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Aux coll ègues du

AUC, area under the curve ; Delta norm, difference between the threshold inferior and the threshold superior ; TPR, true positive rate ; TNR, true negative rate ; WCS, well-classified subjects ; Pref, output preference ; Inf Thres, inferior threshold ; Sup Thres, superior threshold ; #T, nonzero subjects in the tailing dump samples ; #U nonzero subjects in the undisturbed soil samples. For each variable, we computed a Wilcoxon test of rank p-value.

3.3 ROC AUCs and related parameters of the top 30 most discriminating bacterial OTUs. AUC, area under the curve ; Delta norm, difference between the threshold inferior and the threshold superior ; WCS, well-classified subjects ; Pref, output preference ; Inf Thres, inferior threshold ; Sup Thres, superior threshold ; #T, nonzero subjects in the tailing dump samples ; #U nonzero subjects in the undisturbed soil samples. For each variable, we computed a Wilcoxon test of rank pvalue. In the column "Rel ab in U", the number without parenthesis indicates the percentage of the considered OTU in the undisturbed soil (i.e., 100 × sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil

) while the number in the parentheses indicates the percentage of the undisturbed soil for the considered OTU (i.e., 100 × sequences of this OTU ∈ the undisturbed soil sequence of this OTU ∈ both sites ) , for OTUs that satisfy sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil ≥ 0.02 or sequences of this OTU ∈ the tailings dump all sequences ∈ the tailings dump ≥ 0.02 in zappelini2015diversity . Similar calculations for the tailings dump appear in column "Rel ab in T". Rank, ranking of the most abundant OTUs, as determined by the standard method. The full data set is provided in appendix S1. . . . . . . . . . . . . 3.4 ROC AUCs and related parameters of the top 30 most discriminating fungal OTUs. AUC, area under the curve ; Delta norm, difference between the threshold inferior and the threshold superior ; WCS, wellclassified subjects ; Pref, output preference ; Inf Thres, inferior threshold ; Sup Thres, superior threshold ; #T, nonzero subjects in the tailing dump samples ; #U nonzero subjects in the undisturbed soil samples. For each variable, we computed a Wilcoxon test of rank pvalue. In the column "Rel ab in U", the number without parenthesis indicates the percentage of the considered OTU in the undisturbed soil (i.e., 100 × sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil

) while the number in the parentheses indicates the percentage of the undisturbed soil for the considered OTU (i.e., 100 × sequences of this OTU ∈ the undisturbed soil sequence of this OTU ∈ both sites ) , for OTUs that satisfy sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil ≥ 0.02 or sequences of this OTU ∈ the tailings dump all sequences ∈ the tailings dump ≥ 0.02 in zappelini2015diversity . Similar calculations for the tailings dump appear in column "Rel ab in T". Rank, ranking of the most abundant OTUs, as determined by the standard method. The full data set is provided in appendix S2. . Diagonale (Matrice diagonale) : Une matrice diagonale est une matrice dont tous les coefficients en dehors de la diagonale sont nuls. Autrement dit, si M est une matrice diagonale et j i alors M i, j = 0.

Él éments transposables : S équence d'ADN capable de se d éplacer dans le g énome. Eucaryote : Une cellule eucaryote est une cellule qui poss ède un noyau. Un organisme eucaryote est un organisme dont les cellules poss èdent des noyaux par opposition aux procaryotes. Ex : l'homme est un organisme eucaryote. Épissage : Proc édure au cours de laquelle les introns (partie "inutile" de l'ARN) sont retir és et les exons sont conserv és. Éxons : Partie "codante" de l'ARN, conserv ée à l' épissage. Intron : Partie "non-codante" de l'ARN, retir ée à l' épissage.

Libres (vecteurs libres) : Un ensemble de vecteurs est libre si aucun ne peut s' écrire comme une combinaison lin éaire des autres. C'est une extension aux dimensions sup érieures de la non colin éarit é. M étag énomique (donn ées m étag énomiques) : Donn ées g én étiques issues d'environnements complexes (ex : intestin, oc éan, sols, air, etc.) pr élev ées dans la nature (par opposition à des échantillons cultiv és en laboratoire).

Nucl éotide : Él ément de base de l'ADN. Peut être de type ad énine (A), cytosine (C), guanine (G) ou thymine (T).

Ph énotype : Caract ères observables d'un individu (par opposition au g énotype). Ex : la couleur d'une fleur est un caract ère ph énotypique. Procaryote : Une cellule procaryote est une cellule qui ne poss ède pas de noyau. Un organisme procaryote est un organisme dont les cellules ne poss èdent pas de noyau, par opposition aux eucaryotes. Les bact éries sont des organismes procaryotes. Programmation dynamique : Mode de programmation consistant à d écomposer le probl ème en sous-probl èmes, puis à r ésoudre les sous-probl èmes, des plus petits aux plus grands en stockant les r ésultats interm édiaires. R égression logistique : Mod èle statistique dont l'objectif est de pr édire la valeur d'une variable qualitative, éventuellement qualitative ordonn ée (par opposition à la r égression lin éaire). Ex : on cherche à pr édire si un patient va attraper une maladie ou non en fonction de diff érentes variables. R égression lin éaire : Mod èle statistique dont l'objectif est de pr édire la valeur d'une variable quantitative (par opposition à la r égression logistique). Ex : on cherche à pr édire le prix ad équat d'un bien immobilier en fonction de diff érentes variables. R étrotransposons : Él éments mobiles du g énome capables de se dupliquer en utilisant une transcription suivie d'un transcription inverse. Surparam étrage : Un mod èle statistique est surparam étr é lorsqu'il a trop de param ètres.

De fait certains sont alors inutiles car redondants. Taxon : Ensemble d'individus partageant des caract ères communs. Ce terme tr ès g én érique peut donc d ésigner n'importe quel niveau de la classification du vivant. C'està-dire qu'il peut aussi bien d éfinir une esp èce (ex : esp èce humaine) qu'une famille (ex : cervid és) ou une classe (ex : les mammif ères) par exemple. Transcription : En biologie, la transcription est le m écanisme au cours duquel une mol écule d'ARN est cr é ée en copiant une partie de l'un des deux brins d'une mol écule d'ADN.

Univari ée : Une r égression est dite univari ée s'il n'y a qu'une seule variable explicative (cf. partie 2.2.1 de l' état de l'art).

Vraisemblance : La vraisemblance d'un mod èle statistique est égale à la probabilit é d'obtenir les donn ées observ ées d'apr ès ce mod èle. Par exemple, si on tire à pile ou face et que l'on obtient pile, la vraisemblance du mod èle "la pi èce n'est pas truqu ée" est 0.5, la vraisemblance du mod èle "la pi èce est truqu ée et tombe toujours sur pile" est 1, la vraisemblance du mod èle "la pi èce est truqu ée et tombe toujours sur face" est 0. Le mod èle le plus vraisemblable n'est toutefois pas toujours le meilleur, notamment du fait des risques de sur-interpr étation.
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INTRODUCTION INTRODUCTION G ÉN ÉRALE

Le nombre de s équences g én étiques compl ètement d écrypt ées augmente de mani ère exponentielle sous l'impulsion d'outils de s équenc ¸age de plus en plus performants. En particulier, l'apparition d'outils de s équenc ¸age haut d ébit (en anglais high-throughput sequencing ou HTS) tels que Ion Torrent rusk2010torrents , 454 el2007evolution ou Illumina MiSeq Illumina a drastiquement fait chuter les co ûts de ces s équenc ¸ages. Ainsi, le premier s équenc ¸age du g énome humain international2004finishing , s'est achev é en 2003 apr ès 13 ans de travaux d'un consortium international r éunissant 16 laboratoires pour un co ût total d'environ 2,7 milliards de dollars. Une telle op ération co ûte aujourd'hui un peu plus de 1000 dollars (cf. figure 1). FIGURE 1 -Évolution du co ût du s équenc ¸age du g énome humain. Graphique de Ben Moore et Grendel Khan pour https://fr.wikipedia.org/ (s équenc ¸age de l'ADN) d'apr ès des donn ées de https://www.genome.gov/sequencingcostsdata/ Une telle augmentation des capacit és de s équenc ¸age a permis la constitution de larges bases de donn ées. Ainsi par exemple, en écologie, les chercheurs ont pu constituer des bases de donn ées m étag énomiques recensant l'ensemble des populations d'une zone g éographique donn ée zappelini2015diversity , foulon2016impact , danielsen2012fungal . De telles bases de donn ées se sont constitu ées également dans le domaine m édical ou simplement en recherche biologique (s équenc ¸age de diff érentes esp èces). De plus, ces s équences g én étiques deviennent de plus en plus facilement et librement accessibles gr âce à la cr éation de bases de donn ées en ligne. On peut évoquer en premier lieu le site du Centre am éricain pour les informations biotechnologiques (en anglais National Center for Biotechnology Information ou NCBI NCBI , mais aussi des sites plus sp écialis és comme Flybase flybase qui traite exclusivement d'insectes, ou encore des sites affili és à une universit é comme celle de Californie à Santa Cruz par exemple UCSC . Cette plus grande disponibilit é des donn ées ouvre de nouveaux sujets d' étude qui n écessitent de la part des statisticiens et bio-informaticiens de d évelopper des outils adapt és.

Par ailleurs, les progr ès constants de la statistique n écessitent d' être r éguli èrement adapt és au contexte de la bio-informatique. Parmi ces avanc ées, notons celles qui ont ét é r éalis ées dans le domaine de la r éduction de dimension comme les Laplacian eigenmaps qui permettent à la fois de visualiser des donn ées en grandes dimensions mais aussi servent d' étape pr éliminaire au clustering de ces donn ées. Notons également les avanc ées dans le domaine des r égressions, o ù des m éthodes comme le LASSO (Least Absolute Shrinkage and Selection Operator Tibshirani:JRSSB96 ) permettent une s élection plus efficace des variables explicatives parmi un grand nombre de variables candidates.

L'objectif de cette th èse, est l'application de techniques avanc ées de statistiques à des probl ématiques de bio-informatique. Au gr é de nos collaborations, nous avons ét é amen és à travailler plus pr écis ément sur les questions de clustering des s équences g én étiques, de propagation des él éments transposables, d'analyse de donn ées m étag énomiques et de r égression polytomique ordonn ée.

Ainsi ce travail de th èse s'attelle tout d'abord à une question extr êmement g én érale : comment clusteriser des s équences g én étiques de la fac ¸on la plus efficace possible ? C'està-dire comment partager une base de donn ées de s équences g én étiques en diff érents groupes ? Cette question extr êmement g én érale peut être appliqu ée de diff érentes fac ¸ons. Par exemple, le clustering peut être utilis é pour d éterminer des esp èces. Ce type d'esp èces, d éfinies par leur patrimoine g én étique plut ôt que par leur ph énotype, est appel é "Operational Taxonomic Unit" (OTU). Les OTUs sont g én éralement d éfinis par clustering de l'ARN 16S hao2011clustering . Le clustering de s équences g én étiques peut également être utilis é pour d éfinir des taxons parmi un ensemble d'esp èces repr ésent ées par leur ADN. Enfin le clustering peut également permettre d' étudier la r épartition de sous-populations à l'int érieur d'une m ême esp èce torroni1992native . Des outils de clustering pour s équences g én étiques existaient d éj à avant ces travaux de th èse. Mais r écemment, le clustering a vu des progr ès tr ès significatifs dus aux m éthodes spectrales et aux plongements non lin éaires. Un des objectifs de cette th èse est d'apporter une nouvelle pierre à l' édifice en montrant comment ces techniques peuvent être mises en oeuvre efficacement pour la bio-informatique. Dans ce manuscrit nous pr ésentons un outil de clustering bas é sur une combinaison de Laplacian eigenmaps belkin2001laplacian et de Mod èle de M élange Gaussien (GMM) day1969estimating . Les tests que nous avons effectu és sur notre outil utilisant des donn ées r éelles et simul ées montrent des r ésultats encourageants. En particulier, les essais sur donn ées simul ées montrent que les clusterisations effectu ée par notre outil retrouvent les clusters attendus nettement plus efficacement que les outils de clustering les plus populaires. Ce travail sur le clustering de s équences g én étiques a ainsi ét é le plus "g én éraliste" des travaux effectu és dans le cadre de ce doctorat. Les travaux suivants portent sur des aspects plus sp écifiques de la bio-informatique, qui requi èrent leurs outils propres.

Une partie importante de ces travaux de doctorat a concern é l' étude des él éments transposables. Ces él éments mobiles du g énome, d écouverts durant les ann ées 50 par Barbara McClintock mcclintock1950or2 , sont une clef de compr éhension importante de la constitution du g énome et donc de l' évolution. Ils repr ésentent ainsi 45% lander2001initial du g énome de l'homme, 15% de celui de la mouche Drosophile (Drosophila melanogaster ) et plus de 70% chez le maïs (Zea mais) sanmiguel1998evidence . Nous nous sommes plus particuli èrement int éress és ici au cas des r étrotransposons (ou él éments transposables de classe I) qui se propagent dans le g énome par un syst ème de copier-coller (par opposition aux transposons à ADN o ù él éments transposables de classe II qui se propagent principalement par couper-coller). Nous avons propos é un mod èle math ématique de propagation de ces r étrotransposons. Ce mod èle suppose principalement que les copies filles apparaissent plus probablement à proximit é de leur copie m ère, que le r étrotransposon peut être d égrad é à tout moment par des mutations de ses nucl éotides, et enfin, que les d égradations subies par un r étrotransposon affectent la capacit é de ce r étrotransposon à se dupliquer. Nous proposons ensuite un programme informatique permettant d'estimer les param ètres de ce mod èle.

Une autre situation qui a attir é notre attention durant ce doctorat est l'analyse des donn ées m étag énomiques. Plus pr écis ément, dans le cadre d'une collaboration avec le laboratoire d' écologie (laboratoire chrono-environnement), il nous a ét é demand é de d éterminer parmi un grand ensemble d'OTUs de champignons et de bact éries quelles populations étaient les plus diminu ées par une pollution au mercure, et quelles populations étaient au contraire renforc ées par cette pollution. Dit autrement, on s'int éresse à connaître les meilleurs pr édicteurs de la pollution parmi les diff érentes OTUs. Pour d éterminer cela, nous avons propos é un mod èle de courbe ROC. Ce mod èle tr ès utilis é en m édecine est beaucoup plus marginalement appliqu é dans le cadre d' études m étag énomiques en écologie, alors que nous pensons qu'il y a toute sa place. Notre contribution ici a ét é de produire un outil pour effectuer une analyse ROC sur chacun des OTU, de collecter les r ésultats et d'exhiber les OTUs les plus discriminantes. L'objectif était que cet outil soit le plus simple possible d'utilisation pour des utilisateurs non habitu és à la programmation informatique. L'application de cette m éthode à la base de donn ées fournie par le laboratoire chrono-environnement a ainsi permis d'exhiber des OTUs particuli èrement pr édictives qui n' étaient pas d étect ées par les pr éc édentes analyses.

Finalement, nous avons concentr é notre attention sur un probl ème de statistique dont les applications m édicales (notamment) sont particuli èrement saillantes. En langage de statisticien, ce probl ème est celui de la r égression polytomique ordonn ée quand p > n. Dit de mani ère plus profane, la question est de cr éer un mod èle pour pr édire une variable qualitative ordonn ée (typiquement une tumeur qui aurait plusieurs niveaux de gravit é) en fonction d'un grand nombre de variables quantitatives (typiquement le niveau d'expression d'un grand nombre de g ènes), y compris si le nombre de variables est plus grand que le nombre de sujets (typiquement : y compris si le nombre de g ènes étudi és est sup érieur au nombre de patients). R ésoudre ce probl ème de r égression logistique ordonn ée n écessite, comme pour tout probl ème de r égression en g én éral, de r éaliser une s élection des variables v éritablement utiles. Ce genre de situation, dans laquelle le nombre de variables est grand, est particuli èrement d élicat du point de vue statistique, car il rend impraticables les proc édures classiques de s élections de variables de type forward ou backward (cf. partie 2.2.2.3 de l' état de l'art). Pour r ésoudre ce probl ème de s élection de variables, nous avons impl ément é une p énalisation par la norme somme des coefficients (ou p énalisation de norme ℓ 1 ) similaire à ce que propose le mod èle du LASSO dans le cadre d'une r égression lin éaire. Une partie importante de ce travail a consist é à choisir le degr é de p énalisation à utiliser. Nous avons pour cela impl ément é diff érente m éthodes, des classiques (AIC akaike1998information , BIC schwarz1978estimating ) et des plus r écentes (Quantile Universal threshold giacobino2015quantile , Online Frank-Wolfe chretien2018hedging ).

PLAN DU MANUSCRIT

A la suite de cette introduction, se trouve un état de l'art. Cet état de l'art est partag é en deux parties. La partie "bioinformatique" de cet état de l'art pr ésente le vocabulaire de base n écessaire à la compr éhension de cette th èse, et d écrit quelques m éthodes d'alignement de s équences. La partie "statistique" d écrit des m éthodes de clustering ainsi que des m éthodes de r éductions de dimensions souvent indispensables au clustering. Cette partie statistique pr ésente également diff érentes m éthodes de r égressions (lin éaire, logistique, polytomique ordonn ée) et explique pourquoi et comment les variables pertinentes sont s électionn ées dans le cadre de ces r égressions. A la suite de cet état de l'art, la partie "contributions" est partag ée en 4 sous-parties : les travaux inh érents au clustering de s équences, ceux qui concernent la propagation des él éments transposables au sein du g énome, ceux qui traitent de l'application des courbes ROC aux donn ées m étag énomiques en écologie et enfin ceux dont le sujet est la r égression polytomique ordonn ée. Chacune de ces parties reprend l'article publi é ou propos é au sujet de ces travaux, accompagn é si n écessaire d'informations compl émentaires. Enfin une conclusion permet de revenir sur les avanc ées de ce doctorat et de d évelopper les possibilit és d'am élioration. peuvent être de 4 types : ad énine (A), cytosine (C), guanine (G) ou thymine (T). Ainsi, un brin d'ADN peut être repr ésent é comme un mot compos é uniquement des 4 lettres A, T, C et G. Dans la structure en double h élice de l'ADN, l'ad énine est toujours oppos ée à la thymine et la cytosine est toujours oppos ée à la guanine. Ainsi la connaissance d'un seul des deux brins est n écessaire pour connaître la composition d'une mol écule d'ADN. Le code g én étique contenu dans l'ADN permet notamment la cr éation de prot éines, él éments essentiels, au fonctionnement de la cellule. Ce processus commence par la "transcription" c'est-à-dire la cr éation d'une copie d'une partie d'un brin d'ADN en ARN messager ( à l'exception de la thymine (T) qui est alors remplac ée par l'uracile (U)). Puis, l'ARN messager subit une phase "d' épissage" dans laquelle les parties qui vont effectivement être lues, appel é "exons", sont conserv ées, tandis que les parties non lues appel ées "introns", sont élimin ées. L'ARN messager ayant subi cette op ération est appel é "ARN messager mature". Finalement, l'ARN messager mature est traduit en prot éine par des ribosomes. Les él éments de base de la prot éine sont les acides amin és prot éinog ènes. Il existe 22 sortes diff érentes de ces acides amin és prot éinog ènes. Une prot éine peut ainsi être vue comme un long mot dont l'alphabet est compos é de 22 lettres. Le choix de l'acide amin é à incorporer à la prot éine est d étermin é par la lecture d'une succession de 3 nucl éotides aussi appel ée "codon". Il existe donc 64 codons diff érents (4 3 ), certains pouvant repr ésenter un m ême acide amin é. La lecture de l'ARN messager par les ribosomes s'arr ête lorsque ceux-ci rencontrent un des 3 "codons stop". La transcription de l'ADN en ARN ne produit pas uniquement de l'ARN messager, mais également entre autre l'ARN de transfert qui apporte les acides amin és au ribosome, et l'ARN ribosomique qui est le constituant principal des ribosomes. Dans ce cas également, l'ARN subit une phase d' épissage qui conserve les exons et rejette les introns. Chaque partie de la mol écule d'ADN vou ée à un r ôle pr écis (transcription en ARN messager, ou ARN de transfert ou ARN ribosomique) est appel é un g ène.

Un des r ôles essentiels de la bio-informatique est la compr éhension de ces diff érentes s équences (ADN, ARN, prot éines) et de leur lien entre elles. Ces s équences sont alors consid ér ées comme des mots dans leur alphabet respectif (de 4 lettres pour l'ADN et l'ARN, de 22 lettres pour les prot éines) afin d' être trait ées par les programmes informatiques ad équats.

1.2/ ALIGNEMENT DE S ÉQUENCES ET SIMILARIT É

L'alignement de s équences est une technique fondamentale de la bio-informatique. Cette technique, comme son nom l'indique, consiste à "placer" les s équences c ôte à c ôte de telle fac ¸on qu'un maximum de nucl éotides coïncident. Une m éthode d'alignement de s équences peut être "globale" si elle cherche à aligner au mieux l'ensemble des s équences, ou "locale" si son objectif est de chercher des morceaux de ces s équences ayant une grande similarit é. Dans les deux chapitres suivants, nous pr ésentons une m éthode d'alignement globale (algorithme de Needleman-Wunsch) et une m éthode d'alignement locale (algorithme de Smith-Waterman) parmi les plus utilis ées en bioinformatique.

