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Abstract

This PhD thesis consists in jointly analyzing eye-tracking signals and multi-channel

electroencephalograms (EEGs) acquired concomitantly on participants doing an infor-

mation collection reading task in order to take a binary decision - is the text related

to some topic or not ? Textual information search is not a homogeneous process in

time - neither on a cognitive point of view, nor in terms of eye-movement. On the

contrary, this process involves several steps or phases, such as normal reading, scanning,

careful reading - in terms of oculometry - and creation and rejection of hypotheses,

confirmation and decision - in cognitive terms.

In a first contribution, we discuss an analysis method based on hidden semi-Markov

chains on the eye-tracking signals in order to highlight four interpretable phases in

terms of information acquisition strategy: normal reading, fast reading, careful reading,

and decision making.

In a second contribution, we link these phases with characteristic changes of both

EEGs signals and textual information. By using a wavelet representation of EEGs, this

analysis reveals variance and correlation changes of the inter-channels coefficients,

according to the phases and the bandwidth. And by using word embedding methods,

we link the evolution of semantic similarity to the topic throughout the text with

strategy changes.

In a third contribution, we present a new model where EEGs are directly integrated

as output variables in order to reduce the state uncertainty. This novel approach also

takes into consideration the asynchronous and heterogeneous aspects of the data.
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Introduction

PhD context

This PhD takes place within the French national research agency funded project

PERSYVAL-Lab, project-team OculoNimbus.

In vision, the human interacts with its environment by performing dynamic explo-

ration of visual regions of interest through eye movements. Understanding mechanisms

responsible for this efficient information sampling opens multipurpose perspectives for

innovation in human-computer interaction, either by imitating human visual explo-

ration in robots or by creating truly user-friendly experiences for humans.

The goal of the OculoNimbus project is to provide statistical models that notably:

segment spatiotemporal into cognitive strategies, analyze dependencies with respect to

individual differences.

Topic

Eye movements hold information. Invented in the late 40’s by Hartridge and

Thompson, the eye-tracker has opened a breach for researchers to analyze the way

we, humans, read and process information. As a matter of fact, empirical studies have

shown that eye movement itself holds information about the reading process. For

example, longer eye fixations have been observed on misspelled, less common words

or incongruent words regarding the topic (Rayner, 1998). However, reading studies

mainly focused on the microprocesses of reading. Experimentally-driven models have

been proposed to simulate human reading behavior by modelling its microprocesses

(Reichle et al., 2012; Engbert et al., 2005). At macroscopic scales and based on em-

pirical studies, Carver (1990) identified that readers leverage distinct processes to

better accomplish their goals. He characterized these processes as reading strategies
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and discovered five of them, which could be clustered according to the reading rate.

Finally, Simola et al. (2008) proposed a data-driven method to highlight variations of

eye movement patterns within a same information search task. In the same context,

we raise the following question: how to rigorously and robustly segment a sequence of

eye movements into interpretable phases in terms of cognitive phases in information

acquisition and processing?

Hidden (semi)-Markov models (H(S)MMs). This class of statistical models (Ra-

biner, 1989; Yu, 2010) belongs to the class of Dynamics Bayesian Networks (DBNs,

Murphy and Russell, 2002; Koller et al., 2009). DBNs are probabilistic graphical models

that compactly represent the joint distribution of a set of random variables. Their graph-

ical structure provides knowledge concerning the dependencies and independencies of

the random variables in order to identify how random variables influence each other.

Moreover, they enable density estimation, thanks to their parameters. Probabilistic

requests are sped up using inference to estimate the value of variables given information

concerning other variables as evidence (Nagarajan et al., 2013). HSMMs may also

be characterized as latent-variable models, which means that not all their random

variables are observed. More particularly, an HSMM is composed of a double stochastic

process. The former is observed while the latter is a latent semi-Markov chain, which

preconditions the first process, and is used to uncover the changes of (semi-Markovian)

dynamics in the observations. This makes HSMMs perfectly suited to uncover and

segment latent reading strategies that drive observed features of eye movements over

a sequence. However, one of the main cons of latent models is that their parameters

need to be estimated with an iterative procedure called Expectation-Maximization (EM,

McLachlan and Krishnan, 2007), which finds a local maximum of the likelihood of the

parameters that sometimes might not be good enough. A common strategy with latent

structure models is to perform random restart of EM (Biernacki et al., 2003). Such

procedure for HSMMs does not exist yet and is a current requirement.

Co-recording electroencephalograms. The eye-mind link assumption suggests that

the location of an observer’s gaze partially reflects what is being processed in his mind

at that time (Reichle and Reingold, 2013). Eye movements therefore constitute natural

markers for time-locking the ongoing neural activity with respect to eye-movement

events, such as fixations. The co-registration of eye movements and EEGs is generally

analyzed under a framework called eye fixation-related potential (EFRP) (Dimigen
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et al., 2011) and aims at detecting delayed electrical changes produced by the nervous

system in response of an external stimulus such as a cognitive activity. This analysis

is conducted on the time domain by time-locking signals and averaging EEGs within

a window to bring out a specific pattern (Luck, 2014). However, little is known

about reading in more complex settings such as free text exploration (Frey et al.,

2018). Another approach is to study repetitive patterns of neural activity called neural

oscillations or brain waves on the frequency domain (Neuper and Klimesch, 2006).

Few studies only addressed both concomitant acquisitions of eye movements and EEGs

on the frequency domain (Seidkhani et al., 2017) and none of them analyzed phases

(reading strategies) within a sequence.

Coupled models. Coupled H(S)MMs (Zhong and Ghosh, 2001; Natarajan and Neva-

tia, 2007) have been proposed to model interactions between multiple signals with

different latent dynamics. However, there is currently no model that may handle het-

erogeneous data types such as eye movements and EEGs. Moreover, word semantical

access is performed with a latency with respect to eye-movement activity and is known

to involve different types of EEG patterns according to the cognitive processes involved

(Frey et al., 2018). Therefore, a data-driven and automatic procedure to synchronize

and segment eye movements and EEGs sequences into interpretable reading strategies

is an unaddressed challenge.

Outline of the PhD

The organization of this thesis will be articulated around four chapters bridging proba-

bilistic notions along with eye-movement and EEG analysis concepts.

In Chapter 1, we introduce the subject from a probabilistic perspective. We recall

different probabilistic concepts before reviewing models that belong to the class of

dynamic Bayesian networks to handle temporal signals. We put the light on Hidden

semi-Markov Models, how they can be interrogated to perform inference, and how

their parameters can be learned from data.

In Chapter 2, we first introduce the eye-movement context, past studies and the

experiment on which the analysis was conducted to better justify what we aim at:

the preprocessing of eye-movement features and their segmentation into interpretable

cognitive processes (reading strategies) with HSMMs. The chapter contains an interlude
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on what we pointed out to be a key point in this study: the search of the highest

maximum likelihood through adequate EM initialization when learning parameters.

Then in Chapter 3, we propose the use the model learned in Chapter 2 to segment

the data of our experiment and perform an a posteriori analysis on model covariates

with respect to reading strategies. More eye-movement features (internal covariates)

are treated but also textual information (external covariates), corresponding to texts

that users read during the experiment, and individual effects. At last, we analyze EEGs

on the time-frequency domain with respect to eye-movement segmentation to highlight

characteristic patterns on some given bands.

Finally in Chapter 4, we describe a new model coupling both eye-movement and

EEG data that we call asynchronous heterogeneous hidden semi-Markov model. We

also provide a wide range of possibilities to model the delayed interaction of these

two signals. Finally, we raise and discuss many practical issues of this new model that

leaves the door open to further improvements.
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1 Probabilistic framework

1.1 Preliminaries on random variables

Let us define (Ω,F ,P) a probability triple with:

• Ω being the sample space, i.e. the set of possible outcomes, towards another

measurable state space E,

• F , the set of all possible events,

• P, a function mapping events to probabilities s.t. P : F → [0,1] with P(Ω) = 1.

A random variable X is a measurable function which maps the set of all events to

a measurable space:

X : Ω→ E.

In order to make notations clearer, we shall denote E as X . Answering the question

"How likely does X take a certain set of values?" or equivalently "How likely is X ∈ A,

where A ∈ F ?" is the same as measuring the event {ω : X(ω) ∈ A}, also written as

P({ω ∈Ω|X(ω) ∈ A}) or much more simply: P(X ∈ A).

A random variable can take different forms according to the nature of X . It is said

to be:

• continuous if X is (infinite) uncountable. In general, X ⊂ R.

• discrete if X is countable (finite or infinite). For example X ⊂ N.

Additionally, we focus on the two most important forms of a discrete variables:

ordinal for which the order of every value of Ω matters while it does not for a nominal

variable.

In a more general setup, it should also be mentioned that X can take different

dimensions. It is:

• multivariate when X ⊂ Rn, with n≥ 2,

• univariate when n = 1.

Further, we denote X = (X1, ...,XN) a set of random variables associated with its

realizations x = (x1, ...,xN). If any random variable Xn or its realization xn is multivariate,

we note m as its m-th dimension and so we write X (m)
n and x(m)

n respectively. Hence
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the notation xn = {x(m)
n }m∈J1,MK does not pay importance about the dimension of the

variable. Moreover, we note D, a dataset containing realizations of one or more random

variables s.t.

D = {xn}n∈J1,NK.

1.2 Probability distributions

So far we have noted that P is used to map events to probabilities. We call probability

distribution the set of functions which maps every event of Ω to a probability.

In this subsection, we focus on describing probability distributions which is used

subsequently.

A discrete probability distribution of a discrete random variable X is entirely

defined by its probability mass function (PMF) PX where:

PX(X = x) = pX(x),∀x ∈X ,

for which an interval can be easily computed by summing over all the elements of a

given interval:

PX(xin f < X < xsup) = ∑
xi∈Jxin f ,xsupK

pX(xi).

Focusing on parametric distributions, the parameter of such a distribution is noted θ

and acts as a container of the events to probabilities PX .

Multinomial distribution. If X is a discrete random variable then PX can follow a

multinomial distribution, it is noted X ∼M (θ) with parameters θ = {θx|x ∈X }. In

other terms, there is a one-to-one mapping between θ and X . Therefore it has the

following properties:

θx ∈ [0,1],∀x ∈X ,

∑
x∈X

θx = 1,

and we write Pθ (X = x) = pθ (x) = θx, the distribution of X parameterized by θ .

Geometric distribution. If X is an discrete random variable then PX can follow a

Geometric distribution, noted X ∼ G(θ), defined by a single parameter θ ∈ [0,1] and a
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specific PMF:

Pθ (X = x) = (1−θ)x−1
θ ,∀x ∈ J1,∞K,

∑
x∈J1,∞K

pθ (x) = 1.

Note here that the geometric probability distribution is encoded by one single parameter

using a specific PMF whereas the multinomial distribution had as many parameters, as

the random variable had factors.

Negative Binomial distribution. If X is an discrete random variable then PX can

follow a negative binomial distribution X ∼N B(θ), defined by two parameters θ =

{θ1,θ2}, with θ1 > 0, θ2 ∈ [0,1] and the following PMF:

Pθ (X = x) =
(

θ1 +θ2−1
θ2

)
(1−θ2)

x−1
θ

θ1
2 ,∀x ∈ J1,∞K. (1.1)

We remark that, while a geometric distribution counts the number of success till the first

failure (or vice-versa), a negative binomial distribution counts the number of success

till θ1 failures. Hence if θ1 = 1, both are equivalent.

Poisson distribution. If X in an discrete random variable then PX can follow a Poisson

distribution X ∼P(θ), defined by one single parameter θ > 0 and the ensuing PMF:

Pθ (X = x) =
θ xe−θ

x!
,∀x ∈ N.

The continuous probability distribution of a continuous random variable X de-

noted PX is entirely defined by its cumulative distribution function (CDF) FX : X →
[0,1], with X = R and where:

FX(x) = PX(X < x),∀x ∈ R.

When it exists, it may also be defined by its probability density function (PDF)

fX : R→ R+ s.t. :

FX(x) =
∫ x

−∞

fX(t)dt,∀x ∈ R.

Multivariate normal distribution. If X is a continuous random vector following a

multivariate normal distribution of dimension M, we write X ∼N (θ) with θ = {µ,Σ},
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µ ∈ RM, Σ ∈ RM×M. We define its PDF fθ : R→ R+, ∀x ∈ RM:

fθ (x) =
1

(2π)
M
2 |Σ| 12

e−
1
2 (x−µ)T Σ−1(x−µ),

with |Σ| being the determinant of Σ and T being the matrix transpose operator. In other

words, µ is a 1×M column vector representing the mean, and Σ is a M×M matrix

representing the covariance.

1.3 Maximum Likelihood

In this subsection, we introduce the concept of likelihood, show how it is used in

parameter estimation and propose estimators for a couple of discrete distributions

based on histograms which will be used subsequently in this thesis.

1.3.1 Definition

Let a set of N independent and identically distributed (i.i.d.) random variables X =

(X1, ...,XN) with their respective realizations x. We note the likelihood function L of θ

given X: L : θ → [0,1] as:

LX(θ) = pθ (x) = pθ (x1, ...,xN) = ∏
xi∈x

pθ (xi),

where the last step, pθ (x1, ...,xN) = ∏xi∈x pθ (xi), is possible because X1, ...,XN are i.i.d..

Along with the likelihood, we denote θ̂ the maximum likelihood estimator (MLE) of

θ given X s.t.:

θ̂ = argmax
θ∈Θ

LX(θ),

which is often more conveniently achieved by maximizing the log-likelihood, if defined,

that we further write L .

1.3.2 Examples with Multinomial and Gaussian distributions

MLE for Multinomial distribution. If X ∼M (θ) = {θm|m ∈X }, likelihood of θ is

as follows:

LX(θ) = ∏
m∈X

θ
∑x∈x1{xi=m}
m ,
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where 1 is the indicator function which is equal to 1 if the condition is satisfied and 0 if

not. The maximization problem can then be written as follows:

max L (θ) = ∑
m∈X

∑
x∈x

1{x = m} logθm

subject to ∑
m∈X

θm = 1,∀θm ≥ 0.

which can be equivalently written using its Lagrangian:

maxL (θ)−λ (1− ∑
m∈X

θm),

where λ is called the Lagrangian multiplier. Since the optimization problem is convex,

the maximum is reached by finding the values for which the partial derivatives of θm

and λ are equal to 0, leading to the MLE for θm:

θm =
∑x∈x1{x = m}

∑n∈X ∑x∈x1{x = n}
(1.2)

which is easily interpreted as the empirical frequencies.

MLE for multivariate Normal distribution. Let X ∼N (µ,Σ), where X is a set of

i.i.d. random multidimensional variables, and x the associated realizations, log-likehood

is given by:

LX(µ,Σ) = ∏
xn∈x

log pµ,Σ(xn)

=−

[
NM

2
log(2π)

N
2

log(|Σ|)+ 1
2

N

∑
n=1

(xn−µ)T
Σ
−1(xn−µ)

]
,

where T is the matrix transpose operator, −1 the inverse matrix operator and M the

dimension of the random variables. In this case, the log-likelihood is not concave with

respect to the pair of parameters (µ,Σ). They are concave w.r.t. to µ for Σ fixed but the

contrary is not true. The MLE of µ is therefore given by:

µ̂ =
1
N

N

∑
n=1

xn,
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i.e. the empirical mean written x, while the MLE of Σ is:

Σ =
1
N

N

∑
n=1

(xn− x)T (xn− x).

If M is large, the MLE of Σ can quickly lead to the estimation of a very large number

of parameter (M×M) That is often not wanted and we usually prefer a parsimonious

model with less parameters. We refer to Fan et al. (2016) for a review on sparse matrix

estimation.

1.3.3 Computing ML from frequency tables

Sometimes, realizations of random variables are not directly accessible but observed

through frequency tables. For example, a dataset might be pre-processed and might

contain frequencies only or one might be constrained by modeling issues to replace

a multinomial distribution by any parametric distribution. The latter case will be

of interest for us. Thus, we subsequently describe how to derive log-likelihood for

key distributions, i.e. Geometric and Negative Binomial, given frequency tables. The

following results are based on the theoretical results provided by Johnson et al. (2005)

but with a more practical perspective.

When it comes to fitting discrete distribution, one of the main issue is related to

the fact that some discrete distributions have no parameter dedicated to localization.

Their parameter describe the localization, variance and skewness at the same time. A

common practice is to introduce a shift parameter represented by a scalar and use an

ad-hoc loop procedure to find the best shift parameter which maximizes the likelihood.

Geometric distribution. Considering x = (x1, ...,xN) realizations from i.i.d. X =

(X1, ...,XN)∼ G(θ), the MLE of θ is as follows:

θ̂ =
1

X̂N
,

with X̂N being the sample mean.

We now remind the expectation of a discrete random variable E : X → R s.t.

E(X) = ∑
x∈X

xpX(x). (1.3)
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It is also well known result that the expectation of a Geometric distribution is:

E(X) =
1
θ
. (1.4)

The goal here is to give a parametric MLE for θ noted θ (p) given from its non parametric

(multinomial) MLE θ̂ (np) = {θ̂ (np)
x |x ∈X }, which has previously been estimated. The

case of the Geometric distribution is quite straightforward. By substituting (1.4) into

(1.3), the estimate of θ is given by:

θ̂
(p) =

1
∑x∈X xp

θ (np)(x)
.

From a practical aspect, X is usually upper bounded and PX is known and estimated

by the MLE for categorical variable as showed in equation (1.2).

Remark. Computing parameters for each distribution given frequency tables is usually

as straightforward as for the Geometric distribution and generalizes as long as the MLE

of the parameters has a closed-form.

Negative Binomial distribution. Finding good estimates of the parameters of the

negative binomial distribution is a bit more challenging since the MLE of the parameters

has no closed-form. The following papers discuss several aspect to find a good MLE

Fisher (1941); Wise (1946); Bliss and Fisher (1953); Ross et al. (1980); Ross and

Preece (1985); Clark and Perry (1989) such as iterative procedures, initial parameters,

bad behaviors of the MLE when the sample variance is much lesser than the sample

mean.

With x = (x1, ...,xN) realizations from i.i.d. X = (X1, ...,XN)∼N B(θ),θ = {θ1,θ2},
the PMF PX is described by equation (1.1) and the MLE is given by the following system

of equations: 
log(1+ X̂

θ̂
(np)
1

) = ∑
∞
i=1
( 1

θ̂1+i−1 ∑
∞
j=i p(p)

θ
(xi)
)
,

θ̂
(p)
2 =

θ̂
(p)
1

θ̂
(p)
1 +X̂

.

The first equation is is solved using an iterative procedure and gives a value of θ1

while θ2 is calculated in the second equation by injecting θ1. To retrain the search

space, a good practice is to set the initial values using the moment estimators which
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are computed in closed-form:

θ1 =
X
S2 ,

and

θ2 =
X2

(S2−X2
)
,

where X is the sample mean of X and S2 its variance.

1.4 Joint probability distributions

Let (X ,Y ) a tuple of two random variables which are not necessarily independent and

identically distributed and that therefore interact with each other. The study of these

interactions is encapsulated in their joint probability distribution (JPD) denoted P,

defined ∀x ∈X and y ∈ Y by P(X = x,Y = y). The JPD is a full description of the

interactions between of X because it also encapsulates:

• the marginal probability distributions (MPD) PX ,PY of X and Y respectively.

They can be computed using the sum rule defined as:

P(X = x) = ∑
y∈Y

P(X = x,Y = y).

• The conditional probability distributions (CPD) PX |Y=y,PY |X=x of X given Y = y

and Y given X = x respectively. They are computed using the product rule defined

as:

P(X = x|Y = y) =
P(X = x,Y = y)

P(Y = y)
,

hence

P(X = x,Y = y) = P(X = x|Y = y)P(Y = y),

From the product rule together with the symmetry property of the JPD s.t. P(X =

x,Y = y) = P(Y = y,X = x), we obtain the following property:

P(Y = y|X = x) =
P(X = x|Y = y)P(Y = y)

P(X = x)
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which is called the Bayes theorem. The denominator can be rewritten using the

distributions found in the numerator:

P(Y = y|X = x) =
P(X = x|Y = y)P(Y = y)

∑y∈Y P(X = x|Y = y)P(Y = y)
,

allowing us to compute the conditional of Y |X while having only access to the informa-

tion of the conditional X = x|Y = y and of the marginal Y = y. It should also be noticed

that the denominator acts as a normalizing constant so that the probabilities sum to

one.

Furthermore, for a set of N categorical variables X = (X , ...,XN), we also introduce

the chain rule (x, ...,xN) ∈ (X1, ...,XN):

P(X = x, ...,XN = xN) = P(X = x|Y = y, ...,XN−1 = xn−1)

P(Y = y|X3 = x3, ...,XN−1 = xn−1)

...

P(XN−1 = xn−1)

which is another direct consequence of the product rule by propagating it by induction.

Finally, we recall the independence of two random variables X and Y , denoted

X ⊥ Y if ∀x ∈X and y ∈ Y :

P(X = x,Y = y) = P(X = x)P(Y = y)

which can be seen as a special case of the product rule when P(X = x|Y = y) = P(X = x),

meaning that knowing Y adds no knowledge to X .

To prevent notations to get too heavy, when talking about the distribution of

p(X = x,Y = y),∀x ∈X ,∀y ∈ Y , we often abbreviate this notation by P(X ,Y ) whereas

P(X ,Y ) indicates the joint distribution of (X ,Y ). This scheme also applies to marginal

and conditional distributions.

1.5 Discrete Markov Chain

Stochastic process. Let us define a probability space (Ω,F ,P) where the random

variables Xt are indexed by time t and take values into a same measurable space

X , a stochastic process is a time evolving process s.t. {X(t,ω)|t ∈ T ,ω ∈ Ω}. When

considering T finite and so T = J1,T K, we write as {Xt}t∈T , or sometimes simply X.
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Stationarity. A stochastic process {Xt}t∈J1,T K w.r.t to a probability measure PX is said

to be weakly stationary iff:

• E(Xt) = µ , ∀t ∈ T with µ finite, the mean, i.e. it’s expectation is constant regarding

time,

• Cov(Xt ,Xt+τ) = S2
τ , ∀t,τ ∈ T with S2

τ the variance i.e. its covariance only depends

on a lag τ but not t.

Furthermore, it is said to be strongly stationary iff:

PX(Xt , ...,Xt ′) = PX(Xt+τ , ...,Xt ′+τ),∀τ, t ∈ T,∀t ′ > t,

which can be seen as the fact that the joint distribution of the stochastic process does

not change with time, it is said to be identically distributed.

Discrete Markov Chain. Considering a stochastic process {Xt}t∈J1,T K, with Xt ∈X

with X finite, a discrete Markov chain assumes that the joint probability distribution

of the stochastic process is written as follows:

P(X) = P(X1)P(X2|X1)P(X3|X2)...P(XT |XT−1)

= P(X1)
T

∏
t=2

P(Xt |Xt−1).
(1.5)

A Markov chain describes the idea that the best way to predict the future, Xt+1,

is encapsulated in the current information Xt . This assumption is called the Markov

property.

Parameters. The equation of the joint likelihood of a Markov Chain (1.5) highlights

a first set of parameters describing P(X1) called initial probabilities s.t. ∀k ∈X ,

πk ≡ P(X1 = k), (1.6)

π is then a vector of size 1×K, with K being the cardinal of X .

Now, assuming that the transition function P(Xt |Xt−1) is time-invariant, or homo-

geneous, this leads to parameterizing the right term of (1.5), ∀t ∈ J2,T K,P(Xt |Xt−1) by
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a single set of parameters called the transition matrix s.t. ∀k,k′ ∈X ,

Ak′k ≡ P(Xt = k|Xt−1 = k′), (1.7)

with ∀k ∈X ,∑k′∈X Ak′k = 1, describing that each row sums to one. A is then a matrix

of size K×K. The terminology of stochastic matrix can also be found in the literature

because of the last property.

Parameter estimation. From equation (1.5), we rewrite the likelihood as follows:

LX1,...,XT (π,A) = Pπ,A(X1 = x1, ...,XT = xT )

=
K

∏
k=1

π
1(x1=k)
k

T

∏
t=2

K

∏
k=1

K

∏
k′=1

A1(xt=k,xt−1=k′)
k′k .

(1.8)

We remark that maximizing the likelihood w.r.t. π leads to a count function, while

maximizing the likelihood w.r.t. A leads a conditional count function. From there, we

identify that maximizing π is equivalent as maximizing the likelihood of multinomial

distributions as we performed in equation (1.2) using the Lagrangian. Hence the MLE

of π is given by:

π̂k =
1(x1 = k)

∑
K
k′=11(x1 = k′)

, (1.9)

and the MLE of A is simply solved using the Lagrangian with K separate optimization

problems:

Âk′k =
∑

T
t=21(xt = k,xt−1 = k′)

∑
T
t=2 ∑

K
k′′=11(xt = k′′,xt−1 = k′)

. (1.10)

Left-to-Right. If the transition matrix A is lower triangular, i.e. it is filled with zeros

bellow the diagonal then the transition matrix is said to be left-to-right. Such modeling

hypothesis are often used in speech recognition and require that multiple sequences are

available for parameter estimation (Juang and Rabiner, 1985; Rabiner, 1989; Varga

and Moore, 1990; Eddy, 1998).

Chapman-Kolmogorov equations. An application to the Chapman-Kolmogorov equa-

tions to a discrete Markov chain states that:

P(Xt+t ′+t ′′ = k|Xt = k′) =
K

∑
k′′=1

P(Xt+t ′+t ′′ = k|Xt+t ′′ = k′′)P(Xt+t ′′ = k′′|Xt = k′), (1.11)
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which can be rewritten in the following matrix form P(Xt+t ′ = k|Xt = k′) = (At ′)k′k. Thus,

it means that simulating t ′ time steps of a discrete Markov Chain can be done by

powering up the transition matrix by t ′, leading to matrices with paths of length t ′ from

one state to another.

Properties. Given a transition matrix A, a state k ∈ J1,KK may have different proper-

ties such as:

• absorbing iff Akk = 1, i.e. a state which can not be exited once entered,

• recurrent iff ∑
+∞

n=0(P
n)kk =+∞, i.e. if once entered in state k, there is a probability

of 1 to return in an infinite (or finite, unbounded) amount of time,

• transient iff ∑
+∞

n=0(P
n)kk <+∞, i.e. if once entered in state k, there is a probability

lesser than 1 of over returning in a infinite amount of time.

A Markov chain is said to be irreducible if ∀k,k′ ∈ J1,KK,∃n ∈ N s.t. (An)k′k > 0. In

other words, if all states are communicating two by two which happens when all states

are recurrent.

The period of a state k is defined as c(k) = gcd{n|(An)kk > 0}, with gcd calculating

the greatest common divisor, interpreted as the period at which returning to a state

k is possible. A state k is called periodic with period c(k) if c(k) > 1, else it is called

aperiodic. A state that is recurrent and aperiodic is said to be ergodic. If all states are

ergodic, then the Markov chain is ergodic.

A homogeneous Markov chain is stationary iif P(Xt = k) = P(X1 = k) = πk and its

stationary distribution is noted π∗. Since ∀k ∈X ,P(Xt = k) = P(X1 = k)∑k′∈X P(Xt =

k′|X1 = k), then the distribution is stationary iff the initial distribution satisfies P(Xt =

k) = P(Xt = k)∑k′∈X P(Xt = k|Xt−1 = k′), or π = πA. A stationary distribution π∗ may

not be unique, though if the Markov chain is irreducible and ergodic, then it has a

unique stationary distribution which is equal to its limiting distribution defined by

π∗k = limn→+∞(An)k′k.

Sojourn distribution. If a state k has a zero on its transition matrix diagonal, i.e.

Akk = 0, it is obvious to see that the sojourn time (also called dwell time) in the state,

once entered, is of constant duration 1. However, when Akk ̸= 0, the duration in the

state is random with, at every time, a probability Akk of staying in k and a probability

1−Akk of exiting k.
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Lemma 1. Let {Xt}t∈T ,Xt ∈X , a discrete Markov chain of transition matrix A, the state
Xt = k residual time Rt at time t s.t. Rt = min{t ′ > t|Xt ′ ̸= Xt} has a Geometric distribution
of parameter 1−Akk.

Proof.

P(Rt = u) = P(Xt+u+1 ̸= k,Xt+u = k, ...,Xt+1 = k|Xt = k,Xt−1 ̸= k)

= P(Xt+u+1 ̸= k,Xt+u = k)P(Xt+u = k|Xt+u−1 = k)...P(Xt+1 = k|Xt = k)

= ∑
l ̸=k

P(Xt+u+1 = l|Xt+u = k)
u

∏
v=1

P(Xt+v = k|P(Xt−1+v = k)

= (1−Akk)Au
kk

= G(1−Akk)(u)

Markov order. Sometimes applying the Markov property on the distribution of Xt

given its most recent predecessor Xt−1 may be too constraintful because of its short

memory. A Markov chain of m-th order relaxes the Markov property allowing longer

time dependency. Hence the conditional probability distribution is, ∀t ′ < t, written:

P(Xt |Xt−1, ...,X1) = P(Xt |Xt−1...,Xt−t ′)

where the right term becomes the transition matrix A of size Kt ′+1. The Markov order

has received a lot of attention in the literature where model selection procedures

have tried to find automatically the best Markovian order based on information theory

criterion (Katz, 1981; Rabiner, 1989; Finesso, 1992; van Handel, 2011), hypothesis

testing, or Bayesian nonparametric approaches (Mochihashi and Sumita, 2008). Several

methods for this purpose are summarized by Cappé et al. (2006).

2 Dynamic Bayesian Networks

In this section, we briefly give some reminders of statistical modeling, inference and

learning using Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa, 1989) which

are central to probabilistic signal processing. More particularly, our interest is focused

on DBN with latent, or unobserved, random variables which allow us to recover some

indirectly observed structure though the observed data. Besides, we present the most
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well known instance of DBN called Hidden Markov Model (HMM) along with some

of its extensions overcoming its limitations. An introduction to DBN is presented in

Ghahramani (2001) while a more exhaustive review of DBN can be found in Murphy

and Russell (2002).

2.1 Representation

A DBN is an instance of Bayesian Network (BN). A DBN has the particularity of modeling

a dynamic system or a stochastic system, connoting that it encodes a time evolving

structure of the data whereas the structure of the BN is constant over time.

A BN is a specific instance of a Graphical Model. The model is represented by a graph

and to each vertex corresponds a random variable. BNs have the particularity of having

directed edges, representing conditional probability distributions and independence

relationships. Hereunder, we briefly review DBN representations through graphs.

More formally, we are interested in a tuple of random variables X = (X1, ...,XN), their

realizations x = (x1, ...,xN) ∈ (X1, ...,XN) and their joint distribution P(X1 = x1, ...,XN =

xN). A Bayesian Network is defined as a tuple B = (G,θ) where:

• G is a directed acyclic graph, a tuple (V,E):

– vertices: V is a finite set of vertices where each node n is associated to a

random variable Xn,

– distinct directed edges with E ⊂ V 2. Each oriented edge (or arc) is an

ordered tuple (x,y) ∈ E.

• θ = (θ1, ...,θN), a set of parameters where each parameter θn is associated to a ran-

dom variable Xn. θn encodes the conditional probability distribution P(Xn|Xpa(n))

where pa(n) relates to the parent function which indicates the parents of n in the

graph G, i.e. pa(n) = {∀m ∈V |(m,n) ∈ E}.

A BN encodes the distribution factorization of X: ∀x ∈ (X1, ...,XN) as follows:

pθ (X) =
N

∏
n=1

pθn(xn|xpa(n)) =
N

∏
n=1

θn,

with the main hypothesis that a random variable is independent of its non(descendents

in the graph given its parents. This property, introduced in Verma and Pearl (1990), is
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called d-separation or conditional independence denoted X1 ⊥ X2|X3 for X1 is indepen-

dent of X2 conditionally to X3.

