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ABSTRACT 

The spatial extent of artificial light is increasing rapidly and significantly on Earth 

surface hence changing the nocturnal lightscape and threatening an important part of 

ecosystems. The rise in nighttime light levels induces a perturbation of the circadian rhythm 

and thus a modification of nocturnal, but also some diurnal, species behavior and interactions 

between species. Despite the spread of light pollution being of major concern, the knowledge 

gaps in this field limit the creation of regulations to reduce the impact of nighttime lighting on 

biodiversity. Therefore it is urgent to produce clear and practical information to build tools and 

define recommendations for land managers. 

In this context, the aim of the PhD thesis is to study the impact of light pollution on 

nocturnal fauna through two spatial scales in order to propose methods to evaluate and manage 

artificial light. We used bats as a model species as they are long-lived and nocturnal and thus 

highly impacted by light pollution. In addition, it has been shown that their population trends 

tend to reflect those of species lower in the trophic chain which makes them even more sensitive 

to anthropic pressures. 

First, we studied the effect of light pollution within cities. This spatial scale is both 

coherent with bats distance of movement and with the reality of public lighting management. 

Although some urban-adapted species living within large cities are considered to benefit from 

artificial light, this work showed that, at a scale including all aspects of bats daily travels, light 

has a negative effect on bats activity level. Also, even if a large part of light pollution is due to 

public lighting, the results show that private lighting should not be neglected. Beyond the 

impact on bat activity, artificial light can have a barrier effect when individuals are transiting 

and thus reduce the landscape connectivity. Whereas environmental policies are promoting the 

development of ecological corridors, not considering light pollution could significantly reduce 

their efficiency for nocturnal species. Modelling the link between biological data and landscape 

variables including light level allowed us to build adapted corridors for nocturnal species. This 

lead to the development of a tool to evaluate lighting scenarios that could be used prior to the 

implementation of a lighting plan in order to predict the impact it would have and hence adapt 

it to the local biodiversity issues. 

At a finer scale, it is necessary to understand which light characteristics are the most 

relevant levers of actions to formulate recommendations to limit light pollution impact on 

biodiversity. We carried a field work experiment in a protected area where conservation issues 

on bat species are even higher as the species most sensitive to light are protected there, together 

with their habitat, at the EU level. We worked at the interface between urban and semi-natural 

areas and showed that the illuminance was the most important light characteristic. Hence it is 

on this parameters that regulations should be applied in priority to limit the impact of light on 

areas that could potentially be used as corridors or dark refuges for sensitive species. 
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RÉSUMÉ 

L’emprise de la lumière artificielle s’étend de manière importante et rapide à travers le 

monde entier et est en train de changer le paysage nocturne menaçant ainsi une large part des 

écosystèmes. L’augmentation des niveaux de lumière la nuit entraîne une perturbation du 

rythme circadien et par là une modification des comportements des espèces nocturnes mais 

aussi diurnes et des interactions entre espèces. Malgré l’importance de l’enjeu que représente 

la pollution lumineuse, le manque de connaissances dans le domaine limite la création de 

règlementations pour réduire l’impact de l’éclairage nocturne sur la biodiversité. Il est donc 

urgent d’apporter des éléments concrets pour construire des recommandations et des outils 

d’évaluation à destination des gestionnaires du territoire. 

Dans ce contexte, l’objectif de cette thèse est d’étudier l’impact de la pollution 

lumineuse sur la faune nocturne à deux échelles paysagères afin de préconiser des méthodes 

d’évaluation et de gestion de l’éclairage artificiel. Nous avons utilisé les chauves-souris comme 

modèle d’étude car elles sont longévives et nocturnes et donc fortement affectées par la 

pollution lumineuse. De plus, il a été montré que les tendances de leurs populations tendent à 

refléter celles d’espèces plus basses dans la chaîne trophique, les rendant ainsi d’autant plus 

sensibles aux pressions anthropiques.  

Dans un premier temps, nous avons étudié l’effet de la pollution lumineuse à l’échelle 

de villes, une échelle paysagère en cohérence à la fois avec les distances de déplacement des 

individus et avec une réalité de gestion de l’éclairage. Malgré que les espèces anthropophiles 

vivant toujours dans les grandes villes soient considérée comme bénéficiant de l’éclairage 

artificiel, ce travail a montré qu’à une échelle regroupant tous les aspects des déplacements 

quotidiens des individus, l’effet global de la lumière est négatif. De plus, bien qu’une part 

significative  de la pollution lumineuse soit due à l’éclairage public de par sa permanence et 

son étende, l’étude montre  que l’éclairage privé n’est pourtant pas à négliger. Au-delà d’un 

effet sur le niveau d’activité, la lumière artificielle peut avoir un effet de barrière dans le 

déplacement des individus et ainsi réduire la connectivité du paysage. Alors que les politiques 

environnementales sont en faveur du développement de corridors écologiques, la non-inclusion 

du facteur pollution lumineuse pourrait réduire significativement leur efficacité pour les espèces 

nocturnes. Un travail de modélisation mettant en lien des données biologiques d’activité avec 

des aspects paysagers mais aussi lumière a permis de construire des corridors adaptés pour les 

espèces nocturnes. Cela a aussi mené à des outils d’évaluation de scénarios d’éclairage qui 

peuvent être utilisés en amont d’aménagements afin de prédire l’impact d’un changement et de 

les adapter aux enjeux de biodiversité. 

A une échelle plus fine, il est nécessaire de comprendre quelles caractéristiques des 

points lumineux sont les plus pertinents à maîtriser afin de formuler des recommandations pour 

limiter l’impact sur la biodiversité. Nous avons mené une étude de terrain dans un espace 

protégé où les enjeux sur les chauves-souris sont d’autant plus importants que les espèces les 

plus sensibles à la lumière y sont protégées, ainsi que leurs habitats, à l’échelle européenne. En 

travaillant à l’interface entre urbanisation et habitats semi-naturels, nous avons pu montrer que 

c’est la quantité de lumière émise qui ont l’effet le plus notable. C’est donc ce paramètre sur 

lequel il faut travailler en priorité pour limiter l’impact de la lumière sur des zones pouvant 

servir de corridor ou de zone refuge aux espèces sensibles. 
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Fig. 27. Spatial representation of habitat patches and least-cost paths for each study area and 

each scenario. The light orange shape represent the area of the cities. [p.144] 

Fig. 28. Example of a site with the experimental lit pair (grey) and the control dark pair (black) 

both composed of a recording point on a street (stars) and a recording point at a hedge (squares). 

The sampling included 28 such sites. [p.225] 

Fig. 29. Effect of the presence of a streetlight on bat activity at the street points (a) and at the 

hedge points (b) for clutter species (black), aerial species (grey) and groups (hatched). Bars 

represent estimates of the difference of activity between experimental lit points and control dark 

points and error bars represent standard errors ('*' refers to p-value <0.05; '**' refers to p-value 

<0.01; '***' refers to p-value <0.001) (extracted from Pauwels et al., Article 5). [p.227] 

Fig. 30. Neotropical bat species accumulation curves in pastureland habitats (Yucatan 

peninsula). (∆) represent species recorded with capture methods only and (•) represent species 

recorded with capture methods and acoustical sampling (extracted from MacSwiney, Clarke, & 

Racey, 2008). [p.275] 

Fig. 31. Patterns of nightly activity through the season with respect to sunset time for three bat 

species (Ppip: P. pipistrellus, Ppyg: P. pygmaeus and Nnoc: N. noctula) measured using data 

from a PAM citizen-science program). Individual box plots summarize the timing of bat passes 
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SYRE). [p.279] 
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GENERAL INTRODUCTION 

1. Global land-use change 

The Earth is undergoing such dramatic and global environmental changes that it may 

have entered a new geological epoch, the Anthropocene, characterized by a human domination 

of the environment (Lewis & Maslin, 2015). Since the industrial revolution, the rate of global 

land use change greatly increased (Newbold et al., 2016; Venter et al., 2016). The rapid growth 

in the world population from less than two billions in 1900 to 6 billion in 2000 and a predicted 

rise to 10 billion by 2050 (Population Reference Bureau – www.prb.org) induced an 

intensification of the pressure on the biosphere’s resources (Foley, 2005).  Half of the planet’s 

surface has been disturbed due to human activities and nowadays more than one-third of the 

global land surface is used for agriculture (Goldewijk & Ramankutty., 2009). This global 

change in land use is considered as a major driver of global biodiversity loss and ecosystems 

functions alteration (Newbold et al., 2016; Venter et al., 2016) through the loss, modification 

and fragmentation of habitats (Pimm & Raven, 2000). Moreover, the proportion of humanity 

living in urban areas increased dramatically (Grimm, Faeth, et al., 2008). Whereas only 10% of 

the world population were urban dwellers in 1900, currently, this percentage exceeds 50% and 

is predicted to rise to 66% by 2050 (Population Reference Bureau – www.prb.org) although 

urban areas represent less than 3% of the global terrestrial surface (Millenium Ecosystem 

Assessment, 2005). The shift in the human population’s distribution toward urban areas 

provoked a major growth in cities size in terms of inhabitant number and spatial extent (Grimm, 

Foster, et al., 2008). It is also accompanied by the development of transport infrastructure to 

convey goods and people (Dulac, 2013). For most of the 20th century, the ecology of urban 

areas was little studied but recently, urban ecology gained attention (Grimm, Faeth, et al., 2008). 

Indeed, it may be of particular importance to preserve urban ecosystems as an increasing 

http://www.prb.org/
http://www.prb.org/
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proportion of the population and particularly children are less and less likely to have direct 

contact with nature thus reducing their willingness to conserve biodiversity (Keniger et al., 

2013; Soga et al., 2016). In addition, the “extinction of experience” of nature (Pyle, 1993) might 

constitute a global health problem as several studies showed that the relatedness with nature is 

associated with a better heath and general well-being (Kahn, 2002; Louv, 2005; Dean et al., 

2018). Urbanization is one of the more lasting types of habitat loss (McKinney, 2002) and as 

the proportion of urban dwellers grows and with it the pressures on natural resources, it becomes 

increasingly important to raise people’s attention to the fundamental necessity to preserve 

nature (Savard, Clergeau, & Mennechez, 2000). 

Biodiversity concerns in relation to urban areas are twofold: those considering the inner 

city scale and those considering the impact of urban areas on adjacent ecosystems (Savard et 

al., 2000). At the local scale, urban areas are often characterized by an intense fragmentation of 

the landscape with a few small vegetation or aquatic habitat areas embedded in a dense 

impervious matrix (Savard et al., 2000). Fragments of vegetation may be too small or too 

isolated to be used as habitats (Savard et al., 2000). At a larger scale, the expansion of cities 

toward rural landscapes generates pressures on adjacent ecosystems through changes in soils, 

the construction of structures and the development of transport infrastructures (Filippi-

Codaccioni et al., 2008; Grimm, Faeth, et al., 2008). In cities, urbanization tends to reduce 

species richness (Grimm, Faeth, et al., 2008) and on a gradient from urban to rural landscapes, 

urban cores have the lowest species diversity (McKinney, 2002). Urbanization has been 

qualified as “one of the most homogenizing of all human activities” (McKinney, 2006). Indeed 

cities are built to fulfill only human needs and are hence similar throughout the world. This 

causes urban-adaptable species to become widespread and abundant in cities across the planet 

(McKinney, 2002) whereas species dependent on natural habitats are excluded. This shift favors 

generalist species over specialist species and alters biological communities toward biotic 
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homogenization (McKinney, 2006; Le Viol et al., 2012). As urban areas impact extends beyond 

administrative borders, urbanization could also reduce species diversity at regional and global 

scales (Grimm, Faeth, et al., 2008). Although the outward impact of urban areas mostly 

concerns rural and semi-natural landscapes, the distance between protected and urban areas 

decreases over time (Mcdonald, Kareiva, & Forman, 2008). Moreover, in Europe, the majority 

of protected areas include a significant part of human activities (European Environment 

Agency, 2012) thus making them more prone to suffer the impacts of urbanization. 

In addition to soil sealing, the urbanization process is accompanied by the emission of 

environmental stressors such as chemical, noise and light pollution. Their impact on 

biodiversity is not always assessed although they could be cumulative with the effects of soil 

sealing (Gaston et al., 2014) and their consideration may be essential to produce effective land-

use planning strategies (Grimm, Faeth, et al., 2008). Amongst these pollutants, light pollution 

was identified as an emerging (i.e. new and poorly known) threat to biodiversity (Hölker, Moss, 

et al., 2010; Hölker, Wolter, et al., 2010; Stanley et al., 2015). 

2. Light pollution 

During the 20th century, the shift toward a more urban population was accompanied by 

the development of electric lighting. With the growth of urban settlements, transport 

infrastructure and economic activities increased leading large areas of the globe to be subjected 

to artificial light (Bennie et al., 2014). Nowadays, artificial lighting is estimated to consume 

0.72% of the world gross domestic product and about 6.5% of the world primary energy (Tsao 

& Waide, 2010). The widespread use of artificial light at night (ALAN) has enhanced human 

quality of life and is commonly associated with a sense of security, wealth and modernity 

(Hölker, Wolter, et al., 2010). However, the rapid multiplication of light points considerably 

transformed the nocturnal landscape worldwide. This change can be appraised both 
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quantitatively with a yearly 6% increase in light emission (Hölker, Moss, et al., 2010) and 

qualitatively through the change in color spectra (Elvidge et al., 2007). Globally, 80% of the 

world population lives under light-polluted skies (Falchi et al., 2016). And whereas most of the 

population lives in the 3% of the global land surface representing urban areas (Grimm, Faeth, 

et al., 2008), over 20% of the world land surface experience light-polluted nights (Falchi et al., 

2016). Artificial light is mainly associated with human constructions such as cities, plants and 

transport infrastructures (Hale et al., 2013) but it can diffuse way beyond urbanized landscapes 

and could affect an important proportion of surrounding ecosystems (Kyba & Hölker, 2013). 

Indeed, although light can be seen as a point source that affects its close environment, it can 

also have a far reaching impact through skyglow (Kyba & Hölker, 2013). Light reflected 

upward and light emitted above horizontal is scattered in the sky and rebounds on particles 

hence being redirected toward the Earth and creating a halo of light kilometers away from their 

source point (Kyba et al., 2015). The impact on nocturnal landscapes is so intense that it can be 

seen from space (Fig. 1) and due to its extent and continuous increase, it can be considered as 

a global change. 

 
Fig. 1. Composite image of the Earth at night made using data from satellite imaging (VIIRS) 

(source: NASA) 



   GENERAL INTRODUCTION 

  - 7 -  

Astronomers were the first to state that artificial light degraded the human view of the 

night sky by reducing the visibility of celestial bodies (Smith, 2009) and named this 

phenomenon astronomical light pollution (Riegel, 1973). Recently, several other negative 

effects have been recognized in ecology, human health and well-being (Catherine Rich & 

Longcore, 2006; Navara & Nelson, 2007). Ecological light pollution (henceforth, light 

pollution) is defined as the artificial light that alters the natural spatial and temporal patterns of 

light and dark in ecosystems (Longcore & Rich, 2004). Hence, one of the main impacts of light 

pollution is the disruption of the circadian rhythm, arguably one of the most important 

organizational cue in the biological world (Bradshaw & Holzapfel, 2010). Daily and seasonal 

light cycles have driven the development of biological phenomena from molecules to 

ecosystems, including metabolic and physiological pathways, behavior and spatial distribution 

of species and ecosystem cycles (Bradshaw & Holzapfel, 2010; Gaston, Gaston, et al., 2015; 

Gaston et al., 2017). Endogenous biological clocks are essential for individuals’ anticipation 

and adaptation to the daily and seasonal light-dark cycles in their environment as it allows them 

to optimally time their metabolism, physiology and behavior (Navara & Nelson, 2007). For 

example, individuals can adapt their reproductive rate and timing based on changes in day 

length throughout the season (rodents: Ikeno, Weil, & Nelson, 2014; bird: Dominoni, Quetting, 

& Partecke, 2013a); many taxa adjust their foraging activity according to changes in lunar cycle 

(birds: Brigham & Barclay, 1992; rodents: Kotler, 1984; bats: Saldaña-Vázquez & Munguía-

Rosas, 2013; marine mammals: Horning & Trillmich, 1999); and the daily variation of light 

and dark is also essential for the regulation of hormonal systems in a large array of taxa 

including bird (Dominoni, Goymann, et al., 2013), rodent (Atkinson & Waddell, 2008), fish 

(Brüning et al., 2015), and human (Haim & Zubidat, 2015a). The apparition and wide spread 

of artificial light dramatically altered a thousands of years old cycle on a significant proportion 

of the world’s land surface hence impacting biodiversity and ecosystems (Navara & Nelson, 
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2007). Among all organisms, nocturnal 

species might be the most impacted by 

ALAN and they represent a large 

proportion of biodiversity. Indeed, 30% 

of all vertebrates and over 60% of all 

invertebrates are nocturnal (Hölker, 

Wolter, et al., 2010) (Fig. 2). Over two 

decades (1992-2012), the mean light 

intensity increased in the ranges of the 

majority of mammals worldwide and 

nocturnal species were more likely to experience this increase (Duffy et al., 2015). Moreover, 

although protected areas end to be darker than non-protected lands, they still suffered a low 

increase in ALAN in recent years (Gaston, Duffy, & Bennie, 2015; Guetté et al., 2018). 

Actually, light pollution is important in the direct surroundings of protected areas potentially 

isolating them from one another (Guetté et al., 2018). This alarming observation suggests that 

the importance to manage artificial lights is underestimated. Indeed, light pollution is seldom 

considered as a criteria to designate protected areas (Gaston, Duffy, et al., 2015) although the 

International Dark-Sky Association is leading an initiative to create dark sky reserves to 

facilitate and promote celestial bodies observation (Welch & Dick, 2012). 

3. Light pollution’s impacts on biodiversity 

Light is the main source of energy of most primary producers and a crucial factor in the 

control of a large number of physiological and behavioral processes (Schroer & Hölker, 2016; 

Gaston et al., 2017). Light can be a signal for growth, hormonal secretion, spatial movements, 

orientation and communication. It has a central role in structuring communities and ecosystems 

 

Fig. 2. Percentage of extant nocturnal species within 

different vertebrate classes and orders (extracted from 

Hölker, Wolter, et al., 2010). 
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through its influence on trophic, social and competitive interaction and in shaping seasonal and 

daily rhythms (Schroer & Hölker, 2016).  

3.1. Diversity of perception of a fundamental cue 

Throughout evolutionary times, species acquired a temporally differentiated niche often 

associated with a specially adapted eyesight (Hölker, Wolter, et al., 2010). In the animal 

kingdom, a large range of adaptations of the vision exists to navigate in the environment with 

different light levels and color spectra (Warrant, 2004; Davies et al., 2013). However the rapid 

expansion of artificial light worldwide (Hölker, Moss, et al., 2010) will induce profound 

changes in nighttime light level and spectra potentially rendering ineffective adaptation 

acquired through thousands of years of evolution. An important number of animal species are 

able to see at light levels way below the necessary level required for humans to see properly 

(Gaston et al., 2013).Moreover, while humans perceive light between 400 and 700 nm as visible 

light, other animals can have a significantly different sensitivity both in range and perception 

depth. For example, birds and reptiles have four different photoreceptors (mammals only have 

two) hence increasing the information content of the color perception across a large part of the 

spectrum (Osorio & Vorobyev, 2008). In addition, birds, fish and invertebrates are sensitive to 

ultraviolet (UV) light (10-400 nm) and snakes and beetles can detect emissions in the infrared 

range (700-1000 nm) that are not perceived by the human eye (Rowse et al., 2016). Depending 

on organisms’ spatial and temporal niche and on their sensory abilities, ALAN can enhance, 

disrupt or not affect their perception of light with potential downstream physiological, 

behavioral and ecological effects (Gaston et al., 2013). 
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3.2. Effects of light on daily biological events 

The alteration of the natural light level by ALAN modifies the perception of day length 

for both nocturnal and diurnal organisms. Indeed artificial light has been shown to modify the 

pattern of daily activity of birds (de Jong, Jeninga, et al., 2016) but without modifying their 

internal biological clock when considering short time period of exposition (6 to 14 days) 

(Kamiel Spoelstra et al., 2018). However a longer exposition (4 to 14 weeks) changed the 

expression of a circadian clock gene in rodents and it also changed the expression of genes 

implicated in the regulation on the hormone melatonin (Ikeno et al., 2014). Melatonin has a 

central role in the regulation of the circadian rhythm and is involved in seasonal processes for 

many taxa (Dominoni, Goymann, et al., 2013). It is secreted cyclically being released at night 

and suppressed by daylight and regulates daily timing such as sleep and body temperature 

(Dominoni, Goymann, et al., 2013). Artificial light inhibits the secretion of melatonin in a large 

array of taxa (birds: Dominoni et al., 2013; insects: Durrant et al., 2015; mammals: Haim, 

Zubidat, & Haim, 2015; fish: Brüning et al., 2016) hence disrupting sleep (Yorzinski et al., 

2015; Stenvers et al., 2016; Raap et al., 2017) and activity patterns (Letallec, Théry, & Perret, 

2015; de Jong, Jeninga, et al., 2016; Hoffmann, Palme, & Eccard, 2018). As presented 

thereafter, these modifications may have significant impacts on individuals fitness and health 

(M. Jones et al., 2015; Ouyang et al., 2015).  
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Artificial light can have important 

impacts on foraging timing in two ways. 

First, light can modifying the timing of the 

foraging activity onset. For example, 

lighting bats’ roosts entrance delays their 

emergence time (Downs et al., 2003; 

Boldogh et al., 2007) and may hence miss 

the peak activity of insects therefore 

reducing their foraging efficiency and 

decreasing their reproductive success (Fig. 

3;Boldogh et al., 2007). On the contrary, 

several diurnal bird species extent their 

foraging time into the night when in the 

vicinity of a light source (Fig. 4 ;Da Silva, 

Diez-Méndez, & Kempenaers, 2017) and 

can increase their reproductive success 

(Stracey et al., 2014) and reduce their 

energy expenditure (Welbers et al., 2017) 

although it does not necessarily influence 

their body condition (Russ, Rüger, & 

Klenke, 2015) (Russ et al., 2015). Light can also modify individuals’ ability to detect preys and 

hence reduce (Buchanan, 1993) or increase (Santos et al., 2010; Dwyer et al., 2013) their food 

intake.  

The most damaging effects of light pollution might be its influence on organisms at low 

levels of the trophic chain. The dial migration of zooplankton is sensitive to very low levels of 

 

Fig. 3. The nightly emergence activity of M. 

emarginatus, in an illuminated (dashed line) 

and a non-illuminated roost (continuous line) 

during the same night. Arrow shows the time 

when lights were switched off at the illuminated 

roost (extracted from Boldogh et al., 2007) 

 

Fig. 4. Average minutes past sunset of last 

nestling feeding trip and average light level at 

night within a 20-m radius of nests (adapted 

from Stracey et al., 2014). 
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lights and can be significantly reduced both in amplitude (height in the water column) and 

magnitude (number of individuals) (Moore et al., 2000). Another example are plants which 

heavily rely on light as a resource and as an information signal for many physiological 

processes. Plants have a wide range of photoreceptors to respond to light quality, quantity, 

direction and duration presenting a diversity of sensitivity from large variation to light levels 

barely perceivable by the human eye (Briggs, 2006).  

3.3. Effects of light on seasonal biological events 

Depending on the latitude, day length varies significantly throughout the year providing 

a vital biological cue allowing the anticipation of changes in resource availability and climatic 

conditions. In urban areas, as artificial lighting is used to facilitate human activities by night, 

lights are turned at the beginning and end of the night. Hence dawn can be perceived as starting 

earlier and dusk to last longer thus potentially impact species physiology and even more so at 

high latitude (Gaston et al., 2017). Most studies evaluating the influence of artificial light on 

seasonal phenomenon focus on reproduction as it is a key event for population viability. A large 

array of effects on the both the timing and the success of reproduction have been demonstrated 

in a variety of taxa. 

 

Fig. 5. Observed and predicted daily probability of singing at dawn and at dusk for the European 

robin at sites with artificial night lighting (grey dots and lines) and for non-lighted sites (black 

dots and lines) (adapted from Da Silva, Valcu, & Kempenaers, 2015) 
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Artificial light tends to elicit an earlier start of the reproduction in diurnal songbirds 

through an advance in dawn and dusk chorus (Fig. 5 ;Da Silva et al., 2015), in gonadal 

development (Dominoni, Quetting, et al., 2013a) and in laying date (Kempenaers et al., 2010). 

A disruption of the reproduction timing was also found in nocturnal mammals but in opposite 

ways by advancing of the estrus for mouse lemurs (Letallec et al., 2015) and retarding birth in 

wallabies (Robert et al., 2015). Similarly, plants flowering time can also be modified by the 

presence of light stimuli. Different plant species can respond to light of different spectra and 

intensity in completely different ways and flowering can be either induced, suppressed, 

increased or reduced by light pollution depending on the species sensitivity (Briggs, 2006; 

Bennie et al., 2016). These changes in timing may have significant effects on reproduction 

success as they could cause mismatches in the timing of interdependent life history events 

(Helm et al., 2013). 

Light can alter the reproductive success through many mechanism such as an alteration 

in mating partner detection (glow-worms: Bird & Parker, 2014) and attractiveness (newts: 

Secondi, Lepetz, & Théry, 2012) or a deregulation of reproductive hormonal secretions in birds 

(Schoech et al., 2013). A more drastic effect is the complete inhibition of reproduction (van 

Geffen et al., 2015). For example, a 2-years-long exposure to low light levels at night (0.3 lux) 

inhibited the development of the reproductive system of male blackbirds with an absence of 

testicular size and testosterone concentration increase during the reproductive season 

(Dominoni, Quetting, & Partecke, 2013b). Such dramatic effect may have profound impacts on 

population dynamics. A similar inhibition phenomenon was shown in coral’s with light altering 

genes expressions and thus inhibiting coral mass spawning (Kaniewska et al., 2015). As corals 

reproductive success is crucial for the maintenance of coral reef ecosystems, light pollution 

could have major cascading effects. 
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 In addition to influencing the onset and the proceeding of reproduction, light can disturb 

individuals’ growth and development. Nestlings of great tits subjected to artificial light in their 

nest boxes had a reduced rate of body mass increase compared to nestlings in natural light 

(Raap, Casasole, Costantini, et al., 2016) and had lower levels of molecules implicated in the 

development of the immune system (Raap, Casasole, Pinxten, et al., 2016). Moth development 

is also altered by light through the inhibition of pupal diapause which could both reduce their 

fitness and increase mortality rates (van Geffen et al., 2014). Similarly, toads early stage 

development was modified by the presence of ALAN, reducing the metamorphic duration and 

their post-metamorphic growth rate by 15% (Dananay & Benard, 2018). A nation-wide study 

showed that plant development phenology can also be modified by anthropogenic light 

emissions. Indeed, it showed that deciduous trees budburst is advanced by up to 7.5 days in 

brightly lit areas (ffrench-Constant et al., 2016). Moreover, there has been several independent 

observation of deciduous trees keeping 

leaves close to a light source longer than 

those that were further away in autumn (Fig. 

6 ;Bennie et al., 2016). Both budburst and 

leaf fall timings are determinants of tree’s 

exposure to frost damage and fungal 

pathogens (Bennie et al., 2016) thus early 

budburst and late leaf loss due to light 

pollution may have deleterious implications 

for deciduous trees.  

Most studies evaluating the influence 

of light on seasonal events concentrate on 

reproduction however other physiological 

 
Fig. 6. Defoliated Betula pendula except in the 

light cone of high-pressure streetlight (Image 

taken in Berlin, Germany, December 2015, by 

Sibylle Schroer) 
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phases could be impacted such as hibernation or migration. Indeed, exposition to ALAN has 

been shown to alter swans wintering behavior and advance their departure for spring migrating 

(Longcore, 2010). 

3.4. Effects of light on movements and spatial distribution 

Many animal species that move by night use celestial bodies as cues for direction 

(Gaston et al., 2017). For example, nocturnal insects can navigate using moonlight and the 

pattern of polarized celestial light (Dacke et al., 2003) and migrating birds are thought to 

calibrate their inner magnetic compass through the detection of polarized light patterns during 

sunset and sunrise (Muheim, 2006). In addition, bird migration direction is dependent on 

magnetoreception through photoreceptors and red light can disrupt this mechanism (Wiltschko 

et al., 1993). The increase in nocturnal light emissions may hinder stars visibility thus disrupting 

individual’s orientation (Kyba et al., 2011). Nocturnal animals may also need low light levels 

for their eyesight to function properly (Buchanan, 1993). On the opposite, some species such 

as little penguins can take advantage of ALAN to navigate nocturnal landscapes more easily 

(Rodríguez et al., 2018) and shorebirds and waders can benefit from light through improved 

visibility to exploit lit areas for foraging (Santos et al., 2010; Dwyer et al., 2013). 

The widespread attraction of insects to light have long been documented and exploited 

through light-trapping for their capture. This flight-to-light behavior exists in at least seven 

insect orders (Altermatt, Baumeyer, & Ebert, 2009; Roy H. a van Grunsven et al., 2014; de 

Medeiros, Barghini, & Vanin, 2017) and can be elicited at distances of more than 100 m (Frank, 

2006). The attraction reach is dependent of the species, the type of lamp and the light intensity 

thus different lamps will attract different species in different magnitude (Roy H. a van Grunsven 

et al., 2014). Ultraviolet emissions are particularly impacting. Indeed, the number of moths 
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captured at UV emitting mercury vapor lamps can be four to 100 times higher than at sodium 

vapor lamp emitting no UV (Frank, 2006).  

Attraction to light manifests in several ways described by Eisenbeis (2006). First, insects 

can be disturbed in their activity by entering the attraction zone of a light source. It will then 

fly around the lamp endlessly and be captured by predators or fall exhausted to the ground 

where it will die or be caught by a predator. This phenomenon is called “fixation” or “captivity”. 

The second manifestation is the attraction of otherwise non-moving insects that will hence be 

“fixed”. This effect is called the “vacuum cleaner” as it may deplete local populations. A study 

found that urban moths are less inclined to be attracted to light than moth born in dark-sky 

habitats thus showing a possible 

evolutionary modification of their behavior 

(Altermatt & Ebert, 2016). However, light 

pollution has been suggested to possibly be 

an important factor of large scale decline in 

insects’ populations (Frank, 1988; Conrad et 

al., 2006). As nocturnal insects have a major 

role in pollination and as a primary food 

source for many vertebrates, important 

decrease in their populations would have 

numerous cascading effects. Despite being 

of primary concern (Sutherland et al., 2006), 

it’s only recently that study evaluated large 

scale effects of light pollution on insects. 

Wilson et al. (2018) used a 11 years dataset 

on 100 species of moths gathered through a 

 

Fig. 7. Mean population trends for moth species 

that differ in (a) phototaxis and (b) adult 

circadian rhythm (extracted from van 

Langevelde et al., 2018).  
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large scale moth light-trapping citizen science program to identify and quantify the role of 

ALAN in long-term changes in moth populations in the UK and Ireland. Their results showed 

that nighttime lighting could explain 20% of the variation in long-term changes in moth 

abundance thus bringing evidence that light pollution contributes significantly to moth species 

decline for the first time. In addition, another recent study demonstrated that that nocturnal moth 

species exhibiting positive phototaxis have stronger negative population trends than diurnal 

moth species (Fig. 7 ;van Langevelde et al., 2018).  

Moreover, the attraction of insects to light induces a change in prey spatial distribution 

for insectivorous predators which can modify their foraging opportunities. Predators eating 

invertebrates attracted to light benefit from the accumulation of preys under lights halo as a 

spatially and temporally stable resource area (bats: Rydell, 1992; invertebrates: Davies, Bennie, 

& Gaston, 2012, van Grunsven et al., 2018; birds: Pugh & Pawson, 2016) and are therefore 

indirectly attracted to light (Fig. 8 ;bats: Blake et al., 1994; toads: Wise, 2007; birds: Pugh & 

Pawson, 2016; slugs: van Grunsven et al., 2018). 

 

Fig. 8. The effect of high-pressure sodium street lighting on the abundance of individuals 

within trophic groups of invertebrates. Bars represent the average total number of individuals 

in each group collected from pitfall traps deployed under street lights (open bars) and between 

street lights (grey bars) (extracted from Davies et al., 2012). 
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During migration and dispersion, many species use light as an information cue to 

determine their direction and the presence of anthropogenic light can attract them and thus make 

them deviate from their original trajectory. When migrating, bats (Voigt, Roeleke, & Marggraf, 

2017) and birds (H. et al., 2008; Van Doren et al., 2017; McLaren et al., 2018) can be attracted 

to light sources hence potentially increasing their energy expenditure and modifying their 

habitat selection therefore affecting their fitness. Similar effects have been found during 

dispersal for several turtle species hatchlings (Hetzel et al., 2016; Cruz et al., 2018) and for 

seabird fledglings (Rodríguez et al., 2014) with direct impacts on their survival (Rodríguez et 

al., 2017) and the recruitment rate in the population (Dimitriadis et al., 2018). 

On the contrary, other species such as diurnal birds avoid light at night and chose nesting 

sites hidden from light halos (Yorzinski et al., 2015; de Jong, Ouyang, et al., 2016). Nocturnality 

may have been an evolutionary adaptation to avoid diurnal predators (Hölker, Wolter, et al., 

2010; Russo et al., 2017) thus many nocturnal species show an avoidance response to light 

(Wise, 2007; Threlfall, Law, & Banks, 2013; Farnworth, Innes, & Waas, 2016; Azam et al., 

2018). However the avoidance may depend on the seasonal timing such as in toads which can 

forage under streetlights (Wise, 2007) 

but will avoid light during migration 

(Roy H. A. Van Grunsven et al., 2017). 

The repulsion by light may be so 

intense that it can be perceived as a 

barrier to movement. Some bat species 

are known to be light sensitive and will 

turn back if the hedge they follow as a 

transiting route is illuminated (Fig. 9 

;Kuijper, Schut, & Dullemen, 2008; 

 
Fig. 9. R. hipposideros mean activity along hedgerows 

in relation to treatment type. Significant within-subject 

differences are shown with p values (extracted from 

Stone, Jones, & Harris, 2009). 
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Stone et al., 2009; Stone, Jones, & 

Harris, 2012). In addition other bat 

species that are considered to be light 

tolerant can also perceive light has a 

barrier when an hedge they transit along 

in discontinuous and gaps are brightly 

lit which can lit to a reduction in the 

proportion of landscape accessible (Fig. 

10 ;Hale et al., 2015). These effects on 

nocturnal species movement behavior 

have only been studied at local scales 

but they may have important consequences on individual’s ability to travel through a landscape 

(Beier, 2006). Studies suggested that landscape connectivity could be altered by ALAN for 

terrestrial and flying mammals (Beier, 1995; Hale et al., 2012; Bliss-Ketchum et al., 2016) but 

it has never properly been tested. Due to the importance of movement for individual survival, 

population maintenance and ecosystem functioning (Nathan et al., 2008) the spatial extent of 

light pollution, the modification of species movement ability by ALAN may have far reaching 

consequences on species and communities. 

A recent study on the influence of ALAN on bat activity at a national scale showed that 

bats able to forage around streetlights at a local scale exhibit an avoidance pattern when 

considering a large scale (Azam et al., 2016). This finding reinforce the necessity to consider 

the impacts of artificial light at several spatial scales in order to include different movement 

behaviors.  

 
Fig. 10. Predicted areas of accessible land cover 

within 350 m (red circle) of an urban pond (red dot), 

under a scenario with no light (blue) and a scenario 

with normal street lighting (yellow). When no 

lighting is present, 44% of the local landscape is 

accessible from the pond, shrinking to 36% in lit 

conditions (extracted fom Hale et al., 2015). 
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3.5. Effects of light on interactions and community composition 

As a wide range of species responds to anthropogenic light and this raises concerns 

about the consequences for ecosystems functioning and stability (Sanders & Gaston, 2018). The 

avoidance behavior of certain species may lead to their absence of lit areas and therefore modify 

local communities. Most research focus on single species effects however it is necessary to 

understand how interaction networks are modified to be able to predict the overall impact of 

ALAN. Depending on its place and links in a network, if a single species or interaction is 

affected by light, it may have important repercussions on the rest of the network through direct 

and indirect interactions modifications (Sanders & Gaston, 2018).  

Studies showed that nighttime lighting could change communities composition of 

terrestrial invertebrates (Davies et al., 2012, 2017), marine epifauna (Davies et al., 2015), 

periphyton (Grubisic et al., 2018) and plants (Bennie, Davies, Cruse, Bell, et al., 2018). All 

these communities represent food sources for many other organisms hence changes in species 

assemblage and abundance can alter trophic chains through bottom-up control. A decrease in 

plant flowers abundance can lead to a decrease in herbivore predator abundance (Bennie et al., 

2015; Bennie, Davies, Cruse, Inger, et al., 2018) and a change in plants propriety (e.g., the 

toughness of grass blades) can be linked to a reduce body mass in predators hence affecting 

their survival (Grenis & Murphy, 2018). Light may also change the timing of plant growth 

(ffrench-Constant et al., 2016) and could cause a desynchronization with herbivore species 

which time their emergence to coincide with the apparition of leaves making them miss the 

peak abundance of food resource and altering their growth or survival. The modification of prey 

spatial distribution may also change predators foraging behavior. For example, insect preys 

attracted to light represent a spatially stable source of food thus locally increasing predator and 

scavenger abundance (Davies et al., 2012; Azam et al., 2015; van Grunsven et al., 2018) and 

modifying the prey items they consume in relation to their phototaxis sensitivity (Rydell, 1992). 
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Prey-predator relationships can be affected by the presence of light through the alteration of 

anti-predatory strategies such as the evasive flight maneuvers used by moths to avoid bat 

predation and that are less often observed when moths are flying close to a lamp (Minnaar et 

al., 2015; Wakefield et al., 2015). Artificial light may also trigger top-down control such as a 

decrease of nocturnal prey activity due to a perceived increased predation risk in lit 

environments (Rydell, 1992) or an increase of predators activity at lit sites hence reducing prey 

abundance (Bolton et al., 2017). 

Although most of the interactions investigated are trophic interactions, ALAN can also 

alter interaction networks in other ways. It has been suggested that light could increase 

interspecific competition between bat species responding differently to light (Arlettaz, Godat, 

& Meyer, 2000). Indeed, light adverse bat species may be disadvantaged compared to bat 

species foraging at streetlights when competing for similar insects preys that are attracted to 

light. Modification in host-parasitoid dynamics also occur through direct effects of light on 

parasitoid or indirect effect of light through a modification in host abundance (Sanders et al., 

2015). 

The modification of species distribution and behavior by light pollution affects major 

ecosystem functions such as pollination. Moth attracted to light are more abundant at high 

altitudes (few meters) than at the ground level when in direct proximity of a lamp and this might 

disrupt their role in pollen transportation (Macgregor et al., 2017). Plant pollinated only by 

diurnal insects have a reduced seed production and pollen dispersal compared to plants 

pollinated by both diurnal and nocturnal insects (Young, 2002) hence nocturnal pollinator may 

have an important role in plants reproduction. A recent study showed that light reduced 

nocturnal pollinators visits by more than 60% compared to dark areas and it resulted in a 13% 

reduction in fruit set although plants were visited by diurnal pollinators (Knop et al., 2017). In 

addition, the structure of the interaction network between plants and nocturnal and diurnal 
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pollinators tends to facilitates 

the spread of negative 

consequence of disrupted 

nocturnal pollination to 

daytime pollinators 

communities (Fig. 11 ;Knop et 

al., 2017). Indeed, as daytime 

pollinators may feed on plants 

fruit set, a reduction in their 

number due to disrupted 

nocturnal pollination could in 

turn negatively affect their 

populations. Nocturnal 

pollinators are not redundant to diurnal communities and a decrease in their pollination function 

could have important impacts on plant diversity (Fontaine et al., 2005). In tropical areas, plants 

reproduction can also be altered through the disruption of seed dispersers behavior such as 

frugivorous bats as they tend to avoid harvesting illuminated plants (Lewanzik & Voigt, 2014).  

 

Overall, artificial light at night affects all aspects of organisms’ life history through 

behavioral and physiological alterations. This changes may in turn have important cascading 

effects on communities’ composition and ecosystems’ interaction networks. Studies on the 

impact of light pollution continue to multiply showing mounting interest and concerns from 

researchers. However, there is a lack of knowledge on the overall long-term impact of 

anthropogenic light on the spatiotemporal dynamics of population and biological communities. 

Nonetheless, lighting technologies continue to develop into novel lamp types and the number 

 
Fig. 11. Interaction web showing the pathway by which 

artificial light at night affects plant reproduction and diurnal 

pollinator communities. Solid arrows indicate direct 

interactions; dashed arrows denote indirect interactions. 

The sign (+ or −) refers to the expected direction of the 

direct or indirect effect (extracted from Knop et al., 2017). 
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of light points keeps on increasing. Very few light regulations exist to limit the effect of ALAN 

although there is an urgent need to develop mitigation measures to reduce the impact of this 

novel threat to biodiversity and ecosystems. 

4. The conservation challenge posed by light pollution 

4.1. Why should light pollution be a focus of environmental research in the 21st 

century? 

In recent years, environmental scientists showed a growing concern over recognized and 

potential impacts of artificial light on biodiversity and ecosystems which translated in a growing 

body of scientific literature. As it is 

globally widespread, expanding and 

immediately and severely affects a 

large phylogenic diversity of taxa, 

ALAN can be considered as a driver 

of global change (Davies & Smyth, 

2017). Moreover, it has been shown 

that light pollution large scale 

impacts on bats may be of similar or 

larger magnitude than other well 

studied anthropogenic pressures such 

as agriculture and soil sealing (Fig. 12 

;Azam et al., 2016). The variety of 

organisms’ sensitivity to light 

intensity and spectrum make the 

 
Fig. 12. Averaged standardized partial regression 

coefficients and associated standard errors from 

GLMMs model for the radiance (black squares), the 

proportion of impervious surfaces (filled grey dots) 

and the proportion of intensive agriculture (grey 

empty circles) for E. serotinus at 200, 500, 700 and 

1000 m landscape scales. The 3 landscape variables 

have a significant effect on the probability of presence 

when the error bars of coefficients do not overlap with 

the 0-horizontal dashed line (extracted from Azam et 

al., 2016). 
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reduction of light pollution while complying with human societies a major conservation 

challenge. Nonetheless, it is technically easy to reverse it through light extinction. Contrarily to 

other pollutions such as fossil fuel combustion gas emissions, there would be no lag effect on 

the return of the physical environment to its dark state and the biological environment would 

immediately start its recovery process (Davies & Smyth, 2017). Indeed, experimentally 

illuminating a hedge used by light-sensitive bats as a commuting route had an immediate effect 

as bats stopped to taking this route but when turning off the light a few days later, bat activity 

was brought back to its original level (Stone et al., 2009, 2012). Moreover, although light can 

disturb individuals’ daily activity pattern, it seems that it is a direct adaptation of their behavior 

to the presence of light rather than an alteration of their inner circadian clock (Kamiel Spoelstra 

et al., 2018). Even a change in genetic expression following a long exposition to light at night 

(Ikeno et al., 2014) may be due to reversible epigenetic modifications (Haim & Zubidat, 2015b). 

Nevertheless, all these conclusions were drawn from the study of individuals submitted to 

artificial light at night during a short time period and long-term exposition may have more 

profound effects. However, it is not unreasonable to surmise that the impact of ALAN on 

populations, communities and ecosystems subjected to light at night since many years might 

not be entirely reversible. We can speculate that the direct (e.g., increased mortality rates of 

insects sensitive to phototaxis) and indirect (e.g., reduced pollination due to behavioral 

alteration of pollinators) influence of ALAN could have such dramatic impact on populations 

and communities that turning off lights may not allow to return to the original state of 

ecosystems. 

The major obstacle to limit light emissions is the acceptability by the general population. 

Several mitigation tools could be used to reduce artificial nighttime lighting impacts on 

biodiversity through land management (dark-sky reserves, dark corridors) and technical 

adaptation (light spectrum selection, reduction in intensity). 
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4.2. Current and future lighting 

Most studies focus on outdoor public lighting because it is the most persistent, 

aggregated and intense source of lighting in urban areas (Gaston et al., 2012). Indeed light 

emissions from street lighting are responsible for 30 to 50% of light pollution in cities (Hiscocks 

& Guömundsson, 2010; Kuechly et al., 2012). Street lighting is the more pervasive source of 

lighting worldwide and, for example in Europe, there is one light point for each nine inhabitants 

(E-street, 2008). In addition, as it is managed at a relatively large scale it may the easiest point 

of entry to have a global reaching reduction in light pollution by adapting its management. 

The global trend tends toward an increase of artificial light at night (Hölker, Wolter, et 

al., 2010) and an increase in the number of outdoor lighting points (International Energy 

Agency, 2006). In France, this is reflected in municipalities’ budget allocated to street lighting 

which can represent up to 45% of electricity costs (ADEME, 2011). Moreover, it is estimated 

that more than 20% of street lights are dilapidated and more than a third of the installations are 

over 20 years-old (ADEME, 2011). It is considered as opportunity to increase the energetic 

performance of outdoor lighting by lighting engineers. Indeed, the European Union aims at 

globally and drastically reducing energy consumption and greenhouses gas emissions in the 

near future. This foreseen change can also be seen as an occasion to include reflection on public 

lighting impact on biodiversity in land management. 

The global energy transition contributes to an important dynamic of development of 

new lighting technologies such as solid state lighting (e.g., light emitting diodes - LED) that 

have a better energy efficiency. Such lamps also tend to have a broader spectrum than older 

technologies (e.g. low and high pressure sodium lamps – LPS and HPS; Fig. 13) and emit a 

whiter light that has a better color rendering hence enhancing visual performances for humans. 

These properties associated with a lower cost induce a rapid invasion of LEDs in the lighting 
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market (Mckinsey, 2012). Indeed in 2012, LEDs represented 9% of the market, 45% in 2016 

and are predicted to reach 70% of the market in 2020 (Mckinsey, 2012; Zissis & Bertoldi, 

2014). LEDs are also advocated for their numerous possibilities of tailoring in terms of 

spectrum, intensity and timing. Yet many environmental scientists and human health experts 

have raised concerns about the important proportion of blue wavelengths emitted by common 

LEDs as it is the most impacting part of the spectrum for numerous species including our own 

(Davies & Smyth, 2017). 

There is an urgent need to start considering light impacts on ecosystems in lighting 

planning and the development of collaborations between environmental scientists and lighting 

engineers may help taking advantage of this transition to implement a more biodiversity-

friendly street lighting. 

 
Fig. 13. The potential ecological impacts of white LED lighting compared to other light sources. 

Spectral power distributions are given for white Light-Emitting Diode (LED), Low-Pressure 

Sodium (LPS), High-Pressure Sodium (HPS) and Metal Halide (MH) lamps. Grey arrows 

represent the wavelength range over which different types of biological response are 

expected/recorded. Dashed lines represent the range of wavelengths over which mammal, bird, 

reptile, insect and arachnid visual systems can detect light (extracted from Davies & Smyth, 

2017). 
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5. Management and technical levers of action 

5.1. Policies gaps 

Following the definition of the European Environment Agency, artificial light qualifies 

as a pollution however, in the same way as noise and other physical pollutions (as opposed to 

chemical pollutions), they are seldom considered in the legislation. Chemical pollutions of the 

air, soil and water are submitted to regulations to limit their potential harm to human health and 

ecosystems. Such regulations do not exist for light pollution although evidence is accumulating 

proving its potential harm to humans and ecosystems. In Europe, only Italy and Slovenia 

adopted laws to reduce light pollution and Croatia and France are in the process of developing 

national legislations (Welch & Dick, 2012). These examples demonstrate the major importance 

of highly motivated individuals to lead to the enactment of such legislations. In Italy, both Dr. 

Cinzano and Dr. Falchi, the authors of the first and the new world atlas of the artificial night 

sky brightness (Cinzano, Falchi, & Elvidge, 2001; Falchi et al., 2016) were determinant actors 

of the ratifications of the Lombardi Law on light pollution and which is enforced in two-thirds 

of the country (regional adoption). In Slovenia, an adaptation of the Lombardi Law leas to the 

adoption of the strongest light pollution law worldwide with the critical impulse of Andrej 

Mohar, an amateur astronomer and twelve years of negotiations. In France, eight years after the 

adoption of a law to reduce light pollution, environmental and dark-sky preservation 

associations referred to the State Council as no application decree has been issued yet. All these 

examples show the importance of scientists and of the general population in the government 

consideration of the problem. One main obstacle to the adoption of local and national 

regulations is political actors’ perceived lack of support from the population linked to perceived 

and realized benefits of nocturnal lighting in socio-economic activity, crime and road safety 

(Gaston, Gaston, et al., 2015).  
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5.2. Land management tools 

The most common conservation tool in response to land-use changes is the creation of 

protected areas to preserve species and habitats. More than 15% of the world’s terrestrial areas 

are covered by protected areas (Juffe-Bignoli et al., 2014). The main aim of protected areas is 

to buffer biodiversity from diverse and often intense anthropogenic pressures (Margules & 

Pressey, 2000). Yet light pollution is rarely considered as a criterion in the designation and 

management of protected areas. They tend to be darker than non-protected areas even in 

intensely lit regions such as Europe (Gaston, Duffy, et al., 2015; Guetté et al., 2018) and 

although they suffered an increase in light pollution level in recent years, it is limited compared 

to surrounding areas (Guetté et al., 2018). Nevertheless, the proportion of protected areas’ 

surface considered dark is decreasing (Fig. 14 ;Gaston, Duffy, et al., 2015). In addition, when 

considering a 500 km buffer around protected areas, the peak in mean ALAN occurs in the first 

25 km (Guetté et al., 2018). Protected areas designation is constraint by the spread of human 

settlements and as the distance between protected areas and urban areas shrinks (McDonald, 

Erickson, & McDonald, 2000), they may be increasingly impacted by diffuse pollutions. 

 

Fig. 14. Change in the global proportion of surface that is dark (DN <5.5, where DN is an 

index of pixel brightness) in protected and unprotected areas over time (extracted from 

Gaston, Duffy, et al., 2015). 
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Astronomers’ response to the increase of ALAN was the creation of the International Dark-

skies Association in 1988 and the launching of a program to award dark sky places worldwide 

hence giving incentive for the creation of dark sky reserves. Although this program mainly aims 

at preserving darkness for celestial observations, it may be a potent tool to protect nocturnal 

biodiversity. 

