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Abstract

This thesis is aiming in utilizing the strongly correlated t − J Hamilto-

nian for better understanding the microscopic pictures of certain condensed

matter scenario. One of the long existing issues in the Hubbard model and its

extreme version, t − J model, lies in the fact that there is not an analytical

way of solving them. Therefore, when dealing with these models, numerical

approaches become very crucial. In this thesis, we will present one of the

methods called renormalized mean-field theory(RMFT) and exploit it upon

the t− J model. Thanks to the concept proposed by Gutzwiller, all we have

to do is to try to include the correlation of electrons, which is mainly the

most difficult part, with several renormalization factors. After obtaining the

correct form of these factors, we can apply the routine mean-field theory in

solving for the Hamiltonian, which is the principle methodology throughout

this thesis.

Next, the physical systems that we are interested in consist of two parts.

The mystery of High-Tc superconductivity comes first. After 30 years of its

discovery, people still cannot settle down a complete microscopic theory in

describing this exotic phenomenon. However, with more and more experi-

mental equipment with higher accuracy nowadays, lots of behavior of copper-

oxide superconductor(also known as cuprate) have been revealed. Those dis-

coveries can definitely help us better understand its microscopic mechanism.

Therefore, from the theoretical side, to compare the calculated data with ex-

periments leads us to know whether our theory is on the right track or not.
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We have produced tons of data and made a decent comparison which will be

shown in the main text.

The second system we are curious about is the mechanism of electrons

under magnetic field. The Hofstadter butterfly along with its Hamiltonian,

the Harper-Hofstadter model has achieved great success in describing free

electrons’ movement with lattice present. Thus, it will be also interesting to

ask the question: what will happen if the electrons are correlated. Our RMFT

for t − J Hamiltonian, by adding an additional phase in the hopping term,

happens to serve as a great preliminary model for answering this question.

We will compare the results of ours with our collaborators, who solved this

model by a different approach, the exact diagonalization(ED). Together with

our calculations, we proposed several discoveries which might be realized by

the cold atom experiments in the future.

Keywords:Strongly correlated systems, t− J model, RMFT
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摘要

本篇論文致力於使用強關聯電子模型之 t− J 漢密頓量來了解物質

之微觀行為，關於解釋強關聯之哈伯模型與其之極限對應的 t− J 模型

有一長久以為無法解決的問題為，我們無法用解析解完美詮釋此量子

模型；因此，在探討此模型時數值解便變得極為重要，在此篇論文中，

我們利用重整化平均場論近似 (RMFT)之數值理論來探討 t− J 模型的

可能詮釋，歸功於 Gutzwiller的發現，我們將可以把此模型中最困難

之部分：電子的強關聯性重整化為係數置於模型前，在得到這些相關

係數後，我們將可以利用平均場論的方法來對角化此一模型以便取得

其本徵函數，此一方法為此一論文之標準方法。

接下來，我們關心的物理情境分為兩大類，第一類為高溫超導體之

研究；在其最初發現於 1987年以來已經過了 30年，但科學家們仍無

法為其定調，但隨著實驗器具的精準度上升，我們越來越能清楚得知

其在微觀下的表現，這有助於幫助理論學家針對其建立一完整模型，

但同時也增加其困難因為要預想一合理之模型能夠完整解釋所有實驗

驗結果並非易事；我們的計算結果取得了許多數據，一一與實驗對比

的結果發現兩者之契合度非常之高，這也是我們對此模型抱有高度信

心之原因，詳細的比較結果將會在文中一一詳列。

第二類我們感興趣之系統為電子在強磁場作用之下的運動，霍夫斯

塔德蝴蝶與哈伯-霍夫斯塔德模型在自由電子於強磁場下在晶格內之運

動給了一完整描述，因此，探討同樣之運動唯電子具有關聯性便成為

一有趣課題，而我們的 t− J 模型在動能項增加一相位後，便成為一個

用來探討此物理情境的可靠模型；在此一研究之中，為了能更好得比
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較計算結果，我們的合作者採用了另一數值方法：完整對角化，我們

將會比較這兩種方法所計算出之結果並強調其可驗證性於未來之冷原

子實驗中。

關鍵字： 強關聯系統、t− J 模型、RMFT
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Résumé

Cette thèse vise à utiliser le t − J Hamiltonian de la corrélation forte

pour mieux comprendre la micro-fonctionnalité des scénarios de matériau

condensé. Un des problèmes qui existe depuis longtemps est que pour ce

type de modèle comme Hubbard Hamiltonian ou t − J Hamiltonian avec

une corrélation forte ne peut pas être résolu complètement analytiquement.

Par conséquent, quand on aborde ces modèles, il est important de les ex-

ploiter de façon numérique. Dans cette thése, nous utiliserons la manière qui

s’appelle “Renormalized Mean-Field Theory”(RMFT) pour le t − J Hamil-

tonian. Grâce à M. Gutzwiller, ce que nous devons faire est simplement de

chiffrer des paramètres qui incluent l’influence de la corrélation électronique

et de les mettre avant chaque partie du Hamiltonian. Après ce calcul, nous

calculerons l’Hamiltonian du champ moyen de manière standard. Ceci sera

notre façon principale pour aborder des questions physiques.

Ensuite, nous l’appliquerons sur deux systèmes. Le premier est la mys-

tique de supraconducteur à haute température. Après sa découverte il y a

30 ans, on ne peut pas encore définir une théorie pour expliquer sa micro-

mécanique demanière appropriée. Cependant, avec des équipements avancés,

on peut faire des expériences correctement et obtenir des résultats exacts. Ces

preuves nous facilitent l’élaboration d’une bonne théorie, même s’il est aussi

très difficile d’inclure tous les phénomènes ensemble. Nous avons obtenu des

résultats et par rapport aux expériences, ils sont similaires qualitativement.

Nous montrerons les détails dans le texte.
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Le deuxième système qui nous intéresse est le mouvement d’électron

dans un champ magnétique fort. Le papillon d’Hofstadter et son modèle,

l’Hamiltonian de Harper-Hofstadter ont obtenu un grand succès à décrire la

mécanique d’électrons libres aux treillis. Donc il est ainsi intéressant de se

demander ce qu’il se passera si nous remplaçons des électrons libres avec

ceux qui s’interagissent. D’ailleurs, t − J Hamiltonian s’utilise comme bon

modèle à le découvrir. Nous allons comparer nos résultats avec ceux de la

diagonalisation exacte. Nous proposerons des découvertes intéressantes qui

désormais seront réalisées par l’expérience d’atome froide.

Mots clés: Systèmes fortement corrélatives, t− J Hamiltonian, RMFT
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Chapter 1

Introduction

This introduction is divided into two parts corresponding to two scenarios that we are going

to talk about. The first part is for introducing the key issues that still exist and are unsolved

to the physical society, which leave the problems of high-Tc superconductivity still in

the center of stage until now. We will first go through a review upon several important

features of it and then bring up the questions that we want to resolve. And then it comes

the second interesting system which is the physical system of placing interactive electrons

within lattice under strong magnetic field. We will, starting from the initiative by D. R.

Hofstadter, compare the calculations executed by two different methods to try to provide

a clear picture of what is going to take place when such scenario arrives.

1.1 High-Tc copper oxide superconductivity

The first discovery of such novel materials with such beautiful characteristic was in 1986

byBednorz andMüller [5], whowon theNobel Prize in Physicswith theNon-stoichiometric

copper oxide(also referred to as cuprate), the Lanthanumbarium copper oxide(La2−xBaxCuO4,

LBCO) with transition temperature as high as 35 K, in the following year. After the first

success, in the years of 1986 to 2008 lots of new cuprate materials were found in series.

Among them, the most famous one goes to the yttrium barium copper oxide(Y Ba2Cu3O7,

YBCO) discovered byWu and Chu [6] in 1987. Other examples include the bismuth stron-

tium calcium copper oxide(Bi2Sr2CanCun+1O2n+6−d, BSCCO) [7] withTc = 95−107K
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varyingwith the number of n, and thallium barium calcium copper oxide(T lmBa2Can−1CunO2n+m+2+δ,

TBCCO) with highest possible Tc to be 127 K [8]. Until now, the highest transition tem-

perature confirmed is at 135K observed in 1993with the layered cuprateHgBa2Ca2Cu3O8+x

[9] and when applied under pressure, its Tc can achieve above 150 K.

What was so exciting about the discovery of such high-Tc cuprate lies on the fact that

it breaks the temperature limit set by Bardeen-Cooper-Schrieffer(BCS) theory that was

proposed in 1957 [10]. In BCS theory, the phonon plays the role as the medium to com-

bine two electrons, despite their repulsion, in momentum space. In such mechanism, the

maximum transition temperature is around 23 K, which is way lower than any temperature

at which a efficient industrial usage can be applied. However, the transition temperature

of cuprate has surpassed the boiling point of liquid nitrogen, which is easily available

nowadays.

Besides the practical application, the violation of the estimation by BCS theory also

implies that the phonon interaction may not be enough to properly describe the micro-

mechanism of high-Tc phenomena. Thus, one of the questions should be asked naturally

will be that what kind of interaction could sustain the electronic pairing stronger than the

one mediated by phonon. To answer this, we need to sort out the features. First, we notice

that in the phase diagram shown in Figure 1.1, the first appearing phase is the antifer-

romagnetism(AF). In fact, when there is no doping of hole, the material itself is a Mott

insulator [11], composed of the antiferromgnetic ordering and mottism, meaning that the

material is an insulator due to the strong electron-electron repulsion. Upon doping, the

mottism disappears along with its antiferromagnetic order, which matches the experimen-

tal observation of cuprate.

What we want to ask next is the reason why superconductivity appears after the Mot-

tness(antiferromagnetism+mottism) is suppressed by doping. P. W. Anderson was the

first among all to propose a theoretical model named after the resonating valence bond

theory(RVB) to try to explain the appearance of superconductivity after doping from a

insight inspired by strong correlation [12]. In this theory two electrons from neighboring

copper atoms tend to form a valence bond. These bonds will resonate within the Cu−O
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Figure 1.1: The phase diagram of hole-doped cuprate. The vertical axis is the temperature
in the unit of Kelvin and the horizontal axis is the hole doping level. T ∗ is the transition
temperature of pesudo-gap phase, marked by PG while Tc is the one for d-wave supercon-
ductivity, marked by dSC. AF stands for the phase of antiferromagnetism and DW pins
out the region where density wave appears. The detailed discussion of each phase is in
the text and this figure is borrowed from Ref. [1]

layer but without doping they cannot transfer in space. However, when vacancies appear

with doping, they become mobile and result in the superconductivity. The principle mod-

els for describing the RVB theory are the Hubbard and t− J models, and the later will be

our central model for this thesis.

1.1.1 The density waves

Although the picture provided by Anderson seems to be quite clear and acceptable, the

issue of high-Tc has not yet been settled down due to several reasons. One, the strong

correlated models are usually very difficult to obtain their exact solutions and, unfortu-

nately, the Hubbard and t − J models are of this genre. Despite the effort by physicists
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from numerical parts that provides many reliable calculations for these two models, we

still need more proofs before making any further claim. Second, the existence of other un-

usual phases in the phase diagram is also a pending issue to be explained. The first is the

phase of density wave marked by DW in Figure 1.1. Ever since the discovery of the high-

Tc superconductivity, many low-energy charge-ordered states in the cuprate have been

discovered. Neutron scattering experiments [13] first emphasized the doping dependence

of incommensurate magnetic peaks associated with unidirectional magnetic patterns or

stripes. Later, soft X-ray scattering [14] also confirmed the presence of charge orders with

these stripes. However, these experiments were performed on the 214(La2−xSrxCuO4)

cuprate family. For other cuprate families, the evidence for bond-centered unidirectional

domains was found via scanning tunneling spectroscopy [15, 16]. The charge density

wave(CDW) order was also found to be induced by the external magnetic field [17]. Re-

cently, more results regrading charge-ordered states [18, 19, 20, 21, 22], and electron-

doped cuprates [23] have been reported. The periods of these CDW and their doping

dependence are quite different for different cuprate families [22]. In addition to the uni-

directional stripe pattern, some experiments have also reported the possible existence of

a bidirectional charge-ordered checkerboard pattern [24, 25]. The unidirectional charge-

ordered states or stripes were found to have a dominant d-like symmetry for the intra-unit-

cell form factor, measured on the two oxygen sites by using the resonant elastic X-ray

scattering method [26, 27] and via scanning tunneling spectroscopy(STS) [28]. However,

different families seem to prefer different symmetries [26, 27]. In the STS experiments

[29], the density waves disappeared above 19% hole doping. Furthermore, the observation

of these CDW states having nodal-like local density of states(LDOS) at low energy but

strong spatial variation at high energy in STS [15] strongly implies a new unconventional

superconducting state.

The existence of these great varieties of charge-ordered states has created a great de-

bate regarding whether the strong coupling Hubbard model or the t− J model [12] is the

proper basic Hamiltonian to describe the cuprates. Many believe that these states “com-

pete” with the superconductivity [30] and that their origin may reveal the fundamental
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understanding of the mechanism of high superconducting temperatures in cuprates. The

recent detection of the d-form factor at an oxygen site instead of at a Cu site [26, 27, 28]

also raises the question about the suitability of the effective one-band Hubbard or t − J

model and the validity of replacing the oxygen hole with a Zhang-Rice singlet [31], which

effectively supports a simpler one-band model with Cu only. Allais et al. [32] proposed

that the d-symmetry of these form factors, referred to as bond orders [33, 34] because they

are measured between the nearest neighbor Cu bonds, arise from the strong correlation but

without other intertwined orders. Furthermore, there are also doubts regarding whether a

strong correlation is present or even needed to understand of the superconducting mech-

anism [35]. However, the complexities of the phase diagram and some recent theoretical

works have indicated the possibility of a new phase of matter, i.e., the pair density wave

(PDW) [36, 37, 38, 39], as discussed in detail in a recent review article [36]. The new

states are considered to have intertwined orders of PDW and CDW or spin density waves

(SDW) [36]. Actually there are many different kinds of PDW states that could be either

unidirectional [40] or bidirectional like a checkerboard. For the unidirectional PDW state

intertwined with CDW and SDW, so called the stripe state, was first proposed by the vari-

ational calculation for the t−J model [41]. It could have the same sign of d-wave pairing

on each site or pairing is in-phase so that the period of modulation of pairing is same as

charge density but only half of the SDW. Or it could be the anti-phase stripe having two

domains with opposite pairing sign so that the period of pairing modulation is twice of the

charge density. The in-phase stripe was later shown [42] to be a stable ground state with

half a hole in each period of CDW when a small electron-phonon interaction is included

in the t−J model. This half-doped stripe may be what was observed in neutron scattering

[13] for the LBCO(La2−xBaxCuO4) family.

For quite some time, various calculations [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]

on the Hubbard and t − J type models have revealed low-energy intertwined states ap-

pearing as stripes or bidirectional charge-ordered states, such as checkerboard(CB). How-

ever, these works usually involved different approximations and parameters, which often

resulted in different types of charge-ordered patterns, and these studies were mostly con-
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centrated at a hole concentration of 1/8, which is the most notable concentration in early

experiments. Hence, it is not clear if these results were the consequence of the invoked

assumption or the approximation used, or if they are a generic results in the phase dia-

grams of cuprates. There were attempts to produce these CDWs or PDWs using a differ-

ent approach, such as using a mean field theory to study a t − J-like model but taking

the strong correlation as only a renormalization effect of dispersion [33, 34, 51, 52]. A

spin-fluctuation mediated mechanism to produce these states was also proposed for the

spin-fermion model [53]. Recently, a novel mechanism of PDW was proposed, i.e., Am-

perean pairing [39], by using the gauge theory formulation of the resonating-valence-bond

picture. In most of these approaches, the wave vectors or periods of the density waves are

related to special features of the Fermi surface, including nesting, hot spots or regions

with large density of states. However, the opposite doping dependence of CDW periods,

observed for 214 and 123 (Y Ba2Cu3O6+δ) compounds [22], makes the Fermi surface

scenario worrisome.

Amid all this confusion, recent numerical progress achieved by using the infinite pro-

jected entangled-pair states(iPEPS) method [54], has provided us with a new clue. It was

found that the t− J model has several stripe states, with nearly degenerate energy as the

uniform state and, with coexistent superconductivity and antiferromagnetism. The period

of the PDW moves toward 4 or 5 lattice spacing as U increases and this is more in line

with result of the t−J model. When the number of variational parameters is extrapolated

to infinity, the authors concluded that the anti-phase stripe, which has no net pairing, has

slightly higher energy than the in-phase stripe with a net pairing, which in turn, also has

slightly higher energy than the uniform state. The results are quite consistent with the

most recent numerical studies on the Hubbard model [55]. They found the stripe states

have lower energies than the uniform SC state at 1/8 hole density and for U = 8 and

12. These results are very consistent with the result of variational Monte Carlo calcula-

tions [43] based on the concept of the RVB picture [12]. Furthermore, the results are also

consistent with that of renormalized mean-field theory by using a generalised Gutzwiller

approximation(GWA) [56] to treat the projection operator in the t − J model [40, 57].
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Hence, the result provides strong support to more carefully examine the low energy states

of the t− J model with the variational approach using GWA.

Among all the discoveries of different states, anti-phase charge density wave (AP-

CDW) and nodal pair density waves (nPDW) have dominant d-form factor and exist in

the doping range where charge order has been experimentally observed. The AP-CDW is

a charge order with commensurate wave vector e.g. (0, 0.25π) or (0.25π, 0), that has been

studied extensively in Ref. [40]. These states have an accompanying superconducting

order parameter that forms domains with opposite signs (AP). The nPDW is an incom-

mensurate charge order with wave vector (0, Q) or (Q, 0), where Q ∼ [0.25π, 0.3π]. In

addition to the modulating component, the pair field has a uniform d-wave component

giving rise to nodal structure in the density of states at low energies similar to the exper-

imental observation [15]. Thus the nPDW intertwines uniform superconductivity, PDW

and charge order. Capello et al. [58] have proposed such a state with an uniform pairing

order but it is not a pure d-wave order. Instead of proposing a possible state by conjec-

turing, we have solved a set of self-consistent equations derived from the RMFT. Of the

many low energy solutions we found, nPDW explains a number of properties measured

by the STS on BSCCO(Bi2Sr2CaCu2O8+x) and NaCCOC(Ca2−xNaxCuO2Cl2) [59].

Its period of the CDW is about half of the PDW. Furthermore, by including the Wannier

function in our calculation to take into account the effect of oxygens that were neglected

in the simple t−J model, we are able to compute the continuum local density of states of

the nPDW. The energy dependence of intra-unit cell form factors and spatial phase vari-

ations of these states agrees remarkably well with the STS experiments [28, 59]. We will

analyze them further in the following section.

1.1.2 The pseudo-gap phase

After demonstrating the appearance of DWs coming from the t− J Hamiltonian with our

RMFT, we note that in Figure 1.1 the DW phase is always co-existing with the PG phase.

So the next task is to check among those solutions we obtained if some of them are also

able to contain the features of PG besides DW. A long standing unresolved puzzle of the
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cuprate high temperature superconductors is the nature of PG phase [60, 61]. Below the

PG temperature T ∗ there are experimental evidences of breaking some crystalline symme-

try [62, 63]. Breaking of time-reversal symmetry with observation of intra-cell magnetic

moments has also been reported [64]. Many more new evidences suggest that this phase

should be a nematic phase that breaks the four-fold rotation symmetry of the copper oxy-

gen lattice [65, 66, 67]. In particular there are many reports of the CDW or SDW in the SC

and PG phases [13, 14, 26, 68, 69]. Some of these are likely unidirectional hence without

four-fold rotation symmetry. There are experimental evidences indicating the presence of

fluctuating or short-range-ordered CDW in the PG phase [19, 26, 70]. Once the CDW sets

in and breaks four-fold symmetry [15], the symmetry of pairing order in the SC phase of

tetragonal crystal such as Bi2Sr2CaCu2O8+x should not be expected as a pure d-wave

as seen in experiments [71, 72]. Thus the formation mechanism of these DWs and its

relations with SC and PG phases are of great interests.

Before the discovery of these density wave orders in the cuprates, the PG phase has

already posed a number of unexplained puzzles. Below a characteristic temperature T ∗

but higher than the SC transition temperature Tc, the excitation spectra showing a gap

was first noticed by the relaxation rate of nuclear magnetic resonance [73] and then by

many other transport and spectroscopic measurements [74]. But the most direct obser-

vation of this gap structure was shown by the the angle-resolved photoemission spec-

tra(ARPES) [75, 76, 77]. The energy-momentum structure shows an energy gap appears

near the boundary, or the antinodal region, of the two-dimensional Brillouin zone(BZ)

of the cuprate. However there are four disconnected segments of Fermi surface near the

nodal region, or |kx| = |ky| = π/2. These segments called Fermi arcs have been re-

ported to have their length shrink to zero [78, 79] when extrapolated to zero temperature.

There are also results indicating that the arc length is not sensitive to temperature [19, 76].

Then it could also be part of a small pocket [80, 81]. This presence of finite fraction of

Fermi surface is consistent with the Knight shift measurement [3] showing a finite den-

sity of states(DOS) after the superconductivity is suppressed. The full Fermi surface is

recovered either for temperature higher than T ∗ or when doping increases beyond approx-
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imately 19% as the PG phase disappears. Below Tc the gap at antinode merges with the

SC gap. Also the ARPES spectra at the antinodal region does not have the usual particle-

hole symmetry associated with traditional superconductors. This asymmetric antinodal

gap onsets at T ∗ and it persists all the way to the SC phase [30, 82].

The phenomena of two gaps, one PG formed above the SC temperature Tc and ad-

ditional SC gap below, and all the exotic behavior associated with it has attracted many

attentions as discussed in recent reviews [30, 83]. There are many theoretical proposals

devoted to understand the PG as discussed in these review articles [36, 60, 84]. But so far it

has been difficult to understand the temperature and doping dependence of the Fermi arcs,

two gaps and other spectroscopic data, as well as its explicit relationship with the CDW

orders and whether any of these are related with the Mott physics or the strong correlation.

However, there are growing evidences that these CDW are not a usual kind but are re-

lated to or could be a subsidiary order of the PDW. PDW is in fact a state with spatial mod-

ulation of the pairing amplitude and it was first introduced by Larkin andOvchinnikov [85]

and by Fulde and Ferrell [86]. There were quite a number of works proposing that PDW

state might be responsible for themany observed exotic phenomena [41, 37, 87, 88, 89, 90]

in both SC and PG phases. Many of the works used phenomenological models and weak

coupling approaches [51, 53, 91, 92], but some of the numerical works on microscopic

models such as the Hubbard model and its low-energy effective t− J model, have found

strong evidences for such a state or states. After knowing the importance of PDW and

based on the success of the nPDW state to quantitatively explain the real space spectra

measured by STS in the SC phase, it naturally leads us to study the spectra in momentum

space measured by ARPES.

Instead of concentrating on the microscopic models, the Landau-Ginzburg free energy

formalism is used to study the intricate relationship between PDW, CDW, and the uniform

pairing order [37, 87, 88, 93, 94]. By including phases of PDW, they could discuss vor-

tex and dislocations as well as the phase diagram. They pointed out that PDW could be

responsible for the PG phase. Some of the properties we shall discuss below are consis-

tent with their results; however, they did not consider bond order as an independent field
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whereas we have shown that bond order with dominant intra-unit-cell form factor with

s′ or d symmetry are associated with different PDW states such as stripes or nPDW, re-

spectively, and neither are most of the phenomenological approaches [92, 95]. The work

by Lee [39] proposed the Amperean pairing originated from the gauge theory of the RVB

picture as the main mechanism for the formation of PDW and it is the dominant order in

cuprates. This theory prefers to have bidirectional PDW to have similar gaps at antinodes

(π, 0) and (0, π). They also did not address the issue of bond orders. However, according

to our calculation, we are able to demonstrate all the properties mentioned above without

any further assumption or experimentally unseen outcome in our states.

