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École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Optique & Photonique

par

XAVIER ROMAIN

Study of the polarization of light through a stack of metallic metamaterials
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Co-encadrant de thèse
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1

INTRODUCTION

1.1/ GENERAL REMARKS ON OPTICS AND ARTIFICIAL MATERIALS

From antique ray model to modern quantum physics, optics has accumulated, through

the last centuries, several ways to describe and understand the nature of light and its

properties such as polarization. It is however not before the last decades - especially

with the development of lasers (serving as stable and coherent light sources) and op-

tical fibers (serving as low-loss waveguides) - that optics and light-based technologies

have considerably grown and attracted researcher’s attention. Optics is now essential in

a large diversity of scientific domains, such as in astronomy [1], telecommunications [2,3]

and medicine [4]. More recently, optics is increasingly entangled to another very active re-

search area called nanotechnology. Indeed, the many breakthroughs in modern physics,

and notably in optical imaging, has fostered nanosciences.

The great potential and fast growth of nanotechnology was perfectly represented by

Moore’s law [5], which states that the number of components in an integrated circuit

doubles every 24 months. In other words, the dimensions of individual components in

integrated circuits such as electronic transistors have considerably shrunk. Such break-

through has of course led to constant and important improvements in computer technol-

ogy and embedded devices. In return, nanotechnology has therefore greatly helped other

sciences. For example, it has led to super-fast computers which are essential for simula-

tion and modelling. Nanotechnology also serves now as a platform for the study of light

at the nanoscale which forms the domain of nano-optics [6].

The traditional optical components such as lenses, fibers, polarizers etc., usually rely on

the specific properties of bulk materials. However, nano-optics and nano-fabrication tech-

niques have facilitated the growth of artificially engineered materials like photonic crystals

(i.e., periodic dielectric media) [7] and more recently metamaterials. When carefully de-

signed such structured materials can exhibit very specific properties that are not achiev-

1



2 CHAPTER 1. INTRODUCTION

able with conventional bulk materials. For example, photonic crystals featuring photonic

bandgaps can be used for designing mirrors at specific wavelength range [7]. Photonic

crystals also find use in many other applications such as waveguides with low-loss sharp

bends [7], narrow band filters [7] or sensors [8, 9]. In this thesis, we are interested in the

latter mentioned artificial materials, i.e., metamaterials.

The field of metamaterials has rapidly gained in popularity and has reached a very broad

scientific community over the past 20 years. Such rapid developement is due to the

unique and exotic features of metamaterials including negative refraction [10], cloak-

ing [11, 12], epsilon near-zero materials [13] perfect absorption [14], optical activity [15]

and many more. Figure 1.1 shows popular example of metamaterials. Given its diver-

sity, it is not so trivial to give a simple and clear definition of metamaterials that could

satisfy the whole ”metamaterial community”. Nonetheless, a widely used definition for

B

A

C D

Figure 1.1: Examples of typical metamaterials for different applications. (a) Image of a
metamaterial that combines double split rings with cut wires for achieving negative re-
fraction index used in superlenses design [10]. (b) 3D scheme example of a metasurface
that demonstrates generalised Snell’s law of refraction [18] that can be applied for the
design of ultra-thin lenses [19]. (c) SEM image of a metallic metamaterial with slanted
annular aperture unit-cell - developed by the Femto-ST nano-optics team - that achieves
the enhanced optical transmission of the transverse electromagnetic mode. (d) Subwave-
length helix based chiral metamaterial for broadband polarization conversion, essential in
telecommunications. Images A, B C and D taken from [20], [21], [22] and [23] respectively.



1.2. HISTORICAL DEVELOPMENT OF METALLIC METAMATERIALS 3

metamaterials is the following: Artificially (or man-made) structured materials consisting

of periodic subwavelength unit-cells [16]. Furthermore, the properties of the whole meta-

material is dictated by the characteristics of its subwavelength unit-cell (or subwavelength

pattern) [16]. More recently, similar structures called ”metasurfaces” are also extensively

studied [17]. The main difference lies in the structure thickness. For metasurfaces, the

unit-cell as well as the thickness are smaller than the wavelength. Metasurfaces are

sometimes referred to as the ”2D counterpart” of metamaterials due to their subwave-

length thickness.

Metamaterials can be either made of dielectric or metallic materials. In the context of

this PhD thesis, we are interested in metallic metamaterials because they can offer Ex-

traordinary Optical Transmission (EOT). As we will see throughout the thesis, such EOT

phenomenon is beneficial to maintain a high transmission in the stacked structures we

are studying. In the next section, we focus on the development of metallic metamateri-

als. Therein, we briefly discuss the historical background and development of metallic

metamaterials and EOT as well as the research conducted by the nano-optics team of

the Femto-ST Institute, Besançon. Then, in Sec. 1.3 we provide a brief overview on the

different possibilities to describe and model metallic metamaterials. In Sec. 1.4, we focus

on the state of the art of polarization properties of metallic metamaterials and their limi-

tations. In Sec. 1.5 we detail the context of this PhD thesis and the main contributions.

Finally, the organization of the thesis is presented in Sec. 1.6.

1.2/ HISTORICAL DEVELOPMENT OF METALLIC METAMATERIALS

In 1998, Ebbesen et al. reported EOT in the visible range using a metallic film pierced by

periodic subwavelength holes [24]. They coined the term EOT because of the unusually

high transmission of 6% observed at the wavelength of 326 nm. Indeed, their observa-

tions were in total contradiction with the normalized transmission T =

( r
λ

)4
predicted by

Bethe in 1944 [25] for a single subwavelength hole with a radius r. Ebbesen et al. ad-

vanced two points for explaining the EOT phenomenon. Firstly, the holes array play an

active role via the 0th order of diffraction to increase the transmission. Secondly and more

importantly, the incident light excites surface plasmons at the metamaterial interfaces [26]

and therefore enhances the transmitted light. This pioneering study has not only partic-

ipated to the rise of metamaterials, but it has also renewed the area of plasmonics and

plasmonic materials [27].

Soon after, some other theoretical and physical explanations for the EOT were proposed.
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More specifically, the EOT behaviour of metamaterials was suggested either by guided

mode resonances in the subwavelength holes array [28–30], or by Fabry-Perot reso-

nances along the metamaterials thickness [31]. These preliminary studies were con-

sidering either monoperiodic lamellar gratings or biperiodic lamellar gratings patterned

by circular/square holes. It is worth mentionning that EOT can also be referred to as

”Enhanced Optical Transmission” to differentiate the plasmon-based transmission (”ex-

traordinary”) from the resonance-based transmission (”enhanced”). In the meantime, the

nano-optics team of Femto-ST has theoretically proposed other biperiodic geometries

for the subwavelength holes arrays to achieve EOT, namely the Annular Aperture Array

(AAA) [32–34] and the square coaxial aperture array [35]. Such geometries have the par-

ticularity to support TEM guided modes with no cut-off frequency in the desired spectral

domain [32]. Further, the enhanced transmission through AAA metamaterials was exper-

imentally demonstrated by the same team [36, 37] with measured transmission value up

to 90%. Note that, it was the first experiment to report such a high transmission through a

metallic metamaterial. More recently, our team has also proposed a study on the origin of

the resonance in planar metallic metamaterials [38]. In the following section, we present

several modelling methods that are used for describing metallic metamaterials.

1.3/ OVERVIEW ON METALLIC METAMATERIALS MODELLING

As we can notice from Fig. 1.1, the metamaterial designs can be drastically different de-

pending on the desired properties (chirality, negative refractive index and so on). Conse-

quently, several independent theories and simulation techniques have emerged to model

metamaterials. Each modelling technique is used for particular designs and applica-

tions such as, transformation optics (also known as C-method) for cloaking metamateri-

als [12,39]. It is however not the aim of this section to give an exhaustive list of modelling

and simulation techniques for every kind of metamaterials. In this section, we specifically

focus on metallic metamaterials modelling.

Some particular metallic unit cells such as split ring resonators can be well analysed by

using the transmission line theory [40]. This theory originates from the microwave and

radio frequency domain and it was used to model electrical devices with size that are

not negligible compared to the working wavelength, such as coaxial cable. Principally,

the transmission line theory consists in modelling an infinitely small electrical wire with

an equivalent electrical circuit made of basic lumped components (resistor, inductance,

capacitance and conductance). Such technique is currently applied to describe metallic

metamaterial unit cells. Figure 1.2 gives classic examples of equivalent circuit modelling
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Figure 1.2: (a) Double split ring resonator and its equivalent electrical circuit based on
lumped L,C and R components. (b) Equivalent counterpart for a single split ring. Image
taken from [40].

for double split rings in Fig. 1.2(a) and a single split ring in Fig. 1.2(b). However, this

theory is restricted to particular unit cell shape such as split rings and it is only valid if the

homogeneity conditions are satisfied [41] (i.e. wavelength much larger than the unit-cell

dimension).

Full wave simulations such as the Finite Difference Time Domain (FDTD) [42] or the

Finite Element Method (FEM) [43] are also very popular for modelling metallic metama-

terials because they are especially powerful to model any kind of geometry while taking

into account complex phenomena or structures imperfections. Both methods consist in,

first, meshing - (or subdividing) the considered metamaterial geometry and second, lo-

cally solving sets of equations for each subdivided volume. These class of simulation

methods are, in a sense, more ”natural” since they empirically solve electromagnetic

problems based on the Maxwell’s equations in differential form. The FDTD considers dis-

cretized equations where the derivatives are replaced by finite differences while the FEM

considers approximate form (finite elements) of the derivatives [44]. Even though such

simulation technique can be used for any kind of unit cell shape, they can cost a large

amount of computer resources and computation time, for example, if the wavelength is

much smaller than the entire structure of interest).

Metallic metamaterials also encompass the group of structure called subwavelength

metallic gratings. Metallic diffraction grating have been studied for centuries and are

well described by several theories. Probably the most popular technique for modelling

diffraction gratings is the Rigorous Coupled Wave Analysis (RCWA) [45] which is now

also known as the Fourier Modal Method (FMM) [42]. This method considers expan-

sions of the electromagnetic fields into (Floquet-)Fourier series and the structure permit-

tivity into Fourier series but the FMM is restricted to the modelling of thickness-invariant

grating such as lamellar gratings. More mathematically involving methods such as the
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integral [46] and differential methods [47] are also popular for modelling gratings or meta-

materials. Even though these methods can be ”computation intensive”, they have the

advantage of rigorously modelling gratings made of any arbitrary shape.

For some particular unit-cell shapes, metallic metamaterials can be described by modal

methods where the electromagnetic fields is expanded into series of modes for any re-

gion of space, including the unit-cell [48]. The electromagnetic problem is then simply

solved by matching the different modal expansions. Such technique has the advantage

to reduce the electromagnetic problem to a set of linear equations where the only un-

knowns are the amplitudes of the electromagnetic modes. In some cases, the solution of

the problem even becomes analytical and it leads to very fast computation time. These

analytical solution also enables precise physical investigations to further get new insights

into metamaterials. The modal method is the basis of the theoretical formalism used in

this PhD thesis and we present it in more details later in this chapter.

1.4/ POLARIZATION PROPERTIES OF METALLIC METAMATERIALS

In addition to the EOT phenomenon introduced in section 1.2, different groups focused on

the polarization properties of metallic metamaterials. As an example, linear polarization

properties were analysed for rectangular holes array [49–51] and for elliptical holes ar-

ray [52,53]. Metamaterials were further designed to exhibit special polarization properties

such as anisotropy [54, 55], asymmetric transmission [56] and polarization rotation [57].

The Femto-ST nano-optics team has also contributed to the development of anisotropic

metamaterials by proposing compact and efficient waveplates [58, 59]. Recently, meta-

materials and metasurfaces are further engineered for various polarization applications

such as high efficiency polarizers [60], polarization-selective multispectral imaging [61] or

linear/circular to vector bessel beam converters [62]. Specific models are currently pro-

posed to describe the polarization properties of metamaterials where the shape and the

symmetry of the unit cell are analysed [63,64]. In particular, this PhD thesis is based on a

custom Jones formalism extended to metallic metamaterials made of specific symmetry

unit cell [65] which will enable the design of metallic metamaterials with polarization effect

together with high transmission.

Nevertheless, single metamaterials suffer the intrinsic limitations imposed by their own

subwavelength unit cell. As an example, Fig. 1.3(a) shows the linear polarization rotation

principle used in [57] where the polarization rotation is due to the chirality of the gamma-

dion unit cell. As we can remark in Fig. 1.3(b) the transmitted beam is rotated by only
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Figure 1.3: (a) Schematic principle of an incident linearly polarized light oriented along θ

in the transverse (x-y) plane and rotated by an angle ∆ after passage through the metallic
nano-grating. (b) Measured rotation angle ∆ as a function of the orientation of the linear
input beam given by θ. Images taken from [57].

few degrees. In addition, such rotation was reported for a single wavelength (λ = 633nm).

The authors also reported a larger polarization rotation effect for a wavelength λ = 540nm

but it was accompanied by a decrease in the transmitted intensity. This issue then leads

to a compromise between polarization rotation effect and the transmission efficiency of

the structure.

As another example, the efficient metallic waveplates studied by the Femto-ST nano-

optics team [58, 59] undergo similar kind of problem. The structure studied in [58] is

depicted in Fig. 1.4(a). The objective was to design a metallic half-wave plate with a high
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(a)

(b)

Tr
an
sm
is
si
on

Figure 1.4: (a) Scheme of the metallic half-wave plate unit cell composed of two rectan-
gular holes. (b) Transmission spectrum of the half-wave plate in dashed black line. The
phase difference between the two orthogonally polarized transmissions is given by the
green solid curve. Image taken from [58].

transmission value. For that, two conditions has to be fulfilled:

• the Phase Difference (PD) between the two orthogonally polarized transmission has

to be PD = π.

• the transmission should be close to one.

As we can see in Fig. 1.4(b), these two conditions are satisfied only for λ/p = 1.223 where

p is the period of the structure. The working spectral band is rather limited and it thus

makes the structure performances very sensitive to fabrication imperfections.

To overcome the intrinsic limitations imposed by the unit cell of single metamaterials, two

options can be considered. The first option is to develop more complex unit cell and/or
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to optimize the unit cell design in order to improve the metamaterial performances. The

second option is to use stacks of metamaterials instead of single metamaterials. As we

will see in the next section, we choose the stacked metamaterials alternative as it features

some unique advantages over single metamaterials.

1.5/ CONTEXT AND CONTRIBUTIONS OF THIS PHD THESIS

As we have seen in Sec. 1.4, single metamaterials or single metasurfaces can be used

to efficiently manipulate the polarization of light for a large diversity of applications. In

addition, many specialized theories are available to efficiently design metamaterials for

specific polarization applications. However, single metamaterials are innately limited by

the properties of their own subwavelength unit cell. Therefore, achieving complex proper-

ties together with low losses can lead to the design of complex unit cells. Such complex

patterns can be difficult to fabricate and time-consuming to be simulated. These issues

may finally lead to unnecessarily heavy and costly development process.

In order to overcome the issues and limitations associated with single metamaterials,

stacked (or cascaded) metamaterials are currently proposed [66]. Indeed, stacking meta-

materials enables additional degrees of freedom and it features two main advantages.

First, the additional degree of freedom can drastically reduce the complexity of the basic

subwavelength unit cells. Second, the combination of several metamaterials can lead

to exotic effects that can not be obtained by single metamaterials. For example, the

nano-optics team has proposed in 2012 a structure based on two anisotropic metallic

metamaterials which exhibits an EOT-based tunable optical activity [67].

From the numerical point of view, even though such stacking may allow for simpler meta-

material unit cell, the stacked structure itself can remain challenging to model. Indeed,

if we consider a same unit cell, a stacked structure made of several metamaterials is in-

nately more time consuming to model than a single metamaterial. Then, the goal is to

find unit cells that can be simple to analyze and to model and that can lead to interesting

effects in stacked structure. From the experimental point of view, each metamaterial may

be simpler to fabricate but the precise stacking and/or alignment of each metamaterial

inevitably requires more fabrication and/or experimental steps than for a single metama-

terial. Finally, modelling exotic effects or new functionalities in stacked metamaterials

requires the development of original models that properly take into account such new

effects.

As a consequence, there is a current need of efficient models - in terms of computa-
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tion time and results accuracy - that can take into account the properties arising from

the stacking, and that can physically or qualitatively describe the properties of the whole

structure. Presently, much efforts are being made to describe and engineer stacked meta-

materials. Models based on Floquet analysis [68], scattering matrices [69] and wave ma-

trices [70] have been recently proposed. Stacked metamaterials or stacked metasurfaces

currently find use in asymmetric transmission [71], polarization conversion [72], angular

insensitive metalenses [73] and leaky wave pattern synthesis [74].

This PhD thesis takes place within this framework of modelling and studying the polar-

ization properties of stacked metallic metamaterials. In this work, we develop a simple

and analytical formalism in order to model and describe the polarization properties of

stacked metallic metamaterials. The developed model is extracted from a monomodal

method which restricts our theoretical model to particular unit cell geometries and to a

limited spectral range. As we will see throughout this manuscript, the analytical expres-

sions derived from the theoretical formalism will allow us to study with more details the

polarization properties of stacked metallic metamaterials. With our model, we will fur-

ther explore, describe and understand new possibilities that arises from the stacking and

that have not been reported yet. Mainly, we will see that the multiple reflections of light

inside the stacked structure can lead to Fano resonances. In fact, the model we use

will also enables us to establish a simple model based on a Fabry-Perot-like approach

that clearly shows that the Fano resonance in the stacked structures originates from the

specific polarization properties of the metamaterials. It is crucial to remind that such

polarization-based Fano resonances can not be obtained by using single metallic meta-

materials. These Fano and Fabry-Perot-like resonances will allow us to design and to

propose various applications for filtering, sensing as well as polarization rotation. Our

new insights into stacked metamaterials will also be of great help to identify and appre-

hend the critical points for fabrication and experiments.

Basically, during this thesis, we explore and reveal original phenomena that are based

on the specific polarization properties of metallic metamaterials. We think that the overall

contribution of this PhD thesis enlarges the perspectives and the range of applications of

stacked metallic metamaterials and/or stacked metallic metasurfaces.

1.6/ THESIS OUTLINE

In the first chapter, we mainly focus on the modelling aspect of single metallic metama-

terials. For this entire thesis, we focus on monoperiodic metallic metamaterials made of
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subwavelength lamellar grooves, and biperiodic metamaterials consisting subwavelength

rectangular holes array. First, we introduce the basic concept of the modal method which

is the starting point of our theory. This method is especially well suited for such geome-

tries as it leads to simple and analytical expressions for the transmission and polarization

properties of the metallic metamaterials. Given few assumptions that are commonly per-

mitted for such structures (negligible evanescent modes), we use a monomodal method to

establish an Extended Jones Formalism (EJF) which takes into account the polarization

properties for single metallic metamaterials in view of modelling stacked metamaterials in

the next chapters. Further, we use the EJF to study monoperiodic and biperiodic meta-

materials in order to highlight the common points and the differences between them. We

also compare and validate this preliminary results with the multimodal method using a

scattering matrix formalism which takes into account evanescent modes in the metama-

terials. We finally emphasize that the metallic metamaterials play the role linear polarizers

with enhanced transmission.

In the second chapter, we make an analytical and numerical study for the smallest stack

possible, i.e., a stack of two metamaterial polarizers only. Such simple structure resem-

bles the well known polarizer-analyzer configuration which is typically obtained with a

pair of anisotropic bulk plates. We combine the EJF with a simple analytical algorithm

that accounts for the stacking and it allows us to derive an analytical expression for the

transmission through the entire structure: the extended Malus’ Law. We further com-

pare this extended Malus’ law with the transmission expression obtained for the classical

polarizer-analyzer configuration (i.e., the classical Malus’ Law) and we further highlight

their discrepancies. Therein, we show that the difference originates from the multiples

reflections that arise only in the stacked metallic metamaterials. With the appropriate

design, we show that this additional effect gives us the opportunity to turn our structure

into an electro-optically sensitive detector. We also discuss some limiting aspects such

as absorption and substrate’s refractive index that needs to be considered for potential

fabrication and experimental measurements. Finally, we remark that the spectral signa-

ture we use for the sensing application is very similar to Fano resonance line shape and

it leads us to the next chapter where we give a physical explanation of the origin of Fano

resonances in stacked metamaterials.

The third chapter is devoted to the analysis of the physical process that leads to Fano res-

onances in the polarizer-analyzer configuration. This study is of great importance since

Fano resonances have not been reported or described yet in stacked metallic metama-

terials. It is however interesting to note that Fano resonances have been extensively

studied for single metamaterials with specific geometry unit cells. For this in-depth study,
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we keep the same structure made of two identical metallic polarizers and we take advan-

tage of our analytical EJF together with a circulating field approach to develop a polarized

Fabry-Perot cavity model. This new viewpoint helps us to identify and discuss the key

points that are involved in the formation of Fano resonances. We reveal that the Fano

resonances in stacked metamaterials are induced by the specific polarization properties

of the each metamaterial. Such way of exciting Fano resonances has not been reported

to date. We further illustrate the potential of Fano resonances in stacked structures by

demonstrating multiple and independently tunable Fano resonances.

In the fourth chapter, we finally study the transmission property for stacked structures

made of an arbitrary number N of metallic metamaterials (N ≥ 3). We especially make

our numerical study in view of polarization rotation applications. We show that some

parameters play a crucial role in the spectral tunability of our structures. For example, we

show that a same initial structure can achieve either broadband cross-polarization rotation

or an ultra-narrow band filtering by simply playing with the arrangement of the structure

(the metamaterials position and rotation). We also show the intrinsic limitations of such

structure and we discuss the compromises that have to be considered for practical design

and fabrication. In addition, we also propose polarization rotation based on the excitation

of a Fano-like resonance using only two metamaterial polarizers. To our knowledge, such

concept of polarization rotation combining stacked metallic metamaterials and Fano-like

resonances has not been reported yet.

The conclusion summarizes the thesis contributions and develop an overview of the sev-

eral possibilities offered by stacked metallic metamaterials. We especially emphasize on

the realization and control of Fano resonances, which could open new and promising op-

portunities using stacked metamaterials. Some intriguing and unexplained results due to

the multiple reflections are also addressed in the perspectives. We also discuss some

issues and key points that should be taken into account for the fabrication and the ex-

perimental counterpart. Finally, we consider more general implications concerning the

polarized Fabry-Perot cavity aspect of such structures which could open new possibilities

in sensing and filtering for stacked metallic metamaterials.
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THEORETICAL BACKGROUND AND

MODELLING

This chapter presents the theory involved for modelling the polarization properties of

metallic metamaterials. Firstly, we describe the opto-geometrical parameters of the con-

sidered metamaterial, which is a metallic plate patterned with subwavelength apertures.

We note that such kind of structures have been extensively studied in the past years [75]

and can bear different names according to the specific scientific community or the desired

applications. For example, it can be named as frequency selective surface, or periodic

surface or slot arrays which are mainly used for radomes, filters or reflectors [76]. This

kind of structure can also be regarded as a subwavelength diffraction grating [42,48,77],

i.e. a diffraction grating with a periodicity smaller than the wavelength. For example,

the diffraction gratings find applications in spectrometry, wavelength division multiplexing

or chirp pulse amplification [77]. In this manuscript, we simply refer to this structure as

metallic metamaterial. Secondly, we present the modal method which constitutes the

general framework of our theory. Principally, this method (based on modal expansions)

gives a description of the electromagnetic field in the metamaterial apertures and in the

regions surrounding the metamaterial (substrate and superstrate). Then, we briefly give

more details on the modal expression of the electromagnetic fields in the surrounding

regions (using Floquet modes) and in the metamaterials (using waveguide modes). We

will derive from it the scattering matrix (S-matrix) of the considered metamaterial that

takes into account its polarization properties. With the appropriate assumptions on the

electromagnetic field in the metamaterial apertures, we will show that an Extended Jones

Formalism (EJF) can be extracted from the S-matrix. The advantage of such model is that

it efficiently describes the polarization properties of single metamaterials using analytical

Jones matrices.

In the last section of this chapter, we will illustrate the EJF to present the specific polar-

13
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ization properties of the metamaterials of interest. We will also compare the polarization

properties of our structure with the ones of conventional dichroic polarizers. The linear

polarization selection is achieved differently for metallic metamaterials than for dichroic

polarizers. Such polarization selectivity with metallic metamaterials will lead to exotic

effects in stacked structures, that will serve to propose several applications such as po-

larization rotation or ultra-sensitive detection.

The EJF will allow us to further explore and describe interesting phenomena (such as

Fano resonances) occurring in stacked structure that originates from the specific meta-

material polarization properties. Furthermore, the simplicity of this formalism will greatly

help to develop a simple polarized Fabry-Perot model later in the manuscript which qual-

itatively explains exotic Fano resonances in stacked structures. We also mention that the

extended Jones formalism can be applied to more complex unit cells with particular sym-

metry such as C1v or C4v. We briefly show that it can be used for designing anisotropic

metamaterials. Finally, we conclude this chapter by outlining the main polarization prop-

erties of the studied metamaterials.

2.1/ DESCRIPTION OF THE STRUCTURE

In the thesis introduction, we have shown a wide variety of designed metamaterials. We

now introduce in detail the type of metamaterial that we specifically wish to study. We

consider in this work a metallic plate of thickness h which is periodically structured, in the

(x − y) plane, with an array of rectangular apertures with z-invariant opto-geometrical pa-

rameters, as shown in Fig. 2.1 (a). We note however that the theory allows for other aper-

px

py

ay

ax

Subwavelength
 Unit-Cell

Metal: Perfect Electric 
Conductor (pec)

h

x

y

z

E

H

kinc

(a) (b)

Figure 2.1: Example of a metallic metamaterial composed of a repeating unit cell with
dimensions px and py that are shorter than the incident light wavelength λ. The unit-cell
is made of rectangular holes where the width is denoted by ax and the length by ay. The
thickness of the metamaterials is represented by h.
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tures geometries - such as circles - but are not considered for the rest of this manuscript.

Indeed, the considered rectangular aperture possesses a C2,v symmetry which leads to

specific linear polarization properties (see section 2.4). The periodicity of the structure

is following a rectangular Bravais lattice. We mention that it is possible to generalize

the theory for other Bravais lattices with arbitrary nonorthogonal coordinates [78, 79]. In

this manuscript, we consider a unit-cell comprising only one aperture, as depicted in Fig.

2.1(b). The particularity is that the unit-cell dimensions along the x and y axis - px and

py respectively - are smaller than the wavelength λ of the incident electromagnetic field.

This ensures an enhanced optical transmission [34] which will allow us to design stacked

structures with very high transmission. We will refer to this kind of pattern as subwave-

length aperture for the rest of this manuscript. For this whole thesis, we consider the

metal as a perfect electric conductor (pec).

For the most part of this manuscript, when the periods px and py are kept equal, we note

px = py = p. The surface of the unit-cell is denoted by S and S = px py. The width of the

rectangular holes is given by ax and its length by ay. The cross-section of the rectangular

aperture is given by Ω = axay. The structure is surrounded by two semi-infinite, lossless,

isotropic, linear and homogeneous regions. We simply refer to these surrounding media

as homogeneous regions. If not mentioned, the apertures and the homogeneous regions

are filled with air. It is worth noting that monoperiodic metamaterials are also considered

since they follow the same theoretical treatment. The single and double periodicities are

shown in Fig. 2.2(a) and (b) respectively. Figure 2.2 (a) shows a monoperiodic (or 1D-

periodic) pattern composed of one invariant axis and one periodicity axis. Figure 2.2

Monoperiodic
pattern

Biperiodic
pattern

(a) (b)

Periodicity
axis

Periodicity
axes

x

yz

Figure 2.2: (a) Monoperiodic pattern featuring a single periodicity axis and a single in-
variant axis. (b) Example of a biperiodic pattern. In this case, there are two orthogonal
periodicity axes and no invariant axis.
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(b) depicts a biperiodic (or 2D-periodic) rectangular Bravais lattice made of rectangular

apertures.

In this section, we have described the basic geometry that will be used to design metallic

metamaterials with linear polarization properties. In the next section, we will theoretically

describe the metamaterials and we will focus only on the general case of the biperiodic

metamaterial with subwavelength rectangular apertures, as shown in Fig. 2.1 and Fig.

2.2(b).

2.2/ THE MODAL METHOD

We have established an EJF to model the polarization properties of stacked metallic

metamaterials. It involves the combination of various theories such as the Floquet theory

for periodic structure, the electromagnetic (EM) theory of metallic waveguide, the modal

method and the fundamentals of Jones matrices. It is therefore necessary to give brief re-

minders of all these elements before describing the Jones formalism extended to metallic

metamaterials. We remind that we present the biperiodic case only, which is charac-

terized by the period p along the x and y axes and the surface of the periodic unit-cell

S = p2.

2.2.1/ PRINCIPLE OF THE MODAL METHOD

The fundamental principle of the Modal Method originates from the method of moment

[80] which has been extensively used in microwave engineering for solving a large variety

of electromagnetic problems [81], including periodic metallic structures [82–84]. Basically,

the method of moment approximates the response of a studied structure as a series of

basis functions with their associated expansion coefficients. In our case, these functions

satisfy boundary conditions imposed by the metallic metamaterial. The basis functions

are thus called modes and the expansion coefficients are the amplitudes associated to

these modes. We consider modal expansion in the homogeneous regions and in the

apertures (we detail later in section 2.2.3 and section 2.2.4 the specific properties of such

modes). The expanded EM field is then projected on the two orthogonal basis vectors ~ex

and ~ey which define the transverse plane. The modal projection on the transverse (x, y)

plane allows us to directly apply the continuity of the transverse EM field at the metama-

terial interfaces. By matching the modal expansions and applying Galerkin operators, we

will be able to extract Jones matrices giving the polarization properties of the metamate-

rials.
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In this configuration, these EM modes can be given by a general expression, regardless

of the considered region j with j ∈ {1, 2, 3} where j = 2 for the metallic metamaterial and

j = 1 or j = 3 for the surrounding homogeneous regions. The EM field in harmonic regime

for any propagative or evanescent modes τ is expressed as follows:

~U( j)
τ (~r, t) = ~U( j)

τ (~rt)eiγ( j)
τ ze−iωt (2.1)

where ~U denotes either the electric or the magnetic field: ~U ∈ (~E, ~H), ~r = x~ex + y~ey + z~ez

and ~rt = x~ex + y~ey. The term γ
( j)
τ denotes the propagation constant of the mode τ in region

j. The components of the field that depend only on the transverse coordinates is denoted

by ~U( j)
τ (~rt). The subscript τ is a super-index which consists of the mode orders (resulting

from the application of boundary conditions) and the polarization state of the mode. For

this manuscript, we refer to the polarization state of the modes with the following terms:

Transverse Electric (TE) with Ez = 0, Transverse Magnetic (TM) with Hz = 0 and Trans-

verse Electromagnetic (TEM) with Ez = Hz = 0. By convention, we consider that j = 1

corresponds to the incident region. In addition, we split the transverse components and

the z-component of the field so that

~U( j)
τ = ~U( j)

τ,t + U( j)
τ,z~ez (2.2)

where ~Uτ,t and Uτ,z are respectively the transverse and the z components of the mode τ.

We mention that such harmonic EM modes feature general properties that are essential

in the modal method. First, the transverse components of the electric field verify the

following orthogonality relation:

"
ζ

~E( j)∗
τ,t (~rt). ~E

( j)
q,t (~rt)dxdy = δτ,q (2.3)

where ∗ denotes the complex conjugate, ζ is the periodic surface (either S in homoge-

neous regions, or Ω in apertures) and δ is the Kronecker delta function. Note that the left

hand side of Eq. (2.3) is the inner product of ~E( j)∗
τ,t (~rt) with ~E( j)

q,t (~rt). In Sec. 2.2.3 and Sec.

2.2.4, we will detail the expression of ζ according to the considered region. The orthogo-

nality relation simply means that two different modes (τ , q) do not couple to each other

during their propagation along the z-axis, in the region j. However, we will see later that

the modes couple to each other at the metamaterials interfaces.