A more recent initiative in biodiversity conservation is the promotion of nocturnal 

connectivity through the definition and preservation of ecological corridors for nocturnal 

species. A green infrastructure policy has been developed by the European Union since 2013 

to reduce landscape fragmentation at the continental scale through the development of corridor 

networks with countries at regional and local scales (e.g., SRCE and TVB in France). However, 

just like with protected areas designation, such policies seldom include artificial light as a 

parameter to define ecological corridors which may greatly alter their efficiency for nocturnal 

species movements. Moreover, green infrastructures are often mapped by landscape managers 

and tend to only account for the structural connectivity of the landscape (Billon et al., 2017), 

i.e. they do not account for species behavior in the environment and their response to landscape 

features. This representation of connectivity is overly simplistic and does not represent the 

actual functional connectivity of the landscape for the species. For example, vegetation areas 

are often considered as connected as long as there is no interruption in the cover (structural 

connectivity). However, this does not take into consideration species gap-crossing abilities. 

Animals such as bats indeed use linear vegetation feature such as hedges as commuting routes 

and depending on the species, are able to cross more or less important gaps in hedges hence 

increasing connectivity compared to purely structural considerations. For example, some bat 

species can cross gaps in hedgerows of up to 100 m although the crossing probability decrease 

rapidly when gaps exceed 40 m (Fig. 15 ;Pinaud et al., 2018).  In addition to that, as nocturnal 

species, their ability to cross gaps depends on the light level within the gap. Indeed, the gap 
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distance bats can flight through tends 

to decrease with increasing light levels 

(Hale et al., 2015). Thus defining 

functional connectivity requires to 

account for species response to their 

surrounding and furthermore, it 

implies to include the presence of light 

and its characteristics for nocturnal 

species.  

In addition, due to divergences 

in species perception of landscape 

connectivity, it is necessary to evaluate 

it for different species and combine the 

results to come up with ecological 

corridors that will be appropriate for 

species communities. As it is conceivable to model landscape connectivity for all possible 

species, some must be selected as representative of the larger community. Designating such 

ensembles of species is complex. An approach could be to base the selection on species 

functional traits as studies showed that the perception of the landscape and its connectivity is 

linked to functional traits (With & Crist, 1995; Penone et al., 2013). 

5.3. Technical tools 

A few years back, studies on the influence of light on species only characterized the 

light by its perceived color (e.g., Mathews et al., 2015). In addition, the quantity of light emitted 

was not often evaluated but when it was considered, it was frequently mistakenly called 

 

Fig. 15. Probability of crossing a gap in a connecting 

feature as a function of its width during commuting 

period for greater horseshoe bat. Top histogram in 

grey refers to the gap width distribution. The large, 

black line indicates the predicted probability from the 

selected binomial GLM model and the grey area 

indicates its 95% confidence interval (extracted fom 

Pinaud et al., 2018). 
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“intensity” whereas the measure represented the illuminance (e.g., Lacoeuilhe et al., 2014). The 

need for ecology and conservation scientists to communicate their results to lighting engineers 

may have participated to the recent shift toward precise and detailed description of the light 

sources studied. Collaborations between biologists, physicists and engineers are developing to 

produce results with direct application perspectives. Gaston et al. (2012) proposed five light 

management options to reduce light pollution through the adaptation of street lights and most 

have subsequently been explored through experimentation. 

Tailor the spectral composition of light 

The spectral composition of the lamp is one of the most studied aspect of light. The 

qualification of the spectrum went from a simple description of its perceived color (e.g., 

Lacoeuilhe et al., 2014) to stating lamp types (e.g., Wakefield et al., 2017) and studying 

different spectrum within a single type of lamp (e.g., Longcore et al., 2015). Studies are hence 

numerous but not always comparable and sometimes not congruent with one another. 

Nevertheless, globally, the highest concerns are with UV and short wavelengths that have major 

impacts such as an attractive effect on many insects (Eisenbeis, 2006) and a suppressive effect 

on melatonin secretion (Haim & Zubidat, 2015b). Although mercury vapor lamps emitting 

important quantity of UV have been banned in the EU due to their low energy efficiency, other 

lamp types emitting low amounts of UV are still widely used (e.g., metal halide lamps – MH). 

This is worrying as the phototaxis behavior of insects is highly sensitive to UV and seem to be 

independent from the amount of UV radiations emitted (Barghini & de Medeiros, 2012). In 

addition, the large deployment of new technologies with broad spectrum may increase the 

impact of light on many taxa. Indeed, depending on the species, all spectra may have 

consequences (e.g., mice - Spoelstra et al., 2015) or part of the spectra may be more impacting. 

For example, fish melatonin secretion suppression is more affected by red light than blue light 
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(Brüning et al., 2016b) whereas turtle are more disorientated by green light than red light (Cruz 

et al., 2018). Hence no part of the spectrum has no impact on any species and broad spectrum 

lamps (e.g., LED, MH) may affect a larger proportion of biodiversity than narrow spectrum 

lamps (e.g., LPS, HPS). A recent study attempted to create an index to define organismal 

response to lighting spectrum but it is limited to species for which action spectra are available 

(Longcore et al., 2018). 

Limit the duration of lighting 

Part-night lighting schemes are increasingly being used and likely to become 

widespread in regions with developed lighting infrastructures due to energy price and concerns 

about carbon dioxide emissions (Gaston et al., 2012). Few studies investigated the potential 

effect of such measures but they do not prove conclusive in reducing the impact of ALAN on 

bat species (Azam et al., 2015; Day et al., 2015). Indeed, street lighting is mostly important for 

humans activities after dusk and before dawn which coincide with the most critical hours of 

activity of crepuscular and nocturnal species (Gaston et al., 2012). Intelligent lighting schemes, 

using motion-sensors to detect users, may have more ecological benefits as they could increase 

the length of non-lit periods (Rowse et al., 2016) however they haven’t been investigated yet. 

Reduce the quantity of light 

At the local scale, the quantity of light can be measured through the energy input of a 

lamp (power, intensity) or the light emitted (luminance, illuminance). At large scales, the 

quantity of light is often evaluated through remote sensing as a measure of radiance. The 

illuminance, measured in lux, is the most commonly employed metric as it can be easily 

measured in the field with low-cost equipment whereas luminance measures require expensive 

equipment and power and intensity can’t be measured in the field, these information are held 
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by private companies or municipalities in charge of the outdoor public lighting. Illuminance is 

a photometric measure which means that it is relative to the human perception of light. Although 

this can be criticized as each species perceives light in a different way, this metric has the 

advantage of being used by lighting engineers and thus allows for direct knowledge transfer for 

possible lighting planning adaptations. Dose-dependent responses to illuminance have been 

shown in bird activity onset and human and bird melatonin secretion suppression (West et al., 

2011; de Jong, Jeninga, et al., 2016). However, some species seem to be impacted by light 

irrespective of the illuminance level (Stone et al., 2012; Azam et al., 2018). Nonetheless, diming 

schemes have the potential to improve light pollution levels at the landscape level. A study 

using remote sensing data of both light emissions and vegetation (as a proxy of suitable habitats) 

showed that a 20% reduction in light emissions mostly concentrated in rural areas (as opposed 

to city centers and already dark areas) in two natural reserves and their surroundings (5 km 

buffer) could increase the surface of dark suitable habitats by up to 46% (Fig. 16 ;Marcantonio 

et al., 2015). 

 

 
Fig. 16. Light pollution measured on a grey scale from low (dark grey)  to high (light grey) in 

the Colli Euganei protected area (dashed red line) at the original level (a), for a 10% diminution 

(b) and a 20% diminution (c) in light emissions mostly concentrated in rural areas (as opposed 

to city centers and already dark areas) (adapted from Marcantonio et al., 2015). 
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Limit light trespass 

Light trespass comprises all light 

which unintentionally illuminate 

surroundings of a light source. It is mostly due 

to a poor directionality of the light flux which 

may impact the close environment but also 

have a far reach when light is emitted at 

horizontal or above hence highly contributing 

to skyglow. As organisms can be sensitive to 

very low levels of light (Fig. 17 ;Dominoni et al., 2013; Brüning et al., 2016b; Azam et al., 

2018), it is crucial to minimize light trespass. New lighting technologies such as LEDS produce 

more directional light and light fixture design can greatly participate to a better flux orientation. 

Position of the street light head perpendicularly to the column, shielding fixtures and correct 

column height can improve the flux orientation (The Royal Commission on Environmental 

Pollution, 2009). In addition, vegetation structures such as hedgerows can also be used as 

shielding to preserve dark areas. 

Prevent areas from being artificially lit 

The simplest approach to reduce light pollution is to restrict nighttime lighting to the 

minimum necessary for human use and remove installation in already light saturated areas and 

from areas where it is not indispensable. A good example of the harm induced by the installation 

of unneeded lighting is the decrease in bat colonies presence in churches due to the 

implementation of aesthetic lighting (Rydell, Eklöf, & Sánchez-Navarro, 2017). Unfortunately, 

 

Fig. 17. Predicted Myotis spp. activity for four 

light illuminance classes. ‘*’ indicates that light 

illuminance classes were significantly different 

from control unlit treatment (P < 0.01) 

(extracted from Azam et al., 2018). 
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the global trend is not toward street light removal but toward the installation of more public 

lighting and the increase of private lighting due to the low cost of LEDs. 

6. Knowledge gaps and thesis plan 

There is a large body of literature demonstrating the numerous and dramatic impacts of 

artificial light at night on organisms’ physiology and behavior. They suggest that a wide variety 

of taxa are influenced by the presence of lighting with different responses depending on the 

spectrum, the timing and the quantity of light. Studies’ findings indicate potential major 

repercussions on individual’s fitness and reproductive success with possible cascading effects 

on population dynamics, community composition and ecosystems functioning. As urban areas 

keep on extending, understanding, assessing and enhancing urban biodiversity is of major 

importance from both a conservation and a social perspective (Kowarik, 2011). Therefore, it 

appears important to better understand the influence of anthropogenic pressures on species 

inhabiting cities such as bats which are, in addition, protected at the European level (Council 

Directive 92/43/EEC, 1992). Therefore, during my PhD thesis, I investigated the impact of light 

pollution on bats (Box 1) at the local scale and at the city scale. In the first chapter, I present 

Box 1. Using microchiropteran bats as model species 

 Being insectivorous predators, bats population trends tend to reflect those of lower 

trophic levels such as arthropods (Gareth Jones et al., 2009; Stahlschmidt & Brühl, 

2012) 

 Sensitive to environmental anthropogenic pressures (Russo & Ancillotto, 2015) 

 Present in urban landscapes (Marnell & Presetnik, 2010; Russo & Ancillotto, 2015) 

 All bat species are protected at the national and European level jointly their roosts 

and habitat (European Commission, 1992) although there is no specifications 

concerning the effect of artificial light 

 As nocturnal species, bats are submitted to artificial light and their sensitivity to light 

is species-dependent 
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the biological and light data I used for my research. At the two scale studied, both ground-based 

and remote sensing data can be used to evaluate the level of light pollution. These sources of 

information present different advantages and drawbacks which are important to consider for 

their use in analyses and to interpret results. All the studies presented in this PhD are based on 

acoustic recordings of bat ultrasounds that can be semi-automatically identified to the species 

or species-group level with specific software. However the outputs of such software are not 

straightforward to exploit as they may include errors and false identifications. In the first study 

presented, I participated to the development of a methodology aiming at properly selecting bat 

identifications to then carry out analysis on bats response to their environment. This study 

intended to answer the following question: 

 How should bat acoustic data classified through a semi-automated identification 

software be selected to optimize their use in bat activity analysis? 

This study will be submitted for publication in Methods in Ecology and Evolution: 

Barré K., Pauwels J., Le Viol I., Claireau F., Julien J.-F., Julliard R., Kerbiriou C., Bas Y. 

Robustness of using a semi-automated method to account for identification errors in bat 

acoustic surveys. In prep. 

Although many studies investigated the impact of light on species activity at the local 

scale and few investigated large scales, none attempted to measure light pollution effects on 

species activity at a scale both relevant for the focus species movements and lighting 

management. This may be due to the scarcity of data measuring light pollution at the landscape 

level with a high resolution. In the second chapter of my PhD thesis, I intend to evaluate how 

light affects bat activity at the city scale. To carry out this work, I took advantage of biological 

and light data available through citizen-science programs. It allowed me to have an important 

amount of data on bats with a good spatial coverage (Vigie-Chiro monitoring program) as well 
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as high resolution nocturnal pictures taken from the International Space Station (ISS) (Cities at 

Night program). I intended to answer two questions: 

 How is bat activity affected by light pollution at the city scale? 

 Which source of information is the most relevant to measure this effect? 

This study has been accepted for publication in Landscape and Urban Planning: 

Pauwels J., Le Viol I., Azam C., Valet N., Julien J.-F., Bas Y., Lemarchand C., Sànchez De 

Miguel A., Kerbiriou C. Accounting for artificial light impact on bat activity for a 

biodiversity-friendly urban planning. Accepted for publication in Landscape and Urban 

Planning. 

Thirdly, although the effect of light on individual’s movement at the local scale was 

studied on several taxa, no study has evaluated its impact on daily movements at an intermediate 

scale. Individual’s ability to travel through a landscape is crucial to comply with its daily needs 

such as finding food. The impediment of such movements could have important repercussions 

on fitness and populations maintenance (Taylor et al., 1993; Nathan et al., 2008). Although 

landscape connectivity has been explored for various taxa (LaPoint et al., 2015), little research 

focused on nocturnal species and only one considered the influence of light pollution but at a 

small scale (Hale et al., 2015). Hence in a second chapter, I intend to evaluate the influence of 

light pollution on bats daily movements in urban areas at two intermediate scales, the 

conurbation scale and the city scale. In addition, I intend to evaluate the potential of lighting 

planning to modify the landscape connectivity through the comparison of the current lighting 

situation with scenarios of light extinction in certain areas and scenarios of changes in lighting 

technologies toward the generalized use of LEDs. In this chapter I aimed at answering the 

following questions: 
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 What is the contribution of ALAN to urban landscapes fragmentation for bats? 

 Could localized light extinction scheme improve the connectivity at the landscape 

level? 

 How would a shift in lighting technology toward LEDs affect landscape 

connectivity for bats? 

This chapter include two studies. The first will be submitted for publication in Landscape 

Ecology: 

Laforge A., Pauwels J., Faure B., Bas Y., Kerbiriou C., Fonderflick J., Besnard A. Light 

reduction improves connectivity for bats in an urban landscape. In prep. 

The second study will be submitted for publication in Ecological Applications: 

Pauwels J., Laforge A., Bas Y., Fonderflick J., Besnard A., Valet N., Le Viol I., Kerbiriou C. 

Flying through the city: new lighting technologies alter landscape connectivity for bats 

in urban areas. In prep.  

In the actual context of green infrastructure development, there is an urgent need for 

operational light-source scale recommendations adapted to local contexts in order to preserve 

dark corridors for nocturnal species. In particular, protected areas aim at preserving biodiversity 

and habitats but, in Europe, most of them include a significant part of urban activities (European 

Environment Agency, 2012) therefore submitting natural environment to anthropogenic 

pressures such as light pollution. Due to its diffuse character, light emitted in urban areas may 

affect surrounding semi-natural and natural habitats such as hedges which have a substantial 

role in landscape connectivity (Burel, 1996) and are of particular importance for bats (Verboom 

& Huitema, 1997). However, land managers lack information to adapt their outdoor lighting to 

local protected species. Thus, in the third chapter of my PhD thesis, I intend to evaluate the 

importance of several street light characteristics in the impact of light on a broad panel of bat 
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species activity around streetlights and at hedges. I designed an in situ experiment to answer 

the following questions: 

 How do streetlight characteristics influence the bat activity? 

 What is the distance of impact of light on various bat species activity? 

The results of this study have been submitted to Animal Conservation: 

Pauwels J., Kerbiriou C., Bas Y., Valet N., Le Viol I. Adapting street lighting to limit light 

pollution impacts on bats in protected areas. Submitted in Animal Conservation.
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“[…] we are driven by our visual system and therefore tend to neglect the dark side of 

conservation, i.e., the protection of nocturnal animals.” 

Voigt and Kingston 2016 
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In this PhD thesis, I undertake studies at two different scales in order to evaluate the 

impact of light on both bat behavior in the vicinity of streetlights at a fine scale and bat activity 

distribution at an intermediate scale. The second and third chapters focus on the city-scale (100 

km² or less) which include all bats daily movements and allow to measure the effect of ALAN 

on the city landscape connectivity. This scale also corresponds to a management unit of public 

lighting thus results of the studies may be of direct interest for land management applications. 

The fourth chapter investigates the activity of several bat species at specific light sources hence 

concentrating on fine scale behavior. I used different types of biological and light data to 

explore the impacts of light at these two spatial scales.  

1. Light pollution data 

Most studies evaluating the impact of light on biodiversity are performed at the local 

scale (Stone, Jones, & Harris, 2009; Azam et al., 2018). This arose from the will to investigate 

and measure visible phenomenon such as the attraction of insects to light. It may also be linked 

to the greater difficulty to perform large scale studies and the necessity to access light data for 

an entire landscape. Indeed although punctual measured of light can be done fairly easily, 

mapping large-scale night sky brightness is more complex. In the field experiment described in 

the third chapter, the lamp type could be determined visually and checked with a measure of 

the spectrum and the quantity of light at the sampled location could be evaluated through the 

measure of the illuminance with a luxmeter. However, for the city-scale studies it would not 

have been feasible to make such measures for each light source. In order to measure cities 

nighttime lighting, we tested several potential sources of information on light emissions 

(chapter 2; Fig. 18). Ground-based data such as the location of streetlights are more and more 

accessible online and can be used as a proxy of light distribution although this type of data does 

not account for private lighting and light characteristics (spectrum, quantity, directionality). 
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Several sources of remote sensing data such as DMSP-OLS and VIIRS DNB satellite imaging 

from the National Oceanic and Atmospheric Administration (NOAA) are freely available 

online. Both are representations of the global light emissions with yearly and monthly updates. 

The radiance level is measured on a discrete grey scale and these satellite images have the 

advantage to have a worldwide coverage. However their coarseness make them unsuitable for 

city-scale studies. We used pictures taken from the International Space Station (ISS) by 

astronauts. These pictures are taken with regular cameras and hence can be decomposed in four 

color bands (red, blue ad two green bands) representing the spectral distribution. The value of 

each pixel is proportional to the radiance emitted and thus measures the relative light emission. 

Such pictures are available online through the National Spatial and Aeronautic Administration 

(NASA) website. A recently launched citizen-science programs, Cities at Night 

(http://citiesatnight.org/), aims at classifying the thousands of existing pictures and 

georeference them so they can be accessible easily. Such pictures have a variable quality and 

resolution that can be as fine as 1 m. Yet the georeferencing is based on the recognition of light 

patterns hence only brightly light areas such as big cities have available picture for now. I 

collaborated with an astrophysicist to be able to use such picture to have a measure of the light 

pollution at the city scale and also to produce scenarios reflecting a change in lighting 

technology toward the generalized use of LED lighting. 

http://citiesatnight.org/
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2. Bat activity data 

2.1. Bat acoustic data 

While flying, microchiropterans use echolocation to detect the object surrounding them 

thus allowing them to navigate and forage. The recording of ultrasound echolocation calls is 

widely use to study bats as this method provides information on their presence in a non-invasive 

fashion. Bats always echolocate while flying thus recording no bat calls can be interpreted as 

an absence of individuals within the detection range of the microphone. Therefore bat 

 

Fig. 18. Different possible sources of information on light pollution. DMSP – OLS (A) and VIIRS 

–DNB (B) satellite images of France with a zoom on Paris and its surrounding. The resolution of 

the images is too low (930 m for DMSP – OLS and 460 m for VIIRS – DNB) to see the difference 

of radiance emitted in Paris. The better resolution (60m) of this ISS picture of Paris (C) allows to 

distinguish areas with low and high radiance at a fine scale. Another source of information on light 

pollution is the location of streetlights (D). Each orange dot represent a streetlight (over 51 000 in 

Paris) (extracted from Pauwels et al. (2018) Accounting for artificial light impact on bat activity 

for a biodiversity-friendly urban planning. Landscape and Urban Planning. In press) 
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recordings can be used to measure the relative abundance of bats and how they use their habitat. 

Information on bats behavior can also be inferred from the recording of call sequences. For 

example while approaching a prey, bats emit characteristic sequences of calls called feeding 

buzzes. Foraging and transiting behavior can partly be differentiated from the characteristics of 

the call sequences however these two behavior are not completely separated as bats can catch 

insect while transiting. Echolocation calls data were used in all the studies presented in this PhD 

thesis. 

Calls sequences can be analyzed to determine to which species they belong to although 

some species may have very similar acoustic signatures and can only be classified at the species 

group level. Moreover, individual bats from the same species cannot be differentiated on their 

echolocation calls. Indeed, echolocation calls are not used for communication but only for the 

detection of surrounding obstacles and are very similar between species and even more so 

between individuals. Therefore the abundance cannot be evaluated as several passages of the 

same individual may be recorded. Instead, acoustic data are used to assess bat activity which 

measures the degree to which an area is used by bats for foraging or transiting thus reflecting 

the suitability of the habitat.  There are many ways to define bat activity (Kerbiriou et al., 2018) 

and for the analyses presented here, bat activity was defined as the number of bat passes per 

unit of time (e.g., one night) with a bat pass being a call or sequence of calls of the same species 

recorded within a 5 seconds interval (Millon et al., 2015). This time interval corresponds to the 

better compromise between the risk of multiple counts of the same individual passage and the 

risk of missing other individual passages (Kerbiriou et al., 2018). Indeed 5 seconds is the mean 

duration of calls sequences recorded (Millon et al., 2015).  
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2.2. Data sampling 

For both scales, bat activity was evaluated through the recording of bats echolocation 

calls with ultrasound recorders. The city-scale studies were carried out for three large cities of 

France as the spatial arrangement of land cover types and the distribution of light may play an 

important role in the effect of ALAN on bat activity distribution and landscape connectivity. 

These studies required a sampling covering the entire study areas and hence a large number of 

recording points and I took advantage of the important database generated by the national 

citizen science bat monitoring program Vigie-Chiro (http://vigienature.mnhn.fr/page/chauves-

souris.html). The fine-scale study required the sampling of selected light sources and adjacent 

points hence I designed a sampling plan to carry out a field experiment.  

Citizen science monitoring programs aim at measuring large scale population trends by 

defining a sampling design representative of habitats cover and with the help of volunteers. 

Such programs also aim at involving citizens in the conservation of biodiversity through the 

appropriation of a scientific methodology. Monitoring programs represent a highly valuable 

source of data as they generate large-scale and long-time dataset. For the city-scale studies, I 

used data collected as part of the French national bat monitoring program Vigie-Chiro. The 

program, launched in 2006 by the National Museum of Natural History of Paris, gather data 

covering the entire French territory (Fig. 19) and taken following three different protocols. In 

the analysis presented in the thesis only two protocols are used, the pedestrian protocol and the 

full-night protocol. For the pedestrian protocol, volunteers take 6 minutes recording at ten 

points selected within a 2 km² area. For the full-night protocol, recording devices are placed at 

selected sites and record throughout the entire night. 

http://vigienature.mnhn.fr/page/chauves-souris.html
http://vigienature.mnhn.fr/page/chauves-souris.html
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Fig. 19. Repartition of all the recordings done as part of Vigie-Chiro. The database currently 

contains over 4 million bat passes recorded and represent over five thousand sampling events 

(adapted from Bas et al. (2018) Des nouvelles de Vigie-Chiro ! Poster presented at the 

Rencontres nationales chiroptères de Bourges).  

In order to use such data to answer another scientific question, it is necessary to verify 

that the spatial subset of data used covers all the possible environmental conditions encountered 

throughout the study areas. If the gradient of the variables of interest present in the study area 

is not sampled within the data available, it is not possible to carry out the analysis or it would 

require to modify the spatial extent to reach a better representation of the variable. To evaluate 

the impact of light pollution on bat activity, it was important that the sampling covered the 

gradient of radiance existing across the study areas and fortunately the dataset available for 

each city complied with this requirement. 
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In the third chapter, I analyze bat activity data I collected in the field. Recording 

locations were carefully chosen to answer my specific research question and to account for 

potential correlation among the variables of interest.  

Until 2000, most recordings were active which means that they required the presence of 

an operator. Thus the quantity of data was limited by the time of investment needed for such 

sampling but also by the length of recordings possible. In addition, short-length recordings (6 

minutes for the pedestrian protocol) produce an important number of zeros hence generating a 

possibly important zero-inflation in the data. More recently, passive acoustic monitoring (PAM) 

was developed through apparition of recorders that can now function without an operator being 

present all along and record for days in row. This technical evolution greatly increased the 

possibility to realize large samplings and investigate large scale patterns. Such methods are now 

widely used for field experiments and large scale monitoring such as citizen science programs 

and the data accumulated increased dramatically. 

2.3. Bat calls identification 

In order to associate a species to a bat calls sequence, several measures can be taken 

such as the mean frequency, the power distribution or the interval between calls (Fig. 20). 

Although the identification can be done manually, this implies a bias as the persons doing the 

identification may not all have the same level of expertise and their knowledge may evolve 

across time. In addition, the development of PAM and the associated increase in the quantity 

of data makes it virtually impossible to check all call sequences by hand. For example, the data 

used for the city of Montpellier included both active and passive recording data and within these 

data, 20 times more calls were recorded in one night (full-night protocol) than in a 6 minute 

recording (pedestrian protocol). Each sampling lasting one night recorded a mean number of 
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10 000 bat calls. Thus semi-automated identification software are being improved such as the 

software Tadarida (Bas, Bas, & Julien, 2017) which is developed within the CESCO lab in open 

source and is freely available as an online web portal to classify data recorded following the 

Vigie-Chiro protocols. These software allow for the rapid analysis of a large number of data 

and greatly reduce the time necessary for identification although they are not entirely reliable 

and can produce false identification. The Tadarida software computes a large array of metrics 

on each 5 seconds sequence of calls of a same species to allow for their identification. The 

identification algorithm is calibrated on a set of manually identified sequences to produce a 

decision tree (random forest algorithm). The decision tree is then applied to the new set of data. 

Each sequence detected in the data is identified to the finest taxonomic level and attributed a 

confidence index (CI). The CI ranges from 0 to 1 with increasing confidence in the 

identification. However, this index is not a probability and does not behave identically for all 

species. Thus it is not straightforward to use it to select the sequences identified with certitude 

(low number of false positive) while removing sequences with high uncertainty (high number 

of false positive). Indeed, it is essential to find the most optimal balance between the quantity 

of data kept for an analysis and the quantity of errors within the dataset to obtain correct results 

without losing to much statistical power. Moreover, due to the acoustic similarities between 

some species, inaccurate identifications can simultaneously lead to an erroneous low number 

of contacts for one species (false negative) while attributing them to another one (false positive).  
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In order to be able to discriminate between well and poorly identified bat passes, I 

participated in the definition of a methodology aiming at choosing CI thresholds values for each 

species (Barré et al., in prep). The results show that it is necessary to only consider data with 

at least a 0.5 maximum error risk to minimize false positives and have consistent responses of 

bat activity to commonly used environmental variables in statistic models. This study provides 

new opportunities, starting with a time gain in manual checking in experimental studies and 

allow to generalize large-scale monitoring of bats. I adapted the methodology presented in this 

paper to be use it on the data I collected in the field. In the study by Barré et al., a stratified 

selection of the data taken in the study area were used to calibrate the algorithm.  The selected 

data were manually checked by two experts which took several months. To identify my field 

data, the algorithm was calibrated using a national scale dataset that was manually identified by 

experts over several years thus I did not make manual identifications on my field data. Amongst 

the species identified in my dataset, some are acoustically very similar (e.g., P. kuhlii and P. 

nathusii) and there may have been misattributions of calls between species. However, my 

sampling sites were distributed in a fairly small area within the same biogeographic regions 

 

Fig. 20. Example of a spectrogram representing echolocation calls of Pipistrellus pipistrellus 

(extracted from Haquart (2009) Fiches acoustiques de Chiroptères de France et du Var) 
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thus the potential bias due to this type of misattributions is likely to be the same for all sampling 

sites and hence does not fundamentally change the interpretation of the results. 



  - 53 -  

ARTICLE 1  

ROBUSTNESS OF USING A SEMI-AUTOMATIC 

METHOD TO ACCOUNT FOR IDENTIFICATION 

ERRORS IN BAT ACOUSTIC SURVEYS 
 

Kévin Barré1, 2, Julie Pauwels1, Isabelle Le Viol1, 2, Jean-François Julien1, Romain Julliard1, 

Fabien Claireau1, Yves Bas1, 3, Christian Kerbiriou1, 2 

 

1 Muséum national d’Histoire naturelle, Centre d’Ecologie et des Sciences de la Conservation, 

UMR 7204 MNHN-CNRS-UPMC, 61 rue Buffon, 75005 Paris, France  

2 Muséum national d’Histoire naturelle, Station de Biologie Marine, 29900 Concarneau, France  

3 Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, 1919 route de Mende, 

34293 Montpellier, France 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1 

  - 54 -  

Abstract 

1. Halt threats on biodiversity and ecosystem services require large-scale and long-time studies 

which need to adapt monitoring methods for the understanding of biodiversity changes. 

Reduced costs of acoustic recorders and their huge increase of storage capacity resulted in an 

exponential development of Passive Acoustic Monitoring (PAM) of a very wide range of 

animals in a few years, in particular bats for which PAM constitutes a real efficient tool. PAM 

of bats lead to collect quickly a very large number of records, making manual identification 

increasingly time-consuming. To respond to PAM, methods for detecting sound events, 

extracting numerous features, and automatically identifying species have been developed. 

However, automatic identification can generate large rate of errors which could affect response 

of bats to environmental variables and pressures. This study propose a cautious method to 

account for identification errors in acoustic surveys without fully check records. 

2. We proposed to check a representative sample of the outputs of Tadarida automatic 

identification software to then model the identification success probability of 10 species and 2 

groups, according to the provided confidence index. We then investigated the effect of setting 

different Maximum error rate Tolerance (MERT) under which data should be discarded, by 

repeating a large-scale analysis of bat activity response to habitat variables, and checking for 

consistency in the results. 

3. Main changes in model outputs occurred from naive (i.e. raw data) to robust analyses (i.e. 

MERT) with in some cases a loss of significance or an estimates inversion. Then, we did not 

detect major changes between 0.5, 0.4, 0.3, 0.2 and 0.1 rates of MERT, and response estimates 

and standard errors were highly stable. 
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4. We conclude that it was essential at least to sort out data with more than a 0.5 MERT to 

minimize the false positive rate. The method allowed to check the consistence of responses at 

different MERT involving various balances between quantity and quality of data, in order to 

enough minimize the MERT. This study provides new opportunities, starting with a time gain 

in manual checking in experimental studies and allow to generalize large-scale monitoring of 

bats improving knowledge.
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1. Introduction 

Despite some local successes and increasing responses, the rate of biodiversity loss does 

not appear to be slowing (Butchart et al., 2010), although halting this decline has been 

recognized as a crucial aim for humanity (Cardinale et al., 2012). In 2010, the 10th Conference 

of Parties to the Convention on Biological Diversity, adopted a new 2011–2020 global Strategic 

Plan for Biodiversity, in turn, EU launch a new Biodiversity Strategy (2011/2307). This strategy 

aims to halt biodiversity loss and the degradation of ecosystem services by 2020, restore 

ecosystems, and make a contribution to addressing global biodiversity loss. However to reach 

the target of reducing loss of biodiversity, the efforts undertaken by each country should be 

assessed, which in turn require large-scale and long-time studies which need to adapted 

monitoring methods for the understanding of biodiversity changes (Fisher, Frank, & Leggett, 

2010). A significant increase of amount of information available on biodiversity is also needed 

to evaluate impact of various anthropogenic pressures. 

Reduced costs of acoustic recorders and their huge increase of storage capacity resulted 

in an exponential development of Passive Acoustic Monitoring (PAM) of a very wide range of 

animals in a few years (Froidevaux, Zellweger, Bollmann, & Obrist, 2014; Kalan et al., 2015; 

Selby et al., 2016). Such approaches were widely used by researchers working for 

environmental consulting firms or government agencies (Adams, Jantzen, Hamilton, & Fenton, 

2012). PAM is particularly adapted for cryptic taxa surveys such as nocturnal fauna (Delport, 

Kemp, & Ferguson, 2002; Newson, Evans, & Gillings, 2015; Jeliazkov et al., 2016), for the 

monitoring of pristine habitats difficult to access and survey by other approaches (Gasc, Sueur, 

Pavoine, Pellens, & Grandcolas, 2013). PAM have been mobilized, also, in citizen science 

programs (Newson, Woodburn, Noble, Baillie, & Gregory, 2005), a real efficient and essential 

tool in implementation of large-scale biodiversity monitoring (Newson et al., 2015). Due to a 
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recent exponential increase in the knowledge of acoustic identification of bat species (Russo & 

Jones, 2002; Obrist, Boesch, & Fluckiger, 2004; Barataud, 2015), PAM have recently been 

widely used by bat workers. However, PAM of bats lead to collect quickly a very large number 

of records, which in turn had involved changes in acoustic identification procedures: before this 

change, acoustic identifications were mainly performed manually with software allowing 

visualization of spectrogram. However, manual identification was indeed increasingly time-

consuming. With the arrival in the market of such new generation of acoustic recorders 

affordable allowing to record several hours/days straight, such amount of acoustic data could 

not be deal with manual procedure (Bas, Bas, & Julien, 2017). To respond to these changes 

several reliable quantitative methods for detecting sound events, extracting numerous features, 

and automatically identifying species have been developed (Parsons & Jones, 2000; Britzke, 

Duchamp, Murray, Swihart, & Robbins, 2011; Adams et al., 2012; Bas et al., 2017). However, 

automatic identification software has recently been criticised because of significant error rates, 

suggesting a cautious and limited use (Russo & Voigt, 2016; Rydell, Nyman, Eklöf, Jones, & 

Russo, 2017). Most available softwares nonetheless provide confidence indexes in the form of 

probabilities or other numerical indexes (Obrist et al., 2004; Waters & Barlow, 2013), and their 

manuals do advocate on using confidence thresholds under which data should be discarded 

because of error risk, e.g. SonoChiro (Biotope, 2013) or BatClassify (Scott & Altringham, 

2017). Thus, the correlation between error risk and confidence indexes is an important part of 

the automatic identification performance so far ignored by all previous methodological studies 

(Fritsch & Bruckner 2014; Rydell et al. 2017). Besides that, the level at which confidence 

thresholds should be set is unclear to most users, limiting the use of automatic identification in 

bat ecological studies. A too cautious threshold could indeed lead to high false negative rates 

whereas a not sufficiently cautious threshold could lead to high false positive rates. Both rates 

have different statistical implications: false positive could lead to biases due to other species 
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activity while false negatives could lead to lack of power by discarding too much data. Given 

the fact that both rates induce different caveats, there is no straightforward way to set confidence 

thresholds.  

In this study, we proposed to check a representative sample of the outputs of Tadarida 

automatic identification software to then model the identification success probability of 10 

species and 2 groups, according to the provided confidence index (Bas et al., 2017). We then 

investigated the effect of setting different maximum error rate tolerances (i.e. confidence 

thresholds) under which data should be discarded, by first repeating a large-scale analysis of 

bat activity response to habitat variables, and then checking for consistency in the results. 

2. Materials and methods 

Bat survey 

Bat activity was sampled through recordings of echolocation calls on 337 points over 

29 localities in northwest France (Fig.1) dominated by agriculture (82%) and forest (11%) 

areas. Recordings were performed during 23 entire nights, from 30 minutes before sunset to 30 

minutes after sunrise, from the 7th of September to the 8th of October 2016.  

Among the 23 nights, 14 were dedicated to the sampling of only one locality per night, 

while the other 9 nights allowed us to simultaneously sample 2 localities per night (these wind 

farm were in average 8.1 km distant). Standardized echolocation calls were recorded using one 

bat detector (Wildlife Acoustic SM2Bat+) per site. The detectors automatically recorded all 

ultrasounds using preconized settings of the French monitoring Vigie-Chiro (trigger level set to 

6 db SNR; see for further details http://vigienature.mnhn.fr/page/protocole-point-fixe). 
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Fig. 1. Schematic and chronological representation of the steps used to study the relationship 

between the automatic identification errors in acoustic data and the bat activity response to 

environmental variables. 

Step 1: semi-automated acoustic identification on a subset 

We defined a bat activity metric (number of bat passes per night), where one bat pass 

was defined by a single or several echolocation calls during a 5 second interval which is a good 

compromise considering the mean duration of all bat species passes (Millon, Julien, Julliard, & 

Kerbiriou, 2015). The semi-automated identification process was performed in the step 1 in 2 

parts (Fig. 1). In the first part, echolocation calls were detected and classified to the most 

accurate taxonomic level using the TADARIDA software (Bas et al., 2017) which allows to 

assign a species and a confidence index (between 0 and 1) to each recorded bat pass. In the 

second part, we randomly performed a double manual checking (KB and YB) of automatic 
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identifications using BatSound© and Syrinx (John Burt, Seattle, WA, USA) software for each 

0.1 class of confidence index at 10 species and 2 groups (Myotis and Plecotus spp.) levels. A 

minimum of 25 bat passes per class of confidence index for each species and groups were 

checked, except for Rhinolophus species where all passes were checked thanks to the low total 

number. When the number of bat passes for a given species and confidence index class was 

<25, all passes were checked (Table 1). Groups were constructed because species were difficult 

to identify from each other, except one species of Myotis ssp., Myotis nattereri, for which 

echolocation calls are very characteristics (Obrist et al., 2004; Barataud, 2015).  

Step 2: error risk modelling from the semi-automated identification 

From previous manual checking (i.e. a random subset of the total dataset stratified per 

species and per confidence index classes), we performed generalized linear models between the 

success/fail of the automatic species assignation (here the response variable, a binomial 

variable) and the confidence index of the automatic identification (explanatory variable) (see 

step 2 in Fig.1; Fig. 2). We selected the probit link which better fitted the binomial distribution 

of manual checking for all species/groups. This allowed to predict the needed confidence index 

from the automatic identification process to tolerate a given rate of maximum error rate: 0.5, 

0.4, 0.3, 0.2 and 0.1 (Fig.1; Table 2). Then, for each of these thresholds, we calculated the false 

negative and the false positive rates (Table 2).
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Table 1. Total bat passes assigned to each species by the automatic identification per confidence index 

classes, number of bat passes manually double checked and errors noted. See Table S2 for species 

composition in errors. 

Species 
Upper limits of confidence index classes of the automatic identification 

Total 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Barbastella barbastellus            

 Total passes 3 52 144 242 297 671 940 1312 1596 578 5835 
 Checked passes 3 25 25 25 25 25 25 25 25 25 228 
 Errors 3 5 1 0 0 0 0 0 0 0 3.9 % 

Eptesicus serotinus            

 Total passes 1 55 102 149 268 461 218 79 10 0 1343 
 Checked passes 1 25 25 25 25 25 25 25 9 0 185 
 Errors 1 13 7 0 0 0 0 0 0 0 11.4 % 

Myotis nattereri            

 Total passes 9 166 211 223 225 411 269 180 247 47 1988 
 Checked passes 9 9 3 6 8 2 2 10 23 25 97 
 Errors 8 5 1 2 1 0 0 0 0 0 17.5 % 

Myotis spp            

 Total passes 20 534 815 770 701 1708 1132 445 258 47 6430 
 Checked passes 20 25 25 25 25 25 25 25 25 25 245 
 Errors 19 14 6 6 4 0 0 0 0 0 20.0 % 

Nyctalus leislerii            

 Total passes 3 47 41 33 11 8 9 1 0 0 153 
 Checked passes 3 25 25 25 11 8 9 1 0 0 107 
 Errors 2 16 14 13 4 0 0 0 0 0 45.8 % 

Nyctalus noctula            

 Total passes 0 113 110 82 24 43 16 6 1 0 395 
 Checked passes 0 25 25 25 24 25 16 6 1 0 147 
 Errors 0 25 23 24 23 7 0 0 0 0 69.4 % 

Pipistrellus kuhlii            

 Total passes 12 223 401 667 1142 4026 6654 10222 5240 2 28589 
 Checked passes 12 25 25 25 25 25 25 25 25 2 214 
 Errors 11 10 8 4 2 2 1 0 0 0 17.8 % 

Pipistrellus nathusii            

 Total passes 0 12 33 37 93 183 153 61 5 0 577 
 Checked passes 0 12 25 25 25 25 25 25 5 0 167 
 Errors 0 11 20 20 19 17 15 9 1 0 67.1 % 

Pipistrellus pipistrellus            

 Total passes 2 303 760 1636 3298 8311 14221 27205 83744 28024 167504 
 Checked passes 2 25 25 25 25 25 25 25 25 25 227 
 Errors 1 2 0 1 1 0 0 1 0 0 2.6 % 

Plecotus spp            

 Total passes 8 139 176 194 174 250 206 145 56 4 1352 
 Checked passes 8 30 26 25 28 25 25 25 25 4 221 
 Errors 5 19 8 2 1 1 0 0 0 0 16.3 % 

Rhinolophus ferrumequinum            

 Total passes 0 0 0 0 1 6 5 28 1 0 41 
 Checked passes 0 0 0 0 1 6 5 28 1 0 41 
 Errors 0 0 0 0 0 0 0 0 0 0 0.0 % 

Rhinolophus hipposideros            

 Total passes 0 1 1 10 8 16 26 62 4 0 128 
 Checked passes 0 1 1 10 8 16 26 62 4 0 128 
 Errors 0 1 1 7 1 0 0 0 0 0 7.8 % 
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Table 2. Minimum needed confidence index provided by the automatic identification to ensure 

a given rate of maximum error rate tolerance (0.5, 0.4, 0.3, 0.2 and 0.1), and corresponding 

false negative and false positive rates in the manually checked subset (1910 bat passes; steps 1 

and 2 in the Fig. 1). 

Species 
Maximum error rate tolerance 

Raw data 0.5 0.4 0.3 0.2 0.1 

Barbastella barbastellus             

  Confidence index / 0.119 0.133 0.148 0.167 0.195 

  False negative rate 0.000 0.009 0.018 0.027 0.046 0.087 

  False positive rate 0.039 0.023 0.023 0.023 0.014 0.005 

Eptesicus serotinus             

  Confidence index / 0.180 0.200 0.221 0.246 0.285 

  False negative rate 0.000 0.049 0.073 0.079 0.098 0.152 

  False positive rate 0.114 0.066 0.044 0.032 0.020 0.000 

Myotis nattereri             

  Confidence index / 0.229 0.271 0.317 0.373 0.458 

  False negative rate 0.000 0.063 0.088 0.088 0.125 0.175 

  False positive rate 0.175 0.051 0.052 0.039 0.014 0.015 

Myotis spp.               

  Confidence index / 0.212 0.250 0.291 0.341 0.416 

  False negative rate 0.000 0.071 0.112 0.153 0.194 0.281 

  False positive rate 0.200 0.081 0.074 0.057 0.042 0.014 

Nyctalus leislerii             

  Confidence index / 0.286 0.342 0.402 0.476 0.587 

  False negative rate 0.000 0.328 0.500 0.569 0.621 0.793 

  False positive rate 0.458 0.316 0.256 0.138 0.000 0.000 

Nyctalus noctula             

  Confidence index / 0.507 0.527 0.548 0.574 0.613 

  False negative rate 0.000 0.111 0.156 0.222 0.422 0.511 

  False positive rate 0.694 0.111 0.026 0.028 0.037 0.000 

Pipistrellus kuhlii             

  Confidence index / 0.164 0.216 0.272 0.341 0.444 

  False negative rate 0.000 0.051 0.097 0.153 0.233 0.375 

  False positive rate 0.178 0.130 0.091 0.057 0.049 0.035 

Pipistrellus nathusii             

  Confidence index / 0.668 0.756 0.853 0.971 / 

  False negative rate 0.000 0.582 0.800 1.000 1.000 1.000 

  False positive rate 0.671 0.395 0.154 / / / 

Pipistrellus pipistrellus             

  Confidence index / 0.000 0.000 0.000 0.000 0.096 

  False negative rate 0.000 0.000 0.000 0.000 0.000 0.000 

  False positive rate 0.026 0.026 0.026 0.026 0.026 0.022 

Plecotus spp.             

  Confidence index / 0.184 0.217 0.253 0.298 0.364 

  False negative rate 0.000 0.065 0.092 0.130 0.168 0.265 

  False positive rate 0.163 0.070 0.056 0.047 0.025 0.022 

Rhinolophus ferrumequinum             

  Confidence index / 0.000 0.000 0.000 0.000 0.000 

  False negative rate 0.000 0.000 0.000 0.000 0.000 0.000 

  False positive rate 0.000 0.000 0.000 0.000 0.000 0.000 

Rhinolophus hipposideros             

  Confidence index / 0.385 0.398 0.411 0.427 0.452 

  False negative rate 0.000 0.017 0.025 0.025 0.025 0.051 

  False positive rate 0.078 0.009 0.009 0.009 0.009 0.009 
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Fig. 2. Logistic regressions between the success probability and the confidence index of the 

automatic identification. The success probability was predicted from a subset manually 

checked assigning a success or fail of the automatic identification. Horizontal dotted lines 

show error risk probabilities (0.5, 0.4, 0.3, 0.2 and 0.1) used as threshold to select data in the 

total dataset above to the corresponding confidence indexes (vertical lines). 
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Step 3: total dataset sorting and environmental variables modelling at different error risk 

thresholds 

After the prediction of the needed confidence index to ensure a given maximum error 

rate in the automatic identification, we filtered the total dataset (i.e. including the checked and 

non-checked bat passes) on the 5 confidence index thresholds (see step 3 in Fig.1; Fig. 3, Table 

3). This filtering allowed to calculate for each thresholds on the total dataset the remaining 

number of bat passes, occurrences, and the expected real error rate (Table 3). In order to test if 

the error rate in acoustic dataset affect the response of bats (estimates, standard errors and p-

values) to the 5 tested environmental variables, we performed one generalized linear mixed 

model (GLMM, R package lme4) per threshold of maximum error rate (0.5, 0.4, 0.3, 0.2 and 

0.1) using bat activity (number of bat passes) as response variables. As an indication of how 

the analysis would perform if no filtering of errors were done, a sixth GLMM was fitted to raw 

automatic identification data. 

We included in each species GLMM the 5 environmental variables as fixed effects, 

scaling distance and length variables. According to the sampling design (i.e. 13-15 

simultaneous recordings per night), we included the date as random effect to control for inter-

night variations in weather conditions and landscape context. We applied a Poisson error or a 

Negative binomial distribution to GLMMs. We checked there were no multicollinearity 

problems performing variance inflation factors (VIF) using the corvif function (R package 

AED; Zuur et al. 2010) on each model. All variables showed a VIF value < 1.5, meaning there 

was no striking evidence of multicollinearity (Chatterjee & Hadi, 2006). 

The 5 studied environmental variables are known as good predictors of bat activity: type 

of site i.e. hedgerow vs. open area habitat (respectively 207 sites on hedgerows and 130 in open 

areas located in average 86 m away from any hedgerow; Verboom & Huitema 1997; Lacoeuilhe 
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et al. 2016), the distance in meters to forest (mean= 700; Standard Deviation=506; Boughey et 

al. 2011; Frey-Ehrenbold et al. 2013), the distance to urban (mean= 335; SD=170; Azam et al. 

2016), the distance to wetland (mean=579; SD=363; Sirami et al. 2013; Santos et al. 2013) and 

the total length of hedgerows within a 1000 m radius (mean=3439; SD=1622; Verboom & 

Huitema 1997; Lacoeuilhe et al. 2016). The 4 quantitative environmental variables presented 

an important variability, and a similar gradient between sites located on hedgerows and those 

in open areas (Fig. S1).  

This modelling allowed to check the response consistency of bats to environmental 

variables in relation with the different thresholds of maximum error rate. To ensure there were 

no acoustic biases in the bat responses, we tested the dependence of the automatic identification 

efficiency (i.e. success/fail by manual checks) to the environmental variables, for species with 

an enough error rate (>10%; Table 1) to perform models. Only one environmental variable (type 

of sites: hedgerow vs. open area) significantly affected the success probability of the automatic 

identification for only one species, Nyctalus noctula (P<0.001; Table S1). Thus, for this species 

the automatic identification was less efficient for sites located on hedgerows than in open areas 

where calls are more steep and hard to identify (Obrist et al., 2004; Barataud, 2015).
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Fig. 3. Number of bat passes in the total dataset according to confidence index of the 

automatic identification. Vertical lines show the threshold above which data were selected to 

ensure a given rate of maximum error rate tolerance (from black to grey: 0.5, 0.4, 0.3, 0.2 

and 0.1). 
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Table 3. Changes in the number of bat passes, the occurrence (presence rate among sites) and 

the expected error rate across the maximum error rate tolerances, calculated from a sorting of 

the total dataset (212 347 bat passes) on corresponding minimum needed confidence indexes 

presented in Table 2 (step 3 in the Figure 1). 

Species 
Maximum error rate tolerance 

Raw data 0.5 0.4 0.3 0.2 0.1 

Barbastella barbastellus       

 No. of bat passes 5835 5828 5824 5822 5809 5787 
 Occurrences 0.694 0.694 0.694 0.694 0.694 0.694 
 Error rate 0.003 0.002 0.002 0.002 0.001 0.001 

Eptesicus serotinus       

 No. of bat passes 1343 1297 1287 1273 1255 1205 
 Occurrences 0.373 0.339 0.336 0.333 0.324 0.312 
 Error rate 0.044 0.022 0.019 0.015 0.012 0.006 

Myotis nattereri       

 No. of bat passes 1986 1759 1659 1562 1436 1239 
 Occurrences 0.688 0.648 0.624 0.609 0.578 0.529 
 Error rate 0.136 0.081 0.064 0.049 0.034 0.021 

Myotis spp.        

 No. of bat passes 6428 5783 5483 5135 4747 4173 
 Occurrences 0.798 0.792 0.786 0.774 0.765 0.716 
 Error rate 0.145 0.092 0.073 0.054 0.038 0.024 

Nyctalus leislerii       

 No. of bat passes 153 67 43 28 22 12 
 Occurrences 0.211 0.138 0.104 0.070 0.055 0.031 
 Error rate 0.502 0.305 0.222 0.149 0.115 0.075 

Nyctalus noctula       

 No. of bat passes 395 61 50 41 29 22 
 Occurrences 0.220 0.080 0.067 0.058 0.046 0.040 
 Error rate 0.850 0.212 0.158 0.120 0.066 0.042 

Pipistrellus kuhlii       

 No. of bat passes 28588 28456 28305 28077 27737 26854 
 Occurrences 0.899 0.899 0.890 0.884 0.881 0.875 
 Error rate 0.033 0.030 0.028 0.026 0.023 0.019 

Pipistrellus nathusii       

 No. of bat passes 577 101 18 0 0 0 
 Occurrences 0.404 0.116 0.031 0.000 0.000 0.000 
 Error rate 0.623 0.437 0.370 / / / 

Pipistrellus pipistrellus       

 No. of bat passes 167503 167503 167503 167503 167503 167502 
 Occurrences 0.954 0.954 0.954 0.954 0.954 0.954 
 Error rate 0.007 0.007 0.007 0.007 0.007 0.007 

Plecotus spp.       

