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Abstract  
 
Due to the accelerating pace of environmental concerns and fear from conventional source of 
energy depletion, researches are working on finding renewable energy sources of power for 
different axes of life. Transportation sector intervenes in this field and introduces hybrid electric 
vehicles. Many complains had been mentioned concerning the fault detection and identification in 
the vehicle to ensure its safety, reliability and availability. Diagnosis couldn’t overcome all those 
concerns, researches shift toward prognosis where the manufacturing sector is urged to integrate 
fault prognosis in the vehicle’s electrical powertrain.      
In this thesis, prognosis of the vehicle’s electrical machine is treated using Hidden Markov Model 
after modeling the electrical machine using finite element method. Permanent magnet machines 
are preferable in this application. The modeling of the machine is a combination of 
electromagnetic, thermal and vibration finite element model. The considered faults are 
demagnetization, turn to turn short circuit and eccentricity.  
Keywords – hybrid electric vehicle, electrical machine, permanent magnet machine, finite element 
model, prognosis, hidden Markov model, remaining useful life, demagnetization, turn to turn short 
circuit, eccentricity. 
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 Abbreviations  
AC  Alternative Current  
CSI  Current Source Inverter  
DC  Direct Current  
DTC  Direct Torque Control  
FOC  Field Oriented Control  
HEV  Hybrid Electric Vehicle  
IGBT  Insulated Gate Bipolar 

Transistor  
IPMM  Interior Permanent Magnet 

Machine  
KCL  Kirchhoff’s Current Law  
KVL  Kirchhoff’s Voltage Law  
OC  Open Circuit  
PMSM  Permanent Magnet 

Synchronous Machine  
PF  Power Factor  
RTG  Resistance To Ground  
RMS  Root Mean Square  
SC  Short Circuit  
SPMM  Surface Permanent Magnet 

Machine  
SPWM  Sinusoidal Pulse Width 

Modulation  
SVM  Space Vector Modulation  
SVPWM  Space Vector Pulse Width 

Modulation  THD  Total Harmonic Distortion  
VSI  Voltage Source Inverter  
Ctt Circuit 
PM Permanent Magnet 
HMM Hidden Markov Model 
CM Condition Monitoring 
NdFeB Neodymium Iron Boron  
RUL Remaining Useful life 
TM Transition Matrix 
EM Emission Matrix 
OFD Offline Database 
CB Circuit Breaker 
PP Peak to peak 
RMS Root mean square 
Ku Kurtosis 
Sk Skewness 
SF Shape factor 
PF Pulse factor 
CF Crest factor 
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SD Standard deviation 
V Variance 
APS Average power spectral 
AFC Amplitude of frequency component  
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Symbols  
Br Remanence Flux Density Hc Coercive Force Tc Curie Temperature T˚C Temperature in Celsius w Angular frequency σ electrical conductivity Ɵ Angle depending on the sense of magnetization of the magnet ν Reluctivity A Vector Potential {Ic} The circuit current vector {Es} The bar voltage vector [D] The bar connection matrix [Ωb] The bar cross sectional area diagonal matrix [zext] The circuit external impedance diagonal matrix {vs} The circuit voltage vector Vb Voltage across rotor’s bar (the equivalent of the magnets) l Axial length of the machine V Linear rotor’s speed t Time I Current in each conductor Vc Voltage across series coils (stator’s coil) db Diagonal matrix with entries of + 1 or -1, indicating the polarity of each bar in the coil Lext Coils’ equivalent inductance Rext Coils ‘equivalent resistance Rs Series conductor’s equivalent resistance Ls parallel conductor’s equivalent inductance m Rotor’s mass x Rotor’s position  Damping factor (in synchronous machine this value is almost zero) Fem Electromagnetic force Fext Externally-applied mechanical force (load). ρ Material density, kg/m3 Cp The specific heat, J/kg.K tz The thickness model k Thermal conductivity, W/m.K Qd Ta Heat source, watt/m2 Ambient temperature hc Convection coefficient, W/m2.K ϵ Emissivity of the face σ Stefan-Boltzmann constant, W/m2K4 [M] Mass matrix 
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[C] Damping matrix [K] Stiffness matrix Te Tension G Modulus of elasticity R0 Initial value of the resistor in ohms ∆R Increase in resistance of the resistor operating at temperature T for a time t, in ohms. EOLselected End of life selected a Depth of the crack W  The radial length of the magnet 
J   

 

 Average current density  
 Ki  Parameter describing current dependency of switching losses  Kf  Slot’s filling factor  Kv  Parameter describing voltage dependency of switching losses  L  Filter inductor  m  Modulation index  mr  Modulation ratio  R  Resistive load  Rl  ESR of filter inductor  RON  Switch internal resistance  RCE  IGBT on-state resistance  RF  Diode on-state resistance  S  Heat transfer area  {T0, Ta, Tb}  Dwell time  Ts  Sampling period  {VA, VB, VC}  Three phase voltages at load level  {Van, Vbn, Vcn}  Three phase voltages at inverter level  {Sa, Sb, Sc} Inverter switching signal {VT1 to VT6}  Collector-emitter voltages of the six IGBTs  Vdc  DC link voltage  VCE0  IGBT threshold voltage of the on-state characteristics  VF0  Diode threshold voltage of the on-state characteristics  Vib  Vibration value  Vref  Reference DC voltage, to which switching losses in datasheet correlate  Ws  Actual stator flux amplitude  Ws_ref  Reference stator flux amplitude  Ys  Rotor position   
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General Introduction 
 Taking a look on the history of automobile, the concept has started in 1769 where the first steam 
powered automobile for passenger transportation had been created by Nicolas-Joseph Cugnot. In 
1808, Francois Isaac de Rivaz introduces the first automobile driven by an internal combustion 
engine fueled by hydrogen. As the extraction of fuel increases worldwide, the gasoline powered 
combustion engine had been produced; this innovation was manifested by Siegfried Marcus in 
1870. Excessive work and research had been conducted by Marcus for over 15 years; he introduced 
the two and four cycle combustion engine. His work is the main influencer of the nowadays 
conventional cars. He is the one who introduced steering, clutch and brake to the automobile 
structure. After that, Nicolaus Otto invented the four stroke gasoline combustion engine and 
Rudolf Diesel invented the four stroke diesel engine [1].  
 
In 1838, renewal concepts start to strike the automotive industrial field where hydrogen fuel cell 
was developed by Christian Friedrich Schonbein and in 1859 the lead acid battery was introduced 
by Anyos Jedic as source of power for vehicles [2]. 
 
Although chemical and electric sources of power were introduced for automobile application, 
combustion engine remained the first choice to empower cars. In 1885, Benz started its first 
production. In 1913, Ford started its mass production [3]. 
  
Nowadays, automobile transportation is in a crisis due to the high price of gasoline. In the future, 
the crises will worsen unprecedentedly. The supply of oil will diminish widely. Moreover, the 
dilemma of the environment arises, where the need to reduce emissions has become a must. 
Climate change has turned out to be a very powerful motivator for researches to head toward 
energy efficiency and emission reduction goals. 
According to the yearly consumption of oil and gas, studies state that oil will run out in 2052 and 
gas will run out in 2060 [1]. 
 
The environmental factor makes the need to reduce emissions of greenhouse gases (GHGs), mainly 
carbon dioxide (CO2), a necessity. The Intergovernmental Panel on Climate Change (IPCC) 
assesses that CO2 emissions should be reduced up to 85% by 2050 in order to limit global 
temperature rise to less than 2.4 C⁰ [2].   
Accordingly, the only envisaged solution is to switch to green energy.  
 
In the field of transportation, electric vehicles (EV) and Hybrid Electric Vehicles (HEV) are a good 
alternative for conventional vehicles. however, HEVs earned a highest popularity over EVs due to 
their problems linked to their battery capacity, reliability and lifecycle. This is why, the idea of 
combining conventional technology with environmental friendly technology is more salable.   
 
HEVs are becoming widely spread due to the predicted lack of fuel in addition to the pollution 
caused by the conventional vehicles. To overcome pollution and since it is expected that the lack 
of fuel will increase, it is assessed that the production and use of HEVs will increase in the coming 
years and divert the situation [3]. 
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The invention of HEV firstly started in 1901 with Porsche. However, it didn’t became widely 
spread and used until 1997 where Toyota launched its first HEV. After that, in 1999, Honda 
commenced its HEV production [4].    
 
HEVs on the market span from micro, mild, to full hybrid. A micro hybrid has a very small 
machine compared to the gasoline engine. A mild hybrid has a Machine with power about 15%–
25% the power of the engine. A full hybrid has a Machine with power about 40%–50% the power 
of the engine. Mild hybrids are the most popular due to their low price in comparison to the 
conventional vehicles [5] [6].   
 
The main concern of HEVs is their reliability and availability; hence, assuring the health and 
proper operation of HEVs is a mission.  
HEV contains many components; one of them is the electrical machine. Any type of electrical 
machine can be used in HEVs. However, the most used in the industry are induction machine and 
permanent magnet machine. Permanent Magnet Machine (PMM) is always preferable; due to its 
high power density and efficiency, robust construction and low weight [7] [8].   
Many researches had focused on the diagnosis of the different elements in the HEV, the evolution 
in the field drives us to the prognosis, to predict the fault before it occurs. The aim of this thesis is 
to apply prognosis on HEV’s electrical machine to ensure its proper health and operation.  
To figure out the importance of electrical machine prognosis in a hybrid electric vehicle over other 
components, researchers are going to examine the relative cost of the electrical machine with 
respect to the cost of the whole system.  
 
Most manufactured HEVs are mild-hybrid vehicle having the parallel topology using permanent 
magnet or induction machine where the electric Machine has 15%–25% of the engine power. In 
general, the power rating of the electrical machine in a mid-size HEV is between 10KW and 
20KW. Examining the cost of electric Machines in $/KW leads us to the fact that the cost of 
permanent magnet machine is 15% higher than the cost of induction machine. Moreover, when a 
permanent magnet machine is used in the hybrid electric vehicle, the cost of the electrical machine 
is 30% that of the overall traction system in the vehicle [9] [10].  
Executing prognostic analysis and studies for electric machines in HEVs are very important and 
justified, knowing their high cost with respect to the cost of the whole system. 
 
Prognosis will help in predicting the coming fault before the relative component fails. It will also 
help in regulating the maintenance schedule and in predicting the remaining useful life of the 
machine.    
In all cases, prognostic studies are very beneficial in saving money. 
 
Author in [15] states that, in HEV application, a forward-looking diagnosis and prognosis 
technologies are required to promptly sense and isolate faults in network-embedded automotive 
systems so that proactive corrective maintenance actions can be taken to evade failures and 
increase the availability of the vehicle.  
Due to the importance of electrical machines health state in HEVs, a survey will be presented on 
the available prognostic techniques that may be applied to assure an optimal and convenient 
operation of electrical machines in hybrid electric vehicle. 
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A decision on the best prognostic technique to be applied is elaborated. It has been agreed to adopt 
Hidden Markov Model (HMM). Hidden Markov Model is a Data-driven prognostic approach since 
it efforts to derive models directly from collected Condition Monitoring (CM) data; they get 
predictive output directly in terms of CM data. It’s a stochastic signal model [11].   
 
To decide the types of fault that need to be detected in the permanent magnet machine a review of 
the litterature on the different types of fault that may occur in the electrical machine is elaborated 
and the useful parameters that should be examined and measured to detect the presence of each 
type of fault are illustrated. 
The faults are classified according to their level of severity; a case study is conducted where it is 
shown that demagnetization of magnet is the most sever fault; taking into consideration the relative 
cost of magnet and the percentage occurrence of demagnetization. The other types of faults that 
will be encountered are: turn to turn short circuit and eccentricity [12]. 
 
An experimental prototype containing the permanent magnet machine where faults are easily 
integrated and measured data are progressively collected is not available. Hence, the need for an 
accurate machine model arises. Electromagnetic, thermal and vibration finite element model is 
built at normal operation of the machine, and when different types of faults are integrated. The 
measured collected data will be torque, temperature and vibration also at normal operation and in 
the case of fault. This data will be inputs of the HMM. 
 
A strategy will be developed to detect the presence of fault at its early stage. The remaining useful 
life of the relevant machine’s components will be calculated accordingly and a prognostic decision 
will be elaborated.   
 
Chapter one will present a general literature review on hybrid electric vehicles (HEV), the 
electrical machines used in HEVs, the different types of electrical machine used in such application 
and the most preferable type of electrical machine. Then, the different type of faults that may occur 
in those electrical machines will be presented, the useful monitoring parameters that are useful for 
those different types of faults will be identified and a fault severity index for PMM will be 
formulated. Moreover, a survey will enumerate all the prognostic techniques that can be applied 
on this application after a briefing on prognostic strategy and condition monitoring concept.  
 
In chapter two, the Electromagnetic, thermal and vibration finite element model of the permanent 
magnet machine will be presented. The electromagnetic FEM will encounter static current fed, 
static voltage fed and dynamic time stepping FEM. The output of the electromagnetic model is 
vector potential that will be used to generate air gap flux density and torque. The steady state and 
transient thermal FEM will be generated. The outcome of the thermal model is the distribution of 
temperature in the whole machine. The outcome of the vibration FEM is the displacement of the 
machine. The model will be investigated at normal operation and when a fault is integrated. The 
considered types of faults are: demagnetization, turn to turn short circuit and eccentricity. 
A confrontation between analytical and numerical method for electromagnetic machine modeling 
will be demonstrated. 
 
Chapter three will emphasis fault indicators where useful measured parameters for fault 
identification will be identified and useful features from the measured parameters will be extracted. 
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Torque, temperature and vibration signal will be elaborated for the healthy and faulty states of the 
machine. Priority between parameters as indicators for fault detection and localization will be 
highlighted. At this stage, we will discuss sensor selection and localization.  
 
In chapter four, the strategy of the adopted prognostic approach which is HMM will be explained. 
The technical aspect of the method will be presented and the prognostic model will be formulated. 
HMM will be applied to detect and localize small scale faults where a systematic strategy is 
developed. The aging of machine’s equipment, specially the sensitive ones that are the stator’s coil 
and the permanent magnet, is a very important matter for RUL calculation.  
An estimation strategy for remaining useful life (RUL) calculation will be presented and discussed 
for those mentioned machine’s components. 
 
Till chapter four, the system in an open loop configuration where the considered electric source is 
a pure sinusoidal three phase supply. Closed loop configuration is very important, it is adopted by 
all available vehicle systems. Hence, such configuration will be built for our model where the input 
of the machine’s FEM will come from the modeled inverter. This will be illustrated in chapter five 
and six. 
 
In chapter five a model of the inverter will be elaborated. A brief on the main HEV’s power 
electronic elements, power inverter modeling, switched state space model and governing equation, 
inverter design parameters and signal generation will be presented. Fault interaction between the 
inverter and the machine is an important matter in the HEV; this will be encountered in this chapter 
after enumerating the faults that may occur in the inverter and their relevant threshold parameter 
values. After that, the direct oriented closed loop control system for the SPMM will be presented; 
the impact of this closed loop system on the machine’s dynamic parameters (torque, temperature 
and vibration) will be approached, the influence of this closed loop on the prognostic model will 
be offered.  
 
To sum up, this thesis will bring several innovative contributions. First, the developed interactive 
electromagnetic, thermal and dynamic finite element model for permanent magnet machine used 
in hybrid electric vehicle. Second, the developed data base signal that will be the input of the 
prognostic model. Third, the prognostic Hidden Markov Model where the remaining useful life of 
the machine in the case of fault will be calculated, for open and closed loop system. Fourth, the 
model coupling the inverter and the electric machine where fault interaction between those two 
main elements will be discussed and examined in the electromagnetic, thermal and vibration field.  
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Chapter 1: Literature review 
 
1.1 Introduction  
 
In this chapter we will present a general literature review on hybrid electric vehicles, types of 
electric machine used in this application and types of fault that may occur in the machine. An 
approach to classify machine’s faults in terms of severity is conducted. A survey on the available 
prognostic techniques that may be used for an electric machine is demonstrated. A general view 
on the hierarchy strategy of prognosis is illustrated.  
 
1.2 Hybrid electric vehicles (HEV) 
 
Hybrid Electrical Vehicle (HEV) is a combination between the conventional internal combustion 
system and an electric propulsion system.  
Hybrids on the market span from micro, mild, to full hybridness. Micro hybrid has a small motor 
compared to the gasoline engine. Mild hybrid has a motor with power about 15%–25% that of the 
engine. Full hybrid has a motor with power about 40%–50% the power of the engine. [16] 
 

TABLE 1: : HYBRID CLASSIFICATION [17] 
 Power rating 

(KW) 
Voltage level (V) Energy saving 

(%) 
Price rise (%) 

Micro-Hybrid 2.5 12 5-10 3 
Mild-Hybrid 10-20 100-200 20-30 20-30 
Full-Hybrid 30-50 200-300 30-50 30-40 

 
Mild hybrids are the most popular due to its low price compared with the conventional vehicles.   
Hybrid vehicles can also be divided into diesel/electric and gasoline/electric HEVs. Diesel/electric 
vehicle is better fuel economy and reduces emissions more than gasoline/electric vehicle. But, the 
diesel engine is more expensive. Plus, its torque is usually high at fewer revolutions per minute 
(rpm), which does not match the motor torque as well as a gasoline engine does. This leads that 
the electric part of the diesel/electrical vehicle is more expensive also.  
Making the diesel/electrical vehicles affordable is an important goal for many researches.  
 The components that deliver torque from the engine to the drive wheels is called “Powertrain”. 
Powertrain is the torque converter (automatic transmissions), transmission, driveshaft, differential, 
and axle shafts. 
In earlier times, automatic transmissions have been inferior to manual transmissions regarding 
their efficiency.  
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Nowadays, automatic transmissions compete manual transmissions due to the increase in the range 
of speeds. Most automatic vehicles have six speed. Some luxury ones offer eight speed; 
accordingly, the number of manual transmissions decreased from 23% in 1975 to only 8% in 2006. 
[16]  
 
The electric vehicle has an electric motor/generator which allows regenerative braking for an EV. 
Regenerative braking returns a portion of the kinetic energy of HEV motion to charge the battery. 
 
A typical hybrid-electric vehicle propulsion system consists of: 

- an internal combustion engine (ICE) 
- one or more electrical energy carriers (e.g. batteries, super-capacitors)  
- Electric machines 
- Power electronics 
- Control system 
- Transmission and various driveline linkages 

 

 
Figure 1: Components of a hybrid electric car 

 There are several ways to combine these elements. The general main categories of these 
combinations are[18] [19]:  
 
Series Hybrids: in the series configuration, the HEV has only two shafts that are not connected. 
Hence, the engine can run at an optimum rpm and regulate its settings to enssure minimum fuel 
consumption and minimum emissions. The engine and generator can be located anywhere. The 
tractive power is supplied directly by one or more electric machines, hence, transmission is not 
needed. The electric generator drives the engine in an efficient operating region to charge the 
electrical energy storage system also. The capacity of the generator plus the battery maximum 
power and the power of the M/G machine must be equal the total power of the HEV.  
Note that the battery deliver DC electrical current while the electrical machine usually deliver AC 
electrical current. The direction of the current flow changes as the operating mode changes 
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between accelerating mode, normal operating mode, battery charging mode and regenerative 
braking mode. The power electronics converts back and forth between DC and AC [20].   
One disadvantage of the series HEV is its relative high weight. 
Operating modes: 

- At accelerating mode, the battery and the generator tend to supply power. 
- At normal operating mode, the power is extracted from the engine only. The engine can 

operate on its ideal operating line for minimum fuel consumption since the generator can 
deliver the required power at different rpm. 

- At battery charging mode, Part of the generator output goes to the battery through the power 
electronics and part goes to the electric machine (M/G) working in motor mode.  

- At regenerative braking mode, the electric machine (M/G) operates in the generator mode 
where energy are extracted from the vehicle motion and electric power is generated. In this 
mode, the engine can be turned off. 

Series hybrid vehicle architectures are typically used in heavy-duty vehicles such as trucks and 
locomotives.   
Figure 2 shows the components of the series HEV architecture. 

 
Figure 2: The components of series HEV architecture 

 Parallel Hybrids: In the parallel HEV configuration, the tractive power is supplied by a proper 
combination of the engine and the electric machine where there is a mechanical connection 
between the electric machine (M/G) and the drive wheel and between the engine and the drive 
wheel. To match engine speed with drive shaft speed, a gearbox is integrated. The engine runs 
only if the vehicle is moving and if the SOC of the battery is not low. The parallel hybrid can 
respond to the demand for large, near instantaneous changes in either torque or power. In contrast, 
the series hybrid is slower. The fast response is an advantage in traffic [21].  
Parallel HEV configuration has many other advantages. Heavy component like generator do not 
exist. Plus, it has the ability to operate with engine alone, electric motor only, or with both motor 
and engine supplying torque. The use of three-shaft emission leads to the use of three-way gearbox. 
This mechanical connection makes the choice of the location of the engine limited.   
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Operating mode: 
- At accelerating mode, maximum power is needed. The battery feed power into the M/G set 

in M-mode and the engine torque is routed through and adjusted by the transmission. They 
are both engaged through the three-way gear. 

- At normal mode operation, the power is generated from the engine alone. The controller 
adjusts the ratio of the gear for minimum fuel consumption. 

- At electric-only mode, the engine is off. The power is generated from the battery alone. 
The torque created by the M/G in M mode is transmitted by the shaft to the three-way gear. 

- At the regenerative braking mode, like electric-only mode, the engine is off. But, the flow 
of power is the reverse of the electric only mode.   

The parallel type of hybrid electric vehicle is the most manufactured type, nowadays [22].                            
 
Figure 3 shows the components of the parallel HEV architecture. 
 

 Figure 3: The components of parallel HEV architecture  
Mixed Hybrids: Mixed designs that encounter the advantages of the series and the parallel 
configuration. It offers more flexibility than series or parallel design.  
 
1.3 Electrical machines used in HEVs 
 
1.3.1 Types of electrical machines used in HEV 
 
The fundamental requirement for traction motors used in electric vehicles is to generate propulsion 
torque over a wide speed range [23]. Several topologies of electrical machines can be used to meet 
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the requirements of hybrid electric vehicle applications [1]. Over the last decade, we can see that 
several types of electric machines were used in hybrid electric vehicles: the direct current machine 
(DC), the induction machine (IM), the permanent magnet excited synchronous machine (PMSM) 
and the switched reluctance machine (SRM). Switched reluctance is still less widespread. 
However, the most commonly used types of machine are Permanent Magnet Machine (PMM) and 
Induction Machine (IM).   
HEVs commonly available in the market have a nominal power of 30 kW, a nominal speed of 
3000 rpm and a nominal line voltage of 400 V. 
Each type of machine has its advantages and disadvantages when used in HEVs application. 
 
DC machine - Advantages: it can be connected directly to the battery, hence, no complex power electronic 

s are required. It also has a relative low cost and simple controllability, especially for small 
rated powers. - Disadvantages: it has low reliability and high maintenance cost due to the presence of 
commutators and brushes. It’s large and more expensive than other types of machine. It 
also has a moderate power density and low efficiency. Most losses of the DC machine 
persist in the rotor, which makes it necessary to add a complex cooling system at high 
power and restricts the overload capacity. 

 
Induction machine (IM) - Advantages: compared to the DC machine, squirrel-cage Induction machines have higher 

power density and higher efficiency. IM provides a wide speed range while conserving its 
efficiency. - Disadvantages: it has high copper losses which increase the heat in the rotor; hence, a 
cooling is required which limits the overload capacity. To decrease the magnetization 
current, a very small air gap is needed which increase its production cost.   
 

Permanent magnet synchronous machine (PMSM) - Advantages: it has high energy density due to the presence of magnet in the rotor where small 
piece of magnet can generate high magnetic field. It has high efficiency since no excitation 
current is required. Most of its losses are iron losses that occur in the stator, so, only simple 
cooling is required.  - Disadvantages: its major disadvantage is its high cost due to the relative high cost of rare-earth 
magnets like Samarium Cobalt and Neodymium. Its efficiency decreases at high speeds due to 
high stator current. The magnet is very delicate, when using it we should take care about the 
operating temperature; high temperature causes demagnetization. 

Due to their advantages, PMSM is the most suitable machines for HEVs. Furthermore, decreasing 
magnet costs, nowadays, will decrease the total cost of the machine since the magnet is the most 
expensive part of it.  
 

Switched reluctance machine (SRM) - Advantages: compared to the IM, SRM has higher power density and higher efficiency due 
to the absence of rotor copper losses. It has a simple construction: without rotor winding, 
with concentrated stator windings; therefore, a better thermal characteristic. It is robust and 



36  

it has a relative low volume. In addition, it is cost-effective in production and has low-
maintenance [24].  - Disadvantages: it has high acoustic noise radiation, high torque ripples at low speed and a 
complicated control. For those reasons, until now, only few prototypes of HEVs used the 
SRM. 

 
The choice of the machine to be used in HEVs depends on its type and its requirements. For 
example, in series HEVs, IM are advantageous due to their wide speed range and low cost. 
Whereas, in parallel HEVs where the gearbox controls the speed, the PMSM is recommended 
since it has high efficiency at low speeds.   
Several topologies of permanent magnet machine are available: internal permanent magnet motor, 
surface mounted permanent magnet motor and axial flux permanent magnet motor. 
 
1.3.2 The importance of electrical machine prognosis in HEVs 
 
Hybrid electric vehicles, being series or parallel, have many components. Hence, an axiomatic 
question is asked: Why executing a prognosis for electrical machines, rather than another 
component? What is its importance?  
To recognize the importance of electrical machine prognosis in a hybrid electric vehicle, we are 
going to compare between its cost and the cost of the other component in the system.  
In general, the power rating of the electrical motor in a mid-size HEV is between 50 Kw and 100 
Kw. According to [25], the cost of electrical machines per power rating is around 40$/KW. A 50 
Kw AC induction motor costs 40-60$/KW; a 53Kw brushless permanent magnet (BPM) machine 
costs 115$/KW. Those numbers are true if the number of purchased units is 1000 units per year 
minimum. For a single unit purchase, the cost is higher.   
The cost of AC induction controller of ratings 50-10 Kw is 14-19 $/Kw, and, the cost of BPM 
motor having the same rating is 10-14 $/Kw.  
Paper [25] also gives idea about the entire cost of the drive system where a drive system containing 
a brushless permanent magnet motor of rating 50 Kw costs 115$/Kw and that containing an AC 
induction motor of the same rate costs is 40-60$/Kw.  
In general, when brushless permanent magnet machine (BPM) is used, it is assumed that one-third 
of the system cost is that of the machine, where the cost of BPM machine is 15% higher than the 
AC induction machine costs and this is due to the high relative cost of permanent magnet. 
Executing prognostic analysis and studies for electric machines in HEVs are very important and 
justified, knowing their high cost with respect to the cost of the whole system. 
When a failure occurs in the electrical machine, two options pop up: we can repair the failure part 
in the machine but in this case, we should analyze and know the cause of this failure and solve it 
to prevent the fail occurring again.   Alternatively, we can replace the entire machine by a new 
one. 
The prognostic study is responsible of selecting the appropriate decision.  
 
Before we move to the prognostic models, the selection of the used electric machine and the 
implementation of its model should be executed. 
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1.3.3 Permanent magnet machine  
 
Most manufactured hybrid electric vehicles have the parallel configuration. Almost all parallel 
hybrid electric vehicles use permanent magnet machine. Therefore, the selected electric machine 
to be investigated in this study is the permanent magnet machine (PMM) [26]. 
The use of permanent magnets in construction of electrical machines brings many benefits: - High efficiency and high torque density because of the absence of excitation losses. - Higher air gap flux density compared the other type of electric machines hence better 

dynamic performance  - Simple construction and less maintenance compared with other types of electric machines 
with coils in the rotor or with need of slip ring. - Low ventilation requirements since there is no copper losses in the rotor. - When using a low cost magnet, like ferrite, the price of the permanent magnet machine will 
be lower than its analogous.  - No electrical energy is absorbed for field excitation since the magnet is responsible for the 
rotor’s field. - Permanent magnet machine is environment friendly since it does not require slip rings and 
brushes.  

Although permanent magnet machine has many advantages, it has few disadvantages that should 
be noted:  - The healthy performance of magnets is directly related to its operating temperature, hence, 

the risk of demagnetization always exists caused by an increase of the temperature inside 
the machine.  - PMM cannot be controlled field current.  - When rare earth magnet is used, the cost of the PMM is high.  

 
The configuration of PMM consists of a set of permanent magnets located at rotor level. The most 
commonly used magnets are the alloys of neodymium iron boron (NdFeB), samarium cobalt 
(SmCo5) and ferrite. 
The topology or the shape of PMM’s rotor was a cause of dilemma for many researchers and was 
investigated in many papers. Several topologies and configurations are available; the most popular 
topologies of PMM are: the surface mounted permanent magnet machine and the interior 
permanent magnet machine [27]. 
 

Surface permanent magnet machine 
In surface mounted configuration, the magnets are normally glued to the rotor surface, as shown 
in figure 4, making it easy to be built. It is used for low speed applications because of the limitation 
that the magnets will fly apart during high-speed operations [28].  
Surface mounted permanent magnet machine has radial field where the direction of flux lines is 
along the radius of the machine.  
The electromagnetic traveling field that will be produced in the rotor will pass through the air gap 
and crosses the stator teeth where a small amount of it, only, traverses radially the stator slots that 
contain conductor materials. We note that the stator teeth are the iron part existing between two 
consecutive slots. 
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Due to its isotropic rotor, the d- and q-axis inductances are identical and the saliency ratio is 1. 
Therefore, no reluctance torque befalls. 

 Figure 4: Surface mounted permanent magnet topology  
The advantages of this topology is the simplicity of its design and its relative cost. However, it has 
limitation concerning the selection of magnet type where only neodymium iron boron (NdFeB) 
can be used in surface permanent magnet machine [29].   
 

Interior permanent magnet machine 
In interior permanent magnet (IPM) machine topology, the magnets are incorporated in the rotor 
core as shown in figure 5.  
 

 Figure 5: Interior permanent magnet topology  
Setting the magnets inside the rotor improves the mechanical strength and magnetic protection. 
This topology is suitable for high-speed application. By appropriate positioning of the permanent 
magnets, the saliency ratio ξ of the IPM is varied accordingly. It is considered to have saliency 
with q axis inductance greater than the d axis inductance. An IPM motor exhibits both magnetic 
and reluctance torque [30]. 
IPM has axial field where the direction of the flux lines is perpendicular to the radius of the 
machine [31]. 
Interior magnet rotor design has many advantages: 

– It has a better mechanical strength. 
– It can reach its maximum energy product (BHmax) at a lower operation point. 
– It has a reduced air gap length. 
– This configuration presents a good reliability for high speed applications.  
– It has a high flux focusing. 

 
Interior permanent magnet can be constructed in different topologies. Paper [32] states three 
topologies: V-shape IPM, W-shape IPM and segmented IPM. A finite element analysis is 
investigated where they conclude that V-shape interior permanent magnet topology is the most 
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suitable for electric vehicle applications due to its good flux-weakening performance and wide 
constant-power operating range. 
 
1.4 Faults in electric machine 
 
1.4.1 Different type of faults in electrical machines 
 
In general, as any other type of electric machine, faults that may occur in permanent magnet 
machine can be electrical or mechanical. The main difference is in the rotor where there exist 
pieces of permanent magnets instead of windings or bars. 
  Bearing fault 
The bearings are normally divided into two types: ball bearings and roller bearings. Typical 
failures of bearings are flaking, seizing, race factor, retainer failure, rust, wear, fatigue, roughening, 
brinelling, smearing, and creeping. There are several causes for these failures. Some are 
unavoidable; the others are avoidable since they are caused by improper installation, improper 
lubrication or improper handling [33]. 
  Stator fault 
Failures in the stator are mainly failures in the windings. This type of failure is due to failure in 
the insulation of the winding wire [34]. Phase to phase or phase to ground short circuit may also 
occur. The causes of winding insulation failures are: high temperature, defects in stator core, loose 
connection at winding’s terminals, contamination due to oil, moisture and dirt, short circuit, 
electrical discharges, leakage in cooling system [35]. 
  Rotor fault 
Demagnetization is a serious problem in permanent magnet machines. Demagnetization means 
losing the magnet of its strength [36]. This does not, always, mean the deterioration of the magnet. 
Many are the causes of demagnetization: 
- Loads that Require Starting Torque and Reaction 
- Magnetic Fields in Opposite Directions 
- Some Magnets Corrode 
- Turn to Turn Short Circuit 
- High Temperature 
- Cracks in The Magnet 
  Shaft fault 
The main factors that contribute in the shaft fail are: environmental like corrosion and wear, 
electrical like overload, mechanical like fatigue and thermal like temperature gradients and rotor 
bowing [37]. 
  Eccentricity  
Eccentricity can be static if the air gap length is not constant around the rotor, dynamic if the center 
of the rotor and the center of the stator do not coincide [38]. 
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The common causes of electric motor failures are: overheating, overload, power supply 
abnormalities, environmental condition like humidity, chemical abrasive substances in the air and 
high altitude operation, contamination, improper lubrication and unusual mechanical loads 
Researches have proved that reducing those strains increase the life cycle of electric machines 
[39].  
 