Second, it is important to mention that for any transverse electric component ~E( j)
τ,t (~rt) we
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can deduce its corresponding transverse magnetic component ~H( j)
τ,t (~rt) with the following

relationship:

~H( j)
τ,t (~rt) = η0η

( j)
τ ~ez ∧ ~E( j)

τ,t (~rt) (2.4)

where η0 =

√
ε0

µ0
is the optical admitance of vacuum with ε0 and µ0 being respectively the

permittivity and permeability of vacuum. The term η
( j)
τ is the relative optical admittance

of the mode τ in region j which is also referred to as the modal admittance [79]. This

relation is crucial since it allows to deduce the expansion of the transverse magnetic field

from the expansion of transverse electric field. For all regions j, the optical admittances

of any mode τ is expressed by

η
( j)
τ =

ε
( j)
r k0

γ
( j)
τ

: TM mode

η
( j)
τ =

γ
( j)
τ

k0µ
( j)
r

: TE mode

η
( j)
τ =

ε
( j)
r k0

γ
( j)
τ

=
γ

( j)
τ

k0µ
( j)
r

=

√√
ε

( j)
r

µ
( j)
r

: TEM mode

(2.5)

where ε( j)
r and µ( j)

r are respectively the relative permittivity and relative permeability of the

region j and k0 = 2π/λ. Furthermore, we define ~k( j)
τ as the wave vector of the mode τ in

region j such that
~k( j)
τ = ~k( j)

τ,t + γ
( j)
τ ~ez (2.6)

where ~k( j)
τ,t is the transverse wave vector of the mode and

∥∥∥∥~k( j)
τ

∥∥∥∥2
= k0n j (with n j the refrac-

tive index of the considered region j). Since we consider lossless homogeneous regions,

the propagation constant can be written as

γ
( j)
τ =


√∥∥∥∥~k( j)

τ

∥∥∥∥2
−

∥∥∥∥~k( j)
τ,t

∥∥∥∥2
for propagative modes (γ( j)

τ ∈ R)

i

√∥∥∥∥~k( j)
τ,t

∥∥∥∥2
−

∥∥∥∥~k( j)
τ

∥∥∥∥2
for evanescent modes (γ( j)

τ ∈ C)
(2.7)

We also define λ
( j)
τ as the cut-off wavelength of the mode for which γ

( j)
τ = 0. Such wave-

length indicates the transition between propagative and evanescent regime of the mode,

as shown in Fig. 2.3.
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propagative
waves

evanescent
waves

�
Figure 2.3: The first cut-off wavelength λ

( j)
τ separating the propagative regime and the

evanescent regime of a mode τ in region j.

With this additional consideration, the general expression of the propagation constant γ( j)
τ

can be written as

γ
( j)
τ = k0n j

√
1 −

λ

λ
( j)
τ

(2.8)

so that γ( j)
τ ∈ R for λ < λ

( j)
τ and γ

( j)
τ ∈ C for λ > λ

( j)
τ . Finally, for any region, the modal

expansion of the total transverse electric field ~E( j)
t (~r, t) is given by the same expression

shown below:

~E( j)
t (~r, t) = e−iωt

∑
τ

[
A( j)
τ eiγ( j)

τ

(
z−z( j)

A

)
+ B( j)

τ e−iγ( j)
τ

(
z−z( j)

B

)]
~Eτ,t(~rt) (2.9)

where A( j)
τ and B( j)

τ are the amplitudes of the forward and backward modes, respectively,

and z( j)
A and z( j)

B denotes their arbitrary phase origins. We note that the arbitrary phase

origins zA and zB are optional when writing the modal expansion. Nonetheless, we will

see later that making explicit the phase origin in the modal expansion is very useful as

it finally simplifies the expression of the equation to be solved. Equation (2.9) suggests

that the total transverse electric field in any region j is a sum of forward and backward

modes τ with their respective amplitude A( j)
τ and B( j)

τ . Note that the transverse EM com-

ponents ~E( j)
τ,t are not defined for the moment since the EM conditions imposed in each

region are not specified yet. More details will be given in section 2.2.3 and section 2.2.4

where we present the modes satisfying conditions imposed by the structure. From a more

mathematical point of view, the right hand side of Eq. (2.9) is the projection of the total

transverse electric field on the transverse plane using the basis functions ~Eτ,t(~rt).

From the modal expansion of the total transverse electric field given in Eq. (2.9), we

deduce the expansion of the total transverse magnetic field ~H( j)
t (~r, t) using Eq. (2.4) and

it leads to

~H( j)
t (~r, t) = e−iωt

∑
τ

[
A( j)
τ eiγ( j)

τ

(
z−z( j)

A

)
− B( j)

τ e−iγ( j)
τ

(
z−z( j)

B

)]
~Hτ,t(~rt) (2.10)
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A comparison of Eq. (2.10) with Eq. (2.9) highlights a ”−” sign in Eq. (2.10)) instead of a

”+” sign (as in Eq. (2.9) for the backward modes amplitudes B( j)
τ . This is due to the relative

optical admittance η
( j)
τ in Eq. (2.4) and given by Eq. (2.5) which involves the propagation

constant of the mode γ( j)
τ . For the backward modes, the propagation constant is −γ( j)

τ and

therefore causes the ”−” sign in Eq. (2.10).

The studied metallic metamaterial is a periodic array of rectangular apertures which may

be seen as sections of metallic waveguides. Therefore, the projected modes, in region

j = 2, correspond to waveguide modes. The metamaterial transverse bi-periodicity also

imposes the same transverse bi-periodicity on the homogeneous regions j = 1 and j = 3.

Consequently, the projected modes in these periodic homogeneous regions are Floquet

modes. Basically, the metamaterial imposes a periodic unit-cell in the whole space, as

shown in Fig. 2.4(a). To summarize, the EM fields is described as an expansion of

• Floquet modes that satisfy the transverse periodic condition of the unit-cell in ho-

mogeneous regions ( j = 1 and j = 3).

• waveguide modes satisfying the boundary condition on the walls of the subwave-

length apertures ( j = 2).

More details on Floquet modes and waveguide modes are given later in this chapter in

section 2.2.3 and section 2.2.4. The modal expansion is illustrated in Fig. 2.4(b) showing

the field expansion for each regions. The terms A(1), A(3) and B(1), B(3) schematically

xy

z

pxpy

z1

z3
(3)

(1)

(3)

(1)

(2)(2)

(a)

(b)

Figure 2.4: (a) Schematic view of a bi-periodic unit-cell of the considered EM problem.
(b) Schematic summary of the Modal Method principle. The fields in the homogeneous
regions 1 and 3 consist in a sum of incident and scattered Floquet modes and the field in
the aperture is seen a sum of TE and TM waveguide modes. For monoperiodic metama-
terials the sum also includes the TEM waveguide mode.
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denote the amplitudes of forward and backward Floquet modes in the homogeneous

regions while A(2) and B(2) are the amplitude of forward and backward waveguide modes

respectively. We note that for an infinite number of modes, both the Floquet and the

waveguide expansions form complete sets. In other words, the infinite modal expansion

in each region gives the exact solution for the total transverse EM field.

We now want to establish the fundamental equations of the modal method which links the

Floquet modes amplitudes with waveguide modes amplitudes. The key step for obtaining

these fundamental equations is to match the modal expansion in the homogeneous re-

gions with the one in the waveguides at the interfaces z1 and z3. For that, we first precise

the values of the phase origins z( j)
A and z( j)

B . For the incident region ( j = 1), we impose the

phase origins at the interface z = z1, i.e. z(1)
A = z(1)

B = z1. Likewise, for the homogeneous

region 3 we choose z(3)
A = z(3)

B = z3. For the region 2 containing the metamaterial, the

phase origin of the forward modes is z(2)
A = z1 while the origin for the backward modes is

z(2)
B = z3. As we will see in the following page, such phase origin values will allow us to get

simple expressions of the modal expansion matching (see Eq. (2.13 to Eq. (2.17)). We

remind that in region 2, the unit cell is composed of a pec rectangular waveguide with a

cross-section Ω = axay (with Ω ∈ S ). In order to realize the modal expansion matching at

the metamaterials interfaces, we use the continuity relation [85] of the EM field on the unit

cell surface S at the metamaterials interfaces z = z1 and z = z3. The transverse electric

field is continuous at the interfaces for ~rt ∈ S . However, for ~rt < Ω, the pec metallic surface

imposes the condition ~Et = 0. Thus, at the interfaces z = z1 and z = z3 we respectively

have
~E(1)

t (x, y, z = z1, t) = ~E(2)
t (x, y, z = z1, t), ∀~rt ∈ Ω

~E(3)
t (x, y, z = z3, t) = ~E(2)

t (x, y, z = z3, t), ∀~rt ∈ Ω
(2.11)

For the transverse magnetic field, the continuity of the transverse magnetic field can be

applied only on the cross section Ω, so that

~H(1)
t (x, y, z = z1, t) = ~H(2)

t (x, y, z = z1, t), ∀~rt ∈ Ω

~H(3)
t (x, y, z = z3, t) = ~H(2)

t (x, y, z = z3, t), ∀~rt ∈ Ω
(2.12)

Replacing the transverse fields in Eq. (2.11) and Eq. (2.12) by their modal expansion

expressed in the right hand side of Eq. (2.9) and Eq. (2.10) respectively, we obtain the

matching of the modal expansions at both interfaces of the metamaterials. Now, to clarify

the notation for the equations, we differentiate the waveguide modes by the specific index

ν (instead of τ).
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For the transverse electric field, the modal expansion matching at z = z1 gives

∑
τ

[
A(1)
τ + B(1)

τ

]
~E(1)
τ,t (~rt) =

∑
ν

[
A(2)
ν + B(2)

ν u(2)
ν

]
~E(2)
ν,t (~rt), ∀~rt ∈ Ω (2.13)

and at the interface z = z3 it yields

∑
τ

[
A(3)
τ + B(3)

τ

]
~E(3)
τ,t (~rt) =

∑
ν

[
A(2)
ν u(2)

ν + B(2)
ν

]
~E(2)
ν,t (~rt), ∀~rt ∈ Ω (2.14)

with

u(2)
ν = eiγ(2)

ν (z3−z1) = eiγ(2)
ν h (2.15)

where u(2)
ν is the propagation term of the waveguide mode ν in the aperture, along the

metamaterial’s thickness h = z3 − z1. We can now see that writing the optional arbitrary

phase in Eq. (2.9) and Eq. (2.10) finally gives simple expressions for the modal expan-

sions matching. For the transverse magnetic field, the modal expansion matching at z = z1

gives ∑
τ

[
A(1)
τ − B(1)

τ

]
~H(1)
τ,t (~rt) =

∑
ν

[
A(2)
ν − B(2)

ν u(2)
ν

]
~H(2)
ν,t (~rt), ∀~rt ∈ Ω (2.16)

and at z = z3 we have

∑
τ

[
A(3)
τ − B(3)

τ

]
~H(3)
τ,t (~rt) =

∑
ν

[
A(2)
ν u(2)

ν − B(2)
ν

]
~H(2)
ν,t (~rt), ∀~rt ∈ Ω (2.17)

Now that we have matched the modal expansions in regions 1 and 3 with the modal

expansion in region 2, we realize the modal projections at each interface. For that, we

use the inner product as defined by the left hand side of Eq. (2.3). We apply on both

sides of Eqs. (2.13) and (2.14) the following inner product"
S

[·]. ~E( j)∗
q (~rt).dS , ∀q ∈ Z3 (2.18)

where ~E( j)
q (~rt) are Floquet modes, q is the index identifying these modes and the symbol

[·] denotes the equation to operate on. In the method of moments, such function (~E( j)
q (~rt))

is generally referred to as the ”testing” or ”weighting” function. Since, the ”testing” function

is chosen in the same set as the basis functions - i.e. Floquet modes - the technique is

called the Galerkin method [81].

Remark: Strictly speaking, we do not apply a true Galerkin method since the operation

(2.18) using Floquet mode is also applied on the waveguide mode basis given by the right

hand side of Eqs. (2.13) and (2.14).
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Using the orthogonality relation given by Eq. (2.3), the modal projection directly gives

∀τ, A(1)
τ + B(1)

τ =
∑
ν

[
A(2)
ν + B(2)

ν u(2)
ν

]
g(1)
ν,τ (2.19)

and

∀τ, A(3)
τ + B(3)

τ =
∑
ν

[
A(2)
ν u(2)

ν + B(2)
ν

]
g(3)
ν,τ (2.20)

where g( j)
ν,τ is the overlap integral of a Floquet mode τ in region j (1 or 3) with a waveguide

mode ν on the waveguide cross-section Ω. It is given by

g( j)
ν,τ =

"
Ω

~E(2)
ν,t (~rt)~E

( j)∗
τ,t (~rt)dΩ (2.21)

In other words, the overlap integral g( j)
ν,τ is the coupling, at the metamaterial interfaces,

between a waveguide mode and a Floquet mode in region j. Note that the we have

written the index τ instead of q in the overlap integral expression since the index q was

only necessary to make the difference between the testing Floquet modes and the basis

Floquet modes. For the Eqs. (2.16) and (2.17), we apply another special operator defined

by

"
Ω

(
[·] ∧ ~E( j)

µ,t(~rt)
)
.~ezdΩ (2.22)

where ~E( j)
µ are the ”testing” waveguide modes defined by the index µ. Here, the modal

projection is not as straightforward as the one given before. After some derivations, we

obtain

∀τ,
∑
τ

[
A(1)
τ − B(1)

τ

]
η(1)
τ g∗ν,τ =

∑
ν

[
A(2)
ν − B(2)

ν u(2)
ν

]
η(2)
ν (2.23)

and

∀τ,
∑
τ

[
A(3)
τ − B(3)

τ

]
η(3)
τ g∗ν,τ =

∑
ν

[
A(2)
ν u(2)

ν − B(2)
ν

]
η(2)
ν (2.24)

This set of four equations (Eqs. (2.19), (2.20), (2.23) and (2.24)) links the amplitude of the

modes τ in the homogeneous regions to the amplitude of the modes ν inside the aperture.

They correspond to the fundamental equations of the modal method.

With this set of 4 equations, it is possible to derive a general scattering matrix S which

links the Floquet modes scattered by the metamaterial to the incident Floquet modes.

However, our aim is to extract from the S-matrix an analytical and compact Jones formal-

ism to describe efficiently the polarization properties of stacked metallic metamaterials.
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To do so, we first have to use a simpler version of the modal method by considering only

one propagative mode inside the aperture, i.e., the monomode modal method.

2.2.2/ MONOMODE MODAL METHOD

The Monomode Modal Method (MMM) consists in considering only a single propagative

(guided) mode in the metamaterials apertures. The first successful attempt to model

metallic metamaterials with the MMM was achieved by Lalanne et al. in 2000 [86] to

predict the transmission and absorption properties of a monoperiodic grating made of

real metal. However, considering only one mode in the apertures could lead to important

errors compared to a multi-modal method. In order to minimize the error induced by the

MMM approximation, we have to make sure that the EM field in the apertures is (almost)

totally carried by a single mode. For that, we have to discuss two important points.

First Point: For the MMM validity, we have to ensure that one waveguide mode, at most,

can be propagative along the aperture. To verify this, we impose:

λ > λ(2)
2 (2.25)

where λ(2)
2 is the cut-off wavelength of the second waveguide mode. Figure 2.5 gives a

simple representation of the first hypothesis.

Figure 2.5: Cut-off wavelength chart of the fundamental mode λ(2)
1 and the next higher

order waveguide modes.

With such condition, all the higher order modes are evanescent so that only the mode

with the highest cut-off wavelength is propagative and carries with no losses the EM

field in the waveguide. Basically, the higher order modes exponentially decay from the

interfaces along the metamaterial thickness. The mode with highest cut-off wavelength

λ(2)
1 is called the fundamental mode or the dominant mode. Note that when λ > λ(2)

1 ,

the fundamental mode is also evanescent but we then have λ >> λ(2)
2 and it does not

challenge the MMM validity. We emphasize that this condition is mandatory because the

presence of a second guided mode (or more guided modes) would drastically modify the

polarization and spectral properties of the studied structure. In such case, using the MMM

would make no sense.
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Second Point: Even if all the higher order waveguide modes are evanescent, they can

still influence the MMM accuracy because of the evanescent modes coupling that can

occur between the metamaterials interfaces (z1 and z3) through the apertures (tunnel-like

effect). The importance of this effect involving the evanescent modes is directly influenced

by the metamaterials thickness h = z3 − z1 and the cut-off wavelength of the higher order

modes (dictated by the apertures geometry). Contrary to the first point of discussion,

there is no absolute criterion for the value of h (or for the apertures dimensions) that

allows to definitely neglect the evanescent coupling effect and we will discuss in detail

this second point later in Sec. 2.3.4. Therein we compare the results obtained by the

extended Jones formalism - which neglects the evanescent mode and the tunnel-like

effect - with the results computed by the multimodal method - which takes into account

the evanescent modes - for different values of h and ax. Finally, we conclude that the error

acceptability strongly depends on the targeted application based on broadband or narrow

band resonances.

If we have only one guided mode and negligible evanescent modes in the apertures, then

we can use the MMM and the notation simplifies. Since there is now only one mode to

consider inside the aperture, we can get rid of the waveguide mode index ν so that

A(2)
ν → A(2)

B(2)
ν → B(2)

g( j)
τ,ν → g( j)

τ

u(2)
ν → u(2)

(2.26)

With such a notation, we can rewrite the set of the 4 fundamental equations that links the

Floquet modes amplitudes with the fundamental guided mode amplitudes:

A(1)
τ + B(1)

τ =
[
A(2) + B(2)u(2)

]
gτ , ∀τ (2.27)

A(3)
τ + B(3)

τ =
[
A(2)u(2) + B(2)

]
gτ , ∀τ (2.28)∑

τ

[
A(1)
τ − B(1)

τ

]
η(1)
τ g∗τ =

[
A(2) − B(2)u(2)

]
η(2) , ∀τ (2.29)

∑
τ

[
A(3)
τ − B(3)

τ

]
η(3)
τ g∗τ =

[
A(2)u(2) − B(2)

]
η(2) , ∀τ (2.30)

The goal is now to obtain the scattering matrix S with this set of 4 equations: A(3)

B(1)

 = S

 A(1)

B(3)

 . (2.31)
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where the terms inside brackets are the reduced notation for the corresponding column

vectors containing all the Floquet modes τ. For example:

A( j) ≡


...

A( j)
τ

...

 ; B( j) ≡


...

B( j)
τ

...

 (2.32)

for j ∈ (1, 3).

Remark: After examination of Eq. (2.31) and Eq. (2.32), we see that for a number NF of

Floquet modes, the scattering matrix S has a (2NF × 2NF) dimension. Thus, it seems that

the S matrix does not take into account the polarization properties of the Floquet modes

but only their forward and backward propagation. However, as we have introduced in Eq.

(2.1), we remind that the index τ takes into account the modes order and their polarization

state (TE or TM). More details on the polarization properties of Floquet modes are given

in Sec. 2.2.3 and especially in Eq. (2.54) and Eq. (2.55).

To derive the S matrix, we first specify the important step that consists in determining the

matrix M that links the amplitude of incident Floquet modes to the amplitude the single

guided mode. We first start by substituting Eq. (2.27) in Eq. (2.29) which leads to

∑
τ

{
2A(1)

τ −
[
A(2) + B(2)u(2)

]
gτ

}
η(1)
τ g∗τ =

[
A(2) − B(2)

]
η(2) (2.33)

2
∑
τ

η(1)
τ g∗τA(1)

τ −
[
A(2) + B(2)u(2)

]∑
τ

η(1)
τ gτg∗τ =

[
A(2) − B(2)

]
η(2) (2.34)

and we note that gτg∗τ = |gτ|2. We now introduce the coupling coefficient C( j) so that

C( j) =
∑
τ
η

( j)
τ |gτ|2 (2.35)

We remind that gτ is the overlap integral between a Floquet mode τ and the fundamental

waveguide mode. Therefore, the coupling coefficient C( j) can be regarded as the average

optical admittance in region j of the Floquet modes with the fundamental guided mode

which is weighted by the overlap integral. With this notation, Eq. (2.34) becomes

A(2)
[
η(2) + C(1)

]
+ B(2)u(2)

[
C(1) − η(2)

]
= 2

∑
τ

η(1)
τ g∗τA(1)

τ (2.36)
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Equation (2.36) expresses A(2) and B(2) as a function of A(1)
τ only. We follow the same

technique by substituting Eq. (2.28) in Eq. (2.30) and we obtain

A(2)u(2)
[
C(3) − η(2)

]
+ B(2)

[
C(3) + η(2)

]
= 2

∑
τ

η(3)
τ g∗τB(3)

τ (2.37)

where A(2) and B(2) are expressed as a function of B(3)
τ only. With Eq. (2.36) and Eq.

(2.37) we build the M matrix so that:

 2
∑
τ
η(1)
τ g∗τA(1)

τ

2
∑
τ
η(3)
τ g∗τB(3)

τ

 = M

 A(2)

B(2)

 (2.38)

where

M =

 C(1) + η(2) u(2)
[
C(1) − η(2)

]
u(2)

[
C(3) − η(2)

]
C(3) + η(2)

 (2.39)

Even though the modes are orthogonal by propagation (see Eq. (2.3)), Eq. (2.38) sug-

gests that the waveguide modes are coupled to each other via the Floquet modes. Finally,

the amplitudes A(2) and B(2) of the fundamental waveguide mode are given by inversion

of the matrix M

A(2) =
2

det(M)

∑
τ

[
C(3) + η(2)

]
η(1)
τ g∗τA(1)

τ + u(2)
[
η(2) −C(1)

]
η(3)
τ g∗τB(3)

τ (2.40)

B(2) =
2

det(M)

∑
τ

[
C(1) + η(2)

]
η(3)
τ g∗τB(3)

τ + u(2)
[
η(2) −C(3)

]
η(1)
τ g∗τA(1)

τ (2.41)

We can now replace the updated expressions of A(2) and B(2) in Eq. (2.27), and it leads to

B(1)
τ =

2gτ
det(M)

∑
q

[
C(3) + η(2)

]
η(1)

q g∗τ + u2
(2)

[
η(2) −C(3)

]
η(1)

q g∗qA(1)
q − δτ,qA(1)

q

+
2gτ

det(M)

∑
q

[
η(2) −C(1)

]
η(3)

q g∗τ + u(2)
[
η(2) + C(1)

]
η(3)

q g∗τB(3)
τ

(2.42)

Likewise, we substitute Eq. (2.40) and Eq. (2.41) in Eq. (2.28) and we obtain

A(3)
τ =

2gτu(2)

det(M)

∑
q

[
C(3) + η(2)

]
η(1)

q g∗q + u2
(2)

[
η(2) −C(3)

]
η(1)

q g∗qA(1)
q − δτ,qB(3)

q

+
2gτu(2)

det(M)

∑
q

u2
(2)

[
η(2) −C(1)

]
η(3)

q g∗τ +
[
η(2) + C(1)

]
η(3)

q g∗τB(3)
τ

(2.43)
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With Eq. (2.42) and Eq. (2.43) we relate the amplitude of the scattered Floquet modes

A(3)
τ and B(1)

τ to the amplitudes of the incident waves A(1)
τ and B(3)

τ from which we can build

the scattering matrix S :

S =

 (S 11)τ,q (S 12)τ,q

(S 21)τ,q (S 22)τ,q

 (2.44)

where the expression of the (2 × 2) scattering matrix sub-blocks (S )τ,q are given by

(S 11)τ,q = f Tη(1)
q gτg∗q ; (S 12)τ,q = f R

1 η
(3)
q gτg∗q − δτ,q

(S 21)τ,q = f R
3 η

(1)
q gτg∗q − δτ,q ; (S 22)τ,q = f Tη(3)

q gτg∗q.
(2.45)

and each sub-block is arranged as

(S )τ,q =

 S τ,τ S τ,q

S q,τ S q,q

 . (2.46)

The metamaterial transmission factor is denoted by f T while the reflection factors, in

region 1 or region 3, are denoted by f R
j . Their respective expressions are given by:

f T =
4u(2)η

(2)[
C(1) + η(2)] [C(3) + η(2)] − u2

(2)
[
C(1) − η(2)] [C(3) − η(2)] (2.47)

f R
j =

2
{
C( j) + η(2) + u2

(2)

[
η(2) −C( j)

]}
[
C(1) + η(2)] [C(3) + η(2)] − u2

(2)
[
C(1) − η(2)] [C(3) − η(2)] . (2.48)

which feature an Airy-like form. It is important to note that the transmission factor f T

does not depend on the considered region. However, the reflection terms f R
j depend on

the considered region j. It means that, for n1 , n3, the metallic plates are reciprocal in

transmission, but not in reflection.

We have now set up the basis for extracting a Jones formalism that can be extended

to metallic metamaterials. However, before diving into the EJF, we give more details on

the Floquet modes in homogeneous regions and the fundamental guided mode in the

rectangular apertures.

2.2.3/ ELEMENTS ON FLOQUET ANALYSIS FOR METALLIC METAMATERIALS

The Floquet analysis is extensively used in the domain of phased array for designing

antennas [75] or frequency selective surfaces [87]. More generally, the Floquet theory

can be applied for modelling any periodic structure.
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Remark: The Floquet analysis for periodic structures strongly resembles the theory of

diffraction gratings in optics. In fact, the two approaches only differ from the adopted

vocabulary and the physical interpretation. While in optics we consider the ”grating prob-

lem” [48] to determine and analyse diffraction orders, in phased array we consider Floquet

modes that satisfy the periodicity condition imposed by the studied structure.

First of all, we define the monochromatic plane wave incident on the biperiodic structure.

The EM field for an incident monochromatic plane wave is given by:

~Uinc(~r, t) = ~U0ei~k(inc).~re−iωt (2.49)

with ~U0 its amplitude vector and ~k(inc) = kx~ex + ky~ey + kz~ez its wave vector. We rewrite

the wave vector in order to split its transverse component ~k(inc)
t = kx~ex + ky~ey from the

propagation constant kz. We obtain

~k(inc) = ~k(inc)
t + kz~ez (2.50)

We also define

k(inc) = ||~k(inc)|| = k0n(inc) = ω2µ0ε0. (2.51)

where k(inc) is the incident wave vector norm.

Basically, the Floquet theorem states that the EM field is the same in the periodic unit-

cells , except that it comprises an additional exponential multiplier from one unit-cell to the

adjacent one. The application of Floquet theorem to periodic structure is demonstrated

in [88]. For the studied bi-periodic case, the Floquet theorem can be expressed by

~Uτ(~r + ~pt) = ~Uτ(~r)ei~kτ,t .~pt (2.52)

where τ is the index of the modes which takes into account the corresponding Floquet

modes orders ((n,m) ∈ Z2) and their polarization state (σ ∈ TE, TM, TEM) so that τ =

(n,m, σ), ~Uτ(~r) is a Floquet mode, ei~kτ,t .~pt is the exponential multiplier and ~pt = px~ex +

py~ey is the bi-periodic shift corresponding to the metamaterials bi-periodicity. Because of

this exponential multiplier in Eq. (2.52), the function ~Uτ(~r) is called a pseudo-periodical

function. The transverse component of the wave vector ~kτ,t as previously introduced in

Eq. (2.6) is now given by

~kτ,t = ~k(inc)
t + n

2π
px
~ex + m

2π
py
~ey = ~k(inc)

t + n ~Gx + m ~Gy (2.53)
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where ~Gx and ~Gy are the primitive vectors of the reciprocal Bravais lattice [89]. The

expression of the transverse profile of a Floquet mode τ in region j is given by

~U( j)
τ,t =

1
√

S
ei~kτ,t .~rt~eτ (2.54)

where ~eτ is the unit vector associated to the Floquet mode and account for its polarization

state which is given by

~eτ =



~kτ,t
||~kτ,t||

∀τ ∈ {n,m,T M}

~ez ∧
~kτ,t
||~kτ,t||

∀τ ∈ {n,m,T E}

cosϕinc.~ex + sinϕinc.~ey ∀τ ∈ {0, 0,T M} or {T EM1}

− sinϕinc.~ex + cosϕinc.~ey ∀τ ∈ {0, 0,T E} or {T EM2}

(2.55)

Note that, for ϕinc = 0◦, we have the TEM1 and TEM2 Floquet modes polarized along the

x and y axes, respectively. The Floquet modal expansion is written as

~Ut(~r, t) = e−iωt
∑
τ

[
A( j)
τ eiγ( j)

τ z + B( j)
τ e−iγ( j)

τ z
]
~U( j)
τ,t (2.56)

which suggests that the total scattered transverse field in region j is the sum of forward

and backward Floquet modes. The separation between the propagative and evanescent

regime is at γ( j)
τ = 0 and it occurs when λ = λ

( j)
τ which is called the Floquet mode cut-off

wavelength. It is expressed by

λ
( j)
τ =

2πn j

||~k( j)
τ,t ||

(2.57)

To be precise, the separation between propagative and evanescent regime is at the first

Floquet modes cut-off λ( j)
τ . Furthermore, we remind that for this manuscript, the periods

px and py are kept equal so that px = py = p. In addition, as we will see later in this

chapter, we always consider a normally incident light. In such way, the first cut-off is

at λ = λ
( j)
τ = n j p. Then, we have k0n j = ||~k( j)

τ,t || which marks the transition between the

propagative and the evanescent regime, and the propagation constant γτ vanishes.

Remark: In optics - particularly in the diffraction gratings area - such phenomenon is

known as the Rayleigh-Wood anomaly [90,91].

In the next section, we give more details on the waveguide modes located in the meta-

material’s apertures. In the framework of the MMM, we especially pay attention to the
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fundamental waveguide mode.

2.2.4/ MODES IN THE SUBWAVELENGTH RECTANGULAR WAVEGUIDE MADE OF

PERFECT ELECTRIC CONDUCTOR

In this part, we now give some elements of metallic waveguide theory to describe the

modes in the metamaterials apertures. The theory of metallic waveguide is well known

and it is the basis of telecommunication engineering in the microwave domain [92].

As for the previous section, we focus on the waveguide modes for the biperiodic meta-

material made of rectangular waveguides, as previously depicted in Fig. 2.1. In the

framework of the modal method, we associate the Maxwell’s equations with Eq. (2.1) and

we write the following reduced Helmoltz equation

(
∇2

t + k2
c

)
Uz(x, y) = 0, with Uz =

 Ez for TM

Hz for TE
(2.58)

where kc =

√
k2

0 − γ
2 is the cutoff wavenumber, γ is the propagation constant and ∇2

t is the

transverse Laplacian operator. After some derivations, we obtain the solution for Hz(x, y)

in TE polarization (Ez = 0) and the solution for Ez(x, y) in TM polarization (Hz = 0). For the

TE polarization, the solution for Hz(x, y) is given by

H(n′m′)
z = H(n′m′)

0 cos(n′
π

ax
x) cos(m′

π

ay
y) (2.59)

from which we deduce, by using Eq. (2.4), all the transverse components:

E(n′m′)
x = −E(n′m′)

0
m′

ay
cos(n′

π

ax
x) sin(m′

π

ay
y)

E(n′m′)
y = E(n′m′)

0
n′

ax
sin(n′

π

ax
x) cos(m′

π

ay
y)

H(n′m′)
x = −H(n′m′)

0
n′

ax
sin(n′

π

ax
x) cos(m′

π

ay
y)

H(n′m′)
y = H(n′m′)

0
m′

ay
cos(n′

π

ax
x) sin(m′

π

ay
y)

(2.60)

where (n′,m′) are the indices denoting the waveguide modes order and E(n′m′)
0 and H(n′m′)

0

are the waveguide modes amplitudes. The transverse wave vector ~kν of a waveguide

mode ν is given by
~kν = n′

π

ax
~ex + m′

π

ay
~ey = kx

ν~ex + ky
ν~ey (2.61)
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With such notation, the expression of the transverse profile of the electric field of a waveg-

uide mode ν can be written in the general and compact form

~E(2)
ν =

εν
√

Ω

~f (~rt) ⊗ ~eν (2.62)

with
~f (~rt) = cos(kx

ν x) sin(ky
νy)~ex + sin(kx

ν x) cos(ky
νy)~ey (2.63)

and

~eν =


~kν
||~kν||

, ∀ν ∈ {n′,m′,T M}

~ez ∧
~kν
||~kν||

, ∀ν ∈ {n′,m′,T E}
(2.64)

and

εν =

 2, for n′ , 0 and m′ , 0
√

2, for n′ = m′ = 0
(2.65)

where the operator ⊗ is defined such that ~u ⊗ ~v = uxvx~ex + uyvy~ey. Furthermore, the cut-

off wavelength of each TE(n′m′) mode can be expressed in the same way as the cut-off

wavelength for the Floquet modes in Eq. (2.57). Now, we have λν =
2πn2

‖~kν‖
and for each

TE(n′m′) modes, the cut-off wavelength is given by

λν =
2axay√

(n′.ay)2 + (m′.ax)2
(2.66)

For our structure, we have considered ay > ax by convention. Furthermore, in the frame-

work of the MMM and the EJF, we consider only a single propagative mode (guided

mode). Equation (2.66) suggests that the mode with the highest cutoff wavelength λν is

for n = 0 and m = 1, i.e. the TE01 mode and λ01 = 2ay. Usually in microwave engineering,

the mode corresponding to the highest λν is called the dominant mode or the fundamental

mode of the waveguide [92, 93]. Following Eq. (2.62), the expression of the transverse

profile of the electric field the fundamental TE01 mode (n′ = 0, m′ = 1) is written as

~E(2)
ν =

√
2
Ω

sin
(
π

ay
y
)
~ex (2.67)

We can directly see that the TE01 mode is linearly polarized along the x-axis only, i.e.

along the rectangle’s width as depicted in Fig. 2.6.

We will see in the sections below that the properties of this ”dominant” mode will a ma-

jor role in the metamaterial’s properties. It is called dominant mode because it dictates
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a x

ay

Ex

y TE01

E
x

Figure 2.6: Distribution of the normalized electric field Ex in the rectangular apertures for
the TE01 mode polarized along the x-axis.

the field pattern in the far-field region [93]. Indeed, the polarization and transmission

properties of the metamaterial originates from this dominant mode. To be precise, the

monomodal approximation is perfectly relevant because, for the considered spectral re-

gion (more details in next section), the dominant mode have preponderant weight in the

waveguide mode expansion. Therefore, neglecting the evanescent higher order mode in

the aperture will not lead to important discrepancies.

