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"The plain fact is that the planet does not need more successful people. But it does

desperately need more peacemakers, healers, restorers, storytellers, and lovers of

every kind. It needs people who live well in their places. It needs people of moral

courage willing to join the fight to make the world habitable and humane. And

these qualities have little to do with success as we have defined it."

David W. Orr

To the most important person in my life.
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ABSTRACT

Magnetic reconnection is a ubiquitous and fundamental process in space plasma physics.

The MMS mission launched on 12 March 2015 was designed to provide in-situ measure-

ments for analyzing the reconnection process at the Earth’s magnetosphere. In this aim,

four identically instrumented spacecraft measure fields and particles in the reconnection

regions with a time resolution which is one hundred times faster than previous missions.

MMS allows for the first time to study the microscopic structures associated with mag-

netic reconnection and, in particular, the thin electron diffusion region. At the Earth’s mag-

netopause, magnetic reconnection governs the transport of energy and momentum from

the solar wind plasma into the Earth’s magnetosphere through conversion of magnetic en-

ergy into kinetic and thermal energies after a rearrangement of magnetic field lines. Flux

Transfer Events (FTEs) are considered to be one of the main and most typical products of

magnetic reconnection at the Earth’s magnetopause. However, more complex 3D magnetic

structures with signatures akin to those of FTEs might also occur at the magnetopause like

interlaced flux tubes resulting from magnetic reconnection at multiple sites. The first part

of the work presented in this thesis consisted of the investigation of one of these events

that was observed, under unusual and extreme solar wind conditions, in the vicinity of the

Earth’s magnetopause by MMS. Despite signatures that, at first glance, appeared consis-

tent with a classic FTE, this event was interpreted to be the result of the interaction of two

separate sets of magnetic field lines with different magnetic connectivities. The high time

resolution of MMS data allowed to resolve a thin current sheet that was observed at the

interface between the two sets of field lines. The current sheet was associated with a large

ion jet suggesting that the current sheet was submitted to a compression which drove mag-

netic reconnection and led to the formation of the ion jet. The direction, velocity and scale

of different structures were inferred using multi-spacecraft data analysis techniques. This

study was completed with a plasma wave analysis that focused on the reconnecting current

sheet.
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RÉSUMÉ

La reconnexion magnétique est un processus omniprésent et fondamental dans la physique

des plasmas spatiaux. La "Magnetospheric multiscale mission" (MMS) de la NASA, lancée

le 12 mars 2015, a été conçue pour fournir des mesures in-situ permettant d’analyser le

processus de reconnexion dans la magnétosphère terrestre. Dans ce but, quatre satel-

lites identiquement instrumentés mesurent les champs électromagnétiques et les partic-

ules chargées dans les régions de reconnexion, avec une résolution temporelle cent fois

meilleure que celle des missions précédentes. MMS permet, pour la première fois, d’étudier

les structures microscopiques associées à la reconnexion magnétique et, en particulier, la

région de diffusion électronique. Au niveau de la magnétopause terrestre, la reconnex-

ion magnétique a un rôle chef dans le transport de l’énergie du vent solaire vers la mag-

nétosphère terrestre, en convertissant l’énergie magnétique en énergie cinétique et ther-

mique. Les événements à transfert de flux (FTEs) sont considérés comme l’un des produits

principaux et les plus typiques de la reconnexion magnétique à la magnétopause terrestre.

Cependant, des structures magnétiques 3D plus complexes, avec des signatures similaires

à celles des FTEs, peuvent également exister à la magnétopause. On retrouve, par exemple,

des tubes de flux entrelacés qui résultent de reconnexions magnétiques ayant eues lieu à

des sites différents. La première partie de cette thèse étudie l’un de ces événements, qui

a été observé dans des conditions de vent solaire inhabituelles, au voisinage de la mag-

nétopause terrestre par MMS. Malgré des signatures qui, à première vue, semblaient co-

hérentes avec un FTE classique, cet événement a été interprété comme étant le résultat

de l’interaction de deux tubes de flux avec des connectivités magnétiques différentes. La

haute résolution temporelle des données MMS a permis d’étudier en détail une fine couche

de courant observée à l’interface entre les deux tubes de flux. La couche de courant était

associée à un jet d’ions, suggérant ainsi que la couche de courant était soumise à une com-

pression qui a entraîné une reconnexion magnétique à l’origine du jet d’ions. La direction,

la vitesse de propagation et la taille de différentes structures ont été déduites en utilisant
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des techniques d’analyse de données de plusieurs satellites. La deuxième partie de la thèse

fournit une étude complémentaire à la précédente et s’intéresse aux ondes observées au-

tour de la couche de courant.
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INTRODUCTION GÉNÉRALE

La reconnexion magnétique est l’un des processus les plus importants dans la physique

des plasmas spatiaux qui se produit dans la quasi-totalité de l’Univers: dans les plasmas

astrophysiques, dans l’environnement terrestre, dans les galaxies, et au niveau du Soleil

également. Ce processus fondamental se déclenche lorsque des lignes de champ de di-

rections opposées se rapprochent. Ce réarrangement de polarité de champ magnétique

s’accompagne d’une dissipation rapide de l’énergie magnétique qui est transférée aux par-

ticules chargées sous forme de chauffage et d’écoulement. Au-delà de la reconnexion mag-

nétique elle-même, l’analyse et la caractérisation de ses produits (structures de courant,

fronts d’injection, cordes de flux...) permettront de mieux comprendre ce processus.

La reconnexion magnétique joue un rôle crucial dans les relations Soleil-Terre et dans la

dynamique de la magnétosphère. Au niveau de la magnétopause, elle est le principal pro-

cessus assurant le transport d’énergie du vent solaire vers la magnétosphère. Elle résulte de

l’interaction entre les lignes de champ du milieu interplanétaire et celles du champ mag-

nétique terrestre. Elle se produit également dans la couche de plasma de la queue magné-

tosphérique.

Les événements à transfert de flux (FTEs) sont considérés comme l’un des produits prin-

cipaux et les plus typiques de la reconnexion magnétique à la magnétopause terrestre. Ils

sont caractérisés par un pic d’intensité du champ magnétique et une signature bipolaire

sur la composante du champ magnétique normale à la magnétopause. Cependant, des

structures magnétiques 3D plus complexes peuvent également exister à la magnétopause.

Ce manuscrit reporte l’analyse de l’une d’entre elles observée par la mission MMS (Magne-

tospheric multiscale).

Les propriétés à grande échelle de la reconnexion magnétique sont assez bien connues

grâce aux missions magnétosphériques précédentes (THEMIS, CLUSTER,...), mais l’étude

des mécanismes à petite échelle n’a été possible qu’avec la mission Magnetospheric Multi-

scale (MMS). MMS est une mission de la NASA qui comprend quatre satellites en configu-
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ration tétraédrique avec de petites distances inter-satellites (de l’ordre de 10 km à comparer

avec 100 à 1000 km pour Cluster). MMS a été lancée le 12 mars 2015 et a été conçue pour

fournir des mesures in-situ permettant d’analyser avec la précision nécessaire et inégalée

auparavant le processus de reconnexion à la magnétopause terrestre. Les instruments à

bord de MMS offrent des mesures des champs électromagnétiques et des particules, avec

une résolution temporelle cent fois meilleure que celle des missions précédentes. MMS a

permis d’accéder, pour la première fois, à la dynamique des électrons, alors que toutes les

missions précédentes ont été limitées à observer la dynamique des ions qui a lieu sur une

plus grande échelle.

Parmi les laboratoires impliqués dans la mission MMS, on compte deux laboratoires français:

l’Institut de Recherche en Astrophysique et Planétologie (IRAP) à Toulouse et le Laboratoire

de Physique des Plasmas (LPP) à Paris.

Ma thèse a été centrée sur l’exploitation des données fournies par MMS. Ce manuscrit se

divise en cinq chapitres précédés par la présente introduction générale:

• Dans le Chapitre 1, un aperçu des concepts de base de la physique des plasmas en

rapport avec la thèse est présenté. Ensuite, une brève description des plasmas du

système solaire est donnée, suivie d’une introduction à la reconnexion magnétique à

la magnétopause puis aux événements de transfert de flux.

• La première section du Chapitre 2 fournit une introduction à la mission MMS avec

une brève description des principaux instruments utilisés dans cette thèse. La deux-

ième section présente les techniques d’analyse utilisées.

• Le Chapitre 3 étudie un événement qui a été observé par MMS au voisinage de la

magnétopause terrestre. Une comparaison de cet événement avec les FTEs clas-

siques a été effectuée. Une interprétation phénoménologique a été aussi proposée

afin de mieux comprendre les observations. La structure d’une couche de courant

observée au centre de l’événement ainsi que sa géométrie spécifique intéressante

ont également été décrites. Ensuite, les observations de particules à haute résolution

ont été utilisées, ainsi que les données de champ magnétique pour tester l’hypothèse

de reconnexion au sein de la couche de courant.
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• Le Chapitre 4 est consacré à l’étude des ondes observées au cours de l’événement

discuté dans le chapitre 3 et en particulier autour de la couche de courant.

En conclusion, un sommaire des résultats ainsi que quelques perspectives de recherche

sont énoncées et discutées dans le Chapitre 5.
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Figure 1 – Artist concept of the Magnetospheric Multiscale (MMS) mission to study magnetic reconnection.
Credits: NASA.
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1
INTRODUCTION

In this chapter, we will present an overview of the basic plasma physics concepts of rel-

evance to the thesis. Then, a brief description of the solar system plasmas will be given,

followed by an introduction to magnetic reconnection at the magnetopause then to Flux

Transfer Events and to other products of magnetic reconnection.

1.1. PHYSICS OF COLLISIONLESS PLASMAS

1.1.1. SOLAR AND ASTROPHYSICAL PLASMAS

Most of the ordinary matter in the Universe is known to be made of plasma. A plasma is

a globally neutral ionized gas consisting of positively and negatively charged particles that

exhibits a collective behavior [Chen (1974)]. Plasmas are found throughout the Solar Sys-

tem and beyond. The Earth’s magnetosphere, gaseous nebulae, the solar corona and solar

wind, the tails of comets and the Van Allen radiation belts are made of plasmas. Some of

the main examples of plasmas can be sorted with respect to their temperature and density

as shown in Figure 1.2. As seen, the electron temperature of plasmas may vary over about

7 orders of magnitude and their electron density vary over about 30 orders of magnitude.

Plasmas may be classified in different ways. We can, for example, distinguish collisional

from collisionless plasmas. In a plasma, two charged particles can interact by collisions

1



Figure 1.1 – Examples of plasmas.

through the Coulomb force. Collisionless plasmas, as the name says, are plasmas where

the collisions between particles do not play a significant role in the dynamics of the plasma.

The mean free path, i.e. the mean distance a particle travels between two successive colli-

sions, is larger than the typical macroscopic length scale over which plasma quantities vary.

In other words, the collision frequency is much smaller than the characteristic frequencies

of the medium. Collisionless conditions are quite frequent in astrophysics when the plas-

mas are sufficiently diluted like found in the collisionless shocks for supernovae. Also, the

solar wind and planetary magnetospheres, which are the main plasmas considered in this

thesis, exclusively consist of collisionless plasmas.

1.1.2. COLLISIONLESS PLASMAS PROPERTIES

A charged particle generates an electrical Coulomb potential field. The effect of this Coulomb

potential is that a particle attracts oppositely charged particles and repels like-charged par-

ticles. In a plasma, there is an abundance of negatively and positively charged particles so

that a cloud of oppositely charged particles forms around a charged particle. This effect is

known as Debye Shielding and maintains the quasi-neutrality of a plasma on large scales.
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Figure 1.2 – The ranges of temperature and densities of plasmas (1eV ∼ 11600K ). Figure from Peratt (1996).
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The spatial scale over which the charge neutrality is violated is called the Debye length:

λD =
√
ε0kB Te

ne2
(1.1)

where ε0 is the permittivity of free space, kB is the Boltzmann constant, Te is the electron

temperature, n is the plasma density and e is the elementary charge. The Debye length λD

is defined as the scale size on which the Debye shielding occurs. In a plasma, the Coulomb

force extends to the Debye length. At distances larger than the Debye length (d À λD ), the

potential of a single point charge diminishes exponentially due to Debye Shielding.

The quasi-neutrality of a plasma requires that the scale size of the plasma L to be much

larger than the Debye length λD :

L ÀλD (1.2)

When the quasi-neutrality of a plasma is disturbed by some external forces, the particles

will be accelerated by the resulting electric field. The system then tends to recover the

quasi-neutrality. This results in a back and forth movement around the equilibrium posi-

tion and leads to a collective oscillation of the particles. The typical oscillation frequency is

the plasma frequency and is given by:

ωp =
√

nq2

mε0
(1.3)

where n, q and m are the density, charge and mass of the considered particle. The electron

plasma frequency ωpe is the most fundamental time-scale in fully ionized plasmas.

The plasma frequency ωp yields the expression for the plasma skin depth also called the

inertial length:

δ= c

ωp
(1.4)

where c is the speed of light.

A particle of charge q and mass m moving with a velocity v , under the presence of an elec-

tric field E and a magnetic field B , is subject to the Lorentz force:

F = q(E +v ×B ) (1.5)
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The equation of motion of a charged particle in electromagnetic fields is:

m
d v

d t
= q(E +v ×B ) (1.6)

In the presence of a uniform magnetic field, without an electric field, the component of

velocity parallel to the magnetic field v∥ remains at its initial value and the particle is ac-

celerated in a direction perpendicular to v and B . The particle will have a circular motion

around the magnetic field lines, with a gyrofrequency, or cyclotron frequency ωc and a

gyration radius ρL . ωc is given by:

ωc = q|B |
m

(1.7)

The radius of the circular motion, centered about the magnetic field lines, is often known

as gyroradius or Larmor radius and is given by:

ρL = v⊥
ωc

(1.8)

where v⊥ is the perpendicular velocity of the considered particle, respectively. Owing to

their opposite electric charge, ions and electrons rotate in opposite directions. In addition

to the perpendicular component of the velocity, particles travel with a constant velocity

along the magnetic field lines. The particle’s path describes a helix as a result of the combi-

nation of the parallel and perpendicular velocities (Figure 1.3).

The inertial length and gyroradius are much larger for ions than for electrons since ions

are much heavier. The different temporal and length scales in a plasma help to introduce

a hierarchy which order the physical processes acting at the respective scales, as will be

discussed in Section 1.2 for the magnetic reconnection process. The angle between the

particle velocity and the magnetic field is known as the pitch angle α (Figure 1.4):

α= atan
( v⊥

v//

)
(1.9)

When α= 0°, this means that the particles are moving purely along the magnetic field lines

(also called field-aligned particles). Conversely, particles with α= 90° move perpendicular

to the magnetic field.

Some characteristic velocities in a magnetized plasma are the gyrocenter drifts. For in-
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Figure 1.3 – Electron trajectory in a uniform magnetic field. The magnetic field lines are shown as straight
purple arrows.

Figure 1.4 – The definition of the pitch angle α for a particle gyrating around the magnetic field lines.
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Figure 1.5 – Ions motion in the presence of a density gradient. More ions are moving downwards than upwards
giving rise to a drift velocity perpendicular to the magnetic field and to the density gradient.

stance, under the presence of a perpendicular electric field, a drift motion ,Vd , relative to

the helical orbit of the orbits is added to the particle motion:

Vd = E ×B

B 2
(1.10)

This velocity describes the motion of the magnetic field lines and the frozen plasma. The

E×B drift is perpendicular to both the electric and magnetic fields. Both ions and electrons

drift in the same direction since Vd is independent of the sign of the particle charge.

Another gyrocenter drift follows from the presence of a density gradient, when more parti-

cles move in the direction of ∇n ×B than in the opposite direction. This effect, illustrated

in Figure 1.5, is called diamagnetic drift V di a which is given by:

Vdi a = B × (∇·P )

nqB 2
(1.11)

where P = nT kB .

An estimate of the relative importance of thermal and magnetic effects is a dimensionless
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parameter known as plasma beta. The magnetic field gives rise to a magnetic pressure

B 2/(2µ0) which acts perpendicular to the field lines. The ratio of the thermal pressure to

the magnetic pressure defines the plasma beta:

β= pth

pB
= nkB T

B 2/(2µ0)
(1.12)

where T is the plasma temperature. β represents the relative importance of the forces ex-

erted on the plasma by the pressure gradients and the magnetic field. In a high-beta or

hot plasma, the thermal pressure dominates. Conversely, in a low-beta or cold plasma the

magnetic pressure has a larger effect.

1.1.3. KINETIC AND FLUID DESCRIPTION

Having discussed how individual particles behave in a plasma, it would be useful to briefly

describe another plasma descriptions: the kinetic approach and the fluid approach. The

kinetic approach is a statistical description of plasmas that considers the collective behav-

ior and describes the system using the distribution function of the particle populations in

phase space instead of solving the equation of motion for each charged particle. Each par-

ticle is characterized by its 3D position x i (t ) and its 3D velocity v i (t ). The phase space

is defined by the axes (x , v ). The phase space density, f (x , v , t ), is the probability density

such that f (x , v , t )d xd v is the number of particles in phase space volume element d xd v

at time t . The phase space density contains considerable information regarding the phys-

ical state of the plasma. This approach is widely used for the calculation of macroscopic

plasma parameters, from particle distribution data derived from directional particle count

rates observed by spacecraft. The macroscopic plasma parameters (e.g. density, velocity,

temperature) are computed as moments of the particle velocity distributions.

The fluid approach is used for describing the macrospcopic plasma physics. In this ap-

proach, the plasma is considered to be composed of two or more fluids, one for each species.

Each fluid can be described by a density, temperature and bulk velocity (V ). The magne-

tohydrodynamic approach (MHD) describes the plasma as a single fluid with macroscopic
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variables and neglects the single particle aspects.

1.1.4. FROZEN-IN MAGNETIC FIELD CONDITION

Let us consider now a magnetized and highly conductive (i.e. η ∼ 0) plasma with charac-

teristic scale and time variations which are much larger than those of particle processes. In

such situation, particles always perform helical orbits around magnetic field lines (section

1.1.2). The plasma motion then follows the ideal MHD law which can be expressed as:

E =−V ×B (1.13)

Whenever equation 1.13 holds, the plasma obeys the frozen-in-flow condition which states

that the magnetic flux is conserved along the plasma flow lines. This can be noticed by

combining equation 1.13 with Maxwell-Faraday’s Law:

∂B

∂t
=−∇×E (1.14)

to obtain the magnetic induction equation which governs the magnetic field evolution in

time:
∂B

∂t
=∇× (V ×B ) (1.15)

This equation leads to the frozen-flux theorem, also known as the Alfvén’s theorem, which

holds that in a perfectly conducting plasma (i.e. η= 0) the magnetic field lines behave as if

they move with the plasma. In other words, the frozen-in theorem states that the magnetic

flux passing through any closed surface perpendicular to the magnetic field and moving

with the local plasma velocity does not vary in time:

dφ

d t
=

Ï (∂B

∂t
−∇× (V ×B )

)
dS = 0 (1.16)

where φ is the magnetic flux through a variable surface S. Considering a closed curve C

bounding a surface S, the magnetic field lines which are enclosed by C define a magnetic

flux tube along which the magnetic flux φ is constant.

However, as the spatial scale variation approaches the ion inertial length, the previous
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plasma description breaks down and more terms have to be added to the ideal MHD law.

Under these conditions, ideal MHD law has to be replaced by the Ohm’s law [Baumjohann

and Treumann (1996)], which in the simplest case, can be expressed as:

E +Vi ×B = ηJ − 1

ne e
∇· (Pe )+ 1

ne
J ×B − me

e

dV e

d t
(1.17)

where E is the electric field and Vi ×B is the induction electric field associated with the

average ion motion perpendicular to the magnetic field direction. The first term on the

right-hand side gives the Ohmic resistance term where η is the resistivity. The second term

represents the ambipolar electric field created by the electron density gradients in order to

maintain the quasineutrality of the plasma when electrons are driven by pressure gradient.

The third term expresses the Hall term. The final term expresses the effect of electron iner-

tia. All the term on the right-hand of 1.17 are called non-ideal terms.

An important consequence of the presence these terms is that they may lead to the viola-

tion of the frozen-in condition. In other words, whenever the system develops small scale

structure, one may expect the frozen-in condition to break down and the plasma dynamics

to decouple from the magnetic field.

1.2. MAGNETIC RECONNECTION IN COLLISIONLESS PLASMAS

Magnetic reconnection is an ubiquitous energy conversion process in space plasma physics.

It is expected to play key role in astrophysical phenomena. In the solar system, the mag-

netic reconnection allows energy conversion in solar flares, coronal mass ejections or at

the earth’s magnetopause as result of the interaction between the solar wind and the mag-

netosphere magnetic field lines. Magnetic reconnection is also found in laboratory exper-

iments, and particularly those about magnetic-confinement fusion. The magnetic recon-

nection allows the connection between two magnetic field lines previously independent

leading to a mixing between the two plasma populations. It also leads to the conversion of

magnetic energy into mechanical energy by ejecting heated plasma apart from the recon-

nection site at the Alfvén speed , which can be expressed as:

VA = c
ωc

ωp
= |B |p

nmµ0
(1.18)
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where µ0 is permeability of free space.

1.2.1. THE PRINCIPLE OF MAGNETIC RECONNECTION

Figure 1.6 shows a schematic view of the magnetic reconnection process between two op-

positely directed magnetic fields separated by a current sheet (Figure 1.6-(a)). Under the

frozen-in condition, magnetic field and plasma from different sources can not mix. The

magnetic field lines, initially straight, are pushed towards the current sheet by external

forces (Figure 1.6-(b)), until the frozen-in-flow assumption breaks down. The region where

the frozen-in condition breaks down (i.e. that the equation 1.13 is not satisfied anymore)

is called diffusion region. From a kinetic point of view, breaking the frozen-in condition

means that particles do not simply gyrate around magnetic field lines but instead perform

more complicate orbits. This behavior is possible only where the scale of the system L is

smaller than the dimensions characterizing the particles’ motions, i.e. the local gyroradius

ρ. The fluid manifestation of these kinetic effects is the presence of non-ideal terms in

the Ohm’s law (Equation 1.17). This means that inside the diffusion region, the ideal MHD

Ohm’s law does not hold anymore (Equation equation 1.13). In the diffusion region, the

magnetic field can reconnect taking a X-shape configuration (Figure 1.6-(c)). The point at

the center, where the magnetic field strength equals zero, is called X-point. Here, the field

lines merge and generate two kinked field lines which cross the current sheet. In 3D, the

X-point becomes an X-line and lies perpendicular to the reconnection plane that drives the

reconnection. The presence of an out of plane magnetic field, called guide field, changes

the reconnection process. The newly merged field lines are then carried away from the

diffusion region (Figure 1.6-(d)). The boundary separating the field lines which have un-

dergone reconnection from those which have not is referred to as the separatrix which can

be considered as rotational discontinuities.

The magnetic reconnection is also associated with energy conversion. If we consider a rect-

angular diffusion region with a length of 2L and thickness of 2δ, the mass conservation law

over the contour of the diffusion region can be written as:

∮
nV ·d l = 0 (1.19)
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In symmetric conditions, where the plasma conditions are identical on both sides of the

current sheet, the mass conservation can be expressed as:

ni nV i nL = nout V outδ (1.20)

where V i n and ni n are the plasma velocity and density in the inflow region and V out and

nout are the plasma velocity and density in the outflow region. Since δ/L ¿ 1, we can de-

duce from equation 1.20 that the plasma is accelerated in the diffusion region leading to

plasma jets. The magnetic flux conservation can be used to determine the relation between

the inflow and outflow magnetic fields and velocities:

Bi nV i n = Bout V out (1.21)

This equation illustrates the conversion of the magnetic energy into kinetic energy since

an increasing of velocity between the inflow and outflow regions will be associated with a

decreasing of the magnetic field in the corresponding region.

1.2.2. DIFFERENTIAL ION-ELECTRON MOTION: HALL FIELDS AND CURRENTS

Magnetic reconnection is a multi-scale process. It occurs basically on three scales:

• The MHD scales: L À ρi , T Àω−1
pi ,

• The ion scales: L ∼ ρi , T ∼ω−1
pi ,

• The electron scales: L ∼ ρe , T ∼ω−1
pe .

Figure 1.7 shows more detailed 2-D schematic view of magnetic reconnection where both

ions and electrons are considered. Initially, the two anti-parallel magnetic fields in the X

direction are embedded in the plasma which flows with an inflow velocity V i n = E ×B or

"frozen in" velocity. When the magnetic fields reconnect, magnetic energy will be released

in the form of accelerated electrons and ions that rapidly move away from the reconnection

region in the Y direction (horizontal blue arrows). Since ions and electrons have signifi-

cantly different gyroradii (ρi À ρe ), the diffusion region develops two-scale structure: the

ion diffusion region of size of the ion inertial length δi = c/ωpi and the electron diffusion
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Figure 1.6 – A 2-D schematic view of the magnetic reconnection process. (a) Two opposite magnetic field
(blue and green) from different plasma regimes, are encountering each other. The field lines are separated by
a thin current sheet which is shown in pink, the inflow plasma from both side (purple arrows) stream into the
current sheet, (b) The magnetic fields are strongly pushed towards each other, (c) a diffusion region is formed
(black box) where the two magnetic fields create an X-line configuration and (d) these fields can cross the
current sheet by merging into a pair of kinked lines, which will be carried away as the magnetic tension acts
to straighten them. The yellow arrows represent the outflow plasma jets. The big circles represent ions while
the small circles represent electrons.

region of size of the electron inertial length δe = c/ωpe (pink and green shaded regions in

Figure 1.7). In the ion diffusion region, ions do not flow with a E ×B velocity and are de-

magnetized. The electrons remain frozen in until the electron diffusion region which is a

much smaller scale region. Differential motion between unmagnetized ions and magne-

tized electrons lead to the creation of Hall currents J = en(V i −V e ) ∼−enV e in the recon-

nection plane. The Hall currents then lead to the creation of out-of-plane magnetic fields in

the direction perpendicular to the current density direction. These fields are called the Hall

magnetic fields. They correspond to a quadrupole pattern of the out-of-plane component

of the magnetic field inside the reconnection region on the scale size of the ion diffusion

region. They are represented by yellow and violet ovals in Figure 1.7.

When decoupled from the magnetic field in the ion diffusion region, the ions do not obey
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Figure 1.7 – Two-dimensional reconnection topology. The pink (green) box of δi (δe ) is the ion (electron)
diffusion region. The black lines show the magnetic field lines. The dashed black lines are the separatrices.
The blue arrows show the plasma flow outside the diffusion region. Ions are decoupled from the magnetic
field in the ion diffusion region, creating the Hall magnetic (yellow and violet quadripolar structure) and
electric field patterns (magenta arrows). The ion flow is shown by dashed green arrows. The electrons remain
magnetized in the ion diffusion region and they follow the trajectories shown by red arrows. Electrons are
demagnetized in the electron diffusion region.
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the ideal MHD laws (E =−V i ×B ) anymore. They now satisfy the Hall MHD law:

E =−V i ×B + J ×B

en
(1.22)

The term J ×B/en creates an electric field perpendicular to the magnetic field (magenta

arrows). This field is called the Hall electric field and points toward the central current

sheet at the edge of diffusion region.

In the presence of several types of ions of different masses, multiple ion diffusion regions

may exist according to the mass and temperature of each ion population.

1.2.3. ANOMALOUS RESISTIVITY MODEL FOR MAGNETIC RECONNECTION

Two major mechanisms may produce resistivity in a plasma. The first possibility results

from momentum exchange through electron collisions and corresponds to the microscopic

Ohmic resistivity. The second possibility does not involve particle-particle interactions

but instead consists of a momentum exchange by small-scale wave-particle processes, pos-

sibly active also in collisionless plasma regimes. The resistivity resulting from this second

mechanism is commonly called anomalous resistivity and is substantially larger than the

microscopic Ohmic resistivity inside electron diffusion regions, for the plasmas we study

throughout this work. Indeed, since strong current density in the dissipation region leads

to a large relative streaming between ions and electrons, many plasma instabilities can be

excited in this region, notably when the drift velocity of the current-carrying electrons ex-

ceeds a certain threshold, such as the electron thermal speed. Waves excited due to in-

stabilities, developing in a naturally turbulent way, provide an efficient mechanism for the

scattering of electrons onto ions, ultimately leading to the anomalous resistivity.

1.2.4. RECONNECTION RATE

The reconnection rate R is the amount of magnetic flux reconnecting per unit time per unit

length of the reconnection line. The reconnection rate is also defined as the ratio of the

plasma flow velocities of the inflow and outflow regions as a first approximation. Consider-

ing an elongated magnetic diffusion region (with length 2L and width 2δ¿ 2L as illustrated

in Figure 1.8) which lies between two identical plasmas with oppositely directed magnetic

15



Figure 1.8 – Zoom around the diffusion region shown in Figure 1.6-(d). The field line diffuses over the half-
width of the diffusion layer, δ, which is much smaller than the system size, 2L.

field lines, R can be expressed as:

R ≡ Vi n

Vout
(1.23)

The reconnection rate is strongly linked to the geometry of the reconnection and corre-

ponds to the ratio of the angular widths of the outflow to inflow regions (δ/L).

Both observations and models predicted a reconnection rate of 0.1 in normalized units over

a wide range of parameters [e.g. Chen et al. (2017); Liu et al. (2018)]. However, despite mul-

tiple observational and theoretical works, the physical origin of this value is still unclear

[Cassak et al. (2017)]

1.2.5. ENERGY CONVERSION RATE

The temporal change of electromagnetic energy density, W , can be obtained by combining

Maxwell’s equations:
dW

d t
= ∂

∂t

( B 2

2µ0

)
+∇·

(E ×B

µ0

)
=−J ·E (1.24)

where (E ×B )/µ0) is the Poynting flux. In a steady state, the regions where J ·E > 0 are sinks

of Poynting flux S and, conversely, regions where J ·E < 0 are sources of Poynting flux. In

the reconnection dissipation region, J ·E is supposed to be positive because magnetic re-

connection is known to be a dissipative process that converts magnetic energy into heat

and kinetic energy.
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1.2.6. OBSERVATIONAL CONSTRAINTS FOR MAGNETIC RECONNECTION ANAL-

YSIS

Multi-spacecraft studies have proven to be an invaluable tool to better understand the mag-

netic reconnection process. The Cluster mission [Escoubet et al. (2001)] allowed the study

of the magnetic reconnection and its diffusion region at the magnetopause on ion-scales.