1.4.2 Useful monitored parameters for fault detection 
 
To predict the presence of faults or failures in the different components of electrical machines one 
should choose dynamic and measurable parameters that change when a defect occurs. In the 
following a brief description of a set of useful measured parameters in electric machines [40] [41] 
[42]: - Flux monitoring: normal flux shape is sinusoidal. In the presence of certain faults, this 

sinusoidal shape varies. Such monitoring is useful to detect faults like rotor 
eccentricity. This may be done by inserting coils in stator slot or installing coil around 
the shaft. Although this is an effective monitoring method, it’s not very practical to 
insert coils in an existing machine or even a new one which limit its use in industrial 
applications [43]. - Vibration monitoring: vibration is a common symptom for several motor failures. It 
can be monitored by non-invasive transducers. However, in some types of faults, like 
eccentricity, this type of monitoring is not practical since installing such transducers on 
the back core of the stator is difficult; it is not accurate since at high static eccentricity, 
dynamic eccentricity is also generated and this detection is not assured by vibration 
monitoring. - Stator current monitoring: this parameter is also a common symptom for different types 
of faults. It can be easily implemented by connecting a current transformer and 
visualized the current spectrum. The analysis of the spectrum may need to be done in 
time or frequency domain; it depends on the application.       - Thermal monitoring: electrical machines have a maximum permissible operating 
ambient temperature and internal temperature to assure proper operation. Overheating 
in an electrical machine can be caused by high ambient temperature, improper 
ventilation, and overcurrent. Monitoring the temperature is easy by temperature 
sensors, but this will make the system more complicated and expensive. Monitoring 
the temperature can be detected by monitoring the resistance in one winding, minimum 
since the internal resistance in a coil changes with temperature [44]. - Acoustic noise monitoring: contact between rolling elements generates noise waves of 
very small energy but with high detectable frequency. Those waves can be easily 
detected by piezoelectric or capacitive transducer. Other faults like flux disturbances 
caused by magnet defects also generate abnormal noises.  - Speed fluctuation monitoring: it is the monitoring of the rotation period; when the 
period is not constant, a fault is detected. Rotor faults, vibrations, air gap eccentricity, 
rotor asymmetry, damaged bearings/couplings and shaft misalignment are all faults that 
can be detected with this type of monitoring. However, in applications like vehicles, 
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this fluctuation may be a load requirement; hence, during monitoring, load fluctuation 
and fault fluctuation should be distinguished.   - Power monitoring: monitoring the power gives a general idea about the state of the 
electrical machine. Under fault conditions, the efficiency will decrease.       - Air gap torque monitoring: this torque is different than the mechanical torque measured 
at the shaft. Air gap torque is a very important parameter to detect the presence of 
shorted stator winding. This parameter combines the effects of flux linkages and 
currents. It is sensitive to winding faults and unbalance voltages. The methods for air 
gap torque measurement are: search coils, partial coils of main windings, and Hall-
effect generators [45]. The tools for air gap torque measurements are simple; it requires 
air gap flux and current measurements. The measurement can be done during the 
operation of the machine and it takes small time to be achieved [46].  - Lubricant monitoring: the aim of this monitoring is to detect the presence of impurities 
in lubricants. Impurities like metals, fibers and dust are harmful for bearing, shaft and 
gear. Electrical conductance of the lubricant is a good parameter to detect the presence 
of impurities in it. Clear lubricants have low electrical conductance; impure lubricants 
have higher electrical conductance. Moreover, the analysis should detect over or under 
lubrication. This can be done by monitoring the oil pressure near valves or measuring 
the thickness of oil film at a certain critical point. This measurement can be determined 
through a piezoelectric sensor for example, or by means of ultrasonic technique [47].    - Phase resistance monitoring: measuring the resistance on phases is an important 
parameter to identify faults like turns short circuit and supply asymmetry. In case of 
asymmetric supply, the phase to phase resistances are not identical. In case of turns’ 
fault, the resistance of the faulty phase decreases; if the cause of the fault persists, an 
open circuit occurs and the resistance increases. To measure this resistance, several 
methods based on vibration and flux induced by fault current were developed. 
However, the most used methods are based on current and voltage measurements [48]. - Harmonics: harmonics are one of the parameters that help in sensing the existence of 
faults. For example, dynamic eccentricity and stator winding faults causes changes in 
stator current harmonics. Dynamic eccentricity also causes changes in air-gap flux 
harmonics. One of the important parameters to be checked to detect power supply 
defect is the total harmonic distortion in the current. We note that when harmonics 
increase, the current increase leading to temperature increase. - Voltage surge monitoring: fast rise surge causes insulation failure; insulation failure 
will cause short circuit of winding turns. This surge is usually caused by the switching 
of the power system switching or by the power electronics devices used in switching 
like GTOs and IGBTs.  - Electrical discharge monitoring: when a weakness or hole exist in the winding 
insulation, partial discharge or corona coming from the wire, cause rapid degradation 
of the insulation and turns short circuit occur. Moreover, the presence of contamination 
at the surface of the insulation contributes to high surface discharge, leading to winding 
defect [49]. - Contamination monitoring: the presence of contaminations is harmful for winding 
insulation, magnet, bearing, shaft and fan. Paper [50] suggests a method called high 
sensitivity differential current transformer (HSCT) that is based on measuring the 
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capacitance of the insulation, during operation, to detect the presence of contamination 
like moisture in the electrical machine.        

We remark that many symptoms may be an indication for a single defect. It is useful, to be sure of 
the occurrence of a fault, to check the presence of more than one symptom, before taking any 
decision or corrective measure.   
The chart in Figure 6 relates the useful measured parameters to the corresponding element of the 
system [51].  

 
Figure 6: Measured parameters versus failures  

Table 2 relates the different types of faults to their percentage of occurrence [52]. 
 

TABLE 2: PERCENTAGE OF FAULT OCCURRENCE 
Fault type Bearing 

Failure 
Stator 
Failure 

Rotor 
Failure 

Shaft 
Failure  

Eccentricity 
failure and 
others 

% of 
occurrence  

41 37 10 2 10 



43  

 
Table 3 indicates the threshold or permissible parameters, that are measured for prognostic 
purposes and at which the system is not considered defected. 
 

TABLE 3: SOME THRESHOLD VALUES OF MEASURED PARAMETERS 
Measured Parameter Threshold Value 
Vibration <1.6 rms(1) 
Stator current + 20% of the rated current 
Acoustic noise  +3 dB 
Speed fluctuation +- 20% of rated value 
Power efficiency >85% 
Voltage Short period: +- 10% of rated value  

Long period: +- 5% of rated value 
Frequency Small period: +3 to -5% of rated value 

Long period: +- 2% of rated value 
Air gap torque ripple Between -15% and +25% of rated value 
Voltage surge 1600 V peak for 0.1 µs 
Eccentricity <10% defect 
Static eccentricity Frequency twice the supply frequency indicates 

defect 
 
 
 
Temperature 

At frame level: 40 °C  
At insulation level: 155 °C (Class F) 
At magnet level:  
Neodymium N45 withstand a temperature of 80°C 
Neodymium 33 UH withstand a temperature of 
180°C 

Alignment The difference between maximum and minimum 
point: 0.03% 
Vibrations of double rotor speed frequency 
indicates misalignment  

Harmonics <3 % of the fundamental 
Phase resistance (10 minutes RTG(2)) /(1 minute RTG)=~2 
Insulation resistance >10 MΏ at 25°C 

This resistance is halved with every 20°C 
temperature rise   

Flux Under normal conditions, Neodymium will lose 
only 1% of its flux over 100 years. Hence, a drop 
of flux > 1% is an indication of demagnetization.   

(1) rms: it’s the square root of the average of the squared value of the vibration waveform. 
(2) RTG: resistance to ground. 
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1.4.3 Fault severity in permanent magnet machine 
 Many researches have classify the types of failures, from the most to the less severe, in terms of 
fault occurrence percentage. However, this is not enough, alone, to classify failures in the order of 
urgencies. Hence, a novel classification is suggested taken into consideration the percentage of 
occurrence and the cost of the relative failed component.  
 
In this study, it is considered the worst case; the failed component needs to be replaced.  
To do this classification, we define a Fault Severity Factor FSF where: 
 
FSF = (% price of the relative failed component * % of occurrence of a fault) / (Σ (% price of the 
relative failed component * % of occurrence of a fault))  
 
This approach will be applied to the 15 Kw permanent magnet machine.  
 

1) Bearing: According to [53], a machine of rating 10-20 kW has a shaft of diameter 48-
60mm. this imply to consider a mid-value of 55 mm. An adequate bearing will cost around 
4- 8$.  
 

2) Stator winding: A typical 15 kW permanent magnet machine will have 36 slots, slot area 
around 200 mm2, a 0.35 filling factor, 235 mm outer diameter of stator, 145 mm outer 
diameter of rotor, 195 mm axial length.  
Having three phases, the length of cable per phase will be around 50 m with a minimum 
cross sectional area As=2 mm2. According to the manufacturer, a copper wire for electric 
motor winding having a cross sectional area between 2 and 6 mm2 cost 8-10$/kg. From 
the geometry of the laminated sheet, the mass of copper in the winding can be estimated. 
The density of copper is 8960 kg/m3, hence, the mass of copper in the machine is around 
2.7 kg and its cost is around 25 $. 

 
3) Magnet: Interior permanent magnet can be constructed in different topologies. In [54], 

three topologies are stated: V-shape IPM, W-shape IPM and segmented IPM. A finite 
element analysis is investigated where it is concluded that W-shape interior permanent 
magnet topology is the most suitable for electric vehicle applications due to its good flux-
weakening performance and wide constant-power operating range.  
Combining information in [55] and [56], the volume of magnet in an interior permanent 
magnet machine, of rating 15 kW, adopting W-shape topology is around 1.3 kg. The used 
type of magnet is the Neodymium Iron Boron (NdFeB). In 2013, the cost of NdFeB was 
150$/kg. If one only considers the cost of NdFeB as raw material, the cost of 1.3 kg of it 
will be 195$. 

 
4) Shaft: The shaft of a15 kW machine will have a maximum length of 400 mm. A shaft made 

of carbon steel having a proper length and diameter will cost around 15 $. It should be 
noted that this cost is for a single shaft order.  
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TABLE 4: CLASSIFICATION OF FAULTY COMPONENTS 
 Price 

($) 
% price of the 
relative failed 
component 

% of 
occurrence of 
a fault 

FSF 

Permanent 
magnet  

195 80.2 10 60.26 

Stator 
winding 

25 10.3 37 28.64 

Bearing 8 3.3 41 10.17 
Shaft   15 6.2 2 0.93 
Miscellaneous 
faults 

- - 10 - 

 
The results illustrated in Table 4 Show that permanent magnet fault detection has the priority over 
the remaining fault possibilities. We recall that the price of the permanent magnet mentioned in 
the table do not consider the manufacturing cost of the magnet, which means that its real price is 
higher. 
 
1.5 Prognosis 
 
1.5.1 Prognostic strategy and condition base monitoring  
 
In general, prognosis assists the present health of a system and predicts its remaining life based on 
features that effect the gradual degradation in a system’s operational competencies. Prognosis 
techniques are used to advance safety, plan successful work, schedule maintenance, and diminish 
maintenance costs and down time where [57] states that, in USA, 25 billion US $ are spend in the 
transportation sector for annual additional maintenance.  
 
We note that maintenance constitutes the followings [58] [59]: 
 - Periodic inspections to monitor and record of the system performance - Precautionary maintenance to ensure that the components of the system are well executing 

their functions through their operation - Repairing system’s components when defect occurs - Restoration where a major component of the system is replaced by a new one when the 
service life of the system tends to end  

 
Maintenance strategies can be classified in three types: Breakdown maintenance that occurs to fix 
a failed element in the system, it needs a large budget; Preventive maintenance that is schedule 
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and periodic; Predictive maintenance that is directly related to condition based monitoring 
decision. 
 
Because of prognosis, equipment failure is predicted and unnecessary maintenance activities are 
avoided. Prognosis is a relatively new field, but it has becoming an important part of Condition-
based maintenance (CBM) of systems. 
Being a prediction technique, prognosis cannot predict 100% of faults and failures. The lack in 
prognosis prediction is overcome by diagnosis. 
 
Steps followed when applying Condition Based Monitoring System: 
 - Step 1: sensors deliver the data to the CBM system. - Step 2:  the signal processor receives this data and conduct it through appropriate CBM 

featured. - Step 3: the condition monitor receives this data and compare it to the normal values. If the two 
magnitudes don’t match, alerts are created. - Step 4: the health assessment module receives data from condition monitoring system, 
prescribes the health state of the monitored component or system, generate diagnostic histories 
and advise fault likelihood. It takes into consideration health history, operational status and 
maintenance history. - Step 5: Prognosis collect the manipulated data, offers the future health status and the remaining 
useful life of the component or system. - Step 6: in the end, the previously collected and treated information is examined, useful 
remaining life and proper action is generated.   

 
The useful remaining life denotes the portion of normal useful life of the treated system, in years, 
running from the date of evaluation to the end of its use. Determining the remaining useful life of 
a system is not simple, many parameters should be prudently deliberated.  
In figure 7, the prognostic strategy and its logical sequence for appropriate prognostic decision is 
illustrated.        
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 Figure 7: prognostic strategy 
 
There are two types of defects in electric machine: physical defects, like a crack in a piece of 
magnet; and functional defects, like the presence of impurities in the lubricant. Some of these 
defects are treatable like a crack in the magnet, and some of them are untreatable like removing 
impurities from lubricant. When defects are treatable, direct corresponding acts should be taken. 
Nonetheless, when defects are untreatable, other measures should be considered Operating load based. 
When the fault is untreatable, an important question should be asked: is it cost effective and 
adequate to replace the failed element? If yes, the replacement of the failed element should be 
done. Otherwise, the prognostic approach should intervene to calculate the remaining useful life 
of the defected component and make the appropriate decision: stop the system and replace the 
defected component or, continue the operation of the system.   
 
1.5.2 Prognostic methods 
 
Prognostic methods can be grouped in three main categories: heuristic methods, model based 
methods and data based methods [9] [11]. 
 
Heuristic methods 
Earlier, heuristic methods were based on time or frequency processing techniques. Recently, they 
are based on time and frequency domain information.  
It consists of forming a feature vector containing values that designates when the parameters 
coming from the evaluated system reached a predetermined failure threshold. 
Heuristic methods are simple, easy and work well most of the times, however, they do not 
encounter a theoretical basis that guarantees this wellness without system testing.    
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Model based method 
Model based method is more complex and expensive then heuristic methods. Yet, it overcomes 
some of the heuristic method drawback.  
It is based on the physical understanding of the system where physical models are generated. This 
can be done at micro or macro level. 
At the micro level, the physical models are characterized by series of dynamic equations that 
outline relationships between the component of the system, the operation and the environment.   
At macro-level models, the mathematical model is applied at system level, which defines the 
relationship between system input variables, system state variables, and system measures 
variables.  
Accordingly, the macro level is a more developed and expended presentation of the system. 
 
Data based methods 
Data-driven approaches are based on the collection of data coming from sensors. It is 
recommended when the understanding of the treated system is incomplete or when the system is 
complex such that, developing an accurate model is hard and expensive. Therefore, data driven 
approaches are often faster and cheaper compared to other approaches. 
The conventional data-driven methods comprise the use of stochastic models like the 
autoregressive (AR) model, the bilinear model, the projection pursuit, and the Volterra series 
expansion. Recently, more interests had focus on more flexible models such as different types of 
neural networks (NNs) and neural fuzzy (NF) systems. 
Data-driven method involves two strategies: modeling cumulative destruction in the system and 
then extrapolating it out to a damage threshold or learning directly from data the remaining useful 
life. In our thesis we will took advantage of the first strategy. 
 
The first and the second methods have the advantage of having information about faults that 
already occurs in previous monitored systems. The third approach has the advantage of not being 
limited by one general rule; a wide variety of data types can be investigated. The statistical model 
is very beneficial for new sources of data where analysis, physical models and rules are not yet 
developed.  
Machine prognosis is essential to improve its safety, set its planning missions, schedule its 
maintenance costs and down time. 
 
1.5.3 Prognostic techniques 
 
Every prognostic method has many prognostic techniques that behooves to it. They are illustrated 
in figure 8. 
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Figure 8: Prognostic methods and techniques 

A brief description of each prognostic technique is illustrated in table 6. 
  

TABLE 5: : DESCRIPTION OF PROGNOSTIC APPROACHES 
 Prognostic Approach Description State equation or representation 
    

Pro
gno

stic
 Ap

pro
ach

es

Heuristic

Rule Based Approach

Fuzzy Logic Approach

Distributed Prognosis system Architecture

Model-Based

Physics-based Model

System  dynamic model

Trend-based evolutionary approach

Adaptive prognosis

State Estimator approach-stochastic base

Kalman Filter

Extended Kalman Filter

Unscented Kalman Filter

Data-Based

Neural Network

Support Vector Regression (SVR)
Linear (SVR) 

Non-Linear (SVR) 

Statistical reliability & Usage-based approche Hidden Markov model

Data Miningand automated rule extraction 

Probabilistic model

Weibull Technique

Bayesian Technique

Poisson Distribution Model

Exponential distribution model
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Heuristic 
Approach  

Rule Based Approach 
(Known as expert 
systems) 

It’s the simplest 
artificial intelligent 
and the most 
commonly used 
approach. It’s based 
on using rules to 
perform a given 
situation.   
 

It’s represented by a set of IF and 
THEN statements.  

Fuzzy Logic Approach First step: 
Identification of fuzzy 
inputs and assign 
membership function 
or set for each one.  
Second step: form the 
rule that will govern 
the sets like AND, OR 
and NOT. Other 
relations like 
implication between 
sets can be 
represented using IF 
and THEN statements 
Third step: generating 
the fuzzy output and 
mapping the inference 
between input and 
output spaces 

For example: 
AND: µA∩B(x)= min{µA(x), µB(x)} 
OR: µA∪B(x)= max{µA(x), µB(x)} 
NOT: µ¬A(x) = 1 - µA(x) 
 
A,B: sets 
 
The fuzzy logic approach can be 
combined with a set of IF and THEN 
statement.  

Distributed Prognosis 
system Architecture 

It consists of 
analyzing data 
architecture through 
logical hierarchy to 
ensure the adequate 
decision and that from 
the low level of Line 
replaceable unit, 
through the system, to 
the vehicle level.  
This approach has 
many advantages: 
accuracy, optimal 
results, details of the 
system are 

- Isolate the fault’s cause 
- Understand the propagation of 

fault effect 
- Incorporate the results in the 

prognosis and health 
management system using 
hierarchical reasoners.  

- Recognize the required corrective 
act 
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considered, ability to 
accommodate 
different sources of 
data and identification 
of wrong data, ability 
to isolate and evaluate 
more than one fault.      

Model-
Based 
Approach 

Physics-based Model It’s used to 
understand and 
represent the 
progression of failure 
mode. It calculates the 
damage as function of 
the operating 
condition and 
evaluates the growing 
effects with respect to 
the usage life of the 
component. The 
physical based model 
helps in predicting the 
remaining useful 
component life 
function of defect in 
related components 
like strength/stress 
properties, loading or 
lubrication conditions 
for a particular fault. 
The results of such 
model are useful in 
predicting real time 
failure prognostic.   

For example, the fatigue crack 
propagation model, mainly based on 
Paris’s formula: 

dα
dN = C˳ (ΔK)  

Where: 
α: length of dominant crack 
N: running cycles 
C˳, n: material’s constant 
ΔK: range of stress intensity factor 
over loading cycle. 
 

System Dynamic 
model 

This approach is hard 
to be applied for 
complex systems. It 
consists of imagining 
the model and 
observing the input of 
the output of the 
system to identify the 
parameters of the 
system. Accordingly, 
this model will be an 
accurate 

In [51] a dynamic model of the gear is 
investigated.  
First, they calculated the constant 
parameters of the gear system, which 
is defined to be a rotational lumped 
parameter model, like inertias, 
damping and stiffness. The geometry 
of the system and the material 
properties help in calculating those 
parameters. Then, those parameters 
are integrated in the adequate equation 
motion of the system. In the end, 
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representation of the 
system.  

simulation is done to generate the 
dynamic model and existing failures.     

Trend-Based 
evolutionary approach 

It’s based on tracing 
deviations in specific 
measured parameters 
from their regular 
operating condition 
for several iterations. 
It’s used in systems 
facing slow 
degradation type 
faults. It needs large 
sensor information. 
Details and history of 
the fault condition 
should be available. 
Physical model is not 
required in this 
approach.    

The priori (expected) function of the 
measured parameter is compared to 
the updated function.   

Adaptive prognosis As its name indicates, 
it’s about adapting, or 
modifying the model 
to meet the new 
specifications or 
current measures.  

If a failure occurs at a time t=t+pΔτ, 
the model should be adjusted 
accordingly to reach optimal 
prognosis. The failure’s model f(t) 
will optimized to f(t+pΔτ).    

State Estimator 
approach- stochastic 
based prognosis 

An example is Alpha-
Gamma-Beta filter, 
kalman filter (KF), 
Extended kalman 
filter (EKF), 
Unscented kalman 
filter (UKF), or any 
other filters. 
EKF and UKF are a 
development of KF. 
KF can be used only 
after linearization of 
the system. EKF has 
the ability to linearize 
the system around an 
operating point or 
specific state. UKF 
has an advantage of 
performing well in 

Kalman filter can be described as 
xk+1=Akxk + Bkuk +Gkwk 
zk=Hkxk + vk 
xk: internal state 
zk: measured values  
wk: process noise 
vk: measurement noise 
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non-linear system 
[17] 

Data-Based 
Model 

Neural Network The most commonly 
used data driven 
technique. They are 
useful in 
classification and 
prediction. It’s fast, 
better than the 
traditional statistical 
methods and has the 
ability to investigate 
new complex 
systems. There are 
many types of Neural 
networks: artificial 
neural network, 
recurrent neural 
network, recurrent 
wavelet neural 
network, neuro-fuzzy 
network, feed forward 
neuro network. The 
Artificial neural 
network is the mostly 
used. The accuracy of 
the results increases 
when the quantity of 
available data 
increases. Neural 
network can be 
updated when new 
data appears.  

The Artificial Neural Network is built 
of a level of input nodes, one or more 
level of hidden nodes, one level of 
output nodes and connecting weights. 
To identify the unknown, the neural 
network adjusts the weights with 
recurrent clarifications of inputs and 
outputs.  

Support Vector 
Regression (SVR) 

This approach as 
rapidly developed and 
applied for 
classification and 
regression problems. 
It’s suitable for  
Support vector 
machine was used to 
investigate functions 
like cost, kernel and 
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performance of 
machine sets. 
It has an advantage 
over the neural 
network approach 
being less risky, more 
general, suitable for 
complex system and 
robust with nonlinear 
data.    
Support Vector 
Regression-Linear: It 
consists of recording 
data x from a large 
dimensional space 
and applying the 
linear regression on it.  

f(xi) =< w, xi > +b 
xi: required pattern 
w: uncertainty, should have small 
value 
b: system’s constant 

Support Vector 
Regression-Non-
Linear: The linear 
SVR is practically 
limited; the nonlinear 
SVR overcome this 
issue, where the 
required pattern xi is 
replaced by required 
function pattern f(xi).   

Nonlinear function φ (xi) is integrated 
in the function f(x). 

f(xi) =< w, φ(xi) > +b 

Statistical reliability & 
Usage-based approach 

This approach is 
simple. It’s 
implemented when no 
prognostic model 
exists or no enough 
information is 
available due to the 
lack of sensors. Data 
are required from the 
operating system or 
from the archive 
(configuration of fault 
history) and from 
legacy system, then fit 
it to a statistical 
distribution method to 
identify fault.  

 The steps of this approach is: [60] 
Step 1: collect data and divide them 
into intervals. 
Step 2: build a statistical model for 
each interval or group. 
Step 3: test each interval according to 
this equation: 
ptci = ∏ ptj   
where: ptci is the test case, k is the 
transition, ptj is the probability of the 
jth transition.  
Step 4: measuring the reliability using 
the following equations: 
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Maintenance interval 
can be generated; an 
update of those 
intervals can be made 
every time new data 
are available. Later 
on, the accumulation 
of information and the 
inspection of failure 
rate will lead to build 
the corresponding 
algorithm and model.   
Hidden Markov 
model is a statistical 
modeling method. 

R = 1 − f
n  

MTBF(mean time between failures)
=  n

f  
R: reliability 
F: failures 
N: number of failed measurements 
 

Data Mining and 
automated rule 
extraction [61] 

According to this 
approach, rules are 
extracted from input 
data by the simple 
examination of this 
data. Input data must 
be chosen from fault 
period categorized 
samples. 
It aims to discover 
pattern in the 
collected data.  
The advantages of this 
method over the 
neural network: 
comprehensibility, 
explanation, validity, 
learning new features 
from data 
examination, the 
generated output (like 
binary tree) is done by 
a simple analysis of 
data input.  

- Collect the data from different 
sources. The data must be 
relatively large since the analysis 
and fault detection will occur on 
the available data. 

- Integrate data in one instant set 
after removing noises. (there is a 
standard way to represent the data 
called ARFF file) 

- Start find a relation between 
variables prior finding an 
algorithm to govern the data 

- Validate the result by making 
sure that the generated algorithm 
is applicable to all data, even to 
the one out of the chosen set at the 
beginning   

Probabilistic model 
[62] 

It is a very effective 
method, accurate and 
precise. It requires 
less details then 

Weibull model: F(x) = 1 − e  
(x: any data value, α: shape parameter, 
β: location parameter) 
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model-based 
techniques since it 
requires probability 
density functions 
found from observed 
statistical data. Under 
this approach come 
the Weibull model, 
Poisson model, 
Exponential model 
and the Bayesian 
Theory. 
 
It’s mentioned that the 
Weibull, Exponential 
and Poisson models 
are rugged in failure 
behavior estimation. 
However, they are 
useful when studying 
a set of identical 
population (Machines 
for example) to 
predict their failure 
rate. Hence, they may 
be beneficial for 
manufacturers that 
produce a large 
number of units.    

Although this model as used in 
predicting lifetime of components like 
bearing; it’s not reliable since it 
generates an average value of this life 
time. The recommendation is to use 
condition monitoring of dynamic 
parameter, like vibration, in this field.  
 
Bayesian Technique: It’s an 
expression of condition probability. 
P(T|D) = D T ∗ ( )

( )   
D: data, T: threshold or expected value 

 
Many researches applied prognosis using different methods for different applications. 
In [178], a data-driven method founded on data enlarged in simulation to encounter all the probable 
trends of the degradation process is proposed for MOS Field-Effect Transistor. This data set is 
used for an offline assessment of the Remaining Useful Life. The strength of this assessment is its 
capability to be performed online by updating the model parameters using Wiener process. The 
drift parameter of the Winer process is updated online; its stochastic part is used to simulate several 
selected degradation trajectories. The efficiency, the accuracy and the wide application scope of 
the suggested approach is verified by simulated simulation and experimental results. 
The author in [179] perform a fault prognosis for wind turbine when multi faults occur. A hybrid 
method is presented; a physical model is used for structural analysis, sensor placement, and 
clusters generation in the normal and faulty situations. An original approach expressing the 
degradation of the model using the principle of geolocation is illustrated. The Remaining Useful 
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Lifetime is calculated based on the Euclidean distance between normal and faulty clusters, the 
degradation direction and velocity. Real wind data is used. 
Paper [180] also present a hybrid approach for breakage of drive belt. Fault indicators are generated 
from a dynamic model simulated in the healthy and faulty states; then, those indicators are treated 
using a data driven method. No prior knowledge of the system is needed to detect fault degradation. 
In [181], a data driven prognostic approach is applied on Batch semiconductor manufacturing 
processes through three steps. First, extracting raw health index from collected data. Second, 
monotonic profiles are developed by executing variations in the health index using percentile 
measure. Third, the developed profiles are modelled by gamma process. Those steps are followed 
by The remaining useful life (RUL) estimation that is elaborated using an aggregate probability 
density function (pdf) with a confidence interval. The method shows good accuracy where it 
estimates better the failure system compared with an existing preprocessing method.     
  
The selected prognosis technique to be used in the succeeding work is the data driven model, 
Hidden Markov Model (HMM). When applying prognosis, examining the impact of several 
parameters on the health state of the system is recommended. Hence, this technique is designated 
due to its advantage over the others to achieve this goal. 
 
Hidden Markov Model is a Data-driven prognostic approach since it efforts to derive models 
directly from collected Condition Monitoring (CM) data; they get predictive output directly in 
terms of CM data. It’s a stochastic signal model. It’s a Bayesian estimation problem. 
 
In general, HMM is useful to predict the sequence of state changes in a system, based on the 
sequence of observations. Hence, it is recommended for systems having a finite internal states that 
generate a set of external observations. The internal states of the system are invisible for an 
outward observer. The current state is directly dependent on the immediate previous state; these 
sequence is called the Markov process.   
In paper [95], the author combines Artificial Neural Network (ANN) and hidden Markov model 
(HMM) and took advantage of their ability to be applied for diagnosis and prognosis. Those two 
methods are used to extract useful features from the system and elaborate its remaining useful life 
(RUL). It also declares that HMM is definitely able to estimate unobservable health-states using 
observable sensor signals or defined features computed by other techniques like ANN. The 
application treated is turbofan engine where an example on turbine disk is presented. The target of 
HMM is to compute the remaining useful life of the turbofan.  
The author in paper [96] highlight the importance of detecting native and imminent faults in 
electric machines used in critical applications like hybrid electric vehicles and avionics. It proves 
that hidden Markov model, used in diagnostics, is useful to be used as prognostics technique. It 
presents two methods based on Hidden Markov Models for the Predictions of coming faults. They 
are based on pattern recognition, that is a data-driven approach commonly used in the field of 
faults detection and diagnostic.  
Paper [97] apply prognosis technique to detect electrical faults using hidden Markov model and 
estimate the remaining useful life of relevant equipment using estimation approach based on the 
probability of state failure. The observable of the model are time and frequency features extracted 
from the machine’s torque measurement. To train the HMM experimental observation influenced 
probability densities is used, due to limited available data. The investigated fault is turn to turn 
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short circuit; it aims to detect the presence and estimate the severity of turn to turn short circuit 
from the extracted torque features. However, this will not lead to localize the fault and state which 
coil is short circuited. 
The author in [98] state that HMMs is an advantageous method in diagnosis, prognosis and 
condition monitoring fields. Nowadays, the wide availability of different types of sensors: 
vibration, temperature, torque… encourage us to apply HMM. It has been noted that HMMs can 
still be applied even if few training data and little prior knowledge about the system is available. 
In this paper, the examined data is the current of the electric motor. This measured parameter is 
used to detect the presence of fault, define the current state of the machine and predict its future 
state. However, it has been concluded, in the end, that the presence of few data may not be enough 
to predict the future state of the system correctly.    
As examined, most papers applying hidden Markov model for prognosis or diagnosis purposes in 
applications like electric machines integrates mainly mechanical faults like a crack in the bearing. 
None has investigated prognosis when faults like turn to turn short circuit, demagnetization or 
eccentricity is integrated in the machine.  
As we know, electric machines can operate properly and at rated power even when there is a couple 
of winding turns short circuited, a small crack one piece of magnet or an eccentricity fault with 
small percentage of deviation. The importance of prognosis is to detect this issue and prevent the 
propagation of theses faults by appropriate condition monitoring, machine supervision and 
maintenance decision. 
The slackness in this matter will deepen the fault where a whole coil may become short circuited, 
or the small crack may propagate and become a severe one or, the rotor eccentricity deviation 
evolves. In the other hand, a specific fault, at its early stages, may the cause of other fault 
generation knowing the interaction between faults inside the machine that is previously discussed.  
 

 
  



59  

1.5.4 Prognosis in Hybrid electric vehicles and its electric machine 
 
Due to its importance, prognosis concept started to be used in applications like hybrid electric 
vehicle and its components.  
Machine health prognosis plays a significant role in the dynamic maintenance and decision-
making. A proper maintenance schedule ensures system reliability, decrease the frequency of 
failures, and improve equipment availability. A novel prognostic method called rolling grey 
forecasting method is presented in [63]. This method takes into consideration influencing factors 
like operating load to generate an efficient and accurate machine health prediction.  
 
Paper [58] presents a hybrid model-based, data-driven and knowledge-based integrated diagnosis 
and prognosis structure, and applies it to auto-motive’s battery systems and electronic systems. 
In [64], a data-driven multi-scale extended Kalman filtering algorithm had been developed. This 
algorithm tends to estimate important parameters for the battery like its capacity and its state of 
charge. This will help in the diagnosis and the prognosis of the battery’s general behavior.  
    
The paper in [65] states that, in HEV, an advanced diagnosis and prognosis technologies are 
needed to rapidly sense and isolate faults in network-embedded automotive systems so that 
proactive corrective maintenance actions can be taken to avoid failures and improve the 
availability of the vehicle. It discusses an integrated diagnostic and prognostic framework, and 
applies it to two automotive systems, a Regenerative Braking System (RBS) in hybrid electric 
vehicles and an Electric Power Generation and Storage (EPGS) system. The method used is the 
physics-based modeling approach which consists of figuring out the difference between a 
measured parameter and its expected value when using a mathematical model. A large difference 
indicates the presence of a fault. The small difference indicates a normal operation with the 
presence of noise or modeling errors.  
 
A model-based fault diagnosis and prognosis scheme for a vehicle steering system is presented in 
[66]. The types of faults are classified as unexpected fault, elementary fault, and discontinuous 
fault. They are detected using the concept of Augmented Global Analytical Redundancy Relations 
(AGARRs). After distinguishing the type of fault, a pattern is identified to estimate the magnitude 
of unexpected faults, the characteristic of discontinuous faults, and the degradation performance 
of elementary faults. A new adaptive hybrid differential evolution (AHDE) algorithm with less 
control parameters is used to identify the fault. Once degradation behavior of faults is identified, 
prognosis is carried out to predict the remaining useful life of faulty components.  
 
As we Remarque, in general, prognosis concept is very innovative in HEVs. Few researches had 
been conducted for the prognosis of the storage element in the system. None had focus on the fault 
prognosis in the machinery part or the power electronics part of the system.   
 
Prognosis can be applied for any component in the electrical machine [57]: 
 

a) Bearing prognosis 
Bearing is a rotating element presented in every machine. Its failure may be, in some 
cases, catastrophic. Hence, developing reliable techniques to predict the failure of the 
rotating element in early stage and ease precautionary maintenance is very important.  
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Two models are commonly used for bearing modeling: - Spall Initiation Model that consider bearing dimensions, loads, lubricant quality, and 
view empirical constants to execute bearing prognosis. - Spall Progression Model that takes into consideration oil debris, high vibration levels, 
and elevated temperatures that ultimately lead to bearing failure. -  

b) Gear prognosis 
The gear fault is a mechanical fault that can appear as cracked or missing teeth in the 
gearbox that is coupled to the motor. This type of fault can be identified by monitoring 
resistance during the short transients where momentary increase in the resistance 
appears. 
For the gear prognosis a model that considers high fidelity stress, fatigue and crack 
propagation can be elaborated. 
 

c) Rotor asymmetry prognosis 
This is manifested by broken rotor bar, cracked magnet or cracked rotor end-rings 
(depend on the type of electric motor). This fault can be caused by: thermal stress, 
magnetic stress, residual stresses due to manufacturing problems, dynamic stress… 
hence, the related model should consider the above parameter. 
 

d) Stator or armature faults prognosis [67] 
They are known as phase-to- ground or phase to-phase faults. Prognosis is useful at this 
stage since it’s believed that the fault starts as undetected turn-to-turn faults which, in 
the end, grow and culminate into severe ones. 
This type of fault affects directly the voltage, current and mechanical torque. [17] 
In [25], increased resistance in one phase is introduced as an electrical fault at stator 
stage that occurs due to bad connection between the motor and the controller.  
The causes of this type of faults: 
- High stator core or winding temperatures.  
- Slack core lamination, slot wedges and joints.  
- Loose bracing for end winding.  
- Contamination due to oil, moisture and dirt.  
- Short circuit.  
- Electrical discharges.  
- Leakage in cooling systems. 
 

e) Eccentricity faults prognosis 
This is due to unequal air-gap that exists between the stator and rotor. When becoming 
large, this type of fault will cause unbalanced radial forces. This will cause stator to 
rotor rub, which causes damage to the stator and rotor [68]. 
 

f) Defective magnet prognosis 
Prognosis of magnet will be mainly to prevent demagnetization that may be caused 
when a crack occurs in the magnet or when the operating temperature of the magnet 
increases due to a fault in its environment. 
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g) Insulation failure prognosis 
When temperature at insulation level increases, its life cycle decreases. A failure in the 
winding’s insulation will directly cause turn to turn short circuit. hence, insulation 
failure prognosis is very significant [69].  
 