In the previous section, we have described the electromagnetic field in the homogeneous

regions with the use of the Floquet modes expansion (2.56). In this section, we have con-

tinued by describing how the light propagates inside the subwavelength metallic waveg-

uides thanks to a waveguide mode expansion. The next step is then to make the con-

nection between the field in homogeneous region and the field guided in the aperture for

establishing a Jones formalism extended our metamaterials.

2.3/ EXTENDED JONES FORMALISM FOR METALLIC METAMATERI-

ALS

So far, we have derived the scattering matrix from the MMM. In this section, we want to

extract the EJF from the scattering matrix. For that, we first have to mention two important

conditions in order to preserve a valid model.

First Condition: The incoming light is in normal incidence to the metamaterial. This is

typical from the classical Jones formalism and it is not intrinsic to our model. In addition,

it is relevant to use such hypothesis in the framework of stacked structures.
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Second Condition: a) In order to correctly use the Jones formalism, we have to make

sure that only only one Floquet mode is propagative in the homogeneous regions. For

that, we impose that only the Floquet mode with the highest cut-off wavelength can prop-

agate while all the other Floquet modes are evanescent. For that, we set

λ > n( j)
max pmax : TEM Floquet modes 1 and 2 (2.68)

In fact, the highest cut-off modes are two degenerate TEM Floquet modes. They still

respect the orthogonality relationship given by Eq. (2.3) because they are orthogonally

polarized to each other.

b) To enforce the condition given in a), we further decrease the influence of the evanes-

cent modes by considering a far-field propagation only. Thus, we consider that the

evanescent Floquet modes are negligible after a propagation of λ/2 from the interfaces.

In other words, we consider

z < z1 −
λ

2
and z > z3 +

λ

2
. (2.69)

The far-field approximation will be further discussed in chapter 3 where we consider a

stack of two metamaterials. It is very important to specify the second hypothesis because

it is not needed in the classical Jones formalism. Indeed, the Jones formalism is usually

applied to bulk structures where the diffraction of light does not occur or can be neglected.

The condition 2.b) also implies that the polarization state is carried only by the degener-

x

E

� �
x

E

(a) (b)

Rotated 
Aperture

Rotated lattice

yvp
ep

Figure 2.7: (a) Aperture rotated by an angle Ψ inside the lattice where ~vp is the polarization
unit vector giving the orientation of the electric field ~E. (b) Lattice rotated by an angle ϕ

and ~ep the unit vector associated to this rotation.
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ated TEM Floquet modes (the specular order). Then, rotating the polarization state of the

normally incident TEM Floquet modes by an angle ϕinc is equivalent to rotate by an angle

−ϕinc the orientation of the metallic plate. We introduce the metamaterial rotation angle ϕ

such that

ϕ = −ϕinc (2.70)

as shown in Fig. 2.7(b). The equivalence between the metamaterials orientation and the

TEM Floquet modes polarization allows us to rewrite the polarization unit vector ~eτ (given

by Eq. (2.55)) such that

~e0,0,σ =

 cosϕ.~ex − sinϕ.~ey (TEM1)

sinϕ.~ex + cosϕ.~ey (TEM2)
(2.71)

We also note that, for a rectangular aperture rotated by an angle Ψ in its Bravais lattice

(as shown in Fig. 2.7)(a)), the distribution of the transverse electric field inside the rotated

waveguide is unchanged. The only difference is the orientation of the electric field in the

x-y plane. The unit vector ~vp takes into account the rotation of the polarization state of the

TE01 and it is given by

~vp = cos Ψ~ex + sin Ψ~ey (2.72)

With this new notation, it allows us to establish metamaterials Jones matrices that are

independent of the incident EM field orientation - as it is classically the case when using

Jones matrices. If the conditions are verified, we can now rewrite the notation so that it

is adapted to the usual Jones notation. We propose that the amplitudes of TEM Floquet

Eout

(1)

Eout

(3)

Einc

(1)

Einc

(3)

(2) (2)

Far-field

Near-field

Far-field

Near-field
Evanescent 

modes

Figure 2.8: Schematic configuration of the extended Jones formalism. The inci-
dent/outward field in the homogeneous region is normal to the interfaces and is only
considered in far-field region. The near-field region is still taken into account for evaluat-
ing the coupling between the fundamental guided mode and the Floquet modes.
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modes are now rearranged as

A(1)
0,0,T E~e0,0,T E + A(1)

0,0,T M~e0,0,T M → ~E(1)
inc

B(3)
0,0,T E~e0,0,T E + B(3)

0,0,T M~e0,0,T M → ~E(3)
inc

B(1)
0,0,T E~e0,0,T E + B(1)

0,0,T M~e0,0,T M → ~E(1)
out

A(3)
0,0,T E~e0,0,T E + A(3)

0,0,T M~e0,0,T M → ~E(3)
out

(2.73)

where ~E( j)
inc and ~E( j)

out respectively denote the incident and outward TEM Floquet modes in

region j. This configuration is summarized in Fig. 2.8.

In this section, we have discussed the necessary conditions to establish a Jones formal-

ism that can be applied to metallic metamaterials. In the next section, we will extract the

transmission and reflection Jones matrices of the structure.

2.3.1/ GENERAL NOTATION AND JONES MATRICES EXTRACTION

Before extracting the metamaterials Jones matrices from the scattering matrix, we give a

reminder on the general notation for the Jones formalism. The incident and outward elec-

tromagnetic fields, respectively ~Einc and ~Eout are described by their transverse component

along the x and y axes so that:

~E( j)
inc =

 E( j)
inc,x

E( j)
inc,y

 and ~E( j)
out =

 E( j)
out,x

E( j)
out,y

 (2.74)

where the component along the x and y axes are respectively the T EM1 and T EM2 Flo-

quet modes. In the far-field configuration, as depicted in Fig. 2.8, it now becomes clear

that
~E(1)

out = JR
1
~E(1)

inc + JT
3
~E(3)

inc

~E(3)
out = JR

3
~E(3)

inc + JT
1
~E(1)

inc

(2.75)

where JT
( j) and JR

( j), are the (2×2) transmission and reflection Jones matrices of the metal-

lic metamaterials. In fact the Jones matrices JT
( j) and JR

( j) are simply the scattering ma-

trices S τ,q (introduced in Eq. (2.45)) reduced the TEM Floquet mode so that we have

S T EM1,T EM2 :
JT

1 = (S 11)T EM1,T EM2 ; JR
3 = (S 12)T EM1,T EM2

JR
1 = (S 21)T EM1,T EM2 ; JT

3 = (S 22)T EM1,T EM2

(2.76)
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In matrix notation, we obtain ~E(3)
out

~E(1)
out

 =

 JT
1 JR

3

JR
1 JT

3


 ~E(1)

inc

~E(3)
inc

 = JM

 ~E(1)
inc

~E(3)
inc

 (2.77)

where JM is the (4 × 4) Jones matrix of the metamaterial. When the homogeneous re-

gions (1) and (3) are filled with the same material - for example air - the structure is then

reciprocal. In this case JT
1 = JT

3 and JR
1 = JR

3 (see discussion on Eqs. (2.47)) and (2.48).

Remark: The Jones formalism is usually applied in systems composed of reciprocal po-

larizing plates, and where the reflection can be neglected, so that only a (2 × 2) transmis-

sion Jones matrix is needed (e.g. Jones matrix of dichroic polarizers) to properly describe

the whole system. For metallic metamaterials, the reflection can not be ignored and the

reflection Jones matrices are needed.

2.3.2/ POLARIZATION PROPERTIES OF THE OVERLAP INTEGRAL

So far, we first have seen how to express the scattering matrix of a metallic plate. Then,

we have matched the reduced S-matrix - composed of two degenerate TEM Floquet

mode only - to Jones matrices. Now, we specifically give the overlap integral g0 of the TEM

Floquet modes in homogeneous regions (TEM1 and TEM2) with the fundamental TE01

guided mode in apertures. This overlap integral lets appear the metamaterial polarization

properties. Following the Eqs. (2.54) and (2.67), we have

g0 =

√
2

S Ω

"
Ω

sin
(
π

ay
y
)
~vp~e0,0,σdΩ (2.78)

On the one hand, the vectors ~e0,0,σ (~eT EM) give the polarization orientation of the TEM

Floquet modes along x and y with the angle ϕ. On the other hand, the vector ~vp gives the

orientation of the rectangular aperture in its Bravais lattice with the angle Ψ, as shown in

Fig. 2.7. Following Eq. (2.72) and Eq. (2.71), we obtain

~vp · ~e0,0,σ =


cos(ϕ + Ψ); p = {T EM1}

sin(ϕ + Ψ); p = {T EM2}

(2.79)

which gives compact terms for the polarization orientation for both TEM Floquet modes.

We finally write

g0 = g̃0~vp~e0,0,σ (2.80)
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where g̃0 =

"
Ω

sin
(
π

ay
y
)

dΩ is the scalar part of the overlap integral.

In this section, we have detailed the analytical expression of the overlap integral which re-

veals the general polarization properties of our considered structure. In the next section,

we finally re-arrange the present notation to build transmission and reflection Jones matri-

ces which allow for a compact and efficient description of the metamaterials polarization

properties as well as its spectral properties.

2.3.3/ ANALYTICAL EXPRESSIONS OF JONES MATRICES

In the previous subsection, we have expressed the overlap integral and we have chosen

a notation that explicitly shows the polarization properties of the overlap integral. After re-

arranging the expression of the overlap integral by separating the polarization properties

from the spectral properties, we can finally write:

JT =

 JT
x,x JT

x,y

JT
y,x JT

y,y

 = f T |g̃0|
2

 cos2(Ψ + ϕ) cos(Ψ + ϕ) sin(Ψ + ϕ)

cos(Ψ + ϕ) sin(Ψ + ϕ) sin2(Ψ + ϕ)

︸                                                             ︷︷                                                             ︸
classical Jones matrix of polarizer rotated by an angle Ψ+ϕ =⇒ J(pol,~ex)

Ψ+ϕ

(2.81)

and

JR
( j) =

 JR
x,x JR

x,y

JR
y,x JR

y,y

 = f R
( j)|g̃0|

2

 cos2(Ψ + ϕ) cos(Ψ + ϕ) sin(Ψ + ϕ)

cos(Ψ + ϕ) sin(Ψ + ϕp) sin2(Ψ + ϕ)


−

 1 0

0 1

︸    ︷︷    ︸
Id: (2×2) identity matrix

(2.82)

We introduce the following terms

αT = f T |g̃0|
2 (2.83)

and

α
( j)
R = f R

( j)|g̃0|
2 (2.84)

that respectively correspond to the transmission and reflection coefficient of the metama-

terial. For most of the results presented in this manuscript, we consider that the aperture

dimension are oriented along the x and y axes, i.e. Ψ = 0◦. We will focus only on ϕ, the

rotation angle of the metallic metamaterials. Besides, we mainly consider the metama-
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terials to be surrounded by air so that the metamaterials are reciprocal in reflection so

that

α
( j)
R → αR. (2.85)

We can now express the transmission and reflection Jones matrix in a more compact

form given by

JT = αT Jx
ϕ (2.86)

and

JR
( j) = αRJx

ϕ − Id (2.87)

where Jx
ϕ corresponds to the classical Jones matrix of a linear polarizer rotated by an

angle ϕ and −Id is the term accounting for the reflection on the pec metal. In other words,

when ϕ = 0◦, the structure is linearly polarizing the transmitted light along the x axis. We

remind that:

Jx
ϕ = R(−ϕ)JxR(ϕ) =

 cosϕ − sinϕ

sinϕ cosϕ


 1 0

0 0


 cosϕ sinϕ

− sinϕ cosϕ

 (2.88)

where the matrix R(−ϕ) denotes the rotation of the plate in the transverse plane. This

expression corresponds to the classical rotation of an linear polarizer along the x-axis.

For ϕ = 0◦, we have

JT =

 αT 0

0 0

 and JR =

 αR − 1 0

0 −1

 (2.89)

As we can remark, the expression of the transmission and reflection Jones matrices

aligned along the x axis are quite simple. Apart from its elegance, the Jones formalism

will proves very useful and and handy to understand the properties and additional effect

that emerges from the stack. The Extended Jones Formalism has been established in

2014 by Philippe Boyer [65].

2.3.4/ EXAMPLE OF EXTENDED JONES FORMALISM FOR A SINGLE PLATE

In the previous section, we have finally established an extended Jones formalism to de-

scribe the polarization properties as well as the spectral behavior of the metamaterial of

interest. In this last chapter’s section, we propose to illustrate our theoretical model with

two different structures. First, a biperiodic metamaterial patterned with rectangular holes

(Fig. 2.2(a)) and second, a monoperiodic metamaterial (Fig. 2.2(b)). This study high-



40 CHAPTER 2. THEORETICAL BACKGROUND AND MODELLING

lights the main polarization properties of such metamaterials and outline the difference

between monoperiodic and biperiodic geometries.

We consider the two structures to be aligned on the x axis so that the transmitted light

is linearly polarized on the x axis. First, we focus on the metamaterial with rectangular

pattern. The transmission T of the metallic plates is given by:

T = |JT
x,x|

2 + |JT
y,x|

2 (2.90)

For structures aligned along the x axis, the term |JT
y,x|

2 = 0. The term |JT
y,x|

2 is however

necessary since it takes into account any possible transverse rotation of the plate. First,

we consider a biperiodic metamaterial with h/p = 1.0, ax/p = 0.3, ay/p = 0.9 and Ψ =

ϕ = 0◦. The Floquet modes orders (for both x and y axes) taken into account for the

computation are in the range [−F : F] and we take F = 5 for the computations.

Figure 2.9 (a) gives the transmission spectrum of the rectangular aperture metamaterial.

The first characteristic we can notice is the 100 % transmission for the wavelength high-

lighted by the dashed purple lines. It denotes the resonant properties of the metamaterial

which are attributed to the resonances of the fundamental guided mode in the rectan-

gular cavities. For such a geometry, the fundamental guided mode is the TE01 mode as

presented in Sec. 2.2.4. We observe 3 distinct resonances. We have 2 Fabry-Perot

(FP) resonances, the first and second harmonic respectively located at λ/p ≈ 1.45 and

λ/p ≈ 1.1. To be more specific, these FP resonances occur along the thickness h of the

Figure 2.9: (a) Transmission spectrum of a metamaterial with rectangular pattern. The
vertical dashed lines highlight the multiple resonance of the structure. The parameters
are ax/p = 0.3, ay/p = 0.9 and h/p = 1.0. (b) The corresponding phase of the transmission
coefficient αT
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metamaterial. In addition, we have a third resonance located at λ/p ≈ 1.75 correspond-

ing to the cut-off wavelength of the TE01 guided mode. As we have seen in Sec. 2.2.4,

this resonance should be located exactly at λ/p = 2ay = 1.8. This wavelength shift is

explained by the coupling of the cut-off resonance with the first harmonic FP resonance.

Figure 2.9(b) gives the spectral phase of the transmission coefficient αT . The horizon-

tal dashed purple line correspond to arg(αT ) = 0 and also gives us an indications of the

resonances positions and is in agreement with Fig. 2.9 (a).

=1.2 =1.754 =1.85

(a) (b) (c)

Figure 2.10: Transmission value as a function of F, giving the number of Floquet mode
orders, at different wavelengths (a) λ/p = 1.2, (b) λ/p = 1.754 and (a) λ/p = 1.85.

Now that we have obtained the transmission spectrum for a biperiodic metamaterial,

we make convergence tests by computing the transmission as a function of F at some

wavelength of interest: at a local minimum (λ/p = 1.2), at resonance (local maximum at

λ/p = 1.754) and at a steep part of the spectrum (λ/p = 1.85), as shown in Fig. 2.10. Such

test is made in order to validate the chosen value of F (= 5) for the computations. As we

can see, at the local minimum and maximum of transmission (λ/p = 1.2 and λ/p = 1.754),

the transmission values rapidly converge with F while for λ/p = 1.85 the convergence is

slower. For the three tests, it appears that F = 5 is a good compromise between compu-

tation time and results accuracy. For F = 5, the error ∆T = |TF=20 − TF=5| is ∆T < 10−3 at

λ/p = 1.2, ∆T < 10−4 at λ/p = 1.754 and ∆T = 5 × 10−3 at λ/p = 1.85. Therefore, we keep

F = 5 for the computation of biperiodic metamaterials.

Figure 2.11(a) gives the transmission spectrum as a function of the rectangle width ax/p

where h/p = 1.0. For ax/p = 0.1 we can clearly see that the TE01 mode cut-off wavelength

is exactly located at λ/p = 1.8. As ax/p increases, the cut-off wavelength progressively

couples to the first FP resonance and we can simultaneously observe the shift of both

resonances. One advantage of such coupling is the broad transmission band that occurs

for ax/p > 0.3 where the two resonance merge to form a larger transmission peak.

Figure 2.11(b) gives the transmission spectrum as a function of the metamaterials thick-

ness h/p where ax/p = 0.3. Here, we can remark that the FP harmonics only are affected
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h
/p

Figure 2.11: (a) Evolution of the transmission spectrum when the rectangle width ax/p
vary from 0.1 to 0.5 for h/p = 1.0. It shows the progressive coupling of the cut-off reso-
nance with the first harmonic FP resonance. (b) Transmission spectrum as a function of
the thickness h/p showing the FP resonances shift for ax/p = 0.3.

by the thickness variations while the TE01 mode cut-off wavelength remains constant.

This result is in accordance with the theory since the FP harmonics location is directly

proportional to the thickness h/p while the TE01 cut-off wavelength is given by λT E01 = 2ay

and does not depend on the thickness. The overall results of Fig. 2.11 demonstrate that

it is possible to tailor the transmission spectrum of the metamaterial by carefully choosing

the thickness and the rectangle width.

We now focus on the second structure, a monoperiodic metamaterial with a/p = 0.3 and

Figure 2.12: (a) Transmission spectrum of a metamaterial with a 1D pattern. The purple
dashed line gives the location of the first FP resonance. The parameters are a/p = 0.3
and h/p = 1.0. (b) The corresponding phase of the transmission coefficient αT .
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h/p = 1.0 aligned on the x-axis. For the monoperiodic metamaterials, the Floquet modes

orders taken into account for the calculus are in the range [−50 : 50]. Figure 2.12(a) gives

its corresponding transmission spectrum. In contrast to the rectangular pattern, we only

notice one resonance which is a FP resonance located at λ/p ≈ 1.25. The fundamental

guided mode is a TEM mode with a cut-off wavelength which is pushed to λ/p → ∞ . An

intuitive way to understand it is to imagine the rectangular structure studied above where

the length ay/p is stretched to infinity. The cut-off wavelength being proportional to ay,

we thus obtain a cut-off wavelength which is pushed to infinity. Figure 2.12(b) gives the

corresponding spectral phase arg(αT ). Again, for arg(αT ) = 0 we can locate the resonance

position.

Figure 2.13(a) shows the transmission spectrum of the monoperiodic metamaterial versus

a/p. If we compare with Fig. 2.11(a), we remark that the single FP resonance shift in a

similar way with a/p. We can also notice a slight coupling with the TEM mode. This is

however, not as evident as in Fig. 2.11(b) where the TE01 resonance is much closer to

the FP resonance.

Figure 2.13(b) gives the spectrum as a function of h/p. We can clearly see the propor-

tional FP resonance shift with h/p and the appearance of higher order FP harmonics. A

careful comparison of Fig. 2.13(b) with Fig. 2.11(b) shows an interesting difference in the

evolution of the FP resonances. In Fig. 2.11(b), the FP harmonics seem to reach asymp-

totically the TE01 mode cut-off wavelength. In other word, they do not ”cross” the cut-off

wavelength. In Fig. 2.13(b) the FP harmonics location are linearly shifted for any value of

h/p. The difference between the linear and asymptotic evolution is due to the TE01 mode

h
/p

Figure 2.13: (a) Evolution of the transmission spectrum as a function of a/p for h/p = 1.0.
We can observe the slight coupling of the TEM mode with the first harmonic FP resonance
when a/p increase. (b) Transmission spectrum as a function of the thickness h/p showing
the FP resonances linear shift for a/p = 0.3.
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cut-off itself (see Fig. 2.9(a)). In the case of the rectangular apertures, for λ/p < λT E01
c

the rectangular apertures carries a single propagative mode. For λ/p > λT E01
c , this mode

becomes evanescent and therefore it prevents the far-field propagation of all FP harmon-

ics after this wavelength. For the monoperiodic pattern, the evanescent regime of the

fundamental TEM mode cannot be reached since λT EM → ∞. As a consequence, for any

value of λ/p > λr the apertures carry a propagative mode and the FP resonance steadily

shift with h/p.

So far, we have described the spectral properties of monoperiodic pattern and rectan-

gular pattern and highlighted the differences between them. We have not shown yet any

element about the polarizing properties of our structures. We now propose a simple study

to highlight the linear polarization properties that are common to both patterns.

Figure 2.14(a) shows the simple preliminary idea to study the polarizing properties of our

metamaterials. It consist in sending a linearly polarized light along the x-axis and study

the transmission and reflection responses when rotating by an angle ϕ the orientation

of the structure. Figure 2.14(b) shows the transmission and reflection responses |JT
x,x|

2

and |JR
x,x|

2 along the x-axis as a function of ϕ, the orientation of the metamaterial. The

transmission response of the structure is computed at the metamaterial resonance and

it follows the well-known cos2 ϕ law which indicates that the metallic metamaterials act as

classical linear x-polarizer. Such polarizers are usually achieved with dichroic polarizer

in the optical domain where one transverse axis is transparent while the other transverse

axis absorbs totally the electric field. However, our structure is assumed to be made

of perfectly conducting metal so that the selection of the linear polarization is made by

Einc Eout

(a) (b)

Figure 2.14: (a) Schematic principle of linearly polarized light incident on a metallic plate
which is rotated by an angle ϕ. (b) Transmission curve - in red - and reflection curve - in
blue - computed a the metamaterials resonance and confirming the classical Malus’ Law
and demonstrating the linear polarization properties of our structures.
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(a) (b) (c)

EJF
multimode

h/p=1.0h/p=0.5h/p=0.1

Figure 2.15: Transmission spectra for different values of h/p and with ay/p = 0.8, ax/p =

0.3. Each EJF transmission spectrum (in solid orange line) is compared with a scattering
matrix computation which takes into account 8 waveguide modes in the apertures.

reflection, not by absorption, as indicated by the reflection response in red curve in Fig.

2.14(b). It is then interesting to notice that, for ϕ = 90◦, the studied metamaterials act

perfect mirrors along the x-axis. It has to be noted that this angular transmission response

is rigorously the same for the monoperiodic and biperiodic metamaterials.

Furthermore, we now compare the results produced by the EJF with results given by

larger scattering matrices - which takes into account several waveguides modes - in order

to discuss the validity of the EJF model. It has to be noted that, in near-field computation,

the Bravais lattice has to be aligned along the x and y axes, so that ϕ is always kept null.

We can only vary the angle Ψ. We propose to compare the EJF results and the multimodal

method results for the following biperiodic structure where ay/p = 0.8, ax/p = 0.3 and

Ψ = 0◦. For the Fig. 2.15 to Fig. 2.18, we systematically vary the thickness h/p and

another parameter (either Ψ or ax) in order to discuss the influence of the evanescent

waveguide modes.

Figure 2.15 gives the transmission spectrum computed with the EJF (in dashed blue

curves) and compared with a multimodal method (in solid orange curves) which takes into

account 8 waveguide modes. Figure 2.15 (a), (b) and (c) give the transmission spectra

respectively for h/p = 0.1, h/p = 0.5 and h/p = 1.0. For the thickness h/p = 0.5 and 1.0

we can observe that the evanescent modes have negligible effects over the transmission

spectrum. For Fig. 2.15 (a) however, we can notice a slight shift on the entire spectrum

because of the very small thickness that allows for a coupling of the exponentially decayed

evanescent modes at the interfaces z1 and z3.

However, by choosing Ψ = 0◦, the incident electric field polarized on the x-axis excites

the evanescent modes polarized on the x-axis only. For example, the evanescent mode

polarized along the rectangle length with the highest cut-off wavelength, i.e the mode
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(a) (b) (c)

EJF
multimode

h/p=1.0h/p=0.5h/p=0.1

Figure 2.16: Same transmission spectrum comparison as in Fig. 2.15 except that Ψ = 23◦.

T E10 (with a cut-off wavelength λTE10 = 2ax) is not excited by the incident x-polarized light.

One could expect that those y-polarized evanescent modes also influence the transmis-

sion response, and especially the TE10 mode with a cut-off wavelength relatively close to

the considered spectral region. We now study the same structure except that we choose

an arbitrary angle Ψ = 23◦ and Fig 2.16 shows the corresponding comparison between

the multimodal method and the EJF. It is interesting to note that exciting the y-polarized

evanescent modes leads to almost the same comparison shown in Fig. 2.15 between EJF

results and multimodal results. The only difference is that the transmission peaks values

are slightly larger for the multimode method, especially for the peak in Fig. 2.16(a) and

the left peaks in Fig. 2.16(b) and (c). This shows the coupling of the forward and back-

ward TE evanescent modes through the metamaterials which leads to a slightly higher

transmission peak values.

Another parameter is also playing a major role in the evanescent mode contribution: the

width of the rectangular aperture ax/p. Indeed, all the evanescent modes polarized along

the rectangle’s length have cut-off wavelength that depends on this parameter while the

fundamental guided mode cut-off depends only on ay. By varying the cut-off wavelength,

we modify the exponential decay rate of all evanescent modes polarized along the rect-

angle’s length, which can lead to substantial discrepancies in the compared spectra.

Figure 2.17 shows the comparison between EJF simulated results and multimode ones

for ay/p = 0.8, Ψ = 23◦ and for ax/p = 0.45. With this larger value of ax/p the cut-off

wavelengths of all evanescent mode are closer to considered spectral region (especially

for the TE10 evanescent mode where λTE10/p = 0.9). Therefore, the exponential decay is

much smaller so that the evanescent mode couples more easily. This is confirmed by the

compared transmission spectra shown in Fig. 2.17 where the difference between EJF

and multimode method becomes much larger, even for h/p = 1.0.

On the contrary, for smaller values of ax/p, the evanescent modes cut-off wavelengths are
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(a) (b) (c)

EJF
multimode

h/p=1.0h/p=0.5h/p=0.1

Figure 2.17: Same transmission spectrum comparison as in Fig. 2.16 except that ax/p =

0.45

(a) (b) (c)h/p=1.0h/p=0.5h/p=0.1

EJF
multi-
mode

Figure 2.18: Same transmission spectrum comparison as in Fig. 2.17 except that ax/p =

0.1

pushed toward smaller wavelength and the exponential decay of those modes becomes

larger. Figure 2.18 shows the another comparison for the same metamaterial parameters

except that ax/p = 0.1 (λTE10/p = 0.2). As we can see, for such value of ax/p, the EJF is in

perfect agreement with the multimode method.

We can conclude that the EJF validity depends mainly on a set of three parameters: h/p,

ax/p and Ψ. As we already discussed earlier in this section, there are no absolute criteria

to define the EJF validity. It rather depends on the structure parameters and the error

tolerance, which mainly depends on the aimed application (i.e. applications based either

on broadband or ultra-narrow band spectrum).

2.4/ EXTENSION TO A RENEWED JONES FORMALISM

So far, we have considered metamaterials with a single propagative mode inside the

apertures. Nevertheless, the extended Jones formalism can be applied to other specific

geometries. Indeed, subwavelength aperture featuring specific symmetries such as C1,v,
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C2,v or C4,v symmetry allows for the excitation of two propagative, orthogonal and uncou-

pled mode.

On one hand, the formalism for a single metamaterial can be extended to a subwave-

length unit cell which consists of two uncoupled monomode apertures. Precisely, figure

2.19(a) shows one example of a dual rectangular aperture unit cell such that the modes

excited by the two cavities are orthogonal. This condition is satisfied for structures re-

specting C1v symmetry. Indeed, the two modes propagates independently inside the

apertures and are not coupled by evanescent waves at the metamaterial interfaces. In

this case, the dual cavity metamaterial is seen as a superimposition of two metamaterial

patterned with a single monomode aperture. On the other hand, square or almost square

apertures also support two propagative, degenerated and orthogonal modes, as shown

in Fig. 2.19 (b). In other word, for sufficiently large aperture width, the cut-off wavelength

of the second propagative mode is above the Rayleigh wavelength. For the case of per-

fect square apertures - i.e. ax = ay, the metamaterial supports two orthogonal degenerate

propagative mode. It has to be noted that for the C4v symmetry, the corresponding meta-

material does not feature linear polarization properties. For the dual-cavity C1v symmetry,

the metamaterial may or may not show linear polarization properties or anisotropy. It

mainly depends on the respective holes dimensions.

For both the dual-cavity and the square cavity, the overall Jones matrices is based on the

expression given by Eq. 2.86 and Eq. (2.87). More specifically, the transmission Jones

matrix JT
dual of the dual cavity metamaterial is a linear superimposition of two monomodal

C1v C4v

(a) (b)

Figure 2.19: Two possible example of subwavelength unit-cell supporting two orthogonal
propagative modes. (a) Subwavelength unit cell featuring a C1,v symmetry, where the C1,v
symmetry axis is represented by the red dashed line. A and B denotes the two holes
carrying the two uncoupled modes, polarized along the x and y axes, respectively. (b)
Unit-cell with a square aperture which support two degenerated mode along the x and y
axis.
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Jones matrices on the x and y axes. The Jones matrix JT
dual for such metamaterials is

expressed as follows

JT
dual =

 JT
A 0

0 JT
B

 (2.91)

where JT
A and JT

B are the transmission Jones matrices corresponding to the fundamental

mode supported by A and B, respectively. As we can see, the transmission Jones ma-

trix remains analitycal and rather simple. Such dual-cavity metamaterials can therefore

present an artificial anisotropy based the effective refractive index difference between

mode A and B. Breaking the aperture symmetry could lead to additional effect via the

coupling between the two mode. This principle has been used for the design of efficient

and compact metallic half-wave plates [58,65].

2.5/ SUMMARY

In this chapter, we have presented some basics of electromagnetism, diffraction and

metallic waveguides theories that allows us to describe the basic properties of our meta-

materials. Then, we have used a modal method which combines the different theories

and gives the scattering properties for our metallic structures. Under certain conditions,

we have then extracted Jones matrices that analytically and efficiently describes the po-

larization and spectral properties. As a preliminary results of this thesis, we have used

this extended Jones formalism to study the transmission and reflection properties of sin-

gle metallic plates. We have concluded that they act as linear polarizers in transmission

and they follow the classical cos2 ϕ law which is usually found for dichroic polarizer. We

have noticed however, that the linear polarization selection is not achieved by absorption -

as it is the case for dichroic polarizers - but by reflection at the metamaterial interfaces. As

we will see in the next chapters, this difference will be exploited in stacks of metamateri-

als. We have also shortly discussed the other possibilities offered by the extended Jones

formalism. Principally, we have seen that the EJF can also be used to model anisotropic

metamaterials with expressions that are still analytical. This possibility is however not

considered for the metamaterial stacking and is out of the manuscript’s scope. We em-

phasize that it is thanks to this analytical Jones formalism presented in this chapter that

we are able to efficiently model stacked metamaterials with short computation time.

In the next chapter, we will employ this extended Jones formalism for the simplest case

of stacked metamaterials, i.e. a stack of two metamaterials. We will study this dual stack
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structure in a polarizer-analyzer configuration to further show the differences with dichroic

polarizers. This will also allow us to highlight interesting properties and phenomena that

emerge from the stacking.



3

STACKING OF TWO METALLIC

METAMATERIALS: EXTENDED MALUS’

LAW

In the previous chapter, based on a renewed Jones formalism, we have highlighted the

polarization properties of single metallic metamaterials. We have especially seen that

they follow the usual cos2ϕ transmission response which demonstrates that they act as

linear polarizers. Commonly, the cos2 ϕ law is referred to as the Malus’ Law and it is used

to study the polarization properties of material such as birefringence or optical activ-

ity. One popular method to obtain the Malus’ Law is the polarizer-analyzer configuration

where two dichroic polarizers are cascaded. This basic configuration is, for example,

used in ellipsometry [94]. In this chapter, we would like to revisit the polarizer-analyzer

configuration with metallic polarizers. This will allow us to underline the differences that

arise between the polarizers either made of dichroic or metallic materials.

First, we will introduce the classical Malus’ Law and the polarizer-analyzer configuration.

We will then give some example of applications of the polarizer-analyzer configuration and

some recent extensions of the Malus’ Law. Second, we will review recent breakthroughs

of the Malus’ Law using metallic metamaterials. Third, we will focus on the the study

of two metallic metamaterials in polarizer-analyzer configuration. We will briefly discuss

the algorithm that accounts for the cascading of the two metamaterials. We will derive

an analytical equation - the Extended Malus’ Law (EML) - that gives the transmitted EM

intensity through the structure. We will compare it to the classical Malus’ Law. This

will help us to get more insights into the physical process occurring in the structure and

understand better the breakthroughs that are recently reported. Based on a particular

configuration featuring a sharp transmission dip, we will further propose an applications

for electro-optical sensing in the THz domain. We will also compare and confirm the

51
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validity of the results with other methods such as FDTD and a multimodal method.

