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Abstract
THESIS TITLE

An Efficient Framework for Processing and Analyzing Unstructured Text
to Discover Delivery Delay and Optimization of Route Planning in
Realtime

by Mohammad ALSHAER

Keywords: Realtime Processing, Clustering, Big Data, Internet of Things,
Logistics, Hierarchical Clustering Algorithm, Unstructured Data, Text Ana-
lytics.

Internet of Things (IoT) is leading to a paradigm shift within the logistics
industry. The advent of IoT has been changing the logistics service man-
agement ecosystem. Logistics services providers today use sensor technolo-
gies such as GPS or telemetry to collect data in realtime while the delivery
is in progress. The realtime collection of data enables the service providers
to track and manage their shipment process efficiently. The key advantage
of realtime data collection is that it enables logistics service providers to
act proactively to prevent outcomes such as delivery delay caused by un-
expected /unknown events. Furthermore, the providers today tend to use
data stemming from external sources such as Twitter, Facebook, and Waze.
Because, these sources provide critical information about events such as traf-
fic, accidents, and natural disasters. Data from such external sources enrich
the dataset and add value in analysis. Besides, collecting them in real-time
provides an opportunity to use the data for on-the-fly analysis and prevent

unexpected outcomes (e.g., such as delivery delay) at run-time.

However, data are collected raw which needs to be processed for effective
analysis. Collecting and processing data in real-time is an enormous chal-
lenge. The main reason is that data are stemming from heterogeneous sources
with a huge speed. The high-speed and data variety fosters challenges to per-
form complex processing operations such as cleansing, filtering, handling
incorrect data, etc. The variety of data — structured, semi-structured, and

unstructured — promotes challenges in processing data both in batch-style
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and real-time. Different types of data may require performing operations
in different techniques. A technical framework that enables the processing
of heterogeneous data is heavily challenging and not currently available. In
addition, performing data processing operations in real-time is heavily chal-
lenging; efficient techniques are required to carry out the operations with
high-speed data, which cannot be done using conventional logistics infor-
mation systems. Therefore, in order to exploit Big Data in logistics service
processes, an efficient solution for collecting and processing data in both re-
altime and batch style is critically important.

In this thesis, we developed and experimented with two data processing so-
lutions: SANA and IBRIDIA. SANA is built on Multinomial Naive Bayes
classifier whereas IBRIDIA relies on Johnson’s hierarchical clustering (HCL)
algorithm which is hybrid technology that enables data collection and pro-
cessing in batch style and realtime. SANA is a service-based solution which
deals with unstructured data. It serves as a multi-purpose system to extract
the relevant events including the context of the event (such as place, loca-
tion, time, etc.). In addition, it can be used to perform text analysis over the
targeted events. IBRIDIA was designed to process unknown data stemming
from external sources and cluster them on-the-fly in order to gain knowl-
edge/understanding of data which assists in extracting events that may lead
to delivery delay. According to our experiments, both of these approaches
show a unique ability to process logistics data. However, SANA is found
more promising since the underlying technology (Naive Bayes classifier) out-
performed IBRIDIA from performance measuring perspectives. It is clearly
said that SANA was meant to generate a graph knowledge from the events
collected immediately in realtime without any need to wait, thus reaching
maximum benefit from these events. Whereas, IBRIDIA has an important
influence within the logistics domain for identifying the most influential cat-
egory of events that are affecting the delivery. Unfortunately, in IBRIRDIA,
we should wait for a minimum number of events to arrive and always we
have a cold start. Due to the fact that we are interested in re-optimizing the
route on the fly, we adopted SANA as our data processing framework. We
implemented a route optimization application to demonstrate how our so-
lution is used in extracting information of events that may lead to delivery

delay and how the routes can be optimized to prevent the delay.
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Résumeé
TITRE DE THESE

Un framework efficace pour le traitement et ’analyse des textes non
structurés afin de découvrir les retards de livraison et d’optimiser la

planification de routes en temps réel

par Mohammad ALSHAER

Mots clés: Traitement en temps réel, Clustering, Big Data, Internet des objets,
Logistique, Algorithme de clustering hiérarchique, Données non structurées,

Analyse de texte.

L’'Internet des objets, ou IdO (en anglais Internet of Things, ou IoT) conduit
a un changement de paradigme du secteur de la logistique. L’avenement de
I'ToT a modifié I'écosystéme de la gestion des services logistiques. Les four-
nisseurs de services logistiques utilisent aujourd’hui des technologies de cap-
teurs telles que le GPS ou la télémétrie pour collecter des données en temps
réel pendant la livraison. La collecte en temps réel des données permet aux
fournisseurs de services de suivre et de gérer efficacement leur processus
d’expédition. Le principal avantage de la collecte de données en temps réel
est qu’il permet aux fournisseurs de services logistiques d’agir de manieére
proactive pour éviter des conséquences telles que des retards de livraison
dus a des événements imprévus ou inconnus. De plus, les fournisseurs ont
aujourd’hui tendance a utiliser des données provenant de sources externes
telles que Twitter, Facebook et Waze, parce que ces sources fournissent des in-
formations critiques sur des événements tels que le trafic, les accidents et les
catastrophes naturelles. Les données provenant de ces sources externes en-
richissent 'ensemble de données et apportent une valeur ajoutée a 1’analyse.
De plus, leur collecte en temps réel permet d'utiliser les données pour une
analyse en temps réel et de prévenir des résultats inattendus (tels que le délai

de livraison, par exemple) au moment de I'exécution.

Cependant, les données collectées sont brutes et doivent étre traitées pour
une analyse efficace. La collecte et le traitement des données en temps réel
constituent un énorme défi. La raison principale est que les données provi-
ennent de sources hétérogénes avec une vitesse énorme. La grande vitesse et
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la variété des données entrainent des défis pour effectuer des opérations de
traitement complexes telles que le nettoyage, le filtrage, le traitement de don-
nées incorrectes, etc. La diversité des données - structurées, semi-structurées
et non structurées - favorise les défis dans le traitement des données a la
fois en mode batch et en temps réel. Parce que, différentes techniques peu-
vent nécessiter des opérations sur différents types de données. Une struc-
ture technique permettant de traiter des données hétérogenes est tres diffi-
cile et n’est pas disponible actuellement. En outre, I'exécution d’opérations
de traitement de données en temps réel est trés difficile ; des techniques effi-
caces sont nécessaires pour effectuer les opérations avec des données a haut
débit, ce qui ne peut étre fait en utilisant des systémes d’information logis-
tiques conventionnels. Par conséquent, pour exploiter le Big Data dans les
processus de services logistiques, une solution efficace pour la collecte et le

traitement des données en temps réel et en mode batch est essentielle.

Dans cette these, nous avons développé et expérimenté deux méthodes pour
le traitement des données: SANA et IBRIDIA. SANA est basée sur un classifi-
cateur multinomial Naive Bayes, tandis qu'IBRIDIA s’appuie sur l'algorithme
de classification hiérarchique (CLH) de Johnson, qui est une technologie hy-
bride permettant la collecte et le traitement de données par lots et en temps
réel. SANA est une solution de service qui traite les données non structurées.
Cette méthode sert de systeme polyvalent pour extraire les événements per-
tinents, y compris le contexte (tel que le lieu, I'emplacement, I'heure, etc.).
En outre, il peut étre utilisé pour effectuer une analyse de texte sur les événe-
ments ciblés. IBRIDIA a été congu pour traiter des données inconnues provenant
de sources externes et les regrouper en temps réel afin d’acquérir une con-
naissance / compréhension des données permettant d’extraire des événe-
ments pouvant entrainer un retard de livraison. Selon nos expériences, ces
deux approches montrent une capacité unique a traiter des données logis-
tiques. Cependant, SANA semble plus prometteur puisque la technologie
sous-jacente (classificateur Naive Bayes) a surpassé IBRIDIA du point de vue
performance. Il est clairement indiqué que SANA était censé générer une
connaissance graphique des événements collectés immédiatement en temps
réel sans avoir a attendre, permettant ainsi de tirer le meilleur parti de ces
événements. IBRIDIA est importante dans le domaine de la logistique pour
identifier la catégorie d’événements la plus influente qui affecte la livraison.
Malheureusement, pour IBRIRDIA, nous devrions attendre qu'un nombre
minimum d’événements se présente et nous avons toujours un démarrage

a froid. Etant donné que nous sommes intéressés par la ré-optimisation de
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l'itinéraire en temps réel, nous avons adopté SANA comme cadre de traite-
ment de données. Nous avons implémenté une application d’optimisation
d’itinéraire afin de démontrer comment notre solution est utilisée pour ex-
traire des informations d’événements susceptibles d’entrainer un retard de
livraison et comment les itinéraires peuvent étre optimisés pour éviter ce re-
tard.
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Chapter 1

Chapter One: Introduction

1.1 Context and Motivation

With the advent of the Internet of Things (IoT), lately, the operational land-
scape of the logistics industry is changing. Today, logistics companies (such
as DHL! and FedEx?) use various sensors for tracking delivery, maintaining
sensitive products, and many other purposes. Sensors assist in tagging and
connecting factories, ships, and machines and also handling real-time events.
Additionally, the connectivity of "things" enables instant communication be-
tween devices via Internet [32]. This hyper-connected ecosystem promises
far-reaching payoffs for logistics operators, their business customers, and
end customers [152]. One of the major advantages of IoT-based ecosystem is
that it enables us to connect the logistics sensors with external sensors such
as weather sensors and traffic (GPS) sensors etc. Furthermore, IoT enables
us to connect with social media such as Twitter which very often provides
important traffic information tweeted by the users. The sensors and social
media produce information about events such as accident, weather, natural
hazards, heavy road constructions, etc. which are critical to logistics compa-
nies. This information can be used to carry out some critical analysis such
as predictive analysis for forecasting shipment delay or prescriptive analysis
to optimize routes to guarantee on-time delivery which increases customer

satisfaction and hence guarantees customer retention.

Although many solutions proposed in the last two decades within the lo-
gistics domain to tackle various problems, delivery delay remained an open
issue. Timely delivery is a huge challenge for logistics companies because
sometimes delays are caused by factors outside of anybody’s control. Delay

Lhttp://www.dhl.com /en.html
Zhttp: / /www.fedex.com /us/



2 Chapter 1. Chapter One: Introduction

has various impacts such as, customer churn or cancellation of orders which
eventually leads to loss of revenue. Therefore, timely delivery is critically im-

portant within logistics companies.

A delivery process consists of a set of steps such as receive delivery request,
pick up goods, deliver orders to the client etc. Additionally, the delivery process
is constrained with different parameters mainly delivery time and delivery loca-
tion. The delivery time is considered as a global constraint that is composed
of two temporal constraints: pick up time and vehicle routing time that are con-
sidered as local time constraints. Note that the vehicle routing time refers
to the time elapsed from pick up location (i.e., warehouse location) to desti-
nation of delivery. The values of global constraints delivery time and loca-
tion are agreed between the product seller and logistics service provider and
assigned at the design-time of the process. Very often the logistics service
providers confront a challenge in satisfying the delivery time. The challenge
is posed mainly by different uncertain events that may not be possible to
foresee at design-time. The reason behind this is that most of these events
such heavy traffic, accident, and natural disaster occur while the delivery pro-
cess is running i.e., during delivery of an order or picking up the order from
warehouse. These eventually may lead to the failure of in-time delivery of
the order.

In recent years, logistics companies have started to investigate how to ex-
ploit data in predicting delay. The data driven prediction of delay is gaining
popularity. Especially, with the advent of Big Data technologies, the logistics
providers are focusing heavily on using streams of events such as accident,
high-traffic stemming from external sources such as social media, to perform
analysis and predict delay in realtime. The realtime prediction of delay en-
ables companies to pro-act such as optimizing route on the fly in (near) re-
altime. We have investigated the requirements of a realtime system which
can perform analysis and predict delay. The core requirements are: ability to
collect logistics data in realtime from multiple heterogeneous sensors, social
media, and business processes; ability to process data efficiently in real-time
or batch-style; a model for analyzing data for predicting the delay; and a
model which produces an optimal routing plan to prevent the predicted de-
lay. However, since data is the key element of analysis, efficient processing
of data to produce quality dataset is a sine quo non.
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1.2 Motivating Scenario

There are different modes of shipment used by logistics service providers in-
cluding air cargo, ships, and ground cargo (e.g., Lorries and trucks). A single
mode of transportation may not be adequate to deliver goods. Especially,
a cross-border long-running shipment may include several modes of trans-
portation. Consider a case where a product manufactured in China will be
shipped to different customers located in different cities in the United States;
the shipment process has to be multi-modal which means that the process

will include lorries, trucks, train, ship or air etc. (Figure 1.1).

Shipment 1D: H50004
Location: HHDE_7F345
Temperature:15=C
Humidity:53%

Light: Container cpened
Shock: no sheck events
detected

EngineSensor :SRO03
Status - serious mafunctiondetected
Action: maintenance team alerted

4] Shipment ID:FD34558
S| Location:GGDW_5GE7S
Temperature: Ok

pment 10 CR55024
Location :

&| HHDE_S5F324

A Speed : 70km/H

ETA : 20:30 04/05/15

Driver Fatigue iy
detected pulloverat| |
@ nextstop ) _'_>!-.I

FIGURE 1.1: The Multi-modal Logistics System (Source: [110])
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The integrated multi-modal logistics processes are prone to encounter var-
ious challenges namely delivery delay. For instance, the shipment could be
delayed if clearance at the port is delayed, even if all other modes of transporta-
tion meet pre-defined schedule. Uncertain events such as natural disaster,
war, strike, protest may affect one or more of the delivery modes at one or
more steps of the integrated logistics processes. Uncertainty is the major
challenge concerning such events. Therefore, pro-activeness to the best of
our knowledge is a suitable approach which needs continuous streaming of
data that contains information of events that may lead to delivery delay. In
other words, realtime analysis of data to extract information of events which
may lead to delivery delay.
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1.3 Problem Description

There are different challenges involved in an integrated mission-critical lo-
gistics process. The predominant challenges reported by experts include the
following: in-time delivery, cost optimization, efficient management of inter-
modal transportation, transferring information, Security, and Infrastructure
[148, 174, 178].

However, in-time delivery is one of the key performance indicators (KPIs)
of logistics services. Delay of a scheduled (expected) delivery increases cus-
tomer dissatisfaction. In order to prevent delay, logistics service providers
heavily rely on automated solutions. Business intelligence is a widely used
solution that enables performing different types of cycle time analytics [179]
that analyze delay for different combinations of goods, routes, modes and

weather conditions.

However, this is a reactive approach that performs an analysis of historical
data. In other words, traditional business intelligence especially, BI&A 1.0
and BI&A 2.0 use only internal data that stem from different information
systems and legacy systems [44].

Also, the process mining tool PRoM [210] — a recent tool for mining busi-
ness processes — lacks the ability to exploit external data. Consequently,
the analytics miss important external data such as sensor data (for example,
global positioning systems (GPS) data) and social media data (such as Twitter
data). The advent of Big Data technologies created wide opportunities to ex-
ploit such external data which enhances the predictability of analytics. More
specifically, these data are effective to forecast potential delivery delays as
they contain important information such as high traffic, weather report, po-
litical events such as protest, and other events such as unexpected natural

disasters (e.g., Earthquake).

However, collecting, cleaning, filtering, integrating, and storing data from
heterogeneous sources is a non-trivial task. Particularly, seamless integration
of unstructured text sourcing from Twitter with structured business process
data is not possible by existing logistics solution frameworks. Dong et al.
[66], outlined several Big Data integration challenges. Furthermore, there are
several techniques and approaches for processing data, however, our investi-
gation suggests that there is a scope to improve these techniques specifically

the clustering algorithms.
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To sum up, during our study with literature, we seek for an integrated so-
lution which enables to process data for extracting events that may have an
impact on delivering goods. Taking this limitation into account, we formu-
late our research problem as follows:

“the existing frameworks do not provide adequate techniques or methods that en-
able to collect and process heterogeneous data in realtime to extract events that drive
the delivery constraints specifically the delivery time. Also, the current frameworks
re-engineer the delivery plan dynamically which will help in avoiding the delivery
delay."

1.4 Research Questions

Based on the problems we discovered, we defined three questions that this
research will address. We describe these questions as follows:

e Research Question 1: This question concerns collecting heterogeneous
data in realtime. Logistics data is collected from different data sources.
Integrating diverse data (e.g., unstructured text, audio, and video) is a
critical data processing problem. Also, data are presented using differ-
ent technologies such as json, xml, etc. The question is: How to handle
data variety while collecting them in real-time from different sources?

e Research Question 2: This research question concerns realtime pro-
cessing of data for extracting relevant events. The collected data need
to be processed in realtime and the relevant events must be extracted.
Most of these data are unstructured (text-based) that need to be pro-
cessed in realtime which is a non-trivial task. How to process data and
extract events in realtime efficiently?

e Research Question 3: This research question concerns the dynamic op-
timization of route planning. Route optimization is an NP-hard prob-
lem with no unique solution that can be used. The major question is how
to optimize the route planning?

1.5 Objectives

Our objective is to build a framework underlying techniques that enable to:

(i) collect, process, and analyse unstructured data that move in high speed,
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(i) extract events that may influence the constraints of delivery in logistics
processes especially the delivery time, and (iii) prescribe an optimized dy-
namic plan to react immediately by choosing the optimal solutions.

We aim to focus on two modules that are critical to attaining our objectives.

These modules are described below:

e Data Processing: In this phase, we collect the data from social media
and sensors in realtime. After collecting the data, we process it. The
processing is done by integrating the different data collected from the
different data sources and then extract the relevant events. We are here
defining a new formatted template for the events in order to unify the
different data presentation. We translate all the different unstructured
text data into meaningful events.

e Data Analysis: During this phase, we need to perform the dynamic op-
timization of route planning. In other ways, re-engineering the delivery
plan dynamically to optimize the plan which will help in avoiding the
delivery delay.

1.6 Contributions

Following our objectives, we find that there is no standard processing frame-
work for processing the coming data in realtime with the ability to extract
the affecting events occurring at the moment. That conclusion was a good
motivation to decide on going for an experimental study to find the most
adequate processing system to deal with the logistics in-time delivery prob-
lem. In this thesis, we developed two data processing solutions: SANA and
IBRIDIA for the experimental purpose to choose the right technology for col-

lecting and processing data in realtime.
Our contributions can be presented as follows:
e SANA:

We first tried to tackle a framework that is general-purpose i.e. can deal
with any type of data and eventually extract relevant information. We
designed this framework to be independent of the domain of interest
(e.g. logistics domain). This framework was built as a social media
analyzer which we called SANA that can do realtime analytics to un-
derstand the sentiment of the users. SANA was published in ICSOC



1.6. Contributions 7

Workshops 2016 and its refined model in OTM 2016. With SANA, we
were able to understand the users’ satisfaction on current logistics com-
panies and how they interact to any delivery. This analysis was of ma-
jor importance for specifying the real problems in logistics and figuring
out how the delivery is one of the problems that really affect the sat-
isfaction of customers. From SANA, we were able to recognize more
effectively the delivery problem. Besides, we found that it can play the
processing role very smoothly due to its different integrated modules
not just as a sentiment analyzer, but also as a data processing engine
to extract the relevant events in order to re-design the routing of the
delivery plan to avoid any probable delay.

The main characteristics that distinguish SANA from existing process-
ing systems include the following: (i) it performs analysis with the en-
tire text of an event, instead of its small fragment. Thus, the semantic
along with context (e.g., location, organization, etc.) of the event could
be understood and also visualized more comprehensively than the con-
ventional text analytics systems; (ii) SANA is a context-aware solution.
Furthermore, SANA performs a lightweight preprocessing with raw
data collected from external data sources, e.g., Twitter. None of the ex-
isting solutions offer preprocessing functionality. In addition, SANA
has graph storage which enables visualizing the results as knowledge
graphs that present a comprehensive and detailed view resulted from
classification. Additionally, SANA offers a graph-based query interface
that enables querying the results to extract finer-grained knowledge.
This cannot be done by current solutions. The multi-layered architec-
ture of SANA consists of various components, which are briefly de-
scribed in the following.

SANA performs a light-weight preprocessing with incoming events.
The purposes of preprocessing are two-fold: formulating context of
events, and prune unnecessary strings. The former is critical for con-
text extraction and the latter is important for saving memory space. For
context formulation, SANA extracts keywords using the n-gram model
which is a contiguous sequence of n-character or n-word slice of longer
strings or texts. The values of n vary depending on the number of char-
acters or words the users want to extract in each extraction operation.
The corpus-based is a widely known approach and used for extracting

words, however, we choose n-gram model because the corpus-based
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approach is not suitable for extracting keywords realtime. The n-gram

model is a probability function, P (w;, | w 1) =P (wy | wZ:}\, 1) where,

wy, w1, w" are sequence of words. SANA extracts a pair of words

(which are the keywords). The model approximates the probability of
a word given all the previous words P (w, | w"~ 1) by using the con-
ditional probability P(w, | w}'l ;). SANA formulates contexts using
extracted keyword. For instance, consider a tweet I bought a Christine
Davis perfume from Paris, which I found could not satisfy my expectation,
SANA extracts words and formulates contexts by pairing words includ-
ing perfume and Paris. In the next step, SANA prunes all unnecessary
strings. In order to perform pruning it relies on a training dataset that

consists of a set of seed words.
IBRIDIA:

According to our investigation, well-processed data is of critical impor-
tance for efficient analysis. However, existing data processing solutions
(e.g., techniques or algorithms) are not adequately efficient to process
data in realtime. Our objective at this phase was to address the variety
and velocity challenges. We started targeting the variety challenge by
developing a module called ProLoD for collecting and processing data
in batch style mode which was published in the OTM 2017 interna-
tional conference. We extend it further by developing a module called
RePLoD for collecting and processing data in realtime mode to target
the velocity challenge. ProLoD and RePLoD were the main modules
of our solution which we called IBRIDIA that was published in Future
Generation Computer Systems Journal. Our solution relies on the hi-
erarchical clustering algorithm for processing data in both batch style

and realtime.

IBRIDIA relies on the data processing model which we developed. While
choosing the appropriate technique for developing the model, we con-
sidered the nature of data and operation styles. Hierarchical clustering
was missing in the state of art for realtime analytics. We contributed
to this algorithm by adding an extension to be able to cluster the data
streams that are arriving in realtime by using an incremental method
and since 80% of the data existing today are unstructured data, we con-
centrate on clustering over text data using the hamming distance for

measuring the similarity.



1.7. Research Scope 9

We used this processing algorithm to help us determine the events that
have an impact over the delay. We tested our approach and it generated
good results, but the limitation was related to the memory bottleneck.
As the time passes, the clusters evolve getting more points or creating
new clusters and these clusters are based on (n x 1) matrix in memory
where all the records and clusters are compared with each other in the
memory which leads into a memory bottleneck.

¢ Dynamic Route Optimization:

Using the adopted data processing framework, we are able to extract
the relevant events that may influence the delivery constraints (e.g., ve-
hicle routing time) from the ingested data in realtime. These events are
adopted by our dynamic route planning algorithm in order to elimi-
nate or mitigate the delay by prescribing a new optimized plan. This
routing algorithm is based on a meta-heuristic approach. It consists of
a large neighborhood search that combines elements of simulated an-
nealing and threshold-accepting algorithms. This algorithm is mainly
composed of two steps ruin and create that are discussed further in sec-
tion 4.

Our algorithm will first fill all the possible routes between two differ-
ent locations. Then, we check if any of the locations mentioned in the
processed events fall within the bounding box of the different routes.
After that, we check which one of these routes is to be less critically af-
fected by the unexpected events to be selected as the best route by the
algorithm. When we detect the best route, we use its distance as the
minimum distance between the two provided location and we did this
to all locations that need to be visited to find the optimal route. This
algorithm was developed to take into consideration the constraints to
generate a new route based on the shortest distance and deal with the

order in which the delivery plan will consider visiting the customers.

1.7 Research Scope

The scope of this research is more related to the processing and prescriptive

analytics research areas. In this scope, we covered the following:
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e Processing realtime data: This part was the main focus of our research
due to its importance for the analysis. If we do not have the right data,
analysis will not show any meaningful information and insights. Due
to this fact, we covered different stages of data processing which in-
clude parsing, cleaning, filtering, transforming them into well-formatted
events sharing the same template and some sort of machine learning al-
gorithms to get the best out of these data.

e Extracting relevant events in realtime: We extract the events and label
them as relevant depending on their impact on the delay throughout
the route.