In the following content concerning this part, the spectra associated with the nPDW

state will be calculated both at T = 0 and finite temperature with emphasis on the energy-

momentum dependence of the quasiparticles. The GWA used in the RMFT is considered

to be a good approximation at zero temperature. The energy scale imposed by the strong

Coulomb repulsion, or Hubbard U , is much larger than the scale of room temperature. In

addition, both the two main “low” energy scales, t and J about 3000∼4000K and 1200K,

respectively, are also much larger. Hence we shall make an assumption that the GWA is

reasonably accurate at low but finite temperatures.

After the RMFT is transformed to solve for the self-consistent equations at finite tem-

peratures, we found the average or net uniform pairing order parameter(UPOP) of the

nPDWstate decreases to almost zero at a “critical” temperature Tp1. This new state still

has incommensurate modulations of charge density, pair density and bond orders inter-

twined, and we shall denote it as incommensurate pair-density-wave(IPDW) state. Just

as nPDW state this IPDW state also has the dominant intra-unit-cell d-form factors and

particle-hole asymmetry for the ARPES spectra [82] at the antinodal region. The major

difference with nPDW is the appearance of Fermi arcs and a substantial increase of DOS

at Fermi energy but without UPOP. As temperature further increases to Tp2, there is no

longer a solution of this state. The value of Tp2 increases sharply as doping is reduced.

The DOS at Fermi energy increases only slightly between Tp1 and Tp2. The DOS also in-

creases slightly with increasing doping. Comparing these results with experimental data

10



on ARPES [30, 82] and DOS deduced from Knight shifts [3], we conclude that it is quite

reasonable to take Tp1 as the SC transition temperature Tc and Tp2 as a mean-field version

of the PG temperature T ∗ of the copper oxides. These issues will be discussed after the

results are presented.

1.2 Correlated electrons under strong magnetic field

Next, we will head to discuss the second quantum system that our RMFT of t− J Hamil-

tonian can be applied for. It is well-known that the Hofstadter butterfly alongside with

its Hamiltonian, the Harper-Hofstadter Hamiltonian [96], serves as basis for the study of

noninteracting lattice fermionsmoving in an orbital magnetic field. With the increasing ac-

curacy of experiments, e.g., in laser-manipulated cold atom systems in a two-dimensional

square lattice [97, 98, 99, 100, 101, 102], it becomes possible to investigate minute details

of this noninteracting model. In addition, cold atom systems have proven to be able to em-

ulate interacting fermionic or bosonic systems [99, 103, 104, 105], which may lead to the

realization of exotic material phases such as a cold-atom analog of the fractional quantum

Hall(FQH) effect [106], as suggested by promising results from exact diagonalization(ED)

of small clusters [107, 108, 109, 110].

Another motivation to study the square lattice in the presence of orbital magnetic fields

and strong correlations comes from the field of high-Tc superconductivity. The Hubbard

Hamiltonian on the square lattice (without external flux) was meant to explain the mech-

anism of high-Tc superconductivity by introducing an on-site interaction U , which leads

to Mott physics [12]. A t−J Hamiltonian arises from the Hubbard model when the inter-

action becomes large compared to the bandwidth, with J = 4t2/U being the AF coupling

between nearest-neighbor spins (and t being the hopping). In Anderson’s original RVB

scenario, superconductivity emerges by doping the parent Mott insulator away from half-

filling, and proposals for different Mott spin liquid phases have been given. One of them

is the Affleck-Marston half-flux state [111, 112, 113], which can be mapped onto free elec-

trons on a lattice with half a magnetic flux quantum per plaquette (and effective hopping

J). Away from half-filling, the (mean-field) Affleck-Marston flux phase acquires lowest
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energy density when the flux per unit cell equals exactly the fraction ν = 1
2
(1− δ), where

δ is the doping level [114, 115]. In fact, the corresponding interacting states can be viewed

as a Gutzwiller projection of the free fermionic wave functions under magnetic flux. This

reveals important aspects of the RVB physics and thus motivates us to perform calcula-

tions directly with the t − J Hamiltonian in the presence of an actual external magnetic

flux, as we do in the present study.

As mentioned earlier, recently, tensor network studies [54] and density matrix embed-

ding theory [55] provided new evidence that the ground state(GS) of the Hubbard model

could indeed be inhomogeneous at finite doping and that its phase diagram shows coexis-

tence of d-wave SC order with other instabilities. This fact hinders the possible emergence

of topologically nontrivial phases since the latter compete with instabilities. However, in

the presence of an external orbital magnetic field, flat bands formed as Landau levels rein-

troduce this possibility. Also from this perspective it is therefore interesting to consider

orbital effects by studying the t− J Hamiltonian in presence of an orbital magnetic field.

For dealing with this issue, here, we will apply two complementary approaches. One is

the RMFT. This method, as any mean-field technique, can only detect symmetry-broken

phases provided the proper order parameters are introduced by hand, but allows us to

reach large system sizes. We compare our results to ED calculations, which are a priori

unbiased, but strongly limited in terms of available system sizes. Recently, Gerster et al.

[116] demonstrated the existence of a FQH phase akin to the ν = 1/2 Laughlin state for

the spinless bosonic Harper-Hofstadter model by using a tree-tensor network ansatz. This

shows that it is possible to obtain novel quantum phases from the Hofstadter Hamiltonian

in the presence of interactions and, therefore, provides another motivation to study this

model with spinful fermions.

In the following text for this scenario, we will revisit the commensurate flux phase

(CFP), which has been studied in previous work [48, 117]. Here, we will in particular

focus on charge instabilities and topological features of the CFP. Instabilities toward fer-

romagnetic phases(fully polarized states) are described next, showing good agreement be-

tween our two numerical approaches. Topological aspects (e.g., the computation of Chern
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numbers) and comments on the search for potential FQH physics are later subsumed.
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Chapter 2

Renormalized Mean Field Theory

In this section, we will go through the main method of ours in this thesis, the RMFT,

in detail starting from the t − J Hamiltonian. We will also demonstrate how we can

calculate for some key properties such as LDOS and spectra weight with our Bogoliubov-

deGenne(BdG) wavefunctions.

2.1 BdG equation of mean-field Hamiltonian

In this thesis, we consider the 2D t − J model, i.e., the large-U limit of the 2D Hubbard

model, in an external magnetic field as our interacting Hamiltonian,

H = −
∑
⟨i,j⟩,µ

PG

(
tijc

†
iµcjµ + h.c.

)
PG︸ ︷︷ ︸

Hkin

+
∑
⟨i,j⟩

JSi · Sj︸ ︷︷ ︸
Hpot

,

tij = t eiAij = t∗ji, Si =
∑
µ,ν

c†iµσµνcjν ,

(2.1)

where c†iµ (ciµ) is the creation (annihilation) operator for an electron of spin µ =↑, ↓ on

lattice site i, so that niµ = c†iµciµ is the site number operator per spin, PG =
∏

i(1−ni↑ni↓)

is the Gutzwiller projector onto the Hilbert subspace of at most singly-occupied sites, and

σ = (σx, σy, σz)
T is the vector of 2 × 2 Pauli spin matrices. In the exact mapping from

Hubbard to t−J model there is another term of order t2/U , the so called three-site hopping,

which describes hopping of singlet pairs. This term has been shown to have no influence
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on the mean-field phase diagram [118] and is therefore excluded in our work. The AF

coupling J is chosen to be equal to 0.3 times the hopping t throughout the thesis.

Themagnetic field enters via the phasesAij =
∫ j

i
A(x)·dx, where the vector potential

A(x) is defined by the relationB(x) = ∇×A(x), corresponding to a flux per plaquette

F =
∫
B(x) · dΣ = Ai,i+x̂ + Ai+x̂,i+x̂+ŷ + Ai+x̂+ŷ,i+ŷ + Ai+ŷ,i, which we take to be

independent of i. Here we choose F = 2πΦ, with Φ given by fractions such as 7
16
, 5
16
, etc.

Note that since we work in units where h = e = 1, Φ = 1 corresponds to one magnetic

flux quantum. Aij = 0 when dealing with the cuprate problem in this thesis.

The standard procedure of RMFT is to first replace the Gutzwiller projection operator

by renormalized factors gt and gs so that

⟨Ψ|c†iµcjµ|Ψ⟩ = gtijµ⟨Ψ0|c†iµcjµ|Ψ0⟩,

⟨Ψ|Si · Sj|Ψ⟩ = gsij⟨Ψ0|Si · Sj|Ψ0⟩,
(2.2)

where |Ψ0⟩ is the un-projected wavefunction and |Ψ⟩ = PG|Ψ0⟩. The Hamiltonian then

becomes:

H =−
∑
⟨i,j⟩µ

gtijµtije
iAij(c†iµcjµ + h.c.)

+
∑
⟨i,j⟩

J

[
gs,zij S

s,z
i Ss,z

j + gs,xyij

(
S+
i S

−
j + S−

i S
+
j

2

)] (2.3)

where gtijσ, g
s,z
ij , and g

s,xy
ij are the Gutzwiller factors, which depend on the values of the

pairing field ∆v
ijµ, bond order χv

ijµ, spin momentmv
i , and hole density δi:

mv
i = ⟨Ψ0|Sz

i |Ψ0⟩

∆v
ijµ = µ⟨Ψ0|ciµcjµ̄|Ψ0⟩

χv
ijµ = ⟨Ψ0|c†iµcjµ|Ψ0⟩

δi = 1− ⟨Ψ0|ni|Ψ0⟩

(2.4)

where |Ψ0⟩ is the unprojected wavefunction. The superscript v is used to denote that these

quantities are variational parameters instead of real physical quantities. As for the phases
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Figure 2.1: Distribution of the phases ϕij on the bonds of 4 × 4 and 2 × 2 unit cells (on
the 2-torus) for the flux densities Φ considered in this work(times π/32). Arrows again
indicate the directions of current and negative signs stand for opposite flows. The flux
density Φ = 1/4 has only two different bonds (bond 1 and 2). The right panel shows
detailed numbers of variables for the patterns we have obtained. Those patterns will be
discussed later.

(Aij), we followed Ref. [117]. The numbers for different flux per plaquette Φ are shown

in Fig. 6.1. We will start by considering the Gutzwiller factors first proposed by Ogata

and Himeda [41, 45], which are given by

gtijµ = gtiµg
t
jµ

gtiµ =

√
2δi(1− δi)

1− δ2i + 4(mv
i )

2

1 + δi + µ2mv
i

1 + δi − µ2mv
i

gs,xyij = gs,xyi gs,xyj

gs,xyi =
2(1− δi)

1− δ2i + 4(mv
i )

2

gs,zij = gs,xyij

2((∆̄v
ij)

2 + (χ̄v
ij)

2)− 4mv
im

v
jX

2
ij

2((∆̄v
ij)

2 + (χ̄v
ij)

2)− 4mv
im

v
j

Xij = 1 +
12(1− δi)(1− δj)((∆̄

v
ij)

2 + (χ̄v
ij)

2)√
(1− δ2i + 4(mv

i )
2)(1− δ2j + 4(mv

j )
2)

(2.5)

where ∆̄v
ij =

∑
µ∆

v
ijµ/2 and χ̄v

ij =
∑

µ χ
v
ijµ/2. In the presence of AF, ∆v

ij↑ ̸= ∆v
ij↓. For

singlet states the magnetizationmv
i is equal to zero and ni↑ = ni↓ =

1
2
(1− δi). However,

for the fully polarized scenario mv
i = ni↑/2 while ni↑ = (1 − δi), ni↓ = 0, where we

assume that all electrons have spin up. This set of Gutzwiller factors corresponds to finite

doping and is consistent with variational Monte Carlo calculations [41, 45].

After we replace the projection operator by the Gutzwiller factors by using the mean-
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field order parameters defined in Eq. 6.4, the energy of the renormalizedHamiltonian(Eq. 6.3)

becomes the following as we part the four operators with mean-field variables:

E = ⟨Ψ0 | H | Ψ0⟩ =−
∑
i,j,µ

gtijµte
iAij(χv

ijµ + h.c.)

−
∑
⟨i,j⟩µ

J
(gs,zij

4
+
gs,xyij

2

∆v∗
ijµ̄

∆v∗
ijµ

)
∆v∗

ijµ∆
v
ijµ

−
∑
⟨i,j⟩µ

J
(gs,zij

4
+
gs,xyij

2

χv∗
ijµ̄

χv∗
ijµ

)
χv∗
ijµχ

v
ijµ

+
∑
⟨i,j⟩

gs,zij Jm
v
im

v
j

(2.6)

Nextwewant tominimize the energy under two constraints:
∑

i ni = Ne and ⟨Ψ0|Ψ0⟩ =

1. Thus our cost function to be minimized is

W = ⟨Ψ0|H|Ψ0⟩ − λ(⟨Ψ0|Ψ0⟩ − 1)− ϵ
(∑

i

ni −Ne
)

(2.7)

The mean-field Hamiltonian becomes

HMF =
∑
⟨i,j⟩µ

∂W

∂χv
ijµ

c†iµcjµ + h.c.+
∑
⟨i,j⟩µ

∂W

∂∆v
ijµ

µciµcjµ̄ + h.c.+
∑
i,µ

∂W

∂niµ

niµ (2.8)

Eq. (6.8) satisfies the Schrödinger equation HMF|Ψ0⟩ = λ|Ψ0⟩. The three derivatives are

defined as

Hijµ =
∂W

∂χv
ijµ

=− J
(gs,zij

4
+
gs,xyij

2

χv∗
ijµ̄

χv∗
ijµ

)
χv∗
ijµ − gtijµtije

iAij +
∂W

∂gs,zij

∂gs,zij

∂χv
ijµ (2.9)

D∗
ij =

∂W

∂∆v
ij↑

=− J
(gs,zij

4
+
gs,xyij

2

∆v∗
ij↓

∆v∗
ij↑

)
∆v∗

ij↑ +
∂W

∂gs,zij

∂gs,zij

∂∆v
ij↑ (2.10)
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ϵiµ = − ∂W

∂niµ

=ϵ−
∑
j

∂W

∂gs,xyij

∂gs,xyij

∂niµ

−
∑
j

∂W

∂gs,zij

∂gs,zij

∂niµ

−
∑
jµ′

∂W

∂gtijµ′

∂gtijµ′

∂niµ
(2.11)

Eq. (6.10) is the effective local chemical potential. HMF can be rewritten in form of the

BdG equations

HMF =
(
c†i↑, ci↓

) Hij↑ Dij

D∗
ji −Hji↓


 cj↑

c†j↓

 (2.12)

We can diagonalize HMF to obtain an equal number of positive and negative eigenvalues

together with their corresponding eigenvectors (uni , vni ). With these eigenvectors, we can

determine the order parameters at zero temperature by following equations

ni↑ = ⟨c†i↑ci↑⟩ =
∑
n

|uni |2f(En)

ni↓ = ⟨c†i↓ci↓⟩ =
∑
n

|vni |2(1− f(En))

∆v
ij↑ = ⟨ci↑cj↓⟩ =

∑
n+

uni v
n∗
j (1− f(En))− unj v

n∗
i (1− f(−En))

∆v
ij↓ = −⟨ci↓cj↑⟩ =

∑
n+

unj v
n∗
i (1− f(En))− uni v

n∗
j (1− f(−En))

χv
ij↑ = ⟨c†i↑cj↑⟩ =

∑
n

unj u
n∗
i f(En)

χv
ij↓ = ⟨c†i↓cj↓⟩ =

∑
n

vni v
n∗
j (1− f(En))

(2.13)

The sum for n+ means the set of eigenvectors with positive energies. f(En) is the Fermi-

Dirac distribution:

f(En) =
1

eEn/T + 1
(2.14)

An iterative method is used to solveHMF self-consistently. The convergence is achieved

for every order parameter if its value changes less than 10−3 between successive iterations

or sometimes 10−4 if we demand a higher accuracy. After the self-consistency is achieved,
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we can calculate order parameters and their formula are:

∆i =
∑
µ

(gti,µg
t
i+x̂,µ̄∆

v
i,i+x̂,µ + gti,µg

t
i−x̂,µ̄∆

v
i,i−x̂,µ − gti,µg

t
i+ŷ,µ̄∆

v
i,i+ŷ,µ − gti,µg

t
i−ŷ,µ̄∆

v
i,i−ŷ,µ)/8,

mi =(
√
gs,zi,i+x̂ +

√
gs,zi,i−x̂ +

√
gs,zi,i+ŷ +

√
gs,zi,i−ŷ)m

v
i /4,

Ki,i+x̂ =
1

2

∑
µ

gti,i+x̂,µ⟨c
†
iµci+x̂µ⟩+ gti+x̂,i,µ⟨c

†
i+x̂µciµ⟩,

Ki,i+ŷ =
1

2

∑
µ

gti,i+ŷ,µ⟨c
†
iµci+ŷµ⟩+ gti+ŷ,i,µ⟨c

†
i+ŷµciµ⟩,

Ki =(Ki,i+x̂ +Ki,i−x̂ +Ki,i+ŷ +Ki,i−ŷ)/4

(2.15)

where∆i andmi are the pairing and spin order parameters on each site andK is the bond

order for determining the symmetry. The UPOP also plays an important role in our work.

For those unidirectional patterns, we first calculate ∆x and ∆y:

∆x =
∑
K

Nx∑
i

∆K
ii+x̂/Nx/Mc

∆y =
∑
K

Nx∑
i

∆K
ii+ŷ/Nx/Mc

(2.16)

whereNx is the lattice size in x direction andMc is the supercell size. K is the wave vector

for different supercell and its form will be revealed later. x̂(ŷ) is the unit vector in x(y)

direction. After we obtain the averaged pairing values in x and y direction, we can then

calculate UPOP:

UPOP =
|∆x|+ |∆y|

2
(2.17)

2.2 Green’s function and LDOS

Since the patterns that we discuss their features of Green’s function are all unidirec-

tional, we can exploit the translational invariance in y-direction assuming that the modu-

lation is in x-direction to reduce the calculation time. By transforming our original cre-
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ation/annihilation operators into those with basis of (ix, k):

c†i,µ =
1√
N

∑
k

c†ix,µ(k)e
−ikRiy (2.18)

we could translate our Hamiltonian as in a 1D lattice. With this transformation, we are

able to perform the calculation for lattice size two times larger. For the symbols above,

N represents the lattice size in y-direction, Riy is the y component of the original lattice

vector i, and c†ix,µ(k) is the creation operator in this quasi-1D system for momentum k.

Therefore the Hamiltonian becomes:

H =
∑

⟨ix,jx⟩,k,µ

Hixjxµ(k)c
†
ixµ

(k)cjxµ(k) + h.c.

+
∑

⟨ix,jx⟩,k,µ

σD∗
ixjxµ(k)cixµ(k)cjxµ̄(−k) + h.c.

−
∑
ix,k,µ

ϵixµnixµ(k)

(2.19)

where

Hixjxµ(k) =
∑
iy

Hixiyjx0µe
−ikRiy (2.20)

Similar expressions hold forDixjxµ(k) and ϵixµ. With converged values of the eigenfunc-

tions, the Greenʼs function matrix can be calculated using:

Gijµ(ω) =
1

N

∑
k

gtijµGixiyµ(k, ω)e
ik(Riy−Rjy )

Gixiyµ(k, ω) =
∑
n>0

[
unixµ(k)u

n∗
jxµ(k)

ω − Enµ(k) + i0+
+

vn∗ixµ(k)v
n
jxµ(k)

ω + Enµ̄(k) + i0+

] (2.21)

The broadening 0+ can be several forms according to separate situation but is equal to

0.01t if not specially mentioned. To compute the LDOS at the STM tip position, we

21



change the basis and obtain the local continuum Greenʼs function using [119].

Gµ(r, ω) =
∑
ij

Gijµ(ω)Wi(r)W ∗
j (r) (2.22)

whereWi(r) is the Wannier function at site i and r is a three-dimensional continuum real

space vector. The Wannier function employed was generated using Wannier90 package

[120] and is similar in form to that used in [121]. Note that the local Greenʼs function

contains nonlocal contributions from all lattice sites. The continuum LDOS is now easily

obtained as:

ρµ(r, ω) = − 1

π
Im[Gµ(r, ω)] (2.23)

In most of the previous theoretical works [51, 53, 32], intra-unit cell form factors were

calculated using the Fourier transform of the nearest neighbor bond order χi,i+x̂(ŷ),which

can be regarded as the measure of charge density at the oxygen atoms on x(y) bonds at

lattice site i.We can express s−, s′−, and d-form factors as follows.

D(q) = FT (χ̃i,i+x̂ − χ̃i,i+ŷ)/2

S ′(q) = FT (χ̃i,i+x̂ + χ̃i,i+ŷ)/2

S(q) = FT (1− δ̃i)

(2.24)

where FT refers to the Fourier transform and ∼ denotes that the spatial average of the

corresponding quantity has been subtracted to emphasize modulating components. Obvi-

ously, this quantity does not have any energy dependence. However, STM experiments

utilized phase resolved sublattice LDOS information [28] to extract the form factors and

found a significant bias dependence [1]. Using the continuum LDOS information, we can

follow a similar approach. To analyze this behavior, we first we obtain LDOS Z-maps,

defined below, on a plane located at a typical STMtip height (≈5Å) above the BiO plane.
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ρZ(r, ω > 0) =

∑
µ ρµ(r, ω)∑

µ ρµ(r,−ω)
(2.25)

Next, we take non-overlapping square regions around each atom in the Z-map, with

the size of the region identical to that used in the experiment [1], and subsequently assign

it to the sublattice Z-maps CuZ(r, ω), OZ
x (r, ω) and OZ

y (r, ω).We note that form factor

results are not very sensitive to the size of the square region, however. Here subscripts x

and y designate two nonequivalent oxygen atoms in the unit cell in horizontal and vertical

directions, respectively. Taking the proper linear combination of the Fourier transform of

the sublattice LDOS yields s−, s′−, and d-form factors as follows:

DZ(q, ω) = (ÕZ
x (q, ω)− ÕZ

y (q, ω))/2

S ′Z(q, ω) = (ÕZ
x (q, ω) + ÕZ

y (q, ω))/2

SZ(q, ω) = C̃u
Z

x (q, ω)

(2.26)

Another important quantity of interest is the average spatial phase difference(∆ϕ) be-

tween the positive and negative bias energies for the d-form factor modulations. To com-

pute ∆ϕ in accordance with the experimental procedure [80], we filter out the charac-

teristic wave vector corresponding to d-form factor modulation(Qd) from the continuum

LDOS maps at positive and negative energies using a Gaussian filter. Then we take the

inverse Fourier transform to obtain the complex spatial map D(r, ω) and determine its

phase ϕ(r, ω). By taking the average of the spatial phase difference at ±ω,we find ∆ϕ:

Dg(q, ω) = (Õg
x(q, ω)− Õg

y(q, ω))/2

D(r, ω) = 2

(2π)2

∫
dqeiqrDg(q, ω)e−

(q−Qd)
2

2Λ2

ϕ(r, ω) = tan−1(Im[D(r, ω)]/Re[D(r, ω)])

∆ϕ = ⟨ϕ(r, ω)− ϕ(r,−ω)⟩

(2.27)

where Õg
x(q, ω) and Õg

y(q, ω) are the FT of the sublattice LDOS maps for oxygen x and
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oxygen y. Width of the Guassian filter was taken to be Λ = 1/2N .

2.3 Spectra weight and many-body Chern number

Because we are going to investigate the features in k space, it is necessary to apply the

supercell calculation [122]. For each cell we have Nx × Ny sites and the total number

of cell is Mc = Mx ×My. Our Hamiltonian is then reduced from 2MxNx × 2MyNy to

Mx×My matrix equation each with lattice size 2Nx× 2Ny. The self-consistent solutions

now have to be carried out for each cell. The spectral weight can be written with our wave

function (u, v) as:

A(k, ω) =
1

N

∑
ij,n+

f(−En)(e
ik·(ri−rj)gtij↑u

K∗
i,nu

K
j,nδ(ω − En)

+ eik·(rj−ri)gtij↓v
K
i,nv

K∗
j,nδ(ω + En))

+
1

N

∑
ij,n−

f(En)(e
ik·(ri−rj)gtij↑u

K∗
i,nu

K
j,nδ(ω − En)

+ eik·(rj−ri)gtij↓v
K
i,nv

K∗
j,nδ(ω + En))

(2.28)

where k = k0+Kwhile k0 = 2π( nx

Nx
, ny

Ny
)wherenx ∈ [−Nx/2+1, Nx/2], ny ∈ [−Ny/2+

1, Ny/2], andK = 2π( nc
x

MxNx
,

nc
y

MyNy
)where nc

x ∈ [0,Mx−1], nc
y ∈ [0, Ny−1]. f(En) is the

Fermi-Dirac distribution and n+(n−) means summation over positive(negative) energies.