Furthermore, we define X = (X1, ...,XT ), where Xt ∈ X now represent a time slice

at time t and is a composite random variable of M different compounds s.t. Xt =

(Xt,1, ...,Xt,M). As a consequence, a vertex from a graph is noted as a tuple with an

additional value indicating its time slice s.t. ∀t ∈ J1,T K,m ∈ J1,MK,(t,m) ∈V . We define

a Dynamic Bayesian Network to be a pair of BNs (B1,B2) where B2 is a two-slice

temporal BN defined as:

P(Xt |Xt−1) =
M

∏
m=1

P(Xt,m|Xpa(t,m))

where Xπ(t,m) contains the ancestors of Xt,m on the same time slice t as well as those on

the previous time slice t−1 i.e. pa(t,m) ∈ {∀(n, t) ∈V |((n, t−1),(m, t))
⋃
((n, t),(m, t)) ∈

E}. B1 is a BN corresponding to the prior distribution at time t = 1:

P(X1) =
M

∏
m=1

P(X1,m|Xπ(1,m))

which has a specific representation because it has no temporal ancestor but still has

the same ancestors on the time slice 1 as other time slices i.e. π(1,m) ∈ {∀(n,1) ∈
V |((n,1),(m,1)) ∈ E}.

The joint distribution of a DBN is denoted:

P(X) =
T

∏
t=1

M

∏
m=1

P(Xt,m|Xpa(t,m)) =
T

∏
t=1

M

∏
m=1

θt,m|θπ(t,m). (1.12)

In order to maintain tractability from the point of view of the number of parameters

as well as for inference, which is treated in the next section, we state several assump-

tions, extracted from Nagarajan et al. (2013), that Dynamic Bayesian Networks should

verify:

Assumption 1. The stochastic process X is first order Markovian.

Assumption 2. The process is homogeneous over time.

Remark. Dynamic Bayesian Networks represent a global framework for modeling

stochastic processes and come with their own global tools for inference and learning.
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However, in this thesis, we take a particular look on specific DBN instances, considering

that the graph is known. Representing them in a similar framework is a way to provide

links and comparisons easily between different models as well as common tools.

2.2 Inference

The Dynamic Bayesian Network structure relates to links between the random variables

in the data. Arcs are used to describe how well the parent random variable explain

its child but should not be interpreted as causality Pearl (2009). For a given graphical

structure, there are different tasks to be performed known as parameter inference

and state inference as in Cappé et al. (2009). Most commonly, the former task is often

also called "learning" while the latter is found as "inference", see Murphy and Russell

(2002), Ghahramani (2001), Nagarajan et al. (2013), Rabiner (1989).

In this section, we focus on inference as in state inference which aims at going

beyond the probability distributions encoded by the model itself by answering some

specific queries about the data like the state of a set of variables while the state of

another set of variables is provided as an evidence.

More formally, we wish to investigate the effect of a piece of evidence E on the

distribution of a set of variable X given the network structure B = (G,θ), that is the

conditional probability distribution P(X|E,B).
Most of the time, we are provided a hard evidence which is a direct instance of a

non empty set of random variables:

E = {Xi1 = e1, ....,Xik = ek}

with i1, ..., ik = J1,nK and, (Xi1, ...,Xik) ∈ (Xi1, ...,Xik) respectively. However, another

common issue is the soft evidence, when the probability distributions of a set of

random variables are being provided rather than instantiations, i.e.

E = {Xi1 ∼ θXi1
, ....,Xik ∼ θXik

}.

Such types of evidence are mainly used to perform hypothesis testing while hard

evidences are used to compute conditional probability distribution or their maximum

and is called maximum a posteriori (MAP).
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Conditional probability distribution.

P(XQ|E,B),

with Q⊂ J1,nK and XQ, a queried subset of X

Maximum a posteriori.

x∗Q = argmax
xQ

P(XQ = xQ|E,B)

Subsequently, we focus on inference given hard evidences. Moreover, in the context

of Dynamic Bayesian Networks, that is in presence of temporal aspect, there are a

couple of queries of interest concerning the distribution of Xt,i, the random variable

associated with the node i at time t conditionally to other nodes at time 1, ...,T .

• Filtering consists in querying the network "online" about the current state given

all the past states and the current states, that is when t = T . It is called so because

it does not only use data at t but also the previous one to filter the noise.

• Smoothing queries the network "offline" about the state of some time t when t < T

meaning that it also uses information from the future to complete its computation.

• Prediction is a query about the future t > T for which no evidence has yet been

observed.

These distributions can be computed using different inference fashions. An overview

of these approaches can be found in Murphy and Russell (2002), here we briefly remind

inference categories while providing a non exhaustive list.

Exact inference. Since summing (resp. integrating) over all the possible variables in

the network would result in a non-polynomial complexity (Cooper, 1990), exact infer-

ence relies on a cascade application of the Bayes Theorem along with the conditional

independence property in order to provide exact values of the conditional distributions.

Algorithms falling into this category are: the message passing algorithm (Kim and Pearl,

1983) which has specific instances as forward-backward algorithm or frontier algorithm

(Zweig, 1996), junction trees (Dechter and Pearl, 1988; Smyth et al., 1997), variable

elimination (Zhang and Poole, 1994; Dechter, 1999).
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Approximate inference. Exact inference can quickly get intractable when there are

too many random variables in the network. Approximate inference helps reducing

the computation time, at the cost of an additional error on the approximation on a

probability distributions. Approximate inference falls into two categories:

• deterministic, when there is no variability in the result of the inference. Such

techniques usually consists in approximating the joint distribution by the product

of their marginal. We can notably quote the Boyen-Koller algorithm Boyen and

Koller (1998), the factored frontier algorithm Murphy and Weiss (2001) and

their generalization: the loopy belief propagation Murphy et al. (1999). These

algorithms are generic to dynamic Bayesian networks while for specific DBN

instances such as Mixed Memory Markov Model Ghahramani and Hinton (2000)

or factorial HMM Ghahramani and Jordan (1996) variational inference Jordan

et al. (1999) is performed.

• stochastic, when the target distribution is computed using random processes

based on Monte Carlo simulations from the joint probability distribution to

approximate the conditional distribution given the query. There are two categories

of stochastic algorithms: online, which regroup particle filtering algorithms

Doucet et al. (2000) and offline such as likelihood weighting Fung and Chang

(1990) Shachter and Peot (1990) and Monte Carlo Markov Chains Gilks et al.

(1995).

In this thesis, we work with network structures for which the exact inference is

tractable. Therefore, we focus on Forward-Backward types algorithms.

2.3 Learning with complete data

We consider a DBN B = (B1,B2) with B1 = (G1,θ1) and B2 = (G2,θ2), associated with

random variables X = (X1, ...,XT ) where each time slice Xt is itself a set of random

variables Xt = (Xt,1, ...,Xt,M) for which the structure (G1,G2) is known but the set of

parameters θ1,θ2 is unknown. We also suppose we are in possession of a complete

dataset D which contains N i.i.d. observations of X.

Parameter learning or parameter estimation on complete data using maximum

likelihood is straightforward. For this purpose, using the joint probability distribution

of a DBN given by equation (1.12) along with the assumption (2), we write the log-
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likelihood of a DBN:

LD(θ1,θ2) = logPθ1(X1)
T

∑
t=2

+ logPθ2(Xt |Xpa(t,m))

=
M

∑
m=1

logPθ1(X1,m|Xπ(1,m))+
T

∑
t=2

logPθ2(Xt,m|Xπ(t,m))

=
N

∑
n=1

[ M

∑
m=1

log pθ1,n(x
(n)
1,m|x

(n)
π(1,m)

)+
T

∑
t=2

log pθ2,n(x
(n)
t,m|x

(n)
π(t,m)

)
]

=
M

∑
m=1

[ N

∑
n=1

log pθ1,n(x
(n)
1,m|x

(n)
π(1,m)

)+
T

∑
t=2

log pθ2,n(x
(n)
t,m|x

(n)
π(t,m)

)
]

(1.13)

where θ1,n is the set of parameter defining the separately distribution of X1,m|Xπ(1,m)

(resp. θ2,n) which can be seen as a global decomposition of the local log-likelihood

of each node given its parents Spiegelhalter and Lauritzen (1990) Koller et al. (2009)

Ghahramani (2001). Indeed, in this form, each term can be locally maximized.

In the categorical case, both the DBN prior distribution log pθ1(x
(n)
1,m) and the condi-

tional distribution log pθ2(x
(n)
t,m) can be estimated in a similar fashion combining both

MLE of the prior distribution of the discrete Markov Chain, equation (1.9), and of

its conditional distribution, equation (1.10). Basically for categorical data, each pa-

rameter is simply a normalized table containing counts of each occurrence given each

occurrence of its parents in the data set.

2.4 Learning with incomplete data: the EM algorithm

In the presence of latent variable, the choice of model parameters denoted as θ is much

more difficult. Hereunder, we discuss this procedure through the EM algorithm.

We denote the set of observed variables X existing in the set X , and latent variables

S with the corresponding value set S .

When facing latent variables, one intuition could consists in computing L (θ) =

P(X;θ) = ∑S∈S P(X,S;θ). Note that if S is continuous, sums are replaced by integrals.

This task is usually difficult since in requires integrating/summing over S . Hence, a

procedure for maximizing the likelihood is the Expectation-Maximization (EM) algo-

rithm, introduced by Dempster et al. (1977), reviewed in McLachlan and Krishnan

(2007), which ensure to find a local maximum of the likelihood.

EM relies on the decomposition of the log-likelihood ((1.14)).
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Lemma 2.

logP(X;θ) = f (q,θ)+KL(q||p) (1.14)

where,

f (q,θ) = ∑
S∈Z

q(S) log
P(X,S;θ)

q(S)

and,

KL(q||p) =− ∑
S∈S

q(S) log
P(S|X;θ)

q(S)

with f (q,θ) a functional of the probability distribution q(S), p = P(S|X;θ), and KL(q||p)
stands for the Kullback-Leibler divergence which satisfies KL(q||p)≥ 0, and is equal to

zero when q(S) = P(S|X;θ).

Proof.

f (q,θ)+KL(q||p) = ∑
S∈S

q(S) log
P(X,S;θ)

q(S)
− ∑

S∈S
q(S) log

P(S|X;θ)

q(S)

= ∑
S∈S

q(S) logP(X,S;θ)−q(S) logq(S)−q(S) logP(S|X;θ)+q(S) logq(S)

= ∑
S∈S

q(S) log
P(X,S;θ)

P(S|X;θ)

= ∑
S∈S

q(S) logP(X;θ)

= logP(X;θ)

From (1.14) and since KL(q||p) ≥ 0, it follows that L (θ) ≥ f (q,θ). Hence that

f (q,θ) is a lower bound of the log-likelihood, which is a pillar of the EM algorithm.

Indeed, one can see that for an initial value of the parameters θ old, optimizing the

lower bound of the log-likelihood results in canceling the KL divergence, that is, setting

q(S) = P(S|X;θ old). Maximization of the log-likelihood is achieved w.r.t. q(S) while

holding θ old fixed, which corresponds to the E-step, and guaranties not to decrease the

log-likelihood. Then, the M-step computes the new parameters θ new by maximizing

f (q,θ) w.r.t. θ while holding q(S) fixed this time, i.e. q(S) = P(S|X;θ old), causing the
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lower bound to increase. we have:

f (q,θ) = ∑
Z∈Z

P(Z|X ;θ
old) log

P(X ,Z;θ)

P(Z|X ;θ old)

= ∑
Z∈Z

P(Z|X ;θ
old) logP(X ,Z;θ)− ∑

Z∈Z
P(Z|X ;θ

old) logP(Z|X ;θ
old)

= Q(θ ,θ old)+ const,

(1.15)

where the right term is constant since it does not depend on θ , and the left term is

the expected value of the complete-data likelihood with respect to the conditional

distribution, i.e. E[logP(X,S;θ)|X,θ old] = ES|X;θ old [logP(X,S;θ)]. In other words, M-

step resides in finding θ new = argmaxθ Q(θ ,θ old), and since q(S) is known, it is usually

as trivial as if there was no latent variable, i.e. as setting parameter values which

cancel the partial derivatives of the log-likelihood. Afterwards, since in the M-step

q(S) ̸= P(S|X;θ), the KL divergence is now non-null and we can go back to the E-

step and iterate over and over until convergence of the log-likelihood. Algorithm 1

corresponds to EM.

Algorithm 1: Expectation-Maximization algorithm
1 Expectation-Maximization (θ new,ε);

Input: θ new, a set of initial parameters. ε a convergence tolerance.
2 repeat
3 θ old ← θ new

4 Compute P(S|X;θ old) // E-step
5 θ new← argmaxθ Q(θ ,θ old) // M-step
6 until |L (θ old)−L (θ new)|< ε;

Output: θ new, Parameters locally maximizing the log-likelihood

2.5 Special case: Hidden Markov Models

Introduced in 1966 by Baum and Petrie (1966), revisited many times notably by

Rabiner (1989) who came up with a user friendly tutorial, Smyth et al. (1997) who

suggested to link HMMs along with DBNs, Ephraim and Merhav (2002) who proposed

a more theorical study of Hidden Markov Processes and Cappé et al. (2006) who

reviewed all the HMM inference state of the art in a book. the Hidden Markov Model

(HMM) is probably the most well known instance of Dynamic Bayesian Network for

its computational efficiency and its performance in several signal processing domains
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such as time series prediction (Fraser, 2008), automatic speech recognition (Jurafsky

and Martin, 2009) or part of speech tagging (Kupiec, 1992). The HMM is discrete-time

finite-state homogeneous Markov chain observed through a discrete-time memoryless

stationary channel. In other words, it is a double stochastic process. The former is a

hidden discrete finite state Markov chain and is only observed through the latter which

is emitted at every time step through the first one.

Representation. Let S = (S1, ...,ST ) denote the state latent process, i.e. the discrete

Markov chain, with ∀t ∈ J1,T K, and St ∈S ∀St . S = J1,KK is cardinal K. We recall

the parameters of a MC s.a. π a vector of size 1×K, the initial distribution, and the

transition matrix A of size K×K.

Let O = (O1, ...,OT ) the observed process s.t. ∀t ∈ J1,T K,Ot ∈O. At each time step t,

an observation Ot is emitted conditionally to St leading to model the set of K conditional

distributions P(Ot |St = k) ≡ bk(Ot). If Ot is discrete, we note O = {v1, ...,vG} and the

CPD takes the form of a K×G matrix, denoted B, s.t. bk( j)≡ P(Ot = j|St = k). If Ot is

continuous ∀k,Ot |St = k is a probability density function s.t. bk(ot)≡ f (ot |St = k).

Combining all the CPDs, the JPD of a HMM writes as follows:

P(O,S) = Pπ(S1)
T

∏
t=1

PB(Ot |St)
T

∏
t=2

PA(St |St−1). (1.16)

We provide the graphical representation corresponding to the equation of the JPD

(1.16) in figure 1.1. A node that is filled corresponds to an observed random variable

while a non filled one corresponds to a hidden random variable.

St−1 St St+1

Ot−1 Ot Ot+1

Figure 1.1: Graphical model corresponding to a 1st order HMM
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Learning. Since St is hidden and discrete, the likelihood of the observed data can be

obtained by summing over all possible of S at each time St:

Pθ (O) = ∑
k1∈S

... ∑
kT∈S

Pθ (O,S1 = k1, ...,ST = kT )

However, this results in KT operations Rabiner (1989) since it has to test all the combi-

nations of hidden states. Hence we use the EM algorithm based on a representation of

the JPD to maximize a lower bound of the log-likelihood as stated in equation (1.14).

The JPD, equation (1.16), can be rewritten in terms of the parameters θ = {π,A,B}:

Pθ (O,S) =
K

∏
k=1

π
1(o1=k)
k

T

∏
t=1

K

∏
k=1

M

∏
vg∈O

bk(m)1(ot=vg,st=k)
T

∏
t=2

K

∏
k=1

K

∏
k′=1

A1(st=k′,st−1=k)
kk′ .

We then build the associated Q-function, equation (1.15), by taking the expected value

of complete-data w.r.t. the posterior of the hidden variables:

Q(θ ,θ old) =
K

∑
k=1

P
θ (old)(S1 = k|O) logπk +

T

∑
t=1

K

∑
k=1

∑
vg∈O

P
θ (old)(St = k|O) logbk(m)

+
T

∑
t=2

K

∑
k=1

K

∑
k′=1

P
θ (old)(St = k′,St−1 = k|O) logAkk′.

(1.17)

noting that the expectation of a binary random variable is just the probability that

it takes 1, i.e. E(1(ot = vg,st = k)|O) = P(St = k|O)1{ot = vg} and so ∑vg∈O E[1{ot =

vg,st = k}|O] = P(St = k|O)

The Q-function highlights the quantities to be estimated in the E-step:

Pθ old(St = k|O), (1.18)

Pθ old(St = k′,St−1 = k|O), (1.19)

while the M-step optimizes the Q-function w.r.t. θ by computing the partial derivatives

using the Lagrangian in a similar fashion to the MLE of the Multinomial distribution,

equation (1.2):

πk =
Pθ old(S1 = k|O)

∑k′∈S Pθ old(S1 = k′|O)
,

Akk′ =
∑

T
t=2 P(St = k′,St−1 = k|O)

∑k′′∈S ∑
T
t=2 P(St = k′′,St−1 = k|O)

,
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and similarly for the emission distribution

bk( j) =
∑

T
t=1 Pθ old(St = k|O)1(Ot = j)

∑
T
t=1 Pθ old(St = k|O)

.

Inference. State inference is used in E-step to compute both the expected suffi-

cient statistics given by the equations (1.18) and (1.19). The original idea of the

Forward-Backward algorithm, which performs exact inference, is the standard inference

procedure used in HMM and is simply an application of the message passing algorithm.

The idea is to break one of the equation into two pieces using the Bayes theorem

and conditional independence:

P(St = k|O) ∝ P(St = k,O1, ...,Ot)P(Ot+1, ...,OT |St = k)

= αt(k)βt(k)
(1.20)

where both αt(k) and βt(k) are computed by induction:

αt(k) = ∑
k′∈S

P(St = k,St−1 = k′,O1, ...,Ot)

= ∑
k′∈S

P(Ot |St = k)P(St = k|St−1 = k′)P(St−1 = k′,O1, ...,Ot−1)

= ∑
k′∈S

bk(ot)Ak′kαt−1(k′),

with

α1(k) = P(S1 = k,O1 = o1)

= P(O1 = o1|S1 = k)P(S1 = k)

= bk(o1)πk.

Note that we omit the denominator since it is just a way to normalize the distributions

so that they sum to 1 and can easily be computed by summing over St . It should also

be noticed that αt(k) ∝ P(St = k|O1, ...,Ot) corresponds to what we defined to be the
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filtered probabilities. Moreover:

βt(k) = ∑
k′∈S

P(St+1 = k′,Ot+1, ...,OT |St = k)

= ∑
k′∈S

P(Ot+1|St+1 = k′)P(St+1 = k′|St = k)P(Ot+2, ...,OT |St+1 = k′)

= ∑
k′∈S

bk′(ot+1)Akk′βt+1(k′),

with βT (k) = 1,∀k ∈S . These quantities are again reused for the computation of the

second expected sufficient statistic given by equation (1.19):

P(St = k′,St−1 = k|O) ∝ P(O,St = k′,St−1 = k)

= P(Ot+1, ...,OT |St = k′)P(Ot |St = k′)P(O1, ...,Ot−1,St−1 = k)P(St = k′|St−1 = k)

= βt(k′)b′k(ot)αt−1(k)Akk′.

(1.21)

In pratice, αt(k) and βt(k) are different at every EM iteration, they are intermediate

quantities which should be stored in memory for each iteration since they are reused

several times in inference. So are both the expected sufficient statistics. In the literature,

equation (1.18) is often referred as the γt(k) variables while (1.19) is referred as ξt(k,k′)

variables. We can also note that the γt(k), equation (1.20), corresponds to the smoothed

probabilities whereas ξt(k,k′) is called the double smoothed probabilities.

With known parameters, we can also perform a prediction using the same recursive

inference technique:

P(OT+τ |O1:T ) = ∑
ST+τ

P(OT+τ |ST+τ)P(ST+τ |O1:T )

= ∑
ST+τ

P(OT+τ |ST+τ) ∑
ST+1

... ∑
ST+τ−1

P(ST+τ |ST+τ−1)...P(ST+1|ST )P(ST |O1:T )

= ∑
ST+τ

bsT+τ
(oT+τ) ∑

ST+1

... ∑
ST+τ−1

AsT+τ sT+τ−1...AsT+1sT αT (sT ).

(1.22)

State sequence restoration. Once parameters are learned, the state sequence restora-

tion S can be performed to find the "best" state sequence, or the most "optimal" state

sequence. There exists several definitions and therefore solutions to this problem. A

first solution consists in maximizing the sequence as the marginally most probable
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states and is called the Maximizer of the posterior marginals (MPM) whereas the second

solution is to maximize the most likely state sequence and is called the Maximum A

posteriori (MAP). The MPM writes as

s∗MPM =
(

argmax
s1

p(s1|o), ...,argmax
sT

p(sT |o)
)

(1.23)

where the star upper script (*) stands for the optimal sequence. The MPM, equation

(1.23), can be easily computed for s∗t at each time t ∈ J1,T K by reusing the quantities

computed at the last E-step: s∗t = argmaxst p(st |o) by multiplying both forward and

backward variables. In the induction procedures of these quantities, the other state

variables are summed out and therefore each state is computed by averaging its

neighbors. This approach, called sum-product, can therefore be seen as a robust

one as stated by Marroquin et al. (1987). However, this approach does not take into

account the likelihood of the entire optimal path. Even though, each single state is

locally maximal, the entire sequence may occur with a probability of 0. The MAP arise

as a solution to this problem for which the optimal sequence is:

s∗MAP = argmax
s

P(s|o). (1.24)

On the other hand, the MAP is not as straightforwardly computed as the MPM from the

forward backward variables considering that it maxes out the other states at each time

t s.t.

s∗t = argmax
st

max
s1,...,st−1,st+1,sT

P(s|o), (1.25)

deserving its the name of max-product procedure. Computing the MAP efficiently

involves dynamic programming which keeps a traceback in memory in order to recover

the most likely path. In the context of HMM, this algorithm, introduced in 1967,

is known as Viterbi’s (Viterbi, 1967). First, note that argmaxs p(s|o) = argmaxs p(s,o)
because the max over z does not depend on p(o).

We define the probability of ending up in state st at time t given that we took the

most probable path:

δt(st)≡ max
s1,...,st−1

P(s1, ...,st ,o1, ...,ot)

= max
st−1

(
p(ot |st)p(st |st−1) max

s1,...,st−2
p(s1, ...,st−1,o1, ...,ot−1)

)
= max

st−1
δt−1(st−1)Ast−1st bk(ot)

(1.26)
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with the initialization

δ1(s1)≡max
s1

p(s1,o1) = max
s1

bs1(o1)πs1

and the termination

δT (sT )≡ max
s1,...,sT−1

p(o,s)

which gives us s∗T s.t.

s∗T = argmax
sT

δT (sT ).

Once we know s∗T , the main idea is that the most probable path to state st at t must

be built on the most probable path at time t−1 to some other state st−1 followed by a

transition from st−1 to st . At each time t, we keep the trace associated with δt(st)

at(st)≡ argmax
st−1

δt−1(st−1)Ast−1st bst (ot)

The most probable state sequence is then computed recursively using the traceback:

s∗t = at+1(s∗t+1).

Another alternative to state sequence restoration is called the N-best list which is

an extension of the Viterbi algorithm and returns the N most likely state sequences.

The N-best list was introduced by Schwarz and Chow (1990), and the algorithm’s

complexity was powered up by Nilsson and Goldberger (2001). Once the N-best state

sequences are obtained, one can then use a discriminative method in order to rerank

them according to the application. However, the authors state that the algorithm often

provides similar results and that N should be very large in order to provide more

versatile solutions.

Some authors, such as Foreman (1992); Brushe et al. (1998); Barbu and Zhu

(2005); Porway and Zhu (2011); Tu and Zhu (2002), have proposed to use sampling

methods to provide more versatile solutions. The idea is to sample state sequences from

the posterior p(s|o) by sampling recursively from s∗t ∼ p(st |s∗t−1,o) where the quantity

is obtained using a forward-backward pass along with another forward pass. After

generating multiple optimal sequence, a procedure can be performed in order to check

for solution diversity and keep the most relevant. The main drawback of this family of

solution is the computational cost as well as the dependency of an ad-hoc procedure

for the choice of the most diverse solutions.
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More recently, Batra et al. (2012); Kulesza et al. (2012), proposed another family of

solutions for the diverse N-best problem, generalizing the N-best list algorithm, and

consists in optimizing a linear combination of the probability and the dissimilarity of

the state sequences.

Guédon (2007)

Applications of HMMs. In pratice, the state sequence {St}t∈J1,T K is unknown and

shall be recovered. On the first hand, HMMs are used in the unsupervised case to

estimate the density of sequences. On the other hand, it also allows to model long

range dependencies between observations mediated via latent variables.

For instance, Obermaier et al. (2001a) used HMM to model multi-channel EEGs

where changes in latent states express physiological changes in the spatio-temporal

patterns. The main goal of their study was to classify either a subject was imagining

turning his head left or right. For a given training set, they computed two HMMs, one

for the left turn, another one for the right turn. Finally, they classified the trials from

the testing set using the maximal probability of the restored state sequence of each

HMM.

Another notable application of HMMs was achieved by Simola et al. (2008) in order

to discover reading strategies, the latent states, given eye-movement features which

are the observed variables. Plus, the reading strategies have been characterized using

model parameters. Moreover, they embedded several HMMs into a discriminative HMM

in order to classify the task type that the subjects were performing, showing that task

types can be discriminated given eye movement features.

2.6 Various DBNs to overcome HMM’s limitations

As we stated before, Hidden Markov Models are the simplest form of Dynamic Bayesian

Networks and are usually either used for recovering and characterizing the latent

state structure of sequential data, or used for forecasting with long term dependencies.

However, sometimes the data is not fitted for HMMs. For example, the phenomenon

modeled by the latent structure may not have a geometric sojourn state distribution

which is the case in HMM as we showed in Lemma (1). To overcome this aspect,

Hidden semi-Markov Models (HSMMs) have been introduced. Its goal is to relax

the state sojourn duration hypothesis. Since HSMMs are core to this thesis, they are

discussed in much more detail in section 3. Another instance is the Hierarchical HMM
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(HHMM) proposed by Fine et al. (1998), which is suited for complex sequential data

with multi-scale structure such as the natural language which can be decomposed at the

sentence, word and syllable levels. Another well known instance is the Factorial HMM

(FHMM), Ghahramani and Jordan (1996), which answer the need of distributed state

representation in HMMs by decoupling the dynamics of a single process or multiple

independent processes generating multiple time series. Smyth (1997) also introduced

mixtures of HMMs in a same framework in order to cluster sequences. Bellow, we

discuss several methods which are of high interest in the context of this thesis.

Coupled signals. A first DBN called Coupled HMM (CHMM) for coupling related

data streams was developed by Brand (1997). In such a model, each observed sequence

has its own Markov chain and each of them interact with its neighbors. Assume the

hidden state is composite of C different channels s.t. St = {S(1)t , ...,S(C)
t }, the assumption

on the CPD of the hidden states is as follows:

P(St |St−1) =
C

∏
c=1

P(S(c)t |Spa(t−1,c)) (1.27)

where pa(.) is the parent function and Spa(t−1,c) denotes the parents of S(c)t at t−1 which

should represent the neighborhood or a spacial dependency between the channels.

CHMM have been successfully applied in diverse areas showing significant improve-

ment compared to other classes of HMM. Kwon and Murphy (2000); Murphy and

Russell (2002) applied CHMM to freeway traffic modeling. They had multiple detectors

recording the car speed at different locations which was their observations. Each of

this sequence of observations had an underlying hidden Markov chain where the state

was representing a Boolean of either it is jammed or not. Each Markov chain was

then coupled to its spatial neighbor using equation (1.27). In a classification frame-

work, Brand et al. (1997) used CHMM to model human activity recognition where

the observations were the tracking data of different limbs. A CHMM was learnt on a

training set for each kind of activities while the performance was evaluated on a testing

set for which they used the Viterbi algorithm to find the maximum likelihood model

and classify the activity accordingly. Nefian et al. (2002) also applied various DBNs

to speech recognition by jointly modeling audio and video. They showed that CHMM

outperformed most of the other models, especially when the noise was low. They also

mentioned the CHMM was still efficient even though the signals were asynchronous.
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However, CHMM still suffers from high parameter specification especially if one

wants to enlarge the interactions between the neighborhood of each channel. Asa-

vathiratham (2001); Zhong and Ghosh (2001) proposed a variant called influence

model, or distance coupled HMM (DCHMM), which uses fewer parameters and has

the following assumption on the hidden states CPD:

P(S(c)t |St−1) =
C

∑
c′=1

wc′,cP(S(c)t |S
(c′)
t−1) (1.28)

where wc′,c represent the coupling weight between model c′ and c s.t. ∑
C
c′=1 wc′c = 1,

describing how much S(c
′)

t−1 affects the distribution of S(c)t . It acts as an approximation of

the joint dependency by linear combination of all the marginal dependencies. Also note

that in case there is a spacial dependency between the channels, we can make each wc′,c

function of distance between channels. The influence model therefore has C2 +CK2

transition parameters while the standard CHMM has KC transition parameters at worst,

i.e. in the fully coupled case.

Influence model has been applied by Basu et al. (2001) to quantify, through coupling

parameters, human interaction in conversational settings. Zhong and Ghosh (2002)

also applied the distance coupled HMM to classify if subject had genetic predisposition

to alcoholism or not given EEG data. A DCHMM was learned for each type of patient

on a training set and the classification performance was evaluated on a testing set.

Surprisingly DCHMM performed much worst than standard HMM on this task. The au-

thors pleaded for an insufficient amount of channels and not good enough approximate

inference for the DCHMM to perform well.

Asynchronous signals. The most generic instance of DBN in the literature built

to handle asynchronous signals of different nature describing the same event is the

asynchronous Hidden Markov Model (AHMM) introduced by Bengio (2003) along

with an application to audio-visual speech recognition. Given two streams represented

by a series of random variables that might be of different length {O(1)
t }t∈J1,T K and

{O(2)
t }t∈J1,T ′K respectively, with T ′ ≤ T , the main difference compared to the standard

HMM with two output processes lies in the introduction of a new set of random variable

{Dt}t∈J1,T K which represent the probability of emitting O(2)
t at time t and can be seen as

the alignment between both the signals. This leads to the introduction of a new set of
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parameters in the model:

εt(k, t ′)≡ P(Dt = t ′|Dt−1 = t ′−1,St = k,O(1)
1:t ,O

(2)
1:t ′),

which means that the alignment at t depends on the alignment at t−1 but also from

the current hidden state as well as the previous observations from both the sequences.

Several assumptions can be made on this CPD. For example, if εt(k, t ′)≡P(Dt = t ′|St = k),

the widely used pair HMM in DNA sequences alignment (Durbin et al., 1998) can be

recovered. This instance works well with categorical variable. With continuous data

streams, a more common assumption used Bengio (2004), is εt(k, t ′)≡ P(Dt = t ′|Dt−1 =

t ′−1,St = k) and is simply modeled by a Binomial distribution.

Another series of similar model have been introduced namely Input Output HMM

(Bengio and Frasconi, 1995) and Asynchronous Input Output HMM (Bengio and

Bengio, 1996) which are similar to AHMM except that the arcs direction have been

reversed between {O(1)
t }t∈J1,T K and {Dt}t∈J1,T K. The first one is then called the control

signal. It is naturally more discriminant and performs better from real time predictions

tasks of the output signal given the input one. It also allows the dynamics of the latent

Markov chain to evolve since it is conditioned by the input signal and is therefore

better suited for non homogeneous Markov chains, i.e. for long term predictions. There

have been several domain of application of these models such as speech recognition

(Bengio and Frasconi, 1996; Bengio, 1999), finance (Bengio et al., 2001) or human

authentication (Chiappa and Bengio, 2003).

3 Hidden semi-Markov Models

Introduced in the 1980 by Ferguson (1980), the Hidden semi-Markov Model (HSMM)

has, since then, widely been studied as an extension of the Hidden Markov Model

(HMM), notably by Guedon and Cocozza-Thivent (1990); Guédon (1999, 2003) for

developing fast and real-life-oriented inference algorithms, by Yu and Kobayashi (2003,

2006); Yu (2010, 2015) for contributions in inference algorithms and for a state of

the art, and finally by Murphy (2002); Murphy and Russell (2002) for proposing a

clear alternative formulation of the problem. Barbu and Limnios (2009) proposed a

book to treat the subject with its use in DNA analysis. Another book (Yu, 2015) is more

algorithmic and implementation oriented.
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Similarly to HMM, an HSMM is composed of two stochastic processes. The former is

a finite-state homogeneous semi-Markov chain (SMC) which is latent, while it influences

the latter which produces observations. A SMC is like a Markov Chain (MC) except that

the within-state sojourn time is not necessarily geometric and can therefore be of any

form (tabular or parametric).