The scope of this research did not cover the following research areas:

e Data Storage: We used different data storage technologies, however,
it is out of the scope of this research. We could not contribute to the
efficiency of the storage and its performance in terms of read and write
operations.

e Data Visualization: Despite the fact that we visualize some of the events,
it is yet out of the scope as well due to the fact that it needs more re-
search to have the correct visualization which depends on the domain-

specific business to show the meaningful results.

e Data Security: We should mention clearly that data security is out of
the scope of this research.

1.8 Thesis Structure

This thesis consists of five chapters apart from the introductory Chapter 1.

In Chapter 2, we present the different methods, techniques, and technologies
that fall within the scope of our proposed solutions from data collection to
data processing and data analysis. This discussion shows the gap between
the existing approaches and our approach. An elaborate review of the state
of the art shows that it is still missing one framework that can integrate all
these different techniques and methods from the different domains.
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In Chapter 3, we decided to move forward conducting an experimental study
between two different frameworks based on different components. We de-
veloped the two frameworks called SANA and IBRIDIA for processing the
logistics data in realtime. SANA uses n-gram with Multinomial Naive Bayes
algorithm and context extraction from the information retrieval domain, whereas,
IBRIDIA was more focused on an incremental hierarchical clustering algo-
rithm which was missing in the state of the art. In addition, we did some
experiments over these two different frameworks and shows that SANA and
IBRIDIA are quite of a different taste. Each has its own taste to extract in-
sight from the data. SANA focuses more on the broader area of applications
such as customer churn, extracting relevant events that might affect the de-
livery, etc. On the other hand, IBRIDIA was trying to show value from the
data that even human being cannot notice easily such as which events can
be grouped together, which events are similar to give same sense. This idea
of using IBRIDIA in some nuclear plants can result in grouping the differ-
ent events coming immediately into different categories such as critical, non-
critical, suspicious, etc.

In Chapter 4, we decided to validate that we did the right choice and the se-
lected framework can provide us with all the required details to do the route
planning and the re-routing of the delivery process. We investigated several
algorithms in the literature and we discovered that we can enhance the mea-
suring distance function of the preferred algorithm. Thus, we decided that
we need to extend the selected framework by a new component that is re-
sponsible for planning the whole delivery route and it must be able to adapt
the enriched events generated by the selected processing framework to do
the route optimization.

We end with Chapter 5 where we sum up our contributions and show how
this framework proposes a reliable solution for an improved logistics man-
agement system in its different components, specifically the delivery. We
discuss the open problems in each solution and show possibilities for future

improvements.
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Chapter 2

Chapter Two: State of the Art

2.1 Introduction

As mentioned in chapter 1, we tried to address a fully operational system for
facilitating the data-driven logistics process by considering any event that
might lead to a delivery delay. Conventional logistics systems have several
limitations in terms of dealing with unexpected events and make the com-
panies suffer from major losses due to the delay in the delivery that is not
handled properly. Nowadays, sensors and social media generate a massive
amount of data and some of them concern the different events occurring at
the moment including traffic, accidents, weather, parking, terrorist attacks,
etc. By integrating the events from the ocean of data, i.e., the world wide
web with the internal data from companies we are able to provide the rele-

vant information in-time for analysis.

In order to handle these data properly, we need to address different chal-
lenges in the different phases of the system such as data collection, data pro-
cessing, and data analysis. Collecting data from heterogeneous data sources
represents a real challenge from scientific perspectives due to its high com-
plexity. Besides, data velocity creates a bottleneck for conventional systems.
Determining the convenient way to handle the coming data is still to be stud-
ied extensively in the state of the art. Data processing is yet, another chal-
lenging phase that needs to process the coming data in realtime before being
stored to any hard drive. Processing data on the fly needs special processing
mechanisms that depend on the main memory rather than secondary stor-

age.
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2.2 Data Collection Tools and Techniques

2.2.1 Sensor Data Collection

Much research on sensor data and smart data ingestion and fusion have al-
ready been studied. Llinas et al. reported an explanation on how to do data
ingestion and a basis for sensor ingestion and fusion for future study and re-
search [147]. In order to tackle sensor data ingestion, many frameworks have
been proposed; in that sense, we consider the work of Lee et al. in which they
presented a peer-to-peer collaboration framework for multi-sensor data fu-
sion in resource-rich radar networks [118]. Most of these frameworks consid-
ered exchanging the data among multiple sensors. Among different devices,
data cannot be exchanged like in simple sensors. Thus, two types of sensor
data processing architectures were discussed by Dolui et al., which are, on-
device and on-server data processing architectures [65]. The industrial field
adopts mainly the on-server data processing architecture for managing smart

devices and products.

Lately, multi-sensor data fusion has received significant importance for both
logistics and non-logistics applications. In order to improve the accuracy
and the inference of using only one sensor, they introduce data fusion tech-
niques for integrating data from multiple sensors and data from associated
databases [216, 217, 105, 129].

While the idea of data fusion is not new, the development of new sensors,
advanced processing techniques, and improved processing equipment make
the continuous fusion of data incrementally possible [104, 146]. Nowadays,
there exist multiple devices for monitoring, tracking and detecting what is
going on in the delivery network. Some of these sensors are used for location
tracking for example like Global Positioning System (GPS). GPS can collect
traffic data in a more efficient way through location tracking. GPS represents
an important data source for data collection, especially, if integrated with a
geographic information system (GIS) or other map displaying technologies.
The data collected from GPS can be utilized to address many traffic issues,
such as travel mode detection [220], travel delay measurement [15], and traf-
fic monitoring [109]. Besides GPS sensors, there exist many other sensors
that can be used to collect vehicle speeds, vehicle density, traffic flows, and
trip times. Some other types of sensors are called on-road sensors such as in-

frared and microwave detectors which are enhanced to obtain, compute and
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transfer traffic data [150].

In the early 1970s, the symbolic processing was found providing an impetus
to artificial intelligence [87]. In the same way, recent evolution in comput-
ing and sensing has facilitated the ability to emulate in both hardware and
software besides the natural data fusion capabilities of organisms through
detection and monitoring. Recently, data fusion systems are used for differ-
ent applications including target tracking, automated recognition of targets,
and limited reasoning applications.

Applications for multi-sensor data fusion are spread across different sectors.
These applications include monitoring of manufacturing processes, condition-
based maintenance of complex machinery, robotics [1], and medical applica-
tions. Techniques to integrate or fuse data are discovered from the existence
of a diverse set of more traditional disciplines including: digital signal pro-
cessing, statistical estimation, control theory, artificial intelligence, and clas-
sic numerical methods [221, 209, 125]

The fusion of multi-sensor data has significant advantages over using single
source data. Combining same-source data can increase the statistical estima-
tion obtained through redundant observations. On the other hand, combin-
ing multiple types of sensors data may increase the accuracy with which, an
object can be observed, identified and characterized. As an example, a radar
can estimates the aircraft’s range, but cannot identify the angular direction
of the aircraft. However, using an infrared imaging sensor can accurately
identify the aircraft’s angular direction but it cannot measure the range. If
the observations of these two sensors were correctly associated, then the fu-
sion of these sensors data would imply: estimating the location of the air-
craft. This produced more accurate results as shown in the fused location
estimate. In the same way, identifying multiple object’s attributes based on
different observations can help in detecting the identity of the object. For ex-
ample, some studies show that bats use a combination of factors such as size,
texture (based on the acoustic signature and kinematic behavior) to identify
their prey.

2.2.2 Structured Data Collection

Structured data is also known as traditional data. This type of data is usu-

ally stored inside a data warehouse such that it can be ready for analysis.
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Structured data is mainly characterized as both highly-organized and easy to
digest. Thus, has the advantage of easily being entered, stored, queried and
analyzed. At one time, because of the high cost and performance limitations
of storage, memory and processing, relational databases and spreadsheets
using structured data were the only way to effectively manage datal. Of-
ten, this type of data is managed using Structured Query Language (SQL).
SQL is a domain-specific language used in programming and designed for
managing data held in a relational database management system (RDBMS).
In order to collect structured data, we need to consider the available tools
or techniques that serve this purpose. The point is that these tools must be
able to collect the structured data in a continuous, asynchronous, realtime or
batched style way. The well-known tools that can fulfill the structured data
collection role are: Sqoop, NiFi, Gobblin. These tools will be discussed in
detail as follows:

e Apache Sqoop?: Apache Sqoop is a tool designed for efficiently trans-
ferring bulk data between Apache Hadoop and structured datastores
such as relational databases®. It supports transferring a huge amount of
data incrementally of a single table or a free form SQL query, saved jobs
which can be run multiple times to import updates made to a database
since the last import. According to the authors of [12], it enables data
imports from external data stores and enterprise data warehouse into
Hadoop. It ensures fast performance by parallelizing data transfer and
utilizes an optimal system. Sqoop runs on a MapReduce framework on
Hadoop -MapReduce will be discussed in the following section-. Sqoop
still enables different data formats for data imports. For example, the

Avro data format can be used for easier importing of data.

e Apache NiFi*: Apache NiFi supports powerful and scalable directed
graphs of data routing, transformation, and system mediation logic.
What is interesting about NiFi is that it includes a web-based user in-
terface that provides the user with access to every single detail about
the running processes. NiFi’s processors are file oriented and schema-
less. This means that every record flowing through the system is repre-
sented by a FlowFile. It is crucial for the processor to know the content

of the data in order to operate on it. It can run in two main modes

https://www.webopedia.com/TERM/S/structured_data.html
2https://sqoop.apache.org/
3https://www.predictiveanalyticstoday.com/data-ingestion-tools/
“https://nifi.apache.org/
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which are: standalone and as a distributed cluster using its own built-
in clustering system®. It is highly configurable, shows data provenance
details and designed for extension. Apache NiFi has a couple of built-in
processors for extracting database data into NiFi FlowFile. It has three
processors for extracting data from relational databases which are Exe-
cuteSQL, QueryDatabaseTable, and GenerateTableFetch®.

e Apache Gobblin’: Gobblin is a universal ingestion framework devel-
oped by LinkedIN. It is a flexible framework for extracting, transform-
ing and loading large volumes of data from a variety of data sources,
such as databases, rest APIs, FIP/SFTP servers, etc. onto Hadoop. It is
capable of handling both ETL and job schedule pretty well. It also sup-
ports auto scalability, fault tolerance, data quality assurance, extensi-
bility, and it provides special sources for JDBC. Besides the continuous
ingestion from the database into Hadoop, it provides an efficient ap-
proach that involves multiple job types for JDBC ingestion [186]. The
handling of the updates is through checking the tuples whose modi-
fication timestamps are later than the latest time-stamp pulled by the
previous run. Gobblin can run in two modes: standalone mode and
distributed mode on the cluster (Runs as MapReduce application, or as
elastic Cluster on AWS cloud, etc.).

2.2.3 Web Data Crawling

Significant literature work deals with crawling structured data from the Web.
As opposed to ordinary Web crawling of textual content, structured data pos-
tures unique difficulties on the organization and performance of crawling
and indexing tasks [107]. The work in [107] proposes a pipelined crawling
and indexing architecture for the Semantic Web. In [166], the authors pro-
pose a learning-based, focused crawling strategy for structured data on the
Web. The approach uses an online classifier and performs a bandit-based
selection process of URLSs, i.e. it determines a trade-off between exploration
and exploitation based on the page context and by incorporating feedback
from already found metadata. The Web Data Commons [167] activity reuses

a Web crawl given by Common Crawl to extract structured data.

5https ://rcgglobalservices.com/the-best-data-ingestion-tools-for-migrating-to-a-hadoop-data-1la
Shttps://www.batchiq.com/database-extract-with-nifi.html
"https://gobblin.apache.org/
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In [51], the authors provide an investigation on the distribution of structured
content for information extraction on the Web. They demonstrate that in
order to capture a reasonable amount of the data of a domain, it is significant
to respect the long tail of Web sites. On a more broad extension, the authors
of [16] estimate that a crawler can achieve a huge segment of the Web pages

visited by clients with just after three to five stages from the start page.

Web data crawling is one of the main technologies for collecting data about
social relationships, user activities and the contents produced and shared by
users. Approaches based on the scraping of HTML pages are able to over-
come the APIs usage restrictions, even if they are more complicated to design

and implement.

According to [75], one of the first attempts to crawl large Online Social Net-
works was performed by Mislove et al. [170]. In that paper, the authors
focused on platforms like Orkut, Flickr, and LiveJournal. In order to perform
crawling for such networks, the approach of [170] recommends to iteratively
extracts the list of friends of a user that have not yet been visited and to add
these related users to the list of users to visit. According to graph theory, this
is similar to perform a Breadth-First-Search (BFS) visit the Social Network
graph. The user account from which the BFS begins is frequently called seed
node; the BFS ends when the entire graph is visited or, alternatively, a stop
criterion is met. The BFS is easy to implement and efficient; it produces accu-
rate results if applied on social graphs which can be modeled as unweighted
graphs. Therefore, it has been applied in a large number of studies about the
topology and structure of Online Social Networks [43, 223, 88, 234, 36].

As observed in [170], BES is not an adequate algorithm to be used here due
to many limitations. First of all, a crawler can get trapped in a strongly con-
nected component of the social graph. Furthermore, a BFS crawler intro-
duces a bias toward high degree vertices: for instance, a study reported in
[133] considered a Facebook sample obtained by means of a BFS crawler and
observed that the calculated average degree of vertices was 324 while the ac-
tual one was only 94 (i.e., about 3.5 times smaller). Since many structural
properties of the graph describing a social network are often correlated with
vertex degree, we can conclude that a sample collected with a BFS crawler is

far from being representative of the structural properties of a social network.
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2.2.4 Social Media Event Collection

In the latest years, Social Web platforms emerged as one of the most perti-
nent marvels on the Web: these platforms are built around users, allowing
them to create a web of links between each other, to share musings, feelings,
photographs, travel tips, and so on. In such a scenario, often called Web 2.0

users are moving from passive consumers of contents to active producers.

Social Web platforms provide novel and remarkable research opportunities.
The analysis on a large scale of patterns of user interactions provides a unique
opportunity for answering questions like: how do people interact and build
relationships (e.g., friendship) between each other which may evolve over
time [130]? How do novel ideas spread and proliferate through the web of
human contacts [24]? How does the natural language evolves through social
interactions (e.g., how to do the person expand their vocabulary based on
their interactions with other people) [158]?

Besides the previous questions, the analysis of patterns of human interac-
tions in Social Web platforms can generate better business insights: if we are
able to understand the dynamic interactions between humans, we are like-
wise able to determine how clients gather themselves around shared inter-
ests. This is an important step for marketing purposes: once clients have been
classified into different groups, we can, for example, target each group by a
set of advertisements that falls within their interests. Thus, we are sending
those advertisements to the group of people that are interested in receiving
them. In a similar form, the fabric of social interactions can be used to iden-
tify influential users, i.e., those users whose business practices can empower

the selection/dismissal of a given product by large masses of users.

Finally, Social Web users regularly make accounts as well as profiles in nu-
merous platforms [206, 53]. Correlating these accounts and profiles is very
crucial to understand how the design features and the architecture of a Social
Web platform impact on the behavior of a user. In that manner, one may ask
whether some features provided by a given platform increase the fitness of
users to socialize or they affect the volume of contents generated by a client.
Once the co-relations between the features of the platform and the behav-
ior of a user have been clarified, the organizers of that platform can provide
unique services to decrease the customer churn (e.g., to avoid users becom-

ing inactive in the platform and migrate to other ones).
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In the context above, Web Data Extraction techniques play a key role because
their capability of timely gathering large amounts of data from one or more
Social Web platforms is an indefeasible tool to analyze human activities. Tra-
ditional Web Data Extraction techniques are challenged by new and hard

problems both at the technical and scientific level.

We can characterize methods to gather information from a Social Web plat-
form into two principal classes: the first class relies on the use of ad-hoc
APIs, usually provided by the Social Web platform itself; the second relies on
HTML crawling which we already discussed earlier.

With respect to the first class of methodologies, we call attention to that, to-
day, Social Web platforms offer powerful APIs (frequently accessible in nu-
merous programming languages) permitting to recover in a simple and fast
way an extensive variety of information from the platform itself. This infor-
mation, specifically, respect not just social associations including individuals
from the platforms yet additionally the content the users posted and, for ex-

ample, the labels they connected to name created content.

We can refer to the approach of [134] as an applicable case of how to gather
information from a Social Web platform by means of an API. In that paper,
the authors introduce the results of the crawling of the entire Twitter plat-
form. The dataset portrayed in [134] composed of 41.7 million user profiles
and 1.47 billion social relations; in expansion to gathering information about
user relationships, the authors accumulated likewise data on tweets and, by
performing a semantic analysis, also on the main topics discussed in these
tweets. The last dataset contained 4,262 trending subjects and 106 million

tweets.

In addition to collecting data about a social relationship, we may gather the
contents produced by users. These contents may vary from platform to an-
other (like photos in Flickr or videos on YouTube) and it is crucial to be
tagged by certain labels in order to make the retrieval of these data easier

or to increase the insights from the generated contents.
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2.3 Data Processing

2.3.1 Data Preparation Techniques

Data preparation is of crucial importance for accurate data analysis. Some
important factors in data preparation are reliability, accuracy, understand-
ability, and trustworthiness of the data. Data preparation generates a dataset
smaller than the original one, which can significantly improve the efficiency
of analysis [237]. The authors of [181] mentioned that 40-60% of the time
needed in order to prepare the data to be reliable and accurate as much as
possible for big data analysis. Controlling data quality and accuracy in big
data applications and especially in realtime has proved to be a challenge. The
raw data generally requires data preparation tasks to be prepared for analy-

sis. Data preparation consists of three main tasks which are as follows:

e Data Cleansing: Data cleansing is the first step in data preparation tech-
niques which is used to find the missing values, smooth noise data, rec-
ognize outliers and correct inconsistent [9]. That is due to the fact that
real-world data is rarely clean and homogeneous. According to [155],
most of the data will have some missing values. There could be vari-
ous reasons for this such as the source system which collects the data
might not have collected the values or the values may never have ex-
isted. In all cases, it is very important when dealing with Big Data to
check out for the missing elements in the data. These missing elements
can be handled either by removing a row or replacing a missing value
with a more appropriate value. A more appropriate value can be filled
in different ways: manually, global constant, attribute mean, attribute
mean for all samples belonging to the same class as the given tuple,
most probable value using techniques like inference based regression
using a decision tree induction or Bayesian formalism. According to
our understanding the theory of data cleansing can be formalized as
follows:

Definition 1. Let Q) be the set of all tuples.

Let M be the set of tuples with missing values.

Let N be the set tuples with noise (mostly, using statistical calculations to
measure the noise).

Let Q) be the output set of data cleansing on Q).
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e Data Filtering: Dealing with the huge volume of Big Data is not al-
ways the right way, as it increases the complexity of the algorithms and
thus increases the execution time. We need to reach the same mean-
ingful results with minimum complexity and that would happen just
through filtering the relevant data out of the overall. Therefore, filter-
ing is another task of the data preparation that can serve in reducing
the complexity and focus more on the relevant data for analysis. We
can present the data filtering formula as follows:

Definition 2. Let ) be the set of all tuples.
Let C be the set of tuples satisfying the condition(s).
Let Q) be the output set of data filtering on Q).

Q-0 /)Vxe,xeQ&xeC

e Data Integration: In [211], the author mentioned that some of the most
interesting studies of data come from combining different data sources.
These operations can involve anything from the very straightforward
concatenation of two different datasets to more complicated database-
style joins and merges that correctly handle any overlaps between the
datasets. We presented the formula of data integration in the following:
Definition 3. Let A be the set of all tuples from datasource A.

Let B be the set of all tuples from datasource B.
Let A|JB be the output set of data integration of sets A and B.

A,B — AU B/3 format f where x conforms with fVx € AU B

2.3.2 Realtime Data Processing Systems

Streaming data is a sequence of data tuples that is unbounded in size and
generated continuously from possibly a large number of data sources. Stream-
ing data includes a wide variety of data types and formats such as log files
created in web servers, online purchases, a player moves in online games,
information from social media and telemetry from sensors, and so forth 8.

Because of the continuous data generation, streaming data cannot wait for

8Streaming Data, “Webpage," https://aws.amazon.com/streaming-data/.
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all the data to be collected like in the batch processing. Data stream process-
ing should be consecutive and incremental as the event occurs in realtime or

near realtime without specifying any ending constraints.

Streaming data processing shows challenges in terms of performance, scal-
ability, robustness, and fault-tolerance. Generally, custom coding has been
utilized for streaming data processing [205]. But this solution suffers from
its inflexibility, high cost of implementation and maintenance, and slow re-
sponse time to new feature requests. Recently, many modern distributed

stream processing frameworks have been developed.

Using these frameworks, developers can easily build their own stream pro-
cessing applications. These frameworks fall generally into two classes. The
tirst classification, called realtime streaming data processing frameworks, in-
corporates Apache $4°, Apache Storm!?, Apache Samza!! and Apache Flink!2.
Such frameworks process the streaming data on a tuple-by-tuple premise in
which each tuple is handled as it arrives. Conversely, the frameworks from
the second class, for example, Spark Streaming?!3, gather data in certain time
intervals and process them in batches. These frameworks are called micro-
batch streaming data processing systems. Micro-batch frameworks have a
tendency to have higher throughput than ongoing realtime frameworks, es-
pecially when using large batches. However, large batches in micro-batch
systems require high processing latencies, which prohibit realtime process-
ing in streaming data. Next, we particularly introduce two most frameworks
on top of which our realtime stream data processing system performs which
are Apache Storm and Spark Streaming.

Apache Storm

Apache Storm aims at providing a framework for realtime stream process-
ing, which additionally accomplishes adaptability and adaptation to internal
tailure. Similar to Hadoop, Storm can be deployed on a cluster of heteroge-
neous machines. In a Storm cluster, there are two different kinds of nodes,
the master node and the worker nodes known as slaves. The master node

runs a daemon process called Nimbus that is responsible for distributing

9Apache S4, “Webpage," http://incubator.apache.org/s4/.

10 Apache Storm, “Webpage," http://storm.incubator.apache.org/.
1 Apache Samza, “Webpage," http://samza.apache.org/.

12 Apache Flink, “Webpage," https://flink.apache.org/.

13Spark Streaming, “Webpage," http://spark.apache.org/streaming/.
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code around the cluster, assigning tasks to machines, and tracking any fail-
ure. Each worker node runs a daemon process called Supervisor that handle
the work assigned to its machine and manage worker processes based on in-
structions from Nimbus. All coordination between the master (Nimbus) and
the slaves (Supervisors) is done through a Zookeeper cluster, which provides
a distributed, open-source coordination service for distributed applications.
Furthermore, the Nimbus daemon and Supervisor daemons are fail-fast and

stateless; all state is kept in Zookeeper or on a local disk.

A stream in Storm is an unbounded sequence of tuples, which is ingested
and processed in parallel in a distributed manner. Each stream is defined
with a certain defined schema, as a table in databases. developers design
topologies in Storm to process streaming data. A topology is a directed acyclic
graph of computation in which each node is a primitive provided by Storm

to transform data streams.

The execution of each topology is performed by many worker processes that
spread across multiple machines in the cluster. There are two fundamen-
tal natives in Storm, spouts, and bolts. A spout is a source of streams in
topology, it is responsible for ingesting the data from external data sources
and emits them into the topology. All processing logic in topologies is per-
formed in bolts, which possibly emit new streams and often cooperate with
each other to complete any complex stream transformations. Both spouts and
bolts can produce more than one stream. An example of a Storm topology
can be found in Figure 2.1.

spout

spout

FIGURE 2.1: This shows an example of a Storm topology

Storm guarantees that every spout tuple will be completely processed by the
topology with at-least-once semantics [153]. It does this by following the
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tree of tuples activated by each spout tuple and deciding when that tree of
tuples has been effectively finished through affirmations. On the off chance
that Storm neglects to distinguish that a spout tuple has been completely
processed within a timeout, at that point, it considers the tuple failed to be

delivered and replays it later.