 No. of bat passes 1352 1229 1185 1129 1034 909 
 Occurrences 0.615 0.599 0.596 0.596 0.584 0.544 
 Error rate 0.128 0.079 0.065 0.051 0.034 0.019 

Rhinolophus ferrumequinum       

 No. of bat passes 41 41 41 41 41 41 
 Occurrences 0.046 0.046 0.046 0.046 0.046 0.046 
 Error rate 0.000 0.000 0.000 0.000 0.000 0.000 

Rhinolophus hipposideros       

 No. of bat passes 128 117 116 116 116 113 
 Occurrences 0.113 0.107 0.104 0.104 0.104 0.104 
 Error rate 0.078 0.011 0.007 0.007 0.007 0.003 
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3. Results 

Semi-automated acoustic identification on a subset 

Over the 23 complete nights sampled, 212 347 bat passes were recorded with 167 504 

(79%) assigned to Pipistrellus pipistrellus 28 589 (13%) to Pipistrellus kuhlii, 6 430 (3%) to 

Myotis spp. and 5 835 (3%) to Barbastella barbastellus (Table 1). A total of 1910 bat passes 

over all classes of confidence index were manually checked (Table 1). Error rates varied a lot 

between species, from 0.0% for Rhinolophus ferrumequinum to 69.4% for N. noctula (Table 

1). The most errors detected in manual checks concerned N. noctula confused with social calls 

of P. pipistrellus and non-bat noises, and Pipistrellus nathusii confused with P. kuhlii, P. 

pipistrellus and non-bat noises (Table S2). 

Error risk modelling from the semi-automated identification  

Successes and fails in the automatic identification noted by manual checks were 

modelled in relation to the confidence indexes provided by the software, allowing to predict the 

needed confidence index to ensure a given maximum error rate tolerance (Fig. 2). Confidence 

indexes corresponding to the maximum error rate rates (i.e. 0.5, 0.4, 0.3, 0.2 and 0.1) did not 

vary much for some species such as B. barbastellus (0.12-0.20), Eptesicus serotinus (0.18-0.29) 

and Rhinolophus hipposideros (0.39-0.45), and more for others, e.g. Nyctalus leislerii (0.29-

0.59), P. kuhlii (0.16-0.44) and Plecotus ssp. (0.18-0.36) (Table 2). In addition, the needed 

confidence indexes to limit error risks were overall low for B. barbastellus (0.12-20), E. 

serotinus (0.18-0.29), P. kuhlii (0.16-0.44), Plecotus ssp. (0.18-0.36), Myotis spp. (0.21-0.42), 

and higher for P. nathusii (0.67-0.77) and N. noctula (0.51-0.61) (Table 2).   



CHAPTER 1 

  -69-  

A low maximum error rate tolerance allows to highly reduce the false positive rate (e.g. 

from 0.20 in raw data to 0.01 in data with a 0.1 maximum error rate for Myotis spp.), and even 

to fully remove false positives (e.g. for E. serotinus and N. leislerii starting from the 0.1 and 

0.2 rates of maximum error rate, respectively) (Table 2; Fig. 2). However, reduce the maximum 

error rate tolerance can also generate moderate to high false negative rates, such as for E. 

serotinus (0.15), Myotis spp. (0.28), N. leislerii (0.79), N. noctula (0.51), P. kuhlii (0.38) or 

Plecotus spp. (0.27) (Table 2; Fig. 2).  

For P. pipistrellus errors were too rare to get a prediction of the confidence index for a 

maximum error rate higher than 0.1. For P. nathusii, the number of passes in high confidence 

indexes did not allowed to get a prediction of the needed confidence index for the 0.1 maximum 

error rate, and there were no errors for R. ferrumequinum preventing the error risk modelling. 

For all other species, it was however possible to select the part of the dataset satisfying the 

lowest maximum error rate tolerance (0.1). 

Total dataset sorting and environmental variables modelling at different error risk thresholds  

Sort out data at high confidence indexes, corresponding to low maximum error rate 

tolerances, can led to important losses of bat passes contained in lower confidence indexes, as 

well as for occurrences (Table 3). Indeed, for a changeover from a maximum error rate of 0.5 

to 0.1, this implies e.g. a loss in the number of passes of 27.8% and a loss in the occurrence of 

6.7% for the Myotis spp. group, respectively 82.1% and 10.7% for N. leislerii (Table 3). For 

other species, the number of bat passes and occurrences can be more stable despite the sorting 

out of data at maximum error rate thresholds, such as B. barbastellus, E. serotinus, P. kuhlii, 

Plecotus spp. and R. hipposideros (Table 3). 
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The sort out of data according to the maximum error rate tolerances also affect the 

expected real error rate. Indeed, at the higher maximum error rate (0.5), the expected real error 

rate is high for 3 species, N. leislerii (0.31), N. noctula (0.21) and P. nathusii (0.44); low (<10%) 

for Myotis spp. (0.09) and Plecotus spp. (0.08); and very low (<5%) for B. barbastellus (<0.01), 

E. serotinus (0.02), P. kuhlii (0.03), P. pipistrellus (<0.01) R. ferrumequinum (0.00) and R. 

hipposideros (0.01) (Table 3). However, at the lower error risk (0.1), all species showed an 

error rate <0.05, except N. leislerii (0.08). 

To study the influence of these changes in amount of data, occurrences and error rates 

according to the error risk thresholds for which data are selected, a modelling of the bat response 

to environmental variables was performed at all thresholds. Main changes in model outputs 

occurred from naive (i.e. raw data) to robust analyses (i.e. thresholds of error risk) with a loss 

or gain of significance, for the open areas vs. hedgerows variable for N. leislerii, the distance 

to forest for Myotis spp. and N. leislerii, the length of hedgerows for N. leislerii and the distance 

to urban for N. noctula (Table 4). In addition, an estimate inversion in cases of significance for 

the open areas vs. hedgerows variable occurred for N. noctula and P. nathusii (Table 4). In all 

other cases, no major changes were noted either for significant or no significant variables (Table 

4). 

Then, we did not detect major changes between the 0.5, 0.4, 0.3, 0.2 and 0.1 maximum 

error rates, with response estimates and standard errors highly stable (Table 4). In only two 

cases, we detected a loss of significance for N. noctula in lower maximum error rate than 0.2 

and 0.3 for the distance to forests and the length of hedgerows variables, respectively (Table 4). 

However, concerning these species, the open areas vs. hedgerows variable remains significant 

and highly stable at all thresholds (Table 4). 
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Table 4. Species response to environmental variables (estimates, standard errors and p-values) according 

to the error risk tolerances (*** P < 0.001, ** P < 0.01, * P < 0.05, . P < 0.1). 

Species 
Environmental 

variables 

Maximum error rate tolerance 

Raw data 0.5 0.4 0.3 0.2 0.1 

Barbastella 

barbastellus 

Open areas vs. hedgerows -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** -2.81±0.24 *** 

Dist. to forest 0.08±0.12  0.08±0.13  0.08±0.13  0.08±0.13  0.08±0.13  0.08±0.13  
  Dist. to wetland -0.03±0.12  -0.03±0.12  -0.03±0.12  -0.03±0.12  -0.03±0.12  -0.04±0.12  

  Dist. to urban 0.01±0.1  0.01±0.1  0.01±0.1  0.01±0.1  0.01±0.1  0.02±0.1  

  Length of hedgerows 0.17±0.12  0.17±0.12  0.17±0.12  0.17±0.12  0.17±0.12  0.17±0.12  

Eptesicus 
serotinus 

Open areas vs. hedgerows -0.57±0.38  -0.43±0.4  -0.44±0.4  -0.45±0.41  -0.43±0.42  -0.35±0.42  
Dist. to forest -0.07±0.23  -0.15±0.24  -0.15±0.25  -0.16±0.25  -0.15±0.25  -0.13±0.26  

  Dist. to wetland 0.08±0.19  0.12±0.2  0.12±0.2  0.12±0.2  0.12±0.21  0.08±0.21  

  Dist. to urban -0.7±0.19 *** -0.8±0.21 *** -0.79±0.21 *** -0.78±0.21 *** -0.77±0.21 *** -0.77±0.22 *** 
  Length of hedgerows 0.2±0.23  0.2±0.24  0.21±0.24  0.21±0.24  0.19±0.25  0.16±0.25  

Myotis 

nattereri 

Open areas vs. hedgerows -1.16±0.21 *** -1.14±0.22 *** -1.12±0.23 *** -1.05±0.23 *** -1.01±0.24 *** -1.03±0.27 *** 

Dist. to forest 0.16±0.13  0.13±0.13  0.14±0.13  0.15±0.14  0.1±0.14  0.11±0.15  

  Dist. to wetland 0.17±0.11  0.21±0.12 . 0.23±0.12 . 0.24±0.12 . 0.22±0.13 . 0.21±0.13  
  Dist. to urban 0.07±0.1  0.08±0.11  0.09±0.11  0.11±0.12  0.11±0.12  0.13±0.13  

  Length of hedgerows 0.18±0.12  0.22±0.13 . 0.24±0.13 . 0.27±0.14 . 0.32±0.14 * 0.3±0.16 . 

Myotis spp 

Open areas vs. hedgerows -1.66±0.19 *** -1.64±0.19 *** -1.6±0.19 *** -1.55±0.19 *** -1.54±0.19 *** -1.61±0.26 *** 

Dist. to forest 0.24±0.12 * 0.22±0.12 . 0.22±0.12 . 0.22±0.12 . 0.22±0.13 . 0.20±0.13 
  Dist. to wetland 0.1±0.1  0.11±0.11  0.1±0.11  0.11±0.11  0.1±0.11  0.10±0.11 

  Dist. to urban -0.07±0.09  -0.08±0.09  -0.08±0.1  -0.06±0.1  -0.05±0.1  -0.03±0.1  

  Length of hedgerows 0.13±0.12  0.15±0.12  0.15±0.12  0.17±0.12  0.18±0.12  0.21±0.13 

Nyctalus 
leislerii 

Open areas vs. hedgerows -0.8±0.22 *** -0.26±0.29  -0.23±0.35  0.43±0.4  0.69±0.45  1.1±0.64  
Dist. to forest 0.34±0.13 ** 0.16±0.17  0.21±0.21  0.08±0.26  0.14±0.28  0.49±0.35  

  Dist. to wetland 0.07±0.1  -0.09±0.15  -0.02±0.19  -0.12±0.26  -0.21±0.3  -0.17±0.42  

  Dist. to urban -0.1±0.1  -0.19±0.15  -0.01±0.18  0.08±0.23  0.23±0.26  0.43±0.35  
  Length of hedgerows 0.35±0.12 ** 0.23±0.16  0.23±0.21  0.27±0.25  0.28±0.29  0.22±0.41  

Nyctalus 

noctula 

Open areas vs. hedgerows -1.19±0.17 *** 1.46±0.31 *** 1.7±0.36 *** 1.83±0.4 *** 1.37±0.44 ** 1.28±0.49 * 

Dist. to forest -0.55±0.11 *** -0.68±0.23 ** -0.66±0.26 * -0.7±0.29 * -0.26±0.32  -0.12±0.35  

  Dist. to wetland -0.07±0.06  0.02±0.18  0.16±0.21  0.25±0.24  0.3±0.27  0.34±0.34  
  Dist. to urban 0.25±0.07 *** -0.07±0.18  -0.1±0.21  -0.12±0.23  -0.01±0.25  -0.04±0.29  

  Length of hedgerows 0.34±0.08 *** 0.43±0.21 * 0.49±0.25 * 0.52±0.28 . 0.16±0.31  -0.03±0.36  

Pipistrellus 

kuhlii 

Open areas vs. Hedgerows -1.98±0.26 *** -1.98±0.26 *** -1.98±0.27 *** -1.98±0.27 *** -1.98±0.27 *** -1.98±0.27 *** 

Dist. to forest 0.09±0.13  0.09±0.13  0.09±0.13  0.09±0.14  0.09±0.14  0.1±0.14  
  Dist. to wetland 0.25±0.13 * 0.25±0.13 * 0.26±0.13 * 0.25±0.13*. 0.26±0.13*. 0.26±0.13*. 

  Dist. to urban 0.07±0.13  0.07±0.13  0.07±0.13  0.08±0.13  0.08±0.13  0.08±0.13  

  Length of hedgerows 0.07±0.15  0.06±0.15  0.06±0.15  0.06±0.15  0.06±0.15  0.06±0.15  

Pipistrellus 

nathusii 

Open areas vs. Hedgerows -0.37±0.24  1.02±0.38 ** 2.57±0.84 **  /  /  / 

Dist. to forest 0.1±0.16  0.28±0.23  0.81±0.46 .  /  /  / 

  Dist. to wetland 0.06±0.13  0.02±0.2  0.53±0.42   /  /  / 
  Dist. to urban -0.05±0.13  0.09±0.21  0±0.44   /  /  / 

  Length of hedgerows 0.11±0.16  0.42±0.24 . 0.88±0.54   /  /  / 

Pipistrellus 

pipistrellus 

Open areas vs. Hedgerows -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** -2.87±0.19 *** 

Dist. to forest 0.13±0.13  0.13±0.13  0.13±0.13  0.13±0.13  0.13±0.13  0.13±0.13  

  Dist. to wetland 0.04±0.11  0.04±0.11  0.04±0.11  0.04±0.11  0.04±0.11  0.04±0.11  

  Dist. to urban -0.13±0.1  -0.13±0.1  -0.13±0.1  -0.13±0.1  -0.13±0.1  -0.13±0.1  

  Length of hedgerows 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 0.35±0.12 ** 
Plecotus spp. 

Open areas vs. Hedgerows -0.91±0.19 *** -0.85±0.19 *** -0.87±0.19 *** -0.87±0.19 *** -0.85±0.19 *** -0.79±0.2 *** 
Dist. to forest 0.08±0.12  0.1±0.12  0.11±0.12  0.1±0.12  0.09±0.12  0.08±0.13  

  Dist. to wetland -0.16±0.11  -0.14±0.11  -0.15±0.11  -0.15±0.11  -0.14±0.11  -0.17±0.12  

  Dist. to urban -0.25±0.1 ** -0.25±0.1 * -0.26±0.1 ** -0.25±0.1 ** -0.25±0.1 * -0.23±0.1 * 
  Length of hedgerows 0.1±0.12  0.09±0.12  0.09±0.12  0.08±0.12  0.11±0.12  0.11±0.13  

Rhinolophus 

ferrumequinum 

Open areas vs. Hedgerows 0.26±0.39  0.26±0.39  0.26±0.39  0.26±0.39  0.26±0.39  0.26±0.39  

Dist. to forest 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 0.74±0.25 ** 

  Dist. to wetland -1.2±0.29 *** -1.2±0.29 *** -1.2±0.29 *** -1.2±0.29 *** -1.2±0.29 *** -1.2±0.29 *** 
  Dist. to urban -0.21±0.26  -0.21±0.26  -0.21±0.26  -0.21±0.26  -0.21±0.26  -0.21±0.26  

  Length of hedgerows 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 0.83±0.29 ** 

Rhinolophus 

hipposideros 

Open areas vs. Hedgerows -3.08±0.74 *** -2.92±0.73 *** -2.92±0.74 *** -2.92±0.74 *** -2.92±0.74 *** -2.89±0.73 *** 

Dist. to forest 0.09±0.3  -0.47±0.36  -0.5±0.37  -0.5±0.37  -0.5±0.37  -0.51±0.36  

  Dist. to wetland -0.33±0.26  -0.45±0.26 . -0.49±0.27 . -0.49±0.27 . -0.49±0.27 . -0.46±0.28 . 

  Dist. to urban -0.18±0.26  -0.17±0.26  -0.14±0.27  -0.14±0.27  -0.14±0.27  -0.15±0.27  

  
Length of hedgerows 0.03±0.3  0.06±0.3  0.07±0.3  0.07±0.3  0.07±0.3  0.08±0.3  
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All species had at least one significant habitat variable response over thresholds of 

maximum error rate tolerances, except N. leislerii. Hedgerows had significant higher number 

of bat passes than open areas for 7 species/groups (B. barbastellus, Myotis nattereri, Myotis 

spp., P. kuhlii, P. pipistrellus, Plecotus spp. and R. hipposideros) and significant lower for 2 

species/groups (N. noctula and P. nathusii) (Table 4). We also found significant negative 

relationship between the number of bat passes and the distance to urban for 2 species/groups 

(E. serotinus and Plecotus spp.; Table 4); a significant negative relationship with the distance 

to forest for 2 species (N. noctula and R. ferrumequinum; Table 4); a significant negative 

relationship with the distance to wetlands on R. ferrumequinum and the length of hedgerows on 

N. noctula, P. pipistrellus, R. ferrumequinum (Table 4); as well as a significant positive 

relationship with the distance to wetlands for P. kuhlii (Table 4). 

4. Discussion 

This study demonstrates that automatic acoustic identification of bats coupled to partial 

manual checking and error rate modelling (i.e. semi-automatic identification; Newson et al. 

2015), is a key tool for knowledge improvements and the conservation of bats. Robust activity 

patterns could indeed be demonstrated even in cases where error rates were so far considered 

too high (Rydell et al. 2017). This new and robust framework takes advantage of confidence 

estimates provided by the automatic identification softwares, controlling error rate tolerance 

and checking for potential biases induced by identification errors.  

Using confidence thresholds 

To investigate the effect of the automatic identification errors on bat activity patterns, 

we studied the response of bat activity to several environmental variables known to impact bats. 

Most of the significant responses were, as expected, consistent with known patterns: open areas 
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vs. hedgerows (Verboom & Huitema 1997; Lacoeuilhe et al. 2016), forest (Boughey et al., 

2011; Frey-Ehrenbold et al., 2013), urban (Mckinney, 2005; Jung & Threlfall, 2016) and 

wetlands (Santos et al., 2013; Sirami et al., 2013).  

The comparison between the analyses conducted on raw data (i.e. no sort out of data) 

and based on maximum error rate tolerances (i.e. sort out of data to minimize the error rate) 

showed however some discrepancies, with sometimes opposed significant responses, such as 

the effect of open areas vs. hedgerows variable on N. noctula and P. nathusii. This demonstrates 

that analyses conducted on raw automatic identification of data could be severely biased. In this 

way sort out data with high error risks is essential, in accordance with concerns expressed by 

Russo & Voigt (2016), and thus it is indispensable to use a semi-automatic process (Newson et 

al. 2015). 

Quite logically these biases due to false positives seem to impact mostly uncommon 

species which are acoustically close to commoner ones. Here the most impacted species is P. 

nathusii which suffer of a high false positive rate due to the local abundance of P. kuhlii and P. 

pipistrellus. Consequently, an analysis conducted on raw automatic identification data for this 

species seems to be completely driven by the response of the two other Pipistrelles.  

However, we also shown that 15 of the 18 significant activity responses at the 0.5 

maximum error rate tolerance were very consistent and highly stable while reducing the error 

risk tolerance to 0.1 (Table 4). Among the three exceptions, one response did not change much 

in magnitude but lost significance: the distance to forest for N. noctula (Table 4). Concerning 

the second exception, the magnitude of the response of N. noctula to the length of hedgerows 

did not change until the 0.3 error risk tolerance, but decrease then disappear at the 0.2 and 0.1 

tolerances, respectively. Similarly, this response lost significance starting from the 0.3 error 

risk tolerance (Table 4). The response of these two exceptions were relatively weak compared 

to open vs. hedgerow responses, thus this discrepancy among error tolerance thresholds is more 



CHAPTER 1 

  - 74 -  

likely due to a lack of statistical power in dataset sorted on low error tolerances than any source 

of bias in higher tolerances. Indeed, major changes in these two responses occurred at the 0.2 

and 0.1 error risk tolerances for which the number of passes as well as the occurrences were 

very weak and divided by 2 compared to the 0.5 tolerance (Table 3). This shows that using a 

cautious threshold minimising false positive rates may prevent to detect subtle patterns. The 

last exception concern P. nathusii for which no analysis could be conducted for low error 

tolerances because all bat passes suffered of relatively high error risk due to commoner 

Pipistrellus species (see above). However, the fact that the positive response of P. nathusii to 

open areas vs. hedgerows was opposite to the two other species plead for a genuine pattern 

rather than a biased one, but this response should be more cautiously interpreted than other 

species response that were consistent with varying error risk tolerances.  

Survey recommendations and limitations 

This method propose a cautious method to account for identification errors in acoustic 

surveys, without fully check records, which aim to study  the response bats in relation to 

environmental variables, anthropic pressures or temporal monitoring.  

The maximum error rate tolerance of 0.5 is a threshold containing the minimum error 

rate, with an equilibrate balance between false negatives and false positives. However, false 

positives could more likely produce biases because their rate is strongly driven by the activity 

pattern of other species. In contrast, the maximum error rate tolerance of 0.1 minimise the false 

positive rate, but at the cost of discarding a lot of false negatives. Rather than looking for a 

possible optimal thresholds, our results suggest to systematically check the consistence of 

responses considering at least two thresholds (e.g. 0.5 and 0.1), in order to check the robustness 

of the obtained results and go to conclusive interpretation only when these are consistent. 
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A lack of consistency is particularly expected for rare species with very low 

abundances/occurrences (e.g. Nyctalus spp. in this study) and for uncommon species which are 

acoustically close to commoner ones such as P. nathusii here. For these species, either 

systematic manual checking or important improvement of automatic identification efficiency is 

needed to conduct robust analyses. However, our framework of error risk modelling is already 

sufficient to effectively identify these problematic species and should prevent automatic 

identification users to draw non robust conclusions.  

This method can be applied to any ecological studies with standardized sampling but, 

of course, cannot help for surveys where no error could be tolerated, e.g. inventories, species 

distribution modelling or environmental impact assessment (Russo & Voigt 2016). However, 

in that case, the automatic identification indicate what bat passes to manually check in order to 

identify species presence at the site scale, selecting passes having best confidence indexes and 

thus saving time to the user.  

Conclusions and perspectives 

Despite concerns emitted by Rydell et al. (2017) about global error rates in automatic 

identification restricting their use, this study shows that it is possible to account for these errors 

by using the provided confidence index of identification reliability in order to model the error 

risk. This allowed to check consistence of responses at different maximum error rate tolerances 

involving a trade-off between quantity and quality of acoustic data. 

This process, named semi-automatic identification (Newson et al. 2015), is a key tool 

for knowledge improvements and the conservation of bats. Such a method indeed allows to use 

bat acoustic data containing false positive passes, checking potential influence of error rates on 

the response of bat activity to various factors such as environmental variables, anthropic 
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pressures or temporal monitoring. A crucial advantage is that manually checking of a relatively 

small subset of bat passes (< 1 %) is sufficient to assess analysis robustness regarding error 

rates. This is especially true given that checking all data is very time-consuming and virtually 

impossible for such a large dataset.  

Thus, this study provides new opportunities, starting with a time gain in manual 

checking in experimental studies. This also allows to widely generalize large-scale monitoring 

of bats improving knowledge on so far unknown ecological patterns (Newson et al. 2015). 

Current context with the recent development of citizen science programs is particularly 

favourable to the deployment of such large-scale acoustic monitoring, and could make it 

possible to study very important concerns such as population trends (Barlow et al., 2015; 

Jeliazkov et al., 2016), thus having an important implication for conservation of bats. 
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APPENDICES 
 

Appendix 1 

 

Fig. S1. Boxplots of the tested continuous variables according to the type of sampling sites 

(hedgerows or open areas). 
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Table S1. Estimates (β) and p-values (significant values are in bold) of the test of the 

dependence of the automatic identification efficiency (i.e. success/fail by manual checks) to the 

environmental variables, for species with an enough error rate (>10%; see Table 1). 

Species 

Environmental variables 

Forest Urban Wetland Hedgerows Type of site 

β P-value β P-value β P-value β P-value β P-value 

Eptesicus serotinus -0.561 0.513 -0.171 0.829 -0.499 0.664 0.202 0.834 3.929 0.442 

Myotis nattereri -0.312 0.785 0.767 0.636 0.162 0.890 0.192 0.872 1.322 0.721 

Myotis spp. -0.002 0.995 0.579 0.190 0.147 0.749 0.159 0.807 1.604 0.220 

Nyctalus leisleri -0.139 0.746 0.967 0.115 -0.059 0.901 0.103 0.815 3.102 0.059 

Nyctalus noctula 0.859 0.507 0.290 0.714 -0.139 0.909 -0.335 0.766 18.167 0.000 

Pipistrellus kuhlii -0.595 0.412 0.101 0.909 0.486 0.565 0.721 0.442 0.033 0.987 

Pipistrellus nathusii 0.351 0.413 0.005 0.987 -0.782 0.066 1.036 0.056 -0.464 0.582 

Plecotus spp. 0.169 0.634 -0.055 0.858 0.262 0.372 -0.163 0.607 -0.211 0.789 

 

Table S2. Species composition of detected errors in automatic identification from manual 

checking (Barbar: Barbastella barbastellus; Eptser: Eptesicus serotinus; Myosp: Myotis spp.; 

Nyclei: Nyctalus leisleri; Nycnoc: Nyctalus noctula; Pipkuh: Pipistrellus kuhlii; Pipnat: 

Pipistrellus nathusii; Pippip: Pipistrellus pipistrellus; Plesp: Plecotus spp.; Rhifer: Rhinolophus 

ferrumequinum; Rhihip: Rhinolophus hipposideros). 
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species 

Species composition of detected errors in the automatic identification 
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Total 

Barbar   0 0 1 0 0 0 0 0 0 0 0 8 9 

Eptser 1   0 2 0 0 7 0 0 2 0 0 9 21 

Myonat 2 1   / 0 0 3 0 1 0 0 0 10 17 

Myosp 9 3 /   0 0 8 0 9 2 0 0 18 49 

Nyclei 0 2 0 0   1 2 0 3 3 0 0 38 49 

Nycnoc 0 0 0 0 1   0 0 54 0 0 0 47 102 

Pipkuh 6 3 0 4 0 0   2 8 0 0 0 15 38 

Pipnat 0 0 0 0 0 0 63   40 0 0 0 9 112 

Pippip 0 0 0 1 0 0 0 1   0 0 0 4 6 

Plesp 10 4 0 1 0 0 3 0 6   0 0 12 36 

Rhifer 0 0 0 0 0 0 0 0 0 0   0 0 0 

Rhihip 0 0 0 0 0 0 0 0 0 0 0   10 10 
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“Cities needlessly shine billions of dollars directly into the sky each year” 

Smith 2009  
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Introduction  

Globally, urban areas cover only about 3% of the earth land surface (Millenium Ecosystem 

Assessment, 2005) yet the impact of urbanization has been global and it is regarded as a major 

threat to biodiversity (Grimm et al., 2008; Kowarik, 2011). Urban growth induce profound 

changes in the landscape not only in urban settlements but also beyond due to the important 

demands in resources to support urban populations (Grimm et al., 2008). Urban areas have 

effects on surrounding semi-natural and natural habitats and ecosystems (Savard, Clergeau, & 

Mennechez, 2000) and their negative impacts on species abundance, diversity and richness have 

been documented for numerous taxonomic groups (Devictor et al., 2007; Penone et al., 2013; 

Azam et al., 2016). However, urban areas can also be considered as a particular type of 

ecosystems which biodiversity is important to preserve as a contribution to the global 

conservation of biodiversity but also to enable the positive effects on human health and sell-

being brought by the exposure to natural systems (Kowarik, 2011). In addition, as a growing 

percentage of the population inhabits urban areas, people are becoming less likely to have direct 

contact with nature in their everyday life which is worrying as it may lead to a disaffection 

toward nature (Soga & Gaston, 2016) and ultimately reduce people’s willingness to conserve 

biodiversity (Keniger et al., 2013; Soga et al., 2016). Thus, to increase daily interaction with 

nature and favor positive emotions and behavior toward the environment, it is important to 

preserve biodiversity within urban areas. 

Urban areas are often highly fragmented with only few small remnants of vegetation 

scattered within an impervious matrix (Savard et al., 2000). This fragmentation of urban 

landscapes induces a decrease in the landscape functional connectivity, i.e. it negatively affects 

species ability to move across the landscape. Urban ecosystems also tend to have a dense 

distribution of light sources and high levels of light emissions which result in a significant 
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degree of light pollution. ALAN can have a large variety of impacts on species, affecting their 

physiology, behavior, movement and interactions (Gaston et al., 2012). Light can also decrease 

habitat quality and for the most sensitive species can result in a loss of habitat. Thus light 

pollution can be another factor leading to landscape fragmentation and have a cumulative effect 

with the important expansion of soil sealing in urban areas. Green infrastructures policies aim 

at tackling this issue by identifying and restoring ecological corridors therefore improving 

landscape connectivity. Although this is a valuable strategy to promote biodiversity, often the 

design of corridors is only based on cartographic elements hence not accounting for species 

behavior and does not account for light pollution (Billon et al., 2017). Both these limits may 

have important impacts on ecological networks design in this way. To conceive urban planning 

which limits the impact of urbanization on both diurnal and nocturnal biodiversity, land 

managers need spatially explicit information on the areas where actions should be prioritize and 

how action could be taken. Scientific studies may help answering both biological and societal 

issues by evaluating spatial patterns at a scale that is coherent with ecological processes but 

also with management scale. 

Most studies on the impact of light pollution focus on fine scale effects, i.e. at the scale 

of a light source (e.g., Lewanzik & Voigt, 2017), and a few investigate large scale(Bennie et 

al., 2015; Azam et al., 2016). However, intermediate scales of only tens of kilometer square 

remain unstudied possibly due to the difficulty to access data with a fine enough resolution for 

such spatial extent (Hale et al., 2013). Nonetheless this scale which corresponds to the size of 

cities or municipalities is highly relevant for both species movements and lighting planning. 

Indeed, public outdoor lighting, which is the most pervasive, aggregated and permanent source 

of lighting in urban areas (Gaston et al., 2012) and represents 30 to 50% of the light sources 

(Aubé et al., 2018), is managed at this scale.  
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Aims of the chapter 

In this chapter, I investigated the impact of light pollution on spatial patterns of activity 

of a bat species at the city scale testing several possible source of information on light emissions. 

I evaluated the relevance of a ground-based source of data, the location of streetlights, and a 

remote sensing source of data, pictures taken by astronauts from the international space station 

(ISS). These two sources of information can be accessed online and thus the study performed 

in this study may be reproduced by land managers in other areas. It is important to note that 

both types of data on light emissions do not contain the same information. Indeed, streetlights 

location data only give information on the position of public light sources and thus do neither 

inform on the quantity and spectral composition of light nor on the emissions produce by private 

lighting. ISS pictures have a less precise resolution but they include information on the quantity 

and spectral distribution of light for both public and private lighting. 

This study focuses on evaluating the pattern of response of a common bat species, 

Pipistrellus pipistrellus, at the city-scale using data from a national citizen science bat 

monitoring program. This bat species is often the most abundant within highly urbanized areas 

and is qualified as light-tolerant as it opportunistically forage for insects flying around light 

sources (Rydell, 1992). However national scale studies showed that the activity of species 

locally feeding on light attracted insects could be negatively impacted by light (Azam et al., 

2016). These contradictory findings highlight the importance to evaluate species responses to a 

pressure at different spatial scales. Fine scale studies may give insight on specific behavior in 

a local context such as the foraging behavior of P. pipistrellus at streetlights whereas large scale 

studies allow to investigate population dynamics thus including the diverse effect of a pressure 

on individuals’ behavior. Compared to local scale studies, large scale ones account for species 

response to the landscape composition which is of particular importance for landscape 

management. The study presented aim at investigating the spatial distribution of bat activity at 
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an intermediate scale which is closer to this species home range size and thus participates to the 

assessment of scale effects on bat activity patterns which is particularly useful to evaluate the 

impact of landscape fragmentation (Donovan & Lamberson, 2009). Thus, in the study presented 

in this chapter, I intended to compare the potential of ground based and remote sensing 

nighttime light data to characterize the effect of light pollution on P. pipistrellus at the 

city-scale. I used citizen science data sampled in three large cities of France (Paris, Lille, and 

Montpellier) as part of the national bat monitoring program (Vigie-chiro). With these data, I 

modelled bat activity in regard to environmental variables including light pollution variables. 

In this chapter, I also discuss part of the results arising from another study (Laforge et 

al., in prep, Article 3 in chapter 3) which use a similar methodology to the one presented 

previously. This study evaluate the impact of light pollution at the scale of a conurbation (almost 

300 km²) in the North of France. Within the study areas, a diversity of land covers can be 

encountered such as densely built urban cores, suburban landscapes and agricultural lands 

within which semi-natural tree vegetation and wetlands. The effect of light is evaluated for three 

bat species, Pipistrellus nathusii, Eptesicus serotinus and Myotis daubentonii, which have 

different behavioral ecology and have distinct responses to light pollution.  Indeed, at the local 

scale, both P. nathusii and E. serotinus activity increase with light level (Lacoeuilhe et al., 

2014) but another study showed that E. serotinus  activity was negatively affected at 25 to 50 

m of a streetlight (Azam et al., 2018). In addition, E. serotinus is negatively affected by ALAN 

at large scale (Azam et al., 2016). Myotis species are known to be negatively impacted by light 

even at low levels (Stone, Jones, & Harris, 2012; Lacoeuilhe et al., 2014) and possibly at tens 

of meters away from streetlights (Azam et al., 2018). This study intents to evaluate how P. 

nathusii, E. serotinus and M. daubentonii respond to light level at the scale of a 

conurbation. The methodology employed was similar to the one used in the first study 
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presented in this chapter although the measure of light pollution was given by a satellite image 

(VIIRS DNB) with a 250 m resolution. 

Principal results & discussion 

The first study revealed that, regardless of the type of data on light, P. pipistrellus is 

negatively affected by artificial light at the city scale. This result is coherent with a national 

scale study which showed that four common bat species activity decreases with increasing 

radiance level (Azam et al., 2016). This further demonstrates that although P. pipistrellus can 

forage at streetlights, when accounting for different behaviors through larger scale studies, it is 

globally negatively impacted by ALAN. P. pipistrellus was the only species which was 

abundant enough in all three cities to carry out the analysis however it would be interesting to 

repeat it for other cities where other species are present in relatively high numbers. The presence 

of P. pipistrellus in highly urbanized areas attests of its adaptability and resilience however, 

this is not the case for other bat species which may in addition be very sensitive to light such as 

Rhinolophus species (Stone, Jones, & Harris, 2009). The sensitivity to light of such species has 

been demonstrated at small spatial scales (Stone et al., 2012; Azam et al., 2018) but never at 

intermediate or large scale possibly due to insufficient data. The impact of ALAN on their 

spatial distribution may be much more important and should be a focus in future studies. 
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The study by Laforge et al. showed 

different responses to light of the three 

species at the conurbation scale. Similarly 

to results found at local scales (Stone et al., 

2012; Lacoeuilhe et al., 2014; Azam et al., 

2018), M. daubentonii exhibited a negative 

response to light with its activity decreasing 

with increasing radiance (Fig. 21) On the 

opposite, E. serotinus activity increased with 

the radiance level. This result is not consistent 

with Azam et al. (2016) who found a negative 

effect of light on this species at the national 

scale. Finally, P. nathusii had a contrasted 

response to light, being positively affected by 

low levels of light and negatively affected by 

high levels of light. This may reflect a tradeoff 

between the use of streetlight as foraging 

grounds detected at the local scale (Azam et 

al., 2018) and the perceived increase 

predation risk under high light levels (Rydell, 

1992). Such differing behaviors and differences with studies at other scales highlight the 

complex relationship of individuals with light depending both on the scale and the species 

considered. 

The comparison of the two source of data on light emissions in the first study showed 

that ISS pictures were more suitable than streetlight location to measure the impact of 

 

Fig. 21. Representative GAM response 

curves showing the predicted activity of a 

species at a location along the average 

radiance gradient. A is the response of M. 

daubentonii at 100 m scale, B is the response 

of E. serotinus at 500 m scale and C is the 

response of P. nathusii at 800 m scale 

(extracted from Laforge et al.). 
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ALAN on bat activity. This may be due to the fact that remote sensing data encompass all 

sources of lighting and include an information on the quantity of light (radiance level). 

However, ISS pictures reflect the upward light emissions measured from a far distance above 

ground and may be quite different from the perception bats have at their flight level. Indeed, a 

study found that vertical measures of the quantity of light (illuminance level) better explained 

bats response to light than the same measure taken at horizontal (Azam et al., 2018). The 

reconstitution in three dimensions of the distribution of light may be a better predictor of bats 

spatial patterns however, it requires extensive data on lighting sources and on the presence of 

obstacles (e.g., buildings, vegetation) and such models have only been created for small spatial 

scales (Bennie et al., 2014). In addition, ISS picture have a fine resolution but not to the point 

that individual light sources can be identified thus its use to determine points of conflict with 

nocturnal biodiversity is limited to the designation of fairly large areas in terms of light 

management (in this particular case at least 3600m² areas). One issue I discussed with people 

in charge of the street lighting in Paris is that the public outdoor lighting is more and more 

regulated but although regulations for private lighting also exist, they are not enforced and there 

are no controls. Thus, for example, currently, the brightest source of lighting in Paris comes 

from the upward directed spots of a private hotel on the Champs Élysées. As 30 to 50% of city 

lighting are due to streetlights (Aubé et al., 2018), a fairly important part of light sources are 

privately owned and to not follow any regulations possibly emitting important quantity of light 

above the horizon and thus contributing to light pollution and skyglow effect. Therefore, the 

regulation of public lighting does not suffice and there is an urgent need to control private light 

sources. Nevertheless, remote sensing data allow to account for all types of lighting and are 

getting increasingly available with fine resolution hence representing a powerful tool for future 

studies on landscape effects of light on biodiversity and ecosystems. 
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Perspectives 

In this study, we used environmental data that are fairly accessible and thus a similar 

methodology could be applied to other cities. The model built can be used to produce predictive 

maps of bat activity and visualize areas of high and low activity (Fig. 22.). Spatially explicit 

representations are important to communicate scientific findings to land managers and 

determine locations where preservation or restoration of dark areas should be prioritized. Such 

maps could be useful for landscape planning as they allow land manager to visualize areas 

predicted to have important bat activity. Our result show that bat activity is often concentrated 

in urban parks were the proportion of vegetation is high and the lighting generally low (Fig. 2). 

This information could raise the awareness of municipalities on their responsibility regarding 

biodiversity. Although urban parks are mostly planned for recreational purposes, they also 

participate in the sustenance of urban biodiversity and appropriate management may improve 

their potential to be a habitat for various species. Moreover the interaction between the 

proportion of tree cover and the radiance showed that, when considering the most common 

 

Fig. 22. Prediction of P. pipistrellus activity in Paris made with the best model. The activity 

is represented in grey scale from low (black) to high (white). Vegetation areas are bordered 

in green. 
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environmental situation within the cities, increasing proportion of tree cover limits the negative 

effects of radiance. Therefore, this study shows for the first time that tree vegetation may be a 

tool to mitigate the effect of artificial light on bat activity at the city scale. This effects may be 

due to the capacity of trees to block the light and thus provide dark refuges were the perceived 

risk of predation may be lower. Yet, although it may be sufficient for city-dweller bat species, 

it is not so for more light sensitive species. Indeed a study showed that Rhinolophus 

hipposideros bats activity along a hedge is highly reduced by the presence of light and that only 

very few bats use the unlit side of the hedge  (Stone et al., 2009, 2012). High vegetation only 

partly blocks the light and the level of light on the unlit side may be sufficient for urban adapted 

bats but not for bats species very sensitive to light. Nonetheless, the use of vegetation to shield 

light and create dark refuges may be of great interest in urban context where the species present 

are more resilient. 

In this study, I evaluate this importance of two aspects of urbanization on bat activity, 

soil sealing (through the measure of remnant vegetation areas) and light pollution due to outdoor 

lighting. However another important factor due 

to urbanization that may affect bat activity is 

road traffic. Passing vehicles can cause 

disturbance through noise (Bonsen, Law, & 

Ramp, 2015) and light (Bennett & Zurcher, 

2013). Although the light emitted by cars 

headlights might have an overall low 

contribution to light pollution (Bará et al., 

2017), no studies have investigated how such 

intermittent high levels of light (Fig. 23) could 

influence bat’s behavior. The expansion of 

 
Fig. 23. Variation in illuminance measured 

in roadside vegetation between sunset and 

sunrise on a rural main road with no fixed 

lighting. Peaks represent pulses of light 

from passing vehicles. Typically, light from 

these sources has a high degree of 

variability, but can reach much higher 

magnitudes than those under street lights 

(extracted from Bennie et al., 2016). 
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urban areas is accompanied by the development of transport infrastructures (Dulac, 2013) and 

roadsides can represent an important proportion of land surface that may constantly (e.g., 

streetlights) or intermittently (e.g., cars headlights) by lit. The expansion of road networks 

represent a major threat to biodiversity (Maxwell et al., 2016) and although a few species may 

benefit from roads, the majority of species suffer negative effects through mortality by vehicle 

collisions, habitat destruction or degradation, barrier effect and fragmentation (Trombulak & 

Frissell, 2000; van der Ree, Smith, & Grilo, 2015). During my PhD, I contributed to a study on 

the effects of roads on the level of bat activity in the surrounding landscape (Claireau et al., 

unpublished, see Appendix). This work is based on over 300 full-night recordings sampled in 

three 100 km² study sites centered on major roads. The results show that amongst the 13 bat 

taxa present in the study area, 5 bat taxa are negatively affected by major roads up to 5 km away 

from the road with their activity increasing with the distance to the road. This negative effect 

might be explained by the perception of a risk as indeed, three out of the five impacted taxa are 

considered to be the most prone to collide with vehicles due to their low flying altitude 

(Fensome & Mathews, 2016). Another non-exclusive hypothesis is that bats may be avoiding 

the noise and light associated with the traffic. Indeed, coincidentally, the bat taxa that are the 

most affected by roads are also bat species known to be particularly sensitive to light at the 

local scale (Stone et al., 2009; Azam et al., 2018). It would be interesting specifically to test for 

the effect of vehicles headlights on bat activity. If the negative effect of road is partly due to 

light, the implantation of tree hedges along the road may help mitigate this effect and reduce 

the distance of impact of the road. Still, roads represent a barrier to bats movement as they 

constitute a rupture in the structural elements of the landscape they follow while flying (Pinaud 

et al., 2018) and the disturbance linked to traffic (noise and light) may increase this barrier 

effect. Cities and roads are often considered only as areas of sealed soil however, they are 

associated with increased levels of light and noise which may lead to cumulated effects. 
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Abstract 

Light pollution constitutes a major threat to biodiversity by decreasing habitat quality 

and landscape connectivity for nocturnal species. While there is an increasing consideration of 

biodiversity in urban management policies, the impact of artificial light is poorly accounted for. 

This is in a large part due to the lack of quantitative information and relevant guidelines to limit 

its negative effects. Here we compared the potential of two sources of information on light 

pollution, remote sensing (nocturnal picture taken from the International Space Station ISS) 

and ground-based (location of streetlights) data, to measure its impact on bats. Our aims were 

to (i) evaluate how light pollution affected Pipistrellus pipistrellus activity at the city scale, (ii) 

determine which source of information was the most relevant to measure light pollution’s effect 

and (iii) define a reproducible methodology applicable in land management to account for 

biodiversity in lighting planning. We used citizen science data to model the activity of P. 

pipistrellus, a species considered light tolerant, within three cities of France while accounting 

for artificial light through a variable based on either source of information. We showed that at 

the city scale, P. pipistrellus activity is negatively impacted by light pollution irrespective of 

the light variable used. This detrimental effect was better described by variables based on ISS 

pictures than on streetlights location. Our methodology can be easily reproduced and used in 

urban planning to help take the impact of light pollution into consideration and promote a 

biodiversity-friendly management of artificial ligh
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1. Introduction 

Urbanization is characterized by an increase of impervious surfaces (McKinney, 2002) 

but also by the emission of environmental stressors such as chemical, noise, and light pollution 

(Isaksson, 2015). Amongst these pollutants the least understood, in terms of impacts on species 

and ecosystems, is light pollution (Gaston, Visser, & Holker, 2015; Hölker, Moss, Griefahn, & 

Kloas, 2010), i.e. the emission of artificial light that alter the natural patterns of light and dark 

in ecosystems (Longcore & Rich, 2004). The modification of the natural day/night rhythm can 

have considerable impacts on ecosystems (Navara & Nelson, 2007) especially as nocturnal 

species represent 30% of vertebrates and more than 60% of invertebrates (Hölker, Wolter, 

Perkin, & Tockner, 2010). In recent decades, light emissions increased globally at an average 

rate of 6% per year (Hölker, Moss, et al., 2010) and currently, 88% of Europe experience light-

polluted nights (Falchi et al., 2016). Moreover, there is a shift in lighting technologies from 

yellow light sources (e.g., high- and low-pressure sodium vapor lamps) to broader-spectrum 

white light sources with a higher proportion of blue wavelength (e.g., metal halide and light 

emitting diodes) that have a higher energy efficiency (Gaston, Visser, & Holker, 2015). This 

change will most likely result in a global increase in short wavelength (i.e. blue light) emission 

(Falchi, Cinzano, Elvidge, Keith, & Haim, 2011) and might have major impacts on nocturnal 

biodiversity. 

A green infrastructure policy was adopted by the European Union to preserve and 

promote ecological corridors and landscape connectivity. However the green infrastructure 

policy does not account for the impact of artificial light. Thus the corridors designed following 

this policy might be ineffective for nocturnal species. Taking into account light pollution’s 

effects on nocturnal species is crucial to design biodiversity-friendly urban lighting plans. 

Recommendations to mitigate the negative impacts of artificial lighting on biodiversity are 
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scarce with only few studies proposing possible local measures (e.g., Azam et al., 2018; Rydell, 

Eklöf, & Sánchez-Navarro, 2017). More quantitative information on the impact of artificial 

light is needed to be able to design a city’s lighting plan preserving some dark areas that can be 

used as habitats and corridors for nocturnal biodiversity. 

Due to their nocturnal lifestyle, bats are good model species to study the impact of 

artificial light. European bats are long-lived insectivorous species that have great potential as 

bio-indicators partly because their population trends tend to reflect those of lower trophic levels 

species such as arthropods (Jones, Jacobs, Kunz, Willig, & Racey, 2009; Stahlschmidt & Brühl, 

2012). Some bat species can live in urban areas and are hence directly confronted to light 

pollution. For instance, species such as Pipistrellus spp., Plecotus spp., Rhinolophus 

ferrumequinum, R. hipposideros, Myotis daubentonii, and Myotis myotis often use man-made 

structures as breeding roosts and can live in built areas (Marnell & Presetnik, 2010; Simon, 

Hüttenbügel, & Smit-Viergutz, 2004). In addition, since all bat species are protected at the EU 

level (Council Directive 92/43/EEC, 1992), they represent one of the few cases of protected 

species living within urban environments. 

Light-sensitive species such as Rhinolophus and Myotis species are negatively impacted 

by artificial lighting through a decrease of their fitness (Boldogh, Dobrosi, & Samu, 2007) and 

a loss and fragmentation of their habitat (Stone, Jones, & Harris, 2009, 2012). Yet species such 

as P. pipistrellus, P. Kuhlii, and Nyctalus leisleri forage in urbanized and illuminated areas 

(Bartonicka & Zukal, 2003; Gaisler, Zukal, Rehak, & Homolka, 1998; Rainho, 2007). These 

three species are qualified as light tolerant because they prey on insects that are attracted and 

trapped within the halo of streetlights (Eisenbeis, 2006; van Langevelde, Ettema, Donners, 

WallisDeVries, & Groenendijk, 2011). But although the short-term installation of streetlights 

on a previously dark flying route did not change Pipistrellus species activity level (Stone et al., 

2012), a study showed that the activity of P. pipistrellus was similar or lower in lit areas 
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compared to dark areas in environments with scattered vegetation (Mathews et al., 2015) and 

another that, P. pipistrellus will not cross brightly lit gaps while flying along a hedgerow (Hale, 

Fairbrass, Matthews, Davies, & Sadler, 2015). While considering a large scale dataset, collected 

at a national scale across 8 years and mostly looking at permanent street lighting, Azam et al. 

(2016) showed that bat activity was negatively affected by artificial light even for species 

described as light tolerant. Hence, overall it would seem that the global effect of light pollution 

might actually be deleterious even to light tolerant species.  

Assessing the impact of light pollution on biodiversity first requires the ability to 

measure it. This is not straightforward as artificial light is composed of several measurable 

characteristics such as intensity, spectral composition, or flux directionality. As street lighting 

is the most persistent, aggregated, and intense source of lighting in urban areas (Gaston, Davies, 

Bennie, & Hopkins, 2012), the location of streetlights can be a relevant source of information. 

Streetlight location data exist for most large cities and are easy to understand, however they do 

not contain information on the light characteristics or on private lighting which could have a 

substantial role in light pollution (Gaston et al., 2012). Remote sensing data, such as aerial or 

satellite pictures are another information source and include all types of lighting (public and 

private) and also the skyglow (Kyba & Hölker, 2013). Aerial pictures can have a spatial 

resolution up to 1 m (Hale et al., 2013; Kuechly et al., 2012), but are seldom available as they 

are very expensive to produce. DMSP OLS and VIIRS Day-Night Band are grey-scale satellite 

images of the surface of the Earth at night (https://www.ngdc.noaa.gov/eog/) but due to their 

coarse resolution they cannot be used for city-scale land management studies (Fig. 1). Another 

remote sensing information source are the pictures taken from the International Space Station 

(ISS ; https://eol.jsc.nasa.gov) that have started to be geo-referenced by the citizen science 

program Cities at Night (http://citiesatnight.org ‒ Sánchez De Miguel et al., 2014). ISS pictures 

can reach a spatial resolution of 10 m, contain four spectral bands in the visible range (one red, 
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two green, one blue), and each pixel’s intensity is proportional to the emitted light (Fig. 1). 

There are a variety of sources of information on artificial light with different spatial resolution, 

extent, and information on light characteristics. Ground-based and remote sensing data sources 

both have advantages and drawbacks (presented in Table 1) and represent an opportunity to 

better understand the impact of artificial light on biodiversity as well as a challenge for their 

application to an ecological and land management context (Kyba et al., 2014). 

This study investigated the impact of light pollution on bat activity at the city scale 

comparing two sources of information on artificial light: the location of streetlights and ISS 

 

Fig. 1. Different possible sources of information on light pollution. DMSP – OLS (A) and 

VIIRS –DNB (B) satellite images of France with a zoom on Paris and its surrounding. The 

resolution of the images is too low (930 m for DMSP – OLS and 460 m for VIIRS – DNB) 

to see the difference of radiance emitted in Paris. The better resolution (60m) of this ISS 

picture of Paris (C) allows to distinguish areas with low and high radiance at a fine scale. 