-La valeur de la case sup érieure (si elle existe) p énalis ée par la p énalit é attribu ée au gap. En effet, un d écalage en bas dans la matrice correspond à la cr éation d'un gap dans s équence repr ésent ée verticalement. -La valeur de la case en diagonale sup érieure gauche à laquelle on ajoute le score de match si les nucl éotides correspondent ou le score de mismatch si les nucl éotides ne correspondent pas. Quand la matrice est compl ètement remplie, la valeur de la case inf érieure droite indique le score obtenu par les deux s équences. Plus les s équences sont similaires, plus ce score est important. Il faut alors "remonter" depuis la case en bas à droite en suivant le(s) chemin(s) possible(s) pour trouver le(s) meilleur(s) alignement(s) possible(s). Dans notre cas, les meilleurs alignements possibles sont

G C A T G -C G G -A T T A C A , ainsi que G C A -T G C G G -A T T A C A , ou finalement G C A T -G C G G -A T T A C A
Le score et l'alignement obtenus d épendent des valeurs attribu ées aux "matchs", "mismatchs" et "gap". Dans l'exemple propos é ci-dessus, chaque match obtient le m ême bonus et chaque mismatch obtient le m ême malus. Ce n'est pas n écessairement le cas en g én éral. Par exemple, la matrice BLOSUM (figure 1.3), souvent utilis ée dans le cadre de l'alignement de prot éines, accorde des bonus diff érents aux matchs selon l'acide amin é concern é et accorde également des malus diff érents aux mismatchs selon le couple d'acides amin és concern é. La matrice indiquant les valeurs accord ées aux matchs et mismatchs est appel ée matrice de similarit é des caract ères (attention le terme "matrice de similarit é" peut prendre des sens diff érents au cours de ce manuscrit). Dans le cas de l'exemple propos é ci-dessus, la matrice de similarit é des caract ères est celle qui est montr ée dans la table 1.1. En g én éral, pour les alignements de chaînes de nucl éotides, on utilise plut ôt la matrice EDNAFULL, dans laquelle les matchs entre nucl éotides obtiennent un bonus de 5 et les missmatchs obtiennent un malus de 4. Il est également possible de distinguer, dans le score, l'ouverture d'un gap (i.e. ajouter une case vide apr ès un nucl éotide) et l'extension d'un gap (i.e. ajouter une case vide apr ès une autre case vide). P énaliser moins l'extension d'un gap que l'ouverture est assez naturel dans le sens o ù les s équences de nucl éotides peuvent éventuellement subir des d él étions de blocs. 

= 1 et mismatch = -1 A T C G A 1 -1 -1 -1 T -1 1 -1 -1 C -1 -1 1 -1 G -1 -1 -1 1 1.2.2/ L'ALGORITHME DE SMITH-WATERMAN
L'algorithme de Smith-Waterman smith1981comparison est un algorithme d'alignement local de s équences g én étiques. Son fonctionnement est tr ès proche de celui de Needleman-Wunsch. Ces deux algorithmes pr ésentent toutefois deux diff érences :

-La valeur d'une case de la matrice à compl éter ne peut pas être n égative. Le calcul de la valeur d'une case se fait de la m ême fac ¸on que dans le cas de Needleman- Dans ce manuscrit, on s'int éressera principalement à la classification non-supervis ée, car c'est ce qui va nous permettre de g én érer des clusters de s équences g én étiques sans avoir à fournir d'a priori. Les deux chapitres suivants pr ésentent deux des m éthodes les plus utilis ées. La partie 2.1.3 pr ésentera des m éthodes de r éduction de dimension, ce qui est une étape pr éalable souvent n écessaire à la classification non supervis ée.

2.1.1/ GMM

Le mod èle de m élange gaussien (en anglais Gaussian Mixture Model ou GMM day1969estimating ) est un mod èle de clustering non supervis é. Ce mod èle assume que les donn ées suivent une distribution k j=1 τ j N(µ j , Σ j ), o ù k est le nombre de clusters, τ j est la probabilit é pour un sujet d' être dans le j eme cluster et N(µ j , Σ j ) est la loi normale de moyenne µ j et de matrice de variance-covariance Σ j . En d'autres termes, cette distribution est une moyenne pond ér ée de plusieurs distributions gaussiennes. La 29 jet i d' être dans le cluster j. Ainsi n écessairement

k j=1 Z i, j = 1 et n i=1 Z i, j n = τ j .
Pour effectuer l'algoritme EM, on commence par se choisir un vecteur initial de centres de variances et de poids des clusters θ (0) = (θ (0) 1 , ..., θ (0) k ) o ù θ (0) j = (µ (0) j , Σ (0) j , τ (0) j ). Puis on iter de la fac ¸on suivante, à l'it ération l, on calcule, sachant θ (l) et x, l'esp érance pour le sujet i d' être dans le cluster j. C'est-à-dire qu'on calcule t i, j = E(Z i, j |x, θ (l) ). On effectue ce calcul gr âce à la formule de Bayes t i, j =

τ (l) j f (x i , θ (l) j ) k m=1 τ (l) m f (x i , τ (l) m )
. Ce calcul des valeurs t i, j est donc "l' étape d'esperance" de l'algorithme d'esp érance-maximisation. "L' étape de maximisation", quand à elle, consiste à prendre comme valeur de θ (l+1) la valeur de θ qui maximise la vraisemblance du mod èle sachant x et les valeurs de t i, j . C'est-

à-dire θ (l+1) = argmax θ n i=1 k j=1
t i, j log(τ j f (x i , θ j ). Cette optimisation s'effectue en prenant

τ (l+1) j = 1 n n i=1 t i, j , µ (l+1) j = n i=1 t i, j x i n i=1 t i, j et finalement σ (l+1) j = n i=1 t i, j (x i -µ j )(x i -µ j ) T n i=i t i, j
Pour appliquer concr ètement un mod èle de m élange gaussien à une base de donn ées, on peut utiliser des biblioth èques sp écialis ées. Dans nos contributions, nous avons utilis é la fonction GMM de la biblioth èque sklearn.mixture buitinck2013api du langage Python. Notons aussi l'existence du projet Mixmod lebret2015rmixmod Mixmod qui propose des biblioth èques en Python (Pymixmod), R (Rmixmod), C++ (mixmodLib), ainsi que sa propre interface graphique (mixmodGUI).

2.1.2/ K-MEANS

L'algorithme des k-moyennes (ou en anglais k-means) est un algorithme de partitionnement de donn ées propos é par Hugo Steinhaus en 1957 steinhaus1956division . Son fonctionnement est le suivant :

1. Choisir k points m 1 , ..., m k dans l'espace du nuage de points (par exemple la position de k points du nuage tir és au hasard). m 1 , ..., m k sont "les moyennes de nos k clusters". Évidement à cette étape ces moyennes sont g én éralement mal positionn ées et il va falloir les am éliorer petit à petit.

2.

Cr éer les k clusters en assignant chaque point au cluster dont la moyenne est la plus proche de lui. Dit autrement, le j eme cluster est constitu é de tous les points qui sont plus proches de m j que de m l , ∀l j. éau de la dimension". Les deux chapitres suivants d étaillent le fonctionnement de deux m éthodes de r éduction de dimension, l'analyse en composantes principales (ACP) et les Laplacian eigenmaps. L'ACP est la plus connue et la plus utilis ée des m éthodes de r éduction de dimension, nous y avons eu recours plusieurs fois dans les contributions. Les Laplacian eigenmaps quant à elles, sont une m éthode de r éduction de dimension qui s'applique lorsque, pour chaque couple de sujets, on peut d éfinir une similarit é entre ces deux individus. Cette m éthode est à la base de notre contribution 1.

Recalculer les

2.1.3.1/ ACP

L'analyse en composante principale est une tr ès ancienne et éprouv ée m éthode de r éduction de dimension dont les pr émisses remontent à Karl Pearson en De toutes les droites vectorielles, celle g én ér ée par le vecteur u 1 est alors celle qui maximise la variance de la projection de X sur une droite. De toutes les droites vectorielles orthogonales à celle-ci, celle g én ér ée par u 2 est celle qui maximise la variance de la projection de X. Le plan engendr é par u 1 et u 2 est le plan qui maximise la variance de la projection de X sur un plan. De m ême pour l'espace engendr é par u 1 , u 2 et u 3 etc.

1901 pearson1901liii . On consid ère X =             X 1,1 . . . X 1,p . . . . . . X n,1 . . . X n,p            
En g én éral, en statistique, on n'applique pas l'ACP sur les donn ées brutes, mais plut ôt sur les donn ées centr ées r éduites X = 

                 X 1,1 -X 1 σX 1 . . . X 1,p -X p σX p . . . . . . X 1,1 -X 1 σX 1 . . . X n,p -X p σX p                  o ù X i est
Y i = β 0 + β 1 X i,1 + β 2 X i,2 + ... + β p X i,p + ǫ i o ù Y i est
la valeur de la variable à expliquer pour le i eme sujet, X i,1 ...X i,p sont les valeurs des variables explicatives pour le i eme sujet et ǫ i est le bruit associ é au i eme sujet. β 0 , β 1 , ..., β p sont donc les param ètres du mod èle ( à d éterminer). On peut aussi utiliser l' écriture matricielle suivante : Y = βX + ǫ o ù Y est le vecteur de taille n qui repr ésente les valeurs de la variable à expliquer pour tous les sujets, β = (β 0 , β 1 , ..., β p ) est le vecteur des param ètres à estimer (c'est donc un vecteur de taille p+1), X est la matrice de taille n × p + 1 dont les lignes repr ésentent les sujets et les colonnes repr ésentent les variables explicatives, la premi ère colonne étant uniquement compos ée de 1 afin d'inclure la composante constante (i.e. β 0 ) dans le mod èle.

En g én éral, on assume que le bruit ǫ suit une loi normale centr ée N(0, σ 2 I) dans laquelle la variance σ 2 est à d éterminer. Dans ce cas, maximiser la vraisemblance du mod èle revient à minimiser la somme des carr és des composantes de ǫ (aussi appel ée somme des carr és des erreurs). On utilise alors la m éthode des moindres carr és pour estimer les param ètres du mod èle.

A titre d'exemple, la figure 2.4 repr ésente le prix de 546 maisons vendues à Winsor (Canada) en fonction de leur superficie anglin1996semiparametric . Le mod èle obtenu est ici Prix = 34136 + 6.5988 × Superficie. c'est-à-dire que, dans ce cas, β 0 = 34136, β 1 = 6.5988, X i est la superficie de la i eme maison et Y i est le prix de cette i eme maison.

On note sur la figure 2.4 que la variance r ésiduelle est importante. Les points du nuage de points sont loin d' être align és sur la droite de r égression. Ceci vient simplement du fait que la superficie n'explique pas compl ètement le prix d'une maison. Pour am éliorer le mod èle, FIGURE 2.4 -Prix des maisons vendues à Winsor (Canada) en fonction de la superficie il faut inclure d'autres variables pertinentes telles que le nombre de chambres, l'acc ès ou non au gaz, le nombre de salles de bain, etc. Cependant, seules les r égressions lin éaires univari ées (i.e. avec une seule variable explicative) peuvent être pr ésent ées sur une figure en deux dimensions comme la figure 2.4.

2.2.1.2/ R ÉGRESSION LOGISTIQUE

La r égression logistique est un mod èle de r égression qui s'applique lorsque la variable à expliquer est binaire. Typiquement, il peut s'agir de savoir si un individu est malade ou sain, vivant ou d éc éd é, etc. On note g én éralement 0 et 1 les deux états possibles. L'hypoth èse principale de la r égression logistique est que l' état de la variable à expliquer Y d épend d'une variable continue Y * (non observ ée), aussi appel ée "trait latent". On peut alors appliquer une r égression lin éaire sur ce trait latent. Y * i = β 0 + β 1 X i,1 + β 2 X i,2 + ... + β p X i,p + ǫ i . Ici ǫ est suppos é suivre une loi logistique standard. Cette loi est une approximation de loi normale qui a pour avantage d'avoir une fonction de r épartition d éfinie explicitement. L'hypoth èse de la r égression logistique est que 

Y i = 0 si et seulement si Y * i < 0, et donc Y i = 1 si et seulement si Y * i ≥ 0. Il en d écoule que P(Y i = 1) = Φ(β 0 + β 1 X i,1 + β 2 X i,2 + ... + β p X i,p ) o ù Φ : x →
Y * i = β 1 X i,1 + β 2 X i,2 + ... + β p X i,p + ǫ i ,
o ù ǫ suit une loi logistique. La diff érence avec une r égression logistique est que ce mod èle assume également l'existence de seuils

γ 0 = -∞ < γ 1 < ... < γ Q = +∞ tels que ∀q ∈ 1...Q, Y i = m q si et seulement si Y *
i ∈]γ q-1 , γ q [. Notons au passage qu'il n'y a pas besoin ici de composante constante (i.e. β 0 ) dans la r égression lin éaire des variables explicatives sur le trait latent, car elle serait redondante avec les seuils et causerait donc un surparam étrage. Notons aussi que, comme β 0 = -∞ et β Q = +∞, seuls Q -1 param ètres de seuil sont à estimer. Au final, ce mod èle compte p + Q -1 param ètres en tout. C'est sur ce mod èle de r égression logistique ordonn ée que nous nous penchons particuli èrement dans le cadre de la contribution 4.

2.2.2/ SURINTERPR ÉTATION ET S ÉLECTION DE VARIABLES

2.2.2.1/ SURINTERPR ÉTATION

En statistique, la surinterpr étation d ésigne le fait de choisir un mod èle trop "compliqu é" par rapport aux donn ées dont on dispose. Le terme "mod èle compliqu é" signifie ici un mod èle n écessitant l'estimation de nombreux param ètres. Ce mod èle compliqu é permettra de s'ajuster parfaitement aux donn ées dont on dispose mais se g én éralisera tr ès mal à de nouvelles donn ées et fournira de pi ètres pr édictions. La figure 2.5 issue de OverFitting montre un exemple didactique de surinterpr étation. Dans cet exemple, on dispose d'une évaluation du bien-être d'un couple à chacune des 10 premi ères ann ées suivants leur mariage. On dispose donc de 10 donn ées et d'une seule variable pr édictive, le temps (not é t). Une id ée pour coller parfaitement aux donn ées pourrait alors être de d éfinir le bien-être comme une combinaison lin éaire de t, t 2 , ..., t 9 . Ainsi, on obtiendrait le mod èle de pr édiction du bien être repr ésent é par la courbe ondulante bleue (celle qui passe par tous les points). Selon ce mod èle, le couple devrait connaître une p ériode d'euphorie extatique juste apr ès la dixi ème ann ée. Le probl ème de ce mod èle est que, si on modifie tr ès l ég èrement une seule donn ée, on peut obtenir le r ésultat compl ètement inverse et être amen é à pr édire pour ce couple une rapide et profonde d épression d ès le passage de la dixi ème ann ée effectu é.

FIGURE 2.5 -Surinterpr étation

De m ême l'ajout ou le retrait d'une seule donn ée peuvent compl ètement modifier les pr édictions. En d'autres termes, le mod èle n'est pas robuste, c'est pourquoi il se g én éralise mal à de nouvelles donn ées. On pr éf érera alors g én éralement un mod èle qui ajuste un peu moins bien les donn ées mais plus robuste. Dans l'exemple de la figure 2.5, on pr éf érera la courbe "du bas" qui repr ésente une r égression lin éaire du bien-être en fonction de t et t 2 . Évidemment, l'objectif n'est pas non plus de sacrifier compl ètement l'ajustement aux donn ées au profit de la robustesse. Par exemple, dans la figure 2.5, un mod èle qui pr édirait toujours un bien-être de 0 sans s'occuper des donn ées serait parfaitement robuste car non affect é par l'ajout, le retrait ou une l ég ère modification d'une donn ée. Pour autant, ce mod èle ne s'ajusterait pas du tout aux donn ées, on serait ici dans un cas de sous-interpr étation, et de ce fait, ce mod èle se g én éraliserait tout aussi mal que le mod èle surinterpr ét é. Un des principaux objectifs de la statistique est de trouver un équilibre entre l'ajustement et la robustesse des mod èles, en d éterminant le nombre ad équat de param ètres acceptables dans le mod èle. L'id ée g én érale est que, plus on dispose de donn ées, plus on peut s'autoriser des mod èles compliqu és. Dans la pratique, on utilise des crit ères statistiques comme ceux d éfinis aux chapitres 2.2.2.2.

L'exemple pr ésent é dans la figure 2.5 a l'avantage d' être visualisable en deux dimensions, car on ne dispose ici que d'une seule variable explicative (le temps) et on provoque de la surinterpretation en int égrant diff érentes puissances de cette variable dans le mod èle (t, t 2 , ... , t 9 ). Dans la pratique, et particuli èrement dans le cadre de la bio-informatique, le risque de surinterpr étation est plut ôt li é au fait que l'on dispose au d épart d'un tr ès grand nombre de variables. Par exemple, dans la contribution 4, on étudie le cas o ù l'on cherche à pr édire des niveaux de gravit é d'une tumeur en fonction de niveaux d'expression d'un grand nombre de g ènes. Dans cette situation, d ès lors qu'on dispose de plus de g ènes que de patients on peut facilement se retrouver en mesure de proposer un mod èle qui ajuste parfaitement les donn ées, quand bien m ême les g ènes étudi és n'auraient en r éalit é aucun effet sur la tumeur. (Rmq : Il y a quelques conditions math ématiques à cela, il suffit de disposer d'au moins n -1 g ènes tels que les vecteurs les repr ésentant soient "libres" (cf. glossaire) et que les vecteurs repr ésentant les patients soient également libres).

2.2.2.2/ AIC ET BIC

Une m éthode simple et éprouv ée pour éviter le ph énom ène de surinterpr étation est de chercher à optimiser des "crit ères d'information". Ce type de crit ères est bas é sur un compromis entre la qualit é de l'ajustement (que l'on cherche à maximiser) et le nombre de param ètres du mod èle (que l'on cherche à minimiser). Parmi cela, le crit ère d'information d'Akaike (en anglais Akaike information criterion ou AIC), d évelopp é par Hirotugu Akaike en 1973 akaike1998information , est un des plus populaires. Sa formule est AIC = 2k -2ln(L), o ù k est le nombre de param ètres du mod èle et L et la vraisemblance (ln(L) est donc la log-vraisemblance du mod èle). L'AIC d écroît donc lorsque la vraisemblance du mod èle croît et lorsque le nombre de param ètres d écroît. L'objectif est alors de trouver, entre diff érents mod èles candidats, celui dont l'AIC est le plus faible. En d'autres termes, le crit ère AIC "autorise l'utilisateur" à inclure un nouveau param ètre d ès lors que ce param ètre permet d'ajouter au moins 1 à la log-vraisemblance du mod èle (c'est-à-dire de multiplier la vraisemblance du mod èle par e).

Un autre "crit ère d'information", apparu un peu plus tard mais tout aussi populaire, est le crit ère d'information bay ésien (en anglais Bayesian Information Criterion ou BIC) schwarz1978estimating . Ce crit ère est tr ès proche de l'AIC mais tient compte du nombre de sujets dans la p énalisation. Plus pr écis ément, BIC = ln(n) × k -2ln(L) o ù n est le nombre de sujets. Dans ce cas, on est "autoris é" à inclure un nouveau param ètre dans le mod èle d ès lors que ce nouveau param ètre permet d'ajouter ( ln(n)

2 ) à la log-vraisemblance, c'est-à-dire permet de multiplier la vraisemblance par √ n. La p énalit é du BIC est plus forte que celle de l'AIC d ès lors que n > e 2 , c'est-à-dire d ès lors que n > 8, ce qui est quasiment toujours le cas en pratique. De ce fait, le BIC est plus s électif que l'AIC dans le sens o ù il choisit des mod èles avec moins de variables explicatives.

2.2.2.3/ PROC ÉDURES STEPWISE

Dans le cadre d'une r égression, si on dispose de p variables explicatives potentielles, on peut alors envisager 2 p mod èles diff érents. Rapidement, il devient inenvisageable de tester l'AIC o ù le BIC pour chacun de ces mod èles. Les approches standard pour traiter cela sont des proc édures par étapes (stepwise) comme la s élection ascendante (Forward selection) ou la s élection descendante (Backward elimination).

Le principe de la s élection ascendante est de partir du mod èle nul (i.e. mod èle qui n'inclut aucune variable explicative), puis de voir si le meilleur mod èle à une variable explicative am éliore le crit ère choisi. Si c'est le cas, appelons v 1 la meilleure variable possible pour un mod èle univari é. On teste alors tous les mod èles à deux variables incluant v 1 et une autre variable. On incr émente ainsi successivement des variables tant que cela permet d'am éliorer le crit ère choisi.

Le principe de la s élection descendante, au contraire, est de partir du mod èle complet (mod èle qui inclut toutes les variables explicatives potentielles), puis de voir si l'un des mod èles à p -1 variables est meilleur. Puis ainsi de suite, on retire une variable tant que cela permet d'am éliorer le crit ère choisi.

La proc édure ascendante, comme la proc édure descendante, peut conduire à estimer p×(p+1) 2 mod èles au total. On utilise donc l'une ou l'autre selon qu'on suppose que le meilleur mod èle inclura un nombre de variables plut ôt bas (proche de 0) ou plut ôt haut (proche de p). Notons toutefois que les mod èles avec beaucoup de variables sont plus longs à calculer que les mod èles avec peu de variables. Il est donc raisonnable de pr éf érer la s élection ascendante dans le doute. Notons également que la s élection descendante est impossible en g én éral lorsque p > n, car tous les mod èles à p -1 él éments permettent un ajustement parfait aux donn ées : on ne peut pas les distinguer. Frank-Wolfe frank1956algorithm . Cette id ée de p énaliser la log-vraisemblance par la norme ℓ 1 plut ôt que par la norme ℓ 0 est la base de la m éthode du LASSO (Least Absolute Shrinkage and Selection Operator), cr é é par Robert Tibshirani en 1996 Tibshirani:JRSSB96 . Dans cette formule, le param ètre λ fixe l'importance de la p énalit é. Plus ce param ètre est élev é, plus la p énalit é est élev ée, et donc moins il y aura de variables explicatives s électionn ées. Il n'y a pas de consensus sur une fac ¸on simple et rapide de choisir ce param ètre λ. Actuellement, en pratique, le LASSO est effectu é pour diff érentes valeurs de λ et on peut comparer les r ésultats obtenus pour un crit ère donn é (comme AIC ou BIC), ou par de la validation crois ée. À la base, cette m éthode du LASSO s'applique pour des r égressions lin éaires ; toutefois, cette id ée de p énaliser la log-vraisemblance par la norme ℓ 1 peut s'appliquer à diff érents autres mod èles. L'enjeu de la contribution 4 est l'application de cette p énalisation par la norme ℓ 1 à la r égression polytomique ordonn ée, ainsi que la recherche de la meilleure m éthode de choix de λ, en utilisant notamment des m éthodes assez r écentes pour ce choix de λ comme le "Quantile Universal Thresholding" giacobino2015quantile , ou le "Online Frank-Wolfe algorithm" chretien2018hedging . ment tous les sujets. Pour avoir une id ée de la capacit é globale de la variable pr édictive à classer correctement la variable binaire, on calcule g én éralement l'aire sous la courbe (en anglais area under the curve ou AUC). Cette aire est d'autant plus grande que la variable pr édictive permet de classer correctement la variable binaire. Cette aire vaut 1 si la variable pr édictive permet de classer parfaitement la variable binaire. Dans la contribution 3, nous d éveloppons un outil pour appliquer l'analyse par courbes ROC à des donn ées m étag énomiques en écologie. À titre d'exemple nous les utilisons pour retrouver les bact éries et champignons les plus affect és par la pollution dans le cadre de l' étude zappelini2015diversity . 