However, despite numerous studies on this subject, many aspects about magnetic recon-

nection remain unclear due to the limited resolution of instruments aboard past missions.

More recently, the Magnetospheric Multiscale (MMS) mission launched on March 12, 2015

was designed to better understand the magnetic reconnection process. MMS is composed

by four identical satellites flying in adjustable tetrahedral formation allowing the observa-

tion of the three dimensional structure of magnetic reconnection and the measurements

of the spatial gradients of various plasma and field parameters. The MMS mission was de-

signed to answer specific questions about reconnection by providing unprecedented spa-

tial and time resolution measurements. MMS makes the study of microscopic structures

and, in particular, of the thin electron diffusion region possible [Burch et al. (2016)].

Previous missions provided observations of relatively large regions of the magnetopshere.

They allowed the study of magnetic reconnection at the MHD (e.g. ISEE, AMPTE, Geotail,

Wind) and ion (Cluster) scales. The challenge of MMS was thus to extend these under-

standings to the electron scale. It is at this scale that the magnetic field lines break and

reconnect and that the processes leading to the dissipation process that converts magnetic

energy into kinetic energy and heat occur. On electronic length scales, the plasma is de-

scribed by the Ohm’s law shown in Equation 1.17. This equation shows the terms that need

to be considered when the frozen-in condition is broken: the resistive term, the divergence

of the electron pressure tensor and by the electron inertia term. These terms introduce new

physics to the system at short scales. In order to take into account these terms, the require-

ments for MMS were to provide three-dimensional maps of particle distribution functions,

electric and magnetic fields, and plasma waves within the electron diffusion region. At the

dayside, the densities are high and the scale of the electron diffusion region is of the order of

the electron skin depth, i.e. 10 km, or less. The spacecraft separation of MMS is about ∼ 10

km while it scans the dayside magnetopause. The time resolution of measurements were
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chosen based on the size of the electron and ion diffusion regions and their motions (tens

of km/s to 100 km/s) as explained in Burch et al. (2016). For example, an Electron Diffusion

Region (EDR) with a width of 5 km and moving at 50 km/s, would contain only one space-

craft for 0.1 s. The time resolution was chosen in such a way that at least three measure-

ments during one crossing of the EDR. Therefore, the full electron distribution functions

had to be measured with a time resolution of 30 ms. Applying this to ion diffusion regions,

with a dimension of 250 km, the time resolution for ion was set to 150 ms. Therefore, the

electrons and ions distribution functions were needed at time resolutions of 30 ms and 150

ms, respectively, compared to 2 s (electrons) and 4 s (ions) on Cluster.

1.3. THE EARTH’S MAGNETOSPHERE

1.3.1. LARGE-SCALE STRUCTURE OF THE EARTH’S MAGNETOSPHERE

THE SOLAR WIND

The Sun emits a continuous outflow of highly-conducting plasma into the interplanetary

medium which is called Solar Wind. This term was suggested by Parker (1958) who also

predicted that the radial speed of expanding outflow increases with the distance from the

Sun, and becomes supersonic before arriving at Mercury’s orbit. The plasma of the solar

wind consists mainly of protons and electrons, with a small amount of ionized helium and

fewer ions of heavier elements.

The observations of solar wind showed that, at the Earth’s orbit distance (1 Astronomical

Unit), the solar wind parameters are typically: ∼ 5cm−3 for the electron density, ∼ 105K for

the electron temperature, ∼ 5−10nT for the magnetic field intensity. The outflow velocities

were found to be about ∼ 300−450kms−1 for slow streams and ∼ 600−900kms−1 for fast

stream solar wind. The plasma of the solar wind is highly conductive so that the magnetic

field of solar origin is frozen in to the plasma, and is carried into interplanetary space with

the solar wind outflow, forming the Interplanetary Magnetic Field (IMF). The IMF origi-

nates in regions on the Sun where the field lines emerging from one region extend virtually

indefinitely into space, which are called "open field lines". The feet of the field lines remain

frozen into the solar plasma. Therefore, the rotation of the sun combined with the radial

propagation of the solar wind leads to the formation of a spiral configuration known as the
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Figure 1.9 – A schematic view of the spiral Parker structure in the equatorial plane and orbit of the Earth in 1
AU, showing the interplanetary magnetic field (IMF) lines frozen into a radial solar wind with an expansion
at speed of 400 kms−1. As the plasma passes Earth’s orbit moving parallel to the Sun-Earth line, the IMF
typically creates an angle of 45°. (Sun and Earth are not to scale).

Parker spiral (see Figure 1.9). Observed near Earth, the interplanetary magnetic field tends

to make ∼ 45° or ∼ 225° angle with Sun-Earth direction.

THE EARTH’S MAGNETOSPHERE

The plasma of the interplanetary medium is governed by interplanetary magnetic field. But

closer to the Earth, the terrestrial magnetic field dominates and creates a cavity in the so-

lar wind [Chapman and Ferraro (1930)], which is called the magnetosphere. Figure 1.10

displays a sketch of the structure of the Earth’s magnetosphere and large scale current sys-

tems. The terrestrial magnetic field provides an obstacle to the solar wind so that the solar

wind cannot simply penetrate into the geomagnetic domain. When the supersonic solar

wind encounters the Earth’s dipolar magnetic field, a shock region is generated upstream

the Earth, which is called the bow shock. On the Sun-Earth line, the bow shock is located

at 10−15 RE (Earth radius) from the Earth, increasing to 15−20 RE towards the dawn and

dusk flanks [e.g. Formisano (1979)]. The thickness of the bow shock is of the order of the

ion gyroradius (∼ 1000 km). At the bow shock, the plasma slows down to subsonic speeds,

and is compressed to higher densities and temperatures. Through this process, much of
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the solar wind kinetic energy is converted into thermal energy, resulting in a temperature

increase in the region of shocked plasma called the magnetosheath which is formed be-

tween the bow shock and the Earth’s magnetosphere. The plasma in this region is denser

and hotter than solar wind plasma and the magnetic field strength has higher values in this

region.

The magnetosheath plasma flows around the magnetosphere. During this encounter, the

solar wind is mainly deflected around the magnetosphere, and the kinetic pressure of the

solar wind distorts the dipolar field of the Earth such that it is compressed on the dayside

and stretched out on the night side [e.g. Kobel and Fluckiger (1994)]. The extension in the

night side is known as the magnetotail. The boundary between the magnetosheath and

magnetosphere is called the magnetopause. The magnetopause and the magnetotail are

regions within the Earth’s magnetosphere where current sheets separate regions of distinct

magnetic fields. It is inside these thin boundaries that processes such as magnetic recon-

nection occur, at the magnetopause in the dayside and in the cross-tail current sheet in the

night side. The magnetosphere is the only place in space where plasma micro-processes

can be studied since it is the only place accessible in situ by appropriate observatories. The

locations of the the bow shock and of the magnetopause mainly depend on the solar wind

pressure.

Magnetosheath properties

The plasma and the magnetic field in the magnetosheath are compressed. The main prop-

erties of the magnetosheath are:

• Amounts of He++ ions and trace amounts of heavier ions of solar wind origin,

• Typical plasma densities are between 10 and 30 cm−3 [e.g. Phan et al. (1994)].

• Thermal particle energies are of order ∼ 100 eV for electrons and 1 keV for ions [e.g.

Phan et al. (1994)].

• The magnetic field magnitude is enhanced compared with the IMF.

Magnetosphere properties

The plasma properties in the magnetosphere are quite different from those in the magne-
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Figure 1.10 – Three-dimensional cutaway view of the Earth Magnetosphere showing currents (white arrows),
fields and plasma regions. This figure is from Pollock et al. (2003).

tosheath. The dayside magnetosphere is characterized by:

• Abundance of O+ ions originated from the ionosphere,

• Lower density and ion velocity than the magnetosheath plasma,

• Northward B ,

• Electron fluxes at high energies (∼ 1 keV),

• High energy ions (above 4 keV).

Figure 1.11 shows an example of what a spacecraft can observe in the magnetosphere, the

magnetosheath and the solar wind. These observations were provided by MMS spacecraft

on 1 December 2017 between 10 : 00 and 16 : 00 UT. The spacecraft were initially in the

magnetosphere. The main component of the magnetic field was the Z component. The

density was low and there was no plasma flow. The particles energy spectrograms reveal

the presence of high-energy ions (∼ 10 keV) and electrons (∼ 2 keV). At ∼ 11 : 30, the space-

craft crossed the magnetopause. Between ∼ 11 : 30 and ∼ 14 : 00 UT, the spacecraft moved
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Figure 1.11 – Observations from MMS 1 on 1 December 2017 between 10:00 and 16:00 UT while the spacecraft
were moving from the magnetosphere to the solar wind. (a) the magnetic field components and intensity, (b)
the ion density, (c) the ion velocity components, (d) ion spectrogram and (e) electron spectrogram.

22



Figure 1.12 – The schematic figure of plasma flow through the magnetosphere driven by magnetic reconnec-
tion. The numbered field lines show the evolution of a field line involved in the Dungey cycle. Figure from
Kivelson et al. (1995).

to the magnetosheath where the densities were high (∼ 20 cm−3) and the plasma velocity

increased. The particles spectrograms show that ions had energies up to ∼ 1000 eV and

electrons had energies up to ∼ 100 eV . Around ∼ 14 : 50 UT, the spacecraft exited into the

solar wind. The magnetic field intensity was low compared to that in the magnetosheath

and the magnetosphere. The density remained relatively high (∼ 10 cm−3) and there was an

important flow mainly in the −X direction. The electron energy was in the order of few tens

of eV. While moving from the magnetosheath to the solar wind, between 13 : 50 and 14 : 50

UT, there were multiple incursions into the solar wind and the magnetosheath indicative

of several bow shock crossings.

1.3.2. SOLAR WIND-MAGNETOSPHERE COUPLING: DUNGEY ’S CYCLE

Dungey’s cycle is a schematic model for the interaction between the Earth’s magnetic field

and the interplanetary medium. The stages involved by the Dungey’s cycle describe the

evolution of magnetic field lines path driven by a typical dayside reconnection during south-

ward IMF orientation and are shown in Figure 1.12. The numbered field lines show the step

by step evolution of a field line. When the IMF in the magnetosheath is directed southward,
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reconnection occur at the magnetopause near the subsolar point. Newly opened field lines

are then carried tailward by the solar wind flow. The motion of the convecting magnetic

field lines and the plasma which is frozen in gives rise to a convection electric field. This

convection electric field is directed from dawn to dusk. In the magnetotail, the two open

field lines reconnect at the current sheet separating the Earthward field in the northern lobe

from the anti-Sunward field in the southern lobe. The nightside reconnection site gener-

ates an open field line and a closed magnetospheric field line. The newly closed field line

then moves Earthward. The convection cycle is completed as the closed field line moves

around the flank to replace dayside field lines which have been reconnected.

The Dungey’s cycle provides a qualitative description of the solar wind-magnetosphere

coupling under quasi-stationary conditions. However, this process is far more complex in

reality. Indeed, it is now well known that the magnetospheric dynamics is non-stationary

and non-linear.

1.4. MAGNETIC RECONNECTION AT THE EARTH’S MAGNETOPAUSE

1.4.1. THE DAYSIDE MAGNETOPAUSE AND THE BOUNDARY LAYER

The magnetopause is the boundary between the magnetosphere and the magnetosheath.

The magnetopause consists of a current sheet, surrounded by more or less a disturbed

boundary layer. The boundary layer basically separates the interplanetary magnetic field

from the Earth’s magnetic field and is the place where the reconnection occurs leading to

mass, energy and momentum transfer from the magnetosheath into the magnetosphere.

The magnetopause is associated with a sharp change in the magnetic field. The magne-

topause thickness is typically around 80 km but can vary up to 2000 km and it moves quite

rapidly with speeds of several 10 km/s in and outward.

From an MHD point of view, the magnetopause can be described either as a tangential

discontinuity or a rotational discontinuity [e.g Hudson (1970)]. For the tangential discon-

tinuity type, there is no magnetic field component normal to the magnetopause. Under

this condition, there would be no mixing of the plasma from the two sides of the tangen-

tial discontinuity magnetopause. However, when magnetic reconnection occurs between

the magnetic fields from the two sides of the magnetopause, there is a non-zero normal
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magnetic field component. In this case, the magnetopause is locally and intermittently a

rotational discontinuity [e.g. Sonnerup et al. (1981)]. Under this condition, the particles

from both side of the magnetopause mix up along the reconnected field lines.

At large scale, boundary layers are formed by the repetitive occurrence of magnetic recon-

nection at the magnetopause. One boundary layer is created in the magnetosheath outside

of the magnetopause and is known as the magnetosheath boundary layer (MSBL). An-

other boundary layer is formed inside the magnetopause and is usually called Low Latitude

Boundary Layer (LLBL). These boundary layers contain a mixture of particles of magneto-

spheric and interplanetary origins [e.g. Eastman and Hones (1979); Hall et al. (1991)]. Dur-

ing periods of active reconnection, both the ion composition and the electron distribution

in the boundary layers are seen to change locally as a result of mixing of magnetospheric

and magnetosheath populations.

Generally, the inner boundary layer shows a complex structure with the existence of inner

and outer distinct parts of the LLBL [Le et al. (1996); Fuselier et al. (1997); Onsager et al.

(2001)]. The solar wind-magnetosheath interaction can be more complicated under un-

usual conditions of low solar wind Mach number and dynamic pressure. Under such dis-

turbed conditions, the LLBL may consist of two regions: a sheath-like and dense outer part

that can be distinguished from a dilute and mixing inner region [Fujimoto et al. (1998)].

The plasma in the outer boundary layer is dominated by solar wind particles while in the

inner boundary layer a mixture of particles of solar wind and magnetospheric origins are

present with comparable proportions [Bauer et al. (2001)].

1.4.2. FLUX TRANSFER EVENTS

Complex magnetic structures form at the magnetopause as a result of magnetic reconnec-

tion. Bursty magnetic reconnection (i.e. short X-line length and short time duration) lead

to the formation of flux transfer events (FTEs) on the dayside magnetopause [Russell and

Elphic (1978, 1979)] which are embedded in the exhaust. The two prime signatures of FTEs

observed in situ are an enhancement in the magnetic field magnitude and a bipolar signa-

ture in the component of the magnetic field normal to the magnetopause.
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Figure 1.13 – Interior structure of magnetic field lines in a flux rope. Figure from Russell and Elphic (1978).

1.4.3. FTES CHARACTERISTICS

Russell and Elphic (1978) reported observations of FTEs using the initial results of ISEE 1

and 2 magnetometers. During two magnetopause crossings, interplanetary magnetic field

were strongly southward and they observed a clear evidence for reconnection. Magnetic

field data were projected in a local reference frame system (LMN system) which is discussed

in Section 2.5.1. The observations revealed a signature consisting of a bipolar variation in

BN , with simultaneous variations of the components in BL and BM which were not consis-

tent with ordinary crossings of the magnetopause. The signatures were observed on both

sides of the magnetopause.

Paschmann et al. (1982) reported the most important characteristics of FTEs:

• An enhancement in magnetic field strength |B | when compared to the ambient field,

• A bipolar variation in BN ,

• High energy particles from magnetosphere and low energy particle from magnetosheath

are observed within FTEs,

• Anti-correlation of density and temperature inside the structures.

Flux transfer events are interpreted as helical flux ropes which are structures of twisted

field lines along an axis (Figure 1.13). Near the central axis, the magnetic field is strong and

parallel to the axis. For increasing distance from the central axis, the axial magnetic field

becomes much weaker while the azimuthal magnetic field increases. In order to sustain

this magnetic structure, the current density must be directed along the axis parallel or anti-

parallel to the sense of the magnetic field lines in the flux rope. FTEs have been studied

using simulations [Fedder et al. (2002); Raeder (2006); Daum et al. (2008)], laboratory ex-

periments [e.g. Stenzel and Gekelman (1979); Egedal et al. (2007); Fox et al. (2017)], ground
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measurements [Wild et al. (2001); Lockwood et al. (2001)], and multi-spacecraft missions

as Cluster [e.g. Fear et al. (2005); Hasegawa et al. (2006); Roux et al. (2015)], THEMIS [Fear

et al. (2009); Silveira et al. (2012)] and now MMS [Farrugia et al. (2016); Hwang et al. (2016)].

The scale size of an FTE in its direction of motion along the magnetopause can be deter-

mined from a single-spacecraft observation by multiplying the duration of the signature

with an assumed or measured FTE propagation speed. Early measurements estimated it to

be of order 2−4RE [Russell and Elphic (1978)]. More recently, Owen et al. (2001) estimated

it to be of order 0.8RE . The scale size of an FTE normal to the magnetopause was estimated

to be the order of 1RE [e.g. Saunders et al. (1984)]. Solar wind and interplanetary magnetic

field conditions have important influences on FTEs [Wang Y. L. et al. (2006)].

Multi-spacecraft missions have advanced the understanding of FTEs shape, motion, and

extent [e.g. Fear et al. (2009); Trenchi et al. (2016)]. However, despite the abundance of FTE

observations, their formation mechanism is not clearly understood yet. More studies are

still needed to better understand the detailed structure of FTEs and to link the observed

properties to plasma characteristics at the formation site. The magnetic field topology

within FTEs and their 3D magnetic structure have also not been completely elucidated.

1.5. WAVE-PLASMA INTERACTIONS

Waves are disturbances traveling through matter or space, accompanied by a transfer of

energy without any transport of mass. A wave is characterized by its angular frequency

ω= 2π f (rad/s) and its wave vector k(m−1). The vector k gives both the direction of propa-

gation of the wave and the wavelength (λ) shuch as: |k | = 2π/λ. There is a relation between

ω and k that can be determined by the physical properties of the system. The functionω(k)

is called the dispersion relation for the wave.

The velocity of wave propagation, called the phase velocity, is defined as:

V ph = ω

k
(1.25)

27



The velocity of energy flow, i.e. group velocity, is given by:

V g = ∂ω

∂k
(1.26)

Plasmas are very rich and complex mediums where a large variety of waves can exists. The

types, or modes, of waves depend on the properties of the plasma itself. Plasma waves can

be categorized in several ways, we can separate:

• Electromagnetic from electrostatic waves depending on the existence of magnetic

field fluctuations.

• Longitudinal from transverse waves depending on their angle of propagation. In the

longitudinal waves, the wave electric field is in the same direction of the wavenum-

ber (E ∥ k or ∇× k = 0), whereas in the transverse waves the wave electric field is

perpendicular to the wavenumber (E ⊥ k or ∇·E = 0).

• Parallel from perpendicular waves according to the direction of the wavenumber

with respect to the magnetic field. Parallel waves propagate along the magnetic field

vector B while perpendicular waves propagate at 90°.

• Left-handed from right-handed waves which depends on the wave polarization. If

the wave electric field rotates in the same sense as electrons do around a magnetic

field line, the wave is right-handed. In contrast, if the wave electric field rotates in the

opposite sense as electrons do around a magnetic field line, the wave is left-handed.

Space plasmas are rich with waves phenomena. The study of plasma waves is complex even

in the simplest case of linear waves in homogeneous plasma. The angular frequency ω in

such conditions is a function of the wavenumber k as discussed earlier in this section. The

plasma behaves very differently in the directions parallel and perpendicular to the electric

field. Indeed, charged particles easily move along the magnetic field lines but the gyration

of particles around the magnetic fields leads to a motion in the perpendicular direction.

The different behavior of the plasma in these two directions is reflected by dependence

of the propagation properties of waves in plasmas on the angle between the direction of

propagation of waves and the external magnetic field. Collisionless plasma waves-particle
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interactions are considered to be a possible mechanism of acceleration of particles.

Waves associated with magnetic reconnection at the magnetopause have been the subject

of many studies [e.g. Labelle and Treumann (1988); Farrell et al. (2002); Khotyaintsev et al.

(2006)]. Several wave modes are found near the reconnection sites: whistlers, solitary wave

structures, lower hybrid drift waves, electron cyclotron waves and Langmuir/upper hybrid

waves. More particularly, plasma waves were commonly observed around the reconnec-

tion sites covering a broad band of frequencies (ω < ωci to ω > ωpe ) and in the separatrix

region. In the next sections, we will describe the main wave-modes associated with mag-

netic reconnection after a brief introduction of the linear plasma wave theory.

1.5.1. LINEAR PLASMA WAVE THEORY

In this section we will derive the general wave equation using the Maxwell’s equations and

the Ohm’s law. We will then show the general dispersion relation for waves in plasmas. The

solutions for the dispersion relation correspond to different plasma wave modes.

The general wave equation can be derived using the Faraday’s and Ampère’s equations and

then taking the curl of the first and the time derivative of the second, and combine, using

∇× (∇×E ) =∇(∇·E )−∇2E . The general wave equation can thus be expressed as:

∇2E 1 −∇(∇·E 1) =µ0
∂J 1

∂t
+µ0ε0

∂2E 1

∂t 2
(1.27)

The usual notation comes from the linearization and is to label the equilibrium quantities

with a subscript 0; i.e. X0; and the perturbed quantities with a subscript 1, i.e. X1. A vari-

able can thus be expressed as X = X0 + X1. Then the assumption of small perturbations is

|X1/X0| << 1. For the electric field and the current density, the zeroth-order term is equal

to zero. Taking into account the following approximations and transformations:

• The electric field may be approximated as a plane wave: E 1 = E 0
1e i (k ·r−ωt ).

• ∇≡ i k and ∂
∂t ≡−iω.

• Using Ohm’s law, the current can be replaced as J =σ ·E where σ is the conductivity

tensor.
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The equation 1.27 turns into:

((
k2 − ω2

c2

)
I−kk − iωµ0σ

)
·E 1 = 0 (1.28)

The solutions of equation 1.28 can be found by setting the determinant equal to zero:

det

((
k2 − ω2

c2

)
I−kk − iωµ0σ

)
= 0 (1.29)

We can define the dielectric tensor as:

ε= I+ iσ

ωε0
(1.30)

and re-write the general dispersion relation of a wave in a plasma as:

det

(
k2c2

ω2

(kk

k2
− I

)
+ε

)
= 0 (1.31)

Now, once the expression of ε is known, the solutions of equation 1.31 give the different

wave modes in the plasma.

COLD PLASMA APPROXIMATION

In the cold plasma approximation, the plasma is considered to be consisted of cold elec-

trons. The ions consist of a merely stationary background that ensures the quasi-neutrality

of the plasma. The frequencies of waves that can form under such conditions are above the

plasma frequencies and the ion cyclotron. In the following sections, we will describe the

properties of some of the waves of relevance to the thesis that were found to be observed

in the reconnection regions.

Lower hybrid drift waves (LHDW)

Lower hybrid drift waves are strong plasma waves supported by density gradients. They

operate at a frequency range where both electron and ion dynamics are important. That is,

LHDWs oscillate at a frequency which is above the ion gyrofrequency but below the elec-

tron gyrofrequency:

ωci ¿ωLH ¿ωce (1.32)
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The LHDW angular frequency ωLH is given by:

ωLH = ωpi√
1+ω2

pe /ω2
ce

(1.33)

where ωpe and ωpi are the plasma frequencies for electrons and ions.

The LHDWs propagate perpendicularly to the ambient magnetic field and are character-

ized by short wavelengths (i.e. k⊥ρe ∼ 1). Simulations suggest that the highest-amplitude

Lower Hybrid Drift waves are usually located in the regions of sharp density gradient [Vaivads

et al. (2006)]. The driving force for the LHDWs, in a simplified picture, is a density gradi-

ent with relative flow between ions and electrons due to their different diamagnetic drift.

LHDWs are usually associated with strong electric fields on scales smaller than the ion gy-

roradius. It has also been shown that these waves can be generated by the electron beams

generally present at the density gradients [Vaivads et al. (2004)]. The question of whether

the LHDW can be responsible for magnetic reconnection or, take part in the dynamic lead-

ing to magnetic reconnection is still an open question.

Whistler waves

The whistler waves can be observed at frequencies below the lower-hybrid frequency ωLH

(Equation 1.33), but above ωci :

ωLH ¿ω¿ωce (1.34)

At frequencies well below the electron cyclotron frequency, we can approximate the whistler

waves frequency to:

ω= ωce

1+ ω2
pe

k2c2

(1.35)

Whistler waves are right-hand circularly polarized electromagnetic waves that are also trans-

verse. They may be excited by electron temperature anisotropy when Te⊥/Te∥ > 1 where the

subscripts denote perpendicular and parallel directions to the magnetic field [kennel and

petsheck, 1966]. In addition to the temperature anisotropy, whistlers can be excited as a

consequence of electron beams [Gary and Wang (1996)].
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Apart from linear waves, nonlinear modes may also develop in a plasma. Electrostatic soli-

tary waves, for example, are generated out of nonlinear processes. They are characterized

by localized bipolar electric fields parallel to the magnetic field [Matsumoto et al. (1994)]

which can be observed in the electric field waveform data.

1.6. OVERVIEW OF THE THESIS

Chapter 2 provides an introduction to the instrumentation and analysis techniques used in

this thesis. This is followed in Chapter 3 by a case study of magnetic reconnection occuring

at a thin current sheet separating two interlaced flux tubes near the Earth’s magnetopause.

Chapter 4 presents the results of the study of plasma waves associated with the event that

was discussed in Chapter 3. The work presented in this Chapter has been done at the Lab-

oratory of Plasma Physics (LPP), Paris, under the supervision of Olivier LeContel and Hugo

Breuillard. Finally, a summary of the thesis is presented along with some conclusions and

potential further research in Chapter 5.
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2
INSTRUMENTATION AND ANALYSIS

TECHNIQUES

The first section of this chapter provides an introduction to the MMS mission with a brief

description of the main instruments that were used in this thesis. The second section cov-

ers the analysis techniques used.

2.1. THE MAGNETOSPHERIC MULTISCALE MISSION (MMS)

2.2. MISSION AND MEASUREMENTS REQUIREMENTS

The MMS mission is a NASA Solar Terrestrial Probe involving a number of institutions in

the United States, as well as numerous international partners in Austria, Sweden, France

(CNES, IRAP, LPP) and Japan. MMS consisrs of four identical satellites flying in adjustable

tetrahedral formation. The spacecraft were launched on 12 March 2015 from the Cape

Canaveral Air Force Station in Florida on an Atlas V launch vehicle into an elliptical 28°

inclination orbit with perigee at 1.2 Earth radii (RE ) and apogee at 12 RE for a two-year ini-

tial mission phase.

Previous multispacecraft magnetospheric missions (THEMIS and Cluster) allowed the study

of magnetic reconnection at the MHD and ion scales. For example, the Cluster spacecraft
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Figure 2.1 – Instruments onboard each MMS spacecraft. Figure from Burch et al. (2016).

orbits were designed to fly through the high-latitude magnetospheric cusps to investigate

plasma transfer into the Earth’s magnetosphere. The Cluster mission explored more par-

ticularly the detailed role of Hall MHD in controlling the reconnection rate and the ion

flow through the ion diffusion region. The challenge of MMS was therefore to extend these

understandings to the electron scale. For this reason, MMS was designed to provide three-

dimensional maps of particle distribution functions, electric and magnetic fields, electric

currents and plasma waves within the electron diffusion region with significantly higher

time resolution and on closer spacecraft spacing than all the previous missions. Figure 2.1

shows the way the instruments were arranged on each spacecraft. In order to achieve this

objective, MMS had to probe the reconnection sites in the tail and at the dayside. The or-

bit apogees were placed near the expected reconnection sites at 12 RE on the day side and

25 RE on the night side. In order to satisfy these requirements, two different orbits were

needed for Phases 1 and 2 (Figure 2.2). The first scan of the dayside magnetopause has

been done during Phase 1a which started on September 2015. The optimum separation

of spacecraft were determined during this phase by adjusting the separation distance be-

tween 10 and 160 km. A second scan of the dayside magnetopause was then in Phase 1b

with a spacecraft separation fixed at 10 km, which corresponds to the optimum separation

found during Phase 1a. After the second scan of the dayside magnetopause, the apogee was
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Figure 2.2 – MMS orbital geometry and science Regions of Interest (ROI). Figure from Tooley et al. (2016).

Figure 2.3 – Schematic of the MMS formation as a science instrument concept (image credit: NASA).
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raised to 25 RE . That provides measurements at increasing distances along the dawnside

flank of the magnetopause and performs a scan through the magnetotail in Phase 2. Dur-

ing this phase, the spacecraft separation varied between 30 and 400 km in order to obtain

the optimum value.

At the dayside, the densities are high and the scale of the electron diffusion region is of the

order of the electron skin depth, i.e. 10 km, or less. The spacecraft separation distances

had to be as small as 10 km in order to probe this small and moving region. On the night-

side, the densities are lower and the spatial dimension of the electron diffusion region is

about ten times larger. Therefore, the initial and final spacecraft separations were smaller

in Phase 1a than in Phase 2b (Figure 2.3). The tetrahedral configuration of the spacecraft al-

lows the observation of the three dimensional structure of magnetic reconnection and the

measurements of three spatial gradient components of various plasma and field parame-

ters. A high-quality tetrahedron is defined as the ratio of the volume of the actual tetra-

hedron by the theoretical volume of a regular tetrahedron having the same size of at least

0.8. Throughout the regions of interest (ROI), high-quality tetrahedrons are maintained

[Fuselier et al. (2016)].

2.3. MISSION OPERATIONS

The instruments on-board MMS have two operational modes: slow survey and fast-survey.

In the regions of interest, where R > 9RE on the day side and R > 15RE on the night side,

the instruments operate at their maximum speed and the burst data are collected. The re-

gions of interest are orbital segments along which the spacecraft have a significant chance

of traversing the predicted reconnection sites (Figure 2.4).

Figure 2.4 shows the segmentation among slow-survey, fast-survey and burst-mode. Only

20 minutes of burst-data can be downloaded per day. Two ways are employed in order to

choose the best burst data with the highest science value for transmission. The first way

consists of an automatic selection. When the spacecraft are in the regions of interest, each

instrument assigns a quality factor to each 10 s segment of its data which help identifying

regions with large changes in plasma density and reversals of the magnetic field. Table 2.1

summarizes the top-level burst mode signatures and the associated trigger parameters. On

each spacecraft, the quality factors of all the instruments are combined on board generat-
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Figure 2.4 – Ecliptic-plane sketch of MMS orbit. The region of interest is shown in blue and burst data intervals
are shown in red. Figure from Burch et al. (2016).