1.6 Finite Element Method and electrical machine 
 
Hidden Markov Model is data driven prognostic technique. The input of the model will be the data 
coming from sensors located at different points in the machine. However, a prototype of a 
permanent magnet machine where we can integrate different types of fault easily to see their 
impact on sensors measurements, is not available. Hence, choosing the appropriate model for the 
electric machine was a must. 
Due to its accuracy and its detailed representation of the machine; it’s physical aspect, 
electromagnetic, thermal and vibration performance; we modeled the permanent magnet machine 
using finite element model.   
Finite element model is very advantageous for electric machine. It is capable to show the flow of 
flux lines in the whole machine. Identifying the path of flux lines in the electrical machine and the 
flux density in the air gap is of high importance to predict the performance and characteristics of 
this machine where the average air gap flux density is essential to compute torque, power, flux 
[17]. In the other hand, the determination of flux density in the whole machine is very important 
specially in the teeth where the flux density should not exceed a certain predefined value, beyond 
it the core became saturated.  
Finite element model is also valuable in displaying the temperature all over the laminated sheet 
and exhibiting the vibration at any point inside the machine. 
The machine is modeled in the healthy case and in the faulty case where faults of small scale are 
integrated in its laminated sheet. The considered faults are demagnetization, eccentricity and short 
circuit.  
Fictive sensors can be located anywhere inside the machine or at its boundary. The collected data, 
by those sensors, will be the input database for the prognostic model.  
A wide description of the machine’s finite element modeling is presented in chapter 2.           
    
1.7 Conclusion 
This chapter was a general literature review about hybrid electric vehicles, electric machines used 
in such application, the different types of fault that may occur in those electric machines and 
different available prognostic techniques that may be used. The importance of electric machine 
prognosis has been highlighted. To achieve its goal, electrical machine prognosis should detect 
defect at an early stage or before it occurs, assess the machine continuously and predict its 
remaining useful life and its possible failure mode. 
The conducted previous work leads us to focus on three types of fault in electric machine: 
demagnetization, eccentricity and turn to turn short circuit. Faults of small scale will be integrated 
in the machine. The selected prognostic technique will predict the faulty state of the machine. It 
will predict its next state where a fault propagation may occur. In the end, it will calculate its 
remaining useful life. 
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The selected prognostic technique, hidden markov model, is a data base model. However, a 
prototype of the permanent magnet machine where we can introduce different types of mechanical 
and electrical fault and see its impact on different measureable parameters is not available nor easy 
to manufacture. Hence, we will take advantage of the accuracy of finite element model, build 
electromagnetic, thermal and vibration model of the machine for different types of fault and collect 
the needed database for our prognostic approach. 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



63  

Chapter 2: Finite element model 
 
2.1 Introduction 
 
As we clarified previously, a prototype for the PMM is not available; hence, the model of the 
machine is needed. It is decided to build the model using finite element analysis which is a widely 
used numerical model due to its advantages over the analytical method in terms of simplicity and 
accuracy. The model will be built for undamaged machine and for machine containing tiny fault. 
After the literature done concerning the severity of faults befalling in permanent magnet machine, 
it has been proven that demagnetization has the preference, being the most sever. The other types 
of fault that will be considered are eccentricity and turn to turn short circuit.   
The strategy followed to achieve the prognosis is to model the permanent magnet machine in the 
healthy state and in the faulty state; then, compare the behavior of the measureable parameters like 
torque, vibration, temperature…, in the two cases. This approach will let us link the fault, or 
intuition of fault, to its relative measurable parameters. In other words, monitoring a parameter 
will let us prevent the occurrence of a fault. 
In this chapter we will present extensively the finite element model where the electromagnetic, 
thermal and vibration finite element model is built for the permanent magnet machine in the cases 
of normal operation and when a fault is integrated in the machine.  
By use of Matlab, the model is elaborated. The software Matlab presents several functions that are 
useful for finite element analysis.  
2.2 Electromagnetic FEM 
 
The electromagnetic model is divided into two parts: static and dynamic. The static can be a current 
fed model or a voltage fed model.  
The specifications and parameters of the selected PMM, including the geometry of the laminated 
sheet, are illustrated in table 6 [70]. 
The geometry of the laminated sheet with the distribution of the phases on the slots and magnet’s 
poles are illustrated in Figure 9. A two poles section of the machine’s laminated sheet as developed 
by the used software ‘Matlab’ is presented in figure 10.  
 

TABLE 6: : MACHINE’S SPECIFICATIONS AND PARAMETERS 
SPMM Parameters Values 
Machine active length  204.79 mm 
Stator core thickness  7.22 mm 
Stator outer radius 117.78 mm 
Stator inner radius  61.421 mm 
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Rotor outer radius 54.92 mm 
Rotor inner radius 47.71 mm 
Nb of slots  36 
Slot opening  4° 
Radial tooth length ℎ  49.16 mm 
Area of slot 281.05  
Slot filling factor 0.3 
Area of winding turn 3.666  
Nb of turns per phase  13 
Air-gap thickness g 2 mm 
Radial PM length  4.5 mm 
Nb of pole pairs p 6 
Magnet opening angle  20°/30° 
Magnet remanence  1.2 T 
Magnet Coercive force Hc 955 kA/m 
PM Relative permeability  1.05 
Material properties Values 
Young Modulus of steel 210 GN/m  
Mass density of steel 7650 kg/m  
Poisson ratio of steel 0.3 
Young Modulus of copper 9.4 GN/m  
Mass density of copper 8953 kg/m  
Poisson ratio of copper 0.35 
Conductivity of copper  4.257 (Ω. m)  
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Figure 10: Two poles section of the SPMM’s laminated sheet 

 
In figure 10, the red numbers represent the domains of the model. 1 is the air gap. 2 is the iron part 
of the rotor. 3 is the iron part of the stator. 4 and 5 are the pieces of magnet. 6,7,8,9,10,11 are the 
slots. The numbers in black are dedicated for the edges of the model.  
The input of the model, other than the parameters related to the type of materials forming each part 
of the machine, is the instantaneous voltage or current at each phase. The voltage and the current 
are supposed to be sinusoidal expressed in the following equations: 
 
 = ∗ (cos( ∗ )) (1) 

Figure 9: Laminated sheet of SPMM 
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 = ∗ cos (( ∗ ) + 2
3 ) (2) 

 = ∗ cos (( ∗ ) + 4
3 ) (3) 

 = ∗ cos (( ∗ ) + ) (4) 
    = ∗ cos (( ∗ ) + + 2

3 ) (5) 
 = ∗ cos (( ∗ ) + + 4

3 ) 
 

(6) 

= 66.8 , = 0.483 , = 29.3 , = 312 . 
= 2 ∗ ∗ . 

 
2.2.1 Static current fed model 
 
Finite element analysis is useful for models having complicate geometry and containing several 
types of materials with different properties.  
It consists of dividing the domain subject of analysis into small elements called sub-domains where 
the differential equation for each domain is built separately. The sub-domain or the finite element 
can be a triangle or a trapezoid. The triangle finite element is illustrated in figure 11.  
 

 
Figure 11: Sub-domain or finite element 

Then, the combination of the whole sub-systems forms the governing general system:  
 [ + ] ∗ [ ] = [ ] 

 
(7) 

[S]: Stiffness matrix (a characteristic matrix of a FEM sub-domain) 
[T]: mass matrix  
[A]: potential vector 
[J]: current density vector 
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Where: = ∗ ∗∆ ∗ (
+ + +
+ + +
+ + +

)  

And, = − ; = − . 
 

 = ∗ ∗  ∗  ∆
12 ∗  2 1 11 2 11 1 2

 (8) 

        
w: angular frequency 
σ: electrical conductivity 
∆: area of the triangle 

 
The solution of the FEM is the vector potential “A” and the input is the current density “J”. In 
electrical machine analysis, the potential vector in its own is not of big importance, however, it is 
useful to generate other important parameters like flux density (see equation 9).  
 ∇  × =  (9) 

 
Figure 12 is a general block diagram representation of the current fed FEM.  

 
Figure 12: Current fed FEM 

 
To solve properly equation (7) and get unique result, at least the solution (potential A) at one point 
in the electrical machine should be known or assumed. Hence, boundary conditions are mandatory.   
Boundary Condition  
Several boundary conditions can be applied in finite element method.  
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When the potential is specified at a point, we call it Dirichlet boundary condition. When the 
potential at a point is set to zero, we call it homogeneous Dirichlet boundary condition. When the 
derivative of the potential, at a point, is constant, we call it Neuman boundary condition. When 
this constant is zero, we call it homogeneous Neuman boundary condition [71].     
In our model, the applied boundary conditions are: 

- Homogeneous Dirichlet’s boundary condition where the potential is set to zero at the outer 
boundary of the SPMM. The potential at the upper edge of the slot is also set to zero since 
this edge is considered as a flux line. 

- Newman’s boundary condition is also applied since there is symmetry in the laminated 
sheet and the flow of flux lines in SPMM is repetitive for each two poles. Hence, the finite 
element analysis can be done for two poles only. 

 
In this section we will mention some notes that are considered in the finite element modeling. First, 
the electrical machine has similar configuration all through its axial length. Hence, it is common 
to model the electrical machines in two dimensions instead of three. Second, there is symmetry in 
the geometry of the machine’s laminated sheet where all poles are identical, hence, it is common 
to model two poles instead of the whole laminated sheet of the machine. These two assumptions 
and considerations are advantageous because it reduces the size of the stiffness matrix which leads 
to reduce the time of simulation.    
           
Magnet Modeling in FEM 
For the magnet modeling, two main approaches exist, both of them follow the same concept and 
generates the same results. The first is the magnetization vector approach, the second is the 
equivalent current sheet approach. Demerdach in [8] has developed and improved the equivalent 
current sheet method to be applied on magnets having any arbitrary shape.  The equivalent current 
sheet approach consists of replacing the magnet by two thin equivalent conductors representing 
the magnetic potential of the magnet [72] [73]. 
The equivalent current at a point of an arbitrary subdomain (triangle) located in the magnet will 
be: 
 
 = 2 ∗ ( −  ) 

 
(10) 

C and b: are parameters related to the x and y coordinates of the point. 
Ɵ: angle depending on the sense of magnetization of the magnet 
Hc: coercive force of the magnet (A/m) 

Figure13 shows the flow of flux lines in the laminated sheet when zero current is flowing in the 
phases. The flux density generated from the contribution of the stator alone is presented in figure 
14. The air gap flux density coming from stator contribution is illustrated in figure 15. The flux 
lines distribution in the machine coming from the contribution of the stator alone is illustrated in 
figure 16. 
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 Figure 13: Flow of flux lines in the machine with zero current in 
the phases 

 

 Figure 14: SPMM’s air gap flux density with zero current 
in the phases 

 

 Figure 15: SPMM’s air gap flux density coming from stator 
contribution only 

 

 Figure 16: Flux lines (stator contribution) 

 
Figure 17 shows the distribution of the flux density in the laminated sheet where the maximum 
reached flux density is 1.68 Tesla which is tolerated according to [4]. Figure 18 illustrates the total 
flow of flux lines inside the machine. Figure 19 represents the total air gap flux density of the 
machine.   
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Figure 17: Distribution of total flux density inside the 
machine in Tesla Figure 18: : Total flux lines in the SPMM 

 

 
Figure 19: Total air gap flux density of the SPMM 

 
2.2.2 Static voltage fed model 
 
The implementation of a voltage fed finite element model is executed where a results similar to 
the current fed FEM are generated. 
The global system equation of voltage fed finite element model is: 
 [ ] + [ ] − [ ] [0]

− [ ]′ [ ] − [ ]
[0] − [ ] − [

∗ = [ 00−
] 

 

(11) 

{Ic}: the circuit current vector 
{Es}: the bar voltage vector 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12-0.02

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Angle (Degree)

To
tal 

Air
 ga

p f
lux

 de
nsi

ty 
(Te

sla
)



71  

[D]: the bar connection matrix 
[Ωb]: the bar cross sectional area diagonal matrix 
[C]: the matrix of integration weights used in the area computation 
[zext]: the circuit external impedance diagonal matrix 
{vs}: the circuit voltage vector. 
 

Figure 20 presents the voltage fed FEM in a block diagram. 
 

 
Figure 20: Voltage fed FEM 

 
The simulation of the voltage fed FEM model generates the total air gap flux density in figure 21 
and the flow of flux lines in figure 22. 
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 Figure 21: Air gap flux density (Voltage fed model)  Figure 22: Flux lines (Voltage fed model) 
  

2.2.3 Dynamic Time Stepping FEM 
 
Although static finite element analysis gives a good presentation of the electromagnetic aspect of 
the machine, the generation of a dynamic model is of big interest.  
 
First, in general, the electrical machine needs to be coupled to an external circuit representing the 
input supply or source of power; this source is usually time dependent.  
Second, the motion of the rotor should be considered in the modeling because of the flux coupling 
effect between stator and rotor. In other words, when the rotor changes its position, the distribution 
of flux inside the machine changes. 
Third, the final end goal is to apply a real time prognosis scheme. Since the data that will be input 
for the prognostic model will come from the FEM, this model should be dynamic.   
In [72], a time stepping finite element model is presented for induction machine. This model has 
been manipulated and adapted to be applied for Permanent magnet machine. 
 
The first step in the dynamic FEM is discretization, which converts a continuous physical model 
into a discrete mathematical model. 
The second process is the linearization. The field equation and the acceleration equations are non-
linear functions of vector potential A and/or rotor displacement x. However, like any non-linear 
function, when studied for a very small period of time it can be treated as linear. Hence, the field 
and acceleration equations must be linearized before they can be combined with the other equations 
of the system in a global matrix equation. 
 
In figure 23, the block diagram of the dynamic model is illustrated. 
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 Figure 23: Block diagram of Time Stepping FEM 
 
The governing equations of the system are:  
 

• The time-dependent magnetic diffusion equation 
 ∇ ∗ ∇ ∗ A = σVb

l −  +  ∗  ∇ ∗  
 

(12) 

• Expression of current in each conductor 
   −    (13) 

        • Circuit Equation: Series Bar-Coil Equation 
 = { }{ } + +   

 
(14) 

• Circuit Equation: Parallel Coil Equation 
 =  {1} { } + {1} +  

 
(15) 

• Mechanical Acceleration Equation 
 + = −  (16) 

    
• Mechanical Velocity Equation 

 =  
 

(17) 

ν: reluctivity 
A: vector potential 
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σ: conductivity 
Vb: voltage across rotor’s bar (the equivalent of the magnets) 
l: axial length of the machine 
v: linear rotor’s speed 
t: time 
I: current in each conductor 
Vc: voltage across series coils (stator’s coil) 
db: a diagonal matrix with entries of + 1 or -1, indicating the polarity of each bar in the coil 
Lext: coils’ equivalent inductance 
Rext: coils’equivalent resistance 
Rs: parallel conductor’s equivalent resistance 
Ls: parallel conductor’s equivalent inductance 
m: rotor’s mass 
x: rotor’s position 

: damping factor (in synchronous machine this value is almost zero) 
Fem: electromagnetic force 
Fext: externally-applied mechanical force (load). 
  
After Discretization and Linearization, the global matrix of the system is: 
 
 1112′0

122223′
023330 0 34′15′ 0 0

     
0034440

    
1500055

+ ∆

+ 1

∆∆∆∆∆
 = 

12345
 

 

(18) 

 
The system is solved using Newton Raphson method. For each step of rotation, the Stiffness matrix 
of the system is updated using this coordinates transformation: 
 
 = ∗  −   ∗  (19) 
 = ∗  +   ∗  

 
(20) 

Ɵ is the rotating angle of the rotor.  
The solution gives the change in the vector potential, voltages, currents and rotor position. Hence, 
for example, = + ∆ .        
To make sure that the solution doesn’t diverge, a check should be done after each iteration where 
a preset tolerated error is taken into consideration. If the solution diverges, this means the step size 
is not adequate and the model has loss of credibility.  
One important issue that assure the accuracy and success of the dynamic model is the time 
stepping. From the time step we deduce the angle step. 
According to [74], the step size ∆t is maximum equal to ∗ . And, the minimum integration time 
is = ∗ ∆ . 
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Where N is the sampling point that should be power of 2. However, to guarantee exactitude, the 
step size is better to be tenth of ∆tmax. 
The frequency of our system is 66.8 Hz. ∆tmax=7.49*10^-4. ∆xmin= linear speed * ∆t= 24 m/sec 
* 7.49*10^-4 sec=0.018 m. Rotating step angle= 360*∆x/Rotor Perimeter=~ 10 degree (max). 
However, this step of rotation diverged the results radically. Hence, after trial and error the rotation 
step is settled to 0.9 degree, and the time step of 3.7425e-05 sec.  
In each iteration, the generated displacement ∆x is compared with the maximum tolerated 
(calculated) displacement which is(2*pi*0.05942) *(0.9/360) *1.1. (The maximum permissible 
considered error is 10%).  
The simulation is done for 5 revolutions.  
A sketches of the rotor’s swept in different times of simulation is presented in figure 24.  

 
Figure 24: : Flux lines at 4 different moments during the rotation from 0 to 30 degree (Healthy machine) 

 
2.3 Thermal finite element model 
 
Many research papers had taken advantage of the thermal modeling of electrical machine to 
monitor its state and improve its operation 
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In [75], the author implemented the thermal model to investigate the cooling phenomena inside 
the machine and to optimize its geometry versus the selected cooling system. The convection 
phenomena are represented using empirical dimensionless analysis formulations. A Commercial 
software package named Motor-CAD is used for this purpose. G. D. Paper [76] states that thermal 
modeling of electrical machine is very useful to detect any rise of temperature inside the machine; 
however, many are not recognizing its importance. The aim of this paper is to generate an 
analytical Thermal model for a permanent magnet machine. Its model is confronted with a finite 
element thermal model. A review on the different techniques of thermal behavior used for 
electrical machine is presented in [77]. The mentioned techniques are: lumped parameter thermal 
model (LPM), finite difference, finite elements and computational fluid dynamics (CFD). Plus, it 
presented some experimental methods that evaluate precisely and accurately results for machine 
design and fabrication. This thermal analysis is important to protect the insulation, bearings, 
permanent magnet, the glue used to attach the magnets and to prevent excessive heating of the 
surroundings in the case of overload. Paper [78] couples the thermal and the electromagnetic FE 
model of a power transformer to describe its performance in the case of winding short circuit fault.   
No papers have encountered the thermal FEM of electrical machine in the aim of detecting the 
presence of fault at its early stage. 
 
In general, losses in electrical machine are caused by the fundamental components of the stator 
and rotor currents, hysteresis losses in the iron core, eddy current losses in the conductors, iron 
core and frame and friction losses. All, can be represented in the thermal model.  
In healthy case, the main source of heat inside electrical machine is in the windings, where losses 
are dissipated as heat.  
 
Due to the difference in temperature inside the machine, heat transfer occurs. In principle, heat 
transfer occurs from hotter zones to cooler zones.  
 
There are three kinds of heat-transfer mechanisms: conduction, convection and radiation. 
Heat conduction is the transfer of heat from one solid to another due to the temperature difference 
between those two solids. 
Heat convection is the transfer of heat by mass motion of a fluid such as air or water when the 
heated fluid is caused to move away from the source of heat. 
Heat radiation is the transfer of heat by the emission of electromagnetic waves which carry energy 
away from the emitting object [79].  
 
The study of heat transfers in electrical machine and specially in permanent magnet machine is of 
big interest. First, knowing the sensitivity of magnets toward temperature, we care of avoiding 
magnet demagnetization [80]. Second, the carbon-fiber sleeve that holds the magnets is also very 
sensitive to temperature and has restricted limits. Moreover, the insulation of the stator winding 
has also temperature limit to avoid its deterioration [81]. 
 
Convection is the primarily phenomenon that transfers heat out from the machine. This is done by 
mean of the air gap or between machine’s periphery and outward environment. Convection can be 
natural or forced.  
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The thermal FEM will be developed for the SPMM in the healthy and faulty case. The target is to 
detect the presence of fault at its early stage and to identify, later on, the impact of this preliminary 
fault on the aging of the machine’s component; mainly on the permanent magnet and on the 
winding’s insulation.  
 
2.3.1 Thermal model equations and specification 
 
The governing equation of heat transfer for any application is [82]: 
   −   = + +  

 
(21) 

ρ: material density, kg/m3 
Cp: the specific heat, J/kg.K 
tz: the thickness model 
k: thermal conductivity, W/m.K 
t: time, sec 
T: temperature at a particular x and y location, K 
Qd: heat source, watt/m2 
 
The amount of heat transferred from a surface, per unit area, due to convection is 
expressed as: 
 
 = ℎ ∗ ( − )  

(22) 
Ta: ambient temperature 
hc: convection coefficient, W/m2.K 
 
The amount of heat transferred per unit area, due to radiation is expressed as: 
 
 =   ( − )  

(23) 
 
ϵ: emissivity of the face  
σ: Stefan-Boltzmann constant, W/m2K4 
 
The heat general heat equation is a parabolic partial differential equation. 
The aim of the thermal analysis is to know the distribution of temperature in all the machine in 
general, at the magnet level in specific and at the machine’s boundary knowing that the maximum 
allowable temperature for the used magnet is 150 °C. 
 
Both steady state and transient analysis are performed. 
In a steady state analysis, we are interested in the final temperature at different points in the 
laminated sheet of the machine after it has reached an equilibrium state. In this analysis, the 
element encountering ∂T/∂t in the governing thermal equation is set to zero. 
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In a transient analysis we are interested in the temperature in the laminated sheet function of time. 
In this analysis we can know how long does it take the machine to reach an equilibrium 
temperature. 
The block diagrams in figure 25 and 26 shows the input and the output of the steady state and 
transient thermal analysis. 
 

 Figure 25: Block diagram of the thermal steady state analysis 
 

 Figure 26: Block diagram of the thermal transient analysis 
 
In the thermal finite element model, we set homogeneous boundary condition where the 
temperature at the outer periphery of the machine is set to 40°C. (this value will come from the 
sensor measurement located at the periphery of the machine). We also applied Neuman boundary 
condition where the flux lines cut the section of the laminated sheet in perpendicular direction. 
In table 7, the physical characteristics of the materials constituting the machine are represented. 
 
 
 
 
 
 
 

Thermal FEM

Physical characteristics of material +temperature at the periphary of the machine+ Heat source (slots) in W/m3

Temperature as function of Y cordinates or a distinct radius
Distribution of temperature along the laminated sheet 

Physical characteristics of material +temperature at the periphary of the machine+ Heat source (slots) in W/m3

Thermal FEM
Time needed for the machine to reach thermal  equilibrium 



79  

TABLE 7: PHYSICAL AND THERMAL CHARACTERISTICS OF MACHINE'S MATERIAL 
 Thermal 

conductivity, 
W/(m-K) 

Density, kg/m^3 Specific heat, 
J/(kg-K) 

Steel 36 7850 490 
Copper 400 8960 386 
Air 0.02 1.225 1000 
Magnet 9 7400 460 

 
The ambient temperature is set to 20°C. 
The transfer of heat coming from radiation is not encountered. Only conduction and convection 
(that has the big interfere in heat exchange) is taken into consideration. 
The convection is represented as boundary condition at the outer periphery of the machine. 
In the prototype we are using, the thermal protection of the machine starts when the temperature 
reaches a minimum value of 150°C. 
 
The input of the model, other than the parameters related to the type of materials forming each part 
of the machine, is the instantaneous power across each coil. We chose to perform the analysis at 
t=0.09 sec, which is the time needed for the machine to execute one revolution. 
 
2.3.2 Thermal model outcomes (Steady state analysis) 
 
In the following we will show the outcomes of the thermal model and how the results can be 
represented and expressed in the case of healthy machine. 
 

 Figure 27: Distribution of temperature in the healthy PMM at Steady state 
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Figure 27 shows the distribution of temperature inside the electrical machine, in the healthy case.  
In figure 28, a useful way to represent or visualize the distribution of temperature inside the 
electrical machine is illustrated. The curve in the figure represents the value of temperature on a 
selected radial line through the laminated sheet. We chose a line that extends from the center of 
the machine to its periphery passing by the second piece of magnet. 

 Figure 28: Temperature along radial line 
 
2.3.3 Thermal model outcomes (Transient analysis) 
 
The transient analysis of thermal model generates the change in temperature function of time. It is 
useful in specifying the time needed for the system to reach the steady state temperature stated in 
the previous section.  
In this analysis, the part of the thermal governing equation that is function of time appears: 
 
    (24) 

 
The initial value of the temperature at t=0 is set to 0. The simulation is done for several interval of 
time (5000, 10000, 15000, 20000, 25000 seconds). From the results illustrated in the figures 29 
and 30, the steady state is reached after 20000 seconds; after this time, the results remain constant. 
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Figure 29: Distribution of temperature in the laminated sheet at t= 5000, 10000, 15000 and 20000 seconds 

 

 
Figure 30: Distribution of temperature in the laminated sheet at t=25000 
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We remark that the steady state analysis and the transient analysis give the same results concerning 
the final value of temperature inside the machine.  
Focusing on the piece of magnets and the coil’s wire (conductor and insulation) inside the machine, 
we can get the variation of temperature of the targeted element function of time in figure 31 and 
32. 
 

 
Figure 31: : Transient temperature on the top edge of the magnet 

 

 
Figure 32: Variation of temperature function of time in the first slot 
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Figure 33 shows the temperature at a point on the machine’s boundary function of time. 
 

 
Figure 33: Transient temperature on the outer boundary of the Permanent magnet machine 

 
2.4 Vibration finite element model 
 
There is no analytical model of vibration for complicated geometries, hence, numerical method 
like finite element method is used to build a vibration model for electrical machines [83] [84]. 
 
The nonlinear vibration equation can be expressed as: 
 
 [ ]{ ( )} + [ ]{ ( )} + [ ]{ ( )} = { ( )} (25) 

 
[M]: mass matrix 
[C]: damping matrix  
[K]: stiffness matrix 
x(t): displacement vector for each node 
x’(t): velocity vector for each node 
x’’(t): acceleration vector for each node 
F(t): load vector, force distribution acting on the stator. 
 
The source of vibration in electrical machine can be classified as: mechanical, aerodynamic and 
electromagnetic force. The electromagnetic force is the most important having the highest 
intervention in causing vibration. 
The audible sound for human is normally of frequencies between 20 Hz and 20 kHz but responds 
more to frequencies between 500 Hz and 8 kHz. 
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The quantity that couples the displacement field and the magnetic field is the vector of magnetic 
force density f(x,t). 
 
The material characteristics needed for vibration finite element analysis are: modulus of elasticity, 
density and Poisson’s ratio. The modulus of elasticity, the density and Poisson’s ratio of the 
materials used in the permanent magnet machine are enumerated in table 8.  
 

TABLE 8: MATERIAL CHARACTERISTICS NEEDED FOR VIBRATION MODEL 
 Modulus of elasticity 

(109 N/m2, GPa) 
Density (kg/m^3) Poisson's ratio 

Steel 28.8 7850 0.3 
Copper 110.3 8960 0.3 
Air 0.000142 1.225 0 (air has no 

elasticity) 
Magnet (NdFeB) 150 7400 0.24 
Aluminum 66.2 2712 0.35 

 
Wave motion can be: longitudinal (sound waves are examples of longitudinal waves), transversal 
(vibrating string is an example of transverse wave motion) and torsional.  
Wave can be mechanical or electromagnetic. Mechanical wave need elastic medium to propagates; 
however, electromagnetic wave can propagate in vacuum. 
 
Hyperbolic equation of wave [85]: 
 
 ( ) ( °) ( , ) = ( °) ( , ) + ( , ) (26) 

 
ρ: density 
Te: tension 
f: external force 
 
The above equation is customized to meet the standard equation shape of the pde tool in Matlab. 
 
 ∆ℰ + ( + ) ( . ℰ) + =  = ℰ (27) 

 
G: modulus of elasticity : Poisson’s ratio 
 
The electromagnetic force in electric machines are mainly generated in the air gap and are acting 
on the iron part of the stator. In finite element modeling, this force can be represented by its 
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resultant at each teeth of the stator [85]. Accordingly, this force will be expressed in the model by 
the Neumann boundary condition, and it will be settled to zero in the elliptic equation of vibration. 
 
Electromagnetic force calculation: 
 
Electromagnetic force calculation can be realized using two methods: one based on Maxwell stress 
tensor and one based on the principle of the virtual work [86].  
According to Maxwell stress tensor, the electromagnetic force can be obtained as a surface 
integral: 
 
 =   (28) 

 
 
σ: Maxwell stress tensor (it is a surface force density; it’s unit is N/m2)  
 
There is a relation between the Maxwell stress tensor and the flux density. It is expressed as: 
 
 ( , ) = 1

2 0 ∗ ( , )  (29) 
Br: radial component of flux density 
 
The electromagnetic force in the electrical machine is mainly the force in the air gap acting on the 
stator; Maxwell stress tensor in the air gap is generated from the electromagnetic finite element 
model. In electromagnetic FEM, the flux density is interpolated for each triangle; then, the 
Maxwell stress tensor and the electromagnetic force is generated for each finite element. Since the 
displacement due to vibration should be elaborated at each point in the electric machine, the 
magnetic force for each finite element, the triangle, will be distributed using a weighted function 
on the corners of the triangle. 
 
The vibration model, needs to be built after the electromagnetic model, since the input of the 
vibration model, other than the physical characteristics of the material, is the radial electromagnetic 
force applied to the stator, especially on the teeth of the stator.  
Since the vibration model is mainly impacted by the electromagnetic force applied on the teeth of 
the stator, no need to model the whole machine, the iron part of the stator is only considered as 
seen in figure 34. 
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Figure 34: Stator's iron part of the laminated sheet 

 
Figure 35 shows the distribution of electromagnetic forces in air gap. Figure 36 a zoomed view of 
figure 35. Figure 37 shows the vibration in space at the machine’s boundary when nominal voltage 
is considered at the phases. Figure 38 is an illustration of the stator displacement. 
 

Figure 35: Distribution of electromagnetic forces in the air gap Figure 36: Zoom figure 35 
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Figure 37: Vibration on the periphery of the SPMM 

 

 
Figure 38: : Stator's displacement in mm (Healthy machine) 

 

2.5 Integration of faults in FEM 
 
In this section we will integrate the three selected types of faults in the FEM: demagnetization 
presented by a crack in one magnet, turn to turn short circuit fault and eccentricity fault. Some 
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simulation results concerning the electrical, thermal and vibration aspects of the machine are 
presented. 
 
2.5.1 Demagnetization fault 
 
A crack at the upper periphery of the magnet of the first pole is executed. Figure 39 is zoomed 
view of the meshed machine’s laminated sheet when there is a crack on the upper periphery of the 
magnet. The red lines in the figure are the geometry of the machine and the blue lines are the mesh 
generated by the pde tool in Matlab.  
 
The direction of the crack is radial, parallel to the flux lines. The crack is between 12 and 23 
degrees. We can see that there is no flux leakage at the periphery of the magnet. However, due to 
the crack, the density of flux lines has increased at the two right and left side of the magnet. The 
flow of flux lines in this case is shown in figure 40. This has increased the flux focusing in the 
teeth of the laminated sheet where the maximum flux density reached 1.92 Tesla. This is an 
alarming value since the maximum permissible flux density in the core is 1.7 Tesla. At the health 
state, with no crack in the magnet, this value was 1.68 Tesla.  
 
The air gap flux density in the area above the crack has almost conserved its shape but with lower 
values this means lower average air gap flux density, hence, lower torque and lower power as we 
will see later in the coming chapter. 
 
Simulation has been done for two different radial depth of crack: 1 mm and 3 mm. figure 39 shows 
a zoomed view of the cracked magnet. Figure 40 shows the flux lines in this case; the black arrows 
point at the flux focusing on the right and left side of the crack. In figure 41, the air gap flux density 
for the two depths of cracks is elucidated.  
 
Comparing the graphs in figure 41, we remark that the two air gaps have similar shape but different 
flux density values. As the crack deepen, the flux density above the interval of the crack decreases. 
However, the maximum flux density in the machine, due to flux focusing, remain the same 
whatever is the depth of the crack. This is convenient for this type of cracks (crack parallel to flux 
lines) because the flux lines tend to concentrate at the edges of the crack regardless its depth.  
Yet, changing the interval of the crack will change the results. 
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Figure 39: Crack in the magnet of pole 1 Figure 40: Flux focusing due to the crack 

 
 

 
Figure 41: Air gap flux density for 1 and 3 mm crack 

 
Moving to the thermal FEM, the distribution of temperature inside the machine in the case of 
healthy machine and machine with crack in one magnet is presented in figures 42 and 43 
respectively. We mention that the 12 poles of the machine are modeled. We can see that the 
distribution of temperature in the two cases is almost similar. A miniature crack in the magnet 
change slightly the geometry of the machine and has no impact on the source of heats inside the 
machine which are the slots; that’s why this fault has no impact on the distribution of temperature 
inside the machine.  
 
The vibration in the iron part of the stator in the case of a crack in one magnet is illustrated in 
figure 44. Comparing figure 44 and figure 38 that illustrates the vibration in the healthy case, we 
can see that the displacement has decreased in the case of crack. 
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The presence of the crack in the magnet decrease the air gap flux density in the range of the crack. 
This decreases the electromagnetic force acting on the stator’s teeth. The vibration is directly 
proportional to this electromagnetic force; hence, the displacement of the machine decreases in 
this type of fault. 
 

 
Figure 42: Distribution of temperature (°C) in the machine (Healthy case) 

 
Figure 43: Distribution of temperature (°C) in the machine (in the case of crack) 



91  

 
Figure 44: Vibration of the machine’s stator in mm (in the case of crack) 

 
2.5.2 Turn to turn short circuit fault 
 
The second type of fault that will be tested and integrated in the machine’s modeled is the turn to 
turn short circuit in one of the machine’s slots.  
The main causes of turn to turn short circuit are: thermal stress, mechanical stress and electrical 
stress. The sources of electrical stress are: supply voltage transient coming from line to line, line 
to ground or three phase fault, lightning, variable frequency drive, open and close of CB [87]. 
  
In the case of turn to turn short circuit the current in the faulted turns/coil increases. Its increase is 
expressed as following: [88] 
 
 = 1

1 − % ∗  (30) 
 
 
Inew is the value of current flowing in the turns after the fault. 
Irated is the rated value of the current flowing in the coil or the value of the current at healthy case. 
 
α is the ratio of the number of shorted turns to the number of total turns in the dedicated coil. 
For example, in our machine, the number of turns per coil is 13. If one turn is shorted, the new 
current flowing in the coil became 1.09 times the old/rated current. 
We mention that the turn to turn short circuit is a propagating fault. If it persists, it leads to total 
short circuit of the coil.  
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In table 9, the value of currents flowing in the faulty coil from the early stage of short circuit turns 
to the total short circuit of the coil is recorded. 
 

