function of design parameters of the optomechanical
resonator. They have shown a strong dependence on the radial dimension of the
system. This can be related to the evolution of the mechanical mode profile when
this parameter is varied.
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Additionally, we have investigated the potential of micropillars as optomechanical
resonators. We have shown that by increasing the number of layer pairs in the DBRs,
high mechanical and optical quality factors can be reached. This is particularly rel-
evant for optomechanical experiments such as sideband cooling. Furthermore, these
simulations demonstrated that the vacuum optomechanical factor and the Q ·f prod-
uct in micropillars can reach values as high as 1 Mrad s−1 and 1014 Hz, respectively,
which are comparable to the values reported for state-of-the-art optomechanical sys-
tems.

Finally, in the last section, we provided a qualitative description of the simultane-
ous interaction of a quantum dot with a confined optical and mechanical mode. By
positioning the quantum dot in a region of the spacer where it would interact with
both the mechanical and the optical confined mode, we could measure the modifica-
tion of the emission properties of a quantum emitter, due to the engineering of its
phononic environment.
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The engineering of mechanical vibrations at the nanoscale has nowadays become a
mature field of research, and the number of systems aiming to control phonon dynam-
ics in the hypersonic range has significantly diversified. In particular, this allowed the
development of nanostructured systems enabling the confinement of high frequency
mechanical vibrations. These resonant structures play a central role in nanophonon-
ics, for example in the development of high frequency acoustic devices, such as phonon
filters, acoustic monochromatic detectors, or SASERs. Additionally, the development
of high frequency mechanical resonators has become particularly relevant in other
fields of research, such as cavity optomechanics. In this thesis, we have investigated
novel nanophononic structures that localize mechanical vibrations in the hypersonic
range, and we have studied their interactions with confined optical fields. The gen-
eral purpose of this work was also to progressively move from opto-phononic systems
that confine light and mechanical vibrations in a planar geometry, to resonators that
simultaneously localize both fields in the three dimensions of space.

One-dimensional acoustic superlattices are well known in nanophononics, and have
nowadays become an essential tool for the manipulation of high frequency mechan-
ical vibrations. In particular, they allow the creation of acoustic minigaps in their
phononic band diagrams, that is, frequency intervals for which mechanical waves can-
not propagate. Acoustic superlattices enable the fabrication of Fabry-Perot cavities,
which have nowadays become the canonical resonator in layered nanophononic sys-
tems.

Our first research line consisted in further exploring the physical mechanisms that
can be used for confining longitudinal acoustic phonons. We studied these novel
confinement strategies in nanophononic layered platforms, for mechanical waves at
resonance frequencies around 350 GHz. This work was presented in Chapter 3 of
the manuscript. These designs where inspired from band engineering confinement
methods that have been implemented in photonics. The resonators were experimen-
tally studied through high resolution cavity-enhanced Raman scattering spectroscopy.
This technique is well adapted for measuring the acoustic properties of nanophononic
cavities operating in the few hundreds of GHz frequency range.

The first one-dimensional confinement strategy that we have implemented is based
on the local engineering of band structures in an acoustic periodic medium. This was
carried out by progressively changing the layer thicknesses of a GaAs/AlAs super-
lattice. In this way, we adiabatically bend the local acoustic band diagram of the
structure. This enables the creation of a "phononic quantum well", in which the state
is smoothly localized.

In optics, the adiabatic localization of photons enabled the fabrication of three
dimensional optical resonators with improved quality factors with respect to tradi-
tional photonic Fabry-Perot designs. In a similar way, the progressive confinement
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of an acoustic state studied in this thesis could lead to the development of future
nanophononic three-dimensional resonators with enhanced confinement properties.

The Raman scattering spectra obtained on a one-dimensional adiabatic cavity
embedded in an optical resonator clearly demonstrate the existence of the designed
confined state. Furthermore, the experimental data is perfectly reproduced by nu-
merical simulations based on a photoelastic model. This allowed us to identify the
origin of all the Raman features present the measured spectra. We also numerically
investigated the impact of the adiabatic transformation magnitude on the spatial pro-
file of the confined modes, and on their mechanical quality factors. We demonstrated
that in the presented adiabatic cavity, the energy, the spatial profile, and the Raman
activity of the confined modes can be tailored by controlling the design of the artificial
phononic potential.

A possible way to implement such adiabatic localization in three dimensional res-
onators would be to fabricate micropillar structures that confine mechanical modes
in all directions of space, from adiabatic nanophononic planar cavities. We could
then study the effect of the adiabatic design on the mechanical quality factors of the
confined mechanical modes, and compare it to the confinement properties of standard
Fabry-Perot based micropillars.