Also, this picture is composed by 4 color bands (2 green, 1 blue, and 1 red) which represent 

the radiance emitted in each spectral band. Another source of information on light pollution 

is the location of streetlights (D). Each orange dot represent a streetlight (over 51 000 in 

Paris). 
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nocturnal pictures. We chose these two sources of information because their resolution was 

coherent with the scale of our study, they were easily accessible, and their comparison may 

bring insights on which source of information is the most adapted to measure the impact of light 

pollution on bats. Our aims were (i) to evaluate how light pollution affected P.pipistrellus 

activity at the city scale, (ii) to determine which source of information on artificial light was the 

most relevant to measure the effect of light pollution and (iii) to define a reproducible 

methodology that could be used in land management to make recommendations for a 

biodiversity-friendly lighting planning and hence we kept low data requirements. To achieve 

these goals, we examined how P. pipistrellus activity was affected by artificial light within 

three large cities of using a panel of light variables based on either source of information. 

Although P. pipistrellus is considered a light tolerant species, we expected a negative impact 

of light pollution on its activity as at the national scale the average radiance had a negative 

effect (Azam et al., 2016).   

Table 1 Comparison of the advantages and drawbacks of two sources of information on 

artificial light: ground-based data (GB; e.g.. streetlights location) and remote sensing data (RS, 

e.g., ISS pictures). 

  

Ground-

based data 

(GB) 

Remote 

sensing data 

(RS)  

Comparison 

Precision 

+ - 
GB data give the precise location of light 

sources whereas RS data give a global 

radiance value for a pixel      
Height perspective 

relative to bat flight 

height + - 

Streetlight heights (GB data) are closer 

to bats flight height whereas RS data 

give a radiance value as perceived from 

space     
Exhaustiveness 

- + 
RS data include all types of lighting 

whereas GB data only include public 

lighting     
Light characteristics 

- + 

RS data give information on the quantity 

and the spectrum of the light whereas 

GB data do not always include 

information on the light sources 

characteristics 
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2. Methods 

2.1 Study sites 

To address our main research questions we based the analysis on bat activity and 

environmental data from three large and highly urbanized cities of France: Paris, Lille, and 

Montpellier (Fig. 2). These three cities are amongst the most light-polluted areas of France with 

nights 20 to 40 times brighter than natural illumination in Lille and Montpellier and over 40 

times brighter in Paris (Falchi et al., 2016). Paris is the largest of the three cities with 105 km2 

(Fig. 2.A). There are few green areas in Paris’ center but there are two large parks on the 

outskirts (Vincennes on the East side and Boulogne on the West side) which represent 17 km2 

in total. Tree cover represented 21% of Paris’ surface however, when not including the two 

large parks, it only represented 12%. Montpellier and Lille have a smaller surface than Paris 

(respectively, 57 and 40 km2 – Fig 2.B and 2.C). Only 14% of the surface of Lille corresponded 

to vegetation whereas Montpellier was the greenest of the tree cities with 21% of vegetation 

distributed in small patches across the city. The three cities had a similar overall density of 

streetlights per square kilometer (549 SL/km2). 
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2.2 Bat monitoring 

Bat activity recordings were taken following the recommendations of the French 

national bat-monitoring scheme ‘Vigie-Chiro’ (http://vigienature.mnhn.fr/page/vigie-chiro), a 

citizen-science program running since 2006 and coordinated by the National Museum of 

Natural History of Paris (France). All recordings occurred between June and October, the 

seasonal peak in bat activity. Recordings were only carried out when weather conditions were 

favorable (i.e. no rain, wind speed below 7 m/s, temperature at sunset above 12°C). 

The data for Paris and Montpellier were provided by the French bat-monitoring scheme 

(http://vigienature.mnhn.fr/page/vigie-chiro/page/protocoles) following two different 

protocols. The first was the pedestrian protocol for which volunteer surveyors recorded bat 

activity for 6 minutes at 10 selected locations within a 4 km2 area. The volunteers began their 

 

Fig. 2 Study sites: Lille (A), Paris (B), and Montpellier (C). Triangles represent points of 

full-night recordings and dots represent points of pedestrian recordings.  
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sampling 30 minutes after sunset. In Paris, volunteers used a time expansion detector 

(Tranquility Transect Bat detector, Courtpan Design Ltd, UK) and in Montpellier, they used a 

SM2BAT detector (Widlife Acoustics Inc). The second protocol was the full-night protocol for 

which volunteers placed a SM2BAT detector at a given location 30 minutes before sunset and 

let it until the morning (30 minutes after sunrise) to record bat activity all night. Data for Lille 

were recorded by authors following the full-night protocol and using SM2BAT detectors. In 

Paris, 923 recordings lasting 6 minutes were taken at 282 different points following the 

pedestrian protocol between 2008 and 2013. In Lille, each of the 73 points was sampled once 

in 2015 using the full-night protocol. In Montpellier, 82 points were sampled with the full-night 

protocol and 71 points sampled with the pedestrian protocol (2011 and 2012). To have a similar 

data sampling unit among cities, we only took into account recordings of the full-night protocol 

occurring during the first two hours of the night (beginning 30 minutes after sunset) and split 

the recordings into 6 minutes time slots. Then, to avoid pseudo-replication, we calculated the 

mean activity per point. When considering entire nights of recordings, bat activity was fairly 

stable throughout the night, slightly decreasing toward the end of the night (see Appendix A – 

Fig. A.1). 

2.3 Bat acoustic data analysis 

All bat calls recorded in Paris were identified by volunteers and then validated by 

experts using Syrinx software version 2.6 (Burt, 2006). For data recorded in Lille and 

Montpellier, we used the software SonoChiro (Bas et al. 2013) to automatically classify the 

echolocation calls to the most accurate taxonomic level possible. All ambiguous calls were then 

checked manually using Syrinx software. As it is impossible to identify individual bats from 

their echolocation calls, we calculated bat activity as the number of bat passes per species. A 

bat pass is defined as the occurrence of a single or several echolocation calls of the same bat 
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species during a 5-second interval (Millon, Julien, Julliard, & Kerbiriou, 2015). We believe that 

this duration is a good compromise between multiple counts of the same individual and the risk 

of missing other individuals’ passage Indeed 5 seconds is the mean duration of sequences of 

calls recorded (Kerbiriou, Parisot-Laprun, & Julien, 2018; Millon et al., 2015). In addition, we 

think that multiple detection of the same individuals have a biological meaning since they reveal 

foraging intensity. Indeed, our aim was to have a bat activity measure that reflected the 

suitability of the habitat in terms of food resource. P. pipistrellus and P. nathusii were the only 

bat species detected in the three cities (Appendix A - Table A.1). However the number of bat 

passes of P. nathusii was very low in Paris and Lille (respectively 6 and 37 bat passes) hence 

we only performed the analysis on P. pipistrellus. 

2.4 Light pollution variables 

We used two sources of information for light pollution. Firstly, we used the location of 

streetlights. Data for Montpellier were accessible for free at http://data.montpellier3m.fr/ and 

data for Paris and Lille were provided by the private companies managing the cities’ public 

lights (Engie Ineo for Lille and Evesa for Paris). Secondly, we used nighttime ISS pictures from 

the Cities at Night program. The images were corrected for linearity of the sensor, vidgenting, 

and calibrated absolutely using reference stars on other lenses and relatively to the VIIRS image 

of May 2014 using synthetic photometry (Sánchez De Miguel, 2016).  There was no 

atmospheric correction. The value of each pixel corresponded to the radiance which is the 

radiant flux reflected or emitted by a given surface (units   nW/cm2/sr/A).  

A study investigating the impact of light pollution on bat at different scales showed that 

the best spatial scale to study the impact of artificial light on P. pipistrellus was 200 m (the 

smaller spatial scale tested; Azam et al., 2016). Thus we defined our light variables within a 

200 m buffer but also within a 100 m buffer to explore if a smaller spatial scale could bring 
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further insights. We calculated several light variables based on either source using QGIS 2.8.3 

(QGIS Development Team, 2017). Using the streetlight location, we calculated the distance to 

the closest streetlight from each recording point, the number of streetlights within a 100 m and 

a 200 m buffer around each recording point, and the weighted density of streetlights within the 

same buffers (the sum of the multiplicative inverse of the distance to streetlights within the 100 

m and 200 m buffers). For several species, the impact of a streetlight seems to be detectable 

within a 25 m distance (Azam et al., 2018) so we built two more variables based on this 

information: the presence of a streetlight within 25 m of the recording point (binary variable) 

and the proportion of surface impacted by artificial light within a 100 m and a 200 m buffer. As 

Azam et al. (2018) found that light had an effect up to 25 m away from a streetlight, we 

considered that all surface within 25 m of a streetlight was impacted by light pollution. We used 

the four color bands (one red, one blue, and two green bands) that compose the ISS pictures 

separately and calculated two variables for each color band: the pixel value at each recording 

point and the mean pixel value within a 100 m and a 200 m buffer around the recording point. 

Hence in total there were 8 variables based on the location of streetlights and 12 based on the 

ISS pictures (Table 2). All variables were calculated using the same 60 m x 60 m grid in order 

to have the same resolution. For the analysis, we removed recordings taken at four points 

considered as outliers because of their very high radiance value due to a singular urban context 

(e.g., Eiffel Tower illuminations ; n=12; 1% of the dataset). Note that similar results were 

obtained when including these recordings in the analysis (see Appendix B).
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Table 2 Variables used as explanatory variables to model bat activity. Each light variables were 

used in a separate full model and all environmental variables, meteorological variables and 

covariables were included in all full models. Variables based on the ISS pictures are defined 

for each color band, the red (Red 1), the two green (Green 2 and Green 3), and the blue (Blue 
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2.5 Environmental and meteorological variables  

Bat activity is influenced by environmental conditions both at a fine (i.e. flight path) and 

intermediate (i.e. home range) scale hence we included several variables to account for their 

effect using BD TOPO data (IGN; Table 2). Several studies identified aquatic habitat as a 

favorable habitat for bats (Kaňuch et al., 2008; Rainho & Palmeirim, 2011; Russo & Jones, 

2003) thus we calculated the distance to the closest water source(in meters). In addition, as the 

distance and the extent of wooded areas are positively correlated with bat presence (Boughey, 

Lake, Haysom, & Dolman, 2011), we calculated the distance to the nearest tree cover (in 

meters), and the proportion (%) of tree cover within a 200 m buffer. A set of complementary 

variables were used as fixed effects to control for specific recording conditions (Table 2): the 

method (pedestrian or full-night protocol), the year (Kerbiriou, Azam, et al., 2018), the Julian 

day and its associated quadratic term as bat activity is expected not to be linear across the study 

period and include a peak when young start to fly (Kerbiriou, Azam, et al., 2018; Newson, 

Evans, & Gillings, 2015), and meteorological conditions at sunset (temperature C°, wind speed 

m/s, and humidity %; Ciechanowski, Zając, Biłas, & Dunajski, 2008; O’Donnell, 2000). 

2.6 Bat activity modeling 

We built statistical models to test the effect of light pollution on P. pipistrellus activity 

(response variable) while accounting for environmental and meteorological parameters. To 

outline a general pattern and build robust models, data from the three cities were analyzed as a 

single dataset. Several light variables were correlated with one another (Spearman’s |r|>0.7; 

Dormann et al., 2013; see Appendix C) thus we built a separate full model for each light variable 

(i.e. 20 models). We ensured that all the variables used within the same model had a Spearman’s 

rho between -0.7 and 0.7. As all variables showed a VIF value <3 (Heiberger & Holland, 2004) 
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and as the mean of VIF values <2 (Chatterjee & Bose, 2000) there was no obvious sign of 

multicollinearity. 

We performed Generalized Linear Mixed Models (GLMM ; glmmTMB 0.2.0 ; Brooks 

et al., 2017) using bat activity as the response variable and a light variable, environmental 

variables and, meteorological variables as fixed effects. According to the nature of the response 

variable (i.e. count data with over-dispersion) we used a negative binomial error distribution 

with a log link (Zuur, Ieno, Walker, Saveliev, & Smith, 2009; See Appendix A – Fig A.2). 

Recording points were distributed within the three cities and sometimes replicated hence we 

included the city as a fixed effect and a random effect on the recording point. Explanatory 

variables were standardized to facilitate comparisons between estimates. We added an 

interaction between the light variable and the proportion of vegetation as a study found a 

difference in the responses of P. pipistrellus activity to the presence of streetlights depending 

on the local tree cover (Mathews et al., 2015). The full models were written as follow: 

Bat activity ~ light variable*proportion of vegetation+distance to vegetation+ 

distance to water+Julian day+(Julian day)^2+Year+temperature+humidity+wind 

speed+recording protocol+city+ (1|recording point) 

where light variable was one of the 20 light variables listed in Table 2. Hence we had 20 full 

models. For each full model, we ran all possible combinations (subsets) of fixed effects (MuMIn 

1.15.6 ; Barton, 2013). Among each ensemble of candidate models (one full model and its 

subset models), we selected the best model using Akaike’s Information criterion (AIC; 

Burnham & Anderson, 2002). However, the AIC tends to overestimate the number of 

parameters in a model by adding uninformative variables that do not improve fit (Guthery, 

Brennan, Peterson, & Lusk, 2005) hence, amongst the best models (i.e. within a ΔAIC of two 

of the minimum AIC), we selected the simplest model that had significant parameters. Thus, at 

the end of the selection process, we had 20 best models, one per light variable. We compared 
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these 20 models using the AIC. To explore the possible nonlinear effect of the light variable, 

we tested a GAMM (mgcv 1.8-16 ; Wood, 2011) model with the same structure as the overall 

best model (lowest AIC) with a smoothing effect on the light variable. The degree of 

smoothness is left to be estimated as part of the fitting. All analyses were conducted using R 

3.3.3 (R Core Team, 2017). 

3. Results 

3.1 Bat acoustic data analysis 

A total of 20,599 bat passes of P. pipistrellus were recorded at the 508 recording points 

(1,205 in Paris, 7,035 in Montpellier, and 12,359 in Lille; see Appendix A – Table A.1 for 

details on all the species recorded). P. pipistrellus represented 47% of the overall bat passes 

recorded (86% in Paris, 24% in Montpellier, and 98% in Lille) and was detected in 48% of the 

recordings (27% in Paris, 40% in Montpellier, and 98% in Lille).  

3.2 Bat activity modeling 

We selected one best model for each light variable (Table 3). After model selection on 

the full models, for five models, the light variable was not retained and the best model was the 

one without light variable. Three of the light variables not retained were based on streetlight 

location (streetlight distance, streetlight presence and streetlight density in a 100 m radius) and 

two on ISS pictures (pixel value for the Red 1 and Green 3 color band). In all models with a 

light variable, P. pipistrellus activity was negatively affected by light. Seven out of the eight 

models containing a light variable based on streetlight location did not perform better than the 

model containing no light variable. The three models that performed the best (ΔAIC<2) were 

based on mean values of the ISS picture in a 100 m or 200 m radius. Globally, among the 15 
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models where a light variable was retained, all the models containing a light variable based on 

the ISS pictures performed better than models containing a light variable based on the streetlight 

location. For six models, the interaction between the light variable and the proportion of tree 

cover was retained. Within these six models, five had a light variable based on one of the green 

color band of the ISS picture and one on the red color band. The interaction showed that for 

low proportions of tree cover, the radiance level had a negative effect on bat activity whereas 

for high proportions of tree cover, the radiance level is expected to have a positive effect on bat 

activity (Fig. 3). Note, however that no recording were taken at points combining very high 

proportion of tree cover and very high level of radiance because such situation is particularly 

rare. The GAMM model built with the same structure as the best overall model with a smooth 

function on the light variable (mean pixel value of the blue color band in a 100 m radius) showed 

that there was no nonlinear effect of the light variable. 

 

Fig. 3 Interaction between the light variable (mean value of radiance within a 100 m radius 

for the Green 2 color band of the ISS picture) and the proportion of tree cover. The color 

scale represent the predicted mean number of bat passes per six minutes (log scale). Black 

dots represent combination of light variable values and tree cover proportion sampled in the 

data. Data were back transformed to be presented with their original units. 
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After model selection, all the best models contained the same environmental and 

meteorological variables except for the distance to tree cover that was not retained in six 

models. The distance to water and to tree cover negatively impacted the activity of P. 

pipistrellus and the proportion of tree cover had a positive effect on P. pipistrellus activity 

(Appendix D – Table D.1) as expected. The Julian day and its quadratic term were retained, 

reflecting the fluctuations of bat activity along the seasons (see Appendix D – Fig. D.1). The 

wind speed had a positive effect on P. pipistrellus activity. Wind speed usually has a negative 

effect on bat activity when considering high wind speed. Here wind speed were always low 

with 91% of data taken for wind speed below 5.5 m/s.   

Table 3 Selection of best models to explain bat activity using a light variable and best model 

without light variable. Estimates of the light variable and the interaction between the light 

variable and the proportion of tree cover (when retained in the model selection). After model 

selection on the 20 full models, for five models, the light variable was not retained (‘not 

selected') and the best model was the one without light variable. (**) indicates a p-value 

between 0.001 and 0.01; (*) indicates a p-value between 0.01 and 0.05 and (.) indicates a p-

value between 0.05 and 0.1. 

Light variable in the 

model 

Estimates 

AIC ΔAIC 

      

Light 

variable 

Light 

variable 

* Tree 

cover Weights 

Marginal 

R2 

Conditional 

R2 

Blue 4 - 100 -0.34 **     3331.3 0.0 0.26 0.33 0.62 

Green 2 - 100 -0.21 
 

0.25 . 3332.0 0.7 0.18 0.34 0.63 

Red 1 - 200 -0.16   0.27 * 3333.1 1.8 0.11 0.33 0.63 

Green 2 - pixel -0.13 
 

0.31 * 3333.6 2.3 0.08 0.33 0.63 

Green 2 - 200 -0.15 
 

0.24 * 3333.9 2.6 0.07 0.33 0.63 

Blue 4 - pixel -0.26 *  

 
3334.4 3.1 0.06 0.32 0.62 

Red 1 - 100 -0.31 *  

 
3334.5 3.2 0.05 0.33 0.62 

Blue 4 - 200 -0.26 *  

 
3334.8 3.5 0.05 0.32 0.62 

Green 3 - 200 -0.10 
 

0.27 * 3335.2 3.9 0.04 0.32 0.63 

Green 3 - 100 -0.06 
 

0.28 * 3336.3 5.0 0.02 0.32 0.62 

SL density - 200 -0.19 *  

 
3336.6 5.3 0.02 0.31 0.62 

Impacted surf. - 200 -0.20 *     3336.8 5.5 0.02 0.31 0.62 

Impacted surf. - 100 -0.19 .  

 
3337.0 5.7 0.02 0.31 0.62 

SL density - 100 -0.17 .  

 
3337.2 5.9 0.01 0.31 0.63 

SL weighted density - 

200 -0.15 
. 

 

 
3337.7 

6.4 0.01 0.31 0.62 

None  

 

 

 
3338.7 7.4 0.01 0.30 0.62 

SL distance Not selected       
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SL weighted density - 

100 Not selected       

SL presence Not selected 
  

    

Red 1 - pixel Not selected 
  

    

Green 3 - pixel Not selected             

4. Discussion 

We found that, whatever the light variables tested, P. pipistrellus activity was negatively 

affected by artificial light at the city scale. This result is coherent with large scale studies (Azam 

et al., 2016; Mathews et al., 2015) although numerous small scale studies showed a local 

positive effect of artificial light on light tolerant bat species (e.g., Azam et al., 2018; Rydell, 

1992). The models containing ISS picture based variables were better in terms of AIC than the 

models with streetlight location based variables showing that ISS pictures better explain the 

effect of light than streetlight location for bats. The methodology we used to measure the impact 

of artificial light on bats had low data requirements and could be reproduced elsewhere as these 

data are available for most cities. Prediction derived from our models could be used to produce 

maps to identify favorable areas for bats that should be preserved and to work on landscape 

connectivity. 

The negative effect of light pollution on P.pipistrellus at the city scale suggests that the 

local foraging advantage streetlights can represent (Rydell, 1992) is outweighed by the global 

negative impact of artificial light.  Moths preyed on by bats are attracted to short wavelengths 

(blue) (Koh, 2008; van Langevelde et al., 2011) thus we could have expected areas with high 

values of radiance of the blue color band to be areas of high concentration of prey and 

consequently areas of high bat activity. But on the contrary, our results showed that high 

radiance values affected negatively the activity of P. pipistrellus irrespective of the color band 

used. The underlying mechanisms that drive the negative response of bats to artificial light are 

not clear. Rydell (1992) suggested that bats might avoid lit areas due to an intrinsic perception 
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of increased predation risk. However the interaction between the proportion of tree cover and 

the radiance level showed that the effect of light on bat activity could be positive in areas with 

important tree cover although this combination was not present in our study areas. Similarly, 

Mathews et al (2015) found that P. pipistrellus activity was higher in lit than dark environments 

when there was an important tree cover although in open areas, light had a negative effect on 

this species’ activity. Hence it is possible that the tree cover reduces the risk of predation linked 

to lit areas but also that streetlights close to wooded areas attract more insects and therefore are 

particularly advantageous foraging grounds. The negative effect of artificial light might 

partially explained (Azam et al., 2016) why although P.  pipistrellus is still present in urbanized 

and strongly illuminated areas, it is less abundant than in more favorable landscape (e.g., aquatic 

areas) (Kerbiriou, Parisot-Laprun, et al., 2018). This species is more resilient to anthropogenic 

pressures than other species that are seldom found in urban landscapes. Hence species that are 

more sensitive to light pollution might experience an even more detrimental impact highlighting 

the importance of including biodiversity in artificial lighting planning schemes. 

Surprisingly, the two sources of data on artificial light were weakly correlated 

(Spearman’s |r| = 0.13±0.06, Appendix C). This absence of clear relationship between the two 

types of data is most likely due to the absence of information on private lighting such as 

monuments, university or shop lights in the streetlight location data although they can be a 

major source of illumination within cities. Moreover, location data do not inform on light 

characteristics (e.g., height, type, intensity) which determine the repartition and brightness of 

the light. Conversely, ISS pictures include both public and private lighting and are a measure 

the radiance due direct and reflected light emissions, including skyglow. The ISS pictures 

encompass the global level of radiance and hence might be a closer representation of what bats 

experience than streetlight location. Nevertheless, the streetlight density in a 200 m radius was 

informative and had a similar effect as ISS picture based variables. Hence ideally, using the 
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mean pixel value of an ISS picture within a 100 radius would be best but if there is no picture 

available, streetlight location data can be useful. Moreover, if information on streetlight 

characteristics are available, this could further increase the explicative power of the ground-

based data.   

We deliberately kept a low data requirement to allow our model to be reproducible 

although complex models using streetlights characteristics and light dispersion models have 

been developed to map cities nighttime light emissions (Bennie, Davies, Inger, & Gaston, 

2014). Our goal was to construct a methodology using fairly simple variables and analysis to 

be applied to other cities as a management tool. Our model can be used to produce predictive 

maps of bat activity and to visualize areas where light pollution should be reduced. Furthermore, 

in addition to preserving dark areas, it is crucial to also consider the landscape scale through 

which this species move. Favorable habitat patches need to be connected to one another by 

corridors to sustain populations and allow for daily movement (e.g., foraging), seasonal 

movement (e.g., migration), and dispersion (i.e. gene flow). As artificial light can have a barrier 

effect on bats (Hale et al., 2015), it is important to evaluate its impact on landscape connectivity 

and our methodology could help map potential ecological corridors for bats at the city scale. 

Then, to adapt lighting at a fine scale, the information brought by studies on light types 

(Lewanzik & Voigt, 2017; Rowse, Harris, & Jones, 2016; Stone, Wakefield, Harris, & Jones, 

2015) and spectrum (Spoelstra et al., 2017) could help target light sources that might have 

important impacts on bats. We found a linear negative effect of artificial light on bat activity, 

whereby increasing radiance was associated with a proportional decrease in bat activity. This 

relationship suggests that reducing lighting pollution will have a positive effect on bats. 

Moreover it was shown that even a slight decrease in artificial light intensity could greatly 

enhance the number of dark patches necessary to nocturnal species (Marcantonio et al., 2015). 

With the development of adaptable lighting technologies in terms of flux directionality and light 
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intensity, it seems feasible to decrease light intensity and limit trespass while still complying 

with socio-economic and security constraints (Gaston et al., 2012).  

Remote sensing data offer promising opportunities to account for artificial light impact 

in urban planning and their availability increases greatly with citizen-science initiatives such as 

Cities At Night (http://citiesatnight.org ‒ Sánchez De Miguel et al., 2014). Although some 

technical difficulties remain (need for location, calibration, and correction of the images) the 

technological advances in nocturnal remote sensing represent an opportunity to have a direct 

representation of the global artificial light emissions at fine resolutions. Thus citizen science 

programs of biodiversity monitoring and remote sensing imaging and interdisciplinary 

collaboration between ecologists and astrophysicists will undoubtedly help increase our 

understanding of light pollution and its impact on the environment.  
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ARTICLE 2 

APPENDICES 

Appendix A. Bat activity data 

 

Fig. A.1. Mean activity of P. pipistrellus per 6 minutes throughout the night for the full night 

recordings in Lille. 
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Table A.1. Number of bat passes during the two first hours of the night per species for each city 

and occurrence within the recording points of each city. 

    Paris Lille Montpellier 

  
  

Bat 

passes 
Occ. 

Bat 

passes 
Occ. 

Bat 

passes 
Occ. 

Species 
             

 Pipistrellus pipistrellus 1,205 27% 12,359 99% 7,035 61% 

 Pipistrellus pygmaeus 1 0%   13,367 73% 

 Pipistrellus kuhlii 122 3%   6,581 66% 

 Pipistrellus nathusii 6 0% 37 1% 723 9% 

 Nyctalus noctula 45 1%     

 Nyctalus leisleri   8 0% 1,032 14% 

 Eptesicus serotinus   246 5% 150 2% 

 Myotis daubentonii 22 1%   753 6% 

 Myotis emarginatus     3 0% 

 Myotis nattereri     9 0% 

 Miniopterus schreibersii     2 0% 

 Plecotus austriacus     45 1% 

 Tadarida teniotis     3 0% 

 Hypsugo savii     14 0% 

Single-genus group 
      

 P. nathusii / P. kuhlii   5 0%   

 Myotis spp. 1 0%   1 0% 

 Plecotus spp.     2 0% 

Mult-genus group       

  Nyctalus / Eptesicus     4 0%     
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Fig. A.2. Number of P. pipistrellus passes in 6 minutes of recording. For full-night recordings, we 

only considered the two first hours of the night and the activity of the night was the average number 

of bat passes per 6 minutes time slots. The number of occurrence of each number of bat passes is 

given in bold above the x-axis. 
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Appendix B. Definition of the outliers and results when including them in the dataset 

We considered four recording points to be outliers because of their particularly high radiance value 

on the ISS picture (Fig. B.1.). Three recording points with the highest values of radiance are located 

next to the Eiffel Tower and the fourth one is on the Esplanade Charles de Gaulle, in Montpellier 

city center. We carried the same analysis as in the core paper and found similar results when 

including the 4 outlier points (Table B.1.). 

 

Fig. B.1. The four sites considered as outliers for their particularly high radiance value are 

represented in red. 
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Table B.1. Selection of best models to explain bat activity using a light variable and best model without light 

variable. After model selection on the 20 full models, for five models, the light variable was not retained and the 

best model was the one without light variable. The reference level for the factor variable “city” is the city of Lille. 

(**) indicates a p-value between 0.001 and 0.01; (*) indicates a p-value between 0.01 and 0.05 and (.) indicates 

a p-value between 0.05 and 0.1. 
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Appendix C. Correlation between light variables 

Table C.1. Correlation (Spearman’s r) between the light variables tested. Values above 0.5 and below -0.5 are in 

bold. Correlations between variables based on streetlight location are in the dashed rectangle and correlations 

between variables based on the ISS satellite picture are in the dash-dotted rectangle. 
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Appendix D. Model results 

Table D.1. Selection of best models to explain bat activity using a light variable and best model without light 

variable. After model selection on the 20 full models, for five models, the light variable was not retained and the 

best model was the one without light variable. The reference level for the factor variable “city” is the city of Lille. 

(**) indicates a p-value between 0.001 and 0.01; (*) indicates a p-value between 0.01 and 0.05 and (.) indicates 

a p-value between 0.05 and 0.1.  
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The Julian day and its quadratic term were retained in all models as they reflect the fluctuations 

of bat activity along the seasons. A GAMM model with a smoothed term on the Julian day 

variable showed a significant nonlinear effect (edf = 4.4, p-value = 0.0006) (Fig. C.1.) 

 

Fig D.1. Representation of the non-linear effect of the date on P. pipistrellus activity. 
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“Those who would destroy the last remnants of natural connectivity should bear the burden of 

proving that corridor destruction will not harm target populations.” 

Beier 1998 
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Introduction 

Almost all organisms have to move during their live either in response to short-term 

goals such as reproduction and feeding or for long-term fitness implications such as dispersal 

and the avoidance of inbreeding (Holyoak et al., 2008). Movement is a fundamental 

characteristic of life driven by processes across multiple spatial and temporal scales (Nathan et 

al., 2008). It has a major role in the survival of individuals, the transfer of genes and ultimately 

affects population dynamics, the distribution of species and ecosystem functioning (Nathan et 

al., 2008). Due to the central place of movement in animal behavior, understanding the factors 

that affect movement is crucial to develop effective landscape-level conservation planning and 

particularly in landscapes undergoing rapid environmental change (Rayfield, Fortin, & Fall, 

2011; Zeller, McGarigal, & Whiteley, 2012).  

Promoting landscape connectivity, i.e. the degree to which a landscape facilitates the 

movement of organisms (Taylor et al., 1993), has become a global conservation priority to 

mitigate widespread landscape modifications and their impact on biodiversity (Crooks & 

Sanjayan, 2006). In this context, the landscape is generally described by dividing it in two types 

of elements, the habitat patches and the matrix. The definition of what is considered a habitat 

is not often stated and may vary. Broadly, habitat can be defined as “the range of environments 

suitable for a given species” (Fischer & Lindenmayer, 2007). Depending on the scale at which 

the landscape connectivity is considered, habitat may refer to areas suitable to support a species 

population durably or areas that may be used by individuals to fulfill a daily need (e.g., 

foraging). The matrix is then defined as all the landscape that is not a habitat (Kindlmann & 

Burel, 2008). Its composition can influence movement behavior and habitat patches reachability 

thus affecting landscape connectivity (Kindlmann & Burel, 2008). Land conversion leads to 

habitat loss and therefore to an increased proportion of matrix in the landscape which in turn 
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tends to decrease the size of habitat patches and increase the distance between them (Kindlmann 

& Burel, 2008). This process leads to an increased landscape fragmentation and is considered 

as a key driver of global species loss (Fischer & Lindenmayer, 2007). 

Since the formalization of the landscape connectivity concept in landscape ecology 

(Taylor et al., 1993), its meaning has been interpreted and used in different ways. Thus, two 

types of connectivity have been distinguished, the structural connectivity which is entirely 

based on the landscape structure and the functional connectivity which considers both the 

landscape structure and organism’s behavioral responses to landscape elements (Kindlmann & 

Burel, 2008). Structural connectivity is easier to measure and is independent of species behavior 

however it ignores the complexity of how organisms interact with spatial heterogeneity and 

which may affect species ability to move (Taylor, Fahrig, & With, 2006). For example, species 

with low dispersal abilities may be sensitive to low degrees of landscape fragmentation while 

highly mobile species may perceive landscapes as functionality connected across a greater 

range of fragmentation severity although they are not structurally connected (With & Crist, 

1995). Thereafter in this chapter we will only consider functional connectivity. 

 The vast majority of connectivity studies evaluated the impact of land cover types and 

land uses on the species ability to cross the matrix to join habitat patches but only very few 

account for diffuse anthropogenic pollutions (LaPoint et al., 2015). Inclusion of anthropogenic 

pollutions was achieved through the use of data on road traffic (Joly, Morand, & Cohas, 2003; 

Magle, Theobald, & Crooks, 2009) which is a proxy for both light and noise disturbance 

induced by roadside lighting and vehicles noise and headlights. However, there are limitation 

to this proxy as not all roads are lit and all lit places are not roads (and similarly for noise). 

Nonetheless, no studies have specifically focused on the effect of light pollution on landscape 

connectivity in spite of its potential to modify individual’s behavioral response to landscape 

elements and its wide spatial extent. Indeed, as light may attract some species (Eisenbeis, 2006), 
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be avoided by others (Wise, 2007) or act as a barrier (Stone, Jones, & Harris, 2009), it may 

have important implications in the perception of landscape connectivity. For example, hedges 

are known to be important linear feature for bat species movements and they may serve as 

commuting routes (Verboom & Huitema, 1997). However, hedges roles as movement corridors 

for bats may be greatly altered by light (Stone et al., 2009) and the gap-crossing ability of bats 

may be reduced by the presence of light within gaps (Hale et al., 2012). In this case, considering 

the network of hedgerows as elements facilitating movement without accounting for the 

potential negative effect of light may lead to erroneous conclusions on landscape connectivity. 

The impact of ALAN on a landscape is complex to asses as light is diffuse and thus not easily 

delineated. Indeed, it is estimated that the skyglow effect propagates light tens or hundreds of 

kilometers away from their light sources (Kyba et al., 2015). Moreover, it is possible that 

ALAN’s effects on species movement behavior is dependent on the land cover type, the 

landscape element considered and the global environmental context and landscape composition. 

The second chapter of this PhD thesis revealed the potential of fine resolution remote 

sensing data on light pollution to measure the impact of ALAN on bat activity. Furthermore, 

the model developed allowed to produce predictive map of the distribution of bat activity with 

may be used by land manager to locate habitat areas where it would be beneficial to limit light 

emissions. However these maps do not include information on bats movement between suitable 

areas and as such their use for conservation purposes may lead to inefficient or even damaging 

landscape planning (Taylor et al., 1993). Locally enhancing a habitat patch that is poorly 

connected will have a lesser contribution to the global population than a possibly lower quality 

patch that is well connected to a network of patches (Taylor et al., 1993). Therefore, in addition 

to information on habitat patches, it is crucial to consider the connectivity between these patches 

to produce the most relevant and fruitful landscape planning recommendations.  
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Aims of the chapter 

The present chapter hence draws on the precedent one (Fig. 24), using bats response 

curves to ALAN to intent to model the functional landscape connectivity for bats in urban 

environments while accounting for light pollution. The chapter is based on two studies 

evaluating the impact of light on connectivity at two intermediate scales, the city-scale (Article 

4) and the conurbation-scale (Article 3), and investigating the potential effects of changes in 

lighting planning on landscape connectivity. These studies are the first to investigate the effect 

of light pollution on functional connectivity.  

 In the first study (Laforge et.al, in prep; Article 3), we assessed the contribution of 

ALAN to landscape fragmentation for two species of bats in a large conurbation (almost 300 

km²) in the North of France. As bat activity had a low variability for the two species, the 

connectivity analysis were carried out on bat presence response curves. In addition to evaluating 

the current state of the functional landscape connectivity for bats, Laforge et.al investigate the 

potential of lighting schemes to improve it through scenarios of light extinction. Scenarios 

ranges from the extinction of small areas considered as potential bat habitats such as wetlands 

and urban parks to the extinction of wide urban areas. This study is based on bat data collected 

 

 
    Fig. 24. Modeling steps to evaluate the landscape connectivity for bat species 
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throughout the conurbation following a random stratified sampling and a satellite picture of 

nighttime lighting from the VIIRS DNB (250m resolution). These data were used to predict bat 

activity and probability of presence throughout the study area and then the landscape 

connectivity was measured using least-cost path modeling. 

The second study presented in this chapter (Pauwels et al., in prep; Article 4) is based 

on the best model defined in the second chapter to predict P. pipistrellus activity across three 

cities. I carried out this analysis on several study areas in order to evaluate the role of the spatial 

arrangement of land cover types and the distribution of light on the landscape connectivity. In 

addition, similarly to Laforge et al., I tested the impact of different lighting scenarios on the 

landscape connectivity. Outdoor lighting technologies are undergoing a technological change 

toward energy efficient LED lights. This type of lamps emit light across a broader spectrum 

that current lamp types and include an important proportion of short (blue) wavelengths. 

Therefore, the shift toward LED lamps is predicted to drastically increase the emissions of blue 

light with potentially large impacts on biodiversity. Here I tested how a global change of 

outdoor lighting toward LEDs would impact landscape connectivity for P. pipistrellus. The 

study was based on the same biological data as in the first chapter and followed a similar 

methodology as in Laforge et al. 

Principal results & discussion 

In the first study, the scenarios of extinction were applied to M. daubentonii and P. 

nathusii and showed the potential of localized extinctions to promote landscape 

connectivity in the conurbation (Fig. 25). For both species, scenarios of extinction of urban 

parks (3) and wetlands (5) significantly improved the functional connectivity. Such extinction 

schemes seem both feasible as most urban parks are closed at night and desirable to enhance 
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connectivity for urban bats. However due to 

the absence of available fine scale remote 

sensing data, this work was carried out using 

a satellite picture (VIIRS) with a 250 m 

resolution. 

The second study (Pauwels et al., in 

prep; Article 4) revealed that the effect of 

light pollution was negative for P. 

pipistrellus landscape connectivity but in 

highly differing extent depending on the 

study area (Fig. 26). Indeed the scenario in 

which all lights were turned off induced 

much higher changes in the overall 

connectivity in Lille (+210%) than in 

Montpellier (+18%). This result stresses the 

context-dependence of the impact of light 

on species perception of landscape 

fragmentation. Moreover, the model species used in this study can forage in the vicinity of 

streetlights (Rydell, 1992; Azam et al., 2018) and may thus be less impacted by light pollution 

than other species that avoid light even at low levels (Lacoeuilhe et al., 2014; Azam et al., 

2018). Therefore, the landscape connectivity perceived by light sensitive species may be 

affected by ALAN in even more important proportions. 

 

Fig. 25. Means of differences of paired cost-

distances between initial LCP and LCP after 

each light reduction scenarios. A: M. 

daubentonii; B: P. nathusii. Light reduction 

scenarios on: (1) urban areas of municipalities 

of more than 10 000 inhabitants; (2) urban 

areas of municipalities of less than 10 000 

inhabitants; (3) urban parks; (4) main roads; (5) 

wetlands.(extracted from Laforge et al.). 
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Scenarios simulating a change in 

lighting technology toward the generalized 

use of LEDs showed that the modification 

in light emissions in the blue spectrum 

differ between cities increasing more in 

Paris and Lille than in Montpellier. This 

may be linked to the differences in the 

current lighting technologies used in the 

three study areas.  Nevertheless, our results 

demonstrate that changing all light 

sources to LEDs while keeping the same 

overall radiance will negatively affect landscape connectivity for P. pipistrellus. An 

adaptation of lighting fixtures concomitantly to the change to LED lighting may reduce upward 

emitted light thus decreasing the radiance measured through ISS pictures (60 m resolution). 

Such a scenario would reduce the negative impact of a change toward LEDs and potentially 

increase connectivity depending on the landscape context. Indeed, for the city of Lille, the 

decrease in radiance mostly took place in the city center which is densely built and is thus not 

suitable for bats. These results showed that although there is a similar general pattern in the 

landscape connectivity variations for the three cities, it is not straightforward to estimate the 

influence of a change in lighting technology as it depends on the landscape context in terms of 

land use and current lighting distribution. Moreover, our study highlights the importance to take 

several parameters into account to prioritize areas where the reduction of light would most 

benefit bats as some light changes may have more or less impact on the landscape connectivity.  

 

Fig. 26. Change in overall landscape 

connectivity for the lighting scenarios 

compared to the current situation (extracted 

from Pauwels et al.). 
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Fig. 27. Spatial representation of habitat patches and least-cost paths for each study area and 

each scenario. The light orange shape represent the area of the cities. 
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Perspectives 

The two studies demonstrate the importance to target specific areas for the 

implementation of mitigation measures to help reduce the impact of ALAN. Both studies 

provide methodological basis to identify connectivity corridors for nocturnal species which 

implies to account for the necessity to have suitable habitat but also to promote landscape 

connectivity. Moreover, the scenarios tested, can give global insight as to where it would be 

most efficient to preserve darkness. Nonetheless, the applied use of such scenarios may be 

limited for several reasons. First, the scenarios that can be built from the satellite pictures only 

allow to modify the spectrum and radiance of the current lighting situation. It would be much 

more complicated to mimic the implementation of new lighting in a currently dark area. 

Secondly, satellite pictures do not have a fine enough resolution to identify specific light 

sources and thus we are not able to indicate if the radiance emitted comes from public or private 

lighting which may limit the application for public outdoor lighting planning. Thirdly, it is not 

yet feasible to build scenarios that would reflect the change of specific light points and thus 

predict how a specific change in lighting may impact connectivity. This is both due to the 

relative coarseness of the picture and to the fact that we are not able to translate illuminance 

measures from a light source to the radiance as measured from remote-sensing. In addition, this 

would require to model how halos of different light points may superpose or how built structure 

may limit trespass. Nevertheless, the global evaluation of connectivity and the comparison with 

scenarios may give global insight and allow to delineate global directives. 

The analysis carried out in this chapter used fairly accessible environmental and light 

data in order to be replicated in other areas and potentially used in landscape management. In 

the framework of knowledge transfer from the result arising from this PhD’s work to the 

environmental engineering company associated to it, such a replication of the methodology is 

currently ongoing in Douai, a small municipality in the North of France (17 km² whereas the 
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smaller city studied in this chapter was 35 km²). As fine-resolution ISS pictures are currently 

mostly available for large cities because they are easier to georeference than smaller localities, 

we used a coarser picture from the VIIRS DNB (250m resolution). The methodology used is 

the same as developed in Pauwels et al. (Article 4). Preliminary results showed no significant 

effect on P. pipistrellus and E. serotinus. This result differs from the ones arising from both 

studies presented in this chapter however this might be linked to the use of low resolution light 

pollution data on a small study area. Indeed, P. pipistrellus and E. serotinus may have a 

relatively fine perception of the distribution of light and thus may be able to navigate in a mosaic 

of lit and dark areas. Therefore the radiance at a 250m scale might not be an accurate 

representation of their perception. They may be able to move across pixel with a high radiance 

at the scale of the VIIRS image as it can contain local low light level areas. This differing results 

emphasize the necessity to evaluate the impact of data resolution on the response measured. 

Future research should investigate the sensitivity of the analysis carried out in this chapter to 

the resolution and type of light data. For example, for a same study area, it would be interesting 

to evaluate the response of bat to light as measured by VIIRS images and ISS pictures and/or 

ISS pictures resolution could be degraded to various degrees. The study carried out in Douai 

also showed a negative effect of the radiance level on Nyctalus noctula activity. N. noctula has 

been documented to forage at streetlights (Rydell, 1992) and its activity increases with 

illuminance at the local scale (Lacoeuilhe et al., 2014; Azam et al., 2018) however at the scale 

of this small municipality, the effect seems to be negative. This finding is similar to the scale-

dependence of P. pipistrellus activity response to ALAN. Yet hypothesis concerning N. noctula 

response to light should be considered carefully as this species spends an important proportion 

of its time at high altitudes (Roemer et al., 2017) which may limit its detection by recorders 

placed at ground level and therefore bias the understanding of its behavior. Due to the relatively 

large size of N. noctula, it can be tracked using GPS devices. This technology could be used to 
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explore N. noctula behavior in regard to light pollution. It may be possible that individuals’ 

response to light vary depending on the altitude at which they fly or that they avoid light while 

commuting by gaining altitude. 
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Abstract 

Light pollution can alter animal movements and landscape connectivity. This is 

particularly true in urban landscapes where a need to incorporate conservation issues in urban 

planning is urgent. In the present study we investigated how potential light-reduction scenarios 

at a conurbation scale can improve landscape connectivity for bats. Through random stratified 

sampling and species distribution modelling, we assessed the relative importance of light 

pollution on presence probability and activity of bats. We recorded bats during entire nights on 

305 sampling points in 2015. In 2016, we surveyed 94 supplementary points to evaluate our 

models performance. We used our spatial predictions to characterize landscape resistance to bat 

movements. Then we applied a least-cost modelling approach to identify nocturnal corridors 

and estimated the impact of five light-reduction scenarios on landscape connectivity of two 

light non-tolerant bat species. We found that light pollution had a major influence on bat 

presence and activity up to 700 m. Our results exhibited three contrasting responses to light 

intensity: M. daubentonii responded negatively, P. nathusii had a positive response for low 

values then a negative response after a threshold radiance value of 20 W.m-2.sr-1 and E. serotinus 

responded positively. Five and four light-reduction scenarios significantly improved landscape 

connectivity for M. daubentonii and P. nathusii respectively. Light-reduction measures should 

be urgently included in urban planning to provide sustainable conditions for bats in cities. 

Finally, we advocate for the use of our new methodological approach to further studies to find 

the best trade-off between conservation needs and social acceptability.
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1. Introduction 

Movements of individuals between habitats or between (sub)populations are crucial for 

population viability and thus biodiversity conservation (Zeller, McGarigal, & Whiteley, 2012). 

Such movements require the landscape matrix to be pervious (Tischendorf & Fahrig, 2000). 

This permeability is usually referred to landscape connectivity, i.e. the degree to which a 

landscape facilitates or impedes the movement of individuals (Tischendorf & Fahrig, 2000). 

Identifying landscape and restoring conditions, structures and processes that facilitate animals 

movements, have thus become a global conservation priority to mitigate widespread 

anthropogenic landscape modifications and their impacts on biodiversity (LaPoint, Balkenhol, 

Hale, Sadler, & van der Ree, 2015). The first approach to identify and maintain ecological 

corridors in the landscape relied on structural connectivity through the use of landscape 

configuration metrics such as habitat patch size or tree linear length that are thought to act as 

conduits or barriers to movements (Taylor, Fahrig, & With, 2006). This approach often ignored 

non-structural landscape factors that could influence landscape connectivity (LaPoint et al., 

2015) such as Artificial Light At Night (ALAN). 

ALAN may have negative impacts on ecosystems (Gaston, Visser, & Hölker, 2015) but 

our knowledge on the extent of effect on landscape connectivity is weak (Azam, Le Viol, Julien, 

Bas, & Kerbiriou, 2016; Hale et al., 2015; Hölker, Wolter, Perkin, & Tockner, 2010). ALAN 

has increased worldwide in extent (2,2 % per year) and radiance (1.8% per year) between 2012 

to 2016 (Kyba et al. 2017), threatening a substantial proportion of global biodiversity as 30% 

of all vertebrates and more than 60% of all invertebrates are nocturnal (Hölker et al., 2010). 

The widespread use of ALAN has major impacts on animal movements and species distribution 

at multiple spatial scales for a large variety of species and taxa such as birds, butterflies, eels, 

turtles, zooplanktons and bats (Gaston, Duffy, Gaston, Bennie, & Davies, 2014; Hölker et al., 
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2010). Hence, it is of major importance to characterize the relative contribution of ALAN to 

landscape fragmentation to propose sustainable land-use planning strategies (Azam et al., 2016; 

Gaston et al., 2014; Grimm et al., 2008). Furthermore, ALAN is especially present in urban 

areas with an annual growth rate of 6% per year (Hölker et al., 2010) and with the strongest 

current issues of public lighting renewal (Tsao et al. 2010). In the same time, many bat species 

are adapted to live in built areas (Dietz, von Helversen, Nill, Dubourg-Savage, & Jourde, 2009) 

and can thus be directly confronted to light pollution. Bats represent a rare case of species 

protected at the European level within urban environments (Council Directive 92/43/EEC of 21 

May 1992 on the conservation of natural habitats and of wild fauna and flora). 

In order to investigate the effect of ALAN on landscape connectivity, we used 

insectivorous bats as they are nocturnal and very sensitive to habitat loss and fragmentation 

(Frey-Ehrenbold, Bontadina, Arlettaz, & Obrist, 2013; Mickleburgh, Hutson, & Racey, 2002). 

Bats activity and occurrence are negatively or positively affected by ALAN depending on their 

foraging strategies, their flight abilities and on the considered landscape-scale (Azam et al., 

2016; Hale, Fairbrass, Matthews, & Sadler, 2012). At a local scale, the illumination of hedges 

or rivers near colonies of slow-flying gleaner species such as Rhinolophus spp. and Myotis spp. 

had for instance a negative impact on bat activity and altered individual’s movement behavior 

as they seeked to avoid the newly illuminated areas (Kuijper et al., 2008; Stone, Jones, & Harris, 

2009). In contrast, fast-flying species hunting insects at dusk in the open air such as Pipistrellus 

spp. and Nyctalus spp. can benefit at a local scale from new spatially foraging areas provided 

by ALAN (Azam et al., 2015; Lacoeuilhe, Machon, Bocq, & Kerbiriou, 2014). In the other 

hand, ALAN has been shown to decrease landscape connectivity by altering movements and 

gap-crossing behaviors of Pipistrellus pipistrellus (Schreber 1774) individuals in an urban 

matrix (Hale et al., 2015). Those findings suggest that ALAN can act as a barrier for bats and 

thus further increase the landscape fragmentation. All of this highlight the importance of 
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integrating ALAN in sustainable urban-planning schemes to allow the persistence of 

biodiversity in urban landscapes through darker environments (Gaston et al., 2015). Currently, 

the knowledge on response of urban bat communities along urbanization and ALAN gradients 

is insufficient to identify, preserve and develop efficient nocturnal corridors (Hale et al., 2012; 

Mathews et al., 2015; McDonnell & Hahs, 2008). This is notably due to the fact that sampling 

bats in cities is challenging hence highly urbanized areas are often under-sampled leading to a 

lack of data for this type of landscapes (LaPoint et al. 2015). 

Here, we aimed at: (i) assess the contribution of ALAN to landscape fragmentation for 

bats, (ii) provide methodological basis to identify nocturnal corridors and (iii) predict the effect 

of different light reduction scenarios on landscape connectivity for bats in order to improve 

ALAN management. To achieve these goals, we used species distribution modeling based on 

standardized empirical data from a random stratified sampling to (1) predict bat species’ use of 

urban landscape and characterize the landscape-resistance to bat movements (Stevenson-Holt, 

Watts, Bellamy, Nevin, & Ramsey, 2014) and (2) identify the most suitable habitat patches to 

connect. We then used least-cost path modeling to identify nocturnal corridors and assess 

effects of light reduction scenarios on landscape connectivity. 

