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RESUME ETENDU EN FRANÇAIS 

 

 

On considère dans ce travail une distribution aléatoire uniforme de particules solides, 

toutes identiques, immergées dans un liquide visqueux. On s’intéresse aux propriétés 

effectives de ce milieu pour une onde acoustique ultrasonore, c’est-à-dire aux propriétés 

d’un fluide fictif équivalent, dit fluide effectif, homogène, dans lequel une onde 

ultrasonore se propagerait avec les mêmes caractéristiques que celles de l’onde de 

compression « moyenne » (au sens statistique, en supposant une densité de probabilité 

de présence uniforme des particules au sein du fluide hôte) dans le milieu hétérogène 

réel. L’onde de compression moyenne ainsi définie, est dite onde cohérente de 

compression, et son nombre d’onde est le nombre d’onde effectif de compression. Enfin, 

et bien que l’onde incidente soit de compression, la nature visqueuse du fluide hôte et la 

présence des particules rend également possible la propagation d’une onde transverse 

« moyenne », dite onde transverse cohérente. Décrire le fluide effectif consiste donc à 

déterminer, soit les nombres d’onde effectifs et la masse volumique effective de ce 

fluide, soit sa masse volumique effective et ses modules de compression et de 

cisaillement effectifs, et à en déduire des coefficients effectifs de viscosité. 

Bien que tous les modèles permettant d’aboutir à une expression analytique des 

propriétés effectives aient comme point de départ les équations exactes de la diffusion 

multiple, le terme de « modèle de type MST (Multiple Scattering Theory) » est employé 

ici pour des modèles tels que ceux des Refs. [1-5], et celui de « modèle auto-consistant » 

pour ceux issus de la Coherent Potential Approximation tels que ceux des Refs. [6-8]. 

Les premiers sont basés sur une hypothèse de faible concentration et permettent 

d’obtenir les nombres d’onde effectifs sous la forme de développement de Taylor, en 

puissance de la concentration. Dans les seconds, l’hypothèse « basse concentration » est 

remplacée par une hypothèse « basse fréquence ». Une présentation plus détaillée et plus 

complète de ces différents types de modèles, et de quelques autres, est présentée dans le 

chapitre 1. 

 

Le chapitre 2 de ce manuscrit concerne l’étude des coefficients de diffusion d’une 

particule sphérique élastique dans un fluide visqueux. Pour une onde partielle incidente 

de mode n et de polarisation p (p = C pour les ondes de compression, p = S pour les 



ii 

ondes de cisaillement dans le plan (r, θ)), associée au potentiel de déplacement 

( ) ( ) im
n p nj k r P cos e ϕθ  en coordonnées sphériques (r, θ, ϕ) centrées sur le centre de la 

particule, et une onde diffusée de polarisation q (q = C, S) associée au potentiel 

( ) ( ) ( ) ( )pq 1 im
n n q nT h k r P cos e ϕθ , des expressions approchées des coefficients de diffusion 

pq
nT  sont obtenues sous l’hypothèse de grandes longueurs d’onde devant le rayon a de 

la particule, à l’exception de la longueur d’onde transverse dans le fluide. Pour les modes 

n = 0 et n = 1, ces expressions sont similaires à celles déjà publiées respectivement 

dans la Ref. [9] et dans les Refs. [10,11] : 

 
( )( )

3

ccc
0

B B k a
T i

4 3B

′−
=

′µ+
, 

avec B et B’ les modules d’élasticité volumiques respectifs du fluide extérieur et de la 

particule, iµ = − ωη , et η  le coefficient de viscosité de cisaillement, 
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avec ρɵ  le rapport des masses volumiques particule / fluide extérieur, 

 ( )ha haˆY 3 2 1= β + ρ − γ  

Et 

 
( ) ( ) ( )

( ) ( ) ( )
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ze s 1 s 1 s s 2 s
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 , 
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nz  étant soit une fonction de Bessel nj , soit une fonction de Hankel de première espèce 

(1)
n nh h= , e a=  dans les expressions précédentes des coefficients de diffusion et 

e b=  dans l’expression de la masse volumique effective donnée page v. 

 

Pour n > 1 : 
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 . 

 

Ainsi, pour une onde incidente de compression, le coefficient de diffusion en onde 

transverse S du mode n = 2 est-il d’un ordre de grandeur équivalent à celui du 

coefficient de diffusion en onde C des modes n = 0 et n = 1, comme cela avait déjà été 

constaté numériquement au cours du travail de la Ref. [12] effectué au tout début de 

cette thèse. Nous avons choisi de ne pas présenter ici la Ref. [12] car un autre modèle 

[5] que celui utilisé dans le reste du manuscrit et, limité dans tous les cas à de faibles 

concentrations, y était utilisé, d’une façon différente de celle présentée dans la Ref. [13], 

ce qui pose des questions pour le moment encore sans réponse. 

 

Les expressions obtenues pour n > 1 montrent que les coefficients de diffusion ne 

dépendent du rapport des masses volumiques des milieux solide et fluide que pour les 

modes monopolaire n = 0 et dipolaire n = 1, raison pour laquelle seuls ces deux modes 

ont été utilisés par la suite pour la détermination de la masse volumique effective. 

 

Le chapitre 3, qui a fait l’objet de la Ref. [14],  présente le modèle auto-consistant utilisé 

[8] pour déterminer la masse volumique effective, ainsi que l’étude de cette dernière.  



iv 

Le milieu hétérogène, constitué de la concentration c de particules sphériques élastiques 

de rayon a dans un fluide visqueux, est modélisé par un noyau sphérique de même 

matériau que les particules et de même rayon, entourées d’une coque sphérique du fluide 

hôte, le tout immergé dans un autre fluide visqueux, comme représenté sur la figure 

suivante. 

 

 

Le rayon b de la couche de fluide intérieure est lié au rayon a des particules et à leur 

concentration c par la relation : 

 
3

3

a
c

b
=  , 

et le fluide extérieur est considéré comme le fluide effectif quand la diffusion de  

l’ensemble noyau-coque, dans le cas d’une onde plane de compression incidente, est 

minimale. 

Dans le but d’obtenir des expressions analytiques des propriétés effectives, l’hypothèse 

de grandes longueurs d’onde est de nouveau faite, cette fois-ci par rapport au rayon b, 

et, de nouveau, en excluant toute hypothèse quant aux longueurs d’onde de cisaillement 

dans chacun des fluides. Ceci conduit à définir la fréquence f maximale  de validité du 

modèle, considérant une valeur maximale de |kcb| (petite devant l’unité) par : 

 
1 3

c max

v
af k b c

2
<

π
 , 

où v est la vitesse de phase adiabatique des ondes de compression dans le fluide hôte 

intérieur. 
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Pour des particules de silice dans l’eau, la figure suivante présente ainsi l’évolution de 

cette fréquence maximale en fonction de a, pour différentes valeurs de concentration. 

 

 

 

 

L’annulation des premières ondes partielles diffusées, correspondant aux modes n = 0 

et n = 1, sous ces hypothèses, conduit à l’obtention du module d’élasticité volumique 

effectif, 

 
( )

( )

3 cc
c 0

eff 3 cc
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B k b 4i T
B

k b 3iT
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=

−
 , 

et du rapport de la masse volumique effective sur celle du fluide hôte, 

 eff 1 9i
ρ δ
= +

ρ χ
 , 
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Le développement limité du rapport entre la masse volumique effective et celle du 

milieu hôte, autour de ksa = 0 et jusqu’à l’ordre 4 en ksa, permet de vérifier que le terme 

dominant (ordre 0 en ksa) de la masse volumique effective, quand le milieu hôte se 

rapproche d’un milieu élastique, est bien la moyenne volumique des masses volumiques 

respectives des particules et du milieu hôte. A l’opposé, pour des valeurs élevées de 

|ksa|, correspondant à un milieu hôte se rapprochant d’un fluide idéal, la masse 

volumique effective se rapproche bien de son expression pour un fluide hôte de viscosité 

nulle, 

 
( ) ( )
( ) ( )

eff
2 c

2 2c

′ ′ρ + ρ + ρ − ρρ
=

′ ′ρ ρ + ρ − ρ − ρ
 . 

Entre ces deux extrêmes, la masse volumique effective évolue, avec ksa, comme le 

montre la figure suivante, dans le cas de particules de silice dans l’eau. 

 

 

Dans cette figure, les lignes horizontales hachurée et continue représentent les limites 

pour un milieu hôte respectivement élastique et fluide idéal, et les lignes rouges au 

développement de Taylor autour de ksa = 0. Les points verts, quant à eux, représentent 

le rayon a minimal de particules de silice, dans l’eau et avec une concentration c = 0,4, 

compatible avec les hypothèses effectuées, c’est à dire une valeur donnée maximale 

(petite devant l’unité) de |kcb| : 
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( )( )

2

s c 1/3
max 2

c smax

e k a k
a 2 c

k b k

−
ℜ

=  . 

Cette figure met en évidence une « fréquence de résonance », pour ( )se k a 5ℜ ≃ , et la 

figure suivante montre l’augmentation de cette fréquence de résonance avec la 

concentration, de façon similaire à celle observée [10] auparavant sur les courbes 

d’atténuation et de vitesse de l’onde de compression effective. 

 

 

Le chapitre 4 porte encore sur la masse volumique effective, cette fois-ci pour des 

sphéroïdes rigides alignés, de rayons polaire ap et équatorial aeq, d’ellipticité ell, avec 

 
2

p eq
ll 2

p eq

min (a , a )
e 1

max (a , a )
= −  , 

sous l’hypothèse de faible ellipticité ou de grande longueur d’onde transverse, 

 ( )
1/2

2 2
s p eqk a a 1− << .  

La modélisation adoptée est celle développée par Ament [15] pour des sphères. Elle est 

basée sur l’écriture de l’équilibre entre forces inertielle et hydrodynamiques au niveau 

d’une particule solide, supposée soumise à des déplacements harmoniques de translation 

dus à une onde plane incidente de compression. Sous l’hypothèse d’écoulement 

incompressible, la vitesse des particules du fluide effectif y est supposée égale à la 

moyenne volumique des vitesses respectives des particules de fluide et de solide, et la 

masse volumique effective est obtenue en considérant que la quantité de mouvement 

effective, est, elle aussi, égale à la moyenne volumique des quantités de mouvement du 

fluide hôte et des particules solides. Bien qu’une étude plus récente [11] prenne en 
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compte la nature compressible de l’écoulement dû à l’onde acoustique, et que les 

particules y soient supposées rigides, le modèle d’Ament conduit, comme vu au chapitre 

précédent, à une expression correcte de la masse volumique effective dans le cas d’un 

fluide hôte non visqueux, et c’est, conjuguée à sa plus grande simplicité que celui de la 

Ref. [11], la raison pour laquelle il est utilisé dans ce dernier chapitre. Il est donc 

présenté, dans un premier temps, dans le cas de particules sphériques, afin de ré-établir 

la masse volumique effective trouvée par Ament, 

 
( ) ( )

2
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2 1 c 1 c

1 c c
W iZ

ρ − −ρ
= − + ρ −

ρ +

ɵ
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Avec 
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s s
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ℜ

  = +  ℜ  ℜ 

ɵ

 , 

 

et de la comparer avec celle obtenue dans le cadre de ce travail, comme illustré sur la 

figure suivante, tracée pour des particules de silice dans l’eau et une concentration 

c = 0,1 : 
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et une concentration c = 0,4 : 

 

 

Quand la concentration augmente, le désaccord entre les deux modèles augmente : le 

pic de « résonance » observé sur la partie imaginaire du rapport des masses volumiques, 

observé à fréquence plus élevée dans le cas de notre modèle que dans celui d’Ament, 

est translaté vers les hautes fréquences de façon beaucoup plus marquée dans notre 

modèle. Le modèle d’Ament considère une viscosité du fluide indépendante de la 

concentration dans l’écriture de la force de traînée à laquelle chaque particule est 

supposée soumise, contrairement au modèle auto-consistant que nous avons utilisé, qui 

intègre, au travers des nombres d’onde effectifs et de la masse volumique effective, une 

viscosité effective dépendante de la concentration. 

 

Le modèle d’Ament est ensuite étendu au cas de particules rigides, sphéroïdales aplaties, 

alignées parallèlement à la direction de l’onde incidente selon leur axe de révolution, 

respectivement allongées (« prolate spheroids ») ou aplaties (« oblate spheroids ») dans 

cette direction. Les expressions obtenues pour la masse volumique effective sont 

identiques dans les deux cas : 
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 , 

et Q1 la fonction de Legendre de 2nde espèce, telle que : 

 ( )1

x x 1
Q x ln 1

2 x 1

 + = −  −
 , et p eq

ll
p

max(a , a )
e

a
ε =  . 

A concentration c, volume des particules a3 = 1 µm3, et ellipticité ell = 0,9 donnés, tels 

que ( )
1/2

2 2 4
s p eq

max

k a a 2.10−− <  , la figure suivante présente la comparaison entre les 

cas des sphères et des sphéroïdes, oblongues comme aplaties, pour des particules de 

silice (considérées comme rigides) dans l’eau et une concentration de 0,1. 

 

  

 

Les courbes correspondant à des sphéroïdes allongées sont situées de part et d’autre de 

celles correspondant à des sphères. A fréquence donnée, la masse volumique effective 

est plus proche de celle qui correspondrait à un fluide non-visqueux pour les sphéroïdes 

allongés dans le sens de la propagation de l’onde, en raison de leur opposition moindre 

au mouvement du fluide environnant sous l’effet de l’onde incidente. 
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Enfin le manuscrit se clôt par une conclusion dans laquelle sont rappelés les principaux 

résultats obtenus et des perspectives de recherche future avancées : 

- Calcul des coefficients de diffusion de l’ensemble noyau-coque 

- Calcul des coefficients de diffusion de sphéroïdes oblongues ou aplaties 

- Essai d’utilisation du modèle auto-consistant pour calculer les nombres d’onde 

effectifs et une viscosité transverse effective 

- Calcul d’une viscosité effective à partir du modèle d’Ament en établissant une 

relation entre la force de traînée et la concentration 

- Essai d’établissement d’un modèle hydrodynamique pour calculer le nombre 

d’onde effectif de compression dans le cas de particules sphéroïdales oblongues 

ou aplaties 
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INTRODUCTION 

 

 

Estimating the effective properties of complex media is of interest from both a theoretical 

and an experimental point of view owing to their numerous applications; these include the 

mechanical properties of solid composite structures, the sound-absorbing properties of 

porous materials and the dynamic properties of fluid-suspended particle systems. A proper 

understanding of the dynamic properties of suspensions is of great significance, for 

example in the determination of particle mass or density by oscillatory methods, or in 

resonant acoustic mixing. 

Acoustic propagation in dispersions of particles in fluids has drawn plenty of attention and 

has found many important applications in science and engineering, as discussed in Ref. [1]. 

Although many workers have conducted an extensive amount of research on acoustic 

characterisation of the physical properties of suspensions for nearly a century, they usually 

either consider inviscid host fluid cases or include viscosity without taking particle-particle 

interactions into account. There is a very little research on the inclusion of fluid viscosity 

through inter-particle interactions in modelling acoustic wave propagation in suspensions. 

However, it has been demonstrated recently, both theoretically and experimentally, that the 

viscous nature of the host fluid does indeed play an important part in determining the 

effective properties of a suspension [2]–[6]. 

The question motivating the work reported in this thesis is this: what are the appropriate 

effective properties for propagation in a suspension of particles in a viscous liquid? Luppé 

et al.[3] applied the multiple scattering model of Conoir et al.[7], devoted to cylinders in 

an elastic matrix, to solid spheres in a thermo-viscous fluid. The application of this model 

to suspensions of silica particles [5] showed that the additional effects of mode conversion 

owing to fluid viscosity have increasing impact on the effective properties at higher 

concentrations. Hence, the work reported in this thesis began with the use of the multiple 

scattering model of Ref. [3] in order to obtain the effective shear wave number [8]. 
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The effective shear viscosity is studied through the use of its relation to the effective 

wavenumber and mass density, taking the latter as the volume average of the fluid and 

respective particles densities as it would be if the host was an elastic solid. Later, Valier-

Brasier et al. [9] reported a different expression for the effective shear wavenumber, using 

the same model [3], but under different assumptions. Questions remained, therefore, as to 

the appropriate effective properties in the case of a viscous liquid host. 

The multiple scattering models (reviewed in Chapter 1) on which this model ([3]) is built, 

provide the effective wavenumbers as solutions of an implicit dispersion equation. Under 

the low concentration assumption, the effective wavenumbers are given explicitly as series 

in integer powers of the concentration. Hence these multiple scattering models are useful 

at low concentration, but are limited in their application to systems of high concentration. 

This is the reason why we use here a different method, a core-shell model, restricted to 

“low frequency”, but not to low concentration, based on Mei’s work [10]. It is applied in 

Ref. [10] to solid cylinders in an elastic matrix, and we extend it in this work to solid 

spheres in a viscous fluid to obtain the effective mass density [11] by incorporating mode 

conversion phenomena. 

The assumptions made throughout this thesis are as follows. We consider linear acoustics: 

the incident wave field amplitude is supposed to be small enough such that nonlinear 

effects like generation of subharmonics do not occur. The host medium is assumed to be a 

Newtonian viscous liquid, and thermal effects are neglected [4]. This thesis also deals with 

the so-called Rayleigh scattering regime for the compressional waves: the wavelength of 

compressional wave in the continuous phase, and that of compressional and shear waves 

in dispersed phase are considered to be much larger than the dimension of the particle. 

However, no restriction has been placed on the magnitude of the shear wavelength in the 

background fluid. The particles are assumed to be spherical and all identical, and to be 

linear elastic solids. The spheres are assumed to be randomly distributed, so that the 

effective properties are isotropic in the long wavelength regime. 
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The rest of the thesis is organized as follows. In Chapter One we briefly discuss and review 

different types of models that are used to determine the effective properties of discrete 

random media. Chapter Two deals with the scattering of an acoustic wave by an elastic 

spherical object immersed in a viscous fluid. We first formulate the scattering problem and 

then calculate the scattering coefficients for the sphere for general partial wave orders, 

taking the fluid viscosity into account through the inherent coupling between 

compressional and shear waves. We present approximate formulas for those scattering 

coefficients in the Rayleigh scattering regime for compressional waves. In Chapter Three, 

we present the core-shell model and extend it for viscous host fluid and derive the effective 

bulk modulus and mass density of the system. Chapter Four deals with spheroidal particles 

in a viscous fluid. We extend the existing Ament model from spherical particles to 

spheroidal ones so as to investigate the dynamic behavior of the effective mass density for 

suspensions of both prolate and oblate spheroids. A summary of our main results and 

perspectives for future work are given in the Conclusion. 
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CHAPTER ONE 

BACKGROUND 
 

 

1.1 INTRODUCTION 

A plane acoustic/elastic wave, which may be characterized by a frequency and a 

propagation direction, can freely propagate in an infinite homogeneous medium. 

However, a wave undergoes scatterings while travelling in a complex random material. 

Since waves can carry information about a system in which they propagate, it is of 

particular interest to investigate and understand the scattering occurring in the system. 

As an example, we can think of a plane wave propagating through a finite scattering 

region, which consists of a finite number N of inhomogeneities (e.g. inclusions, voids, 

cracks) but is otherwise homogeneous. The total displacement field u(r) at an 

observation point r  located outside the scatterers can be written as: 

 ( ) ( ) ( )inc s
1

,
=

= +∑u r u r u r r

N

i

i

      (1.1) 

uinc(r) is the displacement at r  caused by the incident wave and us(r, ri) the 

displacement at r produced by the wave scattered by the i-th scatterer. The latter is in 

turn produced by the primary (incident) wave and also by the rescattering (i.e. secondary 

and higher-order scatterings) of the primary waves from the other particles. Therefore, 

one has to solve a multiple scattering problem in order to calculate u(r) exactly, which 

requires the knowledge of the exact location of all the particles in order to account for 

the continuity of the displacements and stresses across the boundary of each particle. 

However, in general, it is not feasible to obtain this kind of exact information about a 

disordered medium, and thus one has to make some approximation. 

In a disordered medium, the positions of the particles, and, eventually, their physical 

parameters, are treated as random variables, and the statistical average of the 
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propagating fields defines the coherent waves, whose complex wavenumbers are the 

effective wavenumbers. The effective medium is defined as the (fictitious) 

homogeneous medium in which waves would propagate with those same complex 

wavenumbers. Obviously, the coherent fields depend upon the multiple scattering 

events the original incident wave has undergone; the effective properties, i.e. those of 

the effective medium, depend thus on the particles size to the wavelengths ratios. The 

imaginary parts of the effective wavenumbers describe the attenuation the coherent 

waves undergo, due to multiple scattering and intrinsic visco-elasticity of the host 

medium, and mean free paths may be defined [1]. When propagation in the disordered 

medium is studied over distances smaller or the order of one elastic mean free path, the 

description of the disordered medium as an effective one makes sense [2-3]. When it is 

larger than a few mean free paths, then it is more relevant to study the energy diffusion 

rather than the amplitude propagation. This work focuses on the first case, where 

defining an effective medium makes sense. 

The modelling of composite materials and the concept of effective medium date back 

to the late nineteenth and early twentieth century with the works of Maxwell, Rayleigh 

and Einstein [4]. Maxwell obtained the effective conductivity of a composite medium 

[5]. Rayleigh developed a multipole method to find the effective electrical conductivity 

of a periodic medium composed of cylinders [6]. Einstein found an expression for the 

effective viscosity of a dilute suspension of rigid spherical particles in a viscous fluid 

[7]. 

In what follows, we review and discuss different approaches to estimating the effective 

properties of a discrete random medium. 

 

1.2 REVIEW OF EXISTING THEORIES 

1.2.1 Phenomenological Approach 

The phenomenological approach is an effective medium approach [8]. The velocity of 

sound v  through a homogeneous medium is given by the Newton-Laplace formula: 

 ( )
1/2

v
−

= ρκ          (1.2) 



7 

where ρ  and κ  are respectively the density and compressibility of the medium. When 

a compressional wave propagates through a suspension, there will a well- defined phase 

velocity V  such that one can define an effective density effρ  and compressibility effκ , 

which are related by the following simple equation: 

 ( )
1/2

eff eff effv
−

= ρ κ         (1.3) 

Wood first applied this equation to fluid mixtures [9], and Urick generalised it to 

dispersions of solid particles [10]. If a two-phase mixture composed of a volume 

fraction c  of a phase with density ′ρ  and compressibility ′κ , suspended in another phase 

of density ρ  and compressibility κ , then the Urick assumptions are: 

 ( )eff 1 c c ′ρ = − ρ + ρ        (1.4) 

 ( )eff 1 c c ′κ = − κ + κ        (1.5) 

The assumption behind the Urick equation is that the particles are infinitesimally small 

compared to the wavelength of the wave, and hence the scattering can be ignored. 