Physical signature Trigger parameter

Reconnection jets Ion flow reversals
Magnetopause and neutral sheet detection Large B variations
Large flows surrounding reconnection sites Large E
Magnetopause and neutral sheet detection large electron currents
Particle acceleration produced by reconnection Electron and ion beams
Electron diffusion region E parallel to B

Table 2.1 – Top level burst-mode parameters. Table from Burch et al. (2016).

ing a spacecraft data quality index which is transmitted along with the survey data. Then,

the quality indices for the four spacecraft give a mission quality index.

The second way is manual and is known as the Scientist-in-the-Loop (SITL). A scientist (the

SITL) makes the selection of the burst data based on viewing the survey data and data qual-

ity values. The SITL scientists check that the chosen burst-mode intervals are the best and

they can change the burst data downlink priorities if needed. Data selection is operated

by numerous scientists around the world who take part in the mission, including several

researchers at IRAP.

2.4. INSTRUMENT DESCRIPTIONS

2.4.1. HOT PLASMA SUITE

The hot plasma suite of instruments includes: the Fast Plasma Investigation (FPI) com-

prised of Dual Ion Spectrometer (DIS) and Dual Electron Spectrometer (DES) and the Hot

37



Plasma Composition Analyzer (HPCA).

FAST PLASMA INVESTIGATION (FPI)

The Fast Plasma Investigation observes the fast-moving plasma. It is dedicated to ensure

3D measurements of the phase space distributions of electrons and positively charged ions

at 30 and 150 ms, respectively. For this purpose, several high speed sensors were dis-

tributed around the spacecraft parameter so that full azimuthal sampling need does not

depend on the spacecraft spin as has been common in previous magnetospheric missions.

Dual Ion Sensors (DIS) and Dual Electron Sensors (DES)

The high resolution is accomplished by the use of eight top hat spectrometers for each

species (electrons and ions), packaged in pairs as "dual spectrometer" on each spacecraft.

The four dual spectrometers of each species are placed at 90° angles around the perimeter

of the spacecraft. Each group of four dual spectrometers includes four high voltage power

supplies for energy and angle selection. DES and DIS cover an energy range of 10 eV to 30

keV.

The dual ion spectrometers were built by Meisei Electric in Gunma, Japan, under the di-

rection of the Institute of Space and Aeronautical Sciences which is a part of the Japanese

Aerospace Exploration Agency. The DIS MicroChannel Plates (MCPs) were procured and

tested by the Institut de Recherche en Astrophysique et Planetologie (IRAP) before being

delivered to Meisei for integration into the DIS sensors. The angles in the context of the

spacecraft geometry are defined as:

• The polar angle θ: ranges between 0 and 180° and opens from the spacecraft spin axis

(+Z ).

• The azimuth angle φ: ranges between 0 and 360° and opens from the +X axis with a

positive right hand rotation about the spacecraft axis.

The DES and DIS are similar in design. Each sensor consists of two deflectors, an elec-

trostatic analyzer and a Multi-channel plate detector with an anode ring underneath. The

deflectors change the path of particles based on their energy before they reach the electro-

static analyzer. Energy/charge sampling is provided by electrostatic energy/charge sweep-

ing over a selection in the range 10 eV/q to 30000 eV/q.
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Figure 2.5 – Polar angle FOV configuration of each top hat plasma spectrometer. The spacecraft +Z axis is
also indicated. Figure from Pollock et al. (2016).

Figure 2.6 – DES detection system. Figure from Pollock et al. (2016)

Each sensor is mounted so that the 16 pixels of its 180° Field Of View (FOV), each nominally

11.25° wide, spans from spacecraft spin axis to anti-spin axis. The pole-to-pole pixel array

and the distribution of eight spectrometers around the spacecraft azimuth provide simul-

taneous sampling in these (polar and azimuthal) orthogonal angular dimensions (Figure

2.5). Together, the eight spectrometers for each species provide eight Fields of view (FOVs)
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Figure 2.7 – (Left) Azimuthal FOV configuration of the eight spectrometers for each species Each spectrome-
ter, exercising four deflected fields of view, yields 32 azimuth samples for each species. (Right) The azimuth
zones for each DES (DIS). Figure from Pollock et al. (2016)

around the space azimuth, i.e. in the spin plane, providing 45° sampling of the plasma ve-

locity phase space. Coverage of the full sky is accomplished by stepping the field of view of

each of the eight sensors through four deflection look directions as illustrated in Figure 2.7.

The field of view deflection is incorporated so that the center of each spectrometer may

be deflected in spacecraft azimuth by up to ±16.875° (Figure 2.7). This is accomplished

by applying positive voltage to curved electrodes located just inside of the sensor entrance

apertures. The deflection electrodes steer incoming particles from selected azimuth direc-

tions toward the top hat aperture.

To meet temporal requirements, each of the eight ion and electron spectrometers sam-

ples four azimuths, providing a total of 32 azimuthal samples separated by 11.25° for each

species (Figure 2.7). Nominally identical fields of view are provided for electrons and for

ions.

Each of the two sensors in a DES or a DIS has its own detector system, comprised of en-

trance shield grids, the MCP stack assembly, and 16 discrete anodes, each serviced by a

charge sensitive pre-amplifier-discriminator (Figure 2.6). Detector system components are

mounted on a anode board. Plasma particles passed by the ESA enter the detector assem-

bly through the grid above the MCP stack. The incoming particles with certain speeds and
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directions are allowed to pass through a filter to a sensor plate. Few millions of electrons

come out from the exit side of the sensor each time the sensor is hitted by an incoming

particle and the instrument detects the event. FPI separately measures electrons and ions

and can count the number of each kind of particles entering the instrument from a range

of directions at different energies during any given time span.

HOT PLASMA COMPOSITION ANALYZER (HPCA)

Since the physical processes in the ion diffusion region depend on ion mass, a Hot Plasma

Composition Analyser (HPCA) is included on-board MMS spacecraft [Young et al. (2016)].

HPCA help observing what ions are present during any given event and therefore helps sci-

entists to determine which kind of plasma was involved, and assess the effects of particles

of different charge and mass. HPCA identifies ions that are part of the solar wind such as

helium (He++) from those that are present in the terrestrial plasma including Helium (He+)

and oxygen (O+) and provides measurements of ion fluxes between ∼1 eV and 40 keV. The

instrument relies on the spin of the spacecraft to view a sweep of the sky, gathering a set of

observations every 10 seconds, the equivalent of half of the spacecraft’s spin.

HPCA couples a toroidal electrostatic energy analyzer with a carbon-foil based time-of-

flight analyzer (Figure 2.8). Incoming ions enter the two concentric toroids with the inner

toroid having an adjustable voltage applied to match the energy of the entering ion. A par-

ticular voltage determines the energy and arrival angles of incoming ions. When entering

the Time of Flight section of the instrument, ions are accelerated. Secondary electrons are

generated when an ion passes through an ultra-thin carbon foil. These electrons are ac-

celerated to a specific energy in an applied electric field and are detected in a dedicated

position on the Multichannel plate detector. When the electrons are detected, a start signal

is transmitted and when the ion hits a stop detector, a stop pulse is generated to determine

Time of Flight of the individual ions. This results in measured times of flight which, to-

gether with the energy measurement, can be used to determine the mass and with that to

the identity the ion through E = 0.5mV 2. Ion flux is determined by counting the numbers

of particular ions arriving per second.
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Figure 2.8 – Schematic drawing of the HPCA sensor together with characteristic ion and electron trajectories.
Figure from Young et al. (2016).

2.4.2. ENERGETIC PARTICLES DETECTOR SUITE

The EPD [Mauk et al. (2016)] suite detects electrons and ions with energies far exceeding

those detectable by FPI and HPCA. Together, the three sets of instruments are necessary

to observe the full range of charged particles associated with magnetic reconnection. EPD

also remotely senses the structure of the larger space environment surrounding reconnec-

tion sites by observing particles coming in from far away. EPD also observes very fast elec-

trons. These high-speed particles are observed through two instruments: the Fly’s Eye En-

ergetic Particle Sensor (two per spacecraft) and the Energetic Ion Spectrometer (one per

MMS spacecraft).

With two FEEPS and one EIS Instrument, a complete sky coverage is achieved every seven

seconds.

FLY ’S EYE ENERGETIC PARTICLE SENSOR (FEEPS)

FEEPS [Blake et al. (2016)] provides nearly instantaneous all-sky measurements of differen-

tial flux of electrons from different streaming directions. FEEPS uses silicon detectors that
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absorb the energy of incoming particles which creates a current pulse which can be mea-

sured to determine the energy of the particle. With two FEEPS instruments mounted on

two opposite sides of the instrument deck of the MMS spacecraft, the instrument achieves

a nearly complete view of the sky. FEEPS includes two sets of sensors, one for electrons and

one for ions and delivers images of high-energy electrons from 25 keV to over 0.5 MeV in

addition to total ion energy distribution from 45 keV to 0.5 MeV. In burst mode, the distri-

butions are measured with a time resolution of a time per sector of 0.3125 seconds in burst

mode.

ENERGETIC ION SPECTROMETER (EIS)

The Energetic Ion Spectrometer [Mauk et al. (2016)] gathers all-sky measurements of the

energetic ions, gathering information about their energy, their arrival direction and their

mass. EIS determine the mass of ions by measuring their velocity and total energy. The

mass information helps determine the fluxes of protons, helium and oxygen ions are present

at energies above those reachable by HPCA.

EIS measures the energy of energetic ions from 20 keV for ions and 45 keV for protons up

to over 0.5 MeV for oxygen ions with a resolution of 0.5 s in burst mode.

2.4.3. FIELDS SUITE

The FIELDS suite were designed to determine boundary orientation and motion and de-

tect plasma waves. The field instrument suite provides measurements of the full vector

magnetic and electric fields. It consists of six sensors on each spacecraft. The field mag-

netic sensors consist of two independently designed triaxial fluxgate magnetometers (AFG

and DFG), a search coil magnetometer (SCM), and an Electron Drift Instrument (EDI) that

measures the in-situ electric and magnetic fields. The fields three-axis electric measure-

ments are provided by two sets of double-probe sensors (SDP and ADP). The calibration

and cross-calibration procedures result in errors less than 0.1 nT in B and 0.5 mV/m in E.

Fields suite can gather information more than 1000 times per second.
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ANALOG FLUXGATE MAGNETOMETER (AFG) AND DIGITAL FLUXGATE MAGNETOMETER (DFG)

The use of two independently designed magnetometers aims to avoid single point failures

given the high priority of obtaining measurements of the magnetic field vector and field

intensities [Russell et al. (2016)]. The overall principle of the two fluxgate sensors is identi-

cal. They carry a permeable material that changes properties in response to the presence

of magnetic fields. Measuring how they change can be correlated to strength of the field.

The ferromagnetic material is surrounded by two coils of wire. One coil runs an alternating

electrical current which drives the core through an alternating cycle of magnetic satura-

tion. This changing field induces a current in the second coil which can be measured by a

detector. AFG and DFG provide two sets of similar measurements over the frequency range

from DC to 64 Hz.

SEARCH COIL MAGNETOMETER (SCM)

The Search Coil Magnetometer SCM [Le Contel et al. (2016)] was designed and built at the

Laboratory of Plasma Physics (LPP). SCM measures the three components of the magnetic

fluctuations from 1Hz to 6kHz which includes kinetic Alfvén waves, whistler mode waves

and solitary waves.

The SCM instrument consists of three sensors that are mounted in a triaxial configuration

to be able to measure magnetic field properties along all three axes. The sensors are pre-

cisely aligned with respect to the satellite axis. Each magnetic search coil consists of a fine

copper wire wrapped over ten thousand times around a ferrite-metal ferromagnetic core.

The copper winding collects the voltage (e) induced by the time variation in the ambient

magnetic flux:

e =−N dφ/d t (2.1)

where φ is the magnetic flux throughout one coil and N is the number of coils. This voltage

can then be used to measure the magnetic field changes.

SPIN-PLANE DOUBLE PROBE (SDP) AND AXIAL DOUBLE PROBE (ADP)

Two sets of double-probe instruments are implemented on each MMS spacecraft. They

determine the electric field by measuring the voltage between two electrodes. The SDP

[Lindqvist et al. (2016a)] consists of four wire booms with spherical sensors at the end. SDP

measures the electric field in the spin plane by sensing the potential difference between the
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four spherical ball electrodes mounted at a spacing of 90°.

The ADP [Ergun et al. (2016)] is aligned through the center of each spaceraft, along its spin

axis. It is made of two antennas providing accurate measurements while each spacecraft

spins around. The cross-calibrated vector electric field measurements are produced from

DC to 100 kHz, well beyond the upper hybrid frequencies.

2.4.4. ELECTRON DRIFT INSTRUMENT (EDI)

The electron drift instrument [Torbert et al. (2016)] provides high time resolution (∼ 1 ms)

electron flux measurements at few energies near 1 keV. EDI also measures the electric and

magnetic fields quite differently from the sensors above. These measurements are provided

using the drift of two weak electron beams in nearly opposite directions. In the presence of

a homogeneous magnetic field, charged particles perform a circular motion with gyrope-

riod, superimposed with a constant drift velocity Vd as discussed in Chapter 1. Each of the

emitted beams drifts in the E ×B direction. Electrons are then focused into the detector

after one or more gyroperiods.

2.4.5. TWO ACTIVE SPACECRAFT POTENTIAL CONTROL DEVICES (ASPOC)

In sunlight, the spacecraft continuously emit photoelectrons . These photoelectrons posi-

tively charge the spacecraft up to several tens of volts. This voltage interferes with the elec-

tric field measurements and with the low-energy plasma measurements as well. In order to

neutralize the photoelectron current, MMS uses an Active Spacecraft Potential Control de-

vice which emits indium ions. As result, the positive spacecraft potential does not exceed

4 volts [Torkar et al. (2016)]. The ion generators are liquid metal ion sources that consist

of a needle covered with indium and heated above the melting point of the metal. Indium

atoms are ionized and accelerated outward by an electric field created by applying a suffi-

ciently high electric potential between two electrodes. Two ASPOC devices are installed on

each MMS spacecraft.
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2.5. DATA ANALYSIS TECHNIQUES

2.5.1. MAGNETOPAUSE MODEL

It is often useful to be able to anticipate or to have an idea of the magnetopause location

and local geometry. In this aim, several empirical models have been developed based on

statistical analyses of the magnetopause crossings recorded by the past missions. One of

the most used models to describe the magnetopause location and shape is the model pro-

posed by Shue et al. (1997). In this model, the magnetopause is described as a paraboloid

parametrized by the Bz component of the interplanetary magnetic field and the solar wind

dynamic pressure Dp . The functional form of Shue model is given by:

r = r0

( 1

1+ cosθ

)α
(2.2)

r0 is the standoff distance, i.e. the distance at which balance is achieved between the solar

wind dynamic pressure and Earth’s dipole magnetic field pressure at the subsolar point. r is

the radial distance, θ is the solar zenith angle between the Sun-Earth line and the direction

carrying r and α is the flaring level of the magnetopause. The functional form proposed

by Shue et al. (1997) has two parameters r0 and α that depend on the IMF Bz and the solar

wind dynamic pressure Dp as follow:

r0 =
 (11.4+0.013Bz)(Dp )

−1
6.6 , for Bz ≥ 0

(11.4+0.14Bz)(Dp )
−1
6.6 , for Bz < 0

α= (0.58−0.01Bz)(1+0.01Dp ) (2.3)

This model is valid for:

• −18 < Bz < 15nT

• 0.5 < Dp < 8.5nPa

This model is a simple model which is roughly accurate for most ranges of Bz and Dp . It

can also be used to calculate the distance from a spacecraft to the magnetopause and the

normal direction to the magnetopause. However, when both Bz and Dp are extremely large,

the Shue et al. (1998) model can be used instead of the Shue et al. (1997) model which is
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Figure 2.9 – Magnetopause location and shape on 7 November 2015 using Shue model.

inaccurate in such cases. Figure 2.9 shows the location and shape of the magnetopause on

7 November 2015 using Shue model. The values of Bz and Dp were obtained from OMNI

data. The figure has been generated using 3DView application [Génot et al. (2018)] avail-

able on http://3dview.cdpp.eu.

Boundary normal coordinates

To analyze magnetopause dynamics it is convenient to use a coordinate system (LMN) re-

lated to the local geometry of the magnetopause as illustrated in Figure 2.10.

A common method to infer the coordinate system is the variance analysis as will de dis-

cussed later in this Chapter. The magnetic field in the normal direction is supposed to be

constant and gives the direction of the vectors of the LMN coordinates. Another method

to predict the LMN vectors is to calculate the magnetopause normal in GSM coordinates

using Shue model [e.g. Shue et al. (1997)] as also discussed in the next chapter. When the

direction of N is determined, we can then, conventionally, determine the direction of M as:

M = N ×Z GSM

|N ×Z GSM | (2.4)
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Figure 2.10 – Boundary coordinate system. N points outward to the local magnetopause, L is the projection of
the Earth’s magnetic dipole field and the M completes the right-handed set, pointing dawnward (M = N ×L).

where Z GSM is the north-south component in the GSM system.

Finally, L, can be defined as:

L = M ×N (2.5)

2.5.2. MAGNETOPAUSE TRANSITION PARAMETER

Spacecraft observations at the magnetopause are usually complicated because of the bound-

ary motions that add ambiguity to the observations. The magnetopause transition param-

eter, used for the observation of magnetopause boundary layer, helps reordering the time

series data from magnetosheath to magnetosphere by providing information of the effect

of boundary motions and of the location of the spacecraft relatively to the boundary layer.

This parameter was defined by Hapgood and Bryant (1990) based on the observations of

Bryant and Riggs (1989) who reported that the electrons in the low latitude boundary layer

exhibit an anti-correlated relationship between their density and mean energy.

The magnetopause transition parameter,τ, can be calculated by fitting in logarithmic scales

the distribution of the electron density against perpendicular electron temperature [Lock-

wood and Hapgood (1997)]. The curve is empirical, generally represented by a polynomial
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τ Region

τ< 20 Magnetosheath
95 < τ< 100 Magnetosphere

Table 2.2 – The suggested values of τ for the magnetosheath, the outer boundary layer, the inner boundary
layer and the magnetosphere.

or exponential law. τ is calculated by projecting each data point onto the nearest point

of the best-fit curve and measuring the length along the curve to each projection. These

values are then normalized to extreme values on the curve:

1. 0 equating to the coolest/densest part of the magnetosheath

2. 100 the hottest/rarest point observed in the magnetosphere

The transition parameter can be calculated as:

τ= 100
x −xmi n

xmax −xmi n
(2.6)

where xmi n is the projected point from an arbitrary point beyond the magnetosheath end

of the curve and xmax from the magnetospheric end.

Figure 2.11 demonstrates the calculation of τ by fitting a curve over a scatter plot of electron

density versus perpendicular temperature in logarithmic scales. After choosing the best fit,

which is a fourth order polynomial curve in this case, we can then calculate τ as described

above and as illustrated in 2.11. Table 2.2 summarizes the suggested values of τ for the

magnetosheath and the magnetosphere as they have been reported by previous studies

[e.g. Lockwood and Hapgood (1997); Bogdanova et al. (2008)]. In the boundary layer, τ has

values which are greater than 20 but less than 95.

2.5.3. CURLOMETER TECHNIQUE

The curlometer technique is a multipoint technique that consists of direct estimation of the

current density using spatial gradients of the magnetic field [Dunlop et al. (1988, 2002)]. It

has been developed in the context of multi-spacecraft missions and for Cluster initially.

The method is based on Ampere’s law, which assuming stationarity in the studied medium,
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Figure 2.11 – A scatter plot of the perpendicular electron temperature against the electron density. A fourth
order polynomial curve was fitted to the points. The τ parameter for each particular point is obtained by
projecting it into the nearest point of the fitting curve as shown by the red line. Then, we evaluate the length
of the curve between its beginning and the projected point as illustrated by the green curve.

can be written as: µ0 J =∇×B . The Ampere’s law is evaluated at the barycenter of a perfect

tetrahedron formed by four spacecraft. The current density is estimated in the direction

perpendicular to each face of the tetrahedron as illustrated in Figure 2.12. Assuming the

current density is a constant in the whole surface and that the magnetic field changes very

slowly, the current density J i j k normal to the face delimited by spacecraft i , j ,k, can be

estimated via the integral form of Ampère’s law as [Dunlop et al. (1988)]:

µ0 J i j k · (∆r i k ×∆r j k ) =∆B i k ·∆r j k −∆B j k ·∆r i k (2.7)

where the magnetic field data and position data are in cartesian coordinates and where

i , j ,k are indices running over the satellites. ∆B i k = B i −B k and∆r i k = r i −r k are the mag-

netic field and position difference between spacecraft i and k, respectively.

Using equation 2.7, we can calculate J 123, J 124, J 134 and J 234 through each face of the

tetrahedron. The total average current density in the tetrahedron, Jcur l , can be derived by

projecting each current vector normal to three faces into Cartesian coordinates.
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Figure 2.12 – Illustration of the average current density estimation using the curlometer technique

The curlometer technique permits a good estimation of the current density when the spatial-

scale variations of the magnetic field are much larger than the spacecraft separation. MMS

provided for the first time an estimation of the current density using particle data. The cur-

rent density can be calculated as en(V i −V e ) where n is the density, V i and V e are the ion

and electron velocities.

2.5.4. VARIANCE ANALYSIS: CURRENT DENSITY MEASUREMENTS

In order to investigate one dimensional plasma structures such as current sheets or two

dimensional structures such as magnetic islands, it is often useful to transform them into a

proper reference frame related to their geometry. Often, it is also necessary to establish the

orientation of the structures. Variance analysis have proven to be very robust and useful

for this purpose. For example, the variance analysis (VA) technique is frequently used to

determine the normal direction of the magnetopause: it is applied to the magnetic field

data recorded during a magnetopause crossing, and provides the direction along which

the magnetic field variation is minimum [Kawano and Higuchi (1996)]. When applied to

the magnetic field data during the magnetopause crossings, the VA method assumes the
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magnetopause to be thin (one-dimensional: ∂/∂x = 0 and ∂/∂y = 0) and unchanging in

time, i.e. ∂B/∂t = 0, so that only one of the three terms remains in the cartesian expression

for the divergence of B. Then, from Maxwell’s Law for the magnetic field, we can write:

∇·B = ∂B z/∂z = 0 (2.8)

(x, y, z) is a local cartesian coordinate system with z axis is pointing along the normal n

to the magnetopause. Equation 2.8 means that the magnetic field component normal to

the magnetopause, B n , is required to be constant across the magnetopause. Therefore,

the direction with an approximately constant magnetic field corresponds to the direction

normal to the magnetopause.

The variance analysis consists of the diagonalization of the co-variance matrix defined in

terms of the measured data and the Cartesian coordinate system in which the measured

data are represented [Dunlop et al. (1995)], and then finding the three eigenvalues λi , and

corresponding eigenvectors xi of the matrix. For example, considering now a serie of N

magnetic field vector measurements, B (i )(i = 1, 2, 3 . . . N), the magnetic field variance

matrix is given by:

M B
µν ≡

1

N

N∑
i=1

B (i )
µ B (i )

ν −
[ 1

N

N∑
i=1

B (i )
µ

][ 1

N

N∑
i=1

B (i )
ν

]
(2.9)

or, in a more impact form, it is given by:

M B
µν ≡ 〈BµBν〉−〈Bµ〉〈Bν〉 (2.10)

where µ,ν= 1,2,3 denote the Cartesian components along the (x, y, z) system and 〈〉 indi-

cates the time average of the respective quantity. Since M B
µν is symmetric, the eigenvalues

are all real and the corresponding eigenvectors are orthogonal. Provided the variance ma-

trix is not near degeneracy, the eigenvectors (x1, x2 and x3) correspond to the directions

of minimum, intermediate and maximum variance of the time series of vector measure-

ments. The minimum (maximum) variance direction is given by the eigenvector with min-

imum (maximum) eigenvalue. Obviously, the results of the variance analysis when applied

to time series depend on the considered time interval. A matrix is said to be degenerated

when it has two eigenvalues that are equal or close to each other (a ratio of less then ∼ 3 or
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4).

The variance analysis has been widely used on magnetic field data. However, the vari-

ance analysis was also performed on time series of the current density J by e.g. Xiao et al.

(2004); Haaland et al. (2004) based on Cluster measurements. The current variance anal-

ysis is useful for the estimation of the orientation of a twisted flux tube and was proven to

highly enhance the accuracy of the axial orientation [Zhou et al. (2006)]. The current den-

sity measurements calculated by the curlometer technique and from particle data are both

provided with high resolution by MMS instruments which yield promising results on the

variance analysis results when applied to the current density.

2.5.5. MULTI-SPACECRAFT TIMING ANALYSIS: STRUCTURES ORIENTATION AND

MOTION

In this section we will discuss the multi-spacecraft timing analysis method that attempts to

determine the motion of a discontinuity. This method is also called triangulation method

or the time-delay method [Russell et al. (1983); Harvey (1998a)]. We will consider the sim-

plest case where four spacecraft (SC) are flying though a planar discontinuity with constant

velocity V as illustrated in Figure 2.13. The four spacecraft perform delayed detection of the

same structure at different locations. The timing method exploits the measured time dif-

ferences between the passage of the discontinuity over satellites, along with the relative

positions between the crossing locations, to infer the normal unit vector N and the normal

velocity V .

First, the discontinuity passage times tα have to be determined. Then, if we take the space-

craft 1 as reference, we can write:

Rα1 ·N =V (tα− t1) (2.11)

where 2 ≤α≤ 4, N =V /V and Rα1 is the relative position between the crossing locations of

the discontinuity observed by SCα and SC1. The time delays can be estimated by visually

picking up the times at which the boundary crosses each spacecraft. In order to get rid of

random errors that may occur when applying the timing method, we can consider several

contours of the structure, determine the corresponding normal direction and velocity and
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Figure 2.13 – Sketch of a planar discontinuity moving at a constant velocity V toward four spacecraft flying in
a tetrahedral formation.

then calculate the average normal direction and velocity . These time delays can also be

obtained by maximizing the cross-correlation functions between the data streams from

different spacecraft [e.g. Song and Russell (1999)]. The measured data of one spacecraft is

taken as reference. Then we calculate the cross-correlation between each spacecraft data

and the signal of reference. The time delays are determined when the cross-correlation is

maximum.

2.5.6. WALÉN TEST

It is usually desirable to study structures such as current sheets, flux ropes or 3-D structures

in their co-moving frame. We will now briefly describe the method for finding the so-called

de-Hoffmann Teller (HT) frame. We will also present the Walén test which can be used for

the purpose of identifying Alfvénic structures from single spacecraft data in the context of

magnetic reconnection and interplanetary discontinuities.

The de-Hoffmann Teller frame (HT) is a rest frame in which the convective electric field

E = −u ×B is negligibly small. The velocity of the HT frame can be obtained from exper-
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imental data as has been discussed in Khrabrov and Sonnerup (1998). For a time interval

with N measurements of plasma bulk velocity u and magnetic field B , the electric field for

individual measurement i in the HT frame, where the electric field is as small as possible

for the set of measurements, is:

E (i ) =−u(i ) ×B (i ) = 0 (2.12)

We consider now a frame that moves with a velocity V , supposed to be constant, relative to

the spacecraft. In this frame, the electric field becomes:

E
′(i ) = E (i ) +V ×B (i ) =−(u(i ) −V )×B (i ) = 0 (2.13)

In order to determine the transformation velocity V , the mean square of the electric field,

D(V ), has to be as small as possible for a given set of N measurements. Therefore, D(V )

has to be minimized:

D(V ) = 1

N

N∑
i=1

∣∣∣E ′(i )
∣∣∣2 =

∣∣∣(u(i ) −V )×B (i )
∣∣∣2

(2.14)

The minimization of this quantity is obtained by ∇V D(V ) = 0 and leads to the determina-

tion of the HT velocity V HT .

Quality of the HT frame can be assessed by the correlation coefficient cc between the com-

ponents of the convection electric field E = −u ×B and the corresponding values of HT

electric field E HT = −V HT ×B where u and B are the plasma flow velocity and magnetic

field measured in-situ, respectively, and V HT is the velocity of the de-HT frame. When the

correlation coefficient is ∼ 1, all electric fields are eliminated in the HT frame indicating

that the very simple assumptions of the model (constant velocity and planar structure) are

fulfilled. The optimal HT speed can be estimated as the one that provides the highest value

of the correlation coefficient. An example where a HT frame is well defined with a corre-

lation coefficient of 0.96 is shown in Figure 2.14-(a) indicating a good correlation between

the two fields.

After the determination of the HT frame, Walen test can be applied to the observations of

fast flows to determine if the flows are Alfvenic. For a rotational discontinuity, the velocity
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Figure 2.14 – (a) deHoffmann Teller analysis: the convection electric field Ec (=−V ×B ) vs. the de-HT frame
electric field EHT (=−V HT ×B ) and a linear regression fit, (b) Walen analysis: V

′(i ) vs. V i
A of all three compo-

nents and a linear regression fit. Blue, green, and red dots denote x, y , and z components in the GSE frame.
Figure from Phan et al. (2013).

changes can be expressed as:

u =±V A =± Bp
µ0ρ

(2.15)

which is called the Walén relation [Hudson (1971)]. V (i )
A = B (i )(µ0ρ

(i ))−1/2 is the local mea-

sured Alfvén velocities andρ(i ) is the measured mass density in the HT frame. The detection

of accelerated plasma flows that meet the Walén relation are considered as an evidence for

the occurrence of magnetic reconnection at Earth’s magnetopause. This is due to the ro-

tational discontinuities generated by magnetic reconnection and bounding the reconnec-

tion exhaust. Since across a rotational discontinuity there is a finite mass and magnetic

flux flow and the normal components of magnetic field Bn and velocity un are different

from zero and constant across the boundary, the Rankine-Hugoniot (RH) jump conditions

predict that the tangential components of the magnetic field Bt and of the plasma velocity

ut change across the boundary according to the Walén relation [Lee et al. (1996)]. In this

picture, the outflows generated by magnetic reconnection should match the local Alfvén

velocity. In the HT frame, the Walén relation can be written as:

u(i ) −V HT =±V (i )
A =± B (i )√

µ0ρ(i )
(2.16)
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for each data point (i ). The ratio between plasma and Alfvén velocities is a good parameter

to qualify the Walén relation. The better the Walén relation is satisfied, the more purely

Alfvénic the flows are. The Walén relation is well satisfied when there are well-correlated

changes in magnetic field B and plasma velocity u. When the coefficient of proportional-

ity is close to unity, the Walén test predicts a rotational discontinuity and likely magnetic

reconnection. In this case, a scatter plot of the Alfvén velocity versus plasma velocity in HT

frame shows a good correlation with a linear regression slope near ±1. Conversely, when

the coefficient of proportionality is close to zero, the Walén test predicts that the disconti-

nuity is tangential. Figure 2.14-(b) shows a Walén analysis of the magnetopause. It consists

of a component by component scatter plot of the plasma velocities in the HT frame and

the local measured Alfvén velocities. The Figure shows that the flow velocity in this frame

is 90% of the Alfvén velocity which is in good agreement with the flows being accelerated

by magnetic reconnection.

