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Abstract

Comprehensive characterization of DNA variations can help to progress in multiple

cancer genomics fields. Next Generation Sequencing (NGS) is currently the most efficient

technique to determine a DNA sequence, due to low experiment cost and time compared to

the traditional Sanger sequencing. Nevertheless, detection of mutations from NGS data is

still a difficult problem, in particular for somatic mutations present in very low abundance

like when trying to identify tumor subclonal mutations, tumor-derived mutations in cell free

DNA, or somatic mutations from histological normal tissue. The main difficulty is to pre-

cisely distinguish between true mutations from sequencing artifacts as they reach similar

levels. In this thesis we have studied the systematic nature of errors in NGS data to pro-

pose efficient methodologies in order to accurately identify mutations potentially in low

proportion. In a first chapter, we describe needlestack, a new variant caller based on the

modelling of systematic errors across multiple samples to extract candidate mutations. In a

second chapter, we propose two post-calling variant filtering methods based on new sum-

mary statistics and on machine learning, with the aim of boosting the precision of mutation

detection through the identification of non-systematic errors. Finally, in a last chapter we

apply these approaches to develop cancer early detection biomarkers using circulating tu-

mor DNA.
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Résumé

La caractérisation exaustive des variations de l’ADN peut aider à progresser dans de

nombreux champs liés à la génomique du cancer. Le séquençage nouvelle génération (NGS

en anglais pour Next Generation Sequencing) est actuellement la technique la plus efficace

pour déterminer une séquence ADN, du aux faibles coûts et durées des expériences comparé

à la méthode de séquençage traditionnelle de Sanger. Cependant, la détection de mutations

à partir de données NGS reste encore un problème difficile, en particulier pour les mutations

somatiques présentes en très faible abondance comme lorsque l’on essaye d’identifier des

mutations sous-clonales d’une tumeur, des mutations dérivées de la tumeur dans l’ADN cir-

culant libre, ou des mutations somatiques dans des tissus normaux. La difficulté principale

est de précisement distinguer les vraies mutations des artefacts de séquençage du au fait

qu’ils atteignent des niveaux similaires. Dans cette thèse nous avons étudié la nature sys-

tématique des erreurs dans les données NGS afin de proposer des méthodologies efficaces

capables d’identifier des mutations potentiellement en faible abondance. Dans un premier

chapitre, nous decrivons needlestack, un nouvel outil d’appel de variants basé sur la mod-

élisation des erreurs systématiques sur plusieurs échantillons pour extraire des mutations

candidates. Dans un deuxième chapitre, nous proposons deux méthodes de filtrage des vari-

ants basées sur des résumés statistiques et sur de l’apprentissage automatique, dans le but

de d’améliorer la précision de la détection des mutations par l’identification des erreurs non-

systématiques. Finalement, dans un dernier chapitre nous appliquons ces approches pour

développer des biomarqueurs de détection précoce du cancer en utilisant l’ADN circulant

tumoral.
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Chapter 1

Introduction

“ Almost in the beginning was

curiosity ”

Isaac Asimov
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CHAPTER 1. INTRODUCTION

1.1 Scientific context

1.1.1 Cancer

Cancer is a leading cause of death worldwide, responsible for around 10 million of deaths

in 2018, which corresponds to 1 death over 6 dues to cancer [23]. Cancer can be defined as

a set of related genetic diseases that can affect multiple parts of a living organism. In this

work, we will focus on human cancers. An important measure that can expose the large di-

versity of cancer is the total number of classified types of cancer: there are more than one

hundred distinct classes of cancers according to the National Cancer Institute (NCI) [1]. The

common factor shared by every class of cancer is the type of initiation and the mode of pro-

liferation [32]. The first step to develop a cancer, which corresponds to the type of disease

initiation, consists in the transformation of a normal cell into a tumor cell [36]. A set of tu-

mor cells defines a tumor, and there is two distinct types of tumors: benign and malignant

[32]. Benign tumors remains located at the original place whereas malignant tumors are able

to invading the surrounding normal tissue and to proliferate throughout other body areas.

This process is called metastasis [27]. The major difference between a normal and a tumor

cell is the capacity of tumor cells to grow out of control and to become invasive: they can ig-

nore the biological signals conducting into apoptosis, also known as programmed cell death

[46]. Cancer is mainly a genetic disease [144]. This means that cancers are mostly caused by

genetic (or genomic) changes.

1.1.2 Genomic variations causing cancer

Genome

The term genome was firstly defined by a german botanist from the university of Hamburg,

Hans Winkler, in 1920 [143]. The genome corresponds to the genetic material of a living or-

ganism. It is constituted of deoxyribonucleic acid (DNA), and is found in the cell nucleus. It is

represented by a consecutive serie of nucleotides, or often simply called bases. These bases

are biochemical entities and are usually represented by an alphabetical letter: the base Ade-

nine is encoded as A, Thymine as T, Cytosine as C and Guanine as G. Bases are grouped into

3



CHAPTER 1. INTRODUCTION

two biochemical classes: purine bases (Adenine and Guanine) and pyrimidine bases (Cyto-

sine and Thymine) that present different molecular properties. The DNA molecule that con-

stitute the genome is composed of two strands, the forward strand and the reverse strand,

coiling around each other to form the well-known DNA double helix. This structure of DNA

was firstly described in 1953 by James Watson and Francis Crick [140] (figure 1.1).

Figure 1.1 – Figure from Watson and Crick [140] representing the DNA double strands

Genome variations

Contrary to studies in the field of population genomics that are focused on large-scale com-

parisons of genomes between multiple populations, here we will focus on individual ge-

nomic variations. Such genomic variations correspond to changes of nucleotides when com-

paring a particular part of an individual genome to a reference genome. This comparison

between a reference genome and an individual genome is inherent to the Next-Generation

Sequencing (NGS) technology (see paragraph 1.1.3) as this requires a step of alignment. Nev-

ertheless, such comparison is possible only when a reference genome is available, such as

for human or mouse, and for species with an unknown reference, a step of de-novo assembly

is needed to define the genomic sequence of the sample [16]. The reference reliability is a

4



CHAPTER 1. INTRODUCTION

current source of discussion and recently a group of researchers have proposed to re-define

the reference genome using a consensus approach [17]. The human reference genome is

currently defined by the Genome Reference Consortium (GRC) [30] [119], and represents

a reference sequence of the human DNA. Coding regions are the most studied part of the

genome, and the genomic coding region set is defined as the exome, which accounts for ap-

proximatively 1-2% of the genome. Nevertheless, recent studies show that variations found

in non-coding regions of the genome can drive a cancer [38] [54]. The human genome is

versioned (Table 1.1), and a particular version of the human genome corresponds to a fixed

consensus DNA sequence.

Table 1.1 – Details of available reference genomes, identified by GRC version

Release Name Date of release UCSC version Total number of bases
GRCh38 Dec. 2013 hg38 3,209,286,105
GRCh37 Feb. 2009 hg19 3,137,144,693
NCBI Build 36.1 Mar. 2006 hg18 3,104,054,490
NCBI Build 35 May 2004 hg17 3,091,649,889
NCBI Build 34 Jul. 2003 hg16 3,091,959,510

There exists three major types of genomic variation: Single Nucleotide Variation (SNV),

Insertion or deletion (indel) and structural variations (figure 1.2). A SNV corresponds to any

one-base-pair change, and there are two subgroups of SNVs: transitions, that corresponds to

a change between the same biochemical class (purine into purine or pyrimidine into pyrim-

idine), and transversions, that corresponds to a change between the two different biochem-

ical classes (purine into pyrimidine or pyrimidine into purine). An indel is defined by a loss

or a gain of nucleotides that ranges from two to hundreds of bases in length. Finally, a struc-

tural variation describes a genomic variation of a larger size. It includes both chromosomal

rearrangements and DNA Copy Number Variation (CNV). In this work we will focus on i.e.

SNVs and indels.

Germline and somatic mutations

A genomic variation when comparing an individual genome to a reference genome can be

called a mutation. Mutations are grouped into two classes depending on the type of cell

carrying the mutation: if the mutation was acquired from the parents of the individual, i.e.

5



CHAPTER 1. INTRODUCTION

Reference       ATTGAAGGCTGTCAG

SNV                ATTGAGGGCTGTCAG

Insertion          ATTGAAGGGCCTGTCAG

Deletion          ATTGAA--CTGTCAG

Large insertionLarge deletion

Duplication

Reference

Variation

G--GC Variation

Inversion

Copy Number Variation

SNVs and indels Structural variations

Figure 1.2 – Schematic representation of the three different classes of genomic variations

presents in their germ cells it is called a germline mutation. Germline mutations are expected

to be present in each cell of the individual, i.e. in both normal and tumor cells. A germ cell

can also acquire a mutation during the lifetime of an individual, and this type of germline

mutation is called a de novo mutation. If a germline mutation is identified in an individual

but is not present when analyzing DNA of the parents, this corresponds to such de novo mu-

tation that one of the parent has acquired [53]. More rarely, a de novo mutation can arise not

in the germ cell of one parent but directly inside individual cells at early development stages,

and in this case the mutation is called a post-zygotic de novo mutation and are responsible

for somatic mosaicism [4]. If the mutation in acquired during the lifetime of the individual

in a non-germ cell, it is called a somatic mutation. This means that given a particular sample

of cells from an individual, all the cells will carry the germline mutations, but it is expected

that only a fragment of them will carry a specific somatic mutation. Germline and somatic

mutation proportions in a human sample are not similar. This leads to a difference in term

of observed number of mutations. When analyzing the genome of a particular cell (normal

or tumor cell), it is expected to detect around one germline mutation every 1,000 base pairs,

which is equivalent to a rate of 1/Kb [66],[21]. When analyzing a tumor cell, it is expected to

detect in addition around one somatic mutation every 1,000,000 base pairs, which is equiva-

lent to a rate of 1/Mb [9]. This leads to an expectation of around 30,000 germline mutations

in a human exome and 30 somatic mutations. This is just an order of magnitude, and there-

fore these numbers are expected to vary largely across individuals and cancer types [9].
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Variations causing cancer

The evolutionary perspective on cancer stipulates that cancer initiation and progression is

due to an accumulation of selectively advantageous mutations [18]. Indeed, a normal cell

can acquire one or multiple genomic alterations, and these variations can give to the cell the

capacity to divide abnormally faster than a normal cell and to proliferate, and subsequently

causes cancer. Such mutations that decrease the fitness of a cell are called deleterious mu-

tations [91].

Genes that promote a tumor initiation when altered by a deleterious genomic variation

are called driver genes. Two types of genes playing a role in cancer has been reported: onco-

genes and tumor suppressor genes. Oncogenes are genes that can help abnormal cells to

grow when activated and Tumor Suppressor Gene (TSG) are genes that control cell divisions,

DNA repair and apoptosis when activated. This leads to a difference in term of expected type

of mutations observed in these genes in a tumor sample: mutations in oncogenes should

activate the protein function to help cancer to progress contrary to mutations in TSG that

should inactivate the protein function. It has also been reported that some genes can show

both characteristics [120]. In 2013, there were around 140 genes recorded as cancer drivers

[137]. In 2018, a new study updated this and described a total of 299 driver genes [15]. The

top-five genes identified as driver in most cancer types among the 33 studied types are TP53

(most extreme case, driver in 27 cancer types), PIK3CA, KRAS, PTEN, and ARID1A. Mutations

affecting the production of a protein are called driver mutations, and other mutations that

do not confer any growth advantage, are called passenger mutations.

Due to genetic code redundancy [78], it is accepted that missense variations i.e. muta-

tions that change the particular amino acid (entity that form a protein) encoded, indels and

non-sense mutations i.e. a mutation that introduces a stop codon and truncate the protein

can alter the protein. To predict the deleterious power of a particular mutation, multiple

methods have tried to build databases of pathogenicity of human variations, such as SIFT

[102], PolyPhen [6],[5], or more recently REVEL [67], a tool predicting the pathogenicity of

missense mutations based on a random forest learning on multiple databases of rare neutral

and disease missense variants.
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In 1971, the geneticist Alfred Knudson proposed the hypothesis that most genes require

two mutations to be inactivated, that is also known as the two-hits hypothesis [73]. This hy-

pothesis is based on the observation that most of deleterious mutations in TSG are recessive

[97] and therefore the two alleles of a TSG should be mutated to activate tumor proliferation.

Based on his hereditary observations on retinoblastoma, Knudson proposed that a TSG is in-

activated from both a deleterious germline mutation in one allele and a deleterious somatic

mutation in the second allele.

In summary, cancer is a two-component disease. First component is defined by indi-

vidual susceptibility, i.e. the inherited mutations that can participate to the alteration of a

gene leading to the development of a cancer. Second component is defined by individual

capacity to acquire mutations. This second component depends both on randomness and

on environment.

1.1.3 Next-generation sequencing

Definition

The identification of genomic variation was made possible by the development of sequenc-

ing techniques. The aim of such techniques is to determine the genomic sequence of an

individual DNA, that can then be compared with a defined reference to identify variations.

The first robust DNA sequencing method was developed during the 1970s at the Medi-

cal Research Council Center in Cambridge, UK, by Frederick Sanger [115], who received for

this innovative discovery the Nobel Price in 1980. The method is based on the incorporation

of complementary nucleotides during and in vitro DNA replication, that can be determined

at the end of the experiment. The Sanger sequencing method was the one used to produce

the first human genome in 2001 [81]. Nevertheless, the main disadvantage of this sequencing

technique is its cost. Although the per genome cost of such methods was divided by 10,000

from 2001 to 2011 [141], the total cost of a genome sequencing with the Sanger technology is

still highly expensive (around $10,000).

This need has driven the development of new low-cost sequencing methods, known as

High-Throughput Sequencing (HTS) or NGS[123]. The price of a whole genome sequencing
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using these methods was decreased until reaching only $1,000 in 2015. Multiple distinct NGS

technologies have been developed since early 2000’s, and in this work we will focus on two

particular sequencers, the Illumina [121] and Ion Torrent next-generation sequencers. What-

ever the sequencing technology, NGS method of DNA sequencing follows three steps: library

preparation, amplification of DNA fragments and sequencing of these fragments [123]. The

resulting entity is called a sequencing read, which identify the sequence of a particular seg-

ment of DNA, and a NGS experiment creates a massive amount of reads, up to several hun-

dreds of millions of reads when sequencing a complete genome. The capacity of NGS tech-

nologies to sequence millions of DNA fragments defines a major improvement when com-

paring NGS and traditional Sanger sequencing: NGS is offering a unique ability to detect

minor variants in a DNA sample [43]. Figure 1.3(A) summarizes the different steps forming

a NGS experiment.

A                                              B

modify from Zhernakova et al, PLOS Genetics 2013 

DNA extraction

DNA fragmentation

Amplification 
(PCR)

Sequencing 
(Illumina, IonTorrent)

sequencing reads

Figure 1.3 – Representation of a NGS experiment

A subsequent required step after the raw sequencing to obtain data that could be ana-

lyzed is called the read alignment. The raw sequencing only outputs small segments corre-

sponding to initial DNA, but these small fragments need to be mapped to the reference DNA

to then reconstruct entirely the DNA sequence 1.3(B) [148]. There exists multiple meth-

ods of NGS alignment based on different algorithms, the main challenges justifying these

developments being the computing time and the accuracy [51]. The most commonly used

alignment algorithm is Burrows-Wheeler Aligner (BWA), which was developed by Heng Li

at Harvard University. This method proposes two different algorithms to maximize the ac-
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curacy of the alignment depending on the length of the sequencing reads: for reads up to

100bp, the BWA-SW algorithm, based on the Burrows-Wheeler Transform is recommended

[88]. The BWA-MEM algorithm was designed for longer reads [85].

Ion Torrent sequencers implement their own technology-specific aligner which is based

on the BWA algorithm and is called TMAP [2]. This step is an automatic part of the Ion

Torrent sequencing process. Illumina and IonTorrent Proton sequencer have many differ-

ences. First, they do not use the same technology to read the DNA sequence. Illumina uses

a fluorescence-based method whereas the IonTorrent Proton uses pH measurement [79].

There are also some differences in the type of data generated by these sequencing technolo-

gies. Illumina sequenced reads have the same length whereas IonTorrent Proton reads have

lengths that differ. Both sequencing technologies can generate "paired-end" reads (corre-

sponding to two extremities of a particular DNA fragment) or "single-end" reads (Figure

1.3(B), [148]).

There are three main types of study design for sequencing projects based on the length

of DNA that the experiment aims to determine: Whole-Genome Sequencing (WGS), that

refers to the sequencing of the entire DNA molecule present in a cell, WES, that refers to the

sequencing of exomes, the coding part of the genome that contributes to the production of

the protein, and finally target sequencing, that refers to the sequencing of only a small previ-

ously determined part of the genome, frequently corresponding to specific genes. This does

not depend on the sequencing technologies, but due to cost divergences, in this work we

used data from Illumina sequencers for WES and WGS and Ion Torrent for target sequenc-

ing. Deep sequencing usually generates coverages corresponding to a couple thousand (or

tens of thousands) sequenced aligned reads per position, compared to only a few dozens or

hundreds reads for WGS and WES.

Sequencing of variations

As mentioned in the paragraph 1.1.3, a genomic variation can be defined by a difference

when comparing a given DNA sample to a reference DNA. In NGS, each sequenced genomic

variation is associated to a metric, the Variant Allelic Fraction (VAF). The VAF of a mutation
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m at a genomic position p can be defined as the following:

VAFm = AOm

DPp

with AOm being the number of alternative reads aligned at the position of the mutation, and

DPp being the total number of aligned reads at the position. DPp is also named coverage or

depth. VAFm corresponds to the proportion of sequenced alleles that are carrying the muta-

tion m. The VAF is therefore a proxy of the proportion of sampled cells that are carrying the

mutation, integrating in addition the status of the mutation: heterozygous or homozygous.

The VAF of a germline mutation only depends on the status of the mutation, due to the fact

that all of the cells in a biological sample are expected, under normal conditions, to contain

this mutation inherited from parental germ cells. This VAF is expected to be equals either to

100% if the individual is homozygous for the mutation i.e. the two alleles of the chromosome

are mutated, or to 50% if the individual is heterozygous for the mutation i.e. only one of the

two alleles is mutated. The sequencing of germline DNA mutations can be modelled by a

binomial sampling (B) and therefore the expected number of alternative reads is defined as

the following:

AOm ∼ B(DPp ,P) with P ∈ [0.5,1]

The variance of such a distribution is equal to DPp ∗P ∗ (1−P) and therefore the variance

of germline VAF depends on the coverage and is expected to be null for heterozygous muta-

tions. Figure 1.4 represents the distribution of germline VAF under the expectation of a bi-

nomial sampling, for homozygous mutations (simulation of 250 mutations with a coverage

uniformly varying between 100 and 200, in orange) and heterozygous mutations (simulation

of 1,000 mutations with a coverage uniformly varying between 100 and 200, blue).

In the case of a somatic mutation, the expected VAF is unknown [26], [126]. Indeed,

firstly, somatic mutations are typically analyzed on tumor sample from a tumor bulk. Never-

theless, such samples are basically composed of both normal and tumor cells. The propor-

tion of tumor cells among the total number of extracted cells from a tumor bulk corresponds
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Figure 1.4 – Expected distribution of germline VAF for homozygous mutation (orange) and heterozy-
gous mutations (blue) under assumption of a binomial sampling of sequencing reads. Distributions
correspond to a simulation of 1,000 heterozygous mutations and 250 homozygous mutations with
coverages varying uniformly between 100 and 200.

to the purity P of the sample [127]. The value of the exact purity is unknown and only an es-

timation can be obtain, either through a pathology visualization or through computational

analysis [127].

Secondly, a somatic mutation in contrary to an inherited mutation is not expected to be

found in all of the cells of the tumor except if this mutation is the tumor initiating event. This

also contributes to the deviation of the somatic VAF from the expected VAF of 50 or 100%.

The proportion of cancer cells that are carrying a particular somatic mutation corresponds

to the subclonality S of the mutation [95], [142]. Lower the subclonality, more recent the mu-

tation in term of the tumor event timeline, higher the deviance of VAF from the expectation.

Finally the last component of the deviation of the somatic VAF from the expected values

is the possibility of variation in the number of copy of the allele carrying the mutation [122],

[58]. Finally, the VAF of a somatic mutation sm can be defined as the following:

VAFsm = 0.5∗CNV ∗P∗S
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As a descriptive example, Figure 1.5 [131] is showing the VAF distribution of somatic muta-

tions found in a lung adenocarcinoma tumor sample from The Cancer Genome Atlas (TCGA)

[35].

Figure 1.5 – Distribution of VAF of somatic mutation from one TCGA lung adenocarcinoma patient
[35].

1.2 Errors in NGS data

1.2.1 Types of NGS errors

Next-generation sequencing technologies has revolutionized the genome analyses due to

its ability to produce high number and low cost DNA sequences in a short time comparing

to the traditional Sanger method. Unfortunately, NGS technologies are producing a higher

number of artifacts in output data.

These errors can be systematic, non-systematic or pseudo-systematic. This error feature

is a read-level feature: the systematic nature of an error is defined by its tendency to occur

in multiple samples.

Systematic errors can be defined as artifacts that occur in all the samples with a particu-

lar rate that can be statistically modelled. This is the case of the Sequencing Error Rate (SER)

(see paragraph 1.2.2).

Non-systematic errors can be defined as artifacts specific to one particular sample. Typ-

ically, the most common source of non-systematic error from the sequencing is induced by
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the Polymerase Chain Reaction (PCR) processes. PCR steps are required upstream of the se-

quencing process to the amplify the input DNA molecules in order to be sure that each DNA

molecule present in the input sample would be sequenced even if present in a very low pro-

portion. Nevertheless, these steps of PCR during the library preparation introduce multiple

punctual errors due to mistakes from the DNA polymerase enzyme at a varying rate basically

comprised between 1/Mb and 0.1/Mb [33]. These errors are amplified in each subsequent

cycle of PCR, conducting to a number of mutated reads in the same order than the one ex-

pected in the case of a true DNA mutation. It has been shown that sequencing the DNA in

replicates i.e. from multiple independent library preparations should reduce artifacts from

PCR process [111].

Some errors tend to occur in multiple samples without presenting any constant rate

across the samples. They can be defined as pseudo-systematic errors. These errors can de-

pend on the sequence of the DNA and are called in this case Context-specific Error (CSE)

[11]. As an example, if a DNA sequence carries a mutation that increases the complexity

of the nearby region of the sequence by generating a repetition of a particular nucleotide,

this can create alignment artifacts on this region presenting low VAF [124] [145]. These ar-

tifacts would be observed only in samples carrying a mutation in this region and so these

artifacts are pseudo-systematic. Several methods have been developed recently to increase

the accuracy of the alignment step specially for indel detection by proposing to integrate a

re-alignment process, such as methods based on consensus sequence correlation maximiza-

tion [65] or assembly-based methods [99]. Unfortunately, these methods only reduce these

artifacts but does not remove them if falling in a highly complex region. A particular metric

can identify these CSE: the strand bias. A variant is found in strand bias when the alternative

reads are not dispersed on the two strand in the same way than reference reads. Indeed, a

CSE is caused by the DNA sequence preceding it and not following it (reading direction of

the sequencing) and, then, if a specific context prone to errors, such as repeated regions, the

error should be present in reads of one direction only (forward or reverse). This defines a

sequencing strand bias (1.6).

The common measure of strand bias for low coverage data is the Fisher exact test statis-
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Figure 1.6 – Hypothetical reads of two directions (red: forward; blue: backward) are aligned to a refer-
ence genome shown on top. Nucleotides within reads indicate mismatches to the forward reference.
Three genome positions with extreme strand bias are marked by arrows [11]. Created with Integrative
Genomics Viewer (IGV) [113], [130].

tic [50]. In this case such a Fisher exact test p-value is computed on the contingency table

1.2.

Table 1.2 – Contingency table on which the Fisher exact test p-value is computed to estimate strand
bias of a genomic variation on low coverage data. AO defines the number of reads carrying the varia-
tion and RO defines the number of reads carrying the reference base at the position.

Variant Reference
Forward AO f RO f

Reverse AOr ROr

Nevertheless, the Fisher exact test is extremely sensitive to very low differences in strand

repartition such as found in high coverage data. An alternative measure of strand bias, the

Relative Variant Strand Bias (RVSB) statistic, is better adapted to high coverage data [49]. For

a given mutation, the RVSB statistic is defined by:

RVSB = max(AO f ∗DPr , AOr ∗DP f )

AO f ∗DPr +AOr ∗DP f

where AO corresponds to the number of alternative reads aligned at the position of the mu-

tation, DP to the total number of aligned reads, f to reads aligned on the forward strand and

r aligned to the reverse strand. RVSB is comprised between 0.5 and 1, and higher the RVSB

higher the strand bias. In such tests, the null hypothesis is defined by an absence of strand

bias, and therefore the test p-value can be compared to a pre-defined threshold to decide if

the variant presents a strand bias or not. Interestingly, it has been reported that the strand
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bias is not related to the alignment method [60].

1.2.2 Prevalence of NGS errors

Systematic sequencing errors in NGS data appear with a particular rate, called the SER. The

SER at a position p can be defined as the following:

SERp = EOp

DPp

with EOp begin the number of reads aligned at the position presenting a error base for this

position, and DPp being equals to EOp +ROp , with ROp being the number of reads aligned

at the position presenting the reference base for the position.

The SER reflects the prevalence of a given NGS error. This prevalence is varying among

sequencing technologies [104],[22] but also among DNA positions. Current reported per-

base SER are ranging from 0.18 to 1.17% depending on the sequencer, with higher rates ob-

served in Ion Torrent technologies [14], [104], [107]. However, these studies only reported

per-base error rates, considering that a sequencing error only depends on the genomic po-

sition and not on the alteration, i.e. at a specific position, there is the same probability to

observed an error independently of a particular base change.

When considering the base change in addition to the position, a different formulation

of the SER can be defined:

SERp,m = EOp,m

DPp

where m is defining the base change. With this definition, the SER is modelled independently

for each possible base change, i.e. at a given DNA position, SERp,G→T should potentially be

different than SERp,G→A.
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1.2.3 Consequences of NGS errors

As mentioned earlier, the way to detect a DNA mutation from a NGS experiment consists in

analyzing the sequenced reads and observed the variations present in these reads compared

to a DNA reference. Nevertheless, taking into account the fact that NGS techniques intrinsi-

cally produce errors, one available metric that can be used to classify a variation as being a

true mutation or a sequencing artifact is the prevalence of the variation. Indeed, sequencing

artifact are expected to be rare compared to the expected proportion of the sequenced reads

carrying a true mutation, even though this highly depend on the proportion of sequenced

cells that are carrying the mutation (see paragraph 1.1.3). This suggests that in the case of

an high SER potentially in the same range than the VAF of a true mutation, the detection of

the mutation would not be possible due to the failure to distinguish between the observed

number of variable reads due to a true mutation and the observed number of variable reads

due to sequencing errors. This potential similarity in prevalence between true mutations

and sequencing errors is the major consequence of NGS error production. The figure 1.7 is

showing an schematic example of observed number of aligned reads and their variations in

a position p and for a base change m, for two distinct cases of SERp,m and VAFp,m combina-

tions: VAFp,m higher than SERp,m and VAFp,m in the same range than SERp,m .

m=A   T

T

T
T

T

T

T

reference

aligned 
reads

true mutation NGS error

VAFp,m >>> SERp,m

VAFp,m ≈ SERp,m

Figure 1.7 – Schematization of the number of variable reads for the two cases of combination of SER
and VAF
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1.3 Detection of mutations from NGS data

The sequencing of DNA is necessary to identify genomic variations, but the sequencing pro-

cess itself only produces raw data about the DNA sequence of an individual: if should be

associated with downstream analyses to obtain the set of mutations identified from a DNA

sample. The major subsequent step is the variant calling, a analytical process that aim to

detect DNA variation compared to a reference. This process does not correct for all types of

NGS errors, and therefore is often coupled with a step of variant filtering to remove the false

discoveries of a variant calling procedure.

1.3.1 Variant calling

Variant calling is a generic term grouping the computational techniques that identify DNA

mutations from NGS experiments [103], [101], [146]. The key issue of the variant calling is

first the identification of DNA variations and then the distinction between a variation cor-

responding to an error from the NGS experiment and a variation corresponding to a true

biological DNA mutation. For this, variant calling methodologies are mostly based on the

analyze of the prevalence of the variation in the NGS experiment (the prevalence of a true

DNA mutation corresponds to the VAF). Therefore, variant calling algorithms are designed

according to three distinct types of DNA mutations defined by their expected prevalence in

the NGS data, that can be defined as germline, somatic, and low VAF somatic mutations.

As exposed in the paragraph 1.1.2, a germline mutation corresponds to a mutation in-

herited from the parents of the individual and is expected to be present in all of the se-

quenced cells and to harbor an a-priori VAF either equals to 0.5 (heterozygous mutation)

or equals to 1 (homozygous mutation). Combinatorial methods for detecting germline mu-

tations from NGS data are typically based on a bayesian inference model using the expected

VAF in the likelihood function of the bayesian model. This method has been adopted for ex-

ample by Strelka, Freebayes and GATK UnifiedGenotyper [117], [55], [106]. At each position

and for each possible variation, the probability of observing a genotype G can be computed
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with the Bayes’rule:

P(G|D) = P(G)∗P(D|G)

P(D)

= P(G)∗P(D|G)
n∑

i=1
P(D|Gi )P(Gi )

With Gi referring to the i th genotype over n possible genotypes, D corresponding to the ob-

served data i.e. the aligned reads (quality of the sequencing can be taking into the counting

of reads to remove potentially artifact reads) and G corresponding to the estimated genotype

(none, heterozygous mutation or homozygous mutation).

Existing germline variant calling methods mainly differ on the way of computing both

the prior on genotypes P(G) and P(D|G) the likelihood of the observations, which should

incorporate a specific error model.

As an example, Genome Analysis ToolKit (GATK) HaplotypeCaller (GATK-HC) [96], [106],

a method for germline variant calling, can be defined as 4 separated steps (figure 1.8):

• Identification of variable genomic regions ("ActiveRegions")

• Determination of all possible haplotypes through a re-assembly of variable regions

• Per-read likelihood estimation depending on the possible haplotypes, using the Pair

Hidden Markov Model (PairHMM) algorithm. This part is computing P(D|G).

• Attribution of the genotypes using the Bayes’rule.

The underlying assumptions for somatic variant calling is totally different from germline

variant calling. Indeed, there are some expectations on the germline VAF but somatic VAF

are more variable and predictions are more difficult [26], [126]. This is a key issue in variant

calling, because contrary to germline variant which are expected to be found in high propor-

tion (50% or 100%), a somatic variant could be present in a different abundance potentially

reaching the SER (1.2.3, 1.1.3). This requires a more sensitive statistical model.

Most of somatic variant callers are based on a paired variant calling which is realized

on a tumor sample and on its matched normal sample to identify tumor somatic variations.

They benefit from the availability of both normal and tumor samples to increase the sensitiv-
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Figure 1.8 – Four steps of the GATK-HC algorithm to detect germline variant from NGS data from [106]

ity of the germline variant calling by directly comparing the two samples (indeed, a germline

mutation is expected to be found in both samples), instead of calling mutations separately

and removing the mutations identified in the normal samples from the mutations identified

in the tumor samples to compute the set of somatic mutations. This approach is essential

given the fact that, as exposed in the paragraph 1.1.2, germline mutations are expected to be

found in a proportion 1,000 times higher than somatic ones, and, then, a decreased germline

sensitivity of x compared to the maximum of 1 would leads to a somatic false discovery rate

of x∗103

1+(x∗103)
. This mean that if the two callings are not paired, even a germline sensitivity

of 99.9% would lead to a somatic false discovery rate of 50% (corresponding to 0.1% of the

germline mutations classified as somatic).

VarScan2 [74] and VarDict [80] have chosen a frequentist approach to filter sequencing

reads based on fixed thresholds on read statistics and then identify potential variants and

excluded the errors. These potential variants are classified as somatic based on a statistical

test comparing the tumor and normal sample for this variant. Some somatic variant callers

are based on a probabilistic framework, such as SomaticSniper [83], JointSNVMix [114] or

CaVEMan [69]. The core concept of these methods is the assumption of diploidy in the tu-
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mor.

Nevertheless, the diploidy assumption underlying these algorithm is violated in the case

of subclonality or low sample purity leading to the dilution of somatic mutations and to the

reduction of the VAF (1.1.3). To be able to efficiently detect all types of somatic mutations,

some other methods prefer to base their probabilist model on VAF instead of genotypes.

MuTect [31], Strelka [117], and MuSE [48] are based on such a method. The common idea of

these variant callers is basically to identify potential true variants first and then to compare

the observed VAF in the somatic sample to the VAF in the normal sample to extract somatic

mutations.

The most commonly used variant caller for somatic mutations, MuTect, computes for

each possible mutation m and for each sample identified by its VAF f a Logarithm of Odds

(LOD) score that is comparing the likelihood of the model of errors L(M0) to the likelihood

of a true mutation model L(Mm
f ):

LODT(m, f ) = log10

(
L(Mm

f )

L(M0)

)

with

L(Mm
f ) =

d∏
i=1

P(bi |ei ,r,m, f )

and

L(M0) = [
ei

3
]d

r ∈ A,C,G,T denotes the reference allele, d the coverage at the position of the mutation

m, bi and ei respectively the called base and its quality for the read i ∈ [1,d ].

The statistic LODT(m, f ) is then compared to the threshold θT and if LODT(m, f ) > θT,

the algorithm declares m as a candidate variant. In the method paper, the authors propose

a threshold of θT = 6.3 which corresponds to an expected mutation frequency of 3/Mb.

MuTect uses in its LOD score the base qualities provided by the sequencing machine.
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This statistic corresponds to the probability for the base to be false, and is given by the se-

quencing machine. They recommend in the GATK best practices for somatic variant calling to

execute a Base Quality Score Recalibration (BQSR) step before the computations of the LOD

scores, because the base qualities are not correctly calibrated by the sequencing machine [].

The BQSR uses a machine learning approach to estimate the influence of particular covari-

ates, such as the sequence context or the position in the read, on the confidence on bases,

and then recalibrate the initial base qualities. Nevertheless, to be efficient, this step requires

a large panel of sequenced bases to be performed, and, as mentionned by the authors, is not

adapted to small gene panels.

A second limitation is that the method assumes that all the substitution errors occur

with the same probability ei
3 [31]. This is a large assumption which is inherent to the method

and which has not be proved.

Another limitation of this method is when trying to identify mutations present in very

low proportion. Indeed, when f tends to zero, P(bi |ei ,r,m, f ) tends to ei
3 and L(Mm

f ) tends

to L(M0 (see paper methods for details [31]), and therefore this leads to uncertainty of the

low abundance mutation calling. To deal with this issue, typically it is not recommended to

consider mutations called with a VAF lower than 5%.

The most accurate variant caller available to detect low VAF somatic mutations is Shear-

waterML [92]. This variant caller proposes a method based on multiple samples to estimate

the SER at each position and to call variant as being different from this error model. Shear-

waterML is the maximum-likelihood adaptation of the original Shearwater algorithm pub-

lished previously [57]. ShearwaterML is based on a beta-binomial regression to estimate the

error rate for the observed mutation and attributes at each sample a p-value corresponding

to the probability for the sample to carry the mutation. The algorithm models the errors in-

dependently on the two DNA strands (Xi j k models errors on the forward strand and X′
i j k on

the reverse strand) as the following:

Xi j k vBet aBi n(ni j , vi j k , p j k )

X′
i j k vBet aBi n(n′

i j , v ′
i j k , p j k )
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with i the sample, j the position, k the alternative base, n the coverage, v the VAF and p the

overdispersion parameter of the beta-binomial regression. Given this, then shearwaterML

computes the likelihood of the observation considering that the observed number of alter-

native reads is drawn from this model of error and the likelihood considering that the num-

ber of alternative reads is drawn from a beta-binomial regression with mean equals to the

VAF. Using a likelihood ratio test, shearwaterML finally generates a p-value for each sample

and for each possible mutation.

1.3.2 Variant filtering

Variant calling methods are suitable to detect potential mutations by the study of quantita-

tive features such as the read count to distinguish between mutations and sequencing errors.

Nevertheless, there still remain false positive observations after the variant calling, typically

non-systematic and pseudo-systematic errors appeared at a former step, such as the PCR-

induced errors. Secondary genomic analyses should be therefore oriented, in addition to

sequencing alignment and variant calling, toward variant filtering. Various methodologies

have been developed recently in the aim at increasing the specificity of the variant calling by

removing remaining artifacts.

The naive method to reduce false positives by filtering variants consists in the manual

inspection of the aligned reads. This should help to decide if a variant can be considered

with confidence or not. It has been recently proposed to use the IGV software [113], [130] to

visualize potential variants and classify them into false or true observations [112]. The main

problem of this strategy is both the lack of objectivity and the lack of references to helping

to make a decision. A second method is proposing a Standard Operating Procedure which

integrates an IGV plug-in named IGVNavigator to refine the manual inspection of variant.

More advanced variant filtering method can be classified into two groups:

• hard-filtering methods on key statistics

• machine-learning-based filtering methods

Hard-filtering methods consist in removing variants based on variant summary statis-

tics. The main idea is first to select these summary statistics grouped as the set S, and then
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to remove variant that harbor a value of the statistic sv higher than a pre-defined threshold

st . A variant is not removed if it validates the following condition:

∀s ∈ S, sv < st

MuTect variant caller proposes to remove variant based on six different statistics with pre-

defined thresholds: proximal gap, strand bias, poor mapping, triallelic site, clustered posi-

tions and observation in controls. Generally, variant callers propose a set of thresholds for

each of tunable variant statistic, but these thresholds can be also defined by the user using

independent studies such as simulations [128].
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Figure 1.9 – Hard threshold filtering on the VAF of a set of false positive (VAF distribution is shown in
red) and true positive (VAF distribution is shown in green) variants. VAF lower than the fixed threshold
are removed, and therefore removed false positives correspond to the red distribution at the left of the
threshold (gain of specificity) and removed true positives to the green one (loss of sensitivity). The
accuracy of this variant filtering is given by the combination of these two removed sets.

The figure 1.9 is presenting the distribution of VAF of both true positive variants (in

green) and false positive variants (in red) from real samples of whole-exome NGS data. A

true positive is defined as a true mutation detected from the variant calling algorithm and

a false positive is defined as a false mutation detected from the variant calling. A threshold

of 0.2 has been chosen to remove potentially false variants, and the effect on sensitivity and

specificity can be induced by respectively the true and false variants that would be removed

by this statistic threshold. In addition to hard pre-defined thresholds on variant statistics,
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GATK has implemented the Variant Quality Score Recalibration (VQSR) step [40]. This step

consists in associating to each putative variant a new statistic that can be used then to filter

the variants. The variant recalibration step uses a fit of a Gaussian mixture model on a set of

a-priori true variants from external studies to compute a probability of being a true positive

variant to each mutation identify in the current variant calling. Taking the example in figure

1.9, the VQSR would fit one Gaussian on the false positive variants (in red) and one gaussian

one the true positive variants (in green), and then would determine the best threshold that

separate the two distributions. This can be generalized in more than one dimension (here

the VAF), leading to a fit of a Gaussians mixture. The main drawback of the GATK VQSR

step is that it requires large input data, at least one WGS or more than 30 WES to be able to

accurately annotate the variants [128].

Advanced filtering methods based on machine learning algorithms have been recently

proposed to deal with remaining false positive subsequent to the variant calling step [135],[106],

[133], [108], [8]. The aim of a machine learning algorithm is to use information on statisti-

cal variables (called "features") of known entities to predict the status of unknown entities.

Machine learning methods work as the following:

• Definition of a set of known entities E

• Definition of a set of statistical features F

• For each known entities e ∈ E and each feature f ∈ F, computation of fe

• Training of a machine-learning model (e.g a random forest)

• For each unknown entities e ′ ∈ E’ and each feature f ∈ F, computation of fe ′

• Application of the trained model on each e ′

Figure 1.10 from [90] is presenting an example of such a machine learning application

in genomic analyses. In its second version, Strelka has implemented a machine-learning-

based variant scoring step, directly inside the variant calling [71]. This variant scoring uses a

pre-trained random forest algorithm on multiple sequencing conditions of known germline

variants from Platinum Genomes [44] sample NA12878 for the germline variant filtering and

pre-trained on curated tumor-cell lines for somatic variant filtering. The most important

features of the model are (1) the genotype probability computed by the core variant proba-
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Figure 1.10 – A training set of DNA sequences is provided as input to a learning procedure, along
with binary labels indicating whether each sequence is centred on a transcription start site (TSS) or
not. The learning algorithm produces a model that can then be subsequently used, in conjunction
with a prediction algorithm, to assign predicted labels (such as ’TSS’ or ’not TSS’) to unlabeled test
sequences. In the figure, the red–blue gradient might represent, for example, the scores of various
motif models (one per column) against the DNA sequence [90].

bility model, (2) root-mean-square mapping quality, (3) strand bias, (4) the fraction of reads

consistent with locus haplotype model, and (5) the complexity of the reference context as

measured by metrics such as homopolymer length. This step produces a single aggregate

score for each putative variant, that can be used to remove potentially false observations.

Unfortunately, variant filtering methods based on machine learning algorithms present

two major limitations. Firstly, these models are feature-fixed in the sense that the features

incorporated in the model should be available for the dataset on which the model would

be applied to predict the classes. Secondly, it is theoretically feasible for every type of data

to construct a machine learning model: the main part consists in the decision of the fea-

tures. But practically, it is much more difficult to construct the model: a sufficient amount of

data should be available for every class and every feature to correctly train the model. These

drawbacks make the variant filtering a difficult task due to its lack of genericity.
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1.4 Early cancer detection

1.4.1 Definitions

An individual cancer can be scored depending on the anatomic disease extent, i.e. its size

and its spreading. This is called the cancer stage. There exist many cancer staging systems

depending on the cancer type, and one specific staging system can be used for every cancer

type: the TNM classification developed by the Union for International Cancer Control [24].

This classification system attributes a stage to cancer depending on three features: the pri-

mary tumor site (the first reached tissue) T, the regional lymph node involvement N, and the

metastatic spread M. A cancer stage is ranging from I to IV. According the NCI [1], an early

stage cancer is a cancer that did not have spread to other part of the body than the primary

site, this means that early stages typically group I and II. Detecting an early stage cancer is

defining the early cancer detection.

1.4.2 Objective

A cancer diagnosed at early stages, i.e. with a small size and not spread in other tissues is

more likely to be successfully treated. The aim of early cancer detection is to improve cancer

patient survival, and it has been shown for at least some cancer types that the reduction of a

cancer stage when cancer is detected is correlated with an increase of patient survival [29].

1.4.3 Methods

According to the World Health Organization (WHO), early cancer detection can be divided

into two major components: early cancer diagnosis and population screening for cancer.

Early cancer diagnosis aims at increasing the awareness of early sign of cancer, and this re-

quires acts from a patient and the health care providers such as physicians. In this work we

will focus on population screening for early cancer detection. General definition of screen-

ing is the usage of tests inside an healthy population aiming at detecting a particular disease

on individuals that does not present any symptom corresponding to the disease. Population

screening generally targets high-risk individuals, such as individuals presenting a germline
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(heritable) genomic variant [59] or individuals expose to a particular carcinogen (e.g. to-

bacco smoke [105]), in order to increase reduce the impact of the false positive rate. Recently,

the National Lung Screening Trial (NLST) reported a lung cancer mortality reduction of 20%

associated with a low-dose Computed Tomography (CT) cancer screening [129].

A particular set of cancer screening tests that emerged in the last few years and that

seems to be very promising are the body liquid-based tests, also known as liquid biopsies

[45], [63]. The aim of such tests is to detect the presence of a tumor from the analysis of an

individual body-liquid sample. This offers a non-invasive and more specific method than

traditional CT scan [64]. Currently, two types of body liquid are studied to build early cancer

detection screening tests: urine [98], blood [49], [25], [34] or even cerebrospinal fluid [94]. At

the moment early detection based on urine sample is mainly studied in the case of urological

cancer [98] whereas blood-based tests are not limited to a particular cancer type [45].

The challenge of these tests is to detect molecular biomarkers of cancer in liquid sam-

ples. These biomarkers include proteins, DNA and RNA (transcripted version of DNA that is

converted into a protein). In the work presented here we will focus on DNA biomarkers from

blood samples.

1.4.4 Circulating tumor DNA

The DNA biomarker that can be extracted from a blood sample is called ctDNA. It corre-

sponds to the fraction of the Circulating cell-Free DNA (cfDNA), the set of DNA molecules

coming from the degradation of cells and freely circulating in the bloodstream, that is at-

tribuable to cancer cells (Figure 1.3, [37]).

If an individual has a tumor in a particular tissue, the tumor-derived genomic variations

identified in the ctDNA can be considered as a proxy of the genomic variations present in the

tumor. This gives the potential to ctDNA to be a cancer molecular biomarker. The major lim-

itation of the ctDNA is its detectability. Indeed, in cancer patients, only a small fraction of the

total amount of cfDNA corresponds to ctDNA, and this fraction can be as low as 0.01% [41].

This fraction varies depending on the cancer stage [19]. A promising clinical application of

ctDNA as a cancer biomarker is its usage for the detection of small tumor in early stage can-
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Figure 1.11 – Figure from Crowley et al. 2013 [37]. Extraction of cfDNA and identification of tumor-
derived genomic variations from blood sample. Tumour-derived genetic alterations that can be de-
tected in the blood include point mutations (consecutive purple, red, green and blue DNA strands),
copy number fluctuations (red portion of chromosomes) and structural rearrangements (green and
red DNA strands).

cers, before the appearance of any observable symptoms [19]. The development of ctDNA

as a biomarker for early detection is currently an exciting scientific challenge [13].

1.4.5 CtDNA as a biomarker for early cancer detection

The first major component of the pertinence of the usage of ctDNA as a early cancer biomarker

is the availability of the tumor-derived genetic material in the studied biological samples,

i.e. is there a sufficient amount of ctDNA inside the blood sample from a cancer patient to

be able to be detected? The notion of VAF can be used to answer this question. As exposed

in the paragraph 1.1.3, the VAF is a proxy of the proportion of sequenced cells that are car-

rying the mutation corrected by the heterozygous or homozygous status of the mutation.

As an example, define a blood sample that contains 1,000 cfDNA molecules from which 10

are ctDNA molecules. If the individual is homozygous for the mutation, the VAF will corre-

sponds to 10/1,000∗50% = 0.5%, and if the individual is heterozygous for the mutation, the

VAF will be 10/1,000∗100% = 1%. It has been reported in a recent study [3] that in patients

29



CHAPTER 1. INTRODUCTION

with detectable ctDNA from blood samples, the pathologic tumor size is correlated with the

average VAF of ctDNA mutations (figure 1.12): higher the tumor size, higher the proportion

of ctDNA molecules in the blood. Finally, by translation, because the tumor size is corre-

lated with the cancer stage (by definition), the amount of ctDNA is correlated with the tumor

stage: higher the stage, higher the amount of ctDNA, and higher the potential to detect it in

the blood.

Figure 1.12 – Figure from Abbosh et al. 2017 [3]. Tumour volume cm3 measured by computed to-
mography (CT) volumetric analysis correlates with mean clonal plasma VAF. n=37, grey vertical lines
represent range of clonal VAF, red shading indicates 95% confidence intervals.

Using ctDNA as an early cancer biomarker is also limited by the availability of algo-

rithmic methods that can detect tumor-derived mutations from extracted cfDNA. Indeed, as

mention previously, tumor-derived mutations present in cfDNA samples are found in low

proportion an subsequently would harbor very low VAF. This means that it is necessary to

use computational methods that present a good sensitivity when dealing with ctDNA data in

the context of early cancer detection.
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1.5 Global aim of the study

The aim of the thesis was to understand and identify the errors on genomic sequences found

in NGS data, to enable the accurate detection of mutations. The thesis will not expose the

detailed causes of errors, we only tried to build statistical models explaining their appear-

ance in order to identify them. The main developments can be separated into two paired

approaches: variant calling to detect candidate mutations in NGS data and variant filtering

to boost the precision of the variant calling step. These developments were finally applied

in a third chapter to four studies on circulating tumor DNA data in the context of biomarker

development for early cancer detection.
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2.1 Scientific context

NGS has revolutionized the way to infer genomic variation from human genomes by its abil-

ity to identify DNA sequences from multiple samples in a short time scale and for a reduced

cost compared to the traditional Sanger sequencing (see Figure 1.3). Nevertheless, the NGS

technology is more prone to sequencing errors. The comprehensive characterization of DNA

variations by screening cancer genomes can help to understand cancer appearance and pro-

gression but also to identify predictive biomarkers such as ctDNA[19] and to study mutations

from histological normal tissue [92], [93]. In 2015, the International Cancer Genome Consor-

tium launched a large benchmarking operation with the objective of identifying and resolv-

ing issues of detecting variants from NGS data [10]. The conclusion of this study was that

detecting somatic mutations in cancer genomes remains a considerable challenge due to

the high complexity of cancers. This challenge is exacerbated when trying to identify DNA

mutations in very low abundance that presents therefore very low VAF that are deviating

from the expectation 1.1.3. This deviation makes the detection of mutations a complex task

due to a lack of theoretical models that could infer the candidate DNA variations. In addition

of such difficulties, there exists still a lack in availability of integrative variant calling meth-

ods that can identify all possible types of genomic variations, i.e. simultaneously germline

mutations, somatic and potentially low abundance mutations [146].

In this chapter, we propose to study the systematic errors found in NGS data. For this,

we designed and implemented a robust model of systematic errors. True mutations are pre-

dicted as diverging from this model. To build the statistical model of systematic errors, we

use the information of read counts across multiple sample to obtain a powerfull approach

that is able to precisely estimate the SER. Because the SER is varying both across DNA posi-

tions and depending on the base change of the candidate mutation, we propose to estimate

it for each pair of position and nucleotide variation. As levels of error can reach the pro-

portion of reads truly mutated, the variant calling process is similar to finding a needle in a

needlestack, and therefore we named our pipeline needlestack.
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2.2 Scientific contribution

2.2.1 Statistical algorithm

Errors found in NGS data can be represented as count data. A classic way to model individ-

ual count data is to use a Binomial distribution, and, to model multiple binomial distribu-

tions, the regression model is applied. The binomial regression is used in statistics to model

N independent predictor variables Xi and their response variables Yi if Yi is a results of n

Bernoulli trials. A Bernoulli trial is a random experiment with only two possible outcomes :

success or failure. In the context of modelling sequencing errors, a success would be an error

and a failure a correct sequenced base. In a serie of n Bernoulli trials that would be in our

case the sequenced reads, each trial has the same probability of success p. In the binomial

regression models, each Yi corresponds to the number of successes of a serie of Xi Bernoulli

trials with a probability of success equals to p:

Yi ∼ B(Xi , p)

with p corresponding to the SER in our case.

In our case, because the sequencing error rate is expected to be very low, Xi tend to

be high and p to be low. In such a way, the binomial distribution approaches a Poisson

distribution with parameterλ, withλ= Xi∗p, and the sequencing error rate can be modelled

using a Poisson regression.

Because NGS error count data are over-dispersed data [62], the Poisson regression is

not adapted to model the sequencing errors because of the assumption of equal mean and

variance. By contrast to the Poisson regression, the negative-binomial regression takes into

account the over-dispersion:

AOi j k ∼ NB(µi j k ,σ j k )

with i = 1...N the index of the sample from a sequenced panel of size N, j the genomic po-

sition and k the potential nucleotide change: k ∈ (A,T,C,G, i ns,del ). i ns and del are de-
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noted respectively the set of observed insertions and deletions in the sequenced data. The

over-dispersion parameter is denoted as σ j k and µi j k = e j k ∗DPi j k is corresponding to the

expected number of reads supporting alteration k across samples with a coverage equals to

DPi j k .

Due to the fact that, in addition to errors, there are potentially true mutations in the

sequencing data set that can influence the fitting of the regression model as being outliers,

we used a previously published robust negative binomial regression from Aeberhard et al

[7]. We adapted the original implementation as an R package as the following in order to fit

correctly our data and to improve the speed of execution:

• we modified the model logarithm link function into a linear link between AOi j k and

DPi j k

• we adapted the code to constrain the intercept coefficient of the regression to be null,

i.e. we expect zero error reads if the coverage is null:

AOi = e j k ∗DPi j k +0

with e j k corresponding to the SER at the position j for the alteration k.

• we proposed an estimation of initial SER that is used in their maximum likelihood ap-

proach equals to the median of individual error rates ei after the Tukey’s outlier filter

[134]:

ei ni t = mean(e)

with ∀i ,ei ∈ e and ei 6Q3 +1.5 IQR

with Q3 the third quantile and IQR the interquartile range equals to the difference be-

tween the first and the third quartiles Q3.

• instead of using sums to compute integrals in the maximum likelihood estimations,

that can be time consuming in case of high values of DPi j k , we used interpolation of

the points with the spline function in R
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2.2.2 A robust implementation

To implement needlestack, we emphasized on four main concepts:

• efficiency

• robustness

• reproducibility

• user-friendliness

To follow these guidelines, we used nextflow. Nextflow is a Domain Specific Language

that enables the writing of scalable and reproducible scientific workflows in an easy and ef-

ficient manner [132]. To maximize the efficiency of the computations, we allow the user to

run needlestack in parallel. Indeed, our needlestack algorithm is launched independently

on each position, and therefore it could be run in parallel on sets of positions, so a user can

input both a set of positions and a number of sets to split them. To maximize the robustness

of the pipeline, we benefited from the nextflow language that enables the deployment of the

pipeline on multiple types of environments such as local computers, HPC (high performance

computing) environments or cloud instances such as Amazon Web Services instances. The

reproducibility is maintained by the interaction between nextflow and GitHub, a web plate-

form that store the code of the pipeline with versioning. Reproducibility is also maintained

by the availability of Docker [20] and Singularity [76] containers, which allow to package up

the pipeline with all its dependencies into a fixed version.