TABLE 9: CURRENT VERSUS NUMBER OF SHORT CIRCUITED TURNS 
Number of short 
 circuited turns 

Inew/Irated 

1 1.1 
2 1.2 
3 1.3 
4 1.4 
5 1.6 
6 1.9 
7 2.2 
8 2.6 
9 3.3 
10 4.3 
11 6.5 
12 13 
13 infinity 

 
Our aim is to detect the presence of faults at their native stage; hence, we will consider the case of 
one turn short circuited. 
 
Figure 45 illustrates the flow of flux lines in the machine when a turn to turn short circuit occurs 
in the first slot of phase A. As remarked, there is increase in the density of flux lines near the 
relevant phase. Figure 46 shows the air gap flux density in this case. Comparing it to the healthy 
case in figure 19, it has different shape and a lowest maximum value that was near 1 in the healthy 
case and became near 0.7 in the case of turn to turn short circuit. 
 
The short circuit in the stator has increased the temperature in the whole machine. The magnetic 
strength of the magnet is inversely proportional to the temperature. This increase in the temperature 
weakened the magnet; hence, the air gap flux density decrease.         
In the other hand, the flux density in the machine increased and reach an alarming value 2 Tesla 
(figure 47). 
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 Figure 45: flow of flux lines in the machine with one turn short circuited 
 

 Figure 46: air gap flux density with one turn short circuited 
 

 
Figure 47: distribution of flux density inside the machine with one turn short circuited 

 
Figure 48 shows the distribution of temperature inside the machine when there is turn to turn short 
circuit in one slot. Comparing it to the healthy case in figure 42, we remark the high increase in 
temperature. The presence of short circuit increases the temperature in the slots belonging to the 
faulty phase. This will impact the distribution of temperature in the while machine.   
 
In this case of fault, the vibration is illustrated in figure 49 where we can see the decrease in the 
displacement when comparing the result with that of the healthy case. 
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Figure 48: Distribution of temperature (°C) in the machine (in the case of short circuit turn in one slot) 

 

 
Figure 49: Vibration of the machine’s stator in mm (in the case of short circuit turn in one slot) 

 
2.5.3 Eccentricity 
 
Eccentricity is one of the faults that may occur in the machine. It consists of non-uniformity in the 
rotor. In this analysis we will consider the dynamic eccentricity fault where all the rotor is moved 
to the right with a shift equal 10% of the air gap. 
  
The machine’s flux lines are illustrated in figure 50. We can realize a slight increase in the flux 
lines density, on the right side of the rotor where the air gap distance between the rotor and the 
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stator is minimum. Non-uniformity in the air gap flux density is also tracked in figure 51. It reaches 
a value near 1.5 Tesla in the area where the distance of air gap is least. 
  
The eccentricity fault has increased the flux density in the laminated sheet where it reaches an 
alerting value of 3 Tesla (figure 52). 
 

 
Figure 50: flux lines in the machine with 10% eccentricity fault 

 
Figure 51: air gap flux density with 10% eccentricity fault 
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Figure 52: distribution of flux density inside the machine with 10% eccentricity fault 

 
In the case of 10% eccentricity fault, the distribution of temperature in the laminated sheet of the 
machine and the vibration of its stator is illustrated in figures 53 and 54 respectively. Those results 
are almost the same as the healthy case. A 10% eccentricity fault change slightly the geometry of 
the figure and has no impact on the sources of heat in the machine; hence, this fault has no impact 
on the temperature distribution.  
 

 
Figure 53: Distribution of temperature (°C) in the machine (in the case of 10% eccentricity fault) 
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Figure 54: Vibration of the machine’s stator in mm (in the case of 10% eccentricity fault) 

 
 2.6 Analytical analysis versus finite element Analysis  
 
To compare and confront results between analytical and numerical method, the electrical machine 
will be modeled using the two methods while conserving the same specifications.  
The considered cases are the healthy machine and the machine with crack in one magnet.   
Analytically, the magnetic flux density is expressed as the product of the Magneto motive Force 
( / ) produced by the rotor and the air-gap permeance ( ) varying with time (t) and space 
( )[89]. 
 
 , / ( , ) = ( , ) × / ( , ) (31) 

 ( , ) is the air-gap permeance expressed by a Fourier series, in the non-saturated case [90]. In 
a healthy case, the permeance is constant in time and only depends on the space position . 
The ( , ) is approximated by a rectangular function in the rotor-space ( ), function of 
magnetic and geometrical characteristics of the PMs [91]. 
In figure 55, a superposition of the air gap flux density due to the rotor contribution using FEM 
and Analytical method is showed. We remark the correspondence between the two results.  
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Figure 55: Air gap flux density using FEM and Analytical method 

 
The same comparison is done when the PM crack is introduced in the machine. The modeling of 
the crack in the analytical model is executed by vanishing certain PM elements using a 
demagnetization signal added to the rotor magneto motive force [92]. The shape of the added 
signal in the rotor-space  domain depends on the angular position and the depth of the crack in 
the faulty rotor pole. We mention that the analytical method doesn’t take the radial position or the 
direction of the crack into consideration, like FEM do. 
 
In figure 56, a superposition of the air gap flux density in the case of a crack using FEM and 
Analytical method is showed. The results of the two models are almost similar. 
 

 
Figure 56: air gap flux density with 1 mm crack in the magnet of the first pole 

 

2.7 Conclusion 
 
Treating each model separately: electromagnetic, thermal and vibration, is important. However, 
building a complete model where the three previously mentioned models are integrated together 
is of big interest and is better for the machine’s exemplification because, in real life, the three 
models are highly dependent. 
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A block diagram representing the combined model and their outcomes is presented in figure 57.  
 

 
Figure 57: FEM's outcomes 

At starting, a machine’s position is selected. The execution of the thermal model will be 
implemented at each revolution, not at each time step to reduce the simulation time. 
The thermal model generates the distribution of temperature in the whole machine. This model let 
us update the characteristic’s parameters needed for the electromagnetic model, that are dependent 
on the temperature like the residual flux density of the magnet, the coercive force of the magnet, 
the internal resistance of the coil.        
 
Then, the time stepping electromagnetic model is executed where the static electromagnetic model 
is the initial solution of this dynamic model. From the electromagnetic model, we get the flux 
density in the whole machine including the air gap flux density from which the Torque is 
calculated. Moreover, electromagnetic force acting on the teeth of the stator is deduced. 
This force is the input of the vibration model that generates the displacement at the outer periphery 
of the machine. 
 
The electrical, thermal and vibration aspects of the machine, in healthy and faulty case, was 
presented in this chapter. The three discussed FEM models will be applied to healthy and all types 
of faults in the machine.  
 
The direct output of the discussed FEMs will form the base for the calculation and generation of 
other significant parameters aiming prognostic resolve. Hence, in chapter 3, a post processing 
analysis will be done where the extracted measurable parameters from the FEMs will be defined, 
they will be expressed in space, in time domain and in frequency domain. Moreover, features from 
these measureable parameters will be selected according to the need of the prognostic approach.    
 
  

Thermal Model

•Steady state and Transient analysis
•Update of Br, Hc and internal resistances of conductors according to the new distribution of temperature

Electromagnetic Model

•Static and dynamic analysis
•Generate air gap flux density, torque, force electromagnetic force 

Vibration Model
•This model generates the vibration/displacement of the machine's periphery 
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Chapter 3: Dynamic variable aspect for fault identification and 
detection 

 
3.1 Introduction 
 
The prognosis aims to detect a fault before it occurs; also, to detect faults of very tiny scale. Hence, 
the risk of false alarm is very high, especially that, consequences may be common for several type 
of faults. For this reason, it is convenient, when aiming to detect a specific fault, to detect more 
than one dynamic variable involved, during the occurrence of this fault. 
In this chapter we will execute a post processing analysis of the FEMs’ output. The resultant 
measured dynamic parameters will be presented. The parameter affected by each types of fault 
will be identified. The useful features for fault detection will be designated. 
 
The investigated features will be the classical and mostly used in time domain and frequency 
domain signals; some are statistical indicators whereas the others spectral characteristics.  
 
Those elaborated dynamic variables and signal features will be the input of the prognostic model.   
 
3.2 Classical signal parameters and features 
 
In this section we will enumerate, define and describe the different classical parameters and 
features that may be extracted from signals in the time and frequency domain. 
 
3.2.1 Statistical parameters 
 
Let’s consider ( ) ,…, , a discrete signal function of time. The main statistical parameters of 
this signal are: [166] 
  
Peak to peak value 
 
The peak to peak value of a signal represents the difference between its maximum value ‘Xmax’ 
and minimum value ‘Xmin’ expressed as [167]: 
 
   = −   (32) 

 
We mention that this value does not take into account the evolution of the signal function of time 
and consequently its practical utility is limited to the phenomena of short duration. 
 
Mean 
 
The mean, also called the average, indicates the average value of a data set. It is expressed as [168]:  
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 = 1 ∗  

(33) 

 
It can detect the evolution of changes function of time.  
 
RMS 
 
RMS is the abbreviation of ‘root mean square’. Its formula is [169]: 
 
 

= 1 ∗  ( )  
(34) 

 =  ( )  
(35) 

 
The RMS value depends strongly on the evolution of the signal as a function of time as it is directly 
related to its mean energy ( ) expressed in equation (35). Hence, it can detect faults that cause an 
increase in the energy dissipated by the monitored system. 
 
Kurtosis 
 
The Kurtosis, also called the Pearson flattening coefficient, is defined as the moment of order 4 of 
the discrete signal as expressed in (36) [170]. It expresses the sharpness of the peak of a frequency-
distribution curve. This indicator is typically used to detect the occurrence of impulsive type 
phenomena in the dataset. 
 
 

=
1 ∗ ∑ ( − )

1 ∗ ∑ ( − )
 

(36) 

 
Skewness 
 
The Skewness is based on the moment of order 3 as defined in (37). This indicator gives a measure 
of the asymmetry of the signal with respect to its average value, hence its effectiveness in detecting 
any change in this characteristic. 
 
 

=
1 ∗ ∑ ( − )

1 ∗ ∑ ( − )
 

(37) 

 



103  

A negative skewness means that the data are spread out more to the left of the mean than to the 
right. 
 
Crest factor 
 
The crest factor designates how extreme the peaks are in a signal; It is defined as the ratio of its 
peak level ‘Xmax’ to RMS value as expressed in (36). For a purely sinusoidal signal, the crest value 
is √2 and will tend to increase when the signal becomes of pulse type [171]. 
 
  =  (38) 

 
Pulse factor 
 
The pulse factor as expressed in (39), is the ratio of the maximum amplitude of a dataset to its 
mean absolute. For a simple sinusoidal signal, the absolute mean is (2 ) / π and so the pulse 
factor is π / 2. 
 
  =  (39) 

 
Shape factor 
 
The Shape factor is expressed in equation (40) as the ratio of the RMS value of a dataset to its 
absolute average. Like the case of the pulse factor, the shape factor is a function of the average of 
the rectified signal. For a simple sinusoidal signal, the value of the shape factor is π / (2√2). 
 
 ℎ  =  (40) 

 
Standard deviation 
 
The Standard Deviation (SD) expresses how spread out numbers of a dataset are. Its formula is 
illustrated in equation (41). 
 
 

= ( ( − )  
(41) 

 
Variance  
 
The Variance of a dataset is defined as the average of the squared deviation from its Mean. In other 
words, it expresses how spread are the elements of the data set from the Mean. 
 
 = ( − )  (42) 
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3.2.2 Spectral characteristics 
 
The Fourier transform of ( ) is  , ( ). The main spectral parameters are [172]: 
  
Power spectral density 
 
The spectral power density PSD  ( ) of a time-variable signal  ( ) represents the distribution of 
its power over a certain frequency band. In the literature, several techniques for estimating this 
density exist, among which we can cite: parametric estimates based on the medializations of the 
process, the classical or non-parametric estimates based on the periodogram and those based on 
the variance of the periodogram. The second technique was adopted in this work using the 
appropriate Matlab periodogram function.  
 
This feature is adequate for continuous signals. PSD is expressed in (43): 
 
 ( ) = , ( , )  (43) 

 
s,f( , ) is the Fourier transform of the time signal  ( ) over one period ‘T’. 

 
Average spectral power 
 
The average spectral power of a 2-D signal is calculated from its power density as illustrated in 
equation (44). 
 
 = ( )  (44) 

 
Amplitudes of frequency components 
 
A considered spectral indicators are the amplitudes  of the complex Fourier transform ,  ( ) 
of the time domain signal (t), at frequencies  =  where  is an integer, as given by equation 
(45). 
 
 = | , ( )|  (45) 

 
3.3 Identify useful measured parameters for fault identification 
3.3.1 Outcome of electromagnetic FEM  
 
We started focusing on the demagnetization of the permanent magnet; in our selected machine, the 
Neodymium iron boron magnet is used. Demagnetization can arise due to several reasons: a crack 
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in the magnet, an increase of the temperature in the environment of the magnet, an increase in the 
level of vibration in the environment of the magnet. 
 
The electromagnetic model computes the flux density in the whole machine. The air gap flux 
density will be used to calculate the torque.  
    
 
Torque:  
 = 2 ∗ D ∗ ∗ ∗  (46) 

 
 
Where, electric loading:  
  (47) 

= ∗ ∗ ∗
∗ D  

 
Bgav: average air gap flux density over one pole for an instant of time.  
Dr: rotor’s diameter 
La is the axial length of the machine.  
J: average current density 
As: slot’s area 
Kf: slot’s filing factor 
Ns: number of slots in the stator 
 
The average air gap flux density can be expressed as: 
 
 = 2 ( )/

 (48) 
 
 
Bg(x): the flux density at equidistant points in the air gap.  
t: the tooth pitch. 
 
In our model, the air gap region is considered to be moving as the rotor rotates.  
The air gap flux density function of time for the healthy case, case of crack in a magnet, case of 
turn to turn short circuit in one stator’s coil and case of eccentricity fault is illustrated in figures 
58, 59, 60 and 61 respectively. 
 
To draw the air gap flux density in the time domain an arbitrary point in the air gap is considered. 
This point has almost the same vertices for all the studied cases of the machine.   
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 Figure 58: Air Gap Flux Density in time domain 
(Healthy machine) 

 

Figure 59: Air Gap Flux Density in time domain 
(Machine with 1 mm crack) 

Figure 60: Air Gap Flux Density in time domain 
(Machine with 10 % eccentricity fault) 

 Figure 61: Air Gap Flux Density in time domain 
(Machine with turn to turn short circuit fault) 

 
 
The analytical described equation to calculate the torque is integrated in the time stepping model 
of the machine which generates the torque function of time.  This is the measurement that will 
sense a torque sensor located at the shaft of the machine. The simulation is done for the healthy 
and different types of fault previously mentioned. Figure 62 illustrates the torque for the healthy 
case, case of 10% eccentricity fault, turn to turn short circuit in one slot and 1 mm crack in one 
piece of magnet. 
 
Contemplating figure 62, we can see the impact of the faults on the torque which shows that the 
torque is a good indicator for fault detection.  
The transient part of the machines operation is clearly illustrated in the graph; this is the main 
advantageous of the time stepping dynamic model. 
 
Comparing the graphs in figure 62, several notes can be recorded. The blue graph is the torque in 
the healthy case. The red graph is the torque in the case of 1 mm crack in one piece of magnet. 
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This graph is drawn near the one of the healthy case; however, this fault has impacted the torque 
with ripples clearly visualized on the graph. The yellow graph is the torque of the machine when 
a turn to turn short circuit occurred in one slot of phase A. In other types of electrical machine, 
like induction machine, when a short circuit occurs in the stator’s windings, the air gap flux density 
increases and the torque increases accordingly. However, in our case where a permanent magnet 
is used, the torque has decreased in the case of turn to turn short circuit and this torque will continue 
decreasing as the number of short circuited turns increases. The cause is the high dependence of 
the magnet’s electromagnetic performance on the operating temperature. The partial short circuit 
in one coil, in the stator, has increased the temperature at the magnet level. This has weakened the 
magnet; consequently, the air gap flux density decreases which leads to the drop in the torque. 
  

 
Figure 62: Torque versus time for the different states of the machine 

 
We will examine the useful features of these signals, in the time and frequency domain, that will 
be beneficial for fault detection and machine prognosis. The transient period of the machine will 
be skipped. The treatment of the measured signal will be for the steady state region of the signal.  
To evaluate the impact of the designated faults on the machine’s torque, a computation is 
conducted to calculate the different mentioned characteristics and features in the previous section.  
 
New version of torque sensors is wireless, with no contact routine to measure the torque of 
machine’s rotating part. It has an advantageous high optimistic accuracy of ±0.05% for 
measurements less than 10K N.m. This percentage error will be considered.  

Tor
que

 (N
.m)
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In table 10, an illustration of the previously mentioned signal statistical characteristics, are 
presented. The effect of sensor error on the features is encountered in the last column. The 
computation will be over one revolution.   
 

TABLE 10: STATISTICAL FEATURES OF TORQUE SIGNAL 
Machine’s 
State 

Healthy Crack 1 mm in 
one magnet 

10% 
eccentricity 
fault 

Turn to turn 
short circuit 
fault 

% change 
due to 
sensor 
error Statistical 

feature 
Peak to peak 
value 

129.08 37.42 206.09 158.84 ± 0.05% 
Average 133.49 153.28 148.68 95.05 ± 0.05% 
RMS 128.11 146.76 143.58 90.72 ± 0.05% 
Kurtosis    18.97 3.11 17.56 52.84 ± 0.05% 
Skewness     0.23 1.15 3.12 -1.16 ± 0.05% 
Crest factor 1.44 1.16 1.95 1.83 0% 
Pulse factor 1.44 1.16 1.97 1.83 0% 
Shape factor 1 1 1.01 1.01 0% 
Standard 
deviation 

 11.09    8.07 23.99      9.35 ± 0.05% 
Variance 60.4 58.24 404.09 23.5 ± 0.05% 

 
After examining table 10, the numbers show that some features are very good fault indicators due 
to their high disparity according to the machine state like peak to peak value, average…; few are 
bad fault indicator where they remain constant or almost constant for all the states like shape factor; 
others are partially indicative of fault occurrence where they are useful for some types of faults 
and not for others like variance. 
In the other hand, some features are affected by the sensor error; others remain consistent.  
 
In figure 63 we can see the spectral power density of the torque, in dB scale, for the different 
studied machine states. The graphs are distinct; which make the spectral power density a good 
fault indicator.   
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 Figure 63: Spectral power density of the torque 
 
The average spectral power is illustrated in table 11. 
 

TABLE 11: AVERAGE SPECTRAL POWER DENSITY OF TORQUE 
Machine’s State Healthy Crack 1 mm in 

one magnet 
10% eccentricity 
fault 

Turn to turn 
short circuit fault 

Average spectral 
power (N.m)2 

32.79 43.11 40.92 16.46 
 
In figure 64, the Fourier transformation of torque is illustrated. We can see that the harmonics at 
frequencies higher than the fundamental has a very low amplitude, almost zero, common for all 
machine states. Hence, amplitudes of frequency components are not a good indicator for fault 
detection when interpreting torque signal.    
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  Figure 64: Fourier transformation of torque 
As demonstrated, several features are useful for fault detection. One has to be chosen; no harm in 
choosing any of them. We selected the ‘average’ as fault indicator. The average and interval range 
recorded by the torque sensor when taking the error percentage into consideration is illustrated in 
table 12. 
 

TABLE 12: AVERAGE TORQUE FOR THE DIFFERENT STATES OF THE MACHINE 
Machine’s State Average Torque (N.m) Average Torque Range with ± 

0.05% error  
Healthy 133.49 ~= 133.4  133.6 
Crack 1mm in one magnet 153.28 ~= 153.2-153.4 
10% eccentricity fault 148.68 ~= 148.60-148.8 
Turn to turn short circuit fault 95.05 ~= 95.1-95 

 
The average torque over one revolution is a good indicator for fault detection and identification. 
Since the values of the torques are distinct and the sensor error is very small, no need to take this 
error into consideration because it will not affect the diagnostic decision; the average torque 
intervals for each state does not overlap. 
 
3.3.2 Outcomes of Thermal FEM model  
 
In this section we will explore the thermal FEM model, investigate if temperature is a good 
indicator for fault detection and identify the best extracted feature from this measureable signal to 
track the presence of fault. 
 
The thermal FEM model is capable of computing the temperature in the whole machine. As stated 
earlier, the aim of the model is to generate data that will record a temperature sensor if a prototype 
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is available. The most practical location of temperature sensor will be at the outer periphery of the 
machine. Hence, we will focus on the boundary temperature of the machine on all pre-mentioned 
cases to decide if temperature is a good fault detector, to be considered. To do so we only need the 
geometry of the machine, the physical characteristics of its parts, the sources of heat inside the 
machine and the boundary conditions. 
    
Knowing the high impact of stator’s short circuit on the distribution of temperature in the machine, 
we will start monitoring the boundary temperature of the machine’s two poles laminated sheet in 
the case of turn to turn short circuit in the first slot. We will consider only small scale faults. The 
temperature at the left and right side of the laminated sheet is set to 40 °C. Figure 65 shows the 
machine’s laminated sheet when the turn to turn short circuit is integrated in the first slot. 
 

 
Figure 65: laminated sheet of the PMM with turn to turn fault integrated 

 
The model of the machine with turn to turn short circuit is illustrated in figure 65. To execute the 
finite element modeling of this faulty case appropriately, a new domain is integrated in the faulty 
slot, in the laminated sheet, to designate the area occupied by the shorted turns where the current 
density is higher than the other part of the slot. This reflects the equivalent circuit of a coil 
containing short circuited turns. 
 
As shown in figure 66, the coil of phase A containing turn to turn short circuit is divided into two 
parallel parts where a current divider occurs. A large current, the fault current, pass in “Rf” 
representing the shorted turns and a normal current pass in the healthy turns. The summation of 
the faulty current and healthy current will pass in the remaining coils forming the phase since the 
coils of the stator are connected in series. In other words, the highest current will pass in the healthy 
coils of phase A and not in the coil where the short circuit persist. 
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Figure 66: Equivalent circuit of turn to turn short circuit at phase A 

 
The distribution of temperature in the laminated sheet of figure 65 is shown in figure 67. 
 

 
Figure 67: Distribution of temperature in the machine when a turn to turn short circuit occur in slot 1 

 
Comparing the two slots of phase A, we observe that the temperature in the 4th slot is greater than 
the first slot where the short circuit occurs. This is expected since the current flowing in the 4th 
slot is the summation of current flowing in the faulty and healthy turns of the first coil in the first 
slot. The temperature at the top of the slot is less than the bottom because the top is nearer to 
machine’s surrounding.     
 
Figures 68 and 69 illustrates the temperature in degree Celsius versus the x coordinates of the 
points at the machine’s boundary in the healthy case and in case of two turns short circuited 
respectively. The aim of this analysis is to make clear the relation between short circuit faults and 
temperature. 
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The points at the machine boundary are correlated with the meshing of the laminated sheet. After 
examining the below figures, we deduce that monitoring the boundary temperature of the machine 
is a helpful index for the detection and localization of an incepting fault like turn to turn short 
circuit. It will help in detecting the presence of turn to turn short circuit fault since the temperature 
will increase in the area above the phase containing the short circuit turns. Additionally, it will let 
us localize the fault because the temperature above the coil containing the short circuit has a 
temperature slightly lower than that of the healthy coils of the same phase as a result of the current 
divider that occurs in the faulty slot. 
 
Comparing the results in the below three graphs, we remark that when a short circuit occurs, the 
temperature increases and reaches higher values as the number of short circuited turns augments. 
A maximum value of 102 °C is reached in the healthy case. In the case of turn to turn short circuit, 
the maximum detected temperature at the machines’ boundary becomes 113 °C. 
 
We mention that the input voltage in this analysis is the nominal voltage at all the phases.   
In the same context, we remark that in the case of healthy machine, the distribution of temperature 
at the boundary is almost uniform. However, when the fault occurs, this uniformity stagger. 
 

 
Figure 68: Boundary temperature in healthy case 

 
Figure 69: : Boundary temperature with turn to turn fault in the first slot (Phase A) 

 
In figure 69, the first arrow indicates the temperature above the first slot where the fault persists. 
The second arrow indicates the temperature above the fourth slot that belongs to the same phase. 
The temperature above this slot is slightly higher than the temperature above the faulty slot, slot 
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1. Hence, monitoring boundary temperature is efficient to identify and localize native faults like 
turn to turn short circuit. 
 
After clarifying the importance of monitoring the boundary temperature for fault detection and 
localization, a fictive temperature sensor will be located at the boundary of the machine, its 
readings for the different machine states is generated.  
The location of temperature sensor at the machine’s boundary is illustrated in figure 70. 
 

 Figure 70: Location of temperature sensor 
 
Temperature sensors provide an input to a system that is used to determine the temperature of a 
specific process or location. This requires that the sensor is connected to the instrument so that the 
signal can be received. This connection can be made by a prolonged cable from the sensor or by 
transmission via a wireless network. 
 
Types of temperature sensors mostly used in automation applications are Resistance thermometers 
or resistance temperature detectors (RTDs) and Thermocouples.  
Choice between them is usually determined by several factors. The table in annex A shows the 
difference between RTD and thermocouple sensors in term of temperature range, response time, 
size, accuracy, cost and physical aspect. 
 
In [93] they showed that for direct measurement of temperature inside stator’s coil, fiber optics 
temperature sensors are advantageous over RTDs. However, for our application and need to 
monitor the outer periphery, conventional sensors are sufficient. 
The accuracy of this type of temperature sensors is ± 0.55 °C. 
  
Figure 71 shows the temperature detected by this sensor for the case of healthy machine and faulty 
machine with short circuit in the first slot. We can remark the high difference between the sensed 
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temperature in the two cases. This is expected since the short circuit increases the value of current 
in the faulty phase; this increases the copper losses which will be expressed as heat.  
In fact, the main sources of heat inside the electric machines are the copper windings. 
 

 
Figure 71: Sensor temperature for healthy machine and machine with turn to turn short circuit in slot 1 

 
Figure 72 shows the sensor temperature when a turn to turn short circuit occurs in slot 1 and when 
it occurs in slot2. We can see that the temperature for the two cases is distinct. When the fault is 
in slot 1 the sensor temperature is higher since the location of the sensor is nearer to slot 1.  

 
Figure 72: Sensor temperature for healthy machine and machine with turn to turn short circuit in slot 1 
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Since our goal is to detect the presence of turn to turn short circuit wherever it is located, the fault 
is moved each time to one of the 36 slots and the recorded data for each case, by the temperature 
senor, is illustrated in figure 73. Figure 74 is a zoomed view of figure 73. 
 

 Figure 73: Sensor temperature for turn to turn short 
circuit in each slot  Figure 74: Zoom of figure 73 

 
The same measurement is done for the case of 1 mm crack in one piece of magnet in the machine. 
Each time the crack is moved to one of the magnets and the sensor temperature is located. The 
position of the temperature sensor remains intact. The results are shown in figure 75. 

 Figure 75: Sensor temperature for 1 mm crack in one magnet a time 
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For the state of 10% eccentricity fault in the machine, four cases are considered: rotor shifted to 
the right, rotor shifted to the left, rotor shifted upward and rotor shifted downward. The temperature 
results collected by the sensor is illustrated in figure 76.  
 

 
Figure 76: Sensor temperature for machine with 10 % eccentricity faults 

 
For comparison purpose, figure 76 shows the temperature for the case of healthy machine, machine 
with an eccentricity fault and machine with a crack executed in one magnet. 
 

 
Figure 77: Sensor temperature for healthy machine, machine with eccentricity fault and machine with crack in 

the magnet 
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In figure 77, we remark that the sensor temperature for all the mentioned cases is almost the same. 
In other words, when an eccentricity fault or a demagnetization fault occurs in the machine, the 
data collected by the temperature sensor function of time is similar to that recorded in the case of 
healthy machine. Hence, the temperature is not a good indicator for eccentricity and 
demagnetization faults.    
 
After collecting the temperature data for the different cases we need to analyze it; we should 
identify the useful features that should be extracted from this collected data to detect the presence 
of fault and elaborate the prognostic decision. 
 
The illustration of the statistical features will be graphically since the number of temperature data 
sets is 53 (1 for healthy machine, 36 for turn to turn short circuit fault in 36 slots, 12 for crack in 
12 magnets and 4 eccentricity fault); graphical representation of few data sets of each case will be 
more helpful and beneficial to visualize the disparity between the features and to select the best 
one. 
 
The selected data sets that will be investigated will be the healthy state ‘Healthy’, the states with 
turn to turn short circuit in slot 1 ‘SC1’, in slot 13 ‘SC13’ and slot 25 ‘SC25’, the states with 1 mm 
crack in magnet 1 ‘M1’, in magnet 5 ‘M5’ and in magnet 9 ‘M9’, the states with 10% eccentricity 
fault on the right ‘ECC1’, on the left ‘ECC2’, upward ‘ECC3’ and downward ‘ECC4’.  
 
The peak to peak, mean, rms, kurtosis, skewness, shape factor, pulse factor crest factor, standard 
deviation and variance of these data sets are respectively presented in figures 78, 79. 80, 81 82, 
83, 84, 85 and 86.  
 

Figure 78: Peak to peak values of temperature 
data sets Figure 79: Mean values of temperature data sets 
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Figure 80: RMS values of temperature data sets Figure 81: Kurtosis values of temperature data 
sets 

Figure 82: Skewness values of temperature data 
sets Figure 83: Shape factor values of temperature 

data sets 

 Figure 84: Pulse factor values of temperature data 
sets Figure 85: Crest factor values of temperature 

data sets 
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Figure 86: Standard deviation values of 
temperature data sets Figure 87: Variance values of temperature data 

sets 
 
Several remarks can be noticed when observing the statistical parameters of the temperature 
signals: 

- The ‘peak to peak’ values of data sets while the turn to turn short circuit occurs are widely 
distinct from the other data sets referring to healthy machine, machine with 
demagnetization fault and machine with eccentricity fault. However, the peak to peak value 
is the same when the turn to turn short circuit fault is in slot 13 or 25 because those two 
slots refers to the same phase. 

- The ‘mean’ and the ’rms’ values of data sets when there is turn to turn short circuit are 
distinct from the other sets referring to healthy machine, machine with demagnetization 
fault and machine with eccentricity fault. Comparing those referred to turn to turn short 
circuit, we remark a tiny distinction when the fault is in slots of same phase and a big 
distinction when the fault is slots of different phases. 

- The ‘kurtosis’ and the ‘skewness’ values of the data sets shows distinctions in the case of 
healthy machine, demagnetization faults and eccentricity faults; however, those referred to 
turn to turn short circuit fault are similar, contrary to the ‘peak to peak’, ‘mean’ and ‘rms’ 
parameters. Yet, this distinction is very minute where stagger will be faced when the sensor 
error is considered. 

- The shape factor remains constant over the different temperature data sets. 
- The ‘pulse factor’ and ‘crest factor’ have the almost the same appearance of the ‘mean’ but 

we small differences in the values. 
- The ‘standard deviation’ and ‘variance’ values shows distinction between the case of turn 

to turn short circuit and the other machine states; however, like ‘means’, ‘rms’ and ‘peak 
to peak’ values, when the turn to turn short circuit occurs in slots referring to similar phase, 
those values are almost constant. 

 
To summarize the above, most of the statistical features are useful to detect the presence of turn to 
turn short circuit. confusion occurs when the machine state is healthy, contain demagnetization 
fault or eccentricity fault because the values are very near, almost constant. When coming to 
localize the presence of a fault ambiguity may occur specially when considering the sensor error.   
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To expand this observation, we will select the ‘mean’ feature where the mean of all the temperature 
data sets is evaluated in table 13; the accuracy of the temperature sensor will be taken into 
consideration. We will check if the average of the sensed temperature is efficient for fault 
detection. 
 
Table 13 encounter the average sensor temperature for the case of healthy machine, machine with 
turn to turn short circuit in one of the 36 slots, machine with 1 mm crack in one piece of the 12 
magnets and machine with 10% eccentricity fault. Column 3 and 4 illustrates the range of sensor 
measurement when an error of ±0.55 °C is considered.  
 

TABLE 13: : AVERAGE SENSOR TEMPERATURE FOR DIFFERENT MACHINE STATE 
Machine State Average Minimum Maximum 
Healthy 113.71 113.16 114.26 
SC 1 135.34 134.79 135.89 
SC 2 136.19 135.64 136.74 
SC 3 137.61 137.06 138.16 
SC 4 142.64 142.09 143.19 
SC 5 141.43 140.88 141.98 
SC 6 142.79 142.24 143.34 
SC 7 146 145.45 146.55 
SC 8 144.16 143.61 144.71 
SC 9 144.12 143.57 144.67 
SC 10 147.25 146.7 147.8 
SC 11 144.94 144.39 145.49 
SC 12 145.81 145.26 146.36 
SC 13 147.94 147.39 148.49 
SC 14 145.77 145.22 146.32 
SC 15 145.71 145.16 146.26 
SC 16 148.32 147.77 148.87 
SC 17 145.9 145.35 146.45 
SC 18 145.64 145.09 146.19 
SC 19 148.32 147.77 148.87 
SC 20 145.71 145.16 146.26 
SC 21 146.15 145.6 146.7 
SC 22 147.3 146.75 147.85 
SC 23 145.57 145.02 146.12 
SC 24 145.85 145.3 146.4 
SC 25 148.14 147.59 148.69 
SC 26 145.35 144.8 145.9 
SC 27 145.26 144.71 145.81 
SC 28 147.21 146.66 147.76 
SC 29 144.63 144.08 145.18 
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SC 30 144.4 143.85 144.95 
SC 31 145.79 145.24 146.34 
SC 32 142.72 142.17 143.27 
SC 33 141.72 141.17 142.27 
SC 34 143.03 142.48 143.58 
SC 35 138.33 137.78 138.88 
SC 36 135.98 135.43 136.53 
Crack magnet 1 113.69 113.14 114.24 
Crack magnet 2 112.75 112.2 113.3 
Crack magnet 3 113.27 112.72 113.82 
Crack magnet 4 113.62 113.07 114.17 
Crack magnet 5 113.37 112.82 113.92 
Crack magnet 6 113.43 112.88 113.98 
Crack magnet 7 113.64 113.09 114.19 
Crack magnet 8 113.05 112.5 113.6 
Crack magnet 9 113.18 112.63 113.73 
Crack magnet 10 113.06 112.51 113.61 
Crack magnet 11 113.98 113.43 114.53 
Crack magnet 12 113.77 113.22 114.32 
Eccentricity 10 % 
right 113.71 113.16 114.26 
Eccentricity 10 % left 113.27 112.72 113.82 
Eccentricity 10 % 
upward 113.7 113.15 114.25 
Eccentricity 10 % 
downward 113.69 113.14 114.24 

 
In fact, three observations have to be mentioned when examining the numbers in table 13.  
First, there is a blatant temperature difference between the case of short circuit turns in stator 
windings and the three healthy, crack and eccentricity cases.  
 