ABSTRACT

In this article, a new Python package for nucleotide sequences clustering is proposed. This package, freely available on-line, implements a Laplacian eigenmap embedding and a Gaussian Mixture Model for DNA clustering. It takes nucleotide sequences as input, and produces the optimal number of clusters along with a relevant visualization. Despite the fact that we did not optimise the computational speed, our method still performs reasonably well in practice. Our focus was mainly on data analytics and accuracy and as a result, our approach outperforms the state of the art, even in the case of divergent sequences. Furthermore, an a priori knowledge on the number of clusters is not required here. For the sake of illustration, this method is applied on a set of 100 DNA sequences taken from the mitochondrially encoded NADH dehydrogenase 3 (ND3) gene, extracted from a collection of Platyhelminthes and Nematoda species. The resulting clusters are tightly consistent with the phylogenetic tree computed using a maximum likelihood approach on gene alignment. They are coherent too with the NCBI taxonomy. Further test results based on synthesized data are then provided, showing that the proposed approach is better able to recover the clusters than the most widely used software, namely Cd-hit-est and BLASTClust.

1.1/ INTRODUCTION

As the amount of available genetic sequences increases drastically every year, accurate methods to deeply study them are strongly demanded vgrm+15:ij . Among these methods, clustering is a very powerful tool that helps to understand relations between sequences. It can be used, for instance, to classify 16S RNA sequences into OTUs hao2011clustering , which are standard proxies for microbial species (clustering is here a way to identify an a priori unknown number of "species"). Clustering is used too to define taxa within groups of species represented by their DNA sequences. Other utilizations of sequence clustering in genomics encompass the study of sub-populations within the same species torroni1992native , the discovery of possible hidden variables that can explain differences between such sub-populations, and so on suzek2007uniref . However, most of the times, only generic methods for clustering a matrix of similarity scores is applied, and methods that are more specific to DNA sequences are still waited. Furthermore, the few existing methods that focus on sequence clustering mainly target on speed and scalability, and they need a strong similarity between sequences to produce accurate clusters. Furthermore, an a priori knowledge on the number of clusters is required, for instance by providing a similarity threshold cutoff. The objective of this article is to provide a new method that relaxes such constrains, allowing the sequences to be really divergent, and returning an a posteriori of the optimal number of clusters in an efficient manner.

One important issue in any clustering procedure is to find an appropriate embedding of the data under study, that will make the respective salient features in each of the groups more clearly delineateable. However, as often stated in the Machine Learning (ML) literature, high dimensional data are often much too scattered in order for an offthe-shelf method to be able to work properly. This phenomenon, often referred as the "curse of dimensionality" bellman2013dynamic, bellman2015adaptive , explains why several embeddings have been proposed recently. Some of these embeddings are very over-parametrized and can thus only be implemented in the supervised setting. This is the case for methods based on neural networks (e.g., auto-encoders). Other methods need less parameters and are more suitable to unsupervised learning, which is the case of our proposal. Among many nonlinear embedding methods, the Laplacian Eigenmap belkin2001laplacian approach has been extensively studied from both the theoretical and the application viewpoint spielman2009spectral . More involved methods relying on Semi-Definite programming have also appeared recently with higher separation power in practice than spectral methods, see e.g., chretien2016semi .

In this article, the aim is to establish the practical efficiency, for DNA sequence clustering, of the combination of a plain Laplacian Eigenmap approach coupled with a Gaussian Mixture based clustering. This particular choice is motivated by its remarkable computational efficiency, even in the case where the objects to classify are really divergent. The overall procedure can be divided in three steps.

1.

Compute a similarity matrix between each pair of DNA sequences, i.e., provide a matrix W of size n × n, where n is the number of sequences, which is such that W i, j increases with the "similarity" between sequences number i and j.

2.

Diagonalise the Laplacian matrix of W. By such an operation, DNA sequences are mapped to elements of a given vector space, whose dimension is much smaller than the sequence lengths. This reduction of the problem dimension is a key element that usually has a great impact on both visualization and clustering. The combination of the two stages above is often referred as the "Laplacian eigenmap" approach.

3. Cluster the transformed data using a Gaussian Mixture Model (GMM day1969estimating ).

By using a ready to use Python package designed at this occasion, and freely available on-line, we have demonstrated the accuracy and efficiency of this approach for DNA sequence clustering. Indeed, the methodology has firstly been tested on a sample of 100 ND3 genes (DNA sequences) from Platyhelminthes and Nematoda species that have been downloaded from the NCBI website NCBI . The classification obtained via this approach has been compared with the phylogenetic tree of these species obtained by a likelihood maximization method using PhyML guindon2005phyml . Obtained clusters are consistent with both clades appearing in the phylogenetic tree and the NCBI taxonomy. In particular, this clustering perfectly separates the Nematoda and Platyhelminthes phyla.

To evaluate the method further, extensive simulation experiments have secondly been run on synthesized data : n DNA sequences have been randomly generated, and random mutations and block deletions have been applied on them, leading finally to N > n sequences. The objective was then to group these N sequences within n clusters (n is not a priori known), in such a way that all the elements in each cluster are originated from the same initial DNA sequence. On this set of synthesized data, our proposal has outperformed the two other state-of-the-art software for DNA clustering, namely Cd-hit-est and BLASTClust.

The remainder of this article is structured as follows. The three stages of the proposed method are detailed in the next section. Numerical results are then presented : the application example involving a real dataset is provided in Section 1.3.1, while the simulation based procedure is detailed in Section 1.3.2. A general discussion about the proposed approach is provided in Section 4.4. This research work ends by a conclusion section, in which the contribution is summarized and intended future work is provided.

1.2/ THE CLUSTERING METHOD 1.2.1/ LAPLACIAN EIGENMAP

The so-called Laplacian Eigenmap belkin2001laplacian is an original method for embedding data living in a structured set into a k-dimension vector space. The main information needed to compute the eigenmap is a matrix containing the value of the measured similarity between pairs of data. The main motivation for such embeddings is dimension reduction and visualization. Moreover, spectral methods often exhibit the nice property of separating clusters.

1.2.1.1/ THE MATRIX OF SIMILARITY

The first step in the construction of a good embedding is the creation of a similarity matrix W. This matrix is intended to measure the similarity between each pair of sequences by providing a number ranging between 0 and 1. The main assumption on W is that the greater the similarity is, the closer are the sequences to each other.

In order to create this similarity matrix, a multiple global alignment of the DNA sequences is first run using the MUSCLE (Multiple Sequence Comparison by Log-Expectation edgar2004muscle ) software. Then, an ad hoc "Needleman Wunsch distance" needleman1970general is computed for each pair of aligned sequence, and with the "EDNAFULL" scoring matrix. This distance takes into account that DNA sequences usually face (1) mutations and ( 2) insertion/deletion. Note that, by using MUSCLE as first stage of this matrix computation, we operate only one (multiple) sequence alignment, instead of n(n-1)

2

(pairwise) alignments in the classical Needleman Wunsch algorithm (that usually contains two stages : finding the best pairwise alignment, and then compute the edit distance). Introducing Muscle leads to a real acceleration in the construction of the similarity matrix.

Let us call M the distance matrix obtained by this way. M is then divided by the largest distance value, so that all its coefficients are between 0 and 1. W can finally be obtained as follows :

∀ i, j ∈ [[1, n]], W i, j = 1 -M i, j ,
in such a way that W i, j represents the similarity score between sequences i and j.

1.2.1.2/ OPERATIONS ON W

Once the similarity matrix has been constructed, the next step is to create the normalized Laplacian matrix, as follows chen2007resistance :

L = D -1/2 (D -W)D -1/2
, where W is the similarity matrix defined previously and D is the degree matrix of W. That is to say, D is the diagonal matrix defined by :

∀i ∈ [[1, n]], D i,i = n j=1 W i, j .
L being symmetric and real, it is diagonalisable in a basis of pairwise orthogonal eigenvectors {φ 1 , ..., φ n } associated with eigenvalues 0 = λ 1 λ 2 ... λ n . The Laplacian Eigenmap consists in considering the following embedding function :

c k 1 (i) =                  φ 2 (i) φ 3 (i) . . . φ k 1 +1 (i)                  ∈ R k 1 ,
where c k 1 (i) is the coordinate vector of the point corresponding to the i th sequence. In other words, the coordinate vector of the point corresponding to the i th sequence is composed of the i th coordinate of each of the k 1 first eigenvectors, ordered according to the size of their eigenvalues.

The choice of the k 1 cutoff is a crucial step and one usually proceeds as follows. The ordered eigenvalues are plotted, and we stop at the index where the increase in the eigenvalue is negligible : the number of eigenvalues that are not discarded is k 1 . For instance, in our program, we have chosen to set k 1 as the first time the difference between the k th and (k + 1) th value is lower than 0.01.

Note that W can be seen as a weighted adjacency matrix of a graph, where nodes are the DNA sequences while edges are labeled by the degree of affinity between their adjacent nodes. In the literature, the Laplacian matrix is often described as constructed from the weighted adjacency matrix of such a graph rather than constructed from a similarity matrix. These definitions are equivalent. 

k 2 i=1 τ i N(µ i , Σ i ),
where k 2 is the number of clusters, τ i is the probability for a point to be in cluster i, and N(µ i , Σ i ) is the normal distribution of mean µ i and covariance matrix Σ i . GMM parameters are computed with the Expectation-Maximization (EM) algorithm mclachlan2004finite . Notice that the EM algorithm may converge to singular distributions exponentially fast biernacki2003degeneracy . However, degenerate situations can be easily discarded and consistent estimators can be easily obtained in practice. Gaussian Mixture models are still a topic of current extensive research, both from the statistical perspective he2011laplacian, wang2014high and the computational one yi2015regularized .

The Bayesian Information Criterion has been chosen to determine the most relevant number of clusters k 2 to be considered. The BIC, which is a criterion for model selection, is defined as follows :

BIC = -2 ln(L) + ln(n)p,
where L is the likelihood of the estimated model, n is the number of observations in the sample, and p is the number of model parameters. This criterion allows us to select a model whose validity is based on a balance between the value of the model's likelihood (fidelity term) and the number of parameters to estimate (complexity term). The likelihood of the model increases with k 2 as well as the number of parameters. The selected model will be by default the one that minimizes this criterion. In the proposed package, the user can also set the number of clusters manually.

1.2.3/ THE CLUSTERING SOFTWARE

The Python program corresponding to the algorithm described in this section is freely available online [START_REF] Moulin | Simulation-based estimation of branching models for LTR retrotransposons[END_REF] . The main function of this package provides a clustering from nucleotide sequences. Its prototype meets the following canvas : clustering = Gclust(liste, nbClusters='BIC', drawgraphs=True, nbEVMethod = 'delta', nbEVCutOff = 'default', 1. https ://github.com/SergeMOULIN/clustering-tool-for-nucleotide-sequences-using-Laplacian-Eigenmaps-and-Gaussian-Mixture-Models AddToNamesOfOutputs = ''): where :

• list is an in-memory image of a fasta file containing the sequences associated with their names. The fasta file must be configured as the "ND3.fasta" file in our github repository. • nbClusters is the number of clusters desired by the user. By default, the program applies the BIC criterion to determine it. The user may also choose to use the AIC criterion by writing "nbClusters = AIC". • drawgraphs is an optional Boolean value to produce some graphics. If drawgraphs = TRUE, a two dimensional clustering of data is plotted (cf. Figures 1.6, 1.7, and 1.8), as well as the graphical representation of similarities (as in Figure 1.3). -nbEVMethod is the method chosen to determine the number of considered eigenvectors k 1 . The user can choose between 3 methods, usually reported in the literature.

-

If nbEVMethod = 'delta' then k 1 is the lowest value such that λ k 1 +1 -λ k 1 < δ
where δ is a constant to be fixed by the user. 'delta' is the default method, and with δ = 0.01.

-If nbEVMethod = 'energy' then k 1 is the lowest value such that

k 1 i=1 (λ max -λ i ) ≥ C × n i=1 (λ max -λ i )
where C is a constant to be chosen by the user (default C = In both cases, the user has to provide a similarity threshold. In the case of CD-hit-est, this threshold indicates the minimum similarity that a sequence must have with the reference of a cluster to integrate this cluster. In the case of BlastClust, this threshold indicates the minimum similarity that a sequence must have with at least one other sequence in the cluster. This necessity to specify the threshold for similarity makes a important difference with our tool. Indeed, our tool determines the number of clusters automatically using BIC.

Of course, CD-hit-est and BLASTClust provide a default value for this similarity (e.g., 0.9 for CD-hit-est) but it is simple to find situations in which this value is not adapted. Indeed, this value does not fit the data as BIC does.

We have not found a way to choose similarity thresholds based only on the simulated databases. Thus, to apply CD-hit-est and BLASTClust to the simulated data we have deliberately biased our inputs in favor of these programs : we have sought similarity thresholds that minimize the distance to the ideal clustering (as if this ideal clustering was known in advance) in the case of the first simulated database. Then we have applied these thresholds to the 25 simulated bases.

In the case of CD-hit-est, we have tested different similarities between 0.82 and 0.90. Indeed, we have calculated that, given the parameters of the simulations, the ideal threshold should be in this area. The results are shown in Table 1.2. On can see that the distance to the ideal clustering is minimized for a similarity threshold of 0.84. When studying these CD-hit-est clustering in detail, one can see that, even with this ideal similarity of 0.84, some sequences are isolated and do not fit into their ideal cluster. If the chosen similarity threshold increases, this number of isolated sequences increases. On the other hand, if the chosen similarity threshold decreases (below 0.84), some clusters merge together.

The case of BLASTClust is a little more complicated. In this case, we have varied four parameters detailed below :

--S <threshold> similarity threshold -if <3 then the threshold is set as a BLAST score density (0.0 to 3.0 ; default = 1.75) -if ≥ 3 then the threshold is set as a percent of identical residues (3 to 100) --L <threshold> minimum length coverage (0.0 to 1.0 ; default = 0.9) --b <T-F> require coverage as specified by -L and -S on both (T) or only one (F) sequence of a pair (default = TRUE) There are thus two binary parameters (-b on the one hand and the fact that S < 3 or S ≥ 3 on the other hand) and two continuous parameters (S et L). The two binary parameters constitute 4 configurations (b = 'T 'and S < 3 ... b =' F' and S ≥ 3). For each of these 4 cases, we have tested BlastClust on a 10,000 points grid (100 possibilities for S × 100 possibilities for L). We have observed the minimum distance to the ideal clustering obtained on these 40,000 points (it is 3). Then we have counted which of the four configurations contain the largest number of points that minimize the distance to the ideal clustering (it is b = 'F' and S < 3). After this, we have selected the point of this configuration closest to the average of the points that minimize the distance to the ideal clustering among the points that minimize the distance to the ideal clustering. The setting obtained is : S = 1.91 (BLAST score density), b = 'F', L = 0.49 and p = 'F' (p = 'F' means that we work on nucleotide sequences, not on proteins).

After we had obtained these parameters for CD-hit-est and BLASTClust, we finally applied these two tools to our 25 simulated datasets. The results are shown in Table 1 

2.

As shown in Section 1.3.2, it allows a better reconstruction of the ideal clustering, even when the similarity threshold is chosen advantageously for CD-hit-est and BLASTClust.

3.

It allows the user to plot useful graphical representations of the clustered data.

Finally, we note that CD-hit-est works only for intra-cluster similarities larger than 75%.

One drawback of our tool as compared to CD-hit-est and BLASTClust is the computation speed. According to CD-hitFasterThanBLASTClust , CD-hit-est is the fastest of these two programs. We have not been able to rigorously confirm this remark in our study, simply because we used BLASTClust on our computers while we used CD-hit-est online.

To sum up, the main features of our tool are different from that of CD-hit-is and BLAST-Clust. For users wanting to cluster their dataset into meaningful taxa, which makes it possible to apprehend the evolution, our tool might be of greater interest. On the other hand, if the objective is to reduce the size of the dataset by removing duplicates (or retain only one sequence per group of close sequences), it is more appropriate to use one of the other tools with a similarity of 100% (or close to 100%). In particular, CD-hit-est is written so as to provide a representative sequence for each cluster.

1.4.2/ POSSIBLE ALTERNATIVES WITH THE SAME CANEVA

Various options are possible to perform the analysis we have presented previously, some of them being listed below.

1.4.2.1/ SIMILARITY MATRIX

As stated previously, the multiple global alignment step is performed first before computing similarities, using MUSCLE software edgar2004muscle . Among the most extensively used methods, we can choose MAFFT katoh2013mafft too, as well as ClustalW or ClustalX larkin2007clustal . In addition, instead of defining the similarity matrix W as W i, j = 1 -M i, j , it could be possible to consider W i, j = 1 M i, j or W i, j = e -M i, j .

1.4.2.2/ NUMBER OF CONSIDERED EIGENVECTORS

The number of eigenvectors to keep is another point to investigate. As explained in Section 1.2.1.2, it is usually advised to check graphically when the increase of eigenvalues is reducing. In this article, we have chosen to consider as default proposal :

k 1 such that δ = λ k 1 +1 -λ k 1 < 0.
01. This criterion has led to k = 4 in the case study, which seems acceptable according to the considered taxonomy.

Some authors in the literature proposed to compute k 1 as the logarithm of n matiasnotes . This method has been implemented as an option, as specified in Section 1.2.3. In addition, the "energy" method defined in Section 1. We have chosen to consider the BIC schwarz1978estimating to determine the optimal number of clusters, which is a common choice for this type of problem. An alternative may be to use the Akaike Information Criterion (AIC, akaike1974new ). The principle of calculating the AIC is the same as the BIC, since the goal is to maximize log-likelihood penalized by the number of parameters (or more precisely, to minimize the number of parameters to which the log-likelihood is subtracted). AIC formula is the following :

AIC = -2ln(L) + 2 × p,
where L is the likelihood of the estimated model and p the number of model parameters.

When ln(n) ≥ 2, that is to say n ≥ 8 (which is always the case in practice), BIC penalization is larger than that of AIC. Thus the number of clusters obtained by BIC is lower or equal to the one obtained by AIC. BIC is said to be "more conservative" than AIC. The choice between these two criteria can be dependent on how stringent the clustering is desired. The user of the GClust function may choose to use the AIC rather than the BIC as specified in Section 1.2.3. The user of the GClust function is also able to choose the number of clusters of his or her choice.

1.4.3/ CONCLUSION

In this work, we have proposed a new method of nucleotide sequence clustering. This clustering is produced by a methodology combining Laplacian Eigenmap with Gaussian Mixture models, while the number of clusters is automatically determined by using the Bayesian Information Criterion. The proposed methodology was applied to 100 sequences of mitochondrially encoded NADH dehydrogenase 3. The resulting clusters appeared to be coherent with the phylogeny (gene tree obtained with PhyML) as well as with the NCBI taxonomy. In addition, further tests have also been carried out on fully simulated data. These tests showed that our methodology allows to recover the expected clusters with greater accuracy.

One possible extension for future work could be to investigate more deeply the impact of parameters in the obtained clusters. The effects of using a different similarity matrix, or choosing a different dimension of the image space in Laplacian Eigenmap, or the number of desired clusters, could be investigated. Moreover, our tests on real data allowed us to watch our tool in action while performing a clustering of species into taxons. It might be interesting to also test the ability of our tool to classify 16S RNA sequences into OTUs on real data. Another avenue could consist in adapting the code to the very similar problem of protein clustering.

On a more computer-oriented aspect, our tools could be easier to access by being packaged with pypi. An online tool is also possible. Finally, the graphical interface could also be enhanced, for instance so as to make easier the identification of sequences associated to each point cloud.

EL ÉMENTS TRANSPOSABLES

Cette partie pr ésente nos travaux sur la propagation des r étrotransposons à l'int érieur du g énome. Cette propagation est trait ée sous la forme d'un processus de branchement impliquant diff érentes hypoth èses, telles que le fait que la copie fille apparaisse avec une plus grande probabilit é à proximit é de la copie m ère, que les mutations subies par les r étrotransposons affectent leurs capacit és à se dupliquer etc.

Les donn ées utilis ées pour appliquer ce mod èle sont des s équences g én étiques de Drosophila melanogaster ou mouche du vinaigre (figure 2.1), une esp èce particuli èrement appr éci ée des biologistes pour son cycle de g én ération court (environs deux semaines), la facilit é d' élevage et la facilit é de la collecte de leur ADN. A transposable element (TE) is a DNA sequence able to move from one location to another inside a genome. These sequences, discovered during the 50's by Barbara McClintock mcclintock1950or2 exist in almost all living organisms and are the source of a huge number of mutations. They are considered as a major cause of genetic disease in human belancio2008mammalian or in Drosophila where they are responsible for more than 80% of the spontaneous mutations green1988mobile . DNA sequences derived from these TEs can represent a large part of a genome. For example, they represent about 45% of the human genome lander2001initial and over 70% of the corn genome sanmiguel1998evidence . Fortunately, most of these sequences correspond to fragments or "dead" elements that have lost their ability to move in the genome due to several lethal mutations or are controlled, especially via epigenetic mechanisms.