Finally, we will discuss further the very nature of this sharp transmission dip that will drive

us to a complementary model to describe the complex behavior of the stacked structure

- given in the next chapter. Principally, we conclude that the narrow transmission dip

obtained by rotating the analyzer have the same feature than Fano resonances. Part of

the work presented in this chapter has been published in 2016 [95].

3.1/ REMINDER ON THE CLASSICAL MALUS’ LAW

The study of the polarization of light started much before the electromagnetic theory of

light established by James Clerk Maxwell [96]. In 1690, Christian Huygens proposed an

experiment of light passing through two cascaded calcites crystals and discovered the

polarization of light [97]. More than hundred years later - in 1808 - Etienne Louis Malus

proposed a similar experiment by sending a partially reflected light on a calcite crystal

and gave the same conclusion as Huygens. It is in the same year that Malus first gave

the transmission formula of the transmitted optical intensity - proportional to cos2 θ - of the

light beam passing through the polarizing calcite crystal - the well known Malus’ Law [98].

Moreover, Malus was following Newton’s corpuscular theory of light and proposed that

the light corpuscles had ”poles”. He was the first to coin the term of ”polarized” light.

3.1.1/ THE POLARIZER-ANALYZER CONFIGURATION

The Malus’ Law is usually observed by using a pair of dichroic polarizers in a polarizer-

analyzer configuration, as depicted in Fig. 3.1. The conventional principle is the following:

1) A normal incident arbitrary polarized light ~E0 falls on the first polarizer. The x-

component ~E0,x of the electric field is passing through the polarizer while the y-

component ~E0,y is totally absorbed by it (see Fig. 3.1).

2) After passing through this first polarizer, the linearly polarized light falls on the sec-

ond polarizer rotated by an angle θ (called analyzer)

3) The partially transmitted intensity of the output beam is given by the Malus’ Law

I = I0 cos2 θ. The other component of the beam is absorbed by the analyzer.
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Figure 3.1: 3D render of the polarizer-analyzer configuration with polarizers made of
dichroic bulk materials. The first polarizer is aligned along the x axis. The second polar-
izer (analyzer) is rotated by an angle θ from the x axis.

3.1.2/ ABSORPTION OF LIGHT BY REFRINGENT MATERIAL AND MALUS’ LAW

Following the principle of the polarizer-analyzer configuration mentioned above, we would

like to give the basic calculus to retrieve the expression of the Malus’ Law. This quick

reminder will prove useful later, when compared to the EML. The Malus’ Law can be

easily retrieved using the classical Jones formalism. Assuming a total absorption of the

dichroic polarizers along the y-axis, and an incident field ~E0, we have ~ET = JT
θ JT ~E0 and it

follows

~ET =

 cos θ − sin θ

sin θ cos θ


 1 0

0 0


 cos θ sin θ

− sin θ cos θ


 1 0

0 0


 E0,x

E0,y


= E0,x cos θ

 cos θ

sin θ


(3.1)

and

T =

∣∣∣∣∣∣ ET

E0,x

∣∣∣∣∣∣2 ⇒ T = cos2 θ (Classical Malus’ Law) (3.2)

When θ = 0◦, the transmission axes of the two dichroic plates are aligned along the x-axis

and it results in a full transmission along the x axis while the y component is totally ab-

sorbed. When θ = 90◦, the absorption axis of the analyzer is aligned on the transmission

axis of the polarizer and light is totally absorbed. Note that the determinant of a dichroic

polarizer Jones matrix det(JT ) is equal to zero. Indeed, this is due to the fact that the EM

energy is not conserved because of the polarizer absorption.
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The polarizer-analyzer configuration is used in a wide variety of experiments. For ex-

ample, it can be used to accurately control the intensity level of a light beam which is

particularly crucial for non-linear optics. As another example, a pair of crossed polarizer-

analyzer - θ = 90◦ - allows for the accurate study of optically active media [99]. Such

configuration can also be used for polarization-selective rotation of the incident light but it

is however not efficient in terms of transmission efficiency due to the dichroic absorption.

In this case, anisotropic wave plates would be preferred to manipulate the orientation of

the electric field.

Furthermore, the Malus’ Law can be used in more complex setup for a wide range of

applications. For example a displacement sensor [100] has been realized by implement-

ing an angular displacement-linear displacement converter. The principle is to convert a

mechanical displacement into an angular value applied on the polarizer. Thus the infor-

mation is retrieved by the light intensity variation measured after the fixed analyzer. The

Malus’ Law is also applied to quantum optics where the analyzer controls the probabil-

ity of a photon to have a particular polarization state or its complementary polarization

state [101].

It has to be noted that a device similar device called Malus Fabry-Perot interferometer

was theoretically investigated in 1999 by Vallet et al. [102]. This device consisted of

a Fabry-Perot interferometer between polarizer and analyzer made of crossed polarized

beamsplitters as shown in Fig. 3.2. The two mirrors of that device produce similar multiple

reflections to the ones generated by the metallic polarizers in our structure. However, the

behaviors of these two kinds of polarizing resonators are different. For the Malus Fabry-

Perot interferometer [102], the Fabry-Perot resonances and the polarization effects are

Figure 3.2: Principle scheme of the Malus-Fabry-Perot interferometer. P1 and P2 denotes
the crossed polarized beam-splitters. M1 and M2 are the two mirrors that forms the FP
cavity located between the crossed polarizers. Image taken from [102].
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independent. For the metallic metamaterials stack, the metamaterials play the role of both

polarizers and mirrors. In our study, the interdependency between the polarization and the

reflection properties drastically change the transmission response of the structure. The

unique transmission response we will observe will be the basis to propose the design of

an electro-optical sensor.

3.2/ BREAKTHROUGH OF THE MALUS’ LAW

Recently, some papers have reported Malus’ Law breakthrough using metallic metama-

terials. We can distinguish two main physical effects at the origin of the breakthrough. It

can either involve plasmons at the metallic metamaterials interfaces or a ”cavity effect”

due to the stacking of metamaterials.

3.2.1/ WITH PLASMONS

For example, Huang et al. [103] have used a pair of metallic polarizers and shown a

transmission response in complete disagreement with the classical Malus’ Law. They

have suggested the presence of an internal surface plasmon polariton (ISPP) located

(g)

(h)

Figure 3.3: (a) Principle scheme of cross polarization conversion with two orthogonally
oriented plasmonic polarizers. (b) x-z scheme of the structure where t is the thickness of
the plasmonic polarizers and h the middle layer thickness. (c) x-y view of the polarizers
where l and w respectively correspond to the length and width of the apertures milled in
the metal. (d), (e) and (f) SEM images of the fabricated structure. (g) Experimentally
measured cross-polarization transmission in very good agreement with (h) the FDTD
simulated cross-polarization transmission. Images taken from [103].
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between the two polarizers. The discrepancies with the classical Malus’ Law is due to the

ISPP which couples with the cavity modes of the polarizers holes. For some particular

configurations, they even show that a pair of crossed polarizers (as depicted in Fig. 3.3(a))

exhibit a high transmission. For such case, the classical Malus’ Law predicts a 0 in

transmission.

Figures 3.3(g) and (h) respectively show the measured and the FDTD simulated trans-

mission spectra for θ = 90◦. We can especially notice that Txy is 40% for the central

wavelength around 1000 nm and therefore demonstrate a breakthrough of the Malus

Law.

3.2.2/ WITH ”CAVITY EFFECT”

Another example is given by Zhang et. al using a three-gold-layer structure as depicted

in Fig. 3.4(a) [104]. The first polarizing layer is oriented along the x axis, the middle

layer is rotated by 45◦ and the third one is oriented along the y axis. In other words,

there is an angle of 45◦ between each layer and the classical Malus’ Law predicts a

maximum transmission of 25 %. Fig. 3.4(b) shows however the measured transmission

spectrum of the x to y converted polarization Tyx > 25% for a very broad range. The

authors suggest that a ”cavity effect” between each gold layers leads to the enhanced

transmission through the structure. Indeed, the stacking of three metallic layers provokes

multiple reflections between them and the transmission response can be enhanced via

Fabry-Perot-like resonances.

Recently, some others papers has also mentioned such Fabry-Perot-like enhanced trans-

(a) (b)

Figure 3.4: (a) Rendered view of the tri-layer structure with cross polarization conversion
effect. (b) Measured cross polarization transmission spectrum in red curve. Images taken
from [104].
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mission with similar tri-layer structure [105–107]. None of these articles, however, gives

an analytical treatment of the multi-layered structure they study.

In the next section, we make an analytical study which gives an accurate description

of the structure’s transmission response. This theoretical analysis enables us to study

further the ”cavity effect” suggested in recent papers. Furthermore, this original study

will reveal some interesting transmission properties of the polarizer-analyzer structure. In

fact, it will lead in Sec. 3.5 to an original setup for electro-optical sensing.

3.3/ ANALYTICAL STUDY OF THE POLARIZER-ANALYZER CONFIGU-

RATION WITH METALLIC POLARIZERS

In this section, we propose to give an analytical treatment of the polarizer-analyzer config-

uration formed by two metallic polarizers. The EJF (introduced in the first chapter) gives

the transmission and polarization properties of a single metamaterial while the S-matrix

algorithm accounts for the stacked metamaterials with several Floquet modes orders.

This will allow us to derive an analytical scattering matrix describing the whole stacked

structure. From this matrix, we will extract an analytical formulae for the transmission

response of the PAC - the Extended Malus’ Law (EML). We will further give an in-depth

description of this expression and highlight its main characteristics. We finally demon-

strate the important role of the multiple reflections between both polarizers.

3.3.1/ HYPOTHESIS AND DESCRIPTION OF THE STRUCTURE

Before deriving the EML formulae, we recall the hypothesis for the EJF and we specify

additional hypotheses concerning the stacked structure to preserve the validity of the

model.

We remind that we consider a normal incident light on the structure and that only one

propagative mode is excited in the subwavelength apertures. Since we consider rectan-

gular apertures for this study, the single propagative mode corresponds to the fundamen-

tal TE01 guided mode since λ is assumed to be larger than the cut-off wavelength of the

second waveguide mode (T E10 mode). We also assume that the polarizers thickness h

is large enough to neglect the coupling of evanescent waveguide modes at the polarizers

interface. Furthermore, we remind that the EJF is only valid for a far-field description. It

implies that the distance between the polarizer and the analyzer has to be large enough

in order to neglect evanescent field coupling between the polarizer and the analyzer.
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Figure 3.5: Principle schematic of the Polarizer-Analyzer Configuration (PAC)

For this study, we consider that the near-field coupling of the evanescent waveguide

modes between polarizer and analyzer is negligible when the optical distance L > λ/2

with L = nhomd where nhom is the refractive index of the homogeneous middle layer and d

is the distance between both polarizers, as shown in Fig. 3.5. We also consider that the

two metallic polarizers are perfectly parallel to each other in the (x-y) plane. We consider

the whole structure to be free standing in air. This implies that the homogeneous regions,

the middle region as well as the subwavelength apertures are filled with air (nhom = 1

unless otherwise stated). We also precise that all homogeneous regions are linear and

isotropic. For more simplicity, we consider that the polarizer and analyzer have common

geometrical parameters (i.e. ax, ay, h and p).

3.3.2/ EXTENDED JONES CALCULUS FOR THE PAC: EXTENDED MALUS’ LAW

In the first chapter, we have presented an EJF for the description of the polarization prop-

erties of single metamaterial structures. As we have seen, a single metamaterial features

reflection properties that cannot be neglected. Therefore, to account for the stacking of

metallic metamaterials, the direct multiplication of the transmission Jones matrices is not

valid and the reflection Jones matrices has to be considered as well. We will now present

the algorithm allowing us to model structures comprising two or more metamaterials. The

algorithm is known as the scattering matrix propagation algorithm (S-matrix algorithm)

given by Lifeng Li in 1996 [108]. It is an iterative process based on the Redheffer star

product [109]. For this manuscript, we choose the ”S-matrix algorithm” terminology. This

algorithm consists in computing the scattering matrix of a whole structure by using the

scattering matrix of its constituent layers. We mention that we use a derived version of

the S-matrix algorithm as established in [110,111].
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Figure 3.6: S-matrix algorithm principle. The overall structure S-matrix SFN is obtained by
iteratively ”feeding” the S-matrix algorithm with the intermediate S-matrix structure SFi−1
with the next layer matrix S i.

Let us consider an arbitrary structure made of N individual layers as depicted in Fig. 3.6.

Each layer i (where i ∈ {1,N}) possesses its own scattering matrix denoted by S i. The

S-matrix algorithm consists in computing iteratively the scattering matrix of the partial

structure SFi−1 with the scattering matrix of the next layer S i in the structure, so that SFi =

SFi−1FS i. The termF denotes the specific operator of the S-matrix algorithm. Finally, the

S-matrix of the entire structure is computed by the last step S = SFN−1FS N .

To present the S-matrix algorithm, let us consider two arbitrary scattering matrices de-

noted by S (a) and S (b). We note S (c), the scattering matrix resulting from the application of

the S-matrix algorithm. Its expression is given by

S (c) = S (a)FS (b) =

 S (c)
11 S (c)

12

S (c)
21 S (c)

22

 (3.3)

whereF is the S-matrix algorithm operator. The (2× 2) sub-blocks of the resulting matrix

S (c) are written as

S (c)
11 = S (b)

11

{
Id + S (a)

12 ZS (b)
21

}
S (a)

11 ; S (c)
12 = S (b)

11 S (a)
12 ZS (b)

22 + S (b)
12

S (c)
21 = S (a)

22 ZS (b)
21 S (a)

11 + S (a)
21 ; S (c)

22 = S (a)
22 ZS (b)

22

(3.4)

with the matrix Z =
[
Id − S (b)

21 S (a)
12

]−1
, as given in [110,111].

In our case, the PAC is seen as a tri-layer system. The first and the third layers are
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the polarizer and the analyzer, respectively. Since we consider the structure to be free

standing in air, the polarizer and analyzer are reciprocal elements. We can then simplify

the notation and we define JT = JT
11 = JT

22 and JR = JR
12 = JR

21. Therefore, the reduced

S-matrix for each polarizer is given by:

S pol =

 JT JR

JR JT

 and S ana =

 R(−θ)JT R(θ) R(−θ)JRR(θ)

R(−θ)JRR(θ) R(−θ)JT R(θ)

 =

 JT
θ JR

θ

JR
θ JT

θ

 (3.5)

where the matrices JT,R are given in the previous chapter by Eq. (2.89). The second

layer S hom denotes the S-matrix of homogeneous region between both polarizers and it is

simply a propagation operator. Its expression is given by:

S hom = S prop =

 Jprop 0

0 Jprop

 with Jprop =

 u 0

0 u

 (3.6)

where

u = exp(ik0L), (3.7)

is the propagation term between the polarizer and the analyzer interfaces, with k0 = 2π/λ.

For a tri-layer system, the S-matrix algorithm is applied twice on the reduced S-matrices

in order to obtain the S-matrix of the entire structure. The first iteration of the S-matrix

algorithm is:

SF = S polFS hom =

 uJT u2JR

JR uJT

 (3.8)

where SF is the S-matrix representing the partial system composed of the polarizer and

the homogeneous region. Then, the reduced scattering matrix of the PAC, S PAC, is ob-

tained by the second iteration of the S-algorithm applied on SF and S ana:

S PAC = SFFS ana =

 JT
PAC JR

PAC

JR
PAC JT

PAC

 (3.9)

where JT,R
PAC are transmission and reflection Jones matrix of the PAM. The matrix JT

PAC is

given by

JT
PAC = uJT

θ

[
Id − u2JRJR

θ

]−1
JT (3.10)

where the inversion of
[
Id − u2JRJR

θ

]
give

[
Id − u2JRJR

θ

]−1
=

1
D

 1 − u2(1 − αR sin2 θ) −u2(1 − αR)αR cos θ sin θ

−u2αR cos θ sin θ 1 − u2(1 − αR)(1 − αR cos2 θ)

 (3.11)
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with

D = 1 + u2(u2 − 1)(1 − αR)(α2
R sin2 θ − 1) (3.12)

Substituting Eqs. 3.11 and 3.12 in Eq. 3.10 leads to:

JT
PAC = α (θ, λ, L) JT

θ JT (3.13)

where the term α is expressed as

α(θ, λ, L) =
α2

T (λ)u

γ − u2 [1 − αR(λ)]2 (3.14)

with

γ =
1 − u2

[
1 − α2

R(λ) sin2 θ
]

1 − u2 (3.15)

It is interesting to compare the extended Jones formalism for metallic polarizers with the

classical Jones formalism for dichroic polarizers. As for the classical Jones formalism, we

find the typical multiplication of Jones matrices JT
θ JT . However, we note the appearance

of an additional term α in the extended Jones calculus for metallic polarizers. This term

accounts for the reflection properties of the metallic plates.

The analytical expression of the EML is directly deduced from Eq. (3.13) by considering

that the transmitted electric field is given by ~Et = JT
PAC

~Einc. It leads to

T = |α(λ, L, θ)|2 cos2 θ Extended Malus’ Law (3.16)

where T is the transmission coefficient of the polarizer-analyzer structure.

Compared to the classical Malus’ Law (T = cos2 θ) the modulation term |α(θ, λ, L)|2 in the

EML expression, accounts for the additional properties of the two metallic metamaterials.

First, it takes into account the spectrally resonant properties of the metallic plates (via λ

dependency). It thus ensures a perfect transmission through the structure at those res-

onance wavelengths. Second, it takes into account the optical distance L between the

polarizer and the analyzer (via the propagation term u). Indeed, the reflections induced

by both polarizers implies that the entire structure acts as a resonant cavity. Therefore,

the optical length L of the cavity is a parameter that plays an important role in the trans-

mission response of the structure. We remind that, in the classical Jones formalism, the

distance between polarizers is not taken into account because the reflection of the polar-

izers is negligible. Third, the modulation term α also depends on the angle θ and shows

the interdependency between the polarization and reflection properties. Finally, the trans-
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mission is also modulated by the classical term cos2 θ that results from the classical Jones

matrices multiplication (JT
θ JT ).

THE MULTIPLE REFLECTIONS INTERPRETATION

It is interesting to take a closer look at the analytical expression of α in Eq. (3.14). We can

especially notice the term αR(λ) representing the reflection properties of the plates. This

means that the term α is accounting for the multiple reflections process that takes place

between the polarizer and the analyzer. This implies that, unlike dichroic polarizers, there

is an interaction between both metallic polarizers via the multiple reflections. Therefore,

it makes senses that the distance L (via u in Eq. (3.14)) and the rotation angle θ (via sin θ

in Eq. (3.15)) play a role in the modulation of the transmission. Furthermore, the different

modulation parameters λ, θ and L are interdependent. Indeed, in Eq. 3.15, we can notice

the term u2
[
1 − α2

R(λ) sin2 θ
]

in the numerator where the three parameters are linked to

each other. This leads to a rather complex transmission response, as we will see below

in the numerical investigation (see Sec. 3.4).

The EJF also allows us to compute the classical Malus’ Law obtained with dichroic polar-

izing plates with perfect absorption. We first give the general expression of the reflection

Jones matrix of a polarizer oriented along the x-axis:

JR
d =

 αR − 1 0

0 β

 (3.17)

where β is the reflection coefficient of one polarizer along the rectangle length axis, cal-

culated in accordance with the absorption along this axis only. For metallic polarizers,

β = −1 (no absorption), Eq. (3.17) becomes identical to Eq. (2.89). For dichroic polarizer,

β = 0 (total absorption along the rectangle length axis) which means that the multiple

reflections in the PAC are reduced to the ones oriented along the rectangle width axis

(term αR−1 in JR
d ). These reflections are weak for most of the natural dichroic plates. This

leads to the expression of αd (instead of α) in the case of the classical Malus’ Law, when

the multiple reflections are not neglected (β = 0 and αR ≈ 1 with αR , 1):

αd(θ, λ, L) =
α2

T (λ)u

1 − u2 [1 − αR(λ)]2 cos2 θ
−→
αR→1

α2
T (λ)u (3.18)

This equation highlights the discrepancies between the factor αd found for a pair of

dichroic polarizers and the modulation factor α previously obtained for a pair of metal-

lic polarizers (Eqs. (3.14) and (3.15)). We see that αd depends on θ, but the factor
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u2 [1 − αR(λ)]2 relating to the multiple reflections may be neglected for the special case of

highly absorbing dichroic polarizers (αR → 1). On the contrary, for metallic polarizers, the

term u2
[
1 − α2

R(λ) sin2 θ
]

cannot be neglected in Eq. (3.15). Indeed, we know that αR ≈ 1

when |αT | = 1 due to the energy balance criterion:
∣∣∣α2

T − (αR − 1)2
∣∣∣ = 1 (see Fig. 3 in [65]).

Consequently, and contrary to the EML for metallic polarizers, we can assume that αd is

independent of θ, as it is commonly accepted for dichroic polarizers. Therefore, the trans-

mission expression for dichroic polarizer takes the form of the classical Malus’ Law which

corresponds to the single pass propagation through the PAC as shown in Eq. (3.18).

3.4/ NUMERICAL ANALYSIS OF THE POLARIZER-ANALYZER CON-

FIGURATION

To further study the properties of the polarizer-analyzer structure, we propose a numerical

investigation of the transmission of the PAC. We will especially focus on the parameters L

and θ that appear in the modulation term α. This will enable us to highlight the additional

properties of the PAC due the reflection of the metallic polarizers. As we have mentioned

in section 3.3.1, the rectangular apertures of the polarizer and the analyzer are kept iden-

tical. For this whole numerical investigation, we set the dimensions of the aperture’s

length ay/p = 0.9 and aperture’s width ax/p = 0.45. These values are chosen such that,

the radiative losses of the apertures are maximized in order to achieve a broadband trans-

mission. Moreover, we remind that the width ax/p value is such that only the fundamental

mode can propagate in the apertures at wavelengths located above the Floquet mode

cut-off in order to satisfy the monomode regime and the extended Jones formalism. In

other words, we ensure that the cut-off wavelength of the second cavity mode is smaller

than the first Floquet mode cut-off wavelength. The thickness is h/p = 1 so that h > λ/2 for

the considered spectral region. This ensures that evanescent waveguide modes do not

couple to each other through the apertures. The transmission coefficient of the structure

T is given by

T =
∣∣∣JT,x,x

PAC

∣∣∣2 +
∣∣∣∣JT,y,x

PAC

∣∣∣∣2 (3.19)

First, we compute the transmission spectrum for d/p = 1.0 and θ = 0◦, as shown in Fig.

3.7(a) by the red curve. It is interesting to compare it with the dashed blue curve which

gives the transmission spectrum for a single metallic polarizers. We notice that we retrieve

the transmission maxima that are due to the resonance of one metallic polarizer. We also

remark additional transmission maxima that are due to the multiple reflections between

both polarizers. In fact, such additional peaks confirms the ”cavity effect” discussed in
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Figure 3.7: (a) Comparison of the transmission spectrum of a single metamaterial - in
dashed blue curve - and a polarizer analyzer stack - in red curve. (b) Normalized trans-
mitted electric intensity spectra of the PAC versus d/p for θ = 0◦. The parameters are:
ax/p = 0.45, ay/p = 0.9 and h/p = 1.0. Vertical lines show resonances of |α| (T = 1). The
resonance at λ/p = 1.434 is related to the first harmonic of the Fabry-Perot resonance
of the fundamental mode guided inside the rectangular apertures (FP1st). The other res-
onance at λ/p = 1.69 corresponds to the cut-off of the same mode (CO). The FPPAC

branches, in dashed red line, denotes the Fabry-Perot resonances located between the
polarizer and the analyzer.

the previous section and in [104] that are FP-like resonances. Then, we calculate the

spectrum of the electric intensity transmitted through the entire structure as a function of

the distance d/p for θ = 0◦ (T = |α|2) as shown in Fig. 3.7(b), in order to study further the

FP-like resonances of the PAC. On the one hand, we see that the polarizers FP harmonics

and the cut-off resonance of the TE01 mode (highlighted by the vertical dashed lines)

(a) (b)

Figure 3.8: (a) Spectral phase of the modulation term α for a distance d/p = 1.0 and for
θ = 0◦. (b) Evolution of the spectral phase as a function of the distance d/p for θ = 00◦
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are not affected by the distance d between polarizer and analyzer. On the other hand,

the additional FP-like resonances (FPPAC, in oblique dashed lines) spectral location are

linearly proportional to the distance d, as it is expected for FP-like resonances. Figure

3.8(a) gives - in red curve - the phase arg(α) of the modulation term α for θ = 0◦ and

d/p = 1.0 which confirms the FP-like resonance location (for arg(α) = 0 mod π). It is

compared with the phase of αT given by the blue curve. Inspection of Fig. 3.8(b) reveals

the FPPAC branches highlighted in Fig. 3.7 for arg(α) = 0 and arg(α) = −π.

Figure 3.9(a) shows the transmission spectra as a function of θ for L/p = 1. It reveals that

the wavelengths of transmission maxima are affected by the variation of θ (dashed lines).

Figure 3.9(b) shows the transmission at fixed resonance wavelengths (taken for θ = 0◦),

marked as solid lines in Fig. 3.9 (a). It is interesting to compare the two transmission

responses, in Fig. 3.9(b), with the classical Malus’ Law (in dashed black line). It shows

that the multiple reflections strongly modifies the PAC transmission as a function of θ. The

results obtained with our analytical model are in good agreement with results obtained

with homemade FDTD code [32] given by the circles. The FDTD simulations were done

with a uniform spatial mesh of p/200 along the x, y and z axes, and a temporal resolution

respecting the stability criterion.

As mentioned earlier, the distance d/p can drastically modulate the transmission re-

sponse of the PAC. More importantly, θ and d are two interdependent parameters, as

clearly shown in Eq. (3.14) and Eq. (3.15). Now, we would like to vary both θ and d/p,

while λ is fixed, in order to explore further the interdependency of θ and d. We now fix λ at

�������
������

Classical Malus Law

: FDTD

: EJF

(a) (b)

Figure 3.9: (a) Normalized transmission spectra versus θ for d/p = 1 (see fig. 3.7 for
other parameters). The curved dashed lines represent the trajectories of the resonance
of α (|α| = 1). (b) Normalized transmission computed for fixed values of λ/p (blue and red
vertical solid lines in (a)) and compared with the classical Malus Law (dashed black line).
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d/p=1.435
d/p=1.793

: FDTD

: EJF

(a) (b)

Figure 3.10: (a) Normalized transmitted intensity versus L/p and θ for λ/p = 1.434 (see
fig. 3.7 for other parameters). (b) Normalized transmission computed for fixed values
of L/p (blue and red vertical dashed lines in (a)) by comparison with the classical one
(dashed black line).

a resonance wavelength λ/p = 1.434 and we plot the transmission response as a function

of both θ and d/p. As we can see in Fig. 3.10(a), we numerically observe a very strong

modulation of the θ-transmission response when d/p varies. In fact, with the help of Eqs.

(3.14) and (3.15), we can distinguish two contrasting cases:

1. When u2 = 1 which is equivalent to d = mλ/2 where m is a natural integer, we

observe an infinitely narrow angle Malus’ Law where HWHM � π/4. Precisely, the

transmitted electric intensity drops to 0 for this particular value of d/p when θ , 0◦.

Indeed, this is explained by the fact that the term γ in eq. (3.15) diverges when

θ , 0o and therefore |α| tends to 0. For θ = 0o, we clearly see that γ = 1. This implies

that α = α2
T (λ)/α2

R(λ) approximately equals to 1 at maxima of αT (Iout ≈ 1). For clarity,

the Malus’ Law is shown in fig. 3.10(b) for d/p = 1.435 (red line) and not exactly at

d/p = 1.434 (u2 = 1 for m = 2) for which the transmission results in a Kronecker

function:

α(θ) = δθ,0 (3.20)

2. When u2 = −1, which is equivalent to d = λ/4 + m′λ/2 where m′ is a natural integer,

we observe a broad angle Malus’ Law. The transmitted electric intensity remains

high for a wide range of θ. The transmission as a function of θ is shown in Fig.

3.10(b) (blue curve) for L/p = 1.793 (u2 = −1 for m′ = 2). Such a transmission can

be seen as a complementary Airy-like function (HWHM > π/4) with a near-unity

value for small θ. The following equation gives the simple expression of α for the
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blue line in fig. 3.10 (b), assuming that αR = 1 (the computed value being exactly

equal to 1.0077 + i0.1307):

α(θ, λ) = i(−1)m′ α2
T (λ)

1 − 1
2 sin2 θ

(3.21)

Consequently, both narrow and broad angle EML can be achieved by tuning d.

(a) (b)

Figure 3.11: (a) Transmission spectrum as a function of the separation distance d/p and
for θ = 10◦. (b) Evolution of the spectral phase with the distance d/p for θ = 10◦.

Figure 3.11(a) shows the evolution of the transmission spectrum as a function of the

of the separating distance d for a rotation angle θ = 10◦. As we can observe, sharp

transmission dips appear and are located at λ/p = m
d/p

2
. It actually to corresponds to a

FP interference condition for a light in normal incidence. This shows the important role of

the multiple reflections and confirms the ”cavity effect” interpretation mentioned in some

recent papers [105–107]. By comparison of Fig. 3.11 to Fig. 3.7(b), we can also remark

that the rest of the spectra is not affected by the rotation of the analyzer. Figure 3.11(b)

shows the corresponding evolution of the phase of the modulation term α. We also see

additional sharp branches at the condition λ/p = m
d/p

2
and for which arg(α) = −π. As for

the transmission spectrum, the rest of the spectral phase is not modified by the rotation

of the analyzer.

Figure 3.12(a) shows three transmission spectra at a fixed separation distance d/p = 1.69,

which coincide with the cut-off wavelength resonance of the TE01 guided mode in the

metallic metamaterial. The three transmission spectra are obtained for different values of

θ. As we can conclude from Fig. 3.12(a), the transmission dip width can be controlled by

θ. The quality factor Q of the transmission dip as a function of θ is shown in log-scale in

Fig. 3.12(b). We mention that the quality factor is computed in free oscillation regime for

the Fig. 3.12(b). It is striking to see that the quality factor Q theoretically diverges when

θ tends to 0◦. We also observe that, in log-scale, the relation between Q and θ is linear.
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Figure 3.12: (a) Thee transmission spectra taken at d/p = 1.69 in blue, orange and yellow
for θ = 5◦, θ = 10◦ and θ = 15◦ respectively. (b) Quality factor Q as a function of the angle
θ in degree (where both axes are in log-scale).

Such linearity of the curve allows us to write:

Q =
mAm

θBm
, ∀θ , 0◦ (3.22)

where A and B are two empirical and positive parameters, and θ is expressed in degree.

We have deduced that B = 2, and A = 1.25 × 104 degrees2, for m = 2.

Such phenomenon could be used for the design of tunable notch filter where the position

and the width of the transmission dip is controlled by the relative position and rotation of

the analyzer. An important point to mention is that such tunability does not originate from

an active medium but from the relative arrangement of the structure itself (i.e. the angle

and the distance between the metallic polarizers). In the next section, we propose some

applications based on this transmission dip effect.

3.5/ APPLICATIONS - ENGINEERING THE MULTIPLE REFLECTIONS

FOR ELECTRO-OPTICAL SENSING

We would like to take advantage of the sharp transmission dip previously observed in

Fig. 3.11(a). Instead of shifting the position of the analyzer, one can imagine the middle

homogeneous layer to be composed of a dispersive medium. For example, one can think

of a piezo-electric medium or an electro-optical medium for designing compact electric

field sensors. Furthermore, the metallic polarizer and analyzer can simultaneously play



3.5. ELECTRO-OPTICAL SENSING APPLICATION 69

Electro-optical
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electrode n°2
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Polarizerelectrode n°1

Figure 3.13: 3D rendered view of the principle of an electro-optically sensitive device.
An electro-optical medium is sandwiched by the polarizer and the analyzer that are also
playing the role of electrode 1 and 2 respectively.

the role of electrode and an electric voltage V can be applied in order to tune the refractive

index of the material. Such design is summarized in Fig. 3.13.

We first define L = nhomd as the optical path length separating the polarizer and the ana-

lyzer. In the configuration depicted in Fig. 3.13, d is the electro-optical medium thickness

and nhom its refractive index. Contrary to the previous section, d is now fixed while nhom

is the variable via the electro-optical effect of the middle medium. Second, we want to

define the sensitivity S of the structure, expressed in µm/RIU (Refractive Index Unit). On

the sharp transmission dip branches, the sensitivity is given by

S =
∆λ

∆nhom
, ∀θ , 0◦. (3.23)

However, there is a major difference between tuning the distance d (as we did in the

previous section) and tuning its corresponding refractive index nhom. Indeed, when the

refractive index nhom varies, it provokes a proportional shift of the cut-off wavelength of

the TEM Floquet modes λT EM/p = nhom. This is illustrated by Fig. 3.14(a) which shows

the evolution of the transmission spectrum with the refractive index nhom for the same

geometrical parameters, with θ = 10◦ and for d/p = 1.0. The dashed purple line denotes

the TEM Floquet mode cut-off wavelength λT EM. If we compare it to Fig. 3.11 (a), we do

not observe a sharp transmission dip any more because, for m = 2, the FP resonance

condition λ/p = L/p = nhomd/p = nhom matches the TEM Floquet mode cut-off condition

λT EM/p = nhom. In other words, the transmission dip is superimposed to the TEM Floquet

modes cut-off and is therefore not exploitable. This is confirmed by Fig. 3.14(b) giving the

transmission spectrum for nhom = 1.69 where we can clearly see the very low transmission
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(a) (b)

Figure 3.14: (a) Evolution of the transmission spectrum with the variation of the refractive
index nhom of middle layer with px = py = p and θ = 10◦. The dashed diagonal line
denotes the TEM Floquet mode cut-off wavelength λT EM/p = nhom. (b) Corresponding
transmission spectrum at nhom = 1.69.

values around the dip located at λ/p = 1.69 and it therefore not exploitable for the sensing

application.