2. Materials and methods 

The whole methodological procedure is given in the Figure 1.  
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Fig. 1. Global methodological procedure followed to assess the effects of light-reduction 

scenarios on landscape connectivity for bats. 
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2.1. Study area 

The study was carried out in the Métropole Européenne de Lille in Northern France. It 

is the second most important French conurbation with more than 1.1 million inhabitants (Fig. 

2). The selected study area covers 27 307 hectares and 41 municipalities (50.6294 N, 3.0571 E; 

Fig. 2). The temperate oceanic climate dominates with mild average daily temperatures (1-10°C 

in winter, 11-23°C in summer) and a constant rainfall level throughout the year (743 mm.year-

1 on average). The study area is dominated by dense urbanization and intensive agricultural 

landscapes (respectively 65% and 23% of the total study area cover). Forests and natural areas 

 

Fig. 2. (a) Map of the study area presenting the spatial sampling effort carried out in 2015 

and 2016 as well as the main landscape components of the conurbation of Lille. (b) Spatial 

gradient of average radiance on the study area obtained from the Earth Observation Group, 

NOAA National Geophysical Data Centre (http://www.ngdc. 

noaa.gov/eog/viirs/download_monthly.html). 
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are restricted to relatively small patches which are mainly urban parks on rivers’ and ponds’ 

banks (Fig. 2).  

2.2. Sampling design 

A crucial assumption to use SDM to define landscape resistance values is that all the 

habitats of the landscape studied have been randomly sampled with the same effort (Beier et al. 

2008). Thus we defined a random stratified sampling to record bat calls in every landscape 

context existing on the study area in terms of three covariates: impervious surface proportion 

(including buildings and pavements such as roads, sidewalks, driveways and parking lots), tree-

cover proportion and ALAN (Fig. 2). The selection of these variables was based on two criteria: 

(i) they influence bat presence and activity (Azam et al., 2016; Fonderflick, Azam, Brochier, 

Cosson, & Quékenborn, 2015; Hale et al., 2015) and (ii) their variations in the study area are 

large enough to yield important gradients. The importance of these corridors for bat movements 

seems to be greater in lit and urbanized areas (Hale et al., 2012). In order to obtain the most 

representative sampling of the three landscape gradients, we developed an algorithm to 

randomly select at most two cells in all the combinations of these three covariates. We made 

this sampling procedure two times: one among exclusively non-aquatic cells and another among 

cells covering, even partially, wetlands (watercourses and ponds). Indeed we know that 

wetlands in urban context is an important habitats for bats and hence a strong predictor for both 

occurrence and activity (Straka, Lentini, Lumsden, Wintle, & van der Ree, 2016). 

ALAN data were obtained from VIIRS nighttime imagery (2012) which is a 2-months 

composite raster of radiance data (in nW/cm-2.sr) collected by the Suomi NPP-VIIRS 

Day/Night Band during 2 time-periods in 2012 (20 nights in total) on cloud-free nights with 

zero moonlight (Baugh, Hsu, Elvidge, & Zhizhin, 2013) and produced by the Earth Observation 

Group, NOAA National Geophysical Data Centre (http://www.ngdc. 
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noaa.gov/eog/viirs/download_monthly.html). The land cover variables are provided by the 

French National Institute for Geographic and Forestry Information (http://www.ign.fr/). The 

landscape variables were built using a grid at a resolution of a 250 m x 250 m with the software 

QGIS 2.14 (QGIS development team, 2016). This resolution corresponds to the precision of the 

satellite picture (Fig. 2). For each cell, we calculated the values of the three variables and 

grouped them into five classes of equal size (0-20%, 20-40%, 40-60%, 60-80%, 80-100% for 

impervious surface and tree cover proportions and 2.6-17, 17-31.4, 31.4-45.8, 45.8-60.2, 60.2-

74.6 nW/cm-2.sr for ALAN) to define the combinations of the three covariates. This procedure 

allowed us to randomly select 305 cells. 

2.3. Bat surveys 

We used acoustic surveys to gather bat presence/absence and activity data transformed 

here as activity index (AI) which is the number of minutes where at least one call of bat has 

been recorded (Haquart, 2013; Miller, 2001). We recorded all bat calls during one full night (30 

minutes before dusk to 30 minutes after dawn) at all locations. We used stationary automated 

ultrasound detectors (Song Meter SM2BAT, Wildlife Acoustics, USA) fitted with 

multidirectional microphones (SMX-US weatherproof ultrasonic microphone, Wildlife 

Acoustics, USA). The position of the detectors in the cells has not been controlled because of 

the strong constraints to hide it in an urban landscape. The sampling was carried out between 

the 1st June and the 31st August in 2015, which corresponded to the seasonal peak of activity 

of bat species, as recommended by the French national bat-monitoring program ‘Vigie-Chiro’ 

(http://www.vigienature.mnhn.fr/). Recordings were only carried out when there was no rain, 

when the wind was below 30 km/h and the ambient temperature above 12°C. We used the 

software SonoChiro© (Bas et al., 2013) to automatically classify the echolocation calls to the 

most accurate taxonomic level possible. We then checked the software classification by 
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screening all ambiguous calls with Syrinx software version 2.6 (Burt, 2006) and the support of 

existing identification keys (Barataud, Tupinier, Limpens, & Cockle-Betian, 2015). 

Identification was possible to the species level for the most part of our acoustic data due to low 

bat species diversity in the study area which allowed to avoid the problematic acoustic overlaps 

between some species pairs such as Pipistrellus nathusii/Pipistrellus kuhlii, Myotis 

daubentonii/Myotis mystacinus/Myotis bechsteinii and Eptesicus serotinus/Nyctalus leisleri. 

Indeed, P. kuhlii, M. mystacinus, M. bechsteinii and N. leisleri are very rare in the study area 

according to regional atlas data (Dutilleul, 2009). Nevertheless, to reduce false absences, the 

recording points where a studied species was not identified for sure, but where we were just 

able to identify a group of species which include the studied species, were excluded from the 

analysis of that species (Boughey, Lake, Haysom, & Dolman, 2011). 

2.4. Species distribution modelling (SDM) 

When SDM is used to calculate landscape resistance we often make the underlying 

assumption that habitat selected by species to forage are also those that facilitate their 

movements (LaRue & Nielsen, 2008). However, this assumption has so far been rarely tested 

and Roever et al. (2012) pointed out that it is unlikely that the same landscape variables will 

determine both habitat selection and movement of animals. Thus, we used presence-absence 

data to define landscape resistance as we considered that the resistance was not linked with the 

level of activity but only to the probability that a bat would move through the landscape. We 

defined habitat patches using bat activity as a high level of activity can denote a foraging area 

or a roosting site. Furthermore, the selection of suitable habitat patches is often carried out on 

the basis of expert opinion and each landscape feature is given a constant resistance value 

(FitzGibbon, Putland, & Goldizen, 2007). We assumed that our methodological procedure, by 

providing predictions at each location rather than constant levels of resistance for a particular 
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land cover type, are likely to provide more accurate models to describe ecological patterns 

(Beier et al. 2008). 

2.4.1. Response variables 

We modelled the presence probability and the activity of bat species using Generalized 

Additive Models (GAM; Hastie & Tibshirani 1990). GAMs provide useful flexibility for fitting 

ecologically realistic relationships in SDMs and bring benefit to fit complex nonlinear 

relationships between predictors and the response variable (Elith et al., 2006; Elith & 

Leathwick, 2009). Presence probability of species were modelled with presence/absence data 

using a binomial error distribution and a logit link function. AI were modelled using a negative 

binomial error distribution and a log link function to take into account the over-dispersion of 

our data (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). 

For details on the methods for multiscale and multivariate model selection, 

multicollinearity and spatial autocorrelation evaluations, see Appendix A1. For details on the 

methods to evaluate the models performances see Appendix A2. We made our statistical 

analysis in R 3.2.5 (package “Raster”, “ROCR”, “GAM”). 

2.5. Connectivity analysis 

In order to identify nocturnal corridors for bats, we used the least-cost network process 

outlined by Watts et al. (2010). All the steps of this process (Fig. 1) were performed in ArcView 

10 with Spatial Analyst extension (ESRI, Redlands, CA). 
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2.5.1 Selection and localization of suitable habitat patches 

In a first step we identified the most suitable habitat patches, which will be used as nodes 

to connect through corridors, using predictive bat activity maps. Patches were defined as areas 

where predicted activity values are in the category "High" of the French bat activity framework 

(Haquart, 2013) i.e. > 12 positive minutes per night for M. daubentonii; > 50 for E. serotinus; 

> 33 for P. nathusii. We then arbitrarily kept only the suitable habitat patches with surface area 

up to 25 000 m² (i.e. 10 aggregated cells). 

2.5.2 Landscape resistance maps 

Presence probability maps obtained with the SDM can be interpreted as the landscape 

resistance level to bats movements between habitat patches: the lower the presence probability 

value, the more the landscape is resistant to bats movement (Guisan & Thuiller, 2005). To 

transform SDM maps previously obtained into resistance surfaces, we inverted the maps by 

calculating for each cells the landscape resistance values in the following way:  

    R_i=P_max-P_i 

where Ri is the landscape resistance value of a given cell, Pmax is the value of the 

maximum presence probability obtained on the predictive maps and Pi is the value of the 

prediction of the given cell (Zeller et al., 2012). 

2.5.3. Least-Cost Paths (LCP) 

We modelled the corridor network using the LCP modelling technique (Watts et al., 

2010), a graph theory-derived method (Urban & Keitt, 2010). The LCP modelling was 

performed with Linkage Mapper toolbox (for more information on the technique see McRae & 
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Kavanagh 2011) using ArcGis 10 (ESRI, Redlands, CA). All pairs of habitat suitable patches 

have been connected by a LCP. 

2.5.4. Light reduction scenarios 

We tested five light-reduction scenarios: (1) on urban areas of municipalities of more 

than 10 000 inhabitants, (2) on urban areas of municipalities of less than 10 000 inhabitants, (3) 

on urban parks, (4) on main roads, (5) on wetlands (spatial distribution of those areas are shown 

in Fig. B1 and means and standard deviations of initial radiance values before light reduction 

can be found with total unlit area for each scenario in table B1). For light reduction scenarios 

(1) and (2), we choose not to change light intensity on areas globally lighted by private ALAN 

(see Appendix B2). This choice has been made to provide realistic recommendations for policy 

makers and city managers who only work on public ALAN. For each pixel of the NOAA 

satellite picture we reduced the initial radiance value proportionally to the surface within the 

pixel corresponding to areas where light is turned off in the scenario considered. We used 

paired-Student’s t-test to test whether LCP’s cost-distances were significantly lower with the 

scenarios than with predictions using non-modified light radiance data. In using presence 

probability to define landscape resistance driven by ALAN, we made the hypothesis that 

presence probability is negatively impacted by ALAN. Hence, we applied scenarios only on 

light non-tolerant bat species as it is unlikely that reducing ALAN would deteriorate landscape 

connectivity for light tolerant species. 

3. Results 

In 2015 we recorded 235 793 bat calls at 305 locations over 164 700 recording hours. 

In 2016, we recorded 40 553 bat calls at 94 locations over 50 760 recording hours. Within all 

the bat calls recorded, 264 667 (95.7%) were identified as P. pipistrellus. Because P. pipistrellus 
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was present at all sampling locations we couldn’t model its presence probability depending on 

covariates so we did not include this species for further analysis. We registered 6971 bat calls 

(2.5%) identified as Pipistrellus nathusii, 2161 bat calls (0.8%) as Myotis daubentonii and 1250 

bat calls (0.4%) as Eptesicus serotinus . From the procedure to avoid false absences (see 

methods), we made our analysis from 297 points for E. serotinus, 282 points for M. daubentonii 

and 291 for P. nathusii. 

3.1. Most relevant variables 

While the percentage of impervious surface was not identified as a variable having a 

significant effect on the presence probability or activity of bats (except on the activity of M. 

daubentonii), the average radiance had significant effects on the presence probability and the 

activity of the three species (except on the activity of P. nathusii). For all models, the average 

radiance was the second or third most important variable. Our results showed contrasting trends: 

the effect of the average radiance is positive on E. serotinus whereas it is negative on M. 

daubentonii (Fig. 3 & 4). In the case of P. nathusii, the average radiance had a positive effect 

for low values then a negative effect after a threshold radiance value of 20 W.m-2.sr-1 (Fig. 3.C 

& 4.C). For the three studied species, the response curves of activity and presence probability 

to average radiance were similar (Fig.3 & 4). Average radiance showed significant effects at 

scales from 100 to 700 m (Table 1). Distance to water represented the best predictor and the 

most important landscape factor (always significant) to explain the distribution of the three 

species in terms of both presence probability and activity (Table 1). We never found the same 

groups of selected variables between activity models and presence probability models (Table 

1). The number of tree patches and the distance to vegetation had significant effects only on 

bats' activity and not on their presence probability. On the contrary, the percentage of water 

surfaces only had a significant effect on presence probability and not on activity (Table 1).  
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Fig. 3. Representative GAM response 

curves showing the probability of a species’ 

presence at a location along the average 

radiance gradient. A is the response of M. 

daubentonii at 300m scale, B is the response 

of E. serotinus at 700 m scale and C is the 

response of P. nathusii at 100 m scale. 

 

Fig. 4. Representative GAM response curves 

showing the predicted activity of a species at 

a location along the average radiance 

gradient. A is the response of M. daubentonii 

at 100 m scale, B is the response of E. 

serotinus at 500 m scale and C is the response 

of P. nathusii at 800 m scale. 
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Table 1. Summary of the best fit multi-scale models to predict probability of presence and activity of bats and 

their evaluations scores 
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3.2. Model evaluation 

The AUC values showed that the predictive performance of the presence probability 

model are at the same quality level for three studied species (Table 1). For E. serotinus and M. 

daubentonii, specificity values showed that absences were better predicted than presences with 

96% of absences of 2016 correctly predicted by 2015’s modelling being confirmed as real 

absences by 2016’s models. In contrast, presences of P. nathusii were better predicted than 

absences (see Table 1). In terms of correlation coefficient (COR), the model for P. nathusii had 

the best predictive performance for presence probability (COR = 0.87). In comparison, the 

predictive performances of the activity models were poorer with COR values ranged from -0.03 

to 0.5 (Table 1). 

3.3. Predicted distributions 

E. serotinus and M. daubentonii presence probabilities were concentrated on water 

areas. In contrast, P. nathusii had a more homogeneous spatial distribution (Fig. 5.1). The most 

urbanized and illuminated section of the major canal of the conurbation is the least suitable 

section for M. daubentonii and P. nathusii whereas it’s the most conducive section for E. 

serotinus (Fig. 5.1). Our results also highlight that the city center is globally a barrier to bat 

movements although E. serotinus was the only species having two suitable patches predicted in 

the center of city which are urban parks (Fig. 5.1).  
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The activity-based modelling underlined the importance of parks for bat foraging in 

urban areas (Fig. 5.2). Indeed, the only habitat patches in the city center predicted as very 

suitable for all species were the most important urban parks of the city, located on the canal’s 

 

Fig. 5. Predicted distribution of probability of presence (1) and activity (2) of the three studied 

species. (3) represents the Least-Cost Paths identified on the study area. Activity gradient 

(positive minutes) has values bounded between 0 and 114 for E. serotinus, 0 and 326 for P. 

nathusii, 0 and 540 for M. daubentonii. 
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banks in the middle of the most illuminated section of the watercourse. M. daubentonii’s 

activity was much higher on the canals out of the city on the northern and southern sections 

than on the central section in the city of Lille except in the urban parks. E. serotinus was 

predicted as very active in urban parks and forest patches of the study area. P. nathusii had a 

wider distribution on the study area but was predicted as not very abundant. Its highest activity 

was concentrated on urban parks near the canals and on the suburban areas at confluence areas 

between agricultural landscapes, suburban areas and forests (Fig. 5.2). Based on the predictive 

activity maps and a French bat activity framework (Haquart, 2013) we identified 14 suitable 

habitat patches for E. serotinus, 47 for M. daubentonii and 22 for P. nathusii (Fig. 5.3). 

3.4. LCP and light reduction scenarios 

We assessed all the 91, 1081, 231 LCP connecting each pair of suitable habitat patches 

respectively for E. serotinus, M. daubentonii and P. nathusii (Fig. 5.3). We didn’t apply 

scenarios on E. serotinus’ LCP because of its positive response to light. For M. daubentonii all 

scenarios improved the connectivity by significantly reducing the cost-distance values of LCP 

(Fig. 6). For P. nathusii all scenarios improved the connectivity on the study area except the 

scenario (2) where the cost-distance values of LCP significantly increased. Scenarios ranged 

from more to less efficient in this order: (4)>(5)>(3)>(1)>(2) for M. daubentonii and 

(1)>(3)>(4)>(5) for P. nathusii (Fig. 6).  
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Fig. 6. Means of differences of paired cost-distances between initial LCP and LCP after each 

light reduction scenarios from Student’s t-test with their 95% confidence intervals. A: M. 

daubentonii; B: P. nathusii. Light reduction scenarios on: (1) urban areas of municipalities 

of more than 10 000 inhabitants; (2) urban areas of municipalities of less than 10 000 

inhabitants; (3) urban parks; (4) main roads; (5) wetlands.  * = P < 0.05 ; *** = P <0.001. 

4. Discussion 

We showed that the average radiance is an important predictor of activity and 

occurrence of bats even in a highly-urbanized context. Furthermore, this study demonstrated 

the efficiency of light reduction to improve connectivity for bats in an urban landscape. Hence 

it is urgent to take into account light pollution in addition to structural landscape criteria in 

biodiversity conservation strategies such as the restoration of ecological networks in urban 

planning (Azam et al., 2016; Grimm et al., 2008). 
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4.1. Model evaluation 

While the predictions of presence probability models were relatively good, the model 

evaluation of activity models were not (Table 1). We think that these bad predictions are due to 

the fact that we measured activity very locally while activity is very sensitive to spatial and 

temporal variations of prey resources. Furthermore, predicting activity levels with only 

landscape variables is very difficult as spatial variation in the abundance of species can be 

driven by other factors such as the complex interaction between stochastic temporal variations 

in species’ abundance and dispersal of species in space (Ives & Klopper, 1997). We observed 

a non-negligible difference between precipitation levels between 2015 (Mean rainfall/day = 1.6 

mm ± 3.1) and 2016 (Mean rainfall/day = 7.4 mm ± 11.2) at the same sampling period 

(June/July) and Erickson & West (2002) found that average summer precipitation can explain 

the largest portion of the variance of bat activity levels. Hence it could be a factor limiting 

models prediction performance. Yet the weak prediction performances were not a problem 

because we only used activity levels to identify the most suitable habitat patches. We kept the 

same patches in the different light reduction scenarios so their comparison is relevant 

irrespective of the quality of the predictions. 

4.2. ALAN: a major impact of urbanization on bats 

Our results showed that the average radiance is a more important landscape parameter 

to model bats distribution than the proportion of impervious surface in highly urbanized area 

like Azam et al. (2016) found at a country scale (Table 1). Hence we confirm the predictions of 

some studies that predicted that the effect of ALAN on the movement of bats are expected to 

be much more pronounced in urban context (Hale et al., 2015, 2012; Russo & Ancillotto, 2015). 

Therefore we emphasize that ALAN, as a consequence of urbanization, should be taken into 

account in ecological corridor modeling to maintain functional connectivity of bat populations 
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in urban areas. Our study is the first to describe precisely the effect of ALAN on the presence 

probability and activity of P. nathusii and M. daubentonii (Fig. 3 & 4). The negative response 

of M. daubentonii to the average radiance is consistent with previous works which studied 

Myotis spp. group response (Stone, Jones, & Harris, 2012). Indeed Myotis species are light-

sensitive species. As they have a slow flight, they systematically seek to avoid the potentially 

increased predation risk in illuminated zones (Rydell, 1991). P. nathusii had an intermediate 

response with a light tolerance threshold (≈ 20 W.m².sr-1) (Fig. 3.C & 4.C). We believe that 

this response pattern is driven by a trade-off between benefits of the concentration of insects at 

low intensities and disadvantages at high intensities from increased predation risk. E. serotinus 

had a positive response to the average radiance due to its ecological plasticity and fast flight 

capacity allowing them to exploit the illuminated foraging areas rich in insects (Fig. 3.B & 4.B). 

This positive response at scales of 500 m (activity) and 700 m (probability of presence) (table 

1) is not consistent with results of Azam et al. (2016) that found that the average radiance had 

a negative effect on the probability of presence of this species at any considered landscape 

scales (200, 500, 700 or 1000 m). We hypothesize that in a highly urbanized landscape, E. 

serotinus is more light-tolerant than in a more natural landscape in a way that streetlights 

become sub-optimal foraging areas because there’s no or few optimal foraging areas for the 

species in the study area (Stone, Harris, & Jones, 2015). Such contradictory results point out 

that the relationship between bat activity/presence and ALAN is complex as it might be species, 

context and scale dependent (Azam et al., 2016; Hale et al., 2012; Mathews et al., 2015). 

4.3. Importance of some landscape variables on bats in urban context 

Distance to water represents our best predictor of presence probability and activity. 

Hence bat distributions are mainly concentrated on wetlands in our study area. Aquatic habitats 

such as canals and ponds are known as one of the main driver and a key factor of bat activity 
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and distribution in urban areas (Straka et al., 2016). This fact is particularly true for M. 

daubentonii and P. nathusii which are species adapted to aquatic habitats and that forage on 

aquatic insects such as Diptera, Trichoptera and Ephemeroptera (Dietz, Encarnação, & Kalko, 

2006; Krüger, Clare, Symondson, Keišs, & Pētersons, 2014). While E. serotinus has a more 

generalist diet and foraging habits, the close relationship between water areas and its 

distribution/activity described in our study may result from the fact that the aquatic insects are 

more available than terrestrial insects especially in urban area (Akasaka, Nakano, & Nakamura, 

2009). 

Wooded vegetation associated variables also have positive significant effects on the 

activity of the three studied species (Table 1). In the literature, it is widely documented that 

wooded vegetation such as riparian vegetation, forest patches or hedges are key habitats and 

have an essential ecological and functional importance for bats as commuting route between 

roosts and foraging habitats, landmarks for orientation, a protection against predators and wind, 

roosting sites and support higher density of insects densities on water areas (Boughey et al., 

2011; Fonderflick et al., 2015). 

The city center of our study area is globally an avoided area by our studied species which 

is consistent with previous studies (Gaisler, Zukal, Rehak, & Homolka, 1998; Russo & 

Ancillotto, 2015). Indeed dense urbanization inevitably reduces favorable habitats and wooded 

vegetation that impacts the richness and abundance of bats community (Hale et al., 2012). P. 

nathusii activity is higher in surburban areas than in the city center which is also congruent with 

some previous studies (Coleman & Barclay, 2012; Luck, Smallbone, Threlfall, & Law, 2013). 

This result might be explained by the intermediate disturbance hypothesis (Connell, 2013). 

Hence the suburban conditions, halfway along a gradient from natural to urban habitat, would 

produce “optimal” intermediate levels of disturbance intensity and frequency for a large number 

of species such as P. nathusii (Russo & Ancillotto, 2015). E. serotinus is considered to be one 
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of the most urban-tolerant species in Europe (Arthur & Lemaire, 2009) which is congruent with 

the fact that is the only species of this study having two suitable habitat patches in the city center 

(except banks of watercourse) (Fig. 5). 

We found that groups of variables with significant effects on bats differs between 

probability of presence and activity (table 1). This result suggests different functional and 

ecological relationships between the landscape with movement and foraging behavior of bats 

and confirm the relevant of our methodology. 

4.4. Light reduction scenarios improve urban landscape connectivity 

The efficiency of light reduction scenarios in improving landscape connectivity for each 

species depended on (1) the spatial distribution of unlit areas (i.e. where we apply light 

reduction, Fig. B1), (2) the initial values of radiance on those areas before light reduction (Table 

B1), (3) the response curves of species presence probability to the average radiance (Fig.3) and 

(4) the predicted spatial distribution of bat species depending on their response to landscape 

variables (Fig. 5).  

The predicted spatial distribution of P. nathusii is the widest (Fig. 5). Hence the strength 

of light reduction scenarios effects is less depending on spatial distribution of unlighted areas 

than on the initial values of radiance and on the response curves of the species to average 

radiance (Fig. 3). Indeed, the higher the initial radiance value landscape element and the 

stronger is the effect of light reduction scenario on this element in improving landscape 

connectivity for this species (Fig. 6 and table B1). The four scenarios improving significantly 

landscape connectivity for P. nathusii have initial radiance in the range of values where the 

species response is negative (Fig. 3). It is consistent that reducing ALAN in those areas will 

improve landscape connectivity. It is also consistent that reducing ALAN on municipalities of 
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less than 10 000 inhabitants will decrease landscape connectivity because initial mean radiance 

values on those areas is 10.2 W.m-2.sr-1, which is in the range of values where P. nathusii 

responded positively to radiance (Fig.3, Table B1). It is congruent that every scenarios improve 

significantly landscape connectivity for M. daubentonii because of its general negative response 

to radiance (Fig. 6). M. daubentonii is a specialist gleaner bat species mostly present in wetlands 

and flying at low altitude also depending on vegetation to commute. Hence light reduction 

scenarios on urban areas (scenario 1 & 2) are the least effective to improve connectivity for M. 

daubentonii because those areas are not used by this species. Reducing ALAN in urban parks 

and wetlands were respectively the third and second most effective scenarios to improve 

connectivity for this species. Surprisingly light reduction on main roads was the most effective 

scenario to increase landscape connectivity for M. daubentonii. We argue that this result is 

mostly due to the spatial distribution of main roads in our study area (Fig. B1). Main roads are 

crossing or are close to wetlands (ponds and canals) and urban parks. Reducing ALAN on main 

roads potentially improved the quality of wetlands and urban parks habitats to a greater extent 

than light reduction separately on either just wetlands or just urban parks. But this result seems 

to be very context dependent and should be tested in other cities. 

Light reduction scenarios are powerful tool to assess the efficiency of potential future 

urban landscape planning and to guide political decision. Artificial light planning should be 

driven by a trade-off between biodiversity conservation measures and social/political 

acceptability (esthetic, security, outdoor activities). For instance, light reduction measures 

should be easier to accept by policies and inhabitants on small areas of wetlands than on large 

areas in city centers. Our findings showed that light reduction scenarios on largest concerned 

areas are not necessary the most efficient to improve connectivity for bats and that the best 

landscape element to apply light reduction are not always the same depending on the given 

species. Hence, further analysis should urgently use light reduction/extinction scenarios to 
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clarify what is the best factors combination between the total surface area, the spatial 

distribution (few large areas or many small areas), the prioritize habitats and the intensity of 

reduction to optimize the efficiency of conservation measure and the social/political 

acceptability in urban landscapes. 

4.5. Methodological perspectives 

To our knowledge, this study is the first to carry out such a random stratified design 

with 399 full-nights recordings points in a highly-urbanized context. We advocate for the use 

of this methodology for future studies aiming at identifying landscape corridors. It is important 

to remind that our data are not movement data per se. Yet as we recorded individuals in 

movement we assumed that LCP modelling approach remained relevant for our case. Our 

results, though, would benefit  from confrontation with movement data through radio-telemetry 

or miniaturized global positioning system (GPS) tags (LaPoint et al., 2015; Stevenson-Holt et 

al., 2014), recently adapted for micro-chiropteran species (Weller et al., 2016). 

We have modeled the functional connectivity of bats between the most important 

foraging sites (in regard to activity levels). Functional connectivity between foraging sites is 

relevant for conservation issues because it is well-known that bats use several foraging sites per 

night (Arthur & Lemaire, 2009; Dietz et al., 2009). Nonetheless, it would be very important, in 

the cities where the knowledge of roost locations is sufficient, to use our methodology to model 

the connectivity between roosts and foraging areas, this latter being critical to ensuring the 

survival of populations (Fischer & Lindenmayer, 2007). 
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5. Conclusion 

This study showed that ALAN has preponderant impact on some bats species in an urban 

landscape. Our findings provide important recommendations to plan future urban conservation 

strategies: light-reduction improve landscape connectivity for bats in a highly urbanized 

landscape from semi-natural habitats such as urban parks or wetlands to city centers. The 

efficiency of each scenario varied between species and seems to depend on the ecological 

plasticity and requirements of each species. Furthermore light reduction would not be totally 

efficient without the presence of important landscape elements for bats such as wetlands and 

wooded vegetation, no matter the surface area or the initial light pollution intensity. Because 

studied species responded significantly to ALAN at different scales and at least at 700 m, we 

highlight the great importance to build large nocturnal corridors in order to optimize the 

efficiency of light reductions. 
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ARTICLE 3 

APPENDICES 
 

Appendix A. Method details 

A.1. Multi-scaled landscape variables and statistical analysis 

For statistical analysis, we created eight gridded landscape variables at a 50 m resolution 

(Bellamy, Scott, & Altringham, 2013): the proportion of impervious surface and the total length 

of roads, considered as potential confounding factor of the average radiance (Azam et al., 2016), 

the average radiance, the proportion of tree-cover, the proportion of water surface, the mean 

number of tree patches, the mean distance of the cell centroid to water and the mean distance 

of the cell centroid to tree patches as they were known to influence bat activity and bat 

movements at a landscape scale (Boughey et al., 2011; Fonderflick et al., 2015; Frey-Ehrenbold 

et al., 2013). Hale et al. (2012) found that the influence of a variable on the presence probability 

or activity of bats may vary according to the considered spatial scale and that the most 

influential scale differs between species. Furthermore multi-scale habitat models often yield 

better predictions than single-scale models (Grand, Buonaccorsi, Cushman, Griffin, & Neel, 

2004).  Each variable has thus been calculated for 10 different buffers (100, 200, 300, 400, 500, 

600, 700, 800, 900 and 1000 m) by measuring cell statistics within different sizes of moving 

windows centered on each raster cell. For each variable/species pairs we selected the most 

relevant scale by first fitting 10 univariate models for the 10 different scales (Bellamy et al., 

2013) using the AIC criteria (Akaike Information Criterion) (Akaike, 1974). Then we regrouped 

all the scaled-landscape variables in a full model for each species and we used a backward 

leave-one-out stepwise procedure of variables deletion to identify the most performing subsets 

of scaled-landscape variables and select the best model for each species (Parolo, Rossi, & 

Ferrarini, 2008). In order to avoid multicollinearity in the models, we evaluated the correlations 

among our selected scaled-landscape variables using Pearson’s coefficient to detect obvious 

correlation (Zuur et al., 2009). Only scaled-landscape variables with correlation coefficients 

between -0.70 and 0.70 were included simultaneously in the models (Dormann et al., 2013). 

Secondly, we computed the Variance Inflation Factor (VIF) on the full sets of variables selected 
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for each models (Fox & Monette, 1992); all variables had VIF<5, indicating no obvious 

problem of multicollinearity between the variables of our models. We tested for spatial 

autocorrelation on models residuals using Moran’s I with 20 lags of 1 km. We found few 

significant spatial autocorrelations between 1 and 3 km, and those with significant values 

corresponded to low levels (Moran’s I < 0.17) hence we considered we didn’t have to take into 

account for spatial autocorrelation. 

A.2. Method details for model performance evaluation 

Models were trained with all data collected in 2015 and models performance evaluations were 

based on data from an independent field sampling. In 2016, we build another random stratified 

sampling in the exact same way as in 2015. Along the gradients of the three same landscape 

variables, we sampled 94 new recording points in the study area at the same period than 2015. 

All the 2016’s recording locations were at least at 200 m away from recording locations 

sampled in 2015. We assessed the performance of presence/absence models by using: (1) the 

area under the receiver operating characteristic curve (AUC) (Leathwick, Elith, & Hastie, 2006; 

Lobo, Jiménez-valverde, & Real, 2008); (2) the specificity and (3) sensibility (Thuiller, 

Lafourcade, & Araujo, 2010). We assessed the predictive performance of our activity models 

by using the Root Mean Square Error (RMSE). In order to compare performance between 

different models, the RMSE was normalized by dividing the RMSE by the difference between 

the maximum predicted value and the minimum value (NRMSE) (Loague & Green, 1991). The 

greater the percentage of NRMSE, the less the model from 2015 is efficient into predicting the 

activity of 2016. We also used the Pearson correlation coefficient (COR) between the 

predictions of 2015 and observations of 2016 (Elith et al., 2006) as another index to evaluate 

our presence/absence and activity models performance. For presence/absence models 

evaluation, we classified the predicted values in 10 classes in which we calculated the number 

of actual presences observed weighted by the number of sampled cells in each prediction class, 

i.e. we calculated the COR between the prediction classes and the percentage of actual 

presences. The contribution of each landscape variable to the model predictions was assessed 

using the method described in Thuiller et al. (2010). 
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Appendix B. Light-reduction scenarios details 

 

Fig. B1: Spatial distribution of unlit areas 

Table B1: Information on areas where light reduction has been applied: (1) urban areas of 

municipalities of more than 10 000 inhabitants; (2) on urban areas of municipalities of less than 

10 000 inhabitants; (3) on urban parks; (4) on main roads; (5) on wetlands. 

 

B2: List of private lighting areas not included in the light reduction scenarios. 

Airports, aerodromes, Other public rights-of-way, Main railway axes and associated areas, 

Campsites, Quarries, Construction sites, Cemeteries, Landfills and depots, Commercial rights-

of-way, Hospital facilities, Industrial rights-of-way, School and/or university rights-of-way, 

Golf courses, Harbour infrastructures, Working-class gardens, Stadiums, sports facilities 

 

 

 (1) (2) (3) (4) (5) 

Radiance mean (nW/cm-2.sr) 28.6 10.2 27.6 24 18.6 

SD 9.8 7.2 9.4 9.3 11.6 

Surface area (ha) 8439 4087 468 4775 969 
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1. Introduction 

Urban areas are expanding worldwide (Zhang & Seto, 2011) and threaten biodiversity 

through profound transformations of habitats and landscapes (Foley, 2005; Mcdonald, Kareiva, 

& Forman, 2008). Although urbanization is often studied as a process impacting surrounding 

ecosystems, it can also be considered as a particular type of ecosystem itself (Savard, Clergeau, 

& Mennechez, 2000) and which biodiversity is valuable and should be protected (Kowarik, 

2011). Urban landscapes are often composed of few patches of vegetation and aquatic 

environments embedded in a matrix of impervious hence representing highly fragmented 

landscapes (Savard, Clergeau, & Mennechez, 2000). Landscape fragmentation reduces 

individuals’ ability to move between habitats and is considered to be a key driver of global 

species loss (Fischer & Lindenmayer, 2007). Indeed, being able to move across the landscape 

is essential to fulfill daily needs (food, shelter) and dispersion to maintain populations' viability 

(demo-genetics process). Urbanization is accompanied by the emission of environmental 

stressors such as artificial light which can alter habitat quality and species movement (e.g., 

Stone, Jones, & Harris, 2009). Indeed, a large variety of behavioral and physiological impacts 

of light on species have been documented and artificial lighting is considered as a major 

biodiversity threat (Hölker, Wolter, et al., 2010; Davies & Smyth, 2017). Light may affect 

organisms’ orientation through attraction (e.g., Eisenbeis, 2006), avoidance (e.g., Gal, Loew, 

Rudstam, & Mohammadian, 1999) or barrier effect (e.g., Hale, Fairbrass, Matthews, Davies, & 

Sadler, 2015). Thus in urban areas artificial light could have a cumulative effect to soil sealing 

and worsen landscape fragmentation in already highly fragmented areas. 

Light pollution is expected keep on increasing in the future due to global increase in 

artificial light at night (ALAN) emissions (Hölker, Moss, et al., 2010) and to change in lighting 

technologies (Kyba, 2018). Indeed, there is a rapid development of new lamps such as light 
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emitting diodes (LED) that have a high energy-efficiency. Worryingly, this desirable attribute 

in a context of energy transition toward less CO2 emissions makes LEDs cheaper than other 

lamps which could lead to an increase use of light (Tsao et al., 2010). Moreover, LEDs have a 

broad spectrum thus producing a “white” light that allows for better visual rendering for users. 

This means that they emit a higher proportion of short wavelengths (blue part of the spectrum) 

than older technologies such as low (LPS) and high (HPS) pressure sodium lamps (Falchi et al., 

2011). Short wavelengths increase insects attraction to light (Pawson & Bader, 2014; Gaydecki, 

2018) and can modify species orientation and movements across the landscape (E. L. Stone, 

Jones, & Harris, 2012; Van Grunsven et al., 2017). However LEDs have more directional flux 

and are generally implemented in fixture that better concentrate light toward the area to 

illuminate hence reducing the unintentional lighting of surroundings and the direct emission of 

light above the horizon. It is currently unclear how large scale changes in lighting technology 

will affect organisms and their ability to move in the landscape. 

Since 2013, preserving and restoring landscape connectivity has been defined as an 

important goal to conserve biodiversity in the EU. The green infrastructure policy promotes the 

determination and improvement of ecological corridors. Landscape connectivity is the degree 

to which the landscape facilitates or impedes organisms movement between resource patches 

(Taylor et al., 1993). Corridor networks are helpful conservation tools to mitigate the impacts 

of landscape fragmentation on wildlife populations (Beier & Noss, 1998) and several modeling 

approaches have been developed and extensively used to design such linkages (Beier, Majka, 

& Spencer, 2008). However corridors are often designed simply following the structural 

elements of the landscape such as wooded without accounting for ecological processes which 

may greatly limit their potential for conserving biodiversity (Chetkiewicz, St. Clair, & Boyce, 

2006). Measuring landscape functional connectivity requires to account for species-specific 

information on how individuals respond to landscape elements and the global spatial 
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configuration of the landscape (Kindlmann & Burel, 2008). The evaluation of the landscape 

permeability may be evaluated using expert opinion or literature reviews, data on occurrence 

or abundance or animal-movement data (genetic distance, GPS tracking). These data will be 

used to attribute different values to landscape elements or environment contexts. As ALAN 

affects nocturnal species perception of the landscape and modifies their movement behavior 

compared to what would be expected when only considering structural elements, accounting 

for artificial lighting is a key factor to consider when evaluating landscape connectivity for 

nocturnal species.  

Despite (i) the important progression of artificial light emissions worldwide (Hölker, 

Moss, et al., 2010), (ii) the fact that a significant proportion of species are nocturnal (Hölker, 

Wolter, et al., 2010), and (iii) the development of policies promoting ecological corridors, to 

our knowledge, the direct impact of ALAN on landscape connectivity has never been studied 

(but see Hale et al., 2015). This may be due to both the difficulty to study organisms living by 

night (data accessibility) and to access data relative to artificial light. One of the major issue to 

measure landscape functional connectivity is to acquire biological data relating individuals’ 

habitats preference when they are moving through the landscape (Chetkiewicz, St. Clair, & 

Boyce, 2006) and particularly when considering small and cryptic species. A review showed 

that only 13 studies evaluated landscape connectivity for small mammals (<1 kg) in urban 

landscapes within which four focus on bats (LaPoint et al., 2015). Indeed bats are a good model 

species to investigate landscape connectivity as they emit ultrasounds while flying thus 

measuring bat activity through recordings of bat calls allows to determine their habitat 

preferences when in movement. Another difficulty specific to the evaluation of landscape 

connectivity for nocturnal species is to access environmental data reflecting the distribution of 

artificial light in the landscape. Previous studies have used proxies such as roads (Hale et al., 

2012) or locally available fine scale data such as nocturnal aerial pictures (Hale et al., 2015). 
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Recently, fine scale nocturnal pictures taken from the International Space Station (ISS) have 

come to be more accessible through the citizen science program Cities at Night 

(http://citiesatnight.org/). The calibration of these pictures allows to measure the radiance 

emitted upward at a resolution up to one meter. Moreover, pictures are composed of four color 

bands (one blue, one red and two green) which allows to have information on the spectral 

distribution of the emissions.  

In this study we used ISS pictures taken at night to evaluate the landscape connectivity 

in cities for bats daily movements (e.g., foraging movements). The flight behavior of several 

bat species can be affected by ALAN (Polak et al., 2011) as some may avoid brightly lit areas 

(Kuijper, Schut, & Dullemen, 2008; E. L. Stone, Jones, & Harris, 2009) or perceive light as a 

barrier and hence turn back when encountering lit areas (E. L. Stone, Jones, & Harris, 2009; 

Hale et al., 2015). Some bat species are still present in large cities as they depend on man-made 

structures for roosting (Simon, Hüttenbügel, & Smit-Viergutz, 2004; Marnell & Presetnik, 

2010) and hence present a rare case of species vulnerable and strictly protected at the European 

level living within urban environments (European Commission, 1992). Studies showed that bat 

activity is sensitive to landscape connectivity (Hale et al., 2012; Frey-Ehrenbold et al., 2013) 

and that a global increase in artificial light could reduce the proportion of accessible area in the 

landscape (Hale et al., 2015). As it is impossible to exhaustively locate all bat roosts and 

foraging areas, our work aims at predicting the landscape functional connectivity for bats daily 

movements between potential habitat patches. 

In this study, we investigated how artificial light impacted the functional landscape 

connectivity for the daily movements of P. pipistrellus in urban areas and how changes in 

lighting could affect it. In addition, as the spatial arrangement of land cover types and the 

distribution of light may play an important role in the global landscape connectivity, we 

investigated ALAN’s impacts in three study areas. Our aims were (i) to measure the 
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contribution of ALAN to the landscape fragmentation, (ii) to evaluate how much landscape 

connectivity would be affected by a change in lighting technology toward the generalized use 

of LEDs and (iii) to determine if light pollution and its potential evolution would affect different 

cities in the same way. To achieve these goals we evaluate the activity of P. pipistrellus in three 

large cities of France while including information on artificial light derived from ISS pictures. 

We compared the connectivity in the current state of lighting to three lighting scenarios. In one 

scenario, we considered cities with no light at all to measure the impact of the current lighting 

on the landscape connectivity. The two other scenarios reflected the shift of lighting toward the 

use of LEDs, the number of lighting points remaining unchanged, with one of them accounting 

for the potential of more directional flux to reduce global light emissions (Aubé et al., 2018). 

We predicted that, due to LEDs important proportion of blue wavelength, the change in lighting 

technology would have a negative impact on bat connectivity but that a better orientation of the 

light flux may help reduce this negative impact.  

2. Methods 

We studied three cities where we recorded bat activity and for which we calculated 

environmental data in order to build a model to predict bat activity (Fig. 1). Then we 

transformed the maps predicting bat activity to produce resistance maps and constructed 

landscape graphs for each city to represent landscape connectivity. Finally, we created three 

lighting scenarios and evaluated the changes in landscape connectivity for each of them in 

comparison to the current situation. 
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2.1.Study sites 

We used three French cities as study sites, Paris, Lille, and Montpellier. They are 

amongst the 10 most populated cities of France and suffer high levels of light pollution. Light 

levels are 20 to 40 times higher than natural light levels in Lille and Montpellier and over 40 

times higher in Paris (Falchi et al., 2016). Tree cover represents 21% of the surface in Paris and 

Montpellier and 14% of the surface in Lille. The three cities present a diversity in green areas 

distribution and sizes (Fig. 2). Paris, the largest of the three cities (105 km2), has 17 parks (mean 

size 0.13 km2) in its center and two woodlands on its border (10 and 8.5 km2); Lille only has a 

 

Fig. 1. Flow diagram representing the steps of the methodology 
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dozen parks (mean size 0.15 km2); and Montpellier has a large number of parks of various sizes 

spread across the city, the largest one being 1 km2. The three cities were crossed by canalized 

rivers of differing width and with varying degrees of vegetation on their riversides.  

2.2.Bat activity data 

Data for Paris and Montpellier were provided by the French national bat-monitoring 

program Vigie-Chiro (http://vigienature.mnhn.fr/page/vigie-chiro). Recordings took place 

between June and October, the seasonal peak in bat activity, when the weather conditions were 

favorable (i.e. no rain, wind speed below 7 m/s, temperature at sunset above 12°C). Two 

protocols were used: the pedestrian protocol and the full-night protocol. For the pedestrian 

protocol, volunteers recorded bat activity for 6 minutes at 10 selected locations within a 4 km² 

 

Fig. 2 Study sites: Lille (A), Paris (B), and Montpellier (C). Triangles represent locations of 

full-night recordings and dots represent locations of pedestrian recordings. 
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area starting the sampling 30 minutes after sunset. In Montpellier, volunteers used Song Meter 

SM2BAT detectors (Widlife Acoustics Inc) and in Paris they used time expansion detectors 

(Tranquility Transect Bat detector, Courtpan Design Ltd, UK). For the second protocol, 

volunteers placed a SM2BAT detector at a selected location and recorded bats from 30 minutes 

after sunset until 30 minutes after sunrise. In Paris, 923 recordings at 282 different locations 

were taken following the pedestrian protocol between 2008 and 2013 (Fig 2. B). In Montpellier, 

71 locations were sampled using the pedestrian protocol and 82 locations using the full-night 

protocol between 2011 and 2012 (Fig 2. C). For Lille, recordings were taken in 2015 by authors 

at 73 locations following the full-night protocol (Fig 2. A). 

For recordings taken in Paris and Montpellier, all bat calls were identified by volunteers 

and then validated by expert using Syrinx version 2.6 (Burt, 2006). Date from Lille were run 

through the software SonoChiro (Bas et al., 2013) to automatically classify echolocation calls 

to the most accurate taxonomic level. Ambiguous calls were checked manually using Syrinx. 

We measured bat activity as the number of bat passes per 6 minutes. A bat pass was defined as 

the occurrence of one a several calls of the same bat species during a 5 second interval (Millon 

et al., 2015). We only had sufficient data in the three cities for Pipistrellus pipistrellus hence 

we only performed the analysis on this species. P. pipistrellus is often present in urban areas 

(Russo & Ancillotto, 2015) and is one of the most common species in France although its 

population tends to decline (Kerbiriou et al., 2015). In order to use data from both sampling 

protocol together, we split the full-night recordings in 6 minutes sequences and only kept 

sequences recorded during the first two hours of the night. Then we calculated the mean activity 

per point to avoid pseudo-replication. 

Here, we studied echolocation calls emitted by bats when they are commuting and/or 

foraging but not feeding buzzes because their occurrence is too low (~1%). We did not 

distinguish between foraging and commuting behaviors as they are not fully disconnected (bats 



CHAPTER 3 

- 196 - 

often forage while commuting) but we considered that a high bat activity in a recording area 

likely reflects a high proportion of foraging behavior.   

2.3.Light variables 

To account for artificial light emissions, we used nighttime ISS pictures from the Cities 

at Night program (citiesatnight.org). We used one picture by city taken on a cloudless night. 

The images were corrected for linearity of the sensor, vidgenting, and calibrated absolutely 

using reference stars on other lenses and relatively to the VIIRS image of May 2014 using 

synthetic photometry (Sánchez De Miguel, 2016).  There was no atmospheric correction. The 

value of each pixel corresponded to the radiance which is the radiant flux reflected or emitted 

by a given surface (units nW.cm-2.sr-1.A-1). For each of the four color bands of ISS pictures, 

we calculated two variables using QGIS 2.8.3 (QGIS Development Team, 2017): the mean 

radiance value within 100 m and within 200 m of the recording point (Table 1). Hence in total 

there were eight different light variables calculated using the same 60 m x 60 m grid. Four 

recording locations had a very high radiance value due to a singular context (e.g., Eiffel tower 

illuminations). We considered them as outliers and removed the recordings taken at these 

locations from the dataset (n = 12; 1% of the total dataset). 

2.4.Environmental variables 

Bat activity is positively correlated with the proximity of water (Rainho & Palmeirim, 

2011) and with the extent and the distance to wooded areas (Boughey et al., 2011). We 

accounted for these effects by calculating three variables using BD TOPO data 

(http://www.ign.fr/): the distance to water in meters, the distance to tree cover in meters and the 

proportion of tree cover within 200 meter around each sampling point (Table 1). We also 
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controlled for recording conditions (city, protocol, temperature in °C, wind speed in m.s-1 and 

humidity in %) and date (year, Julian day). 

Table 1. List of all the variables used in the models. Each light variables were used in a separate 

full model and all environmental variables were included in all full models. Light variables are 

defined for each color band of the ISS picture, the red (Red 1), the two green (Green 2 and 

Green 3), and the blue (Blue 4). 

Variables name Description and units 

LIGHT VARIABLES 

Red 1 - 100 ; Green 2 - 100 ; Green 3 - 100 ; Blue 4 - 

100 
Mean pixel value in a 100 m radius (units: nW/cm2/sr/A) 

 Red 1 - 200 ; Green 2 - 200 ; Green 3 - 200 ; Blue 4 - 

200 
Mean pixel value in a 200 m radius (units: nW/cm2/sr/A) 

ENVIRONMENTAL VARIABLES 

Dist. to water Distance to the closest water surface (units: m) 

Dist. to tree cover Distance to the closest tree cover (units: m) 

Prop. of tree cover Proportion of tree cover within 200 m (units: %) 

Temperature Temperature at sunset (units: °C) 

Humidity Humidity at sundet (units: %) 

Wind speed Wind speed at sunset (units: km/h) 

Year Year of recording 

Julian Day Julian day of recording 

City City where the recording took place 

Recording point Identification of the recording point 

Protocol Recording protocol: fullnight or pedestrian protocol 

2.5.Bat activity modeling 

We built a statistical model to explain bat activity with the environmental variables 

defined earlier. As the eight light variables were correlated with one another, we built one full-

model for each of the eight light variables and proceed to a model selection based on the AIC 

to evaluate which variable performed best. We aggregated the data from the three cities to a 

single dataset to analyze to produce a single general model with good statistical power. All the 

variables used within the same model had a VIF value below three (Heiberger & Holland, 2004) 

and the mean VIF for variables within a model was below two (Chatterjee & Bose, 2000) hence 

there was no obvious sign of multicollinearity. We built Generalized Linear Mixed Models 
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(GLMM ; glmmTMB 0.2.0 ; Brooks et al., 2017) using bat activity as the response variable and 

one light variable and all other variables as fixed effects. We also included an interaction 

between the proportion of tree cover and the light variable as a study showed that the response 

to light of P. pipistrellus could vary depending on the proportion of tree cover (Mathews et al., 

2015). As the response variable were count data with over-dispersion, we used a negative 

binomial error distribution with a log link (Zuur et al., 2009). Some recording points were 

replicated hence we included a random effect on the recording location. We kept the city 

variable as a fixed effect in order to account for the difference in mean activity per city in the 

bat activity predictive maps. The full model could be written as follow: 

bat activity ~ light variable * proportion of tree cover + distance to water + distance to tree 

cover + city + protocol + temperature + humidity + wind speed + year + Julian day + 

(Julian day)² + random(recording location) 

where the light variable was one of the variables based on the ISS picture. For each of the eight 

full-models, we tested all possible combinations of fixed effects using the MuMIn package 

(Barton, 2013) in R (R Core Team, 2017) and selected the best model using Akaike’s 

Information Criterion (AIC ; Burnham & Anderson, 2002). As the AIC tends to keep variables 

that do not improve the fit (Guthery et al., 2005), we selected the simplest model amongst those 

that had an AIC maximum two points higher than the best model. At the end of the selection 

process, we had eight best models, one for each light variables tested. We compared these eight 

models using the AIC and used the best one (lowest AIC) to produce predictive maps of bat 

activity. To limit border effects, we estimated bat activity for each pixel (60 m x 60 m) of the 

three study areas surrounded by a rectangle buffer which limit was at least 400 m away from 

the city border (henceforth, extended study area). All explanatory variables linked to the 

specific conditions of recording (e.g., date, wind speed) were fixed to their mean value while 

vegetation, water and light variables varied across the landscape.  
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2.6.Construction of landscape graphs 

We used a landscape graph approach to investigate the landscape connectivity (Minor 

& Urban, 2008). We defined the landscape resistance and the patches of habitats using the bat 

activity predictions from the best model (lowest AIC). We assumed that our data mostly 

reflected foraging movements and that the level of activity reflected the habitat quality in terms 

of food resource. We defined habitat patches as the areas of the map where the activity was the 

highest (values above the 90th percentile). Indeed, we expected areas of high activity to be the 

best foraging areas. We defined a different level for high activity for each city as they did not 

have the same baseline activity. In addition, we only kept habitat patches of at least 1 ha to limit 

the number of patches and hence the computing time. Moreover foraging areas are expected to 

be larger than the minimum patch size by at least an order of magnitude (E. Stone et al., 2015) 

hence bats would have to travel between patches. 