TEs have two possible ways to move in a genome, according to their type finnegan1989eukaryotic wicker2007unified . The first class of mobile elements are cut from their original place to move to another one, and are called "DNA transposons" or "Class II transposable elements". The other class of mobile elements, called "retrotransposons" or "Class I transposable elements", use an RNA intermediate to duplicate themselves, the new copy being inserted into another location of the genome. Two orders are identified among the retrotransposons according to the presence or absence of Long Terminal Repeat (LTR) sequences at their extremities. The LTR retrotransposons are similar in structure to retroviruses such as HIV. In both classes, TEs can be classified as either "autonomous", if they encode the enzymes that will allow them to move, or "non autonomous" if they use the enzymes produced by other elements. In an assembled genome, the various sequences corresponding to TE insertions can be found using different bioinformatic approaches (see lerat2011comparative for a review), which allow us to determine the exact number and positions of each TE insertion. In this article, we focused on the important problem of inferring the history of the spreading of LTR re-trotransposons. For this purpose, we modeled the evolution using a branching process where each element (i.e., a copy of a given TE) can randomly evolve via duplication or mutation.

Instances of branching processes have already been proposed in the literature, as putative models for the propagation of TEs. However, most of these studies focus on the evolution of the host population, and not on the propagation of the TEs in the host. The "subject" of these branching models (i.e., the entity able to change or duplicate) is generally the host, while in our case it is the TE itself. For instance, Michael E. Moody moody1988branching has used a branching model, where the studied variable was the number of individuals owning i copies of a given TE. Sawyer et al. sawyer1987distribution produced almost the same model, in order to study the distribution and abundance of insertion sequences.

Kaplan et al. proposed a model where TEs can be either of wild type (i.e., non mutated) or of mutant one, which is a little closer to our proposal. When a host gives birth to its child, wild copies can mutate or be deleted, whereas mutant ones can only be removed. New copies can be additionally created. This number of new created copies is supposed to decrease with the proportion of mutants. More recently, interesting models have been proposed that take into account the location of TEs. For instance, Drakos and Wahl drakos2015extinction suggested a model of mobile promoter evolution, where the probabilities for promoters to duplicate inside or outside their region is potentially not the same.

In the present work, the objective is to propose a new approach for the propagation of LTR retrotransposons that combines a location-dependent model with the fact that LTR retrotransposons can face degradation (i.e., mutations, recombination, etc.), which may decrease their duplication rate, that is, their potentiality to copy and insert elsewhere in the genome. Then, we have developed a first method to evaluate the model parameters : average distance traveled by the TEs before insertion, location of the original copy, average time between two degradations (mutations, recombination, etc.), average impact of a degradation, and the impact of degradations undergone by copies on their duplication speed. This method requires to define a distance between the results of the simulations and the observed chromosome, which is based on the Hungarian method kuhn1955hungarian, munkres1957algorithms . This method has been applied to the spreading of the LTR retrotransposons ROO, DM412, and GYPSY on the chromosome 3L of Drosophila melanogaster. The parameters associated to each TE are computed and a branching tree is proposed in each case. Our results show that, according to our model and method, the roots of ROO, DM412, and GYSPSY on the chromosome 3L could correspond to the annotated copies FBti0059644, FBti0061034, and FBti0062705 respectively. state of the i th copy at time t. This similarity decreases as a function of time, due to degradation effects. In addition, we defined the state of deterioration by D i (t) = 1 -S i (t).

6.

At each degradation, the similarity to the root is divided by

1 + E( 1 β )
, where β has to be determined. In other terms, S i (τ i,k+1 ) = S i (τ i,k ) 1+E( 1β ) . 7. At time t, for the i th copy, conditionally on D i (t), we assume that the time before the next duplication follows a distribution E(

1 1+p×D i (t) )
, where p > 0 is a parameter to be determined. In other words, the time before the next duplication is longer when the copy is far from the original state of the root (in terms of Needleman-Wunsch distance). Note that, in this article, "duplication rate" is just the inverse of the "average time before the next duplication". In other words, duplication rate = 1 + p × D i (t).

8. Moreover, each copy is also associated to its position in the chromosome. This position is denoted by X i for the i th copy. This position is constant with time. We assume that each child j of a copy i satisfies X j = X i + χ i, j , where χ i, j follows a distribution U {-1, 1} × E( 1 L ), in which U represents the uniform law (i.e., the probability to choose -1 or 1 is the same) and L is a parameter to be determined.

9.

We also take into account the host structure (i.e., position of host genes) to insert or not the child in the chromosome. Concretely, we calculate density =

Number of TEs in genes Surface occupied by genes Number of TEs out of genes

Unoccupied surface on the real chromosome. During simulations, when the child moves into a gene, it can be inserted with a probability equal to "density", otherwise the child position is recomputed (if "density" ¿ 1, the child can always insert itself). Furthermore, the child position is also relaunched when it goes outside the chromosome (cf. Part 2.3.1.3).

Our goal is thus to estimate the parameters of this model, i.e., X 0 , µ, β, p, L and T obs . Note that the duplication speed of the non-degraded root is set to 1 and it does not need to be determined. Indeed, this duplication speed is redundant with µ and p. In addition, note that the parameter L is not really informative about the mean distance traveled by the child before its insertion, due to putative relaunching processes. This is why we also provide the mean traveled distance in simulations, that is, the mean jump, which is denoted by J. See Part 2.3.1 for an example of its computation.

2.2.2/ THE ESTIMATION METHOD

As explained in Section 2.2.1.1, the working principle of our estimation method is to simulate trees in order to determine in which conditions the final states of simulated trees match well with the observed chromosome.

Trees are simulated according to the model defined in Section 2.2.1.2. The stopping criterion of these simulated trees depends on the number of copies in the observed chromosome. Actually, the simulation was constrained to stop at the birth date of the n + 1 th copy, where n is the number of copies in the observed chromosome, see Section 2.3.1.2 for further details.

In order to improve computation speed, parameters estimation has been split in three parts, i) we estimate µ, β, and L (cf. Section 2.2.2.1) ; ii) we estimate X 0 and L (cf. Section 2.2.2.2), which requires to define a distance between simulated trees and the observed chromosome ; iii) we estimate J and T obs (cf. Section 2.2.2.3).

2.2.2.1/ ESTIMATION OF µ, β, AND p

The objective here is to estimate the parameters µ, β, and p. We can note that these parameters only affect the distribution of deterioration states. They have no direct influence on copy positions. Thus, the goal at this step is to minimize the differences between the distribution of states of deterioration in the simulated trees, and the states of deterioration distribution in the observed chromosome. More precisely, we want to minimize

D1(T r, C) = n i=1 (D i,T r -D i,C ) 2
where D 1,T r ...D n,T r is the sorted distribution of the states of deterioration for the simulated tree, D 1,C ...D n,C is the sorted distribution of the states of deterioration for the observed chromosome, and n is the number of TEs in the observed chromosome.

For this purpose, a 3-dimensional grid has been constructed, where each point of this grid represents a triplet (µ, β, p), while X 0 and L are set to predefined values (they do not matter at this stage). A score S 1 = N1 i=1 D1(T r i , C) has been associated to each of these triplets. In this formula, T r i is the i th tree simulated with the parameter set, C represents the observed chromosome, and N1 is a parameter chosen by the user of the optimization method (for instance, N1 = 10,000 in the case study of Section 2.4). The best of these points is selected, and a smaller grid is constructed around it. This iterative process is continued until the precision chosen by the user of the optimization method has been obtained.

2.2.2.2/ DISTANCE BETWEEN TREES, ESTIMATION OF X 0 AND L

The first step, in the estimation of X 0 and L, is to define a distance between the final state of a simulated tree and the observed chromosome. For this purpose, we first need to design a distance between a copy of the simulated tree and a copy of the observed chromosome. Let us name R i the i th copy of the simulated tree, X i its position, and D i (T obs ) its state of deterioration at the end of the process. Similarly, R j is the j th copy of the observed chromosome, X j its position, and D j (T obs ) its state of deterioration. The distance between two copies has been designed as follows :

D2(R i , R j ) = (X i -X j ) 2 w 1 + (D i (T obs )-D j (T obs )) 2 w 2
where w 1 = i=1...n, j=1...n ( X i -X j ) 2 and w 2 = i=1...n, j=1...n ( D i (T obs ) -D j (T obs )) [START_REF]A clustering package for nucleotide sequences using Laplacian Eigenmaps and References[END_REF] . This weighting by w 1 and w 2 allows us to give the same weight to positions and states of deterioration.

From these distances between two copies, we can now create a matrix of distances W, verifying W i j = D2(R i , R j ). Then, the distance between final states of two trees has been defined as the best possible adjustment between copies, using the so-called Kuhn-Munkres algorithm, also named the Hungarian method kuhn1955hungarian, munkres1957algorithms . The Hungarian method is an algorithm that allows us to minimize the sum of n elements of a n × n matrix, under the condition that there is only one element by row and only one element by column. In our case, the Hungarian method allows us to assign exactly one copy of the simulated tree to each copy of the real chromosome while minimizing the sum of distances between paired copies. Let us name D3 this distance created by this way.

Once this distance between trees has been defined, we use it to estimate X 0 and L with the same type of process as in the previous step. In other words, a 2-dimensional grid has been constructed, where each point of this grid represents a couple of parameters (X 0 , L) while µ, β, and p are fixed to the values found in the previous stage. The score S 2 = N1 i=1 D3(T r i , C) is then computed for each of these points, and a smaller grid is recursively built around the best point.

2.2.2.3/ ESTIMATION OF J AND T obs

Conversely to these µ, β, p, X 0 , and L, which are inputted in our simulation algorithm, J (mean jump) and T obs are outputs. It is thus easier to estimate them. In this step, we run N2 simulations where µ, β, p, X 0 , and L are set to the values found in the two previous steps. The estimations of J and T obs are then the mean results of the output J and T obs of these N2 simulations (for instance N2 = 20,000 in the case study of Section 2.4).

2.3/ ALGORITHM

Our proposal has been implemented using Python1 . A short application programming interface is detailed thereafter.

2.3.1/ TREEBUILD

This main function is used to build branching trees following the model defined in Section 2.2.1.2. Its halt condition is the targeted number of copies. Its prototype meets the following canvas :

(S , T, T obs ) = T reeBuild(X, µ, β, p, L, n, genes, density),

where n is the desired number of copies, while X 0 , µ, β, p, and L are the model parameters as defined in Section 2.2.1.2. Moreover genes is the positions of each gene in the observed chromosome, and density is the value defined in Part 2.2.1.2. Concerning the outputs, S is a n × 1 vector representing states of deterioration while T obs is the propagation time. Finally T is a n × 3 matrix containing, for each copy : its position, its birth date, and the row of its mother, like in Table 2.1. In this example, the mother of the copy located in 0.1832 is the root. The mother of the copy located in 0.6644 is the copy located in 0.1832. Other details regarding this main function are provided thereafter. The mean jump J is not a direct output of TreeBuild, but it can be easily computed with T . In this example, J = |0.19-0.5|+|0.18-0.5|+|0.66-0.18|+|0.48-0.19|+|0.14-0.19| 5 .

2.3.1.1/ MULTIPLE CLOCKS MANAGEMENT

The working principle of TreeBuild can be summarized as follows : it determines the next event (deterioration or duplication) and executes it until the stopping criterion is satisfied.

To determine the next event means to know its nature (deterioration or duplication), its time, and in which of the available copies it happens. Let j be the number of available copies at time t 1 . The easiest way to determine the next event is to simulate 2 × j exponential laws, one for each possible deterioration or duplication. The minimum of these 2 × j simulations can thus provide the time, the nature, and the copy related to the next event.

Actually, TreeBuild does not really simulate 2× j exponential laws, as two properties of this law have been used to shorten computations. Indeed, ∀(p 1 , ..., p 2 j ) ∈ R 2 j , ∀(Y 1 , ..., Y 2 j ) ∼ E(p 1 ), ..., E(p 2 j ) , we have :

1. min Y 1 , ..., Y 2 j ∼ E         2 j i=1 p i         , 2. ∀i ∈ 1...2 j, P Y i = min Y 1 , ..., Y 2 j = p i 2 j k=1 p k .
Hence, due to the first property, the time of the next event can be simulated by a single exponential law. The second property, for its part, allows us to determine the nature and the copy affected by the next event using a single uniform law.

2.3.1.2/ STOPPING CRITERION

As stated before, the stopping criterion of TreeBuild is related to n (the number of copies of the observed chromosome). But when a chromosome is observed, there is no way to detect that a new duplication has just occurred. Thus, the program cannot stop exactly at the birth of the n th copy. Actually, TreeBuild must run until the T n+1 iteration (the birth date of the n + 1 th copy), and then the propagation time T obs can be determined by :

T obs = T n +T n+1
Furthermore, each value taken by S and T between T n and T n+1 is kept in memory. Thereby, the values of T and S returned by TreeBuild are values of T and S at time T obs .

2.3.1.3/ THE MANAGEMENT OF COPY LOCATIONS

Copy positions in the chromosome are in the interval [0,1]. The distance traveled by a TE before insertion is assumed to follow an exponential law, but this latter can send the new copy outside the interval [0,1]. The solution chosen in this case is to launch again the computation of the new copy position.

In addition, the copy position is also relaunched with a probability "density" if its position falls into a host gene, as explained in Part 2.2.1.2. In other words :

while (X child [0, 1] or (X child ∈ gene and U1 < density)) :

X child = X mother + U2 × Y
where U ∼ U{-1, 1}, U2 ∼ U{-1, 1}, and Y ∼ E( 1 L ).

2.3.1.4/ CRITICAL SITUATIONS

When TreeBuild is launched for each point of the grid of parameters, some critical situations can happen, which may induce a significant slowdown of the program. In particular, when µ is small and β is large, the probability for an event to be a duplication rather than a deterioration becomes very low. Thus, TreeBuild executes an inordinate number of deteriorations before reaching the desired number of copies. To solve this issue, we have decided that when the similarity to the root becomes lower than 0.03, then this copy cannot be degraded anymore.

2.3.2/ ESTIMATION METHOD

In the available package, the estimation of the branching model parameters is realized by the Optim function. Its prototype is as follows :

(Best, S core) = Optim(Grid, Case, n1, N1, N2, genes).

Here, Grid is a 5 × 4 matrix of settings defined exactly as in Section 2.2. Case, for its part, is a 2 × n matrix containing locations and state of deterioration for each copy of the observed chromosome. N1 and N2 are settings defined in Sections 2.2.2.1 and 2.2.2.3, while n1 indicates how the grid is shrunk at each step after obtaining the best point (cf. the following section). Finally, genes are the positions of each gene in the observed chromosome. The output Best is the parameter set (X 0 , µ, β, p, L, MJ, T obs ) returned by the Optim function, while S core is the sum of N2 differences between simulations and the observed chromosome (this S core is useful if we relaunch Optim several times).

2.3.2.1/ INTERVAL REDUCTION

As explained in Sections 2.2.2.1 and 2.2.2.2, the estimation method works with a grid where each point represents a parameter set. When the best point of the grid is found, a new grid is constructed around this point. Note that the new grid is not necessarily included in the previous one, in order to provide a larger degree of freedom of the parameters (in particular, when the latter are close to zero). For instance, in the case of parameter L, the minimum of the new interval is min L min 2 , L best -L delta 2×n1 , where L min and L max are the minimum and maximum of the previous interval, L delta = L max -L min , L best is the L coordinate of the best parameter set, and n1 is the reduction parameter selected by the user. Thus, the minimum value of the test interval is divided by two at each time the best point of the grid is close enough to zero. The maximum value of the new interval is simply L best -L delta 2×n1 . These formulas, written for L, are also valid for β, µ, and p.

2.3.2.2/ LOCATION IN THE CHROMOSOME

Unlike the other parameters for which we scan a continuous interval, in the case of X 0 , we only consider the positions of the TE copies on the observed chromosome. Thus we scan the interval of integers 1, .., n. However, we process in the same way as with the other parameters (excepted that we use rounded values), and we never get out of the original interval 1, .., n in this case.

For instance, if we choose to test this interval of integers in four points (as we do in our case studies) : at the first step, X 0 is tested in the first, round(1 + n-1

3 )-th, round(1 + 2×(n-1)

3

)th, and n-th position of TE copies in the observed chromosome. In the next step, the new test interval thus becomes max(1, round(X best -X delta 2×n1 )...min(n, round(X best -X delta 2×n1 )) where X delta is n -1 here.

2.3.3/ MODULE AND PACKAGE DEPENDENCIES

The Hungarian method has been applied using the "munkres" module, implemented in 2008 by Brian M. Clapper (Brian M. Clapper, munkres 1.0.7 for Python, https ://pypi.python.org/pypi/munkres/).

2.4/ RESULTS AND DISCUSSION

2.4.1/ THE DATA This proposal has been applied to the spread of the LTR retrotransposons ROO, DM412, and GYPSY on the euchromatin part of the chromosome 3L of the Drosophila melanogaster genome. This sequence corresponds to the left arm of the chromosome 3, which is the largest autosomal chromosome of D. melanogaster. This is also the most prolific chromosome for each of the LTR retrotransposons we considered, this is why it has been chosen for this case study. ROO Chromosome 3L contains 32 copies of ROO (with a mean nucleotide identity of 68.82%), 16 copies of DM412 (mean nucleotide identity of 60.24%), and six copies of GYPSY (mean nucleotide identity of 13.6%).

Three databases have been used during the experiments. The first one contains positions and nucleotide sequences for each TE copy annotated in D. melanogaster (flybase website2 version number 5.51 of the D. melanogaster genome adams2000genome, smith2007release ). The second database has been downloaded from the RepBase website3 and contains the consensus sequences for each TE corresponding to reference elements. The Needleman-Wunsch distance between each TE copy (from the first database) and its reference (from the second database) has been calculated, in order to obtain the deterioration states.

Finally, the third database comes from flybase too. This is the position of all the annotated genes in the euchromatin part of chromosome 3L, in version number 5.51 of the D. melanogaster genome.

In this case study, the estimation method described in Section 2.2.2 has actually been applied not only once but 40 times in each situation, in order to check the consistency of the obtained parameter sets. The best parameter set of each case study, considering the output "score" (cf. Part 2.3.2), is presented in Section 2.4.3. The whole obtained parameter sets are presented in supplementary data with their descriptive statistics. Some indications about consistency of these results are provided in Section 2.4.4.

2.4.2/ SETTINGS

Let us first recall that X 0 , which represents the root position in the chromosome, is inside the interval [0 , 1]. In other words, copy positions have been divided by the chromosome size. For the euchromatic part of chromosome 3L, this size has been set at 24,543,557 base pairs (bp) in the version 5.51. smith2007release .

In Table 2.2, each row represents the beginning and the end of the test interval, the number by which the test interval has been divided, and the final desired accuracy regarding the parameter. In particular, in the third column, the value associated to each is 3. This latter means that these parameters have been tested at the beginning, in the first third, in the second one, and at the end of the test interval.

Finally, at each iteration, the grid used for µ, β, and p estimations contains 4 3 = 64 points while, at each iteration, the grid used to estimate X 0 and L contains 4 2 = 16 points.

The other parameters are :

-n1 = 1.5 : at each step, after the best point has been found, the grid's dimensions have been divided by 1.5. -N1 = 10,000 : each point has been tested 10,000 times during estimation of X 0 , µ, β, p, and L. -N2 = 20,000 : J and T obs estimations are the average values of 20,000 simulations.

The output "score" is computed based of these simulations. = 0.482. In the cases of DM412 and GYPSY, the densities are respectively equal to 0.625 ( 10 16 ) and 0.187 ( 2 6 ).

2.4.3/ RESULTS

The obtained parameters are summarized in Table 2.3.

If we consider for instance the spread of ROO, the obtained parameters can be interpreted as follows :

-X 0 = 29. The root is on the 29 th position in chromosome 3L. This is the copy FBti0059644, which is located between the 21, 954, 331 th and the 21, 954, 698 th nucleotide. -µ = 2.396. The average time between two degradations is 2.396, where 1 is the average time before duplication of the root. Degradations are thus less frequent than duplications. Please note that this estimation of µ is without time unit : it is related to the duplication speed of the root. It allows us to estimate duplication speed when the deterioration speed is known, and vice versa. -β = 0.351. Each degradation causes a division by 1 + E( 1 0.351 ) of the similarity. Thus the similarity is divided by 1.351 on average at each degradation.

p = 0.051. p allows us to determine how many degradations led to a decrease in the duplication speed. For example, in this case, if the identity between a copy and the reference is 0.75 (i.e., state of deterioration = 0.25), then the duplication speed of this copy is reduced by 1.275% (indeed 0.25 × 0.051 = 0.01275). This looks like a low effect. -L = 1.331. The distance traveled by the TE before insertion follows a distribution E( 1 1.331 ), with the relaunching process : (1) when the position of the child is out of the chromosome (cf. Section 2.3.1.3) and ( 2) possibly when the position of the child is inside a gene. As explained in Part 2.2.1.2, the parameter J is better to represent the average distance before insertion. However, we can notice that L = 1.331 is a pretty large number (larger than 1). This value tends to suggest that the child inserts itself more or less anywhere in the case of ROO (compared to DM412 or GYPSY).

-J = 0.300. The mean distance traveled by the TE before insertion is 0.300.

-T obs = 4.070. The time of ROO propagation is 4.070 larger than the nondeteriorated root. In addition, 4.070/2.396 = 1.699, thus the root has faced 1.699 degradations on average. From a global perspective, we can note that in each case, the root corresponds to the border elements. They are in position 29 th over 32, 14 th over 16, and 5 th position over 6 respectively for ROO, DM412, and GYPSY. The latter correspond to positions 0.894, 0.965, and 0.969 when the chromosome is considered as a [0,1] interval. This can be due to a larger density of TEs in this area. In addition, we can notice that p is really close to 0 in each case. This should imply no (linear) effect of the degradation on the duplication rate. This is an unexpected result. Indeed, the fact that the degradation undergone by the copies reduces their ability to duplicate sounds natural. This is why the parameter p was added in the model. Finally, we can notice that in the case of ROO, the results suggest a few big degradations, while in the case of GYPSY, they suggest a lot of little ones.

The fact that some of the obtained parameters are outside the test interval chosen at the beginning of the program (for instance, L = 1.331 in the case of ROO or µ = 0.050 in the case of GYSPY) is a desired effect, to let a larger freedom to the parameters. In particular, the aim was to let parameters to be as close as possible to zero if required (cf. Section 2.3).