Spark Streaming

Spark Streaming makes it easy to build scalable fault-tolerant streaming ap-
plications. Spark Streaming is an extension of the core Spark API that en-
ables scalable, high-throughput, fault-tolerant stream processing of live data

streams®.

Spark Streaming processes streams of events in a micro-batch
manner. The main difference between Spark Streaming and Apache Storm
is the fact that Spark Streaming processes tuples in streams in a micro-batch

manner, whereas Apache Storm processes tuples in streams one-at-a-time.

To be specific, as appeared in Figure 2.2, Spark Streaming gets input data
streams and divides the data into batches, which are then handled by the
Spark engine to create the last outcome stream which is likewise in batches.

Each batch contains data from a different time interval.

Input data batches of batches of
stream Spark input data Spark output data

Streaming |:|I:II:> Engine I:II:Il:>

FIGURE 2.2: This shows the Spark Streaming processing example

Spark Streaming provides a high-level abstraction called discretized stream
or DStream [235], which reflects a continuous stream of data. DStreams can
be made either from input data streams from other data sources or by ap-
plying high-level operations on different DStreams. Technically speaking,
a DStream is represented as a sequence of Resilient Distributed Datasets
(RDDs), and an operation applied on a DStream is mapped to one or more
operation on the underlying RDDs. Spark Streaming provides developers a
high-level API which abstracts most of the details of DStream operations to

facilitate faster and easier usage.

14Spark Streaming, “Webpage," http://spark.apache.org/docs/latest/
streaming-programming-guide.html.
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In order to achieve fault-tolerance that is application independent (such as,
system failures, JVM crashes, etc.), Spark Streaming provides a checkpoint-
ing mechanism to keep sufficient information periodically stored in well-
suited storage (e.g., HDFS) to recover from any failure.

2.3.3 Batch Style Data Processing Systems

During the past decade, numerous large-scale data processing systems have
emerged to address the big data challenge. Unlike the conventional DBMS
(Database Management System) which runs in a single machine, these sys-
tems run in a cluster with a collection of machines (nodes) in a Shared Noth-
ing Architecture [204] where all nodes are connected together and each man-
ages its own resources (local hard disk and local main memory) [180], as
shown in Figure 2.3. To achieve parallel processing, these systems divide
datasets into partitions distributed into different machines to be available for

more efficient analysis.

iemaor

‘Memeory
Data

Processes

Processes

Processes

Data
Tables
Rows

Columns.

Indexes

Data
Tables
Rows
Columns.
Indexes

Database

FIGURE 2.3: This shows the shared-nothing architecture

Structured Query Language (SQL) is the standard means of manipulating
and querying data in relational databases, though with proprietary exten-
sions among the products. The ease and ubiquity of SQL have even led the
creators of many “NoSQL” or non-relational data stores, such as Hadoop, to
adopt subsets of SQL or come up with their own SQL-like query languages.
Users can specify an analysis task using an SQL query, and the system will
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optimize and execute the query. To clarify, we focus on systems for large-
scale processing, specifically, the Online Analytical Processing (OLAP) in
which the workloads are read-only, as opposed to Online Transaction Pro-
cessing (OLTP).

Mainly, we can classify these systems into two categories, Parallel DBMSs
and SQL-on-Hadoop Systems, based on their storage layers: Parallel DBMSs
store their data inside their database instances, while in SQL-on-Hadoop Sys-
tems, data is kept in the Hadoop distributed file system.

e Parallel DBMSs

Parallel DBMSs are the most punctual frameworks to make parallel
data processing accessible to an extensive variety of users, in which ev-
ery node in the cluster is a database instance. The research work done
by Gamma [62] and Teradata'® inspired most of these systems. They
achieve high performance and scalability by distributing the rows of a

relational table across the nodes of the cluster.

The horizontal distribution of partitions enables SQL operators like se-
lection, aggregation, join and projection to be executed in parallel over
the partitions of tables located in different nodes. Many commercial
system implementations are available, including Greenplum '° Netezza
17 Aster nCluster'® and DB2 Parallel Edition [19], as well as some non-

commercial open source projects such as MySQL Cluster!?, Postgres-
XC?° and Stado?!.

Some different frameworks like Amazon RedShift??, ParAccel?3, Sybase
IQ [154] and Vertica [135], vertically segment tables by collocating en-
tire columns together instead of collocating rows with a horizontal par-
titioning scheme. When executing user inquiries, such systems can
more precisely access the data they need rather than scanning and dis-

carding unwanted data in rows. These column-oriented systems have

15Teradata, “Webpage,” https://wuw.teradata.com/.

16Greenplum, “Webpage,” https://www.greenplum. com/.

17Netezza, “Webpage,” https://www-01.1ibm.com/software/data/netezza/.

18 Aster Data, "Webpage,” http://www.asterdata.com/product/ncluster_cloud.php.
19MySQL cluster, “Webpage,” https://www.mysql.fr/products/cluster/.
20pPostgres-XC, “Webpage," https://wiki.postgresql.org/wiki/Postgres-XC.
21Stado, “Webpage,” https://launchpad.net/stado.

22 Amazon RedShift, “Webpage,” https://aws.amazon.com/redshift/.

23ParAccel Analytic Platform, “Webpage,” https://www.paraccel .com.
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been appeared to utilize CPU, memory and 1/O resources better than
row-oriented systems in the large-scale data processing.

For parallel DBMSs, data preparation is always an extremely important
and time-consuming step. Data cleaning must be performed in advance
to guarantee the quality of data. As parallel DBMSs are built on tradi-
tional DBMSs, they all require data to be loaded before executing any
queries. Each record must be parsed and verified so that data conforms
to a well-defined schema. For large amounts of data, this loading pro-
cedure may take a few hours, even days, to finish, even with parallel

loading across multiple machines.
SQL-on-Hadoop Systems

One of the most important frameworks in the Big data ecosystem is the
MapReduce framework [54]. MapReduce is a framework for process-
ing parallelizable problems across large datasets using a large number
of machines (nodes), collectively referred to as a cluster. Processing
can occur on data stored either in a filesystem (unstructured) or in a
database (structured). MapReduce can take advantage of the locality
of data, processing it near the site is stored in order to minimize com-
munication overhead. The open-source Apache Hadoop implementa-
tion of MapReduce has contributed to its widespread usage both in re-
search and industry fields. Hadoop consists of two main components:
the Hadoop Distributed File System (HDFS) and MapReduce for dis-
tributed processing. Instead of inserting data into the DBMSs, Hadoop
can handle data processing with any type of data as long as data is
stored in its HDEFS.

Hadoop Basics: The MapReduce programming model [222] consists
of two functions: map(k1; v1) and reduce(k2; list(v2)). Users specify their
processing logic by implementing their own map and reduce functions.
The Map and Reduce functions of MapReduce are both defined with re-
spect to data structured in (key, value) pairs. Map takes one pair of data
with a type in one data domain, and returns a list of pairs in a differ-
ent domain: map(kl1,01) => list(k2,02). The Map function is applied in
parallel to every pair (keyed by k1) in the input dataset. This produces
a list of pairs (keyed by k2) for each call. After that, the MapReduce
framework collects all pairs with the same key (k2) from all lists and

groups them together, creating one group for each key. The Reduce
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function is then applied in parallel to each group, which in turn pro-
duces a collection of values in the same domain: reduce(k2, list (v2)) =>
list(v3). Each Reduce call typically produces either one value v3 or an
empty return, though one call is allowed to return more than one value.
The returns of all calls are collected as the desired result list. Thus the
MapReduce framework transforms a list of (key, value) pairs into a list
of values. HDFS is developed to be resilient to hardware failures and
focuses on high throughput of data access. A HDFS cluster adopts a
master-slave architecture consisting of a NameNode (the master) and
multiple DataNodes (the slaves). The NameNode manages the file sys-
tem namespace and regulates client access to files, while the DataNodes
serve read and write requests from the clients. In HDFS, a file is split
into one or more blocks that are replicated to achieve fault tolerance
and stored in a set of DataNodes.

SQL query processing over Hadoop has recently attracted many re-
searchers and enterprises, as many enterprise data management tools
rely on SQL, and many developers prefer writing high-level SQL scripts
rather than writing complex MapReduce programs. As a result, many
SQL-on-Hadoop systems were implemented, which all use HDFS as
the underlying storage layer. In the following, we present several pop-

ular SQL-on-Hadoop systems which are highly adopted by companies.

Hive?* is the first data warehouse software project built on top of Apache
Hadoop for providing an SQL-like interface to query data stored in var-
ious databases and file systems that integrate with Hadoop. Queries
submitted to Hive are parsed, compiled and optimized to produce a
query execution plan. The plan is a Directed Acyclic Graph (DAG)
of MapReduce tasks which is either executed through the MapReduce
framework or through the Tez framework?®. Similar to Hadoop, Hive
lacks an efficient indexing mechanism. Hence, Hive access data by per-
forming a sequential scan. Hive also supports columnar data organi-
zation, typically in the ORC file format, which helps to improve the
performance. But transforming data layout as data preparation brings

additional cost.

HadoopDB [2] is a combination of the parallel DBMS and Hadoop ap-
proaches, planning to achieve the best services from both parallel DBMSs

24 Apache Hive, “Webpage,” http://hive.apache.org/.
25 Apache Tez, “Webpage,” https://tez.apache.org/.
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and Hadoop. The core idea is to install a database system on each
Hadoop datanode and utilize Hadoop MapReduce to coordinate the
execution of these autonomous database systems. To get the most from
the advantages of the local DBMSs in query optimization, HadoopDB
pushes as much as possible of the query processing work into the local
DBMSs. In any case, before performing any query processing, HadoopDB
needs to insert data from HDEFS to its local DBMSs. This is accom-
plished by one of its components, the data loader, which also globally
repartitions data in light of a predetermined partition key.

Impala raises the bar for SQL query performance on Apache Hadoop
while retaining a familiar user experience. Impala [27] is an open-
source SQL engine architected completely for the Hadoop data pro-
cessing environment. As MapReduce focuses more on batch process-
ing rather than interactive queries by users, Hadoop jobs suffer the
overhead incurred from task scheduling. Therefore, to reduce latency,
Impala avoids using MapReduce and implements its own distributed
architecture based on daemon processes that cover all phases of query
execution. These daemon processes run on the same machines of the
HDFS cluster. Impala also accepts input data in columnar data orga-
nization, typically in the Parquet file format?®, that the user needs to
create a Parquet table and to load data into the Parquet table.

The MapReduce programming model suffers from many limitations to
support some applications that reuse a working set of data across mul-
tiple parallel operations, such as iterative machine learning jobs. In this
manner, another framework, called Apache Spark?’, is developed for
these applications, which likewise gives similar scalability and fault tol-
erance properties as MapReduce. Spark like other HDFS’s dependent
frameworks runs on top of HDFS infrastructure. Spark gives a more
adaptable dataflow-based execution model that can express an exten-
sive variety of data access and communication patterns, rather than
only customizing map and reduce functions as in MapReduce. The
main abstraction in Spark is the Resilient Distributed Dataset (RDD),
which is a read-only data structure partitioned across a set of nodes.
RDDs support many operators, such as map, filter and groupByKey, and

26 Apache Parquet, “Webpage,” http://parquet .incubator.apache.org/.
27 Apache Spark, “Webpage,” http://spark.apache.org/.
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enable efficient data to reuse in a wide set of applications by allow-
ing users to save intermediate results in memory. RDDs achieve fault
tolerance through a notion of lineage: on the off chance that an RDD
segment is lost, Spark can reconstruct this RDD parcel from the data
kept in that RDD about how it was derived from different RDDs.

Spark SQL [13] is the SQL processing component in Spark, which con-
tains a DataFrame API that can perform relational operations on both
external data sources and Spark’s built-in distributed collections. Spark
SQL also supports Parquet file format. To reach better processing per-
formance, Spark SQL can also cache entire tables in memory to avoid
disk I/O bottleneck, which is similar to the loading procedure in paral-
lel DBMSs.

2.4 Data Analysis

2.4.1 Feature Selection Methods

While collecting data for analysis, we need to deal with the high dimen-
sionality of the data effectively. A large number of high dimensional data
has forced fundamentally enormous challenges on existing machine learn-
ing methods. Due to the existence of noisy, redundant and irrelevant dimen-
sions, learning algorithms will suffer from high-complexity and thus execute
the learning tasks very slowly. Besides, that may affect the interpretability of
the model. Feature selection is capable of selecting a small subset of impor-
tant features that are considered relevant from the original ones by eliminat-

ing noisy, irrelevant and redundant features.

In terms of dealing with labeled data, feature selection techniques can be
generally grouped into three categories: supervised methods [224, 240, 177,
140], semi-supervised methods [239, 231, 218], and unsupervised methods
[35, 68, 232, 114, 145]. The accessibility of labeled data permits supervised
feature selection algorithms to viably select discriminative and relevant fea-
tures to recognize samples from various classes. Some researchers proposed
and studied those supervised methods [177, 132]. At the point when some of
the data is unlabeled, we can use semi-supervised feature extraction which
can exploit both labeled data and unlabeled data. The vast majority of the
current semi-supervised feature selection algorithms [239, 45] depend on the
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development of the similarity matrix and select those features that best fit the
similarity matrix. Unsupervised feature selection is considered as a substan-
tially more difficult issue [68] when the labels used for guiding the search for
discriminative features are missing. In order to achieve the objective of fea-
ture selection, a few criteria have been proposed to assess feature importance
[240, 108].

Feature selection can be classified into three methods based on the differ-
ent strategies of searching which are filter methods, wrapper methods, and
embedded methods. Filter methods select the most discriminative features
from the raw data. Commonly, filter methods perform feature selection be-
fore performing classification or clustering tasks and it falls into main steps.
In the first step, features are ranked depending on predefined criteria. After
ranking these features, the features with the highest ranking scores will be
selected as a second step. Filter-type methods are highly used in practice es-
pecially reliefF [127, 188], F-measurement [64], mRMR [183] and information
gain [188]. Wrapper methods use the proposed learning algorithm to assess
the features. In [103], the authors used methods based on the Support Vector
Machine (SVM) algorithm for Recursive Feature Elimination (RFE) to select
the most influencing gene to cancers. Embedding methods perform feature
selection in the process of constructing the model.

Supervised feature selection approaches are used for labeled data. Tradi-
tional supervised methods such as Fisher Score [67] rank features each in-
dependently based on the criterion, which can not consider the correlation
among diverse features. Linear Discriminant Analysis (LDA) [78] was pro-
posed to elevate features by maximizing the ratio between both the class
scatter and within class scatter. LDA needs to calculate the inverse matrix
of within-class scatter, which is not ideal when the number of training sam-
ples is smaller than the dimensionality of the data [84]. Thus, LDA suffers
from the discussed problem which is known as the small sample size prob-
lem. As a resolution to this problem, another approach was proposed which
is the Maximum Margin Criterion (MMC) based algorithm in [139]. This lat-
ter algorithm uses a linear combination of traces between class scatter and
within class scatter in the objective function, in addition to a constraint of the
orthogonal weight matrix. All supervised methods suffer from a common
limitation which is the sufficient labeled data needed that is known as very
hard to obtain in practice. In addition, if the labeled training data are scarce,
the efficiency of such supervised methods usually drop dramatically [151].
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Semi-supervised feature selection methods can exploit both labeled and un-
labeled training data. Semi-supervised methods are able to do feature se-
lection from unlabeled data when there is no sufficient number of labeled
data. One of the main methods is the graph Laplacian-based semi-supervised
methods in which it considers that most data examples lie on a low-dimensional
manifold, such as Semi-supervised Discriminant Analysis (SDA) [34]. In
graph Laplacian-based methods, graph Laplacian matrix is drawn to utilize
the unlabeled samples. However, due to the time-consuming computation
of the graph, they are usually less efficient in handling large-scale data [41].
Therefore, it is fundamental and essential to study unsupervised feature se-

lection methods.

When considering unlabeled data (data missing the label information that is
used for guiding the search of discriminative features), unsupervised feature
selection methods can be used as a much harder problem [68]. Many research
works were done to tackle the relevance of selecting the features by consid-
ering a set of criteria. For instance, one commonly used criterion is to choose
those features that can best preserve the manifold structure of the original
data. Another known method is to identify cluster indicators through clus-
tering algorithms and then changing the problem from unsupervised feature
selection to supervised one. This method can be used in two different ways.
First, it is done in one unified framework by seeking cluster indicators (con-
sidered as pseudo labels) and simultaneously performs the supervised fea-
ture selection method. For example, consider the works [232] and [142], the
authors integrated nonnegative spectral cluster and structural learning into
a connected framework. Second, it seeks for cluster indicators, then removes
or selects certain features through performing feature selection, and keeps re-
peating the previous two steps iteratively until specified criteria are met. The
authors in [35] first seeks for obtaining the indicator matrix of data points us-
ing spectral analysis, and then use the obtained indicator matrix to perform

feature selection like a supervised one.

2.4.2 Event Clustering Algorithms

We are working in the context of the huge amount of data. These data are
overwhelming for conventional tools and cannot be handled by traditional
analysis techniques. Methods should be enhanced to reach the required scal-
ability to handle it. Some cluster analysis methods have been proposed to
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split the data into different clusters. The data clustering methods are unsu-
pervised learning models which means it does not require any labeled data
during the training phase. Most of these methods do not need to know the
exact number of clusters in advance. The expected output of such methods
is dividing a set of data into different multiple clusters. Considering a set
of data instances, these instances should be divided by the data clustering
method into subsets of data which maximize the intra-subset similarity and

inter-subset dissimilarity, where a similarity measure is specified in advance.

Since most data clustering problems have been known as NP-hard problems
[93], different approaches have been proposed in previous years. In general,
those methods can be categorized into different paradigms, which will be
discussed as follows:

e Partitional Clustering

Data is divided into independent groups such that each data instance is
assigned to exactly one group. K-means [203] is one of the well-known
classical partitioning methods that applies an iterative enhancement
approach with two main steps. The first step is to estimate the means
of clusters and select them as centroids, while the second step is to as-
sign data points to their nearest centroids. In practice, people adopt
this method due to its computational speed and simplicity [200, 229].
Its main limitation is the vulnerability to its random seeding technique
in which the clustering result quality will be affected adversely if the
initial seeds are not selected correctly.

e Hierarchical Clustering

Clusters are created by two main approaches which are known as bottom-
up and top-down. Single-linkage clustering [230] is an example of the
bottom-up approach in which data points are gradually added together
to form clusters. In every step, all pair-wise distances are calculated to
identify the minimum. The data points that have the minimum dis-
tance are linked together. Such a step is repeated until all data points
are grouped together. A hierarchical tree is built to connect all data
points at the end. We can cut the tree using the tree depth level in or-
der to form the clusters. A special hierarchical clustering method called
“Chameleon” has been discussed to model the data dynamically [124].
It can merge and divide clusters based on the inter-connectivity and

closeness concept. If the inter-connectivity and closeness between two
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clusters are higher than those within the clusters, then these two clus-

ters are merged into one cluster.
e Density-based Clustering

Besides the well-known clustering methods, there are different clus-
tering paradigms. Density-based clustering is one of these paradigms.
Data is clustered using density-based clustering according to some con-
nectivity and density functions. DBscan [72] is a clustering algorithm
that uses density-based notions to build clusters. In order to check
whether each data point is a core point or a border point, we can use
one of the proposed connectivity functions which are density-reachable
and density-connected. DBscan starts visiting the points randomly un-
til all points have been passed through. If the point is a core point, it
tries to spread and form a cluster around it. Based on the experimental
results, the authors reported its robustness toward finding arbitrarily
shaped clusters.

e Grid-based Clustering

In grid-based clustering, the algorithm divides the data space into mul-
tiple portions (grids) at different granularity levels to be clustered inde-
pendently. CLIQUE [6] can automatically define subspaces with high-
density clusters as an example of the grid-based clustering. It does not
require any assumption over the data distribution. The experiments
show that it could scale well as the number of dimensions increases.
Thus, we can consider it an efficient clustering solution for dealing with

high-dimensional data.
e Correlation Clustering

From a document clustering problem, correlating clustering [17] was
proposed. This algorithm has a pair-wise similarity function f learned
from historical data. The objective of this algorithm to partition the
different sets of documents in the best way that correlates the docu-
ments with f. For better understanding, let us consider that we have
a complete graph of N vertices, where each edge is labeled either with
positive (+) or with a negative (—) sign. The output of this clustering
is to generate a partition of vertices that agrees with the edge labels.
The authors have explained this problem as an NP-complete problem.
Hence, they suggested two approximation algorithms to reach parti-
tioning. These algorithms are called Cautious and PTAS. Cautious tries
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to minimize the disagreements (number of edges inside clusters plus
the number of + edges between clusters). On the other hand, PTAS
tries to maximize the agreements (number of + edges inside the clus-
ters plus the number of edges between clusters). It is clear that the
ideas of the two methods discussed are the same, that is, to aggregate

the vertices which agree with their edge labels).
Spectral Clustering

Some clustering approaches may find local minima and need an itera-
tive algorithm to find good clusters starting from different initial clus-
tering points. However, spectral clustering [176, 201, 165] do clustering
based on the leading eigenvectors of the matrix derived from a dis-
tance matrix which makes it a credible approach. The main idea be-
hind it is the usage of the spectrum of the similarity matrix of the data
to reduce the dimensions for performing k-means clustering in fewer
dimensions. For further details, you can check the work discussed in
[176].

Gravitational Clustering

Gravitational clustering was first proposed by Wright [227] as a unique
clustering method. In this method, each data instance is represented as
a particle within the feature space. The simulation of the movements
of the particles was generated by some physical models. Jonatan et al.
reported a new gravitational clustering method based on Newton laws
of motion [92]. Another version of gravitational clustering more sim-
plified was tackled by Long et al. [149]. In [219], the authors proposed
a local shrinking method to move data toward the medians of their k
nearest neighbors. A similar method was introduced by Blekas and
Lagaris [28] which called Newtonian clustering. Newtonian clustering
applies Newton’s equations of motion to shrink and separate data, fol-
lowed by a Gaussian mixture model building. Junlin et al proposed

using molecular dynamics-like mechanism for clustering [121].
Herd Clustering

A novel clustering method “Herd Clustering (HC)” has been proposed
by Wong et al. [226]. The novelty of this method lies in two sides:
(1) HC is inspired by the herd behavior in nature, which is a commonly
observed phenomenon in the real world including human mobility pat-

terns [182]. (2) HC proves that cluster analysis can be reached in a
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non-traditional way by making data alive. Due to these aspects, HC is
considered as a very intuitive method and clearly understood for per-

forming well.
e Other Clustering Strategies

Many clustering methods exist in the literature for many years. A ge-
netic algorithm to search for the centers of the cluster was found in
[160]. The authors of [143] discussed a globally incremental approach
to k-means. Another novel method called Gaussian parsimonious clus-
tering models was proposed by Celeux et al. in [37]. In order to cluster
an arbitrary number of clusters, different distance measures have been
implemented into an objective function [82]. A hierarchical agglomera-
tive clustering methodology using symbolic objects has been discussed
in [95]. Clustering based on a fuzzy Kohonen network was used by
Tsao et al. [25]. A fuzzy c-means algorithm has been implemented and
discussed in [228], [241]. In order to reduce the noise, a pruning ap-
proach was proposed for the fuzzy c-means algorithm [236]. Recently,
many kernel clustering methods have been developed [76]. The au-
thors of [156] reported a fuzzy-rough set application to a microarray.
Hu et al. in [115] have used the hierarchical clustering method for ac-
tive learning. A pleasant approach was considered by Corsini et al. in
which they trained a neural network to define dissimilarity measures
which are subsequently used in the relational clustering [49]. Cluster-
ing over uncertain data was also considered by Gullo et al. in multiple
clustering techniques [98, 100, 99]. In the literature, many other works
exist; more details can be found in [230, 18, 225].

