
HAL Id: tel-02316143
https://theses.hal.science/tel-02316143

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning based on Hawkes processes and
stochastic optimization

Martin Bompaire

To cite this version:
Martin Bompaire. Machine learning based on Hawkes processes and stochastic optimization. Other
Statistics [stat.ML]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLX030�. �tel-
02316143�

https://theses.hal.science/tel-02316143
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LX
03

0 Machine learning based on
Hawkes processes and
stochastic optimization

Thèse de doctorat de l’Université Paris-Saclay
préparée à Ecole polytechnique

École doctorale n◦574 Mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques appliquées

Thèse présentée et soutenue à Paris, le 5 juillet 2019, par

M. MARTIN BOMPAIRE

Composition du Jury :

M. Alexandre Gramfort
Professeur Assistant, INRIA Paris Saclay Président

M. Julien Mairal
Directeur de Recherche, INRIA Grenoble Rapporteur

M. Niels Richard Hansen
Professeur, University of Copenhagen Rapporteur

M. Guillaume Garrigos
Maître de Conférence, Université Paris Diderot (LPSM) Examinateur

M. Emmanuel Bacry
Directeur de Recherche, Université Paris-Dauphine (CEREMADE) Directeur de thèse

M. Stéphane Gaïffas
Professeur, Université Paris Diderot (LPSM) Co-directeur de thèse

Remerciements

Je tiens en premier lieu à exprimer ma plus profonde gratitude envers mes directeurs
de thèse Stéphane Gaïffas et Emmanuel Bacry. Merci pour leur soutien et leur
confiance qui m’ont permis de mener à bien ce travail. Merci de m’avoir fait
découvrir le monde de la recherche et de m’avoir fait voyager lors de conférences
afin de m’ouvrir l’esprit sur les travaux de la communauté. Merci enfin de m’avoir
permis de passer beaucoup de temps à travailler l’aspect programmation tout en
ayant su me dire de m’arrêter avant que je m’y égare.

Je remercie Niels Hansen et Julien Mairal d’avoir accepté de rapporter ma thèse.
Je suis très honoré par leur lecture attentive de ce manuscrit et leur intérêt pour
mon travail. Je suis également très honoré qu’Alexandre Gramfort ait accepté d’être
président de mon jury de thèse et que Guillaume Garrigos y ait pris part.

Je suis très reconnaissant envers mes co-auteurs : Jean-François pour la partie
théorique et Søren et Philip pour la programmation de la librairie tick, merci pour
leur patience et leur écoute face à ma détermination.

Merci à tous les doctorants de Polytechnique avec qui j’ai passé de très bons
moments durant ces trois ans et en particulier : Maryan mon binôme avec qui nous
nous suivons depuis l’ENSAE, Alain mon premier co-bureau, mais aussi Marcello
et Massil qui m’ont montré la voie, et Yiyang et Peng qui la suivent à leur tour.
Merci aussi à toute l’équipe CNAM parmi lesquels Prosper, Youcef, Phong, Dian,
Raphaël et Anastasiia et enfin au secrétariat du CMAP pour leur disponibilité et leur
gentillesse.

Merci également à Criteo, pour me permettre de continuer à allier la théorie à
l’implémentation et pour avoir accueilli ma soutenance de thèse. Tous ceux qui ont
évité le trajet vers Palaiseau se joignent à moi pour vous remercier.

Pour finir, un grand merci à mes parents, mes frères, mes belles-soeurs, mes amis,
et tout particulièrement à Charlotte qui s’apprête à devenir ma femme, pour leur
soutien indéféctible pendant ces trois années et leur présence aujourd’hui.

iii

Résumé

Le fil rouge de cette thèse est l’étude des processus de Hawkes. Ces processus
ponctuels décryptent l’inter-causalité qui peut avoir lieu entre plusieurs séries
d’événements. Concrètement, ils déterminent l’influence qu’ont les événements
d’une série sur les événements futurs de toutes les autres séries. Par exemple,
dans le contexte des réseaux sociaux, ils décrivent à quel point l’action d’un utili-
sateur, tel un Tweet, sera susceptible de déclencher des réactions de la part des autres.

Le premier chapitre est une brève introduction sur les processus ponctuels suivie par
un approfondissement sur les processus de Hawkes et en particulier sur les propriétés
de la paramétrisation à noyaux exponentiels, la plus communément utilisée. Dans le
chapitre suivant, nous introduisons une pénalisation adaptative pour modéliser, avec
des processus de Hawkes, la propagation de l’information dans les réseaux sociaux.
Cette pénalisation est capable de prendre en compte la connaissance a priori des
caractéristiques de ces réseaux, telles que les interactions sparses entre utilisateurs
ou la structure de communauté, et de les réfléchir sur le modèle estimé. Notre
technique utilise des pénalités pondérées dont les poids sont déterminés par une
analyse fine de l’erreur de généralisation.

Ensuite, nous abordons l’optimisation convexe et les progrès réalisés avec les
méthodes stochastiques du premier ordre avec réduction de variance. Le quatrième
chapitre est dédié à l’adaptation de ces techniques pour optimiser le terme d’attache
aux données le plus couramment utilisé avec les processus de Hawkes. En effet, cette
fonction ne vérifie pas l’hypothèse de gradient-Lipschitz habituellement utilisée.
Ainsi, nous travaillons avec une autre hypothèse de régularité, et obtenons un taux
de convergence linéaire pour une version décalée de Stochastic Dual Coordinate Ascent
qui améliore l’état de l’art. De plus, de telles fonctions comportent beaucoup de
contraintes linéaires qui sont fréquemment violées par les algorithmes classiques du
premier ordre, mais, dans leur version duale ces contraintes sont beaucoup plus ai-
sées à satisfaire. Ainsi, la robustesse de notre algorithme est d’avantage comparable à
celle des méthodes du second ordre dont le coût est prohibitif en grandes dimensions.

Enfin, le dernier chapitre présente une nouvelle bibliothèque d’apprentissage statis-
tique pour Python 3 avec un accent particulier mis sur les modèles temporels. Appe-
lée tick, cette bibliothèque repose sur une implémentation en C++ et les algorithmes
d’optimisation issus de l’état de l’art pour réaliser des estimations très rapides dans
un environnement multi-cœurs. Publiée sur Github, cette bibliothèque a été utilisée
tout au long de cette thèse pour effectuer des expériences.

v

Abstract

The common thread of this thesis is the study of Hawkes processes. These point
processes decrypt the cross-causality that occurs across several event series. Namely,
they retrieve the influence that the events of one series have on the future events of
all series. For example, in the context of social networks, they describe how likely an
action of a certain user (such as a Tweet) will trigger reactions from the others.

The first chapter consists in a general introduction on point processes followed by
a focus on Hawkes processes and more specifically on the properties of the widely
used exponential kernels parametrization. In the following chapter, we introduce an
adaptive penalization technique to model, with Hawkes processes, the information
propagation on social networks. This penalization is able to take into account the
prior knowledge on the social network characteristics, such as the sparse interactions
between users or the community structure, to reflect them on the estimated model.
Our technique uses data-driven weighted penalties induced by a careful analysis of
the generalization error.

Next, we focus on convex optimization and recall the recent progresses made with
stochastic first order methods using variance reduction techniques. The fourth
chapter is dedicated to an adaptation of these techniques to optimize the most
commonly used goodness-of-fit of Hawkes processes. Indeed, this goodness-of-fit
does not meet the gradient-Lipschitz assumption that is required by the latest
first order methods. Thus, we work under another smoothness assumption, and
obtain a linear convergence rate for a shifted version of Stochastic Dual Coordinate
Ascent that improves the current state-of-the-art. Besides, such objectives include
many linear constraints that are easily violated by classic first order algorithms,
but in the Fenchel-dual problem these constraints are easier to deal with. Hence,
our algorithm’s robustness is comparable to second order methods that are very
expensive in high dimensions.

Finally, the last chapter introduces a new statistical learning library for Python 3 with
a particular emphasis on time-dependent models, tools for generalized linear models
and survival analysis. Called tick, this library relies on a C++ implementation and
state-of-the-art optimization algorithms to provide very fast computations in a single
node multi-core setting. Open-sourced and published on Github, this library has
been used all along this thesis to perform benchmarks and experiments.

vi

List of papers being part of this thesis

• E. Bacry, M. Bompaire, S. Gaïffas, and J.-F. Muzy Sparse and low-rank multivari-
ate Hawkes processes, in revision in Journal of Machine Learning Research.

• M. Bompaire, S. Gaïffas, E. Bacry Dual optimization for convex constrained objec-
tives without the gradient-Lipschitz assumption, submitted to Journal of Machine
Learning Research.

• E. Bacry, M. Bompaire, P. Deegan, S. Gaïffas, and S. Poulsen. tick: a Python
Library for Statistical Learning, with an emphasis on Hawkes Processes and Time-
Dependent Models, Journal of Machine Learning Research 18, 214:1-214:5, 2018.

vii

Contents

Contents ix

Introduction 1

1 Background on Hawkes processes . 1
2 Sparse and low-rank multivariate Hawkes processes 5
3 Background on composite sum minimization with first order methods 9
4 Dual optimization without the gradient-Lipschitz assumption 11
5 tick: a Python library for statistical learning 14

Chapter I Background on Hawkes processes 19

1 Temporal point processes . 19
1.1 Definition . 19
1.2 Goodness-of-fit . 20

2 Hawkes processes . 20
2.1 Multivariate Hawkes processes . 21
2.2 Simulation . 22
2.3 Estimation . 24
2.4 Exponential kernels . 24

Chapter II Sparse and low-rank multivariate Hawkes processes 31

1 Introduction . 31
2 The multivariate Hawkes model and the least-squares functional . . . 33
3 A new data-driven matrix martingale Bernstein’s inequality 36

3.1 Notations . 36
3.2 A non-observable matrix martingale Bernstein’s inequality . . 37
3.3 Data-driven matrix martingale Bernstein’s inequalities 38

4 The procedure . 39
5 A sharp oracle inequality . 42
6 Numerical experiments . 45

ix

Contents

7 Conclusion . 51
8 Proofs . 52

Chapter III Background on first order composite sum minimization 65

1 Composite sum minimization . 65
2 Batch gradient descent . 66
3 Stochastic gradient descent . 67
4 Variance reduced stochastic gradient descent 68
5 Numerical comparison . 72

Chapter IV Dual optimization without the gradient-Lipschitz assump-
tion 75

1 Introduction . 76
2 A tighter smoothness assumption . 79
3 The Shifted SDCA algorithm . 80

3.1 Proximal algorithm . 82
3.2 Importance sampling . 83

4 Applications to Poisson regression and Hawkes processes 85
4.1 Linear Poisson regression . 85
4.2 Hawkes processes . 86
4.3 Closed form solution and bounds on dual variables 88

5 Experiments . 88
5.1 Poisson regression . 90
5.2 Hawkes processes . 90
5.3 Heuristic initialization . 92
5.4 Using mini batches . 95
5.5 About the pessimistic upper bounds 98

6 Conclusion . 99
7 Proofs . 100

Chapter V tick: a Python library for statistical learning 119

1 Introduction . 119
2 Existing Libraries . 120
3 Package Architecture . 120
4 Hawkes . 123
5 Benchmarks . 123
6 Examples . 126

6.1 Estimate Hawkes intensity . 126
6.2 Fit Hawkes on finance data . 127
6.3 SVRG with an adaptive step size 128

x

Contents

6.4 Lower precision to accelerate algorithms 131
7 Hawkes with non constant exogenous intensity 132
8 Asynchronous stochastic solvers . 135

Bibliography 145

Chapter A Résumé des contributions 157

Résumé des contributions 157

1 Les processus de Hawkes . 157
2 Processus de Hawkes multivariés, sparses et de faible rang 161
3 Minimisation de sommes composites avec des méthodes du premier

ordre . 165
4 Optimisation duale sans l’hypothèse de gradient-Lipschitz 167
5 tick : une bibliothèque Python pour l’apprentissage statistique 172

xi

Introduction

This introduction is a short summary of the following chapters. It gives an overview
of the work presented in this thesis and sometimes passes quickly on technical details.
These details are duly substantiated in the corresponding chapters.

1 Background on Hawkes processes

Temporal point processes are used to study sequences of events in continuous time.
Unlike time series, they do not depend on any predefined time resolution and can
study multiple time scales at once. This chapter is a short introduction on temporal
point processes with a specific focus on Hawkes processes, further details can be
found in [DVJ07].

1.1 Temporal point process

We associate to a set of distinct timestamps {t1, . . . , tn} occurring in a time interval
[0,T], the counting process Nt =∑

tk
1tk≤t . This counting process is a random process

whose distribution is characterized by an intensity function λ(t |Ft) which gives the
infinitesimal probability with which an event will arise at time t given the information
Ft available up to (but not including) time t . It writes

λ(t |Ft) = lim
d t→0

P(Nt+d t −Nt = 1| Ft)

d t
.

In the most simple case, this intensity is constant and the associated process is called
homogeneous Poisson process. It describes a phenomenon with no memory and a
constant probability of occurrence.

Goodness-of-fit. We call goodness-of-fit a function telling how well a statistical
model fits a set of observations. The most common measure of goodness-of-fit is
the likelihood function given by [DVJ07]. For convenience, we rather consider the

1

Introduction

opposite of its logarithm as an error measure, given by

− logL(FT) =
∫ T

0
λ(s|Fs)ds −

NT∑
k=1

logλ(tk |Ftk).

Another measure is the least squares error inspired by the empirical risk minimization
principle. For point processes it writes (see [RBR10, HRBR15])

R(FT) =
∫ T

0
λ(s|Fs)2 ds −2

NT∑
k=1

λ(tk |Ftk). (1)

Assuming that Nt has an unknown ground truth intensity λ∗, E[R(FT)] is minimized
by λ∗. This second goodness-of-fit is not as common but is easier to optimize in
some cases. Both measures encourage intensities functions with high values at times
when events occur and low at any other time.

1.2 Hawkes processes

Hawkes processes [Haw71a, HO74] are temporal point processes in which the inten-
sity depends on the process history with an excitation mechanism. They can be
understood as the equivalent of autoregressive time series models (AR) [Ham94] but
studied in continuous time. This allows to study cross causality that might occur in
one or several events series. They have first been used in seismology [Oga99], then
in finance [BDHM13, BMM15] and nowadays have found many new applications in-
cluding crime prediction [LMBB12, Moh13] or social network information propagation
[CS08, BBH12, ZZS13a, YZ13, LSV+16].

Multivariate Hawkes processes model the interactions of D ≥ 1 point processes
with an excitation dynamic encompassed by the auto-regressive structure of the con-
ditional intensities. For each point process i = 1, . . . ,D it writes

λi (t | Ft) =µi +
D∑

j=1

∫ t

0
ϕi j (t − s)dN j

s .

The µi ≥ 0 are called baseline intensities and correspond to the exogenous intensities
of events for nodes i = 1, . . . ,D . The ϕi j for 1 ≤ i , j ≤ D are called kernels, they
quantify in magnitude and over time the influence of past events from node j on
the intensity of events from node i . The integral matrix (Φ)1≤i , j≤D = ∫ T

0 ϕi j (t)dt
denotes the expected number of events of type i directly triggered by an event of
type j . A Hawkes process admits a stationarity regime when its spectral radius is
lower than one: %(Φ) < 1 [BMM15]. Such processes are easily simulated with the
thinning algorithm [Oga81]. Figure 1 shows the realization of a 2-dimensional Hawkes
process and highlights the excitation mechanism by exhibiting the kernel functions
ϕi j and the impact of each event on all nodes intensities.

2

1. Background on Hawkes processes

0.00

0.25

0.50
11(t) 12(t)

0 2
t

0.00

0.25

0.50
21(t)

0 2
t

22(t)

0

1

1(t)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0

1

2(t)

Figure 1: A realization of a 2-dimensional Hawkes process. The 4 kernels are shown
on the left hand side. The intensities are displayed on the right hand side (against
time, up to time 20), where events are represented by colored dots (blue corresponding
to node 1 and orange to node 2).

Estimation. Inferring a Hawkes process consists in estimating its exogenous inten-
sity µ and its kernel functions ϕi j either in a parametric or in a non-parametric
fashion. In the non-parametric case, the kernels are approximated by histograms in
most cases [LM11, ZZS13b, BM14]. This procedure estimates the Hawkes kernels in
a very flexible way but is hardly scalable. Recently, [ABG+17] has provided a new
non-parametric estimator that infers directly the matrix Φ of kernels’ integrals for a
better scalability. In the parametric case, the estimators rely on a prior knowledge of
the kernel functions which are thus described by a set of parameters. Estimating the
kernel functions then revert to estimating these parameters. These procedures are
less flexible than non-parametric methods but are more efficient and more robust as
the number of parameters to estimate is smaller. Different parametrizations are used
to model various behaviors such as delayed response to a triggering event [XFZ16] or
a slowly decreasing influence with power-law kernels used in seismology [Oga88] and
in finance [BMM15]. However, for scalability reason, most parametric estimators are
based on exponentially decaying kernels [ELL11, ZZS13a, TFSZ15, FWR+15, LSK17].

Exponential kernels. The main parametric model for the kernels is the so-called
exponential kernel, in which we consider ϕi j (t) =αi jβexp(−βt) for αi j > 0 and β> 0
(see kernel ϕ21 in Figure 1). In this model the integral matrix Φ = [αi , j]1≤i , j≤d and
β > 0 is a memory parameter. The couple (Nt ,λ(t)) is a Markov process [BMM15,
Proposition 2], and the conditional intensity equation rewrites in a Markovian form

dλi (t | Ft) =
D∑

j=1
β(µ j −λ j (t | Ft))dt +αi jβdN j

s

3

Introduction

for i = 1, . . .D . Hence, instead of requiring to look at all the previous events, the
value of the conditional intensity λi at a time t2 can be obtained from its value at
a previous time t1 < t2 and the events that have occurred between t1 and t2. This
property enables much more efficient computations and a better scaling for both
simulation and estimation.

A more general approach is the sum of exponentials kernel [LV14], namely ϕi j (t) =∑U
u=1α

i j
u βu exp(−βu t) for αi j

u > 0 and βu > 0. These kernels still benefit from the
Markov property and generalize better as they deal with several time scales βu and
thus can approximate for example power-law kernels [HBB13, FS15]. For convexity
reasons, the memory parameters β are generally fixed during the estimation [LV14].
Then, in order to retrieve the parameters µ and α, both maximum likelihood and
least square estimators benefit from the Markov property for quicker computations.
Indeed, their complexity is linear in the total number of events NT instead of being
quadratic as in the generic case. While less commonly used, the least square estimator
is a quadratic function which is very easy to optimize unlike the maximum likelihood
estimator. Also, it scales very well with the total number of events since a level of
precision as tight as wanted can be reached with D2 ×U 2 passes on the data, see
Chapter I for more details.

We will now focus on social network information propagation that is a challenging
problem of fastly growing interest [dMB04, Les08, CS08, LBK09] because of the
large number of applications in web-advertisement and e-commerce, where large-
scale logs of event history are available. A common supervised approach consists in
the prediction of labels based on declared interactions (friendship, like, follower, etc.).
However, such supervision is not always available, and it does not always describe
accurately the level of interactions between users. Labels are often only binary while
a quantification of the interaction is more interesting, declared interactions are often
deprecated, and more generally a supervised approach is not enough to infer the
latent communities of users, as temporal patterns of actions of users are much more
informative. With Hawkes processes we consider an approach directly built on the
unaltered data of users actions. Formally, the users are the nodes of the multivariate
point process and their timed actions are the events. Though, a raw Hawkes process
would hardly recover the characteristic patterns usually observed on a social network
such as the sparse interactions among users and the community structures. This
leads to following interrogation,

Question 1. How to retrieve social interaction dynamics with Hawkes processes ?

We discuss this problematic in the following section and present a numerically effi-
cient technique inspired by a strong theoretic analysis.

4

2. Sparse and low-rank multivariate Hawkes processes

2 Sparse and low-rank multivariate Hawkes
processes

We consider the problem of unveiling the implicit network structure of user inter-
actions in a social network, based only on high-frequency timestamps. Recently,
an approach built on Hawkes processes has increased in popularity [CS08, BBH12,
ZZS13a, YZ13]. It uses Hawkes structure to retrieve the direct influence of a specific
user’s action on all the future actions of all the users (including himself). Hawkes pro-
cesses model simultaneously decay of the influence over time with the shape of the
kernels ϕi j , the levels of interaction between nodes with the weighted asymmetrical
adjacency matrix Φ and the baseline intensity, that measures the level of exogeneity
of a user, namely the spontaneous apparition of an action, with no influence from
other nodes of the network.

2.1 `1 and trace-norm penalizations

Penalization (also called regularization) is a very common technique in machine learn-
ing. It consists in minimizing the opposite goodness-of-fit function plus a penalty
term which can be designed to enforce a specific structure on the problem minimizer.
Lasso or `1 penalty [Tib96] is one of the best known and most used. In a problem
where F : Rd → R is the opposite goodness-of-fit function, its `1-penalized version
consists in solving

min
w∈Rd

f (w)+λ‖w‖1,

where λ > 0 and ‖w‖1 = ∑d
j=1 |w j |. This penalty is known to output solutions with

sparse support, that is a vector of coefficients w with many zeros entries. In fact, if
we consider a more general penalty of the form of `p penalization,

∑d
j=1 |w j |p , then

the lasso is the `1 penalization and the `0 penalization, which gives the number of
nonzero entries of a vector, is the limiting case when p → 0. In this setting, lasso
uses the smallest value of p that leads to a convex formulation of an `p-penalized
problem. Hence, lasso can also be viewed as a convex relaxation of the best subset
selection problem [Tib11].

The trace-norm penalization (also known as nuclear norm) is used when the coef-
ficients Ω ∈Rd×d are matrices instead of vectors. It consists in adding the trace-norm
of the matrix ‖Ω‖∗ to the opposite goodness-of-fit, given by

‖Ω‖∗ =
d∑

j=1
σ j (Ω),

where σ1(Ω) ≥ ·· · ≥ σd (Ω) ≥ 0 are the singular values of Ω. Thus, this is equivalent
to an `1-penalization of the vector [σ1(Ω) · · · σd (Ω)] and tends to enforce the ap-

5

Introduction

parition of zero singular values. Finally, as the rank of matrix equals the number
of non-zero singular values, trace-norm penalization is a convex relaxation of the
low-rank problem [CT10], just like `1 penalization is for the best subset selection
problem. Enforcing low-rank is now of common use in in collaborative filtering prob-
lems [CT04, CT10, RRS11] to describe the network structure with a limited number
of parameters. Popularized by the Netflix prize [BL07], this tends to make appear
communities of individuals with similar behaviors.

2.2 Sparse and low rank priors

We apply these penalizations technique on a modeling with Hawkes process of d
nodes, each of them representing a user. For more simplicity, we consider in this
chapter that, for all j , j ′ = 1, . . . ,d the kernels ϕ j , j ′ can be decomposed into ϕ j , j ′(t) =∑K

k=1 a j , j ′,k h j , j ′,k (t) where a j , j ′,k ≥ 0 and h j , j ′,k :R+ →R+ are known decay functions
with fixed `1 norm, ‖h j , j ′,k‖1 = 1. Hence, for each node j = 1, . . . ,d , the conditional
intensity writes

λ j ,µ,A(t) =µ j +
d∑

j ′=1

K∑
k=1

a j , j ′,k h j , j ′,k (t − s)dN j
s ,

where µ ∈ Rd is the exogeneous intensity. Typically, choosing h j , j ′,k = βk exp(−βk t)
where βk > 0, reverts to the sum of exponentials kernel parametrization (see Sec-
tion 1.2). The parameter of interest is the self-excitement tensor A that simply rewrites
here A = [a j , j ′,k]1≤ j , j ′≤d ,1≤k≤K . Then, we combine convex proxies for sparsity and
low-rank of self-excitement tensor and the baseline intensities to obtain the desired
network structure. Our prior assumptions on µ and A are the following.

Sparsity of µ. Some nodes are basically inactive and react only if stimulated.
Hence, we assume that the baseline vector µ is sparse.

Sparsity of A. A node interacts only with a fraction of other nodes, meaning that
for a fixed node j , only a few a j , j ′,k are non-zero. Moreover, a node might react at
specific time scales only, namely a j , j ′,k is non-zero for some k only for fixed j , j ′.
Thus, we assume that A is an entrywise sparse tensor.

Low-rank of A. We assume that there exist latent factors that explain the way nodes
impact other nodes through the different scales k = 1, . . . ,K . Rewriting the intensity
naturally leads to penalize the rank of d ×K d matrix hstack(A) = [

A•,•,1 · · ·A•,•,K
]

where A•,•,k stands for the d ×d matrix with entries (A•,•,k) j , j ′ =A j , j ′,k .

We induce these proxies with penalty terms added to the objective. Namely, we
minimize

R(µ, A)+‖µ‖1,ŵ +‖A‖1,Ŵ+ τ̂‖hstack(A)‖∗, (2)

6

2. Sparse and low-rank multivariate Hawkes processes

where R(µ, A) is the least squares goodness-of-fit (1), and the penalty terms are trace-
norm and weighted `1 penalizations, given by

‖µ‖1,ŵ =
d∑

j=1
ŵ j |µ j |, ‖A‖1,Ŵ = ∑

1≤ j , j ′≤d ,1≤k≤K

Ŵ j , j ′,k |A j , j ′,k |.

The weights ŵ , Ŵ, and the coefficient τ̂ are data-driven tuning parameters given in
Section 4 of Chapter II. The choice of these weights lead to a data-driven scaling
of the variability of information available for each nodes and comes from a sharp
analysis of the noise terms presented in the section below.

2.3 Sharp oracle inequality

With a wise choice of the weights parameters ŵ , Ŵ and τ̂, we derive, in Theorem 1,
an oracle inequality. This inequality bounds the estimation error of the intensity λµ̂,Â,
obtained by minimizing Problem (2), given the best possible estimator, with the same
parametrization, that would rely on perfect information. We fix some confidence level
x > 0, which can be safely chosen as x = logT for instance, and denote by ‖ · ‖F the
Frobenius norm to formulate the following theorem where no assumption is made on
the ground truth intensity λ.

Theorem 1. Fix x > 0, and let ŵ ,Ŵ , τ̂ that depends on x be given by (II.17), (II.18)
and (II.19). Then, the inequality

‖λµ̂,Â−λ‖2
T ≤ inf

µ,A

{
‖λµ,A−λ‖2

T +1.25κ(µ,A)2
(
‖(ŵ)supp(µ)‖2

2

+‖(Ŵ)supp(A)‖2
F + τ̂2 rank(hstack(A))

)}
holds with a probability larger than 1−70.35e−x .

The constant κ(µ,A) is given by Definition 1 of Chapter II. It comes from the
necessity to have a restricted eigenvalue condition on the Gram matrix of the problem
to obtain an oracle inequality with a fast rate [BRT09, Kol11]. Roughly, it requires that
for any set of parameters {µ′,A′} that has a support close to the one of {µ,A}, we have
that the L2 norm of {µ′,A′} in the support of {µ,A} can be bounded by the L2 norm
of the intensity given by ‖λµ′,A′‖T .

2.4 Numerical experiments

To measure the performances of the choice of the data-driven weighting of the pe-
nalizations {ŵ ,Ŵ, τ̂}, we conduct experiments on synthetic datasets and compare our

7

Introduction

method to non-weighted penalizations [ZZS13a]. We perform these experiments on
Hawkes processes with d = 30 nodes and K = 3 basis kernels where the self-excitement
tensor contains square overlapping boxes (corresponding to overlapping communities)
to respect the sparse and low rank priors. We consider four estimation procedures
that minimize the least square goodness-of-fit plus one of the following penalization:

• L1: non-weighted `1 penalization of A

• wL1: weighted `1 penalization of A

• L1Nuclear: non-weighted `1 penalization and trace-norm penalization of
hstack(A) (same as [ZZS13a])

• wL1Nuclear: weighted `1 penalization and trace-norm penalization of
hstack(A)

Then, for each procedure, we train the model on the generated data, restricting it on
a growing time intervals, and assessing their performance each time with the three
following metrics:

• Estimation error: the relative `2 estimation error of A, given by ‖Â−A‖2
2/‖A‖2

2

• AUC: we compute the AUC (area under the ROC curve) between the binarized
ground truth matrix A and the solution Â with entries scaled in [0,1]. This
allows us to quantify the ability of the procedure to detect the support of the
connectivity structure between nodes.

• Kendall: we compute Kendall’s tau-b between all entries of the ground truth
matrix A and the solution Â. This correlation coefficient takes value between
−1 and 1 and compare the number of concordant and discordant pairs. This
allows us to quantify the ability of the procedure to rank correctly the intensity
of the connectivity between nodes.

Figure 2 confirms that weighted penalizations systematically leads to an improve-
ment, both for L1 and L1Nuclear, in terms of error, AUC and Kendall coefficient.

Studying the optimization techniques used to minimize the objective (2) was beyond
the scope of this section. However, optimization is a crucial part of the procedure on
which we will focus in the two following sections.

8

3. Background on composite sum minimization with first order methods

0

5

10

15

20
Estimation error

0.7

0.8

0.9

1.0
AUC

0.2

0.4

0.6

Kendall

wL1
L1

5000 10000 15000 20000
T

0.05

0.06

0.07

0.08

0.09

5000 10000 15000 20000
T

0.90

0.95

1.00

5000 10000 15000 20000
T

0.50

0.55

0.60

wL1Nuclear
L1Nuclear

Figure 2: Metrics values for simulated data of dimension d = 30 and K = 3 basis
kernels. Abscissa corresponds to the interval length T . Weighted penalizations sys-
tematically leads to an improvement, both for L1 and L1 + Nuclear penalization.

3 Background on composite sum minimization with
first order methods

A wide variety of machine learning tasks consists in optimizing the following problem

min
w∈Rd

F (w) with F (w) = f (w)+ g (w), f (w) = 1

n

n∑
i=1

fi (w),

where the function fi corresponds to a loss computed at a sample i of the dataset and
the convex function g is a penalization term. This framework includes classification
with logistic regression with fi (w) = log(1+exp(−yi w>xi)), least square regression
with fi (w) = (yi −w>xi)2 among many others. It is common to assume that function
f is gradient-Lipschitz, namely ‖∇ f (x)−∇ f (y)‖ ≤ L‖x − y‖ for any x, y ∈ Rd where
‖.‖ stands for the Euclidean norm on Rd , and L > 0 is the Lipschitz constant. With
this property, the descent lemma [Ber99, Proposition A.24] holds,

f (w +∆w) ≤ f (w)+∆w>∇ f (w)+ L
2‖∆w‖2

for any w,∆w ∈ Rd . Most first order algorithms ensue from this lemma and firstly
the gradient descent algorithm where at each step ∆w t+1 is set to the optimal value
− 1

L∇ f (w t). The penalization term is then handled with proximal operators [CP11].
This leads to ISTA algorithm and its accelerated version FISTA [BT09] whose rate is
optimal [Nes83].

9

Introduction

Stochastic gradient descent. However, with its structure, this problem can also be
considered as an accumulation of smaller problems fi that have a common behavior.
Stochastic gradient descent (SGD) [RM51] exploits this and instead of computing
the full gradient ∇ f (w t) at each step, uses a random variable φt ∈ Rd such that
E[φt] = ∇ f (w t). The descent iteration becomes ∆w t+1 = −ηtφt where φt is set to
∇ fi (w t) and ηt > 0 is a step size. When all ∇ fi (w t) are as expensive to compute,
SGD performs iterations that are n times quicker than the batch algorithms previously
introduced. But, this method does not converge easily to a precise solution because
∇ fi (w t) does not approach zero when w t is close from the optimal value w∗. Hence,
the sequence of step size (ηt)t≥0 must be decreasing which eventually affects the
convergence speed.

Variance reduced stochastic algorithms. Recently, stochastic solvers based on a
combination of SGD and the Monte-Carlo technique of variance reduction [SLRB17],
[SSZ13], [JZ13], [DBLJ14] turn out to be both very efficient numerically (each update
has a complexity comparable to vanilla SGD) and very sound theoretically. To reduce
its variance, the random variable φt is set to ∇ fi (w t)+Y −E[Y] where Y ∈ Rd is a
random variable that is expected to be correlated with ∇ fi (w t). Hence, φt remains
an unbiased estimator of ∇ f (w t) and its variance is decreased. In [SLRB17], [SSZ13],
[JZ13] and [DBLJ14], φt converges to 0 at the optimum, and the sequence of step sizes
(ηt)t≥0 does not need to be decreasing as in SGD. Theses algorithms obtain linear
convergence rate, that is they reach an iterate w t such that F (w t) ≤ F (w∗)+ε in less
than O (log(1/ε)) iterations.

Thus, modern optimization methods obtain high precision solutions with few
passes on the data. However, the first order algorithms that we have just introduced
rely on the assumption that f is gradient-Lipschitz which is not verified by Hawkes
processes log likelihood. The lack of fast, scalable and robust method to solve this
problem motivates the following question.

Question 2. How to optimize non gradient-Lipschitz objectives such as Hawkes processes
log-likelihood ?

We focus on this particular problem in the next section where we develop an algorithm
dedicated to a new class of functions, admitting another smoothness assumption.

10

4. Dual optimization without the gradient-Lipschitz assumption

4 Dual optimization for convex constrained
objectives without the gradient-Lipschitz
assumption

When the gradient-Lipschitz assumption is not verified, descent lemma does not hold
anymore and the previous algorithms have no more convergence guarantees. Moti-
vated by learning problems that do not meet this assumption, such as linear Poisson
regression and Hawkes processes, we work under another smoothness assumption,
and obtain a linear convergence rate for a shifted version of SDCA (Stochastic Dual
Coordinate Ascent) [SSZ13] that improves the current state-of-the-art.

SDCA for log smooth objectives. In order to remove the gradient-Lipschitz as-
sumption, we need to focus on a more specific task relying on a new smooth-
ness assumption. Given convex functions fi : D f → R with D f = (0,+∞) such that
limt→0 fi (t) =+∞, ψ ∈ Rd , x1, . . . , xn ∈ Rd , λ> 0 and given a 1-strongly convex func-
tion g :Rd →R, we consider the objective

min
w∈Π(X)

P (w) where P (w) =ψ>w + 1

n

n∑
i=1

fi (w>xi)+λg (w), (3)

where Π(X) is the polytope {w ∈ Rd : ∀i ∈ {1, . . . ,n}, w>xi > 0} that we assume to
be non-empty. The previously introduced first order algorithms have no theoretical
guarantees for this problem and are unable to maintain their iterates w t in the poly-
tope Π(X) in our experiments. To deal with simpler constraints we rather focus on
the dual problem which is only box-constrained,

max
α∈−Dn

f ∗
D(α) where D(α) = 1

n

n∑
i=1

− f ∗
i (−αi)−λg∗

(
1

λn

n∑
i=1

αi xi − 1

λ
ψ

)
,

where f ∗ (resp. g∗) is the Fenchel conjugate of f (resp. g) and −Dn
f ∗ is the domain

of the function x 7→ ∑n
i=1 f ∗

i (−x). While, it is not straightforward to obtain strong
duality for a convex problem with open constraints, it is guaranteed in such a setting.
(see Proposition 1 of Chapter IV). Hence, we maximize this dual with a shifted variant
of SDCA algorithm [SSZ13] that does not rely on gradient-Lipschitz assumption but
rather on the following log smoothness property.

Definition 1. We say that a function f : D f ⊂R→R is L-log smooth, where L > 0, if it
is a differentiable and strictly monotone convex function that satisfies

| f ′(x)− f ′(y)| ≤ 1

L
f ′(x) f ′(y)|x − y |

for ∀x, y ∈D f .

11

Introduction

In fact, in view of the following proposition, log smoothness is linked to the self-
concordance property introduced by Nesterov [Nes13] and widely used to study losses
involving logarithms.

Proposition 1. Let f : D f ⊂R→R be a convex strictly monotone and twice differentiable
function. Then,

f is L-log smooth ⇔ ∀x ∈D f , f ′′(x) ≤ 1
L f ′(x)2.

It appears that log smoothness is the counterpart of self-concordance but to con-
trol the second order derivative with the first order derivative. Assuming that all
functions fi are Li log smooth, we derive new tight convex inequalities and prove in
Chapter IV the following theorem of convergence where α∗ ∈Rn is the maximizer of
the dual objective.

Theorem 2. Suppose that we known bounds βi ∈ −Dn
f ∗ such that Ri = βi

α∗
i
≥ 1 for i =

1, . . . ,n and assume that all fi are Li -log smooth and g is 1-strongly convex. Then SDCA
satisfies

E[D(α(t))−D(α∗)] ≥
(
1− mini σi

n

)t (
D(α∗)−D(α(0)

)
,

where

σi =
(
1+ ‖xi‖2α∗

i
2

2λnLi

(Ri −1)2

1
Ri

+ logRi −1

)−1

.

This theorem gives a linear convergence rate for the dual objective that improves
what is obtained with regular SDCA analysis. We then improve these theoretical
guarantees by providing an importance sampling variant of our algorithm, and its
numerical efficiency with a heuristic initialization and a mini-batch method.

Application to Poisson regression and Hawkes processes Linear Poisson regres-
sion is widely used in image reconstruction [HMW12], web-marketing [CPC09] and
survival analysis to model additive effects, as opposed to multiplicative effects [BF10].
SDCA for log smooth objectives applies to linear Poisson regression and also to the
previously introduced Hawkes processes with sum of exponentials kernels. For both
models, we can formulate their likelihood as in Equation (3) and give explicit candi-
dates for the bounds βi required by Theorem 2. While the problem formulation is
straightforward for Poisson regression, it involves precomputed weights for Hawkes
processes and leads to I independent subproblems where I is the number of nodes
of the Hawkes process.

Experimentally, we compare SDCA with a second order algorithm that is the stan-
dard second-order Newton algorithm which computes at each iteration the hessian of
the objective which is then used to solve a linear system. This ensures supra-linear

12

4. Dual optimization without the gradient-Lipschitz assumption

3 2 1 0 1
x0

2

1

0

1

x 1

Original datapoints and log-distance to
optimal objective on the feasible set

yi = 0.0
yi = 1.0
yi = 2.0

3 2 1 0 1
x0

2

1

0

1

x 1

Paths taken by two L-BFGS-B and two SDCA
solvers over the gradient norm and direction

L-BFGS-B 1
L-BFGS-B 2
SDCA 1
SDCA 2

Figure 3: Iterates of SDCA and L-BFGS-B on a Poisson regression toy example with
three samples and two features. Left. Dataset and value of the objective. Right.
Iterates of L-BFGS-B and SDCA with two different starting points. The background
represents the gradient norm and the arrows the gradient direction. SDCA is very
stable and converges quickly towards the optimum, while L-BFGS-B easily converges
out of the feasible space.

convergence guarantees and keeps all iterates in the open polytope Π(X) as soon as
the starting point is in it [NN94]. However, this algorithm scales very poorly with
the number of dimensions d (the size of the vector w) limiting drastically its usage
in practice. Next, we compare SDCA with SVRG [JZ13, TMDQ16] and the limited-
memory quasi-Newton L-BFGS-B algorithm [Noc80, NW06]. They both theoretically
rely on the gradient-Lipschitz smoothness assumption which is not verified here. In
practice, they very often diverge and violate of the open polytope constraint Π(X).
This is illustrated in the toy example of Figure 3. Hence, in order to obtain compara-
ble results, we manage to force the constraint by the projecting the iterates of SVRG
and L-BFGS-B onto [0,+∞)d .

As expected, in Figure 4, we observe that the Newton algorithm becomes very
slow when the number of features d increases and that SVRG and L-BFGS-B cannot
reach the optimal solution because their iterates are constrained to [0,+∞)d while the
problem minimizer contains negative values. SDCA is the only first order solver that
can reach the optimal solution and combines the best of both worlds, the scalability
of a first order solver and the ability to reach solutions with negative entries.

Hawkes processes and convex optimization of finite sum objectives are two fields
of growing interest. In both cases, the numerical results are of prime importance but
articles are rarely published with code that not only reproduces the experiments but

13

Introduction

0.00 0.02 0.04 0.06
10 13

10 8

10 3

102

wine n = 4898 d = 11

0.000 0.005 0.010 0.015

facebook n = 500 d = 41

0.0 0.5 1.0

news n = 39644 d = 59

0.00 0.01 0.02 0.03 0.04
time (s)

10 13

10 8

10 3

102

vegas n = 504 d = 160

0.0 2.5 5.0 7.5
time (s)

property n = 50999 d = 194

0.0 2.5 5.0 7.5
time (s)

simulated n = 100000 d = 100

SDCA L-BFGS-B SVRG NoLips Newton

Figure 4: Convergence over time of four algorithms SDCA, SVRG, L-BFGS-B and
Newton on 6 datasets of Poisson regression. SDCA combines the best of both worlds:
speed and scalability of SVRG and L-BFGS-B with the precision of Newton’s solution.

is also meant to be reused for further applications. This makes convex optimization
solvers or Hawkes processes estimators difficult to compare in a unified manner and
raises the following question.

Question 3. How to make these statistical inference tools available to a wide audience ?

In the following section, we present a new Python library addressing both convex
optimization and Hawkes processes to facilitate their practical usage.

5 tick: a Python library for statistical learning

tick is a statistical learning library for Python 3, with a particular emphasis on
time-dependent models, such as point processes, tools for generalized linear mod-
els and survival analysis. It relies on a C++ implementation and state-of-the-art
optimization algorithms to provide very fast computations in a single node multi-
core setting. Source code and documentation can be downloaded from https:

//github.com/X-DataInitiative/tick.

14

https://github.com/X-DataInitiative/tick
https://github.com/X-DataInitiative/tick

5. tick: a Python library for statistical learning

Table 1: Models and estimation techniques for Hawkes processes available in tick

Non Parametric Parametric

EM [LM11] Single exponential kernel
Basis kernels [ZZS13a] Sum of exponentials kernels
Wiener-Hopf [BM14] Sum of gaussians kernels [XFZ16]
NPHC [ABG+17] ADM4 [ZZS13a]

Hawkes Despite the growing interest in Hawkes models, very few open source pack-
ages are available. There are mainly three of them. The library pyhawkes1 proposes
a small set of Bayesian inference algorithms for Hawkes process. hawkes R2 is an
R-based library that provides a single estimation algorithm, and is hardly optimized.
Finally, PtPack3 is a C++ library which proposes parametric maximum likelihood es-
timators, with sparsity-inducing regularizations. Written in Python, tick is the most
comprehensive library that deals with Hawkes processes for instance, by including
the main inference algorithms from the literature listed in Table 1. This encompasses
both parametric and non parametric algorithms and brings them to a new accessibil-
ity level.

Toolbox for convex optimization Besides Hawkes processes, tick has three
main modules: tick.linear_model with linear, logistic and Poisson regression,
tick.robust for robust linear models and tick.survival for survival analysis. At a
high level tick follows scikit-learn’s API [PVG+11, BLB+13] which is well-known
for its completeness and ease of use but under the hood, these modules rely on a
convex optimization toolbox built to solve composite sum minimization Problem (3).
This toolbox allows to combine with many models different penalization techniques
(tick.prox module) and state-of-the-art optimization algorithms (tick.solver).
It is implemented in a very modular way and allows more possibilities than
other scikit-learn API based optimization libraries such as lightning4. A non
exhaustive list of possible combinations is given in Table 2 and highlights how useful
tick is to run experiments such as testing a new model with various penalization
techniques or comparing convex optimization solvers.

Implementation While tick is a Python library, all the heavy computations run in
C++ which communicates with Python with SWIG (Simplified Wrapper and Interface

1https://github.com/slinderman/pyhawkes
2https://cran.r-project.org/web/packages/hawkes/hawkes.pdf
3https://github.com/dunan/MultiVariatePointProcess
4http://contrib.scikit-learn.org/lightning

15

https://github.com/slinderman/pyhawkes
https://cran.r-project.org/web/packages/hawkes/hawkes.pdf
https://github.com/dunan/MultiVariatePointProcess
http://contrib.scikit-learn.org/lightning

Introduction

Table 2: tick allows the user to combine many models, prox and solvers. This list is
not exhaustive.

Model Proximal operator Solver

Linear regression SLOPE Gradient Descent
Logistic regression L1 (Lasso) Stochastic Variance Reduced Gradient
Poisson regression Total Variation Stochastic Gradient Descent
Cox regression Group L1 Accelerated Gradient Descent

Hawkes with exp. kernels L2 (Ridge) Stochastic Dual Coordinate Ascent

medium large
Number of simulated events

0.00

0.25

0.50

0.75

1.00

tim
e

(s
)

Simulation

small medium large
Number of events in train set

10
0

10
1

10
2

10
3

tim
e

(s
),

in
 lo

g
sc

al
e

Fit

large xlarge
Number of events in train set

0

50

100

tim
e

(s
)

Multicore fit

200 400 750
Dimension

0

2000

4000

6000

8000

tim
e

(s
)

High-dimensional fitting

PtPack hawkes R tick (1 core) tick (4 cores) tick (16 cores)

Figure 5: Computational timings of tick versus PtPack and hawkes R. tick strongly
outperforms both libraries for simulation and fitting (note that the “Fit” graph is
in log-scale). The model fits in plots “Fit” and “Multicore fit” are compared on
simulated 16-dimensional Hawkes processes, with an increasing number of events:
small=5×104, medium=2×105, large=106, xlarge= 5×107, while 200, 400 and 750
dimensional Hawkes processes are fitted in plot “High-dimensional fitting”. “Multi-
core fit” and “High-dimensional fitting” plots show that tick benefits from multi-core
environments to speed up computations.

Generator) [BFK+96]. Thanks to SWIG, the Python objects have a very easy access
to full C++ objects that share their memory and work on the same dataset without
needing any copy. This is particularly useful for optimization toolbox where model,
prox and solver are symbolically linked in Python and then run fully in C++. Also,
the C++ part of the library is independent and with some effort is usable without
the Python part. This allows the developers to analyze the code with any profiling
tool compatible with C++ and hence produce code optimized in depth. For all these
reasons, tick is a very fast library and has proved to be up to an order of magnitude
faster than hawkes R and PtPack on a series of benchmarks presented in Figure 5.

16

5. tick: a Python library for statistical learning

17

CHAPTER I

Background on Hawkes processes

1 Temporal point processes

Temporal datasets are generally explored with time series in very various fields such
as finance [Tsa05, Tay08], weather forecasting [Bur03], econometrics [LK04] or as-
tronomy [Sca82]. Time series work with measures taken at regular intervals on a
discrete time scale. The length of this interval, that is the time resolution, is a sensi-
tive parameter. For example, it must be adapted depending on if you want to study
short-term or long-term interactions. On the contrary, temporal point processes use
sequences of events in continuous time and can study multiple time scales at once.
This chapter gives a short introduction on temporal point processes with a specific
focus on Hawkes processes, further details can be found in [DVJ07].