In each of these three cases, one billion trees have been simulated with the obtained parameter set. The best of these trees is shown in Figure 2.2 for ROO and in supplementary data for DM412 and GYPSY.

2.4.3.1/ FOCUSING ON THE ROOTS

According to these models and methods, the root of ROO could correspond to the FBti0059644 copy. This is an incomplete copy (368 bp, compared to the reference which has 9,112 bp) that corresponds to a solo-LTR, a remnant from a LTR-LTR recombination. This copy is thus no longer active, but it is quite recent since its divergence to the reference is rather low (95.71% of identity on the aligned part of the sequences).

The root of DM412 could correspond to the FBti0061034 copy. This is a very degraded copy that has 88 bp in length, corresponding to an internal portion of the reference element, whose length is 7440 bp. The copy is old since it is very divergent compared to the reference (80.90% of identity).

Finally, the root of GYPSY could correspond to the FBti0062705 copy. This copy is an incomplete and very degraded element of 1,282 bp length (7,471 bp for the reference) with a very high divergence to the reference (70.59% identity). This copy corresponds to a piece of the inner part of the gypsy element, and this is a very old and degraded copy that is not currently active.

2.4.4/ CONSISTENCY OF RESULTS

As explained previously, the optimization method has been actually applied 40 times for each TE. The descriptive statistics for these three cases are summarized in the supplementary data. In addition, for each parameter that has been estimated by scanning an interval (i.e., X 0 , µ, β, p, and L), quotients Standard deviation of the results

Test interval

have been computed in each case, in order to assess the consistency of the results. These quotients are reproduced in Table 2.3. Standard deviations of the output J and T obs are also set in the same table .   Several versions of the code have been implemented in this project in order to increase the consistency of these results. In a previous version, X 0 , µ, β, p, and L were estimated all together (i.e., steps 2.2.2.1 and 2.2.2.2 were merged). This approach implied to work in a 4 5 = 1024 points grid, thus, it provided a lower number of trials by point, which reduced consistency. In our very first version, the duplication rate was a parameter to be estimated while T obs = 1 was the stopping criterion of TreeBuild. The difference between n and the number of copies at the end of the simulation (which was not necessarily n in this setup) was penalized. However, in this setup, the duplication rate was the only parameter to be consistent.

Finally, in the setup presented here, the consistency looks acceptable in most of the cases (i.e., excepted for L in the case of ROO or for µ in the case of GYPSY). Nevertheless, this requires a large number of simulations implying that the program runs several days.

2.4.5/ CONCLUSION AND FUTURE PERSPECTIVES

In this article, a model has been proposed for the propagation of LTR retrotransposons in a genome. Various functions have been implemented to simulate this spread as well as graphic representations. Finally, a first method for estimating the parameters of this propagation model has been proposed and applied to the spread of TEs corresponding to the ROO, GYPSY, and DM412 elements in a chromosome of Drosophila melanogaster. However, this work can be improved in various directions, some of them being listed below.

The first point is that the model of propagation should be applied to the full genome instead of a single chromosome of Drosophila melanogaster. Indeed, a copy inserted in a given chromosome can produce a child that will not necessarily inserts itself in the same chromosome. An idea to extend the model to the full genome could be to let the position of the child copy following a δ(a)U + δ(1a)E( 1L ) law. In other words, the child copy inserts itself anywhere in the genome (uniform distribution), with a probability a, or it inserts itself on the same chromosome than the mother copy (with the distance to the mother following an exponential law) with probability 1a, where a is a new parameter to determine. Nevertheless, this approach raises various questions that must be answered in a further study. Firstly, should E( 1 L ) represent a number of nucleotides or a proportion of the considered chromosome ? How to redefine the distance built in Part 2.2.2.2 ? etc.

Secondly, as explained in Part 2.4.4, the estimation method needs a large compilation time to give acceptably consistent results. This compilation time increases quickly when the sample size (number of TEs) increases or if we want to estimate more parameters. Therefore, we will test other ways (likelihood maximization, neighbor joining, or Bayesian estimation) to improve our proposal. These types of methods would also allow us to produce some confidence intervals for the estimated parameters. Our long-term objective is to create a useful tool for estimating consistently both parameters and the branching process itself. In other word, our goal is to produce a tool close to phylogenetic tree estimation but adapted to TE constraints. Another possibility of improvement could be to consider the possibility of several roots. For instance, a method of unsupervised classification like Gaussian Mixture model could be applied in order to detect the number of clusters.

In this project, we used RepBase consensus sequences, based on a lot of TE sequences as root sequence. Another possibility could also be to produce an ancestral reconstruction based only on the sequences of the case study. In this way, it would not be necessary to search the data in two different databases. We can also note that in this work, we consider all modifications (i.e., mutations, LTR recombination, and so on) as one single and global deterioration effect. It could be interesting to try to distinguish each effect. Finally the effect of an epigenetic regulation that can affect TE behaviour even if they do not face sequence degradation could be taken into account.
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ROC

Ce chapitre d écrit les travaux que nous avons effectu és sur des donn ées collect ées sur le site de Tavaux par l' équipe de chrono-environnement. Ces donn ées sont constitu ées de caract éristiques physico-chimiques, d'OTUs bact ériennes et d'OTUs fongiques collect ées sur 16 arbres. Ces 16 arbres sont en l'occurrence 8 saules et 8 peupliers. La moiti é de ces arbres (4 saules et 4 peupliers) est situ ée sur une lagune contamin ée par divers polluants issus de l'usine chimique Solvay de Tavaux. L'autre moiti é (4 saules et 4 peupliers) est situ ée sur une zone naturelle non contamin ée. En particulier, cette lagune est affect ée par une pollution au mercure qui s'explique par le proc éd é d' électrolyse à mercure utilis é jusqu'en 2010 pour la fabrication de compos és chlor és. L'objectif de cette collaboration avec l' équipe "chrono-environnement" était de proposer des analyses statistiques qui puissent compl éter celles qu'ils avaient effectu ées l'ann ée pr éc édente sur les m êmes donn ées zappelini2015diversity afin d'approfondir la compr éhension de l'effet de ces pollutions sur les populations bact ériennes et fongiques. Au cours de ces travaux, nous avons d écid é de nous concentrer plus pr écis ément sur les r ésultats apport és par les courbes ROC. Les parties suivantes (depuis "Abstract" jusqu' à la partie 3.4) sont une version d'article telle qu'il a ét é propos é au journal "Microbial Ecology" en 2017 sous le titre "A ROC-based analytical tool for environmental metabarcoding dataset analysis". Cette version a malheureusement ét é refus ée et l'article a donc ét é retouch é depuis. N éanmoins cette version est plus repr ésentative de mon travail que la retouche c'est pourquoi c'est celle que je pr ésente ici. La partie 3.5 pr ésente d'autre analyses effectu ées sur ces donn ées. Plus pr écis ément cette partie pr ésente une visualisation des donn ées via une combinaison ACP-GMM. methods and with our previous analysis, and found better performance of the proposal when discriminating and highlighting keystone species in environmental analysis, regardless of their abundance. In particular, when applied to contaminated soils bell2014linkage , these technologies have been used to reveal changes in microbial communities in the rhizosphere soils and plant roots. They can uncover too dominant species in the rhizosphere and endosphere of tree species under contaminant stress yergeau2015transplanting , azarbad2015microbial , bell2015early , zappelini2015diversity . Knowledge of the plant-associated microbial compartment could be used to help predict the potential recovery of disturbed lands kozdroj2000microflora . Recent data suggests that the soil microbiome may have the greatest impact on plant function during the early stages of revegetation bell2015early . The possible structural changes of indigenous microbial communities by crops constitute a major ecological concern because of the important role that microorganisms have in regulating soil conditions conrad1996soil, jeffries2003contribution . The re-establishment of belowground interactions is required to ensure a successful restoration and the creation of sustainable plant cover. However, little is known about the entirety of the microbial communities that are associated with tree roots in derelict soils. The investigation of microbial diversity and biogeography in contaminated environments is also important to more broadly identify the global environmental drivers of community composition and diversity.

3.1/ INTRODUCTION

Redundancy analysis (RDA), principal component analysis (PCA), or multi-dimensional scaling (MDS) are widely used in environmental metabarcoding analysis to reveal the relationship between soil and vegetation characteristics with microbial community structure, and to test the significance of each with a permutation test. In a previous paper, we used such a permutation test to establish that the bacterial and fungal communities residing within a tailings dump vs. undisturbed soil samples had significantly different compositions zappelini2015diversity . In another recent article, we used a 2-dimensional non-metric multi-dimensional scaling (NMDS) analysis combined with a permutation test to demonstrate that the site characteristics explained most of the variance in the composition of a fungal community foulon2016impact, foulon2016environmental . Based on PCA analysis, Hong et al. hong2015illumina shown that dominant genera changed in mine sites with the degree of pollution. Lallias et al. lallias2015environmental used MDS analysis coupled with a permutation test to demonstrate that microbial taxa are likely to respond to different environmental drivers and in particular, the hydrodynamics, the salinity range, and the granulometry according to varied life-history characteristics. Based on a PCA analysis and permutation test, Yergeau et al. yergeau2015transplanting highlighted key factors that should be considered when engineering the plant rhizosphere microbiome, including the presence and abundance of keystone species, the diversity and evenness of the initial inoculum, the ecological differences between fungi and bacteria, the environmental conditions, and the plant growth stage from which the inoculum originates.

Detection of the most site-dependent OTUs is mainly done in the literature by the comparison of relative abundances (cf. our comparison with standard benchmarks). The aim of this work is to implement a new tool to easily achieve such detection. It is based on the so-called ROC curves, allowing to detect the most site-dependent OTUs and to determine, for each OTU, the ideal threshold under which one can assume to be in one site rather than in the other one.

ROC curve analysis was developed in the early 1970s egan1975signal and is currently used in medical statistics to determine the best threshold for a diagnostic test zou2002receiver . For instance, ROC curves have been used to assess the value of diagnostic tests by providing a standard measure of the ability of a test to correctly classify subjects morrison2003receiver . A ROC curve is a graphical representation that allows illustration of the performance of a binary classifier. This graph consists of a representation of the false positive rate in the abscissa and the true positive rate in the ordinate. The curve joins this pair of rates for each possible threshold. In addition to this ability to search the best threshold, ROC curves allow the assignment of a numerical value to the discriminatory power of the binary classifier due to their area under the curve (AUC). The more relevant the classifier is, the larger its ROC AUC is, with a value up to 1 for a perfect classifier. For a larger and more accurate explanation about ROC curve analysis, see fawcett2006introduction .

For the sake of illustration, we have applied our tool to a real metabarcoding dataset related to a tailings dump generated by the activity of a chlor-alkali industry.

Even though these data have already been studied in one of our previous works zappelini2015diversity , the re-investigation of these data emphasizes new interesting directions of research, which is the second contribution of this article.

3.2/ MATERIAL AND METHOD

3.2.1/ ROC CURVE ANALYSIS : GENERAL CONSIDERATIONS

ROC curve analysis egan1975signal is an analysis that determines how accurately a quantitative variable can discriminate a binary variable. In ROC curve analysis, we consider :

-a quantitative variable "Q" and a binary variable "B", -a "category 0" and a "category 1", which are the two categories of the binary variable B, and -"negative" and "positive" subjects that are in "category 0" and "category 1", respectively. Each value "v" taken by the quantitative variable can be considered as a threshold that is able to classify the subjects with the following assertion (which is not always true) : "all subjects that have a quantitative variable Q that is larger or equal to v are positives, and the other ones are negatives". According to this classification, each subject can be categorized in one of the following cases as illustrated in Table 3.1. The proportion of true positives among category number 1 is called the "true positive rate" (TPR) or "sensitivity". The proportion of true negative among category 0 is denoted as "true negative rate" (TNR) or "specificity". Similarly, the proportion of false positives among category 0 and the proportion of false negatives among category 1 are denoted as the "false positive rate" and "false negative rate", respectively.

The ROC curve goes through every possible combination of true positive rate and false positive rate as exemplified below in Figure 3.1. It always starts at (0,0) (i.e., no true positive and no false positive) and finishes at (1,1) (i.e., each positive subject is a true positive one, and each negative subject is false positive). When the quantitative variable is perfectly discriminating (i.e., there is a threshold such that every subject is well classified), the ROC curve goes through the point (0,1). One of the useful outputs of ROC curve analysis is the ROC area under the curve (AUC). As stated previously, the more relevant a classifier is, the larger its ROC AUC is (1 is for a perfect classifier).

3.2.2/ ROC ANALYSIS IMPLEMENTATION

Our tool receives, as input, a database such that the lines are the quantitative variables and the columns are the subjects. For each variable, the tool determines the threshold that optimizes the sum between the true positive rate and the true negative one.

When the number of subjects is balanced between the two categories, optimizing this sum between the true positive and the true negative rates is equivalent to optimize the number of well-classified subjects (WCS). One can emphasizes that the optimal threshold is not a point value but it covers the interval contained between two consecutive values of the quantitative variable. Thus, borders of this interval are named "inferior threshold" and "superior threshold" (respectively abbreviated "Inf Thres" and "Sup Thres" in Tables 3.2-3.4 and Appendices S1-2). For example, if we consider a perfect classifier, inferior and superior thresholds are respectively the greatest value of Q so that the subject is positive, and the smallest value of Q so that the subject is negative. In this work, the mean between the inferior and superior thresholds is simply named "threshold". "Delta norm" is the difference between these two values when the variable is standardized. "Delta norm" was also used as a tiebreaker between variables that have the same ROC AUC. The outputted "preference" value (abbreviated "pref" in Tables 3.2-3.4) indicates the category that is supposed to be above the threshold (i.e., the "positive" category).

For each variable, we computed a Wilcoxon test of rank p-value. This test is the most suitable one to determine whether a ROC AUC is significant, because the Wilcoxon statistic and ROC AUC are equivalent hanley1982meaning . At a constant sample size, the ROC AUC corresponds to the unique Wilcoxon test of rank p-value, and the Wilcoxon test of rank p-value decreases when the ROC AUC increases. The proposed tool pro-vides both AUC and Wilcoxon values (e.g., similar to the Pearson's correlation coefficient that is usually provided with its associated p-value). Note that the AUC values represent the strength of the link between the quantitative and binary variables, whereas the Wilcoxon value is for the significance of this link. However, in practice, most software do not use the same formula to compute the Wilcoxon-test. Thus, the equivalence between AUC and Wilcoxon can be highly dependent on the software and options. This is further developed in the section below. Finally, for each variable, we computed the number of nonzero subjects in each category (denoted by #T and #U in Tables 3.2-3.4). This information can be useful for variables with a low AUC, to determine whether the low discriminating power was either because the variable is in both sites or because it is only in a few trees.

3.2.3/ R AND PYTHON IMPLEMENTATION

To rapidly collect all the outputs from our metabarcoding dataset, we produced a dedicated python tool. This tool imports the data (if they are in text format) and directly produces an excel file as an output similar to the tables presented in this article. We have also produced a R tool to generate the same output, if we except that the Wilcoxon test is slightly different in R and in Python. Let us remark that that there is a range of R packages currently available for ROC analysis such as "pROC" robin2011proc or "ROCR" sing2005rocr . Some solutions also exist under Python like the "roc curve" function of the "sklearn.metrics" package scikit-learn . These libraries allow to perform a ROC analysis between a quantitative and a binary variable. Compared to this state-of-the-art, the particularity of our scripts is that they compute the ROC analysis for each quantitative variable of the database, sort the results, and further group the outputs into a single table that is exported as an excel file. The output tables highlight the most discriminating variables as exemplified in Tables 3.2 to 3.4. The computational details of the parameters set in the package are further described below 1 .

3.3/ ROC ANALYSIS APPLIED TO A CASE STUDY

ROC analysis described previously has been applied to our metabarcoding dataset previously studied zappelini2015diversity , by defining three different groups of variables : (1) bacteria operational taxonomic units (OTUs), ( 2) fungal OTUs, and (3) soil physico-chemical properties obtained from the two experimental locations (the tailings dump and undisturbed soils). Figure 3.1 provides examples of ROC curves for the carbonnitrogen ratios (Fig. 1a), aluminium (Fig. 1b), and soil pH (Fig. 1c). The soil pH ROC curve went through the coordinate (0,1), which was characteristic of a perfectly discriminating variable, whereas the carbon-nitrogen ratio ROC curve was close to the first diagonal (y=x curve in green), which is characteristic of a poorly discriminating variable. The aluminium ROC curve, for its part, shown an intermediate discriminating variable.

1. Note that the variance used to calculate the "Delta norm" is the unbiased variance

1 n -1 n i=1 (x i -x) 2 .
This is the formula used by default in R while Python uses the biased variance [START_REF]A clustering package for nucleotide sequences using Laplacian Eigenmaps and References[END_REF] . Thus, options have been set to force the unbiased variance in Python, leading to two harmonized outputs. ROC AUCs were further computed for each group (i.e., bacterial OTUs, fungal OTUs, and soil physico-chemical variables), and the groups of variables were sorted by decreasing AUCs. Table 3.2 shows the results for all the soil physico-chemical variables, whereas Tables 3.3 and3.4 show the top 30 most discriminating bacterial and fungal OTUs, respectively. The complete lists of sorted variables for bacterial and fungal OTUs are available as supplementary data (supplemental Tables S1 andS2). In these tables, Delta norm is used as a tiebreaker between the variables that have the same ROC AUC. This sorting method allowed us to rapidly detect the variables that best discriminate the experimental site. 3.3 -ROC AUCs and related parameters of the top 30 most discriminating bacterial OTUs. AUC, area under the curve ; Delta norm, difference between the threshold inferior and the threshold superior ; WCS, well-classified subjects ; Pref, output preference ; Inf Thres, inferior threshold ; Sup Thres, superior threshold ; #T, nonzero subjects in the tailing dump samples ; #U nonzero subjects in the undisturbed soil samples. For each variable, we computed a Wilcoxon test of rank p-value. In the column "Rel ab in U", the number without parenthesis indicates the percentage of the considered OTU in the undisturbed soil (i.e., 100 × sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil

1 n n i=1 (x i -x)
) while the number in the parentheses indicates the percentage of the undisturbed soil for the considered OTU (i.e., 100 × sequences of this OTU ∈ the undisturbed soil sequence of this OTU ∈ both sites

) , for

OTUs that satisfy sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil ≥ 0.02 or sequences of this OTU ∈ the tailings dump all sequences ∈ the tailings dump ≥ 0.02 in zappelini2015diversity . Similar calculations for the tailings dump appear in column "Rel ab in T". Rank, ranking of the most abundant OTUs, as determined by the standard method. The full data set is provided in appendix S1. 3.4 -ROC AUCs and related parameters of the top 30 most discriminating fungal OTUs. AUC, area under the curve ; Delta norm, difference between the threshold inferior and the threshold superior ; WCS, well-classified subjects ; Pref, output preference ; Inf Thres, inferior threshold ; Sup Thres, superior threshold ; #T, nonzero subjects in the tailing dump samples ; #U nonzero subjects in the undisturbed soil samples. For each variable, we computed a Wilcoxon test of rank p-value. In the column "Rel ab in U", the number without parenthesis indicates the percentage of the considered OTU in the undisturbed soil (i.e., 100 × sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil

OTU

) while the number in the parentheses indicates the percentage of the undisturbed soil for the considered OTU (i.e., 100 × sequences of this OTU ∈ the undisturbed soil sequence of this OTU ∈ both sites

) , for

OTUs that satisfy sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil ≥ 0.02 or sequences of this OTU ∈ the tailings dump all sequences ∈ the tailings dump ≥ 0.02 in zappelini2015diversity . Similar calculations for the tailings dump appear in column "Rel ab in T". Rank, ranking of the most abundant OTUs, as determined by the standard method. The full data set is provided in appendix S2. For the physico-chemical variables, pH, calcium carbonate (CaCO3) concentration and exchangeable calcium oxide (CaOex), Hg and As were found to be the most discriminating soil parameters (Table 3.2), which is in agreement with our previous study zappelini2015diversity . However, ROC curves further indicated that Ca, Na, and Sr were the three additional most relevant parameters to discriminate the two sites with AUC values of 1, which were similar to the AUC of pH.

OTU

For the bacterial community, 22 OTUs perfectly discriminated the two sites with an AUC of 1 (Table 3.3). Among these sets of OTUs, 2 were relatively abundant (unclassified b'423 and Pseudomonas) and were already identified as key bacteria by the method used in our previous study zappelini2015diversity . However, the ROC curves further indicate that the two sites may also be well discriminated by less represented OTUs, such as Bosea, Methylotenera, Agrobacterium, Aminobacter, and Polaromonas OTUs and additional unclassified OTUs that belong to the Proteobacteria. Additional OTUs from other phyla (Tsukamurella, Iamia, Aeromicrobium, and Marmoricola) also showed AUC values of 1 and were also less represented. Bosea OTUs, corresponding to the most discriminating bacteria, was represented in each tree from the tailings dump by at least 3 sequences, whereas trees from the undisturbed soil owned, at the most, 1 sequence. If we consider the 30 most discriminating bacterial OTUs, all of them were more abundant on the tailings dump (Table 3.3). If we consider 74 OTUs that lead to a correct classification of 15 or 16 trees, only 11 of them were related to the undisturbed soil (supplemental Tables S1). This result is consistent with our previous analysis zappelini2015diversity , which showed that more bacteria OTUs were significantly more present in the tailings dump compared to the undisturbed soil.

For the fungal community, only 4 OTUs perfectly discriminated the two sites with an AUC of 1 (Table 3.4) with the already identified Pyrenocheta (which was more present in the tailings dump) and Cryptococcus (which was more present in the undisturbed soil, see Table 3.4) OTUs. ROC curves further highlighted the two fungal OTUs that perfectly discriminated the two sites, which were however unclassified OTUs in both soils. In contrast with the bacterial OTUs, among the 30 most discriminating OTUs, 50% discriminated the tailings dump and 50% discriminated the undisturbed soil. With an initial sample size of 16 (8 undisturbed soil and 8 tailings dump), Wilcoxon values of 0.001 and 0.05 were reached for AUC values of approximately 0.99 and 0.79, respectively.