Although the Urick equation works for many systems where the above assumptions are 

approximated, it cannot always make a satisfactory prediction. As particles increase in 

size compared to the wavelength of the wave, the assumption based on the Urick 

equation is no longer valid and hence significant deviations between theoretical 

prediction and experimental data occur. 

In order to calculate a value for the phase velocity in a suspension, Ament derived an 

expression for the effective dynamic mass density using an elementary physics 

approach [11]. Combining equations of incompressible flow, conservation of 

momentum, and equilibrium between the viscous drag (which includes the inertial and 

viscous terms) and the buoyant force on the suspended particle, Ament obtained an 

expression for the effective density of a suspension: 

 
( ) ( )

2

eff 2 2

2 c 1 c W
= (1 c) c

W + Z

′ρ − ρ −
′ρ − ρ + ρ −     (1.7) 
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with ( )
9 1

W = 2 (1 c) + 3
2 a

′ρ − ρ − ρ + ρ
β

,  =
2

ρω
β

η
,  and 

2
9 1 1

Z =
2 a a

   ρ +   β β  

, 

where a  is the particle radius, η  the shear viscosity of the host fluid and ω  the circular 

frequency. Therefore, with Eqns. (1.5) and (1.7), equation (1.3) gives the phase speed 

in the suspension. The Ament expression is based on the assumption that the particles 

are spherical, rigid and small compared with the compression wavelength but is 

comparable in size to the shear wavelength in the host fluid. The Ament equation tends 

to the Urick equation in the limit of very small particles (i.e. a 1β ≪ ). Although the 

Ament formula has not been employed much in the literature, it has been found to be in 

good agreements with experimental measurements of phase velocity when employed 

[11, 12]. Since the Ament effective density formula contains several textual errors, it 

requires to be rederived which has been done in the fourth chapter. 

 

1.2.2 Multiple Scattering Theory 

Another approach to estimating effective dynamic properties of random distributions of 

particles is Multiple Scattering Theories (MSTs). When a wave propagates in a random 

medium, it undergoes several scattering events. This process is called multiple 

scattering, in contrast to single scattering, where the wave is scattered only once. Waves 

scattered from one inclusion can encounter a neighbouring inclusion which rescatters 

some of the original incident wave back onto the first inclusion. The incident and 

scattered waves from all the scatterers combine on the average to produce a new wave, 

known as the coherent wave, propagating at a different phase velocity and with 

attenuation [13]. MSTs mainly focus on calculating the coherent wavenumber of a 

random distribution of scatterers as a perturbation of the wavenumber of the host matrix. 

MST was initiated by Foldy in 1945; he derived a dispersion relation for an acoustic 

wave in a system of isotropic scatterers by introducing a configurational averaging 

procedure [13]. Lax later extended the theory of Foldy to obtain a new dispersion 

relation for anisotropic scatterers and applied the Quasi-Crystalline Approximation 

(QCA) to determine the effective field [14]. In both Foldy’s and Lax’s works the 

effective wave number was expressed in terms of the particle concentration and the 
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forward far field scattering amplitude taken from the solution of the single particle wave 

scattering problem. Waterman and Truell improved these two models by adding the 

effect of far-field backscattering to the multiple scattering process [15], which acted as 

the basis for large number of multiple scattering models. 

In order to consider higher concentration in the MSTs, Fikioris and Waterman 

introduced the pair correlation function in the form of “hole correction” to make sure 

that inclusions do not overlap during the averaging process [16]. 

Lloyd and Berry [17] applied the multiple scattering method of Lloyd [18], developed 

for the treatment of the electronic structure of liquids and disordered alloys, to the 

propagation of waves through a random dispersion of spherical particles. Lloyd and 

Berry also demonstrated that there is an implicit assumption of a superposition of thin 

slabs behind the Waterman and Truell model. 

Varadan et al. formulated an MST for randomly distributed spherical [19] and 

cylindrical [20] inclusions in an elastic matrix using QCA and a pair-correlation 

function to estimate effective phase velocity and coherent attenuation. More recently, 

Linton and Martin validated Lloyd-Berry’s formula and have given a new derivation 

for cylindrical [21] and spherical scatterers [22]. Identification of effective density and 

elastic properties based on multiple scattering models has also been carried out, to 

second order in concentration and therefore limited to low concentration [23–26]. 

Although Multiple Scattering Models are therefore well-established for obtaining 

effective properties, they have mainly focused on ideal (inviscid) host fluids and are 

valid only up to a limited concentration. This is due to the assumption made in MSTs 

that concentration is low, and effective properties are typically expressed as series in 

orders of the concentration, in contrast to the effective medium models where high 

concentrations are not constrained. However, an additional factor is the effect of thermal 

and shear wave modes produced by scattering of the acoustic waves by the particles; 

although the thickness of the thermal and viscous boundary layers are typically very 

small, they can affect other particles when the concentration is high and inter-particle 

separations consequently small. These effects have been neglected in MSTs until 

relatively recently, when Conoir and Norris generalised Linton and Martin’s formula 

for cylindrical particles in elastic media [27], providing the framework to include all 

effective wave modes (acoustic, thermal and shear) in the complex medium. The model 
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was extended to three dimensions (spherical particles) at second order in concentration 

by Luppé, Conoir and Norris (LCN) [28], and later to higher concentrations (third 

order), accounting for weak pair-correlations [29]. 

Alam et al. conducted a numerical study of the LCN model for a random dispersion of 

silica particles in viscous water and studied the effective shear wavenumber [30]. Using 

the coherent shear wavenumber from the LCN model and assuming a volume average 

mass density, the effective viscosity was defined and studied numerically. 

The previously-neglected multi-mode conversions have been demonstrated to be 

significant in nanoparticle suspensions and the new model applied to such systems [31] 

presents a greatly improved agreement with experimental data [32-33]. Further 

experimental evidence of the need for the determination of improved effective 

properties is provided by a number of other workers studying acoustic propagation in 

liquid suspensions of particles [34-35]. 

 

1.2.3 Self-Consistent Theory 

1.2.3.1 Static Theory 
 

One approach used to determine the effective properties of random composites is to use 

self-consistent theories. A single inclusion is embedded within an effective 

homogeneous medium and self-consistency is imposed such that the physical properties 

(e.g. strain, stress) in the embedding medium surrounding this single inclusion are the 

same as those in the effective medium as a whole. While the early models, such as the 

static self-consistent method of Hill [36] and Budiansky [37], treated each inclusion as 

embedded directly in the infinite, homogeneous, effective medium, Christensen and Lo 

[38] proposed a Generalised Self Consistent Model (GSCM), originally developed by 

Kerner [39]. The GSCM introduced a layer of the host matrix material into the 

equivalence model; the inclusion was treated as though embedded within a shell of host 

material, which was then embedded within the infinite effective medium (as illustrated 

in Figure 1.1). Christensen [40] investigated several theoretical models and concluded 

that the only one of these that produced acceptable results and improved agreement with 

experimental data was the GSCM model; it thus received much attention and was 
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exploited by many authors [41–45]. However, these schemes were purely static, 

focussing on the averaging or homogenisation of physical quantities such as stress, 

strain and displacement [46]. For dynamic, wave-based problems such as acoustics, an 

extension of the models to include wave phenomena is necessary. 

 

(a) (b) 

Figure 1.1 shows (a) the propagation of the average wavenumber through a random dispersion of 
particles (b) how the system can be modelled using the Generalised Self Consistent Method. 

 

1.2.3.2 Dynamic Theory 
 

Although there are a variety of dynamic effective medium models, the most widely 

adopted is based on the following two hypotheses [47-48]: 

(i) a single inclusion (coated with a shell of the host medium) behaves as if 

isolated and embedded in the corresponding effective medium, 

(ii) the mean wave field in the composite medium coincides with the wave field 

propagating in the homogeneous effective medium. 

The first hypothesis reduces the many-particle problem to a single-particle one in the 

same way as the static self-consistent models, and the second one is the self-consistency 

condition applied to the wave field. 

Any wave propagating in a composite material can be thought of as the sum of two 

wave fields: a mean (coherent) wave propagating in a medium having the dynamic 

effective properties of the composite and a number of fluctuating waves arising from 

the multiple scattering of the mean wave due to the spatial randomness in the elastic 
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parameters of the composite material. The fluctuating field, which, in an effective 

medium, on average, requires to be zero [49]. 

This wave-based generalised self-consistent theory has been applied by many 

investigators. For solid inhomogeneous systems, models include the self-consistent 

approach of Kanaun et al. [48], Sabina and Willis [50], the quasi-static-limit 

approximations of Berryman [51-52], Kuster and Toksöz [53], Jin [54] and Mei et al. 

[55], the dynamic approach of Gaunaurd [56], investigating solid in solid composites at 

low concentration (no multiple scattering) to obtain static shear modulus and density, 

extended by Kerr [57] to obtain frequency-dependent parameters for spherical solid 

inclusions, and by Kim [49] to obtain frequency-dependent elastic parameters. For 

complex fluids, i.e. liquid suspensions of particles, the effective medium method has 

been studied by Hemar et al. [58] and McClements et al. [59] to determine acoustic 

properties with thermal effects, Cowan et al. [60], and Hipp et al. [61] for acoustic 

systems with both thermal and shear phenomena. These workers were motivated by the 

characterisation of particles in suspensions using acoustic spectroscopy and the need to 

account for thermal and shear phenomena which were not accounted for in existing 

multiple scattering models. 

 

1.2.3.3 Dynamic Generalised Method 
 

Since MSTs are limited to low volume concentrations, Yang and Mal combined the 

GSCM with Waterman and Truell’s MST in order to obtain a Dynamic Generalised Self 

Consistent Method (DGSCM) [62], whereby they calculated the effective wavenumber 

of a fibre-reinforced composite (a 2D cylindrical problem) in a self-consistent manner; 

they showed that the effective wave speed calculated was in good agreement with 

experimental data. Yang [63] and Kim [64] used the same methodology for spherical 

inclusions. Other workers have also combined the two approaches, to determine 

effective properties at higher concentrations, but retaining the wave-nature of the 

problem. McClements et al. applied this approach for thermal interactions [59], and 

Hipp combined the two methods for a thermal-viscous-acoustic system of spherical 

particles although assumptions were made regarding effective properties rather than 

deriving them [61]. 
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CHAPTER TWO 

SINGLE-SPHERE SCATTERING 
 

 

2.1 INTRODUCTION 

The scattering of an acoustic wave by a single inclusion is an underpinning scattering 

problem, which has been investigated for almost one and a half centuries, dating back to 

the work of Lord Rayleigh (John William Strutt) [1]. Single sphere scattering, being a 

fundamental physical problem, still retains a position of importance in scattering theory. 

This problem is often studied because it is less complicated in nature than other geometrical 

configurations, and, as such, can be described by a minimum number of parameters. 

Knowledge of the scattering characteristics of a single spherical particle, though not directly 

related to many applications, has far-reaching implications in single particle models [2-3], 

multiple scattering models [4–11] and effective medium models [7, 12–15]. 

A spherical particle subject to an acoustic field pulsates (radial expansions and 

contractions) and oscillates (translatory to-and-fro motion) relative to the surrounding 

liquid. The pulsation and oscillation the particle undergoes act as a source of the scattered 

waves. If there is a density contrast between the particle and the liquid, an inertial force 

exists; if the liquid has a viscosity, there exists a viscous force as well, which opposes the 

inertial force, thereby damping the oscillation of the particle. If the particle’s density is 

close to its surrounding fluid, thermal effects, due to the differences between the thermal 

properties of the particle and of the continuous phase, becomes dominant and hence the 

inertial effects are negligible. However, in situations where the density contrast between 

the particle and its surrounding fluid is high, the dominant form of scattering is visco-

inertial, while thermal scattering becomes insignificant [3]. 
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(a) 

(b) 

Figure 2.1 (a) shows the scattering profile of a single spherical particle immersed in a viscous fluid and 
subject to an acoustic compressional wave field in the long wavelength (Rayleigh) limit. Figure 2.1 (b) 
shows the inertial force F

i
 and the viscous force F

v
 acting on the particle as the acoustic wave sets the 

particle into vibratory motion. 

 

The total wave field, which is expressed as an infinite sum of partial wave orders, can be 

approximated to a sum of the first few orders in the long wavelength region. Figure 2.1 (a) 

shows the first few multipole components for an incident compressional wave: a monopole 

component due to the particle pulsation originating from the compressibility contrast, a 

dipole component due to the particle oscillation stemming from the density contrast, and a 

quadrupole component arising from the shear modulus contrast. At higher frequencies, 

more and more partial wave modes are required to calculate the total wave field, which 

entails the determination of higher order scattering coefficients. 
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In this chapter we calculate analytical expressions for scattering coefficients for an elastic 

spherical particle embedded in a viscous liquid for arbitrary partial wave orders by taking 

account of the inherent coupling between compressional and shear wave modes. We start 

with a brief review of single-sphere scattering and then discuss the essential theory to study 

scattering by a sphere in order to facilitate the derivations of scattering coefficients. At the 

end of this chapter we present the numerical results for scattering coefficients. 

 

2.2 LITERATURE REVIEW 

Early work was mainly focused on the scattering of scalar (sound) wave by a single 

inclusion embedded in an inviscid fluid because of less mathematical complexity. Lord 

Rayleigh first theoretically investigated the scattering of sound by a spherical inclusion in 

an ideal fluid in 1872. He obtained the exact solution to the problem in terms of an infinite 

series involving products of Bessel functions and Legendre polynomials, known as the 

Rayleigh partial wave method. For the case of a rigid particle, he performed the calculation 

for a particle of size comparable to the wavelength, but in the case of a fluid scatterer, he 

confined himself on account of mathematical difficulty to the case when the dimension of 

the fluid scatterer is much smaller than the wavelength, also known as Rayleigh scattering 

ck a 1≪ , where ck  is the compressional wavenumber and a  the radius of the particle [16]. 

Rayleigh’s solution, being in the form of an infinite series, does not pose any difficulty for 

ck a 1≪ , because only the first few terms of the series contribute significantly. 

The work of Rayleigh - which opened the door to acoustic scattering theory - was built on 

by a number of workers over the years. Since Rayleigh in his treatment assumed the 

spherical obstacle to be either liquid or perfectly rigid, Herzfeld extended Rayleigh's theory 

for an elastic spherical inclusion with finite elastic constants, but he focused attention on a 

small-sphere limit as did Rayleigh for the fluid inclusion [17]. Faran conducted a similar 

investigation to that of Herzfeld; he derived an exact analytical solution for the scattering 

phase angle for an arbitrary partial wave order by taking both the transmitted compressional 

and shear wave in the sphere as well as the scattered compressional wave in the fluid [18]. 

Since important contributions to the acoustic scattering arise when the dimension of a 

scatterer is comparable to the wavelength, Anderson, neglecting both viscous and thermal 
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effects, analytically calculated the reflectivity coefficient for a sphere of diameter up to 

several wavelength; the coefficient reduced to that obtained by Rayleigh in the limit of 

small acoustic-radius [19]. Hart reported formulas for the reflectivity and total cross section 

for scattering of sound wave from a sphere of arbitrary size when the acoustic properties of 

the sphere are close to those of the host fluid [20]. 

For the case of an elastic sphere embedded in another elastic medium, the situation is more 

complicated because when an elastic wave of either the compressional or shear type 

interacts with an elastic scatterer, waves of both types are generated in the scattered field 

and inside the scatterer. Since developing full elastic wave treatments is difficult, most 

studies employ various approximations to tackle the problem. Ying and Truell first reported 

on a theoretical study of the scattering of elastic waves from a spherical inhomogeneity 

embedded in an elastic solid matrix for an incident plane compressional wave; they 

considered three different types of spherical inclusions: an elastic sphere, a spherical cavity, 

and a rigid sphere [21]. They dealt with each type of inclusion separately instead of 

obtaining them from the elastic sphere case because some terms in their general solution 

become ambiguous when taking the limiting value of the density of the particle. Pao and 

Mow improved Ying and Truell’s results by redefining the boundary conditions for a rigid 

sphere assuming that the rigid sphere undergoes translational motion in its surrounding 

elastic solid, and then demonstrated that the result of the elastic sphere reduced to all three 

types of spheres, i.e. rigid, fluid, and cavity, by taking their corresponding limits [22]. 

Einspruch and Truell adopted the method of Ying and Truell to study the scattering of a 

plane compressional wave by a fluid-filled spherical cavity and obtained explicit 

expressions for the scattering coefficients [23]. Knopoff published two articles in 1959 

where he explored the scattering of a plane compressional wave [24] and of a shear wave 

[25] by a perfectly rigid sphere imbedded in an elastic solid medium and calculated the 

directivity pattern in the far field for both types of waves. 

Einspruch and his co-workers published a paper in 1960 where they investigated the 

scattering of a plane transverse (shear) wave by four different types of spherical obstacle in 

an elastic solid matrix [26]. Kraft and his co-workers, in the light of Einspruch et al.’s 

analytical results, carried out a numerical study on the transverse scattering cross section 

for a wide range of shear wavenumber-radius values for a spherical cavity [27], and an 

elastic sphere [28]. One of the results of Ying and Truell's, and Einspruch et al.'s work was 



21 

that the scattering cross section for a rigid sphere was independent of the wavelength in the 

Rayleigh limit. They considered the rigid sphere to be immovable in the solid matrix, 

meaning that the resultant displacement due to the combined incident and scattered waves 

vanishes at the surface of the sphere. Iwashimizu, on the contrary, while working on the 

same problem, treated the rigid sphere as movable and demonstrated that the scattering 

cross-section depends on the inverse of the fourth power of the wavelength in the Rayleigh 

limit as it does for other types of spherical obstacles [29]. Iwashimizu pointed out that 

Einspruch et al.'s expression of the scattering cross section of an elastic sphere diverges in 

the limit of rigid sphere, and calculated a modified expression which reduces to the rigid 

sphere case in the limit of infinite shear modulus of the particle. 

Waterman developed a matrix theory to study the scattering of elastic (and electromagnetic) 

waves by an elastic inclusion of general shape embedded in an elastic solid [30]. Waterman 

scattering theory was based only on the compressional wave mode, which is governed by a 

single scalar wave equation. Varathrajulu and Pao extended Waterman’s matrix theory to 

full elastic wave scattering by taking account of the coupling between longitudinal and 

transverse waves [31]. Hinders undertook a study on the scattering from an elastic obstacle 

of arbitrary size for the case of a planar incident compressional or shear wave, and derived 

exact solutions for the scattered waves; he also analytically obtained expressions for the 

scattering cross section and extinction coefficients [32]. Sessarego et al. conducted an 

experiment to measure the scattering of a compressional wave by an aluminium sphere 

embedded in Plexiglas, which validated their own analytical results [33]. 

Scattering of acoustic waves from a single inclusion in a viscous fluid has also drawn much 

attention in the literature. Viscous fluids support shear waves just like elastic solids do, but 

in viscous fluids they are lossy. Sewell was the first to calculate the loss of energy due to 

scattering from an incident sound wave in the presence of a rigid, infinitely heavy 

(immovable) particle by taking account of the viscous nature of the host fluid (gas) [34]. 

Epstein and Carhart treated the scattering of acoustic waves from a fluid sphere in viscous 

and thermally conducting fluids with a view to calculating attenuation due to sound 

propagation in a random dispersion of fluid particles in another fluid phase [2]. A similar 

approach was followed by Allegra and Hawley, in which they extended the work of Epstein 

and Carhart to an elastic sphere [3]. More recently, Pinfield and Challis obtained an 

analytical solution for the long-wavelength zero-order scattering coefficient for a fluid 
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sphere suspended in a fluid medium by taking viscous and thermal effects into 

consideration [35]. They expressed the zero-order scattering coefficient as a sum of thermal 

and non-thermal contributions and improved each term in accuracy by retaining terms of 

order 2
c(k a )  which had been neglected by previous workers. Pinfield and Forrester 

presented analytical expressions for the first-order scattering coefficients of an elastic 

sphere immersed in a viscous fluid for both incident compressional and shear waves [10]. 

Although the expressions have been derived under the assumption of long compressional 

wavelength, the shear wavelength in the host fluid is regarded as general. 

Kuster and Toksoz have obtained solutions of scattering coefficients of a solid particle in a 

solid matrix for an arbitrary mode when the scattering takes place in the Rayleigh region 

[12]. Since, as a general rule, the compressional and shear wavelengths are of the same 

order of magnitude in most solids, the problem can be reasonably simplified in the Rayleigh 

regime, since both compressional and shear wavelengths are long compared with the 

particle size. In a viscous fluid, on the other hand, the situation is different. As the 

wavelength of a shear wave can be one or more orders of magnitude smaller than that of 

the compressional wave in a viscous fluid, or of the compressional and shear waves in the 

solid, the problem becomes comparatively complicated when addressed under the long 

compressional wavelength approximation while at the same time imposing no restriction 

on the shear wavelength. For this situation, Pinfield and Forrester have obtained analytical 

solutions for scattering coefficients for the dipole-scattering mode as just mentioned above. 

Nonetheless, no analytical expressions for the scattering coefficients for general partial 

wave orders for this problem have been reported as yet. This chapter concentrates on the 

interaction of planar compressional and viscous shear waves with an elastic sphere 

embedded in a viscous fluid with a particular focus on obtaining analytical approximations 

for scattering coefficients from the boundary-value problems. The purpose of this study is 

to investigate the effect of fluid viscosity on acoustic wave scattering through the inherent 

coupling between compressional and viscous wave modes. Under particular conditions the 

general expressions obtained are shown to coincide with the earlier results available in the 

literature. 
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2.3 FORMULATION OF THE PROBLEM 

2.3.1 Wave Equation 

From the equation of motion of an elastic solid and the linear stress-strain relations for a 

homogenous isotropic elastic medium, we obtain the following equation: 

 ( ) ( )
2

2

2t

∂
λ + µ ⋅ +µ∇ = ρ

∂

u
u u∇ ∇       (2.1) 

where ( , t)u r  is the displacement field, ∇  the vector differential operator, t the time, ρ  the 

mass density. λ  and µ are so-called Lamé parameters which characterise the medium and 

can also take complex values to represent lossy materials [36]. 

The well-known Helmholtz decomposition [37] allows us to resolve u  into the sum of an 

irrotational vector field and a solenoidal vector field: 

 = Φ + ×u A∇ ∇          (2.2) 

where ( ), tΦ r  and ( ), tA r  are scalar and vector potentials. It should be noted that Eqn. 

(2.2) relates the three components of the displacement vector to four other functions: the 

scalar potential and the three components of the vector potentials. This indicates that Φ  and 

the components of A  should be subjected to an additional constraint condition, usually 

taken as 0⋅ =A∇  [38]. 