In order to circumvent this superimposition, we design another subwavelength unit cell to

offset the TEM Floquet mode cut-off wavelength toward shorter values. We first consider

two different periods along the x and y axes. Therefore we now consider px and py and

we keep py as a reference to normalize all geometrical values. A simple solution to offset

λT EM is to reduce px without modifying any other geometrical parameters. Knowing that

ax/py = 0.45, we choose px/py = 0.5 and keep the same value for the other geometrical

parameters - with the same distance d/py = 1.0 and the same angle θ = 10◦ - in order

to analyze the influence of px only. By doing so, we reduce, almost to the maximum

possible, the size of the bi-periodic cell to the size of its rectangular aperture.

Figure 3.15(a) shows the transmission spectrum as a function of the refractive index. We

can note that the transmission dips reappears following the FP condition L = mλ/2. This

is explained by the fact that the higher order Floquet modes polarized along the x-axis

are now evanescent in considered spectral region. We note however that the sharpness

of the dips is slightly reduced compared to the dip observed in Fig. 3.11 and Fig. 3.12.

For example, Fig. 3.15(b) shows the transmission spectrum when nhom = 1.5 and we

observe that the dip sharpness is degraded compared to Fig. 3.12(a). For example,

in Fig. 3.15(b) the transmission maxima located around the dip (at λ/p = 1.5) are not

reaching unity any more. Indeed, by reducing px we only reduce the cut-off wavelength

of the higher-order Floquet modes polarized along the x axis only. The first higher order

Floquet mode polarized along the y axis is still propagative between the metallic plates.
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Figure 3.15: (a) Evolution of the transmission spectrum with the variation of the middle
layer refractive index nhom for px/py = 0.5, d/p = 1.0 and θ = 10◦. (b) Corresponding
transmission spectrum when nhom = 1.5

Nonetheless, such dip would be exploitable in view of sensing application.

More drastic designs of the unit cell geometry could improve the sharpness of the dip, but

it would be detrimental to the bandwidth and the refractive index range on which the dips

appear. It leads to a compromise between the working bandwidth - and the refractive

index range - and the dip sharpness. We remind that Maxwell’s equations are scale

invariant and it directly implies that such design can be applied for any electromagnetic

regions, from the visible to the microwave domain.

We choose to study this configuration in the THz domain because metals in this region

can be considered as pec [112] and it thus perfectly satisfies the EJF framework. For

this spectral region, the refractive index of most of the materials is between 3 and 4

[113]. Unfortunately, the bi-periodic metamaterials is not suitable for designing a PAC

exhibiting a transmission dip branch for such range of refractive indices. Indeed, as it

can be deduced from Fig. 3.15, the sharpness of the branch matching the refractive

indices located between 3 and 4 is very low. It is therefore not optimized for high quality

sensing. This is due to the cutoff wavelength of the fundamental cavity mode which limits

the working bandwidth of the device. In other words, it means that the working bandwidth

is between the TEM Floquet mode cut-off wavelength and the cutoff wavelength of the

TE01 mode. Therefore, by reducing the period px to push backward the TEM Floquet

mode cut-off wavelength, we also reduce greatly the transmission bandwidth of the PAC.

Fortunately, there is a simple alternative to the bi-periodic metamaterial limitation which is

the mono-periodic metamaterial. We recall from the previous chapter that mono-periodic

metamaterials exhibit a TEM mode with a corresponding cutoff wavelength which is lo-
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m=1

m=2

Figure 3.16: Transmission spectrum as a function of nhom for mono-periodic metamaterial
where the thickness is h/p = 5/3 , the aperture width is a/p = 2/3 and the distance
between the polarizer and the analyzer is d/p = 5/3 and θ = 10◦.

cated at infinity: λcut-off → ∞. Then it is possible to shift the rayleigh anomaly by reducing

the value of the period without limiting the working bandwidth. However, mono-periodic

polarizers are characterized by only 3 parameters (a, p and h) - compared to 5 for the

bi-periodic case (ax, ay, px, py and h) - and it limits the possibilities for the design.

As an example, we propose the following design using mono-periodical metamaterials.

The thickness is h/p = 5/3, the aperture width is a/p = 2/3 and the distance between the

polarizer and the analyzer is d/p = 5/3. We keep an angle θ = 10◦.

Fig. 3.16 shows the transmission spectrum of the PAC as a function of the refractive index

nhom. As we can see, transmission dip branches with high sharpness appears. We can

also notice the influence of the TEM Floquet mode cut-off shift at the top left corner of

Fig. 3.16. In fact, the dip branches are superimposed to the FP-like resonances that are

established between the two metamaterials. We propose to focus on the middle branch

m = 2 since it has a working refractive index range nhom located between 2 and 4 with

a very sharp dip. Note that the device can be adapted lower refractive index range by

considering the branch below (m = 1).

For a detector working, for example, between 1 THz (λ/p = 6.67) and 2 THz (λ/p = 3.37),

we deduce that p = 45 µm and ∆λ = 150 µm. It follows that S = 75 µm/RIU. Finally,

we are interested in finding a suitable value of θ to obtain a quality factor matching the

resolution of THz spectrometers under the Rayleigh criterion. Hence, we deduce the

minimum variation of the refractive index (∆nhom)min which can be detected by the device.

Heterodyne detectors in THz domain offer spectral resolution [114] (R = ∆λ/λ) equal to
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3.3 × 10−6. Thus, according to Eq. (3.22), to reach Q = 1/R = 3 × 105, θ must be equal

to 0.4◦. With such a quality factor, we derive from Eq. (3.23) that (∆nhom)min = λ/(S .Q) =

1.33 × 10−5.

In this section, we have designed a very efficient system for THz applications (S =

75µm/RIU, Q = 3.105). Ranjan Singh et al. [115] has experimentally proposed a meta-

surface reaching S = 57µm/RIU and Q = 28. We have to keep in mind that our numerical

results are obtained from a theory which assumes rigorously identical apertures and in-

finite periodicity of the metallic polarizers, in addition to a perfect parallelism between

the polarizer and the analyzer. We also assume an isotropic and lossless EO material.

Breaking these assumptions may affect the performances of the proposed system.

3.6/ STUDY OF THE INFLUENCE OF THE EVANESCENT WAVEGUIDE

MODES

So far, we have studied the polarizer-analyzer configuration with an efficient and ana-

lytical formalism. We have established that the polarizer-analyzer structure can exhibit

sharp and tunable transmission dips. However, in the EJF framework, we make the as-

sumption that the evanescent waveguide modes are negligible in far-field propagation.

We have seen that the numerically observed sharp dip originates from a complex mul-

tiple reflections process. We should now confirm the presence of those dips when the

evanescent waveguide modes are included in the simulation. To this aim, we apply the

S-matrix algorithm on larger scattering matrices that take into account a larger number

of waveguide mode. For this multi-modal simulation, we take into account 8 waveguide

mode in total, i.e. the fundamental TE01 guided mode and the following 7 evanescent

waveguide modes, the higher order modes being totally negligible.

Figure 3.17(a) shows the evolution of the transmission spectrum with the distance d/p

for θ = 10◦ and for 8 waveguide modes. It is to be compared with Fig. 3.11(a). We can

still remark the sharp transmission dips appearing in the spectra. We can also notice

that the dips are shifted toward larger wavelengths. To clearly study the influence of

the evanescent waveguide modes in the PAC, we give two comparisons between the

Extended Jones Formalism simulation and the multimodal simulation in Fig. 3.17(b) and

(c). In Fig. 3.17(b) the polarizer and analyzer are aligned (θ = 0◦) and no transmission

dip appears. We can observe a very good agreement for the two spectrum and validates

the far-field approximation. In Fig. 3.17(c), however, when the analyzer is rotated by an

angle θ = 10◦, we can clearly notice that the dip strongly shifts while the remaining part
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Figure 3.17: (a) Evolution of the transmission spectrum with the separation distance d/p,
for θ = 10◦ and when the evanescent waveguide modes are taken into account. (b) Com-
parison of the EJF and multimodal-simulated transmission spectra when the polarizer and
analyzer are aligned and (c) when the analyzer is rotated by θ = 10◦ at d/p = 1.69.

of the two spectra are still in good agreement. It seems surprising to see that only the

transmission dip is strongly dependent on the number of considered waveguide mode.

This intriguing results is not so trivial to explain and deserves a thorough study in the

future.

Now we would like to compare the extended Jones formalism with the near-field sim-

ulation when we break the far-field approximation made in Sec. 3.3.1. For the next

simulation, we do not consider anymore that L > λ/2. We again consider the structure

free-standing in air so that only the distance d varies and d < λ.

Figure 3.18 shows the evolution of transmission spectrum for d/p varying from 0.1 to

1.0 for θ = 10◦. Fig. 3.18(a) corresponds to the EJF-simulated transmission spectra

and Fig. 3.18(b) is the simulation taking into account the near-field propagation of the

evanescent waveguide modes. As in Fig. 3.17 we can clearly notice that the transmission

dip are shifted if we consider the near-field or not. In addition to the shift, we also remark

discrepancies in the overall transmission spectra for d/p < 0.6. It is of course expected

since the near-field becomes more and more impacting for shorter distance between the

polarizer and the analyzer. Nonetheless, it is still possible to exploit the transmission dip

which corresponds to d ≈ λ/2 (m = 1). This would lead to a structure with a smaller

distance between polarizer and analyzer and thus, a more compact device for sensing.

Moreover, the sensitivity S =
∆λ

∆d
would be larger than the one we have used in Sec. 3.5.

We can conclude that the spectral shift due to the evanescent waveguide modes has to
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be taken into account when designing sensitive device working at a precise wavelength

for the transmission dip. The impact of the near-field is, however, rather small on the

remaining part of the transmission spectra, and the dip’s width - i.e the quality factor -

is not affected as well. Consequently, the near-field is not detrimental to the design of

sensitive device based on transmission dips. It even allows the design of more compact

and more sensitive structure by reducing. In the next section, we will neglect again the

near-field in order to exclusively focus on another aspect: the finite conductivity of the

metal.

3.7/ METAL WITH FINITE CONDUCTIVITY

We have considered metamaterials made of metal having an infinite electrical conductiv-

ity (σ→ ∞). While this assumption is very close to reality for spectral regions such as the

THz or the radio frequencies, it is however not in perfect agreement with the visible or the

near infrared domains (NIR). In this section, we propose to compare our analytical for-

malism with a homemade RCWA (Rigorous Coupled Wave Analysis) code which account

for the high but finite conductivity of a concrete metal: silver. The dispersion of the silver

is then given by a Drude-Lorentz model [116]. We mention that this homemade RCWA

code allows us to model monoperiodic metamaterials only. From the RCWA computation

we extract the corresponding transmission and reflection Jones matrices of the monope-

riodic metamaterial and we use the S-matrix algorithm to model the stacked structure. As

for the EJF, the extracted far-field Jones matrices enables the rotation of the analyzer.

(a) (b)

d

Figure 3.18: (a) EJF simulated transmission spectra when d/p varies from 0.1 to 1.0 and
for θ = 10◦ (b) Multimodal simulated transmission spectra for the same configuration.
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(a) (b)

d

Figure 3.19: (a) EJF-simulated transmission spectra as a function of d/p for θ = 10◦ with
mono-periodic PEC metallic metamaterials. (b) RCWA simulated transmission spectra
with mono-periodic silver metamaterials.

To illustrate our study, we would like to give a basic example of transmission dips working

around the telecommunication window at λ = 1.55 µm. We propose the following design

for the geometry of the mono-periodic metamaterials. The period is p = 1 µm, the thick-

ness is h/p = 0.555 and the aperture’s width is a/p = 0.5 in order to get a resonance peak

around 1.55µm (due to the first FP harmonic established along the polarizers thickness).

We consider the polarizer and the analyzer to be freestanding in air so that nhom = 1.0 and

θ = 10◦.

Figure 3.19 gives the transmission spectra as a function of the distance d/p simulated

by (a) the extended Jones formalism and (b) the homemade RCWA for finite conductivity

metallic metamaterials. As for the the near-field comparison in Sec. 3.6, the transmission

dips are shifted towards larger wavelength when taking into account the finite conductivity

of the metal. This is explained by an additional phase shift at each reflection in the

cavity formed by the two metamaterial polarizers. The dip is shifted toward the higher

wavelength because the finite conductivity induces a ”skin effect” at each reflection and

it thus increases the cavity size. The same tendency is observed for the FP resonances

located between both polarizers since they also undergo the same skin effect at each

reflection. However, the peak located at λ/p = 1.55 does not suffer a noticeable shift

since the skin effect does not influence the FP harmonics established along the polarizers

thickness. Unlike the previous section however, the dip sharpness seems to be altered

by the finite conductivity.

Figure 3.20 shows (a) EJF-simulated and (b) RCWA simulated transmission spectrum

with a transmission dip located at λ = 1.55 µm. It highlights the impact of conductivity on
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the sharpness of the transmission dip. This is actually due to the absorption of the metal

which directly limits the multiple reflection effects in the structure.

Perfect Electric
Conductor Finite Conductivity: Silver

� = 10°
d d=1.55

� = 10°
=1.375

(a) (b)

Figure 3.20: (a) EJF computed transmission spectrum for θ = 10◦ and d/p = 1.55 (b)
RCWA computed transmission spectrum for θ = 10◦ and d/p = 1.375 and for a finite
conductivity of silver

A brief summary of the previous section and this present section mainly point out that

spectral shift has to be expected for practical fabrication. As expected, taking into account

the metal finite conductivity leads to a dip sharpness decrease. For the future, it would be

interesting to combine several imperfections to further study the potential degradations

of the excited resonant dip. In the next chapter, we give more details on the observed

spectral shift and on the transmission dip degradation.

3.8/ CONCLUSION AND DISCUSSION

In summary, we have given an analytical formalism of an extended Malus’ Law with metal-

lic polarizers for the terahertz regime. Our theoretical investigation highlights the impor-

tant discrepancies with the classical Malus’ Law. This is due to the θ dependency of the

modulation factor as well as the multiple reflections inside the PAC which are tunable

via the optical path L. Indeed, for specific values of L one can obtain broad angle or

narrow angle Malus’ Law. Then, we designed a structure with high sensitivity and high

quality factor for characterizing the EO response of terahertz an EO material based on

an extremely narrow angle Malus’ Law. This analytical model of a two-layer stack of

subwavelength structures provide new theoretical insights into the interactions between

polarizing metamaterials. This simple structure can be seen as the basic component for

multi-layered and more complex structures. In future works, we will use our analytical

model as a platform to propose other applications such as high efficiency polarization
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conversion, high-Q filtering, and ultra-sensitive polarimetry. It is important to note that we

have given only an analytical explanation of the appearance of the transmission dip. We

have not however give a complete description of its physical origin. We have studied the

multiple reflection process which is - without any doubt - a key element to the transmission

dips, but we have not given a precise physical model that fully explains this phenomenon.

As a final remark for this conclusion, Fig. 3.21 shows transmission spectra for different

locations of the dip and for θ = 15◦. For Fig. 3.21(a) and (b), the dips are located at

the resonance of the single metamaterials, either at λ/p = 1.434 or at λ/p = 1.69. In

this configuration, we observe that the dip has a inverted Lorentzian shape. The reader

can also refer to Fig. 3.12(a) to have better view on this Lorentzian dip. In Fig. 3.21(c)

and (d), the dips are not located at metamaterials resonances. In this case, we can

clearly notice an important variation in the shape of dip. Indeed the transmission dip are

directly preceded or followed by a sharp maximum. In other word, the dip gets a highly

asymmetrical shape. It is striking to see that transmission maxima can even appear in

region of the spectrum where the transmission is ”supposedly” low. For example, in Fig.

3.21(d), a sharp transmission maxima appears in a low-transmission part of the spectrum

Transmission dip
located at

metamaterials resonances

Lorentzian shaped dip

Transmission dip
not located at

metamaterials resonances

Asymetrically shaped dip
featuring a maximum (min)

followed by a minimum (max)
in transmission

=1.434 =1.69

=1.3 =1.8d

d d

d

Figure 3.21: Transmssion spectra for θ = 15◦ and for (a) d/p = 1.434, (b) d/p = 1.69
(c) d/p = 1.3, (d) d/p = 1.8. The spectrum (a) and (b) in the green area feature sym-
metrical Lorentzian transmission dip while the yellow area spectrum (c) and (d) exhibit
asymmetrically shaped transmission dip that are typically Fano resonance signature.
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where T < 10%.

This kind of sharp and asymmetric resonances belongs to the family of Fano resonances.

In classical electromagnetism, Fano resonances usually arises from the coupling of a dis-

crete state with a continuum-like state. This important insight leads us to the next chapter

in which we study in detail the physical interpretation and the nature of this phenomenon.

For this, we need to reconsider our point of view on the structure. Instead of considering a

pile of two metallic metamaterials and focusing mainly on its transmission properties, we

should now definitely adopt the point of view of a Fabry-Perot resonator which features

very specific polarization properties.





4

FANO RESONANCES IN STACKED

METALLIC METAMATERIALS

As the results of the previous chapter suggest, the multiple reflections between the metal-

lic polarizers play an important role in the structure’s transmission response. In some

particular configuration, it even seems to lead to a special kind of resonances: the Fano

resonances. If we want to deeply understand this phenomenon however, we should clarify

and study in more details the multiple reflections process. Indeed, this ”multiple reflec-

tions” terminology is rather vague and does not give a satisfactory answer to the exci-

tation of Fano resonance in stacked metallic metamaterials. The goal of this chapter is

to provide a simple physical model to understand Fano resonance in stacked structures

and to demonstrate the potential of such structures to efficiently excite and control Fano

resonances.

First, this chapter introduces the Fano resonances in electromagnetism and gives its ba-

sic underlying mechanism. It is then followed by a state of the art on Fano resonances

in metamaterials and photonic structures. Second, we reconsider the polarizer-analyzer

structure studied in the previous chapter as a polarized Fabry-Perot resonator. Precisely,

we want to extract the resonance and polarization properties of the structure. Fortunately,

we already have the required tool - the EJF - to take into account the polarization prop-

erties of this special Fabry-Perot cavity. It gives us the opportunity to develop a simple

analytical model of a polarized Fabry-Perot cavity. Third, we identify the key elements that

are involved in the occurrence of Fano resonances in the Fabry-Perot cavity. Besides, we

specify that the Fano resonance excited in our structure follows all the basic rules of Fano

resonance encountered in classical physics.

Most importantly, we emphasize that the excitation of Fano resonances in stacked metallic

metamaterials has not been theoretically or experimentally reported. As we will demon-

strate in this chapter, the original way (based on polarization) for exciting Fano reso-

81
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nances in stacked structures leads to interesting possibilities. Indeed, we observe that

the stacking of metallic metamaterials offers new degrees of freedom in the realization

of Fano line shape. We finally conclude this chapter by mentioning that these additional

and unique properties could open up new perspectives in nano-photonics and we discuss

some of them.

4.1/ INTRODUCTION TO FANO RESONANCES

In 1935, Hans Beutler reported an experimental study on the absorption spectra of no-

ble gases [117]. He observed that the absorption spectrum of Xenon featured a series

of narrow absorption maxima superimposed with much wider absorption maxima. The

same year, Ugo Fano gave a qualitative approach to explain this intriguing absorption

lines [118, 119]. Further, in 1961, Fano gave a more complete theoretical treatment of

this phenomenon and it subsequently gained in popularity [120]. Since then, this phe-

nomenon is now known as Fano resonances. Although Fano resonances originates from

atom and quantum physics, it has later spread to other domain of physics.

The principle of Fano resonances is summarized in Fig. 4.1. A continuum-like is coupled

to a discrete state and leads to the excitation of a Fano resonance. We should precise

what we mean when we mention continuum and discrete state. On one hand, the ”con-

tinuum” term encompasses any modes that is strongly coupled to the free-space - i.e

with large radiation loss. This term is also known as ”radiant mode”, ”direct pathway”

or ”bright mode”. On the other hand, the ”discrete state” encompasses any resonances

that is weakly coupled to free-space - i.e. with very low radiation loss and therefore high

quality factor. It is also referred as ”subradiant mode”, ”indirect pathway”, ”dark mode” or

”trapped mode”. The coupling between the ”continuum” and the ”discrete state” can be

achieved in many ways but it is not the aim of this chapter to give an exhaustive summary

of all the possibilities.

Continuum Discrete
State

Fano
ResonanceCoupling

Figure 4.1: Excitation principle of a Fano resonance in electromagnetism where a
continuum-like state is coupled to a discrete state.

In the early 2000’s, Shanhui Fan and co-authors made pioneering works on Fano reso-
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Figure 4.2: (a) Image of the split ring resonators with an asymmetry along the x-axis
(structure A) and (b) along the y-axis (structure B). Images taken from [127].

nances in optics using photonic crystals [121–123]. Some other early realizations of Fano

resonances were reported in 2D sonic crystal [124] or in a prism coupled to a micropil-

lar [125]. Another paper reported Fano resonance in the framework of EOT in subwave-

length diffraction gratings [126]. Few years later, the observation of Fano resonances in

optical metamaterials were first reported by Fedotov et al. [127]. The Fano resonance

phenomenon is also referred to as Electromagnetically Induced Transparency [128–133]

- or EIT - but it involves the same underlying mechanisms and it is simply a matter of

vocabulary [134].

The principle used in [127] for coupling the trapped mode with the continuum involves a

symmetry-breaking of the metamaterial unit cell depicted in Fig. 4.2, which was inspired

from [135]. They considered asymmetrically split ring resonators in two different configu-

rations, A and B. In A, the symmetry is broken along the x-axis and in B the symmetry is

broken along the y-axis.

In Fig. 4.3, the solid lines and filled circles respectively correspond to the measured

and simulated response while the open circle give the response of symmetrically split

ring. By breaking the ring’s symmetry, it allows the coupling of the symmetric current

modes - ”trapped” modes - with the anti-symmetric current mode. As we can remark, the

structures A and B give rise to the excitation of a symmetric current mode (II) through the

coupling with an anti-symmetric current mode (I). Furthermore, the authors emphasize on

the importance of the degree of asymmetry (given by the relative difference of the arc’s

length). They especially demonstrate that - for lossless materials - the quality factor of

the sharp Fano resonance increase when the degree of asymmetry decreases. Note that

for symmetrically split ring resonators, the symmetric current modes cannot be excited.

Over the past ten years, this kind of metamaterials patterned with a symmetry-breaking

unit cell has been extensively used to observe and study Fano resonances. For example,

asymmetrically arranged pairs of split ring resonator has been considered to precisely

study the coupling between the bright and dark modes [136]. Another paper reported a
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Figure 4.3: (a),(b) and (c) Reflectivity, transmission and absorption spectra for the struc-
ture A with an incident light polarized along the x-axis. (d) Corresponding current distri-
bution for the modes I, II and III. (e),(f) and (g) Reflectivity, transmission and absorption
spectra for the structure B with an incident light polarized along the y-axis. (h) Corre-
sponding current distribution for the modes I, II and III. Results taken from [127].

metamaterial unit cell composed of three cut-wire arranged in an H-shape [137]. They

especially highlight the EIT effect with the vertical displacement of the middle cut-wire,

which therefore provokes the symmetry breaking. In 2009, Ranjan Singh et al. have

demonstrated EIT using single split ring resonator with a pair of asymmetrically positioned

gap [138]. Such structure has later been used for designing an ultrasensitive device

for the THz domain [115]. The near-field coupling of dark and bright modes has also

been engineered to realize Fano resonances and EIT effect [139]. In 2016, Li et al.

have reported Fano resonances in the THz domain using symmetry-breaking of more

complex unit cell [140]. More recently, asymmetrically split ring resonators either made of

superconductor or made of metal have been compared in the context of Fano resonance

[141].

For completeness, we also mention some other possibilities to realize Fano resonances.
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Fano resonances can be achieved in plasmonic structure [142–146], or in multilayered

nanoshells [147–149] or in concentric [150] and nonconcentric rings [151,152]. It is also

possible to realize Fano resonances by coupling a resonator - playing the role of the

dark mode - with a waveguide [121, 153–155]. We finally mention that metamaterials

supporting phase resonances [156–159] can also be used to excite Fano resonances

[160,161].

It is interesting to note that all the structure mentioned above consist of single metama-

terials or single structures. They are especially designed to support both dark and bright

modes as well as the coupling between them leading to Fano resonances. As we will

see in the next sections, stacking metallic metamaterials featuring specific polarization

properties offers another mechanism for coupling bright and dark modes. This unlocks

new degrees of freedom to excite Fano resonances and it will allows us - in the last part

of this chapter - to design structure with multiple and independently (or simultaneously)

tunable Fano resonances.

4.2/ POLARIZATION INDUCED FANO RESONANCE IN A POLARIZED

FABRY-PEROT RESONATOR

In this section, we present a Fabry-Perot model extended to metamaterials with spe-

cific polarization properties. Furthermore, this model is combined to a circulating field

approach - as used in lasers [162] - in order to precisely describe the Fano resonance

phenomenon occurring in the structure.

4.2.1/ POLARIZED FABRY-PEROT RESONATOR MODEL

In this section, we revisit the Fabry-Perot resonator. Instead of using the classical Fresnel

coefficients, we use the metamaterials’ Jones matrices to derive an extended Fabry-Perot

model that takes into account the polarization properties of the cavity. Such attempt us-

ing matrices has already been done in the past for studying anisotropic Fabry-Perot res-

onators [163, 164] or chiral Fabry-Perot interferometers [165, 166]. None of these stud-

ies, however, considered mirrors with polarization dependency, they rather considered a

classical Fabry-Perot cavity filled with anisotropic or optically active media. The linear-

polarization dependency of the metallic metamaterials is the key difference that leads to

Fano resonances excitation.
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Figure 4.4: Principle of the polarized Fabry-Perot model using the extended Jones for-
malism. The classical Fresnel coefficients are replaced by Jones matrices to take into
account the polarization properties at each interface. The first metamaterial - aligned
along the x-axis - is described by its transmission and reflection Jones matrices JT and
JR. The second metamaterials is arbitrarily rotated by an angle θ and is described by
JT
θ and JR

θ . The homogeneous, isotropic and linear propagation from the first to second
metamaterial, in the cavity, is given by the matrix U

Let us consider metallic metamaterials such as the ones we have already studied in the

previous chapter. We want to describe the multiple reflections process using the Fabry-

Perot resonator model. To take into account the polarization properties in transmission

and reflection, we respectively consider the transmission and reflection Jones matrices

derived in the first chapter. This implies to respect the same hypothesis than in the

second chapter, i.e a normally incident light, only one guided mode in the subwavelength

apertures and a separation distance d > λ/2. Figure 4.4 shows the basic principle of a

light falling in normal incidence on the polarized Fabry-Perot resonator and undergoing

the multiple reflection process. The arrows in the middle medium are deliberately inclined

in order to show the multi-passes of light induced by the reflections.

The matrices JT and JR correspond to the transmission and reflection Jones matrices

of the first metamaterials polarized along the x-axis. The matrices JT
θ and JR

θ are the

transmission and reflection Jones matrices of the second metamaterial (identical to the

first) rotated by an angle θ from the x-axis. The two metallic plates are separated by air

and by a distance d. The propagation operator from the first to the second wave plate is

given by u = eikd. The matrix that links the electric fields from the first to the second wave

plate inside the cavity is U = uI where I is the (2 × 2) identity matrix. As for the classical

Fabry-Perot derivation, we sum all the transmitted beams after the second metamaterials.
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For N cavity round trips, we have

JT
FP = JT

θ UJT + JT
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UJRUJR
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)
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θ
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(4.1)

where the first term JT
θ UJT corresponds to a single pass propagation in the structure and

the other terms JT
θ

(
UJRUJR

θ

)K
UJT (with K ∈ [1,N]) is the propagation after a number K

of cavity roundtrip. Furthermore, for any wavelength λ or angle θ, we have det(JR) ≤ 1,

det(JR
θ ) ≤ 1 and det(U) ≤ 1. Therefore, for an infinite number of cavity round trips, the

series converge and we finally obtain

JT
FP = JT

θ

(
I − UJRUJR

θ

)−1
UJT (4.2)

Equation 4.2 is rigorously the same as Eq. 3.10 in the second chapter derived from the

S-matrix algorithm [108]. In fact, the set of recursion formulas - eqs. (15a) in [108] -

forming the S-matrix algorithm can be seen as a generalized formulation of the Fabry-

Perot resonator using scattering matrices.

Even though the polarized Fabry-Perot model is confirmed by the extended Jones for-

malism combined with the S-matrix algorithm, it does not give additional insights into the

Fano resonance in the cavity. Nonetheless, in the next section we give a simple, analytical

and physical model, based on a polarized Fabry-Perot cavity and a circulating field ap-

proach, that gives us more insights into the Fano resonances phenomenon in the stacked

structure.

4.2.2/ CIRCULATING FIELD APPROACH

To further understand the polarization effects in the cavity, we combine the Jones for-

malism to a circulating field approach [162, 167]. In this way, we are able to analytically

describe the resonance and polarization properties of the cavity, as well as the coupling

effects that leads to the Fano resonance. As we will demonstrate, the coupling in the

cavity occurs because of the specific polarization properties of the metamaterials. Thus,

we introduce a new terminology: the polarization-induced Fano resonance. Furthermore,

we will demonstrate that polarization-induced Fano resonances can be controlled inde-

pendently or simultaneously by modifying the arrangement of the stacked structure.

To begin with, we consider metallic plates with reflection (and transmission) coefficients
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Figure 4.5: Principle of the circulating field approach where the FP resonator is made of
two polarization dependent metallic plates characterized by the Jones matrices JT ,JR and
JT
θ , JR

θ . ~Elaunch = JT ~Einc is the initial electric field entering the cavity, and ~Ecirc is the steady
state forward circulating field.

that depend on the polarization. More precisely, this study highlights the importance of

the metallic plates polarization dependency for exciting Fano resonances. We consider an

electromagnetic plane wave propagating along the z-axis and falling in normal incidence

on a FP cavity formed by two metallic plates. The first metallic plate serves as a reference

with its main axes aligned on the x and y axes. The transmission and reflection Jones

matrices which link the incident electric field ~Einc to the transmitted or reflected electric

field are given by

JT =

 tx 0

0 ty

 and JR =

 rx 0

0 ry

 . (4.3)

where tx, ty and rx, ry are respectively the transmission and reflection arbitrary coefficients

along the x and y axes. The second metallic plate is described by JT
θ = R(θ)JT R(−θ) and

JR
θ = R(θ)JRR(−θ). To accurately describe the resonance and polarization properties of

the polarized FP cavity, we associate the Jones formalism to a circulating field approach

[167], as illustrated in Fig. 4.5. The electric field ~Elaunch is the initial electric field launched

in the cavity, after passage through the first metallic plate. The expression of ~Elaunch is

given by
~Elaunch = JT ~Einc (4.4)

The relation between the forward circulating electric field, ~Ecirc, and the electric field en-

tering the polarized FP cavity, ~Elaunch, is given by

~Ecirc = JrtU ~Elaunch (4.5)
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where

Jrt =
[
I − U2JRJR

θ

]−1
(4.6)

is the Jones matrix that accounts for the infinite round-trips in the polarized Fabry-Perot

cavity. The expression U2JRJR
θ is the equivalent of the complex gain for a single round-trip

in the cavity [162]. For more details, a scalar approach (excluding polarization properties)

on the circulating field has been thoroughly investigated in [167]. For completeness, we

give the transmission Jones matrix of the polarized FP cavity JT
FP = JT

θ JrtUJT . More

importantly, the analytical expression of the matrix Jrt is given by

Jrt =
1
D

 1 − u2ry(s2rx + c2ry) u2cs(rx − ry)rx

u2cs(rx − ry)ry 1 − u2rx(c2rx + s2ry)

 =

 Jxx
rt Jxy

rt

Jyx
rt Jyy

rt

 (4.7)

where D = det(I − U2JRJR
θ ), c = cosθ and s = sinθ. For this complex general case, it is

fundamental to note that the coupling terms Jyx
rt and Jxy

rt tends to zero when rx = ry - as it

is the case with unstructured simple mirrors. In other words, the anisotropic polarization

properties of the metallic plates (rx , ry) brings additional polarization coupling effects -

leading to Fano resonances - that are not achievable in classical FP cavities.

From now on, we choose constitutive metamaterials with a particular geometry known

as wire-grid. As we will demonstrate in the next section, such basic geometry will prove

very useful to excite and independently tune multiple Fano resonances over a broadband

transparency window. The wire-grid geometry is similar to the mono-periodic metamateri-

als we have studied in Chapter 1 except that the metamaterials thickness h/p << 1. Such

geometry has been known for decades to act as broadband linear polarizers with high

transmission and high extinction ratio for the near-infrared domain [168]. Quite recently,

wire-grid polarizers have also been reported for the THz range [169].