Second, the average temperature recorded by the sensor in the case of healthy machine, machine 
with magnet crack and machine with eccentricity fault is almost similar; hence, the average 
temperature of this sensor is not a good indicator for these types of faults. In other words, those 
three machine’s states generate almost the same temperature distribution in the electric machine.  
Third, the average temperature recorded for the case of turn to turn short circuit, each time 
occurring in one of the slots, is distinct. However, when the normal temperature sensor error is 
taken into consideration, there will be inconsistency and superposition in the expected 
measurement range which will lead to false alarm in the field of prognosis and fault detection. 
 
Actually, simulation has shown that this indicator may generate 13 false alarm. The 13 false alarms 
came from the fact that temperature distribution inside the machine in the case of healthy machine 
and in the case of 1 mm crack in any of the 12 magnets is the same. Hence, the sensed temperature 
by the temperature sensor is almost the same in any of the previously mentioned machine states. 
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To overcome this problem, a second temperature sensor is added and located symmetrically to the 
first sensor. For each state of machine, temperature data will be collected from two sensors instead 
of one. The sensor error is also considered. This suggested solution has improved the results where 
the number of false alarm has decreased to 4. However, this is not satisfactory since our goal is to 
elaborate a definite result with no false alarms. 
 
To solve this dilemma, two tracks appears: adding sensors at the boundary of the temperature till 
the number of false alarm suppress to zero or move to the frequency domain and extract useful 
characteristics from it.  
 
Adding temperature sensors is not cost effective, hence, we will evaluate the frequency domain 
features hoping that it will elaborate the desired result.  
  
The frequency spectral characteristics will be investigated for the temperature data sets. Figure 87 
shows the spectral power density of several temperature data sets; a zoomed view is presented on 
the right. Some overlaps are clearly visualized.  
 
The average spectral power density of those signals are illustrated in table 14. The numbers in this 
table shows distinction between turn to turn short circuit faults and all the other machine states 
similarly to the statistical parameters outcomes. The average spectral power density of temperature 
signals for healthy machine, machine with 1 mm crack in any of the magnets and machine with 
10% eccentricity fault are all similar or almost similar. When it’s a turn to turn short circuit fault, 
if the fault occurs in any of the slots referring to the same phase, the power spectral density is the 
same.  
In other words, the spectral power density, like statistical parameters is useful for turn to turn short 
circuit fault detection and localization of the phase where the fault is occurring; however, it does 
not localize the slot where the fault is. It is not useful to detect the other types of fault.       
 

Figure 88: Spectral power density of temperature data sets (zoomed view on the right) 
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TABLE 14: : AVERAGE SPECTRAL POWER DENSITY OF TEMPERATURE 
Machine’s 
State Healthy SC1 SC13 SC25 M1 M5 M9 ECC 1 ECC 2 ECC 3 ECC 4 
Average 
spectral power 
(C°)2 

25.81 60.49 81.79 82.13 25.79 25.29 24.99 25.81 25.14 25.8 25.78 

 
Figure 89 illustrates the Fourier transformation of the collected temperature data for all the 
investigated states of the machine. Figure 90 is a zoomed view of figure 89. As we can see, a sharp 
peak is detected at the second harmonics of the spectrum where the frequency is equal 
(2*ffundamental) where ffundamental is the fundamental frequency. A zoomed view on those sharp peaks 
in figure 89 shows distinction between the different machine states. We mention that the amplitude 
of this fourier transformation is not normalized.    
 

 Figure 89: Fourier transformation of the collected temperature data for all the machine states 
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 Figure 90: Zoom of figure 89 
 
The graphs in figure 89 are distinct. Comparing the amplitudes, of the frequency domain, several 
false alarms are generated. Considering the data coming from the two sensors also didn’t yield to 
the desired results. The proximity between temperature for the different cases and the prospected 
error of the sensor is causing this ambiguity. 
 
To skip this problem, a synthetic index is introduced where the two set of temperature data coming 
from the two sensors are multiplied to form a new array of data for each case. This new set of data 
is treated in the frequency domain where it is proven to work well in most of the machine states. 
False alarm is faced only for the case of healthy machine and machine with 10% eccentricity fault. 
  
Overcoming the confusion between healthy machine and machine with native eccentricity fault is 
impossible using the temperature aspect of the machine; this problem will be conquered with other 
dynamic indicators measurements.       
 
3.3.3 Outcomes of Vibration FEM model 
 
The same followed strategy for the thermal analysis will be applied for the vibration model in the 
aim of generating a useful database of vibration. Then, we will check if the vibration is a good 
indicator for fault prognosis. 
 
The fictive vibration sensor will be located at the machine boundary, near the temperature sensor 
located in figure 70. According to [94], the percentage error of the vibration sensor is ±0.06%.   
To understand and show the big impact of the different types of faults on the vibration at the 
machine periphery, the boundary vibration in space for each case is investigated. 
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In the presence of any type of fault, the distribution of flux density inside the electric machine 
changes, the distribution of air gap flux density changes, hence, the value of electromagnetic forces 
applied on the stator changes which leads to vibration variations at the machine’s periphery.    
We will start with the demagnetization fault where a crack is integrated in the upper periphery of 
one of the magnets. The vibration of the machine’s periphery is generated in this case. For 
comparison purpose, different depths of crack are tried. The results are illustrated in figure 91. 
 

 Figure 91: Vibration at machine's periphery in Healthy and demagnetization case 
 
We Remarque in figure 91 that the vibration of the machine, radial displacement of the periphery, 
changes in the case of crack in one piece of magnet. The displacement on the whole periphery has 
switched to the opposite sense compared with the displacement in the healthy case. This is due to 
the new poles generated in the piece of magnet after the occurrence of the crack. We mention that 
the sense of the crack is parallel to the sense of magnetization and it’s between 10 and 20 degrees; 
hence, the flux lines concentrates at the right and left side of the crack. This is why the 
electromagnetic force in the area above the crack decrease and the displacement in the machine’s 
periphery directly above the crack decrease as indicated by the first arrow in figure 91. 
 
However, in the second half of the machine, far away from the crack, pointed by the second arrow, 
the displacement is almost the same like that in the healthy case keeping the sense reversed. 
This proofs that monitoring the vibration of the machine’s periphery is a good indicator for the 
detection of demagnetization. 
 
Figure 92 shows the machine’s boundary vibration in healthy case and in case of eccentricity fault.  
Figure 93 shows the machine’s boundary vibration in healthy case and in case of turn to turn short 
circuit fault. 
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 Figure 92: Vibration at machine's periphery in Healthy and eccentricity case 

 Figure 93: Vibration at machine's periphery in Healthy and turn to turn short circuit case 
 
The graphs illustrated in figure 92 and figure 93 light on the importance of vibration as a fault 
indicator where it is clear the impact of machine’s faults on the vibration of the machine’s 
boundary.  
 
 In figure 92, the presence of the eccentricity fault and the non-uniformity in the air gap generates 
a non-uniformity in the air gap flux density. This non-consistency generates a flaw in the resultant 
electromagnetic force; which, in his turn, generates vibration defects in the whole machine in 
general and at the machine’s boundary in specific. 
In this faulty case, a higher value of boundary displacement is recorded compared with the case of 
healthy machine. 
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In figure 93 the presence of turn to turn short circuit in one coil reduce the machine’s boundary 
displacement radically. The presence of short circuit increases the operating temperature of the 
magnet; hence, its coercive force decreases. This causes a reduction in the air gap flux density, a 
reduction in the electromagnetic force acting on the stator and a reduction in the boundary 
displacement of the machine.     
 
After highlighting the efficiency of using vibration signal for fault detection, simulation is done to 
generate vibration database collected by the vibration sensor for the different states of the machine. 
Figures 94, 96, 98 and 100 are the vibration signals, in time domain, for the healthy machine, 
machine with 10 % eccentricity fault, machine with crack in one piece of magnet and machine 
with turn to turn short circuit in one slot respectively. 
Figures 94, 96, 98 and 100 are a zoomed view of the above mentioned machine’s vibration.  
 

 Figure 94: Vibration in time domain, Healthy machine 
 

 Figure 95: : Zoom figure 94 
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 Figure 96: Vibration in time domain, Machine with eccentricity fault 

 Figure 97: Zoom figure 95 

 Figure 98: Vibration in time domain, Machine with demagnetization fault 



130  

 

 Figure 99: Zoom figure 98 

 Figure 100: Vibration in time domain, machine with turn to turn short circuit in one slot 
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 Figure 101: Zoom figure 100 
 
Figure 98 illustrates the vibration result for the case of a crack integrated in magnet 1. However, 
cracks can occur in any of the 12 pieces of magnet. Hence, to be able to detect the presence of the 
crack wherever it is located, we conserved the position of the vibration sensor and we started 
moving the crack from magnet 1 to magnet 12 respectively, one at a time. The registered vibration, 
resulting from the executed simulation for each case, is illustrated in figure 102.  
 

 Figure 102: Vibration in time domain when a crack is integrated in one of the machine’s magnet 
 
In the same context, the turn to turn short circuit may occur in any coil in the stator. All the cases 
are to be encountered, hence, we will move the short circuit from slot 1 to slot 36 respectively and 
register the vibration detected by the sensor. The location of the sensor remains constant.  
Simulation shows that for each case, the sensor detects a distinct spectrum of vibration. 
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For illustration, the vibration in the case of turn to turn short circuit in slot 1, 4 and 7 respectively 
are shown in figure 103. Figure 104 is a zoomed view of figure 103. 
 

 Figure 103: Vibration for the case of turn to turn short circuit in slot 1, 4 and 7 

 Figure 104: Zoomed view of figure 103 
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The previously introduced data features will be applied to those vibration signals. We will start 
with statistical parameters. 
 

Figure 105: Peak to peak values of vibration data 
sets Figure 106: Mean values of vibration data sets 

Figure 107: RMS values of vibration data sets Figure 108: Kurtosis values of vibration data sets 
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Figure 109: Skewness values of vibration data 
sets Figure 110: Shape factor values of vibration data 

sets 

Figure 111: Pulse factor values of vibration data 
sets Figure 112: Crest values of vibration data sets 

Figure 113: Standard deviation values of 
vibration data sets Figure 114: Variance values of vibration data sets 
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Observing the above statistical parameters of the vibration, we remark that most of them contains 
similarities in the values. The peak to peak, mean and RMS values contain less similarities and 
visible disparities.  
 
The mean or average is selected to be evaluated for all the machine states. In table 15, the average 
displacement over one revolution after integrating different types of fault in the electric machine 
is noted.  
 

TABLE 15: MACHINE VIBRATION FOR DIFFERENT TYPES OF FAULT 

State of the machine 
Average 
displacement in 
meters (*10^-4) 

Minimum sensor 
reading (*10^-4) 

Maximum sensor 
reading (*10^-4) 

Healthy 0.0416 0.0416 0.0416 
Crack magnet 1 0.255 0.255 0.255 
Crack magnet 2 0.0314 0.029516 0.033284 
Crack magnet 3 -0.065 -0.0611 -0.0689 
Crack magnet 4 0.0799 0.075106 0.084694 
Crack magnet 5 -0.0095 -0.00893 -0.01007 
Crack magnet 6 0.1663 0.156322 0.176278 
Crack magnet 7 -0.1666 -0.156604 -0.176596 
Crack magnet 8 0.1544 0.145136 0.163664 
Crack magnet 9 -0.1225 -0.11515 -0.12985 
Crack magnet 10 0.0131 0.012314 0.013886 
Crack magnet 11 -0.0145 -0.01363 -0.01537 
Crack magnet 12 0.2675 0.25145 0.28355 
Eccentricity fault (up) -0.0481 -0.0481 -0.0482 
Eccentricity fault (down) 0.1065 0.1064 0.1066 
Eccentricity fault (right) 0.0043 0.0043 0.0043 
Eccentricity fault (left) -0.0058 -0.0058 -0.0058 
SC1 -0.0607 -0.06066358 -0.06074 
SC2 -0.0479 -0.04787126 -0.04793 
SC3 -0.0127 -0.01269238 -0.01271 
SC4 -0.0152 -0.01519088 -0.01521 
SC5 -0.0614 -0.06136316 -0.06144 
SC6 -0.0465 -0.0464721 -0.04653 
SC7 -0.0036 -0.00359784 -0.0036 
SC8 0.1594 0.15930436 0.159496 
SC9 0.0661 0.06606034 0.06614 
SC10 0.0064 0.00639616 0.006404 
SC11 0.0196 0.01958824 0.019612 
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SC12 0.0251 0.02508494 0.025115 
SC13 0.0419 0.04187486 0.041925 
SC14 0.0314 0.03138116 0.031419 
SC15 0.0235 0.0234859 0.023514 
SC16 0.0089 0.00889466 0.008905 
SC17 -0.0857 -0.08564858 -0.08575 
SC18 -0.0306 -0.03058164 -0.03062 
SC19 -0.0894 -0.08934636 -0.08945 
SC20 -0.0497 -0.04967018 -0.04973 
SC21 0.011 0.0109934 0.011007 
SC22 -0.0405 -0.0404757 -0.04052 
SC23 0.1388 0.13871672 0.138883 
SC24 0.104 0.1039376 0.104062 
SC25 -0.0024 -0.00239856 -0.0024 
SC26 0.0502 0.05016988 0.05023 
SC27 0.0084 0.00839496 0.008405 
SC28 -0.0087 -0.00869478 -0.00871 
SC29 -0.0185 -0.0184889 -0.01851 
SC30 -0.0175 -0.0174895 -0.01751 
SC31 -0.0028 -0.00279832 -0.0028 
SC32 0.0016 0.00159904 0.001601 
SC33 0.0114 0.01139316 0.011407 
SC34 0.1931 0.19298414 0.193216 
SC35 0.0478 0.04777132 0.047829 
SC36 0.0723 0.07225662 0.072343 

 
As shown in the graphs and tables above, the vibration sensed by the sensor is dissimilar for the 
different investigated machine states. This leads to admit the rightness of using vibration signal 
for prognosis and fault detection. 
 
The suggested feature to be elaborated from the vibration signals is the average over one 
revolution. The average displacement in meters is illustrated in the second row of table 15. The 
minimum and maximum corresponding sensor reading for the different machine’s states, when 
talking its percentage error (± 0.06%) into consideration, is illustrated in the third and fourth 
columns respectively.  
  
We remark that the impact of the sensors error is almost negligible. 
The average displacement for the different cases are widely dispersed; hence, vibration signal is a 
good indicator for fault detection and identification. 
 
The frequency domain features will be checked also. Figure 115, 116 and 117 respectively 
illustrates the spectral power density of vibration in healthy machine and machine with eccentricity 
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fault, machine demagnetization fault and machine with turn to turn short circuit fault. The graphs 
show disparity between the signals.  
 

Figure 115: Spectral power density of vibration in case of healthy machine and machine with eccentricity fault 
(zoomed view on the right) 

 

Figure 116: Spectral power density of vibration in case of healthy machine and machine with crack in one 
magnet (zoomed view on the right) 

 

Po
we

r/F
req

uen
cy 

(dB
/Hz

)

Po
we

r/F
req

uen
cy 

(dB
/Hz

)



138  

Figure 117: Spectral power density of vibration in case of healthy machine and machine with turn to turn short 
circuit (zoomed view on the right) 

 
The average spectral power density of vibration/displacement is presented in table 16. The values 
are dispersing.   
 

TABLE 16: AVERAGE SPECTRAL POWER DENSITY OF DISPLACEMENT 
Machine’s State Healthy 10% 

eccentricity 
right 

10% 
eccentricity 
left 

10% 
eccentricity 
up 

10% 
eccentricity 
down 

Average spectral 
power of 
displacement (m)2 

6.0637e-14 1.0776e-13 2.8092e-13 1.3784e-14 1.4726e-14 

Machine’s State Healthy 1 mm crack in 
magnet 1 

1 mm crack in 
magnet 5 

1 mm crack in magnet 9 
Average spectral 
power of 
displacement (m)2 

6.0637e-14 0.1295e-11 0.0003e-11 0.0387e-11 

Machine’s State Healthy Turn to turn 
short circuit in 
slot 1 

Turn to turn 
short circuit 
in slot 13 

Turn to turn short circuit 
in slot 25 

Average spectral 
power of 
displacement (m)2 

6.0637e-14 0.1134e-12 0.0398 e-12 0.0021 e-12 

 
Like the torque and the temperature signals, the harmonics of the vibration signal will also be 
investigated. The Fourier transformation of several vibration data sets are illustrated in figure 118. 
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Figure 118: Fourier transformation of vibration (zoomed view on the right) 
 
When observing the spectral Fourier transformations in figure 118, several peaks can be detected 
for some machine states. is However; those peaks are at all frequencies along the frequency axis; 
in other worlds, there is no privilege for a specific amplitude above the others. Hence, the 
amplitudes of frequency components are not good indicators for fault detection.   
 
3.4 Priority between parameters’ indicators for fault detection and 
localization 
 
As we presented earlier, the three selected dynamic parameters: Torque, temperature and vibration 
are all affected, with uneven percentages and ranges for the different investigated machine’s states 
and faults. 
To decide which parameters are more likely to be a fault indicator for a specific fault, table 17 will 
illustrate the deviation of each parameter in the case of a specific fault, compared with the case of 
healthy machine. The comparison is of the average values of the signals.  
 

TABLE 17: : PERCENTAGE OF PARAMETER DEVIATION FOR DIFFERENT TYPES OF FAULT 
 Torque  Temperature Vibration 

displacement 
Machine with magnet 
crack 

15 % - 0.02% ± 384 % 

Machine with SC in 
one slot  

-28 % 27% ± 158 % 

Machine with 10% 
eccentricity fault 

11 % 0% ± 216 % 
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When dealing with fault detection, the vibration is the mostly and highly affected parameter after 
any of the mentioned types of fault is integrated in the electrical machine. The second affected 
parameter in the case of fault is the electric torque. The less affected parameter is the temperature.  
However, for fault localization, the temperature is useful to localize the slot where the turn to turn 
short circuit occurred. The vibration is useful to localize the magnet where the crack occurred. 
For prognostic purpose, it is more likely to prevent false alarm by monitoring more than one 
dynamic parameter for each types of fault. Hence, all collected parameters are of big interest to 
assure safe and right prognostic decision.  
 
3.5 Signature table for fault detection and localization 
 
All the previously treated signals referred to the different dynamic machine parameters for the 
different types of investigated faults are summarized and illustrated in table 18. ‘detection’ 
designate the detection of the type of fault: demagnetization, turn to turn short circuit or 
eccentricity; ‘localization’ means specifying where the fault occurs: demagnetization of magnet 1, 
demagnetization of magnet 2, … or turn to turn short circuit fault in slot 1, torn to turn short circuit 
fault in slot 2, … etc.  
In this table, the effect of those features on the detection and localization of turn to turn short circuit 
fault, demagnetization fault and eccentricity fault is designated by: 

- ‘Y’ if yes the relevant feature is affected when the fault occurs. 
- ‘N” if no the relevant feature is not affected when the fault occurs. 
- ‘P’ if the effect of the fault on the relevant feature is partial.  

 
‘Partial’ for turn to turn short circuit fault indicates that the phase containing the shorted coil is 
detected and not the slot containing this shorted coil. ‘Partial’ for demagnetization and eccentricity 
fault means that some demagnetization or eccentricity types of fault are detected and not all of 
them. For example, the crest factor of vibration datasets shows similar results when there is crack 
in magnet 5 ‘M5’ or 9 ‘M9’ and distinct result when the crack is in magnet 1 ‘M1’ (figure 112). 
Another example is in figure 111, the shape factor detects the right, up and down 10% eccentricity 
fault being distinct from the other vibration datasets; however, the shape factor of the 10% 
eccentricity fault to the left is similar to the healthy case.         
 
As mentioned previously, the selected feature for ‘Torque’ and ‘Vibration’ datasets will be the 
‘Mean’ and the selected feature for the ‘Temperature’ datasets will be the ‘Amplitude of frequency 
component’. 
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TABLE 18: SIGNATURE TABLE FOR FAULT DETECTION AND LOCALIZATION 
 Feature 

Torque 
 PP Mean RMS Ku Sk SF PF CF SD V APS  AFC 

Turn to turn 
short circuit 

Detection Y Y Y Y Y N Y Y Y Y Y N 
Localization  N N N N N N N N N N N N 

Demagnetization Detection Y Y Y Y Y N Y Y Y Y Y N 
Localization N N N N N N N N N N N N 

Eccentricity Detection Y Y Y Y Y N Y Y Y Y Y N 
Localization N N N N N N N N N N N N 

 Temperature 
 PP Mean RMS Ku Sk SF PF CF SD V APS  AFC 

Turn to turn 
short circuit 

Detection Y Y Y Y Y N Y Y Y Y Y Y 
Localization  P P P N N N P P P P P Y 

Demagnetization Detection N N N N N N N N N N N Y 
Localization N N N N N N N N N N N Y 

Eccentricity Detection N N N N N N N N N N N N 
Localization N N N N N N N N N N N N 

 Vibration 
 PP Mean RMS Ku Sk SF PF CF SD V APS  AFC 

Turn to turn 
short circuit 

Detection Y Y Y Y Y P P P Y Y Y P 
Localization  Y Y Y N Y P P P P P Y P 

Demagnetization Detection Y Y Y Y Y P P P Y Y Y P 
Localization Y Y Y N Y P P P Y Y Y P 

Eccentricity Detection Y Y Y Y Y P P P Y Y Y P 
Localization Y Y Y Y N P P P Y Y Y P 

 
3.6 Conclusion 
 
The followed strategy in this chapter is of big importance where we formed a database of suitable 
dynamic parameters for the different types of faults: demagnetization, turn to turn short circuit and 
eccentricity.  
 
To do so, simulation is done for the machine during its healthy operation and after the integration 
of tiny faults in it. The goal was to generate parameter indices that are useful to detect and localize 
the presence of faults at its early stage. 
Torque, temperature and vibration database is generated from electromagnetic, thermal and 
vibration finite element model respectively. 
 
It has been proven that monitoring the outer temperature and vibration of the machine permits the 
detection and the localization of different types of faults. Some temperature features are partially 
useful in fault localization; where, for example, it may help in selecting the phase where a turn to 
turn short circuit fault occurs and not the specific slot containing this fault. Monitoring the torque 
will help only in detecting the presence of a specific type of fault; it’s not helpful for fault 
localization.  
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The selected feature for torque data sets is the ‘mean’ of the signal; the selected feature for 
temperature data sets is the amplitude of frequency component; the selected feature for vibration 
data sets in the ‘mean’ of the signal. Since, the percentage error of the ‘Torque’, ‘Temperature’ 
and ‘Vibration’ sensors are taken into consideration, those features will be an interval rather than 
a discrete value.  
  
The collected database and the extracted features in this chapter will form the essential platform 
where the prognostic strategy will be built.  
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Chapter 4: Prognostic Approach-Hidden Markov Model (HMM) 
 
4.1 Introduction 
 
In this chapter the prognostic approach will be presented.  
The selected prognostic technique is the Hidden Markov Model (HMM). HMM is a data-driven 
prognostic approach since it tends to derive models directly from collected Condition Monitoring 
(CM) data; they get predictive output directly in terms of CM data. It’s a stochastic signal model. 
It is called ‘hidden’ because the prediction current and future state of the investigated system is 
guaranteed by monitoring a sequence of features extracted from selected observable or observables 
only.  
HMM should be built to fulfill three tasks: First detecting the presence of fault, second predicting 
the current state of the system, third predicting the future state of the system and calculate its 
remaining useful life (RUL), and this is the essence of prognosis. 
In the following, the prognostic strategy, using HMM will be illustrated. The useful ways to 
express and calculate the remaining useful life (RUL) will be discussed. 
 
4.2 Hidden Markov Model (HMM) 
4.2.1 HMM strategy 
 
A prognostic strategy, using HMM, will be developed to detect the presence of fault at its early 
stage. Extracted features of data coming from torque, temperature and vibration sensors will be 
the input of the prognostic model HMM. The output of the model will be the prognostic decision 
that will state if the machine is at its healthy or faulty state. If it’s at a faulty state, it will precise 
the type of fault and its remaining useful life.  
 
The chart in figure 118 represents the prognostic strategy and its tasks. 
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 Figure 119: the prognostic strategy 
 
In the beginning, the raw signal coming from torque, temperature and vibration sensors is 
collected. The selected features in chapter 3, for each dataset, will be extracted over one machine 
revolution. Those features will be the input of the prognostic model as will be explained in the 
following sections. This prognostic approach will answer the following question: ‘what is the state 
of the machine?’. If the machine is Healthy, we stop. If the machine is faulty, the type of fault: 
demagnetization, eccentricity or turn to turn short circuit, will be identified and localized. Then, 
the remaining useful life of the damaged component will be estimated. 
  
4.2.2 HMM: technical concept and model formulation 
 
HMM consists of [95]: 
 

- A set of states ‘S’: S= {S0, S1, S2, …, Sn} where ‘S0’ is the initial state of the system and 
Si, i ϵ {1, 2,…,n} is the faulty state. In our application, the studied system is the permanent 
magnet machine; its initial state is the healthy machine and the faulty states are the machine 
with turn to turn short circuit, demagnetization fault or eccentricity fault. We mention that 
we will investigate system with single primitive fault.  

 
- An initial probability value (π) for each state: it consists of a guess expressing the 

probability that initially the system is at a specific state  
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- A transition probability matrix (TM): this matrix represents the probability that the system, 
being at a certain current state, move to another state. The size of matrix (TM) is n by n 
where n is the number of available states. 

 
- An output probability distribution matrix or emission matrix (EM): it expresses the 

likelihood that a certain measured sequence of values corresponds to a specific sequence 
of states. The size of matrix (EM) is n by m where m is the number of observables.   

 
HMM can be generally expressed as: = (TM, EM, π).  
 
In general, there is two main types of HMM: discrete and continuous [97].  
The difference between the two types is the shape of input that accept the model.  
Discrete hidden Markov model is suitable for examples containing limited number of observations.  
Continuous hidden Markov model is suitable when the input is a real number. Unlike discrete 
HMM, the output probability (EM) must be calculated from a set of weighted probability using 
any type of probability distribution technique like “Gaussian Distribution”. 
 
The elements needed to build a HMM are as follows [98]: 
 

- The determination of ‘n’ number of distinct possible states in the model. They are 
expressed as:   

 
S= {S1, S2, S3, …, Sn}. The states are designated by {1, …, n}, each corresponding to a specific 
system’s condition.  
 
The current and future states of the investigated system are the hidden or latent variables of the 
HMM. 
 

- The determination of ‘n’ number of distinct observation sequences. They are expressed as:   
 
O= {O1, O2, …, On}. The observations can be {discrete, R, Rd, …}. 
 
In our application, each observation Oi encounter more than one observable as will be explained 
later in figure 122.   
 
The hidden variables and the observed data of the HMM can be illustrated by Trellis diagram in 
figure 119. 
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 Figure 120: Trellis Diagram 
 
S0 is the initial state of the system. 
The arrows directed from Sk to Ok indicates that they are conditionally dependent.  
The Sk-Ok couple is independent of all the other state-observation couples. 
At time t, to know the state St of the system, all we need is the relevant observation and the previous 
state St-1; the prediction of St is independent of all states prior to St-1.    
The factorization or the joint probability distribution corresponding to the above Trellis model is 
expressed as [173] [174]: 
 
 ( , … , , , … ) = ( ) ∗ ( | )   ∗  ( | ) ∗ ( | ) 

 

(49) 

The parameters needed to build the HMM are as follows: 
 

- An initial distribution probability which is an initial probability value (π) for each state. It 
is expressed as: { , … , } 

Where:  
 = ( = ) ℎ    {1, … , } (50) 

x1 is the system’s state process at time t1.   
- TM which is the transition probability matrix. It is the probability of going from state ‘i’ to 

state ‘j’ and is expressed as: 
 
 ( , ) = ( )  ( ) ) ℎ      {1, … , } (51) 

 
Equation 51 defines that: if the current state of the treated system Sk is ‘i’, the probability that the 
next state of the system Sk+1 will be ‘j’ is TM(i,j). In other words, it represents the probability that 
the system moves from one state to another. 
The size of the transition matrix is (n x n).   
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- EM which is the emission probability matrix. It is expressed as: 
 
 ( ) = ( ( | ( ) ) (52) 

 
This definite how likely is a certain observable is generated by a specific state. 
The emission probability matrix can be arbitrary. 
When the observed data is continuous like temperature, vibration, or torque, Gaussian distribution 
is common. 
 
After setting the above mentioned parameters for the HMM we are building, the next step will be 
training the model or decoding the model. 
Algorithms like Viterbi and forward backward are suitable for this purpose. In fact, Viterbi 
algorithm was a replacement of “forward-backward method” introduced by Baum.  
It has been shown in [165] that Baum-Welch algorithm, Viterbi algorithm and the classical 
methods are all applicable with left to right models. Those are the engines that drives the HMM.  
 
In general, the model training is used if the set of state sequences that the system may follow are 
known, the decoding is used if the set of observations is known and we aim to know the most 
likely corresponding set of states to these observations. 
When training data, Baum Welch (also called forward-backward algorithm) is used. When 
decoding data, Viterbi algorithm is used. 
 
In our application, the Viterbi application will be used to drive the hidden Markov model after 
building it.  
 
Viterbi Algorithm: 
 
Viterbi is a dynamic programming algorithm discovered by ‘Viterbi’ in 1967. It follows the 
concept of minimizing the error probability by comparing the likelihoods of a set of possible state 
transitions that can occur, and decide which one has the highest probability to occur [96]. 
Its objective is to find the best path through the trellis diagram that is closest to the received 
observation sequence. 
 
Before applying Viterbi algorithm, we assume that initial distribution, transition distribution and 
emission distribution are known. 
The goal of the algorithm is to compute the maximum probability of states ‘S’ having a sequence 
of observations ‘O’. where O=O1: n, a vector containing the observed data, and S=S1: n, a vector 
containing the corresponding states [175] [176]. 
 
The goal of the algorithm is to assure:  
 
 ∗ = ( | )   

 
(53) 

Where S* is the most likely sequence of states corresponding to the given sequence of observations. 
 
We note that: 
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 ( | )  =  ( , )   

 
(54) 

 
We will call the maximum likelihood of the occurrence of a state ‘Sk’, µk; it can be expressed as: 
  
 ( ) =

:
( ( : , : ))   = :  ( ( | ) ∗ ( | ) ∗ ( : , : ))   

(55) 

 
We know that: 
If f(a)> or = 0, for all a.  
And g(a,b)> or = 0, for all a and b.  
 
Then:  
 
  , ( ( ) ∗ ( , ))  = [ ( ) *  ( ( , ))  ] 

(56) 
 
Let’s consider: =  , = :   
Hence, equation (55) becomes: 
 
 ( ) =  [

( | ) ∗ ( | )
 ∗ :

( : , : )
 ] (57) 

 
All the elements in equation (57) are known from the emission probability or and transition 
probability or can be calculated.  
 
‘ ( | )′ is the emission probability. 
‘ ( | )′ is the transition probability. 
From equation (55), ( ) = :

( : , : )
  ]. 

 
Accordingly, equation (57) can be written as: 
 
 ( ) =  [

( | ) ∗ ( | )
 ∗ ( )   

(for k=2, …, n) 
(58) 

 
For k=1: 
 
 ( ) = ( , ) = ( ) ∗ ( | ) (59) 

 
In general, 
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 ( ( ))  = :

( : , : )   
(60) 

 
Equation (60) expresses the maximum value. Following the same logic, the maximum sequence is 
generated. 
 
A graphical implementation of the above procedure is illustrated in figure 121. It’s a kind of state 
diagram used for decoding a sequence of observable. The detection of the right track consists of 
finding the most probable path through the diagram. Each node represents a distinct state at a given 
time and designates a possible arrangement of the received data. Each branch represents the 
commute to a new state at the following time. When two paths are directed to the same state, the 
one having the higher weight is selected. This selected path is called the ‘surviving path’ [177]. 
 
The selection of surviving paths is achieved by all the states. Based on the observers, the most 
likely path is chosen and the least likely path is ignored 
 

 Figure 121: Viterbi diagram 
 
In figure 121, an example of system with three possible states S1, S2 and S3 is presented. The 
maximizing path till t=2, when the observation sequence (input) is O0, O1 and O2, is traced in 
black; the sequence of states accordingly (output) is: S1, S1, S2. We need to know the maximizing 
path till t=3; what will be the state of the system at this time. To answer this question, we will 
execute a probability step from t=2 to t=3 taking into account the maximizing path till t=2. The 
possible tracks are designated by red dotted lines in the diagram. The weight of those dotted lines 
(p1, p2 and p3), that expresses the possible next state, is calculated using equation (58); the path 
that has the maximum computed value will be part of the maximizer path that end up with the state 
of the system at t=3.  
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A numerical illustration of Viterbi algorithm for a specific sequence of observations will be 
presented in section 4.2.3. 
 
A block diagram representing the strategy coupling the HMM with Viterbi algorithm is presented 
in figure 122. 
 

 Figure 122: Block diagram combining HMM, Viterbi algorithm, observations and states 
 
4.2.3 The HMM of our application  
 
After illustrating the theory of HMM and Viterbi algorithm, in this section we will see how the 
theory will be applied to our application.  
The first thing to think about is the number of considered machine states and the amount of data 
needed to build the model.  
 
The elements of the HMM are as follows: 
 

- 53 main states which encounter: the healthy state, 12 states where there is a 1 mm crack in 
one piece of the 12 magnets located on the machine’s rotor, 36 states where there is a turn 
to turn short circuit in one slot of the 36 slots and 4 states where there is a 10% eccentricity 
fault on the left, right, upward and downward.  

We mention that in this analysis, one type of fault is considered at a time; hence, there is no 
interrelation between the different types of faults.  
Each of the above mentioned main states can propagate and reveal a new state. For example, let’s 
consider a scenario where the machine moves from the healthy state to the state of a 1 mm crack 
in magnet 1. In this case, the set of states that may face the machine can be expressed as: 
 
S1= {SH, SF11, SF12, SF13, SF14, SF15} 
 
Where: SH refers to the healthy state. SF11 refers to the faulty state with a 1 mm crack in magnet 1, 
SF12 refers to the faulty state where the 1 mm crack deepen and became 2 mm crack, SF13 refers to 
the faulty state where the 2 mm crack deepen and became 3 mm crack, SF14 refers to the faulty 
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state where the 3 mm crack deepen and became 4 mm crack, SF13 refers to the faulty state where 
the crack became a complete fracture.  
 

- 3 distinct observations per state. It expresses the observed data. In our case the observation 
will be the measured values from the torque, temperature or vibration sensors. We mention 
that the raw data set, coming from the three sensors, is investigated over one machine 
revolution and the number of sampling points is 400.   

 
Considering the above example of the 1 mm crack in magnet 1, the sequence of observation can 
be expressed as: 
 
SO1= {{SO11}, {SO12}, {SO13}, {SO14}, {SO15}} 
 
Where: {SO11} is a vector containing torque, temperature and vibration data in the case of 1 mm 
crack in magnet1, {SO12} is a vector containing torque, temperature and vibration data in the case 
of 2 mm crack in magnet1, …  
 
The Trellis diagram representing this example is illustrated in figure 123. 
 