2.6. SPECTRAL ANALYSIS

Plasma waves are detected by instruments on-board MMS. To study waves, it is useful to

look to the variations of the electric and magnetic fields in the shape of their waveforms.

Then, a Fourier analysis allows to get information of which frequencies are dominant in

a signal by seeing how much the power is in different frequencies. The Fourier analysis

states that a signal can be described as the sum of its components. To calculate the spec-

trum, we can use the fast Fourier transform (FFT). The signal must then be divided into

smaller parts and the spectrum for each part has to be calculated. Then, all the individual

spectra must be combined to form the spectrogram which allows to see both temporal and

spectral information. The spectrogram is a 2-D image with the time on the X axis and the

frequency on Y Axis. The amplitude of the signal is usually presented in colors. However,

a spectral content of a signal does not give all the information about the waves. When we

have measurements in more than one dimension, we can look at the polarization of the

wave. We can distinguish between electrostatic and electromagnetic waves by using mag-

netic wave data. We can also calculate the Poynting flux, which is the flux of energy in an

57



electromagnetic wave, as:

P = δE ×δB

µ0
(2.17)

where δE and δB are the electric and magnetic fields, respectively. The pointing flux and

the group velocity of the wave point in the same direction.

Another polarization parameter is the Ellipticity (ε) which is defined as the ratio of the

minor semi-axis to the major semi-axis of an elliptically rotating field:

ε= Bmi nor

i Bma j or
(2.18)

The value of ellipticity varies between −1 for left-hand circular polarization and +1 for

right-hand one. Another simple method for inferring the wave polarization consists of

plotting a hodogram of the electric field in the plane transverse to the magnetic field. If

the curves rotate right (left) handed around a reference axis, which is typically the ambi-

ent magnetic field, the waves are right (left) handed polarized and this corresponds to a

positive (negative) ellipticity.

2.7. ANALYSIS METHOD FOR LOWER HYBRID DRIFT WAVES (LHDWS)

Lower hybrid drifts waves [Krall and Liewer (1971), Huba et al. (1977)] are commonly ob-

served in space and laboratory at plasma boundaries. The LHDWs are electron scale waves.

They are generally associated with electron acceleration [Cairns and McMillan (2005)], strong

electric fields and may lead to anomalous diffusion and resistivity [Davidson and Gladd

(1975), Silin et al. (2005)]. Lower hybrid drift waves develop at frequencies between the

ion and electron gyrofrequencies. Their wavelengths are between the electron and ion

thermal gyroradii. Hence, electrons remain magnetized while ions demagnetize from the

magnetic field. Norgren et al. (2012) showed that the electrostatic potential of LHDWs and

the magnetic field fluctuations are correlated indicating a linear relation between them.

The LHDWs are excited through the lower hybrid drift instability (LHDI) [Krall and Liewer

(1971)] which is a cross field current driven instability that occurs due to plasma density

and magnetic field inhomogeneties. They can be excited when the density gradient scale

becomes of the order of the ion gyroradius.
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The LHDW properties can be determined using simple spacecraft data. In the next sec-

tion we will describe the method proposed by Norgren et al. (2012) and Divin et al. (2015)

to study LHDW properties. The method allows to analyze plasma waves with frequen-

cies fci << f ∼ fLH << fce where 2π fLH = ωpi /
√

1+ω2
pe /ω2

ce . In this method, electrons

are assumed to remain magnetized ( f < fce ) while ions are supposed to be demagnetized

( f > fci ) from the magnetic field.

In their study they showed a strong correlation between the electrostatic potential asso-

ciated with the wave and the parallel magnetic field fluctuations. Indeed, that is due to

the fact that ions are demagnetized were electrons remain magnetized. Electrons will then

carry a current through the electron electric drift δE×B0. Assuming that ions are stationary,

the wave perpendicular current can be written as:

δ j⊥ =−ene
δE ×B0

B 2
0

(2.19)

Assuming a quasi-electrostatic field, the electrostatic field can be expressed as:

δE⊥ = i k⊥δφ (2.20)

Combining equations 2.19, 2.20 with the Ampère’s law ∇×B = µ0δ j , a linear relation be-

tween the expected electrostatic potentialφδB// and the parallel magnetic fluctuations δB//

can be derived:

δφB∥ =
B0

ne eµ0
δB// (2.21)

Moreover, the electrostatic potential associated with the wave can be obtained by integrat-

ing the perpendicular electric field, which is the main component of the electric field, along

the direction of propagation:

δφE =
∫
δE⊥ ·v⊥,phd t (2.22)

where v⊥,ph is the perpendicular phase speed.

The propagation direction is determined by cross correlations between the two estimates

of the electrostatic potential φδB// and φδE for different angles of propagation. The ampli-

tude of the propagation velocity is found by fitting the amplitude of the two potentials.
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The shape of the potential depends on the propagation direction while its amplitude de-

pends on the propagation velocity. The direction of propagation is determined through

cross correlations between the two estimated electrostatic potentials for different angles

of propagation in the plane perpendicular to the magnetic field. Then, the amplitude of

the velocity is found by fitting the amplitudes of the two estimated electrostatic potentials.

The two nearest extremas of the correlation coefficient are used to determine the average

frequency of the fluctuations.

2.8. WHAMP SIMULATIONS

The dispersion relations of waves in magnetized plasmas can be solved numerically us-

ing the WHAMP code: Waves in Hot, Anisotropic, Magnetized Plasmas. The general wave

dispersion equation in plasmas is:

D(w,k) ·E (w,k) = 0 (2.23)

where D(w,k) is the dispersion tensor and E (w,k) is the wave electric field. As discussed in

Chapter 1, the solutions can be found by equating the determinant of the dispersion ten-

sor to zero
∣∣∣D(w,k)

∣∣∣ = 0. WHAMP solves this equation with a linearized form. WHAMP

can include several populations with differing number density, mass, temperature, loss

cone, anisotropy and drift parameters for anisotropic Maxwellian distributions [Roenn-

mark (1982)]. The WHAMP interface takes in the plasma parameters and then allows to

query the solution point by point in the (k−ω) space. Given an initial (k⊥,k∥) point WHAMP

tries to find a wave mode close-by and returns the frequency, wave vector and growth rate

of the mode among other quantities.
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3
MAGNETIC RECONNECTION AT A THIN

CURRENT SHEET SEPARATING TWO

INTERLACED FLUX TUBES NEAR THE

EARTH’S MAGNETOPAUSE

3.1. INTRODUCTION

On 7 November 2015 between 13:00 and 15:00 UT, the four MMS spacecraft were mov-

ing from the magnetosheath into the magnetosphere through the boundary layer. Around

14:16 UT, the four spacecraft observed a structure that, at first glance, looks consistent with

a classic Flux Transfer Event (FTE) in the vicinity of the Earth magnetopause. The four

spacecraft were operating in burst mode and were in good tetrahedral configuration, al-

lowing us to use multi spacecraft data analysis methods. Their maximum separation was

about 10 km.

The event was characterized by a strong peak in the magnetic field and magnetic pres-

sure amplitudes and a bipolar signature on the YGSE component of the magnetic field. At

the center of the B peak, a strong, thin and localized current structure was observed as
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well as an intense ion jet. Solar wind observations showed that the event occurred un-

der low Mach number conditions during the passing of an interplanetary magnetic cloud.

In addition, the interplanetary magnetic field components were significantly negative for

several hours before the event. Therefore, solar wind conditions were rather unusual. In

this Chapter, a comparison of this event and FTEs was performed in the aim of present-

ing evidences whether the event can be considered as a FTE or not. The analysis showed,

based on detailed geometrical considerations as well as on connectivity informations re-

vealed by suprathermal electron properties, that this event is not consistent with a single,

homogeneous helicoidal structure as expected for classical FTEs. A phenomenological in-

terpretation was proposed in order to better understand the observations. The substruc-

ture of the current sheet and its specific geometry were also described. Then, the high-

time-resolution observations of particles were used, along with the high-time-resolution

magnetic field data to test for signatures of reconnection at the current sheet. We then dis-

cussed if magnetic reconnection could be the process at the origin of the ion jet.

The observations presented in this chapter are mainly from the work published by Kacem

I. et al. (2018).

3.2. INSTRUMENTATION AND DATA

The magnetopause observations analyzed in this study have been obtained by the MMS

spacecraft [Burch et al. (2016)]. We used magnetic field measurements from the fluxgate

magnetometers [Russell et al. (2016); Torbert et al. (2016)]. We analyzed ion and electron

measurements from the Fast Plasma Instruments [Pollock et al. (2016)]. We also studied

current density measurements derived from the curlometer method [Robert et al. (1998);

Dunlop et al. (2002)] using magnetic data and by particle measurements as well. At large

scale, the event was studied using fast survey mode measurements. The resolutions of the

data that were used in this study are shown in Table 3.1. We primarly show data obtained by

the MMS1 spacecraft, except when using multi-spacecraft data analysis methods as stated

in the text. The X , Y and Z components of the vectorial quantities in the GSE frame are

represented, respectively, in blue, green and red. MMS data visualization and analysis was

mainly performed with the CL software.

One minute resolution solar wind conditions are obtained from the OMNI data base [King
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Mode Instrument Time resolution

Survey
FGM 62.5 ms
HPCA 10 s
FPI 4.5 s

Burst
FGM 128 Hz
FPI 150 ms for ions and 30 ms for electrons

Table 3.1 – The instruments that were used for this study along with their corresponding resolution in Survey
and Burst modes.

and Papitashvili (2005)] which includes solar wind magnetic field and plasma data time-

shifted to the Earth’s bow shock nose.

3.3. SPACECRAFT LOCATION AND CONFIGURATION

On November 7, 2015, the MMS spacecraft were located in the dusk sector near the magne-

topause. The center of mass of the spacecraft tetrahedron was located at (8.62,6.24,−0.89)REGSE .

Figures 3.1 and 3.2 show the MMS orbit on November 7, 2015 in the X Y and X Z planes,

respectively. In Figure 3.1, the normal to the magnetopause is represented by a green ar-

row. The green line shows the mean magnetopause location as computed from Shue et al.

(1998) model. This model roughly predicts the location of the magnetopause as a function

of the Bz component of the interplanetary magnetic field and dynamic pressure Dp of the

solar wind which are provided by the OMNI one minute resolution data. According to the

spacecraft position (i.e. Figure 3.1), the normal to the magnetopause was expected to be

mainly in the XGSE direction as shown by the green arrow.

The magnetic field lines in Figure 3.2 are derived from the Tsyganenko model [Tsyganenko

and Stern (1996)]. On November 7, 2015, the MMS spacecraft formed a relatively proper

tetrahedron with a tetrahedron quality factor [Fuselier et al. (2016)] of 0.844 as shown in

Figure 3.3. The spacecraft maximum separation was about 10 km. The formation of the

spacecraft justifies the use of proper multi-spacecraft methods [Dunlop et al. (1988)] to

study small structures that will be introduced in the following sections. Indeed, it has be

shown that the use of multi-spacecraft techniques is restricted to scales close to those of

the spacecraft separations [e.g. Horbury and Osman (2008)].
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Figure 3.1 – GSE equatorial-plane projection of the MMS orbit on November 7, 2015 and the normal to the
magnetopause (green arrow) corresponding to the spacecraft location in the ecliptic plane. The event pre-
sented in this study occurred between 14:16:05 and 14:17:20 UT. The red line corresponds to the crossing of
a boundary layer. The large blue diamond shows the position at 14:15:00 UT. The probable magnetopause is
indicated by green line and shaded boundaries.

64



Figure 3.2 – MMS orbit on November 7, 2015 in the XZ plane at 14:00:00 UT. The large diamond is the approx-
imate location of the spacecraft. The magnetic field lines are plotted in purple and are calculated using the
Tsyganenko model [Tsyganenko and Stern (1996)].

3.4. SOLAR WIND OBSERVATIONS

Figure 3.4 shows 1-min resolution OMNI data over a few days surrounding the event. Pan-

els (a) to (e) show, respectively, the interplanetary magnetic field (IMF), plasma tempera-

ture, plasma density, plasma β parameter and disturbance storm time (DST) index. The

period of interest, centered around 14:00 UT on 7 November 2015, occurred during the

passage of a magnetic cloud at Earth. The magnetic cloud was observed between the after-

noon of 6 November 2015 until the afternoon of 8 November 2015 as shown in Figure 3.4.

The magnetic cloud was characterized by an enhancement of the field strength with a ratio

of ∼ 3, rotation of the magnetic field components, low plasma temperature that varies be-

tween 3 and 29 keV and low density that ranged between 1.3 and 5 cm−3, and a low plasma

β being between 0.05 and 0.38 which are typical features of magnetic clouds [Burlaga et al.
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Figure 3.3 – Configuration of the MMS tetrahedron at 09:30:54 UT on November 7, 2015. TQF is the tetrahe-
dron quality factor, which compares the actual tetrahedron to a regular tetrahedron [Fuselier et al. (2016)].

(1981); Lepping et al. (1990)]. Panels (c) to (e) in Figure 3.5 show the magnetic field, dy-

namic pressure and Alfvén Mach number zoomed in around the time of interest, during the

first part of the magnetic cloud when its magnetic field had strong southward and dawn-

ward components. Interplanetary magnetic field components in GSE coordinates are pre-

sented in Figure 3.5-a. All IMF components were significantly negative during more than

∼ 12 hours, driving a continuously enhanced solar wind-magnetosphere coupling. The so-

lar wind-magnetosphere coupling was thus strongly enhanced during several hours prior

to the event. Magnetic reconnection was expected to occur in the southern hemisphere

dawn side according to the negative By and Bz components as suggested by [Trattner et al.

(2007)]. Therefore, reconnection sites were expected to be located southward of the space-

craft. For these reasons, we expect the magnetopause to be under extremely disturbed con-

ditions during the event considered in this study. Around 13:22 UT, the dynamic pressure

dropped from 2.2 to 0.9 nPa as seen in Figure 3.5-(d). The magnetopause is expected to ex-

pand sunward as a response to this variation. The event occurred during a period of both

strong driving of the magnetosphere (Dst = −69nT , kp = 4) and low Alfvén Mach num-

ber (< 3). Under these conditions, solar wind-magnetosphere interaction is expected to
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Figure 3.4 – Solar wind conditions from the OMNI 1 minute resolution database from 06 November 2015-
00:00 UT through 09 November 2015-12:00 UT. (a) Interplanetary magnetic field components and amplitude
in GSE coordinates, (b) plasma temperature, (c) plasma density, (d) plasma β parameter, and (e) disturbance
storm time (DST) index.

be altered affecting in particular the flows in the magnetosheath uncommonly enhanced

and distributed, the magnetopause shape and magnetic reconnection rate [Lavraud and

Borovsky (2008)]. Under low Mach number, the solar wind-magnetosphere interaction be-

come exceptionaly different from the typical high Mach number case. Dynamic pressure

variations of the solar wind drive large amplitude magnetopause motions, giving rise to a

partial compression or relaxation of the magnetosphere [Karlson et al. (1996)].

The features revealed by the OMNI spacecraft were indicative of the large scale conditions
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Figure 3.5 – Solar wind conditions from the OMNI 1 minute resolution database from 06 November 2015-
00:00 UT through 09 November 2015-12:00 UT. (a) Interplanetary magnetic field components and amplitude
in GSE coordinates, (b) Disturbance Storm Time index. Solar wind conditions during 08:00-20:00 UT on 7
November 2015, (c) Interplanetary magnetic field components in GSE coordinates, (d) solar wind dynamic
dynamic pressure, and (e) Alfvén Mach number.

XGSE YGSE ZGSE

THB 46.42 -47.04 -0.27
THC 42.72 -46.82 -0.78

WIND 228.58 -97.07 11.05

ACE 234.11 37.49 6.81

Table 3.2 – Average positions of THB, THC, Wind and Ace in RE between 11h00 and 15h00 UT in GSE coordi-
nates.

affecting the whole magnetosphere. They were confirmed by the observations of other

spacecraft, i.e. Wind, Themis B, Themis C, that were flying in the solar wind during the

68



time of the event. The average positions of each of these spacecraft between 11h00 and

15h00 UT in GSE coordinates are shown in Table 3.2.

3.4.1. EXPECTED LOCATION OF THE RECONNECTION SITES [TRATTNER ET AL.

(2007)]

Figure 3.6 shows three shear angle plots that predict X-lines locations at the magnetopause

from and around the event at (a) 13:40 UT, (b) 13:51 UT and (c) 14:16 UT. It shows the

magnetopause as seen from the sun and color-coded for the magnetopause shear angle

between the geomagnetic field and the fully draped IMF (clock Angles (a) 244°, (b) 245° and

(c) 259°). Regions of parallel magnetic shear conditions are shown as blue and black ar-

eas, while antiparallel magnetic shear at the magnetopause are shown in red (> 150° shear

angle). The black circle depicts the location of the terminator plane that separates the day-

side magnetopause (inside the circle) from the nightside magnetopause (outside the cir-

cle). The MMS location at the magnetopause is marked by a black symbol. The predicted

reconnection location for the solar wind conditions, derived from the Maximum Magnetic

Shear model, is shown as a thin white line. At 13:40 UT and 13:45 UT a flow switch is ob-

served and the spacecraft are right next to the predicted line. In that time period, there

are several flow switches, but the spacecraft seem to slowly move further away from the

predicted line (Figure 3.6-b). The observations at (a) occurred in the MSBL under essen-

tially southward magnetic field conditions and exhibit antiparallel accelerated ion flows

consistent with MMS now located north of the reconnection line. The observations at (b)

occurred in the LLBL under varying magnetic field conditions. Globally, when the mag-

netic field is southward, antiparallel accelerated ion flows are observed and when magnetic

field is northward, parallel accelerated ions are observed. These observations are consis-

tent with MMS now located north of the reconnection line. The MMS satellites have briefly

crossed the reconnection location. During the event time period (Figure 3.6-c), there is also

a flow switch and the IMF clock angle has increased to 260°. This changes the location of

the predicted line, while the actual observed X-line seem to be still located where it was be-

fore, at its earlier location. The error is now at about 3RE [private communication with K. J.

Trattner] and the difference at the location can be explained by the results of Trattner et al.

(2016) assuming that the X-line location does not respond instantaneously to changes in
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IMF clock angle or it can be related to symmetry effect that leads to some anomalies when

the clock angle is around 240°. The observations at (c) occurred in the LLBL under north-

ward magnetic field conditions. Ions exhibit parallel accelerated flows with velocities of

about 250 km/s in the ZGSE direction, consistent with MMS located north of the reconnec-

tion line.

3.5. LARGE TIME-SCALE OBSERVATIONS

3.5.1. BOUNDARY LAYER STRUCTURE

Two hours of MMS survey data are presented in Figure 3.7. The panels (a) to (g) show, re-

spectively, the GSE components and the strength of the magnetic field, the electron and

ion densities, the components and the amplitude of the ion velocity , the spectrograms of

the electrons and the ions measured by FPI and the spectrograms of the He++ and O+ ions

measured by HPCA. Initially, the spacecraft were located in the magnetosheath, as shown

in the ion and electron spectrograms, high plasma number densities, and the abundance of

He++ and the absence of O+ ion fluxes. After 14:28 UT, the spacecraft were inside the mag-

netosphere characterized by a positive and dominant Bz , low number densities and weak

flows, as well as significant fluxes of observed high energy electrons, protons, and oxygen

ions. Conversely, the He++ fluxes were weak.

Around 13:28 UT, the data show a partial crossing of the magnetopause, as indicated by

variable Bz component and flows. That indicates a brief incursion of the spacecraft from

the magnetosheath into the magnetosphere followed by its return into the magnetosheath.

The magnetopause is defined by the current sheet that separates the magnetosheath flow

from accelerated and diverted flows in the boundary layers (LLBL/inside the MP). We sus-

pect that the sudden magnetopause crossing (i.e. magnetopause expansion) was driven

by the decreasing of dynamic pressure, as observed in the OMNI data around that time in

Figure3.5-(d). The spacecraft were in a boundary layer during almost one hour between

13:28:00 and 14:28:00 UT while moving from the magnetosheath into the magnetosphere.

Although the boundary layer shows a complex structure as expected from the pronounced

variations in solar wind parameters described above, it may be divided into three major
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Figure 3.6 – The magnetopause shear angle seen from the Sun with the predicted reconnection and MMS
locations at the magnetopause. Courtesy from K.J. Trattner.
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Figure 3.7 – Survey data from MMS1 on 7 November 2015 between 13:00 and 15:00 UT. (a) Magnetic field
from FGM, (b) electron and ion densities, (c) ion velocity, (d) electron spectrogram provided by FPI, (e) ion
spectrogram provided by FPI, (f) He2+ spectrograms from HPCA and (g) O+ spectrogram from HPCA.

subregions as illustrated in Figure 3.8. Figure 3.8 shows Bz as a function of By between

13:00 and 15:00 UT. γ is defined as the ratio of the electron density to the perpendicular

electron temperature γ= l og10(Ne /Teper p ) is color coded on a logarithmic scale. The color

of (By ,Bz) points refers to the corresponding value of the ratio. As it can be seen, the distri-

bution of the points is well organized into three main regions consistently with the values

of γ: The three regions have different characteristics:

• The MSH-MSBL region: Points located in this region have high negative values of By

and Bz with a low γ that indicates a low density. This region is marked by filled and

hollow dark blue rectangles in Figure 3.8.
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Figure 3.8 – The varitations of Bz as a function of By during the time of the LLBL crossing with the logarithmic
of the ratio of electron density over perpendicular electron temperature is represented by the colors of the
dots on November 7, 2015 between 13:00 and 15:00 UT.

• The ILLBL-MSP region: This region is characterized by relatively small values of By

and positive values of Bz with a highγ indicating a high density. This region is marked

by purple-filled rectangles and hollow rectangle with purple borders in Figure 3.8.

• The OLLBL region: In this region, the variations of Bz and By reveal a rotation in the

magnetic field direction. The values of γ range between −2.5 and −4. This region is

marked by cyan filled rectangles in Figure 3.8.

The thickness of the boundary layer was of the order of 1RE . As shown in Figure 3.9, the

XGSE component of the spacecraft has varied from 9.24RE at 13:28 UT to 8.45RE at 14:28

UT while crossing the boundary layer.
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Figure 3.9 – The XGSE component of the spacecraft position on November 7, 2015 between 13:00 and 15:00
UT Earth Radii. The vertical dashed lines delimit the boundary layer.

At ∼ 13 : 35 UT, the spacecraft exited back into the magnetosheath, as seen from the faster

flows, similar to the previous magnetosheath interval. This magnetosheath interval was

characterized by a much lower density and included two very short incursions into the

magnetosphere. The main magnetopause crossing then occurred at 13:44:30 UT (second

dashed line in figure 3.8). The spacecraft crossed the magnetopause current sheet (direct

separation with the magnetosheath) and thereafter remained inside the LLBL for a long

time. The boundary layer inside the magnetopause, hereafter called low latitude boundary

layer (LLBL) , was observed from 13:44:30 UT to 14:00 UT. This LLBL interval was also very

dynamic. This interval is identified as the outer LLBL (OLLBL) because it contains plasma

accelerated through the magnetopause discontinuity as evidenced by the enhanced and

diverted flows as compared to the pristine magnetosheath observed before 13:45 UT(cf.

panels a and c of Figure 3.7).

The spacecraft entered more clearly into the magnetosphere around 14:00 UT where a

second magnetic field rotation occurred, this time mainly in the By component. We note

that after this second current sheet the spacecraft did not exit immediately into the pris-

tine magnetosphere given the observation of low energy magnetosheath electrons between

14:00 and 14:05 UT, reminiscent of a kind of, or a more inner part of, the LLBL. The true hot

magnetospheric plasma was observed for example around 14:10 UT. The spacecraft exited

back into the main (outer) LLBL with enhanced flows and negative By around 14:12 UT

just before the event of interest, which was observed between 14:16:00 and 14:17:30 UT.

The event time interval is indicated with a yellow shaded area, bracketed by the red vertical
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lines in Figure 3.7. A strong peak in magnetic field magnitude consists of the most spec-

tacular feature and is visible in Figure 3.7-a. Just after the event, the spacecraft remain in

the LLBL based on the presence of some low energy magnetosheath electrons, but again

likely the more inner part of it given the measured low densities and the positive By value.

The spacecraft are in the magnetosphere proper after around 14:28 UT. Some middle en-

ergy electrons are intermittently observed after that time, but these are believed to be of

ionospheric origin.

To summarize, we argue that two kinds of LLBL were present. Observations of two kinds

of LLBL have been previously reported by e.g. Fujimoto et al. (1998); Bauer et al. (2001);

Hasegawa et al. (2003). The outer LLBL had a high density and showed enhanced |Vz | flows.

The inner LLBL had a lower density and a magnetic field orientation closer to that of the

geomagnetic field observed in the pristine magnetosphere. The transition from the main

(outer) LLBL to the inner LLBL also corresponded to a current sheet responsible for the

main rotation in By .

3.5.2. MAGNETOPAUSE TRANSITION PARAMETER

In order to clarify and check the structure of the boundary layer that was proposed in the

previous paragraph, we calculated the MP transition parameter τ which helps reordering

the time series data from magnetosheath to magnetosphere allowing then the identifi-

cation of boundary layer plasma [Hapgood and Bryant (1990); Lockwood and Hapgood

(1997)]. The plasma transition parameter (τ) is used instead of separately using the density

and the temperature to provide a more accurate indicator of boundary layer plasma. τ is a

unitless scalar from 0 to 100. Once τ is calculated, the variations in plasma parameters and

the magnetic field can be used to assign the corresponding values in the magnetosheath,

magnetosphere and the boundary layer for particular events.

Figure 3.10 shows the the variations of τ. τwas calculated by fitting a curve to a log10− log10

scatter plot of perpendicular electron temperature against electron density using all data

points between 13:00 and 15:00 UT (see paragraph "Transition Parameter" in Chapter 2).

The rectangles in the top of the Figure mark the different plasma regions as they have been

identified in the subesction 3.5.1. The transition from the magnetosheath to the magneto-

sphere had a significant thickness and included a multilayered structure. The structure can
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Figure 3.10 – Transition parameter calculated for MMS1 calculated from FPI measurements.

be split into four regions: the MSH, the MSBL, the outer LLBL and the inner LLBL-MSP. The

spacecraft were first in the pristine magnetosheath, region 1, where the upper threshold of

τ was set to be τ = 20, consistent with the suggestion by Lockwood and Hapgood (1997).

In the MSBL, region 2, the values of τ varied between 20 and 40. This region was followed

by the OLLBL, region 3, with 40 < τ < 60. The region 4, which has been identified as the

ILLBL, was characterized by values of τ that ranged between 60 and 100. Then, in region

5, the values of τ dropped to values close to the ones that were observed in the MSBL and

the OLLBL. Finally, in regions 6 and 7 which were identified as the ILLBL and the MSP, the

values of τ where such as 60 < τ< 100.

3.6. ANALYSIS OF THE EVENT

3.6.1. OBSERVATIONS

The crossing of the magnetopause and LLBL occurred between 13:44:30 UT and 14:00 UT.

The magnetopause normal and associated LMN frame [Farrugia et al. (1988)] were inferred

by performing a variance analysis [Sonnerup and Scheible (1998)] of the magnetic field data

between 13:42:25 and 14:02:44 UT. The results are given in Table 3.4. The magnetopause

normal vector, N = [0.84,0.30,−0.44] in GSE, was relatively close to the normal direction

calculated from Shue magnetopause model (e.g. [0.91, 0.41, -0.06] in GSE using the Shue

et al. (1997) model). The L and M vectors roughly pointed in the Z and -Y directions.
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In Figure 3.11, burst data measured by MMS 1 on 7 November 2015 between 14:15:45

L M N

Magnetopause
XGSE 0.24 0.48 0.84
YGSE 0.53 -0.79 0.3

ZGSE 0.81 0.37 -0.44

Table 3.3 – Local magnetopause coordinate system obtained from the minimum variance analysis of the mag-
netic field. λL/λM = 5.75, λL/λN = 18.64 and λM /λN = 3.23.

and 14:17:20 UT are presented. Dashed lines labelled T0 to T5 delimit the different parts of

the event that clearly have different properties and correspond to times 14:16:04; 14:16:25;

14:16:40; 14:16:43; 14:16:58 and 14:17:05 UT, respectively. The vector data are in GSE coor-

dinates. The top panel (a) displays the magnetic field, the (b) panel shows the ion thermal

pressure (Pp ) , the magnetic pressure (Pm) and the total pressure (Pt = Pp +Pm). The (c)

panel shows the current density as inferred from the curlometer technique, the (d) panel

exhibits the ion velocity and the last panel (e) shows the density of both ions and electrons.

Electron data for the same interval are displayed in Figure 3.12. The second panel in Figure

3.12 shows the omni directional energy flux of electrons, and the following three panels (c,

d, e) give the electron pitch-angle distributions for three energy ranges: 98-127 eV, 451-575

eV, and 3.3-11.5 keV. These energy bands are considered typical of thermal magnetosheath,

accelerated magnetosheath and magnetospheric electron populations, respectively (e.g.

Pu et al. (2013); Zhong et al. (2013)). The top panel (a) displays the magnitude and By com-

ponent of the magnetic field for the sake of completeness.

Figure 3.11 shows that prior to T1 (14:16:25 UT), the spacecraft were in the inner LLBL,

where plasma densities were low and Bz was the main component of the magnetic field.

Then, between T1 and T5, the MMS spacecraft recorded large changes in all parameters.

The most remarkable features included peaks in the magnitudes of the magnetic field (by

a factor of ∼ 1.7) and total pressure (∼ 2.5), a strong bipolar signature in the By compo-

nent (∆By ∼ 80nT ) and a large (∼ 300km/s) flow directed northward (Vz > 0) and eastward

(Vy > 0). At first glance, these large-scale signatures look consistent with those of an FTE

consisting of a flux rope resulting from a reconnection process, that may have occurred

southward and dawnward of the spacecraft for the prevailing conditions of IMF negative

Bz and By (see Figure 3.5).
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Figure 3.11 – An overview of MMS1 observations between 14:15:45 and 14:17:20 UT in GSE coordinates
on 7 November 2015. (a) Magnetic field components and total field strength, (b) pressures (red= plasma
(ion),green= magnetic, and black= total), (c) current density from curlometer technique, (d) ion velocity
components, (e) electron (black) and ion (red) densities. The black vertical dashed lines labelled T0 to T5,
correspond to times 14:16:04; 14:16:25; 14:16:40; 14:16:43; 14:16:58 and 14:17:05 UT.