1.1 Definition

We associate to a set of distinct timestamps {t1, . . . , tn} occurring in a time interval
[0,T], the counting process Nt =∑

tk
1tk≤t . This counting process is a random process

which evolves over time by jumps of size 1. Studying temporal point processes consists
in analyzing when this jumps occur. This behavior is characterized by an intensity
function λ(t |Ft) which gives the infinitesimal probability with which an event will
arise at time t given the information Ft available up to (but not including) time t . It
writes

λ(t |Ft) = lim
d t→0

P(Nt+d t −Nt = 1| Ft)

d t
.

This intensity fully characterizes a point process. In the most simple case, this inten-
sity is constant and the associated process is called a homogeneous Poisson process.
It describes a phenomenon with no memory and a constant probability of occurrence
in which Nt+∆t −Nt follows a Poisson distribution of parameter ∆t for any ∆t > 0.

19

I. Background on Hawkes processes

More generally, a process whose intensity is not constant but depends on time t only,
is called an inhomogeneous Poisson process.

1.2 Goodness-of-fit

We call goodness-of-fit a function telling how well a statistical model fits a set of
observations. In our context, the most common goodness-of-fit measure is the like-
lihood of point processes given by [DVJ07]. For convenience we rather consider the
opposite of its logarithm as an error measure, given by

− logL(λ,FT) =
∫ T

0
λ(s|Fs)ds −

NT∑
k=1

logλ(tk |Ftk), (I.1)

where FT = {t1, . . . , tn} is the full history of the process and NT is the total num-
ber of events that have occured in [0,T]. Under some assumptions, the maximum
likelihood estimator obtained by minimizing this error is consistent, asymptotically
normal and asymptotically efficient, see [Oga78] for more details. Another measure
is the least squares error inspired by the empirical risk minimization principle. For
point processes it writes (see [RBR10, HRBR15])

R(λ,FT) =
∫ T

0
λ(s|Fs)2 ds −2

NT∑
k=1

λ(tk |Ftk). (I.2)

This writing is quite natural: assuming that the process Nt has an unknown ground
truth intensity λ∗, then

E
NT∑

k=1
λ(tk |Ftk) = E

∫ T

0
λ(s|Fs)dNs =

∫ T

0
λ(s|Fs)λ∗(s)ds,

and the expectation of R(FT) rewrites

E[R(λ,FT)] = E‖λ‖2
T −2E〈λ| λ∗〉T = E‖λ−λ∗‖2

T −‖λ∗‖2
T ,

where 〈λ| λ∗〉T = ∫ T
0 λ(s|Fs)λ∗(s|Fs)ds and ‖λ‖2

T = 〈λ| λ〉T . Hence, E[R(λ,FT)] is
minimized by λ∗. This second goodness-of-fit is not as common but is easier to
optimize in some cases such as Hawkes processes parametrized with exponential
kernels (see Section 2.4). In both cases, these measures encourage intensity functions
with high values at times when events occur and low at any other time.

2 Hawkes processes

Hawkes processes [Haw71a, HO74] are temporal point processes in which the in-
tensity depends on the process history with an excitation mechanism. They can

20

2. Hawkes processes

be understood as the equivalent of autoregressive time series models (AR) [Ham94]
but in continuous time. This allows to study cross causality that might occur in
one or several events series. They have first been used to study earthquake prop-
agation [Oga99], the network across which the aftershocks propagate can be re-
covered given all tremors timestamps. Then, they have been applied to high fre-
quency finance [BDHM13, BMM15] to describe market reactions to different types of
orders. In the recent years Hawkes processes have found many new applications in-
cluding crime prediction [LMBB12, Moh13], social network information propagation
[CS08, BBH12, ZZS13a, YZ13, LSV+16] or neuron spike modeling [GL15, HRBR15].

2.1 Multivariate Hawkes processes

Multivariate Hawkes processes model the interactions of D ≥ 1 temporal point pro-
cesses. Namely, it models timestamps {t i

k }k≥1 of nodes i = 1, . . . ,D associated with a
multivariate counting process Nt = [N 1

t · · ·N D
t]. The excitation dynamic between the

nodes is encompassed by the auto-regressive structure of the conditional intensity.
For component N i

t it writes

λi (t | Ft) =µi +
D∑

j=1

∫ t

0
ϕi j (t − s)dN j

s . (I.3)

The µi ≥ 0 are called baseline intensities and correspond to the exogenous intensities
of events for node i = 1, . . . ,D . The ϕi j for 1 ≤ i , j ≤ D are called kernels, they
quantify over time and in magnitude the influence of past events from node j on
the intensity of events from node i . These kernel functions are positive and causal
(their support is within R+) and if they are integrable each entry of the D×D integral
matrix (Φ)i , j =

∫ T
0 ϕi j (t)dt denotes the expected number of events of type i directly

triggered by an event of type j .
This observation leads to the population representation [HO74] of the Hawkes pro-

cesses in which we consider D populations whose count increases in two manners,
either with new migrants or with children from the existing individuals. In this rep-
resentation, we consider that the arrivals of the migrants of population i = 1, . . . ,D
are modeled with a homogeneous Poisson process of intensity µi and each individual
of any population j = 1, . . . ,D arrived or born at time t gives birth to children of
population i following an inhomogeneous Poisson process of intensity ϕi j (· − t).

This representation makes clear the necessity of a stability condition to avoid an
explosion of the number of individuals and reach a stationary regime. In such a
regime, the mean intensity of node i writes

λ̄i =µi +
D∑

j=1
E

∫ t

−∞
ϕi j (t − s)dN j

s =µi +
D∑

j=1
λ̄ j (Φ)i , j ,

21

I. Background on Hawkes processes

which with λ̄= [λ̄1 · · · λ̄D] and µ= [µ1 · · ·µD] gives,

λ̄=µ+Φλ̄=µ(1−Φ)−1

where the second equality is only valid if the spectral radius of the matrix Φ is strictly
smaller that 1: %(Φ) < 1 [BMM15]. We call this assumption the stability condition.

2.2 Simulation

The thinning algorithm [Oga81] is the most suitable method to simulate Hawkes
processes. This algorithm relies on the existence at all time τ ∈ [0,T] of an Fτ pre-
dictable constant upper bound, λ∗(τ|Fτ), of the sum of the conditional intensities of
all nodes

∑D
i=1λ

i (t |Fτ) for any time t ≥ τ. At each iteration this algorithm gener-
ates an event candidate s sampled from a homogeneous Poisson process of constant
intensity λ∗(τ|Fτ) where τ is the current time. This candidate is either discarded
with probability 1−∑D

i=1λ
i (s|Fτ)/λ∗(τ|Fτ) or assigned to one node i = 1, . . . ,n with

probability λi (s|Fτ)/λ∗(τ|Fτ). This procedure is detailed in Algorithm I.1. This al-

Algorithm I.1 Ogata thinning algorithm for multivariate point processes
Require: End time T
τ= 0
while τ< T do

Take λ∗ ≥∑D
i=1λ

i (t |Fτ) for any t ≥ τ
Sample s from an exponential distribution of rate λ∗

Sample u from a uniform distribution over [0,1]
for i = 1, . . . ,D do

if u <∑i
j=1λ

j (s|Fτ)/λ∗ then
Append s to node i events
break

end if
end for
τ= s

end while

gorithm is used in the tick library (see Chapter V) to simulate point processes. The
following code simulates a 2 nodes Hawkes process with explicitly specified kernels.

22

2. Hawkes processes

0.00

0.25

0.50
11(t) 12(t)

0 2
t

0.00

0.25

0.50
21(t)

0 2
t

22(t)

0

1

1(t)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0

1

2(t)

Figure I.1: A realization of a 2 nodes Hawkes process. The four excitation kernels
are shown on the left hand side. The intensities are displayed on the right hand
side (against time, up to time 20), where events are represented by colored dots (blue
corresponding to node 1 and orange to node 2).

from tick.base import TimeFunction

from tick.hawkes import (

SimuHawkes, HawkesKernelExp, HawkesKernelTimeFunc, HawkesKernel0)

tf_11 = TimeFunction([[0, 1], [.2, 0]],

inter_mode=TimeFunction.InterConstRight)

kernel_11 = HawkesKernelTimeFunc(tf_11)

kernel_21 = HawkesKernelExp(.07, 4)

tf_22 = TimeFunction([[0, .1, 2], [0, .4, -0.2]])

kernel_22 = HawkesKernelTimeFunc(tf_22)

hawkes = SimuHawkes(kernels=[[kernel_11, 0],

[kernel_21, kernel_22]],

baseline=[0.5, 0.5], end_time=20)

hawkes.simulate()

The realization is shown in Figure I.1. It highlights the excitation mechanism by ex-
hibiting the kernel functions ϕi j and the impact of each event on all nodes intensities.
For example, one can see that, as encoded in kernel function ϕ12, the events of type 2
(orange) have no impact on the intensity of node 1 (blue).

23

I. Background on Hawkes processes

2.3 Estimation

Inferring a Hawkes process consists in estimating its exogenous intensity µ and its
kernels functions ϕi j either in a parametric or in a non-parametric fashion. In
the non-parametric case, the kernels are approximated in most cases by histograms
[LM11, ZZS13b, BM14]. [LM11] presents the most straight-forward non-parametric
algorithm. It assumes that the kernels have a finite support and are piecewise
constant on given intervals. Its learning procedure simply consists in Expectation-
Maximization steps relying on the population representation [HO74]. This procedure
estimates the Hawkes kernels in a very flexible way but is hardly scalable as each of
the D2 kernels is described by many parameters. To lower the number of parameters,
[ZZS13b] supposes that all the kernels are linear combinations of basis functions that
are learned from the data and hence scales much better with the number of nodes
D . Then, [BM14] estimates the kernel functions through the events correlation matrix.
In contrary to the first two methods, this one recovers successfully negative kernel
functions that encode inhibition effects. Recently, [ABG+17] has provided a new non-
parametric estimator that infers directly the matrix Φ of the kernels’ norms. The
kernel shape is not retrieved anymore but this method scales much better with the
number of nodes.

Conversly, parametric estimators rely on a prior knowledge of the kernel functions
which are thus described by a set of parameters. Estimating the kernel functions
then reverts to estimating these parameters. These procedures are less flexible than
non-parametric methods but are more efficient and more robust as the number of
parameters to estimate is smaller. They require less events per node and scale better
to a higher number of nodes. The chosen parametrization might differ depending
on the application and translates desired properties, such as a delayed response to a
triggering event [XFZ16] or a slowly decreasing influence with power-law kernels used
in seismology [Oga88] and in finance [BMM15]. However, for scalability reason, most
parametric estimators are based on exponentially decaying kernels [ELL11, ZZS13a,
TFSZ15, FWR+15, LSK17] that are described in the dedicated Section 2.4.

2.4 Exponential kernels

The main parametric model is the so-called exponential kernel, in which we consider
ϕi j (t) = αi jβexp(−βt) for αi j > 0 and β > 0. In this model the integral matrix
Φ= [αi , j]1≤i , j≤d and β> 0 is a memory parameter. The couple (Nt ,λ(t)) is a Markov
process [BMM15, Proposition 2], and Equation (I.3) rewrites in a Markovian form

dλi (t | Ft) =
D∑

j=1
β(µ j −λ j (t | Ft))dt +αi jβdN j

s

24

2. Hawkes processes

for i = 1, . . .D . This property enables much more efficient computations and a bet-
ter scaling for both simulation and estimation. However, the maximum likelihood
estimator, which is the most common estimation procedure, is efficient only if the
decay β is fixed for convexity reasons [LV14]. Hence, the choice of β must be done in
advance and the quality of the modeling depends on it.

A more general approach is the sum of exponentials kernels [LV14], namely ϕi j (t) =∑U
u=1α

i j
u βu exp(−βu t) for αi j

u > 0 and βu > 0. These kernels generalize better as they
deal with several time scales βu which makes the modeling less sensitive to initial
choice of the fixed decays. Also, with a carefully chosen list of decays, sum of
exponentials kernels can approximate power-law kernels [HBB13, FS15]. Finally, they
still benefit from the Markov property if we include the U components of the intensity.
With

λi (t | Ft) =µi +
U∑

u=1
νi

u(t | Ft) where νi
u(t | Ft) =

D∑
j=1

∫ t

0
α

i j
u βu exp(−βu(t − s))dN j

s ,

we have that (Nt ,ν(t)) is a Markov process with the following relation

dνi
u(t | Ft) =

D∑
j=1

−βuν
j
u(t | Ft)dt +αi jβu dN j

s

for i = 1, . . .D and u = 1, . . .U . This extension of the exponential kernels leads to
similar computations but to make the implementation more explicit we detail this
more comprehensive formulation. In what follows, we provide explicit calculus for an
efficient simulation and the computations of log-likelihood and least squares errors.

Simulation. Thanks to the Markov property, the value of the conditional intensity
λi at a time t2 can be obtained from the value at a previous time t1 < t2 and the events
that have occurred between t1 and t2. In the particular case for sum of exponentials
kernels, we retrieve the intensity λi from the relation,

νi (t2| Ft2) = νi (t1| Ft1)exp(−βu(t2 − t1))+
D∑

j=1

∑
k:t1≤t

j
k<t

α
i j
u βu exp(−βu(t − t j

k)),

where we denote by t j
k the k-th event of the node j . This relation naturally also

holds for exponential kernels. It makes the simulation procedure much more efficient
as it is no more required to look each time at all the previous events to evaluate the
intensity. The complexity is hence linear instead of quadratic in NT in the general
case.

25

I. Background on Hawkes processes

Log-likelihood. The Markov property also leads to a fast computation of the log-
likelihood of Hawkes processes with exponential kernels. The log-likelihood of a
multivariate point process is the sum of the log-likelihood expressed in Equation (I.1)
over all nodes. For i = 1, . . . ,D , each term of the sum writes, with the sum of expo-
nentials parametrization,

− logLi (µ,α,FT) =µi T +
D∑

j=1

U∑
u=1

α
i j
u G i

u −
N i

T∑
k=1

log
(
µi +

D∑
j=1

U∑
u=1

α
i j
u g j

u(t i
k)

)
where

g j
u(t) = ∑

l :t
j
l <t

βu exp
(−βu(t − t j

l)
)

and G i
u =

∫ T

0
g i

u(s)ds

for i , j = 1, . . . ,D and u = 1, . . .U . Hence, with all precomputed weights g and G , the
computational cost of the likelihood is in O (U DNT) where NT is the total number of
events that have occurred across all nodes. This is much better than the complexity
of the generic computation which is quadratic in NT . Then, the Markov property
allows the weights g to be computed in linear time using this induction

g j
u(t i

k) = g j
u(t i

k−1)exp(−βu(t i
k − t i

k−1))+ ∑
l :t i

k−1≤t
j
l <t i

k

βu exp(−βu(t i
k − t j

l)),

for k = 1, . . . , N i
T , i , j = 1, . . . ,D and u = 1, . . .U , while the weights G simply writes

G i
u = N i

T − ∑
k:t i

k<T

exp
(−βu(T − t i

k)
)

for i = 1, . . .D and u = 1, . . .U . Finally like the likelihood, the cost of the precomputa-
tion of the weights is in O (U DNT).

Least squares error. The least squares error of a multivariate point process is also
the sum of the least square errors (I.2) of the conditional intensities of the D counting
processes. It benefits from weights precomputation for a quicker evaluation too. For
i = 1, . . . ,D , each term of the sum writes

R i (µ,α,FT) =µi 2
T +2µi

D∑
j=1

U∑
u=1

α
i j
u G j

u +
D∑

j=1

U∑
u=1

U∑
u′=1

α
i j
u α

i j
u′K

j
uu′

+2
D∑

j=1

D∑
j ′=1

U∑
u=1

U∑
u′=1

α
i j
u α

i j ′
u′ Λ

j j ′
uu′ −2µi N i

T −2
D∑

j=1

U∑
u=1

α
i j
u

N i
T∑

k=1
g j

u(t i
k),

26

2. Hawkes processes

where the new weights K and Λ are given in Proposition 1. The computation com-
plexity of the weights Λ is O (DU 2NT) and is the bottleneck of the precomputation
phase. This complexity is U times bigger than for the log likelihood, but once these
weights are calculated, the computation of the error has a complexity of O (D3U 2)
which is independent of the total number of events. Hence, any level of precision can
be reached with D ×U 2 passes on the data. This makes this error very useful when
the number of studied events is very large. Also, once the weights are precomputed
this quadratic function is very easy to optimize in contrary to the log-likelihood func-
tion where the logarithmic term is problematic (see Chapter IV). Let’s detail in the
following proposition the writings of the weights K and Λ.

Proposition 1. For a Hawkes process with sum of exponentials parametrization, the cross
term integral can be decomposed in the following two terms∫ T

0

D∑
j=1

D∑
j ′=1

U∑
u=1

U∑
u′=1

α
i j
u α

i j ′
u′ g j

u(t)g j ′
u′(t)dt

=
D∑

j=1

U∑
u=1

U∑
u′=1

α
i j
u α

i j
u′K

j
uu′ +2

D∑
j=1

D∑
j ′=1

U∑
u=1

U∑
u′=1

α
i j
u α

i j ′
u′ Λ

j j ′
uu′

where g j
u(t) = ∑

l :t
j
l <t

βu exp
(−βu(t − t j

l)
)
for j = 1, . . . ,D and u = 1, . . . ,U and the

weights K and Λ are expressed as follow

K j
uu′ =

∑
(l :t

j
l <T)

βuβu′

βu +βu′

(
1−exp

(− (βu +βu′)(T − t j
l)

))

Λ
j j ′
uu′ =

∑
(l :t

j
l <T)

βu

βu +βu′
g j ′

u′(t j
l)

(
1−exp

(− (βu +βu′)(T − t j
l)

))
for j , j ′ = 1, . . . ,D and u,u′ = 1, . . .U .

Proof. For any function f :R2 →R symmetric in its two variables, we have the follow-
ing relation that simply consists in reordering the terms,

D∑
j=1

D∑
j ′=1

∑
(l :t

j
l <T)

∑
(l ′:t j ′

l ′ <T)

f (t j
l , t j ′

l ′) =
D∑

j=1

D∑
j ′=1

∑
(l :t

j
l <T)

∑
(l ′:t j ′

l ′ ≤t
j
l)

f
(
t j

l , t j ′
l ′

)(
2 ·1

t
j ′
l ′ <t

j
l

+1
t

j ′
l ′ =t

j
l

)
.

As all timestamps are distinct, the indicator function 1
t

j ′
l ′ =t

j
l

more simply rewrites

1 j= j ′,l=l ′ . Here, the weights K correspond to the terms 1
t

j ′
l ′ =t

j
l

of the sum, Λ to the

terms 1
t

j ′
l ′ <t

j
l

, and f is set to

f (t j
l , t j ′

l ′) =
U∑

u=1

U∑
u′=1

βu exp
(−βu(t − t j

l)
)
βu′ exp

(−βu′(t − t j ′
l ′)

)
.

27

I. Background on Hawkes processes

If we introduce,

Hu,u′
(
t j

l , t j ′
l ′

)= ∫ T

t
j
l

βu exp
(−βu(t − t j

l)
)
βu′ exp

(−βu′(t − t j ′
l ′)

)
dt

= βuβu′

βu +βu′
exp

(−βu′(t j
l − t j ′

l ′)
)(

1−exp
(− (βu +βu′)(T − t j

l)
))

for u,u′ = 1, . . .D , both weights K and Λ can be expressed as

K j
uu′ =

∑
(l :t

j
l <T)

Hu,u′
(
t j

l , t j
l

)
and Λ

j j ′
uu′ =

∑
(l :t

j
l <T)

∑
(l ′:t j ′

l ′ <t
j
l)

Hu,u′
(
t j

l , t j ′
l ′

)

for i , j , j ′ = 1, . . . ,D and u,u′ = 1, . . .U . Finally, the writing of the weights Λ can be
optimized using the precomputed weights g leading to the expression given in the
proposition statement. ■

In the following example, we use the tick library (see Chapter V) to highlight
the properties of the least-squares goodness-of-fit. First, we simulate a 30 nodes
Hawkes process whose kernels are parametrized with sum of exponentials. Then we
retrieve the generating parameters by minimizing the least squares error. Finally, we
evaluate the estimated parameters by comparing them to the generating one with the
estimation error, namely

Estimation error=
D∑

i , j=1

U∑
u=1

(
α

i j
u − α̂i j

u
)2,

where α̂i j
u is the estimated value of αi j

u for i , j = 1, . . . ,D and u = 1, . . .U .

28

2. Hawkes processes

from tick.hawkes import SimuHawkesSumExpKernels, HawkesSumExpKern

Parameters

n_nodes, n_decays = 30, 3

baselines = np.random.rand(n_nodes) / n_nodes

decays = np.random.rand(n_decays)

adjacency = np.random.rand(n_nodes, n_nodes, n_decays)

Simulation

hawkes = SimuHawkesSumExpKernels(

baseline=baselines, decays=decays, adjacency=adjacency)

hawkes.adjust_spectral_radius(0.8)

hawkes.max_jumps = 100000

hawkes.simulate()

Estimation

learner = HawkesSumExpKern(decays=decays, tol=1e-4)

learner.fit(hawkes.timestamps)

estimation_error = np.linalg.norm(hawkes.adjacency - learner.adjacency)**2

In Figure I.2, this experiment has been repeated multiple times with different
settings. First, different sub-samples of 30000, 100000, 300000 and 1000000 events
have been considered leading to more or less big datasets. Second, we vary the
precision levels, meaning that we stop the optimization procedure when the gain
in term of least square error becomes lower than this level. To present the results,
we have split the fitting time into the weights computation and the optimization
timings. Figure I.2 illustrates several expected behaviors. To begin with, while the
weights computation time (a) grows with the number of events, the optimization time
(b) depends only on the precision level and is not the bottleneck anymore when the
sample is big (see sample 1000K in which the weights computation step is much longer
than the optimization). Moreover, for all precision levels, the estimation error (c) gets
lower when the sample size increases. However, low precisions procedures cannot
reach the best estimation errors. For example, in (c) with a 10−2 (resp. 10−4) precision
level we cannot reach an estimation error lower than 0.4 (resp. 0.2). Finally, even if
reaching high precision levels is not very costly, it can though lead to overfitting as
illustrated in (c) where level 10−6 has poor performance on the smallest sample 30K
but has the best ones on the biggest sample 1000K.

29

I. Background on Hawkes processes

30K 100K 300K 1000K
events

 (a)

0

1

2

3

tim
e

(s
)

Weights computation

30K 100K 300K 1000K
events

 (b)

0

1

2

3

tim
e

(s
)

Optimization

30K 100K 300K 1000K
events

 (c)

0.0

0.2

0.4

0.6
Estimation error

Precision
10 2

10 4

10 6

Figure I.2: Timings and estimation errors for various sample sizes and precision
levels. This figure illustrates that the optimization phase in O (D3U 2) is independent
on the sample size NT (b) and can be cheaper than the precomputation phase (a). It
also highlights the overfitting possibility while combining high precision levels with
too small datasets (c).

30

CHAPTER II

Sparse and low-rank multivariate
Hawkes processes

Abstract

We consider the problem of unveiling the implicit network structure of node
interactions (such as user interactions in a social network), based only on high-
frequency timestamps. Our inference is based on the minimization of the least-
squares loss associated with a multivariate Hawkes model, penalized by `1 and
trace norm of the interaction tensor. We provide a first theoretical analysis for
this problem, that includes sparsity and low-rank inducing penalizations. This
result involves a new data-driven concentration inequality for matrix martingales
in continuous time with observable variance, which is a result of independent
interest and a broad range of possible applications since it extends to matrix
martingales former results restricted to the scalar case. A consequence of our
analysis is the construction of sharply tuned `1 and trace-norm penalizations,
that leads to a data-driven scaling of the variability of information available
for each users. Numerical experiments illustrate the significant improvements
achieved by the use of such data-driven penalizations.

1 Introduction

Understanding the dynamics of social interactions is a challenging problem of rapidly
growing interest [dMB04, Les08, CS08, LBK09] because of the large number of appli-
cations in web-advertisement and e-commerce, where large-scale logs of event history
are available. A common supervised approach consists in the prediction of labels
based on declared interactions (friendship, like, follower, etc.). However such super-
vision is not always available, and it does not always describe accurately the level
of interactions between users. Labels are often only binary while a quantification of

31

II. Sparse and low-rank multivariate Hawkes processes

the interaction is more interesting, declared interactions are often deprecated, and
more generally a supervised approach is not enough to infer the latent communities
of users, as temporal patterns of actions of users are much more informative.

For latent social groups recovering, several recent papers [RBS11, GRLS13, DRSS14]
consider an approach directly based on the real actions or events of users (referred
to as nodes in the following) that are fully identified through their corresponding
user id and timestamp. These models assume a structure of data consisting in a
sequence of independent cascades, containing the timestamp of each node. In these
works, techniques coming from survival analysis are used to derive a tractable convex
likelihood, that allows one to infer the latent community structure. However, they
require that data are already segmented into sets of independent cascades, which is
often unrealistic. Moreover, it does not allow for recurrent events, namely a node
can be infected only once, and it cannot incorporate exogenous factors, i.e., influence
from the world outside the network.

Another approach is based on self-exciting point processes, such as the Hawkes
process [Haw71b]. Previously used for geophysics [Oga98], high-frequency finance
[BDHM13, BMM15], crime activity [MSB+11], these processes have been recently used
for the modelization of users activity in social networks, see for instance [CS08,
BBH12, ZZS13a, YZ13]. The structure of the Hawkes model allows us to capture
the direct influence of a specific user’s action on all the future actions of all the
users (including himself). It encompasses in a single likelihood the decay of the
influence over time, the levels of interaction between nodes, which can be seen as a
weighted asymmetrical adjacency matrix, and a baseline intensity, that measures the
level of exogeneity of a user, namely the spontaneous apparition of an action, with
no influence from other nodes of the network.

In this paper, we consider such a multivariate Hawkes process (MHP), and we
combine convex proxies for sparsity and low-rank of the adjacency tensor and the
baseline intensities, that are now of common use in low-rank modeling in collabo-
rative filtering problems [CT04, CT10]. Note that this approach is also considered
in [ZZS13a]. We provide a first theoretical analysis of the generalization error for
this problem, see [HRBR15] for an analysis including only entrywise `1 penalization.
Namely, we prove a sharp oracle inequality for our procedure, that includes sparsity
and low-rank inducing priors, see Theorem 4 in Section 5. This result involves a
new data-driven concentration inequality for matrix martingales in continuous time,
see Theorems 2 and 3 in Section 3.3, that are results of independent interest, that
extends previous non-commutative versions of concentration inequalities for martin-
gales in discrete time, see [Tro12]. A consequence of our analysis is the construction
of sharply tuned `1 and trace-norm penalizations, that leads to a data-driven scaling
of the variability of information available for each node. We give empirical evidence
of the improvements of our data-driven penalizations, by conducting in Section 6 nu-

32

2. The multivariate Hawkes model and the least-squares functional

merical experiments on simulated data. Since the objectives involved are convex with
a smooth component, our algorithms build upon standard batch proximal gradient
descent algorithms.

2 The multivariate Hawkes model and the
least-squares functional

Consider a finite network with d nodes (each node corresponding to a user in a
social network for instance). For each node j ∈ {1, . . . ,d}, we observe the timestamps
{t j ,1, t j ,2, . . .} of actions of node j on the network (a message, a click, etc.). With
each node j is associated a counting process N j (t) =∑

i≥11t j ,i≤t and we consider the
d-dimensional counting process Nt = [N1(t) · · · Nd (t)]>, for t ≥ 0. We observe this
process for t ∈ [0,T]. Each N j has an intensity λ j , meaning that

P
(
N j has a jump in [t , t +d t] |Ft

)=λ j (t)d t , j = 1, . . . ,d ,

where Ft is the σ-field generated by N up to time t . The multivariate Hawkes model
assumes that each N j has an intensity λ j ,θ given by

λ j ,θ(t) =µ j +
d∑

j ′=1

∫
(0,t)

ϕ j , j ′(t − s)dN j ′(s), (II.1)

where µ j ≥ 0 is the baseline intensity of j (i.e., the intensity of exogenous events of
node j) and where the functions ϕ j , j ′ :R+ →R for j = 1, . . . ,d , called kernels, allow to
quantify the impact of node j ′ on node j . Note that the integral used in Equation (II.1)
is a Stieljes integral, namely it simply stands for∫

(0,t)
ϕ(t − s)dN j ′(s) = ∑

i : t j ′,i∈[0,t)
ϕ(t − t j ′,i).

In the paper, we consider general kernel functions ϕ j , j ′(t) that can be written as:

ϕ j , j ′(t) =
K∑

k=1
a j , j ′,k h j , j ′,k (t). (II.2)

where the coefficients a j , j ′,k are the entries of a d ×d ×K tensor A (i.e., (A) j , j ′,k =
a j , j ′,k) and the kernels h j , j ′,k (t) are elements of a fixed dictionnary of non nega-
tive and causal functions (h j , j ′,k : R+ → R+) such that ‖h j , j ′,k‖1 = 1. In that respect,
the weights a j , j ′,1, . . . , a j , j ′,K all quantify the influence of j ′ on j , but the particular
weight a j , j ′,k quantifies it for the k-th decay function h j , j ′,k . A standard choice is a

33

II. Sparse and low-rank multivariate Hawkes processes

dictionnary of exponential kernels, h j , j ′,k (t) =αk e−αk t with varying memory param-
eters α1, . . . ,αK . This leads to the following standard parametrization of the kernel
functions, called exponential kernels:

ϕ j , j ′(t) =
K∑

k=1
a j , j ′,kαk exp(−αk t). (II.3)

The main advantage of exponential kernels with fixed memory parameters α1, . . . ,αK ,
is that it allows one to handle a convex problem. In the general case or when the
memory parameters are unknown, the problem becomes non-convex, more challeng-
ing and is beyond the scope of the paper.

The parameter of interest is the self-excitement tensor A, which can be viewed
as a cross-scale (for k = 1, . . . ,K) weighted adjacency matrix of connectivity between
nodes, as illustrated in Figure II.1 below.

0 25 50 75 100 125 150 175 200

0 1
0
1

0

2

4

6

8

0

0 2 4 6 8

(aj, j ′, 0)0 j, j ′ d

0 2 4 6 8

(aj, j ′, 1)0 j, j ′ d

0 2 4 6 8

(aj, j ′, 2)0 j, j ′ d

Figure II.1: Toy example with d = 10 nodes. Based on actions’ timestamps of the
nodes, represented by vertical bars (top), we aim at recovering the vector µ0 and the
tensor A of implicit influence between nodes (bottom).

The Hawkes model is particularly relevant for the modelization of the “micro-
scopic” activity of social networks and has attracted a lot of interest in the recent

34

2. The multivariate Hawkes model and the least-squares functional

literature (see [CS08, BBH12, ZZS13a, YZ13, LA14, DBS13, BBH12, ISG13], among oth-
ers) for this kind of application, with a particular emphasis on [HRBR15] that gives
first theoretical results for the Lasso used with Hawkes processes with an application
to neurobiology. The main point is that this simple autoregressive structure of the
intensity allows us to capture the direct influence of a user, based on the recurrence
and the patterns of his actions, by separating the intensity into a baseline and a self-
exciting component, hence allowing to filter exogeneity in the estimation of users’
influences on each others.

We introduce in this paper an estimation procedure of θ = (µ,A) based on data
{Nt : t ∈ [0,T]}. The hidden structure underlying the observed actions of nodes is
contained in A. Our strategy is based on the least-squares functional given by

RT (θ) = ‖λθ‖2
T − 2

T

d∑
j=1

∫
[0,T]

λ j ,θ(t)dN j (t), (II.4)

with respect to θ, where ‖λθ‖2
T = 1

T

∑d
j=1

∫
[0,T]λ j ,θ(t)2 dt is the norm associated with

the inner product

〈λθ,λθ′〉T = 1

T

d∑
j=1

∫
[0,T]

λ j ,θ(t)λ j ,θ′(t)dt . (II.5)

This least-squares function is very natural, and comes from the empirical risk mini-
mization principle [VDG00, Mas07, Kol11, BM06]: assuming that N j has an unknown
ground truth intensity λ j (not necessarily following the Hawkes model), the Doob-
Meyer’s decomposition gives∫

[0,T]
λ j ,θ(t)dN j (t) =

∫
[0,T]

λ j ,θ(t)λ(t)dt +
∫

[0,T]
λ j ,θ(t)dM j (t),

where M j (t) = N j (t)−∫ t
0 λ(s)ds is a continuous-time martingale with upwards jumps

of +1. Since the “noise” term
∫

[0,T]λ j ,θ(t)dM j (t) is centered, we obtain

E[RT (θ)] = E‖λθ‖2
T −2E〈λθ,λ〉T = E‖λθ−λ‖2

T −‖λ‖2
T ,

so that we expect a minimizer θ̂ of RT (θ) to lead to a good estimation λθ̂ of λ,
following the empirical risk minimization principle. As explained in Section 8 below,
the noise terms can be written as ∫ t

0
Ts ◦dM s ,

for a specific tensor Tt and matrix martingale M t , where Ts ◦M s stands for a tensor-
matrix product defined in Section 3.1 below. The next Section introduces new results,
of independent interest, providing data-driven deviation inequalities for the operator

35

II. Sparse and low-rank multivariate Hawkes processes

norm of a matrix martingale defined as the stochastic integral
∫ t

0 Ts ◦dM s . These
results allow us, as a by-product, to control the noise terms arising in the application
considered in this paper, and lead to a sharp data-driven tuning of the penalizations
used on A, as explained in Section 4 below.

3 A new data-driven matrix martingale Bernstein’s
inequality

An important ingredient for the theoretical results proposed in this paper is an ob-
servable deviation inequality for continuous time matrix martingales. We first recall
previous results obtained in [BGM18] about non-observable deviation inequalities for
such objects.

3.1 Notations

Let T be a tensor of shape m ×n ×p ×q . It can be considered as a linear mapping
from Rp×q to Rm×n according to the following “tensor-matrix” product:

(T◦ A)i , j =
p∑

k=1

q∑
l=1
Ti , j ;k,l Ak,l .

We will denote by T> the tensor such that T> ◦ A = (T ◦ A)> (i.e., T>
i , j ;k,l = T j ,i ;k,l)

and by T•,•;k,l and Ti , j ;•,• the matrices obtained when fixing the indices k, l and
i , j respectively. Note that (T◦ A)i , j = tr(Ti , j ;•,•A>). If T and T′ are two tensors of
dimensions m×n×p×q and n×r ×p×q respectively, TT′ stands for the m×r ×p×q
tensor defined as (TT′)i , j ;k,l = (T•,•;k,lT

′
•,•;k,l)i , j . Accordingly, for an integer r ≥ 1, if

T•,•;a,b are square matrices, we will denote by Tr the tensor such that (Tr)i , j ;k,l =
(Tr

•,•;k,l)i , j . We also introduce ‖T‖op;∞ = maxk,l ‖T•,•;k,l‖op, the maximum operator
norm of all matrices formed by the first two dimensions of tensor T.

In this paper we shall consider the class of m ×n matrix martingales that can be
written as

ZT(t) =
∫ t

0
Ts ◦dM s , (II.6)

where Ts is a tensor with dimensions m ×n ×p ×q , whose components are assumed
to be locally bounded predictable random functions. The process M t is a p × q
matrix with entries that are square integrable martingales with a diagonal quadratic
covariation matrix. More explicitly, the entries of ZT(t) are given by

(ZT(t))i , j =
p∑

k=1

q∑
l=1

∫ t

0
(Ts)i , j ;k,l (dM s)k,l ,

36

3. A new data-driven matrix martingale Bernstein’s inequality

where the martingale M t is a matrix of compensated counting processes M t = N t−λt

where N t is a p × q matrix counting process (i.e., each component is a counting
process) with an intensity process λt which is predictable, continuous and with finite
variations (FV).

3.2 A non-observable matrix martingale Bernstein’s inequality

The next Theorem (which is a small variation of Theorem 2 in [BGM18]) provides a
concentration inequality for ‖ZT(t)‖op, the operator norm of ZT(t). Before stating
the Theorem, let us introduce some more notations. We define

bT(t) = sup
0≤s≤t

max
(‖Ts‖op;∞,‖T>

s ‖op;∞
)
,

and depending on whether the tensor Ts is symmetric (i.e., T>
s =Ts and m = n) or

not, we define the following.

• If Ts is symmetric, we define

W T(s) =T2
s ◦λs

and Km,n = m

• If Ts is not symmetric, we define

W T(s) =
[
TsT

>
s ◦λs 0
0 T>

s Ts ◦λs

]
, (II.7)

and Km,n = m +n.

In both cases, we define

V T(t) =
∫ t

0
W T(s) ds.

Finally, all along the paper we denote φ(x) = ex − 1− x for x ∈ R. The following
concentration inequality is an easy consequence of Theorem 1 from [BGM18] where
λmax(A) denotes the largest eigenvalue of the matrix A.

Theorem 1. Let ZT(t) be the m×n matrix martingale given by Equation (II.6). Moreover,
assume that

E
[∫ t

0

φ
(
3max(‖Ts‖op;∞,‖T>

s ‖op;∞)
)

max(‖Ts‖2
op;∞,‖T>

s ‖2
op;∞)

(W T(s))i , j ds
]
<+∞,

37

II. Sparse and low-rank multivariate Hawkes processes

for any 1 ≤ i , j ≤ m +n. Then for any ξ ∈ (0,3), t ,b, x > 0, the following holds:

P
[
‖ZT(t)‖op ≥ φ(ξ)

ξb
λmax

(
V T(t))+ xb

ξ
, bT(t) ≤ b

]
≤ Km,ne−x . (II.8)

Optimizing this last inequality on ξ gives

P
[
‖ZT(t)‖op ≥p

2v x + bx

3
,λmax(V T(t)) ≤ v, bT(t) ≤ b

]
≤ Km,ne−x . (II.9)

The proof of Theorem 1 is given in Section 8.1 below. This result is a Freedman
(or Bernstein) inequality for the operator norm of ZT(t), that provides a deviation
based on a variance term V T(t) and a L∞ term bT(t). It is a strong generalization of
the scalar Freedman inequality for continuous time martingales, and this result match
exactly the scalar case whenever ZT(t) is scalar. A more thorough discussion about
the consequences of this result is provided in [BGM18].

3.3 Data-driven matrix martingale Bernstein’s inequalities

Inequality (II.9) is of poor practical interest in situations where one observes only the
jumping times of the Z t components (namely N t) and not the stochastic intensity λt .
In that respect, one needs a "data driven" inequality where V T(t) is replaced by its
empirical version V̂ T(t).

• If Ts is symmetric, we define

V̂ T(t) =
∫ t

0
T2

s ◦dN s ,

• while if Ts is not symmetric, we define

V̂ T(t) =
[∫ t

0 TsT
>
s ◦dN s 0

0
∫ t

0 T
>
s Ts ◦dN s

]
.

The next Proposition allows us to control λmax(V T(t)) using its observable counter-
part λmax(V̂ T(t)) with a large probability. This result is a generalization to arbitrary
matrices of dimensions m×n of an analog inequality originally proven by Hansen et
al. [HRBR15] for scalar martingales.

Proposition 1. For any x,b > 0 and ξ ∈ (0,3) such that ξ>φ(ξ), we have

P
[
λmax(V T(t)) ≥ ξ

ξ−φ(ξ)
λmax(V̂ T(t))+ xb2

ξ−φ(ξ)
, bT(t) ≤ b

]
≤ Km,ne−x ,

38

4. The procedure

where Km,n is defined as in Theorem 1. Moreover, choosing ξ=−W−1(−2
3 e−2/3)−2/3 (note

that ξ≈ 0.762), where W−1 is the second branch of the Lambert W function, leads to

P
[
λmax(V T(t)) ≥ 2λmax(V̂ T(t))+ cb2x, bT(t) ≤ b

]
≤ Km,ne−x

for any x,b > 0, with c = 2.62.

Thanks to Proposition 1, we can establish an analog of Theorem 1 where
λmax(V T(t)) is replaced by its data-driven version λmax(V̂ T(t)), up to a slight loss in
values of the numerical constants.

Theorem 2. With the same notations and assumptions as in Theorem 1 one has

P
[
‖ZT(t)‖op ≥ 2

p
v x + cbx, λmax(V̂ T(t)) ≤ v, bT(t) ≤ b

]
≤ 2Km,ne−x (II.10)

for any x,b > 0 with c = 14.39.

The proof of Theorem 2 is given in Section 8.3 below. It follows simple arguments
that combine Theorem 1 and Proposition 1. However, this inequality is stated on the
events {λmax(V̂ T(t)) ≤ v} and {bT(t) ≤ b}, while an unconditional deviation inequality
is more practical. Such a result, which involves some extra technicalities, is stated in
the next Theorem.

Theorem 3. With the same conditions and notations as in Theorem 2, one has

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(x +`x(t))+ c(x +`x(t))(1+bT(t))

]
≤Cm,ne−x (II.11)

where Cm,n = π4

18log(2)4 Km,n ≤ 23.45Km,n , where c = 14.39 and

`x(t) = 2loglog
(4λmax(V̂ T(t))

x
∨2

)
+2loglog(4bT(t)∨2).

The proof of this Theorem is given in Section 8.4. It is a result of independent in-
terest, that gives a control on the operator norm of a matrix martingale in continuous
time (with jumps at most 1), using only observable quantities. Along with [BGM18],
it provides a first deviation inequality for such objects, and it can be understood as a
data-driven version of the results given in [BGM18].

4 The procedure

We want to produce an estimation procedure of θ = (µ,A) based on data from
{Nt : t ∈ [0,T]}. Following the empirical risk minimization principle, the estimation

39

II. Sparse and low-rank multivariate Hawkes processes

procedure uses the least-squares functional (II.4) as a goodness-of-fit. In addition to
this goodness-of-fit criterion, we need to use a penalization that allows us to reduce
the dimensionality of the model, namely we consider

θ̂ ∈ argmin
θ=(µ,A)∈Rd+×Rd×d×K+

{
RT (θ)+pen(θ)

}
, (II.12)

for a specific penalization function pen(θ) described below. In particular, we want
to reduce the dimensionality of A, based on the prior assumption that latent factors
explain the connectivity of users in the network. This leads to a low-rank assump-
tion on A, which is commonly used in collaborative filtering and matrix completion
techniques [RRS11]. Our prior assumptions on µ and A are the following.

Sparsity of µ. Some nodes are basically inactive and react only if stimulated.
Hence, we assume that the baseline intensity vector µ is sparse.

Sparsity of A. A node interacts only with a fraction of other nodes, meaning that
for a fixed node j , only a few a j , j ′,k are non-zero. Moreover, a node might react at
specific time scales only, namely a j , j ′,k is non-zero for some k only for fixed j , j ′.
Hence, we assume that A is an entrywise sparse tensor.

Low-rank of A. Using together Equations (II.1) and (II.2), one can write

λ j ,θ(t) =µ j +
d∑

j ′=1

K∑
k=1

a j , j ′,k

∫
(0,t)

h j , j ′,k (t − s)dN j ′(s)

=µ j +
(

hstack(A) j ,•)> hstack(H(t)) j ,•,

(II.13)

where H(t) is the d ×d ×K tensor with entries

H j , j ′,k (t) =
∫

(0,t)
h j , j ′,k (t − s)dN j ′(s), (II.14)

where (X) j ,• stands for the j -th row of a matrix X and where hstack stands for the
horizontally stacking operator defined by

hstack :Rd×d×K →Rd×K d such that hstack(A) = [
A•,•,1 · · · A•,•,K

]
, (II.15)

where A•,•,k stands for the d ×d matrix with entries (A•,•,k) j , j ′ =A j , j ′,k . In view of
Equation (II.13), all the impacts of nodes j ′ at time scale k on node j is encoded in
the j -th row of the d ×K d matrix hstack(A). Therefore, a natural assumption is that
the matrix hstack(A) has a low-rank: we assume that there exist latent factors that
explain the way nodes impact other nodes through the different scales k = 1, . . . ,K .

40

4. The procedure

To induce these prior assumptions on the parameters, we use a penalization
based on a mixture of the `1 and trace-norms. These norms are respectively the
tightest convex relaxations for sparsity and low-rank, see for instance [CT04, CT10].
They provide state-of-the art results in compressed sensing and collaborative filtering
problems, among many other problems. These two norms have been previously com-
bined for the estimation of sparse and low-rank matrices, see for instance [RGV14]
and [ZZS13a] in the context of MHP. Therefore, we consider the following penalization
on the parameter θ = (µ,A):

pen(θ) = ‖µ‖1,ŵ +‖A‖1,Ŵ+ τ̂‖hstack(A)‖∗, (II.16)

where each terms are entrywise weighted `1 and trace-norm penalizations given by

‖µ‖1,ŵ =
d∑

j=1
ŵ j |µ j |, ‖A‖1,Ŵ = ∑

1≤ j , j ′≤d ,1≤k≤K

Ŵ j , j ′,k |A j , j ′,k |, ‖A‖∗ =
d∑

j=1
σ j (A),

where the σ1(A) ≥ ·· · ≥ σd (A) are the singular values of a matrix A (we take A =
hstack(A) in the penalization). The weights ŵ , Ŵ, and coefficients τ̂ are data-driven
tuning parameters described below. The choice of these weights comes from a sharp
analysis of the noise terms and lead to a data-driven scaling of the variability of
information available for each nodes.

From now on, we fix some confidence level x > 0, which corresponds to the proba-
bility that the oracle inequality from Theorem 4 holds (see Section 5 below). This can
be safely chosen as x = logT for instance, as described in our numerical experiments
(see Section 6 below).

Weight τ̂ for the trace-norm penalization of hstack(A). This weight comes from
Corollary 1 (see Section 8.5). Let us introduce the d ×K d matrix H(t) = hstack(H(t))
where H(t) is the d ×d ×K tensor defined by (II.14) and hstack is the horizontally
stacking operator defined by (II.15). Let us also recall that ‖ · ‖2 is the `2-norm, and
define ‖H‖∞,2 = max1≤ j≤d ‖H j ,•‖2 where H j ,• stands for the j -th row of H . We
define

τ̂= 4

√
λmax(V̂ (T)/T)(x + log(2d)+`τ(T))

T

+28.78
x + log(2d)+`τ(T))(1+ sup0≤t≤T ‖H(t)‖∞,2)

T

(II.17)

where

λmax(V̂ (T)) =λmax

(∫ T

0
H>(s)H(s)diag(dN (s))

) ∨
max

j=1,...,d

∫ T

0
‖H j ,•(t)‖2

2 dN j (s),

41

II. Sparse and low-rank multivariate Hawkes processes

and where

`τ(T) = 2loglog
(4λmax(V̂ (T))

x
∨2

)
+2loglog

(
4 sup

0≤t≤T
‖H(t)‖∞,2 ∨2

)
,

where we used the notation a ∨b = max(a,b) for a,b ∈R.

