D. K. Kaul and R. L. Nagel, Sickle cell vasoocclusion: many issues and some answers, Experientia, vol.49, issue.1, pp.5-15, 1993.

A. Ashley-koch, Q. Yang, and R. S. Olney, Sickle hemoglobin (HbS) allele and sickle cell disease: a HuGE review, Am J Epidemiol, vol.151, issue.9, pp.839-884, 2000.

M. J. Stuart and R. L. Nagel, Sickle-cell disease, Lancet, vol.364, issue.9442, pp.1343-60, 2004.

G. J. Kato, O. C. Onyekwere, and M. T. Gladwin, Pulmonary hypertension in sickle cell disease: relevance to children, Pediatr Hematol Oncol, vol.24, issue.3, pp.159-70, 2007.

G. Tsaras, A. Owusu-ansah, and F. O. Boateng, Amoateng-Adjepong Y. Complications associated with sickle cell trait: a brief narrative review, Am J Med, vol.122, issue.6, pp.507-519, 2009.

M. A. Chaves, M. S. Leonart, and A. J. Do-nascimento, Oxidative process in erythrocytes of individuals with hemoglobin S, Hematology, vol.13, issue.3, pp.187-92, 2008.

J. B. Schnog, M. Gillavry, M. R. Van-zanten, A. P. Meijers, J. C. Rojer et al., Protein C and S and inflammation in sickle cell disease, Am J Hematol, vol.76, issue.1, pp.26-32, 2004.

M. A. Katz, The expanding role of oxygen free radicals in clinical medicine, West J Med, 1986.

R. P. Hebbel, W. T. Morgan, J. W. Eaton, and B. E. Hedlund, Accelerated autoxidation and heme loss due to instability of sickle hemoglobin, Proc Natl Acad Sci, vol.85, issue.1, pp.237-278, 1988.

K. Sheng, M. Shariff, and R. P. Hebbel, Comparative oxidation of hemoglobins A and S, Blood, vol.91, issue.9, pp.3467-70, 1998.

C. J. Herrick, The Evolution of Intelligence and Its Organs, Science, vol.31, issue.784, pp.7-18, 1910.

V. E. Emmel, Observations Regarding the Erythrocytic Origin of Blood Platelets, J Med Res, vol.37, issue.1, pp.67-74, 1917.

H. Eaeg, Sickle celle anemia: report of a case improved by splenectomy; experimental study of sickle cell formation, Arch Intern Med, vol.39, pp.233-257, 1927.

D. Larc, Pathology of sickle cell anemia, South Med J, vol.27, p.8396845, 1934.

L. Pauling and H. A. Itano, Sickle cell anemia a molecular disease, Science, vol.110, pp.543-551, 1949.

J. V. Neel, The inheritance of the sickling phenomenon, with particular reference to sickle cell disease, Blood, vol.6, issue.5, pp.389-412, 1951.

J. W. Harris, Studies on the destruction of red blood cells. VIII. Molecular orientation in sickle cell hemoglobin solutions, Proc Soc Exp Biol Med, vol.75, issue.1, pp.197-201, 1950.

M. F. Perutz and J. M. Mitchison, State of haemoglobin in sickle-cell anaemia, Nature, vol.166, issue.4225, pp.677-686, 1950.

V. M. Ingram, A specific chemical difference between the globins of normal human and sicklecell anaemia haemoglobin, Nature, vol.178, issue.4537, pp.792-796, 1956.

V. M. Ingram, Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin, Nature, vol.180, issue.4581, pp.326-334, 1957.

V. M. Ingram, Abnormal human haemoglobins. I. The comparison of normal human and sicklecell haemoglobins by fingerprinting, Biochim Biophys Acta, vol.28, issue.3, pp.539-584, 1958.

V. M. Ingram, Abnormal human haemoglobins. III. The chemical difference between normal and sickle cell haemoglobins, Biochim Biophys Acta, vol.36, pp.402-413, 1959.

F. B. Piel, Sickle-cell disease: geographical distribution and population estimates

, Med Sci (Paris), vol.29, issue.11, pp.965-972

D. A. Diallo, A. G. , B. A. Touré, Y. S. Sarro, M. Sima et al., Dépistage néonatal ciblé de la drépanocytose : limites du test de falciformation (test d'Emmel) dans le bilan prénatal en zone ouest africaine, Rev Epidemiol Sante Publique, vol.66, issue.3, pp.181-185, 2018.

H. Lehmann and A. B. Raper, Maintenance of high sickling rate in an African community, Br Med J, vol.2, issue.4988, pp.333-339, 1956.

, Haldane J. Disease and Evolution. Rlc Sci, vol.19, pp.68-76, 1949.

M. Willcox, A. Bjorkman, J. Brohult, P. O. Pehrson, L. Rombo et al., A case-control study in northern Liberia of Plasmodium falciparum malaria in haemoglobin S and beta-thalassaemia traits, Ann Trop Med Parasitol, vol.77, issue.3, pp.239-285, 1983.

M. Aidoo, D. J. Terlouw, M. S. Kolczak, P. D. Mcelroy, F. O. Ter-kuile et al., Protective effects of the sickle cell gene against malaria morbidity and mortality, Lancet, vol.359, issue.9314, pp.1311-1313, 2002.

E. F. Roth, M. Friedman, Y. Ueda, I. Tellez, W. Trager et al., Sickling rates of human AS red cells infected in vitro with Plasmodium falciparum malaria, Science, vol.202, issue.4368, pp.650-652, 1978.

H. L. Shear, E. F. Roth, J. Fabry, M. E. Costantini, F. D. Pachnis et al., Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria, Blood, vol.81, issue.1, pp.222-228, 1993.

F. B. Piel, A. P. Patil, R. E. Howes, O. A. Nyangiri, P. W. Gething et al., Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis, Nat Commun. Nov, vol.2, p.104

J. A. Hunt and . Iv, Abnormal human haemoglobins. IV. The chemical difference between normal human haemoglobin and haemoglobin C, Biochim Biophys Acta. Aug, vol.26, pp.409-430, 1960.

M. S. Fn-sack, S. Faye, . Diop, E. Morbidité, and . De-dakar, Health Sci Dis, vol.17, issue.4, pp.57-62, 2016.

J. Ohashi, I. Naka, J. Patarapotikul, H. Hananantachai, G. Brittenham et al., Strong linkage disequilibrium of a HbE variant with the (AT)9(T)5 repeat in the BP1 binding site upstream of the beta-globin gene in the Thai population, J Hum Genet, vol.50, issue.1, pp.7-11, 2005.

E. Silvestroni and I. Bianco, New Kind of Drepanocytic Anemia

, Prog Med (Napoli), vol.19, pp.545-553, 1963.

N. Monplaisir, G. Merault, C. Poyart, M. D. Rhoda, C. Craescu et al., Hemoglobin S Antilles: a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes, Proc Natl Acad Sci, vol.83, issue.24, pp.9363-9370, 1986.

R. L. Nagel, S. Daar, J. R. Romero, S. M. Suzuka, D. Gravell et al., HbS-oman heterozygote: a new dominant sickle syndrome, Blood, vol.92, issue.11, pp.4375-82, 1998.

M. Romana, N. Gerard, R. Chout, R. Krishnamoorthy, and T. Marianne-pepin, Origin of Hb S Antilles, Am J Hematol, vol.70, issue.4, pp.331-333, 2002.

Y. W. Kan and A. M. Dozy, Antenatal diagnosis of sickle-cell anaemia by D.N.A. analysis of amnioticfluid cells, Lancet, vol.2, issue.8096, pp.910-912, 1978.

R. L. Nagel and M. H. Steinberg, Role of epistatic (modifier) genes in the modulation of the phenotypic diversity of sickle cell anemia, Pediatr Pathol Mol Med, vol.20, issue.2, pp.123-159, 2001.

D. Labie, J. Pagnier, C. Lapoumeroulie, F. Rouabhi, O. Dunda-belkhodja et al., Common haplotype dependency of high G gamma-globin gene expression and high Hb F levels in beta-thalassemia and sickle cell anemia patients, Proc Natl Acad Sci, vol.82, issue.7, pp.2111-2115, 1985.

R. L. Nagel and M. H. Steinberg, Genetics of the bêtaS gene: origins, genetic epidemiology, ans epistasis in sickle cell anemia, Disorders of hemoglobin, pp.711-55, 2001.

S. H. Orkin, H. H. Kazazian, J. Antonarakis, S. E. Goff, S. C. Boehm et al., Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster, Nature, vol.296, issue.5858, pp.627-658, 1982.

M. A. Zago, W. A. Silva, J. Dalle, B. Gualandro, S. Hutz et al., Atypical beta(s) haplotypes are generated by diverse genetic mechanisms, Am J Hematol, vol.63, issue.2, pp.79-84, 2000.

M. A. Zago, W. A. Silva, J. Gualandro, S. Yokomizu, I. K. Araujo et al., Rearrangements of the beta-globin gene cluster in apparently typical betaS haplotypes, Haematologica, vol.86, issue.2, pp.142-147, 2001.

L. Liu, S. Muralidhar, M. Singh, C. Sylvan, I. S. Kalra et al., High-density SNP genotyping to define beta-globin locus haplotypes, Blood Cells Mol Dis, vol.42, issue.1, pp.16-24, 2009.

M. T. Magana, B. Ibarra, and K. E. Luevano, Analysis of linkage disequilibrium between the 5' and 3' haplotypes of the beta-globin gene cluster in Mexican afromestizos, Blood Cells Mol Dis, vol.44, issue.2, pp.89-94

B. Carragher, D. A. Bluemke, M. Becker, W. A. Mcdade, M. J. Potel et al., Structural analysis of polymers of sickle cell hemoglobin. III. Fibers within fascicles, J Mol Biol, vol.199, issue.2, pp.383-391, 1988.

B. Carragher, D. A. Bluemke, B. Gabriel, M. J. Potel, and R. Josephs, Structural analysis of polymers of sickle cell hemoglobin. I. Sickle hemoglobin fibers, J Mol Biol, vol.199, issue.2, pp.315-346, 1988.

D. A. Bluemke, B. Carragher, M. J. Potel, and R. Josephs, Structural analysis of polymers of sickle cell hemoglobin. II. Sickle hemoglobin macrofibers, J Mol Biol, vol.199, issue.2, pp.333-381, 1988.

G. Dykes, R. H. Crepeau, and S. J. Edelstein, Three-dimensional reconstruction of the fibres of sickle cell haemoglobin, Nature, vol.272, issue.5653, pp.506-516, 1978.

S. J. Edelstein, J. N. Telford, and R. H. Crepeau, Structure of fibers of sickle cell hemoglobin, Proc Natl Acad Sci, vol.70, issue.4, pp.1104-1111, 1973.

W. A. Eaton and J. Hofrichter, Sickle cell hemoglobin polymerization, Adv Protein Chem, vol.40, pp.63-279, 1990.

R. E. Samuel, E. D. Salmon, and R. W. Briehl, Nucleation and growth of fibres and gel formation in sickle cell haemoglobin, Nature, vol.345, issue.6278, pp.833-838, 1990.

D. Labie and J. Elion, Molecular and cellular pathophysiology of sickle cell anemia

, Pathol Biol (Paris), vol.47, issue.1, pp.7-12, 1999.

M. H. Steinberg, Pathophysiology of sickle cell disease, Baillieres Clin Haematol, vol.11, issue.1, pp.163-84, 1998.

F. A. Kuypers, Hemoglobin s polymerization and red cell membrane changes, Hematol Oncol Clin North Am, vol.28, issue.2, pp.155-79

D. J. Harrington, K. Adachi, and W. E. Royer, The high resolution crystal structure of deoxyhemoglobin S, J Mol Biol, vol.272, issue.3, pp.398-407, 1997.

D. Allan and P. Raval, Some morphological consequences of uncoupling the lipid bilayer from the plasma membrane skeleton in intact erythrocytes, Biomed Biochim Acta, vol.42, pp.11-17, 1983.

N. Blumenfeld, A. Zachowski, F. Galacteros, Y. Beuzard, and P. F. Devaux, Transmembrane mobility of phospholipids in sickle erythrocytes: effect of deoxygenation on diffusion and asymmetry, Blood, vol.77, issue.4, pp.849-54, 1991.

P. M. Henson, D. L. Bratton, and V. A. Fadok, Apoptotic cell removal, Curr Biol, vol.11, issue.19, pp.795-805, 2001.

J. T. Dodge and G. B. Phillips, Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells, J Lipid Res, vol.8, issue.6, pp.667-75, 1967.

V. A. Fadok, A. De-cathelineau, D. L. Daleke, P. M. Henson, and D. L. Bratton, Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts, J Biol Chem, vol.276, issue.2, pp.1071-1078, 2001.

F. A. Kuypers, Membrane lipid alterations in hemoglobinopathies, Hematology Am Soc Hematol Educ Program, pp.68-73, 2007.

F. A. Kuypers and K. De-jong, The role of phosphatidylserine in recognition and removal of erythrocytes, Cell Mol Biol, vol.50, issue.2, pp.147-58, 2004.

A. M. Dupuy, N. Terrier, L. Senecal, M. Morena, H. Leray et al.,

, Nephrologie, vol.24, issue.7, pp.337-378, 2003.

G. J. Kato, F. B. Piel, C. D. Reid, M. H. Gaston, K. Ohene-frempong et al., Sickle cell disease. Nat Rev Dis Primers, vol.4, p.18010

A. Piccin, W. G. Murphy, and O. P. Smith, Circulating microparticles: pathophysiology and clinical implications, Blood Rev, vol.21, issue.3, pp.157-71, 2007.

M. Westerman, A. Pizzey, J. Hirschman, M. Cerino, Y. Weil-weiner et al.,

, Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy, Br J Haematol, vol.142, issue.1, pp.126-161, 2008.

M. Westerman and J. B. Porter, Red blood cell-derived microparticles: An overview. Blood Cells Mol Dis, vol.59, pp.134-143, 2016.

A. I. Alayash, Oxidative pathways in the sickle cell and beyond. Blood Cells Mol Dis, vol.70, pp.78-86, 2017.

R. P. Hebbel and N. S. Key, Microparticles in sickle cell anaemia: promise and pitfalls, Br J Haematol, vol.174, issue.1, pp.16-29, 2016.

J. Elion and D. L. , Bases physiopathologiques moléculaires et cellulaires du traitement de la drépanocytose, Hématologie, vol.2, issue.6, pp.499-510, 1996.

G. B. Nash, C. S. Johnson, and H. J. Meiselman, Rheologic impairment of sickle RBCs induced by repetitive cycles of deoxygenation-reoxygenation, Blood, vol.72, issue.2, pp.539-584, 1988.

E. A. Evans and N. Mohandas, Membrane-associated sickle hemoglobin: a major determinant of sickle erythrocyte rigidity, Blood, vol.70, issue.5, pp.1443-1452, 1987.

F. A. Kuypers, Hemoglobin s polymerization and red cell membrane changes, Hematol Oncol Clin North Am, vol.28, issue.2, pp.155-79, 2014.

M. Seakins, W. N. Gibbs, P. F. Milner, and J. F. Bertles, Erythrocyte Hb-S concentration. An important factor in the low oxygen affinity of blood in sickle cell anemia, J Clin Invest, vol.52, issue.2, pp.422-454, 1973.

S. C. Rogers, J. G. Ross, A. Avignon, L. B. Gibbons, V. Gazit et al., Sickle hemoglobin disturbs normal coupling among erythrocyte O2 content, glycolysis, and antioxidant capacity, Blood, vol.121, issue.9, pp.1651-62, 2013.

Y. Zhang, V. Berka, A. Song, K. Sun, W. Wang et al., Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression, J Clin Invest, vol.124, issue.6, pp.2750-61, 2014.

K. Sun, Y. Zhang, M. V. Bogdanov, H. Wu, A. Song et al., Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity, Blood, vol.125, issue.10, pp.1643-52, 2015.

Y. Sun, F. Hong, L. Zhang, and L. Feng, The sphingosine-1-phosphate analogue, FTY-720, promotes the proliferation of embryonic neural stem cells, enhances hippocampal neurogenesis and learning and memory abilities in adult mice, Br J Pharmacol, vol.173, issue.18, pp.2793-807, 2016.

W. A. Eaton, J. Hofrichter, and P. D. Ross, Editorial: Delay time of gelation: a possible determinant of clinical severity in sickle cell disease, Blood, vol.47, issue.4, pp.621-628, 1976.

F. A. Ferrone, The delay time in sickle cell disease after 40 years: A paradigm assessed, Am J Hematol, vol.90, issue.5, pp.438-483, 2015.

V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, Free heme and the polymerization of sickle cell hemoglobin, Biophys J, vol.99, issue.6, pp.1976-85, 2010.

C. T. Noguchi and A. N. Schechter, Sickle hemoglobin polymerization in solution and in cells, Annu Rev Biophys Biophys Chem, vol.14, pp.239-63, 1985.