Finally, we also maintained user-friendliness by providing a pipeline which is runnable

in only one command line, without the need to install each specified dependency if Docker

or Singularity is available in the running environment.

The complete pipeline is defined as a chain of piped commands (see figure 2.1): first,

samtools mpileup [84] command computes for each of the input BAM files, the list of read

nucleotides overlapping the input positions. Then, samtools output is translated into a big

table with samples in columns and positions in lines. Finally, needlestack uses its own R

script to run the variant calling and produce a Variant Call Format (VCF) [39] that will be

merged with all the others parallel VCFs. Needlestack versioned source code is maintained

and freely available on GitHub (https://github.com/IARCbioinfo/needlestack).
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Figure 2.1 – The needlestack workflow.

2.2.3 Needlestack performance

We assessed the performance of needlestack independently for rare germline variant calling

and (potentially) low VAF somatic variant calling using both simulated and real data.

To evaluate the accuracy of needlestack to identify rare (in the sense "low population

frequency") germline mutations, we used a total of 62 WES of normal samples. We com-

pared the needlestack calls to GATK Haplotype Caller (GATK-HC) [96], [106] using both raw

mutations and mutations validated by a gold standard dataset defined as an Illumina bead-

array data (available for 33/62 samples). Needlestack and GATK-HC sensitivities were found

to be similar when using our gold standard dataset (around 95% for both methods). Without

taking into account the bead-array that can be bias toward evident variations, we reported a

concordance rate of 97.3% for SNVs and 70.3% for the indels.

In term of somatic mutation performance, first, we used a total of 35 lung cancer pa-

tient samples of both cfDNA and tumor in order to validate in the tumor the called cfDNA

mutations that are deleterious (we expect that a deleterious cfDNA mutation should come
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from a tumor). Each of deleterious cfDNA mutations was validated.

We also used simulated data in order to estimate the performance of needlestack on

multiple VAF, down to 0.01%. For this, we used 125 plasma samples from healthy patient

sequenced at the TP53 gene. We introduced 1,000 in-silico mutations using BAMsurgeon

[47] and repeated this process 10 times to increase the power of our performance computa-

tions. Source code to simulate these tumor data is available on github: https://github.

com/IARCbioinfo/bamsurgeon-nf. We showed that the sensitivity of needlestack depends

of the combination of the target VAF and the SER, and for example needlestack detects more

than 99% of mutations with a VAF greater than 1%. We compared our results with the shear-

waterML algorithm [92], [57], a competing variant caller suitable to detect very low VAF.

shearwaterML is also based on multiple sampling to estimate the SER at each pair of position

and nucleotide change, but, contrary to needlestack, shearwaterML uses a beta-binomial

regression instead of a negative binomial regression. There is no robust version of the beta-

binomial regression described in the literature, and therefore to keep robustness in case of

outliers (true mutations), shearwaterML proposes to use an a-priori threshold on the SER

to first remove potentially true variants and then fit efficiently the model without outliers.

We then showed that, contrary to shearwaterML, needlestack false discovery rate does not

depend of the SER.
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2.3 Article A (Submitted in Nucleic Acid Research)
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ABSTRACT 

The emergence of  Next-Generation Sequencing (NGS) has revolutionized the way of  reaching a

genome  sequence,  with  the  promise  of  a  potentially  comprehensive  characterization  of  DNA

variations.  Nevertheless,  detecting somatic mutations is still  a difficult  problem, in particular when

trying to identify low abundance mutations such as subclonal mutations, tumour-derived alterations in

cell-free DNA or somatic mutations from histological normal tissue. The main challenge is to precisely

distinguish between sequencing artefacts and true mutations, particularly when the latter are so rare

they reach similar abundance levels as artefacts. Here, we present needlestack, a highly sensitive

variant  caller,  which  directly  learns  from  the  data  the  level  of  systematic  sequencing  errors  to

accurately call mutations. Needlestack is based on the idea that the sequencing error rate can be

dynamically estimated from analyzing multiple samples together. We show that the sequencing error

rate  varies  across  alterations,  illustrating  the  need  to  precisely  estimate  it.  We  evaluate  the

performance of needlestack for various types of variations, and we show that needlestack is robust

among  positions  and  outperforms  existing  state-of-the-art  method  for  low  abundance  mutations.

Needlestack,  along  with  its  source  code  is  freely  available  on  the  GitHub  plateform:

https://github.com/IARCbioinfo/needlestack.

INTRODUCTION

Massive parallel sequencing, or next generation sequencing (NGS), has revolutionized the manner in

which genetic  variation can be explored,  due to  a large increase in throughput compared to the



traditional Sanger sequencing, and at a greatly reduced cost per sequenced base. However, because

these new technologies are prone to errors, identifying genetic variants from NGS data remains a

considerable  challenge  (1).  This  is  particularly  true in  heterogeneous samples,  where the variant

allelic fractions (VAF, the ratio of the number of sequencing reads carrying the mutant allele to the

total read count) deviate away from the expectations of a diploid genome (0%, 50% or 100% for the

three possible diploid  genotypes),  until  the point  where the mutant  alleles make up only a small

fraction  of  the  sequenced  reads,  approaching  the  background  error  rate.  Nevertheless,  robustly

identifying low VAF sequence variants in such heterogeneous settings can be highly informative, for

example allowing insights into the clonal evolution of tumours (2), analyzing the cell-free DNA in order

to  identify  tumour-derived  footprints  (3),  or  evaluating  somatic  mutations  in  histologically  normal

material (4).

The error rate of next generation sequencing is known to vary across DNA base pairs and

even across multiple base changes at the same DNA position (5,6). NGS errors originate from many

of  the  steps  in  the  sequencing  process,  stemming  from  the  quality  of  the  template  DNA,  its

subsequent fragmentation, the library preparation, the base calling, or the alignment step subsequent

to the sequencing of raw reads. Some of these errors have a tendency to reoccur consistently across

samples whereas others have a more unpredictable appearance. The net effect of NGS being made

of errors from multiple sources is that they become highly difficult to distinguish or correct for  (7).

Variant identification methods that consider this highly variable error pattern may improve our ability to

robustly detect true sequence variants even when their abundance is low. Most current algorithms use

a  probabilistic  model  on  VAF  independently  across  samples  to  distinguish  between  sequencing

artifacts and true variations (8), while methods to detect low abundance mutation, like shearwaterML

(9,10), propose to benefit from the shared knowledge on errors across samples, but are limited by the

requirement of a prior threshold on the error rate.

Here, we have explored the approach of using multiple samples analyzed concurrently to develop an

error model for each potential base change. Sequence variants are identified as outliers relative to

this robust error model.  This method, which we call needlestack, allows the definition of sequencing

variants in a dynamic manner relative to the variable error pattern found in NGS data, and particularly

variants that are rare in the sequenced material. By combining this method with additional laboratory

processing for further error correction (11) and very deep next generation sequencing, we are able to

robustly  identify  VAFs  well  below  1%  while  maintaining  acceptable  false  discovery  rates.  We

conducted multiple rigorous performance estimations and comparisons with methods for both somatic

and germline variant detection. We deployed our pipeline focusing on efficiency and robustness using

the Domain-Specific Language (DSL) nextflow (12), and on reproducibility by providing Docker and

Singularity  images.  Source  code  is  versioned  and  freely  available  on  GitHub

(https://github.com/IARCbioinfo/needlestack).

MATERIAL AND METHODS

Needlestack overview



Needlestack estimates for each candidate alteration, i.e. each pair of position and base change (the 

three non-reference nucleotides and each observed insertions and deletions) the systematic 

sequencing error rate across a series of samples, typically more than twenty to ensure a reasonable 

estimation of this metric. Then, for each sample, it computes the p-value for the observed reads under

the null hypothesis of this estimated model of errors, and transforms this p-value into a Phred-scale 

Q-value reported as a variant quality score (QVAL) for the candidate mutation. As such it measures 

the evidence that the observed mutation is not explained by the error model, and should therefore be 

considered a mutation. 

Needlestack  takes  as  input  a  series  of  BAM  files,  and  is  based  on  three  main  piped

processes,  the generation of  the mpileup file  containing read counts at the target positions using

samtools (13), the reformatting of this file into readable tabulated file and finally the estimation of the

error model using our R regression script (see below) coupled with the computations of Q-values

(supp figure 1). Needlestack is highly parallelizable as input positions are analyzed independently. As

an output, needlestack provides a multi-sample VCF file containing all candidate variants that obtain a

QVAL higher than the input threshold in at least one sample, general information about the variant in

the INFO field (e.g. error rate estimation, maximum observed QVAL) and individual information in the

GENOTYPE field (e.g. QVAL of the sample, coverage of the sample at the position).

The Needlestack algorithm 

Let i=1...N be the index of the sample taken from an aligned sequenced panel of size N, j the genomic

position considered and k the potential alteration, with , ins and del covering

respectively every insertion and deletion observed in the data at position j. Let  denote the total

number  of  sequenced  reads  at  position  j for  the  sample  i,   the  reads  count  supporting

alteration k and  the corresponding error rate. We model the sequencing error distribution using a

negative binomial (NB) regression:

with the over-dispersion parameter and  corresponding to the expected number

of reads supporting alteration  k across samples with a coverage  . A robust negative binomial

regression method  (14) is employed to ensure that the outliers from this error model, such as true

mutations, are not biasing the regression parameters estimates. This model is based on a robust

weighted maximum likelihood estimator (MLE) for the over-dispersion parameter . We modified

the original implementation of this regression to fit the need of our model here with: ( i) a linear link

function,  (ii)  a  zero  intercept,  as  a  null  coverage  will  exhibit  a  null  read  count,  and  (iii)  an

approximation of the bounding functions to allow the MLE to run efficiently for high coverage data (see

supplementary methods).



For each position j and alternative k, we perform this robust negative binomial regression to estimate

parameters  and . We then consider a sample i as carrying a true mutation k at the position j

when being an outlier from the corresponding error model. We calculate for each sample a p-value for

being an outlier using the estimated parameters that we further transform into  q-values using the

Benjamini and Hochberg procedure (15) to account for multiple testing and control the false discovery

rate.

Importantly, because true mutations are identified as the outliers from the error model fitted using a

robust regression,  this approach is more suited to detect  rare mutations. Common mutations (for

example germline SNPs with common allele frequencies) will  be observed in the error model and

therefore not detected as outliers by needlestack. In practice we found that mutations with a minor

allele frequency below 10% can be accurately detected (see below). Additionally, while allowing over-

dispersion,  our  model  assumes  that  the  error  rate   is  constant  across  samples  for  a  given

alteration.  This means that it should be applied to a homogeneous series of samples (that is prepared

using comparable laboratory techniques and sequencing machines etc.). Importantly other types of

errors that have less tendency to reoccur uniformly across samples are identified by needlestack as

outliers.

Sequencing data for performance evaluation

125 cell-free DNA (cfDNA) samples from healthy donors were used to study the distribution of error

rates  estimated  by  needlestack  and  to  estimate  its  accuracy  to  detect  low  VAF  using  in-silico

mutations. We also obtained 46 cfDNA samples from 18 small-cell lung cancer (SCLC) patients and

28 squamous-cell  carcinoma (SCC) patients, two cancer types that harbour a high prevalence of

TP53 mutations (respectively 99% (16) and 81% (17)). In order to validate in the tumour the low VAF

mutations  identified  by  needlestack in  the cfDNA,  we also  sequenced tumour samples for  these

patients. Each of the cfDNA samples was sequenced in the TP53 exonic regions (exons 2-11, which

corresponds to 1,704 base pairs with a median coverage of around 10,000X) using the IonTorrent

Proton technology, in two technical duplicates in order to account for potential errors during library

preparation. Details about cfDNA sequencing steps and tumour sequencing method are provided in

the Supplementary Material. 

Additionally, we performed whole-exome sequencing (WES) from the blood of 62 samples

from  an  independent  cohort  in  order  to  estimate  the  performance  of  needlestack  on  germline

mutations. As a gold standard, we used genotypes derived from Illumina SNP array (Illumina 5M

beadarray) that were available for 33 of these 62 samples. 

Comparison with other variant callers 

We used BAMsurgeon software (18) to introduce SNVs at varied VAF in the 125 cfDNA samples in

TP53 in  order  to benchmark and compare the method through  in-silico simulations.  BAMsurgeon

presents the advantage of synthetic benchmarking methods that allow the simulation of mutations for



which gold standards don’t  exist  to evaluate the performance (here low VAF, that  are in addition

challenging to validate), while maintaining the real data background such as the true error profiles. We

introduced 1000 SNVs at random positions in the gene in random samples, and we replicated this

process in ten batches. As each sample has been sequenced twice, we introduced each  in-silico

mutation in the two technical duplicates of a sample. We took benefit  from the variable coverage

among samples and genomic positions to study the sensitivity of our method down to VAF=10 -4. For

each  mutation  m,  the  VAF  was  simulated  using  a  log-uniform  distribution:   with

. Mutations were only introduced at positions where at least five mutated reads

would be observed. This means that a mutation with a VAF=10 -4 would be introduced only in positions

with a coverage of at least 50,000X. To compare needlestack with a similar variant caller,  we ran

ShearwaterML (4,10) on the same ten batches (see supplementary methods). ShearwaterML is based

on a beta-binomial regression and requires an  a-priori threshold  t  for the error rate. ShearwaterML

excludes  each  sample  having  a  number  of  alternative  bases  higher  than  t*coverage,  aiming  at

removing potential true mutations that act as outliers in the regression to robustly estimate the error

rate. To compute the global performance of both methods, the ten simulation batches were merged,

and only mutations detected in both technical duplicates were considered. In-silico simulations were

repeated  for  1-base  pair  insertions  and deletions (indels)  for  needlestack.  In  this  case,  the  total

number of in-silico mutations was reduced to minimize the potential alignment artifacts created by the

introduction of two indels close together. For that, using the same initial data, 100 insertions and 100

deletions were added again in ten simulations batches (total of twenty batches). 

To estimate the ability of needlestack to detect rare germline variations, we used the 62 WES

from blood samples. Needlestack variant calling was performed using our germline recommendations

(see  supplementary  methods).  GATK  variant  calling  was  performed  using  HaplotypeCaller  best

practice  workflow  (see  supplementary  methods). From  the  3,446,898  bead  array  non-reference

genotypes (0/1 or 1/1) distributed over 113,232 positions in the 33 individuals, we selected 20,439

genotypes with a sufficient coverage (see supplementary methods). In a second part, to account for

possible  bias  in  the  array,  variant  calls  from  both  needlestack  and  GATK  were  compared

independently of the array data, on a total  of 44,314,972 exonic positions. To compare only rare

germline variants, we removed common variants from each calling set (bead array, GATK calling and

needlestack calling, see supplementary methods). 

Error rate estimation

To estimate the error rate variability across positions, we computed with needlestack the sequencing

error rates from two data sets of the TP53 gene sequenced with two different technologies (on the 62

blood samples and on the 125 cfDNA samples). Error rates were estimated at each position of the

gene and for each substitution, totaling 1704*3=5,112 values. We were then interested in estimating

the contribution of each possible nucleotide change on the error rate. We therefore computed, for



each  error-rate  range  e  in  [{10-5,10-4};{10-4,10-3};{10-3,10-2};{10-2,10-1}]  and  for  each  possible  base

change b in  [G>T, C>A, ..., A>C, T>G]: 

prope,b = #ERe,b / #ERe

with #ERe,b being the number of estimated error rates in the class e observed for a base change b, 

and #ERe being the total number of estimated error rates in the class e.

In the case of the Ion Torrent sequencing, we observed a sufficiently high number of single nucleotide

variations  (SNVs)  (n=5,112)  to  also  compute  the  distribution  of  error  rate  depending  on  the  96

possible SNVs taking into account the preceding and following bases to evaluate the effect of the

sequence context. Similarly, the high number of insertions (n=7,662) and deletions (n=1,724) detected

allowed us to also compute the distribution of estimated error rates (i) as a function of the length of the

inserted/deleted  sequences;  and  (ii)  as  a  function  of  the  length  of  homopolymer  regions  for  the

insertion/deletion of one base pair. 

cfDNA and matched tumour analysis for validation

Observed  deleterious mutations  in  the  TP53  gene of  a  cfDNA lung  cancer  patient  are  generally

expected to be derived from their tumour (but see Fernandez-Cuesta et al. 2016 Ebiomedicine) (19).

Therefore we used the tumour samples as a proxy for validation of the identified cfDNA mutations. To

limit our false discovery rate, we considered only cfDNA mutations that passed post-calling filters, i.e.

a RVSB (Relative Variant Strand Bias) (19) lower than 0.85, no high-VAF variant (i.e. a VAF ten times

higher than the candidate mutation) within 5 base-pairs upstream or downstream, and a VAF higher

than 10% if the mutation is found in a low confidence base change (i.e. where technical duplicates

don’t cluster together; see Supplementary Methods). We independently performed the needlestack

variant calling on the cfDNA samples and the matched tumour samples.

RESULTS

Sequencing error rates depend on the alteration type

Globally,  95%  of  the  error  rates  across  alterations were  estimated  as  lower  than  10-2.5  in  both

sequencing  technologies  (Figure 1A).  Nevertheless,  the error  rates  varied  importantly  across  the

target sequences and alterations. For the amplicon-based Ion Torrent sequencing, transitions had 5-

fold higher error rates than transversions (Figure 1A), on average, although not clearly influenced by

the sequence context when considering the flanking 3′ and 5′ bases (Figure S2). For exome-capture

sequencing, a bulk in the distribution of transversion-like errors is observed at an error rate in the

order of 10-2.5  (Figure 1A). When looking at the proportion of different nucleotide substitutions across

multiple ranges of sequencing error rates (Figure 1B), we observed that in this range (10 -2 – 10-3) the

majority of substitutions correspond to G>T transversions, previously reported and suggested to be

related to DNA sonication(20). 

As previously reported, we observed a large number of indels (9,389) in the Ion Torrent sequencing

data (21). We found that the error rate is dependent of their length: long indel (with a size greater than



3bp) error  rates are around 100-fold lower than 1bp indel  error  rate (Figure S3A).  As previously

reported (21), the error rate also increases with the length of homopolymer region, reaching 1% for

repetitions of four nucleotides (Figure S3B).

Variant detection limit depends on the error rate

Importantly, errors identified in the previous section are classified as such by needlestack, and not as

potential  variants,  even  when  the  error  rate  is  high,  as  opposed  to  traditional  variant  callers

considering samples individually and that rely mostly on the VAF (20). Figure 2A illustrates a position

at  which needlestack identifies a high error  rate  ( )  without  reporting any variant,  even

though alternate reads are observed in individuals VAF’s up to ~ 9%.  Figure 2B illustrates a position

with a very different estimated error rate ( ) where a putative very rare variant is identified.

It is also noteworthy that the variant identified in Figure 2B has a VAF ten times lower ( ) than

the error rate estimated in Figure 2A, and thus the sensitivity to detect  a variant  is considerably

improved  at  the  site  with  the  lower  error  rate,  highlighting  the  need  to  quantify  the  error  rate

distributions for each candidate mutation independently. 

Technical replicates reduce low VAF false calls

We noted that  the majority  of  variants  detected by needlestack in  the cfDNA of  healthy patients

harbour a particularly low VAF,  typically under 0.5% (Figure 3A, black solid line). Importantly,  the

majority of these variants are not present in a second library preparation (a technical duplicate) of the

same sample (Figure 3 blue line). Such variants illustrate an additional type of errors found in NGS

data that do not consistently re-occur in the samples and that are not validated when sequencing a

technical replicate of the sample, for example those introduced by polymerase chain reaction (PCR)

amplification errors. These non-systematic artefacts are not expected to be captured by our error

model  and should be detected by needlestack as outliers  (see Figure 2C for  such an example).

Importantly, we showed that this high number of calls not validated in a technical replicate of the

sample is not dependent on our method (Figure 3A, blue lines). Subsequently, here, for the evaluation

of needlestack’s ability to detect efficiently low VAF mutations, we added the condition that variants

are also detected in the technical duplicates to account for this type of error (Figure 3A, blue line).

Performance evaluation using in-silico simulation of somatic mutations

From the 10,000 mutations introduced by BAMsurgeon, needlestack detected 5% of mutations with a

VAF lower than 0.1%, 51.4% of mutations with a VAF between 0.1% and 1%, and 99.4% of mutation

with a VAF higher than 1%. As expected, the sensitivity of needlestack is highly dependent on the

sequencing error rate. Indeed, needlestack does not call a mutation if the sequencing error rate for

that alteration is greater than or in the same range as the VAF of the candidate mutation (Figure 4). As



an example, needlestack detected 0%, 6.5%, and 47.8% of SNVs with a VAF of 0.1% at positions

where the sequencing error rate was higher than 0.1%, between 0.1% and 0.01%, and lower than

0.01%,  respectively.  When  comparing  needlestack  and  shearwaterML,  we  found  that  globally

needlestack  sensitivity  was  higher  than  that  of  ShearwaterML,  and  for  example,  ShearwaterML

detected 7.7% of all inserted mutations with a VAF at 10 -3 whereas needlestack detected 16.8% of

these mutations. Given t the shearwaterML a-priori threshold on the sequencing error rate (Figure 3B

red  line)  and  e the  observed  sequencing  error  rate,  we  showed  that  the  false  positive  rate  of

shearwater  is  markedly  increased  when  t>e,  whereas  needlestack’s  false  positive  rate  is  stable

across the whole range of error rates (Figure 3B). 

Detection of tumour-derived mutations from cell-free DNA

Next, we tested needlestack’s detection of very low VAF mutations in a biologically relevant setting.

For this we screened cfDNA extracted from plasma samples from 35 lung cancer patients where the

matched tumour sample was analyzed concurrently, and considered the concordance between the

identified  variants.  A total  of  22  TP53 mutations  from 18  samples  (9  SCLC and 9  SCC)  where

identified in the cfDNA. 16/22 (70%) mutations were called in the tumour of the same patient. All the

12/22 cfDNA mutations considered as deleterious (i.e  indels, non synonymous SNVs with a REVEL

score higher than 0.5, stopgain or stoploss variants)  (22) were present in the tumour. cfDNA and

tumour VAF were found to be moderately correlated, which is concordant with previously reported

results  (23) (Pearson correlation coefficient  equals to 0.59, Figure S4A). Details of  the 22 cfDNA

mutations  and  corresponding  observations  in  the  tumour  matched  samples  are  provided  in

supplementary table S1. The needlestack plots of a low VAF cfDNA mutation validated in the tumour

are shown in supplementary Figure S4B.

Application to germline variant calling

For rare germline variants from 33 whole exomes, needlestack has a sensitivity of 95.64% to detect

non-reference genotypes when using bead array data as a gold standard, which is quite similar to the

GATK-HC Haplotype Caller results (95.48%).  GATK-HC and needlestack variants concordant with

the  bead array  (19,515  of  the  20,439  variants)  had  VAF distributed  around 50% and 100%,  as

expected for germline variants (Figure 5A). Most of the few calls that were not validated in the array

were also centred around 50% and found by both variant callers, implying that they certainly contain

additional  heterozygotes  that  the  SNP array  failed  to  detect.  Finally,  the  majority  of  variants  not

identified with NGS had no sequencing reads supporting the alternative allele detected by the array

(841/892 variants), suggesting that these variants are potentially false positive results from the SNP

array (Figure 5A). 

Because SNP arrays are biased toward sites amenable to the design of Illumina BeadArrays (24), we

also  undertook  needlestack  and GATK germline  genotyping  of  SNVs and  indels  calls  across  62

exomes. Respectively 97.3% and 70.3% of the SNV and indel calls were concordant (Figure 5B-C)



with VAFs around 50%, whereas the genotypes identified uniquely by one of the two methods tended

to have low VAF. For indel calling, 46% of calls unique to needlestack and 34% of calls unique to

GATK  are  more  than  10bp  long,  compared  to  only  12%  of  common  calls.  This  suggests  that

discrepancies among the methods can be partially explained by longer indels difficult to align and call.

For 66% of uniquely called indels by GATK-HC, no alternate reads were present in the BAM file used

by needlestack,  suggesting divergences in  the assembly steps  (haplotyper  Caller  versus ABRA).

Interestingly,  for  52%  of  the  SNVs  detected  by  GATK-HC and  not  by  needlestack,  needlestack

estimated an error rate higher than 1%, pointing to possible false positives in the GATK calls (Figure

S6). 

DISCUSSION

The needlestack method is based on the notion that, as error rates strongly vary along the genome,

their  dynamic estimation from multiple  samples,  for  each potential  base change at  a  given DNA

position, may assist in identifying sequence variants. Here, we have demonstrated that, even within a

single gene (TP53), and even if the sequencing error rate is generally low, it varies importantly across

positions  and  base  changes  (Figure  1).  Needlestack  implements  a  robust  negative  binomial

regression for this purpose, and the ability of the method to identify variants will be dependent upon

the error rate at that particular site and for that base change. By identifying sequence variants as

outliers  relative  to  the error  model,  needlestack maximizes  the sensitivity  to  detect  variants  in  a

dynamic manner relative to the error rate in that particular setting. As such, low allelic fraction variants

are  identified  from sites  with  low  errors  rates,  whereas  in  settings  where  error  rates  are  high,

needlestack maintains reasonable false discovery rates (Figures 3 and 4). 

We  have  benchmarked  our  method  using  both  simulated  and  real  data  from  different

sequencing platforms. First, we have tested our method on low VAF mutations using BAMsurgeon to

generate  in-silico mutations and have compared our findings to variants identified by a similar rare

variant  orientated  algorithm  shearwaterML.  We  have  shown  that  our  method  outperforms

shearwaterML for VAF lower than 10-2. We also have shown that the performance of shearwaterML

highly depends on the difference between the error rate e and the error rate a-priori threshold t (see

methods for details). Contrary to shearwaterML, needlestack’s false discovery rate is not dependent

on the sequencing error rate. In addition, needlestack also considers indel mutations. For this type of

variant, the sensitivity of needlestack is slightly reduced compared to SNVs (Figure S5A-B). This is

potentially due to the increased complexity of the assembly step around indels compared to SNVs.

Moreover, needlestack detects a high number of indels replicated in the two technical duplicates that

were not  in-silico  introduced (around 8 by samples in average), whereas  TP53  is not expected to

harbour many indels in healthy patients. These mutations can be moderated using a filter on the

strand bias, as previously reported (Figure S5C-D) (25). 

The true specificity of needlestack cannot be achieved with BAMsurgeon simulations, due to

a probably very low presence of true mutations in the cfDNA of healthy patients that is difficult to

determine a priori  (19). We therefore have estimated the validation rate in the tumour of deleterious



cfDNA mutations identified by needlestack in 35 lung patient cfDNA samples. All of these 12 mutations

were validated in the tumour. 

Finally, we have benchmarked needlestack on germline mutations using SNP array data to

validate the mutations detected in WES of 33 individuals, and showed an excellent concordance when

results  are  compared  with  both  a  SNP  array  as  a  gold  standard  set  and  calls  from  GATK

HaplotypeCaller.  This illustrates that  needlestack, even if  based on a totally different approach to

detect variants, can reach similar performance to state-of-the-art germline variant callers.

The needlestack method nevertheless has several limitations. Even though needlestack is

extremely sensitive, it  is suited to detect rare mutations rather than common germline variants or

highly re-occurring hotspot mutations. Adding an  a-priori threshold for the error rate (extra_robust

mode – see  supplementary  methods)  can partially  offset  this  limitation,  but  is  only  applicable  to

particular  situations  for  the  reasons explained  above.  More  importantly  the  inherent  logic  of  the

needlestack approach corrects for errors that have a tendency to reoccur, as such errors that are rarer

are identified as outliers in the regression.  Following this, needlestack does not correct for sample-

specific artifacts such as (i) (sample specific) stochastic alignment errors and we recommend to use it

in conjunction with an assembly based re-alignment method (26); (ii) polymerase errors introduced in

PCR amplification step; (iii) complex errors leading to features like strand bias. Such errors remain a

feature in NGS data (Figures 2C and 4A), thus additional error correction  (27,28) and/or validation

techniques are needed. This can be achieved with hard filtering on the output statistics such as the

VAF or the strand bias, but also with machine-learning-based approaches applied to multiple variant

summary statistics when validated data are available to inform the model. Here we have controlled for

these errors by undertaking technical duplicate of each sample and conditioning on the requirement

that the variant must be present in each preparation.  

Our pipeline is implemented using nextflow  (12), to facilitate its scientific reproducibility but

also efficient parallel computations. Needlestack is also provided with Docker (29) and singularity (30)

containers  to  avoid  installation  of  dependencies  and  produce  perfectly  reproducible  results.

Needlestack is a user-friendly pipeline that can be run in one command line. In addition, needlestack

implements  a  power  calculation  to  estimate  if  the  coverage  is  sufficient  to  call  a  mutation  (see

supplementary methods for details). Using this power analysis, it can predict the germline or somatic

status of a mutation when applied to tumour-matched normal mode. This also allows needlestack to

flag mutations with an “unpredictable” status (when the coverage is to low) to accurately control the

false discovery rate. Source code is available on GitHub and is versioned using a stable git branching

model.  Importantly, this approach is relatively computationally efficient and parallelisable. This allows

error models to be built even across large target stretches of DNA, enabling applications at the exome

level, genome levels or to most forms of sequencing data. As an example, needlestack takes around

20 hours to analyze 100 WES when launched on 100 CPUs.

In  summary,  needlestack  uses  a  robust  model  of  sequencing  errors  to  accurately  identify  DNA

mutations potentially in very low abundance. The model takes the advantage of batch sequencing of

multiple samples to precisely estimate the error rate for each candidate alteration. Needlestack can be

applicable to various types of studies such as cfDNA, histological normal tissue investigation or high



precision  tumour  subclonality  estimation  by  providing  a  high  sensitivity  for  low  allelic  fraction

mutations.

AVAILABILITY

needlestack is an open source collaborative initiative and is available in the GitHub repository 

(https://github.com/IARCbioinfo/needlestack).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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TABLE AND FIGURES LEGENDS

Figure 1: Sequencing error rates estimated by needlestack across the TP53 gene. A: distribution of

sequencing error rates in log-10 scale across the 1,704 positions accounting for a total  of  5,112

values. Results are stratified by type of base change: transition or transversion (x-axis) and by type of

sequencing technology (IonTorrent Proton amplicon-based data in violet and Illumina exome capture

data in yellow). Horizontal black lines correspond to the 5% quantiles of each of the sequencing error

rate distribution. B: contribution of each of the 12 possible base changes on the estimated error rate.

Error  rates  are  stratified  by  ranges ([10-5,10-4];[10-4,10-3];[10-3,10-2];[10-2,10-1],  x-axis).  Base  change

contributions are colored according to DNA strand equivalences (e.g.  G to T and C to A are both

colored in blue). As an example, around 80% of alterations with an estimated error rate between 10 -3

and 10-2 in exome capture data correspond to a G to T transversion.

Figure 2: needlestack regression plot for three independent genomic alterations. A: example of a G to

T transversion  from exome-hydrid capture Illumina sequencing  where the sequencing error rate is

estimated as 4.10-2 and no variant is detected. B: Example of a duplicated mutation ( i.e. found in the

two  technical  replicates  of  the  same  sample)  with  a  VAF  at  around  10 -3 with  a  corresponding

sequencing error rate estimated at 10-4. C: Example of a non-replicated mutation with a VAF at 10 -4 in

the  positive  library.  The  second  library  was  covered  at  more  than  18,000X  suggesting  that  the

mutation would have been detected if truly present in the DNA sample. Each dot corresponds to the

library of a sample and the dots are colored according to the Q-values attributed by needlestack. Red

dots are libraries identified as carrying the mutation by needlestack (their Q-values are higher than

50).

Figure  3:  needlestack  and  shearwaterML  variant  calling  false  discovery  overview  from  in-silico

simultations with BAMsurgeon on 125 duplicated samples of circulating cell-free DNA from control

individuals. A:  cumulative number of detected mutations that were not introduced by BAMsurgeon as



a function of the VAF (in log10 scale) of the mutations, for both methods (needlestack in plain lines

and shearwaterML in dashed lines).   This  number is  computed as the average per library  when

considering all mutations (black lines) and as the average per sample when considering duplicated

mutations (blue lines). B: False positive rate (per alteration) for both needlestack and shearwaterML,

depending  on the estimated error rate at the position. A false positive is defined as a variant not

introduced  with  BAMsurgeon.  The  red  line  corresponds  to  the  error  rate  threshold  t  used  for

shearwaterML  (0.005).  ShearwaterML  uses  this  threshold  to  remove  a-priori true  variants,  i.e.

samples with a VAF>t, to then estimate the error rate.  

Figure  4:  Performance  of  needlestack  for  somatic  mutation  calling  using  simulated  data.  The

sensitivity of needlestack is presented for multiple values of VAF (in log10 scale, x-axis) of  in-silico

simulated mutations. A total of 10x1,000 SNVs were introduced using the BAMsurgeon software, on a

set  of  125  samples  sequenced  at  the  TP53 gene  locus  with  the  IonTorrent  Proton  technology.

Needlestack sensitivity was computed independently for different error rate ranges (e, red, blue and

green lines). Black line corresponds to the global sensitivity for all the mutations independently of the

sequencing error rate. Global sensitivities of shearwaterML for the same data are shown in grey.

Figure 5: germline variant calling comparison between needlestack and GATK-HC across 62 samples.

Both distributions of the VAF and Venn diagrams presenting the concordance of called mutations are

shown. VAF distributions are colored according to the Venn diagram. A: comparison between both

methods and an Illumina bead array containing gold standard genotypes available for a total of 33

samples. B and C: comparison between needlestack and GATK-HC called mutations without any

reference gold standard for both SNVs (B) and indels (C).
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Supplementary Material

Supplementary Methods

Robust Negative Binomial regression adaptation

The original method was established on falls data where the predictor variable took values from 0 to a couple

of  hundreds.  Here we need to take into  account cases where we sequenced deeply and therefore the

predictor  variable  DP can be up to  hundreds of  thousands.  The first  model  uses integrals  of  bounding

functions for the maximum likelihood estimation (MLE)  of  to keep robustness, which can take a very

long time for  high coverage data.  To  save computing time,  we approximate the calculation of  integrals

required for the MLE of . Instead of computing the sum of all values corresponding to the integral, we

interpolate the points using the spline function in R, and compute the sum of a set of sampling points with a

reasonable size (default is 100). The idea of this robust model is to correctly initiate parameter values and

then to perform a MLE to update these values. The initial estimation of  is based on a Poisson model,

and because of a lack of robustness the following MLE of  can take a lot of time. We thus define our

initiation of  as the mean of observed  after passing the Tukey's outlier filter, i.e an observed  is

taken  into  account  for  the  mean  computation  if  and  only  if  it  verifies  ,  with

 and . 

Implementation

Needlestack is implemented as one major process, which can be executed in parallel  for multiple input

chunks,  each  corresponding  to  a  set  of  called  positions.  This  process  is  defined  as  a  chain  of  piped

commands: firstly, it runs samtools mpileup utility to compute, for each of the input BAM files, the list of read

nucleotides overlapping the input positions. Then, it translates the samtools output into an easier to process

format through the mpileup2readcount tool [REF]. Finally, needlestack uses its own R script to run the variant

calling independently  at  each position and for each observed alternative base change, and produces a

resulting VCF file that will be merged with other created VCF if run in parallel mode. See supp figure 5 for

details  on  the  pipeline.  Needlestack  is  written  in  the  nextflow  domain-specific  language,  allowing  high

scalability  and  reproducibility,  but  also  efficient  parallel  execution.  Needlestack  source  code  is  freely

available on Github, and a Docker container image is hosted on DockerHub. This docker image is based on

Bioconda, a sustainable and comprehensive collection of bioinformatics software that helps to easily install

workflow dependencies.

Tumour-Normal pairs method

We have implemented, in addition to our basic model, a method to classify any observed variant as somatic

or germline when needlestack is launched in tumour-normal pairs mode (supplementary table S2), in order to

control  our  false discovery  rate  in  case of  low coverage positions.  For  this,  needlestack introduces the



concept of “power to detect a variant” at a particular position. Indeed, in that case, not observing a variant in

the normal sample should not induce a somatic status, due to the uncertainty to have a sufficiently covered

position in the normal sample to have the power to detect the variant if present. Our power metric is based

on the expected Q-value of the variant if truly present, which depends on the coverage of the sample at the

site: if this Q-value is too low, we consider that the site was not enough covered, which induces a lack of

power. For a particular individual sequenced for a tumour-normal pair, needlestack classifies its variants as

follows: if  a variant is observed in the tumour sample, it  is classified as  “somatic” if not observed in the

normal with a sufficient power, and as  “unknown” in a case of a lack of power in the normal sample. If a

variant is observed in the normal sample, it will be labeled as “germline”, and sublabeled as “confirmed” if

also  found  in  the  tumour,  “unconfirmed” if  not  in  the  tumour  whereas  power  was  satisfactory,  and

“unconfirmable” if there was not enough power in the tumour to detect it if present.

To establish if, at a particular site and for a particular base change, a sample is sufficiently covered to

validate a variant observed in a matched biological sample,  i.e., if the power of detection is sufficient, we

compute an expected  Q-value based on the expected variant allelic fraction in the observed sample. To

conclude on the power of detection of a particular variant, we compute the expected Q-value and compare it

to a threshold.

In the case of a germline this statistic is computed as follows:

with  NB=negative  binomial  distribution,  μ=0.5xcoverage  at  the  position,  and

σ=dispersion parameter (by default=0.1).

In the case of a tumour variant, we computed the expected Q-value as the following:

 with  B=binomial distribution,  n=coverage at the position, and  p=minimum variant

allelic fraction expected (by default=0.01).

cfDNA and tumour sequencing for in-silico simulations and tumour validation

CfDNA was extracted from 0.8-1.3 mL of plasma using the QIAamp DNA Circulating Nucleic Acid kit (Qiagen)

following manufacturer’s instructions. CfDNA was eluted into 100 μL of elution buffer and quantified with the

Qubit DNA high-sensitivity assay kit (Invitrogen Corporation). Twenty-one amplicons of 150 bp in size were

designed  (Eurofins  Genomics  Ebersberg,  Germany)  to  cover  exons  2  to  11  of  TP53.  The  GeneRead

DNAseq Panel PCR Kit V2 (Qiagen) was used for target enrichment. A validated in-house protocol was used

to set up multiplex PCRs in 10 μL reaction volume, containing 5 ng cfDNA, 60 nM of primer pool and 0.73 µL

of HotStarTaq enzyme. The experiments were carried out in two physically isolated laboratory spaces: one

for sample preparation and another one for post-amplification steps. Amplification was carried out in a 96-

well format plates DNA engine Tetrad 2 Peltier Thermal Cycler (BIORAD) as follows: 15 min at 95oC and 30

cycles  of  15  seconds at  95oC and 2  min  at  60oC and 10  min  at  72oC.  Two  technical  duplicates  were

undertaken  for  each  cfDNA sample  including  amplification,  library  preparation,  and  sequencing.  Each

technical duplicate pair was assessed on two separate plates to limit the possibility of a contamination.

For the tumour sequencing, eighty nanograms of each DNA sample was used as template to set up

four separate PCR reactions (20ng/pool) using the Qiagen GeneRead DNAseq Panel PCR Kit V1 and primer

mix (Qiagen), following manufacturer's instructions. The amplified PCR products were then pooled, purified

with the Serapure magnetic beads and subjected to library preparation including adapter ligation, purification,

and amplification using the NEBNext Fast DNA Library Preparation Kit (New England Biolabs). About 200 ng

of individual libraries were pooled into a single tube and size selection (230~250 bp) of pooled libraries was



performed using 100µL aliquot of pooled libraries onto a 2% agarose gel and MinElute Gel Extraction Kit

(Qiagen). 

Template preparation was done on the Ion OneTouch2 instrument using the Ion PGM Template OT2

200 Kit, followed by sequencing on an Ion Torrent PGM sequencer using the Ion PGM Sequencing 200 Kit

v2 (Life Technologies), aiming for mean depth of 500X.

Bioinformatics processing

Short reads from NGS sequencing were aligned to the hg19 human reference genome using the Torrent

Suite software (v4.4.2) with default parameters. Somatic mutations were detected with needlestack using the

version 1.0 and a QVAL threshold at 50. As recommended by Martincorena et al. we used a threshold of 20

for the shearwaterML statistic.

CfDNA samples from lung cancer patients that harbored a high number of raw mutations (>100) in at

least one of the two technical replicates were excluded. This removed 4 SCC and 7 SCLC from the 46

matched samples. CfDNA mutations associated with a low confidence base change were removed. A low

confidence base change satisfied P<0.05 with P given by:

with N the total number of sequenced libraries, k the number of libraries being positive for the mutation, pobs

the number of paired called mutations (paired in the sense found in the two technical replicates) and pmax the

total number of possible pairs from k entities (independently of the data). The detailed source code for cfDNA

mutation  analysis  including  all  quality  filtering  step  description  is  available  on  GitHub  at:

https://github.com/IARCbioinfo/target-seq.

For  the  germline  analysis,  GATK-HC  variant  calling  was  performed  using  version  3.4  and  the

HaplotypeCaller algorithm with default  parameters,  followed by the joint  genotyping step.  Finally,  Variant

Quality Score Recalibration from the GATK best practices was applied, using dbSNP 138, HapMap 3.3, 1000

Genomes phase 1 and OMNI 2.5 databases. Options provided were « -tranche 100 -tranche 99.9 -tranche

99.0 -tranche 90.0 » for both INDEL and SNP modes. GATK-HC variant calls were filtered on PASS and on

Phred-scaled likelihood (PL) more than 20. BAM files were locally reassembled with ABRA version 1.0 before

launching  the  variant  calling  by  needlestack.  Needlestack  germline  calling  was  launched  using  our

recommendations for  germline detection,  i.e.  QVAL>20 and the option –-extra-robust.  This  option helps

needlestack to correctly estimate the error rate in the case of common germline variants (defined when more

than 10% of the samples present a VAF higher than 20%) that tend to bias this estimation towards high

values. For each of these base changes independently, this process first eliminates these germline samples

and then  estimates  the  error  rate  on remaining  samples.  In  this  germline  analysis,  both  positions  and

variants with respectively a median coverage and an individual coverage less than 50 were removed from

the whole analysis. Coverages were computed with samtools mpileup, counting only reads with a mapping

quality higher than 20 and a base quality higher than 13. We considered as variant frequency the maximum

proportion of samples carrying the variant estimated by both methods and then filtered out germline variants



with a frequency higher than 10% to consider only rare variations.

Computation of ShearwaterML statistic used in the BAMsurgeon in-silico simulations 

We launched the shearwaterML algorithm on the simulation data sets to compare its global performance with

needlestack. We used default thresholds except that we increased maxvaf  to 1 so that not to filter on VAF,

and set truncate to 0.005 to avoid true mutations present initially at low VAF to enter the background error

model and potentially reduce the sensitivity, as recommended in Martinorena et al.. ShearwaterML produced

p-values instead of the shearwater Bayes factor, that we corrected for multiple testing using the Benjamini-

Hochberg method which produces then  Q-values that  we finally  transformed into Phred scale  Q-values

(QVAL).

Using needlestack to compute the error rate distribution

Needlestack can be forced to compute the error rate for every query position. For this, the user needs to ask

needlestack not to only consider variable positions to output the informations in the VCF file. This can be

achieved by launching needlestack with parameters --all_SNVs, --min_ao 1 and --min_dp 1. This way, in our

analysis, the 5112 error rates across the TP53 gene were computed, and those that are precisely equal to

zero and were set as NA in the VCF.

Supplementary legends

Supplementary figure 1: needlestack workflow description. First step corresponds to the creation of a BED

file containing the DNA positions on which the calling should be launched using the fasta index of the input

reference genome; this step is optional,  only performed if  target positions are not provided by the user.

Second step splits the BED file into multiple sets of positions to run the algorithm independently on each set

in parallel; number of position sets is given in input by the user. Third step runs the variant calling from three

piped substeps: (i) the mpileup file building using samtools, (ii) the parsing of the mpileup to produce count

data per sample in a tabulated readable file, (iii)  and the running of the regression in R on each tested

mutation to estimate the error rate. Fourth and last step merges VCF files previously produced in parallel and

outputs the global result. Workflow orchestration is done thanks to the nextflow domain specific language.

Not that nextflow manages all the execution of the pipeline from one unique user command line.

Supplementary figure 2: estimated error rate distributions from amplicon-based sequencing of  TP53  gene

(median coverage around 10,000X). Distributions of error rates are shown for each of the 96 possible base

variation (with flanking 3’ and 5’ bases), and are colored by DNA base changes.

Supplementary figure 3: estimated error rate distributions for both SNVs and indels from the same data as

used in supplementary figure 1. A: error rate distributions are shown as a function of the type of SNV (yellow

for transversions and green for transitions), the length of the insertion (pink) and the length of the deletion

(blue),  with  n indicating  the  total  number  of  error  rates  used  to  compute  the  distribution.  B:  error  rate

distributions restricted to insertions and deletions, as a function of the size of the homopolymer region ( i.e.

depending on the number of repeated nucleotides) at the position. 



Supplementary figure 4: validation of cfDNA mutations in the matched tumour sample from a total of 11

SCLC cases and 24 SCC cases. A: correlation of cfDNA and tumour VAF for deleterious validated mutations

(total=12). Pearson correlation coefficient was estimated as 0.59. Grey dashed line corresponds to the fitted

linear regression characterized by the values a (slope) and b (intercept). B: needlestack regression plots of a

validated deleterious SNV (left panel corresponds to cfDNA data and right panel to tumour data).

Supplementary  figure  5:  sensitivity  of  needlestack  as  a  function  of  the  VAF  of  the  in-silico simulated

insertions (A) and deletions (B), depending on the error rate for the mutation. Data used are described in the

BAMsurgeon in-silico simulations material and method paragraph. Cumulative number of false discoveries

i.e., detected but not introduced is shown for insertions (C) and deletions (D) per sample, depending on the

VAF of the detected mutation. This number was computed firstly for all detected indels (the result is per

library)  and secondly  for  indels  validated in  the second library  (the result  is  per  sample).  Dashed lines

correspond to the number of  indels not introduced by BAMsurgeon that are however not in strand bias

(RVSB<0.85).

Supplementary figure 6: A: distribution of the sequencing error rates for SNVs detected by GATK-HC but not

detected by needlestack from 62 WES samples (total of 1385 mutations), estimated using kernel density

estimation.  B:  needlestack regression plots for one particular position where GATK called 3 variants (in

purple). Needlestack estimated a high sequencing error rate (around 1%) for this mutation and therefore did

not call it, highlighting the fact that estimating the systematic error rate across multiple sample should reduce

the false discovery rate of the method. 

Table S1: description of the 22 mutations identified by needlestack in the cfDNA of 35 lung cancer patients. 

Table S2: variant status and genotype attributed by needlestack as a function of variant detection and the

power to detect variants in tumour and matched normal samples.

Supplementary Figures



CHAPTER 2. DEALING WITH SYSTEMATIC ERRORS: NEEDLESTACK, A
MULTI-SAMPLE SENSITIVE VARIANT CALLER

Supplementary Figure 1:

Supplementary Figure 2:

C>A C>G C>T T>A T>C T>G

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−5

−4

−3

−2

−1

A
.A

A
.C

A
.G

A
.T

C
.A

C
.C

C
.G

C
.T

G
.A

G
.C

G
.G

G
.T

T.
A

T.
C

T.
G

T.
T

A
.A

A
.C

A
.G

A
.T

C
.A

C
.C

C
.G

C
.T

G
.A

G
.C

G
.G

G
.T

T.
A

T.
C

T.
G

T.
T

A
.A

A
.C

A
.G

A
.T

C
.A

C
.C

C
.G

C
.T

G
.A

G
.C

G
.G

G
.T

T.
A

T.
C

T.
G

T.
T

A
.A

A
.C

A
.G

A
.T

C
.A

C
.C

C
.G

C
.T

G
.A

G
.C

G
.G

G
.T

T.
A

T.
C

T.
G

T.
T

A
.A

A
.C

A
.G

A
.T

C
.A

C
.C

C
.G

C
.T

G
.A

G
.C

G
.G

G
.T

T.
A

T.
C

T.
G

T.
T

A
.A

A
.C

A
.G

A
.T

C
.A

C
.C

C
.G

C
.T

G
.A

G
.C

G
.G

G
.T

T.
A

T.
C

T.
G

T.
T

lo
g 1

0 (
e)

63



CHAPTER 2. DEALING WITH SYSTEMATIC ERRORS: NEEDLESTACK, A
MULTI-SAMPLE SENSITIVE VARIANT CALLER

Supplementary Figure 3:
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Supplementary Figure 4:
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Supplementary Figure 5:
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2.4 Discussion

In this first chapter we presented needlestack, a sensitive integrative variant caller. The al-

gorithm is based on the application of a robust negative binomial regression to estimate the

rate of systematic errors across a panel of samples. Contrary to the existing variant callers,

the regression used in our algorithm is robust in the sense that the model is not biased by the

presence of true mutations that tend to influence the estimation of the SER to higher values.

The main drawback of non-robust methods is that the number of missed true mutations

would increase with the total number of true mutations at a particular position. Methods

that requires a prior on the SER to keep robustness by removing potential a priori true muta-

tions are exposed to an increase of the number of false positive for position harboring a SER

higher than this prior. To deal with such unknown variabilities, needlestack directly learn

the SER from the data. For this, it requires a panel of samples sequenced in a similar way to

precisely estimate this variable. Because we model the error rate for each observed alteration

independently, the number of times this process needs to be done is huge, and therefore we

developed needlestack with the aim of proposing a method that can be applied in a practical

manner.

The main advantage of needlestack compared to other existing variant caller is its ability

to detect very low VAF mutations. Nevertheless, needlestack can detect a very low VAF mu-

tation only if the SER is sufficiently low compared to this VAF. This means that needlestack

accuracy depends of the SER at the position, but it also depends of the depth at the position.

As an example, a mutation with VAF at 0.1% requires a depth at the position of 1000X to ob-

served 1 sequenced read that contains the mutation (in average). An interesting perspective

could be to study the influence of the coverage on the sensitivity of our method.

By design, needlestack only detect systematic errors across multiple samples. This also

means that it can not detect recurrent mutations across these samples, that would be incor-

porated in the error model, and therefore needlestack is limited to rare mutations, rare in

the sense "low population frequency". To deal with common mutations such as hotspots

or common germline genetic variations [136], we have implemented the option extra_ro-

bust_gl. When this option is activated, needlestack will remove potentially true mutations in
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high proportion (same idea than shearwaterML algorithm) to then estimate the SER on the

remaining samples. These potentially true mutations are defined as the following:

• harboring a VAF higher than υ.

• being present in a proportion between ρmi n and ρmax .

The aim of using these parameters is to efficiently distinguish between errors and true mu-

tations: (i) ρmi n parameter controls the fact that, this "tuned" robustness should be run only

if a sufficiently proportion of mutated samples can influence the SER estimation; (ii) ρmax

parameter controls the fact that, if a variation is observed in the majority of the samples,

needlestack would not be able to distinguish it from errors; (iii) υ parameter defines the

maximum expected error rate. By default, ρmi n = 10%, ρmax = 50% and υ= 20%. We suggest

to use this extra_robust_gl option in the case of hotspot variations or in the case of common

germline genetic mutations where the VAF is expected to be high and different from the SER.

Our method shows the advantage to be integrative, in a sense that needlestack can

call both germline and somatic mutation at the same time. Needlestack will assign a sta-

tus germline or somatic to each called mutation if the user provides paired data, i.e. tumor

and normal sample for each individual.

Nevertheless, because the error rate is, in a sense, stochastic across sequencing runs

and genomic positions, needlestack requires a particular type of data, that is composed of

similarly sequenced samples at the same positions. Another possibility would be to use pre-

computed estimations of the SER. This would avoid the need of such sequencing design

that could be potentially difficult to validate, but for this the SER should be quite constant

across sequencing runs. We then computed the Coefficient of Variation (CV) of the SER for

SNVs across 5711 genomic positions sequenced independently ten times (figure 2.2). Let E

defines the set of estimated SER across the ten sequencing runs for a given alteration. The

corresponding CV is defined as the following

CV = σ

µ
with σ=

√√√√√ |E|∑
i=1

(ei −e)2

|E|−1
and µ= e =

|E|∑
i=1

ei

|E|

The median CV was estimated at −0.63 in 10-logarithm scale, suggesting that, for a given
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Figure 2.2 – Distribution of the Coefficient of variation (CV) of the SER based on 5711 genomic po-
sitions sequenced independently 10 times, in 10-logarithm scale. Median of CV was estimated at
−0.63. Small left panel corresponds to the distribution of CV according to the SER mean, and shows
no evidence of correlation (Pearson Correlation Coefficient (PCC)=-0.56).

alteration, the SER would differ of around 20% between two sequencing runs. In addition,

there is no evidence of correlation between the CV and the mean of the SER (figure 2.2 small

panel, (PCC=-0.56)), which means that the variation of SER is relatively constant whatever

the SER.

To conclude, using using a "catalogue" of error rates as a reference is possible, but

this would have a major consequence on the accuracy of mutation detection: if the pre-

computed SER is greater than the true SER, this will potentially create false negatives (figure

2.3 A), and, if the pre-computed SER is lower than the true SER, this will potentially create

false positives (figure 2.3 B). Nevertheless, these findings are only applicable on IonTorrent

sequencings, further investigations on the stability of the SER are required for Illumina se-

quencing data.

Needlestack can be applied on traditional tumor and normal datasets to estimate the

somatic mutations attributed to cancer cells. For example, we have used needlestack (tumor-

normal pairs mode, see supplementary material in the paper for more details) to efficiently
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Figure 2.3 – Consequences on the mutation detection accuracy of using pre-computed SER.

identify somatic mutations in WES data from 21 atypical carcinoid samples and 10 typical

carcinoid samples, in order to perform integrative and comparative genomic analyses of

pulmonary carcinoids (see annexes A.2.2, Alcala et al. Nature Communications 2019.). We

have also validated the somatic mutations called in the WES with needlestack using a tar-

get sequencing approach (IonTorrent Proton technology). For these 220 SNVs and 30 indels,

we have reported a validation rate higher than 95% for VAF higher than 10%, and we have

shown that this validation depends of the VAF of the mutations (see figure 2.4), as we already

reported in the needlestack paper.