Therefore, on top of the traditional parameters involved in HMM, i.e. initial,

transition, and emission probabilities, a HSMM is also described by within-state sojourn

duration, also called dwell times.

3.1 General definition

Let us assume the following notations :

• the set of hidden states S = J1,KK where St is the state at time t. S1:T is the hidden

state sequence, s1:T is the realization associated to the hidden state sequence

• the random state duration d is either bounded ∈ J1,DK or set to d ∈N and naturally

upper bounded by the length of the sequence,

• St1:t2 = k means staying in state k from time t1 to t2 without any constraints on

St1−1 and St2+1

• S[t1:t2] = k means staying in state k from time t1 to t2 with the constraints that

St1−1 ̸= k and St2+1 ̸= k

• S[t1:t2 = k means staying in state k from time t1 to t2 with the constraint St1−1 ̸= k

• St1:t2] = k means staying in state k from time t1 to t2 with the constraint St2+1 ̸= k

• the set of observable values O = {v1, ...,vG} where Ot ∈O is the observed variable

at time t. O1:T is the observed state sequence, o1:T is the realization associated to

the observed state sequence

The most general HSMM model assumes the following set of parameters θ ≡
{a(k,d′)(k′,d),bk′,d(vk1:kd),πk,d} such that:

• the state transition probability from (k,d′) to (k′,d), k ̸= k′ : a(k,d′)(k′,d)≡P(S[t+1:t+d]=

k′ | S[t−d′+1:t] = k)

• the emission probability bk′,d(ot+1)≡ P(ot+1:t+d | St+1:t+d = k′)

• the initial distribution : πk′,d ≡ P(S[1:d+1] = k′)
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3.2 Relaxing the main hypothesis

Sojourn time assumptions. Based on this general model, several simplifying assump-

tions models have been suggested in the literature regarding the sojourn time:

• Marhasev (Marhasev et al., 2006) d ⊥ d′,k′. The transition probabilities are

expressed as a(k,d′)(k′,d) = a(k,d′)k′ pk′(d) such that a(k,d′)k′ ≡ P[S[t+1 = k′ | S[t−d′+1:t] =

k]) and pk′(d) ≡ P[St+1:t+d = k′ | S[t+1 = k′ is the probability of the duration d of

the state k′.

• Residential time HMM (Yu and Kobayashi, 2003) the state transition is inde-

pendent to the duration of the previous step : a(k,d′)(k′,d) = ak(k′,d) such that

ak(k′,d) = P[S[t+1:t+d]=k′ | St] = k].

• Variable transition HMM (Vaseghi, 1991, 1995) : the self-transition is allowed

and independent to the previous step : a(k,d′)(k′,d)= ak(k′,d)= a(k,d′)k′∏
d−1
S=1 ak′k′(S )[1−

ak′k′(d)] where ak′k′(d) ≡ P[St+d+1 = k′ | S[t−d′+1:t] = k, S[t+1:t+d]=k′] = P[St+d+1 =

k′ | S[t+1:t+d]=k′] is the self-transition probability when state k′ has lasted for d time

units. 1−ak′k′(d) = P[St+d] = k′ | S[t+1:t+d=k′]] is the probability that state k′ ends

with duration d.

• Explicit duration HMM (Ferguson, 1980; Mitchell and Jamieson, 1993; Sin and

Kim, 1995), transition to the current state is independent to the duration of

the previous state and the duration is only conditioned by the current state:

a(k,d′)(k′,d) = akk′ pk′(d) where akk′ ≡ P[S[t+1 = k′ | St] = k].

Then pk′(d) can either be multinomial (nonparametric) or take any (parametric)

discrete distribution. See section 1.3.3 for more details.

bk′,d(vk1:kd) can also be parametric or non-parametric, discrete, continuous, depen-

dent, or independent on the state durations. It can also be a mixture of distributions.

State sequence censoring. There exist several assumptions concerning the survival

of the semi-Markov chain.

Assumption 3. The general assumption supposes that the process starts at −∞ and ends
at +∞ even though the observations are done from time 1 to T . An inference procedure in
this case is described in Yu (2010).
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Assumption 4. The simplifying assumption assumes that the process starts at 1 and
finishes at T . Most of the literature uses this assumption since it makes inference more
straightforward. We subsequently describe this procedure.

Assumption 5. The right-censored hypothesis can be useful in many real life applications.
It assumes that the process started at time 1 and ends at time +∞. This has been studied
by Guédon (2003), who developed the corresponding inference procedures.

3.3 Representation of EDHMM

St−1 St St+1

Ft−1 Ft Ft+1

Rt−1 Rt Rt+1

Ot−1 Ot Ot+1

Figure 1.2: Graphical model corresponding to a EDHMM

Using the formalism proposed in Murphy (2002) which is Dynamic Bayesian

Network-oriented (DBN), we describe a SMC by:

• S1:T ,∀t ∈ {1, ...,T} St ∈S = {1, ...,K}, the discrete and latent process. Note that

S1:T stands for {St}T
t=1.

• R1:T ,∀t ∈ {1, ...,T} Rt ∈ {1, ...,D}, a discrete and latent process, encoding the

residual time Rt in the current state St at time t. At the beginning of a new state,

a new duration is randomly sampled from an arbitrary distribution pst and then

counts down deterministically to 1, and so on.

• F1:T ,∀t ∈ {1, ...,T} Ft ∈ {0,1}, a discrete and latent process, which acts as a bi-

nary switch which is turned on when Rt−1 = 1 and off else. Even though it is
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redundant with R1:T , it is useful in order to simplify later notations and equations.

Initialization is performed s.t. F0 = 1 and R0 = 1, and we also have FT = 1 which

means that the process starts at time 1 and will end at time T and is related to

the simplifying assumption 4

Follows the Conditional Probability Distributions (CPD) parameters associated to a

SMC :

P(S1 = k) = πk

with π ∈S , a vector representing all the initial probabilities,

P(St = k|St−1 = k′,Ft−1 = f ) =

1{k = k′} if f = 0

Ak′k if f = 1

with 1 the indicator function, and A ∈S ×S , a matrix representing the transition

probabilities. We also have,

P(Rt = d|Rt−1 = d′,St = k,Ft−1 = 1) = pk(d)

with pk(d′) being an arbitrary probability distribution on N∗, representing the sojourn

distributions for each state k while entering a new state at time t and then sampling a

new value d′ ≥ 1 for Rt . Finally,

P(Rt = d|Rt−1 = d′,St = k,Ft−1 = 0) =

1{d = d′−1} if d > 1

undefined if d = 1

and,

P(Ft = f |Rt = d) =

1{d = 1} if f = 1

1{d > 1} if f = 0

define the countdown process, i.e. the residual time in the current state.

In conclusion, the process can be described as the transition from a latent state

to another at time t triggered the following changes: the finishing node switches on

Ft−1 = 1, requiring a transition to a new state, St = k, from the previous one, St−1 = k′,

with k ̸= k. Finally, given this state k, a new sojourn duration is sampled, Rt ∼ pk ≥ 1.

Discrete Observed Process. The observed process can be discrete and is emitted

from S1:T :
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• O1:T ,∀t ∈ {1, ...,T} Ot ∈ O = {v1, ...,vG}.

and the associated CPD is as follows:

P(Ot = vg|St = k) = bk(vg)

where bk(vg) can either represent a tabular distribution and be a matrix of size K×G,

or K parametric distributions.

Continuous Observed Process. The observed process can also be continous, Gaus-

sian for example, and described by the CPD:

P(Ot |St = k) = N (µk,Σk)

µk being the mean vector of size K and Σk, the covariance matrix of size K×K.

Joint Probability Distribution. Combining all the CPDs, we can define the following

Joint Probability Distribution with one single discrete output process:

P({St ,Ot ,Rt ,Ft}St=1;θ = {πk′,aik′,b
′
k(vk), pk′(d)})

= P(S1)
T

∏
t=2

P(St |St−1,Ft−1)
T

∏
t=1

P(Ot |St)P(Rt |St ,Rt−1,Ft−1)P(Ft |Rt)

=
K

∏
k=1

π
1{s1=k}
k

T

∏
t=2

K

∏
k=1

K

∏
k′=1

(
1{k = k′}1{st=k,st−1=k′, ft−1=0}A1{st=k,st−1=k′, ft−1=1}

k′k

)
T

∏
t=1

K

∏
k=1

(
∏

vg∈O
bk(vg)

1{ot=vg,st=k}
D

∏
d=1

D

∏
d′=1

{
1{d = d′−1}1{rt=d,st=k,rt−1=d′, ft−1=0}

pk(d)1{rt=d,st=k,rt−1=d′, ft−1=1}

1{d > 1}1{ ft=0,rt=d}
1{d = 1}1{ ft=1,rt=d}

})
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3.4 Inference and learning

In order to apply EM, we compute Q(θ ,θ old),

Q(θ ,θ old) = E[logP({St ,Rt ,Ft ,Ot}T
t=1;θ)|{Ot}T

t=1,θ
old]

=
K

∑
k=1

P(S1 = k|{Ot};θ
old) logπk

+
T

∑
t=2

K

∑
k=1

K

∑
k=1

(
P(St = k,St−1 = k′,Ft−1 = 0|{Ot};θ

old) log1{k = k′}

+P(St = k,St−1 = k′,Ft−1 = 1|{Ot};θ
old) logAk′k

)

+
T

∑
t=1

K

∑
k=1

∑
vg∈O

[
P(St = k|{Ot};θ

old) logbk(vg)

+
D

∑
d=1

D

∑
d′=1

(
P(Rt = d,St = k,Rt−1 = d′,Ft−1 = 0|{Ot};θ

old) log1{d = d′−1}

+P(Ft = 0,Rt = d|{Ot};θ
old) log1{d > 0}

+P(Rt = d,St = k,Rt−1 = d′,Ft−1 = 1|{Ot};θ
old) log pk′(d)

+P(Ft = 1,Rt = d|{Ot};θ
old) log1{d = 0}

)]
(1.29)

which highlights the Expected Sufficient Statistics (ESS) to be evaluated in the E-step:

P(St = k|O;θ
old), (1.30)

P(St = k,St−1 = k′,Ft−1 = 1|O;θ
old), (1.31)

P(Rt = d,St = k,Rt−1 = d′,Ft−1 = 1|O;θ
old), (1.32)

A core challenge related to dynamic Bayesian networks is the computation of the

posteriors in the E-step since variables are not i.i.d. For this purpose we need a to use

inference algorithms. More particularly, for exact inference, we use an algorithm called

Forward-Backward.
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First, we define the following intermediate probabilities:

P(St = k,Ft = 1,{Ot})

A naive application of the message passing algorithm Koller et al. (2009) would consist

in computing:

αt(k′,d, f ) = P(St = k,Rt = d,Ft = f ,O1:t)

=
K

∑
k=1

D

∑
d′=1

1

∑
f ′=0

P(St = k,Rt = d,Ft = 1,St−1 = k′,Rt−1 = d′,Ft−1 = f ′,O1:t)

=
K

∑
k=1

D

∑
d′=1

1

∑
f ′=0

P(Ot |St = k)P(St = k|St−1 = k′,Ft = f )P(Rt = d|St = k,Rt−1 = d′,Ft = f )

P(Ft = f |Rt = d′)P(o1:t−1,Rt−1 = d′,Ft−1 = f ′,St−1 = k′)

=
K

∑
k=1

D

∑
d′=1

P(Ot |St = k)αt−1(k′,d′, f ′)(
1{k = k′}1{d = d′−1}1{d′ > 0}+Ak′k pk(d)1{d′ = 0}

)
(1.33)

and then marginalizing out d and f :

P(St = k,Ft = 1,O1:t) = αt(k) =
D

∑
d=1

1

∑
f=0

αt(k,d, f )

which has complexity O((T KD)2). Though, one can intuitively see that the recursion

requires way more computations than it should since most of the probabilities are

modeled as indicators. Hence, we formalize the intuitions proposed in Mitchell et al.

(1995); Murphy (2002); Guédon (2003) and define Vt = maxt ′{t ′ < t|St ′ ̸= St}, the

previous transition instant. By convention, Vt = 0 if {t ′ < t|St ′ ̸= St}= /0, and if Vt > 1, a

transition has already occured. This definition is particularly useful when Ft = 1 and

Vt = t ′ because it implies Ft ′−1 = 1, Rt ′ = t− t ′ and therefore that St ′:t is constant for
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duration t− t ′. The forward variables are computed the following way:

αt(k) = P(St = k,Ft = 1,O1:t)

=
t−1

∑
t ′=0

P(Vt = t ′,St = k,Ft = 1,O1:t)

= P(Vt = 0,St = k,Ft = 1,O1:t)+
t−1

∑
t ′=1

P(Vt = t ′,St = k,Ft = 1,Ot−t ′:t ,O1:t−t ′−1)

= P(R1 = t,S1 = k,Ft = 1,O1:t)+
t−1

∑
t ′=1

P(Rt ′ = t− t ′,Ft ′−1 = 1,St ′ = k,Ft = 1,Ot−t ′:t ,O1:t−t ′−1)

= P(O1:t |S1 = k,R1 = t,Ft = 1)P(R1 = t|S1 = k)P(S1 = k)

+
t−1

∑
t ′=1

(
P(Ot−t ′:t |St ′ = k,Rt ′ = t− t ′)P(Rt ′ = t− t ′|St ′ = k,Ft ′−1=1)P(St ′ = k,Ft ′−1 = 1,O1:t−t ′)

)

= πk pk(t)
t

∏
u=1

bk(Ou)+
t−1

∑
t ′=1

(
pk(t− t ′)α∗t−t ′(k)

t

∏
u=t ′

bk(Ou)

)
(1.34)

with,

α
∗
t (k) = P(St+1 = k,Ft = 1,O1:t)

=
K

∑
k′=1

αt(i)Ak′k.
(1.35)

This method simply relies on the computation by induction of two sets of forward

variables around transition instants, increasing storage space by 2 compared to standard

HMM. The complexity of this forward recursion is O(T K2D).

Following a similar schema for the backward variables, we firstly have:

βt(k) = P(Ot+1:T |St = k,Ft = 1)

=
K

∑
k′=1

β
∗
t (k
′)Ak′k,

(1.36)

we also define Wt = maxt ′{t ′ > t|St ′ ̸= St}, the next transition instant, implying that if

Ft = 1 and Wt = t ′, then Rt = t ′− t (and therefore Rt+t ′−1 = 1), Ft ′−1 = 1, St:t ′−1 constant

for duration t ′− t. If ∃t s.t. Wt > T , then this is the right-censored sojourn time
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assumption 5. Comes:

β
∗
t (k) = P(Ot+1:T |St+1 = k,Ft = 1)

=
T

∑
t ′=t+2

P(Ot+1:t ′,Ot ′+1:T ,Wt = t ′|St+1 = k,Ft = 1)

=
T

∑
t ′=t+2

P(Ot+1:t ′,Ot ′+1:T ,Rt+1 = t ′− t,Ft ′ = 1|St+1 = k,Ft = 1)

=
T

∑
t ′=t+2

(
P(Ot+1:t ′|Rt+1 = t ′− t,St+1 = k)P(Ot ′+1:T |St ′−1 = k,Ft ′−1 = 1,Rt+1 = t ′− t)

P(Ft ′ = 1|Rt+1 = t ′− t)P(Rt+1 = t ′− t|St+1 = k,Ft = 1)

)

=
T

∑
t ′=t+2

(
t+d

∏
u=t+1

bk(ou)βt ′−t(k)pk(t ′− t)

)
.

(1.37)

The computation of ESS (1.31) can then easily be derived:

P(St = k,St−1 = k′,Ft−1 = 1|O1:T ) ∝ P(St = k,St−1 = k′,Ft−1 = 1,O1:T )

= P(St = k,St−1 = k′,Ft−1 = 1,O1:t−1,ot:T )

= P(Ot:T |St = k,Ft−1 = 1)P(St = k|St−1 = k′,Ft−1 = 1)

P(O1:t−1,St−1 = k′,Ft−1 = 1)

= β
∗
t−1(k)Ak′kαt−1(k′)

(1.38)

where the normalization term P(O1:T ), which is ommited here, can easily be computed

so that the probabilities sum to one. The computation of ESS (1.32) is calculated in a

similar manner:

P(Rt = d,St = k,Ft−1 = 1|O1:T ) ∝ P(Rt = d,St = k,Ft−1 = 1,O1:T )

= P(Ot:T |St = k,Ft−1 = 1)P(Rt = d|St = k,Ft−1 = 1)

P(O1:t−1,St = k,Ft−1 = 1)

= β
∗
t−1(k)pk(d)α∗t−1(k).

(1.39)
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For the computation of (1.30), we first define more intermediate quantities:

γt(k) = P(St = k,Ft = 1|O1:T ) ∝ αt(k)βt(k)

and,

γ
∗
t (k) = P(St+1 = k,Ft = 1|O1:T ) ∝ α

∗
t (k)β

∗
t (k),

then we can rewrite (1.30) by making clear the scheme proposed by Guédon (2003),

P(St = k|O1:T ) =
K

∑
k′=1

P(St+1 = k′,St = k|O1:T )

= P(St+1 = k,St = k|O1:T )+P(St+1 ̸= k,St = k|O1:T )

= P(St+1 = k|O1:T )−P(St+1 = k,Ft = 1|O1:T )+P(St = k,Ft = 1,O1:T )

= P(St+1 = k|O1:T )− γ
∗
t (k)+ γt(k)

=
t

∑
t ′=T

γt ′(k)− γ
∗
t ′(k).

(1.40)

And hence, we have P(St+1 = i|O1:T ) = P(St = k|O1:T )+γ∗t (k
′)−γt(k′), which can be com-

puted via induction with the first term being P(S1 = k|O1:T ) = P(S1 = k,F0 = 1|O1:T ) =

γ∗0 (k), and which works in the case were the SMC process starts at time t = 0.

The M-step maximizes Q(θ ,θ old) w.r.t. the parameters. The updated parameter

formulas are computed using the ESS as follows:

π̂k = P(S1 = k|O1:T ;θ
old),

Âk′k =
∑

T
t=2 P(St = k,St−1 = k′,Ft−1 = 1|O1:T ;θ old)

∑
K
k=1 ∑

T
t=2 P(St = k,St−1 = k′,Ft−1 = 1|O1:T ;θ old)

,

b̂k(vg) =
∑

T
t=1 P(St = k|O1:T ,θ

old)1{Ot = vg}
∑

T
t=1 P(St = k|O1:T ,θ old)

,

p̂k(d) =
∑

T
t=1 P(Rt = d,St = k,Ft−1 = 1|O1:T ;θ old)

∑
D
d′=1 ∑

T
t=1 P(Rt = d′,St = k,Ft−1 = 1|O1:T ;θ old)

,

where p̂k(d) is estimated here as a non parametric, or multinomial distribution, but

we can obviously fit various discrete distributions. More details about this subject

were provided in section 1.3.3 on the fit of Geometric, Poisson or Negative Binomial

distributions. Another discussion can be found in Guédon (2003).
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3.5 Asymptotic properties

Proposition 1. Under some border constraints on the transition matrix, an EDHMM’s
parameters are identifiable up to K permutations.

Proof. An EDHMM can be seen as an HMM where latent variables lie in the state space

{1, ...,K}×{1, ...,D}, that is the cross product between state values and their durations.

This property is particularly interesting since HSMM may then inherent some of the

HMM properties such as identifiability which has been determined for HMM (Leroux,

1992; Douc et al., 2011).

Moreover, under the following assumptions:

Assumption 6. The SMC is irreducible.

Assumption 7. The conditional sojourn time distributions have finite support.

Assumption 8. There exist a right censored observed sequence s.t. its Fisher information
matrix is invertible.

Barbu and Limnios (2006, 2009) proved that:

• all the estimators are strongly consistent as the sequence length tends to the

infinity, assumptions (6) and (7),

• all the parameters are asymptotically normal, assumptions (6), (7) and (8).

Note that these properties hold for a single observation sequence.

3.6 State sequence restoration

Similarly to HMM, the state sequence restoration consists in finding the best state

sequence given an observed sequence. Different approaches have been discussed in

section 2.5 concerning HMM. Here, we directly focus on the most popular one: the

MAP computed using the Viterbi HSMM algorithm. The MAP is the same as HMM,

given by equation (1.24). What differs is the recursive max product equation, i.e. the

probability to end up in state k at time t and to transit at time t +1 given that the most
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likely path was previously taken

δt(k)≡ max
s1,...st−1

P(Ft = 1,S1:t−1 = s1:t−1,St = k,O1:t = o1:t)

= max
st−1

{
max

1≤t ′≤t

[( t

∏
u=t ′

bk(ou)
)

pk(t− t ′)max
k′ ̸=k

(
Akk′δk′(t

′)
)]

, pk(t)πk

t

∏
u=1

bk(ou)
}
.

(1.41)

The Viterbi HSMM algorithm, like the Forward-Backward is much more complex

than the HMM’s since we need to find the best transitions instants t ′ and therefore

we need to max over all of them. This can be seen in the left term of the max of

equation (1.41) while the right term computes the max in the case that no transition

has happened yet.

The optimal sequence is computed using the traceback. At each time t and for

each state k, two backpointers should be recorded. The first one should store the

optimal previous state while the second one should record the optimal preceding time

of transition from each optimal preceding state, i.e. the optimal state duration.

Note that equation (1.41) only holds for the simplifying assumption. See Yu (2010)

for the general assumption and Guédon (2003) for the simplifying assumption. More-

over, there has been plenty of Viterbi HSMM algorithms regarding the sojourn time

assumptions. See the following papers for Viterbi algorithms on variable transition

HMM (Ljolje and Levinson, 1991; Ramesh and Wilpon, 1992; Chen et al., 1993), for ex-

plicit duration (Burshtein, 1996), for Marhasev (Marhasev et al., 2006), for residential

time HMM (Yu and Kobayashi, 2003).

Guédon (2007) provides a N-best list of restored state sequences.

3.7 Model Selection

Model selection refers as setting hyperparameters of the model or of the algorithms

used. For a HSMM computed with exact inference, there are three main issues: choosing

the right number of states, seeking the global maximum of the likelihood function, and

choosing the right topology of the transition matrix and assumptions. Hereunder, we

give insights on the two first issues while we consider that the third one should be

chosen according to the specifications of the data, see Stolcke and Omohundro (1993)

and Brand (1999) if interested by these questions.
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Number of clusters. Up to this point, we have considered the number of clusters,

i.e. K fixed. However, in some applications, this number is unknown and should be

determined. One of the main issues when optimizing the likelihood of the data is that

we can always improve it by adding another component and fit the noise of the data. It

is therefore crucial to also take into account the complexity of the model, given by its

number of parameters. Possible solutions are:

• a grid-search over a set of values for K with a given a goodness-of-fit versus

complexity tradeoff-based objective function such as AIC (Akaike, 1987), BIC

(Schwarz et al., 1978), ICL (Biernacki et al., 2000), Entropy (Durand and Guédon,

2016), cross-validated likelihood (Celeux and Durand, 2008).

• use an ensemble learning algorithm to decrease the number of components as EM

iterates, see (MacKay, 1997) for the HMM case, or variational Bayes, see (Beal

et al., 2003) for the HMM case.

• a Bayesian nonparametric HSMM framework based on the hierarchical Dirichlet

process proposed by Johnson and Willsky (2012, 2013),

Seek of the global maximum: the Holy Grail ? We showed in Lemma (1.14) that

the EM algorithm optimizes a lower bound of the log-likelihood. This lower bound is a

local maximum of the likelihood function and there exists plenty of it. A key question is

therefore, how to approach or get closer to the global maximum. There is no theoretical

result to this question yet, however there has been empirical studies, notably for HMMs

and Mixture Models (MMs).

• Juan et al. (2004) proposed an empirical study of the comparison of 6 different

initialization techniques for HMM with Bernoulli observed process. It turned out

that a simple parameter jitter in the hypercube center gave the best results.

This is the current initialization technique used in the python package hmmlearn1.

The author proposed a novel initialization technique, performing slightly worse

than the jittered hypercube center, which they called random prototypes and

aims at computing parameter estimates on a subsample, adding jitter, and using

it as a starting value for EM. See Karlis and Xekalaki (2003) for a review of the

existing methods for mixture models.

1https://github.com/hmmlearn/hmmlearn
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• Biernacki et al. (2003) proposed a framework called Search/Run/Select (SRS)

for finding the best initial estimates of a Gaussian mixture model using EM

variations such as Stochastic EM (SEM) or Classification EM (CEM). The SRS

technique consists in firstly running few iterations of EM, SEM or CEM with

random data points as initial centers. This gives us a starting value of EM which is

run until convergence. Finally, the solution providing the best likelihood among all

starting values is selected. In practice, there was no sensible difference between

all the methods, but the standard EM initialization strategy was sometimes

performing slightly worse. The authors warn users that this heuristic framework

may sometimes lead to spurious local maximizers when sometimes it may be

more interesting to select a local maximizer with a larger domain of attraction

because it can be seen as a more stable one.

• some recent works have tried to take advantage of the increasingly popular

Wasserstein distance from optimal transport. It has already shown promising

results in terms of likelihood as well as the stability of the cluster in the Gaussian

Mixture Models (Kolouri et al., 2018) by using a sliced Wasserstein distance

(Kolouri et al., 2017).
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1 Introduction to eye-movement data

In this section, we give an insight on eye-movement features, then describe the ex-

perimentation, which was first proposed by Frey et al. (2013), subsequently relate

eye-movement segmentation with reading strategies by discussing the results found in

Simola et al. (2008). We then describe the data preprocessing chain used in order to

build an observed process to feed to HSMMs.

1.1 State of the art

Let us first define a couple of eye-movement-related concepts.

Definition 1. A fixation is an immobilization of the visual gaze during a few milliseconds.

Definition 2. A saccade is a brief movement of the eyes between two fixations.

Definition 3. A scanpath is a series of fixations and saccades, with their positions and
durations, recorded for a certain amount of time (e.g. during a given task).

Example 1. Figure 2.1 provides an example of a scanpath. Fixations are illustrated by
circles, which radius is proportional to the duration, whereas, saccades are represented by
the lines between two fixations.

Definition 4. A refixation is the action to perform consecutive fixations on the same
word.

Definition 5. A regression is the action to perform a saccade, and therefore a fixation, on
a preceding word in the text. In latin languages, the saccade can be backward or upward.

Definition 6. A progression is the action to perform a saccade, and therefore a fixation,
on a word succeeding in the text. In latin languages, the saccade can be forward or
downward.

Information provided by eye-movements. Since the eye-tracker was invented in

1948 by Hartridge and Thompson, the reading and information processing research has

risen, notably from the 70s onwards. Empirical studies have shown that eye-movement

itself holds information about the reading process. For example, longer fixations have

been observed on misspelled or less common words, see Rayner (1998); Rayner et al.

(2012). More, recent studies discuss much deeper topics such as the characteristics of

eye movements, the perceptual span, the information integration across saccades, the

eye movement control and lastly, individual differences.
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Figure 2.1: Example of a scanpath. A line corresponds to a saccade. A circle matches
to a fixation and its radius is proportional to the duration of the fixation. The larger
radius of the circle, the longer the fixation.

Reading strategies. Carver (1992, 2000) has shown that reading processes are

mainly affected by the type of task being performed by the subject. The processes were

characterized as reading strategies. The engendered effect is noticeable through differ-

ent types of indicators such as the reading rate, the seriality of the words processed,

or if they are processed more than once. Carver argued that strategies could simply be

clustered by comparing reading rates. He also advocated that reading strategies are dif-

ferent cognitive processes from which readers transit more or less efficiently according

to their skill. As a consequence, switching to a higher speed gear implies: decreasing

the mean fixation duration, decreasing the mean number of fixation, decreasing the

mean number of regressions and increasing the length of forward saccades. Reading

strategies are described subsequently:

• Scanning is the quickest reading strategy and is generally used for tasks which

require a lexical access only such as word search. The given reading rate is 600

words per minutes (wpm).

• Skimming is 25% slower than scanning with 450 wpm and consists of adding

a semantic access to words. It generally allows the reader to get just enough

information to know what the text is about.
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• Rauding is the contraction of "reading" and "auding", is achieved at a rate of

300 wpm and is basically the default reading strategy which implies sentential

integration.

• Learning is much deeper than rauding; it implies idea remembering and the

ability to answer text comprehension questions. It is performed at 200 wpm.

• Memorizing is performed at 138 wpm is by far the slowest reading mechanism

and consists of memorizing information by re-reading sentences in order to

rehearse facts in a longer term than the previous strategies.

Carver (1992) and Freese (1997) mention that proficient readers demonstrated

flexibility by shifting to the appropriate strategy when required. Rauding is used as

a central process and users adjust their reading rate when encountering difficulties.

Consequently, proficient readers are better at adapting their reading speed by lowering

it if the text comprehension is difficult or by increasing it if the text does not provide

any information regarding a task. This highlights the fact that the reading rate is closely

related to the comprehension of the text. Additionally, the studies showed that there

was no significant difference regarding reading speeds but text comprehension between

proficient and unsuccessful readers. Authors also put forward individual differences due

to an individual’s own thinking rate, working-memory capacity, cognitive speed, age,

practice; see Hyönä et al. (2002) for more information about individual differences.

Eye-movement segmentation. There has been a wide variety of reading models in

information search which can be distinguished in two classes: experimentally-driven

models and data-driven models. The former is the most common and consists in build-

ing a simulation model which decomposes algorithmically the process of information

search, adjusting the model structure, its parameters and evaluating its goodness-of-fit

by comparing it to real human experiments. For instance, are the E-Z reader (Reichle

et al., 2012) tries to evaluate when and where will the next fixation land using a

decomposition of the microprocesses of reading. The model of Lemaire et al. (2011)

proposes to predict eye-movement positions using a linear combination of well-defined

parameters, such as a word’s probability to be fixed, and which vary according to

the task type. The latter class of reading models we focus on in this thesis, is based

on reading strategies segmentation through statistical modeling. To our knowledge,

there is only one instance, based on HMMs, by Simola et al. (2008). The authors

modeled the scanpath as a time series by extracting four output processes: the log of
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the fixation duration in milliseconds (ms) modeled by a Gaussian, the log of the saccade

amplitude in px modeled by a Gaussian, the outgoing saccade direction modeled by a

Multinomial, and a Bernoulli indicating if the word currently fixed has already been

fixed or not. Their experiments were based on three different tasks, namely, word

search, question/answer and title choice for a text. They to discriminate the three tasks

using a discriminative HMM with one sub-HMM per task type. The authors showed that

HMMs were performing well not only to discriminate task but that it was also able to

uncover reading strategies which they identified as rauding, scanning, and decision. In

conclusion, they suggested tracks of improvements noting that the naturally geometric

state sojourn distribution was not fitted for this kind of data.

HMMs have also been used in non-reading tasks to segment eye movements, notably

in face recognition (Chuk et al., 2014) and scene exploration (Hayashi, 2003; Coutrot

et al., 2018), visual processing control (Rimey and Brown, 1991), fixation-saccade sep-

aration (Salvucci and Goldberg, 2000), visual attention (Liechty et al., 2003), implicit

feedback relevence (Salojärvi et al., 2005), eye gaze prediction in video streaming

(Feng et al., 2011).

In conclusion, HMMs seem to be perfectly suited tools for modeling eye movements

due to their changes in dynamics within a same task. Each hidden state is linked with a

cognitive process that is indirectly observed through eye-movement features. Hence,

the conditional probability distribution (CPD) of the observed eye-movement feature

at time t only depends on the hidden cognitive state at time t which only depends

on the hidden cognitive state at time t−1. Each eye-movement features distribution

is different per state. Therefore, a change of state is characterized by a change of

dynamics in the eye movements. Moreover, HSMM generalizes HMM and proposes to

adjust a parametric sojourn distribution for each state. This perspective is also stated

as a perspective in the work of Simola et al. (2008) as Geometric distribution does not

seem to be suited to model the duration of reading strategies.

1.2 Material and methods

In this section, we give a brief highlight of the material and methods of the experiment

which are necessary to understand the choices made in the statistical modeling. For

more information concerning the process, refer to Frey et al. (2013). Note that, small

data preprocessing changes were made compared to the referenced experiment in order

to be better adapted to a HSMM kind of modeling.
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Participants. Initially, there were 21 participants. We rejected 6 of them because they

did not follow the rules of the experiment thoroughly or data was too noisy during the

acquisition with the eye tracker.