Upon insertion of Eqn. (2.2) into Eqn. (2.1) and after some algebra we obtain: 

 ( )
2 2

2 2
2

t t

   ∂ Φ ∂   λ + µ ∆Φ − ρ + × µ∆ − ρ =   ∂ ∂  

A
A 0∇ ∇     (2.3) 

Equation (2.3) can be split into two homogeneous wave equations: one scalar and one 
vector, 

 ( )
2

2
2 0

t

∂ Φ
λ + µ ∆Φ − ρ =

∂
        (2.4) 

 
2

2t

∂
µ∆ − ρ =

∂

A
A 0          (2.5) 
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Although the wave equations are separated, the two potentials are usually coupled by the 

boundary conditions, provided that the physical domain is infinite. We assume that the 

potentials are time harmonic plane waves with angular frequency ω  such that the time-

dependence is exp( i t)− ω , which implies that / t i∂ ∂ →−ω. 

Applying Fourier Transforms, the time dependent wave equations (2.4) and (2.5)reduce to 

Helmholtz wave equations 

 ( )2
ck 0∆ + Φ =          (2.6) 

 ( )2
sk∆ + =A 0          (2.7) 

where 2 2
ck

2

ρ
= ω

λ + µ
         (2.8) 

and 2 2
sk

ρ
= ω

µ
.          (2.9) 

Here ck  and sk  are the longitudinal (compressional) and transverse (shear) wavenumbers 

respectively. The compressional and shear wavenumbers for a viscous fluid can be written 

as: 

 ( )c
c

k i
v

ω
= + α ω          (2.10) 

and ( )sk 1 i
2

ρω
= +

η
         (2.11) 

where cv  is the adiabatic sound speed, ( )α ω  is the attenuation parameter and η  is the shear 

viscosity. It is generally the practice to add a small imaginary parameter iα  to the 

wavenumber in order to account for the attenuation. 

By reason of the decoupling of Eqn. (2.3) into two separate wave equations, it is evident 

that both plane compressional and shear waves can independently propagate in an infinite 

homogeneous isotropic medium retaining their individuality and with their respective 

characteristic velocities. The waves, however, cannot propagate independently of each 

other if the medium contains discontinuities in elastic properties. If a wave of either kind 



25 

encounters a scattering obstacle, waves of both kinds are produced at the surface of the 

particle. If the scatterer is an elastic solid or a viscous fluid, waves of both kinds are 

generated inside the scatterer as well. The process in which the energy redistributes at the 

boundary of the scatterer from a given type of elastic/acoustic wave to a wave of the other 

type is known as wave mode conversion. 

 

2.3.2  Symmetry and Solutions of Wave Equations 

We use a spherical coordinate ( )r, ,θ φ , with r 0≥ , 0 ≤ θ ≤ π 0 2 ,≤ φ < π  located at 

the centre of a spherical particle of radius a . We consider the propagation case where the 

plane incident wave (compression/shear) propagates in the +z -direction. 

The vector potential A  can be expressed in terms of two scalar potentials, known as Debye 

potentials [39]: 

 ( ) ( )= × ψ + × × χA r r∇ ∇ ∇        (2.12) 

such that ( )( )2
sk , 0∆ + ψ χ = , where r  is the radial vector. 

The rigorous mathematical proof of Eqn. (2.12) can be found in the Ref. [40]. The two 

Debye potentials ψ  and χ  represent two polarizations of the transverse (shear) wave [37, 

42]. The Φ  potential is coupled with the ψ  and vice versa, while χ  is decoupled from 

both Φ  and ψ . Since the χ  potential only interacts with itself and is not related to mode-

conversion, it will not appear any further in our discussion. From here on in we use the ψ  

potential to refer to “shear wave or s -wave” throughout the thesis for convenience. 

Let us consider that an incident plane compressional wave, impinging on the particle, has 

the form ( ) ( )0 c 0 c ˆexp i exp i rΦ = Φ = Φk r k zi i . Henceforth, for convenience, the time 

dependence factor ( )exp i t− ω  will be omitted from all expressions representing waves 

throughout the thesis. 

The Helmholtz equation (2.6) admits a general solution of the following form: 

 ( ) ( ) ( ) ( )
n

m
mn n p n

n 0 m n

, Q z k r P cos exp im
∞

= =−

Φ ψ = θ φ∑ ∑ . ( )p c or s= . (2.13) 
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where mnQ  are the expansion coefficients, ( )n qz k r  are the spherical Bessel functions of 

order n , ( )m
nP cos θ  

are Legendre functions, and the indexes c  and s  stand for 

‘compression’ and ‘shear’ respectively. The Bessel functions, depending on the medium in 

which a wave exists, need to be chosen accordingly. In the infinite embedding medium, the 

solution must be defined at large distances, while within the spherical particle, the solution 

must be regular (continuous) at the origin. 

In the next chapter, we shall study the scattering of a shell consisting of a core solid particle 

of radius a, surrounded by a spherical shell of a viscous fluid, when the whole is submitted 

to an incident harmonic compressional plane wave. For an incident compressional wave (c) 

propagating in the z direction, by virtue of the azimuthal symmetry, the angular dependence 

of the plane wave is just ( )nP cosθ , and one can write: 

 ( ) ( ) ( )n
inc n c n

n 0

i 2n 1 j k r P cos
∞

=

Φ = + θ∑       (2.14) 

This incident plane wave on the shell will give rise to two incident waves onto the core, a 

compressional of the same form as in equation (2.14) and a shear wave ( s ) of a similar 

form: 

 ( ) ( ) ( )n
inc n s n

n 0

i 2n 1 j k r P cos
∞

=

ψ = + θ∑       (2.15) 

The incident compressional wave (p) scatters into both c  and s  waves outside the particle 

with the potentials: 

 ( ) ( ) ( )n cc
c n n c n

n 0

i 2n 1 T h k r P cos
∞

=

Φ = + θ∑      (2.16) 

 ( ) ( ) ( )n cs
s n n s n

n 0

i 2n 1 T h k r P cos
∞

=

ψ = + θ∑      (2.17) 
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Here ( )nh u  are spherical Hankel functions of the first kind of the order n . These ( )nh u  

functions have asymptotic behaviour as ( ) ( )
n 1

i exp iu / u
− +  and hence represent a scattered 

(outgoing) wave. 

The incident s  wave mode likewise scatters into both c  and s  waves with the potentials: 

 ( ) ( ) ( )n sc
s n n c n

n 0

i 2n 1 T h k r P cos
∞

=

Φ = + θ∑       (2.18) 

 ( ) ( ) ( )n ss
s n n s n

n 0

i 2n 1 T h k r P cos
∞

=

ψ = + θ∑      (2.19) 

The refracted c  and s  waves inside the particle due to the incident p have the potentials, 

 ( ) ( ) ( )n cc
c n n c n

n 0

i 2n 1 A j k r P cos
∞

=

′ ′Φ = + θ∑      (2.20) 

 ( ) ( ) ( )n cs
s n n s n

n 0

i 2n 1 A j k r P cos
∞

=

′ ′ψ = + θ∑       (2.21) 

and for the case of an incident s  wave mode, 

 ( ) ( ) ( )n sc
s n n c n

n 0

i 2n 1 A j k r P cos
∞

=

′ ′Φ = + θ∑       (2.22) 

 ( ) ( ) ( )n ss
s n n s n

n 0

i 2n 1 A j k r P cos
∞

=

′ ′ψ = + θ∑       (2.23) 

where ck′  and sk′  are wavenumbers of c  and s  waves inside the particle. The set of 

expansion coefficients cc
nT  to ss

nA  are the amplitudes of the partial wave modes and are 

determined from the interface condition at the particle surface r = a . 

 

2.3.3 Displacement and Stress Expressions 

The displacement and stress components are continuous at the surface of the particle. The 

continuity of the displacement vector ensures that the particle always remains in intimate 
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contact with its surrounding material, while the continuity of the traction guarantees that 

the acceleration at the boundary does not go infinite [28]. 

For a single particle, the boundary conditions prescribed at the interface between the 

particle and the continuous phase are as follows: 

 ( ) ( )r ru r a u r a+ −= = =    (radial displacement)  (2.24) 

 ( ) ( )u r a u r a+ −
θθ = = =    (tangential displacement)  (2.25) 

 ( ) ( )rr rrr a r a+ −σ = = σ =    (normal stress)   (2.26) 

 ( ) ( )rr r a r a+ −
θθσ = = σ =    (tangential stress)   (2.27) 

uφ  and 
rφσ  vanish due to the azimuthal symmetry. 

To obtain the boundary condition equations, physical quantities such as displacement and 

stress require that they be expressed in terms of potentials. The displacement and stress 

components entering into the above boundary conditions can be expressed in terms of 

potentials in spherical coordinates as: 

 
2

r 2

1
u cot

r r

 ∂Φ ∂ ψ ∂ψ = − + θ  ∂ ∂θ∂θ 
       (2.28) 

 ( )
21

u
r rθ

∂ ∂ ψ
= Φ + ψ +

∂θ ∂ ∂θ
       (2.29) 

 ( )
2 2 2 2

2 2
rr c s2 2 2 2

s s

2 1
2k k 2 cot

r rk r k

    ρω ∂ Φ ρω ∂ ∂ ψ ∂ψ   σ = − Φ + + − + θ    ∂ ∂θ∂ ∂θ    
  (2.30) 

 

2 2 2 2

r 2 2
s

2 2

2 2 2
s

1 1 1 1 1
cot

r r r r r r r rk

1 1 1

r r rk r r

θ

        ρω ∂ ∂ ψ ∂ψ ∂ ∂ ψ ∂ψ ∂ ψ ∂ψ         σ = − + θ + + − +             ∂θ ∂θ ∂ ∂ ∂θ ∂θ ∂ ∂θ ∂θ∂θ         

  ρω ∂ Φ ∂ ∂Φ ∂Φ + + −  ∂ ∂θ ∂θ ∂ 

 

            (2.31) 
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2.3.4 Boundary Condition Equations 

For the sake of compactness, let us define the dimensionless longitudinal and shear 

wavenumbers in the host medium as c cy := k a  and s sy := k a  respectively, and in the 

spherical particle as c cy := k a′ ′  and s sy := k a′ ′  respectively. Terms of equal orders in the 

series expansion are equated thanks to the orthogonal property of the Legendre 

polynomials, producing the following four equations from the boundary conditions in the 

order of radial displacement, tangential displacement, radial stress component and 

tangential stress component, respectively for an incident compressional wave: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

cc cs
c n c n c n c n n s

cc cs
n c n c n n s

y j y + T y h y + T n n + 1 h y

= A y j y + A n n + 1 j y

′ ′

′ ′ ′ ′
     (2.32) 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

cc cs
n c n n c n s n s n s

cc cs
n n c n s n s n s

j y T h y T y h y h y

A j y A y j y j y

 ′+ + + 
 ′ ′ ′ ′ ′= + + 

    (2.33)
 

 

( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( ){ }

( ) ( ) ( )

2
s n c c n c2

s

cc 2
n s n c c n c2

s

cs
n n s s n s2

s

cc 2
n s n c c n c2

s

cs
n n s s n s2

s

y 2n n + 1 j y + 4y j y
y

+T y 2n n + 1 h y + 4y h y
y

+2T n n + 1 h y y h y
y

= A y 2n n + 1 j y + 4y j y
y

+2A n n + 1 j y y j y
y

ρ
′−

ρ
′−

ρ  ′− 

′ρ  ′ ′ ′ ′ ′−  ′

′ρ  ′ ′ ′ ′− ′

    (2.34) 
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( ) ( ) ( ) ( )

( ) ( ){ }

( ) ( )

( ) ( ){ }

cc
n c c n c n n c c n c2 2

s s

cs 2
n s n s n s2

s

cc
n n c c n c2

s

cs 2
n s n s n s2

s

2 j y y j y + 2T h y y h y
y y

+T 2y h + y 2n n + 1 + 2 h y
y

= 2A j y y j y
y

+A 2y j + y 2n n + 1 + 2 j y
y

ρ ρ   ′ ′− −   

ρ  ′ −  

′ρ  ′ ′ ′ ′− ′

′ρ  ′ ′ ′ ′−  ′

   (2.35) 

The scattering coefficients are obtained as a solution to these four linear algebraic equations. 

In a similar fashion, for an incident shear wave, one can readily write the following boundary 

equations: 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

sc ss
s n s n s n n c n s n s n s

sc ss
n n c n s n s n s

y j y + j y + T h y + T y h y + h y

= A j y + A y j y + j y

 ′ ′
 

 ′ ′ ′ ′ ′
 

   (2.36) 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

sc ss
n s n c n c n n s

sc ss
n c n c n n s

n n + 1 j y + T y h y + T n n + 1 h y

= A y j y + A n n + 1 j y

′

′ ′ ′ ′
    (2.37) 

 

( ) ( ) ( )

( )( ) ( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( ){ }

( ) ( ) ( )

n s s n s2
s

sc 2
n s n c c n c2

s

ss
n n s s n s2

s

sc 2
n s n c c n c2

s

ss
n n s s n s2

s

2 n n + 1 j y y j y
y

+T y 2n n + 1 h y + 4y h y
y

+2T n n + 1 h y y h y
y

= A y 2n n + 1 j y + 4y j y
y

+2A n n + 1 j y y j y
y

ρ  ′− 

ρ
′−

ρ  ′− 

′ρ  ′ ′ ′ ′ ′−  ′

′ρ  ′ ′ ′ ′− ′

    (2.38) 
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( ) ( ){ }

( ) ( )

( ) ( ){ }

( ) ( )

( ) ( ){ }

2
s n s n s2

s

sc
n n c c n c2

s

ss 2
n s n s n s2

s

sc
n n c c n c2

s

ss 2
n s n s n s2

s

2y j + y 2n n + 1 + 2 j y
y

+2T h y y h y
y

+T 2y h + y 2n n + 1 + 2 h y
y

= 2A j y y j y
y

+A 2y j + y 2n n + 1 + 2 j y
y

ρ  ′ −  

ρ  ′− 

ρ  ′ −  

′ρ  ′ ′ ′ ′− ′

′ρ  ′ ′ ′ ′−  ′

    (2.39) 

 

2.4 SCATTERING COEFFICIENTS 

The expansion coefficients pq
nT  in the above boundary equations are the scattering 

coefficients, each representing the scattering process and mode conversion at a single 

particle for a wave of mode q  mode-converted from an incident wave of mode p for a 

partial wave of order n . Scattering coefficients characterise how a scatterer scatters waves, 

and as a general rule, depend on the geometry, the frequency and the properties of 

component phases (i.e. density, compressibility). Although analytical approximations for 

the monopole and dipole scattering coefficients have already been reported in the literature, 

we derive them in the next sections for the purpose of using them in the next chapter. We 

then go on to obtain analytical solutions for scattering coefficients for general partial wave 

orders. 

 

2.4.1 Monopole-Scattering Coefficient 

The zeroth-order mode is the monopole mode, which is characterised by an axisymmetric 

contraction and expansion of the particle and its surrounding medium, with no translatory 

motion - shear waves are absent. The equations for the polar displacement and stress 

components are identically zero, and therefore the system reduces to the following two 

boundary equations: 

 
( ) ( )

( )

cc
c 0 c 0 c 0 c

cc
0 c 0 c

y j y T y h y

A y j y

′ ′+

′ ′ ′=
       (2.40) 
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( ) ( )

( ) ( )

( ) ( )

2
c 0 c c 0 c

cc 2
0 c 0 c c 0 c

cc 2
0 c 0 c c 0 c

( 2 )y j y 4 y j y

T ( 2 )y h y 4 y h y

A ( 2 )y j y 4 y j y

′− λ + µ − µ

 ′+ − λ + µ − µ  

 ′ ′ ′ ′ ′ ′ ′ ′= − λ + µ − µ  

     (2.41) 

We express the stress components in terms of (complex) Lamé parameters for reasons that 

will become apparent in the next chapter. Since c cy , y 1′ ≪ , we retain only the leading-

order terms in the power-series expansions of the Bessel and Hankel functions, and obtain: 

 
( )

cc 3
0 c

3( ) 2
T y

3(4 3 2 )

′ ′λ − λ + µ − µ
=

′µ + λ + µ
,       (2.42) 

or in terms of bulk modulus: 

 
( )cc 3

0 c

B B
T i y

4 3B

′−
=

′µ+
,         (2.43) 

where ( )B 2 / 3= λ + µ  and ( )B 2 / 3′ ′ ′= λ + µ are the bulk moduli in the host fluid and 

in the sphere respectively. This expression agrees with the Refs. [14, 22] for an elastic solid 

host and the Ref. [2] for a viscous host fluid. 

 

2.4.2 Dipole-Scattering Coefficients 

The boundary condition equations for the dipole scattering for an incident compression 

wave are obtained by setting n=1 in Eqns. (2.32) to (2.35). 

 ( ) ( ) ( ) ( ) ( )cc cs cc cs
1 c 1 c 1 1 s 1 c 1 c 1 1 s c 1 cT y h y 2T h y A y j y 2A j y y j y′ ′ ′ ′ ′ ′+ − − = −   (2.44) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

cc cs cc
1 1 c 1 s 1 s 1 s 1 1 c

cs
1 s 1 s 1 s 1 c

T h y T y h y h y A j y

A y j y j y j y

 ′ ′+ + −  

 ′ ′ ′ ′− + = −  

    (2.45) 
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( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( ){ }

cc 2
1 s 1 c 1 c c 1 c2

s

cs
1 1 s s 1 s2

s

cc 2
1 s 1 c 1 c c 1 c2

s

cs
1 1 s s 1 s2

s

2
s 1 c 1 c c 1 c2

s

T y h y 4 h y y h y
y

4T h y y h y
y

A y j y 4 j y y j y
y

4A j y y j y
y

y j y 4 j y y j y
y

ρ  ′− − 

ρ  ′+ − 

′ρ  ′ ′ ′ ′ ′ ′− − − ′

′ρ  ′ ′ ′ ′− − ′

ρ  ′= − − − 

     (2.46) 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ }

( ) ( )

cc
1 1 c c 1 c2

s

cs 2
1 1 s s 1 s s 1 s2

s

cc
1 1 c c 1 c2

s

cs 2
1 1 s s 1 s s 1 s2

s

1 c c 1 c2
s

2T h y y h y
y

T 2 h y y h y y h y
y

2A j y y j y
y

A 2 j y y j y y j y
y

2
j y y j y

y

ρ  ′− 

ρ   ′+ − − +   

′ρ  ′ ′ ′ ′− − ′

′ρ  ′ ′ ′ ′− − − + ′

ρ  ′= − − 

     (2.47) 

Multiplying Eqn. (2.47) by 2 and then adding it to (2.46) yields: 

 ( ) ( ) ( ) ( ) ( )cc cs cc cs

1 1 c 1 1 s 1 1 c 1 1 s 1 cT h y 2T h y A j y 2A j y j y
ρ ρ ρ

′ ′+ − − = −
′ ′ ′ρ ρ ρ

  (2.48) 

We now subtract Eqn. (2.45) from Eqn. (2.44) and Eqn. (2.48) from (2.45). The particle in 

question is a solid in which both cy′  and sy′  are about the same order of magnitude and 

hence are small in the Rayleigh regime. This helps us simplify the calculation by taking 

advantage of their smallness and hence keeping only the leading-order terms of Bessel 

functions of arguments cy′  and sy′ . Carrying out all the operations results in the following 

two simplified equations: 

 ( ) ( ) ( ) ( ) ( ) ( )cc cs
c 1 c 1 c 1 s 1 s 1 s 1 1 c c 1 cy h y h y T y h y h y T j y y j y   ′ ′ ′− + − + = −     (2.49) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )cc cs
1 c 1 s 1 s 1 s 1 1 cˆ ˆ ˆ ˆ1 h y T + y h y 2 h y T = 1 j y ′ρ − ρ − − ρ − ρ   (2.50) 
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Solving the system of equations gives: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

1 s 1 c c 1 c s 1 s 1 c c 1 ccc
1

1 c 1 s s 1 s c 1 c 1 s s 1 s

h y j y y j y y h y j y y j y
T =

h y h y + y h y y h y 2 h y y h y

   ′ ′ ′2ρ−3 − ρ−2 + −ρ   
   ′ ′ ′− 2ρ−3 + ρ− +ρ   

 

            (2.51) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
c 1 c 1 c 1 c 1 ccs

1
1 c 1 s s 1 s c 1 c 1 s s 1 s

ˆ y h y j y j y h y
T =

ˆ ˆ ˆh y h y + y h y y h y 2 h y y h y

 ′ ′ρ −1 − 
   ′ ′ ′− 2ρ − 3 + ρ − + ρ   

 

            (2.52) 

Taking series expansions of the Bessel and Hankel functions of small arguments produce: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ

ˆ ˆ

3
c 1 s s 1 scc

1

1 s s 1 s

iy h y y h y 1
T =

3 4 h y + 1+2 y h y

 ′− ρ− −
 ′ρ−7 ρ 

,     (2.53) 

and 
( )

( ) ( ) ( ) ( )
ccs

1
1 s s 1 s

ˆ 1 y
T =

ˆ ˆ4 h y + 1 + 2 y h y

ρ −
−

′ρ − 7 ρ
     (2.54) 

which are exactly the same as those derived in Ref. [7]. 

Using the recurrence relations (A9) and (A10), one can show that: 

 
( ) ( )

( ) ( ) ( )

ˆ

ˆ

3
c 2 scc

1

2 s 0 s

iy 1 h y
T =

3 3h y 2 1 h y

ρ−

 − ρ− 
       (2.55) 

 
( )

( ) ( ) ( )
ccs

1
2 s 0 s

ˆ 1 y
T =

ˆ3h y 2 1 h y

ρ −

− ρ −
      (2.56) 

Equation (2.55) agrees with Ref. [3]. 