Weights ŵ j for `1-penalization of µ. These weights are given by

ŵ j = 6

√
(N j (T)/T)(x + logd +` j (T))

T
+86.34

x + logd +` j (T)

T
(II.18)

with ` j (T) = 2loglog(
4N j (T)

x ∨ 2))+ 2loglog4. The weighting of each coordinate j
in the penalization of µ is natural: it is roughly proportional to the square-root of
N j (T)/T , which is the average intensity of events on coordinate j . The term ` j (T) is
a technical term, that can be neglected in practice, see Section 6.

Weights Ŵ j , j ′k for `1-penalization of A. Recall that the tensor H is given by (II.14).
The weights Ŵ j , j ′k are given by

Ŵ j , j ′,k = 4

√
1
T

∫ T
0 H j , j ′,k (t)2 dN j (t)(x + log(K d 2)+L j , j ′,k (T))

T

+28.78
(x + log(K d 2)+L j , j ′,k (T))(1+ sup0≤t≤T |H j , j ′,k (t)|)

T

(II.19)

where L j , j ′,k (T) = 2loglog
(4

∫ T
0 H j , j ′,k (t)2 dN j (t)

x ∨2
)+2loglog(4sup0≤t≤T |H j , j ′,k (t)| ∨2).

Once again, this is natural: the variance term
∫ T

0 H j , j ′,k (t)2 dN j (t) is, roughly, an
estimation of the variance of the self-excitements between coordinates j and j ′ at
time scale k . The term L j , j ′,k (T) is a technical term that can be neglected in practice.

These weights are actually quite natural: the terms λmax(V̂ (T)) and∫ T
0 H j , j ′,k (t)2 dN j (t) correspond to estimations of the noise variance, that are the L2

terms appearing in the empirical Bernstein’s inequalities given in Section 3.3. The
terms sup0≤t≤T ‖H(t)‖∞,2 and sup0≤t≤T |H j , j ′,k (t)| correspond to the L∞ terms from
these Bernstein’s inequalities. Once again, these data-driven weights lead to a sharp
tuning of the penalizations, as illustrated numerically in Section 6 below.

5 A sharp oracle inequality

Recall that the inner product 〈λ1,λ2〉T is given by (II.5) and recall that ‖ · ‖T stands
for the corresponding norm. Theorem 4 below is a sharp oracle inequality on the

42

5. A sharp oracle inequality

prediction error measured by ‖λθ̂ −λ‖2
T . For the proof of oracle inequalities with

a fast rate, one needs a restricted eigenvalue condition on the Gram matrix of the
problem [BRT09, Kol11]. One of the weakest assumptions considered in literature is
the Restricted Eigenvalue (RE) condition. In our setting, a natural RE assumption is
given in Definition 1 below. First, we need to introduce some simple notations and
definitions.

Some notations and definitions. If a,b (resp. A,B and A,B) are vectors (resp.
matrices and tensors) of the same size, we always denote by 〈a,b〉 (resp. 〈A,B〉 and
〈A,B〉) their inner products. For matrices this can be written as 〈A,B〉 =∑

i , j Ai , j B i , j =
tr(A>B), where tr stands for the trace, while for (say, three dimensional) tensors we
write similarly 〈A,B〉 = ∑

i , j ,kAi , j ,kBi , j ,k . We define the Euclidean norm (Frobenius)
for tensors and matrices simply as ‖A‖F =p〈A, A〉 and ‖A‖F =p〈A,A〉. If W (resp.
W) is a matrix (resp. tensor) with positive entries, we introduce the weighted entrywise
`1-norm given by ‖A‖1,W = 〈W , |A|〉, (resp. ‖A‖1,W = 〈W, |A|〉) where |A| (resp. |A|)
contains the absolute values of the entries of A (resp. A). If A is a vector, matrix or
tensor then ‖A‖0 is the number of non-zero entries of A, while supp(A) stands for
the support of A (indices of non-zero entries). For another vector, matrix or tensor A′

with the same shape, the notation [A′]supp(A) stands for the vector, matrix or tensor
with the same coordinates as A′ where we put 0 at indices outside of supp(A). We
also use the notation u ∨ v = max(u, v) for a,b ∈R.

If A = UΣV > is the SVD of a m ×n matrix A, with the columns u j of U and
vk of V being, respectively, the orthonormal left and right singular vectors of A,
the projection matrix onto the space spanned by the columns (resp. rows) of A is
given by PU = UU> (resp. P V = V V >). The operator P A : Rm×n → Rm×n given by
P A(B) = PU B +B P V −PU B P V is the projector onto the linear space spanned by the
matrices u j x> and y v>

k for all 1 ≤ j ,k ≤ rank(A) and x ∈ Rn , y ∈ Rm . The projector
onto the orthogonal space is given by P ⊥

A (B) = (I −PU)B (I −P V).

Definition 1. Fix θ = (µ,A) where µ ∈ Rd and A ∈ Rd×d×K+ and define A = hstack(A).
We define the constant κ(θ) ∈ (0,+∞] such that, for any θ′ = (µ′,A′) and A′ = hstack(A′)
satisfying

1

3
‖(µ′)supp(µ)⊥‖1,ŵ + 1

2
‖(A′)supp(A)⊥‖1,Ŵ+ 1

2
τ̂‖P ⊥

A (A′)‖∗

≤ 5

3
‖(µ′)supp(µ)‖1,ŵ + 3

2
‖(A′)supp(A)‖1,Ŵ+ 3

2
τ̂‖P A(A′)‖∗,

we have
‖(µ′)supp(µ)‖2 ∨‖(A′)supp(A)‖F ∨‖P A(A′)‖F ≤ κ(θ)‖λθ′‖T .

The constant 1/κ(θ) is a restricted eigenvalue depending on the “support” of θ,
which is naturally associated with the problem considered here. Roughly, it requires

43

II. Sparse and low-rank multivariate Hawkes processes

that for any parameter θ′ that has a support close to the one of θ (measured by
domination of the `1 norms outside the support of θ by the `1 norm inside it), we
have that the L2 norm of the intensity given by ‖λθ′‖T can be compared with the L2

norm of θ′ in the support of θ. Note that for a given θ, we simply allow κ(θ) =+∞,
so the restricted eigenvalue is zero, whenever the inequality is not met (which makes
in such a case the statement of Theorem 4 trivial).

Theorem 4. Fix x > 0, and let θ̂ be given by (II.12) and (II.16) with tuning parameters
given by (II.17), (II.18) and (II.19). Then, the inequality

‖λθ̂−λ‖2
T ≤ inf

θ=(µ,A)

{
‖λθ−λ‖2

T +1.25κ(θ)2
(
‖(ŵ)supp(µ)‖2

2

+‖(Ŵ)supp(A)‖2
F + τ̂2 rank(hstack(A))

)}
holds with a probability larger than 1−70.35e−x .

The proof of Theorem 4 is given in Section 8.5 below. Note that no assumption
is required on the ground truth intensity λ of the multivariate counting process N
in Theorem 4. Moreover, if one forgets in Section 4 about the negligible terms
`τ(T),` j (T) and L j , j ′,k (T) and if one keeps only the dominating L2 terms in O(1/T)
(while L∞ terms are O(1/T 2) in the large T regime), we obtain upper bounds, up to
numerical constants (denoted .), for the terms involved in Theorem 5:

‖(ŵ)supp(µ)‖2
2 . ‖µ‖0 max

j∈supp(µ)

1
T N j (T)(x + logd)

T
,

where ‖µ‖0 stands for the sparsity of µ,

‖(Ŵ)supp(A)‖2
F . ‖A‖0 max

(j , j ′,k)∈supp(A)

1
T

∫ T
0 H j , j ′,k (t)2 dN j (t)(x + log(K d 2))

T
,

where ‖A‖0 stands for the sparsity of A, and finally

τ̂2 . rank(hstack(A))
1
T λmax(V̂ (T))(x + log(2d))

T
.

Hence, Theorem 4 proves that θ̂ achieves an optimal trade-off between approximation
and complexity, where the complexity is, roughly, measured by

‖µ‖0(x + logd)

T
max

j

N j (T)

T
+ ‖A‖0(x + log(K d 2))

T
max
j , j ′,k

1

T

∫ T

0
H j , j ′,k (t)2 dN j (t)

+ rank(hstack(A))(x + log(2d))

T

1

T
λmax(V̂ (T)).

44

6. Numerical experiments

0 1
0
1

0

5

10

15

20

25

0

0 5 10 15 20 25

(ai, j, 0)0 i, j d

0 5 10 15 20 25

(ai, j, 1)0 i, j d

0 5 10 15 20 25

(ai, j, 2)0 i, j d

Figure II.2: Ground truth µ vector and A matrix in dimension 30 and number of
ticks per node after a simulation over an interval of time of 20000

Note that typically K ≤ d so that log(K d 2) ≤ 3logd , which means that log(K d 2) scales
as logd . The complexity term depends on both the sparsity of A and the rank of
hstack(A). The rate of convergence has the “expected” shape (logd)/T , recalling
that T is the length of the observation interval of the process, and these terms are
balanced by the empirical variance terms coming out of the new concentration results
given in Section 3.3 above.

6 Numerical experiments

In this Section we conduct experiments on synthetic datasets to evaluate the perfor-
mance of our method, based on the proposed data-driven weighting of the penaliza-
tions, compared to non-weighted penalizations [ZZS13a]. Throughout this Section, we
consider the most widely used sum of exponentials kernel, defined in Equation (II.3).

Simulation setting. We generate Hawkes processes using Ogata’s thinning algo-
rithm [Oga81] with d = 30 nodes. Baseline intensities µ j are constant on blocks,
we use K = 3 basis kernels h j , j ′,k (t) = αk e−αk t with α1 = 0.5, α1 = 2 and α3 = 5.
The slices A•,•,1, A•,•,2 and A•,•,3 of the adjacency tensor A contains square overlap-
ping boxes, as illustrated in Figure II.2. These boxes correspond to the overlapping
communities reacting at different time scales. Each box is filled with constant val-
ues and the rest of the matrix contains zeros. The tensor A is rescaled so that the
operator norm of the matrix

∑3
k=1A•,•,k is equal to 0.8, guaranteeing to obtain a

stationary process. For each simulated data, we increase the length of the time inter-
val T = 5000,7000,10000,15000,20000, and fit each time the procedures. An overall
averaging of the results is computed on 100 separate simulations.

45

II. Sparse and low-rank multivariate Hawkes processes

Procedures. We consider a procedure based on the minimization of the least-
squares functional (II.4). This objective is convex, with a goodness-of-fit term which
is gradient-Lipschitz: we use first-order optimization algorithms, based on proximal
gradient descent. Namely, we use FISTA [BT09] for problems with a single penal-
ization on A (`1-norm) and GFB (generalized forward backward) [PLR+99] for mixed
`1 penalization of A and trace-norm penalization of hstack(A). For both procedures
we choose a fixed gradient step equal to 1/L where L is the Lipschitz constant of
the loss, namely the largest singular value of the Hessian (which is constant for this
least-squares functional). We limit our algorithms to 25,000 iterations and stop when
the objective relative decrease is less than 10−10 for FISTA and 10−7 for GFB. We only
penalize A and consider the following procedures:

• L1: non-weighted L1 penalization;

• wL1: weighted L1 penalization;

• L1Nuclear: non-weighted L1 penalization and trace-norm penalization;

• wL1Nuclear: weighted L1 penalization and trace-norm penalization.

Note that L1Nuclear is the same as the procedure considered in [ZZS13a], however,
we use a different optimization algorithm, based on an proximal gradient descent (a
first-order method, which is typically faster than an algorithm based on ADMM, as
proposed in [ZZS13a]). The data-driven weights used in our procedures are the ones
derived from our analysis, see (II.17) and (II.19), where we simply put x = logT . For
each metric, we tune the constant in front the `1 penalization, and the constant in
front of the trace-norm penalization in order to obtain the best possible metrics for
each procedure, on average over all separate simulations. Namely, there is no test set,
we simply display the best metrics obtained by each procedure for a fair comparison.
All experiments are done using our tick library for Python3, see Chapter V.

Metrics. The following metrics are considered in order to assess the procedures.

• Estimation error: the relative `2 estimation error of A, given by ‖Â−A‖2
2/‖A‖2

2

• AUC: we compute the AUC (area under the ROC curve) between the binarized
ground truth matrix A and the solution Â with entries scaled in [0,1]. This
allows us to quantify the ability of the procedure to detect the support of the
connectivity structure between nodes.

• Kendall: we compute Kendall’s tau-b between all entries of the ground truth
matrix A and the solution Â. This correlation coefficient takes value between
−1 and 1 and compare the number of concordant and discordant pairs. This

46

6. Numerical experiments

allows us to quantify the ability of the procedure to rank correctly the intensity
of the connectivity between nodes.

Results. In Figure II.3 we observe, on an instance of the problem, the strong im-
provements of wL1 and wL1Nuclear over L1 and L1Nuclear respectively. We observe in
particular that a sharp tuning of the penalizations, using data-driven weights, leads
to a much smaller number of false positives outside the node communities (better
viewed on a computer). In Figure II.4, we compare all the procedures in terms of
estimation error, AUC and Kendall coefficient and confirm the fact that weighted
penalizations systematically lead to an improvement, both over unweighted L1 and
L1Nuclear.

A comparison of the least-squares and likelihood functionals. This paper con-
siders, mostly for theoretical reasons, least-squares as a goodness-of-fit for the Hawkes
process. However, estimation in this model is usually achieved by minimizing the
goodness-of-fit given by the negative log-likelihood. In what follows, we provide
some numerical insights in order to compare objectively both approaches.

First, one can precompute for both functionals some weights in order to accelerate
future gradient and value computations. In both cases, the precomputations have
similar complexities, unless the number of kernels K is large (see Table II.1 below).
However, given such precomputations, a remarkable property of the least-squares
versus the log likelihood is that value and gradient computation is independent of
the total number of observed events (denoted n): complexity is O(K 2d 3) for least-
squares, while it is O(nK d) for log likelihood, which means that such computations
for least-squares is orders of magnitude faster, since typically n À K d 2 (one needs to
observe hundreds of events for each pair of nodes for a good inference of the model).
For instance, experiments used to produce Figures II.3 and II.4 for T = 20,000 use
about n ≈ 500,000 events, and d = 30,K = 3. The complexity of each operation
is described in Table II.1 below and a numerical illustration of this complexity is
displayed in Figure II.5, which confirms that computations with least-squares are
orders of magnitude faster than with log-likelihood. These complexities are detailed
in Chapter I.

Another important point is related to smoothness properties: the negative log-
likelihood does not satisfy the gradient-Lipschitz assumption, while this property is
required by most first order optimization algorithms to obtain convergence guarantees
and an easy tuning of the step-size used in gradient descent. Therefore, for the
negative log-likelihood, convergence can be very unstable, while on the contrary,
least-squares is gradient-Lipschitz and is easy to optimize since it is a quadratic
function. Note that Chapter IV proposes an alternative approach based on duality,
in particular for the negative log-likelihood of the Hawkes process. Herein one can

47

II. Sparse and low-rank multivariate Hawkes processes

0

5

10

15

20

25

0 (ai, j, 0)0 i, j d (ai, j, 1)0 i, j d (ai, j, 2)0 i, j d

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Original

L1

wL1

L1Nuclear

wL1Nuclear

Figure II.3: Ground truth tensor A and recovered tensors using all procedures. We
observe that wL1 and wL1Nuclear leads to a much better support recovery, as we
observe less false positives outside of the node communities.

48

6. Numerical experiments

0

5

10

15

20
Estimation error

0.7

0.8

0.9

1.0
AUC

0.2

0.4

0.6

Kendall

wL1
L1

5000 10000 15000 20000
T

0.05

0.06

0.07

0.08

0.09

5000 10000 15000 20000
T

0.90

0.95

1.00

5000 10000 15000 20000
T

0.50

0.55

0.60

wL1Nuclear
L1Nuclear

Figure II.4: Average metrics achieved by all procedures (and 95% confidence bands)
with increasing observation length T over repeated simulations. Weighted penal-
izations systematically lead to strong improvements, both for L1 and L1 + Nuclear
penalization.

5000 10000 15000 20000 25000 30000
T

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

(s
)

Weights computation

5000 10000 15000 20000 25000 30000
T

10 1

100

tim
e

in
 lo

g
sc

al
e

(s
)

100 loss computations

log-likelihood
least squares

Figure II.5: Average time needed for weights (left) and value computation (right) (and
95% confidence bands) for least squares and log-likelihood with precomputations, over
repeated simulations. We observe that value computations are order of magnitude
faster for least-squares (y-scale is logarithmic on the right hand side) and constant
with an increasing observation length, while it is strongly increasing for the log-
likelihood.

49

II. Sparse and low-rank multivariate Hawkes processes

pre-computation memory value gradient
Least squares O(nK 2d) O(K 2d 3) O(K 2d 3) O(K 2d 3)
Likelihood O(nK d) O(nK d) O(nK d) O(nK d)

Table II.1: From left to right: Weights precomputation complexity, memory storage,
value and gradient complexity for both functionals. Note that for least-squares, the
complexity of the value and the gradient with precomputed weights is independent
on the number of events n.

0 200 400 600 800 1000
iterations

10 7

10 5

10 3

Di
st

an
ce

 to
 o

pt
im

um

0 1 2 3 4 5 6 7
time (s)

ISTA log likelihood
FISTA log likelihood
ISTA least-squares
FISTA least-squares

T = 1000 (22616 events)

0 200 400 600 800 1000
iterations

10 7

10 6

10 5

10 4

10 3

10 2

Di
st

an
ce

 to
 o

pt
im

um

0 5 10 15 20 25 30 35
time (s)

ISTA log likelihood
FISTA log likelihood
ISTA least-squares
FISTA least-squares

T = 5000 (117058 events)

Figure II.6: Convergence speed of least squares and likelihood losses with ISTA and
FISTA optimization algorithms on two simulations of a Hawkes process with param-
eters from Figure II.2 with observation length T = 1000 (top) and T = 5000 (bottom).
Once again, we observe that the computations are much faster with least-squares, in
particular with a large observation length.

observe the strong instability of standard first order algorithms (such as the one
considered here) for the negative log-likelihood.

In Figure II.6 below, we compare the performances of ISTA and FISTA with
linesearch for automatic step-size tuning, both for least-squares and negative log-
likelihood. This figure confirms that the number of iterations required for least-
squares is much smaller than for the negative log-likelihood. This gap is even stronger
if we look at the computation times, since each iteration is computationally faster with
least squares, and even more so when the observation length increases.

In this Section, we compared least-squares and log-likelihood for the Hawkes

50

7. Conclusion

10 1 101

time (s)

0.1

0.2

0.3

0.4
Estimation error

10 1 101 103

time (s)

0.80

0.85

0.90

0.95

AUC

10 1 101

time (s)

0.4

0.5

0.6

0.7

0.8
Kendall

ISTA log likelihood
FISTA log likelihood
ISTA least-squares
FISTA least-squares

Figure II.7: Metrics achieved by least squares and log-likelihood estimators after
precomputations. We observe that log-likelihood achieves a slightly better AUC and
Estimation Error, but with larger computational cost (x-axis are on a logarithmic
scale).

process through a computational perspective only, and concluded that least-squares is
typically order of magnitude faster. Now, let us compare the statistical performances
of both approaches on the same simulation setting as before, with T = 20,000, using
the metrics defined above, namely Estimation Error, AUC and Kendall. We simply use
for this L1 penalization on A, with a strength parameter tuned for each metric and
for each goodness-of-fit. In Figure II.7, we observe that both functionals roughly
achieve the same performance measured by the Kendall coefficient, but that the
negative log-likelihood achieves a slightly better AUC and estimation error than least-
squares, at a larger computational cost. The slightly better statistical performance of
maximum likelihood is not surprising, since vanilla maximum likelihood is known to
be statistically efficient asymptotically for Hawkes processes, see [Oga78], while up to
our knowledge, vanilla least-squares estimator is not. This leads to the conclusion
that least squares are a very good alternative to maximum likelihood when dealing
with a large number of events: statistical accuracy is only slightly deteriorated, but
the computational cost is order of magnitudes smaller, and convergence is much more
stable.

7 Conclusion

In this paper we proposed a careful analysis of the generalization error of the mul-
tivariate Hawkes process. Our theoretical analysis required a new concentration in-
equality for matrix-martingales in continuous time, with an observable variance term,
which is a result of independent interest. This analysis led to a new data-driven tuning
of sparsity-inducing penalizations, that we assessed on a numerical example. Future
works will focus on other theoretical results for non-convex matrix factorization tech-

51

II. Sparse and low-rank multivariate Hawkes processes

niques applied to this problem.

Acknowledgments

This research benefited from the support of the “Chair Markets in Transition”, under
the aegis of “Louis Bachelier Finance and Sustainable Growth” laboratory, a joint
initiative of École Polytechnique, Université d’Évry Val d’Essonne and Fédération
Bancaire Francaise.

8 Proofs

This Section contains the proofs of all the results given in the paper. First, we
prove the statements concerned with deviation inequalities, namely Theorems 1, 2,
Proposition 1 and Theorem 3. Then, we give the proof of Theorem 4, concerning the
oracle inequality for the procedure.

8.1 Proof of Theorem 1

In [BGM18], a deviation inequality is proven in a slightly more general setting than
the one considered in this paper. There are mainly two differences.

• This paper considers only counting processes with uniform jumps of size 1
whereas in [BGM18], jump sizes are controlled by a predictable process J .
Therefore, it suffices to set J = 1 and C s = 1 in Equations (2) and (3) of [BGM18],
where 1 stands for the all-ones matrices with relevant shapes.

• In [BGM18], the deviation inequality is proved in a general context where no
symmetry is assumed on Ts . It forces to consider a symmetric version of W T(s)
as in Eq. (II.7) increasing the dimension of the working space by a factor of
2, which leads to less precise deviation inequality. In this paper we consider
both cases, symmetric and non symmetric, in order to obtain slightly better
constants (see the definition of Km,n).

With those two differences in mind, following carefully the proof of the concentration
inequality in [BGM18] (see the beginning of Appendix B.1 herein) one gets

P
[λmax(S (Z t))

b
≥ 1

ξ
λmax

(∫ t

0

φ
(
ξJmax‖C s‖∞ max(‖Ts‖op;∞,‖T>

s ‖op;∞)b−1
)

J 2
max‖C s‖2∞ max(‖Ts‖2

op;∞,‖T>
s ‖2

op;∞)
W s ds

)
+ x

ξ
,

bT(t) ≤ b
]
≤ (m +n)e−x ,

52

8. Proofs

where ξ ∈ (0,3) and λmax(S (Z t)) = ‖Z ‖op (see the beginning of Appendix B.1
in [BGM18]). Setting J = 1, C = 1 and taking care of the symmetric case at the same
time as the non symmetric one, one gets:

P
[‖Z t‖op

b
≥ 1

ξ
λmax

(∫ t

0

φ
(
ξmax(‖Ts‖op;∞,‖T>

s ‖op;∞)b−1
)

max(‖Ts‖2
op;∞,‖T>

s ‖2
op;∞)

W s ds
)
+ x

ξ
,

bT(t) ≤ b
]
≤ Km,ne−x ,

using the definitions Km,n and W s introduced previously (depending on the
symmetric properties of the tensor Ts). Let us note that on {bT(t) ≤ b} one has
max(‖Ts‖op;∞,‖T>

s ‖op;∞)b−1 ≤ 1 for any s ∈ [0, t]. Thus, since φ(xh) ≤ h2φ(x) for
any h ∈ [0,1] and x > 0, one gets

P
[‖Z t‖op

b
≥ φ(ξ)

ξb2
λmax

(∫ t

0
W s ds

)
+ x

ξ
, bT(t) ≤ b

]
≤ Km,ne−x

and finally

P
[
‖Z t‖op ≥ φ(ξ)

ξb
λmax(V t)+ xb

ξ
, bT(t) ≤ b

]
≤ Km,ne−x

which proves the first part of the Theorem. The second part (i.e., Inequality (II.9))
can be obtained following some standard tricks (see e.g. [Mas07]):

(i) on (0,3), φ(ξ) ≤ ξ2

2(1−ξ/3) and

(ii) minξ∈(0,1/c)
(aξ

1−cξ + x
ξ

)= 2
p

ax + cx for any a,c, x > 0.

Thus applying (i) leads to

P
[
‖Z t‖op ≥ ξ

2b(1−ξ/3)
λmax(V t)+ xb

ξ
, bT(t) ≤ b

]
≤ Km,ne−x

or equivalently

P
[
‖Z t‖op ≥ ξ

2b(1−ξ/3)
v + xb

ξ
, λmax(V t) ≤ v, bT(t) ≤ b

]
≤ Km,ne−x .

Then optimizing on ξ using (ii) with c = 1/3 and a = v/2b2, one gets

P
[
‖Z t‖op ≥p

2v x + xb

3
, λmax(V t) ≤ v, bT(t) ≤ b

]
≤ Km,ne−x

which concludes the proof of Theorem 1. ■

53

II. Sparse and low-rank multivariate Hawkes processes

8.2 Proof of Proposition 1

This Proposition provides a deviation between λmax(V (t)) and λmax(V̂ (t)). Let us
notice that it is a generalization to arbitrary matrices of dimensions m ×n of an
analog inequality originally proven by Hansen et al. [HRBR15] for scalar martingales
(i.e., in dimension 1). The proof below follows the same lines as these authors. The
proof is based on the observation that the difference V T(t)−V̂ T(t) can be written as
a martingale ZH(t)

V T(t)− V̂ T(t) = ZH(t) =
∫ t

0
Hs ◦dM s ,

where
Hs =T2

s

when Ts is symmetric, while

Hs =
[
TsT

>
s 0

0 T>
s Ts

]
if Ts is not symmetric. Then applying Eq. (II.8) of Theorem 1 to the martingale
ZH(t) (we are in the symmetric case of the Theorem since H>

s =Hs), one gets

P
[
‖ZH(t)‖op ≥ φ(ξ)

ξb
λmax

(
VH(t))+ xb

ξ
, bH(t) ≤ b

]
≤ Km,ne−x ,

with

VH(t) =
∫ t

0
H2

s ◦λs ds . (II.20)

Since
‖ZH(t)‖op ≥λmax(V T(t))−λmax(V̂ T(t)),

we have

P
[
λmax(V T(t)) ≥λmax(V̂ T(t))+ φ(ξ)

ξb
λmax

(
VH(t))+ xb

ξ
, bH(t) ≤ b

]
≤ Km,ne−x ,

(II.21)
One can first notice that, from the definitions of H and bT(t), one has bH(t) ≤ b2

T
(t).

Moreover, since
TsT

>
s 4 b2

T(s)I m and T>
s Ts 4 b2

T(s)I n

for all s, we have from Eq. (II.20),

VH(t)4 b2
T(t)V T(t)

54

8. Proofs

and therefore
λmax(VH(t)) ≤ b2

T(t)λmax(V T(t)).

Inequality (II.21) then gives:

P
[
λmax(V T(t)) ≥λmax(V̂ T(t))+ φ(ξ)

ξ
λmax(V T(t))+ xb2

ξ
, bT(t) ≤ b

]
≤ Km,ne−x ,

and thus

P
[
λmax(V T(t)) ≥ ξλmax(V̂ T(t))

ξ−φ(ξ)
+ xb2

ξ−φ(ξ)
, bT(t) ≤ b

]
≤ Km,ne−x ,

which proves the first inequality stated in Proposition 1. Now, an easy computation
proves that the choice ξ=−W−1(−2

3 e−2/3)−2/3 ≈ 0.762 provides the second desired
inequality. ä

8.3 Proof of Theorem 2

Introduce the set

Et = {λmax(V T(t)) ≤ 2λmax(V̂ T(t))+2.62b2x}.

We know from Proposition 1 that P[EÙ
t ,bT(t) ≤ b] ≤ Km,ne−x . Now, on the set

Et ∩ {λmax(V̂ T(t)) ≤ v}∩ {bT(t) ≤ b}

we have
φ(ξ)

ξb
λmax(V (t))+ xb

ξ
≤ φ(ξ)

ξb
2v + bx

ξ
+ 2.62φ(3)

3
bx

for any ξ ∈ (0,3), since ξ 7→ φ(ξ)/ξ is increasing. Using again points (i) and (ii) from
Section 8.1 proves that the minimum for ξ ∈ (0,3) of the right hand size of this last
inequality is equal to

2
p

v x + 2.62φ(3)+1

3
xb ≤ 2

p
v x + cxb

with c = 14.39. Now, the conclusion easily follows from the following decomposition:

P
[
‖ZT(t)‖op ≥ 2

p
v x + cbx, λmax(V̂ T(t)) ≤ v, bT(t) ≤ b

]
≤P[EÙ

t ,bT(t) ≤ b]+P
[
‖ZT(t)‖op ≥ 2

p
v x + cbx, Et , λmax(V̂ T(t)) ≤ v, bT(t) ≤ b

]
≤ Km,ne−x +P

[
‖Z t‖op ≥ ξ

2b(1−ξ/3)
λmax(V t)+ xb

ξ
, bT(t) ≤ b

]
≤ 2Km,ne−x ,

where we used Equation (II.8) from Theorem 1 in the last inequality. ■

55

II. Sparse and low-rank multivariate Hawkes processes

8.4 Proof of Theorem 3

In order to prove this theorem, we are going to use peeling arguments. For any ε> 0
and z > 0 we define the interval

Iz,ε = [z, z(1+ε)].

Let, v0,b0,ε > 0 and let us define v j = v0(1+ε) j , b j = b0(1+ε) j . Let us define also
the events

V−1 = {λmax(V̂ T(t)) ≤ v0}, B−1 = {bT(t) ≤ b0},

and
V j = {λmax(V̂ T(t)) ∈Iv j ,ε}, B j = {bT(t) ∈Ib j ,ε}

for any j ∈N. We set v0 = w0x, then, from Equation (II.10), one gets successively

P
[
‖ZT(t)‖op ≥ x

(
2
p

w0 + cb0
)
,V−1 ∩B−1

]
≤ 2Km,ne−x

P
[
‖ZT(t)‖op ≥ x

(
2
p

w0 + c(1+ε)bT(t)
)
,V−1 ∩B j

]
≤ 2Km,ne−x

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1+ε)x + cxb0,Vi ∩B−1

]
≤ 2Km,ne−x

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1+ε)x + c(1+ε)xbT(t),Vi ∩B j

]
≤ 2Km,ne−x

for all i , j ≥ 0. If one denotes A = 2
p

w0/c +b0, previous inequalities entail, for any
i , j ≥−1:

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1+ε)x + c(1+ε)(A+bT(t))x,Vi ∩B j

]
≤ 2Km,ne−x .

(II.22)
Let α> 0 and define

`x(t) =α log
(

log
(λmax(V̂ T(t))

w0x
(1+ε)2∨(1+ε)

))
+α log

(
log

(bT(t)

b0
(1+ε)2∨(1+ε)

))
.

Since, ∀i , j ≥−1, λmax(V̂ T(t)) ≥ xw0(1+ε)i (1−δ−1,i) and bT(t) ≥ b0(1+ε) j (1−δ−1, j)
on Vi ∩B j , then one has

`x(t) ≥ `i , j = log
(
(i +2)α(j +2)α(log(1+ε))2α

)
on Vi ∩B j

for any i , j ≥−1. Then making the change of variable x ← x +`i , j in (II.22) gives

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1+ε)(x +`i , j)+ c(1+ε)(A+bT(t))(x +`i , j), Vi ∩B j

]
≤ 2Km,ne−xe−`i , j

56

8. Proofs

and then

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1+ε)(x +`x(t))+ c(1+ε)(x +`x(t))(A+bT(t)), Vi ∩B j

]
≤ 2Km,n

[
log(1+ε)

]−2αe−x[
(i +2)(j +2)

]−α
for any i , j ≥−1. Since the whole probability space can be partitioned as

⋃
i , j∈≥−1 Vi ∩

B j , one has finally

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1+ε)(x +`x(t))+ c(1+ε)(x +`x(t))(A+bT(t))

]
=

∞∑
i , j=−1

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1+ε)(x +`x(t))

+ c(1+ε)(x +`x(t))(A+bT(t)), Vi ∩B j

]
≤ 2Km,n

[
log(1+ε)

]−2α(∞∑
i=1

i−α
)2e−x .

Finally, choosing ε= b0 = w0 = 1 and α= 2 leads to Equation (II.11) and concludes the
proof of the Theorem. ■

8.5 Proof of Theorem 4

If A,B are vectors, matrices or tensors of matching dimensions, we denote by A ¯B
their entrywise product (Hadamard product). We recall also that A j ,• the j -th row of
a matrix A and recall that ‖A‖∞,2 = max j ‖A j ,•‖2. The proof is based on the proof
of a sharp oracle inequality for trace norm penalization, see [KLT11] and [Kol11]. We
endow the space Rd ×Rd×d×K with the inner product

〈θ,θ′〉 = 〈µ,µ′〉+〈A,A′〉,

where θ = (µ,A) and θ′ = (µ′,A′) with 〈µ,µ′〉 =µ>µ′ and

〈A,A′〉 = ∑
1≤ j , j ′≤d
1≤k≤K

A j , j ′,kA
′
j , j ′,k .

We denote for short a j , j ′,k =A j , j ′,k . For any θ, one has

〈∇RT (θ̂), θ̂−θ〉 = 2
∑

1≤ j≤d
(µ̂ j −µ j)

∂RT (θ̂)

∂µ̂ j
+ ∑

1≤ j , j ′≤d
1≤k≤K

(â j , j ′,k −a j , j ′,k)
∂RT (θ̂)

∂â j , j ′,k
.

57

II. Sparse and low-rank multivariate Hawkes processes

Let us recall that H j , j ′,k (t) = ∫
(0,t) h j , j ′,k (t − s)dN j ′(s). Since

∂λ j ,θ(t)

∂µ j
= 1 and

∂λ j ,θ(t)

∂a j , j ′,k
=H j , j ′,k (t),

we have that the derivatives of the empirical risk are given by

∂RT (θ̂)

∂µ j
= 2

T

(∫ T

0
λ j ,θ̂(t)dt −

∫ T

0
dN j (t)

)
and

∂RT (θ̂)

∂a j , j ′,k
= 2

T

(∫ T

0
H j , j ′,k (t)λ j ,θ̂(t)dt −

∫ T

0
H j , j ′,k (t)dN j (t)

)
.

It leads to

〈∇RT (θ̂), θ̂−θ〉 = 2

T

d∑
j=1

∫ T

0
(λ j ,θ̂(t)−dN j (t))(µ̂ j −µ j)

+ 2

T

∑
1≤ j , j ′≤d
1≤k≤K

∫ T

0
H j , j ′,k (t)(λ j ,θ̂(t)−dN j (t))(â j , j ′,k −a j , j ′,k)

= 2

T

d∑
j=1

∫ T

0
(λ j ,θ̂(t)−λ j ,θ(t))(λ j ,θ̂(t)dt −dN j (t)).

Let us remind that M j (t) = N j (t)−∫ t
0 λ j (s)ds are martingales coming from the Doob-

Meyer decomposition, so that dM j (t) = dN j (t)−λ j (t)dt . So, recalling that

〈 f , g 〉T = 1

T

∑
1≤ j≤d

∫
[0,T]

f j (t)g j (t)dt ,

we obtain the decomposition

〈∇RT (θ̂), θ̂−θ〉 = 2〈λθ̂−λθ,λθ̂−λ〉T − 2

T

d∑
j=1

∫ T

0
(λ j ,θ̂(t)−λ j ,θ(t))dM j (t).

Namely, we end up with

2〈λθ̂−λθ,λθ̂−λ〉T = 〈∇RT (θ̂), θ̂−θ〉+ 2

T

d∑
j=1

∫ T

0
(λ j ,θ̂(t)−λ j ,θ(t))dM j (t). (II.23)

The parallelogram identity gives

2〈λθ̂−λθ,λθ̂−λ〉T = ‖λθ̂−λ‖2
T +‖λθ̂−λθ‖2

T −‖λθ−λ‖2
T ,

58

8. Proofs

where we put ‖ f ‖2
T = 〈 f , f 〉T . Let us point out that, in the case 〈λθ̂−λθ,λθ̂−λ〉T < 0,

one obtains
‖λθ̂−λ‖2

T ≤ ‖λθ−λ‖2
T ,

which directly implies the inequality of the Theorem. Thus, from now on, let us
assume that

〈λθ̂−λθ,λθ̂−λ〉T ≥ 0.

The first order condition for θ̂ ∈ argminθ{RT (θ)+pen(θ)} gives

−∇RT (θ̂) ∈ ∂pen(θ̂).

Let θ̂∂ = −∇RT (θ̂). Since the subdifferential is a monotone mapping, we have 〈θ̂−
θ, θ̂∂−θ∂〉 ≥ 0 for any θ∂ ∈ ∂pen(θ). Thus from (II.23), one gets ∀θ∂ ∈ ∂pen(θ),

2〈λθ̂−λθ,λθ̂−λ〉T ≤−〈θ∂, θ̂−θ〉+ 2

T

d∑
j=1

∫ T

0
(λ j ,θ̂(t)−λ j ,θ(t))dM j (t). (II.24)

We need now to characterize the structure of the subdifferentials involved in pen(θ),
to describe θ∂. If g1(µ) =∑d

j=1 ŵ j |µ j |, for ŵ j ≥ 0, we have

∂g1(µ) =
{

ŵ ¯ sign(µ)+ ŵ ¯ f : ‖ f ‖∞ ≤ 1,µ¯ f = 0
}

. (II.25)

If g2(A) =∑
1≤ j , j ′≤d ,1≤k≤K Ŵ j , j ′,k |A j , j ′,k |, for Ŵ j , j ′,k ≥ 0, we have

∂g2(A) =
{
Ŵ¯ sign(A)+Ŵ¯F : ‖F‖∞ ≤ 1,A¯F= 0

}
. (II.26)

Now let A = hstack(A) and Â = hstack(Â). Let us recall that if A = UΣV > is the
SVD of A, we have P A(B) = PU B +B P V −PU B P V and P ⊥

A (B) = (I −PU)B (I −P V)
(projection onto the column and row space of A and projection onto its orthogonal
space). Now, for g3(A) = τ̂‖A‖∗, we have

∂g3(A) =
{
τ̂UV >+ τ̂P ⊥

A (F) : ‖F‖op ≤ 1
}

, (II.27)

see for instance [Lew95]. Now, write

−〈θ∂, θ̂−θ〉 =−〈µ∂, µ̂−µ〉−〈A∂,1,Â−A〉−〈A∂,∗, Â − A〉
with µ∂ ∈ ∂g1(µ), A∂,1 ∈ ∂g2(A) and A∂,∗ ∈ ∂g3(A). Using Equation (II.25), (II.26)
and (II.27), we can write

−〈θ∂, θ̂−θ〉 =−〈ŵ ¯ sign(µ), µ̂−µ〉−〈ŵ ¯ f , µ̂−µ〉
−〈Ŵ¯ sign(A),Â−A〉−〈Ŵ¯F1,Â−A〉
− τ̂〈UV >, Â − A〉− τ̂〈F∗,P ⊥

A (Â − A)〉,

59

II. Sparse and low-rank multivariate Hawkes processes

where by duality between the norms ‖·‖1 and ‖·‖∞, and between ‖·‖∗ and ‖·‖op, we
can choose f ,F1 and F∗ such that

〈ŵ ¯ f , µ̂−µ〉 = ‖(µ̂−µ)supp(µ)⊥‖1,ŵ , 〈Ŵ¯F1,Â−A〉 = ‖(Â−A)supp(A)⊥‖1,Ŵ

and
〈F∗,P ⊥

A (Â − A)〉 = ‖P ⊥
A (Â − A)‖∗,

which leads to

−〈θ∂, θ̂−θ〉 ≤ ‖(µ̂−µ)supp(µ)‖1,ŵ −‖(µ̂−µ)supp(µ)⊥‖1,ŵ

+‖(Â−A)supp(A)‖1,Ŵ−‖(Â−A)supp(A)⊥‖1,Ŵ

+ τ̂‖P A(Â − A)‖∗− τ̂‖P ⊥
A (Â − A)‖∗.

Now, we decompose the noise term of (II.24):

2

T

d∑
j=1

∫ T

0
(λ j ,θ̂(t)−λ j ,θ(t))dM j (t)

= 2

T

d∑
j=1

(µ̂ j −µ j)
∫ T

0
dM j (t)+ 2

T

∑
1≤ j , j ′≤d
1≤k≤K

(â j , j ′,k −a j , j ′,k)
∫ T

0
H j , j ′,k (t)dM j (t)

= 2

T
〈µ̂−µ, M(T)〉+ 2

T
〈Â−A,Z(T)〉,

where M(T) = [M1(T) · · ·Md (T)]> and where Z(T) is the d ×d ×K tensor with entries

Z j , j ′,k (T) =
∫ T

0
H j , j ′,k (t)dM j (t).

Recall that hstack is the horizontally stacking operator defined by (II.15). The follow-
ing upper bounds

|〈µ̂−µ, M(T)〉| ≤
d∑

j=1
|µ̂ j −µ j ||M j (T)|

|〈Â−A,Z(T)〉| ≤ ∑
1≤ j , j ′≤d
1≤k≤K

|Â j , j ′,k −A j , j ′,k ||Z j , j ′,k (T)|

|〈Â−A,Z(T)〉| = 〈hstack(Â−A),hstack(Z(T))〉 ≤ ‖hstack(Z(T))‖op‖hstack(Â−A)‖∗,

entail that we need to upper bound the three terms

|M j (T)|, |Z j , j ′,k (T)| and ‖hstack(Z(T))‖op

60

8. Proofs

by data-driven quantities. Let us start with ‖hstack(Z(T))‖op. Denote for short
Z (t) = hstack(Z(t)) and H(t) = hstack(H(t)) where H(t) is defined by (II.14). We note
that

Z (t) =
∫ t

0
diag(dM(s))H(s),

namely

(Z (t)) j , j ′+(k−1)d =
∫ t

0
(H(t − s)) j , j ′,k dM j (s)

for any 1 ≤ j , j ′ ≤ d and 1 ≤ k ≤ K . We need the following corollary.

Corollary 1. The following deviation inequality holds

P
[
‖Z (t)‖op ≥ 2

√
λmax(V̂ (t))(x + log(2d)+`(t))

+14.39(x + log(2d)+`(t))(1+ sup
0≤s≤t

‖H(s)‖∞,2)
]
≤ 23.45e−x ,

where

λmax(V̂ (t)) =λmax

(∫ t

0
H>(s)H(s)diag(dN (s))

) ∨
max

j=1,...,d

∫ t

0
‖H j ,•(s)‖2

2 dN j (s),

and where

`(t) = 2loglog
(4λmax(V̂ (t))

x
∨2

)
+2loglog

(
4 sup

0≤s≤t
‖H(s)‖∞,2 ∨2

)
.

The proof of Corollary 1 is given in Section 8.6 below. Corollary 1 proves that
1
T ‖Z (t)‖op ≤ τ̂

2 holds with probability 1−23.45e−x , with

τ̂= 4

√
λmax(V̂ (T)/T)(x + log(2d)+`(T))

T

+28.78
x + log(2d)+`(T))(1+ sup0≤t≤T ‖H(t)‖∞,2)

T
,

which leads to the choice of τ̂ given in Section 4. This entails that, on an event of
probability larger than 1−23.45e−x , we have

1

T
|〈Â−A,Z(T)〉| ≤ τ̂

2
‖hstack(Â−A)‖∗.

Using again Corollary 1 with H(t) ≡ 1 (constant number equal to 1) and M = M j gives

that 1
T |M j (T)| ≤ ŵ j

3 for all j = 1, . . . ,d with probability 1−23.45e−x with

ŵ j = 6

√
(N j (T)/T)(x + logd +` j (T))

T
+86.34

x + logd +` j (T)

T
,

61

II. Sparse and low-rank multivariate Hawkes processes

with ` j (T) = 2loglog(
4N j (T)

x ∨2)+2loglog4. This entails that, on an event of proba-
bility larger than 1−23.45e−x , we have

2

T
|〈µ̂−µ, M(T)〉| ≤ 2

3
‖µ̂−µ‖1,ŵ .

Using a last time Corollary 1 with H(t) = H j , j ′,k (t) and M = M j gives 1
T |Z j , j ′,k (T)| ≤

Ŵ j , j ′,k
2 uniformly for j , j ′,k for

Ŵ j , j ′,k = 4

√
1
T

∫ T
0 H j , j ′,k (t)2 dN j (t)(x + log(K d 2)+L j , j ′,k (T))

T

+28.78
(x + log(K d 2)+L j , j ′,k (T))(1+ sup0≤t≤T |H j , j ′,k (t)|)

T
,

where

L j , j ′,k (T) = 2loglog
(4

∫ T
0 H j , j ′,k (t)2 dN j (t)

x
∨2

)
+2loglog

(
4 sup

0≤t≤T
|H j , j ′,k (t)|∨2

)
,

which entails that on an event of probability larger than 1−23.45e−x , we have

1

T
|〈Â−A,Z(T)〉| ≤ 1

2
‖Â−A‖1,Ŵ.

This entails that, with a probability larger than 1−3×23.45e−x , one has

0 ≤−〈θ∂, θ̂−θ〉+ 2

T

d∑
j=1

∫ T

0
(λ j ,θ̂(t)−λ j ,θ(t))dM j (t)

≤ 5

3
‖(µ̂−µ)supp(µ)‖1,ŵ − 1

3
‖(µ̂−µ)supp(µ)⊥‖1,ŵ

+ 3

2
‖(Â−A)supp(A)‖1,Ŵ− 1

2
‖(Â−A)supp(A)⊥‖1,Ŵ

+ 3

2
τ̂‖P A(Â − A)‖∗− 1

2
τ̂‖P ⊥

A (Â − A)‖∗,

where we recall once again that A = hstack(A) and Â = hstack(Â). This matches the
constraint of Definition 1 with µ′ = µ̂−µ and A′ = Â−A, so that it entails

‖(µ̂−µ)supp(µ)‖2 ∨‖(Â−A)supp(A)‖F ∨‖P A(Â − A)‖F ≤ κ(θ)‖λθ̂−λθ‖T . (II.28)

62

8. Proofs

Putting all this together gives

−〈θ∂,θ̂−θ〉+ 2

T
〈µ̂−µ, M(T)〉+ 2

T
〈Â−A,Z(T)〉

≤ 5

3
‖(µ̂−µ)supp(µ)‖1,ŵ − 1

3
‖(µ̂−µ)supp(µ)⊥‖1,ŵ

+ 3

2
‖(Â−A)supp(A)‖1,Ŵ− 1

2
‖(Â−A)supp(A)⊥‖1,Ŵ

+ 3

2
τ̂‖P A(Â − A)‖∗− 1

2
τ̂‖P ⊥

A (Â − A)‖∗

≤ 5

3
‖(ŵ)supp(µ)‖2‖(µ̂−µ)supp(µ)‖2 + 3

2
‖(Ŵ)supp(A)‖F‖(Â−A)supp(A)‖F

+ 3

2
τ̂
√

rank(A)‖P A(Â − A)‖F ,

where we used Cauchy-Schwarz’s inequality. This finally gives

‖λθ̂−λ‖2
T ≤ ‖λθ−λ‖2

T −‖λθ̂−λθ‖2
T

+κ(θ)
(5

3
‖(ŵ)supp(µ)‖2 + 3

2
‖(Ŵ)supp(A)‖F + 3

2
τ̂
√

rank(A)
)
‖λθ̂−λθ‖T

where we used (II.28). The conclusion of the proof of Theorem 4 follows from the
fact that ax −x2 ≤ a2/4 for any a, x > 0.