C. Brugnara, L. De-franceschi, and S. L. Alper, Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives, J Clin Invest, vol.92, issue.1, pp.520-526, 1993.

R. P. Hebbel, M. A. Boogaerts, J. W. Eaton, and M. H. Steinberg, Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity, N Engl J Med, vol.302, issue.18, pp.992-997, 1980.

R. M. Bookchin, T. Balazs, and L. C. Landau, Determinants of red cell sickling. Effects of varying pH and of increasing intracellular hemoglobin concentration by osmotic shrinkage, J Lab Clin Med, vol.87, issue.4, pp.597-616, 1976.

R. W. Briehl and S. Ewert, Effects of pH, 2,3-diphosphoglycerate and salts on gelation of sickle cell deoxyhemoglobin, J Mol Biol, vol.80, issue.3, pp.445-58, 1973.

P. Connes, T. Alexy, J. Detterich, M. Romana, M. D. Hardy-dessources et al., The role of blood rheology in sickle cell disease, Blood Rev, vol.30, issue.2, pp.111-119, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01881648

A. R. Pries and . Kw, Normal endothelium, Handb Exp Pharmacol, vol.176, issue.1, pp.1-40, 2006.

. Florey, The endothelial cell, Br Med J. Aug, vol.27, issue.5512, pp.487-90, 1966.

H. F. Bunn, Pathogenesis and treatment of sickle cell disease, N Engl J Med, vol.337, issue.11, pp.762-771, 1997.

R. P. Hebbel and G. M. Vercellotti, The endothelial biology of sickle cell disease, J Lab Clin Med, vol.129, issue.3, pp.288-93, 1997.

D. K. Kaul, R. L. Nagel, D. Chen, and H. M. Tsai, Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion. Blood, vol.81, pp.2429-2467, 1993.

A. Turhan, L. A. Weiss, N. Mohandas, B. S. Coller, and P. S. Frenette, Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm, Proc Natl Acad Sci, vol.99, issue.5, pp.3047-51, 2002.

M. J. Telen, M. Batchvarova, S. Shan, P. H. Bovee-geurts, R. Zennadi et al., Sevuparin binds to multiple adhesive ligands and reduces sickle red blood cell-induced vaso-occlusion, Br J Haematol, vol.175, issue.5, pp.935-983

R. Hoover, R. Rubin, G. Wise, and R. Warren, Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures, Blood, vol.54, issue.4, pp.872-878, 1979.

R. P. Hebbel, J. W. Eaton, M. H. Steinberg, and J. G. White, Erythrocyte/endothelial interactions in the pathogenesis of sickle-cell disease: a "real logical" assessment, Blood Cells, vol.8, issue.1, pp.163-73, 1982.

P. S. Frenette and G. F. Atweh, Sickle cell disease: old discoveries, new concepts, and future promise, J Clin Invest, vol.117, issue.4, pp.850-858, 2007.

M. J. Telen, Erythrocyte blood group antigens: polymorphisms of functionally important molecules, Semin Hematol, vol.33, issue.4, pp.302-316, 1996.

M. E. Fabry and . Nr, Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications, Blood Cells, vol.8, issue.1, pp.9-15, 1982.

J. Tripette, T. Alexy, M. D. Hardy-dessources, D. Mougenel, E. Beltan et al., Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease, Haematologica, 2009.

J. E. Brittain and L. V. Parise, The alpha4beta1 integrin in sickle cell disease, Transfus Clin Biol, 2008.

J. E. D-labie, composante majeure de la maladie drépanocytaire: les cellules circulantes en sont le reflet. médecine/sciences, vol.3, pp.352-357, 1998.

M. Phelan, S. P. Perrine, M. Brauer, and D. V. Faller, Sickle erythrocytes, after sickling, regulate the expression of the endothelin-1 gene and protein in human endothelial cells in culture, J Clin Invest, vol.96, issue.2, pp.1145-51, 1995.

M. Yanagisawa, . Kh, S. Kimura, K. Goto, and T. Masaki, A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels, J Hypertens Suppl, vol.6, issue.4, pp.188-91, 1988.

A. Inoue, M. Yanagisawa, S. Kimura, Y. Kasuya, T. Miyauchi et al., The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes, Proc Natl Acad Sci, vol.86, issue.8, pp.2863-2870, 1989.

B. Hocher, C. Thone-reineke, C. Bauer, M. Raschack, and H. H. Neumayer, The paracrine endothelin system: pathophysiology and implications in clinical medicine, Eur J Clin Chem Clin Biochem, vol.35, issue.3, pp.175-89, 1997.

F. Finsnes, G. Christensen, T. Lyberg, O. M. Sejersted, and O. H. Skjonsberg, Increased synthesis and release of endothelin-1 during the initial phase of airway inflammation, Am J Respir Crit Care Med, vol.158, issue.5, pp.1600-1606, 1998.

C. Boulanger and T. F. Luscher, Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide, J Clin Invest, vol.85, issue.2, pp.587-90, 1990.

T. F. Luscher, Z. Yang, M. Tschudi, V. Segesser, L. Stulz et al., Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins, Circ Res, vol.66, issue.4, pp.1088-94, 1990.

A. Rivera, M. A. Rotter, and C. Brugnara, Endothelins activate Ca(2+)-gated K(+) channels via endothelin B receptors in CD-1 mouse erythrocytes, Am J Physiol, vol.277, issue.4, pp.746-54, 1999.

A. Rivera, P. Jarolim, and C. Brugnara, Modulation of Gardos channel activity by cytokines in sickle erythrocytes, Blood, vol.99, issue.1, pp.357-603, 2002.

K. C. Wood, L. L. Hsu, and M. T. Gladwin, Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med, vol.44, pp.1506-1534, 2008.

R. A. Myers, A. Defazio, and M. P. Kelly, Chronic carbon monoxide exposure: a clinical syndrome detected by neuropsychological tests, J Clin Psychol, vol.54, issue.5, pp.555-67, 1998.

M. Grau, P. S. Ali, J. Walpurgis, K. Thevis, M. Bloch et al., RBC-NOS-dependent Snitrosylation of cytoskeletal proteins improves RBC deformability, PLoS One, vol.8, issue.2, p.56759, 2013.

M. Grau, A. Mozar, K. Charlot, Y. Lamarre, L. Weyel et al., High red blood cell nitric oxide synthase activation is not associated with improved vascular function and red blood cell deformability in sickle cell anaemia, Br J Haematol, vol.168, issue.5, pp.728-764, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01881538

G. P. Rodgers, A. N. Schechter, C. T. Noguchi, H. G. Klein, A. W. Nienhuis et al., Periodic microcirculatory flow in patients with sickle-cell disease, N Engl J Med, vol.311, issue.24, pp.1534-1542, 1984.

S. I. Hammerman, S. Kourembanas, T. J. Conca, M. Tucci, M. Brauer et al., Endothelin-1 production during the acute chest syndrome in sickle cell disease, Am J Respir Crit Care Med, vol.156, issue.1, pp.280-285, 1997.

C. Lapoumeroulie, M. Benkerrou, M. H. Odievre, R. Ducrocq, M. Brun et al., Decreased plasma endothelin-1 levels in children with sickle cell disease treated with hydroxyurea, Haematologica, vol.90, issue.3, pp.401-404, 2005.

N. Sabaa, L. De-franceschi, P. Bonnin, Y. Castier, G. Malpeli et al., Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sicklecell disease, J Clin Invest, vol.118, issue.5, pp.1924-1957, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02142776

M. Brun, . Bs, P. O. Couraud, J. Elion, R. Krishnamoorthy et al., Hydroxyurea downregulates endothelin-1 gene expression and upregulates ICAM-1 gene expression in cultured human endothelial cells, Pharmacogenomics J, vol.3, issue.4, pp.215-241, 2003.

D. C. Rees, P. Cervi, D. Grimwade, A. O'driscoll, M. Hamilton et al., The metabolites of nitric oxide in sickle-cell disease, British Journal of Haematology, vol.91, pp.834-837, 1995.

B. A. Diwan, M. T. Gladwin, C. T. Noguchi, J. M. Ward, A. L. Fitzhugh et al., Renal pathology in hemizygous sickle cell mice, Toxicol Pathol, vol.30, issue.2, pp.254-62, 2002.

C. R. Morris, F. A. Kuypers, S. Larkin, E. P. Vichinsky, and L. A. Styles, Patterns of arginine and nitric oxide in patients with sickle cell disease with vaso-occlusive crisis and acute chest syndrome, J Pediatr Hematol Oncol, vol.22, issue.6, pp.515-535, 2000.

M. J. Stuart and B. N. Setty, Sickle cell acute chest syndrome: pathogenesis and rationale for treatment, Blood, vol.94, issue.5, pp.1555-60, 1999.

J. Pernow and C. Jung, Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res, vol.98, pp.334-377, 2013.

G. R. Serjeant, The natural history of sickle cell disease. Cold Spring Harb Perspect Med, vol.3, p.11783, 2013.

M. T. Gladwin and E. Vichinsky, Pulmonary complications of sickle cell disease, N Engl J Med, vol.359, issue.21, pp.2254-65, 2008.

G. J. Kato, M. T. Gladwin, and M. H. Steinberg, Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes, Blood Rev, vol.21, issue.1, pp.37-47, 2007.

C. R. Morris, Mechanisms of vasculopathy in sickle cell disease and thalassemia, Hematology Am Soc Hematol Educ Program, pp.177-85, 2008.

R. P. Hebbel, Reconstructing sickle cell disease: a data-based analysis of the "hyperhemolysis paradigm" for pulmonary hypertension from the perspective of evidence-based medicine, Am J Hematol, vol.86, issue.2, pp.123-54, 2011.

C. Renoux, . Jp, C. Faes, P. Mury, B. Eglenen et al., Association between Oxidative Stress, Genetic Factors, and Clinical Severity in Children with Sickle Cell Anemia, J Pediatr, vol.195, pp.228-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881748

A. Wonkam, N. Mk, V. J. Bitoungui, C. Chemegni, B. Chimusa et al., Clinical and genetic factors are associated with pain and hospitalisation rates in sickle cell anaemia in Cameroon, Br J Haematol, vol.180, issue.1, pp.134-146, 2018.

O. S. Platt, . Bd, W. F. Rosse, P. F. Milner, O. Castro et al., Mortality in sickle cell disease. Life expectancy and risk factors for early death, N Engl J Med, vol.330, issue.23, pp.1639-1683, 1994.

. F. Fa, Polymerization and sickle cell disease: a molecular view. Microcirculation, vol.11, pp.115-143, 2004.

M. H. Steinberg and P. Sebastiani, Genetic modifiers of sickle cell disease, Am J Hematol, vol.87, issue.8, pp.795-803, 2012.

C. R. Morris, Vascular risk assessment in patients with sickle cell disease, Haematologica, vol.96, issue.1, pp.1-5, 2011.

H. A. Itano, Solubilities of naturally occurring mixtures of human hemoglobin, Arch Biochem Biophys, vol.47, issue.1, pp.148-59, 1953.

F. Cotton, X. Malaviolle, F. Vertongen, and B. Gulbis, Evaluation of an automated capillary electrophoresis system in the screening for hemoglobinopathies, Clin Lab, vol.55, issue.5-6, pp.217-238, 2009.

J. Riou, S. Pissard, M. Goossens, and H. Wajcman, Improvements in phenotype studies of hemoglobin disorders brought by advances in reversed-phase chromatography of globin chains, Int J Lab Hematol, vol.37, issue.2, pp.279-86, 2015.

H. Wajcman and J. Riou, Globin chain analysis: an important tool in phenotype study of hemoglobin disorders, Clin Biochem, vol.42, issue.18, pp.1802-1808, 2009.

E. Vichinsky, D. Hurst, A. Earles, K. Kleman, and B. Lubin, Newborn screening for sickle cell disease: effect on mortality, Pediatrics, vol.81, issue.6, pp.749-55, 1988.

, Newborn screening for sickle cell disease and other hemoglobinopathies, Consensus conference, vol.258, pp.1205-1214, 1987.

J. Bardakdjian-michau, Neonatal screening of sickle cell disease in France, Arch Pediatr, vol.15, issue.5, pp.738-778, 2008.

J. Bardakdjian-michau, M. Guilloud-batailie, M. Maier-redelsperger, J. Elion, R. Girot et al., Decreased morbidity in homozygous sickle cell disease detected at birth, Hemoglobin, vol.26, issue.3, pp.211-218, 2002.

M. C. Rahimy, A. Gangbo, G. Ahouignan, R. Adjou, C. Deguenon et al., Effect of a comprehensive clinical care program on disease course in severely ill children with sickle cell anemia in a sub-Saharan African setting, Blood, vol.102, issue.3, pp.834-842, 2003.

E. Kafando, M. Sawadogo, F. Cotton, F. Vertongen, and B. Gulbis, Neonatal screening for sickle cell disorders in Ouagadougou, Burkina Faso: a pilot study, J Med Screen, vol.12, issue.3, pp.112-116, 2005.

D. A. Diallo, Sickle cell disease in Africa: current situation and strategies for improving the quality and duration of survival

, Bull Acad Natl Med, vol.192, issue.7, pp.1361-72, 2008.

D. A. Diallo, A. Guindo, B. A. Toure, Y. S. Sarro, M. Sima et al., Targeted newborn screening for sickle-cell anemia: Sickling test (Emmel test) boundaries in the prenatal assessment

, Rev Epidemiol Sante Publique, vol.66, issue.3, pp.181-186, 2018.

L. Tshilolo, L. M. Aissi, D. Lukusa, C. Kinsiama, S. Wembonyama et al., Neonatal screening for sickle cell anaemia in the Democratic Republic of the Congo: experience from a pioneer project on 31 204 newborns, J Clin Pathol, vol.62, issue.1, pp.35-43, 2009.

A. B. K-ohene-frempong, H. Tetteh, and &. Nkrumah, Newborn Screening for Sickle Cell Disease in Ghana, Pediatric Research, vol.58, p.401, 2005.

M. De-montalembert and L. Tshilolo, Is therapeutic progress in the management of sickle cell disease applicable in sub-Saharan Africa?

, Med Trop (Mars), vol.67, pp.612-618, 2007.

D. C. Rees, T. N. Williams, and M. T. Gladwin, Sickle-cell disease, Lancet, vol.376, issue.9757, pp.2018-2049, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552602

S. K. Ballas, Sickle cell disease: Classification of clinical complications and approaches to preventive and therapeutic management, Clin Hemorheol Microcirc, vol.68, issue.2-3, pp.105-133, 2018.

S. K. Ballas, K. Gupta, A. , and P. , Sickle cell pain: a critical reappraisal, Blood, vol.120, issue.18, pp.3647-56, 2012.

O. S. Platt, B. D. Thorington, D. J. Brambilla, P. F. Milner, W. F. Rosse et al., Pain in sickle cell disease. Rates and risk factors, N Engl J Med, vol.325, issue.1, pp.11-17, 1991.

P. T. Mcgann and R. E. Ware, Hydroxyurea for sickle cell anemia: what have we learned and what questions still remain?, Curr Opin Hematol, vol.18, issue.3, pp.158-65, 2011.

S. Charache, M. L. Terrin, R. D. Moore, G. J. Dover, F. B. Barton et al., Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia, N Engl J Med, vol.332, issue.20, pp.1317-1339, 1995.

L. Shaiova and D. Wallenstein, Outpatient management of sickle cell pain with chronic opioid pharmacotherapy, J Natl Med Assoc, vol.96, issue.7, pp.984-990, 2004.

P. T. Mcgann, J. M. Flanagan, T. A. Howard, S. D. Dertinger, J. He et al., Genotoxicity associated with hydroxyurea exposure in infants with sickle cell anemia: results from the BABY-HUG Phase III Clinical Trial. Pediatr Blood Cancer, vol.59, pp.254-261

R. E. Ware, B. R. Davis, W. H. Schultz, R. C. Brown, B. Aygun et al., Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, openlabel, phase 3, non-inferiority trial, Lancet. Feb, vol.13, pp.661-70, 10019.

S. K. Ballas, F. B. Barton, M. A. Waclawiw, P. Swerdlow, J. R. Eckman et al., Hydroxyurea and sickle cell anemia: effect on quality of life. Health Qual Life Outcomes, vol.4, p.59, 2006.

D. K. Kaul, H. M. Tsai, X. D. Liu, M. T. Nakada, R. L. Nagel et al., Monoclonal antibodies to alphaVbeta3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor, Blood, vol.95, issue.2, pp.368-74, 2000.

P. Adams-graves, A. Kedar, M. Koshy, M. Steinberg, R. Veith et al., RheothRx (poloxamer 188) injection for the acute painful episode of sickle cell disease: a pilot study, Blood, vol.90, issue.5, pp.2041-2047, 1997.

S. T. Ohnishi and T. Ohnishi, In vitro effects of aged garlic extract and other nutritional supplements on sickle erythrocytes, J Nutr, vol.131, issue.3s, pp.1085-92, 2001.