 Figure 123: Trellis diagram example 
 
In figure 123, ‘Temp’ is for temperature and ‘Vib’ is for vibration. The Trellis diagram in this 
figure illustrates the life cycle of the piece of magnet from the small scale fault until the complete 
deterioration. The radial length of the magnet in our machine is 4.5 mm. We considered the crack 
started with 1 mm radial length and it will propagate in incremental 1 mm length till complete 
deterioration. Accordingly, we got 5 states: SF11, SF12, SF13, SF14, SF15, corresponding to 1 mm 
crack, 2 mm crack, 3 mm crack, 4 mm crack and the complete fracture at 4.5 mm. This corresponds 
to one of the 12 magnets of the machine; each piece of magnet can face the same dilemma.        



152  

Each type of fault has its own trellis diagram. In our model, we have three types of faults; each 
one encounters a number of states according to the number of faulty elements that can occur at a 
time in the machine. If we consider the case of turn to turn short circuit, the states of the trellis 
diagram, other than the initial healthy state, will be 13 where 13 is the number of turns per coil in 
the stator. This can occur in any of the 36 slots of the machine. If we consider the eccentricity 
fault, it starts at 10% and increases is step of 10% till it reaches the 100% which means a physical 
contact between the rotor and the stator; hence, we have 10 states. In this research, as we stated 
previously, the occurrence of the eccentricity fault can be at the right, left, up or down. 
Hence, to generate one global model of our machine, all trellis diagrams representing the 
investigated faulty states are grouped together and illustrated in figure 124. In other words, we 
have a multilevel trellis diagram that is schematically represented in figure 124. The first 36 levels 
correspond to the turn to turn short circuit, the next 12 levels correspond to the demagnetization 
fault and the last 4 levels correspond to the eccentricity fault. 
Each level in the diagram of figure 124 (the red and black parts) represents the life cycle of the 
faulty element in the machine starting with the healthy state, then the occurrence of primitive fault, 
the propagation of this fault till, finally, the deterioration of the defected element.  
Since our purpose is to focus on the prognostic aspect, in our model the considered states are the 
healthy state and the faulty states with primitive fault; those are highlighted in red in the multilevel 
trellis diagram  
The observations are a continuous signals function of time; however, we will take advantage of 
the extracted features, from this signals, in chapter 3, to be the input of the model. 
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 Figure 124: Multi level trellis diagram 
 
A global HMM is built where all the states and observables highlighted in red are grouped in a 
single model. The observed features {{SOH}, {SO1-1}, {SO2-1}, {SO3-1} …} will be linked to the 
discrete states of HMM (SH, SF1-1, SF2-1, SF3-1…) where each number designate a pre-settled state. 
For example: state ‘0’ designate the machine in the healthy case ‘SH ‘, state ‘1’ designate the 
machine in the case of turn to turn short circuit in slot 1 ‘SF1-1’, …, state ‘37’ designate the machine 
with crack in magnet 1 ‘SF37-1’, …, ‘49’ designate the machine with eccentricity fault ‘SF49-1’…  
 
In the same context, observation ‘0’ is the range of average vibration detected by the vibration 
sensor when the machine is healthy ‘SOH’, observation ‘1’ is the range of average vibration 
detected by the vibration sensor when the machine has a turn to turn short circuit fault in slot 1 
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‘SO1-1’, …, observation ‘53’ is the range of average torque detected by the torque sensor when the 
machine is healthy… 
To sum up, the constructed model will encounter the first layers highlighted in red in figure 124 
because these layers represent the system with small scale faults we are interested in.   
 
As we stated previously, the observations of the HMM will come from three observers: Torque, 
Vibration and Temperature sensors. The importance and cause of supervising three observers for 
each state is to prevent false alarm. When the three observers generate the same state sequence, 
the probability of error disappear.   
For each state of the machine there is data coming from the three sensors. Features are extracted 
for every revolution. As clarified in chapter 3, some states share same observations. For example, 
the temperature of the machine remains almost the same in the healthy case, case of eccentricity 
fault or case of crack in one magnet. Torque in the case of turn to turn short circuit remains the 
same wherever the short circuit is. The same is applied for the case of crack in one magnet or 
eccentricity fault. Hence, the total number of observations will be 94 encountering 53 vibration 
ranges, 4 torque ranges and 37 temperature ranges. 
Accordingly, the size of the Transition matrix is (53 x 53), the size of the emission matrix is (53 x 
94), the initial state of the machine is considered to be healthy. 
 
The below ‘TM’ matrix is a schematic presentation of the transmission matrix.   
 

 

=

0.6 0.4 ∗ 0.65/36 … 0.4 ∗ 0.65/36 0.4 ∗ 0.175/12 … 0.4 ∗ 0.175/12 0.4 ∗ 0.175/4 … 0.4 ∗ 0.175/40 1 0 0 0 0 0 0 0 0⁞ 0 1 0 ⁞ ⁞ ⁞ ⁞ ⁞ ⁞⁞ ⁞ 0 1 0 ⁞ ⁞ ⁞ ⁞ ⁞⁞ ⁞ ⁞ 0 1 0 ⁞ ⁞ ⁞ ⁞⁞ ⁞ ⁞ ⁞ 0 1 0 ⁞ ⁞ ⁞⁞ ⁞ ⁞ ⁞ ⁞ 0 1 0 ⁞ ⁞⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 0 1 0 ⁞⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 0 1 00 0 0 0 0 0 0 0 0 1

 

 

(61) 

 
The numbers expressing the probability of transition from healthy state to one of the faulty states 
is deduced from the percentage of fault occurrence illustrated in table 19. The percentage that the 
machine remains healthy is 60%. The percentage that the machine becomes faulty is 40%. This 
40% was distributed among the different considered faulty states according to the percentage of 
fault occurrence.  
 

TABLE 19: PERCENTAGE OF FAULT OCCURRENCE IN THE ELECTRICAL MACHINE 
Fault type Bearing 

Failure 
Stator 
Failure 

Rotor 
Failure 

Shaft 
Failure  

Eccentricity 
failure and 
others 

% of 
occurrence  

41 37 10 2 10 

 
Since the only investigated faults are: stator failure, rotor failure and eccentricity faults, the 
percentage of fault occurrence of those three faults had been arranged to become: 65%, 17.5% and 
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17.5% respectively. Accordingly, for example, the probability of moving from healthy machine to 
machine with turn to turn short circuit in one of the 36 slots is (0.4*0.65/36). We mention that this 
is an analytical assumption and approach.  
 
In the other hand, we remark that the probabilities in the diagonal are ‘1’. This is due to the fact 
that when a fault occurs in the machine it persists; and, it cannot return to its initial healthy state. 
Moreover, as we mentioned earlier, in this analysis we are considering one fault at a time and there 
is no correlation between faults. 
This self-correlation of the states is very common in Hidden Markov models and it is always 
observed as a strong diagonal in the transition matrix. 
We note also that faults of similar nature have similar probability of transition like crack in magnet 
1 and crack in magnet 2 and crack in magnet 3 … 
 
The below ‘EM’ matrix is a schematic presentation of the emission matrix. 
 

 

=

0.6 0 … 0 0 … 0 0 … 0 0.2 0 0 0 0.2 0 … 00 0.8 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0 0⁞ 0 0.8 0 ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 0 0.1 00 ⁞ 0 0.8 0 ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 0.1 0 0 0 0 0 0.10 ⁞ ⁞ 0 0.75 0 ⁞ ⁞ ⁞ ⁞ ⁞ 0 0.125 0 0 0.125 0 0⁞ ⁞ ⁞ ⁞ 0 0.75 0 ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 0 0.125 00 ⁞ ⁞ ⁞ ⁞ 0 0.75 0 ⁞ ⁞ ⁞ 0 0.125 0 0 0 0 0.1250 ⁞ ⁞ ⁞ ⁞ ⁞ 0 0.8 0 ⁞ ⁞ ⁞ 0 0.15 0 0.05 0 0⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 0 0.8 0 ⁞ ⁞ ⁞ ⁞ ⁞ 0 0.05 00 0 0 0 0 0 0 0 0 0.8 0 0 0 0.15 0 0 0 0.05

 

 

(62) 

 
In our HMM model, the numbers expressing the probabilities of emission between the states and 
the observations are inspired from the percentage of observations’ deviation between that of the 
healthy case and the faulty case. These percentages are illustrated in table 13 (chapter 3, page 120). 
For example, in the case of turn to turn short circuit in the stator’s coil the absolute percentage 
change in the vibration compared to the healthy case is 158%, the percentage change in the 
temperature is 27% and the percentage change in the torque is 28%. Accordingly, the emission 
probabilities in this case is respectively, 0.75, 0.125 and 0.125.    
The initial state probability, the TM and the EM constitutes the HMM of our model. The input 
sequence of observations will be vibration, torque and temperature data sensor. Viterbi will 
elaborate the appropriate sequence of states by calculating the likelihood probability. 
 
For illustration, let’s consider a simple example where the sequence of observations is {SOH, SOH, 
SOF-1} that corresponds to the sequence of states {SH, SH, SF1-1}. Figure 125 will show how this 
sequence will be decoded through Viterbi algorithm and the corresponding sequence of states is 
detected. 
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 Figure 125: Example of Viterbi algorithm 
 
At start, the probability that the system is healthy is ‘0.6’ and the probability that the system is 
faulty is ‘0.4’. The probability that the system state is SH if the observation is SOH is ‘0.6’ and the 
probability that the system state is SF1-1 if the observation is SOH is ‘0’. Hence, the weight 
probability from ‘Start’ to SH is 0.36 (0.6*0.6) and the weight probability from ‘Start’ to SF1-1 is 0 
(0.4*0). Viterbi will choose the path having the highest probability which is in this case 0.36 and 
the selected path is highlighted in red. We mention that, for simplicity, we will consider the 
observation is from one sensor; we select the vibration sensor.   
 
The second observation is also SOH. The probability of remaining in state SH is ‘0.6’ (from the 
transition matrix). The probability of being in state SH if the observation is SOH is ‘0.6’. the 
probability from the previous state is 0.36. hence, the weight probability of remaining in state SH 
when the second observation is SOH will be 0.1296 (0.36*0.6*0.6). Following the same logic 
calculation, we got the weighted probabilities of all the paths. The path of higher probability, at 
each observation time, is highlighted in red. Accordingly, the adequate sequence of states is {SH, 
SH, SF1-1}. This path selected by Viterbi algorithm is called ‘survivor path’.  
 
These sequence of actions, represented in the block diagram of figure 125, elaborate the condition 
state of the PMM. The next and final step will be the calculation of the RUL. 
 
4.3 Remaining useful life (RUL) 
 
In fact, several papers and researches has defined the Remaining Useful Life (RUL).  They all 
agreed that it is an estimation of the number of remaining years that an item, component, or system 
is expected to be able to function in accord with its envisioned purpose before a replacement alert 
knock due to a fault or the aging factor. 
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RUL can be calculated by three main approaches [99] [100] [101]: 

- Model based approach where it utilizes the physical aspect of the failed model. 
- Data driven approach where it utilizes the data coming from sensors and transform it to a 

model. The use of Bayesian approach is common in this field.  
- Hybrid approach where the benefits of the model approach and the data approach is fused.  

Data driven approach is adopted when no enough physical or specialists’ knowledge is available 
for the studied model. 
Calculation of RUL using model based approach is more accurate and precise. 
It has been shown in [102] and [103] that combining different types of approaches: data driven 
and physics based, is beneficial to improve RUL accuracy and precision. 
In our work, we will take advantage of the FEM and the well knowledge of the PMM’s physical 
aspect and characteristics to calculate the RUL. 
As stated previously, the degradation of the system may occur due to aging of the system’s 
components or due to a fault. Hence, before presenting the ‘RUL’ predictive strategy, the matter 
of component aging is presented. 
 
4.3.1 Aging of PMM’s components  
 
The components forming the electrical machine are: the core of the stator and rotor that is formed 
mainly from steel, the stator’s coil that are made from copper, the magnet on the rotor in our 
machine it’s a rare earth magnet called neodymium iron boron and the shaft constituted of 
aluminum.   
They are all subject to aging.  
The aging of the delicate components in the electrical machine is the major factor that intervene 
in the calculation of the RUL of the system after the prognostic decision is formulated. 
The machine’s components that are mostly subject to aging are: the coil and the magnet.  
 
4.3.1.1 Aging of the stator’s coil 
 
The stator’s coils are made of copper wire and its insulation. The main causes of wire’s aging are 
temperature, humidity and corrosion.  
The internal resistance of the wire is considered the parameter that impacted its age.   
The aging equation of resistance is: [104] 
 
 ∆ =   ( ) % (63) 

 
T: operating temperature of resistor in °C 
t: time the resistor is operating at temperature T in hours 
R0: initial value of the resistor in ohms 
∆R: increase in resistance of the resistor operating at temperature T for a time t, in ohms. 
A: statistically independent random variables (the value of this variable can be taken as 1.51 x 
1012.)  
n: calibration parameter (it can be considered ‘0.610’) 
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T0: initial temperature  
 
According to [105], the ambient temperature of the machine is 293.15 K. As it operates, the 
temperature at the coils increases to reach 393.15 K. It decreases to reach 373.15 K, then, a lower 
value of 353.15 as the speed increases and the torque decreases.  
The relation between Kelvin and Celsius is: 
 
 (° ) = (℃) + 273.15 (64) 

 
Hence, the three operating temperature of the machine are as follows: 120 °C, 100 °C and 80 °C. 
The type of copper used in the machine’s coil is of class 200 °C, grade 2. The wire’s diameter is 
0.6 mm and its resistance is 0.05876-0.06222 ohm/m. At ambient temperature, 20 °C, the 
resistance of one phase is 0.42 ohm. 
  
According to the copper development association, the lifetime of the conductor part of the wire is 
100 years. The lifetime of the wire’s insulation is 70 years. And this if no fault occurs and the 
normal environmental characteristics remain the same.  
However, the average life cycle of permanent magnet machine is up to 14 years. Hence, it is useful 
to study the aging effect of copper resistance during the life time of the machine only, which is 14 
years.   
 
Table 20 shows the variation of the coil’s resistance value due to aging, where no physical fault 
occurs in the machine.  
 

TABLE 20: : VARIATION OF COIL'S RESISTANCE DUE TO AGING 
Time 

 (year) 
∆R/R0 

(%) ∆R Rnew 
1 7.622031 0.032013 0.452013 
2 10.77918 0.045273 0.465273 
3 13.20175 0.055447 0.475447 
4 15.24406 0.064025 0.484025 
5 17.04338 0.071582 0.491582 
6 18.67009 0.078414 0.498414 
7 20.166 0.084697 0.504697 
8 21.55836 0.090545 0.510545 
9 22.86609 0.096038 0.516038 
10 24.10298 0.101233 0.521233 
11 25.27942 0.106174 0.526174 
12 26.40349 0.110895 0.530895 
13 27.48162 0.115423 0.535423 
14 28.51903 0.11978 0.53978 
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Although the resistance of the coil increases over the year, its impact is negligible on the operation 
of the machine. This fact remains true as long as no fault occurs and the temperature at the coil 
level is within the tolerated values.      
 
Concerning the insulation, talking about its electrical and mechanical function, it is expected to 
resist voltage stress as well as to provide mechanical sustenance over a wide range of temperatures. 
Under normal condition, it’s life cycle is 70 years. However, under abnormal conditions, mainly 
exposure to high operating temperature, its life cycle degrades radically.  
According to [106], insulation’s aging is directly related and inversely proportional to temperature 
(T). It is expressed as: 
 
  = ∗ exp  (65) 

 
A and B are constant characteristics of the insulation. The aging is in years and the temperature is 
in Celsius.  
Insulation aging degradation function of temperature ranges that is suitable for electric machine 
application is illustrated in figure 126. 
According to figure 126, if a normal operation of the electric machine is guaranteed, no need to 
worry about the insulation aging. However, when a fault occurs, the insulation aging becomes a 
huge concern; ignoring it will lead to catastrophic consequences. 
    

 Figure 126: Aging graph of windings insulation 
 
4.3.1.2 Aging of the magnet 
 
Several factors affect the stability and performance of magnets: temperature, change in reluctance, 
external magnetic fields, radiation, and vibration. 
 
Talking about temperature, diverse types of permanent magnets react differently to changes in 
operating temperature. For example, ferrite shows an increase in Hc as the temperature is increased 
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while the rest of the magnet types show decrease. All types show a decrease in Br as temperature 
increases, and all become non-magnetic ultimately when they reach their Curie temperature, Tc.  
The magnet used in our machine is neodymium iron boron. The most common temperature related 
parameters for the NdFeB are mentioned in table 21. [107] 
 

TABLE 21: NDFEB TEMPERATURE RELATED PARAMETERS 
Parameter NdFeB 
α, Temperature coefficient Br %/°C 0.11% 
β, Temperature coefficient Hc %/°C 0.4% 
Maximum operating temperature °C 180 
Tc °C 300-400 

 
NdFeB loses approximately 0.11 % of its Br and 0.4% of its Hc for every degree Celsius above 
20°C. For example, a NdFeB magnet with a - 0.11 reversible loss will have 11% less magnetic 
flux at 120°C than at 20°C. 
 
At 80 °C, the steady state temperature of the machine, Br became 1.11 Tesla and Hc became 
649400 A/m. This is called the Reversible Temperature Coefficient. 
 
Rare earth magnets may face three types of losses; each type moves the magnet to a specific phase. 
 

- Reversible Losses  
Reversible losses can be defined as temporary loss of the magnet’s magnetic force. These losses 
can be reversed when the magnet returns to its normal original temperature. Reversible losses 
cannot be eliminated by magnet stabilization. Reversible losses are expressed by the Reversible 
Temperature Coefficient, -%Br/°C. The value of these losses differ according to the type of magnet 
used. We mention that they are not always linear as the temperature increases.  
 

- Irreversible Losses  
These losses are defined as a partial demagnetization of the magnet due to exposure to high or low 
temperatures or other demagnetizing stimuluses. These losses are only recoverable by re-
magnetization and are not recovered when the temperature returns to its original value. This occurs 
when the magnets are operating at temperatures higher than the identified “maximum operating 
temperature” or when the operating temperature of the magnet reaches a minimal value, below the 
"knee" of the demagnetization curve. The range of maximum operating temperature of neodymium 
magnet is 80-140 °C. 
 

- Permanent losses  
Permanent losses occur when magnets are exposed to extremely high temperatures that are usually 
as high as the initial heat treatment when they were manufactured. This is called the magnet’s 
Curie temperature. When a metallurgic change occurs, the magnetic properties are not recoverable 
to its initial state even after re-magnetization. The range of curie temperature of neodymium 
magnet is 310-400 °C. 
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Talking about time, the effect of time on modern permanent magnets is minimal. Figure 127 is a 
graph showing the percentage decrease of Br function of time when the maximum operating 
temperature of the magnet is 100 °C. 

 Figure 127: % Br versus operating hours 
There is no aging equation for magnet relating its remanence flux density ‘Br’ to its temperature 
and operating time. However, approximate analytical equation can be deduced from experimental 
graphs like the one in figure 127. The curve is approximately a straight line; its equation is: 
 
 % = 98 − 100

10000 − 1   (ℎ ) + 100 =  −0.0002 (ℎ ) + 100 (66) 
 
This is true if the operating temperature is 100 °C which coincide with our machine.  
Table 22 below shows the effect of magnet aging on Br and Hc, under healthy conditions. 
 

TABLE 22: EFFECT OF MAGNET AGING ON ITS BR AND HC 
Time 
(year) 

Brnew 
(Tesla) 

Hcnew 
(A/m) 

1 1.1052048 646594.592 
2 1.1004096 643789.184 
3 1.0956144 640983.776 
4 1.0908192 638178.368 
5 1.086024 635372.96 
6 1.0812288 632567.552 
7 1.0764336 629762.144 
8 1.0716384 626956.736 
9 1.0668432 624151.328 
10 1.062048 621345.92 
11 1.0572528 618540.512 
12 1.0524576 615735.104 
13 1.0476624 612929.696 
14 1.0428672 610124.288 
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As we can see, there is small remarked degradation of Hc and Br with time. 
The degradation worsens if the temperature at the magnet level increases where the flux losses 
increase as we can see in figure 128. 
  

 Figure 128: magnet's flux loss versus time at different temperatures 
 
At 150 °C, the relation between the loss of Br and the time is: 
 %  = −0.0035 ∗ − 1 (67) 

If we consider the relation of loss in Hc is the same as Br. The new values of Br and Hc at 150°C 
with aging is presented in the following table 23. 
 
 

TABLE 23: IMPACT OF MAGNET AGING ON BR AND HC WHEN THE OPERATING TEMPERATURE IS 150 CELSIUS 

Time 
(year) 

Machine’s 
average 

operating hours 
% 

loss 
Br New Br New Hc 

1 2160 -8.56 0.92728 419161 
2 4320 -16.12 0.83656 384505.9 
3 6480 -23.68 0.74584 349850.9 
4 8640 -31.24 0.65512 315195.8 
5 10800 -38.8 0.5644 280540.8 
6 12960 -46.36 0.47368 245885.8 
7 15120 -53.92 0.38296 211230.7 
8 17280 -61.48 0.29224 176575.7 
9 19440 -69.04 0.20152 141920.6 

10 21600 -76.6 0.1108 107265.6 
11 23760 -84.16 0.02008 72610.56 
12 25920 -91.72 

-
0.07064 37955.52 

13 28080 -99.28 
-

0.16136 3300.48 
14 30240 

-
106.84 

-
0.25208 -31354.6 
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The numbers in table 23 detect a pace acceleration in Br and Hc. The negative values indicate a 
complete deterioration of the magnet. 
 
The impact of magnet losses due to aging is experimented for our PMM. Figures 129 shows the 
distribution of flux density inside the electric machine after 1 year, 5 years, 10 years and 14 years 
of aging. 
 

 Figure 129: Distribution of flux density in the machine after 1 year, 5 years, 10 years and 14 years of aging 
 
The air gap flux density of the machine function of aging is illustrated in figure 130.  
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 Figure 130: The change in air gap flux density with magnet aging (100 °C) 
 
We can see that the impact of magnet aging is almost neglected on the machine’s air gap flux 
density; hence, it has almost no effect on the machine performance.  
However, in case of fault like turn to turn short circuit in one of the stator’s coil, the temperature 
at magnet level may reach 150 °C. The change in the air gap flux density over years at 150°C is 
presented in figure 131. 
 

 Figure 131: The change in air gap flux density with magnet aging (150 °C) 
 
As we can see from figure 131, the air gap flux density degrades radically at 150 °C. this will affect 
largely the performance of the machine. 
We will evaluate the magnet’s aging impact, in this case, by calculating the machine’s torque. 
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The impact of the change in temperature and aging on the torque is presented in table 24. 
  

TABLE 24: IMPACT OF MAGNET AGING OVER YEARS AT TEMPERATURES 100 AND 150 CELSIUS 
Year 1 2 3 4 5 6 7 
  150 °C      Bgav 
(Tesla) 0.27144 0.25146 0.23146 0.21148 0.19148 0.1715 0.15152 
Torque 47.44733 43.95486 40.45888 36.96641 33.47044 29.97796 26.48548 
  100 °C      Bgav 
(Tesla) 0.4018 0.39938 0.39696 0.3945 0.39208 0.38968 0.38726 
Torque 70.23408 69.81106 69.38805 68.95805 68.53504 68.11552 67.69251 

 
Year 8 9 10 11 12 13 14 
  150 °C      Bgav 
(Tesla) 0.1315 0.11154 0.09154 0.07156 0.05158 0.03158 0.0116 
Torque 22.98602 19.49704 16.00106 12.50859 9.016112 5.52014 2.027664 
  100 °C      Bgav 
(Tesla) 0.3848 0.38238 0.37994 0.37754 0.37508 0.37268 0.37026 
Torque 67.2625 66.83949 66.41298 65.99346 65.56346 65.14394 64.72093 

 
Figure 132 illustrates the degradation of the torque with aging when the operating temperature of 
the magnet is 150 °C versus the relative stability of the torque when this operating temperature is 
100 °C.   
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 Figure 132: Torque with magnet aging at 100 and 150 degree of operation 
 
In the end of this section, we conclude that tracking the aging of the dynamic and sensitive 
components inside the machine is not of big interest during normal operation because the life cycle 
of these components is much greater than that of the electric machine itself.  
However, studying and considering this aging, when a fault occurs, is of very important because 
this will cause a big influence on the machine’s health operation. Large degradation in the vital 
aspect of the machine is noticed and a significant deviation from the normal conditions is detected. 
 
4.3.2 Estimation strategy of RUL calculation using thermal FEM in the case of turn 
to turn short circuit 
 
As explained previously, the aging and performance of critical components in the PMM are highly 
affected by temperature.  
Aging equation for the coil insulation is noted. The phases of the magnet, function of temperature, 
are noted. In this section, we will take advantage of the mature knowledge of the machine’s thermal 
aspect and the well development of the thermal FEM, combine it with the aging equations and 
elaborate the appropriate insulation’s RUL and magnet’s phase in the case of turn to turn short 
circuit. 
 
The proposed strategy will solve and answer two questions: what is the remaining useful life of 
insulation? And, where? In which slot? the next turn to turn short circuit fault will occur after the 
calculated time, RUL.    
In other words, at the end of this analysis we will get the time we still have before insulation, in 
specific areas, deteriorates and cause a new turn to turn short circuit fault.  
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A block diagram presenting the steps of this strategy is illustrated in figure 133. 
 

 Figure 133: RUL calculation in the case of turn to turn short circuit 
 
An illustrative example clarifying the prognostic approach and the RUL calculation in the case of 
turn to turn short circuit will be presented in figure 134. 
 
The temperature data used as input for the HMM is coming from a temperature sensor located at 
the boundary of the machine. The prognostic approach (HMM) will investigate this data and the 
state of the machine is elaborated. 
 
If a turn to turn short circuit is detected in the electric machine, the phase of the magnet and the 
remaining useful life of the insulation are calculated by means of the thermal FEM. The location 
of the next turn to turn short circuit that will occur in the machine, after the RUL flows, will be 
identified also. 
 
The thermal FEM is capable of determining temperature in the whole machine. As stated in the 
previous section, the critical machine elements which performance is directly related to the 
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operating temperature are: the magnet and the stator coil. Hence, when a turn to turn short circuit 
fault occur, the higher temperature at the magnet and coil level is noted. The RUL of insulation is 
calculated by the insulation aging equation (65) from the previous section. The new ‘Br’ of the 
magnet due to the increase of its temperature is calculated from the aging magnet equation (66) 
and (67). According to the temperature of the magnet, its state is deduced as mentioned in section 
4.3.1.2. 
    

 
Figure 134: Illustrative example for RUL calculation 

 
4.3.3 Estimation strategy of RUL calculation in the case of crack in the magnet 
 
According to the literature, calculating RUL using data base models consists of the following steps: 

- First, an offline database is prepared where data related to each phase of fault is 
encountered. 

- Second, a health assessment of the machine is conducted. In our case, the HMM model is 
responsible of performing this assessment. 

- Third, the RUL calculation or prediction is executed.    
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Previously, the offline database is elaborated. Then, during the condition monitoring of the 
system’s operation, similarities between online and offline data sensor is tracked and detected. 
This is done by classification or regression [108]. 
Classification consists of matching data coming from sensors to one of the training data sets we 
already earned, where each set represents a specific state of the system.  
Regression consists of predicting the real data from the sets of training data where a relation 
between these training data is created since the system phase of each set is known. 
 
In our case we will use ‘classification’ because an online data coming from sensors can be 
generated from the developed dynamic FEM model of the machine. 
 
Although dynamic FEM is the best real time representation of the machine performance during 
healthy and faulty operation; alone, it cannot generate online data useful for RUL calculation. 
Offline data sample can be generated for different machine states, as much as needed. For example, 
the model can generate data representing vibration detected by a vibration sensor when the 
machine is healthy, when the machine encounters a 1 mm crack in one magnet, when the machine 
encounters a 2 mm crack in one magnet… however, a sampling data representing this vibration 
when the machine moves from the healthy state to the state of 1 mm crack in one magnet, then the 
state where the crack worsens and became 2 mm is not possible. In other words, a model of the 
machine having any depth of the crack is possible using FEM; however, the time needed for the 
machine to shift from a faulty state with ‘x’ mm crack to a state with ‘y’ mm crack where y>x is 
not offered in FEM. In FEM, there is no representation of the fault propagation function of time. 
 
Hence, many researches use to combine data base approach and model based approach to build a 
rugged strategy for RUL calculation. Data sets for the data base approach is generated from 
analytical analysis and numerical analysis like FEM. The model based method is formulated from 
the physical understanding of the system where a profound knowledge and an accurate 
representation of the fault propagation in it, function of time, is presented. 
 
If an offline data corresponding to the machine life cycle starting with its healthy state, then during 
the existence of tiny crack in the magnet till the crack worsen and became a fracture was available, 
the RUL calculation becomes easy. Such offline data could’ve been represented in a data matrix 
ODM as follows: 
 

=
01 02 … 011 12 … 121 22 … 2⋮ ⋮ ⋱ ⋮1 2 …

  
→     = 0 ℎ  ℎ  ℎ   ℎ ℎ

→     = 1 ℎ  ℎ   1    ℎ  
→     = 2 ℎ  ℎ   2    ℎ     ⋮→     =  ℎ  ℎ       

 

 
In the above matrix, ‘n’ is the number of sampling points and ‘m’ the number of times, during the 
life cycle of the machine, the data sets are recorded. 
   
Different machine learning algorithm like K-NN and Gaussian process regression can be used to 
execute a health assessment of the system and then, calculate RUL as proofed in paper [108]. 
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A comparison between the current measured data set and the offline data set will be conducted. 
The most similar offline data set refers to the current machine state. We assume that the future 
behavior of the current monitored system is the same as that acquired in the offline system. 
The RUL is calculated: 
 
 = −  (68) 

 
‘EOLselected’ is the end of life time of the system being in the current faulty phase identified by the 
health assessment already conducted.  
 
Such offline data is not available since it needs a real monitored system that contains this 
propagating fault we are interested in. Hence, a suggested strategy, inspired from the above 
presented method, will be presented in the following to calculate the RUL.  
 
First we will construct a synthetic offline database ‘SODM’. SODM will have the form of a matrix 
as shown below: 
 

=
01 02 … 011 12 … 121 22 … 2⋮ ⋮ ⋱ ⋮1 2 …

  
→    ℎ    1    ℎ       
→    ℎ    2    ℎ      ⋮→    ℎ        ℎ       

 

 
SODM represents sensor data in the healthy case and the case of crack in a magnet inside the 
PMM. Its size is (m x t) where: ‘m’ is the number of states representing the systematic propagation 
of the studied fault and ‘t’ is the number of sampling points.  
 
The difference between ODM and SODM is that the sets of data in ODM are extracted at a specific 
time during the life cycle of the machine; however, in SODM, the sets of data is extracted at an 
arbitrary time during a specific state of the machine.  
 
In this section we will use this strategy to calculate the RUL in the case of crack in one magnet; 
the system we are investigating is the piece of magnet. The first detection of the fault will be when 
a crack of 1 mm depth is detected, which is compatible with the previous analysis’s in chapter 3. 
In the other hand, since RUL calculation is mainly the time needed for the faulty system to 
deteriorate, the final set of data will be collected in the case of total fracture of the magnet.     
 
Accordingly, each row of the SODM matrix is dedicated to sensor data at different depths of 
magnet’s crack. We started with 1 mm crack depth and increment this depth, each time, by 1 mm 
till we reach em mm which is the radial width of the magnet. At this depth the magnet is fractured.  
We mention that the sampling time for all data sets are similar. 
 
After constructing SODM, the first part of the suggested RUL calculation strategy is accomplished. 
The second part will be to find an appropriate equation that model the incremental growth of this 
fault, the crack, function of time. 
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One of the most important equations that models the growth and propagation of cracks is Paris 
equation. 
 
The study of crack propagation is of big interest in many applications. Several researches used 
Paris equation to attribute this problem.  
 
In [109], Paris law equation is used in aircraft application. They are concerned with aging of critical 
material in air craft function of time. Experimental testing of aircraft material is very important; 
however, constant material properties is not enough to evaluate materials in such critical 
application. Hence, they evaluate materials according to their dynamic capability to develop and 
propagate cracks. 
Author in [110] used Paris equation to study crack growth and predict the remaining useful life of 
materials composing in magnet. In [111] the author uses it for crack propagation in microelectronic 
devices application. 
A crack growth rate is assessed for magnet system in [112]. The paper was concerned of studying 
crack with different orientation and different shapes. To realize this delicate modeling, Dual 
Boundary Element Method and finite element method is coupled.  
 
When applying Paris equation for crack growth prediction, some assumption needs to be made: 

- the crack is not of constant amplitude, it’s propagating function of time 
- the crack is one dimensional 
- the material, where the crack exists, has a certain elastic condition 
- the load range is relatively constant 
- sensor data and offline signals has similar time stamps 
- the offline data set contains enough data that represents different degradation behavior 

 
According to Paris law equation, the general fatigue crack growth model is: 
 
 =  (∆ )  (69) 
 ∆ = −  (46) 
 =  ∗ ∗  ( 2) (71) 
 = cos ∗  

2 ∗  (72) 
 
 ‘ ’ is the crack growth rate. 
 
‘a’ is the depth of the crack. ‘Nc’ is the number of cycle.  
 
‘C’ and ‘m’ are calibration parameters dependent on the type of material where the crack is 
propagating. ‘C’ is called Paris equation parameter or crack growth coefficient, its unit is m/ (MN 
m-3/2) m per cycle. ‘m’ is called Paris equation exponent or crack growth exponent, it is unit less.  
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‘∆K’ is the effective stress intensity factor. ‘Kmax’ is the stress intensity factor at the peak load; 
it’s a critical or a threshold value before the occurrence of a fracture. ‘Kop’ is the operating stress 
intensity.   
 
Maxwell stress tensor ‘σ’ will be calculated from the vibration FEM. 
 
‘Q’ is a parameter dependent on the geometry of the system. 
 
‘W’ is the radial length of the magnet.  
 
A familiar relation between Nc and a is: 
 
 = 1

 ∆  √  ∗ 1
2 − 1 ∗ 1

0 −  1  (73) 

 
‘Nc’ is a cyclic loading, it is a cycle representation of repetitive or inconsistent stresses intensities 
on a certain location.  
‘a0’ is the current depth of the crack. ‘af’ is the final depth will reach the crack at which the magnet 
is fractured.   
 
Nc calculated according to the above equation is the RUL for the crack to move from a0 to af depth.  
If we aim to calculate the time needed for the crack to propagate from 1 mm depth to a specific 
incremental depth, let’s say 2mm, the final state of the crack ‘f’ in this case will be 2 mm.  
 