Textual Material. Texts were presented to the participants. These texts, in French,

are extracted and corrected from the French newspaper LeMonde, edition 1999. Texts

were given a topic and were constructed around 3 types: ones which were highly related

(HR) to the topic, moderately related (MR) to the topic and unrelated (UR) to the

topic. There were 60 texts of each type, hence 180 in total. The semantic relatedness

of the text to the topic was controlled by Latent Semantic Analysis (LSA), Deerwester

et al. (1990). LSA is a natural language processing method which consists in building

a term-document matrix which counts occurrences of words within a document and

performs a single value decomposition in order to reduce the dimension among the

document axis and project words in a smaller space. In this space, words that have a

closer semantic are also closer given a similarity measure, usually the cosine similarity.

All the texts were composed of an average of 5.18 ± 0.7 (mean plus or minus standard

deviation) sentences and 30.1 ± 2.9 words. Each word was composed of an average of

5.34 ± 3.24 characters. The average number of lines was 5.18 ± 0.68. In average, the

text was displayed with 40.1 ± 5.4 characters per line.

Experimental Procedure The experimental protocol is presented in Figure 2.2. The

goal of the experiment was to assess either the text was related to a given topic or

not. First the topic was presented to the readers and then they clicked to start the

experiment. Then a fixation cross was presented to them to indicate the location of the

beginning of the text. The duration of this step was random so that the user cannot

anticipate the starting moment. They also did not know whether the text is HR/MR/UR

so that he cannot plan on a search strategy mechanics in advance. When the text was

displayed, readers needed to answer as soon as possible. The task was then repeated

for the 180 texts with breaks in-between. The text were also randomly ordered for

each subject. This given task was closely related to information search and decision

making. Consequently, we expected subjects to mainly use rauding and skimming but

also seldom scanning.

EEG and Eye tracking acquisition Along the experiment, electrical cerebral activ-

ity was measured through a 32-channel electroencephalogram (EEG) with 1000 Hz
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Figure 2.2: Experimental protocol from Frey et al. (2013).

sampling rate. X/Y eye positions on screen were collected using an eye tracker. The

minimum fixation duration threshold was set to be 80ms whereas the maximum dura-

tion was 600ms. The font size / eye-to-screen distance ratio such that the fovea area

(the sharp central vision) was composed of 3.8 characters. Both the measures were

upper-bounded by 10 seconds for each text.

Data enrichment: from fixations to words. The eye tracker gave the position of the

fixations on the screen. A posteriori, it was necessary to know which word was being

processed by the participant. First, the word identification span was defined as the

necessary area from which a word can be identified. This span varies according to the

direction of the lecture, the alphabet, or the language, but can also be micro-context

related as it was for several reading models such as EZ-Reader Reichle et al. (1998,

2003) or the SWIFT model Engbert et al. (2005). For simplicity, we used a fixed span,

that is considered for most of Latin languages (Rayner, 1998), an asymmetrical window

of 4 characters left and 8 characters right to the fixation. Moreover, a word may not

entirely be located in the word identification span. Based on the study of Farid and

Grainger (1996), we considered a word to be processed if at least 1/3 of its beginning

or 2/3 of its end was inside the window. This result was obviously language sensitive,

only valid in French, and considers that the important root of the word necessary to

its understanding is located at the beginning of the word. Finally, another hypothesis
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Figure 2.3: The fixation (circle) and the word identification span (rectangle).

had to be made on the processed word within the window since several words might

be captured. For this, we assumed that only one word could be processed at the same

time and that this word was chosen to be the one which was the closest to the fixation

center and that was not a stop word. A stop word is a word that is so common that

it does not provide any semantic information. An example of word identification is

provided in Figure 2.3. The circle represents the fixation while the rectangle is the

word identification span. Here the French word "des", "some" in English, is a stop word,

therefore the processing affectation is made with "données", "data" in English, since at

least 1/3 of its characters are inside the window.

1.3 Building the output process for HSMM

Up to this point, we know what word is being processed at each fixation, the fixation

duration, and similarly to Simola et al. (2008), we can compute several other variables

such as the outgoing saccade amplitude, or the saccade direction. The goal was to

find variables that are discriminant enough through states and that represent, at least

partially, reading strategy. These variables must also be suited regarding a set of

possible distributions. Subsequently, we state and discuss some of the preprocessing

and modeling choices that were made.

Forward selection strategy. There are many different possibilities to preprocess the

data, select the model, find the right filters on the data, define the output process

itself, the number of hidden states, the random initialization strategy, or the model

selection through different criterion. Each of them could lead to a different model with

its own interpretation. Is is straightforward that all combinations cannot be tried out

in polynomial time. Therefore, we set up a forward selection heuristic strategy which

consists in selecting every possible preprocessing feature one by one and testing its

goodness compared to the previous set of preprocessing features, and then to keep or

reject it accordingly. The model is assessed at the end of every cycle and repeats until
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Figure 2.4: Eye-movement data preprocessing pipeline.

the addition or rejection of every preprocessing element has been tested. The proposed

pipeline is shown in Figure 2.4.

Model assumptions. In section 3.2, we presented diverse assumptions regarding

the sojourn time and the state sequence censoring. Firstly, we chose to focus on the

explicit duration HMM because it is the simplest HSMM, with the least number of

parameters. Plus, it allows to fully characterize a state by its initial probabilities,

transition probabilities to another state and then, its within-state sojourn distribution.

We wanted to highlight the importance of having a transition matrix which diagonal

is filled with 0 so that its sojourn distribution characterize a state. If not, as in the

variable duration HMM, the sojourn distribution would have been non explicit since

characterized by its distribution together with a probability of returning in the same

state. Secondly, we considered the simplifying time assumption 4 since we made sure

that the experiment started at a given time without any prior information such that

the reader was agnostic to which strategy to start with, and that the ending time of

the experiment corresponded to the decision. Finally, we considered that changes in

reading strategies were expressed through changes of semi-Markovian regime, hence

hidden states represented reading strategies.

Data filters. Unlike simulated data, real data is not always as neat as we would

like it to be. Plus, we noticed that results could be sensitive to changes in the data

which lead us to search for the right filters in order to reduce the uncertainty of the

model, expressed through the uncertainty of the state sequence restoration. We refer to

Durand and Guédon (2014) where the authors provided a local entropy-based tool for

quantifying the uncertainty of a restored state sequence in HMMs, Markov trees setting

and HSMMs. From this, a global entropy measure can straightforwardly be computed.

We tested the following filters:
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• short sequences were removed because they were be non characteristic of the

given task. The acceptance threshold was set to four or more fixations.

• double human filter: manual (human) scanpaths rejection with double check

which for scanpaths with acquisition issues such as:

– top drift, too many fixations between the lines (uncertainty), line skip leading

to regression when it looks like a readjustment fixation,

– the eye tracker estimated too many wrong positions,

– the return sweep was pathologically pointing at the current line instead

of the next line leading to backward movements rather than downward

movements.

• subject filter: we tried to remove subjects whose behaviour was too atypical or

who did not respect the "game" rules, that is, they did not try to reply as soon as

possible but re-read the text several times to increase their answer’s accuracy.

Time step. Before we introduce the output process, the granularity of the information

should be cleared out, i.e. the measure of processing time. Oculometric data is

conveniently analyzed at the fixation step. A duration was computed, see Rayner

(1998) for discussions about the fixation duration computation, as well as characteristics

of the outgoing saccade such as its direction or amplitude and hence, text-related

features.

Choice of variables. In accordance with Simola et al. (2008), several possible output

processes were tested, some were tried separately while some others were combined:

• the fixation duration (in ms) modeled by a log-Normal distribution,

• the outgoing saccade amplitude (in px) modeled by a log-Normal distribution,

• the outgoing saccade direction (upward, forward, downward, backward) plus a

factor indicating if it is the last fixation, modeled by a Multinomial distribution,

• the number of characters skipped in the outgoing saccade,

• the number of words skipped in the outgoing saccade,
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• the readmode, a categorized measure of the number of words skipped during

the outgoing saccade. Note that the saccade is the key to segment reading phases.

Measuring the saccade in pixel present the inconvenient that it is text layout-

sensitive. As a matter of fact, the saccade is always longer after every like break

in order to go to the next line and these changes could, alas, be interpreted as

Markovian regime changes. Hence, measuring the number of words skipped is a

more text layout-robust approach. As we discussed in the beginning of the Chapter,

saccades can be characterized by progressions, regressions and refixations but

we could also imagine differentiating short regressions or progressions with long

regressions or progressions respectively. To this end, several readmode factors

were tested:

1. {< -1, -1, 0, 1, >1}: a decomposition considering each factor has the same

importance to decompose eye-movement dynamics. <−1 represents long

regressions, −1 short regressions, 0 refixation, 1 short progressions and > 1
long progressions,

2. {<-1, -1, 0, 1, 2, >2}: since it is mostly a forward saccade experience, we

tried to gain a higher detail in the decomposition by adding a third level of

progressions,

3. {<-2, -2, -1, 0, 1, 2, >2}: we also tried to distinguish regressions by adding

one more level,

4. {<-1, -1, {0, 1}, 2, >2}: we tried to merge refixations and short progressions

to make a rauding strategy emerge from this state.

Parameter learning, model selection and interpretability. For a given output pro-

cess, we performed parameter learning for a various number of latent states. For each

number of states, we focused on a high likelihood search with random initializations

of the EM algorithm. This part is discussed in section 2. Then, model selection was

performed in order to choose the correct number of states along with the correct set of

preprocessing features. Finally, model interpretability was assessed as validation and is

discussed in section 3.

Descriptive statistics. Refer to Appendix A for descriptive statistics on the dataset.

We presented the average number of fixations, fixation duration and saccade amplitudes

per subject in Table A.1, but also readmode frequencies in Table A.2 and good answer



64 Eye-movement analysis using Hidden semi-Markov Models

rate in Table A.3. We also provided per text type statistics such as readmode frequencies

in Table A.5 but also few indicators in Table A.4.

2 Search of the global maximum likelihood

The hidden semi-Markov models has received a lot of attention in the literature as

shown in Chapter 1, section 3. Its framework being generic, modeling assumptions

have been proposed, mainly focused around the dependencies between the state and

its sojourn time, as well as the latent process time censoring Guédon (2003), leading

to a wide variety of inference algorithms. Barbu and Limnios (2009) proved the

asymptotic convergence and normality of the estimators, but did not provide any detail

on the convergence speed or on the multiple sequence framework. The Expectation-

Maximization algorithm finds a local maximum of the likelihood and is known to be

extremely sensitive to starting values. Plus, in practice, working with a finite amount

of data along with multiple short categorical sequences is an encouraging reason to

question the optimality of the local maximum found by the Expectation-Maximization

algorithm. To our knowledge, most of the contributions of this kind have been done

around the independent Mixture Models (MMs), see Biernacki et al. (2003) for Gaussian

MMs or Juan et al. (2004) for Bernoulli MMs. While for HMM, what seems to work

best is a simple jitter of the parameters around their centers as implemented in the

python library hmmlearn1. In this section, we tackle the problem with two different

strategies. The former consists in giving random initial parameters to the EM algorithm

while the latter resides in injecting human knowledge and expertise over EM iterations.

2.1 Choosing EM starting values for a higher likelihood

We propose a new strategy that we call sequence breaking framework (SB), which

aims at finding high local maxima of the likelihood by choosing starting values for

HSMM’s EM, for which the randomness is controlled by the observed sequences in order

to restrict the search space. The idea is to prevent EM to start with initial parameter

values that are independent from the data and that can therefore lead to very low or

almost null likelihood values. This strategy is compared to the standard HMM strategy,

the jittered-center parameters.

1https://hmmlearn.readthedocs.io
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2.1.1 Experimental strategy

Multiple sequence framework. So far, we have written down the EDHMM consider-

ing only one sequence of observation {Ot}t∈J1,T K for notation convenience. We now con-

sider that we have multiple observed sequences O = {{O(1)
t }t∈J1,T1K, ...,{O

(M)
t }t∈J1,TMK}.

Proposition 2. For an observed semi-Markov chain {St ,Rt ,Ft}t∈J1,T K with a corresponding
output process {Ot}t∈J1,T K, the MLE of each set of parameters is given by the conditional
empirical frequencies.

Proof. Given that an EDHMM can be expressed as a DBN, see section 2, and since the

likelihood of a DBN can be expressed as a global decomposition of the local-likelihood of

each node given its parents, see equation 1.13, then the parameters of the EDHMM can

be independently optimized by MLE using the conditional empirical frequencies.

Choosing starting values with the sequence breaking framework. The main idea

is to choose a subset of the observed sequences, generate the associated hidden states

by sampling and compute the parameter by MLE using proposition 2, as if we were

considering that all the random variables were observed. These parameters are then

fed as an initial value to EM, which is run on all the observed data. The proposed

strategy relies on two intertwined algorithms:

• Algorithm 2 HighLikelihodSearch: describes the global framework, it randomly

chooses α observed sequences O(Qα ) from O, generates the corresponding state

sequences S(Qα ) using SequenceBreaking, computes the parameters θ init by MLE

using Proposition 2 and injects it as a starting value for the EM algorithm which

finds the a local maximum of the likelihood for all data O. The goal of sampling

sequences randomly from O is to generate starting values related to the obser-

vation process while keeping only a subset to maintain the randomness of the

starting values. Note that Sample(.) is a function which samples uniformly on

the given set.

• Algorithm 3 SequenceBreaking: randomly generates a hidden state sequence.

Given each observed sequence O(q) ∈O(Qα ) with its length, it randomly chooses

a number of transitions J as well as transition instants I, which "break" the

sequences into pieces, and then affects a state randomly to each piece of sequence

with the constraints that two consecutive states should be different due to the

EDHMM assumption on the transition matrix.
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Algorithm 2: HighLikelihoodSearch: High local maximum of the likelihood
search by sequence breaking

Input: α ∈ J1,MK the number of sequence to sample,
N, the number of initialization

1 θ̂ ← /0;
2 for n← 0 to N do
3 Sample O(Qα ) ⊂O observed sequences s.t. Qα ⊂ J1,MK;
4 S(Qα )← SequenceBreaking(O(Qα ));
5 θ init ← argmaxθ L (θ ;{O(Qα ),S(Qα )}); # MLE provided by Proposition 2
6 θ̂ ← θ̂ ∪ExpectationMaximization(θ init ,O);
7 end
8 θ̂ ∗← argmax

θ̂
L (θ̂ ;O)

Output: θ̂ ∗, a high local maximum of the log-likelihood.

Algorithm 3: SequenceBreaking

Input: O(Qα ), an observed sequence subset of size α

1 for q ∈ Q(α) do
2 J← Sample(J1,Tq−1K); # number of transitions
3 I← /0;
4 for j← 0 to J do
5 i← Sample(J1,TqK) s.t. i ̸∈ I; # transition instant
6 I← I∪ i

7 {S(q)
t }t∈JI j−1,iK← Sample(J1,KK) s.t. S(q)I j−1

̸= S(q)I j−1−1; # choose state

8 end

9 {S(q)
t }t∈Ji,TqK← Sample(J1,KK) s.t. S(q)i ̸= S(q)I j−1−1; # choose final state

10 end
Output: S(Qα ), a randomly sampled state sequences
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Choosing starting values with jittered-center parameters. We compare the pro-

posed methodology with the default strategy used for HMM which consists in selecting

slightly perturbed parameters around their centers, i.e. s.t. each event has equal

probability, similarly to Juan et al. (2004).

Example 2. With K = 2, we wish to randomly sample π s.t. π1 = Sample([ε,1− ε]) and
π2 = 1−π1, with ε ∈]0,0.5].

Example 2 is a specific instance with a Bernoulli distribution. In order to generalize

with K ≥ 2, i.e. to the Multinomial distribution, one solution is to sample from its

conjugate, the Dirichlet distribution. Therefore, we apply a Dirichlet sample for each

set of parameters except the sojourn distribution which we initialize with a Geometric

distribution of parameter p = 0.1.

2.1.2 Results

Not only do the experiments consist of numerical comparison of both methods in finding

the highest likelihood, but also to compare the convergence speed of EM, for three

different datasets, artificial, artificial with noise, and real. The real dataset corresponds

to readmode 1 sequences of the experiment described in the previous section.

Datasets. The first dataset D (a) is artificial, composed of 100 sequences of length 100

each, with K = 5 clusters, G = 5 factors for the observed variable, and parameters

π = (0.2,0.2,0.2,0.2,0.2), {pk(d)} = (G (0.2),G (0.05),N B(8,0.5),P(4),N B(5,0.1))
where G stands for the Geometric distribution, N B Negative Binomial and P Poisson,

A =


0 0.5 0.3 0.1 0.1

0.5 0 0.1 0.3 0.1
0.25 0.25 0 0.25 0.25
0.2 0.2 0.2 0 0.4
0.1 0.1 0.4 0.4 0

 B =


0.1 0.2 0.4 0.2 0.1

0.25 0.2 0.1 0.2 0.25
0.2 0.2 0.2 0.2 0.2
0.35 0.3 0.2 0.1 0.05
0.05 0.1 0.2 0.3 0.35


The second dataset D (an) is generated from the first one by replacing 20% of its

observations at random. The third dataset D (r) consists of the bounded number of

words skipped during an ocular saccade by different subjects for a reading tasks for

which G = 5 and we assume K = 5. There are 2390 sequences of different lengths, an

average of 17 with a standard deviation of 8.
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D (a) D (an) D (r)

Sequence Breaking −15448±2.3 −15785±4.5 −50567±236
Jittered-centers −15452±2.9 −15782±2.6 −50592±274

Table 2.1: Means and standard deviations of maximum likelihood. Significant (<5%)
mean differences are boldfaced. D (a) is the artificial dataset. D (an) is the artificial
dataqet with noise. D (r) is the real dataset.

Global results. For a global analysis, we compute the mean and standard deviation

of all optimal likelihoods for each method and dataset over 100 initializations and a

large number of 1000 iterations of EM. Results are presented in table 2.1.

Local results. For a local analysis, we split the 100 initializations into 10 blocks of 10

and compute the max per block. The goal of this analysis is to assess the performance of

both the methods on finding a high maximum likelihood with the fewest initializations.

For D (a), sequence breaking performed better than the jittered-centers 8 times out of

10. For D (an), 9/10, and for D (r), 6/10. Significant (<5%) to binomial test results are

boldfaced.

Convergence speed. For D (a), on average, it took the sequence breaking initialization

133 less iterations to converge than the jittered-centers. For D (an), it took 305 less, and

for D (r), 44 less iterations on average. Significant (<5%) to t-test results are boldfaced.

2.1.3 Discussion and perspectives

Results discussion. Preliminary results seem to indicate that the initializations pro-

vided by the sequence breaking framework converge more quickly while being stable

with only few initializations. This result is encouraging considering that parameter

estimation with exact inference in Hidden semi-Markov Models is already slowed down

because of the sojourn distribution estimation compared to HMM’s. Indeed, the in-

ference complexity difference is O((M2 +MD2)T ) for HSMM vs O(M2T ) for HMM. At

the moment, the proposed strategy has been tested only for a few datasets, with only

discrete observations and in the case K = G = 5. Performing segmentation in this case

is considered to be difficult as parameter identifiability is shown to be easier for small

values of K and large values of G in Allman et al. (2009) and hence, we expect more

local maxima of the likelihood. Also, we have tried the proposed strategy on different

sequence lengths and different numbers of sequences to try to establish ideal scenarios
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of initialization strategies but we still need to provide datasets with much more variety

to establish reliable conclusions.

Sequence Breaking framework expected behavior. Firstly, α, the number of se-

quences to sample can be seen as a control of the randomness of the initial parameters

since the higher it is, the more the observed process will be close to the real one. In

practise, we have found that a large value of α has higher odds to lead to a large

attraction domain of the likelihood than a small one. On the contrary, a small value of

α has less odds to be attracted by a large attraction domain and might discover more

diverse solutions, better or worse. Secondly, we can explain the quicker convergence of

the sequence breaking framework because the initialization provided is already more

likely since it takes into account observed values.

Early detection of bad candidates. From a time and energy saving aspect, Biernacki

et al. (2003) proposed a framework called emEM which aims at running few iterations

of EM with different starting values, selecting the one with the highest likelihood

before running a big number of EM iterations, using it as a starting value. Similar

strategies have been applied using short runs of Stochastic EM, Celeux and Diebolt

(1987), and Classification EM, Celeux and Govaert (1992), called semEM and cemEM
respectively. These three methods have shown significant improvements compared to

the standard EM for equal processing time. However, this framework has only been

tested for Gaussian mixture models. In practise, we have failed to apply emEM to the

dataset D (r), Figure 2.5 illustrates a track of explanation. It represents the likelihood

over iterations for a selection of EM initializations with 1000 iterations. The selection

was performed such that we track the entire run which had the best likelihood after

x iterations, ∀x ∈ {20,50,150,400,1000}. The two solutions which turned out to have

the highest likelihood after 400 (purple line) and 1000 (red line) EM iterations had

a very poor likelihood in the first iterations compared to solutions which had higher

likelihood in the beginning but lesser at the end of 1000 EM iterations (blue, sky blue

and green lines). Possible explanation is the gradient differences of the local maximum

in the likelihood. It also highlights two clear attraction domains which might be due to

the bimodality of the reader’s HSMMs as we further mention in section 3.

Perspectives. As shown by Meilă and Heckerman (2001), initialization techniques

are data dependent, i.e. we should not expect to find an initialization strategy that
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Figure 2.5: Likelihood over iterations for a selection of EM initializations with 1000
iterations. The selection was performed such that we track the entire run which had
the best likelihood after x iterations, ∀x ∈ {20,50,150,400,1000}.

outperforms all others on all datasets, but a strategy that works well for a large class

of situations arising in practice. We still need to inspect more datasets but also more

initialization techniques such as SEM or CEM, to find out the relevance of the sequence

breaking framework. Finally, we plan on testing the strategy on more datasets, with

multiple output processes, and on continuous data as well.

Additional remarks. Primarily, we would like to note the similarity of the Algorithm

3 with the stick-breaking process view of the Dirichlet process. Similar to the stick

breaking process, the probability of having breaks increases with the number of breaks.

The transitions instants which are sampled uniformly can be related to a uniform

base measure in the stick breaking process. The only difference is that two non

consecutive segments could be of the same cluster since the data is modelled by an

HSMM. Additionally, Biernacki et al. (2003) recalls that in some cases, local maximizers

with a larger attraction region might be preferable because it can be seen as more
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stable. In return, local maximizers with smaller attraction region might be spurious

and not preferred to the previous one even though it could lead to a higher likelihood.

Contribution summary. We proposed a new strategy to search for improved maxi-

mum likelihood of HSMM with multiple sequences categorical data which is a significant

improvement considering that the current Python implementation of HSMM under the

virtual plants library sequence analysis2, as well as the R package mhsmm by O’Connell

et al. (2011) do not provide a random start option.

2.2 Knowledge injection in parameters

In the previous section, we have focused on automatic strategies to provide higher like-

lihood values which is what we commonly find in the literature. Rightfully, automatic

procedures belong to a much global framework and can be adapted to a wide variety of

datasets. However, as we have already mentioned, some strategies work better for some

datasets while other strategies work better for other datasets. In this context, and more

precisely when modeling is application-oriented, we propose a much more manual

approach to perform knowledge injection in the set of model parameters in order to

help the model to find a high likelihood. We distinguish two kinds of knowledge, the

expert knowledge which is application and data related, and the statistician knowledge

which is model related.

Data-related knowledge. The study conducted in Simola et al. (2008) identified 3

states, each with different dynamics. However, since our task is somewhat different,

subjects have no prior knowledge about the topic of the text and hence, their reading

processes is more likely to be guided by the gathered information. We therefore expect

to find more dynamics, and more particularly a strategy slower than the normal reading

strategy. Overall, we can expect to recover 3-5 different reading strategies.

Statistician knowledge. The goal of the statistician knowledge is to help EM to

converge quicker, or to skip local maximum or simply to dismiss inflection points,

i.e. when the gradient cancels out, of the likelihood. In practise with HSMM, it may

corresponds to several techniques:

2https://github.com/openalea/StructureAnalysis
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• set the support of sojourn distribution. In HSMM, the sojourn distributions are dis-

crete. Hence, there are no distinct localization and scaling parameters. To counter

this in practise, adhoc procedures are used which introduce a shift parameter and

test for the most likely distribution for each shift of each distribution. In practise,

we found that such procedure often leads to states with very restricted sojourn

support and it might be more useful to set larger support bounds manually.

• set probabilities to 0. In practise, EM converges combinatorial and therefore

NP-hard from an automatic point of view

3 Model selection, parameters, restoration and uncer-

tainty

3.1 Selection

Definition 7. A distribution PO,θ is characterized by its graphical structure G , the set of
hidden states S = J1,KK, the family P = {Pb}b∈B of emission distributions and by the
set of parameters θ ∈Θ,Θ⊂ RK+K2+KG, we call model M , the set of family distributions
s.t.

M (G ,S ,P) = {PO,θ |θ ∈Θ(G ,S ,P)}

Concretely in HSMM the graphical structure G is fixed while P and K should

be determined. In this part, we address the problem of selection in general. Most

commonly, the task is to perform model selection. This area is well-defined and mostly

consists in selecting the number of hidden states, the graphical structure, the emission

distribution family and structure, or the constraints on the transition matrix. While

the last model selection issues are fixed for us, regarding the data and the knowledge

about the application, the primary problem of selection of the number of hidden

states is addressed hereafter using information theory-based criterion. Another less

common approach is to perform a likelihood ratio test to assess a model’s superiority,

we refered to Giudici et al. (2000) in the context of HMM, but we did not find the

existence of such test for HSMM. Additionally, as it was previously introduced, the

proposed forward selection strategy requires selecting data filters as well as output

processes. On the first hand, assessing a preprocessing token in a supervised context is

straightforward since the end goal is always assessed by a performance measure. On the

other hand, the assessment of a preprocessing token in an unsupervised task is lead to
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pure interpretation. As a matter of fact, if changes occur in the data, the criterion cannot

be compared. After recalling some model selection criterion, we propose heuristics to

face these kind of issues.

3.1.1 Model selection criterion

Quantitative model selection criterion. The Bayesian Information Criterion (BIC)

of a model M selects the most likely model conditionally to the observations O =

{On}N
n=1 and can be seen as an approximation of the integrated likelihood. We follow

Koller et al. (2009) and define the BIC as:

BICO(M ) = LM ,X(θ̂)−
log(N)

2
dM ,

where N is the number of observations in O and dM is the dimensionality, i.e. the

number of free parameters associated with the model M .

The Integrated Completed Likelihood (ICL) introduced by Biernacki et al. (2000)

originates from a classification perspective, its goal is to find the model which separates

best the hidden states.

ICLO(M ) = LM ,O,ŝ(θ̂)−
log(N)

2
dM

= LM ,O(θ̂)+H
θ̂
(ŝ|O)− log(N)

2
dM

(2.1)

where H
θ̂
(ŝ|O) is the conditional entropy which measures the disorder (uncertainty)

of ŝ conditionally to O, and ŝ being the restored state sequence via the Viterbi algorithm.

Qualitative selection criterion. As stated in Burnham and Anderson (1998), if a

model makes no sense regarding the application, it should not be a part of the solutions.

As a consequence, we set up practical data-dependent as well as parameters-dependent

interpretation criterion:

• emission distribution should have an interpretable features regarding reading

strategies and information search strategies that can be found in the literature

while also taking into account the task specificities.

• transition and initialization distributions should be coherent to the task. In an

information search task, with rather short texts, we do not expect users to go back

to a normal reading strategy after being in a decision state. Similarly, we do not
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expect subjects to start with a decision state. Therefore we expect the transition

matrix and initialization distributions to have some (almost) zero values.

• state sojourn distributions should be coherent with the length of sequences

and the expected number of dynamic changes within the same scanpath. As

a consequence, we rejected models which had very short state duration (1-2

fixations on average) together with the ones which had very long durations and

almost no transition. It should be noted that models within the range of the

last case should be treated with particular attention since long state duration

encourages less transitions and therefore less uncertainty, which is directly linked

to the quantitative criterion such as entropy and ICL. In other words, models

with long state duration have a lesser entropy and ICL. Both quantitative and

qualitative criterion should work in harmony for model selection.

• in general, parameters should not be affected and sensitive towards data changes.

For example, a state should not be created to satisfy a specific behavior which

occurs in only few scanpaths.

3.1.2 Selecting data filters, output processes and models: methodology

Comparing data filters. The goal is to choose experimentally whether a data filter

should be applied or not. Let us first denote OF the dataset with all the data, and

OQ ⊂OF , a subset of the data for which a filter has been applied. Note that OF may

already be a filtered subset. The proposed experimental procedure to decide if OQ

should be chosen over OF is bootstrap-based (MacKinnon, 2009) and is described

by Algorithm 4. The strategy consists in learning the parameters θQ,θF on training

samples, OQtrain ,OFtrain respectively, where OFtrain contains some additional data that

has not been filtered and that is not present in OQ (and hence in OQtrain), and then

computing the likelihood on a testing sample Otest that has been unobserved from both

the training sets. The procedure is repeated B times and the filter is accepted and kept

if it exceeds the threshold α.

Comparing datasets with different output processes. Comparing different output

processes leads to comparing different and disjoint datasets. Thereupon, comparing

unequal datasets, models, and parameters but aiming at modeling the same observed

process. For this task, we mainly rely on qualitative interpretation criterion which were
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Algorithm 4: SelectDataFilter
Input: OF , the full dataset,

OQ ∈OF , a filtered dataset,
B ∈ N, a number of repetition,
α ∈ [0,1], an acceptance threshold.

1 i← 0 ;
2 for b← 0 to B do
3 OQtrain ← SampleWithReplacement(OQ)
4 OFtrain ←OQtrain ∪Sample(OF∖Q)
5 Otest ←OF∖Q∖Ftrain

6 θ̂F ← ExpectationMaximization(OF)

7 θ̂Q← ExpectationMaximization(OQ)
8 if LOtest(θQ) > LOtest(θF ) then
9 i← i+1

10 end
11 end
12 if i/B > α then
13 O∗←OQ
14 else
15 O∗←OF
16 end

Output: O∗, the best dataset.

cited before. Moreover, we still use conditional entropy of the restored state sequence

which we use as a measure of disorder with respect to the hidden states segmentation.

Selecting the number of hidden states. An experimental comparative study of the

selection of the hidden state number in HMM using information theory-based criterion

has already been proposed by Celeux and Durand (2008). The authors showed that

BIC and ICL were performing well and had similar behaviors in mixture models, that is

ICL favors models that partition the data with the greatest evidence from the hidden

states whereas BIC has a tendency to overestimate the complexity of the model. They

also showed promising results regarding likelihood cross-validation criterion. However,

the likelihood cross-validation was omitted in our comparative study since it is much

less computationally efficient.

Comparing different initialization strategies. The comparison of different initial-

ization strategies relies on the search of a higher likelihood discussed in section 2.
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However, further we discuss some tracks of comparison about information theory-based

criterion.

3.1.3 Application to Eye-movement data

Data, output process and model selection results are reported in Table 2.2. The first

set of columns represent meta-data about the model and the second set represent

quantitative criterion. Each line corresponds to a combination of data, output process,

initialization technique and number of states. Hence, the table is split in four sets of

rows that aim at finding:

1. the best data,

2. the best output process,

3. the right number of states,

4. the right initialization method.

We started with the most simple set of preprocessing and modeling tokens and tried

to complexify at every step. If it was improving some quantitative and/or qualitative

criterion, we kept the preprocessing token otherwise we rejected it and tried some other

one, and so on. Hence, we started by using all the data, the simplest output process,

5 states. The number of states can be justified combining Carver’s reading strategies

along with Simola’s reading processes in information search task, we expected 4-5

states: a slow processing strategy between learning and rauding, rauding, skimming,

scanning and decision.

Datasets.

• Table 2.2 - row 1: we started with All data: 42491 fixations over 2565 sequences.