Needlestack can also be used in other type of studies such as those on somatic muta-

tions in histologically normal tissues that are expected to be found in low proportion, studies

on subclonality of tumors due to its ability to detect mutations with high sensitivity, or even

studies on circulating tumor DNA that carries very low abundance tumor-derived mutations.

Needlestack is based on the estimation of systematic errors to efficiently call muta-

tions as being different from these errors. It does not correct for non-systematic or pseudo-

systematic errors 1.2.1. To correct for these types of errors and reduce the falsely called

mutations, we proposed to use a posteriori steps of variant filtering. This second type of

methodology to refine the detection of mutation from NGS data is presented in the second

chapter.
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Figure 2.4 – Validation of somatic mutations from WES of pulmonary tumor and matched normal
samples using a targeted sequencing approach.
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3.1 Scientific context

As exposed in the introduction chapter, errors found in NGS data can be classed into two dis-

tinct groups: (i) systematic errors; (ii) and pseudo and non-systematic errors. In the chap-

ter 2, we described the development of a sensitive variant calling algorithm, needlestack,

which estimates the systematic errors across samples and then call mutations as being dif-

ferent. Needlestack, by design, classify errors as such only if they are recurrent across mul-

tiple samples. Therefore, such rare variant calling method is not appropriate to accurately

distinguish between pseudo or non-systematic errors and true mutations.

To reduce the potentially false calls from the variant calling process, a subsequent step

of variant filtering is required. As presented in the introduction of the thesis, the aim of the

variant filtering process is basically to boost the precision of the variant calling step with a

minimal decrease of sensitivity. Contrary to our needlestack method, variant filtering algo-

rithms are not based on the systematic nature of errors that they try to remove. However, it

is possible to use statistics on error proportion across the samples.

Roughly, variant filtering methods try to use the knowledge on known mutations, and

conversely, the knowledge on expected errors to remove falsely called variants, based on pre-

defined statistics. Due to the fact that these statistics can be related to one particular variant

calling method (as an exemple the QVAL statistic given by needlestack), the variant filtering

algorithm is adapted to the variant calling method. This means that the variant filtering step

is highly dependent on the variant caller and therefore that new methodologies should be

developed when no algorithm is suitable.

In this chapter, we propose to present two different developed methodologies of post-

calling variant filtering. Due to data availability, we propose two independent filtering method-

ologies, (i) for somatic deep targeted sequencing data; (ii) and for germline sequencing data

both analyzed with needlestack. Methodologies have been tested on IonTorrent Proton se-

quencing data, but used statistical variables do not depend on the sequencing technology

and therefore our methods can be easily transposed on other type of data such as data from

Illumina sequencers.
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3.2 Scientific contribution

3.2.1 Variant filtering for deep targeted sequencing data

In this first part, we will present our filtering methodology for deep targeted sequencing data.

The method is restricted to data analysed with our needlestack variant caller, but the scripts

can easily be adapted to other variant caller if needed. In term of data, the method is re-

stricted to sequencing data presenting a deep coverage of typically several thousands reads.

We have previously shown in the needlestack paper that an efficient approach to re-

move PCR errors is to sequence each DNA sample twice. One DNA sample containing n ∗p

DNA molecules can be divided into n sets containing p molecules on average, after the ex-

traction and before the PCR steps. Each DNA set is called a library. Therefore, we developed

our approach based on duplicated libraries, i.e. n = 2 DNA sets per sample.

Our approach is composed of five filters which are based independently on:

• the number of mutations per library

• the concordance between the two libraries

• the strand bias

• noisy positions

• the genomic distance from a true variant

As a first a priori quality control step, we have adapted the QC3 software from Guo et al.

[61]. We were interested in using this tool to estimate the median coverage of each sample

across the sequenced positions, and then remove samples not well covered, that are consid-

ered as non-analyzable. The main improvement was to propose two new options:

• -d_cumul to output the cumulative coverages, i.e for a list of coverages threshold out-

put the percentage of positions covered by at least these coverages

• -nod to do not compute the coverage in non-target regions, in the aim at reducing the

computing time

We maintain and propose a free access to the adapted source code on GitHub: https://

github.com/IARCbioinfo/QC3.
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The first filter subsequent to the variant calling that we have developed is based on the

quality of the libraries. Indeed, degradation of DNA should create artifact DNA variations

and lead to false calls from the variant calling. This has mainly been observed in formalin-

fixed paraffin-embedded (FFPE) tissues [42] because these samples are fragmented and con-

tain DNA lesions. Nevertheless, there is no actual evidence that the increased number of

artifact mutations due to DNA degradation could not happen in every type of samples.

This first filter is a sample-scale filter. It does not remove falsely called mutations but

will remove low confidence samples. Some of the mutations called in these low confidence

samples can be attributed to the DNA degradation, and there is no particular variable able

to distinguish true from false variations in such cases. Consequently, we decided to remove

these samples.

To determine the set of low confidence sample to be removed from the analyses, we

computed a threshold on the maximum number of expected mutations per library from the

variant calling. Each library harboring an unexpected high number of mutation is consid-

ered as non analyzable. Due to the fact that we require two library per sample, our filter

will remove each sample presenting at least one such low confidence sequencing library.

This maximum value of expected number of mutations per library is expected to depend on

the sequencing batch and probably on the type of sample, so an ideal scenario would be to

compute it for each sequencing batch, supposing that one batch contains the same type of

analyzed sample, i.e. normal tissues, tumor biopsies, etc. Naturally, if the number of libraries

per batch is low, multiple batches can be merged to efficiently compute this value if realized

in identical conditions.

To compute the threshold on the number of expected mutations, we propose to fit a

robust negative binomial distribution on the number of observed mutations per library. In-

deed, we have observed that this number of mutations, that can be modeled using a Poisson

distribution, harbor a larger variance than expected by this model, and then the negative

binomial model is more adapted. In addition, we require robustness to control for possible

unexpected high number of observed mutation, in the case of degraded DNA for example.

We then compute the 95th percentile of the fitted negative binomial distribution as the fil-
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tering threshold and identify low confidence libraries as the one presenting a number of

observed mutations higher than this computed threshold.

As a descriptive example, figure 3.1 is showing the distribution of the number of muta-

tions per library for four merged sequencing batches and the corresponding exclusion area.

Data are generated from the sequencing of the 1704 positions of the TP53 gene of 209 sam-

ples (total=2∗209=418) on a IonTorrent Proton sequencing platform.
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Figure 3.1 – Plot example of the distribution of number of called mutations per library. Data contains
a total number of 418 analyzed libraries. Dashed blue and red lines correspond respectively to the
mean and the 95th percentile of the fitted negative binomial distribution. Excluded libraries by filters
are present in the light red area.

As a second filter, we propose to use the presence of the mutations in the technical repli-

cates (sequencing libraries) of the same samples. As described in the introduction, sequenc-

ing the same DNA in replicates should reduce artifacts on observed mutations, notably the

one coming from the PCR processes [111]. As a matter of fact, a DNA variation coming from

an error of the DNA replication during one of the PCR series is not attributable to the biol-

ogy of the sample and is not expected to be shared across multiple samples, it then can be
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classified as a totally non-systematic error. In addition, such non-biological DNA variations

are expected to be random and then not replicated across independent libraries.

To benefit from the availability of technical replicates of the same sample in order to

reduce the set of false called mutations from the variant calling process, we propose to con-

sider that a mutation found in one of the n libraries should be validated in each of the other

libraries of the sample. This leads to the fact that if one mutation is observed in only one spe-

cific replicated libraries, this can be a PCR artifact and consequently this mutation should be

differently considered from the other called mutations. If n = 2, we propose naturally to

exclude called mutations not validated twice, i.e not called in the two libraries.

This approach could be easily extended in the presence of more than two replicated li-

braries: for each called mutation m, let n be the total number of technical replicates, nobs

the number of technical replicates from which the mutation m was called and pm the min-

imum percentage of the total number of technical replicates that is expected to share the

called mutation m. Then, the mutation m will be filtered if and only if:

nmi n = n ∗pm < nobs

The third filter that we propose is based on the strand repartition of each called muta-

tion m. The sequencing of DNA is expected to be equally spread on the forward and reverse

strands (see figure 1.1 for an explanation of DNA strands). This means that whatever the al-

lelic fraction of a called mutation, the repartition of the sequencing reads on both forward

and reverse strands is a random process, and then the proportion of forward (and reverse)

reads follow a Binomial distribution with a mean equals to 0.5 and with a particular unknown

variance.

As discussed in the introduction and as previously reported [60], the strand bias is not

expected to be consistent across the samples and therefore it would not be incorporated

in the background systematic error rate, such as the one estimated by needlestack to filter

out systematic errors in NGS data. Thus, the strand bias should be analyzed separately and

should be considered as a per-mutation variable.

Several measures of strand bias have been proposed, but for deep targeted sequencing
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the common measure is the RVSB [49]. RVSB measure is computed as the following (see

paragraph 1.2.1 for detailed explanations of the formula):

RVSB = max(AO f ∗DPr , AOr ∗DP f )

AO f ∗DPr +AOr ∗DP f

RVSB measures the difference of strand repartition between the mutated sequenced

reads and the total sequenced reads. Figure 3.2 shows multiple measures of RVSB when

these two values are varying.
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Figure 3.2 – RVSB measure depending on the strand repartition of the mutated reads. The RVSB is
computed for multiple values of the strand repartition of the totality of sequenced reads. Strand bias
is equal to 0.5 when the strand repartition is the same for mutated reads compared to all the reads.
Higher the difference of repartition, higher the deviation of RVSB from 0.5.

The filtering step based on RVSB consists in removing each mutation m presenting

RVSBm which validates:

RVSBm > RVSBmax

with RVSBmax being the a priori threshold on the strand bias.
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The fourth filter that we present here is an alteration-level filter. Indeed, we have ob-

served that some alterations tend to re-occur in multiple sample but are not validated when

a second replicate of the same sample is also sequenced, whereas a true mutation is expected

to be detected in both technical replicates. The aim of this filter is to remove a called muta-

tion when it corresponds to a low-confidence alteration in term of sequencing. This does not

mean that these mutations are false but it means that the confidence associated with them

is not sufficiently high to keep them in the analysis. In this case, the best choice should be to

do not consider them.

To deal with such pseudo-systematic errors, not replicated across technical replicates,

we have developed a metric, the Low-Confidence Alteration Probability (LCAP). This part

was the major scientific contribution of our variant filtering methods for deep targeted se-

quencing data in term of development. The LCAP measures the probability that an observed

alteration corresponds to "noisy sequencing". Indeed, if each sample is duplicated, a true

mutation is expected to be detected in both technical replicates. As a true mutation is ex-

pected to be detected in both technical replicates, by negative logical equivalence, a false

mutation is expected to be randomly detected in replicates, an therefore not clustered in

pairs of libraries (when two technical replicates are sequenced). To estimate this random

spreading across samples, we compute the probability that, for a given called alteration, the

observed repartition in pairs can be explained by a random process (null hypothesis).

First, we compute Cp the probability of observing p clusters of pairs when randomly

picking k elements from a total of 2N elements:

Cp =
p−1∏
i=0

(
k −2i

2

)
[
k−p−1∏

j=0
(2N−2 j )]

1

p !k !
(2N

k

)
with in our case k the number of libraries which are positive for the mutation, p the number

of observed pairs of mutations (found in the two technical replicates) and N the number of

samples.

This is analogous to the problem of "socks": Cp corresponds to the probability to obtain

p pairs when picking up k socks in a drawer containing N pairs of socks broken.

LCAP is a p-value, i.e. corresponds the probability that the number of pairs observed
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under the null hypothesis (random picking) would be greater than or equal to the observed

number of pairs, and is computed as follows:

LCAP =
pmax∑

p=pobs

Cp

with pobs the number of paired called mutations (paired in the sense found in the two tech-

nical replicates) and pmax the total number of possible pairs from k entities (independently

of the data).

Finally, when LCAP < pt with pt the p-value threshold, we reject the null hypothesis

and therefore don’t consider it as a low confidence alteration.
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Figure 3.3 – LCAP values computed for k ∈ [1;20] and pobs ∈ [1;4], for a set of 50 pairs of technical
replicates. As an example, the probability to observe at least 2 duplicated entities when drawing 8
entities from a total of 50 pairs (initially duplicated entities) is equals to 0.02. Boxes are colored ac-
cording to the corresponding LCAP value.

The figure 3.3 is showing examples of LCAP values for a set of 50 pairs of technical repli-

cates. The LCAP values are computed for combinations of k ∈ [1;20] (in x-axis, correspond-

ing to the called mutations) and pobs ∈ [1;4].
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Figure 3.4 – Example of our LCAP statistic on two sequenced positions. Dashed lines surrounds tech-
nical duplicates. A: example of a position excluded based on low confidence. Six variants are detected,
only two of them are found in technical replicates of the same sample, which corresponds to a p-value
of 0.13 (>0.05, position is removed). B: example of a position maintained in the analysis. Three vari-
ants are identified and they form one pair, which corresponds to a p-value of 0.03 (<0.05, position is
kept).
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The figure 3.4 shows two examples of our LCAP statistic (with plots from needlestack),

for two independent base changes. The panel A corresponds to an example of a low confi-

dence alteration, and the panel B an example of a confident alteration kept in the analysis.

The fifth and last filter proposed in this part is based on the genomic distance of a mu-

tation from a true DNA variation. A true mutation observed in one sample at a position pt

can create a false mutation in the same sample at a position p f . This false mutation at p f

can be caused by an alignment artifact created by true variations on the same reads that

corresponds to the true mutation at pt [124] [145]. If r denotes the average length of the se-

quencing reads at the position pt , we expect |pt −p f | < r . Errors caused by such alignment

artifacts can be defined as both a pseudo and a non-systematic error.

Such errors created by an alignment artefact can potentially be found in very low pro-

portion of sequenced reads [145], and this proportion is expected to be related to the pro-

portion of the true mutation that is responsible for the alignment artifact.

Let ptm denotes one particular probably true mutation, p f m a particular possibly false

mutation in the same individual and VAFptm and VAFp f m their VAFs, respectively. A called

mutation can be considered as "probably true" based on specific variables, and we propose

to use the VAF variable for this task. Indeed, we propose that a "probably true" mutation

should validate:

VAFptm >= emax

With emax corresponding to a a priori maximum proportion of reads that can correspond to

errors from the NGS experiment.

The first "naive" way to define a possibly false mutation p f m is to consider each called

mutation in the same sample a probably true mutation as defined above.

We can also define more specifically a possibly false mutation p f m: if a corresponds to

the maximum expected alignment error rate, the "possibly false" nature of a called mutation

can be defined validating the following rule:

VAFp f m < VAFptm ∗a
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A last step should be realized once both the set of (i) probably true mutations and (ii)

the set of possibly false mutations are defined (these mutations should be found in the same

sample and should respect the previously described rules). This last step corresponds to the

classification of the possibly false mutations into finally true and false mutations. For this, we

propose to compute for each possibly false mutation the smallest distance with a probably

true mutation, and then filter on this statistic using a pre-defined threshold.

The scripts that implement this variant filtering framework are freely available and main-

tained on the GitHub plateform: https://github.com/IARCbioinfo/target-seq.

3.2.2 Application to ctDNA data

With collaborators, we have conducted a first study published in 2016 [49] (see details on

chapter 4). In this study we were interested in the assessment of TP53 gene variations in

the blood of Small Cell Lung Cancer (SCLC) cases and control samples, as a proxy of the

presence of a tumor. We reported TP53 mutations in the blood of 49% SCLC patients and

11.4% of non-cancer controls (results were replicated in an independent validation cohort).

Following these first results, we were suspicious concerning the fact that non-cancer controls

seem contain TP53 deleterious mutations in the blood, which was not expected given the

actual state-of-the-art. We then decided to conduct a new study on an independent cohort

of SCLC cases and controls (followed by a replication on a validation cohort) with (i) the

addition of the RB1 gene; (ii) and the application of our variant filtering methodology, in

order to increase the potential specificity of the ctDNA as a tumor biomarker.

In this second study, we analyzed two independent cohorts, a discovery cohort and a

replication cohort to validate the results. 253 samples were available for the discovery co-

hort and 172 samples for the validation cohort. Each samples was sequenced in two tech-

nical replicates. The quality control step based on the median coverage computed with the

adapted QC3 tools on the two sequenced genes TP53 and RB1 removed 12 samples from the

discovery cohort and 3 samples from the replication cohort (we required a median cover-

age of at least 1,000X in both the two technical replicates). Finally, a total of 241 discovery

samples and 169 replication samples were analyzed.
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To detect the potential mutations from these data, our needlestack algorithm was launched

on BAM files containing sequencing reads with the IonTorrent Proton sequencer that were

aligned against the human reference genome hg19 with the Torrent Suite Software [2], the

default aligner provided with the sequencing on the IonTorrent Proton sequencer. Read

bases with low sequencing confidence (base quality lower than 13 in Phred-scale) were not

considered. Needlestack was applied independently on each sequencing run to avoid poten-

tial sequencing batch effect. Indeed, we assumed that the SER is not replicable across multi-

ple independent runs, and therefore merging multiple runs can reduce the sensitivity of the

algorithm to detect low VAF mutations that can potentially reach the error rate attributed to

a different run. Needlestack Q-value threshold was set at 50 (default value). Then, the variant

filtering methods described in the part 3.2.1 was applied on called data with needlestack.

Firstly, the samples presenting an unexpected high number of mutations in at least one

of the two technical replicates were removed from the analysis. According to this, a total of 8

samples from the discovery cohort and 2 samples from the replication cohort were defined

as non analyzable. This led to a discovery cohort totalling 50 cases and 183 controls and a

validation cohort totalling 51 cases and 116 controls.

Then, we applied the other filters as the following:

• mutations found in one of the two replicates were not considered

• mutations with a strand bias (RVSB higher than 0.85) in at least one of the two repli-

cates were removed

• alterations with low-confidence were not considered (LCAP>0.05)

• potential variant close to less than 5 base-pairs from a called mutation with a VAF

higher than 10% were removed (MIN_DIST65)

Figure 3.5 is a Venn diagram showing the number of removed mutations according to

the filter applied and the corresponding overlapping between filters. Interestingly, the filter

which removes the higher number of mutation independently from the others is the LCAP

statistic. The major overlap between these filters is the intersection of LCAP statistic and

the replicate requirement, suggesting that majority of non replicated mutations fall in low-

confidence regions.
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Figure 3.5 – Venn diagram presenting the logical relations in the collection of per-filter removed muta-
tions from our ctDNA data (discovery cohort). A given ellipse correspond to a given filter and overlap
between multiple ellipses correspond to commonly removed mutations.
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Figure 3.6 – Repartition of per-filter removed mutations in cases and controls from our ctDNA data
(discovery cohort). The comparison between this repartition and the repartition of sequenced sam-
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pected to be equally present in cases and controls) and not true mutations (expected to be more
present in cases).
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To test the accuracy of our filters in this study, we did not have validation of variants but

nevertheless we have benefited from the availability of the case/control status of each muta-

tions that passed the filtering step. Indeed, the errors should be randomly spread into cases

and controls contrary to the true mutations that are expected to be found more in cases. This

suggests that if a filter removes the errors and not the true mutations, the removed mutations

should be found in the same proportion in cases versus controls than the initial proportion

of cases and control samples. To validate the filters, we then computed the repartition in

cases and controls of the removed mutations for each given filter. To estimate the accuracy

of this filter independently of the others, we considered the mutations removed only by the

filter (Figure 3.6). Fisher exacts test p-value on these repartition was significant (< 0.05) only

for MIN_DIST filter, which is expected: indeed, this filter should remove artifacts created by

true variant which are expected to be more present in cases.

Statistical validation

The global aim of this collaborative study was to developed a non-invasive biomarker based

on the detection of tumor-derived mutations present in blood samples. For this, we used tar-

geted NGS sequencing of both TP53 and RB1 genes from circulating cell-free DNA samples

extracted from plasma. For this, we have developed a coupled laboratory and computational

framework based on a case-control study. Nevertheless, according to our first published

work [49], controls still contains mutations in these genes, which is not a result commonly

demonstrated in the literature.

As we showed previously, errors are not expected to appear randomly across a genomic

sequence (variability of the error rate) but tend to cluster at certain positions. We then

wanted to test if the observed number of mutations in the technical replicates nobs were

in the same order than the number of duplicated mutations nexp if we randomize the library

labels. This would mean that our duplicated mutations can be the consequence of clustering

of errors, that increase the probability to validate them in the two technical duplicates. For

this, we performed a permutation test (randomization of library labels) to get the expected

distribution of the number of mutations (the mean corresponds to nexp ).
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Let S be the set of samples with s the total number of samples. ∀i ∈ S, ni ,l i b1 and ni ,l i b2

denotes respectively the number of mutations in the first and in the second library of the

sample i . We picked randomly ni ,l i b1 and ni ,l i b2 mutations in a urn of size
s∑

i=1
(ni ,l i b1+ni ,l i b2)

containing all the observed mutations. Then we computed pmi denotes the number of du-

plicated mutations (see figure 3.7 for schematic representation of our simulations).
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Figure 3.7 – A: Schematic representation of our permutation test design to estimate the expected
number of duplicated mutations under a random process. This number corresponds to the expected
number of duplicated errors, and can be used to infer the trustability of our final mutations. B: distri-
bution of expected duplicated errors by random using our permutation test.

Finally the number of expected duplicated errors in the data would be defined as the

following:

E =
s∑

i=1
pmi

We repeated these simulations 1,000 times computed the distribution of E, that had an av-

erage of 9 (figure ??). In our study we found a total of 162 duplicated mutations, which is

significantly different from 9 (p-value < 0.001).
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INTRODUCTION

Circulating tumor DNA (ctDNA)  was currently emerging as a new non-invasive biomarker for cancer 

detection and treatment follow up, and its accuracy has been tested across several studies [1], [2]. As a 

potential cancer detection biomarker, ctDNA should both discriminate cancer patients from healthy 

individuals but also should make the distinction between a targeted cancer type and others. Therefore, this 

discrimination power is important to measure to find how accurate its diagnostic ability is. Nevertheless, a 

few studies reported mutations in the cell-free DNA (cfDNA) of controls that would be attributed to the 

presence of a tumor, because of the mutated gene function [3-5]. Interestingly, a recent study also reported 

cancer driver genes mutations in the cfDNA of healthy controls who remained cancer free after a 6 years 

follow-up [6]. 

A part of cancer driver gene mutations would possibly accounted for germline mutations, therefore it 

is important to also consider these type of variations, to remove the potentially false discoveries in term of 

expected tumor derived mutations. This process can be done by using public databases of common germline

genetic variations [7] by can be improved by sequencing the matched white blood cell (WBC) samples to 

also detect non-common germline mutations. 

In addition. cancer driver gene mutations can also be the consequence of clonal hematopoiesis and 

in the case should not be attributed to the presence of a tumor. Thus, extracting DNA from WBC can help 

resolving it by detection the mutations seen in WBC but without a germline origin. 

One particular difficulty in term of methodology when trying to detect mutations in cfDNA is that the 

expected low proportion of such true mutations can reach the level of sequencing artefacts, and then it is 

crucial to precisely estimate the sequencing error rate in order to accurately detect mutations in low 

abundance, i.e. harbouring a low variant allelic fraction (VAF). In addition to the need of a precise variant 

calling algorithm that can detect low VAF mutations, to boost the precision of the mutation detection process 

in reduce the potentially false calls that can fall into control samples and change the overall interpretations of 

the results, a variant filtering step should be added subsequently to the variant calling process. This can be 

done by laboratory processes, such as sequence each sample in independent technical replicates to reduce 



the errors from the library preparation, but this can also be done through statistical analyses. Even if the 

technical replicates of a same sample should reduce false calls, it can be possible that randomly a same 

error is found in the two technical replicates, and then it is important to consider and if possible to evaluate 

the proportion of random duplicated errors expected in the analysed dataset.

An important aspect to consider is the functionality of the detected mutations. Indeed, it is possible 

that mutations found in control samples are not functionally important compared to the one found in cancer 

patient samples. This can be done using a ctDNA score attributed to each sample that take into account the 

deleterious power of its mutations. 

Small cell lung cancer (SCLC) accounts for about 15% of all lung tumors and harbour a very low 5-

year survival, estimated below 5%.  This cancer type is therefore a good candidate for developing a non-

invasive cancer biomarker that can potentially detect cancer in early stages. The genomic architecture of 

SCLC tumors is characterized by recurrent somatic mutations in RB1 and TP53 [8]. We have recently 

conducted a study on the identification of ctDNA TP53 mutations for the early detection of SCLC, and we 

have reported a propotion of positive controls at around 10% (with a validation in an independent cohort). We

were interested in adding the second most mutated gene in SCLC, RB1, which was not reported to by highly 

mutated in other cancer types, in order to increase the specificity or our biomarker.

In this study we combined both laboratory and statistical frameworks in order to evaluate the 

diagnostic accuracy of both TP53 and RB1 mutations in the cfDNA of both SCLC cases and controls, aiming 

at developing a non-invasive biomarker for the detection of SCLC potentially in early stages. For this we 

developed a amplicon-based deep sequencing methodology in order to sequence the TP53 and RB1 genes 

from plasma samples, and a variant filtering methodology subsequently to an ultra-sensitive variant calling 

step with our needlestack algorithm [9] in order to precisely, both in term of sensitivity and specificity, identify 

ctDNA mutations. We tested the accuracy of our biomarker on both TCGA data, in order to estimate the 

capacity to distinguish between SCLC and other cancer types (using tumor data), and on two case-control 

cohorts, in order to estimate the capacity to attribute correctly a case-control status (using cfDNA data).

In spite of difference in prevalence of TP53 (56.9) and RB1 (45.1) mutations among cases (p=0.02), 

a similar proportion of controls with cfDNA mutations was observed for RB1 (17.2) and TP53 (16.4). Adding 

functional score to the mutations did not change this picture. We conclude that presence of mutations among

controls when using genes instead of variant as a targeted sequencing results in limitations. This finding is in

line with TCGA data in which for cancers with low TP53 mutations no privilege was obtained by adding RB1 

data. Also we observed that TP53 alone can discriminate cases from control using scores equal to 

combination of TP53 and RB1.       

MATERIAL AND METHODS

Study population and sample collection in the discovery and validation cohorts

SCLC cases and controls were recruited through two large case-control studies (Bardin-Mikolajczak

et  al.,  2007;  Fernandez-Cuesta  et  al.,  2016;  Wozniak  et  al.,  2015)  coordinated  by  IARC:  the  Russia

multicenter  study conducted between 2006 and  2012 (discovery  cohort)  and  the CEE study  conducted

between 1998 and 2001 (validation cohort). Briefly, each study centre followed an identical protocol and was

responsible for recruiting a consecutive group of newly diagnosed cases of lung cancer and a comparable

group of controls with no known history of cancer. Controls were from the same hospitals or neighboring



general  hospitals  where the cases originated. Cases were recruited before they receive surgery or  any

adjuvant  treatment.  Clinical  staging  of  the  SCLC  cases  was  done  following  recommendations  of  the

International Association for the Study of Lung Cancer (IASLC) (Nicholson et al., 2016). The recruitment

involved collection of smoking history and other epidemiological data, blood samples (10-15 ml in EDTA

tubes) as well as, wherever possible, collection of a surgical resection of the tumors. Blood samples were

centrifuged at 2,000xg for 10 min at room temperature to separate plasma from peripheral blood cells and

stored at –80ºC until use. 

A total of 253 individuals were included in the discovery cohort but only 233 passed sequencing QC

criteria:  median  age  was  61.8  (range  38.0–78.4)  and  65.6  (range  43.1–77.4)  in  SCLC  and  controls,

respectively (Table  1).  Age  did  not  differ  significantly  between  SCLC  cases  and  controls.  Of  the  172

individuals included in the replication cohort, 167 passed all quality control steps. Baseline characteristics of

patients are summarized in Table 1: median age was 58.0 (range 41.0–74.0) and 60.0 (range 38.0–74) in

SCLC and controls, respectively. The most common stage at disease presentation in the study cohorts was

stage III (51%, 50/98); 22.4% (22/98) had stage I-II tumors (clinical stage was unknown in 3 patients). All

participants provided written informed consent and the study complied with the ethical guidelines of the

declaration of Helsinki and was approved by relevant local ethical review committees and the IARC Ethics

Committee.

TCGA data

We retrieved somatic mutations in RB1 and TP53 from the whole genome sequencing of 110 SCLC tumors

[8], and from 10,202 cancer cases other than SCLC available in the TCGA database (33 cohorts), using the

TCGAbiolinks Bioconductor package. Due to the difference in sequencing techniques between the SCLC

dataset and the TCGA dataset (WGS vs WES respectively), we selected mutations located in coding and

splicing regions. Also, as previously shown [11], WES based on different exome capture kits exhibit non-

uniform coverage in several genes, including RB1. Thus, exons recurrently having a mean sequencing depth

<15X across TCGA samples were removed from the analysis. Selected mutations were re-annotated with

ANNOVAR, which allowed us to grade variants on the basis of their putative impact on the gene product.

Extraction of cfDNA and genomic DNA from tumor tissue and WBC

Cell-free DNA was purified from plasma (volumes range 0.4 –1 ml) using the QIAamp Circulating Nucleic

Acid Kit (Qiagen). DNA from microdissected fresh-frozen tumor tissue (10 sections of 20-μm thick with >80%

of tumor cell content) was extracted using the Gentra Puregene Tissue Kit (Qiagen). 

For each cfDNA-positive individual (i.e., patient with at least one mutation identified in their cfDNA),

we also undertaken sequencing analyses of paired WBC DNA to exclude the possibility of somatic WBC

mosaicism and germ line variants as a possible source of  a positive ctDNA finding.  Genomic DNA was

extracted from white blood cells (WBC) using the QIAamp 96 DNA Blood Kits (Qiagen), according to the

manufacturers’ instructions. Extracted DNA samples were quantified using the Qubit dsDNA HS Assay kit

(Invitrogen). 

Primer design and amplification of targets 

A total of 70 primers pairs (49 in RB1 and 21 in TP53) were synthetized commercially by Eurofins Genomics

(Ebersberg, Germany) for a total panel size of 5676 bp to cover the coding regions on RB1 (83%, exon 2–



27) and TP53 (94%, exon 2-11). Prior to undertaking ctDNA analysis, we optimized our multiplex PCR-based

Gene-Read assay (Qiagen) and verified appropriate base coverage of all the target bases for sensitive and

efficient  variant  detection (Supplementary Figure 1).  We next  dispensed 5 ng  cfDNA  in 96-well  format

plates and performed target enrichment using the GeneRead DNAseq Panel PCR Kit V2 (Qiagen). Briefly,

single pool, multiplexed PCR reactions were performed in 10 μL with final concentrations of 30 nM of each

primer,  4.4 U GeneRead HotStarTaq ® DNA Polymerase, 1X of the GeneRead DNAseq Panel 5X PCR

buffer, and DNA template (5 ng). All amplifications were carried as follows: 15 min at 95 °C and 30 cycles of

15 s at 95 °C and 2 min at 60 °C and 10 min at 72 °C. The amplified DNA was then purified using the

Serapure beads, and quantified by Qubit dsDNA HS Assay kit (Invitrogen). 

Library preparation and sequencing

Libraries were constructed using the NEBNext Library Prep Set for Ion Torrent (BioLabs, New England) and

150–200 ng of purified PCR products. The amplicons were ligated to the specific adapters and individual

IonXpressTM barcodes  with  a  subsequent  purification  step  using  the  Serapure  beads.  Adapter-carrying

fragments were further amplified using the Q5 Hot Start High-Fidelity 2X Master Mix. Next, ~ 200 ng of

individual libraries were pooled into batches of 45 samples. An aliquot of each batch was loaded onto a 2%

agarose gel for electrophoresis (150 V, 1.3 h). Fragments of 180–220 bp were recovered from the gel using

the QIAquick gel extraction kit (Qiagen). The quality and quantity of the library were then assessed on the

Bioanalyzer  2100  platform  (Agilent  Technologies,  USA).  Purified  libraries  were  enriched  by  clonal

amplification using emulsion PCR on Ion Sphere particles, with subsequent elimination of non-templated Ion

Sphere Particles beads by magnetic bead purification (Ion PI TM Hi-QTM OT2 200 Kit, Life Technologies Corp.,

USA). Finally, the target-enriched libraries were deep sequenced (sequencing depth > 10,000X) on the Ion

TorrentTM Proton Sequencer using the Ion PI TM Hi-QTM Sequencing 200 Kit with the Ion PI v3 (Thermo Fisher

Scientific, USA) following the manufacturer’s protocol. 

Each DNA sample was tested as technical duplicate, including amplification, library preparation and

sequencing. PCRs and library duplicates were undertaken on physically two distinct 96-well format plates for

each sample to minimize contamination. We only considered variants found in both libraries, to guard against

rare errors specific to a particular library. All operators were blinded to case control status.

Variant detection

Needlestack [9], a recently developed low abundance mutation caller was used to perform the variant calling.

Needlestack  is  based  on  the  idea  that  analyzing  multiple  samples  together  can  help  estimating  the

distribution  of  sequencing  errors  to  accurately  identify  variants  present  in  very  low proportion.  At  each

position and for each candidate mutation, needlestack models sequencing errors using a robust negative

binomial regression [3] with a linear link and a zero intercept. Variants are detected as being outliers from

this error model for the corresponding mutation [Figure 1]. Needlestack calculates for each sample a p-value

for being a variant (i.e. outlier from the regression) and transforms it into a q-value using the Benjamini and

Hochberg method to account for multiple testing and control the false discovery rate.  Q-values are then

transformed into a Phred-scale:  QVAL = - 10 * log10(q-value), and a sample is considered positive for the

mutation if QVAL>50.

Detected mutations were annotated using Annovar [4], and variants with a minor allelic frequency 

(MAF) higher than 0.5% in genetic variant databases [REF] were rejected in order to remove potential 



germline variants. We then applied a stepwise filtering strategy to the variants called in order to boost the 

precision of the mutation detection, and finally retained only validated variants found in the two technical 

duplicates of a sample. Filtering strategy is defined as follows: (1) removing variants in strand bias, i.e., with 

a relative variant strand bias (RVSB) higher than 0.85; (2) filtering out any variants present in the 5 base 

pairs neighborhood of a strong SNV defined by a VAF higher than 10% to correct for misalignments 

(MIN_DIST filter); (3) removing low confidence base change in term of sequencing. A low confidence base 

change satisfied a low confidence alteration probability (LCAP) lower than 0.05 with LCAP defined as 

follows: 
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This  LCAP statistic corresponds to the probability of observing at least  pobs pairs of elements by a

random sampling of k elements from a set of 2N elements (N pairs). In other words, the LCAP statistic can

be defined as the probability that the variants identified in the two technical duplicates are due to a random

sequencing noise, i.e., correspond to a low confidence base change leading to misinterpretations. For these

base changes, evident variants that harbour a VAF higher than 10% were kept.

Statistical validation of technical replicates

To evaluate the filter on technical duplicates, we calculated the expected probability of finding the same

variants  in  two technical  duplicates of  a  particular  sample as a  result  of  random errors (Figure 2).  We

considered only mutations that passed the three other filters in order to into account only the errors that

remain after the filters. For each sample i, we computed the observed total number of mutations in the first

and second libraries, respectively  ni,lib1 and  ni,lib2.  Then, we built a subset of independently and randomly

picked ni,lib1 and ni,lib2 mutations from the complete set of observed mutations across all individuals (Figure 2-

A).  Finally,  we computed  pmi,  the number of  paired mutations in  this  subset  (corresponding to random

replicates, or duplicated errors) appearing in two different samples in order to do not consider true second

replicates (Figure 2-B). This number  pmi corresponds to the expected number of duplicated errors for the

sample  i. We replicated this process 1,000 to take into account potential variability. To compute the total

expected number of duplicated error in our series, we computed the mean over the 1,000 replications of the

sum of all the pmi across the samples (Figure 2-C). 

Score development

First, we attributed to each detected mutation an impact value ranging from 0 to 2 reflecting the deleterious

nature of the mutation: 0.5 for intronic or synonymous variants, 1 + REVEL score for missense variants and 2

for stopgain,  splicing or  frameshift  variants.  A sample-score,  for each gene,  was then computed as the

maximum of the impact values when multiple mutations are called in the same gene of the same sample. A

sample-score of 0 is hence attributed to samples without mutations. These sample-scores computed for

TP53 and RB1 independently were used to build three logistic regression models: (i) a model including the

sample-score of TP53 mutations, (ii) a model including the sample-score of RB1 mutations and (iii) a model

combining the two sample-scores.



For each model we estimated the parameters of the regression on a subset of the data (training). These

learned parameters allow us to compute a per-sample ctDNA genetic score when applied on a validation set

(test). We then estimated the ability of our biomarker to distinguish between cases and controls, using ROC

curves.

For the TCGA data, we performed a five-fold cross-validation to train the three regression models,

predict cases statuses (SCLC vs the other cancer type) and to evaluate the performance of each model. The

mean AUC value across the five folds was computed to assess models performances. To assess if  the

combination of both genes scores (third regression model) is relevant to discriminate SCLC cases, for each

fold we compared the performance of the regression models considering each gene individually to that of the

regression model considering the two genes. The difference was considered as significant if the median p-

value was lower than 0.05.

For the case-control cohorts, we tested the two combinations,  i.e.  first,  we used the cohort 1 to

estimate the regression coefficients and applied them on the cohort 2, then secondly we used the cohort 2 as

a training cohort and the cohort 1 as a validation cohort.

RESULTS

Sample data

Majority of patients in our discovery series were diagnosed at late stage III (56%), and stage I/II consisted

28% of discovery phase patients. (Table 1). The median age was 61.8 years (range 38.0–78.4) in SCLC and

65.6  years  (range  43.1–77.4)  in  controls  (Table  1).  Twenty-three  SCLC  in  this  series  had  previously

assessed,  carrying a total  of  28  TP53 mutations (Fernandez-Cuesta et  al.,  2016),  which allowed us to

evaluate reproducibility of our method.

ctDNA variant detection and exclusion of variants of WBC origin 

We identified 162 variants in 51.5% (120/233) of patients in the discovery cohort, and 125 variants in 44.3%

(74/167) of patients and the validations cohorts. Subsequently, we undertook deep sequencing analyses of

matched WBC DNA in cfDNA-positive individuals to exclude the possibility of somatic WBC mosaicism and

germ line variants as a possible source of a positive ctDNA finding.  These analyses allowed us to removed

variants co-occurring in the cfDNA and the WBC: 11.7% (19/162) and 12.8% (16/125) in the discovery and

validation cohorts, respectively. These mutations were found in 28.6% (18/63) and 18.4% (9/49) of controls,

and 2.5% (2/81) and 11.7% (7/60) in SCLC in the discovery and validation cohorts, respectively. Overall,

24% (27/112) of variants found in non-cancer controls were explained by WBC analysis. These variants

observed in cfDNA were also found in the WBC, either as germ line variants, but also frequently in very low

abundance. We observed that the variant allelic fractions (VAFs) of the variants co-occurring in the cfDNA

and the WBC are highly correlated (Supplementary Figure 1). The challenge faced here is to determine

when a particular mutation is not observed in the WBC if this is due to a true biological absence, or to a lack

of statistical power to detect it. This situation is further complicated given that the allelic fraction expected in

the WBC is unknown, whereas for germ line variants we expect it to be 50% for heterozygotes. We then

extended our approach and  checked for each detected cfDNA variant, if we have the statistical power to

detect this allele in the matched sequenced WBC, given the observed depth coverage and the error rate for

this  particular  base-change  as  inferred  by  Needlestack.  This  analysis  revealed  that  we  were  powered



enough to detect 93.8% (152/162) and 97.6% (122/125) of variants detected in the first and second cohorts,

respectively. Finally, we detected 252 ctDNA variants in in the study cohorts that were included in down-

stream analyses.

Characteristics of ctDNA mutations detected in the study cohorts 

In the discovery cohort, we found 80 variants in SCLC (35 variants in RB1 in 28 patients, including 7 SCLC

with two variants, and 45 variants in TP53 in 35 patients of which 8 had 2 variants and one had 3 variants);

and 63 variants in controls (29 in RB1 from 25 individuals, of which 4 had two variants; and 34 variants in

TP53 from 30  individuals,  of  which  4  had  two  variants).  SCLC patients  had  significantly  higher  VAFs

compared with controls (median 1.06%, range 0.055–80.82% versus median 0.27%, range 0.023–12.63%,

respectively,  P = 3.30 x 10–11, Table 2). We also observed high mutation burden  in SCLC  compared with

controls (1.58 versus 0.34, respectively, P = 3.05 x 10–17, table 2). 

In the validation cohort, 60 variants were found in SCLC: 25 SNVs in RB1 in 23 patients, including 2 with 2

variants versus 35 variants in  TP53 in 29 SCLC, of which 4 had 2 variants and one had 3 variants. In

controls, 49 variants were found: 26 in RB1 from 20 individuals (4 had 2 variants and one had 3 variants) and

23 in TP53 from 19 individuals, including 4 with 2 variants. VAFs were significantly higher in SCLC compared

with controls (median 1.81, range 0.061–73.91 versus median 0.32, range 0.087–5.18, respectively, P = 7.36

x 10–16, table 2). The average number of mutations per sample was higher in SCLC than in controls (1.18

versus 0.42, respectively, P = 9.31 x 10–6, table 2).  Analysing both cohorts together, we found that positive

mutant  RB1 or  TP53 status was significantly associated with early stage SCLC, when comparing patients

with stage I-II disease to healthy individuals (Fisher’s exact test, all  P-values were < 0.0006). VAFs were

significantly higher in stage III-IV tumors compared with stage I-II,  when analyzing  results,  either cohort

individually or both cohorts together (all  P-values were < 0.0001). Similarly, VAFs in  RB1 and  TP53 were

significantly higher in SCLC compared with controls (figure 2C-D).

The proportions of missense, nonsense, indels, or splicing mutations as well as silent mutations

were significantly elevated in SCLC patients compared with controls when analyzing results, either cohort

individually (table 2). In SCLC patients, mutational profiles were dominated by nonsense, indel, or splicing

mutations in RB1 (53.3%) and by missense variants in TP53 (55%), whereas the pattern was quite different

in both genes in controls (figure 2A). Mutational pattern observed in RB1 and TP53 in the cfDNA of SCLC

was similar to that obtained in SCLC tumors in a recent study (George et al., 2015), when considering the

same genomic coordinates covered by our assay (80% versus 63%, respectively,  figure 2A). Given this

particular mutational profile, we compared AFs of missense and truncating variants and found that  TP53-

mutated SCLC with missense variants had significantly higher AFs compared with  RB1-mutated SCLC or

controls  carrying missense variants  (P  < 0.05).  Similarly,  RB1-mutated SCLC with  nonsense,  indels,  or

splicing mutations had significantly higher AFs compared to TP53-mutated SCLC or controls (P < 0.05; figure

2E & 2F).

ctDNA detection rates in RB1 and TP53 in the study cohorts

In  the discovery cohort,  the ctDNA detection rate  was 84% (42/50)  in  SCLC versus 27.3% (50/183) in

controls. In stage I-II tumors, the ctDNA detection rate was 85.7% (12/14) versus 85.7% (30/35) in stage III-

IV tumors. At gene-level analyses, we identified circulating RB1 and TP53 mutations in 56% (28/50) and 70%

(35/50) of SCLC cases versus 13.7% (25/183) and 16.4% (30/183) in healthy controls, respectively. RB1 co-



altered with TP53 in 40% (20/50) of SCLC versus 3.3% (6/183) in controls. 

In the validation cohort ctDNA positivity was 66.7% (34/51) in SCLC and 29.3% (34/116) in controls.

The detection rate was 62.5% (5/8) in stage I-II tumors versus 70.7% (29/41) for stage III-IV tumors. At gene-

level,  RB1 and  TP53 variants were detected in  45.1% (23/51) and 56.9% (29/51) of SCLC versus 17.2%

(20/116) and 16.4% (19/116)  healthy controls, respectively.  RB1 co-altered with  TP53 in 33.3% (17/51) of

SCLC versus 4.3% (5/116) in controls. 

In ctDNA positive patients, sensitivities ranged from 45 to 56% in RB1 and 57 to 70% in TP53. These

proportions matched those reported in  the current  study by Almodovar and colleagues (52% and 70%,

respectively) (Almodovar et al., 2018). The proportion of SCLC with TP53 mutations in this study is higher

than in our previous study, whereas the fractions of controls with  TP53 variants were comparable across

study cohorts (Fernandez-Cuesta et al., 2016).

Observed replicated variant are not random errors

The total expected number of duplicated errors across the first cohort was estimated as 9.6 mutations in

average across our 1.000 replications, i.e. we expect around 10 errors being duplicated by randomness that

would be considered as true mutations.  In this first  cohort,  we have detected a total  of  162 duplicated

variants, suggesting that this finding should not be a result of randomly replicated errors (p-value < 10-3,

figure 3-C). 

Variant filtering strategy

We applied a total of four filters in the initial set of candidate mutations, (i) strand bias filter, (ii) MIN_DIST

filter, (iii) LCAP filter and (iv) technical duplicate requirement. We show with a Venn diagram (figure 4-A) the

concordance  of  removed  mutations  given  the  previously  described  filters,  and  reported  the  maximum

concordance for the pair of  replicates and LCAP filters, which is expected due to the fact that LCAP statistic

is based on the validation of the mutations in the technical replicate. Technical replicates can be used as a

sort of validation of the other filters, because errors are not expected to be validated in the replicate, as we

shown in the last paragraph. We also show that the repartition of the filtered mutations across case and

control samples corresponds to to the case-control initial repartition of the samples (figure 4-B), suggesting

that filtered mutations are randomly distributed across samples, which is expected if our filters remove errors.

Nevertheless, our MIN_DIST filter is related to the presence of true high VAF variant, and so true errors

removed by this filter should be more present in cases, as we show (figure 4-B).

Score on TCGA

We first compared the occurrence of TP53 and RB1 mutations in 110 SCLC tumors (George et al., 2015) to

33 other cancer types available in the TCGA database (figure 5).  SCLC had the highest proportion (66%) of

patients carrying concurrent mutations in TP53 and RB1, which was significantly different than in the other

TCGA cancer types (Fisher’s test: all p-values < 10–13). Of the 33 cohorts, only the bladder cancer (BLCA)

cohort presented concurrent mutations in both genes in more than 10% of the cases (figure 4). Overall, our

data confirm that occurrence of concurrent mutations in  TP53 and  RB1 genes is less frequent in cancer

types other than SCLC.

We applied the three logistic regression models based on  TP53 and  RB1 mutations scores (see

Score development method) in order to asses the utility of TP53 and RB1 to distinguish SCLC cases from



other cancer types. AUCs ranged from 0.84 to 0.98, 0.48 to 0.96, and 0.79 to 0.88 for the regression models

based on both TP53 and RB1,  TP53 only and RB1 only respectively (figure 5). To distinguish SCLC from

cancer types showing high proportions of patients having TP53 mutations (e.g., UCS, OV, ESCA, LUSC), the

performance of the two genes does not significantly differ from that of RB1 alone, signifying that RB1 alone

might be sufficient rather than the combination (figure 5). Conversely, to distinguish SCLC from cancer types

showing low proportions of patients having TP53 mutations (e.g., UVM, TGCT, THCA), including only TP53

in the model seems to be sufficient (figure 5). However, discriminating SCLC from cancer types such as

BLCA, SKCM, LIHC, BRCA, UCEC and GBM requires the use of the two genes. 

Score on the case-control cohorts

We evaluate our ctDNA genetic score our two independent case-control cohorts (dataset 1 and dataset 2),

by computing the AUC of the ROC curves for our three models (TP53, RB1, and the combination of the two

genes)  and  for  a  model  without  our  ctDNA score  (taking  into  account  only  presence  or  absence  of

mutations). We were interested in testing the effect in the AUC of the addition of RB1 gene compared to the

TP53 gene. For this, we took as a reference the  TP53  model, and compared it with the other models by

computing p-values comparing the AUCs of the models. We showed that adding the mutations of the RB1

gene in our biomarker is significantly better than sequenced only TP53 when the second cohort is used as a

training cohort and the first as the validation cohort (table 3). If we reverse the cohorts, this finding is not

significant, suggesting high instability of the results.

CONCLUSION

In spite of difference in prevalence of TP53 (56.9) and RB1 (45.1) mutations among cases (p=0.02), a similar

proportion of controls with cfDNA mutations was observed for RB1 (17.2) and TP53 (16.4). Adding functional

score to the mutations did not change this picture. We conclude that presence of mutations among controls

when using genes instead of variant as a targeted sequencing results in limitations. This finding is in line with

TCGA data in which for cancers with low TP53 mutations no privilege was obtained by adding RB1 data.

Also we observed that TP53 alone can discriminate cases from control using scores equal to combination of

TP53 and RB1.  
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Table 1:

First set Second set

Cases (N=50) Controls (N=183) Cases (N=51) Controls (N=116)

Age at diagnosis, years 
Median (range) 61.8 (38.0–78.4) 65.6 (43.1–77.4) 58.0 (41.0–74.0) 60.0 (38.0–74.0)

Sex, N (%)
Male 40 (80.0%) 150 (82.0%) 34 (66.7%) 78 (67.2%)
Female 10 (20.0%) 33 (18.0%) 17 (33.3%) 38 (32.8%)

Smoking status, N (%)
Never Smoker 5 (10.0) 55 (30.0%) 1 (2.0) 44 (37.9%)
Ex-smoker 5 (10.0) 54 (29.5%) 7 (13.7%) 42 (36.2%)
Current smoker 40 (80.0%) 71 (38.8%) 43 (84.3%) 30 (25.9%)
Unknown 0 (0.0%) 3 (1.6%) – –

Pack years
Median (range) 36.75 (0–100) 16.98 (0–51.6) 32.5 (0–83.0) 10.0 (0–58.3)

Alcohol status, N (%)
Never drinker 26 (52.0%) 63 (34.4%) – –
Ex-drinker 5 (10.0%) 27 (14.8%) 46 (90.2%) 104 (89.7%)
Current drinker 19 (38.0%) 93 (50.8%) 5 (9.8%) 12 (10.3%)

Tumor stage, N (%)
I 7 (14.0%) – 3 (5.9%) –
II 7 (14.0%) – 5 (9.8%) –
III 28 (56.0%) – 22 (43.1%) –
IV 7 (14.0%) – 19 (37.3%) –
Unknown 1 (2.0%) – 2 (3.9%) –

TP53 and RB1 status
TP53+, RB1- 15 (30) 23 (12.6) 12 (23.5) 14 (12.1)
TP53-, RB1+ 7 (14) 19 (10.4) 6 (11.8) 15 (12.9)
TP53+ OR RB1+ 42 (84) 48 (26.2) 35 (68.6) 34 (29.3)
TP53+ & RB1+ 20 (40) 6 (3.3) 17 (33.3) 5 (4.3)
TP53 and RB1 score mean
(SD)
TP53 score 1.2 (0.9) 0.18 (0.46) 1.0 (0.9) 0.21 (0.5)
RB1 score 0.9 (0.9) 0.18 (0.49) 0.7 (0.9) 0.22 (0.5)

Table 2:
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Discovery cohort Replication cohort

Cases (N=50) Controls (N=183) Cases (N=51) Controls (N=116)

Age at diagnosis, years 
Median (range) 61.8 (38.0–78.4) 65.6 (43.1–77.4) 58.0 (41.0–74.0) 60.0 (38.0–74.0)

Sex, N (%)
Male 40 (80.0%) 150 (82.0%) 34 (66.7%) 78 (67.2%)
Female 10 (20.0%) 33 (18.0%) 17 (33.3%) 38 (32.8%)

Smoking status, N (%)
Never Smoker 5 (10.0) 55 (30.0%) 1 (2.0) 44 (37.9%)
Ex-smoker 5 (10.0) 54 (29.5%) 7 (13.7%) 42 (36.2%)
Current smoker 40 (80.0%) 71 (38.8%) 43 (84.3%) 30 (25.9%)
Unknown 0 (0.0%) 3 (1.6%) – –

Pack years
Median (range) 36.75 (0–100) 16.98 (0–51.6) 32.5 (0–83.0) 10.0 (0–58.3)

Alcohol status, N (%)
Never drinker 26 (52.0%) 63 (34.4%) – –
Ex-drinker 5 (10.0%) 27 (14.8%) 46 (90.2%) 104 (89.7%)
Current drinker 19 (38.0%) 93 (50.8%) 5 (9.8%) 12 (10.3%)

Tumor stage, N (%)
I 7 (14.0%) – 3 (5.9%) –
II 7 (14.0%) – 5 (9.8%) –
III 28 (56.0%) – 22 (43.1%) –
IV 7 (14.0%) – 19 (37.3%) –
Unknown 1 (2.0%) – 2 (3.9%) –

Table 3:

database1 as training set database2 as training set

AUC(95%CI)
no score

P-
value

AUC(95%CI)-
with score

P-
value

AUC(95%CI)
no score

P-
value

AUC(95%CI)
with score

P-
value

N 167 167 233 233

TP53 0.70 (0.62 -
0.78)

Refere
nt

0.73 (0.65 -
0.81)

Refere
nt

0.77 (0.70-
0.84)

Refere
nt

0.79 (0.72 -
0.88)

Refere
nt

RB1 0.64 (0.56 -
0.72)

0.65 (0.57 -
0.73)

0.08 0.70 (0.63-
0.77)

0.16 0.72 (0.64 -
0.80)

0.12

β1(TP53) 
+β2(RB1)+α

0.69 (0.62 -
0.77)

0.83 0.76 (0.67 -
0.84)

0.31 0.79 (0.61 -
0.75)

0.51 0.85 (0.78 -
0.91)

0.01

*set area for 1-specif city at 0.3, adjusted for co-variables (number of mutations: 0, 1, >1; smoking status: never, Ex, current)
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3.2.4 Variant filtering for germline data

As a second variant filtering methodology, we were interested in the filtering of false calls

from germline variant calling with needlestack on normal samples. In this part, we bene-

fit from the availability of validated data as a gold standard set to use a machine learning

model as a variant filtering method. Indeed, as explained in the introduction, variant fil-

tering methods based on machine learning model are extremely robust and powerful but

they need labelled data to be trained, and such data were available only for our project on

germline variant calling (see annexes for details on this project).