In this research we will consider a 4 mm depth as the final state of the magnet’s crack before 
fracture. Hence, we will run the FEM model with a 4 mm crack in one magnet to get the tensile 
stress ‘σ’ at this stage. Figure 135 is a section of the PMM’s laminated sheet with 4 mm crack in 
the magnet. Figure 136 is the air gap flux density and figure 137 is the boundary vibration in this 
case.  
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 Figure 135: Meshed laminated sheet with 4 mm crack in the magnet 

 Figure 136: Air gap flux density in the case of 4 mm crack in the magnet 
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Figure 137: Vibration detected by the sensor in the case of 4 mm crack in the magnet 

 
A block diagram illustrating the steps of the suggested strategy is illustrated in figure 138.  
 

 
Figure 138: RUL calculation in the case of demagnetization fault 
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An illustrative example of RUL calculation in the case of demagnetization is presented in figure 
139. 
 

 Figure 139: illustrative example of RUL calculation in the case of demagnetization 
 
When the detected fault is a crack in one magnet, the vibration FEM is computed. Maxwell stress 
tensor is calculated from vibration FEM as stated in chapter 2 section 2.4. this calculated value is 
replaced in equation (73) to calculate the RUL. 
   
Following the same logical reasoning serial, after detecting the presence of eccentricity fault by 
the prognostic approach HMM, a question is asked: what are the vital factors that will be affected 
in the machine? what are the critical components that will be affected accordingly? 
 
According to the previous chapters, the main parameter affected in the case of eccentricity fault is 
the vibration where an increase in the vibration level is detected. However, its impact is 
inconspicuous on the critical machine elements we are considering and studying. 
It has been stated that vibration and shocks have almost no harmful effect on modern magnet unless 
a severe physical damage exists.   
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Moreover, at low voltage the aging of machine’s insulation in the case of mechanical stress due to 
fault that increase the machine’s vibration like eccentricity fault is of no interest because the effect 
is negligible. 
 
4.5 Conclusion  
 
In this chapter, a Hidden Markov Model for prognostic purposes is developed, to detect the 
presence of short circuit, demagnetization and eccentricity faults. Prognosis aim to detect faults at 
its early stage or before it occurs; hence, the probability of false alarms is high. To avoid this 
problem and eliminate any possibility of ambiguity in the prognostic decision, we used three vital 
parameters that are useful for machine monitoring: torque, temperature and vibration to be input 
of the HMM. Then, RUL of critical components, magnet and wire’s insulation, in the PMM is 
calculated. A suggested RUL calculation strategy that combines data base and model base 
approach is presented for different case of machine’s fault. A global block diagram representing 
the HMM and the RUL calculation is illustrated in figure 140. 

 Figure 140: Global block diagram of the prognostic approach 
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Chapter 5: Closed loop system analysis 
 
5.1 Introduction 
 
In the previous chapters, the modeling and the prognosis strategy was applied on the open loop 
system. However, hybrid electric vehicle is an application where closed loop control system is 
widely applied for different purposes. In [113], a closed loop control system is implemented for 
speed torque control of surface permanent magnet machine in the HEV. In [114], the final goal of 
the implemented closed loop system is to manage the power transferred to vehicle’s wheels in a 
way that meets the driver's demand within the rated limits of the powertrain and the battery.  
The aim of this chapter is to show the impact of the closed system on the machine prognosis 
decision in the case of fault. Accordingly, a closed loop for the system combining the electrical 
machine and the inverter will be built. The control system will adjust the input power of the electric 
machine, coming from the battery, when working in the motor mode, to generate the required 
torque. 
As illustrated in chapter 3, the different integrated faults in the machine has an obvious impact on 
its output torque. In the case of crack or eccentricity fault, the torque has increased; in the case of 
turn to turn short circuit the torque has decreased. 
Hence, the act of the control system will be to adjust the input power of the electric machine to 
maintain the requested torque. 
We will start by implementing the model of the inverter, coupling it to the machine and building 
the closed loop feedback system. For technique reasons, the simulation will be instantaneous where 
we will use the static electromagnetic model of the machine. The simulated system will be a 
combination of electromagnetic, vibration and thermal model of the machine with three phase 
Voltage Source Inverter and the control system. 
This chapter will be divided into three main sections. 
We will present: 

- the inverter model and the technique used for the generation of its control signals in the 
first section. 

- the fault interaction between inverter and machine in the second section. 
- the feedback vector control of the machine, the impact of closed loop system on vital 

machine indicators and its influence on prognosis in the third section.   
 
5.2 The inverter modeling  
 
As stated previously, hybrid Electrical Vehicle is a combination between the conventional internal 
combustion system and an electric propulsion system. The combination between those two systems 
may be series, parallel or mixed [115], [116]. The electric propulsion system contains the electric 
machine, the controller and the inverter [117], [118]. Power switching devices are being 
intensively used in hybrid vehicles for their ability to drive various loads. In this section, the 
DC/AC power inverter system used as the interface between main hybrid energy storage system 
and the electrical machine will be described. 
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Being interested in building a closed loop system of the electric propulsion system, modeling the 
inverter became a necessity.  
 
5.2.1 HEV’s main power electronics elements  
 
The main electric power train architecture of HEV application is illustrated in figure 141. 
Basically, a hybrid vehicle needs DC/DC choppers, DC/AC inverters and AC/ DC rectifier [117]. 

 Figure 141: Main electric power train architecture for HEV [117] 
 A DC/AC inverter is commonly used as a power electronics interface between the main energy 

storage unit and the electric traction drive. In general, inverters are classified either as Voltage 
Source Inverters involving bidirectional current switches or Current Source Inverters consisting of 
bidirectional voltage switches. Most common automotive drives include VSIs where it has proven 
to be more efficient, cost effective, less space, faster dynamic response for rapid changes in speed 
or torque and be capable of running the motor without derating. Typically, a three-phase VSI 
consists of six bidirectional switches, each with a switch and an anti-parallel diode. By controlling 
these switches, the DC voltage at the input of the inverter is shaped into a balanced three-phase 
AC output voltage of desired magnitude and frequency.  
Inverter 1 is used to convert the stiff battery DC voltage into the required variable voltage to be 
fed to the electric traction machine. The inverter subsystem consists of a power module made of 
high-power fast-acting semiconductor devices, DC link voltage, sensors, a filter and a control 
system as shown in Figure 142. The inverter is used as an AC drive and as a rectifier during 
regenerative braking when the electric motor acts as generator recharging the batteries. Therefore, 
to implement the motor and generator operation modes, this DC/AC converter has to be 
bidirectional. 
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 Figure 142: Standard two level three phase voltage source inverter 
 
5.2.2 Power Inverter Modeling 
 
The switched power inverter is nonlinear and time-varying due to the fact that it contains switches 
which alter the system topology with every commutation mode. However, during each switching 
mode the inverter subsystem is linear and possesses a linear piecewise-switched state space model. 
In fact, linear piecewise-switched system is a collection of linear subsystems along with a 
switching rule. Inverter or rectifier can be modeled using switched or averaged state space model. 
In [119] an average state space model of  PWM three phases VSI is studied. The model is suitable 
for an input/output voltage waveform, regardless whether they are sinusoidal or non-sinusoidal, 
balanced or unbalanced, symmetrical or asymmetrical. In [120], a generalized state space 
averaging method is presented by using the proposed method. The calculating fundamental 
components of voltages and currents are in accord with the simulation and experiment of actual 
devices considerably compared with conventional state-space averaging method. Switch State 
matrix and switching functions for VSI are developed in[121] based on KCL and KVL. Paper 
[122] presents the analysis of a three-phase PWM inverter system including harmonic assessment 
of the inverter input current and output voltage with balanced and unbalanced loads. Analytical 
equation using the switching function approach is used to find the proper state equations to 
describe the power conversion circuit in MATLAB. The functional simulation model of a three-
phase VSI using the switching function concept has been studied in [123]. The actual 
implementation of the model has been proposed with the help of MATLAB Simulink, and this 
concept was examined in other power conversion systems. 
 
According to all the reviewed literature and based on the requirements of our application to have 
output voltage as dependent variables and load current as independent variables, we will develop 
a switched state space model with LC filter at the output as shown in Figure 142. In this model, 
the switching signals are used as a control variable that will appear inside the matrices of the state-
space model; thus, we get a simple state space model instead of dividing the system into modes 
that make the model more complex [124], [125]. 
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5.2.3 Switched state-space model and equations 
 
Figure 143 shows the schematic of the power inverter. The system is driven by three inputs. The 
source voltage Vdc, the three phases stator current IA, IB, IC and the switching signals Sap, Sbp, 
Scp, San, Sbn, Scn. The inverter state variables are the voltages across the output capacitor VA, 
VB, VC, the inductor current ia, ib, ic (current across the three phases of the inverter). The 
dependent variables are the source current Idc and the three phases voltage feeding the machine 
VA, VB, VC which are usually measured in the drive for control purposes. 

 Figure 143: schematic of the power inverter 
 
Accordingly, the inverter’s dynamics can be described by the following switched linear state-space 
model. 
 
 = +  (74) 
 = +  (75) 

 

Where     =  is the state vector , = , =  is the input vector, =  is the 

output vector and A, B, C and D are the state-space matrices using Kirchhoff’s current and voltage 
law. 
When applying Kirchhoff’s current and voltage laws to the inverter’s circuit in figure 142, we get 
the following equations:    
 
  = + +  (76) 

 

 
  = + +  (77) 

 

 
  = + +  (78) 

 

 
  = +  +  (79) 

 

 
  = +  +  (80) 
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  = +  +  (81) 
 

 
 
The three-phase inverter is composed of six switches distributed on three arms. The controls of the 
switches of the same arm are complementary to avoid a short circuit to the voltage source. This 
implies to express the switching system as shown below; moreover, each switch is replaced by its 
internal resistance RON. 
 
 = 1 −  (82) 
 = 1 −  (83) 
 = 1 −  (84) 

 
Thus, we can write the following equations:  
 
 = ( − ) ∗

2 − ( + ) ∗ ∗  (85) 
 = ( − ) ∗

2 − ( + ) ∗ ∗  (86) 
 = ( − ) ∗

2 − ( + ) ∗ ∗  (87) 
 
Load is balanced so we can consider the equation: 
 
 + + = 0 (88) 

 
Thus, the final state equations are as follows: 
 
 = 1 ( − − ∗ ) (89) 
 = 1 ( − − ∗ ) (90) 
 = 1 ( − − ∗ ) (91) 
 = 1

3 ( − ) (92) 
 = 1

3 ( − ) (93) 
 = 1

3 ( − ) (94) 
 
Source current is function of switching signal and phases current. 
 
 = ∗ + ∗ + ∗  (95) 

 
 



182  

5.2.4 Inverter Design Parameters 
 
We sized the output filter in order to obtain minimum ripple in source current and minimum THD 
in output voltage. In practical, switching frequencies for power switching inverters used in HEVs 
fall in the range of 5-20 kHz [126]. Inverter design parameters are presented in table 19.  
 

TABLE 19: INVERTER DESIGN PARAMETERS 
Filter inductor 0.14 mH 

ESR of filtering inductor 0.2 Ω 
Filter capacitor 2.2 µf 

Internal switch resistance 1 mΩ 
Switching frequency 15KHz 

 
 
5.2.5 Generation of control systems 
 
Many techniques are used to generate the control signals to drive the three phases VSI. The adopted 
technique will be the space vector pulse width modulation (SVPWM). We will present results of 
this technique using MATLAB and Simulink. At this stage, to test and make sure that the model 
operates well, the load will be a simple resistance (R=10Ω, Vdc=250V, F=50Hz and Fs=1KHz) 
[129].  
 
Figure 144 shows the SVPWM conduction mode of inverter’s voltages and currents. Figure 145 
shows the normalized harmonics of its output voltage.   
 

 Figure 144: SVPWM conduction mode: electrical measurements 
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Figure 145: SVPWM conduction mode: normalized harmonics of output voltage 

 
5.2.5.1 Theory Equations 
 1. Mean value of source current 
 = 3  ′√2   (96) 

 
2. Rms value of the source current  
 

=   √2 1
2 + (3√3 ∗ 2 )  /(4 )     

 
(97) 

3. RMS value of the fundamental line to neutral voltage 
 = √2  (98) 

 
5.2.5.2 Simulations Results 
 The simulation results are illustrated in table 25. 
 

TABLE 25: SVPWM: SIMULATIONS RESULTS 
Parameters Code results Theory results 

VA_rms 112.7967 - 
THD_VA 0.5322 - 
Van_rms 114.9785 - 

Van_rms_fund 101.5630 102.0621 
ia_rms 11.2782 - 

THD_ia 0.5319 - 
Idc_rms 15.6496 15.2443 
Idc_av 15.0543 15.2309 



184  

 
PWM techniques are useful in automotive applications due to their advantages.  
Although SVPWM is more complicated than SPWM [129], the SVPWM technique gives higher 
level of fundamental voltage comparing it to SPWM. SVPWM is more reliable because it enables 
efficient use of DC voltages and smartly works with vector control thus, gives less Total Harmonic 
Distortion, better PF, and less switching losses at high frequencies[130]. 
 
5.3 Fault interaction between the inverter and the electric machine 
 
In this section we will start by stating the faults that may occurs in the inverter. Then, threshold 
values of electrical, thermal and vibration parameters of power electronics will be highlighted. 
After that, the fault interaction between inverter and electric machine will be revealed.  
5.3.1 Faults in the inverter 
 
5.3.1.1 Electrical fault 
 
Inverters used in automotive electric traction systems undergo some of the highest stresses due to 
their high power and relatively low voltage (hundreds of volts) which cause high currents 
(hundreds of amperes) and thus increase thermal and electric stresses in the inverter components 
and reduces the inverter efficiency.  
Figure 146 shows the percentage of failure rates in the power electronics of the inverter. 
 

 Figure 146: Rates of possible failures in power electronics of the inverter 
 
As shown in Figure 146, the power devices are the weakest elements in the power electronic 
circuits. Power semiconductor faults are subdivided into open-transistor fault and short-transistor 
fault [117]. Open-transistor fault is usually a result of control failure, driver circuit failure, or 
physical damage in the transistor itself. Short-transistor fault is usually a result of high stresses on 
the device, error in circuit design or external causes such as a short circuit on the load side [131]. 

05
101520253035

Failure rates(%)
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Thus, most common power inverter faults are: a single transistor short circuit, a phase-leg short 
circuit, single transistor open circuit, open-phase, a loss of driving signal, a capacitor short circuit 
fault, and a two or three phase short circuit [127]. In particular, open single switch, short circuit 
and open phase are mostly considered and studied. 
 
In the other hand, the occurrence of electrical, thermal and mechanical phenomenon interactions 
leads to failure modes in the devices. Some failure modes have been observed on the bonded wires 
or on the interconnection elements. Others are linked with the metallization layer, whereas some 
crack propagation can be found inside the ceramic layer or in the silicon chip. The solder alloy 
join can also be damaged [132]. Consequently, there is a degradation of the semiconductor devices, 
which finally forces them into a failed state: short-circuit or open-circuit  [133]. The typical power 
electronics package structure is shown in Figure 147 [134]. Paper [135] expresses that lifetime of 
IGBT module is affected by many failure modes such as material degradation, thermal cycling 
fatigue, power cycling fatigue and vibration fatigue. 
 

 Figure 147: Typical power electronics package structure 
 
5.3.1.2 Thermal stress 
 
Many researches study thermal stress for power devices such as IGBT and estimate its lifetime 
based on swing temperature between junction and baseplate temperature.  Paper [136] develops a 
3D finite element model for IGBT module which indicates that the maximal stress is obtained at 
the heel of the bond wire. The author in [137] shows that lifetime of IGBT is limited when thermal 
resistance increases of 20%. Under thermal cycle range -40°C to 125°C lifetime is reduced to 1000 
cycles and under power cycle with ∆Tj =100°C lifetime down to 20000 cycles. Paper [138]  shows 
that during vehicle acceleration the IGBTs are under a particularly high load and a 10°C increase 
in temperature rise reduces the number of load cycles by a factor of 3. Authors in [139] and [140] 
show that increase of junction temperature and collector to emitter voltage lead to deteriorate the 
solder layer of the bottom switch This increases the thermal resistance of the chip. The 
investigations on paper [141] proved that an IGBT module can handle 12.5% more output power 
if the maximum junction temperature rises from 150°C to 175°C. Paper [142] indicates that 
thermal stress can be induce by power and thermal cycling and temperature swing range is form 
60°C to 100°C. Paper [143] presents a methodological study on power cycling stress in an active 
IGBT rectifier used in a Direct Wave Energy Converter. This model serves to evaluate the 
influence of IGBT rating over the IGBT lifetime. Authors in [144] develop a Physics-of-Failure 
lifetime modeling approaches that can be seen as a new methodology in power electronics that 
potentially can improve the lifetime estimation. A thermal model for VSI is created in [145], this 
model serves to predict the maximum switching frequency without violating thermal limits, and 
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to quantify the characteristics of the heat-sink needed to dissipate the heat under worst case 
conditions [146]. 
 
5.3.1.3 Vibration stress 
 
Reliability of IGBT modules is highly affected by vibration. It is important to estimate power 
electronics systems reliability by taking into account their environment [147]. Papers [148], [149] 
and [150] determine that the operation and pulse frequency cause displacement on several 
component in IGBT module but the most affected is the short IGBT wire. Thus, they have 
influence on the lifetime of IGBT modules. Laser Doppler vibrometer and finite element analyses 
were conducted to obtain the strain values needed for lifetime assessments. These papers show 
that displacement of bonding wire of IGBT will increase with pulse frequency and decrease with 
operation frequency. Paper [151] compares reliability levels required for industrial-use and 
automotive-use. Results  show that IGBT for automotive-use can support vibration stress till 20G. 
Paper [152] presents typical environmental conditions and operational requirements for 
automotive applications concerning vibration, humidity, junction and ambient air temperature. The 
environmental conditions and operational requirements of the IGBT are illustrated in table 26. 
The fatigue life of aluminum wire under random vibration testing is evaluated in paper [153]. As 
a result, the appropriately designed aluminum wires with silicone gel can endure 18.4-Grms 
random vibration testing which is demanded for semiconductor devices for vehicle applications. 
 

TABLE 26: ENVIRONMENTAL CONDITIONS AND OPERATIONAL REQUIREMENTS 
Parameters Value   
Ambient air temperature -40 to +135°C 
Coolant water temperature -40 to +105°C 

 
Junction temperature -40 to +175°C 

 
Temperature cycling 1000 cycles @ ∆Tj =165°C 

 
Power cycling 30000 cycles @ ∆Tj =100°C 

 
Humidity 85% 

 
Vibration test 10 G 

 
Shock 50 G  

 
 
After examining faults occurring in power inverter and permanent magnet machine each alone, a 
fault interaction between those two blocks should be built. Threshold value of useful parameters 
for the PMM were discussed previously; the same should be done for the power devices 
constituting the inverter before combining it with the FEM. 
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5.3.2 Threshold value of the inverter 
 
In this section we will determine threshold value of power devices’ parameters and make sure they 
are compatible with our HEV application; then, combine the finite element model of PMM with 
the state space model of VSI and show the simulation results of the whole system under normal 
and abnormal operation. 
 
5.3.2.1 Electrical specifications of IGBT devices 
 
The rated power of this machine is 15 KW, maximum current 29.3 A and maximum voltage 312 
V which impose DC link voltage 590V and IGBT/DIODE module 1200V-50A. All specifications 
and electrical parameters of IGBT module are presented in the datasheet [154]. 
 
5.3.2.2 Thermal analysis of IGBT devices 
 
The higher the maximum junction temperature Tjmax, the higher is the stress on the device which 
results in a reduced number of cycle. Therefore, the expected lifetime of the module decreases 
when the junction temperature increases. Paper [155] estimates the lifetime of the power module 
function of the chip temperature. It is expressed in the below equation: 
 = 2.55 ∗ 10 ∗ . ∗∆  (99) 

 
Where ∆Tj is the difference between junction temperature and reference temperature that should 
be 60˚C. Junction temperature will be calculated based on the Equation: 
 
 = + ∆   + ∆     (100) 

 
The ambient temperature is a constant, ΔTAmbient to Heatsink represents the temperature drop 
across the heatsink and it is calculated based on the total power losses from the IGBT and the 
diode. The ΔTIGBT module case to IGBT junction represents the temperature drop across the 
IGBT module case to the IGBT junction and it is calculated based on the total power losses from 
the IGBT as shown:  
 
 ∆   = ∗ ℎ    (101) 
 ∆     = ∗ ℎ    (102) 

 
Where Rth Ambient to Heatsink is the thermal resistance from ambient to heat sink; ℎ   = 0.26 /  and Rth case to junction is the thermal resistance of 
IGBT from case to junction which is determined based on datasheet of IGBT. 
 
During operation, the main losses in the converter are due to conduction and switching both in the 
transistor and the diode. Power losses calculation are represented in the following equation: [156] 
and  [157]. 
 
 . = 1

2 + ∗ cos
8 ∗ 0 ∗ + 1

8 + ∗ cos
3 ∗ ^2 (103) 
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 . = ∗ ( + ) ∗ 1 ∗ ∗ ( )  

 
(104) 

 . = 1
2 − ∗ cos

8 ∗ 0 ∗ + 1
8 − ∗ cos

3 ∗ ^2 
 

(105) 

 . = ∗ ∗ ( 1) ∗ ( )  
 

(106) 

 
Typically, Kv for IGBT losses is 1.3 to 1.4 and Kv and Kr for diode losses are 0.6 [156].  
 
The thermal effect will be treated in two cases: first, when the inverter is near to the machine and 
second, when the inverter is at 176.002 cm from the machine (176.002 cm corresponds to the 
length of the front of the Toyota Prius 2017). Based on thermal degradation the below equation, 
the temperature will be calculated at 176.002 cm and study its impact on inverter to optimize at 
the end the minimum allowable distance between machine and inverter where the machine is 
considered the source of the heat. 
 = − ∗ ∗ ∆

∆  (107) 
Where ∆∆  is the temperature gradient.  
 
5.3.2.3 Vibration analysis of IGBT devices  
 
As mentioned in the literature review, during normal operation the IGBT module is exposed to 
displacement caused by operation and pulsing frequency. So, when IGBT module are integrated 
in circuit with 66.8Hz as operation frequency and 500Hz as switching frequency the normal 
vibration will be 0.06 µm [148]. This value is considered as threshold value for the IGBT module. 
The IGBT module are exposed to random vibration in paper [153]. The maximum value supported 
by the module is 18.4 Grms where 1Grms=9.88m/sec2, this value is considered as an acceleration 
and the vibration can be expressed as amplitude (acceleration, velocity or displacement) or as 
frequency. In order to be compatible with the vibration model of the used machine, the acceleration 
must be converted into displacement [158]. Since the vibration is a random signal it wasn’t evident 
to do this conversion. Hence, according to the literature, we will consider the threshold vibration 
value of IGBT as 0.06 µm and the limited value as 957.75µm.  
Like the temperature analysis, the vibration analysis will be considered in the two cases mentioned 
above based on vibration degradation presented as: 
 
 Vib =  20 Log D  (108) 

 
Where Vib is in dB. Accordingly, we will use the following equation to convert from µm to dB.  
 
 dB = 20 log (   

 )  (109) 
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Where reference displacement is 10-6 µm based on norm ISO 1683. 
 
5.3.3 Impact of machine performance on VSI 
 In this section we will study the impact of machine’s faults on the power electronic devices of the 
VSI.  
The importance of this section rises from the sensitivity of the electronic components forming the 
power inverter to vital features like temperature, current, voltage, vibration… Hence, three types 
of faults in the machine will be elaborated from the most to less severe: demagnetization, turn to 
turn short circuit and the eccentricity fault. Impact of each fault on power electronics will be treated 
in electrical, thermal and vibratory domains. 
 
5.3.3.1 Healthy case 
 
We consider a case study with maximum value of output voltage 312V, DC link voltage 590V, 
phase angle 0.483 rad, modulation index 0.92, operation frequency 66.8 Hz and small switching 
frequency 500Hz in order to reduce the time of simulation. We must take at least one fundamental 
period with step =1/(Fs*100)   to simulate the results which correspond to 794 samples in 
one period, which is a long time simulation. Or, in healthy case the machine is symmetric; all poles 
are identical. The time needed for any point at the rotor to sweep one pole is 0.00288 sec. So, the 
simulation step will be 0.00288 sec. 
Table 27 shows all measurements under normal case. 
 

TABLE 27: MEASUREMENTS RESULTS UNDER NORMAL OPERATION 
Measurements  Parameters  Value 

 
 
 

Output Voltage 

VA_rms_total 269.6688 
VA_rms_fundamental 231.6185 

THDVA  0.0266 
VB_rms_total 243.1782 

VB_rms_fundamental 204.1319 
THDVB 0.0306 

VC_rms_total 270.6204 
VC_rms_fundamental 231.6204 

THDVC 0.0268 
 

Stator Current 
IA_rms 12.7474 
IB_rms 11.4956 
IC_rms 12.7661 

Source Current is_rms 19.3490 
is_av 16.5125 

Electromagnetic torque Te 133.49 
Air gap flux density Bav 0.59 
Max temperature at 

boundary 
T˚C 115.6005 

Vibration  Displacement (m) 2.7195e-05 
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5.3.3.2 Demagnetization fault 
 
The most sever fault in permanent magnet machine is demagnetization, that occur at magnet level 
due to a crack. However, due to the crack, the density of flux lines in the machine has increased at 
the two right and left side of the magnet; this will increase the flux focusing in the teeth of the 
laminated sheet.  
The air gap flux density in the area above the crack has almost conserved its shape but it has 
slightly decreased. The air gap flux density, over the pole containing the crack, encountered a high 
flux density due to flux focusing and a slight decrease above the crack; this means higher average 
air gap flux density, hence, higher torque.  
The electromagnetic force in the area above the crack decrease and the displacement in the 
machine’s periphery directly above the crack decreases as indicated in Table 28. 

  
TABLE 28: MEASUREMENTS RESULTS WITH DEMAGNETIZATION FAULT 

 Parameters 
 

 1 mm crack 3 mm crack 
 
 
 

Crack  

Electromagnetic  Te(N.m) 153.28 132.25 
Bav(Tesla) 0.67 0.58 

Temperature T˚C 115.5242 115.5242 
Vibration displacement(m) 4.0281e-05 4.06e-05 

 
 

Electrical  
Stator current 
(rms value) 

12.3572 12.3572 
Source current 

 (average value) 
16.5406 16.5406 

Stator voltage  
(rms value) 

261.4121 261.4121 
 
It is noted that the displacement in case of crack increased compared with the healthy case; whereas 
the temperature remains the same. Hence, an analysis should be done, by mean of the analytical 
equations previously presented, to figure out the impact of the vibration increase on the inverter. 
The impact of this fault at the thermal level is nonexistent.  
 
5.3.3.3 Turn to turn short circuit fault 
 
Short circuit may occur at winding level. It may start as turn-to-turn short circuit and the number 
of shorted turns increases till all the coil is short circuited, if the cause of the fault persists [159]. 
Table 29 shows the measurement results of this case.  
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TABLE 29: MEASUREMENTS RESULTS WITH TURN TO TURN SHORT CIRCUIT FAULT 
 Parameters 

 
 2 turn to 

turn 
6 turn to 

turn 
 
 
  

Short circuit 

 
Electromagnet

ic  
Te(N.m) 95.05 91.95 

Bav(Tesla) 0.41 0.35 
Temperature T˚C 185.4478 217.8575 

Vibration displacement(m
) 

3.9861e-05 8.8695e-05 
 
 

Electrical  
Stator current in 

phase a 
(rms value) 

2.1*Irated 2.9*Irated 

Source current 
 (average value) 

24.4812 28.1126 
Stator voltage  
Phase a (rms 

value) 
270.0054 269.9830 

 
Irated is the nominal value in healthy case.  
As shown in table 29, temperature, stator current and vibration increase when short circuit fault 
occurs. The average air gap flux density and the torque decrease due to the weakening of the 
magnet caused by the high temperature. At six turns to turn SC, the current value will exceed the 
rated value of IGBT, this will induce damage in the power device. In this case, the protective 
device should be alerted and act to protect the system.  
At six turns to turn SC, the maximum temperature at the boundary of the machine is 217.8575 ˚C, 
so, the T˚C at the encasement of the machine will be less than the maximum T˚C of the machine’s 
boundary by 63.5˚C [158].  
Thus, the ambient temperature around the inverter will increase to 154.357˚C. Based on Equations 
(94) to (101) the degradation of the lifetime function of junction temperature during turns to turn 
short circuit fault is calculated and illustrated in figure 148. At six turns to turns, lifetime of IGBT 
modules is 266.3560 cycles. 
 

 Figure 148: Lifetime of IGBT versus junction temperature 
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5.3.3.4 Eccentricity fault 
 
The impact of the 10 % eccentricity fault on the machine and inverter parameters are illustrated in 
table 30. 
 

TABLE 30: MEASUREMENTS RESULTS UNDER ECCENTRICITY FAULT 
 Parameters 

 
 value 

 
 
 

Eccentricity  
10% 

Electromagnetic  Te(N.m) 148.68 
Bav(Tesla) 0.65 

temperature T˚C 115.5242 
vibration displacement(m) 4.7690e-05 

 
 

Electrical  
Stator current 
(rms value) 

11.1358 
Source current 

 (average value) 
12.0727 

Stator voltage  
(rms value) 

227.1546 
 
Compared to the healthy case, the displacement of the machine has increased in this faulty case, 
whereas the temperature remains intact. The impact of this increase in the machine’s vibration 
level, on the inverter, will be analyzed in the following section. 
 
5.3.3.5 Degradation of temperature and vibration during the three types of faults 
 
Taking into account the distance between inverter and machine, the temperature and vibration will 
degrade between them. Table 31 illustrates the degradation of vibration and temperature at the 
inverter level. 
The machine is considered as a heat source.  
Temperature and vibration values will be calculated based on Equations (102) and (103). The 
distance between the machine and the inverter will be 1.76 m. 
 

TABLE 31: DEGRADATION OF TEMPERATURE AND VIBRATION FROM THE MACHINE TO THE INVERTER 
 Displacement (µm) Temperature (˚C) 

Crack 1mm 69.18 103.0223 
Crack 3mm 70.019 103.0225 

2 turn to turn SC 108.5 147.8 
6 turns to turn SC 241.43 158.78 
Eccentricity 10% 126.42 103.0242 

 The calculated values, presented in table 26, and the threshold tolerated values of temperature and 
vibration of the inverter, mentioned previously, are compared. We conclude that, native faults in 
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the machine has no harmful impact on the inverter unless the fault worsen and reach an advanced 
stage.  
However, some remarks that are useful for the optimization of machine and inverter location inside 
the vehicle are noted: 

- The maximum temperature at six turns to turn short circuit doesn’t exceed the maximum 
allowable junction temperature. The short circuit is assumed not to propagate more since 
the protective device should be sized to sense this fault. Thus, the efficiency of the cooling 
system can be reduced and designed accordingly.  

- The location of the inverter can be optimized. No need to place it far from the electric 
machine where in many vehicles it’s placed in the baggage and occupy a relevant volume, 
in the aim of protecting it from heat and vibration.   

 
5.3.4 Impact of VSI’s faults on PMM 
 
Semiconductors are an important source of failure in traction systems. Failures occurring on power 
switches can affect the function of power converters and spread through the traction chain 
elements. Authors in [131] estimated that 40% of failures can be attributed to semiconductors 
faults and 39% to their auxiliary circuits. Driver circuits should be reliable enough, to prevent 
additional sources of failure. 
Switch breakdown may result in switch open circuit or switch short-circuit. 
In practice, the SC switch failure is most common compared to the OC failure (85% for SC and 
15% for OC). In the coming sections the inverter switch faults, more precisely, open circuit and 
short circuit faults in IGBTs will be investigated. In addition to the open phase fault. 
 
5.3.4.1 Single switch short circuit fault 
 
Short-circuits are the most serious class of faults in power electronics converters. If a single switch 
is short-circuited, its phase pin is directly connected to the DC bus. When the lower switch is gated 
to be ON, the source will be shorted and a dangerous failure occurs. So, in this case the gate signal 
of the lower switch in the same branch must be immediately turned off to prevent critical situation. 
Figure 149 shows the waveforms of phase currents when IGBT1 is shorted at 0.015 seconds, after 
one period of healthy operation. The spectrum of the output voltage presents a dc component.  
The average output voltage, stator current, source current, torque and air gap flux density are 
illustrated in table 32. 
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 Figure 149: electrical measurements and harmonic spectrum of output voltage during IGBT1 short-circuit 
faulty 

  
TABLE 32: MEASUREMENTS RESULTS IN IGBT1 SHORT-CIRCUIT FAULT 

Measurements  Parameters  IGBT1 SC 
 
 
 

Output Voltages 

VA_rms_total 231.8209 
VA_rms_fundamental 82.1439 

THDVA  0.1489 
VB_rms_total 244.2722 

VB_rms_fundamental 179.2459 
THDVB 0.0450 

VC_rms_total 253.8740 
VC_rms_fundamental 200.6002 

THDVC 0.0364 
 
 
 

Stator and Source current 

IA_rms 10.9496 
IB_rms 11.5445 
IC_rms 11.9995 
is_rms 18.9955 
is_av 15.4281 

Electromagnetic torque Te 130.68 
 Average air gap flux 

density 
Bav 0.59 

 
The results in the above table shows that the impact of IGBT short circuit on the machine’s 
performance is insignificant where a decrease of 2% in the electromagnetic torque is tracked. 
 
5.3.4.2 Single switch open circuit fault 
 
Open-circuits are the other serious class of faults in power electronics converters. If a single switch 
is open-circuited, its phase pin is not connected to the DC bus or to the machine and the delivered 
power from the inverter to the machine will be reduced. 
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 Figure 150: Electrical measurements when IGBT1 open-circuit (left)  and IGBT2 open circuit (right) 
  

 Figure 151: harmonic spectrum of output voltage in single open circuit fault 
 
Figure 150 shows the waveforms during a single open-circuit fault in the upper power switch 
IGBT1 and lower power switch IGBT2 occurring at 0.015s. When an open-circuit occurs on 
IGBT1 at 0.015 s, current of phase a cannot be positive because the path through IGBT1 form the 
capacitor to winding a is open. Similarly, when IGBT2 is open-circuit, winding a current is non-
negative under this fault. Once the open-switch faults appear, the current curve becomes 
unidirectional and asymmetric [160]. Also, the switch voltage cannot be described by the equations 
(110), (111), (112), (113), (114) and (115). As shown in figure 151, the spectrum of output voltage 
of phase a presents a dc component. 
  
 1 = (1 − ) ∗  (110) 
 2 = ∗  (111) 
 3 = (1 − ) ∗  (112) 
 4 = ∗  (113) 
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 5 = (1 − ) ∗  (114) 
 6 = ∗  (115) 

 
The average output voltage, stator current, source current, torque and air gap flux density in this 
case are illustrated in table 33. 
 