Clustering on Data Streams

The previously mentioned clustering algorithms assume data are at rest. Nowa-
days, data are not necessarily at rest. In fact, data can be transferred in
streaming form; for example, realtime financial stock market data, video
surveillance data for abnormal event detection, and social media data such
as Twitter, Facebook, etc. Recently, data keep changing and enriched dur-
ing the clustering. For extracting insights out of these data, the capability to
process the data in a timely manner with minimum memory is fundamen-
tal. In light of that, various data stream clustering techniques are proposed.
For example, Guha et al. have proposed one of the first-known technique,
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STREAM, to tackle the k-median problem on streaming data with constant-
factor approximation [97]. In [77], Fisher proposed an incremental clustering
technique (COBWEB) to target the hierarchical clustering tree on streaming
data. Zhang et al. have proposed an efficient data clustering method for
huge datasets [238]. It has linear complexity and single-pass nature, it can
also be applied to cluster data streams with a tree data structure, CF Tree
[238]. On the other hand, an incremental clustering method (C2ICM) has
been proposed to tackle the data stream clustering problems. Specifically, a

lower bound for its clustering performance has also been provided [42].

2.4.3 Text Classification Algorithms

Text classification has been extensively considered in various communities,
for example, data mining, database, machine learning, and information re-
trieval. It is also utilized in an immense number of applications in different
areas such as image processing, medical diagnosis, document organization,

and so on.

Text classification is used to label the text documents by predefined labels
[171]. The classification problem is defined as follows: We have a training
set D = {dy,dy, ..., d,} of documents, such that each document d; is labeled
with a label ¢; from the set £ = {/1, {5, ...,{;}. The main task in this context
is to find a classification model (classifier) f : D — £ which can assign the
correct class label ¢ to new document d such that f(d) = ¢. The classifica-
tion was called “hard", if a label is explicitly assigned to the test instance and
“soft", if a probability value is assigned to the test instance according to [10].
There are other types of classification which allow assignment of multiple la-
bels [94] to each new document. For a broad review on various classification
methods see [67, 117]. Yang et al. assess different categories of text classifica-
tion algorithms [233]. A large number of classification algorithms have been
implemented in different software systems and are freely accessible such as
BOW toolkit [163], Mallet [164] and WEKA?28,

e Naive Bayes Classifier

Probabilistic classifiers have gained a lot of popularity lately and have
appeared to perform amazingly well [38, 120, 131, 136, 190]. These

probabilistic algorithms make assumptions about how the data (words

28nttp://www.cs.waikato.ac.nz/ml/weka/
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in records) are produced and propose a probabilistic model in light of
these suppositions. At that point, consider using training data to assess
the parameters of the model. Bayes rule is used to categorize new ex-
amples and select the category that is in all likelihood has created the
example [161]. The Naive Bayes classifier is considered as the easiest
and the most broadly used classifier. It models the distribution of doc-
uments in each class using a probabilistic model considering the distri-
bution of the different labels are independent of each other -no depen-
dency between the different classes-. Despite the fact that the “Naive
Bayes” assumption is clearly false in many real-world applications, the

classifier performs pretty well.

There are two primary models generally used for naive Bayes classifi-
cations [161]. The two models go for finding the posterior probability
of a class, based on the distribution of the words in the document. The
difference between these two models is, one model takes into account
the number of occurrence of the words whereas the other one does not.

1. Multi-variate Bernoulli Model:

In this model, the document is represented by a vector of binary
features denoting the presence or absence of the words in the doc-
ument. Therefore, this model only considers the absence and pres-
ence of words in a document neglecting their number of occur-

rences inside that document. Lewis was the first to present such a
model [138].

2. Multinomial Model: We fetch the occurrences of words (keywords)
in a document by representing the document as a bag of words.
Many different implementations of multinomial model have been
presented in [122, 162, 171, 202].

An important comparison study between Bernoulli and multinomial
models was done by McCallum et al. [161] and concluded that

— If the size of the distinct keywords (vocabulary) used is small, the
Bernoulli model may outperform the multinomial model.

— The multinomial model always outperforms Bernoulli model for
a large number of distinct keywords (vocabulary sizes), and most
of the scenarios perform better than Bernoulli if the size of the vo-

cabulary chosen optimally for both models.
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e Nearest Neighbor Classifier

The nearest neighbor classifier is a proximity-based classifier which de-
pends upon measuring the distance to perform the classification. The
main idea is that documents that belong to the same class are more
likely sharing similar characteristics (values of their features) which
means close to each other based on similarity measures. The test doc-
ument is labeled depending on the classification of a similar document
in the training set. If we consider the k-nearest neighbor in the train-
ing data set, the approach is called k-nearest neighbor classification and
the most common class from these k neighbors is reported as the class
label, see [106, 157, 189, 198] for more information and examples.

Decision Tree Classifiers

A decision tree is a flowchart-like structure in which each internal node
represents a condition on an attribute (e.g. whether a coin flip comes up
heads or tails), each branch represents the outcome of the test, and each
leaf node represents a class label (decision taken after computing all
attributes). The paths from the root to the leaf represent classification
rules. These rules are extracted from the training instances. In other
words decision tree [81] recursively partitions the training data set into
smaller subdivisions based on a set of tests defined at each node or
branch. An instance is classified by beginning at the root node, test-
ing the attribute by this node and moving down the tree branch corre-
sponding to the value of the attribute in the given instance. This process

is recursively repeated [171].

In the case of unstructured text documents, the conditions on the deci-
sion tree nodes are normally defined in terms of keywords existing in
these documents. For example, a node may be subdivided to its chil-
dren depending on the presence or absence of a particular keyword or
term in the document. Many researchers discussed in details the deci-
sion trees [33, 67, 117, 187]. Decision trees have been used in combi-
nation with bagging and boosting techniques [80, 195] to enhance the

accuracy of the decision tree classification.
Support Vector Machines

Support Vector Machines (SVM) are supervised learning classification
algorithms. SVM have been widely used in text classification problems.
SVM are a type of Linear Classifiers. In the context of text documents,
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Linear classifiers are models that classify the text documents depending
on the value of the linear combinations of the documents features. The
output of a linear classifier is defined to be y = @- X 4 b, where X =
(x1,x2, ..., Xn) is the normalized document word frequency vector, 4 =
(a1,ay,...,a,) is vector of coefficients and b is a scalar. We can interpret
the predictor y = @ - X 4 b in the categorical class labels as a separating
hyperplane between different classes.

The SVM was first presented in [50, 212]. Support Vector Machines try
to find the best possible linear separators between various classes [50,
213]. A single SVM can just separate two classes, a positive class and
a negative class [113]. SVM algorithm attempts to find a hyperplane
with the maximum distance of ¢ (also called margin) from the positive
and negative instances. The documents with distance ¢ from the hy-
perplane are called support vectors and specify the actual location of
the hyperplane. If the document vectors of the two classes are not lin-
early separable, a hyperplane is determined such that the least number

of document vectors are located on the wrong side.

2.4.4 Information Extraction Techniques

Information extraction (IE) is the process of automatic extraction of struc-
tured information from unstructured or semi-structured text. In other words,
information extraction can be considered as a limited form of full natural lan-
guage understanding, where the information we are looking for is known
beforehand [113].

For example, consider the following sentence:
“Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.”

We can extract the following information:

FounderOf(Bill Gates, Microsoft)

FounderOf(Paul Allen, Microsoft)

FoundedIn(Microsoft, April - 4 1975)
IE is one of the important processes in text analysis and extensively studied
in different research domains such as information retrieval, natural language

processing and Web mining.

Information extraction includes two principle methods, which are, named

entity recognition and relation extraction. The state of the art in both methods
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are statistical learning methods. In the following we briefly explain two main

information extraction methods.
e Named Entity Recognition (NER)

A named entity is one or more words that refer to a real-world object,
e.g. “Google Inc”, “United States”, “Barack Obama”. The process of
named entity recognition is to identify and extract named entities in
unstructured text into predefined categories such as a person, organi-
zation, location, money, etc. NER is a complicated process that can not
be achieved by only doing string matching against a dictionary for sev-
eral reasons. We can consider two main reasons for that. First, the dic-
tionary is usually incomplete and does not contain all forms of named
entities for a certain entity type. Second, named entities are related to
the context, for example, big apple can be the fruit or the nickname of
New York.

Named entity recognition has many applications such as in question
answering [5, 141] and also considered as a preprocessing step in the
relation extraction process. Most of the named entity recognition tech-
niques are based on statistical learning methods such as hidden Markov
models [26], maximum entropy models [47], support vector machines
[116] and conditional random fields [199].

e Relation Extraction

Relation extraction is another essential information extraction process
and is the process of searching and finding the semantic relations be-
tween entities in text documents. There is a wide range of techniques
proposed for relation extraction. The most widely recognized strategy
is to consider this process as a classification problem: Given a couple
of entities occurring both in the same sentence, how to categorize the
relation between two entities into one of the fixed relation types. There
is a possibility that relation extends across multiple sentences, but such
cases are rare, therefore, most of the existing work has focused on the
relation extraction within the sentence. The classification approach for
relation extraction have been extensively studied and many research
work was done [39, 40, 101, 119, 123].
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2.5 Route Planning

Solutions for route planning were extensively studied in transportation net-
works by Delling et al. [58] and a more recent study was conducted by Bast
et al. [20]. We will show briefly the different categories of the proposed solu-
tions in the literature:

e Basic Techniques:

Dijkstra’s algorithm [63] is considered as a standard solution to visiting
all the nodes in the shortest path problem. This algorithm was extended
in the literature [46, 89, 168, 208] in order to improve the asymptotic
complexity from O((|V|+|A|)log|V]) to O(|A| 4+ |V|log min{|V|,C}),
where C is the maximum edge cost. Using a bidirectional search [52]
proved that it can reduce the search space. This can be achieved by
simultaneously running a forward search from a source s and a back-
ward search from destination t. When the intersection of their search
space intersects containing a vertex x on the shortest path from s to t, the
algorithm may stop. In practice, using this algorithm in the road net-
works seems to visit approximately half as many vertices as the unidi-
rectional approach. Due to the fact that the Dijkstra algorithm has some
limitations in dealing with negative values, an alternative method for
computing shortest paths was developed which is the Bellman-Ford al-
gorithm [23, 79, 173]. Bellman-Ford algorithm competes with Dijkstra’s
algorithm in some scenarios reaching O(| V|| A|) time in the worst case
and often performs faster.

e Goal-Directed Techniques:

Goal-directed techniques aim to guide the search toward the target by
considering only the vertices that are located in the direction of t. These
techniques achieve better search performance by avoiding redundant
traversal of the network. These techniques use either the (geometric)
embedding of the road network or properties of the graph itself, such
as the structure of shortest path trees toward (compact) regions of the
graph. Some examples of goal-directed techniques are: A* search [90,
69, 90], Geometric Containers [214, 215, 31], Arc Flags [111, 137,172, 61],
Precomputed Cluster Distances [159], and Compressed Path Databases
[30, 29, 194].

e Separator-Based Techniques:
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Planar graphs are graphs that can be embedded in the place, i.e., they
can be drawn on the plane in such a way that its edges intersect only
their endpoints. They have small (and efficiently-computable) small
separators [144]. Road networks are not categorized as complete planar
graphs due to the presence of tunnels or overpasses, they are proven to
have small separators as well as [59, 71, 193]. Due to this fact, a new cat-
egory was proposed as separator-based techniques. These techniques
use the divide and conquer approach for more effective route planning.
In this case, separators partition the large network by decomposing the
large search problem into many small search problems. Many works
exists to highlight the separator-based techniques including Vector Sep-
arators [60, 207, 175], and Arc Separators [128, 57, 56].

Hierarchical Techniques:

Hierarchical methods aim to use the inherent hierarchy of road net-
works. In some scenarios such as long shortest paths, it is enough to
consider a small set of important roads, such as highways. Once the
query algorithm is far from the source and destination, it just scans
the vertices of this subnetwork. Some popular heuristic approaches
[70, 112] would adopt input-defined road categories, thus providing no
guarantee that it will find the best shortest paths. An overview of early
approaches based on this technique was discussed by Fu et al. [83]. In
the literature, some solutions were proposed as extensions that rely on
hierarchical search idea such as Contraction Hierarchies [126, 86, 191,
14], and Reach [102, 91].

Bounded-Hop Techniques:

Bounded-hop techniques are based on precomputing distances between
pairs of vertices. Implicitly, it adds "virtual shortcuts" to the graph, al-
lowing queries to return the distance of a virtual path with very few
hops. A naive approach is to use single-hop paths by precomputing the
distances among all pairs of vertices u,v in the network. After that, the
shortest distance is retrieved through a single table lookup. recently, the
PHAST algorithm [61] has made precomputing all-pairs shortest paths
feasible, storing all (|V|?) distances is prohibitive already for medium-
sized road networks. Other approaches were found in the literature for
considering more hops (two or three) with better trade-offs such as La-
beling Algorithms [3, 7, 55], Transit Node Routing [21, 22, 192, 4], and
Pruned Highway Labeling [8, 207].
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2.6 Gap Analysis/Discussion

Throughout this section, we intensively studied the different methods, tech-
niques, and technologies used in the literature to be able to collect data from
heterogeneous data sources, process these data in realtime and analyze them
using the different methods from machine learning and route optimization

research domains.

Nowadays, the ability to collect social media and sensor data is pretty much
mature. These data can be collected and integrated with internal data sources
of the logistics system increases the level of understanding of the situations
and the status of the delivery and packages. After studying the importance
of collecting data from multiple sensors and how together they can provide
better observations of the objects and thus more accurate recordings. We
deduced the need for data fusion and integrating data from different hetero-
geneous data sources. More data means more information and thus more
accurate analysis and better insight. In addition to the sensor data, we are
able to collect the data from the ocean of the data i.e. the worldwide web. In
order to access the different data available on the web, we need to crawl
the different web pages including social media pages that provide restricted
APIs.

We discussed several crawling strategies used for fetching structured data
on the web. Web data crawling is considered as one of the main technolo-
gies that help in having a 360-degree view of the users (e.g. social relation-
ships, user activities, the content produced and shared by users). Crawling
large online social networks requires some graph theory methods similar to
Breadth-First-Search (BFS) algorithm to make sure all the users are been vis-
ited where each user represents a node of the graph. However, it is not al-
ways an adequate algorithm to be used due to several limitations. In fact, we
noticed from our investigations the importance of collecting data from the

web using web crawling techniques into our proposed solution framework.

Recently, a new concept arrived known as social web platforms, these plat-
forms are built around users, linking users together, allowing them to share
feelings, photographs, and so on. Sometimes, this new concept is called Web
2.0 where the users are moving from passive consumers of content to ac-
tive producers. One of the most important information to highlight here is
the ability to correlate different accounts on multiple platforms for the same

user. Gathering this information from one or more social web platforms to
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analyze human activities is of critical importance. Unfortunately, traditional
web data extraction techniques are challenged by new and hard problems
both at the technical and scientific level. Thus, there is a need to use ad-hoc
APIs and fortunately today, social web platforms offer powerful APIs per-
mitting to fetch in a simple and fast way an extensive variety of information
from the platform itself. Using different techniques to gather data from dif-
ferent data sources such as sensors, web, and social media is very challenging

and what is more challenging is having well-processed data in realtime.

To achieve these well-processed data we tackled the currently existing sys-
tems of the two main paradigms for processing any data which are realtime
data processing systems and batch-style data processing systems. The main
role of realtime data processing systems is to handle the unbounded streams
of data which may include a wide variety of data types in realtime. This
part is very challenging in terms of performance, scalability, robustness, and
fault-tolerance. We investigated several realtime data processing systems in-
cluding Apache 54, Apache Storm, Apache Samza, Apache Flink and Spark
Streaming. Whereas, the main role of batch-style data processing systems
is to handle a large amount of data by dividing it into multiple batches and
each batch can be processed in parallel by a different machine. The machines
involved in such processing runs in a cluster in a Shared Nothing Architecture.
We presented several batch-style data processing systems including parallel
DBMSs, SQL-on-Hadoop systems (e.g., HadoopDB, Impala, Spark SQL). Af-
ter we extensively investigated the different available systems to adopt the
one that best fit to our solution, we adopt one of the most powerful realtime
stream processing system called “Apache Storm" to be used for processing
the different logistics events in realtime.

The goal of performing stream processing is to have a well-processed data
that can let us do the prediction of the delay in realtime. The prediction of
the delay is considered within the data analysis section in-which we studied
extensively the different methods and techniques that are needed to get the
meaningful insights out of the data. These methods and techniques can be
classified into different categories such as feature selection methods, event
clustering algorithms, text classification algorithms, and information extrac-
tion techniques. Using the feature selection methods, we can reduce the high
dimensionality of the data effectively by dealing with the noisy, redundant
and irrelevant dimensions. Besides, in the event clustering algorithms, we
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presented several clustering techniques which are: Partitional Clustering, Hi-
erarchical Clustering, Density-based Clustering, Grid-based Clustering, Cor-
relation Clustering, Spectral Clustering, etc. We deduced that the Hierarchi-
cal clustering algorithm has a high potential candidate for obtaining mean-
ingful clusters in realtime. That was deducted due to the maturity of this
algorithm and the different approaches in the literature that tried to use such
an algorithm, for example, the work proposed by Fisher to do an incremen-
tal clustering technique to target the hierarchical clustering tree on streaming
data. We also take into consideration the following reasons for selecting such
a clustering algorithm:

1. No prior knowledge of the nature of the coming data (format, structure,
features, etc.).

2. No prior knowledge of how many categories can the data be classified
into (number of clusters is unforeseen).

3. The clusters probably will evolve with time (keep changing dynami-

cally, i.e., creating, removing, splitting and merging clusters).

For the reason that we are processing and analyzing the coming data espe-
cially the unstructured text data like social media data, we studied the dif-
ferent text classification algorithms. We focused on the most well-known
classifiers in this domain including Naive Bayes Classifier in its two mod-
els: Multi-variate Bernoulli Model and Multinomial Model, Nearest Neigh-
bor Classifier, Decision Tree Classifier, and Support Vector Machines. We
decided on using the Naive Bayes Classifier as this classifier has gained a
lot of popularity and has appeared to perform amazingly well as we have
mentioned before. More specifically the Multinomial Model of this classifier
since we do not have a limited number of keywords, we are gathering the
data from social media which contains a huge amount of keywords and thus
as explained previously this model outperforms the Bernoulli model for such
a case. Due to the fact that we are dealing with mainly unstructured textual
data, we intend to study the different text mining techniques to extract the
critical information out of these data. Thus, we studied intensively two main
techniques used in the state of the art which is Named Entity Recognition
(NER) and Relation Extraction. Our main focus was to understand a sim-
ple sentence and not multiple sentences and therefore we find NER better
technique to be used in our scenario.
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Always we tried to place our goal in front of our hands, and thus we in-
tend to study the different route planning techniques used to be able to per-
form the re-routing of the delivery plan in realtime. The studied techniques
are as follows: Dijkstra, Bellman-Ford algorithms, Goal-Directed techniques,
Separator-based techniques, Hierarchical techniques, and Bounded-Hop tech

niques. We used route planning techniques to achieve the prescriptive anal-
ysis of the well-processed data after predicting the possibility to run into a
delivery delay.

2.7 Conclusion

After discussing our point from the literature review, we noticed several re-
search challenges that we need to tackle in order to reach our objective. These
research challenges are mainly because of gathering the huge amount of data
with variety and velocity issues. These data cannot anymore be handled by
conventional tools and techniques and thus prompts new techniques, meth-

ods, and tools to be able to tackle such challenges.

We showed the importance of collecting and integrating data from sensors,
social media, and different web pages especially if correlated with the inter-
nal data. Besides that, we discussed the different processing modes which
are batch-style data processing and realtime data processing. We decided
to use one of the most powerful systems which are called “Apache Storm"
as it is known for its scalability, fault-tolerant, guarantees your data will be

processed and is easy to set up and operate.

We studied different event clustering algorithms and we considered Hierar-
chical clustering for our solution for two main reasons: its maturity to give
meaningful clusters as output and the other one is that it has tried before to
do incremental clustering which is an important feature to perform realtime
clustering. On the other hand, many text classification algorithms are not
able to deal with high dictionary data. As we are collecting data from social
media, the size of the dictionary is approximately infinite as everyone writes
in his/her own way and thus it was convenient to select Multi-nomial Naive
Bayes Classifier to classify the textual data in realtime. Information retrieval
techniques is a natural fit for our solution as we are mainly dealing with un-
structured text. NER was better than Relation Extraction for our scenario due

to the fact that we are dealing with one sentence at a time.
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We noticed from our outcome, the best fit technique, method or tool to be
used to fulfill a certain role, but unfortunately for the best of our knowledge
we could not find any integrated solution that combines all these different
components together to overcome the previously mentioned challenges to

do the re-routing of the delivery plan in realtime to avoid any delay.
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Chapter Three: Data Processing

Frameworks

Summary

In this section, we will talk about the main contribution of this thesis. This
contribution is to find the most convenient solution that can handle the com-
ing events on the fly in order to predict any probable delay through pro-
cessing and analyzing these events. To find this solution, we developed two
data processing frameworks to choose the right framework for collecting and
processing data in realtime. These frameworks we called them “SANA” and
“IBRIDIA”. Analyzing the unstructured data (especially text data) is a fun-
damental need in the logistics domain to anticipate the running plans. Each
record of these data is considered as an event. Each event gives us infor-
mation about an unpredicted situation happening at the moment. In a real-
world scenario, many things can occur at any moment to impact the delivery
conditions and lead to delivery delay including traffic, accidents, terrorist
attacks, natural disasters, etc. Both frameworks focused more on unstruc-
tured textual events. Each relied on different techniques and methods to
process these events. For instance, SANA uses n-gram with Multinomial
Naive Bayes algorithm and context extraction from the information retrieval
domain, whereas, IBRIDIA was based upon an incremental hierarchical clus-

tering algorithm which was missing in the state of the art.

Throughout this section, we did some experiments over these two different
frameworks and shows that SANA and IBRIDIA tackle the processing prob-
lem in a different way. Besides that, we will show how SANA outperforms
IBRIDIA in the applicability and the execution flexibility. That is due to the
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limitations discovered in IBRIDIA, in which it suffers from some issues re-
lated to its cold start and the memory bottleneck as time passes. Even though,
IBRIDIA was able to show value from the data that even human being cannot
notice easily such as which events can be grouped together, which events are
similar to be categorized together. Our objective was to tackle the delivery
problem that might be affected by the current events which we found SANA

more promising approach.

3.1 Functional Design of SANA Framework

The functional design of SANA consists of three main core modules which
are text preprocessing, analytical engine and context extraction (shown in
Fig. 3.1). In this subsection, we will present these modules in detail.

[ Data collector ]

(1) Text Preprocessing

N-gram model Chi-Square

FIGURE 3.1: The principle of SANA

Text Preprocessing

SANA performs a light-weight preprocessing with incoming events. The
purposes of preprocessing are two-fold: formulating terms of events, and
prune unnecessary strings. The former is critical for feature selection and the
latter is important for saving memory space. For terms formulation, SANA
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extracts keywords using n-gram model which is a contiguous sequence of
n-character or a n-word slice of longer strings or texts. The values of n varies
depending on the number of characters or words the users want to extract in
each extraction operation. Despite that the corpus-based is a widely known
approach and used for extracting words, we choose the n-gram model be-
cause the corpus-based approach is not suitable for extracting keywords re-
altime. The n-gram model is a probability function:

P(wy | wg’_l) ~ P(wy | w”_}\lﬂ)

n—1

where, wq, w" ™", w" are sequence of words.

The n-gram model is a concept found in Natural Language Processing (NLP).
In general, the n-gram means a sequence of n words. For instance, we will

present some examples as follows:
1. San Francisco (is a 2-gram)
2. The Three Musketeers (is a 3-gram)
3. She stood up quickly (is a 4-gram)

Some of these three n-grams examples are not seen frequently like “She stood
up quickly". Such as for example 3 does not occur as often is sentences as
the first two examples. Basically, an n-gram model predicts the occurrence
of a word based on the occurrence of its (n — 1) previous words. So here
we are answering the question — how far back in the history of a sequence
of words should we go to predict the words that occur frequently together
and consider them as terms? For instance, a bigram model (n = 2) predicts
the occurrence of a word given only its previous word (as n —1 = 1 in this
case). In the same manner, a trigram model (n = 3) predicts the occurrence
of a word based on its previous two words (as n —1 = 2 in this case). We
can also think of the order-n parameters of an n-gram model as constituting
the transition matrix of a Markov model the states of which are sequences
of n — 1 words. As n increases, the accuracy of an n-gram model increases,
but the reliability of our parameter estimates, drawn as they must be from a

limited training text, decreases.