8.6 Proof of Corollary 1

We simply use Theorem 3. First, we remark that Z (t) = ∫ t
0 T(s)◦diag(dM(s)) for the

tensor T(t) of size d ×K d ×d ×d given by

(T(t))i , j ;k,l = (I)i ,k (H(t))l , j (II.29)

for 1 ≤ i ,k, l ≤ d and 1 ≤ j ≤ K d . Note that we have

T•,•;k,l (t) = ek H l ,•(t)> and T•,•;k,l (t)> = H l ,•(t)e>
k (II.30)

where ek ∈ Rd stands for the k-th element of the canonical basis of Rd and where
H l ,•(t) ∈RK d stands for the vector corresponding to the l -th row of the matrix H(t).
Therefore, we have

T•,•;k,l (t)T>
•,•;k,l (t) = ‖H l ,•(t)‖2

2ek e>
k and T>

•,•;k,l (t)T•,•;k,l (t) = H l ,•(t)H l ,•(t)>

and therefore

‖T•,•;k,l (t)‖op =
√
λmax(T•,•;k,l (t)T>

•,•;k,l (t)) = ‖H l ,•(t)‖2

63

II. Sparse and low-rank multivariate Hawkes processes

and
‖T(t)‖op;∞ = max

1≤l≤d
‖H l ,•(t)‖2 = ‖H(t)‖∞,2.

One can prove in the same way that ‖T>(t)‖op;∞ = ‖H(t)‖∞,2, so that for this choice
of tensor T(t), we have bT(t) = ‖H(t)‖∞,2. Now, let us explicit what V̂ T(t) is for the
tensor (II.29). First, let us remind that

V̂ T(t) =
[∫ t

0 T(s)T>(s)◦diag(dN (s)) 0
0

∫ t
0 T

>(s)T(s)◦diag(dN (s))

]
.

Using (II.30) we get

(T(t)T(t)>)•,•;,k,l = ek H l ,•(t)>H l ,•(t)e>
k = ‖H l ,•(t)‖2

2ek e>
k

so that
∫ t

0 (T(s)T>(s))◦diag(dN (s)) is the diagonal matrix with entries

(∫ t

0
(T(s)T>(s))◦diag(dN (s))

)
j , j

=
∫ t

0
‖H j ,•(s)‖2

2 dN j (s),

or equivalently∫ t

0
(T(s)T>(s))◦diag(dN (s)) =

∫ t

0
diag(H>(s)H(s))diag(dN (s)).

Using again (II.30) we get

(T>(t)T(t))•,•;,k,l = H l ,•(t)e>
k ek H l ,•(t)> = H l ,•(t)H l ,•(t)>

so that
∫ t

0 (T>(s)T(s))◦diag(dN (s)) is the matrix with entries

(∫ t

0
(T>(s)T(s))◦diag(dN (s))

)
i , j

=
d∑

l=1

∫ t

0
H l ,i (s)H l , j (s)dNl (s)

or equivalently∫ t

0
(T>(s)T(s))◦diag(dN (s)) =

∫ t

0
H>(s)H(s)diag(dN (s)).

Finally, we obtain that

λmax(V̂ t) =λmax

(∫ t

0
H>(s)H(s)diag(dN (s))

) ∨
max

j=1,...,d

∫ t

0
‖H j ,•(t)‖2

2 dN j (s).

This concludes the proof of the corollary. ä

64

CHAPTER III

Background on first order
composite sum minimization

1 Composite sum minimization

A wide variety of machine learning tasks consist in optimizing the following objective

min
w∈Rd

F (w) with F (w) = f (w)+ g (w), f (w) = 1

n

n∑
i=1

fi (w), (III.1)

where each convex function fi typically corresponds to a loss associated to
the i -th observation of a dataset of n samples and the convex function g is a
penalization term. This framework includes classification with logistic regression
with fi (w) = log(1+exp(−yi w>xi)), least square regression with fi (w) = (yi −w>xi)2

among many others. It is common to assume that function f is gradient-Lipschitz,
namely ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖ for any x, y ∈ Rd where ‖.‖ stands for
the Euclidean norm on Rd , and L > 0 is the Lipschitz constant. Besides, we
sometimes consider that the penalization terms g is strongly convex, that is
‖∇g (x)−∇g (y)‖ ≥ µ‖x − y‖ for any x, y ∈ Rd with µ > 0. In this case, the condition
number κ = L

µ
is a parameter of interest used to express the average number of

operations needed to reach an ε-precise solution w such that F (w) ≤ F (w∗) + ε
where ε > 0 and w∗ is the minimizer of (III.1). In this chapter we give an overview
of the existing first order algorithms used for composite sum minimization. By
definition, these algorithms require evaluation of gradients, a technique that dates
back to 1847 [Cau47]. We first present batch methods that compute the gradient of
f at each iteration. Then we discuss about stochastic methods that compute the
gradient of only one fi at each iteration and hence performs faster but less efficient
updates. We finish with variance reduced stochastic algorithms that combine the
best of both worlds by performing fast and efficient updates.

65

III. Background on first order composite sum minimization

2 Batch gradient descent

Batch gradient descent methods compute at each step t ≥ 1 the gradient ∇ f (w t)
to determine the next iterate w (t+1). When f is gradient-Lipschitz, this choice is
justified by the following descent lemma [Ber99, Proposition A.24] ensuring that

f (w t+1) ≤ f (w t)+ (w t+1 −w t)>∇ f (w t)+ L
2‖w t+1 −w t‖2

for any w (t+1), w t ∈ Rd . In light of this lemma the optimal value w t+1 leading the
bigger gain while minimizing f (w t+1) is w t − 1

L∇ f (w t). However, the full objective
also includes a penalization term g which leads to rather find the minimizer of the
following quadratic approximation [BT09]

w (t+1) = argmin
w∈Rd

f (w t)+ (w −w t)>∇ f (w t)+ L
2‖w −w t‖2 + g (w),

which writes
w (t+1) = prox 1

L g

(
w t − 1

L∇ f (w t)
)
,

where proxg stands for the proximal operator [CP11] associated to g defined as fol-
lowing.

Definition 1. Proximal operator. For a convex function g : Dg →R, the proximal opera-
tor associated to g is given by

proxg (y) = argmin
x∈Dg

(
1
2‖y −x‖2 + g (x)

)
.

The proximal operator always exists and is uniquely defined as the minimizer of a strictly
convex function.

Performing successively this update leads to ISTA algorithm [BT09] and is described
in Algorithm III.1. When the Lipschitz constant L is known, the step size parameter

Algorithm III.1 ISTA

Require: Starting point w 0, step size η> 0
for t = 0,1, . . . do

w (t+1) ← proxηg

(
w t −η∇ f (w t)

)
end for

η is set to the optimal value 1
L that leads to the biggest guaranteed gain. When it

is unknown, it is set using, at each step, backtracking line search which amounts
to find the bigger step size η whose inverse would be a suitable Lipschitz constant

66

3. Stochastic gradient descent

Table III.1: Convergence rates of first order batch methods with optimal step size. κ
is the condition number.

Gradient-Lipschitz Gradient-Lipschitz and strong convexity

ISTA O
(
L/t

)
O

((
1−κ−1

)t)
FISTA O

(
L/t 2

)
O

((
1−κ−1/2

)t)
candidate in the sense that it verifies the descent lemma. ISTA also has an accelerated
version called FISTA [BT09]. FISTA is very similar but instead of performing gradient
descent from the last reached point it rather performs it from a momentum, that is a
linear combination of the last two reached points. It is described in Algorithm III.2.
We compare the efficiency of these algorithms with their convergence rates ρ(t), that

Algorithm III.2 FISTA

Require: Starting point w 0, step size η> 0
z1 ← w 0; α1 = 1
for t = 1,2, . . . do

w t ← proxηg (z t −η∇ f (z t))

α(t+1) ← 1+
p

1+4αt 2

2

z(t+1) ← w t + αt−1
α(t+1) (w t −w (t−1))

end for

is the value that bounds the difference between the current objective and the optimal
objective after t passes on the dataset. Formally, ρ(t) is such that F (w t) ≤ F (w∗)+
ρ(t). The convergence rate is intrinsically linked to number of iterations needed
to reach an ε-precise solution. FISTA and ISTA convergence rates are reported in
Table III.1. In both cases, ρ(t) can be expressed as ρt where 0 < ρ < 1. These rate of
convergence are called linear. Also, the rate of convergence of FISTA is known to be
optimal for batch first order algorithms [Nes83].

3 Stochastic gradient descent

In a big data setting, a full gradient ∇ f (w t) is computationally expensive. However,
with its structure, this problem can also be considered as an accumulation of smaller
problems fi for i = 1, . . .n that have a common behavior. Stochastic gradient descent
(SGD) [RM51] exploits this and instead of computing the full gradient ∇ f (w t) at
each step, uses a random variable φt ∈ Rd such that E[φt] = ∇ f (w t). Generally, at
each iteration we sample a random index i in {1, . . . ,n} and compute the gradient

67

III. Background on first order composite sum minimization

of the associated loss ∇ fi (w t) which is an unbiased estimator of the full gradient.
This procedure is detailed in Algorithm III.3. The iterate w t is updated n times at

Algorithm III.3 Stochastic gradient descent

Require: Starting point w 0, a sequence of step size (ηt)t≥0

for t = 0,1, . . . do
Sample at random i in {1, . . . ,n}

w (t+1) ← proxηt g

(
w t −ηt∇ fi (w t)

)
end for

each pass on the dataset while it is updated only once with batch methods. This
leads to much faster iterations. However, this method does not converge easily to
a precise solution because ∇ fi (w t) does not approach zero when w t is close to the
optimal value w∗. Hence, it keeps oscillating unless the sequence of step size (ηt)t≥0

is decreasing, which eventually affects the convergence speed. In practice, the choice
of this sequence is critical but also difficult. Driven by deep learning where SGD is
widely used [RHW86], many variants have been introduced to address this issue such
as Momentum [Qia99], AdaGrad [DHS11], ADADELTA [Zei12] or Adam [KB15]. These
methods are more adaptive and less sensitive to the step size choice. Theoretically,
for gradient-Lipschitz and strongly convex losses, SGD reaches a convergence rate in
O

(
κ
t

)
where each iteration is approximatively n times faster than in the batch case.

Thus, SGD typically converges very quickly during the first iterations but then slows
down and has difficulties finding a very precise solution. Indeed its convergence rate
is not linear, thus the number of iterations to reach an ε-precision solution is in
O (1/ε) instead of O (log1/ε).

4 Variance reduced stochastic gradient descent

Recently, new stochastic solvers apply Monte-Carlo techniques of variance reduction
to stochastic gradient descent. [SLRB17], [SSZ13], [JZ13], [DBLJ14]. As illustrated in
Figure III.1, these algorithms combine the best of both worlds: quick iterations (each
update has a complexity comparable to SGD) and the precision of batch methods.
They rely on variance control which we will first formalize as a more general variance
reduction technique as in [DBLJ14].

Let X be a random variable and Y another random variable hopefully correlated
with X . To obtain a (possibly biased) estimation of E[X], we can set the following
random variable Z for any α ∈ [0,1] to

Z =α(X −Y)+E[Y]. (III.2)

68

4. Variance reduced stochastic gradient descentStochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time

Figure III.1: Illustration of the convergence of variance reduced stochastic algorithms
(hybrid) that combine the fast iterations of SGD (stochastic) and the precision of batch
(deterministic) methods. From Francis Bach lectures.

If α= 1, E[Z] is an unbiased estimation of E[X]. Its variance equals

Var[Z] =α2(Var[X]+Var[Y])−2Cov(X ,Y)
)
.

Var[Z] is smaller than Var[X] if X and Y are sufficiently correlated. Variance reduced
algorithms uses this technique to lower the variance of φt , the estimator of the full
gradient ∇ f (w t). With this technique, φt can tend to 0 when w t approaches w∗ and
the algorithm can then use constant step sizes in contrary to SGD. Three variance
reduction algorithms fall directly into this framework.

SAG and SAGA The SAG algorithm [SLRB17] was the first method to obtain in
2012 a linear convergence rate with only one gradient ∇ fi computed per iteration. It
works by storing the last computed gradient of each observation ∇ fi (w ti) where ti

is the last iteration at which the observation i was seen. Formally, like in SGD, the
random variable X of (III.2) is still ∇ fi (w t) but now Y is set to ∇ fi (w ti) whose expec-
tation is 1

n

∑n
i=1 fi (w ti). However, SAG used a biased estimation of the full gradient

(α = 1
n) and could not handle the composite case. SAGA [DBLJ14] is the unbiased

version of SAG (α = 1) and can theoretically handle the composite case with possi-
bly non smooth penalizations g . Its implementation is detailed in Algorithm III.4.
SAG [SLRB17] algorithm is identical to SAGA but the descent direction in the 7-th
line is modified to ∇ fi (w t)−ψi +Ψ instead of ∇ fi (w t)−ψi + 1

nΨ. Both algorithms
obtain a linear rate in the strongly convex case (reported in Table III.2) with only
one gradient ∇ fi computed at each iteration. This is obtained with the extra cost of
maintaining n gradients in memory. This memory cost is generally in O (nd) where
d is the size of the vector w but is much lower for the widely used generalized linear
models. Indeed, in this family of models the loss writes fi (w t) = ϕi (w t>xi) where
ϕi : R→ R and xi ∈ Rd is the i -th observation of the dataset. Hence, their gradients

69

III. Background on first order composite sum minimization

Algorithm III.4 SAGA

Require: Starting point w 0, a step size η> 0, ψi for i = 1, . . . ,n
Ψ←∑n

i=1ψi

for t = 0,1, . . . do
Sample at random i in {1, . . . ,n}

w t+1 ← proxηg

(
w t −η(∇ fi (w t)−ψi + 1

nΨ
))

Ψ←Ψ−ψi

ψi ←∇ fi (w t)
Ψ←Ψ+ψi

end for

writes ∇ fi (w t) =ϕ′
i (w t>xi)xi , so storing the scalar ϕ′

i (w t>xi) is sufficient to retrieve
the gradient ∇ fi (w t) at a later time. The storage cost for this family (including
linear regression and logistic regression among others) is then lowered from O (nd)
to O (n). Finally, it is worth mentioning that the two algorithms are adaptable to
the non strongly convex case, meaning that, with the same step size η, they obtain
convergence guarantees in both cases.

SVRG Instead of storing n gradients, SVRG [JZ13] reduces variance by computing
and storing, every m iterations, the full gradient of the current iterate ∇ f (w̃). As-
sociated to this stored gradient, Y is set to ∇ fi (w̃) (whose expectation is ∇ f (w̃)) X
to ∇ fi (w t) and α to 1. The proximal variant of SVRG [XZ14] is detailed in Algo-
rithm III.5 and its convergence rate is reported in Table III.2. The proof of SVRG

Algorithm III.5 SVRG

Require: Starting point w 0, a step size η> 0
for t = 0,1, . . . do

if t is a multiple of m then
w̃ ← w t

µ̃←∇ f (w̃)
end if
Sample at random i in {1, . . . ,n}

w t+1 ← proxηg

(
w t −η(∇ fi (w t)−∇ fi (w̃)+ µ̃))

end for

is much simpler and shorter than SAG and SAGA ones and manages to reach linear
convergence rate without any extra storage cost but a gradient of size d . However,
it also necessitates more computations as each iteration requires on average 2+n/m

70

4. Variance reduced stochastic gradient descent

gradients computation which is more than the single computation made by SAG and
SAGA.

SDCA The last algorithm, SDCA [SSZ13] does not fall directly into this framework.
It consists in finding the dual matrix A ∈ Rn×d that maximizes the following dual
objective, namely

max
A∈Rn×d

1

n

n∑
i=1

− f ∗
i

(− (A)i
)− g∗

(
1

λn

n∑
i=1

(A)i

)
,

where (A)i ∈Rd is the i -th line of the matrix for i = 1, . . . ,n. The optimal primal vector
w∗ is linked to the optimal dual matrix A∗ through the the Karush–Kuhn–Tucker
conditions with the following relation

w∗ =∇g∗
(

1

n

n∑
i=1

(A∗)i

)
,

used to convert a dual iterate into a corresponding primal iterate as described in
Algorithm III.6. Generally SDCA is presented in a generalized linear model context

Algorithm III.6 SDCA

Require: Starting dual A0

v0 ← 1
n

∑n
i=1(A0)i

for t = 0,1, . . . do
Sample at random i in {1, . . . ,n}
Find u ∈Rd that maximizes − 1

n f ∗
i

(−u
)− g∗(

v t + 1
n

(
u − (At)i

))
v t+1 ← v t + 1

n

(
u − (At)i

)
(At+1)i ← u

end for
w t ←∇g∗(v t)

and similarly as SAG and SAGA it lowers the number of new stored parameters from
O (nd) to O (d). Indeed, in this context, each line (A)i of the matrix A writes ai xi

where ai ∈R and xi ∈Rd is the i -th observation in the dataset. In this case, the dual
objective is optimized over a dual vector a ∈Rn and the optimization step of the 4-th
line is a one dimensional problem. Also, when the penalization has the following
decomposition g (w) = h(w)+ 1

2‖w‖2 where proxh exists, this optimization step can
be much simplified along with the relation linking the primal and the dual iterates
[SSZ14]. In addition, SDCA has no step size η which makes it easier to tune and
benefits of its primal-dual approach to compute the duality gap which is an upper
bound of the precision level ε [BV04]. Finally, while SDCA needs strong convexity to

71

III. Background on first order composite sum minimization

Table III.2: Convergence rates of stochastic first order methods with optimal step size.
Note that each iteration is O (n) times faster than batch algorithms of Table III.1. Also,
as theses algorithms are stochastic, these rates are given on expectation. Only SGD,
SAG and SAGA provides theoretical rate for non strongly convex problems. SVRG
rate is computed for a learning rate η= 0.1/L and is valid when t is a multiple of m.

Gradient-Lipschitz Gradient-Lipschitz and strong convexity

SGD O
(
L/

p
t
)

O
(
κ/t

)
SAG O

(
n/t

)
O

((
1−min(1

16κ
−1, 1

8 n−1)
)t)

SAGA O
(
n/t

)
O

((
1−min(1

3κ
−1, 1

4 n−1)
)t)

SVRG — O
((

12.5κ/m +0.25
)t/m)

SDCA — O
(
(1− (n +κ)−1)t

)

derive a convergence rate, it also provides convergence guarantees on functions that
are Lipschitz but not gradient-Lipschitz. Even if SDCA seems quite different from
SAG, SAGA and SVRG it follows the same logic to reduce the variance of the iterates
when we transpose its update in the primal [JZ13, DBLJ14, SS16].

5 Numerical comparison

The tick library (see Chapter V) is very handy to run experiment for convex opti-
mization algorithms, as it allows to combine different bricks of models (such as linear
or least squares regression), proximal operators and convex optimizers. In the follow-
ing example, the model (logistic regression) and the proximal operator (elastic net) are
fixed and define a convex objective F (w) = f (w)+ g (w) to minimize with simulated
data. To perform this task, we compare the efficiency of six different optimization
algorithms introduced before namely ISTA, FISTA [BT09], SGD [RM51] SVRG [JZ13],
SAGA [DBLJ14] and SDCA [SSZ13] for which the free parameters were set to their
theoretical optimal values.

72

5. Numerical comparison

from tick.linear_model import ModelLogReg, SimuLogReg

from tick.simulation import weights_sparse_gauss

from tick.solver import GD, AGD, SGD, SVRG, SAGA, SDCA

from tick.prox import ProxL2Sq

from tick.plot import plot_history

n_samples, n_features, = 5000, 50

weights0 = weights_sparse_gauss(n_features, nnz=10)

X, y = SimuLogReg(weights=weights0, n_samples=n_samples).simulate()

model = ModelLogReg().fit(X, y)

prox = ProxL2Sq(strength=1e-2)

w0 = np.zeros(model.n_coeffs)

ista = GD(linesearch=False).set_model(model).set_prox(prox)

ista.solve(w0, step=1. / model.get_lip_best())

fista = AGD(linesearch=False).set_model(model).set_prox(prox)

fista.solve(w0, step=1. / model.get_lip_best())

sgd = SGD().set_model(model).set_prox(prox)

sgd.solve(w0, step=60.)

svrg = SVRG().set_model(model).set_prox(prox)

svrg.solve(w0, step=1. / model.get_lip_max())

saga = SAGA().set_model(model).set_prox(prox)

saga.solve(x0, step=1 / model.get_lip_max())

sdca = SDCA(prox.strength).set_model(model)

sdca.solve()

plot_history([ista, fista, sgd, svrg, saga, sdca],

log_scale=True, dist_min=True)

In Figure III.2, we show the evolution of the distance to the minimum, that is
F (w t)−F (w∗), regarding the number of data passes. Note that the convergence rate
ρ(t) is an upper bound of the optimality gap. First, we observe that SGD makes a
quick start but is then slowed down due to its poor convergence rate. Then, let’s recall
that a linear convergence rate (ρ(t) = ρt) is expected to be rendered by a straight line
of slope logρ on this graph because the y-axis is in log-scale. Hence, we observe
these straight lines on ISTA, FISTA, SVRG SAGA and SDCA optimality gaps. Note
that FISTA shows characteristics leaps that reminds us that it is not a descent method,
meaning its objective is not guaranteed to decrease at each iteration. Finally, SVRG,

73

III. Background on first order composite sum minimization

0 20 40 60 80 100
Number of passes on the data

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Di
st

an
ce

 to
 m

in
im

um

ISTA
FISTA
SGD

SVRG
SAGA
SDCA

Figure III.2: Comparison of six optimization algorithms for logistic regression given
the optimality gap. SVRG, SAGA and SDCA have the best properties as they combine
the quick start of SGD with the best linear convergence rates.

SAGA and SDCA have the best properties as they combine the quick start of SGD
with the best linear convergence rates.

74

CHAPTER IV

Dual optimization for convex
constrained objectives without the
gradient-Lipschitz assumption

Abstract

The minimization of convex objectives coming from linear supervised learn-
ing problems, such as penalized generalized linear models, can be formulated
as finite sums of convex functions. For such problems, a large set of stochas-
tic first-order solvers based on the idea of variance reduction are available and
combine both computational efficiency and sound theoretical guarantees (linear
convergence rates) [JZ13], [SLRB17], [SSZ13], [DBLJ14]. Such rates are obtained
under both gradient-Lipschitz and strong convexity assumptions. Motivated by
learning problems that do not meet the gradient-Lipschitz assumption, such as
linear Poisson regression, we work under another smoothness assumption, and
obtain a linear convergence rate for a shifted version of Stochastic Dual Coor-
dinate Ascent (SDCA) [SSZ13] that improves the current state-of-the-art. Our
motivation for considering a solver working on the Fenchel-dual problem comes
from the fact that such objectives include many linear constraints, that are easier
to deal with in the dual. Our approach and theoretical findings are validated on
several datasets, for Poisson regression and another objective coming from the
negative log-likelihood of the Hawkes process, which is a family of models which
proves extremely useful for the modeling of information propagation in social
networks and causality inference [DVG+16], [FWR+15].

75

IV. Dual optimization without the gradient-Lipschitz assumption

1 Introduction

In the recent years, much effort has been made to minimize strongly convex finite
sums with first order information. Recent developments, combining both numerical
efficiency and sound theoretical guarantees, such as linear convergence rates, include
SVRG [JZ13], SAG [SLRB17], SDCA [SSZ13] or SAGA [DBLJ14] to solve the following
problem:

min
w∈Rd

1

n

n∑
i=1

ϕi (w)+λg (w), (IV.1)

where the functions ϕi correspond to a loss computed at a sample i of the dataset,
and g is a (eventually non-smooth) penalization. However, theoretical guarantees
about these algorithms, such as linear rates guaranteeing a numerical complex-
ity O (log(1/ε)) to obtain a solution ε-distant to the minimum, require both strong
convexity of 1

n

∑n
i=1ϕi +λg and a gradient-Lipschitz property on each ϕi , namely

‖ϕ′
i (x)−ϕ′

i (y)‖ ≤ Li‖x − y‖ for any x, y ∈ Rd , where ‖ · ‖ stands for the Euclidean
norm on Rd and Li > 0 is the Lipschitz constant. However, some problems, such
as the linear Poisson regression, which is of practical importance in statistical im-
age reconstruction among others (see [BBDV09] for more than a hundred refer-
ences) do not meet such a smoothness assumption. Indeed, we have in this example
ϕi (w) = w>xi −yi log(w>xi) for i = 1, . . . ,n where xi ∈Rd are the features vectors and
yi ∈N are the labels, and where the model-weights must satisfy the linear constraints
w>xi > 0 for all i = 1, . . . ,n.

Motivated by machine learning problems described in Section 4 below, that do
not satisfy the gradient-Lipschitz assumption, we consider a more specific task relying
on a new smoothness assumption. Given convex functions fi : D f → R with D f =
(0,+∞) such that limt→0 fi (t) =+∞, a vector ψ ∈ Rd , features vectors x1, . . . , xn ∈ Rd

corresponding to the rows of a matrix X we consider the objective

min
w∈Π(X)

P (w) where P (w) =ψ>w + 1

n

n∑
i=1

fi (w>xi)+λg (w), (IV.2)

where λ> 0, g :Rd →R is a 1-strongly convex function and Π(X) is the open polytope

Π(X) = {w ∈Rd : ∀i ∈ {1, . . . ,n}, w>xi > 0}, (IV.3)

that we assume to be non-empty. Note that the linear term ψ>w can be included in
the regularization g but the problem stands clearer if it is kept out.

Definition 1. We say that a function f : D f ⊂R→R is L-log smooth, where L > 0, if it
is a differentiable and strictly monotone convex function that satisfies

| f ′(x)− f ′(y)| ≤ 1

L
f ′(x) f ′(y)|x − y |

76

1. Introduction

for all x, y ∈D f .

We detail this property and its specificities in Section 2. All along the chapter, we
assume that the functions fi are Li -log smooth. Note also that the Poisson regression
objective fits in this setting, where fi (x) =−yi log x is yi -log smooth and ψ= 1

n

∑n
i=1 xi .

See Section 4.1 below for more details.

Related works. Standard first-order batch solvers (non stochastic) for composite
convex objectives are ISTA and its accelerated version FISTA [BT09] and first-order
stochastic solvers are mostly built on the idea of Stochastic Gradient Descent (SGD)
[RM51]. Recently, stochastic solvers based on a combination of SGD and the Monte-
Carlo technique of variance reduction [SLRB17], [SSZ13], [JZ13], [DBLJ14] turn out to be
both very efficient numerically (each update has a complexity comparable to vanilla
SGD) and very sound theoretically, because of strong linear convergence guarantees,
that match or even improve the one of batch solvers. These algorithms involve gradi-
ent steps on the smooth part of the objective and theoretical guarantees justify such
steps under the gradient-Lipschitz assumptions thanks to the descent lemma [Ber99,
Proposition A.24]. Without this assumption, such theoretical guarantees fall apart.
Also, stochastic algorithms loose their numerical efficiency if their iterates are pro-
jected on the feasible set Π(X) at each iteration as Equation (IV.2) requires. STORC
[HL16] can deal with constrained objectives without a full projection but is restricted
to compact sets of constraints which is not the case of Π(X). Then, a modified
proximal gradient method from [TDKC15] provides convergence bounds relying on
self-concordance [Nes13] rather than the gradient-Lipschitz property. However, the
convergence rate is guaranteed only once the iterates are close to the optimal solution
and we observed in practice that this algorithm is simply not working (since it ends up
using very small step-sizes) on the problems considered here. Recently, [LFN18] has
provided new descent lemmas based on relative-smoothness that hold on a wider set
of functions including Poisson regression losses. This work is an extension of [BB16]
that presented the same algorithm and detailed its application to Poisson regression
losses. While this is more generic than our work, they only manage to reach sublinear
convergence rates O (1/t) that applies only on positive solution (namely w∗ ∈ [0,∞)d)
while we reach linear rates for any solution w∗ ∈Rd .

Our contribution. The first difficulty with the objective (IV.2) is to remain in the
open polytope Π(X). To deal with simpler constraints we rather perform optimization
on the dual problem

max
α∈−Dn

f ∗
D(α) where D(α) = 1

n

n∑
i=1

− f ∗
i (−αi)−λg∗

(
1

λn

n∑
i=1

αi xi − 1

λ
ψ

)
, (IV.4)

77

IV. Dual optimization without the gradient-Lipschitz assumption

where for a function h, the Fenchel conjugate h∗ is given by h∗(v) = supu uv −
h(u), and −D f ∗ is the domain of the function x 7→∑n

i=1 f ∗
i (−x). This strategy is the

one used by Stochastic Dual Coordinate Ascent (SDCA) [SSZ13]. The dual problem
solutions are box-constrained to −Dn

f ∗ which is much easier to maintain than the
open polytope Π(X). Note that as all fi are strictly decreasing (because they are
strictly monotone on (0,+∞) with limt→0 fi (t) =+∞), their dual are defined on D f ∗ ⊂
(−∞,0). By design, this approach keeps the dual constraints maintained all along the
iterations and the following proposition, proved in Section 7.1, ensures that the primal
iterate converges to a point of Π(X).

Proposition 1. Assume that the polytope Π(X) is non-empty, the functions fi are convex,
differentiable, with limt→0 fi (t) =+∞ for i = 1, . . . ,n and that g is strongly convex. Then,
strong duality holds, namely P (w∗) = D(α∗) and the Karush-Kuhn-Tucker conditions
relate the two optima as

∀i ∈ {1, . . . ,n}, α∗
i =− f ∗

i
′(w∗>xi) and w∗ =∇g∗

(1

λn

n∑
i=1

αi xi − 1

λ
ψ

)
,

where w∗ ∈Π(X) is the minimizer of P and α∗ ∈−Dn
f ∗ the maximizer of D .

In this chapter, we introduce the log smoothness property and its characteristics
and then we derive linear convergence rates for SDCA without the gradient-Lipschitz
assumption, by replacing it with log smoothness, see Definition 1. Our results pro-
vide a state-of-the-art optimization technique for the considered problem (IV.2), with
sound theoretical guarantees (see Section 3) and very strong empirical properties as
illustrated on experiments conducted with several datasets for Poisson regression and
Hawkes processes likelihood (see Section 5). We study also SDCA with importance
sampling [ZZ15] under log smoothness and prove that it improves both theoretical
guarantees and convergence rates observed in practical situations, see Sections 3.2
and 5. We provide also a heuristic initialization technique in Section 5.3 and a "mini-
batch" [QRTF16] version of the algorithm in Section 5.4 that allows to end up with a
particularly efficient solver for the considered problems. We motivate even further the
problem considered in this chapter in Figure IV.1, where we consider a toy Poisson
regression problem (with 2 features and 3 data points), for which L-BFGS-B typically
fails while SDCA works. This illustrates the difficulty of the problem even on such an
easy example.

Outline. We first introduce the log smoothness property in Section 2, relate it to
self-concordance in Proposition 2 and translate it in the Fenchel conjugate space in
Proposition 3. Then, we present the shifted SDCA algorithm in Section 3 and state
its convergence guarantees in Theorem 1 under the log smoothness assumption. We
also provide theoretical guarantees for variants of the algorithm, one using proximal

78

2. A tighter smoothness assumption

3 2 1 0 1
x0

2

1

0

1

x 1

Original datapoints and log-distance to
optimal objective on the feasible set

yi = 0.0
yi = 1.0
yi = 2.0

3 2 1 0 1
x0

2

1

0

1

x 1

Paths taken by two L-BFGS-B and two SDCA
solvers over the gradient norm and direction

L-BFGS-B 1
L-BFGS-B 2
SDCA 1
SDCA 2

Figure IV.1: Iterates of SDCA and L-BFGS-B on a Poisson regression toy example
with three samples and two features. Left. Dataset and value of the objective. Right:
Iterates of L-BFGS-B and SDCA with two different starting points. The background
represents the gradient norm and the arrows the gradient direction. SDCA is very
stable and converges quickly towards the optimum, while L-BFGS-B easily converges
out of the feasible space.

operators [SSZ14] and the second using importance sampling [ZZ15] which leads to
better convergence guarantees in Theorem 2. In Section 4 we focus on two specific
problems, namely Poisson regression and Hawkes processes, and explain how they fit
into the considered setting. Section 5 contains experiments that illustrate the benefits
of our approach compared to baselines. This Section also proposes a very efficient
heuristic initialization and numerical details allowing to optimize over several indices
at each iteration, which is a trick to accelerate even further the algorithm.

2 A tighter smoothness assumption

To have a better overview of what log smoothness is, we formulate the following
proposition giving an equivalent property for log smooth functions that are twice
differentiable.

Proposition 2. Let f : D f ⊂R→R be a convex strictly monotone and twice differentiable
function. Then,

f is L-log smooth ⇔ ∀x ∈D f , f ′′(x) ≤ 1
L f ′(x)2.

This proposition is proved in Section 7.4 and we easily derive from it that
x 7→ −L log x on (0,+∞), x 7→ Lx on R and x 7→ L exp(x) on [0,+∞) are L-log smooth.

79

IV. Dual optimization without the gradient-Lipschitz assumption

This proposition is linked to the self-concordance property introduced by Nesterov
[Nes13] widely used to study losses involving logarithms. For the sake of clarity, the
results will be presented for functions whose domain D f is a subset of R as this leads
to lighter notations.

Definition 2. A convex function f : D f ⊂R→R is standard self-concordant if

∀x ∈D f , | f ′′′(x)| ≤ 2 f ′′(x)3/2.

This property has been generalized [Bac10, STD17] but always consists in control-
ling the third order derivative by the second order derivative, initially to bound the
second order Taylor approximation used in the Newton descent algorithm [Nes13].
While right hand sides of both properties (f ′(x)2 and 2 f ′′(x)3/2) might look arbitrar-
ily chosen, in fact they reflect the motivating use case of the logarithmic barriers
where f : t 7→ − log(t) and for which the bound is reached. Hence, log smoothness is
the counterpart of self-concordance but to control the second order derivative with
the first order derivative. As it is similarly built, log smoothness shares the affine
invariant property with self-concordance. It means that if f1 is L log-smooth then
f2 : x 7→ f1(ax +b) with a,b ∈ R is also L-log smooth with the same constant L. An
extension to the multivariate case where D f ⊂ Rd is likely feasible but is useless for
our algorithm and hence beyond the scope of this paper. From the log smoothness
property of a function f , we derive several characteristics for its Fenchel conjugate
f ∗ starting with the following proposition.

Proposition 3. Let f : D f ⊂R→ R be a strictly monotone convex function and f ∗ be its
twice differentiable Fenchel conjugate. Then,

f is L-log smooth ⇔ ∃L > 0; ∀x ∈D f ∗ , f ∗′′(x) ≥ Lx−2.

This proposition is proved in Section 7.5 and is the first step towards a series
of convex inequalities for the Fenchel conjugate of log smooth functions. These in-
equalities, detailed in Section 7.6, bounds the Bregman divergence of such functions
and are compared to what can be obtained with self-concordance or strong convexity
(on a restricted set) in the canonical case where f : t 7→ − log(t). It appears with log
smoothness we obtain tighter bounds than what is achievable with other assump-
tions and that all these bounds are reached (and hence cannot be improved) in the
canonical case (see Table IV.3).

3 The Shifted SDCA algorithm

The dual objective (IV.4) cannot be written as a composite sum of convex functions as
in the general objective (IV.1), which is required for stochastic algorithms such as SRVG

80

3. The Shifted SDCA algorithm

[JZ13] or SAGA [DBLJ14]. It is better to use a coordinate-wise approach to optimize
this problem, which leads to SDCA [SSZ14], in which the starting point has been
shifted by 1

λψ. This shift is induced by the relation linking primal and dual variables
at the optimum: the second Karush-Kuhn-Tucker condition from Proposition 1,

w∗ =∇g∗
(1

λn

n∑
i=1

α∗
i xi − 1

λ
ψ

)
. (IV.5)

We first present the general algorithm (Algorithm IV.1), then its proximal alternative
(Algorithm IV.2) and finally how importance sampling leads to better theoretical
results. We assume that we know bounds (βi)1≤i≤n such that βi /α∗

i ≥ 1 for any
i = 1, . . . ,n, such bounds can be explicitly computed from the data in the particular
cases considered in this chapter, see Section 4 for more details.

Algorithm IV.1 Shifted SDCA
Require: Bounds βi ∈−D f ∗ such that ∀i ∈ {1, . . . ,n}, βi /α∗

i ≥ 1,
α(0) ∈−Dn

f ∗ dual starting point such that ∀i ∈ {1, . . . ,n}, βi /αi ≥ 1

1: v (0) = 1
λn

∑n
i=1α

(0)
i xi − 1

λ
ψ

2: for t = 1,2. . .T do
3: Sample i uniformly at random in {1, . . . ,n}
4: Find αi that maximizes − 1

n f ∗
i (−αi)−λg∗(

v (t−1) + (λn)−1(αi −α(t−1)
i)xi

)
5: αi ← min(1,βi /αi)αi

6: ∆αi ←αi −α(t−1)
i

7: α(t) ←α(t−1) +∆αi ei

8: v (t) ← v (t−1) + (λn)−1∆αi xi

9: w (t) ←∇g∗(v (t))
10: end for

The next theorem provides a linear convergence rate for Algorithm IV.1 where we
assume that each fi is Li -log smooth (see Definition 1).

Theorem 1. Suppose that we known bounds βi ∈ −D f ∗ such that Ri = βi
α∗

i
≥ 1 for i =

1, . . . ,n and assume that all fi are Li -log smooth with differentiable Fenchel conjugates
and g is 1-strongly convex. Then, Algorithm IV.1 satisfies

E[D(α∗)−D(α(t))] ≤
(
1− mini σi

n

)t
(D(α∗)−D(α(0))), (IV.6)

where

σi =
(
1+ ‖xi‖2α∗

i
2

2λnLi

(Ri −1)2

1
Ri

+ logRi −1

)−1
. (IV.7)

81

IV. Dual optimization without the gradient-Lipschitz assumption

100 101 102 103 104

Ratio Ri = i/ i

10 12

10 10

10 8

10 6

10 4

1
 c

on
ve

rg
en

ce
 ra

te log smooth, c = 0.01
strongly convex, c = 0.01
log smooth, c = 1
strongly convex, c = 1
log smooth, c = 100
strongly convex, c = 100

Figure IV.2: Evolution of one minus the convergence rate, namely σi /n for n = 1000
and different values of c = (‖xi‖2α∗

i
2)/(λnLi) under log smoothness (this work) and

strong convexity assumptions [SSZ13]. The convergence rate from Theorem 1 is one
order of magnitude better.

The proof of Theorem 1 is given in Section 7.7. It states that in the considered
setting, SDCA achieves a linear convergence rate for the dual objective. The bounds
βi are provided in Section 4 below for two particular cases: Poisson regression and
likelihood Hawkes processes. Equipped with these bounds, we can compare the
rate obtained in Theorem 1 with already known linear rates for SDCA under the
gradient-Lipschitz assumption [SSZ13]. Indeed, we can restrict the domain of all f ∗

i
to (−βi ,0) on which Proposition 3 states that all fi are Li /(α∗

i
2R2

i)-strongly convex.
Now, following carefully the proof in [SSZ13] leads to the convergence rate given in
Equation (IV.6) but with

σi =
(
1+ ‖xi‖2α∗

i
2

λnLi
R2

i

)−1
.

Since 2
(1

R + logR − 1
)
(R − 1)−2 ≥ R−2 for any R ≥ 1, Theorem 1 provides a faster

convergence rate. The comparative gain depends on the values of (‖xi‖2α∗
i

2)/(λnLi)
and Ri but it increases logarithmically with the value of Ri . Table IV.1 below compares
the explicit values of these linear rates on a dataset used in our experiments for
Poisson regression and Figure IV.2 shows that the rate obtained under log smoothness
assumption is one order of magnitude better than the one obtained with strong
convexity.

Remark 1. Convergence rates for the primal objective are not provided since the primal
iterate w (t) typically belongs to Π(X) only when it is close enough to the optimum. This
would make most of the values of the primal objective P (w (t)) undefined and therefore not
comparable to P (w∗).

3.1 Proximal algorithm

Algorithm IV.1 maximizes the dual over one coordinate at Line 4 whose solution
might not be explicit and requires inner steps to obtain α(t)

i . But, whenever g can be

82

3. The Shifted SDCA algorithm

written as
g (w) = 1

2‖w‖2 +h(w), (IV.8)

where h is a convex, prox capable and possibly non-differentiable function, we use
the same technique as Prox-SDCA [SSZ14] with a proximal lower bound that leads to

α(t)
i = argmax

ai∈−D f ∗
− f ∗

i (−αi)− λn

2

∥∥∥w (t−1) − (λn)−1(αi −α(t−1)
i)xi

∥∥∥2
,

with

w (t−1) = proxh

(1

λn

n∑
i=1

α(t−1)
i xi − 1

λ
ψ

)
,

see Section 7.2 for details. This leads to a proximal variant described in Algo-
rithm IV.2 below, which is able to handle various regularization techniques and which
has the same convergence guarantees as Algorithm IV.1 given in Theorem 1. Also,
note that assuming that g can be written as (IV.8) with a prox-capable function h
is rather unrestrictive, since one can always add a ridge penalization term in the
objective.

Algorithm IV.2 Shifted Prox-SDCA
Require: Bounds βi ∈−D f ∗ such that ∀i ∈ {1, . . . ,n}, βi /α∗

i ≥ 1,
α(0) ∈−Dn

f ∗ dual starting point such that ∀i ∈ {1, . . . ,n}, βi /αi ≥ 1

1: v (0) = 1
λn

∑n
i=1α

(0)
i xi − 1

λψ

2: for t = 1,2. . .T do
3: Sample i uniformly at random in {1, . . . ,n}

4: Find αi that maximize − 1
n f ∗

i (−αi)− λ
2

∥∥∥w (t−1) + (λn)−1(αi −α(t−1)
i)xi

∥∥∥2

5: αi ← min(1,βi /αi)αi

6: ∆αi ←αi −α(t−1)
i

7: α(t) ←α(t−1) +∆αi ei

8: v (t) ← v (t−1) + (λn)−1∆αi xi

9: w (t) ← proxh(v (t))
10: end for

3.2 Importance sampling

Importance sampling consists in adapting the probabilities of choosing a sample i
(which is by default done uniformly at random, see Line 3 from Algorithm IV.1) using
the improvement which is expected by sampling it. Consider a distribution ρ on
{1, . . . ,n} with probabilities {ρ1, . . . ,ρn} such that ρi ≥ 0 for any i and

∑n
i=1ρi = 1. The

83

IV. Dual optimization without the gradient-Lipschitz assumption

Shifted SDCA and Shifted Prox-SDCA with importance sampling algorithms are sim-
ply obtained by modifying the way i is sampled in Line 3 of Algorithms IV.1 and IV.2:
instead of sampling uniformly at random, we sample using such a distribution ρ. The
optimal sampling probability ρ is obtained in the same way as [ZZ15] and it also
leads under our log smoothness assumption to a tighter convergence rate, as stated
in Theorem 2 below.

Theorem 2. Suppose that we known bounds βi ∈ −D f ∗ such that Ri = βi
α∗

i
≥ 1 for i =

1, . . . ,n and assume that all fi are Li -log smooth with differentiable Fenchel conjugates
and g is 1-strongly convex. Consider σ defined by (IV.7) and consider the distribution

ρi =
σ−1

i∑n
j=1σ

−1
j

for i ∈ {1, . . . ,n}. Then, Algorithm IV.1 and IV.2 where Line 3 is replaced by sampling i ∼ ρ
satisfy

E[D(α∗)−D(α(t))] ≤
(
1− σ̄

n

)t
(D(α∗)−D(α(0)),

where σ̄= (1
n

∑n
i=1σ

−1
i

)−1.

The proof is given in Section 7.8. This convergence rate is stronger than the
previous one from Theorem 1 since (1

n

∑n
i=1σ

−1
i)−1 ≥ mini σi . Table IV.1 below com-

pares the explicit values of these linear rates on a dataset used in our experiments
for Poisson regression (facebook dataset). We observe that the log smooth rate with
importance sampling is orders of magnitude better than the one obtained with the
standard theory for SDCA which exploits only the Li /(α∗

i
2R2

i) strong convexity of the
functions f ∗

i .

strongly convex strongly convex with log smooth log smooth with
importance sampling importance sampling

(0.9999)t (0.9969)t (0.9984)t (0.9679)t

Table IV.1: Theoretical convergence rates obtained on the facebook dataset (see Sec-
tion 5.1) in four different settings: strongly convex (which is the rate obtained when all
functions fi are considered Li /(α∗

i
2R2

i)-strongly convex) with and without importance
sampling [SSZ13, ZZ15] and the rate obtained in the setting considered in the chapter,
with and without importance sampling. In this experiment, the maximum value for
Ri is 9062 and its average value is 308. As expected, the best rate is obtained by
combining the log-smoothness property with importance sampling.

84

4. Applications to Poisson regression and Hawkes processes

4 Applications to Poisson regression and Hawkes
processes

In this Section we describe two important models that fit into the setting of this
chapter. We precisely formulate them as in Equation (IV.2) and give the explicit value
of bounds βi such as α∗

i ≤βi , where α∗ is the solution to the dual problem (IV.4).