However, this interpretation appears inconsistent with several observational facts:

• First, the bipolar signature was not observed in the component normal to the magne-

topause (mainly along XGSE ), but rather in a direction almost perpendicular (YGSE )

to the magnetopause normal (see Panel a).

• Secondly, there were a small-scale and fast Vy = 300km/s ion jet (along YGSE) and

an intense and thin current structure near the peak of the large scale magnetic field
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Figure 3.12 – MMS1 data between 14:15:45 and 14:17:20 UT of (a) By and the magnetic field strength in GSE
coordinates, (b) electron energy spectrum. Electron pitch angle distribution in the range of (c) 98-127 eV, (d)
451-751 eV, and (e) 3304-11551 eV.

between T2 and T3 (Panels d, c and a). Such features do not fit the usual flux rope

models of FTEs, although the presence of thin current sheets and reconnection have

been reported in the literature [Øieroset et al. (2016)].

• Thirdly, based on the pitch-angle distributions of electrons, there were drastically dif-

ferent regimes before and after the passage of this current structure (last three panels

in Figure 3.12). The characteristic features of the first and second part of the event

were clearly different. The region between T1 and T2 was first characterized by lower

fluxes of anti-parallel accelerated magnetosheath electrons, while the parallel fluxes

remained unchanged with regards to the fluxes measured before T1 (Panel d). On the

other hand, the thermal magnetosheath electron population tended to have larger

fluxes, consistent with an increased density (Panel c). During this interval, MMS also

observed a trapped electron population (at 90° pitch angle) which appears in both

the accelerated magnetosheath and magnetospheric energy ranges (Panels d and e).
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By contrast, during the second part of the event (between T3 and T4), this trapped

population was not present anymore; there were essentially no magnetospheric elec-

trons. The accelerated magnetosheath electrons anti-parallel flux was larger than the

parallel one (Panel d). These strongly different features suggest that this sequence is

not the signature of a single homogenous structure like a flux rope (expected to be

associated with FTEs).

On the basis of these observations, we rather interpret the time sequence between T1 and

T4 as successive crossings of two distinct flux tubes, henceforth referred to as F TA that was

observed between T1 and T2 and F TB that was observed between T3 and T4. Finally, the

densities were also drastically different between F TA and F TB (Figure 3.11, Panel e). In

F TB , the electron/ion densities and the He2+ fluxes (Figure 3.7) had values typical of the

outer LLBL.

A complementary view is provided in Figure 3.13 that introduces our observations in the

LMN frame. The components of the magnetic field are shown in panels a to d. The ion

velocity components are provided in panels f to l and the angle Ψ, which corresponds to

the angle between the magnetopause normal and the magnetic field, is shown in panel e.

The angleΨ is given by:

Ψ= arctan


√

B 2
L +B 2

M

|BN |

 (3.1)

Displaying the data in the LMN frame reveals two main features at the scale of the whole

event:

• The magnetic changes in the LMN frame did not exhibit an FTE-like bipolar signa-

ture, but rather a sharp rotation of the magnetic field through a thin current struc-

ture. The maximum magnetic field shear angle, corresponding to that across the

central thin current sheet, was about 73°. Before its passage, the magnetic field was

progressively deformed throughout T0-T1-T2, as indicated by the gradual changes in

Ψ. When the spacecraft crossed the current structure, theΨ angle recovered quickly

its initial value and, thereafter, both the L and N components of the magnetic field

remained close to zero for about 15 seconds, while the M-component was strongly

enhanced.
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Figure 3.13 – (a) Magnetic field magnitude, (b)-(d) magnetic field components in the magnetopause LMN
frame, (e) angle Ψ between the magnetopause normal and the magnetic field, (f)-(h) ion velocity compo-
nents in the magnetopause LMN frame, (i) parallel (black) and perpendicular (red) ion velocity in the GSE
coordinates system. The black vertical dashed lines labelled T0 to T5 are shown at the same times as in Figure
3.11.
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• The event was associated with a perpendicular ion flow in the +L direction, suggest-

ing that this flow results from a magnetic reconnection which occurred southward of

the spacecraft.

A more detailed examination of the observations indicates that at the beginning of the

period, before T0, the magnetic field had an orientation tangential to the magnetopause,

mainly in the L direction. The Ψ angle was close to 90°. The ion flows were weak. At time

T0, while all other parameters remained unchanged, the Ψ angle (BN component) started

to decrease (increase). This trend continued until T1 and indicates that the magnetic field

underwent a large-scale deformation. This is interpreted as the remote signature of a prop-

agating process having started before T0 and approaching closer to the spacecraft. During

this period, the ion flow remained constantly weak (ViL ∼ −50 km/s, ViM ∼ −25 km/s) ex-

cept for a small VN (also seen on the VxGSE component) peak ∼ 5 seconds prior to T1. This

VN change consisted of a perpendicular flow and was negative indicating an inward mo-

tion of plasma. This one could be due to a local retreat of the magnetopause. The time T1

marks the beginning of the in-situ detection of the event, corresponding to the entry into

flux tube F TA. Between T1 and T2, the BL component and the magnitude of the magnetic

field both increased. It was also the general trend for BN while BM decreased to 15 nT.

When the spacecraft penetrated into F TA (at T1), it first detected a ∼ 3 second duration

anti-parallel ion flow that reached a maximum value of 150 km/s along the L and N direc-

tions. Then, when VL and VN returned to zero, the flow was mainly perpendicular with a

−VM component. From that time until T2 (14:16:40 UT), the main component of the flow

was −VM , suggesting a westward motion of F TA.

Between T2 and T3, the magnetic field rapidly rotated. A localized ion jet was detected at

that time, as clearly seen on the VyGSE component in Figure 3.11. This jet appeared in the L

and M components in Figure 3.13. It was thus directed in a direction tangential to the mag-

netopause and oblique to the magnetic field as it includes both parallel and perpendicular

components. Comparison to the electric field data indicates that the ions were decoupled

from the magnetic field during the main current structure (section 3.7.2). Being along VM

during a large rotation of the BM component, this ion jet is consistent with expectations

from magnetic reconnection between F TA and F TB , as it is discussed later (section (sec-

tion 3.7.2)).
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Between T3 and T4, the flow was essentially along the L direction and the N and L compo-

nents of magnetic field were close to zero.

Finally, between T4 and T5, the ion flow vanished gradually and the magnetic field recov-

ered its initial (before T0) orientation. The interface marking the end of the event is not

analyzed in further detail in this paper.

3.6.2. SMALL-SCALE CURRENT SHEET

In order to infer the motion of the current structure relative to the spacecraft, we performed

differential timing analysis using the ByGSE bipolar transition, which constitutes the clearest

change (see Chapter 2-Multi-Spacecraft Timing Analysis: structures orientation and mo-

tion). This transition corresponded to the crossing of a strong current structure. We iden-

tified times when the 4 MMS spacecraft successively measured a set of identical By values,

as illustrated in Figure 3.14 with the horizontal dashed lines. Assuming that the structure

is planar, we applied the multi-point triangulation method [Russell C. T. et al. (2012); Dun-

lop and Woodward (1998); Harvey (1998b)]. For all identified times it provided a set of

normal vectors NC and propagation speed VP along the normal. The results showed that

both NC and VP change only slightly through the transition. From now on we will use a

normal vector NC = [−0.54,−0.03,0.84]GSE and a propagation velocity of ∼ 67km/s, which

are obtained from averaging over the full set of values shown in Table 3.5. The propagation

velocity slightly increases then decreases. The last column of Table 3.6 shows that the varia-

tions of the angle between each normal vector and the X axis are minimal, which indicates

a weak variance of the normal vectors and, therefore, suggests that the structure is planar

at the scale of the spacecraft separation.

For inferring the geometry and the orientation of the current structure, we performed

L M N

Magnetopause
XGSE 0.24 0.48 0.84
YGSE 0.53 -0.79 0.3

ZGSE 0.81 0.37 -0.44

Table 3.4 – Local magnetopause coordinate system obtained from the minimum variance analysis of the mag-
netic field. λL/λM = 5.75, λL/λN = 18.64 and λM /λN = 3.23.
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Figure 3.14 – By component of the magnetic field in the GSE coordinates system from the four MMS space-
craft. The horizontal dashed lines represents the several contours of different By values that were used to
calculate their normal directions and propagation velocities.

Figure 3.15 – The relative orientation of the PCS frame (U P , U J and U V ) to the GSE frame. The thick vio-
let arrow shows the direction of the current sheet propagation velocity obtained from multi-spacecraft data
analysis. The PCS frame corresponds to a translation of the GSE frame in the direction of the current sheet
propagation velocity combined with a rotation about the YGSE direction.
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Date
Nx Ny Nz V (km/s) Angle

33 -0.50 0.004 0.86 66.08 120°
20 -0.46 -0.15 0.87 60.36 118°
15 -0.50 -0.25 0.83 74.00 120°
5 -0.59 -0.02 0.81 63.63 126°
1 -0.61 -0.08 0.78 73.65 127°
0 -0.59 -0.07 0.79 73.39 126°
-5 -0.58 0.002 0.81 81.04 126°
-35 -0.42 0.012 0.91 58.43 114°
-40 -0.57 0.28 0.77 51.33 125°

Table 3.5 – The normal directions and the velocities of the propagating structure obtained by performing the
timing method for multiple values of By . Mean value are:V = 66.88km/s and Nc = [−0.54,−0.03,0.84], and
the angle of each normal vector relatively to the the X axis.

Figure 3.16 – Current density obtained from curlometer technique on 7 November 2015 between 14:16:35 and
14:16:50 UT. (a) in GSE coordinates, (b) in the current principal axis frame.

the variance analysis of the current density measurement obtained with the curlometer

technique [Robert et al. (1998)] for the period 14:16:39-14:16:43 UT. The results given in

Table 3.6 exhibit a strong contrast between the eigenvalues (λ1/λ2 = 2.8, λ1/λ3 = 43.2 and

λ2/λ3 = 15.43) and thus indicate that the current structure was organized with respect to

clearly defined principal axes. Figure 3.16 shows the current density in the GSE and prin-
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x1 x2 x3

Current principal axis
XGSE -0.76 0.03 -0.65
YGSE -0.2 -0.96 -0.19

ZGSE -0.61 0.28 0.74

Table 3.6 – Results of the variance analysis of the current density obtained from the curlometer technique.
λ1/λ2 = 2.8, λ1/λ3 = 43.2 and λ2/λ3 = 15.43.

UP UJ UV

PCS
XGSE -0.61 0.77 0.19
YGSE 0.02 -0.22 0.97

ZGSE 0.79 0.60 0.12

Table 3.7 – The unit vectors defining the PCS (Propagating Current Structure) frame.

cipal current axis frames. The axis of maximal current (called thereafter "main current")

was mainly directed in the (−X ,−Z )GSE direction [−0.76,−0.20,−0.61]. The main current

is therefore perpendicular to the ion jet that is observed in the YGSE direction. The second

principal axis associated with a significant (λ1/λ2 ∼ 2.8) current contribution (called there-

after "secondary current") was close to the YGSE direction [0.03,−0.96,0.28]. It exhibits a

bipolar signature that is parallel then anti-parallel to the ion jet. The third principal axis

was associated with much lower eigenvalue (λ2/λ3 ∼ 15.43) with an almost null current

component. Its orientation [−0.65,0.19,0.74] was in the (−X ,+Z )GSE direction and was

found to be close to the direction of NC found from the differential timing analysis.

Both independent approaches (current variance analysis and triangulation method) thus

provided a consistent geometry of the current structure. We then considered a new coordi-

nate system referred thereafter as the PCS (Propagation Current Structure) frame, which is

illustrated in Figure 3.15. The PCS coordinate system is defined by the vectors U P , U J and

U V . The components of these unit vectors in the GSE frame are shown in Table 3.7. The

first unit vector U P = [−0.61;0.02;0.79]GSE is close to the propagation direction as well as

the normal direction of the current structure. The second axis is oriented in the direction

opposite to the main current U J = [0.77;−0.22;0.60]GSE and the last axis is defined using

the unit vector of the ion jet which is also close to the unit vector of the secondary current

U V = [0.19;0.97;0.12]GSE (almost coinciding with YGSE ) and completes the right-handed

set. The PCS frame is in translation relatively to the GSE one at a translation velocity equal

to the propagation velocity derived from the differential timing analysis.

86



The Figure 3.17 shows data coming from the FGM and FPI experiments on-board MMS-1

Figure 3.17 – Data from MMS1 between 14:16:38 and 14:16:44 UT (a) current density components in the GSE
coordinates system, (b) parallel, perpendicular and the total current densities, (c) electrons and ions current
densities as well as the current density obtained from the curlometer technique and the current density ob-
tained from ne(V i −V e ), (d) current density components in the PCS frame (obtained from the curlometer
technique), (e) magnetic field components in the PCS frame, (f) ion velocity components in the PCS frame,
(g) ion velocity components in the PCS frame between 14:16:05 and 14:17:20 UT.

for a 6-second period including the current structure observation. The GSE coordinates of

the current density (from curlometer technique) are represented in panel (a). A correlation

between Jx and Jz is clearly visible and Jy exhibits a bipolar signature. As showed in panel

(b) the current was mostly parallel to the magnetic field. In panel (c), the magnitude of the
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current density obtained from the curlometer technique Jcur l (FGM data) and the one di-

rectly computed from the particle measurement (FPI data) are compared. Ji (green) is the

ion current, Je (blue) the electron current and Jpar t is obtained from ne(Vi −Ve ). It appears

clearly that the current was carried by the electrons while the ion contribution was almost

negligible.

The panel (d) displays the current density (from the curlometer technique) in the PCS

frame. The spacecraft reached the structure around 14:16:39.70 UT (time marked by the

first black dashed vertical line) as indicated by the little jump seen on J J , JV and J//. Then,

the satellites recorded a gradual increase (in absolute value) of the main current compo-

nent and a sharp peak between 14:16:40.96 UT and 14:16:41.54 UT (times indicated by the

red vertical lines). Eventually, MMS-1 exited out of the current structure around 14:16:42.22

UT (time marked by the second black dashed vertical line). Encircling the main current

peak, a bipolar secondary current was measured.

Multiplying the 2.52 s duration of the current structure crossing (interval between the pair

of black dashed vertical lines in Figure 3.17) with the propagation velocity of 67km/s, we

find that the spatial scale of the entire current structure is about 169km. This is about ∼ 3

to 4 times the ∼ 45 km Larmor radius of thermal protons at the time of the current sheet en-

counter (see Figure 3.19-(c)). The crossing of the main current peak, as indicated between

the two vertical red lines in Figure 3.17, lasted 0.58 seconds, which corresponds to ∼ 39km.

That is, the dimension of the main current peak was smaller than the proton Larmor radius.

The panel (e) shows the PCS magnetic field components. We note that the BP changes re-

mained very small. Similarly, B J was also roughly constant except a peak correlated with

the main current one. The B J peak location is consistent with the magnetic field generated

by the bipolar secondary current. The main change of the magnetic field was on the BV

component suggesting that the main current (along the J-direction) consisted of a current

sheet oriented along the V-direction.

The panel (f) displays the ion velocity in the PCS frame. The ion jet is seen as a peak now on

the V-component taking place between the first black dashed vertical line and the second

red vertical line. The ion jet crossing lasted for ∼1.8 seconds. Multiplying by the propa-

gation velocity, this gives a thickness of 120 km, corresponding to ∼ 2 to 3 proton Larmor

radii. We note that the ion jet was observed concomitant with the overall current structure,
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but that the current peak took place on its downstream side relatively to the structure prop-

agation, i.e., when the main flow component (ViV ) was decreasing (panel g).

The ion flow velocity is displayed at a larger scale, and in the PCS frame in panel (g) of Figure

3.17). The ViP component along the propagation direction, which also corresponds to the

normal to the current sheet, showed a clear reversal upon crossing the current structure.

ViP was first negative, indicating that the plasma moved slower than the current structure

in the propagation direction. After the current sheet and ion jet (observed in ViV ), it was

positive, and the ions moved faster. This means that in the PCS frame (i.e. in the frame

moving with the current structure) the flows were converging toward the current structure,

suggesting it to be compressed by the surrounding plasma. There was also a flow reversal

along the main current direction, as indicated by the reversal in the Vi J component. This

suggests that there was also a flow shear along the current structure, in addition to the com-

pression. Around 14:17:05-14:17:10 UT, i.e. just after T5, all flow components reversed. This

is interpreted as indicating that the spacecraft re-entered into the inner LLBL.

3.7. DISCUSSION AND INTERPRETATION

3.7.1. PHENOMENOLOGICAL INTERPRETATION

The event analyzed in this study exhibits some features apparently similar to FTEs at first

glance, i.e. bipolar variation of a magnetic field component and a peak in the magnetic

field strength. However, a more detailed examination showed that it cannot be interpreted

as a single FTE entity consisting of a single helicoidal flux tube. The main reasons are the

following:

1. The bipolar change in the magnetic field did not occur in the expected direction nor-

mal to the magnetopause.

2. A strong and thin current structure and a localized ion jet, were detected near the

center.

3. The electron pitch-angle distributions indicate that the event did not consist of a

unique and homogenous structure with a single connectivity as expected for a large-
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scale flux rope.

Before proposing an alternative interpretation, let us first summarize the main features of

the event. Times T0 to T5 mentioned below refer to the vertical dashed lines in Figures 3.11,

3.12 and 3.13.

• The event took place during the passage of an interplanetary magnetic cloud. The

solar wind/magnetosphere coupling was intense, with all three GSE components of

the IMF being negative. The solar wind pressure and the Alfvén Mach number had

very low values.

• The event occurred when the spacecraft were located in the Low Latitude Boundary

Layer (LLBL).

• T0 −→ T1: The first signature consisted of a change in the magnetic field only, sugges-

tive of remote sensing of the structure propagating toward the spacecraft.

• T1 −→ T2: The spacecraft entered a flux tube (F TA) mainly characterized by accel-

erated magnetosheath electrons exhibiting an anisotropy in the direction parallel

to the magnetic field. Moreover, trapped magnetospheric electrons were continu-

ously measured in F TA. The density was slightly enhanced and BYGSE was positive.

Ions first streamed antiparallel to the magnetic field and then perpendicular in the

duskward (YGSE or −M) direction. A trapped population of suprathermal electrons

was continuously measured in this flux tube.

• T3 −→ T4: In the second part of the event, the spacecraft crossed a very different

flux tube (F TB ). There was no trapped electron population and the anisotropy of the

accelerated magnetosheath was in the opposite sense, in the antiparallel direction.

BYGSE was the main component of the magnetic field and was negative. The density

was higher with values close to the ones measured inside the outer LLBL, between

13:45 and 14:00 UT for example. The plasma flow was in the northward and duskward

direction.

• T2 −→ T3: Between these two flux tubes, there was a strong and thin current sheet

where the magnetic field rotated sharply. A strong and localized duskward ion jet
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along the YGSE direction was also observed, qualitatively consistent with a reconnec-

tion process occurring inside the current sheet owing to the sharp BY reversal. In

the frame moving with the structure the surrounding plasma flow was converging

towards the current sheet. The current sheet was thus being compressed.

We interpret this sequence of observations as the signature of the successive crossing of the

two flux tubes by the spacecraft. These two flux tubes may have been generated by multiple

sequential reconnection process, which is expected to occur under strong BY and negative

BZ IMF conditions, as was observed for a long time around the event [e.g. Raeder (2006); Pu

et al. (2013)]. The first flux tube (F TA) contained trapped electrons. This implies that this

flux tube has a different history and connectivity compared to the second flux tube which

rather contained only magnetosheath electrons with largely different pitch angle proper-

ties [Pu et al. (2013)]. A current sheet formed at the interface between the two flux tubes.

As shown by the changes in the ion velocity component along the propagation direction

(Figure 3.17-g), the second flux tube (F TB ) was moving faster than the first one (F TA). This

resulted in an interlaced magnetic structure and associated complex 3D geometry, as has

been previously studied with Cluster data [Louarn et al. (2004)]. The observed compres-

sion is likely at the origin of the current sheet formation and of the possible reconnection

occurring inside as described next. Figure 3.18 shows a sliced schematic view of the cross-

ing in the PCS frame. The spacecraft started in the low density flux tube F TA at T1. The

V component of the magnetic field was positive inside F TA. An ion jet, as represented by

red arrows with a yellow outline, was observed inside the current sheet (which is about 169

km thick). At the second edge of the jet, the spacecraft crossed a complex current structure

(between T2 and T3). It consisted of a strong and peaked current sheet directed in the −U J

direction encircled by a pair of current sheets of opposite polarities along the U V direction.

Between T3 and T4, the spacecraft were in F TB , where the V component of the magnetic

field is negative. The combined effect of opposite (bipolar) currents as observed in the U V

direction was to produce an enhancement of the positive B J component in between them

(as represented by the green arrows). In doing so, these currents directly supported the ro-

tation of the magnetic field from the F TA to the F TB orientations. This enhancement in

the B J component is clearly seen in Figure 3.17-f as a 15 ∼ 20nT peak superimposed on

top of the larger-scale constant B J ∼ 50nT . The red vectors in the ±U V directions illustrate
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Figure 3.18 – A schematic view of the crossing of the current structure in the PCS frame. The orange, green and
magenta arrows show the magnetic field orientation in the F TA , current structure and F TB respectively. The
black arrows in the U J (U V ) direction correspond to the main (bipolar) current density. The two oppositely
directed red arrows in the U P direction illustrate the compression of the current structure. The red arrows
with yellow edges show the ion jet observed in the current structure. The spacecraft trajectory across the
structure is represented by the dashed black arrow.
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the compression of the current structure by two oppositely-directed flows (which converge

toward it).

3.7.2. POSSIBLE RECONNECTION AT THE THIN CURRENT SHEET

Reconnection driven by compression at current sheets formed by the interaction of plasma

flows have been suggested for interpreting spacecraft observations from the magnetopause

[Øieroset et al. (2016)], in the magnetotail [Alexandrova et al. (2016)] and simulation results

as well [Oka et al. (2010); Huang et al. (2014)]. Simulations have been performed in partic-

ular to study the coalescence of magnetic islands, and showed features similar to the ones

identified in this event. This is true, in particular, for the formation of a thin current sheet

with an exhaust in the transverse direction [Zhou et al. (2014)].

Qualitatively, the local conditions satisfied at the interface of coalescing magnetic islands

are somewhat similar to those observed in our event. Locally, this corresponds to the inter-

action between two disconnected magnetic flux tubes pushed against one another by the

differential plasma flows in which they are imbedded. MMS measurements permitted a

detailed analysis of such a case, but with some conditions specific to the event: the current

sheet was characterized by a large density jump and a magnetic shear angle of only ∼73 de-

grees as compared with 180 degrees in published simulations with comparable densities.

The process at the origin of the ion jet observed inside the first current sheet was likely

magnetic reconnection driven by the compression of the two distinct sets of open field

lines. This is partially supported by the Walén test results that are superimposed on the

main jet velocity component in Figure 3.17-g. Walén tests [e.g. Phan et al. (2004)] were per-

formed with positive and negative correlations on the Earthward (upstream relative to the

structure propagation) and Sunward (downstream) sides of the exhaust, respectively. The

exhaust was observed between 14:16:39.7 and 14:16:41.7 UT. This is presented in Figure

3.17-g with VI ons–VHT =±VA, where VI ons , VHT , and VA are the bulk ion, deHoffman-Teller

and Alfvén velocity vectors, respectively. The Walén test predicts an ion jet with amplitude

∼ 688 km/s. This is larger than the amplitude of the observed jet. The correlation coeffi-

cient is of −0.92 and the slope is of −0.68 for the entry to the exhaust between 14:16:39.7

and 14:16:40.95 UT. For the exit from the exhaust, between 14:16:40.95 and 14:16:41.7 UT,

the Walén relation provides a correlation coefficient of 0.92 with a slope of 0.18, which is
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much lower than the ideal value ∼ 1. Although the Walén test shows that the ion bulk flow

is not as large as expected, this may be due to the proximity to the X-line [Phan et al. (2016)]

because it means that the ion outflow had not yet reached its full speed and is not yet ac-

celerated to the local Alfven speed.

To support this hypothesis, we note that with densities of 2 and 6 cm−3, as measured each

Figure 3.19 – (a) Ion density,(b) Ion skin depth between and (c) the protons Larmor radius 14:16:05 and
14:17:20 UT.

side of the exhaust at 14:16:39.7 UT and 14:16:41.7 UT, the typical ion skin depth λi is esti-

mated as 100−155 km and is shown in Figure 3.19. The jet thickness is thus estimated to be

approximately 120km, or about 0.8−1.3λi . Such a thickness implies that the spacecraft are

very close to the X-line (5−8λi or ∼ 840km), which is consistent with the ion jet not being

fully developed yet and thus with the over-estimation of the ion speed from the Walén test.

One important signature magnetic reconnection is the decoupling of ions and electrons in
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Figure 3.20 – Between 14:16:38 and 14:16:44 UT: (a) B data, (b) FPI currents, (c,d,e) comparison between EDP
electric field data (black), −V e ×B (green) and −V i ×B (red).

their corresponding diffusion regions. Figure 3.20 shows, respectively, the magnetic field

components and amplitude, the current density, and a comparison between the electric

field components and V e × B and V i × B . Panels (c) to (e) in Figure 3.20 show that the

V i ×B significantly deviated from E while V e ×B followed E as the spacecraft crossed the

current structure. This means that the frozen-in condition for ions was violated for this

interval. Therefore, ions (red curves) were decoupled from the magnetic field at the cen-

ter of the structure while the electron (green curves) were still frozen in. As discussed in

section 1.2.5, a positive value of J .E ′ (where E ′ = E +V e ×B ) is consistent with magnetic

reconnection. Figure 3.21-(d) to (g) shows, for MMS1-2-3 and 4, respectively, J .E ′ which

corresponds to the energy conversion rate. This term quantifies the energy transfer be-

tween the electromagnetic fields and the plasmas. In the reconnection dissipation region,

J .E ′ is supposed to be positive because magnetic reconnection is known to be a dissipative

process that converts magnetic energy into mechanical energy.
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Figure 3.21 – Between 14:16:38 and 14:16:44 UT: (a) B data, (b) current density qn(V i −V e ) obtained from
the computed moments of ion and electron distribution functions, (c) ion velocity, (d) to (g) J ×E ’ for MMS1,
MMS2, MMS3 and MMS4.
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When the current sheet is crossed, J .E ′ is significantly different from zero. It reaches values

of ∼ 11 nW /m3 for MMS2 and of ∼ 9 nW /m3 for MMS3. This strong positive value of J .E ′ is

a strong indicator for magnetic energy dissipation which suggests therefore that magnetic

reconnection occurred in this region.

3.8. SUMMARY AND CONCLUSION

We have studied in detail what initially looked like a classic FTE at the Earth’s dayside mag-

netopause. Thanks to its high-resolution measurements of MMS, our analysis revealed the

following unusual properties:

• The large-scale magnetic field bipolar signature was not found in the component

normal to the nominal magnetopause surface N that was directed essentially along

XGSE , but rather in the BYGSE component, i.e. perpendicular to N ;

• The densities and pitch angle distributions of suprathermal electrons show that the

current sheet separated two distinct plasmas with different properties and magnetic

connectivities;

• An intense and complex current structure was localized at the center of the structure

and allowed the transition between the two flux tubes having very different topolo-

gies. This current was responsible for the B ;

• This current was carried by electrons. Although the scale of the structure is approxi-

mately three times the ion Larmor radius, the structure possesses smaller scale sub-

structures, smaller than the ion Larmor radius. The intense current sheet was asso-

ciated with a strong transverse flow (along VYGSE ) consistent with expectations from

magnetic reconnection therein.

Our interpretation is that these properties are incompatible with a classic, single FTE struc-

ture. Besides, the coalescence process, which involves a reconnection between two mag-

netic islands, could be a potential interpretation of these observations. But a double bipolar

signature belonging to two distinguishable magnetic islands was not observed. Thus, the
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coalescence of magnetic islands and the reconnection inside a FTE do not fit all the obser-

vations. The observations were suggested to be rather consistent with a complex, three-

dimensional interaction of two distinct flux tubes. This compressive interaction led to the

formation of a thin and complex current structure between two flux tubes of very different

orientations (73° magnetic shear angle) which mimicked the bipolar magnetic structure

and the enhanced core magnetic field, both expected for classic FTEs. The strong mag-

netic field pile-up and ensuing thin current sheet also appeared to have triggered magnetic

reconnection at the interface. In the next Chapter, we will present a study of the waves

associated with this reconnecting current sheet.
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4
PLASMA WAVES STUDY FOR THE EVENT OF 7

NOVEMBER 2015

4.1. INTRODUCTION

In this chapter we will present our study on the plasma waves associated with the event

that was discussed in Chapter 3. We will focus on the waves that were observed around the

reconnecting current sheet that was detected on 7 November 2015 around 14:16:41 UT as

a result of the interaction of two flux tubes (refer to Chapter 3 for more details).

4.2. INSTRUMENTATION

The observations in this Chapter were provided by the MMS spacecraft [Burch et al. (2016)].

We used magnetic field measurements from the fluxgate magnetometers [Russell et al.

(2016); Torbert et al. (2016)] at a resolution of 128 Hz. We also analyzed ion and electron

measurements from the Fast Plasma Instruments with a resolution of 150 milliseconds for

ions and 30 milliseconds for electrons [Pollock et al. (2016)]. The Electric Double Probe

measurements (EDP) provides three-dimensional quasi-static and high-frequency electric

field measurements with 8192 vectors/s in burst mode [Ergun et al. (2016); Lindqvist et al.

(2016b)]. Three dimensional measurements of the high-frequency magnetic field fluctu-
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ations are provided by the Search Coil Magnetometers (SCM) with same sampling rates

(8192 vectors/s) as EDP and with a high pass filtering above 1Hz so covering the frequency

range[1Hz-4kHz] [Le Contel et al. (2016)].