The main idea of the methodology developed in this part is to use machine learning

to predict false positive or true positive status of called mutations, using known status of

mutations called from the same conditions (i.e. same variant caller needlestack, same se-

quencing technology, same coverage). As described in the introduction, the methodology is

divided into the following steps:

• Definition of a set of known entities E: these would be the known mutations, with a

known status st defined as false positive or true positive.

• Definition of a set of statistical features F: these would be features from both variant

caller and sequencing machine. The difficult task is to find features with importance

in the mutation status, i.e. features that can separate true and false called mutations.

• For each known entities e ∈ E and each feature f ∈ F, computation of fe , the value of

the feature for the entity

• Training of a machine-learning model (e.g a random forest)

• For each unknown entities e ′ ∈ E’ and each feature f ∈ F, computation of fe ′

• Application of the trained model on each e ′: this steps applies the trained random

forest algorithm on the unknown mutation data frame. Once the model is trained and

applied, it is possible to evalutate its accuracy based on known data using a k-fold

cross validation. This consists in training the model on (1−k)% of the data, applying

it on the k% remaining data, and finally repeating this process k times to compute the

predicted status of each entity one time. Because the true status is known, this method

enables the estimation of model accuracy.
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Application

The development of this machine learning approach for germline variant filtering was in-

tegrated into a genetic susceptibility project based on rare variants. The global aim of this

project is to identify new susceptibility genes from a list of candidate genes. This project was

motivated by the potential of using genetic susceptibility information in the context of early

cancer detection. A set of 86 potential susceptibility genes was available, and we sequenced

these genes in two series of cases and controls in order to perform an association analysis

using a burden test.

Available data

Two types of data were used: known data E to train the random forest model and target data

E′ on which the trained random forest model would be applied in the aim at predicting their

false positive or true positive status.

In this second part of this project, a first serie of 432 cases and 432 controls were se-

quenced on IonTorrent Proton sequencer on the 86 candidate genes. Among these samples,

55 (set of samples S) were independently sequenced in WES on an independent sequencing

machine (Illumina HiSeq). Let Is refers to the set of Illumina WES mutations of the sample

s ∈ S. From these 55 samples, a total of N = 11,234 mutations were called using relaxed fil-

ters from the sequencing of the 83 genes on IonTorrent Proton, which corresponds to 204

mutations per sample in average (given expectations, this set should contains a lot of false

positives). These 11,234 mutations forms the set E of known mutations. To decide the status

of these mutations (true positive TP, false positive FP or non available status NA), we used

the following rules:

• ∀ei ∈ E, if ei ∈ Is then the status of the mutation stei = TP

• else, if AO(ei ,Is )> AOthr with AOthr = 5 then stei = FP

• else, stei = NA

The false positive status is attributed to a mutation found in the IonTorrent Proton se-

quencing at a position sufficiently covered in the Illumina sequencing to consider that if the
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mutation is truly present in the sample, it would have been detected. For this we computed

the expected minimum number of alternative reads corresponding to the mutation if present

in the Illumina sequencing as the following:

AO(ei ,Is ) = q0.01[NB(µ= 0.5∗DP(ei ,Is ),σ= 0.1)]

which corresponds to the 99th percentile of a negative binomial distribution assuming an

expected VAF at 50%. If the expected minimum number of alternative reads in the Illumina

sequencing is higher than 5, we decided that the mutations found in the IonTorrent Proton

sequencing is a false positive. Finally, the set of known mutation E contains a total of respec-

tively 594 and 49 truly called SNV and indels, and respectively 8078 and 2513 falsely called

SNV and indels.

In this first serie, each mutation found in a sample not sequenced in the independent

Illumina WES is considered as an unknown mutation e ′
i ∈ E′.

In addition, to this first serie, a second serie of 576 cases and 579 controls has been

sequenced in the IonTorrent Proton machine on the same genes. Nevertheless, average cov-

erage in this second serie was different than average coverage in the first serie containing

the gold standard known mutations. In order to maintain the random forest accuracy (cov-

erages are variable between training data set and target data set), we downsampled the 55

replicated samples from the first serie to obtain a range of coverages similar to the second

serie. We computed the ratio of median coverages between these 55 samples and the sam-

ples sequenced in the second serie. This ratio was estimated as 0.6, we then downsampled

the first serie 55 samples at a rate of 60%.

Random forest algorithm

A random forest algorithm was used to build a machine learning model on the true and false

positive status of called mutations. The random forest is a supervised learning algorithm, in

the sense that it knows a priori the categories of the input entities, in our case false or true

called mutations. By analogy to real life, a random forest is a mathematical object composed

of a number T of trees. Each tree t ∈ T in the random forest is a decision tree, i.e. a math-
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ematical object proposing a decision when it observes a set of data. The number of trees

T is chosen a priori, and the random forest randomly subsets T times the data to create T

decision trees. We propose to require N = 500 trees in the forest. We have used the R package

randomForest [89] which subsets by default |F|
3 features to compute each tree. Due to the

fact that the random forest algorithm is sensitive to unbalanced data and has a tendency to

be biased for the class predominantly represented in the data used to train the model, we

propose to re-equilibrate the classes when training the model, i.e. subset the major class to

obtain equal size of false and true positives when computing the trees in the forest.

Once the model is built by training the algorithm and input dataset with known class

for each entities (in our case class is the false or true positive status and entities are called

mutations for which we have computed the status), the method is applied on unknown sta-

tus data. In this step, each unknown entity would pass into each tree in the forest that give

one particular decision i.e. which class the entities is more likely to belong. At the end, for

each entity e ′ and class c ∈ [TP,FP], the probability of belonging to the class is computed as

the following:

PTP(e ′) = |tTP(e ′)|
T

PFP(e ′) = |tFP(e ′)|
T

with |tx(e ′)| the number of trees that decided to attribute the class x to the entity e ′.

Figure 3.8 gives an overview of the architecture of the random forest algorithm, more

precisely it shows how does the random forest choose the predicting class. However, by de-

fault the random forest returns directly the predicted class, but it is also possible to require

the class probability for each class and then a posteriori choose the probability threshold to

choose the class, which is by default 0.5.

Training and application of the model on our germline data

The first step to train such a model consists in the definition of the model features f ∈ F. The

following table describes the features used:
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Table 3.1 – Details of features used to train the random forest model

STATISTIC DESCRIPTION RATIONAL
AF Variant allelic fraction (AO/DP) errors are not abundant
AO Alternative Observation count errors should not be replicated in

a lot of reads
DP sequencing Depth low coverages can corresponds to

individual sequencing issues
QVAL Q-value, main statistic from

needlestack
errors should harbor a low QVAL

FS Fisher exact test statistic errors can be in strand bias
RVSB Relative Variant Strand Bias errors can be in strand bias
MIN_DIST minimum distance with a variant

with a VAF 10 times higher
to detect alignment artefacts

QUAL variant quality score (max QVAL) low maximum QVAL can corre-
sponds to errors

ERR error rate estimated by
needlestack

high error rate can generate signif-
icant QVAL for errors

medianDP median coverage at the position unexpected low or high median
coverages can corresponds to
global sequencing issues

maxRatioWin maximum ratio of VAF in a win-
dow of 100bp

multiple low VAF can corresponds
to sequencing issues

nbVarWin number of variant in a window of
100bp

to detect alignment artefacts

IoD index of model deviance (normal-
ized variance)

to detect low goodness of fit of our
model of errors

HpLength size of the homopolymer region high-length homopolymer can
create errors

N_QVAL_INV_20_50 number of QVAL between 20 and
50

to detect low confidence alter-
ations in term of sequencing
(comparable to LCAP)
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Figure 3.8 – General representation of the random forest algorithm from [? ]. x is representing the
unknown entity (denoted by e ′ in our methods) for which the class (or status) should be decided. k is
representing the winner class, i.e. TP if PTP(e ′) > PFP(e ′) and FP if PFP(e ′) > PTP(e ′).

The first seven features are variant-level features whereas other ones are alteration-level

features. To evaluate the distribution of these variables across known true and false positive

called mutations (denoted respectively TP and FP), figure 3.9 is representing the values of the

VAF, the RVSB and the Q-value for known mutations depending on the status. These plots

illustrates the difficulty to determine hard-thresholds which would corresponds to lines on

each axis of the plots to efficiently separate true and false calls. Most advanced methods

such as machine learning approaches estimate possibly non-linear boundaries to correctly

classify unknown entities.

As mentioned previously, we used the R package randomForest from [89] to train our

model based on these features, requiring T = 500 trees in the forest and balancing the data by

subsetting the major class (FP in our case). To test the ability of our model to class unknown

status mutations, we used a k-fold cross validation strategy and then computed a Recall-

Precision curve to estimate the global performance of the method. Indeed, using a k-fold

method, each entity of the known data would have a predicted status, and this prediction

can be then confronted with the truth to compute a Recall-Precision curve.

Figure 3.10 corresponds to the computed Recall-Precision curve based on a k-fold cross
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Figure 3.9 – Paired representation of false and true called mutations for three variant statistics: the
VAF, the RVSB and the Q-value. Each dot corresponds to a mutation with a known status. Mutations
are colored according to their status, false positives are shown in red and true positives are shown in
green. Regular boundaries on this three variables can not separate the set of true mutations from the
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validation with k = 10 launched on the previously described known data. Performance re-

sults are shown for SNV due to reduced size of data in case of indels. In this study, SNV and

indels were treated independently to train and apply the models. The cross in the plot cor-

responds to the measure of sensitivity and false discovery rate if hard-thresholds on VAF,

coverage, RVSB and error rate were used (thresholds are shown in the figure) instead of ma-

chine learning. We were particularly interested in estimating if the random forest performs

better than the hard-threshold that we used to apply. With a fixed false discovery rate at 2%,

the gain of sensitivity of the random forest filtering is around 4% (adding around 20 true vari-

ants), and with a fixed sensitivity at 95%, the reduction of false discovery rate is around 1.3%

(removing of around 100 false variants).

We had also the opportunity to validate our results on 28 samples that were sequenced

twice. Using a threshold of probability at 0.5, i.e. for each tested mutations e ′, if PFP(e ′) >
0.5 then e ′ would be considered as a false mutation otherwise it would be considered as

a true mutation. Following this classification, we have computed the concordance of rare

germline mutations (with a population frequency lower than 10%, which lead to a total of

367 mutations) which was estimated as 98%.

3.3 Discussion

In this section we proposed two methodologies to efficiently filter variants as a subsequent

step following variant calling with needlestack, our variant caller presented in the chapter 2.

The first method is based on hard filtering on variant statistics for deep targeted sequenc-

ing data. The second method is based on a random forest algorithm for germline targeted

sequencing data. Both methods have been developed based on data sequenced on a IonTor-

rent Proton sequencing machine. Nevertheless, the statistical variables used in the compu-

tation are not dependent on the sequencing technology, and therefore our methods can be

easily used for other types of data.

In a first part we introduced a methodology to efficiently filter potentially false variants

using pre-defined variant statistics. When computing the overlap of per-filter removed mu-

tations (figure 3.5), we observed that our filtering based on our LCAP statistic and the tech-
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nical replicates filter were extremely correlated. We were therefore interested in estimating

the necessity of the duplicated libraries requirement, which is the only filter that increases

a lot the cost of the experiment (it multiplies this cost by two). Because the LCAP statistic is

based on the observed number of replicated mutations, the technical replication of samples

is needed to compute this statistic. Nevertheless, if the LCAP statistic is consistent across

multiple sequencing runs to identify low confidence alterations, using an LCAP "catalogue"

built with estimations of the statistic would be a possible solution to do not require a dupli-

cate sequencing. To estimate if such a catalogue can be built, we computed the percentage

of LCAP values that are higher than 0.05 (i.e. proportion of low confidence alterations) in

different proportions of runs p (Figure 3.11).
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Figure 3.11 – Proportion of alterations (total is equal to 8317) that are identified as low confident (y-
axis) in p% of sequencing runs. Computations were realized using six independent sequencing runs
of TP53 and RB1 genes. As an example, the left-most dot indicates that 60% of alterations with an
LCAP value lower than 0.05% only in one of the six runs (corresponding to 17% of the runs). This plot
shows no evidence of LCAP consistency across multiple runs.

According to the Figure 3.11, only 10% of the alterations are consistently predicted as

non-confident (i.e with a LCAP higher than 0.05) in at least half of sequencing runs and 2%

are non-confident for all the runs. These results means the the LCAP statistic is not consis-

tent across multiple runs. Therefore, a catalogue of LCAP value would not be informative.

The variations of the LCAP can be due notably to the different numbers of sequenced sam-

111



CHAPTER 3. DEALING WITH PSEUDO AND NON-SYSTEMATIC ERRORS:
VARIANT FILTERING METHODOLOGIES

ples between two runs, that can change the precision of the estimation of the statistic. In

addition, the presence of a true mutation, detected in the two technical replicates, can also

modify the LCAP statistic.

In this study we proposed the MIN_DIST variant statistic to identify low abundance

alignment artefact created by a true variant. Recently, multiple re-alignment algorithms

based on local assembly of small regions have been proposed to deal with alignment arte-

facts (see introduction). A possible perspective to estimate both the need and accuracy of our

MIN_DIST statistic would be to test the accordance of removed mutations between filtering

using this statistic and using re-assembly methods that commonly present the drawback of

a long computation time.

A variant filtering approach that can reduce significantly the amount of false calls can

have multiple applications, in particular it can be applied on ctDNA data in order to devel-

oped cancer biomarkers. Indeed, in such a case, the detection of very low VAF mutations

is crucial, because tumor-derived mutation in body fluids such as plasma or urine are ex-

pected to be found in very low abundance. We have then applied our method on ctDNA data

(the development of the biomarker in this study is presented in the next chapter). To test

the accuracy of our variant filtering method on this data, we have performed permutation

tests. For this, we have estimated the expected number of false mutations due to random

attribution of errors in two technical replicates as 9. These false mutations are expected to

be randomly distributed across cases and controls, and this would lead to 2 false mutations

in cases and 7 false mutations in controls, corresponding to a false discovery rate of 3.8%.

Nevertheless, a possibility to totally erase these potential false discoveries would be to in-

crease the number of replicates for each sequenced sample and then adapt our simulations

to compute the corresponding expected false discovery rate (see [34] where they sequenced

7 replicates).

We have also presented a smart variant filtering method based on machine learning al-

gorithms. Because machine learning models require feature similarities between training

and target datasets to perform correctly, trained models are not necessarily accurate for all

types of data and it should be necessary to re-train a model for data presenting features dif-
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ferently distributed than the ones used to train the model. Current classification algorithms

are based on supervised learning, i.e. the models are trained on data with known labels. This

requires the availability of validated data as a gold standard. As an example, in our study, we

benefit from the concordance of datasets from two independent sequencing technologies to

build a gold standard set of germline mutations used to trained our random forest algorithm.

But gold standard data are not available for all types of mutations. Currently, the most widely

used "truth" datasets are the Genome In A Bottle [149] and Platinium Genome [44] datasets

which record genome variations of the human sample HG001 (NA12878). These consortia

provide both a set of high-quality variants (used to assess sensitivity) and a set of confident

regions to supply in addition position that does not present any variation (used to assess

specificity). More recently, the Broad Institute of Harvard have provided a new gold standard

dataset to deal with non "easy" variations contrary to the previously exposed datasets, called

SynDip for "synthetic diploid" dataset [87]. Somatic truth data sets are quite less common.

At the moment, majority of available truth somatic data sets come from somatic mutation

detection competitions such as the PrecisionFDA or the ICGC-DREAM challenge. Neverthe-

less, these gold standard data sets are generated in-silico and are less accurate than the cur-

rent germline sets. The germline and somatic gold standard datasets presented previously

can therefore be used to train our machine learning model in case of other types of data

e.g. data from other sequencing technology. Nevertheless, our method presents two major

limitations. Firstly, it is important to remember that machine learning models require a suf-

ficiently high size of data to be efficiently trained, and therefore using only a few samples to

train the model should be suitable only for high number of sequenced positions. Secondly,

because needlestack is a multi-sample variant caller, it can not analyze a sample alone. The

only case where training of our model on one of these gold standard samples would be effi-

cient is when data that need to be filtered are sequenced and analyzed in the same way than

the gold standard sample used to train the model.

Finally, we did not tested the effect of different alignment tool on the accuracy of our

variant filtering methodologies. Indeed, it is expected that using a different alignment al-

gorithm on the same data can impact the mutation detection both through different vari-
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ant calling and variant filtering results, notably when using a realigner based on local re-

assembly, due to the divergent nature of the algorithm compared to traditional aligners. As a

perspective, it could be interesting to test the impact of the alignment on the variant filtering

results to test the accuracy of the filters in the presence of other aligners.
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4.1 Scientific context

DNA from tumor cells accounts for a small fraction of cfDNA, the DNA found in body liquids,

such as in blood samples or urine samples, as a result of cell death and cell secretion [37].

ctDNA is currently emerging as a potential non-invasive biomarker of the tumor. It can be

used in multiple areas such as cancer surveillance and also response to therapies. Recently, it

has also been reported that ctDNA can be used as an cancer detection biomarker in order to

reduce the mortality associated with cancer (see introduction chapter 1). More importantly,

ctDNA can be used for early cancer detection, i.e., for detecting cancer in early stages, before

the apparition of symptoms that can be clinically identified by CT-scan, and that the pro-

portion of tumor-derived DNA over the total amount of cfDNA is correlated with the stage of

the tumor [19], [3]. This also means that using ctDNA as a cancer detection biomarker and

potentially as an early cancer detection biomarker would requires a high sensitivity to detect

mutations in low abundance. In addition, as it is required when developing a biomarker, and

also because cancer does not have a high prevalence in the general population, it is impor-

tant to obtain a good sensitivity but also a good specificity when identifying such mutations.

In the case of early detection biomarker development, while sensitivity can be increased

with a variant caller that can detect very low VAF such as needlestack, a high specificity can

be achieved by selecting DNA positions or genes that are expected to be highly mutated in

cancer cases and not in non-cancer individuals. In this chapter, we present four distinct ap-

plications of our needlestack algorithm to detect mutations in plasma cfDNA samples of can-

cer cases at multiple stages in order to estimate the possibility to use the ctDNA as a cancer

biomarker, and even potentially as an early cancer biomarker. The first study estimates the

accuracy of using KRAS mutations from blood samples to identify pancreatic cancer cases

(particularly codons 12, 13 and 61 that are highly mutated in this cancer type). The second

study described the UroMuTERT assay based on the detection of TERT promoter mutations

in order to detect urothelial cancer patients from blood and urine samples. The two last

studies describe the usage of both (i) TP53 mutations, (ii) and the combination of TP53 and

RB1 mutations in order to detect SCLC patients.
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4.2 Scientific contribution A

In this study we were interested in the detection of KRAS mutations in plasma circulating

cfDNA of pancreatic cancer patient, using a case-control cohort. Pancreatic cancer harbour

one the poorest 5-year survival of all types of cancer (around 6%) in Europe, and, in addi-

tion, around 80% of patients die within a year following diagnostic [116]. It is then critical

to detect earlier these types of cancer, and a promising non-invasive biomarker of the tumor

is the ctDNA. A good candidate as a tumor-footprint potentially reachable in the cfDNA of

pancreatic cancer samples would be the KRAS mutations, as the KRAS gene is mutated in the

majority of pancreatic ductal adenocarcinomas (accounting for 90% of the pancreatic can-

cers) [139]. In addition, KRAS is known to present the earliest genetic alterations that drive

pancreatic cancer [70].

We applied a KRAS amplicon-based deep sequencing approach (IonTorrent Proton se-

quencing technology) followed by our needlestack variant calling in order to detect cfDNA

mutations in plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis sub-

jects, and 394 healthy controls. We found mutations in around 4% of non-pancreatic cancer

individuals (healthy individuals or subjects with chronic pancreatitis), and in 21.1% of cases.

89.1% of these positive cases carried at least one mutation at codons 12, 13 or 61. Indeed,

as previsously reported, these codons are expected to be highly mutated in the tumors of

pancreatic cancer cases [138]. Reported VAF of case ctDNA mutations ranging from 0.08%

to 79%, highlighting the fact that needlestack can detect very low VAF. Finally, we detected

ctDNA mutations in 34% of advanced stages and in 10% of early stages, suggesting that (i)

the limitation in sensitivity can be partially attributable to the biology of the tumor; (ii) and

it is possible to find tumor footprints in the cfDNA of early stage pancreatic cancer patients,

that can support the usage of ctDNA as an early cancer biomarker. Nevertheless, this would

require an increased specificity.

4.2.1 Article C
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ABSTRACT

The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) 
samples as non-invasive biomarkers for the detection of pancreatic cancer has never 
been evaluated in a large case-control series. We applied a KRAS amplicon-based 
deep sequencing strategy combined with analytical pipeline specifically designed 
for the detection of low-abundance mutations to screen plasma samples of 437 
pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. 
We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at 
least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 
0.08% to 79%. Advanced stages were associated with an increased proportion of 
detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of 
cases with local, regional and systemic stages, respectively. We also detected KRAS 
cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects 
with chronic pancreatitis, but at significantly lower allelic fractions than in cases. 
Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of 
case-control samples did not improve the overall performance of the biomarkers as 
compared to CA19-9 alone. Whether the limited sensitivity and specificity observed 
in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer 
detection are attributable to methodological limitations or to the biology of cfDNA 
should be further assessed in large case-control series.

INTRODUCTION

The latest estimates show that more than 330,000 
cases of pancreatic cancer are diagnosed yearly 
worldwide, and approximately the same number of deaths 
are attributed to the disease (GLOBOCAN 2012 website: 
http://globocan.iarc.fr/, accessed on 9 Feb 2015). Disease 
survival is among the poorest of all cancers with 5-year 
survival at only 6 % in Europe and ~79 % of patients 

dying within a year following diagnosis [1, 2]. Improved 
survival is observed in patients that undergo surgical 
resection, but this therapeutic option is limited to cases 
with localized tumors [3]. Early detection has therefore the 
potential to reduce the mortality associated with pancreatic 
cancer. Endoscopic ultrasound has shown good sensibility 
and specificity to detect precancerous and cancerous 
lesions but this invasive technique has limited use for early 
detection in asymptomatic individuals [4]. Blood level of 
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the antigen CA 19-9 is the only validated tumor marker 
for pancreatic cancer with overall sensitivity of 79% (70-
90%) and specificity of 82% (68%-91%) [5, 6]. However, 
non-specific expression in other benign or malignant 
diseases and absence of expression in Lewis (a-b-) blood 
phenotypes (~10-15% of the population) limit the use of 
this biomarker as a diagnostic test [7].

Cell-free DNA fragments (cfDNA) are released 
into the bloodstream and other body fluids as part of 
natural cell apoptosis, necrosis and active secretion. 
Gene mutations in cfDNA fragments have been found 
to be tumor-specific leading to the concept of circulating 
tumor DNA (ctDNA) and their potential utility as highly 
specific non-invasive biomarkers has raised in the recent 
years [8]. Pancreatic ductal adenocarcinoma (PDAC) 
accounts for more than 90% of all pancreatic cancer cases 
[9] and activating hotspot mutations in the KRAS gene 
are present in the majority of them, representing the most 
frequent [10] but also the earliest genetic alteration that 
drives pancreatic neoplasia [11–13]. Of the 596 PDAC 
cases sequenced within the International Cancer Genome 
Consortium (ICGC) project (https://icgc.org/, as of 23 Feb 
2016), 534 (90%) harbored at least one KRAS mutation: 
83%, 5.5% and 1.5% at codons 12, 61 and 13, respectively. 
KRAS mutations (often restricted to codon 12) have 
previously been detected in blood (plasma or serum) 
samples from patients with pancreatic cancer [14–26], 
showing large variations in the proportion of detected 
cases (27% to 93%) probably because of inter-laboratory 
variability, limited sample sizes, and variable sensitivities 
of the assays. Ultra-deep sequencing technologies allows 
the identification of low-abundance somatic variants and 
were shown to be applicable to ctDNA [26–31], but has 
so far been applied to sample series of limited size and 
lacking control groups. Here, we investigated whether 
deep sequencing of KRAS codons 12, 13 and 61 in cfDNA 
from plasma samples from a large series of more than 400 
pancreatic cancer cases and 500 controls could represent 
a comprehensive assay for sensitive and specific detection 
of pancreatic cancer.

RESULTS

Subject characteristics, sequencing performance 
and inclusion criteria for analysis

Samples were included when cfDNA total yield was 
at least 4ng and when sequencing reads were above 1000 
on average for all codons. In total, 96 samples (100%) from 
a pilot set and 903 samples (93.4%; 397 pancreatic cancer 
cases (94.2%); 132 chronic pancreatitis (91.0%) and 374 
controls (93.3%)) from a validation set met the inclusion 
criteria. Table 1 provides the characteristics of cases and 
controls, as well as the average of cfDNA yields by status. 
Analysis of variance was used to compare (log-transformed) 
cfDNA concentrations by subject characteristics listed in 

table 1 and showed significant difference by status (with 
higher yields in pancreatic cancer cases versus controls; 
t-test p<0.0001), stage (higher yields in missing stages 
versus reported stages: p<0.0001), and center (higher yields 
in Prague and Olomouc when compared to other centers: 
p<0.0001). Other variables had no significant influence on 
cfDNA yield (Fisher test p>0.05).

The average mean depth of reads after filtering on 
mapping quality were, for the pilot and validation sets, 
respectively: 3992 (SD= 1123) and 2888 (SD=1259) 
at KRAS codon 12 c.34, and 2492 (SD=710) and 3765 
(SD=1762) at codon 61 c.181.

Determination of the allelic fraction threshold 
for the detection of the KRAS p.G12V variant

The number of reads obtained from sequencing of 2ng 
of two independent serial dilutions (in duplicates) of KRAS 
c.35G>T; p.G12V mutated DNA was between 991 and 4205 
with an average read depth of 2693 (Supplementary Table 
S1, Supplementary Data). There was a good correlation 
between expected and observed mutant allelic fractions 
(r2=0.948; Supplementary Figure S1). Needlestack 
analysis was performed independently on the 2 sets of data 
(Figure 1). Phred scale q-values (QVAL) determined by the 
Negative binomial regression show that the KRAS p.G12V 
mutation could be reliably detected down to a minor allele 
frequency of 0.2% when read depth was approximately 
of 2500 reads QVAL>30 for 3 of the replicates at 0.2%) 
(Supplementary Table S1, Supplementary Data).

Performance of KRAS mutations in cfDNA 
samples in complement to CA19-9 plasma levels 
as non-invasive pancreatic cancer biomarker

Applying a threshold of QVAL >30 to the sample 
set of the pilot series, KRAS mutations at hotspot codons 
reported in PDAC were identified in cfDNA plasma samples 
in 7 of 40 cases (sensitivity 17.5%) with PDAC and in 1 
cfDNA of 27 patients with pancreatic benign neoplasms. 
None were detected in healthy controls, or in patients 
with chronic pancreatitis (overall specificity of 98.2%; of 
100% against healthy controls) (Tables 2 and 3). All KRAS 
mutations were located at codon 12 (See Supplementary 
Data Supplementary Table S2 for the complete list of 
samples harboring cf DNA KRAS mutations). Investigating 
the presence of KRAS mutations at other screened codons 
(from KRAS codons 4 to 16 and from codons 51 to 69) 
and reported mutated for any cancer sites in the COSMIC 
database identified (i) 2 additional PDAC cases with cfDNA 
KRAS mutations (1 case with p.K5R and 1 case with p.K5R 
and p.G10R; leading to an overall sensitivity of 22.5%) 
and (ii) 1 additional mutation in a patient with benign 
neoplasm of the pancreas (p.A11P). All mutations except 
one had allelic fraction below 3% (Supplementary Table S2, 
Supplementary Data).
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Table 1: Description of the study population

Characteristics Pilot series (N=96) Validation series (N=903)

Pancreatic 
cancer 
cases

Healthy 
controls

Chronic 
pancreatitis

Pancreatic 
benign 

neoplasms

Pancreatic 
cancer 
cases

Healthy 
controls

Chronic 
pancreatitis

N % N % N % N % N % N % N %

Total 40 20 9 27 397 374 132

Sex

 Male 22 55.0 11 55.0 4 44.4 0 0.0 220 55.4 217 58.0 92 69.7

 Female 18 45.0 9 45.0 5 55.6 0 0.0 177 44.6 157 42.0 40 30.3

 Missing 0 0.0 0 0.0 0 0.0 27 100.0 0 0.0 0 0.0 0 0.0

Age at blood draw 
(mean, sd)

64.8 (10.6) 66.2 (8.7) 62.8 (8.2) Missing 62.2 (10.2) 60.6 (11.9) 55.6 (12.9)

BMI at blood draw 
(mean, sd)

24.7 (3.7) 27.4 (4.0) 23.2 (3.8) Missing 25.1 (4.5) 28.2 (4.3) 24.4 (4.2)

Recruiting country

 Czech Republic 40 100.0 20 100.0 9 100.0 27 100.0 298 75.1 248 66.3 47 35.6

 Slovakia 0 0.0 0 0.0 0 0.0 0 0.0 99 24.9 126 33.7 85 64.4

Tobacco smoking

 Never 20 50.0 9 45.0 3 33.3 0 0.0 167 42.1 175 46.8 45 34.1

 Ex-smoker 10 25.0 6 30.0 4 44.4 0 0.0 123 31.0 113 30.2 24 18.2

 Current smoker 10 25.0 5 25.0 2 22.2 0 0.0 107 27.0 86 23.0 63 47.7

 Missing 0 0.0 0 0.0 0 0.0 27 100.0 0 0.0 0 0.0 0 0.0

Alcohol drinking

 Never 25 62.5 12 60.0 4 44.4 0 0.0 212 53.4 176 47.1 49 37.1

 Ex-drinker 6 15.0 3 15.0 4 44.4 0 0.0 95 23.9 36 9.6 48 36.4

 Current drinker 9 22.5 5 25.0 1 11.1 0 0.0 87 21.9 162 43.3 35 26.5

 Missing 0 0.0 0 0.0 0 0.0 27 100.0 3 0.8 0 0.0 0 0.0

Tumor stage at diagnosis

 Local 6 15.0 - - - 33 8.3 - -

 Regional 17 42.5 - - - 126 31.7 - -

 Systemic 16 40.0 - - - 119 30.0 - -

 Unknown 1 2.5 - - - 119 30.0 - -

Tumor histological type

 Ductal adenocarcinoma 40 100.0 - - - 243 61.2 - -

 Other ductal carcinoma 0 0.0 - - - 19 4.8 - -

 Endocrine 0 0.0 - - - 14 3.5 - -

Missing/Unknown 0 0.0 - - - 121 30.5 - -

Log10 cfDNA 
concentration, ng/mL 
plasma (mean, sd)

1.7 (0.5) 1.7 (0.5) 1.8 (0.3) 1.9 (0.7) 2.0 (0.7) 1.7 (0.6) 1.8 (0.7)
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The sensitivity and the overall specificity of plasma 
CA19-9 levels for detecting PDAC was 90.0% and 64.8% 
respectively (Table 3). Combining these so that the test 
was declared positive if a KRAS mutation was found at any 
COSMIC reported position or if the CA19-9 plasma level 
was positive enabled the detection of 2 additional PDAC 
cases (38/40) that were negative for CA19-9 plasma 
level but positive for cfDNA KRAS mutation, increasing 
the sensitivity to 95% (Tables 2 and 3). Comparisons of 
AUCs of the combined assays versus CA19-9 levels alone 
showed small increases, approximately 0.02 for each of 
the three comparisons (cancer cases vs. healthy controls; 
cancer cases vs. all other conditions; cancer cases vs. 
benign pancreatic conditions) and were non significant 
(p>0.17 for all comparisons).

Validation of the proportions of detectable 
cfDNA KRAS mutations in pancreatic cancer 
cases and controls

We extended the cfDNA KRAS mutation screening 
to the validation case-control series (N=903) (Table 1). 
Of the 397 patients with pancreatic cancer, 75 (18.9%) 

carried at least one cfDNA KRAS mutation at PDAC 
hotspot codons, a sensitivity close to that reported for 
the pilot series (17.5%). We also detected at least one 
KRAS mutations at PDAC hotspot codons in the plasma 
of 4/132 (3.0%) patients with chronic pancreatitis and 
of 9/374 (2.4%) healthy controls whereas none were 
detected in those subjects of the pilot series. Enlarging 
the search for KRAS mutations to other screened codons 
increased the sensitivity to 20.9% (83 patients with 
pancreatic cancer carrying at least one mutations in their 
cfDNA), but decreased the specificity with the detection 
of cfDNA KRAS mutations in 6/132 (4.5%) patients with 
chronic pancreatitis and in 14/374 (3.7%) healthy controls 
(Table 4).

Of note, we identified 3 subjects (2 cases and 
1 control) with the silent base substitution c.24A>G 
p.V8V (at 46.38%, 11.46% and 46.98% allelic fractions 
respectively) which we considered as a rare SNP 
(rs147406419) as it was reported with an allelic frequency 
between 0.02% (Exome Variant Server ESP6500siv2) 
and 0.04% (Exome Aggregation Concortium ExAC) 
and classified as probably non-pathogenic impact by 
CLINSIG. This variant was ignored for the rest of the 

Figure 1: Mutation detection of KRAS c.35G>T; p.G12V in serial dilution and cfDNA samples using the Needlestack 
approach. Negative-binomial regression plot at KRAS c.35G>T; p.G12V displaying the total number of reads (coverage, DP) and the 
number of reads matching the candidate variant (AO). Black solid line: Estimated error rate (e) at the c.35 position for this G>T base 
change. Blue dashed line: Detection limit at q-values <10-3; >30 in Phred scale (QVAL). Dots above the blue dashed line: Outliers of 
the regression (QVAL≥30), declared as mutant KRAS samples (c.35G>T; p.G12V). Dots below the blue dashed line: Inliers (QVAL<30) 
declared unmutated at this position for specified base change. A. Serial dilution of SW480 cell-lines in duplicates (N=28) and cfDNA from 
the pilot series (N=96) sequenced on a Ion Torrent PGM 316 Chip (e= 4.2×10-4); B. Serial dilution of SW480 cell-lines in duplicates (N=28) 
and cfDNA from the validation series (N=903) sequenced on Ion Torrent PGM 318 chips (e=1.4×10-4).
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analysis. Further restricting the analysis to missense 
KRAS mutations decreased false positive rates to 3.8% 
(5/132) and 3.2% (12/374) respectively (Table 4). The 

complete list of KRAS mutations identified in cfDNA of 
the validation series and corresponding allelic fractions 
is available in supplementary data (Supplementary Data, 

Table 2: KRAS mutations and CA19-9 plasma levels in the pilot series (N=94)

cfDNA KRAS mutation at  
hotspot codons (12, 13, 61) 

reported in PDAC

cfDNA KRAS mutation at any 
screened codons reported in any 

cancer sites

N % N %

Plasma CA19-9 positive level (≥37Ku/l)

 PDAC case, N=36 5 13.9 7 19.4

 Healthy controls, N=3 0 0.0 0 0.0

 Benign pancreatic neoplasm, N=11 1 9.1 1 9.1

 Chronic pancreatitis, N=5 0 0.0 0 0.0

Plasma CA19-9 negative level (<37Ku/l)

 PDAC case, N=4 2 50.0 2 50.0

 Healthy controls, N=17 0 0.0 0 0.0

 Benign pancreatic neoplasm, N=14 0 0.0 1 7.1

 Chronic pancreatitis, N=4 0 0.0 0 0.0

Total

 PDAC case, N=40 7 17.5 9 22.5

 Healthy controls, N=20 0 0.0 0 0.0

 Benign pancreatic neoplasm, N=25* 1 4.0 2 8.0

 Chronic pancreatitis, N=9 0 0.0 0 0.0

*Two benign neoplasms were excluded from this analysis because CA19-9 plasma level measurements could not be 
performed.

Table 3: Performance of NGS-based assay for the detection of cfDNA KRAS mutations, CA19-9 plasma level and 
combined assays (40 PDAC, 20 healthy controls, 9 chronic pancreatitis subjects, and 25 benign neoplasm subjects)

Sensitivity Overall Specificity* Specificity against 
healthy controls

cfDNA KRAS mutation

 at PDAC hotspot codons (12, 13, 61) 17.5% 98.2% 100.0%

 at any screened codons reported in any 
cancer sites 22.5% 96.4% 100.0%

CA19-9 plasma level (≥37Ku/l) 90.0% 64.8% 85.0%

Combined cfDNA KRAS mutation and CA19-9  
plasma level

 at PDAC hotspot codons (12, 13, 61) 95.0% 64.8% 85.0%

  at any screened codons reported in any 
cancer sites 95.0% 63.0%a 85.0%

*against non-PDAC and controls
aDecreased specificity due to the detection of c.31G>C; p.A11P KRAS mutation in a patient with benign neoplasm negative 
for the plasma CA19-9 assay



Oncotarget78832www.impactjournals.com/oncotarget

Supplementary Table S3). The lowest allelic fraction 
detected in the cfDNA samples was 0.08% in a plasma 
case (sample CA93) at KRAS p.G13R (Supplementary 
data, Supplementary Figure S2).

As for somatic KRAS mutations reported in PDAC 
(COSMIC and ICGC data) and chronic pancreatitis 
(COSMIC data), the majority of cfDNA KRAS mutations 
identified in the combined pilot and validation series were 
located at codon 12 (76.3 % in pancreatic cancer cases; 
77.8% in chronic pancreatitis and 47.4% in healthy controls; 
Figure 2A). Similar proportions of KRAS mutations at codons 
61 and 13 were observed in cfDNA of pancreatic cancer 
cases (7.2% and 3.1% respectively) as compared to PDAC 
ICGC tumors (6.1% and 1.7% respectively). However, 
while less than 1% of KRAS mutations reported in ICGC/
COSMIC data are located at other codons, 13% (13/97), 

22% (2/9), and 31% (6/19) of such mutations were detected 
in the plasma samples of cancer cases, chronic pancreatitis, 
and controls, respectively (Figure 2A). The frequencies of 
the most predominant mutation types reported for PDAC in 
ICGC, i.e p.G12D, p.G12V, p.G12R, p.G12C followed by 
p.Q61H, p.Q61R and p.Q61L paralleled the frequencies of 
the cfDNA KRAS mutations in cases (Figure 2B) reflecting 
the probable tumor origin of the cfDNA KRAS mutations. In 
addition, one cancer case and one control harbored p.Q61P 
and p.Q61E in their cfDNA, respectively, two non-PDAC 
COSMIC missense substitutions previously reported in 
various cancer tissues (Figure 2 and Supplementary Data 
Supplementary Table S4).

We did not observe striking differences by 
histological groups. Amongst the 283 PDAC cases, 59 
(20.8%) were detected with a cfDNA KRAS mutation, 

Table 4: Proportion of subjects with KRAS mutations in their plasma cfDNA

Pancreatic cancer cases Chronic pancreatitis Healthy controls

All 
N=437

Pilot 
N=40

Validation 
N=397

All 
N=141

Pilot 
N=9

Validation 
N=132

All 
N=394

Pilot 
N=20

Validation 
N=374

N % N % N % N % N % N % N % N % N %

Subjects 
with KRAS 
mutations in 
cell-free DNA

92 21.1 9 22.5 83 20.9 6 4.3 0 0.0 6 4.5 14 3.6 0 0.0 14 3.7

Numbers of mutation

  Single 89 20.4 8 20.0 81 20.4 4 2.8 0 0.0 4 3.0 11 2.8 0 0.0 11 2.9

  Multiple 3 0.7 1 2.5 2 0.5 2 1.4 0 0.0 2 1.5 3 0.8 0 0.0 3 0.8

Location

  Mutation(s) 
at PDAC hotpot 
codon(s) 12, 13 
or 61

81 18.5 7 17.5 74 18.6 4 2.8 0 0.0 4 3.0 8 2.0 0 0.0 8 2.1

  Mutation(s) 
at other 
codon(s)*

10 2.3 2 5.0 8 2.0 2 1.4 0 0.0 2 1.5 5 1.3 0 0.0 5 1.3

  Mutations 
at hotpot codons 
12, 13 or 61 and 
others*

1 0.2 0 0.0 1 0.3 0 0.0 0 0.0 0 0.0 1 0.3 0 0.0 1 0.3

 Type

  Missense 92 21.1 9 22.5 83 20.9 5 3.5 0 0.0 5 3.8 12 3.0 0 0.0 12 3.2

  Silent 0 0.0 0 0.0 0 0.0 1 0.7 0 0.0 1 0.8 2 0.5 0 0.0 2 0.5

* Codons reported mutated in COSMIC (all cancer sites)
We identified 3 silent base substitutions c.24A>G p.V8V (2 in cases and one in controls), which we considered as a rare 
SNP (rs147406419) as it was reported with an allelic frequency between 0.0002 (Exome Variant Server ESP6500siv2) and 
0.0004 (Exome Aggregation Concortium ExAC) and classified as probably non-pathogenic impact by CLINSIG (Table S3, 
Supplementary Data). The 3 base substitutions are consequently not included in this table.
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all but three (p.M67L, p.M72V, and p.Q61P) reported 
as predominant PDAC mutations. Four “other ductal 
carcinoma” cases out of 19 (21.1%) were also detected 
with a single cfDNA mutation, all four reported as hotspot 
PDAC mutations. Amongst the 16 endocrine cases, 
3 mutations were detected in 3 cases (18.7%), two of 
them not reported as hotspot PDAC mutations (p.G60D 
and p.A59G). The two cases with multiple mutations 
were found in the pancreatic cancer cases of unknown 
histological type, where 29 mutations were detected 
in 27/121 (22.3%) cases. Of these 29 mutations, five 
(p.A59E, p.E62D, p.Q61R, p.Q70P, and p.Y64D) were 
not reported as predominant PDAC mutations.

Advanced stages were significantly associated 
with an increased proportion of detection (KRAS 
cfDNA mutations were detected in 10.3% of cases 
diagnosed with local stage, 17,5% with regional stage, 
and 33.3% with systemic stage; chi-squared p=0.0009) 
(Table 5). Among detected cases, there was a non-
significant trend of increased allelic fractions with stage 

(log10 of fractions were 0.1270, 0.1349, and 0.3047) 
on average, for local, regional and systemic disease, 
respectively; linear regression t-test p=0.3278). Allelic 
fractions correlated significantly with status (Table 6), 
pancreatic cancer cases carrying cfDNA KRAS mutations 
at higher allelic fractions than patients with chronic 
pancreatitis (t-test on log10(allelic fractions) p=0.0259) 
and healthy controls (p=0.0008). Healthy controls 
and chronic pancreatitis subjects had similar allelic 
fractions (p=0.8218). Of note, 3 PDAC cases were 
found to carry KRAS mutations in their plasma samples 
at allelic fractions higher than 50% reflecting gain of 
mutant KRAS copies. Other factors associated with 
allelic fractions were: histological type (with “other 
ductal carcinoma” cases having higher allelic fractions 
than PDAC (p=0.0016), endocrine (p=0.0078), and 
unknown/missing types (p=0.0004); sex (males having 
higher allelic fractions than females in healthy controls, 
p=0.0069); and age (borderline trend showing higher 
allelic fractions in older controls, p=0.0548).

Figure 2: Distribution of KRAS mutations detected in plasma samples from pancreatic cases, chronic pancreatitis 
and healthy controls compared to somatic KRAS mutations reported in ICGC and COSMIC database. A. Comparison 
of cfDNA KRAS mutation location; B. Comparison of KRAS mutation spectrum at hotspot codons (12, 13 and 61). N= Number of KRAS 
mutations.
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DISCUSSION

To our knowledge, our study is the largest screening 
of KRAS mutations in plasma samples of pancreatic cancer 
cases, other pathological pancreatic conditions and healthy 
controls allowing for the comprehensive assessment 
of the sensitivity and specificity of KRAS mutations as 
non-invasive biomarkers for the detection of pancreatic 
cancer. Using only 2ng/amplicon (4ng total) of cfDNA 
and amplicon sizes below the size of the most prominent 
peak (166 bp) of the recently reported narrow range 
distribution of cfDNA fragments size [32], our NGS-
based KRAS mutation screening assay combined with our 
developed Needlestack variant caller algorithm proved to 
be a sensitive approach to detect low-allelic fraction KRAS 
mutations down to 0.08%; a detection limit comparable to 
other amplicon-based NGS sequencing methods [27, 30, 
31, 33].

We demonstrated that cfDNA KRAS mutations were 
detectable at the time of diagnosis in the plasma of 20% 

of pancreatic cancer cases at PDAC hotspot codons (12, 
13 and 61); a sensitivity which is more consistent with 
some studies (between 27 to 36%) [14, 16, 20, 25] than 
others (between 47 to 81%) [15, 17–19]. As previously 
reported, the majority of these alterations were located 
at the hotspot codon 12, the spectrum was concordant 
with the distribution of KRAS tumor mutation types from 
ICGC data [34–36], suggesting that KRAS mutations in 
the circulating DNA mainly originate from tumor cells. 
Interestingly, although it has been shown that 90% of 
patients with PDAC carry primary KRAS mutations 
at codons 12, 13 or 61, we identified 9 cfDNA variants 
outside of the predominantly mutated codons, not 
reported in the ICGC PDAC database but reported in the 
COSMIC database for other types of cancer, allowing 
for an increased sensitivity of 22.5%. Those non-hotspot 
cfDNA KRAS mutations identified in pancreatic cancer 
cases may reflect the heterogeneity of the tumors or the 
alterations of genetically different metastatic lesions. In 
agreement with previous reports, we also demonstrated 

Table 5: Proportion of pancreatic cancer cases with KRAS mutations in their plasma cfDNA, by stage

Stage Pilot series Validation series All

Total cfDNA KRAS 
mutation

Total cfDNA KRAS 
mutation

Total cfDNA KRAS 
mutation

N N % N N % N N %

Local 6 1 16.7 33 3 9.1 39 4 10.3

Regional 17 1 5.9 126 24 19.0 143 25 17.5

Systemic 16 7 43.8 119 38 31.9 135 45 33.3

Unknown 1 0 0.0 119 18 15.1 120 18 15.0

All 40 9 22.5 397 83 20.9 437 92 21.1

KRAS Mutations identified at hotspot codons 12, 13 and 61 and at other codons reported mutated in COSMIC; the silent 
base substitution c.24A>G p.V8V was excluded from analysis.

Table 6: Proportion of subjects with cfDNA KRAS mutations at various allelic fractions
aAF (%) Pancreatic cancer cases Chronic pancreatitis Healthy controls

All, 
N=93

Pilot, 
N=9

Validation, 
N=84

All, N=6 Pilot, 
N=0

Validation, 
N=6

All, 
N=14

Pilot, 
N=0

Validation, 
N=14

N % N % N % N % N % N % N % N % N %

<0.2 4 4.3 0 0.0 4 4.8 1 16.7 0 0.0 1 16.7 4 28.6 0 0.0 4 28.6

[0.2-1] 35 37.6 3 33.3 32 38.1 4 66.7 0 0.0 4 66.7 7 50.0 0 0.0 7 50.0

[1.01-10] 40 43.0 5 55.6 35 41.7 0 0.0 0 0.0 0 0.0 2 14.3 0 0.0 2 14.3

[10.01-50] 11 11.8 1 11.1 10 11.9 1 16.7 0 0.0 1 16.7 1 7.1 0 0.0 1 7.1

[50.01-79] 3 3.2 0 0.0 3 3.6 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

aAF : Allelic Fraction
KRAS p.V8V excluded
For samples with multiple variants, the mutation with the highest allelic frequency was taken into account
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that the proportion of cases with detectable cfDNA KRAS 
mutations tended to increase with more advanced stages 
and that KRAS allelic fractions were higher in cases than 
controls or in patients with chronic pancreatitis [23, 26]. 
Using a ddPCR assay focusing on the four most common 
PDAC mutations (G12D, G12V, G12R, G13D) Takai and 
colleagues identified cfDNA KRAS mutations in PDAC 
patients with distant organ metastasis in higher proportion 
than us (58.9% and 33.3% respectively). However, both 
studies report similar proportion of detected cases in 
non-metastatic and localized disease; 8.3% of patients 
with resectable PDAC (stages I and II) in Takai study 
and 10.3% of patients with localized pancreatic cancer 
in our study [23]. While a recent study using ddPCR 
demonstrated a higher sensitivity (43%; 22 patients) for 
the detection of KRAS mutation in plasma samples of 
patients with localized PDAC, 10 patients harbored a 
mutation at an allelic fraction ≤ 0.08% [22]. As 0.08% 
represents the lowest allele fraction that we could detect 
with our NGS-based approach and Needlestack algorithm, 
it is likely that some true low-allelic fraction mutants were 
too close to the sequencing noise signals to be detected 
at QVAL> 30. A combined strategy of pre-screening by 
NGS-amplicon followed by ddPCR of suggestive but 
inconclusive samples for specific mutations (for example 
samples with 10<QVAL<30) could circumvent some 
limitations by discriminating true positive low-level allele 
fractions mutants from inconclusive or false negative 
NGS samples, providing that the amount of cfDNA 
obtained is not a limiting factor. Preanalytical parameters 
regarding blood processing are also known to affect 
cfDNA concentrations [37]. A limitation of our study 
is that we did not test whether removing cellular debris 
with a high speed centrifugation of plasma samples prior 
cfDNA isolation could improve the sensitivity. However, 
the low quantities of cfDNA we could extract from the 
plasma samples on average indicate that contamination by 
cellular DNA was minimal. It is possible that a proportion 
of KRAS mutant pancreatic cancer do not release KRAS 
mutant cfDNA in the bloodstream, in which case the 
main limiting factor would be the biology of the tumor 
rather than the technology. Whether those differences in 
the release process of ctDNA between patients are due to 
differences in tumor micro-environment, vascularization, 
molecular characteristics and/or clonality remains to be 
discovered [38, 39].

Our study highlights that at our level of detection, 
a non-negligible proportion of controls are detected. 
Sausen and colleagues report 99.9% specificity of their 
assay against matched tumor DNA but they have not 
evaluated the specificity of their method against plasma of 
healthy controls. This becomes of capital importance when 
ultra-low detection limit is required as the proportion 
of positive calls in non-cancer individuals is likely to 
increase significantly. The assessment of the biological 
specificity of mutations in cfDNA as a non-invasive 

biomarker is either inexistent or limited in size. This may 
be partly explained by the fact that somatic mutations are 
believed to occur at negligible frequencies in normal cell 
populations [40], and thus expected to derive exclusively 
from the tumor burden. Yet, using a technique of limited 
sensitivity, Gormally et al. reported the presence of 
KRAS (1%) and TP53 (3.2%) mutations in plasma of 
individuals who had remained clinically cancer-free 
for more than five years [41]. Very recently two studies 
revealed low-abundant TP53 somatic mutations in body 
fluids of non-cancer individuals [42,43]. In addition, while 
limited in sample size, two studies described circulating 
KRAS mutations in 5% (2/37) [14] and 13% (4/31) [17] 
of patients with chronic pancreatitis. In our series, we 
detected 3.7% (N=14) KRAS positive individuals in the 
healthy controls (N=9 at hotspot codons) and 4.3% (N=6) 
in subjects with chronic pancreatitis, three of them at 
PDAC hotspot codon with an allelic fraction >1%. Given 
the prevalence of KRAS mutated cancers (predominantly 
pancreas, colon and lung) in the population, we cannot 
exclude that a small proportion of these individuals 
were non-diagnosed KRAS mutated cancer cases. Cell-
free DNA fragments released into the blood circulation 
represent a molecular footprint of the entire genome, 
potentially including somatic mutations that occur at a 
mosaic state e.g affecting a limited number of tissues and 
cells. Syndromes caused by mosaic mutations in the Ras/
MAPK signaling pathway (Mosaic RASopathies) have 
been described as a rather frequent congenital disorder that 
results in special skin phenotypes, whose epidermal and 
sebaceous disorders have been recently attributed, among 
other mutations, to oncogenic mosaic KRAS mutations 
[44]. The relatively high incidence of the most frequent 
mosaic RASopathy; sebaceous nevi (1 in 1,000 births) 
suggest that KRAS mutations present at a mosaic state in 
humans may not be a rare phenomenon [45]. Moreover, 
mosaic RASopathies are predominantly reported as skin 
disorders because of the accessibility of the lesions but the 
frequency of those syndromes could be underestimated as 
mosaic RASopathies of internal organs have been poorly 
investigated. While there are no accurate estimates of the 
prevalence and pathogenicity of mosaic KRAS mutations 
in human, it is possible that a proportion of cancer-free 
individuals with detectable low allelic fractions mutations 
in circulating DNA could reflect somatic mosaicism.

In conclusion, at a detection limit of 0.08% allelic 
fraction, our amplicon-based KRAS mutations sequencing 
assay applied to a large case-control series of plasma 
samples showed a limited sensitivity of 21.1% for the 
detection of pancreatic cancer and was not as specific as 
anticipated.

We detected 34% of advanced stages and 10% of 
early stages, suggesting that the limitation in sensitivity 
is at least partially attributable to the biology of the 
pancreatic malignancies. Whether reaching a lower 
threshold of detection for cfDNA mutations could increase 
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the discriminatory performance of the test remains to 
be assessed. We evaluated whether the combination of 
the detection of circulating KRAS mutations and the 
plasma CA19-9 levels could improve the detection 
of pancreatic cancer. We confirm a good sensitivity 
(90%) but a poor specificity for the CA19-9 plasma 
levels (64.8%). Combining cfDNA KRAS mutations 
and CA19-9 levels improved the sensitivity to 95% but 
the overall performance of the combined biomarkers 
did not significantly improve as compared to CA19-9 
alone. However, combining cfDNA KRAS mutations 
could potentially contribute to expanded panels of non-
invasive biomarkers involving different tumorigenesis 
processes and/or different mechanisms of release in the 
bloodstream, such as protein-based [46], exosome-based 
[47], methylation-based [48] or RNA-based markers [49], 
for the risk assessment of the disease.