SANA extracts a pair of words (which are the keywords). The model approx-

imates the probability of a word given all the previous words P (wy, | w’f_l)

by using the conditional probability P (w,, | w" "3, +1)- SANA uses the n-gram
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models to increase the feature space required for the classification. Instead
of taking every single word as a feature, we can double the feature space by
taking the 2-grams into account. To highlight more the importance of using
n-gram model in text analysis, here is an example “There is no traffic on Av-
enue des Champs-Elysées": If this example was part of the training data of
the negative class and we did not use the n-gram model, each word of the
mentioned sentence will be considered as an independent feature and it will
predict the class as positive (which is wrong). It can be seen, that if the word
“traffic" occurs, the class of the document is not necessarily positive. How-
ever, if we used the 2-gram model, we will have “no traffic" as a feature and

thus, we will predict that this sentence is negative.

After understanding how the n-gram model works in text classification for
feature selection, we intend to use a 3-gram model in our framework for
determining more accurately the class of the arriving events. SANA formu-
lates features using the extracted keyword. For instance, consider an event
I bought a Christine Davis perfume from Paris, which I found could not satisfy my
expectation, SANA extracts features by pairing words including perfume and
Paris. In the next step, SANA prunes all unnecessary strings. In order to per-

form pruning it relies on a training dataset that consists of a set of seed words.

Analytical Engine Model

There are two approaches for text classification: lexicon-based and learning-
based. The former uses a dictionary to perform entity-level analysis and
the latter extracts features using the learning-based technique. We used a
learning-based approach for our text classifier. We used the Multinomial
Naive Bayes classifier (a machine learning technique for supervised learn-

ing) alongside Chi-Square (x?) feature selection.

The Chi-Square is a feature selection method. This method is used in statis-
tics, to test the independence of two variables. More specifically in feature
selection, we use it to check whether the occurrence of a specific keyword
and the occurrence of a specific class are independent. In this approach, we
need to state the following hypotheses: The null hypothesis states that know-
ing a certain term in the sentence does not help to predict that class for this
sentence. That is, the occurrence of a specific keyword and the occurrence of
a specific class are independent:

Hy: the occurrence of a specific keyword and the occurrence of a specific

class are independent.
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H,: the occurrence of a specific keyword and the occurrence of a specific
class are not independent.
Thus, we estimate the quantity for each term extracted previously by the
n-gram model and we rank them by their score according to the following

equation:

2 = (Newec - Eewec)z
Powe)= Y ¥ =
3106{1,0} 666{1,0} wéc

where ¢, = 1 (the document contains term w), e;, = 0 (the document does
not contain w), e = 1 (the document is in class C), e¢ = 0 (the document is
not in class C) and N s are counts of documents that have the values of e,
and ec. N = Nyg + Np1 + Nyg + N is the total number of documents.

High scores on x? indicate that the null hypothesis (Hg) of independence
should be rejected and thus that the occurrence of the term and class are
dependent. If they are dependent then we select the feature for the text clas-

sification.

The previous formula can also be written as follows:

N(N11Noo — N1gNo; )?
(N11 + No1) (N11 + Nio) (N1g + Noo) (No1 + Noo)

x*(D,w,C) =

When using the Chi-Square method, we should select only a predefined
number of features that have a x? test score larger than 10.83 which indicates

statistical significance at the 0.001 level.

After selecting the features using the n-gram and Chi-Square method, we are
ready to proceed to the Multinomial Naive Bayes classifier. The Multinomial
Naive Bayes classifier is a specialized model of the Naive Bayes classifier
[197] which is a probabilistic learning model. The Naive Bayes classifier is a
simple probabilistic classifier which is based on Bayes theorem with strong
and Naive independence assumptions. Naive Bayes classifier is very effi-
cient since it is less computationally intensive (in both CPU and memory)
and it requires a small amount of training data. Moreover, the training time

with Naive Bayes is significantly smaller as opposed to alternative methods.
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The Naive Bayes classifier assumes that the features used in the classifica-
tion are independent. In a text classification problem, we will use the words
(or terms/tokens) of the document in order to classify it on the appropriate
class. We used this machine learning classifier to classify the coming events
into two main classes: positive (e.g., have an impact over the delay) and nega-

tive (e.g., have nothing to do with the delay).

Consider an event X, the probability of the event being in class C (positive or

negative) is computed using the Maximum a Posteriori (Cuqp) function:

Cmap - (P(C/X) = P(C) H P(wk/c)>

iglgnd

where wy, are the words of the event, C is the set of classes, P(C/X) the con-
ditional probability of class C given event X' , P(C) the prior probability of
class C and P (wy /C) is the conditional probability of a word wy given class C.
It can also be interpreted as a measure of how much evidence wy contributes
that C is the correct class. In other words, in order to find in which class we
should classify a new event, we must calculate the product of the probability
of each word of the event given a particular class (likelihood), multiplied by
the probability of the particular class (prior). Then we calculate the probabil-
ity by considering all the classes and then we select the one with the highest
probability. However, calculating the probability of the product may lead
to a float point underflow due to the fact that computers can handle num-
bers with specific decimal point accuracy. To avoid maximizing the product,
SANA adopts a refined classification model which instead of maximizing the
product of the probabilities maximizes the sum of their logarithms:

Cinap = (P(C/X) =logP(C)+ [] logP(wk/C)>

iflgnd

Thus, instead of choosing a positive or negative class with the highest proba-
bility, SANA uses the highest logarithmic score.

Besides that, we used the relative frequency of word wy in documents be-
longing to class C for estimating the conditional probability of a word wy

given a class C as follows:

TCw
P(w/C) = =S
itk Z Tew

w'ev
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where T represents the count of a word given a class.

One last problem we should address here, what if a particular word does
not appear in a particular class, then its conditional probability is equal to
0. If we use the highest logarithmic score, the l0g(0) is undefined. We were
obliged to use add-one or Laplace smoothing by adding 1 to each count to
undercome this problem as presented below:

P(w/C): Tew+1 _ Tew+1

Z (TCw’ + 1) Z (TCw’) + B’

w'eV w'eV

where B’ is equal to the number of words contained in the training dataset.
Therefore, this classifier takes into account the number of occurrences of
word w in training documents from class C.

Both training and testing algorithms (algorithm 1 and algorithm 2) are pre-
sented as follows:
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Algorithm 1: TrainMultinomialNB(C,ID)
Input: set of classes C, set of documents ID

Result: A set of vocabulary (V'), an array of prior to all the classes (prior), a
double array of conditional probability of each word in V and the
different classes (condprob)

V <= ReadoutVocabulary(DD);

N < NumberO fDocuments(DD);

foreach c € C do

N, <= NumberO f DocumentsInClass(ID, c);

prior|c|] <— N./N;

text. <— Concatenate AllDocumentsInClass(ID, c);

foreach w € V do

Tew < NumberO fOccurrencesO fWord(text., w);

foreach w € V do
Tew +1

Z (Tcw’ + 1);

w'ev

condprob|w]|c] <

end

end

end
return V, prior, condprob;

Algorithm 2: ApplyMultinomialNB(C, V, prior, condprob, d)
S < ReadoutWordsFromDocument(V,d);
foreach c € C do

score[c| < log prior|c|;

foreach w € S do
‘ score[c]+ = log condprob|w]|[c|;
end
end

return arg max.cc score|cl;

Context Extraction

Unlike conventional sentiment analytics, SANA is context-aware. During
the preprocessing phase, the context is formulated by tagging particular key-
words. In order to tag correctly these keywords, SANA adopts Named En-
tity Recognizer (NER). NER labels sequences of words in a text which are the
names of things, such as person, organization and location names.
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NER is also known as CRFClassifier which means it is based upon the Con-
ditional Random Field (CRF) model. It is a probabilistic graphical model that
can be used to model sequential data such as labels of words in a sentence.
A CRF is simply a conditional distribution p(y/x) with an associated graph-
ical structure. CRF is a conditional model and thus, dependencies among
the input variable x do not need to be explicitly represented. For instance, in
natural language processing tasks, features may include neighboring words
and words tri-grams, prefixes and suffixes, relations with domain-specific
lexicons, etc. The advantage of choosing CRF was allowing both discrimi-
native training and the bi-directional flow of probabilistic information across
the sequence. We used the Named Entity Recognition model in SANA to
extract the words expressing contexts of events including location, organiza-
tion, etc. which will help us understand the relevance of these events and
anticipate the delivery plan in realtime without the need for humanitarian
efforts.

3.2 Functional Design of IBRIDIA framework

The functional design of IBRIDIA is mainly represented by its core model
for processing data in a hybrid manner including both batch-style and real-
time. In our data processing model, we contributed to improving the current
hierarchical clustering algorithms to perform in an incremental fashion to
tit realtime processing (as shown in Fig. 3.2 represented by the Incremental
Clustering of Events). During this subsection, we will present this model in
details and explain it extensively.
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[ Data collector ]

(1) Text Preprocessing

N-gram model Chi-Square

FIGURE 3.2: The principle of IBRIDIA

Data Processing Model of IBRIDIA

As mentioned earlier, IBRIDIA relies on the data processing model which
we developed in our previous work [11]. Choosing techniques or methods
for developing the model is not a trivial job. There is an exhaustive list of
techniques available from machine learning, data mining, and statistics. In
our case, we considered the nature of data and operation styles to choose
the right technique for building the data processing model. Our data pro-
cessing model relies on unsupervised learning techniques [169]. Unsupervised
learning is a machine learning approach in which a system only receives in-
put (x1, x2,..., x,) without any corresponding (supervised) output (which is
also called labeled output). Clustering and dimensionality reduction are the two
most well-known unsupervised learning techniques. We choose clustering
for our model because the objective function is expected to produce a clus-
tered dataset which facilitates efficient analysis in prediction of delivery delay.
Clustering is a process of grouping or segmenting data items that are simi-
lar between them in a cluster and dissimilar to the data items that belong to
another cluster [169].

There are different types of cluster models which are grouped into Connec-
tivity models, Centroid model and Distribution models, Density models, Subspace
model, Group model, and Graph-based models [73]. We are interested in tech-
niques used for building connectivity model which fits our objective more
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than the others. Hierarchical clustering is a widely used approach for building
connectivity model based on distance connectivity between the data items. It
is a process of producing a sequence of nested clusters ranging from singleton
clusters of individual points to an all-inclusive cluster [48]. The hierarchy of
the clusters is graphically represented by a dendrogram [85]. There are two
approaches to develop a hierarchical cluster model:

o Agglomeration refers to an approach that starts with the points as indi-
vidual clusters and, at each step, merge the closest pair of clusters. It is
also known as the Bottom-Up approach.

e Divisive refers to an approach that starts with one, all-inclusive cluster
and, at each step, splits a cluster until only singleton clusters of indi-
vidual points remain. It is also known as Top-Down approach.

We found an agglomerative hierarchical clustering approach for our solution
because the bottom-up approach is more flexible than the others in terms
of choosing the number of clusters. The algorithm groups data one by one
based on the nearest distance measure of all the pairwise distance between
the data points. The distance between the data points is recalculated itera-
tively. However, the choice of distance to consider for grouping data points
is a critical matter. Several methods are available to address this question.
These methods — found in [74] — are summarized in the following;:
Definition 4. Single-linkage:

d(Ci, Cj) = Wli?’lxeci,x/ecjd(X, x/)

It is equivalent to the minimum spanning tree algorithm [96]. One can set a thresh-
old and stop clustering once the distance between clusters is above the threshold.
Single-linkage tends to produce long and skinny clusters.

Definition 5. Complete-linkage:
d(Ci/ C]) = mﬂxxeC,-,x/ede(x/ x/)

Clusters tend to be compact and roughly equal in diameter.
Definition 6. Average distance:

Y x € Cjxl e de(x, x/)
Cil - |G

d<Ci/ C]) =
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Definition 7. Wards method:
dij = d({X;} {X;}) = |1Xi — X7

is the sum of squared Euclidean distance is minimized.

The iteration is continued by grouping data items until a cluster is formed.
As mentioned earlier that the clusters are presented graphically by a den-
drogram which allows calculating the number of clusters that should be pro-
duced, at the end. There are several variants of the agglomerative hierarchi-
cal clustering algorithm. Below we present the steps involved in performing
an agglomerative hierarchical clustering. Consider a set of data points S
= (x1, X2, X3, ..., Xz) as input. The agglomerative hierarchical clustering algo-

rithm performs the following steps:

e Step 1: Disjoint cluster (C) of level £(0) = 0 and sequence
number M =0

e Step 2: Calculate the least distance (D) pair of clusters in
the current C, say pair P(r, s), according to D(r,s) = Min(
D(i, j)) where the minimum is over all pairs of clusters in

the current clustering
e Step 3: Increment the sequence number, M = M +1

o Step 4: Merge C(r) and C(s) — C (z) which is a new cluster.
Set the level of this clustering to £(z) = D ((r), (s))

e Step 5: Update the distance matrix ¥, (delete the rows and
columns corresponding to clusters C(r) and C(s) and add
a row and column corresponding to C(z). The distance
between the new cluster, denoted (r, s) and the old cluster
(k) is defined as follows: D((k), (r, s)) = Min (D((k), (1)), D
((k), (5))

e Step 6: Repeat until ONLY one cluster remains.
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In [11], we reported several disadvantages of the basic agglomerative clus-
tering algorithm. In particular, undoing is not allowed and the time com-
plexity is O(n%log n) where n denotes the number of data points. For a large
dataset, the performance with respect to processing time may not be satis-
factory. Based on the type of distance matrix chosen for merging, different
algorithms may have one or more of the following drawbacks: (i) sensitivity
to noise and outliers, (ii) partitioning a large cluster, (iii) difficulty in handling
different sizes of clusters and handling convex shapes. In this algorithm, no
objective function is directly minimized. Furthermore, in some cases iden-
tifying the correct number of clusters by the dendrogram can be very dif-
ticult. Therefore, the basic algorithm agglomerative clustering algorithm is
not suitable for clustering data. Hence, we choose extended agglomerative
hierarchical algorithm proposed in [185]. We intend to use the Hamming
distance as a measuring criterion in our algorithm because it can be used as
a convenient measuring mechanism for string values which covers most of
the unstructured data. Hamming distance measures the minimum number
of substitutions required to change one string into the other (the minimum
number of errors that could have transformed one string into the other). We
modified Johnson’s Hierarchical Clustering algorithm to become a stream
clustering algorithm that supports the incremental grouping of text messages
according to their similar characteristics directly on the go. The theoretical
steps performed by the modified algorithm is based on the theoretical steps
of any agglomerative hierarchical clustering algorithm as shown previously.
We identify the practical algorithmic steps of the clustering used in our solu-
tion IBRIDIA as follows:

e Step 1: Read new data streams.

e Step 2: Put the unigue items in the vector format.

e Step 3: Fill a matrix of absence and presence of items.
e Step 4: Calculate hamming distance.

e Step 5: Update the distance matrix.

e Step 6: Create Cluster using minimum distance.

e Step 7: Repeat until only one cluster remains.

In what follows we explain the above steps using an example where we il-
lustrate how IBRIDIA data processing model works. It begins with reading

records. Since data is read from the first row, thus the attribute names do
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not exist; we started by the records (events) to show a real-world example in

order to make it meaningful for the reader.

e Start with each record as a cluster on its own.

e Read new data streams

NetworkManagement | 1/30/2017 16:47 | NarrowLanes | LYON-01
e A unique item is added in the vector format.
e Fill in the matrix of items absence and presence.
NetworkManagement | 1/30/2017 16:47 | NarrowLanes | LYON-01
Recl 1 1 1 1
e Build the similarity matrix using hamming distance. Currently, there is
only one record.
— The algorithm reads new record.
NetworkManagement | 1/30/2017 16:47 | NarrowLanes | LYON-01
NetworkManagement | 4/1/2017 8:00 | NarrowLanes | LYON-06
— Place the new Unique items.
NetworkManagement | 1/30/2071647 | NarrowLanes | LYON-01 | 41207800 | LYON-06
— Update the matrix.
NetworkManagement | 1/302071647 | NarrowLanes | LYON-01 | /1207800 | LYON-06
Recl 1 1 1 1 0 0
Rec2 1 0 1 0 1 1

— Build similarity matrix using hamming distance

* The Hamming distance can only be calculated between two
strings of equal length. String 1: 111100 String 2: 101011.

* Compare the bits of each string with the other.

 If they are the same, record a “0” for that bit.

« If they are different, record a “1” for that bit.
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* Compare each bit in succession and record either “1” or “0” as
appropriate.

* Add all the ones and zeros in the record together to obtain the
Hamming distance. Hamming distance = 0+1+0+1+1+1= 4.

— Update the distance matrix.
Recl | Rec2
Recl 0 4
Rec2 | 4 0

e Create a cluster with minimum distance.

Recl Rec2

e The systems read new records and the previous steps are repeated. In
the end, a new cluster is created.

Recl Rec2

The iteration stops at this step when the execution loop produces a single

cluster and no cluster can be created any further. We discuss the implemen-
tation of IBRIDIA in the next section.

3.3 Implementation of SANA and IBRIDIA

3.3.1 Preliminaries

o Apache Kafka: It is a publish-subscribe based fault-tolerant messaging
system. It is a fast and highly scalable distributed messaging technol-
ogy. It is used in building a durable data collection system where high
throughput and reliable delivery of messages are critically important.
Apache Kafka messaging system is merely a collection of topics split
into one or more partitions. A Kafka partition is a linearly ordered se-
quence of messages, where each message is identified by their index
(called as offset). All the data in a Kafka cluster is the disjointed union

of partitions. Incoming messages are written at the end of a partition
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and messages are sequentially read by consumers. Durability is pro-

vided by replicating messages to different brokers.

Apache Kafka provides four different types of APIs. The Producer API
allows RePLoD to publish a stream of records to one or more Kafka
topics. The Consumer API allows RePLoD to subscribe to one or more
topics and process the stream of records produced to them. The Streams
API allows RePLoD to act as a stream processor, consuming an input
stream from one or more topics and producing an output stream to
one or more output topics, effectively transforming the input streams
to output streams. The Connector API allows building and running
reusable producers or consumers that connect Kafka topics to existing
applications or data systems. For example, a connector to a relational
database might capture every change to a table.

e Apache Storm: Apache Storm is a distributed realtime computation sys-
tem. Storm makes it easy to reliably process unbounded streams of data
for realtime processing. It is designed to process a vast amount of data
in a fault-tolerant and horizontally scalable method. It is a streaming
data framework that has the capability of the highest ingestion rates.
Though Storm is stateless, its distributed environment and cluster state
is managed by Apache ZooKeeper!. It is simple and you can execute
all kinds of manipulations on real-time data in parallel. Apache Storm
guarantees that every message will be processed through the topology

at least once.

Apache Storm consists of four main components: tuple is the main data
structure which is a list of ordered elements; stream is an unordered se-
quence of tuples; spouts are the sources of stream; bolts are logical units.
Bolts can perform the operations of filtering, aggregation, joining, in-
teracting with data sources and databases. Bolt receives data and emits
to one or more bolts. Spouts and bolts are connected together and they
form a topology. Realtime application logic is specified inside Storm
topology. In simple words, a topology is a directed graph where ver-

tices are computation and edges are a stream of data.

Lhttps: //zookeeper.apache.org
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3.3.2 Implementation of SANA

Architecture of SANA
The multi-layered architecture of SANA (shown in Fig. 3.3) consists of vari-
ous components, which are briefly described in the following.

Data Collection and Ingestion Layer

Data Collector = Data Ingestor

Processing Layer

Presentation Layer
~—

Service Control Panel

Data Collection
Service
Backen

Process Components

Data Data NER

Filter Classifier Tagger

Data Query Data
Distributor Executor Visualizer

envices
Query Execution
service

Data
Visualization

FIGURE 3.3: The Architecture of SANA

Data Collection and Ingestion Layer: This layer contains two components:
a data collector and a data Ingestor. The data collector is a client that binds
one or many data source APIs that enable access to remote repositories with
an authentication check through their public keys. Once the connection is
established, the data collector starts fetching data streams (i.e., tweets) in re-
altime. The data Ingestor consists of two interfaces. The first interface taps
data into SANA data lake which is a distributed Hadoop cluster, resides in the
storage layer. The other interface opens a channel to push the events directly

to the data processing components.

Data Processing Layer: The components contained in this layer perform sev-
eral tasks. The two main tasks are carried out in this layer include data anal-
ysis and visualization. Data distribution and query execution are two additional
tasks performed in this layer. The analysis starts with filtering incoming data.

SANA’s data filter eliminates unnecessary strings from events and keeps the
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core text required for analysis. Also, it allocates an unique identifier to each
event. Then, the text classifier extracts and classifies the events into posi-
tive (have an impact over the delay) and negative (do not have any impact
over the delay) classes. We used the multinomial naive-bayes classifier (a
machine learning technique for supervised learning) along with Chi-Square
(x?) feature selection. The multinomial naive-bayes classifier is used after be-
ing trained with labeled training datasets that are classified into positive and
negative classes. The Chi-Square (x?) function tests whether the occurrence
of a specific string and the occurrence of a specific class is independent. The
NER tagger extracts the contexts of classified texts. It labels the sequence of
context related strings (e.g., person, location, and organization) in an event.
After the classification is done, the data distributor sends the results to a local
disk, the data lake (Hadoop cluster), and the graph storage. Queries to find
the comprehensive detail of the results is submitted through SANA’s query

interface.

Data Storage Layer: Two different types of storage is integrated in SANA:
data lake and graph storage where the results are stored. The data lake is a
cluster of nodes where data blocks are distributed. SANA adopts data lake
to deal with massive-scale data. The graph-based storage of SANA assists in
building knowledge graph of classified texts and their contexts.

Presentation Layer: SANA provides a graphical user interface (GUI) which
consists of a control panel and a text box for data visualization. The control
panel provides three services. The data collection service calls and loads the
data collector. The backend services call processing servers, the graph database
server, the coordination server which maintains configuration information
and provides the distributed synchronization service. The query execution
service calls and loads the query processor. Lastly, the visualization interface
loads the data visualizer and visualizes a pie chart that shows the percentage
of positive and negative classes through accumulating the classified events
in each class.

Technical Details of the Implementation

SANA was developed as a desktop-based solution and software as a ser-
vice (SaaS) on the cloud. It was developed to perform locally (desktop ver-
sion) and on the internet (web-based version). SANA was designed as a
framework that is capable of launching the full Hadoop eco-system includ-
ing data acquisition server, processing servers, Hadoop cluster, and graph

storage server all at once if they are all installed on the machine. It was also
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developed to facilitates the submission of the Apache Storm job from its in-
terface.

We already developed the core of SANA which was the SANA text analyt-
ics application (specialized Storm job). This application was developed as a
workflow consisting of different processing units contained in a single log-
ical Storm application called “Topology". The topology used in SANA was
built using the following processing unit: Text filter, Text classifier, and Text
NER which perform three tasks, filtering data, text classification, and context
extraction. As soon as SANA starts ingesting data into Apache Kafka -which
is the distributed messaging system that is used for ingesting the fast data
streams-, The SANA’s text analytics application starts performing the differ-
ent text filtering operations, classifying and enriching the records until it was
visualized in the SANA's user interface using a pie chart in realtime. SANA
provides a plugged-in data source feature that establishes a connection with
the data source and provides authentication if required and starts fetching
data. These data are ingesting as raw data into SANA'’s topology. Fig. 3.4

shows the topology.
G HDFS
Result {Hadoop]
Kafka Twitter
Spout Classifier
Neo4j Result
Storage Analysis

FIGURE 3.4: The topology of SANA

Then, in the next step three tasks are carried out in parallel. First, the events
are visualized in a pie chart depending on their classification (positive or
negative) which shows the percentages of positive and negative which means
the events that have an impact over the delay and the ones that do not have
any impact. Fig. 3.5 presents the results produced in multiple timestamps
with less than a second difference. These results will help business analysts
have better insight over the environment of the delivery because results are
updated constantly as the classification is carried out in realtime over the
incoming events. Second, we used the Hadoop cluster (data lake) and graph
storage server to store the results produced by SANA. Also, the results are
stored in a local disk. Third, the knowledge graph — consisting of extracted
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classes and their contexts — are visualized by our graph storage. Figure 3.6

Time Interval <= 1 L

m Positive m Negative m Positive m Negative m Positive m Negative m Positive m Negative

shows an example of the knowledge graph.