S. T. Ohnishi, T. Ohnishi, and G. B. Ogunmola, Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro, Blood Cells Mol Dis, vol.27, issue.1, pp.148-57, 2001.

S. K. Ballas, Hydration of sickle erythrocytes using a herbal extract (Pfaffia paniculata) in vitro, Br J Haematol, vol.111, issue.1, pp.359-62, 2000.

P. C. Singh and S. K. Ballas, Emerging drugs for sickle cell anemia, Expert Opin Emerg Drugs, vol.20, issue.1, pp.47-61, 2015.

S. K. Ballas, R. L. Bauserman, W. F. Mccarthy, O. L. Castro, W. R. Smith et al., Hydroxyurea and acute painful crises in sickle cell anemia: effects on hospital length of stay and opioid utilization during hospitalization, outpatient acute care contacts, and at home, J Pain Symptom Manage, vol.40, issue.6, pp.870-82, 2010.

M. T. Gladwin, G. J. Kato, D. Weiner, O. C. Onyekwere, C. Dampier et al., Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial, JAMA, vol.305, issue.9, pp.893-902, 2011.

C. A. Head, P. Swerdlow, W. A. Mcdade, R. M. Joshi, T. Ikuta et al., Beneficial effects of nitric oxide breathing in adult patients with sickle cell crisis, Am J Hematol, vol.85, issue.10, pp.800-802, 2010.

M. C. Walters, R. Storb, M. Patience, W. Leisenring, T. Taylor et al., Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease, Blood, vol.95, issue.6, pp.1918-1942, 2000.

M. C. Walters, Bone marrow transplantation for sickle cell disease: where do we go from here?, J Pediatr Hematol Oncol, issue.6, pp.467-74, 1999.

G. Buchanan, E. Vichinsky, L. Krishnamurti, and S. Shenoy, Severe sickle cell disease--pathophysiology and therapy, Biol Blood Marrow Transplant, vol.16, issue.1, pp.64-71, 2010.

F. Locatelli and D. Pagliara, Allogeneic hematopoietic stem cell transplantation in children with sickle cell disease. Pediatr Blood Cancer, vol.59, pp.372-378, 2012.

B. F. Gene-therapy-g-;-embury, S. H. Hebble, R. P. Mohandas, N. Steinberg, and M. H. , Sickle Cell Disease: Basic Principles and Clinical Practice, pp.853-60, 1994.

A. Cole-strauss, K. Yoon, Y. Xiang, B. C. Byrne, M. C. Rice et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide, Science, vol.273, issue.5280, pp.1386-1395, 1996.

M. Cavazzana-calvo, E. Payen, O. Negre, G. Wang, K. Hehir et al., Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia, Nature, vol.467, issue.7313, pp.318-340, 2010.

J. A. Ribeil, S. Hacein-bey-abina, E. Payen, A. Magnani, M. Semeraro et al., Gene Therapy in a Patient with Sickle Cell Disease, N Engl J Med. Mar, vol.2, issue.9, pp.848-55
URL : https://hal.archives-ouvertes.fr/inserm-01834781

C. Antoniani, V. Meneghini, A. Lattanzi, T. Felix, O. Romano et al., Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human beta-globin locus, Blood, vol.131, issue.17, pp.1960-73, 2018.

D. P. Dever, R. O. Bak, A. Reinisch, J. Camarena, G. Washington et al., CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells, Nature, vol.539, issue.7629, pp.384-393, 2016.

L. Thiam, A. Drame, I. Z. Coly, F. N. Diouf, N. Seck et al., Epidemiological, clinical and hematological profiles of homozygous sickle cell disease during the intercritical period among children in Ziguinchor

, Pan Afr Med J, vol.28, p.208, 2017.

I. Diagne, O. Ndiaye, C. Moreira, H. Signate-sy, B. Camara et al., Arch Pediatr, vol.7, issue.1, pp.16-24, 2000.

D. Boiro, . Gm, and A. Thiongane,

, Drépanocytose chez l'enfant: profils clinique et évolutif à propos de 138 cas suivis au service de pédiatrie de l'hôpital Abass Ndao de Dakar, Med Afr Noir, vol.63, issue.6, pp.326-332, 2016.

I. Diagne, N. D. Diagne-gueye, H. Signate-sy, B. Camara, P. Lopez-sall et al., Management of children with sickle cell disease in Africa: experience in a cohort of children at the Royal Albert Hospital

, Med Trop (Mars), vol.63, issue.4-5, pp.513-533, 2003.

I. Diagne, C. On, H. Moreira, B. Signate-sy, S. Camara et al., Les syndromes drépanocytaires majeurs en pédiatrie à Dakar (Sénégal). rchives de pédiatrie, Janv, vol.7, issue.1, pp.16-24, 2000.

I. Diagne, M. B. , C. Moreira, I. , H. Signate-sy et al., Diack-Mbaye I, M. Fall. Lithiase biliaire et drépanocytose homozygote en péddiatrie à Dakar (Sénégal) Archives de Pédiatrie, vol.6, pp.1286-1292, 1999.

S. Diop, . Dd, and M. L. Seck, Facteurs prédictifs des complications chroniques de la drépanocytose homozygote chez l'adulte à Dakar (Sénégal), Med Trop, vol.70, pp.471-474, 2010.

I. Dème-ly, . Di, R. Tamouza, T. N. Dièye, A. Sylla et al., HLA-E et susceptibilité aux infections bactériennes sévères chez les enfants et adolescents drépanocytaires homozygotes sénégalais, Dakar Med, vol.57, issue.2, 2012.

S. Matar, P. Cs, G. Madièye, S. Insa, M. Diaw et al., Etude de l'activité antifalcémiante d'extraits de racines de Leptadenia hastata Decne. (Asclepiadacae), Int J Biol Chem Sci, vol.9, issue.3, pp.1375-1383, 2015.

S. Cheikh, . Ms, F. Babacar, M. Diaw, D. Insa et al., Étude in vitro de l'effet antifalcémiant des globules rouges et de l'activité antioxydante d'extraits de la poudre de racines de Maytenus senegalensis Lam (Celestraceae), Int J Biol Chem Sci, vol.10, issue.3, pp.1017-1026, 2016.

P. Lopez-sall-pad, I. Diagne, A. Cisse, C. M. Mahou, M. Niang-sylla et al., Apport des récepteurs solubles de la transferrine dans l'évaluation du statut en fer au cours de la drépanocytose, Ann Biol Clin, vol.62, issue.4, pp.415-421, 2004.

D. A. Df, N. G. Sarr, S. Traore, . Diagne-i, . Lopez-sall-p et al., Lésions péroxydatives des phospholipides érythrocytaires au cours de la drépanocytose AS, Dakar Médical, vol.47, issue.1, pp.133-137, 2002.

S. N. Diatta-a.-t-fao, F. Diallo, . Diagne-i, . Lopez-sall-p, . Wone-i et al., Prévalence des anticorps antiphospholipides au cours de la drépanocytose homozygote, Ann Biol Clin, vol.63, issue.3, pp.291-294, 2004.

P. M. Fg-t, M. Seck, M. O. Kane, R. Diallo, M. Diatta et al., Aggravation de l'anémie et polymorphisme de l'haptoglobine au cours de la drépanocytose au Sénégal, International Journal of Biological and Chemical Sciences, vol.8, issue.3, pp.975-982, 2014.

F. Gueye, C. Ne, G. Pm, N. Diallo-r, D. Lopez-sall-p et al., Perturbations de paramètres Lipidiques au cours de la Drépanocytose, Rev CAMES SANTE, vol.2, issue.2, pp.35-41, 2014.

G. Diatta-a-cf, . Tall-f, T. Diallo-f, . Fall-a.-o, G. Sarr et al., Serum lipids and oxidized low density lipoprotein levels in sickle cell disease: Assessment and pathobiological significance, African Journal of Biochemistry Research, vol.8, issue.2, pp.39-42, 2014.

B. Ranque, A. M. , and I. Bara, Early renal damage in patients with sickle cell disease in sub-Saharan Africa: a multinational, prospective, cross-sectional study, Lancet Haematol, vol.1, pp.64-73, 2014.

M. Diaw, P. Connes, A. Samb, A. K. Sow, N. D. Sall et al., Intraday blood rheological changes induced by Ramadan fasting in sickle cell trait carriers, Chronobiol Int, vol.30, issue.9, pp.1116-1138, 2013.

M. Diaw, V. Pialoux, C. Martin, A. Samb, S. Diop et al., Sickle Cell Trait Worsens Oxidative Stress, Abnormal Blood Rheology, and Vascular Dysfunction in Type 2 Diabetes. Diabetes Care, vol.38, pp.2120-2127, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01881533

N. Murray, B. E. Serjeant, and G. R. Serjeant, Sickle cell-hereditary persistence of fetal haemoglobin and its differentiation from other sickle cell syndromes, Br J Haematol, vol.69, issue.1, pp.89-92, 1988.

M. H. Steinberg, D. H. Chui, G. J. Dover, P. Sebastiani, and A. Alsultan, Fetal hemoglobin in sickle cell anemia: a glass half full? Blood, vol.123, pp.481-486

M. De-montalembert, Stimulation of fetal hemoglobin production in children with sickle cell anemia, Arch Pediatr, vol.3, issue.3, pp.207-216, 1996.

O. S. Platt, D. J. Brambilla, W. F. Rosse, P. F. Milner, O. Castro et al., Mortality in sickle cell disease. Life expectancy and risk factors for early death, N Engl J Med, vol.330, issue.23, pp.1639-1683, 1994.

M. Cavazzana, C. Antoniani, and A. Miccio, Gene Therapy for beta-Hemoglobinopathies, Mol Ther, vol.25, issue.5, pp.1142-54, 2017.

G. Galarneau, C. D. Palmer, V. G. Sankaran, S. H. Orkin, J. N. Hirschhorn et al., Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation, Nat Genet, vol.42, issue.12, pp.1049-51, 2010.

I. Akinsheye, N. Solovieff, D. Ngo, A. Malek, P. Sebastiani et al., Fetal hemoglobin in sickle cell anemia: molecular characterization of the unusually high fetal hemoglobin phenotype in African Americans, Am J Hematol, vol.87, issue.2, pp.217-226, 2011.

R. L. Nagel, M. E. Fabry, J. Pagnier, I. Zohoun, H. Wajcman et al., Hematologically and genetically distinct forms of sickle cell anemia in Africa. The Senegal type and the Benin type, N Engl J Med, vol.312, issue.14, pp.880-884, 1985.

R. L. Nagel, S. K. Rao, O. Dunda-belkhodja, M. M. Connolly, M. E. Fabry et al., The hematologic characteristics of sickle cell anemia bearing the Bantu haplotype: the relationship between G gamma and HbF level, Blood, vol.69, issue.4, pp.1026-1056, 1987.

F. Bernaudin, C. Arnaud, A. Kamdem, I. Hau, F. Lelong et al., Biological impact of alpha genes, beta haplotypes, and G6PD activity in sickle cell anemia at baseline and with hydroxyurea, Blood Adv, vol.2, issue.6, pp.626-663, 2018.

D. Labie, O. Dunda-belkhodja, F. Rouabhi, J. Pagnier, A. Ragusa et al., The -158 site 5' to the G gamma gene and G gamma expression, Blood, vol.66, issue.6, pp.1463-1468, 1985.

S. Pissard and Y. Beuzard, A potential regulatory region for the expression of fetal hemoglobin in sickle cell disease, Blood, vol.84, issue.1, pp.331-339, 1994.

J. G. Gilman and T. H. Huisman, A mutation associated with elevated G gamma chain in sickle cell anemia and hereditary persistence of fetal hemoglobin, Prog Clin Biol Res, vol.191, pp.141-150, 1985.

G. Lettre, V. G. Sankaran, M. A. Bezerra, A. S. Araujo, M. Uda et al., DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease, Proc Natl Acad Sci, vol.105, issue.33, pp.11869-74, 2008.

J. Mohammdai-asl, A. Ramezani, F. Norozi, A. Alghasi, A. A. Asnafi et al., The Influence of Polymorphisms in Disease Severity in beta-Thalassemia, Biochem Genet, vol.53, issue.9, pp.235-278, 2015.

G. Galarneau, C. D. Palmer, V. G. Sankaran, S. H. Orkin, J. N. Hirschhorn et al., Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation, Nat Genet, vol.42, issue.12, pp.1049-51

M. Uda, R. Galanello, S. Sanna, G. Lettre, V. G. Sankaran et al., Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia, Proc Natl Acad Sci, vol.105, issue.5, pp.1620-1625, 2008.

P. Sebastiani, J. J. Farrell, A. Alsultan, S. Wang, H. L. Edward et al., BCL11A enhancer haplotypes and fetal hemoglobin in sickle cell anemia, Blood Cells Mol Dis, vol.54, issue.3, pp.224-254, 2015.

D. Labie,

, Med Sci

U. Vikas, M. A. , Y. Mahavir, and T. Archana, RNA Silencing: An Approach for the Treatment of -Thalassemia, J Cell Sci Ther, vol.3, issue.7, pp.2-4, 2012.

I. Akinsheye, A. Alsultan, N. Solovieff, D. Ngo, C. T. Baldwin et al., Fetal hemoglobin in sickle cell anemia, Blood, vol.118, issue.1, pp.19-27, 2011.

A. Wonkam, N. Bitoungui, V. J. Vorster, A. A. Ramesar, R. Cooper et al., Association of variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon, PLoS One, vol.9, issue.3, p.92506, 2014.

Y. Lai, Y. Chen, B. Chen, H. Zheng, S. Yi et al., Genetic Variants at BCL11A and HBS1L-MYB loci Influence Hb F Levels in Chinese Zhuang beta-Thalassemia Intermedia Patients, Hemoglobin, vol.40, issue.6, pp.405-415, 2016.

S. L. Thein, S. Menzel, X. Peng, S. Best, J. Jiang et al., Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults, Proc Natl Acad Sci, vol.104, issue.27, pp.11346-51, 2007.

R. Stadhouders, S. Aktuna, S. Thongjuea, A. Aghajanirefah, F. Pourfarzad et al., HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers, J Clin Invest, vol.124, issue.4, pp.1699-710, 2014.

J. J. Farrell, R. M. Sherva, Z. Y. Chen, H. Y. Luo, B. F. Chu et al., A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression, Blood, vol.117, issue.18, pp.4935-4980, 2011.

S. Menzel, H. Rooks, D. Zelenika, S. N. Mtatiro, A. Gnanakulasekaran et al., Global genetic architecture of an erythroid quantitative trait locus, HMIP-2, Ann Hum Genet, vol.78, issue.6, pp.434-51, 2014.

F. C. Leonardo, A. F. Brugnerotto, I. F. Domingos, K. Y. Fertrin, D. M. De-albuquerque et al., Reduced rate of sickle-related complications in Brazilian patients carrying HbF-promoting alleles at the BCL11A and HMIP-2 loci, Br J Haematol, vol.173, issue.3, pp.456-60, 2016.

S. L. Thein, Molecular basis of beta thalassemia and potential therapeutic targets. Blood Cells Mol Dis, vol.70, pp.54-65, 2018.

L. E. Creary, P. Ulug, S. Menzel, C. A. Mckenzie, N. A. Hanchard et al., Genetic variation on chromosome 6 influences F cell levels in healthy individuals of African descent and HbF levels in sickle cell patients, PLoS One, vol.4, issue.1, p.4218, 2009.

S. N. Mtatiro, T. Singh, H. Rooks, J. Mgaya, H. Mariki et al., Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania, PLoS One, vol.9, issue.11, p.111464, 2014.

M. Muszlak, S. Pissard, C. Badens, A. Chamouine, O. Maillard et al., Genetic Modifiers of Sickle Cell Disease: A Genotype-Phenotype Relationship Study in a Cohort of 82 Children on Mayotte Island, Hemoglobin, vol.39, issue.3, pp.156-61, 2015.

A. Wonkam, K. Mnika, N. Bitoungui, V. J. , C. Chemegni et al., Clinical and genetic factors are associated with pain and hospitalisation rates in sickle cell anaemia in Cameroon, Br J Haematol, vol.180, issue.1, pp.134-180, 2017.

V. A. Sheehan, Z. Luo, J. M. Flanagan, T. A. Howard, B. W. Thompson et al., Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes, Am J Hematol, vol.88, issue.7, pp.571-577, 2013.

D. Nebor, C. Broquere, K. Brudey, D. Mougenel, V. Tarer et al., Alpha-thalassemia is associated with a decreased occurrence and a delayed age-at-onset of albuminuria in sickle cell anemia patients. Blood Cells Mol Dis, vol.45, pp.154-162, 2010.