Employing the same technique, one can solve the problem straightforwardly for the shear 

incident case. For an incident shear wave, we have the follow system of equations: 

 ( ) ( ) ( ) ( ) ( )′ ′ ′ ′ ′+ − − = −sc ss sc ss
1 c 1 c 1 1 s 1 c 1 c 1 1 s 1 sT y h y 2T h y A y j y 2A j y 2j y   (2.57) 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

sc ss
1 1 c 1 s 1 s 1 s

sc ss
1 1 c 1 s 1 s 1 s

s 1 s 1 s

T h y T y h y h y

A j y A y j y j y

y j y j y

 ′+ +  

 ′ ′ ′ ′ ′− − +  

 ′= − +  

      (2.58) 

 

( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( ){ }

( ) ( )

( ) ( )

sc 2
1 s 1 c 1 c c 1 c2

s

ss
1 1 s s 1 s2

s

sc 2
1 s 1 c 1 c c 1 c2

s

ss
1 1 s s 1 s2

s

1 s s 1 s2
s

T y h y 4 h y y h y
y

4T h y y h y
y

A y j y 4 j y y j y
y

4A j y y j y
y

4 j y y j y
y

ρ  ′− − 

ρ  ′+ − 

′ρ  ′ ′ ′ ′ ′ ′− − − ′

′ρ  ′ ′ ′ ′− − ′

ρ  ′= − − 

     (2.59) 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ }

( ) ( ) ( )

sc
1 1 c c 1 c2

s

ss 2
1 1 s s 1 s s 1 s2

s

sc
1 1 c c 1 c2

s

ss 2
1 1 s s 1 s s 1 s2

s

2
1 s s 1 s s 1 s2

s

2T h y y h y
y

T 2 h y y h y y h y
y

2A j y y j y
y

A 2 j y y j y y j y
y

2 j y y j y y j y
y

ρ  ′− 

ρ   ′+ − − +   

′ρ  ′ ′ ′ ′− − ′

′ρ  ′ ′ ′ ′− − − + ′

ρ   ′= − − − +   

     (2.60) 

Executing all the steps as mentioned above for the incident compressional wave yields the 

two simplified equations: 

 ( ) ( ) ( ) ( ) ( ) ( )sc ss
c 1 c 1 c 1 1 s s 1 s 1 s 1 s 1 sy h y h y T h y y h y T y j y j y   ′ ′ ′− + − = −     (2.61) 

 ( ) ( ) ( ) ( ) ( )sc ss
1 c 1 s 1 s 1 s 1 s 1 s 1 sˆ ˆ ˆ ˆ ˆ( 1)h y T + y h y (2 )h y T = y j y + (2 )j y ′ ′ρ − ρ − − ρ −ρ − ρ   

            (2.62) 
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Solving them for sc
1T and ss

1T , we get: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
s c 1 s 1 s 1 s 1 ssc

1 3 3
1 s c 1 c c 1 c s 1 s

ˆ2 1)y y j y h y j y h y
T =

ˆ ˆ ˆh y i 3) + 2)y h y + i + y h y y h y

 ′ ′(ρ − −  
   ′ ′ ′(2ρ − (ρ − ρ      

 (2.63) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3
1 s c 1 c c 1 c s 1 sss

1 3 3
1 s c 1 c c 1 c s 1 s

ˆ ˆ ˆj y i(2 3) + ( 2)y h y + i + y h y y j y
T =

ˆ ˆ ˆh y i(2 3) + ( 2)y h y + i + y h y y h y

   ′ ′ ′ρ − ρ − ρ      −
   ′ ′ ′ρ − ρ − ρ      

  (2.64) 

After expanding and retaining the leading-order terms of ( )1 ch y  and ( )1 c
h y′ , these 

equations simplify to: 

 
( )

( ) ( ) ( ) ( )

2
csc

1
s 1 s s 1 s

ˆ2 1 y
T =

ˆ ˆy 4 7 h y + 2 y h y

ρ −

 ′ρ − ρ + 1 
     (2.65) 

and 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 s s 1 sss

1

1 s s 1 s

ˆ ˆ4 j y 2 y j y
T =

ˆ ˆ4 h y 2 y h y

′ρ − 7 + ρ + 1
−

′ρ − 7 + ρ + 1
     (2.66) 

 

2.4.3 Nth-order Scattering Coefficients 

Having derived expressions for the dipole-scattering coefficients, we can now proceed to 

extend the solution to higher order partial waves. However, the procedure for solving nth-

order scattering coefficients is more complicated than that for the dipole case, yet 

simplification can be achieved thanks to cy , cy′  and sy′  being small and roughly the same 

order of magnitude in the long-wavelength regime. We have retained the leading-order 

terms for Bessel functions with arguments cy , cy′  and sy′ . 

The solution for both incident compressional and shear wave cases proceeds through the 

following steps: 

•  rr rn θσ − σ : All incident wave and internal wave expressions are simplified by 

retaining the dominant term only since other terms are higher order in cy , cy′  or sy . 

Equation (A) retains all coefficients. 
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•  Equation (A)/ρ uθ
′ −  eliminates compressional wave inside the particle to express 

the shear wave coefficients inside in terms of the two outer coefficients. It results in 

equation (B). 

•  Substitute equation (B) into uθ  (producing equation (C)) relates compressional wave 

inside to the two outside coefficients. 

•  Substitute equation (B) and equation (C) into rrσ  equation – gives equation (D) – 

two outside coefficients only 

•  rn u uθ − : Uses recurrence relation to result in Bessel and Hankel functions of order 

1n+ . 

o for incident compressional wave: we neglect the following terms: ( )Ο n+1
cy

(incident wave), ( )Οcc n+1
n cA × y′ , ( )Οcs n

n SA × y′  relative to the retained terms in 

( )( )Ο
n+1cc

n cT × y
−  and ( )Οcs 0

n cT × y . We will later establish (once the order of the 

scattering coefficients is known) that the neglected terms are of order ( )Ο n+1
cy , 

( )Ο n+1
cy  and ( )Ο 2n

cy respectively whereas the retained terms are both ( )Ο n
cy , 

therefore justifying the approximations. The resulting equation (E) therefore only 

has the outer scattering coefficients. 

o for incident shear wave: Neglect the following terms: ( )Οsc n+1
n cA × y′ ,

( )Οss n
n sA × y′  relative to the retained terms in ( )( )Ο

n+1sc
n cT × y

−  and ( )Ο 0ss
n cT × y . 

We will later establish (once the order of the scattering coefficients is known) that 

the neglected terms are of order ( )Ο cy  and ( )Ο n
cy  respectively whereas the 

retained terms are both ( )Ο 0
cy , therefore justifying the approximations. The 

resulting equation (E) therefore only has the outer scattering coefficients. 

•  Equations (D) and (E) determine the two outside coefficients. 

•  We express solution as leading order in cy  using nj  and nh  for small arguments. 

With these steps, we now derive the scattering coefficients for incident compressional and 

shear waves. 
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Case 1: Compression Incident 

On multiplication of Eqn. (2.32) by n  and then subtracting it from Eqn. (2.33) yields: 

 ( ) ( ) ( ) ( )cc cs
n n c c n c n s n s n sT n h y y h y + T n y h y n h y = 0   ′ ′− −      

  (2.67) 

Now multiplying Eqn. (2.35) by n  and then subtracting it from Eqn. (2.34) gives: 

 

( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( )

cc 2
n c n s n c n c c n c2

s

cs 2
n n s s n s s n s2

s

cc cs
n n c n n s

j y + T y h y 2 n + 2 n h y y h y
y

+T 2n n+ 2 n h y y h y ny h y
y

= A j y A n j y

ρ  ′ρ − −  

ρ  ′− −  

′ ′−

  (2.68) 

where 
ρ

ρ :=
′ρ
 

Subtracting Eqn. (2.33) from (2.68) and then solving for cs
nA  yields: 

 
( ) ( )

( ) ( ) ( )

cc cs
n c 1 n 1 ncs

n
s n s n s

1 j y + a T + b T
A =

y j y + n + 1 j y

ρ −
−

′ ′ ′ ′
     (2.69) 

where ( ) ( ) ( ) ( ) ( ) ( )2
1 n s s n s s n s s n s n s2

s

b = 2n n+ 2 n h y y h y n y h y y h y + h y
y

ρ     ′ ′− − −        
 

 ( ) ( ) ( ) ( ){ } ( )2
1 s n c n c c n c n c2

s

a = y h y 2 n + 2 n h y y h y h y
y

ρ  ′− − −  
 

Inserting Eqn. (2.69) in Eqn. (2.33) gives cc
nA  in terms of cc

nT and cs
nT . 

 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( )

cc cs
n c n n c n s n s n s

cc cs
n c 1 n 1 n

s n s n s
s n s n s

cc
n n c

j y + T h y + T y h y + h y

1 j y + a T + b T
+ y j y + j y

y j y + n + 1 j y

 = A j y

 ′
 

ρ −
 ′ ′ ′ ′
  ′ ′ ′ ′

 

′

    (2.70) 
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We substitute cc
nA  and cs

nA  into Eqn. (2.34) and then perform some algebraic manipulation, 

which produces: 

 

( ) ( ) ( ){ }

( )
( )

( ) ( ) ( ){ }

( )
( )

( ) ( ) ( ){ }

( ) ( ){ }

cc cs
n n c n s n s n s2

s

cc 2
n s n c n c c n c2

s

cs 2
n n s s n s s n s2

s

cc 2
n s n c c n c2

s

cs
n

s

n 1
2n(n 1) T h y + T y h y + h y

2n + 1 y

n + 1
+ T y h y 2(n 2) nh y y h y

2n + 1 y

n + 1
+ T 2n(n 2) nh y y h y n y h y

2n + 1 y

T y 2n(n 1) h y + 4y h y
y

T
y

 
   ′− −   ′  

ρ  ′− + − 

ρ  ′+ − − 

ρ   ′− − +  

ρ
− ( ) ( )

( ) ( ) ( ) ( )

n s s n s2

n c n c n c2 2
s s

2n(n 1) h y y h y

n 1
= 1 j y 2n(n 1)j y + 2n(n 1)j y

2n + 1 y y

 ′+ − 

ρ
ρ − − − −

′

 (2.71) 

Now we collect like terms and then simplify: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( )

cc cc
n c n n n c2

s

cc
n n c c n c2

s

cs
n s n s n s2

s

cs
n s n

2
cs
n n s s n s2

s

n 1
1 h y T - 2n(n 1)T h y

2n + 1 y

2n(n 1)
+T n + 1 h y + y h y

(2n 1)y

n 1
+ 2n(n 1) T y h y + h y

2n 1 y

(n 1)
n h y T

(2n 1)

2n(n 1)
+T (n 1)h y + y h y

(2n 1)y

n
=

2n + 1

− ρ −
′

−ρ  ′
 +

 
   ′− −   + ′  

+
− ρ

+

−ρ  ′+ +

ρ( ) ( ) ( ) ( )n c n c n c2 2
s s

1
1 j y - 2n(n 1)j y + 2n(n 1)j y

y y

ρ
− − −

′

  (2.72) 

We rewrite Eqn. (2.67) as: 

 
( )

( ) ( )
cs cc cc
n n n nn+1

n s s n sc

2n+1 !! 1
T = i T = D T

n n h y y h yy
−

 ′−  

   (2.73) 

where 
( )

( ) ( )
n n+1

n s s n sc

2n + 1 !! 1
D := i

n n h y y h yy
−

 ′−  
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We substitute Eqn. (2.73) into Eqn. (2.72) and perform some algebra and then divide the 

resulting equation through ρ : 

 

( ) ( )

( )

( ) ( )

( )

2
cc

n c n2 2
s s

cc
c n c n2

s

2
cc

s n s n s n n2 2
s s

n s n2
s

2n(n 1)n 1
1 2n(n 1) + h y T

2n + 1 (2n 1)y y

2n(n 1)
+ y h y T

(2n 1)y

2n(n 1)n 1
+ 2n(n 1) + y h y + h y D T

2n + 1 (2n 1)y y

n(n 1) 2n(n 1)
1 h y D T

(2n 1) y

 −ρ − ρ − − +′  

−ρ
′

+

 −ρ   ′− −   +′  

 ρ + − + − 
+  

 

( ) ( )

cc
n

n c2 2
s s

n 1
= 1 + 2n(n 1) j y

2n + 1 y y

  ρ  ρ − − −   ′   

  (2.74) 

with 
1

ˆ = =
′ρ

ρ :
ρ ρ

. 

Keeping the leading-order terms of Hankel functions with argument cy  and solving for 

cc
nT  give: 

 

( )
22 2 n+1

s scc c
n

n n n

ˆn 1
ˆ1 + 2n(n 1)

2n + 1 y y y
T =

M + N E (2n 1)!!(2n 1)!!

  ρ  − ρ − −   ′   
− +

  (2.75) 

with ( )n 2
s

ˆn
ˆM := i 1 2n(n 1)

2n + 1 y

 ρ − ρ − − − ′  

 

 
( )
( ) ( )n

n s s n s

2n 1
E := i

n nh y y h y

+
−

 ′− 

 

 

( ) ( )

( )
( )

2

n s n s n s2 2
s s

n s2
s

ˆn ˆ 2n(n 1)1
N := 2n(n 1) + y h y + h y

2n + 1 (2n 1)y y

n(n 1) 2n(n 1)
+ 1 h y

2n + 1 y

 ρ −ρ   ′− −   +′  

 
+ − − 

  
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Case 2: Shear Incident 

The calculation of scattering coefficients for an incident shear wave is more complicated 

than for the incident compressional case in that the Bessel function with argument for the 

incident wave is no longer small. 

Multiplying Eqn. (2.36) by n  and subtracting it from (2.37) produces: 

 

( ) ( )

( ) ( )

( ) ( )

2
s n s n s

sc
n c n c n c
ss
n n s s n s

n y j y + n j y

+T y h y n h y

+T n n h y y h y = 0

−

 ′ −  
 ′−  

      (2.76) 

Now multiplying Eqn. (2.39) by n  and then subtracting the resulting equation from Eqn. 

(2.38) gives: 

 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( )

2

2

2

2

2

2

n s s n s s n s

s

sc
n s n c n c c n c

s

ss
n n s s n s s n s

s
sc ss
n n c n n s

2n n + 2 nj y y j y ny j y
y

+T y h y 2 n + 2 nh y y h y
y

+T 2n n + 2 nh y y h y ny h y
y

= A j y A n j y

ρ  ′− − 

ρ  ′− − 

ρ  ′− − 

′ ′−

   (2.77) 

Subtracting Eqn. (2.36) from (2.77) yields: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

2

2

2

2

2

2

n s s n s s n s

s

s n s n s

sc
n s n c n c c n c

s

sc ss
n n c n s n s n s

ss
n n s s n s s n s

s

ss
n s n s n s

2n(n + 2) nj y y j y ny j y
y

y j y j y

+T y h y 2(n + 2) nh y y h y
y

T h y T y h y + h y

+T 2n(n + 2) nh y y h y ny h y
y

= A y j y + (n + 1)j y

ρ   ′− −   

′− −

ρ  ′− −  

 ′− −  

ρ  ′− −  

 ′ ′ ′ ′− 



   (2.78) 
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Solving Eqn. (2.78) for ss
nA : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
sc ss

n s s n s s n s n s n n
ss s
n

s n s n s

2n n + 2 nj y y j y y j y + 1 j y + a T + b T
y

A =
y j y + n + 1 j y

ρ  ′ ′− − − ρ 

−
 ′ ′ ′ ′
 

 

            (2.79) 

where 

 ( ) ( ) ( ) ( ){ } ( ) ( )2
2

n s s n s s n s s n s n s2
s

b := 2n n+ 2 nh y y h y y h y y h y + h y
y

ρ    ′ ′− − −     

 ( ) ( ) ( ) ( ){ } ( )2

2 s n c n c c n c n c2
s

a := y h y 2 n + 2 nh y y h y h y
y

ρ  ′− − −   

Inserting Eqn. (2.79) in Eqn. (2.36) gives sc
nA  in terms of sc

nT and ss
nT  gives: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( )

2 2

sc ss
s n s n s n n c n s n s n s

s n s n s
n s s n s2s n s n s s

s n s n s sc ss
s n s n s n n

s n s n s

sc
n n c

y j y + j y + T h y + T y h y + h y

y j y + j y
+ 2n n+ 2 nj y y j y

y j y + (n + 1)j y y

y j y + j y
+ y j y + 1 j y + a T + b T

y j y + (n + 1)j y

= A j y

 ′ ′
 

 ′ ′ ′ ′ ρ  ′−  ′ ′ ′ ′  
 

′ ′ ′ ′  ′− − ρ ′ ′ ′ ′  

′

 (2.80) 
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Substituting sc

nA  and ss

nA  into Eqn. (2.38) gives: 

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2

2 2

2

2

2 2

sc
n s s n s n s n c c n c

s s

ss
n n s s n s

s

s n s n s
s n s s n s

s n s n ss s

2
n n + 1 j y y j y + T y 2n n + 1 h y + 4y h y

y y

+ 2T n n + 1 h y y h y
y

y j y + j y1
= y 2n n 1 2n n+ 2 nj y y j y

y j y + n + 1 j yy y

ρ ρ   ′ ′− −    

ρ  ′− 

   ′ ′ ′ ′ ρ       ′ ′− − −       ′ ′ ′ ′ ′      

( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

( )
( )

( ) ( )
2

2
2 22

2

2

2

2

s n s n s sc ss
s s n s n s n n

s n s n ss

sc ss
s s n s n s n n c n s n s n s

s

n s s n
s s

y j y + j y1
y 2n n 1 y j y + 1 j y + a T + b T

y j y + n + 1 j yy

1
+ y 2n n 1 y j y + j y + T h y + T y h y + h y

y

2n n 11
2n n+ 2 nj y y j y

2n+ 1y y

 ′ ′ ′ ′    ′ ′+ − − − − ρ    ′ ′ ′ ′   ′  

   ′ ′ ′− − +    ′

− ρ
′−

′
( ) ( ) ( ) ( ) 2 2

sc ss
s s n s n s n ny j y + 1 j y + a T + b T

       ′− − ρ        

 

            (2.81) 

We substitute the values of 2a  and 2b  back and perform some algebra and then the resulting 

equation divide through ρ , which produces: 

 

( )
( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

( )
( )

2

2

sc sc
n c n n c c n c n2

s s

sc ss
n n c n s n

2
ss

n s s n s n
s

n s s n2
s

2n n 1 2n n - 11
ˆh y T n + 1 h y + y h y T

2n + 1y y

n n + 1
ˆ+ 1 T h y + h y T

2n + 1 2n + 1
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          
 

  (2.82) 
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where ˆ
1

=ρ :
ρ

. Equation (2.82) further simplifies to: 
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   − −   ′ρ − ρ      ′  
     − −       

  (2.83) 

Now we rewrite Eqn. (2.76) as: 
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     (2.84) 

Upon substitution of Eqn. (2.84) into Eqn. (2.83) eliminates sc
nT : 
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 −−    ′ρ − ρ     ′ 
 

 −         ′+ ρ − ρ −             ′  

     − −       
   (2.85) 
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Solving Eqn. (2.85) for ss
nT  gives 

 ss n
n

n n n

C
T =

S + L + U
        (2.86) 

with 
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Special Case 1: Dipole Scattering Coefficients 

The dipole scattering coefficients are obtained by setting n = 1 to the general expressions. 

From Eqn. (2.75) we get: 
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( ) ( ) ( ) ( ) ( )
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ccc
1

1 c s 1 s 1 s 1 s 2
1 s s 1 s c
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− ρ

     ρ −      ′ ρ − −       ′ −       

 

which simplifies to: 
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   (2.87) 

Equation (2.73) gives: 
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    (2.88) 

For n = 1 Eqns. (2.86) and (2.84) respectively reduce to: 
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and 
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2
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1
s 1 s s 1 s

ˆ2 1 y
T =

ˆ ˆy 4 7 h y + 2 y h y

ρ −

 ′ρ − ρ + 1 
     (2.90) 

Equations (2.87) to (2.90) are exactly the same expressions that we have already derived 

for the dipole scattering coefficients in Sec. 2.4.2. 
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Special Case 2: Quadrupole Scattering Coefficients 

For n = 2, Eqn. (2.75) reduces to: 
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sy ′  being small, cc
2T can be further simplified to: 
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From Eqn. (2.73) we get: 
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For n = 2, Eqns. (2.86) and (2.84) respectively reduce to: 
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Generalisation of those two cases and using equations (2.75), (2.73), (2.86), (2.84), lead 

to a unified form of all scattering coefficients: 
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and using equations (A7), (A8) and (A12) leading to, for n > 1, 

 

( )( ) ( )
( ) ( )

( ) ( )

( )( )
( )

( ) ( )

( )
( )

( ) ( )
( ) ( )

( ) ( )

cc
n 2

s n s n 1 s

n scs s
n 2

s n s n 1

2
s n s n 1 s 2n 1

c

n
c

n ssc n 1
n c

2
s

s

2
s n s n 1 s

2
s n s n 1

n

s

s n 1 sss
n

i y h y j y
y

1 2n !! 2n 1 !!

y

n
T i

n 1 i y h y j y

j yy
T

n 1 i y h y j y

n

i y h y j y

i y h

2n 1 !!

j y
T y

2n 1 !!

y j y j y
T

y j y

+ +

+

−

−

−

−

−

= −
+ +

= −

− +

+ −

−

=
−

+
=

+

−

+

+
−

.   

These formulas do not involve the mass density ratio. This is the reason why we shall 

consider only n = 1 when looking for the effective mass density in the next chapter. 

2.4.4 Normalised Scattering Coefficients 

The set of boundary equations used to derive analytical solutions for the scattering 

coefficients are not easy to obtain numerical solution. This is because each element of the 

boundary equations contains either a Bessel or a Hankel function, which can differ wildly 

in magnitude, one becoming very small and the other very large with the increase in 

argument. Hence, the matrix equation that the set of boundary equations form becomes ill-

conditioned due to the condition number being much greater than one, thereby making 

matrix inversion inaccurate. Another difficulty is the determination of Bessel functions 

which become inaccurate for large arguments. 

Pinfield proposed a method to tackle these two problems [42]. The idea is to express the 

radial dependence of the wave potentials as ratios of the Bessel and Hankel function value 

at the boundary. Anson and Chivers also used a similar technique to obtain numerical 

stability in their shell scattering problem [43].  
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The analytical solutions of the scattering coefficients can be defined in a normalised form: 
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j y y +
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( )

( )nN

ss
n n sss

n s

T h y
T =

j y
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2.5 NUMERICAL RESULTS 

Numerical calculations of the analytical results of scattering coefficients have been 

performed for a silica particle in water system at 250C over a frequency span of 0.01 to 10 

MHz. The physical parameters used in the simulations are listed in Table 2.1. The density 

of silica being greater than twice that of water, thermal dissipation in the system is 

guaranteed to be negligible compared to viscous loss [3]. Here numerical studies are 

conducted for the dipole and quadrupole scattering modes. So as to assess the validity of 

general results of scattering coefficients, their variations with orders are compared with 

exact solutions, obtained from numerical matrix inversion of the boundary equations. 
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Table 2.1: Physical properties of silica and water used in the numerical illustrations. 

Parameters Water Silica 

Sound speed (m.s−1) 1497 5968 

Density (kg.m−3) 997 2100 

Shear viscosity (Pa.s) 8.91×10−4 0 

Shear modulus (GPa) 0 30.9 

Attenuation factor (Np.m−1.MHz−2) 2.3×10−2 2.6×10−10 

 

2.5.1 Dipole scattering coefficients 

Figures 2.2 (a) and (b) show how the normalised shear-acoustic scattering coefficients vary 

with the real part se(y )ℜ  of the dimensionless shear wavenumber. The scattering 

coefficients are normalised using the appropriate Bessel or Hankel functions and also 

eliminating cy  dependence. Hence the normalised scattering coefficients have only sy  

functional dependence. Both Figures 2.2 (a) and (b) have been drawn for a large particle of 

radius 300 µm=a  and on large se(y )ℜ  intervals: 

•  

3 310 , 10− + 
  

, corresponding to 7
ce(y ) 1.7 10 ,1.4− ℜ ∈ ×  

 for Figure 2.2 (a) 

•  

2 210 , 10− + 
  

, corresponding to 6
ce(y ) 2.9 10 , 0.12− ℜ ∈ ×  

 for Figure 2.2 (b). 