The second confinement strategy that we have proposed is the localization of in-
terface states by taking advantage of the topological phases of acoustic superlattices.
The topological properties of a nanophononic layered structure are described in its
acoustic band diagram by the Zak phases, that is, the topological invariants associ-
ated to the represented bands. It is possible to change the topological phase of an
acoustic superlattice by band inversion, i.e. by inverting the symmetry properties
of the mechanical modes bounding a given acoustic minigap. This is carried out by
closing and reopening the considered forbidden frequency interval. In this work, we
have implemented band inversion by changing the relative thicknesses of the GaAs
and AlAs layers in the superlattice unit cell. By concatening two DBRs in differ-
ent topological phases, we create a confined state that is localized at the interface
between the two structures. We have carried out Raman scattering measurements
on topological acoustic nanocavities embedded in optical resonators. The obtained
spectra clearly demonstrate the presence of an interface state inside the acoustic cav-
ity. The topological resonators presented in this work constitutes a first experimental
demonstration of the use of topological phases for the development of nanophononic
systems. Other designs could be implemented for the study of confined acoustic states
based on topological invariants. In optics, photonic structures have been fabricated
in order to generate topologically protected edge states by coupling series of micropil-
lar resonators [223]. These structures have been developed in close analogy to the
Su-Schrieffer–Heeger (SSH) model, which was originally proposed to understand the
physics of electrons in polyacetylene [224]. This model could be readily applied to
high frequency acoustic systems, since nanophononic structures constituted by sev-
eral evanescently coupled resonators can be implemented to simulate long chains of
atoms [173]. Therefore, layered nanophononic systems could be used for the further
development of topologically engineered interface and edge states operating in the
hypersonic range, that are robust against fabrication defects.

Based on the planar structures studied in Chapter 3, we fabricated micropillar
resonators with micrometric lateral sizes, that allow to confine optical modes in the
three dimensions of space. The spacers of these photonic resonators are constituted by
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topological nanophononic cavities that are resonant at frequencies around 300 GHz.
Due to the small wavelength of the confined mechanical modes with respect to the
micropillar lateral dimensions, the acoustic cavities could still be considered as planar
nanophononic systems. The presentation of these opto-phononic platforms and of the
experimental results obtained on these structures was carried out in Chapter 4.

The finite lateral dimensions of the considered cavities lead to the creation of a
discrete set of optical resonances. This effect needs to be taken into account in order
to optically probe the acoustic properties of the embedded nanophononic resonators.
We have developed an experimental set-up that allows to couple the incident laser and
to collect the Raman scattered signals through the same confined optical mode. The
measurement of the inelastically scattered light generated by the acoustic confined
mode is here experimentally challenging, since the laser light that is reflected by the
micropillar spatially overlaps with the Raman signals, and is an intense source of
stray light. By implementing optical filtering techniques, we were able to probe the
acoustic confinement properties of nanophononic resonators embedded in micropillars.
The intensity of the measured Raman spectra strongly depends on the detuning of the
fundamental optical mode wavelength with respect to the laser line and to the probed
Raman signals. Furthermore, the magnitude of the probed Raman peaks presents a
nonlinear behavior with respect to the laser incident power. We have interpreted this
result in terms of thermo-optic effects that shift the optical cavity resonance frequency
when the intensity of the intracavity field is increased. We experimentally showed that
this effect is enhanced in micropillar resonators with respect to planar structures,
since their micrometric lateral dimensions prevents efficient heat dissipation. This
observation constitutes a first experimental result where micropillar cavities present
a distinctly different behavior with respect of their one-dimensional counterpart, in
the context of probing the acoustic properties of nanophononic structures.

The acoustic resonators studied in Chapter 4 enable the localization of optical
fields in the three directions of space. However, the characterized systems were
still considered to behave as planar structures for confined mechanical vibrations,
at 300 GHz. In order to get the simultaneous three dimensional localization of pho-
tons and phonons in micropillars, one possible strategy is to decrease the resonance
frequencies of the confined acoustic modes. It has been shown that a GaAs/AlAs
DBR-based Fabry-Perot resonator designed to confine an optical mode in the NIR
range is automatically optimized for the localization of a mechanical mode at reso-
nance frequencies around 20 GHz. This is due to the intrinsic acoustic and optical
properties of GaAs and AlAs semiconductor materials. By fabricating micropillars
out of these planar opto-phononic resonators, we can obtain a system in which the
acoustic mode and the optical field are simultaneously three-dimensionally confined.
This was recently demonstrated through pump-probe coherent phonon generation and
detection measurements.

The experimental results obtained on these three dimensional optomechanical res-
onators motivated the numerical modeling of these systems, that was presented in
Chapter 5 of this manuscript. Such theoretical study of the optical, mechanical, and
optomechanical behavior of micropillars was carried out by performing simulations
based on the finite element method.

We have first compared the behaviors of the confined optical and mechanical modes
inside a micropillar. Both fields present a vertical confinement, due to the presence
of the GaAs/AlAs DBRs, which play the role of acoustic and optical mirrors. In the
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radial direction, a micropillar acts as an acoustic and as an optical waveguide, leading
to the full localization of both fields inside the resonator. However, when considering
the confined mechanical mode spatial profile, we noticed a strong radial modulation
of the displacement field. In contrast, this modulation is not observed in the spatial
profile of the confined optical mode. Furthermore, the dependence of the mechanical
eigenfrequencies on the micropillar radius presents a series of anticrossings, which are
absent when considering the same dependence for the optical confined mode.