δ(ω − En) is the Lorenzian and has the following form:

δ(ω − En) =
1

π

Γ

Γ2 + (ω − En)2
(2.29)

Next, for each band flattened by magnetic field its Chern number is defined by inte-
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grating the Berry curvature over the first Brillouin zone [123]:

Cn =
1

2π

∑
k∈BZ

∇k × A⃗n(k) =
1

2π

∑
k∈BZ

B⃗n(k)

=
−i
2π

∑
m ̸=n

∑
k∈BZ

⟨
nk|Jx|mk

⟩⟨
mk|Jy|nk

⟩
− (Jx ↔ Jy)

[En(k)− Em(k)]2

(2.30)

where A⃗n(k) = −i
⟨
nk|∇k|nk

⟩
is the Berry vector field for the nth band, and B⃗n(k) is

the related field. The current J = (Jx, Jy) is given by J = ∇kH .
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Chapter 3

Results I – High Tc Cuprate

3.1 Real space properties

The calculations of ours all start from a set of initial input of variational parameters of

δi, ∆v
ijµ, χv

ijµ, and sometimes mv
i . In most cases, we will obtain only uniform solutions

such as the d-wave superconducting(dSC) state and/or coexistent antiferromagnetic(dSC-

AFM) state, but sometimes the states with ordered patterns are found as a self-consistent

solution.

3.1.1 Charge-ordered patterns

In addition to the two uniform solutions of a dSC state and a dSC-AFM state, there

are many non-uniform charge-ordered states. For simplicity, we shall first present those

charge-ordered states with a period of four lattice spaces (4a0), as listed in Table 3.1. Both

the pair field ∆v
ijµ and the spin moment mv

i could have positive and negative values. It

turns out that if there is a SDW or a bidirectional spin CB(sCB) present, then it always has

a period of 8a0, with two domains of size 4a0 with opposite antiferromagnetic directions

joining together. The pair field has more choices. It could always be positive, with all of

its x-bond pair field being positive and y-bond pair field being negative: thus, it would

have a net total non-zero pair field. This is called an in-phase(IP) state, with a period of

4a0. However, just like the spin moment, the pair field could also have two domains with
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Figure 3.1: Schematic illustration of modulations for stripe like patterns. (a) IP-CDW-
SDW (b) AP-CDWSDW (c) AP-CDW (d) IP-cCB-sCB (e) AP-cCB-sCB (f) AP-cCB re-
spectively. Size of the circle represents the hole density. The width of the bond around
each site represents the amplitude of pairing ∆(∆ =

∑
µ∆µ) and sign is positive (neg-

ative) for red (cyan). The size of black arrows represents the spin moment. The average
hole density is about 0.1 but 0.09 for IP-cCB-sCB.

opposite signs and a domain wall in between: this state is known as the anti-phase(AP)

state, with a period of 8a0. Thus, we could have four possible states for each unidirectional

CDW or bidirectional charge CB(cCB), as we either have an IP or AP pair field with or

without SDW. However, we only have three such states in Table 3.1 because we cannot

find a solution with an IP pair field and CDW both in 4a0 period. Later, we will show

a state with a net pairing order or IP pairing state and CDW, which occurs if we do not

require solutions to be commensurate with the lattice and that is the nPDW state.

pair field charge modulation spin modulation
IP-CDW-SDW in-phase stripe yes
AP-CDW-SDW anti-phase stripe yes
AP-CDW anti-phase stripe zero
IP-cCB-sCB in-phase checkerboard yes
AP-cCB-sCB anti-phase checkerboard yes
AP-cCB anti-phase checkerboard zero
dSC uniform uniform zero
dSC-AFM uniform uniform uniform
diag in-phase stripe along (1,1) yes

Table 3.1: Definition of various nearly degenerate states with respect to the intertwined
orders: pair field, charge density, and spin moment. Besides the two uniform solutions, d-
wave superconducting(dSC) state and coexistent antiferromagnetic(dSC-AFM) state, all
the states to be considered in this paper, unless specifically mentioned, have modulation
period 4a0 for charge density and bond order. IP(AP) means the pair field is in-phase with
period 4a0 (anti-phase with period 8a0). IP has a net pairing order and AP has none. SDW
is the spin density wave with period 8a0. sCB(cCB) denotes the checkerboard pattern of
spin(charge) and diag means the diagonal stripe which has in-phase pair field and spin
modulation.
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Figure 3.2: (a) Energy per site as a function of hole concentration. Six states are shown in
the main figure with notations defined in Table 2. The lower (upper) inset is for stripe (CB)
patterns. Blue triangles, circles, and diamonds are for IP-CDW-SDW, AP-CDW-SDW,
and AP-CDW respectively. And red triangles, circles and diamonds are for IP-cCB-sCB,
AP-cCB-sCB, and AP-cCB respectively. (b) Schematic illustration of modulations for
nPDW stripe. The numbers in red denote the hole density at each site while the numbers in
black below them represent the pairing amplitude in y direction. The rest numbers above
the figure stand for the pairing amplitude in x direction. Here our pairing amplitudes
denote (⟨ci↑cj↓⟩). Note that in this figure neither the size of circles nor the width of bonds
represent amplitudes. The hole concentration is 0.125. (c) LDOS at 8 sites plotted from
energy 0.6t to -0.6t. The inset shows hole density along the modulation direction of the
nPDW stripe and (d) from 0.2t to -0.2t but shifted vertically for clarity.

Figure 3.1 shows a schematic illustration of the modulations of the pair field, charge

density and spin moment for the three stripes and three checkerboards with hole concen-

tration of 0.1 or 0.09. The magnitude of the pair field is proportional to the width of the

bond; red (cyan) denotes positive (negative) value. The size of the arrow is proportional

to the spin moment, and the size of the circle represents the hole density. There is one

domain wall corresponding to the vanishing spin moment in Fig. 1(a) and (d) or the van-

ishing pair field in Fig. 1(c) and (f). Both domain walls are present in Fig. 1(b) and (e).

The hole density is always maximum at the domain wall with the vanishing spin moment.

However, if there is no SDW, such as the AP-CDW stripe in Fig. 1(c), then the hole den-

sity is maximum at the domain wall with the vanishing pair field. This finding is different

from previous work without including the renormalized chemical potential [48].
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Figure 3.2(a) shows energies as a function of hole concentration for all the states listed

in Table 3.1. The three unidirectional states are shown in the lower inset with blue trian-

gles, circles, and diamonds representing IP-CDW-SDW, AP-CDW-SDW, and AP-CDW,

respectively. The three CB states are shown in the upper inset with red triangles, circles

and diamonds representing IP-cCB-sCB, AP-cCB-sCB, and AP-cCB, respectively. Those

patterns are all site-centered here but bond-centered solutions have essentially the same

energies. The same results for the three CDW states were also reported in ref. [40] at a 1/8

hole concentration. These mean-field GWA results are quite consistent with the numerical

Monte Carlo result [43], which revealed that the uniform state has the lowest energy, fol-

lowed by the in-phase stripe, and that the energy of the anti-phase stripe is slightly above

that of both of them. However, the small energy differences are insignificant compared

to the result of iPEPS [54], which showed the same ordering of states but with essentially

degenerate energies.

At approximately 12% doping in Fig. 3.2(a), the spin moment becomes smaller, and

the uniform dSC-AFM state merges into the dSC state. The difference from the original

work of Ogata and Himeda [44, 45], in which the spin moment vanished at 10% doping,

is due to the simplified Gutzwiller factors used in Eq. 6.5. All the magnetic states, such as

SDW and sCB, vanish at approximately 12% doping. The most surprising and important

result shown in Fig. 3.2(a) is that in addition to the uniform dSC state, the AP-CDW state

is most stable for a large doping range, from 0.08 to 0.18. The AP-cCB state also extends

a little bit beyond the antiferromagnetic region. We only find the diagonal stripe state up

to 6% doping. Another pattern that seems to be limited to small doping is IP-cCB-sCB,

which is only found at doping less than 0.1. The general locations of these CB states in

Fig. 3.2(a) are consistent with experimental observations that CB are seen more often at

low doping [24, 25]. Because the Gutzwiller factor gtijµ in Eq. 6.5 is proportional to the

hole density at the site, we expect the kinetic energy to be maximum at the domain wall

(Fig. 3.1(c),(f)). The hopping and pairing order are calculated from respectively, by using

Eq. 6.14.

The red cross in Fig. 3.2(a) at the 1/8 hole concentration is the energy of nPDW that
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relaxes the requirement to have a commensurate 4a0 period for the AP-CDWstate. To alle-

viate the difficulty of considering incommensurate solutions in a finite lattice calculation,

we allow the state to have more than one single modulation period. In Fig. 3.2(b), the hole

density, listed as the red numbers below the pattern, along with the magnitude of the pair-

ing order parameter for both x and y bonds, listed in the top and bottom rows, are plotted

along the direction of the modulation. It is very similar to the AP-CDW state. However,

there is a remaining net constant d-wave pairing, with the system average∆x = −0.0056

and ∆y = 0.0057. This mixture of the AP-CDW stripe with a small constant uniform

pairing will produce a d-wave nodal-like LDOS in addition to a PDW; hence, we name

it nodal PDW or nPDW. There are several important results associated with the nPDW.

Figure 3.2(b) shows that the hole density is indeed maximum at the domain walls near

sites 4,7,10 and 13. The maximum amplitude of pairing order ∆ is about 0.03, which is

roughly the same as adding the net pairing amplitude to that of the AP-CDW stripe. It

is most gratifying to observe that the d-wave pairing is globally maintained, although we

have no way of controlling it during the iteration, with variables changing independently

on each site. Contrary to the pure AP-CDW state without a net pairing, this state has a

d-wave nodal spectrum at low energy, hence a nodal-like LDOS. In Fig. 3.2(c), the LDOS

of this stripe at 8 sites is plotted as a function of energy. The positions of these 8 sites are

indicated in the inset of Fig. 3.2(c). The detailed LDOS at low energy is shown in Fig.

3.2(d). The large spatial variation of LDOS at high energies but always with a d-wave

node near zero energy is quite consistent with the STM results in ref. [15]. We have

obtained this result by using a lattice of supercell calculation.

A special feature of all these charge-ordered states is the large variation of theGutzwiller

factors from site to site. The values could change between nearest neighbors by a factor

of 2 to 3. This unique property of strong correlated systems originates from the depen-

dence on local hole density in the Gutzwiller factor, which is gti =
√

2δi
1+δi

, when we do

not consider magnetic moments. This dependence on δi is the consequence of being a

Mott insulator when there are no doped holes. A slight variation of the hole density δi will

cause a large change in gti ; in fact, ∂gti/∂δi is proportional to gti/δi ∼ 1/
√
δi. This factor
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Figure 3.3: Properties of nPDW. (a) The real space modulation of nPDW in 32×32 lattice
sites with δ= 0.125. Since the pattern repeats itself with an inversion symmetry in the
middle bond, here we only show the first 16 sites. The red and black numbers on each
bond denote the values of pairing order and the number at each site(black dots) is the hole
density. (b)(c) The Fourier transform of the value of hole density(b) and pairing order(c).
(d) LDOS of the first 4 sites of this 32×32 nPDW. (e) Different form factors.

dominates in the renormalized local chemical potential defined in Eq. 6.10 when hole

concentration is small. Thus, gti is no longer a purely passive renormalization factor; now,

it could alter the local chemical potential greatly and induce non-uniform charge orders.

Although the factor associated with spin, gs,xyi in Eq. 6.5, is smaller, it also contributes

to the local chemical potential. The strong susceptibility to the variation of local hole

density makes a uniform state unstable amidst inherent or extrinsic charge fluctuations.

This effect is clearly more prominent in the lightly hole-doped regime, as demonstrated

by the greater variety of charge-ordered states in the underdoped regime in Fig. 3.2(a).

Another important effect of the Gutzwiller factor is that it introduces nonlinearity into

the Bogoliubov-deGenne (BdG) equations (Eq. 6.9-6.10), which can produce quite unex-

pected solutions.

The nPDW state first proposed by us comes from the AP-CDW state but with a non-

zero uniform pairing order UPOP, which is generated from its (quasi-)incommesurate na-

ture. This accords with previous experimental data [1] that within the superconducting

dome, the modulations of Cu-O surface observed are incommensurate. Fig. 3.3 shows

some basic characteristics of nPDW in a 32×32 lattice size. Fig. 3.3(a) shows that the
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Figure 3.4: Figures showing the properties of discommensurate nPDW. (a) The phase
variation of this pattern. Site 0-3, 12-15, and 24-27 are of phase equal to 0(2π) while sites
6-9, 18-21, and 30-33 are of phase π. (b) Form factors for discommensurate nPDW. We
also include the Fourier transform of hole density(c) and pairing order(d).

hole density is maximum at the domain walls near sites 2,7,10 and 15. For the Fourier

transform in Fig. 3.3(b) and 3.3(c), it is clear that although there are several peaks, the

leading one is the one at π/2(π/4) for hole density(pairing order), which corresponds to

the modulation of 4a0(8a0). Fig. 3.3(d) demonstrates LDOS of several chosen sites and

the v-shape near zero energy indicates a d-wave pairing gap with a node is opened. Fi-

nally, in Fig. 3.3(e) the comparison of different form factors confirms the dominance of

d-form factor.

Besides the (quasi-)incommensuration, McMillan [124] was the first to define a “dis-

commensuration”(DC) as a defect in a commensurate CDW state. In such state, the phase

of the CDW jumps between discrete lattice-locked values. Mesaros et al. [125] showed

that this kind of CDW could be what was observed by experiments. Hence, let us consider

a sinusoidal modulation in one spatial dimension with 4a0 modulation but a phase jump
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Figure 3.5: (a) Energies of several states chosen by us. Although we have listed ten dif-
ferent states here, their energies seem to be nearly degenerate and follow the same trend
line. (b) Magnitude of d form factor of patterns. Given different states we expect their
magnitude to change but still all of them seem to have the same trend: the magnitude
maintains the same until doping level exceeds 0.18, where it starts to drop drastically and
becomes zero in the range of 0.18∼0.22.

between each domain, it can be written as:

ψ(x) = Aexp[i(Q0x+ ϕ)] (3.1)

where A is the amplitude and Q0 = 4a0. The additional phase ϕ defines the phase shift

for each domain. For example, Fig. 3.4(a) shows the modulation in x-direction for one

of the DC patterns we have obtained. We will name it after the discommensurate nPDW

state(DCnPDW). It is clear that there are two separate domains, one with pink color(sites

0-3, 12-15, and 24-27) with ϕ = 0 and the other with Green color(sites 6-9, 18-21, and

30-33) with ϕ = π. Moreover, in Fig. 3.4(b)-(d) we can see its FT shows that the aver-

aged modulation is no longer 4a0. This might explain for the reason why there are some

experiments which ended up observing the modulation period of 4a0 but the others with

incommensurability. They can originate from the same phase with local 4a0 feature but a

global incommensurability. Even with the discommensurability, however, they still pos-

sess the same dominant symmetry. As shown in Fig. 3.4(b), the leading form factor is

still d-form.

One of the most important points we need to clarify is that despite the nPDW and DCn-

PDW already mentioned, we can easily obtain a number of different states by changing the
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initial inputs or lattice size. Each of them has slightly different values of pairing, charge

density and bond orders. Fig. 3.5(a) lists some of the examples and demonstrates their

energies. One can see that in fact their energies are nearly degenerate, although the lattice

size is different. Even with the same lattice size, it is also possible to have two distinct

patterns, as shown in Fig. 3.5(a). Within the states shown, there are two of them labeled

with QI-APCDW, which is the abbreviation of quasi-incommensurate anti-phase CDW.

Different from nPDW, this pattern has zero UPOP, just like AP-CDW. Amazingly, even

though QI-APCDW and nPDW seem very different because of the existence of UPOP,

these two still share nearly degenerate energies. Based on this discovery, we claimed that

in fact all the orders(∆, χ, etc.) are, instead of competing, intertwined and influencing

each other. That is why such different states can possess nearly the same energy. We

have to make it clear that the patterns listed here are only some of the possibilities and

in fact there can be many more different states. Moreover, we like to point out that these

QI-APCDW states are quite similar with the IPDW states, except the latter is generated by

raising the temperature of the nPDW states, which we will discuss in detail later. Except

for their energies, there are also some characteristics which these states all share with.

One of them is the d form factor symmetry. Among all these states, surprisingly, they all

have leading d-form factor over s and s′, which is one of the important feature of nPDW.

In Fig. 3.5(b), we have collected the values of magnitude of d-form factor for each states.

We can see although for different states their magnitudes of d-form factor vary from each

other, most values are within the range from 0.15 to 0.2. Moreover, the ending points are

all within the range of 0.18∼0.22, which is very near the quantum critical point observed

by experiment around 0.19.

3.1.2 Continuum LDOS

For a more fruitful comparison with STM experiment, we turn to the continuum LDOS

and quantities derived from it. With the first-principles Wannier function for BSCCO-

2212 [121] as an input, we compute the continuum LDOS using equations 6.21 and 6.22.

The resulting LDOS map at energy ω = 0.25t and in a 20×20 unit cell area at a height
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Figure 3.6: Continuum LDOS map at ω = ±0.25t and ∼ 5 angstrom above BiO plane.
(a) LDOS map at ω = 0.25t in a range of 20×20 unit cells located in the central region
of 60×60 lattice. (b) Zoomed-in view of the area marked by square in (a). Black dots
and open circles represent positions of Cu and O atoms, respectively, in the CuO plane
underneath. (c) LDOS map at ω = −0.25t in the same region as in (b).

z ∼ 5 angstrom above BiO plane, which is a typical height for STM tip, is shown in figure

3.6(a). Two types of modulating stripe structures can be observed. In figure 3.6(b) we plot

a zoomed-in view of one of these structures in the area bounded by a square as shown in

3.6(a). Cu and O atoms located in the CuO plane underneath, are represented as dots and

open circles, respectively. The LDOS shows modulations around all atoms which, in the

Fourier domain, implies that this particular bias has a mixture of all intra-unit cell form

factors.

More importantly, modulations at the two inequivalent O atoms in an unit cell (Ox and

Oy ) are out of phase, i.e. whenOx has large LDOS thenOy has small LDOS. This leads to

the conclusion that the d-form factor has larger weight than s′-form factor. Indeed, a more

quantitative analysis of form factors, discussed in following paragraphs, shows that the

d-form factor has largest weight at this particular bias. This particular pattern is observed

in an energy range of 0.21t− 0.27t . Remarkably, a similar pattern has been observed in

the STM experiments [1, 28]. In figure 3.6(c) LDOS map is plotted at the negative bias

ω = −0.25t in the same region as in (b). Comparing figures 3.6(b) and (c), it is found

that the atoms with larger values of LDOS at positive bias have smaller values at negative

bias, which implies a spatial phase change of π between positive and negative biases. As

emphasized in [1], this is a characteristic feature of d-form factor density wave. A more

quantitative analysis of the phase differences, calculated using equation 6.26, is given in

following paragraphs.
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Figure 3.7: Continuum LDOS spectrum registered above Cu, Ox and Oy sites in the unit
cell (25, 25) at an height∼ 5 angstrom above BiO plane (a)without, and (b)with Γ = α|ω|
inelastic scattering (α = 0.25), as extracted in [2]. The location of the unit cell can be
referred from figure 4(b) as shown in the inset. Dots and open circles represent Cu and O
atoms, respectively.

3.1.3 Bias and doping dependence

Figure 3.7(a) shows the bias dependence of continuum LDOS at Cu, Ox, and Oy atomic

positions in unit cell (25,25) of a 60×60 system located at a height ∼ 5 angstrom above

the surface BiO plane. The location of this particular unit cell in reference to others can be

found in the lower left corner of figure 3.6(b), and the cell is shown explicitly in the inset of

figure 3.7(a). Similar to the lattice LDOS, two sets of “coherence peaks” at∼ ±0.21t and

±0.37t can be observed. These peaks correspond to themodulated Andreev state created

by the PDW and that associated with the charge density wave energy scale [40].

Also, a small v-shaped gap-like feature exists around the Fermi level due to the uni-

form component of the gap order parameter. The most striking feature is the difference

between the LDOS at Ox and Oy atoms, which clearly demonstrates intra-unit cell C4

symmetry breaking. The difference between the two is maximum at w ∼ ±0.21t , the

scale corresponding to the hybridized Andreev bound state(ABS). As we will see, this is

the bias at which d-form factor has largest magnitude. Another feature of the LDOS is the

strong particle-hole asymmetry. Interestingly, this asymmetry is seen to be much more

pronounced in the continuum LDOS than lattice LDOS (figure 3.2(c)).
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Figure 3.8: (a) Bias dependence of the intra-unit cell form factors at x = 0.125 computed
from atomic sublattice averages as described in the text.Next to it are the doping depen-
dence of (a) energy at which d-form factor peaks (Ωd) and (b) corresponding magnitude
(DZ

max ).

We expect that these intra-unit cell contrast of these various effects will be mitigated

somewhat when nonzero tip size is accounted for [121]. In addition, we expect the higher-

energy features to be broadened significantly by inelastic scattering [2]. To see this ef-

fect explicitly, we incorporate linear inelastic scattering by replacing the constant artifi-

cial broadening term (i0+) in equation 6.20 by an energy dependent artificial broadening

i0+ iΓ(ω) where Γ(ω) = α|ω|, as observed in [2]. Figure 3.7(b) shows the resulting con-

tinuumLDOS spectrum forα = 0.25.We find that high energy peaks are indeed broadened

and can not be resolved any more. This holds for all higher values of α. The spectrum

resembles those taken on Ox, Oy, and Cu sites very closely [15].We note that the value of

spectral gap in the BSCCO-2212 spectrum reported in [15] is in the range 80 − 90 meV

for which the value of α is found to be in the range 0.25− 0.33, justifying our choice [2].

Using the continuum LDOS map, we can calculate energy dependent form factors as

formulated in equation 6.25. To calculate the wave vector corresponding to d-form factor

modulation (Qd),we compute the d-form factor (DZ(q, ω)) as a function of energy and

obtain the wave vector at which it peaks.We find that above a threshold bias, this wave

vector does not show any dispersion and remains constant at Qd = (0.3, 0). This non

dispersing behavior is very similar to that seen in the experiment [1].

The energy dependence of the form factors at wave vectorQd = (0.3, 0) is now shown

in figure 3.8(a). Similar to the experiment,we find an s′-form factor peak at a lower energy

and a d-form factor peak at higher energy. Comparing the energy scales in the lattice
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Figure 3.9: (a) Bias dependence of average spatial phase difference defined in equation
(18). (b) BiasΩp at which initial π phase jump in∆π takes place versus doping. (c) Lattice
LDOS in the case when nPDW charge and bond modulations are turned off keeping only
pair field modulations. (d) Lattice LDOS in the case when nPDW pair field modulations
are turned off keeping charge and bond modulations.

LDOS (figure 3.2(c)) and continuum LDOS (figure 3.7), we find that the energy at which

d-form factor peaks (Ωd), corresponds to the ABS peak. By studying the bias dependence

of form factors in systems with varying t′, doping level and modulation wave vectors,

we find that the d-form factor always displays a peak and the particular bias at which it

occurs corresponds to the ABS peak in the lattice LDOS. However, the relative weight

of the s′- and d-form factor depends on the details of band structure and doping. For

example if we choose t′ = 0 at the hole doping 0.125, then d-form factor is found to have

largest magnitude at all energies. Lastly, we note that the magnitude of the s-form factor

is comparable to others(although it is never the strongest channel), whereas experiment

finds it to be smaller than the others.