Because we recorded bats while flying (foraging and/or commuting), we made the 

assumption that bat activity was positively correlated with habitat permeability and thus a high 

level of bat activity indicated a landscape easy to travel through. Therefore we defined the 

resistance as the additive inverse of the activity (Zeller, McGarigal, & Whiteley, 2012). 

Resistance in each pixel was calculated as follow: 

Rpx=Pmax- Ppx+1 

where Rpx is the resistance of the pixel, Pmax is the maximum bat activity predicted in the study 

area and Ppx the bat activity predicted for the pixel.  

Using these resistance maps, we measured the connectivity between habitat patches 

using least cost distances calculated with the Linkage Mapper Toolkit v.1.0.9 (McRae & 

Kavanagh, 2011) in ArcGIS v.10.2.2 (ESRI, 2013). Least-cost distances are defined as the 

maximum efficiency paths to travel from one patch to another, i.e. the path that accumulates 
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the least cost in term of distance travelled and landscape resistance traversed (Etherington & 

Penelope Holland, 2013). This methodology main hypothesis is that individuals have a perfect 

knowledge of the entire landscape and will chose to travel along the optimal route (Coulon et 

al., 2015). Bats are long-lived territorial animals which tend to be faithful to their transit routes 

and foraging areas (Hillen, Kiefer, & Veith, 2009) thus being familiar with the surrounding 

landscape beyond their direct perception range hence we believe that the least-cost distance 

method is adapted to this species. Least cost distance were only calculated for a node and its 

direct neighbors in terms of resistance and distance as paths between more distant nodes passed 

through nodes that were in between. 

2.7.Lighting scenarios 

 We constructed landscape graphs for the current situation and for three lighting 

scenarios produced by altering the ISS pictures. In two scenarios all lights sources were 

replaced by 3000K LEDs which is an increasingly used LED type for street lighting (Kinzey et 

al., 2017). The first scenario had the same radiance level as the current situation but a change 

in spectral emissions reflecting the spectrum of 3000K LEDs (LED scenario). The second 

scenario had the same change of spectrum but also a decrease of 30% in pixel radiance (LED-

30 scenario). We created the two LED scenarios by modifying the original ISS picture using 

the relationships existing between color bands ratios and lamp types (Fig. 3 ;Sánchez De Miguel 

et al., submitted). For each study area, the current radiance level was considered to be given by 

the mean of the two green color bands. The 30% decrease in overall radiance in the LED-30 

scenario was thus reflected in a 30% decrease in the mean green bands pixel values. Once the 

overall radiance was calculated, a modified blue color band was created to reflect changes in 

the spectral composition of light emissions. To mimic the spectrum of 3000K LEDs, we chose 

a Blue/Green ratio of 0.4 (see Fig. 2 and 10 in Sánchez De Miguel et al., submitted). In the 
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original ISS picture, the Blue/Green ratio is 0.38 in Paris, 0.36 in Lille and 0.30 in Montpellier. 

In both scenarios the spectrum and radiance were build considering that the number of light 

sources remained the same, i.e. spectrum and radiance were modified only within pixel which 

exhibit light in the current ISS picture. We also used a third scenario with no light at all (No 

Light scenario) to compare with the current situation and measure how much connectivity is 

lost due to lighting. Considering the extended study areas, 42% of Montpellier area, 29% of 

Lille area and 15% of Paris area were dark (pixel value < 0.001 nW.cm-2.sr-1.A-1) in the 

original ISS picture and thus remained so in all scenarios.  

As we considered that a high bat activity likely reflects a high proportion of foraging 

behavior, we defined habitat patches as the 90th percentile of highest activity.  The threshold 

 

Fig. 3. Steps to create the light variables to evaluate the impact of lighting scenarios on bat 

activity and landscape connectivity 
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to define patches was set for the current situation and did not vary between scenarios. Thus the 

number and size of patches could vary between scenarios. To allow for direct comparisons of 

the connectivity between scenarios of a given study area, we defined the resistance relatively 

to the maximum bat activity predicted overall the scenarios. We linearly transformed habitat 

quality and least cost distance to a scale from 1 to 10 to ease the comparison between the results 

of the different scenarios of a same study area. However these re-scaled values were not directly 

comparable between study areas as their range in habitat quality and least cost distance values 

differed. 

2.8.Connectivity measure 

For each patch, we calculated the patch quality through the weighted area, i.e. the sum 

of the predicted activity values of all the pixels composing the patch (Dilts et al., 2016). In order 

to measure the global difference in landscape connectivity between the scenarios, we calculated 

the probability of connectivity index (PC) (Saura & Pascual-Hortal, 2007). It is defined as the 

probability that two individuals randomly placed in the landscape will fall into patches that are 

connected to each other. When compared with other widespread indices, PC was the only one 

to comply with all the requirements to adequately measure landscape connectivity (Saura & 

Pascual-Hortal, 2007). PC is defined as: 

𝑃𝐶 =  
∑ ∑ 𝑎𝑖𝑎𝑗𝑝𝑖𝑗

∗𝑛
𝑗=1

𝑛
𝑖=1

𝐴𝐿
2   

where n is the total number of patches, ai and aj the weighted area of patches i and j, p*
ij is the 

maximum probability of movement between patches i and j and AL is the maximum weighted 

area of the landscape. The latter was calculated as the product of the maximum bat activity 

value of the study area and the study area’s size. The probability to move between the patches 

i and j, pij, was defined with an exponential decay function (Saura & Pascual-Hortal, 2007): 
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𝑝𝑖𝑗 = 𝑒−𝑘𝐶𝐷𝑖𝑗   

where CDij is the least cost distance between the patches i and j and k (0<k<1) expresses the 

intensity of decreasing probability of movement between patches resulting from the exponential 

function. For each city, we defined the value of k by setting the probability to travel between 

two patches to 0.05 when the path length corresponded to the maximum nightly flight range of 

P. pipistrellus (i.e. 4 km; Nicholls & Racey, 2006) for the median value of resistance (Saura & 

Pascual-Hortal, 2007). To assess the global change in connectivity, we measured the rate of 

variation in PC: 

∆𝑃 =
𝑃𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 −  𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 × 100 

3. Results 

3.1.Bat activity modeling 

After variable selection on the eight best models, they all retained the light variable and 

performed better than the model without light variable (Table 2). In all models, the radiance 

level had a negative effect on bat activity. The three best models (ΔAIC<2) were based on three 

different color bands hence none seemed to be a better predictor than the others. Five out of the 

eight models retained the interaction between the light variable and the proportion of tree cover. 

The interaction showed that when the proportion of tree cover was low, the effect of the radiance 

level was negative whereas for high proportions of tree cover the radiance had a positive effect 

on bat activity.  
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Table 2. Selection of models explaining bat activity. Estimates for the effect of light variable 

(i.e. radiance) and for the interaction between the light variable and the proportion of tree cover 

when retain after model selection and model without a light variable. The three best models 

(ΔAIC<2) are above de dotted line. (**) indicates a p-value between 0.001 and 0.01; (*) 

indicates a p-value between 0.01 and 0.05 and (.) indicates a p-value between 0.05 and 0.1. 

Light 

variable in 

the model 

  

AIC ΔAIC 

  

Light 

variable 

Light 

variable * 

Tree 

cover Weights 

Blue 4 - 100 -52.80 **     3331.3 0.00 0.33 

Green 2 - 100 -29.10 *** 78.50 . 3332.0 0.70 0.23 

Red 1 - 200 -18.00 *** 54.00 * 3333.1 1.80 0.14 

Green 2 - 200 -33.60 *** 99.00 * 3333.9 2.60 0.09 

Red 1 - 100 -6.90 *  

 
3334.5 3.20 0.07 

Blue 4 - 200 -46.00 *  

 
3334.8 3.50 0.06 

Green 3 - 200 -30.70 ** 107.00 * 3335.2 3.90 0.05 

Green 3 - 100 -22.40 ** 85.80 * 3336.3 5.00 0.03 

None         3338.7 7.40 0.01 

 

In the eight selected models and the model without light variable, the distance to water 

and at least one of the tree cover variables were selected (Appendix A). As found in the 

literature, the distance to water and tree cover had a negative effect on bat activity while the 

proportion of tree cover had a positive effect (Kaňuch et al., 2008; Boughey et al., 2011). The 

Julian day had a quadratic effect reflecting the reproductive phenology of bats. Contrarily to 

other studies, the wind speed had a positive effect on bat activity. However the wind speed 

considered here were low (below 5.5 m.s-1 in over 90% of the data). The city had a strong 

effect, with the mean activity being lower in Montpellier than in Lille and even lower in Paris.  

We used the overall best model, i.e. the one including the mean radiance value in a 100 

m buffer for the blue color band, to produce predictive maps of bat activity across the study 

areas. 
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3.2.Lighting scenarios 

To build both LED scenarios, we 

created modified blue color bands 

(reflecting the emission in the blue part of 

the spectrum) to simulate a global shift 

toward 3000K LED. In the LED scenario, 

where the overall radiance is kept the same 

as the current situation, 33 to 57% of the 

pixel of the new blue color band of the 

extended study area increased in radiance 

depending on the city considered (Fig. 4). 

In the second scenario (LED-30) where we 

simulated a global shift toward LED 

accompanied by a decrease of 30% in radiance, approximately the same proportion of pixels 

increased and decreased in blue emissions for all three study areas (Fig. 4). In the third scenario 

(No Light), simulating a global light extinction at the city scale, 58 to 85% of the pixels 

decreased in blue emissions. 

In Montpellier, for all scenarios, the repartition of the pixels which values of blue 

emissions increased or decreased were fairly homogenous (Fig. 5). For Paris, the repartition 

was also fairly homogenous except for the two woodlands on the outer borders which blue 

emissions remained mostly unchanged. In Lille, the decrease in blue emissions was mostly 

visible in the city center and more globally on the center and East part of the city. 

 

Fig. 4 Proportion of pixel (extended study 

areas) of the modified ISS picture that 

increased, stayed the same (Δ<0.001 nW.cm-

2.sr-1.A-1) or decreased in radiance value 

compared to the current situation (i.e. the 

original ISS picture).  
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3.3.Habitat patches 

Globally, habitat patches, .i.e. the areas for which bat activity was in the 90th percentile 

of highest activity, included a large proportion of tree cover (53 to 80%; Table 3). For all cities, 

the number of habitat patches decreased in the LED scenario compared to the current situation 

(2 to 13% less patches). When all lights were replaced by LEDs, a decrease of 30% in radiance 

increased the number of habitat patches (5 to 15% more patches). The No Light scenario highly 

increased the number of habitat patches compared to the current scenario (27 to 43% more 

 

Fig. 5 Spatial repartition of the change in radiance for the 3 study areas and the three scenarios 

compared to the current situation. 



CHAPTER 3 

  - 207 -  

patches) and hence the higher total patch area although the mean patch size did not vary much 

(range -0.4 km² - +0.3 km²).  

Table 3. Habitat patches characteristics.  

  Paris   Montpellier   Lille 

 Curren

t 

LE

D 

LED-

30 

No 

Light 
 Curren

t 

LE

D 

LED-

30 

No 

Light 
 Curren

t 

LE

D 

LED-

30 

No 

Light 

Number of patches 69 65 70 122  41 40 47 57  63 55 58 86 

Mean patch size 

(km²) 
0.26 0.26 0.26 0.22  0.27 0.27 0.24 0.24  0.12 0.12 0.14 0.15 

Total patch area 

(km²) 
17.7 16.6 18.4 27.3  11.0 10.8 11.5 13.8  7.6 6.8 7.9 12.5 

Ratio between 

total patch area 

and study area 

0.10 0.09 0.10 0.15  0.10 0.09 0.10 0.12  0.09 0.08 0.09 0.15 

Global proportion 

of tree cover in 

patches 

68% 
69

% 
67% 58%  80% 

80

% 
79% 76%  61% 

62

% 
61% 53% 

Proportion of tree 

cover in the study 

area 

21% 21%  14% 

Mean patch 

quality 1.20 1.17 1.19 1.16   1.29 1.30 1.26 1.28   1.33 1.38 1.38 1.49 

 

 The habitat patches mostly corresponded to urban parks and the largest ones had 

the highest quality (Fig. 6). Patches quality did not change much in Montpellier between the 

four situations but for Lille and Paris, patches quality increased in the No Light scenario 

compared to the two LED scenarios and the current situation. 
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Fig. 5. Maps of habitat patches and least-cost paths for each study area and each scenario. The 

light orange shape represent the area of the cities. 
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3.4.Connectivity assessment 

We measured the overall connectivity with the probability of connectivity (PC) index 

and measured its variation between scenarios (Fig. 7). Compared to the current lighting 

situation, the LED scenario had a weaker overall connectivity in all study areas (Paris -10%, 

Montpellier -3%, Lille -42%). The change to LED lights accompanied by a decrease in overall 

radiance (LED-30) had a positive effect on the connectivity for Paris and Montpellier 

(respectively +20% and +6%) but not for Lille (-24%) although it increased the connectivity 

compared to the LED scenario (+18%). The No Light scenario provoked the higher increase in 

connectivity for all cities but it was relatively weak in Montpellier (+18%) compared to Paris 

(+114%) and Lille (+210%). Overall, the three scenarios had a small impact on Montpellier’s 

landscape connectivity compared to Paris and Lille. 

4. Discussion 

Our study shows that artificial lights 

has a negative effect on urban landscapes’ 

connectivity for P. pipistrellus daily 

movements. In addition, a transition toward 

LEDs would increase light emissions in 

short wavelengths compared to the current 

situation and hence decrease the landscape 

connectivity. Moreover, the magnitude of 

ALAN’s influence on the overall 

connectivity is dependent on the context 

and varies considerably between cities. 

 

Fig. 7. Change in overall landscape 

connectivity for the lighting scenarios 

compared to the current situation. 
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Globally, a change of lighting technology toward broad spectrum lamps would have adverse 

effects on cities’ already highly fragmented landscapes and potential decrease in light trespass 

due to a better flux orientation (here, simulated through the scenario LED-30) might not suffice 

to cancel out this negative effect. 

Our results show that light has a significant negative effect on landscape connectivity 

for bats as the PC index was always higher in the scenario with no light than in any situation 

with lighting. This is coherent with another study which found that light reduced the proportion 

of landscape accessible around ponds for bats compared to a dark situation (Hale et al., 2015). 

Although P. pipistrellus is considered as light tolerant due to its ability to forage under 

streetlight to take advantage of the insects attracted to light (Rydell, 1992), at the national scale, 

its activity is negatively affected by the radiance level (Azam et al., 2016) and our results show 

that both its activity and its ability to move across the landscape in reduced by ALAN. P. 

pipistrellus is more resilient to anthropogenic pressures than other species hence it is still 

present in urban areas but relatively less than in other more suitable landscapes (Kerbiriou, 

Parisot-Laprun, & Julien, 2018). Therefore other species that are more sensitive to light may 

suffer even greater impacts which stress the importance to account for biodiversity in lighting 

planning. 

We found that a change toward LED lighting without changing the number of light 

sources would decrease landscape connectivity for bats daily movements. Currently, the 

outdoor public lighting in Paris and Lille is mostly constituted of HPS lamps, representing 

approximately 66 and 56% of light sources respectively (data given by Lille and Paris public 

lighting company) and we can suppose that the situation is similar in Montpellier. HPS lamps 

have a narrower spectrum than LEDs and emit a smaller amount of short wavelengths (Falchi 

et al., 2011) hence the transition to LEDs globally increased the three cities radiance in short 

wavelength emissions. This result is coherent with a simulation of lamps change at the scale of 
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Europe which showed that a change from current lighting to LED lighting while keeping the 

same flux would yield a 2.5 increase in light pollution mostly due to an increase in blue light 

emissions (Falchi et al., 2016). Moreover, a similar lighting transition at the scale of urban areas 

in Hawaii considering that new fixtures would eliminate all light emissions above the horizon 

was predicted to counter balance the negative impact of LEDs hence not worsening the light 

pollution but not improving it either  (Aubé et al., 2018). Although a study suggested that the 

change from LPS lamps (very narrow spectrum with no blue light emissions) to LED lamps did 

not affect bat activity at the local scale (Rowse, Harris, & Jones, 2016), we found that, at the 

city scale, bat activity was negatively affected by an increase in blue wavelengths emissions 

and that a transition toward LED lights would deteriorate landscape functional connectivity for 

bats.  

Our work allowed to globally predict the influence of the predicted change in lighting 

technologies (Mckinsey, 2012) on bats daily movements. As we used ISS pictures to determine 

the radiance, the resolution of the light data is relatively coarse (60 m) and include both public 

and private lighting. Hence it does not allow to identify individual light sources and indicate 

which might be particularly problematic. However very fine scale data for both public and 

private lighting are not available yet but they may become available through drone nighttime 

imaging in the near future. Even so, as the detection distance of P. pipistrellus ultrasound calls 

is approximately 30 m with current recording equipment (Barataud, 2015), our methodology 

could not yield more precise outputs by using higher resolution light data. A limit of the 

approach we developed is that we cannot produce scenarios simulating an increase in the 

number of light sources. Indeed the quantity of light emitted and reflected upward that is 

measured with ISS pictures is the resultant of a large number of parameters such as the light 

characteristics (e.g. spectrum, illuminance, flux distribution), the light fixture characteristics 

(e.g., height, lamp head), the presence of obstacles (e.g., buildings, trees) and the capacity of 
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surfaces to reflect light (e.g, type of soil surface, windows). Therefore simulating new light 

sources would require fairly complex models. The progress in LED lighting technologies is 

accompanied by a reduction in lighting cost thus potentially leading to an increase in the number 

of lighting points (Tsao et al., 2010). Therefore, future studies should investigate how the 

extension of urban areas and the increase in light sources may impact landscape connectivity. 

Our results show that the degree to which lighting impacts landscape connectivity for 

bats varies considerably among cities and accordingly, the simulated technological evolution 

affected them to different extent. The variation in global connectivity throughout all scenarios 

was weak for Montpellier which may be due to the fact that initially 42% of the extended study 

area in Montpellier was dark and thus remained dark in all scenarios. Hence, considering the 

actual repartition of light, Montpellier may be less sensitive to changes in lamp types than the 

two other study areas. Moreover, although Paris and Lille had similar radiance changes in the 

three scenarios, the change in overall connectivity differed significantly. This might be 

explained by a difference in the spatial repartition of the changes. In the LED scenario, the 

changes in Paris were homogenously distributed whereas in Lille the radiance mostly decreased 

in the highly urbanized city center, the least suitable zone of the study area for bats, and 

increased in the rest of the city. Hence, this scenario induced a greater decrease in connectivity 

for Lille than for Paris. These results show that although there is a similar general pattern in the 

landscape connectivity variations for the three cities, it is not straightforward to estimate the 

influence of a change in lighting technology as it depends on the landscape context in terms of 

land use and current lighting distribution. Moreover, our study highlights the importance to take 

several parameters into account to prioritize areas where the reduction of light would most 

benefit bats as some light changes may have more or less impact on the landscape connectivity.  

As the awareness on the need to preserve ecosystems rise and the potential of urban 

parks and biodiversity to increase human well-being is more and more recognized (Ulrich et 
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al., 1991; Carrus et al., 2015), land management in urban areas tends to give more attention to 

the promotion of biodiversity. Tools such as revegetation can help increase landscape 

connectivity (Shanahan et al., 2011) and integrating lighting within sustainable landscape 

planning by delineating areas with biodiversity issues within which light source should be 

removed or adapted to limit their impact may greatly benefit to nocturnal biodiversity. 

  



CHAPTER 3 

- 214 - 

References 

Aubé, M., Simoneau, A., Wainscoat, R., & Nelson, L. (2018). Modeling the effects of 

phosphor converted LED lighting to the night sky of the Haleakala Observatory, Hawaii. Mon. 

Not. R. Astron. Soc. 

Azam, C., Le Viol, I., Julien, J.-F., Bas, Y., & Kerbiriou, C. (2016). Disentangling the 

relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity 

with a national-scale monitoring program. Landsc. Ecol. 31, 2471–2483. 

Barataud, M. (2015). Ecologie acoustique des Chiroptères d’Europe, Identification des 

espèces, étude de leurs habitats et comportement de chasse. Biotope. 

Barton, K. (2013). MuMIn: Multi-Model Inference. 

Bas, Y., Escallon, A., Ferre, M., Haquart, A., Rufray, V., & Disca, T. (2013). Automatic 

Echolocation Call Identification in Europe vs. the Neotropics: More Species Does Not Mean 

More Difficult. In 16th Int. Bat Res. Conf. 43rd North Am. Symp. Bat Res. San José, Costa 

Rica. 

Beier, P., Majka, D. R., & Spencer, W. D. (2008). Forks in the Road: Choices in 

Procedures for Designing Wildland Linkages. Conserv. Biol. 22, 836–851. 

Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conserv. 

Biol. 12, 1241–1252. 

Boughey, K. L., Lake, I. R., Haysom, K. A., & Dolman, P. M. (2011). Effects of 

landscape-scale broadleaved woodland configuration and extent on roost location for six bat 

species across the UK. Biol. Conserv. 144, 2300–2310. 

Brooks, M. E., Kristensen, K., Benthem, K. J. van, Magnusson, A., Berg, C. W., 

Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). Modeling Zero-Inflated Count 

Data With glmmTMB. bioRxiv 132753. 

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: 

a practical information-theoretic approach. 2nd edition. Springer-V. New York. 

Carrus, G., Scopelliti, M., Lafortezza, R., Colangelo, G., Ferrini, F., Salbitano, F., 

Agrimi, M., Portoghesi, L., Semenzato, P., & Sanesi, G. (2015). Go greener, feel better? The 

positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban 

green areas. Landsc. Urban Plan. 134, 221–228. 

Chatterjee, S., & Bose, A. (2000). VARIANCE ESTIMATION IN HIGH 

DIMENSIONAL REGRESSION MODELS. Stat. Sin. 10, 497–515. 

Chetkiewicz, C.-L. B., St. Clair, C. C., & Boyce, M. S. (2006). Corridors for 

conservation: integrating pattern and process. Annu. Rev. Ecol. Evol. Syst. 317–342. 



CHAPTER 3 

  - 215 -  

Coulon, A., Aben, J., Palmer, S. C. F., Stevens, V. M., Callens, T., Strubbe, D., Lens, 

L., Matthysen, E., Baguette, M., & Travis, J. M. J. (2015). A stochastic movement simulator 

improves estimates of landscape connectivity. Ecology 96, 2203–2213. 

Davies, T. W., & Smyth, T. (2017). Why artificial light at night should be a focus for 

global change research in the 21st century. Glob. Chang. Biol. 872–882. 

Dilts, T. E., Weisberg, P. J., Leitner, P., Matocq, M. D., Inman, R. D., Nussear, K. E., 

& Esque, T. C. (2016). Multiscale connectivity and graph theory highlight critical areas for 

conservation under climate change. Ecol. Appl. 26, 1223–1237. 

Eisenbeis, G. (2006). Artificial night lighting and insects: attraction of insects to 

streetlamps in a rural setting in Germany. In C. Rich & T. Longcore (Eds.), Ecol. consequences 

Artif. night Light. pp. 281–304. Island Press, Washington, D.C., USA. 

ESRI. (2013). ArcGIS Desktop. Redland, CA: Environmental Systems Research 

Institute. 

European Commission. Council Directive 92/43/ECC on the conservation of natural 

habitats and of wild fauna and flora. , Official Journal of the European Communities 7–50 

(1992). Brussels. 

Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C. M., Elvidge, C. D., Baugh, K., 

Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night 

sky brightness. Sci. Adv. 2, e1600377–e1600377. 

Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M., & Haim, A. (2011). Limiting the 

impact of light pollution on human health, environment and stellar visibility. J. Environ. 

Manage. 92, 2714–2722. 

Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat 

fragmentation : a synthesis. Glob. Ecol. Biogeogr. 16, 265–280. 

Foley, J. A. (2005). Global Consequences of Land Use. Science (80-. ). 309, 570–574. 

Frey-Ehrenbold, A., Bontadina, F., Arlettaz, R., & Obrist, M. K. (2013). Landscape 

connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. (M. 

Pocock, Ed.)J. Appl. Ecol. 50, 252–261. 

Gal, G., Loew, E. R., Rudstam, L. G., & Mohammadian,  a M. (1999). Light and diel 

vertical migration: spectral sensitivity and light avoidance by Mysis relicta. Can. J. Fish. Aquat. 

Sci. 56, 311–322. 

Gaydecki, P. (2018). Automated moth flight analysis in the vicinity of artificial light. 

Bull. Entomol. Res. 44, 1–14. 

Guthery, F. S., Brennan, L. A., Peterson, M. J., & Lusk, J. J. (2005). Invited Paper: 

Information Theory in Wildlife Science: Critique and Viewpoint. J. Wildl. Manage. 69, 457–

465. 



CHAPTER 3 

- 216 - 

Hale, J. D., Fairbrass, A. J., Matthews, T. J., Davies, G., & Sadler, J. P. (2015). The 

ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. 

Glob. Chang. Biol. 21, 2467–2478. 

Hale, J. D., Fairbrass, A. J., Matthews, T. J., & Sadler, J. P. (2012). Habitat composition 

and connectivity predicts bat presence and activity at foraging sites in a large uk conurbation. 

PLoS One 7. 

Heiberger, R. M., & Holland, B. (2004). Statistical Analysis and Data Display. New 

York, NY: Springer New York. 

Hillen, J., Kiefer, A., & Veith, M. (2009). Foraging site fidelity shapes the spatial 

organisation of a population of female western barbastelle bats. Biol. Conserv. 142, 817–823. 

Hölker, F., Moss, T., Griefahn, B., & Kloas, W. (2010). The Dark Side of Light : A 

Transdisciplinary Research Agenda for Light Pollution Policy. Ecol. Soc. 15, art13. 

Hölker, F., Wolter, C., Perkin, E. K., & Tockner, K. (2010). Light pollution as a 

biodiversity threat. Trends Ecol. Evol. 25, 681–682. 

Kaňuch, P., Danko, Š., Celuch, M., Krištín, A., Pjenčák, P., Matis, Š., & Šmídt, J. 

(2008). Relating bat species presence to habitat features in natural forests of Slovakia (Central 

Europe). Mamm. Biol. - Zeitschrift für Säugetierkd. 73, 147–155. 

Kerbiriou, C., Julien, J. F., Bas, Y., Marmet, J., Viol, I. L. E., Lorrilliere, R., Azam, C., 

Gasc, A., & Lois, G. (2015). Vigie-Chiro : 9 ans de suivi des tendances des espèces communes. 

Kerbiriou, C., Parisot-Laprun, M., & Julien, J. F. (2018). Potential of restoration of 

gravel-sand pits for Bats. Ecol. Eng. 110, 137–145. 

Kindlmann, P., & Burel, F. (2008). Connectivity measures : a review. Landsc. Ecol. 23, 

879–890. 

Kinzey, B., Perrin, T. E., Miller, N. J., Kocifaj, M., Aubé, M., & Lamphar, H. S. (2017). 

An Investigation of LED Street Lighting’s Impact on Sky Glow. 

Kowarik, I. (2011). Novel urban ecosystems, biodiversity, and conservation. Environ. 

Pollut. 159, 1974–1983. 

Kuijper, D. P. J., Schut, J., & Dullemen, D. Van. (2008). Experimental evidence of light 

disturbance along the commuting routes of pond bats (Myotis dasycneme). Lutra 51, 37–49. 

Kyba, C. C. M. (2018). Is light pollution getting better or worse? Nat. Astron. 2, 267–

269. 

LaPoint, S., Balkenhol, N., Hale, J. D., Sadler, J., & van der Ree, R. (2015). Ecological 

connectivity research in urban areas. Funct. Ecol. 29, 868–878. 

Marnell, F., & Presetnik, P. (2010). Protection of overground roosts for bats. Eurobats 

4. 



CHAPTER 3 

  - 217 -  

Mathews, F., Roche, N., Aughney, T., Jones, N., Day, J., Baker, J., & Langton, S. 

(2015). Barriers and benefits: implications of artificial night-lighting for the distribution of 

common bats in Britain and Ireland. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140124–

20140124. 

Mcdonald, R. I., Kareiva, P., & Forman, R. T. T. (2008). The implications of current 

and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 

141, 1695–1703. 

Mckinsey. (2012). Lighting the way: Perspectives on the global lighting market 68. 

McRae, B. H., & Kavanagh, D. M. (2011). Linkage Mapper Connectivity Analysis 

Software. Seattle, WA: The Nature Conservancy. 

Millon, L., Julien, J. F., Julliard, R., & Kerbiriou, C. (2015). Bat activity in intensively 

farmed landscapes with wind turbines and offset measures. Ecol. Eng. 75, 250–257. 

Minor, E. S., & Urban, D. L. (2008). A Graph-Theory Framework for Evaluating 

Landscape Connectivity and Conservation Planning. Conserv. Biol. 22, 297–307. 

Nicholls, B., & Racey, P. A. (2006). Contrasting home-range size and spatial 

partitioning in cryptic and sympatric pipistrelle bats. Behav. Ecol. Sociobiol. 61, 131–142. 

Pawson, S. M., & Bader, M. K.-F. (2014). LED lighting increases the ecological impact 

of light pollution irrespective of color temperature. Ecological 24, 1561–1568. 

Polak, T., Korine, C., Yair, S., & Holderied, M. W. (2011). Differential effects of 

artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. 

Zool. 285, 21–27. 

QGIS Development Team. (2017). QGIS Geographic Information System. Open Source 

Geospatial Foundation Project. 

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. 

Rainho, A., & Palmeirim, J. M. (2011). The Importance of Distance to Resources in the 

Spatial Modelling of Bat Foraging Habitat. (B. Fenton, Ed.)PLoS One 6, e19227. 

Rowse, E. G., Harris, S., & Jones, G. (2016). The switch from low-pressure sodium to 

light emitting diodes does not affect bat activity at street lights. PLoS One 11. 

Russo, D., & Ancillotto, L. (2015). Sensitivity of bats to urbanization: a review. Mamm. 

Biol. - Zeitschrift für Säugetierkd. 80, 205–212. 

Rydell, J. (1992). Exploitation of insects around streetlamps by bats in Sweden. Funct. 

Ecol. 6, 744–750. 

Sánchez De Miguel, A., Kyba, C. C. M., Aubé, M., Zamorano, J., Cardiel, N., Tapia, 

C., Bennie, J., & Gaston, K. J. (n.d.). Colour remote sensing of the impact of artificial light at 



CHAPTER 3 

- 218 - 

night (I): the potential of the International Space Station and other DSLR-based platforms. 

Remote Sens. Environ. 

Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate 

connectivity in landscape conservation planning: Comparison with existing indices and 

application to a case study. Landsc. Urban Plan. 83, 91–103. 

Savard, J.-P. L., Clergeau, P., & Mennechez, G. (2000). Biodiversity concepts and urban 

ecosystems. Landsc. Urban Plan. 48, 131–142. 

Shanahan, D. F., Miller, C., Possingham, H. P., & Fuller, R. A. (2011). The influence 

of patch area and connectivity on avian communities in urban revegetation. Biol. Conserv. 144, 

722–729. 
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ARTICLE 4 

APPENDICES 
Appendix A. Detailed models outputs 

Table A.1. Modeling bat activity. Estimates of all the variables retained in the 20 best models 

and best model without light variable. After model selection on the full models, for five models, 

the light variable was not retained and the best model was the one without light variable. 
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“You can't study the darkness by flooding it with light.” 

Edward Abbey 
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Introduction 

In the two previous chapters, I evaluated the impact of light pollution on bat activity, its 

spatial distribution and the landscape connectivity at intermediate scales corresponding to 

landscape management scales for lighting planning such as cities. Indeed in most cases outdoor 

public lighting is managed at the scale of cities or municipality. These studies may be valuable 

for global landscape planning as they allow to determine the areas to prioritize when taking 

action to limit light impacts on biodiversity. They provide empirical evidence that can be used 

for the delineation of ecological corridors for nocturnal species in the framework of the green 

infrastructure policy.  Indeed, since 2010, French municipalities are asked to enhance, restore 

and conserve the ecological integrity of green areas and aquatic ecosystems in their land-use 

planning strategies (Trame Verte et Bleue, Grenelle de l’Environnment 2010). However, to 

implement actions aimed at reducing the impact of light pollution at the local scale, information 

on fine scale behavior of species is needed. Implementing biodiversity-friendly management 

requires concrete recommendations on how light sources should be placed, in what amount and 

with which spectrum. This need was well summarized by a question asked by a lighting 

engineer during meeting I organized with land managers: “I’m inclined to try to adapt 

streetlights to limit their impact on biodiversity but really, how should I change lighting to do 

so?” 

Studies revealed that restoring darkness during part of the night through the extinction 

of public lighting in the middle of the night is unlikely to effectively reduce the negative impact 

of light on nocturnal species (Azam et al., 2015; Day et al., 2015). Indeed, the majority of 

crepuscular and nocturnal species are most active immediately after dusk and before dawn 

which corresponds to hours where streetlights are on to allow for human activities (Gaston et 

al., 2012; Newson, Evans, & Gillings, 2015). Therefore, it appears necessary to preserve dark 
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refuges and corridors all night long to efficiently limit the impacts of ALAN on light sensitive 

species habitats. This involves, in a first step, to define what is a dark refuge or corridor. Indeed, 

as species have different response to light, the notion of what is dark enough to be used as 

habitat or transit route may be species-specific. Such information may be acquired through field 

work measurement of bat behavior in different lighting contexts. Empirical studies can be used 

to find threshold values of lighting parameters (Azam et al., 2018) that can thence be translated 

into criteria to define dark areas ultimately allowing to transpose landscape level plans into 

local scale ecological dark corridors. 

Due to the species-specificity of the behavioral response to light, it appears important 

to study several species. More specifically, it is crucial to carry out experiment to define what 

dark areas are for species highly sensitive to light. Such species are often sensitive to low levels 

of light (Lacoeuilhe et al., 2014; Azam et al., 2018) and, due to the important light levels in 

urban areas and the absence of suitable habitats, are therefore mostly absent from densely 

urbanized and lit contexts. They can be more abundant in semi-natural areas but they may still 

be affected by light diffusing from urban areas which may reduce the habitat they can use. To 

further understand how the type, quantity and distribution of light impact their behavior, study 

needs to be carried out in relatively preserved areas where these sensitive species are present 

and protected. 

Aims of the chapter 

In the study presented in this chapter, I intended to evaluate the impact of light on bat 

communities in a protected area in the South of France both around streetlights and at hedges. 

Most local scale studies evaluate the impact of light in the direct vicinity of a streetlight (Stone 

et al., 2015; Rowse, Harris, & Jones, 2016; Lewanzik & Voigt, 2017) thus mostly capturing the 

impact on bat species foraging insects trapped in the halo of light. Nevertheless, two studies 
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investigated the effect of light away from its source (Lacoeuilhe et al., 2014; Azam et al., 2018). 

Here, I intended to both capture the impact of light, compared to dark sites, on bat activity 

around streetlight and at hedges which are known to be important for bats (Verboom & 

Huitema, 1997). More generally, hedges can act as movement corridors for numerous species 

and increase the functional landscape connectivity (Burel, 1996). Therefore they are interesting 

landscape elements to preserve in the framework of landscape planning and their preservation 

for bats movement is likely to have benefits for other species. Azam et al. (2018) evaluated the 

distance effect of light sources positioned along hedges but here I investigate the impact of 

streetlights away from hedges on their potential as habitats for bat communities. Moreover, the 

field work took place in a protected area within a Mediterranean biogeographical region which 

allowed to study a large diversity of species.  

In addition, this study aims at simultaneously evaluating five characteristics of light: 

presence, illuminance, lamp type, lamp height and distance to hedge. The three first 

characteristics have been explored in other studies (Stone, Jones, & Harris, 2012; Mathews et 

al., 2015; Lewanzik & Voigt, 2017) but not always simultaneously which make it difficult to 

compare them. The latter two characteristics have never been explored although Azam et al. 

(2018) evaluated the distance effect of light sources positioned along hedges. Thus, in the study 

presented in this chapter, I intended to evaluate the importance of five characteristics of 

streetlights in the impact 

of ALAN on a large 

cohort of bat species 

(n=15) both around light 

sources and at potential 

transiting routes. I 

carried out field work 

 
Fig. 28. Example of a site with the experimental lit pair (grey) 

and the control dark pair (black) both composed of a recording 

point on a street (stars) and a recording point at a hedge (squares). 

The sampling included 28 such sites. 
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sampling bat activity at specific location around streetlight and at lit hedge and also at control 

dark sites (Fig. 28 ;112 recording points). The species recorded were studied independently and 

by groups based on ecological traits in order to allow for generalization to other species 

presenting similar traits. The aerial group included nine high to medium-altitude fast-flying 

species and the clutter group included six low-altitude slow-flying species. 

Principal results & discussion 

The study revealed that, regardless of streetlight characteristics, the presence of light 

had a negative effect on clutter species activity and a positive effect on aerial species 

activity around streetlights (Fig. 29). This pattern is coherent with Azam et al. (2018) 

although in the present study, effect size and significance are higher. The negative response of 

clutter species only hold for one species at hedges. Nonetheless, these results highlight the 

importance properly selecting areas that need lighting as the presence of streetlights has 

profound effects on local bat communities. In the context of preserved areas such as protected 

areas where sensitive species are present in higher numbers (Kerbiriou et al., 2018), it is 

essential to limit the spread of artificial light. Although globally the increase of light pollution 

in protected areas is lower in protected than non-protected areas (Bennie et al., 2015; Guetté et 

al., 2018), it is nevertheless increasing and may severely impact light sensitive species. 
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The result showed no effect of the distance between the light source and the hedge 

for clutter species activity at the hedge but the illuminance at the hedge had a negative 

effect on their activity. As neither the presence nor the distance to the streetlight impacted 

clutter bat activity at the hedge, we may conclude that it is not the bright light point of the lamp 

but the light level that affects their behavior at least away from the streetlight. Hence the 

distance of a streetlight to a potential dark area is not a convincing measure to limit light effects 

on bats. The distance of impact of a light source depends on several parameters in addition to 

the distance such as the quantity of light and the orientation of the light flux. Software used by 

lighting engineers allow to model the halo cast by a streetlight while accounting for all its 

characteristics. Such tools could be valuable to preview the distribution of the light emitted by 

new streetlights and adapt its fixture or lamp to limit its impact on surrounding vegetation ahead 

of their implantation if need be. We detected a negative response of the clutter group for very 

low light levels (range 0.1-13.2 lx, 3rd quartile = 0.3 lx) thus showing that even minor lighting 

trespass may decrease their habitat use. To preserve dark areas for sensitive species, it is 

therefore needed to limit light trespass on vegetation to less than 0.1 lx as proposed by Azam 

 
Fig. 29. Effect of the presence of a streetlight on bat activity at the street points (a) and at the 

hedge points (b) for clutter species (black), aerial species (grey) and groups (hatched). Bars 

represent estimates of the difference of activity between experimental lit points and control 

dark points and error bars represent standard errors ('*' refers to p-value <0.05; '**' refers to 

p-value <0.01; '***' refers to p-value <0.001) (extracted from Pauwels et al., Article 5). 
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et al. (2018). A study on two protected areas in Italy (1800 km² and 150 km²) showed that 

moderate decrease in ALAN could result in substantial gains of dark areas: Reducing light 

pollution by 10% increased dark areas by 15% and decreasing light pollution by 20% increased 

dark areas by up to 46% (Marcantonio et al., 2015). Hence strategies such as diming may have 

a high potential to reduce trespass while and help preserve dark areas for light sensitive species. 

Moreover, diming strategies have the potential to achieve light levels compatible with human 

activities while limiting the impact on bats therefore providing both economic (decreased 

energy cost) and ecological benefits (increased dark habitat) (Rowse, Harris, & Jones, 2018). 

Perspectives 

Although the present study shows a positive response of fast flying species to light at 

the local scale, studies presented in the previous chapters revealed that the same bat species 

could be negatively impacted by light at the landscape level. At the local, bat activity around 

streetlight is estimated to mostly correspond to foraging activity (Rydell, 1992) thus the 

negative effect detected at the landscape level may reflect the adverse impact of light in other 

types of behavior such as transiting (Hale et al., 2015) or the diminution of resource quantity 

due to the decline in insect prey caused by light (Wilson et al., 2018). This ambivalent behavior, 

it may prove difficult to evaluate how diming strategies may affect local activities of these bat 

species. Nonetheless, diming was identified as a lever of action to increase the surface of dark 

patches hence potentially increasing the area of suitable habitat for sensitive species that often 

correspond to rarer and more highly protected species. 

Globally, artificial light exposure increases in terrestrial ecosystems (Bennie et al., 

2015) and as population growth now occurs almost entirely within towns and cities (United 

Nations, 2018) it is critical to plan urban development in a way that minimize it harm on 

biodiversity (Lin & Fuller, 2013). The impacts of urbanization on ecosystems depend largely 
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on the spatial extent and the intensity of land-use change which generated a debate on whether 

land-sparing or land-sharing urban development should be favored (Lin & Fuller, 2013). The 

land-sparing strategy would imply to concentrate urban development in some areas while 

natural areas would be set-aside for conservation. The land-sharing strategy would be to spread 

low-intensity development within which species may persist. Urbanization and the impact of 

anthropogenic land use are often measured by impervious surfaces spatial extent but the 

development of outdoor lighting in connection with urban growth may have a further reaching 

effect than soil sealing due to its diffuse nature. A study showed that land-sparing may be a 

more desirable type of development for the preservation of bat communities as even low level 

of housing densities can have important effects on several species presence and abundance 

(Caryl et al., 2016). This study evaluated the impact of urbanization through housing density. 

This proxy, although valuable, does not account for diffuse anthropogenic pollutions such as 

light and noise. The land-sharing strategy entails the spread of build structure which will most 

probably be accompanied by the use of artificial light sources. Hence this type of development 

would potentially increase the spread of light pollution and further extend its reach into natural 

areas through light trespass. As most of the species studied at the landscape level showed a 

negative response to the radiance level and as light sensitive species are impacted by low levels 

of illuminance, it is likely that such spread-out urban development will have far reaching 

negative implication for numerous bat species. The study presented in this chapter highlighted 

the importance to preserve dark areas henceforth the protection of natural areas aside from 

urban development may be more effective to conserve bat species. However, dark habitat 

patches are not sufficient to maintain local populations and the necessary gene-flow between 

populations. The connectivity between dark areas is as much an important element in species 

conservation as the preservation of suitable habitat patches. 
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Abstract  

The spread of artificial light at night (ALAN) is dramatically changing the nocturnal 

lightscape. Protected areas tend to be darker than their surroundings but in Europe, most of 

them include a significant part of human activities making them more prone to suffer increased 

light levels especially close to urban areas. Our study investigates the impact of ALAN, and in 

particular the importance of streetlights characteristics, on bat activity in a protected area in 

order to define pertinent levers of action to limit ALAN’s effects. We measured the activity of 

15 bat species in lit and dark conditions along streets and at hedges (foraging habitats for bats) 

7 to 192 m away from streetlights. We then analyzed how streetlights height, lamps type, 

illuminance and the distance to a streetlight could influence bat species activity and the activity 

of two species groups based on flight and foraging behavior. We found that lighting had a 

negative effect on clutter bats activity and a positive effect on aerial bats activity. Illuminance 

was the most relevant characteristic and caused contrasted responses for the two groups. 

Notably, clutter species activity at hedges was negatively impacted by illuminance. Half of the 

species in this group are cited in the Annex II of the Habitat Directive which imply the 

designation of special areas of conservation. Since the diffusion of light into surrounding 

habitats alters the conservation potential of protected areas, we recommend to suppress light 

sources or at least to reduce light illuminance close to environments with conservation issues. 
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1. Introduction 

The spread of artificial light at night (ALAN) across the world in the past decades has 

dramatically changed the nocturnal lightscape (Falchi et al., 2016). Through the modification 

of natural light levels, ALAN is disrupting the natural cycle of day and night, i.e. the circadian 

rhythm, arguably the most important cue to life organization (Bradshaw & Holzapfel, 2010). It 

has major impacts on nocturnal species (Hölker et al., 2010) as it can change their behavior 

(e.g. Downs et al., 2003) and disrupt interactions (e.g. Knop et al., 2017). Light pollution has 

come to be considered as a global environmental change (Lyytimäki, 2013) that not only affects 

urban areas but also natural and protected areas (Gaston, Duffy, & Bennie, 2015). Protected 

areas play a key role in buffering biodiversity from diverse anthropogenic pressures (Margules 

& Pressey, 2000; Gaston, Pressey, & Margules, 2002) and albeit they are often darker than their 

surroundings, globally, they suffered an increase in nighttime lighting in recent years (Gaston 

et al., 2015; Guetté et al., 2018).  

Amongst protected areas, there is a gradient of management objectives from a strict 

protection of pristine nature (IUCN categories Ia and Ib) to the preservation of ecosystems while 

also developing sustainable socio-economic activities (IUCN categories IV, V and VI). In 

Europe, protected areas represent 21% of the land and three quarters of them belong to category 

IV and V (European Environment Agency, 2012) thus including a significant part of human 

activities and prone to suffer increased levels of light. In protected areas including small and 

discontinuous urban areas, habitats surrounding urban areas could be impacted by light 

spillover and hence be avoided by sensitive species. To limit this effect, it is important to know 

how light affects the use of natural areas by species and on which light parameters it is possible 

to act to reduce this impact. 
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European Microchiroptera are good model species to study the effects of artificial light 

as they are nocturnal and have contrasting sensitivity to light ( Lacoeuilhe et al., 2014; Stone, 

Harris, & Jones, 2015). Fast-flying species foraging in open spaces such as Pipistrellus spp. and 

Nyctalus spp. (hereafter referred to as “aerial” species) can benefit from localized increase in 

preys abundance due to the attraction of insects to light (Eisenbeis, 2006; van Langevelde et 

al., 2011). Rhinolophus and Myotis species are described as light-sensitive as they avoid lit 

areas (Stone, Jones, & Harris, 2009, 2012) and are not present in highly urbanized cities 

contrarily to some aerial species (Bartonicka & Zukal, 2003; Rainho, 2007). They are 

characterized by a slow low-altitude flight and forage in cluttered vegetation (referred to as 

“clutter” species). In the EU all bat species are protected and thirteen of them have high 

conservation issues requiring the designation of special areas of protection in the Natura 2000 

network (Council Directive 92/43/EEC, 1992). Light diffusing outside towns illuminate forest 

edges and hedgerows which are landscape elements of great importance for bats to transit and 

forage (Verboom & Huitema, 1997; Boughey et al., 2011a; Lacoeuilhe et al., 2016). Their 

lighting may result in a decrease of habitat quality and a degradation of ecological corridors 

(Stone et al., 2009; Hale et al., 2015) leading to a reduction of the conservation potential of 

protected areas that include urban areas.   

It is urgent to produce recommendations regulating lighting to limit the increase in 

ALAN and preserve dark areas. Street lighting is the most persistent, aggregated and intense 

source of lighting (Gaston et al., 2012) but it is within the range of action of land managers. 

Actions have already been taken through the implementation of extinction schemes although it 

does not seem to be efficient for bats (Azam et al., 2015; Day et al., 2015). However streetlights 

parameters need to be tested to find out if they could be interesting levers of actions to help 

reduce the impact of light pollution.  
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Our study investigates the impact of ALAN, and in particular the importance of 

streetlights characteristics, on bat activity in a protected area in order to define pertinent levers 

of action to limit ALAN’s effects and produce recommendations for a more environment-

friendly lighting. In partnership with land managers, we carried out the field work in a protected 

area of category V examining the influence of streetlights height (3.6 to 9 m), lamp type (HPS 

or LED), illuminance (0.1 to 51 lux) and the distance to the streetlight (7 to 192 m) on bat 

activity. We worked on 15 bat species pertaining to the clutter and aerial groups (including four 

species listed in the Annex II of the Habitats Directive) and hence potentially presenting various 

behavioral responses to light (Lewanzik & Voigt, 2017; Azam et al., 2018). We evaluated the 

activity of each bat species around streetlights and at forest edges or hedgerows facing a 

streetlight in regard with the characteristics of the streetlight. In order to generalize our results, 

we also explored the response to those characteristics at the level of the two groups. We 

expected antagonistic effects on the activity of aerial and clutter species with the latter group 

being negatively impacted by light.  

2. Material and methods 

2.1 Study area 

The experiment was carried out in the Parc Naturel Régional du Luberon, a protected 

natural park of 1850 km2 located in the South-East of France (Fig 1a). It is a protected area of 

category V hence the main aims are the protection of nature, the preservation of landscapes of 

cultural value and the maintenance of balanced interactions with people through traditional 

management practices. The park includes nine Natura 2000 sites covering one third of its 

surface. It is also recognized as part of a hot spot of bat species richness, harboring 21 of the 34 

French bat species (Biotope, 2016). Urban areas represent only 10% of the park surface and 



CHAPTER 4 

  - 236 -  

arable lands 14% while semi-natural areas represent 76% of the land (42% of low vegetation 

and 33% of high vegetation semi-natural areas). The largest city in the park (Cavaillon, 26000 

inhabitants) has a light level 12 times higher than the natural background sky brightness. Aside 

from this city, the park has a mean artificial brightness about twice as high as the mean natural 

background sky brightness which means it is within the 40% of France surface receiving the 

least light pollution (Falchi et al., 2016). Almost 60% of the municipalities have a public 

lighting extinction scheme but we did not work in these municipalities to avoid biases. 