• Table 2.2 - row 2: since in practise, some scanpaths were irrelevant, see section

1.3, we applied a Double human filter (DHF). 175 scanpaths were rejected. The

test by bootstrap presented in Algorithm 4 showed that the double human filtered

dataset performed better on the test set 82% of the time. Hence, we decided to

keep this data filter. There were 2390 sequences and 39564 fixations left.
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• Table 2.2 - row 3: on top of the DHF, we added a subject-related filter in order

to filter out subject 4, motivated by its atypical behavior. The subject 4 used much

more fixations than the average, 31.1 ± 9.3 vs. 16.5 ± 8.5. Hence 135 scanpaths

were removed. The bootstrap test showed that the additional filter performed

worse 94% of the time. Even though, this subject was taking much more fixations

than the others for the same task, this result highlights the stability of HSMM

learned on the DHF dataset and shows that such specific reading mechanisms are

already included in the current Markovian regimes that only affect the model with

more transitions and/or longer sojourn state durations. Subject 4 was therefore

kept.

Output process. We tried the output processes presented in section 1.3: a set of

output processes based on low-level features presented in Simola et al. (2008) (Table

2.2 - row 4), and a single high-level output process namely the Readmode with 4

different sets of levels in order to handle different aspects of the modeled task (Table

2.2 - row 5-7).

• With a much more complex model, 65 free parameters (row 4) versus 29 (row 2),

the output processes used in Simola et al. (2008) showed to have a slightly better

discriminant power when comparing entropies (10104 vs 10771). Moreover, the

model were poorly interpretated since all sojourn durations were of 1-2 fixations

on average.

• The goal of Readmode 2-3 (section 1.3) (rows 5-6) was to extend the Readmode

factors. However, it was shown to have a lesser discriminant power in terms of

entropy (11581 and 11165 vs 10771) despite having many more parameters (36

and 40 vs 29).

• The Readmode 4 (row 7) was designed to overcome a drawback of Readmode

1 (row 2): the rauding strategy could only be explained by manually merging

two states (see section for a more detailed explanation 3.2), hence Readmode 4

regrouped both refixations and short forward saccades in order to simulate the

rauding state dynamics. This solution showed large increases in log-likelihood as

well as BIC and ICL, however, the model was not interpretable from qualitative

criterion. There were redundant reading dynamics and the merging of refixation

and short forward saccade made it impossible to dissociate strategies with back-
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ward and refixation saccades from strategies with backward and short forward

saccades. Hence we decided to keep Readmode 1.

Number of states. 3 to 6 number of hidden states were tested (rows 2, 8-10). The

model with 5 states performed better on all criterion (log-likelihood, BIC and ICL)

together with the qualitative interpretation of the model. However, as we will discuss

subsequently, the true reading processes seemed to indicate that two states are closely

linked and should be merged even though they could not be recovered by learning

a 4 states model. Models with 6 states did not lead to models with any possible

interpretability.

EM initialization strategy. Finally, the knowledge injection (KI) and sequence break-

ing (SB) initialization strategies were compared (rows 2, 11-15). Moreover, we also

tried to learn 3-6 states models with the sequence breaking strategy as a validation on

the number of states. First, we found a better likelihood and BIC for a 6-state model,

whereas the data and task did not seem to indicate many reading strategies in accor-

dance with Celeux and Durand (2008): BIC might not always be enough penalized.

Additionally, we found 2 models (rows 12,13) with 4 states with a lesser entropy and a

higher ICL than the model learned with knowledge injection (row 2). More particularly,

the model row 13 outperformed all others based on the entropy and ICL. Nevertheless,

this model is presented section 3.2 as an example of a spurious maximizer with no

interpretation power. The model row 12 resulted from a large attraction domain of the

likelihood and is also presented subsequently and has a high interpretation power such

as the model row 2. In conclusion, both BIC and ICL performed well and bad on some

cases. Sometimes BIC was not penalized enough. Sometimes ICL was too penalizing.

We kept models corresponding to rows 2 and 12 that both had a high BIC and ICL.

They are subsequently named "Model 1" and "Model 2" respectively.

3.2 Model parameters

In this section, we describe the two models that were considered plausible (Table

2.2 rows 2,12), both from quantitative and qualitative point of view. We also briefly

mention a model (row 13) with good quantitative criterion but poor qualitative criterion

as an example of a spurious maximizer.



80 Eye-movement analysis using Hidden semi-Markov Models

Parameters interpretation. First and foremost, it should be noted that parameter

interpretation relies on the asymptotic property that the MLE estimators of the parame-

ters converge to the real parameter. In practise, the presented models and parameters

are therefore an approximation of the truth, they do not claim to fit the data perfectly

or to describe the true reading processes. The proposed modeling and analysis aims

at modeling reading processes/strategies through the hidden states of the HSMM.

Therefore, each hidden state represents a reading strategy, and each strategy has its

own probabilities to start, given by the initial probabilities, its own probabilities to

transit to other states given by the transition matrix, its own sojourn duration given by

the state sojourn distribution and its own Readmode (reading dynamics) pattern, given

by the emission probabilities. Moreover, transition probabilities should be interpreted

with caution. For example, a probability of 0.8 to transit from a scanning strategy

to a rauding strategy does not necessarily means that it will happen for 80% of the

scanpaths. Indeed, most of the time the trial could just end with scanning strategy. For

a complementary indicator, we also provide counts based on hidden state restoration.

States 1 & 2 (NR) 3 (SR) 4 (IS) 5 (SC)
Initial probabilities .53 (1219) .25 (324) .22 (847) 0 0

Transition probabilities NR 0 1 (6558) 0 0 0
.74 (5339) 0 0 .21 (1190) .05 (353)

SR 0 0 0 0 1 (162)
IS 0 .07 (3) 0 0 .93 (23)
SC 0 0 0 0 1

Sojourn Distribution G(.13) NB(33,.77) NB(3.3,.40) G(.12)
Mean ± Std 7.7 ± 3.3 11.1 ± 3.6 5.4 ± 3.2 8.3 ± 7.8

Readmode Bwd++ .03 (195) .01 (26) .04 (366) .05 (280) .21 (1715)
Bwd+ .02 (190) .01 (76) .03 (274) .01 (74) .05 (352)

Refixation .65 (5989) .03 (62) .10 (1109) .26 (1738) .18 (1302)
Fwd+ .30 (2259) .25 (1765) .25 (2690) .18 (1082) .13 (875)

Fwd++ 0 (0) .70 (5470) .58 (5611) .49 (3050) .43 (3013)
Total counts 8633 7399 10050 6224 7258
Final state 0 1 685 1166 538

Table 2.3: HSMM parameters for model 1, the hand-crafted local maximum, with
counts in parenthesis. NR: normal reading, SR: speed reading, IS: information search,
SC: slow confirmation, Bwd++: long regression, Bwd+: short regression, Fwd+: short
progression, Fwd++: long progression.

Observation distributions and latent states. Over the 39564 fixations, 7% of them

were long regressions, 2% short regressions, 26% were refixations, 22% were short

progressions and 43% were long progressions. It should be noted that these statistics

are slightly different than what is found in the reading literature where usually 10-15%
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States 1 (NR) 2 (SR) 3 (IS) 4 (SC)
Initial probabilities .72 (1317) .26 (1068) .02 (5) 0 (0)

Transition probabilities NR 0 .23 (53) .77 (463) 0
SR 0 0 0 1 (425)
IS .76 (141) 0 0 .24 (71)
SC 0 0 0 1

Sojourn Distribution NB(1.24, 0.15) NB(67,0.85) NB(1.22, 0.22) NB(0.34, 0.14)
Mean ± Std 8.1 ± 6.9 13.1 ± 3.7 5.2 ± 4.3 12.2 ± 9.2

Readmode Bwd++ 0 (0) .05 (557) .11 (547) .21 (1478)
Bwd+ .01 (245) .04 (449) 0 (0) .05 (272)

Refixation .33 (6183) .14 (1750) .33 (1080) .18 (1187)
Fwd+ .31 (4818) .24 (3010) .04 (22) .14 (821)

Fwd++ .34 (5766) .53 (7228) .52 (1843) .42 (2308)
Total counts 17012 12994 3502 6066
Final state 942 696 256 496

Table 2.4: HSMM parameters for model 2, the local maximizer with large attractivity.
NR: normal reading, SR: speed reading, IS: information search, SC: slow confirmation,
Bwd++: long regression, Bwd+: short regression, Fwd+: short progression, Fwd++:
long progression.

1 (NR?) 2 (SR?) 3 (?) 4 (SC)
Initial probabilities .11 (165) .43 (1044) .45 (1177) .01 (4)

Transition probabilities NR? 0 (0) 0 (0) .05 (4) .95 (82)
SR? 0 0 0 1 (610)

? .62 (941) .38 (236) 0 0
SC 0 0 0 1

Sojourn Distribution NB(17, 0.41) NB(1.92, 0.17) 1 NB(0.36, 0.15)
Mean ± Std 26.2 ± 7.9 10.3 ± 7.4 1 ± 0 12.8 ± 9.2

Readmode Bwd++ .02 (413) .02 (170) 0 (0) .17 (1999)
Bwd+ .01 (237) .03 (353) 0 (0) .04 (376)

Refixation .35 (6233) .18 (1430) .63 (940) .19 (1597)
Fwd+ .23 (4099) .28 (3371) .25 (237) .13 (964)

Fwd++ .38 (7147) .49 (5976) .12 (0) .47 (4022)
Total counts 18129 11200 1177 8958
Final state 1018 670 0 702

Table 2.5: HSMM parameters for model 3, the spurious local maximizer. NR: normal
reading, SR: speed reading, IS: information search, SC: slow confirmation, Bwd++:
long regression, Bwd+: short regression, Fwd+: short progression, Fwd++: long
progression.
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of fixations are regressions, Rayner (1998), and only 15% are refixations, O’regan

et al. (1984). A possible explanation is that texts present more acronyms and area-

specific words with a low word frequency than standard tasks in literature. Such

words are known to be factors of refixations, Sereno and Rayner (1992); Rayner and

Well (1996). Another possible explanation is our fixation-to-word implementation

discussed in section 1.2 which keeps the word with the highest interest in case two

words are in the same window. This word is most likely the word with the lowest

frequency. Therefore, it is possible to wrongly assign a refixation when it might not be

one. However, since the proposed modeling focuses on the eye-movement dynamics

as a whole, the identification of the processing states should not affect but simply be

taken into consideration for reading strategy identification.

Model 1 , presented in table 2.3 (row 2), was found to have 5 states using quantita-

tive criterion. The two first states, presented a different Markovian dynamics, one was

mainly composed of refixation (0.65), short forward saccades (Fwd+) (0.30), while

the second was composed of short forward saccades (0.25) and mainly long forward

saccades (Fwd++) (0.70). Both had very few backward saccades (Bwd+) (0.04)

combined on average, and more interestingly. Both models had a short duration but

very high probability to loop, 1 from state 1 to state 2 and 0.74 from state 2 to state 1.

Even though they had different Markovian dynamics, from a eye-movements dynamics

point of view, the states clearly describe what we termed as normal reading (NR) or

rauding, using the terminology found in Carver (1990). Moreover, the combination of

the two states is corroborated by the model 2 (row 12), presented in table 2.4, which

also recovered a state with very similar parameters, a probability of 0.72 to begin the

assignment, close to 0.78 for model 1. This state was almost equally (≈ 0.33) composed

of refixations, short forward saccades, long forward saccades and very few backward

saccades. It can be related to reading word-by-word.

In both models 1 and 2, readers began in the second state with a probability of 0.25.

They had more backward fixations than in the normal reading state, fewer refixations,

compared to the total number of backward fixations and refixations, and essentially

long forward saccades (0.58 and 0.53) rather than short forward saccades (0.25 and

0.24). As a result, we labelled the state speed reading (SR).

The dynamics of the third state were slightly different for both the models. Neither

had any significant short backward saccade, but mainly refixations (0.26 and 0.33) and

long forward saccades (0.49, 0.52). Model 1 had many more short forward saccades

than model 2 (0.18 vs 0.04) while model 2 had much longer backward saccades
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(Bwd++) (0.05 vs 0.11). Following the idea of the dynamics mainly expressed by

model 2 and lightly by model 1, we labelled the state information search (IS) because

of the low probability of short backward and forward fixations. The process can be

opposed to normal reading.

Finally, the fourth state was the same in model 1 and 2. It had many long backward

saccades (0.21), and long forward saccades (0.42, 0.43) and not many short backward

saccades (0.05), refixations (0.18), or short forward saccades (0.13, 0.14). Plus, as it

was used as a final state, it was referred as slow confirmation (SC).

Transition probabilities. Let us first be reminded that, processing states last for

several fixations and their influence survives across saccades, as pointed out by the

study of Yang and McConkie (2005) which encourages us to model their associated

duration.

Both the models recovered a sojourn distribution for normal reading state with

about 8 fixations but different standard deviations, 3.3 (model 1) vs 6.9 (model 2).

They also indicated longer sojourn duration in speed reading state, 11.1 and 13.1

fixations on average with a small standard deviation of 3.6 and 3.7 respectively. Both

found information search state to be the shortest with around 5.3 fixations. Slow

confirmation had a mean sojourn of 8.3 for model 1 and 12.2 for model 2. Both had

large standard deviation (≈ 8.5), indicating very versatile uses.

Figure 2.6 represents the automaton of the HSMM states transitions for model 1,

figure 2.6a and model 2, figure 2.6b. Both transition matrices indicate that the process

had a left-to-right tendency, i.e. it starts in normal reading or speed reading, may go to

information search if it started in normal reading, to finish in slow confirmation state.

While it rarely goes backward, except for the information search to normal reading

in model 2 with a probability of 0.76 but few occurrences, 141 times. Another key

difference is that in model 1 state transitions from normal reading are much more

frequent whereas it may be terminal in model 2 due to the higher standard deviation of

the strategy’s duration. As a consequence, the information search strategy is much more

terminal in model 1 than 2, noting that in both cases, the subject takes his decision in

almost every state. Hence, the slow confirmation state does not characterize a decision

state but rather a state when decision is ambiguous and requires many more fixations

to reach the final decision.

Main differences with the study conducted by Simola et al. (2008) lie in the way

strategies are used and their duration. Unlike the study of Simola, the subjects of the
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(a) Model 1 state automaton

(b) Model 2 state automaton

Figure 2.6: Automatons representing hidden states parameters for model 1 and 2.
Each state is represented by a box of different color with its label and the mean and
standard deviation of the dwell times below. Arcs between two states represent the
probability of transit from one state to another and the associated count in parenthesis.
A solid-contoured box indicate that the state is usually terminal whereas a dashed-
contoured box indicate that the state is rarely or not terminal. Note that for model 1,
both transition probabilities and sojourn duration were recomputed after merging the
two corresponding states.
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current study had no prior information about the difficulty of the task. Hence they most

likely started with a normal reading strategy until they assessed its difficulty, whereas

subjects in Simola’s study mainly started with a scanning strategy. This may also explain

the differences in dwell times. The study of Simola suggested shorter durations for the

scanning state (2.8s ± 2.3 for a Q&A task) whereas more than two time longer (6.1s

± 5.1) reading states were documented for the same task. On the contrary, our study

suggested that speed reading was longer (2.4s ± 1.5) than normal reading (1.7s ± 1.3).

Besides, global differences on the reading strategy duration may simply be explained

by the length of the texts and language specifications, 58 words and 580 characters on

average in the study of Simola where texts were in written Finnish, when it was only

30 words and 161 characters on average in the present study that was conducted in

French.

Model 3 - the spurious local maximum. Table 2.5 represents the model parameters

of the spurious local maxima. The spuriousness can be assessed when focusing on the

transition matrix and sojourn distribution. First, it can be seen that state 3 was an

initial state with a starting probability of 0.45, then lasted for only one fixation (not

random) before transiting to state 1 or 2. State 1 had a very long duration, 26.2 ± 7.9

and was rarely exited. State 2 was exited more often (610/1628) to end up in state

4. The states could not be labeled into meaningful reading strategies based on their

readmode factors except slow confirmation. The low amount of transitions and the

weak possibilities offered by the model 3 explain the low uncertainty regarding the

state choice and therefore the low entropy and ICL. This analysis highlights that ICL,

in the context of HSMM, might be too penalized and it could be beneficial to perform

model selection using BIC instead.

3.3 Restorations

In this section, we provide examples of restored scanpaths for both model 1 and 2,

using the Viterbi algorithm presented in Chapter 1, section 3.6, to discuss practical uses

of reading strategy before showing concrete effects of uncertainty on restoration. Note

that gross patterns of strategies were already highlighted by counts in Tables 2.3 2.4

and discussed in the previous section.
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Scanpaths restorations. Figure 2.1 provides a comparison of restoration with model

1 vs model 2 for several scanpaths, with several behaviors. The first scanpath restored

with model 1, figure 2.7a, and model 2, figure 2.7b, presents a subject who started

with a normal reading strategy where words were processed one by one with several

refixations before transiting into a slow confirmation strategy from which backward

(short and long) fixations are typical. The main difference between the two models

lies in the necessity of an intermediate information search fixation because the model

2 forbids fixations from normal reading to slow confirmation. The second scanpath

restored is presented in figures 2.7c and 2.7d. Both the models recovered the same

hidden states, the readers started with a word-by-word normal reading process, before

transiting to an information search strategy and performing few refixations with a long

backward fixation on a past location of the text which probably helped them to take the

decision. Indeed, Shimojo et al. (2003) showed that participants tended to look more

often at the target before they made their decisions. This may also be corroborated by

the studies of Frazier and Rayner (1982); Ehrlich and Rayner (1983); Blanchard and

Iran-Nejad (1987) in which authors assessed backtracked eye-movement is performed

on misunderstood area which has been memorize. In this case, the participant goes

back to the beginning of the second line stating "strike claims" when the topic "Help

refugees" was not related. The third scanpath restored, figures 2.7e and 2.7f shows four

different state transitions, notably made around target words such as "paleontology"

when the topic is "Farming syndicate". Both models detected changes in dynamics and

therefore state transition at almost the same places. However, model 2 did not end

with a slow decision state regarding that there was no arc from normal reading to

slow decision. Finally, the fourth scanpath, figures 2.7g and 2.7h show identical state

restorations for both the models. The participant started with a speed reading state

in which long progressions and no refixations were typical, before ending in a slow

confirmation state in which he re-passed on most of the text, probably due to the lack

of information gathering in the previous state.

Uncertainty and state profile exploration. In order to assess the uncertainty of a

state sequence restoration along with the potential candidates, Guédon (2007) proposed

a tool in order to compute the max posterior state probability at each time t, i.e. at

each fixation, for each state k, given by:

s(k)t = max
s1:t−1,st+1:T

P(S1:t−1 = s1:t−1,st = k,St+1:T = st+1:T |O1:T ).
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(a) Model 1 - Subject 4 - "Help refugees" (b) Model 2 - Subject 4 - "Help refugees"

(c) Model 1 - Subject 2 - "Farming Syndi-
cate"

(d) Model 2 - Subject 2 - "Farming Syndi-
cate"

(e) Model 1 - Subject 4 - "Modern Art" (f) Model 2 - Subject 4 - "Modern Art"

(g) Model 1 - Subject 18 - "Computer sci-
ence training"

(h) Model 2 - Subject 18 - "Computer sci-
ence training"

Figure 2.7: Scanpath restoration samples. Left column scanpaths are restored with
model 1 while right ones are restored with model 2. Red: normal reading, green: speed
reading, teal: information search, purple: slow confirmation.
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In other words, the methodology is based on keeping the most likely state sequence

conditionally to the observed sequence, restored by Viterbi, with the additional particu-

larity of investigating the probability of all the states for a fixed time t and repeating

the process for each t ∈ J1,T K.
An application of this state profile exploration is showed in Figure 2.8 for model

1, 2.8a and model 2, 2.8b. Note that for model 1, state 0 and 1 could not be merged

into one state due to software specifications. Besides, it should be clear that, the bigger

the difference is at every time index between the max posterior and its candidate, the

better it is. Hence, considering Figure 2.8a where both states 0 and 1 (green and red)

are merged, we can see that candidates are not likely along the trial even though state 4

(in black) becomes a likely candidate after fixation 5. Nonetheless, for model 2, Figure

2.8b shows that along the entire trial, state 1 (in red) was a very likely candidate; a

source of high local entropy for the corresponding trial.

(a) Model 1 (unmerged states 0 and 1) (b) Model 2

Figure 2.8: Max posterior state probability over fixations for a scanpath restoration
with model 1 and 2, subject 1 - "Planting flowers" - Unrelated text to the topic.

Choice of the model. Along the study, model 1 and 2 performed almost similarly in

terms of quantitative criterion, parameter interpretability and scanpaths restorations.

However, model 1 had a better BIC (-99798 vs -101804) which was shown to be more

reliable than ICL for HSMM in the previous study. In terms of model parameters, model

1 had a shorter speed reading state and a lesser standard deviation on the duration of

the normal reading state, making it a more stable state. Finally, restorations show small
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improper uses of states due to different constraints on the transition matrix. All these

reasons lead us to keep model 1 for the rest of the study.

Contribution summary. In this chapter, we proposed to identify and characterize

reading strategies using HSMM. This process was rigorously tied together with a

methodology proposing data selection, output process selection and model selection.

Model Parameters were learned on the basis of two different and novel strategies:

random EM initialization using the sequence breaking strategy as well as knowledge

injection in the model parameters. This approach highlighted that a local maximizer

with a large attraction domain might sometimes be preferable rather than a spurious

local maximizer with a smaller attraction area. This statement is particularly true re-

garding the ICL criterion in the context of HSMM which was shown to underfit the data,

indicating a preference to use the BIC, or another methodology such as cross validation

criterion, Celeux and Durand (2008). Along the study, the two models learned with

different strategies were opposed, showing high similarities and encouraging results

in terms of interpretation. However, the retained model still needs to be assessed and

interpreted using more diverse covariate such as eye-movement indicators, textual

information or electroencephalograms, which is precisely the topic of the next chapter.
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In this chapter, we propose to use the model retained in the previous chapter

to perform scanpath segmentation and, a posteriori, analyze model covariates. The

covariates considered are of different forms. In a first part, we discuss simple eye-

movement related covariates (internal) such as fixation duration and saccades per

reading strategy. In a second part, we use the text read by the participants to enrich

reading strategies with semantic information acquisition indicators. Moreover, we

explore inter-individual behavior differences regarding reading strategies. Finally, in

a third and last part, we propose to use the concomitantly acquired multi-channel

EEG and link it with brainwaves by the means of a time-frequency decomposition of

the signal in order to relate the strategies with well known neural functions such as

memory. Additionally, information diffusion is explored by inspecting inter-channel

correlations.

1 Eye movement covariates (interval covariates)

In the previous chapter, we discussed the selection of the output process. We retained a

process which we called readmode that is a truncated measure of the number of words

skipped during an output saccade. We also found out that output processes used by

Simola et al. (2008) for a similar task - the fixation duration, the saccade amplitude,

its direction and a boolean holding the information if the currently fixated word had

previously been or not - did not have any discriminant power on our data. In this

section, we compute these indicators per reading strategy after performing a state

restoration, which we call a posteriori analysis. We also relate strategies to the one

based on reading rates (Carver, 1990).

Assessing reading rate. The reading rate is measured in words per minute (wpm).

At a macro level, it can simply be measured by how far (in words) can a person go

in a text in how much time. To measure the reading speed in a multi-sequence task

like ours, where scanpath are also being segmented, we need to focus on the micro-

measurements of the reading rate. At a micro level, we measure the number of words

skipped in one saccade plus one, relating to the fixed word, with respect to time. The

elapsed time corresponds to the duration of the previous fixation plus the duration

of the outgoing saccade. Additionally, words that have already been read (or skipped

in a previous saccade) do not increase reading speed. Therefore, if a strategy lasts

three fixations, the reading rate is computed as the number of words skipped plus one
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during each outgoing saccade divided by the duration of the three fixations plus the

associated outgoing saccades. However, since we work in a multi-sequence framework

and that the average speed is not equal the average of the speeds, number of words

and durations were summed over all reading strategies in all scanpaths, then divided.

Character increment / word increment ratio. We also provide a character incre-

ment per word increment ratio (CIWIR), a ratio between the number of characters

skipped vs the number of words skipped in a saccade. The CIWIR measures either or

not the words skipped in a reading strategy are semantically interesting. A low CIWIR

means that words read in the reading strategy were short, which often corresponds to

stop words, i.e. words which are very common and usually not specific to any topic.

A high CIWIR means that words read were long and, by contrast, often meaningful

regarding a specific topic.

Results. Eye movements covariates per reading strategies are reported in Table 3.1.

Normal Reading Speed Reading Information Search Slow Confirmation
Fixation duration (ms) 181 ± 68 178 ± 58 193 ± 58 190 ± 69
Saccade amplitude (px) 119 ± 101 153 ± 95 137 ± 105 143 ± 97
Reading speed (wpm) 353 615 500 280

CIWIR 3.7 ± 3.9 6.3 ± 4.7 5.5 ± 5.1 7.5 ± 5.9
Saccade directions

Forward 0.74% (11924) 0.62% (6232) 0.51% (3189) 0.44% (3169)
Upward 0.01% (146) 0.02% (213) 0.01% (82) 0.09% (664)

Backward 0.13% (2003) 0.06% (659) 0.08% (499) 0.19% (1368)
Downward 0.12% (1941) 0.23% (2291) 0.21% (1277) 0.21% (1518)

Last 0% (1) 0.07% (684) 0.19% (1166) 0.07% (538)

Table 3.1: Eye-movement indicators per strategy.

Firstly, fixations tended to not last long in normal reading (NR) (181ms). Rayner

(1998) indicated shorter fixations in association with easier tasks. This word-by-word

reading strategy may be confirmed by short saccade amplitudes (119px) as well as

the saccade directions, mostly aiming forward (74%) with seldom backward fixations

(13%). A low CIWIR of 3.7 suggested that words skipped were essentially stop words.

There were also few downward fixations (12%) pointing at the slowness of the process.

The reading speed was 353 wpm, close to the 300 wpm suggested by Carver (1990).

The strategy is never terminal which may be explained by the fact that is it a central

process and therefore used as an initial strategy in information search tasks.
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Secondly, speed reading was characterized by short fixations (178ms) as well

as long saccade amplitudes (153px), symbolizing an easy task, the easiest. This is

especially highlighted by the reading speed of 615 wpm, which can be compared to

the scanning strategy of Carver that is used for lexical access. The high CIWIR (6.3)

pointed out that words skipped were longer than average (5.3 characters per word).

Hence, this possibly means that word skipped could be essential to the understanding

of the text. The saccade directions were mostly forward and downward (total 85%)

promoting a rather fast forward behavior, which is contrary to the scanning state found

by Simola et al. (2008) where directions were random (≈25% each). We explain this

phenomenon by the difference of the tasks that was asked to readers. In our study, the

global saccade behavior was mostly progressions with very few regressions.

Thirdly, information search had long fixations (193ms), average saccade ampli-

tudes (137ms) and CIWIR (3.7) but a quick reading speed (500 wpm). We make the

analogy with the skimming strategy of Carver, achieved at 450wpm, that consists in

semantic access to words, and that gathers just enough information to know what the

text it about. It has similar saccade directions as speed reading but with less forward

saccades and more last fixations.

Lastly, slow confirmation was related to long fixations (190ms) and rather long sac-

cade amplitudes (143px). The reading speed was slow (280wpm), which is explained

by mostly re-reading as we do take into account re-read words in the computation of

the reading speed. It is slower than normal reading and therefore integrates the ability

of learning and answering text comprehension questions as presented by Carver. We

relate this to the (slow) decision making process since it is mostly a terminal state.

Most of the upward saccades but also a lot of backward saccades were achieved in this

state, characteristic of re-reading.

Conclusion. Even though reading strategies were not discriminated with a HSMM

and the low-level output processes presented in the study of Simola et al. (2008),

we found out that it could be done a posteriori by using a much high-level different

output process. The fact that these low-level variables did not have a (semi)-Markovian

dynamics is a possible explanation of this successful a posteriori segmentation. This

study also corroborates the semantic given to each reading strategy in comparison with

other similar studies.
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2 Text and Subjects (external covariates)

2.1 Types of readers

Uses of reading strategies. The automaton presented in Figure 2.6a shows a broad

range of possibilities concerning strategy usages. For example, the process may start

in normal reading (NR) then go to information search (IS), go back to NR to finish in

slow confirmation (SC). It may also simply start and finish in NR. What strategies are

really used in practice? Are there different clusters of subjects? Both these questions

might be answered by performing a factor correspondence analysis (FCA).

Factor Correspondence Analysis. The FCA proposed by Benzécri et al. (1973) is a

diagonalization of the contingency table, a matrix representing the factor occurrences

of two categorical variables. Each point is then represented in a new space using

eigenvectors. In this space, information is conserved and axis are hierarchized by

contribution to the inertia in the data.

Results. FCA was performed on the subject-reading strategy occurrence matrix. The

projection of subjects and strategies on the first two axis is shown by Figure 3.1. Axis 1

holds most of the inertia, 74.4%, and contrasts readers using normal reading (NR) and

information search (IS) vs those using speed reading (SR) and slow confirmation (SC).

The second axis comprises 25.6% of the variance and brings into opposition SR vs NR

and IS but also SC vs NR and IS. Subjects who are close to a reading strategy tended

to use it more often. For example subject 4 mainly used SC. On the contrary, subjects

located in the center such as subjects 17, 10, 8 can be seen as more versatile.

Conclusion. This study shows a gradient between fast and careful readers which

suggests that readers may be clustered accordingly. Moreover, it also puts forward

that not all sequences are independent and identically distributed, a hypothesis in the

modeling proposed in Chapter 2.

2.2 Types of texts

Formerly, the results presented in Chapter 2 did not explicitly take into account the

effect of the type of texts. In section 1.2, we discussed that the experiments were run

on three types of texts: those highly related (HR) to the topic, moderately related to
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Figure 3.1: Factor Correspondence Analysis of the strategy usage per subject.

the topic (MR) and unrelated (UR) to the topic. 60 of each type were presented to

each subject. Moreover, we chose to split the class HR into HR and HR+, where HR+

directly contains words in the topic. HR+ texts should therefore result in an easier

task. So is, UR texts in which incongruent words to the topic are easier to spot. In this

section, we perform another a posteriori analysis in order to assess quantitatively the

effect of the text type and if reading strategy are used differently in the different type

of texts.

Semantic represent of words. UR,MR and HR texts were clustered in a previous

study, Frey et al. (2013), by using LSA to provide vector representations of words. LSA

was trained on a 24 million-word French corpus composed of all the articles published

in the newspaper Le Monde in 1999. A measure of cumulated cosine was used to

control the semantic relatedness of the texts to the goals. The cumulated cosine is

defined as the cosine similarity between the sum of all words in the text and the sum of

all words in the topic. The cosine similarity simply measures the cosine of the angle

between two vectors, i.e. the dot product divided by the magnitude of the vectors.

Hence, a cosine of 1 shows a great semantic similarity between words while a cosine of

0 means that words are unrelated.
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Results on text type indicators. Indicators per text type are presented in table 3.2.

Unrelated Highly Related Highly Related + Moderately Related
cumulated cosine < 0.1 > 0.4 > 0.4 0.15 < . < 0.3

#trials 802 443 360 785
average #fixations 14.3 ± 7.9 15.5 ± 7.5 15.8 ± 8.6 20.1 ± 8.2

Reading speed (wpm) 485 413 412 399
strategy proportions (#fixations)

NR .39 (4492) .39 (2559) .40 (2287) .42 (6677)
SR .27 (3153) .29 (1919) .28 (1557) .22 (3451)
IS .18 (3153) .16 (1093) .16 (927) .13 (2041)
SC .15 (1706) .16 (1066) .16 (909) .23 (3576)

average instantaneous cosine per strategy
NR .00 ± .05 .18± .25 .22± .30 .10± .18
SR .00 ± .06 .20 ± .26 .24 ± .31 .09 ± .17
IS .00± .07 .25± .29 .27± .32 .11± .18
SC .00± .06 .20± .26 .22± .31 .09± .16

Table 3.2: Text type indicators.

MR texts had much more fixations on average (20.1) than others. Participants

performed one less fixation in UR texts than HR texts, but also had a higher reading

speed, suggesting that the task was easier with UR texts containing incongruent words

to the topic. HR+ texts did not seem easier in terms of number of fixations, but

also reading speed (≈ 410wpm) rather than HR texts, even though they contained

words present in the topic. The reading speed was also slightly less for MR texts than

HR/HR+.

The second section of the table shows the reading strategy proportions in number

of fixations per text. It seems that strategies were used similarly in texts UR, HR and

HR+ with almost equal proportions. The main difference arose from text MR, where

much more time was spent in SC (23% vs 16%) rather than SR (22% vs 28%).