Y. Lamarre, M. Romana, N. Lemonne, M. D. Hardy-dessources, V. Tarer et al., Alpha thalassemia protects sickle cell anemia patients from macro-albuminuria through its effects on red blood cell rheological properties, Clin Hemorheol Microcirc, vol.57, issue.1, pp.63-72, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01881482

M. H. Steinberg and R. P. Hebbel, Clinical diversity of sickle cell anemia: genetic and cellular modulation of disease severity, Am J Hematol, vol.14, issue.4, pp.405-421, 1983.

M. H. Steinberg, Genetic etiologies for phenotypic diversity in sickle cell anemia, ScientificWorldJournal, vol.9, pp.46-67, 2009.

A. R. Belisario, C. V. Rodrigues, M. L. Martins, C. M. Silva, and M. B. Viana, Coinheritance of alphathalassemia decreases the risk of cerebrovascular disease in a cohort of children with sickle cell anemia, Hemoglobin, vol.34, issue.6, pp.516-545, 2010.

L. L. Hsu, S. T. Miller, E. Wright, A. Kutlar, V. Mckie et al., Alpha Thalassemia is associated with decreased risk of abnormal transcranial Doppler ultrasonography in children with sickle cell anemia, J Pediatr Hematol Oncol, vol.25, issue.8, pp.622-630, 2003.

P. Joly, N. Garnier, K. Kebaili, C. Renoux, A. Dony et al., G6PD deficiency and absence of alpha-thalassemia increase the risk for cerebral vasculopathy in children with sickle cell anemia, Eur J Haematol, vol.96, issue.4, pp.404-412, 2016.

N. Vasavda, S. Menzel, S. Kondaveeti, E. Maytham, M. Awogbade et al., The linear effects of alpha-thalassaemia, the UGT1A1 and HMOX1 polymorphisms on cholelithiasis in sickle cell disease, Br J Haematol, vol.138, issue.2, pp.263-70, 2007.

P. Joly, C. Renoux, P. Lacan, Y. Bertrand, G. Cannas et al., UGT1A1 (TA)n genotype is not the major risk factor of cholelithiasis in sickle cell disease children, Eur J Haematol, vol.98, issue.3, pp.296-301, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01881697

A. Geard, G. D. Pule, C. Chemegni, B. , N. Bitoungui et al., Clinical and genetic predictors of renal dysfunctions in sickle cell anaemia in Cameroon, Br J Haematol, vol.178, issue.4, pp.629-668, 2017.

A. Guasch, C. F. Zayas, J. R. Eckman, K. Muralidharan, W. Zhang et al., Evidence that microdeletions in the alpha globin gene protect against the development of sickle cell glomerulopathy in humans, J Am Soc Nephrol, vol.10, issue.5, pp.1014-1023, 1999.

D. R. Higgs, B. E. Aldridge, J. Lamb, J. B. Clegg, D. J. Weatherall et al., The interaction of alpha-thalassemia and homozygous sickle-cell disease, N Engl J Med, vol.306, issue.24, pp.1441-1447, 1982.

S. H. Embury, M. R. Clark, G. Monroy, and N. Mohandas, Concurrent sickle cell anemia and alphathalassemia. Effect on pathological properties of sickle erythrocytes, J Clin Invest, vol.73, issue.1, pp.116-139, 1984.

C. Renoux, P. Joly, C. Faes, P. Mury, B. Eglenen et al., Association between Oxidative Stress, Genetic Factors, and Clinical Severity in Children with Sickle Cell Anemia, J Pediatr, vol.195, pp.228-263, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881748

M. H. Steinberg, Predicting clinical severity in sickle cell anaemia, Br J Haematol, vol.129, issue.4, pp.465-81, 2005.

S. Diop, A. Sene, M. Cisse, A. O. Toure, O. Sow et al.,

, Dakar Med, vol.50, issue.2, pp.56-60, 2005.

F. Bernaudin, S. Verlhac, S. Chevret, M. Torres, L. Coic et al., G6PD deficiency, absence of alpha-thalassemia, and hemolytic rate at baseline are significant independent risk factors for abnormally high cerebral velocities in patients with sickle cell anemia, Blood, vol.112, issue.10, pp.4314-4321, 2008.

M. Nouraie, N. S. Reading, A. Campbell, C. P. Minniti, S. R. Rana et al., Association of G6PD with lower haemoglobin concentration but not increased haemolysis in patients with sickle cell anaemia, Br J Haematol, vol.150, issue.2, pp.218-243, 2010.

S. T. Miller, J. Milton, and M. H. Steinberg, G6PD deficiency and stroke in the CSSCD, Am J Hematol, vol.86, issue.3, p.331, 2011.

D. C. Rees, C. Lambert, E. Cooper, J. Bartram, D. Goss et al., Glucose 6 phosphate dehydrogenase deficiency is not associated with cerebrovascular disease in children with sickle cell anemia, Blood, vol.114, issue.3, pp.742-745, 2009.

A. R. Belisario, R. Sales, R. , E. Toledo, N. Velloso-rodrigues et al., Glucose-6-Phosphate Dehydrogenase Deficiency in Brazilian Children With Sickle Cell Anemia is not Associated With Clinical Ischemic Stroke or High-Risk Transcranial Doppler. Pediatr Blood Cancer, vol.63, pp.1046-1055, 2016.

M. Benkerrou, C. Alberti, N. Couque, Z. Haouari, A. Ba et al., Impact of glucose-6-phosphate dehydrogenase deficiency on sickle cell anaemia expression in infancy and early childhood: a prospective study, Br J Haematol, vol.163, issue.5, pp.646-54, 2013.

E. Beutler and . Deficiency, Blood, vol.84, issue.11, pp.3613-3649, 1994.

J. A. Leopold and J. Loscalzo, Oxidative enzymopathies and vascular disease, Arterioscler Thromb Vasc Biol, vol.25, issue.7, pp.1332-1372, 2005.

J. A. Leopold, A. Cap, A. W. Scribner, R. C. Stanton, and J. Loscalzo, Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability, FASEB J, vol.15, issue.10, pp.1771-1774, 2001.

R. Mejias, J. Villadiego, C. O. Pintado, P. J. Vime, L. Gao et al., Neuroprotection by transgenic expression of glucose-6-phosphate dehydrogenase in dopaminergic nigrostriatal neurons of mice, J Neurosci, vol.26, issue.17, pp.4500-4508, 2006.

R. Agarwal and A. Rami, Redistribution of glucose-6-phosphate dehydrogenase in response to cerebral ischemia in rat brain, Indian J Clin Biochem, vol.18, issue.2, pp.64-70, 2003.

M. Aslan and B. A. Freeman, Redox-dependent impairment of vascular function in sickle cell disease. Free Radic Biol Med, vol.43, pp.1469-83, 2007.

K. C. Wood and D. N. Granger, Sickle cell disease: role of reactive oxygen and nitrogen metabolites, Clin Exp Pharmacol Physiol, vol.34, issue.9, pp.926-958, 2007.

P. Connes, S. Verlhac, and F. Bernaudin, Advances in understanding the pathogenesis of cerebrovascular vasculopathy in sickle cell anaemia, Br J Haematol, vol.161, issue.4, pp.484-98, 2013.

J. M. Crawford, B. J. Ransil, J. P. Narciso, and J. L. Gollan, Hepatic microsomal bilirubin UDPglucuronosyltransferase. The kinetics of bilirubin mono-and diglucuronide synthesis, J Biol Chem, vol.267, issue.24, pp.16943-50, 1992.

T. T. Schubert, Hepatobiliary system in sickle cell disease, Gastroenterology, vol.90, issue.6, pp.2013-2034, 1986.

S. L. Carpenter, S. Lieff, T. A. Howard, B. Eggleston, and R. E. Ware, UGT1A1 promoter polymorphisms and the development of hyperbilirubinemia and gallbladder disease in children with sickle cell anemia, Am J Hematol, vol.83, issue.10, pp.800-803, 2008.

V. Chaar, L. Keclard, J. P. Diara, C. Leturdu, J. Elion et al., Association of UGT1A1 polymorphism with prevalence and age at onset of cholelithiasis in sickle cell anemia, Haematologica, vol.90, issue.2, pp.188-99, 2005.

V. Chaar, L. Keclard, M. Etienne-julan, J. P. Diara, J. Elion et al., UGT1A1 polymorphism outweighs the modest effect of deletional (-3.7 kb) alpha-thalassemia on cholelithogenesis in sickle cell anemia, Am J Hematol, vol.81, issue.5, pp.377-386, 2006.

E. V. Haverfield, C. A. Mckenzie, T. Forrester, N. Bouzekri, R. Harding et al., UGT1A1 variation and gallstone formation in sickle cell disease, Blood, vol.105, issue.3, pp.968-72, 2005.

R. G. Passon, T. A. Howard, S. A. Zimmerman, W. H. Schultz, and R. E. Ware, Influence of bilirubin uridine diphosphate-glucuronosyltransferase 1A promoter polymorphisms on serum bilirubin levels and cholelithiasis in children with sickle cell anemia, J Pediatr Hematol Oncol, vol.23, issue.7, pp.448-51, 2001.

B. A. Schaefer, J. M. Flanagan, O. A. Alvarez, S. C. Nelson, B. Aygun et al., Genetic Modifiers of White Blood Cell Count, Albuminuria and Glomerular Filtration Rate in Children with Sickle Cell Anemia, PLoS One, vol.11, issue.10, p.164364, 2016.

R. Kormann, A. S. Jannot, C. Narjoz, J. A. Ribeil, S. Manceau et al., Roles of APOL1 G1 and G2 variants in sickle cell disease patients: kidney is the main target, Br J Haematol, vol.179, issue.2, pp.323-358, 2017.

P. Vicari, S. A. Adegoke, D. R. Mazzotti, R. D. Cancado, M. A. Nogutti et al., Interleukin1beta and interleukin-6 gene polymorphisms are associated with manifestations of sickle cell anemia, Blood Cells Mol Dis, vol.54, issue.3, pp.244-253, 2015.

P. Sebastiani, N. Solovieff, S. W. Hartley, J. N. Milton, A. Riva et al., Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study, Am J Hematol, vol.85, issue.1, pp.29-35, 2010.

B. Commoner, J. Townsend, and G. E. Pake, Free radicals in biological materials, Nature, vol.174, issue.4432, pp.689-91, 1954.

D. Harman, Aging: a theory based on free radical and radiation chemistry, J Gerontol, vol.11, issue.3, pp.298-300, 1956.

A. Carrière, A. G. , Y. Fernandez, M. Carmona, L. Pénicaud et al., Les espèces actives de l'oxygène : le yin et le yang de la mitochondrie, MEDECINE/SCIENCES, vol.22, issue.1, pp.47-53, 2006.

C. Migdal and M. S. , Espèces réactives de l'oxygène et stress oxydant. médecine/sciences, vol.27, pp.405-412, 2011.

R. C. Murphy, Free radical-induced oxidation of glycerophosphocholine lipids and formation of biologically active products, Adv Exp Med Biol, vol.416, pp.51-59, 1996.

U. Geronzi, F. Lotti, and S. Grosso, Oxidative stress in epilepsy, Expert Rev Neurother, vol.18, issue.5, pp.427-461, 2018.

Q. Chen, Q. Wang, J. Zhu, Q. Xiao, and L. Zhang, Reactive oxygen species: key regulators in vascular health and diseases, Br J Pharmacol, vol.175, issue.8, pp.1279-92, 2018.

E. N. Chirico and V. Pialoux, Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life, vol.64, pp.72-80, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01883946

K. Szocs, Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance, Gen Physiol Biophys, vol.23, issue.3, pp.265-95, 2004.

V. B. O'donnell, P. H. Chumley, N. Hogg, A. Bloodsworth, V. M. Darley-usmar et al., Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol, Biochemistry, vol.36, issue.49, pp.15216-15239, 1997.

P. Mitchell and J. Moyle, Chemiosmotic hypothesis of oxidative phosphorylation, Nature, vol.213, issue.5072, pp.137-146, 1967.

J. F. Turrens, Mitochondrial formation of reactive oxygen species, J Physiol, vol.15, issue.2, pp.335-379, 2003.

Y. Liu, G. Fiskum, and D. Schubert, Generation of reactive oxygen species by the mitochondrial electron transport chain, J Neurochem, vol.80, issue.5, pp.780-787, 2002.

A. Baskaran, K. H. Chua, V. Sabaratnam, R. Ram, M. Kuppusamy et al., Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways. BMC Complement Altern Med, vol.17, p.40, 2017.

D. Meo, S. Reed, T. T. Venditti, P. Victor, and V. M. , Role of ROS and RNS Sources in Physiological and Pathological Conditions, Oxid Med Cell Longev, p.1245049, 2016.

H. M. Zeeshan, G. H. Lee, H. R. Kim, and C. Hj, Endoplasmic Reticulum Stress and Associated ROS, Int J Mol Sci, vol.17, issue.3, p.327, 2016.

U. F. , Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies, Nat Clin Pract Cardiovasc Med, vol.5, issue.6, pp.338-387, 2008.

M. M. Elahi, Y. X. Kong, and B. M. Matata, Oxidative stress as a mediator of cardiovascular disease, Oxid Med Cell Longev, vol.2, issue.5, pp.259-69, 2009.

D. A. Parks and D. N. Granger, Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals, Am J Physiol, vol.245, issue.2, pp.285-294, 1983.

U. R. Osarogiagbon, S. Choong, J. D. Belcher, G. M. Vercellotti, M. S. Paller et al., Reperfusion injury pathophysiology in sickle transgenic mice, Blood, vol.96, issue.1, pp.314-334, 2000.

S. Voskou, M. Aslan, P. Fanis, M. Phylactides, and M. Kleanthous, Oxidative stress in betathalassaemia and sickle cell disease, Redox Biol, vol.6, pp.226-265, 2015.

T. M. Paravicini and R. M. Touyz, NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care, vol.31, pp.170-80, 2008.

J. D. Lambeth, NOX enzymes and the biology of reactive oxygen, Nat Rev Immunol, vol.4, issue.3, pp.181-190, 2004.

B. Banfi, G. Molnar, A. Maturana, K. Steger, B. Hegedus et al., A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes, J Biol Chem, vol.276, issue.40, pp.37594-601, 2001.

B. M. Babior, Oxidants from phagocytes: agents of defense and destruction, Blood, vol.64, issue.5, pp.959-66, 1984.

K. E. Iles and H. J. Forman, Macrophage signaling and respiratory burst, Immunol Res, vol.26, issue.1-3, pp.95-105, 2002.

S. Lee, V. Jadhav, R. Ayer, H. Rojas, A. Hyong et al., The antioxidant effects of melatonin in surgical brain injury in rats, Acta Neurochir Suppl, vol.102, pp.367-71, 2008.

I. Staprans, X. M. Pan, J. H. Rapp, and K. R. Feingold, Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum, J Lipid Res, vol.44, issue.4, pp.705-720, 2003.

S. Basu-modak and R. M. Tyrrell, Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene, Cancer Res, vol.53, pp.4505-4515, 1993.

E. G. Hrycay and S. M. Bandiera, Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer, Adv Pharmacol, vol.74, pp.35-84, 2015.

D. Sg, T. Franck, A. Mouithys-mickalad, and G. Deby-dupont, La myéloperoxydase des neutrophiles, une enzyme de défense aux capacités oxydantes, Ann Méd Vét, vol.147, pp.79-93, 2003.

B. Kisic, D. Miric, I. Dragojevic, J. Rasic, and L. Popovic, Role of Myeloperoxidase in Patients with Chronic Kidney Disease, Oxid Med Cell Longev, p.1069743, 2016.

S. C. Liu, T. C. Yi, H. Y. Weng, L. Zhang, Y. X. Li et al.,

, Zhonghua Xin Xue Guan Bing Za Zhi, vol.46, issue.4, pp.284-91, 2018.

S. Baldus, C. Heeschen, T. Meinertz, A. M. Zeiher, J. P. Eiserich et al., Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation, vol.108, pp.1440-1445, 2003.

J. V. Hunt and S. P. Wolff, The role of histidine residues in the nonenzymic covalent attachment of glucose and ascorbic acid to protein, Free Radic Res Commun, vol.14, issue.4, pp.279-87, 1991.

I. Dalle-donne, D. Giustarini, R. Colombo, R. Rossi, and A. Milzani, Protein carbonylation in human diseases, Trends Mol Med, vol.9, issue.4, pp.169-76, 2003.

Y. Y. Chiu-braga, S. Y. Hayashi, M. Schafranski, . Messias-reason, and . Ij, Further evidence of inflammation in chronic rheumatic valve disease (CRVD): high levels of advanced oxidation protein products (AOPP) and high sensitive C-reactive protein (hs-CRP), Int J Cardiol, vol.109, issue.2, pp.275-281, 2006.

B. Descamps-latscha, V. Witko-sarsat, T. Nguyen-khoa, A. T. Nguyen, V. Gausson et al., Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients, Am J Kidney Dis, vol.45, issue.1, pp.39-47, 2005.