From a monomodal method combined with an extended Jones formalism [65], as de-

scribed in chapter 1, we extract the corresponding transmission and reflection Jones

matrices with ty = 0, ry = −1, and where tx = αT and rx = αR − 1.

Figure 4.6 gives the wire-grid transmission spectra for two distinct geometries. In Fig.

4.6 (a), we have the transmission spectrum for a/p = 0.5 and h/p = 1.0. We notice

two transmission peaks at the extreme left side. They correspond to the first and sec-

ond Fabry-Perot harmonic located in the lamellar apertures. This resonant phenomenon

(leading to EOT) has already been discussed in chapter 2 in Sec. 2.3.4. We have not dis-

cussed however the transmission that asymptotically tends to T = 1 when λ/p→ ∞. This

phenomenon is due to the cut-off wavelength of the TEM guided mode λT EM which tends

to infinity. For the higher wavelength, the wire-grid structure act as an ultra-broadband
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a/p = 0.5

t/p = 1.0

a/p = 0.9

t/p = 0.1

(a) (b)

Figure 4.6: (a) Transmission spectrum for a monoperiodic metamaterial polarizer for a/p =

0.5 and h/p = 1.0. (b) Transmission spectrum for a wire-grid metasurface for a/p = 0.9
and h/p = 0.1.

polarizer with a quasi-perfect transmission (T > 0.99). For the second geometry, we fix

a/p = 0.9 in order to increase the radiation loss on the x-axis, and we fix h/p = 0.1 in

order to shift the FP resonances and the cut-off resonance toward smaller wavelength.

The corresponding spectrum is given in Fig. 4.6(b). As we can observe, the first FP

harmonic has been shifted before the TEM Floquet mode cut-off wavelength and only

the high transmission asymptote remain after this cut-off wavelength. With this particular

wire-grid design, the transmission is close to 1 for any wavelength λ > p. For the rest of

this study, we keep the second geometry for all metamaterials that compose the stacked

structure. Nonetheless, we should keep in mind that the cut-off wavelength of the second

mode TM1, λTM1/p = 2a = 1.8. The spectral region located before λ/p = 2a = 1.8 is there-

fore not properly described by the EJF since a second guided mode should be taken into

account for the simulation. It is however not an issue since the application we propose

is demonstrated for larger wavelength where the transmission is increasingly closer to

100 %.

Let us now study the structure where we consider two stacked wire-grid metasurfaces, as

depicted in Fig. 4.7(a). We study the spectral range where λ/p ≥ 2 so that we have h ≤

λ/20, and that only the fundamental transverse electromagnetic guided mode, polarized

along the x-axis, is excited in the wire-grid metasurfaces. As it is expected for wire-grid

polarizers, the launched electric field ~Elaunch is linearly polarized along the x axis. Along

the y-axis, the incident light is perfectly reflected, as indicated by the term ry = −1. As we

will now demonstrate, such specific polarization properties leads to polarization induced

Fano resonances.

First, we assume a special case where the two wire-grids are at resonance with αT = 1
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Figure 4.7: (a) Illustrations of two wire-grid metasurfaces stacked along the z-axis where
the second metasurface is rotated by θ = 10◦. (b) Transmission spectrum for a/p =

0.9, h/p = 0.1 and d/p = 2.0. The integer m denotes several FP harmonics where the
Fano resonances occurs. The greyed area specifies the spectral region (λ/p ≤ 1.8) for
which the monomodal method is not valid. (c) Transmission spectrum for the first FP
harmonic m = 1. The asymmetric Fano resonance are given in linear and logarithmic
scale, respectively by the blue and red curve respectively. The green curve corresponds
to the inverted Lorentzian line shape, as given by Eq. (4.9).

and αR − 1 = 0. Though it is not totally realistic, such configuration is interesting for

two reasons. First, it clearly let appear analytically the Fano resonance mechanism in

the polarized FP cavity. Second, as we will show later, this kind of configuration is well

adapted for exciting and tuning multiple Fano resonances over a broadband transparency

window. For this case, the forward circulating electric field in the cavity is given by

~Ecirc =

 1 0

−
u2cs

1 − u2c2

1
1 − u2c2

 U ~Elaunch. (4.8)

To clearly understand the polarization-induced Fano resonance mechanism, it is now
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essential to distinguish two cases:

1) For θ = 0◦, the cross-coupling terms are Jyx
rt = Jxy

rt = 0. In addition, we have Jyy
rt =

1/(1 − u2) which corresponds to the Airy distribution of the electric field in a perfect

y-polarized FP resonator (FPy). Furthermore, we obtain JT
FP = JT UJT which simply

corresponds to a single pass propagation through the structure. To summarize, the

x-polarized launched electric field does not couple to the FPy resonator and simply

propagates through the structure. Therefore, the FPy resonator is not excited or, in

other word, it is ”trapped” in the structure.

2) For θ , 0◦, the coupling of the x-polarized launched electric field ~Elaunch with the

FPy resonator occurs via the term Jyx
rt . As we will numerically show, such coupling

leads to a Fano resonance at the FP resonance condition λ = 2d/m with m ∈ N.

We remind that this coupling is induced by the specific polarization properties of the

wire-grids (rx , ry), as previously shown in Eq. (4.7). One might regard the single

pass x-polarized propagation and the ”trapped” FPy resonator as an analogue of

bright and dark modes, that interfere to excite Fano resonances [136].

Finally, the transmission through the structure is given by

T = |JT,xx
FP |

2 + |JT,yx
FP |

2 =

∣∣∣∣∣∣ (1 − u2)
1 − u2 cos2 θ

∣∣∣∣∣∣2 u2 cos2 θ (4.9)

which is similar to the transmission expression studied in chapter 2 (see Eq. (3.14) and

Eq. (3.15)) and in [95] using biperiodic metamaterials. For the FP resonance condition

λ = 2d/m, we have u = 1 and therefore T = 0, ∀ θ , 0 (mod π) which correspond to the

Fano resonance dip. We note that for this case (tx = 1), the expression of T at the FP

resonance condition gives an inverted Lorentzian line shape, as predicted in Eq. (17) of

ref. [123]. It is interesting to remark that the polarization-induced Fano resonance can

be seen as the combination of two well known strategies for exciting Fano resonance. It

associates the side-coupled cavity-waveguide concept [121] and the symmetry-breaking

concept [127]. Indeed, the FPy resonator plays the role of the side-coupled cavities while

the coupling is achieved by symmetry-breaking (i.e. θ , 0 (mod π)).

Second, we now numerically study wire-grids with realistic values for tx (i.e. αT ) and rx

(i.e. αR−1) that are extracted from the EJF [65]. In addition, the transmission Jones matrix

JT
FP is now numerically obtained by applying the S-matrix algorithm. We emphasize that,

for the considered spectral region λ/p > 2.0, the wire-grids transmission along the x-axis

is almost at resonance, i.e. tx ≈ 1 and rx ≈ 0. Figure 4.7(b) shows the transmission

spectrum for two wire-grid metasurfaces separated by a distance d/p = 2.0 for θ = 10◦.
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The rotation of the second metasurface provokes the excitation of polarization induced

Fano resonance that are located at the FP resonance condition λ = 2d/m. The region

λ/p ≤ 1.8 in grey area corresponds to the region where the monomodal method is not valid

and, therefore, the MMM accuracy for λ/p ≤ 1.8 is not guaranteed. We choose to focus on

the polarization induced Fano resonance located at the first FP harmonic λ = 2d = 4.0p

(m = 1), as shown in Fig. 4.7(c). For such wavelength, the thickness of the entire structure

is ttot = 0.55λ. Even though the structure is compact along the propagation axis (z-axis),

we should mention that the dimension in the (x-y) transverse plane are directly related

to the number of period (x-axis) and the invariance length (along the y-axis). To realize

efficiently Fano resonances, a sufficient number of period and a large invariance length

have to be considered. Thus, the dimension along the x and y axes are much higher than

the wavelength. The blue curve shows the polarization induced Fano asymmetric dip. The

dashed green curve shows the transmission response for the special case tx = 1 showing

the symmetric Lorentzian dip, as given in Eq. (4.9). The red curve shows the asymmetric

Fano dip in log-scale which confirms precisely the location of the dip at λ/p = 2d = 4.0.

So far, we have considered the coupling of bright and dark mode when the wavelength

matches the metamaterials resonance, but the same reasoning can be applied for any

wavelength. Indeed, the transmission and reflection Jones matrices are

JT =

 αT 0

0 0

 and JR =

 αR − 1 0

0 −1

 . (4.10)

for metamaterials aligned along the x-axis. As we can observe the coupling terms are still

zero if there is no rotation. The Fabry-Perot resonator along the y-axis is still ”trapped”.

We notice however the difference in the term JR,x,x = αR − 1 , 0 which leads to the exci-

tation of Fabry-Perot resonance polarized along the x-axis even if the plates are aligned

(see the FPPAC branches in Fig. 3.7 in chapter 3). For λ close to the metamaterials

resonance, it leads to a weak Fabry-Perot modulations.

As we have highlighted in Fig. 3.21 in the conclusion of the previous chapter, we can

notice the asymmetric shape of the Fano resonance when the y-polarized FP resonance

does not match the metamaterials aperture resonance. In refs. [170,171], it is shown that

the asymmetry factor q is proportional to ω2
d −ω

2
b, where the frequencies of the bright and

dark modes are denoted by ωb and ωd. Another explanation was given by Shanhui Fan

et al. in 2003 [123], the authors advanced that

”A symmetric Lorentzian line shape is reproduced only when either r or t is

zero. In all other cases, the system exhibits a Fano asymmetric line shape.”
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Our observations also match such a description for the Fano lineshape. Indeed, at the

metamaterials resonances, the reflection coefficient falls to zero and we observe an in-

verted Lorentzian line shape, as shown in Fig. 3.12(a). For any other wavelength, we

obtain an asymmetric Fano line shape.

In this section, we have analytically and physically identified the bright and dark mode

in our structures. It has been realized with the use of a polarized Fabry-Perot model in

combination with the extended Jones formalism and a circulating field approach. In the

next section, we demonstrate that the polarization induced Fano resonance effect can

be extended for an arbitrary number N of stacked wire-grid metasurfaces. Indeed, for

N wire-grid metasurfaces aligned along the x-axis, the stacked structure hosts (N − 1)

FPy trapped resonances that are distributed along the structure and located between

the metasurfaces. The main interest in considering larger stacked structure is that each

Fano resonances can be excited and tuned independently or simultaneously. Indeed, the

trapped FPy resonances are not coupled to each other, they couple only to the propagat-

ing x-polarized electric field by rotation induced symmetry-breaking.

4.2.3/ INTENSITY MAP

In this subsection, we confirm the trapped ”Fabry-Perot” resonance polarized along the

y-axis by plotting 2D maps of the electric field intensity for the biperiodic structure studied

z

x

z

y

(a) (b)

x/p y/p

Figure 4.8: Intensity maps of the electric field computed by FDTD for the biperiodic struc-
ture of chapter 3 (polarizer-analyzer configuration). The electric field intensity is defined
as (a) I = |Ex|

2 + |Ez|
2 and (b) I = |Ey|

2 + |Ez|
2 and the green arrows indicate the orientation

of the electric field. The grey parts show the metamaterial.
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in the chapter 3. The parameters are ax/p = 0.45, ay/p = 0.9, d/p = 1.69, h/p = 1.0

and the rotation of the rectangular apertures of the second metamaterials is ϕ = 10◦.

These maps are computed at λ/p = 1.69. Note that the z-axis is not at the right scale

compared to the x and y axes. We choose to plot the map for the x-z and y-z cut as

shown in Fig. 4.8(a) and (b) respectively. For Fig. 4.8(a), the normalized intensity is

given by I = |Ex|
2 + |Ez|

2 and for Fig. 4.8(b), it is I = |Ey|
2 + |Ez|

2 where Ex, Ey and Ez

are the components of the electric field computed by FDTD. The green arrows denote

the orientation of the electric field in the x-z and y-z planes respectively. In Fig. 4.8(a),

we can see the destructive interference phenomenon as the electric field intensity in the

cavity is almost zero. Note that we also observe the excitation of the fundamental T E01

guided mode inside the aperture of the first metamaterial. In the second metamaterial

however, the T E01 mode is not excited because of the destructive interference leading to

a total reflection before the first metamaterial. In Fig. 4.8(b), we clearly see the ”trapped”

Fabry-Perot resonance polarized along the y-axis. First, we can deduce the FP harmonic

number m = 2 as we can see two maxima. Second, the FP resonance does not couple

to the metamaterials as it is cross-polarized to the fundamental T E01 guided mode and is

”trapped” along the y-axis. The FP resonance couples only via the x axis and provokes

the destructive interference - shown by Fig. 4.8(a) - leading to the Fano resonance.

4.3/ MULTIPLE AND INDEPENDENTLY TUNABLE FANO RESO-

NANCES

As we have mentioned in the context section of the Introduction, the stacking of few

metamaterials/metasurfaces has gain much interest in the past few years. These stacked

structures are currently studied and suggested to overcome limitations faced by single

metamaterials. Such structures also potentially carry exotic functionalities due to the ad-

ditional interaction between each stacked metasurfaces. In the meantime, single meta-

materials proved to be excellent candidate to realize Fano resonance. The interesting

properties of Fano resonance drive forward the need to better control their excitation.

There is currently intensive researches on tunable Fano resonances and on multiple Fano

resonances excitation. In 2011, Wu et al. have theoretically reported Fano resonance in

three-layered nanoshell that can be spectrally tuned by modifying the radii of the different

layers [148]. Another study reported a dynamically tunable Fano resonance by modifying

the incident beam wavelength on dual graphene nanodisk [172]. More recently, tunable

Fano resonances have been theoretically proposed by modifying the opto-geometrical

parameters of a stub-pair waveguide [173]. In the meantime, multiple Fano resonance
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are also extensively studied. Multiple Fano resonances has been reported in a metallic

metamaterial composed of an asymmetric dual-stripe unit cell [174] or made of asym-

metric dual nano-bar [175]. Comb-like scattering using multiple Fano resonances has

been achieved using a multilayered plamonic shell [149]. Similarly, several Fano reso-

nance have been reported in a non-concentric core nano-shell [152]. In the terahertz,

multiple Fano resonance are excited in a metallic asymmetric super cell metamaterial

made of rod and U shape segments [176]. The excitation of several Fano resonances

has also been theoretically reported for a surface plasmon polariton waveguide which is

side-coupled with many cavities [177, 178]. Nishida et al. have reported multiple Fano

resonance in a metallic nanoholes array via the excitation of a multipole surface plas-

mon [179]. A metasurface made of coupled T-shaped gold resonator has been shown to

exhibit multiple Fano resonances as well [180]. Very recently, a study demonstrated the

independent control of multiple Fano resonance in a metallic waveguide with side coupled

cross shaped cavities. The precise tunability was achieved by tuning the dimension of the

cross shaped cavities [181].

It is important to mention that most of the reported tunable Fano resonance are based

on opto-geometrical parameters modification of the structure itself. From an experimen-

tal point of view, such real-time modification of the opto-geometrical parameters requires

complicated or are simply not possible. In our case, the Fano resonance tunability is ob-

tained by the rotation induced symmetry-breaking, as it shown in Fig. 4.7(a). In addition

the Fano spectral position is proportional to the optical distance between the two meta-

materials. In other words, the tunability is not achieved by any unit-cell modification but

rather by playing with the relative arrangement between the metallic metamaterials.

Figure 4.9 shows a summarized time lines for the Fano resonance in photonics and for the

area of metamaterials. Since a decade, metamaterials have been extensively used for the

excitation of Fano resonances, while stacked metamaterials/metasurfaces are developed

to increase or expand the possibilities offered by metamaterials. We believe that this work

is at the crossroads of the ”few layer metamaterials/metasurfaces” topic and the multiple

Fano resonances engineering.

As we have mentioned in the Introduction, this PhD thesis takes part in the exploration

and the study of the new possibilities offered by stacked metamaterials/metasurface. In

this section, we show that larger stacks of metallic wire-grid metasurfaces can exhibit mul-

tiple and tunable Fano resonances by extending the principle described in the previous

section. We show that such structures allows us to design fully reconfigurable multi-notch

filter based on Fano resonances. The precise control of the multiple Fano resonance also

enables to mimick EIT transmission spectra. These findings bring additional understand-
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Figure 4.9: Summarized time line of the development of Fano resonances in optics and
optical metamaterials.

ings and expand the perspectives of few layer metasurfaces.

First, we introduce the general studied structure and its basic principle for realizing multi-

ple Fano resonances. Then, we choose and present a particular geometry for the consti-

tutive metamaterial which enable Fano-based reconfigurable filtering. Second, we make

a numerical study based on a specific structure made of three stacked metamaterials

for filtering application. We especially show that precise re-arrangements of the stacked

structure allows for tunable filters with various working regime.

4.3.1/ MULTIPLE FANO RESONANCES EXCITATION PRINCIPLE

Figure 4.10 shows the principle for realizing multiple Fano resonance with stacked meta-

materials. It is based on the physical interpretation given in Sec. 4.2. If we consider a

stack of N polarizing metamaterials aligned on the x-axis, then we can consider a stack

of (N−1) FP dark modes distributed along the y-axis and denoted by the double-head red

arrows in Fig. 4.10. The green arrows oriented along the x-axis denotes the x-polarized

electric field transmitted through the structure and play the role of the bright mode. The

rotation of only one of the metamaterials would lead to the coupling of the FP dark modes

located in its direct vicinity. It would however not affect the other dark modes. For exam-
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Figure 4.10: 3D-rendered schematic of stacked and aligned wire-grid polarizers. An
EOT-based TEM mode polarized along the x axis propagates through the structure, and
is referred as the bright mode. The stack provokes on the y axis the appearance of
cascaded and perfectly trapped Fabry-Perot resonators, and are referred as the multiple
dark modes.

ple, by rotating only the metasurface named D in Fig. 4.10, it authorizes the coupling of

the FPy,3 dark mode with the propagating bright mode. However, the dark modes FPy,1

and FPy,2 remain orthogonal and uncoupled to the bright mode. Conversely, rotating the

metasurface B would permit the coupling of the dark modes FPy,1 and FPy,2 with the

x-polarized bright mode.

4.3.2/ APPLICATION TO RECONFIGURABLE AND VERSATILE FILTERING

With stacked wire-grid metasurface, we numerically demonstrate that it is possible to

tailor one Fano resonance without affecting the other Fano line shape. We show below

that it allows for flexible design of tunable dual-notch filter. We also show that a proper

configuration of the structure can produce an analogue of EIT by taking advantage of

the Fano line shape asymmetry. Then, we will discuss more complex configurations for

comb-like filtering or arbitrary spectral shaping. We finally discuss the advantages, limits

and challenges for the fabrication of such structures.

4.3.2.1/ TUNABLE DUAL-NOTCH FILTER

For simplicity, we first consider a stack of 3 wire-grid metasurfaces with the geometry

given above: a/p = 0.9, h/p = 0.1 and the distance between the wire-grid metasurfaces

are d1/p = 2.0 and d2/p = 2.1. The structure induces the existence of two FP dark modes

on the y-axis, as we can intuitively deduce from Fig. 4.10. The orientation of the first,
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second and third metasurfaces are given by ϕ1, ϕ2 and ϕ3 respectively.

(a) (b)

Figure 4.11: (a) Transmission spectrum when the three metasurface are aligned. (b)
Transmission spectrum when the middle metasurface is rotated by 10◦. The number m
gives the FP harmonic number.

Figure 4.11(a) gives the transmission spectrum of the bright mode transmitted though

the structure when the wire-grid metasurfaces are aligned. We obtain a transmission

spectrum similar to the spectrum of a single plate given in Fig. 4.6(b). In fact, one could

expect that the transmission spectrum for two aligned wire-grids would be the squared

transmission of one wire-grid, as shown in Fig. 4.6(b). We notice however an additional

modulation on the spectrum corresponding to the multiple reflection occurring on the x-

axis. Figure 4.11(b) gives the transmission spectrum when only the second wire-grid

metasurface is rotated by an angle ϕ2 = 10◦. It provokes the coupling of the bright mode

with the two FP dark modes which were perfectly trapped on the y-axis before the rotation

of the second plate. We can now observe the appearance of Fano lineshape pairs that

are located at λ = 2d1/m and λ = 2d2/m with m ∈ N∗.

For clarity, we now focus on the Fano lineshape pair found for m = 1. Besides, we only

modify the orientation (ϕ3) and the position of the third metasurface (which affects d2) so

that it only modifies the properties of the second dark modes. The parameters d1/p = 2.0,

ϕ1 = 0◦ and ϕ2 = 10◦ are therefore kept constant for this study. Figure 4.12(a) gives

the transmission spectrum of the structures as a function of d2/p. As we can see, the

shift of the second Fano dip does not affect the position of the other dip. Figure 4.12(b)

gives transmission spectra of the stack for several values of d2/p. We remark that the

bandwidth of the two dips is insensitive to the position of the second Fano resonance.

The transmission spectra as a function of ϕ3 is given by Fig. 4.13(a) with d2/p = 2.1.

By modifying the orientation of the third metasurface, we modify the degree of asymme-

try between the second and the third metasurface. First, it results in a increase of the

bandwidth of the second dip with the increase of the asymmetry. Second, it does not
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modifies the position nor the width of the other Fano dip, as shown in Fig. 4.13(b). In

addition, when the third metasurface is aligned with the second, i.e ϕ2 = ϕ3 = 10◦, the

corresponding transmission dip disappears without disturbing the remaining dip. The an-

gular orientation of the wire-grid metasurfaces can be used as selective ”on-off” Fano

switch. The overall results contained in Fig. 4.12 and Fig. 4.13 shows that it is possible

to achieve a reconfigurable dual-notch filter where the position and the width of the two

dips can be accurately and independently controlled. It shows that it is also possible to

switch from a dual-notch filter to a simple notch filter.

4.3.2.2/ TAILORING EIT-LIKE TRANSMISSION

The structure studied above for dual-notch filtering can also exhibit a EIT-like transmission

response. It is possible to mimick an EIT transmission response when the two Fano

resonance are very close to each other, or in other words, when d1/p ≈ d2/p. Figure

4.14(a) gives the transmission spectra as a function of ϕ2 with ϕ1 = ϕ3 = 0◦, and with

d1/p = 2.0 and d2/p = 2.005. The circled area highlight the configuration where EIT-like

transmission is best achieved. Figure 4.14(b) gives a corresponding transmission spectra

at ϕ2 = 2◦, ϕ2 = 6◦ and ϕ2 = 10◦ respectively with the blue, red and green lines respectively.

As we can conclude, it is possible to tailor the bandwidth of the transparency window by

changing the angle of rotation of the second wire-grid metasurface. The transparency

windows can be attributed to the Fano resonance’s maxima. In a similar way used in the

previous section, the third wire-grid metasurface can be used as a switch to turn ”off” the

transparency window when being aligned to the second wire-grid metasurface.

d
2

Figure 4.12: (a) Transmission spectra as a function of d2/p the separation distance be-
tween the second and the third metasurface. The colored dashed lines gives the cor-
responding transmisssion spectra indicated in Fig. 4.12(b). (b) Transmission spectra in
blue, red and green curve respectively for d2/p = 1.9, 2.1, and 2.3.
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(a) (b)

Figure 4.13: (a) Evolution of the transmission spectrum with the third metasurface ro-
tation angle ϕ3. (b) Transmission response in blue, red and green curve respectively
corresponding to ϕ3 = 15◦, 20◦ and 30◦.

However, the obtained EIT-like transmission occurs on a very limited zero-transmission

spectral band. In order to increase this spectral band, we propose to slightly change

the previous design. We now set d2/p = 2.05 and Fig. 4.15(a) gives the corresponding

transmission evolution as a function of ϕ2. Again, an EIT-like behavior is reproduced but

on a larger zero-transmission spectral band. This is clearer in Fig. 4.15(b) where the

transmission spectrum is plotted for ϕ2 = 10◦, = 20◦ and 30◦, respectively in blue, red and

green.

In the next section, we would like to briefly discuss more complex structures to demon-

strate other filtering possibilities. To demonstrate the stacked structure potential, we

briefly suggest two other application. In the next section we propose an inverted comb-

like multi-notch filter. Then, we show in Sec. 4.3.2.4 some arbitrary spectral shaping

�
2=2°
�
2=6°
�
2=10°(a) (b)

Figure 4.14: (a) Evolution of the transmission response with the orientation of the middle
metasurface given by ϕ2. (b) Transmission spectra in blue, red and green corresponding
to ϕ2 = 2◦, 6◦ and 10◦ respectively.
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capabilities.

4.3.2.3/ COMBLIKE MULTI-NOTCH FILTERING

We would like to briefly discuss a more complex structure that exhibits a comblike multi-

notch transmission. We consider a stack made of 5 wire-grid metasurface that are pro-

gressively rotated by a constant angle ∆ϕ = 5◦, as depicted in Fig. 4.16(a). The dis-

tances between each metasurface are linearly increased so that d1/p = 2.0, d2/p = 2.05,

d3/p = 2.1 and d4/p = 2.15. The solid blue curve in Fig. 4.16(b) gives the corresponding

transmission spectrum that shows the regularly spaced Fano dip respectively located at

the resonance wavelengths of each FP dark modes. The dashed red curve shows the

transmission spectrum with a progressive rotation angle ∆ϕ = 10◦. Increasing the degree

of asymmetry between each metasurface amounts to increase the bandwidth of each dip

(a) (b)

�
2=10°
�
2=20°
�
2=30°

Figure 4.15: (a) Transmission spectrum variation as a function of ϕ2. (b) Transmission
spectra in blue, red and green corresponding to ϕ2 = 10◦, 20◦ and 30◦ respectively.

��=2°
��=5°
��=10°

Figure 4.16: Inverted comb-like transmission spectrum for regular angle variations ∆ϕ =

2◦, 5◦ and 10◦ respectively depicted in blue, red and green curve.
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and allows for the spectral shaping of the comblike multi-notch filter. We should however

discuss the practical issues that arises from such structures in the next section.

4.3.2.4/ ARBITRARY SPECTRAL SHAPING

So far, we have demonstrated the potential of our structure for tunable and/or reconfig-

urable filter with Fano resonances. We have especially seen that it is possible to inde-

pendently tune each Fano resonances. For large metasurface stacks, the possibilities

becomes nearly infinite as we increase the complexity and the number of tunable pa-

rameters. Figure 4.17 illustrate the potential of a 4 metamaterial polarizer structure to

arbitrarily shape the transmission spectrum. Fig. 4.17(a) shows the transmission spec-

trum for the following initial parameters ϕ1 = ϕ3 = 0◦, ϕ2 = ϕ4 = 45◦, d1/p = 1.75, d2/p = 2.0

and d3/p = 2.2. Such configuration lead to a dual transmission peaks roughly located

at λ/p = 3.7 and λ/p = 4.25. Then, by simply rotating the third metamaterial by angle

ϕ3 = 40◦, the transmission spectrum is drastically changed, as depicted in Fig. 4.17(b).

Such a drastic change in the spectrum may seem surprising. One has to keep in mind

that, by rotating the third metamaterial polarizer, we modify the coupling with two dark

modes simultaneously. Precisely, we change the coupling with the dark mode located be-

tween the second and third metamaterial, and the coupling between the third and fourth

metamaterial. Then, tuning a single parameter can lead to dramatic change in the spec-

trum because of this simultaneous tuning of two Fano resonances.

An interesting perspective for the arbitrary spectral shaping could consists in developing

an algorithm that could determine the optimized structure to achieve on-demand any

(a) (b)

Figure 4.17: a Transmission spectrum for the following initial parameters: ϕ1 = ϕ3 = 0◦,
ϕ2 = ϕ4 = 45◦, d1/p = 1.75, d2/p = 2.0 and d3/p = 2.2. (b) Transmission spectrum for same
parameters except ϕ3 = 40◦.
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specific transmission spectra.

In these last subsections, we have seen that stacks of metallic wire-grid metasurfaces

can be used for several applications based on polarization-induced Fano resonances. In

the next section, we take advantage of our simple analytical model to further analyse the

effect of the cavity round trip number N on the polarization induced Fano resonance.

4.4/ INFLUENCE OF THE NUMBER OF CAVITY ROUND TRIP

In this section, we go further by taking advantage from our efficient and analytical Jones

formalism to study the influence of a limited number of cavity roundtrip: N , ∞. This

configuration could be useful to model some imperfections. For example, such configura-

tion constitutes a rough approximation for absorption in the cavity that limits the multiple

reflections. A limited roundtrip number could also account for multiples reflections that

could ”bounce out” of a finite cavity. Such ”bounce out” could be due to a incident beam

slightly tilted from the normal. Instead of using the expression of transmission Jones ma-

trix JT
FP given by Eq. 4.2 or by Eq. 4.5, we can simply use the finite sum given by Eq.

4.1. This allows us to study the relationship between the cavity round trip number N with

the dark and bright mode coupling. For this study, we consider the biperiodic structure

studied in the previous chapter with ax/p = 0.45, ay/p = 0.9 and h/p = 1.0 and d/p = 1.69.

We prefer to study the biperiodic structure since the spectral content is richer than for

the wire-grid geometry. Indeed the biperiodic structure contains many resonance peaks

and it is interesting to analyse the influence of a limited roundtrip number on the different

resonances.

(a)

(b)

N=50
N=100
N=200
N

8

N=100

�=20°

�=10°

�=5°

�=10°

Figure 4.18: (a) Transmission spectra for different values of cavity round trip number N at
θ = 10◦. (b) Transmission spectra for different rotation angle θ and for a fixed cavity round
trip number N = 100 in solid lines and for N → ∞ in dashed lines
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Figure 4.18 (a) shows the influence of a finite number of cavity round trip on the transmis-

sion response. The transmission derived from the S-matrix algorithm - which corresponds

to N → ∞ - is given by the thick solid black line. The yellow, red and cyan dashed line

respectively correspond to N = 50, N = 100 and N = 200 round trip in the cavity. First

we can remark that N does not have a significant influence on the spectrum except at

the Fano resonance wavelength. For example, at λ/p = 1.69, the transmission spectra for

N = 50 or N = 100 does not exactly follows the black curve. Figure 4.18 (b) shows the

influence of the angle θ on the transmission spectra for a fixed number N = 100. The solid

lines corresponds to spectra obtained for N = 100 and the dashed lines are the extended

Jones formalism counterparts. For θ = 20◦, the reconstructed spectrum for N = 100 is in

perfect agreement with the EJF-simulated spectrum. For θ = 10◦ however, the truncation

to N = 100 is insufficient to reconstruct the exact spectrum. We can even remark some

undulations in the spectrum that reminds, for example, truncated Fourier series in signal

processing. The degradation is even more important for θ = 5◦ where it leads to a very

poor recovery of the transmitted signal.

These observations however, make perfect sense when considering θ as the coupling

coefficient between the bright mode (x-polarized transmitted electric field) and the dark

mode (FPy resonator). For large values of θ, the coupling is strong and fewer cavity round

trips are necessary to efficiently realize the Fano resonance. For smaller value of θ, the

coupling decreases as well. Therefore, a larger number of cavity round trip are needed

to efficiently couple the dark mode with the bright mode. It also explains the sharpness

degradation in Fig. 3.20 when the absorption of the metal is taken into account. A rather

small coupling between the dark and the bright mode (θ = 10◦) necessitates a large

number N of cavity round trips. At each round trip, however, the Fabry-Perot dark mode

is progressively absorbed in the metal and therefore limits the coupling with the bright

mode.

We have studied the dark and bright mode coupling as a function of N for a Fano ex-

citation at the resonance metamaterials. However, we should also study the coupling

for an asymmetric Fano lineshape. Indeed, in Fig. 4.18 we have considered an inverted

Lorentzian resonance which is a particular case of the Fano resonance linshape. It seems

interesting to consider an opposite case where the lineshape asymmetry is strong. For

example, we now consider d/p = 1.8. Figure4.19 shows recovered transmission spectra

(solid lines) with N = 100 compared with the perfect case (dashed lines) for several values

of θ. We can observe the same tendency as in Fig. 4.18. For θ = 5◦, the reconstructed

spectrum is totally inaccurate. For θ = 10◦, the transmission minimum is well reproduced

but the transmission maximum is much lower in amplitude and the wavelength peak is
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�=20°
�=10°
�=5° N=100

Figure 4.19: Transmission spectra for different values of θ. The solid lines correspond to
transmission spectra simulated with an infinite number of cavity round trip. The dashed
lines represents the same spectra for 100 cavity round trips.

slightly shifted towards larger wavelengths. For θ = 20◦, the transmission minimum is

perfectly recovered but the transmission maximum is still slightly shifted towards higher

wavelengths. Compared to the symmetric Lorentzian line shape, the coupling for an

asymmetric line shape seems to be more critical. It is nonetheless interesting to note that

for an asymmetric Fano resonance, the angle θ allows for a wavelength tunability of the

transmission peak. This could be used to design narrowband and tunable transmission

filters.