3.4/ COMPARISON WITH STANDARD BENCHMARK

The method used in our previous study zappelini2015diversity , to detect the OTUs most impacted by the pollution, consists of selecting the most abundant sequences by retaining OTUs such that sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil ≥ 0.02 or sequences of this OTU ∈ the tailings dump all sequences ∈ the tailings dump ≥ 0.02. Then, among these sequences, to detect those for which the difference of relative abundance is the most important one, as defined below :

100×

sequence of this OTU ∈ the tailings dump -sequence of this foulon2016environmental , the OTU selection stage is essential. Otherwise, for example, OTUs present in 1 copy on a single tree would appear to have a maximum relative abundance difference of 100%. This selection criterion of most abundant OTUs can appear as arbitrary, while ROC curves do not need such a selection. An OTU present on only one tree will necessarily appear at the bottom of the table of the ROC curves and will be considered as non-discriminating by the Wilcoxon test. Thus the ROC curves allow to consider all the OTUs and to identify the most discriminating ones even among the least abundant ones (such as Bosea), as already stated in the previous section.

Another important aspect of ROC curves is that they allow to provide a criterion for binary classification according to the OTU (for instance, number of Bosea sequences ≥ 2 → tailings dumps), while the standard method does not allow this. We illustrated this important consideration by comparing the data obtained through the classical method, with the ROC approach. In Tables 3.3 and 3.4 and in supplementary Tables S1 andS2, the last three columns correspond to the standard method. In the case where an OTU is abundant enough (> 2%), the number without parenthesis in the "Rel ab in U" column provides the percentage of the considered OTU in the undisturbed soil i.e., sequences of this OTU ∈ the undisturbed soil all sequences ∈ the undisturbed soil while the number inside the parentheses indicates the percentage of the undisturbed soil for the considered OTU i.e., sequences of this OTU ∈ the undisturbed soil sequences of this OTU ∈ both sites

. Similar computations are provided in column "Rel ab in T" for the tailings dump. It can be seen that, logically, the site on which the OTU is preferentially found is the same, regardless of the approach used (ROC curves or standard method). The "Rank" column provides the ranking of the OTU obtained with the classical method, for OTU > 2%. The classical method allows to rank the most important OTUs based on their abundance, whereas the ROC curve analytical tool simply allows to rank (columns "AUC" and "Delta norm") the OTUs, independently of their abundance. This ROC curve analysis implemented with R or Python thus constitutes an interesting tool to discriminate the two sites (e.g., highlighting the bacterial OTUs that were poorly represented, which was exemplified by the Bosea case in this study).

RESOURCES AND DATA ACCESSIBILITY

Each code is freely available on the "GitHub" repository, which also contains explanations of the various functions used and examples detailing all the steps required to collect and use data with Python or R.

-for the R codes 

3.5/ COMPL ÉMENTS

Dans le cadre de ce projet nous avons également r éalis é des combinaisons ACP-GMM pour visualiser les donn ées en deux dimensions et voir comment ces donn ées se r épartissent en clusters.

Les figures 3.2, 3.3 et 3.4 repr ésentent respectivement les composants physicochimiques du sol, les OTUs des bact éries et enfin les OTUs des champignons. Chacune de ces figures est partag ée en deux. Dans la partie de gauche, on repr ésente les r ésultats de la GMM à 2 clusters. C'est-à-dire qu'on colorie en rouge les él éments d'un cluster et en bleu les él éments de l'autre cluster. Dans la partie de droite, on colorie les él éments en fonction de leurs r ésultats à un test de permutation visant à tester si l' él ément est significativement plus pr ésent dans la zone pollu ée ou dans la zone non pollu ée. On colorie ici en noir les él éments significativement plus pr ésents dans la lagune pollu ée que dans la zone naturelle. On colorie en jaune les él éments significativement plus pr ésents dans la zone naturelle que dans la lagune. Et enfin on colorie en bleu les él éments pour lesquels le test n'est pas significatif. Sur ces figures, on constate que tous les él éments "pr éf érant la lagune" se retrouvent syst ématiquement dans un m ême cluster, tandis que tous les él éments "pr éf érant le milieu naturel" se retrouvent dans l'autre cluster. Les él éments non significatifs se retrouvent dans les deux clusters. Ceci tend à indiquer que la pr éf érence pour la lagune ou le milieu naturel est un él ément essentiel dans la constitution de ces clusters.

Par ailleurs la figure 3.5 indique les coordonn ées des centres des clusters pour chaque GMM dans l'espace de dimension 16 (Il y a 16 arbres c'est pourquoi les OTUs des bact éries sont des points d'un espace de dimension 16, tout comme les OTUs des champignons et les composantes physico-chimiques). Dans le nom des arbres, la lettre "P" signifie que l'arbre en question est un peuplier, la lettre "S" signifie que l'arbre est un saule, la lettre "N" signifie que l'arbre est dans la zone naturelle tandis que la lettre "L" signifie que l'arbre se trouve dans la lagune pollu ée. Ainsi par exemple l'arbre "PL11" d ésigne un peuplier pr ésent sur la lagune. Pour plus de lisibilit é, on a surlign é en jaune pour chaque arbre le centre de cluster dont la coordonn ée selon cet arbre est la plus importante. On voit bien apparaître, ici également, qu' à chaque fois, un cluster repr ésente les él éments plus pr ésents sur la lagune et l'autre cluster repr ésente les él éments plus pr ésents dans la zone naturelle. Notons que les arbres SN26 et SL6 qui ont un comportement "surprenant" à cet égard avaient d éj à ét é rep ér és comme atypiques par les analyses pr éc édentes dans l'article zappelini2015diversity . L'int ér êt de ces analyses est de montrer que des analyses "sans a priori" telles que l'ACP et la GMM, mettent en évidence la distinction de site (lagune vs zone naturelle) comme un él ément structurant de la distribution des OTUs et des composants physicochimiques. Toutefois, ces analyses laissent une grande place à l'interpr étation "subjective" des r ésultats. C'est pourquoi nous avons pr éf ér é axer davantage notre article sur les r ésultats li és aux courbes ROC.

R ÉGRESSION POLYTOMIQUE SPARCE

Cette partie pr ésente nos travaux sur la r égression polytomique ordonn ée. Ce type de r égression s'applique dans les cas o ù la variable à expliquer est de type polytomique ordonn ée (typiquement une tumeur qui aurait plusieurs niveaux de gravit é par exemple). Dans ces travaux, nous appliquons à cette r égression polytomique ordonn ée une p énalit é de norme ℓ 1 semblable à celle du LASSO Tibshirani:JRSSB96 . Les parties de "Abstract" jusqu' à la partie pr ésentent l'article publi é dans le cadre de la conf érence WABI 18 en ao ût 2018 sous le titre "l1-Penalised Ordinal Polytomous Regression Estimators with Application to Gene Expression Studies" qui r ésume ces travaux.

ABSTRACT

Qualitative but ordered random variables, such as severity of a pathology, are of paramount importance in biostatistics and medicine. Understanding the conditional distribution of such qualitative variables as a function of other explanatory variables can be performed using a specific regression model known as ordinal polytomous regression. Variable selection in the ordinal polytomous regression model is a computationally difficult combinatorial optimisation problem which is however crucial when practitioners need to understand which covariates are physically related to the output and which covariates are not. One easy way to circumvent the computational hardness of variable selection is to introduce a penalised maximum likelihood estimator based on some well chosen non-smooth penalisation function such as, e.g., the ℓ 1 -norm. In the case of the Gaussian linear model, the ℓ 1 -penalised least-squares estimator, also known as LASSO estimator, has attracted a lot of attention in the last decade, both from the theoretical and algorithmic viewpoints. However, even in the Gaussian linear model, accurate calibration of the relaxation parameter, i.e., the relative weight of the penalisation term in the estimation cost function is still considered a difficult problem that has to be addressed with caution. In the present paper, we apply ℓ 1 -penalisation to the ordinal polytomous regression model and compare several hyper-parameter calibration strategies. Our main contributions are : (a) a useful and simple ℓ 1 penalised estimator for ordinal polytomous regression and a thorough description of how to apply Nesterov's accelerated gradient and the online Frank-Wolfe methods to the problem of computing this estimator, (b) a new hyper-parameter calibration method for the proposed model, and (c) a code which can be freely used that implements the proposed estimation procedure. 95

4.1/ INTRODUCTION

Ordinal polytomous variables are of paramount importance in bioinformatics where practitioners may have to tackle qualitative but ordered data such as, e.g., the severity of a certain type of cancer Tibshirani:JRSSB96 , tibshirani1997lasso , chretien2015investigating , chretien2015using , chretien2016bregman , etc. Understanding how such variables can be explained by other variables such as, e.g., gene expressions, can help the research community investigate the influence of certain genes in the pathology under study. Oftentimes, only a small number of genes are relevant to the statistical modelling and variable selection needs to be performed in order to detect which of them should be ignored and which of them should not. The ordinal polytomous regression model is an adaptation of the classical regression model which is extremely well suited for this type of problem, and the goal of the present paper is to propose efficient approaches to the estimation and variable selection problems for this specific model.

4.1.1/ WHEN THE NUMBER OF COVARIATES EXCEEDS THE NUMBER OF OBSER-VATIONS : THE BLESSING OF SPARSITY

One important additional problem in standard gene expression studies is that the number of observations (e.g. patients) is often much smaller than the number of covariates (e.g. genes). In such cases, the problem cannot be expected to be solvable without some additional structure because the number of unknowns is larger than the number of observations. The main structural assumption which is usually made in such cases is that some sparsity property holds. In the exemple of gene expression analysis, it is usually considered natural to assume that only a small number of genes have significant influence on the output under study. Therefore, only a small number of regression coefficients should be nonzero in the estimator, although we cannot know before hand which are the ones which should be selected. Selecting the right variables in regression is often called "support recovery". Various approaches to variable selection have been proposed in the statistical literature. In practical applications, the most extensively used selection methods are the forward selection and the AIC/BIC information criteria based approaches akaike1998information , schwarz1978estimating miller2002subset . Such methods however, can hardly be applied in situations where the number of covariates, e.g. genes, is large and one usually resorts to convex optimisation based strategies such as the LASSO Tibshirani:JRSSB96 and its generalisations to nonlinear models tibshirani1997lasso , van2008high . Convex optimisation based variable selection approaches are often based on penalised log-likelihood estimation, where the penalisation term is the ℓ 1 -norm. In the linear model, it was discovered in candes2007dantzig that under certain specific properties of the design matrix, known as the Restricted Isometry Property, the ℓ 1 -norm penalised least ℓ ∞ estimator, aka the Dantzig estimator, would recover the location of the non-zero components exactly. This type of result, was then proven for the ℓ 1 -penalised least ℓ 2 estimator, aka the LASSO estimator under weaker assumptions, including incoherence of the design matrix in candes2009near . The work bickel2009simultaneous provided interes-ting alternative views on the statistical properties of the LASSO and Dantzig estimators which are still extensively used in the current literature on this topic.

Even when neither the Restricted Isometry Property nor the incoherence assumptions are satisfied, the mere computational tractability of ℓ 1 -penalisation based estimators makes them the method of choice when the problem size is prohibitively large.

4.1.3/ THE PROBLEM OF HYPER-PARAMETER CALIBRATION

The main advantage of ℓ 1 -based penalisation is to reduce the estimation problem to a convex optimisation one if the hyper-parameter, i.e. the relative weight associated with the ℓ 1 -penalisation term, is calibrated to an appropriate value. In practice however, finding the right value for this hyper-parameter is often a complicated issue.

Most theoretical works come up with a formula for the hyper-parameter, see e.g. candes2009near . Such types of results are very important because they prove existence of a value of the hyper-parameter that will allow exact support recovery of the sparse regression vector under appropriate, e.g. incoherence assumptions of the design matrix. The theoretical value often gives the right order of dependencies with respect to the dimension of the problem, the standard deviation of the noise, and other important structural parameters, and is therefore a good indicator of how well conditioned the problem is, at least in theory.

In practice, however, the noise level is not known beforehand and therefore, hyperparameter calibration cannot be performed without joint variance estimation. Reference chretien2014sparse presents efficient methods for solving this joint estimation/calibration problem and present preliminary computational experiments showing practical relevance of the overall approach. The square-root LASSO belloni2011square is another interesting alternative but is sometimes reported to enjoy slightly worse performance in practice.

The usually preferred practical approach to hyper-parameter calibration is Cross Validation arlot2010survey . The Cross-Validation approach is very intuitive and enjoys nice theoretical properties when the number of covariates is smaller than the number of observations. Another drawback of Cross-Validation is the computational burden of re-sampling and computing the LASSO estimator a large number of times. 

* i = X t i β 0 + ǫ i , i = 1, . . . , n
, where X i is a p-dimensional vector of covariates and where the residual ǫ i has logistic cumulative distribution function

Φ(y) = exp(y) 1+exp(y) . More precisely, setting -∞ = γ 0 0 < • • • < γ 0 Q-1 < γ 0 Q = +∞, we have Y i = m q if and only if Y * i ∈]γ q-1 , γ q ]
. For q = 1, . . . , Q, let us denote I q the subset of {1...n} such that i ∈ I q if and only if Y i = m q . Let us denote by γ the vector γ = (γ 1 , . . . , γ q-1 ). The conditional likelihood given X 1 , . . . , X n for this model is :

L Y|X (β, γ) = Q q=1 i∈I q Φ X t i β -γ q-1 -Φ X t i β -γ q . (4.1)
where X is the n × p matrix such that X i is its i th row for all i in 1, ..., n. The conditional log-likelihood is given by

l Y|X (β, γ) = n i=1 Q q=1 1 {Y i =m q } log Φ X t i β -γ q-1 -Φ X t i β -γ q ,
or in other words,

l Y|X (β, γ) = Q q=1 i∈I q log Φ X t i β -γ q-1 -Φ X t i β -γ q .
The parameters of this model are usually estimated using the maximum likelihood principle, i.e., by finding the vector ( β, γ) that maximizes l Y|X . Maximization of the log-likelihood is made easy by the well known fact that the conditional log-likelihood function is concave.

The problem with this approach is that it cannot works when p is larger than n because, in this case, the Hessian matrix is easily shown to be singular. The situation where p is larger than n is however frequent in gene expression analysis as in many other problems, and one needs an estimator which can perform variable selection in such settings with low computational complexity. The next section introduces such an estimator based on ℓ 1 penalisation.

4.2.1.2/ THE PENALISED MAXIMUM LIKELIHOOD ESTIMATOR

One estimator of choice for the type of problem we just described is the ℓ 1 -penalised maximum likelihood estimator given by

( β, γ) ∈ argmax (b,c)∈R p ×R Q-1 l Y|X (b, c) -λ b 1 , (4.2)
where λ is a relaxation parameter. This estimator corresponds exactly to the LASSO in the case where the log-likelihood is the one of the linear model. The main motivation for introducing this estimator is Theorem 1.2 in candes2009near about the LASSO. This theorem states that for a sufficiently sparse β in the linear model Y = Xβ + ǫ, ǫ ∼ N(0, σ 2 I), the risk of the LASSO estimator is near optimal, i.e. is comparable to the risk obtained with an oracle estimator which would know the support of β ahead of time. Moreover, support recovery is proved to hold with large probability for a vast majority of possible supports.

The assumptions in this theorem are the following :

1. X has low coherence, i.e. the maximum scalar product of two columns of X is less than A 0 / log(p) ;

2. the support and sign pattern of β have uniform distribution ;

3. the nonzero components of β have magnitude above the noise level times a log factor.

It is therefore natural to expect that an appropriate translation of this result to the case of (ordinal or not) polytomous regression model will hold as well. In the sequel, we will present simulation based results on the penalised conditional likelihood estimator from the view point of variable selection. The first step is to smooth the ℓ 1 -norm function. Notice that, for the vector β, β 1 can be written

β 1 = max u ∞ ≤1 u t β, (4.3) 
and the maximizer in this expression is simply sign(β). A possible simple smoothing of the ℓ 1 -norm is given by

ℓ 1,µ (β) = max u ∞ ≤1 u t β - µ 2 u 2 2 . (4.4)
Notice that the maximizer u * β in (4.4) exists due to continuity and coercivity, and is unique due to the strict convexity of • 2 2 . The main interesting feature of this smoothing is the following proposition. With this result in hand, we can present Nesterov's accelerated gradient algorithm for smooth optimisation in Algorithm 1 below. In order to implement the algorithm, one needs to know the Lipschitz constant of the gradient of minus the log-likelihood, which is unknown, and the Lipschitz constant of the smoothed ℓ 1 -norm penalty, which is 1/µ. In practice, the Lipschitz constant of the gradient of minus the log-likelihood can be estimated by random sampling and computing ratio between the norm of the difference between gradients at sampled points and the norm of the difference of these sample points.

4.2.2.2/ THE FRANK-WOLFE ALGORITHM

The main trick that is needed to implement the Frank-Wolfe algorithm is to reformulate the penalised problem

( β, γ) ∈ argmax (b,c)∈R p ×R Q-1 l Y|X (b, c) -λ b 1 .
(4.6) as a constrained optimisation problem

( β, γ) ∈ argmax (b,c)∈R p ×R Q-1 l Y|X (b, c) with b 1 ≤ r (4.7)
for an appropriate value of r. In this new formulation, the problem of choosing λ is translated into the problem of choosing r.

The second formulation will be used in Section 4.2.2.2, in which the most difficult problem is choose this r value.

The Frank-Wolfe (FW) algorithm is a constrained convex optimisation method proposed by Marguerite Frank and Philip Wolfe in 1956 frank1956algorithm . Each iteration of the FW algorithm consists of finding s k by minimizing s T ∇ f (x k ) subject to s ∈ D. We then upgrade

x k+1 = x k + 2 k+2 (s k -x k )
, where f is the function to minimize, k is the current iteration, and D is the set on which we want to optimize f . In the case where D is the hypercube defined by β 1 ≤ r (as in our case), determining s k is simple, since it is the point :

-of coordinate r for the component such that ∇ β l Ỹ|X (β, γ) is minimal, -and zero for all the other components. However, the logistic regression is a special case in which constraints have to be put on β, but not on γ. Practically speaking, the choice has been to alternate iterations of the Frank-Wolfe algorithm (to optimize β with γ fixed) with a simple gradient descent (to optimize γ with β fixed).

4.2.3/ HYPERPARAMETER CALIBRATION

4.2.3.1/ SELECTION OF THE PARAMETER BY AIC

The first implemented method to select the λ parameter is to use the Akaike information criterion (AIC) akaike1998information . This AIC is a compromise between the likelihood of the model and the number of non-zero parameters. More precisely, AIC = -2l Y|X (β, γ) + 2 β 0 , and the goal is to find a set of parameters that minimizes this value. The method of choosing lambda processes in three steps. In the first one, the objective to is determine a penalty λ # that is large enough to cancel all β components. This objective is realized by using Algorithm 2.

One can then apply, e.g. Nesterov's or the stochastic Frank-Wolfe algorithm with different values of the hyperparameter. One possible set of values is λ 0 = 0, λ 1 = λ # 50 , λ 2 = 2×λ # 50 , ..., λ 49 = 49×λ # 50 . The AIC value is then computed for each obtained model and, at the end of the day, the model with smallest AIC is finally selected.

4.2.3.2/ BIC SELECTION

λ is chosen in the same manner than for the AIC method, except for the fact that the value to optimize is, this time, BIC = -2 l Y|X (β, γ) + log(n) β 0 . 4.2.3.3/ ADAPTING THE QUANTILE UNIVERSAL THRESHOLD SELECTION TO ORDINAL POLYTOMOUS REGRESSION Quantile Universal Threshold (QUT) giacobino2015quantile is a simulation-based method. Its objective is to be sure that, if the vector Y to be predicted has no link with the matrix of predictive variables X, then the vector β of the regression coefficients will be the null vector with probability 1 -α, where α is set by the user (α is set to 5% in Section 4.3).

The working principle of QUT is as follows.

-Randomly pick a large number of vectors of the same size than Y. For instance, in the case study of Section 4.3, 100 vectors Ỹ1 ... Ỹ100 are picked as permutations of the original Y vector. That is to say, Ỹi has the same number of subjects in each category as the initial vector Y. -For each random vector Ỹi , find a λ i large enough such that, when the ℓ 1 -penalised maximum likelihood estimator described in Section 4.2.1.2 is optimized, β is the null vector. -The obtained λ i are sorted, and then we select the value such that a proportion 1 -α of the λ i is below this threshold.

To speed up the second step of this process, the following property is used. Let us denote by λ # = ∇ β l Ỹ|X (β = 0, γ) ∞ . Thus, an optimisation of the ℓ 1 -penalised maximum likelihood estimator with a penalty of λ # returns β = 0.

γ is required in order to compute λ # . However γ is not known, and λ is needed to calculate it. So, a loop has been implemented as in Algorithm 3.

Thanks to the shortcut λ # = ∇ β l Ỹ|X (β = 0, γ) ∞ , the computation time to obtain λ is greatly reduced, leading to the fastest determination of λ (see Section 4.3), as it requires only a few the optimisation of the ℓ 1 -penalised maximum likelihood estimator. Note that a version of the QUT whose second step is performed by dichotomy, as in Algorithm 2, has been implemented too, but it underperforms the other methods in terms of computation time.

4.2.3.4/ SELECTION OF THE r PARAMETER BY ONLINE FRANK-WOLFE ALGORITHM

The method follows the procedure described in chretien2018hedging with small necessary adjustments in order to accommodate for the specific constraints associated with our estimator. We refer the reader to the associated longer report chretien2018polytomous for complete details.