H. Kaneda, J. Taguchi, K. Ogasawara, T. Aizawa, and M. Ohno, Increased level of advanced oxidation protein products in patients with coronary artery disease, Atherosclerosis, vol.162, issue.1, pp.221-226, 2002.

V. Witko-sarsat, M. Friedlander, N. Khoa, T. Capeillere-blandin, C. Nguyen et al., Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure, J Immunol, vol.161, issue.5, pp.2524-2556, 1998.

M. Carocho and I. C. Ferreira, A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives, Food Chem Toxicol, vol.51, pp.15-25, 2013.

A. Ayala, M. F. Munoz, and S. Arguelles, Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal, Oxid Med Cell Longev, p.360438, 2014.

C. Richter, J. W. Park, and B. N. Ames, Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc Natl Acad Sci U S A, vol.85, issue.17, pp.6465-6472, 1988.

B. N. Ames, M. K. Shigenaga, and L. S. Gold, DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect, vol.101, pp.35-44, 1993.

G. A. Cortopassi and N. Arnheim, Using the polymerase chain reaction to estimate mutation frequencies and rates in human cells, Mutat Res, vol.277, issue.3, pp.239-288, 1992.

V. Grandjean, R. Yaman, F. Cuzin, and M. Rassoulzadegan, Inheritance of an epigenetic mark: the CpG DNA methyltransferase 1 is required for de novo establishment of a complex pattern of non-CpG methylation, PLoS One, vol.2, issue.11, p.1136, 2007.

T. Kobayashi, S. Tsunawaki, and H. Seguchi, Evaluation of the process for superoxide production by NADPH oxidase in human neutrophils: evidence for cytoplasmic origin of superoxide, Redox Rep, vol.6, issue.1, pp.27-36, 2001.

W. Davis, Z. Ronai, and K. D. Tew, Cellular thiols and reactive oxygen species in drug-induced apoptosis, J Pharmacol Exp Ther, vol.296, issue.1, pp.1-6, 2001.

K. H. Cheeseman and T. F. Slater, An introduction to free radical biochemistry, Br Med Bull, vol.49, issue.3, pp.481-93, 1993.

B. Halliwell and J. M. Gutteridge, Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts, Arch Biochem Biophys, vol.246, issue.2, pp.501-515, 1986.

K. B. Beckman and B. N. Ames, Mitochondrial aging: open questions, Ann N Y Acad Sci, vol.854, pp.118-145, 1998.

L. L. De-zwart, J. H. Meerman, J. N. Commandeur, and N. P. Vermeulen, Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med, vol.26, pp.202-228, 1999.

J. W. Kaspar, S. K. Niture, and A. K. Jaiswal, Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med, vol.47, pp.1304-1313, 2009.

S. Dhakshinamoorthy and D. J. Long, Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens, Curr Top Cell Regul, vol.36, pp.201-217, 2000.

M. Kobayashi and M. Yamamoto, Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species, Adv Enzyme Regul, vol.46, pp.113-153, 2006.

E. Charrin, Drépanocytose Entrainement physique Inflammation Monoxyde d'azote Oxyde nitrique Récepteur aux AGE Souris transgéniques Stress oxydant Stress oxydatif. Thése Physiologie, 2016.

H. Sasaki, H. Sato, K. Kuriyama-matsumura, K. Sato, K. Maebara et al., Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression, J Biol Chem, vol.277, issue.47, pp.44765-71, 2002.

J. Y. Chan and M. Kwong, Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein, Biochim Biophys Acta, vol.1517, issue.1, pp.19-26, 2000.

L. M. Aleksunes and J. E. Manautou, Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease, Toxicol Pathol, vol.35, issue.4, pp.459-73, 2007.

A. Banning and R. Brigelius-flohe, NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression, Antioxid Redox Signal, vol.7, issue.7-8, pp.889-99, 2005.

A. Singh, T. Rangasamy, R. K. Thimmulappa, H. Lee, W. O. Osburn et al.,

, Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2, Am J Respir Cell Mol Biol, vol.35, issue.6, pp.639-50, 2006.

C. J. Harvey, R. K. Thimmulappa, A. Singh, D. J. Blake, G. Ling et al., Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med, vol.46, pp.443-53, 2009.

H. K. Na and Y. J. Surh, Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG, Food Chem Toxicol, vol.46, issue.4, pp.1271-1279, 2008.

S. K. Nelson, S. K. Bose, G. K. Grunwald, P. Myhill, and J. M. Mccord, The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy. Free Radic Biol Med, vol.40, pp.341-348, 2006.

J. Haleng, J. Pincemail, J. O. Defraigne, C. Charlier, and J. P. Chapelle,

, Rev Med Liege, vol.62, issue.10, pp.628-666, 2007.

M. Hermes-lima, Functional Metabolism: Regulation and Adaptation, pp.319-368, 2004.

Y. S. Kim, G. Vallur, P. Phaeton, R. Mythreye, K. Hempel et al., Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel), vol.6, 2017.

L. J. Thénard, Observations sur des nouvelles combinaisons entre l'oxygène et divers acides Annal Chim Phys. 1818;2e série, vol.8, pp.306-312, 1818.

D. Bonnefont-rousselot, . Tp, and J. Delattre, Radicaux libres et antioxydants, Biochimie pathologique. Aspects moléculaires et cellulaires. Paris : Flammarion Médecine/Sciences, pp.59-81, 2003.

A. L. Catapano, Antioxidant effect of flavonoids, Angiology, vol.48, issue.1, pp.39-44, 1997.

M. Ogata, . Acatalasemia, and . Genet, , vol.86, pp.331-371, 1991.

S. Shull, N. H. Heintz, M. Periasamy, M. Manohar, Y. M. Janssen et al., Differential regulation of antioxidant enzymes in response to oxidants, J Biol Chem, vol.266, issue.36, pp.24398-403, 1991.

M. F. Tsan, J. E. White, C. Treanor, and J. B. Shaffer, Molecular basis for tumor necrosis factor-induced increase in pulmonary superoxide dismutase activities, Am J Physiol, issue.6, pp.506-518, 1990.

C. W. White, P. Ghezzi, S. Mcmahon, C. A. Dinarello, and J. E. Repine, Cytokines increase rat lung antioxidant enzymes during exposure to hyperoxia, J Appl Physiol, vol.66, issue.2, pp.1003-1010, 1985.

P. Pietarinen-runtti, K. O. Raivio, M. Saksela, T. M. Asikainen, and V. L. Kinnula, Antioxidant enzyme regulation and resistance to oxidants of human bronchial epithelial cells cultured under hyperoxic conditions, Am J Respir Cell Mol Biol, vol.19, issue.2, pp.286-92, 1998.

S. Diaz-llera, Y. Gonzalez-hernandez, E. A. Prieto-gonzalez, and A. Azoy, Genotoxic effect of ozone in human peripheral blood leukocytes, Mutat Res, vol.517, issue.1-2, pp.13-20, 2002.

Y. Zhang, K. K. Griendling, A. Dikalova, G. K. Owens, and W. R. Taylor, Vascular hypertrophy in angiotensin II-induced hypertension is mediated by vascular smooth muscle cell-derived H2O2, Hypertension, vol.46, issue.4, pp.732-739, 2005.

H. Yang, L. J. Roberts, M. J. Shi, L. C. Zhou, B. R. Ballard et al., Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E, Circ Res, vol.95, issue.11, pp.1075-81, 2004.

R. Pamplona and D. Costantini, Molecular and structural antioxidant defenses against oxidative stress in animals, Am J Physiol Regul Integr Comp Physiol, vol.301, issue.4, pp.843-63

P. Thérond and . Db, Cibles lipidiques des radicaux libres dérivés de l'oxygène et de l'azote: effets biologiques des produits d'oxydation du cholestérol et des phospholipides, Radicaux libres et stress oxydant: aspects biologiques et pathologiques Cachan, France: Éditions Médicales internationales, pp.114-167, 2005.

S. A. Comhair and S. C. Erzurum, Antioxidant responses to oxidant-mediated lung diseases, Am J Physiol Lung Cell Mol Physiol, vol.283, issue.2, pp.246-55, 2002.

J. Matés, N. De-castro, and I. , Antioxidant enzymes and human diseases, Clin Biochem, vol.32, issue.8, pp.595-603, 1999.

S. K. Powers and S. L. Lennon, Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle, Proc Nutr Soc, vol.58, issue.4, pp.1025-1058, 1999.

L. Packer, Oxidants, antioxidant nutrients and the athlete, J Sports Sci, vol.15, issue.3, pp.353-63, 1997.

L. L. Ji and R. Fu, Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide, J Appl Physiol, vol.72, issue.2, pp.549-54, 1985.

V. P. Skulachev, Cytochrome c in the apoptotic and antioxidant cascades, FEBS Lett, vol.423, issue.3, pp.275-80, 1998.

W. J. Evans, E. Vitamin, and C. , Am J Clin Nutr, vol.72, issue.2, pp.647-52, 2000.

I. Fridovich, Superoxide radical and superoxide dismutases, Annu Rev Biochem, vol.64, pp.97-112, 1995.

M. Zowczak, M. Iskra, J. Paszkowski, M. Manczak, L. Torlinski et al., Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients, J Trace Elem Med Biol, vol.15, issue.2-3, pp.193-199, 2001.

I. Bureau, F. Laporte, M. Favier, H. Faure, M. Fields et al., No antioxidant effect of combined HRT on LDL oxidizability and oxidative stress biomarkers in treated post-menopausal women, J Am Coll Nutr, vol.21, issue.4, pp.333-341, 2002.

R. J. Maughan and J. B. Leiper, Limitations to fluid replacement during exercise, Can J Appl Physiol, vol.24, issue.2, pp.173-87, 1999.

M. Speich, A. Pineau, and F. Ballereau, Minerals, trace elements and related biological variables in athletes and during physical activity, Clin Chim Acta, vol.312, issue.1-2, pp.1-11, 2001.

M. Aslan, T. M. Ryan, T. M. Townes, L. Coward, M. C. Kirk et al., Nitric oxide-dependent generation of reactive species in sickle cell disease. Actin tyrosine induces defective cytoskeletal polymerization, J Biol Chem, vol.278, issue.6, pp.4194-204, 2003.

E. Nur, B. J. Biemond, H. M. Otten, D. P. Brandjes, and J. J. Schnog, Oxidative stress in sickle cell disease

, pathophysiology and potential implications for disease management, Am J Hematol, vol.86, issue.6, pp.484-493, 2011.

A. I. Alsultan, M. A. Seif, T. T. Amin, M. Naboli, and A. M. Alsuliman, Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease, Eur Rev Med Pharmacol Sci, vol.14, issue.6, pp.527-565, 2010.

M. K. El-ghamrawy, W. M. Hanna, A. -. Salam, A. El-sonbaty, M. M. Youness et al., Oxidantantioxidant status in Egyptian children with sickle cell anemia: a single center based study, J Pediatr, vol.90, issue.3, pp.286-92, 2014.

A. Gizi, I. Papassotiriou, F. Apostolakou, C. Lazaropoulou, M. Papastamataki et al., Assessment of oxidative stress in patients with sickle cell disease: The glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis, vol.46, pp.220-225, 2011.

V. Manfredini, L. L. Lazzaretti, I. H. Griebeler, A. P. Santin, V. D. Brandao et al., Blood antioxidant parameters in sickle cell anemia patients in steady state, J Natl Med Assoc, vol.100, issue.8, pp.897-902, 2008.

C. Sultana, Y. Shen, V. Rattan, C. Johnson, and V. K. Kalra, Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes, Blood, vol.92, issue.10, pp.3924-3959, 1998.

S. Torres-lde, D. G. Da-silva, B. Junior, E. De-almeida, E. A. Lobo et al., The influence of hydroxyurea on oxidative stress in sickle cell anemia, Rev Bras Hematol Hemoter, vol.34, issue.6, pp.421-426

S. Torres-lde, D. G. Da-silva, B. Junior, E. De-almeida, E. A. Lobo et al., The influence of hydroxyurea on oxidative stress in sickle cell anemia, Rev Bras Hematol Hemoter, vol.34, issue.6, pp.421-426, 2012.

Y. Oztas, I. Durukan, S. Unal, and N. Ozgunes, Plasma protein oxidation is correlated positively with plasma iron levels and negatively with hemolysate zinc levels in sickle-cell anemia patients, Int J Lab Hematol, vol.34, issue.2, pp.129-164, 2012.

E. Belini-junior, D. G. Da-silva, T. Lde, S. De-almeida, E. A. Cancado et al., Oxidative stress and antioxidant capacity in sickle cell anaemia patients receiving different treatments and medications for different periods of time, Ann Hematol, vol.91, issue.4, pp.479-89, 2012.

S. K. Das and R. C. Nair, Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes, Br J Haematol, vol.44, issue.1, pp.87-92, 1980.

I. Rusanova, G. Escames, G. Cossio, R. G. De-borace, B. Moreno et al., Oxidative stress status, clinical outcome, and beta-globin gene cluster haplotypes in pediatric patients with sickle cell disease, Eur J Haematol, vol.85, issue.6, pp.529-566, 2010.

M. Aslan, D. Thornley-brown, and B. A. Freeman, Reactive species in sickle cell disease, Ann N Y Acad Sci, vol.899, pp.375-91, 2000.

F. Fasola, K. Adedapo, J. Anetor, and M. Kuti, Total antioxidants status and some hematological values in sickle cell disease patients in steady state, J Natl Med Assoc, vol.99, issue.8, pp.891-895, 2007.

C. R. Morris, J. H. Suh, W. Hagar, S. Larkin, D. A. Bland et al., Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease, Blood, vol.111, issue.1, pp.402-412, 2008.

C. L. Natta, L. C. Chen, and C. K. Chow, Selenium and glutathione peroxidase levels in sickle cell anemia, Acta Haematol, vol.83, issue.3, pp.130-132, 1990.

M. A. Emokpae, P. O. Uadia, and A. A. Gadzama, Correlation of oxidative stress and inflammatory markers with the severity of sickle cell nephropathy, Ann Afr Med, vol.9, issue.3, pp.141-147, 2010.

R. M. Hasanato, Zinc and antioxidant vitamin deficiency in patients with severe sickle cell anemia, Ann Saudi Med, vol.26, issue.1, pp.17-21, 2006.

E. S. Klings and H. W. Farber, Role of free radicals in the pathogenesis of acute chest syndrome in sickle cell disease, Respir Res, vol.2, issue.5, pp.280-285, 2001.

C. P. Okorie, T. Nwagha, and F. Ejezie, Assessment of some indicators of oxidative stress in nigerian sickle cell anemic patients, Ann Afr Med, vol.17, issue.1, pp.11-17, 2018.

B. Mockesch, P. Connes, C. K. Skinner, S. Hardy-dessources, M. D. et al., Association between oxidative stress and vascular reactivity in children with sickle cell anaemia and sickle haemoglobin C disease, Br J Haematol, vol.178, issue.3, pp.468-75, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668314

J. Titus, S. Chari, M. Gupta, and N. Parekh, Pro-oxidant and anti-oxidant status in patients of sickle cell anaemia, Indian J Clin Biochem, vol.19, issue.2, pp.168-72, 2004.

S. A. Akohoue, S. Shankar, G. L. Milne, J. Morrow, K. Y. Chen et al., Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia, Pediatr Res, vol.61, issue.2, pp.233-241, 2007.

S. K. Jain, The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes, J Biol Chem, vol.259, issue.6, pp.3391-3395, 1984.

C. Capo, P. Bongrand, A. M. Benoliel, and R. Depieds, Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages, Immunology, vol.36, issue.3, pp.501-509, 1979.

R. P. Hebbel and W. J. Miller, Unique promotion of erythrophagocytosis by malondialdehyde, Am J Hematol, vol.29, issue.4, pp.222-227, 1988.

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, Denatured hemoglobin in sickle erythrocytes, J Clin Invest, vol.59, issue.4, pp.633-673, 1977.

J. M. Rifkind and E. Nagababu, Hemoglobin redox reactions and red blood cell aging, Antioxid Redox Signal, vol.18, issue.17, pp.2274-83, 2013.

E. Nagababu, M. E. Fabry, R. L. Nagel, and J. M. Rifkind, Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol Dis, vol.41, pp.60-66, 2008.

C. D. Reiter, X. Wang, J. E. Tanus-santos, N. Hogg, R. O. Cannon et al., Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease, Nat Med, vol.8, issue.12, pp.1383-1392, 2002.

T. J. Guzik, R. Korbut, and T. Adamek-guzik, Nitric oxide and superoxide in inflammation and immune regulation, J Physiol Pharmacol, vol.54, issue.4, pp.469-87, 2003.

J. Balla, H. S. Jacob, G. Balla, K. Nath, J. W. Eaton et al., Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage, Proc Natl Acad Sci, vol.90, issue.20, pp.9285-9294, 1993.