The doping dependence of the peak value of the d-form factor (DZ
max) and correspond-

ing bias (Ωd) is shown in figure 3.8(b) and (c). Ωd decreases monotonically with hole

doping. On the other hand, DZ
max shows a non-monotonic behavior as function of hole

doping. First, it increases and achieves a maximum at doping x = 0.13 and then drops

rapidly. This is in agreement with the doping dependence of the STM intensity at the

density wave modulation wave vector which can be thought as a measure of d-form factor

magnitude [29].

The average spatial phase difference (∆ϕ) between the d-form factor density wave

modulations at positive and negative biases, computed using equation 6.26, is shown in

figure 3.9(a).We find at x = 0.125 that in the vicinity of Fermi level spatial phase differ-

ence is zero and turns to π for ω > 0.12t . This bias dependence is in excellent agreement
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Figure 3.10: (a) and (c) Form factors and average spatial phase difference(∆ϕ) in the case
when nPDW charge and bond modulations are turned off keeping only pair field modu-
lations. (b) and (d) Form factors and average spatial phase difference (∆ϕ), respectively,
in the case when nPDW pair field modulations are turned off keeping charge and bond
modulations.

with the STM experiment [1]. Figure 3.9(b) shows that the energy (Ωπ) at which π phase

shift occur decreases with hole doping. We note that in the supplementary information of

[1], the authors show the bias dependence of∆ϕ at a few more doping levels, from which

one can infer that the energy corresponding to π phase shift decreases with increasing hole

doping level, similar to what we observe for the nPDW state.

To get a better understanding of the bias dependence of form factors and spatial phase

difference, we attempt to disentangle PDW and CDW orders intertwined in the nPDW

state, “by hand”. We start with the self-consistent mean fields in the nPDW state discussed

previously. As a first test, we do the following replacements in equation 6.11: δi →

δ0 and χv
ijµ → χv

0, where, subscript 0 indicates that the mean fields correspond to the

uniform superconducting state. The pair field remains inhomogeneous and unchanged

from the nPDW solution. In the second test, we do the following replacements in equation

6.11: ∆v
ijµ → ∆v

0, and leave bond field and hole density inhomogeneous and unchanged

from the nPDW solution. The chemical potential is adjusted in both tests to yield the

correct average electron filling. Results for the lattice LDOS, form factors and spatial

phase difference in first and second tests are shown in figures 3.9(c), 3.10(a)(c), and 3.9(d),

3.10(b)(d) respectively. Comparing figure 3.2(c) with figures 3.9(c) and (d), we find that

the two sets of coherence peaks in the nPDW state lattice LDOS are indeed originating

from the PDW, and that the CDW has an insignificant effect. Figure 3.10(a) shows that the

d-form factor in the pure PDW state has the highest magnitude at the energy corresponding

to one of the coherence peaks in the lattice LDOS (Ωd = 0.16t) and its bias dependence and
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overall scale is very similar to the nPDW state (figure 3.8(a)). However, when PDW order

is artificially set to zero then d-form factor acquires a bias dependence and scale which

is very different from the nPDW state as evident from figure 3.10(b). The importance of

the PDW is again manifested in figure 3.10(c) which shows that setting the charge density

modulations to zero artificially has little effect on the spatial phase difference observed

in the nPDW state (figure 3.9(a)). However, when the PDW order is set to zero then we

get a very different bias dependence of spatial phase difference as evident from figure

3.10(d). Thus we conclude that the most significant features in the bias dependence of

lattice LDOS, d-form factor and spatial phase difference in the nPDW state are originating

from the pair field modulations.

3.1.4 Discussion

Within the inhomogeneous Gutzwiller approximation, for the parameters employed here,

the uniform d-wave superconducting state has a lower energy than the charge ordered

states at all doping levels. Thus then PDW is not the ground state of the t− t′ − J model.

However, the energy difference between the uniform state and charge ordered states is

really small [40]. Thus, it is entirely plausible that other effects not included in the model

such as disorder and electron–phonon interactions may stabilize these fluctuating charge

ordered states [43, 126]. In fact, the short-ranged nature of these states, observed in STM

[69] and resonant elastic x-ray scattering experiments [68], suggests that disorder might be

playing an important role. Different local disorder environments may then also pin slightly

different states, resulting in slightly different local LDOS patterns that can be identified

in STM images, not just two different ladder-type domains, as is normally assumed. As

pointed out, the evolution of the Gutzwiller factors with doping is responsible for the re-

markable degeneracy of the various charge states shown in figure 3.2(a) across the doping

range. The energy splitting of these states above the homogeneous superconducting state

remains almost the same across this range as well. Thus the addition of a magnetic field

on the order of 10 T or 1 meV per site can potentially stabilize long range charge order.

It is tempting to conclude that the recent observation of charge order in YBCO with a
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large correlation length, at a magnetic field of order 30 T may be reflecting this effect

[127, 128].

We find that at a given doping, nPDW states with different ordering wave vectors Q

around (0.3, 0) exist. Keeping the same initial guess and changing the system size (N×N )

results in charge ordered states with slightly differentQ = (Q, 0), since Q is a multiple of

1/N . However, LDOS, form factor and spatial phase difference results are insensitive to

such small changes. All such states at nearby Q are extremely close in energy, and hence,

at the level of the Gutzwiller approximation, we can not quantitatively address the doping

dependence of the charge order wave vector. However, the bias dependence of the form

factors and spatial phase difference is robust with respect to the change of ordering wave

vector, band structure (t′) and doping. We always find a dominant d-form factor at higher

energies and a shift of π in the average spatial phase difference beyond a particular energy

scale.

The analysis presented in the previous section, whereby PDW and CDW order were

artificially suppressed independently, strongly suggests that PDW character is necessary

to explain the spectral characteristics, in particular the bias dependence of the intra unit

cell form factors and spatial phase difference in experimental measurements on BSCCO.

It is important to note further that the bias dependence of the form factors in the current

theory is the clear result of electronic correlations in theCuO2 plane. It has been observed

in x-ray spectroscopy that the plane in YBCO, for example, buckles in a pattern of O

displacements that mimics a d-wave form factor [129], and suggested that this structural

pattern imprints itself on the local tunneling conductance. However, it is difficult to see

how such a structural effect should be sensitive to the applied bias, as seen in experiment

and predicted here. Nor is it clear why, in such a scenario, the other form factors can be

stabilized in other bias ranges.

3.2 Momentum space properties

After we have obtained a quite profound agreement with experimental observations for the

real space properties, starting form this subsection we will head to discuss our discoveries
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Figure 3.11: The quasiparticle spectra of a nPDW state calculated in a 32×32 lattice for
hole concentration 0.125: (a) the vertical cuts (V 1-V 5) denote the y component of the
momentums scanned from (b)(near nodal region) to (f)(anti-nodal region). (b)-(f): quasi-
particle spectra weight for each cut as a function of ky with a fixed kx value shown above
each figure.

for those features in the momentum space.

3.2.1 Particle-hole asymmetry

We will first discuss ARPES spectra for nPDW states. These states with incommensurate

PDW, CDW, and bond order wave coexisting have a UPOP exhibiting a d-wave nodal like

LDOS at low energy. Their energy dependence of the intra-unit-cell form factors with s,

s′ and d symmetry and the spatial phase different agree well with the STS experiments as

shown in the previous content.

The spectral density A(kx, ky, ω) of the above state is calculated by using Eq. 6.27

at T = 0. We choose the width Γ = 0.01t unless specially mentioned otherwise. In

Fig. 3.11(a) we scan the momentum space near the antinodal region (kx, ky) = (π, 0)

by having 5 vertical cuts(V 1-V 5) perpendicular to the kx axis. The energy dependence

of the spectral weight as a function of the y component of the wave vector(ky) for the
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Figure 3.12: The quasiparticle spectra of a nPDW state calculated in a 32×32 lattice for
hole concentration 0.125: (a) the vertical cuts (H1-H5) denote the y component of the
momentums scanned from (b)(near nodal region) to (f)(anti-nodal region). (b)-(f): quasi-
particle spectra weight for each cut as a function of kx with a fixed ky value shown above
each figure.

five cuts are shown in Figs. 3.11(b)-3.11(f). A very striking result is the complete lack-

ing of particle-hole symmetry in the spectra as a BCS theory would have predicted. The

white curves denote the dispersion of a uniform Fermi-liquid state(FLS) without pairing

at dopant density 0.125. The curve crossing zero energy are Fermi momenta kF . The five

cuts show that near the nodal region V 1 the gap at kF is small and increases substantially

approaching toward the antinodes V 5. Most interesting part is the dispersion along each

cut bends back after passing the minimum energy gap, which is determined by looking at

bands above and below Fermi energy. These back-bending momentum kG moves away

from kF as momenta approaching antinodes. The momentum kG is determined by us-

ing the energy distribution curves(EDCs). For the ARPES experiment, only the occupied

states or the states with negative energies are measured, hence it cannot show the momenta

with minimum gap but it can determine the back-bending momenta kG. Indeed our result

is very consistent with the experiments [82] showing this particle-hole asymmetry which
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is very different from usual BCS superconductors that kG = kF . It was first pointed out

by Lee [39] that the difference between kF and kG and the way two approaches each other

near nodal region is inconsistent with pure CDW either.

In the experiment, the spectra along kx direction is same as in ky. This is likely due to

the sample packed with x- and y- oriented short-range ordered unidirectional domains as

seen in STS [59]. But here we only have one unidirectional nPDW, hence spectra along

kx and ky are different. In Fig. 3.12(a), we scan five horizontal cuts(H1-H5) from near

nodal region (b) to antinodal region (f). Comparing 3.11(b) with 3.12(b), we can see that

there is no state at low energy for 3.12(b). In general the minimum gaps are the same

for H5 cuts near (0, π) and V 5 cuts near (π, 0). It seems that the gap does not change

much from 3.12(d) to 3.12(f) while it increases significantly from 3.11(d) to 3.11(f). The

occupied bands are quite flat along the kx direction near (0, π), and hence it is difficult

to determine the bending vectors kG. This kind of spectra near (0, π) for a x-directional

PDW is quite different from what one would expect for a pure CDW [39]. We also note

that energy gap value of 0.21t at the parallel direction (Fig. 3.12(f)) with respect to the

modulation direction of density waves is about the same as in the perpendicular direction

(Fig. 3.11(f)). This will be discussed further in the discussion section.

We have also considered anisotropy [40] in hopping tx(y) and Jx(y) and if we decrease

tx with respect to ty (Jx/Jy = t2x/t
2
y), then the nPDW state modulated in x-direction will

no longer have a pure d-wave but a s′ + d wave. The energy gap determined by the H5

cut near (0, π) increases but the value of V 5 cut near (π, 0) is reduced. We will discuss

this further in the Discussion section later.

3.2.2 Two-gap in the SC phase

The quasi-particle spectra in Fig. 3.11 and 3.12 also show an energy gap increasing as

momentum approaches antinodal region. To compare with the result of ARPES experi-

ment we shall use the EDCs to determine the gap. By taking a scan along a linear cut near

the Fermi surface (the white curves in Fig. 3.11(a)), we can determine the k value that has

the smallest energy difference from chemical potential. This will determine the energy
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Figure 3.13: The gap value evolving from nodal to antinodal region for nPDW for (a) two
different lattice sizes at doping 0.125; (b) different doping levels but same size(30×30).
Red, green and purple lines are just guides for the eyes. The black dotted(dashed) line is
a plotted pure d-wave(antinodal) gap with gap size about 0.075 ∼ 0.08t(0.2t).

gap at this k value. Going from the nodal direction at kx = ky to the antinodal region

(kx, ky) = (π, 0), the energy gap is plotted as a function of |cos(kx)− cos(ky)|/2 in Fig.

2 for nPDW states. In Fig. 2(a), at hole concentration 1/8, the red curve is obtained for a

16 ×16 lattice and green for 30×30. The vertical error bars are either determined by the

width of the peak or by average of two nearby peaks with nearly the same magnitude. The

horizontal error bars are due to the effect of discrete k values. The results are essentially

the same for these two different lattice sizes and in fact, there is also not much difference

with the solution of 60×60 lattice. The vertical error bars are only slightly larger for the

smaller 16×16 lattice. The slope of both curves increases as the momentum gets closer

to the antinode. The dotted line in Fig. 2(a) indicates the linear setting of a pure d-wave

pairing gap (∆c|cos(kx) − cos(ky)|/2) near the nodal region. The plotted gap value ∆c

is much smaller than the gap at antinodal direction. The dashed line indicates a second

gap near the antinodal region. Thus we have two different d-wave gaps near the node and

antinode.

Furthermore we can examine the variations of these gaps with dopant concentration.

In Fig. 3.13(b) the gaps are plotted for nPDW states calculated for a 30×30 lattice for

three hole concentrations: red for δ = 0.1, green for 0.125 and purple for 0.15. As hole

concentration decreases, the gap at the antinodal region gets larger while deviation from

the dotted line starts closer to the nodal k. The value of the gap at antinode could reach
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0.2t or about 80meV just as in the experiments [21]. At larger doping these two d-wave

gaps seem to approach each other as a single gap which is expected in the usual BCS state.

Due to the finite size effect, we cannot determine if the d-wave like gap for the three hole

concentrations in Fig. 3.13(b) are exactly the same, but it looks close enough and with a

value about 0.08t ∼ 32meV for t = 0.4 eV . In Fig. 3.13 we used a constant Γ = 0.01t,

but the result is insensitive to the choice of the Γ in calculating the spectra density. This

is very consistent with ARPES results shown in Ref. [21, 130]. They found the gap value

about 39meV near the nodal region for several different hole concentrations.

So far we have discussed the gaps and spectral density of the superconducting nPDW

states. The state is quasi-periodic in the sense that it has several periods mixed but the

dominant one is near 4a. The intra-unit-cell form factors are dominated by d-symmetry.

The pair density modulation is mostly dominated by a vectorQp, and the CDW has mainly

a peak at 2Qp and also a peak at Qp.

3.2.3 Finite temperature IPDW states

All the states discussed above are SC with a net d-wave UPOP. These were obtained by

solving the mean-field BdG equations self-consistently at T = 0. We recall that the strong

correlation effect of Mott physics is originated from the very large on-site Coulomb re-

pulsion or Hubbard U . This effect is translated into a Gutzwiller projection operator to

prohibit double occupancy of electrons at each lattice site in the t − t′ − J model(Eq.

6.1). By following the GWA [56], we replace these projection operators by Gutzwiller

factors, which are functions of hole density. Here we will make an intuitive assumption

that these Gutzwiller factors remain unchanged at temperatures much smaller than the rel-

evant energy scale t and J which are of order 0.4 eV and 0.12 eV , respectively. Thus

the BdG equations are easily generalized to finite temperatures and we could again find

self-consistent solutions at finite T . Details are already discussed in the Methods section.

Here we will present the results.

In Fig. 3.14, the average or net UPOP calculated for a lattice of 30×30 with dop-

ing 0.125, 0.15, and 0.16 are plotted as a function of T/t, shown in green, blue and red
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Figure 3.14: UPOP vs temperature for δ= 0.125, 0.15, and 0.16. Tp1 and Tp2 for each case
are marked with different dotted lines of the same colors. The lattice size is 30×30.

marks. Tp1 and Tp2 for the three hole concentrations are also denoted. For simplicity Tp1

is determined when the magnitude of UPOP reaches about 0.001. The three curves are

quite similar except that near T = 0, x = 0.16 has the largest pairing order and also the

largest value of Tp1; however its Tp2 is the smallest. The meaning of Tp2 where no PDW

exists becomes more clear when we examine its doping dependence. For T > Tp2, the

phase is actually a uniform d-wave state without modulations of charge and pairing. We

already showed that the nPDW state and all other CDW or SDW states have a slightly

higher energy than the uniform BCS state for the t−J and t− t′−J model. If we include

other interactions like long range Coulomb interaction or a weak electron-phonon inter-

action [42, 47], these density wave states could become lower in energy. Even if we only

consider t− t′ − J model, these nPDW states are stable solutions at local minimum, until

they no longer exist at Tp2 as shown in Fig. 3.14. This new IPDW state between Tp1 and

Tp2 has almost zero UPOP but still large incommensurate modulations of charge density,
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Figure 3.15: Properties of IPDW. (a) The real space modulation of IPDW. The red and
black numbers on each bond denote the values of pairing order and the number at each
site (black dots) is the hole density. (b) The LDOS for sites near the domain wall(2, 6,
9, 14 in (a)) and in the middle of nearby domain walls(1, 4, 8, 15 in (a)). (c) Different
form factors and (d)(e) Fourier transform of hole density(d) and pairing order(e). The red
vertical dashed lines mark |q| = 0.5π/a corresponding to period 4a. Quasiparticle spectra
with zero energy in k space for IPDW in 30×30 lattice sites at T = 0.035t are shown in
(f) for δ = 0.15. The cyan dotted curve is the Fermi surface of Fermi liquid state with the
same doping level. Γ used here is equal to 0.25

√
E2 + T 2 [2].

pairing order and bond order.

We will introduce the real space properties of IPDW now. The pattern of pairing

order at each bond and hole density for an IPDW state with δ = 0.15 at T = 0.035t

is shown in Fig. 3.15(a). The hole density is maximum at sites, e.g. 2, 6 and 10 at the

pairing boundary where the paring order changes sign. The LDOS at a few selected sites

are shown in Fig. 3.15(b). There is a finite constant LDOS near zero energy and it is

not nodal like as the usual d-wave SC and nPDW states. The Fourier transform of the

intra-unit-cell form factor, hole density δi and pair field ∆ij are shown in Figs. 3.15(c)-

3.15(e). Both the modulation wave vector of the bond order wave and CDW, shown in

Figs. 3.15(c) and 3.15(d), respectively, are 2Qp = 0.52π/a, while the pairing modulation

is dominated by Qp = 0.26π/a as shown in Fig. 3.15(e). Most of the properties of this

IPDW state are similar with nPDW state except three distinctions: a negligible net UPOP,

a finite Fermi arc as shown in Fig. 3.15(f) and FT of charge density has no peaks at Qp

[37, 88]. The color legend represents the spectral weight of these k-points on the arc in

Fig. 3.15(f). Notice the arc is asymmetric with respect to exchanging kx and ky as the

modulation along x-direction breaks the x and y symmetry. At the antinodal region the
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Figure 3.16: (a) Doping dependence of Tp1 and Tp2. Tp1/2 and Tp2/2 are shown with
the blue triangles and diamonds respectively. The results from NMR [3] are also shown
for comparison. We choose 0.1t ∼ 464 K. (b) The gap values scanned along the Fermi
surface at T = 0 and 2Tp1 for δ = 0.15. (c) Doping dependence of the relative DOS
between IPDW and FLS(DOSIPDW/DOSFLS) at T = 0.035t. The experimental data
from [3] for T = 0 is also plotted for comparison. The inset shows DOS of IPDW vs
temperature for δ = 0.125, 0.15, and 0.16. Γ we used here is 0.25

√
E2 + T 2 [2].

Fermi surface is gapped out similarly as the nPDW states.

In Fig. 3.16(a), Tp1 and Tp2 are plotted as a function of doped hole concentration with

the blue triangles and diamonds respectively. We also plotted the PG phase temperature

T ∗ determined from the NMR measurement [3] for Bi2Sr2−xLaxCuO6+δ in red color by

taking t to be 0.4 eV . Tp1 follows a dome shape and has a maximum at hole concentration

0.16. The steep suppression of Tp2 with doping is similar with the PG temperature T ∗,

and the values are also close if we reduce Tp2 by about a factor of 2. This is not surprising

as we have neglected the quantum fluctuation effect in this mean field theory [131], and

we also have assumed the Gutzwiller factors to have no T dependence. Also note that so

far we have only considered long-range-ordered solutions and have neglected solutions

of random x- and y- oriented domains with short-range IPDW states. Since IPDW state

has a Fermi arc as shown in Fig. 3.15(f), we expect the gap should vanish at the Fermi

surface near the nodal region. In Fig. 3.16(b) the gap value along the Fermi surface is

plotted for T = 0 (red squares) and T = 2Tp1(green squares). This is very close to what

is measured on BSCCO by ARPES [130]. The gap at antinode is essentially unchanged

when the state changes from nPDW to IPDW. This is not surprising, since the antinode is

still much larger than the temperature.

A very important property of the PG phase is the Knight shifts measured by NMR [3];

it shows that the DOS in the PG phase increases slowly with doping but is less than half
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of the DOS of the normal state for T > T ∗ until it is near the critical doping about 0.2

where the PG phase disappears. It is also found that the Knight shift or DOS varies with

temperature by less than 10% during the PG phase.

In the inset of Fig. 3.16(c), DOS is plotted as a function of temperature for three hole

concentrations. Here we have assumed the widthΓ, used in the spectra density calculation,

is of the form Γ = 0.25
√
E2 + T 2 [2]. The DOS is calculated at zero energy(within an

energy range of±0.004t) by averaging the LDOS at all sites. The DOS are all quite small

and almost the same atT = 0 but it increases significantly atTp1. TheDOS values between

Tp1 and Tp2 increase with doping. This is likely due to the fact that the length of Fermi arc

increases with doping. The variation of DOS with T between Tp1 and Tp2 for these three

hole concentrations are also near 10% as in experiments. In Fig. 3.16(c), the ratio of DOS

between the IPDW states and the FLS is plotted as a function of dopant concentration at

T = 0.035t. Not only the doping dependence is very close to the experimental data [3]

shown as red symbols, the values are also close to the measured results. It is difficult for

us to obtain solutions above dopant concentration 0.17 as Tp2 and Tp1 are very close(Fig.

3.16(a)). When the dopant concentration is above 0.18, we have no nPDW solution at

T = 0 and no IPDW state at finite T . Thus we would recover the full Fermi surface and

the relative DOS should be 1. For real materials this happens at concentration 0.2 instead

of 0.18.

The quasi-particle spectra of the IPDW state is very similar with those for nPDW state.

In fact even for DCnPDW they all share similar profile. In Fig. 3.17, we demonstrate the

spectra at (π, 0) and (0, π) for three different patterns chosen: nPDW at 30 and 32 lattice

size, and DCnPDW at 36 lattice size. It is clear that, as mentioned earlier, the spectra

at antinodes (π, 0) and (0, π) are quite different but the gap values are very similar [4].

More interestingly, although there are three different states, their quasi-particle spectra are

also very close to each other. Even we increase the temperature, there is still not qualita-

tive difference for the spectra, but only that the gap values decrease a bit as temperature

rises. One need to note that at T = 0.035t and T = 0.05t the states have already evolved

to IPDW states. Once again, this result suggests that although there are numerous pos-
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Figure 3.17: We list several quasi-particle spectra at antinodes((π, 0)/(0, π)) for three
different patterns at different temperatures. Althoughmarked as nPDW in the first column,
the patterns become IPDW at T = 0.035t and T = 0.05t. However their spectra do not
change much and the differences of gap values at (π, 0) and (0, π) are within 10% [4].

sibilities of having a commensurate, (quasi-)incommensurate, or discommensurate state

w/wo UPOP, the deeper cause is alway the same: strong correlated Mott physics with the

Gutzwiller factors.

3.2.4 Discussion

Assuming that the Gutzwiller factors which take into account the renormalization effect of

the strong correlation physics could have very small temperature dependence below room

temperatures, we then generalize the renormalizedmean-field theory to finite temperatures

to study the prediction of the t− t′ − J model.

At low-temperature SC phase with a finite UPOP, a special self-consistent solution,

the nPDW state first found by us, is shown to have two d-wave pairing gaps as found by

the ARPES. The smaller the doping, the larger is the gap magnitude at antinodes, but the

nodal gaps are almost same for different dopings. The larger particle-hole asymmetry re-

ported near the antinodal region is also well produced by the calculated spectra function.

This nPDW state has a very special property that although it has a one-dimensional struc-

ture, the net pairing order or UPOP still has the four-fold d-wave symmetry. It is quite

amazing that although the pairing value at each bond looks quite random (Fig. 3.3(a)),
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its average has an exact d-wave symmetry. The spectra at antinodes (π, 0) and (0, π) are

quite different but the values are close to each other [4]. Combining together with previ-

ous works comparing our calculated LDOS and local spectra with the STS measurement,

we have obtained a very consistent picture about experimental data for both spectra in real

space and in momentum space for the superconducting phase.