4.3. MAIN FEATURES OBSERVED AROUND THE CURRENT SHEET

Before we begin studying the waves, it is useful to consider the main relevant features

of the event analyzed in Chapter 3 which are summarized in Figure 4.1 presenting data

around the current sheet between 14:16:38 and 14:16:44 UT. The BY component of the

magnetic field exhibited a bipolar signature. Its value varied from ∼ 40nT to ∼ −40nT as

the spacecraft crossed the current sheet. Before the current sheet crossing, the density was

about ∼ 2cm−3. Then, it increased to ∼ 6cm−3 at 14:16:40.9 UT. Another peak of density of

∼ 8cm−3 was observed at 14:16:41.8 UT. A minimum of density , of ∼ 3cm−3, was revealed

at 14:16:41.4 UT between these two maxima. After the current sheet crossing, the density

reached again the value of ∼ 6cm−3. Hence, the density profile was weakly asymmetric

across the current sheet which is consistent with it being generated at the interface of two

flux tubes. An ion jet was observed in the low-density part of the event between 14:16:39.7

and 14:16:41.7 UT as seen in panel (f) where the y-component of the ion velocity was close

to ∼ 300km/s. The width of the ion jet was found to be of 120km which is about 0.8−1.3λi

where λi is the ion inertial length each side of the exhaust as shown in Chapter 3. The shear

angle between the magnetic fields on the two sides of the current sheet was about ∼ 73°. A

total magnetic field enhancement was observed at the center of the current sheet. Figure

4.1-(g) showed that the parallel electron temperature was enhanced on both sides of the

current sheet. The electron distribution was anisotropic as the perpendicular temperature

of electrons was significantly lower than the parallel temperature.

4.4. PLASMA WAVES

4.4.1. WHISTLER WAVES

Figure 4.2 shows MMS1 measurements recorded around the current sheet. Power spectra

of electric and magnetic fields calculated from MMS1 by using fast Fourier transform (FFT)

are displayed in Figure 4.2-(d) and (e), respectively. Panel (d) reveals an intense broadband
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Figure 4.1 – Between 14:16:38 and 14:16:44 UT: (a) B data, (b) FPI currents, (c,d,e) comparison between EDP
electric field data (black), −V e ×B (green) and −V i ×B (red), (f) ion velocity,(g) parallel and perpendicular
electron temperatures and (h) electron density.

activity up to 400 Hz between 14:16:38 and 14:16:42 UT. Two wave intensifications, marked

by two black ellipses in panel (e), were observed between ∼ 300 and ∼ 500H z. These fre-

quencies are below the electron gyrofrequency ( fce ∼ 1500−2000 Hz) but higher than the

lower hybrid frequency ( fLH ∼ 40−50 Hz) which define the whistler waves frequency do-

main ( fLH ¿ f ¿ fce ). The waveangle values were close to zero as illustrated in the black

ellipses in panel (f). The waves were thus propagating along the magnetic field direction.

The black ellipses in panel (g) shows that the distribution of wave ellipticity in the plasma
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Figure 4.2 – MMS1 observations on 7 November 2015 between 14:16:36 and 14:16:46 UT: (a) magnetic field
components and amplitude, (b,c) band-pass filtered between 256 and 512 Hz EDP and SCM waveforms in
MFA (d, e) omnidirectional E and B PSD,(f) waveangle and (g) Ellipticity.

frame is strongly peaked at +1, suggesting that the waves were right-handed circularly po-

larized. This set of observations observations means that these waves are electromagnetic

whistler waves.

The spectrograms of the poynting vector components (SX ,SY and SZ ) are shown in Fig-

ure 4.3 in the Magnetic Field Aligned (MFA) coordinates system. This coordinate system

is defined such as the ZMF A axis is directed along the background magnetic field B 0. The

second axis XMF A is taken in the direction of XGSE and the third axis YMF A = ZMF A ×XMF A

completes the right-handed frame. The positive value of SZ for the whistler waves frequen-

cies (white ellipse in Figure 4.3-(d)) reveals that the whistler waves were propagating in the

direction of the magnetic field.

Panels (a) to (d) in Figures 4.4, 4.5 and 4.6 show the magnetic field components obtained

from FGM, the magnetic field filtered between 40 and 100 Hz from SCM, the electric field
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Figure 4.3 – (a) magnetic field components and amplitude in GSE coordinates, (b) to (d) the components of
Poynting flux of electromagnetic fields.

components from EDP and the parallel electric field along with its associated error bars

(pink shading), respectively. Figures 4.4 and 4.6 show the waveforms of the first and sec-

ond Whistler wave packets, respectively. A zoomed view of Figure 4.4 between 14:16:40.720

and 14:16:40.760 UT is provided in Figure 4.5. Spiky structure of E∥ were observed in Figure

4.4-(d). They reached values of ∼ 25mV /m. Figures 4.5-(d) and 4.6-(d) show that only the

first whistler wave packet was associated with spiky bipolar signatures in the electric field.

These bipolar spiky structures are interpreted as electrostatic solitary waves (ESWs).

In order to test the mechanism for the whistler waves, we used WHAMP code (Waves in Ho-

mogeneous Anisotropic Multicomponent Magnetized Plasma) [Roennmark (1982)] which

calculates general wave dispersion relation in plasmas. Whistler waves may be generated
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Figure 4.4 – Waveforms of the first Whistler wave packet between 14:16:40.5 and 14:16:40.9 UT in GSE coor-
dinates. (a) the magnetic field components, (b) the magnetic field filtered between 40 and 100 Hz, (c) the
electric field components and (d) parallel electric field calculated by using the EDP data and the survey mag-
netic field and its associated error bars (pink shading).

by electron temperature anisotropy when Te⊥/Te∥ > 1 where the subscripts denote perpen-

dicular and parallel directions to the magnetic field [kennel and petsheck, 1966]. However,

Figure 4.1-(g) shows that this condition is not satisfied. This means that the whistler waves

were not locally generated by electron temperature anisotropy.

Electron beams have been also proposed as a possible source for whistler waves [Gary and

Wang (1996)]. The observed electron distributions around 14:16:41 UT exhibit a beam-like

feature with energies between 100 eV and 400 eV in the parallel direction as evidenced in

Figure 4.7. We therefore investigated with WHAMP the plasma instabilities which may de-

velop in the plasma by the observed electron beam.
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Figure 4.5 – Zoom on the first Whistler wave packet between 14:16:40.72 and 14:16:40.76 UT (yellow shaded
area in Figure 4.4). Panels are similar to 4.4.

The modeled distributions included a plasma core and a parallel electron beam. Setting

the ambient magnetic field strength B0 to its observed value, i.e. 65 nT, the stability prop-

erties of the plasma were not altered with these distribution functions. However, by re-

ducing the ambient magnetic field strength to 35 nT, the model exhibited emissions in the

whistlers frequency range suggesting that the electron beam may generate the observed

whistler waves for this value of magnetic field intensity.

The fact that no whistler waves were observed for the local magnetic field intensity (B0 = 65

nT) but for 35 nT means that the whistler waves were not generated locally but in a region

where the magnetic field strength was about 35 nT. This is consistent with the calculated
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Figure 4.6 – Waveforms of the first Whistler wave packet between 14:16:41.75 and 14:16:41.90 UT. Same leg-
ends as Figure 4.4.

wave-particle resonance energy which can be expressed as [Kennel and Engelmann (1966)]:

Er es =
( B 2

0

2µ0ne

)( ωce

ωcos2θkB

)(
cosθkB − ω

ωce

)[
m + ω

ωce

]2
(4.1)

where B0 is the magnetic field field, ne is the plasma density, ωce is the electron cyclotron

frequency, m = 0 (Landau), m =−1 (normal cyclotron), or m = 1 (anomalous cyclotron) for

the different resonances and θkB is the wave propagation angle with respect to the mag-

netic field. For B0 = 65 nT, the energy for resonant wave-particle interactions were found

to be very far from the observed beam energy (i.e. between 100 and 400 eV). This suggests

that the electron beam could not, locally, initiate the waves. However, with B0 = 35nT , the

predicted resonant energy for observed whistler waves was very close to the observed beam
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Figure 4.7 – Electron pitch angle distributions averaged between 14:16:41.226-14:16:41.496 UT. Parallel (0°),
perpendicular (90°), and anti-parallel (180°) phase space densities are represented by blue, green, and red
traces, respectively.

energy and may therefore confirm that the electron beam helped to generate whistlers in a

region where the magnetic field intensity was about 35 nT.

This hypothesis is, somehow, consistent with previous studies on possible sources of whistlers

on the dayside magnetopause. Vaivads et al. (2007), for example, proposed that, at the

Earth’s magnetopause, whistler waves can be created along magnetic flux tubes near mag-

netic field minima. They showed that at the magnetopause, strong whistler emissions can

be emitted on newly opened flux tubes through magnetic reconnection. They also showed

that the whistler emissions can propagate away from the magnetic field minima. We may

therefore think that some local minima of magnetic field exist on each of the flux tubes

(F TA and F TB ), which have been generated by distinct magnetic reconnections, leading to

the generation of the whistler waves at these minima (of 35 nT).

4.4.2. LOWER HYBRID DRIFT WAVES (LHDWS)

In the figure 4.8-(a) to (c) are shown the magnetic field data from FGM in GSE coordinates

system, the magnetic field from SCM filtered between 40 and 100 Hz (i.e. around the lower

hybrid frequency) in MFA, and the electron density from the four spacecraft. The wave-
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forms of the lower hybrid drift waves, shown in Figure 4.8-(d) to (g), were obtained by fil-

tering the electric field with a band-pass filter between 40 and 100 Hz which are close to the

lower hybrid frequency fLH . The yellow vertical lines in panels (d) to (g) delimit the LHDW

for MMS1, MMS2, MMS3 and MMS4, respectively. The first maximum of density is first de-

tected MMS4, MMS2, MMS3 and MMS 1, respectively. This is the same order of detection

of the LHDW. We may then assume that the LHDWs were more probably generated by the

density gradient. This density gradient may be created through the interaction between

the two flux tubes (F TA and F TB in Chapter 3). We first analyzed these waves as a single

packet. Then, since the amplitude of the fluctuations was much larger between the first and

the second yellow vertical lines than between the second and last yellow vertical lines, we

also studied the LHDWs as two distinguishable packets. The times corresponding for the

LHDW observations for each spacecraft are shown in Table 4.1. We determined the wave

LHDW Packet 1 Packet 2
ti t f ti t f ti t f

MMS1 14:16:40.90 14:16:41.80 14:16:40.90 14:16:41.40 14:16:41.40 14:16:41.80
MMS2 14:16:40.75 14:16:41.75 14:16:40.75 14:16:41.40 14:16:41.40 14:16:41.75
MMS3 14:16:40.75 14:16:41.75 14:16:40.75 14:16:41.40 14:16:41.40 14:16:41.75
MMS4 14:16:40.60 14:16:41.65 14:16:40.60 14:16:41.40 14:16:41.40 14:16:41.65

Table 4.1 – Times corresponding to the observations of the LHDW.

properties, such as phase speed, propagation direction, wavelength, and wave potential

using a single-spacecraft method that was proposed by Norgren et al. (2012) (see Chapter

2). The results are shown in tables 4.2 to 4.4 for the four spacecraft. The results shown in

Tables 4.2-4.3 are very similar. Conversely, Tables 4.3-4.4 show that the waves properties

of the first and second packets of LHDWs are slightly different. One of these differences is

the estimated direction of propagation of the waves. The first packet of waves was found to

propagate with a positive Vy component of the phase velocity while the second packet was

found to propagate with a negative Vy component of the phase velocity. The results show

that the frequency, phase speed, and perpendicular wavelength estimates are very close for

the four spacecraft. Considering the results of Table 4.2, the fluctuations have frequencies

of ∼ 65H z which are close to fLH , are propagating perpendicular to the magnetic field to-

ward the dusk side with a phase speed about ∼ 317 km/s. k⊥ρe was about ∼ 0.6 and the

perpendicular wavelength λper p was about ∼ 5 km. The ratio between the electrostatic po-
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Figure 4.8 – Waveforms of the lower hybrid drift waves in MFA. (a) BX , BY and BZ , (b) the magnetic field
filtered between 40 and 100 Hz, (c) electron density from the four spacecraft and (d-g) parallel and perpen-
dicular electric field also filtered between 40 and 100 Hz for MMS1, MMS2, MMS3 and MMS4, respectively.

SC Vx Vy Vz ‖v‖ f (H z) fLH (H z) λ⊥(km) k⊥ρe δφ/Te cc

1 -0.23 0.76 0.46 330.4 65.0 46.8 5.0 0.58 0.63 -0.80
2 -0.09 0.83 0.39 308.1 68.3 47.5 4.5 0.64 0.51 0.820
3 -0.10 0.83 0.37 303.3 64.1 46.5 4.7 0.62 0.52 -0.81
4 -0.19 0.78 0.47 327.6 65.0 47.2 5.1 0.56 0.39 -0.84

Table 4.2 – Properties of the LHDWs in GSE coordinates system for MMS1, MMS2, MMS3 and MMS4, re-
spectively. Vx ,Vy ,Vz give the direction of propagation of the waves, ‖v‖ gives its amplitude, f is the waves
frequency, fLH is the LHDWs frequency, λ⊥ is the perpendicular wavelength, k⊥ρe is the position of the
maximum growth rate of the waves, δφ/Te is the ratio between the electrostatic potential and the electron
temperature and cc is the correlation coefficient between the potential obtained from δB∥ and from δE⊥.
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SC Vx Vy Vz ‖v‖ f (H z) fLH (H z) λ⊥(km) k⊥ρe δφ/Te cc

1 -0.20 0.90 0.24 376.5 65.0 47.0 5.8 0.50 0.63 -0.89
2 -0.05 0.92 0.19 320.1 68.3 48.1 4.7 0.61 0.51 0.91
3 -0.07 0.93 0.16 320.7 65.1 46.8 4.9 0.59 0.52 0.88
4 -0.18 0.84 0.38 344.2 65.0 47.6 5.4 0.53 0.39 0.89

Table 4.3 – Properties of the first packet of LHDWs in GSE coordinates system for MMS1, MMS2, MMS3 and
MMS4, respectively.

SC Vx Vy Vz ‖v‖ f (H z) fLH (H z) λ⊥(km) k⊥ρe δφ/Te cc

1 -0.75 -0.16 0.64 201.9 93.1 46.6 2.2 1.34 0.11 0.13
2 -0.48 -0.81 -0.32 277.6 56.9 46.3 4.8 0.62 0.16 -0.46
3 -0.78 -0.53 0.32 176.5 54.0 46.0 3.1 0.94 0.18 -0.53
4 -0.70 -0.71 -0.02 262.1 59.4 46.1 4.5 0.66 0.15 0.48

Table 4.4 – Properties of the second packet of LHDWs in GSE coordinates system for MMS1, MMS2, MMS3
and MMS4, respectively.

tential and the electron temperature varies between 0.39 and 0.63. λper p was significantly

lower than the spacecraft separation which was about ∼ 10km.

In the electrons rest frame, the velocity of propagation of the waves V φ is expected to be

equal to the ion diamagnetic velocity. We therefore calculated the ion diamagnetic veloc-

ity, using two independent relations, in order to check if its value and direction are close to

those of the waves. Figures 4.9-(a) and (b) show, respectively, the ion diamagnetic velocity

calculated as:

V di 1 =
−∇·Pi ×B

ni eB 2
(4.2)

and as:

V di 2 =V ⊥,i − E ×B

B 2
(4.3)

where all the parameters are averaged over the four MMS spacecraft. V di 1 and V di 2 exhibit

qualitatively the same behavior, however, the value of the y component is larger for V di 1 .

It is close to ∼ −800km/s for V di 1 and ∼ −600km/s for V di 2 . Figures 4.9 and 4.10 show

that the electric drift was nearly equivalent to the ion diamagnetic drift but in the opposite

direction (+y), which is the same direction of propagation of the LHWDs (Table 4.2).

Since electrons were magnetized, their diamagnetic velocity was very weak and therefore

their perpendicular velocity was approximately equal to the electric drift speed (Figures
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Figure 4.9 – Ion diamagnetic velocity obtained from (a) equation 4.3 and (b) equation 4.2.

Figure 4.10 – Electric drift speed (E ×B )/B 2).
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Figure 4.11 – (a) Electron and (b) ion perpendicular velocities in GSE coordinates from FPI.

4.11-(a) and 4.10). If both electrons and ions were magnetized, then they would have the

same velocity and propagate at the electric drift speed. The ion perpendicular velocity can

be written as:

V ⊥i =V di +
E ×B

B 2
(4.4)

and is shown in Figure 4.11-(b). The mean of the LHDWs velocity for all the paquet of

LHDW over the four MMS spacecraft is 317 km/s and is thus close to the y component of

the perpendicular ion velocity. We therefore conclude that the LHDW were moving in the

direction of the electric drift speed at the perpendicular ion velocity.

The density gradient led to the generation of a diamagnetic current in the y direction that
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Figure 4.12 – The y component of: electron diamagnetic current density (blue), ion diamagnetic current den-
sity obtained as jdi aI = enV di 1 (green), perpendicular current densities obtained from FPI (red), perpendic-
ular current densities obtained from the curlometer technique (purple) and ion diamagnetic current density
obtained from equation jdi aI2 = enV di 2 (yellow).

can be calculated as:

J i = B ×∇·P i

B 2
(4.5)

The electron diamagnetic current was very weak, while the ion diamagnetic current was

dominant (Figure 4.12). This is due to the the difference in temperature of electrons and

ions where Te ¿ Ti . Figure 4.12 also shows that the y component of the ion diamagnetic

velocity, the y component of the perpendicular current obtained from the curlometer tech-

nique (calculated through ∇×B ) and perpendicular FPI current densities (en(V ⊥,i −V ⊥,e ))

vary similarly. This indicates that the perpendicular component of the current density was

carried by the ion pressure gradient.

The y component of the ion diamagnetic current density was equal to the y component

of the perpendicular current density but since the total current density was carried by elec-

trons (shown in Chapter 3), this therefore suggests that if the perpendicular current was

carried by ions then the parallel current density must be carried by electrons. However,

Figure 4.13 shows that both parallel and perpendicular current densities were mainly car-
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Figure 4.13 – Parallel (a) and perpendicular (b) current densities obtained from the curlometer technique, the
particle, the ions (enV ∥(⊥,i )) and the electrons current densities (−enV ∥(⊥,e)).

ried by electrons. A more work is still needed in order to elucidate this point.

4.5. DISCUSSION

Plasma waves near the magnetic reconnection region were reported in satellite observa-

tions such as whistler waves in the magnetopause [Deng and Matsumoto (2001); Tang et al.

(2013); Contel et al. (2016)], electrostatic solitary waves [Cattell et al. (2005); Viberg et al.

(2013)] and lower hybrid waves [Zhou et al. (2011)]. Wave-particle interactions can signif-

icantly contribute to the energy dissipation and transformation from magnetic energy to

kinetic and thermal energies since they provide the anomalous resistivity needed to break

the magnetic field lines and accelerate particles [Viberg et al. (2012); Deng et al. (2004a);

Retinò et al. (2006)]. Moreover, plasma waves provide information about particle dynamics
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Figure 4.14 – Sketch of a reconnection site. At the top, different kinds of wave spectra commonly observed
near reconnection sites are sketched. The common places to observe those waves are marked in different
gray shadowing. Typical electron distribution functions in the vicinity of the separatrix are indicated as well.
Figure from Vaivads et al. (2006). LHD = Lower Hybrid Drift, W = Whistler, ESW = Electrostatic solitary waves
and L/UH = Langmuir/upper-hybrid waves.

since most of waves are driven by unstable particle distributions. Therefore, the knowledge

of waves is very helpful to understand the reconnection dynamics.

A simplified structure of the separatrix region was propsed by Vaivads et al. (2006) and is

illustrated in Figure 4.14. It shows that whistler waves are usually observed near the X-line.

Electrostatic solitary waves and Langmuir/Lower hybrid waves are observed in the separa-

trix regions.

Reconnection can produce strong and narrow density gradients in space at the separa-

trices that separate the inflow region from the outflow region. These density gradients

lead to the generation of LHDWs which can have significant effects on magnetic recon-

nection. First, they can affect reconnection through the anomalous resistivity since they

were found to be able to generate anomalous collisions frequencies for electrons of the

order of ∼ 2π fLH [Silin et al. (2005)]. Secondly, LHDWs can have an impact on magnetic

reconnection through electron acceleration. In fact, the phase velocity of the LHDWs along

the magnetic field is comparable to the electron thermal velocity. That enables the LHDWs
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to resonate with thermal electrons and thus efficiently accelerate them.

One important question about reconnection is to understand the parallel electric fields dis-

tributions near the reconnection site. The presence of these parallel electric fields allows

the magnetic field-line topology changes associated with magnetic reconnection. One pos-

sible source of these parallel electric fields can be the electrostatic solitary waves which

have been commonly observed near the reconnection sites [Deng et al. (2004b)]. It has

been shown by observations that the strongest emissions of Electrostatic Solitary Waves

(ESWs) are observed along the separatrices [Cattell et al. (2005); Farrell et al. (2002); Vaivads

et al. (2004)].

Whistler waves are a perfect tool for the remote sensing of reconnection sites since they

can propagate over large distances from reconnection sites without appreciable damping.

Whistler waves can be also a signature of open magnetic field lines, and thus of ongoing

magnetic reconnection as discussed in this Chapter.

4.6. SUMMARY AND CONCLUSIONS

In summary, we have studied the properties of waves associated with a reconnecting cur-

rent sheet resulting from the interaction between two distinguishable flux tubes. We showed

observations of two types of whistler waves on both sides of the current sheet. The first

whistler wave was associated with electrostatic solitary waves (ESWs) as evidenced by spiky

and bipolar signatures of the parallel electric field E∥. The second whistler wave was not as-

sociated with any structure in the parallel electric field. They were moving in the direction

of the magnetic field. We showed that the whistlers were not generated locally but away

from the current sheet by electron beam instability. The density gradient resulting from

the interaction between the two flux tubes led to the generation of a diamagnetic current

density which was carried by the ion pressure gradient and led also to the generation of

lower hybrid drift waves that were observed at the center of the current sheet. We deter-

mined the properties of the LHDWs using single spacecraft method that was proposed by

Norgren et al. (2012) and found that they were propagating in the direction of the electric

drift speed at the perpendicular ion velocity.
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5
SUMMARY AND CONCLUSIONS

5.1. SUMMARY OF RESULTS

Through the course of my thesis I have aimed to obtain a better understanding of mag-

netic reconnection signatures at the Earth’s magnetopause based on in-situ observations

of particles and fields from the MMS spacecraft. In Chapter 3, I investigated an event ob-

served in the vicinity of the Earth’s magnetopause on November 7, 2015. The event was

characterized by a peak in the magnetic field amplitude and a bipolar signature on one

of the magnetic field components, as it is typical for Flux Transfer Events. However, the

bipolar signature was not observed in the component normal to the magnetopause, but

rather in a direction almost perpendicular to the magnetopause normal. The particularity

of this event laid in a very thin and localized current sheet and a small-scale, fast ion jet

near the peak of the large scale magnetic field. The pitch-angle distribution of electrons

revealed that two different regions were separated by the current sheet, also emphasized

by clearly distinct densities. All these features suggested that this event could not be con-

sidered as the traversal of a single homogeneous structure. The observations were inter-

preted as being the result of a complex three-dimensional interaction of two separate sets

of magnetic field lines with different connectivities which conspired to produce signatures

partially consistent with that of a flux transfer event. Although similar 3D scenarios have
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been previously proposed by e.g. Louarn et al. (2004) and Cardoso et al. (2013) using data

from the CLUSTER mission, only the tremendous resolution of MMS data could resolve

the interfacing thin current sheet, showing that it was possibly reconnecting and that the

reconnection was driven by the compression of the two distinct sets of open field lines.

This interpretation was partially supported by the Walén test which predicted an ion jet

but with an amplitude much larger than the amplitude of the observed jet. We suggested

that this appeared to be related to the proximity to the X-line [Phan et al. (2016)] so that the

ion outflow had not yet reached its full speed and is not yet accelerated to the local Alfvén

speed. Additionally, the jet thickness was also estimated to be about 0.8-1.3 times the ion

skin depth (λi ). Such a thickness implies that the spacecraft were very close to the X-line

(5−8λi ), which is consistent with an early-stage ion jet and thus with the over-estimation

of the ion speed from the Walén test. We also showed that ions were decoupled from the

magnetic field at the center of the structure while the electron were still frozen-in, which

demonstrates that the spacecraft crossed the ion diffusion region. Finally, the energy dis-

sipation quantified by J ·E ′ was positive and significantly different from zero during the

current sheet crossing which is consistent with reconnection dissipation region. All these

observations were therefore consistent with the current sheet undergoing reconnection at

the interface between the two flux tubes of very different orientations (73° magnetic shear

angle).

Further analysis (Chapter 3, section 3.6.2) highlighted that the current sheet had a partic-

ular geometry. The main current was perpendicular to the ion jet direction. The second

component of the current density exhibited a bipolar signature and was close to the ion jet

direction. The spatial scale of the entire current structure was about 3 to 4 times the Lar-

mor radius of protons at the time of the current sheet encounter. However, the structure

possessed smaller scale sub-structures, smaller than the ion Larmor radius. The current

sheet allowed the changes in the magnetic field at the center of the event and was mainly

carried by electrons.

The event discussed above occurred during the passage of a magnetic cloud at the Earth

and under low Alfvén Mach number regime. The By and Bz components of the interplan-

etary magnetic field were significantly negative during several hours before the event ob-

servation and led to a continuously enhanced solar wind-magnetosphere coupling. Mag-
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netic reconnection was expected to occur in the southern hemisphere dawn side according

to the IMF orientation. Such conditions corroborate the thick boundary layers encoun-

tered by the spacecraft during almost one hour while moving from the magnetosheath into

the magnetosphere. Although the boundary layer showed a complex structure as expected

from the pronounced variations in solar wind parameters, we showed that it could be di-

vided into three major subregions. One of these subregions was characterized by enhanced

and diverted flows as compared to the pristine magnetosheath and was identified as an

outer LLBL. The second flux tubes was characterized by electron, ion and He++ fluxes typ-

ical of the outer LLBL. Also, the magnetic field orientation was similar to the that found in

the first outer LLBL. It may be therefore important to understand the different contexts in

which such events may occur.

We complete our study with a plasma waves analysis (see Chapter 4) that focus on the re-

connecting current sheet. We evidence the presence of two types of whistler waves on both

sides of the current sheet. The first whistler wave was associated with spiky and bipolar

signatures of the parallel electric field. The second whistler wave, however, was not associ-

ated with any structure in the parallel electric field. The whistler waves were propagating

in the direction of the magnetic field. We also showed that the density gradient resulting

from the interaction between the two flux tubes led to the generation of a diamagnetic

current density carried by the ion pressure gradient and led also to the generation of elec-

trostatic lower hybrid drift waves (LHDWs) that were observed at the center of the current

sheet. The LHDWs were propagating at the perpendicular ion velocity, in the direction of

the E ×B drift.

Given the particularity of the whole event described here, we looked for similar events in

MMS data between September 1, 2015 and November 30, 2016. This study was initiated

at the Space and Astronautical Science (ISAS) with Hiroshi Hasegawa and showed that al-

though such events are not common they are also not too unusual (a dozen of events for

the time interval considered were identified).
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5.2. OUTLOOK ON POSSIBLE DEVELOPMENTS

The research presented in my thesis, although started from a case study, illustrated the

need of introducing new categories in the classification of magnetosheath events. I will

conclude this dissertation with a brief summary of some perspectives for future work.

The suggestions presented here are based on a statistical analysis of events observed by the

MMS spacecraft between September 1, 2015 and November 30, 2016, all presenting similar

features to the one discussed in detail. Namely, those characterizing features are:

• a magnetic field intensity peak,

• a total pressure peak.

An overall division into two categories was performed then by analysing the magnetic field

component BN , that is the one normal to the magnetopause frame as calculated using the

Shue model [Shue et al. (1997)]. All those possessing a bipolar BN signature were recog-

nized as "proper" flux transfer events. Among the remaining events, a new category was

defined based on the similarities with the event analyzed in this manuscript, namely:

• The presence of a localized and isolated current sheet near the center of the event,

• The difference of magnetic connectivity on each side of the current sheet.

The events in the latter category were considered as being possibly the result of the three-

dimensional interaction between two distinguishable structures such as flux tubes, flux

ropes or magnetic islands.

Since the event discussed in Chapter 3 occurred under unusual and extreme solar wind

conditions and a continuously enhanced solar wind-magnetosphere coupling, it may there-

fore be important to put forward this statistical analysis and to study possible correlations

with solar wind parameters in order to identify the conditions that may lead to similar

events. This may help verifying if this kind of interactions can be generated only in ex-

tremely and continuously perturbed solar wind-magnetosphere coupling where magnetic

reconnection is expected to occur at different locations, leading to significant flows at the

magnetopause and generating complex magnetic structures. Another important point is

to compare the properties of such events with those of classical FTEs such as their scale,
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duration, propagation and location at the magnetopause. Another area which could be

developed is the study of current sheet geometry with respect to the local flows and mag-

netopause and to the IMF orientation as well. The study of plasma waves associated to

these events would be also helpful to understand the role they play during the interaction

of the flux tubes and during magnetic reconnection at the current sheet.

5.3. A WIDER PERSPECTIVE ON THIS WORK

After having taken into account the immediate possible developments of my work, I would

like to put forward some more general considerations, taking a wider perspective on flux

tubes dynamics within magnetized plasmas.

First and foremost, I recall that magnetic flux tubes like the ones studied in this thesis are

widely diffused structures. For this reason, all sufficiently detailed understandings of the

dynamical evolution of both this environment cannot neglect to take into account the evo-

lution of flux tubes, especially through reconnection. While efforts in this direction have

already been made, notably by Borovsky (2008), the state of the art cannot be deemed com-

plete.

Yet, we recall that solar wind magnetopause modelling is of fundamental importance to

space weather forecasting which may help to predict conditions of the Earth’s magneto-

sphere based on solar wind measurements. Such predictions find multiple practical ap-

plications, mostly regarding the protection of people and machinery possibly operating

under showers of energetic magnetospheric particles (aircraft personnel, astronauts, arti-

ficial satellites).