The last section of the table shows the per-trial-averaged instantaneous cosine

between fixed words and the topic of the text for each text type and each reading

strategy. For every trial, only fixed words are taken into account through the instanta-

neous cosine, since semantic information is acquired during fixations and not saccades

(Rayner, 1998). A low instantaneous cosine is better for UR texts, whereas a higher

instantaneous cosine is better for HR/HR+ texts. It has no special meaning for MR

texts since their relation to the topic is usually fuzzy. Globally, results were similar for

text types HR and HR+: the IS strategy had the highest instantaneous cosine which

means that target words were more often fixed in this reading strategy. Then, SR had a

higher instantaneous cosine in HR+ texts than NR/SC (.24 vs .22), whereas NR was

less efficient in HR texts (0.18) than other strategies. It should be noticed that the

results presented also show high standard deviation.
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Assessing state transitions instants. Let us recall the hypothesis of this study: sub-

jects take either positive decisions by detecting target words or negative decisions

by detecting incongruent words. A key study aimed at assessing either or not state

(reading strategy) transitions occurred around target (for texts HR) and incongruent

(for texts UR) words based on the following question: are target and incongruent words

(keywords) the triggers of reading strategy changes ? And how quick are the changes

triggered according to the text type ? In order to answer these questions, a procedure

to detect keywords automatically was first designed.

A new representation of words. In practise, we failed at detecting keywords auto-

matically with a LSA representation, notably incongruent words. This result might be

explained by the poor ability of LSA to find good representations for words which are

not frequent in the vocabulary and for words which might be out of the vocabulary. To

face this issue, we instead used Facebook’s fastText word representations. FastText is

based on a recent neural probabilistic model, namely word2vec, proposed by Mikolov

et al. (2013a,b). This method learns an embedding by predicting the surrounding

words given the context. The context is the current word. Several extensions were then

proposed to come up with memory-efficient representations (Joulin et al., 2016a,b).

FastText also present the main advantage of decomposing each word into a bag of

n-gram characters and then creates sub-word features related to part of speech, or

semantic. Concretely, even words that are less frequent or out of vocabulary get a

good representation by analogy to their neighbors. Mikolov et al. (2018); Grave et al.

(2018) provided pretrained word vectors on tremendous data, such as Wikipedia and

Common Crawl. We used their word vectors in French. Moreover, we used the source

code publicly available presented in Bojanowski et al. (2017) to find representations of

words out of vocabulary.

Experimental procedure. Target words were detected using fastText. For HR and

HR+ texts, we kept the two words which had the highest instantaneous cosine with the

topic. For UR texts, the two less related words to the topic weighted by their frequency

were kept. For MR texts, the most highly related and the least related words were kept

with the purpose of finding words (related or not) which contributed to the decision

making. Since in section 3.3 we have discussed the uncertainty of state restorations and

transition instant, we measured the number of fixations between the transition instant

and the target word to assess the accuracy of the transition. The lesser the distance
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between the transition and to the target word, the better is it. The minimal distance

between the two words and the transition instants was kept.

Results. The results are presented in figure 3.2. Each figure represents the distance

(in number of fixations) between the transition word and the reading strategy preceding

the transition for each text type. Each point therefore represents a frequency and the

regression line per text is shown. A regression with a low slope coefficient typically

shows that transitions occurred more frequently around keywords. This effect is

particularly noticeable for transition occurring from NR strategy in texts UR, HR and

HR+, which seems to point out that beginning with a NR strategy is efficient to find

out keywords in an information search task. The MR slope coefficient is almost 0,

pointing that strategy transitions are not triggered by keywords in MR texts. The slope

coefficient is higher for texts HR and HR+ when transiting from IS strategies than for

UR texts. And this effect is even more present when transiting from SR. It shows that

SR is particularly adapted for the easiest task.

Figure 3.2: Frequencies of the distance between transition word to trigger word in
number of fixations.

Conclusion. The previous studies displayed a gradient in complexity between texts

UR, HR, HR+, MR characterized by:
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• number of fixations,

• reading speed,

• time spent in slow confirmation vs speed reading,

• number of strategy changes,

• effect of trigger words on strategy changes.

Text type differences are shown by several indicators but statistical model (parameters)

are still encapsulating these differences and variations.

Different types of text ? In this study, we proposed to split HR into HR and HR+

texts, but it could be interesting to differentiate subject behaviors according to a

finer clustering. For example, texts could be clustered using a signal representing the

evolution of the semantic relatedness of the text to the topic. A preliminary study has

shown that HR texts could be clustered into three profiles: the one having their signal

increasing by step (keywords with high instantaneous cosine), the one having their

signal increasing with a slope (all words are slightly related) and the one with a saw

signal (words are sometimes not related). Soheily-Khah et al. (2016) notably proposed

a kernel kmeans method for time series clustering.

Including random effects in the model. In order to deal with the subject and/or text

effect, an interesting perspective is to take into account covariates directly in the model

and show how they affect parameters, see Chaubert-Pereira (2008); Chaubert-Pereira

et al. (2008, 2010) for semi-Markov switching linear mixed models, and Peyhardi et al.

(2016) for linear models with categorical response variable. Another possibilities is to

model a mixture of HSMM but leads to high increase in terms of number of parameters

whereas mixed effect models use some tied parameters.

3 EEGs (external covariates)

3.1 Introduction to EEG analysis

The eye–mind link assumption suggests that the location of an observer’s gaze partially

reflects what is being processed in his or her mind at that time (Reichle and Reingold,
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2013). At a micro scale, eye movements represent natural markers for time-locking the

ongoing neural activity with respect to a eye movement events such as fixations. Such

technique is called eye-fixation related potential (EFRP) (Dimigen et al., 2011) and

may be seen at more ecological or natural way to analyze cognitive processes rather

than the other well known method called event-related potentials (ERP) which studies

brain response with respect to a precise stimuli, see Woodman (2010) for reviews on

ERP studies. However, both these techniques rely on time-locking signals and averaging

to bring out specific patterns (Luck, 2014).

Moreover, EFRP is an increasingly popular technique and at the moment, little is

known about reading in more complex settings such as free text exploration (Dimigen

et al., 2011). It relies on the investigation of text comprehension in online task which

could lead to the emergence of specific cognitive processes, Leu et al. (2015). Ecological

studies have already been tackled in the context of EFRP such as the assessment of

working memory with respect to a reading and decide task or a reading and memorize

task, both involving different cognitive processes (Frey et al., 2018).

Another method aims at studying brain oscillations on the frequency domain where

frequency ranges are related to brain waves. For example, processes related with

short-term (episodic) memory may be observed by an increase in the theta band (4-7

Hz), possibly in an anterior limbic system, whereas processes related with long-term

(semantic) memory are characterized by a decrease or suppression of power in the upper

alpha band (8-12 Hz) in a posterior-thalamic system (Klimesch, 1996). Sauseng et al.

(2005) stated that memory is an extremely distributed system with long term memory

primarily located in posterior cortices and accessed from prefontal regions. Hanslmayr

et al. (2011) also found out alpha oscillations in temporal attention. Seidkhani et al.

(2017) observed memory encoding and restitution differences observed in alpha band

using a similar wavelet and network-based method. Alpha frequency has been found to

be under top-down control to increase or decrease the temporal resolution of visual

perception Wutz et al. (2018).

In this study, we make the hypothesis that, at a macro scale, the eye-movement

semi-Markovian dynamics may also be used to segment brain activity into contrasted

reading strategies in terms of EEG patterns. EEGs are time-locked with respect to

phases to extract the cognitive process related to reading strategies. Signals are not

aggregated with mean but with wavelet cross-correlation between channels during

a given phase and a given trial. Wavelet cross-correlations are then aggregated with

weighted average. Hence we do not aim to study an eye-fixation relation potential
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triggered by a given stimuli but a general change of information diffusion in brain

through differences of correlations.

EEGs turned out to be too noisy for observing specific patterns on short signals.

Instead we used a time-frequency decomposition called maximal overlap discrete

wavelet transform (MODWT), Percival and Walden (2006). MODWT is a non orthogo-

nal wavelet transform, compared to the classical discrete wavelet transform (DWT).

MODWT is also invariant by translation. Its coefficients may be computed by the pyra-

mid algorithm Mallat (1999). We used MODWT because their estimators of wavelet

correlation are supperior to DWT’s, Whitcher et al. (2000).

3.2 Introduction to MODWT

In this section, we summarize the work of Whitcher et al. (2000) who provided an

unbiased estimator of wavelet cross-correlation and the corresponding confidence

interval.

Let us define X, a time series of length T . Let

{h j,l}
L j−1
l=0

be the wavelet filter (high-pass filter) and

{g j,l}
L j−1
l=0

the scale filter (low-pass filter), where L j = (2 j−1)(L−1)+1 denotes the width of the

filter at j-th level and L, the width of the initial filter. The associated MODWT scale

and wavelet filters at scale j are respectively

h̃ j,l =
h j,l

2
j
2

and

g̃ j,l =
g j,l

2
j
2

with identical width L j. The MODWT wavelet coefficients noted W j, a vector of size T

are defined as

W (X)
j,t =

L j−1

∑
l=0

h̃ j,lXt−l mod T
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and similarly the scaling coefficients, noted V j a vector of size T , are defined as

V (X)
j,t =

L j−1

∑
l=0

g̃ j,lXt−l mod T.

The MODWT has the following property of the energy decomposition

∥X∥2 =
J

∑
j=1
∥Wj∥2 +∥VJ∥2,

where J is the total number of scales. In other words, MODWT decomposes the variance

without loss of information.

Wavelet estimator of the cross correlation. Let us denote X and Y two time series

that are realizations of size T of Gaussian processes with stationary increments. For

T > L j, an unbiased estimator for the covariance at a given scale between X and Y is:

γXY (λ j) =
1
Tj

T−1

∑
L j−1

W (X)
j,l W (Y )

j,l

for scale λ j = 2 j−1, and Tj = T −L j +1. And estimator for wavelet correlation is then

ρ̃XY (λ j) =
γXY (λ j)

νX(λ j)νY (λ j)
,

with ν2
X =Var(W(X)

j )/2λ j and νY =Var(W(Y )
j )/2λ j the wavelet variance time series X

and Y respectively.

Wavelet confidence interval for the cross correlation. Under the hypothesis that

L > 2d, where d is the max of the orders X and Y, and that the wavelet coefficients

W(X)
j and W(Y )

j is a bivariate Gaussian process weakly stationary with square integrable

autospectra then the wavelet cross-correlation ρXY (λ j) is asymptotically normal and

unbiased. An approximate confidence interval for the wavelet correlation is therefore

ICα [ρXY (λ j)] =

[
tanh

{
h[ρ̃XY (λ j)]−

φ−1(1− p)√
T̂j−3

}
, tanh

{
h[ρ̃XY (λ j)]+

φ−1(1− p)√
T̂j−3

}]
,

(3.1)
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with h(ρ) = tanh−1(ρ) being Fisher’s z transformation and improves the quality of the

confidence interval for small sample sizes, T̂j = Tj−L′j and L′j = ⌈(L−2)(1−2−J)⌉, the

number of MODWT coefficients at scale λ j.

3.3 Methodology

Data acquisition. Electrodes were referenced to head (FCz—ground:AFz). EEG data

were amplified with BrainAmp system, sampled at 1000 Hz, and then filtered with a

250 Hz low-pass filter Frey et al. (2013). The montage is provided in Figure 3.3. Each

trial had a corresponding sequence of 10 seconds and was truncated if the trial was

exceeding this duration. 180 ms of acquisition before each trial is also available. In

total, we had 2390 trials, the same number of eye-movement sequences.

Figure 3.3: EEG montage.

Preprocessing. A first pass of preprocessing was performed in Frey et al. (2013).

On top of that, we ran an automatic channel and/or trial rejection method called

autoreject Jas et al. (2016, 2017). Autoreject aims at finding by cross-validation the

optimal pic-to-pic threshold. Bad channels were then interpolated using spherical spline

interpolation with the python software MNE Gramfort et al. (2013, 2014). Finally, we

chose to remove the baseline activity for each trial on the time domain under the gain

model hypothesis, i.e. we normalized the entire EEG trial using pre-trial start data

(duration 180ms) as "resting state" activity Grandchamp and Delorme (2011).
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Wavelet analysis. We used MODWT with LA(8) wavelet filter to decompose each trial

on the time-frequency domain. The goal is to decompose pairwise correlations patterns

that might not be visible on time domain. The correspondence of the wavelet scale to

frequency brain and therefore brain wave is shown in table 3.3. Brain oscillations are a

widely studied area and the wavelet scale to neural oscillation equivalence should give

some light to our results.

Wavelet scale Wavelet Frequency (Hz) Brain wave Brain wave frequency (Hz)
1 256-512
2 128-256
3 64-128

γ 32-100Hz
4 32-64
5 16-32 β 12.5-30
6 8-16 α 8-12
7 4-8 θ 4-7

Table 3.3: Wavelet scales, their equivalence in the frequency domain, and their corre-
sponding brain waves.

Correlation analysis. Correlation analysis is an efficient way to analyze information

diffusion and activated regions during a given task. As a matter of fact, a highly

correlated region may be seen as an entire area working concomitantly. To this end,

Bassett and Bullmore (2006); Achard et al. (2006) proposed to use small-world brain

networks in fMRI, which relies on graph theory properties (Strogatz, 2001). Small-

world networks were shown to have greater local interconnectivity with inferior mean

path length between any pair of node than a random network (Watts and Strogatz,

1998). Small-world networks have also been used with EEG data Ferri et al. (2007);

Smit et al. (2008).

In Chapter 1 section 2.1, we defined a graph G in the context of dynamic Bayesian

network to be a tuple of vertices V and non-oriented edges E, and so G = (V,E). The

edges were previously oriented while they are not in a small-world network. Given

vertices and edges, the adjacency (square and symmetrical) matrix of the graph can be

obtained by setting an element to 1 if two vertices are linked through an edge. The

degree of a node is the total number of edges connected to it. The shortest path length

between all nodes may also be computed via the well-known Dijkstra algorithm.

Small-world networks allow constructing a sparse anatomical representation of a

graph given significant inter-channel correlations, presented as an adjacency matrix.
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To this end, each pair of correlations is tested, and significance is tested with the

confidence interval provided by equation (3.1) (Whitcher et al., 2000). For each pair

of correlations, if it is significant a 1 is set for the same pair in the adjacency matrix,

otherwise 0. Achard et al. (2006) proposed to choose the minimal correlation threshold

R for the test such that the mean degree of the graph corresponds to the equilibrium of

the small network property i.e. the mean degree is equal to the log of the number of

nodes (channels). The mean degree is a measure of connectivity in the graph and is

the average number of incident for all vertices. In our case, R = 3.4.

The correlation threshold R is chosen according to the wavelet scale having the

highest amount of significant correlations, and hence the highest amount of edges.

Anatomical representation of graphs and channels. The anatomical graph is con-

structed given the adjacency matrix of significant correlations and the channel positions,

thus an arc is a significant correlation. The maximal number of possible pairs with 30

channels is 435. We used the brainwaver R package to represent sagittal and top view.

The procedure is summarized in figure 3.4 for a given wavelet scale and a given

reading strategy.

Figure 3.4: Network construction methodology: Correlation matrix, adjacency matrix
containing significant correlations and corresponding anatomical graph for a given
scale and a given reading strategy.

Correlations per phase. The specificity of our task lies on the decomposition of a trial

into phases, i.e. reading strategies. To this end, we computed the wavelet coefficients

of each channel for each trial and segmented the wavelet coefficients with respect

to phase changes. We then computed cross-correlations for all trials, for a given a
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phase, before aggregating the correlations per trial with a weighted average, the weight

corresponding to the length of the phase.

3.4 Results

Globally, EEG activity was the most salient for wavelet scales 6 (α) and 7 (θ), corre-

sponding to frequency ranges 4-8Hz and 8-16Hz which we relate to theta and alpha

bands respectively. This information can be seen on figure 3.5a which represents the

mean degree as a function of the correlation threshold R for each scale. The higher the

mean degree, the higher the number of arcs, the higher amount of significant corre-

lations there is. The dotted constant line y = 3.4 represent the threshold under which

small-world properties are not estimable. We hence choose the correlation threshold

such that the mean degree is equal to 3.4, a total of 102 edges. This threshold turned

out to be around 0.54 for scale 6 (α) and 0.53 for scale 7 (θ). This information can be

interpreted as "102 correlations are significantly superior to 0.54 for scale 6". Similarly,

102 correlations are significantly superior to 0.50 for scale 5 (β).

The same information is shown on figure 3.5b, decomposed per phase. It can be

seen that normal reading strategy (NR) is equally salient on scales 6 (α) and 7 (θ) and

102 correlations are significant at a threshold R = 0.58. Information search (IS) and

speed reading (SR) strategy both have a very similar amount of correlations and may

be observed on the same scales: 5 (β ),6 (α) and 7 (θ) (mainly 6) with 102 correlations

at approximately R = 0.50. Finally, slow confirmation (SC) is more similar to normal

reading and correlations may be equally observed on scales 6 and 7 and a threshold

of R = 0.55. In order to not complicate interpretability with different threshold per

phases, we chose to represent anatomical maps with the same threshold for all reading

strategies, R = 0.54, corresponding to the general threshold, for which scale 6 has 102

edges. Therefore, for this threshold, there were more correlations in NR and SC rather

than IS and SR. We have previously seen that both these sets of strategy were notably

contrasted by reading speeds. NR and SC are slower strategies than IS and SR.

Anatomical maps thresholded at R = 0.54 for scale 6 (α) are shown on figure 3.6.

For each strategy, on the left: the sagittal view, on the right: the top view. For NR

strategy, the occipital and parietal regions are highly correlated on each side (left/right).

Temporal regions are also correlated with both frontal and parietal regions on each

side. Additionally, left and right parietal regions are also very connected. IS and SR

strategies information diffusion is mainly localized in the occipital area but also in the
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parietal regions. Both frontal and temporal regions are very less connected. Finally, SC

is more similar to NR with a wide variety of local connections in each area but also

towards neighboring areas. The main difference is the lesser amount of connections

between the parietal left and right regions. We may notice that the temporal area is

more connected with the frontal on the right than of the left side.

Anatomical maps thresholded at R = 0.54 for wavelet scale 7 (θ) are shown on

figure 3.7. Correlations for NR strategy are almost identical on scales 6 (α) and 7.

There are just a few less inter-regional arcs but intra-regional edges remains the same.

Both IS and SR strategies have less connections on this scale between occipital and

parietal regions. SC’s map is identical to scale 6.

More anatomical maps on other scales but also correlation matrices are provided in

Appendix B.

3.5 Discussion

Early conclusion. Strategies which requires a deeper sentential integration and nearly

memorization (NR and SC) seem to involve more information diffusion than quicker

reading strategies (IS and SR) is both bands theta and alpha. This difference of

information diffusion is mainly characterized by more intra-connections in the temporal

regions but also inter-connections with both frontal and occipital regions. The right

hemisphere seems to be slightly more activated and is contrary to the study of Nagel

et al. (2013), where authors observed left hemispheric lateralization for verbal working

memory as well as right hemisphere lateralization for spatial working memory.

Thresholding the graph. This work is still ongoing and should be verified with a

highest amount of indicators of small-world properties such as clustering ratio, path

length ratio, clustering-path length ratio (Bassett and Bullmore, 2006; Seidkhani et al.,

2017).

Network random error. We performed a total of 465 dependent hypothesis testing.

Therefore, we induced an error in the network. We tried to apply a Bonferroni correction

for multiple test but it turned out to be too penalizing for high scales and we did

not find any significant correlations even though they were expected. The need

of a test for dependent hypothesis testing is primary since a spurious correlation

might engender much more, its is a current topic of research. To handle conditional
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(a) Per reading strategy aggregated.

(b) Per reading strategy

Figure 3.5: Mean path length of wavelet networks for given a correlation threshold.



110 A posteriori analysis of covariates

(a) Normal reading

(b) Information search

(c) Speed reading

(d) Slow confirmation

Figure 3.6: Anatomical maps (left: sagittal view, right: top view) per reading strategy
for wavelet scale 6 (α band) with thresholded covariance at 0.54. Left map is a sagittal
view, right map is a top view.
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(a) Normal reading

(b) Information search

(c) Speed reading

(d) Slow confirmation

Figure 3.7: Anatomical maps (left: sagittal view, right: top view) per reading strategy
for wavelet scale 7 (θ band) with thresholded covariance at 0.54. Left map is a sagittal
view, right map is a top view.



112 A posteriori analysis of covariates

dependence, Barabâsi et al. (2002) notably provided a sampling method to test the

effect of correlations one by one on the rest of the network. Park et al. (2014) proposed

a new framework to analyze wavelet partial coherence which models direct linear

dependence between a pair of signals and therefore removes to linear effect of other

observed signals.

Phases overlap. One of the drawback of the usage of MODWT on segmented data

lies on the overlap created by downsampling when using MODWT on high scales (low

frequency). Indeed, the higher the scale, the larger the filter and the more neighboring

information is used. This has the effect of creating an overlap between the signal

related to different phases around transitions.

Study of the variance. In an unfruitful study, we tried to perform a wavelet analysis

of the variance. Even though, the study highlighted different variance patterns per

reading strategies, this variance did not seem superior compared to the variance related

to subjects. In an ongoing experiment, we are trying to quantify the contribution to the

wavelet variance of different effects such as texts and subjects by using mixed effect

models.

EM-EEG Delay. Finally, it is known that the brain activity is a delayed consequence

of what the eyes read, the brain then guide the eyes in return with the information

acquired Frey et al. (2013). Figure 3.8 shows a salient delay in the brain activity

regarding what words are being fixed at what time. Our goal is then to incorporate

both eye-movement and EEG data in a single model, taking into account the delay in

order to reduce the uncertainty of the segmentation that was discussed in Chapter 2.

This topic is the object of Chapter 4.
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Figure 3.8: EEG recording and its wavelet decomposition given at bands θ ,α,β ,γ−,γ+
for a given channel and a given trial on unrelated text (UR) "economic growth". The
vocabulary read is first generic and then relates to fruits, vegetables and agriculture.
The fruits and vegetable lexical field seems to involve a delayed change of activity
(underlined in read) in bands θ ,α and β .
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In this chapter, we propose to extend the hidden semi-Markov model to segment

two (sets of) signals with the two following characteristics: they are asynchronous

and heterogeneous. The former supposes that the first signal drives the second one

with an additional random delay, which also induces delayed semi-Markovian regimes.

The latter proposes to take into account the huge differences in sampling rates of

the output processes in model parameter learning. This difference in sampling rates

is motivated by a first signal that is a discretized measure over a non-constant time

whereas the second one is considered multivariate and continuous. We name the model

Asynchronous Heterogeneous Hidden Semi-Markov Model (AHHSM). Not only is

AHHSMM suited for signals such as eye movements and EEGs but it may also be applied

to a broader range of data types such as image and sound.

1 Model description

1.1 Model specifications

Up to this point, we have shown how to segment eye movements into reading strategies

by extracting eye-movement features in Chapter 2, based on previous results from the

study of Simola et al. (2008). In chapter 3, we used EEGs as model covariates to better

interpret phases related to eye-movement from a cognitive point of view. The analyses

revealed contrasted EEG patterns per phase, which could be related to changes in

cognitive processes. Eye-movement events were also synchronized (time-locked) with

EEGs which were segmented a posteriori into reading strategies, highlighting changes

in channel covariance per phase and wavelet scale.

There have been plenty of models in the literature which aimed at modeling EEGs

with hidden Markov model. Bashashati et al. (2007) proposed a general survey which

notably contains an inventory on statistical EEG modeling. Obermaier et al. (2001a,b)

proposed to classify EEG signals with HMMs, Obermaier et al. (2001c) proposed to

measure information transfer rates in a multiclass brain computer with HMMs, Lee

and Choi (2003) used HMMs for supervised learning of EEG sequences, Cincotti et al.

(2003) used HMMs as a feature classifier for brain computer interfaces.

Additionally, Rezek et al. (2002); Rezek and Roberts (2000a); Rezek et al. (2000);

Rezek and Roberts (2000b) proposed to couple discrete and continuous signals with

fixed lag in a Bayesian framework.
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None of these models were used for segmentation and interpretation purposes. We

propose to couple eye-movement and EEGs into a single model with interpretable hid-

den states. We make the hypothesis that eye-movement acquire visual and semantical

information which is then treated in different locations of the brain with an additional

time delay. Hence, the cognitive phase is treated with a delay with respect to eye

movements. Concretely, we wish to take into account both signal’s information to better

characterize and interpret the hidden states linked to reading strategies by taking into

account the delay to reduce the uncertainty on states and state transitions. Conse-

quently, each signal is associated with its own latent process, where the first one drives

the second one with an additional delay. This engenders the following hypothesis: the

cognitive phases are linked to the first discretized signal (eye-movement) and may not

change between two fixations but at the start (or end) of a fixation.

Contrarily to the approach by Rezek and Roberts (2000b), the lags introduced in

our AHHSMs may be random (or not). Moreover, our models deal with heterogeneous

data.

1.2 Global modeling framework

Counting process terminology. Firstly, let us remind the nature of the observed

processes. EEGs are the high-rate sampling processes at a fixed rate of 1000 Hz

while eye-movements is the low-rate sampling process at the fixation rate, which is

naturally variable. In order to model processes with different sampling rates, let us first

define:

• t ∈ {1, ...,τ}, the EEG temporal index in milliseconds,

• Nt , the number of fixations from 1 to t, hence Nτ stands for the total number of

fixations, with N1 = 1,

• TNt , the beginning of the Nt-th fixation, and similarly Tj, the beginning of the j-th

fixation,

• D j = Tj−Tj−1,T0 = 0, the time between the j-th and the j−1-th fixation (i.e., the

duration of the j−1-th fixation and associated outgoing saccade).

Assumption 9 (Joint probability distribution sampled at fixation rate). Let {STj}
Nτ

j=1

denote any process sampled at a fixation duration level, which implies invariance from STj
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to STj+1−1. Therefore we have

P(STj , ...,STj+1−1) = P(STj)1{STj = ...= sTj+1−1}

where P(SN j) summarizes the joint probability distribution P(STj , ...,STj+1−1) since states
are invariant during fixation/saccade complexes. As a consequence, we subsequently write
P(S j) to refer to the corresponding JPD, assuming that the duration D j has no influence
on the probability P(S j).

Semi-Markov chain. We also refresh the terminology of the EDHMM’s SMC presented

in Chapter 1, section 3.3, associated with the low-rate sampling process with the fixation

time index j:

• S(1)1:Nτ
,∀ j ∈ J1,NτK,S

(1)
j ∈ J1,KK, the discrete latent state process,

• R1:Nτ
,∀ j ∈ J1,NτK,R j ∈ J1,DK, the discrete latent state duration process,

• F1:Nτ
,∀ j ∈ J1,NτK,Fj ∈ {0,1}, the binary latent state duration switch process,

Low-rate sampling output process. Similarly, we refresh the notation of the output

process: O(1)
1:Nτ

, where ∀ j ∈ J1,NτK, O(1)
j ∈ O = {v1, ...,vG}. Note that so far, all the CPDs

and parameters remain the same as in the traditional EDHMM. Regarding the data, this

corresponds to the fixations in the eye movements.

High-rate sampling output process. We denote the continuous high-rate sampling

output process as O(2)
1:τ , where ∀t ∈ J1,τK, O(2)

t ∈RC . In practice, this process corresponds

to EEGs or more generally, features of EEGs such as wavelet coefficients. C is the

number of channels (or features). Moreover, to link O(2)
1:τ with S(1)1:Nτ

, which have different

sampling rates, we define an intermediary set of random variables that correspond to

the SMC up to a possible lag or delay, S(2)1:τ , where ∀t ∈ J1,τK,S(2)t ∈ J1,KK. Hence we

have the following definition:

S(2)t = S(1)Nt−εNt
, (4.1)

where t ∈ Jε1,τK and εNt represents the lag at time Nt . In practice, Nt is naturally

upper-bounded by τ, the maximal sequence length, but for complexity purposes ε

can be both lower- and upper-bounded, say εNt ∈ J0,L K. Note that if L = 0, then

there is no lag and it is simply an HSMM with multiple output processes. Also note
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that S(2)1:ε1
is considered to be the signal state before acquisition start, and is therefore

undefined. Finally, we suppose that the high-rate sampling output process is modeled

by a multivariate Gaussian distribution:

P(O(2)
t |S

(2)
t = k) = N (µk,Σk) (4.2)

with µk ∈ RC ,Σk ∈ RC×C ,C being the dimensionality of the high-rate sampling output

process, i.e. the number of channels for EEGs. It is a common practise to use Gaussian

distributions to model multivariate EEGs or continuous signals in general, as shown

in Obermaier et al. (2001a); Zhong and Ghosh (2002); Chiappa and Bengio (2003).

Moreover, note that in equation (4.2), O(2)
t |S

(2)
t = k is time invariant. Indeed, temporal

information is already encapsulated within the state S(2)t = k involved in conditional

distribution (4.2).

1.3 Specification of the delay distribution

There are plenty of possibilities to model the interaction of the delay between the

output processes. Hereafter, we discuss some of the most interesting hypotheses.

Constant lag. If S(2)1:τ has constant lag regarding S(1)1:Nτ
, then we simply rewrite equation

(4.1) in the following way:

S(2)t = S(1)Nt−ε
(4.3)

∀t ∈ Jε,τK, and ε ∈ J1,L K the constant lag. From this relation ensues the following

CPD:

P({S(2)t }τ
t=1|{S

(1)
Nt
}τ

t=1,ε) = 1{S(2)ε = S(1)N1
,S(2)1+ε

= S(1)N2
, ...,S(2)τ = S(1)Nτ−ε

}

=
τ

∏
t=ε

1{S(2)t = S(1)Nt−ε
}

=
L

∏
l=1

τ

∏
t=l

1{S(2)t = S(1)Nt−l
}1{ε=l}.

ε can be either deterministic, e.g. given by an expert, estimated by maximum likeli-

hood or random and restored using a generalized Viterbi algorithm. In this case, the

associated CPD is therefore a discrete Dirac distribution:

P(ε = l) = 1{ε = l}.
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Non-constant i.i.d. lag. If lag is non-constant, it may vary at different granularity

levels: fixation or state. In the first case and with an independent and identically

distributed hypothesis on the lag, the delay is sampled from P(εN j), while in the second

case, changes in delays may only occur when the state also transits, i.e. when FN j−1 = 1.

In the rest of the chapter, we consider the fixation level of granularity in order to

shorten notations. Considering the relation between the hidden chains from equation

(4.1), the associated CPD is:

P({S(2)t |S
(1)
Nt

,εNt}τ
t=1) = 1{S(2)εN1

= S(1)N1
,S(2)1+εN2

= S(1)N2
, ...,S(2)τ = S(1)Nτ−εNτ

}

=
τ

∏
t=εN0

1{S(2)t = S(1)Nt−εNt
}

=
L

∏
l=1

τ

∏
t=l

1{S(2)t = S(1)Nt−l
}1{εNt=l}.

The lag being discrete, we note the parameters

ρ(l) = P(εN j = l)

with ρ(l) a tabular distribution of size L . It is then possible to fit any discrete parametric

distribution, see section 1.3.3. If we assume that the lag is centered around its mean,

ρ(l) can be approximated with a Binomial distribution s.t.

P(εN j) = B(n, p),

centered around E[εN j ] = np and ruled by 2 parameters only. However, discrete distri-

bution shapes might sometimes be constraining because of their tied parameters in the

expression of the expectation and variance and we could assume a discretization of a

continuous distribution, say if εN j ∼N (µ,σ2) that can be achieved as follows:

P(ε = l) = P(ε ∈ [l−1, l])

= Fµ,σ2(l)−Fµ,σ2(l−1)
(4.4)

then, the difference between the cumulative distribution function can be computed

numerically.
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Non-constant non-iid lag. The non-constant lag may also have a time dependence,

say first order Markovian, which would lead to model

ρl′l = P(εN j = l′|εN j−1 = l) (4.5)

with ρl′l a transition matrix of size L ×L , plus the special case at time 1

υl = P(εN1 = l).

The main drawback of this hypothesis is that it involves L +L 2 additional parameters.

To overcome this, a possibility is to use an autoregressive process s.t.