V. Jeney, J. Balla, A. Yachie, Z. Varga, G. M. Vercellotti et al., Pro-oxidant and cytotoxic effects of circulating heme, Blood, vol.100, issue.3, pp.879-87, 2002.

L. G. Castilhos, J. S. De-oliveira, S. A. Adefegha, L. P. Magni, P. H. Doleski et al., Increased oxidative stress alters nucleosides metabolite levels in sickle cell anemia, Redox Rep, vol.22, issue.6, pp.451-460, 2017.

A. George, S. Pushkaran, D. G. Konstantinidis, S. Koochaki, P. Malik et al.,

, Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease, Blood, vol.121, issue.11, pp.2099-107, 2013.

K. C. Wood, R. P. Hebbel, and D. N. Granger, Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice, FASEB J, vol.19, issue.8, pp.989-91, 2005.

E. J. Van-beers and R. Van-wijk, Oxidative stress in sickle cell disease; more than a DAMP squib, Clin Hemorheol Microcirc, vol.68, issue.2-3, pp.239-50, 2018.

H. Zhang, X. Jing, Y. Shi, H. Xu, J. Du et al., N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor, J Lipid Res, vol.54, issue.11, pp.3016-3045, 2013.

P. E. Houston, S. Rana, S. Sekhsaria, E. Perlin, K. S. Kim et al., Homocysteine in sickle cell disease: relationship to stroke, Am J Med, vol.103, issue.3, pp.192-198, 1997.

C. Sangokoya, M. J. Telen, and J. T. Chi, microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease, Blood, vol.116, issue.20, pp.4338-4386, 2010.

A. Ferreira, I. Marguti, I. Bechmann, V. Jeney, A. Chora et al., Sickle hemoglobin confers tolerance to Plasmodium infection, Cell, vol.145, issue.3, pp.398-409, 2011.

J. D. Belcher, H. Mahaseth, T. E. Welch, L. E. Otterbein, R. P. Hebbel et al., Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice, J Clin Invest, vol.116, issue.3, pp.808-824, 2006.

J. D. Belcher, C. Chen, J. Nguyen, P. Zhang, F. Abdulla et al., Control of Oxidative Stress and Inflammation in Sickle Cell Disease with the Nrf2 Activator Dimethyl Fumarate, Antioxid Redox Signal, vol.26, issue.14, pp.748-62, 2017.

L. H. Travassos, L. R. Vasconcellos, M. T. Bozza, and L. A. Carneiro, Heme and iron induce protein aggregation, Autophagy, vol.13, issue.3, pp.625-631, 2017.

S. Ghosh, F. Tan, T. Yu, Y. Li, O. Adisa et al., Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease, PLoS One, vol.6, issue.3, p.18399, 2011.

. C. Faës, Effets d'un exercice ou d'un stress d'hypoxie / réoxygénation sur le stress oxydant, l'adhésion vasculaire et la biodisponibilité de l'oxyde nitrique dans la drépanocytose, 2014.

E. R. Macari and C. H. Lowrey, Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway, Blood, vol.117, issue.22, pp.5987-97, 2011.

V. Pullarkat, Z. Meng, S. M. Tahara, C. S. Johnson, and V. K. Kalra, Proteasome inhibition induces both antioxidant and hb f responses in sickle cell disease via the nrf2 pathway, Hemoglobin, vol.38, issue.3, pp.188-95, 2014.

C. P. Zimmerman and C. Natta, Glutathione peroxidase activity in whole blood of patients with sickle cell anaemia, Scand J Haematol, vol.26, issue.3, pp.177-81, 1981.

L. Schacter, J. A. Warth, E. M. Gordon, A. Prasad, and B. L. Klein, Altered amount and activity of superoxide dismutase in sickle cell anemia, FASEB J, vol.2, issue.3, pp.237-280, 1988.

L. Beretta, G. C. Gerli, R. Ferraresi, A. Agostoni, V. Gualandri et al., Antioxidant system in sickle red cells, Acta Haematol, vol.70, issue.3, pp.194-201, 1983.

L. M. Al-naama, M. K. Hassan, and J. K. Mehdi, Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia, Qatar Med J, vol.2015, issue.2, p.14, 2016.

E. M. Abiodun and K. G. Aisha, The association of transfusion status with antioxidant enzymes and malondialdehyde level in Nigerians with sickle cell disease, Asian J Transfus Sci, vol.8, issue.1, pp.47-50, 2014.

S. S. Marwah, A. D. Blann, C. Rea, J. D. Phillips, J. Wright et al., Reduced vitamin E antioxidant capacity in sickle cell disease is related to transfusion status but not to sickle crisis, Am J Hematol, vol.69, issue.2, pp.144-150, 2002.

S. S. Marwah, D. Wheelwright, A. D. Blann, C. Rea, R. Beresford et al., Vitamin E correlates inversely with non-transferrin-bound iron in sickle cell disease, Br J Haematol, vol.114, issue.4, pp.917-926, 2001.

A. Moor, V. J. Pieme, C. A. , C. Chemegne, B. Manonji et al.,

C. Mamiafo, Oxidative profile of sickle cell patients in a Cameroonian urban hospital, BMC Clin Pathol, vol.16, p.15, 2016.

S. Biswal, H. Rizwan, S. Pal, S. Sabnam, P. Parida et al., Oxidative stress, antioxidant capacity, biomolecule damage, and inflammation symptoms of sickle cell disease in children, Hematology, vol.16, pp.1-9, 2018.

P. B. Hermann, M. A. Pianovski, R. Henneberg, A. J. Nascimento, and M. S. Leonart, Erythrocyte oxidative stress markers in children with sickle cell disease, J Pediatr (Rio J), vol.92, issue.4, pp.394-403, 2016.

D. G. Silva, B. Junior, E. , T. Lde, S. et al., Relationship between oxidative stress, glutathione S-transferase polymorphisms and hydroxyurea treatment in sickle cell anemia. Blood Cells Mol Dis, vol.47, pp.23-31, 2011.

O. Mukuku, J. K. Sungu, A. M. Mutombo, P. M. Mawaw, M. N. Aloni et al.,

, Albumin, copper, manganese and cobalt levels in children suffering from sickle cell anemia at Kasumbalesa, in Democratic Republic of Congo, BMC Hematol, vol.18, p.23, 2018.

J. K. Sungu, O. Mukuku, A. M. Mutombo, P. Mawaw, M. N. Aloni et al., Trace elements in children suffering from sickle cell anemia: A case-control study, J Clin Lab Anal, vol.32, issue.1, 2018.

S. R. Kuvibidila, M. Sandoval, J. Lao, M. Velez, L. Yu et al., Plasma zinc levels inversely correlate with vascular cell adhesion molecule-1 concentration in children with sickle cell disease, J Natl Med Assoc, vol.98, issue.8, pp.1263-72, 2006.

M. P. Rayman, The use of high-selenium yeast to raise selenium status: how does it measure up?, Br J Nutr, vol.92, issue.4, pp.557-73, 2004.

J. Amer, H. Ghoti, E. Rachmilewitz, A. Koren, C. Levin et al., Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants, Br J Haematol, vol.132, issue.1, pp.108-121, 2006.

P. Niklowitz, T. Menke, T. Wiesel, E. Mayatepek, J. Zschocke et al., Coenzyme Q10 in plasma and erythrocytes: comparison of antioxidant levels in healthy probands after oral supplementation and in patients suffering from sickle cell anemia, Clin Chim Acta, vol.326, issue.1-2, pp.155-61, 2002.

S. K. Jain, J. D. Ross, J. Duett, and J. J. Herbst, Low plasma prealbumin and carotenoid levels in sickle cell disease patients, Am J Med Sci, vol.299, issue.1, pp.13-18, 1990.

D. Chiu and B. Lubin, Abnormal vitamin E and glutathione peroxidase levels in sickle cell anemia: evidence for increased susceptibility to lipid peroxidation in vivo, J Lab Clin Med, vol.94, issue.4, pp.542-550, 1979.

C. L. Natta, L. J. Machlin, and M. Brin, A decrease in irreversibly sickled erythrocytes in sicle cell anemia patients given vitamin E, Am J Clin Nutr, vol.33, issue.5, pp.968-71, 1980.

V. L. Tatum and C. K. Chow, Antioxidant status and susceptibility of sickle erythrocytes to oxidative and osmotic stress, Free Radic Res, vol.25, issue.2, pp.133-142, 1996.

C. C. Tangney, G. Phillips, R. A. Bell, P. Fernandes, R. Hopkins et al., Selected indices of micronutrient status in adult patients with sickle cell anemia (SCA), Am J Hematol, vol.32, issue.3, pp.161-167, 1989.

E. U. Essien, Plasma levels of retinol, ascorbic acid and alpha-tocopherol in sickle cell anaemia, Cent Afr J Med, vol.41, issue.2, pp.48-50, 1995.

W. M. Nauseef, S. Mccormick, and M. Goedken, Impact of missense mutations on biosynthesis of myeloperoxidase, Redox Rep, vol.5, issue.4, pp.197-206, 2000.

E. A. Podrez, H. M. Abu-soud, and S. L. Hazen, Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med, vol.28, pp.1717-1742, 2000.

B. Nikpoor, G. Turecki, C. Fournier, P. Theroux, and G. A. Rouleau, A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in French-Canadians, Am Heart J, vol.142, issue.2, pp.336-345, 2001.

D. Liu, L. Liu, Z. Hu, Z. Song, Y. Wang et al., Evaluation of the oxidative stress-related genes ALOX5, ALOX5AP, GPX1, GPX3 and MPO for contribution to the risk of type 2 diabetes mellitus in the Han Chinese population. Diab Vasc Dis Res, vol.15, pp.336-345, 2018.

F. J. Piedrafita, R. B. Molander, G. Vansant, E. A. Orlova, M. Pfahl et al., An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element, J Biol Chem, vol.271, issue.24, pp.14412-14432, 1996.

R. M. De-oliveira, C. Figueiredo, R. P. Santiago, S. Yahouedehou, S. P. Carvalho et al., Genetic Polymorphisms Associated with Environmental Exposure to Polycyclic Derivatives in African Children, Dis Markers, p.9078939, 2018.

C. Kiyohara, T. Horiuchi, K. Takayama, and Y. Nakanishi, Genetic polymorphisms involved in the inflammatory response and lung cancer risk: a case-control study in Japan, Cytokine, vol.65, issue.1, pp.88-94, 2014.

S. J. London, T. A. Lehman, and J. A. Taylor, Myeloperoxidase genetic polymorphism and lung cancer risk, Cancer Res, vol.57, issue.22, pp.5001-5004, 1997.

T. Y. Cheng, I. B. King, M. J. Barnett, C. B. Ambrosone, M. D. Thornquist et al., Serum phospholipid fatty acids, genetic variation in myeloperoxidase, and prostate cancer risk in heavy smokers: a gene-nutrient interaction in the carotene and retinol efficacy trial, Am J Epidemiol, vol.177, issue.10, pp.1106-1123, 2013.

J. Y. Choi, M. L. Neuhouser, M. J. Barnett, C. C. Hong, A. R. Kristal et al., Iron intake, oxidative stress-related genes (MnSOD and MPO) and prostate cancer risk in CARET cohort, Carcinogenesis, vol.29, issue.5, pp.964-70, 2008.

Q. Meng, S. Wu, Y. Wang, J. Xu, H. Sun et al., Promoter Polymorphism, p.2333227

, Enhances Malignant Phenotypes of Colorectal Cancer by Altering the Binding Affinity of AP-2alpha, Cancer Res, vol.78, issue.10, pp.2760-2769, 2018.

A. Roszak, A. Lutkowska, M. Lianeri, A. Sowinska, and P. P. Jagodzinski, Involvement of myeloperoxidase gene polymorphism 463G>A in development of cervical squamous cell carcinoma, Int J Biol Markers, vol.31, issue.4, pp.440-445, 2016.

X. Shi, B. Li, Y. Yuan, L. Chen, Y. Zhang et al., The possible association between the presence of an MPO -463 G>A (rs2333227) polymorphism and cervical cancer risk, Pathol Res Pract, vol.214, issue.8, pp.1142-1150, 2018.

X. Guo, Y. Zeng, H. Deng, J. Liao, Y. Zheng et al., Genetic Polymorphisms of CYP2E1, GSTP1, NQO1 and MPO and the Risk of Nasopharyngeal Carcinoma in a Han Chinese Population of Southern China, BMC Res Notes, vol.3, p.212, 2010.

H. Haslacher, T. Perkmann, J. Gruenewald, M. Exner, G. Endler et al., Plasma myeloperoxidase level and peripheral arterial disease, Eur J Clin Invest, vol.42, issue.5, pp.463-472, 2012.

O. Bushueva, M. Solodilova, V. Ivanov, and A. Polonikov, Gender-specific protective effect of the -463G>A polymorphism of myeloperoxidase gene against the risk of essential hypertension in Russians, J Am Soc Hypertens, vol.9, issue.11, pp.902-908, 2015.

W. Ji and Y. Zhang, The association of MPO gene promoter polymorphisms with Alzheimer's disease risk in Chinese Han population, Oncotarget, vol.8, issue.64, pp.107870-107876, 2017.

D. Wu, X. Chen, C. Dong, Q. Liu, Y. Yang et al., Association of single nucleotide polymorphisms in MPO and COX genes with oral lichen planus, Int J Immunogenet, vol.42, issue.3, pp.161-168, 2015.

L. Banci, M. Benedetto, I. Bertini, D. Conte, R. Piccioli et al., Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD), vol.37, pp.11780-91, 1998.

E. D. Getzoff, J. A. Tainer, P. K. Weiner, P. A. Kollman, J. S. Richardson et al., Electrostatic recognition between superoxide and copper, zinc superoxide dismutase, Nature, vol.306, issue.5940, pp.287-90, 1983.

H. E. Parge, R. A. Hallewell, and J. A. Tainer, Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase, Proc Natl Acad Sci, vol.89, issue.13, pp.6109-6122, 1992.

E. Minc, P. De-coppet, P. Masson, L. Thiery, S. Dutertre et al., The human copper-zinc superoxide dismutase gene (SOD1) proximal promoter is regulated by Sp1, Egr-1, and WT1 via non-canonical binding sites, J Biol Chem, vol.274, issue.1, pp.503-512, 1999.

S. J. Seo, H. T. Kim, G. Cho, H. M. Rho, and G. Jung, Sp1 and C/EBP-related factor regulate the transcription of human Cu/Zn SOD gene, Gene, vol.178, issue.1-2, pp.177-85, 1996.

B. S. Baek, H. J. Kwon, K. H. Lee, M. A. Yoo, K. W. Kim et al., Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation, Arch Pharm Res, vol.22, issue.4, pp.361-367, 1999.

I. N. Zelko, T. J. Mariani, and R. J. Folz, Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med, vol.33, pp.337-386, 2002.

S. L. Marklund, E. Holme, and L. Hellner, Superoxide dismutase in extracellular fluids, Clin Chim Acta, vol.126, issue.1, pp.41-51, 1982.

A. Grzelak, M. Soszynski, and G. Bartosz, Inactivation of antioxidant enzymes by peroxynitrite, Scand J Clin Lab Invest, vol.60, issue.4, pp.253-261, 2000.

H. M. Hassan and F. J. Lee, Effect of temperature and htpR on the biosynthesis of superoxide dismutase in Escherichia coli, FEMS Microbiol Lett, vol.49, issue.2-3, pp.133-140, 1989.

K. C. Ryan, O. E. Johnson, D. E. Cabelli, T. C. Brunold, and M. J. Maroney, Nickel superoxide dismutase: structural and functional roles of Cys2 and Cys6, J Biol Inorg Chem, vol.15, issue.5, pp.795-807, 2010.

J. Chen, K. Hill, and S. H. Sha, Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss, J Assoc Res Otolaryngol, vol.17, issue.4, pp.289-302, 2016.

S. L. Church, D. R. Farmer, and D. M. Nelson, Induction of manganese superoxide dismutase in cultured human trophoblast during in vitro differentiation, Dev Biol, vol.149, issue.1, pp.177-84, 1992.

X. S. Wan, S. Dm, and D. K. Clair, Molecular structure and organization of the human manganese superoxide dismutase gene, DNA Cell Biol, vol.13, issue.11, pp.1127-1163, 1994.

O. Abbasabadi, A. Javanian, A. Nikkhah, M. Meratan, A. A. Ghiasi et al., Disruption of mitochondrial membrane integrity induced by amyloid aggregates arising from variants of SOD1, Int J Biol Macromol, vol.61, pp.212-219, 2013.

S. Saberi, J. E. Stauffer, D. J. Schulte, and J. Ravits, Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants, Neurol Clin, vol.33, issue.4, pp.855-76, 2015.