Here it is worthwhile to make a special discussion that the nPDW state we chose is

among many possible solutions with different periods. Fortunately most of them exam-

ined by us have very similar properties except that the periods of modulations could be

different. In terms of energy the uniform d-wave SC state is the “true” ground state of the

t − t′ − J model within our RMFT. However, as we mentioned earlier, whenever other

weak interactions, such as electron-phonon interaction, nearest neighbor or long range

Coulomb force and impurities or defects, are added to the model [42, 47], the nPDW state

could be stabilized. Even if we only consider pure t − t′ − J model, these states are in

their local minimum. Thus we could study its low energy excitations.

Another thing we like to point out is that experiments just like our theory also have

found different kinds of CDW states. For the La2−xBaxCuO4 family, the period of CDW

decreases with doping while it increases for YBCO and BSCCO [19]. These two are called

CDW1 and CDW2, respectively, in the review article [36]. There is also CDW3 or the

magnetic field induced CDW. In this work we only concentrated on CDW2, which has no

magnetic component. We believe CDW1 is probably the stripe state [47].

When the temperature is raised, the net UPOP in the nPDW state begins to decrease

and it becomes negligible at certain temperature Tp1. This behavior also supports our

assumption that these states are at a local minimum. Then it changes into an IPDW state

that still has incommensurate modulations of charge density, bond order and pairing order

but without a net pairing order. Magnitude andmodulation periods of all these three orders

are quite similar to the nPDW state except that the FFT of the charge density does not have

a peak at the wave vector of the pairing modulation as seen in nPDW [88]. In IPDW state,

the modulation momentum of charge is twice of pairing. These states vary gradually with

temperature until it reaches a higher temperature Tp2 and there is no longer a solution
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with modulations of pairing. Quite unexpectedly Tp2 actually decreases sharply as doping

increases. Fig. 3.16(a) shows that Tp2 is proportional to the PG temperature T ∗ with an

overestimation of at most a factor two for its values. This is quite satisfactory for a simple

mean-field approach like ours. More discussion about this is given below.

Furthermore our analysis shows that the IPDW state near nodal region has a Fermi arc

with a fraction of DOS of the full Fermi surface when there is no pairing. There is still

a large gap at the antinodal region as shown in Fig. 3.16(b). The DOS or the length of

Fermi arc increases with dopant concentration just as what were seen by ARPES [21] and

NMR [3].

In our calculation we obtain the uniform d-wave SC state at T greater than Tp2. How-

ever as we mentioned earlier, this could be a consequence that we actually are at a local

minimum and uniform SC state is the global minimum solution. We believe that if we

consider solutions composed of randomly packed x- and y- oriented domains of these

IPDW states, its large entropy would have a lower free energy than that of the uniform SC

state. Thus the reappearance of the uniform d-wave SC state at high T is indicating the

limit of accuracy of our mean-field theory and it probably has no physical significance.

As mentioned earlier, a much more accurate numerical work [55] than our mean-field re-

sult for Hubbard model at dopant 0.125 shows that uniform state is not the ground state.

The stripes including SDW in addition to PDW and CDW are possible ground states for

U/t = 12 or less. For larger U as is for t − J model, antiferromagnetism is weaker and

the nature of ground state is yet to be settled.

It should be emphasized that the IPDW state is also a SC FFLO [85, 86] state with

finite momentum pairing if there is a phase coherence. But actually there maybe solu-

tions with disordered fluctuating domains [132] with different charge density, phases and

periods, etc. Variational Monte Carlo calculations have shown [43] that random stripe

domains could be very competitive in energy in comparison with the long-range-ordered

state. Furthermore the short-range-ordered domains of these IPDW states will have larger

entropy and lower free energy. The PG phase is known to have strong vortex fluctua-

tions [133, 134]. The inclusion of phases for these PDW states and their coupling with
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vortices [88, 93, 94] will provide a better and wholistic description of the PG phase. How-

ever, the PDW described here, we believe, should still be a basic entity included in these

considerations to account for the spectra measured by experiments.

Another important issue we have not addressed is the effect of magnetic field on the

PDW. Magnetic field-induced unidirectional CDW states have been reported below and

above Tc for YBCO [135, 136, 137]. Some are even long-range ordered in 3D [127].

Somewhat different results are found in BSCCO family. Recent experiment on BSCCO

has found bidirectional PDW or checkerboard of 8 unit cell period existing inside the

vortex halo [138]. For Bi2Sr2−xLaxCuO6, NMR measurement [139] shows that an in-

plane magnetic field of 10T is enough to induce long-range ordered CDW without spin

components in the PG phase. Since such a small in-plane field does not have much

effect on our nPDW or IPDW states, we believe these states are the ones observed in

Bi2Sr2−xLaxCuO6. This is supported by the good agreement achieved in Fig. 3.16(c)

between the calculated DOS of our IPDW states and the Knight shift measurement in the

PG phase by suppressing SC phase with high field [3].

3.3 Some details

In this section, we shall discuss several details, such as the method we used to determined

kG, the two gaps and Fermi arcs. We will also discuss the effect of using different Γ in

calculating the spectra density.

3.3.1 Method to determine kG

We have mentioned that as the cut of spectra goes away from the node toward near the

antinode, the momentum of gap(kG) will also deviate from kF . The way of determining

kG will require the usage of energy distribution curves(EDCs). In Fig. 3.18(b), we show

the spectra at (π, 0) for nPDW in the doping level of 0.15(30×30 lattice size). Next to the

spectra, we also put in a series of EDC cuts starting from the point (π, 0) toward (π, π).

Just like the ARPES experiment, we can easily determine kG when the minimum gap is
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Figure 3.18: (a) A collection of several data points of kG − kF vs doping at kx = π.
The way of determining the difference of kG and kF is shown in (b): kG determined by
examining EDCs plotted from ky = 0 toward ky = pi, for dopant concentration 0.15. kF
is determined by Fermi liquid surface and marked along with kG on the EDC plot. The
quasiparticle spectra is also shown with Gaussian width Γ = α|E| (α = 0.25) and marked
with positions of kG and kF .

reached by looking at the EDC cuts. Note that here we use Γ = 0.25|E|. The difference

between kG and kF as a function of doping is shown in Fig. 3.18(a). The difference

becomes smaller as doping increases. This is expected since the gap approaches a pure d-

wave gap as doping increases and particle-hole symmetry is recovered for the usual BCS

superconductors.

3.3.2 Two-gap plots

Here we discuss the method used to determine gap values in Fig. 3.13 and 3.16(b), as well

as their error bars. First we will explain that in fact there is only small difference if we

utilize different ways of determining gap. In the above, all the values are determined by

using EDCs and the horizontal error bars come from the finite size effect, which could be

reduced if we further apply supercells with larger size, while the vertical error bars come

from either the width of peaks(due to the choice of Γ), or the fact that there are actually

several peaks coexisting. But in fact there are different ways of determining gap values

and they will provide the same outcomes. For example, the quasiparticle spectra can be

also used to determine the gap as explained earlier. The result are all the same no matter

which way we decided to exploit. Fig. 3.19(a) put together two curves of gap values

determined by EDC and quasiparticle spectra. One can see that these two lines are very
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Figure 3.19: (a) Two-gap plot for nPDW at δ = 0.125 as shown in Fig. 3 in the main text
but obtained from different approaches: red line is determined by the gap values shown by
quasiparticle spectra but green line comes from EDCs. (b) Relative DOS as a function of
hole concentration as in Fig. 3.16(c) in the main text but put together with two different Γ.
The two blue lines are very close to each other. (c) Two gap plots determined by different
Γ for nPDW at δ = 0.15. One can see that these lines nearly overlap with each other.
Figure (d) and (e) again show the quasi-particle spectra for nPDW at δ = 0.125(for the
32× 32 lattice) at kx = 0.977π but with different Γ: (d) Γ = 0.01t and (e) Γ = 0.25|E|.
Note that in fact (d) is identical as Fig. 3.11(f) in the main text. We can find that although
these two figures look quite different due to the choices of Γ, important features such as
location of kG are still the same, only that in (e) the spectra bands are broadened due to
larger Γ.

close and even if there are small differences, they are within the error bars.

3.3.3 Choices of Γ

We mentioned that the width Γ is chosen as different values for better demonstration in

different plots. But in fact we have done a series of analysis showing that there is no

qualitative difference in choosing Γ to be a constant as 0.01t or as 0.25
√
E2 + T 2. In Fig.

3.19(b) we plotted the same figure as Fig. 3.16(c). But here we include also the curve

using Γ = 0.01t. One can see clearly that there is only small quantitative differences

between two blue curves. Our second proof is to investigate the two-gap plots as Fig.

3.13 and 3.16(b), with different choice of Γ. In Fig. 3.19(c) we show the curves of gap

values for nPDW at δ = 0.15, but under different choices of Γ. We can see that those three
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curves are nearly the same within error bars.

Last but not least, we also need to check the consistency of quasi-particle spectra.

In Fig. 3.19(d) and (e), we plotted the same spectra but with different Γ, one with Γ =

0.01t(d) and another with Γ = 0.25|E|(e). If we discount the broadening of Fig. 3.19(e),

3.19(d) and 3.19(e) have the same kG.

3.3.4 Fermi arcs and LDOS

Figure 3.20: (a) and (b) Zero energy quasiparticle spectra in k space before(a) and after(b)
taking average of x- and y-directions PDW. (a) is the same as Fig. 3.15f and we put it
here again for the reason of comparison. Clearly, (b) looks more like the observation
by experimental groups. (c) and (d) LDOS at sites near(c) and away from(d) domain
walls at different temperatures for nPDW(IPDW) at δ = 0.15. Γ used here is equal to
α
√
E2 + T 2(α = 0.25). All figures shown here are of 30 × 30 lattice size. Its Tp1 is

around 90 K.

We have shown that the UPOP of nPDW is decreasing when temperature rises. The

resulting pattern is called IPDW by us, which is also a PDW phase but UPOP is close to

zero. Fig. 3.15(f) plots the zero energy quasiparticle spectra weight in momentum space

and it reveals the feature of the so-called Fermi arc. However, in experiments arcs usually

have x and y rotational symmetry. That is because the experimental detection scans over
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a region of materials that contains domains with modulations in both x and y direction.

Therefore the resulting arcs would have the rotational symmetry. In order to compare with

their results, we took average of x and y axis of our arcs and replotted it. The resulting

figure is as Fig. 3.20(b), which looks more like the experimental data.

One of the main differences upon having UPOP or not is to look at the LDOS. Since

our nPDW possesses d-wave UPOP, its LDOS will have a v-shape feature near the Fermi

energy. However, for IPDW there is no UPOP and therefore the DOS at Fermi energy

should be non-zero. Consequently, to further confirm the vanishingUPOP,we compare the

LDOS of sites near and away from domain walls in Fig. 3.20(c) and 3.20(d), respectively.

LDOS for five different temperatures are shown and the state remains nPDW for T = 0

and 47K but becomes IPDW at T = 94K, 163K, and 232K(0.1t ∼ 464K) because of

the disappearance of UPOP. According to the LDOS plots, it is also clear that the v-shape

feature disappears gradually as temperature rises, confirming that the node has changed

into an arc in IPDW state.
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Chapter 4

Results II – Correlated Electrons Under

Magnetic Field

By using the RMFT with an additional phase, we have repeated the same process men-

tioned earlier and solved for several self-consistent solutions. Table 4.1 shows the param-

eter sets we have used in the RMFT self-consistent calculations and we have plotted a

simple phase diagram in Fig. 4.1 for better demonstration. For simplicity, we choose to

work on a square lattice geometry with periodic boundary conditions and a 4 × 4 mag-

netic sublattice is used to encode an integer number of flux quanta. Hence, the flux per

plaquette can be chosen as Φ = p/q with q = 16 and p any integer, giving a total number

NΦ = ΦNs of magnetic flux quanta piercing the whole torus surface, where Ns is the

number of lattice sites. The particle filling ρ is equal to Ne
2Ns

, with Ne being the number

of electrons. The doping with respect to the half-filled Mott insulator is δ = 2(1
2
− ρ).

Because of particle-hole symmetry we can restrict to δ > 0. The filling fraction ν = ρ/Φ

indicates the ratio of Landau levels filled in the corresponding non-interacting picture.

Clearly it is relevant for zero-magnetization systems, denoted by S = 0 in Table 4.1. In

contrast, a fully polarized (FP) GS would instead be “adiabatically” connected to a non-

interacting (spinless) fermion system at filling fraction ν∗ = 2ν = 2ρ/Φ. The last column

of Table 4.1 contains the information about the unit cell characterizing a possible (sponta-

neous) ordering for each state. Notice that the largest cluster size that can be reached with
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ρ Φ ν/ν∗ Ns Ne NΦ S Unit Cell Instabilities
7/16 7/16 1 16×16 224 112 0 1×1 None
7/16 5/16 7/5 16×16 224 80 0 2×2 BDW/PDW
7/16 3/16 7/3 16×16 224 48 0 4×4 CDW, BDW/PDW
7/16 1/16 7 16×16 224 16 0

√
2×

√
2 SC

7/32 7/16 1∗ 12×12 63 63 FP 1×1 None
1/8 1/4 1∗ 12×12 36 36 FP 2×2 CDW, BDW
1/8 7/16 4/7∗ 12×12 36 63 FP 1×1 None
1/16 5/16 2/5∗ 12×12 18 63 FP 4×4 CDW, BDW
1/16 7/16 2/7∗ 12×12 18 45 FP 1×1 None

Table 4.1: Parameter sets used in the following subsections. Ns, Ne, and NΦ are the site,
electron and flux numbers used for performing RMFT (those for the ED on a 4×4 cluster
are obtained from a simple rescaling). Sets are listed with decreasing electron filling from
top to bottom. The GS is either a singlet (S = 0) or fully polarized (FP), i.e., the total
spin is S = Ne

2
(in that case ν∗ = 2ν is listed and marked with an asterisk). The supercell

associated to a possible spontaneous (charge or bond) ordering is also shown. 1×1 means
the GS is uniform. CDW, BDW, and PDW stand for charge, bond, and pairing density
wave. SC means staggered current modulation. For ρ = 7/16 and Φ = 5/16 or 3/16,
including (d-wave) superconducting order in addition to CDW/BDW order gives a PDW
self-consistent solution with lower energy. For ρ = 1/8 and Φ = 1/4 (ν∗ = 1), the 2× 2
modulation is induced by a staggered potential. Otherwise, translation symmetry breaking
(if any) occurs spontaneously.

ED is 4× 4 corresponding to a unique magnetic unit cell. In that case, the corresponding

flux and electron numbers NΦ = 16 × Φ and Ne = 32 × ρ need to be integers. In the

two following subsections, we shall review the properties of the various phases found, the

uniform and modulated flux states and the ferromagnetic FP phases, as can be inferred

from the properties listed in the last two columns of Table 4.1.

4.1 Uniform and modulated singlet flux phase

The first phase of interest which could be realized in this Hamiltonian is the Anderson,

Shastry, and Hristopoulos (ASH) state [140]. It is also called CFP because of its commen-

surability condition between the flux and electron filling [48]. It has been shown that these

states can be formally written in the quantum spin liquid form, the singlet bond amplitudes

of which break the lattice translational symmetry [117], and their order of commensura-

bility with the lattice unit length is closely related to the hole density [114, 115, 117]. The
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Figure 4.1: “Phase diagram” vs electron filling ρ and magnetic fluxΦ showing the various
phases presented in Table 4.1. Circles are non-polarized (singlet) states while squares
represent ferromagnets. Black symbols correspond to uniform solutions. Red, green, and
blue symbols encode symmetry-breaking supercells of size 4 × 4,

√
2 ×

√
2, and 2 × 2

(with staggered potential for Φ = 1/4) respectively.

stability of the CFP with varying flux, first discussed in Refs. [48, 114], will be revisited

here.

In this section we fix the electronic fraction to be ρ = 7/16 = 0.4375 and study how

the states evolve with changing flux. This corresponds to a weakly-doped Mott insulator

with a doping δ = 2(1
2
−ρ) = 1/8, i.e., two holes per magnetic 4×4 supercell. Within this

choice of parameters, a uniform CFP has only been found for Φ = ρ = 7/16 (first line of

Table 4.1). For the same doping and other commensurate values of the flux,Φ = p/16 ̸= ρ

with p an odd integer, singlet phases exhibiting lattice symmetry breaking patterns have

been found, as is the case for the parameters corresponding to the second, third and fourth

lines of Table 4.1. These patterns could correspond to a modulation of the (site) charge

density and/or a modulation of the (real) bond hopping amplitude, which are the CDW

or BDW, respectively. CDW and BDW orders may or may not coexist (compare second
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ρ Φ ν/ν∗ E0 Ekin Epot CRMFT
7/16 7/16 1 -8.945t -6.539t -2.405t 2
7/16 5/16 7/5 -8.119t -5.882t -2.238t 2
7/16 3/16 7/3 -7.632t -5.616t -2.016t 4
7/16 1/16 7 -7.658t -5.562t -2.096t 2
7/32 7/16 1∗ -14.353t -14.713t 0.360t 1
1/8 1/4 1∗ -10.834t -10.917t 0.083t 1
1/8 7/16 4/7∗ -9.467t -9.566t 0.098t 4
1/16 5/16 2/5∗ -5.253t -5.274t 0.021t 6
1/16 7/16 2/7∗ -5.176t -5.197t 0.022t 2

Table 4.2: Table of the energies and Chern numbers for the self-consistent solutions ob-
tained in RMFT. E0 = Ekin + Epot represents the energy per 4 × 4 sublattice. The last
column is the Chern number given by summing up the contribution from all the filled
(mean-field) bands. The last five rows noted by an asterisk represent the fully polarized
states for which ν∗ = 2ν is listed instead of ν.

and third lines of Table 4.1). Staggered current (SC) patterns can also appear without

CDW/BDW orders as described later on (see fourth line of Table 4.1).

Let us first examine the case Φ = ρ. The results obtained for J = 0.3t (t = 1)

show a homogeneous state and the RMFT band structure reveals a large band gap at the

chemical potential. This corresponds to a mean-field (unprojected) state where the first

Landau level is exactly filled. In the time-reversal symmetry broken state wemay calculate

the current for each bond as Jij = gtij↑Im(χij↑e
iϕij) + gtij↓Im(χij↓e

iϕij) while the charge

hopping is gtij↑Re(χij↑e
iϕij)+ gtij↓Re(χij↓e

iϕij), where χijσ = ⟨c†iσcjσ⟩. (The values of ϕij

at each bond for different Φ are shown in the Fig. 6.1.) For Φ = ρ all the bonds have

zero current, confirming the homogeneous character of this state within the mean-field

approach. The energy difference between RMFT and ED(Tables 4.2 and 4.3) is mainly

due to the magnetic energy, that of RMFT being smaller than the ED, which also agrees

with previous results [48].

It has been shown previously that, at fixed doping level δ = 1/8, the CFP exhibits

an absolute minimum of the magnetic energy at Φ = 7/16 corresponding to the exact

condition Φ = ρ. However, after adding the competing kinetic energy, the total energy
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Figure 4.2: Comparison between RMFT and ED energies (per magnetic 4 × 4 unit cell).
(a) Kinetic energy and (b) magnetic (potential) energy vs inserted fluxΦ. The doping level
is fixed to δ = 1/8 and J = 0.3t. The numerical values are given in the Table 4.2.

was found to be lower for a smaller commensurate flux, at least at intermediate values of

J/t [117]. However, in Ref. [117] a simple t-J Hamiltonian with no applied flux was con-

sidered, the flux entering only at the level of the projected CFP ansatz. Also, Ref. [117]

did not take into account the possibility of CDW/BDW instabilities as well as the more

sophisticated form of the Gutzwiller renormalization factors, both of which we have in-

cluded here. When changing the inserted flux to Φ = 5
16
, 3
16
, and 1

16
, the difference of the

RMFT and ED magnetic energies becomes smaller as can be seen in Fig. 4.2. In contrast

to Ref. [117], where the minimum of the kinetic energy was found at ϕ = 1
16
, we find

here with RMFT that it occurs at ϕ = 7
16
, as for the magnetic part. This leads to a ro-

bust minimum of the total energy vs. flux profile and also generalizes to the case of the

Affleck-Marston phase for which the minimal energy is found at Φ = ρ = 1/2.

Notably, for Φ = 1
16
and the same doping δ = 1/8, ν is equal to 7 which is also an

integer, signifying that the first 7 Landau levels (of the mean-field spectrum) are filled.

For this case, the real space pattern revealed by RMFT shows a staggered flux state with

homogeneous current on each bond, that is, the current circulation directions are opposite
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ρ Φ ν/ν∗ S E0 Ekin Epot CED

7/16 7/16 1 0 −8.2901 −6.39644 −1.89369 2
7/16 5/16 7/5 0 −8.0058 −6.04586 −1.95997 6
7/16 3/16 7/3 0 −7.8204 −5.90818 −1.91226 6
7/16 1/16 7 0 −7.6298 −5.73802 −1.89179 14
7/32 7/16 1∗ 7/2 −14.3874 −14.7165 0.329042 1
1/8 1/4 1∗ 2 −11.2393 −11.3132 0.0739077 1
1/8 7/16 4/7∗ 2 −9.4670 −9.55201 0.0849988 4
1/16 5/16 2/5∗ 1 −5.2519 −5.26527 0.0133967 6
1/16 7/16 2/7∗ 1 −5.1794 −5.19852 0.0190752 2

Table 4.3: Summary of the Lanczos exact diagonalization results.

between neighboring plaquettes. The reason is that again an integer number of Landau

levels has been filled and the large band gap excludes the possibility of inhomogeneous

modulation. Hence, it becomes clear that, for integral ν, the band gap is large enough

to suppress the lattice instability. The integer ν states are then adiabatically connected

to band insulators, and we believe this scenario is generic beyond the two cases we have

tested here.

Using similar arguments, we may already expect that for ν = 7/5 and ν = 7/3 lattice

instabilities occur, since now the (mean-field) Landau levels are filled fractionally. Indeed

we find them numerically, but they are of two different types. For ν = 7/5, we obtain

two different self-consistent patterns (depending on the initial condition of the RMFT)

with small but non-negligible energy difference and we concentrate on the one with lower

energy first. As shown in Fig. 4.3, remarkably, the ν = 7/5 state does not exhibit charge

modulation and has a uniform current amplitude on all bonds. However, the current pat-

tern displays a 2× 2 plaquette modulation, with two plaquettes carrying opposite current

loops and two plaquettes with zero current circulation. This is also correlated with a 2× 2

modulation of the hopping χijσ. In contrast, the RMFT solution with higher energy (cor-

responding to a local minimum in the variational space) bears a more complicated bond

structure. For ν = 7/3, CDW order along with BDW order always develops as shown in

Fig. 4.3. Interestingly, both cases can also be solved by including a non-zero pairing order

parameter, indicating that either the Fermi level crosses bands instead of lying in a gap, or
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Figure 4.3: Schematic patterns and results for the states in this subsection. (a)-(d) show
the current and hopping patterns of each state within the 4×4 sublattice. The widths of the
underlying orange bars and black arrows represent the magnitudes of hopping and current
on each bond separately. The flows of current are indicated by the arrow directions. The
numerical values are shown in Fig. 6.1.

the gap is rather small compared to the cases of ν = 1 or ν = 7. Hence, superconductivity

appears, as has been discussed before [48], coexisting with bond and/or charge orders.

Note that to find translation symmetry breaking states in the model, ED cannot be used

since in our case its applicability is limited to a 4×4 cluster. For such a small system, finite

size effects destroy the translational invariance even of non-interacting magnetic models.