Figure 2.2 (a) shows the limits of both our numerical code at 2
se(y ) 10−ℜ <  leading to non-

physical oscillations, and of the scattering coefficients approximations at ce(y ) 1ℜ > . This 

latter discrepancy occurs for 2
se(y ) 10+ℜ > . This is the reason why all other figures in this 

chapter will be limited to 2 2
se(y ) 10 , 10− + ℜ ∈   

. In this range, each of the curves fits 

accurately with its exact counterpart, obtained by solving the boundary equations 

numerically. 
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Figure 2.2: (a) shows how the real and imaginary parts of the normalised dipole scattering coefficients 
1N

ccT  

and 
1N

csT  vary with the real part of non-dimensional shear wavenumber for a silica-sphere-in-water system. 

The 
1Nn

pqT  and
1Na

qpT  represent normalised numerical and normalised analytical scattering coefficients 

respectively. 

 

All the curves have one feature in common: they all seem to approach a constant value at 

the lower and upper limits of se(y )ℜ  and experience marked changes near se(y ) 1ℜ ∼ . The 

real part of 
N1
ssT  looks very similar to the imaginary part of 

N1
scT , while the imaginary part of 

N1
ssT  looks the reflection [ about the se(y )ℜ -axis ] of the real part of 

N1
scT . 
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Figure 2.2: (b) shows the variation of the real and imaginary parts of the normalised dipole scattering 

coefficients 
1N

scT  and 
1N

s sT  as a function of the real part of non-dimensional shear wavenumber for a silica-

sphere-in-water system.  

 

As regards to 
N1
csT , its imaginary part exhibits a pronounced peak, that can be explained 

using the parameter = 2 / ( )δ η ρω , which is related to the length of the unsteady viscous 

boundary layer that exists around the particle . The thickness of δ  compared to the 

dimension of the particle gives a measure of viscous effects. When the thickness of the 

viscous boundary layer becomes comparable to the dimension of the particle, i.e. aδ ∼ , 

the particle experiences a maximum viscous loss, which manifests itself as a resonance 

peak; at this point the relative motion between the particle and its surrounding fluid is also 

maximum [3]. At low se(y )ℜ , the real part of 
N1
csT  looks flat because of the steady (Stokes) 
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drag acting on the particle. The viscous boundary layer becomes thinner with increasing 

frequency. At sufficiently elevated frequencies, the viscous regime gives way to the inertial 

regime, the fluid being physically tantamount to an inviscid one, which is why the real part 

of 
N1
csT  asymptotically approaches zero. 

 

2.5.2  Quadrupole scattering coefficients 

 

 
Figure 2.3: (a) shows how the real and imaginary parts of the normalised quadrupole scattering coefficients 

2N

ccT  and 
2N

csT  vary with the real part of non-dimensional shear wavenumber for a silica-sphere-in-water 

system. The 
2Nn

pqT  and
2Na

qpT  represent normalised numerical and normalised analytical scattering coefficients 

respectively. 
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Figure 2.3: (b) shows the variation of the real and imaginary parts of normalised shear-acoustic quadrupole 

coefficients 
2N

scT  and 
2N

ssT  with the real part of non-dimensional shear wavenumber. 

 

Figure 2.3 shows how the normalised quadrupole scattering coefficients vary with the real 

part se(y )ℜ  of the dimensionless shear wavenumber. 
2N
ccT  and 

2N
csT  look very alike. For the 

case of 
2N
scT  and 

2N
ssT , their imaginary parts are similar and exhibit a sharp drop in magnitude 

with an increase in se(y )ℜ , whereas their real parts, albeit a downward trend, are somewhat 

different in that the 
2N
cse(T )ℜ  has a longer viscous regime than the 

2N
sse(T )ℜ  does. The 

imaginary parts of 
2N
ccT  and 

2N
csT  resemble the real part of 

2N
ssT ; as se(y )ℜ  is on the increase, 

they all show a smooth decline and asymptote to zero. 
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2.5.3 Dependence of Coefficients on Orders 

 

Figure 2.4 depicts the variation of moduli of nth order scattering coefficients with their orders for 

c
y 0.1=  and ( )s

Re y 14.7= . 

 

Figure 2.4 shows how 
n
ccT , n

csT , n
scT  and 

n
ssT  varies with their scattering orders for |yc| = 0.1. 

The variation of a scattering coefficient of a wave with its order depends on the 

dimensionless wavenumber of that wave. 
n
ccT  goes down faster because the magnitude of 

cy  is smaller than that of sy . Both 
n
ccT  and 

n
scT  being scattering coefficients of a 

compressional wave, 
n
ccT  falls off more slowly than 

n
csT  because shear-compressional 

interaction is stronger than that of compressional-shear, and the same is true with 
n
ssT  and 

n
csT . 

n
ssT  does not decrease due to the high value of sy  and the strong shear-shear 

interaction. As can be seen from the cy  dependence of the scattering coefficients found in 

the previous section, all 
n
ssT  have a larger magnitude than the other coefficients and the 

magnitude of 
2
csT  is of the same order as that of 

0
ccT and 

1
ccT .  
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2.6 CONCLUSION 

In this chapter we have undertaken a detailed study on the scattering by an elastic spherical 

scatterer embedded in a viscous fluid of infinite extent and have derived analytical solutions 

for scattering coefficients for arbitrary partial wave order for both incident compressional 

and shear waves by taking account the viscosity of the surrounding fluid through the wave 

mode conversion phenomenon. The solutions obtained presents a generalisation of the 

results of a previous study of the dipole scattering coefficients conducted by Pinfield and 

Forrester. Although the compressional wavelength is assumed to stay within the Rayleigh 

scattering limit, no assumption has been made about the shear wavelength in the fluid and 

hence the solutions are general in terms of the shear wave. The analytical solutions are 

shown to reduce to prior known results in the case of dipole scattering. The validity of the 

approximated solutions is numerically checked by comparing with their exact numerical 

solution of the boundary equations and found to agree well. The analytical approximations 

of the monopole and dipole scattering coefficients will be used in the next chapter to study 

the effective bulk modulus and mass density. The higher order scattering coefficients may 

be useful in studying multi-mode multiple scattering models analytically, especially in the 

case of the incident shear wave. The quadrupole scattering coefficients might also be 

required to calculate the effective viscosity of a suspension using a core-shell effective 

medium model. 
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CHAPTER THREE 

EFFECTIVE DYNAMIC PROPERTIES WITH SPHERES 
 

 

3.1 INTRODUCTION 

This chapter addresses the problem of the determination of effective dynamic properties in 

a shear-acoustic system of spherical particles in a viscous fluid at high concentrations, a 

problem requiring full account of both acoustic and shear wave modes and the impact of 

particle interactions due to shear boundary layer overlap. The Generalised Self-Consistent 

Model (GSCM) as applied in Refs. [1–3], not being restricted to low concentration, has been 

adopted and applied to a system where wave mode conversion is taken into account, under 

a large compressional wavelength assumption, in order to obtain analytical expressions for 

the effective dynamic parameters. Although use of the GSCM restricts the validity of the 

model in terms of the long compressional wavelength, it permits a full investigation of 

effective properties without limit on concentration, whereas multiple scattering models are 

suitable to low concentrations. An effective bulk modulus is obtained from the monopole 

mode, and an effective density from the dipole mode; for the first time, an effective density 

of a discrete random medium, taking the viscosity of the host fluid into account through 

wave mode conversion using scattering theory, is presented. The long compressional 

wavelength assumption applies with respect to both the particle size and the average inter-

particle distance. Contrary to the case of a solid (or visco-elastic) host, the shear wavelength 

in a viscous fluid is not the same order of magnitude as the compressional one, and the 

frequency dependence of the effective parameters is thus investigated by varying the 

dimensionless shear wavenumber over a wide range of values, while confining the 

dimensionless compressional wavenumber to the long wavelength limit. Whilst the 

effective bulk modulus is found to be quasi-static with only limited frequency-dependence, 

the effective mass density is frequency-dependent and hence its behaviour is investigated 

numerically. In this chapter, the model and its principal results are presented in Sec. 3.2. In 

section 3.3, numerical predictions of the model are presented, and their physical 

interpretation discussed. 
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3.2 MODEL 

3.2.1 Core-Shell System for Effective Medium 

The system consists of a small-amplitude (linear) acoustic wave propagating through a 

medium consisting of identical spherical inclusions (particles) of radius a , randomly 

dispersed in an infinitely extended homogenous isotropic matrix medium with a given 

concentration c. Using the principles of the GSCM, an equivalent problem is constructed 

by embedding a single particle coated with shell of the host medium (a viscous fluid) within 

a homogeneous medium which has the well-defined effective properties of the whole 

system (Fig 3.1). Effective properties may be obtained in cases where the (effective) 

acoustic wavelength is much larger than both the particle (core-shell inclusion) size and the 

average inter-particle separation [2, 4]. The radius of the shell, b , is fixed such that the 

concentration within the shell is equivalent to that in the medium as a whole, thus 

1/3b= ac− . 

The self-consistency condition or equivalently the Coherent Potential Approximation 

(CPA), requires the scattering from the core-shell inclusion to vanish when embedded in 

the effective medium [1, 4-5]. Here both acoustic (compressional and shear) wave modes 

are included in all three phases. Thus, mode conversions are accounted for in the model. 

The self-consistency condition is applied independently to the Rayleigh partial wave orders, 

namely the monopole and dipole modes, and to both compressional and shear scattered 

waves, consistent with the requirement for minimum scattering. Although the method is 

limited to long compressional wavelength, no assumption regarding the shear wavelength 

has been made, thereby allowing us to investigate a wide range of shear wavelengths for 

incident compressional waves to determine the frequency-dependence of the effective 

dynamic density. 

The GSCM we have employed is similar to that in Refs. [1, 3] in two respects: firstly, the 

authors seek a self-consistent solution by invoking the CPA to ensure that the core-shell 

system embedded within the effective medium produces no scattered waves in the lowest 

orders of scattering coefficients; and secondly, they directly work on the shell boundary 

conditions with no scattered waves in the effective medium, since the expressions for 

scattering coefficients of the core particle are known.  
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(a) (b) 

Figure 3.1: Illustration of the Generalised Self-Consistent Method adopted in this work. The acoustic wave 
field in the complex medium (a) is equivalent to that in the effective medium surrounding a single inclusion 
embedded within a shell of the host medium (b). Self-consistency requires that the scattering from the core-
shell system be zero. 

 

We consider an incident effective compressional wave that propagates in the effective 

medium and encounters the core-shell inclusion, producing no scattered waves in the 

effective medium, but two inward-propagating refracted waves (one compressional and one 

shear with amplitudes cc
nC  and cs

nC  respectively) in the shell. These two refracted waves 

are, in turn, scattered by the core particle, each generating an outward-propagating wave of 

each mode in the shell and two refracted waves inside the core particle. The scattering of 

waves from the core particle in the host medium is characterised by scattering coefficients 

cc
nT and cs

nT for an incident compressional wave, and sc
nT and ss

nT for an incident shear wave. 

These combine with the incident amplitudes of the inward-propagating refracted waves in 

the shell ( cc
nC and cs

nC ) to define the amplitude of the outward-propagating waves in the 

shell. 

The solution to determine the effective properties proceeds by the application of the 

boundary conditions at the interface of the shell and effective medium for each partial wave 

order independently, considering all wave modes. Rearrangement of the equations and the 

application of the long-wavelength requirement for the incident compressional wave leads 

to solutions for the effective bulk modulus and effective density. The validity of the model 

is not limited to a particular concentration range, but the long wavelength assumption 

c cX := K b < <1 , and
c cx := k b <<1  imposes a frequency and particle size limit which is 
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dependent on the concentration. The practical limits imposed by this requirement are 

explored in the results of section 3.3. 

 

3.2.2 Core-Shell Boundary Equations 

In the shell, the wave potentials for an incident compressional wave can be written as: 

 ( ) ( ) ( ) ( ) ( )n cc cc cc cs sc
c,shell n n n c n n n n n c

n=0

= i 2n + 1 P cos C j x + C T + C T h x
∞

 Φ θ   ∑  (3.1) 

 ( ) ( ) ( ) ( ) ( )n cs cc cs cs ss
s,shell n n n s n n n n n s

n=0

= i 2n + 1 P cos C j x + C T + C T h x
∞

 ψ θ   ∑  (3.2) 

The effective properties are obtained by applying the same boundary equations as in the 

single sphere case to the outer boundary, br =  of the core-shell system of the effective 

medium model. The continuity of the displacements at the interface between the effective 

medium and the shell gives: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

cc cs cc
c n c n c n c n n s n c n c

cc cc cc cs cs
n n c n c n n n s n n s

cs ss cs sc
n n n s n n c n c

X j X t Y h X t n n 1 h X C x j x

T C x h x C T n n 1 h x C n n 1 j x

C T n n 1 h x C T y h x

′ ′ ′+ + + =

′+ + + + +

′+ + +

  (3.3) 

and 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

cc cs cc
n c n n c n s n s n s n n c

cc cc cc cs cs
n n n c n n s n s n s n s n s n s

cs ss cs sc
n n s n s n s n n n c

j X t h X t X h X h X C j x

T C h x C T x h x h x C y j x j x

C T x h x h x C T h x

 ′+ + + = + 
   ′ ′+ + + +   

 ′+ + + 

 (3.4) 
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Continuity of stress produces: 

 

( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( ){ }

( ) ( ) ( ){ }

2eff
s n c c n c2

s

cc 2eff
n s n c c n c2

s

cs eff
n s n s n s2

s

cc 2
n s n c c n c2

s

cc cc 2
n n s n c c n c2

s

cc cs
n n 2

s

X 2n n 1 j X 4X j X
X

t X 2n n 1 h X 4X h X
X

2t n n 1 X h X h X
X

C x 2n n 1 j x 4x j x
x

C T x 2n n 1 h x 4x h x
x

2C T
x

ρ   ′− + +  

ρ   ′+ − + +  

ρ
 ′− + − 

ρ   ′= − + +  

ρ   ′+ − + +  

ρ
+ ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ){ }

n s s n s

cs
n n s s n s2

s

cs ss
n n n s s n s2

s

cs sc 2
n n s n c c n c2

s

n n 1 h x x h x

2C n n 1 j x x j x
x

2C T n n 1 h x x h x
x

C T x 2n n 1 h x 4x h x
x

 ′+ − 

ρ  ′+ + − 

ρ  ′+ + − 

ρ   ′+ − + +  

    (3.5)

 

and 

 

( ) ( ) ( ) ( )

( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

cceff eff
n c c n c n n c c n c2 2

s s

cs 2eff
n s n s s n s2

s

cc cc cc
n n c c n c n n n c c n c2 2

s s

cc cs 2
n n s n s s n s2

s

cs
n 2

s

2 j X X j X 2t h X X h X
X X

t 2X h X X 2n n 1 2 h X
X

2C j x x j x 2C T h x x h x
x x

C T 2x h x x 2n n 1 2 h x
x

C 2
x

ρ ρ
   ′ ′− + −   

ρ  ′+ + − + +  

ρ ρ ′ ′= − + − 

ρ  ′+ + − + +  

ρ
+ ( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( )

2
s n s s n s

cs ss 2
n n s n s s n s2

s

cs sc
n n n c c n c2

s

x j x x 2n n 1 2 j x

C T 2x h x x 2n n 1 2 h x
x

2C T h x x h x
x

 ′ + − + +  

ρ  ′+ + − + +  

ρ  ′+ − 

   (3.6) 
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3.2.3 Effective Bulk Modulus 

In order to derive an expression for the effective bulk modulus, the monopole mode 

(Rayleigh partial wave with 0n = ) with an incident compressional wave is considered. 

Owing to the spherical symmetry of this mode, the expansions and contractions of the 

particle and shell act as a source of spherical compressional waves and the motion relates 

closely to the difference in bulk modulus (inverse of compressibility) of the media. No 

shear waves exist in the monopole mode (all shear wave amplitudes are therefore zero), and 

the tangential displacement and stress boundary equations are identically satisfied and 

therefore not applied. The viscous nature of the fluid host is retained in the radial stress 

component and within the compressional wavenumber. The system reduces to the two 

following boundary equations: 

 ( ) ( ) ( ) ( )cc cc cc
c 0 c 0 c 0 c 0 c 0 c 0 0 c 0 cY j Y t Y h Y C y j y T C y h y′ ′ ′ ′+ = +   (3.7) 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
eff eff c 0 c eff c 0 c

cc 2
0 eff eff c 0 c eff c 0 c

cc 2
0 c 0 c c 0 c

cc cc 2
0 0 c 0 c c 0 c

  ( 2 )Y j Y 4 Y j Y

  t ( 2 )Y h Y 4 Y h Y

C ( 2 )y j y 4 y j y

  T C ( 2 )y h y 4 y h y

′λ + µ + µ

 ′− − λ + µ − µ  

 ′= λ + µ + µ  

 ′+ λ + µ + µ  

    (3.8) 

The equations are written in terms of the Lamé parameters λ , µ , in order to relate to the 

bulk modulus B (2 / 3)= λ + µ . The parameters can take complex values in order to 

represent a lossy material, in particular siµ = − ωη  for a viscous liquid. The imaginary part 

of the bulk modulus similarly relates to the bulk viscosity Bm(B)ℑ = −ωη  and its real part 

is the inverse of the compressibility. Primed properties are used for the particle and 

unprimed for the host medium in the following as well as in the appendices. 

The use of the self-consistency condition cc
0t 0=  gives: 

 ( ) ( ) ( )cc cc cc
c 0 c 0 c 0 c 0 0 c 0 cY j Y C y j y C T y h y′ ′ ′= +      (3.9) 
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( ) ( )

( ) ( )

( ) ( )

2
eff eff c 0 c eff c 0 c

cc 2
0 c 0 c c 0 c

cc cc 2
0 0 c 0 c c 0 c

( 2 )Y j Y 4 Y j Y

C ( 2 )y j y 4 y j y

C T ( 2 )y h y 4 y h y

′λ + µ + µ

 ′= λ + µ + µ  
 ′+ λ + µ + µ  

     (3.10) 

By taking only the dominant term of the spherical Bessel function for the incident wave, 

given the smallness of its argument, since the compressional wavelength in the effective 

medium is assumed to be much larger than the shell radius, we have: 

 
2 cc 2
c 0 c 0 c 0 c 0 c c 0 c

eff cc
c 0 c 0 c 0 c

( 2 )y j (y ) 4 y j (y ) T ( 2 )y h (y ) 4 y h (y )
B

3 y j (y ) T y h (y )

 ′ ′λ + µ + µ + λ + µ + µ  =
 ′ ′− +  

 

            (3.11) 

where eff eff eff

2
B

3
= λ + µ  is the effective bulk modulus. 

Expanding the Bessel and Hankel functions for small arguments in both dimensionless 

compressional wavenumbers leads to: 

 
3 cc
c 0

eff 3 cc
c 0

By 4i T
B

y 3iT

+ µ
=

−
        (3.12) 

 
cc
0eff

3
eff c

iTB B

3B 4 y

−
=

+ µ
         (3.13) 

To get an expression in the low frequency limit, we use the following low frequency 

expression of the scattering coefficient cc
0T (derived in the previous chapter): 

 
( )cc 3

0 c

B B
T ic y

4 3B

′−
=

′µ+
        (3.14) 

which results in: 

 
( ) ( )

( )eff

4B 1 c B 3B 4 c
B

3B 1 c 4 3cB

′µ − + + µ
=

′ − + µ+
      (3.15) 
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which can be rearranged as: 

 eff

eff

B B B B
c

3B 4 4 3B

′− −
=

′+ µ µ+
        (3.16) 

Equation (3.16) is the same as that obtained by Kuster and Toksöz for solid-in-solid systems 

[6]. For an elastic solid host medium, Eqn. (3.15) shows that the effective bulk modulus 

effB  does not vary with frequency. Similarly, considering an inviscid liquid as the host 

medium, 0µ → , B → λ , and the effective bulk modulus is again independent of frequency 

and reduces to the harmonic mean of the component phases weighted by concentration, as 

found by Mei and Aristegui for cylindrical [1] and spherical [7] scatterers, respectively: 

 
eff

(1 c)1 c

B B B

−
= +

′
        (3.17) 

This bulk modulus expression appears in the Wood’s formula for sound velocity [8]. 

For a viscous liquid host medium with elastic solid particles, taking the complex shear 

modulus 
siµ = − ωη  results in a scattering coefficient such that cc 3

0 cT y  is again weak 

frequency-dependent (consistent with that presented by Allegra and Hawley [9]) and hence 

Eqn. (3.12) shows that the ratio of the effective bulk modulus to that of the host is quasi-

static.  

To conclude, while there is no difference between the dynamic and static effective bulk 

moduli in case of an inviscid host medium, a weak frequency-dependence of the ratio of 

the effective bulk modulus to that of the host is introduced in case of a viscous liquid host. 
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3.2.4 Effective Dynamic Mass Density 

The effective dynamic mass density has been investigated extensively over a number of 

years, with many researchers finding its value to differ appreciably from the volume 

average mass density [1], [6], [7], [10]–[15] even in the zero frequency limit, unless 

studying solid-in-solid composites. The difference in inertia between the particles and the 

background medium causes the particles to move relative to the host matrix; due to this 

periodic oscillation, the particles mostly radiate in the forward and backward directions, 

known as dipole radiation. The difference in the relative motion caused by the restoring 

force in the elastic or viscous fluid host medium implies that the effective dynamic mass 

density is in general a complex quantity. 

The effective dynamic mass density can be determined from the dipole mode n =1 by 

considering a compressional wave mode incident on the single core-shell system embedded 

within the effective medium. Both compressional and shear wave modes exist in all regions 

for the dipole partial wave order, except the scattered ones in the effective outer medium, 

where their amplitudes are set to zero. Four boundary conditions are applied at the shell 

surface; in this case, these are expressed in terms of wavenumbers and densities, rather than 

the Lamé parameters as were used for the monopole mode. Again, simplification is 

achieved by applying the long compressional wavelength condition. Frequency dependence 

appears through the variation of the shear wavelength relative to the particle size through 

the parameter sy  which is not restricted to small values. Four sets of results are derived 

here: 

(i) by rearrangement of the boundary equations and applying an assumption on the 

amplitudes of the waves in the shell (an assumption validated in the next section) to 

derive a frequency-dependent effective density; 

(ii) by analytical solution of the boundary equations using series expansions for all 

functions of compressional wave modes and retaining the leading order term for the 

scattering coefficients. This proves the assumption made in (i) and results in an 

effective density expression which is the leading order in sx ; 
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(iii) by expanding the expression for the effective density obtained in (ii) using series 

expansions in the shear wavenumbers in the liquid host, to obtain the low frequency 

expression of the effective density when sy  is small; 

(iv) by using the large argument asymptotic expansion of the Bessel and Hankel 

functions related to shear waves in the viscous liquid host in order to recover 

Ament's formula for the effective mass density in the case of an inviscid fluid, 

corresponding to infinitely large sy . 