MATERIALS AND METHODS

Study population, sample selection and ethics 
statement

Samples were selected from a multi-center case-
control study conducted in Czech Republic and Slovakia 
and described in detail elsewhere [50, 51] (Supplementary 
data).

We conducted this study in two phases, a pilot series 
where we screened for KRAS mutations and measured 
CA19-9 plasma levels in plasma samples of 96 subjects 
and a validation series where we extended our initial KRAS 
mutation screening to plasma samples of 967 subjects. For 
the pilot series, we selected subjects with available plasma 
and pancreatic tissue (tumor or juice) samples, hence 
limiting our series to subjects recruited in Czech Republic. 
We selected all such cases with a histologically-confirmed 
PDAC diagnosis (N=40) and the 9 subjects diagnosed 
with chronic pancreatitis (N=9). In addition, we randomly 
selected 20 healthy controls among 916 with available 
plasma samples, frequency matched for the 40 PDAC 
cases on sex, age, tobacco and alcohol consumption. 
Finally, we selected 27 subjects recruited into the study as 
pancreatic cancer in first instance, but who subsequently 
were re-classified as benign neoplasms of the pancreas. 
For the validation study, we selected all remaining cases 
with histologically/cytologically confirmed pancreatic 
cancer (N=421); chronic pancreatitis subjects (N=145); 
as well as 401 healthy controls among 896, frequency 
matched for the cancer and chronic pancreatitis subjects 
on center, sex and age. For pancreatic cancer cases, stage 
grouping was defined as local, regional, and systemic 
cancers, based on TNM staging (AJCC 6th edition) when 
available, and estimation by the clinician when formal 
TNM staging was not available or not complete.

The study protocol was approved by the institutional 
review boards of the International Agency for Research 

on Cancer and all collaborating centers/institutions, and 
written informed consent was obtained for all participating 
subjects.

Isolation of plasma cell-free DNA (cfDNA) and 
quantification

Peripheral blood from patients was collected in 
EDTA Vacutainer tubes (Becton Dickinson). Blood 
samples were processed within 12 h of collection by 
centrifugation at 2,000g for 10 min and stored frozen 
in 2mL cryotubes. Circulating DNA (cfDNA) was 
isolated from 0.6-2.0mL (pilot series; average: 1.4mL) 
and from 0.3-1.0mL (validation series; average: 0.9mL) 
plasma with the QIAamp Circulating Nucleic Acid Kit 
(Qiagen), following manufacturer’s instructions [52]. The 
concentration of purified cfDNA was determined using the 
Quant-iT™ PicoGreenR dsDNA Assay (Molecular Probes, 
Invitrogen) PicoGreen® a dilution series of a standard 
lambda DNA and a Fluoroskan Ascent FL instrument 
(Thermo Fisher Scientific).

KRAS amplification, library construction and 
deep sequencing with Ion Torrent PGM

As the size of the cfDNA fragments in cancer 
patients was recently reported to follow a narrowed-
range, unimodal distribution reaching a peak at 166bp 
[32], primers were designed to amplify exons 2 and 3 
so that the amplicon size is < 130bp (79bp and 129bp 
respectively), covering from codons 4 to 16 (hg19: ch12: 
25,398,271 - ch12: 25,398,309) and from codons 51 to 69 
(hg19: ch12: 25,380,228 - ch12: 25,380,307), totalling 119 
bp excluding primer regions. Forward and reverse primer 
sequences were 5’-GCCTGCTGAAAATGACTGAA-3’ 
and 5’-AGCTGTATCGTCAAGGCACT-3’ for the 
amplification of partial KRAS exon 2 and 5’-GCAAGT 
AGTAATTGATGGAGAAACC-3’ and 5’-TTTATGGCA 
AATACACAAAGAAAG-3’ for the partial amplification 
of KRAS exon 3. Independent PCR amplifications of 
the 2 exons were performed using 2ng of cfDNA, 5X 
AccuStart Buffer, 200 nM forward and reverse primers 
and 0.04 U/mL of AccuStart HiFi Taq Polymerase (Quanta 
BioSciences) with the following conditions: 2 min at 94ºC, 
50 cycles of 30s at 94ºC, 30s at 58ºC and 40s at 72ºC and 
a final elongation of 5 min at 72ºC. Approximately 20% 
of the PCR products were quantified by QubitTM dsDNA 
HS Assay Kit and (Invitrogen) and Qubit® 2.0 fluorometer 
and 20 ng of exon 2 and 3 were pooled together, purified 
with Serapure magnetic beads at a final concentration of 
2.5X and 28% of isopropanol. Library preparation was 
done using the NEBNext NEB Next® Fast DNA Library 
Prep Set for Ion Torrent™ kit (New England Biolabs) 
with some modifications, where each volume of reagents 
was reduced by a factor 4. Briefly, 12.5μl of the 20μl 
purified products were end-repaired in 15μl, and added 
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to 8.6 μl of ligation reaction mix, 0.7μl of the Ion P1 
Adapter and 0.7 μl of each Ion Barcode for the ligation 
step. The barcoded products were purified using Serapure 
magnetic beads at final concentration of 1.8X, amplified 
in 25μl and quantified using Qubit quantification system. 
40 ng of amplified barcoded products were pooled into a 
single tube and the cleanup and size selection of pooled 
libraries (230~250 bp) was performed in a 2% agarose gel 
and MinElute Gel Extraction Kit (Qiagen). The pool of 
purified barcoded libraries was quantified using the Qubit 
quantification system and the assessment of the library 
quality (molarity and size analysis) was done using the 
Agilent® High Sensitivity DNA Kit and the Agilent 
Technologies 2100 BioanalyzerTM (Agilent Technologies). 
The pool of purified barcoded libraries was diluted to 280 
millions of molecules in 25μl and sequenced with the 
IonTorrent™ PGM sequencer (Thermo Fisher Scientific) 
at deep coverage using the Ion OneTouch 200 Template 
Kit v2 DL and Ion PGM Sequencing 200 Kit v2 with the 
316 or 318 chips (Thermo Fisher Scientific), following 
manufacturer’s instructions. Library preparation and 
sequencing conditions were adapted from previous 
protocols [43].

Detection Threshold

Genomic DNA from the cell-line SW480 harboring 
a hemizygous KRAS p.G12V (c.35G>T) mutation was 
serially diluted into genomic DNA of a human wild-type 
lymphoblastoid cell-line in order to assess the accuracy 
and the detection threshold of the Ion Torrent Sequencing 
for the measurement of the mutant allelic fraction. 
Mutant abundances were as follows: 100%, 50%, 20%, 
10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, 
0.01%. Four independent PCR amplifications were done 
for each serial diluted point and for six wild-type DNA 
samples to determine the read error rate for that specific 
genomic position. PCR amplifications from 2ng, library 
construction and deep sequencing were done following the 
same protocol as for the cfDNA.

Measurement of the CA19-9 plasma level

Measurements of CA19-9 were performed on 
plasma EDTA samples from the pilot study. Analyses 
were done using an immunoradiometric assay by 
Beckmann Coulter (Marseille, France). Samples have 
been randomized through the batches of analyses. We 
used the clinically accepted cut-off of 37 kU/l for CA19-9 
positivity [53].

Bioinformatics and statistical analyses

We used Needlestack, a variant caller algorithm 
suitable for the detection of low-abundance mutations 
[43] (https://github.com/IARCbioinfo/needlestack). The 
approach is based on the inclusion of sequencing data of 

a sufficient number of samples to robustly estimate the 
sequencing error rates at each position considered and 
for each possible base change. Reads were mapped to 
the human whole genome and BAM files were generated 
by the Ion Torrent PGM server using default parameters. 
Reads with a mapping quality below 20 were excluded 
from subsequent analysis. At each position and for each 
candidate variant, sequencing errors are modeled using 
a robust negative binomial regression [54] to avoid bias 
of the over-dispersion parameter due to the potential 
presence of genetic variants. We use a linear link and 
a zero intercept, and detected variants as being outliers 
from this error model. We calculated for each sample a 
p-value for being a variant (outlier from the regression) 
that we further transformed into q-values to account for 
multiple testing. q-values are reported in Phred scale 
QVAL=-10 log10(q-value), and we used a threshold of 
QVAL>30 to call variants. For each variant, we also 
calculated the relative variant strand bias defined by:

RVSB
AO DP AO DP

AO DP AO DP
max( , )p m m p

p m m p

=
+

where DP and AO denote respectively the total 
number of reads and the number of reads matching the 
candidate variant, with the subscripts p and m referring to 
the forward and reverse strands respectively.
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CHAPTER 4. APPLICATIONS TO CIRCULATING-TUMOR DNA DATA

4.3 Scientific contribution B

In this study, we have developed the UroMuTERT assay in order to detect TERT promoter

mutations in the cfDNA from blood and urine samples and in the DNA from urinary exfoli-

ated cells (cellDNA) of urothelial cancer patients in the context of non-invasive cancer de-

tection. Indeed, it has been reported that between 60% and 85% of urothelial cancer patients

have a tumor TERT promoter mutation, even in early stage [72].

We have analyzed a total of 93 cases and 94 controls in a first cohort (the DIAGURO

French cohort) and 50 cases and 50 controls in a independent second cohort (the IPO-PORTO

Portuguese cohort). For the DIAGURO cohort, tumor-urine-blood trios for cases and urine-

blood duos for controls were available (cfDNA). For the PORTO cohort, urinary exfoliated

cells from urine were available. Deep sequencing (IonTorrent Proton technology) was per-

formed on two recurrently mutated genomic positions: C228T and C250T.

We used our needlestack variant caller to detect mutations potentially in low abun-

dance. Our UroMuTERT assay could detect C228T and C250T mutations at VAF down to

respectively 0.8% and 0.5%. The sensitivity of the assay in the DIAGURO cohort for urine

samples was estimated at around 80%, and the specificity at around 97%, but for blood sam-

ples, the sensitivity was only 7%, suggesting low amounts of tumor-derived mutations as re-

cently described [100]. The sensitivity of the assay in the IPO-PORTO cohort was estimated

at around 68% (not significantly lower than for the DIAGURO cohort), and the specificity

at around 98%. This study has shown an unprecedented performance of the UroMuTERT

assay that quantifies tumor-derived TERT promoter mutation in urine samples for the de-

tection urothelial carcinomas and that can be used for large-scale validation and biomarker

development.

4.3.1 Article D
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ABSTRACT 32	

Background 33	

Recurrent mutations in the promoter of the telomerase reverse transcriptase (TERT) gene 34	

(C228T and C250T) detected in tumor cells shed into urine of urothelial cancer (UC) patients 35	

are putative non-invasive biomarkers for UC detection and monitoring.  36	

Objectives 37	

To evaluate the clinical performance of a single-gene assay quantifying TERT promoter 38	

mutations in cell-free circulating DNA (cfDNA) in blood and urine, or DNA from urinary 39	

exfoliated cells (cellDNA) for the detection of primary and recurrent UC. To compare its 40	

performance with urine cytology. 41	

Design, setting and participants 42	

We developed a single-plex assay (UroMuTERT) for the detection of low-abundance TERT 43	

promoter mutations. We tested 93 primary and recurrent UC cases and 94 controls in France 44	

(prospectively collected blood, urine samples and tumors for the cases), and 50 primary UC 45	

cases and 50 controls in Portugal (retrospective urinary exfoliated cell samples).  46	

Outcome measurements and statistical analysis 47	

Sensitivity, specificity and accuracy of the liquid-based biomarkers. Association of mutation 48	

status with disease characteristics.  49	

Results and limitations 50	

In the French series, C228T or C250T were detected in urinary cfDNA or cellDNA in 81 51	

cases (87.1%), and five controls (Specificity 94.7%), with 98.6% concordance in matched 52	

tumors. Detection rate in plasma cfDNA among cases was 7.1%. The UroMuTERT 53	

sensitivity was (i) highest for urinary cfDNA and cellDNA combined, (ii) consistent across 54	

primary and recurrent cases, tumor stages and grades, (iii) higher for low-risk non-muscle 55	

invasive UC (86.1%) than urine cytology (23.0%) (P<0·0001) and (iv) 93.9% when combined 56	
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with cytology. In the Portuguese series, the sensitivity and specificity for detection of UC 57	

with urinary cellDNA was 68.0% and 98.0%. Limitations include study size and inability to 58	

assess urinary cfDNA in the Portuguese series. 59	

Conclusions 60	

TERT promoter mutations detected by the UroMuTERT assay in urinary DNA (cfDNA or 61	

cellDNA) show excellent sensitivity and specificity for the detection of UC, significantly 62	

outperforming that of urine cytology notably for detection of low-grade early stages UC.  63	
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INTRODUCTION 64	

Bladder cancer (BC), accounting for 90% of urothelial cancer (UC), has become a common 65	

cancer globally [1]. While 70-80% of BCs are non-muscle-invasive carcinoma [2], high rates 66	

of recurrence (50-70%) and progression to the muscle (10-20%) require close monitoring 67	

after first-line treatment. Upper tract urothelial cell carcinoma (UTUCC, 10% of UCs), while 68	

different in many aspects, shares many histological features and genetic alterations with BC 69	

[3]. UC detection relies on invasive cystoscopy, imaging approaches and noninvasive urine 70	

cytology, however the latter lacking sensitivity in detecting low-grade BC [4] and UTUCC 71	

[5]. Performance inconsistencies of FDA-approved urine-based biomarkers prevent their 72	

routine clinical use [6].  73	

Mutations in the promoter of the Telomerase Reverse Transcriptase gene (TERT) are frequent 74	

in various human cancers. In both BCs and UTUCCs, they are observed in 60-85% of cases 75	

including in early stages [7, 8]. These mutations were detected in DNA from urinary 76	

exfoliated cells collected at diagnosis and during follow-ups [8-13]. Recently, urinary cell-77	

free DNA (cfDNA) showed higher analytical sensitivity than DNA from exfoliated cells 78	

(cellDNA) for the detection of UC tumor-derived alterations [14]. Assessment of these 79	

mutations in different sources of DNA in urine and blood pairs has never been made in a 80	

case-control setting with a sensitive single-gene assay.  81	

Because a sensitive and specific biomarker of UC might profoundly influence clinical 82	

practice, we developed a single-plex assay, UroMuTERT, based on TERT promoter ultra-deep 83	

sequencing and an algorithm for detection of low-abundance mutations [15]. We assessed 84	

TERT promoter mutations in DNA from various body fluids (cfDNA in blood and urine, and 85	

cellDNA) in two case-control series and compared UroMuTERT diagnostic performance to 86	

that of urine cytology. 87	

 88	
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MATERIALS AND METHODS 89	

Study population and clinical specimens  90	

Participants were recruited from two case-control studies. Written informed consent was 91	

obtained for all participants and details about ethical approvals of the study protocols are 92	

given in the supplement. 93	

DIAGURO case-control study: Recruitment was conducted in the Protestant Clinic (Lyon, 94	

France) during 2016-2017. Clinical cases included patients with post-surgery histological 95	

confirmation of primary or recurrent UC (BC or/and UTUCC at any stage and grade). 96	

Controls were patients with urological pathological conditions other than UC or undergoing 97	

colonoscopy (Supplemental Fig.1). Clinical and epidemiological data were collected. 98	

Prospective sample collection included tumor-urine-blood trios for cases (before surgery) and 99	

urine-blood duos for controls (Supplemental Fig. 1). Blood and urine samples were processed 100	

within two hours of collection and DNA from plasmas, white blood cells (WBC), urine 101	

supernatants (US), urine pellets (UP) and tumor tissues were processed using standard 102	

protocols (Supplemental Fig. 2). A qualified pathologist performed histological review of the 103	

tumor tissues.  104	

IPO-PORTO case-control replicative series: CellDNA from UP of 50 primary bladder cancer 105	

cases and 50 controls (healthy donors, with no history of cancer) were retrospectively selected 106	

from the Biobank of the Portuguese Oncology Institute of Porto. Clinical data were collected 107	

for all participants. Sample collection and processing are detailed in the supplement.  108	

UroMuTERT assay and mutation analysis  109	

A single-plex of 147bp was designed to be smaller than the 167bp average fragment size of110	

cfDNA and to cover the C228T and C250T genomic positions.  Experimental conditions for 111	

ultra-deep sequencing and assessment of detection thresholds are given in the supplement. 112	
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Variant calling was performed using our Needlestack algorithm specifically designed for the 113	

detection of low-allelic fraction mutations (MAFs) [15, 16]. It includes C228T and C250T 114	

and other rare BC mutations previously reported (C181T, C176G, C228A, CC242-243TT, 115	

G245T) [9, 11]. Reads with base quality below 13 at the evaluated positions were excluded. A 116	

p-value for being a variant (outlier from the regression) was calculated for each sample and 117	

transformed into q-values to account for multiple testing. A threshold of Phred scale q-values 118	

QVAL>20 was used to call variants (QVAL= -10 log10 (q-value)). 119	

Statistical analyses 120	

Mann-Whitney or Kruskal-Wallis tests were used for comparisons of quantitative variables 121	

between patient groups, Pearson χ2 tests and two-tailed Fisher exact tests used for categorical 122	

variables. Sensitivities, specificities and accuracy of the putative biomarkers were calculated 123	

for the different sources of DNA with confidence intervals computed with the Clopper-124	

Pearson method. Positive and negative predictive values (PPV and NPV) were calculated for 125	

patients at high-risk of BC, estimated at 30% for patients with hematuria or with lower 126	

urinary tract symptoms (LUTS) according to Springer and colleagues [12]. Confidence 127	

intervals for the predictive values are the standard logit confidence intervals given by 128	

Mercaldo et al. 2007 [17]. Analyses were conducted using IBM SPSS Statistics 20.  129	

RESULTS 130	

Performance of urinary UroMuTERT in detecting UC (DIAGURO cohort) 131	

The DIAGURO cohort included 94 controls and 93 UC cases, of whom 93.5% had BC; 4.3% 132	

had mixture of BC and other urogenital tumors and 2.2% had UTUCC.  90.3% of cases were 133	

non-muscle-invasive UC (NMIUC) and 48.4% diagnosed with primary UC. Overall, cases 134	

and controls were balanced with respect to baseline characteristics (Table 1). CellDNA and 135	
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cfDNA yields were compared and evaluated for associations with clinical parameters [18] 136	

(Supplemental Figs. 3/4). 137	

Technical validation showed that UroMuTERT could detect C228T and C250T mutations 138	

down to 0.8% and 0.5% MAFs respectively at sequencing read depth >10 000X 139	

(Supplemental Table 1, Fig. 5).  140	

Sequencing results were available for 594 samples corresponding to US cfDNA (n=176), UP 141	

cellDNA (n=187), plasma cfDNA (n=148), and tumor DNA (n=83) at a mean depth of 142	

9092X. The sensitivity of C228T and/or C250T was 81.8% for US and 83.5% for UP (Table 143	

2). While the false positive rate was lower for the US analysis (2.3%) compared to the UP 144	

(5.4%), the US assay performance was hampered by the number of samples without 145	

sequencing data (N=11; 5.8%) which was more frequent than for UP (N=3; 1.6%). US and 146	

UP median MAF was 19.2%, (range 0.6%–68.8%) and 23.7% (range 1.0%–75.2%) with 147	

34.7% and 22.1% of cases with MAF<10% respectively (Supplemental Table 2). In both US 148	

and UP, MAFs correlated with the tumor risk-score, with significantly higher mutational load 149	

in high-risk (pTa/pT1 high grade and any stage associated with CIS) compared with low-risk 150	

NMIUC (Low-grade pTa or pT1 tumors) (Supplemental Fig. 6). Combined urinary cfDNA 151	

and urine pellet DNA analysis outperforms either DNA types considered individually; overall 152	

sensitivity of 87.1% and specificity of 94.7%, with no missing data reported (Table 2). 153	

However, the differences were not statistically significant. Mutational status in US and UP 154	

was concordant in 79 of the 86 cases with sequencing data in both sample types (91.9%), of 155	

which 79.1% had TERT positive results (Figure 1, Supplemental Tables 3/4 for the lists of 156	

subjects with TERT variants).  Five cases with mutations in UP were negative in US and two157	

cases inversely. We noted comparable performance in detecting UC when rare but 158	

concomitant mutations to the predominant C228T/C250T detected in ten urinary DNAs of 159	

cases (C228A, CC242-243TT and a newly discovered G238A) were considered (Table 2, 160	
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Supplemental Table 3). There was no indication that UroMuTERT detection ability is 161	

modified by the primary or recurrent status of UC (Supplemental Table 5), neither by the 162	

tumor grade, risk score or muscle invasiveness (Supplemental Table 6) and the mutational 163	

pattern was equally distributed among those categories (Supplemental Fig. 7). We assessed 164	

the analytical sensitivity on the 83/93 available matched tumors and identified urinary TERT 165	

promoter mutation(s) in US or UP in 71 of the 72 TERT mutated tumors (analytical 166	

sensitivity of 98.6%; 95% CI, 92.5−99.96). Mutational status details between tumor and urine 167	

samples are provided in the supplement.  168	

One of six controls positive in US or UP had a history of prostate cancer. None of mutated 169	

controls had however incidental detection of prostate cancer after prostate resection at 170	

inclusion (N=7) (Figure 1). As there was no difference in sensitivity for the detection of 171	

primary and recurrent cases (Supplemental Table 5), extrapolated PPV and NPV for patients 172	

at a hypothetical 30% UC risk, e.g with hematuria, LUTS or others [12] were calculated on 173	

the overall set of data. They were best for US (PPV: 93·9% and NPV: 92·6%) (Table 2) but 174	

did not consider missing data (N=10). The combined UP/US analysis overcame these 175	

limitations with PPV and NPV of 87·6% and 94·4% respectively. 176	

Blood-based detection of TERT promoter mutations  177	

In contrast to urine, a much lower performance was observed for plasma cfDNA (sensitivity 178	

of 7.1%; P<0.001). Importantly, the five cases with mutations in plasma cfDNA scored 179	

positive also for US or UP. The detection of concomitant C228T/C228A in plasma cfDNA, 180	

US, and UP at consistent levels (mean of 17.3%/0.4%) in a control prompted us to screen 181	

WBC to determine the origin of the multiple TERT positivity. WBC tested positive for 182	

C228T/C228A at similar levels, which is suggestive of mosaicism or clonal hematopoiesis 183	

associated with hematuria. Three cases tested positive in WBC DNA (Fig. 1) and plasma 184	

cfDNA at similar AFs, and in US, UP and tumor DNA, one of which with C228T levels 185	
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consistent with a germline or non-clonal mosaicism (MAF range 32.6%–45.8%). In the two 186	

other cases MAFs were higher in urine (4- and 6-fold) and tumors (2 and 14-fold) than in 187	

WBC and plasma, suggesting a dual contribution of mosaicism and tumorigenesis to the 188	

urinary mutational load (Supplemental Table 3). 189	

Urinary TERT promoter mutations detection for primary UC (IPO-PORTO cohort) 190	

The reproducibility of UroMuTERT was assessed in 50 primary UC cases and 50 healthy 191	

controls, where only urine cellDNA was available (Table 1). 76% of the tumors were 192	

classified as high-grade and 64% categorized as NMIUC. The overall sensitivity was 68.0% 193	

with a specificity of 98.0% (Tables 2, Supplemental Table 6). While no difference in 194	

sensitivity of detecting primary or recurrent UC was observed in the DIAGURO cohort 195	

(86.7% and 87.5%), the 68% estimate observed in the PORTO cohort was compared to the 196	

sensitivity obtained in the same conditions, e.g for DIAGURO primary UC detected with 197	

cellDNA only (84.1%). A borderline non-significant 16.1% difference in detecting primary 198	

UC with cellDNA between the two cohorts was observed (P= 0.07). 199	

Comparison of UroMuTERT performance with urine cytology  200	

Sensitivity of UroMuTERT in detecting low-risk NMIUC was significantly higher (86.1%) 201	

than that of urine cytology (23.0%, P<0.0001, Fig. 2), whereas no difference was observed in 202	

detecting high-risk NMIUC or MIUC. In the DIAGURO cohort, combined UroMuTERT and 203	

urine cytology enabled the detection of 62/66 cases compared to the UroMuTERT only where 204	

59 patients had urine positive test(s) (sensitivity: 93.9%; 95% CI, 85.2−98.3 versus 89.4%; 205	

95% CI, 79.4−95.6 respectively). 206	

DISCUSSION 207	

We developed UroMuTERT, a simple, non-invasive and sensitive assay with detection 208	

thresholds of 0.8% and 0.5% MAFs for C228T and C250T mutations. We evaluated its 209	
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clinical validity for the detection of UC against urine cytology. Our study shows excellent 210	

clinical sensitivity (87.1%), specificity (94.7%) and analytical sensitivity (98.6%) of a single-211	

gene urinary biomarker based on tumor-derived TERT promoter mutations for the detection of 212	

all forms of UC. The diagnostic performance was best for urinary cfDNA and cellDNA 213	

combined. The ability of UroMuTERT to quantify low-level mutations enabled the detection 214	

of a significant proportion of cases with MAF<5% (26.4% in US and 13.0% in UP) and is 215	

therefore a critical parameter for enhanced sensitivity. Analyzing additional rare TERT 216	

promoter mutations did not improve UroMuTERT performance, as they were concomitant to 217	

C228T and/or C250T. 218	

In previous studies, sensitivities and specificities of the same markers tested on alternative 219	

assays and only in exfoliated urothelial cells (cellDNA) varied from 55% to 62% and from 220	

90% to 99% respectively in patients with incident or early BC and from 42% to 57% and 73% 221	

to 90% respectively in patients with recurrent BC [8, 9, 12, 13]. Two studies reported 222	

sensitivity of 80% using pre-surgery urine cellDNA but no precision was given on the 223	

primary or recurrence status [10, 11]. Our UroMuTERT assay demonstrated comparable 224	

performance to that of recently developed UroSEEK multiple markers assay (including 225	

C228T and C250T) for the detection of primary or early UC (sensitivity of 86.7% versus 226	

83%; Specificity of 94.7% versus 93%) and higher sensitivity for the detection of UC 227	

recurrence (87·5% versus 68%) [12].  228	

Importantly, our TERT mutation biomarkers achieved high specificity against patients with 229	

urological pathologies other than UC (including incidental prostate cancer cases) who may 230	

benefit from UroMuTERT screening as the symptoms may be similar to the ones observed in 231	

UC cases.  232	

Consistent with previous findings [10], the added diagnostic value of the urinary TERT 233	

promoter mutations as biomarkers was particularly evident for the detection low-risk NMIUC 234	
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as compared to urine cytology (sensitivity of 86.1% versus 23.5%), where cytology 235	

demonstrated poor performance [4]. Combined UroMuTERT and cytology assays improved 236	

sensitivity up to 93.9%. UroMuTERT (cfDNA or cellDNA) PPV of 87.6% and NPV of 237	

94.4% extrapolated to at high-risk subjects of UC (30% estimated risk [12]) reached 88.4% 238	

and 97.4% respectively when combined with cytology and assuming 100% specificity for 239	

cytology. Lower hypothetical risks of 20% and 5% for UC in patients with hematuria [19] and 240	

micro-hematuria [20], led to PPVs of 81.4% and 48.0% and NPVs of 98.4% and 99.7% 241	

respectively, which still demonstrates the superior diagnostic value of combined urinary 242	

UroMuTERT and cytology, which should be accurately assessed in large well-defined high-243	

risk group populations [21]. We expect UroMuTERT to change UC detection by 244	

complementing cytology or replacing urine-based markers which lack performance for 245	

clinical utility [22]. Its high accuracy for early-stage UC should improve timely transurethral 246	

tumor resections, which in turn will contribute to reduced risk of progression and improved 247	

patients’ survival. The high NPV in high-risk UC individuals may provide evidence for a 248	

reliable substitute to unnecessary cystoscopies to patients with negative tests, avoiding 249	

discomfort and risk of complications associated with invasive procedures while reducing high 250	

cost of clinical management of suspected UCs and patient non-adherence to screening or 251	

surveillance [23, 24]. We lay out a conceptual strategy integrating UroMuTERT as a primary 252	

diagnostic tool to individuals at high-risk or under surveillance for UC recurrence (Fig. 3).  253	

The sensitivity of our biomarkers in plasma is poor, reflecting low amounts of tumor-derived 254	

mutations in UC patients, such as recently described [25]. In addition, TERT positivity in 255	

plasma cfDNA can be confounded with rare leucocyte-derived mutations, whose influence on 256	

UC development should be further investigated. Rare mosaicism in patients with UC has been 257	

observed [26] and may add a layer of complexity in the interpretation of a urinary TERT 258	

positive test with negative subsequent cystoscopy or urography (Figure 3). 259	
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One limitation of our study is the inability to assess paired urinary cfDNA and cellDNA in the 260	

replication Portuguese series. Focusing on urinary cells we found a non-significant lower 261	

sensitivity in detecting Portuguese primary UC (66-68%) than French primary UC (84%), 262	

raising the question of whether differences in TERT promoter mutations frequency between 263	

the two cohorts exist or whether a subset of Portuguese urine samples carries mutations at 264	

MAF below detection thresholds.  265	

CONCLUSIONS 266	

Our study demonstrates unprecedented performance of a single-gene assay quantifying tumor-267	

derived TERT promoter mutation load in urine for the detection of all forms of UC and lays 268	

the foundations for large-scale validation and clinical utility studies. The role of rare TERT269	

promoter mutations in leucocytes on UC development and its impact on the clinical use of the 270	

biomarkers should be further examined. 271	

Author Contributions: AM and FLCK supervised the project. AM, GB, EW, JM, CJ, GS, 272	

FLCK contributed to the study design. AM, EV, SM, NF, BDT, GP, SMR, RH, CJ 273	

contributed to recruitment of participants and collection of samples and medical data. GD, 274	

NF, OL, PF, CC designed and conducted the experiments. CV, TMD, MF did the 275	

bioinformatics data analysis. PHA and GB did the statistical analysis. BAA conducted 276	

pathological examinations. PHA, MZ, MIH, JM, CJ, GS AND FLCK interpreted the 277	

validation set. PHA and FLCK wrote the manuscript. All authors reviewed the manuscript 278	

and approved the final version. 279	

Financial disclosures: we declare no competing interests 280	

Funding/Support and role of the sponsor: The study was supported by the French Cancer 281	

League and the French Foster Research in Molecular Biology. SM was supported by the 282	

French Association for Research on Molecular Biology. OL, PF and TMD were supported by 283	



	

	

13	

13	

the French Cancer League. The work reported in this paper was undertaken during the tenure 284	

of PHA’s and MIH’s postdoctoral fellowships from the International Agency for Research on 285	

Cancer, partially supported by the European Commission FP7 Marie Curie Actions – People 286	

– Co-funding of regional, national and international programmes (COFUND). 287	

Acknowledgments: The authors would like to thank all patients participating in the case-288	

control studies, Thierry Degoul, director of the Protestant clinic for his support to the 289	

DIAGURO project and the clinical research team members who supported the sample 290	

collection (From the Urology department of the Protestant Clinic of Lyon, France; Aurélie 291	

Couyotopoulo, Emilie Laurent, Emilie Morcillo, Noemie Tarride, Estelle Maillet, Véronique 292	

Richard, Audrey Franchi, Odette Jaume, Rachel Maynard). We also thank René Lattes for 293	

precious support in fund raising, Jean-Damien Combes for legal advice, Helene Renard for 294	

technical assistance in sample collection, Nolwenn Saunier and Isabelle Rondy for 295	

administrative support and Katarzyna Szymanska for scientific editing.   296	



	

	

14	

14	

REFERENCES 297	
 298	
[1] Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer 299	

Incidence and Mortality: A Global Overview and Recent Trends. European urology. 300	
2017;71:96-108. 301	

[2] Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO 302	
Classification of Tumours of the Urinary System and Male Genital Organs-Part A: 303	
Renal, Penile, and Testicular Tumours. European urology. 2016;70:93-105. 304	

[3] Lee JY, Kim K, Sung HH, Jeon HG, Jeong BC, Seo SI, et al. Molecular 305	
Characterization of Urothelial Carcinoma of the Bladder and Upper Urinary Tract. 306	
Translational oncology. 2018;11:37-42. 307	

[4] Lotan Y, Roehrborn CG. Sensitivity and specificity of commonly available bladder 308	
tumor markers versus cytology: results of a comprehensive literature review and meta-309	
analyses. Urology. 2003;61:109-18; discussion 18. 310	

[5] Baard J, de Bruin DM, Zondervan PJ, Kamphuis G, de la Rosette J, Laguna MP. 311	
Diagnostic dilemmas in patients with upper tract urothelial carcinoma. Nature reviews 312	
Urology. 2017;14:181-91. 313	

[6] Zuiverloon TCM, de Jong FC, Theodorescu D. Clinical Decision Making in 314	
Surveillance of Non-Muscle-Invasive Bladder Cancer: The Evolving Roles of Urinary 315	
Cytology and Molecular Markers. Oncology (Williston Park, NY). 2017;31:855-62. 316	

[7] Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, Jr., et al. TERT 317	
promoter mutations occur frequently in gliomas and a subset of tumors derived from 318	
cells with low rates of self-renewal. Proceedings of the National Academy of Sciences 319	
of the United States of America. 2013;110:6021-6. 320	

[8] Kinde I, Munari E, Faraj SF, Hruban RH, Schoenberg M, Bivalacqua T, et al. TERT 321	
promoter mutations occur early in urothelial neoplasia and are biomarkers of early 322	
disease and disease recurrence in urine. Cancer research. 2013;73:7162-7. 323	

[9] Allory Y, Beukers W, Sagrera A, Flandez M, Marques M, Marquez M, et al. 324	
Telomerase reverse transcriptase promoter mutations in bladder cancer: high 325	
frequency across stages, detection in urine, and lack of association with outcome. 326	
European urology. 2014;65:360-6. 327	

[10] Descotes F, Kara N, Decaussin-Petrucci M, Piaton E, Geiguer F, Rodriguez-Lafrasse 328	
C, et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic 329	
TERT promoter mutations in urine. British journal of cancer. 2017;117:583-7. 330	

[11] Hurst CD, Platt FM, Knowles MA. Comprehensive mutation analysis of the TERT 331	
promoter in bladder cancer and detection of mutations in voided urine. European 332	
urology. 2014;65:367-9. 333	

[12] Springer SU, Chen CH, Rodriguez Pena MDC, Li L, Douville C, Wang Y, et al. Non-334	
invasive detection of urothelial cancer through the analysis of driver gene mutations 335	
and aneuploidy. eLife. 2018;7. 336	

[13] Ward DG, Baxter L, Gordon NS, Ott S, Savage RS, Beggs AD, et al. Multiplex PCR 337	
and Next Generation Sequencing for the Non-Invasive Detection of Bladder Cancer. 338	
PloS one. 2016;11:e0149756. 339	

[14] Togneri FS, Ward DG, Foster JM, Devall AJ, Wojtowicz P, Alyas S, et al. Genomic 340	
complexity of urothelial bladder cancer revealed in urinary cfDNA. European journal 341	
of human genetics : EJHG. 2016;24:1167-74. 342	

[15] Le Calvez-Kelm F, Foll M, Wozniak MB, Delhomme TM, Durand G, Chopard P, et 343	
al. KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-344	
control. Oncotarget. 2016;7:78827-40. 345	

[16] Foll M. Needlestack: A multi-sample somatic variant caller. 2018. 346	



	

	

15	

15	

[17] Mercaldo ND, Lau KF, Zhou XH. Confidence intervals for predictive values with an 347	
emphasis to case-control studies. Statistics in medicine. 2007;26:2170-83. 348	

[18] Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, Palou J, Algaba F, 349	
Vicente-Rodriguez J. Primary superficial bladder cancer risk groups according to 350	
progression, mortality and recurrence. The Journal of urology. 2000;164:680-4. 351	

[19] Ngo B, Papa N, Perera M, Bolton D, Sengupta S. Bladder cancer diagnosis during 352	
haematuria investigation - implications for practice guidelines. BJU international. 353	
2017;119 Suppl 5:53-4. 354	

[20] Grossfeld GD, Litwin MS, Wolf JS, Hricak H, Shuler CL, Agerter DC, et al. 355	
Evaluation of asymptomatic microscopic hematuria in adults: the American 356	
Urological Association best practice policy--part I: definition, detection, prevalence, 357	
and etiology. Urology. 2001;57:599-603. 358	

[21] Larre S, Catto JW, Cookson MS, Messing EM, Shariat SF, Soloway MS, et al. 359	
Screening for bladder cancer: rationale, limitations, whom to target, and perspectives. 360	
European urology. 2013;63:1049-58. 361	

[22] Clinton T, Lotan Y. Review of the Clinical Approaches to the Use of Urine-based 362	
Tumor Markers in Bladder Cancer. Rambam Maimonides medical journal. 2017;8. 363	

[23] Eble JN, Sauter G, Epstein J, Sesterhenn I. Pathology and genetics of tumours of the 364	
urinary system and male genital organs. 3rd edition ed. France: Lyon, Oxford, IARC 365	
Press 2004. 366	

[24] Schrag D, Hsieh LJ, Rabbani F, Bach PB, Herr H, Begg CB. Adherence to 367	
surveillance among patients with superficial bladder cancer. Journal of the National 368	
Cancer Institute. 2003;95:588-97. 369	

[25] Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. 370	
Enhanced detection of circulating tumor DNA by fragment size analysis. Science 371	
translational medicine. 2018;10. 372	

[26] Hafner C, Toll A, Real FX. HRAS mutation mosaicism causing urothelial cancer and 373	
epidermal nevus. The New England journal of medicine. 2011;365:1940-2. 374	

 375	



	 1	

Table 1. Patient’s baseline characteristics 
 DIAGURO Cohort (N=187) PORTO Cohort (N=100) 

Characteristics UC patients  
(N=93) 

Controls  
(N=94) 

UC patients 
(N=50) 

Controls 
(N=50) 

Median age (range)- yr 72 (42–95) 70 (34–93) 68 (37–91.4) 46 (38–62) 
Sex - no. (%)     
  Female 17 (18.3) 23 (24.5) 5 (10.0) 26 (52.0) 
  Male 76 (81.7) 71 (75.5) 45 (90.0) 24 (48.0) 
Smoking status - n. (%)     
  Never 23 (24.7) 39 (41.5) – – 
  Former 44 (47.3) 44 (46.8) – – 
  Current 21 (22.6) 11 (11.7) – – 
  Missing 5 (5.4) – – – 
Alcohol status - n. (%)     
  Never 23 (24.7) 22 (23.4) – – 
  Ex-drinker 13 (14.0) 7 (7.4) – – 
  Current drinker 52  (55.9) 64 (68.1) – – 
  Missing 5 (5.4) 1 (1.1)   
Cancer history - n. (%)     
  No 68 (73.1) 82 (87.2) – – 
  Yes 18 (19.4) 12 (12.8) – – 
  Missing 7 (7.5) – – – 
Diabetes - n. (%)     
  No 69 (74.2) 82 (87.2) – – 
  Yes 18 (19.4) 12 (12.8) – – 
  Missing 6 (6.4) – – – 
Disease status - n. (%)     
  Primary 45 (48.4) – 50 (100.0) – 
  Recurrence 48 (51.6) – 0 (0.0) – 
Tumor stage - n. (%)     
  CISa 12 (12.9) – – – 
  pTa 51 (54.8) – 18 (36.0) – 
  pTa–CIS 5 (5.4) – – – 
  pT1 6 (6.4) – 14 (28.0) – 
  pT1–CIS 10 (10.8) – – – 
 > pT1 6 (6.5) – 18 (36.0)  
 > pT1–CIS 3 (3.2) – – – 
Tumor grade - n. (%)     
  Low  38 (40.9) – 12 (24.0) – 
  High  55  (59.1) – 38  (76.0) – 
Tumor risk score - n. (%)     
  Low-risk NMIUCb 36 (38.7) – 12 (24.0)  
  HIgh-risk NMIUCc 48 (51.6) – 20 (40.0)  
  MIUCd 9 (9.7) – 18 (36.0)  
Urine cytology - n. (%)     
  Negative 29 (31.2) – 8 (16.0) – 

Tables 1-2
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  Atypical 6 (6.5) – – – 
  Low grade 3 (3.2) – – – 
  High grade 28 (30.1) – 8 (16.0) – 
  Missing 27 (29.0) – 34 (68.0) – 
Median DNA yield (range) - ng/ml    
  US cfDNAe 5.0 (0.3–808.9) 6.2 (0.1–1073.9)  – – 
  UP cellDNAf 55.8 (1.1–460.5)  30.93 (1.9–389.8)  – – 
  Plasma cfDNA 20.4 (9.3–8833.3) 20.7 (9.3–4466.7) – – 
a Carcinoma In Situ 
b Low-risk Non Muscle Invasive Urothelial Carcinoma (pTa/pT1, low grade) 
c High-risk Non Muscle Invasive Urothelial Carcinoma (pTa/pT1, high grade with any stage 
associated with CIS) 
d Muscle Invasive Urothelial Carcinoma 
e Urine Supernatant cell-free DNA 
f Urine Pellet cellular DNA  
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Table 2. Performance of body fluid-based TERT promoter mutations in detecting UC 

 DIAGURO Cohort PORTO cohort 
US cfDNA or UP 

cellDNA US cfDNA  UP cellDNA  Plasma cfDNA UP cellDNA  
(N=187) (N= 176) (N= 184) (N=148) (N=100) 

C228T or C250T 
True Positive - no 81 72 76 5 33 
True Negative - no 89 86 88 77 50 
False positive - no 5 2 5 1 0 
False negative - no 12 16 15 65 17 
No data - no 0 11 3 39 0 
Sensitivity (95% CI) - % 87.1 (78.6 - 93.2) 81.8 (72.2 - 89.2) 83.5 (74.27 - 90.47) 7.1 (2.4 -16.0) 66.0 (51.2 - 78.8) 
Specificity (95% CI) - % 94.7 (88.0 - 98.3) 97.7 (92.0 - 99.7) 94.6 (87.9 - 98.2) 98.7 (93.1 - 100.0) 100.0  (92.9 - 100.0) 
Positive likelihood ratio (95% CI) - % 16.4 (7.0 - 38.6) 36.0 (9.1 - 142.2) 15.5 (6.6 - 36.6) 5.6 (0.67 - 46.54) - 
Negative likelihood ratio (95% CI) - % 0.1 (0.1 - 0.2) 0.2 (0.1 - 0.3) 0.2 (0.1 - 0.3) 0.9 (0.9 - 1.0) 0.34 (0.2 - 0.5) 

Positive predictive value* (95% CI) - % 87.6 (83.7 - 90.6) 93.9 (90.4 - 96.1) 86.6 (82.8 - 90.0) 70.0 (56.0 - 83.4) 100 
Negative predictive value* (95% CI) - % 94.4 (92.7 - 95.8) 92.6 (90.7 - 94.1) 93.1 (91.3 - 94.6) 71.2 (70.6 - 72.0) 87.3 (85.4 - 89.0) 
Accuracy* (95% CI) - % 92.4 (90.6 - 94.0) 92.9 (91.1 - 94.4) 91.3 (89.4 - 93.0) 71.2 (68.3 - 74.0) 89.8 (87.8 - 91.6) 

All TERT mutations 
True Positive 81 72 77 5 34 
True Negative 88 85 88 77 49 
False positive 6 3 5 1 1 
False negative 12 16 14 65 16 
No data - no 0 11 3 39 0 
Sensitivity (95% CI) - % 87.1 (78.6 - 93.2) 80.7 (70.9 - 88.3) 84.6 (75.5 - 91.3) 7.1 (2.4 -16.0) 68.0 (53.3 - 80.5) 
Specificity (95% CI) - % 93.6 (86.6 - 97.6) 96.6 (90.4 - 99.3) 94.6 (87.9 - 98.2) 98.7 (93.1 - 100.0) 98.0 (89.3 - 100.0) 
Positive likelihood ratio (95% CI) - % 13.7 (6.3 - 29.7) 24.0 (7.9 - 73.3) 15.7 (6.7 - 37.1) 5.6 (0.67 - 46.54) 34.0 (4.8 - 238.9) 
Negative likelihood ratio (95% CI) - % 0.1 (0.1 - 0.2) 0.2 (0.1 - 0.3) 0.2 (0.1 - 0.3) 0.9 (0.9 - 1.0) 0.3 (0.2 - 0.5) 
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Positive predictive value* (95% CI) - % 85.3 (81.3 - 88.6) 91.1 (87.3 - 93.8) 87.0 (83.0 - 90.1) 70.0 (56.0 - 83.4) 97.1 (82.9 - 99.6) 
Negative predictive value*  (95% CI) - % 94.4 (92.6 - 95.8) 92.5 (90.6 - 94.0) 93.5 (91.7 - 95.0) 71.2 (70.6 - 72.0) 75.4 (67.1 - 82.1) 
Accuracy* (95% CI) - % 91.6 (89.7 - 93.2) 92.1 (90.2 - 93.7) 91.6 (89.8 - 93.2) 71.2 (68.3 - 74.0) 83.0 (74.2 - 89.8) 
US cfDNA: Urine Supernatant cell-free DNA 
UP cellDNA : Urine Pellet cellular DNA  

* Positive and negative predictive values were calculated for patients at high risk of developing bladder cancer, estimated at 30% for patients with hematuria 
or, patients with lower urinary tract symptoms or others according to Springer and colleagues.12 
No data denotes samples that were run with the UroMuTERT assay at least twice with two independent amplification reactions and for which no sequencing 
reads were obtained. 
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Figures Legend 
 
 

Figure 1. Overview of the detection of TERT promoter mutations by the 
UroMuTERT assay applied to body fluids and tumors of DIAGURO primary 
and recurrent UC cases and body fluids of controls. 
UC denotes Urothelial Carcinoma; US cfDNA denotes Urine Supernatant cell-free 
DNA; UP DNA denotes Urine Pellet DNA; CIS denotes Carcinoma in situ; MIUC 
denotes Muscle-Invasive urothelial carcinoma and a stands for pTa/CIS               
* other than UC                                                          
 
Figure 2. Performance of cytology and urinary TERT promoter mutations in 
detecting various risk categories of UC in the DIAGURO (A) and the PORTO 
(B) cohorts. Tumors are categorized in three groups: low-risk non–muscle- invasive 
urothelial cancer (NMIUC) (pTa/pT1, low grade), high-risk NMIUC (pTa/pT1 high 
grade and any stage associated with CIS), and muscle- invasive urothelial MIUC 
(pT2, pT3 or pT4). Risk classification of NMIUC was adapted from Millan-
Rodriguez and colleagues. 18  
 
Figure 3. Proposed strategy integrating urinary TERT mutations analysis to 
current medical standards for the management of UC of the bladder and of the 
upper urinary tract 
UC denotes Urothelial Cancer; UTUCC denotes Upper tract urothelial cell carcinoma; 
LUTS denotes Lower urinary tract symptoms; US denotes Urine Supernatant; UP 
denotes Urine Pellet; WBC denotes White Blood Cells; MDCTU denotes 
Multidetector Computed Tomographic Urography 
 

Figures_legend



CHAPTER 4. APPLICATIONS TO CIRCULATING-TUMOR DNA DATA

4.4 Scientific contribution C

In this study we were interested in the identification of TP53 mutations in the cfDNA of SCLC

cancer cases for early detection. Compared to the previous studies that were focused on

particular DNA positions (recurrently mutated positions in these types of cancer), here we

targeted a whole gene, the TP53 gene, because it has been reported that the majority of SCLC

case tumors harbor at least one deleterious mutation in these gene [56]. In addition, because

mutant p53 proteins (due to deleterious mutations of the TP53 gene) both lose their tumor

suppressive role and can gain oncogenic functions that provide survival advantage to cells

[110], non-cancer patients are not expected to present TP53 deleterious mutations.

Here we estimated the presence of TP53 mutations in the cfDNA of plasma samples

from 51 SCLC cases and 123 non-cancer controls using a deep sequencing amplicon-based

approach (IonTorrent Proton sequencing technology). For this, we used our needlestack al-

gorithm to detect candidate mutations and we used basic thresholds on variant statistic in

order to increase our specificity, because, contrary to previously presented studies, here we

did not screened only a few positions but an entire gene. We filtered variants found to be in

strand bias (corresponding to a RVSB>0.85) and kept only meaningful deleterious mutations,

i.e., found in the COSMIC database [52] and is a nonsense, indel, splicing or missense variant

that is classified as deleterious by SIFT [102] or Polyphen [5]. Finally, we detected mutations

in 49% of SCLC cases (in 5.7% of early-stage cases and in 54.1% of late-stage cases), with

the lowest VAF detected around 0.1%. Interestingly, 11.4% of non-cancer controls harbored

deleterious TP53 mutations in their plasma cfDNA, and this result was replicated in an inde-

pendent cohort (10.8% of a total of 102 non-cancer controls). This suggests that screening

the TP53 cfDNA mutations in order to develop a cancer biomarker presents challenges in

term of biomarker specificity.

4.4.1 Article E
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Circulating tumor DNA (ctDNA) is emerging as a key potential biomarker for post-diagnosis surveillance but it
may also play a crucial role in the detection of pre-clinical cancer. Small-cell lung cancer (SCLC) is an excellent
candidate for early detection given there are no successful therapeutic options for late-stage disease, and it dis-
plays almost universal inactivation of TP53. We assessed the presence of TP53 mutations in the cell-free DNA
(cfDNA) extracted from the plasma of 51 SCLC cases and 123 non-cancer controls. We identified mutations
using a pipeline specifically designed to accurately detect variants at very low fractions.We detected TP53muta-
tions in the cfDNA of 49% SCLC patients and 11.4% of non-cancer controls. When stratifying the 51 initial SCLC
cases by stage, TP53 mutations were detected in the cfDNA of 35.7% early-stage and 54.1% late-stage SCLC pa-
tients. The results in the controls were further replicated in 10.8% of an independent series of 102 non-cancer
controls. The detection of TP53mutations in 11% of the 225 non-cancer controls suggests that somatic mutations
in cfDNA among individuals without any cancer diagnosis is a common occurrence, and poses serious challenges
for the development of ctDNA screening tests.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cell-free DNA (cfDNA) refers to nucleic acids detected in body fluids
and are thought to arise from two sources: passive release through cell
death (Jahr et al., 2001), and active release by cell secretion (Stroun et
al., 2000). DNA from cancer cells also contributes to the total load of
cfDNA (Schwarzenbach et al., 2011), and the fraction of cfDNA that
comes from cancer cells is called circulating-tumor DNA (ctDNA).

ctDNA has been estimated to make up about 0.01%–1% of cfDNA for
early-stage disease, reaching over 40% for late-stage disease (Beaver et
al., 2014; Bettegowda et al., 2014; Couraud et al., 2014; Diehl et al.,
2007; Forshew et al., 2012; Newman et al., 2014; Sausen et al., 2015).
Despite its intrinsic limitations, including technical issues in the sample
collection, detection, and identification of tumor origin, ctDNA is emerg-
ing as a key potential biomarker for monitoring response to treatment
and relapse (Dawson et al., 2013; Esposito et al., 2014; Forshew et al.,
2012; Garcia-Murillas et al., 2015; Murtaza et al., 2013; Roschewski et
al., 2015; Siravegna et al., 2015). The potential of ctDNA is not limited
to post-diagnosis surveillance but it may also play a crucial role in the
detection of pre-clinical cancer. If successful, this could be translated
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into much improved cancer survival, in particular for those cancer sites
that are typically diagnosed at a late stage, and for which survival is
poor, such as lung, pancreatic, or esophageal cancer (Brennan and
Wild, 2015). However, implementation of ctDNA tests that detect pre-
clinical disease in a non-symptomatic population will have to show an
extremely high specificity if they are to provide meaningful results, or
be part of a multi-modal screening program.

Very few studies have focused on the evaluation of ctDNA detection
in early-stage cancers (i.e. stage I-II tumors) with even less data avail-
able on the detection of ctDNA in blood samples from pre-symptomatic
cancer patients (Amant et al., 2015; Beaver et al., 2014; Bettegowda et
al., 2014; Garcia-Murillas et al., 2015; Gormally et al., 2006;
Jamal-Hanjani et al., 2016; Sausen et al., 2015); Table S1). In addition,
these studies have aimed to detect specific mutations in cfDNA (most
of them using digital droplet PCR) following previous assessment of
the tumor mutational profile. This approach is only viable for cancers
with common hot-spot mutations and is not amenable for most screen-
ing purposes. This is because early detection of pre-clinical cancer re-
quires variant detection to be done without prior knowledge from
tumor tissue of the expected mutations. Another limitation of these
studies is the major assumption that circulating-mutated fragments
would be absent (or very rare) in individuals without cancer. Demon-
strating that any ctDNA detection marker has a specificity close to
100% would be of fundamental importance for large-scale utility in an
asymptomatic population (Wentzensen and Wacholder, 2013).

Small-cell lung cancer (SCLC) accounts for about 15% of all lung tu-
mors andhas a 5-year survival below5%.While SCLC tumors are initially
sensitive to chemotherapy, they invariably relapse with a resistant and
deadly disease. We and others have found that, contrary to lung adeno-
carcinomas and squamous-cell lung carcinomas,mutations in therapeu-
tic targets are rare in SCLC (George et al., 2015; Peifer et al., 2012; Rudin
et al., 2012). TP53 is inactivated in virtually all SCLC cases, and TP53mu-
tations are known to be an early event in the development of this dis-
ease. Given the almost uniform presence of TP53 mutations in SCLC,
we have investigated towhat extentmutations in this gene can be iden-
tified in the cfDNA of patients with SCLC tumors. In addition, we have
also assessed two independent series of non-cancer controls to evaluate
the specificity of the approach.