 

Fig. 1 Presentation of the study area and the sampling design with (a) the location of the Parc 

Naturel Régional du Luberon (black); (b) an example of site with the experimental lit pair 

(grey) and the control dark pair (black) both composed of a recording point on a street (stars) 

and a recording point at a hedge (squares); and (c) the location of the 28 sites with an 

indication of the lamp type. 
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2.2 Sampling design 

We selected 28 study sites located at the limit between towns and their  semi-natural 

surroundings to measure bat activity both under streetlights and at hedgerows or forest edges 

(thereafter, “hedges”) directly facing streetlights (Fig 1b and 1c). We sampled bat activity at 

hedges because they represent potential bat commuting routes (Verboom & Huitema, 1997; 

Boughey et al., 2011b; Lacoeuilhe et al., 2016). In our study hedges were mostly composed of 

tall oak trees. On each site we placed of two pairs of recording points, an experimental lit pair 

and a control dark pair separated by 450 meters on average (min = 56m, max = 1982m). For 

the lit pair, one recording point was placed under a streetlight and the second was placed along 

a hedge lit by this streetlight. Half of the lit pairs had High Pressure Sodium lamps (HPS, n=14) 

and the other half Light Emitting Diode lamps (LED, n=14). For the dark pairs, the recording 

points were placed along a street and at a hedge in a similar fashion and in similar habitats as 

experimental points but in a dark environment. For a given site, the distance between the two 

recording points of a pair (i.e. street point and hedge point) was the same for the lit and the dark 

pair and varied between sites from 7 to 192 meters (see Appendix A – Table A.1) 

2.3 Environmental variables 

At each recording point, we measured the vertical illuminance at 1.20 m above the 

ground with a lux meter (Digital Light Meter YF-170) while facing the street point. The vertical 

illuminance is the measure of the luminous flux received by a 1m2 vertical surface such as trees 

and hedgerows. We also measured streetlights height. While selecting study sites we paid 

particular attention to the surroundings land use composition to avoid confounding effects. For 

each site, experimental lit points and their associated control dark points had a similar 

environmental context. We computed the proportion of urban area, agricultural area and semi-

natural area for low and high vegetation in a 200 meter buffer around the recording points using 
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the CES-OSO (Cesbio http://www.cesbio.ups-tlse.fr/multitemp/?p=6178) land use map of 

France (10 meter resolution) and did not find any difference in the environmental variables 

values distribution between experimental and control points either at the street point or at the 

hedge point (Appendix A – Table A.2). In addition, there was no important correlation between 

environmental variables and light variables (Spearman |r| ≤ 0.6, Dormann et al., 2013) 

(Appendix A – Table A.3). However, environmental variations between sites were taken into 

account within models.  

2.4 Bat monitoring 

The fieldwork was carried out between the 28th of August and the 7th of September 

2016 when the weather conditions were favorable according to the recommendation of the 

French national bat-monitoring program Vigie-Chiro (no rain, wind speed below 7 m/s, 

temperature > 12°C; Kerbiriou et al., 2018). This period was also between the third and the first 

quarter of moon to limit the interaction between natural and artificial light (Saldaña-Vázquez 

& Munguía-Rosas, 2013). 

Bat activity was sampled at each point with a Song Meter SM2BAT 

(http://wildlifeacoustics.com/) which automatically recorded all ultrasounds with an SMX-US 

omnidirectional microphone. The four recording points of each site were sampled on the same 

night from 30 minutes before sunset until 30 minutes after sunrise, allowing for direct 

comparison of bat activity between the experimental lit points and their paired dark control 

point. 

As it is impossible to identify individual bats from their echolocation calls, we calculated 

bat activity as the number of bat passes per species. A bat pass is defined as the occurrence of 

a single or several echolocation calls of the same bat species during a 5-second interval (Millon 
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et al., 2015). Echolocation calls were detected and classified to the most accurate taxonomic 

level using the software TADARIDA (Bas, Bas, & Julien, 2017) in its latest version (online 

repository https://github.com/YvesBas). We used an independent dataset comprising 8405 bat 

passes recorded throughout France as part of the Vigie-Chiro bat-monitoring program and both 

checked manually and ran through TADARIDA to perform a logistic regression between the 

success/failure of automatic species assignation and the confidence index provided by the 

software. We could hence associate each confidence index with an identification success 

probability and calculate for each species the minimum confidence index required to tolerate a 

given maximum error risk, i.e. confidence threshold (methodology detailed in Appendix B). 

We used the confidence thresholds calculated on the national dataset to create two subsets of 

this study’s dataset:  one with a 0.5 maximum error risk tolerance (MERT) and another subset 

with a 0.1 maximum error risk tolerance. We performed the analysis on both subsets and found 

similar results. Hereafter we show results for a 0.5 MERT while results for a 0.1 MERT are 

presented in Appendix C. 

An overlap of the detection volumes of the two recording points of a pair could occur 

depending on the distance between the points and the species maximum distance of 

detectability. For example, Rhinolophus hipposideros can be detected at a maximum of 5 m 

hence volumes of detection overlapped for only 11% of pairs. For Tadarida teniotis which can 

be detected at 150 m, volumes of detection overlapped for all pairs. When simultaneously 

detected at the two recording points of a pair, bat passes were associated to the point which 

recorded the longest sequence of bat calls since it was most probably the closest to the bat flight 

path. Then we applied a correction on the number of bat passes to account for the subsequent 

unevenness in the sampling volume of the recording points (Appendix D). 

We studied each species activity and also the activity of two groups of species based on 

their flying and foraging preferences. The “aerial” group was composed of 9 species which are 
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medium to high-altitude fast-flying species:  Pipistrellus kuhlii, P. pipistrellus, P. pygmaeus, 

P. nathusii, Hypsugo savii, Miniopterus schreibersii, Eptesicus serotinus, Nyctalus leisleri, 

Tadarida teniotis (Blake et al., 1994; Lacoeuilhe et al., 2014; Azam et al., 2015; Roemer et al., 

2017). The “clutter” group was composed of 5 species and 1 genus of low-altitude slow-flying 

bats that generally forage in cluttered vegetation: Myotis daubentonii, M. emarginatus, M. 

nattereri, Plecotus spp., Rhinolophus ferrumequinum and R. hipposideros (Blake et al., 1994; 

Stone et al., 2012; Lacoeuilhe et al., 2014; Azam et al., 2015). 

2.5 Statistical analysis 

2.5.1 Effect of the presence of the streetlight 

We tested the effect of the treatment (experimental lit vs control dark) to measure the 

effect of the presence of a streetlight on bat activity. For each species and group of species, we 

performed a generalized linear mixed model (GLMM) (package glmmTMB v.0.2.0; Brooks et 

al., 2017) using the number of bat passes as the response variable and the recording point type 

(four levels: street-lit, hedge-lit, street-dark and hedge-dark) as a fixed effect. To account for 

the paired design in the species models, we used the site as a random effect. Models for the 

aerial and clutter groups contained a random effect on the recording point nested within the site 

and a second random effect to account for the species effect. According to the nature of the 

response variable (i.e. count data) we used a Poisson error distribution or a negative binomial 

error distribution if overdispersion was detected in the data (Zuur et al., 2009). We performed 

all models with and without a zero-inflation parameter and to identify the best model, we used 

AIC scores and examined the dispersion parameter. We did not run models when occurrence 

was below 10% or the number of contacts was below 20. 
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We used a principal component analysis (PCA) (package FactoMineR v.1.39; Lê, Josse, 

& Husson, 2008) to summarize the information included in the 4 environmental variables 

(proportion of urban, agricultural, high and low vegetation semi-natural areas) and 3 

meteorological variables (wind speed, temperature and proportion of visible moon). As the 

proportion of variance explained by the two first principal components of the PCA was greater 

than 50%, we only included these two as fixed effects in all models. This technique allowed us 

to limit the number of co-variables (from seven to two) and thus to avoid over-parametrisation 

and multi-collinearity problems by using uncorrelated linear combinations of the original co-

variables (principal components). The models to test the effect of the presence of the streetlight 

were written as follow: 

Species activity ~ recording point type + PC1 + PC2 + (1|site) 

Group activity ~ recording point type + PC1 + PC2 + (1|species) + (1|site/recording 

point) 

They were applied on data for all recording points (n=112). We performed a post-hoc 

Tukey HSD test to obtain comparison between experimental lit and control dark points at the 

street and at the hedge (package lsmeans v.2.27-67; Lenth, 2016). 

2.5.2 Effect of the illuminance on bat activity 

We evaluated the effect of the illuminance level on bat activity at street and hedge points 

using both experimental and control recording points. For each species and group of species we 

performed two GLMMs using bat activity as the response variable and illuminance as a fixed 

effect, one model focusing on street points and a second model focusing on hedge points. We 

used the same random effect structures as previously and also included the two first components 
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of the PCA on environmental and meteorological variables. The models to test the effect of the 

illuminance were written as follow: 

Species activity ~ illuminance + PC1 + PC2 + (1|site) 

Group activity ~ illuminance + PC1 + PC2 + (1|species) + (1|site/recording point) 

Both models were applied separately on data for street points (n=56) and on data for 

hedge points (n=56). 

2.5.3 Effect of the streetlights characteristics on bat activity 

We measured the effect of three other streetlight characteristics on bat activity: the lamp 

type (HPS or LED), the streetlight height and the distance to the streetlight. As those variables 

could only be measured for experimental lit points, we did not consider control points in the 

following models. For each species and light variable (lamp type, streetlight height and distance 

to the streetlight), we built two GLM, one for bat activity at the streetlights and one for bat 

activity at the lit hedges except for the distance variable which could only be measured at 

hedges. In each model we included one of the three light variables and the two principal 

components of the PCA as fixed effects. Aerial and clutter groups’ models were built as 

GLMMs with the same fixed effects and two separate random effects, one on the recording 

point and one on the species.  

The models to test the effect of the streetlight characteristics were written as follow: 

Species activity ~ streetlight characteristic + PC1 + PC2 

Group activity ~ streetlight characteristic + PC1 + PC2 + (1|species) + (1|recording 

point) 
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Both were applied separately on data for lit street points (i.e. at streetlights; n=28) and 

on data for lit hedge points (n=28). As we looked at the effect of each characteristics in separate 

models, we applied a Bonferroni correction on the p-values. In order to be significant, effects 

of models on street points needed to have a p-value below 0.025 (2 models: lamp height and 

lamp type) and effects of models on hedge points needed to have a p-values below 0.017 (3 

models: lamp height, lamp type and distance to the streetlight). All the analyses were performed 

in R 3.3.3 (R Core Team, 2017). 

3. Results 

3.1 Bat monitoring 

In the dataset allowing for a maximum error risk of 0.5, there was a total of 187 885 bat 

passes belonging to 20 species. Five species were not included in the analysis as the number of 

 

Fig. 2 Effect of the presence of a streetlight on bat activity at the street points (a) and at the 

hedge points (b) for clutter species (black), aerial species (grey) and groups (hatched). Bars 

represent estimates of the difference of activity between experimental lit points and control 

dark points and error bars represent standard errors ('*' refers to p-value <0.05; '**' refers to 

p-value <0.01; '***' refers to p-value <0.001). 
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bat passes recorded was too low (n<50). The most abundant species were P. kuhlii (n = 89 773), 

P. pipistrellus (n = 45 194) and P. pygmaeus (n = 32 380) (Table 1). Almost all bat passes were 

attributed to aerial species with only 1% of bat passes being of clutter species (n = 1277) (see 

Appendix E for more details). 

3.2 Effect of the presence of the streetlight 

The presence of a streetlight had a significant positive effect on all aerial species activity 

except for P. pipistrellus, T. teniotis and E. serotinus and on the aerial group activity at the 

street points compared to a similar environment with no light (Fig. 2a). At the hedge, this 

positive effect was significant but weaker for the aerial group and for P. nathusii, H. savii, M. 

schreibersii and N. leisleri (Fig. 2b). All these effects were also significant for the 0.1 maximum 

error risk tolerance (MERT) dataset except for P. nathusii. This species number of bat passes 

dropped drastically from 5122 at the 0.5 MERT to 74 at the 0.1 MERT due to difficulties in its 

acoustic identification. A significant negative effect was detected on the activity of M. nattereri, 

R. ferromequinum, R. hipposideros and Plecotus spp. and at the clutter group level at the 

streetlight. It was only significant for M. nattereri activity at the hedge. Results on the dataset 

with a 0.1 MERT are detailed in Appendix C. 

3.3 Effect of the light illuminance on bat activity 

Light illuminance had a significant positive effect on the aerial group activity both at 

the street and hedge points (Fig 3).  At the species level, illuminance had a significant positive 

effect on P. kuhlii, P. pygmaeus, P. nathusii, M. schreibersii and N. leisleri but these effect 

disappeared for the 0.1 MERT dataset for P. pygmaeus and P. nathusii. This positive effect was 

also present and stronger at the hedge for P. kuhlii, P. nathusii and N. leisleri. Again, it was not 

significant for P. nathusii when using the 0.1 MERT dataset. The illuminance had a negative 
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impact on the clutter group activity at the hedge. At the species level, the illuminance only had 

a significant negative effect on R. hipposideros at street points but it was at least twice as strong 

as the higher positive effect for aerial species. 

Table 1 Number of bat passes, overall occurrence and protection status of the 15 species 

studied. Protection status refer to the level of protection given by the Habitat Directive in the 

EU. 

  

Number 

of bat 

passes Occ. 

Protection 

status 

Aerial species  
  

P. pipistrellus 45 194 79% Annex IV 

P. kuhlii 89 773 100% Annex IV 

P. pygmaeus 32 380 98% Annex IV 

P. nathusii 5 122 97% Annex IV 

H. savii 2 818 85% Annex IV 

M. schreibersii 2 754 76% Annex II 

E. serotinus 991 87% Annex IV 

N. leisleri 2 234 93% Annex IV 

T. teniotis 5 342 55% Annex IV 

Clutter species  
  

M. daubentonii 169 57% Annex IV 

M. emarginatus 59 29% Annex II 

M. nattereri 196 39% Annex IV 

Plecotus spp. 547 61% Annex IV 

R. hipposideros 240 44% Annex II 

R. 

ferrumequinum 
66 

22% Annex II 

3.4 Effect of the streetlight characteristics on bat activity 

The lamp height had a negative effect on P. natusii activity at the streetlight but this 

effect was not significant with the 0.1 MERT dataset.  HPS lamps had a significant negative 

impact on H. savii activity at the streetlight compared to LED lamps. There was no other effect 

of the lamp height or type for any other species or for the two groups either at the streetlight or 

at the hedge. The distance to the streetlight had a significant negative effect on all aerial species 

activity except for T. teniotis and E. serotinus and it was also significant for the aerial group 

(Fig. 4). The distance to the streetlight had no significant effect on clutter species and group. 
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Fig. 4 Effect of the distance of the streetlight on bat activity at the hedge for clutter species 

(black) and aerial species (grey). Dots represent the estimates of the effect of the distance and 

error bars represent standard errors. As we tested 3 variables in separate models, we used a 

Bonferroni correction hence effects are significant for p-values < 0.017 ('*' refers to p-value 

<0.017; '***' refers to p-value <0.0001). We did not run a model for M. emarginatus as we 

had less than 20 contacts in the dataset considered for this model. 

 

Fig. 3 Effect of the illuminance level on bat activity at the street points (a) and hedge points 

(b) for clutter species (black) and aerial species (grey). Dots represent the estimates of the 

effect of illuminance and error bars represent standard errors ('*' refers to p-value <0.05; '**' 

refers to p-value <0.01; '***' refers to p-value <0.001). For graphical reasons, we broke the 

y axis on graph (b) to represent M. emarginatus estimates but we did not represent the full 

extent of this species and M. nattereri standard error bars. 
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4. Discussion 

We evaluated the impact of ALAN on 15 bat species activity in a protected area and 

found opposite effects on aerial (9 species) and clutter (6 species) species. Clutter species 

activity was negatively impacted by the presence of light which could be explained by a 

possible intrinsic perception of increased predation risk of these slow-flying species when in lit 

environments (Rydell, Entwistle, & Racey, 1996). On the opposite, aerial species activity was 

higher in lit environment both along streets and hedges which reflects the foraging behavior 

adaptation of most aerial species to take advantage of the accumulation of insects close to lights 

(Stone et al., 2012; Lewanzik & Voigt, 2017). The illuminance level affected all bat species 

and notably it negatively impacted clutter bats activity at hedges. Light diffusing outside urban 

areas and onto potential habitats for bats can decrease their quality and this might alter protected 

areas capacity to preserve species with conservation issues. We performed all the models 

(n=125) on two datasets including a different maximum error risk tolerance (0.5 and 0.1). This 

allowed us to confirm the robustness of our findings except for five models. Four of these were 

for P. nathusii which acoustic identification is difficult notably due to confusions with P. kuhlii 

(Obrist & Fluckiger, 2004) hence results for this species should be considered with caution.  

4.1 Influence of light on bat communities 

We found a negative effect of lighting at street points on four out of six clutter species 

activity and a positive effect on six out of nine aerial species activity which is coherent with 

other studies (Stone et al., 2009; Azam et al., 2015). At the hedge (7 to 192 m away from 

streetlights), we only found a negative impact of the streetlight presence on one clutter species. 

In Azam et al. (2018), the activity of Myotis spp. at hedges seemed to be lower in lit conditions 

as far as 50 m away from the streetlight (positioned along the hedge) but no significant effect 

was detected further than 10 m away. The difference of sensitivity to light pollution between 
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bat species causes a competition disadvantage for species that cannot forage for insects gathered 

at light sources. This is most probably accentuated by the “vacuum cleaner” effect, i.e. the long-

distance attraction of light-susceptible species to lamps (Voigt & Kingston, 2016), leading 

surroundings of lit areas to have less food resource available for light-avoider species. This 

further loss of foraging habitats for light-sensitive species could lead to a distortion in the 

community composition in favor of aerial species (Arlettaz, Godat, & Meyer, 2000; Polak et 

al., 2011). Therefore light pollution might not only impact activity levels but also bat 

communities and lead to less rich and more generalist communities thus contributing to a biotic 

homogenization process. However, the impact of light pollution is not as permanent as land use 

conversion. If we were to turn off lights illuminating a habitat previously used by light-sensitive 

bats, we could expect sensitive bats to come back (Stone et al., 2009, 2012) although no research 

has been done to study bat activity after the extinction of sites lit for a long period of time.  

4.2 Effect of the illuminance on bats 

We found a significant negative effect of the illuminance on the clutter group at hedge 

points where illuminance values were low (range 0.1-13.2 lx, 3rd quartile = 0.3 lx). This is 

coherent with another study that showed a negative impact of illuminance on Myotis spp. and 

Plecotus spp. while most sampling sites (77%) had an illuminance level below 5 lx (Lacoeuilhe 

et al., 2014). Moreover, full moon light which correspond to 0.1 to 0.3 lx (Gaston et al., 2013) 

can influence bat activity levels (Saldaña-Vázquez & Munguía-Rosas, 2013) thus small 

changes in natural light level such as light trespass may have important impacts on bats. As in 

Stone et al., 2012, we found a significant negative effect of illuminance at street points for R. 

hipposideros but we did not find significant effect for any other clutter species or at the group 

level. However our results showed a strong negative effect of the presence of streetlights on 

clutter species activity at street points when compared to control dark points. The mean number 
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of clutter bat passes was 5 times higher at lit hedges than at streetlights thus it is possible that 

we find no effect of illuminance at the streetlight because gleaner bats avoid coming close to 

light sources irrespective of the illuminance level. Moreover, as there was no significant 

difference in clutter bats activity level between the dark control points along streets and at 

hedges (p-value = 0.375), our sample design allow us to conclude that the low activity at 

streetlights is not due to the higher proximity to urban areas of street points.  

Studies on artificial light often measure bat activity at streetlights in urban areas and 

hence mostly record the activity of species exploiting insects attracted by light (Stone, 

Wakefield, et al., 2015; Rowse, Harris, & Jones, 2016; Lewanzik & Voigt, 2017). Studying the 

impact of ALAN in a protected area and at varying distances from streetlights allowed us to 

evaluate the impact of low levels of light (under 5 lx) on sensitive species. Our results showed 

that light trespass onto semi-natural areas such as hedges that represent important potential 

foraging habitats or transiting routes (Verboom & Huitema, 1997; Boughey et al., 2011a; 

Lacoeuilhe et al., 2016) can reduce habitat quality to a point where light-adverse species will 

completely avoid the area.  

4.3 Streetlight characteristics 

We found a negative impact of the distance to streetlights on seven out of nine aerial 

species activity. Similarly, a study undertaken in a protected area in the North of France, showed 

that the positive effect of light on P. nathusii, P. kuhlii, P. pipistrellus and N. leisleri activity 

disappeared rapidly with increasing distance steps (no effects at more than 10 m from the 

streetlight; Azam et al., 2018). However here, while considering distances between 7 and 192 

m, we detect a linear negative effect for most aerial species. This is consistent with the positive 

effect of illuminance on aerial activity as the illuminance decreases proportionally to the inverse 

of the distance squared (R2 = 0.9 in our dataset). We did not find any effect of the distance on 
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clutter species either at the species or group level and Azam et al. (2018) showed that the 

negative effect of light on Myotis spp. lost its significance when further than ten meters away 

from the streetlight. This could suggest that clutter bats are not sensitive to the brilliance of a 

light source perceived from a distance but only to the illuminance level at the point where they 

are located. 

4.4 Recommendations & conclusion 

New lighting technologies have a higher energy efficiency which decreases the cost of 

lighting and might trigger a multiplication of light points and an increase in power input (Tsao 

et al., 2010). Hence it is urgent to consider the impact of light pollution on biodiversity. The 

constant renovation of public lighting (estimated replacement rate of 3% in France in 2011, 

ADEME, 2011) and the current shift toward more adaptable technologies is also an opportunity 

to develop lighting planning schemes less harmful to ecosystems. Gaston et al. (2012) proposed 

five management options to reduce light pollution. According to our result, it appears that three 

of them are of major importance: reducing the quantity of light, increasing light flux 

directionality and avoiding lighting at all.  

The quantity of light, often measured through illuminance in ecological studies, affects 

the majority of bat species. Clutter species are negatively impacted and sensitive to low levels 

of light hence they might be disturbed by light trespass.  Thus it is important to use the lowest 

amount of light possible considering pedestrians and vehicles use of the area to limit excessive 

lighting and light spillover into semi-natural habitats. New technologies light flux can be 

changed even after being installed. Thus an evaluation of local ecosystems sensitivity to light 

could technically be followed by a modification in installed streetlights parametrization. In 

addition, new streetlights are very often installed in full cut-off luminaires that allow for a more 

directional flux and hence results in less light spillover (Kinzey et al., 2017). It is also possible 



CHAPTER 4 

 

   - 251 -  

to add shielding on the streetlight or to plant a hedge to help reduce trespass and preserve dark 

refuges. However, the most important parameter to control is the position of the streetlight. The 

presence of a streetlight irrespective of its characteristics had an impact on the activity of 10 

out of the 15 bat species studied. The decision to keep an installed streetlight or add a new one 

remains the first and principal lever of action to limit light pollution and even more so in 

protected areas where protected sensitive species are. 
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APPENDICES 

APPENDIX A: Recording points detailed information 
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Table A.2 Results of the Wilcoxon signed rank tests of whether the proportions of the different 

land cover types around recording points differ between experimental and control points at the 

streetlight or at the hedge 

  Under the streetlight   At the hedge 

  W p-value  W p-value 

Arable land 321.5 0.249  344.5 0.440 

Urban area 503.5 0.069  508.5 0.057 

High vegetation 360.5 0.606  355.0 0.548 

Low vegetation 378.5 0.831   366.5 0.682 

 

Table A.3 Spearman correlation between light, meteorological and environmental variables 
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Illuminance                     

Lamp height 
-

0.60           

Distance to streetlight 
-

0.01 0.09          

Temperature 
-

0.23 0.15 
-

0.18         

Wind speed 
-

0.12 0.14 
-

0.24 
-

0.03        
Proportion of visible 

moon 
-

0.15 0.20 0.23 
-

0.40 0.33       

Arable land 
-

0.02 0.08 0.28 0.34 
-

0.44 
-

0.21      

Urban areas 
-

0.12 0.10 
-

0.11 0.42 
-

0.28 
-

0.41 0.29     

High vegetation 
0.05 0.04 

-
0.27 

-
0.15 0.15 0.16 

-
0.27 

-
0.53    

Low vegetation 
0.14 

-
0.09 0.21 

-
0.05 0.37 0.15 

-
0.56 

-
0.40 

-
0.02   
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APPENDIX B: Error risk modelling for bat species identification 

A national dataset of 17 531 species occurrences (including 8405 bat passes) underwent 

automatic identification using the software Tadarida (Bas et al., 2017) (online repository: 

https://github.com/YvesBas) to be classified to the most accurate taxonomic level and assigned 

a confidence probability between 0 and 1. The same dataset was also manually checked using 

BatSound© (Pettersson Elektronik AB, Sweden) and Syrinx (John Burt, Seattle, WA, USA) 

softwares. The dataset contained data for 28 out of the 34 bat species present in France and all 

species considered in this study. 

For each species, we build a generalized linear model (package stats; R Core Team, 

2017) using the success/failure of automatic identification as a binomial response variable and 

the probability given for that species by the random forest classifier as an explanatory variable. 

We selected the probit link which better fitted the binomial distribution of manual checking for 

all species. Reading the logistic regression curves produced, we could hence determine the 

needed confidence index to tolerate a given maximum error risk, i.e. confidence thresholds 

(Figure B.1).   
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 Confidence index 

 

Fig. B.1. Logistic regressions between the success probability and the confidence index of the 

automatic identification for the 15 bat species studied. Horizontal dotted lines show 

identification success probabilities (0.5 and 0.9) corresponding to the maximum error risk 

tolerance thresholds used in the analysis (respectively, 0.5 and 0.1) and corresponding 

confidence thresholds (vertical solid lines). Each open circle represent a bat pass taking an 

identification success probability value of 1 when correctly identified by Tadarida software and 

0 otherwise. 
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APPENDIX C: Models results for the dataset at a 0.1 maximum error risk 

Table C.1 Effect of the presence of a streetlight on species and species group activity at the 

street and hedge points ('.' refers to p-value <0.1; '*' refers to p-value <0.05; '**' refers to p-

value <0.01; '***' refers to p-value <0.001). The model for M. emarginatus for street points 

was not be because occurrence was too low (<10%). 

 

 

 

 

 

 

 

 

 

 

Aerial species 1.88 ± 0.20 *** 0.56 ± 0.20 *

P. pipistrellus 0.85 ± 0.62 1.53 ± 0.60

P. kuhlii 2.29 ± 0.27 *** 0.36 ± 0.58

P. pygmaeus 2.38 ± 0.44 *** 0.22 ± 0.41

P. nathusii -0.04 ± 0.97 -1.71 ± 0.41

H. savii 1.15 ± 0.40 * 1.63 ± 0.54 *

M. schreibersii 3.34 ± 0.41 *** 2.14 ± 0.45 ***

N. leisleri 1.30 ± 0.21 *** 0.73 ± 0.21 **

T. teniotis 1.56 ± 0.76 0.32 ± 0.56

E. serotinus -0.26 ± 0.58 0.38 ± 0.48

Clutter species -2.15 ± 0.37 *** -0.23 ± 0.29

M. daubentonii -1.02 ± 0.42 -0.76 ± 0.41

M. emarginatus – -0.50 ± 0.619

M. nattereri -3.63 ± 1.18 * -1.83 ± 0.62 *

R. ferrumequinum -2.90 ± 1.13 * -0.35 ± 0.38

R. hipposideros -3.91 ± 1.12 ** 0.51 ± 0.47

P. austriacus -2.96 ± 0.89 ** 1.01 ± 0.47

Illuminance

Street points Hedge points

β ± SE β ± SE
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Table C.2 Effect of streetlight illuminance on species and species group activity under the 

streetlight and at the hedge ('.' refers to p-value <0.1; '*' refers to p-value <0.05;  '**' refers to 

p-value <0.01; '***' refers to p-value <0.001). The model for M. emarginatus at the streetlight 

was not run because occurrence was too low (<10%). 

 

 

 

 

 

 

 

 

 

 

 

 

Aerial species 0.04 ± 0.01 ** 0.14 ± 0.05 **

P. pipistrellus 0.04 ± 0.04 0.18 ± 0.08 *

P. kuhlii 0.08 ± 0.04 * 0.15 ± 0.07 *

P. pygmaeus 0.04 ± 0.02 . 0.23 ± 0.14 .

P. nathusii -0.02 ± 0.08 -7.04 ± 4.94

H. savii 0.05 ± 0.03 . 0.36 ± 0.28

M. schreibersii 0.08 ± 0.04 * 0.13 ± 0.13

N. leisleri 0.05 ± 0.02 * 0.16 ± 0.08 *

T. teniotis -0.1 ± 0.07 -0.2 ± 0.09 *

E. serotinus -0.11 ± 0.05 * 0.05 ± 0.15

Clutter species -0.14 ± 0.04 *** -0.58 ± 0.19 **

M. daubentonii -0.05 ± 0.03 -0.74 ± 0.59

M. emarginatus – -5.21 ± 3.19

M. nattereri -0.15 ± 0.09 . -1.24 ± 1.65

R. ferrumequinum -0.3 ± 0.22 -0.1 ± 0.17

R. hipposideros -0.47 ± 0.2 * -0.66 ± 0.49

P. austriacus -0.21 ± 0.11 . -1.22 ± 1.49

Street points Hedge points

Illuminance

β ± SE β ± SE
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Table C.3 Effect of streetlight characteristics on species and species group activity under the 

streetlight and at the hedge. Using Bonferroni correction, effects under the streetlight are 

significant for p-values <0.025 and at the hedge for p-values <0.017 ('.' refers to p-value <0.05; 

'*' refers to p-value under the significance threshold; '**' refers to p-value <0.001; '***' refers 

to p-value <0.0001). Several models were not run because the occurrence was too low (<10%) 

or there were too few bat passes recorded (<20). 

 

 

 

 

 

Aerial species -0.02 ± 0.08 -0.23 ± 0.24 -0.05 ± 0.10 -0.02 ± 0.33 -0.011 ± 0.002 ***

P. pipistrellus -0.39 ± 0.23 0.50 ± 0.33 0.83 ± 1.12 0.54 ± 3.15 -0.084 ± 0.033 *

P. kuhlii -0.22 ± 0.11 0.02 ± 0.17 0.48 ± 0.41 -0.21 ± 0.43 -0.013 ± 0.003 ***

P. pygmaeus -0.12 ± 0.15 -0.11 ± 0.28 0.19 ± 0.60 0.26 ± 0.82 -0.021 ± 0.006 ***

P. nathusii 0.36 ± 0.46 – -2.43 ± 2.76 – –

H. savii -0.55 ± 0.22 * 0.58 ± 0.21 * -1.87 ± 0.73 * -0.06 ± 1.03 -0.017 ± 0.006 *

M. schreibersii -0.02 ± 0.19 0.01 ± 0.23 -0.85 ± 0.58 -1.22 ± 0.66 -0.023 ± 0.007 *

N. leisleri -0.07 ± 0.12 0.14 ± 0.17 0.12 ± 0.33 0.27 ± 0.42 -0.010 ± 0.003 *

T. teniotis 0.63 ± 0.66 -0.89 ± 0.34 * 5.10 ± 1.95 * 0.57 ± 1.07 -0.010 ± 0.013

E. serotinus 0.71 ± 0.32 -0.77 ± 0.25 * 1.52 ± 1.30 0.91 ± 0.74 0.004 ± 0.008

Clutter species -0.00 ± 0.18 -0.11 ± 0.65 -0.09 ± 0.15 -0.64 ± 0.49 0.009 ± 0.005

M. daubentonii – -0.12 ± 0.15 – -0.43 ± 0.47 0.005 ± 0.005

M. emarginatus – – – – –

M. nattereri – – – – –

R. ferrumequinum – 0.21 ± 0.18 – -0.69 ± 0.52 0.002 ± 0.005

R. hipposideros – -0.01 ± 0.36 – -1.47 ± 0.80 -0.004 ± 0.007

P. austriacus – 0.19 ± 0.41 – 2.69 ± 1.34 0.028 ± 0.012 .

Distance to the 

streetlight

β ± SE β ± SE β ± SE β ± SE β ± SE

Lamp typeStreetlight height

Street points Hedge points Street points Hedge points
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APPENDIX D: Detection volumes overlap between recording points & corrected 

number of bat passes 

We applied a correction on the number of bat passes for each species and each point for 

which there was an overlap in the detection volume (Table S4-1) to account for the subsequent 

unevenness in the sampling volume of the recording points. The corrected number of passes 

was calculated as follow: 

𝑁𝑐𝑜𝑟 = 𝑁 × 
𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
 

where 𝑁 is the original number of bat passes and 𝑁𝑐𝑜𝑟 the corrected number of bat passes.  

We used 𝑁𝑐𝑜𝑟 as the response variable in all the analysis. 

 

Table D.1 Proportion of the dataset concerned with the volume of detection correction for each 

species. 

Species 
Species 

group 

Distance 

of 

detection 

Proportion of pairs 

with overlap 

Number of bat passes 

recorded at both 

points of a pair 

Proportion of bat 

passes detected at both 

points of a pair 

Rhinolophus hipposideros clutter 5 11% 2 1% 

Myotis emarginatus clutter 10 21% 1 2% 

Rhinolophus ferrumequinum clutter 10 21% 1 1% 

Myotis daubentonii clutter 15 36% 11 6% 

Myotis nattereri clutter 15 36% 6 3% 

Pipistrellus pygmaeus aerial 25 39% 7101 20% 

Minioperus schreibersii aerial 30 45% 312 11% 

Pipistrellus kuhlii aerial 30 45% 30296 29% 

Pipistrellus pipistrellus aerial 30 45% 13639 26% 

Eptesicus serotinus aerial 40 59% 101 11% 

Plecotus austriacus clutter 40 59% 14 3% 

Hypsugo savii aerial 40 59% 399 15% 

Nyctalus leisleri aerial 80 88% 401 20% 

Tadarida teniotis aerial 150 100% 357 9% 
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APPENDIX E: Bat calls identification & associated error risk 

Table E.1 Number of bat passes, occurrences and predicted error rates for the raw data and the 

two datasets used for the analysis (maximum error risk tolerance or 0.5 and 0.1). 

    

Maximum error risk 

tolerance       

Maximum error risk 

tolerance 

  Raw data 0.5 0.9    Raw data 0.5 0.9 

Pipistrellus kuhlii     Myotis nattereri    
Confidence index – 0.401 0.63  Confidence index – 0.494 0.691 

Nb of bat passes 113 737 75 691 70 863  Nb of bat passes 304 192 151 

Occurrences 1 1 0.94  Occurrences 0.64 0.39 0.27 

Error rate 0.09 0.04 0.02  Error rate 0.37 0.07 0.03 

Pipistrellus nathusii     Myotis daubentonii    

Confidence index – 0.585 0.833  Confidence index – 0.325 0.475 

Nb of bat passes 6 797 4 554 73  Nb of bat passes 639 164 121 

Occurrences 0.99 0.97 0.15  Occurrences 0.83 0.57 0.47 

Error rate 0.39 0.27 0.09  Error rate 0.67 0.09 0.03 

Pipistrellus pipistrellus     Myotis emarginatus    
Confidence index – 0.469 0.739  Confidence index – 0.421 0.601 

Nb of bat passes 55 872 37 845 16 940  Nb of bat passes 229 57 38 

Occurrences 1 0.79 0.29  Occurrences 0.71 0.29 0.19 

Error rate 0.2 0.15 0.07  Error rate 0.75 0.11 0.04 

Pipistrellus pygmaeus     Plecotus austriacus    
Confidence index – 0.562 0.81  Confidence index – 0.511 0.702 

Nb of bat passes 42 059 28 326 20 573  Nb of bat passes 1 266 506 265 

Occurrences 1 0.98 0.7  Occurrences 0.94 0.61 0.29 

Error rate 0.21 0.1 0.05  Error rate 0.58 0.16 0.04 

Hypsugo savii     Rhinolophus ferrumequinum    
Confidence index – 0.5 0.719  Confidence index – 0.378 0.518 

Nb of bat passes 3 995 2 193 860  Nb of bat passes 75 66 66 

Occurrences 0.96 0.85 0.49  Occurrences 0.22 0.22 0.22 

Error rate 0.38 0.2 0.05  Error rate 0.1 0.01 0.01 

Miniopterus schreibersii     Rhinolophus hipposideros    
Confidence index – 0.507 0.715  Confidence index – 0.522 0.72 

Nb of bat passes 4 916 2 565 2 414  Nb of bat passes 278 240 229 

Occurrences 0.8 0.76 0.71  Occurrences 0.5 0.44 0.38 

Error rate 0.46 0.04 0.03  Error rate 0.14 0.03 0.01 

Eptesicus serotinus     Tadarida teniotis    
Confidence index – 0.472 0.694  Confidence index – 0.272 0.38 

Nb of bat passes 1 178 815 316  Nb of bat passes 6 330 3 511 2 033 

Occurrences 0.99 0.87 0.38  Occurrences 0.71 0.55 0.41 

Error rate 0.3 0.18 0.06  Error rate 0.42 0.11 0.03 

Nyctalus leisleri         
Confidence index – 0.463 0.672      
Nb of bat passes 2 601 1 650 1 551      

Occurrences 0.97 0.93 0.88      
Error rate 0.21 0.03 0.02           
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“Failure to abate the environmental consequences of a man-made disturbance [artificial 

light] using available viable solutions would not inspire confidence in our ability to solve the 

apparently insurmountable challenges posed by global climate change phenomena.” 

Davies 2017 
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GENERAL DISCUSSION 

1. Principal results 

Throughout my PhD thesis, I investigated the impact of light pollution on bat species 

activity at the local scale and at the city scale. All the analysis presented here were based on bat 

acoustic data either resulting from a national scale citizen science monitoring program (Vigie-

Chiro) or gathered during field work. Passive acoustic recording of bats produces large amounts 

of data which identification have recently been facilitated by semi-automated identification 

software. To exploit these data, the identification success of the software Tadarida was 

evaluated in regard to the confidence index associated to each identification (Article 1). Such 

analysis allowed to define confidence threshold subsequently used to constitute bat activity 

datasets suitable for further analysis.  

The large majority of studies on the impact of light pollution on bats focus on local scale 

effects. However, bats perception of the landscape may be different depending on the scale 

studied and it is therefore important to consider this to conceive efficient bat conservation 

measures (Gallo et al., 2018). Hence, I investigated bats response to light at an intermediate 

scale revealing that a bat species considered to be light tolerant is negatively affected by ALAN 

at the city scale (Article 2). A similar analysis at a conurbation scale demonstrated that bat 

species may show a diversity of response to light being either positive, negative or dependent 

on the light level (Article 3). Both studies highlighted the need to preserve dark areas in urban 

context to promote several bat species activity. Nevertheless, conserving habitats is insufficient 

to maintain population. The promotion of landscape connectivity is also a crucial element to 

individuals to move between dark habitat patches to fulfill their everyday needs and to enhance 

gene-flow. Thus I examined the impact or artificial lighting on bats landscape connectivity and 
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showed that it was highly context-dependent, conditional to the original distribution of tree 

cover and light (Article 4). In addition, I evaluated the potential of lighting planning schemes 

to modify the landscape connectivity through the comparison of the current lighting situation 

with scenarios of light extinction in specific areas. These comparisons indicated that light 

extinction in environments suitable for bats had the potential to enhance landscape connectivity 

(Article 3). Moreover, I investigated the potential impact of a global change in lighting 

technology toward the use of LEDs and showed that it would have a negative influence on 

landscape connectivity for bats (Article 4). The results arising from intermediate scale studies 

may be used to provide recommendation for landscape planning. Yet, local scale 

implementation require more specific indication on how to adapt lighting to limit its influence 

on biodiversity. I thus investigated the influence of several light characteristic on the impact of 

light on bats and found that regardless of streetlights characteristics, the presence of streetlight 

negatively influenced slow-flying bat species activity (Article 5). Moreover, the results of this 

study showed that the impact of light on hedges could not be avoided through the determination 

of a distance threshold be only through the limitation of light trespass. 

The work carried out during this PhD thesis allowed to improve the knowledge on bat 

species response to light and to propose tools to evaluate and mitigate the impact of ALAN on 

biodiversity. In the following paragraphs, I discuss the implication of the study presented, in 

relation to the current knowledge, on the technical challenges faced while using acoustic data, 

the importance to evaluate ALAN’s impact at several spatial scales and how the expansion and 

evolution of lighting may greatly threaten biodiversity including humans. 
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2. Technical challenges of the study of bats 

Acoustic data are increasingly employed to study animal biodiversity. Indeed they are 

noninvasive, cost-effective and may be more efficient than traditional methods such as capture 

to evaluate species richness and abundance (Fig. 30 ;MacSwiney et al., 2008). Passive acoustic 

sampling allow to generate considerable amounts of data that can be used to study species 

presence, abundance and behavior at small and large spatiotemporal scales (Froidevaux et al., 

2014). Semi-automated identification software such as Tadarida (Bas, Bas, & Julien, 2017) 

allow to rapidly identify bat calls while associating identifications with a confidence index (CI). 

However to be able to use the CI to decide which data should be kept for the analysis, I 

participated in the development of a methodology allowing users to determine the maximum 

error risk of a given acoustic sequence identification (Article 1). The results showed that it was 

necessary to only consider data with at least a 0.5 maximum error risk to minimize false 

positives and have consistent responses of bat activity in models. This 0.5 maximum error risk 

threshold means that each data has a 0.5 or higher probability to be well identified hence in the 

total dataset the realized identification error rate is lower than 0.5. This study provides new 

opportunities, starting with a time gain in manual checking in experimental studies. Moreover, 

semi-automated identification allows to 

remove the bias linked to the observer 

identification experience which may vary 

between observer and across time as 

observer gain in experience. This aspect is of 

particular importance for large-scale 

monitoring of bats where a large number of 

observers participate. Moreover, an 

important advantage of acoustic data is that 

 

Fig. 30. Neotropical bat species accumulation 

curves in pastureland habitats (Yucatan 

peninsula). (∆) represent species recorded with 

capture methods only and (•) represent species 

recorded with capture methods and acoustical 

sampling (extracted from MacSwiney, Clarke, 

& Racey, 2008). 
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they can be reanalyzed following the improvement of identification techniques or the 

development of new methodologies hence extracting new information from data accumulated 

over the years. For example, Tadarida is still being developed to enhance identification but also 

identify new species and taxa such as birds and insects. These improvements may generate a 

huge amount of data on newly acoustically identified species arising from already collected 

data. Acoustic data are mostly used for species-specific studies on a variety of taxa such as bats 

(Fig. 31 ;Newson, Evans, & Gillings, 2015), insects (Chesmore & Ohya, 2004) and apes (Kalan 

et al., 2015) but recent studies propose to use global soundscapes to evaluate spatial and 

temporal patterns of variation in animal diversity (Depraetere et al., 2012) thus opening new 

horizon for the use of acoustic data. 

 
Fig. 31. Patterns of nightly activity through the season with respect to sunset time for three 

bat species (Ppip: P. pipistrellus, Ppyg: P. pygmaeus and Nnoc: N. noctula) measured using 

data from a PAM citizen-science program). Individual box plots summarize the timing of bat 

passes during half-month periods. The solid curved lines show sunset and sunrise times and 

the two dashed lines indicate 3 h and 6 h after sunset. For box plots, wide bars show quartiles, 

lines extend up to 1.5 times the interquartile range, large dots show the median and small dots 

show outliers. Numbers give the total number of recordings in each period (extracted from 

Newson et al., 2015). 
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3. Importance of scale in the evaluation of light pollution’s effects 

Bats scale-dependent response to light 

The studies undertaken during this PhD showed that the measured response to light of 

a bat species can be markedly different depending on the spatial scale considered. Indeed, at 

the scale of a light source, we found that P. pipistrellus and other fast flying species had a higher 

level of activity close to streetlight and with increasing illuminance (Article 5). This attraction 

to light has long been observed (see Rydell, 2006) and then measured in numerous studies 

(Emma Louise Stone, Jones, & Harris, 2012; Emma Louise Stone et al., 2015; Lewanzik & 

Voigt, 2017; Azam et al., 2018). It is due to fast-flying species ability to use light source as 

foraging grounds thus taking advantage of the high abundance of prey insects attracted to light 

(Eisenbeis, 2006).  This behavior lead to the consideration of species foraging at streetlight as 

light tolerant. However a recent national scale study (Azam et al., 2016) and city and 

conurbation scale studies presented in this thesis (Article 2 & 3) demonstrate that even fast 

flying species can be negatively impacted by light pollution. This difference may be explained 

by the fact that small scale experiments give insight into the context-specific behavior of 

individuals while large scale analysis allow to study population dynamics hence cumulating all 

the behavioral and physiological responses to light pollution and addition to potential effect on 

resources. Most studies at fine scale measure bat activity at light sources and therefore the bat 

activity of fast-flying bats recorded mostly corresponds to foraging activity. Few studies 

evaluated the impact of light on other flying behavior such as roost emergence (Downs et al., 

2003) or transit (Hale et al., 2015) and found negative effects on fast-flying species. Therefore, 

the term “light tolerant” only holds for one aspect of these species biology and hinder their 

consideration as species that are also negatively affected by light. Nevertheless, some species 

present the same response to light across scales such as light sensitive Myotis species that have 
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been shown to be negatively influenced by ALAN both at the local scale (Azam et al., 2018) 

and in this thesis at the conurbation scale (Article 3). Large scale studies allow to account for 

the global impacts of light on behaviors, physiology and interactions together with their 

downstream influence on population dynamics. The example of so-called light tolerant bats 

highlight the necessity to undertake large scale studies in addition to small scale ones to have 

the full picture of the effects of light on a species. Such studies investigating population level 

effects of light require large spatial sampling and can benefit from the data gathered through 

citizen science monitoring programs. In the long run, such sampling scheme could also allow 

to investigate the temporal evolution of populations jointly with the development of lighting 

and explore long-term demographic effects. 

Knowledge gaps in light’s large scale effects on low trophic level species 

Bat species spatial distribution and population trends tend to be similar to those of their 

insect preys (Jones et al., 2009; Stahlschmidt & Brühl, 2012). As study showed that nighttime 

lighting could explain 20% of the variation in long-term changes in moth abundance and 

therefore brought evidence that light pollution contributes significantly to moth species decline 

(Wilson et al., 2018), large scale effects of light on insect populations may have indirect 

consequences on bat populations. More generally, it may be of particular interest to study the 

large-scale impacts of artificial night-time light on population dynamics of primary producers 

(e.g., phytoplankton, plants) and species at low trophic levels (e.g., zooplankton insects). As a 

direct or indirect source of energy for higher trophic levels, changes in their distribution and 

abundance may have vast cascading effects on a large number of species. For example, only 

one study evaluated the large scale effect of artificial lighting on plants phenology (ffrench-

Constant et al., 2016). This study showed that deciduous trees budburst in lit areas could be 

advanced by up to 7.5 days thus potentially disrupting the synchronization of herbivorous 
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species phenology with the appearance of new leaves and impacting their fitness and 

reproductive success (Visser & Holleman, 2001). In turn, predators of these herbivorous species 

may be indirectly affected through a decreased availability or quality of preys. Changes in 

primary producers phenology may have wide reaching consequences and should therefore be 

explored to evaluate the extent to which they occur and the intensity of their impact. 

Another taxa representing the source of food of numerous other species are insects. 

Within this taxa, numerous species are known to be attracted to light and this behaviour has 

been exploited to develop trapping methods (e.g., van Langevelde et al., 2017; Roeleke, 

Johannsen, & Voigt, 2018; Fig. 32). However methods to evaluate insect abundance in dark 

areas are lacking hence rendering impossible the comparison of lit and dark sites. Light induces 

a vacuum cleaner effects (Eisenbeis, 2006), i.e. long distance attraction of individuals to light 

sources, however little is known on the distance to which insect are attracted and how insect 

communities are affected at different distance step from the light source. A study attempted to 

measure the attraction distance of a 10 W UV lamp on large moths using a mark-release-

recapture technique and found that the attraction range 

could be up to 10 m depending on the species however 

their analysis did not evaluate recapture rates (Truxa & 

Fiedler, 2012). Such methodology associated with 

further statistical analysis may be of interest to evaluate 

the attraction range of streetlights which power input 

may range from 10 to over 100 W (Rowse, Harris, & 

Jones, 2016) although they often emit less UV than the 

lamp used by Truxa et al. In addition to insects that can 

be trapped in light halos, some may become 

incapacitated by light from afar. For example, a study 

 
Fig. 32. Common light trapping 

technique using a white sheet and a 

mercury vapor lamp (© T. SYRE) 
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showed that 50% of moths approaching a light trap stopped their flight on the ground 

(Hartstack, Hollingsworth, & Lindquist, 1968). Therefore light’s range of impact is greater than 

a light source halo and may thus possibly affect insects tens of meters away. Insectivorous 

species that are very sensitive to light such as slow flying bat species (Emma Louise Stone, 

Jones, & Harris, 2009) avoid lit areas possibly due to an intrinsic perception of increased 

predation risk (Rydell, 1992) but may also be impacted by the insect depletion of dark areas at 

the vicinity of light sources. Newly developed Lidar systems allow to quantify insect biomass 

without using light traps and can also be used to measure bat activity (Malmqvist et al., 2018). 

Future studies could use this technology to evaluate the quantity of insect biomass at different 

distance from a light source jointly with bat activity. This would allow to evaluate the distance 

to which the vacuum cleaner effects is detectable and if an effect on bat activity can be linked 

to it. However further technological development is needed for such technology to be able to 

identify individual bat or insect species.  

Large scale impacts of skyglow 

The illuminance values tested in most experiments range from levels that can be 

measured in very close proximity to light sources (up to 100 lx) to light trespass at tens of 

meters away from a lamp (down to 0.01 lx). However, some species may be sensitive to even 

lower levels of light. For example, studies showed that zooplankton diel vertical migration 

could be altered or inhibited by artificial light (Moore et al., 2000) at light levels below what 

most commercial sensors can detect (Ludvigsen et al., 2018). Such low and nearly 

unmeasurable light quantity may be produced by skyglow. Although this phenomenon is 

believed to extend the effect of light pollution tens or maybe hundreds of kilometres away from 

the light source (Kyba et al., 2015), its actual reach is unknown and we do not have yet the 

technical means to measure it accurately. Indeed, the measure of skyglow is dependent on the 
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spectral distribution of light (Kyba, 2018). Measures taken with Sky Quality Meters, a device 

used by amateur astronomers to measure skyglow, before and after a change from 5%-uplight 

HPS to 0%-uplight LEDs would show a decrease in skyglow as they are based on one colour 

band although in reality the radiance measured would double (Sánchez de Miguel et al., 2017). 