Each of these is presented in the following sections with fuller details. 

 

3.2.4.1 General expression for the effective density 

For the monopole scattering, setting cc
1t  and cs

1t  equal to zero, as required by CPA, in Eqns. 

(3.3) to (3.6), yield the following set of equations: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

cc cc cs
c 1 c 1 c 1 c 1 c 1 c 1 1 s

cs sc ss
1 1 s 1 c 1 c 1 1 s

X j X C x j x T x h x 2T h x

C 2j x T x h x 2T h x

 ′ ′ ′= + +  
 ′+ + +  

   (3.18) 

 
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

cc cc cs
1 c 1 1 c 1 1 c 1 s 1 s 1 s

cs sc ss
1 s 1 s 1 s 1 1 c 1 s 1 s 1 s

j X C j x T h x T x h y h x

C x j x j x T h x T x h x h x

 ′= + + +  

   ′ ′+ + + + +      

  (3.19) 

 

( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ){ }

2 cc 2eff
s 1 c c 1 c 1 s 1 c c 1 c2 2

s s

cc cc 2 cc cs
1 1 s 1 c c 1 c 1 1 1 s s 1 s2 2

s s

cs cs sc 2
1 1 s s 1 s 1 1 s 1 c c 1 c2 2

s s

X 4 j X 4 X j X C x 4 j x 4 x j x
X x

C T x 4 h x 4 x h x 4C T h x x h x
x x

4C j x x j x C T x 4 h x 4 x h x
x x

4

ρ ρ   ′ ′− + = − +      

ρ ρ   ′ ′+ − + + −     

ρ ρ   ′ ′+ − + − +      

+ ( ) ( )cs ss
1 1 1 s s 1 s2

s

C T h x x h x
x

ρ  ′−  

 

            (3.20) 
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( ) ( ) ( ) ( )

( ) ( ){ } ( ){ }

( ){ } ( ) ( )

( )

cceff
1 c c 1 c 1 1 c c 1 c2 2

s s

cc cc cc cs 2
1 1 1 c c 1 c 1 1 s 1 s 1 s2 2

s s

cs 2 cs sc
1 s 1 s 1 s 1 1 1 c c 1 c2 2

s s

cs ss
1 1 s 1 s s2

s

2 j X X j X 2C j x x j x
X x

2C T h x x h x C T 2x h x 2 h x
x x

C 2x j x 2 j x 2C T h x x h x
x x

C T 2x h x x
x

ρ ρ   ′ ′− = −    

ρ ρ  ′ ′+ − + + −  

ρ ρ   ′ ′+ + − + −     

ρ
′+ + ( )2

1 s2 h x   −      

 (3.21) 

Multiplying Eqn. (3.21) by 2 and adding it to Eqn. (3.20) gives: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

cc cc cseff
1 c 1 1 c 1 1 c 1 1 s

cs ss sc
1 1 s 1 1 s 1 1 c

j X C j x T h x 2T h x

C 2j x 2T h x T h x

ρ  = + +  ρ

 + + +  

    (3.22) 

The effective density expression can be obtained by dividing Eqn. (3.22) either by the radial 

[Eqn. (3.18)] or the polar displacement equation [Eqn. (3.19)]. Here we divide Eqn. (3.22) 

by Eqn. (3.18) and obtain: 

cc cs sc ss
1 c 1 1 c 1 1 s 1 s 1 1 c 1 1 seff

cc cs sc ss
c 1 c 1 c 1 c 1 1 s 1 s 1 1 1 c 1 1 s

D j (x ) + T h (x ) + 2T h (x ) + 2j (x )+ T h (x ) + 2T h (x )
=

D x j (x ) + T x h (x ) + 2T h (x ) + 2j (x ) + T y h (x ) + 2T h (x )

   
ρ       

   ρ ′ ′ ′      

 

            (3.23) 

The ratio of amplitudes: 

 
cc
1

cs
1

C
D

C
=           (3.24) 

can be expressed, under assumptions based on the large compressional wavelength 

conditions as validated in the next section, as: 

 

sc ss
s 1 s 1 s 1 c 1 c 1 c 1 s 1 s 1 s

cc cs
c 1 c 1 c 1 c 1 c 1 c 1 s 1 s 1 s

x j (x ) j (x ) T x h (x ) h (x ) + T x h (x ) h (x )
D =

x j (x ) j (x ) + T x h (x ) h (x ) T x h (x ) h (x )

     ′ ′ ′− − − −          
     ′ ′ ′− − − −          

 

            (3.25) 
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The ratio of the scattering coefficients, D , as given in Eqn. (3.25), is obtained from the 

subtraction of Eqn. (3.19) from Eqn. (3.18) and the neglect of terms of the order 3
c

X  on the 

left hand side, under the condition that cc

1
C  is of order less than or equal to 1 (i.e. ( )

1

cO x ) 

and cs

1
C  is of order less than or equal to 2 (i.e. ( )

2

c
O x ). In order to validate those 

assumptions, Maple (Maplesoft) software has been used to carry out analytical expansions 

under the large compressional wavelength assumptions, 
c

x 1<< , 
c

X 1<< . First, Eqns. 

(3.18)-(3.19) have been solved to obtain cc

1
C  and cs

1
C . Using then the expansions of the 

Bessel and Hankel functions associated with compressional waves in series of powers of 

their argument, and taking into account the dependency of the scattering coefficients 

(derived in the previous chapter) on 
c

x , their respective leading order terms are found to 

be respectively ( )
0

c
O x  and ( )

1

c
O x . 

 

3.2.4.2 Leading order in compressional wavenumber 

cx  being small compared to sx , we make the following approximations for the Bessel and 

Hankel functions with argument cx : 

c
1 c

x
j (x )

3
≃ ,  1 c 2

c

i
h (x )

x
−≃ ,  1 c 3

c

2i
h (x )

x
′ ≃ ,  so  c 1 c 1 c 2

c

3i
x h (x ) h (x )

x
′ − ≃ . 

With the aid of these expressions, Eqns. (3.23) and (3.25) simplify to: 

 

cc cs sc ssc
1 1 1 s 1 s 1 1 1 s2 2

eff c c

cc cs ss scc
1 1 1 s 1 s 1 1 s 12 2

c c

x i i
D T + 2T h (x ) + 2j (x ) T + 2T h (x )

3 x x

x 2i 2i
D + T + 2T h (x ) + 2j (x ) + 2T h (x ) + T

3 x x

   
   − −   ρ       =
   ρ
   
   
      

 (3.26) 

and 

2 sc 2 ss
c s 1 s 1 s 1 c 1 s 1 s 1 s

cc cs 2
1 1 c s 1 s 1 s

ix x j (x ) j (x ) + 3T + ix T x h (x ) h (x )
D =

3T iT x x h (x ) h (x )

   ′ ′− −      
 ′− − − 

  (3.27) 
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Inserting Eqn. (3.27) into Eqn. (3.26), and after performing some algebra, we obtain: 

 eff E

F

ρ
=

ρ
          (3.28) 

with 

 

( )cs sc cc ss
1 1 1 1 s 1 s 1 s

2
ccc sc cs

1 s 1 s 1 s c 1 1
s

3 ss 3
c 1 1 s s 1 s c 1 s s 1 s

E = 3 T T T T x h (x ) 7h (x )

x
  3T x j (x ) 7j (x ) 3x T 6T

x

  + ix T h (x ) x h (x ) + ix j (x ) x j (x )

 ′− −  

 ′− − − −  

   ′ ′− −      

   (3.29) 

and 

 

( )cc ss cs sc
1 1 1 1 s 1 s 1 s

2
ccc sc cs

1 s 1 s 1 s c 1 1
s

3 ss 3
c 1 1 s s 1 s c 1 s s 1 s

F = 6 T T T T x h (x )+ 2h (x )

x
+ 6T x j (x )+ 2j (x ) 3x T 6T

x

+ ix T h (x ) x h (x ) + ix j (x ) x j (x )

 ′−   

 ′ − −  

   ′ ′− −      

   (3.30) 

Equation (3.28) is exactly the same equation as that derived in the Ref. [16] [Eqn. 8] which 

was obtained from the division of Eqn. (3.22) by Eqn. (3.19). Equations (3.28)-(3.30) have 

been obtained with no restriction as to the magnitude of the dimensionless shear 

wavenumber sx . 

Two solutions have now been presented for the dynamic effective density, accounting for 

mode conversions between compressional and shear wave modes: the general equation 

(3.23) and its leading order in cx , equation (3.28). Both are limited to small compressional 

wavenumber cx , but no assumption has yet been made on the magnitude of the 

dimensionless shear wavenumber sx , which, in a fluid host medium, can range from small 

to large values within the long compressional wavelength region. The frequency-dependent 

behaviour of the effective density will be explored in section 3.3, but consideration is first 

given explicitly to the low frequency region where the shear wavelength is large compared 
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with the particle size, as well as the converse case of an inviscid host fluid where the shear 

wavelength tends to zero. 

3.2.4.3 Low frequency expansion in shear wavenumber 

Starting from equation (3.28) all Bessel and Hankel functions with argument 1/3
ss y cx −=  

are expanded as series in the dimensionless shear wavenumber sy  which is now taken to be 

small. With these low-frequency approximations, one can show that the effective mass 

density reduces to the following expression: 

 ( ) ( ) ( ) ( ) ( )2 4 6effL
s s s sˆy 1 c c J c y K c y O y

ρ
= − + ρ + + +

ρ
   (3.31) 

where 

 
( )

2 11 10 8 5 1
23 3 3 3 3

2
5

3

ˆ 1c
J(c) = 4c 9c 10c 13c +13c 10c + 9c 4

18

c 1

 ρ −  − − + − − − 
      −    

 (3.32) 

and 

 ( )
( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

ρ ρ

ρ ρ

ρ ρ

ρ ρ
ρ

ρ ρ

ρ ρ

2 3 4 3

5 3 2

7 3 8 3

10 33
2

11 3 4

3
5 3 13 3 14

ˆ ˆ-81c + ( 112 + 448)c + 504 909 c

ˆ ˆ+ 567 + 567 c + 560 + 605 c

ˆ ˆ+ 1260 612 c + 616 1519 c

ˆ ˆ+ 2562 + 2922 c + 1071 1071 c
ˆ 11

ˆ ˆK c = + 1820 1460 c + 1820 + 917 c
2268

c 1 ˆ ˆ+ 1071 + 1719 c + 2562 2517 c

− −

− −

− −

− −
−

− −

− − −

( ) ( )

( ) ( )

( ) ( )

ρ ρ

ρ ρ

ρ ρ

3

16 35

17 3 6

19 3 20 3

ˆ ˆ+ 616 + 616 c + 1260 + 855 c

ˆ ˆ+ 560 224 c + 567 648 c

ˆ ˆ+ -504 + 504 c + 112 112 c

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − 
 
 − − 
 
 −
  

 (3.33) 

The expansion of the effective mass density in powers of sy , equation (3.31), has been 

obtained after using expansions of all the Bessel and Hankel functions related to shear 

waves, including those in the scattering coefficients, up to relatively large orders, because 
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a large number of terms cancel each other. Since 2
sy  is purely imaginary for a viscous fluid, 

it is necessary to retain the first two leading order terms in the effective density in order to 

obtain both the real and imaginary part of the frequency-dependent effective density. 

As expected [10-11], equation (3.31) provides the static limit of the effective density as the 

volume averaged density, 

 ( )
c
s

eff

x 0
y 0

ˆlim 1 c c
→
→

ρ
= − + ρ

ρ
        (3.34) 

which is indeed the addition law of densities. Since 2
sy  is purely imaginary for a viscous 

liquid, the leading-order frequency dependence in Eqn. (3.31) provides only the imaginary 

part of the effective density; the real part varies only as 4
sy . The concentration dependence, 

Eqns. (3.32)-(3.33), is complicated, and features terms in one-third powers of the 

concentration, which is typical for such core-shell self-consistent models. This is in contrast 

to the multiple scattering models that usually provide effective properties at low 

concentration and are often expressed as series in integer orders of the latter. 

Having determined the effective density in the long-shear-wavelength limit (small sy ), the 

case of an inviscid host fluid, for which 
s

y tends to infinity, is now examined. 

 

3.2.4.4 The limit of an inviscid liquid host 

In order to obtain the limit of effective density for an inviscid medium, 
s sy , x  are taken 

to be large, using the asymptotic expansions of the Bessel and Hankel functions in Eqn. 

(3.28) , along with the scattering coefficients for large 
sx  [Eqns. (2.53), (2.54), (2.65), 

(2.66) of the previous chapter]. Considering a viscous liquid host, with large 
sy , while 

still meeting the long compressional wavelength requirement, the dimensionless shear 

wavenumber in the viscous host fluid, ( )s Sy 1 i / (2 )a= + ρω η , is written in the form: 

 ( )sy 1 i= + β          (3.35) 
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with 1β≫ . Using the asymptotic expansions of the spherical Bessel and Hankel functions, 

in Eqns. (2.53), (2.54), (2.65), (2.66) derived in the previous chapter for large β , leads to: 

 cc 3
1 c

2

ˆi 1
T y

ˆ3 1

ρ −

ρ +
∼          (3.36) 

 siycs
1 c

ˆ 1
T ie y

ˆ2 1
− ρ −

−
ρ +

∼         (3.37) 

 
siy

sc 2
1 c

s 2

ˆe 1
T 2i y

ˆy 1

− ρ −
−

ρ +
∼         (3.38) 

 ( )siyss
1 sT i e sin y−−∼         (3.39) 

Equation (3.36) is identical to that obtained for a single sphere in an inviscid host liquid 

which does not support shear waves. 

The numerator of the fraction in Eqn. (3.28) thus behaves as: 

 ( )s3
c s c

iy ˆc 1
i y e sin y x

ˆ3 2 1
− ρ −

−
ρ +

       (3.40) 

and the denominator as: 

 ( )
( )

s3
c s c

i y ˆ2 c 1 1 2c
y e sin y x

2̂ 1

− − ρ − −
−

ρ +
     (3.41) 

Hence, in the limit of large 
s

y  and 
s

x , equation (3.28) becomes: 

 
cc

eff 1

3 cc

c 1

T
1 9ic

y 6icT

ρ
−

ρ +
∼        (3.42) 

The effective density is now considered in the limit as 
s

y  tends to infinity, i.e. the reduction 

of Eqn. (3.28) to Eqn. (3.42) in the limit of large 
s

y  is physically equivalent to a host liquid 

tending to an inviscid liquid. 
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Taking the limiting form of the scattering coefficient cc
1T  for large 

s
y , Eqn. (3.42) reduces 

to: 

 
( ) ( )

( ) ( )
eff

2 c

2 2c

′ ′ρ + ρ + ρ − ρρ
=

′ ′ρ ρ + ρ − ρ − ρ
       (3.43) 

which is identical to Ament’s formula (for spherical particles) for an inviscid fluid host 

[10]. The same results for effective density as Eqns. (3.42)-(3.43) are obtained by applying 

the self-consistent scheme directly in the case of an inviscid fluid host as shown in the 

following. Hence our expression for effective density tends to the expected static limit for 

an inviscid fluid host when 
sy  tends to infinity (still obeying 

c
y 1≪ ). 

For an inviscid liquid host which does not support shear waves (rather than the limit of a 

viscous liquid host at large 
sy ), the boundary equations at br=  are greatly simplified, 

resulting in: 

 
( ) ( ) ( )

( ) ( ) ( )

cc cc
c n c c n n c n n c

cc cceff
n c n n c n n c

X j X x C j x T h x

j X C j x T h x

   ′ ′ ′= +   ρ   = +    ρ

     (3.44) 

This leads to Eqn. (3.17) for the monopole mode 0n =  and to equation (3.43), for the 

dipole mode 1n = , which is the limit of large 
s

x  in a viscous liquid host. 

 

3.3 RESULTS OF NUMERICAL CALCULATIONS 

Numerical calculations were carried out in Matlab for silica particles in water at 25°C. The 

material properties of silica and water used are shown in Table 3.1. Only the effective 

density is investigated numerically since the ratio of the effective bulk modulus to that of 

the host is found to be quasi-static. The two expressions obtained for the effective density, 

Eqn. (3.28), and the low frequency expansion for small sy , Eqn. (3.31), are compared. 

Both frequency and concentration dependence are investigated. 

The effective mass density, derived under the large compressional wavelength assumption, 

depends on concentration and on the ratios, to the particles size, of both the compressional 
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and the shear wavelengths in the host. In order to demonstrate the effect of this condition 

on the range of validity of the model in terms of particle size, frequency and concentration, 

we write the condition as c c max
x < x  with c max

x =0.1. Since the imaginary part of kc is 

small, compared to its real part, we thus obtain a validity condition: 

 
1 3

c max

v
a.f x c

2
<

π
         (3.45) 

 

Table 3.1: Physical properties of silica and water at 25°C (298.15 K). Data for water are from Ref. [17] and 

for silica from Ref. [18] with a modified silica density, based on experimental measurement [19]. 

Physical parameters Water Silica 

Sound velocity (m.s−1) 1497 5968 

Density (kg.m−3) 997 2100 

Shear viscosity (Pa.s) 0.000891 0 

Shear modulus (GPa) 0 30.9 

Attenuation coefficient (Np.m−1.MHz−2) 0.023 2.6×10−10 

 

The ranges of particle size and frequency over which the model is therefore valid are shown 

in Fig. 3.2 indicating a useful and workable range of validity, which improves at higher 

concentration (as the shell becomes smaller with fixed particle size). 
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Figure 3.2: Range of validity of the model in terms of particle size and frequency at different concentrations, 

satisfying the condition cx 0.1≤ . The condition is satisfied below the curves. 

 

While the shear wavelength in an elastic particle is the same order of magnitude as the 

compressional wavelength, this is not the case in a viscous fluid, and we want to investigate 

a large range of sy values (as encountered in experimental conditions). However, 

investigating small shear and large compressional wavelengths is possible only for 

sufficiently large particles. Applying the validity condition above implies that for a fixed 

particle size 0a , the maximum value that ce(y )ℜ  can attain is approximately given by: 

 ( )
2

2 s 1/3
s c 0maxmax

c

k1
e y x c a

2 k
 ℜ =        (3.46) 

Conversely, setting both 
c max

x and the maximum value of se(y )ℜ  one is interested with, 

Eqn. (3.46) provides the minimum value 0a  that the particle radius can take. 
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3.3.1 Dependence on Frequency at Different Particle Sizes 

First the frequency dependence of the effective density at fixed concentration is 

investigated. Setting s max
e(y ) ℜ   to 100, c max

x  to 0.1 and concentration c  to 0.4, Eqn. 

(3.46) provides a minimum value for the particle radius a  approximately equal to 160 µm. 

Figure 3.3 shows the effective mass density variation with the real part of sy , up to 100, 

for smaller values of radius, ranging from 50 nm to 100 µm along with the maximum values 

that se(y )ℜ  can reach in each case, according to Eqn. (3.46). While the curves of the 

effective mass density depend only on the dimensionless wavenumbers and, thus, not on 

the particular elastic and viscous fluid media we are dealing with, the maximum values of 

se(y )ℜ  that can be reached for different values of 0a  depend on those, through the 

2
s ck k  ratio in Eqn. (3.46). 

Eqns. (3.23) and (3.28) agree over the full range, until the limit of 
c

y 0.1≤  is reached (not 

shown on the plot). Figure 3.3 shows that the low frequency expansion, Eq. (3.31), provides 

quite accurate results even up to values of se(y )ℜ  slightly larger than unity. The effective 

density is seen to tend to the volume averaged mass density [Eq. (3.34)] at small 
s

y , and 

to that of Ament’s formula for the inviscid fluid host, Eq. (3.43), at large 
s

y . While the 

smaller the particles the smaller the range of sy where the results are valid, one can see the 

evolution of the effective density from its static value to the dynamic range with the increase 

of 
s

y , even for nanoparticles such that a 100 nm≤ . 
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(a) (b) 

Figure 3.3: The real (a) and imaginary (b) parts of the normalised effective density for silica particles in 

water at 40%v/v concentration, as a function of the dimensionless shear wavenumber sy . The solid curve 

shows the result of Eq. (3.28); the dotted line shows the low frequency expansion in Eq. (3.31). The dashed 

line shows the static limit [from Eq. (3.34)], the solid (constant) black line Ament's static limit, Eq. (3.43), 

for the inviscid fluid. The curves were calculated using a particle radius of 100 µm; the symbols show the 

upper limit of sy for particles of different radii satisfying the condition cx 0.1≤ . 

 

The intermediate parts of the curves (Fig. 3.3) show a peak in the imaginary part of the 

effective density corresponding to an inflection point in the real part, for se(y )ℜ  slightly 

larger than unity. Single particle scattering theory shows that the scattering coefficients 

involving a shear wave undergo a resonance-like behaviour against frequency at se(y ) 1ℜ ≃  

[9]. The effect of such a behaviour has been observed on the compressional coherent wave 

properties predicted both by multiple scattering models that consider only multiple 

scattering of the acoustic mode, such as Lloyd and Berry’s model [20], and by the multi-

mode scattering model of Luppé et al. [21] (see discussions in Ref. [18]). The same kind of 

effect is seen here on the effective mass density. 

 

3.3.2 Dependence on Frequency at Different Concentrations 

Having investigated the frequency dependence of the effective mass density at fixed 

concentration, Figure 3.4 now shows how this frequency dependence is influenced by a 

change in the particle concentration. Two observations can be made as the concentration 

increases (i) the change of magnitude in the real and imaginary parts of the mass density 
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occurs at higher values of se(x )ℜ  (i.e. higher frequency at fixed particle size), and (ii) the 

amplitude of the peak in the imaginary part increases, as well as the difference between 

static and inviscid limits on the real part. 

 

  

(a) (b) 

Figure 3.4: The real (a) and imaginary (b) parts of the normalised effective density given by Eq. (3.28) for 
silica particles in water at different concentrations, as a function of the dimensionless shear wavenumber 

sy . The curves were calculated using a particle radius of 100 µm ; smaller particles have a different upper 

limit of validity in se(y )ℜ  in order to satisfy the condition cx 0.1≤ , as shown in Fig. (2). 