TABLE 33: RESULTS WHEN IGBT1 OR IGBT2 IS OPEN-CIRCUITED 
Measurements  Parameters  IGBT1 Open IGBT2 Open 

 
 
 
 

Output Voltages 

VA_rms_total 188.1346 193.2005 
VA_rms_fundamental 115.0120 116.6212 

THDVA  0.0754 0.0750 
VB_rms_total 232.1087 230.2512 

VB_rms_fundamental 186.1618 185.7714 
THDVB 0.0364 0.0359 

VC_rms_total 241.8622 249.5117 
VC_rms_fundamental 200.0118 202.9447 

THDVC 0.0323 0.0336 
 
 

Stator and Source 
Current 

IA_rms 8.9003 9.1258 
IB_rms 10.9743 10.8826 
IC_rms 11.4338 11.7938 
is_rms 14.2069 15.9919 
is_av 10.7018 12.2660 

Electromagnetic torque Te 98.28 125.29 
Average air gap flux 

density 
Bav 0.59 0.59 

 
The occurrence of open circuit fault in one of the inverter’s IGBTs has a negative impact on the 
machine’s performance where its electromagnetic force decrease in a percentage between 6% and 
27 %. 
 
5.3.4.3 Open phase fault 
 
When an open circuit fault occurs in a leg of the VSI no current will pass through this phase to the 
motor as shown in figure 152 where the current in the opened phase a becomes zero. 
The average output voltage, stator current, source current, torque and air gap flux density in this 
case are illustrated in table 34. 
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 Figure 152: Electrical measurements in open leg faulty 
 

TABLE 34: MEASUREMENTS RESULTS WHEN PHASE A IS OPEN 
Measurements  Parameters  phase a open 

 
 
 
 

Output Voltages 

VA_rms_total 0.0054 
VA_rms_fundamental 0.0002875 

THDVA  7.3835 
VB_rms_total 218.5273 

VB_rms_fundamental 184.9293 
THDVB 0.0313 

VC_rms_total 218.6757 
VC_rms_fundamental 185.0858 

THDVC 0.0313 
 
 

Stator and Source Current 
IA_rms 0.0110 
IB_rms  10.3304 
IC_rms 10.3369 
is_rms 11.5118 
is_av 7.3702 

Electromagnetic torque Te 77.79 
A average air gap flux density Bav 0.588  

The impact of the open phase fault on the machine’s performance is flagrant where its 
electromagnetic fault decreased by 41% compared with the healthy case. 
 
According to the results presented in the above tables, single switch open circuit, short circuit and 
open leg fault affects the operation of the machine in many ways: 
- Current and voltage in all phases are affected under faulty operation. Voltage in phase a is -20% 
in case of SC, -31% in case of single OC, compared to the rated value; this reduces the power 
delivered to the machine. 
- The power electronics circuit becomes unbalanced. This electrical unbalance fact leads to both 
electrical and mechanical damage to the electrical machine [161][162]. 
 
 + + ≠ 0 (116) 

(117) 
 + + ≠ 0  
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- THD of output voltage is greater than 3% (threshold value of harmonics for PMM) 
- Torque is -26.39% of rated value in case of IGBT1 OC, - 41.7% in case of open leg fault and -
2% in case of SC 
- High oscillation in the torque 
- Decrease in power factor  
 
We note that, faults of small scale in the inverter have low impact on the air gap flux density. Study 
in [24] show that, in PMM, the main source of the flux in the air gap is the magnet, stator current 
don’t have a big impact on the air gap flux density. This is validated by this chapter. When a single 
short circuit occurs in the VSI, the air gap flux density and the torque face a small variation; it 
remains almost intake. When an open circuit occurs in one IGBT of the VSI, the influence on the 
PMM depends on the location of IGBT. The influence on the torque can be 7% or 27 %.   
In fact, this shows that the influence of relevant inverter’s faults on PMM is not substantial. This 
can be interpreted when we recall that in PMM the main source of gap flux density comes from 
the magnets in the rotor. The investigated faults in this section affect the stator’s involvement in 
the total air gap flux density in the machine which is relatively small.  
This highlight the advantage of using permanent magnet machine in such application. 
 
This interpretation is very logical since we are operating in open loop system; there is no feedback 
to upgrade the stator involvement in the air gap flux by increasing/decreasing the power coming 
from the source accordingly. 
 
It is expected that the performance of the system will change in the case of closed loop, albeit in a 
small range. To clarify this matter, a closed loop system will be built in the next section. The case 
of machine demagnetization will be treated for demonstration. 
  
5.4 Vector control for the PMSM 
 The most popular method used to control PMSM is vector control, which can be field oriented 
control or direct oriented control. Paper [163] proposes a new method for PMSM drive based on 
field-oriented control and space vector modulation. In this method, the reference currents of 
PMSM are calculated in terms of minimum torque ripples and reference speed operation. The 
machine is modeled in d-q axis. A DTC is presented in [164]. This paper shows that the DTC-
SVM offers very good speed control performance. The analysis indicates   that the increase of 
electromagnetic torque is proportional to the increase of the angle between the stator and rotor flux 
linkages. In our application, we need to keep the torque at reference value.  
So, we will apply the DTC presented in this paper but the output will be the torque instead of the 
speed. In this approach, the output torque will be adjusted to a desired value by controlling the 
electrical power coming from the storage device (the battery) through the inverter. To increase or 
decrease the torque we will increase or decrease the intervention of the stator in the average air 
gap flux density knowing that the torque is directly proportional to it.  
  
In figure 153, a block diagram representing the coupling between the PMM, the inverter and the 
closed loop control system is illustrated.  
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 Figure 153: Direct torque control for PMSM 
 
Where ∆δ is the increment of load angle. Ys is rotor position. Ws is air gap flux density. Is is 
source output current. SA, SB and SC are the inverter switching vectors. Te is the desired torque. 
Ta is the actual torque.   
Due to this direct torque control, the input power is no longer independent of the output power of 
the machine. Suppose that we desire to get a nominal output torque from the machine. In healthy 
case, the nominal input power of the machine will be enough to get this desired torque. However, 
the problem incarnates when a fault occurs. 
As we clarified previously, faults like demagnetization and eccentricity increase the machine’s 
torque; whereas others like turn to turn short circuit fault decrease the torque. 
 
The governing analytical equations of the system are presented below. 
 
The output of the PID controller ∆δ is expressed as: 
 
 ∆δ( ) = ∗ ( ) + ∗  ( ) + ∗   

 
(118) 

e(t) represents the error. 
 
 ∅ = atan  (119) 

 
Vq and Vd are the quadrature and direct machine voltage coming from Clark’s transformation. 
 
 = ( + ) (120) 
 = ∗ + ( ∗ sin( + ∆δ) − ws ∗ sin( ))/∆  (121) 
 = ∗ + ( ∗ cos( + ∆δ) − ws ∗ cos( ))/∆  (122) 

 
∆t is the sampling time. 
wsref is the reference air gap flux density. ws is the simulated air gap flux density. 
ys is the rotor position.  
iq and id are the quadrature and direct current coming from Clark’s transformation. 
rs is the stator resistance. 
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The strategy followed to achieve the direct torque control of the PMM is illustrated in figure 154. 

 Figure 154: Block diagram of DTC strategy 
     
To identify the effect of integrating a closed loop control system on the machine operation in the 
first stage and on the prognostic decision in the second stage, a comparison study between open 
loop system and closed loop system will be conducted. 
A simulation for the case of 1 mm crack in one piece of magnet will be generated when the system 
is in open loop and when it is in close loop. 
In chapter 3, we saw that the torque has increased in the case of crack in the magnet compared to 
the healthy case when using an open loop system. In open loop analysis, the input electric power 
is constant and independent of the output requirement.  
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We applied the closed loop system to control the output torque by adjusting the input power of the 
machine coming from the inverter side. Hence, in the case of 1 mm crack fault in the magnet, the 
controller will decrease the output torque by decreasing the input power. This will decrease the 
stator current which decrease the intervention of the stator in building the air gap flux density; in 
other words, this decrease the power of electromagnetic coupling between the stator and the rotor. 
To decrease simulation time, we used the static electromagnetic FEM that will be ran each machine 
revolution; hence the simulation step is 380°. At each instant of time ‘t’, the thermal and vibration 
FEM models are computed too. 
Figure 155 shows the block diagram of this combination. 
 

 Figure 155: Block diagram of closed loop combined model 
 
Figure 156, 157, 158 shows the difference between the healthy and faulty measurements of Torque, 
vibration and temperature in closed and open loop system; they are designated by ∆Torque, 
∆displacement and ∆Temperature respectively. 
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 Figure 156: ∆Torque in case of 1 mm crack (Open and Closed loop) 

 Figure 157: ∆Displacement in case of 1 mm crack (Open and Closed loop) 
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 Figure 158: ∆Temperature in case of 1 mm crack (Open and Closed loop) 
 
In the closed loop system, ∆Torque is around zero since we applied a vector control system with 
torque reference; however, in the open loop system, ∆Torque is high because the presence of crack 
in the magnet impacted the air gap flux density which in his turn impacted the torque knowing that 
the air gap flux density and the torque are directly proportional. 
∆Displacement is detectable in the closed and open loop system; however, it is much higher in the 
closed loop system. 
∆Temperature is zero in the open loop system; as we stated in chapter 3, there is no change in the 
machine’s temperature when a crack occurs in one piece of magnet. However, in the closed loop 
system, there is a detectable change in the machine’s temperature; to adjust the machine’s torque 
to the reference value, stator’s current will be adjusted, which leads to changes in machine’s 
temperature.  
In the open loop system, there is no change in stator’s current. However, in the closed loop system 
the difference is to be mentioned. Figures 159 and 160 shows the instantaneous current in phase 
A and the high envelope of this current respectively, for the open and close loop system. 
   

 Figure 159: Instantaneous current in phase A in case of 1 mm crack (Open and Closed loop) 
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Figure 160: The high envelope of the signals in figure 159 

 
Comparing the signals in the case of open and closed loop, we can see disparities in all system’s 
aspects. This will surely affect the prognostic strategy. Table 35 will show comparison between 
machine’s parameters in open and closed loop system.    
 
TABLE 35: COMPARISON BETWEE MEASUREMENTS OF CLOSED LOOP AND OPEN LOOP SYSTEM-CASE OF CRACK 

IN THE MAGNET 
Fault Parameters  Open loop  Closed loop 

 
 

Crack 1mm 
Torque 151.39 128.96 

Stator current  
(average value) 

18.66 13 
Source current 
(average value) 

16.24 9.7 
Average boundary 

temperature 
124.27 109.68 

Average boundary 
displacement 

7.2216e-06 1.3882e-05 
 
First, the torque should no longer be used as an input for the prognostic approach since the 
controller will tend to adjust it. The sensor will detect the same value wherever was the state of 
the machine. Second, temperature and vibration should be investigated again for all the machine 
fault cases where the extracted features in the open loop system may not be useful anymore for the 
closed loop system to achieve the right prognostic decision.  
    
We note that the difference between the signals generated in open loop in this chapter and chapter 
3 is due to the simulation step and electromagnetic FEM model used. In chapter 3, the dynamic 
electromagnetic finite element model is used where the rotor step is between 1 and 4 degrees. 
However, to minimize the time of simulation, in this chapter we used the static finite element; an 
instantaneous simulation is done every revolution where the rotor sweeps 360 degrees. 
 
5.5 Features extracted from closed loop system data sets 
 
In this section, useful features for fault identification, of the closed loop system, will be extracted. 
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In figures 161, 162 and 163 we can see closed loop torque, temperature and vibration data of the 
healthy machine and machine with 1 mm crack in one magnet. 

 Figure 161: Torque of closed loop system of healthy machine and machine with 1 mm crack 

  Figure 162: Temperature of closed loop system of healthy machine and machine with 1 mm crack (Zoom in at 
the right) 
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Figure 163: Vibration of closed loop system of healthy machine and machine with 1 mm crack (Zoom in at the 

right) 
 
The classical introduced features in section 3.2 will be evaluated for the above data sets.  
 
In table 35, an illustration of the previously mentioned signal statistical characteristics, are 
presented. 
 

TABLE 36: STATISTICAL FEATURES OF CLOSED LOOP DATA SETS 
Data Torque Temperature Vibration 

Machine’s 
State 

Healthy Crack 1 mm Healthy Crack 1 mm Healthy Crack 1 mm 
Statistical 
feature 
Peak to peak 
value 

198.42 144.82    80.64 80.64  8.4472e-04 4.3134e-05 
Average 124.28   128.96  105.05 109.68 1.0379e-05 1.3882e-05 
RMS 128.76 129.29 105.64 113.01 6.8310e-05 2.0318e-05 
Kurtosis 3.7574 177.0935 4.32 2.71 32.3175 3.6031 
Skewness -0.0831 -12.6525 -0.8951  0.32 

 
0.6461 -1.5183 

Crest factor 1.5411 1.1202 1.6124 1.5784 6.2220 1.1402 
Pulse factor 1.5966 1.1230 1.8935 1.9011 40.9505 1.6688 
Shape factor 1.0360 1.0025 1.1743 1.2044 6.5815 1.4636 
Standard 
deviation 

33.6994   9.2157 35.0401 38.0505 6.7603e-05 1.4852e-05 
Variance 1.1357e+03 0.0849e+03 1.2278e+03 1.4478e+03 4.5702e-09 2.2059e-10 

 
For the torque data sets, all features except average and shape factor are good fault indicator. This 
is contrary to the open loop system where the average was one of the good fault indicator. This is 
expected since the controller tend to adjust the torque to a pre-settled normal value.   
For temperature data sets, contrary to the open loop system, there is high disparity in the kurtosis 
and skewness and small disparity in the peak to peak and average value. A small difference is 
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detected in the standard variance and the variance. This is expected; the temperature is directly 
proportional to the current flowing in the stator’s coil. The average current flowing in the stator’s 
coil changes in the closed loop system (figure 159), hence the machine temperature changes too.  
For the vibration data sets, all the features are good fault indicator.    
 
In figure 164, 165, 166 we can see the spectral power density in dB of the torque, temperature and 
vibration respectively, for the healthy machine and machine with 1 mm crack in one magnet. 
 

 Figure 164: Torque spectral power density, closed loop, of healthy machine and machine with 1 mm crack 

 Figure 165: Temperature spectral power density, closed loop, of healthy machine and machine with 1 mm crack 
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 Figure 166: Vibration spectral power density, closed loop, of healthy machine and machine with 1 mm crack 
 
The average spectral power of torque, temperature and vibration is illustrated in table 36.  
There is disparity in the average spectral power density of the torque, however this disparity was 
much greater in the case of open loop system.  
The average spectral power is the temperature data signal is the same; this similarity is like the 
open loop system. 
For the vibration signal, there is disparity; however, this disparity was greater in the open loop 
system.   
 

TABLE 37: AVERAGE SPECTRAL POWER DENSITY OF TORQUE 
Data set Torque Temperature Vibration 
Machine’s 
State 

Healthy Crack 1 mm  Healthy Crack 1 mm  Healthy Crack 1 mm  
Average 
spectral 
power (N.m)2 

31.94 
    

33.16 7.65 
     

7.75 0.4754e-11 
 

    0.0614e-11 

 
 
The Fourier transformation of torque, temperature and vibration is illustrated in figures 167, 168, 
and 169 respectively.  
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Figure 167: Fourier transformation of torque, Closed loop system 

We can see that the harmonics at frequencies higher than the fundamental has no critical peaks, 
hence, amplitudes of frequency components are not a good indicator for fault detection when 
interpreting torque signal.    
 

Figure 168: Fourier transformation of temperature, Closed loop system 
 
Like the open loop system, a sharp peaks of distinct amplitudes are detected at the second 
harmonics of the spectrum which makes Fourier transformation and harmonics good fault indicator 
for temperature signal, in the case of closed loop system. 
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Figure 169: Fourier transformation of temperature, Closed loop system 
In the closed loop system, unlike the open loop system, there is peaks of distinct amplitudes along 
Fourier spectrum; in specific, the peak at the second harmonic. Hence, this is a good fault indicator 
for the vibration signal.  
 
After examining all the signal features of torque, temperature and vibration, a summary and a 
comparison between the effectiveness of these data features on fault detection in open loop and 
closed loop system is presented in table 38. We recall that ‘Y’ is for yes and ‘N’ is for no. the 
features nominated for the open loop system is designated in BOLD.  
  

TABLE 38: COMPARISON BETWEEN THE EFFECTIVENESS OF DATA FEATURES ON FAULT DETECTION IN OPEN LOOP AND CLOSED LOOP 
SYSTEM 

 Feature 
Torque 

PP Mean RMS Ku Sk SF PF CF SD V APS  AFC 
Open Loop Y Y Y Y Y N Y Y Y Y Y N 
Closed Loop Y N N Y Y Y Y N Y Y Y N 
 Temperature 
Open Loop N N N N N N N N N N N Y 
Closed Loop N Y Y Y Y N N N Y Y N Y 
 Vibration 
Open Loop Y Y Y Y Y N N N Y Y Y N 
Closed Loop Y Y Y Y Y Y Y Y Y Y Y Y 

 
As we can see, the ‘Mean’ of the torque is no more efficient for fault detection in closed loop 
system. This was expected since the used controller is based on torque control. Some other features 
work well in closed loop system like kurtosis, skewness, shape factor … the kurtosis will be 
selected due to the high disparity between the healthy case and case with demagnetization fault. 
 
In the open loop system, all the features except amplitude of frequency component are not good 
for fault detection when evaluating the temperature data set. However, in closed loop system, many 
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features work well for fault detection like mean, rms, kurtosis, etc, in addition to the amplitude of 
the frequency component. We will select the ‘mean’ of the temperature data set as fault detection 
feature since it has a computation time less than the ‘amplitude of the frequency component’. 
 
For the vibration data sets, some features were not useful for fault indication of open loop system 
like shape factor, Pulse factor and crest factor; however, for closed loop system, all the features 
show disparity between healthy machine and faulty machine. The selected feature will be the 
‘mean’. 
 
The selected features for each data set will be the inputs/observers of the prognostic approach.    
 
5.6 Impact of closed loop system on the prognostic model 
 
The dynamic electrical, thermal and vibration behavior of the electrical machine is widely different 
if we are dealing with open loop system or closed loop system. Hence, the impact of those changes 
on the prognostic hidden Markov model should be evaluated. 
 
As we mentioned previously, in chapter 4, the Hidden Markov Model is constituted of the 
transmission matrix and the emission matrix. The probabilities in those matrices will differ since 
the response of different machine parameters varied in the case of open loop and closed loop 
system. Moreover, the inputs, designated by observers, that drives the model are the selected 
features of torque, temperature and vibration; as we clarified in the previous section, the values of 
those features changes if we are operating an open loop system or a closed loop system. In other 
words, the percentages in the HMM’s matrices and the inputs of the model will change in the case 
of closed loop system. 
 
Concerning the output of the model and the prognostic decision, of course it will remain the same. 
Although the probabilities and inputs values changed, they are still designating the same machine 
state.   
 
The percentage change in torque, temperature and vibration of the machine in the case of healthy 
machine and faulty machine with 1 mm crack in one magnet will be investigated in table 39. The 
data signals of the machine parameters in the case of open loop system and closed loop system 
differs widely. Table 39 shows the percentage changes in the average of those signals in the two 
cases.   
 

TABLE 39: PERCENTAGE DIFFERENCE IN MACHINE'S PARAMETERS IN THE CASE OF OPEN LOOP AND CLOSED LOOP SYSTEM 
 Open Loop Closed Loop 
Torque +13.4 % +3.6% 
Temperature 0% +4.2% 
Vibration ±377 % ±236.2% 
Stator current 0% -23.33% 
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To illustrate the difference in the HMM in the case of open loop and closed loop, the transition 
and emission matrix will be implemented in the two cases following the same technical steps 
presented in chapter 4. 
 
Since we are considering one type of fault which is the 1 mm crack in one magnet, the number of 
states is 13 encountering the healthy state and the states of a crack in one of the 12 magnets. The 
size of the transition matrix will be (13 x13). This is common for the open loop and closed loop 
system. 
 
 

=
0.6 0.4

12 ⋯ 0.4
120 1 0 0⋮ 0 ⋱ 00 ⋯ 0 1

 
(123) 

 
In the open loop system, the useful measurable parameters for crack detection is vibration and 
torque; we will eliminate the temperature since it shows no changes when a 1 mm crack fault 
occurs. Hence, the size of the emission matrix is (13 x 16); 13 is the number of states and 15 refers 
to 13 vibration ranges and two torque ranges. 
 
 

=
0.6 0 ⋯ 0 0.4 00 0.96 0 ⋮ 0 0.04⋮ 0 ⋱ 0 ⋮ ⋮0 ⋯ 0 0.96 0 0.04

 
(124) 

 
In the closed loop system, the useful parameters for crack detection is vibration and temperature; 
we eliminated the torque since we have torque vector control, the input power of the machine will 
be adjusted to maintain the value of the torque almost constant. The size of the emission matrix is 
(13 x 15); 13 is the number of states and 15 refers to 13 vibration range and two temperature 
ranges. 
 
 

=
0.6 0 ⋯ 0 0.4 00 0.98 0 ⋮ 0 0.02⋮ 0 ⋱ 0 ⋮ ⋮0 ⋯ 0 0.98 0 0.02

 
(125) 

 
Due to the high change in the machine vibration in the open and closed loop case, the probabilities 
in the emission matrices linked to torque and temperature is relatively small compared to the 
probabilities linked to the vibration. Moreover, the probabilities linked to vibration in the two 
systems are very near: 0.96 and 0.98; this indicates that, for the same type of fault, the response of 
the machine’s vibration in the two systems is almost similar.    
 
To proof that the different emission matrices for the open and closed loop system will generate the 
same state sequence having the same observation sequence, an example will be considered and 
treated for the two cases. Let’s consider a sequence of observations {SOH, SOH, SOC}, from 
vibration sensor, corresponding to the states {SH, SH, SC} respectively. SOH designates the 
observer in healthy case. SOC designates the observer in the case of 1 mm crack in magnet 1 of the 
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machine. SH designates the state where the machine is healthy. SC designates the state where the 
machine contains a 1 mm crack in magnet 1.        
This sequence will be input for the HMM in the open and closed loop case. The trellis diagram of 
those two cases representing the Viterbi algorithm is illustrated in figure 170 and 171 respectively. 
 

 Figure 170: Viterbi algorithm for the open loop system 
 
In figure 170, at start, the probability that the system is healthy is ‘0.6’ and the probability that the 
system is faulty is ‘0.4’. The probability that the system state is SH if the observation is SOH is 
‘0.6’ and the probability that the system state is SC1 if the observation is SOH is ‘0’. Hence, the 
weight probability from ‘Start’ to SH is 0.36 (0.6*0.6) and the weight probability from ‘Start’ to 
SC1 is 0 (0.4*0). As we stated earlier in chapter 4, Viterbi will choose the path having the highest 
probability which is in this case 0.36 and the selected path is highlighted in red. 
The second observation is also SOH. The probability of remaining in state SH is ‘0.6’ (from the 
transition matrix). The probability of being in state SH if the observation is SOH is ‘0.6’. The 
probability from the previous state is 0.36. Hence, the weight probability of remaining in state SH 
when the second observation is SOH will be 0.1296 (0.36*0.6*0.6).  
The third observation is SOC1. The probability of moving to state SC1 if the previous state is SH is 
‘0.4/12’. The probability from the previous state is ‘0.1296’. The probability of being in state SC1 if the observation is SOC1 is ‘0.96’. Hence, the weight probability of becoming in state SC1 is 
0.0041 (0.1296*00.4/12*0.96). 
Following the same logic calculation, we got the weighted probabilities of all the paths. The path 
of higher probability is highlighted in red. Accordingly, the adequate sequence of states is {SH, SH, 
SC1}. This path selected by Viterbi algorithm is called ‘survivor path’.  
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 Figure 171: Viterbi algorithm for the closed loop system 
 
Following the same logical calculation, the probability of the paths in figure 171 are calculated. 
We remark that the probability of the third path. It is calculated using the emission matrix of the 
closed loop system where 0.1296*(0.4/12) *0.98=0.0042. 
 
Although different emission matrixes are used, the open and closed loop system generate the same 
sequence of states for the same sequence of observations. In figure 172, a diagram illustrating the 
prognostic response in the case of 1 mm crack in one magnet is presented. 
 

 Figure 172: Diagram illustrating the prognostic approach in the case of closed loop system with 1 mm crack in 
one magnet 
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The input of the diagram in figure 172 is the features of the temperature and vibration data 
corresponding to a machine with 1 mm crack in magnet 1. The prognostic approach detects the 
presence of this fault. The RUL calculation of this type of fault is elaborated from the Maxwell 
stress tensor generated by the vibration FEM. Hence, the vibration FEM is conducted. This 
elaborated stress tensor will be the input of the RUL calculation equations that elaborate the time 
needed for the cracked magnet to fracture. 
 
Although the emission matrix will change in the case of closed loop system, the fault detection, 
the prognostic decision and the RUL calculation will remain the same. In other words, the same 
prognostic decision, machine state and RUL calculation, in each case, is deduced using different 
HMM model and different measureable inputs.  
  
5.7 Conclusion 
 
This chapter describes the examined three phase Voltage Source Inverter and its principal 
components. A switched state space model of VSI is developed to be combined in the coming step 
with the FEM of the machine. Different types of faults occurring in VSI are represented. As a 
result, Single SC and OC and Open phase are the most interested when studying faults interaction 
between machine and inverter. Then, the different techniques used to generate control signal is 
examined [129] [131]. 
 
We illustrated the threshold values of temperature, current, voltage and vibration of the power 
electronics used in our HEV application.  
 
Fault interaction between the electrical machine and the inverter was explored. The three types of 
faults, demagnetization, eccentricity and turn to turn short circuit are integrated in the machine to 
study their impact on the power devices; it has been shown that this impact is minor. Screw to that, 
switch short circuit and open circuit fault have been integrated in the inverter and results showed 
that they have a negative influence on the machine performance.  
 
A closed loop system was built to adjust the output torque of the machine to a desired nominated 
value. The goal was to figure out the performance of the system in the case of fault, explore the 
change in the machine’s measureable parameters and illuminate its impact on the prognostic model 
and prognostic decision. 
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General conclusion 
 
Hybrid electric vehicle is leading technology and concept in the field of renewable propulsion 
system. The most worrying issue that faces this application is its availability and reliability. Hence, 
assuring the proper health operation of the vehicle is very important to increase its integration in 
the market.  
To achieve this goal, a strategy is built to detect the primitive faults before it occurs or propagates. 
This is done by use of prognosis.  
The most critical element in the propulsion system is the electrical machine. It is the main element 
of the traction system and the costliest. Permanent magnet machine is widely used in such 
application due to its high power density and low power to mass ratio. In this research, a surface 
permanent magnet machine, used in HEV application, is used. After examining the different types 
of fault that may occur in this machine, a fault index that take into consideration the percentage of 
fault occurrence and the cost of the defected element was introduced; it has been shown that 
demagnetization is the most severed fault. 
  
The prognostic techniques, Hidden Markov Model, is used to detect faults in the electrical 
machine. The faults that mostly occur in the PMM are: demagnetization, turn to turn short circuit 
and eccentricity fault. 
 
Three dynamic parameters are considered while building the prognostic approach: torque, 
temperature and vibration. Those parameters are the mostly affected when a fault occurs in the 
machine. 
 
A prototype of the electrical machine where torque, temperature and vibration sensors are located 
to sense those parameters is not available. Hence, a correct and accurate model using 
electromagnetic, thermal and vibration finite element model is built for the machine in the case of 
normal operation and when a fault occurs. To precisely model the machine, those three finite 
element models are interrelated together to build a single model; since there is great interaction 
and dependency among them in reality, each one affects the other. Static and dynamic models are 
implemented. Fictive sensors are located at the boundary of the machine model and synthetic 
signals are collected. The change in parameters aspect at each type of fault is detected. The most 
appropriate features that point to the differences between those aspects are extracted.  
 
Simulation showed that for all the types of faults investigated: the vibration of the machine is 
largely affected, the temperature is affected only if the fault is turn to turn short circuit and the 
torque is affected in a relatively small range compared to the vibration. It has been shown that the 
average of the vibration, temperature and torque signals over one machine revolution is a good 
feature for fault detection. The extracted features from the vibration, temperature and torque 
signals will be the input of the Hidden Markov Model. It has been shown that torque temperature 
and vibration are useful for fault detection; temperature and vibration are useful for fault 
localization. 
 
A global Hidden Markov Model is built; its input is data coming from torque, temperature and 
vibration sensor. The prognostic strategy was able to detect the presence of fault at its early stage, 
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localize this fault and calculate the remaining useful life of faulty element. The remaining useful 
life of the machine in the case of crack in the magnet is based on the propagation analytical model 
of a longitudinal crack. The remaining useful life of the machine in the case of turn to turn short 
circuit is based on the aging equation of the stator coil’s insulation. 
 
After conducting this strategy for open loop system, a closed loop system is built. Modeling of the 
inverter is executed then coupled to the finite element model of the machine. The fault interaction 
between inverter and machine is showed. The encountered faults in the inverter are short switch, 
open switch and open phase. It has been shown that the impact of faults in the inverter are of small 
impact on the air gap flux density. After that, the closed loop feedback system is implemented. 
The impact of this controlled system on the measured parameters and on the prognostic model is 
illustrated.  
 
Hybrid electric vehicle and prognosis are upcoming and flourishing subjects; this open the horizon 
broadly for further researches and studies in this field. 
 
In the modeling domain  
The system model can be expended to encounter the storage device and electronic equipment other 
than the inverter. This will enrich the analysis where the model become closer to the real electrical 
system inside the vehicle. This modeling can encounter the thermal and vibration aspect of the 
system. 
Although two dimensional finite element model is enough for machine modeling since the 
electrical machine is similar along the shaft axes, in the case of fault, even in small case, this 
similarity is broken. Hence, a three dimensional finite element model will be a beneficial addition.   
 
In the field of fault detection and localization  
More than one fault can be integrated in a time where the impact of this multi fault on the vital 
machine parameters can be studied. Also multi fault can be integrated in the whole electrical 
system and the interaction between the elements of the propulsion system and its impact on the 
vehicle operation can be deliberated. 
Three machine faults are considered in this thesis, other types of mechanical and electrical fault 
can be easily integrated in the finite element model, analyzed and treated. 
 
In the prognostic axe  
A data driven model is implemented, the Hidden Markov Model. Other prognostic techniques can 
be implemented and compared to the technique presented in this thesis. Model based prognostic 
technique can be also built.    
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Appendix A: DIFFERENCE BETWEEN RTD AND 
THERMOCOUPLE SENSOR 

 
 RTDs (3-wire 100 ohm 

platinum probe is mostly used) 
Thermocouples (type J is 
mostly used for its temperature 
range) 

Temperature between −200 and 500 °C −180 to 2,320 °C 
Response time Lower Faster  
Size (Diameter) 3.175 to 6.35 mm less than 1.6 mm 
Accuracy and stability 
requirements 

capable of higher accuracy and 
can maintain stability for many 
years 

can drift within the first few 
hours of use 
 

Cost Less cost effective More cost effective 
Physical aspect  3-wire 100 ohm platinum probe consist of two dissimilar metals – 

iron and constantan – soldered 
together at one end creating a 
measurement junction at the tip 
of the probe 

Extension wire Normal copper wire Special wire 
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Abstract: The core of the work is to build an accurate model of the electrical machine where the prognostic technique 
is applied. In this thesis we started by a literature review on hybrid electric vehicles (HEV), the different types of 
electrical machine used in HEV’s and the different types of faults that may occur in those electrical machine. We also 
identify the useful monitoring parameters that are beneficial for those different types of faults. Then, a survey is 
presented where all the prognostic techniques that can be applied on this application are enumerated. 
The electromagnetic, thermal and vibration finite element model (FEM) of the permanent magnet machine is 
presented. The model is built at healthy operation and when a fault is integrated. The considered types of faults are: 
demagnetization, turn to turn short circuit and eccentricity. A confrontation between analytical and FEM (numerical 
method) for electromagnetic machine modeling is illustrated. Fault indicators where useful measured parameters for 
fault identification are recognized and useful features from the measured parameters are extracted; torque, temperature 
and vibration signal are elaborated for healthy and faulty states. 
The strategy of the adopted prognostic approach which is Hidden Markov Model (HMM) is explained. The technical 
aspect of the method is presented and the prognostic model is formulated. HMM is applied to detect and localize small 
scale fault small scale faults were where a systematic strategy is developed. The aging of the machine’s equipment, 
specially the sensitive ones that are the stator coil’s and the permanent magnet, is a very important matter for RUL 
calculation. An estimation strategy for RUL calculation is presented and discussed for those mentioned machine’s 
components. 
Closed loop configuration is very important; it is adopted by all available vehicle systems. Hence, the same previously 
mentioned steps are applied for a closed loop configuration too. A global model where the input of the machine’s 
FEM comes from the modeled inverter is built.  
Keywords: Hybrid electric vehicle, electrical machine, permanent magnet machine, finite element model, prognosis, 
hidden Markov model, remaining useful life, demagnetization, turn to turn short circuit, eccentricity. 
Résumé : L’objectif de ce travail est d’élaborer un modèle performant/précis de la machine électrique permettant de 
proposer une technique de pronostic. Dans cette thèse, nous commençons par un état de l’art sur les véhicules 
électriques hybrides (VHE), les différents types de machines électriques utilisées dans les VHE ainsi que les différents 
types de défauts pouvant survenir dans ces machines électriques. Nous identifions également les indicateurs de défauts 
appropriés aux différents défauts considérés. Ensuite, une synthèse de techniques de pronostic pouvant être appliquées 
est proposée.  
Le modèle à éléments finis électromagnétiques, thermiques et vibratoires (FEM) de la machine à aimants permanents 
est présenté. Le modèle est élaboré en fonctionnement normal et défaillant. Les types de défauts considérés sont : 
démagnétisation, court-circuit et excentricité. Une comparaison entre les deux approches analytique et FEM (méthode 
numérique) pour la modélisation de machines électromagnétiques est effectuée. 
Les indicateurs de défauts analysés pour l’extraction les plus pertinents utilisent les différents signaux mesurées 
suivants : le couple, la température ainsi que les signaux vibratoires en états sains et défectueux. 
L’approche de pronostic adoptée qui est le modèle de Markov caché (HMM) est développée. L'aspect technique de la 
méthode est présenté et le module du pronostic est formulé. La méthode de HMM est utilisée pour détecter et localiser 
les défauts à petites amplitudes. Une stratégie systématique a été développée. Le vieillissement de l’équipement de la 
machine, en particulier des éléments sensibles comme la bobine de stator et l’aimant permanent, est une question très 
importante pour le calcul du RUL (Remaining Useful Life). Une stratégie d’estimation pour le calcul RUL est 
présentée et discutée.  
La configuration en boucle fermée est très importante. Elle est adoptée par tous les systèmes de véhicules disponibles. 
Par conséquent, les mêmes étapes mentionnées précédemment s'appliquent également à une configuration en boucle 
fermée. Un modèle global où l’entrée du FEM de la machine provient de l’onduleur modélisé est élaboré. 
Mots-clés : Véhicule électrique hybride, machine électrique, machine à aimants permanents, modèle à éléments finis, 
pronostic, modèle de Markov caché, durée de vie restante, démagnétisation, court-circuit, excentricité.  
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