From a more general point of view, these results confirm the resonating nature - linked to

the multiple reflections in the cavity - of the observed Fano resonances. Furthermore, the

round trip cavity number greatly influences the Fano line shape ”quality” – as it is the case

for the classical Fabry-Perot resonator. In the next section, we discuss some advantages

in terms of fabrication tolerances.

4.5/ FABRICATION TOLERANCES

The studied metamaterials involve rather simple geometries to fabricate, such as rectan-

gular aperture or lamellar apertures. In addition, we have shown in this chapter that the

Fano resonance excitation directly originates from the metamaterials polarization prop-

erties. We would like to briefly study the fabrication imperfection influence on the Fano

excitation. For that, we consider a reference bi-periodic metamaterials where ax/p = 0.45,

ay/p = 0.9 and h/p = 1.0. We consider the second metamaterial to have fabrication error

and its parameters are denoted by a′x/p, a′y/p and t′/p. We define ∆ as the relative fabri-

cation error with the reference geometry so that ∆ =
ax − a′x

ax
=

ay − a′y
ay

=
t − t′

t
. The period
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(a) (b)

Figure 4.20: Simulated transmission spectra when a fabrication error ∆ between the two
metamaterial polarizers is taken into account. (a) Transmission spectrum for ∆ = 5%.
(b) Transmission spectrum for ∆ = 10%. Both transmission spectra are compared with a
reference of ∆ = 0% in dashed red line.

p is the same for both metamaterials.

Figure 4.20 shows the EJF-simulated transmission spectrum for (a) ∆ = 5 % and (b)

∆ = 10%. For ∆ = 5%, the overall transmission decreases due to a mismatch between the

non-identical T E01 guided modes. However the Fano resonance, located at λ/p = 1.69,

is still well exploitable though we can see a slight asymmetry on the Fano lineshape.

For ∆ = 10%, we can clearly observe an important discrepancy with the perfect case

(∆ = 0%). First, the Fano resonance has a strongly asymmetric line shape. By inducing

such large fabrication error, we substantially modify the spectral resonance of the second

metamaterial. Hence, the dark mode resonance is superimposed to one metamaterial

resonance only and it therefore leads to an asymmetric shape. Second, the Fano reso-

nance visibility is drastically reduced but the sharp line can still be exploited for sensing

application for example. On one hand, fabrication error as high as 10% in combination

with absorption losses would lead to very low Fano-like excitations. On the other hand, a

∆ of 10 % is very high and a configuration with ∆ ≈ 5% seems objectively closer to reality.

By changing the geometry of the second metamaterials aperture, it modifies the terms

JT,x,x
θ and JR,x,x

θ only. In other words, we influence the bright mode propagation through

the structure but the dark mode is not directly affected.

In this section, we have used the Jones formalism to develop a simple Fabry-Perot model

for two polarizing metamaterials. We have then analytically and physically demonstrated

the presence of the bright and dark modes in the cavity. When the structure presents a
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mirror symmetry, the dark and bright modes are orthogonally polarized and therefore un-

coupled. The coupling occurs when breaking the mirror symmetry by applying a rotation

angle θ.

In the next section, we have expanded the concept of polarization-induced Fano reso-

nances to a larger number of stacked metallic metamaterials. We especially emphasize

that the additional degrees of liberty offered by the stacked structure allows for reconfig-

urable and versatile filtering devices.

4.6/ DISCUSSION

Although our study relies on structure with simple geometry, the different possibilities

that have been shown always involve the manipulation of a freestanding wire-grid meta-

surfaces. Such reconfigurable structures in the visible domain would require a precise

nano-positioning for each metasurfaces and could lead to complex setup. However, the

results can be scaled for larger wavelengths and are probably more suitable for designs in

the terahertz or microwave range. For these spectral regions, the wire-grid metasurfaces

dimensions reach the millimeter scale and can be handled more easily. Furthermore,

our model assumes perfect electric conductor materials, and metals in the terahertz or

microwave region are good candidates to approximate this ideal case.

4.7/ SUMMARY

In this chapter, we have developed and used an analytical Fano-like model to physically

interpret the sharp transmission dip observed in the second chapter. First, we have devel-

oped a simple Jones model to analytically demonstrate the presence of bright and dark

modes in our polarized Fabry-Perot cavity. We have suggested that a y-polarized Fabry-

Perot dark mode is located between two metamaterials. Then the FP dark mode can be

coupled to the x-axis bright mode by breaking the stacked metamaterials alignment via

the rotation angle θ.

Such concept of bright and dark mode coupling in stacked metallic metamaterials (or sim-

ilar kind of stacked polarized structure) seems to not have been reported in the literature.

In our opinion, it is important to emphasize that the dark mode is not created by a specially

designed unit-cell with a particular asymmetry. In our case, the FP dark mode appears

because of the stacking while the bright mode is transmitted through the structure. To

be more specific, the bright mode results from the metamaterial-based enhanced optical
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transmission and propagate along the x-axis. In the meantime, the orthogonally polarized

dark modes arise from the aligned stacked structure and are trapped between the meta-

materials. In other words, the dark modes in our structure are not occurring at the same

”location” than the bright mode, as it is the case for asymmetric unit-cell based metama-

terials. In our case, it is the symmetry breaking of the overall structure that provokes the

dark modes coupling.

If we look back at the mentioned bibliography, the stacked structure combines two distinct

strategies for exciting Fano resonance. It associates the side-coupled cavity-waveguide

concept first presented by Shanhui Fan [121] and the symmetry-breaking concept first

reported in metamaterials by Fedotov et al. [127]. Indeed, the y-polarized Fabry-Perot

resonators (FPy) play the role of the side-coupled cavities while the coupling is achieved

by symmetry-breaking. This combination is made possible in the structure because of

the specific polarization properties of its constitutive stacked metamaterials. However, it

is important to remind that the propagated light polarized along the x-axis is not - strictly

speaking - a ”waveguide” propagation.

Furthermore, we have shown that larger stacks of freestanding metasurfaces can be

used to exhibit and separately tune multiple Fano resonances. We believe that stacks

of metasurfaces/metamaterials provide a new route to produce Fano resonances and an

original way to design a wide variety of reconfigurable filtering devices. This high versa-

tility also proves the structure to be a good candidate to even realize arbitrary spectral

shaping. From a more general point of view, Fabry-Perot resonators made of anisotropic

and twisted mirrors could reach broader applications in physics.





5

SPECTRALLY TUNABLE LINEAR

POLARIZATION ROTATION USING

STACKED METALLIC METAMATERIALS

In the previous chapter, we have demonstrated that stacks of metallic metamaterials can

be very efficient to achieve and tune polarization-induced Fano resonances. Then, we

have proposed filtering applications based on this observation. As we have seen in chap-

ter 3, the Fano dip can also be engineered for detection such as electro-optical sensing.

However, stacking metallic metamaterials can be used for totally different applications that

do not necessarily involve Fano resonances. In this chapter, we propose to use stacked

metamaterials to perform a spectrally tunable linear polarization rotation.

First, we give a state of the art of polarization rotation using metamaterials. We distin-

guish several kinds of structures that are suitable for polarization rotation. Second, we

physically describe the linear polarization rotation principle that can be used with stacked

metallic metamaterials. We present the general EJF form for an arbitrary metamateri-

als number N. Third, we numerically study the polarization rotation and show that it can

operate either on a broad spectral band or on an ultra narrow spectral band. For the

broadband polarization rotation, we focus on some parameters such as the separation

distance between metamaterials or the rotation angle in oreder to optimize the bandwidth.

We especially show that some specific configurations are efficient for cross-polarization

rotation. For the ultra-narrow band polarization rotation, we show that it can be achieved

only for a very particular stacked structure configuration. Besides, we propose another

structure for the polarization rotation based on Fano resonance excitation and polarization

induced effects. We show that in some particular configurations, it is possible to achieve

a quasi cross-polarization rotation using only two metallic polarizers. We finally conclude

that stacked metamaterials offers many configurations to realize polarization rotation and

111
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we discuss the advantages of each configuration. Part of the results presented in this

chapter has been published in 2017 [182].

5.1/ STATE OF THE ART

Polarization rotation with metamaterials was first reported using a metallic gammadion-

shaped subwavelength unit cell [183–185], as shown in Fig. 5.1. The linearly polarized

incident light was launched on the gammadion metamaterial and the 1st order diffraction

reflected light was rotated by an angle ∆θ. In those studies, the polarization rotation is

explained by the chirality of the structure. Another early study on reflective polarization ro-

tation was reported using anisotropic metamaterials [55]. The polarization rotation is also

sometimes referred to as polarization conversion. In this manuscript however, we prefer

to use the term rotation since conversion can have another meaning, i.e., conversion of a

linear polarization into a circular or elliptical polarization for example.

Studies on reflective polarization rotator with broad wavelength range and with a 90◦

rotation angle has been further developed using subwavelength unit-cell such as split

wire rings [186], disk split ring resonators [187], tilted coupled split rings [188], meta

Figure 5.1: Principle of reflective polarization rotation using gammadion unit-cell meta-
material. An incident input linearly polarized beam falls on a gammadion based planar
chiral metamaterial. After reflection, the output beam has been rotated by an angle ∆θ

and the beam ellipticity is given by η. Inset (a) Output beam ellipticity η as a function the
polarization orientation (polarization azimuth ψ). Inset (b) Polarization rotation value ∆θ

versus ψ. Figures taken from [183]
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reflect-array [189], C-shaped slits [190], Y-shaped nano-antennas [191] or elliptic plas-

monic resonators [192]. More complex patterns such as array-shaped [193] or anchor-

shaped [194,195] unit-cells have also been studied. Each of these studies involved com-

plex three-layer metamaterials composed of a metallic ground plane, a dielectric sub-

strate and either a dielectric or metallic structured top layer. Very recently, reflective po-

larization rotation has been achieved by metasurface antenna for the GHz regime [196]

and by cross shaped graphene metamaterial [197]. A recent interesting study reported

switchable polarization rotation with a three-layers metamaterial composed of a vanadium

dioxyde (VO2) phase change materials as the intermediate layer substrate [198]. By mod-

ulating the phase-change material temperature below (or above) the threshold of 68◦C,

the incident linear polarization was rotated by +45◦ (or −45◦) after reflection.

The main alternative to reflective polarization rotation is the transmissive polarization

rotation where light polarization is rotated after its passage through the metamaterial.

Early works on transmissive polarization rotation was reported using single metama-

terials also composed of gammadion unit-cell [57, 199, 200]. Another recent work re-

ported polarization rotation with a stero gammadion unit-cell [201], i.e. a gammadion

shape resonator patterned on a trenched surface. Recent polarization rotation demon-

strations were realized with metasurfaces composed of helices [202], asymmetrically split

ring resonators [203] or metal-graphene hybrid structure with higher order symmetry pat-

tern [204]. Tunable polarization rotation was achieved using a reconfigurable metasurface

based on a micro-electro-mechanical-system actuation. [205]. Later, stacking metama-

terials to realize transmissive broadband cross-polarization rotation has been extensively

studied. For example, in 2010, an early demonstration of a 90
◦

polarization rotation was

realized with a pair of chiral metamaterials [206]. The same year, polarization rotation was

performed with a pair of L-shaped slit patterned metallic layers [207]. The polarization ro-

tation was enhanced by the Fabry-Perot resonances between the metallic layers which

was itself coupled to a plasmonic mode. More recently, a bi-layer metallic metamaterial

with connected slots exhibited efficient cross-polarization rotation [208].

Since few years, stacks of three metamaterials prove to be very efficient to achieve broad-

band cross-polarization rotation [209–213]. In general, it consists in progressively rotating

in the transverse plane the second and the third metamaterials - or its unit-cell pattern -

by 45◦. After passage in the third metamaterial, the polarization is rotated by 90◦. One

schematic example is depicted in Fig. 5.2 [210] where the authors demonstrated cross-

polarization rotation over a broadband THz range.

These results were achieved using three stacked mono-periodic metallic metamaterials.

A very recent study used the same kind of stacked metallic metamaterials and demon-
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Figure 5.2: (a) 3D schematic principle of polarization rotation through a stack of monope-
riodic metamaterials. (b) Compared transmission spectrum corresponding to cross po-
larization rotation obtained theoretically, numerically and experimentally. Figures taken
from [212].

strated similar polarization rotation properties [214]. Other studies however have reported

broadband cross-polarization rotation where the middle metamaterial is composed of a

different unit cell such as split wire rings [215], split disks [216], T-shaped resonators [107]

or disk split rings [217]. Polarization rotation was also studied for an arbitrary amount of

stacked nanorods [218, 219]. It has to be noted that such stacked and progressively

twisted structure can also present asymmetric transmission properties that can be used

to design optical isolators [56,104].

Nonetheless, for most of these studies, the reported cross-polarized transmissions values

are significantly less than 100%. One example is shown in Fig. 5.2(b) where the maximum

cross-polarized transmission value is 80%, at a frequency close to 1 THz, while the rest of

the cross-polarized transmission spectrum reaches no more than 65%. For the structure

we consider in this chapter, we will demonstrate that the transmission values reach 100%

thanks to two phenomena:

1) the enhanced optical transmission (EOT) in the metamaterials apertures, covered

in chapter 2

2) the multiple reflections (or FP like resonances) occurring between the metamateri-

als, analysed in chapter 3.

Moreover, we will show that total cross-polarization rotation is achievable in several con-

figurations.
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5.2/ LINEAR POLARIZATION ROTATION PRINCIPLE

In this section, we present the principle of Linear Polarization Rotation (LPR) which con-

sists in rotating the x-component of the incident linear electric field ~Einc by an angle θ -

counted from the x-axis - after transmission through the last metamaterial polarizer, as

shown in Fig. 5.3. Hence, the first Metallic Polarizer (MP) is oriented such that its trans-

mitted electric electric field ~ET is along the x axis (term α of JT in eq. 2.89). In other

words, the incident electric field component along the y-axis is not transmitted nor rotated

but totally reflected by the first MP and is denoted by ~ER (term −1 of JR in eq. 2.89). The

rotation angle of each MP uniformly changes from 0 (1st MP) to θ (last MP) in the trans-

verse Oxy-plane. We introduce ϕ as the uniform rotation angle between two consecutive

MPs, so that

(N − 1)ϕ = θ mod π. (5.1)

For more clarity on the notation and on the numerical study, we consider the stacked

metamaterials to have the same unit-cell geometry so that they only differ by their trans-

verse orientation. Furthermore, we consider a constant rotation angle ϕ and a constant

separation distance d between the metamaterials.

We have developed a simple theoretical model which illustrates the physical principle

underlying the LPR effect. This present model is a generalized form to an arbitrary MP

number N ≥ 3 of the theory previously used for two stacked MP in chapter 3. We analyti-

h

Figure 5.3: 3D rendered schematic depicting the linear polarization rotation principle.
The incident field x-component - in green - is transmitted and progressively rotated by an
angle θ after the transmission through the last MP.
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cally deduce the expressions of the transmission and reflection Jones matrices, denoted

by JT
N and JR

N respectively, for a stack of N MP:

JT
N =

 JT
x,x 0

JT
y,x 0

 = α(N)
T (cosϕ)N−1

 cos θ 0

sin θ 0

 , (5.2)

and

JR
N =

 JR
x,x 0

0 JR
y,y

 = α(N)
R

 1 0

0 0

 − Id, (5.3)

where Id is the identity matrix. The terms α(N)
T and α(N)

R are the Airy-like spectrally resonant

coefficients of the whole structure. Their analytical expressions are obtained by using the

iterative process of the S-matrix algorithm that accounts for the MP stacking. More details

can be found in chapter 3. After tedious calculations, the coefficients α(N)
T and α(N)

R in Eq.

(5.2) and Eq. (5.3) are given by

α(N)
T =

α(N−1)
T αT u

γN − u2 (1 − αR)
(
1 − α(N−1)

R

) , (5.4)

and

α(N)
R = αT

α(N)
T

α(N−1)
T

(
α(N−1)

R δ − 1
)

u + αR, (5.5)

with

γN =
1 − u2

(
1 − αRα

(N−1)
R sin2 ϕ

)
1 − u2 , and δ =

cos2 ϕ − u
1 − u2 , (5.6)

where u = exp (ik0d) is the propagation term in the homogeneous layers separating the

MPs. Equations (5.4) and (5.5) are iterative formulas where the initial terms α(1)
T and α(1)

R

correspond to αT and αR, as previously presented in chapter 2.

We remind that this theory is restricted to the far-field approximation and it implies that

the distance d is large enough to neglect coupling between evanescent waves at the

interfaces of two consecutive MP, as discussed in chapter 3. Thus, the transmission

involves only propagating electromagnetic fields which are reduced to the 0th diffracted

propagative order in the considered spectral range. Nonetheless, we remind that the

evanescent waves in homogeneous regions are taken into account in the transmission

and reflection properties of each MP via the coupling coefficient C (given by the Eq.

(2.35) in chapter 2). Besides, we remind that the studied spectral domain is chosen such

that only the fundamental guided mode T E01 propagates inside the rectangular apertures,

and therefore satisfy the monomodal criterion.
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5.2.1/ TOTAL TRANSMISSION OF LINEAR POLARIZATION ROTATION

To study the transmission properties of our structure, we define the transmission coeffi-

cient T such that

T =
∣∣∣JT

N,x,x

∣∣∣2 +
∣∣∣JT

N,y,x

∣∣∣2 =
∣∣∣∣α(N)

T (cosϕ)N−1
∣∣∣∣2 (5.7)

We remark that the transmission coefficient has an expression which is similar to the

extended Malus’ Law studied in chapter 2 (Eq. (3.16)). As for the extended Malus’ Law,

we have a modulation factor α(N)
T that accounts for the multiple reflection in the structure,

and the progressive rotation is given by (cosϕ)N−1. It is important to remind that the

transmission coefficient is an intrinsic property of the structure and do not depend on the

incident light polarization.

To begin, we focus on a stack of three metamaterials aligned on the x-axis, with the

following geometry ax/p = 0.3, ay/p = 0.9, h/p = 1 (see Fig. 5.3). The transmission

spectrum as a function of the separation distance d is shown in Fig. 5.4 (a). We can

remark that the observed transmission response is similar to the transmission response

of two aligned metamaterials given in Fig. 3.7(b). We notice however an additional Fabry-

Perot resonance. Indeed, the addition of a third metamaterial produces a FP resonator,

polarized along the x-axis and located between the second and third metamaterials. It

leads to degenerated resonance pairs for each Fabry-Perot harmonics.

Figure 5.4 (b) shows the transmission spectrum as a function of d/p when ϕ = 45◦ -

which corresponds to a cross-polarization rotation configuration. As we can remark and

(a) (b)

d
/p

Figure 5.4: (a) Transmission spectrum as a function of the separation distance d for
ϕ = 0◦, i.e. three aligned polarizers. (b) Transmission spectrum as a function of d when
ϕ = 45◦, i.e. cross polarization configuration. The blue dotted line denotes the polarization
induced Fano resonances dip.
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expect, Fano transmission dips appear for the condition λ = 2d/m. As we have seen in

the previous chapter discussing polarization-induced Fano resonances, it is due to the

metamaterials rotation which allows for the coupling of the FPy resonance and leads to

Fano dips. Unfortunately, to realize cross-polarization rotation with three metamaterials,

the rotation angle is ϕ = 45◦ which implies a strong coupling of the FPy dark mode and

therefore leads to a transmission dip with a large bandwidth. Such broad Fano dip is

detrimental to broadband cross-polarization rotation. Nonetheless, we show later that

such configuration can be optimized to achieve broadband cross-polarization rotation.

From now on, we concentrate our study on the spectral range where λ/p ∈ [1.2, 2.0].

The separation distance d/p is thereafter chosen equal to 1, i.e such that, at least, two

distinct resonant transmission peaks occur in λ/p ∈ [1.2, 2.0]. The configuration with such

parameter values is labelled as A in Fig. 5.5(a) marked by the horizontal white dotted

line.

It may be surprising to get total transmission at resonances by simply interposing one

linear polarizer at 45◦ between two crossed ones. According to eq. (5.2), it means that

T = |α3|
2 [cos (π/4)]4 = 1 at resonances. We expect that this total transmission is due to

the multiple reflections between the metamaterial polarizers, as suggested in the previous

chapters. In particular, the enhanced transmission is mainly due to the x-polarized Fabry-

Perot resonance (as shown in Fig. 3.7). For cascaded dichroic polarizers, where the

multiple reflections vanish, T =
∣∣∣(cosϕ)N−1

∣∣∣2 which is equivalent to eq. (5.7) with |αN | = 1

∀λ/p. In this case and for N = 3, the transmission reaches only 25% for dichroic polarizers

instead of 100% at resonance of PMP, as numerically demonstrated in Fig. 5.4. This per-

fectly agrees with the extended Malus’ Law and demonstrates that the multiple reflections

between the MP are responsible for the observed total transmission at resonance.

We may also expect that the peak positions largely depend on the homogeneous layer’s

thickness d because of these multiple reflections. However, the transmission spectra

for different values of d/p shown in Fig. 5.4(b) exhibit peaks with positions that roughly

coı̈ncide with the ones of a single PMP (λ/p ≈ 1.4 and 1.68), except when the Fano dips

of the cavity, formed by two consecutive PMP, intersect the PMP own resonances (see

oblique blue dotted line in Fig. 5.4(b)). For more details on such complex transmission

phenomenon, the reader can refer to the the chapter 4 where the polarization induced

Fano resonance phenomenon is investigated.
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5.3/ LINEAR POLARIZATION ROTATION WITH TUNABLE QUALITY

FACTOR

In this section, we show that the arrangement of the structure, as well as the holes ge-

ometry, are playing a crucial role to control the LPR quality factor Q =
λ0

∆λ
, where λ0 is

the central wavelength in the transmission bandwidth, and ∆λ is the bandwidth measured

at FWHM (i.e., -3 dB in log-scale). However, the rotated output field polarization direc-

tion, given by θ, and the quality factor, which is influenced by ϕ cannot be arbitrarily and

simultaneously fixed. Hence, we first focus on the angle ϕ with no consideration for θ.

From now on, we restrict our study to the peak close to λ/p = 1.68 which is related to

the cut-off of the T E01 guided mode inside the rectangular holes. However, the cut-off

wavelength of the T E01 mode is equal to 2ay. This implies to keep the same value of

ay in order to avoid important peak shifts. In section 5.3.1, the study is led to design

Broadband LPR (BPR) which corresponds to low quality factors (Q < 10). Then, we

discuss the limitations of the BPR. Conversely, in section 5.3.2 we design a Narrowband

LPR (NPR) which corresponds to ultra-high quality factors (Q > 105).

5.3.1/ BROADBAND LINEAR POLARIZATION ROTATION

First, ax/p must be chosen as large as possible (in order to increase the radiation losses

of the apertures) to obtain BPR. Nevertheless, the value of ax/p must be chosen such

Figure 5.5: (a) Evolution of the transmission spectrum for configuration A (N = 3 and
ϕ = 45◦) when the aperture width ax/p decreases to 0.1 or increases up to 0.5. (b)
The red curve gives the quality factor Q as function of ax/p. The blue curve shows the
corresponding shift of the central wavelength λ0/p.



120 CHAPTER 5. SPECTRALLY TUNABLE LINEAR POLARIZATION ROTATION

that the cut-off wavelength of the second mode T E10 (2ax) remains smaller than the TEM

Floquet mode cut-off wavelength so that 2ax ≤ p. Therefore, the maximum value of ax/p is

0.5 in order to satisfy the monomodal criterion. Results shown in Fig. 5.5(a) confirm that

the width of transmission peaks increases when ax/p grows. Precisely, Fig. 5.5(b) shows

the quality factor Q computed for the peak close to λ/p = 1.68. It particularly shows that

Q decreases when the rectangle’s width, ax/p, increases. Thereafter, we fix ax/p = 0.5 for

BPR. The BPR with such parameter values is labelled as BB in Fig. 5.5(b) with Q = 18.4.

Figure 5.6(a) shows the variation of Q with respect to ϕ, for different values of N and

for a separation distance d/p = 1.0. As expected, the quality factor decreases when ϕ

decreases. Similarly to photonic crystal band gaps broadening, quality factors tend to

one limit for a fixed value of ϕ when the number N of cascaded PMP increases. We

also remark that a BPR with N = 3 reaches identical performances at ϕ = 0.5o than a

BPR with N = 15. Hence, for polarization rotation with small angle, a limited number of

metamaterials N (N = 3) is sufficient to achieve the best performance. This configuration

is labelled as CB in Fig. 5.6(a) for which Q = 7.9. The inset graph in Fig. 5.6(a) reveals

that the peak position remains almost constant near λ0 ≈ 1.65.

Another way to broaden the bandwidth is to merge 2 (or more) peaks by shifting the peak

centered at λ/p ≈ 1.4 toward the one centered to λ/p ≈ 1.68 for example. The peak

close to λ/p = 1.4 is related to a Fabry-Perot-like resonance of the T E01 cavity mode

h

Figure 5.6: (a) Quality factor versus the rotation angle ϕ for different metamaterial polar-
izer number N. The inset graph gives the corresponding shift of the central wavelength.
(b) Transmission spectrum versus the polarizer metamaterials thickness h/p.
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and its resonance wavelength changes with the metal thickness h. The position of the

peak near λ/p = 1.68, related to the cut-off of T E01 cavity mode, is not affected by h/p

values because it only depends on ay (λTE01
cut−o f f = 2ay). Figure 5.6(b) depicts transmission

spectra for different values of h/p. As expected, we see that the two peaks merge but the

bandwidth of each peak narrows when h/p increases. The spectra shown in the inset of

Fig. 5.6(b) computed for a BPR with h/p = 2, and labelled as DB, reveals a relatively low

quality factor: Q = 3.29. As we can observe in the inset spectra of Fig. 5.6(b), it is possi-

ble to modulate the spectral bandwidth, or in other words, the quality factor Q, at a -3dB

threshold while the bandwidth at -6dB is barely affected with the variation of h. Those

results show that it is possible to lower the quality factor by increasing the rectangle’s

width, by reducing the angle ϕ and by carefully choosing the metamaterials thickness h.

In the same time, they demonstrate that Q converges to a limit value. These multilayered

devices present transmission properties close to cascaded nanobars structure studied

in [219]. It features similar broadband range with a very efficient LPR obtained by twist-

ing. Until now, the overall results demonstrate that it possible to optimize (or tune) the

bandwidth while preserving a very high transmission coefficient (T ≈ 100%).

However, as mentioned above, the relation between ϕ and θ given by eq. (5.1) does not

allow to choose an accurate quality factor Q and an arbitrary angle θ simultaneously. This

issue is especially crucial for the achievement of a low Q and tunable LPR. For example,

in the case of a cross-polarization rotation where θ = 90◦ and with N = 3, the angle ϕ is

therefore equal to 45◦ since we consider a progressive rotation. Such a value of ϕ is not

optimized to obtain a low Q cross-polarization rotation. In this case, the corresponding

quality factor is Q = 11.3 for λ0 ≈ 1.68. Thus, we discuss two options to overcome this

limitation.

The first option simply consists in increasing N in order to reduce ϕ and therefore lower

the quality factor. Figure 5.7(a) shows the transmission spectra for different values of N

Figure 5.7: (a) Cross polarization rotation spectra given for N ∈ [3, 6] metamaterial polar-
izers number. (b) Transmission spectrum as a function of χ2 for N = 3.
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for θ = 90◦. As expected from Fig. 5.6(a), we observe a broadening of the transmission

spectra when N increase. However, Fig. 5.6(a) and 5.7(a) shows that such a broadening

is limited and converges to a finite spectral bandwidth (convergence of Q when ϕ → 0◦).

Consequently, a reasonable number of polarizers should be chosen to achieve a good

trade-off between a large bandwidth and a realistic device easy to fabricate.

The second possibility is to consider a non-uniform angle χ between each plate for a stack

of N polarizers such that
N−1∑
i=1

χi = θ with i ∈ {1, 2, . . . ,N − 1}. Precisely, we study the simple

case of N = 3 with χ1 + χ2 = 90◦, and Fig. 5.7(b) shows the transmission spectra as a

function of χ2. One note that the transmission spectrum is optimized when χ1 = χ2 = 45◦

featuring a perfect transmission with the broadest band (lowest Q). Thus, breaking the

intermediate rotation angle ϕ into different values χi is not efficient for achieving a total and

low-Q LPR. Nevertheless, Fig. 5.7(b) also shows that the structure exhibits an angular

tolerance within which its performances are barely affected.

Another possibility is to consider different values for each separation distances between

the metamaterials. Again, we focus on a three metamaterials stacked structure with a

constant angle ϕ = 45◦ and two different separation distances values denoted by d1 and

d2. The value of d1 is fixed to d1/p = 1.0 while we analyse the transmission spectrum

as a function d2/p, as shown in Fig. 5.8. For more relevance, such results have to be

compared with Fig. 5.4(b), where both distances are varied at the same time (d1 = d2 = d).

As we can see, considering different separation distance values does not increase the

bandwidth nor the overall transmission. However, as for the previous study, such results

indicates that the structure is also robust against metamaterials positioning errors and

preserves a transmission coefficient equal or close to 100%.

Figure 5.8: Transmission spectrum as a function of d2/p, the distance separating the
second and third (last) metamaterials.
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5.3.2/ NARROWBAND LINEAR POLARIZATION ROTATION

Contrary to BPR, ax/p must be chosen as small as possible in order to reduce the ra-

diation losses and thus to realize NPR. Hence, the value of ax/p is fixed to 0.1 which

corresponds to the polarization rotation labelled as BN in Fig. 5.5. For this value of ax/p

and for N = 3, the peak close to λ/p = 1.75 shown in Fig. 5.5(a) splits into two peaks.

The quality factor plotted in Fig. 5.5(b), equal to 29.7 at BN , is computed for the whole

peak. We assume that this effect is due to resonance degeneracy. The whole structure

may be seen as a stack of 5 cascaded and coupled resonators. Indeed, for N = 3, there

are 3 resonating MPs coupled to 2 multiple reflections resonances located in the two ho-

mogeneous regions. This complex behaviour deserves a thorough analysis in a future

work. The narrow peaks are indicated by dark arrows in Fig. 5.9(a). Precisely, we see

in the graph on the left of Fig. 5.9(a) that the most narrow peak is increasingly being

thin when ϕ tends to 90o while the other ones disappear. More generally, for N stacked

metamaterials, there are (N − 1) transmission peaks corresponding to the (N − 1) FP

resonances distributed along the structure. One of the peak features a relatively broad

spectral bandwidth with T < 1, while the (N − 2) remaining peaks are very narrow with

T = 1 at resonances. It is interesting to see that, for fixed values of N, all narrow peaks

Figure 5.9: (a) Transmission spectra as a function of ϕ for a stack of 3, 4 and 5 metama-
terials polarizers respectively shown in the left, center and right graph. The inset below
are the corresponding transmission spectrum at ϕ = 30◦. (b) Quality factor Q versus ϕ for
different polarizer number N. The left inset graph shows the corresponding variation of
the central wavelength λ/p. The right inset spectrum shows a narrow transmission peak
obtained for ϕ = 89◦ and the corresponding quality factor is Q = 1.3 × 105.
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seem to converge to a unique value of λ/p when ϕ increases. Such intriguing behavior

is not well understood for the moment and is under investigation and we suspect that

complex polarization induced effects are involved. In order to distinguish the peaks more

easily, the peaks are also depicted in the lower inset spectra in Fig. 5.9(a) for ϕ = 30◦. For

such value of ϕ, the peaks appear more clearly. For ϕ > 45◦ the peaks start merging and

they cannot be individually located. Thereafter, we study in particular the nearest peak to

λ/p = 1.68.

We are now interested in the variation of the quality factor of the chosen transmission

peak when ϕ tends to 90o. The results are depicted in Fig. 5.9(b) and reveal that the

quality factor drastically diverges when ϕ tends to 90◦, regardless the value of N. As an

example, the NPR with ϕ = 89◦ and N = 3 is labelled as CN . For this case, Q reaches

1.3 × 105, and the transmission spectra is plotted in the inset graph on the right of Fig.

5.9(b). In the inset graph on the left, we remark that peak positions converge to a unique

value of λ/p when ϕ increases and it confirms the observation made in Fig. 5.9(a). This

interesting result could be used for the design of high quality filters for the THz spec-

tral band. Nevertheless, in view of experimental demonstration, the robustness of the

structure with respect to the fabrication imperfections should be discussed. However, the

latter greatly depends on the manufacturing process that is not already established. Such

parametric study involving pure numerical methods, such as the FDTD, must be applied

to take into account the real geometry of the structure [22].

5.4/ DARK-MODE-BASED TUNABLE POLARIZATION ROTATION WITH

EVANESCENT METASURFACES

Until now in this manuscript, we have studied several applications where the constituent

metamaterials systematically work at wavelength values located at - or close to - the sub-

wavelength aperture’s resonance. It leads to the direct consequence that an enhanced

transmission occurs for the light polarized along the rectangle’s width (αT ≈ 1), and thus

the metamaterials played the role of polarizers. In this section however, we would like to

investigate polarization rotation when the constituent metamaterials work after the cut-off

wavelength of the fundamental mode (evanescent regime). In other words, we consider

the spectral region where αT falls to zero (αR − 1 ≈ −1). To simplify the notation, we pose

α′R = αR − 1 (5.8)
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Figure 5.10: (a) Reflection versus λ/p given in linear and logarithmic scale, respectively
shown in blue and red. (b) Wrapped phase value of the reflection coefficient α′R as func-
tion of λ/p. The greyed area denotes the spectral region after the fundamental mode
T E01 cut-off wavelength.