Algorithme 1 : Nesterov's algorithm for penalised log-likelihood estimation Input An initial point θ (0) = (β (0) , γ (0) ), e.g. θ (0) = 0, the relaxation coefficient λ, the Lipschitz constants L 0 (resp. L 1 ) of the gradient of -the log-likelihood (resp. of ℓ 1,µ ) and the maximum number of iterations [START_REF] Moulin | Simulation-based estimation of branching models for LTR retrotransposons[END_REF] :

N ∈ N * for k = 0...N -1 do Compute g (k) = ∇ -l(θ (k) ) + λℓ 1,µ (β (k) ) Compute θ (k,
θ (k,1) = argmin τ∈R p+Q-1 g (k) , τ -θ (k) + L 0 + L 1 2 τ -θ (k) 2 2 .
Compute θ (k,2) :

θ (k,2) = argmin τ∈R p+Q-1 ( 0≤k ′ ≤k 1 2(k ′ + 1) g (k ′ ) , τ -θ (k ′ ) ) + L 0 + L 1 2 τ -θ (0) 2 2 .
Update θ (k+1) : [START_REF]A clustering package for nucleotide sequences using Laplacian Eigenmaps and References[END_REF] .

θ (k+1) = k + 1 k + 3 θ (k,1) + 2 k + 3 θ (k,

end for

Output θ (N) .

Algorithme 2 : Find a λ that cancels all β components following a dichotomy approach V : number of non-zero coefficients of β, as a function of λ. δ : desired accuracy, set by the user (default value : δ = 0.01).

λ max = 1 while V(λ max ) 0 do λ max = λ max × 2 end while λ min = λ max 2 if λ max = 1 then λ min=0 end if while λ max -λ min ≥ δ do λ mean = λ max -λ min 2 if V(λ mean ) = 0 then λ max = λ mean else λ min = λ mean end if end while Output λ # = λ mean .
Algorithme 3 : QUT : successive evaluations of gamma knowing lambda, and of lambda knowing gamma 

λ = √ 2 × log(2 × max(p, 1 

4.3/ SIMULATION RESULTS

4.3.1/ DESCRIPTION OF THE EXPERIMENTS

We now assess the practical performance of the proposed methods. For this purpose, we performed various numerical experiments on simulated data. The simulation and testing procedure works as follows.

1. The number of subjects n, the number of variables p, the number of influential variables s, and the underlying cut-off vector γ 0 are set (Section 4.3.2 contains the authors' choices).

2.

The vector of underlying parameters β 0 is randomly picked. This vector is of size p such that ps of its components are null, while the other s components follow a Gaussian law N(0, 1)

3.

The matrix X of explanatory variables is then drawn. This is a matrix of size n × p, in which each component follows a law N(0, 1).

4.

The noise vector ǫ of Y * is drawn. It is of size n, where each component follows a logistic(1,1) law.

5. Y * = Xβ 0 + ǫ is computed, and then Y based on Y * and γ 0 .

6.

Steps 2, 3, 4, and 5 above allows the construction of a database. They are repeated 50 times, leading to 50 different databases.

7.

Each of these 50 databases is divided into a learning sample ( 2 3 of the subjects) and a testing one (the other third).

8. Each of the regression methods listed in Section 4.3.2 is finally applied to the 50 learning samples. The performances of the models are measured on the 50 corresponding test samples based on the criteria defined in Section 4.3.2.

4.3.2/ COMPARISON EXPERIMENTS

The methods we decided to compare are the following.

λ parameter selection by AIC as in Section 4. Two experiments have been performed. In the first one, n > p, there are 50 variables, the learning sample has been constituted by 200 subjects, while the test sample has 100 subjects (see Table 4.1). In the other experiment, p > n, the learning sample has 100 subjects, the test one has 50 subjects, and there are 200 variables (Table 4.2). In both cases, the number of significant variables was set to s = 5.

We considered Q = 3 categories for Y, and we set γ 0 ∈ [0, 3], as unbalanced categories were wanted to complicate the regression problem. With this choice of γ 0 , Y i is in the first category for all Y * i ≤ 0, i.e., for half of the simulated subjects. The Nesterov algorithm runs for 200 iterations, while the Frank-Wolfe one iterates 200 times.

For each method, four performance criteria are studied.

-The percentage of subjects in the test sample which are well ranked by the model fitted on the learning sample. This percentage is named "well classified" in Tables 4.1 and4 The "average likelihood" and "well-classified weighted" criteria are relevant when classes are very unbalanced (like 98 %, 1 %, and 1 %), which can really occur in practice. In the case study, the "well classified" criterion has been considered first, as this is probably the most natural criterion for not too unbalanced categories like the ones used during our simulations. Tables 4.1 and 4.2 are sorted according to this criterion. Table 4.1 summarizes the results in the case where the number of subjects in the training sample is 200, the number of subjects in the testing one is 100, and the number of explanatory variables is 50. Table 4.2, for its part, summarizes the results in the case where the number of subjects in the training sample is 100, the number of subjects in the testing one is 50, and the number of explanatory variables is 200.

Wilcoxon tests have also been performed in order to determine if the differences between the methods are statistically significant. Tables 4.3 and 4.4 show the results of these Wilcoxon tests. In the n learning = 200, p = 50 case, the difference between well-classified subjects for BIC (66,7%) and QUT (65,4%) is significant with a p-value of 8, 03 × 10 -3 , even if this difference is only equal to 1,3%. Conversely, in the n learning = 100, p = 200 case, the difference between QUT, BIC, OFW is not significant. This case may require more simulated data if we want to separate these methods correctly. Finally, in any cases, QUT, BIC, OFW, and AIC are significantly better than λ =0 and the null model. 

4.4/ DISCUSSION

First of all, the four variable selection methods work better than λ = 0 and the null model. This shows that the algorithms work correctly, and that variable selection is useful. The absence of variable selection is particularly harmful in the case where p > n, see Table 4.2. It makes sense because, in this case, the optimisation of the unpenalised likelihood allows an infinite number of solutions. This p > n case is very common in practice.

In the experiment shown in Table 4.1, the BIC works a bit better than the other methods, while in the experiment summarized in Table 4.2, QUT, BIC, and OFW are very close. In terms of computation time, QUT is the most interesting approach. Indeed, as explained in Section 4.2.3.3, this method allows to choose λ by executing the regression only a few times.

4.5/ CONCLUSION

The present paper proposed a new estimator for sparse ordinal polytomous regression in a high dimensional setting together with a strategy for hyper-parameter calibration based on previous results from giacobino2015quantile . Performance of the method was assessed via extensive numerical experiments. The forthcoming report chretien2018polytomous will include further implementation details, and improvements, and additional numerical results on large real datasets.
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4.6/ COMPL ÉMENTS

À la suite de la publication ci-dessus, nous avons, à la demande des relecteurs, effectu é des essais suppl émentaires. En l'occurrence, nous avons d'une part calcul é l'efficacit é de la validation crois ée comme m éthode de choix de la p énalisation, et d'autre part relev é pour chaque m éthode sa pr écision dans la reconnaissance des variables influentes à travers son taux de vrai positif et son taux de faux positif.

La colonne "TPR" (true positive rate) des tables 4.5 et 4.6 d ésigne le pourcentage de variables qui ont ét é reconnues comme influentes sur l'output parmi celles qui sont effectivement programm ées pour influer sur l'output. La colonne "TNR" (true n égative rate) d ésigne le pourcentage de variables qui ont ét é reconnues comme non influentes sur l'output parmi celles qui sont effectivement programm ées pour ne pas influer sur l'output.

La ligne "CV" d ésigne les r ésultats pour la cross validation. Il s'agit ici d'une proc édure de cross validation à l'int érieur des échantillons d'apprentissage. C'est-à-dire que l'on cr ée des échantillons d'apprentissage à l'int érieur des échantillons d'apprentissage. Il s'agit d'un d écoupage 9/10 (apprentissage) vs 1/10 (test). Par exemple pour le cas n learning = 200, p = 50, n test = 100, on d écoupe n learning en 10 sous échantillons de 20 sujets, pour chaque valeur de lambda envisag ée on utilise 180 sujets pour apprendre et 20 pour tester dans les 10 configurations possibles. Puis, une fois qu'on a choisi l'hyperparam ètre λ, on utilise les 100 sujets de n test pour comparer la cross validation aux autres m éthodes.

Concernant le TPR et TNR, comme on pouvait l'imaginer, plus la m éthode est s élective (p énalisation forte, nombre de variables retenues faibles), plus la TPR est fort et plus le TNR est faible. Comme toutes ces m éthodes ne varient que par le choix de l'hyperparam ètre de p énalisation, aucune ne maximise TPR et TNR en m ême temps. Si on veut maximiser TPR + TNR par exemple, les meilleures m éthodes seraient alors OFW dans le cas p > n et AIC dans le cas n > p.

Les performances de la validation crois ée sont correctes. Il s'agit de la 4 eme meilleure m éthode pour taux de patients bien class és pour p > n et de la 2 eme meilleure pour n >. En revanche, c'est de loin la m éthode la plus longue à ex écuter. patients. La tumeur pr ésentait 3 niveaux de gravit é. Le "d éfaut" de cette base de donn ées, qui la rend peu ad équate pour notre sujet est que les g ènes pr ésents sont des g ènes d éj à s électionn és pour leur lien statistique avec ce cancer. D ès lors, si l'on d écoupe cette base en échantillons d'apprentissages et de tests, la meilleure s élection de variables possible sera de tout garder. C'est ce que l'on voit sur le tableau 4.7 dans lequel la m éthode sans s élection de variables (λ = 0) apparaît comme la meilleure. R écemment nous nous sommes vu confier une base de donn ées de grande taille (54675 variables, 1656 patients, 4 niveaux de gravit é de tumeur). Cette base de donn ées Durant ces trois ann ées de doctorat, nous avons pu aborder diff érents aspects de la programmation bio-informatique.

Nos travaux les plus aboutis sont probablement ceux qui se situent dans le domaine du clustering de s équences. En effet, nous avons pu dans ce projet effectuer des tests à la fois sur donn ées r éelles et sur donn ées simul ées. Les tests sur donn ées r éelles ont montr é une coh érence du clustering obtenu avec l'arbre phylog én étique construit via PhyML ainsi qu'avec la taxonomie propos ée par le NCBI. Les r ésultats sur donn ées simul ées ont pu montrer une bonne capacit é à retrouver le clustering attendu, cette capacit é exc édant m ême celle des outils classiques de clustering de s équences. Ainsi, un prolongement possible de ces travaux pourrait être de rendre l'outil plus facilement accessible en en faisant un package python via pypi par exemple, ou en en faisant un outil utilisable en ligne. Par ailleurs il est aussi envisageable de chercher par de nouveaux tests à optimiser diff érents param ètres de notre programme, tels la dimension de l'espace dans lequel les Laplacian eigenmaps plongent les donn ées, le nombre de clusters ou le choix de la matrice de similarit é.

Concernant nos travaux sur les él éments transposables au sein du g énome, nous avons pu fournir une premi ère proposition de mod èle de cette propagation et une m éthode pour estimer les param ètres de ce mod èle. Toutefois, cette m éthode par simulation propos ée pr ésente ses imperfections, notamment au niveau du temps de calcul qui croit exponentiellement avec le nombre de param ètres du mod èle et quadratiquement avec le nombre d' él éments transposables. Pour des travaux futurs, il faudrait sans doute chercher à estimer ces param ètres d'une fac ¸on plus math ématique (maximum de vraisemblance, estimation Bayesienne...).

Nos travaux d'analyse de donn ées m étag énomiques via courbes ROC ont permis d'extraire de nouveaux r ésultats de ces donn ées. En particulier, ils ont permis de mettre en évidence des OTUs tr ès discriminantes du site (donc tr ès affect ées par la pollution), m ême lorsque ces OTUs sont pr ésentes en faibles quantit é. Les courbes ROC ne sont pas un outil statistique nouveau, et chacun des r ésultats pr ésent é dans les tableaux pr ésent és dans notre contribution aurait pu être obtenu individuellement avec un outil existant. L'int ér êt de notre contribution ici était de rendre l'obtention de tous ces r ésultats en m ême temps, tri és correctement, de la fac ¸on la plus simple possible pour les chercheurs en écologie. Ici, la question est de savoir comment cette proposition sera rec ¸ue par cette communaut é de chercheurs. Le cas éch éant, si la demande existe, une am élioration pourrait être ici aussi de proposer un outil en ligne pour que cet outil soit plus accessible.

Finalement, nos travaux sur la r égression polytomique ordonn ée p énalis ée par norme ℓ 1 ont permis de construire un outil pour r ésoudre cette r égression ainsi qu'une vari ét é de strat égies (AIC, BIC, OFW, QUT) pour choisir la p énalisation ad équate. Les tests effectu és sur donn ées simul ées ont montr é que la plupart de ces strat égies sont raisonnables du point de vue de la pr écison mais le Quantile Universal Threshold en particulier 113 se d émarque du point de vue de la rapidit é de calcul. Une poursuite de ces travaux pourrait être d'effectuer des tests sur des donn ées r éelles pertinentes. Titre : Apport de techniques d'analyse de données pour résoudre des problèmes spécifiques en bioinformatique Mots clés : Bio-informatique, Statistique, Clustering de séquences génétiques, Éléments transposables, Courbes ROC, LASSO, Régression polytomique ordonnée Résumé : De nos jours, la quantité de données génétiques séquencées augmente de manière exponentielle sous l'impulsion d'outils de séquençage de plus en plus performants, tels que les outils de séquençage haut débit en particulier. De plus, ces données sont de plus en plus facilement accessibles grâce aux bases de données en ligne. Cette plus grande disponibilité des données ouvre de nouveaux sujets d'étude qui nécessitent de la part des statisticiens et bioinformaticiens de développer des outils adaptés. Par ailleurs, les progrès constants de la statistique, dans des domaines tels que le clustering, la réduction de dimension, ou les régressions entre autres, nécessitent d'être régulièrement adaptés au contexte de la bioinformatique. L'objectif de cette thèse est l'application de techniques avancées de statistiques à des problématiques de bioinformatique. Dans ce manuscrit, nous présentons les résultats de nos travaux concernant le clustering de séquences génétiques via Laplacian eigenmaps et modèle de mélange gaussien, l'étude de la propagation des éléments transposables dans le génome via un processus de branchement, l'analyse de données métagénomiques en écologie via des courbes ROC ou encore la régression polytomique ordonnée pénalisée par la norme l1. Title : Use of data analysis techniques to solve specific bioinformatics problems Keywords : Bioinformatics, Statistic, DNA clustering, Transposable elements, ROC analysis, LASSO, Ordinal polytomous regression Abstract : Nowadays, the quantity of sequenced genetic data is increasing exponentially under the impetus of increasingly powerful sequencing tools, such as high-throughput sequencing tools in particular. In addition, these data are increasingly accessible through online databases. This greater availability of data opens up new areas of study that require statisticians and bioinformaticians to develop appropriate tools. In addition, constant statistical progress in areas such as clustering, dimensionality reduction, regressions and others needs to be regularly adapted to the context of bioinformatics. The objective of this thesis is the application of advanced statistical techniques to bioinformatics issues. In this manuscript we present the results of our works concerning the clustering of genetic sequences via Laplacian eigenmaps and Gaussian mixture model, the study of the propagation of transposable elements in the genome via a branching process, the analysis of metagenomic data in ecology via ROC curves or the ordinal polytomous regression penalized by the l1-norm.
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FIGURE 1 .

 1 FIGURE 1.4 -Exemple d'application de l'algorithme de Smith-Waterman. Image de Jock Banan pour https://fr.wikipedia.org (Algorithme de Smith-Waterman)

  2.2.2.4/ R ÉGULARISATION PAR NORME ℓ 1 Dans la partie 2.2.2.2, l'AIC a ét é d éfini comme AIC = 2k -2ln(L) o ù k est le nombre de param ètres du mod èle. Une mani ère parfaitement équivalente d' écrire cela dans le cadre d'une r égression lin éaire est AIC = 2 β 0 -2ln(L) o ù β 0 est la norme ℓ 0 de β, c'està-dire le nombre de composantes non nulles. Cette écriture permet de mieux mettre en évidence que l'AIC est purement une fonction de β puisque à X et Y donn és, L est lui-m ême une fonction de β. D ès lors, on peut se demander s'il ne serait pas possible d'optimiser cette fonction AIC(β) = 2 β 0 -2ln(L(β)) sur l'espace R p+1 des valeurs possibles de β. En fait, ceci n'est pas possible directement, car cette fonction AIC(β) n'est pas convexe sur R p+1 (ni continue). En revanche, ∀λ ∈ R la fonction f (β) = λ β 1 -ln(L(β)) est quant à elle convexe sur R p+1 . β 1 d éfinit la norme ℓ 1 de β, c'est-à-dire k=p k=1 |β k |. Étant convexe, cette fonction est simple à optimiser via l'algorithme du gradian cauchy1847methode et ses variantes telles l'algorithme de Nesterov Nesterov:MathProg05 ou l'algorithme de

1 CLUSTERING

 1 Cette partie pr ésente les travaux que nous avons effectu és sur le clustering de s équences. Dans ces travaux nous utilisons une combinaison de Laplacian eigenmaps belkin2001laplacian et mod èles de m élanges gaussiens day1969estimating pour effectuer ce clustering. Pour tester ces travaux, nous avons utilis é une base de donn ées compos ée de s équences g én étiques de Plathelminthes (figure 1.1) et de Nematodes (figure 1.2) ; c'est-à-dire respectivement des vers plats et des vers ronds.

FIGURE 1 . 1 -

 11 FIGURE 1.1 -Plathelminthes. Source : Richard Ling pour https://fr.wikipedia.org (Pseudoceros dimidiatus).

FIGURE 1 . 2 -

 12 FIGURE 1.2 -Nematodes. Source : United States Department of Agriculture.

FIGURE 2 . 1 -

 21 FIGURE 2.1 -Drosophila melanogaster. Source : https://www.syngenta.fr

FIGURE 3 . 1 -

 31 FIGURE 3.1 -ROC curves constructed by plotting the true positive rate and false positive one associated with each unique value of the indicator variable. An indicator variable with a poor discriminatory power (C/N ratio) will have an AUC near 0.5 (c), a variable with an intermediate discriminatory power (Al) will have an AUC close to 0.75 (b), and an indicator variable with a high discriminatory power (pH) will have a curve with an AUC near 1 (a).

  : https://github.com/SergeMOULIN/ROC R -for the Python codes : https://github.com/SergeMOULIN/ROC python This work was supported by the French Environment and Energy Management Agency [PROLIPHYT 1172C0053], the R égion Franche-Comt é [Environnement-Homme-Territoire 2014-069], the Pays de Montb éliard Agglom ération [13/070-203-2015], and the French national programme EC2CO-MicrobiEen FREIDI-Hg. C.Z. and S.M. received a PhD grant from the French Ministry of Higher Education and Research. M.C. and C.Z planned and designed the research, performed experiments and produced the data ; S.M. and C.G. computed the scripts and analyzed the data ; C.Z., M.C., S.M. and C.G. wrote the manuscript.
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 12 PREVIOUS WORK ON VARIABLE SELECTION VIA ℓ 1 -NORM PENALISATION

Proposition 4. 2 . 1 .

 21 The function ℓ 1,µ is differentiable with Lipschitz gradient. Moreover, the gradient is given by∇ℓ 1,µ = u * β (4.5)where u * β is the unique maximizer in (4.4) and the Lipschitz constant of the gradient isL 1 = 1/µ.Proof. See Nesterov:MathProg05, Theorem 1 .

  )) × max(0.01, std(Y)) (initialization of λ) for i = 1 ... 3 do Choose γ based on the current λ with Nesterov. Choose λ based on the current γ with QUT. end for Output λ.
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TABLE 1 .

 1 1 -Matrice de similarit é des caract ères avec match

  On appelle u 1 , u 2 , ..., u p les vecteurs propres de C (i.e. les vecteurs colonnes de P).

	une base de donn ées	à
	n sujets et p variables. X 1,1 ...X n,1 repr ésente le premier sujet et X 1,1 ...X 1,p repr ésente la
	premi ère variable. Pour effectuer une ACP sur cette base, on applique les étapes sui-
	vantes :	
	1. On calcule la matrice de variance-covariance C = 1 p X T X. C est alors une matrice
	p × p sym étrique.	
	2. On diagonalise C. Comme C est sym étrique, cela est toujours possible. On obtient
	alors C = P -1 DP o ù D est une matrice diagonale et P est la matrice de passage.
	Comme C est sym étrique, P est une matrice orthogonale, c'est-à-dire que tous ses
	vecteurs colonnes sont orthogonaux. De plus, la matrice étant orthogonale, on a
	P -1 = P T .	
	3.	

  1 1+e -x est la fonction de r épartition de loi logistique standard. En d'autres termes, la probabilit é que Y i soit égal à 1 est d'autant plus grande que β 0 + β 1 X i,1 + β 2 X i,2 + ... + β p X i,p , aussi appel é "le pr édicteur lin éaire", est grand. Pour finir sur la r égression logistique, notons juste qu'il n'y pas besoin ici de calculer de variance pour le bruit ǫ, contrairement à la r égression lin éaire. En effet, si on consid érait ǫ comme une loi logistique centr ée de variance à d éterminer, alors on aurait une situation de surparam étrage.Si la r égression logistique est un mod èle relativement éprouv é, aujourd'hui encore des travaux sont effectu és sur ce mod èle. Citons par exemple sur2018modern qui propose entre autre une m éthode pour d éterminer le biais et la variance de l'estimateur de maximum de vraisemblance de ce mod èle ainsi que la distribution du rapport de vraisemblance. Ce papier montre ainsi entre autre que l'id ée "si j'ai k fois plus de sujets que de variables, l'estimation des param ètres va bien se passer" n'est pas forcement juste. Il d étaille aussi entre autre les conditions pour que l'estimation des param ètres par maxi-

	β 2 2
	n,p→∞

mum de vraisemblance soit possible quand p et n grandissent avec k = n p n fix é. Ces conditions d épendent de k et de la "puissance de signal" γ = lim n . 2.2.1.3/ R ÉGRESSION LOGISTIQUE ORDONN ÉE La r égression logistique ordonn ée est un mod èle qui s'applique dans le cas o ù la variable à expliquer est qualitative ordonn ée. Typiquement une tumeur qui aurait plusieurs degr és de gravit é. On appellera "Q" le nombre de modalit és possibles de la variable à expliquer et m 1 , ..., m Q les modalit és elles-m êmes. Comme dans la r égression logistique, on suppose que la variable à expliquer Y d épend d'une variable continue Y * telle que

  1.2.2/ GAUSSIAN MIXTURE BASED CLUSTERINGThe final step is performed by applying Gaussian Mixture based clustering (GMM, day1969estimating ) to the point cloud. Gaussian Mixture Models belong to the class of unsupervised learning schemes friedman2001elements , and allow to distribute the data points into different clusters without a priori assumption about the clusters interpretation. One of the very useful features of model based clustering is that the model allows to use information criteria in order to estimate the number of clusters using Akaike Information Criterion (AIC akaike1974new ), Bayesian Information Criterion (BIC schwarz1978estimating ), or Integrated Completed Likelihood (ICL biernacki2000assessing ) well-known criteria. The mathematical assumption of a GMM is that the point cloud follows the distribution :

TABLE 1 .