4.1 Linear Poisson regression

Poisson regression is widely used to model count data, namely when, in the dataset,
each observation xi ∈ Rd is associated an integer output yi ∈N (the set of non neg-
ative integers) for i = 1, . . . ,n. It aims to find a vector w ∈ Rd such that for a given
function φ : Dφ ⊂ R→ (0,+∞)+, yi is the realization of a Poisson random variable
of mean φ(w>xi). A convenient choice is to use exp for φ as it always guarantees
that φ(w>xi) > 0. However, using the exponential function assumes that the covari-
ates have a multiplicative effect that often cannot be justified. The tougher problem
of linear Poisson regression, where φ(t) = t and Dφ is the polytope Π(X), appears
to model additive effects. For example, this applies in image reconstruction. The
original image is retrieved from photons counts yi distributed as a Poisson distribu-
tion with intensity w>xi , that are received while observing the image with different
detectors represented by the vectors xi ∈ Rd . This application has been extensively
studied in the literature, see [HMW12, BB16, TDKC15] and [BBDV09] for a review with
a hundred references. Linear Poisson regression is also used in various fields such
as survival analysis with additive effects [BF10] and web-marketing [CPC09] where
the intensity corresponds to an intensity of clicks on banners in web-marketing. To
formalize, we consider a training dataset (x1, y1), . . . , (xn0 , yn0) with xi ∈Rd and yi ∈N
and assume without loss of generality that yi > 0 for i ∈ {1, . . . ,n} while yi = 0 for
i ∈ {n +1, . . . ,n0} where n = #{i : yi > 0} ≤ n0 (this simply means that we put first the
samples corresponding to a label yi > 0). The negative log-likelihood of this model
with a penalization function g can be written as

P0(w) = 1

n0

n0∑
i=1

(w>xi − yi log(w>xi))+λ0g (w)

where λ0 > 0 corresponds to the level of penalization, with the constraint that w>xi

for i = 1, . . . ,n. This corresponds to Equation (IV.2) with fi (w) = −yi log(w>xi) for
i = 1, . . . ,n, which are yi -log smooth functions, and with

ψ= 1

n

n0∑
i=1

xi and λ= n0

n
λ0.

85

IV. Dual optimization without the gradient-Lipschitz assumption

Note that the zero labeled observations can be safely removed from the sum and
are fully encompassed in ψ. The algorithms and results proposed in Section 3 can
therefore be applied for this model.

4.2 Hawkes processes

Hawkes processes are used to study cross causality that might occur in one or sev-
eral events series. First, they were introduced to study earthquake propagation, the
network across which the aftershocks propagate can be recovered given all tremors
timestamps [Oga99]. Then, they have been used in high frequency finance to describe
market reactions to different types of orders [BMM15]. In the recent years Hawkes
processes have found many new applications including crime prediction [Moh13] or
social network information propagation [LSV+16]. A Hawkes process [HO74] is a
multivariate point-process: it models timestamps {t i

k }i≥1 of nodes i = 1, . . . , I using
a multivariate counting process with a particular auto-regressive structure in its in-
tensity. More precisely, we say that a multivariate counting process Nt = [N 1

t , . . . , N I
t]

where N i
t = ∑

k≥11t i
k≤t for t ≥ 0 is a Hawkes process if the intensity of N i has the

following structure:

λi (t) =µi +
I∑

j=1

∫
φi j (t − s)dN j (s) =µi +

I∑
j=1

∑
k : t

j
k<t

φi j (t − t j
k).

The µi ≥ 0 are called baselines intensities, and correspond to the exogenous intensity
of events from node i , and the functions φi j for 1 ≤ i , j ≤ I are called kernels. They
quantify the influence of past events from node j on the intensity of events from node
i . The main parametric model for the kernels is the so-called exponential kernel, in
which we consider

φi j (t) =
U∑

u=1
ai j

u bu exp(−bu t) (IV.9)

with bu > 0. In this model the matrix A = [
∑U

u=1 ai j
u]1≤i , j≤d is understood as an ad-

jacency matrix, since entry Ai , j quantifies the impact of the activity of node j on the
activity of node i , while bu > 0 are memory parameters. We stack these parameters
into a vector θ containing the baselines µi and the self and cross-excitation param-
eters ai j

u . Note that in this model the memory parameters bu are supposed to be
given. The associated goodness-of-fit is the negative log-likelihood, which is given by
the general theory of point processes (see [DVJ07]) as

−`(θ) =−
I∑

i=1
`i (θ), with −`i (θ) =

∫ T

0
λi
θ(t)dt −

∫ T

0
log(λi

θ(t))dN i (t).

86

4. Applications to Poisson regression and Hawkes processes

Let us define the following weights for i , j = 1, . . . I and u = 1, . . . ,U ,

g j
u(t) = ∑

k : t
j
k<t

bue−bu (t−t
j
k), g i j

u,k = g j
u(t i

k) and G j
u =

∫ T

0
g j

u(t)dt (IV.10)

that can be computed efficiently for exponential kernels thanks to recurrence formulas
(the complexity is linear with respect to the number of events of each node). Using
the parametrization of the kernels from Equation (IV.9) we can rewrite each term of
the negative log-likelihood as

−`i (µi , ai) =
I∑

i=1

[
µi T +

I∑
j=1

U∑
u=1

ai j
u G j

u −
ni∑

k=1
log

(
µi +

I∑
j=1

U∑
u=1

ai j
u g i j

u,k

)]
.

To rewrite `i in a vectorial form we define ni as the number of events of node i and
the following vectors for i = 1, . . . , I :

w i =
[
µi ai ,1

1 · · · ai ,1
U · · · ai ,I

1 · · · ai ,I
U

]>
,

that are the model weights involved in `i , and

ψi = 1

ni

[
T G1

1 · · ·G1
U · · · G I

1 · · · G I
U

]>
,

which correspond to the vector involved in the linear part of the primal objective
(IV.2) and finally

xi
k =

[
1 g i ,1

1,k · · · g i ,1
U ,k · · · g i ,I

1,k · · · g i ,I
U ,k

]>
,

for k = 1, . . . ,ni which contains all the timestamps data computed in the weights
computed in Equation (IV.10). With these notations the negative log-likelihood for
node i can be written as

−`(w) =−
I∑

i=1
`i (w i) with − 1

ni
`i (w i) = (w i)>ψi − 1

ni

ni∑
k=1

log((w i)>xi
k).

First, it shows that the negative log-likelihood can be separated into I independent
sub-problems with goodness-of-fit −`i (w i) that corresponds to the intensity of node
i with the weights xi ,k carrying data from the events of the other nodes j . Each
subproblem is a particular case of the primal objective (IV.2), where all the labels
yi are equal to 1. As a consequence, we can use the algorithms and results from
Section 3 to train penalized multivariate Hawkes processes very efficiently.

87

IV. Dual optimization without the gradient-Lipschitz assumption

4.3 Closed form solution and bounds on dual variables

In this Section with provide the explicit solution to Line 4 of Algorithm IV.2 when
the objective corresponds to the linear Poisson regression or the Hawkes process
goodness-of-fit. In Proposition 4 below we provide the closed-form solution of the
local maximization step corresponding to Line 4 of Algorithm IV.2.

Proposition 4. For Poisson regression and Hawkes processes, Line 4 of Algorithm IV.2
has a closed form solution, namely

αt
i =

1

2

(√(
α(t−1)

i − λn

‖xi‖2
w (t−1)>xi

)2 +4λn
yi

‖xi‖2
+α(t−1)

i − λn

‖xi‖2
w (t−1)>xi

)
.

This closed-form expression allows to derive a numerically very efficient training
algorithm, as illustrated in Section 5 below. For these two use cases, the dual loss
is given by f ∗

i (−αi) = −yi − yi log(αi
yi

) for any αi > 0 (with yi = 1 for the Hawkes
processes). For this specific dual loss, we can provide also upper bounds βi for all
optimal dual variables α∗

i , as stated in the next Proposition.

Proposition 5. For Poisson regression and Hawkes processes, if g (w) = 1
2‖w‖2 and if

xi
>x j ≥ 0 for all 1 ≤ i , j ≤ n, we have the following upper bounds on the dual variables

at the optimum:

α∗
i ≤βi where βi = 1

2‖xi‖2

(
nψ>xi +

√
(nψ>xi)2 +4λnyi‖xi‖2

)
for any i = 1, . . . ,n.

The proofs of Propositions 4 and 5 are provided in Section 7.9. Note that the
inner product assumption xi

>x j ≥ 0 from Proposition 5 is mild: it is always met for
the Hawkes process with kernels given by (IV.9) and it it met for Poisson regression
whenever one applies for instance a min-max scaling on the features matrix.

Remark 2. The closed form solution from Proposition 4 is always lower than the generic
bound βi , as explained in Section 7.11. Hence, we actually do not need to manually bound
α(t)

i at line 5 of Algorithm IV.1 in this particular case.

5 Experiments

To evaluate efficiently Shifted SDCA we have compared it with other optimization
algorithms that can handle the primal problem (IV.2) nicely, without the gradient-
Lipschitz assumptions. We have discarded the modified proximal gradient method
from [TDKC15] since most of the time it was diverging while computing the initial
step with the Barzilai-Borwein method on the considered examples. We consider the
following algorithms.

88

5. Experiments

NoLips. This is a first order batch algorithm that relies on relative-smoothness
[LFN18] instead of the gradient-Lipschitz assumption. Its application to linear Pois-
son regression has been detailed in [BB16] and its analysis provides convergence
guarantees with a sublinear convergence rate in O (1/n). However, this method is by
design limited to solutions with positive entries (namely w∗ ∈ [0,∞)d) and provides
guarantees only in this case. Its theoretical step-size decreases linearly with 1/n and
is too small in practice. Hence, we have tuned the step-size to get the best objective
after 300 iterations.

SVRG. This is a stochastic gradient descent algorithm with variance reduction in-
troduced in [JZ13, XZ14]. We used a variant introduced in [TMDQ16], which uses
Barzilai-Borwein in order to adapt the step-size, since gradient-Lipschitz constants
are unavailable in the considered setting. We consider this version of variance re-
duction, since alternatives such as SAGA[DBLJ14] and SAG [SLRB17] do not propose
variants with Barzilai-Borwein type of step-size selection.

L-BFGS-B. L-BFGS-B is a limited-memory quasi-Newton algorithm
[Noc80, NW06]. It relies on an estimation of the inverse of the Hessian
based on gradients differences. This technique allows L-BFGS-B to consider the
curvature information leading to faster convergence than other batch first order
algorithms such as ISTA and FISTA [BT09].

Newton algorithm. This is the standard second-order Newton algorithm which
computes at each iteration the hessian of the objective to solve a linear system
with it. In our experiments, the considered objectives are both log-smooth and self-
concordant [Nes13]. The self-concordant property bounds the third order derivative
by the second order derivative, giving explicit control of the second order Taylor
expansion [Bac10]. This ensures supra-linear convergence guarantees and keeps all
iterates in the open polytope (IV.3) if the starting point is in it [NN94]. However, the
computational cost of the hessian inversion makes this algorithm scale very poorly
with the number of dimensions d (the size of the vectors xi).

SDCA. This is the Shifted-SDCA algorithm, see Algorithm IV.2, without impor-
tance sampling. Indeed, the bounds given in Proposition 5 are not tight enough to
improve convergence when used for importance sampling in the practical situations
considered in this Section (despite the fact that the rates are theoretically better). A
similar behavior was observed in [PTLJ18].

SVRG and L-BFGS-B are almost always diverging in these experiments just like in
the simple example considered in Figure IV.1. Hence, the problems are tuned to avoid
any violation of the open polytope constraint (IV.3), and to output comparable results

89

IV. Dual optimization without the gradient-Lipschitz assumption

Table IV.2: Poisson datasets details.

dataset wine 2 facebook 3 vegas 4 news 5 property 6 simulated 7

lines 4898 500 2215 504 50099 100000
features 11 41 102 160 194 100

between algorithms. Namely, to ensure that w>xi > 0 for any iterate w , we scale the
vectors xi so that they contain only non-negative entries, and the iterates of SVRG
and L-BFGS-B are projected onto [0,+∞)d . This highlights two first drawbacks of
these algorithms: they cannot deal with a generic feature matrix and their solutions
contain only non-negative coefficients. For each run, the simply take λ= x/n where
x = 1

n

∑n
i=1 ‖xi‖2. This simple choice seemed relevant for all the considered problems.

5.1 Poisson regression

For Poisson regression we have processed our feature matrices to obtain coefficients
between 0 and 1. Numerical features are transformed with a min-max scaler and
categorical features are one hot encoded. We run our experiments on six datasets
found on UCI dataset repository [Lic13] and Kaggle1 (see Table IV.2 for more details).
These datasets are used to predict a number of interactions for a social post (news and
facebook), the rating of a wine or a hotel (wine and vegas) or the number of hazards
occurring in a property (property). The last one comes from simulated data which
follows a Poisson regression. In Figure IV.3 we present the convergence speed of the
five algorithms. As our algorithms follow quite different schemes, we measure this
speed regarding to the computational time. In all runs, NoLips, SVRG and L-BFGS-B
cannot reach the optimal solution as the problem minimizer contains negative values.
This is illustrated in detail in Figure IV.4 for vegas dataset where it appears that all
solvers obtain similar results for the positive values of w∗ but only Newton and SDCA
algorithms are able to estimate the negatives values of w∗. As expected, the Newton
algorithm becomes very slow as the number of features d increases. SDCA is the
only first order solver that reaches the optimal solution. It combines the best of both
world, the scalability of a first order solver and the ability to reach solutions with
negative entries.

5.2 Hawkes processes

If the adjacency matrix A is forced to be entrywise positive, then no event type can
have an inhibitive effect on another. This ability to exhibit inhibitive effect has direct

1https://www.kaggle.com/datasets

90

https://www.kaggle.com/datasets

5. Experiments

0.00 0.02 0.04 0.06
10 13

10 8

10 3

102

wine n = 4898 d = 11

0.000 0.005 0.010 0.015

facebook n = 500 d = 41

0.0 0.5 1.0

news n = 39644 d = 59

0.00 0.01 0.02 0.03 0.04
time (s)

10 13

10 8

10 3

102

vegas n = 504 d = 160

0.0 2.5 5.0 7.5
time (s)

property n = 50999 d = 194

0.0 2.5 5.0 7.5
time (s)

simulated n = 100000 d = 100

SDCA L-BFGS-B SVRG NoLips Newton

Figure IV.3: Convergence over time of five algorithms SDCA, SVRG, NoLips, L-BFGS-
B and Newton on 6 datasets of Poisson regression. SDCA combines the best of both
worlds: speed and scalability of SVRG and L-BFGS-B with the precision of Newton’s
solution.

0 20 40 60 80 100 120 140 160

0.0

0.5

NoLips, SVRG and L-BFGS-B solutions on vegas dataset

0 20 40 60 80 100 120 140 160

0.0

0.5

SDCA and Newton solutions on vegas dataset

Figure IV.4: Estimated minimizers w∗ on the vegas dataset (160 features). The posi-
tive entries are roughly similarly recovered by all solvers but the negative entries are
only retrieved by SDCA and Newton algorithms.

91

IV. Dual optimization without the gradient-Lipschitz assumption

Pu Pd Ta Tb

Dual

Pu

Pd

Ta

Tb

Pu Pd Ta Tb

L-BFGS-B

Pu

Pd

Ta

Tb0.4

0.2

0.0

0.2

0.4

0.1

0.2

0.3

0.4

0.5

Figure IV.5: Adjacency matrix A of a Hawkes process fitted on high-frequency
financial data from the Bund market. This reproduces an experiment run in [BJM16]
where Pu (resp. Pd) counts the number of upward (resp. downward) mid-price moves
and Ta (resp. Tb) counts the number of market orders at the best ask (resp. best
bid) that do not move the price. SDCA detects inhibitive behaviors while L-BFGS-B
cannot.

implications on real life datasets especially in finance where these effects are common
[BJM16, BMM15, RBL17]. In Figure IV.5 we present the aggregated influence of the
kernels obtained after training a Hawkes process on a finance dataset exploring mar-
ket microstructure [BMM15]. While L-BFGS-B (or SVRG, or NoLips) recovers only
excitation in the adjacency matrix, SDCA also retrieves inhibition that one event type
might have on another. It is expected that when stocks are sold (resp. bought) the
price is unlikely to go up (resp. down) but this is retrieved by SDCA only. On simu-
lated data this is even clearer and in Figure IV.6 we observe the same behavior when
the ground truth contains inhibitive effects. Our experiment consists in two simu-
lated Hawkes processes with 10 nodes and sum-exponential kernels with 3 decays.
There are only excitation effects - all ai j

u are positive - in the first case and we allow
inhibitive effects in the second. Events are simulated according to these kernels that
we try to recover. While it would be standard to compare the performances in terms
of log-likelihood obtained on the a test sample, nothing ensures that the problem
optimizer lies in the feasible set of the test set. Hence the results are compared by
looking at the estimation error (RMSE) of the adjacency matrix A across iterations.
Figure IV.6 shows that SDCA always converges faster towards its solution in both
cases and that when the adjacency matrix contains inhibitive effects, SDCA obtains a
better estimation error than L-BFGS-B.

5.3 Heuristic initialization

The default dual initialization in [SSZ14] (α(0) = 0n) is not a feasible dual point. Instead
of setting arbitrarily α(0) to 1n , we design, from three properties, a vector κ ∈ −Dn

f ∗

92

5. Experiments

Original kernel norms
with no inhibition

Original kernel norms
with inhibition

0 5 10 15 20 25
Pass over data

0

100

101

102

Estimation error
L-BFGS-B
SDCA

0 20 40
Pass over data

0

100

101

Estimation error
L-BFGS-B
SDCA

0.065

0.070

0.075

0.080

0.085

0.090

0.20
0.15
0.10
0.05

0.00
0.05
0.10
0.15
0.20

Figure IV.6: Top: Adjacency matrix of the Hawkes processes used for simulation.
Bottom: estimation error of the adjacency matrix A across iterations. In both cases
SDCA is faster than L-BFGS-B and reaches a better estimation error when there are
inhibitive effects to recover (Right).

that is linearly linked to α∗ and then rely on Proposition 7 to find a heuristic starting
point α(0) from κ for Poisson regression and Hawkes processes.

Property 1: link with ‖xi‖. Proposition 6 relates exactly α∗
i to the inverse of the

norm of xi .

Proposition 6. For Poisson regression and Hawkes processes, the value of the dual opti-
mum α∗

i is linearly linked to the inverse of the norm of xi . Namely, if there is ci > 0 such
that ξi = ci xi for any i ∈ {1, . . .n}, then ζ∗, the solution of the dual problem

argmax
ζ∈(0,+∞)n

1

n

n∑
i=1

yi + yi log
(ζi

yi

)
−λg∗

(1

λn

n∑
i=1

ζiξi − 1

λ
ψ

)
,

satisfies ζ∗i =α∗
i /ci for all i = 1, . . .n.

This Proposition is proved in Section 7.12. It suggests to consider κi ∝ 1/‖xi‖ for
all i = 1, . . .n.

93

IV. Dual optimization without the gradient-Lipschitz assumption

Figure IV.7: Value of α∗
i given κi for i = 1, . . . ,n. There is a linear link relating

initial guess κi to the dual optimum α∗
i on Poisson datasets but the amplitude is not

adjusted yet.

Property 2: link with yi . For Poisson regression and Hawkes processes where
fi (x) = −yi log x, the second Karush-Kuhn-Tucker Condition (IV.14) (see Section 7.1
for more details) writes

α∗
i = yi

w∗>xi

for i = 1, . . . ,n. Hence, α∗ and y are correlated (a change in yi only leads to a minor
change in w∗), so we will consider κi ∝ yi /‖xi‖.

Property 3: link with the features matrix. The inner product w∗>xi is positive
and at the optimum, the Karush-Kuhn-Tucker Condition (IV.5) (which links w∗ to
xi through α∗

i) tells that α∗
i is likely to be large if xi is poorly correlated to other

features, i.e. if x>
i

∑n
j=1 x j is small. Finally, the choice

κi = yi

x>
i

∑n
j=1 x j

(IV.11)

for i = 1, . . . ,n, takes these three properties into account.
Figure IV.7 plots the optimal dual variables α∗ from the Poisson regression ex-

periments of Section 5.1 against the the κ vector from Equation IV.11. We observe in
these experiments a good correlation between the two, but κ is only a good guess for
initialization α(0) up to a multiplicative factor that the following proposition aims to
find.

94

5. Experiments

Figure IV.8: Value of α∗
i given α(0)

i from Equation (IV.12) for i = 1, . . . ,n. These
values are close an correlated which makes α(0) a good initialization value.

Proposition 7. For Poisson regression and Hawkes processes and g (w) = 1
2‖w‖2, if we

constrain the dual solution α∗ ∈ (0,+∞)n to be collinear with a given vector κ ∈ (0,+∞)n ,
i.e. α∗ = ᾱκ for some ᾱ ∈R, then the optimal value for ᾱ is given by

ᾱ=
ψ>χκ+

√
(ψ>χκ)2 +4λ‖χκ‖2 1

n

∑n
i=1 yi

2‖χκ‖2
with χκ = 1

n

n∑
i=1

κi xi .

Combined with the previous properties, we suggest to consider

α(0)
i = ᾱκi (IV.12)

as an initial point, where κi is defined in Equation (IV.11).

This Proposition is proved in Section 7.13. Figure IV.8 presents the values of α∗
i

given its initial value α(0)
i for i = 1, . . . ,n and shows that the rescaling has worked

properly. We validate this heuristic initialization by showing that it leads to a much
faster convergence in Figure IV.9 below. Indeed, we observe that SDCA initialized
with Equation (IV.12) reaches optimal objective much faster than when initialization
consists in setting all dual variables arbitrarily to 1.

5.4 Using mini batches

At each step t , SDCA [SSZ13] maximizes the dual objective by picking one index
it ∈ {1, . . . ,n} and maximizing the dual objective over the coordinate it of the dual

95

IV. Dual optimization without the gradient-Lipschitz assumption

0.00 0.02 0.04 0.06
10 13

10 8

10 3

102

wine n = 4898 d = 11

0.000 0.002 0.004 0.006

facebook n = 500 d = 41

0.0 0.2 0.4

news n = 39644 d = 59

0.000 0.005 0.010 0.015
time

10 13

10 8

10 3

102

vegas n = 504 d = 160

0 10 20
time

property n = 50999 d = 194

0 10 20
time

simulated n = 100000 d = 100

SDCA SDCA no init

Figure IV.9: Convergence over time of SDCA with wise initialization from Equa-
tion (IV.12) and SDCA arbitrarily initialized with α(0) = 1.

vector α, and sets

αt+1
i = argmax

v∈−D f ∗
D(αt

1, . . . ,αt
it−1, v,αt

it+1, . . . ,αn).

In some cases this maximization has a closed-form solution, such as for Poisson
regression (see Proposition 4) or least-squares regression where fi (w) = (yi −w>xi)2

leads to the explicit update

αt+1
i =αt

i +
yi −w>xi −αt

i

1+ (λn)−1‖xi‖2
.

In some other cases, such as logistic regression, this closed form solution cannot
be exhibited and we must perform a Newton descent algorithm. Each Newton step
consists in computing ∂D(α)/∂αi and ∂2D(α)/∂α2

i , which are one dimensional op-
erations given ‖xi‖2 and w>xi . Hence, in a large dimensional setting, when the
observations xi have many non zero entries, the main cost of the steps resides mostly
in computing ‖xi‖2 and w>xi . Since ‖xi‖2 and w>xi must also be computed when
using a closed-form solution, using Newton steps instead of the closed-form is even-
tually not much more computationally expensive. So, in order to obtain a better
trade-off between Newton steps and inner-products computations, we can consider
more than a single index on which we maximize the dual objective. This is called
the mini-batch approach, see Stochastic Dual Newton Ascent (SDNA) [QRTF16]. It
consists in selecting a set I ⊂ {1, . . . ,n} of p indices at each iteration t . The value of

96

5. Experiments

αt+1
i becomes in this case

αt+1
i = argmax

v∈(−D f ∗)p
D(b1, . . . ,bn) where bi =

{
v j if i ∈I and j is the position of i in I

αt
i otherwise.

The two extreme cases are p = 1, which is the standard SDCA algorithm, and p = n
for which we perform a full Newton algorithm. After computing the inner products
w>xi and x>

i x j for all (i , j) ∈I 2 each iteration will simply performs up to 10 Newton
steps in which the bottleneck is to solve a p ×p linear system. This allows to better
exploit curvature and obtain better convergence guarantees for gradient-Lipschitz
losses [QRTF16].

We can apply this to Poisson regression and Hawkes processes where fi (x) =
−yi log x. The maximization steps of Line 4 in Algorithm IV.2 is now performed on
a set of coordinates I ⊂ {1, . . .n} and consists in finding

max
αi ;i∈I

D t
I (αI) where D t

I (αI) = 1

n

∑
i∈I

(
yi+yi log αi

yi

)
−λ

2

∥∥∥w t+ 1

λn

∑
i∈I

(αi−αt
i)xi

∥∥∥2
,

where we denote by αI the sub-vector of α of size p containing the values of all
indices in I . We initialize the vector α(0)

I
∈ (−D f ∗)p to the corresponding values of

the coordinates of αt in I and then perform the Newton steps, i.e.

αk+1
I =αk

I −∆αk
I where ∆αk

I is the solution of ∇2D t
I (αk

I)∆αk
I =∇D t

I (αk
I).
(IV.13)

The gradient ∇D t
I

(αk
I

) and the hessian ∇2D t
I

(αk
I

) have the following explicit for-
mulas:

(∇D t
I (αk

I))i =
∂D(αk

I
)

∂αi
= 1

n

(yi

αk
i

−w t>xi − 1

λn

∑
j∈I

(αk
j −αt

j)x>
j xi

)
,

and (∇2D t
I (αk

I)
)

i , j =
∂2D(αk

I)

∂αi∂α j
=− 1

n

(yi

αk
i

2 1i= j + 1

λn
x>

i x j

)
.

Note that D t
I is a concave function hence −∇2D t

I (αk
I) will be positive semi-definite

and the system in Equation (IV.13) can be solved very efficiently with BLAS and
LAPACK libraries. Let us explicit computations when p = 2. Suppose that I = {i , j }
and put

δi =αi −α(t−1)
i , pi = x>

i w (t−1) and gi j =
x>

i x j

λn
.

The gradient and the Hessian inverse are then given by

∇D(αI) = 1

n

[yi
αi

−pi −δi gi i −δ j gi j
y j

α j
−p j −δ j g j j −δi gi j

]
,

97

IV. Dual optimization without the gradient-Lipschitz assumption

0.00 0.05 0.10
10 12

10 9

10 6

10 3

100 wine n = 4898 d = 11

0.000 0.005 0.010

facebook n = 500 d = 41

0.0 0.5 1.0

news n = 39644 d = 59

0.000 0.005 0.010 0.015
time

10 12

10 9

10 6

10 3

100 vegas n = 504 d = 160

0 5 10
time

property n = 50999 d = 194

0 5 10
time

simulated n = 50000 d = 1000

SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10

Figure IV.10: Convergence speed comparison when the number of indices optimized
at each step changes.

and

∇2D(αI)−1 = n2

(yi

α2
i
+ gi i)(yi

α2
i
+ gi i)− g 2

i j

− y j

α2
j
− g j j gi j

gi j − yi

α2
i
− gi i

 .

This direct computation leads to even faster computations than using the dedicated
libraries. We plot in Figure IV.10 the convergence speed for three sizes of batches 1,
2 and 10. Note that in all cases using a batch of size p = 2 is faster than standard
SDCA. Also, in the last simulated experiment where d has been set on purpose to
1000, the solver using batches of size p = 10 is the fastest one. The bigger number of
features d gets, the better are solvers using big batches.

5.5 About the pessimistic upper bounds

The generic upper bounds derived in Proposition 5 are general but pessimistic as
they depend linearly on n. In fact this dependence is also observed in the NoLips
algorithm [BB16] where the rate depends on a constant L =∑n

i yi . Note that, for Nolips
algorithms, L is involved in the step size definition and leads to step too small to be
used in practice but that in our algorithm, these bounds have little or even no impact
in practice (see Remark 2) and are mainly necessary for convergence guarantees.
These bounds are derived by lower bounding x>

i

∑
j 6=i α

∗
j x j by 0. This lower bound is

very conservative and can probably be tightened by setting specific hypotheses on the
dataset, for example on the Gram matrix ([G]i , j = x>

i x j for i , j = 1, . . . ,n). For Poisson

98

6. Conclusion

1000 2000 3000 4000 5000
1.60

1.65

1.70

1.75

1.80

m
ax i

* i
wine n = 4898 d = 11

100 200 300 400 500

10

20

30

facebook n = 500 d = 41

10000 20000 30000 40000

100

150

200

250
news n = 39644 d = 59

100 200 300 400 500
n

1.3

1.4

1.5

m
ax i

* i

vegas n = 504 d = 160

20000 40000
n

8

9

10

11

12
property n = 50999 d = 194

20000400006000080000100000
n

24

26

28

30

32
simulated n = 100000 d = 100

Figure IV.11: Evolution of maxi=1,...,nα
∗
i for an increasing value of n. We observe that

maxi=1,...,nα
∗
i is not increasing linearly with n as quick as the bound βi obtained in

Proposition 5.

regression, this lower bound is reached in the extreme case where all observations are
orthogonal (all entries of G are zero except on the diagonal). Then ψ>xi = 1

n‖xi‖2

and the upper bounds from Proposition 5 become

βi = 1

2
+

√
1

4
+ λnyi

‖xi‖2

for i = 1, . . . ,n. In this extreme case, the bounds are O (
p

n) instead of mathcalO(n)
as stated in Proposition 5. Experimentally, we do not observe a dependence in
O (n) either. Figure IV.11 shows the evolution of the maximum optimal dual obtained
(maxi=1,...,nα

∗
i) for the six datasets considered in Section 5.1 for Poisson regression,

on an increasing fraction of the dataset. These values are averaged over 20 samples
and we provide the associated 95% confidence interval on this value. We observe
that maxi=1,...,nα

∗
i has a much lower dependence in n than the bounds given by

Proposition 5.

6 Conclusion

This work introduces the log-smoothness assumption in order to derive improved
linear rates for SDCA, for objectives that do not meet the gradient-Lipschitz assump-
tion. This provides, to the best of our knowledge, the first linear rates for a stochastic

99

IV. Dual optimization without the gradient-Lipschitz assumption

first order algorithm without the gradient-Lipschitz assumption. The experimental
results also prove the efficiency of SDCA to solve such problems and its ability to deal
with the open polytope constraints, improving the state-of-the-art. Finally, this work
also presents several variants of SDCA and experimental heuristics to make the most
of it on real world datasets. Future work could provide better linear rates under more
specialized assumptions on the Gram matrix, as observed on numerical experiments.
Also, to extend this work to more applications, we aim to find a generalization of the
log smoothness assumption such as what [STD17] has done for self-concordance.

Acknowledgments

We would like to acknowledge support for this project from the Datascience Initiative
of École polytechnique

7 Proofs

We start this Section by providing extra details on the derivation of the dual problem
and the proximal version of SDCA. We then provides the proofs of all the results
stated in the chapter, namely Proposition 2, Proposition 3, Theorem 1, Theorem 2,
Proposition 4, Proposition 5, Remark 2, Proposition 6 and Proposition 7.

7.1 Duality and proof of Proposition 1

It is not straightforward to obtain strong duality for a convex problem with strict
inequalities (such as the ones enforced by the polytope Π(X) from Equation IV.3). To
bypass this difficulty we consider the same problem but constrained on a closed set
and show how it relates to the original Problem (IV.2). But first we formulate the two
following lemmas.

Lemma 1. There exists ε> 0 such that the following problem

min
w∈Π|ε(X)

P (w) where Π|ε(X) = {w ∈Rd : ∀i ∈ {1, . . . ,n}, w>xi ≥ ε}

has a solution w∗ that is also the solution of the original Problem (IV.2).

Proof. First, notice that this problem has a unique solution which is unique as we
minimize a strongly convex function on a closed convex set Π|ε(X). Also, as the
function w 7→ψ>w +λg (w) is strongly convex, since g is strongly convex, it is lower
bounded. We denote by M ∈ R a lower bound of this function. Then, we consider
w 0 ∈Π(X), and choose ε sufficiently small such that for all i = 1, . . . ,n,

∀t < ε, fi (t) > nP (w 0)−nM ,

100

7. Proofs

this value of ε always exists since by assumption limt→0 fi (t) =+∞ for all i = 1, . . . ,n.
For any wε ∈Π(X)\Πε(X) (so a wε is such that ∃i ∈ {1, . . . ,n}, w>

ε xi < ε), we thus have
P (wε) >ψ>wε+P (w 0)−M +λg (wε) ≥ P (w 0).

Hence, for such a value of ε, the solution to the original Problem (IV.2) is necessarily
in Πε(X) and both the problems constrained on Πε(X) and Π(X) share the same
solution w∗. ■
Lemma 2. For all i = 1, . . . ,n, if we define by

∀αi ∈D f ∗ , f ∗
i |ε(v) := max

u≥ε uv − fi (u),

then f ∗
i |ε is equal to the Fenchel conjugate of fi , f ∗

i , on {v ; ∃u ≥ ε ; v = f ′
i (u)}.

Proof. For all i = 1, . . . ,n, the functions fi are convex and differentiable. Hence, by
Fermat’s rule if ∃u∗ ≥ ε; v = f ′

i (u∗) then f ∗
i |ε(v) = maxu≥εuv − fi (u) = u∗ f ′

i (u∗)−
fi (u∗). Likewise, the maximization step in the computation of f ∗

i would share the
same maximizer and f ∗

i (v) = u∗ f ′
i (u∗)− fi (u∗) as well. Hence,

∀v such that ∃u ≥ ε ; v = f ′
i (u); f ∗

i |ε(v) = f ∗
i (v).

■
We form the dual of the problem constrained on Πε(X) where ε is such that

Lemma 1 applies. We replace the inner products w>xi by the scalars ui for i = 1, . . . ,n
and their equality is constrained to form the strictly equivalent problem:

min
w∈Rd ,u∈[ε,+∞)n

∀i ,ui=w>xi

ψ>w + 1

n

n∑
i=1

fi (ui)+λg (w).

We maximize the Lagrangian to include the constraints. This introduces the vector
of dual variables α ∈Rn as following:

max
α∈Rn

min
w∈Rd

u∈[ε,+∞)n

ψ>w + 1

n

n∑
i=1

fi (ui)+λg (w)+ 1

n

n∑
i=1

αi (ui −w>xi)

that leads to the corresponding dual problem:

max
α∈(−D f ∗|ε

)n
D |ε(α), D |ε(α) = 1

n

n∑
i=1

− f ∗
i |ε(−αi)−λg∗

(1

λn

n∑
i=1

αi xi − 1

λ
ψ

)
,

where −D f ∗
|ε is the domain of all f ∗

i |ε. The primal problem constrained on Πε(X)

verifies the Slater’s conditions so strong duality holds and the maximizer of D |ε,

101

IV. Dual optimization without the gradient-Lipschitz assumption

α∗
|ε, is reached. As D |ε is concave, α∗

|ε is the only vector such that ∇D |ε(α∗
|ε) = 0.

Also, as strong duality holds, we can relate α∗
|ε to the primal optimum though the

Karush-Kuhn-Tucker condition

α∗
i |ε =− f ∗

i |ε
′(w∗>xi),

where w∗ is such that w∗>xi ≥ ε (see Lemma 1). Hence Lemma 2 applies and the
dual formulation of the original Problem (IV.2) that writes

max
α∈(−D f ∗)n

D(α), D(α) = 1

n

n∑
i=1

− f ∗
i (−αi)−λg∗

(1

λn

n∑
i=1

αi xi − 1

λ
ψ

)
,

is such that ∇D(α∗
|ε) = ∇D |ε(α∗

|ε) = 0. Since D(α) is concave, this means that α∗
|ε =

α∗ where α∗ is the solution of the dual formulation of the original Problem (IV.2).
Thus, the Karush-Kuhn-Tucker conditions that link the primal and dual optima of the
problem constrained on Π|ε(X) also links the primal and dual optima of the original
Problem (IV.2). The first one is given in Equation (IV.5) and the second one writes

α∗
i =− f ∗

i
′(w∗>xi) (IV.14)

for any i ∈ {1, . . .n}. From the first we can define two functions linking vector w ∈Rd

to α ∈ (−D f ∗)n and such that w(α∗) = w∗ and

v(α) = 1

λn

n∑
i=1

αi xi − 1

λ
ψ and w(α) =∇g∗(

v(α)
)
. (IV.15)

7.2 Proximal algorithm

Given that g∗ is smooth since its Fenchel conjugate is strongly convex, the gradient-
Lipschitz property from Definition 4 below entails g∗(v +∆v) ≤ g∗(v)+∇g∗(v)>∆v +
1
2‖∆v‖2. Hence, maximization step of Algorithm IV.1, namely,

argmax
αi∈−D f ∗

− f ∗
i (−αi)−λng∗(

v (t−1) + (λn)−1(αi −α(t−1)
i)xi

)
,

where v (t−1) = 1
λn

∑n
i=1α

(t−1)
i xi − 1

λψ can be simplified by setting αt
i such that it max-

imizes the lower bound

αt
i = argmax

αi∈−D f ∗
− f ∗

i (−αi)−λn
(
g∗(

v (t−1))+αi −α(t−1)
i

λn
x>

i ∇g∗(v (t−1))+1

2

(αi −α(t−1)
i

λn

)2
‖xi‖2

)
.

(IV.16)

102

7. Proofs

Setting w (t−1) = ∇g∗(v (t−1)) and discarding constants terms leads to the equivalent
relation,

αt
i = argmax

αi∈−D f ∗
− f ∗

i (−αi)− λn

2

∥∥∥w (t−1) − (λn)−1(αi −α(t−1)
i)xi

∥∥∥2
.

While convergence speed is guaranteed for any 1-strongly convex g , to simplify the
algorithm we will consider that g is not only 1-strongly convex but that that it can
also be decomposed as

g (w) = 1
2‖w‖2 +h(w)

where h is a prox capable function. With Proposition 8 below the relation between
w t and v t becomes

w t =∇g∗(v t) = argsup
u∈Rd

(
u>v t − 1

2‖u‖2 −h(u)
)
= arginf

u∈Rd

(
1
2‖v t −u‖2 +h(u)

)
,

which is the proximal operator stated in Definition 6 below: w t = proxh(v(αt)).

7.3 Preliminaries for the proofs

Let us first recall some definitions and basic properties.

Definition 3. Strong convexity. A differentiable convex function f : D f →R is γ-strongly
convex if

∀x, y ∈D f , f (y) ≥ f (x)+ f ′(x)>(y −x)+ γ

2
‖y −x‖2. (IV.17)

This is equivalent to

∀x, y ∈D f , (f ′(y)− f ′(x))(y −x) ≥ γ‖y −x‖2. (IV.18)

Definition 4. Smoothness. A differentiable convex function f : D f → R is L-smooth or
L-gradient-Lipschitz if

∀x, y ∈D f , f (y) ≤ f (x)+ f ′(x)(y −x)+ L

2
‖y −x‖2.

This is equivalent to

∀x, y ∈D f , (f ′(y)− f ′(x))(y −x) ≤ L‖y −x‖2.

Definition 5. Fenchel conjugate. For a convex function f : D f → R we call Fenchel
conjugate the function f ∗ defined by

f ∗ : D f ∗ →R, st. f ∗(v) = sup
u∈D f

(
u>v − f (u)

)
. (IV.19)

103

IV. Dual optimization without the gradient-Lipschitz assumption

Proposition 8. For a convex differentiable function f , the gradient of its differentiable
Fenchel conjugate f ∗ is the maximizing argument of (IV.19):

f ∗′(v) = argsup
u∈D f

(
u>v − f (u)

)
.

Proposition 9. For a convex differentiable function f and its differentiable Fenchel con-
jugate f ∗ we have

∀u ∈D f , f ∗′(f ′(u)) = u and ∀v ∈D f ∗ , f ′(f ∗′(v)) = v.

This leads to
∀u ∈D f ,∀v ∈D f ∗ , f ′(u) = v ⇔ u = f ∗′(v).

Note that if f is γ-strongly convex (respectively L-smooth), then its Fenchel con-
jugate f ∗ is 1/γ smooth (respectively 1/L strongly convex). We also recall results
from [NN94] on self-concordant functions introduced in Definition 2. This concept
is widely used to study losses involving logarithms. For the sake of clarity, the re-
sults will be presented for functions whose domain D f is a subset of R as this leads
to lighter notations. Unlike smoothness and strong convexity, this property is affine
invariant. From this definition, some inequalities are derived in [NN94]. Two of them
provide lower bounds that are comparable to strong convexity inequalities:

∀x, y ∈D f , f (y) ≥ f (x)+ f ′(x)(y −x)+ω(√
f ′′(x)|y −x|) (IV.20)

where ω(t) = t − log(1+ t), and

∀x, y ∈D f , (f ′(y)− f ′(x))>(y −x) ≥ f ′′(x)(y −x)2

1+√
f ′′(x)|y −x|

. (IV.21)

Finally, we define the proximal operator used to apply the penalization g .

Definition 6. Proximal operator. For a convex function g : Dg →R, where Dg is closed,
the proximal operator associated to g is given by

proxg (y) = argmin
x∈Dg

(1

2
‖y −x‖2 + g (x)

)
.

The proximal operator always exists and is uniquely defined as the minimizer of
a strongly convex function. Before the proof of Theorem 1, we need to introduce
new convex inequalities for L-log smooth functions. This class of function includes
x 7→ −L log x which is our function of interest in the Poisson and in the Hawkes cases.

104

7. Proofs

7.4 Proof of Proposition 2

First order implies second order We start by showing that if f is a L log-smooth
function then we can bound its second derivative by the square of its gradient. For
any x ∈D f , we set y = x +h in the Definition 1, which now writes

∀x ∈D f , ∀h s.t. (x +h) ∈D f ,
∣∣∣ f ′(x)− f ′(x +h)

h

∣∣∣≤ 1

L
f ′(x) f ′(x +h).

Taking the limit of the previous inequality when h tends to 0 leads to the desired
inequality,

∀x ∈D f ,
∣∣ f ′′(x)

∣∣≤ 1

L
f ′(x)2.

Second order implies first order We now prove that if f is convex strictly mono-
tone, twice differentiable and | f ′′(x)| ≤ 1

L f ′(x)2 then f is L-log smooth. If for all
x ∈ D f , we denote by φ : x 7→ 1

f ′(x) , (note that ∀x ∈ D f , f ′(x) 6= 0 as f is strictly
monotone), then

∀x ∈D f , |φ′(x)| =
∣∣∣ f ′′(x)

f ′(x)2

∣∣∣≤ 1

L
.

From this inequality, we limit the increasings of the function φ,

∀x, y ∈D f , − 1
L |y −x| ≤φ(y)−φ(x) ≤ 1

L |y −x|,

which rewrites

∀x, y ∈D f , |φ(y)−φ(x)| ≤ 1
L |y −x| ⇔

∣∣∣ f ′(x)− f ′(y)

f ′(x) f ′(y)

∣∣∣≤ 1

L
|x − y |,

that is the definition of a L-log smooth function for a convex strictly monotone
function.

7.5 Proof of Proposition 3

We working by exhibiting several statements equivalent to log smoothness. First, we
divide both sides of the log smoothness definition by f ′(x) f ′(y) > 0 since f is strictly
monotone,

f is L-log smooth ⇔ ∀x, y ∈D f ,
∣∣∣ 1

f ′(y)
− 1

f ′(x)

∣∣∣≤ 1

L
|x − y |.

Then we rewrite the equation in the dual space using Proposition 9,

f is L-log smooth ⇔ ∀x, y ∈D f ∗ ,
∣∣∣ 1

y
− 1

x

∣∣∣≤ 1

L
| f ∗′(x)− f ∗′(y)|.

105

IV. Dual optimization without the gradient-Lipschitz assumption

This can be rewritten into the following integrated form

f is L-log smooth ⇔ ∀x, y ∈D f ∗ ,
∣∣∣∫ x

y
t−2d t

∣∣∣≤ 1

L

∣∣∣∫ x

y
(f ∗′′(t)dt

∣∣∣,
which becomes equivalent to the desired result with the fundamental theorem of
calculus

f is L-log smooth ⇔ ∀x ∈D f ∗ , x−2 ≤ 1

L
f ∗′′(x).

7.6 Inequalities for log-smooth functions

The proof of SDCA [SSZ13] relies on the smoothness of the functions fi which implies
strong convexity of their Fenchel conjugates f ∗

i . Indeed, a γ strongly convex function
f ∗ satisfies the following inequality

s f ∗(x)+ (1− s) f ∗(y) ≥ f ∗(sx + (1− s)y)+ γ

2
s(1− s)(y −x)2. (IV.22)

This inequality is not satisfied for L-log smooth functions. However, we can derive for
such functions another inequality which can be compared to such inequalities based
on self-concordance and strongly convex properties.

Lemma 3. Let f : D f ⊂ R→ R be a strictly monotone convex function and f ∗ be its
differentiable Fenchel conjugate. Then,

f is L-log smooth ⇔ ∀x, y ∈D f ∗ , (f ∗′(x)− f ∗′(y))(x − y) ≥ L
(x − y)2

x y
.

This bound is an equality for f (x) =−L log x.

Proof. From log smoothness definition, we obtain by multiplying both sides by | f ′(x)−
f ′(y)| and dividing by f ′(x) f ′(y) > 0 (since f is strictly monotone),

f is L-log smooth ⇔ ∀x, y ∈D f ,

(
f ′(x)− f ′(y)

)2

f ′(x) f ′(y)
≤ 1

L
|x − y || f ′(x)− f ′(y)|

Since f is a convex function, (f ′(x)− f ′(y))(x − y) ≥ 0 and using Proposition 9, we
can rewrite the previous equivalence in the dual space:

f is L-log smooth ⇔ ∀x, y ∈D f ∗ ,
(x − y)2

x y
≤ 1

L
(f ∗′(x)− f ∗′(y))(x − y),

which concludes the proof. ■

106

7. Proofs

Lemma 4. Let f : D f ⊂ R→ R be a strictly monotone convex function and f ∗ be its
differentiable Fenchel conjugate. Then,

f is L-log smooth ⇔ ∀x, y ∈D f ∗ , f ∗(x)− f ∗(y)− f ∗′(y)(x − y) ≥ L
(x

y
−1− log

x

y

)
.

This bound is an equality for f (x) =−L log x.

Proof. Let x, y ∈D f ∗ , we have the following on the one hand,

f ∗(x)− f ∗(y)− f ∗′(y)(x − y) =
∫ x

y

(
f ∗′(u)− f ∗′(y)

)
du

On the other hand, applying Lemma 3 together with the fundamental theorem of
calculus gives

f is L-log smooth ⇔ ∀x, y ∈D f ∗ ,
∫ x

y
(f ∗′(u)− f ∗′(y))du ≥

∫ x

y
L

u − y

uy
du.

Finally, solving the integral leads to the desired result:

∀x, y ∈D f ∗ ,
∫ x

y
L

u − y

uy
du = L

∫ x

y

(1

y
− 1

u

)
du = L

(x − y

y
− log

x

y

)
.

■

Lemma 5. Assume that f is L-log smooth and f ∗ is its differentiable Fenchel conjugate,
then,

s f ∗(x)+ (1− s) f ∗(y)− f ∗(y + s(x − y)) ≥ L
(

log
(
1− s + s

x

y

)
− s log

x

y

)
for any y, x ∈D f ∗ and s ∈ [0,1]. This bound is an equality for f (x) =−L log x.