This is due to the gauge choice we have to make in order to implement a magnetic flux

Φ = q/16, q = 0, · · · , 15, which necessarily breaks the translational invariance within a

4 × 4 cluster. Of course, gauge invariance requires the full model to be translationally

invariant. In the single particle picture, this can be accomplished by including degenerate

states at nonzero momenta into the consideration. However, for the many-body system we

are interested in, the system size accessible to ED is too small for these finite momentum

single-particle states to contribute to the available Fock space. It is also not possible to ef-

fectively increase the system size by twisted boundary conditions as in the non-interacting

case since this only ever allows us to reach a subset of all possible many-particle momenta:

there are always many-particle momenta which correspond to different particles lying in

different sectors of inserted flux, but twisted boundary conditions imply the same twisted

flux for all particles. These shortcomings of ED render the comparison of charge, hopping

and current density expectation values with RMFT difficult.
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4.2 Fully polarized electron systems

In the previous section we have considered a fixed doping of the ρ = 1/2 Mott (AF)

phase and studied how states evolve with changes in flux. In this section we will now

vary the electron density while settingΦ to be 7/16 or 5/16. The remarkable phenomenon

discussed here is the instability towards a fully polarized ferromagnet where all electronic

spins are aligned in the same direction. This instability is driven by a gain of kinetic energy

happening in the ferromagnetic state which supersedes the loss of magnetic energy when

the electron density is small enough. We have indeed found that the energies of fully

polarized states are lower than those of the singlets, both in RMFT and ED, for a number

of cases, and we shall focus on those in this section.

For Φ = 7/16, we have studied several doping levels. For the cases we have con-

sidered, we found that the energies as calculated by RMFT or ED are very close(Tables

4.2 and 4.3) and the states we have found by either method are quite similar. This is not

surprising since in fully polarized systems double occupancy is excluded by fermionic

statistics, so that the projection operator PG is no longer needed. Therefore, the Hamilto-

nian maps to a spinless electron system with nearest-neighbor repulsion. In this case, the

RMFT renormalization factors become 1 as expected. Note that this is obtained only if

the variational parameters of the nearest neighbor sites are included in the expression of

the renormalization factors [40, 41, 45, 46] (small deviations from 1 occur nevertheless

for gs,zij ). The agreement between RMFT and ED asserts the reliability of RMFT in the

low-electron density regime, far away from the widely investigated low-doping regime.

To further confirm this, we have also made the comparison for the case of ρ = 1/16 and

Φ = 5/16 and the energies from both side still agree remarkably well. All states we have

obtained possess only very small currents, meaning that the phases of χij tend to screen

the phases from the applied magnetic flux in order to lower the kinetic energy. However,

for ρ = 1/16 and Φ = 5/16, there also emerge CDW and BDW orders which are not

seen for Φ = 7/16. This follows from the differences in the respective non-interacting

band structures. In Fig. 4.4(a) for ρ = 1/16 and Φ = 7/16 (ν∗ = 2ν = 2/7), the Fermi

level is located inside a large band gap between the second and the third (mean-field)
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Figure 4.4: Band structure for the three lowest energy bands for (a) ν∗ = 2/7 and (b)
ν∗ = 2/5. At this doping, the first two bands are filled. Note that in (a) the first two bands
are almost degenerate.

band, producing a completely insulating state. In contrast, in Fig. 4.4(b) for ρ = 1/16 and

Φ = 5/16 (ν∗ = 2ν = 2/5), the band gap is much smaller (for the k points where the

two consecutive bands are closest, the gap value is around 0.03t), which allows for the

instabilities that have been observed in our calculation.

4.3 Topological properties

Together with charge/bond ordering, it is also particularly interesting to look for the emer-

gence of FQH-type states with topological order. At half-filling (ρ = 1/2) topological

chiral spin liquids have been constructed as Gutzwiller projections of (non-interacting)

wavefunctions with a completely filled band of Chern number ±1 [141, 142, 143]. A re-

lated construction of topologically ordered states may also apply away from half-filling,

at low doping and/or low electron density, and may be captured by the RMFT treatment of

the Gutzwiller projector. In that case, our approach could point to situations where it may

be energetically favorable for the system to accommodate a topologically ordered ground

state.

Our first conclusion is that the ν = 1 and ν = 7 states in the integer quantum Hall

regime are so robustly gapped that it is unlikely that further instabilities towards topo-

logically ordered phases appear. What is left are the fully polarized uniform states with
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ρ Φ ν/ν∗ S Cni CRMFT CED

7/16 7/16 1 0 2 2 2
7/16 5/16 7/5 0 10 2 6
7/16 3/16 7/3 0 6 4 6
7/16 1/16 7 0 14 2 14
7/32 7/16 1∗ FP 1 1 1
1/8 1/4 1∗ FP 1 1 1
1/8 7/16 4/7∗ FP 4 4 4
1/16 5/16 2/5∗ FP 6 6 6
1/16 7/16 2/7∗ FP 2 2 2

Table 4.4: Table comparing the Chern numbers obtained in the non-interacting case, in
the (non-superconducting) RMFT self-consistent solutions and by Lanczos ED. In the two
first cases, the Chern numbers are given by summing up the contribution from all the filled
bands. The last five rows noted by an asterisk represent the fully polarized states for which
ν∗ = 2ν is listed instead of ν.

Φ = 7/16. The simplest prerequisite for the numerical realization of a FQH state in a

system with periodic boundary conditions (i.e., a two-torus) is a topological ground state

degeneracy(GSD) [144]. In a given symmetry sector we expect nearly degenerate states

which are separated by a gap from all other states(If a system realizes a bosonic ν = 1/2

Laughlin state, this topological degeneracy should be two, for example.). Figure A.2 in

the Appendix A shows the ED energy spectra for each case that we have discussed, re-

solved into Sz subspaces. We can see that there is no GSD even though for certain Sz

the first two energy levels are fairly close. For example, for ν = 2/7 the Sz = 0 sector

has two nearly degenerate states at low energy, but one has S = 0 and the other one has

S = 2. Therefore, these states cannot be topologically degenerate partners. Moreover, we

checked that the manifold spanned by these two states has even Chern number and thus

cannot realize a FQH state.

The reason why it is hard for fully polarized phases to realize a FQH state in the model

we study is as follows: The dominant Hubbard interaction term is very local. In the FQH

effect, interaction terms, projected into the single particle states of a given Landau level,

are expanded in Haldane pseudopotentials. An ultralocal interaction contributes to the V0
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pseudopotential, which gives rise to the bosonic Laughlin state. For the simplest fermionic

FQH Laughlin state, the longer-ranged pseudopotential V1 is required. However, as has

been studied in the context of fractional Chern insulators [145], the ultra-local Hubbard

interaction translates into a dominant V0 component after projection into a given band with

nonvanishing Chern number.

Although directly observing FQH states in our calculations seems therefore unlikely,

the states we have obtained still have (generically) interesting topological features associ-

ated to non-zero integer Chern numbers [146] and Hall conductance given by

σ = C
e2

h
(4.1)

with C being the (many-body) Chern number, and the Planck constant h and the elec-

tronic charge e have been re-introduced for clarity. For RMFT, the way of calculating

Chern numbers is to integrate the Berry curvature of each mean-field band as has been

shown in Ref. [123]. In ED the many-body Chern numbers [147] are computed by intro-

ducing twisted boundary conditions [148, 149] (see Appendix A for details). The Chern

numbers obtained by ED and RMFT (for the non-superconducting solutions) are com-

pared with each other and also with the non-interacting case in Table 4.4. We note that

at low enough electron filling, i.e., below 1/4-filling, all Chern numbers agree with the

non-interacting ones (provided one assumes a ferromagnetic state, e.g., considers spinless

fermions) showing that the effect of the interaction is moderate in this regime. In partic-

ular we observe that the lattice instabilities found in RMFT do not affect the topological

character of the states. In contrast, discrepancies appear when approaching the Mott insu-

lating phase, in the low doping regime at ρ = 7/16. This signals that interactions play a

crucial role there and obtaining the correct many-body Chern numbers of these correlated

states is tedious: on one hand, the approximate way of treating the Gutzwiller projection

in RMFT may not capture correctly the topological properties and/or, on the other hand,

finite size effects in ED may also lead to deviations. It is, however, likely that Chern num-

bers close to the Mott insulating phase are different from those of the non-interacting case.

A noticeable counterexample is the case ρ = Φ = 7/16, ν = 1 where the Chern number
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C = 2 obtained by ED and RMFT agrees with the non-interacting limit. This suggests

an adiabatic continuity from the non-interacting to the interacting case, which we have

explicitly checked to hold in ED using a Hofstadter-Hubbard model where we increased

the interaction strength U gradually.
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Chapter 5

Conclusions and Outlooks

The results reported above are all based upon thewell-established renormalizedmean-field

theory [31] and GWA [56] for a well-studied t− J or t− t′ − J model. Although they do

not provide extremely accurate numbers, as many sophisticated numerical methods do, our

results show that they do capture the most important physics of the strong correlation. For

understanding the cuprate, first of all, this strong correlation provides a site-dependent

Gutzwiller renormalization that produces many exotic solutions of PDW stripes and/or

CBs intertwined with modulations of charge density and/or spin density. These results

show quantitative agreement with some of the key experiments [15, 24, 25]. Because

site-renormalization is extremely local, the effect of the Fermi surface or wave vectors kF

is absent. Our model does not require the second or third neighbor hopping to provide

a Fermi surface with nesting vectors or “hot spots” [33, 51, 91]. Thus, in our theory,

there are no unique wave vectors for the charge density waves or CBs. Although we

have mainly focused on the structures with a period of 4a0 so far, our preliminary study

also finds charge-ordered states with periods of 5a0 and even 3a0. States with a longer

period should be possible, and they could also have degenerate energies [46, 54]. If we

allow a pattern with multiple periods, nPDW can be formed and we could have states with

fractional or incommensurate periods.

An important consequence of having all these charge-ordered states originating from

the same Hamiltonian and physics is that these states are not the usual “competing states”

we are familiar with. They do not stay in a deep local minimum in the energy landscape.

73



They are actually quite fragile and can easily evolve into each other, as we have already

demonstrated with the nPDW stripe, which evolved from a mixture of AP-CDW and an

uniform d-SC state. Other examples of the mixture of stripes listed in Table 3.1 can be

easily constructed. For real cuprates, there are many other interactions in addition to our

t and J that will alter the preferences of these states. For example, a weak electron lattice

interaction could make the IP-CDW-SDW stripe much more stable against the dSC-AFM

state [42]. Including special Fermi surface features could also enhance CDW for certain

periods. However, none of these interactions are as important and necessary as the site

renormalization due to strong Mott physics to produce these charge-ordered states.

With second nearest hopping t′, we have shown that there exist low-energy, commen-

surate and incommensurate charge modulated renormalizedmean field solutions of the

t− t′ − J model that are not the ground state at any filling, but still which are extremely

close to the energy of the uniform superconducting state. Furthermore, the nPDW are

intertwined with modulated superconductivity, and display properties remarkably similar

to STM observations of the 1D modulated states seen on the surface of BSCCO and NaC-

COC. These are well-established features of cuprate physics that have intrigued workers

in the field for almost a decade, but until now have defied explanation. Among these

properties are the same spectra and pattern of tunneling conductance maps within the unit

cell as observed by STM on under- to optimally doped BSCCO and NaCCOC. To calcu-

late these patterns, as well as continuum LDOS spectra within the unit cell, we employed

the new Wannier function-based method of Ref. [119], which enables the calculation of

the wavefunctions in the correlated state at any 3D position, including several angstrom

above the surface where the STM tip is placed. This gives us an unprecedented ability to

compare with details of the experiments in the charge ordered regime.

In addition, the bias dependence of intra-unit cell d−, s′− and s-form factors and their

spatial phase difference were obtained in the nPDW state and display good agreement with

the STM observations. The energy of the peak d-wave form factor depends on doping in

a manner similar to the pseudogap. Note that with the exception of us, previous theo-

ries of charge ordered states in t − t′ − J type models treated only commensurate (4a0)
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charge order states, and could express observables only in terms of bias-independent bond

variables.

One of the surprises we found is that without adjustable parameters in our calculations,

we are able to get many quantities very close to experimental values and also have very

good agreement with very sophisticated numerical works that go much beyond mean-field

theory. Considering we are doing a mean-field calculation, this is even more surprising.

One main reason could be that the GWA is really effective in catching the main physics of

the t− J model. Based on this premise, we can now provide a very simple picture about

the cuprate phase diagrams. Starting at half-filling, the model has the RVB proposed by

Anderson [12] dominate in the Mott insulator. RVB has the d-wave pairing and bond

order intertwined. But without charge present both of them are actually the variational

parameters or hidden orders we defined in Eq. 6.4. When holes are doped into the lattice,

RVB tends to localize the charges to prohibit its fluctuation. Once the localization has

failed possibly after the antiferromagnetism is destroyed by the dopant, the system starts

to form these unidirectional PDW states which has charge density intertwined with RVB

(pairing and bond order). These states have a gap in the antinodal region and in the nodal

region a Fermi arc with only a fractional DOS survived. When there is too much doping

that these density waves can no longer be viable, then we lose the Mott physics and recov-

ered a FLS [150]. These states then develop an average uniform SC pairing order at lower

temperatures although it is relatively small in comparison with large magnitude of pairing

modulation. Of course, the phase fluctuation will become more important as temperature

rises [36, 93] and mean field results will be revised.

The theory we propose depends on the presence of a PDW state in the PG phase. There

is a way to test this hypothesis besides the possibility of using STS [1], which has to worry

about the rapid pairing phase variation in a few lattice spacing and also the measurement

being most likely at a higher temperature. For a PDW state in x-direction, the magnitude

of the gap in the y-antinode (0, π) is about the same [4] as the gap in the x-antinode (π, 0)

as shown in Fig. 3.11 and 3.12. This is contrary to what one would expect if we only have

a pure CDW in the x-direction. Then the gap opening due to zone folding should be larger
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in the folding direction. The x and y asymmetry of the Fermi arc, shown in Fig. 3.15(f),

may be used to distinguish the arc from part of the Fermi pocket [80, 81]. We can also

examine the particle-hole asymmetry in the PG phase. IPDWwill have very similar result

as the nPDW state measured by ARPES [82]. Particle-hole asymmetry should be observed

away from the Fermi arc. This could be a sign for the presence of finite momentumCooper

pairs [39].

In particular, we discussed the possibility that impurities stabilize the charge order,

leading to the disordered 1D patterns observed in STMonBSCCO andNaCCOC. This dis-

ordered ground state would also be consistent with the short-range charge-order observed

by resonant x-ray scattering [68]. In such a system, amagnetic field should suppress super-

conductivity and eventually favor long-range charge order, as observed in experiments. It

has been shown that a magnetic field about 10 T is enough to induce a long-range ordered

CDW or PDW [127, 139]. Since 10 T is quite small, it may be possible to generate the

long-range order by having a thin tetragonal single layer cuprate deposited on a strained

substrate. We have looked at the case with the hopping rate in the x direction tx less than

ty in the y direction. The preliminary result shows that the energy of nPDW state for dop-

ing concentration δ = 0.08 is now lower than the uniform d-wave SC state if tx < 0.84

ty. This is consistent with previous work on stripe states at x = 0.125 [40]. But here we

probably overestimate the strength of the uniform state. In real material a small difference

between tx and ty might be enough to stabilize an IPDW/nPDW. Since the x-directional

nPDW has a much lower energy than the y-directional nPDW, the system is likely to be

dominated by only x-directional nPDW, and a unidirectional IPDW at T > Tc. It may

also be possible to have a phase coherent IPDW state in a small temperature window that

will be a truly new phase. Even without invoking tx < ty, as shown in Fig. 3.11 and

3.12, the spectra near (π, 0) and (0, π) are very different. Now with tx < ty, the UPOP

has the s′ + d symmetry with pairing in x direction larger than in y. On the other hand,

the energy gap near the x-direction antinode (π, 0) is getting smaller as strain increases,

while the gap near (0, π) becomes larger. Thus IPDW in the PG phase could be detected

with ARPES in this system.
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Moreover, motivated by recent experimental and numerical developments, we studied

the Harper-Hofstadter model in the presence of strong correlations, which corresponds

to the t–J model in an orbital magnetic field. By employing a RMFT approach, sup-

plemented by Lanczos ED calculations, we endeavored to find novel condensed matter

phases for fermionic systems. In particular, we have focused on CFPs and several ferro-

magnetic phases. Although we failed to observe topologically ordered states, neither of

singlet character nor fully polarized, topologically non-trivial states with non-zero Chern

numbers have been identified in the presence of interaction. We found CFPs which realize

an integer quantum Hall system. Those at fractional filling fraction ν generically exhibit

lattice instabilities. For fully polarized states, occurring at low electron filling, RMFT and

ED agree precisely with each other with regard to the GS energies and Chern numbers.

Moreover, we showed that the effect of a staggered potential on destabilizing the topolog-

ical state depends weakly on the interaction, which is demonstrated in Appendix B. Note

that, close to the Mott insulating phase, i.e., at low (hole) doping, RMFT and ED results

for the Chern numbers disagree with each other, revealing strong interaction effects that

render the computation of the topological properties of the states difficult. Therefore, it is

interesting to realize the system we propose in experimental setups. It has been shown that

it is possible to investigate the Fermi-Hubbard model with degenerate Fermi gases with

atomic species such as 6Li(37, 38), manipulated within optical lattices [151]. In order

to include(synthetic) gauge fields, laser assistant tunneling can be applied with two laser

beams controlling the hopping of nearby sites with an additional flux phase [97, 98]. We

suggest a combination of these techniques for an experimental investigation of our sys-

tem. Compared with the experimental setup of the Harper-Hofstadter Hamiltonian with

interaction, however, the agreement between our results and those from the cold atom

experiment suggests that the t–J Hamiltonian is relevant for describing the physics of

interacting fermions under external magnetic flux. Our results give a taste of the phenom-

ena emerging from the strongly correlated Hofstadter Hamiltonian and motivate further

experimental and theoretical studies.

77



78



Chapter 6

Sommaire

Cette thèse vise à utiliser le t − J Hamiltonian de la corrélation forte pour mieux com-

prendre la micro-fonctionnalité des scénarios de matériau condensé. Quand on aborde

ces modèles, il est important de les exploiter de façon numérique. Dans cette thése, nous

utiliserons la manière qui s’appelle “Renormalized Mean-Field Theory”(RMFT) pour le

t − J Hamiltonian. Grâce à M. Gutzwiller, ce que nous devons faire est simplement de

chiffrer des paramètres qui incluent l’influence de la corrélation électronique et de les met-

tre avant chaque partie du Hamiltonian. Après ce calcul, nous calculerons l’Hamiltonian

du champ moyen de manière standard. Ceci sera notre façon principale pour aborder des

questions physiques.

6.1 Méthode

Je vais discuter tout d’abord cette méthode en détail à partir de l’Hamiltonian de t − J .

Je vais aussi montrer comment nous pouvons calculer des charactéristiques importantes

comme LDOS et spectres avec Bogoliubov-deGenne fonction de sauvegarde.

6.1.1 Équation BdG de Hamiltonian du champ moyen

Dans cette thése, nous considons le modèle de t− J en 2D, c’est-à-dire dans la limite que

U du modèle Hubbard est extrêmement grand. Par fois nous ajoutons un champ extérieur
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de la magnétique.

H = −
∑
⟨i,j⟩,µ

PG

(
tijc

†
iµcjµ + h.c.

)
PG︸ ︷︷ ︸

Hkin

+
∑
⟨i,j⟩

JSi · Sj︸ ︷︷ ︸
Hpot

,

tij = t eiAij = t∗ji, Si =
∑
µ,ν

c†iµσµνcjν ,

(6.1)

c†iµ (ciµ) est l’opérateur de la création(anéantissement) pour un électron avec du spin µ =↑

, ↓ sur le site du treillis i. niµ = c†iµciµ est l’opérateur par spin du site. PG =
∏

i(1−ni↑ni↓)

est l’opérator de Gutzwiller qui fonctionne comme l’interdiction d’occupation de deux

électrons au même temps. σ = (σx, σy, σz)
T est le vecteur de 2 × 2 metrice de Pauli.

Dans la transformation précis du modèle Hubbard, il y a une terme de saut triple, qui

est à l’unité de t2/U . Cette terme n’influence pas beaucoup le résutat et donc nous n’en

soucions pas. J est égal de 0.3t tout cette thése.

Le champ demagnétique entre l’Hamiltonian dans la forme de la phaseAij =
∫ j

i
A(x)·

dx, où le potential de vecteur A(x) est défini par B(x) = ∇ × A(x). Le flux per pla-

quette est comme F =
∫
B(x) · dΣ = Ai,i+x̂ + Ai+x̂,i+x̂+ŷ + Ai+x̂+ŷ,i+ŷ + Ai+ŷ,i. Ici

nous choissisons que F = 2πΦ, with Φ avec Φ est égal de 7
16
, 5
16
, etc. Aij = 0 quand nous

luttons le problème de cuprate.

Le procédé standard de RMFT est d’abord à remplacer l’opérateur Gutzwiller par des

facteurs renormalisé gt and gs et donc:

⟨Ψ|c†iµcjµ|Ψ⟩ = gtijµ⟨Ψ0|c†iµcjµ|Ψ0⟩,

⟨Ψ|Si · Sj|Ψ⟩ = gsij⟨Ψ0|Si · Sj|Ψ0⟩,
(6.2)

où |Ψ0⟩ est la fonction sans projection et |Ψ⟩ = PG|Ψ0⟩. Alors, cette Hamiltonian devient:

H =−
∑
⟨i,j⟩µ

gtijµtije
iAij(c†iµcjµ + h.c.)

+
∑
⟨i,j⟩

J

[
gs,zij S

s,z
i Ss,z

j + gs,xyij

(
S+
i S

−
j + S−

i S
+
j

2

)] (6.3)
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où gtijσ, g
s,z
ij , and g

s,xy
ij sont les facteurs deGutzwiller, qui dépendent de valeurs de paramètres

∆v
ijµ, χv

ijµ,mv
i , et δi:

mv
i = ⟨Ψ0|Sz

i |Ψ0⟩

∆v
ijµ = µ⟨Ψ0|ciµcjµ̄|Ψ0⟩

χv
ijµ = ⟨Ψ0|c†iµcjµ|Ψ0⟩

δi = 1− ⟨Ψ0|ni|Ψ0⟩

(6.4)

où |Ψ0⟩ est la fonction sans projection. v attaché à chaque paramètre représente que ces

quantités sont variationnels au lieu de quantité réel. Pour la phase(Aij), nous suivons la

définition de Ref. [117]. Le nombre pour flux par plaquette Φ est montré au Fig. 6.1.

Nous considons des facteurs Gutzwiller proposé par Ogata et Himeda [41, 45]:

gtijµ = gtiµg
t
jµ

gtiµ =

√
2δi(1− δi)

1− δ2i + 4(mv
i )

2

1 + δi + µ2mv
i

1 + δi − µ2mv
i

gs,xyij = gs,xyi gs,xyj

gs,xyi =
2(1− δi)

1− δ2i + 4(mv
i )

2

gs,zij = gs,xyij

2((∆̄v
ij)

2 + (χ̄v
ij)

2)− 4mv
im

v
jX

2
ij

2((∆̄v
ij)

2 + (χ̄v
ij)

2)− 4mv
im

v
j

Xij = 1 +
12(1− δi)(1− δj)((∆̄

v
ij)

2 + (χ̄v
ij)

2)√
(1− δ2i + 4(mv

i )
2)(1− δ2j + 4(mv

j )
2)

(6.5)

où ∆̄v
ij =

∑
µ∆

v
ijµ/2 and χ̄v

ij =
∑

µ χ
v
ijµ/2. Dans la présence d’AF, ∆v

ij↑ ̸= ∆v
ij↓. Pour

les états maillots mv
i est égal de zéro et ni↑ = ni↓ =

1
2
(1− δi). Cependant, pour les états

complètement polarisé mv
i = ni↑/2 ainsi que ni↑ = (1 − δi), ni↓ = 0, où nous laissons

tous électrons spin en haut. Cette combination de facteur Gutzwiller est conformité avec

le calcul maillot de Monde Carlo [41, 45].

Aprés que nous remplacons l’opérateur de projection par facteurs Gutzwiller défini

au Eq. 6.4, l’energie d’Hamiltonian(Eq. 6.3) devient le suivant avec quatre parties et
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Figure 6.1: Distribution of the phases ϕij on the bonds of 4 × 4 and 2 × 2 unit cells (on
the 2-torus) for the flux densities Φ considered in this work(times π/32). Arrows again
indicate the directions of current and negative signs stand for opposite flows. The flux
density Φ = 1/4 has only two different bonds (bond 1 and 2). The right panel shows
detailed numbers of variables for the patterns we have obtained. Those patterns will be
discussed later.

paramétres du champ moyen:

E = ⟨Ψ0 | H | Ψ0⟩ =−
∑
i,j,µ

gtijµte
iAij(χv

ijµ + h.c.)