2. Material and Methods

2.1. Study Population

Small-cell lung cancer (SCLC) patients and controls were recruited
through an IARC case-control study coordinated in Moscow from 2006
to 2012 (Wozniak et al., 2015). Cases were incident cancer patients col-
lected from the Russian N.N. Blokhin Cancer Research Centre and the
Moscow City Clinical Oncology Dispensary. The staging of the SCLC
cases is based on the recent recommendations of the International Asso-
ciation for the Study of Lung Cancer (IASLC) (Nicholson et al., 2016).
Controls were recruited from individuals visiting two Moscow general
hospitals for disorders unrelated to lung cancer and its associated risk
factors (Table 1). The controls were matched for age, sex, and smoking
status. All study participants provided written-informed consent and
participated in an interview. Peripheral blood was collected in EDTA
tubes at the time of interview and processed as rapidly as possible (gen-
erally within 2 h). For cases, blood draw was performed before surgery
and any adjuvant treatment. Plasma samples were isolated by centrifu-
gation of whole blood at 2000 ×g for 10min at room temperature. Sam-
ples were stored at−80 °C. All specimens were obtained in accordance
with the declaration of Helsinki guidelines and were approved by the
local Institutional Review Board and the IARC Ethics Committee. A
total of 52 SCLC cases and 165 controls were initially included but
only 51 SCLC and 123 controls passed the sequencing QC criteria (see
Sequencing Data Analyses, Annotation, and Filters), and were therefore
included in down-stream analyses.

Table 1
Characteristics of small-cell lung cancer cases and controls from Russia, and additional
replication controls from Greece, Czech Republic, Italy, and Argentina.

Cases Controls Replication
controls

Origin (country)
Russia 51 123
Greece 9 (8.8%)
Czech Republic 14 (13.7%)
Italy 40 (39.2%)
Argentina 39 (38.2%)
Total 51 123 102

Age at diagnosis
b40 2

(3.9%)
2 (1.6%) 3 (2.9%)

40–49 4
(7.8%)

11
(8.9%)

15 (14.7%)

50–59 15
(29.4%)

42
(34.2%)

33 (32.4%)

60–69 22
(43.1%)

55
(44.7%)

33 (32.4%)

70+ 8
(15.7%)

13
(10.6%)

18 (17.7%)

Sex
Male 43

(84.3%)
107
(87.0%)

76 (74.5%)

Female 8
(15.7%)

16
(13.0%)

26 (25.5%)

Smoking status
Never 5

(9.8%)
35
(28.4%)

34 (33.4%)

Former 6
(11.8%)

28
(22.8%)

25 (24.5%)

Current 40
(78.4%)

60
(48.8%)

43 (42.1%)

Alcohol status
Never 30

(58.8%)
32
(26.0%)

16 (15.7%)

Former 4
(7.8%)

18
(14.6%)

14 (13.7%)

Current 17
(33.4%)

73
(59.4%)

72 (70.6%)

Tumor stage of cases
I 7

(13.7%)
II 7

(13.7%)
III 28

(54.9%)
IV 9

(17.6%)

Disease type of hospital controls
Infectious & parasitic diseases 0 (0.0%) 1 (1.0%)
Neoplasms 3 (2.4%) 0 (0.0%)
Endocrine, nutritional and metabolic diseases
and immunity disorders

6 (4.9%) 1 (1.0%)

Diseases of blood and blood-forming organs 2 (1.6%) 1 (1.0%)
Diseases of the nervous system and sense
organs

28
(22.8%)

6 (5.9%)

Diseases of the sense organs 0 (0.0%) 5 (4.9%)
Diseases of the circulatory system 25

(20.3%)
2 (2.0%)

Diseases of the respiratory system 3 (2.4%) 3 (2.9%)
Diseases of the digestive system 19

(15.4%)
19 (18.6%)

Diseases of the genitourinary system 19
(15.4%)

17 (16.7%)

Diseases of the skin and subcutaneous tissue 3 (2.4%) 2 (2.0%)
Diseases of the musculoskeletal system and
connective tissue

9 (7.3%) 18 (17.6%)

Symptoms, signs and ill-defined conditions 0 (0.0%) 8 (7.8%)
Injury and poisoning 6 (4.9%) 18 (17.6%)
External causes 0 (0.0%) 1 (1.0%)
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In order to further evaluate the prevalence of circulating-mutated
fragments in non-cancer controls, 114 additional controls were re-
trieved from two large multicenter case-control studies coordinated
by IARC. Onewas a study on alcohol-related cancers and genetic suscep-
tibility in Europe (the ARCAGE study) that was conducted from 2002 to
2005 and from which we included hospital-based controls recruited in
Prague (Czech Republic), Athens (Greece), Aviano, Padova and Turin
(Italy). The second was the Latin American study of head and neck can-
cer conducted from 1998 to 2002 and fromwhichwe selected hospital-
based controls from two institutions in Buenos Aires (Argentina). Addi-
tional details of the 2 largemulticenter case-control studies are included
elsewhere (Lagiou et al., 2009; Ribeiro et al., 2011). Out of the 114 con-
trols initially included, 102 passed the sequencing QC criteria (see
Sequencing Data Analyses, Annotation, and Filters), and were therefore
included in down-stream analyses.

2.2. cfDNA Extraction

cfDNA was extracted from 0.8–1.3 mL of plasma using the
QIAamp DNA Circulating Nucleic Acid kit (Qiagen) following
manufacturer's instructions. cfDNA was eluted into 100 μL of elution
buffer and quantified with the Qubit DNA high-sensitivity assay kit
(Invitrogen Corporation). Details regarding amount of cfDNA are in-
cluded in the Table S2.

2.3. Primer Design and Amplification of Targets

Twenty-one amplicons of 150 bp in size were designed (Eurofins
Genomics Ebersberg, Germany) to cover exons 2 to 10 of TP53. The
GeneRead DNAseq Panel PCR Kit V2 (Qiagen) was used for target en-
richment. A validated in-house protocol was used to set up multiplex
PCRs in 10 μL reaction volume, containing 5 ng cfDNA, 60 nM of primer
pool and 0.73 μL of HotStarTaq enzyme. The experiments were carried
out in two physically isolated laboratory spaces: one for sample prepa-
ration and another one for post-amplification steps. Amplification was
carried out in a 96-well format plates DNA engine Tetrad 2 Peltier Ther-
mal Cycler (BIORAD) as follows: 15min at 95 °C and 30 cycles of 15 s at
95 °C and 2 min at 60 °C and 10 min at 72 °C.

2.4. Library Preparation and Sequencing

Following target enrichment, PCR products were purified using
Serapure beads (prepared in-house and produced by ThermoFisher
Scientific Inc.). A ratio of 2:1 of Serapure beads to PCR products was
used. Purified amplicons were quantified with the Qubit DNA high-
sensitivity assay kit (Invitrogen Corporation). Library preparation
was done using 150 ng of purified PCR products and the NEBNext
Fast DNA Library Prep Set for Ion Torrent (New England Biolabs, Ips-
wich, MA, USA) following manufacturer's instructions. Amplicons
were end-repaired and ligated to the specific adapters and individual
barcodes (designed in-house and produced by Eurofins MWG Oper-
on, Ebersberg, Germany). Libraries were cleaned up, amplifiedwith a
final step of 6 PCR cycles, pooled in an equimolar way and loaded
onto a 2% agarose gel and subjected to an electrophoresis at 150 V
for 1.5 h. Fragments of 180–220 bp in size were selected and the
pooled DNA library was recovered from the gel using the QIAquik
Gel Extraction kit (Qiagen). The quality and quantity of the library
was then assessed on the Agilent 2100 Bioanalyzer on-chip electro-
phoresis (Agilent Technologies, USA) for the absence of possible
adapter dimers and heterodimers. The pooled libraries were se-
quenced on the Ion Torrent™ Proton Sequencer (Life Technologies
Corp., USA) aiming for deep coverage (5,000×), using the Ion PI™
Hi-Q™ OT2 200 Kit and the Ion PI™ Hi-Q™ Sequencing 200 Kit
with the Ion PI chip V3 (Life Technologies Corp., USA), following
the manufacture's protocols.

2.5. Technical Duplication

Technical duplicates were undertaken for each sample including
amplification, library preparation, and sequencing. Each technical dupli-
cate pair was assessed on separate plates to limit the possibility of a
contamination.

2.6. Sequencing Data Analyses, Annotation, and Filters

Short reads were aligned to the hg19 human reference genome and
BAM files were generated using the Torrent Suite software (v4.4.2) with
default parameters. Readswith amapping quality below 20were exclud-
ed from subsequent analysis. We also excluded those libraries for which
the on-target median coverage was significantly lower in comparison to
the other libraries sequenced in the same batch. On-target median cover-
age for both libraries is shown in Table S2.

For the calling of variants we used Needlestack, a recently developed
ultra-sensitive variant caller, which estimates the distribution of se-
quencing errors across multiple samples to reliably identify variants
present in very low proportion (https://github.com/IARCbioinfo/
needlestack) (unpublished data; Delhomme et al.). Contrary to most
existing algorithms, Needlestack can deal with both single nucleotide
substitutions (SNVs) and short indels. At each position and for each can-
didate variant, sequencing errors are modeled using a robust negative
binomial regression (Aeberhard et al., 2014), with a linear link and a
zero intercept. True variants are outliers from this error model (Fig.
1a). The robust estimator of the over-dispersion parameter avoids bias
due to these outliers (Aeberhard et al., 2014). For each sample a p-
value against the null hypothesis of being a sequencing error is calculat-
ed, and further transformed into a q-value using the Benjamini and
Hochberg false-discovery rate control method (Benjamini and Yosef,
1995). Q-values are reported as a Phred-scale quality score: Q = −10
log10(q-value), and we used a threshold of Q N 50 to call variants. For
each variant, we also calculated the relative variant strand bias defined
by:

RVSB ¼ max AOpDPm;AOmDPp
� �

AOpDPm þ AOmDPp:

where DP and AO denote respectively the total number of reads and the
number of reads matching the candidate variant, with the subscripts p
and m referring to the forward and reverse strands respectively. In the
complete absence of strand bias, RVSB = 0.5 and AOp/AOm = DPp/DPm,
whereas for a completely biased variant, RVSB= 1. We filtered out vari-
ants with RVSB N 0.85.

Variant calls were annotated using ANNOVAR (Yang and Wang,
2015). We only considered meaningful TP53 mutations those that
matched the following criteria: the mutation has already been reported
in COSMIC and themutation is a nonsense, indel, splicing or a missense
variant that is classified as deleterious by SIFT or Polyphen.

2.7. Analyses of Technical Duplicates

While Needlestack models recurring errors, rare errors such as those
generated by the DNA polymerase will be identified as variants. Such er-
rors will be generally specific to a particular preparation. To filter out
these rare errors, we required each of the individual's technical duplicate
to be a Needlestack outlier (Fig. 1a). Additionally, we identified and ex-
cluded a few genomic positions that show a particularly high proportion
(N10%) of these errors (i.e. higher than the estimated sequencing error
rate, but not always replicable in two independent preparations).

2.8. Statistical Analyses

Effect of age, smoking, and alcohol status on the presence of TP53
mutations was assessed using logistic regression adjusting one for the
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others. Effect of case-status on the presence of TP53 mutations was
assessed using unadjusted logistic regression. p-Values to test the differ-
ences between the pattern of mutations in cases and controls are

derived from Pearson's chi-square tests. All the analyses were conduct-
ed using SAS 9.4. For comparison of allelic fractions, we log-transformed
the data and performed a t-test (2 tailed, unequal variance).

Fig. 1. Characteristics of TP53 mutations in cases and controls (a) Two examples of variants called using Needlestack's regression model of sequencing error. Each dot represents a
sequenced library (two dots per sample) colored according to its phred-scaled q-value. The black regression line shows the estimated sequencing-error rate along with the 99%
confidence interval (black dotted lines) containing samples. Colored-dotted lines correspond to the limits of regions defined for different significance q-value thresholds. Both
technical duplicates appear as outliers from the regression (in red), and are therefore classified as carrying the given mutation; (b) Percentage of TP53 mutated samples in the cfDNA
of Russian cases and controls, and replication controls; (c) Distribution of TP53mutations found in SCLC tumors (George et al., 2015) and in our series of cases and controls across the
different p53 protein domains; (d) Type of mutations and functional impact of missense ones based on the IARC TP53 database: F (functional), PF (partially functional), NF (non-
functional); (e) Percentage of allelic fractions of the TP53 mutations detected in the cfDNA of Russian cases and controls, and replication controls. The whiskers represent the
minimum and maximum values.
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3. Results

The characteristics of the cases and controls are shown in Table 1.
We detected 31 TP53 mutations in 25 SCLC patients (49%, 25/51).
When the 51 initial SCLC cases were stratified by stage, we found that
35.7% (5/14) of the stage I–II and 54.1% (20/37) of the stage III–IV, car-
ried detectable TP53 mutations in their cfDNA (Fig. 1b). While statisti-
cally significant in cases versus controls (p-value = 6 × 10−9), 18 TP53
mutations were detected in 14 of the Russian non-cancer controls
(11.4%, 14/123). The significance was also maintained when stratifying
by stage (stage I–II versus controls, p-value = 0.012; stage III–IV versus
controls, p-value = 1 × 10−8). We replicated these observations in an
independent series of 102 controls, and found a comparable proportion
of TP53 mutated samples (10.8%, 13 TP53 mutations in 11 controls).

Similarly to what is expected for TP53 mutations present in cancer,
most of the mutations in cases and controls altered amino acids coding
for the TP53 DNA-binding domain, which is critical for the
transactivation activity of this gene (Fig. 1c). We next evaluated the
characteristics of the mutations found in cases versus controls. Chi-
square test analysis showed that there was a statistically significant dif-
ference between the mutational pattern found in cases versus controls
(p-value=0.008). The fraction of nonsense, indel, or splicingmutations
found in the cases was similar to that previously reported for SCLC tu-
mors (George et al., 2015) (35.5% versus 37% respectively), whereas
this proportion was slightly lower in controls (22.2% in the Russian,
and 7.7% in the replication controls; Fig. 1d).We used the IARC TP53 da-
tabase to classify the missense mutations in functional, partially func-
tional, or non-functional based on the in vitro transcriptional activity
of the resulting protein.Mostmissensemutations found in SCLC tumors
(George et al., 2015) (92.6%) and cfDNA from cases (100%) were classi-
fied as resulting in a non-functional protein. However, controls had a
higher proportion of missense mutations that retained some transcrip-
tional activity (~30%; Fig. 1d).

We also compared the allelic fractions (AFs) of the TP53 mutations
found in the cfDNA of cases and controls. The AFs for a given mutation
were similar in the two independent libraries, demonstrating the repro-
ducibility of the assay (Table S3, S4, and S5). The AFs for the cases
ranged from 0.12% to 84.81% (median 4.6%). In the Russian controls
the AFs ranged from 0.19% to 84.94% (median 1.2%), and in the replica-
tion controls they ranged from 0.02% to 63.74% (median 0.5%) (Fig. 1e).
The statistically significant difference in the AFs between cases and con-
trols (p-value = 4 × 10−4) is explained by the presence of late-stage
SCLC tumors, since the median AF of the TP53 mutations detected in
the five stage I–II SCLC (0.9%) is not statistically different from that
found in controls (p-value = 0.64), while it differed from the median
AF of stage III-IV SCLC tumors (8.2%; p-value = 2 × 10−6; Fig. 1e).

Finally, we sequenced the DNA extracted from thewhite-blood cells
(WBC) of 39 cfDNA TP53-positive patients, from which material was
available (19 cases and 20 controls). Five cfDNA TP53 mutations (from
one case and four controls)were detected in theWBCDNA, with similar
AFs to those found in the cfDNA (Table 2). For one control (MLT-14), the
AFs in both cfDNA and WBC DNA were around 50%, being consistent
with a heterozygous germ-line variant. The other four mutations were
detected at AFs consistent with a somatic origin (AFs below 11%) in
both cfDNA and WBC DNA (Table S2).

Taken altogether, cancer-like TP53 mutations were identified in 25
of the 225 non-cancer controls analyzed in this study (11.1%). We
checked if the presence of TP53mutations in the controlswas correlated
with age, smoking status, or alcohol (adjusting one for the other), but
none of these factors was found to be associated.

4. Discussion

Inactivation of TP53 by mutation has been reported to occur in over
90% of SCLC cases (George et al., 2015). In this studywewere able to de-
tect TP53mutations in the cfDNA of 49% SCLC patients and, when strat-
ifying by stage, in the cfDNA of 35.7% early-stage cases. These
proportions matched those reported for other cancer types
(Bettegowda et al., 2014). Unfortunately, we did not have the corre-
spondent tumors to confirm that the TP53 mutations detected in the
cfDNA originate from the SCLC tumors. However, our method detected
TP53mutations in 60% of the cfDNA samples of an independent French
series of 10 SCLC patients (all of them carrying TP53 somatic mutations
in their tumors). Importantly, each of the TP53mutations found in the
cfDNA matched the one found in the SCLC tumor (data not shown).

We also observed cfDNA TP53-mutated fragments in 11.4% of 123
matched non-cancer controls. Acknowledging the potential for bias in
our selection of controls (such as differential performance in QC criteria
or cfDNA amount, between cases and controls), we screened a second
series of 102 non-cancer controls, and found a comparable proportion
of TP53mutated samples in this independent group (13 TP53mutations
in 11 controls, 10.8%). Altogether, the detection of TP53 mutations in
11.1% of the 225 non-cancer controls, from two independent groups of
samples, suggests that the presence of circulating-mutated fragments
among individuals without any diagnosed cancer is a common occur-
rence, and poses serious challenges for the development of ctDNA
screening tests for the early detection of cancer.

Only two other studies have explored the potential presence of cir-
culating-mutated fragments in non-cancer subjects. A study within
the EPIC prospective cohort (GENAIR) that used blood samples from
controls, found that KRAS and TP53 mutations were detectable in the
cfDNA of 1% and 3.2% healthy subjects, respectively, without a cancer di-
agnoses five years subsequent to blood draw (Gormally et al., 2006).
The higher percentage of TP53-positive controls in our analyses is likely
to be explained by the fact that these analyses within EPIC were under-
taken using DHPLC (denaturing high-pressure liquid chromatography)
and Sanger sequencing, and these techniques are less sensitive and
only allow for detection of mutations with allelic fractions of 3% or
more. Further, only TP53 exons five to ninewere analyzed. If we limited
our analysis to mutations from exons five to nine and AFs greater that
3%, we would have found a comparable number of TP53-positive con-
trols (2.7%, 6/225). More recently, Krimmel and colleagues have report-
ed extremely low-frequency cancer-like TP53 mutations in the
peritoneal fluid from both women with ovarian cancer and those with
benign lesions, using duplex sequencing (Krimmel et al., 2016). They
also showed that low frequency TP53 mutagenesis increases with age
and cancer. Overall, these results support the need for further ctDNA
studies to incorporate series of non-cancer controls in order to improve
validation of detection and analysis techniques.

A potential limitation of our studywas the use of hospital controls as
proxies of healthy people. Controls were admitted for a wide variety of
routine conditions unrelated to tobacco and it is implausible that a high
proportion of the controls with a detectable damaging TP53 mutation
developed a cancer in the short term. However, we cannot exclude
this occurring in a small number of controls nor enriching for non-can-
cer diseaseswith unknown impact on the presence of circulating-tumor
fragments. Nevertheless, as noted above, the prevalence of TP53muta-
tions in our study is approximately equal to that of GENAIR (when ap-
plying the same detection thresholds). Prospective cohorts may help
to overcome the limitations of using hospital controls and also help to

Table 2
Overview of the cfDNAmutations also detected in the white-blood cells (WBC) DNA, and
their corresponding allelic fractions in each technical duplicate (AFs in %).

Sample TP53 mutation
AFs detected in

cfDNA
AFs detected in

WBC

SCLC-21 p.Y220C 0.90 1.27 0.50 0.70
MLT-6 p.R175G 4.09 4.41 4.40 4.50
MLT-14 p.G154S 47.17 50.58 52.10 54.90
ARG-1 p.R273C 5.22 5.58 7.30 10.40
ITA-8 p.V272M 0.78 0.80 0.90 1.40
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determine at what point in the development of the disease is ctDNA de-
tectable in blood, and its correlation with a plausible diagnosis.

The source of circulating-mutated fragments in the cfDNA of appar-
ently healthy people is still unknown. There is, however, accumulating
evidence that clonal expansions are more frequent than originally
thought. Martincorena and colleagues estimated that there are 9.5
clones per cm2 of normal human skin carrying a driver mutation in
TP53 in a selected population for high-sun exposure (Martincorena
and Campbell, 2015). Such clonal expansions might act as a reservoir
of circulating-mutated fragments in cfDNA. In addition, several studies
have shown that a subset of normal individuals could undergo clonal
hematopoiesis with mutations in driver genes (Genovese et al., 2014;
Jacobs et al., 2012; Jaiswal et al., 2014; Laurie et al., 2012; Wong et al.,
2015; Xie et al., 2014). Consistent with this, we observed 4 cfDNA
TP53 mutations that appeared to be from clonal expansions in WBC.
We also noted 2 TP53 mutations in one SCLC case, apparently from dif-
ferent organs; one originating from WBC, the second we assume from
the SCLC tumor. Such ambiguity around the tissue of origin of the circu-
lating-mutated fragments adds another layer of complexity when using
ctDNA for early detection.

The potential of ctDNA for early diagnosis of cancer is an area of
much interest (The Lancet Oncology, 2016). While implementation in
a screening settingwill undoubtedly requiremore sensitive and specific
tests as well as validation in pre-diagnostic blood samples, the unex-
pected presence of known cancer mutations in cfDNA among non-can-
cer controls represents an important challenge.
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CHAPTER 4. APPLICATIONS TO CIRCULATING-TUMOR DNA DATA

4.5 Scientific contribution D

Finally, we were interested in the improvement of the approach presented in the section 4.4

(paper in preparation), in order to increase the specificity of the biomarker based on the TP53

ctDNA mutations from plasma samples of SCLC cancer patients. We have then conducted

a new study based on both the TP53 gene and on the RB1 gene (mutated in around 70% of

SCLC tumors) to increase the specificity. We sequenced these genes from plasma samples of

two independent cohorts: a first cohort composed of 50 cases and 183 controls, and a second

cohort composed of 51 cases and 116 controls.

This study can be divided into two components:

• the accurate detection of mutations

• the development of a biomarker based on a genetic score

The accurate detection of mutations was presented in the chapter 3, and roughly was based

on, firstly, the raw variant calling of mutations with needlestack, and, then, the boosting

of the precision of mutation detection with the development and application of variant fil-

tering methods, in order to reduce the potential presence of false calls (possibly in control

samples). This accurate detection of mutations was finally validated using a simulation ap-

proach.

Here, we present the development of a ctDNA biomarker based on a genetic score (see

picture 4.1). To build this genetic score, that is a per-sample statistic, and, that is then used

to classify the samples into cases and controls, we used the mutations identified in the first

part. We attributed a functional score to each mutation based on its deleterious power, as

the following:

• 0.5 for synonymous or intronic variants

• 1 + REVEL (a score of the pathogenicity of a mutation) for missense variants

• 2 for stopgain, splicing or frameshift variants

Once each mutation obtained a functional score, we computed a sample-score by taking to

the maximum of the functional score of mutations identified in the sample, independently
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for the two genes. Then, we computed three logistic regression models based on the first

cohort sample scores, using:

• only TP53 sample-scores for the model TP53

• only RB1 sample-scores for the model RB1

• the two TP53 and RB1 sample-scores for the model TP53 and RB1

We estimated, for the three models, the regression coefficients that maximize the correct

attribution of the case/control status. We used these estimated regression coefficients in the

second cohort to compute the ctDNA genetic scores, and then computed the accuracy of

the three models (i.e. capacity to correctly attribute the case/control status to the samples),

using ROC curves and their AUCs. We finally reported that, the addition of the RB1 gene

(third model), does not improve the performance of the biomarker using the ctDNA genetic

scores compared to the usage of only the TP53 gene (first model).
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Figure 4.1 – Graphical visualization of the methodology used to developed our ctDNA biomarker,
using genetic scores based on deleterious power of TP53 and RB1 mutations. Three models were
explored, one based on the TP53 gene alone, one based on the RB1 gene alone, and one based on the
combination of the two genes. Regression coefficient were estimated on the first cohort and applied
on the second cohort to compute models accuracy (i.e. capacity to correctly attribute the case/control
status to the samples).
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4.5.1 Article B

See Chapter 3.

4.6 Discussion

The first study presented in this chapter was, at the time of publication, the largest screen-

ing of KRAS mutations in plasma samples of pancreatic cancer cases. The study has shown

promising results in term of sensitivity and specificity of KRAS mutations as non-invasive

biomarkers for the detection of pancreatic cancer, using a small amount of DNA, only 2

nanograms. Moreover, the lowest VAF detected was as low as 0.08%, suggesting a very good

performance of our detection method. Nevertheless, a recent study has reported that half of

the KRAS mutations found in cases harbored a a VAF lower than 0.08% [118], suggesting that

our sensitivity could be improved if we could detect lower VAF, by increasing the coverage

for example, or by using higher amount of input DNA to potentially increase the observed

VAF.

In a second study, we developed UroMuTERT, a simple, non-invasive and sensitive as-

say for the detection of urothelial carcinomas using urine samples. Our study, based on the

detection of TERT promoter mutations, has shown excellent sensitivity (87.1%) and speci-

ficity (94.7%). We reported a lowest VAF of 0.8% for the C228T mutation and a lowest VAF of

0.5% for the C250T mutation. Our performances were comparable to the recently developed

UroSEEK assay (based on multiple genomic markers including C228T and C250T) [125].

Finally, we have conducted two studies aiming at developing a non-invasive SCLC de-

tection biomarker. The first study was based on the identification of cfDNA TP53 mutations

from plasma samples. Nevertheless, a significant proportion of non-cancer patients were

positive for cfDNA mutations, which was not expected (not reported in the litterature at this

time, but later, other studies reported similar results [75]). We then decided to conduct a sec-

ond study, with the objective of increasing the specificity of our biomarker. For this, firstly,

we sequenced a second gene, RB1, that is recurrently mutated in SCLC tumors. Then, we

developed a methodological framework based on efficient variant filtering in order to boost
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the precision of the variant detection step. We also validated our results using simulations,

to test if our variants can be explained by a random selection of errors. We developed a

ctDNA genetic score in order to better discriminate between cases and controls than when

using the raw mutations. Nevertheless, we reported a non-significant increase in sensitivity

and specificity (ROC curve comparisons) when adding the RB1 gene. This can be explained

by the difference of mutations prevalences between the two cohorts, the first being used to

estimate our regression coefficient that are then applied in the second. Indeed, we have es-

timated the accuracy of our biomarker when switching the two cohorts, i.e. when using the

second cohort to estimate the parameters and applying them in the first cohort. In such a

case, our biomarker harbor a better sensitivity and specificity when adding the RB1 gene.

This suggest a high instability of the results, that seem to be highly dependent of the data.

This can be explained by the size of our cohort, the non-individually matched controls (we

do not have one particular control matched to one particular case), and possible environ-

mental differences between the two cohorts. Replicated studies can help to understand the

lack of stability of our results.
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“ We can only see a short distance

ahead, but we can see plenty there

that needs to be done ”

Alan Turing

In this thesis we have presented two computational approaches in order to efficiently

identify mutations in NGS data, using the sytematic nature of errors to propose accurate

ways of modelling them. In a first chapter, we have presented needlestack, a sensitive multi-

sample variant caller. In a second chapter, we have presented two different methodologies

of variant filtering. Finally, in a third and last chapter, we have presented the application of

our variant calling and variant filtering methods to ctDNA data in order to develop an early

cancer detection biomarker. Particular points of discussion have been handled at the end of

each chapter. Here in this section we propose to provide a more global discussion around

the thesis about inherent limitations and motivating perspectives.

Alignment and reference genome

Each of the developed methodologies as well as the biological application presented in the

thesis are relying on a crucial step inherent to the NGS technology: the alignment of raw

sequencing reads to a reference genome [147]. Because our methods are based on NGS data,

they also are dependent on this alignment step: each identify variation is actually defined by

"a variant observation compared to the reference genome". We can discuss the limitations of

two components of the alignment step: the reference genome and the alignment algorithm.

In our analyses we have used one particular version of the human genome, hg19 (also
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named GRCh37), that have been released for the first time on 2009. The first human genome

sequence was proposed in 2001 from a huge international effort, the Human Genome Project

[81]. Several versions of the human genome have been proposed after, and the current avail-

able version is the GRCh38 patch 12, that have been released at the end of 2017. Indeed, we

can not use universal constants for defining the genome as in the case of kilogram definition,

as discussed in Ballouz et al. [17], and therefore it does not exist one particular fixed version

of the human genome that can represent the whole diversity of the human genomes. The

fact that the reference genome is idiosyncratic means that biological results of a particular

application based on NGS data, such as the identification of genetic variants, can potentially

differ when using different versions of the genome. In such a matter, both the alignment

of reads can vary (modifying potentially the coverage and the VAF) and the variant itself.

Obviously the impact of modifying the human genome version on biological results can be

estimated when looking at the differences between versions. Another consequence of the id-

iosyncrasy nature of the reference genome is that this genome is not a baseline: it has been

built at 70% from a single individual, and it has been reported that this individual has a high

risk for diabetes [28]. This means that, firstly, the reference genome can contain "errors", i.e.

individual variations, and secondly that the population-based referent DNA of an analyzed

sample can vary from this human genome reference. In needlestack, to address this issue,

we propose to inverse the reference DNA base if the majority of the analyzed samples (more

than 50% by default) harbour an alternative base at a high proportion (more than 80% by

default). This idea of a population-based reference is also developed in Ballouz et. al. [17],

where the authors propose to build a consensus genome as a reference, based both on the

existing reference and in addition on the population allele frequencies, leading to multiple

reference genomes associated to multiple populations. Measuring the expected differences

of results when using a population-based genome reference could be of interest.

The alignment step also requires to choose a particular alignment algorithm. As de-

scribed in 2010 in a survey from Heng Li, the principal author of the extensively used BWA

software, multiple alignment methods have been proposed since the emergence of NGS

technology, and these methods vary mostly on the core algorithm and on the computation
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time [86]. Majority of these methods are based either on hash tables such as the well-know

Basic Local Alignment Search Tool (BLAST) aligner [12], or on prefix/suffix tries such as BWA

[85], [88]. In addition to these methods, recently several re-alignment software have been

developed, in order to take into account the correlation of reads mapped at the same lo-

cus, particularly to improve the detection of indels [99], [86]. The methods developed in

this thesis are not directly linked to the alignment step, i.e. these methods does not require

any particular alignment method, but, nevertheless, modifying the aligner can potentially

modify the results of our methods. Needlestack can have different results both in term of

sequencing error rate estimates and on identified variants when used in conjunction to dif-

ferent alignment methods. Indeed, observed read counts used in the needlestack model are

totally dependent of the read alignment. In the applications presented in the thesis, we have

used the BWA aligner, and the TMAP aligner that incorporates the BWA algorithms, and for

germline analysis we in addition have used the assembly-based re-aligner ABRA [99], which

was mostly developed for low coverage data. An interesting supplementary work could be to

test the impact of aligner variation on the results of needlestack, particularly how changing

the sequence alignment may result in differences between individuals, and, might influence

the potential of a given individual to be an outlier in the needlestack regression. On another

hand, concerning our variant-filtering methods, the machine-learning based approach re-

sult (the trained model) should vary when modifying the alignment method. Indeed, the

model parameters (the trees in the forest) depend on the training data variables, and, some

of them directly depend on the alignment, such as variables based on the coverage. It could

be interesting to estimate if a machine learning model trained on data aligned with a partic-

ular aligner can be used efficiently on data aligned with a different alignment method.

Validation of the mutations

Even though we have provided in this thesis multiple methods to efficiently identify the DNA

mutations, one particular difficulty when trying to estimate the accuracy of the methods was

the technical validation of the mutations. For needlestack, we have proposed several ways

to estimate our performance, such as:
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• using BAMsurgeon to control the mutations and estimate the sensitivity of needlestack

• using the validation in the tumor of cfDNA mutations

• using a BeadArray to validate the germline mutations

Nevertheless, these approaches are limited: BAMsurgeon approach can not be used to esti-

mate the specificity, only a few number of cfDNA mutations were used (also because we used

only one gene), and the BeadArray is limited to particular variations (able to be detected by

the array). Ideally, because no gold standard data is available to estimate our specificity and

sensitivity for multiple types of data in particular for somatic mutations, we would need to

use a large number of samples and genes, and to validate each called mutation and each

non-variant position, using an independent technology. This is particularly the case for very

low VAF mutations (typically less than 1%), as (i) they are only beginning to be explored us-

ing methods such as needlestack, (ii) we understand very little about the dynamics of these

mutations, (iii) it remains difficult to determine what are the true mutations and if there re-

mains false positive mutations related to factors that we are, as yet, unable to control for. An

extensive project that technically validate low VAF mutations, would be greatly informative

and allow us to further refine methods like needlestack, as well as the variant filtering steps.

These technical validations could be achieved by performing an independent NGS experi-

ment (with independent library preparation and different sequencing technology) or ideally

by performing an other type of DNA variant calling such as the Droplet digital PCR (ddPCR).

Nevertheless, such extensive validation step is expensive, and can be unable to be under-

taken due the lack of sufficient biological material the main drawback of this technique is

that it requires high amount of DNA (typically more than 10 nanograms).

Extensions of needlestack usage

The primary scientific aim of developing our needlestack algorithm was to provide a high

sensitivity to detect very low abundance mutations, in order to efficiently perform various

projects such as our ctDNA projects. The primary advantage of using needlestack is to cor-

rect for systematic errors, as its core algorithm consists in the modelling of such errors.
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Needlestack is relatively computationally intensive compared to state-of-the-art somatic and

germline variant callers (as an example the variant calling with needlestack takes around

20 hours for around 50 WES on 100 CPUs whereas strelka2 [71] takes only 1 hour), and we

believe that needlestack, while slower, is able to assist in identifying false positive variants

that other methods would not detect. As such a promising extension of the way to use

needlestack could be to launch it in conjunction with existing variant callers (that would

be launched with relaxed filters to increase the sensitivity), as a subsequent step, only on a

subset of positions in order to reduce then the false calls. Indeed, needlestack can identify

systematic errors that are basically confused with low VAF variants by current methods, such

as G to T transversion errors linked to DNA sonication (see needlestack paper and [77]). Typ-

ically, variant callers advise to filter on these low VAF to control the false discovery rate, but

in some projects such as when studying tumor heterogeneity, such very low abundance vari-

ants can reflect the presence of small tumor subclones and therefore the are an important

data to keep. The best strategy in this type of study would be to filter smartly on low abun-

dance mutations, and for this needlestack could be a good candidate to filter only errors.

A second point to mention about possible extensions of needlestack is its ability to de-

tect other types of DNA variations not addressed here, such as CNV or Structural Variation

(SV). Two points should be raised here. First, needlestack idea is the modeling of the sys-

tematic errors to efficiently detect mutations as non-systematic DNA variations. This idea of

using multiple samples to detect mutation has also been used by the CODEX [68] CNV vari-

ant caller. As we showed in the needlestack paper, the error rate of a DNA variation is nega-

tively correlated with the length of the variation (supplementary figure 3 in the needlestack

paper). If this observation is extrapolated to CNVs and SVs analysis, it would not be expected

that CNV and SV harbour a high error rate, leading to an y-axis at zero for all the non-variant

samples in our regression. In addition, the CNVs start and end positions slightly differ be-

tween samples. Even if this would not impact their detection with needlestack, it would be

difficult to compare the results between samples.

The idea of our needlestack algorithm, i.e., modeling systematic errors across samples

using a negative binomial regression can be extended to other types of data. For example,
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our algorithm could be used for ddPCR data. The main idea of the ddPCR technology is to

realize a PCR individually on subsets of input DNA called "compartments" or "droplets",

in order to reduce the competition between low and high abundance DNA during the PCR,

such as in the case of ctDNA. At the end, for each sample is obtained a large number of

droplets that are estimated as positive or negative for a target mutation using a fluores-

cence technique. We have observed that the number of positive droplets as a function of

the total number of droplets per sample can be modeled using a robust negative binomial

regression in order to detect outliers as true mutated samples, which is a comparable logic

to our needlestack algorithm. We are currently estimating on real data the benefit of using

the needlestack modeling approach compared to hard threshold on the number of positive

droplets.

Global scientific value

This thesis should have multiple scientific impacts in the domain of computational cancer

genomics. First, the variant calling is more than just a classical step in the analysis of NGS

data. Indeed, one can consider that the major advantage of NGS emergence is actually the

possibility to call variants with a larger spectra than the one reached with the Sanger se-

quencing, i.e. NGS is not restricted to high abundance variants. The fact that low abundance

variants can be detected presents major improvements for cancer research, such as the study

of tumor heterogeneity, the detection of somatic mutation in normal tissues to study can-

cer initiation and progression, or even the development of "liquid biopsies" that requires

an accurate variant calling. Nevertheless, the detection of such genomic variations highly

depends of the variant calling method (even though it also depends of other steps, such as

the alignment or the sequencing itself). In this thesis we were interested in increasing the

potential of NGS variant calling in order to be able to detect such low abundance variants

(development of our needlestack method, see chapter 2) that are crucial to identify in stud-

ies like the one described above. The capacity to detect low abundance variant is crucial in

such projects, but, in addition, the precision of the variant calling should also be controlled

to remove remaining false discoveries. Indeed, minimizing the proportion of such remain-
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ing errors is a key step when highly precise NGS data is required, as when developing ge-

netic risk scores or performing burder tests, which are highly impacted by a small number of

false discoveries. While scientific efforts were primary oriented toward the improvement of

alignment and variant calling algorithms, a current enthusiasm about variant filtering and its

promise to boost mutation detection precision is emerging. We were then interested in the

development of variant filtering methods (see chapter 3) based on hard-thresholds on vari-

ant summary statistics and on machine learning algorithms to remove the need to choose

arbitrary thresholds. We applied our hard-threshold method on our ctDNA project and our

machine learning method on kidney cancer data. We host the source codes on GitHub in

order to provide the scientific community with our variant filtering frameworks.
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Conclusion

The methods presented in this thesis are based on the systematic nature of errors in NGS and

provide the accurate detection of DNA variations from NGS data. We have presented two

main methodologies, (i) a sensitive variant calling method that detect systematic errors and

identify accurately the mutations, (ii) and variant filtering methodologies in order to boost

the precision of the mutation detection. We have validated our methods on both real and

simulated data in order to estimate their performance. We have also applied our methods

on four distinct projects, in order to develop non-invasive biomarkers for cancer detection

based on the detection of cancer mutations in body fluids.

Other applications that require an accurate detection of DNA variations could also be

undertaken using the methods that we have developed in this thesis. For example, our vari-

ant detection methods, that have the advantage to also detect low abundance mutations, can

be applied (i) to precisely identify tumor subclones, whereas current methods tend to rely on

high VAF mutations, (ii) to detect somatic mutations in normal tissues, that are expected to

be found with very low VAF.

Extensive technical validation using independent technologies will also allow the fur-

ther refinement and optimization of our variant detection methods. Finally, we hope that

these methods will allow the exploration and description of the entire spectrum of muta-

tions. This will allow a more complete description of such mutations and how they con-

tribute to disease development and can be used in secondary prevention.
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Appendix A

Annexes

A.1 Supplementary work

A.1.1 TCGA germline variant calling for rare variant susceptibility project

In this project (application of the machine learning variant filtering, chapter 3), we used a

gene prioritisation method in order to build a list of potential susceptibility genes, that were

in a second step validated using a burden test in independent cohorts of cases and controls.

To boost the precision of the calling of variants, in the second step I developed a germline

variant filtering methodology based on a machine learning model. I was also implicated

in the computation of variables used in the gene prioritisation part. Particularly, we have

used the germline status of each candidate gene in the TCGA cohorts, i.e. for each gene

we used the proportion of germline-mutated samples. This variable required to launch a

germline variant calling on the whole TCGA dataset, that contains around 10,000 WES. We

used the current state-of-the-art algorithm for germline variant calling, the haplotype-based

variant caller Platypus [109]. To efficiently perform this task, I benefited from the emergence

of cloud computing using the Seven Bridges Cancer Genomics Cloud (CGC). This work was

divided into two parts:

• Platypus performance maximization using parameter variation

• TCGA germline variant calling using the CGC
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Platypus performance maximization using parameter variation

The accurate benchmarking of a variant caller requires a well-defined catalogue of truth vari-

ants in order to precisely estimate the sensitivity of the method. In addition, the specificity

estimation can only be achieved using non-variant high confidence genomic positions. To

correctly estimate the performance of Platypus on WES data, we therefore benefited from

the "Platinum" truth variant catalogue of the well-known NA12878 sample developed by Il-

lumina [44]. Contrary to the National Institute of Standards and Technology (NIST) that de-

veloped the Genome In A Bottle (GIAB) similar catalogue, Illumina used a haplotype trans-

mission information method from 17 individuals to generate the set of true called and non-

variant positions. Illumina reports an high consistency rate with the NIST GIAB (more than

99.9%) with in addition 26% more SNVs and 45% more indels. Finally, they provide two joint

datasets:

• ~1.2 billions of confident genomic positions

• ~5 millions of truth variants

From this, we firstly extracted the good-quality calls at exomic positions by providing a BED

file of human exons and by filtering calls on coverage (reauired higher than 20) and on qual-

ity of call (required higher than 20 in Phred-scale). We finally obtained a set of around 30

millions high confidence exomic positions and around 180,000 truth exome variants.

When the Platypus variant calling was launched with default parameters, the sensitivity

on this high-confidence regions was estimated as 0.855 and the specificity as 0.995. Platypus

reports in the VCF file all observed variants, with the PASS annotation if the variant is kept

or it reports the filter that has removed the variant if not kept. To increase the sensitivity

of Platypus, we used the filtered variants that were actually truth variants in the Platinum

dataset to defined a set of input parameters that we then varied using a priori from these

observations. Finally, we obtained a sensitivity of 0.970 and a specificity of 0.994 with the

parameter combination presented in the table A.1. These efficient input parameters were

then used to perform the germline variant on the whole TCGA dataset with Platypus.
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Table A.1 – Details of Platypus input parameters and chosen values to increase the default perfor-
mance computed on the Platinum truth set.

Parameter Default Efficient Description

hapScoreThreshold 4 10
Maximum number of haplotypes supported in
the calling window

scThreshold 0.95 0.99
Max fraction of the surrounding sequence
which can be made of any 2 bases

rmsmqThreshold 40 20
Minimum root-mean-square mapping quality
across region containing variant

qdThreshold 10 0 Minimum quality-by-read/depth

badReadsThreshold 15 0
Minimum median of base qualities around
variant position (window=11pb)

TCGA germline variant calling using the Cancer Genomics Cloud

We benefited from the emergence of cloud computing to boost the efficiency of our compu-

tations. Indeed, cloud computing is based on the idea that "tool should be bring to the data"

and not the opposite, by providing a network access to a shared pool of configurable com-

puting resources. Cloud computing compared to traditional computing using local machine

or shared cluster emphasizes on three major concepts ([82]):

• elasticity: user rent resources while paying for only what is used

• reproducibility: investigators can store multiple versions of data and analyses on the

cloud without loss or modification

• distributed collaboration: analyses can be performed on the same data set by multiple

investigators at multiple different geographic sites

We were particularly interested in using cloud computing for this germline variant call-

ing due to the high number of TCGA samples that require to be downloaded if performing

local computations (we have used the SevenBridges CGC platform). Finally, each analysed

WES required around 0.05 dollars, which corresponds to around 500 dollars in total for the

whole TCGA dataset. Around 10 minutes were needed for the analysis of one WES sample,

and the CGC allows a parallelization by sets of 100 samples (i.e. 100 samples analyzed at the

same time), which corresponds to a total of around 16 hours. The downloading of one par-
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ticular BAM file was estimated as around 7 minutes, which corresponds to several hundreds

of hours when downloading to whole set of samples.

The germline variant calling with Platypus was divided into three parts:

• Querying data (i.e. BAM file for each cancer type) using the CGC Application Program-

ming Interface (API)

• Tool description using Common Workflow Language (CWL)

• Run the Platypus variant calling on the cloud using a loop on each sample locally with

R

Examples of scripts used to perform these analyses are available on GitHub:

https://github.com/tdelhomme/CancerGenomicsCloud_tutorial.

We performed the germline variant calling on a total of 32 TCGA cancer types, grouping

around 10,000 samples.

Finally, I benefited from the acquired experience about cloud computing using the Seven

Bridges CGC to give an internal course on this subject (with both theory and applications)

at IARC in March 2018. The complete support of the course is freely available on GitHub:

https://github.com/IARCbioinfo/SBG-CGC_course2018.

A.1.2 IARC bioinformatics pipeline homogenization

When developing our needlestack variant caller, I was concerned about multiple concepts

defining "good" science, such as reproducibility, efficiency of computations and user-friendliness.

To implement needlestack following these concepts, we used nextflow as the workflow man-

ager coupled with Docker/Singularity to provide reproducible environments (which are hosted

on DockerHub and SingularityHub) and conda to easily install the dependencies. We also

versioned the source code on GitHub, that can communicate with nextflow when the user

run the pipeline. To control for stability of the code when it is modified, we also used a con-

tinuous integration tool, CircleCI, that run pre-defined test when the pipeline is modified on

GitHub. I was therefore involved in the homogenization of the IARC bioinformatics pipelines

(https://github.com/IARCbioinfo/) following this implementation pattern. The figure A.1 is
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presenting the schematic overview of the implementation pattern that we used for our IARC

bioinformatics pipelines. The implementation process is defined as the following:

• source code is written with nextflow and pushed to GitHub when modified

• a particular git branching model is applied

• CircleCI manages a continuous integration by launching pre-defined tests

• When tests are ok, CircleCI updates containers on DockerHub and SingularityHub

• user can run the pipeline specifying a version and can use the containers to avoid in-

stalling manually the dependencies
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Figure A.1 – Schematic overview of the implementation pattern used for our IARC bioinformatics
pipelines. The source code is written with nextflow, stored and versioned on GitHub, and we pro-
vide Docker and Singularity containers and continuous integration with CircleCI to control for code
stability.

Table A.2 is presenting the catalogue of the bioinformatics pipelines developed fol-

lowing this implementation pattern, in collaboration with other bioinformaticians at IARC.

Pipelines can be grouped in three main topics: quality control, DNA analysis and RNA anal-

ysis. A total of around 10 pipelines are currently available.

Finally, I was offered to present this collaborative work on the IARC bioinformatics

pipeline development at the nextflow workshop in November 2018 at Barcelona, Spain. De-

tails of the workshop is available on GitHub: https://github.com/nextflow-io/nf-hack18 as
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well as the slide of my presentation: https://github.com/tdelhomme/Talks/nextflow_work-

shop2018.

A.2 Publications from other collaborations

A.2.1 Integrative genomic profiling of large-cell neuroendocrine carcino-

mas reveals distinct subtypes of high-grade neuroendocrine lung

tumors (George et al., Nature Communications, 2018)
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ARTICLE

Integrative genomic profiling of large-cell
neuroendocrine carcinomas reveals distinct
subtypes of high-grade neuroendocrine lung
tumors
Julie George et al.#

Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung

cancers, but their precise relationship has remained unclear. Here we perform a compre-

hensive genomic (n= 60) and transcriptomic (n= 69) analysis of 75 LCNECs and identify

two molecular subgroups: “type I LCNECs” with bi-allelic TP53 and STK11/KEAP1 alterations

(37%), and “type II LCNECs” enriched for bi-allelic inactivation of TP53 and RB1 (42%).

Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas,

no transcriptional relationship was found; instead LCNECs form distinct transcriptional

subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neu-

roendocrine profile with ASCL1high/DLL3high/NOTCHlow, type II LCNECs bear TP53 and RB1

alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a

pattern of ASCL1low/DLL3low/NOTCHhigh, and an upregulation of immune-related pathways.

In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them

from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung

tumors.
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Molecular characterization studies have provided invalu-
able insight into the relationship between the major
lung tumor subtypes1–7. These studies showed that

morphologically defined lung adenocarcinomas, squamous cell
carcinomas, and small cell carcinomas have distinct molecular
phenotypes based upon their somatically altered genes7. Fur-
thermore, global transcriptional analyses have revealed intra-
group consistency, as well as substantial differences in the pat-
terns of expressed genes, which led to the discovery of novel
intra-group subtypes2,3,8–11 and to the elimination of previous
lung tumor categories (e.g., large-cell carcinoma)7. Of the
remaining lung cancer subtypes, only large-cell neuroendocrine
carcinomas (LCNECs) have so far not been characterized in
depth using both transcriptomic, as well as genomic approaches.

LCNECs account for 2–3% of all resected lung cancers and
belong to the category of neuroendocrine lung tumors, which also
includes pulmonary carcinoids (PCa) and small cell lung cancer
(SCLC)12,13. Contrary to pulmonary carcinoids, LCNEC and SCLC
are clinically aggressive tumors presenting in elderly heavy-
smokers with 5-year survival rates below 15–25% (LCNEC) and
5% (SCLC), respectively12,13. While therapy for both typical and
atypical carcinoids and SCLC is primarily surgery and che-
motherapy (in the case of SCLC), chemotherapy has limited effi-
cacy in LCNEC patients and no standard treatment regimen exists
for this tumor type14. Thus, LCNECs share both commonalities
(e.g., neuroendocrine differentiation) and discrepancies (e.g., lim-
ited response to chemotherapy) with SCLC; however, the under-
lying molecular basis of these shared and distinct features is only
poorly understood. Further complicating the histological classifi-
cation, LCNECs are sometimes found combined with adenocarci-
noma or squamous cell carcinoma and some SCLCs are combined
with a component of LCNEC12,13. Thus, defining the molecular
patterns of this tumor type presents the opportunity to not only
reveal possible novel therapeutic targets, but also help clarifying the
ontogeny and relationship of lung tumors in general.

Previous efforts in characterizing LCNECs through targeted
sequencing of selected cancer-related genes15–17 and through gene
expression profiling18 provided some first insights; however, global
genomic studies combined with transcriptomic analyses have so far
been lacking. Furthermore, given the lack of adequate therapeutic
strategies in LCNECs, a precise delineation of the molecular
boundaries between different neuroendocrine tumors is needed.
We therefore aimed to comprehensively dissect both the muta-
tional and the transcriptional patterns of this tumor type.

In this report, we show that LCNECs are composed of two
mutually exclusive subgroups, which we categorize as “type I
LCNECs” (with STK11/KEAP1 alterations) and “type II LCNECs”
(with RB1 alterations). Despite sharing genomic alterations with
lung adenocarcinomas and squamous cell carcinomas, type I
LCNECs exhibit a neuroendocrine profile with closest similarity
to SCLC tumors. While type II LCNECs reveal genetic resem-
blance to SCLC, these tumors are markedly different from SCLC
with reduced levels of neuroendocrine markers and high activity
of the NOTCH pathway. Conclusively, LCNECs represent a dis-
tinct subgroup within the spectrum of high-grade neuroendocrine
tumors of the lung, and our findings emphasize the importance of
distinguishing LCNECs from other lung cancers subtypes.

Results
Genomic alterations in LCNECs. We collected 75 fresh-frozen
tumor specimens from patients diagnosed with LCNEC under
institutional review board approval (Supplementary Data 1). All
tumors were thoroughly analyzed, and the histological features of
pulmonary LCNECs were confirmed by expert pathologists (E.B.,
W.T., R.B.) according to the 2015 WHO classification13

(Supplementary Data 2). Most tumors were obtained from cur-
rent or former heavy smokers, and enriched for stages I and II
(68%). Nineteen of 75 LCNECs included in this study showed
additional histological components of lung adenocarcinoma
(ADC) (n= 2), squamous cell carcinoma (SqCC) (n= 5) or
SCLC (n= 12) (Supplementary Data 1–2). In subsequent analyses
nucleic acids were extracted only from pure LCNEC regions
(Methods section).

Early genomic profiling studies employing targeted sequencing
of selected cancer-related genes aided in the identification of
some prevalent mutations in LCNECs15–17. In order to assess
globally all genomic alterations in LCNECs and to compare them
to those occurring in other lung tumors, we conducted whole-
exome sequencing (WES) of 55 LCNEC tumor-normal pairs; we
additionally performed whole-genome sequencing (WGS) in
those cases where sufficient material was available (n= 11), thus
amounting to sequencing data of 60 LCNECs in total (six tumors
were both, genome- and exome-sequenced, Supplementary
Fig. 1a). We furthermore performed Affymetrix 6.0 SNP array
analyses of 60 and transcriptome sequencing of 69 tumors
(Supplementary Data 1; Supplementary Fig. 1a). Despite initial
review to include cases with a microscopic tumor content of
>70%, sequencing data analysis revealed a median tumor purity
of 59.5% and a median ploidy of 2.8 (Supplementary Data 1,
Supplementary Fig. 1b, Methods section). On average, LCNECs
exhibited an exonic mutation rate of 8.6 non-synonymous
mutations per million base pairs and a C:G > A:T transversion
rate of 38.7% (Fig. 1a, Supplementary Data 1), indicative of
tobacco exposure1–6. We analyzed the signatures of mutational
processes19,20 in LCNECs, which confirmed a prominent
smoking-related signature (signature 419,20) that accounts for
the majority of all somatic mutations, and which is in general
comparable to most other lung tumors of heavy smokers
(Supplementary Fig. 1c–f, Supplementary Data 3).

Analyses of chromosomal gene copy numbers revealed
statistically significant amplifications of 1p34 (containing the
MYCL1 gene, 12%), 8p12 (containing FGFR1, 7%), 8q24.21
(containing MYC, 5%), 13q33 (containing IRS2, 3%), and 14q13
(containing NKX2-1, also known as TTF-1, 10%) (Q < 0.01,
Supplementary Fig. 2a; Supplementary Data 4–5, Methods
section). Statistically significant deletions affected CDKN2A
(9p21, 8%) and a putative fragile site at PTPRD (9p24, 7%)21.
While amplifications of NKX2-1 and FGFR1 frequently occur in
lung adenocarcinomas1,2,7,21 and squamous cell carcino-
mas3,7,21,22, respectively, MYCL1 amplifications are commonly
found in SCLC4–6,23. Thus, LCNECs harbor significant copy-
number alterations that occur in different lung cancer subtypes.