P(εN j |εN j−1) = N (ε j−1,σ
2),

plus the special case P(ε1) = N (C,σ2), with C being a constant, which involves only

two parameters. In other words, at each fixation, the new delay is sampled from a

normal distribution centered around the previous one signifying that the past dynamics

of the delay is captured. We also propose the following discrete approach using a

Markov chain with constraints on the transition matrix:

P(ε j|ε j−1) = B(n, p)−E[ε j−1], (4.6)

with E[ε j−1] = np. Equation (4.6) describes a noise at time j sampled using a binomial

distribution centered around the previous one at time j−1 by subtracting the expecta-

tion of the binomial distribution. Considering the special case P(ε1) =C+B(n, p)−np,

where C is a constant, the lag is modeled using only 3 parameters.

Finally, the lag could be modeled on the discrete domain using models for counts

data such as Poisson exponentially weighted moving average, see Brandt et al. (2000),

or a Poisson autoregressive model, see Brandt and Williams (2001); Fokianos et al.

(2009) for more details.

Per state lag. If lags are assumed to have state-dependent distributions, a straightfor-

ward extension to equation (4.5) is to add the state to the conditional distribution:

ρl′lk = P(ε j = l′|ε j−1 = l,S(1)j = k), (4.7)
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plus the special case at initial time 1

υlk = P(ε1 = l|S(1)1 = k),

leading to increase the number of parameters by a K factor. In a similar fashion as in

equation (4.6), the lag can be approximated by a binomial distribution for each state.

Per variable lag. Assuming that O(2)
1:τ corresponds to C multivariate observations

such as a multi-channel EEG or wavelet features of multi-channel EEG, lags may

have variable-specific distributions. The C observation sequences are rewritten O(2)
1:τ =

(O(2,1)
1:τ , ...,O(2,C )

1:τ ). Similarly, since each observation sequence has a its own lag, we

define the associated state sequences rewritten S(2)1:τ = (S(2,1)1:τ , ...,S(2,C )
1:τ ). Hence, the

relationship between hidden states becomes

S(2,c)t = S(1)
Nt−ε

(c)
Nt

(4.8)

where ε
(c)
Nt

is the random variable modeling the lag for factor c at time Nt . The distribu-

tion of ε
(c)
1:Nτ

may also share some common assumptions presented above. Therefore, the

number of parameters to model the lag is multiplied by a factor C . It is also required to

rewrite the emission distributions, previously given by equation (4.2). Thus, ∀c ∈ J1,C K
we have

P(O(2,c)
t |S(2,c)t = k) = N (µk,Σk), (4.9)

which conveys the idea that even though the lags, and therefore the states change

over time, are different in the hidden states S(2)1:τ , the emission probabilities are shared

between all variables.

Figure 4.1 represents the sampling process of an Asynchronous Heterogeneous

Hidden semi-Markov Model with a general setting of non-constant non-iid per state lag

with lag sampled at a low-rate sampling scale (fixation scale). In the next sections, we

develop inference, learning and state restoration procedures within this setup, which is

the most generic (we omit per variable lags, which make notations tedious).
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Figure 4.1: AHHSMM sampling process. The first state S(1)1 = k1 is selected using an
initial probability πk1 . Then, given k1, we draw a sojourn duration R1 with a probability
pk1(r1) which lasts for two (r1 = 2) low-rate time steps of fixed duration D1+D2. A first
low-rate observation is sampled from the emission distribution bk1(O

(1)
1 ). This low-rate

sampled observation is associated with lag ε1, intended to map the low-rate to the high-
rate sampling processes. Its distribution possibly depends on state k1. The high-rate
sampling process from O(2)

ε1 to O(2)
T1+ε1

, corresponding to the low-rate observation O(1)
1 ,

is then sampled at each high-rate time step, from a distribution depending on state
k1, where T1 is the beginning time of the second fixation. After that, still given k1, the
second low-rate output O(1)

2 is emitted at time T2, as well as the corresponding high-rate
outputs O(2)

T1+ε1+1:T2+ε2
and the associated lag ε2, whose distribution may depend on the

previous lag ε1, and state k1. The duration in state k1 then expires and S(1) transits to a
new state k2 ̸= k1 using the transition matrix with a probability Ak1,k2. A duration R2 is
sampled for state k2 with a probability pk2(r2), and the sampling process goes on again
until the end of the sequence.



124 Coupling eye-movement and EEG data with AHHSMM

2 Inference, learning and state restoration

2.1 Parameter learning with heterogeneous data

So far, the proposed model answers the first of the two initial specifications, that is

the delay. It can handle two processes sampled at different rates and captures the

delay between them in order to synchronize the output processes as well as the latent

semi-Markov chain. Consistent estimation of the parameter is expected to be obtained

from maximizing the joint likelihood P(O(1)
1:Nτ

,O(2)
1:τ). However, this is only holds if the

data actually are generated from the model. In analyzing real data sets, observations

are expected to deviate from this assumption. If we suppose τ ≫ Nτ , there are much

more high-rate sampling outputs than low-rate sampling outputs. Any discrepancy

between the assumptions regarding the true distribution of (O(2)
t )t≥1 and our model

could lead to a dramatic perturbations in parameter and states estimation, including

those related to the marginal distribution of O(1)
j≥1. This is why we develop some specific

estimation procedure that tends to give equal contributions of both processes.

To overcome this issue, let us first define the AHHSMM model parameters λ =

(λ1,λ2), where λ1 = {πk,Akk′, pk(d),bk(vg)} are the model parameters of the traditional

(Ferguson, 1980) explicit duration hidden Markov model (section 3.2) and λ2 = (ρ,µ,Σ)

are the parameters related to the second output process, more precisely ρ is the set of

delay parameters and µ and Σ are the emission distribution parameters of the second

output process. We also denote O(1) = O(1)
1:Nτ

and O(2) = O(2)
1:τ and we write the joint

likelihood of the observed data

Pλ1,λ2(O
(1),O(2)) = Pλ1(O

(1))Pλ1,λ2(O
(2)|O(1))

= ∑
S(1)

Pλ1(O
(1),S(1))∑

S(2)
Pλ2(O

(2),S(2))Pλ2(S
(2)|S(1)), (4.10)

which we show to be decomposing into two parts, each depending on either λ1 or λ2.

In order to perform the EM algorithm, we also write a decomposition of the conditional

expectation of the complete data

E
Λ
(m)
1 ,Λ

(m)
2
[logPλ1,λ2(O

(1),O(2),S(1),S(2))|O(1),O(2)]

= E
Λ
(m)
1 ,Λ

(m)
2
[logPλ1(O

(1),S(1))+ logPλ2(O
(2)|S(2))+ logPλ2(S

(2)|S(1))|O(1),O(2)],
(4.11)
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which is to be maximized using EM. Here, λ
(m)
1 and λ

(m)
2 denote the parameters at

iteration m of EM. Furthermore, we make the following assumption on the MLE:

Assumption 10. In an AHHSMM, the maximum likelihood estimator λ̂ of λ is consistent.
Moreover, the sequence of estimates yielded by the EM algorithm tends to λ̂ when the
number of iterations tends to infinity.

Then, we propose the following decomposition for the maximization of equa-

tion (4.11):

Proposition 3. Let (Λ(m)
1 ,Λ

(m)
2 )m≥1 denote the sequence of iterates of the following modi-

fied EM algorithm and (λ̃1, λ̃2) denote the true parameters.

(Λ
(m+1)
1 ,Λ

(m+1)
2 ) =

(
argmax

λ1
E

Λ
(m)
1
[logPλ1(O

(1),S(1))|O(1)],

argmax
λ1,λ2

E
Λ
(m)
1 ,Λ

(m)
2
[logPλ2(O

(2)|S(2))+ logPλ2(S
(2)|S(1))|O(1),O(2)]

)
,

(4.12)

Then lim
m→∞

(Λ
(m)
1 ,Λ

(m)
2 ) = (λ̃1, λ̃2).

Proof. Under assumption 10, the left term in the expectation of equation (4.11) can be

taken out and optimized independently since asymptotically:

lim
m→∞

argmax
λ1

E
Λ
(m)
1 ,Λ

(m)
2
[logPλ1,λ2(O

(1),S(1))|O(1),O(2)] = lim
m→∞

max
λ1

E
Λ
(m)
1
[logPλ1(O

(1),S(1))|O(1)],

and both the quantities are equal to the real parameter λ̃1. As a consequence, the three

terms in the expectation of equation (4.11) can be optimized independently. The first

term, E
Λ
(m)
1
[logPλ1(O

(1),S(1))|O(1)], corresponds to the low-rate sampling process and is

computed through the general EM algorithm for HSMM presented in Chapter 1 section

3.4. It shall be noticed from equation (4.12) that the high-rate sampling process are not

influencing the parameter estimation related to the low-rate sampling process whereas

the low-rate sampling process is influencing estimation of the parameters related to the

high-rate sampling process.

2.2 Inference and learning

By combining all the CPDs previously defined with the most general delay given by

equation (4.7), i.e. the non-constant non-iid per state lag, we write the joint probability
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distribution as:

P({O(1)
j ,S(1)j ,R j,Fj,ε j}Nτ

j=1,{S
(2)
t ,O(2)

t }τ
t=1)

= P({O(1)
j },{O

(2)
t }|{S

(1)
j ,R j,Fj},{S(2)t })P({S

(1)
j ,R j,Fj,ε j},{S(2)t })

= P({O(1)
j }|{S

(1)
j })P({O

(2)
t }|{S

(2)
t })P({S

(2)
t }|{S

(1)
j },{ε j})P({S(1)j ,R j,Fj})P({ε j|S(1)j })

= P(S(1)1 )P(R1|S
(1)
1 )P(ε1|S

(1)
1 )

Nτ

∏
j=1

P(O(1)
j |S

(1)
j )

Nτ

∏
j=2

(
P(R j|R j−1,S

(1)
j ,Fj)P(S

(1)
j |S

(1)
j−1,Fj)P(Fj|R j−1)P(ε j|ε j−1,Fj−1,S

(1)
j )

)

P({S(2)t |εNt ,S
(1)
Nt
})

τ

∏
t=1

P(O(2)
t |S

(2)
t )

=
K

∏
k=1

(
P(S(1)1 = k)1{s

(1)
1 =k}

D

∏
d=1

P(R1 = d|S(1)1 = k)1{r1=d,s(1)1 =k}
L

∏
l=1

P(ε1 = l|S1 = k)1{ε1=l,s1=k}

)
Nτ

∏
j=1

K

∏
k=1

[
∏

vg∈O
P(O(1)

j = vg|S(1)j = k)1{o
(1)
j =vg,s

(1)
j =k}

L

∏
l=1

L

∏
l′=1

P(ε j = l|ε j−1 = l′,S(1)j = k)1{ε j=l,ε j−1=l′,s(1)j =k}

K

∏
k′=1

D

∏
d=1

D

∏
d′=1

1

∏
f=0

(
P(R j = d|R j−1 = d′,S(1)j = k,Fj−1 = f )1{r j=d,r j−1=d′,s(1)j =k, f j−1= f}

P(S(1)j = k|S(1)j−1 = k′,Fj−1 = f )1{s
(1)
j =k,s(1)j−1=k′, f j−1= f}

P(Fj = f |R j = d′)1{ f j= f ,r j=d′}

)]
L

∏
l=1

τ

∏
t=l

K

∏
k=1

K

∏
k=1

1{k = k′}1{εNt=l,s(2)t =k,s(1)Nt−l
=k} τ

∏
t=1

K

∏
k=1

P(O(2)
t |S

(2)
t = k)1{s

(2)
t =k}

=
K

∏
k=1

(
π
1{s(1)1 =k}
k

D

∏
d=1

p j(d)1{r1=d,s(1)1 =k}
L

∏
l=1

υ
1{ε1=l,s(1)1 =k}
kl

)
Nτ

∏
j=1

K

∏
k=1

[
∏

vg∈O
b j(vg)

1{o(1)j =vg,s
(1)
j =k}

L

∏
l=1

L

∏
l′=1

ρ
1{ε j=l,ε j−1=l′,s(1)j =k}
kll′

K

∏
k′=1

D

∏
d=1

D

∏
d′=1

(
1{d = d′−1}1{r j=d,r j−1=d′,s(1)j =k, f j−1=0}p j(d)

1{r j=d,r j−1=d′,s(1)j =k, f j−1=1}

1{k = k′}1{s
(1)
j =k,s(1)j−1=k′, f j−1=0}A

1{s(1)j =k,s(1)j−1=k′, f j−1=1}
kk′

1{d′ > 1}1{ f j=0,r j=d′}
1{d′ = 1}1{ f j=1,r j=d′}

)
L

∏
l=l

τ

∏
t=1

K

∏
k=1

K

∏
k′=1

1{k = k′}1{εNt=l,s(2)t =k,s(1)Nt−l
=k′} τ

∏
t=1

K

∏
k=1

fN (µk,Σk)(o
(2)
t )1{s

(2)
t =k}.
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In order to apply EM, we use proposition 3 and compute the Q(θ ,θ old) function the

following way:

Q(θ old,θ) =E[logP({O(1)
j ,S(1)j ,R j,Fj,ε j}τ

j=1,{S
(2)
t ,O(2)

t }τ
t=1;θ)|{O(1)

j }
Nτ

j=1,{O
(2)
t }τ

t=1;θ
old]

=E[logPλ1({S
(1)
j ,O(1)

j ,R j,Fj})|{O(1)
j },θ

old]

+E[logPλ2({O
(2)
t |S

(2)
t })+ logPλ2({S

(2)
t },{ε j}|{S(1)j })|{O

(1)
j },{O

(2)
t },θ old],

(4.13)

with λ1 = (π,A, pθ ,bθ ) and λ2 = (υ ,ρ,µ,Σ). The left term, i.e. the first expectation,

corresponds exactly to the Q-function of a EDHMM given by equation (1.29) computed

via three expected sufficient statistics given in Chapter 1, equations (1.40), (1.38) and

(1.39). The novelty arise from the right term of equation (4.13) which we decompose:

E[logPλ2({O
(2)
t |S

(2)
t })+ logPλ2({S

(2)
t },{ε j}|S(1)j )|{O(1)

j },{O
2)},θ old]

= E[logPλ2({O
(2)
t |S

(2)
t })|{O

(1)
j },{O

2)},θ old]+E[logPλ2({S
(2)
t },{ε j}|S(1)j )|{O(1)

j },{O
2)},θ old]

.

(4.14)

We first compute the left term:

E[logPλ2({O
(2)
t |S

(2)
t })+ logPλ2({S

(2)
t },{ε j}|S(1)j )|{O(1)

j },{O
2)},θ old]

= E[
τ

∑
t=1

K

∑
k=1

1{s(2)t = k} log fN (µk,Σk)(O
(2)
t )|{O(1)

j },{O
(2)
t },θ old]

=
τ

∑
t=1

K

∑
k=1

Pθ old(S(2)t = k|{O(1)
j },{O

(2)
t }) log fN (µk,Σk)(o

(2)
t )

(4.15)
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noting that the expectation of an indicator is simply the probability that it takes the

value 1. We then compute the right term of equation (4.14):

E[logPλ2({S
(2)
t },{ε j}|S(1)j )|{O(1)

j },{O
2)},θ old]

= E[
K

∑
k=1

L

∑
l=1

(
1{ε1 = l,s(1)1 = k} logυk,l +

Nτ

∑
j=2

L

∑
l′=1

1{ε j = l,ε j−1 = l′,s(1)j = k} logρkl′l

+
τ

∑
t=l

K

∑
k′=1

1{εNt = l,s(2)t = k,s(1)Nt−l
= k′} log1{k = k′}

)
|{O(1)

j },{O
2)},θ old]

=
K

∑
k=1

L

∑
l=1

(
Pθ old(ε1 = l,S(1)1 = k|{O(1)

j },{O
2)}) logυk,l

+
Nτ

∑
j=2

L

∑
l′=1

Pθ old(ε j = l,ε j−1 = l′,S(1)j = k|{O(1)
j },{O

2)}) logρkl′l

+
τ

∑
t=l

K

∑
k′=1

Pθ old(εNt = l,s(2)t = k,S(1)Nt−l
= k′|{O(1)

j },{O
2)}) log1{k = k′}

)

.

(4.16)

Both equations (4.15) and (4.16) highlight new expected sufficient statistics, i.e. the

terms multiplying parameters, to be computed in the E-step:

Pθ old(ε j = l,ε j−1 = l′,S(1)j = k|{O(1)
j },{O

(2)
t }), (4.17)

Pθ old(ε1 = l,S(1)1 = k|{O(1)
j },{O

(2)
t }), (4.18)

Pθ old(S(2)t = k|{O(1)
j },{O

(2)
t }). (4.19)



2 Inference, learning and state restoration 129

E-step. As in inference in HSMM, we start by defining forward and backward variables

starting with the forward variables,

α j(k, l) = P(O(1)
1: j ,O

(2)
1:Tj+l−1,S

(1)
j = k,ε j = l,Fj = 1)

=
D

∑
d=1

∑
l′

P(O(1)
1: j ,O

(2)
1:Tj+l−1,Fj = 1,ε j = l,Fj−d = 1,R j−d+1 = d,S(1)j−d+1: j = k,ε j−d = l′)

=
D

∑
d=1

∑
l′

P(Fj = 1|R j−d+1 = d)

P(R j−d+1 = d|S(1)j−d+1 = k,Fj−d = 1)

P(ε j = l|ε j−d+1 = l′,S(1)j−d+1: j = k)

P(O(1)
j−d+1: j|S

(1)
j−d+1: j = k)

P(O(2)
Tj−d+1+l′:Tj+l−1|S

(1)
j−d+1: j = k,ε j−d+1 = l′,ε j = l)

P(O(1)
1: j−d,O

(2)
1:Tj−d+1+l′−1,ε j−d+1 = l′,S(1)j−d+1 = k,Fj−d = 1)

=
D

∑
d=1

∑
l′

pk(d)(ρk)
d−1
l′l α

∗
j−d(k, l

′)
j

∏
j′= j−d+1

bk(O
(1)
j′ )

Tj+l−1

∏
t ′=Tj−d+1+l′

f
N (µk,Σk)(O

(2)
t′ )

(4.20)

with,

α
∗
j (k, l) = P(O(1)

1: j ,O
(2)
1:Tj+1+l−1,S

(1)
j+1 = k,ε j+1 = l,Fj = 1)

=
K

∑
k′=1

L

∑
l′=0

P(ε j+1 = l|ε j = l′,S(1)j+1 = k)P(S(1)j+1 = k|S(1)j = k′,Fj = 1)

P(O(2)
Tj+l′:Tj+1+l−1|S

(1)
j = k′,ε j+1 = l,ε j = l′)P(O(1)

1: j ,O
(2)
1:Tj+l−1,ε j = l,S(1)j = k′,Fj = 1)

=
K

∑
k′=1

L

∑
l′=0

ρkll′Ak′kα j(k′, l′)
Tj+1+l−1

∏
t ′=Tj+l′

fN (µk′ ,Σk′)
(O(2)

t ′ )

(4.21)

and the first term,

α
∗
0 (k, l) = P(S(1)1 = k,F0 = 1,ε1 = l)

= P(ε1 = l|S(1)1 = k)P(S(1)1 = k)

= υklπk,
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where we remind that Tj is the transition time of fixation j. First, considering the com-

putation of α j(k, l), the integration over the sojourn duration set D aims at computing

all the possible durations through Fj−d = 1 which implies R j−d+1 = d plus constant

state k from time j− d + 1 to j, i.e S(1)j−d+1: j = k. Then, the goal of the integration

over ε j−d is to compute probabilities related to different lag values for different du-

rations that were all computed conditionally to state k. The second step is simply an

application of the conditional independences. It should be noted that S(1)j−d+1: j = k is

a shortcut for S(1)j = k,Fj = 1,Fj−d = 1,R j−d+1 = d and is equivalent. Also note that,

∀d ∈ J1,DK,P(Fj = 1|R j−d = d) = 1 and is therefore omitted in the last development of

the equation. Finally, P(ε j = l|ε j−d+1 = l′,S(1)j−d+1: j = k,R j−d+1 = d,Fj−d = 1) = (ρk)
d−1
l′l

is directly computed at fixed state k in order to use the Chapman-Kolmogorov equa-

tion, see equation (1.11). The probability of the next state-conditional delay is then

computed in the equation of α∗j (k, l) as well as the preceding state. α j(k, l) describes

the forward behavior for state k which is going to be exited at time j+1 while α∗j (k, l)

is the forward behavior for a state k which was just entered at time j+1. This trick

is HSMM-specific and true interest of the decomposition is be shown in the computa-

tion of the next equations. Nonetheless, the modeling of the delay induces a change

in the computation of the emission distribution since it is split between α∗j (k, l) and

α j(k, l) which was not the case before. In order to compute the emission distribu-

tion of O(2)
Tj−d+1+ε j−d+1:Tj+1+ε j+1−1, it is indeed necessary to split the sequence such as

O(2)
Tj−d+1+ε j−d+1:Tj+ε j−1 and O(2)

Tj+ε j:Tj+1+ε j+1−1 since the delay of the second term ε j+1 is

conditional to S(1)j+1 while the rest is all conditional to a fixed state S(1)j−d+1: j. This trick

is a performance improvement. From equations (4.20) and (4.21), it can be seen that

forward pass has complexity O(τL 2K 2D), an increase by a factor L 2 compared to

the forward pass EDHMM but which can be controlled by using inferior and/or superior

bounds on the delay.
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A similar schema is applied for the backward variables,

β j(k, l) = P(O(1)
j+1:Nτ

,O(2)
Tj+l:τ |S

(1)
j = k,ε j = l,Fj = 1)

=
K

∑
k′=1

L

∑
l′=0

P(O(1)
j+1:Nτ

,O(2)
Tj+1+l′:τ |S

(1)
j+1 = k′,ε j+1 = l′,Fj = 1)

P(ε j+1 = l′|ε j = l,S(1)j+1 = k′)P(S(1)j+1 = k′|S(1)j = k,Fj = 1)

P(O(2)
Tj+l:Tj+1+l′−1|S

(1)
j = k,ε j = l,ε j+1 = l′,Fj = 1)

=
K

∑
k′=1

L

∑
l′=0

ρk′ll′Akk′β
∗
j (k
′, l′)

Tj+1+l′−1

∏
Tj+l

fN (µk,Σk)

(4.22)

with,

β
∗
j (k, l) = P(O(1)

j+1:Nτ
,O(2)

Tj+1+l:τ |S
(1)
j+1 = k,ε j+1 = l,Fj = 1)

=
D

∑
d=1

L

∑
l′=0

P(O(1)
j+1:Nτ

,O(2)
Tj+1+l:τ ,Fj+d = 1,R j+1 = d,ε j+d = l′|Fj = 1,ε j+1 = l,S(1)j+1: j+d = k)

=
D

∑
d=1

L

∑
l′=0

P(Fj+d = 1|Rt+1 = d)

P(R j+1 = d|S(1)j+1 = k,Fj = 1)

P(ε j+d = l′|ε j+1 = l,S(1)j+1: j+d = k)

P(O(1)
j+1: j+d|S

(1)
j+1: j+d = k)

P(O(2)
Tj+1+l:Tj+d+l′−1|S

(1)
j+1: j+d = k,ε j+1 = l,ε j+d = l′)

P(O(1)
j+d+1:Nτ

,O(2)
Tj+d+l′:τ ,S

(1)
j+d = k,ε j+d = l′,Ft+d = 1)

=
D

∑
d=1

L

∑
l′=0

pk(d)(ρk)
d−1
ll′ β j+d(k, l′)

j+d

∏
j′= j+1

bk(O
(1)
j′ )

Tj+d+l′−1

∏
t ′=Tj+1+l

f
N (µk,Σk)(O

(2)
t′ )

,

(4.23)

with the termination terms ∀k ∈ J1,KK, l ∈ J0,L K:

βNτ
(k, l) = 1.

The way of computing backward variables is very similar to the forward variables,

the integration over d computes all possible durations through Fj+d = 1 which implies
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R j+1 = d as well as constant state k from j+1 to j+d. ∀d,P(Fj+d = 1|Rt+1 = d) = 1 and

is then omitted.

Forward and backward variables are computed recursively and are used to com-

pute the expected sufficient statistics. Starting with ESS (4.17), we first compute

intermediate quantities:

ζ j(l, l′,k) = P(ε j = l,ε j−1 = l′,S(1)j−1 = k,Fj−1 = 1|O(1)
1:Nτ

,O(2)
1:τ)

∝ P(ε j = l,ε j−1 = l′,S(1)j−1 = k,Fj−1 = 1,O(1)
1:Nτ

,O(2)
1:τ)

=
K

∑
k′=1

P(O(1)
j:Nτ

,O(2)
Tj+l:τ |ε j = l,S(1)j = k′,Fj−1 = 1)

P(ε j = l|ε j−1 = l′,S(1)j = k′)P(S(1)j = k′|S(1)j−1 = k,Fj−1 = 1)

P(O(2)
Tj−1+l′:Tj+l−1|S

(1)
j−1 = k,ε j−1 = l′,ε j = l)

P(O(1)
1: j−1,O

(2)
1:Tj−1+l′−1,S

(1)
j−1 = k,ε j−1 = l′,Fj−1 = 1)

=
K

∑
k′=1

β
∗
j−1(k

′, l)ρk′l′lAkk′α j−1(k, l′)
Tj+1+l−1

∏
t ′=Tj+l′

f
N (µk,Σk)(O

(2)
t′ )

,

(4.24)

and

ζ
∗
j (l, l

′,k) = P(ε j = l,ε j−1 = l′,S(1)j = k,Fj−1 = 1|O(1)
1:Nτ

,O(2)
1:τ)

∝ P(ε j = l,ε j−1 = l′,S(1)j = k,Fj−1 = 1,O(1)
1:Nτ

,O(2)
1:τ)

=
K

∑
k′=1

P(O(1)
j:Nτ

,O(2)
Tj+l:τ |ε j = l,S(1)j = k,Fj−1 = 1)

P(ε j = l|ε j−1 = l′,S(1)j = k)P(S(1)j = k|S(1)j−1 = k′,Fj−1 = 1)

P(O(2)
Tj−1+l′:Tj+l−1|S

(1)
j−1 = k′,ε j−1 = l′,ε j = l)

P(O(1)
1: j−1,O

(2)
1:Tj−1+l′−1,S

(1)
j−1 = k′,ε j−1 = l′,Fj−1 = 1)

=
K

∑
k′=1

β j−1(k, l)ρkl′lAk′kα j−1(k′, l′)
Tj+1+l−1

∏
t ′=Tj+l′

f
N (µk′ ,Σk′)(O

(2)
t′ )

,

(4.25)
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which we use to compute ESS (4.17):

P(ε j = l,ε j−1 = l′,S(1)j−1 = k|O(1)
1:Nτ

,O(2)
1:τ)

= ∑
S(1)j

P(ε j = l,ε j−1 = l′,S(1)j−1 = k,S(1)j = k′|O(1)
1:Nτ

,O(2)
1:τ)

= P(ε j = l,ε j−1 = l′,S(1)j−1 = k,S(1)j ̸= k|O(1)
1:Nτ

,O(2)
1:τ)+P(ε j = l,ε j−1 = l′,S(1)j−1 = k,S(1)j = k|O(1)

1:Nτ
,O(2)

1:τ)

= P(ε j = l,ε j−1 = l′,S(1)j−1 = k,S(1)j ̸= k|O(1)
1:Nτ

,O(2)
1:τ)+P(ε j = l,ε j−1 = l′,S(1)j = k|O(1)

1:Nτ
,O(2)

1:τ)

−P(ε j = l,ε j−1 = l′,S(1)j = k,S(1)j−1 ̸= k[O(1)
1:Nτ

,O(2)
1:τ)

= P(ε j = l,ε j−1 = l′,S(1)j−1 = k,Fj−1 = 1|O(1)
1:Nτ

,O(2)
1:τ)+P(ε j = l,ε j−1 = l′,S(1)j = k|O(1)

1:Nτ
,O(2)

1:τ)

−P(ε j = l,ε j−1 = l′,S(1)j = k,Fj−1 = 1|O(1)
1:Nτ

,O(2)
1:τ)

= P(ε j = l,ε j−1 = l′,S(1)j = k|O(1)
1:Nτ

,O(2)
1:τ)+ζ

∗
j (l, l

′,k)−ζ j(l, l′,k)

=
Nτ

∑
j′=1

ζ j′(l, l
′,k)−ζ

∗
j (l, l

′,k).

.

(4.26)

The computation of ESS (4.17) in equation (4.26) is a bit tricky and similar to (1.40)

in HSMM. The first key is to notice that summing over all values of k for S(1)j is equal to

the sum over k plus the values different than k since different than k includes all values

but k. For example it is clear that P(X) = P(X ,Y = k)+P(X ,Y ̸= k). The same trick is

applied on line 3 to re-decompose the right term of line 2, but this time we decomposed

the term as P(X ,Y = k) = P(X)− P(X ,Y ̸= k). The fourth line simply rewrites the

probability s.t. S(1)j ̸= k and S(1)j−1 = k is equal to S(1)j−1 = k and Fj−1 = k, in other words,

both notations give the information of the current state plus a transition in the next step

to an unknown state. The fifth lines simply rewrites the equation in terms of previously

computed quantities ζ j(k, l, l′) and ζ ∗j (k, l, l
′). Finally, the last line rewrites the ESS

by noticing the induction procedure in the equality. Since we have P(ε j = l,ε j−1 =

l′,S(1)j−1 = k|O(1)
1:Nτ

,O(2)
1:τ) = P(ε j = l,ε j−1 = l′,S(1)j = k|O(1)

1:Nτ
,O(2)

1:τ) + ζ ∗j (l, l
′,k)− ζ j(l, l′,k)

then P(ε j = l,ε j−1 = l′,S(1)j = k|O(1)
1:Nτ

,O(2)
1:τ) = P(ε j = l,ε j−1 = l′,S(1)j−1 = k|O(1)

1:Nτ
,O(2)

1:τ)−
ζ ∗j (l, l

′,k) + ζ j(l, l′,k) which gives us the induction step, with the base case P(ε1 =

l,S(1)1 = k|O(1)
1:Nτ

,O(2)
1:τ) which is also the next expectation sufficient statistics, equation
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(4.18), computed hereafter:

P(ε1 = l,S(1)1 = k|O(1)
1:Nτ

,o(2)1:τ) ∝ P(ε1 = l,S(1)1 = k,O(1)
1:Nτ

,O(2)
1:τ)

= P(O(1)
1:Nτ

,O(2)
l:τ |S

(1)
1 = k,ε1 = l,F0 = 1)

P(ε1 = l|S(1)1 = k)P(S(1)1 = k)

= β
∗
0 (k, l)πkυkl

(4.27)

Finally, to deal with ESS (4.19), we first make the following assumption:

Assumption 11. In an asynchronous hidden semi-Markov model, ∀ j ∈ J1,NτK,ε j < Tj+1−
Tj. In other words, at each time step, the delay must be upper-bounded by the current
low-rate sampling process step duration.

Then, we redefine equation (4.19) it in terms of the low-rate sampling process:

P(S(2)t = k|O(1)
1:Nτ

,O(2)
1:τ) =

K

∑
k′=1

L

∑
l=0

P(S(2)t = k,S(1)Nt−l
= k′,εNt = l|O(1)

1:Nτ
,O(2)

1:τ)

=
K

∑
k′=1

L

∑
l=0

P(S(2)t = k|S(1)Nt−l
= k′,εNt = l,O(1)

1:Nτ
,O(2)

1:τ)

P(S(1)Nt−l
= k′,εNt = l|O(1)

1:Nτ
,O(2)

1:τ)

=
L

∑
l=0

P(S(1)Nt−l
= k,εNt = l|O(1)

1:Nτ
,O(2)

1:τ)

=
L

∑
l=0

(
1{Nt−l = Nt}P(S(1)j = k,ε j = l|O(1)

1:Nτ
,O(2)

1:τ)

+1{Nt−l < Nt}P(S(1)j−1 = k,ε j = l|O(1)
1:Nτ

,O(2)
1:τ).