Furthermore, we remind that the reflection along the y axis is −1. To summarize, the

metamaterials do no act as polarizers but as reflective metallic plates with polarization

dependency, as initially presented in chapter 4. Nonetheless, it is crucial to note that the

fundamental evanescent mode is still the dominant mode in the aperture and that it does

not affect the validity of the theory. Now, we focus on the x-axis reflection coefficient β

of the metamaterials and we consider the incident light ~Einc to be lineary polarized along

the x-axis. Figure 5.10(a) shows the reflection spectrum of a bi-periodic metamaterials

with rectangular apertures where ax/p = 0.45, ay/p = 0.9 and h/p = 1.0, aligned on

the x-axis. The reflection spectrum is shown in linear scale (blue dashed curve) and in

logarithmic scale (red solid curve). The region where the fundamental mode becomes

evanescent is for λ/p > 2ay = 1.8 and is represented by the grey area. For λ/p > 1.8,

the reflection R = |α′R|
2 tends to be total. Figure 5.10(b) gives the phase of the x-axis

reflection coefficient α′R. We can see that the phase of α′R asymptotically tends to −π

when λ/p → ∞. It indicates that, as λ/p increases, the corresponding phase tends to

the value of a perfect mirror. In other words, as λ/p increases, the light tends to be less

coupled to the evanescent fundamental mode and thus the reflection term α′R get closer

to the perfect electric conductor reflection (α′R → −1). One note that, for λ/p → ∞, we

obtain α′R = −1 which correspond to a perfect mirror with no polarization dependency.

From now on, we focus on a stack of two metamaterials working in evanescent regime

in the spectral range λ/p ∈ [1.8, 2.4]. To better understand the underlying physics in this

structure, we study the circulating field, given by Eq. (4.8), presented in the previous

chapter. More precisely, we consider the two metamaterials to be aligned (θ = 0◦) so that
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Figure 5.11: (a) 3D-rendered schematic of the dark-mode based tunable polarization
rotation principle. (b) Dashed blue line: transmission spectrum when the two wire-grid
metasurface are aligned (θ = 10◦). Solid red line: Transmission spectrum for θ = 10◦.

the circulating electric field ~Ecirc is given by

~Ecirc =


1

1 − u2α′2R
0

0
1

1 − u2

 U ~Elaunch. (5.9)

We remind that ~Elaunch is the electric field that has just entered the cavity: ~Elaunch = JT ~Einc.

As we can see, for two metamaterials aligned along the x-axis, the circulating field in the

cavity corresponds to two FP resonators that are orthogonally polarized, as depicted in

Fig. 5.11(a). More precisely, one FP resonance is polarized along the x-axis (FPx) and

the other FP resonance (FPy) is trapped (i.e. not excited for θ = 0◦) on the y-axis.

The FPy resonance found in this is configuration is, in fact, the same FPy resonance

previously studied in chapter 4 for explaining the polarization induced Fano resonance.

The main difference with the previous chapter is, the presence of another FP resonance

polarized on the x-axis instead of an optically enhanced guided mode transmitted through

the structure. As we will show, this main difference will lead to a substantially different

behavior where the structure acts as a dual polarized FP resonator.

As we can expect, the FPy resonator is excited only for θ , 0◦ as shown in Fig. 5.11(b).

As we can see, the FPy Fano transmission dip is exactly located at λ/p = 2d/p = 1.9 while

its corresponding transmission peak is very close to it. The FPx resonance, however, is

shifted towards higher wavelength and located approximately at λ/p = 2.33. This shift is

explained by the coupling of the FPx resonance with the fundamental evanescent mode

which leads to a phase value for the reflection different than −π, as already shown in

Fig. 5.10(b). Thus, a small rotation angle induces the excitation of the additional FPy

resonance located at a different wavelength without affecting the FPx resonance.



5.4. DARK-MODE-BASED TUNABLE POLARIZATION ROTATION 127

FPxx'FPyy'

Cross Polarization Rotation

T
ra

n
sm

issio
n

 D
ip

(a) (b)

Figure 5.12: (a) Evolution of the transmission spectrum with the angle θ. The arrows
denotes the two orthogonally polarized FP fundamental harmonics FPx and FPy that are
excited in the hybridized cavity. (b) The logarithmic scale counterpart. The dashed blue
line highlight the fano-type transmission dip exactly located at λ/p = 1.9. The dashed red
line denotes the cross-polarization case where the transmission drops to zero.

Figure 5.12(a) and (b) gives the transmission spectrum as a function of the angle θ in

linear and logarithmic scale respectively. It shows the general tendency of the FP reso-

nance according to θ. For small rotation angle (θ < 10◦), the FPy dark mode coupling is

low and therefore, its bandwidth is narrow as well. We also note that the transmission

peak position barely affected. However for θ ∈ [10◦, 89◦], the spectral shift for both FP

resonances is clearly noticeable. In addition, we note that the dark mode’s bandwidth

becomes constant after θ = 30◦. Such spectral shift suggest the emergence of a coupling

between the two FP resonances. Indeed, when θ is sufficiently large, the FP standing

waves are partially reflected on the two reflection axes at each interface. In other words,

for the FP y (FPx) resonance, the reflection on the x axis (y axis) is not negligible any more.

Therefore, the rotation angle provokes a hybridization of the FP cavity. In particular, for

θ = 89.1◦ the two FP resonances merges with each other at λ/p = 2.145. For θ = 89.1◦,

the reflection axes are almost superimposed with their orthogonal counterpart, i.e. the

x-axis (y-axis) is almost superimposed with the rotated y-axis (x-axis). Such configura-

tion therefore rotates by almost 90◦ the incident x-polarized light. A structure proposed

in [103] also achieved cross-polarization rotation using only two metamaterials polarizers

where surface plasmon polaritons - located between the two polarizers - are responsi-

ble for the high transmission. In our case however, it purely involves a cavity enhanced

transmission, which was - to our knowledge - never reported for only two metamaterial

polarizers.

Another interesting possibility would be to reduce the metamaterials thickness to obtain

metasurface structure, i.e. a compact structure with a total thickness htotal smaller than

the transmitted wavelength: htotal < λ. To this aim, we propose the following geometry:
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Figure 5.13: (a) Evolution of the transmisssion spectrum as a function of θ for ax/p = 0.2,
ay/p = 0.5 and h/p = 0.1. The inset graph gives the corresponding reflection coefficient
phase value for a single metasurface. (b) Transmission spectrum for quasi-cross polar-
ization rotation. EJF simulation shows a perfect transmission for Ψ = 88.6◦ at λ/p = 1.927
while the S-matrix simulation shows an optimized transmission for Ψ.

ax/p = 0.2, ay/p = 0.5 and h/p = 0.1. The separation distance is kept at the same value

d/p = 0.95. The transmission response as a function of θ is shown in Fig. 5.13(a). As

we can see, the transmission response is similar to Fig. 5.12. The main difference is the

shift of the spectral position of the FPx resonance branch. This difference is explained

by the new value of ay/p = 0.5 which leads to a cut-off wavelength for the fundamental

mode λT E01
c /p = 2ay = 1.0. Since the fundamental mode cut-off is located at a much lower

wavelengths compared to the working wavelength, the evanescent fundamental mode is

weakly coupled to the FPx resonance. It results that the reflection phase value is much

closer (between -3.04 and -3.08, as shown in the inset purple graph) to that of a perfect

reflection phase value (π for a pec). As a consequence, the FPx resonance at θ = 0◦

tends to get closer to the ideal case λ/p = 2d = 1.9.

In order to validate our model, we compare our EJF-simulated transmission response

with an S-matrix computation that takes into account 7 evanescent waveguide modes

for the computation. The homemade near-field simulation code does not allows us to

directly rotate the second metasurface by an angle θ because the Bravais lattices of each

metasurfaces have to remain aligned. However, it is possible to rotate by an angle Ψ the

subwavelength aperture inside its own Bravais lattice. For the EJF simulation, a quasi-

cross-polarization rotation with perfect transmission is obtained for Ψ = 88.6◦ at λ/p =

1.927. For the S-matrix computation, the quasi-cross polarization rotation is achieved for

Ψ = 88◦ at λ/p = 1.936. This difference between the Bravais lattice and the pattern rotation

was discussed in [67]. At this working wavelengths, the thickness of the entire structure

is htot ≈ 0.6λ.
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5.5/ SUMMARY

In the first part of this chapter, we have focused on polarization rotation application using

large stacked structure (N ≥ 3). Principally, we have theoretically investigated LPR with

an extremely tunable spectral bandwidth and a total transmission. More specifically, the

polarizing devices consisted in stacks of MP separated by homogeneous dielectric layers.

The numerical results are supported by a new and efficient model from which the Jones

matrices of such stacked structures are analytically expressed. The optimized LPR is

achieved by regularly rotating the successive MP to mimic a chiral structure. Furthermore,

we have underlined the influence of the rectangular holes’ width and, more importantly,

the angle ϕ to selectively achieve a broadband or narrowband LPR. Precisely, we have

shown that low quality factor (Q < 10) and high quality factor (Q > 105) can be obtained.

Most importantly, for the different proposed configurations, the structure ensures a total

(or near-total) transmission in the working wavelength range. Besides, the results suggest

that the structure is robust against fabrication imperfections or positioning errors. In the

second part, we have proposed an original polarization rotation principle based on Fabry-

Perot trapped resonance. Based on the model presented in the previous chapter, we

have designed a structure, comprising two metamaterials only, that is able to achieve

LPR up to θ ≈ 88◦ on a narrow spectral band. The different proposed configuration could

be applied for the design of broadband linear cross-polarization rotators or high-Q filters,

which represent important cornerstones in optical communications.
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CONCLUSIONS

For the conclusions, we first give a summary of the presented work and the main results

obtained during this thesis. The general results shown in the manuscript raise some is-

sues and potential ideas for the future. We address the main issues that are crucial for

the future fabrication and experiments. We especially emphasize that the potential ex-

perimental problems that can be encountered depend on the considered spectral region

- from visible to terahertz domain. Then we further discuss some ideas and perspectives

from a more theoretical point of view. Principally, we show that more potential applications

could be considered by incorporating additional features to the stacked structure, either

by considering more bulk properties for the substrate - such as absorption, anisotropy

etc... - or by engineering more complex unit cell to the constitutive metamaterials.

6.1/ SUMMARY OF THE WORK

This work is based on a Jones formalism extended to metamaterials extracted from a well-

known modal method. It has been recently developed in our team since 2014. During this

thesis we have validated this new formalism by comparing it with a rigorous full S-matrix

computation for single metallic metamaterials. The assumptions and approximation used

have thus been validated. As we already mentioned, these assumptions are judicious

and do not greatly influence the accuracy of the results. We remind however that this

monomodal formalism is analytical only for certain kind of unit-cell geometry. We have

also shown that the EJF agrees very well with rigorous S-matrix algorithm for stacked

structure. This Jones formalism could be further applied to metamaterials with more

complex shape or to structure that could exhibit imperfections or additional properties.

However, for such configuration, the EJF validity should be confirmed again.

Based on this appropriate and efficient model, we have studied many possibilities and

131
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explored interesting physical effects. We have demonstrated that stacked metallic meta-

materials can be used for a wide variety of applications such as in sensing, filtering or

polarization rotation. We think that our works open new ways to use stacked metallic

metamaterials and offer new degrees of freedom compared to single metallic metamate-

rials. Overall, it suggests that our structure shows high versatility and that probably more

application could be considered such as optical switching.

Besides, we have basically revealed that Fano resonances can be induced by the specific

polarization properties of metallic metamaterials. First, we have numerically observed the

Fano resonances. Second, thanks to the EJF we have simply and analytically demon-

strated in our structures the presence of bright and dark modes which are essential for the

FPxx'

Fano

FP
Dark mode

yy'

Metamaterial-induced
resonances

Stacking-induced
resonances

d
/p

x

y

�
ET

ER

Einc
d

z

(a)

(b)

Figure 6.1: (a) Reminder on the principle scheme of a stack of two metamaterials sep-
arated by a distance d. (b) Schematic summary of the resonant behavior of stacked
metamaterial polarizers. The dashed vertical blue lines outline the resonance originating
from the constitutive metamaterials. The several colored arrows point out the several kind
of resonance that arises from the stacking.
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Fano resonance formation. Third, we have developed a basic and clear physical model of

the polarization-induced Fano resonance process. This overall study gives us a precise,

clear and rather simple method to design structure based on Fano resonance.

Figure 6.1(b) summarizes the different effects and resonances that have been studied in

this thesis. It shows more clearly the complexity of stacked metamaterials and the diver-

sity of phenomena that can occur in such structure. It shows the transmission spectrum

as a function of the distance between 2 biperiodic metallic polarizers, as depicted in Fig.

6.1(a). The parameters are ax/p = 0.45, ay/p = 0.9, h/p = 1.0 and θ = 10◦.

The resonance marked by the dashed vertical lines are due to the resonant properties of

the metallic metamaterials. The resonances highlighted by the colored arrows originates

from the metamaterials stacking.

There are however some numerical results in the fourth chapter which have not been

completely clarified. Indeed, in Fig. 5.6 (now plotted below in Fig. 6.2(b)), we numerically

showed the spectral narrowing of the transmission response when ϕ → 90◦ for N ≥ 3.

The corresponding comment for these results does not give a complete and satisfactory

explanation as it does not provide the underlying origin of this phenomenon. It is even

more intriguing to see that in chapter 2, this spectral narrowing is not observed when

using only 2 metamaterial polarizers (see Fig. 6.2(a)). The comparison between N = 2

and N = 3 is given in Fig. 6.2. The discrepancy between these two distinct configurations

- N = 2 and N = 3 - can been seen as a clue and is the starting point of a future analysis.

For now, we suspect that a kind of Fano-like resonance is involved.

(a) (b)N=2 N=3

Figure 6.2: (a) Transmission spectrum through a stack of 2 metamaterials as a function
of ϕ, the progressive rotation angle. (b) For 3 stacked metamaterials.
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6.2/ EXPERIMENTAL PERSPECTIVES

As we mentioned in the chapter 2 that covers the theoretical modelling, the EJF can be

arbitrarily scaled to any spectral range. For each region come specific challenges or is-

sues for fabrication and experiments. This is mainly due to the spectral dependency of

the materials properties and the overall dimension of the fabricated sample. In this sec-

tion, we present some of the main problems that will be encountered for future fabrication

and experiments. We also discuss some solutions to overcome or solve those problems.

From our standpoint, the visible and near-infrared spectral domain are the most chal-

lenging area for the fabrication. First, the metal absorption is larger than for THz or

microwaves and is not at all negligible. When considering application with high sensitivity,

the metal absorption will impose a limit to the quality factor values. Even highly conduct-

ing metals exhibit few percent of absorption that are detrimental to efficiently achieve a

cavity effect. Special coating will have to be considered in order to increase the meta-

materials reflectivity. Second, the sub-micron structure dimensions requires the use of

dielectric substrates to deposit and engineer the metal. This essential step also induces

more limitations. The air-dielectric and dielectric-metal interface implies unwanted Fres-

nel reflections and a TEM Floquet mode cut-off wavelength shifts (as seen in chapter 3).

Furthermore, the substrate can also exhibit losses, anisotropy etc... In addition, we have

to keep in mind that increasing the number of stacked metamaterials also cascade the

losses and imperfections (inhomogeneity, absorption and so on) ”seen” by the light as

it propagates through the structure. Therefore, some of the studied applications includ-

ing a large number of stacked metamaterial seems highly complicated to achieve without

important performance degradation. Finally, one has to keep in mind that if two metama-

terials are deposited at each substrate facet, we permanently loose the angular tunability

between them.

Nonetheless, there are some positive counterparts in the visible that has also to be men-

tioned. First, dielectric substrates naturally feature higher refractive indices than air or

vacuum. It implies that placing a substrate between two metamaterials allows us to pro-

portionally reduce its thickness to excite Fano and/or Fabry-Perot resonances at the same

spectral position. It then permits the design of more compact devices. Second, the ab-

sorption of the substrate is not necessarily detrimental to the cavity effect. Indeed, the

propagation losses could be neglected since the propagation distance is very small, even

after a large number of cavity round trips. Third, the finite conductivity of metal can be

beneficial for broadband application since it increases the metamaterials radiation losses.

It would be for example, interesting for broadband cross-polarization rotation.
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For the terahertz domain, the fabrication and experimental aspects are drastically different

from the visible and near-infrared. First, for most metals, the reflectivity is very close to

100% and the pec approximation thus very close to reality. It makes the high-Q Fano

based application possible and easier to be designed. Second, given the considered

wavelength, the overall studied structures are much larger and the metamaterials unit-

cell dimensions reach the order of tens or hundreds of micrometers or even millimeters.

Therefore, the use of a substrate could be avoided and the stacked metamaterials could

be ”freestanding” in air or vacuum. However, a mechanical device for the alignment and

the structure tunability would then be necessary. More generally, the fabrication process

is likely to be cheaper, easier and less time consuming.

Even though the structure are handled more easily than in visible, they are also obviously

much larger in dimensions, thus less compact. The necessary mechanical maintaining

device also increase the final size of the structure. The overall volume occupied by the

device is likely to reach few millimeter or centimeter cubes. Such volume may be impor-

tant depending on the desired integrability. Compared to the optical domain, the terahertz

domain has also much less technological maturity. Characterizing these structures in the

THz will highly depend on the available sources and detectors. Note that stacked metallic

metamaterials could also be used to develop new tools for the THz and participate to

cover the so called ”THz gap” [220–222].

Metals in the microwave domain shares the same specificity as for the THz, i.e. very

high electrical conductivity. For the microwaves however, the structures dimensions can

reach very large values, up to meter size which is simply not practical. For this domain,

the relevance of stacked metallic metamaterials has to be discussed and such structures

should be compared with the already available technologies.

For all spectral regions, the metamaterials parallelism is critical to obtain good perfor-

mances and good cavity effect. The parallelism is however more easy to control and

adjust for larger metamaterials dimensions. If a substrate is needed, the substrate thick-

ness variation has also to be taken into account. We remind that the model developed

during this thesis considers metamaterials with infinite periodicity. The finite metamateri-

als dimension should also be considered for ultimate practical design. In the theory, the

misalignments between infinitely periodic metamaterials does not lead to a substantial

degradation of the cavity effect. It merely shifts the Fabry-Perot and Fano resonances

in the cavity. From the experimental point of view however, finite and not parallel meta-

materials could cause the light to ”go out” of the polarized cavity after enough multiple

reflections.

As we have seen in this section, many aspects and issues have to be considered for the
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practical fabrication and experimental demonstrations. To conclude this discussion, we

think that the terahertz domain offers the best compromise between fabrication, compact-

ness and performance.

6.3/ THEORETICAL PERSPECTIVES

In the last section, we discussed the main issues and key points to experimentally apply

the concepts and applications we have presented in the manuscript. Nonetheless, we

have not yet envisioned a more general interpretation of the studied structure nor the

potential implications of the main results.

Our theoretical model considers metamaterials that are surrounded and separated by ho-

mogeneous, linear, isotropic and lossless layers. Nonetheless, we have developed an

original formalism on stacked metamaterials that could help us to incorporate different

layers. For example, taking into account an anisotropic separation layer would probably

imply a phase difference between the bright mode and the dark mode. This could be

exploited further to fine tune Fano resonances excited in the structure. In the same man-

ner, carefully designed inhomogeneous layers could bring more functionalities to stacked

metamaterials. Furthermore, separation layers featuring optical activity would be another

way to couple the bright and dark mode in our structure. It has to be noted that, from a

purely mathematical point of view, the matrix representing a chiral layer would be equiva-

lent to the rotation of one metamaterials via the rotation matrix R(θ). One could expect the

same results and performances by including a chiral layer instead of rotating the meta-

materials. There is currently a trend on phase change materials such as VO2 [198, 223]

which could be studied in order to add more functionalities to stacked structures. Finally,

the Fabry-Perot dark mode could also be used to progressively absorb light at precise

wavelengths, either by relying on the metal absorption or by inserting an absorptive ma-

terial.

Another aspect that has not been considered yet is the field enhancement that occurs in

between the metamaterials because of the multiple reflections. The cavity effect we have

studied could be also used to achieve optical nonlinearities in a purposefully inserted

nonlinear medium. More generally, the inclusion of a gain medium could be considered

to propose laser cavity with special polarization effects.

The possibilities we have just mentioned above rely on additional bulk properties of the

separation layers. However, a second main possibility has to be considered, that is to

say, adding more ”complexity” to the metamaterial itself. A direct option would be to use
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the EJF to model unit-cell featuring two orthogonally polarized modes (bimodal method)

to design and stack artificial anisotropic metallic metamaterial. Such structure could al-

low the control of Fano resonance in an original way. Another direct option would be

to consider stacked metamaterials with different unit-cell in order to add more degree

of freedom for controlling the Fano resonance excitation. More complex unit-cell shape

could also be envisaged. In this case, other simulation techniques - such as FDTD, FEM

etc... - will be necessary to model the metamaterials properties. Furthermore, we have

not thoroughly studied the possibilities offered by the near-field yet. It would be nonethe-

less interesting to analyse stacked structures with separation distances that are much

smaller than the wavelength to analyse the influence of the evanescent waveguide mode

and their near-field propagation.

We have mentioned in the introduction that stacked metamaterials are proposed because

of the higher degree of freedom (metamaterials position and rotation) and the new pos-

sibilities they can offer. As we have suggested, the main outcome of this PhD thesis can

serve as a basis to further study more complex structures. The combination of separation

layers having specific properties - such as anisotropy or nonlinearity - together with meta-

materials having more complex unit-cell would probably allow for even more degrees of

freedom while the number of configurations and possibilities grows exponentially.

As a final remark of this manuscript, we would like to stand back and try to give a more

general description of these structures. If we look back at the first studied stack (made

of two metamaterials), we could simply summarize it as a polarized Fabry-Perot cavity

that hosts a Fabry-Perot dark mode. This exotic feature arises from the interdependency

between the polarization properties and the reflection properties of the structure. More

specifically, if the metamaterial are considered in transmission regime (p < λ < λT E01), the

stacked structures combine a ”single pass” bright mode on the transmission x-axis and

stacked ”multi pass” dark mode on the y-axis. It is very important to remind that such

physics originates from very simple and basic polarization properties of the constitutive

metamaterials. It would be interesting to seek materials - other than metamaterials - that

could exhibit the same basic polarization properties. From a more general perspective,

Fabry-Perot cavities are widely used in optics and therefore, this present work could find

use in a large diversity of device and application in optics.
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[29] POPOV, E., NEVIÈRE, M., ENOCH, S., AND REINISCH, R. Theory of light trans-

mission through subwavelength periodic hole arrays. Physical Review B 62,

23 (Dec. 2000), 16100–16108.

[30] CAO, Q., AND LALANNE, P. Negative Role of Surface Plasmons in the Trans-

mission of Metallic Gratings with Very Narrow Slits. Physical Review Letters

88, 5 (Jan. 2002), 057403.

[31] ASTILEAN, S., LALANNE, P., AND PALAMARU, M. Light transmission through

metallic channels much smaller than the wavelength. Optics Communications

175, 4–6 (Mar. 2000), 265–273.

[32] BAIDA, F. I., AND VAN LABEKE, D. Light transmission by subwavelength an-

nular aperture arrays in metallic films. Optics Communications 209, 1–3 (Aug.

2002), 17–22.

[33] BAIDA, F. I., AND VAN LABEKE, D. Three-dimensional structures for enhanced

transmission through a metallic film: Annular aperture arrays. Physical Review

B 67, 15 (Apr. 2003), 155314.

[34] BAIDA, F., VAN LABEKE, D., GRANET, G., MOREAU, A., AND BELKHIR, A. Ori-

gin of the super-enhanced light transmission through a 2-D metallic annular

aperture array: a study of photonic bands. Applied Physics B 79, 1 (July 2004),

1–8.



142 BIBLIOGRAPHY

[35] MOREAU, A., GRANET, G., BAIDA, F., AND VAN LABEKE, D. Light transmission

by subwavelength square coaxial aperture arrays in metallic films. Optics

Express 11, 10 (May 2003), 1131–1136.

[36] POUJET, Y., ROUSSEY, M., SALVI, J., BAIDA, F. I., VAN LABEKE, D., PERENTES,

A., SANTSCHI, C., AND HOFFMANN, P. Super-transmission of light through sub-

wavelength annular aperture arrays in metallic films: Spectral analysis and

near-field optical images in the visible range. Photonics and Nanostructures -

Fundamentals and Applications 4, 1 (Feb. 2006), 47–53.

[37] POUJET, Y., SALVI, J., AND BAIDA, F. I. 90% Extraordinary optical transmission

in the visible range through annular aperture metallic arrays. Optics Letters

32, 20 (Oct. 2007), 2942–2944.

[38] BOYER, P., AND VAN LABEKE, D. Analytical study of resonance conditions in

planar resonators. Journal of the Optical Society of America A 29, 8 (Aug. 2012),

1659–1666.

[39] CHANDEZON, J., RAOULT, G., AND MAYSTRE, D. A new theoretical method for

diffraction gratings and its numerical application. Journal of Optics 11, 4 (July

1980), 235–241.

[40] CALOZ, C., AND TATSUO, I. Electromagnetic Metamaterials Transmission Line

Theory. 2005.

[41] AZNAR, F., GIL, M., BONACHE, J., AND MARTÍN, F. Modelling metamaterial
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AND GIESSEN, H. Plasmonic analogue of electromagnetically induced trans-

parency at the Drude damping limit. Nature Materials 8, 9 (Sept. 2009), 758–762.

[132] PAPASIMAKIS, N., FU, Y. H., FEDOTOV, V. A., PROSVIRNIN, S. L., TSAI, D. P.,

AND ZHELUDEV, N. I. Metamaterial with polarization and direction insensi-

tive resonant transmission response mimicking electromagnetically induced

transparency. Applied Physics Letters 94, 21 (May 2009), 211902.

[133] TASSIN, P., ZHANG, L., KOSCHNY, T., ECONOMOU, E. N., AND SOUKOULIS,

C. M. Low-Loss Metamaterials Based on Classical Electromagnetically In-

duced Transparency. Physical Review Letters 102, 5 (Feb. 2009).

[134] TASSIN, P., KOSCHNY, T., AND SOUKOULIS, C. M. Field Enhancement with Clas-

sical Electromagnetically Induced Transparency. In Nonlinear, Tunable and Ac-

tive Metamaterials, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Eds., vol. 200.

Springer International Publishing, Cham, 2015, pp. 303–319.

[135] PROSVIRNIN, S., AND ZOUHDI, S. Resonances of closed modes in thin arrays

of complex particles. In Advances in electromagnetics of complex media and

metamaterials. Springer, 2002, pp. 281–290.

[136] SINGH, R., ROCKSTUHL, C., LEDERER, F., AND ZHANG, W. Coupling between a

dark and a bright eigenmode in a terahertz metamaterial. Physical Review B

79, 8 (Feb. 2009).

[137] LIU, N., WEISS, T., MESCH, M., LANGGUTH, L., EIGENTHALER, U., HIRSCHER,

M., SO?NNICHSEN, C., AND GIESSEN, H. Planar Metamaterial Analogue of

Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Let-

ters 10, 4 (Apr. 2010), 1103–1107.

[138] SINGH, R., AL-NAIB, I. A., YANG, Y., ROY CHOWDHURY, D., CAO, W., ROCK-

STUHL, C., OZAKI, T., MORANDOTTI, R., AND ZHANG, W. Observing metamate-

rial induced transparency in individual Fano resonators with broken symme-

try. Applied Physics Letters 99, 20 (2011), 201107.

[139] HAN, S., SINGH, R., CONG, L., AND YANG, H. Engineering the fano resonance

and electromagnetically induced transparency in near-field coupled bright



BIBLIOGRAPHY 151

and dark metamaterial. Journal of Physics D: Applied Physics 48, 3 (Jan. 2015),

035104.

[140] LI, X., BIAN, X., MILNE, W. I., AND CHU, D. Fano resonance engineering in

mirror-symmetry-broken THz metamaterials. Applied Physics B 122, 4 (Apr.

2016).

[141] SRIVASTAVA, Y. K., AND SINGH, R. Impact of conductivity on Lorentzian and

Fano resonant high- Q THz metamaterials: Superconductor, metal and per-

fect electric conductor. Journal of Applied Physics 122, 18 (Nov. 2017), 183104.

[142] ARTAR, A., YANIK, A. A., AND ALTUG, H. Directional Double Fano Resonances

in Plasmonic Hetero-Oligomers. Nano Letters 11, 9 (Sept. 2011), 3694–3700.

[143] ARTAR, A., YANIK, A. A., AND ALTUG, H. Multispectral Plasmon Induced Trans-

parency in Coupled Meta-Atoms. Nano Letters 11, 4 (Apr. 2011), 1685–1689.

[144] FRANCESCATO, Y., GIANNINI, V., AND MAIER, S. A. Plasmonic Systems Un-

veiled by Fano Resonances. ACS Nano 6, 2 (Feb. 2012), 1830–1838.

[145] FORESTIERE, C., DAL NEGRO, L., AND MIANO, G. Theory of coupled plasmon

modes and Fano-like resonances in subwavelength metal structures. Physical

Review B 88, 15 (Oct. 2013).

[146] LOVERA, A., GALLINET, B., NORDLANDER, P., AND MARTIN, O. J. Mechanisms of

Fano Resonances in Coupled Plasmonic Systems. ACS Nano 7, 5 (May 2013),

4527–4536.

[147] MUKHERJEE, S., SOBHANI, H., LASSITER, J. B., BARDHAN, R., NORDLANDER, P.,

AND HALAS, N. J. Fanoshells: Nanoparticles with Built-in Fano Resonances.

Nano Letters 10, 7 (July 2010), 2694–2701.

[148] WU, D., JIANG, S., AND LIU, X. Tunable Fano Resonances in Three-Layered

Bimetallic Au and Ag Nanoshell. The Journal of Physical Chemistry C 115, 48

(Dec. 2011), 23797–23801.

[149] MONTICONE, F., ARGYROPOULOS, C., AND ALÙ, A. Multilayered Plasmonic Cov-
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Abstract:
This PhD thesis deals with the theoretical study of
stacked metallic metamaterials. Such structures are
currently investigated to extend the functionalities
offered by single metallic metamaterials. We
especially focus on the specific polarization
properties of the stacked metallic metamaterials.

We first present the type of metamaterial
that we consider, and we describe the modal
method that is used to model its electromagnetic
properties. We outline the linear polarization
properties characterizing the metamaterial thanks
to an Extended Jones Formalism (EJF) recently
developed by our team.

In combination with the EJF, we apply the S-
matrix algorithm to the study of a stack of
two metallic metamaterials in a polarizer-analyzer

configuration. We derive an analytical expression for
the transmission response of the stacked structure:
the Extended Malus’ Law. Mainly, it highlights the
Fabry-Perot-like resonances located between the
metamaterials.

Using larger stacked structures, we demonstrate that
spectrally tunable and low loss polarization rotation
can be achieved owing to these Fabry-Perot-like
resonances.

In essence, we reveal a new way of realizing
Fano resonances which are induced by the specific
polarization properties of the metamaterials. We
show that such resonances can be engineered for
sensing or filtering applications. Moreover, the
polarization-induced Fano resonances expand the
possibilities of stacked metallic metamaterials.

Titre : Study of the polarization of light through a stack of metallic metamaterials

Mots-clés : Nano-optique, Métamatériaux métalliques, Polarisation, Résonances Fano/Fabry-Perot

Résumé :
Cette thèse a pour but l’étude théorique de
métamatériaux métalliques empilés. Ces structures
sont actuellement proposées pour améliorer et
élargir les fonctionnalités des métamatériaux
métalliques. Nous portons un intérêt particulier
aux propriétés de polarisation de ces structures
métalliques empilées.

En premier lieu, nous précisons le type de
métamatériaux que nous étudions et nous
présentons la méthode modale qui nous permet
de décrire les propriétés électromagnétiques de la
structure. A l’aide d’un Formalisme de Jones Etendu
(FJE), développé récemment dans notre équipe,
nous faisons ressortir les principales propriétés
de polarisation linéaire de ces métamatériaux
métallique.

En alliant le FJE à l’algorithme de propagation
de la matrice S, nous étudions un empilement
de deux métamatériaux vus comme un montage

polariseur-analyseur. Nous établissons ensuite une
expression de la transmission de la structure: la loi
de Malus étendue. Cela nous permet notamment de
démontrer les résonances de type Fabry-Perot qui
ont lieu entre les métamatériaux.

Pour des structures plus conséquentes, nous
montrons qu’il est possible de réaliser une rotation
de la polarisation, à très faible perte et spectralement
agile, grâce aux résonances de type Fabry-Perot.

Fondamentalement, nous révélons une nouvelle
façon d’exciter des résonances Fano qui sont
induites par les propriétés de polarisation des
métamatériaux. Ces résonances peuvent être
utilisées pour des applications de capteur ou
de filtrage. De plus, ces résonances Fano
induites par la polarisation ouvrent de nouvelles
possibilités d’applications pour les empilements de
métamatériaux métalliques.
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