_— R —
Time Interval <=1 Time Interval <= 1

FIGURE 3.5: The percentages of positive and negative classification

Florida
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$299.27 IC Dunnellon

United
States

Negative

FIGURE 3.6: An example of the knowledge graph

Finally, a user might be interested to perform correlated queries to extract

more knowledge from the events. SANA was designed to allow the user

to query over the data stored in the graph storage. The user can simply type
queriessuch as, “match (n) -> 2 with n, count (%) as rel-cnt where rel_cnt
> 2 return n.Id n.text Limit 15". This query, for example, means that
return each of these events which contains more than two relations among

the nodes that have context and class. Figure 3.7 shows the textual represen-

tation of the results of the query.
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/ . "id": "1047496600078205024", "text": "Eastern Europe was exgortin opium over 3,000 yEears ago, deposits in ancient vase reveal \
/ ttps://t.co/o3f27omC2u”, "score”: "negative”, "probability": "0.611476" , "LOCATION":["Eastern Europe” ] }

"id": "1047496604268281858", "text": "@BlllsQBwatch Yeah, | saw that from Sal this mcmlr;ﬁ. Disa[ppoimin on Allen's part there, | can onlyI surmise
ased... https://t.co/T4SBz2XoLD", "score": "negative", "probability": "0.924243" , "LOCATION":["Sal" ], "TIME":["this morning" 1, "PERSON":["Allen" | }

{"id": "1047496608471048194", "text": "RT @MelodyeDiavian: | miss the old YouTube. The what's on my phone YouTube. The case collection YouTube.
The only iconic Youtube. Now we go...", "score”: "negative”, "probability": "0.987664" }

{"id": "1047496608454246400", "text": "l liked a %YuuTube video httg)s:f{t.cc/XnnOOsﬁTl Humpty Dumpty | +More Nursery Rhymes &amp; Kids Songs -
Cocomelon (ABCkidTV)", "score™: "negative”, "probability”: "0.878106" , "ORGANIZATION":["Nursery Rhymes & Kids Scngs"f ¥

{"id": "1047496608454254592", "text": "RT @CaralineLucas: Theresa May sold her Elost—Brexw't immigration system as if it was the policy we've all been
waiting for.The reality is...", "score": "negative”, "probability": "0.892164" , "PERSON":["Theresa May" | }

{"id": "1047496612677738496", "text™: "RT @Chanharp: Do not miss this concert! You're in for a real treat, #illinois . If you like #Scottish and #Irish
#culture and #music , be...", "score": "positive”, "probability": "0.674771" }

"id": "1047496616855441409", "text": "RT @tictoc: Thailand's Maya Bay will be shut indefinitely because of damage caused by tourism I
ittps://t.co/IXElreQp2a", "score": "negative”, "probability": "0.541500" , "LOCATION":["Thailand", "Maya Bay" ] } I

E'\'d": "1047496621053755392", "text": "RT @JeffreyGoldberg: | hgg)e that every senator reads this @benjaminwittes piece (via @TheAtlantic)
ittps://t.co/O5mNLIcdei”, "score™: "negative”, "probability’’ "0.596729" }

g'\'d": "1047496621037178881", "text": "RT @JackPosobiec: Wired lets Podesta staffer post hit piece on Posobiec - totally backfires!
ittps://t.co/ksfGRG3dTP", "score”: "positive™, "probability”: "0.684592" , "PERSON":["Podesta™] }

g'\'d": "1047496625239646209", "text": "@null BKPM to discuss disaster-resistant infrastructure development at IMF-WB meeting
ittps://t.co/8WHIt5iLg)", "score”: "negative”, "probability”: "0.526410" }

i"\'d": "1047496625239805952", "text": "RT @thisisntjavii: That bitch don’t look like she faking.. I'm just sayin https://t.co/bFY7ttDeoy", "score”:
negative", "probability": "0.612480" }

{"id": "1047496625248198656", "text": "RT @roryclewlcw: The Spark documentary is out NOW!!!! Made by the brilliant @tompullenphoto
@ENTERSHIKARIhttps://t.co/epyKVVLXP] https:..", "score": "positive”, "probability": "0.851952" }

— e — — — — — — — — — — — — —

\ . {"id": "1047496629454950400", "text": "It occurs to me that | am America.”, "score”: "positive", "probability™: "0.563792" , "LOCATION"™:["America" ] } l
\ . {"id"™: "1047496625438353408", "text": "RT @toddstarnes: Kavanau%h drank beer. Mainstream Media declares him unfit for Supreme Court. Obama uses /
cocaine. Mainstream Media bows d...", "score": "pasitive”, "probability": "0.790674" , "ORGANIZATION":["Supreme Court" ] }
~ -~
—— e -

FIGURE 3.7: The textual representation of the results of the query

3.3.3 Implementation of IBRIDIA

Architecture of IBRIDIA

In this section, we describe the two main modules of IBRIDIA. In the logis-
tics system, we have data generated from an internal system for stock, orders,
shipments, etc. Also, there is a need to collect and analyze data from external
sources in realtime especially to monitor the different statuses of the deliv-
ery. To address both needs, within IBRIDIA, we developed a batch style data
processing engine that we called ProLod and a realtime data processing en-
gine that we called RePLoD. We explain these two modules in the following
subsections. Then, we describe the data processing model that IBRIDIA re-
lies on for both realtime and batch style data processing. Figure 3.8 depicts a
high-level architecture of IBRIDIA.

In IBRIDIA there are four components: data streamer, the storage, batch style
data processing engine, and real-time data processing engine. The data streamer
tfetches data from internal and external data sources and ingests them into
realtime processing engine and storage. It is worth noting that we used na-
tive storage in our previous work, however, we developed Hadoop based
scalable storage in IBRIDIA so that a massive scale data can be stored. The
batch style data processing engine (ProLoD) reads/extracts data from storage
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Stream
> Processing
Engine

h 4

Data

Data Data Data Preparation
Filtering Cleaning Integration Tasks

h 4

Batch Style Data
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Engine

FIGURE 3.8: The high level architecture of IBRIDIA

and perform data preparation and processing tasks including cleansing, fil-

tering, etc. In the case of realtime processing, the streamer sends data directly

into the processing engine (RePloD) which carries out processing tasks in re-

altime. In the following, we provide more detail about the data processing

engines.

Data Preparation Tasks

Both ProLoD and RePloD perform five data preparation tasks using two dif-

ferent approaches namely batch style and realtime respectively. These tasks

are explained in the following.

e Data Extraction: It is the systematic approach to gather and measure
information from a variety of sources to get a complete and accurate
picture of an area of interest. The data extractor works with both in-
ternal and external sources of data. The internal data sources are typ-
ically the information systems used by the users. Consider a user that
has an information system consisting of a supply chain management
(SCM), a customer relationship management (CRM), a logistics man-
agement system, and an account management system (AMS). These
systems produce a large amount of data that is collected by the data ex-
tractor. It also fetches data from external sources such as Twitter, traffic
sensors, weather sensors, Facebook and other social media. In addi-
tion, IBRIDIA’s processing components extract archived sensor data of

completed logistics processes. In most of the cases, we found that data
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extraction from internal sources is more trivial than external ones. Ad-
ditionally, internal data were transferred faster than the external ones.
IBRIDIA can collect structured and unstructured data. For instance, it
collects unstructured texts from Twitter and Facebook, and structured
business process data from the logistics information system.

e Data Filtering: It refers to a wide range of strategies or solutions for re-
fining datasets. Datasets are refined into simply what a user (or set of
users) needs, without including other data that can be repetitive, irrele-
vant or even sensitive. ProLoD and RePLoD aim to eliminate all possi-
bilities of data overloading which can increase computational cost and
effort during data processing and may jeopardy the analysis regarding
accuracy. They collect data that are related to logistics and specifically
the data chunks whose hashtags (the words prefixed by #) determine
direct and indirect connections with transportation, delivery, logistics,
shipment, etc. Consider the term “protest” which may be a political
protest or else but can have a great impact on the delivery of goods
and hence can delay the delivery. However, consider a tweet “the New
York stock prices are extremely high today" which will be removed by
the data filter because it does not carry any information related to lo-
gistics processes.

e Data Cleaning (i.e. data scrubbing): It is the process of detecting and cor-
recting (or removing) corrupted or inaccurate records from a record set,
table, or database. ProL.oD and RePLoD clean data from all unwanted
symbols, numbers, stopping words, hashtags, and any other data items
that might lead to noise and cause inaccuracy. Figure 3.9 shows an ex-
ample of cleaning Twitter data using ProLoD.



74

Chapter 3. Chapter Three: Data Processing Frameworks

“Six car #accident in #westsacramento on WB I1-80 &
Capitol Ave. Reports of people injured & lanes blocked
#traffic https://t.co/S290bp3ByL

Police now on scene with an #accident reported on
Baird Rd Penfield Rd in #Penfield #traffic #ROC
#accident reported on Salmon Creek Rd Colby St in
#Sweden #traffic #ROC

#traffic 06:47: #A4 - #accident between LATISANA
S.GIORGIO towards TRIESTE

4 car smash on mé4, right lane 500m after Merrylands
on ramp. Avoid right lane.

#traffic #accident @channelten @Channel7 @9NewsSyd
#traffic 09:56: #A4 - #Hqueuing traffic between
PORTOGRUARO S.STINO tfowards VENEZIA due
#accident

#iraffic 09:55: #A4 - #accident 449.4 between
PORTOGRUARO S.STINO towards VENEZIA

#traffic #A4 - #accident 4494 between

II PORTOGRUARO SSTINO  towards VENEZIA /
tps://t.co/8zF918j0ft https://t.co/XeFNpGoMAS

FIGURE 3.9: An example of cleaning data with ProLoD.

e Data Integration: In IBRIDIA, data integration is performed in two steps.
In the first step, the data are transformed from the source to target the

serialization format. Currently, the target format is CSV. The second

step is merging the transformed data.

e Data Storage: This step aims to deal with the storage of the integrated
datasets. After preparing the integrated datasets, ProLoD and RePLoD

store data into the storage.

IBRIDIA Data Processing Modules

e ProLoD - Batch style Processing Module

ProLoD represents the batch-style processor for the processing of logis-
tics data stemming from multiple heterogeneous sensors (that include
vehicle sensors, weather sensors, etc.), logistics applications, microblog
(e.g., Twitter), and social media (e.g., Facebook). ProLoD comprises
two phases: data preparation phase and processing. The former con-
sists of data extraction (collection), data cleansing, data filtering, data
integration, and data storage. In the latter phase, well-prepared data
are clustered. Figure 3.8 shows different functionalities of these phases.
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ProLoD relies on different machine learning techniques specifically the
clustering techniques for data processing. ProLoD includes five com-
ponents: data extractor, data cleaner, data filter, data integrator, and
data storage for performing data preparation functions. It has a data
processor that performs clustering in the second phase.

e RePLoD - Realtime Processing Module

RePLoD represents the core component in our framework for process-
ing the realtime data. As the speed of events from sensors and social
media increases, it creates an emerging need for fast processing known
as stream processing mechanisms. Events may lead to catastrophic con-
sequences if not handled properly in time. RePloD was designed to add
the missing functionalities to the system by adding a convenient way
for handling the events generated in realtime. These events are first
enqueued into the memory through the distributed messaging system.
The memory was used instead of the disk because its access speed is
faster than the disk by 100,000 times. In this way, we prevent any over-
whelming of the receiver and we guarantee fault tolerance in case of
any failure. This added feature prevents the loss of any of the data due
to their fast generation.

Batch processing is not always the right way to do it, sometimes it is
important to do the processing on the fly as soon as the events arrive at
the servers. These cases can be faced in real-world scenarios such as ac-
cidents occurring now on roads, bad weather, maintenance of buildings
which need to be notified for the driver in realtime to prevent the catas-
trophic effects due to delay in delivery. These facts carried us to extend
the processing behavior to be able to do the required processing in re-
altime without doing it in batches. RePLoD performs the clustering of
the events in realtime and gets immediate insights over the processed
data.

Technical Details of the Implementation

We studied various technologies for implementing IBRIDIA. We investigated
existing libraries for data extraction, filtering, and transformation. Our goal
was to reuse existing ones instead of developing new ones. Also, we stud-

ied machine learning libraries including DatumBox?, SPMFE3, Massive Online

2http://www.datumbox . com
3http://www.philippe—fournier-viger.com/spmf/
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Analysis (MOA), and Spark MLib* to implement our data processing model.
From our study, we found that existing libraries could not be used to imple-
ment our model (discussed in the previous section). Therefore, we decided
to implement the model on our own. For implementation, we used Java lan-

guage on Eclipse.

Datumbox reads the data from a file stored in CSV format. The data must
have attribute names in order to form the data frame that will be used as
the data structure in this implementation; it uses a linked hash map. More-
over, the algorithm can handle different data types like numerical, categori-
cal, dates and so on. The reason we did not select Datumbox is its inability
to read data by lines. The data frame can handle data as a batch that can be
read in one go. Changing the data structure for an already implemented li-
brary means changing the core of their implementation as if writing one from
scratch. Therefore, we decided to investigate Spark’s MLib library. However,
we found MLib does not have an implementation of hierarchical clustering.
Additionally, MLib works only with numerical data.

SPMF is another potential machine learning library but we found that it suf-
fers the same problem as Spark does. It works only with numerical data and
this was explicitly mentioned in the documentation. MOA (Massive Online
Analysis) was another potential candidate. It is developed by the same team
who developed the most popular WEKA machine learning library. However,
this library is locked into a specific file format which is ARFF and hence it is
unable to read other data formats. An ARFF format needs to have attributes,
types, and data explicitly mentioned within the file>. Nevertheless, in our
case the data — are streamed and fed into the algorithm — does not necessar-
ily have an attribute. Rather, data could be a set of records each of which is
made up of different text words.

To sum up, IBRIDIA is a framework that integrates three APIs for extracting
external data from different sources including Twitter API, Facebook API,
and Open Weather API. It uses an open source parser. Also, it includes tools
for cleaning and transforming incoming data. The prototype of ProLoD is
available in GitHub.

We investigated different data processing frameworks including Apache Spark®,

“http://spark.apache.org/mllib/

SWe contacted Dr. Albert Bifet the author of the library for assistance because it was only
running for a specific number of data points then starts throwing errors but the problem was not
solved.

Shttp://spark.apache.org
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and Apache Storm’ to develop RePloD module of IBRIDIA. To the best of our
understanding Storm is a more potential computational system for our solu-
tion. It is fast, can process over a million tuples per second. It is scalable,
tault-tolerant guarantees our data will be processed and is easy to set up and
operate. Storm integrates with the queuing and database technologies we al-
ready use. A Storm topology consumes streams of data and processes those
streams in arbitrarily complex ways. However, repartitioning the streams

between each stage of the running computation is needed.

RePLoD consists of two main components: data streamer and data processor.
We implemented the Data Streamer using Apache Kafka® and data processing
engine using Apache Storm®.

The data processing topology of RePLoD comprises the data cleaner, the data
filter, the data transformer, and the data clustering component. Figure 3.10

shows the data processing topology of RePLoD.

1d 4 Executors Tasks Emitted Transferred Complete latency (ms) Acked Failed Error Host Erra

kalka_spout 2 2 40 40 0.000 0 0

Showing 1to 1 of 1 entries

Bolts (All time)

A Capacity (last Execute latency Process latency,

Id Executors Tasks Emitted Transferred 10m) (ms) Executed (ms) Acked Failed
realtime-clustering 2 2 0 ] 0.015 446.000 20 0.000 0 ]
stanford_nlp 2 2 20 20 0.000 13.000 20 0.000 0 0
twitter_analytics =~ 2 2 20 0 0.000 5.000 40 0.000 0 0
twitter_cleaner 2 2 a0 40 0.000 4.000 40 1.500 40 0
twitter_filter 2 2 40 40 0.000 2.000 20 6.000 20 0
twitter_transformer 2 2 20 20 0.000 1.000 20 0.000 0 0

Showing 1 to & of 6 entries

FIGURE 3.10: The Data Processing Topology of RePLoD

The spouts and bolts of RePLoD’s topology constitute a directed acyclic graph
(DAG). Spout is the entry point to the topology used to read the data from
Apache Kafka. The Kafka-spout acts as Kafka consumer of the Kafka topic.
The Kafka-spout reads all the messages ingested into the Kafka topic such
as “tweets". This spout acts as the only connector between Kafka and Storm
but what is interesting is the ability to execute every component of the spout

and bolt within multiple executors. As we mentioned earlier, the processing

"http://storm.apache.org
8 Apache Kafka: https://kafka.apache.org
9 Apache Storm: http://storm.apache.org
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logic of RePLoD is capable of processing any type of event. We will consider

Twitter data as an example in the following.

Data are inserted into the storm topology which consists of three bolts: twitterfilter,
twittercleaner, and twitteranalytics. The twitterfilter is used for fil-
tering the attributes of the tweets records. The tweets are consisting of several
attributes; however, not all of them are important for the analysis. Therefore,
we need to filter the relevant ones to our analysis such as “id, user, descrip-
tion, text, created time, location, etc". Then the simplified records that are
emitted from the bolt twitterfilter are ingested as input to the next bolt
twittercleaner which is used for cleaning all the characters that may affect
the analysis. The analysis is carried out by the bolt real-time-clustering
that is built on the real-time clustering algorithm that results in different clus-
ters: merged, split or newly created. Once the data is cleaned, they are trans-
formed the texts (e.g, tweets) to csv-like structure using “twitter-transformer"
bolt. After the transformation is completed, we extract different named en-
tities to understand the text content and make the analysis able to depend
upon the features mentioned in the content. Finally, the clustering is car-
ried out in real-time using twitteranalytics bolt which is built on hierar-
chical clustering algorithm that produces clusters in realtime. The clusters

are saved in the disk.

3.4 SANA Vs. IBRIDIA - An Experimental
Study

In this section, we discuss the results produced through experiments with
SANA and IBRIDIA. We will start by presenting the environment, datasets

and attributes that we based-upon to drive our experiments.

3.4.1 Design of Experiment
System Specification

Given below is the specification of the machine we used for our experiments:
e Processor: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz (4 CPUs), ~2.9GHz
e Memory: 16GB
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e SSD: 500 GB

e Operating System: Windows 10 (64 bit)

About Dataset

Throughout our experiments, we used two different data sources, one for
realtime processing and the other for batch style processing. The one used
for realtime processing is the real data collected from Twitter Streaming API
which is the main and only API provided by Twitter for producing realtime
streams of tweets. The second is the real data collected from the sensors
taken from Data Grand Lyon!?. In order to deal with such datasets, it is very
important to know their schemas. The schema in details of the Twitter data
collected can be found on Twitter official website!!. The schema of the other
datasets will be presented in details as there is no description provided from
Data Grand Lyon!2. We will consider the following schema throughout our

experiment:

publiceventtype: of type String - this field represents the type of the public event going on
(mainly in the dataset, it will be mentioned as null or Activities).
networkmanagementtype: of type String - this field represents the type of the network man-
agement (mainly in the dataset, it will be mentioned as null or NetworkManagement).
observationtime: of type DateTime - this field represents the time when the event occurred.
firstsupplierversiontime: of type DateTime - this field represents the time of the supplier
version first installed.

version: of type Integer - this field represents the version number used.

typeofevent: of type String - this field represents the type of the event going on in a more
specific way. In this dataset, it will contain different values depending on the publicevent-
type and networkmanagementtype. For example, in case of Networkmanagement, it may
take one of the following values: NarrowLanes, RoadClosed, QueueingTraffic, etc. and in
case of Activities, it may take one of the following: MajorEvent, Strike, SportsMeeting, etc.
townname: of type String - this field represents the name of the town in which the event
occurred.

versiontime: of type DateTime - this field represents the time on the server.

gid: of type Integer - this field represent a unique identifier for each record.

publiccomment: of type String - this field represents the comment of what is going on in

Ohttps: //data.grandlyon.com
Upttps://developer.twitter.com/en/docs/tweets/data-dictionary/overview/

tweet-object.html
12https://data.grandlyon.com/localisation/evfnements—routiers—temps-rfel-de—la—mftropole—de—lym



80 Chapter 3. Chapter Three: Data Processing Frameworks

details, thus helping in locating the different events in specific roads.

In order to do a valid comparative study between the different frameworks,
I intend to take a sample of the dataset that is generated from Twitter to be
used by both frameworks for realtime data processing. This sample of the
dataset will be used just for testing purposes. The size of this sample data
was ~ 65 MB.

This dataset will be the data that drives the main experiments for doing the
comparison between the two frameworks: SANA and IBRIDIA.

Experiment Attributes

The attributes that we considered to compare both systems was mainly the

following:

o Performance/Speed: is the execution time required for an algorithm to

finish its execution.

e Accuracy: is the closeness of results of observations to the true values or

values accepted as being true.

We considered these attributes for two main reasons. First, as we are working
with fast data in a big data environment, the first thing that we would con-
sider is the speed that would reflect the efficiency of the system for real-world
scenarios. Second, we considered accuracy because we knew that speed with
wrong results is like dreaming without achieving. Accuracy means how cor-
rectly the data was processed (clustered or classified). If the data was ac-
curate (correct), the analysis will be accurate which is the main goal behind
processing the data.

3.4.2 An Experiment with SANA

We observed in the previous section that SANA is based upon a big data ar-
chitecture that supports realtime data ingestion and processing. During the
processing phase, data will be filtered, classified using multinomial naive
bayes classifier, enriched by the context using named entity recognizer and
afterward, the well-processed data is distributed and stored in data lake and

graph storage for obtaining a graph knowledge and more persistent storage
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mechanisms. These data are then visualized in realtime and questions can be
asked by the data scientist on the processed data (queries can run upon the
knowledge graph of the processed data). The spouts and bolts of RePLoD’s
topology constitute a directed acyclic graph (DAG). The existence of these
different features together in one framework that is capable of realtime pro-
cessing is very interesting for getting the best out of the arrived data stream
of events.

As we mentioned at the beginning of this section, we are performing our
experiments over the 65 MB dataset by simulating their realtime streaming
behavior. The main processing logic of this framework is deployed over
Apache Storm. Thus, it is not possible to determine the exact execution time
performed for every number of records as each record is processed by dif-
ferent processing units and each has its own set of performance measures.
We are going to present some performance measures as statistics of different
time intervals for each processing unit of the topology. In order to interpret
correctly the different graph visualization of the topology, we should under-
stand a few things. The performance of Storm topology degrades when it
cannot ingest data fast enough to keep up with the data source. The velocity
of incoming streaming data changes over time. When the data flow of the
source exceeds what the topology can process, memory buffers fill up. The
topology suffers frequent timeouts and must replay tuples to process them.
Using the visual representation of the storm’s topology, we can indicate the
data bottleneck in our application. These graphs of measuring the perfor-
mance are interpreted as follows:

e Thicker lines between components denote larger data flows.

e A blue component represents the first component in the topology, such
as the Kafka spout below from the RePLoD Topology.

e The color of the other topology components indicates whether the com-
ponent is exceeding cluster capacity: red components denote a data
bottleneck and green components indicate components operating within
capacity.

We are going to present the execution of each processing unit of SANA inde-

pendently within the same time intervals.

e For 15t time interval: The emitted records were 16160 and the trans-
ferred were 19080.
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TABLE 3.1: The execution measures of the processing units of the
topology at time t1
Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
hdfs 0 0 0.001 0.230 1480 0.000
Neo4jStorage 0 0 0.455 3818.000 20 0.000
ResultAnalysis | 0 0 0.023 7.111 1440 6.510
SaveResult 1460 0 0.004 1.278 1440 1.153
twitter-classifier | 4340 4340 0.627 46.935 4340 0.000
twitter-filter 4160 4160 0.608 39.221 4340 16.207
twitter-ner 1460 5840 0.691 135.397 1460 0.000

| witier fiter
1378 ms.

ResultAnalysis
719ms

SaveResult

witter_classifer
NaN ms.