Proof. Let x, y ∈ D f ∗ and define for any s ∈ [0,1], u(s) = sx + (1− s)y . We apply
Lemma 4 twice for x, u(s) and y , u(s):

f ∗(x)− f ∗(u(s))− f ∗′(u(s))(x −u(s)) ≥ L
(x

u(s)
−1− log

x

u(s)

)
, (IV.23)

f ∗(y)− f ∗(u(s))− f ∗′(u(s))(y −u(s)) ≥ L
(y

u(s)
−1− log

y

u(s)

)
. (IV.24)

107

IV. Dual optimization without the gradient-Lipschitz assumption

Combining s(IV.23) and (1− s)(IV.24) leads to

s f ∗(x)+ (1− s) f ∗(y)− f ∗(u(s)) ≥−sL log
x

u(s)
− (1− s)L log

y

u(s)

+L
(
s

x

u(s)
+ (1− s)

y

u(s)
−1

)
= sL log

u(s)

x
+ (1− s)L log

u(s)

y

= sL log
u(s)

y
+ sL log

y

x
+ (1− s)L log

u(s)

y

= L log
(
1− s + s

x

y

)
+ sL log

y

x
. ■

This Lemma which implies the barycenter u(s) = y + s(x − y) for s ∈ [0,1] is the
lower bound that we actually use in proof of Theorem 1. To compare this result with
strong convexity and self-concordance assumptions, we will suppose that f ∗ is twice
differentiable and hence that Proposition 3 applies.

Comparison with self-concordant functions Instead of building our lower
bounds on log smoothness, we rather exhibit what can be obtained with self-
concordance combined with the lower bound f ∗′′(y) ≥ Ly−2 from Proposition 3. In
this paragraph, we consider that 1

L f ∗ is standard self-concordant, such an hypothesis
is verified for f : t 7→ − 1

L log(t). Hence, using lower bound (IV.21) on 1
L f and then

Proposition 3, we obtain

∀x, y ∈D f ∗ , (f ∗′(x)− f ∗′(y))(x − y) ≥ f ∗′′(y)(x − y)2

1+
√

1
L f ∗′′(y)|x − y |

≥ L
(x − y)2

y2 +|y(x − y)| .

Since ∀x, y ∈ D f ∗ , x y > 0, this lower bound is equivalent to Lemma 3 if |x| ≥ |y |
but not as good otherwise. Lemma 4 can also be compared to what can be obtained
applying Inequality (IV.20) on 1

L f . Since ω : t 7→ t−log(1+t) is an increasing function,
it leads to

∀x, y ∈D f ∗ , f ∗(x)− f ∗(y)− f ∗′(y)(x − y) ≥ L ω
(√

1
L f ∗′′(y) |x − y |

)
≥ L ω

(∣∣ x
y −1

∣∣).

Again, this lower bound the same as Lemma 4 if |x| ≥ |y | but not as good otherwise.
Finally, a bound equivalent to Lemma 5 for self-concordant functions is not easy to
explicit in a clear form. However, it is numerically smaller than the lower bound
stated in Lemma 5 for any s ∈ [0,1] and any x, y ∈D f ∗ .

108

7. Proofs

strongly convex self-concordant log smoothness

Lemma 3 (x−y)2

max(x2,y2)
(x−y)2

y2+|y(x−y)|
(x−y)2

x y

Lemma 4 (x−y)2

2max(x2,y2) | x
y −1|− log

(
1+| x

y −1|) x
y −1− log

(x
y

)
Lemma 5 s(1− s) (x−y)2

2max(x2,y2) − log
(
1− s + s x

y

)+ s log y
x

Reached for f =− log 7 7 3

Table IV.3: Comparison of lower bounds obtained with different hypotheses. These
lower bounds come from Lemmas 3, 4 and 5. It shows that both the strongly-convex
and self-concordant hypotheses are not enough to reach the inequality obtained under
log smoothness. The inequality coming from Lemma 5 is missing as it cannot be
easily exhibited for self-concordant functions.

Comparison with strongly convex functions We cannot directly assume that f ∗

is strongly convex as it would mean that f is gradient-Lipschitz. But, for fixed values
of x and y ∈ D f ∗ , we define on {u ∈ D f ∗ , |u| < max(|x|, |y |)} the function f ∗

{x,y} : u 7→
f ∗(u) as the restriction of f ∗ on this interval. The lower bound f ∗′′(y) ≥ Ly−2 from
Proposition 3 implies that f ∗

{x,y} is L/max(x2, y2) strongly-convex on its domain to
which x and y belong. Equation (IV.18) leads to the following inequality, valid for
f ∗

{x,y} and thus for f ∗,

∀x, y ∈D f ∗ , (f ∗′(x)− f ∗′(y))(x − y) ≥ L
(x − y)2

max(x2, y2)
.

As soon as x 6= y , this lower bound is not as good as the one provided by Lemma 3.
Following the same logic, we exhibit the two following lower bounds. The first one
corresponds to Lemma 4 and is entailed by Equation (IV.17),

∀x, y ∈D f ∗ , f ∗(x)− f ∗(y)− f ∗′(y)(x − y) ≥ L

2

(x − y)2

max(x2, y2)
,

and the second to Lemma 5 and is entailed by Equation (IV.22)

∀x, y ∈D f ∗ , ∀s ∈ [0,1], s f ∗(x)+(1− s) f ∗(y)− f ∗(y + s(x− y)) ≥ s(1− s)
L

2

(x − y)2

max(x2, y2)
.

In both cases the reached lower bounds are not as tight as the ones stood in Lemmas 4
and 5. All these bounds are reported in Table IV.3 for an easy comparison.

Finally, two lemmas to lower bound Lemma 5 are needed as well.

109

IV. Dual optimization without the gradient-Lipschitz assumption

10 2 10 1 100 101

z

0.0

0.5

1.0

1.5

2.0

log((1 s) + s
z) + slogz

(1 z)2

s = 0.2
s = 0.4
s = 0.6

s = 0.8
s = 1

100 101 102

z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

log((1 s) + s
z) + slogz

s(1 s)(1
z 1 + logz)

s = 0.2
s = 0.4

s = 0.6
s = 0.8

Figure IV.12: Illustrations of Lemma 6 and Lemma 7.

Left: Lemma 6,
log

(
(1−s)+ s

z

)
+s log z

(1−z)2 is decreasing in z for any fixed s ∈ [0,1].

Right: Lemma 7, log
(
(1− s)+ s

z

)+ s log z ≥ s(1− s)
(1

z − 1+ log z
)
for any z ≥ 1 and

s ∈ [0,1].

Lemma 6. The function f defined by

f (s, z) = log
(
(1− s)+ s

z

)+ s log z

(1− z)2

for all z ∈R++ and s ∈ [0,1] is a decreasing function in z.

Lemma 7. We have

log
(
(1− s)+ s

z

)
+ s log z ≥ s(1− s)

(1

z
−1+ log z

)
for all z ≥ 1 and s ∈ [0,1].

The analytical proof of these lemmas are very technical and not much informative.
Thus, we rather illustrate them with the two following figures

7.7 Proof of Theorem 1

This proof is very similar to SDCA’s proof [SSZ14] but it uses the new convex inequal-
ity on the Fenchel conjugate of log smooth functions from Lemma 5 to get a tighter
inequality. We first prove the following lemma which is an equivalent of Lemma 6
from [SSZ14] but with convex functions fi that are Li -log smooth instead of being
Li -gradient-Lipschitz.

Lemma 8. Suppose that we known bounds βi ∈ −D f ∗ such that Ri = βi /α∗
i ≥ 1 for

i = 1, . . . ,n and assume that all fi are Li -log smooth with differentiable Fenchel conjugates

110

7. Proofs

and that g is 1-strongly convex. Then, if α(t ,i) is the value of α(t) when i is sampled at
iteration t for Algorithms IV.1 and IV.2, we have

n∑
i=1

s−1
i

(
D(α(t ,i))−D(α(t−1))

)≥ D(α∗)−D(α(t−1))+G(si ,α(t−1)
i ,α∗

i) (IV.25)

for any s1, . . . , sn ∈ [0,1], where

G(s,α(t−1),α∗) = 1

n

n∑
i=1

(
Liγ(si ,α(t−1)

i ,α∗
i)− si

2λn
‖xi‖2(α∗

i −α(t−1)
i)2

)
and

γ(si ,α(t−1)
i ,α∗

i) = 1

si
log

(
1− si + si

α∗
i

α(t−1)
i

)
− log

α∗
i

α(t−1)
i

.

Proof. At iteration t , if the dual vector is set to α(t) (and v (t) = v(α(t)), see Equa-
tion (IV.15)) the dual gain is

n(D(α(t))−D(α(t−1))) = (− f ∗
i (−αt

i)−λng∗(v (t))
)︸ ︷︷ ︸

Ai

−(− f ∗
i (−α(t−1)

i)−λng∗(v (t−1))
)︸ ︷︷ ︸

Bi

where i is the index sampled at iteration t (see Line 3). For Algorithm IV.1, by the
definition of α(t)

i given on Lines 4 and 5 we have

Ai = max
αi∈−D f ∗

s.t. βi /αi≥1

− f ∗
i (−αi)−λng∗

(1

λn
(αi −α(t−1)

i)xi + 1

λn

n∑
j=1

α(t−1)
j x j − 1

λ
ψ

)
.

Using the smoothness inequality on g∗ which is 1-smooth as g is 1-strongly convex,

g∗(v (t−1) +∆v) ≤ h(v (t−1),∆v)

where h(v (t−1),∆v) = g∗(v (t−1))+∇g∗(v (t−1))>∆v + 1

2
‖∆v‖2.

Hence setting ∆v to (λn)−1(αi −α(t−1)
i)xi , we can lower bound Ai with

Ai ≥ max
αi∈−D f ∗

s.t. βi /αi≥1

− f ∗
i (−αi)−λnh

(
v (t−1), (λn)−1(αi −α(t−1)

i)xi
)
.

For Algorithm IV.2, by definition of α(t)
i stated at Lines 4 and 5 combined with the

modified argmax relation (IV.16),

Ai = max
αi∈−D f ∗

s.t. βi /αi≥1

− f ∗
i (−αi)−λnh

(
v (t−1), (λn)−1(αi −α(t−1)

i)xi
)
.

111

IV. Dual optimization without the gradient-Lipschitz assumption

As both α(t−1)
i and α∗

i belong to {αi ∈−D f ∗ ,βi /αi ≥ 1}, for any si ∈ [0,1], the convex
combination αi = (1−si)α(t−1)

i +siα
∗
i belongs to it as well. Hence, for both algorithms,

Ai is higher than the previous quantity evaluated at this specific αi . Namely,

Ai ≥− f ∗
i

(− (
(1− si)α(t−1)

i + siα
∗
i

))−λnh
(
v (t−1), (λn)−1si (α∗

i −α(t−1)
i)xi

)
.

We then use Lemma 5, in which −α∗
i ∈D f ∗ stands for x and −α(t−1)

i ∈D f ∗ for y :

(1− si) f ∗
i (−α(t−1)

i)+ si f ∗
i (−α∗

i)− f ∗
i (−(1− si)α(t−1)

i − siα
∗
i) ≥ si Liγ(si ,α(t−1)

i ,α∗
i)

where

γ(si ,α(t−1)
i ,α∗

i) = 1

si
log

(
1− si + si

α∗
i

α(t−1)
i

)
− log

α∗
i

α(t−1)
i

.

This inequality is used instead of the strong convex inequality of the classic SDCA
analysis [SSZ14]. If we plug this inequality into Ai we obtain

Ai ≥−si f ∗(−α∗
i)− (1− si) f ∗(−α(t−1)

i)+ si Liγ(si ,α(t−1)
i ,α∗

i)

−λng∗(v (t−1))− si (α∗
i −α(t−1)

i)x>
i ∇g∗(v (t−1))− s2

i (α∗
i −α(t−1)

i)2

2λn
‖xi‖2

=−si (f ∗(−α∗
i)− f ∗(−α(t−1)

i))− f ∗(−α(t−1)
i)−λng∗(v (t−1))

− si (α∗
i −α(t−1)

i)x>
i ∇g∗(v (t−1))+ si

(
Liγ(si ,α(t−1)

i ,α∗
i)− si

2λn
‖xi‖2(α∗

i −α(t−1)
i)2

)
.

Hence, we retrieve Bi and rewrite the previous inequality as

s−1
i (Ai −Bi) ≥−(

f ∗(−α∗
i)− f ∗(−α(t−1)

i)
)− (α∗

i −α(t−1)
i)x>

i ∇g∗(v (t−1))

+Liγ(si ,α(t−1)
i ,α∗

i)− si

2λn
‖xi‖2(α∗

i −α(t−1)
i)2.

We can sum over all possible sampled i and weight each entry with s−1
i to obtain

n∑
i=1

s−1
i (Ai −Bi) ≥−

n∑
i=1

(
f ∗(−α∗

i)− f ∗(−α(t−1)
i)

)
−

〈
∇g∗(v (t−1))

∣∣∣ n∑
i=1

(α∗
i −α(t−1)

i)xi

〉
+

n∑
i=1

(
Liγ(si ,α(t−1)

i ,α∗
i)− si

2λn
‖xi‖2(α∗

i −α(t−1)
i)2

)
. (IV.26)

Then since g∗ is convex, we obtain〈
∇g∗(v (t−1))

∣∣∣ n∑
i=1

(α∗
i −α(t−1)

i)xi

〉
= 〈∇g∗(v (t−1)) |λn(v(α∗)− v (t−1))

〉
≤λn

(
g∗(v(α∗))− g∗(v (t−1))

)
,

112

7. Proofs

which can be injected in Equation (IV.26) leading to

n∑
i=1

s−1
i (Ai −Bi) ≥−

n∑
i=1

(
f ∗(−α∗

i)− f ∗(−α(t−1)
i)

)
+λng∗(v(α∗))−λng∗(v (t−1))

+
n∑

i=1

(
Liγ(si ,α(t−1)

i ,α∗
i)− si

2λn
‖xi‖2(α∗

i −α(t−1)
i)2

)
.

Finally, since Ai −Bi = n(D(α(t ,i))−D(α(t−1))), we obtain

n∑
i=1

s−1
i

(
D(α(t ,i))−D(α(t−1))

)
≥ D(α∗)−D(α(t−1))+ 1

n

n∑
i=1

(
Liγ(si ,α(t−1)

i ,α∗
i)− si

2λn
‖xi‖2(α∗

i −α(t−1)
i)2

)
.

This concludes the proof of Lemma 8. ■
From Lemma 8, we obtain a contraction speed as soon as G(s,α(t−1),α∗) ≥ 0. If

α(t−1)
i 6=α∗

i this is obtained if

∀i ∈ {1, . . . ,n}, Liγ(si ,α(t−1)
i ,α∗

i)− si

2λn
‖xi‖2(α∗

i −α(t−1)
i)2 ≥ 0 (IV.27)

⇔ ∀i ∈ {1, . . . ,n},
γ(si ,α(t−1)

i ,α∗
i)(

1− α(t−1)
i
α∗

i

)2
− si

‖xi‖2α∗
i

2

2λnLi
≥ 0.

By definition of γ we have

γ(si ,α(t−1)
i ,α∗

i)(
1− α(t−1)

i
α∗

i

)2
=

log
(
1− si + si

α∗
i

α(t−1)
i

)
− si log

α∗
i

α(t−1)
i

si

(
1− α(t−1)

i
α∗

i

)2
.

As α(t−1)
i /α∗

i is bounded by βi /α∗
i , we apply Lemma 6 to obtain

γ(si ,α(t−1)
i ,α∗

i)(
1− α(t−1)

i
α∗

i

)2
≥

log
(
1− si + si

α∗
i
βi

)
− si log

α∗
i
βi

si

(
1− βi

α∗
i

)2 ,

and as βi /α∗
i ≥ 1, we can apply Lemma 7 leading to

γ(si ,α(t−1)
i ,α∗

i)(
1− α(t−1)

i
α∗

i

)2
≥

(
1− si

)(α∗
i
βi

−1+ log βi
α∗

i

)
(
1− βi

α∗
i

)2 .

113

IV. Dual optimization without the gradient-Lipschitz assumption

Finally the convergence condition from Equation (IV.27) is satisfied when

∀i ∈ {1, . . . ,n},
(
1− si

)(α∗
i

βi
−1+ log

βi

α∗
i

)
− si

‖xi‖2α∗
i

2

2λnLi

(
1− βi

α∗
i

)2
≥ 0

which is true for any si ∈ [0,σi] where

σi =

1+ ‖xi‖2α∗
i

2

2λnLi

(
1− βi

α∗
i

)2

α∗
i
βi

+ log βi
α∗

i
−1


−1

.

Theorem 1 is obtained by sampling uniformly i , meaning haing all si equal. Hence,
to fulfill Equation (IV.27), we set

si = min
j∈{1,...,n}

σ j (IV.28)

for all i ∈ {1, . . . ,n}. We then lower bound the expectation of D(α(t))−D(α(t−1)) over
all possible sampled i and obtain

E[D(α(t))−D(α(t−1))] = 1

n

n∑
i=1

D(α(t ,i))−D(α(t−1)) ≥ min j σ j

n
(D(α∗)−D(α(t−1))),

by multiplying Equation (IV.25) with min j∈{1,...,n}σ j /n and removing the quantity
G (t−1) ≥ 0. This leads to the following convergence speed after t iterations,

E[D(α∗)−D(α(t))] ≤
(
1− min j σ j

n

)t
(D(α∗)−D(α(0))),

which concludes the proof of Theorem 1. ■

7.8 Proof of Theorem 2

Instead of taking all si equal as in the uniform sampling setting (see Equation (IV.28)),
we rather parametrize si by σ̄

ρi n where ρi is the probability of sampling i . Then, we
obtain the following expectation under ρ,

Eρ[D(α(t))−D(α(t−1))] =
n∑

i=1
ρi D(α(t ,i))−D(α(t−1)).

Since we have ρi = n
σ̄ s−1

i we obtain the following inequality using Lemma 8:

Eρ[D(α(t))−D(α(t−1))] ≥ σ̄

n

(
D(α∗)−D(α(t−1))+G

(
σ̄(ρn)−1,α(t−1),α∗))

. (IV.29)

114

7. Proofs

To ensure that G
(
σ̄(ρn)−1,α(t−1),α∗) ≥ 0 while keeping the biggest gain, we must

satisfy the constraint from Equation (IV.27) and find feasible ρ and σ̄ that maximize
the following problem:

max
σ̄

σ̄ subject to
σ̄

ρi n
∈ [0,σi], ρi ≥ 0,

n∑
i=1

ρi = 1.

This problem is solved by Proposition 1 of [ZZ15] and leads to the following choices:

ρi =
σ−1

i∑n
j=1σ

−1
j

and σ̄=
(1

n

n∑
i=1

σ−1
i

)−1
.

This choice for ρ and σ̄ ensures G(σ̄(ρn)−1,α(t−1),α∗) ≥ 0 hence Equation (IV.29)
without G

(
σ̄(ρn)−1,α(t−1),α∗)

leads to

Eρ[D(α(t))−D(α(t−1))] ≥ σ̄

n
(D(α∗)−D(α(t−1))),

and finally, after t iterations, we have

E[D(α∗)−D(α(t))] ≤
(
1− σ̄

n

)t
(D(α∗)−D(α(0))),

which concludes the proof of Theorem 2. ■

7.9 Proof of Proposition 4

With f ∗
i (−αi) =−yi − yi log αi

yi
, let

φ(αi) = yi + yi log
αi

yi
− λn

2

∥∥∥w (t−1) + (λn)−1(αi −α(t−1)
i)xi

∥∥∥2

be the function to optimize. Note that φ is a concave function from −D f ∗ to R and
hence it reaches its minimum if its gradient is zero:

φ′(αi) = yi

αi
−w (t−1)>xi − ‖xi‖2

λn
(αi −α(t−1)

i) = 0.

This second order equation in αi has a unique positive solution, the one stated in
Proposition 4.

115

IV. Dual optimization without the gradient-Lipschitz assumption

7.10 Proof of Proposition 5

Given that we are using Ridge regularization, the values of f ∗
i and g∗ are

f ∗
i (v) =−yi − yi log

(−v

yi

)
and g∗(w) = g (w) = 1

2
‖w‖2.

Hence the conditions at optimum (IV.5) and (IV.14) become

w∗ = 1

λn

n∑
i=1

α∗
i xi − 1

λ
ψ and ∀i ∈ {1, . . .n}, α∗

i = yi

w∗>xi
. (IV.30)

By combining both equations with Equation (IV.30), we have

∀i ∈ {1, . . .n}, α∗
i = λnyi∑n

j=1α
∗
j x>

j xi −nψ>xi
.

Since the inner products x>
i x j and αi are non-negative, we can remove the terms∑

j 6=i α
∗
j x>

j xi and upper bound the dual variable with

∀i ∈ {1, . . .n}, α∗
i ≤ λnyi

α∗
i ‖xi‖2 −nψ>xi

.

By solving this second order inequality, we can derive the following upper bound for
all α∗

i :

α∗
i ≤ 1

2‖xi‖2

(
nψ>xi +

√
(nψ>xi)2 +4λnyi‖xi‖2

)
,

which concludes the proof. ■

7.11 Proof of Remark 2

At each iteration the closed form solution is given by Proposition 4:

αt
i =

1

2

(√(
α(t−1)

i − λn

‖xi‖2
w (t−1)>xi

)2 +4λn
yi

‖xi‖2
+α(t−1)

i − λn

‖xi‖2
w (t−1)>xi

)
.

Since the inner products x>
i x j are non-negative, we obtain

α(t−1)
i − λn

‖xi‖2
w (t−1)>xi = n

ψ>xi

‖xi‖2
− ∑

j 6=i
α(t−1)

j

x>
j xi

‖xi‖2
≤ n

ψ>xi

‖xi‖2

and since αt
i is increasing with (α(t−1)

i − λn
‖xi ‖2 w (t−1)>xi), we obtain

αt
i ≤

1

2

(√
n
ψ>x2

i

‖xi‖4
+4λn

yi

‖xi‖2
+n

ψ>xi

‖xi‖2

)
=βi ,

which concludes the proof. ■

116

7. Proofs

7.12 Proof of Proposition 6

This proposition easily follows from the following computation

ζ∗ = argmax
ζ∈(0,+∞)n

1

n

n∑
i=1

−yi − yi log
ζi

yi
−λg∗

(1

λn

n∑
i=1

ζiξi − 1

λ
ψ

)
= argmax
ζ∈(0,+∞)n

1

n

n∑
i=1

−yi − yi log
ζi

yi
+ yi log(ci)−λg∗

(1

λn

n∑
i=1

ciζi xi − 1

λ
ψ

)
= argmax
ζ∈(0,+∞)n

D(c ·ζ),

where D is the original dual problem and c · ζ is the element wise product of the
vectors c and ζ. Then, since

argmax
x

{x 7→ f (cx)} = 1

c
argmax{x 7→ f (x)},

which remains valid in the multivariate case, we obtain ζ∗i =α∗
i /ci for any i = 1, . . . ,n.

■

7.13 Proof of Proposition 7

Using α∗ = ᾱκ the dual problem becomes one dimensional

D(ᾱ) = 1

n

n∑
i=1

yi + yi log κi ᾱ
yi

− λ

2

∥∥∥ 1

λn

n∑
i=1

κi ᾱxi − 1

λ
ψ

∥∥∥2
.

This problem is concave in ᾱ and the optimal ᾱ is obtained by setting the derivative
to zero:

D ′(ᾱ) = 1

n

n∑
i=1

yi

ᾱ
−

〈 1

λn
ᾱ

n∑
i=1

κi xi − 1

λ
ψ

∣∣∣ 1

n

n∑
i=1

κi xi

〉
= 0.

This leads to the following second order equation∥∥∥ 1

n

n∑
i=1

κi xi

∥∥∥2
ᾱ2 −

〈
ψ

∣∣∣ 1

n

n∑
i=1

κi xi

〉
ᾱ− λ

n

n∑
i=1

yi = 0,

which has a unique positive solution

ᾱ= 1

2
∥∥ 1

n

∑n
i=1κi xi

∥∥2

(〈
ψ

∣∣∣ 1

n

n∑
i=1

κi xi

〉
+

√〈
ψ

∣∣∣ 1

n

n∑
i=1

κi xi

〉2
+4

λ

n

n∑
i=1

yi

∥∥∥ 1

n

n∑
i=1

κi xi

∥∥∥2
)

,

and concludes the proof. ■

117

CHAPTER V

tick: a Python library for statistical
learning, with an emphasis on

Hawkes processes and
time-dependent models

Abstract

This chapter introduces tick, is a statistical learning library for Python 3,
with a particular emphasis on time-dependent models, such as point processes,
tools for generalized linear models and survival analysis. The core of the li-
brary provides model computational classes, solvers and proximal operators
for regularization. It relies on a C++ implementation and state-of-the-art opti-
mization algorithms to provide very fast computations in a single node multi-
core setting. Source code and documentation can be downloaded from https:

//github.com/X-DataInitiative/tick.
Keywords. Statistical Learning; Python; Hawkes processes; Optimization; Gener-
alized linear models; Point Process; Survival Analysis

1 Introduction

The aim of the tick library is to provide for the Python community a large set of
tools for statistical learning, previously not available in any framework. Though tick

focuses on time-dependent modeling, it actually introduces a set of tools that go
way beyond this particular set of models, thanks to a highly modular optimization
toolbox. It benefits from thorough documentation (including tutorials with many
examples), and a strongly tested Python API that brings to the scientific community
cutting-edge algorithms with a high level of customization. Optimization algorithms

119

https://github.com/X-DataInitiative/tick
https://github.com/X-DataInitiative/tick

V. tick: a Python library for statistical learning

such as SVRG [JZ13] or SDCA [SSZ13] are among the several optimization algorithms
available in tick that can be applied (in a modular way) to a large variety of models.
An emphasis is placed on time-dependent models: from the Cox regression model
[ABGK12], a very popular model in survival analysis, to Hawkes processes, used
in a wide range of applications such as geophysics [Oga88], finance [BMM15] and
more recently social networks [ZZS13a, XFZ16]. To the best of our knowledge, tick
is the most comprehensive library that deals with Hawkes processes, since it brings
parametric and nonparametric estimators of these models to a new accessibility level.

2 Existing Libraries

The tick library follows, whenever possible, scikit-learn’s API [PVG+11, BLB+13]
which is well-known for its completeness and ease of use. However, while
scikit-learn targets a wide spectrum, tick has a more specific objective: imple-
menting highly-optimized algorithms with a particular emphasis on time-dependent
modeling (not proposed in scikit-learn). The tick optimization toolbox relies
on state-of-the-art optimization algorithms, and is implemented in a very modular
way. It allows more possibilities than other scikit-learn API based optimization
libraries such as lightning1.

A wide variety of time-dependent models are taken care of by tick, which makes
it the most comprehensive library that deals with Hawkes processes for instance, by
including the main inference algorithms from the literature. Despite the growing
interest in Hawkes models, very few open source packages are available. There
are mainly three of them. The library pyhawkes2 proposes a small set of Bayesian
inference algorithms for Hawkes processes. hawkes R3 is an R-based library that
provides a single estimation algorithm, and is hardly optimized. Finally, PtPack4 a
C++ library which proposes parametric maximum likelihood estimators, with sparsity-
inducing regularizations. However, since tick is a Python library, it addresses a
different community to PtPack. Moreover, as illustrated below, tick provides better
performance than PtPack.

3 Package Architecture

The tick library has four main modules: tick.hawkes for Hawkes processes (see
Section 4 for a detailed review), tick.linear_model with linear, logistic and Poisson

1http://contrib.scikit-learn.org/lightning
2https://github.com/slinderman/pyhawkes
3https://cran.r-project.org/web/packages/hawkes/hawkes.pdf
4https://github.com/dunan/MultiVariatePointProcess

120

http://contrib.scikit-learn.org/lightning
https://github.com/slinderman/pyhawkes
https://cran.r-project.org/web/packages/hawkes/hawkes.pdf
https://github.com/dunan/MultiVariatePointProcess

3. Package Architecture

Table V.1: tick allows the user to combine many models, prox and solvers

Model Proximal operator Solver

Linear regression SLOPE Gradient Descent
Logistic regression L1 (Lasso) Stochastic Variance Reduced Gradient
Poisson regression Total Variation Stochastic Gradient Descent
Cox regression Group L1 Accelerated Gradient Descent

Hawkes with exp. kernels L2 (Ridge) Stochastic Dual Coordinate Ascent

regression, tick.robust for robust linear models and tick.survival for survival
analysis. Each of these modules provide simulation tools and learners to easily learn
from data. The core of tick is made of easy to combine penalization techniques
(tick.prox module) and several convex solvers (tick.solver), to train almost any
available model in the library, see Table V.1 for a non-exhaustive list of possible
combinations. The full structure of the tick library is detailed in Figure V.1. Here is
a short description of the contents of each module:

• tick.hawkes : Inference and simulation of Hawkes processes, with both
parametric and non-parametric estimation techniques and flexible tools
for simulation. It is split in three submodules: tick.hawkes.inference,
tick.hawkes.simulation, tick.hawkes.model.

• tick.linear_model : Inference and simulation of linear models, including
among others linear, logistic and Poisson regression, with a large set of pe-
nalization techniques and solvers.

• tick.robust : Tools for robust inference. It features tools for outliers detection
and models such as Huber regression, among others robust losses.

• tick.survival : Inference and simulation for survival analysis, including Cox
regression with several penalizations.

• tick.prox : Proximal operators for penalization of model weights. Such an
operator can be used with (almost) any model and any solver.

• tick.solver : A module that provides a bunch of state-of-the-art optimization
algorithms, including both batch and stochastic solvers.

• tick.dataset : Provides easy access to datasets used as benchmarks in tick.

• tick.plot : Some plotting utilities used in tick, such as plots for point processes
and solver convergence.

121

V. tick: a Python library for statistical learning

tick.linear_model

LogisticRegression ModelLogReg
LinearRegression ModelLinReg
PoissonRegression ModelPoisreg
SimuLogReg ModelHinge
SimuLinReg ModelSmoothedHinge
SimuPoisreg ModelQuadraticHinge

tick.hawkes

tick.hawkes.inference
HawkesExpKern
HawkesSumExp
HawkesEM
HawkesADM4
HawkesBasisKernels
HawkesSumGaussians
HawkesConditionalLaw
HawkesCumulantMatching

tick.hawkes.simulation
SimuPoissonProcess
SimuInhomegeneousPoisson
SimuHawkes
SimuHawkesExpKernels
SimuHawkesSumExpKernels
HawkesKernelExp
HawkesKernelSumExp
HawkesKernelPowerLaw
HawkesKernelTimeFunction

tick.hawkes.model
ModelHawkesExpKernLeastSq
ModelHawkesExpKernLogLik
ModelHawkesSumExpKernLeastSq
ModelHawkesSumExpKernLogLik

tick.robust

RobustLinearRegression
ModelHuber
ModelMdifiedHuber
ModelEpsilonIncensitive
ModelAbsolutRegression
ModelLinRegWithIntercepts

tick.survival

CoxRegression
ModelCoxPartialLik
ModelSCCS
SimuCoxReg
nelson_aalen
kaplan_meier

tick.prox

ProxZero
ProxL1
ProxL2Sq
ProxElasticNet
ProxL2
ProxMulti
ProxNuclear
ProxPositive
ProxEquality
ProxSlope
ProxTV
ProxBinarsity
ProxGroupL1

tick.solver

GD
AGD
BFGS
GFB
SCPG
SGD
Adagrad
SVRG
SAGA
SDCA

tick.plot

plot_history
plot_hawkes_kernels
plot_hawkes_kernel_norms
plot_basis_kernels
plot_timefunction
plot_point_process
stems

tick.dataset

fetch_tick_dataset
fetch_hawkes_bund_data

Figure V.1: Structure of the tick library

122

4. Hawkes

Table V.2: Models and estimation techniques for Hawkes processes available in tick

Non Parametric Parametric

EM [LM11] Single exponential kernel
Basis kernels [ZZS13a] Sum of exponentials kernels
Wiener-Hopf [BM14] Sum of gaussians kernels [XFZ16]
NPHC [ABG+17] ADM4 [ZZS13a]

4 Hawkes

A Hawkes process [HO74] is a multivariate point-process. Namely, it models times-
tamps, also called ticks {t i

k }i≥1 of nodes i = 1, . . . ,D using a multivariate counting
process Nt = [N 1

t · · ·N D
t], for t ≥ 0, where N i

t =
∑

k≥11t i
k≤t for any t ≥ 0. In a Hawkes

process the intensity of component N i has the following auto-regressive structure:

λi (t) =µi +
D∑

j=1

∫
φi j (t − s)dN j (s) =µi +

D∑
j=1

∑
k:t

j
k<t

φi j (t − t j
k).

The µi ≥ 0 are called baselines intensities, and correspond to the exogenous intensity
of events from node i , and φi j for 1 ≤ i , j ≤ D are called kernels, that quantify
the influence of past events from node j on the intensity of events from node i . The
main parametric model for the kernels is the so-called exponential kernel, in which we
consider φi j (t) =αi jβexp(−βt) for αi j > 0 and β> 0. In this model A = [αi , j]1≤i , j≤d

is understood as an adjacency matrix, since entry Ai , j ≥ 0 quantifies the impact of the
activity of node j on the activity of node i , while β> 0 is a memory parameter.

Distributing a comprehensive open source library for Hawkes processes is one of
the primary aims of the tick library: it provides many non-parametric and paramet-
ric estimation algorithms that are listed in Table V.2. This diversity of algorithms is
illustrated in Figure V.2 in which we show how two kernels of different shapes are
estimated by four different algorithms. A first use case for modeling high-frequency
financial data is given in Section 6.2, while a second use-case about propagation
analysis of earthquake aftershocks can be found in Figure V.3.

5 Benchmarks

While tick is a Python library, all the heavy computations run in C++ which com-
municates with Python with SWIG (Simplified Wrapper and Interface Generator)
[BFK+96]. Thanks to SWIG, the Python objects have a very easy access to full C++
objects that share their memory and work on the same dataset without needing any

123

V. tick: a Python library for statistical learning

0.00

0.05

0.10

0.15

ex
po

ne
nt

ia
l k

er
ne

l Exponential kernels Sum of exponential kernels Hawkes EM Hawkes Sum of Gaussians

0 2 4 6 8 10
t

0.00

0.02

0.04

de
la

y
ke

rn
el

0 2 4 6 8 10
t

0 2 4 6 8 10
t

0 2 4 6 8 10
t

Estimated
kernel
Kernel
used for
simulation

Figure V.2: Illustration of different kernel shapes and estimations obtained by tick

on two 1-dimensional simulated Hawkes processes.

Figure V.3: Modeling of earthquake propagation with Hawkes processes on a dataset
from [Oga88]. The left hand side gives the location of the earthquakes while right
hand side illustrates the propagation matrix, namely how likely an earthquake in a
given zone will trigger an aftershock in another zone.

copy. This is particularly useful for optimization toolbox where model, prox and
solver are symbolically linked in Python and then run fully in C++. Also, the C++
part of the library is independent and with some effort is usable without the Python
part. This allows the developers to analyze the code with any profiling tool compat-
ible with C++ and hence produce code optimized in depth. For all these reasons,
tick is a very fast library that we compare to scikit-learn, hawkes R and PtPack

in the following benchmarks. In Figure V.4, we benchmark computational times for
both simulation and estimation of Hawkes processes (with exponential kernels) us-
ing hawkes R (where only simulation is available), PtPack and tick on respectively
2, 4 and 16 cores. The model fits in plots “Fit” and “Multicore fit” are compared
on simulated 16-dimensional Hawkes processes, with an increasing number of events:
small=5×104, medium=2×105, large=106, xlarge= 5×107, while 200, 400 and 750 di-
mensional Hawkes processes are fitted in plot “High-dimensional fitting”. We observe
that tick outperforms by several orders of magnitudes both hawkes R and PtPack, in

124

5. Benchmarks

medium large
Number of simulated events

0.00

0.25

0.50

0.75

1.00

tim
e

(s
)

Simulation

small medium large
Number of events in train set

10
0

10
1

10
2

10
3

tim
e

(s
),

in
 lo

g
sc

al
e

Fit

large xlarge
Number of events in train set

0

50

100

tim
e

(s
)

Multicore fit

200 400 750
Dimension

0

2000

4000

6000

8000

tim
e

(s
)

High-dimensional fitting

PtPack hawkes R tick (1 core) tick (4 cores) tick (16 cores)

Figure V.4: Computational timings of tick versus PtPack and hawkes R. tick strongly
outperforms both libraries for simulation and fitting (note that the “Fit” graph is in
log-scale). “Multicore fit” and “High-dimensional fitting” plots show that tick benefits
from multi-core environments to speed up computations.

dataset # samples # features density

IJCNN 141,691 22 100 %
Covtype 581,012 54 100 %
Adult 32,561 123 11.3 %

RCV1-ccat 804,414 47,236 0.0016 %
URL 2,396,130 3,231,961 0.000036 %

KDD 2010 19,264,097 1,163,024 0.00078 %

Figure V.5: Datasets used to perform binary logistic regression.

particular for large datasets. We also compare computational timings to fit a logistic
regression with tick and scikit-learn. These experiments are run on commonly
used datasets (including large scale ones) described in Table V.5. Note that Covtype
has been standardized, hence the first two datasets IJCNN and Covtype are dense
and the last four datasets are sparse. Two types of penalization have been tested: `1

(Lasso) and `2 (Ridge), since these are the only ones proposed by scikit-learn. In
both cases the regularization parameter λ has been set to 1/n where n is the number
of samples, and we consider the default step-sizes proposed by both libraries. For a
fair comparison, we considered the SAGA algorithm, see [DBLJ14], to minimize the
penalized logistic regression objective, since both libraries implement it. Results are
given in Figure V.6. Overall, tick is much faster since it makes faster iterations: both
libraries reach roughly the same objective after each pass over the data (since both
of them use the same algorithm, only their implementations differ). Moreover, `1

penalization in high dimension is difficult for scikit-learn (see URL and KDD 2010)
whereas tick handles it without any additional problem.

125

V. tick: a Python library for statistical learning

2 4
Time (seconds)

10
13

10
11

10
9

10
7

10
5

10
3

10
1

10
1

ob
je

ct
iv

e
m

in
us

 o
pt

im
um

1

IJCNN

tick saga
scikit saga

0 50
Time (seconds)

10
5

10
4

10
3

10
2

Covtype

tick saga
scikit saga

0 1 2
Time (seconds)

10
13

10
10

10
7

10
4

10
1

10
2

Adult

tick saga
scikit saga

0.0 2.5 5.0
Time (minutes)

10
8

10
6

10
4

10
2

RCV1-ccat

tick saga
scikit saga

0 50 100
Time (minutes)

10
3

10
2

10
1

URL

tick saga
scikit saga

0 2 4
Time (hours)

10
7

10
5

10
3

10
1

KDD 2010

tick saga
scikit saga

2.5 5.0
Time (seconds)

10
13

10
11

10
9

10
7

10
5

10
3

10
1

10
1

ob
je

ct
iv

e
m

in
us

 o
pt

im
um

2 tick saga
scikit saga

0 50
Time (seconds)

10
4

10
3

10
2

10
1

tick saga
scikit saga

0.5 1.0 1.5
Time (seconds)

10
13

10
11

10
9

10
7

10
5

10
3

10
1

10
1

tick saga
scikit saga

25 50 75
Time (seconds)

10
13

10
11

10
9

10
7

10
5

10
3

10
1 tick saga

scikit saga

5 10
Time (minutes)

10
3

10
2

tick saga
scikit saga

5 10
Time (minutes)

10
13

10
11

10
9

10
7

10
5

10
3

10
1 tick saga

scikit saga

Figure V.6: Speed comparison with scikit-learn library. These plots display time
needed to achieve a given precision for logistic regression with `1 and `2 penaliza-
tions on commonly used datasets. In both cases we use SAGA solver as the two
libraries provide it.

6 Examples

In this section we provide examples of tick usage either to analyze timestamps
with Hawkes processes or to run convex optimization experiments and comparisons.
These examples are picked from a gallery of the documentation page 5.

6.1 Estimate Hawkes intensity

The tick library provides many utilities to easily work with Hawkes processes. This
includes tools to plot the kernels (see Figure V.2) or their norms (the D ×D matrix
such that (Φ)i j =

∫ ∞
0 φi j (t)d t) to describe the joint dynamics of the events series or as

presented here, tools to plot the point process events with their associated intensity. In
this example we simulate timestamps from Hawkes process with exponential kernels.
Then, we estimate the kernel parameters from the generated timestamps and rereate
the intensity from the timestamps and the estimated kernels. In Figure V.7 we see
that the estimated intensity is very close from the generating one.

5 https://x-datainitiative.github.io/tick/auto_examples

126

https://x-datainitiative.github.io/tick/auto_examples

6. Examples

from tick.hawkes import SimuHawkesSumExpKernels, HawkesSumExpKern

from tick.plot import plot_point_process

decays = [0.1, 0.5, 1.]

baseline = [0.1]

adjacency = [[[0.4, .1, .2]]]

hawkes_exp_kernels = SimuHawkesSumExpKernels(

adjacency=adjacency, decays=decays, baseline=baseline,

end_time=2000)

hawkes_exp_kernels.track_intensity(0.1)

hawkes_exp_kernels.simulate()

learner = HawkesSumExpKern(decays, penalty=’elasticnet’)

learner.fit(hawkes_exp_kernels.timestamps)

learner.plot_estimated_intensity(hawkes_exp_kernels.timestamps,

t_min=100, t_max=200)

plot_point_process(hawkes_exp_kernels, plot_intensity=True,

t_min=100, t_max=200)

100 120 140 160 180 200
t

0.2

0.4

0.6

0.8

1.0

(t)

original
estimated

Figure V.7: Original and retrieved intensities of a Hawkes process.

6.2 Fit Hawkes on finance data

This example fits Hawkes kernels on finance data provided by tick-datasets reposi-
tory6. It show in Figure V.8 the kernel norms of a Hawkes process fitted on finance
data of Bund market place. This reproduces experiments run in [BJM16]. Pu (resp.
Pd) counts the number of upward (resp. downward) mid-price moves and TA (resp.

6 https://github.com/X-DataInitiative/tick-datasets/tree/master/hawkes/bund

127

https://github.com/X-DataInitiative/tick-datasets/tree/master/hawkes/bund

V. tick: a Python library for statistical learning

Tb) counts the number of market orders at the ask (resp. bid) that do not move the
price. We observe expected behavior with for example mid-price moving downward
triggering (resp. preventing) market orders at the ask (resp. at the bid).

from tick.dataset import fetch_hawkes_bund_data

from tick.hawkes import HawkesConditionalLaw

from tick.plot import plot_hawkes_kernel_norms

timestamps_list = fetch_hawkes_bund_data()

kernel_discretization = np.hstack((0, np.logspace(-5, 0, 50)))

hawkes_learner = HawkesConditionalLaw(

claw_method="log", delta_lag=0.1, min_lag=5e-4, max_lag=500,

quad_method="log", n_quad=10, min_support=1e-4, max_support=1,

n_threads=4)

hawkes_learner.fit(timestamps_list)

plot_hawkes_kernel_norms(hawkes_learner,

node_names=["P_u", "P_d", "T_a", "T_b"])

Pu Pd Ta Tb

Pu

Pd

Ta

Tb 0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure V.8: Kernel norms of a Hawkes process fitted on finance data.

6.3 SVRG with an adaptive step size

The tick code base is very convenient to implement new algorithms. It is very
modular and once a new brick is implemented in the optimization framework it can

128

6. Examples

be used with any other bricks. Also, it is very easy to implement and test a new
algorithm. For example this code uses a variation of SVRG algorithm [JZ13] (see
Section 4 of Chapter III) that chooses an appropriate step size while running the
algorithm using the Barzilai-Borwein method [BB88]. This method consists in an
adaptive method to choose the step size η based on quasi Newton analysis. Such
optimizers uses the following quadratic approximation,

fquad(w) = f (w t)+ (w −w t)>∇ f (w t)+ 1
2 (w −w t)>H t (w −w t),

where the matrix H t is close to the hessian matrix ∇2 f (w t) to mimic the second order
Taylor decomposition of f (w t+1). The vector w t+1 that maximizes this quadratic
approximation of f , is

w t+1 = w t − (
H t)−1∇ f (w t).

This update is the typical iteration of quasi-Newton methods which differs from one
another by their approximation of (H t)−1. While the standard Newton method uses
(∇2 f (w t))−1, quasi-Newton methods find matrices that are cheaper to compute and
have useful properties such as verifying the secant condition

w t −w t−1 = (
H t)−1(∇ f (w t)−∇ f (w t−1)

)
.

This condition is obtained by ensuring that the gradient of fquad coincides with the

gradient of f at w t−1. This equation defines
(
H t

)−1 as the solution of a linear
system that might be expensive to compute. Hence, Barzilai and Borwein suggest to
parametrize

(
H t

)−1 as ηt I d , where I d is the identity matrix. As no ηt satisfies the
secant equation, they rather minimize the residuals, namely

‖(1/ηt)(w t −w t−1)−∇ f (w t+1)−∇ f (w t)‖2

which sets

ηt = ‖w t −w t−1‖2

(w t −w t−1)>(∇ f (w t+1)−∇ f (w t))
.

Hence, the step is adaptive and is tunes automatically across iterations. This tech-
nique is adapted in [TMDQ16] on the SVRG algorithm that we describe in Algo-
rithm V.1. The step is set every m iteration by using the full gradients µ̃k that are
already computed to perform the variance reduction.

In the following Python code, we compare this method with the traditional SVRG
on a toy example in which we can obtain the theoretically optimal step size. In
Figure V.9 we display the convergence speeds of SVRG and SVRG-BB for several
step sizes. We observe that SVRG converges very slowly if the step size is too small
and does not converge at all if the step size is too big. On the contrary, SVRG-BB
performs well in all cases. Hence, this adaptive solver is way less sensitive to the step
size initially provided.