Solar wind and magnetopause are not only characterized at large scale by the presence

of evolving flux tubes, on the contrary, these environment seem to develop such struc-

tures through extremely different scales and under a variety of local conditions. In partic-

ular, small scale flux tubes characterize all processes of plasma turbulence, a phenomenon

active on many lengths through space environments. The event discussed in Chapter 3

showed evidences of three-dimensional reconnection under enhanced solar wind-magnetosphere

coupling, occurring between two flux tubes resulting from independent magnetic recon-

nections at large-scale. However, similar merging phenomena seem to be a rather general

feature of magnetized plasma dynamics, for example following the formation of large num-
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bers of thin current sheets between the small-scale flux tubes present in turbulent condi-

tions. Evidence of such dynamics, occurring in a fashion that is in many ways analogue to

that of the event discussed throughout all this work has been presented for instance by Ret-

inò et al. (2007) and Phan et al. (2018). In particular, Retinò et al. (2007) showed for the first

time in situ evidence of magnetic reconnection at a thin current sheet with a width of a few

ion inertial lengths using Cluster data. More recently, Phan et al. (2018) reported observa-

tions of plasma jetting associated with magnetic reconnection at even smaller structures,

an electron-scale current sheet in the turbulent magnetosheath region of the Earth using

MMS data. Even though it seems that magnetic reconnection at ion-scale and electron-

scale current sheets differs from that of large-scale ones (in particular, failing to develop the

structured pattern observed at MHD scales), the overall magnetic field dynamics is compa-

rable under many aspects to the one clarified through the previous sections of this thesis.

Concluding, the Earth’s magnetosphere is the only place where direct, small scale in-situ

measurements of magnetic reconnection between flux tubes can be conducted at the mo-

ment, due to technical constraints. And only the understanding of such phenomenon as

clarified by studies at the Earth’s magnetosphere can allow us to shed full light on magnetic

reconnection processes in astrophysical systems where such high-resolution observations

are not possible.
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A
RÉSUMÉ ET CONCLUSIONS

A.1. RÉSUMÉ DES RÉSULTATS

Au cours de ma thèse, j’ai cherché à obtenir une meilleure compréhension de la recon-

nexion magnétique observée à la magnétopause de la Terre à partir des mesures in-situ

de particules et de champs électromagnétiques provenant de la mission MMS comme cela

est rapporté dans le Chapitre 3. Je me suis focalisée sur un événement atypique observé

au voisinage de la magnétopause terrestre le 7 novembre 2015. L’événement caractérisé

par un pic d’amplitude du champ magnétique et par une signature bipolaire sur l’une des

composantes du champ magnétique ressemble à première vue à un événement à transfert

de flux. Cependant, la signature bipolaire n’a pas été observée sur la composante normale

à la magnétopause, mais plutôt dans une direction presque perpendiculaire à celle-ci. Une

autre particularité de cet événement réside dans l’existence d’une couche de courant très

fine et localisée et un jet d’ions rapides observés autour du pic dans l’intensité du champ

magnétique. La distribution en angle d’attaque des électrons montre l’existence de deux

régimes de plasma distincts séparés par une couche de courant. Toutes ces caractéristiques

ont suggéré que cet événement ne pouvait pas être considéré comme la traversée d’une

seule structure homogène. Les observations ont été interprétées comme étant le résultat

d’une interaction complexe de deux ensembles distincts de lignes de champ magnétique
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avec des connectivités magnétiques différentes qui ont produit des signatures partielle-

ment cohérentes avec celles d’un événement à transfert de flux. Bien que des scénarios

3D similaires aient été précédemment proposés par ex. Louarn et al. (2004) et Cardoso

et al. (2013) en utilisant les données de la mission CLUSTER, seule la très grande résolution

des données MMS a permis de résoudre la fine couche de courant qui assure l’interface.

L’étude a aussi montré que la couche de courant était compressée et était aussi le siège

d’un processus de reconnexion active. Cette interprétation a été partiellement corroborée

par le test de Walén qui a prédit un jet d’ions avec une amplitude beaucoup plus grande

que l’amplitude du jet observé. Nous avons suggéré que cela semblait être lié à la proxim-

ité de la X-line [Phan et al. (2016)], de sorte que le flux d’ions n’avait pas encore atteint

sa vitesse maximale et n’était pas encore accéléré à la vitesse d’Alfvén locale. De plus,

l’épaisseur du jet a également été estimée à environ 0.8-1.3 fois la longueur d’inertie des

ions (λi ). Une telle épaisseur suggère que le satellite était très proche de la X-line (5−8λi ),

ce qui est cohérent avec le début d’un jet d’ions et donc avec la surestimation de la vitesse

ionique du test de Walén. Nous avons également montré que les ions étaient découplés

du champ magnétique au centre de la structure alors que les électrons étaient toujours

gelés, ce qui démontre que les satellites ont probablement traversé la région de diffusion

des ions. J’ai montré que de l’énergie magnétique était efficacement dissipée dans cette

couche de courant. L’ensemble de ces observations est donc cohérent avec l’interprétation

d’une couche de courant en cours de reconnexion et constituant l’interface entre les deux

tubes de flux d’orientations très différentes (angle de cisaillement magnétique de 73°).

L’analyse plus approfondie (chapitre 3, section 3.6.2) a aussi mis en évidence que la couche

de courant avait une géométrie particulière. Le courant principal était perpendiculaire à la

direction du jet d’ions. La deuxième composante de la densité de courant présentait une

signature bipolaire et était proche de la direction du jet d’ions. La taille de l’ensemble de

la structure actuelle était d’environ 3 à 4 fois le rayon de Larmor des protons au moment

de l’observation la couche de courant. En outre, la structure possédait des sous-structures,

plus petites que le rayon de Larmor ionique. La couche de courant assurant la rotation du

champ magnétique entre les deux tubes de flux s’est révélée être principalement portée par

des électrons.

L’événement discuté ci-dessus s’est produit pendant le passage d’un nuage magnétique à
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la Terre et sous un faible Mach Alfvénique. Les composantes By et Bz du champ magné-

tique interplanétaire étaient significativement négatives pendant plusieurs heures avant

l’observation de l’événement. Ce dernier a donc pris place pendant une longue période

de couplage fort et continu entre le vent solaire et la magnétosphère. De telles conditions

permettent d’expliquer l’épaisseur importante des couches de transition traversées par les

satellites pendant près d’une heure en se déplaçant de la magnétogaine vers la magné-

tosphère. Bien que la couche intermédiaire ait montré une structure complexe, j’ai montré

qu’elle pouvait être divisée en trois sous-régions principales.

Cette étude a été étendue à l’analyse des ondes dans le plasma (voir Chapitre 4) au voisi-

nage et dans la couche de courant. J’ai démontré la présence de deux types d’ondes de

mode sifflement des deux cotés de la couche de courant. La première onde était asso-

ciée à des signatures en pic et bipolaires du champ électrique parallèle. Le second paquet

d’ondes, cependant, n’était associé à aucune structure dans le champ électrique parallèle.

Les ondes de mode sifflement se propageaient dans le sens du champ magnétique. Nous

avons également montré que le gradient de densité résultant de l’interaction entre les deux

tubes de flux a conduit à la création d’une densité de courant diamagnétique portée par le

gradient de pression ionique et à la génération d’ondes de dérive hybrides électrostatiques

(LHDWs) observées au centre de la couche de courant. Les LHDWs se propageaient à la

vitesse ionique perpendiculaire, dans le sens de la dérive E ×B .

Compte tenu de la particularité de l’ensemble de l’événement décrit ci-dessus, nous avons

recherché des événements similaires dans les données MMS entre le 1er septembre 2015 et

le 30 novembre 2016. Cette étude a été initiée à la Science spatiale et astronautique (ISAS)

avec Hiroshi Hasegawa et a montré que les événements ne sont pas communs, sans être

inhabituels non plus (une douzaine d’événements pour l’intervalle de temps considéré ont

été identifiés).

A.2. PERSPECTIVES SUR LES DÉVELOPPEMENTS POSSIBLES

La recherche présentée dans ma thèse, bien que commencée à partir d’une étude de cas,

a illustré la nécessité d’introduire de nouvelles catégories dans la classification des événe-

ments au niveau de la magnétopause. Je conclurai cette thèse par un bref énoncé de quelques

perspectives pour les travaux futurs.
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Les suggestions présentées ici sont basées sur une analyse statistique des événements ob-

servés par MMS entre le 1er septembre 2015 et le 30 novembre 2016, présentant lees carac-

téristiques suivantes:

• un pic dans l’intensité du champ magnétique,

• un pic dans la pression totale.

Une division globale en deux catégories a été réalisée puis en analysant la composante de

champ magnétique BN , c’est-à-dire la normale à la magnétopause calculée en utilisant le

modèle de Shue [Shue et al. (1997)]. Tous les cas qui possédaient une signature bipolaire

BN ont été reconnus comme des événements de transfert de flux classiques. Parmi les

événements restants, une nouvelle catégorie a été définie sur la base des similitudes avec

l’événement analysé dans ce manuscrit, à savoir:

• La présence d’une couche de courant localisée et isolée près du centre de l’événement,

• Une différence de connectivité magnétique de chaque coté de la couche de courant.

Les événements de cette dernière catégorie ont été considérés comme étant probablement

le résultat de l’interaction entre deux structures distinctes telles que des tubes de flux, des

cordes de flux ou des ilôts magnétiques.

Puisque l’événement discuté dans le chapitre 3 s’est produit sous des conditions prolongées

de couplage renforcé entre le vent solaire et la magnétosphère, il peut être important de

continuer cette analyse statistique et d’étudier les corrélations possibles avec les paramètres

du vent solaire afin d’identifier les conditions pouvant conduire à des événements simi-

laires. Un autre point important est de comparer les propriétés de tels événements avec

celles des FTEs classiques tels que leur taille, leur durée, leur propagation et leur localisa-

tion à la magnétopause. Un autre domaine qui pourrait être développé est l’étude de la

géométrie de la couche de courant en ce qui concerne les flux locaux et la magnétopause

ainsi que l’orientation du champ magnétique interplanétaire. L’étude des ondes de plasma

associées à ces événements est à approfondir pour comprendre le rôle qu’elles jouent dans

la reconnexion magnétique au sein de la couche de courant.
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A.3. PERSPECTIVES PLUS LARGES

Après avoir pris en compte les développements immédiats possibles de mon travail, je

voudrais avancer quelques considérations plus générales, en prenant une perspective plus

large sur la dynamique des tubes de flux dans les plasmas magnétisés.

Tout d’abord, rappelons que les tubes de flux magnétiques comme ceux étudiés dans cette

thèse sont des structures largement répandues. Pour cette raison, toutes les interprétations

suffisamment détaillées de l’évolution dynamique de l’environnement ne peuvent négliger

de prendre en compte l’évolution des tubes de flux, notamment à travers la reconnexion.

Le vent solaire et la magnétopause ne sont pas caractérisés par la présence de tubes de

flux évolutifs seulement à grande échelle, mais au contraire, ces environnements sem-

blent développer de telles structures à des échelles extrêmement différentes et dans des

conditions locales variées. En particulier, les tubes de flux à petite échelle caractérisent

le processus de turbulence du plasma, un phénomène actif sur de nombreuses échelles

dans les environnements spatiaux. L’événement discuté dans le chapitre 3 a montré des

preuves de reconnexion tridimensionnelle sous un couplage vent-magnétosphère solaire

intense, se produisant entre deux tubes de flux résultant de reconnexions magnétiques

indépendantes de grande taille. Cependant, des phénomènes de reconnexion similaires

semblent être une caractéristique universelle de la dynamique des plasmas magnétisés,

comme par exemple suite à la formation d’un grand nombre de fines couches de courant

entre les tubes de flux de petite taille présents dans des conditions turbulentes. L’évidence

de telles dynamiques, se produisant d’une manière qui est analogue à celle de l’événement

discuté dans ce manuscrit, a été présentée par exemple par Retinò et al. (2007) et Phan

et al. (2018). En particulier, Retinò et al. (2007) a montré pour la première fois une preuve

de reconnexion magnétique au niveau d’ une fine couche de courant avec une largeur de

quelques longueurs d’inertie ionique en utilisant les données mesurées in-situ par Cluster.

Plus récemment, Phan et al. (2018) a rapporté des observations de jets de plasma asso-

ciés à une reconnexion magnétique dans des structures encore plus petites, une couche de

courant de taille électronique dans la région de la magnétogaine turbulente de la Terre en

utilisant des données MMS. Même s’il semble que la reconnexion magnétique à l’échelle

ionique et à l’échelle électronique diffère de celle à grande échelle (en particulier, en ne

développant pas le schéma structuré observé aux échelles MHD), la dynamique globale du
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champ magnétique a des aspects comparables à celui clarifié à travers les parties précé-

dentes de cette thèse.

En conclusion, la magnétosphère terrestre est le seul endroit où des mesures directes in-

situ à petite échelle de la reconnexion magnétique entre les tubes de flux peuvent être réal-

isées pour le moment, en raison de contraintes techniques. Et seule la compréhension

d’un phénomène basé sur des études des observations dans la magnétosphère terrestre

peut nous permettre d’éclaircir le processus de reconnexion magnétique dans les systèmes

astrophysiques où de telles observations à haute résolution ne sont pas possibles.
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LIST OF ABBREVIATIONS

ACE Advanced Composition Explorer

ADP Axial Double Probe

AFG Analog Fluxgate Magnetometer

ASIC Application Specific Integrated Circuit

CIDP Central Instrument Data Processor

DFG Digital Fluxgate Magnetometer

DIS Dual Ion Sensors

DST Disturbance Storm Time

EDI Electron Drift Instrument

EDR Electron Diffusion Region

EPD Energetic particles

ESW Electrostatic Solitary Wave

FFT Fast Fourier Transform

FPI Fast Plasma Investigation

HEO Highly Elliptical Orbit

HPCA Hot Plasma Composition

IDR Ion Diffusion Region

ILLBL Inner Low Latitude Boundary Layer
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IMF Interplanetary Magnetic Field

IMF Interplanetray Magnetic Field

LHDW Lower Hybrid Drift Waves

LLBL Low Latitude Boudnary Layer

LLBL The Low Latitude Boundary Layer

MCPs Micro Channel Plates

MFA Magnetic Field-Aligned

MSBL Magnetosheath Boudnary Layer

MSBL Magnetosheath Boundary Layer

MSBL The Magnetosheath Boundary Layer

MSH Magnetosheath

MSP Magnetosphere

MVA Minimum Variance Analysis

MXR Multiple X-line reconnection

OLLBL Outer Low Latitude Boundary Layer

PCS Propagating Structure Frame

RF Radiofrequency

RH Right-Handed

ROI Region Of Interest

SCM Search Coil Magnetometer

SDP Spin-plane Double Probe

SITL Scientists-In-The-Loop
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SOC Science Operation System

SXR Single X-line reconnection

TOF Time-of-fligth

WHAMP Waves in Homogeneous Anisotropic Multicomponent Magnetized Plasma
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Abstract The occurrence of spatially and temporally variable reconnection at the Earth’s magnetopause
leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux
transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced
core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to
the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However,
other geometrical configurations which do not fit this classical picture have also been observed. Using
high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the
vicinity of the Earth’s magnetopause on 7 November 2015. Despite signatures that, at first glance, appear
consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological
signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent
with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction
of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional
interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also
show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a
thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux
dissipation through magnetic reconnection in the interaction region.

1. Introduction

Magnetic reconnection is a ubiquitous and fundamental process in space plasma physics. When the interpla-
netary magnetic field (IMF) is directed southward, magnetic reconnection occurs at the Earth’s dayside mag-
netopause current sheet and in the magnetotail current sheet as a result of the interaction between the solar
wind and the Earth’s magnetic field lines. Magnetic reconnection plays a major role in magnetospheric
dynamics (Dungey, 1961). It governs the transport of energy, momentum, and plasma from the solar wind
into the Earth’s magnetosphere (Biernat, 1991; Dungey, 1961; Eastwood et al., 2013; Lemaire & Roth, 1978).
Indeed, magnetic reconnection is associated with the conversion of magnetic energy into kinetic and ther-
mal energies after a rearrangement of magnetic field lines. Despite numerous studies on this subject, many
aspects about magnetic reconnection remain unclear, in particular, due to the limited temporal resolution of
instruments aboard past missions such as Time History of Events and Macroscale Interactions during
Substorms (Angelopoulos, 2008) and Cluster (Escoubet et al., 2001). The Magnetospheric Multiscale
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mission (MMS) (Burch et al., 2016) was launched on 12 March 2015. Its prime goal is the understanding of the
microphysics of magnetic reconnection (Burch & Phan, 2016). For that purpose, MMS is designed to provide
unprecedented time resolution and measurement accuracy, which make the study of microscopic structures
possible. The mission has allowed detailed studies of the electron diffusion region of magnetic reconnection,
that is, the smallest-scale region where even the electron motion decouples from the magnetic field (Burch
et al., 2016).

Complex magnetic structures can form at the magnetopause as a result of magnetic reconnection. Bursty
and/or patchy magnetic reconnection may lead to the formation of flux transfer events (FTEs) on the dayside
magnetopause (Hasegawa et al., 2006; Russell & Elphic, 1978, 1979). The two prime signatures of FTEs
observed in situ are (1) an enhancement in the magnetic field magnitude and (2) a bipolar signature in the
component of the magnetic field normal to the magnetopause. A mixture of magnetosheath and magneto-
spheric ion and electron populations is often detected within FTEs (Le et al., 1999). FTEs have been studied
using simulations (Daum et al., 2008; Fedder et al., 2002; Raeder, 2006), laboratory experiments (e.g.,
Egedal et al., 2007; Fox et al., 2017; Stenzel & Gekelman, 1979; Yamada, 1999), ground measurements
(Lockwood, Fazakerley, et al., 2001; Lockwood, Opgenoorth, et al., 2001; Wild et al., 2001), andmultispacecraft
missions as Cluster (e.g., Fear et al., 2005; Hasegawa et al., 2006; Roux et al., 2015; Sönnerup et al., 2004), Time
History of Events and Macroscale Interactions during Substorms (Fear et al., 2009; Silveira et al., 2012), and
now MMS (Farrugia et al., 2016; Hwang et al., 2016). FTE models can essentially be classified into three types
of models: elbow-shaped flux rope model (Russell & Elphic, 1978), multiple X-line model (Lee & Fu, 1985), and
single X-line model (Fear et al., 2008; Scholer, 1988; Southwood et al., 1988). The properties and structure of
FTEs have been the subject of many studies (e.g., Fear et al., 2008, 2017; Scholer, 1988; Southwood
et al., 1988).

Multispacecraft missions have advanced the understanding of FTEs shape, motion, and extent (e.g., Fear
et al., 2009; Trenchi et al., 2016). However, despite the abundance of FTE observations, their formation
mechanism is not fully understood yet. More studies are still needed to better understand the detailed struc-
ture of FTEs and to link the observed properties to those at the formation site. The magnetic field topology
within FTEs and their 3-D magnetic structure have also not been completely elucidated. Aside from large-
scale FTEs often observed at the magnetopause, small-scale perturbations with magnetic signatures akin
to those of FTEs might indicate the existence of very localized magnetic island structures (Hesse et al.,
1990). Such magnetic islands may also be generated by multiple X-line reconnection (Pu et al., 2013;
Zhong et al., 2013) (i.e., between two X-lines created sequentially on the magnetopause) or at a single X-line
owing to rapid variations of the reconnection rate (Huang et al., 2014). Their typical signatures are an
enhancement of the total magnetic field strength and a magnetic bipolar signature (Teh et al., 2010). In addi-
tion, plasma density dips have been reported at their center (Zhou et al., 2014). The core region is bounded by
an electric current loop mainly carried by electrons (Zhou et al., 2014). The coalescence of magnetic islands,
which corresponds to the merging of two islands into a larger one, has been observed in simulations (Drake
et al., 2006; Huang et al., 2014; Oka et al., 2010; Zhou et al., 2014). Series of magnetic islands at the magneto-
pause have been reported (Eastwood et al., 2007; Song et al., 2012; Teh et al., 2010). During the coalescence of
magnetic islands, a secondary magnetic reconnection process occurs at the interface of the two islands
(Pritchett, 2008). The compression associated with the coalescence leads to the formation of localized current
sheets. Øieroset et al. (2016) reported MMS observations of magnetic reconnection in a compressed current
sheet between colliding jets at the center of a flux rope. Those observations were quite similar to the one that
will be further discussed in the present paper. In their paper, they concluded that the reconnection observed
at the thin current sheet inside the flux rope was not consistent with coalescence of two flux ropes. Instead,
they suggested that reconnection was 3-D such that field lines did not form closed loops. Observations of
magnetic flux ropes flanked by two X-lines between two converging jets were first reported by Hasegawa
et al. (2010) and Øieroset et al. (2011).

The direct observation of complex 3-D magnetic structures resulting frommultiple X-line reconnection at the
magnetopause have been also reported (e.g., Øieroset et al., 2011; Pu et al., 2013; Zhong et al., 2013). Multiple
X line magnetic reconnection occurs when magnetic reconnection takes place along several X-lines at the
magnetopause. The model by Lee and Fu (1985) explains the complex geometrical properties of FTEs. The
occurrence of reconnection at multiple sites may imply reconfigurations of the magnetic field into a complex
3-Dmagnetic topology. This may thus create complex 3-D structures such as FTEs or other structures, some of
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which have been interpreted as interlaced magnetic flux tubes (Cardoso et al., 2013; Louarn et al., 2004). For
example, Zhong et al. (2013) showed that both open and closed field lines can coexist inside the central
region of the FTE flux ropes. They considered this observation as a characteristic feature of 3-D
reconnected magnetic flux ropes resulting from multiple, sequential X-line reconnection. In this model,
FTEs are generated by multiple X-line reconnection where new X-lines form sequentially. Furthermore, in
Pu et al. (2013), electron energy-pitch angle distributions were used to infer the magnetic topology of field
lines within an FTE. They found that the FTE was composed of flux ropes of four different magnetic
topologies which indicates that the field lines must have reconnected multiple times. The coexistence of
four different magnetic topologies was interpreted as the distinguishing feature of intrinsically 3-D
multiple X-line reconnection.

In this paper, we analyze an event which looks like a typical FTE at first sight. After detailed analysis, we inter-
pret the event as a current sheet resulting from the interaction of two converging and interlaced flux tubes. A
similar interpretation has been suggested by Louarn et al. (2004) based on Cluster observations for an event
that was observed on 30 June 2001, around 05:30 UT. They suggested a complex 3-D topology resulting from
the interlinking of two magnetic flux tubes produced by two separate magnetic reconnection sites. They
showed that the core fields of the two interacting and converging flux tubes had distinct orientations. The
detailed interaction between the two flux tubes was not completely understood, however, owing to the lim-
ited time resolution of Cluster instrumentation. For the event considered in this paper, we show evidence for
magnetic reconnection at the thin current sheet separating the two flux tubes, which was not observed for
the event of Louarn et al. (2004).

We use the measurements from MMS spacecraft to study an event that was observed on 7 November 2015.
We use ion and electron data from the Fast Plasma Investigation (FPI) instrument (Pollock et al., 2016), ion
composition data from Hot Plasma Composition Analyzer (Young et al., 2016), and magnetic field from the

Figure 1. Solar wind conditions from the OMNI 1 min resolution database from 6 November 2015 00:00 UT through
9 November 2015 12:00 UT. (a) Interplanetary magnetic field components in GSE coordinates. (b) Disturbance storm time
index. Solar wind conditions during 08:00–20:00 UT on 7 November 2015. (c) Interplanetary magnetic field components
in GSE coordinates, (d) solar wind dynamic ram pressure, and (e) Alfvén Mach number.
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fluxgate magnetometer (FGM) (Russell et al., 2016; Torbert et al., 2016).
We first discuss whether the event can be considered as an FTE or not.
The structure of a thin current sheet encountered by MMS in the center
of the event is analyzed in details. We interpret the presence of this cur-
rent sheet inside the event as a result of the collision of two converging
flux tubes.

2. Context

Figure 1a shows the IMF from OMNI (King & Papitashvili, 2005) data over
a few days surrounding the event. The period of interest, centered
around 14:00 UT on 7 November 2015, occurred during the passage of
a magnetic cloud at Earth. The magnetic cloud speed led to the forma-
tion of a shock in the solar wind, observed at 18:13 UT on 6 November,
followed by a corresponding sheath, which lasted until ~8:00 UT on 7
November. Figures 1c–1e show the magnetic field, dynamic pressure,
and Alfvén Mach number zoomed in around the time of interest, during
the first part of the magnetic cloud when its magnetic field had strong
southward and dawnward components. The MMS event that was
observed around 14:00 UT on 7 November, occurred during a period
of both strong driving of the magnetosphere (Dst = �69 nT, kp = 4)
and low Alfvén Mach number (<3). Under these conditions, solar
wind-magnetosphere interaction is expected to be altered affecting in
particular the flows in the magnetosheath uncommonly enhanced and
distributed, the magnetopause shape, and magnetic reconnection fac-
tors (see Lavraud & Borovsky, 2008).

Around 14:00 UT on 7 November (third dashed line in Figure 3), theMMS
spacecraft were located in the dusk sector near the magnetopause. As illustrated in Figure 2, their barycenter
was located at (8.6, 6.2, �0.9) RE in GSE coordinates. Separated by about 10 km, they were in a good tetrahe-
dron configuration with a quality factor of 0.84 (Fuselier et al., 2016), which is suited for applying multipoint
spacecraft methods (Dunlop & Woodward, 1998) as used in this study.

Two hours of MMS survey data are presented in Figure 3. Panels (a) to (g) show, respectively, in GSE coordi-
nates, the magnetic field components and total field strength, the electron and ion density, the ion velocity
components and amplitude, the electron, ion, He2+, and O+ energy spectrograms. Initially, the spacecraft
were located in the magnetosheath, as shown in the ion and electron spectrograms typical of the magne-
tosheath, high plasma number densities, and the abundance of He2+ and the absence of O+ ion fluxes.
After 14:28 UT, the spacecraft were inside the magnetosphere characterized by a positive and dominant
BZ, low number densities, and weak flows, as well as high fluxes of observed energetic electrons, protons,
and oxygen ions. Conversely, the He2+ fluxes were weak.

Around 13:28 UT, the data show a partial crossing of the magnetopause, as indicated by variable BZ compo-
nent and flows. We suspect that the sudden magnetopause crossing (i.e., magnetopause expansion) was
produced by the arrival of the solar wind discontinuity that separates a high Mach number solar wind from
low Mach number solar wind, as observed in the OMNI data around that time in Figure 1e. From then on, the
prevailing solar wind has a low Mach number. Soon thereafter (~13:35 UT) the spacecraft exited back into
the magnetosheath, as seen from the faster flows, similar to the previous magnetosheath interval. This mag-
netosheath interval was characterized by a much lower density and included two very short incursions into
the magnetosphere. The main magnetopause crossing then occurred at 13:44:30 UT (second dashed line in
Figure 3). The boundary layer inside the magnetopause, hereafter called LLBL (for low-latitude boundary
layer), was observed from 13:44:30 UT to 14:00 UT. This LLBL interval was also very dynamic. This interval
is identified as the outer LLBL because it contains plasma accelerated through the magnetopause disconti-
nuity (marked by the magnetic field rotation), as evidenced by the enhanced and diverted flows as com-
pared to the pristine magnetosheath observed before 13:45 (cf. panels (a) and (c)). The spacecraft entered
more clearly into the magnetosphere around ~14:00 UT where a second magnetic field rotation occurred,

Figure 2. Magnetospheric Multiscale mission (MMS) orbit on 7 November
2015 and the normal to the magnetopause (green arrow) corresponding to
the spacecraft location in the ecliptic plane. The red line corresponds to
the crossing of a boundary layer.
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this time mainly in the BY component. We note that after this second current sheet the spacecraft did not
exit immediately into the pristine magnetosphere given the observation of low-energy magnetosheath
electrons between 14:00 and 14:05 UT, reminiscent of a kind of, or a more inner part of, the LLBL. The
true hot magnetospheric plasma was observed, for example, around 14:10 UT. The spacecraft exited back
into the main (outer) LLBL with enhanced flows and negative BY around ~14:12 UT just before the event
of interest, which was observed between 14:16:00 and 14:17:30 UT. The event time interval is indicated
with a yellow shaded area, bracketed by the red vertical lines. A strong peak in magnetic field magnitude
consists of the most spectacular feature and is visible in Figure 3a. Just after the event, the spacecraft
remain in the LLBL based on the presence of some low-energy magnetosheath electrons, but again likely
the more inner part of it given the measured low densities and the positive BY value. The spacecraft are
in the magnetosphere proper after around 14:28 UT (some middle-energy electrons are intermittently
observed after that time, but these are believed to be of ionospheric origin).

To summarize, we believe that two kinds of LLBL were present, as has been reported previously (e.g., Hasegawa
et al., 2003). The outer LLBL had a high density and showed enhanced |VZ| flows consistent with the passage
through the magnetopause current sheet, which is characterized by a rotation of the magnetic field (BZ
increase) as well. The inner LLBL had, on the other hand, a lower density and a magnetic field orientation more
consistent with the geomagnetic field observed in the pristine magnetosphere. The transition from the main
(outer) LLBL to the inner LLBL also corresponded to a current sheet responsible for the main rotation in BY.

3. Data Analysis
3.1. Large-Scale Structure

The crossing of themagnetopause and LLBL occurred between 13:44:30 UT and 14:00 UT. Themagnetopause
normal and associated LMN frame (Farrugia et al., 1988) were inferred by performing a variance analysis

Figure 3. Magnetic field (panel (a)) from fluxgate magnetometer, electron and ion densities (b), ion velocity (c), and
electron and ion spectrograms (d, e) provided by FPI, as well as He2+ (f) and O+ (g) spectrograms from Hot Plasma
Composition Analyzer from Magnetospheric Multiscale mission 1.
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(Sönnerup & Scheible, 1998) of the magnetic field data between
13:42:25 and 14:02:44 UT. The results are given in Table 1. The magneto-
pause normal vector (N = [0.84, 0.30, �0.44] in GSE) was relatively close
to the normal direction calculated from magnetopause models (e.g.,
[0.91, 0.41, �0.06] in GSE using the Shue et al., 1997 model). The L and
M vectors roughly pointed in the Z and �Y directions.

In Figures 4, 100 s of burst data measured by MMS 1 are presented.
Dashed lines labeled T0 to T5 delimit the different parts of the event that
clearly have different properties and correspond to times 14:16:04;
14:16:25; 14:16:40; 14:16:43; 14:16:58; and 14:17:04.5 UT, respectively.