−
∑
⟨i,j⟩µ

J
(gs,zij

4
+
gs,xyij

2

∆v∗
ijµ̄

∆v∗
ijµ

)
∆v∗

ijµ∆
v
ijµ

−
∑
⟨i,j⟩µ

J
(gs,zij

4
+
gs,xyij

2

χv∗
ijµ̄

χv∗
ijµ

)
χv∗
ijµχ

v
ijµ

+
∑
⟨i,j⟩

gs,zij Jm
v
im

v
j

(6.6)

Ensuite, nous voulons minimiser l’energie avec deux conditions:
∑

i ni = Ne and

⟨Ψ0|Ψ0⟩ = 1. Par conséquent, notre fonction devient

W = ⟨Ψ0|H|Ψ0⟩ − λ(⟨Ψ0|Ψ0⟩ − 1)− ϵ
(∑

i

ni −Ne
)

(6.7)

L’Hamiltonian du champ moyen est

HMF =
∑
⟨i,j⟩µ

∂W

∂χv
ijµ

c†iµcjµ + h.c.+
∑
⟨i,j⟩µ

∂W

∂∆v
ijµ

µciµcjµ̄ + h.c.+
∑
i,µ

∂W

∂niµ

niµ (6.8)

Eq. (6.8) satisfait à l’équation SchrödingerHMF|Ψ0⟩ = λ|Ψ0⟩. Les trois dérivés sont défini
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par:

Hijµ =
∂W

∂χv
ijµ

= −J
(gs,zij

4
+
gs,xyij

2

χv∗
ijµ̄

χv∗
ijµ

)
χv∗
ijµ − gtijµtije

iAij +
∂W

∂gs,zij

∂gs,zij

∂χv
ijµ

D∗
ij =

∂W

∂∆v
ij↑

= −J
(gs,zij

4
+
gs,xyij

2

∆v∗
ij↓

∆v∗
ij↑

)
∆v∗

ij↑ +
∂W

∂gs,zij

∂gs,zij

∂∆v
ij↑

(6.9)

et

ϵiµ = − ∂W

∂niµ

=ϵ−
∑
j

∂W

∂gs,xyij

∂gs,xyij

∂niµ

−
∑
j

∂W

∂gs,zij

∂gs,zij

∂niµ

−
∑
jµ′

∂W

∂gtijµ′

∂gtijµ′

∂niµ
(6.10)

Eq. (6.10) est la potential de chimie locale. HMF peut être récrit à la forme d’équation

BdG.

HMF =
(
c†i↑, ci↓

) Hij↑ Dij

D∗
ji −Hji↓


 cj↑

c†j↓

 (6.11)

Nous pouvons résoudreHMF pour obtenir des valeurs propres. Le nombre positif est égal

du nombre négatif avec ses vecteurs propres correspondants (uni , vni ). Avec ces vecteurs,

nous pouvons calculer les paramètres d’ordre au zéro température par les équations suiv-

antes:

ni↑ = ⟨c†i↑ci↑⟩ =
∑
n

|uni |2f(En)

ni↓ = ⟨c†i↓ci↓⟩ =
∑
n

|vni |2(1− f(En))

∆v
ij↑ = ⟨ci↑cj↓⟩ =

∑
n+

uni v
n∗
j (1− f(En))− unj v

n∗
i (1− f(−En))

∆v
ij↓ = −⟨ci↓cj↑⟩ =

∑
n+

unj v
n∗
i (1− f(En))− uni v

n∗
j (1− f(−En))

χv
ij↑ = ⟨c†i↑cj↑⟩ =

∑
n

unj u
n∗
i f(En)

χv
ij↓ = ⟨c†i↓cj↓⟩ =

∑
n

vni v
n∗
j (1− f(En))

(6.12)

La somme de n+ signifie seulement pour les vecteurs propres avec des énergies positives.
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f(En) est la distribution de Fermi-Dirac:

f(En) =
1

eEn/T + 1
(6.13)

Un méthode itératif est utilisé pour résoudreHMF . Cette convergence est atteindue quand

la différence de tout paramètres d’ordre est moins de 10−3 entre les itérations consécutives

et par fois 10−4 si nécessaire. Aprés les solutions sont obtenues, nous pouvons calculer

les paramètres d’ordre avec cettes formules suivantes:

∆i =
∑
µ

(gti,µg
t
i+x̂,µ̄∆

v
i,i+x̂,µ + gti,µg

t
i−x̂,µ̄∆

v
i,i−x̂,µ − gti,µg

t
i+ŷ,µ̄∆

v
i,i+ŷ,µ − gti,µg

t
i−ŷ,µ̄∆

v
i,i−ŷ,µ)/8,

mi =(
√
gs,zi,i+x̂ +

√
gs,zi,i−x̂ +

√
gs,zi,i+ŷ +

√
gs,zi,i−ŷ)m

v
i /4,

Ki,i+x̂ =
1

2

∑
µ

gti,i+x̂,µ⟨c
†
iµci+x̂µ⟩+ gti+x̂,i,µ⟨c

†
i+x̂µciµ⟩,

Ki,i+ŷ =
1

2

∑
µ

gti,i+ŷ,µ⟨c
†
iµci+ŷµ⟩+ gti+ŷ,i,µ⟨c

†
i+ŷµciµ⟩,

Ki =(Ki,i+x̂ +Ki,i−x̂ +Ki,i+ŷ +Ki,i−ŷ)/4

(6.14)

où ∆i etmi sont les paramètres d’ordre de couplage et spin à chaque site etK est l’ordre

de leap pour la symmétrie. Le UPOP aussi joue un role important dans notre article. Pour

des modèles uni-directionelles, nous calculons ∆x and ∆y:

∆x =
∑
K

Nx∑
i

∆K
ii+x̂/Nx/Mc

∆y =
∑
K

Nx∑
i

∆K
ii+ŷ/Nx/Mc

(6.15)

où Nx est la taille de treillis dans la direction d’x et Mc est la taille de supercell. K est

le vecteur d’onde pour différent supercell et sa forme sera demonstré aprés. x̂(ŷ) est le

vecteur d’unité à la direction d’x(y). Aprés nous obtenons la valeur moyenne de couplage,
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nous pouvons afficher UPOP:

UPOP =
|∆x|+ |∆y|

2
(6.16)

6.1.2 Fonctions de Green et LDOS

Car les fonctions Green des modèles dont nous sommes intéresés sont tout à une direction,

nous pouvons appliquer l’invariance translationelle à la direction d’y lors que nousmettons

nos modèles suivi la direction d’x pour diminuer le temps de calcul. Nous transformons

nos création/anéantissement opérateur à la base de (ix, k):

c†i,µ =
1√
N

∑
k

c†ix,µ(k)e
−ikRiy (6.17)

Nous pouvons changer notre Hamiltonian dans un treillis en 1D. Avec cette transforma-

tion, nous pouvons afficher pour des treillis deux fois plus grand. Pour les symboles,

N répresente la taille en direction d’y, Riy est la composant d’y du vecteur original au i.

c†ix,µ(k) est l’opérateur de création en système de quasi-1D pour l’élan k. Alors l’Hamiltonian

devient:

H =
∑

⟨ix,jx⟩,k,µ

Hixjxµ(k)c
†
ixµ

(k)cjxµ(k) + h.c.

+
∑

⟨ix,jx⟩,k,µ

σD∗
ixjxµ(k)cixµ(k)cjxµ̄(−k) + h.c.

−
∑
ix,k,µ

ϵixµnixµ(k)

(6.18)

où

Hixjxµ(k) =
∑
iy

Hixiyjx0µe
−ikRiy (6.19)
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l’expression similaire existe pourDixjxµ(k) et ϵixµ. Avec des fonctions propres, la fonction

Green peut être exprimé par:

Gijµ(ω) =
1

N

∑
k

gtijµGixiyµ(k, ω)e
ik(Riy−Rjy )

Gixiyµ(k, ω) =
∑
n>0

[
unixµ(k)u

n∗
jxµ(k)

ω − Enµ(k) + i0+
+

vn∗ixµ(k)v
n
jxµ(k)

ω + Enµ̄(k) + i0+

] (6.20)

Il y a plusier formes de 0+ mais pricipalement il est égal de 0.01t si ne pas mentionné

particulièrement. Pour calculer l’LDOS à la pointe mesuré par STM, nous changons la

base et obtenons la fonction Green continu par [119]:

Gµ(r, ω) =
∑
ij

Gijµ(ω)Wi(r)W ∗
j (r) (6.21)

oùWi(r) est la fonction Wannier à la location i et r est un vecteur continu dans l’éspace

réel en 3D. La fonction Wannier utilisé d’ici est créé par Wannier 90 [120] et elle est

similaire de la forme utilisé par [121]. Il faut faire attention que la fonction Green locale

contient d’influence à tout la site dans le treillis . L’LDOS est calculé facilement par:

ρµ(r, ω) = − 1

π
Im[Gµ(r, ω)] (6.22)

Dans beaucoup de travaille avant [51, 53, 32], le facteur de forme a été obtenu par la trans-

formation Fourier de leap le plus à côté χi,i+x̂(ŷ) qui peut être pensé comme une mésure de

densité de charge à la location d’oxygène de la site i. Nous pouvons exprimer le facteur

de forme s−, s′−, et d comme la suivant.

D(q) = FT (χ̃i,i+x̂ − χ̃i,i+ŷ)/2

S ′(q) = FT (χ̃i,i+x̂ + χ̃i,i+ŷ)/2

S(q) = FT (1− δ̃i)

(6.23)

où FT répresnte la transformation Fourier et∼ signifie que la moyenne spatiale de quantité

correspondant était soustraite au but de soulinger la modulation. Clairement, ce quantité

86



n’a pas dependance d’energie mais l’expérience de STM utilise des techniques [28] à

traiter le facteur de forme et a trouvé une dependance en biais [1]. Avec cette info. de

STM, nous pouvons suivre une manière similaire. Nous obtenons LDOS Z-map d’abord

sur une plane locale en haut de ≈5Å de plane de BiO.

ρZ(r, ω > 0) =

∑
µ ρµ(r, ω)∑

µ ρµ(r,−ω)
(6.24)

Ensuite, nous prennons de région séparément au tour d’atome avec la taille de ré-

gion similaire de ce que utilisé par l’expérience [1], et attribuons au sub-treillis Z-maps

CuZ(r, ω), OZ
x (r, ω) et OZ

y (r, ω). Nous avons notifié que le facteur de forme n’est pas

sensitif de la taille de treillis. Ici, x et y répresentent deux atomes d’oxygène en direction

horizontale ou verticale. Si l’on prend une conbination correctement nous pouvons obtenir

des facteurs de forme s−, s′−, et d:

DZ(q, ω) = (ÕZ
x (q, ω)− ÕZ

y (q, ω))/2

S ′Z(q, ω) = (ÕZ
x (q, ω) + ÕZ

y (q, ω))/2

SZ(q, ω) = C̃u
Z

x (q, ω)

(6.25)

Une autre quantité important est la différence du phase de moyenne spatiale(∆ϕ) en-

tre les chaînes d’energies positives et négatives pour le d-form facteur. Pour afficher

∆ϕ en concordance avec le procédé d’expérience [80], nous filtrons le vecteur de d-form

modulation(Qd) de la modélisaion de LDOS en energies positives et négatives par la filtre

Gaussian. Alors nous prennons la transformation Fourier inversé pour obtenir D(r, ω) et

ϕ(r, ω):

Dg(q, ω) = (Õg
x(q, ω)− Õg

y(q, ω))/2

D(r, ω) = 2

(2π)2

∫
dqeiqrDg(q, ω)e−

(q−Qd)
2

2Λ2

ϕ(r, ω) = tan−1(Im[D(r, ω)]/Re[D(r, ω)])

∆ϕ = ⟨ϕ(r, ω)− ϕ(r,−ω)⟩

(6.26)
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où Õg
x(q, ω) et Õg

y(q, ω) sont le FT demodélisation de LDOS de sub-treillis pour l’oxygène

d’x et y. Nous utilisons Λ = 1/2N .

6.1.3 La spectre et le nombre de Chern

Car nous allons chercher des charactéristiques en éspace de k, il est nécessaire d’appliquer

le calcul de supercell [122]. Pour chaque cell nous avonsNx×Ny sites et alors nombre de

cells en totaleMc =Mx×My. Notre Hamiltonian est donc réduit de 2MxNx× 2MyNy à

Mx×My équations de matrix et nombre de site 2Nx×2Ny pour chaque cell. Le calcul est

affiché pour chaque cell et la spectre est décrit avec nos fonctions propres (u, v) comme:

A(k, ω) =
1

N

∑
ij,n+

f(−En)(e
ik·(ri−rj)gtij↑u

K∗
i,nu

K
j,nδ(ω − En)

+ eik·(rj−ri)gtij↓v
K
i,nv

K∗
j,nδ(ω + En))

+
1

N

∑
ij,n−

f(En)(e
ik·(ri−rj)gtij↑u

K∗
i,nu

K
j,nδ(ω − En)

+ eik·(rj−ri)gtij↓v
K
i,nv

K∗
j,nδ(ω + En))

(6.27)

où k = k0 +K dans le même temps k0 = 2π( nx

Nx
, ny

Ny
) où nx ∈ [−Nx/2 + 1, Nx/2], ny ∈

[−Ny/2 + 1, Ny/2], et K = 2π( nc
x

MxNx
,

nc
y

MyNy
) où nc

x ∈ [0,Mx − 1], nc
y ∈ [0, Ny − 1].

f(En) est la distribution de Fermi-Dirac et n+(n−) signifie la sommation d’energies pos-

itives(négatives). δ(ω − En) est la Lorenzian et a la forme suivante:

δ(ω − En) =
1

π

Γ

Γ2 + (ω − En)2
(6.28)

Ensuite, pour chaque band aplati par le champ magnétique ses numbres de Chern sont

définis par l’intégration de courbure Berry partout la zone Brillouin [123]:

Cn =
1

2π

∑
k∈BZ

∇k × A⃗n(k) =
1

2π

∑
k∈BZ

B⃗n(k)

=
−i
2π

∑
m ̸=n

∑
k∈BZ

⟨
nk|Jx|mk

⟩⟨
mk|Jy|nk

⟩
− (Jx ↔ Jy)

[En(k)− Em(k)]2

(6.29)

88



où A⃗n(k) = −i
⟨
nk|∇k|nk

⟩
est le champ de vecteur de Berry pour nth band, et B⃗n(k) est

le champ magnétique relatif. La courante J = (Jx, Jy) est obtenue par J = ∇kH .

6.2 Supraconduteur à haute température

Le premier système où nous avons appliquer notre méthode d’RMFT est ce que pour la

mystique de supraconducteur à haute température. Après sa découverte il y a 30 ans,

on ne peut pas encore définir une théorie pour expliquer sa micro-mécanique de manière

appropriée. Cependant, avec des équipements avancés, on peut faire des expériences cor-

rectement et obtenir des résultats exacts. Ces preuves nous facilitent l’élaboration d’une

bonne théorie, même s’il est aussi très difficile d’inclure tous les phénomènes ensemble.

Nous avons obtenu des résultats et par rapport aux expériences et nous allons faire d’un

petite sommaire ici.

6.2.1 Charactéristique en éspace réel

Dans l’approximation de Gutzwiller qui est non homogène, le d-wave homogène supra-

conducteur a une energies plus bas que celles-là d’autre modèles avec des instabilités

partout le niveau de doping. Alors PDW n’est pas l’état normal de t− t′−J Hamiltonian.

Cependant, la différence d’energies entre l’état homogène et l’autre états est petite [40].

Par conséquant, quand quelque influences minoritaires comme l’interaction d’électron-

phonon sont inclues, il est possible que ces modèles avec des modulations peuvent obtenir

des énergies plus bas [43, 126]. En fait, la nature de courte portée de ces états, observé

par les expériences de STM [69] et REXS [68] suggére que des désordres peuvent jouer

un rôle important. Différent désordres locals peuvent aussi stabiliser des états avec la

modulation. Cette réalité laisse que des modèles différentes peuvent être observé par les

expériences. Le clé est les facteurs Gutzwiller. Ils changent forcément avec la variation

de doping et fournissent un énvironnement pour la dégénérescence de modèle différente,

montré par 3.2(a) pour tout le doping. La différence entre des énergies maintient con-

stantes partout le niveau de doping. Par conséquant, l’addition d’un champ magnétique
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entre 10 T ou 1 meV à chaque site peut stabiliser un ordre de charge en longue portée.

Un résultat d’observation d’une ordre de charge de YBCO avec une corrélation longuee,

dnas un champ magnétique de 30 T sert comme une preuve de ce phénomène [127, 128].

Nous avons trouvé que au doping certain, l’état de nPDW avec des vecteurs d’onde

Q autour (0.3, 0) existe. Si nous maintenons la même taille de treillis(N ×N ), l’ordre de

charge change un peu avec unQ = (Q, 0) différent, carQ est rélative de 1/N . Cependant,

LDOS, facteur de forme, et différence de phase ne sont pas sensitifs de tellement petite

change. Tout ces états avec Q similaire ont des énergies trés proche et donc, au niveau

d’approximation de Gutzwiller, nous ne pouvons pas distinguer la rélation entreQ et dop-

ing. Mais la dépendance du facteur de forme et de la différence de phase est similaire

partout les vecteurs Q, structures de bande, t′, et dopings. Nous avons toujour obtenu la

même d-forme facteur aux energies hautes et un changement de phase de π en différence

de phase moyenne au-délà d’une énergie certaine.

Cette analyse presenté en partie 3 que PDW et CDW sont surprimés artificiellement

suggére que la rôle de PDW est nécessaire au but d’expliquer des charactéristiques mén-

tionnées, particuliellement pour la dépendance du factuer de forme et de la différence de

phase, montré par l’expérience sur BSCCO.

Il est important à noter que la dépendance du facteur de forme dans notre théorie est

un résultat claire de la corrélation électronique sur le plan de CuO2. Elle était observée

dans la spectre de x-ray que le plan de YBCO, par exemple, fixe une modèle du déplace-

ment de O qui imite le facteur de d-forme [129], et suggére que cette modèle s’impose

pour une conductance locale. Cependant, il est difficile à découvrir comment cet effet est

sensitive en biase, observé par l’expérience. Autrefois, comment l’autre facteur de forme

peut influencier quelque scénarios maintient une mystère.

6.2.2 Charactéristique en éspace d’élan

Si nos facteurs Gutzwiller qui incluent l’effet de la physique de corrélation forte ne sont pas

beaucoup influenciés par la température faible comparé à celle ambiante, nous pouvons

utiliser lesmême facteurs pour notre RMFT aux températures non-zéro demodèle t−t′−J .
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Aux températures faibles sous la région de la phase de SC avec un UPOP non-zéro,

une solution spéciale qui s’appelle nPDW a été proposé par nous. Elle a deux gaps de d

paire, comme démontré par l’expérience de ARPES. Quand la dopage est plus bas, le gap

à l’antinode dévient plus grand mais celui à la node ne change pas beaucoup. Il y a une

asymétrie montré par ARPES, l’asymétrie de particule-trou à la région de antinode a été

aussi produit par nous. L’état de nPDW a des charactéristiques spécieux même s’il est

uni-dimensionel. Il a UPOP qui est symétrique en d paire. C’est uncroyable que même

si les valeurs de paire semblent aléatoire à chaque bond(Fig. 3.3(a)), sa moyenne nous

montre une symétrie de d-paire. La spectre aux (π, 0) et (0, π) sont tellement différentes

mais ses valeurs s’approchent [4]. Avec nos découvertes avant pour l’expérience de STS,

nous avons obtenu une scénario constante comparé aux experiéences.

Ici il est important à mentionner que l’état de nPDW que nous avons choisi est entre

beaucoup de solutions possibles avec périodes différantes. Mais ses charactéristiques sont

similaire seuf la différence de période. Avec la comparaison d’energie c’est claire que d-

wave SC est l’état fondamental de la modèle t − t′ − J résoudu par RMFT. Cépendant,

comme mentionné avant, n’importe quand nous incluons des interactions faibles, par ex-

emple l’interaction d’électron-phonon, la force de Coulomb, ou des impuretés [42, 47],

nPDW peut être stabilisé et dévient l’état fondamental. Même si nous considérons simple-

ment la modèle t− t′−J , nos états sont aux minima locales. Donc nous pouvons analyser

ses excitements d’énergies faibles.

Une l’autre chose est que les expériences comme notre théorie ont trouvé beaucoup

de genre de CDW différent. Pour la famille de La2−xBaxCuO4, la période de CDW

diminue avec la dopage mais elle augmente pour YBCO et BSCCO [19]. Ces deux sont

appellés CDW1 et CDW2 séparément, à l’une article [36]. Il y a aussi CDW3 ou le CDW

évoqué par le champ magnétique. Notre travail est pour la plupart sur CDW2 et CDW1

est peut-être pour l’état de rayure [47].

Quand la température augmente, le UPOP de nPDWcommence à diminuer et il dévient

faible aprés Tp1. Cette conduite soutient notre théorie que ces états sont simplement min-

ima locales. Aprés cette température, les états déviennent IPDW qui ont encore des modu-
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lations disproportionnées de CDW, BDW, et PDWmais sans UPOP. Les charactéristiques

entre les deux états sont similaire seuf que la FFT de CDW n’a pas un sommet où PDW

est au maximum [88]. C’état ne change pas rapidement jusqu’à la température de Tp2 et

tous solutions avec modulation disparaissent. Tp2 diminue quand la dopage augmente.

Fig. 3.16(a) montre que Tp2 est proportionnelle aux températures de PG T ∗. C’est déjà

intéressant que notre théorie de champ moyen peut attirer ce résultat.

En plus, nos analyse montre que l’état de IPDW à côté de la région de node a un arc

de Fermi avec une fraction de DOS de la surface de Fermi sans paire. Il y a encore un

gap forcé a la région d’anti-node montré à Fig. 3.16(b). Le DOS ou longueur d’arc Fermi

augmente avec la dopage comme les découvertes par ARPES [21] et NMR [3].

À notre calcul nous avons obtenu l’état de d paire SC aux température plus de Tp2.

Cependant, comme noté avant, ce résultat est un conséquence que l’état de d paire est

en fait l’état fondamental surtout l’espace Hilbert. Nous pensons que si nous incluons

IPDW en directions x- et y-, l’entropie haute peut stabiliser l’énergie libre et laisser cet état

fondamental. Donc aprés Tp2 nos solutions déviennent encore d paire SC car l’exactitude

de RMFT sont limité et ils peut-être n’ont pas l’importance physicale.

Il faut soulinger que IPDW est aussi un SC FFLO [85, 86] avec un élan non-zéro si la

cohérence de phase existe. Mais actuellement il y a des domaines sur les matérieux avec

CDW, BDW, et PDW différents [132]. VMC [43] a montré que l’énergie d’état avec des

domaines à lamême temps peut obtenir une energies plus bas et dévient l’état fondamental.

La phase de PG est conprise souvant avec des tourbillons [133, 134]. L’inclusion de phase

différente pour chaque domaine peut aider montrer la scénario de supraconductivité plus

clairement [88, 93, 94]. Cependent, le PDW décrit d’ici doit être une base de solution

différente découverte par l’expérience.

Une l’autre chose importante est que avec le champ magnétique, un CDW peut être

créé au milieu de tourbillon pour YBCO [135, 136, 137]. Quelque CDWs sont 3D [127].

Pour la famille de BSCCO différent résultat était découvert. Seuf CDW, la modulation

d’échiquier soie aussi possible [138]. Pour Bi2Sr2−xLaxCuO6, NMR [139] a montré

que quand un champ magnétique est mis de 10T , il est suffisant pour un CDW sans spin
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à la phase de PG. Car tant petit champ n’influence pas nos états, nous pensons qu’ils

sont ceux de Bi2Sr2−xLaxCuO6. Le conformément montré à Fig. 3.16(c) soutient notre

théorie.