 

Recent numerical investigation [22] and experimental validation (on acoustic attenuation) 

[19], [23] have demonstrated that the resonance peak observed in the attenuation against 

frequency curve for the coherent compressional wave also shifts to higher se(x )ℜ  as the 

concentration increases. This is consistent with the findings here on the effect of 

concentration on the effective density, which influences the effective compressional 

wavenumber. Physically, the effect relates to the effective stiffening of the medium due to 

the increase in viscous drag caused by the presence of a higher density of particles in the 

medium. This increased drag has been observed in a concentrated particle suspension and 

the corresponding viscosity increase, modelled by many workers including Happel and 

others (see review in Ref.[18]). The shift to higher se(y )ℜ  of the resonance peak of both 

the properties of the coherent compressional wave and the effective density as the 

concentration increases indicates that the resonance frequency is driven by the wavelength 

to particle size ratio of the shear wave in the effective medium rather than that in the host 

medium. 
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3.3.3 Dependence on Concentration at Fixed ys 

In order to explore the concentration dependence further, different regions around the 

resonance condition are investigated, selecting fixed values of se(y )ℜ  either side of the 

resonance peak, near the static limit, near the inviscid limit and near the resonance 

condition. Since the long compressional wavelength condition must be satisfied with 

cx 0.1≤ , and the shell radius becomes larger as the concentration decreases, the condition 

becomes more stringent on particle size and frequency at low concentrations. Thus, particle 

sizes and frequencies have been selected (for a given value of se(y )ℜ ) such that the 

cx 0.1≤  condition is satisfied for concentrations greater than minc 0.05=  (5%v/v). The 

long compressional wavelength condition is satisfied by Eq. (3.45) with minc c= . 

A particle radius is selected to satisfy this condition for each value of se(y )ℜ ; the frequency 

is then deduced from a and se(y )ℜ . Thus the data presented all satisfy the long 

compressional wavelength condition cx 0.1≤  for concentrations above 5%v/v and some 

for smaller concentrations. Table 3.2 shows the set of values of particle radius and 

frequency that were used for the calculations shown in Figure 3.5, along with the 

corresponding minimum concentration satisfying the cx 0.1≤ condition. 

 

  

(a) (b) 

Figure 3.5: The real (a) and imaginary (b) parts of the normalised effective density from Eq. (3.28) for silica 

particles in water as a function of concentration, at fixed values of the dimensionless shear wavenumber 

se(k a)ℜ . 
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The real and imaginary parts of the effective density are shown in Figure 3.5 as a function 

of concentration for several values of the dimensionless shear wavenumber. At small and 

intermediate values of se(y )ℜ , the real part of the effective density is almost linear, and is 

determined largely by the linear variation of the static limit of Eq. (3.34). The rather weak 

frequency-dependence is manifested only at larger se(y )ℜ , where some curvature is seen 

and the real part of the effective density is observed to deviate significantly from the static 

value. The imaginary part of the effective density shows a peak in all but the highest se(y )ℜ  

curves. As already observed in figure 2b, the magnitude of the peaks increases with 

concentration. The peaks occur for pairs of se(y ), c ℜ   values roughly the same as in Figure 

3.2b For example, at se(y ) 5ℜ = , the peak in the imaginary part of the effective density 

curve with concentration occurs at c=0.4 in figure 4b. At this concentration, it occurred in 

the curve of Figure 3.3b against se(y )ℜ  at se(y ) 5.6ℜ = . At the largest particle size, all 

physically-realistic concentration conditions occur to the inviscid limit side of the 

resonance peak in se(y )ℜ  and the concentration dependence is therefore monotonically 

increasing with concentration. 

 

Table 3.2: System parameters for investigation of concentration-dependence of the effective density at fixed 

se(y )ℜ . 

sRe(y )  a (nm) f (MHz) cmin (%v/v) 

1 50 113.9 1.4 

2 150 50.6 3.2 

5 800 11.1 5.2 

20 13,000 0.67 5.0 
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3.3.4 Dependence on Frequency with Different Viscosities 

In order to show how the effective density may be affected by changes in viscosity of the 

fluid host medium, we show its dependence as a function of frequency in Fig. 3.6 for a 

particle size of 3 µm, concentration 25% and with different host fluids (properties shown 

in Table 3.3). The density contrast between particles and fluid is different in each case, 

hence the static and inviscid limits are also different. As viscosity of the fluid medium 

increases, the inflection of the real part of the normalised effective viscosity moves to 

higher frequency (but corresponds to the same value of se(y )ℜ ). 

 

  

(a) (b) 

Figure 3.6: The real (a) and imaginary (b) parts of the normalised effective density as a function of frequency 

from Eq. (3.28) for silica particles in various viscous fluids, for a particle radius of 3µm and 25% 

concentration. at fixed values of the dimensionless shear wavenumber se(y )ℜ . 

 

Table 3.3: Host fluid properties for investigation of viscosity-dependence of the effective density. 

Host fluid Water[18] Hexadecane[18] Sunflower oil[17] Olive oil[24] 

Sound velocity (m.s−1) 1497 1299 1470 1464 

Density (kg.m−3) 997 1000 920.6 915.8 

Shear viscosity (Pa.s) 0.000891 0.00663 0.054 0.092 

Attenuation coefficient 

(Np.m−1.MHz−p) 
0.023 0.145 1.15 1.625 

Attenuation exponent p 2 2 1.77 2 
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3.4 CONCLUSION 

An effective medium core-shell model has been utilised, taking wave mode conversions 

into account, to study the case of spherical solid particles in a viscous liquid host, deriving 

the effective bulk modulus and mass density for the system. Approximate explicit formulas 

for both effective properties have been derived under the condition of large compressional 

wavelengths in the particles, the host, and the effective medium, with respect to the particle 

size. No assumption was made on the shear wavelength in the host, allowing the study of 

the transition of the effective mass density from its volume averaged value at large shear 

wavelength to Ament’s formula for an inviscid fluid at small ones. The effective density is 

both frequency and concentration dependent within the long compressional wavelength 

region, given by Eqs. (3.23), (3.28) and (3.31), representing respectively the general 

dependence, the leading order dependence in compressional wavenumber, and a low 

frequency expansion in the shear wavenumber. 

Numerical calculations for silica in water systems show that the frequency and 

concentration dependence of the effective density in a viscous liquid host medium is 

complex and complicated. It exhibits a resonance behaviour that occurs at increasing values 

of se(y )ℜ  as the concentration increases. This is consistent with previous observations of a 

similar behaviour of the coherent wave effective properties made during the comparison of 

a multi-mode multiple scattering model with experimental data [19], [23]. 

The analytical results presented account for viscous effects in modelling the dynamics of 

nanoparticle systems. We chose to follow the same procedure as the authors of Ref. [1], 

working directly on the boundary conditions at the shell outer surface with zero amplitude 

scattered waves. In Ref. [1], the authors were able to derive not only the effective mass 

density and bulk modulus, but also the shear modulus, which allows the reconstruction of 

the effective wavenumbers of the coherent waves. In our, apparently more complicated, 

case, work is still in progress to obtain the wavenumbers, and it may be that a criterion for 

large shear wavelength may be required in order to do so. We hope that way, not only to 

recover the same attenuation of the coherent compressional wave as from the MST model  

[21] for small concentrations, as validated by experiments [19], but also to be able to predict 

that attenuation for higher concentrations than the MST-based model can account for. 



87 

 

REFERENCES 

[1] J. Mei, Z. Liu, W. Wen, and P. Sheng, “Effective dynamic mass density of composites,” 
Phys. Rev. B - Condens. Matter Mater. Phys., vol. 76, no. 13, 2007. 

[2] P. Sheng, X. Jing, and M. Zhou, “Beyond the effective medium: quasi modes in disordered 
media,” Phys. A Stat. Mech. its Appl., vol. 207, no. 1–3, pp. 37–45, 1994. 

[3] Y. Wu, Y. Lai, and Z. Q. Zhang, “Effective medium theory for elastic metamaterials in two 
dimensions,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 76, no. 20, 2007. 

[4] X. Jing, P. Sheng, and M. Zhou, “Acoustic and electromagnetic quasimodes in dispersed 
random media,” Phys. Rev. A, vol. 46, no. 10, pp. 6513–6534, 1992. 

[5] J. Kim, J. Ih, and B. Lee, “Dispersion of elastic waves in random particulate composites,” J. 
Acoust. Soc. Am., vol. 97, no. 3, pp. 1380–1388, 2005. 

[6] G. T. Kuster and M. N. Toksöz, “Velocity and Attenuation of Seismic Waves in Two‐Phase 
Media: Part I. Theoretical Formulations,” Geophysics, vol. 39, no. 5, pp. 587–606, 2002. 

[7] C. Aristégui and Y. C. Angel, “Effective mass density and stiffness derived from P-wave 
multiple scattering,” Wave Motion, vol. 44, no. 3, pp. 153–164, 2007. 

[8] A. B. Wood, “A Textbook of Sound,” Nature, 1956. 

[9] J. R. Allegra and S. A. Hawley, “Attenuation of Sound in Suspensions and Emulsions: 
Theory and Experiments,” J. Acoust. Soc. Am., vol. 51, no. 5B, pp. 1545–1564, 2005. 

[10] W. S. Ament, “Sound Propagation in Gross Mixtures,” J. Acoust. Soc. Am., vol. 25, no. 4, 
pp. 638–641, 2005. 

[11] J. G. Berryman, “Long‐wavelength propagation in composite elastic media I. Spherical 
inclusions,” J. Acoust. Soc. Am., vol. 68, no. 6, pp. 1809–1819, 1980. 

[12] J. G. Berryman, “Long‐wavelength propagation in composite elastic media II. Ellipsoidal 
inclusions,” J. Acoust. Soc. Am., vol. 68, no. 6, pp. 1820–1831, 1980. 

[13] J. Mei, Z. Liu, W. Wen, and P. Sheng, “Effective mass density of fluid-solid composites,” 
Phys. Rev. Lett., vol. 96, no. 2, pp. 1–4, 2006. 

[14] P. A. Martin, A. Maurel, and W. J. Parnell, “Estimating the dynamic effective mass density 
of random composites,” J. Acoust. Soc. Am., vol. 128, no. 2, pp. 571–577, 2010. 

[15] C. Jin, “On the estimation of dynamic mass density of random composites,” J. Acoust. Soc. 
Am., vol. 132, no. 2, pp. 615–620, 2012. 

[16] M. M. Alam, V. J. Pinfield, F. Luppé, and P. Maréchal, “Effective dynamic properties of 
random complex media with spherical particles,” J. Acoust. Soc. Am., vol. 145, no. 6, pp. 
3727–3740, Jun. 2019. 

[17] D. J. McClements and M. J. W. Povey, “Scattering of ultrasound by emulsions,” J. Phys. D. 
Appl. Phys., vol. 22, no. 1, pp. 38–47, 1989. 

[18] R. E. Challis, M. J. W. Povey, M. L. Mather, and A. K. Holmes, “Ultrasound techniques for 
characterizing colloidal dispersions,” Reports Prog. Phys., vol. 68, no. 7, pp. 1541–1637, 
2005. 



88 

[19] D. M. Forrester, J. Huang, V. J. Pinfield, and F. Luppé, “Experimental verification of 
nanofluid shear-wave reconversion in ultrasonic fields,” Nanoscale, vol. 8, no. 10, pp. 5497–
5506, 2016. 

[20] P. Lloyd and M. V. Berry, “Wave propagation through an assembly of spheres: IV. Relations 
between different multiple scattering theories,” Proc. Phys. Soc., vol. 91, no. 3, pp. 678–
688, 1967. 

[21] F. Luppé, J.-M. Conoir, and A. N. Norris, “Effective wave numbers for thermo-viscoelastic 
media containing random configurations of spherical scatterers,” J. Acoust. Soc. Am., vol. 
131, no. 2, pp. 1113–1120, 2012. 

[22] V. J. Pinfield and D. M. Forrester, “Multiple scattering in random dispersions of spherical 
scatterers: Effects of shear-acoustic interactions,” J. Acoust. Soc. Am., vol. 141, no. 1, pp. 
649–660, 2017. 

[23] D. M. Forrester, J. Huang, and V. J. Pinfield, “Characterisation of colloidal dispersions using 
ultrasound spectroscopy and multiple-scattering theory inclusive of shear-wave effects,” 
Chem. Eng. Res. Des., vol. 114, pp. 69–78, Oct. 2016. 

[24] J. N. Coupland and D. J. McClements, “Physical properties of liquid edible oils,” JAOCS, 
J. Am. Oil Chem. Soc., vol. 74, no. 12, pp. 1559–1564, 1997. 

  



89 

CHAPTER FOUR 

EFFECTIVE DENSITY WITH SPHEROIDS 
 

 

4.1 INTRODUCTION 

In this chapter, we attach importance to the effect of particle shape on the effective dynamic 

mass density. We obtain analytical expressions for the effective mass density for a random 

dispersion of spheroidal particles by taking the viscosity of the background fluid into 

consideration. To this end, we, however, do not need to resort to any scattering theory. 

Instead, we employ Ament’s method and extend it from spherical particles to spheroidal 

ones. In 1953, Ament, using an elegant approach, derived an expression for the effective 

dynamic mass density for a system of spherical particles by taking account of the viscosity 

of the host fluid through drag force [1]. Since particle shape is one of the factors that affects 

viscous drag [2-4], it stands to reason that particle geometry can have some amount of 

influence on effective dynamic properties of a suspension of particles in a viscous fluid. 

There is not much literature on the effective properties of a random composite for particles 

with shapes other than spherical particles in three dimensional case. This is the reason why 

it is important to shed new light on the effect of particle shape on the effective properties 

of a suspension. 

Berryman obtained analytical expressions for the effective elastic parameters for a system 

of elastic ellipsoidal particles embedded in an elastic solid matrix using a self-consistent 

effective medium method in the long-wavelength limit; his approach, however, was quasi-

static [5]. Although there were some studies on the effective properties of solid-in-solid 

composites composed of ellipsoidal particles, they were mainly based on static approach 

[6-7]. To the best of our knowledge, no study on the dynamics of effective parameters for 

acoustic wave propagation regarding the particle shape except spherical particles has been 

reported to date. 



90 

In the following, we first rederive the Ament’s effective density formulas for a 

monodisperse system consisting of spherical particles in a viscous fluid in order to facilitate 

the derivation of effective density formulas for spheroidal particles, and also because 

Ament’s paper suffers from some typographical errors. 

 

4.2 SPHERICAL PARTICLES 

Ament’s method is based on a hypothetical experiment, consisting of two rigid, weightless, 

infinite parallel planes separated by a distance δ. Let us consider a suspension which 

contains N number of particles per unit volume, each having volume V and experiencing a 

drag D. Suppose that the planes oscillate according to i tve− ω , with δ and / vδ ω  so small 

that average fluid and particle velocities are independent of distance from the walls. 

Placing a sample of the suspension in the space between the planes mentioned above, one 

can obtain a momentum density: 

 ( )eff pv = 1 c v cv′ρ − ρ + ρ         (4.1) 

with 

 ( ) pv = 1 c v cv− +          (4.2) 

where v  is the effective velocity of the suspension, v  is the velocity of the host fluid, and

pv  is the velocity of the particle. 

4.2.1 Drag force 

The equilibrium condition between the drag and the buoyant forces can be written as: 

 ( ) ( )p pD v v i V v v′− = ω ρ − ρ        (4.3) 
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Defining : ′∆ = ρ − ρ  and solving equations (4.1) and (4.2) for v  and pv , and inserting 

them into equation (4.3) eliminates v ,v  and pv : 

 
( )
( )

( ) ( ) ( )
( )

eff eff eff1 c c 1 c - cD
i

V 1 c 1 c

′ ′ ′ρ − − ρ − ρ − ρ ρ − ρ ρ ρ − ρ
= ω

− ∆ − ∆
 

Noting that the static density is ( )s 1 c c− ′ρ = ρ + ρ , we get: 

 
( )eff

eff s

1 c cD
i

V

 ′ ′ρ − ρ + ρ − ρρ = ω
ρ − ρ

 

∴ 
( ) ( ) ( )eff eff s eff s

eff s

1 c cD
i

V

 ′ ′ρ − ρ + ρ − ρρ − ρ ρ − ρ + ρ ρ − ρ = ω
ρ − ρ

 

∴ 
( ) ( )eff eff s

eff s

1 c c -D
i i

V

 ′ ′ρ − ρ + ρ ρρ − ρ ρ − ρ − ωρ = ω
ρ − ρ

    (4.4) 

Noting that the numerator can be written as: 

 ( ) ( ) ( ) ( )eff eff s eff1 c c 1 c ′ ′ρ − ρ + ρ − ρρ − ρ ρ − ρ = − ∆ ρ − ρ  , 

then equation (4.4) becomes: 

 
( ) ( )

( )eff
eff s eff

i 1 c
G

D
i

V

ω − ∆ ρ − ρ
ρ − ρ = = ρ − ρ

− ωρ

     (4.5) 

with 

 
( )i 1 c

G
D

i
V

ω − ∆
=

− ωρ

         (4.6) 
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4.2.2 Effective Mass Density 

After some manipulation, the equation (4.5) can be cast into the following form: 

 ( )eff s s s

G G
c

1 G 1 G
ρ = ρ + ρ − ρ = ρ + ∆

− −
     (4.7) 

It is important to note that equations (4.5) and (4.7) are just the rearrangements of equations 

(5) and (6) of the Ament paper. 

The dynamic drag on a rigid spherical particle of radius a in oscillatory motion can be 

written in the form, in the time harmonic regime [8,9]: 

 
2

D 6 a 1 a i a 1 a
9

   = πη + β − β + β     
.      (4.8) 

where 
2η

ρω
β =  is the real part of the shear wavenumber ks. 

The first term of the equation is steady Stokes drag which dominates at very low ω , i.e. in 

the viscous regime, while the last term is the inertial drag which is manifested in the added 

mass term i(2/9)(βa)2; it dominates at very high frequencies, i.e. in the inertial regime. 

The inertial drag, being independent of η, does not contribute to any losses, and is therefore 

a conservative force. At high frequencies, the loss is caused by the Basset force/history 

terms βa and −iβa. A particle, submerged in a viscous fluid, experiences the Basset 

(history) force when it accelerates or decelerates with respect to the fluid. The Basset force 

can be many times as large as the steady Stokes drag when the particle is accelerated or 

decelerated at a high rate. 

Dividing equation (4.8) by 34
V a

3
= π  and noting that 

2 2

6 a 9 1

V 4 a

πη
= ρω
β

, we get: 
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2 2

D 9 1 2
1 a i a 1 a

V 4 9a

   = ρω + β − β + β    β  
 

∴ 
( )

( )
2

D 9 1 9 1 3
i 1 a i i

V 4 4 a 2a
− ωρ = ρω + β − ωρ − ωρ

ββ
    (4.9) 

Therefore, equation (4.6) becomes: 

 
( )2 1 c

G =
9 1

3 iZ
2 a

− − ∆

ρ + ρ +
β

        (4.10) 

with 

 
( )

2

9 1 1
Z

2 a a

   = + ρ  β  β 

        (4.11) 

 
( ) ( )

9 1
2 1 c 3 iZ2 1 c 2 a

1 G =1 =
9 1 9 1

3 iZ 3 iZ
2 a 2 a

− ∆ + ρ + ρ +− ∆ β
− +

ρ + ρ + ρ + ρ +
β β

  (4.12) 

Using the ratio between equations (4.10) and (4.12), we obtain: 

 
( )

( )

2 1 cG
=

1 G 9 1
2 1 c 3 iZ

2 a

− − ∆

−
− ∆ + ρ + ρ +

β

 

∴ 
( )2 1 cG

=
1 G W iZ

− − ∆

− +
        (4.13) 

with ( )
9 1

W 2 1 c 3
2 a

= − ∆ + ρ + ρ
β

       (4.14) 
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Therefore, equation (4.6) becomes: 

 
( ) 2

eff s effR effI

2c 1 c
i

W iZ

− ∆
ρ = ρ − = ρ + ρ

+
      (4.15) 

with 

( )

( )

2

effR s 2 2

2

effI 2 2

2c 1 c W

W Z
2c 1 c Z

      
W Z

 − ∆ρ = ρ − +
 − ∆ ρ = +

       (4.16) 

Equation (4.15) agrees with the Eqn. (27) of the Ref. [11] and Eqns. (4.16) with Eqn. (1.5) 

of the Ref. [12]. 

 

4.2.3 Inviscid Limit 

At high frequency: βa>>1 

 
( )

a 12

9 1 1
Z 0

2 a a
β >>

 
 

= + ρ → 
 β β  

 

and ( )
r 1

W 2 1 c 3
β >>

→ ∆ − + ρ  

 
( ) 2

eff

2c 1 c
c

2(1 c) 3

− ∆
ρ = ∆ + ρ −

− ∆ + ρ
 

∴ 
( )

( )
eff

2 c

2 2c

′ρ + ρ + ∆ρ
=

′ρ ρ + ρ − ∆
        (4.17) 

which is what was referred to as Ament’s formula for an inviscid fluid in chapter 3. 
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4.3 SPHEROIDAL PARTICLES 

Equation (4.5) is valid for a system of particles of arbitrary shape, therefore replacing the 

drag D with that on a spheroid will produce an expression for the effective mass density 

for a suspension of spheroidal particles. We use the analytical results of Lai and Mockros 

derived for viscous drag on both a prolate and an oblate spheroid [4]. 

Let us consider a spheroidal particle of equatorial radius aeq and polar radius ap, obeying 

the following equation: 

 

2 2 2

eq eq p

x y z
= 1

a a a

             + +              
 ,      (4.18) 

as illustrated in Fig. 4.1, and define: 

 
( ) ( )

2 2

p eq p eq

p

max(a , a ) min(a , a )

a

−
ε =       (4.19) 

 

   
 

(a) (b) 
Figure 4.1: (a) Prolate spheroid particle with aeq < ap. (b) Oblate spheroid particle with aeq > ap. 
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z
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If the inclusion is not a sphere, its direction of motion, in that case that of the incident wave, 

must be specified. In the following, we consider that direction to be along the axis of 

symmetry of the spheroids. 

 

4.3.1 Prolate Spheroids 

A prolate spheroid corresponds to the case where the polar radius is larger than the 

equatorial one. The drag on a prolate spheroid executing translatory oscillations along its 

axis of symmetry in an infinite, incompressible, viscous fluid can be written in our notation 

as [4]: 

 

2 2
p

p p 2

21 22
p2

eq p 2

12

32 a
D 8 a

3 2

1 1
1 Q

32 a4
i a a

3 1 1 3 2
1 1 Q

πηε ε ρω
= πη +

κ ηκ
        −       πη     ε ρεε − ω π ρ +
     ωηκ   − −          εε 

   (4.20) 

with 

 
2

1 1 1 1
1 log

2 1

   + ε  κ = + −        − ε εε
       (4.21) 

and Q1 the Legendre function of the second kind, 

 ( )1

x x 1
Q x log 1

2 x 1

 + = −  −
,       (4.22) 

The drag expression is obtained from an expansion of spheroidal wave functions in a power 

series of h  and is correct to the first order in h  [4], defined from: 

 

2 2
p eq2 2 2 2

p eq

i a a
h = = 2i a a

− ρω
β −

η
, 
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so that we shall restrict h  to values obeying Eqn. (4.23): 

 2 2

s p eq
h = k a a 1− ≪ ,        (4.23) 

even though it is said, in Lai and Mockros’s work [4], that it may go up to 10. 