Thus the potential of skyglow remains scarcely explored whereas its effects could be important. 

In aquatic ecosystems, the diel migration of zooplankton to consume near-surface 

phytoplankton constitutes a major pathway in the carbon cycle and adaptive behaviour of 

predators to vertical movements of their preys results in the daily migration of entire food webs 

(Davies et al., 2014). The skyglow effect hence has the potential to have extremely wide 

reaching impacts through the disruption of what may be the most substantial synchronized 

movement of biomass and carbon (Gaston et al., 2017). 

Population level impacts of artificial light is multifactorial stemming from direct or 

indirect effects on individuals’ physiology, behaviour and interactions. Some of these effects 

can modify species movement abilities. Light can act as a barrier to individuals’ movement and 

in this thesis, I showed that light could reduce landscape connectivity for the movement of 

urban bat species (Article 3 & 4). However, bats are highly mobile species and their ability to 

fly may give them more possibility to avoid lit areas than other less mobile species such as 

gastropods. The functional landscape connectivity is species-specific and depends on the 

perception of the landscape, the habitat preferences and the capacity to move through different 

habitats. Light may have a stronger fragmenting effect on light sensitive nocturnal species with 

low movement abilities. In the context of green infrastructure development, to properly include 

light pollution as a criteria to define ecological corridors, it would be valuable to evaluate the 

influence of light on other nocturnal species landscape connectivity perception. 
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4. The future of lighting 

The most persuasive arguments for lighting control are economic ones (Smith, 2009). 

Global strategies aiming at reducing energy expenditure and greenhouse gas emissions also 

contribute to the evolution of lighting such as the phasing out of incandescent light bulbs in the 

EU, the USA and many other countries. Local light schemes such as part-night lighting are 

implemented in more and more cities primarily to reduce electricity cost and to save energy 

(Azam et al., 2015). During my fieldwork, the mayor of small town told me she had to battle 

with political opponents of the municipality to start a part-night lighting scheme and in the end 

the decisive argument was the unequivocal reduction in electricity bills. The replacement of 

dilapidated lighting equipment by LEDs is more and more frequent and in the span of a year, 

two of the 14 sites with HPS lights I used in my field experiment were changed to LEDs. In the 

context of a global strategy toward the reduction of greenhouse gas emissions, the energy 

efficiency of LEDs associated with a lower cost of electricity input drove them to account for 

nearly half of the lighting market by 2016 (Mckinsey, 2012). A vast technological change 

toward LED lighting thus seems inevitable and this change has the potential to double the 

current level of light pollution (Fig. 33 ;Falchi et al., 2016). I demonstrated that such a large 

scale modification in light spectrum may have important implications for bats landscape 

connectivity (Article 4). However, LEDs light emissions can be tailored in terms of duration, 

spectrum, intensity and directionality through a panel of technical tools. These possibilities 

should be the primary focus of future studies on light impacts on biodiversity and ecosystems. 

In addition, to increase the potential to reach realistic comprise for lighting planning, future 

studies should address the issue of light pollution through an interdisciplinary point of view by 

intersecting biology, physics and human sciences point of views. For example, the Haut de 

France region financed a study aiming at defining dark corridors in the city of Lille (from which 

arise the studies presented in the third chapter) while concurrently evaluating its acceptability 
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through surveys addressed to the local population and carried out by the social science 

department of the University of Lille 1. Although political actors feared that citizens would not 

agree with a decrease in light levels this exploratory study showed that citizens seemed to be 

ready to renounce to part of the comfort artificial light brought to limit its impact on 

biodiversity.  

Yet another arising concern on the effect of light pollution is how it can impact human 

health (Haim, Scantlebury, & Zubidat, 2013). Recent studies linked blue light emissions with 

sleep disruption (Green, Haim, & Dagan, 2017) and increased risk of prostate and breast cancer 

(Haim & Portnov, 2013; Rybnikova & Portnov, 2018) and more generally, the exposure to 

artificial light at night may have profound impacts on human metabolism through the disruption 

of hormones secretion (Bonmati-Carrion et al., 2014). Those results may have an important 

influence on future decision concerning lighting (Haim & Zubidat, 2015). 

 

Fig. 33. Maps of Europe’s artificial sky brightness (A) currently and (B) as forecasted after a 

transition toward 4000K CCT LED technology, without increasing the photopic flux of 

currently installed lamps. 
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Integrating darkness in ecological corridors 

With green infrastructure policies, for the first time, conservation policies integrate the 

notion of scale and consider the dynamic nature of biodiversity  (Sordello, Vanpeene, & Azam, 

2014). These policies promote landscape connectedness throughout Europe, nation-wide and at 

regional and local scales which may have the potential to improve individual’s daily 

movements, migration, dispersal, gene-flow and ecosystem functioning. In this PhD I focused 

on a scale only integrating bats daily movements however landscape connectivity is desirable 

at all scale and it would be valuable to carry out connectivity studies at larger scales studying 

gene-flow or migration routes for example. At the time when green infrastructure policies were 

first developed, the importance of the impact of light pollution on biodiversity was not clear yet 

and therefore not included as a criteria to define ecological corridors (Sordello, 2017). 

Nonetheless, along the elaboration of their ecological corridors network (SRCE), 21 one of the 

22 regions of France mention the issue of light pollution and 6 raise need to acquire further 

knowledge on this topic (Sordello, 2017). This shows that land managers are aware of the issue 

but are in demand of proper recommendation to apply them to their territory. 

At local and intermediate scale, outdoor lighting planning could be amended to include 

dark refuges and ecological corridors with low light level to allow for nocturnal species 

movements. Indeed, landscape connectivity may be greatly improved through the extinction of 

specific areas such as urban parks and wetlands (Article 3). Lighting planning should first be 

considered at a relatively large scale, coherent with a lighting management scale such as 

municipalities. The methodology presented in the second chapter could be used to define 

potential dark corridors for bats (Article 3 & 4) and adapted to evaluate such corridors for other 

nocturnal species. The superposition of several species dark corridors would lead to the 

determination of a network of links between habitat patches and could allow to delineate areas 

were lighting need to be reduced of modified to improve landscape connectivity. Then the 
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knowledge arising from small scale studies may be used to determine how locally the lighting 

should be ameliorated. Lighting management should be adapted to the context to allow for 

solutions both suitable for human activities and ecosystem functioning. For example, motion 

detector could be used in low traffic areas so the area would be lit when used by pedestrians 

and vehicles but stay dark otherwise. However such type of lighting hasn’t been studied yet and 

its potential benefits or impacts need to be evaluate. The implementation of different lighting 

regime across a municipality with partial part-night lighting, diming or motion sensor detection 

may also be technically impossible as public lighting in towns and villages are often all linked 

and can only be controlled all together and have fairly old underground electrical installations. 

The emphasis should be put on the decision to install new light sources or not and thoroughly 

evaluate their pertinence in regard to the impact they will have on the surrounding environment. 

Whichever the mitigations measures employed to limit the effects of artificial lighting on 

biodiversity, their effectiveness needs to be evaluated (Mair et al., 2018) and even more so as 

for now such evaluation of biodiversity-friendly lighting planning has only been carried out on 

part-night lighting schemes and showed their low potential to benefit biodiversity (Azam et al., 

2015; Day et al., 2015). 

Rethinking outdoor lighting efficiency 

Modern society relies on light as a security measure (Smith, 2009) and public lighting 

has become a highly political topic. Most political actors I met during my PhD were not inclined 

to decrease light level due to the perception that citizens won’t be in favor of such actions. In 

addition, European standard EN13201 recommends light levels depending on the urban context. 

Although following this norm is not compulsory, lighting installation can be controlled and if 

the norm is not applied, municipalities should thoroughly justified why and may be fined. The 

norm includes minimal lighting levels but no maximum and often, municipalities chose to apply 
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light levels above the minimum recommended (Hale et al., 2013). Lighting engineers I mat 

during my PhD also mentioned that it is made even worse by the increased use of street video-

surveillance which requires important light levels. The EN13201 standards  recommends to 

uniformly lit pedestrians pathways at a minimum of 7.5 lx although it has been demonstrated 

that a light level of 0.9 lx was sufficient for pedestrians to detect a 1 cm high obstacle over 3 m 

ahead (Fotios & Uttley, 2018). In order to find the best compromise between the need of light 

for human activities and the limitation of light pollution, energy efficiency for outdoor lighting 

should be redefine through a new approach, the efficient provision of light which implies to 

provide only the minimum amount of light necessary for a given task while minimizing negative 

environmental effects and energy use (Kyba, Hänel, & Hölker, 2014).  

Raising awareness 

The spread of artificial light at night has recently grown to be considered as a major 

threat to biodiversity and ecosystems. Scientific studies on this topic aim at defining what is 

bad or undesirable about certain types and use 

of lighting. Yet, in order to raise the general 

public’s awareness, it might be beneficial to 

adopt another approach by communicating on 

the values of darkness (Stone, 2017). Since 

2009, the Day of the Night (Jour de la Nuit) is 

celebrated in France in October and is the 

occasion to organise activities to inform the 

public on nocturnal biodiversity and invite to 

the observation of the stars (around 350 

animations organized nation-wide each years; 

 
Fig. 34. Manifestations that took place during 

the Day of the Night in France in 2016. Yellow 

pictograms indicate outdoor lighting 

extinctions (n=357) and green pictograms 

indicate animations organized (n=329). 
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Fig. 34). In 2017, for this occasion, 350 cities across France turned all or part of their public 

lighting off (www.jourdelanuit.fr). This nation-wide operation is entirely organised by the 

volunteer association Agir pour l’Environnement which is helped by numerous local volunteer 

associations across the country to propose activities. In the same spirit, towns and villages 

amending their public lighting to reduce light pollution can be awarded a starry-sky village 

label by the association for the protection of the starry-sky (ANPCEN). Awareness and 

improvement may also be gained through the implication of citizens in the decision-making 

process of lighting planning.  

Importance of interdisciplinary work & mitigation action effectiveness evaluations to propose 

efficient and functional biodiversity conservation measures 

The impact of artificial light at night on biodiversity and ecosystems in tremendous both 

in its intensity, diversity and spatial extent. There is an urgent need for applied research in 

conservation biology that will both address the ecological issues and the societal questions 

linked to it. A recent study showed that research contribution displayed a lack of interest in 

socio-political questions and action planning. The number of publications on implementation 

and monitoring declined over time thus suggesting a decreasing interest in the measure of plan 

effectiveness (Mair et al., 2018). However, in the field of light pollution, large scale research 

projects have been developed in collaboration with local NGOs and with the financial help of 

lighting companies (e.g. Philips ;Fig. 35 ;Spoelstra et al., 2015), local authorities develop 

projects with land managers, lighting engineers and scientific from both ecology and social 

sciences (project in the Haut de France mentioned above) and environmental consultants like 

Auddicé Environnement finance research such as my PhD thesis. This type of projects should 

be encouraged as they are the necessary link between biological research and conservation 

planning. The integration of the social sciences and the development of interdisciplinary 

http://www.jourdelanuit.fr/
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collaboration may prove indispensable to assure the success of conservation efforts (Mair et al., 

2018). I would add that due to the speed to which lighting technologies evolve, most in situ 

studies evaluate the impact of lamp types that are not used anymore and it would be more 

productive to directly work with lamp constructors to provide useful insight for future lighting 

installations. Scientifics need to bridge the gap between research studies results and land 

managers. Implementation evaluation are seldom performed and scientific papers are not often 

accessible to land managers thus conservation actions remain based on personal experience 

(Pullin et al., 2004). The improvement of exchanges between scientists and land managers, 

environmental consultants and lighting engineers through collaborative projects are key to the 

development of research project with the potential to propose mitigation measures congruent 

with human activities and ecosystem functioning. 

 

 
Fig. 35. Pictures of the installations of the large scale project LichtOpNatuur testing the effect 

of different color spectra on a diversity of taxa (photos by K. Spoelstra) 
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“Young fool, only now, at the end, do you realize the power of the Dark side…” 

Darth Sidious 
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Abstract  

Transport has been identified as one of the ten main pressures on biodiversity. Although the 

effects of transport have been very well documented for terrestrial mammals, birds, 

amphibians... there are lack of studies interested on effects of roads on bats. In order to 

improving the knowledge, we conducted acoustic surveys on 306 sample points on a whole 

night at different distance from a major road in 3 study site in France. In order to assess the 

relationship between bat activity and distance from major roads, we used generalized linear 

mixed models for 13 different taxa. Our results found a significant linear negative effect of 

major roads on bat activity for 5 taxa (low-flying species) up to 5 km. This study confirms the 

two previous peer-reviewed studies but generalize for another species and reports an even 

strong effect. We believe major roads act as a barrier for bats and can cause dramatic change 

on bat population. Considering our results and the road-effect zone, 35,32 % of the European 

union and 5,19 % of Natura 2000 areas in European union are concerned. These worrying 

results must be take into account in plan management. Avoidance of new roads by alternatives 

is necessary. Finally, in order to improve habitat connectivity or foraging areas in the actual 

road-effect zone, mitigations and offset measures should be employed. 
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1. Introduction  

Transport (e.g., roads) has been identified as one of the ten main pressures on 

biodiversity (Maxwell et al. 2016) due to destruction of natural habitat, and landscape 

fragmentation including edge effects, barrier effects. In addition, traffic induce direct mortality 

by collision with vehicles (i.e., roadkills) generate light and noise disturbance and chemical 

pollution (Forman & Alexander 1998; Forman & Deblinger 2000). These dramatic changes in 

landscape configurations have consequences on many levels: from individual behaviour to 

population dynamics to the overall functioning of ecosystems (Quinn & Harrison 1988; 

Saunders, Hobbs & Margules 1991; Fischer & Lindenmayer 2007; Krauss et al. 2010). 

Since 2000, worldwide roadway network length increased by approximately 12 million 

lane-km, and previsions are that global roads are likely to grow by nearly 25 million paved lane-

km by 2050 (Dulac 2013). Road ecology is now increasingly studied, road effects studies 

covering currently a variety of taxa: terrestrial mammals, amphibians and birds, except notably 

bats (Berthinussen & Altringham 2012b). However, the effects of roads on bats are potentially 

numerous including habitat loss, reduced habitat quality, mortality by collision and barrier 

effects among habitats (Bontadina, Schofield & Naef-Daenzer 2002; Zurcher, Sparks & Bennett 

2010; Bennett & Zurcher 2013; Frey-Ehrenbold et al. 2013; Medinas, Marques & Mira 2013; 

Kitzes & Merenlender 2014; Abbott et al. 2015; Fensome & Mathews 2016; Møller et al. 2016). 

The cumulative effects of these factors could be deleterious  on bat populations (Altringham & 

Kerth 2016). 

Bats use linear elements, such as hedgerows, to commute nightly (Frey-Ehrenbold et al. 

2013) partly because a majority of them are reluctant to fly in open grounds or due to their 

sensitivity to light (Azam et al. 2018). Moreover, major roads may be barriers for bats because 

roads disconnect existing flight paths along linear features (e.g. hedgerows) and interrupt bat 
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commuting movements between breeding colonies and foraging areas (Bennett & Zurcher 

2013). Even small gaps in linear element can affect drastically the probability of crossing. 

Indeed, in Indiana (USA), gaps of 5 m in tree or shrub cover along flight routes have been 

shown to significantly impact bat commuting movements (Bennett & Zurcher 2013). In United 

Kingdom, it has been stated that a gap of as little as 10 m may deter a bat from its flight path 

(Entwistle et al. 2001). Furthermore, Pinaud et al. (2018) demonstrated that bat movements 

were significantly affected by gap width: the probability of crossing falls down 0.50 for gaps 

larger 38 m i.e., similar to a gap caused by major roads. Moreover, Hale et al. (2012) 

demonstrated that bat activity in an habitat patch increased with the degree of connectivity of 

the surrounding landscape. This point is all the more important because, for a majority of bat 

species, nocturnal activity implies moving far from their roosts [0.6 - 11.7 km for Rhinolophus 

ferrumequinum, (Flanders & Jones 2009; Dietz, Pir & Hillen 2013); 0.2 - 4.7 km for R. 

hipposideros (Bontadina, Schofield & Naef-Daenzer 2002; Reiter et al. 2013); 0.5 - 11.5 km 

for Eptesicus serotinus (Catto et al. 1996); 0.9 - 3.7 km for Pipistrellus pipistrellus (Nicholls & 

Racey 2006; Davidson-Watts, Walls & Jones 2006); 2.3 - 9.2 km for Myotis daubentonii 

(Encarnacao et al. 2005; Nardone et al. 2015);  1 - 13 km for Nyctalus leisleri (Szentkuti et al. 

2013)]. The necessity for bats to move on long distances implies a high likelihood for their 

populations to be impacted by road network within their home range.  

Many European bats are endangered throughout much of their range and numerous 

causes of this situation have been identified, including habitat loss and degradation and roadkills 

which can cause by roads (Temple & Terry 2007). According to their life cycle (i.e. low 

fecundity, late maturation), population growth rate heavily depends on adult survival. Thus, 

mortality by roads is expected to increase their local extinction risk (Medinas, Marques & Mira 

2013). All European bats are legally protected in European countries through national or 

European laws (Council Directive, 1992; Convention on Migratory Species, 1985–2008, and 
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Agreement on the Conservation of Populations of European Bats). Some of these protection 

status involve considering the negative effects of project development on biodiversity and 

limiting them through mitigation hierarchy (avoiding, reducing, restoring, and offsetting 

effects) with the aim to achieve a no net loss of biodiversity or a net environment (Regnery, 

Couvet & Kerbiriou 2013). And although bats benefit of strict protection status in many 

countries and road impacts appear potentially deleterious for bats, surprisingly, bats are very 

rarely taken into account in project road designs. Indeed, most of mitigation measures dedicated 

to bats in Europe are more focused on the reduction of impact such as bat overpasses than the 

compensation of habitat loss (Møller et al. 2016). Moreover, on the Conservation Sciences side 

only two studies focussing on road impact on bat activities have been published (Berthinussen 

& Altringham 2012b; Kitzes & Merenlender 2014). Berthinussen & Altringham reported the 

correlations existing between distance to major roads and bat activities. Bat activities were 

measured by the recording of the echolocation cries emitted by the bats. Thus, they found a 

decline of bat activity for a common species: P. pipistrellus, to a distance of at least 1,6 km (i.e. 

the maximum extent of their study area) on both sides of a road in Cumbria (United Kingdom). 

Kitzes & Merenlender also found a negative effect of roads on bat activity within 300 m 

(corresponding to the extent of the study area) for 4 common bat species in California state 

(USA): Tadarida brasiliensis, Eptesicus fuscus, Lasiurus cinereus and Lasionycteris 

noctivagans.  

According to bat home range sizes and the importance of landscape connectivities for 

bat daily movements, we hypothesis that road may affect bat activity at the landscape scale. We 

conducted acoustic surveys in three sites in France (10 km squared) at different distance of 

major roads in five main habitats. We tested effect of distance to major roads on several taxa 

activities considering the habitat. 
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2. Materials and methods  

2.1. Study sites 

We selected three sites located in rural areas in western France including in each site, at 

a central position, an highway but exhibiting variations in land-uses composition (Fig. 1 & A.1). 

The extent of each study site is a 10 km square allowing studying potential impact of road at 

landscape scale (i.e. a scale of the same magnitude than a majority bat home-range (Catto et al. 

1996; Davidson-Watts & Jones 2005; Hillen, Kiefer & Veith 2009; Bernd-Ulrich, Alois & Von 

Helversen 2009; Razgour, Hanmer & Jones 2011; Dietz, Pir & Hillen 2013). The first site was 

surrounded by intensive farming and located in the "Vendée" county near Niort (46°24'N, 

0°35'W) and focused on the road A83 (which became operational in 2001; road with tarmac; 4 

lanes with emergency lane on both sides; speed limit: 130 km/h, annual average daily traffic: 

16 218 vehicles in 2015). The second site was mainly surrounded by woodlands and grasslands 

and located in the "Charente-Maritime" county near La Rochelle (45°50'N, 0°37'W) and 

focused on the road A10 (which became operational in 1994; same features as A83; annual 

average daily traffic: 27 377 vehicles in 2015). The last site was mainly surrounded by 

woodlands and grasslands in the "Ille-et-Vilaine", and located in Britany near Rennes 

(48°2'N,14°57'W) and focused on the road N24 (became operational in 1981; road with tarmac; 

4 lanes without emergency lane on both sides; speed limit: 110 km/h; annual average daily 

traffic: 33 800 vehicles in 2015). 



ANNEX 

- 321 - 

2.2. Sampling design 

With the aim to assess the influence of major roads on bat activity, we recorded in each 

site different acoustic sample points: for A83, n = 100; for A10 n = 94; and for N24, n = 112. 

Five main habitats in each site was sampled (wetlands, woodlands, agricultural lands, urban 

areas and hedgerows) at different distance from the road (from 25 to 5420 meters). Each habitat 

was sampled in average 61.2±5.06 and for each twelve 400 m distance classes, each habitat was 

sampled 5.01±2.16 (Table A.1).  In order to homogenize the conditions of sampling in each 

 

Figure 1 Study sites: N24 (A), A10 (B) and A83 (C). White points represent sample points 

of recordings. 
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site, we sampled simultaneously the five main habitats during the same nights at different 

distance classes and over several consecutive nights by changing the points 

2.3. Acoustic surveys 

The fieldwork was carried out, during the seasonal peak of bat activity, between the 28th 

of May and the 17th of August 2016. Recordings were conducted during 9 successive nights 

for A83 (in May-June), 8 successive nights for A10 (in July) and 10 successive nights for N24 

(in August). 

Bat activity was assessed by recording bat calls using Song Meter SM2Bat+ detector 

(Wildlife Acoustics Inc., Concord, MA, USA) fitted with omnidirectional ultrasonic 

microphones: SMX-US (Wildlife Acoustics Inc., Concord, MA, USA) placed at a height of 1 

m from the ground. We tested systematically microphone sensibility when we installed and 

removed each sample point. Recordings were performed during the whole night (from 30 min 

before civil sunset to 30 min after civil sunrise). 

With such Passive Acoustic Monitoring (PAM), the detectors automatically recorded 

all sounds (> 8 KHz) while maintaining the characteristics of the original signals. We used a 

trigger level threshold of 6 dB signal-to-noise-ratio (SNR) for frequencies between 8 and 384 

KHz following the trigging of the French Bat Monitoring Programme [FBMP, (Kerbiriou et al. 

2018a)]. 

2.4 Species identification  

To identify the species from acoustic recordings, we first used Kaleidoscope© software 

(Wildlife Acoustics Inc., Concord, MA, USA) to extract .wav files from the recorded .wac files. 
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A time expansion factor of 10 was specified, and we split channels using five seconds as a 

maximum duration. 

Then, we analysed the ultrasound recordings with the software Tadarida in its latest 

version [(Bas, Bas & Julien 2017), online repository: https://github.com/YvesBas]. This 

software automatically detects and extracts sound feature parameters of the recorded 

echolocation calls and classifies them into known classes according to a probability value that 

a call is from a specific group/bat species using a random forest algorithm (Cutler et al. 2007). 

Using a FBMP dataset of manually checked calls by the national Museum experts (17 

531 sound events), we performed a logistic regression between the success/failure of automatic 

species assignation and the confidence index provided by the software for all species. Following 

the approach of Barré et al. (2018), we could hence associate each confidence index with an 

identification success probability and calculate the minimum confidence index required for a 

species to tolerate a given maximum error risk, i.e., confidence threshold (appendix B). We 

used the confidence threshold calculated on the national dataset to create subsets of this study’s 

dataset. We performed all analysis on a subset with a 0.5 maximum error risk tolerance and on 

another subset more restrictive (i.e., a 0.1 maximum error risk tolerance).   

First, we studied the activities for all the bats and then the activity of two sets of species 

based on their flying and foraging preferences. The set of aerial species is composed of five 

species which are medium to high-altitude fast-flying species: E. serotinus, N. leisleri, N. 

noctula, P. kuhlii and P. pipistrellus (Blake et al. 1994; Lacoeuilhe et al. 2014; Azam et al. 

2015; Roemer et al. 2017). The set of clutter species is composed of low-altitude slow-flying 

species that generally forage in cluttered vegetation, i,e, Barbastella barbastellus, R. 

ferrumequinum and R. hipposideros and two groups: Myotis spp. and Plecotus spp. which 

cannot be identify at the species level with certainty (Obrist, Boesch & Flückiger 2004). In third 

time, we conducted analysis for these eight species and the two species groups. 
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Since it is impossible to determine the number of individual bats from their echolocation 

calls, we calculated a bat activity metric (bat passes), as the number of contacts per species and 

per night. Thus, a bat pass was defined as a single or more echolocation call within a 5-second 

interval. This interval is considered a good compromise according to bat pass duration among 

species (Millon et al. 2015; Kerbiriou et al. 2018b). Although it does not allow us to assess bat 

abundance, it can reflect the suitability of the habitat in terms of food resource. 

2.5. Environmental variables 

With the aim to assess the join effect of major road distance on bat activity and 

accounting for surrounding habitat, at each sample point, we extracted 57 variables (Table A.2). 

These variables are: several distances (e.g., to the major road, hedgerow...) and variables taken 

within a buffer of 50, 200 and 500 m radius around each sample point (e.g., density of 

hedgerows, proportion of ponds, proportion of crops...). The choice of each variable 

corresponding to numerous studies that have identified these habitat can influenced bat activity 

(Verboom & Spoelstra 1999; Russo & Jones 2003; Kaňuch et al. 2008; Rainho & Palmeirim 

2011; Boughey et al. 2011; Frey-Ehrenbold et al. 2013; Kelm et al. 2014; Lacoeuilhe et al. 

2016). And we chose these three buffer because the landscape effect on bat activity could 

change according to the spatial scale considered (Grindal & Brigham 1999; Lacoeuilhe et al. 

2016; Kerbiriou et al. 2018a). 

Landscape data come from a manual digitization by photo-interpretation (Fig. A.1); and 

distances, lengths and proportions were calculated using QGIS 2.18.14 (QGIS Development 

Team 2017). 
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2.6. Bat activity modelling 

We assessed if bat activity (i.e. our response variable is the number of bat passes) could 

be influenced by the distance to road using Generalized Linear Mixed Model (GLMM) with 

the glmmTMB function (R package glmmTMB) with a negative binomial link to deal with 

overdispersion in the count data (Zuur et al. 2009). When occurrence of bat activity was 

recording under 50% of sampling points, we conducted models with zero-inflated.  

According to the sampling design (i.e., simultaneous recordings of bat activity the same 

night in different habitat at different distance class in successive nights for each site), we 

included a two level random effect to take into account the spatial structure (sampling points 

nested within site) as recommended in Bates et al. 2014.  

With the aim to assess the join effect of road distance on bat activity and accounting for 

surrounding habitat, we included in the modelling, landscape co variables as fixed effect. We 

also included interactions of the distance to the major road with hedgerows and wetlands in 

order to assess the landscape dependence.  

All fixed effects were centred and standardized so that the regression coefficients were 

comparable in magnitude and their effects were biologically interpretable (Schielzeth 2010). 

With the aim to avoid over-parametrization, we selected the best scale of covariates (i.e., 50, 

200 and 500 m) before including them in the full model, using hierarchical partitions (R package 

hier.part). Thus, this selection process led us to include the 5 best covariates in the full model. 

Thus, our full models included 8 environmental covariates (6 simple effects and 2 interactions) 

and were structured in the following way: 

Bat activity ~ Distance to major road + Landscape co-variables + Interaction terms + 

1|Site/Point 
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In order to avoid potential multicollinearity problem we ensured that all the variables 

used have a Spearman’s rho under 0.7 (Dormann et al. 2013). In addition, we assess Variance 

Inflation Factor (VIF) following Chatterjee & Bose (2000) and Zuur, Ieno & Elphick (2010) 

approaches, while all variables showed a VIF value <3 and the mean of VIF values <2 there 

was no evidence of multicollinearity. We also checked the non-spatial autocorrelation of 

residuals of each selected model using Moran’s I test (R package ape). 

From the full model, we applied a stepwise selection with backward elimination by 

removing at each step the least significant variable while taking account to the model with 

lowest AIC. Furthermore, we aimed to evaluate whether the quality of our model was good by 

comparing it to the null model (including only the random effects) using Akaike’s information 

criterion (AIC) (Burnham, Anderson & Huyvaert 2011; Mac Nally et al. 2017). In order to 

assess the influence of error link identification, we also ran selected models with a 0.1 

maximum error risk tolerance and compare p-value and estimates provided by models with a 

0.5 maximum error risk tolerance. 

Finally, the potential non-linear effect of the distance to a major road was checked by 

visual inspection of the plot from Generalized Additive Mixed Models (GAMM, R package 

mgcv). 

2.7. Road-effect zone 

Following Forman & Deblinger (2000) approach, we assessed the potential cumulative 

effect of the "road-effect zone" at the scale of European Union. Depending results obtained by 

our models by species, we hence estimated the proportion of area which could be impacted by 

major roads in Europe and Natura 2000 areas on bat activity. 
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3. Results  

3.1. Bat monitoring 

In the dataset allowing for a maximum error risk of 0.5, there was a total of 223 601 bat 

passes for ten species in the three study sites. Bat activity for aerial species (n=89.4%; 200 072 

bat passes) were higher than clutter species (n=10.6%; 23 729 bat passes). Among these 223 

601 bat passes, the most abundant species was Pipistrellus species (n=85.6%; 191 546 bat 

passes) and Myotis spp. (n=8.2%; 18 282 bat passes) and least abundant species were Nyctalus 

species (n=1.5%; 3 383 bat passes), Rhinolophus species (n=0.6%; 1 354 bat passes) and 

Plecotus species (n=0.5%; 1 257 bat passes), (Table 1). 

Table 1 Total of bat passes, occurrence, number of points recorded bat passes (%) and mean 

with standard error of bat passes per sample point for each sample point at 0.5 maximum error 

risk tolerance 

Species 
Total bat 

passes 

Occurrence on 306 

sample points 

Occurrence 

(%) 

Mean of bat passes 

per sample point 

SE of bat passes 

per sample point 

B. barbastellus 2 836 181 59.15 9.27 1.46 

E. serotinus 5 143 167 54.58 16.81 3.78 

Myotis spp. 18 282 244 79.74 59.75 12.53 

N. leisleri 1 726 111 36.27 5.64 1.25 

N. noctula 1 657 69 22.55 5.42 1.80 

P. kuhlii 29 090 222 72.55 95.07 17.74 

P. pipistrellus 162 456 299 97.71 530.90 53.75 

Plecotus spp 1 257 141 46.08 4.11 0.80 

R. ferrumequinum 319 53 17.32 1.04 0.30 

R. hipposideros 1 035 105 34.31 3.38 1.25 

3.2 Impact of major roads on bat activity 

Species effects 

At the species scale, our results showed a significant negative effect of major roads on 

bat activity for 4 species on the 10 studied i.e., for these 4 species, the bat activity increased 

with the distance to the major road. These 4 species were E. serotinus (P < 0.05), Myotis spp. 
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(P < 0.001), P.pipistrellus (P < 0.05) and R. hipposeridos (P < 0.05) (Table 2 & C.1). We also 

found a significant negative effect of the interaction between the distance from a major road 

and the distance to an hedgerow for Myotis spp. and P. pispistrellus (P < 0.05) and a significant 

negative interaction between distance from a major road and the density of hedgerow in buffer 

of 200 m for E. serotinus (P < 0.05) (Table 2 & C.1). All models showed a lower value of AIC 

than null models (delta > 2) (Table C.2).  

Table 2 Estimates, standard errors and p-value of the distance from the major road variable for 

all bat, the two guilds, the two species group and the eight species studied according a maximum 

error risk of 0.5 in species identification. Legend: *, subsist spatial-correlation in the model 

even if we added the autocov_function; X, distance from the major road non-selected in the 

best model. Complete results of other covariates can be found in Table C.1. 

  All bats Aerial species Clutter species B. barbastellus E. serotinus Myotis spp N. leisleri 

β 0.13212 0.10848 0.28870 -0.11880 0.34200 0.41421 X 

SE 0.07095 0.07703 0.08566 0.13490 0.15910 0.09659 X 

p-value 0.06260 0.15900 0.00075 0.37853 0.03160 0.00002 X 

 

  N. noctula P. kuhlii P. pipistrellus Plecotus spp R. ferrumequinum* R. hipposideros 

β X 0.03277 0.18830 X -0.02274 0.47630 

SE X 0.13775 0.08159 X 0.22713 0.20250 

p-value X 0.81190 0.02100 X 0.92030 0.01870 

 

All bats, aerial and clutter species 

According to a maximum error risk of 0.5  in species identification, our results showed 

a slight non-significant negative effect (P < 0.062) of major roads on bat activity for all species 

sampled in this study. We also found a slight non-significant effect of the interaction of the 

distance from a major road with the distance to a hedge (P < 0.061) (Table 2 & C.1). 

Concerning the aerial species, we found no effect of the distance to a major road on their 

activity (P = 0.159). For clutter species, our results demonstrated a significant negative effect 

of major roads on their activity (P < 0.001) (Table 2). Moreover, we found an interaction of the 
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distance to a major road with the distance to an hedge (P < 0.01) (Table C.1). The interaction 

showed that clutter species are more commuting on hedgerows when they fly near a major road 

(Fig. C1). 

3.3. Additional analyses with GAMM 

For bat activity species impacted by the distance to a major road by GLMM, we did not 

detect non-linear effect for all taxa except clutter species and Myotis spp. where a weak change 

in slope was observed around 700-1300 m from the road (Fig 2). 

 
Figure 2 Generalized additive mixed model (GAMM) for species where a significant negative 

effect has been assessed. Scaled distance to a major road: -3, 0 m; -2, 110 m; -1, 370 m; 0, 

1330 m; 1, 5000 m. 
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3.4 Influence of error risk 

We ran again the analyses for species for which a significant negative effect had been 

found using the most restrictive tolerance of 0.1 maximum error risk in the data selection of the 

response variable (i.e., corresponding to an error rate between 2.9% to 5.3% of the total number 

of bat passes, Table B.1). We found qualitatively similar results for all taxa precluding for 

P.pipistrellus which was not significant for a 0.1 maximum error risk.   

3.5 Road-effect zone 

We assessed the potential cumulative effect of the "road-effect zone" on bat activity 

detected previously by our results (i.e., an impact of major road up to 5 km) and applied it at 

the Europe scale and on Natura 2000 areas. We found that, bat activities in 35,32 % of Europe 

and 5,19 % of Natura 2000 areas are potentially under the influence of major road (Fig. 3). 
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4. Discussion. 

4.1. Road effects 

Among the 13 bat taxa studied here, 5 taxa seemed to be significantly impacted by major 

roads, no one exhibited a positive effect of major roads. The five species were belonging to the 

clutter species group, E. serotinus, Myotis spp., P. pipistrellus and R. hipposideros. Noticeably, 

no effect was found for P. kuhlii while it was the second species which used the most the bat 

 

Figure 3 Mapping of areas impacted by major roads in Europe. 
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passes (13% of total bat passes). This result suggest that the activity of this species is not 

disturbed by major roads. At the opposite, for R. hipposideros, a species rarely contacted 

[0.46% of total bat passes, 34.31% of occurrence (Table 1)] we found a significant effect 

suggesting that this species could be very sensitive to major roads. We cannot exclude that for 

other species rarely contacted such as R. ferrumequinum, we did not detect an effect by lack of 

statistical power. To detect a potential effect, it would be essential to improve the sampling 

design for example in extend the sampling area.  

The important sensitivity of the clutter species such as R. hipposideros and Myotis spp 

to roads can be explained by their ecology. Indeed, clutter species are more gleaner than aerial 

species, and thus forage more in woodlands and fly less in open space. 

With the importance of the effect, we were able to compare the road effect to other well-

known factors identified to substantially improve the accuracy of predictive model for bat 

occurrence or abundance such as distance from a hedge (Kelm et al. 2014; Pinaud et al. 2018; 

Lacoeuilhe et al. 2018). The effect size of distance to the major road is equivalent to 40% of 

the effect of the distance to an hedgerow for P. pipistrellus and 50% for R. hipposideros. Myotis 

spp. appeared more sensitive than other species because the effect size of the distance from a 

major road is of the same magnitude than the distance from an hedgerow (i.e., 100%). 

We also found an interaction between the distance to major roads and the distance to an 

hedgerow. Clutter species appeared commuting and/or foraging more on hedgerows when they 

flied closer to a major road, suggesting a possible behavioural response - bats seeking refuge in 

the surrounding of hedgerows - when exposed to situation (the closer road zone) perceived at 

risks.   

This differential response of bat according to their flying traits may be related to a 

perception of a real risk of road dangerosity. In Europe, Fensome & Mathews (2016) found that 
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low-flying species are more prone to collisions than high-flying species. Especially in France, 

P. pipistrellus and Myotis spp. are considered the species with the most fatalities (Capo, Chaut 

& Arthur 2006).  

Another non-exclusive hypothesis to explain a lower bat activity close to major roads 

could be that bats avoid lit areas. Indeed, even if studies found that P. pipistrellus and E. 

serotinus were light-tolerant at a local scale (Azam et al. 2018), their movements are supposed 

to be negatively affected by light at a landscape scale (Hale et al. 2015; Azam et al. 2016). For 

species identified as light-avoider such as R. hipposideros, Stone, Jones & Harris (2009) have 

shown that light can have significant negative effect on commuting. Similarly for Myotis spp 

(light-avoider species), Azam et al. (2018) showed that light induced habitat loss.  

A third non-exclusive hypothesis of the avoidance of bats close to major roads is the 

rupture of habitat connectivity. Although bats are able to cross large roads, involving cross gaps 

of 30–100 m (Claireau et al. in revision; Abbott, Butler & Harrison 2012), the probability of 

crossing gap can decreases with gap width (Entwistle et al. 2001; Bennett & Zurcher 2013; 

Pinaud et al. 2018). Overall, there is a consensus regarding the importance of the conservation 

of connected linear features to facilitate bat commuting within landscape (Hale et al. 2012). 

Studies will have to be carried out to assess the relative part of these different hypotheses 

explaining the observed decrease of bat activity in the surrounding of roads. This avoidance 

could have negative impacts for bats to access to foraging areas, involving increase of paths 

length, decrease of home range quality and thus potentially their fitness and population 

dynamics. Indeed, a recent study in United Kingdom, found that R. ferrumequinum colony size 

was positively related to a range of landscape features (e.g. amount of broadleaf woodland and 

grassland, and density of linear features) surrounding the roost (Froidevaux et al. 2017). 
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4.2. Limitations and robustness of results 

Our results showed an obvious avoidance of major roads by bats up to 5 km without 

drastic slope changes [i.e., only linear effects,  (Fig. C.1)]. Beyond a certain distance, major 

roads are expected to no longer influence bat activity. With our study design that allowed to 

measure bat activity on points located several kilometre from the road (Table A.1), we expected 

to observe an attenuation of the road effect when the distance to the major road increased. 

Possibly changes in slope occurred but were too weak to be detected with our study design and 

important attenuation of the road effect was observed over 5 km. 

These results are congruent with previous studies. Kitzes & Merenlender (2014) found 

in the USA that bat activity was twice higher 300 m from roads and Berthinussen & Altringham 

(2012b) found in the UK that bat activity was 3.5 times higher at a distance of 1600 m than at 

major roads. Finally, for the species and group for which we detected a significant effect of the 

road, our result showed that the effect of major roads was not limited to a few meters on both 

sides of the road but had an impact at the landscape scale (i.e., bat home range) highlighting 

possible impacts at population scales. 

4.3. Road-effect zone 

Actually, road designs do not take into account road zone effects whereas areas impacted 

are non-negligible: 35,32 % of the Europe territory and 5,19 % of Natura 2000 areas. These 

results could be develop considering other variables such as traffic and habitat type crossed by 

the roads. Considering that other taxa are also impacted by roads, e.g. Forman (2000) found a 

road effect zone about one-fifth of the USA land area on birds species, it seems urgent to 

consider the road zone effect on land uses policies and to implement conservation practices all 

the more for the species are of conservation concerned. Moreover, bats have to face other threats 



ANNEX 

- 335 - 

such as agricultural practices in their home-range. A land use planning is necessary to manage 

conservation and development of bat species.  

4.4. Recommendations 

This study highlighted a major effect often neglected in mitigation hierarchy (Bigard, 

Pioch & Thompson 2017). It is necessary to think of alternatives such as road requalification, 

e.g., road widening, avoiding building new roads in habitats of good quality for bats, taking 

into account these effects on a large scale to maintain the good state of conservation of the 

spaces with stakes and preserving the commuting route as much as possible. . 

If the avoidance of road impacts is impossible (i.e., major road impact bat foraging 

areas), it is necessary to reduce the barrier effect. Many mitigation measures have been 

proposed in order to restore habitat connectivity such as the implementation of overpasses (e.g., 

wildlife crossings), underpasses (e.g., viaducts), speed reduction, deterrence and diversion (e.g., 

planting hedges) and habitat improvement (Møller et al. 2016). Recent studies have suggested 

that wildlife crossings and underpasses could be the best solution to restore ecological 

continuity, whereas bat overpasses seem to be less effective (Claireau et al. in revision; 

Berthinussen & Altringham 2012a; Abbott, Butler & Harrison 2012; Abbott et al. 2015; Møller 

et al. 2016). When avoidance of impacts and mitigation measures are not sufficient, it is 

imperative to propose offset measures. These measures can be the restoration of foraging areas 

and habitat connectivity in the landscape around colonies over the "road-effect zone". 

Finally, for future road construction, we advocate to assess the loss of connectivity due 

to the road effect zone with the aim to evaluate if the connectivity gains obtained by this bat 

overpasses fully mitigate or not and thus if other offsetting measures will have to be planned 

for a not net loss. 
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5. Conclusions  

Major roads have a significant negative impact on bat activity, especially on clutter 

species. It is imperative for new road projects to think about alternatives and for existing ones 

to reduce their impact through mitigation and / or offset measures.  
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ARTICLE 6 

APPENDICES 

Appendix A: Additional information about material and methods 

 

Figure A.1 Study sites: N24 (B), A10 (C) and A83 (D). Manual mapping of land use. Colour 

points represent sample points of recordings. 
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Table A.1 Distribution of the sample habitat types in several distance classes to the road. 

Distance classes Agricultural lands Wetlands Woodlands Hedgerows Urban areas Total 

[0-400 m[ 7 7 14 11 5 44 

[400-800 m[ 4 5 7 5 6 27 

[800-1200 m[ 6 6 5 8 4 29 

[1200-1600 m[ 6 6 10 6 6 34 

[1600-2000 m[ 5 4 5 4 3 21 

[2000-2400 m[ 7 5 6 5 4 27 

[2400-2800 m[ 2 5 3 7 6 23 

[2800-3200 m[ 6 6 4 6 5 27 

[3200-3600 m[ 5 4 3 3 3 18 

[3600-4000 m[ 3 3 4 5 4 19 

[4000-4400 m[ 6 4 4 2 5 21 

[4400-4800 m[ 3 2 2 4 4 15 

>4800 m / / / / 1 1 

Total 60 57 67 66 56 306 
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Table A.2 Variables used to assess the effect of landscape characteristics on bat activity. 

Legend: Italic text, variables taken within a buffer of 50, 200 and 500 m radius around each 

sample point 

Category Variable Description Unit 
Total 

covariate 

Hedgerows dist_hedge Distance to hedgerow m 1 

 dist_edgeforest_agri Distance to edge forest or agricultural hedgerows m 1 

 dist_riparianforest Distance to riparian forest m 1 

 density_hedge Density of hedgerows m 3 

Wetlands dist_wetland Distance to a wetland m 1 

 wetland Proportion of wetlands areas % 3 

 hydrographic network Proportion of hydrographic network % 3 

  pond Proportion of ponds, lakes, retention basins % 3 

Agricultural 

agri_land Proportion of agricultural areas % 3 

crop Proportion of crops % 3 

meadow Proportion of meadows % 3 

vines_orch Proportion of vines and orchards % 3 

Wood 

wood Proportion of woods (deciduous woodlands and scrublands) % 3 

dec_wood Proportion of deciduous woodlands % 3 

scrub Proportion of scrublands % 3 

Urban 

dist_road Distance to the major road % 1 

urban Proportion of urban areas % 3 

ALAN Proportion of lux (artificial light at night) % 3 

disp_urban Proportion of dispersed habitat areas % 3 

dense_urban Proportion of dense residential areas % 3 

inter_urban Proportion of intermediary of dispersed habitat areas and dense residential areas % 3 

major_road Proportion of major roads % 3 

dist_major_road Distance to the major road m 1 

  Total covariates 57 

 

Appendix B: Error risk modelling for bat species identification 

A national dataset of 17 531 species occurrences (including 8405 bat passes) underwent 

automatic identification using the software Tadarida (Bas et al., 2017) (online repository: 

https://github.com/YvesBas) to be classified to the most accurate taxonomic level and assigned 

a confidence probability between 0 and 1. The same dataset was also manually checked using 

BatSound© (Pettersson Elektronik AB, Sweden) and Syrinx (John Burt, Seattle, WA, USA) 
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softwares. The dataset contained data for 28 out of the 34 bat species present in France and all 

species considered in this study. 

For each species, we build a generalized linear model (R Core Team, 2017) using the 

success/failure of automatic identification as a binomial response variable and the probability 

given for that species by the random forest classifier as an explanatory variable. We selected 

the probit link which better fitted the binomial distribution of manual checking for all species. 

Reading the logistic regression curves produced, we could hence determine the needed 

confidence index to tolerate a given maximum error risk, i.e. confidence thresholds (Figure 

B.1).   
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 Confidence index 

Figure B.1. Logistic regressions between the success probability and the confidence index of 

the automatic identification for the 15 bat species studied. Horizontal dotted lines show 

identification success probabilities (0.5 and 0.9) corresponding to the maximum error risk 

tolerance thresholds used in the analysis (respectively, 0.5 and 0.1) and corresponding 

confidence thresholds (vertical solid lines). Each open circle represent a bat pass taking an 

identification success probability value of 1 when correctly identified by Tadarida software and 

0 otherwise. 
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Table B.1 Error rate per species and group for an 0.5 and 0.1 maximum risk tolerance 

Species Group 
0.5 maximum error risk tolerance 0.1 maximum error risk tolerance 

Per species Group average Per species Group average 

Barbastella barbastellus / 2.27% / 1.06% / 

Eptesicus serotinus / 8.40% / 3.73% / 

Myotis alcathoe 

Myotis spp. 

5.51% 

13.28% 

1.38% 

3.11% 

Myotis capaccinii 24.58% 6.86% 

Myotis daubentonii 3.02% 0.88% 

Myotis emarginatus 26.18% 5.99% 

Myotis myotis/ blythii 19.03% 4.28% 

Myotis mystacinus 12.60% 1.94% 

Myotis nattereri 15.31% 3.54% 

Nyctalus leisleri / 6.44% / 1.78% / 

Nyctalus noctula / 3.78% / 0.67% / 

Pipistrellus kuhlii / 8.83% / 3.68% / 

Pipistrellus pipistrellus / 9.49% / 5.35% / 

Plecotus auritus 
Plecotus spp. 

23.19% 
16.64% 

2.22% 
2.88% 

Plecotus austriacus 10.09% 3.54% 

Rhinolophus ferrumequinum / 0.20% / 0.04% / 

Rhinolophus hipposideros / 3.45% / 2.88% / 

 

Appendix C: Additional information about results 

Table C.1 Complete results from model selection according a maximum error risk of 0.5 in 

species identification. Table shows estimates (β), with the standard error (SE) and p-value (P) 

for all bats, guild and each species/group according to covariates. Legend: /, variable no-

selected in full model; X, variable no-selected in selected model. Table A.2 refer the description 

of each variable. 

For R. ferrumequinum, it remains in our model spatial autocorrelation even after having 

corrected it with the autocov_dist function (R package, spdep) (Table C.1). As we know the 

location of the only colony in A10 site (Pinaud et al., 2018) we ran models with the distance 

to the roosting bat. Spatial autocorrelation was corrected but we don't found effect of the 

major road on their activity. Moreover, according the number of bat passes detected in each 

site (A10=291 bat passes; A83=24 bat passes; N24: 4 bat passes), we ran model ran at the site 

scale only for A10 and without the distance to roost. No effect of the distance of the major 

and no spatial autocorrelation was found (Table C.2). 
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Table C.2 Additional and complete results from model selection according a maximum error 

risk of 0.5 in species identification for R. ferrumequinum. First model selection with the 

distance to the colony and the second for only A10 site. Table shows estimates (β), with the 

standard error (SE) and p-value (P) for all bats, guild and each species/group according to 

covariates. Legend: /, variable no-selected in full model; X, variable no-selected in selected 

model. Table A.2 refer the description of each variable. 

Variables 

R. ferrumequinum  

with distance to colony 

R. ferrumequinum  

for A10 site 

β SE P β SE P 

dist_colo_Rhifer -0.606 0.205 0.003 / / / 

dist_major_road:dist_wetland X X X X X X 

dist_major_road:dist_hedge X X X X X X 

dist_major_road X X X -0.451 0.355 0.203 

dist_wetland -0.779 0.188 0.000 -0.933 0.252 0.000 

dist_hedge X X X -0.666 0.323 0.039 

agri_land_50 X X X / / / 

wood_500 / / / 0.589 0.3024 0.051 

urban_50 -0.671 0.313 0.032 X X X 

crop_50 / / / 0.590 0.306 0.053 

scrub_500 2.450 1.029 0.017 / / / 

 

Table C.3 Full, best and null model with their AIC according a maximum error risk of 0.5 in 

species identification. Table A.2 refer the description of each variable. Table C.1 refer the 

estimate, standard error and p-value of selected models. 

Table C.4 Estimates, standard errors and p-value of the distance from the major road variable 

for clutter species, one guild and three species affected by major roads according a maximum 

error risk of 0.1 in species identification. 

  Clutter species E. serotinus Myotis spp P. pipistrellus R. hipposideros 

β 0.29293 0.7139 0.4926 0.1106 0.48487 

SE 0.09284 0.3296 0.1115 0.122 0.20528 

p-value 0.0016 0.03034 0.00001 0.364543 0.0182 

 

As a reminder, Table 2. Estimates, standard errors and p-value of the distance from the major 

road variable for clutter species, one guild and three species affected by major roads 

according a maximum error risk of 0.5 in species identification. 
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  Clutter species E. serotinus Myotis spp P. pipistrellus R. hipposideros 

β 0.28870 0.34200 0.41421 0.18830 0.47630 

SE 0.08566 0.15910 0.09659 0.08159 0.20250 

p-value 0.00075 0.03160 0.00002 0.02100 0.01870 

 