We next applied analytical filters to identify mutations with
biological relevance in the context of a high-mutation rate and
found eight significantly mutated genes (Q < 0.01, Methods section,
Fig. 1a, Supplementary Data 6–7). TP53 was the most frequently
mutated gene (92%), followed by inactivating somatic events in
RB1 (42%); bi-allelic alterations in both genes, TP53 and RB1—a
hallmark of SCLC4–6—were found in 40% of the cases (Supple-
mentary Fig. 2b, Supplementary Data 6–9). Notably, LCNECs with
admixtures of other histological components mostly had RB1
alterations (Fig. 1a). While genomic alterations in RB1 resulted in
loss-of-nuclear Rb1 expression (P < 0.0001, Fisher’s exact test,
Supplementary Fig. 3a), immunohistochemistry revealed that
absence of Rb1 was not only confined to the LCNEC component,
but also evident in the combined other histological subtype (6/7
cases, Supplementary Fig. 3b, Supplementary Data 2). This may
implicate shared genetic features between LCNECs and the
admixtures of other histological carcinoma types.

We furthermore identified—frequently deleterious—somatic
alterations in functionally relevant domains of STK11 (30%) and
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KEAP1 (22%)1–3 (Fig. 1a, Supplementary Fig. 4a, Supplementary
Data 6–9). Combined with loss-of-heterozygosity (LOH), bi-
allelic alterations of STK11 and KEAP1 were found in 37% of the
cases (Supplementary Fig. 2b, Supplementary Data 8). In those
cases where WGS was performed, we were able to identify larger
genomic rearrangements, which led to the inactivation of RB1,
STK11, or KEAP1 (Fig. 1a, Supplementary Fig. 4a, Supplementary
Data 9). Altogether, somatic alterations of RB1 and STK11/

KEAP1 were detected in 82% of the cases (n= 49) and occurred
in a mutually exclusive fashion (P < 0.0001, Fisher’s exact test,
Fig. 1a). We furthermore observed a trend toward inferior
outcome in patients with RB1-mutated tumors (P= 0.126, log-
rank test, Supplementary Fig. 4b). The genomic profiling thus
points to two distinct subgroups of LCNECs.

We additionally identified statistically significant mutations in
the metalloproteinases ADAMTS2 (15%) and ADAMTS12 (20%),
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Fig. 2 Gene expression studies on lung cancer subtypes. a A schematic description of the unsupervised consensus clustering approach is provided on the
left panel. The clustering results are displayed on the right panel as a heatmap, in which tumor samples are arranged in columns, grouped according to their
expression clustering class, annotated for the histological subtype and for the somatic alteration status. Expression values of genes identified by ClaNC
(Methods section) are represented as a heatmap; red and blue indicate high and low expression, respectively. Selected candidate genes are shown on the
right. b Significant enrichment of differentially expressed genes in signaling pathways is displayed for all clustering classes (P < 0.0001, Methods section). c
Expression values for key neuroendocrine differentiation markers are plotted for each clustering class as box-plots (median and interquartile range,
whiskers: min–max values). Dashed black lines indicate the threshold for low expression (Methods section). Q < 0.05 (#), significance determined by SAM
(Supplementary Dataset 12); P < 0.001 (***) Mann–Whitney U-test. d The correlation of each sample to the centroid of its clustering class was calculated
and displayed as box-plot (median and interquartile range, whiskers 5–95 percentile)
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and in GAS7 (12%) and NTM (10%) (Q < 0.01, Methods section,
Fig. 1a, Supplementary Fig. 4c, Supplementary Data 6–7), which
so far have not been reported as significantly mutated in any
other lung cancer subtype. The mutations affected functionally
important protein domains, which may suggest a relevant role in
the tumorigenesis of LCNECs (Supplementary Fig. 3c).

We also analyzed LCNECs for alterations in genes of known
tumor-specific functions (e.g., CREBBP, EP3003,4,6,21,
NOTCH3,6,21, MEN124, ARID1A1–3,21,24) (Supplementary Fig. 2b,
Supplementary Fig. 4d, Supplementary Data 6) and found
oncogenic mutations of RAS family genes (KRAS-G12V, -G12C,
NRAS-D57E, HRAS-G13R), NFE2L2 (2 cases with G31V and 1
case with E79Q) and BRAF (V600E, and G469V). Combined with
focal amplifications, RAS genes were affected in 10% of the
tumors (Fig. 1a; Supplementary Data 5–6). We also identified
several private in-frame fusion events, e.g., involving the kinases
NTRK1 and PTK6, which were, however, not recurrent
(Supplementary Fig. 5, Supplementary Data 10). Thus, LCNECs
harbor alterations of oncogenes which are commonly found in
lung adenocarcinomas, but usually absent in neuroendocrine
tumors like SCLC.

The distinct mutational patterns in LCNECs and the presence
of other histological components may suggest a high level of
intra-tumor heterogeneity. We analyzed the clonal distribution of
somatic alterations and determined the cancer cell fraction (CCF)
of each somatic mutation call (Methods section). Despite the fact
that some LCNECs were found with admixtures of other
histological subtypes (Fig. 1a, Supplementary Data 1–2), our
studies on the LCNEC component of such composite tumors
pointed to little intra-tumor heterogeneity with a median of 7%
sub-clonal mutations per sample (Supplementary Fig. 2b–c,
Supplementary Data 1, Methods section). Furthermore, all
relevant and significant mutations were found to be clonal within
the tumor, thus suggesting these alterations as early events during
tumorigenesis (Fig. 1b, Supplementary Data 6).

In summary, genome sequencing revealed distinct genomic
profiles in LCNECs. While certain alterations (e.g., RB1, MYCL1)
resemble patterns found in SCLC4–6,23, others are typical of lung
adenocarcinoma or squamous cell carcinomas (e.g., STK11,
KEAP1, NKX2-1, RAS, BRAF, and NFE2L2)1–3,7,21. Thus,
LCNECs appear to divide into molecularly defined subsets of
tumors with genomic similarities to other major lung cancer
subtypes.

Transcriptional profiles of LCNECs and other lung cancers.
Our sequencing efforts have revealed genomic alterations in
LCNECs that were previously known as canonical alterations in
either, lung adenocarcinomas, squamous cell carcinomas7,21, or
SCLC4–6. In light of these distinct associations, it remained to be
understood if these genomic correlates might reflect a relation-
ship of LCNECs with these lung tumor subtypes on the level of
gene expression. We therefore analyzed whether the transcrip-
tional patterns in LCNECs are correlated with the expression
profiles of other lung cancers.

We compared the expression data of LCNECs with lung
adenocarcinomas2,3,25–27, squamous cell carcinomas3, SCLC6 and
pulmonary carcinoids24 following extensive normalization of the
transcriptome sequencing data (Fig. 2a, Methods section,
Supplementary Data 11). Unsupervised consensus clustering
yielded five consistent expression clusters, which correlated with
the histological annotation of the tumors (P < 0.0001, Fig. 2a,
Supplementary Fig. 6–7, Supplementary Data 12): pulmonary
carcinoids, squamous cell carcinomas and adenocarcinomas
formed distinct transcriptional classes (classes A, B, and C,
respectively), with few LCNECs falling into these groups.

However, the majority of SCLC and LCNECs clustered in two
transcriptional subgroups (classes D and E) (Fig. 2a); a
phenomenon that had previously been observed in other studies
on high-grade neuroendocrine tumors6,18. While the majority of
SCLC tumors formed consensus cluster E (75% of all SCLC cases
analyzed), a fraction of SCLC tumors shared transcriptional
similarities with LCNECs that predominantly formed cluster D.
Thus, LCNECs appear to be more closely related to SCLCs than
to adenocarcinomas or squamous cell carcinomas.

We next analyzed the transcriptome sequencing data for
differentially expressed genes and their enrichment in biological
pathways (Methods section). In line with previous observa-
tions2,3,9–11,18,28, this analysis showed that both adenocarcinomas
and squamous cell carcinomas exhibited upregulation of path-
ways controlling cell differentiation, adhesion and immune
responses, along with higher expression of ERBB2 and TP63
(Fig. 2b, Supplementary Fig. 8a, Supplementary Data 13–14, Q <
0.05, Methods section). Lung neuroendocrine tumors, on the
contrary, showed significantly higher expression of neuroendo-
crine and endocrine markers, Hu antigens (ELAVL3 and
ELAVL4) and the lineage transcription factor and oncogene
ASCL1, which is in agreement with previous studies on lung
cancer subtypes11–13,18,29 (Q < 0.05, Methods section). Further-
more, particularly high expression of the neuronal and endocrine
lineage transcription factors NEUROD1, NEUROD4, and NEU-
ROG330,31 was found in SCLC and LCNECs of transcriptional
class E (Fig. 2a, c, Supplementary Fig. 8b–e, Supplementary
Data 13, Q < 0.05). While recent studies employing SCLC cell
lines and mouse models indicated discordant expression patterns
for ASCL1 and NEUROD131, our sequencing data of human high-
grade neuroendocrine lung tumors revealed expression of both
neuroendocrine lineage factors in class E (Supplementary Fig. 8f).

Within the spectrum of neuroendocrine lung tumors, pulmon-
ary carcinoids formed a distinct subgroup with functional
enrichment in pathways regulating cellular respiration and
metabolism. LCNECs mostly shared similarities with SCLC,
revealing upregulation of pathways and genes controlling cell
cycle and mitosis (E2F transcription factors and checkpoint
kinases), DNA damage response (RAD51, TOP2A, and BRCA1)
and centrosomal functions (such as BUB1, PLK1, and ASPM);
which, to some extent, were also found in squamous cell
carcinomas (Fig. 2b; Supplementary Fig. 8g–i, Supplementary
Data 13–14), and which is in agreement with previous studies18.
Further supporting a molecular relationship of SCLC and
LCNECs in a fraction of the cases, RB1-mutated LCNECs were
enriched in classes D and E (P < 0.05, Fisher’s exact test).
Although, LCNECs also harbored alterations commonly observed
in adenocarcinomas and squamous cell carcinomas, even
LCNECs with such alterations in KEAP1 or STK11 were primarily
found in transcriptional subclasses shared with SCLC (Fig. 2a,
Supplementary Fig. 7c, Supplementary Data 12). Therefore, this
observation supports the view that despite the similarity in
oncogenic mutations, LCNECs rather constitute their own
biological class; and may not be considered as neuroendocrine
versions of adenocarcinomas or squamous cell carcinomas.

We also quantified the consistency of the expression profiles
for each sample with respect to its clustering group. Again, this
analysis revealed a strong correlation for most LCNECs clustering
with SCLC tumors (classes D and E); on the other hand,
expression profiles of those few LCNEC samples clustering with
lung adenocarcinomas, squamous cell carcinomas, and pulmon-
ary carcinoids were less consistent (Fig. 2d). Furthermore, we
performed separate transcriptional clustering of LCNECs with
adenocarcinomas and squamous cell carcinomas only (excluding
SCLC), which did not suggest any unrecognized similarities
between these lung cancer subtypes (Supplementary Fig. 9). Thus,
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despite sharing somatic alterations with other tumor subtypes,
such as adenocarcinomas and squamous cell carcinomas,
LCNECs were transcriptionally dissimilar with all non-
neuroendocrine lung tumors and showed closest similarities to
SCLC.

The transcriptional relationship of LCNEC and SCLC. In the
previous section, we sought for a global approach to identify
common and distinct transcriptional profiles of LCNECs in
relationship with other lung tumors, which showed that LCNEC
and SCLC appear to share most transcriptional patterns.
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However, strongly divergent tumors (e.g., carcinoids, adeno-
carcinomas) may drive these clusters and mask important dif-
ferences between LCNECs and SCLC. We therefore sought to
directly compare LCNECs and SCLC on the transcriptional level
(Fig. 3a). The resulting unsupervised clustering analysis revealed
four consensus clusters of LCNEC and SCLC that we termed
classes I–IV in order to distinguish them from the above-
mentioned classes A–E (Fig. 3a, Supplementary Fig. 10–11,
Supplementary Data 12). Class I exclusively included LCNECs
with STK11 or KEAP1 alterations; yet, a few cases with these
alterations fell into class II that predominantly consisted of
LCNECs with RB1 loss (Fig. 3a). Some LCNECs, including
tumors admixed with SCLC (“SCLC combined LCNECs”)—
clustered with the majority of SCLC tumors in the classes III and
IV; similarly, some SCLC tumors were part of class II that
included LCNECs bearing RB1 alterations (Fig. 3a, Supplemen-
tary Fig. 11). Even though pathological review had been con-
ducted to distinguish histological subtypes from one another,
transcriptional clustering suggested high degrees of similarity for
some LCNEC and SCLC cases; these tumors may therefore be
considered as “SCLC-like” and “LCNEC-like” (Fig. 3a, Supple-
mentary Fig. 11, Supplementary Data 11). Other major genome
alterations (e.g., NKX2-1, MYCL1, RAS genes, NFE2L2, BRAF)
did not segregate with the identified transcriptional subgroups
(Supplementary Fig. 11). We further analyzed the consistency of
the transcriptional subgroups by clustering LCNECs alone, which
revealed high concordance with the transcriptional classes iden-
tified in Fig. 3a (62/66 cases, 94%, P < 0.001, Fisher’s exact test,
Supplementary Fig. 13, Supplementary Data 12). Thus, despite
the similarities between LCNECs and SCLCs, subtypes of
LCNECs exist with profound differences to SCLC.

The transcriptional clustering heatmap pointed to a strong
gene expression pattern shared by all LCNECs bearing STK11/
KEAP1 alterations (Fig. 3a, Supplementary Fig. 12a, green box in
upper left quadrant). We therefore conducted a supervised
analysis of the gene expression data, in which LCNECs with
STK11/KEAP1 alterations were compared to tumors bearing RB1
alterations. This analysis indicated specific expression profiles,
which were similar to those observed in tumors constituting class
I (Fig. 3b, Supplementary Fig. 12, Supplementary Data 13). We
therefore assigned this genomic subset of tumors to one group,
termed “type I LCNECs”.

Type I LCNECs exhibited high levels of calcitonin A (CALCA),
a known marker of pulmonary neuroendocrine cells32–34 (Fig. 3a,
Supplementary Fig. 12b, Supplementary Data 13). This subgroup
furthermore displayed a pronounced upregulation of cellular
metabolic pathways, which we also observed in pulmonary
carcinoids (Fig. 2b), but which was less prominent in LCNECs
and SCLC tumors with RB1 alterations (Fig. 3a, b, Supplementary
Data 12–13). Other genes found in type I LCNECs included
gastrointestinal transcription factors (e.g., HNF4A, HNF1A, and
RFX6), which were previously reported to play a role in
de-differentiated lung tumors35,36 (Fig. 3b, Supplementary
Fig. 12c, d, Supplementary Data 13).

The most striking difference was found in the expression levels
of neuroendocrine genes: while type I LCNECs and the majority
of SCLC tumors (class III+ IV) harbored high levels of
neuroendocrine genes (CHGA and SYP; Fig. 3c; Supplementary
Fig. 12e; Supplementary Data 12), most LCNECs and some SCLC
tumors with RB1 alterations in class II exhibited low levels of
these genes (Fig. 3c, Supplementary Fig. 12e). By contrast, tumors
in class II displayed elevated expression of genes associated with
active Notch signaling (e.g., NOTCH1, NOTCH2, and HES1) and
immune cell responses (e.g. PDCD1LG2, TLR4, and CTSB)
(Fig. 3a, d, Supplementary Fig. 12f, Supplementary Data 12–13).
Given the strong enrichment of LCNECs with STK11 or KEAP1
alterations in cluster I, and the prominent lack of expression of
key neuroendocrine genes in most tumors of class II, we termed
LCNECs within this transcriptional class as “type II LCNECs”.

We have recently demonstrated that SCLC tumors usually
harbor inactive Notch signaling and that activation of Notch
reduces expression of neuroendocrine genes (e.g., CHGA, SYP and
NCAM1) and Ascl16. Consistent with this notion, we found that
type II LCNECs and some SCLC within this transcriptional class
exhibited signs of NOTCH upregulation and low expression of
neuroendocrine markers, ASCL1 and DLL3, an inhibitor of the
Notch signaling pathway37 (Fig. 3d, and Supplementary Fig. 12f).
Conversely, type I LCNECs and the majority of the SCLC samples
(class III and IV) showed higher levels of neuroendocrine genes, as
well as of ASCL1 and DLL3, and downregulation of NOTCH
pathway genes (Fig. 3d, Supplementary Fig. 12f). Thus, despite the
fact that type II LCNECs and some SCLCs harbor bi-allelic loss of
TP53 and RB1, their transcriptional signatures include low levels of
neuroendocrine genes and a distinct profile of NOTCHhigh and
ASCL1low/DLL3low, which differentiates these tumors from type I
LCNECs and from the majority of SCLC cases. We did not identify
any significant enrichment of somatic alterations in NOTCH
pathway genes, which may explain these transcriptional differences
(Supplementary Fig. 11). However, a recent study in a pre-clinical
mouse model has established a central role of REST as a repressor
of neuroendocrine markers in SCLC38. Compatible with these
findings, type II LCNECs displayed significantly higher levels of
REST (clustering class II, Supplementary Data 12, Q < 0.05), which
may explain the low neuroendocrine phenotype in type II LCNECs
marked by ASCL1low/DLL3low/NOTCHhigh. Given the important
role of NOTCH signaling and ASCL1 in the decision of
neuroendocrine fate and the development of neuroendocrine lung
tumors29,31,38, these findings provide further support for our
distinction of type I and II LCNECs.

We next analyzed the relationship of the expression classes I–IV
using hierarchical clustering, which revealed two major subgroups
(Supplementary Fig. 11): one subgroup mainly consisting of
LCNECs (type I and II LCNECs), and the other subgroup mainly
containing SCLC tumors (classes III and IV). Thus, despite
harboring distinct transcriptional subcategories, LCNEC and SCLC
tumors largely followed their histological annotation and formed
separate transcriptional subgroups. Differentially expressed genes
included SOX1 and the neuroendocrine Hu genes (ELAVL3,

Fig. 3 Gene expression studies on LCNEC and SCLC. a The expression profiles of LCNEC and SCLC tumors were analyzed following the annotation and
approach described in Fig. 2a. Expression values of genes identified by ClaNC (Methods section) are represented as a heatmap in which red and blue
indicate high and low expression, respectively. Selected candidate genes are shown on the right. Dashed green lines indicate an expression profile shared
by LCNEC tumors with STK11/KEAP1 alterations (type I LCNECs). b The significant enrichment of differentially expressed genes and signaling pathways are
displayed for type I LCNECs and type II LCNECs. P < 0.0001 (Methods section); * some SCLC tumors that co-clustered with type II LCNECs were included
in this analysis. Key candidate genes are highlighted in bold. c, d Expression values for c the key neuroendocrine differentiation markers SYP
(synaptophysin) and CHGA (chromogranin A) (scatter plot), and d NOTCH pathways genes (box plots: median and interquartile range, whiskers: min–max
values). e Significant enrichment of differentially expressed genes and signaling pathways was analyzed for class I and II vs class III and IV tumor samples;
P < 0.0001 (Methods section). f Expression values of SOX1, ELAVL3, and ELAVL4 are plotted for the clustering classes and other lung cancer subtypes (box
plots: median and interquartile range, whiskers: min–max values). Q < 0.05 (#), SAM (Supplementary Dataset 12); P < 0.01 (**) Mann–Whitney U-test
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ELAVL4), which were enriched in most SCLC samples (classes III
and IV (Supplementary Data 13, Q < 0.05, Methods section)
(Fig. 3f). This observation is in line with previous reports on auto-
antibodies against Sox1 and Hu-proteins that are commonly found
in SCLC patients39. While pulmonary carcinoids harbored similar
expression levels, these genes were essentially absent or only
moderately expressed in most LCNECs and other lung cancer
subtypes (Fig. 3f).

We furthermore analyzed the impact of transcriptional
subgroups on tumor stage and clinical outcome. While, we found
no association of tumor stage with the molecular subsets found in
high-grade neuroendocrine tumors (Supplementary Data 12), we
observed a trend toward inferior survival in patients with SCLC
(transcriptional profiles of classes III and IV; P= 0.072, log-rank
test, Supplementary Fig. 14), which was similarly observed in
previous studies on high-grade neuroendocrine lung tumors18.

Conclusively, LCNECs exhibit a distinct expression profile
within the spectrum of high-grade neuroendocrine lung tumors,
which can further be divided into two subtypes: type I LCNECs
with high neuroendocrine expression and, similar to SCLC, a
profile of ASCL1high/DLL3high/NOTCHlow, and type II LCNECs
with reduced expression of neuroendocrine genes and a pattern of
ASCL1low/DLL3low/NOTCHhigh (Fig. 4).

Discussion
Here we provide the first comprehensive molecular analysis of
LCNECs, which allowed distinguishing between two genomic
subgroups with specific transcriptional patterns, defined as “type I
LCNECs” and “type II LCNECs” (Fig. 4).

Type I and II LCNECs harbor key genomic alterations and
oncogenic mutations, which are commonly found in SCLC, lung
adenocarcinoma or squamous cell carcinoma (e.g., in RAS genes,
BRAF, NFE2L2, as well as in STK11 and KEAP1 in the case of
type I LCNECS, and RB1 losses in the case of type II LCNECs).
One possible explanation for this observation might be a high
level of intra-tumor heterogeneity, combined with occurrence of
two tumor types in a single tumor. However, the key alterations
that we found in LCNECs were mostly clonal, with limited
genomic intra-tumor heterogeneity. Furthermore, thorough
comparisons of gene expression profiles did not suggest simila-
rities between LCNECs and lung adenocarcinomas or squamous

cell carcinomas. Thus, the combinations of distinct sets of
mutations with specific patterns of gene expression supports the
view that LCNECs are not a variant of the other types of lung
cancer, but represent a distinct subgroup within the spectrum of
neuroendocrine lung tumors.

In a more focused comparison with the most frequent neu-
roendocrine type of lung cancer, SCLC, type I LCNECs with
STK11 and KEAP1 alterations exhibited a high degree of simi-
larity with these carcinomas, as well as high expression of neu-
roendocrine genes and a profile of ASCL1high/DLL3high/
NOTCHlow. By contrast, type II LCNECs with RB1 alterations
revealed reduced expression of neuroendocrine genes and a pat-
tern of ASCL1low/DLL3low/NOTCHhigh. Notch family members
play a multifaceted role in the development of neuroendocrine
tumors with cell-type specific tumor suppressor and oncogenic
functions40. We have shown in earlier studies that NOTCH serves
as a tumor suppressor in SCLC6, which mostly harbor high-level
expression of the negative regulator of Notch, DLL36,37,41 (Fig. 4).
A recent clinical trial with an antibody-drug conjugate targeting
the non-canonical inhibitory NOTCH ligand, Dll3, has shown
early signs of clinical activity in SCLC37,41. We now demonstrate
shared neuroendocrine pathways between SCLC and type I
LCNECs, which may be similarly susceptible to this agent. On the
other hand, type II LCNECs with alterations in RB1 exhibited
active Notch signaling (Fig. 4). Clinical trials have assessed the
efficacy of an antibody targeting Notch 2 and 3 in SCLC, but
recently failed in demonstrating a clinical benefit42,43. Therefore,
future clinical trials involving therapeutics, targeting activating or
inhibitory members of the Notch pathway will—in our view—
require clear assignment of the respective molecular subtype.

Perhaps another noteworthy finding, type II LCNECs exhibited
a pattern of gene expression with upregulation of immune related
pathways (Fig. 3b, Fig. 4), which has similarly been observed in
various other tumor types28 and which may impact the response
of patients to immunotherapy. Taken together, the precise dis-
tinction of high-grade neuroendocrine tumors representing as
type I LCNECs and as RB1-mutated SCLC or type II LCNECs,
may be pivotal to assess the efficacy of targeted therapeutics,
including Notch pathway and immune checkpoint inhibitors.

Our sequencing studies did not reveal any somatic events that
may cause the transcriptional discrepancy observed in LCNEC and
SCLC tumors with TP53 and RB1 alteration, which raises the

LCNEC SCLC

Type I
LCNECs

High-grade neuroendocrine lung tumors

TP53mut

+STK11/KEAP1mut TP53mut + RB1mut

ASCL1high

DLL3high

NOTCH low

TP53mut + RB1mut

ASCL1low

DLL3 low

NOTCHhigh

ASCL1high

DLL3high

NOTCH low

Cellular respiration
and metabolism Cell cycle, mitosis

Neuroendocrine profile Neuroendocrine
profile

NOTCH profile
immune profile

Type II
LCNECs

Genomic
profile

Transcriptional
profile

Fig. 4 Schematic overview of somatic alterations and expression profiles in high-grade neuroendocrine lung tumors. Significantly mutated genes are shown
in black and differentially expressed genes are highlighted in red and blue, describing higher and lower expression, respectively. Upregulated expression
profiles and signaling pathways are indicated by color gradients
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question if all neuroendocrine tumors share the same cell of origin.
It remains to be understood whether distinct tumor-specific cell of
origins or cellular processes allow for plasticity and trans-
differentiation that consequently lead to distinct molecular phe-
notypes. Importantly, histological trans-differentiation from lung
adenocarcinoma to SCLC has been observed, both spontaneously
or as resistance mechanisms to kinase inhibitors44,45; in some cases
these were linked with a loss of RB14,46. Previous studies involving
genetically engineered mouse models and human cell lines have
emphasized the phenomenon of transcriptional heterogeneity in
SCLC and pointed to discordant expression of key lineage factors
(e.g. ASCL1, NEUROD1, REST)31,38. By contrast, human primary
tumors revealed a more complex expression pattern with co-
expression of these transcriptional regulators. As a limitation of
bulk tumor sequencing, advances in single cell sequencing may
further aid to resolve and study the level of transcriptional intra-
tumor heterogeneity in high-grade neuroendocrine tumors. While
our studies pointed to transcriptional correlates of genomically
defined subsets in LCNECs (type I and type II LNCECs), additional
analyses on a larger dataset are warranted to further interrogate
subcategories of high-grade neuroendocrine tumors.

In summary, we provide the first comprehensive character-
ization of neuroendocrine lung tumors, which integrates the
molecular phenotypes of less frequent lung tumor subtypes.
Despite the fact that LCNEC and SCLC tumors share some
common clinical and histological characteristics, our study
emphasizes pronounced differences in the pattern of genomic
alterations and in their transcriptome profiles. The precise dis-
tinction of type I and type II LCNECs from SCLC is consequently
pivotal to evaluate the response of patients to treatment options
and to further understand morphological trans-differentiation
processes in lung cancer patients.

Methods
Human specimens. The institutional review board (IRB) of the University of
Cologne approved this study. Patient samples were obtained under IRB-approved
protocols following written informed consent from all human participants. We
collected and analyzed fresh-frozen samples of 75 LCNEC patients, which were
provided by multiple collaborating institutions; 42 tumors were previously subject
of other studies conducted by Rousseaux et al.47 (n= 25) and Seidel et al.7 (n= 37)
(Supplementary Data 1). Clinical data were available for most patients, who were
predominantly male (approximate ratio of 4:1) and current or former heavy
smokers (Supplementary Data 1). All tumor samples were reviewed and confirmed
by independent expert pathologists (E.B., W.T., and R.B.), and the diagnosis of
LCNEC and the assessment of combined histological components were confirmed
by H&E staining and immunohistochemistry, including markers for chromogranin
A, synaptophysin, CD56 and Ki67. All tumors were positive for at least one
neuroendocrine differentiation marker (Supplementary Data 1–2). Specimens
containing >70% of tumor cells were processed for DNA and RNA extractions.
DNA was extracted from matching normal material that was provided in the form
of blood or adjacent non-tumorigenic lung tissue, which through pathological
evaluation was confirmed to be free of tumor contaminants.

Nucleic acid extraction. Total DNA and RNA were obtained from fresh-frozen
tumor tissue and matched fresh-frozen normal tissue or blood. Depending on the
size of the tissue, 15–30 sections, each 20 μm thick, were cut using a cryostat (Leica)
at –20 °C. The matched normal sample obtained from frozen tissue was processed
the same way. Nineteen LCNEC cases were identified with mixed histological
components of SCLC, lung adenocarcinomas and squamous cell carcinomas
(Supplementary Data 1); in these cases nucleic acids were extracted from
pure LCNEC regions by only dissecting the LCNEC component. DNA was
extracted with the Gentra Puregene DNA extraction kit (Qiagen) and diluted to a
working concentration of 100 ng/μL. The DNA was analyzed by agarose gel elec-
trophoresis and confirmed to be of high-molecular weight (>10 kb). The DNA of
tumor and normal material was confirmed to originate from the same patient by
short tandem repeat (STR) analysis which was conducted at the Institute of Legal
Medicine at the University of Cologne (Cologne, Germany), or by subsequent
Affymetrix 6.0 SNP array and sequencing analyses.

RNA was isolated from tumor tissues by first lysing and homogenizing tissue
sections with the Tissue Lyzer (Qiagen). The RNA was then extracted with the
Qiagen RNAeasy Mini Kit. The RNA quality was analyzed at the Bioanalyzer 2100

DNA Chip 7500 (Agilent Technologies) and cases with a RNA integrity number
(RIN) of over seven were considered for RNA-seq experiments.

Next-generation sequencing (NGS). WES was performed by first fragmenting 1 μg
of DNA (Bioruptor, diagenode, Liége, Belgium). The DNA fragments were then end-
repaired and adaptor-ligated with sample index barcodes. Following size selection, the
SeqCap EZ Human Exome Library version 2.0 kit (Roche NimbleGen, Madison, WI,
USA) was used to enrich for the whole exome. The DNA libraries were then
sequenced with a paired-end 2 × 100 bp protocol aiming for an average coverage of
90× and 120× for the normal and tumor DNA, respectively. The primary data were
filtered for signal purity with the Illumina Realtime Analysis software.

WGS was performed with a read length of 2 × 100 bp. The samples were
processed to provide 110 Gb of sequence, thus amounting to a mean coverage of
30× for both tumor and matched normal.

For RNA-seq, cDNA libraries were prepared from PolyA+ RNA following the
Illumina TruSeq protocol for mRNA (Illumina, San Diego, CA, USA). The libraries
were sequenced with a paired-end 2 × 100 bp protocol resulting in 8.5 Gb per
sample, and thus in a 30× mean coverage of the annotated transcriptome.

Whole genome, whole exome and transcriptome sequencing reactions were
performed on an Illumina HiSeq 2000 sequencing instrument (Illumina, San
Diego, CA, USA).

Copy-number analysis by Affymetrix SNP 6.0 arrays. Human DNA from fresh-
frozen tumors was analyzed with Affymetrix Genome-Wide Human SNP 6.0
arrays to determine copy-number alterations. Raw copy number data were com-
puted by dividing tumor-derived signals by the mean signal intensities obtained
from a subset of normal samples which were hybridized to the array in the same
batch. Circular binary segmentation was applied to obtain segmented raw copy
numbers48. Significant copy-number alterations were assessed with CGARS49 at a
threshold of Q < 0.01 (Supplementary Data 4).

Data processing and analyses of DNA sequencing data. The sequencing reads
were aligned to the human reference genome NCBI build 37 (NCBI37/hg19) with
BWA (version 0.6.1-r104)50. Possible PCR-duplicates were masked and not included
for subsequent studies. We applied our in-house analysis pipeline4,6,51 to analyze the
data for somatic mutations, copy number alterations and genomic rearrangements. In
brief, the mutation calling algorithm considers local sequencing depth, forward-
reverse bias, and global sequencing error, to thus determine the presence of a mutated
allele. We determined the somatic status of these mutations by assessing the absence
of these variants in the sequencing data of the matched normal.

We determined genomic rearrangements from WGS data of 11 human
LCNECs following the procedure as previously described6,51. In brief, the
sequencing data were analyzed for discordant read-pairs, which were not within
the expected mapping distance (>600 base pairs) or which revealed an incorrect
orientation. Discordant read-pairs were analyzed for breakpoint-spanning reads, in
which one read-pair shows partial alignments to two distinct genomic loci.
Rearranged genomic loci were then reported at instances where at least one
breakpoint-spanning read was identified. The genomic rearrangements called from
each tumor sample were further filtered against the sequencing data of a matched
normal and additionally against a library of normal genomes to thus minimize the
detection of false-positive rearrangements.

Significantly mutated genes were analyzed as previously described4,6. In brief,
we first determined the overall background mutation rate of each gene by
computing its expected number of mutations assuming that all mutations are
uniformly distributed across the genome. We also considered the ratio of
synonymous to non-synonymous mutations into a combined statistical model to
determine significantly mutated genes. Since mutation rates in non-expressed genes
are often higher than the genome-wide background rate, we furthermore filtered
for the expression of genes by referring to the transcriptome sequencing data of
LCNECs. Only genes with a median FPKM (Fragments Per Kilobase Million) value
of >1 in at least 35 out of 60 samples were considered (Methods section: RNA
sequencing data processing and analyses). The significance of recurrently mutated
genes was determined at a Q-value of <0.01 (Supplementary Data 7). Following
previously described methods, we furthermore analyzed the data for significant
enrichment of damaging mutations (including splice site, non-sense, and
frameshift mutations)6 and for significant clustering of mutations in genomic
hotspots following a re-sampling based approach4. Significance was determined at
a Q-value of 0.01, if the gene was affected in >10% of the samples (Supplementary
Data 7). The damaging impact of mutations was further assessed by Polyphen52.

The clonal status of mutations was assessed by computing for every mutation
the “cancer cell fraction” (CCF), which defines within a tumor the fraction of
cancer cells harboring that particular mutation53. The CCF was computed
following our previously described approach6. In brief, this method first estimates
tumor purity, ploidy, and absolute copy numbers, and computes for each mutation
in a given sample the expected allele frequency under the assumption of clonality.
The CCF is the quotient of the observed allelic fraction and the expected allelic
fraction of a mutation. The distribution of CCFs for every mutation in a sample
allowed to further identify distinct clusters and to thus assign the mutations to
clonal and subclonal populations. The analysis described in Supplementary Fig. 2c
considers mutations, which were assigned to clonal and subclonal fractions with a
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probability >90%. In consideration of the sequencing coverage and the overall
distribution of CCFs of every mutation in a sample, we furthermore determined the
significant enrichment of mutations in a subclone at a P-value of 0.01 (Fig. 1b).

Mutational signatures analyses. Mutational signatures were analyzed in lung
cancer subtypes applying previously described methods54,55 and referring to the
datasets of 77 lung adenocarcinomas (50 heavy-smokers (hs) and 27 non-smokers
(ns) from the TCGA project)2,25, 52 lung squamous cell carcinomas (from the
TCGA project)3, 109 SCLC6, and 60 LCNECs from this study. Tumor cases with at
least 30 somatic variants were selected and the list of variants were either extracted
from Supplementary Materials6 or COSMIC v68 (for the TCGA data)20. Variants
were annotated with Annovar (version 12 Nov 2014). Gene strand orientations
were retrieved from the RefSeqGene database using a customized Perl script.
Variants were included in the analyses only if they could be successfully annotated.
Single-base substitutions were classified into 96 types determined by the six pos-
sible substitutions (C:G > A:T, C:G > G:C, C:G > T:A, A:T > C:G, A:T > G:C, A:T >
T:A) in their tri-nucleotides sequence context (16 combinations for each type of
substitution). For extracting mutational signatures, we used the non-negative
matrix factorization (NMF) algorithm developed by Lee et al.56 and implemented
in the Welcome Trust Sanger Institute (WTSI) mutational signatures framework.

Di-deoxynucleotide sequencing. Somatic alterations of interest were determined
and confirmed by two independent sequencing approaches, which included WGS,
WES, RNA-seq or di-deoxynucleotide sequencing. Di-deoxynucleotide chain ter-
mination sequencing (Sanger sequencing) was performed to validate mutations,
genomic rearrangements, and chimeric fusion transcripts. Primer pairs were
designed to amplify the target region encompassing the somatic alteration. The
PCR reactions were performed either with genomic DNA or cDNA. The amplified
products were subjected to Sanger sequencing and the respective electro-
pherograms were analyzed by visual inspection using 4 Peaks or Geneious.

Analysis of RNA sequencing data. In order to detect chimeric transcripts, RNA-
seq data were processed using TRUP4,27. In brief, paired-end RNA-seq reads were
aligned to the human reference genome (NCBI37/hg19). We used TRUP to
identify potential chimeric transcripts. Gene expression levels were determined
with Cufflinks v2.0.2 referring only to paired-end reads that uniquely mapped
within the expected mapping distance. The expression was quantified as FPKM
(Fragments Per Kilobase Million) and the expression values served as a filter for
identifying significantly mutated genes (Methods section: Data processing and
analyses of DNA sequencing data).

Gene expression profiling and clustering studies. We analyzed transcriptome
sequencing data from a total of n= 341 lung cancer samples. N= 221 samples
referred to the data generated at the University of Cologne, Department of
Translational Genomics, which included 41 lung adenocarcinoma26,27, 61 pul-
monary carcinoids24, 53 SCLC6, and 66 LCNECs from this present study. N=
120 samples were randomly selected from both the TCGA lung squamous cell
carcinoma (n= 60)3 and TCGA lung adenocarcinoma (n= 60) cohorts2,25 refer-
ring to the Genomics Data Commons Legacy Archive. Sequencing data of lung
adenocarcinomas from two different platforms aided in controlling for potential
batch effects in subsequent studies. The raw sequencing reads of the RNA-seq data
were all similarly processed to analyze for gene expression profiles. Sequencing
reads which passed the quality control were mapped to the human reference
genome (hg19) using MapSplice57. Picard Tools v1.64 (http://broadinstitute.github.
io/picard/) was used to assess the alignment profile. SAMtools was used to sort and
index the mapped reads and to determine transcriptome coordinates. The aligned
reads were further filtered for indels, large inserts, and zero mapping quality with
UBU v1.0 (https://github.com/mozack/ubu). RSEM58, an expectation-
maximization algorithm that refers to UCSC gene transcript and definitions, was
applied to estimate transcript abundance. In order to allow comparisons between
all RNA-Seq samples, raw RSEM read counts were normalized to the overall upper
quartile59. The expression was quantified for 20,500 genes in 341 tumor samples
and the median expression value was determined at RSEM= 209, which served as
a reference threshold to classify for low and high expression. The expression
determined by RSEM is provided for LCNECs in Supplementary Data 11.

For clustering purposes a set of genes that were both highly expressed and had
highly variable expression patterns was identified in all lung cancer subtypes.
Quality control procedures performed prior to any clustering analysis did not
detect any evidence of batch effects.

After median centering the log2(RSEM+ 1) values by gene, unsupervised
consensus clustering was applied using the ConsensusClusterPlus R package60,61

with partitioning around medioids and a Spearman correlation-based distance.
Additional hierarchical clustering of the consensus clustering classes was
performed, applying average linkage and a Pearson correlation-based distance.

The statistical significance of the differences in gene expression patterns present
in the subtype was assessed with the SigClust R package62 by referring to the
clustering gene sets and by using 1000 permutations and the default covariance
estimation method. ClaNC63 was used to identify genes whose expression patterns

characterize the subtypes. R 3.0.261 was used to perform all statistical analyses and
create all figures.

We first conducted consensus clustering of all lung cancer subtypes. The
expression data of all lung cancer subtypes (n= 341) was analyzed and the 0.75
quantile of all log2(mean(RSEM)) values was used to identify highly expressed
genes, while the 0.9 quantile of log2(variance(RSEM)) was used as a threshold to
identify clustering gene sets that have highly variable expression patterns, which
yielded a set of 1854 genes (Supplementary Fig. 6a). The samples were clustered
with ConsensusClusterPlus following partition around medoids (PAM), and the
ConsensusClusterPlus output along with gene expression heatmaps, principal
components analysis, and silhouette plots was analyzed. Manual review of
ConsensusClusterPlus output suggested a possible clustering solution based on k=
6 groups. However, two of the six groups included mainly lung adenocarcinoma
samples and the gene expression heatmaps and PCA plots showed that these
groups were quite similar. Thus, we chose to collapse these groups, thereby
producing a five-class solution. The consensus clusters highly correlated with the
histological subtypes as determined by Fisher’s exact test Monte Carlo version (P <
0.001, 10,000 permutations): class A (n= 66; enriched for pulmonary carcinoids),
class B (n= 65, enriched for lung squamous cell carcinomas), class C (n= 108,
enriched for lung adenocarcinomas; data generated by different institutes), class D
(n= 38, enriched for LCNEC and SCLC cases), and class E (n= 64, enriched for
SCLC and LCNEC cases) (Supplementary Fig. 6b, Supplementary Data 12). ClaNC
led to the identification of 875 classifier genes, which are displayed in the
expression heatmaps (Fig. 2, Supplementary Fig. 6–7, Supplementary Data 13).

We then conducted consensus clustering of LCNECs, SCLC, lung
adenocarcinomas, and squamous cell carcinomas. The unsupervised clustering
approach was repeated for a subset of lung cancer subtypes; here excluding
pulmonary carcinoids. The feature selection of highly variable (0.75 quantile) and
highly expressed (0.9 quantile) genes across these lung tumor subtypes (n= 280)
involved a gene set of 1855 genes and the consensus clustering process through
hierarchical clustering suggested the presence of three expression clusters
(expression subtypes): class A (n= 98, enriched for lung adenocarcinomas), class B
(n= 115, enriched for LCNEC and SCLC), and class C (n= 67, enriched for lung
squamous cell carcinomas). ClaNC identified 300 classifier genes which are
displayed in the respective expression heatmaps (Supplementary Fig. 9).

We performed consensus clustering of LCNEC and SCLC through
unsupervised clustering of the expression data of LCNEC and SCLC tumors alone
(n= 119). Exploratory analyses of the gene expression data suggested the use of the
0.9 quantile of both the log2(mean(RSEM)) and log2(variance(RSEM)) values as
thresholds for highly expressed and highly variably expressed genes. This produced
a set of 1416 clustering genes. The Consensus clustering approach included
hierarchical clustering and yielded four gene expression subtypes: class I (n= 19,
only LCNECs), class II (n= 49, LCNEC and some SCLC tumors), class III (n= 10,
SCLC and some LCNECs), and class IV (n= 41, mainly SCLC and some LCNECs)
(Fig. 3, Supplementary Fig. 10–11, Supplementary Data 12). Hierarchical clustering
of these cases revealed two main subgroups: one mainly formed by class I and II
(enriched for LCNECs) and one mainly formed by class III and IV (enriched for
SCLC) (Supplementary Fig. 11). 300 classifier genes were identified by ClaNC and
are displayed in the expression heatmaps (Fig. 3, Supplementary Fig. 11,
Supplementary Data 13).

We also performed consensus clustering of LCNECs with lung
adenocarcinomas or lung squamous cell carcinomas. A gene set of (a) 1335 and (b)
1338 highly variable (0.85 quantile) and expressed genes (0.925 quantile) was
identified in subsets of lung cancer tumors, including (a) LCNECs and lung
adenocarcinomas (n= 167) and (b) LCNECs and lung squamous cell carcinomas
(n= 126). The consensus clustering approach through PAM (partitioning around
medoids) suggested in both cases two transcriptional subclasses: for approach (a)
class A (n= 70, mainly LCNECs) and class B (n= 97, mainly lung
adenocarcinomas); and for approach (b) class A (n= 58, mainly LCNECs) and
class B (n= 68, mainly lung squamous cell carcinomas). ClaNC identified 100
classifier genes in each approach, which were used for the expression heatmaps
(Supplementary Fig. 9).

We furthermore performed consensus clustering of LCNECs alone. The
transcriptional data on LCNECs was analyzed and hierarchical clustering referred
to 475 very highly expressed (0.875 quantile) and very highly variable (0.975
quantile) genes. The consensus clustering approach yielded a k= 4 clustering
solution: class 1 (n= 11), class 2 (n= 21), class 3 (n= 24), and class 4 (n= 10).
ClaNC was then applied to the clustering solution, which further identified 540
classifier genes (Supplementary Fig. 13, Supplementary Data 13).

Differential expression analysis. The SAMR R package64 was used to identify
genes that were differentially expressed in the expression subtypes using 1000
permutations and a Q-value threshold of 0.05 (Supplementary Data 13). We then
used the DAVID annotation database65,66 to identify pathways that were enriched
for differentially expressed genes at P < 0.0001 (Supplementary Data 14).

Immunohistochemistry. FFPE tissue sections of 3-μm thickness were stained for
hematoxylin and eosin (H&E) and immunohistochemistry (IHC) was conducted
for CD56 (NCAM1), Synaptophysin (SYP), Chromogranin A (CHGA, clone DAK-
A3), TTF-1 (NKX2-1, clone 8G7G3/1), and Rb1 (RB1, clone 1F8 (ab81701; Abcam,
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Cambridge, UK) (Supplementary Data 2, Supplementary Table 1). Hematoxylin
and eosin (H&E) were scanned and can be viewed online or with the Pannoramic
Viewer software (3D Histech) as specified in Supplementary Data 2 (for further
information see “Data Availability”).

Specifically, IHC for Rb1 was performed with the Novolink max polymer
detection system (RE7280-CE, Leica Biosystems, Wetzlar, Germany) using EDTA
buffer pH 8.0 (K038, Diagnostic BioSystems, Pleasanton, USA) antigen retrieval
(4 × 5 min by microwave 700W). The primary antibody was incubated overnight at
4 °C; the secondary antibody was incubated for 30 min at room temperature. The
signal was visualized by diaminobenzidine after incubation for 5 min at room
temperature. Sections were counter-stained with hematoxylin for 5 min. The H-
score method was used for evaluating the immunostaining with Rb1 by multiplying
the intensity of the staining (0: no staining, 1: weak, 2: moderate and 3: strong
staining) with the percentage of the tumor or stroma stained. The minimum score
was 0 and the maximum was 300 (Supplementary Data 2).

Fluorescence in situ hybridization assay. Genomic rearrangements of PTK6 on
chromosome 20 were assessed through a dual-color break-apart fluorescence
in situ hybridization (FISH) assay following previous protocols67. In brief, the BAC
clone RP11-939M14 labeled centromeres with biotin (red signal) and CTD-
3228E10 labeled telomeric sites with digoxigenin (green signal). The samples were
analyzed with a 63× oil immersion objective at a fluorescence microscope (Zeiss,
Jena, Germany) equipped with appropriate filters, a charge-coupled device camera
and the FISH imaging and capturing software Metafer 4 (Metasystems, Altlus-
sheim, Germany). Two independent scientists analyzed the experiment (R.M. and
S.P.). Translocations were derived from a split of a signal pair, resulting in a single
red and green signal, single red or green signals resulting from signal loss, were
referred to as a rearrangement through deletion. In cases where cells were wild type
and displayed no rearrangements, a juxtaposed red and green signal (mostly
forming a yellow signal) was observed.

NTRK1 break-apart FISH were performed with the ZytoLight SPEC NTRK1
Dual Color Break Apart Probe (ZytoVision, Bremerhaven, Germany). According to
previous protocols68, 4 μm sections of FFPE tissue were treated with the Paraffin
pretreatment reagent kit (Vysis, Abbott Molecular), and then stained with the
probes following the instructions of the manufacturer. An NTRK1 rearrangement
was diagnosed when >15% of the nuclei showed either a split pattern with 3′ and 5′
signals separated by a distance superior to the diameter of the largest signal, or
isolated 3′ (orange) signals.

Data availability. Sequencing data and Affymetrix 6.0 SNP array data are
deposited at the European Genome-phenome Archive, which is hosted by the EBI
(EGA, http://www.ebi.ac.uk/ega/), under accession number EGAS00001000708.
Histological images of FFPE samples from LCNECs of this study are deposited as
H&E images (domain 1: https://teleslide.chu-grenoble.fr/ > acces
libre > recherche > recherche/TP/LCNEC-study > code access 1793) or as data files
compatible with the Pannoramic Viewer software (3D Histech) (domain 2: https://
uni-koeln.sciebo.de/index.php/s/xMjs4dqJpqbOVDn); an overview is provided in
Supplementary Data 2.
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Integrative	analyses	of	lung	neuroendocrine	neoplasms	

	
Abstract	

We	have	generated	 the	 first	multi-omic	dataset	 for	 atypical	pulmonary	 carcinoids	 and	 through	

machine	 learning	and	multi-omics	 factor	analysis	of	newly	generated	and	previously	published	

data,	 we	 have	 compared	 and	 contrasted	 the	 genomic	 profiles	 of	 116	 pulmonary	 carcinoids	

(including	35	atypical),	75	large-cell	neuroendocrine	carcinomas	(LCNEC),	and	66	small-cell	lung	

cancers.	 These	 integrative	 analyses	 on	 257	 lung	 neuroendocrine	 neoplasms	 stratified	 atypical	

carcinoids	 into	 two	 prognostic	 groups	 with	 a	 10-year	 overall	 survival	 of	 88%	 and	 20%,	

respectively.	We	 identified	 therapeutically	 relevant	molecular	 groups	 of	 pulmonary	 carcinoids,	

suggesting	 DLL3	 and	 the	 immune	 system	 as	 candidate	 therapeutic	 targets,	 we	 confirmed	 the	

value	of	OTP	expression	levels	for	the	prognosis	and	diagnosis	of	these	diseases,	and	we	unveiled	

the	group	of	supra-carcinoids.	This	group	comprise	samples	with	carcinoid-like	morphology	yet	

with	molecular	and	clinical	 features	of	 the	deadly	LCNEC,	 suggesting	 that	 these	 tumours	might	

represent	the	lung	analogous	to	the	well-differentiated	grade-3	gastroenteropancreatic	tumours.		
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Introduction	

According	 to	 the	 WHO	 classification	 from	 20151	 and	 a	 recent	 IARC-WHO	 expert	 consensus	

proposal2,	 pulmonary	 carcinoids	 are	 low-grade	 typical	 and	 intermediate-grade	 atypical	 well-

differentiated	 lung	 neuroendocrine	 tumours	 (LNETs)	 that	 belong	 to	 the	 group	 of	 lung	

neuroendocrine	neoplasms	(LNENs),	which	also	include	the	high-grade	and	poorly	differentiated	

small-cell	 lung	 cancer	 (SCLC)	 and	 large-cell	 neuroendocrine	 carcinomas	 (LCNEC).	 Pulmonary	

carcinoids	 are	 rare	malignant	 lesions,	which	 annual	 incidence	 has	 been	 increasing	worldwide,	

especially	at	 the	advanced	stages3.	Pulmonary	carcinoids	account	 for	1–2%	of	all	 invasive	 lung	

malignancies:	 typical	 carcinoids	 exhibit	 good	 prognosis,	 although	 10-23%	 metastasize	 to	 the	

regional	 lymph	nodes,	 resulting	 in	 a	 5-year	 overall	 survival	 rate	 of	 82-100%.	The	prognosis	 is	

worse	 for	 atypical	 carcinoids,	with	 40-50%	presenting	metastasis,	 reducing	 the	 5-year	 overall	

survival	rate	to	50%.	
Contrary	to	pulmonary	carcinoids,	most	of	which	are	eligible	to	upfront	surgery	at	the	time	

of	 diagnosis3,	 LCNEC	 and	 SCLC	 require	 aggressive,	multimodal	 treatment	 upfront	 for	most	 the	

patients.	Due	to	these	differences	in	clinical	management	and	prognosis,	the	accurate	diagnosis	of	

these	diseases	is	critical.	However,	there	is	still	no	consensus	on	the	optimal	approach	for	their	

differential	 diagnosis2;	 the	 current	 criteria,	 based	 on	 morphological	 features	 and	

immunohistochemistry,	 are	 imperfect	 and	 inter-observer	 variations	 are	 common,	 especially	

when	 separating	 typical	 and	 atypical	 carcinoids4,	 and	 atypical	 carcinoids	 from	LCNEC	 in	 small	

biopsies5.	Ki67	protein	immune-reactivity	has	been	suggested	as	a	good	marker	of	prognosis	in	

LNENs	 as	 a	 whole,	 and	 of	 differential	 diagnosis	 between	 carcinoids	 and	 SCLC6,7,	 whereas	 this	

marker	 does	 not	 faithfully	 follow	 the	 defining	 histological	 criteria	 of	 typical	 and	 atypical	

carcinoids4.	The	difficulties	 in	 finding	good	markers	to	separate	these	diseases	might	be	due	to	
the	 limited	 amount	 of	 comprehensive	 genomic	 studies	 available	 for	 SCLC,	 LCNEC,	 and	 typical	

carcinoids,	 and	 the	 complete	 lack	 of	 such	 studies	 for	 atypical	 carcinoids8.	 In	 addition,	 such	

studies	would	also	be	needed	to	validate	the	recent	proposed	molecular	link	between	pulmonary	

carcinoids	and	LCNEC9,10.	
In	 this	 study,	 we	 provide	 a	 comprehensive	 overview	 of	 the	 molecular	 traits	 of	 lung	

NENs—with	a	particular	focus	on	the	understudied	atypical	carcinoids—in	order	to	identify	the	

mechanisms	 underlying	 the	 clinical	 differences	 between	 typical	 and	 atypical	 carcinoids,	 to	

understand	the	suggested	molecular	link	between	pulmonary	carcinoids	and	LCNEC,	and	to	find	

new	candidate	for	the	diagnosis	and	treatment	of	these	diseases.	
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Results	

We	have	generated	new	data	(genome,	exome,	transcriptome	and	methylome)	for	63	pulmonary	

carcinoids	(including	27	atypical)	and	20	LCNEC.	In	order	to	perform	comparative	analyses,	we	

have	 reanalysed	 published	 data	 for	 74	 pulmonary	 carcinoids11,	 75	 LCNEC12,	 and	 66	 SCLC13,14	

(Online	Methods).	Taken	together,	we	have	performed	multi-omics	integrative	analyses	on	116	

pulmonary	carcinoids	(including	35	atypical),	75	LCNEC,	and	66	SCLC	(Table	S1	and	Fig.	S1).	All	

new	specimens	were	collected	from	surgically	resected	tumours,	applying	local	regulations	and	

rules	 at	 the	 collecting	 site,	 and	 including	 patient	 consent	 for	 molecular	 analyses	 as	 well	 as	

collection	 of	 de-identified	 data,	 with	 approval	 of	 the	 local	 Ethical	 Committees.	 These	 samples	

underwent	an	independent	pathological	review.	For	the	typical	carcinoids	and	LCNEC	on	which	

methylation	 analyses	 were	 performed,	 the	 DNA	 came	 from	 the	 samples	 included	 in	 already	

published	studies4,11-15,	on	which	pathological	review	had	already	been	done.	
	