)

The first step integrates over state S(1)Nt−l
as well as the associated delay εNt in order

to bring the conditional of S(2)t out which is equal to one if k = k′. The last step

decomposition relies on assumption 11, S(2)t may only be equal to the current state S(1)Nt

or the preceding one S(1)Nt−1 since the delay is upper-bounded by the low-rate. The first

term of equation (2.2) is simply computed reusing the result of equation (4.26)

P(S(1)j = k,ε j = l|O(1)
1:Nτ

,O(2)
1:τ) =

L

∑
l=0

P(ε j = l,ε j−1 = l′,S(1)j−1 = k|O(1)
1:Nτ

,O(2)
1:τ),
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then we compute the second term of equation (2.2) by applying a similar strategy as

equation (4.26). Starting with

γ j(k, l) = P(S(1)j−1 = k,ε j = l,Fj−1 = 1|O(1)
1:Nτ

,O(2)
1:τ)

= P(S(1)j = k,ε j+1 = l,Fj = 1|O(1)
1:Nτ

,O(2)
1:τ)

=
L

∑
l′=0

ζ j(l, l′,k)

and,

γ j(k, l) = P(S(1)j = k,ε j = l,Fj−1 = 1|O(1)
1:Nτ

,O(2)
1:τ)

= P(S(1)j+1 = k,ε j+1 = l,Fj = 1|O(1)
1:Nτ

,O(2)
1:τ)

=
L

∑
l′=0

ζ
∗
j (l, l

′,k)

which are simply summing out ε j and applying the homogeneity definition, see Chapter

1 section 1.5. We may now rewrite the desired quantity:

P(S(1)j−1 = k,ε j = l|O(1)
1:Nτ

,O(2)
1:τ) =

Nτ

∑
j′=1

γ j′(k)− γ
∗
j′(k).

M-step. Denoting θ , the whole set of parameters, O, the whole set of observed vari-

ables, Z, the whole set of latent variables, we recall that since after E-step, KL(q||p) = 0,

we have:

θ
new = argmax

θ

Q(θ ,θ old) = argmax
θ

∑
Z∈Z

P(Z|O;θ
old) logP(O,Z;θ),
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which leads to maximizing the log-likelihood L (θ). By taking into account the natural

probabilistic contraints on the parameters, the optimization problem is:

max L (θ)

subject to ∑
k

πk = 1,∀k,πk ≥ 0,

∑
i

Aki = 1,∀i,k,Aki ≥ 0,

(∑
g

bk(vg) = 1),∀k,g,bk(vg)≥ 0,

(∑
d

pk(d) = 1),∀k,d, pk(d)≥ 0,

(∑
l

υkl = 1),∀k, l,υkl,

(∑
l

∑
l′

ρkll′ = 1),∀k, l, l′,ρkll′ ≥ 0,

which can be equivalently written using its Lagrangian:

max L (θ)+δ (1−∑
k

πk)+∑
k

ζk(1−∑
k′

Akk′)+∑
k

ηk(1−∑
g

bk(vg))+∑
k

λk(1−∑
d

pk(d))

+∑
k

νk(1−∑
l

υkl)+∑
k

µk(1−∑
l

∑
l′

ρkll′)

where the constraints that the parameters are greater or equal to zero have been

dropped because it will naturally be handled by the constraint that probabilities sum to

one.

Then, in order to find the parameters that maximize the log-likelihood, we compute

the partial derivatives of the log-likelihood for each parameter, and cancel the gradient

to find the maximum. Let us first compute the update formula of πk, we have:

∂L (θ)+ ...

∂πk
=−δ + ∑

Z∈Z
Q(Z)

Nτ

∑
j=1

1{s(1)1 = k}
πk

.

Hence,

πk =
1
δ

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{s(1)1 = k}. (4.28)

Then,
∂L (θ)+ ...

∂δ
= 1−∑

k
πk (4.29)
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substituting (4.28) into (4.29), δ is maximal when:

δ = ∑
k

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{s(1)1 = k}, (4.30)

now substituting back (4.30) into (4.28), we obtain:

πk =
∑Z∈Z Q(Z)∑

Nτ

j=11{s
(1)
1 = k}

∑k′∑Z∈Z Q(Z)∑
Nτ

j=11{s
(1)
1 = k′}

=
∑Z∈Z P(Z|O;θ old)1{s(1)1 = k}

∑
′
k ∑Z∈Z P(Z|O;θ old)1{s(1)1 = k′}

=
∑Z∈Z P(Z,O;θ old)1{s(1)1 = k}

∑
′
k ∑Z∈Z P(Z,O;θ old)1{s(1)1 = k′}

=
P(O(1)

1:Nτ
S(1)1 = k)

∑k′ P(O
(1)
1:Nτ

,S(1)1 = k′)

= P(S(1)1 = k|O(1)
1:Nτ

)

(4.31)

which corresponds to the value computed in the E-step of EDHMM in Chapter 1,

equation (1.30) for time j = 1 and can be seen as the expected number of transition in

state k at time j = 1.

We now focus on the update formulas of Akk′:

∂L (θ)+ ...

∂Akk′
=−ζk + ∑

Z∈Z
Q(Z)

Nτ

∑
j=1

1{s(1)j = k′,s(1)j−1 = k, f j−1 = 1}
Akk′

,

hence Akk′ is maximal for,

Akk′ =
1
ζk

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{s(1)j = k′,s(1)j−1 = k, f j−1 = 1}. (4.32)

Then we have,
∂L (θ)+ ...

∂ζk
= 1−∑

k′
Akk′ (4.33)
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substituting (4.32) into (4.33), ζk is maximal when:

ζk = ∑
k′

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{s(1)j = k′,s(1)j−1 = k, f j−1 = 1}, (4.34)

now substituting back (4.34) into (4.32), we obtain:

Akk′ =
∑Z∈Z Q(Z)∑

Nτ

j=11{s
(1)
j = k′,s(1)j−1 = k, f j−1 = 1}

∑k′′∑Z∈Z Q(Z)∑
Nτ

j=11{s
(1)
j = k′′,s(1)j−1 = k, f j−1 = 1}

=
∑

Nτ

j=1 ∑Z∈Z P(Z,O;θ old)1{s(1)j = k′,s(1)j−1 = k, f j−1 = 1}

∑
Nτ

j=1 ∑k′′∑Z∈Z P(Z,O;θ old)1{s(1)j = k′′,s(1)j−1 = k, f j−1 = 1}

=
∑

Nτ

j=1 P(O(1)
1:Nτ

,S(1)j = k′,S(1)j−1 = k,Fj−1 = 1)

∑
Nτ

j=1 ∑k′′ P(O
(1)
1:Nτ

,S(1)j = k′′,S(1)j−1 = k,Fj−1 = 1)

=
∑

Nτ

j=1 P(S(1)j = k′,S(1)j−1 = k,Fj−1 = 1|O(1)
1:Nτ

)

∑
Nτ

j=1 ∑k′′ P(S
(1)
j = k′′,S(1)j−1 = k,Fj−1 = 1|O(1)

1:Nτ
)

(4.35)

where both the numerator and the denominator are given by ESS (1.30) in EDHMM

and can be interpreted as the expected number of transitions from state k to state k′

regardingless of time.

Then, the update formulas of bk(vg):

∂L (θ)+ ...

∂bk(vg)
=−ηk + ∑

Z∈Z
Q(Z)

Nτ

∑
j=1

1{o(1)j = vg,s
(1)
j = k}

bk(vg)
,

hence bk(vg) is maximal for,

bk(vg) =
1
ηk

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{o(1)j = vg,s
(1)
j = k}. (4.36)

Then we have,
∂L (θ)+ ...

∂ηk
= 1−∑

g
bk(vg), (4.37)

substituting (4.36) into (4.37), ηk is maximal when:

ηk = ∑
g

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{o(1)j = vg,s
(1)
j = k}, (4.38)
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now substituting back (4.38) into (4.36), we obtain:

bk(vg) =
∑Z∈Z Q(Z)∑

Nτ

j=11{o
(1)
j = vg,s

(1)
j = k}

∑g′∑Z∈Z Q(Z)∑
Nτ

j=11{o
(1)
j = vg′,s

(1)
j = k}

=
∑

Nτ

j=1 ∑Z∈Z P(Z,O;θ old)1{o(1)j = vg,s
(1)
j = k}

∑
Nτ

j=1 ∑g′∑Z∈Z P(Z,O;θ old)1{o(1)j = vg′,s
(1)
j = k}

=
∑

Nτ

j=1 P(O(1)
1:Nτ

,S(1)j = k)1{o(1)j = vg}

∑
Nτ

j=1 ∑g′ P(O
(1)
1:Nτ

,S(1)j = k)1{o(1)j = vg′}

=
∑

Nτ

j=1 P(S(1)j = k|O(1)
1:Nτ

)1{o(1)j = vg}

∑
Nτ

j=1 P(S(1)j = k|O(1)
1:Nτ

)

(4.39)

where both the numerator and the denominator are given by ESS (1.30) and which

can be interpreted as the expected number of observations vg while being in state k.

Then, the update formulas of p j(d):

∂L (θ)+ ...

∂ p j(d)
=−λk + ∑

Z∈Z
Q(Z)

Nτ

∑
j=1

1{r j = d,s(1)j = k, f j−1 = 1}
p j(d)

.

Hence p j(d) is maximal for,

p j(d) =
1
λk

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{r j = d,s(1)j = k, f j−1 = 1}. (4.40)

Then we have,
∂L (θ)+ ...

∂λk
= 1−∑

d
p j(d) (4.41)

substituting (4.40) into (4.41), λk is maximal when:

λk = ∑
d

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{r j = d,s(1)j = k, f j−1 = 1}, (4.42)
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now substituting back (4.42) into (4.40), we obtain:

p j(d) =
∑Z∈Z Q(Z)∑

Nτ

j=11{r j = d,s(1)j = k, f j−1 = 1}

∑d′∑Z∈Z Q(Z)∑
Nτ

j=11{r j = d′,s(1)j = k, f j−1 = 1}

=
∑

Nτ

j=1 ∑Z∈Z P(Z,O;θ old)1{r j = d,s(1)j = k, f j−1 = 1}

∑
Nτ

j=1 ∑d′∑Z∈Z P(Z,O;θ old)1{r j = d′,s(1)j = k, f j−1 = 1}

=
∑

Nτ

j=1 P(S(1)j = k,R j = d,Fj−1 = f |O(1)
1:Nτ

)

∑d′∑
Nτ

j=1 P(S(1)j = k,R j = d′,Fj−1 = f |O(1)
1:Nτ

)

(4.43)

where both the numerator and denominator are given by ESS (1.32). As we discussed

previously, this update formula fits a tabular distribution with D parameters but which

can be reduced bit fitting discrete distributions on top of the frequency table, see

Chapter 1, section 1.3.3.

Then, the update formulas of υkl:

∂L (θ)+ ...

∂υkl
=−νk + ∑

Z∈Z
Q(Z)

Nτ

∑
j=1

1{ε1 = l,s(1)1 = k}
υkl

.

Hence υkl is maximal for,

υkl =
1
νk

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{ε1 = l,s(1)1 = k}. (4.44)

Then we have,
∂L (θ)+ ...

∂νk
= 1−∑

l
υkl (4.45)

substituting (4.44) into (4.45), νk is maximal when:

νk = ∑
l

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{ε1 = l,s(1)1 = k}, (4.46)
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now substituting back (4.46) into (4.44), we obtain:

υkl =
∑Z∈Z Q(Z)∑

Nτ

j=11{ε1 = l,s(1)1 = k}

∑l′∑Z∈Z Q(Z)∑
Nτ

j=11{ε1 = l′,s(1)1 = k}

=
∑

Nτ

j=1 ∑Z∈Z P(Z,O;θ old)1{ε1 = l,s(1)1 = k}

∑
Nτ

j=1 ∑l′∑Z∈Z P(Z,O;θ old)1{ε1 = l′,s(1)1 = k}

=
P(O(1)

1:Nτ
,O(2)

1:τ ,S
(1)
1 = k,ε1 = l)

∑l′ P(O
(1)
1:Nτ

,O(2)
1:τ ,S

(1)
1 = k,ε1 = l′)

= P(S(1)1 = k,ε1 = l|O(1)
1:Nτ

,O(2)
1:τ)

(4.47)

which is given by ESS (4.17) and can be interpreted as the expected number of times

the process started (at time j = 1) with a delay l from state k.

Then, the update formulas of ρkll′:

∂L (θ)+ ...

∂ρkll′
=−µk + ∑

Z∈Z
Q(Z)

Nτ

∑
j=1

1{ε j = l,ε j−1 = l′,s(1)j = k}
ρkll′

Hence ρkll′ is maximal for,

ρkll′ =
1
µk

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{ε j = l,ε j−1 = l′,s(1)j = k}. (4.48)

Then we have,
∂L (θ)+ ...

∂ µk
= 1−∑

l
∑
l′

ρkll′ (4.49)

substituting (4.48) into (4.49), µkl is maximal when:

µk = ∑
l

∑
l′

∑
Z∈Z

Q(Z)
Nτ

∑
j=1

1{ε j = l,ε j−1 = l′,s(1)j = k}, (4.50)
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now substituting back (4.50) into (4.48), we obtain:

ρkll′ =
∑Z∈Z Q(Z)∑

Nτ

j=11{ε j = l,ε j−1 = l′,s(1)j = k}

∑l′′∑l′′′∑Z∈Z Q(Z)∑
Nτ

j=11{ε j = l′′,ε j−1 = l′′′,s(1)j = k}

=
P(S(1)j = k,ε j = l,ε j−1 = l′, |O(1)

1:Nτ
,O(2)

1:τ)

∑l′′∑l′′′ P(S
(1)
j = k,ε j = l′′,ε j−1 = l′′′|O(1)

1:Nτ
,O(2)

1:τ)

(4.51)

which is given by ESS (4.17) and can be interpreted as the expected number of

transitions from state k and delay l to delay l′ regardingless of time. Similarly to sojourn

distribution, it is possible to fit distributions on top of the lag-transition matrix in order

to reduce the complexity, see section 1.3 non exhaustive list of possibilities.

Finally, we give the update formula for the covariance matrix Σk:

Σk =
∑

τ
t=1 P(S(1)Nt

= k|O(1)
1:Nτ

,O(2)
1:τ)O

(2)
t (O(2)

t )T

∑
τ
t=1 P(S(1)Nt

= k|O(1)
1:Nτ

,O(2)
1:τ)

(4.52)

where both the numerator and the denominator are given by ESS (4.19). In our

application, O(2)
1:τ corresponds to features (wavelet coefficients) of a multi-channel EEGs

leading to a covariance matrix of size C λ j×C λ j, where C is the number of channels

and λ j, the number scales for the wavelet transform (Chapter 3 section 3.2). On the

one hand, this results into a high dimension problem. On the other hand, the matrix

is probably sparse since it does not only model interactions between channels at the

same scale but also between channels at different scales. For an overview of sparse

matrix estimation methods such as graphical lasso Friedman et al. (2008), we refer

to the review of Fan et al. (2016). It is also interesting to note that the covariance

matrix encodes marginal correlations between channels/scales while it might also be

of interest to estimate the precision matrix which encodes conditional correlations

between pairs of variables given the remaining variables.

2.3 State restoration

The state sequence restoration consists in finding the best state sequence given an

observed sequence. In the case of an AHHSMM, we consider that the computation

of the state sequence S(1)1:Nτ
remains unchanged compared to EDHMM and is achieved

using the general Viterbi HSMM Algorithm, see equation (1.41). This can be justified
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by the fact that in our EM procedure, see proposition 3, O(2)
1:τ does not interfere in the

parameter estimation of the first state sequence, so does it in state sequence restoration.

The novelty arise from the computation of the second state sequence S(2)1:τ along with

the most likely delay. Hence, we define the recursive max product equation, which is

the probability to end up in state k for at time t for S(2)t given the most likely path was

previously taken:

δ
(2)(k) = max

s(2)1:t−1

P(S(2)1:t−1 = s(2)1:t−1,S
(2)
t = k,O(1)

1:Nτ
= o(1)1:Nτ

,O(2)
1:τ = o(2)1:τ),

then, the optimal sequence is computed using the traceback of the two backpointers:

one storing the optimal previous state, the other storing the optimal previous lag.

3 AHHSMM in practice

3.1 Implementation issues

In this section, we present implementation issues that are generally encountered in

practice. We chose not to develop the related mathematical frameworks in this thesis

since it leads to even heavier notations and disturbs the understanding of the model

and algorithms. Nonetheless, we provide references that tackle the problem in similar

models.

Numerical underflow. So far, we have provided quantities such as forward probabili-

ties, equation (4.20), as a joint distribution of possibly growing number of random vari-

ables controlled by the sequences length τ and Nτ respectively. Such quantities rapidly

underflow as τ resp. Nτ gets large. To face this practical issue, there exists two possibili-

ties. The first one consists in decomposing quantities using logs and the LogSumExp

trick, which is presented in Murphy (2002) in the EDHMM case. The second one consists

in computing filtered probabilities, hence α j(k, l) = P(O(1)
1: j ,O

(2)
1:Tj+l−1,S

(1)
j ,ε j = l,Fj = 1)

becomes α(k, l) = P(S(1)j ,ε j = l,Fj = 1|O(1)
1: j ,O

(2)
1:Tj+l−1) which doesn’t lead to numerical

underflows. Refer to Guédon (2003) for this solution in the EDHMM case.

Saving memory. Devijver (1985) proposed a Forward-only algorithm for inference

in HMM. This algorithm relies on a decomposition of the expected sufficient statistics
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using only forward variables which may be interesting in a memory saving perspective.

Guedon and Cocozza-Thivent (1990) then applied it to EDHMM.

Multisequence framework. Similarly, we have considered unique sequences of ob-

servations until now in order to keep it simple. Rabiner (1989) shows the updated

formulas for HMM in a multisequence framework. The corresponding changes consists

in defining forward and backward variables for each sequence in the E-step. Changes

in the M-step resides in summing out each quantity per sequence multiplied by a prior

that is the likelihood of the sequence.

3.2 Assessing performance

Performance measure. Performance assessment of AHHSMM simply relies on model

selection. Model selection has already been introduced in section 3.1.2. We again

propose to assess AHHSMM based on information theory criterion such as BIC and ICL.

Alternative models. AHHSMM proposes two new aspects, that is, the asynchronous

and the heterogeneity of the data. The asynchronous relationships between two signals

has already been explored in the work of Bengio (2003), see Chapter 1 section 2.6, and

has shown improvements regarding a simple HMM with synchronized multiple output

processes. However, to the best of our knowledge, there has been no DBN proposed

to model heterogeneous data. We proposed to assess these facets by comparing four

different combinations of models:

1. asynchronous heterogeneous hidden semi-Markov model (AHHSMM),

2. asynchronous homogeneous Hidden semi-Markov model, which difference with

AHHSMM is simply to use a standard EM procedure rather than the one proposed

in proposition 3. This leads to different expected sufficient statistics, with different

forward-backward variables as well as a M-Step which also takes into account

O(2)
1 : τ when updating parameters related to the first chain S(1)1 : Nτ ,

3. heterogeneous hidden semi-Markov model for which output processes are syn-

chronized. This is a special case of AHHSMM by simply setting the upper limit of

the lag to 0, L = 0,

4. hidden semi-Markov model.
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3.3 Discussion

Coupled models. AHHSMM may come within the scope of coupled models (Chapter

1 section 2.6) since each signal may be conditioned by a corresponding hidden chain

(shared or not). However, coupled models have mainly been used in classification

contexts, e.g. to separate two distinct tasks by building a Coupled HMM for each Zhong

and Ghosh (2002). This highlights the main drawback of the CHMM: they were not

designed for signal segmentation and interpretation, therefore, each channel has its

own segmentation and it is difficult to characterize a segment. Obermaier et al. (2001a)

who used HMM for EEG segmentation simply assumed that changes of states were

due to physiological changes in the patterns of output processes. In AHHSM, we force

the EEG segments to be tied up to eye-movement segments which segments EEGs into

reading strategies using delayed changes in patterns of eye-movements.

Lag distribution. In section 1.3, we proposed a wide variety of distributions for the

lag. Sometimes leading to more parameters, sometimes leading to a much higher com-

plexity in parameter inference. Most of the distributions propose to re-synchronize the

EEG signal at every fixation step. However, if the goal is only to perform segmentation,

a very simple distribution which is is invariant during a state, i.e. change of strategy,

may be adopted. This is explained by the fact that segmentation only takes into account

the lag before and after a state transition. Nonetheless, more complicated distributions

may be used to explore the behavior of the eye-movement / EEG delay.

Range of influence of output processes. In our application, the low-rate sampling

process corresponds to eye-movement features indexed at fixation time steps. The time

elapsed between two fixations corresponds to the time of the current fixation plus the

time of the outgoing saccade. In the current model, we suppose that the eye-movement

output at time j−1, O(1)
j−1, influences EEGs from time Tj−1 + ε j−1 to Tj + ε j that is the

beginning of the next fixation plus the delay. However we could suppose that the most

interesting part of the signal EEG signal caused by the fixation at time j−1 only ranges

till time Tj, beginning of the next fixation. Several examples of range of influences are

shown in figure 4.2.

Missing values. There are plenty of reasons to take into consideration missing values

in the EEG or eye-movement signal. It may be caused by a simple acquisition problem.

But it could also be interesting to remove an undesired part of the signal if we focus on



146 Coupling eye-movement and EEG data with AHHSMM

Figure 4.2: Influence range of low-rate sampling process on high-rate sampling process
from a coupled eye-tracking and EEG perspective. The top line represent the eye-
movement signal. At time j−1, a readmode observation O(1)

j−1 is sampled and the next
one is sampled at time j. The current model fails at taking into account the associated
fixation and saccade durations. Indeed the time step of this low-rate sampling process
is the fixation. However, it is not necessary for this eye-movement related process, this
information could be use to determine the range of influence of observation O(1)

j−1. In
the current model, the influence starts at time Tj−1 + ε j−1 until Tj + ε j, i.e. until the
beginning of the influence of the next fixation plus a delay, but it could be interesting
to stop the influence before. For example, at the beginning of the saccade associated
with time j−1 or simply the next fixation at time j. These hypothesis are represented
by the dotted lines going from one process to another.
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a specific range of influence. Moreover, when dealing with wavelets, the deeper we

go in the scales, the more the wavelets overlap, which can become a problem around

state transitions. This signal could also be deleted around state transition times, to

point out the state-specific part of the signal. A possible solution is to considering

parameter learning with missing values similarly to the work of Celeux and Durand

(2008) with HMMs.

Scaling and technical issues. In practise, we have 10 seconds of acquisition of a 32

multichannel-EEG sampled at 1000Hz on 7 wavelet scales for 15 subjects, 3 text types

and 60 texts. Considering that this information is stored on a double of 8 bytes size,

the storage requirement is ≈ 4.8384e10 bytes or ≈ 45Gb. The standard Expectation-

Maximization algorithm requires all the data to be stored at the same time and such

amount of RAM is usually not available on computers. This leads us to turn our

attention to online learning methods which optimize learn parameter by taking one

data point at a time. Cappé (2011) has developed an online EM algorithm for HMM

and Bietti et al. (2015) has done a similar work on HSMM. Alas, online algorithms are

usually slow since they use one data point at a time but might be solved with mini-batch

versions of EM which is currently a hot topic of research in statistical learning, see

Nguyen et al. (2019) for mini-batch learning in mixture models with exponential family

distributions.

Ongoing experiments. Some ongoing experiments aim at properly evaluating the

characteristics of the proposed model (asynchrony and heterogeneity), and evaluating

it with its alternatives.





Conclusion

Summary of contributions.

In Chapter 1, we addressed how dynamic Bayesian networks could help to better

model, understand and interpret temporal data. A global framework was presented and

models were all presented accordingly. We refreshed HSMM’s representation, inference,

learning and restoration algorithms from a dynamic Bayesian network point of view.

We also pointed out the need of a random restart strategy for HSMM.

Hence, in Chapter 2 section 2, we proposed and compared two new strategies

to search for a good local maximum likelihood for HSMM with multiple categorical

sequences. In accordance with some previous investigations (Biernacki et al., 2003),

we showed empirically that a local maximizer with a large attraction domain might

sometimes be preferable rather than a spurious local maximizer with a small attraction

area. Similarly, we showed that information-theory-based criteria such as BIC and ICL

should be used with caution. There is not an absolute better criterion, the choice mainly

depends on the aim of the analysis.

In the sequel of Chapter 2, we proposed to identify and characterize reading

strategies using HSMMs. This process was rigorously tied together with a methodology

proposing data selection, output process selection and model selection. Along the study,

two models learned with different strategy were opposed, showing high similarities and

encouraging results in terms of interpretation. However, we also presented a drawback

of the model on the data: there is a high uncertainty in the restoration which could be

reduced by notably incorporating EEGs into a same model.

To this end, in Chapter 3, we first made sure that the model was making sense,

not only through his parameters but also thanks to thoroughly chosen covariates. We

resorted to covariates of eye movements to demonstrate that segmentation was discrim-

inant enough and managed to relate our strategies with those previously observed in

the literature. We also showed that readers could almost be clustered into two distinct
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groups: careful readers and efficient readers. Then, we measured semantic information

gathered all along the trial by readers to show that strategy changes are, at least in

part, triggered by target words regarding the given task. Finally, we related reading

strategies to contrasted EEG features (wavelet coefficients) and to correlation patterns.

We interpreted well-correlated areas as information diffusion and showed that strate-

gies that require deeper sentential integration seemed to involve more connections of

temporal areas with parietal, occipital and frontal areas, especially in the theta and

alpha bands.

Lastly, in Chapter 4, we proposed to integrate both eye movements and EEGs into

a same model to decrease uncertainty regarding segmentation. The originality of the

proposition lied on the two characteristics of the signals: they were asynchronous and

heterogeneous. EEGs were continuously observed at a fixed (high) sampling rate over

say 30 channels. EEG patterns were characterized by a delayed semantic integration

with respect to the eye movements, which were univariate discrete measures sampled

at a low rate, and non constant (but known) time. To this end, we proposed to exploit

asymptotic properties of the estimators to propose an alternative EM procedure. We

also proposed an appropriate inference algorithm.

Perspectives

Short-term perspectives

Our very next work will be focused on the finalization of the implementation and

experiments of AHHSMMs. As we discussed in Chapter 4, we are facing scalability

issues but first experiments can be done on synthetic data to validate: (i) the accuracy of

the inference algorithm, (ii) the identifiability of model parameters, (iii) the behavior of

our new EM procedure. Afterwards, we will work on subsamples of the real data, at the

wavelet scale (i.e., alpha band) that showed the most salient correlations. Electrodes

will be clustered into regions of interests and some random subsampling of subjects

and text types will be performed.

The next short-term perspective will be to evaluate quantitatively individual vari-

ability on EEG’s wavelet variance using linear models with random effects. The goal is

to compute a random effect per subject to then subtract it to each trial’s variance, to be

able to better observe activity through the variance with respect to reading strategies

and wavelet scales.
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Thirdly, we plan on providing more results on more datasets concerning the sequence

breaking framework proposed to search high local likelihood values for HSMM. Its

assessment on supervised tasks might also help us to better validate the assumptions

emitted on the search of spurious local maxima.

Finally, regarding Chapter 3 and EEG a posteriori analysis, we would also like to

better assess our graph properties with more small-world properties such as clustering

ratio, path length ratio and many more graph indicators.

Long-term perspectives

The most important long-term perspective for this PhD will surely be to ensure the

scalability of the proposed AHHSMM. Developing mini-batch versions of EM is a current

topic of research and just started to emerge on much simpler models such as Gaussian

mixture models (Nguyen et al., 2019).

Afterwards, it will be possible to better characterize the link and the true nature of

the eye-movement EEG response delay. The assessment of the lag distribution and the

range of influence will be of interest for the reading community.

A final long-term perspective could be to directly integrate random effects such as

text and subjects directly into the AHHSMM model to better characterize and quantify

their contributions to the variability of the data.
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Appendix A

Descriptive statistics on eye-movement
dataset

Subject Fixation Duration Saccade amplitude #Fixations per trial
s01 192.6 ± 70.6 132.1 ± 98.1 16.2 ± 6.3
s02 155.3 ± 47.4 116.2 ± 103.9 15.5 ± 7.3
s04 189.4 ± 68.1 143.6 ± 95.3 31 ± 9.3
s05 176.4 ± 54.3 114 ± 96.3 19.6 ± 7.8
s06 176.9 ± 67.7 120.9 ± 112.7 18.8 ± 7.9
s07 175 ± 48.3 172.8 ± 98.4 10.8 ± 4.5
s08 163.4 ± 53.6 136.6 ± 92.3 16.4 ± 7
s10 154 ± 39.4 136.3 ± 91.6 16.2 ± 7.3
s13 209.6 ± 78.6 118.1 ± 115.2 17.5 ± 5.9
s14 243 ± 92.6 116 ± 94 15.9 ± 6.5
s17 177.8 ± 51.7 145.4 ± 103.5 20.9 ± 10.8
s18 200.3 ± 66.9 140 ± 87.3 12.1 ± 6
s19 157.2 ± 40.3 169.3 ± 99.8 13.4 ± 6.4
s20 217.5 ± 73.4 140.3 ± 95.9 11.5 ± 6.3
s21 183.4 ± 50.7 148.4 ± 84.3 11.7 ± 4.4
Grand Total 184 ± 66 135 ± 100 17 ± 9

Table A.1: Per subject average (mean ± std) fixation durations, saccade amplitudes and
number of fixations.
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Subject Readmode
long regression regression refixation progression long progression

s01 0.03 0.02 0.28 0.21 0.45
s02 0.01 0 0.37 0.25 0.37
s04 0.15 0.05 0.2 0.18 0.42
s05 0.03 0.02 0.36 0.22 0.36
s06 0.02 0.01 0.38 0.26 0.33
s07 0.06 0.02 0.1 0.23 0.58
s08 0.11 0.02 0.22 0.22 0.44
s10 0.08 0.02 0.23 0.23 0.44
s13 0.02 0 0.4 0.23 0.34
s14 0.09 0.03 0.31 0.19 0.38
s17 0.06 0.03 0.22 0.24 0.44
s18 0.08 0.04 0.15 0.22 0.5
s19 0.04 0.01 0.13 0.23 0.58
s20 0.09 0.04 0.26 0.18 0.44
s21 0.09 0.03 0.13 0.16 0.58
Grand Total 0.07 0.02 0.26 0.22 0.43

Table A.2: Per subject readmode frequencies. Long regression (Bwd++): more than
one word skipped with a backward saccade, regression (Bwd+): one word skipped
with a backward saccade, short progression (Fwd+): one word skipped with a forward
saccade, long progression (Fwd++): more than one word skipped with a forward
saccade.
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Subject Text Type
UR HR MR

s01 0.95 0.96 0.53
s02 1.00 0.98 0.38
s04 0.66 0.81 0.84
s05 0.97 0.88 0.48
s06 0.97 0.95 0.44
s07 1.00 0.95 0.34
s08 1.00 0.92 0.19
s10 1.00 1.00 0.36
s13 0.86 0.88 0.56
s14 0.90 0.96 0.71
s17 1.00 0.88 0.61
s18 1.00 0.93 0.41
s19 0.98 0.97 0.32
s20 1.00 0.78 0.39
s21 1.00 0.81 0.35
Total 0.93 0.91 0.49

Table A.3: Answer rate per subject and per text. Note that there is no good answer
for texts MR as it is ambiguous. UR: Unrelated texts, HR: Highly related texts, MR:
Moderately related texts.

Text Type Mean Fixation Duration Mean Saccade Amplitude Mean no. of Fixations per trial
UR 181.9 ± 65.6 132.2 ± 97.9 14.3 ± 7.9
HR 185.8 ± 67 135 ± 100.5 15.3 ± 7.9
MR 184.2 ± 66.7 137.3 ± 102 20.1 ± 8.6
Grand Total 184 ± 66.5 135.1 ± 100.4 16.6 ± 8.5

Table A.4: Per text type average (mean ± std) fixation durations, saccade amplitudes
and number of fixations. UR: Unrelated texts, HR: Highly related texts, MR: Moderately
related texts.

Text Type Readmode
long regression regression refixation progression long progression

UR 0.06 0.02 0.25 0.22 0.45
HR 0.06 0.02 0.26 0.23 0.42
MR 0.07 0.02 0.26 0.21 0.43
Grand Total 0.07 0.02 0.26 0.22 0.43

Table A.5: Readmode frequencies per text type. UR: Unrelated texts, HR: Highly related
texts, MR: Moderately related texts.





Appendix B

Anatomical maps for scale 5 (beta
band)
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(a) Normal reading

(b) Information search

(c) Speed reading

(d) Slow confirmation

Figure B.1: Anatomical maps (left: sagittal view, right: top view) per reading strategy
for wavelet scale 5 (β band) with thresholded covariance at 0.54. Left map is a sagittal
view, right map is a top view.
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