M. Moreno-martet, F. Espejo-porras, J. Fernandez-ruiz, and E. De-lago, Changes in endocannabinoid receptors and enzymes in the spinal cord of SOD1(G93A) transgenic mice and evaluation of a Sativex((R)) -like combination of phytocannabinoids: interest for future therapies in amyotrophic lateral sclerosis, CNS Neurosci Ther, vol.20, issue.9, pp.809-824, 2014.

R. A. Saccon, R. K. Bunton-stasyshyn, E. M. Fisher, and P. Fratta, Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain, vol.136, pp.2342-58, 2013.

R. Chia, A. Chio, and B. J. Traynor, Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications, Lancet Neurol, vol.17, issue.1, pp.94-102, 2018.

K. Komatsu, K. Imamura, H. Yamashita, J. P. Julien, R. Takahashi et al., Overexpressed wildtype superoxide dismutase 1 exhibits amyotrophic lateral sclerosis-related misfolded conformation in induced pluripotent stem cell-derived spinal motor neurons, Neuroreport, vol.29, issue.1, pp.25-34, 2018.

S. Ravera, T. Bonifacino, M. Bartolucci, M. Milanese, E. Gallia et al., Characterization of the Mitochondrial Aerobic Metabolism in the Pre-and Perisynaptic Districts of the SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis, Mol Neurobiol, 2018.

K. Spisak, A. Klimkowicz-mrowiec, J. Pera, T. Dziedzic, G. Aleksandra et al., rs2070424 of the SOD1 gene is associated with risk of Alzheimer's disease, Neurol Neurochir Pol, vol.48, issue.5, pp.342-347, 2014.

N. Schupf, A. Lee, N. Park, L. H. Dang, D. Pang et al., Candidate genes for Alzheimer's disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome, Neurobiol Aging, vol.36, issue.10, pp.2907-2908, 2015.

C. M. Karch, N. Wen, C. C. Fan, J. S. Yokoyama, N. Kouri et al., Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum, JAMA Neurol, vol.75, issue.7, pp.860-75, 2018.

V. Wang, S. Y. Chen, T. C. Chuang, D. E. Shan, B. W. Soong et al., Val-9Ala and Ile+58Thr polymorphism of MnSOD in Parkinson's disease, Clin Biochem, vol.43, issue.12, pp.979-82, 2010.

G. Kim, H. S. Lee, S. Bang, J. Kim, B. Ko et al., A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers, J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, vol.33, issue.2, pp.229-54, 2015.

F. M. Farin, Y. Hitosis, S. E. Hallagan, J. Kushleika, J. S. Woods et al., Genetic polymorphisms of superoxide dismutase in Parkinson's disease, Mov Disord, vol.16, issue.4, pp.705-712, 2001.

A. C. Maritim, R. A. Sanders, and J. B. Watkins, Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats, J Nutr Biochem, vol.14, issue.5, pp.288-94, 2003.

D. K. St-clair, J. A. Jordan, X. S. Wan, and C. G. Gairola, Protective role of manganese superoxide dismutase against cigarette smoke-induced cytotoxicity, J Toxicol Environ Health, vol.43, issue.2, pp.239-288, 1994.

A. Crawford, R. G. Fassett, D. P. Geraghty, D. A. Kunde, M. J. Ball et al., Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease, Gene, vol.501, issue.2, pp.89-103, 2012.

C. G. Bica, L. L. Da-silva, N. V. Toscani, C. G. Zettler, M. G. Gottlieb et al., Polymorphism (ALA16VAL) correlates with regional lymph node status in breast cancer, Cancer Genet Cytogenet, vol.196, issue.2, pp.153-161, 2010.

B. L. Mcatee and J. D. Yager, Manganese superoxide dismutase: effect of the ala16val polymorphism on protein, activity, and mRNA levels in human breast cancer cell lines and stably transfected mouse embryonic fibroblasts, Mol Cell Biochem, vol.335, issue.1-2, pp.107-125, 2010.

E. Reszka, Z. Jablonowski, E. Wieczorek, E. Jablonska, M. B. Krol et al., Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients, J Cancer Res Clin Oncol, vol.140, issue.10, pp.1723-1754, 2014.

S. Su, K. He, J. Li, J. Wu, M. Zhang et al., Genetic polymorphisms in antioxidant enzyme genes and susceptibility to hepatocellular carcinoma in Chinese population: a case-control study, Tumour Biol, vol.36, issue.6, pp.4627-4659, 2015.

P. Nahon, A. Sutton, P. Rufat, M. Ziol, H. Akouche et al., Myeloperoxidase and superoxide dismutase 2 polymorphisms comodulate the risk of hepatocellular carcinoma and death in alcoholic cirrhosis, Hepatology, vol.50, issue.5, pp.1484-93, 2009.

M. D. Berto, C. G. Bica, G. P. De-sa, F. Barbisan, V. F. Azzolin et al., The effect of superoxide anion and hydrogen peroxide imbalance on prostate cancer: an integrative in vivo and in vitro analysis, Med Oncol, vol.32, issue.11, p.251, 2015.

M. L. Cooper, H. O. Adami, H. Gronberg, F. Wiklund, F. R. Green et al., Interaction between single nucleotide polymorphisms in selenoprotein P and mitochondrial superoxide dismutase determines prostate cancer risk, Cancer Res, vol.68, issue.24, pp.10171-10178, 2008.

J. Zejnilovic, N. Akev, H. Yilmaz, and T. Isbir, Association between manganese superoxide dismutase polymorphism and risk of lung cancer, Cancer Genet Cytogenet, vol.189, issue.1, pp.1-4, 2009.

G. Liu, W. Zhou, L. I. Wang, S. Park, D. P. Miller et al., MPO and SOD2 polymorphisms, gender, and the risk of non-small cell lung carcinoma, Cancer Lett, vol.214, issue.1, pp.69-79, 2004.

K. E. Wheatley, E. A. Williams, N. C. Smith, A. Dillard, E. Y. Park et al., Low-carbohydrate diet versus caloric restriction: effects on weight loss, hormones, and colon tumor growth in obese mice, Nutr Cancer, vol.60, issue.1, pp.61-69, 2008.

A. P. Trifa, C. Banescu, D. Dima, A. S. Bojan, M. Tevet et al., Among a panel of polymorphisms in genes related to oxidative stress, CAT-262 C>T, GPX1 Pro198Leu and GSTP1 Ile105Val influence the risk of developing BCR-ABL negative myeloproliferative neoplasms, Hematology, vol.21, issue.9, pp.520-525, 2016.

L. Liwei, L. Chunyu, and H. Ruifa, Association between manganese superoxide dismutase gene polymorphism and risk of prostate cancer: a meta-analysis, Urology, vol.74, issue.4, pp.884-892, 2009.

J. Y. Choi, M. L. Neuhouser, M. Barnett, M. Hudson, A. R. Kristal et al., Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers, Cancer Epidemiol Biomarkers Prev, vol.16, issue.6, pp.1115-1135, 2007.

B. Mohelnikova-duchonova, L. Marsakova, D. Vrana, I. Holcatova, M. Ryska et al., Superoxide dismutase and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase polymorphisms and pancreatic cancer risk, Pancreas, vol.40, issue.1, pp.72-80, 2011.

C. Banescu, M. Iancu, A. P. Trifa, M. Candea, B. Lazar et al., From Six Gene Polymorphisms of the Antioxidant System, Only GPX Pro198Leu and GSTP1 Ile105Val Modulate the Risk of Acute Myeloid Leukemia, Oxid Med Cell Longev, p.2536705, 2016.

C. Banescu, A. P. Trifa, S. Voidazan, V. G. Moldovan, I. Macarie et al., GPX1, MnSOD, GSTM1, GSTT1, and GSTP1 genetic polymorphisms in chronic myeloid leukemia: a casecontrol study, Oxid Med Cell Longev, p.875861, 2014.

A. Eftekhari, Z. Peivand, I. Saadat, and M. Saadat, Association between Genetic Polymorphisms in Superoxide Dismutase Gene Family and Risk of Gastric Cancer, Pathol Oncol Res, 2018.

F. Boroumand, H. Mahmoudinasab, and M. Saadat, Association of the SOD2 (rs2758339 and rs5746136) polymorphisms with the risk of heroin dependency and the SOD2 expression levels, Gene, vol.649, pp.27-31, 2018.

F. Schardinger, Genussmittel, vol.5, p.1113, 1902.

T. A. Krenitsky, T. Spector, and W. W. Hall, Xanthine oxidase from human liver: purification and characterization, Arch Biochem Biophys, vol.247, issue.1, pp.108-127, 1986.

C. E. Berry and J. M. Hare, Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications, J Physiol, vol.555, pp.589-606, 2004.

P. Pacher, A. Nivorozhkin, and C. Szabo, Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol, Pharmacol Rev, vol.58, issue.1, pp.87-114, 2006.

R. Harrison, Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med, vol.33, pp.774-97, 2002.

A. Baghiani, R. Harrison, and M. Benboubetra, Purification and partial characterisation of camel milk xanthine oxidoreductase, Arch Physiol Biochem, vol.111, issue.5, pp.407-421, 2003.

R. C. Bray, M. J. Barber, H. Dalton, D. J. Lowe, and M. P. Coughlan, Iron-sulphur systems in some isolated multi-component oxidative enzymes, Biochem Soc Trans, vol.3, issue.4, pp.479-82, 1975.

C. Enroth, B. T. Eger, K. Okamoto, T. Nishino, and E. F. Pai, Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion, Proc Natl Acad Sci, vol.97, issue.20, pp.10723-10731, 2000.

Y. Amaya, K. Yamazaki, M. Sato, K. Noda, and T. Nishino, Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin, J Biol Chem, vol.265, issue.24, pp.14170-14175, 1990.

T. Nishino, The conversion from the dehydrogenase type to the oxidase type of rat liver xanthine dehydrogenase by modification of cysteine residues with fluorodinitrobenzene, J Biol Chem, vol.272, issue.47, pp.29859-64, 1997.

P. Xu, T. P. Huecksteadt, and J. R. Hoidal, Molecular cloning and characterization of the human xanthine dehydrogenase gene (XDH), Genomics, vol.34, issue.2, pp.173-80, 1996.

K. Ichida, Y. Amaya, K. Noda, S. Minoshima, T. Hosoya et al., Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene, Gene, vol.133, issue.2, pp.279-84, 1993.

M. Terao, M. Kurosaki, S. Demontis, S. Zanotta, and E. Garattini, Isolation and characterization of the human aldehyde oxidase gene: conservation of intron/exon boundaries with the xanthine oxidoreductase gene indicates a common origin, Biochem J, vol.332, pp.383-93, 1998.

M. Terao, M. Kurosaki, S. Zanotta, and E. Garattini, The xanthine oxidoreductase gene: structure and regulation, Biochem Soc Trans, vol.25, issue.3, pp.791-797, 1997.

N. A. Turner, W. A. Doyle, A. M. Ventom, and R. C. Bray, Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase, Eur J Biochem, vol.232, issue.2, pp.646-57, 1995.

E. D. Jarasch, C. Grund, G. Bruder, H. W. Heid, T. W. Keenan et al., Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium, Cell, vol.25, issue.1, pp.67-82, 1981.

Y. Moriwaki, T. Yamamoto, K. Yamaguchi, S. Takahashi, and K. Higashino, Immunohistochemical localization of aldehyde and xanthine oxidase in rat tissues using polyclonal antibodies, Histochem Cell Biol, vol.105, issue.1, pp.71-80, 1996.

N. Linder, J. Rapola, and K. O. Raivio, Cellular expression of xanthine oxidoreductase protein in normal human tissues, Lab Invest, vol.79, issue.8, pp.967-74, 1999.

R. Harrison, Physiological roles of xanthine oxidoreductase, Drug Metab Rev, vol.36, issue.2, pp.363-75, 2004.

M. Rouquette, S. Page, R. Bryant, M. Benboubetra, C. R. Stevens et al., Xanthine oxidoreductase is asymmetrically localised on the outer surface of human endothelial and epithelial cells in culture, FEBS Lett, vol.426, issue.3, pp.397-401, 1998.

E. E. Kelley, N. K. Khoo, N. J. Hundley, U. Z. Malik, B. A. Freeman et al., Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med, vol.48, pp.493-501, 2010.

M. A. Suriyajothi, R. S. , R. Venkateswari, and A. Of-xanthine-oxidase-in-diabetics, ITS CORRELATION-WITH AGING Pharmacologyonline, vol.2, pp.128-133, 2011.

H. Cai and D. G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress, Circ Res, vol.87, issue.10, pp.840-844, 2000.

D. N. Granger, Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury, Am J Physiol, vol.255, issue.6, pp.1269-75, 1988.

C. Galbusera, P. Orth, D. Fedida, and T. Spector, Superoxide radical production by allopurinol and xanthine oxidase, Biochem Pharmacol, vol.71, issue.12, pp.1747-52, 2006.

M. Houston, A. Estevez, P. Chumley, M. Aslan, S. Marklund et al., Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxidedependent signaling, J Biol Chem, vol.274, issue.8, pp.4985-94, 1999.

P. Rodrigues, G. De-marco, J. Furriol, M. L. Mansego, M. Pineda-alonso et al., Oxidative stress in susceptibility to breast cancer: study in Spanish population, BMC Cancer, vol.14, p.861, 2014.

P. Rodrigues, J. Furriol, B. Bermejo, F. J. Chaves, A. Lluch et al., Identification of candidate polymorphisms on stress oxidative and DNA damage repair genes related with clinical outcome in breast cancer patients, Int J Mol Sci, vol.13, issue.12, pp.16500-16513, 2012.

H. Liu, H. Zhu, W. Shi, Y. Lin, G. Ma et al., Genetic variants in XDH are associated with prognosis for gastric cancer in a Chinese population, Gene, vol.663, pp.196-202, 2018.

B. Wu, Y. Hao, J. Shi, N. Geng, T. Li et al., Association between xanthine dehydrogenase tag single nucleotide polymorphisms and essential hypertension, Mol Med Rep, vol.12, issue.4, pp.5685-90, 2015.

J. Yang, K. Kamide, Y. Kokubo, S. Takiuchi, T. Horio et al., Associations of hypertension and its complications with variations in the xanthine dehydrogenase gene, Hypertens Res, vol.31, issue.5, pp.931-971, 2008.

P. Bhatti, P. A. Stewart, A. Hutchinson, N. Rothman, M. S. Linet et al., Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors, Cancer Epidemiol Biomarkers Prev, vol.18, issue.6, pp.1841-1849, 2009.

P. Moi, K. Chan, I. Asunis, A. Cao, and Y. W. Kan, Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the betaglobin locus control region, Proc Natl Acad Sci, vol.91, issue.21, pp.9926-9956, 1994.

S. Magesh, Y. Chen, and L. Hu, Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents, Med Res Rev, vol.32, issue.4, pp.687-726, 2012.

L. E. Tebay, H. Robertson, S. T. Durant, S. R. Vitale, T. M. Penning et al., Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease, Free Radic Biol Med, vol.88, pp.108-154, 2015.

J. D. Hayes and A. T. Dinkova-kostova, The Nrf2 regulatory network provides an interface between redox and intermediary metabolism, Trends Biochem Sci, vol.39, issue.4, pp.199-218, 2014.

R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto et al., Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray, Cancer Res, vol.62, issue.18, pp.5196-203, 2002.

D. Morse and A. M. Choi, Heme oxygenase-1: from bench to bedside, Am J Respir Crit Care Med, vol.172, issue.6, pp.660-70, 2005.

K. Iida, K. Itoh, Y. Kumagai, R. Oyasu, K. Hattori et al., Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis, Cancer Res, vol.64, issue.18, pp.6424-6455, 2004.

M. Ramos-gomez, P. M. Dolan, K. Itoh, M. Yamamoto, and T. W. Kensler, Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice, Carcinogenesis, vol.24, issue.3, pp.461-468, 2003.

A. Lau, N. F. Villeneuve, Z. Sun, P. K. Wong, and D. D. Zhang, Dual roles of Nrf2 in cancer, Pharmacol Res, vol.58, issue.5-6, pp.262-70, 2008.

Y. Mitsuishi, K. Taguchi, Y. Kawatani, T. Shibata, T. Nukiwa et al., Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming, Cancer Cell, vol.10, issue.1, pp.66-79, 2012.

S. Menegon, A. Columbano, and S. Giordano, The Dual Roles of NRF2 in Cancer, Trends Mol Med, vol.22, issue.7, pp.578-93, 2016.

M. K. Kwak, K. Itoh, M. Yamamoto, and T. W. Kensler, Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter, Mol Cell Biol, vol.22, issue.9, pp.2883-92, 2002.

M. J. Tijhuis, M. H. Visker, J. M. Aarts, W. Laan, S. Y. De-boer et al., NQO1 and NFE2L2 polymorphisms, fruit and vegetable intake and smoking and the risk of colorectal adenomas in an endoscopy-based population, Int J Cancer, vol.122, issue.8, pp.1842-1850, 2008.

H. Y. Cho, J. Marzec, and S. R. Kleeberger, Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med, vol.88, pp.362-72, 2015.