6.3 Électrons corrélé dans un champ magnétique

Le deuxième système qui nous intéresse est le mouvement d’électron dans un champmag-

nétique fort. Le papillon d’Hofstadter et son modèle, l’Hamiltonian de Harper-Hofstadter

ont obtenu un grand succès à décrire la mécanique d’électrons libres aux treillis. Donc il

est ainsi intéressant de se demander ce qu’il se passera si nous remplaçons des électrons

libres avec ceux qui s’interagissent. D’ailleurs, t − J Hamiltonian s’utilise comme bon

modèle à le découvrir. Nous allons comparer nos résultats avec ceux de la diagonalisation

exacte. Nous proposerons des découvertes intéressantes qui désormais seront réalisées par

l’expérience d’atome froide.

Ensemble avec l’ordre de charge et bonde, il est particulièrement intéressant de trouver

l’émergence d’état de FQH avec l’ordre de topologie. À demi-remplissage (ρ = 1/2)

la liquide de chiral spin topologique était construite comme la projection Gutzwiller de

fonction d’onde non-interagissant avec une bande pleine de nombre Chern ±1 [141, 142,

143]. Une construction d’état topologique est aussi appliqué loin de la dopage de demi-

remplissage à la dopage et/ou au densité d’électron plus bas. Et il peut être montré par la

projection Gutzwiller. À cette cas, notre manière peut atteindre des situations qui ont les

énergies plus bas avec des ordres topologiques.

Notre première conclusion est que pour les états ν = 1 et ν = 7 dans la region de

l’effet de quantum Hall avec du nombre entier il y a un écart et donc il n’est pas possible

que des instabilité d’ordre de topologie existent. Nous avons encore des états qui ont ses

électrons avec la même spin de Φ = 7/16. La manière le plus simple pour distinguer ces

qui sont les états de FQHdans une symmetrie avec des conditions de la frontière périodique

est la dégénérescence d’état fondamental [144]. Nous nous attendons deux états qui ont

les énergies à côté et séparés par un écart de les autre états(si un système réalise un état

Langhlin de ν = 1/2, sa dégénérescence topologique est deux, par exemple). Figure A.2
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dans l’Appendix A montre la spectre d’énergie pour chaque état que nous avons, sous

Sz qui est un bon nombre du quantum d’ici. Nous avons découvert que GSD n’apparaît

pas même si pour quelque solutions ses énergies d’état fondamental sont proche de ce lui

de la deuxième état. Par exemple, pour ν = 2/7 et Sz = 0 ils ont deux états avec ses

énergies tellement similaire(et pétit aussi), mais un de deux est S = 0 et l’autre S = 2.

Par conséquent, ces états ne sont de la dégénérescence. En plus, nous avons trouvé que

ces deux états ont des nombres Chern qui sont pair et donc ils no sont pas des états de

FQH.

La raison pourquoi il est difficile pour que ces états ne peuvent pas réaliser un état de

FQH est composé par deux parties: L’interaction Hubbard est la force primaire et elle est

extrêmement locale. Pour l’effet FQH, le terme d’interaction, qui est projecté comme un

état des particules séparés sur un niveau Landau, est décrite comme une pseudopotential

Haldane. Une interaction extrêmement locale est égale de V0 pseudopotential, qui peut

créer un état bosonique de FQH. Mais pour l’état fermionique le plus simple, il faut au

moins inclure une pseudopotential V1. Cependant, comme ce qui étaient découverts du

isolateur Chern [145], cette interaction extrêmement locale transforme à une potential V0

sur une bande avec non-zéro nombre de Chern.

6.4 Conclusion

Les résultats montrés avant sont tous en base d’une théorie du champs moyen rénormalisé

[31] et GWA [56] pour la modèle de t−J ou t− t′−J . Même s’ils ne fournissent pas des

valeurs exactes, opposite de beaucoup d’autre manières qui peuvent, nos résultats mon-

trent qu’ils réflechissent la physique de la corrélation forcée. Pour exprimer la physique

de cuprate, tout d’abord, cette corrélation fournit une rénormalisation Gutzwiller qui se

trouve à chaque emplacement qui produit beaucoup de la solution exotique de PDW stripe

et/ou CBs combinées avec des modulations de densité de charge et/ou de spin. Ces résul-

tats montrent que nos solutions agréent avec des expériences clé [15, 24, 25]. Car nos

rénormalisations sont extrêmement locales, l’effet de surface Fermi ou vecteur d’onde kF

est absent. Notre modèle n’est pas besoin du mouvement sautillant de la deuxième ou
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troixième côté pour créer une surface Fermi avec vecteur de modulation ou “hot spots”

[33, 51, 91]. Par conséquent, dans notre théorie, il n’y a une unique vecteur d’onde pour

le densité du charge ou spin et CB. Même si nous avons obtenu beaucoup de résultat pour

4a0, notre recherche aussi montrait la possibilité de l’autre période d’onde comme 5a0 ou

3a0. États avec période longue doit être possible et ses énergies doivent avoir des valeurs

similairees [46, 54]. Si nous permettons la combination de plusieur période, nPDW peut

être découvert et nous avons des états avec période incommensuratee.

Une conséquence importante que pour avoir des états qui ont la période de modulation

différente d’une Hamiltonian commum, les états doivent n’être pas les “competing states”

que nous avons compris. Ils ne restent pas une minimum d’énergie locale et ils sont sen-

sitifs. Il s’agit que les états peuvent se transformer facilement. Un bon exemple est que

comme nous avons montré, nPDW est en fait la combination de AP-CDW et d-SC. Pour

l’autres exemples de stripe mixés, mis à la Table 3.1, ils peuvent aussi être créés. Pour

la matériau de cuprate, il y a beaucoup d’autre interactions par ailleur de nos t et J qui

peuvent changer la préférance d’état. Par exemple, une interaction faible d’électron laisse

la stripe de IP-CDW-SDW plus stabilisé par rapport aux autre états [42]. Si nous inclurons

l’effet de surface Fermi, le résultat aussi changera. Cépendent, aucune de ces interaction

est plus important que ce qui vient de la physique de Mott avec la rénormalisation pour

produire la modulation d’ordre.

Avec le saut seconde t′, nous avons montré que il y a des solutions qui ont les énergies

basses avec des ordres du charge ou pairing qui est proportionné ou disproportionné de la

Hamiltonian t − t′ − J . Nos solutions ne sont pas les états fondamentals mais ses éner-

gies sont trés proche de celle-là d’état supraconductivité homogène. En plus, un état qui

s’appelle nPDW est entrelacé avec des modulations du charge ou pairing et nous montre

des charactéristiques qui sont similaires par rapport aux expériences de STM sur la surface

de BSCCO et NaCCOC. Il y a en fait des phénomènes de cuprate observé qui intéressent

les scientifiques plus de 30 ans mais nous ne pouvions pas agréer entre nos explications.

Une phénomène specielle est que le même spectre et conductance sont observé par STM

des matérieux BSCCO ou NaCCOC qui sont classé comme les cuprates différents. En
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calculant cette phénomène, nous avons inclut la méthode par Choubey et al. [119] en util-

isant la fonction de Wannier qui peut afficher les fonctions d’onde aux tous positions en

3D, en incluant les positions de quelque angstrom en haute de celle où la pointe de STM

est placé. Cette technique nous a fourni une manière de comparer nos résultats avec ceux

de la expérience.

En plus, la dépendence de intra-unite cell d−, s′− et s facteur du form et ses différences

du phase étaient obtenus dans l’état de nPDW et ont permis une trés boone correspondance

avec l’expérience de STM. L’énergie du facteur de form avec la symmetrie d-onde change

avec la dopage juste comme le résultat observé dans pseudogap. Notez que sauf nous,

théories avant d’ordre du charge de la modèle t− t′ − J discutaient seulement l’ordre du

charge commensurate et exprimaient les résultats observés avec des restrictions.

Un de nos surprises que nous avons trouvé est que nous n’avions pas des paramètres

accordable dans nos calculations. Nous pouvions obtenir des valeurs côté de celles de

l’expérience et aussi nos calculs sont similaire par rapport aux autre travails qui sont plus

compliqué que notre façon qui est simplement du champs moyens. Un raison majeur est

que le GWA est tellement effectif en réalisant la physique de la modèle t − J . Basé à ce

raison, nous pouvions fournir une figure trés simple sur la diagramme du phase de cuprate.

En commercant de la fourrage moitié, cette modèle est RVB proposé par Anderson [12]

qui est plus important en isolant de Mott. RVB a le pairing de d-onde et d’ordre du bonde

qui sont entrelacé. Mais sans l’ordre du charge ils sont en fait des paramètres variation-

nelles que nous avons définies en Eq. 6.4. Quand nous ajoutons des trous d’électron

aux matérieux, RVB prévient le mouvement électronique et donc prévient la modulation.

Mais aprés cette localisation est détruite à cause de la disparition de antiferromagnetique,

la système devient un état avec PDW et la modulation du charge entrelacé avec RVB(des

ordres du pairing et bonde). Ces états ont un écart dans la région d’anti-node et une arc de

Fermi à côté de node. Dans une arc de Fermi, seulement partie de DOS maintient. Quand

il y a plus de trou d’électron et ces modulations sont détruits, nous perdrions la physique

de Mott et une FLS se re-installerait [150]. Alors, ces états deviennent un SC régulière

dans la température basse même s’il est petit par rapport à l’ampleur de la modulation du
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pairing. Bien sûr, la fluctuation du phase joue une rôle important quand la température

augmente [36, 93] et notre théorie du champs moyens a besoin d’être amélioré.

La théorie que nous avons proposée est dépendant de la présence de nPDW dans le

phase de PG. Il y a un façon d’examiner notre théorie d’ailleur l’expérience de STS [1],

qui concerne la variation du phase rapide dans un petit région et aussi ses mesures sont

surtout dans une température haute. Pour un état de nPDW dans la direction x, l’ampleur

d’écart dans la direction y, (0, π), est approximativement la même [4] par rapport à celui

de la x direction, (π, 0), comme enmontrant dans Fig. 3.11 et 3.12. Il est au contraire de ce

que nous avons espéré si nous aurions simplement une modulation dans la direction x, où

l’écart créé par la pliage du zone doit être plus grand. L’asymmetrie de la surface de Fermi

aux x et y directions, montré dans Fig. 3.15(f), sert comme une manière de distinguer l’arc

de la surface de Fermi [80, 81]. Nous pouvons aussi examiner l’asymmetrie de Particle-

Hole dans PG. IPDW a des charactéristiques similaire de ceux de nPDW sous mesure par

ARPES [82]. L’asymmetrie de Particle-Hole est observé loin d’arc de Fermi et il est une

indication de Cooper pairs avec une élan non-zéro [39].

Particulièrement, nous avons discuté la possibilité que des impurité stabilisent l’ordre

du charge, en créant une modulation en 1D sur BSCCO et NaCCOC, observé par STM.

C’état fondamental agrée avec des résultats proposeé par l’expérience de resonant x-ray

scattering [68] qui portent des charactéristiques d’ordre du change dans une période courte.

Dans tant système, un champs magnétique peut surprimer la supraconductivité et finale-

ment faciliter la création des ordres CDW ou PDW qui ont des périodes longues. Il était

montré que avec un champsmagnétique de 10 T , il est suffisant de créer des ordres longues

de CDW ou PDW [127, 139]. Car 10 T est petit, il est possible de créer des ordres longues

en laissant un cuprate sur une couche stressé à une direction. Nous avons examiné ce cas

avec le saut en direction x plus petit que ce qui est en direction y. Le résultat montrait que

l’énergie de nPDW pour δ = 0.08 est maintenant plus petite que ce d’état uniform si tx

< 0.84 ty. Il a agréé aux résultats de Yang [40] pour δ = 0.08 au état de stripe. Dans un

matériel réel, nous avons besion de petit stress en stabilisant un IPDW/nPDW. Car nPDW

dans la direction x sont plus stable, la système favorise la création de nPDW en x-direction
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plus que ce de nPDW en y-direction et donc une modulation uniforme même si T > Tc

pour IPDW. Il est aussi possible que le IPDW avec la cohérence du phase peut devenir

un état nouveau dans une température spécifique. Même si nous perdons tx < ty, comme

démontré par Fig. 3.11 et 3.12, les spectre proche de (π, 0) et (0, π) sont trés différents.

Avec tx < ty, le UPOP a la symmetrie s′+d avec pairing plus grand dans x-direction que

y-direction. D’ailleur, l’écart d’énergie proche de x anti-node devient plus petit mais ce

de y anti-node devient plus grand. Cette phénomène peut être découvert par ARPES dans

la système.

En plus, motivé par le développement d’expérience et technique numérique, nous ex-

aminions la modèle de Harper-Hofstadter sous la présence d’une corrélation forte, qui est

égale de la modèle t − J sous un champs magnétique. Avec notre manière de RMFT et

calcul de Lanczos ED, nous avons essayé trouver des états nouveaux des système fermion-

ique. Particulièrement, nous faisions attention du phase de CFPs et fermionique. Même

si nous n’avons pas réussi observer un phase topologique, des états qui n’est pas banals

avec non-zéro nombre de Chern sont découverts sous la présence d’interaction. Nous trou-

vions que CFPs qui est rélatif de la système de Hall quantique. CFPs dans une garniture ν

qui n’est pas commensurate ont des instabilités. Pour nos systèmes qui ont ses électrons

dans la même polarisation, qui s’arrivent dans une garniture basse, RMFT et ED s’agrée

bien avec ses énergies et nombres de Chern calculés. En plus, nous montrions que l’effet

d’une potential décalé peut détruire ses charactéristiques topologiques et nous l’exprimons

en Appendix B. Notez que pour les phases proche de isolant de Mott, RMFT et ED ne

s’agréent pas pour ses nombres de Chern ou énergies calculs. Il nous dit que l’interaction

forte a mis des difficultés d’afficher ses charactéristiques topologiques. Par conséquent,

il est intéressant de réaliser ces systèmes dans une expérience. Il était déjà possible à

rechercher la modèle de Fermi-Hubbard avec le gas de Fermi qui est dégénéré avec 6Li(37,

38), dans un treillis optique [151]. Pour inclure le champs de gauge, nous pouvons utiliser

deux lasers pour manipuler les saut en x et y directions et aussi ajouter un flux [97, 98].

Nous alors suggérons la combination de ces deux systèmes pour créer une scénario pour

notre système décrite. Cependant, en comparé avec l’expérience d’Hamiltonian Harper-
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Hofstadter avec des interactions, les résultats s’agréent et il nous porte l’information que

l’Hamiltonian t − J est rélative quand nous voulons décrire la physique des fermions

interactives sous un champs magnétique. Nous résultats sert comme une commerce de

trouver la phénomène d’Hamiltonian Hofstadter corrélative forcément et motiver plus de

recherche des théorie et expérience.
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Appendix A

Exact Diagonalization

A.1 Model

We study by Lanczos ED an instance of the model given by Eq. (6.1) with Φ = q/16, q =

0, · · · , 15, for the parameter t = 1 and J = 0.3, on a 4× 4 lattice with periodic boundary

conditions (2-torus geometry). Wemake a choice of gauge in which theAij take the values

shown in Fig. A.1(a).

H preserves the total number of particles per spin nµ =
∑

i,µ ni, which is therefore a

good quantum number. For one, this allows us to treat sectors of different particle num-

ber. We will label them by the particle filling ρ = (n↑ + n↓)/32. On the other hand, the

model is also invariant under global SU(2) spin rotations. In particular, it is unaffected

by global U(1) rotations around the z-axis. The eigenvalue of the operator Sz =
∑

i(Sz)i

is therefore a good quantum number, and we can diagonalize H in each Sz subspace sep-

arately. Finite-size precursors to ferromagnetic order can be inferred from degenerate

energy eigenvalues at different Sz, where a multiplicity of 2S + 1 corresponds to a spin

polarization of magnitude S.

A.2 Many-body Chern number

To calculate themany-bodyChern number, we introduce twisted boundary conditions [148]

labeled by the twisting angles ϕ = (ϕx, ϕy)
T. This amounts to all many-body states |Ψ⟩
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Figure A.1: (a) Vector potential gauge choice for Φ = q/16, q = 0, · · · , 15. Periodic
boundary conditions are assumed. Aij in units of F = 2πΦ is given by the integer number
shown between site i and j, with positive sign if the respective arrow points from site i
to site j, and negative sign otherwise. (b) Spectrum E(ϕ) as a function of inserted flux
for ν = 1/5. The Chern number evaluates to 6, however, there is no indication for a
topological GSD.

obeying

TLx̂|Ψ⟩ = eiϕx|Ψ⟩, TLŷ|Ψ⟩ = eiϕy |Ψ⟩, (A.1)

where Tr is any operator translating a single particle by r. In practice, this prescription

can be implemented by making the substitutions

Ai,i+x̂ → Ai,i+x̂ + ϕx,

∀i = (L− 1)x̂+ nŷ, n = 0, · · · , L− 1,

Ai,i+ŷ → Ai,i+ŷ + ϕy,

∀i = (L− 1)ŷ + nx̂, n = 0, · · · , L− 1.

(A.2)

The Chern number of the n-th many body eigenstate |n⟩ is then defined as [147]

C =
1

2πi

∫ 2π

0

dϕx

∫ 2π

0

dϕyϵ
ab⟨∂an(ϕ)|∂bn(ϕ)⟩, (A.3)
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Figure A.2: Lanczos ED spectrum ofH for various values of ν, with Φ and ρ as given by
Table A.1. When there is no magnetization, only the Sz = 0,±1 sector is shown.

where ϵab, a, b = x, y is the totally antisymmetric 2 × 2 tensor, ∂a = ∂/∂ϕa, and we

assume that |n(ϕ)⟩ is non-degenerate at all ϕ.

In practice, to calculate the Chern number via ED, we consider a lattice of twisted

boundary conditions ϕa = 2π na/N , na = 0...N−1, and evaluateC using the prescription

of Ref. [149]. Here, we have chosen N = 45 for the cases corresponding to low fermion

densities. For the cases corresponding to ρ = 7/16 filling, i.e., 2 holes on 4 × 4, which

have a much larger Hilbert space, we have taken N = 10 and checked the consistency

of the results with N = 32 in the special case where Φ = 5/16. See Fig. A.1(b) for an

example of the dependence of the spectrum of H on inserted flux.

ρ Φ ν/ν∗ S E0 Ekin Epot CED

7/16 7/16 1 0 −8.2901 −6.39644 −1.89369 2
7/16 5/16 7/5 0 −8.0058 −6.04586 −1.95997 6
7/16 3/16 7/3 0 −7.8204 −5.90818 −1.91226 6
7/16 1/16 7 0 −7.6298 −5.73802 −1.89179 14
7/32 7/16 1∗ 7/2 −14.3874 −14.7165 0.329042 1
1/8 1/4 1∗ 2 −11.2393 −11.3132 0.0739077 1
1/8 7/16 4/7∗ 2 −9.4670 −9.55201 0.0849988 4
1/16 5/16 2/5∗ 1 −5.2519 −5.26527 0.0133967 6
1/16 7/16 2/7∗ 1 −5.1794 −5.19852 0.0190752 2

Table A.1: Summary of the Lanczos exact diagonalization results.
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A.3 Results

We diagonalize H for various filling factors ν, defined as ν ≡ ρ/Φ. The GS energies,

as well as spin polarizations and Chern numbers are summarized here again in Table A.1.

Figure A.2 furthermore shows the spectra for the Sz values of interest. Taking |0⟩ to be the

many-body GS of H , we define E = ⟨0|H|0⟩, Ekin = ⟨0|Hkin|0⟩ and Epot = ⟨0|Hpot|0⟩,

with Hkin and Hpot given by Eq. (6.1).
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Appendix B

Induced Topological-Trivial Transition

When it comes to the topological transition, interestingly, it is possible to induce a transi-

tion from a topologically non-trivial phase to a trivial phase by adding a staggered potential

to the Hamiltonian, as was implemented in a cold atom experiment [100]. The staggered

potential of magnitude Γ takes the form:

Hstaggered =
Γ

2

∑
i

[(−1)ix + (−1)iy ]ni (B.1)

where ni = c†ici at lattice sites i = (ix, iy). Notice that since we are considering fully po-

larized systems, we discard the spin index. Since the staggered potential has a 2×2 spatial

periodicity, it will induce CDW modulation via linear response, which may prohibit the

formation of a topological phase (associated to a non-zero Chern number). To match the

experimental setup, we choose here ρ = 1/8 and Φ = 1/4, which gives ν∗ = 2ν = 1.

This corresponds to the scenario of a completely filled lowest Hofstadter band. The mag-

netic gauge used is shown in Fig. 6.1. Our aim is to investigate the role of the interaction

namely, (i) whether it could induce a lattice instability involving spontaneous translation

symmetry breaking and/or (ii) whether it will affect the location of the transition.

To investigate (i) we have used a 4× 4 supercell, larger than the 2× 2 magnetic unit

cell, when solving the RMFT equations. In fact, no such instability was found, i.e., the

2× 2 unit cell corresponds to the translation symmetry of the ground state.

We have considered different staggered potential strengths and observed the phase
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transition as a function of Γ showing results very similar to the non interacting case [97,

100]. A qualitative understanding of the effect of the interaction on the location of the

transition can be obtained as follows. The mean-field Hamiltonian is in fact identical to

the non-interacting one up to renormalizations of the hopping term t̃ ≈ t(1 + J
4
χ) and of

the magnitude of the 2 × 2 potential Γ̃ = Γ(1 + JχΓ), where the JχΓΓ term originates

from the induced effective local chemical potential (Eq. 6.10) whose spatial periodicity is

(in linear response) identical to the one of the perturbation Γ, and χΓ is a susceptibility at

momentum (π/2, π/2). As shown in Ref.[100], the transition for a non-interacting system

occurs at Γ = 2t, which for the mean-field Hamiltonian translates into Γ̃ = 2t̃ providing

a simple expression for the critical staggered strength Γ∗,

Γ∗ = 2t
1 + 1

4
Jχ

1 + JχΓ

. (B.2)

Using the numerical values of χ (Eq. 6.9) and χΓ at J = 0.3, we obtain Γ∗ ≃ 2.048t. This

signifies that interactions increase the size of the trivial region only very slightly, which

may be a generic feature.

Further details of the RMFT calculations of the Hofstadter t–J model for ρ = 1/8 and

Φ = 1/4 and in the presence of a staggered potential are given next. We have considered

different staggered strengths and observed the phase transition described in Ref. [100] as a

function of Γ. In Fig. B.1, the band structures for four representative values of Γ are shown

within a reduced BZ, kx, ky ∈ [−π/4, π/4]. Note that the modulations generated by a non-

zero Γ all have 2 × 2 periodicity, indicating that the bands connecting with each other at

the zone boundary are in fact due to the (artificial) band folding originating from the larger

supercell used in the RMFT calculation, and therefore should be considered as the same

bands. In Fig. B.1(a), the bands are topologically trivial since their Chern numbers are

zero. There is also an obvious band gap between the lowest and middle bands. As we

lower the staggered value, the gap shrinks gradually and closes eventually at Γ ≃ 2t. This

is the point when the system enters the topologically non-trivial phase since now summing

up the Chern numbers of the lowest and middle bands gives 1. As we further lower the

staggered strength, the gap opens up again and the Chern numbers for the highest, middle,
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Figure B.1: RMFT energy spectrum as a function of staggered potential δ with Chern
numbers for each band shown beside the figure. For Γ > 2t the system is topologically
trivial with the Chern number C of the bands zero. At the transition point, the band gap
closes and it becomes topologically non-trivial with C = 1 for the lowest band. After
passing the transition point, the gap opens again and the lowest band now possesses a
Chern number of -1. Notice that within this chosen reduced BZ, each of the four bands
originating from the 2× 2 modulation is folded into 4 sub-bands, producing a total of 16
bands.

and lowest bands become -1, 2, and -1, respectively. When the staggered number is equal

to zero, the system is similar to the Harper-Hofstadter model with Φ = 1/4. Our results

reveal a competition between the topological phase and the (induced) CDW, which has

been experimentally realized by Aidelsburger et al.[100].
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