Equation (4.20), normalized relatively to the spheroid volume Vp produces: 

 
12 22

p p p

2 2 2 2
p eq eq eq eqeq

12

1 1
1 Q

D a a3 4 4
i

V a a 1 1 a aa
1 1 Q

        −             ε ε εε ε  = ρω + − ρω +        κ β β β κ κ     − −          εε 

 (4.24) 

∴ 
p

p p p p
p

D
i (F R ) i (E R )

V
− ρω = ρω + − ρω +      (4.25) 

with p 2 2
eq

3
F

a

ε
=

κβ
, 

2
p

p 2
eq eq

a4
R

a a

ε
=
β κ

 and p

12

1
E

1 1
1 1 Q

=
     − −         εε

  (4.26) 

Inserting equation (4.25) into equation (4.6), where the subscript p added to G, D, V 

stands for prolate spheroids, yields: 

 
( )

p
p p p p

1 c
G

(E R ) i (F R )

−∆ −
=
ρ + + ρ +

        

∴ 
( )
( )

p

p p p p p

G 1 c

1 G (E R ) 1 c i (F R )

−∆ −
=

− ρ + + ∆ − + ρ +
    (4.27) 

With the aid of equation (4.27), equation (4.7) yields an expression for the dynamic 

effective mass density: 

 
( )

effp

2

s
p p

c 1 c

W iZ

− ∆
ρ = ρ −

+
        (4.28) 
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with 

 ( )p p pW (E R ) 1 c= ρ + + ∆ −        (4.29) 

and 

 p p pZ (F R )= ρ +          (4.30) 

Separating the real and imaginary parts, we get: 

 
( )

( )
( )

( )effp

2 2
p p

s 2 2 2 2
p p p p

1 c cW 1 c cZ
i

W Z W Z

∆ − ∆ −
ρ = ρ − +

+ +
.     (4.31) 

We now investigate all the important limiting behaviors of the effective density expression. 

 

4.3.1.1 Ament 

Since the drag on a prolate spheroid reduces to that on a sphere in the limit 1ε << , i.e. 

when p eq eqa a , a a→ → , equation (4.28) must tend to the Ament’s equation. To show that, 

it is important that the limit be evaluated carefully using asymptotic series of logarithms. 

With the aid of an asymptotic series development around ε = 0: 

 
2k 1

k 0

1 1
log

2 1 (2k 1)

∞ +

=

 + ε ε =  − ε +
∑  

Thus, equation (4.21) becomes: 

 
2k 1 2k 1

k 0 (2k 3) (2k 1)

∞ + +

=

 ε ε  κ = +   + + 
∑ , 

i.e. 
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2k 2k 2k

k 0 k 0(2k 3) (2k 1) 1
(k 1)

4(k 1)

∞ ∞

= =

 κ ε ε ε = + =  ε + +  + −
+

∑ ∑ , 

and 

 
0

3
lim

4ε→

ε
=
κ

 

Then, comparing equation (4.30) to equation (4.11), we get: 

 
p 2 20

9 1 1 Z
lim Z

4 a 2aε→

  = ρ + =   β β
 

 
2k

1
k 1

1 1 1
Q log 1

2 1 2k 1

∞

=

   + ε ε  = − =        ε ε − ε +
∑  

∴ 
2k 2 2k

12
k 1 k 1

1 1
1 1 Q 1

2k 1 2k 1

∞ ∞−

= =

    ε ε  − − = − +        ε + +ε
∑ ∑  

and 

 
2k 2 2k

120 0
k 1 k 1

1 1 1 2
lim 1 1 Q lim 1 1

2k 1 2k 1 3 3

∞ ∞−

ε→ ε→
= =

      ε ε     − − = − + = − =           ε + +ε    
∑ ∑  

Finally, by comparing equation (4.29) to equation (4.14), we obtain: 

 ( )p
0

1 3 W
lim W 3 1 c

2 a 2ε→

 = ρ + + ∆ − =  β
 

Therefore, equation (4.28) does reduce to the Ament equation (4.15) in the limit of a sphere. 
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4.3.1.2 Static limit 

In the static limit, i.e. when 0ω →  and 1 / β → ∞ , this equation tends to 
effp sρ ρ→ : 

 
( )

( )p

2
p

21/
eq eq

12

a1 4
lim W 1 c

1 1 a a
1 1 Q

β →∞

 
 
 ε
 = ρ + + ∆ − → ∞
     β κ   − −          εε 

 

 
( ) p

2
p

1/
lim Z / W
β →∞

→ ∞  

 
( )

( )2

21/
p p p

c 1 c
lim 0

W Z / Wβ →∞

∆ −
= →

+
 

and similarly, 

 
( )

( )2
p

2 21/
p p

c 1 c Z
lim 0

W Zβ →∞

∆ −
= →

+
 

Therefore equation (4.31) tends to: 

 
( )e ffp e ffp s
1/

lim lim
ω→∞ β →∞

ρ = ρ ρ=        (4.32) 

Equation (4.32) shows that the static limit of the effective mass density is the same for 

spheres as for oblate and prolate rigid spheroids submitted to a compressional plane wave 

propagating parallel to their axis of revolution. 

 

4.3.1.3 Inviscid limit 

Strictly speaking, the inviscid limit, i.e. when β→∞ , should not be considered here for 

spheroids other than spheres, due to equation (4.23), but we shall nonetheless study it at 

constant value of ε , in order to be able to evaluate the influence of the viscosity on the 

effective mass density. The following equation (4.33) will be, though somehow 

inaccurately, referred to as the inviscid limit case in the numerical section. 

 
( )

( )p
1/ 0

plim W E 1 c
β →

= ρ + ∆ −  
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and 

 
( )

p
1/ 0
lim Z 0
β →

=  

So that equation (4.28) provides: 

 
( )

( )effp

2

s
p

c 1 c

E 1 c

− ∆
ρ = ρ −

ρ + ∆ −
 

∴ 
( ) ( )

( )
effp p

p

E c 1 c

E 1 c

ρ + ∆ + − ∆ρ
=

ρ ρ + − ∆
       (4.33) 

 

4.3.2 Oblate Spheroids 

An oblate spheroid corresponds to the case where the polar radius is smaller than the 

equatorial one. The drag on an oblate spheroid executing translatory oscillations along its 

axis of symmetry in an incompressible viscous fluid in our notations can be written, under 

the condition that Eqn. (4.23) is fulfilled, as [4]: 

 

2 2
p

o p 2

21 22
p2

eq p 2

12

32 a
D 8 a

3 2
1 1

1 q
32 a4

i a a
3 1 1 3 2

1 1 q

πη′ ′ε ε ρω
= πη +

′κ η′κ
        +       πη ′′    ε ρε′ε − ω π ρ +
     ωη′κ   − +       ′   ε′ε 

   (4.34) 

with 

 
2 2
p eq

2
p

a a
i

a

−
′ε = = ε ,        (4.35) 

 ( ) ( ) ( )1
1 1q x 1 x cot x Q ix−= − = −  
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so that 

 1 1

1 1
q Q
     = −     ′   ε ε

         (4.36) 

and 

 1

2

1 1 1
1 cot−

     ′κ = − −      ′ ′   ε ε′ε
       (4.37) 

or, using equation (4.22) and equation (4.21) along with the definition of the ellipsoidal 

harmonic q1 in terms of Q1: 

 
2

i 1 1 1
i 1 log i

2 1

   + ε  ′κ = − + + = κ        ε − εε
      (4.38) 

Equation (4.34) thus turns out as: 

 

2 2
p

o p 2

21 22
p2

eq p 2

12

32 a
D 8 a

3 2
1 1

1 Q
32 a4

i a a
3 1 1 3 2

1 1 Q

πηε ε ρω
= πη +

κ ηκ
        −       πη     ε ρεε − ω π ρ +
     ωηκ   − −          εε 

   (4.39) 

which shows that the expression of the drag for oblate spheroids Do (Eq. (4.39)), in our 

notations, is the same as for prolate spheroids Dp (Eq. (4.20)). Equations (4.28) to (4.30) 

for the effective mass density are therefore also valid for both prolate and oblate spheroids 

as long as equation (4.23) is fulfilled. 
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4.4 NUMERICAL RESULTS AND DISCUSSION 

Numerical calculation has been performed on a monodisperse suspension of silica spheres, 

of silica prolate spheroids and of silica oblate spheroids in water at 25°C on the same 

frequency range as in Chapter 3. The physical constants of silica and water are listed in 

Table 2.1 of Chapter 2. 

We first consider spheres and compare Ament’s formula with that obtained in Chapter 3 

for two different concentrations, c = 0.1 in Figs. 4.1 (a) and (b) and c = 0.4 in Figs. 4.1 

(c) and (d), respectively. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.1: Variation of the real (a), (c) and imaginary (b), (d) parts of the normalized effective dynamic 

mass density as a function of frequency for a suspension of spherical particles at concentration c = 0.1 (a), 

(b) and c = 0.4 (c), (d). 
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The two models do not agree on the frequency range between the static and the inviscid 

limit, and their difference increases with the concentration. Ament’s model considers a 

constant shear viscosity of the fluid, i.e. not depending on the concentration, in the 

expression of the drag force. The self-consistent model we used in Chapter 3, on the 

contrary, takes into account a concentration – dependent effective viscosity, through the 

use of effective wavenumbers and mass density. We think this is the reason of the observed 

disagreement. 

Now, we compare spheres and spheroids of the same volume, as only then can any 

deviation in the effective density from the spherical case be attributed to the particle 

geometry: 

 3 2 3
eq pa a a 1 µm= = ,        (4.40) 

The concentration is kept constant and the ellipticity, defined as: 

 

2

p eq
ll

p eq

min(a , a )
e 1

max(a , a )

  = −   
,       (4.41) 

This ellipticity is set to 0.5 in Figure 4.2 and to 0.9 in Figure 4.3, and the related sphericity 

is given in the following Table 4.1. 

 

Table 4.1 Geometrical properties of spheroidal particles, keeping the volume constant. 

2 2 2

eq eq p

x y z
1

a a a

             + + =               
 Sphere 

Prolate 
spheroid 

Oblate 
spheroid 

Sphericity: 
eq

ph
p

a
s

a
=  1 0.866 0.436 1.155 2.294 

Ellipticity: 

2

eq p
ll

eq p

min(a ,a )
e 1

max(a ,a )

  = −    
 0 0.5 0.9 0.5 0.9 
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The maximum value of the h parameter as defined in Eqn. (4.23) and corresponding to 

( )s max
e(k a)ℜ  = 100 is less than 2×10−4 for ell = 0.5 (Figure 4.2) and less than 4×10−4 for 

ell = 0.9 (Figure 4.3). The “inviscid” limit for the spheroids corresponds to Eqn. (4.33). 

For the small value of ellipticity, ell = 0.5, the sphericity (ratio between the equatorial and 

the polar radius) varies of about 15% around unity. Figure 4.2 illustrates that the difference 

between spheres and spheroids in this case is quite small on the whole frequency range. In 

addition, the transition between the static limit and the inviscid one occurs at around the 

same value for all shapes. 

 

  
(a) (b) 

Figure 4.2: Variation of the real (a) and imaginary (b) parts of the effective dynamic mass density as a 
function of frequency for a suspension of spherical, prolate spheroidal and oblate spheroidal particles of the 

same volume at concentration c = 0.1 and ellipticity ell = 0.5. 

 

Figure 4.2 (a) shows that the Stokesian drag, being independent of frequency, is not 

affected by the particle shape, as could have been expected since the static mass density is 

the same for all three types of particles of identical volume. As the frequency increases, the 

Basset force and the inertial drag come into play. At high frequencies, the inertial drag 

completely dominates over the other drags. Since the added mass/inertial force depends on 

the particle shape and orientation with respect to the acoustic field, the effective density 

differs significantly for each type of particle in the inertial regime. 
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As the ellipticity is increased to ell = 0.9, the difference between spheres and spheroids 

appears more clearly in Figure 4.3. 

 

(a) (b) 

(c) (d) 
Figure 4.3: Variation of the real (a), (c) and imaginary (b), (d) parts of the effective dynamic mass density 
as a function of frequency for a suspension of spherical, prolate spheroidal and oblate spheroidal particles 

of the same volume at concentration c = 0.1 (a), (b) and c = 0.4 (c), (d), and ellipticity ell = 0.9. 

 

The curves corresponding to the spheroids are situated on each side of those corresponding 

to spheres. At a given frequency, the effective mass density is closer to that in case of an 

“inviscid” fluid for the prolate spheroids than for the spheres and the oblate spheroids. This 

corresponds to the fact that the force that opposes the movement of the fluid due to the 

incident wave is lower for spheroids elongated in the direction of that movement. 



107 

 

4.5 CONCLUSION 

In this chapter, we have extended a hydrodynamic model (developed by Ament) from 

spherical particles to spheroidal ones in order to investigate the effect of particle shape on 

the effective dynamic density. The extended model has found to agree analytically with all 

the particular limiting cases. Through the extended model, we have been able to 

demonstrate that particle shape does affect the effective dynamic mass density, especially 

in the high frequency region or equivalently for large particle sizes. 
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CONCLUSION AND FUTURE PROSPECTS 

 

 

This thesis has investigated acoustic wave propagation through random dispersions of 

elastic solid particles in viscous fluids in order to have a better understanding of the viscous 

mechanism involved in viscous systems that were previously unexplored. Here we 

summarize our main results, and discuss prospects for future research. 

We have derived analytical approximations for scattering coefficients for arbitrary partial 

wave orders by taking the fluid viscosity into consideration through the wave-mode 

conversion for both incident compressional and shear waves. Although the solutions are 

limited to the long compressional wavelength region, no assumption regarding the 

magnitude of the shear wavelength in the embedding fluid has been made. These solutions 

for scattering coefficients can be useful in estimating analytical expressions for effective 

properties of a suspension of solid spherical particles using multi-mode multiple scattering 

models and effective medium models. Similar to the single-sphere scattering, it might be 

interesting to derive analytical approximations for scattering coefficients for a single core-

shell particle in a viscous fluid, which might be more complicated than the single particle 

case. Moreover, it may also be interesting to analytically calculate the scattering 

coefficients of a spheroidal particle in a viscous fluid and then compare the results with 

those of the single-sphere case to see the effect of particle shape on the wave mode 

conversion. 

ln order to investigate the effect of fluid viscosity on the effective properties of a random 

dispersion of solid spherical particles, we have used a core-shell, self-consistent effective 

medium model and have derive analytical expressions for the effective bulk modulus and 

mass density by including the viscosity of the background fluid through the wave mode 

conversion. The effective bulk modulus is found to be quasi-static, whereas the effective 

mass density exhibits dynamic behaviours. 
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The analytical expressions obtained are shown to reduce to prior known results in the limit 

of both static and inviscid cases. The core-shell effective medium model might be used to 

calculate the effective compressional and shear wavenumbers. One might also try and use 

the model to determine the effective viscosity of a suspension. 

ln most theoretical studies the particles are assumed to be spherical in shape. However, in 

practice, particles can have different shapes other than sphere, and hence it is of importance 

to investigate the effect of particle shape on the effective properties of a viscous system. 

To this end, we have extended a hydrodynamic model (developed by Ament in 1953) from 

spherical particles to spheroidal ones and have calculated analytical expressions for the 

effective mass density of a random dispersion of both prolate and oblate spheroidal 

particles. The analytical expressions have shown to reduce to the particular limiting cases. 

It has been demonstrated that the particle shape plays a significant role in the dynamic 

behaviour of the effective mass density, especially when the host fluid tends to be inviscid. 

The future work might focus on calculating the effective viscosity using the Ament model. 

This model takes account of the viscosity of the host fluid through the drag on the particles. 

However, the drag is not related to the particle concentration. It might be interesting to 

calculate the effective viscosity of a suspension by relating the drag with concentration. ln 

future the author will try and use a hydrodynamic model to calculate the effective 

compressional wavenumber for both prolate and oblate spheroidal particles in order to 

investigate the effect of particle shape on the effective velocity and attenuation. 
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Appendix: Spherical Bessel functions 

A1. Definition: 

When the Helmholtz equation is solved in spherical coordinates by separation of variables, 

the radial part, known as the spherical Bessel equation, is of the form: 

 ( )
2

2 2

2

d f df
z 2z z n n 1 f 0, n

dzdz
 + + − + = ∈  

ℤ ,    (A1) 

where z can be arbitrarily complex. Special solutions of this homogeneous differential 

equation are Bessel, Neumann and Hankel functions ( )nj z , ( )ny z , ( ) ( )1

nh z , ( ) ( )2

nh z , 

respectively. A solution to the equation can be obtained using Forbenius method: 

 ( )
( ) ( )
( )

( )
k n

nn n 2k
n

k 0

1 n k ! 1 d sin z
j z 2 z z z

k! 2n 2k 1 ! z dz z

∞

=

 − + = = −  + +  
∑    (A2) 

and ( ) ( )
n

n

n

1 d cos z
y z z

z dz z

 = − −   
       (A3) 

( ) ( )1

nh z  and ( ) ( )2

nh z  are defined as: 

 ( ) ( ) ( ) ( )1

n n nh z j z iy z= +         (A4) 

 ( ) ( ) ( ) ( )2

n n nh z j z iy z= −         (A5) 

The analytical expressions of the first few Bessel functions are: 

 ( )0

sin z
j z

z
= , 

 ( )1 2

sin z cos z
j z

zz
= − ,    ( )1 2 3

2cos z 2sin z sin z
j z

zz z
′ = − +  
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 ( )2 3 2

3sin z 3cos z sin z
j z

zz z
= − −  

The general analytical expression for the Hankel function of the first kind of arbitrary order 

can be written as: 

 ( ) ( )
( )
( )

n k iz
n 1

n k k 1
k 0

n k !i e
h z i

n k !2 k! z

+

+
=

+
= −

−
∑ .      (A6) 

The first few analytical expressions for the Hankel functions are: 

 ( )
iz

0

e
h z

iz
=  

 ( )
iz

1

e i
h z 1

z z

 = − +   
, ( )

iz iz iz

1 3 2

2ie 2e ie
h z

zz z
′ = + −  

 ( )
iz

2 2

ie 3i 3
h z 1

z z z

 = + −   
 

 

A2. Recurrence Relations 

 ( ) ( ) ( ) ( )n n n 1n + 1 f z + z f z = z f z−
′       (A7) 

 ( ) ( ) ( )n n n+1n f z z f z = z f z′−        (A8) 

 ( ) ( ) ( )n-1 n+1 n

2n +1
f z +f z = f z

z
       (A9) 

 ( ) ( ) ( ) ( ) ( )n 1 n+1 nn f z n + 1 f z = 2n + 1 f z−
′−      (A10) 
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A3. Wronskian 

The Wronskian of two differentiable functions f and g is defined by: 

 
f g

W f, g f g g f
f g

′ ′
  ′ ′= −  

≜        (A11) 

 ( ) ( ) ( ) ( ) ( ) ( )n n n n n n 2

i
W j z , h z = j z h z j z h z =

z
  ′ ′−  

    (A12) 

 

A4. Asymptotic Forms 

The behaviour of the spherical Bessel functions for small arguments can be deduced from 

their series expansions, whereas the behaviour for large arguments follow from the 

asymptotic formulas for ( )nj z  and ( )ny z . Useful are the specific results: 

 ( )
( )

n

n

z
z 0 : j z

2n + 1 !!
+→ =        (A13) 

 ( )
( )

n 1

n

nz
j z

2n + 1 !!

−

′ =          (A14) 

 ( )
( )

n n 1

2n 1 !!
z 0 : h z i

z

+

+

−
→ = −        (A15) 

 ( )
( )( )

n n 2

n 1 2n 1 !!
h z i

z +

+ −
′ =        (A16) 

 ( ) ( )n

1
z : j z sin z n / 2

z
→∞ − π∼       (A17) 

 ( ) ( )n

1
z : y z cos z n / 2

z
→∞ − − π∼       (A18) 



 

 



 

 



 

ABSTRACT 

A random dispersion of identical elastic solid particles in a viscous fluid is considered and 
effective properties, appropriate to the propagation through the medium of an ultrasonic 
compressional wave of large wavelength compared to the radius of the particles, is investigated. 
The scattering coefficients of a single spherical particle in a viscous medium are investigated 
for all combinations of incident and scattered wave types for use in multiple scattering models. 
Approximate formulae are obtained for the coefficients at n’th partial wave order in the Rayleigh 
limit.  
For spherical particles, a core-shell self-consistent model is used, in which the medium is 
modelled  by an elastic core of the same material and radius as the particles, surrounded by a 
shell of the host fluid, and placed in the effective medium. The radius of the shell is such that 
the ratio of the core/shell volume is equal to the particle concentration. The dynamic properties 
of the effective medium are sought by minimising the scattering of the shell for different incident 
compressional partial wave orders (n). 
The effective bulk modulus is found from the monopole mode n=0 and the effective mass 
density from the dipole mode n=1. When compared to Ament’s formula based on local force 
balance at the particles (assumed rigid), the effective mass density obtained from the core-shell 
model shows a frequency-dependent effect of concentration similar to that observed in multiple 
scattering models and experimentally.  
Ament’s method is then applied to obtain the effective mass density in case of aligned rigid 
spheroids. 

 

RÉSUMÉ 

La propagation d’une onde ultrasonore de compression au travers d’une distribution de 
particules solides identiques localisées aléatoirement dans un liquide visqueux est étudiée. La 
longueur d’onde de l’onde de compression est supposée grande devant le rayon des particules, 
et les propriétés effectives dynamiques du milieu sont recherchées. 
Les coefficients de diffusion d’une sphère solide isolée sont étudiés pour différentes 
polarisations des ondes partielles de mode n incidentes et diffusées. Des expressions approchées 
en sont données pour tout n dans le régime de diffusion de Rayleigh. 
Dans le cas de particules sphériques, le milieu est modélisé par un noyau élastique, de même 
matériau et rayon que les particules, et entouré d’une coque emplie du fluide hôte. L’ensemble 
est insoné, dans le milieu effectif, par une onde de compression partielle de mode n. Les 
propriétés effectives sont recherchées par minimisation de la diffusion pour différentes valeurs 
de n. 
Le module d’élasticité volumique effectif et la masse volumique effective sont obtenus 
respectivement à partir des modes n=0 et n=1. Comparée à la formule d’Ament, fondée sur 
l’équilibre des forces hydrodynamiques et inertielle au niveau de chaque particule supposée 
rigide, celle obtenue ici fait apparaître un effet de la concentration sur la dépendance 
fréquentielle de la masse volumique similaire à celui observé, expérimentalement et dans des 
modèles de diffusion multiple, sur les propriétés effectives des ondes de compression. 

La méthode d’Ament est ensuite appliquée pour obtenir la masse volumique effective dans le 
cas de sphéroïdes rigides alignés. 

 