W. Choi, A. Ochoa, D. J. Mcconkey, M. Aine, M. Hoglund et al., Genetic Alterations in the Molecular Subtypes of Bladder Cancer: Illustration in the Cancer Genome Atlas Dataset, Eur Urol, vol.72, issue.3, pp.354-65, 2017.

P. Seibold, P. Hall, N. Schoof, H. Nevanlinna, T. Heikkinen et al., Polymorphisms in oxidative stress-related genes and mortality in breast cancer patients--potential differential effects by radiotherapy?, Breast, vol.22, issue.5, pp.817-840, 2013.

A. Alam, N. D. Mukhopadhyay, Y. Ning, L. B. Reshko, R. J. Cardnell et al., A Preliminary Study on Racial Differences in HMOX1, NFE2L2, and TGFbeta1 Gene Polymorphisms and Radiation-Induced Late Normal Tissue Toxicity, Int J Radiat Oncol Biol Phys, vol.93, issue.2, pp.436-479, 2015.

K. D. Mumbrekar, B. Sadashiva, S. R. Kabekkodu, S. P. Fernandes, D. J. Vadhiraja et al., Genetic Variants in CD44 and MAT1A Confer Susceptibility to Acute Skin Reaction in Breast Cancer Patients Undergoing Radiation Therapy, Int J Radiat Oncol Biol Phys, vol.97, issue.1, pp.118-145, 2017.

A. C. Goncalves, R. Alves, I. Baldeiras, E. Cortesao, J. P. Carda et al., Genetic variants involved in oxidative stress, base excision repair, DNA methylation, and folate metabolism pathways influence myeloid neoplasias susceptibility and prognosis, Mol Carcinog, vol.56, issue.1, pp.130-178, 2017.

M. Von-otter, S. Landgren, S. Nilsson, D. Celojevic, P. Bergstrom et al., Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson's disease, BMC Med Genet, vol.11, p.36, 2010.

X. Xu, J. Sun, X. Chang, J. Wang, M. Luo et al., Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China, J Cell Mol Med, vol.20, issue.11, pp.2078-88, 2016.

R. Plenge and J. D. Rioux, Identifying susceptibility genes for immunological disorders: patterns, power, and proof, Immunol Rev, vol.210, pp.40-51, 2006.

S. Richards, N. Aziz, S. Bale, D. Bick, S. Das et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genet Med, vol.17, issue.5, pp.405-429, 2015.

M. Krawczak, N. S. Thomas, B. Hundrieser, M. Mort, M. Wittig et al., Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing, Hum Mutat, vol.28, issue.2, pp.150-158, 2007.

D. S. Martin-krahn, Génétique médicale : enseignement thématique, p.2016, 2016.

L. Cartegni, S. L. Chew, and A. R. Krainer, Listening to silence and understanding nonsense: exonic mutations that affect splicing, Nat Rev Genet, vol.3, issue.4, pp.285-98, 2002.

K. M. De-vooght, R. Van-wijk, and W. W. Van-solinge, Management of gene promoter mutations in molecular diagnostics, Clin Chem, vol.55, issue.4, pp.698-708, 2009.

I. Miguel-escalada, L. Pasquali, and J. Ferrer, Transcriptional enhancers: functional insights and role in human disease, Curr Opin Genet Dev, vol.33, pp.71-77, 2015.

D. J. Kleinjan and V. Van-heyningen, Position effect in human genetic disease, Hum Mol Genet, vol.7, issue.10, pp.1611-1619, 1998.

S. Kukreti, H. Kaur, M. Kaushik, A. Bansal, S. Saxena et al., Structural polymorphism at LCR and its role in beta-globin gene regulation, Biochimie, vol.92, issue.9, pp.1199-206, 2010.

Y. Li and V. Tergaonkar, Telomerase reactivation in cancers: Mechanisms that govern transcriptional activation of the wild-type vs. mutant TERT promoters. Transcription, vol.7, pp.44-53, 2016.

R. N. Costa, N. Conran, D. M. Albuquerque, P. H. Soares, S. T. Saad et al., Association of the G-463A myeloperoxidase polymorphism with infection in sickle cell anemia, Haematologica, vol.90, issue.7, pp.977-986, 2005.

L. C. Barbosa, A. L. Miranda-vilela, H. Cde, O. Ribeiro, I. F. Daldegan et al., Haptoglobin and myeloperoxidase (-G463A) gene polymorphisms in Brazilian sickle cell patients with and without secondary iron overload, Blood Cells Mol Dis, vol.52, issue.2-3, pp.95-107, 2014.

S. Yahouedehou, M. Carvalho, R. M. Oliveira, R. P. Santiago, C. C. Da-guarda et al., Sickle Cell Anemia Patients in Use of Hydroxyurea: Association between Polymorphisms in Genes Encoding Metabolizing Drug Enzymes and Laboratory Parameters, Dis Markers, p.6105691, 2018.

I. Farias, T. F. Mendonca-belmont, A. S. Da-silva, O. K. Ferreira, F. Medeiros et al., Association of the SOD2 Polymorphism (Val16Ala) and SOD Activity with Vaso-occlusive Crisis and Acute Splenic Sequestration in Children with Sickle Cell Anemia, Mediterr J Hematol Infect Dis, vol.10, issue.1, p.2018012, 2018.

P. Song, K. Li, L. Liu, X. Wang, Z. Jian et al., Genetic polymorphism of the Nrf2 promoter region is associated with vitiligo risk in Han Chinese populations, J Cell Mol Med, vol.20, issue.10, pp.1840-50, 2016.

W. Weinberg, On the demostration of heredity in man, Boyer SH, rans (1963) Papers on human genetics, 1908.

J. R. Gonzalez, J. L. Carrasco, F. Dudbridge, L. Armengol, X. Estivill et al., Maximizing association statistics over genetic models, Genet Epidemiol, vol.32, issue.3, pp.246-54, 2008.

J. M. Flanagan, V. Sheehan, H. Linder, T. A. Howard, Y. D. Wang et al., Genetic mapping and exome sequencing identify 2 mutations associated with stroke protection in pediatric patients with sickle cell anemia, Blood, vol.121, issue.16, pp.3237-3282, 2013.

S. S. Chong, C. D. Boehm, D. R. Higgs, and G. R. Cutting, Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia, Blood, vol.95, issue.1, pp.360-362, 2000.

P. Joly, P. Lacan, C. Garcia, A. Delasaux, and A. Francina, Rapid and reliable beta-globin gene cluster haplotyping of sickle cell disease patients by FRET Light Cycler and HRM assays, Clin Chim Acta, vol.412, pp.1257-61, 2011.

V. Witko-sarsat, N. Khoa, T. Jungers, P. Drueke, T. Descamps-latscha et al., Advanced oxidation protein products: oxidative stress markers and mediators of inflammation in uremia, Adv Nephrol Necker Hosp, vol.28, pp.321-362, 1998.

H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal Biochem, vol.95, issue.2, pp.351-359, 1979.

F. Michel, D. Bonnefont-rousselot, E. Mas, J. Drai, and P. Therond,

, Ann Biol Clin, vol.66, issue.6, pp.605-625, 2008.

M. C. Beauvieux, P. Tissier, P. Couzigou, H. Gin, P. Canioni et al., Ethanol perfusion increases the yield of oxidative phosphorylation in isolated liver of fed rats, Biochim Biophys Acta, vol.1570, issue.2, pp.135-175, 2002.

Y. Rayssiguier, E. Gueux, L. Bussiere, and A. Mazur, Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats, J Nutr, vol.123, issue.8, pp.1343-1351, 1993.

L. H. Johansson and L. A. Borg, A spectrophotometric method for determination of catalase activity in small tissue samples, Anal Biochem, vol.174, issue.1, pp.331-337, 1988.

D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J Lab Clin Med, vol.70, issue.1, pp.158-69, 1967.

C. Beauchamp and I. Fridovich, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal Biochem, vol.44, issue.1, pp.276-87, 1971.

L. W. Oberley and D. R. Spitz, Assay of superoxide dismutase activity in tumor tissue, Methods Enzymol, vol.105, pp.457-64, 1984.

D. Monget, Ortho-tolidine: a more sensitive detector of peroxidase in the ELISA immunoenzyme method

, Ann Biol Clin (Paris), vol.36, issue.6, p.527, 1978.

P. Sebastiani, V. G. Nolan, C. T. Baldwin, M. M. Abad-grau, L. Wang et al., A network model to predict the risk of death in sickle cell disease, Blood, vol.110, issue.7, pp.2727-2762, 2007.

C. Renoux, P. Connes, E. Nader, S. Skinner, C. Faes et al., Alpha-thalassaemia promotes frequent vaso-occlusive crises in children with sickle cell anaemia through haemorheological changes. Pediatr Blood Cancer, vol.64, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01881713

A. Hellani, S. Al-akoum, and A. Kk, G6PD Mediterranean S188F codon mutation is common among Saudi sickle cell patients and increases the risk of stroke, Genet Test Mol Biomarkers, vol.13, issue.4, pp.449-52, 2009.

P. Joly, N. Garnier, K. Kebaili, C. Renoux, A. Dony et al., G6PD deficiency and absence of alpha-thalassemia increase the risk for cerebral vasculopathy in children with sickle cell anemia, Eur J Haematol, vol.96, issue.4, pp.404-412, 2015.

M. H. Steinberg and A. H. Adewoye, Modifier genes and sickle cell anemia, Curr Opin Hematol, vol.13, issue.3, pp.131-137, 2006.

J. R. Friedrisch, V. Sheehan, J. M. Flanagan, A. Baldan, C. C. Summarell et al., The role of BCL11A and HMIP-2 polymorphisms on endogenous and hydroxyurea induced levels of fetal hemoglobin in sickle cell anemia patients from southern Brazil, Blood Cells Mol Dis, vol.62, pp.32-39, 2016.

J. Hu, J. Gao, and J. Li, Sex and age discrepancy of HbA1c and fetal hemoglobin determined by HPLC in a large Chinese Han population, J Diabetes, vol.10, issue.6, pp.458-66, 2018.

D. K. Kaul, X. D. Liu, S. Choong, J. D. Belcher, G. M. Vercellotti et al., Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice, Am J Physiol Heart Circ Physiol, vol.287, issue.1, pp.293-301, 2004.

T. Dasgupta, R. P. Hebbel, and D. K. Kaul, Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free Radic Biol Med, vol.41, pp.1771-80, 2006.

P. E. Pfeffer, H. Lu, E. H. Mann, Y. H. Chen, T. R. Ho et al., Effects of vitamin D on inflammatory and oxidative stress responses of human bronchial epithelial cells exposed to particulate matter, PLoS One, vol.13, issue.8, p.200040, 2018.

S. Pramanik, U. Ganguly, V. K. Khemka, and A. Banerjee, Decreased glucose-6-phosphate dehydrogenase activity along with oxidative stress affects visual contrast sensitivity in alcoholics, Alcohol, vol.73, pp.17-24, 2018.

S. Bhagat, P. K. Patra, and A. S. Thakur, Association of Inflammatory Biomarker C-Reactive Protein, Lipid Peroxidation and Antioxidant Capacity Marker with HbF Level in Sickle Cell Disease Patients from Chattisgarh, Indian J Clin Biochem, vol.27, issue.4, pp.394-403, 2012.

S. Jana, M. B. Strader, F. Meng, W. Hicks, T. Kassa et al., Hemoglobin oxidationdependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles, JCI Insight, vol.3, issue.21, 2018.

E. Nader, M. Grau, R. Fort, B. Collins, G. Cannas et al., Hydroxyurea therapy modulates sickle cell anemia red blood cell physiology: Impact on RBC deformability, oxidative stress, nitrite levels and nitric oxide synthase signalling pathway. Nitric Oxide, vol.81, pp.28-35, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968408

S. Prakash, A. Hundekar, A. C. Karnik, R. Valvi, R. A. Ghone et al., The Effect of Antioxidant Supplementation on the Oxidant and Antioxidant Status in Sickle Cell Anaemia, Journal of Clinical and Diagnostic Research, vol.5, issue.7, pp.1339-1342, 2011.

L. M. Al-naama, M. K. Hassan, and J. K. Mehdi, Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia, Qatar Med J, vol.2015, issue.2, p.14, 2015.

R. W. Carrell, C. C. Winterbourn, and E. A. Rachmilewitz, Activated oxygen and haemolysis, Br J Haematol, vol.30, issue.3, pp.259-64, 1975.

N. Lu, W. Chen, and Y. Y. Peng, Effects of glutathione, Trolox and desferrioxamine on hemoglobininduced protein oxidative damage: anti-oxidant or pro-oxidant?, Eur J Pharmacol, vol.659, issue.2-3, pp.95-101, 2011.

O. A. Ayodele-adelakun, T. Ogunleye, and E. Disu, Ayokulehin Kosoko and Ganiyu Arinola. Respiratory Burst Enzymes and Oxidantantioxidant Status in Nigerian Children with Sickle Cell Disease, British Biotechnology Journal, vol.4, issue.3, pp.270-278, 2014.

B. Pulli, M. Ali, R. Forghani, S. Schob, K. L. Hsieh et al., Measuring myeloperoxidase activity in biological samples, PLoS One, vol.8, issue.7, p.67976, 2013.

F. K. Swirski, M. Wildgruber, T. Ueno, J. L. Figueiredo, P. Panizzi et al.,

. Myeloperoxidase-rich, Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice, J Clin Invest, vol.120, issue.7, pp.2627-2661, 2010.

D. J. Ormrod, G. L. Harrison, and T. E. Miller, Inhibition of neutrophil myeloperoxidase activity by selected tissues, J Pharmacol Methods, vol.18, issue.2, pp.137-179, 1987.

Y. Xia and J. L. Zweier, Measurement of myeloperoxidase in leukocyte-containing tissues, Anal Biochem, vol.245, issue.1, pp.93-99, 1997.

D. Qujeq and T. R. , Catalase (antioxidant enzyme) activity in streptozotocin-induced diabetic rats, Int J Diabetes & Metabolism, vol.15, pp.22-24, 2007.

D. R. Harkness, Sickle cell trait revisited, Am J Med, vol.87, issue.3N, pp.30-34, 1989.

M. Y. Shongo, O. Mukuku, T. K. Lubala, A. M. Mutombo, G. W. Kanteng et al., Sickle cell disease in stationary phase in 6-59 months children in Lubumbashi: epidemiology and clinical features

, Pan Afr Med J, vol.19, p.71, 2014.

G. Tall, F. Martin, C. , M. Ndour, E. H. et al., Genetic Background of the Sickle Cell Disease Pediatric Population of Dakar, Senegal, and Characterization of a Novel Frameshift beta-Thalassemia Mutation

, Hemoglobin, vol.41, issue.2, pp.89-95, 2017.

T. J. Vulliamy, A. Othman, M. Town, A. Nathwani, A. G. Falusi et al., Polymorphic sites in the African population detected by sequence analysis of the glucose-6-phosphate dehydrogenase gene outline the evolution of the variants A and A, Proc Natl Acad Sci, vol.88, pp.8568-71, 1991.

J. C. Bouanga, R. Mouele, C. Prehu, H. Wajcman, J. Feingold et al., Glucose-6-phosphate dehydrogenase deficiency and homozygous sickle cell disease in Congo. Hum Hered, vol.48, pp.192-199, 1998.

B. Maiga, A. Dolo, S. Campino, N. Sepulveda, P. Corran et al., Glucose-6-phosphate dehydrogenase polymorphisms and susceptibility to mild malaria in Dogon and Fulani, Mali, Malar J, vol.13, p.270, 2014.

A. K. Ouattara, P. Yameogo, B. Diarra, D. Obiri-yeboah, A. Yonli et al., Molecular Heterogeneity of Glucose-6-Phosphate Dehydrogenase Deficiency in Burkina Faso: G-6-PD Betica Selma and Santamaria in People with Symptomatic Malaria in Ouagadougou, Mediterr J Hematol Infect Dis, vol.8, issue.1, p.2016029, 2016.

D. Araujo, C. Migot-nabias, F. Guitard, J. Pelleau, S. Vulliamy et al.,

, AEth376G/968C allele in glucose-6-phosphate dehydrogenase deficiency in the seerer population of Senegal, Haematologica, vol.91, issue.2, pp.262-265, 2006.

I. Das, H. Mishra, P. K. Khodiar, and P. K. Patra, Identification of therapeutic targets for inflammation in sickle cell disease (SCD) among Indian patients using gene expression data analysis, Bioinformation, vol.14, issue.7, pp.408-421, 2018.

G. Ramanathan, R. Elumalai, S. Periyasamy, and B. Lakkakula, Role of renin-angiotensin-aldosterone system gene polymorphisms and hypertension-induced end-stage renal disease in autosomal dominant polycystic kidney disease, Iran J Kidney Dis, vol.8, issue.4, pp.265-77, 2014.