Molecular	groups	of	pulmonary	carcinoids	and	LCNEC	

We	performed	an	unsupervised	analysis	of	the	expression	and	methylation	data	of	LNEN	samples	

(i.e.,	 100	 pulmonary	 carcinoids	 and	 72	 LCNEC)	 using	 the	 Multi-Omics	 Factor	 Analysis	

implementation	 of	 the	 group	 factor	 analysis	 statistical	 framework	 (Software	 MOFA)16	 (MOFA	

LNEN;	 Fig	 1A;	 Figs.	 S2-3;	 Online	 Methods).	 We	 identified	 3	 latent	 factors	 that	 provided	

consistent	 groups	 of	 samples	 with	 similar	 expression	 and	 methylation	 profiles	 (i.e.,	 clusters).	

Latent	 factors	 1	 and	 2	 explained	 a	 total	 of	 45%	 and	 34%	 of	 the	 variance	 in	 methylation	 and	

expression,	 respectively,	 and	 were	 both	 associated	 with	 survival	 (Fig.	 S4).	 Using	 consensus	

clustering	 on	MOFA	 latent	 factors	 (Figs.	 S5-7;	 Online	 Methods),	we	 identified	 three	 clusters,	

each	of	them	enriched	for	samples	of	one	of	the	three	histopathological	types	(Fig.	1A).	Cluster	

Carcinoid	 A	 was	 enriched	 for	 typical	 carcinoids	 (75%;	 Fisher’s	 exact	 test	 p-value<2.2x10-16);	

cluster	Carcinoid	B	was	enriched	for	atypical	carcinoids	(54%;	Fisher’s	exact	test	p-value<2.2x10-

16)	 and	male	 patients	 (80%;	 Fisher’s	 exact	 test	p-value=1.6x10-9);	 and	 cluster	 LCNEC	 included	

92%	of	the	histopathological	LCNEC	(Fisher’s	exact	test	p-value<2.2x10-16).	 
To	assess	whether	the	current	histopathological	classification	could	be	improved	by	the	

combination	of	molecular	and	morphological	 characteristics,	we	undertook	a	machine-learning	

analysis	 with	 a	 random	 forest	 classifier	 but,	 in	 this	 instance,	 trained	 to	 predict	 the	

histopathological	 types	 based	 on	 the	 expression	 and	methylation	 data	 (Online	 Methods;	 Fig.	

1B).	Ninety-five	per	cent	of	the	carcinoids	predicted	as	typical	by	the	machine	learning	were	in	

cluster	 Carcinoid	 A	 (Fig.	 1A).	 Similarly,	 the	 majority	 of	 machine-learning	 atypical	 carcinoids	

(79%)	belonged	 in	cluster	Carcinoid	B.	The	machine	 learning	stratified	atypical	 carcinoids	 into	

two	prognostic	groups:	the	good-prognosis	group	with	a	10-year	overall	survival	similar	to	that	

of	typical	carcinoids	(88%);	and	the	bad-prognosis	group	with	a	10-year	overall	survival	similar	

to	 that	 of	 LCNEC	 (20%)	 (Fig.	 1C). The	molecular	 classification,	 trained	 on	 the	 histopathology,	
was,	thus,	able	to	separate	the	good-	from	the	poor-prognosis	pulmonary	carcinoids	much	better	

than	 the	 histopathology	 alone.	 In	 fact,	 a	model	 based	ML-predictions	 yielded	 a	 17-fold	 higher	

likelihood	than	a	model	based	on	histopathology	(ΔAIC=	5.74;	Fig.	S8A).	 
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A	subgroup	of	atypical	carcinoids	presents	molecular	characteristics	of	LCNEC	

Six	 atypical	 carcinoids,	 “supra-carcinoids”,	 clustered	with	LCNEC	 in	 the	MOFA	LNEN	 (Fig.	 1A).	

Consistent	with	this	clustering,	this	group	displayed	a	survival	similar	to	LCNEC	(10-year	overall	

survival	 of	 33%	 and	 21%,	 respectively,	 Wald	 test	 p-value=0.574;	 Fig.	 2A).	 The	 observed	

molecular	 link	 appear	 to	 be	 between	 supra-carcinoids	 and	 LCNEC	 rather	 than	 with	 SCLC,	 as	

shown	by	additional	MOFA	and	PCA	including	expression	data	for	51	SCLC	(Fig.	S9A-C	and	Fig.	

S6A-C,	respectively). 
These	 samples	 originated	 from	 three	 different	 centres	 (two	 from	 each),	 and	 included	

two	 previously	 published	 samples	 (S01513	 and	 S01522)11,	 implying	 that	 this	 observation	 is	

unlikely	to	be	the	result	of	a	batch	effect.	The	limited	number	of	supra-carcinoids	did	no	allow	to	

explore	etiological	links;	however,	it	is	of	note	that	one	of	them	(LNEN005)	belonged	to	a	patient	

with	professional	exposure	to	asbestos	(which	is	known	to	cause	mesothelioma17)	(Table	1),	and	

the	 tumour	harboured	a	splicing	BAP1	mutation	(a	gene	 frequently	altered	 in	mesothelioma18).	

LNEN005	 was	 the	 sample	 with	 the	 highest	 mutation	 load	 (37	 damaging	 somatic	 mutations;	

Table	 S2).	Gene	Set	Enrichment	Analyses	(GSEA)	of	mutations	 in	 the	hallmarks	of	cancer	gene	

sets	 (Online	 Methods)19,20,	 showed	 a	 significant	 enrichment	 for	 hallmark	 “evading	 growth	

suppressor”	 (q-value=0.0213;	Fig.	 2B,	 Table	 S3),	while	 “genome	 instability	and	mutation”	and	

“activating	 invasion	and	motility”	were	almost	 significant	 (both	with	q-value=0.0647;	Fig.	 2B);	

however,	 the	 latter	 only	 included	 mutations	 detected	 in	 LNEN005.	 We	 had	 access	 to	 the	

Haematoxylin	 and	 Eosin	 (H&E)	 stain	 for	 three	 supra-carcinoids,	 on	 which	 the	 pathologists	

discarded	 misclassifications	 with	 LCNEC,	 SCLC,	 or	 mesothelioma	 in	 the	 case	 of	 the	 asbestos-

exposed	BAP1-mutated	sample	(Fig.	2C;	Table	1). 
While	 generally	 similar	 to	 LCNEC,	 and	 albeit	 based	 on	 small	 numbers,	 the	 supra-

carcinoids	appeared	to	have	nonetheless	some	distinct	genomic	features	based	on	genome-wide	

expression	 and	 methylation	 profiles	 (Fig.	 2D).	 Supra-carcinoids	 displayed	 higher	 levels	 of	

immune	 checkpoint	 genes	 (both	 receptors	 and	 ligands;	Fig.	 2E),	 and	 also	 harboured	 generally	

higher	 expression	 levels	 of	 MHC	 class	 I	 and	 II	 genes	 (Fig.	 2E;	 Fig.	 S10).	 Interestingly,	 the	

interferon-gamma	gene—a	prominent	immune-stimulator,	in	particular	of	the	MHC	class	I	and	II	

genes—also	 showed	 high	 expression	 levels	 in	 these	 samples	 (Fig.	 S10).	 The	 differences	 in	

immune	checkpoint	gene	expression	levels	between	groups	were	not	explained	by	the	amount	of	

infiltrating	cells,	as	estimated	by	deconvolution	of	gene	expression	data	with	software	quanTIseq	

(Fig.	 2F,	 left	 panel).	 However,	 supra-carcinoids	 contained	 the	 highest	 levels	 of	 neutrophils	

(greater	than	the	3rd	quartile	of	the	distributions	of	neutrophils	in	the	other	groups;	Fig.	2F,	right	

panel).	 Permutation	 tests	 showed	 that	 these	 levels	 were	 significantly	 higher	 than	 in	 other	

carcinoid	 groups	 and	 SCLC	 but	 not	 than	 in	 LCNEC	 (Online	Methods;	 Fig.	 S11).	 Concordantly,	

GSEA	showed	that	MOFA	LNEN	latent	factor	1	(separating	LCNEC	and	supra-carcinoids	from	the	

other	 carcinoids)	 was	 significantly	 associated	 with	 neutrophil	 chemotaxis	 and	 degranulation	

pathways	 (Online	 Methods;	 Table	 S4).	 By	 contrast	 no	 such	 association	was	 observed	 in	 the	

MOFA	performed	only	on	carcinoids	and	SCLC	samples	(Figs.	S9C	and	S6C;	Table	S4). 
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Mutational	patterns	of	pulmonary	carcinoids	

In	a	previous	study,	mainly	including	typical	carcinoids,	we	detected	MEN1,	ARID1A,	and	EIF1AX	

as	significantly	mutated	genes11.	We	also	found	that	covalent	histone	modifiers	and	subunits	of	

the	 SWI/SNF	 complex	 were	 mutated	 in	 40%	 and	 22.2%	 of	 the	 cases,	 respectively.	 Genomic	

alterations	in	these	genes	and	pathways	were	also	seen	in	the	new	samples	included	in	this	study	

(Fig.	3A;	Table	S2;	Fig.	S12).	Apart	from	the	above-mention	genes,	ATM,	PSIP1,	and	ROBO1	also	

showed	 some	 evidence,	 among	 others,	 for	 recurrent	 mutations	 in	 pulmonary	 carcinoids	 (Fig.	

3A).	 In	addition	to	point	mutations	and	small	 indels,	the	ARID2,	DOT1L,	and	ROBO1	genes	were	

also	 altered	 by	 chimeric	 transcripts	 (Fig.	 3B).	 MEN1	 was	 also	 inactivated	 by	 genomic	

rearrangement	 in	 a	 carcinoid	 sample	with	a	 chromothripsis	pattern	affecting	 chromosomes	11	

and	 20	 (Fig.	 3C).	 The	 full	 list	 of	 somatically	 altered	 genes,	 chimeric	 transcripts,	 and	 genomic	

rearrangements	are	presented	in	Tables	S2,	S5,	and	S6,	respectively.	Of	note,	MEN1	mutations	

were	significantly	associated	with	the	atypical	carcinoid	histopathological	subtype	(Fisher’s	exact	

test	p-value=0.0096),	as	well	as	MOFA	LNEN	latent	factor	2. 
	

The	immune	system	and	the	retinoid	and	xenobiotic	metabolism	pathways	are	altered	in	pulmonary	

carcinoids	

The	 third	 latent	 factor	 from	 the	 MOFA	 LNEN	 accounted	 for	 8%	 and	 6%	 of	 the	 variance	 in	

expression	and	methylation,	respectively,	but	unlike	latent	factors	1	and	2,	latent	factor	3	was	not	

associated	with	patient	 survival	 (Fig.	 S4).	The	molecular	variation	explained	by	 latent	 factor	3	

appeared	 to	 capture	 different	 molecular	 profiles	 within	 cluster	 Carcinoid	 A	 (Fig.	 S9B).	 We	

therefore	undertook	an	additional	MOFA	restricted	to	pulmonary	carcinoid	samples	only	(MOFA	

LNET;	Fig.	4A;	Fig.	S13).	As	expected,	the	first	two	latent	factors	of	the	MOFA	LNET	were	highly	

correlated	with	 latent	 factors	2	 and	3	 from	 the	MOFA	LNEN,	 respectively	 (Pearson	 correlation	

greater	 than	 0.96;	Fig.	 S9B),	 and	 explained	 41%	 and	 35%	 of	 the	 variance	 in	methylation	 and	

expression,	 respectively.	 Integrative	 consensus	 clustering	 identified	 three	 clusters	 (Online	

Methods;	Fig.	 S14):	cluster	Carcinoid	A1	and	cluster	Carcinoid	A2,	that	together	correspond	to	

the	 samples	 in	 cluster	 Carcinoid	 A	 of	 the	 MOFA	 LNEN,	 plus	 the	 supra-carcinoids;	 and	 cluster	

Carcinoid	B.	Latent	factor	2	was	associated	with	age,	with	cluster	Carcinoid	A1	enriched	for	older	

patients	 ([60,	 90)	 years	 old)	 and	 cluster	 Carcinoid	 A2	 enriched	 for	 younger	 patients	 ([15,	 60)	

years	old).	

We	 applied	GSEA	 to	 identify	 the	 pathways	 associated	with	 the	 different	 latent	 factors.	

We	 found	 significant	 associations	 with	 the	 immune	 system	 and	 the	 retinoid	 and	 xenobiotic	

metabolism	 pathways	 (Table	 S4).	 Numerous	 Gene	 Ontology	 (GO)	 terms	 and	 KEGG	 pathways	

were	 related	 to	 the	 immune	 system,	 immune	 cell	 migration,	 and	 infectious	 diseases.	 The	 GO	

terms	 and	 KEGG	 pathways	 related	 to	 immune	 cell	 migration	 included	 leukocyte	 migration,	

chemotaxis,	 cytokines,	 and	 interleukin	 17	 signalling.	 In	 particular,	 the	 expression	 of	 all	 β-

chemokines	 (including	 CCL2,	 CCL7,	 CCL19,	 CCL21,	 CCL22,	 known	 to	 attract	 monocytes	 and	

dendritic	 cells)21	 (Table	 S4),	 and	 all	 CXC	 chemokines	 (such	 as	 IL8,	 CXCL1,	 CXCL3,	 and	 CXCL5,	

known	 to	 attract	 neutrophils)22,	 were	 positively	 correlated	 with	 MOFA	 LNEN	 latent	 factor	 1	
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(separating	 pulmonary	 carcinoids	 from	 LCNEC)	 and	 negatively	 correlated	 with	 MOFA	 LNET	

latent	factor	2	(separating	clusters	Carcinoid	A1	and	A2). 
The	different	LNET	clusters	did	not	differ	in	their	total	amounts	of	estimated	proportions	

of	 immune	 cells,	 but	 they	 did	 differ	 in	 their	 composition	 (Fig.	 S15):	 cluster	 Carcinoid	 A	

(particularly	 A1)	 was	 significantly	 enriched	 in	 dendritic	 cells,	 and	 cluster	 Carcinoid	 B	 in	

monocytes	 (Fig.	 4B,	 upper	 panel).	 As	 monocytes	 can	 differentiate	 into	 dendritic	 cells	 in	 a	

favourable	environment23,	we	assessed	the	levels	of	LAMP3	and	CD1A	dendritic-cells	markers24,	

and	found	that	samples	in	cluster	Carcinoid	A1	presented	high	expression	levels	of	these	genes	

(Fig.	 4B,	 lower	 panel),	 implying	 that	 this	 cluster	was	 indeed	 enriched	 for	 dendritic	 cells.	We	

pursued	this	further	by	assessing	the	CD1A	protein	levels	by	immunohistochemistry	(IHC)	in	an	

independent	series	of	pulmonary	carcinoids	and	found	that	60%	of	them	(12/20)	were	enriched	

in	 CDA1-positive	 dendritic	 cells,	 confirming	 the	 presence	 of	 dendritic	 cells	 in	 a	 subgroup	 of	

pulmonary	carcinoids	(Fig.	4C;	Table	S7). 
Regarding	 the	 retinoid	and	xenobiotic	metabolism	pathways	 (e.g.,	 elimination	of	drugs	

and	environmental	pollutants),	the	main	genes	driving	the	correlation	with	MOFA	latent	factors	

were	the	phase	II	enzymes	involved	in	glucuronosyl-transferase	activity	(Table	S4),	but	also	the	

phase	I	cytochrome	P450	(CYP)	proteins.	These	pathways	were	positively	correlated	with	MOFA	

LNEN	 latent	 factor	2	 (separating	LNEN	clusters	A	and	B)	and	negatively	correlated	with	MOFA	

LNET	latent	factor	1	(separating	LNET	clusters	A1	and	A2	from	cluster	B).	Indeed,	we	found	that	

samples	in	cluster	Carcinoid	B	were	characterised	by	high	levels	of	the	CYP	family	of	genes,	and	a	

very	strong	expression	of	several	UDP	glucuronosyl-transferases	UGT	genes	(median	FPKM=4.6	

in	 UGT2A3	 and	 28.1	 in	 UGT2B	 genes;	 Fig.	 4D),	 which	 contrasts	 with	 the	 low	 levels	 in	 other	

carcinoids	(median	FPKM=0	for	both	UGT2A3	and	UGT2B;	Fig.	4D),	LCNEC	(median	FPKM=0	and	

1.2	for	UGT2A3	and	UGT2B;	Fig.	S16)	and	SCLC	(median	FPKM=0	and	0.3	for	UGT2A3	and	UGT2B;	

Fig.	S16). 
	

Molecular	groups	of	pulmonary	carcinoids	

We	explored	 the	molecular	characteristics	of	each	cluster	 from	the	MOFA	LNET	based	on	 their	

core	differentially	expressed	genes	(DEG)	and	corresponding	promoter	methylation	profiles	(Fig.	

5A;	Table	 S8;	Online	Methods),	and	their	somatic	mutational	patterns	(Fig.	 3A;	 Fig.	 4A).	We	

correlated	the	gene	expression	and	promoter	methylation	data	of	the	core	DEG	to	identify	genes,	

which	expression	could	be	mainly	explained	by	their	methylation	patterns	(Fig.	5A).	One	of	the	

top	correlations	was	found	for	HNF1A	and	HNF4A	homeobox	genes	(Fig.	S17),	which	expressions	

are	 almost	 completely	 silenced	 in	 cluster	 Carcinoid	 A1	 (Fig.	 S18).	 In	 addition,	 these	 genes	

harboured	 core	 differentially	 methylated	 positions	 of	 cluster	 Carcinoid	 A1	 in	 their	 promoter	

regions,	 indicating	 that	 their	methylation	profiles	are	specific	of	 that	 cluster	 (Table	 S9).	These	

two	 transcriptional	 regulators	 genes	 have	 been	 reported	 as	 having	 a	 role	 in	 the	 regulation	 of	

ANGPTL3,	 CYP,	 and	 UGT	 genes	 expression25.	 Samples	 in	 cluster	 Carcinoid	 A1	 were	 also	

characterised	 by	 high	 expression	 levels	 of	 the	 delta	 like	 canonical	 Notch	 ligand	 3	 (DLL3,	 75%	

with	 FPKM>1)	 and	 its	 activator	 the	 achaete-scute	 family	 bHLH	 transcription	 factor	 1	 (ASCL1)	
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(Fig.	 5A;	Table	 S8),	with	expression	 levels	similar	 to	SCLC	and	LCNEC	(Fig.	 5B);	however,	 the	

expression	 levels	 of	 NOTCH	 genes	 did	 not	 differ	 between	 the	 different	 groups	 (Fig.	 S19).	 The	

supra-carcinoids	 were	 all	 negative	 for	 DLL3	 expression	 (Fig.	 5B),	 and	 had	 generally	 high	

expression	levels	of	NOTCH1-3	(Fig.	 S19).	We	additionally	tested	the	DLL3	protein	levels	in	the	

aforementioned	 independent	 series	 of	 20	 pulmonary	 carcinoids	 and	 found	 40%	 (8/20)	 with	

relatively	high	expression	of	DLL3	(Fig.	4D;	Table	S7),	while	in	the	other	12	samples	DLL3	was	

strikingly	absent	(Fig.	4D;	Table	S7).	Furthermore,	we	found	a	correlation	between	the	protein	

levels	of	DLL3	and	CD1A	(Pearson	test	p-value=0.00034;	Fig.	S20),	providing	additional	evidence	

for	 the	 existence	 of	 a	DLL3+	CD1A+	 subgroup	of	 carcinoids.	 Core	DEG	 in	 Cluster	 Carcinoid	A2	

included	 the	 low	 levels	 of	 SLIT1	 (slit	 guidance	 ligand	 1;	 97%	 with	 FPKM<0.01),	 and	 ROBO1	

(roundabout	guidance	 receptor	1;	56%	with	FPKM<1)	 (Fig.	 5A-B;	 Table	 S8).	This	 cluster	also	

contained	the	four	samples	with	somatic	mutations	in	the	eukaryotic	translation	initiation	factor	

1A	 X-linked	 (EIF1AX)	 gene	 (Fig.	 4A).	 Concordantly,	 samples	 with	 EIF1AX	 mutations	 had	

significantly	higher	coordinates	on	latent	factor	2	(t-test	p-value=0.0342). 
As	expected	based	on	Fig.	4D,	several	UGT	genes	were	core	DEG	of	Cluster	Carcinoid	B	

(Fig.	 5A).	Also,	 accordingly	with	 the	worse	 survival	 of	 patients	 in	 this	 cluster	 (Fig.	 2A),	 these	

samples	were	 also	 characterised	by	 the	 expression	of	 angiopoietin	 like	3	 (ANGPTL3,	90%	with	

FPKM>1),	and	the	erb-b2	receptor	tyrosine	kinase	4	(ERBB4,	67%	with	FPKM>1)	(Fig.	5B).	This	

cluster	was	also	 characterised	by	 the	universal	downregulation	of	orthopedia	homeobox	 (OTP;	

90%	with	FPKM<1),	and	NK2	homeobox	1	(NKX2-1;	90%	FPKM<1)	(Fig.	 5B).	 Interestingly,	 the	

SCLC-combined	 LCNEC	 sample	 (S00602)	 that	 clustered	 with	 the	 pulmonary	 carcinoids	 in	 the	

MOFA	LNEN	(Fig.	 1A)	was	 the	only	LCNEC	 in	our	 series	harbouring	a	high-expression	 level	of	

OTP	(290.26	FPKM	vs	9.89	FPKM	for	the	2nd	highest	within	LCNEC,	the	median	for	LCNEC	being	

0.22	FPKM).	UGT	genes,	ANGPTL3,	and	ERBB4	were	also	core	genes	of	cluster	B	when	compared	

to	 LNEN	 clusters	 Carcinoid	 A	 and	 LCNEC	 (Table	 S10),	 which	 indicates	 that	 their	 expression	

levels	 also	 significantly	 differed	 from	 that	 of	 LCNEC.	 Cluster	 Carcinoid	B	 included	 all	 observed	

MEN1	 mutations,	 which	 is	 consistent	 with	 the	 fact	 that	 samples	 with	 MEN1	mutations	 had	

significantly	 lower	 coordinates	 on	 LNET	 latent	 factor	 1	 (t-test	 p-value=7x10-6;	 Fig.	 4A).	

Nevertheless,	 mutations	 in	 this	 gene	 did	 not	 explain	 the	 poorer	 prognosis	 of	 this	 group	 of	

samples	(logrank	p-value=0.19;	Fig.	 S21).	To	gain	some	insights	into	what	might	be	driving	the	

bad	prognosis	of	cluster	Carcinoid	B	samples,	we	performed	a	GSEA	of	mutations	in	hallmarks	of	

cancer	gene	sets	 (Online	Methods)19,20;	while	clusters	Carcinoid	A1	and	A2	were	not	enriched	

for	any	hallmark	of	cancer,	cluster	Carcinoid	B	was	significantly	enriched	 for	genes	 involved	 in	

“evading	 growth	 suppressor”,	 “sustaining	 proliferative	 signalling”,	 and	 “genome	 instability	 and	

mutation”	(Fig.	5C).	We	also	performed	a	Cox	regression	with	elastic	net	regularisation	based	on	

the	core	DEG	of	this	cluster	(Online	Methods).	The	model	selected	eight	coding	genes	explaining	

the	overall	survival,	OTP	being	one	of	these	genes	(Fig.	5D;	Table	S11).	Further	supporting	their	

prognostic	value,	we	 found	 that	 the	expression	of	 six	of	 these	genes	was	 significantly	different	

between	 the	 good	 and	 the	 poor-prognosis	 atypical	 carcinoids	 based	 on	 the	 machine	 learning	

(Fig.	1C,	upper	panel;	Fig.	S22). 
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Finally,	we	also	checked	 the	MKI67	 expression	 levels	 in	 the	different	molecular	groups	

and	 found	 relatively	 low	 levels	 in	 the	 Carcinoids	 A1,	 A2,	 and	 B	 groups	 (78%	with	 FPKM<1	 in	

78%)	 and	 high	 levels	 in	 the	 supra-carcinoids	 (FPKM>1	 in	 the	 three	 samples).	 As	 expected,	

LCNECs	 (99%	with	 FPKM>1)	 and	 SCLCs	 (92%	with	 FPKM>1)	 carried	 high	 levels	 of	 this	 gene. 
Although	the	levels	of	MKI67	for	each	of	the	clusters	were	different,	further	analyses	showed	that	

MKI67	expression	 levels	alone	were	not	able	 to	accurately	separate	good-	 from	poor-prognosis	

pulmonary	carcinoids	(Figs.	S8B-C).	An	overview	of	the	different	molecular	groups	of	pulmonary	

carcinoids	and	their	most	relevant	characteristics	is	displayed	in	Fig.	6. 
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Discussion	

Lung	 neuroendocrine	 neoplasms	 are	 a	 heterogeneous	 group	 of	 tumours	 with	 variable	 clinical	

outcomes.	Here,	we	have	characterised	and	contrasted	their	molecular	profiles.	For	this,	we	have	

performed	 integrative	 analysis	 of	 transcriptome	 and	 methylome	 data,	 using	 both	 machine-

learning	(ML)	techniques	and	multi-omics	factor	analyses	(MOFA).	ML	analyses	showed	that	the	

molecular	 profiles	 could	 distinguish	 survival	 outcomes	within	 patients	with	 atypical	 carcinoid	

histopathological	features,	splitting	them	into	patients	with	good	“typical	carcinoid	like”	survival	

and	patients	with	 a	 clinical	 outcome	 similar	 to	 LCNEC.	Overall,	 out	 of	 the	 35	histopathological	

atypical	carcinoids,	ML	reclassified	11	into	the	typical	category. 
Unsupervised	 MOFA	 and	 subsequent	 gene-set	 enrichment	 analyses	 unveiled	 the	 immune	

system	and	the	retinoid	and	xenobiotic	metabolism	as	key	deregulated	processes	in	pulmonary	

carcinoids,	and	 identified	three	molecular	groups—clusters—with	clinical	 implications	(Fig.	 6).	

The	first	group	(cluster	A1)	presented	high	 infiltration	by	dendritic	cells,	which	are	believed	to	

promote	 the	 recruitment	 of	 immune	 effector	 cells	 resulting	 in	 a	 strongly	 active	 immunity26.	

Samples	in	cluster	A1	showed	overexpression	of	ASCL1	and	DLL3.	The	transcription	factor	ASCL1	

is	a	master	regulator	that	induces	neuronal	and	NE	differentiation.	It	regulates	the	expression	of	

DLL3,	which	encodes	an	inhibitor	of	the	Notch	pathway27.	Overexpression	of	ASCL1	and	DLL3	is	a	

characteristic	 of	 the	 SCLC	 of	 the	 “classic”	 subtype27	 and	 the	 type-I	 LCNEC12.	We	 validated	 the	

expression	of	DLL3	in	an	independent	series	of	20	pulmonary	carcinoids	assessed	by	IHC	(40%	

positive).	The	fact	that	we	found	a	correlation	between	the	protein	 levels	of	DLL3	and	CD1A	(a	

marker	of	dendritic	cells	also	assessed	by	IHC	in	this	series,	60%	positive)	provides	orthogonal	

evidence	to	support	the	existence	of	this	molecular	group.	Phase	I	trials	have	provided	evidence	

for	 clinical	 activity	 of	 the	 anti-DLL3	 humanized	monoclonal	 antibody	 in	 high–DLL3-expressing	

SCLCs	and	LCNECs28,	and	additional	clinical	trials	are	ongoing	in	these	and	other	cancer	types. 
The	 second	 group	 (cluster	A2)	 harboured	 recurrent	 somatic	mutations	 in	EIF1AX,	 and	

showed	down-regulation	of	the	SLIT1	and	ROBO1	genes.	SLIT	and	ROBO	proteins	are	known	to	

be	 axon-guidance	 molecules	 involved	 in	 the	 development	 of	 the	 nervous	 system29,	 but	 the	

SLIT/ROBO	 signalling	 has	 also	 been	 associated	 with	 cancer	 development,	 progression	 and	

metastasis.	Pulmonary	neuroendocrine	cells	(PNEC)	represent	1%	of	the	total	lung	epithelial	cell	

population30,	they	reside	isolated	(Kultchinsky	cells)	or	in	clusters	named	neuroepithelial	bodies	

(NEBs),	and	are	believed	to	be	the	cell	of	origin	of	most	of	the	lung	neuroendocrine	neoplasms31.	

In	the	normal	lung,	it	has	been	shown	that	ROBO1/2	are	expressed,	exclusively,	in	the	PNECs,	and	

that	 the	 SLIT/ROBO	 signalling	 is	 required	 for	 PNEC	 assembly	 and	 maintenance	 in	 NEBs32.	 In	

cancer,	 this	 pathway	mainly	 suppresses	 tumour	progression	by	 regulating	 invasion,	migration,	

and	apoptosis,	and	therefore,	is	often	down-regulated	in	many	cancer	types29.	More	specifically,	

the	 SLIT1/ROBO1	 interaction	 can	 inhibit	 cell	 invasion	 by	 inhibiting	 the	 SDF1/CXCR4	 axis,	 and	

can	attenuate	 cell	 cycle	progression	by	destruction	of	β-catenin	 and	CDC4229.	 Potential	 clinical	

avenues	to	this	finding	exist,	especially	the	on-going	development	of	CXCR4	inhibitors. 
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The	 third	 molecular	 group	 (cluster	 B)	 was	 enriched	 in	 monocytes	 and	 depleted	 of	

dendritic	cells,	and	had	the	worst	median	survival.	Even	in	the	presence	of	T	cell	infiltration,	this	

immune	 contexture	 suggests	 an	 inactive	 immune	 response,	 dominated	 by	 monocytes	 and	

macrophages	with	potent	 immunosuppressive	 functions,	and	almost	devoid	of	 the	most	potent	

antigen-presenting	 cells,	 dendritic	 cells,	 suggesting	 dendritic	 cell-based	 immunotherapy	 as	 a	

therapeutic	 option	 for	 this	 group	 of	 samples33.	 Cluster	 B	 was	 also	 characterised	 by	 recurrent	

somatic	 mutations	 in	 MEN1,	 the	 most	 frequently	 altered	 gene	 in	 pulmonary	 carcinoids	 and	

pancreatic	 NET34,	 which	 is	 in	 line	with	 the	 common	 embryologic	 origin	 of	 pancreas	 and	 lung.	

MEN1	 was	 inactivated	 by	 genomic	 rearrangement	 due	 to	 a	 chromothripsis	 event	 affecting	

chromosomes	11	and	20	 in	one	of	our	samples.	This	observation,	 together	with	 two	additional	

reported	cases	involving	chromosomes	2,	12,	and	1311,	and	chromosomes	2,	11,	and	2035,	suggest	

that	chromothripsis	 is	a	 rare	but	 recurrent	event	 in	pulmonary	carcinoids.	 Interestingly,	MEN1	

mutations	did	not	 have	 a	 clear	 prognostic	 value	 in	 our	 series.	 Regarding	 the	 above-mentioned	

deregulation	 of	 the	 retinoid	 and	 xenobiotic	 metabolism	 in	 pulmonary	 carcinoids,	 samples	 in	

cluster	 B	 presented	 high	 levels	 of	 UGT	 and	 CYP	 genes.	 In	 line	with	 previous	 studies15,36,	 these	

samples	also	harboured	low	levels	of	OTP,	which	gene	expression	levels	were	strongly	correlated	

with	survival	in	the	ML	predictions.	High	levels	of	ANGPTL3	and	ERBB4	were	also	detected	in	this	

group	of	samples,	representing	novel	candidate	therapeutic	opportunities.	ANGPTL3	is	involved	

in	 new	 blood	 vessel	 growth	 and	 stimulation	 of	 the	MAPK	 pathway37,38.	 This	 protein	 has	 been	

found	aberrantly	expressed	 in	 several	 types	of	human	cancers39,40.	 Similarly,	overexpression	of	

the	 epidermal	 growth	 factor	 receptor	 ERBB4,	 which	 induces	 a	 variety	 of	 cellular	 responses	

including	mitogenesis	and	differentiation,	has	also	been	associated	with	several	cancer	types41-44. 
For	 many	 years,	 it	 has	 been	 widely	 accepted	 that	 the	 lung	 well-differentiated	 NETs	

(typical	 and	 atypical	 carcinoids)	 have	 unique	 clinico-histopathological	 traits	 with	 no	 apparent	

causative	relationship	or	common	genetic,	epidemiologic,	or	clinical	traits	with	the	lung	poorly-

differentiated	 SCLC	 and	 LCNEC3.	 While	 molecular	 studies	 have	 sustained	 this	 belief	 for	

pulmonary	 carcinoids	 versus	 SCLC11,13,14,	 the	 identification	 of	 a	 carcinoid-like	 group	 of	

LCNECs10,12,	the	recent	observation	of	LCNEC	arising	within	a	background	of	pre-existing	atypical	

carcinoid45,	 and	 a	 recent	 proof-of-concept	 study	 supporting	 the	 progression	 from	 pulmonary	

carcinoids	 to	LCNEC	and	SCLC9	suggest	 that	 the	separation	between	pulmonary	carcinoids	and	

LCNEC	might	 be	more	 subtle	 than	 initially	 thought,	 at	 least	 for	 a	 subset	 of	 patients.	Our	 study	

supports	 the	 suggested	molecular	 link	 between	 pulmonary	 carcinoids	 and	 LCNEC,	 as	we	 have	

identified	 a	 subgroup	 of	 atypical	 carcinoids	 (supra-carcinoids)	 with	 a	 clear	 carcinoid	

histopathological	pattern	but	with	molecular	characteristics	similar	to	LCNEC.	In	our	series,	the	

proportion	of	supra-carcinoids	was	in	the	order	of	5.5%;	however,	considering	the	intermediate	

phenotypes	observed	 in	 the	MOFA,	 the	exact	proportion	would	need	 to	be	 confirmed	 in	 larger	

series.	We	found	high	estimated	levels	of	neutrophil	infiltration	in	the	supra-carcinoids.	For	both	

supra-carcinoids	and	LCNEC	(but	not	SCLC),	the	pathways	related	to	neutrophil	chemotaxis	and	

degranulation	were	also	altered.	Neutrophil	infiltration	may	act	as	immunosuppressive	cells,	for	

example	 through	PDL1	expression46.	 Indeed,	 supra-carcinoids	also	presented	 levels	of	 immune	



12		

checkpoint	receptors	and	ligands	(including	PDL1	and	CTLA4)	similar—or	higher—than	those	of	

LCNEC	and	SCLC,	as	well	as	up-regulation	of	other	immunosuppressive	genes	such	as	HLA-G,	and	

interferon	gamma	that	is	speculated	to	promote	cancer	immune-evasion	in	immunosuppressive	

environments47,48. If	confirmed,	this	would	point	to	a	therapeutic	opportunity	for	these	tumours	
since	strategies	aiming	at	decreasing	migration	of	neutrophils	to	tumoral	areas,	or	decreasing	the	

amount	of	neutrophils	have	shown	efficacy	in	preclinical	models49.	Similarly,	immune	checkpoint	

inhibitors,	 currently	 being	 tested	 in	 clinical	 trials,	might	 also	be	 a	 therapeutic	 option	 for	 these	

patients.	 
The	current	classification	only	recognises	the	existence	of	grade-1	(typical)	and	grade-2	

(atypical)	 well-differentiated	 lung	 NETs,	 while	 the	 grade-3	 would	 only	 be	 associated	with	 the	

poorly-differentiated	SCLC	and	LCNEC;	however,	 in	the	pancreas,	stomach	and	colon,	the	group	

of	 well-differentiated	 grade-3	 NETs	 are	 well	 known	 and	 broadly	 recognised50.	 Whether	 these	

supra-carcinoids	 constitute	 a	 separate	 entity	 that	 may	 be	 the	 equivalent	 in	 the	 lung	 of	 the	

gastroenteropancreatic,	well-differentiated,	grade-3	NETs	will	require	further	research. 
In	 summary,	 this	 study	 provides	 new	 and	 comprehensive	 insights	 into	 the	 molecular	

characteristics	 of	 pulmonary	 carcinoids,	 especially	 of	 the	 understudied	 atypical	 carcinoids.	We	

have	identified	three	well-characterized	molecular	groups	of	pulmonary	carcinoids	with	different	

prognoses	 and	 clinical	 implications.	 Finally,	 the	 identification	 of	 supra-carcinoids	 further	

supports	 the	 already	 suggested	molecular	 link	 between	 pulmonary	 carcinoids	 and	 LCNEC	 that	

warrants	further	investigation.	

	

Methods	

Please,	see	supplementary	methods.	
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Table	1.	Histopathological,	 clinical,	 epidemiological,	and	molecular	characteristics	of	 the	six	supra	
carcinoids	
	 	

	 LNEN005	 LNEN012	 LNEN021	 LNEN022	 S01513	 S01522	
CLASSIFICATION	 	 	 	 	 	 	

Histopathology	 Atypical	 Atypical	 Atypical	 Atypical	 Atypical	 Atypical	
Morphological	
characteristics	

carcinoid	morph.	
2	mitoses/2mm2	
No	necrosis	

carcinoid	morph.	
2	mitoses/2mm2	
No	necrosis	

LCNEC	morph.	
4	mitoses/2mm2	
No	necrosis	

NA	 NA	 NA	

Machine	learning	 LCNEC	 LCNEC	 Atypical	 LCNEC	 Atypical	 LCNEC	
CLINICAL	DATA	 	 	 	 	 	 	

Sex	 M	 F	 F	 F	 M	 M	
Age	at	diagnosis	 80	 70	 83	 58	 58	 63	

TNM	Stage	 IB	 IIIC	 IA1	 IIB	 IIIA	 IV	
Overall	survival	

(months)	 144.6	 111.7	 29.8	 36.1	 59	 7	
EPIDEMIOLOGY	 	 	 	 	 	 	

Smoking	status	 Former	 NA	 NA	 NA	 Never	 Current	
Other	known	

exposure	 Asbestos	 NA	 NA	 NA	 NA	 NA	
MULTI-OMICS	DATA	 	 	 	 	 	 	

Data	available	 WES,	RNAseq,	
Epic	850K	 RNAseq	 Epic	850K	 Epic	850K	 WGS,	

RNAseq	
WES,	Epic	
850K	

Cluster	MOFA	LNEN	 LCNEC	 LCNEC	 LCNEC	 LCNEC	 LCNEC	 LCNEC	
Cluster	MOFA	LNET	 Carcinoid	A1	 Carcinoid	A1	 Carcinoid	A1	 Carcinoid	A1	 Carcinoid	A1	 Carcinoid	A1	

Mutated	genes	 JMJD1C,	KDM5C,	
BAP1	 NA	 NA	 NA	 DNAH17	 TP53	

MKI67	FPKM	 2.6	 7.3	 NA	 NA	 1.9	 NA	
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Figure	legends	

	

Fig.	 1.	 Multi-omics	 unsupervised	 and	 supervised	 analyses	 of	 lung	 neuroendocrine	

neoplasms.	A)	Multi-Omics	Factor	Analysis	(MOFA)	of	transcriptomes	and	methylomes	of	LNEN	

samples	 (typical	 carcinoids,	 atypical	 carcinoids,	 and	 LCNEC).	 Point	 colours	 correspond	 to	 the	

histopathological	types;	coloured	circles	correspond	to	predictions	of	histopathological	types	by	

a	machine	learning	(ML)	algorithm	(random	forest	classifier)	outlined	in	Panel	B;	filled	coloured	

shapes	represent	the	three	molecular	clusters	identified	by	consensus	clustering.	The	density	of	

clinical	variables	that	are	significantly	associated	with	a	latent	factor	(ANOVA	q-value<0.05)	are	

represented	by	kernel	density	plots	next	to	each	axis:	histopathological	 type	for	 latent	 factor	1,	

sex	 and	histopathological	 type	 for	 latent	 factor	 2.	B)	 Confusion	matrix	 associated	with	 the	ML	

predictions	 represented	 on	 Panel	 A.	 The	 different	 colours	 highlight	 the	 prediction	 groups	

considered	in	the	survival	analysis	and	the	colours	for	machine	learning	are	consistent	between	

Panel	B	and	upper	Panel	C.	For	the	unclassified	category,	the	most	likely	classes	inferred	from	the	

ML	algorithm	are	represented	by	coloured	arcs	(black	 for	 typical,	 red	 for	atypical,	and	grey	 for	

discordant	 methylation-based	 and	 expression-based	 predictions).	 C)	 Kaplan-Meier	 curves	 of	

overall	survival	of	the	different	ML-predictions	groups	(upper	panel)	and	histopathological	types	

(lower	 panel).	 Upper	 panel:	 colours	 of	 predicted	 groups	 match	 Panel	 B.	 Lower	 panel:	 black	 -	

typical,	 red	 -	 atypical,	 blue	 -	 LCNEC.	 Next	 to	 each	 Kaplan-Meier	 plot,	matrix	 layouts	 represent	

pairwise	Wald	 tests	 between	 the	 reference	 group	 and	 the	 other	 groups,	 and	 the	 associated	p-

values.	

	

Fig.	 2.	 Molecular	 characterization	 of	 supra-carcinoids.	 A)	 Forest	 plot	 of	 hazard	 ratios	 for	

overall	survival	of	the	supra-carcinoids,	compared	to	carcinoid	clusters	A	and	B,	and	LCNEC.	B)	

Enrichment	 of	 hallmarks	 of	 cancer	 for	 somatic	 mutations	 in	 supra-carcinoids.	 Dark	 colours	

highlight	 significantly	 enriched	 hallmarks	 at	 the	 10%	 false	 discovery	 rate	 threshold;	

corresponding	 mutated	 genes	 are	 listed	 in	 the	 boxes,	 and	 enrichment	 q-values	 are	 reported	

below.	C)	Hematoxylin	and	Eosin	(H&E)	stains	of	three	supra-carcinoids.	In	all	cases,	an	organoid	

architecture	with	tumour	cells	arranged	in	 lobules	or	nests,	 forming	perivascular	palisades	and	

rosettes	 is	 observed;	 original	magnification	 x200.	 Arrows	 indicate	mitoses.	D)	 Radar	 charts	 of	

expression	and	methylation	levels.	Each	radius	corresponds	to	a	feature	(gene	or	CpG	site),	with	

low	 values	 close	 to	 the	 centre	 and	 high	 values	 close	 to	 the	 edge.	 Coloured	 lines	 represent	 the	

mean	 of	 each	 group.	 Left	 panel:	 expression	 z-scores	 of	 genes	 differentially	 expressed	 between	

clusters	Carcinoid	A	and	LCNEC	or	between	Carcinoid	B	and	LCNEC.	Right	panel:	methylation	β-

values	of	differentially	methylated	positions	between	Carcinoid	A	and	LCNEC	clusters	or	between	

Carcinoid	B	and	LCNEC	clusters.	E)	Radar	chart	of	the	expression	z-scores	of	immune	checkpoint	

inhibitor	 genes	 (ligands	 and	 receptors)	 of	 each	 group.	 F)	 Left	 panel:	 average	 proportion	 of	

immune	cells	in	the	tumour	sample	for	each	group,	as	estimated	from	transcriptomic	data	using	

software	quanTIseq.	Right	panel:	boxplot	and	beeswarm	plot	(coloured	points)	of	the	estimated	

proportion	of	neutrophils.		
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Fig.	 3.	 Mutational	 patterns	 of	 pulmonary	 carcinoids.	 A)	 Recurrent	 and	 cancer-relevant	

altered	genes	found	in	pulmonary	carcinoids	by	WGS	and	WES.	B)	Chimeric	transcripts	affecting	

the	protein	product	of	DOT1L	(upper	panel),	ARID2	(middle	panel),	 and	ROBO1	(lower	panel).	

For	each	chimeric	transcript	the	DNA	row	represents	genes	with	their	genomic	coordinates,	the	

mRNA	 row	 represents	 the	 chimeric	 transcript,	 and	 the	 protein	 row	 represents	 the	 predicted	

fusion	protein.	C)	Chromotripsis	case	LNEN041,	including	an	inter-chromosomic	rearrangement	

between	 genes	 MEN1	 and	 SOX6.	 Upper-panel:	 copy	 number	 as	 a	 function	 of	 the	 genomic	

coordinates	on	chromosomes	11	and	20;	a	solid	line	separates	chromosomes	11	and	20.	Blue	and	

green	 lines	 depict	 intra	 and	 inter-chromosomic	 rearrangements,	 respectively.	 Lower	 panel:	

MEN1	chromosomic	rearrangement	observed	in	this	chromotripsis	case.	

	

Fig.	4.	Multi-omics	unsupervised	analysis	of	lung	neuroendocrine	tumours.	A)	Multi-Omics	

Factor	 Analysis	 (MOFA)	 of	 transcriptomes	 and	 methylomes	 of	 restricted	 to	 LNET	 samples	

(pulmonary	carcinoids).	Design	follow	that	of	Fig.	1A;	filled	coloured	shapes	represent	the	three	

molecular	clusters	(Carcinoid	A1,	A2,	and	B)	 identified	by	consensus	clustering.	The	position	of	

samples	harbouring	mutations	significantly	associated	with	a	latent	factor	(ANOVA	q-value<0.05)	

are	highlighted	by	coloured	triangles	on	the	axes.	B)	Upper	panel:	proportion	of	dendritic	cells	in	

the	 different	molecular	 clusters	 (Carcinoid	 A1,	 A2,	 and	 B)	 and	 the	 supra-carcinoids,	 estimated	

from	 transcriptomic	 data	 using	 quanTIseq	 (Online	 methods).	 Lower	 panel:	 boxplots	 of	 the	

expression	 levels	of	LAMP3	(CDLAMP)	and	CD1A.	C)	DLL3	and	CD1A	 immunohistochemistry	of	

two	typical	carcinoids:	case	6	(DLL3+	and	CD1A+),	and	case	10	(DLL3-	and	CD1A-).	Upper	panels:	

Hematoxylin	 Eosin	 Saffron	 (HE)	 stain.	 Middle	 panels:	 staining	 with	 CD1	 rabbit	 monoclonal	

antibody	(cl	EP3622;	VENTANA),	where	arrows	show	positive	stainings.	Lower	panels:	Staining	

with	 DLL3	 assay	 (SP347;	 VENTANA).	 D)	 Expression	 levels	 of	 genes	 from	 the	 retinoid	 and	

xenobiotic	metabolism	pathway—the	most	significantly	associated	with	MOFA	latent	factor	1—

in	 the	different	molecular	 clusters.	Upper	panel:	 schematic	 representation	of	 the	phases	of	 the	

pathway.	 Lower	 panel:	 boxplot	 of	 expression	 levels	 of	 CYP2C8	 and	 CYP2C19	 (both	 from	 the	

CYP2C	gene	cluster	on	chromosome	10,	UGT2A3	and	the	total	expression	of	UGT2B	genes	(from	

the	UGT2	gene	 cluster	 on	 chromosome	4,	 expressed	 in	 fragments	per	 kilobase	million	 (FPKM)	

units.	

	

Fig.	 5.	 Molecular	 groups	 of	 pulmonary	 carcinoids.	 A)	 Heatmaps	 of	 the	 expression	 of	 core	

differentially	 expressed	 genes	 of	 each	 molecular	 cluster,	 i.e.,	 genes	 that	 are	 differentially	

expressed	in	all	pairwise	comparisons	between	a	focal	cluster	and	the	other	clusters.	Green	bars	

at	the	right	of	each	heatmap	indicate	a	significant	negative	correlation	with	the	methylation	level	

of	at	 least	one	CpG	site	 from	the	gene	promoter	region.	B)	Boxplots	of	 the	expression	 levels	of	

selected	 cancer-relevant	 core	 genes,	 in	 fragment	 per	 kilobase	 million	 (FPKM)	 units.	 C)	

Characteristic	 hallmarks	 of	 cancer	 in	 each	molecular	 cluster	 (Carcinoid	 A1	without	 the	 supra-

carcinoids,	A2,	and	B),	LCNEC	and	SCLC.	Coloured	concentric	circles	correspond	to	the	molecular	

clusters.	For	each	cluster,	dark	colours	highlight	significantly	enriched	hallmarks	(q-value	<0.05).	
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The	mutated	genes	contributing	to	a	given	hallmark	are	listed	in	the	boxes.	Recurrently	mutated	

genes	 are	 indicated	 in	 brackets	 by	 the	 number	 of	 samples	 harbouring	 a	mutation.	D)	 Survival	

analysis	 of	 pulmonary	 carcinoids	 based	 on	 the	 expression	 level	 of	 eight	 core	 genes	 of	 cluster	

Carcinoid	B.	The	genes	were	selected	using	a	regularized	GLM	on	expression	data.	For	each	gene,	

coloured	 lines	 correspond	 to	 the	 Kaplan-Meier	 curve	 of	 overall	 survival	 for	 individuals	with	 a	

high	 (green)	 and	 low	 (orange)	 expression	 level	 of	 this	 gene.	 Cut-offs	 for	 the	 two	 groups	were	

determined	 using	 maximally	 selected	 rank	 statistics	 (Online	 Methods).	 The	 percentage	 of	

samples	in	each	group	is	represented	above	each	Kaplan-Meier	curve.	

	

Fig.	6.	Overview	of	the	main	molecular	and	clinical	characteristics	of	lung	neuroendocrine	

neoplasms.	Left	panel:	Radar	chart	of	the	expression	level	(z-score)	of	the	characteristic	genes	

(DLL3,	ASCL1,	ROBO1,	SLIT1,	ANGPTL3,	ERBB4,	 UGT	 genes	 family,	OTP,	NKX2-1,	PD-L1	(CD274),	

and	other	 immune	 checkpoint	 genes)	 of	 each	LNET	molecular	 cluster	 (Carcinoid	A1,	 Carcinoid	

A2,	and	B	clusters),	supra-Ca,	LCNEC	and	SCLC.	The	coloured	text	lists	relevant	characteristics—

additional	molecular,	histopathological,	and	clinical	data—of	each	group.	Right	panel:	heatmap	of	

the	 expression	 level	 (z-score)	 of	 the	 characteristic	 genes	 of	 each	 group	 from	 the	 left	 panel,	

expressed	in	z-scores.	
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Table A.2 – Catalogue of our collaborative IARC bioinformatics pipelines developed using the previ-
ously described implementation pattern.

quality
control

DNA RNA

type software type software type software
BAM qualimap alignment BWA alignment STAR

FASTQ FastQC
somatic
SNV/indel

strelka2
transcript
identification
and quantification

StringTie

germline
SNV/indel

strelka2
fusion-gene
discovery

STAR-fusion

CNV Facets
structural
variants

SvABA

low VAF needlestack
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Appendix B

List of acronyms

API Application Programming Interface. IV

BLAST Basic Local Alignment Search Tool. 171

BQSR Base Quality Score Recalibration. 22

BWA Burrows-Wheeler Aligner. 9, 170, 171

cfDNA Circulating cell-Free DNA. 28–30, 38, 39, 116, 117, 132, 157, 167

CGC Cancer Genomics Cloud. I, III, IV

CNV Copy Number Variation. 5, 173

CSE Context-specific Error. 14

CT Computed Tomography. 28

ctDNA Circulating Tumor DNA. x, 28–30, 34, 84, 112, 116, 117, 165, 166, 168, 169, 172, 174,

175

CV Coefficient of variation. 68, 69

CWL Common Workflow Language. IV

ddPCR Droplet digital PCR. 172, 174

LI



LIST OF ACRONYMS

DNA deoxyribonucleic acid. 3, 5

GATK Genome Analysis ToolKit. 19

GIAB Genome In A Bottle. II

GRC Genome Reference Consortium. 5

HTS High-Throughput Sequencing. 8

IGV Integrative Genomics Viewer. 15, 23

indel Insertion or deletion. 5, 7, 38, 70, II

LCAP Low-Confidence Alteration Probability. 80–83, 85, 107, 110–112

LOD Logarithm of Odds. 21, 22

NCI National Cancer Institute. 3, 27

NGS Next-Generation Sequencing. 4, 8–10, 13, 16–18, 20, 24, 31, 34, 35, 70, 74, 78, 83, 87,

169, 170, 172, 174, 175, 177

NIST National Institute of Standards and Technology. II

NLST National Lung Screening Trial. 28

PairHMM Pair Hidden Markov Model. 19

PCC Pearson Correlation Coefficient. 69

PCR Polymerase Chain Reaction. 14, 75, 77, 174

RVSB Relative Variant Strand Bias. 15, 79, 110, 157

SCLC Small Cell Lung Cancer. 84, 116, 157, 165, 167

SER Sequencing Error Rate. 13, 16, 17, 19, 22, 34–36, 39, 67–70, 85
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LIST OF ACRONYMS

SNV Single Nucleotide Variation. 5, 38, 68, 70, 105, 110, II

SV Structural Variation. 173

TCGA The Cancer Genome Atlas. 13, I–IV

TSG Tumor Suppressor Gene. 7, 8

VAF Variant Allelic Fraction. 10–14, 17–19, 21–25, 29, 30, 34, 38, 39, 67, 68, 70, 83, 85, 105,

108, 110, 112, 116, 117, 132, 157, 167, 170, 172, 173, 177

VCF Variant Call Format. 37

VQSR Variant Quality Score Recalibration. 25

WES Whole-Exome sequencing. ix, 10, 25, 38, 70, 71, 104, 105, 173, I–III

WGS Whole-Genome Sequencing. 10, 25

WHO World Health Organization. 27
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