We have explained these particular features of the confined mechanical mode by
considering the effect of the Poisson’s ratio, starting from a simplified model, that is,
a GaAs cylinder. In particular, this parameter couples different mechanical degrees
of freedom, in this case the vertical strain components to the radial ones. This leads
to the generation of the anticrossings in the micropillar mechanical eigenfrequencies
dependence, and induces the radial modulation observed in the displacement fields
of the confined phononic mode. Furthermore, due to the coupling of the radial and
vertical mechanical degrees of freedom, the spatial profiles of the confined acoustic
mode strongly depends on the micropillar radius. This dependence entails the fast
changes observed in the values of the mechanical quality factor and of the vacuum
optomechanical coupling factor as a function of the micropillar lateral dimensions.

The numerical simulations presented in this manuscript show that micropillars are
a promising platform in the context of high frequency cavity optomechanics. Indeed,
these resonators work at unprecedented high mechanical frequencies (around 18 GHz)
with respect to state-of-the art optomechanical systems, and with high values for the
quality factors (greater than 103 in the considered DBR configurations) and for the
Q · f products (≈ 1014 Hz). In addition, they can provide very high optomechan-
ical coupling factors (of the order of 106 rad/s). This numerical description of the
micropillar opto-phononic properties is also relevant for optimizing the coupling of
quantum emitters, such as InGaAs quantum dots, to the confined mechanical and
optical modes. This would pave the way toward the study of hybrid cavity optome-
chanical systems coupled to excitonic two-level systems.

So far, the only experimental technique that allowed to put in evidence the confine-
ment of mechanical modes in micropillars at resonance frequencies around 20 GHz are
pump-probe experiments. This method relies on the impulsive generation of coherent
mechanical waves inside the considered structures. Experimental techniques based on
the measurement of micropillars thermal fluctuations, such as Brownian motion ex-
periments or Raman scattering spectroscopy, have not been successfully implemented
for this purpose. This is highly desirable in the context of cavity optomechanics,
where mechanical modes are usually probed in this regime.

The Raman scattering experiments performed on micropillars embedding acoustic
resonators have shown that it is possible to probe confined mechanical modes at reso-
nance frequencies around 300 GHz. By improving our current experimental set-up, in
particular by implementing better stray light filtering techniques, it might be possible
to approach resonance frequencies around 20 GHz. Therefore, the three-dimensionally
confined acoustic modes discussed in Chapter 5 could be probed through Raman
scattering spectroscopy measurements. This would constitute a step forward toward
the implementation of Brownian motion measurements on these optomechanical res-
onators.

Brownian motion experiments would be a very powerful tool for characterizing
the mechanical and optomechanical properties of GaAs/AlAs micropillars. Indeed,

139



Conclusions

this experimental technique is widely used in cavity optomechanics to measure the
phononic population of confined mechanical modes, and to monitor the effects of
optical forces on the mechanical motion of optomechanical resonators. Nevertheless,
implementing Brownian motion measurement schemes working at the required NIR
optical wavelengths and tens of GHz acoustic frequencies is challenging. The high
mechanical resonance frequency of the considered mechanical mode implies the use
of detection lines with large bandwidths. Reaching a sufficiently high sensitivity is
in these conditions technically difficult, in particular for optical signals in the near
infrared range.

One way to overcome these experimental challenges could be to lower the temper-
ature of the optomechanical resonator. Despite the fact that the average phononic
population in the confined mode would decrease, this could lead to an overall increase
in the intensity of the Brownian motion signals. In particular, this is due to the
fact that the mechanical quality factor of the micropillar would be enhanced. This
behavior has been observed in other GaAs based optomechanical resonators, such as
microdisks [147]. Increasing the mechanical quality factor would "sharpen" the Brow-
nian motion spectrum, facilitating its measurement over the noise background of the
detection line. Furthermore, it has been shown that, close to the electronic transitions
of the GaAs layers, the photoelastic constant p12 presents a resonant behavior [159].
This enhancement of the photoelastic effect is even stronger at low temperatures.
By measuring the micropillar optomechanical response in these conditions, it could
be possible to probe the Brownian motion of a micropillar with a sufficiently high
signal to noise ratio. This would enable the study of high frequency optomechanical
resonators with large optomechanical coupling factors, facilitating the preparation of
a mechanical oscillator in its ground state.

The work presented in this thesis offers multiple perspectives for the control of
acoustic phonon dynamics in the GHz-THz range. Through the control of the in-
teractions between phonons and other excitations, the engineering of optophononic
resonators could have an impact in novel applications in solid state physics, including
optomechanics and quantum technologies.
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