The vector data are in GSE coordinates. The top panel (a) displays the magnetic field, the (b) panel the ion
thermal pressure (Pp), the magnetic pressure (Pm), and the total pressure (Pt = Pp + Pm). The (c) panel shows
the current density as inferred from the curlometer technique, and the (d) and (e) panels exhibit the ion velo-
city and the density of both ions and electrons. Electron data for the same interval are displayed in Figure 5.
The second panel in Figure 5 shows the omnidirectional energy flux of electrons, and the following three
panels ((c)–(e)) give the electron pitch angle distributions for three energy ranges: 98–127 eV, 451–575 eV,
and 3.3–11.5 keV. These energy bands are considered typical of thermal magnetosheath, accelerated magne-
tosheath, and magnetospheric electron populations, respectively (e.g., Pu et al., 2013; Zhong et al., 2013). The
top panel (a) displays the magnitude and BY component of the magnetic field for the sake of completeness.

Figure 4 shows that prior to T1 (14:16:25 UT), the spacecraft were in the
inner LLBL, where plasma densities were low and BZ was the main com-
ponent of the magnetic field. Then, between T1 and T5, the MMS space-
craft recorded large changes in all parameters. The most remarkable
features included peaks in the magnitudes of the magnetic field (by a
factor of ~ 1.7) and total pressure (~2.5), a strong bipolar signature in
the BY component (ΔBY ~ 80 nT) and a large (~300 km/s) flow directed
northward (VZ > 0) and eastward (VY > 0). At first glance, these large-
scale signatures are consistent with those of an FTE consisting of a flux
rope resulting from a reconnection process, which may have occurred
southward and dawnward of the spacecraft for the prevailing conditions
of IMF negative BZ and BY (see Figure 1).

This interpretation appears, however, inconsistent with several observa-
tional facts. (i) First, the bipolar signature was not observed in the
component normal to the magnetopause (mainly along XGSE), but
rather in a direction almost perpendicular (BYGSE) to the magnetopause
normal (see panel (a)). (ii) Second, there were a small-scale and fast
VY = 300 km/s ion jet (along YGSE) and an intense and thin current struc-
ture near the peak of the large scale magnetic field between T2 and T3
(panels (d), (c), and (a)). Such features do not fit the usual flux rope mod-
els of FTEs, although the presences of thin current sheets and reconnec-
tion have been reported in the literature (Øieroset et al., 2016). (iii) Third,
based on the pitch angle distribution of electrons, there were drastically
different regimes before and after the passage of this current structure
(last three panels in Figure 5). The characteristic features of the first
and second parts of the event were clearly different. The region
between T1 and T2 was first characterized by lower fluxes of antiparallel
accelerated magnetosheath electrons, while the parallel fluxes
remained unchanged with regard to the fluxes measured before T1
(panel (d)). On the other hand, the thermal magnetosheath electron
population tended to have larger fluxes, consistent with an increased
density (panel (c)). During this interval, MMS also observed a trapped
electron population (at 90° pitch angle) which appears in both the

Figure 4. An overview of Magnetospheric Multiscale mission 1 observations
between 14:15:45 and 14:17:20 UT in GSE coordinates on 7 November 2015.
(a) Magnetic field components and total field strength, (b) pressures
(red = plasma (ion), green = magnetic, and black = total), (c) current densi-
ty from curlometer technique, (d) ion velocity components, (e) electron
(black), and ion (red) densities. The black vertical dashed lines labeled T0 to
T5, correspond to times 14:16:04; 14:16:25; 14:16:40; 14:16:43; 14:16:58;
and 14:17:04.5 UT.

Table 1
Local Magnetopause Coordinate System Obtained From the Minimum
Variance Analysis of the Magnetic Field

Component L M N

xGSE 0.24 0.48 0.84
yGSE 0.53 �0.79 0.3
zGSE 0.81 0.37 �0.44

Note. λL/λM = 5.75; λL/λN = 18.64; λM/λN = 3.23.
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accelerated magnetosheath and magnetospheric energy ranges (panels (d) and (e)). By contrast, during the
second part of the event (between T3 and T4), this trapped population was not present anymore; there were
essentially no magnetospheric electrons. The accelerated magnetosheath electrons antiparallel flux was
larger than the parallel one (panel (d)). These strongly different features suggest that this sequence is not
the signature of a single homogenous structure like a flux rope (expected to be associated with FTEs). We
rather interpret the time sequence between T1 and T4 as successive crossings of two distinct flux tubes,
henceforth referred to as FTA (T1-T2) and FTB (T3-T4). Finally, the densities were also drastically different
between FTA and FTB (Figure 4e). In FTB, the electron/ion densities and the He2+ fluxes (Figure 2) had
values typical of the outer LLBL.

A complementary view is provided in Figure 6 that introduces our observations in the LMN frame. The com-
ponents of the magnetic field are shown in panels (a) to (d). The ion velocity components are provided in
panels (f) to (l), and the angle Ψ is shown in panel (e). Ψ is the angle between the magnetopause normal
and the magnetic field (Ψ = atan{(BL

2 + BM
2)1/2/|BN|}). Displaying the data in the LMN frame reveals two main

features at the scale of the whole event: (i) the magnetic changes in the LMN frame did not exhibit an FTE-like
bipolar signature, but rather a sharp rotation of the magnetic field through a thin current structure. The max-
imummagnetic field shear angle, corresponding to that across the central thin current sheet, was about 73°.
Before its passage, the magnetic field was progressively deformed throughout T0-T1-T2, as indicated by the
gradual changes in Ψ. When the spacecraft crossed the current structure, the Ψ angle recovered quickly its
initial value and, thereafter, both the L and N components of the magnetic field remained close to zero for
about 15 s, while the M component was strongly enhanced. (ii) The event was associated with a perpendicu-
lar ion flow in the +L direction, suggesting that reconnection occurred southward of the spacecraft.

A more detailed examination of the observations indicates that at the beginning of the period, before T0, the
magnetic field had an orientation tangential to the magnetopause, mainly in the L direction. TheΨ angle was
close to 90°. The ion flows were weak. At time T0, while all other parameters remained unchanged, the Ψ
angle (BN component) started to decrease (increase). This trend continued until T1 and indicates that the

Figure 5. Magnetospheric Multiscale mission 1 data between 14:15:45 and 14:17:20 UT of (a) BY and the magnetic
field strength in GSE coordinates; (b) electron energy spectrum. Electron pitch angle distribution in the range of
(c) 98–127 eV, (d) 451–751 eV, and (e) 3,304–11,551 eV.
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magnetic field underwent a large-scale deformation. This is interpreted
as the remote signature of a propagating process having started before
T0 and approaching closer to the spacecraft. During this period, the ion
flow remained constantly weak (ViL ~ � 50 km/s, ViM ~ � 25 km/s)
except for a small VN (also seen on the VXGSE component) peak ~5 s prior
to T1. This VN change consisted of a perpendicular flow and was nega-
tive indicating an inward motion of plasma. This one could be due to
a local retreat of the magnetopause. The time T1 marks the beginning
of the in situ detection of the event, corresponding to the entry into flux
tube FTA. Between T1 and T2, the BL component and the magnitude of
the magnetic field both increased. It was also the general trend for BN
while BM decreased to ~15 nT. When the spacecraft penetrated into
FTA (at T1), it first detected a ~3 s duration antiparallel ion flow that
reached a maximum value of 150 km/s along the L and N directions.
Then, when VL and VN returned to zero, the flow was mainly perpendi-
cular with a �VM component. From that time until T2 (14:16:40 UT),
the main component of the flow was �VM, suggesting a westward
motion of FTA.

Between T2 and T3, the magnetic field rapidly rotated. A localized ion jet
was detected at that time, as clearly seen on the VYGSE component in
Figure 4. This jet appeared in the L and M components in Figure 6. It
was thus directed in a direction tangential to the magnetopause and
oblique to the magnetic field as it includes both parallel and perpendi-
cular components. Comparison to the electric field data (not shown)
indicates that the ions were decoupled from the magnetic field during
the main current structure. Being along VM during a large rotation of
the BM component, this ion jet is consistent with expectations from
magnetic reconnection between FTA and FTB, as is discussed later.

Between T3 and T4, the flowwas essentially along the L direction and the
N and L components of magnetic field were close to zero.

Finally, between T4 and T5, the ion flow vanished gradually and the
magnetic field recovered its initial (before T0) orientation. The interface
marking the end of the event is not analyzed in further detail in
this paper.

3.2. Small-Scale Current Sheet

In order to infer the motion of the current structure relative to the space-
craft, we performed differential timing analysis using the BYGSE bipolar
transition, which constitutes the clearest change. This transition corre-
sponded to the crossing of a strong current structure. We identified
times when the four MMS spacecraft successively measured a set of
identical BY values, as illustrated in Figure 7 with the horizontal dashed
lines. Assuming that the structure is planar, we applied the multi-point
triangulation method (Harvey, 1998; Russell et al., 1983). For all identi-
fied times it provided a set of normal vectors NC and propagation speed
VP along the normal. The results showed that both NC and VP change
only slightly through the transition. From now on we thus use a normal
vectorNC = [�0.5456;�0.0308; 0.8375]GSE and a propagation velocity of
~67 km/s, which are obtained from averaging over the full set of values
shown in Table 2.

For inferring the geometry and the orientation of the current structure,
we performed the variance analysis of the current density measurement

Figure 6. (a) Magnetic field magnitude, (b)–(d) magnetic field components
in the magnetopause LMN frame, (e) angle Ψ between the magnetopause
normal and the magnetic field, (f)–(h) ion velocity components in the
magnetopause LMN frame, and (i) parallel (black) and perpendicular (red) ion
velocity in the GSE coordinates system. The black vertical dashed lines
labeled T0 to T5 are shown at the same times as in Figure 4.

Figure 7. BY component of the magnetic field in the GSE coordinates system
from the four Magnetospheric Multiscale mission spacecraft. The horizontal
dashed lines represents the several contours of different BY values that
were used to calculate their normal directions and propagation velocities.
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obtained with the curlometer technique (Robert et al., 1998) for the per-
iod 14:16:39–14:16:43 UT. The results given in Table 3 exhibit a strong
contrast between the eigenvalues and thus indicate that the current
structure was organized with respect to clearly defined principal axes.
The axis of maximal current (called thereafter “main current”) was direc-
ted in the (�X, �Z)GSE direction [�0.76, �0.20, �0.61]. The second prin-
cipal axis associated with a significant (λ1/λ2 ~2.8) current contribution
(called thereafter “secondary current”) was close to the YGSE direction
[0.03, �0.96, 0.28]. The third principal axis was associated with much
lower eigenvalue (λ2/λ3 ~15.43) with an almost null current component.
Its orientation [�0.65, 0.19, 0.74] was in the (�X, +Z)GSE direction and
was found to be close to the direction of NC found from the differential
timing analysis.

Both independent approaches (current variance analysis and triangula-
tion method) thus provided a consistent geometry of the current

structure. We then considered a new coordinate system referred thereafter as the PCS (Propagation
Current Structure) frame, which is illustrated in Figure 8. The PCS coordinate system is defined by the

vectors U
!

P , U
!

J; and U
!

V . The components of these unit vectors in the GSE frame are shown in Table 4.
The first unit vector [�0.6124; 0.0239; 0.7902]GSE is close to the propagation direction as well as the normal
direction of the current structure. The second axis is chosen to be a direction opposite to the main current
[0.7676;�0.2209; 0.6016]GSE and the last axis is defined using the unit vector of the ion jet which is also close
to the unit vector of the secondary current [0.1889; 0.9750; 0.1169]GSE (almost coinciding with YGSE). In order
to follow the current structure, the PCS frame is in translation relatively to the GSE one at a translation velocity
equal to the propagation velocity derived from the differential timing analysis.

The Figure 9 shows data coming from the FGM and FPI experiments on board MMS-1 for a 6 s period includ-
ing the current structure observation. The GSE coordinates of the current density (from curlometer techni-
que) are represented in panel (a). A correlation between JX and JZ is clearly visible and JY exhibits a bipolar
signature. As showed in panel (b) the current was mostly parallel to the magnetic field. In panel (c), the
magnitudes of the current density obtained from the curlometer technique Jcurl (FGM data) and the ones
directly computed from the particle measurement (FPI data) are compared. Ji (green) is the ion current, Je
(blue) the electron current, and Jpart is obtained from ne(Vi � Ve). It appears clearly that the current was
carried by the electrons while the ion contribution was almost negligible.

The panel (d) displays the current density (from the curlometer technique) in the PCS frame. The spacecraft
reached the structure around 14:16:39.70 UT (time marked by the first black dashed vertical line) as indicated
by the little jump seen on JJ, JV, and J//. Then, the satellites recorded a gradual increase (in absolute value) of
the main current component and a sharp peak between 14:16:40.96 UT and 14:16:41.54 UT (times indicated
by the red vertical lines). Eventually, MMS-1 exited out of the current structure around 14:16:42.22 UT (time
marked the second black dashed vertical line). Encircling the main current peak, a bipolar secondary current
was measured.

Multiplying the 2.52 s duration of the current structure crossing (interval between the pair of black dashed
vertical lines in Figure 9) with the propagation velocity, we find that the spatial scale of the entire current

structure is about 169 km. This is about 3 times the ~60 km Larmor
radius of thermal protons at the time of the current sheet encounter.
The crossing of the main current peak, as indicated between the two
vertical redlines in Figure 9, lasted 0.58 s, which corresponds to
~39 km. That is, the dimension of the main current peak was smaller
than the proton Larmor radius.

The panel (e) shows the PCS magnetic field components. We note that
the BP changes remained very small. Similarly, BJ was also roughly con-
stant except a peak correlated with the main current one. The BJ peak is
consistent with the bipolar secondary current. The main change of the

Table 2
The Normal Directions and the Velocities of the Propagating Structure
Obtained by Performing the Timing Method for Multiple Values of BY

BY (nT) Nx Ny Nz V (km/s)

33 �0.5026 0.0040 0.8645 66.08
20 �0.4621 �0.1507 0.8739 60.36
15 �0.5038 �0.2519 0.8263 74.00
5 �0.5915 �0.0201 0.8061 63.63
1 �0.6140 �0.0805 0.7852 73.65
0 �0.5969 �0.0708 0.7992 73.39
�5 �0.5822 0.0018 0.8131 81.04
�35 �0.4206 0.0120 0.9072 58.43
�40 �0.5755 0.2827 0.7674 51.33

Note. Mean values are V = 66.88 km/s and NC = [�0.5456, �0.0308,
0.8375].

Table 3
Results of the Variance Analysis of the Current Density Obtained From the
Curlometer Technique

Component x1 x2 x3

xGSE �0.76 0.03 �0.65
yGSE �0.2 �0.96 �0.19
zGSE �0.61 0.28 0.74

Note. λ1/λ2 = 2.8; λ1/λ3 = 43.2; λ2/λ3 = 15.43.
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magnetic field was on the BV component suggesting that the main cur-
rent (along the J direction) consisted of a current sheet oriented along
the V direction.

The panel (f) displays the ion velocity in the PCS frame. The ion jet is seen
as a peak now on the V component taking place between the first black
dashed vertical line and the second red vertical line. The ion jet crossing
lasted for ~1.8 s. Multiplying by the propagation velocity, this gives a
thickness of 120 km, corresponding to ~2 proton Larmor radii. We note
that the ion jet was observed concomitant with the overall current
structure but that the current peak took place on its downstream side
relatively to the structure propagation, that is, when the main flow com-
ponent (ViV) was decreasing (panel (g)).

The ion flow velocity is displayed at a larger scale, and in the PCS frame
in panel (g) of Figure 9. The ViP component along the propagation direc-
tion, which also corresponds to the normal to the current sheet, showed
a clear reversal upon crossing the current structure. ViP was first nega-
tive, indicating that the plasma moved slower than the current structure

in the propagation direction. After the current sheet and ion jet (observed in ViV), it was positive, and the ions
moved faster. This means that in the PCS frame (i.e., in the framemoving with the current structure) the flows
were converging toward the current structure, which thus was being compressed by the surrounding plasma.
There was also a flow reversal along the main current direction, as indicated by the reversal in the ViJ compo-
nent. This suggests that there was also a flow shear along the current structure, in addition to the compres-
sion. Around 14:17:05–14:17:10 UT, that is, just after T5, all flow components reversed. This is interpreted as
indicating that the spacecraft reentered into the inner LLBL.

4. Discussion and Interpretation
4.1. Phenomenological Interpretation

The event analyzed in this study exhibits some features apparently similar to FTEs at first glance, that is, bipo-
lar variation of a magnetic field component and a peak in the magnetic field strength. However, a more
detailed examination showed that it cannot be interpreted as a single FTE entity consisting of a single heli-
coidal flux tube. Themain reasons are the following: (i) The bipolar change in themagnetic field did not occur
in the expected direction normal to the magnetopause, (ii) a strong and thin current structure and a localized
ion jet were detected near the center, and (iii) the electron pitch angle distributions indicate that the event
did not consist of a unique and homogenous structure with a single connectivity as expected for a large-scale
flux rope. Before proposing an alternative interpretation, let us first summarize themain features of the event.
Times T0 to T5 mentioned below refer to the vertical dashed lines in Figures 4–6.

1. The event took place during the passage of an interplanetary magnetic cloud. The IMF was intense and
stable, with all three GSE components being negative. The solar wind pressure and the Alfvén Mach num-
ber were very low.

2. The event occurred when the spacecraft were in the LLBL.
3. T0→ T1: The first signature consisted of a change in the magnetic field only, suggestive of remote sensing

of the structure propagating toward the spacecraft.
4. T1 → T2: The spacecraft entered a flux tube (FTA) mainly characterized by accelerated magnetosheath

electrons exhibiting an anisotropy in the direction parallel to the
magnetic field. Moreover, trapped magnetospheric electrons were
continuously measured in FTA. The density was slightly enhanced
and BYGSE was positive. Ions first streamed antiparallel to the mag-
netic field and then perpendicular in the duskward (YGSE or �M)
direction. A trapped population of suprathermal electrons was con-
tinuously measured in this flux tube.

5. T3→ T4: In the second part of the event, the spacecraft crossed a very
different flux tube (FTB). There was no trapped electron population

Figure 8. The relative orientations of the Propagation Current Structure
frame vectors U

�!
P, U
!

J; and U
!

V and the GSE axes. The thick violet arrow
shows the direction of the current sheet propagation velocity obtained
from multispacecraft data analysis. The Propagation Current Structure
frame corresponds to a translation of the GSE frame in the direction of the
current sheet propagation velocity combined with a rotation about the
y-GSE direction.

Table 4
The Unit Vectors Defining the PCS (Propagating Current Structure) Frame

Component UP UJ UV

xGSE �0.6124 0.7676 0.1889
yGSE 0.0239 �0.2209 0.9750
zGSE 0.7902 0.6016 0.1169
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and the anisotropy of the accelerated magnetosheath was in the
opposite sense, in the antiparallel direction. BYGSE was the main com-
ponent of the magnetic field and was negative. The density was
higher with values close to the ones measured inside the outer
LLBL, between 13:45 and 14:00, for example. The plasma flow was
in the northward and duskward direction.

6. T2 →T3: Between these two flux tubes, there was a strong and thin
current sheet where the magnetic field rotated sharply. A strong
and localized duskward ion jet along the YGSE direction was also
observed, qualitatively consistent with a reconnection process
occurring inside the current sheet owing to the sharp BY reversal.
In the frame moving with the structure the surrounding plasma flow
was converging toward the current sheet. The current sheet was thus
being compressed.

We interpret this sequence of observations as the signature of the suc-
cessive crossing of the two flux tubes by the spacecraft. These two flux
tubes may have been generated by multiple sequential reconnection
process, which is expected to occur under strong BY and negative BZ
IMF conditions, as was observed for a long time around the event
(e.g., Pu et al., 2013; Raeder, 2006). The first flux tube (FTA) contained
trapped electrons. This implies that this flux tube has a different history
and connectivity compared to the second flux tube which rather con-
tained only magnetosheath electrons with largely different pitch angle
properties (Pu et al., 2013). A current sheet formed at the interface
between the two flux tubes. As shown by the changes in the ion velocity
component along the propagation direction (Figure 8g), the second flux
tube (FTB) was moving faster than the first one (FTA). This resulted in an
interlaced magnetic structure and associated complex 3-D topology, as
has been previously studied with Cluster data (Louarn et al., 2004). The
observed compression is likely at the origin of the current sheet forma-
tion and of the reconnection occurring inside as described next.

4.2. Reconnection at the Thin Current Sheet

Reconnection driven by compression at current sheets formed by the
interaction of plasma flows have been suggested for interpreting space-
craft observations from the magnetopause (Øieroset et al., 2016), in the
magnetotail (Alexandrova et al., 2016), and simulation results as well
(Huang et al., 2014; Oka et al., 2010). Simulations have been performed
in particular to study the coalescence of magnetic islands and showed
features similar to the ones identified in this event. This is true, in parti-
cular, for the formation of a thin current sheet with an exhaust in the
transverse direction (Zhou et al., 2014).

Qualitatively, the local conditions satisfied at the interface of coalescing
magnetic islands are somewhat similar to those observed in our event.

Locally, this corresponds to the interaction between two disconnected magnetic flux tubes pushed against
one another by the differential plasma flows in which they are imbedded. MMS measurements thus permit
a detailed analysis of such a case, but with some conditions specific to the event: the current sheet was
characterized by a large density jump and amagnetic shear angle of only ~73° as compared with 180° in pub-
lished simulations with comparable densities (Galsgaard et al., 2000).

Figure 10 shows a sliced schematic view of the crossing in the PCS frame. The spacecraft started in the low-
density flux tube FTA at T1. The V component of themagnetic field was positive inside FTA. An ion jet, as repre-
sented by red arrows with a yellow outline, was observed inside the current sheet (which is about 169 km
thick). At the second edge of the jet, the spacecraft crossed a complex current structure (between T2

Figure 9. Data from Magnetospheric Multiscale mission 1 between 14:16:38
and 14:16:44 UT (a) current density components in the GSE coordinates
system; (b) parallel, perpendicular, and the total current densities; (c) elec-
trons and ions current densities as well as the current density obtained
from the curlometers technique and the current density obtained from
ne(Vi � Ve); (d) current density components in the PCS frame; (e) magnetic
field components in the PCS frame; (f) ion velocity components in the
PCS frame; and (g) ion velocity components in the PCS frame between
14:16:05 and 14:17:20 UT.
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and T3). It consisted of a strong and peaked current sheet directed in the�U
�!

J direction encircled by a pair of

current sheets of opposite polarities along the U
!

V direction. Between T3 and T4, the spacecraft were in FTB,
where the V component of the magnetic field is negative. The combined effect of opposite (bipolar) currents

as observed in the U
!

V direction was to produce an enhancement of the positive BJ component in between
them (as represented by the green arrows). In doing so, these currents directly supported the rotation of the
magnetic field from the FTA to the FTB orientations. This enhancement in the BJ component is clearly seen in
Figure 9f as a 15–20 nT peak superimposed on top of the larger-scale constant BJ ~50 nT. The red vectors

in the ±U
!

p directions illustrate the compression of the current structure by two oppositely directed flows
(which converge toward it).

The process at the origin of the ion jet observed inside the first current sheet was likely magnetic reconnec-
tion driven by the compression of the two distinct sets of open field lines. This is partially supported by the
Walén test results that are superimposed on the main jet velocity component in Figure 9g. Walén tests (e.g.,
Phan et al., 2004) were performed with positive and negative correlations on the earthward (upstream rela-
tive to the structure propagation) and sunward (downstream) sides of the exhaust, respectively. The exhaust
was observed between 14:16:39.7 and 14:16:41.7 UT. This is presented in Figure 9g with VIONS � VHT = ±VA,
where VIONS, VHT, and VA are the bulk ion, deHoffman-Teller, and Alfvén velocity vectors, respectively. The
Walén test would predict an ion jet with amplitude ~688 km/s. This is much larger than the amplitude of
the observed jet. The correlation coefficient is of �0.92 and the slope is of �0.68 for the entry to the exhaust
between 14:16:39.7 and 14:16:40.95 UT. For the exit from the exhaust, between 14:16:40.95 and 14:16:41.7 UT,
theWalén relation provides a correlation coefficient of 0.92 with a slope of 0.18, which is much lower than the
ideal value ±1. Although the Walén test shows that the ion bulk flow is not as large as expected, this may be
due to the proximity to the X-line (Phan et al., 2016). To support this hypothesis, we note that with densities of
2 and 6 cm�3, as measured each side of the exhaust at 14:16:39.7 UT and 14:16:41.7 UT, the typical ion skin
depth λi is estimated as 100–155 km. The jet thickness is thus estimated to be approximately 120 km, or about
0.8–1.3 λi. Such a thickness implies that we are very close to the X-line (5–8 λi or ~840 km), which is consistent
with the ion jet not being fully developed yet and thus with the overestimation of the ion speed from the
Walén test.

5. Summary and Conclusions

We have studied in detail what initially looked on face value like a classic FTE at the Earth’s dayside magne-
topause, as observed by the MMS mission. Due to its high-resolution measurements, our analysis revealed
the following unusual properties:

Figure 10. A schematic view of the crossing of the current structure in the Propagation Current Structure frame. The
orange, green, and magenta arrows show the magnetic field orientation in the FTA, current structure and FTB, respec-
tively. The black arrows in the U

!
J (U
!

VÞ direction correspond to the main (bipolar) current density. The two oppositely
directed red arrows in the U

!
P direction illustrate the compression of the current structure. The red arrows with yellow edges

show the ion jet observed in the current structure. The spacecraft trajectory across the structure is represented by the
dashed black arrow.
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1. The large-scale magnetic field bipolar signature was not found in the component normal to the nominal
magnetopause surface, but rather in the BYGSE component.

2. The densities and pitch angle distributions of suprathermal electrons shows that the current sheet sepa-
rated two distinct plasmas with different properties and magnetic connectivities.

3. An intense and complex current structure, supporting the large reversal in the BYGSE component, was
observed near the peak in the magnetic field strength.

4. This current was carried by electrons. Although the scale of the structure is approximately three times the
ion Larmor radius, the structure possesses smaller scale substructures, smaller than the ion Larmor radius.
The intense current sheet was associated with a strong transverse flow (along VYGSE) consistent with
expectations from magnetic reconnection therein.

Our interpretation is that these properties are incompatible with a classic, single FTE structure. The data are
rather consistent with a complex, three-dimensional interaction of two distinct flux tubes. This compressive
interaction led to the formation of a thin and complex current structure between two flux tubes of very
different orientations (73° magnetic shear angle) which mimicked the bipolar magnetic structure and the
enhanced core magnetic field, both expected for classic FTEs. The strong magnetic field pileup and ensuing
thin current sheet also appeared to have triggered magnetic reconnection at the interface.
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Abstract

Magnetic reconnection is a ubiquitous and fundamental process in space plasma physics. The NASA’s Magne-

tospheric Multiscale mission (MMS) launched on 12 March 2015 was designed to provide in-situ measurements for

analyzing the reconnection process at the Earth’s magnetosphere. In this aim, four identically instrumented space-

craft measure fields and particles in the reconnection regions with a time resolution which is one hundred times

faster than previous missions. MMS allows for the first time to study the microscopic structures associated with

magnetic reconnection and, in particular, the thin electron diffusion region. At the Earth’s magnetopause, magnetic

reconnection governs the transport of energy and momentum from the solar wind plasma into the Earth’s magneto-

sphere through conversion of magnetic energy into kinetic and thermal energies after a rearrangement of magnetic

field lines. Flux Transfer Events (FTEs) are considered to be one of the main and most typical products of magnetic

reconnection at the Earth’s magnetopause. However, more complex 3D magnetic structures with signatures akin to

those of FTEs might also occur at the magnetopause like interlaced flux tubes resulting from magnetic reconnection

at multiple sites. The first part of the work presented in this thesis consisted of the investigation of one of these events

that was observed, under unusual and extreme solar wind conditions, in the vicinity of the Earth’s magnetopause by

MMS. Despite signatures that, at first glance, appeared consistent with a classic FTE, this event was interpreted to be

the result of the interaction of two separate sets of magnetic field lines with different connectivities. The high time

resolution of MMS data allowed to resolve a thin current sheet that was observed at the interface between the two sets

of field lines. The current sheet was associated with a large ion jet suggesting that the current sheet was submitted to

a compression which drove magnetic reconnection and led to the formation of the ion jet. The direction, velocity and

scale of different structures were inferred using multi-spacecraft data analysis techniques. This study was completed

with a plasma wave analysis that focused on the reconnecting current sheet.
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Résumé

La reconnexion magnétique est un processus omniprésent et fondamental dans la physique des plasmas spa-

tiaux. La "Magnetospheric multiscale mission" (MMS) de la NASA, lancée le 12 mars 2015, a été conçue pour fournir

des mesures in-situ permettant d’analyser le processus de reconnexion dans la magnétosphère terrestre. Dans ce

but, quatre satellites identiquement instrumentés mesurent les champs électromagnétiques et les particules char-

gées dans les régions de reconnexion, avec une résolution temporelle cent fois meilleure que celle des missions pré-

cédentes. MMS permet, pour la première fois, d’étudier les structures microscopiques associées à la reconnexion

magnétique et, en particulier, la région de diffusion électronique. Au niveau de la magnétopause terrestre, la recon-

nexion magnétique a un rôle chef dans le transport de l’énergie du vent solaire vers la magnétosphère terrestre, en

convertissant l’énergie magnétique en énergie cinétique et thermique. Les événements à transfert de flux (FTEs)

sont considérés comme l’un des produits principaux et les plus typiques de la reconnexion magnétique à la magné-

topause terrestre. Cependant, des structures magnétiques 3D plus complexes, avec des signatures similaires à celles

des FTEs, peuvent également exister à la magnétopause. On retrouve, par exemple, des tubes de flux entrelacés qui

résultent de reconnexions magnétiques ayant eues lieu à des sites différents. La première partie de cette thèse étudie

l’un de ces événements, qui a été observé dans des conditions de vent solaire inhabituelles, au voisinage de la magné-

topause terrestre par MMS. Malgré des signatures qui, à première vue, semblaient cohérentes avec un FTE classique,

cet événement a été interprété comme étant le résultat de l’interaction de deux tubes de flux avec des connectivi-

tés magnétiques différentes. La haute résolution temporelle des données MMS a permis d’étudier en détail une fine

couche de courant observée à l’interface entre les deux tubes de flux. La couche de courant était associée à un jet

d’ions, suggérant ainsi que la couche de courant était soumise à une compression qui a entraîné une reconnexion

magnétique à l’origine du jet d’ions. La direction, la vitesse de propagation et la taille de différentes structures ont

été déduites en utilisant des techniques d’analyse de données de plusieurs satellites. La deuxième partie de la thèse

fournit une étude complémentaire à la précédente et s’intéresse aux ondes observées autour de la couche de courant.
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