 1 

	random Distance Distance	Distance
	seed	our tool	CD-hit-est BlastClust
	0	0	7	3
	1	0	11	19
	2	2	7	1
	3	10	13	20
	4	0	8	3
	5	0	7	5
	6	0	8	2
	7	0	7	9
	8	0	7	12
	9	1	10	19
	10	0	6	5
	11	0	7	10
	12	1	6	5
	13	1	10	2
	14	0	7	9
	15	0	7	5
	16	0	6	4
	17	0	11	17
	18	0	12	16
	19	0	6	17
	20	0	8	17
	21	10	8	17
	22	0	7	1
	23	0	7	2
	24	0	8	6
	total	25	201	226

1.2.4/ MODULE AND PACKAGE DEPENDENCIES

As explained in Section 1.2.1.1, the DNA sequence alignment software used during the similarity matrix stage is MUSCLE. More precisely, the "muscle v38" function of cogent package has been used knight2007pycogent . The Gaussian Mixture Model, for its part, is performed using the GMM function of sklearn.mixture package buitinck2013api . 1 -Distance from the perfect clustering

TABLE 2 .

 2 

			1 -Example of the output T
	[[ 0.5	0.	0. ]
	[ 0.19031606 1.83699228	0. ]
	[ 0.18321005 11.25706728 0. ]
	[ 0.66442132 17.61532334 2. ]
	[ 0.48479738 25.45993783 1. ]
	[ 0.13876928 28.11662473 1. ]]

TABLE 2 .

 2 

				2 -Setting table	
	parameter starting point end point interval division desired accuracy
	X 0	1	n	3	10 -3
	µ	0.1	10	3	10 -2
	β	0.01	1	3	10 -3
	p	0.1	100	3	10 -1
	L	0.01	1	3	10 -3
		TABLE 2.3 -Results and consistency	
	Best parameter sets			
	parameter	ROO DM412 GYPSY	
	X 0	29	14	5	
	µ	2.396 1.135	0.050	
	β	0.351 0.235	0.093	
	p	0.051 0.001	0.007	
	L	1.331 0.336	0.016	
	J	0.300 0.216	0.013	
	T obs	4.070 3.353	2.379	
	Consistency indicators			
	parameter	ROO DM412 GYPSY	
	X 0	0.104 0.096	0.392	
	µ	0.020 0.017	0.002	
	β	0.040 0.064	0.044	
	p	0.001 0.000	0.000	
	L	0.262 0.036	0.033	
	J	0.010 0.013	0.024	
	T obs	0.042 0.014	0.031	
	Furthermore, we can notice that in the case of ROO, 18 of the 32 copies are located
	inside genes while genes hold 72.7% of the studied part (euchromatin). Thus, density =
	18				
	72,7				
	14				
	27,2				

TABLE 3 .

 3 1 -Meaning of the terms : "True positive", "True negative", "False positive", and "False negative" in a ROC curve analysis

	Category 0 (Negative subjects) Category 1 (Positive subjects)
	Q < threshold (subject True negative	False negative
	classified as negative)	
	Q ≥ threshold (subject False positive classified as positive)	True positive

TABLE 3 .

 3 2 -ROC AUCs and related parameters of all soil physico-chemical variables. AUC, area under the curve ; Delta norm, difference between the threshold inferior and the threshold superior ; TPR, true positive rate ; TNR, true negative rate ; WCS, well-classified subjects ; Pref, output preference ; Inf Thres, inferior threshold ; Sup Thres, superior threshold ; #T, nonzero subjects in the tailing dump samples ; #U nonzero subjects in the undisturbed soil samples. For each variable, we computed a Wilcoxon test of rank p-value.

	Variable	Threshold Pref	TPR	TNR	Sum	WCS AUC	Delta Inf	Sup	Wilcoxon #U #T
									norm Thres Thres
	Ph	7.85	Lagoon 1	1	2	16	1.000 0.236 7.70	8.00	0.0008	8
	Ca	41959	Lagoon 1	1	2	16	1.000 0.230 29683 54234 0.0008	8
	Na	196	Lagoon 1	1	2	16	1.000 0.164 166	226	0.0008	8
	Sr	53.0	Lagoon 1	1	2	16	1.000 0.161 44.5	61.5	0.0008	8
	Carbonate	3.85	Lagoon 1	0.875 1.875 15	0.984 0.030 0.000 7.70	0.0011	1
	Pb	20.6	Natural 1	0.875 1.875 15	0.969 0.091 20.2	21.1	0.0016	8
	As	14.0	Lagoon 0.875 1	1.875 15	0.969 0.055 13.8	14.2	0.0016	8
	Co	5.18	Natural 1	0.875 1.875 15	0.922 0.155 4.98	5.38	0.0046	8
	Thin silt	447	Lagoon 0.75	1	1.75	14	0.906 0.072 441	453	0.0063	8
	CEC	96.0	Natural 1	0.625 1.625 13	0.906 0.024 95.0	97.0	0.0063	8
	P 2 O 5 CaO	0.185 8.83	Lagoon 1 Lagoon 1	0.875 1.875 15 0.875 1.875 15	0.883 0.862 0.110 0.260 0.0101 0.875 0.684 7.16 10.5 0.0117	8 8
	Hg	1.49	Lagoon 1	0.875 1.875 15	0.875 0.242 1.23	1.75	0.0117	6
	P	541	Lagoon 0.875 0.875 1.75	14	0.844 0.119 525	557	0.0209	8
	Fe	10433	Natural 1	0.625 1.625 13	0.797 0.026 10348 10518 0.0460	8
	Al	15498	Natural 0.75	0.875 1.625 13	0.781 0.416 13424 17572 0.0587	8
	Sn	0.951	Lagoon 1	0.625 1.625 13	0.781 0.018 0.936 0.966 0.0587	8
	Clay	195	Natural 0.75	0.875 1.625 13	0.766 0.191 184	205	0.0742	8
	Coarse sand 14.0	Natural 0.875 0.625 1.5	12	0.766 0.156 11.0	17.0	0.0742	8
	Mg	1905	Natural 0.75	0.875 1.625 13	0.750 0.080 1868	1942	0.0929	8
	Na 2 O Large silt	0.025 250	Lagoon 1 Natural 0.625 0.875 1.5 0.75 1.75	14 12	0.750 0.060 0.024 0.025 0.0929 0.750 0.023 249 251 0.0929	8 8
	Ni	14.1	Natural 0.75	0.75	1.5	12	0.734 0.321 12.6	15.5	0.1152	8
	Cr	25.1	Natural 0.75	0.875 1.625 13	0.719 0.297 23.0	27.2	0.1415	8
	Bo	0.780	Lagoon 0.625 0.875 1.5	12	0.719 0.137 0.760 0.800 0.1415	8
	Cd	0.183	Lagoon 1	0.5	1.5	12	0.703 0.179 0.156 0.209 0.1722	7
	K 2 O K	0.315 1992	Lagoon 0.875 0.5 Natural 0.75 0.75	1.375 11 1.5 12	0.695 0.146 0.300 0.330 0.1893 0.688 0.042 1968 2015 0.2076	8 8
	OM	36.7	Natural 1	0.25	1.25	10	0.648 0.434 31.5	41.9	0.3184	8
	Total C	21.2	Natural 1	0.25	1.25	10	0.648 0.432 18.2	24.2	0.3184	8
	Se	0.490	Natural 0.25	1	1.25	10	0.625 1.478 0.000 0.979 0.4008	2
	Total N	1.78	Natural 1	0.375 1.375 11	0.617 0.015 1.77	1.79	0.4309	8
	Mn	135	Lagoon 1	0.5	1.5	12	0.594 0.304 116	155	0.5286	8
	Thin sand	15.5	Natural 1	0.25	1.25	10	0.578 0.173 10.0	21.0	0.5995	8
	Sb	0.288	Lagoon 0.5	0.75	1.25	10	0.563 0.663 0.000 0.576 0.6744	2
	Si	281	Natural 0.5	0.75	1.25	10	0.563 0.138 277	284	0.6744	8
	Cu	9.94	Natural 0.625 0.625 1.25	10	0.563 0.082 9.71	10.2	0.6744	8
	MgO	0.150	Lagoon 0.75	0.5	1.25	10	0.531 0.410 0.140 0.160 0.8336	8
	C/N	11.5	Natural 0.375 0.875 1.25	10	0.523 0.938 11.0	12.0	0.8748

  OTU ∈ the undisturbed soil sequence of this OTU ∈ both sites

	op2015impact ,	yergeau2015transplanting ,	azarbad2015microbial ,
	bell2015early , wu2015molecular , zappelini2015diversity , foulon2016impact ,
	In	this	standard	method,	widespread	among	the	scientific	commu-
	nity	schmidt2013illumina ,	bell2014linkage ,		tedersoo2014global ,

  Moreover, Cross-Validation is oriented towards prediction performance rather than accurate support selection. An alternative approach devised in chretien2018hedging , based on the Hedge algorithm of freund1997decision and the stochastic Frank-Wolfe algorithm, was shown to outperform Cross Validation in terms of computational time for the linear model as well. .1.4/ CONTRIBUTIONS OF THE PAPERThe main contributions of the present paper are threefold. The first is to present a ℓ 1penalised maximum likelihood estimator for the ordered polytomous model and present efficient methods for computing this estimator. The second contribution is an efficient hyper-parameter calibration procedure based on recent work giacobino2015quantile .

	The last contribution is a freely available software implementation which can be downloa-
	ded online lecode .
	4.2/ MATERIEL AND METHOD
	4.2.1/ THE MODEL AND THE PENALISED ESTIMATOR
	4.2.1.1/ THE STANDARD POLYTOMOUS REGRESSION MODEL
	In the ordinal polytomous regression model, the independent qualitative output variables
	Y
	Recently, giacobino2015quantile devised a very efficient method called Quantile
	Universal Thresholding for hyper-parameter calibration in the linear model with a
	view towards efficient variable selection. Extensive numerical experiments provided
	in giacobino2015quantile show that Quantile Universal Thresholding outperforms

Cross-Validation, although 

Cross-Validation has to be performed when the noise variance is unknown. Fortunately enough, recent work on fast variance estimation, as described e.g. in kennedy2018greedy or based on chretien2018hedging , should however allow to overcome the burden of using Cross-Validation as a subroutine in the Quantile Universal Thresholding procedure of giacobino2015quantile . 4i , i = 1, . . . , n with Q modalities m 1 , . . . , m Q , are assumed to result from the quantification of a latent continuous variable Y

  The model that predicts, for each subject in the test sample, the largest category of the learning sample. It is named "null model" in Tables 4.1 and 4.2, as this is the best possibility if no explanatory variable is taken into account. λ = 0 and the null model are only performed to check if the first four methods work well. Indeed, when dealing with the logistic regression, it is important to check if the predictive model is better than simply placing all patients in the majority category. Moreover, when working on variables selection, it can be useful to check if the obtained model is better than the one with no selection.

	2.3.1.
	-λ parameter selection by BIC as in Section 4.2.3.2.
	-λ parameter selection according to Quantile Universal Threshold, as presented in
	Section 4.2.3.3.
	-The use of the Frank-Wolfe algorithm, to solve the constrained optimization with se-
	lection of the r parameter using Online Frank-Wolfe, as defined in Sections 4.2.2.2
	and 4.2.3.4.
	-The absence of variable selection. That is to say, the model obtained when the
	likelihood is maximized without penalty. This model is simply named "λ = 0" in
	Tables 4.1 and 4.2.
	-

  .2.-The average likelihood. That is, the geometric mean of the probabilities that the model fitted to the learning sample assigns the actual categories of subjects in the test sample. This is what we called "average likelihood" in Tables 4.1 and 4.2. -The average prediction error. That is to say, the average gap between the predicted category and the actual category, named "prediction error" in Tables 4.1 and 4.2. -The percentage of well-ranked subjects, weighted by the size of the categories.

	More precisely, we calculate 100×	n i=1	1 prediction is right	Q × p #I Y i	, where #I Y i is the number
	of subjects in the same category than Y i . This criterion attaches greater importance
	to the proper classification of subjects that are in a poorly represented category. It
	is referenced as "well-classified weighted" in Tables 4.1 and 4.2.

TABLE 4 .

 4 1 -Monte Carlo simulations with n learning = 200, p = 50, n test = 100

	choice of λ well	average	prediction well classified Time	λ	Nb of
	(or r)	classified likelihood error	weighted		(or r) variables
	BIC	66,7	0,48	0,35	59,4	2464,9 14,8 3,9
	QUT ∞ AIC	65,4 65,3	0,48 0,47	0,36 0,36	57,9 58,6	53,0 2458,9 10,2 7,1 22,0 2,6
	OFW	63,3	0,46	0,39	55,2	199,0	7,2	39,6
	λ = 0	60,0	0,44	0,43	55,3	20,1	0,0	50,0
	null model 49,0	-	-	-	0	-	0

TABLE 4 .

 4 2 -Monte Carlo simulations with n learning = 100, p = 200, n test = 50

	choice of λ well	average	prediction well classified Time λ	Nb of
	(or r)	classified likelihood error	weighted		(or r) variables
	QUT ∞ BIC	61,0 60,7	0,43 0,44	0,42 0,42	52,4 54,0	33,5 982,9 11,9 3,5 16,9 1,3
	OFW	59,8	0,43	0,42	50,2	72,4	6,4	54,1
	AIC	55,4	0,42	0,48	50,1	995,8 8,9	9,2
	null model 48,1	-	-	-	0	-	0
	λ = 0	36,7	0,22	0,77	40,0	12,8	0,0	200,0

TABLE 4 .

 4 3 -Paired Wilcoxon tests associated to Monte Carlo simulations with n learning = 200, p = 50, n test = 100 × 10 -03 3, 69 × 10 -03 7, 83 × 10 -071, 71 × 10 -09 7.38 × 10 -10 QUT ∞ 8, 03 × 10 -03 -7, 03 × 10 -01 3, 36 × 10 -03 9, 54 × 10 -08 7.83 × 10 -10 AIC 3, 69 × 10 -03 7, 03 × 10 -01 -8, 99 × 10 -04 2, 02 × 10 -08 7.32 × 10 -10 OFW 7, 83 × 10 -07 3, 36 × 10 -03 8, 99 × 10 -04 -1, 58 × 10 -06 7.44 × 10 -10 λ = 0 1, 71 × 10 -09 9, 54 × 10 -08 2, 02 × 10 -08 1, 58 × 10 -06 -1.95 × 10 -09 null model 7.38 × 10 -10 7.83 × 10 -10 7.32 × 10 -10 7.44 × 10 -10 1.95 × 10 -09 -TABLE 4.4 -Paired Wilcoxon tests associated to Monte Carlo simulations with n learning = 100, p = 200, n test = 50 10 -08 1.32 × 10 -09 OFW 3.77 × 10 -01 4.86 × 10 -01 -2.66 × 10 -05 1, 17 × 10 -08 1.31 × 10 -09 AIC 2.93 × 10 -04 5.47 × 10 -04 2.66 × 10 -05 -1, 87 × 10 -05 3.33 × 10 -09 null model 8, 66 × 10 -09 1, 62 × 10 -08 1, 17 × 10 -08 1, 87 × 10 -05 -6, 95 × 10 -07 λ = 0 9.13 × 10 -10 1.32 × 10 -09 1.31 × 10 -09 3.33 × 10 -09 6, 95 × 10 -07 -

	BIC	BIC -8, 03 QUT QUT ∞ BIC	AIC OFW	OFW AIC	λ = 0 null model	null model λ = 0
	QUT BIC	-6.74 × 10 -01	6.74 × 10 -01 -	3.77 × 10 -01 4.86 × 10 -01	2.93 × 10 -04 5.47 × 10 -04	8, 66 × 10 -09 9.13 × 10 -10 1, 62 ×

TABLE 4 .

 4 5 -Monte Carlo simulations with n learning = 100, p = 200, n test = 50

	choice of λ correctly average	prediction CRW Time	λ	Nb of	TPR TNR
	(or r)	ranked	likelihood error			(or r) variables		
	QUT ∞ BIC	61.0 60.7	0.43 0.44	0.42 0.42	52.4 54.0	33.5 982.9	16.9 1.3 11.9 3.5	23.2 100 37.2 99.8
	OFW	59.8	0.43	0.42	50.2	72.4	6.4	54.1	73.2 83.7
	CV	57.0	0.41	0.47	47.3	7794.3 11.3 4.0	42,7 98,6
	AIC	55.4	0.42	0.48	50.1	995.8	8.9	9.2	52.4 97.4
	null model 48.1	-	-	33.3	0	-	0	-	-
	λ = 0	36.7	0.22	0.77	40.0	12.8	0.0	200.0	-	-

TABLE 4 .

 4 6 -Monte Carlo simulations with n learning = 200, p = 50, n test = 100 Par ailleurs, durant ces travaux, nous avons également effectu é des tests sur une base de donn ée concernant le cancer de la vessie. Cette base contenait 34 g ènes pour 78

	choice of λ correctly average	prediction CRW Time	λ	Nb of	TPR TNR
	(or r)	ranked	likelihood error			(or r) variables		
	BIC	66.7	0.48	0.35	59.4	2464.9	14.8 3.9	58.8 99.6
	CV	65.8	0.48	0.36	58.9	17662.1 13.4 5.3	66.8 95.6
	QUT ∞ AIC	65.4 65.3	0.48 0.47	0.36 0.36	57.9 58.6	53.0 2458.9	22.0 2.6 10.2 7.1	48.4 99.96 74.0 94.8
	OFW	63.3	0.46	0.39	55.2	199.0	7.2	39.6	93.2 45.5
	λ = 0	60.0	0.44	0.43	55.3	20.1	0.0	50.0	-	-
	null model 49.0	-	-	33.3	0	-	0	-	-

TABLE 4 .

 4 7 -R ésultats vessieChoix λ ou r Bien Vraisemb Erreur de Bien class é Temps λ Nb de Class és moyenne pr édiction pond ér é (ou r) variables du sein, et nous a ét é confi ée par M. Jean Paul Feugas en vu d'une collaboration. Les premiers essais sur cette base font apparaître des bugs, peut-être dus à la taille des donn ées. Je n'ai pas eu le temps de m'y pencher davantage mais cela pourrait être une perspective de continuation possible de ces travaux.

	λ = 0	63,5	0,45	0,38	64,1	6,4	0,0	34,0
	Quantile ∞ 63,3 OFW 62,8	0,44 0,43	0,39 0,38	60,9 56,9	16,6 41,1	10,3 6,0	6,9 18,6
	AIC	61,9	0,43	0,41	59,2	478,4	13,6	3,7
	BIC	60,8	0,43	0,42	58,1	474,7	14,5	2,9
	Mod èle nul	49.2	-	-	-	0	-	0
	concerne le cancer						

Les r étrotransposons, ou él éments transposables de classe I, sont des él éments transposables qui fonctionnent sur un principe de copier-coller gr âce à une transcription de l'ADN en ARN et une r étrotranscription de cet ARN en ADN. C'est de cette r étrotranscription que vient leur nom de "r étro"transposons. Les transposons ou él éments transposables de classe II peuvent fonctionner par couper-coller (ex :Tn10, Tn5 Mos1...) ou par copiercoller (ex : IS911). Mais, dans les deux cas, leur propagation n'implique pas de transcription.La propagation des retrotransposons au sein du g énome est le sujet de notre contribution 2. Comme nous utilisons un mod èle de branchement pour mod éliser cette propagation, cette contribution pr ésente bri èvement des utilisations pr éc édentes de mod èles de branchement dans le cadre de l' étude des ETs. Il s'agit toutefois g én éralement, dans ces utilisations pr éc édentes, d' étudier via mod èle de branchement l' évolution de populations dont les membres poss èdent des él éments transposables.

Available at https ://github.com/SergeMOULIN/retrotransposons-spread

http ://flybase.org/

http ://www.girinst.org/repbase/

ABSTRACT

Motivation : LTR retrotransposons are mobile elements that are able, like retroviruses, to copy and move inside eukaryotic genomes. In the present work, we propose a branching model for studying the propagation of LTR retrotransposons in these genomes. This model allows us to take into account both the positions and the degradation level of LTR retrotransposons copies. In our model, the duplication rate is also allowed to vary with the degradation level. Results : Various functions have been implemented in order to simulate their spread and visualization tools are proposed. Based on these simulation tools, we have developed a first method to evaluate the parameters of this propagation model. We applied this method to the study of the spread of the transposable elements ROO, GYPSY, and DM412 on a chromosome of Drosophila melanogaster. Availability : Our proposal has been implemented using Python software. Source code is freely available on the web at https ://github.com/SergeMOULIN/retrotransposonsspread. Supplementary information : Supplementary data are available at Bioinformatics online.

ABSTRACT

High-throughput metabarcoding tools based on next generation sequencing are able to produce high volumes of data at an affordable cost. We have developed a receiver operating characteristic (ROC) analytical tool under Python and R that detects and emphasizes the discriminating factors in environmental datasets obtained from a wide metabarcoding analysis. This tool applies a ROC analysis on each variable of a given dataset (e.g., for each operational taxonomic unit) and produces several informative outputs (like the best threshold, the true positive and true negative rates, the area under the curve, etc.) for each variable. These variables are then sorted according to their discrimination power. Such a ROC analysis has been applied to a real metabarcoding dataset related to a Hgenriched tailing dump. We also performed an extensive comparison with other available