' NeodjSiorage
NaN ms

FIGURE 3.11: SANA visualization performance at time t1.

e For 2" time interval: The emitted records were 23840 and the trans-
ferred were 29200.

TABLE 3.2: The execution measures of the processing units of the
topology at time t2

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
hdfs 0 0 0.001 0.143 2660 0.000

Neo4jStorage 0 0 0.893 3722.667 60 0.000

ResultAnalysis | 0 0 0.026 7.134 2680 6.366

SaveResult 2680 0 0.005 1.200 2700 0.910
twitter-classifier | 6060 6060 0.623 50.709 6040 0.000

twitter-filter 5940 5940 0.420 29.620 6100 12.580

twitter-ner 2680 10720 0.806 127.015 2680 0.000
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FIGURE 3.12: SANA visualization performance at time t2.

e For 3" time interval: The emitted records were 35840 and the trans-
ferred were 44660.

TABLE 3.3: The execution measures of the processing units of the
topology at time t3

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
hdfs 0 0 0.001 0.230 4000 0.000
Neo4jStorage 0 0 0.715 3609.250 80 0.000
ResultAnalysis | 0 0 0.034 7.919 4420 7.666
SaveResult 4440 0 0.005 1.231 4420 2.817
twitter-classifier | 8940 8940 0.578 50.419 8920 0.000
twitter-filter 8920 8920 0.263 21.540 8920 9.707
twitter-ner 4420 17680 0.769 129.769 4420 0.000

Kalka_spoul
NaNms

titter_filier
781ms
ResultAnalysis
7.22ms

SaveResult

NeodjStorage
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FIGURE 3.13: SANA visualization performance at time t3.

e For 4" time interval: The emitted records were 52800 and the trans-
ferred were 66320.
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TABLE 3.4: The execution measures of the processing units of the
topology at time t4

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
hdfs 0 0 0.008 0.769 6760 0.000

Neo4jStorage 0 0 0.841 3502.428 140 0.000

ResultAnalysis | 0 0 0.029 7.398 6780 6.584

SaveResult 6760 0 0.004 1.112 6760 2.114
twitter-classifier | 12920 12920 0.610 52.059 12920 0.000

twitter-filter 13060 13060 0.193 16.282 12980 7.350

twitter-ner 6760 27040 0.825 139.858 6760 0.000

twiltier_filter
695ms .

detaul 30640: 41%

ResultAnalysis

FIGURE 3.14: SANA visualization performance at time t4.

e For 5" time interval: The emitted records were 136020 and the trans-
ferred were 173560.

TABLE 3.5: The execution measures of the processing units of the
topology at time t5

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
hdfs 0 0 0.111 3.674 18760 0.000
Neo4jStorage 0 0 0.961 3210.928 280 0.000
ResultAnalysis | 0 0 0.033 5.287 18760 4.324
SaveResult 18740 0 0.010 0.943 18740 1.068
twitter-classifier | 32800 32800 0.611 35.779 32800 0.000
twitter-filter 32760 32760 0.031 7.921 32760 3.909
twitter-ner 18760 75040 0.955 95.214 18760 0.000
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FIGURE 3.15: SANA visualization performance at time t5.

e For 6" time interval: The emitted records were 274060 and the trans-
ferred were 356040.

TABLE 3.6: The execution measures of the processing units of the
topology at time t6

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
hdfs 0 0 0.026 2.085 40960 0.000
Neo4jStorage 0 0 1.003 3002.160 500 0.000
ResultAnalysis | 0 0 0.032 3.861 40960 3.119
SaveResult 40840 0 0.006 0.718 40920 0.688
twitter-classifier | 63680 63680 0.299 23.467 63720 0.000
twitter-filter 64060 64060 0.029 4.901 63780 2.469
twitter-ner 40940 163760 0.992 72.694 40940 0.000

. tuitier_classifier
NaN ms
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Neod|storage
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FIGURE 3.16: SANA visualization performance at time t6.

The results generated by SANA are written in three different storage systems which
are: local disk, Hadoop storage (HDFS) and Neo4j storage (graph storage). The best
approach to show the influence and importance of the data is shown as a knowledge
graph as shown in figure 3.17.
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FIGURE 3.17: Graph knowledge of SANA

The obtained knowledge graph is very large so we intend to do some query over the
graph storage to get a minimized graph out of the whole records stored by executing
the following query:

MATCH (tweet)

WHERE (tweet)-[:HAS_LOCATION]->()
RETURN (tweet)-[1-0)

LIMIT 25

This query is equivalent to saying that I need 25 tweets that have one or more lo-
cations with their relationships. For a better understanding of the results returned,
we zoomed-in the previous graph in figure 3.17 to obtain two different figures: one
concerns the tweets classified as positive and the other for the tweets classified as
negative as shown in figure 3.18 and figqure 3.19 respectively.
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FIGURE 3.18: Graph knowledge of SANA for positive classification
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FIGURE 3.19: Graph knowledge of SANA for negative classification
Evaluating the models
During this experiment, we were able to calculate the following contingency

table as shown in table 3.7.

TABLE 3.7: Contingency table for measuring the accuracy

false positive | false negative | true positive | true negative
289.5 205.6 819.9 1761.0

The accuracy is one metric for evaluating the machine learning classifier. It
is the factor that shows how much of the predictions, our model got right.

Numbero fcorrectpredictions

Accuracy = —
Y Totalnumbero f predictions

In another way we can write it as follows:

TP+TN
TP+ TN+ FP+FN

Accuracy =
where TP means true positive, TN means true negative, FP means false posi-
tive and FN means false negative.

Thus, the accuracy of our classifier reached 0.839 which is quite good as we
are dealing with unstructured data.
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We now need to check the accuracy of the named entity recognizer that was
used in SANA to extract the event’s context. We were unable to find a way to
measure the accuracy and so we depend upon a comparison done between
the most two popular tools for recognizing the entities which are Stanford
and NLTK. According to their study?3, it is shown clearly how high is the
accuracy of Stanford tool reaching 92.23% whereas NLTK reached 89.71%
at most as shown in figure 3.20. As we used the Stanford implementation
in SANA, we are satisfied to say that the accuracy of the context extraction

model used is quite high for serving the delivery delay problem efficiently.

Accuracy by NER Classifier
92.23
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89.71 mmm Stanford

NLTK
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o
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FIGURE 3.20: Comparing accuracy of the top two NER classifiers

Result Interpretation

We can interpret the obtained results using the indications described previ-
ously as follows: We can notice that the twitter-ner bolt that is used within
this topology for enriching the records by extracting the context is colored
red indicating suffering from a bottleneck in all the times which in-fact is not
surprising due to the complexity of natural language processing and extract-
ing the entities out of an unstructured text. We can also notice that twitter-
classifier is neither running smoothly (see figure 3.15) nor overwhelmed (see
tigure 3.16) which is predictable since we are running the topology on one
machine. The most interesting challenging performance is monitored for
graph storage. This Neo4jStorage bolt was performing pretty well within the
capacity (see figure 3.11) until the number of fast records reaches a certain
threshold (see figure 3.13, it starts to degrade with time resulting in a red bolt

13https://pythonprogramming.net/testing—stanford—ner—taggers-for—accuracy/
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larger in size. The highest execute latency measure was recorded between
3818.00 (check table 3.1) and 3002.16 (check table 3.6) for the Neo4jStorage
bolt, however, this latency is decreasing with time leaving a good impression
that it will never get worse. Although the performance of the graph storage
seems to be not satisfactory, we can notice how important it is in interpreting
the results and linking the different records together building up a knowl-
edge graph as shown in figure 3.6. Besides that, it is not the only storage

mechanism available, we are utilizing HDFS and local file storage.

If we look deeply into the results, we notice that all the degradation in the
topology are decreasing with time and thus it will keep running normally
and generating the results without any problem, e.g., twitter-ner and twitter-
classifier. All these processing units are forming the topology (stream pro-
cessing data-flow) which is running in our case on one machine. If we are
going to use it in production, for sure we need to extend the cluster from
stand-alone to multi-node cluster gaining more resources and enabling the
processing components to scale and compute in parallel within the clus-
ter and thus increasing the performance. From accuracy perspectives, we
noticed as well how our classification model and context extraction model
reached high accuracy measures. These measures prove that SANA’s data
processing is quite correct to a certain level and it is what we were looking

for to have well-defined data for avoiding any delivery delay.

3.4.3 An Experiment with IBRIDIA

Experiments with Core Algorithm of IBRIDIA

As we mentioned in the previous section, IBRIDIA is a framework that is
composed mainly of two different components: ProLoD and RePLoD. Pro-
LoD is the component responsible for performing batch style processing of
the data, whereas, RePLoD is responsible for performing the realtime pro-
cessing of the realtime data streams. ProLod and RePLoD rely on the non-

incremental and incremental versions of the algorithm respectively.

We compare the performance of our model with the one implemented by
WEKA. Although we tested the performance of SPMF and Spark, unfortu-
nately, we could not compare them to our work since they can only be ap-

plied to numerical data. Concerning MOA, we found bugs in it and thus we
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could not run our model. It allows only ARFF file formats as mentioned be-
fore and even though we converted our file to the needed format, it throws

multiple exceptions when we tried to read data from an external file.

RePLoD reads data by records and clusters each incoming record. The clus-
ters are mutable; a cluster may change when a new record is added in the
cluster. However, since the algorithm is greedy, the execution time has a pos-
itive correlation with a number of records i.e., the execution time increases
as the number of records increases. However, this can be solved using the
scalability of the system by inserting more nodes to the cluster for faster pro-
cessing resources. We will start first by comparing the execution time of the
program from the algorithm level (incremental and non-incremental algo-
rithm). Table 3.8 shows the result of our experiment with the incremental

version of the algorithm used in “RePLoD".

TABLE 3.8: The result of an experiment with the incremental ver-
sion of the algorithm

Incremental | 1st exec | 2nd exec | 3rd exec | 4th exec | 5th exec | avg seconds
8 records 466 426 451 432 420 439 0.439
16 records | 3665 2301 2362 2069 2089 2497.2 | 2.4972
24 records | 4363 4311 4491 4386 4135 4337.2 | 4.3372
32 records | 7915 7926 7789 7784 7710 7824.8 | 7.8248
40 records | 12861 | 12780 12849 12969 12958 12883.4 | 12.8834
The batch-style ProLoD performs bulk reading and clusters batch data. The
reading and processing occur only once per batch. The clusters are immutable
during clustering. Table 3.9 shows the results of the non-incremental version
of the algorithm used in “ProLoD".
TABLE 3.9: The result of an experiment with the non-incremental
version of the algorithm
Non-incremental | 1st exec | 2nd exec | 3rd exec | 4th exec | 5th exec | avg seconds
8 records 132 129 136 121 147 133 | 0.133
16 records 262 286 257 251 286 268.4 | 0.2684
24 records 465 393 427 393 429 421.4 | 0.4214
32 records 555 549 617 560 535 563.2 | 0.5632
40 records 728 719 779 855 726 761.4 | 0.7614
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We compared the performance of both versions. Figure 3.21 shows the com-
parison. According to our experiments, we observed that the batch-style per-
forms better than the realtime version of the algorithm. Our study reveals
that the performance of the realtime version was not satisfactory due to the
centralized environment of the experiment consisting of only one node. We
believe that performance will be improved significantly in a distributed and
scalable computation framework with multiple nodes. We believe that tech-
nologies that we used for the implementation of our solution called Apache
Storm has high computational power; hence, it can process a huge number
of records within a unit of time e.g., a millisecond. In addition, we assume
that the performance of the batch-style version of ProLoD may decrease if
the dataset is large. Currently, the dataset is small; therefore, the size of each

batch is small and faster in processing (clustering).
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FIGURE 3.21: Execution time (in seconds) of the incremental and
non-incremental versions of the algorithm

We compared our model with the hierarchical clustering algorithm of WEKA.
The WEKA algorithm produced 7 clusters with 93 records. Table 3.10 shows
the result which is also visualized in Figure 3.22 in-which the distribution of

the records is also presented as a percentage for each cluster separately.
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TABLE 3.10: The result produced by WEKA Hierarchical Clustering

algorithm
Clusters | Records
Cluster 1 | 2 (2%)
Cluster 2 | 8 (9%)
Cluster 3 | 37 (40%)
Cluster 4 | 12 (13%)
Cluster 5 | 3 (3%)
Cluster 6 | 4 (4%)
Cluster 7 | 27 (29%)
(2)
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FIGURE 3.22: WEKA Text Clustering Results.

Furthermore, we observed that both realtime and batch style versions of Pro-
LoD produced consistent and representable clusters that will assist in explor-
ing data, discovering insights, and supporting predictive analytics when the
data distribution is observed. Table 3.11 shows the result which is also shown
in Figure 3.23 in-which the distribution of the records is also presented as a

percentage for each cluster separately.
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TABLE 3.11: The result produced by RePLoD Hierarchical Clus-
tering algorithm

Clusters | Records and Clusters
Cluster 1 10 (11%)
Cluster 2 31 (33%)
Cluster 3 | Cluster 1 and Cluster 2
Cluster 4 50 (54%)
Cluster 5 | Cluster 3 and Cluster 4
Cluster 6 2 (2%)

Cluster 7 | Cluster 5 and Cluster 6

F1GURE 3.23: RePLoD Text Clustering Results.

According to our analysis, any labeling process using any of the attributes
from the dataset will produce results that are representable and understand-
able (by representable we meant a reasonable number of clusters produced
by the algorithm). Many of the clusters produced by WEKA intersect with
other clusters while treated independently. For example cluster 1 and cluster
2 do not need to be represented as two different clusters and cluster 4 and
cluster 7 intersect due to the fact that they have a common value called Major
Event of the attribute type of event. According to our observation, the separa-
tion of clusters (if applicable) is more effective than clusters with intersection

over common values such as Major Events.
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Some clusters are misclassified and not representable, according to our obser-
vation. In Figure 3.22 some clusters such as strike, sports meeting etc. do not
represent meaningful result. On the other hand, in Figure 3.23 clusters are
more representative in terms of meaningfulness. For instance, an interpreta-
tion of data over the type of event attribute will produce clusters containing
similar records. Similarly, an interpretation of data over the public event type
and network management type attributes will produce groups separating pub-
lic events (e.g. Activities) from network management events (e.g. narrow
lanes, road closed). Such simple and comprehensive visualization will make
analysis readable for the experts. In addition, automated systems can reap
the benefits of categorizing data before applying analytics.

Discussion

In this work we considered two quality attributes regarding our solution:
performance of the system and accuracy of our results that is the number of
clusters produced by our algorithms. Our observation reveals that the clus-
tering process in RePLoD consumes a significant amount of time which was
essentially unexpected. We found that the time consumption increases due
to the need for continuous listening to new data being fetched. Another rea-
son was the need for applying the clustering process all over again each time
a new record is fetched in order to deal with the evolution characteristic of

clusters in realtime.

Furthermore, the clusters that were produced during our experiments both
in RePLoD and ProLoD are better than WEKA'’s hierarchical clustering al-
gorithm. The results obtained by WEKA were a set of seven clusters plac-
ing common records (e.g. cluster 1 and cluster 2) without any meaningful
insight; nevertheless, the records corresponding to Road Closed are found in
three different clusters. On the other hand, our clustering results showed that
activities events (major event, sports meeting, and strike) were clustered to-
gether, network management events (road closed and narrow lanes) created
a cluster, and traffic events (queueing traffic) created a cluster. Therefore,
predictive analytics can be applied to such self-explanatory clusters instead

of data points.

Experiments with the RePLoD - Realtime Component of IBRIDIA
After we come to the previous conclusion concerning the incremental algo-
rithm, which stated that incremental algorithm performance was not satisfac-

tory. We deployed this algorithm over Apache Storm and make it perform in
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a distributed scalable environment.

For the same experimental requirements, we are going to perform our experi-
ments over the 65 MB dataset by simulating their realtime streaming behavior.
As we mentioned earlier, using Apache Storm, it is not easy to determine the
exact execution time performed for every number of records as each record
is processed by different processing units and each has its own set of perfor-
mance measures. Thus, we are going to present some performance measures
of different time intervals for each processing unit of the topology the same as
what we did in SANA. The same interpretation presented above with SANA
is valid for RePLoD as well since we are using the same Storm Ul settings.

We are going to present the execution of each processing unit of RePLoD
independently within the same time intervals.

e For 15t time interval: The emitted records were 26120 and the trans-
ferred were 26080.

TABLE 3.12: The execution measures of the processing units of
the topology at time t1

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
realtime-clustering | 60 60 1.135 2393.250 80 0.00
stanford-nlp 3080 3080 0.761 57.468 3080 0.00
twitter-analytics 40 0 0.000 0.333 60 0.000
twitter-cleaner 5580 5580 0.267 8.488 5700 9.730
twitter-filter 5920 5920 0.277 11.871 5720 6.584
twitter-transformer | 5740 5740 0.029 1.199 5720 0.000
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FIGURE 3.24: RePLoD visualization performance at time t1.

e For 2" time interval: The emitted records were 43520 and the trans-
ferred were 43460.
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TABLE 3.13: The execution measures of the processing units of
the topology at time t2

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
realtime-clustering | 80 80 0.585 2393.250 80 0.00

stanford-nlp 6660 6660 0.817 59.806 6700 0.00
twitter-analytics 60 0 0.000 0.333 60 0.000

twitter-cleaner 8940 8940 0.167 8.950 9180 7.057

twitter-filter 9240 9240 0.193 10.373 9160 6.070
twitter-transformer | 9180 9180 0.020 0.937 9160 0.000

twitier_transformer
NaN ms
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FIGURE 3.25: RePLoD visualization performance at time t2.

e For 3" time interval: The emitted records were 59780 and the trans-
ferred were 59720.

TABLE 3.14: The execution measures of the processing units of
the topology at time t3

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
realtime-clustering | 80 80 0.429 2393.250 80 0.00

stanford-nlp 8780 8780 0.873 67.836 8800 0.00
twitter-analytics 60 0 0.000 0.333 60 0.000

twitter-cleaner 12600 12600 0.174 8.991 12660 6.876

twitter-filter 12340 12340 0.190 9.795 12660 5.572
twitter-transformer | 12680 12680 0.016 0.855 12680 0.000

twitier_analytics
NaN ms

realime-clustering

twitter_transformer NaN ms
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FIGURE 3.26: RePLoD visualization performance at time t3.
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e For 4" time interval: The emitted records were 118519 and the trans-
ferred were 1184309.

TABLE 3.15: The execution measures of the processing units of
the topology at time t4

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
realtime-clustering | 100 100 0.987 6323.600 100 0.00

stanford-nlp 18060 18060 0.927 60.697 18080 0.00
twitter-analytics 80 0 0.000 0.200 100 0.000

twitter-cleaner 24340 24340 0.148 6.375 25180 4.563

twitter-filter 25160 25160 0.163 7.087 25200 4.205
twitter-transformer | 25200 25200 0.023 0.864 25200 0.000
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FIGURE 3.27: RePLoD visualization performance at time t4.

e For 5" time interval: The emitted records were 160165 and the trans-
ferred were 160136.

TABLE 3.16: The execution measures of the processing units of
the topology at time t5

Id Emitted | Transferred | Capacity (last 10m) | Execute latency (ms) | Executed | Process latency (ms)
realtime-clustering | 200 200 0.000 41550.699 200 0.000
stanford-nlp 199540 199540 1.000 44.201 199520 0.000
twitter-analytics 160 0 0.000 2.273 220 0.000
twitter-cleaner 243220 243220 0.045 2.222 244800 1.824
twitter-filter 246260 246260 0.069 3.092 244780 2.190
twitter-transformer | 244800 244800 0.009 0.484 244780 0.000
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FIGURE 3.28: RePLoD visualization performance at time t5.

The results generated are written to the disk on a file of a size larger than 700MB and
that is normal due to the appending nature of this file clearly stating all the details
and showing how were these clusters evolving and changing.

Result Interpretation

We can interpret the previous results using the indications mentioned above
as follows: We can notice that the stanford-nlp bolt that is used within this
topology for enriching the records for reaching better clustering results is
colored red indicating suffering from a bottleneck. We can clearly notice the
more important indication that how the realtime-clustering bolt (our incre-
mental hierarchical algorithm) is performing. At the beginning it was per-
forming pretty much good in-which it was colored green indicating that it
was operating within the capacity as we can see in figure 3.26. However, we
can clearly notice the high execution latency reaching 2393.25 ms as shown
in table 3.14. Then we can notice the changing of the color of the realtime-

clustering bolt from green to red as shown in figure 3.27 and 3.28.

Maybe the degradation of the performance of the algorithm as time passes is
due to the fact that the algorithm is using the comparative matrix of (1 * n)
and the time complexity of the algorithm is at least O(n?log 1) where n is
the number of data points which is increasing over time and thus increas-
ing the complexity. Additionally, we are using a stand-alone Storm cluster
having fixed resources and this is not the best Big Data scenario in which we
can scale and distribute these processing units into different machines and

perform them in parallel reaching better performance.
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3.4.4 Comparison Bteween SANA and IBRIDIA

Throughout our experiments, we noticed clearly the difference between both
solutions. SANA was meant to generate a graph knowledge from the events
collected immediately in realtime without any need to wait, thus reaching
maximum benefit from these events. Whereas, IBRIDIA was created more
specific to categorize the coming events into different labels. These labels
have no meaning if we are going to send them immediately to a sink for
analysis. In IBRIDIA, we should wait for a minimum number of events to
arrive and always we have a cold start in which we have to wait for the
categories to be identified upon arrival of the different events.

Despite the fact that both systems perform quite well in terms of the accuracy
perspective, it is clear from the experiments that SANA out-performed IB-
RIDIA from a performance measuring perspective. Additionally, SANA was
designed for general use cases within the logistics domain such as delivery
process, identifying the risks within the warehouses (sensor-based monitor-
ing of humans, etc.), customer-churn identification, a ranking of products,
etc. In addition, IBRIDIA’s clustering algorithm may seem to have an impor-
tant influence within the logistics domain for general purpose analysis for
identifying the most influential category of events that are affecting the de-
livery. However, in our case, it is more about handling the different events in
order to re-optimize the route on the fly. Unfortunately, the value added by

the IBRIDIA to help in minimizing delay was not such a significant indicator.
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Chapter 4

Chapter Four: Route Planning

4.1 Introduction

In order to deliver the goods from the point of the supplier to the different
delivery end-points, we need to do the efficient and convenient route plan
that can minimize the cost and increase the revenue as much as possible. This
problem is a well-known problem in the research community. Minimizing
the cost is not easy, due to the different circumstances that may happen on
the routes such as traffic, accidents, bad weather, etc. these conditions if not
handled correctly, the delivery will be postponed or canceled which indeed

may lead to customer churn and loss in revenue.

In the previous chapter, we mentioned how we were able to handle the data
processing of the coming events, which are the conditions of the delivery,
and thus they are not unexpected anymore. After figuring out the different
unexpected events and having an anticipated overview of the whole delivery
plan -thanks to SANA data processing engine-, we need to have an adequate
solution over the delivery problem. This solution is not trivial as the vehicle
routing problem (VRP) is known as an NP-hard problem that has no single
exact solution, instead, multiple non-dominant solutions (alternative solu-
tions). There exist multiple algorithms in the literature to generate solutions
for this problem. Some of these algorithms are based on meta-heuristic and
heuristic search approaches. Unfortunately, most of these algorithms are us-
ing inaccurate measuring mechanism that cannot take into consideration the
impact of the events happening through the route. These different algorithms

are discussed extensively in the next subsection.
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4.2 Design of the Route Planner

e Vehicle Routing Problem (VRP):

VRP is a well-known problem in the research community, such that we
have a number of vehicles (m) that need to serve another number of
clients (n) in which we need to consider a certain amount of time to be
spent on-site service (t;). The goal of this problem is to find the set of
routes (or the best one if reached) that minimizes the cost (for exam-
ple the distance or time). The VRP in literature is considered as a static
problem, i.e., the delivery routes are generated assuming that there is
no new client request arriving or any change in their delivery endpoint.
Nowadays, as businesses seek for faster delivery of packages, an exten-

sion of the problem was created as a Dynamic Vehicle Routing problem
(DVR).

e Route Planning Algorithms:

Meta-heuristic approach based on ruin and recreate principle:

This idea was developed by Schrimpf et al. who formulated the ruin-
and-recreate principle to solve the various Vehicle Routing Problems (VRP).
It consists of a large neighborhood search that combines elements of
simulated annealing and threshold-accepting algorithms [196]. Essen-
tially, this algorithm is mainly composed of two steps: ruin and recreate.
The ruin step is as follows:

— Starting with an initial solution, it disintegrates parts of the solu-
tion leading to

* a set of jobs that are not served by a vehicle anymore
* a partial solution containing all other jobs

and the recreate step is based on the partial solution created from the
ruin step, all jobs that are not served by a vehicle are re-integrated again,
which is therefore referred to as recreation yielding to a new solution. If
the new solution has a certain quality, it is accepted as a new best solu-
tion, whereupon a new ruin-and-recreate iteration starts. These steps are
repeated until a certain termination criterion is met (e.g. computation

time, number of iterations, etc.).
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The algorithm that is discussed is an extension of the core algorithm
described by Schrimpf et al. in [196] with strategies developed from
the great work of Pisinger and Ropke [184].