129

V. tick: a Python library for statistical learning

Algorithm V.1 SVRG-BB

Require: Starting point w 0, a step size η0 > 0
k ← 0
for t = 0,1, . . . do

if t is a multiple of m then
w̃k ← w t

µ̃k ←∇ f (w̃k)
if k > 0 then

ηk+1 ←‖w̃k − w̃k−1‖2/(w̃k − w̃k−1)>(µ̃k − µ̃k−1)
end if
k ← k +1

end if
Sample at random i in {1, . . . ,n}

w t+1 ← proxηk g

(
w t −ηk

(∇ fi (w t)−∇ fi (w̃k)+ µ̃k
))

end for

from tick.simulation import weights_sparse_gauss

from tick.solver import SVRG

from tick.linear_model import SimuLogReg, ModelLogReg

from tick.prox import ProxElasticNet

from tick.plot import plot_history

n_samples, n_features, = 5000, 50

weights0 = weights_sparse_gauss(n_features, nnz=10)

intercept0 = 0.2

X, y = SimuLogReg(weights=weights0, intercept=intercept0,

n_samples=n_samples).simulate()

model = ModelLogReg(fit_intercept=True).fit(X, y)

prox = ProxElasticNet(strength=1e-3, ratio=0.5, range=(0, n_features))

optimal_step = 1 / model.get_lip_max()

tested_steps = [optimal_step, 1e-2 * optimal_step, 10 * optimal_step]

solvers = []

for step in tested_steps:

svrg = SVRG(max_iter=30, tol=1e-10, verbose=False)

svrg.set_model(model).set_prox(prox)

svrg.solve(step=step)

svrg_bb = SVRG(max_iter=30, tol=1e-10, verbose=False, step_type=’bb’)

svrg_bb.set_model(model).set_prox(prox)

svrg_bb.solve(step=step)

solvers += [svrg, svrg_bb]

130

6. Examples

0 5 10 15 20 25 30
Number of passes on the data

10 11

10 9

10 7

10 5

10 3

10 1
Di

st
an

ce
 to

 m
in

im
um

SVRG optimal step
SVRG BB optimal step
SVRG 0.01 * optimal step
SVRG BB 0.01 * optimal step
SVRG 10 * optimal step
SVRG BB 10 * optimal step

Figure V.9: Comparison of adaptive SVRG with traditional SVRG. While SVRG needs
a fine tuning of its step, SVRG-BB converges quickly even when the initial step is not
good.

6.4 Lower precision to accelerate algorithms

As presented in Section 5, tick relies on a C++ implementation. This enables vector-
ization that are processor instructions used to perform in parallel identical operations
on a contiguous block of data [Dei12]. In this example we compare the computation
time of two learners, the first one working with 32-bit single-precision floating-point
numbers and the second with 64-bit double-precision. As more operations are run in
parallel when single precision is used, the 32-bit learner performs quicker iterations
than the 64-bit learner as shown in Figure V.10. However, as it works with lower
precisions, it stops converging earlier.

131

V. tick: a Python library for statistical learning

from tick.dataset import fetch_tick_dataset

from tick.linear_model import LogisticRegression

from tick.plot import plot_history

X, y = fetch_tick_dataset(’binary/adult/adult.trn.bz2’)

learner_64 = LogisticRegression(solver=’svrg’)

learner_64.fit(X, y)

X_32, y_32 = X.astype(’float32’), y.astype(’float32’)

learner_32 = LogisticRegression(solver=’svrg’)

learner_32.fit(X_32, y_32)

fig, axes = plt.subplots(1, 2, figsize=(8, 4), sharey=True)

plot_history([learner_32, learner_64], x=’n_iter’,

labels=[’float 32’, ’float 64’], dist_min=True,

log_scale=True, ax=axes[0])

plot_history([learner_32, learner_64], x=’time’,

labels=[’float 32’, ’float 64’], dist_min=True,

log_scale=True, ax=axes[1])

0 10 20 30 40 50
passes on the data

10 14

10 12

10 10

10 8

10 6

10 4

10 2

Op
tim

al
ity

 g
ap

float 32
float 64

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

float 32
float 64

Figure V.10: Comparison of two identical learners working with different precisions.
With lower precision, the iterations are quicker but the obtained result is not as
precise.

7 Hawkes with non constant exogenous intensity

In the standard Hawkes model, we usually consider that the baseline µ, that is the
exogenous intensity, is constant. However, this hypothesis is wrong in many cases.
Let us take two examples: a dataset obtained by recording Twitter activity and one
counting the orders of a finance marketplace. In both cases, the exogenous intensity

132

7. Hawkes with non constant exogenous intensity

is not expected to be constant: a user is more likely to tweet during the day rather
than in the middle of the night and exogenous events such as the opening of another
finance marketplace can increase the number of orders. To tackle this issue, we focus
on sum of exponentials kernels (see Section 2.4 of Chapter I for notations) which is
the most scalable and the most commonly used parametrization. In this setting, the
conditional intensity of node i = 1, . . . ,D with non constant baselines writes

λi (t | Ft) =µi (t)+
D∑

j=1

U∑
u=1

∑
l :t

j
l <t

α
i j
u ϕu

(
t − t j

l

)
where µi : R+ → R is the non constant exogenous intensity and ϕu : t 7→
βu exp(−βu(t)) for u = 1, . . . ,U is the kernel family. We parametrize the functions µi

such that they are piecewise constant on P given subsets of R+, Ip for p = 1, . . . ,P .
Hence, for i = 1, . . . ,D , the baselines write

µi (t) =
P∑

p=1
µi

p1t∈Ip .

Also, we suppose that these subsets do not intersect,
⋂P

p=1 Ip = ∅, and that each
subset Ip is a finite union of Qp intervals, which all write

∀p ∈ {1, . . . ,P }, ∃{z l ,1
p , zu,1

p . . . , z
l ,Qp
p , z

u,Qp
p }, Ip =

Qp⋃
q=1

[z l ,q
p , zu,q

p)

where for each p the set of {z l ,1
p , zu,1

p , z l ,2
p , zu,2

p , . . . , z
l ,Qp
p , z

u,Qp
p } is sorted.

Then, we minimize the least square error to find the intensity with this
parametrization that fits the best our set of observations. We choose least squares
error because it is more scalable with the number of events and the loss is easier
to optimize (see Chapters I, II and IV) but a similar analysis could be done with
log-likelihood. With piecewise constant baselines and sum of exponentials kernels,
the least squares error for node i = 1, . . . ,D from Equation (I.2) writes

R i (µ,α,FT) =
∫ T

0
µi (t)

2
dt +2

∫ T

0

(
µi (t)

D∑
j=1

U∑
u=1

α
i j
u g j

u(t)
)

dt

+
∫ T

0

(D∑
j=1

U∑
u=1

α
i j
u g j

u(t)
)2

dt −2
NT∑

k=1
µi (t i

k)−2
NT∑

k=1

D∑
j=1

U∑
u=1

α
i j
u g j

u(t i
k)

where g j
u(t) = ∑

l :t
j
l <t

βu exp
(−βu(t − t j

l)
)
for j = 1, . . . ,D and u = 1, . . . ,U . As the

subsets Ip do not intercept, the first term writes easily∫ T

0
µ2

i (t)dt =
p∑

i=1
µi

p
2
Lp where Lp =

Qp∑
q=1

(zu,q
p − z l ,q

p)

133

V. tick: a Python library for statistical learning

is the sum of the lengths of the intervals whose union is Ip . To compute the second
term, we compute p integrals on which the baselines µi is constant:

2
∫ T

0

(
µi (t)

D∑
j=1

U∑
u=1

α
i j
u g j

u(t)
)

dt = 2
D∑

j=1

U∑
u=1

α
i j
u

P∑
p=1

µi
p

∫
[0,T]∩Ip

g j
u(t)dt

where each integral can be evaluated as following:

M j
p,u =

∫
[0,T]∩Ip

g j
u(t)dt =

Qp∑
q=0

∑
l :t

j
l <z

u,q
p

(
e−βu max(0,z

l ,q
p −t

j
l) −e−βu (z

u,q
p −t

j
l))

for j = 1, . . . ,D , p = 1, . . . ,P , and u = 1, . . . ,U . The third and fifth terms remain un-
changed whether the baselines are constant or not. Their computations are detailed
in Proposition 1 of Chapter I. Finally, the fourth term writes

−2
NT∑

k=1
µi (t) =−2

P∑
p=1

µi
p K i

p where K i
p =∑

t i
k

1t i
k∈Ip

and counts the number of events from node i occurring within Ip . With all these
precomputed weights the least squares loss for node i = 1, . . . ,D writes

R i (µ,α,FT) =
p∑

i=1
µi

p
2
Lp +2

D∑
j=1

U∑
u=1

α
i j
u

P∑
p=1

µi
p M j

p,u +
D∑

j=1

U∑
u=1

U∑
u′=1

α
i j
u α

i j
u′K

i j
uu′

+2
D∑

j=1

D∑
j ′=1

U∑
u=1

U∑
u′=1

α
i j
u α

i j ′
u′ Λ

i j j ′
uu′ −2

P∑
p=1

µi
p K i

p −2
D∑

j=1

U∑
u=1

α
i j
u

N i
T∑

k=1
g j

u(t i
k).

This is a quadratic function in µ and α and thus is easy to optimize. With the new
weights M , the original complexity for the weights computation in O (D2U 2NT) is
increased by a new term in O (DUQNT), where Q counts the number of intervals
[z l , zu) mapping [0,T]. The computation complexity of the error in O (D3U 2) is
simply increased by O (D2U P) which is negligible in most cases.

In the following Python code, we simulate a Hawkes process parametrized with
sum of exponentials kernels and a time varying baseline with a known period of
length `= 300. The period in then divided in six intervals of equal length on which
the baseline is constant. Namely, for p = 1, . . . ,P the subsets Ip write

Ip = [0,T]∩
dT /`e+1⋃

q=1

[
((p −1)/p +q −1)`, (p/P +q −1)`

)
For social network, this period would be set to 24 hours while in finance time se-
ries a period lasts as long as the market opening. In such cases, this setting infers

134

8. Asynchronous stochastic solvers

the prior we have on the seasonality of the exogenous intensity. In the proposed
experiment the data is simulated. This allows us to compare the estimated in-
tensity components with the generating parameters. Figure V.11 shows how tightly
the kernels ϕ and the exogenous intensities are retrieved with only 6,000 events.

from tick.plot import plot_hawkes_baseline_and_kernels

from tick.hawkes import SimuHawkesSumExpKernels, HawkesSumExpKern

period_length = 300

baselines = [[.3, .5, .6, .4, .2, 0.],

[.8, .5, .2, .3, .3, .4]]

decays = [.5, 2., 6.]

adjacency = [[[0., .1, .4], [.2, 0., .2]],

[[0., 0., 0.], [.6, .3, 0.]]]

hawkes = SimuHawkesSumExpKernels(baseline=baselines, end_time=end_time,

period_length=period_length,

decays=decays, adjacency=adjacency)

hawkes.adjust_spectral_radius(0.5)

hawkes.simulate()

learner = HawkesSumExpKern(decays=decays,

n_baselines=len(baselines[0]),

period_length=period_length)

learner.fit(multi.timestamps)

plot_hawkes_baseline_and_kernels(learner, hawkes=hawkes)

8 Asynchronous stochastic solvers

This section is a short review on the recently introduced asynchronous stochastic
solvers. These solvers benefit from parallel computations to speedup the computa-
tions in a single node multi-core setting in the context of composite sum minimization
(see Chapter III), that writes as following

min
w∈Rd

F (w) with F (w) = f (w)+ g (w), f (w) = 1

n

n∑
i=1

fi (w),

where each convex functions fi typically corresponds to a loss associated to the i -th
observation of a dataset of n samples and the convex function g is a penalization
term. To solve this problem, we can consider both batch solvers (see Section 2 of

135

V. tick: a Python library for statistical learning

0.0

0.5

1.0

1.5

1(t)
original
estimated

0.0

0.5

1.0

1.5

1, 1(t)
original
estimated

2, 1(t)
original
estimated

0 100 200 300
t

0.0

0.5

1.0

1.5
2(t)

original
estimated

0 2 4 6
t

0.0

0.5

1.0

1.5

1, 2(t)
original
estimated

0 2 4 6
t

2, 2(t)
original
estimated

Figure V.11: Simulation and estimation of a Hawkes process with varying exogenous
intensity µ on period of length t = 300. This example should how tightly the kernels
ϕ and the exogenous intensities are retrieved with only 6,000 events

Chapter III) that process all observations at each iteration and stochastic solvers (see
Section 3 of Chapter III) that perform an update each time they process an obser-
vation. In a big data context, when the number of observations n becomes large,
the cost of batch methods might become prohibitive and stochastic methods benefit
from their quick iterations. However, while batch algorithms are straightforward to
parallelize, it is more complicated with stochastic algorithms. In a batch algorithm,
one compute a full gradient over n observations and then perform a descent step
with it. The bottleneck is the full gradient computation that can be split over several
threads whereas the – comparatively cheap – descent step is done after synchroniza-
tion. Conversely, stochastic algorithms have no such bottleneck and an immediate
parallel implementation would lead to synchronize each time an observation is pro-
cessed. Such an implementation is inefficient due to performance-destroying memory
locks. To address this issue, lock-free algorithms have been introduced. such as Hog-
wild! [RRWN11], Kromagnon [RHS+15, MPP+17], PASSCoDe [HYD15] and ASAGA
[LPLJ17, PLLJ17] that are respectively variants of SGD [RM51], SVRG [JZ13], SDCA
[SSZ13] and SAGA [DBLJ14]. These algorithms rely on the assumption that we are
working with sufficiently sparse datasets: the support of the observation i , Supp(xi),
has, on average, a cardinal several orders of magnitude smaller than the number of
features d . In such a context, the updates might only modify a small part of the
parameter variable w at each step and the collisions between threads are expected
to be sufficiently rare to not disturb the overall behavior.

The aim of this section is to provide intuition and implementation details of lock-
free algorithms that are implemented in tick. We do not provide the theoretical

136

8. Asynchronous stochastic solvers

guarantees derived for these algorithms but rather tips to implement them in an
efficient manner. In this section we consider that the penalization g is separable
meaning that g :Rd →R rewrites g (w) =∑d

j=1 g j (w j) where g j :R→R for j = 1, . . . ,d .
This characteristic is verified by the most commonly used penalization techniques
such as `1, `2 and elastic-net penalizations. Also, the implementations of ASAGA
and PASSCode are given for generalized linear models, namely when the loss writes
fi (w) =ϕi (w>xi) where ϕi :R→R and xi ∈Rd is the i -th observation of the dataset.
This family of models includes linear regression and logistic regression among others.
While not strictly necessary, this allows easier and faster implementations for these
algorithms.

Hogwild! Hogwild! implementation is detailed in Algorithm V.2, it simply consists
in executing SGD updates on a shared vector w ∈ Rd from several parallel threads.
The only refinement is that the iterate updates are done atomically, meaning that at
Line 5, the value of w j cannot be modified by an external thread between the read
and write operations on w j . Beyond vanilla SGD, more sophisticated stochastic gra-
dient descent algorithms with variance reduction also have their own asynchronous
variant.

Algorithm V.2 Hogwild! (Asynchronous SGD)
Require: Starting point w , a step size η
1: loop
2: Sample at random i in {1, . . . ,n}
3: ∆w ←−η∇ fi (w) . inconsistent read of w
4: for j in Supp(∆w) do
5: w j ← w j +∆w j . atomic update
6: end for
7: end loop

Kromagnon First, Kromagnon (asynchronous SVRG) works as Hogwild! and per-
forms atomic SVRG updates in parallel on a shared vector w . However, SVRG
updates use a dense vector, ∆wdense = −η(∇ fi (w)−∇ fi (w̃)+∇ f (w̃)

)
, to apply the

variance reduction technique. This dense operation might be transformed into a
strictly equivalent sparse operation with the lazy updates [PLT+16]. But, the lazy
updates are not adapted to a parallel setting because they would involve a lot of
synchronizations. Hence, [MPP+17] has introduced a sparse formulation that is equiv-
alent to the dense case in expectation. The dense part of ∆w , ∇ f (w̃), is multiplied by
the d ×d diagonal matrix Di that is defined as diag(Di) j = p−1

j 1 j∈Supp(∇ fi (w)) where
p j is the probability that feature the j belongs to Supp(∇ fi (w)) when i is sampled

137

V. tick: a Python library for statistical learning

at random in {1, . . . ,n}. This normalization ensures that E[Di∇ f (w̃)] =∇ f (w̃) where
Di∇ f (w̃) has the same support as ∇ fi (w). Kromagnon’s implementation is given
in Algorithm V.3. The same technique can be used to deal with the composite case
when the penalization is separable. Hence, we rather use gDi : w 7→ Di g (w) that is an
unbiased estimator of g (w), E[Di g (w)] = g (w), such that gDi (w) has the same sup-
port as ∇ fi (w). In practice we use the corresponding proximal operator that writes
for all j = 1, . . . ,d : [proxηgDi

(w)] j = prox η/p j g j
(x)1 j∈Supp(∇ fi (w)). While the original

paper does not mention this extension to the composite case, this procedure that was
introduced for ASAGA in [PLLJ17] works in practice when applied to Kromagnon.

Algorithm V.3 Kromagnon (Asynchronous SVRG)
Require: Starting point w , a step size η> 0
1: for t = 0,1, . . . do
2: w̃ ← w
3: µ̃←∇ f (w̃)
4: while less than m indices have been sampled do
5: keep doing in parallel
6: Sample at random i in {1, . . . ,n}
7: ∆w ←−η(∇ fi (w)−∇ fi (w̃)+Di µ̃

)
. inconsistent read of w

8: for j in Supp(∆w) do
9: ∆w j ← prox η/p j g j

(
w j +∆w j

)−w j

10: w j ← w j +∆w j . atomic update
11: end for
12: end parallel loop
13: end while
14: end for

ASAGA Then ASAGA and Prox-ASAGA are the parallel implementations of SAGA
algorithm. It uses the same strategy as Kromagnon to turn the dense update of
SAGA into a sparse one that is equivalent in expectation. Also, a second atomic
operation is used to keep the relationship Ψ = ∑n

i=1ψi xi valid at all time. This is
of great importance as this ensures that E[ψi xi] =Ψ is maintained across iterations.
The implementation provided in Algorithm V.4 is specialized for generalized linear
model where ∇ fi (w) writes ϕ′

i (w>xi)xi . In the generic case, we would store vectors
ψgeneric,i ∈ Rd and atomic update of Line 6 of the algorithm would become much
more expensive.

PASSCoDe PASSCoDe is the parallel version of SDCA. For a clearer implemen-
tation, besides the specification for generalized linear models, we also suppose that

138

8. Asynchronous stochastic solvers

Algorithm V.4 ASAGA (Asynchronous SAGA)
Require: Starting point w , a step size η> 0, ψi ∈R for i = 1, . . . ,n
1: Ψ←∑n

i=1ψi xi

2: keep doing in parallel
3: Sample at random i in {1, . . . ,n}
4: ∆ψ=ϕ′

i (w>xi)−ψi . inconsistent read of w
5: ∆w =−η(

∆ψ xi + 1
n DiΨ

)
6: ψi ←ψi +∆ψ . atomic update
7: for j in Supp(∆w) do
8: Ψ j ←Ψ j + 1

n∆ψxi j . atomic update
9: ∆w j ← prox η/p j g j

(
w j +∆w j

)−w j

10: w j ← w j +∆w j . atomic update
11: end for
12: end parallel loop

the penalization (that is strongly convex by assumption) can be decomposed into
g (w) = λ

2 ‖w‖2+h(w) where h is a convex, separable and prox-capable function such
as w 7→ ‖w‖1 for elastic-net penalization or w 7→ 0 for `2 penalization. Like ASAGA
maintains Ψ= ∑n

i=1ψi xi , PASSCoDe must maintain the following relation across it-
erations v = 1

λn

∑n
i=1αi xi thanks to atomic operations. This relation is indeed at the

heart of the variance reduction technique (see Section SDCA as Variance Reduction in
[JZ13]). Unlike SVRG and SAGA, the updates are sparse by design, since finding

∆αi = argmax
∆α

1
nϕ

∗
i

(−α−∆α)− λ
2

∥∥w + 1
λn∆αi xi

∥∥2,

where ϕ∗
i is the Fenchel convex conjugate of ϕi , is strictly equivalent to find

∆αi = argmax
∆α

ϕ∗
i

(−αi −∆α
)− 1

2λn∆α
2‖xi‖2 −∆αw>xi ,

where the inner product w>xi =∑
j∈Supp(xi) prox 1

λh j
(v j)xi j is a sparse operation that

lazily evaluate the entries of w . This leads to the implementation detailed in Algo-
rithm V.5.

About atomic operations Atomic operations are at the heart of these algorithms.
First, for ASAGA and PASSCoDe, they ensure that the variance reduction relation
is maintained. Second, they also impact how the iterate w is updated. All algo-
rithms perform inconsistent read of w to evaluate the descent direction ∆w , but,
once this direction is determined, the atomic update of the iterate w ensures that
it is fully applied. We numerically investigate on the necessity of these atomic

139

V. tick: a Python library for statistical learning

Algorithm V.5 PASSCoDe (Asynchronous SDCA)
Require: Starting dual α ∈Rn

1: v ← 1
λn

∑n
i=1αi xi

2: keep doing in parallel
3: Sample at random i in {1, . . . ,n}
4: Find ∆αi ∈R that maximizes
5: ϕ∗

i

(−αi −∆α
)− 1

2λn∆α
2‖xi‖2 −∆αw>xi . inconsistent read of w

6: for j in Supp(xi) do
7: v j ← v j + 1

λn∆αi xi j . atomic update
8: end for
9: αi ←αi +∆αi . atomic update
10: end parallel loop
11: w ← prox 1

λh(v)

operations in the following paragraph. Also, all our atomic operations are im-
plemented in C++ using std::memory_order_relax orderings instead of the default
std::memory_order_seq_cst. With this ordering, the order of the atomic operations
is not guaranteed but this is harmless in our situation since we do not need such
a synchronization but only must ensure that all increments will eventually be done.
Typically, std::memory_order_relax is used to increment counters, such as the refer-
ence counters of std::shared_ptr 7 that meets the same requirements.

Experiments To evaluate the importance of the atomic operations we test the pre-
vious algorithms with and without their atomic operations. We call atomic iterate,
the atomic update of the iterate w , namely Line 10 of Algorithm V.3 (Kromagnon)
and Line 10 of Algorithm V.4 (ASAGA) and atomic variance reduction, the atomic op-
erations that maintain the variance reduction relationship, namely Lines 6 and 8 of
Algorithm V.4 (ASAGA) and Lines 7 and 9 of Algorithm V.5 (PASSCoDe). The labels
given to the solvers built from each of these variants are provided in Table V.3. We
assess the performances and the speedup of these algorithms on a machine with 2
Intel Xeon E5-1660v4 processors with 8 3.2GHz cores each, that we use to minimize
an `1 +`2-regularized logistic loss on the RCV1 dataset [LYRL04]. This penalization
has been chosen to be both non-smooth (thanks to its `1 part) and compatible with
SDCA (thanks to its `2 part). This dataset has n = 804,401 rows and d = 47,236
features that are 0.16% sparse. In Figure V.12, we display the convergence plots of
the algorithms presented in Table V.3, that is to say the time needed to reach a
certain precision level on the objective function F (w). For each algorithm we have

7 This example comes from the official documentation: https://en.cppreference.com/w/cpp/

atomic/memory_order#Relaxed_ordering.

140

https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering

8. Asynchronous stochastic solvers

Table V.3: Label given to asynchronous solvers depending on which operations are
atomic. Symbol 3 means that the atomic operation is kept, 7 means it has been
discarded and – that it does not apply for this solver.

Atomic iterate Atomic variance reduction

SVRG 7 –
Kromagnon 3 –

SAGA 7 7

ASAGAw 3 7

ASAGAΨ 7 3

ASAGA 3 3

SDCA – 7

PASSCoDe – 3

run the experiment with 1 core (classic sequential setting), 4 cores (laptop setting)
and 16 cores (powerful computing machine). We observe that the algorithms that do
not maintain the variance reduction relation across iterations, SAGA, ASAGAw and
SDCA, have poor convergence properties when multi-threaded. Indeed, they lose
the key property of variance reduced stochastic solvers, that is having the descent
direction computed in w tending to 0 when w approaches w∗. On the contrary,
solvers that only lack of atomic iterate updates, SVRG and ASAGAΨ, have good
performances. SVRG is faster than Kromagnon in a 4 cores setting and similar to
Kromagnon with 16 cores while ASAGAΨ is better than ASAGA in both settings. To
have a better understanding of the behaviors of these algorithms we examine the
time and the number of passes on the data needed to obtain a 10−8 precision level.
In Figure V.13, we display the time speedup of the five algorithms that reach the
minimum. To quantify the gain of running the algorithm in parallel, we call time
speedup the ratio time needed by sequential algorithm

time needed by parallel algorithm whose theoretical optimal value is the
number of cores involved. Figure V.13 shows how faster the parallel algorithms reach
a 10−8 objective precision on the RCV1 dataset. For example, ASAGA and ASAGAΨ
algorithms are five to six times faster for this task when run in parallel on 16 cores
than the sequential version. However, algorithms such as SVRG and PASSCoDe do
not scale as well. In Figure V.14, we report the number of epochs (the total number
of times the data is seen) needed by each algorithm to reach 10−8 precision. While,
the number of epochs needed by ASAGA, ASAGAΨ and Kromagnon seems constant,
for SVRG and PASSCoDe, this number grows with the number of threads. This is
probably one reason that makes these two algorithms have less good speedups on
this task. We cannot conclude which version of each algorithm is the best based on

141

V. tick: a Python library for statistical learning

0 50 100
time (s)

10 10

10 8

10 6

10 4

10 2

Ob
je

ct
iv

e
m

in
us

 m
in

im
um

SVRG

SVRG 1
SVRG 4
SVRG 16

Kromagnon 1
Kromagnon 4
Kromagnon 16

0 50 100 150
time (s)

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

ob
j

SAGA

SAGA 1
SAGA 4
SAGA 16
ASAGA 1
ASAGA 4
ASAGA 16

ASAGA 1
ASAGA 4
ASAGA 16
ASAGA 1
ASAGA 4
ASAGA 16

0 20 40 60
time (s)

10 10

10 8

10 6

10 4

10 2

ob
j

SDCA

SDCA 1
SDCA 4
SDCA 16

PASSCoDe 1
PASSCoDe 4
PASSCoDe 16

Figure V.12: Convergence plots of the algorithms presented in Table V.3 on the RCV1
dataset. The number next to the algorithm’s label denotes the number of cores that
were used during the training. It appears that solvers that are missing atomic variance
reduction (namely SAGA, ASAGAw and SDCA) do not have linear convergence in a
multi-threaded context. However, solvers that only lack of atomic iterate updates
(SVRG and ASAGAΨ) keep their linear speed and are sometimes faster than their full
atomic counterpart (resp. Kromagnon and ASAGA).

this sole example. Still, we can make two conclusions. First, if no atomic operations
guarantee the variance reduction relation (see SAGA, ASAGAw and SDCA), the con-
vergence properties are highly impacted. Second, using atomic operations to update
the iterate might lead to a better speedup (see Kromagnon vs. SVRG) but also slows
the algorithm down. In our example, this makes us prefer the non atomic iterate
variants (SVRG and ASAGAΨ) over the full atomic one (Kromagnon and ASAGA)
presented in the original articles.

Acknowledgments

The authors thank the Data-science Initiative of École polytechnique and Intel® for
supporting tick development.

142

8. Asynchronous stochastic solvers

2.5 5.0 7.5 10.0 12.5 15.0
Number of cores

1

2

3

4

5

6

Ti
m

e
sp

ee
du

p

Kromagnon
SVRG

2.5 5.0 7.5 10.0 12.5 15.0
Number of cores

ASAGA
ASAGA

2.5 5.0 7.5 10.0 12.5 15.0
Number of cores

PASSCoDe

Figure V.13: Time speedup achieved by the algorithms presented in Table V.3 to
reach 10−8 precision on the RCV1 dataset. The solvers that are missing atomic
variance reduction (namely SAGA, ASAGAw and SDCA) are not represented since
they do not reach a 10−8 precision in a reasonable time. We observe that on this
example, ASAGAΨ and ASAGA have the best time speedup.

2.5 5.0 7.5 10.0 12.5 15.0
Number of cores

20

30

40

Ep
oc

hs
 n

ee
de

d

Kromagnon
SVRG

2.5 5.0 7.5 10.0 12.5 15.0
Number of cores

ASAGA
ASAGA

2.5 5.0 7.5 10.0 12.5 15.0
Number of cores

PASSCoDe

Figure V.14: Number of epochs needed to reach 10−8 precision on the RCV1 dataset.

143

Bibliography

[ABG+17] M. Achab, E. Bacry, S. Gaïffas, I. Mastromatteo, and J.-F. Muzy. Uncovering
causality from multivariate hawkes integrated cumulants. In International
Conference on Machine Learning, pages 1–10, 2017.

[ABGK12] P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding. Statistical models
based on counting processes. Springer Science & Business Media, 2012.

[Bac10] F. Bach. Self-concordant analysis for logistic regression. Electronic Journal
of Statistics, 4:384–414, 2010.

[BB88] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA
journal of numerical analysis, 8(1):141–148, 1988.

[BB16] H. H. Bauschke and M. Bolte, J. Teboulle. A descent lemma beyond lip-
schitz gradient continuity: first-order methods revisited and applications.
Mathematics of Operations Research, 42(2):330–348, 2016.

[BBDV09] M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini. Image deblurring
with poisson data: from cells to galaxies. Inverse Problems, 25(12):123006,
2009.

[BBH12] C. Blundell, J. Beck, and K. A. Heller. Modelling reciprocating relation-
ships with hawkes processes. In Advances in Neural Information Processing
Systems, pages 2600–2608, 2012.

[BDHM13] E. Bacry, S. Delattre, M. Hoffmann, and J.-F. Muzy. Modelling microstruc-
ture noise with mutually exciting point processes. Quantitative Finance,
13(1):65–77, 2013.

[Ber99] D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[BF10] H. C. Boshuizen and E. Feskens. Fitting additive poisson models. Epidemi-
ologic Perspectives & Innovations, 7(1):4, 2010.

145

Bibliography

[BFK+96] D. Beazley, W. Fulton, M. Köppe, L. Johnson, and R. Palmer. Swig: Sim-
plified wrapper and interface generator. University of Utah, Salt Lake City,
Utah, 84112, 1996.

[BGM18] E. Bacry, S. Gaïffas, and J.-F. Muzy. Concentration inequalities for ma-
trix martingales in continuous time. Probability Theory and Related Fields,
170:525, 2018.

[BJM16] E. Bacry, T. Jaisson, and J.-F. Muzy. Estimation of slowly decreasing hawkes
kernels: application to high-frequency order book dynamics. Quantitative
Finance, 16(8):1179–1201, 2016.

[BL07] J. Bennett and S. Lanning. The netflix prize. In Proceedings of KDD cup
and workshop, volume 2007, page 35. New York, NY, USA, 2007.

[BLB+13] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Vander-
Plas, A. Joly, B. Holt, and G. Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Work-
shop: Languages for Data Mining and Machine Learning, pages 108–122,
2013.

[BM06] P. L. Bartlett and S. Mendelson. Empirical minimization. Probability Theory
and Related Fields, 135(3):311–334, 2006.

[BM14] E. Bacry and J.-F. Muzy. Second order statistics characterization of hawkes
processes and non-parametric estimation. arXiv preprint arXiv:1401.0903,
2014.

[BMM15] E. Bacry, I. Mastromatteo, and J.-F. Muzy. Hawkes processes in finance.
Market Microstructure and Liquidity, 1(01):1550005, 2015.

[BRT09] P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of lasso
and dantzig selector. The Annals of Statistics, 37(4):1705–1732, 2009.

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202,
2009.

[Bur03] W. J. Burroughs. Weather cycles: real or imaginary? Cambridge University
Press, 2003.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

146

Bibliography

[Cau47] A. Cauchy. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[CCA+09] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision Sup-
port Systems, 47(4):547–553, 2009.

[CP11] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science and
engineering, pages 185–212. Springer, 2011.

[CPC09] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral targeting. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 209–218. ACM, 2009.

[CS08] R. Crane and D. Sornette. Robust dynamic classes revealed by measur-
ing the response function of a social system. Proceedings of the National
Academy of Sciences, 105(41):15649–15653, 2008.

[CT04] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transac-
tions on Information Theory, 12(51):4203–4215, 2004.

[CT10] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Transactions on Information Theory, 56(5):2053–
2080, 2010.

[DBLJ14] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives. In
Advances in neural information processing systems, pages 1646–1654, 2014.

[DBS13] C. DuBois, C. Butts, and P. Smyth. Stochastic blockmodeling of relational
event dynamics. In Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics, pages 238–246, 2013.

[Dei12] M. Deilmann. A guide to vectorization with intel c++ compilers. Intel
Corporation, April, 2012.

[DHS11] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[dMB04] M. A. de Menezes and A.-L. Barabási. Fluctuations in network dynamics.
Phys. Rev. Lett., 92:028701, Jan 2004.

147

Bibliography

[DRSS14] N. Daneshmand, M. Rodriguez, L. Song, and B. Schölkpof. Estimating dif-
fusion network structure: Recovery conditions, sample complexity, and a
soft-thresholding algorithm. International Conference on Machine Learning,
2014.

[DVG+16] A. De, I. Valera, N. Ganguly, S. Bhattacharya, and M. G. Rodriguez. Learn-
ing and forecasting opinion dynamics in social networks. In Advances in
Neural Information Processing Systems, pages 397–405, 2016.

[DVJ07] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes:
volume II: general theory and structure. Springer Science & Business Media,
2007.

[ELL11] P. Embrechts, T. Liniger, and L. Lin. Multivariate hawkes processes: an
application to financial data. Journal of Applied Probability, 48(A):367–378,
2011.

[FS15] V. Filimonov and D. Sornette. Apparent criticality and calibration issues in
the hawkes self-excited point process model: application to high-frequency
financial data. Quantitative Finance, 15(8):1293–1314, 2015.

[FVC15] K. Fernandes, P. Vinagre, and P. Cortez. A proactive intelligent decision
support system for predicting the popularity of online news. In Portuguese
Conference on Artificial Intelligence, pages 535–546. Springer, 2015.

[FWR+15] M. Farajtabar, Y. Wang, M. G. Rodriguez, S. Li, H. Zha, and L. Song. Co-
evolve: A joint point process model for information diffusion and network
co-evolution. In Advances in Neural Information Processing Systems, pages
1954–1962, 2015.

[GL15] A. Galves and E. Löcherbach. Modeling networks of spiking neurons
as interacting processes with memory of variable length. arXiv preprint
arXiv:1502.06446, 2015.

[GRLS13] M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf. Modeling informa-
tion propagation with survival theory. International Conference on Machine
Learning, 2013.

[Ham94] J. D. Hamilton. Time series analysis, volume 2. Princeton university press
Princeton, 1994.

[Haw71a] A. G. Hawkes. Point spectra of some mutually exciting point processes.
Journal of the Royal Statistical Society. Series B (Methodological), pages 438–
443, 1971.

148

Bibliography

[Haw71b] A. G. Hawkes. Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58(1):83–90, 1971.

[HBB13] S. J. Hardiman, N. Bercot, and J.-P. Bouchaud. Critical reflexivity in finan-
cial markets: a hawkes process analysis. The European Physical Journal B,
86(10):442, 2013.

[HL16] E. Hazan and H. Luo. Variance-reduced and projection-free stochastic
optimization. In International Conference on Machine Learning, pages 1263–
1271, 2016.

[HMW12] Z. T. Harmany, R. F. Marcia, and R. M. Willett. This is spiral-tap: Sparse
poisson intensity reconstruction algorithms—theory and practice. IEEE
Transactions on Image Processing, 21(3):1084–1096, 2012.

[HO74] A. G. Hawkes and D. Oakes. A cluster process representation of a self-
exciting process. Journal of Applied Probability, 11(3):493–503, 1974.

[HRBR15] N. R. Hansen, P. Reynaud-Bouret, and V. Rivoirard. Lasso and proba-
bilistic inequalities for multivariate point processes. Bernoulli, 21(1):83–143,
2015.

[HYD15] C.-J. Hsieh, H.-F. Yu, and I. Dhillon. Passcode: Parallel asynchronous
stochastic dual co-ordinate descent. In ICML, volume 15, pages 2370–
2379, 2015.

[ISG13] T. Iwata, A. Shah, and Z. Ghahramani. Discovering latent influence in
online social activities via shared cascade poisson processes. In Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 266–274. ACM, 2013.

[JZ13] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in Neural Information Processing
Systems, pages 315–323, 2013.

[KB15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2015.

[KLT11] V. Koltchinskii, K. Lounici, and A. B. Tsybakov. Nuclear-norm penalization
and optimal rates for noisy low-rank matrix completion. The Annals of
Statistics, 39(5):2302–2329, 2011.

[Kol11] V. Koltchinskii. Oracle Inequalities in Empirical Risk Minimization
and Sparse Recovery Problems: Saint-Flour XXXVIII-2008, volume 2033.
Springer, 2011.

149

Bibliography

[LA14] S. Linderman and R. Adams. Discovering latent network structure in point
process data. In International Conference on Machine Learning, pages 1413–
1421, 2014.

[LBK09] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dy-
namics of the news cycle. In Proceedings of the 15th ACM SIGKDD. ACM,
2009.

[Les08] J. Leskovec. Dynamics of large networks. PhD thesis, Machine Learning
Department, Carnegie Mellon University, 2008.

[Lew95] A. S. Lewis. The convex analysis of unitarily invariant matrix functions.
Journal of Convex Analysis, 2(1):173–183, 1995.

[LFN18] H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimiza-
tion by first-order methods, and applications. SIAM Journal on Optimiza-
tion, 28(1):333–354, 2018.

[Lic13] M. Lichman. UCI machine learning repository, 2013.

[LK04] H. Lütkepohl and M. Krätzig. Applied time series econometrics. Cambridge
university press, 2004.

[LM11] E. Lewis and G. Mohler. A nonparametric em algorithm for multiscale
hawkes processes. Journal of Nonparametric Statistics, 1(1):1–20, 2011.

[LMBB12] E. Lewis, G. Mohler, P. J. Brantingham, and A. L. Bertozzi. Self-exciting
point process models of civilian deaths in iraq. Security Journal, 25(3):244–
264, 2012.

[LPLJ17] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Asaga: asynchronous
parallel saga. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2017.

[LSK17] R. Lemonnier, K. Scaman, and A. Kalogeratos. Multivariate hawkes pro-
cesses for large-scale inference. In AAAI, pages 2168–2174, 2017.

[LSV+16] M. Lukasik, P. K. Srijith, D. Vu, K. Bontcheva, A. Zubiaga, and T. Cohn.
Hawkes processes for continuous time sequence classification: an applica-
tion to rumour stance classification in twitter. In Proceedings of 54th Annual
Meeting of the Association for Computational Linguistics, pages 393–398. As-
sociation for Computational Linguistics, 2016.

150

Bibliography

[LV14] R. Lemonnier and N. Vayatis. Nonparametric markovian learning of trig-
gering kernels for mutually exciting and mutually inhibiting multivariate
hawkes processes. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 161–176. Springer, 2014.

[LYRL04] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collec-
tion for text categorization research. Journal of machine learning research,
5(Apr):361–397, 2004.

[Mas07] P. Massart. Concentration inequalities and model selection, volume 1896.
Springer, 2007.

[Moh13] G. Mohler. Modeling and estimation of multi-source clustering in crime
and security data. The Annals of Applied Statistics, 7(3):1525–1539, 2013.

[MPP+17] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I.
Jordan. Perturbed iterate analysis for asynchronous stochastic optimiza-
tion. SIAM Journal on Optimization, 27(4):2202–2229, 2017.

[MRC17] S. Moro, P. Rita, and J. Coelho. Stripping customers’ feedback on hotels
through data mining: the case of las vegas strip. Tourism Management
Perspectives, 23:41–52, 2017.

[MRV16] S. Moro, P. Rita, and B. Vala. Predicting social media performance metrics
and evaluation of the impact on brand building: A data mining approach.
Journal of Business Research, 69(9):3341–3351, 2016.

[MSB+11] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E.
Tita. Self-exciting point process modeling of crime. Journal of the American
Statistical Association, 2011.

[Nes83] Y. Nesterov. A method of solving a convex programming problem with
convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages
372–376, 1983.

[Nes13] Y. Nesterov. Introductory lectures on convex optimization: A basic course,
volume 87. Springer Science & Business Media, 2013.

[NN94] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in
convex programming. SIAM, 1994.

[Noc80] J. Nocedal. Updating quasi-newton matrices with limited storage. Mathe-
matics of computation, 35(151):773–782, 1980.

[NW06] J. Nocedal and S. J. Wright. Nonlinear Equations. Springer, 2006.

151

Bibliography

[Oga78] Y. Ogata. The asymptotic behaviour of maximum likelihood estimators for
stationary point processes. Annals of the Institute of Statistical Mathematics,
30(1):243–261, 1978.

[Oga81] Y. Ogata. On lewis’ simulation method for point processes. IEEE Transac-
tions on Information Theory, 27(1):23–31, 1981.

[Oga88] Y. Ogata. Statistical models for earthquake occurrences and residual anal-
ysis for point processes. Journal of the American Statistical association,
83(401):9–27, 1988.

[Oga98] Y. Ogata. Space-time point-process models for earthquake occurrences.
Annals of the Institute of Statistical Mathematics, 50(2):379–402, 1998.

[Oga99] Y. Ogata. Seismicity analysis through point-process modeling: A review.
Pure & Applied Geophysics, 155(2-4):471, 1999.

[PLLJ17] F. Pedregosa, R. Leblond, and S. Lacoste-Julien. Breaking the nonsmooth
barrier: A scalable parallel method for composite optimization. In Ad-
vances in Neural Information Processing Systems, pages 56–65, 2017.

[PLR+99] M. R. Pino, L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder.
The generalized forward-backward method for analyzing the scattering
from targets on ocean-like rough surfaces. IEEE Transactions on Antennas
and Propagation, 47(6):961–969, 1999.

[PLT+16] X. Pan, M. Lam, S. Tu, D. Papailiopoulos, C. Zhang, M. I. Jordan, K. Ram-
chandran, and C. Ré. Cyclades: Conflict-free asynchronous machine learn-
ing. In Advances in Neural Information Processing Systems, pages 2568–2576,
2016.

[PTLJ18] R. L. Priol, A. Touati, and S. Lacoste-Julien. Adaptive stochastic
dual coordinate ascent for conditional random fields. arXiv preprint
arXiv:1712.08577, (291), 2018.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[Qia99] N. Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151, 1999.

152

Bibliography

[QRTF16] Z. Qu, P. Richtárik, M. Takác, and O. Fercoq. Sdna: Stochastic dual
newton ascent for empirical risk minimization. In International Conference
on Machine Learning, pages 1823–1832, 2016.

[RBL17] M. Rambaldi, E. Bacry, and F. Lillo. The role of volume in order book
dynamics: a multivariate hawkes process analysis. Quantitative Finance,
17(7):999–1020, 2017.

[RBR10] P. Reynaud-Bouret and V. Rivoirard. Near optimal thresholding estimation
of a poisson intensity on the real line. Electronic journal of statistics, 4:172–
238, 2010.

[RBS11] M. Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dy-
namics of diffusion networks. International Conference on Machine Learning,
2011.

[RGV14] E. Richard, S. Gaïffas, and N. Vayatis. Link prediction in graphs with
autoregressive features. Journal of Machine Learning Research, 2014.

[RHS+15] S. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. On variance reduction
in stochastic gradient descent and its asynchronous variants. In Advances
in Neural Information Processing Systems, pages 2647–2655, 2015.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533, 1986.

[RM51] H. Robbins and S. Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[RRS11] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems
handbook. Springer, 2011.

[RRWN11] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

[Sca82] J. D. Scargle. Studies in astronomical time series analysis. ii-statistical
aspects of spectral analysis of unevenly spaced data. The Astrophysical
Journal, 263:835–853, 1982.

[SLRB17] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 162(1-2):83–112,
2017.

153

Bibliography

[SS16] S. Shalev-Shwartz. Sdca without duality, regularization, and individual
convexity. In International Conference on Machine Learning, pages 747–754,
2016.

[SSZ13] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent meth-
ods for regularized loss minimization. Journal of Machine Learning Research,
14(Feb):567–599, 2013.

[SSZ14] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual
coordinate ascent for regularized loss minimization. In International Con-
ference on Machine Learning, pages 64–72, 2014.

[STD17] T. Sun and Q. Tran-Dinh. Generalized self-concordant functions: a recipe
for newton-type methods. Mathematical Programming, pages 1–69, 2017.

[Tay08] S. J. Taylor. Modelling financial time series. world scientific, 2008.

[TDKC15] Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. Composite self-concordant
minimization. The Journal of Machine Learning Research, 16(1):371–416, 2015.

[TFSZ15] L. Tran, M. Farajtabar, L. Song, and H. Zha. Netcodec: Community detec-
tion from individual activities. In Proceedings of the 2015 SIAM International
Conference on Data Mining, pages 91–99. SIAM, 2015.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[Tib11] R. Tibshirani. Regression shrinkage and selection via the lasso: a retro-
spective. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 73(3):273–282, 2011.

[TMDQ16] C. Tan, S. Ma, Y.-H. Dai, and Y. Qian. Barzilai-borwein step size for
stochastic gradient descent. In Advances in Neural Information Processing
Systems, pages 685–693, 2016.

[Tro12] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foun-
dations of Computational Mathematics, 12(4):389–434, 2012.

[Tsa05] R. S. Tsay. Analysis of financial time series, volume 543. John Wiley & Sons,
2005.

[VDG00] S. Van De Geer. Empirical Processes in M-estimation, volume 105. Cam-
bridge university press Cambridge, 2000.

154

Bibliography

[XFZ16] H. Xu, M. Farajtabar, and H. Zha. Learning granger causality for hawkes
processes. In International Conference on Machine Learning, pages 1717–
1726, 2016.

[XZ14] L. Xiao and T. Zhang. A proximal stochastic gradient method with pro-
gressive variance reduction. SIAM Journal on Optimization, 24(4):2057–
2075, 2014.

[YZ13] S.-H. Yang and H. Zha. Mixture of mutually exciting processes for viral
diffusion. In International Conference on Machine Learning, pages 1–9, 2013.

[Zei12] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[ZZ15] P. Zhao and T. Zhang. Stochastic optimization with importance sampling
for regularized loss minimization. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pages 1–9, 2015.

[ZZS13a] K. Zhou, H. Zha, and L. Song. Learning social infectivity in sparse low-
rank networks using multi-dimensional hawkes processes. In AISTATS,
volume 31, pages 641–649, 2013.

[ZZS13b] K. Zhou, H. Zha, and L. Song. Learning triggering kernels for multi-
dimensional hawkes processes. In S. Dasgupta and D. McAllester, edi-
tors, Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pages 1301–1309,
Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

155

ANNEXE A

Résumé des contributions

Cette introduction est un bref résumé des chapitres de cette thèse. Elle donne une
vision d’ensemble du travail présenté et passe parfois rapidement sur les détails tech-
niques. Ces détails sont dûment étayés dans les chapitres correspondants.