Heuristic Search Approach:

State space search is used to model and solve the problems that their
search space is divided into states that compose a particular configu-
ration of the problem. Each of these states represents a configuration
of the problem, such as the initial state represents the initial configu-
ration of the problem. In such models, the search is performed from
an initial state to a goal state by applying different transformations and
actions to reach a solution to the problem. These search algorithms are
classified mainly into two categories which are: uninformed and in-
formed search. The uninformed search contains the set of algorithms
that do not identify clearly which state to expand next such as Depth
First Search, Breadth First Search, etc. However, informed algorithms
are those techniques that use heuristics (problem-specific knowledge)
that we need to estimate the distance to the goal in order to improve
the performance by minimizing the number of visited states. We can
divide informed search into two: global search where the exploration
is over the whole state space and local search where the exploration is

only over a subset of the search space.

Cluster First, Route Second (CFRS):

This algorithm consists of two phases: In the first phase, the authors
of this algorithm form clusters of the delivery end-point clients taking
into account vehicle capacity. These clusters are then balanced by re-
assigning clients. In the second phase, the authors create open routes
by solving a minimum spanning tree problem (MSTP). They intend to
use penalties as a modification of the MSTP solution which facilitates

converting infeasible solutions to feasible solutions.

Tabu Search Algorithm (TSA):

The author can use one of the multiple methods including the nearest
neighbor heuristic and the K-tree method to generate the starting point
of the algorithm (initial solution). This initial solution is the new input
for either the nearest neighbor method or an unstringing and stringing
procedure to enhance each route. The tabu search algorithm has only
two types of moves: 1) an insert move that removes a client from one
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route and inserts it onto another, and 2) a swap move that exchanges

two clients between two different routes.

Threshold Accepting Algorithms:

Two of the well-known threshold accepting algorithms are: backtrack-
ing adaptive threshold accepting (BATA) and list-based threshold ac-
cepting (LBTA). Threshold accepting is a deterministic variant of simu-
lated annealing in which a threshold value 7 is specified as the upper
bound on the maximum allowed value of the objective function (up-
hill moves can be made). In BATA, 7 is allowed to increase during the
search. In LBTA, a list of values for 7 is used during the search. In these
algorithms, two operations are allowed. These operations are 1-1 ex-
changes and 1-0 exchanges. In 1-1 exchanges, two clients are swapped
from either the same or different routes. In 1-0 exchanges, one client is
moved from its position in one route to another position in the same or

different route. These operations are applied during the local search.

Adaptive Large Neighborhood Search (ALNS):

In ALNS, a feasible solution is generated and then modified. This al-
gorithm is based on destroying and repairing strategy. In each itera-
tion, an algorithm is selected to “destroy” the current solution and an-
other algorithm is selected to “repair" the same solution. For instance,
the cheapest possible route is formed by removing clients at random
from the solution and reinserting them. Multiple removals and inser-
tion heuristics can be used to diversify and intensify the search. If the
solution satisfies the criteria defined by the local search procedure (e.g.,

simulated annealing), the solution is accepted.
Discussion:

We adopted the meta-heuristics approach that is based upon ruin and

recreate principle for many reasons including the following:

— It is more convenient in dealing with complex problems that have

many constraints and a discontinue solution space [196].

— It can be used for solving several classical VRP types as an all-

purpose meta-heuristic.
— It can be computed concurrently in an intuitive way.

— Basic search strategies can adapt to the complexity of the problem

by varying easily between small and large moves.
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— It can create new neighborhood structures.

— If the number of search strategies was kept low, it would be sim-
ple in structure and easy to understand compared with other ap-
proaches and there is a clear distinguishing between ruin and recre-
ate steps, probably making the checking of the constraints much

easier.

4.3 Functional Design

In the previous chapter, we selected the SANA framework as a more con-
venient solution to prepare the well-processing data. These data are trans-
formed into relevant events that are ready for the prescriptive analysis which
will lead to a strategic decision. At first, we were interested to validate that
we can rely on the SANA data processing model to make the data ready for
analysis. Then, after that, we discovered a space for enhancement in which
we noticed that mostly route planning algorithms are just considering an in-
accurate distance function to measure the distance between two places. In
this matter, we extended SANA by a new layer which we call it “Route Plan-
ning Layer". This layer is responsible for planning the whole route of the
delivery and it must be able to handle the different events generated by the
processing layer and do the route optimization depending on these events.
We will explain the extended architecture of SANA to have a better overview
of the solution. The architecture of SANA was extended by adding a new
layer with three different components as shown in Fig. 4.1.
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FIGURE 4.1: The Extended Architecture of SANA

The multi-layered architecture of SANA consists of various components that

perform in a certain workflow as described in the following.

Data Collection and Ingestion Layer: This layer contains two components:
a data collector and a data Ingestor. The data collector is a client that binds
one or many data source APIs that enable access to remote repositories with
an authentication check through their public keys. Once the connection is
established, the data collector starts fetching data streams (i.e., tweets) in re-
altime. The data Ingestor consists of two interfaces. The first interface taps
data into SANA data lake which is a distributed Hadoop cluster, resides in the
storage layer. The other interface opens a channel to push the events directly
to the data processing components.

Data Processing Layer: The components contained in this layer perform sev-
eral tasks. The two main tasks are carried out in this layer include data anal-
ysis and visualization. Data distribution and query execution are two additional
tasks performed in this layer. The analysis starts with filtering incoming data.
SANA’s data filter eliminates unnecessary strings from events and keeps the
core text required for analysis. Also, it allocates a unique identifier to each
event. Then, the text classifier extracts and classifies the events into posi-
tive (have an impact over the delay) and negative (do not have any impact
over the delay) classes. We used the multinomial naive-bayes classifier (a
machine learning technique for supervised learning) along with Chi-Square
(x?) feature selection. The multinomial naive-bayes classifier is used after be-
ing trained with labeled training datasets that are classified into positive and
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negative classes. The Chi-Square (x?) function tests whether the occurrence
of a specific string and the occurrence of a specific class is independent. The
NER tagger extracts the contexts of classified texts. It labels the sequence of
context related strings (e.g., person, location, and organization) in an event.
After the classification is done, the data distributor sends the results to a local
disk, the data lake (Hadoop cluster), and the graph storage. Queries to find
the comprehensive detail of the results is submitted through SANA’s query
interface.

Data Storage Layer: Two different types of storage is integrated in SANA:
data lake and graph storage where the results are stored. The data lake is a
cluster of nodes where data blocks are distributed. SANA adopts data lake
to deal with massive-scale data. The graph-based storage of SANA assists in
building a knowledge graph of classified texts and their contexts.

Presentation Layer: SANA provides a graphical user interface (GUI) which
consists of a control panel and a text box for data visualization. The control
panel provides three services. The data collection service calls and loads the
data collector. The backend services call processing servers, the graph database
server, the coordination server which maintains configuration information
and provides the distributed synchronization service. The query execution
service calls and loads the query processor. Lastly, the visualization interface
loads the data visualizer and visualizes a pie chart that shows the percentage
of positive and negative classes through accumulating the classified events

in each class.

Route Planning Layer: This layer is the extension that was added to SANA
to have the capability of dealing with the re-routing of the delivery plan in
realtime. This layer mainly consists of three different components which
are route designer, condition identificaiton and route planner (as shown in Fig.
4.2). The problem should be designed first in the route designer component.
The design of the problem contains multiple parameters that should be filled
with proper values. These parameters are related to all the destinations of
each package, the location of departure, etc. In order for this algorithm to
be applied in realtime, we have to build a new component that is responsi-
ble for detecting and checking the realtime events arriving. This component
we called it condition identification. Using this component, we were able to
classify the different events into critical (hard constraints) or non-critical (soft
constraints). The route planner is where the algorithm actually execute given
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the previous components. The route planner is built upon checking the re-
sults of condition identification while building any route designed with the
route designer. Thus, trying to build a route with minimum cost and guar-

antees the delivery without delay.

SANA’s output

(1) Route Designer (2) Condltlon Identifier
+ . Critical Non-critical
. GORSITAIntS events events

(3) Route Planner

FIGURE 4.2: The principle of Route Planning Layer

In fact, the algorithm is checking the condition identification results every
time a new event arrives. The main usage of these events was presented in
calculating the distance between two places. As the algorithm naturally tries
to minimize the paths for reaching the shortest path, the calculation of the
algorithm was based on inaccurate distance functions (such as Manhattan
or Euclidean distances). These functions do not represent the real distance
to be covered through the roads. We insisted on building a more accurate
measuring mechanism, a new distance function that can accurately measure
the distance and prevent the violations by selecting different paths. The main
purpose of our distance function is to find the route that can be least impacted

by occurring events with minimum time:

minZCv 2 T

where C, means events that might lead to constraint violation through the
route (only we consider soft constraints in such a case) and T; referred to the

time that need to spent on each route.
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4.4 Implementation

We were looking forward to solving the dynamic vehicle routing problem
that is capable of adapting to the realtime changes in the environment. Thus,
we started investigating the different available libraries and tools that are
available to implement such a route planning algorithm. The main imple-
mentations of the route planning algorithms include the following;:

e jsprit!: jsprit is a Java-based, open-source toolkit for solving rich Trav-
eling Salesman Problems(TSP) and Vehicle Routing Problems(VRP). It
is lightweight, flexible and easy to use, and based on a single all-purpose

meta-heuristic currently solving many vehicle routing problems.

e Hipsterdj2: Hipster is a Java-based easy to use, a powerful and flexible
type-safe library for heuristic search. It defines search problems relying
on a flexible model with generic operators. It enables us to model and
solve vehicle routing problems.

e Open-VRP3: Open-VRP is a framework to model and solve multiple
vehicle routing problems.

e OptaPlanner*: OptaPlanner is a Java-based lightweight, embeddable
planning engine. It can be used to solve the capacitated vehicle routing

problem (with time windows).

e OR-Tools®: Google Optimization Tools (OR-Tools) is a fast and portable
software suite for solving combinatorial optimization problems, includ-
ing the VRP. It is an open-source, written in C++ and available through
SWIG for Python, Java, and .NET (using Mono on non-Windows plat-
forms). You can compile OR-Tools on Linux, Mac OS X, and Windows
(with Visual Studio).

e OscaR®: OscaR, as the abbreviation of the name indicates, it is an Open
Source Toolbox for Optimising Logistics and Supply Chain Systems.

After testing and comparing these different available tools and libraries, we
selected jsprit as one of the best candidate solutions to solve the delivery

Lhttps://github.com/graphhopper /jsprit

Zhttp: / /www.hipsterdj.org/
3https://github.com/mck-/Open-VRP
4https://www.optaplanner.org/
Shttps://developers.google.com /optimization/
Shttps://bitbucket.org/oscarlib/oscar /wiki/Home
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problem we are tackling. Besides, it is lightweight, flexible and easy to use

and more importantly, it is fit for change and extension.

We considered building our route planning layer using jsprit algorithm to
facilitates the planning of the delivery process. Jsprit is a java-based open
source toolkit for solving rich Travelling Salesman Problems (TSP) and Ve-
hicle Routing Problems (VRP). It is based upon the theory studied previ-
ously and currently it is capable of solving the following problems: capac-
itated VRP, multiple depot VRP, VRP with time windows, VRP with back-
hauls, VRP with pickups and deliveries, VRP with heterogeneous fleet, time-
dependent VRP, traveling salesman problem, dial-a-ride Problem, and vari-
ous combination of these types.

This algorithm was basically built to deal with the static planning and it is
not designed to handle the dynamic re-routing in realtime. The advantage
of using such an algorithm is that it can fit for change and extension due
to a modular design and a comprehensive set of unit and integration tests.
Therefore, we insisted on extending this algorithm with several features for
performing the dynamic re-planning of the route.

One of the most important features in the accuracy of the algorithm is to se-
lect the right distance function. Several distance functions are available for
calculating the distance between two points (2 and b) for example: Manhat-

tan distance (|x, — xp| + |2 — ¥|) and Euclidean distance (v/(x, — x5)% + (Va — y5)?)-
Unfortunately, these distance functions cannot be used in calculating the dis-
tance between two geolocations because they do not represent the roads to
get from one geolocation to another. Thus, we were obliged to implement our
own distance function based on an online Geolocation API such as Google
Direction API” and MapQuest Directions API®. We used the latter as it offers
a larger number of API’s requests for free and it has nearly the same accu-
racy. Besides that, we added another feature which is the ability to determine
if an arrived event represents a soft or hard constraint. The prerequisite for
building such a distance function is that it requires to have more than one
alternative route between two places that will help in selecting the best fit-
ting route’s path. To the best of our luck, we found that MapQuest Direc-
tions APl is capable of generating three different alternative routes between
two geolocations. This capability of having 3 different routes between every

two geolocations with the ability to determine critical and non-critical events

7https ://developers.google.com/optimization/routing/google_direction
8https://developer.mapquest.com/documentation/directions-api/
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affecting the roads, we are getting near to find the solution that may fit real-
world scenarios. In that sense, we can calculate accurately if it is possible to
eliminate or minimize the delay and what the expected time to arrive at a certain

destination is.

SANA needed to be extended in order to reach a full framework that can
collect, process, analyze, store and visualize. Thus, we extended SANA by
adding a new missing processing unit that allows the sending of more en-
riched data to the route planning layer. This processing unit was added
and named Geo-coding bolt which is responsible for geocoding the loca-
tions extracted from the context and label the arrived events as critical or
non-critical events. The process of geocoding was achieved by using another
service provided by the MapQuest API which is called MapQuest Geocod-
ing API° which enables us to associate latitude and longitude with an as-
sociated address. The labeling of the arrived events depends on some key-
words/dictionary in-which it will classify the events for example as critical
if they contain the terrorist attack and non-critical in case of traffic, accident,

road, etc.

As shown in figure 4.3, this processing unit (bolt) was integrated with SANA
as a sink to do the previously described tasks and then push these enriched
events to the route planning layer which is listening as a server. The server
will handle these events as shown in figure 4.4 and then it will add them to
one of two lists depending upon their labels. If the event’s label was critical,
then add the coordinates of the event to the list of critical events (i.e., hard
constraints), otherwise, add them to the list of non-critical events (i.e., soft
constraints). In the previous figure, just note that we have hidden the other
storage bolts (graph storage and Hadoop storage) for experimental purposes.

Shttps://developer.mapquest.com/documentation/geocoding-api/
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twitter_classifier
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NaN ms
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FIGURE 4.3: The topology of SANA after the integration with the
route planning component

FIGURE 4.4: The route planning events server is listening to the
events from SANA to arrive.

During the execution of the route planner, we are calculating the distance
between each of the locations to be visited by the truck. Thus, we considered
the following technical steps in building our enhanced distance function for

more accurate distance measuring;:

1. Fill all the possible routes between these two locations (main route and

two other alternative routes).
2. Select the best route according to the following:

(a) For each route, we have the bounding box of that route -bounding
box in geographic coordinates is an area defined by a minimum

and maximum longitudes and latitudes-.

(b) Check if any of the coordinates of the lists (critical and non-critical)
falls within this bounding box and if so move them to a new list

according to their labels.
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(c) Check the points of each route if they have any points that are also

found in a list of critical events, then we discard this route.

(d) We repeat the previous step for the alternative routes one by one.
Note that if all the routes are affected by critical events then there
is no way to eliminate or minimize the delivery (we cannot select

routes impacted by critical events).

(e) Check if one of the points of the selected route is also found in the
list of non-critical, if so, then we go over all the routes that are not
critically affected.

(f) Choose the route with the minimum number of non-critical events

affecting it.
(g) Return the distance.

These previous steps used in the distance function should be repeated for cal-
culating all the distances of every possibility between the different locations

of the route until it generates the result.

Figure 4.5 shows an example of the result generated by the algorithm im-
plemented in the route planning layer depending on the events pushed by
the processing model of SANA. The source code of the route planning com-
ponent can be found on Github at the following link: https://github. com/
m-alshaer/DeliveryModel.

FIGURE 4.5: The result of the route planning algorithm
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4.5 Conclusion

According to our implementation and experiments, we deduced that we
were able to do the required route planning algorithm depending on the
data processed by SANA. Thus, SANA proved to provide the required infor-
mation for achieving the dynamic routing of the delivery and a convenient
candidate for processing logistics data in realtime. The route planning algo-
rithm used in SANA was based upon the ruin and recreate principle of the
meta-heuristic approach that can be used for solving several classical VRP
problems. We noticed that this algorithm, as well as, other algorithms lack
the right distance measuring function. Thus, we extended this algorithm
with several important features to perform dynamic planning. These fea-
tures were added to serve one purpose which is the accurate measuring of
the distance between the different geolocations. Determining the level of
influence of the events over the delivery and utilizing these events in a well-
defined distance function to compute and decide more realistically the route
plan to be selected. Through our distance function, we guarantee a better
distance measuring taking into consideration the current events that might

impact the routes.



115

Chapter 5

Chapter Five: Conclusion and
Future Work

5.1 Conclusion

Before the hype of Big Data, businesses were highly dependent on their own
data. After that, with the advent of Big Data, they are no longer depending
on their internal data alone, however, they seek to enrich it from external data
(data that is found on the web, e.g., social media and sensor data). We noticed
a big shift from business application perspectives, where they used to design
user-specific applications, instead, nowadays, they are adopting data-driven
applications. These data-driven applications can dynamically adapt to any
changes in the environment by detecting and pro-acting to these changes

accordingly to avoid violating any business’s constraints.

Throughout this thesis, we described the problem that we are tackling as
avoiding the delay in the delivery process of the supply chain management
systems. This problem prompts different research questions which can be
briefed as follows: 1) handling data variety while collecting data in real-
time from different sources; 2) data processing which is considered as one
of the most critical issues for analysis especially if we considered the extrac-
tion of the relevant events from the coming data in realtime; 3) optimizing
the route plan in order to mitigate or eliminate the delay which is known
as NP-hard problem with no unique solution to be selected. We intend to
seek data processing technology that may deal efficiently with the first two
questions. Thus, we did an extensive study to find suitable models, tech-
niques, and methods that may help in achieving our objectives. The study
reveals many important factors in terms of approaching the solution such as

the importance of collecting data from sensors, social media, and different
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web pages especially if correlated with the logistics data. In light of data pro-
cessing, we have witnessed two modes of data processing batch-style and
realtime. Besides, we realized other methods and techniques that can help
in processing textual data (unstructured text) such as Multi-nomial Naive
Bayes Classifier, Named Entity Recognizer (NER), Hierarchical clustering al-
gorithm with Hamming distance as a distance function.

Based on our understanding of the existing approaches and techniques, we
conduct an experimental study between two different frameworks that we
implemented on our own. The expected output of this study was to show
which one of these frameworks would fit better to preparing the data for the
prescriptive analysis to help to reach our goal in avoiding the violation due
to the delay. These frameworks are SANA and IBRIDIA. We contributed to
each of these frameworks independently to show their impact in terms of
dealing with the well-known research challenges velocity and variety.

The contribution of SANA was its capability of handling fast data with the
ability to extract the context of the text and presenting them as entities (e.g.
location, organization, etc.). Besides, it was able to classify the coming text
and capable of visualizing them as a knowledge graph. We would rather
mention that the importance of SANA was not in building a new technique
or method, rather it was the integration of different methods and techniques
into one unique model that is able to produce well-processed data ready for

analysis.

The contribution of IBRIDIA was mainly in the scientific part that was miss-
ing in the literature which was modifying Johnson’s hierarchical clustering
algorithm to become a stream clustering algorithm that supports incremental
grouping of text messages according to their similar characteristics directly
on the go. After observing the results obtained and validating them with re-
spect to WEKA, our algorithm produced better representative results. It was
designed as a hybrid approach that can deal with both data at rest using its
module ProLoD and data in motion using its module RePLoD.

From the comparative analysis between these two frameworks, we deduced
that SANA out-performed IBRIDIA from performance measuring perspec-
tives. It is clearly said that SANA was meant to generate a graph knowledge
from the events collected immediately in realtime without any need to wait,
thus reaching maximum benefit from these events. Whereas, IBRIDIA have
an important influence within the logistics domain for identifying the most

influential category of events that are affecting the delivery. Unfortunately,
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in IBRIRDIA, we should wait for a minimum number of events to arrive and
always we have a cold start. Due to the fact that we are interested in re-
optimizing the route on the fly, we adopted SANA as our data processing
framework.

We did not stop on our comparative analysis for selecting our data processing
framework, we build a route planning algorithm for validating our frame-
work. In order to build a promising route planning algorithm, we studied
again the different route planning techniques used and their implementa-
tions to be able to perform the re-routing of the delivery plan in realtime.
As to achieve the prescriptive analysis of the plan, we adopted the meta-
heuristic approach which was developed by Schrimpf et al based on the
ruin-and-create principle due to its advantage in dealing with complex routing
plans. We discussed in details our implementation and presented the result
of applying it in cooperation with SANA and the results were promising for
us.

5.2 Future Work

Our work still has a high potential for future improvements. On the data
processing level, I believe that there would be more tremendous work to be
done. We are exploiting the data and processing them on the fly. However, if
the data sources become too many, how many nodes we might need to pro-
cess all these data arriving at the same moment. In IBRIDIA, we can do some
additional modification for the algorithm to determine the exact number of
clusters that should be created (i.e. at which level should the algorithm stop
so that we really benefit the most from its representative clusters). Besides
that, we can seek for the best convenient way to build a predictive model
that can use the clustered dataset to produce some rules that may help in
detecting certain patterns to have more anticipation over the transportation
problems. Concerning SANA, we can test it with different domains and see
how it can perform such as military fields and educational sectors in order
to help in detecting terrorist attacks and their locations or how to improve
the services in the educational sectors to help students and instructors have
a better experience.

The major suggested improvement would be around the re-route optimiza-

tion algorithm as we need to do more benchmarking with other available
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solutions and how we can minimize its execution time to get the new plan in
less amount of time. I believe that this thesis is just the beginning for help-
ing the logistics sector in building better systems from the scientific point of
view to help in minimizing their loss by predicting and avoiding the possible

delays.
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List of Publications

This appendix contains the list of publications throughout the thesis.

1. Mohammed AlShaer, Yehia Taher, Rafiqul Haque, Mohand-Said Hacid,
Mohamed Dbouk: IBRIDIA: A hybrid solution for processing big logis-
tics data. Future Generation Comp. Syst. 97: 792-804 (2019)

2. Mohammed AlShaer, Yehia Taher, Rafiqul Haque, Mohand-Said Hacid,
Mohamed Dbouk: ProLoD: An Efficient Framework for Processing Lo-
gistics Data. OTM Conferences (1) 2017: 698-715

3. Yehia Taher, Rafiqul Haque, Mohammed AlShaer, Willem-Jan van den
Heuvel, Karine Zeitouni, Renata Mendes de Araujo, Mohand-Said Hacid,
Mohamed Dbouk: A Service-Based System for Sentiment Analysis and
Visualization of Twitter Data in Realtime. ICSOC Workshops 2016: 199-
202

4. Yehia Taher, Rafiqul Haque, Mohammed AlShaer, Willem-Jan van den
Heuvel, Mohand-Said Hacid, Mohamed Dbouk: A Context-Aware An-
alytics for Processing Tweets and Analysing Sentiment in Realtime (Short
Paper). OTM Conferences 2016: 910-917
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