1 Les processus de Hawkes

Les processus ponctuels temporels sont utilisés pour étudier les séries d’événements
en temps continu. A l’inverse des séries temporelles, ils ne dépendent d’aucune ré-
solution temporelle définie à l’avance et peuvent ainsi étudier plusieurs échelles de
temps à la fois. Ce chapitre est une brève introduction sur les processus ponctuels
temporels et en particulier sur les processus de Hawkes. D’avantage de détails peuvent
être trouvés dans l’ouvrage de référence [DVJ07].

1.1 Processus ponctuels temporels

Nous associons à un ensemble de points distincts du temps {t1, . . . , tn}, ayant lieu dans
un intervalle [0,T], le processus de comptage Nt =∑

tk
1tk≤t . Ce processus de comp-

tage est un processus aléatoire dont la distribution est caractérisée par une fonction
d’intensité λ(t |Ft) qui donne la probabilité infinitésimale avec laquelle un événement
va se produire au temps t étant donnée l’information Ft disponible jusqu’au temps t
exclu. Elle s’écrit

λ(t |Ft) = lim
d t→0

P(Nt+d t −Nt = 1| Ft)

d t
.

Dans le cas le plus simple, cette intensité est constante et le processus associé est
appelé processus de Poisson homogène. Il décrit un phénomène sans mémoire et
avec une probabilité d’apparition d’un événement constante au cours du temps.

157

French summary

Qualité de l’ajustement. On appelle qualité de l’ajustement ou goodness-of-fit une
fonction caractérisant à quel point un modèle statistique s’ajuste à un ensemble d’ob-
servations. La goodness-of-fit la plus utilisée est la fonction de vraisemblance donnée
par [DVJ07]. Par commodité, nous considérons plutôt l’opposé de son logarithme en
tant que mesure d’erreur. Il est alors donnée par

− logL(FT) =
∫ T

0
λ(s|Fs)ds −

NT∑
k=1

logλ(tk |Ftk).

Une autre mesure est l’erreur des moindres carrés inspirée par le principe de mini-
misation du risque empirique. Pour un processus ponctuel, elle s’écrit (voir [RBR10,
HRBR15])

R(FT) =
∫ T

0
λ(s|Fs)2 ds −2

NT∑
k=1

λ(tk |Ftk). (A.1)

En supposant que Nt a une intensité réelle inconnue notée λ∗, E[R(FT)] est alors
minimisée par cette intensité λ∗. Cette seconde goodness-of-fit n’est pas autant utilisée
mais est plus simple à optimiser dans bien des cas. Ces deux mesures privilégient
les fonctions d’intensité avec de hautes valeurs aux temps où les événements se pro-
duisent et des valeurs aussi faibles que possible à tous les autres temps.

1.2 Processus de Hawkes

Les processus de Hawkes [Haw71a, HO74] sont des processus ponctuels temporels
dont l’intensité dépend de l’historique du processus avec un mécanisme d’excitation.
Ils peuvent être considérés comme l’équivalent des modèles de séries temporelles au-
torégressives (AR) [Ham94] dans le cas où le temps est continu et non discret. Ils
permettent d’analyser l’inter-causalité existante entre plusieurs séries d’événements.
Ils ont d’abord été utilisés en séismologie [Oga99], puis en finance [BDHM13, BMM15]
et ont aujourd’hui trouvé de nombreuses nouvelles applications comprenant la prédic-
tion du crime [LMBB12, Moh13] ou la propagation de l’information dans les réseaux
sociaux [CS08, BBH12, ZZS13a, YZ13, LSV+16].

Les processus de Hawkes multivariés modélisent les interactions de D ≥ 1 pro-
cessus ponctuels avec une dynamique d’excitation déterminée par la structure auto-
régressive de l’intensité conditionnelle. Pour chaque processus ponctuel i = 1, . . . ,D
cette intensité s’écrit

λi (t | Ft) =µi +
D∑

j=1

∫ t

0
ϕi j (t − s)dN j

s .

Les µi ≥ 0 sont les intensités exogènes des nœuds i = 1, . . . ,D . Les ϕi j pour 1 ≤ i , j ≤ D
sont appelés noyaux, ils quantifient, en magnitude et au cours du temps, l’influence

158

1. Les processus de Hawkes

0.00

0.25

0.50
11(t) 12(t)

0 2
t

0.00

0.25

0.50
21(t)

0 2
t

22(t)

0

1

1(t)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0

1

2(t)

Figure I.1 : Une réalisation d’un processus de Hawkes de dimension deux. Les quatre
noyaux sont montrés sur la partie de gauche. Les intensités sont affichés sur la partie
de droite (en fonction du temps, jusqu’à t = 20), où les événements sont représentés
par des points colorés (en bleu ceux qui correspondent au nœud 1, en orange au
nœud 2).

des événements passés du nœud j sur l’intensité des événements du nœud i . La ma-
trices des intégrales (Φ)1≤i , j≤D = ∫ T

0 ϕi j (t)dt renseigne l’espérance du nombre d’évé-
nements de type i directement provoqués par un événement de type j . Un processus
de Hawkes admet un régime stationnaire quand le rayon spectral de cette matrice est
inférieur à un : %(Φ) < 1 [BMM15]. De tels processus sont aisément simulés par l’al-
gorithme de thinning [Oga81]. La Figure I.1 montre une réalisation d’un processus de
Hawkes de dimension deux et met en évidence le mécanisme d’excitation en exhibant
les fonctions de noyau ϕi j et l’impact qu’a eu chaque événement sur les intensités de
chacun des nœud.

Estimation. Inférer un processus de Hawkes consiste à estimer son intensité exo-
gène µ et ses fonctions de noyaux ϕi j de manière paramétrique ou non. Dans le cas
non-paramétrique, les noyaux sont approchés par des histogrammes dans la plupart
des cas [LM11, ZZS13b, BM14]. Cette procédure estime les noyaux du processus de ma-
nière très flexible mais passe difficilement à l’échelle. Récemment, [ABG+17] a proposé
un nouvel estimateur non-paramétrique qui déduit directement la matrice Φ des inté-
grales des noyaux pour pallier ce problème. Dans le cas paramétrique, les estimateurs
reposent sur une connaissance a priori des fonctions de noyaux qui sont alors dé-
crites par un ensemble de paramètres. Estimer ces fonctions de noyaux revient donc
à estimer ces paramètres. Ces procédures sont moins flexibles que les méthodes non-
paramétriques mais sont plus efficaces et plus robustes car le nombre de paramètres
à estimer est plus faible. Différentes paramétrisations sont utilisées pour modéliser
des comportements variés, tels qu’une réponse retardée à un événement déclencheur

159

French summary

[XFZ16] ou une influence qui décroit lentement au cours du temps avec les noyaux de
loi de puissance utilisés en séismologie [Oga88] et en finance. Cependant, pour des
raisons de passage à l’échelle, la plupart des estimateurs paramétriques reposent sur
des noyaux à décroissance exponentielle [ELL11, ZZS13a, TFSZ15, FWR+15, LSK17].

Noyaux exponentiels. La paramétrisation exponentielle des noyaux est le principal
modèle paramétrique pour lequel nous considérons que ϕi j (t) =αi jβexp(−βt) pour
αi j > 0 et β > 0 (voir le noyau ϕ21 dans la Figure I.1). Dans le modèle, la matrices
des intégrales Φ= [αi , j]1≤i , j≤d et β> 0 est un paramètre caractérisant la mémoire du
processus. Le couple (Nt ,λ(t)) est un processus de Markov [BMM15, Proposition 2],
et l’équation de l’intensité conditionnelle se réécrit dans une forme Markovienne

dλi (t | Ft) =
D∑

j=1
β(µ j −λ j (t | Ft))dt +αi jβdN j

s

pour i = 1, . . .D . Ainsi, au lieu de devoir considérer tous les événements passés, la
valeur de l’intensité conditionnelle λi au temps t2 peut être calculée à partir de sa
valeur à un temps précédent t1 < t2 et les temps des événements qui ont eu lieu entre
t1 et t2. Cette propriété permet des calculs beaucoup plus efficaces et un meilleur
passage à l’échelle aussi bien pour la simulation que pour l’estimation.

Une approche plus générale est le noyau de somme d’exponentielles [LV14], soit
ϕi j (t) =∑U

u=1α
i j
u βu exp(−βu t) pour αi j

u > 0 et βu > 0. Ces noyaux bénéficient encore
de la propriété de Markov et se généralisent mieux car ils traitent avec plusieurs
échelles de temps βu à la fois et ainsi peuvent par exemple approcher des noyaux de
loi-puissance [HBB13, FS15]. Pour des raisons de convexité, les paramètres de mémoire
β sont généralement fixés pendant l’estimation [LV14]. Ensuite, afin de retrouver les
paramètres µ et α, l’estimateur du maximum de vraisemblance, comme celui des
moindres carrés, bénéficie de la propriété de Markov pour accélérer les calculs. En
effet, leur complexité est linéaire en le nombre total d’événements NT au lieu d’être
quadratique comme dans le cas général. Bien que moins utilisé, l’estimateur des
moindres carrés est une fonction quadratique qui est très simple à optimiser à l’inverse
de l’estimateur du maximum de vraisemblance. Aussi, il passe très bien à l’échelle
avec le nombre total d’événement car un niveau de précision aussi fin que souhaité
peut être atteint avec un nombre fixe, D2 ×U 2, de passages sur les données, voir le
Chapitre I pour plus de détails.

Nous allons désormais nous focaliser sur la propagation de l’information dans les
réseaux sociaux. C’est un problème stimulant à l’intérêt croissant [dMB04, Les08,
CS08, LBK09] grâce au nombreuses applications dans la publicité ou le commerce
en ligne où des enregistrements d’historiques d’événements de grande taille sont dis-
ponibles. Une approche supervisé habituelle consiste à prédire des étiquettes à partir

160

2. Processus de Hawkes multivariés, sparses et de faible rang

d’interactions déclarées (amitié, mention j’aime, compte suivi, etc.). Cependant, une
telle supervision n’est pas toujours disponible, et elle ne décrit pas forcément précisé-
ment le niveau des interactions entre les utilisateurs. Les étiquettes sont souvent seule-
ment binaires alors que la quantification d’une interaction est plus complexe et que
les interactions déclarées souvent sont obsolètes. Plus généralement, une approche
supervisée n’est pas suffisante pour retrouver les communautés latentes d’utilisateurs
alors que les motifs temporels des actions des utilisateurs sont bien plus instructives.
Avec les processus de Hawkes, nous considérons une approche directement conçue
à partir des données inaltérées des actions des utilisateurs. Formellement, les utilisa-
teurs sont les nœuds du processus ponctuel multivarié et les actions chronométrées
sont les événements. Cependant, un processus de Hawkes brut retrouverait difficile-
ment les motifs caractéristiques observés sur un réseau social tel que les interactions
sparses entre les utilisateurs et les structures de communautés. Ceci soulève la ques-
tion suivante,

Question 4. Comment retrouver des dynamiques d’interaction sociales avec des processus
de Hawkes ?

Nous discutons de cette problématique dans la section suivante.

2 Processus de Hawkes multivariés, sparses et de
faible rang

Nous considérons le problème consistant à dévoiler la structure implicite du réseau
des interactions entre utilisateurs dans un réseau social, simplement à partir de sé-
ries d’événements en haute fréquence. Récemment, une approche conçue à partir
des processus de Hawkes a gagné en popularité [CS08, BBH12, ZZS13a, YZ13]. Elle
exploite la structure des processus de Hawkes pour retrouver l’influence directe qu’a
une action d’un utilisateur spécifique sur toutes les futures actions des tous les utilisa-
teurs (dont lui-même). Les processus de Hawkes modélisent simultanément le déclin
de l’influence au court du temps avec la forme des noyaux ϕi j , les niveaux d’inter-
actions entre les nœuds avec la matrice d’adjacence asymétrique et pondérée Φ et
l’intensité exogène, qui mesure la spontanéité avec laquelle une action est réalisée
sans l’influence des événements précédents.

2.1 Pénalisations `1 et norme trace

La pénalisation (aussi appelée régularisation) est une technique habituelle en appren-
tissage statistique. Elle consiste à minimiser l’opposé de la fonction de goodness-of-fit

161

French summary

plus un terme de pénalité façonné pour inculquer une structure spécifique à la so-
lution du problème. La pénalisation Lasso ou `1 [Tib96] est une des plus connues
et des plus utilisées. Dans un problème où f : Rd → R est l’opposé de la fonction de
goodness-of-fit, la version pénalisée par `1 consiste à résoudre

min
w∈Rd

f (w)+λ‖w‖1,

où λ > 0 et ‖w‖1 = ∑d
j=1 |w j |. Cette pénalité est connue pour donner des solutions

avec un support sparse, c’est-à-dire un vecteur de coefficient w avec beaucoup d’en-
trées nulles. En fait, si nous considérons le cas plus général des pénalisation liées à
la pénalisation `p ,

∑d
j=1 |w j |p , alors le Lasso est la pénalisation `1 et la pénalisa-

tion `0, qui donne le nombre d’entrées non nulles dans un vecteur, est le cas limite
quand p → 0. Dans ce cadre, le Lasso emploie la plus petite valeur de p qui amène
à une formulation convexe d’un problème pénalisé par `p . Ainsi, le lasso peut être
vu comme la relaxation convexe du problème de sélection du meilleur sous-ensemble
[Tib11].

La pénalisation norme trace (aussi appelée norme nucléaire) est utilisée quand les
coefficients Ω ∈Rd×d sont des matrices plutôt que des vecteurs. Elle consiste à ajouter
à l’opposé de la fonction de goodness-of-fit, la norme trace de la matrice ‖Ω‖∗ , donnée
par

‖Ω‖∗ =
d∑

j=1
σ j (Ω),

où σ1(Ω) ≥ ·· · ≥σd (Ω) ≥ 0 sont les valeurs singulières de Ω. Ainsi, elle est l’équivalent
d’une pénalisation `1 appliquée au vecteur [σ1(Ω) · · · σd (Ω)] et tend à favoriser
l’apparition de valeurs singulières nulles. Finalement, comme le rang d’une matrice
est égal au nombre de ses valeurs singulières non nulles, la pénalisation norme trace
est une relaxation convexe du problème de faible rang [CT10], de la même manière
que la pénalisation `1 l’est pour le problème de sélection du meilleur sous-ensemble.
Favoriser un faible rang est habituel en filtrage collaboratif [CT04, CT10, RRS11] pour
décrire la structure du réseau avec un nombre limité de paramètres. Rendu populaire
par le prix Netflix [BL07], cela tend à faire apparaître des communautés d’individus
au comportement similaire.

2.2 A priori sparse et de faible rang

Nous combinons ces pénalisations avec un processus de Hawkes à d nœuds, chacun
d’entre eux représentant un utilisateur. Pour plus de simplicité, nous considérons dans
ce chapitre que, pour tout j , j ′ = 1, . . . ,d , les noyaux ϕ j j ′ peuvent être décomposés en
ϕ j , j ′(t) =∑K

k=1 a j , j ′,k h j , j ′,k (t) où a j , j ′,k ≥ 0 and h j , j ′,k :R+ →R+ sont des fonctions de
déclin connues et avec une norme `1 fixée, ‖h j , j ′,k‖1 = 1.

162

2. Processus de Hawkes multivariés, sparses et de faible rang

Ainsi, pour chaque nœud j = 1, . . . ,d , l’intensité conditionnelle s’écrit

λ j ,µ,A(t) =µ j +
d∑

j ′=1

K∑
k=1

a j , j ′,k h j , j ′,k (t − s)dN j
s ,

où µ ∈ Rd est l’intensité exogène. Par exemple, choisir h j , j ′,k = βk exp(−βk t) où
βk > 0 revient à la paramétrisation en somme d’exponentielle (voir Section 1.2).
Le paramètre d’intérêt est le tenseur d’auto-excitation A qui s’écrit simplement A =
[a j , j ′,k]1≤ j , j ′≤d ,1≤k≤K . Ensuite, nous combinons les a priori sparse et de faible rang du
tenseur d’auto-excitation et de l’intensité exogène pour obtenir la structure du réseau
désirée. Nos hypothèses sur µ et A sont les suivantes.

µ est sparse. Certains nœuds sont globalement inactifs et ne réagissent seulement
s’ils sont stimulés. Ainsi, nous supposons que l’intensité exogène µ est sparse.

A est sparse. Un nœud n’interagit qu’avec une fraction des autres nœuds, ce qui
signifie que pour un nœud fixé j , seuls quelques sont a j , j ′,k non nuls. De plus, un
nœud peut ne réagir qu’à différentes échelles de temps, précisément, a j , j ′,k est non nul
pour quelques k seulement dans un couple j , j ′ fixé. C’est pourquoi, nous supposons
que les entrées du tenseur A sont sparses.

A est de faible rang. Nous supposons qu’il existe des facteurs latents qui
expliquent comment les nœuds s’impactent les uns les autres à travers les différentes
échelles de temps k = 1, . . . ,K . En réécrivant l’intensité, cela mène naturellement à
pénaliser le rang de la matrice d ×K d hstack(A) = [

A•,•,1 · · ·A•,•,K
]
où A•,•,k dénote

la matrice d ×d qui a pour entrées (A•,•,k) j , j ′ =A j , j ′,k .

Nous induisons ces a priori avec des termes de pénalisations ajoutés à l’objectif.
Précisément, nous minimisons

R(µ, A)+‖µ‖1,ŵ +‖A‖1,Ŵ+ τ̂‖hstack(A)‖∗, (A.2)

où R(µ, A) est la goodness-of-fit des moindres carrés (A.1), et les termes de pénalisa-
tion sont la norme trace et les pénalisations `1 pondérées, données par

‖µ‖1,ŵ =
d∑

j=1
ŵ j |µ j |, ‖A‖1,Ŵ = ∑

1≤ j , j ′≤d ,1≤k≤K

Ŵ j , j ′,k |A j , j ′,k |.

Les poids ŵ , Ŵ, et le coefficient τ̂ sont des paramètres ajustés en fonction des don-
nées. Ils sont formalisés dans la Section 4 du Chapitre II. Le choix de ces poids
permet, à partir des données, de tenir de la variation d’information disponible pour
chaque nœud et provient d’une analyse fine des termes de bruit présenté dans la
section ci-dessous.

163

French summary

2.3 Inégalité d’oracle

Avec un choix judicieux des paramètres de poids ŵ , Ŵ et τ̂, nous obtenons, dans
le Théorème 1 une inégalité d’oracle. Cette inégalité borne l’erreur d’estimation de
l’intensité λµ̂,Â, obtenue en minimisant le Problème (A.2), étant donné le meilleur
estimateur, avec la même paramétrisation, qui serait obtenu avec une information
parfaite. Nous fixons un niveau de confiance x > 0, qui peut être choisi sans risque à
x = logT par exemple, et dénommons par ‖·‖F la norme de Frobenius pour formuler
le théorème suivant où aucune hypothèse n’est faite sur l’intensité réelle λ.

Théorème 1. Fixons x > 0, et choisissons ŵ ,Ŵ , τ̂ qui dépendent de x tels que données
par (II.17), (II.18) et (II.19). Alors l’inégalité

‖λµ̂,Â−λ‖2
T ≤ inf

µ,A

{
‖λµ,A−λ‖2

T +1.25κ(µ,A)2
(
‖(ŵ)supp(µ)‖2

2

+‖(Ŵ)supp(A)‖2
F + τ̂2 rank(hstack(A))

)}
est vérifiée avec une probabilité supérieure à 1−70.35e−x .

La constante κ(µ,A) est donnée par la Définition 1 du Chapitre II. Elle vient de
la nécessité d’avoir une condition de restriction des valeurs propres de la matrice de
Gram du problème pour obtenir une inégalité d’oracle avec un taux rapide [BRT09,
Kol11]. Grossièrement, elle demande que pour tout ensemble de paramètres {µ′,A′}
qui a un support proche de celui de {µ,A}, nous ayons que la norme L2 de {µ′,A′}
dans le support de {µ,A} puisse être bornée par la norme L2 de l’intensité donnée
par ‖λµ′,A′‖T .

2.4 Expériences numériques

Pour mesurer les performances de ces pénalisations pondérées à partir de des don-
nées {ŵ ,Ŵ, τ̂}, nous menons une suite d’expérience sur des jeux de données synthé-
tiques et comparons notre méthode aux pénalisations non pondérées [ZZS13a]. Nous
réalisons ces expériences sur des processus de Hawkes avec d = 30 nœuds et K = 3
bases de noyaux où le tenseur d’auto-excitation contient des boites se chevauchant,
correspondant aux communautés, afin de respecter les a priori sparse et de faible
rang. Nous considérons quatre méthodes d’estimation qui minimisent l’erreur des
moindres carrées à laquelle s’ajoute l’une des pénalisations suivantes :

• L1 : Pénalisation `1 non pondérée de A

• wL1 : Pénalisation `1 pondérée de A

164

3. Minimisation de sommes composites avec des méthodes du premier ordre

• L1Nuclear : Pénalisation `1 non pondérée et norme trace de hstack(A) (iden-
tique à [ZZS13a])

• wL1Nuclear : Pénalisation `1 pondérée et norme trace de hstack(A)

Ensuite, pour chaque procédure, nous entraînons le modèle sur des données générées,
en le limitant sur un intervalle de temps croissant, et évaluons ses performances pour
chaque temps avec les trois mesures suivantes :

• Erreur d’estimation : l’erreur d’estimation relative `2 de A, donnée par
‖Â−A‖2

2/‖A‖2
2

• AUC : Nous calculons l’AUC (aire sous la courbe ROC) entre la matrice généra-
trice A binarisée et la solution Â dont les entrées sont rééchelonnées dans [0,1].
Ceci permet de quantifier la capacité de la procédure à retrouver le support de
la structure de la connexion entre les nœuds.

• Kendall : Nous calculons le tau-b de Kendall entre toutes les entrées de la
matrice génératrice A et la solution Â. Ce coefficient de corrélations prend
des valeurs entre −1 et 1 et compare le nombre de paires concordantes et
discordantes. Ceci nous permet de quantifier la capacité de la procédure à
classer correctement l’intensité de la connexion entre les nœuds.

La Figure I.2 confirme que les pénalisations pondérées amènent systématiquement
une amélioration, pour L1 et L1Nuclear, en termes d’erreur d’estimation, d’AUC et
de coefficient de Kendall.

Étudier les techniques d’optimisation utilisées pour minimiser l’objectif (A.2) allait au
delà du périmètre de cette section. Cependant, l’optimisation est une partie cruciale
de la procédure sur laquelle nous allons nous concentrer dans les deux sections
suivantes.

3 Minimisation de sommes composites avec des
méthodes du premier ordre

Une grande variété de tâches en apprentissage automatique consistent à optimiser le
problème suivant

min
w∈Rd

F (w) avec F (w) = f (w)+ g (w), f (w) = 1

n

n∑
i=1

fi (w),

165

French summary

0

5

10

15

20
Estimation error

0.7

0.8

0.9

1.0
AUC

0.2

0.4

0.6

Kendall

wL1
L1

5000 10000 15000 20000
T

0.05

0.06

0.07

0.08

0.09

5000 10000 15000 20000
T

0.90

0.95

1.00

5000 10000 15000 20000
T

0.50

0.55

0.60

wL1Nuclear
L1Nuclear

Figure I.2 : Valeur des mesures pour des données simulées de dimension d = 30 et
avec K = 3 bases de noyaux. L’abscisse correspond à la longueur de l’intervalle R . Les
pénalisations pondérées amènent systématiquement une amélioration, à la fois pour
les pénalisations L1 et L1Nuclear.

où les fonctions fi correspondent à une perte calculée à l’observation i du jeu de
données et la fonction convexe g est un terme de pénalisation. Ce cadre inclut la clas-
sification au moyen de la régression logistique avec fi (w) = log(1+exp(−yi w>xi)), la
régression des moindres carrés avec fi (w) = (yi −w>xi)2 parmi beaucoup d’autres.
Il est habituel de supposer que la fonction f est gradient-Lipschitz, soit ‖∇ f (x)−
∇ f (y)‖ ≤ L‖x − y‖ pour tout x, y ∈ Rd où ‖.‖ dénote la norme euclidienne sur Rd , et
L > 0 est la constante de Lipschitz. Avec cette propriété, le lemme de descente [Ber99,
Proposition A.24] est vérifié,

f (w +∆w) ≤ f (w)+∆w>∇ f (w)+ L
2‖∆w‖2

pour tout w,∆w ∈ Rd . La plupart des algorithmes du premier ordre découlent de ce
lemme et en premier lieu, l’algorithme de descente de gradient où à chaque itération
∆w t+1 est définit par la valeur optimale − 1

L∇ f (w t). Le terme de pénalisation est alors
géré avec les opérateurs proximaux [CP11]. C’est ainsi que fonctionnent l’algorithme
ISTA et sa version accélérée FISTA [BT09] dont la vitesse de convergence est optimale
[Nes83].

Descente de gradient stochastique. Cependant, avec sa structure, ce problème
peut également être considéré comme une accumulation de plus petits problèmes
fi qui ont un comportement commun. La descente de gradient stochastique (SGD)
[RM51] l’exploite et, au lieu de calculer le gradient complet ∇ f (w t) à chaque itération,
emploie une variable aléatoire φt ∈ Rd telle que E[φt] =∇ f (w t). L’étape de descente

166

4. Optimisation duale sans l’hypothèse de gradient-Lipschitz

devient ∆w t+1 =−ηtφt où φt vaut ∇ fi (w t) et ηt > 0 est un pas de descente. Quand
tous les ∇ fi (w t) sont aussi coûteux à calculer, SDG réalise des itérations qui sont
n fois plus rapides que les algorithmes par paquets introduits précédemment. Mais
ces méthodes ne convergent pas facilement vers une solution précise car ∇ fi (w t)
n’approche pas zéro quand w t est proche de la valeur optimale w∗. Ainsi, la suite
des pas de descente (ηt)t≥0 doit être décroissante ce qui affecte, en définitive, la
vitesse de convergence.

Algorithmes stochastiques avec réduction de variance. Récemment, des algo-
rithmes stochastiques fondés sur une combinaison de SGD avec la technique de ré-
duction de variance de Monte-Carlo [SLRB17, SSZ13, JZ13, DBLJ14] s’avèrent être à
la fois très efficaces numériquement (chaque itération a une complexité comparable
à celle de SGD) et très solides théoriquement. Pour réduire sa variance, la variable
aléatoire φt prend pour valeur ∇ fi (w t)+Y −E[Y] où Y ∈ Rd est une autre variable
aléatoire dont on attend qu’elle soit corrélée à ∇ fi (w t). Ainsi, φt demeure un estima-
teur non biaisé de ∇ f (w t) et sa variance est diminuée. Dans [SLRB17, SSZ13, JZ13] et
[DBLJ14], φt converge vers 0 à l’optimum, et la séquence des pas de descente (ηt)t≥0

n’a plus besoin d’être décroissante comme pour SGD. Ces algorithmes obtiennent
un taux de convergence linéaire, ce qui signifie qu’ils atteignent un itéré w t tel que
F (w t) ≤ F (w∗)+ε en moins de O (log(1/ε)) itérations.

Ainsi, les techniques d’optimisation modernes obtiennent des solutions très pré-
cises avec peu de passages sur les données. Cependant, les algorithmes du premier
ordre que nous venons d’introduire reposent sur l’hypothèse que f est gradient-
Lipschitz ce qui n’est pas vérifié par la log-vraisemblance des processus de Hawkes.
Le manque d’une méthode rapide, robuste et passant à l’échelle pour résoudre ce
problème motive la question suivante.

Question 5. Comment optimiser des objectifs non gradient-Lipschitz tels que
log-vraisemblance des processus de Hawkes ?

Nous nous focalisations sur ce problème particulier dans la section suivante où nous
développons un algorithme dédié à une nouvelle classe de fonction, admettant une
nouvelle propriété de régularité.

4 Optimisation duale pour les objectifs convexes
contraints sans l’hypothèse de gradient-Lipschitz

Quand l’hypothèse de gradient-Lipschitz n’est pas vérifiée, le lemme de descente
ne tient plus et les algorithmes précédents n’ont plus de garanties de convergence.

167

French summary

Motivés par l’étude de problèmes qui ne vérifient pas cette hypothèse, tels que la
régression de Poisson linéaire et les processus de Hawkes, nous travaillons avec une
autre hypothèse de régularité, et obtenons un taux de convergence linéaire pour une
version décalée de SDCA [SSZ13] qui améliore l’état de l’art actuel.

SDCA pour les objectifs log réguliers. Afin de s’affranchir de l’hypothèse de
gradient-Lipschitz, nous devons nous atteler à une tâche plus spécifique dépendant
d’une nouvelle hypothèse de régularité. Pour des fonctions convexe fi : D f → R où
D f = (0,+∞) telles que limt→0 fi (t) = +∞, ψ ∈ Rd , x1, . . . , xn ∈ Rd , λ > 0 et avec une
fonction g :Rd →R 1-fortement convexe, nous considérons l’objectif

min
w∈Π(X)

P (w) où P (w) =ψ>w + 1

n

n∑
i=1

fi (w>xi)+λg (w), (A.3)

où Π(X) est le polytope {w ∈ Rd : ∀i ∈ {1, . . . ,n}, w>xi > 0} que nous supposons
être non vide. Les algorithmes du premier ordre précédemment introduits n’ont pas
de garanties théoriques pour ce problème et ne parviennent pas à maintenir leur
itérés w t dans le polytope Π(X) au cours de nos expériences. Pour travailler avec des
contraintes plus simples, nous nous concentrons plutôt sur le problème dual qui a
simplement des contraintes boites,

max
α∈−Dn

f ∗
D(α) où D(α) = 1

n

n∑
i=1

− f ∗
i (−αi)−λg∗

(
1

λn

n∑
i=1

αi xi − 1

λ
ψ

)
,

où f ∗ (resp. g∗) est la conjuguée de Fenchel de f (resp. g) et −Dn
f ∗ est le domaine de

la fonction x 7→∑n
i=1 f ∗

i (−x). Alors que la forte dualité n’est pas directement garantie
pour un problème convexe avec des contraintes ouvertes, elle est bien vérifiée dans ce
contexte (voir la Proposition 1 du Chapitre IV). Ainsi, nous maximisons ce dual avec
une variante décalée de l’algorithme SDCA [SSZ13] qui ne repose pas sur l’hypothèse
de gradient-Lipschitz mais plutôt sur la propriété suivante de log régularité.

Définition 1. Une fonction f : D f ⊂ R→ R est dite L-log régulière, où L > 0, s’il s’agit
d’une fonction convexe, différentiable et strictement monotone telle que

| f ′(x)− f ′(y)| ≤ 1

L
f ′(x) f ′(y)|x − y |

pour ∀x, y ∈D f .

En réalité, à la lumière de la proposition suivante, la log régularité est liée à la
propriété de self-concordance, introduite par Nesterov [Nes13] et largement utilisée
pour étudier des fonctions impliquant des logarithmes.

168

4. Optimisation duale sans l’hypothèse de gradient-Lipschitz

Proposition 1. Soit f : D f ⊂ R→ R une fonction convexe, strictement monotone et deux
fois différentiable. Alors

f est L-log régulière ⇔ ∀x ∈D f , f ′′(x) ≤ 1
L f ′(x)2.

Il apparaît que la log régularité est le pendant de la self-concordante mais
pour contrôler le second ordre avec la dérivée du premier ordre. En supposant que
toutes les fonctions fi sont Li -log régulières, nous dérivons de nouvelles inégalités
de convexité et prouvons dans le Chapitre IV le théorème suivant où α∗ ∈ Rn est
l’optimum de l’objectif dual.

Théorème 2. Connaissant des bornes βi ∈−Dn
f ∗ telles que Ri = βi

α∗
i
≥ 1 pour i = 1, . . . ,n

et en supposant que tous les fi sont Li -log régulières et g est 1-fortement convexe. Alors
SDCA satisfait

E[D(α(t))−D(α∗)] ≥
(
1− mini σi

n

)t (
D(α∗)−D(α(0)

)
,

où

σi =
(
1+ ‖xi‖2α∗

i
2

2λnLi

(Ri −1)2

1
Ri

+ logRi −1

)−1

.

Ce théorème donne un taux de convergence linéaire pour l’objectif dual qui amé-
liore ce qui est obtenu avec l’analyse standard de SDCA. Ensuite, nous améliorons ces
garanties théoriques en proposant une variante avec de l’échantillonnage préférentiel
et son efficacité numérique avec une heuristique pour l’initialisation et une méthode
de mini-lot.

Application à la régression de Poisson et aux processus de Hawkes La régres-
sion de Poisson dite linéaire est largement utilisée pour la reconstruction d’images
[HMW12], le marketing sur internet [CPC09] et en analyse de survie pour modéliser
des effets additifs plutôt que multiplicatifs [BF10]. SDCA pour les objectifs log régu-
liers s’applique à la régression de Poisson linéaire ainsi qu’aux processus de Hawkes
avec sommes d’exponentielles précédemment introduits. Pour les deux modèles, nous
pouvons formuler leur vraisemblance comme dans l’Équation (A.3) et donner des
candidats explicites pour les bornes βi nécessaires pour le Théorème 2. Alors que
la formulation du problème est directe pour la régression de Poisson, elle implique
des poids précalculés pour les processus de Hawkes et amène à I sous problèmes
indépendants où I désigne le nombre de nœuds du processus de Hawkes.

Expérimentalement, nous comparons SDCA avec un algorithme du second ordre,
la version standard de l’algorithme de Newton qui calcule à chaque itération la hes-
sienne de l’objectif qui est alors utilisée pour résoudre un système linéaire. Cela

169

French summary

3 2 1 0 1
x0

2

1

0

1

x 1
Original datapoints and log-distance to

optimal objective on the feasible set

yi = 0.0
yi = 1.0
yi = 2.0

3 2 1 0 1
x0

2

1

0

1

x 1

Paths taken by two L-BFGS-B and two SDCA
solvers over the gradient norm and direction

L-BFGS-B 1
L-BFGS-B 2
SDCA 1
SDCA 2

Figure I.3 : Itérés de SDCA et L-BFGS-B pour une régression de Poisson sur un
exemple jouet avec trois observations de deux variables. Gauche. Jeu de données et
valeur de l’objectif. Droite. Itérés de L-BFGS-B et SDCA avec deux points de départ
différents. L’arrière plan représente la norme du gradient et les flèches sa direction.
SDCA est très stable et converge rapidement vers l’optimum alors que L-BFGS-B
converge facilement en dehors du domaine de définition de l’objectif.

garantit une convergence supra-linaire et maintient tous les itérés dans le polytope
ouvert Π(X), à partir du moment où le point de départ y est également [NN94]. Ce-
pendant, cet algorithme passe très mal à l’échelle en particulier quand la dimension
d (la longueur du vecteur w) augmente. Cela limite drastiquement son utilisation en
pratique. Ensuite, nous comparons SDCA avec SVRG [JZ13, TMDQ16] et l’algorithme
quasi-Newton à mémoire limitée L-BFGS-B [Noc80, NW06]. Tous deux reposent théo-
riquement sur l’hypothèse du gradient-Lipschitz qui n’est pas vérifiée dans notre cas.
En pratique, ils divergent très souvent et violent la contrainte du polytope Π(X). Ceci
est bien illustré dans l’exemple jouet de la Figure I.3. Ainsi, afin d’obtenir des résultats
comparables, nous avons dû forcer la contrainte en projetant les itérés de SVRG et
L-BFGS-B dans [0,+∞)d .

Comme attendu, dans la Figure I.4, nous observons que l’algorithme de Newton
devient très lent lorsque le nombre de variables d augmente et, que SVRG et L-
BFGS-B ne peuvent pas atteindre la solution optimale car leurs itérés sont contraints
dans [0,+∞)d alors que la solution contient des valeurs négatives. SDCA est le seul
algorithme du premier ordre qui atteint la solution et combine le meilleur des deux
mondes : la vitesse et la scalabilité des algorithmes du premier ordre avec la capacité
à trouver des solutions comprenant des valeurs négatives.

Les processus de Hawkes et l’optimisation convexe d’objectifs de sommes finies

170

4. Optimisation duale sans l’hypothèse de gradient-Lipschitz

0.00 0.02 0.04 0.06
10 13

10 8

10 3

102

wine n = 4898 d = 11

0.000 0.005 0.010 0.015

facebook n = 500 d = 41

0.0 0.5 1.0

news n = 39644 d = 59

0.00 0.01 0.02 0.03 0.04
time (s)

10 13

10 8

10 3

102

vegas n = 504 d = 160

0.0 2.5 5.0 7.5
time (s)

property n = 50999 d = 194

0.0 2.5 5.0 7.5
time (s)

simulated n = 100000 d = 100

SDCA L-BFGS-B SVRG NoLips Newton

Figure I.4 : Convergence au cours du temps de quatre algorithme SDCA, SVRG, L-
BFGS-B et Newton sur six jeux de données de régression de Poisson. SDCA combine
le meilleur des deux mondes : la vitesse et la scalabilité de SVRG et L-BFGS-B avec
la même précision que l’algorithme de Newton.

sont deux champs d’intérêt croissant. Dans les deux cas, les résultats numériques
sont de première importance mais les articles sont rarement publiés avec un code qui
permet non seulement de reproduire les résultats mais qui est également pensé pour
être réutilisé pour des applications futures. Cela rend les algorithmes d’optimisation
convexe et les estimateurs de processus de Hawkes difficiles à comparer de manière
unifiée et soulève la question suivante.

Question 6. Comment rendre disponible au plus grand nombre ces outils d’inférence sta-
tistique ?

Dans la section suivante, nous présentons une nouvelle bibliothèque Python trai-
tant à la fois l’optimisation convexe et les processus de Hawkes afin de faciliter leur
utilisation pratique.

171

French summary

Tableau I.1 : Modèles et techniques d’estimation pour les processus de Hawkes dis-
ponibles dans tick

Non Paramétrique Paramétrique

EM [LM11] Noyaux exponentiels simples
Noyaux à bases [ZZS13a] Somme de noyaux exponentiels
Wiener-Hopf [BM14] Somme de noyaux gaussiens [XFZ16]
NPHC [ABG+17] ADM4 [ZZS13a]

5 tick : une bibliothèque Python pour l’apprentissage
statistique

tick est une bibliothèque d’apprentissage statistique pour Python 3 qui traite en
particulier les modèles dépendant du temps, tels que les processus ponctuels, des
outils pour les modèles linéaires généralisés et l’analyse de survie. Elle s’appuie
sur une implémentation en C++ et les algorithmes d’optimisation issus de l’état de
l’art pour réaliser des calculs rapides dans un environnement multicœur. Le code
source et la documentation peuvent être téléchargés à partir de https://github.

com/X-DataInitiative/tick.

Hawkes En dépit de l’intérêt croissant pour les processus de Hawkes, très peu de
bibliothèques sont disponibles pour les étudier. Il en existe trois principales. La bi-
bliothèque pyhawkes1 propose un petit échantillon de modèles d’inférence bayésienne
pour les processus de Hawkes. hawkes R2 est une bibliothèque basée sur R et qui
ne dispose que d’un seul algorithme d’estimation peu optimisé. Enfin, PtPack3 est
une bibliothèque C++ qui comprend des estimateurs du maximum de vraisemblance
pour des modèles paramétriques avec des pénalisations `1. Écrite en Python, tick
est la bibliothèque la plus complète traitant des processus de Hawkes. Elle inclut,
par exemple, les principaux algorithmes d’inférence de la littérature listés dans le
Tableau I.1 qui comprend les algorithmes aussi bien paramétriques que non paramé-
triques et les rend plus accessibles qu’auparavant.

Boite à outils pour l’optimisation convexe Au-delà des processus de Hawkes,
tick contient trois modules principaux : tick.linear_model avec les régressions
linéaire, logistique et de Poisson, tick.robust pour des modèles linéaires robustes

1https://github.com/slinderman/pyhawkes
2https://cran.r-project.org/web/packages/hawkes/hawkes.pdf
3https://github.com/dunan/MultiVariatePointProcess

172

https://github.com/X-DataInitiative/tick
https://github.com/X-DataInitiative/tick
https://github.com/slinderman/pyhawkes
https://cran.r-project.org/web/packages/hawkes/hawkes.pdf
https://github.com/dunan/MultiVariatePointProcess

5. tick : une bibliothèque Python pour l’apprentissage statistique

Tableau I.2 : tick permet à l’utilisateur de combiner de nombreux modèles, prox et
résolveurs. Cette liste n’est pas exhaustive.

Modèle Op. proximal Résolveur

Régression linéaire SLOPE Descente de gradient
Régression logistique L1 (Lasso) Descente de gradient accélérée
Régression de Poisson Total Variation Descente de gradient stochastique
Régression de Cox Group L1 SVRG [JZ13]

Hawkes with exp. kernels L2 (Ridge) SDCA [SSZ13]

et tick.survival pour l’analyse de survie. À haut niveau, tick suit l’API de
scikit-learn [PVG+11, BLB+13] qui est bien connue pour son caractère complet
et sa facilité d’utilisation. Mais, derrière, ces modules reposent sur une boite
à outil d’optimisation pour résoudre le problème de minimisation des sommes
composites (3). Cette boite à outils permet de combiner, avec beaucoup de modèles,
différentes techniques de pénalisation (module tick.prox) et les derniers algorithmes
d’optimisation convexe (tick.solver). Tout ceci est implémenté de manière très
modulaire et permet plus de possibilités que les autres bibliothèques d’optimisation
basés sur l’API de scikit-learn telles que lightning4. Une liste non exhaustive
des combinaisons possibles est donnée dans le Tableau I.2. Elle souligne à quel
point tick est utile pour faire des expériences consistant par exemple à tester un
nouveau modèle avec diverses techniques de pénalisation ou à comparer plusieurs
algorithmes d’optimisation convexe.

Implémentation Bien que tick soit une bibliothèque Python, tous les calculs lourds
sont exécutés en C++ qui communique alors ses résultats à Python avec SWIG (Sim-
plified Wrapper and Interface Generator) [BFK+96]. Grâce à SWIG, les objets Python
ont facilement accès à des objets C++ purs avec lesquels ils partagent leur mémoire
et qui travaillent donc sur les mêmes jeux de données sans nécessiter aucune copie.
Ceci est particulièrement utile pour l’optimisation où les objets model, prox et solver
sont symboliquement associés en Python et ensuite exécutent tous leurs calculs en
C++. Aussi, la partie C++ de la bibliothèque est indépendante et est utilisable sans
Python au prix de quelques efforts. Cela permet aux développeurs d’analyser le code
avec n’importe quel outil de profiling compatible avec C++ et ainsi de produire du
code optimisé en profondeur. Pour toutes ces raisons, tick est une bibliothèque très
efficace et a prouvé qu’elle était plus rapide (jusqu’à un ordre de grandeur) que hawkes
R et PtPack sur une série d’expériences standard présentées dans la Figure I.5.

4http://contrib.scikit-learn.org/lightning

173

http://contrib.scikit-learn.org/lightning

French summary

medium large
Number of simulated events

0.00

0.25

0.50

0.75

1.00

tim
e

(s
)

Simulation

small medium large
Number of events in train set

10
0

10
1

10
2

10
3

tim
e

(s
),

in
 lo

g
sc

al
e

Fit

large xlarge
Number of events in train set

0

50

100

tim
e

(s
)

Multicore fit

200 400 750
Dimension

0

2000

4000

6000

8000

tim
e

(s
)

High-dimensional fitting

PtPack hawkes R tick (1 core) tick (4 cores) tick (16 cores)

Figure I.5 : Temps de calcul de tick comparé à PtPack et hawkes R. tick surpasse
sensiblement les deux bibliothèques pour la simulation et l’estimation. (Noter que
le graphique “Fit” est en échelle logarithmique). Les temps d’apprentissage des gra-
phiques “Fit” et “Multicore fit” sont comparés sur une simulation d’un processus de
Hawkes de 16 dimensions avec un nombre croissant d’événements, small=5× 104,
medium=2×105, large=106, xlarge= 5×107, alors que des processus de Hawkes de
dimension 200, 400 et 750 sont estimés dans le graphique “High-dimensional fit-
ting”. Les graphiques “Multicore fit” et “High-dimensional fitting” montrent que tick

bénéficie des environnements à plusieurs cœurs pour accélérer ses calculs.

174

Titre : Apprentissage automatique avec les processus de Hawkes et l’optimisation stochastique

Mots clés : Processus de Hawkes, optimisation stochastique, causalité, logiciel libre

Résumé : Le fil rouge de cette thèse est l’étude
des processus de Hawkes. Ces processus ponc-
tuels décryptent l’inter-causalité qui peut avoir lieu
entre plusieurs séries d’événements. Concrètement,
ils déterminent l’influence qu’ont les événements
d’une série sur les événements futurs de toutes les
autres séries. Par exemple, dans le contexte des
réseaux sociaux, ils décrivent à quel point l’action
d’un utilisateur, tel un Tweet, sera susceptible de
déclencher des réactions de la part des autres.
Le premier chapitre est une brève introduction sur les
processus ponctuels suivie par un approfondissement
sur les processus de Hawkes et en particulier sur les
propriétés de la paramétrisation à noyaux exponen-
tiels, la plus communément utilisée. Dans le chapitre
suivant, nous introduisons une pénalisation adapta-
tive pour modéliser, avec des processus de Hawkes,
la propagation de l’information dans les réseaux so-
ciaux dont nous connaissons les caractéristiques a
priori. Notre technique utilise des pénalités pondérées
dont les poids sont déterminés par une analyse fine
de l’erreur de généralisation.

Ensuite, nous traitons de l’optimisation convexe et
des progrès réalisés avec les méthodes stochas-
tiques du premier ordre avec réduction de variance.
Le quatrième chapitre est dédié à l’adaptation de
ces techniques aux processus de Hawkes. En effet,
leur fonction de perte ne vérifie pas l’hypothèse de
gradient-Lipschitz habituellement utilisée. Ainsi, nous
travaillons avec une autre hypothèse de régularité, et
obtenons un taux de convergence linéaire. De plus,
notre algorithme respecte les contraintes linéaires du
modèle ce qui pourtant requiert habituellement des
méthodes du second ordre dont le coût est prohibitif
en grandes dimensions.
Enfin, le dernier chapitre présente une nouvelle bi-
bliothèque d’apprentissage statistique pour Python 3
avec un accent particulier mis sur les modèles tempo-
rels. Appelée tick, cette bibliothèque repose sur une
implémentation en C++ et des algorithmes d’optimi-
sation issus de l’état de l’art pour réaliser des esti-
mations très rapides dans un environnement multi-
cœurs. Publiée sur Github, cette bibliothèque a été
utilisée pour réaliser les expériences de cette thèse.

Title : Machine learning based on Hawkes processes and stochastic optimization

Keywords : Hawkes processes, stochastic optimization, causality, open source

Abstract : The common thread of this thesis is the
study of Hawkes processes. These point processes
decrypt the cross-causality that occurs across several
event series. Namely, they retrieve the influence that
the events of one series have on the future events of
all series. For example, in the context of social net-
works, they describe how likely an action of a certain
user (such as a Tweet) will trigger reactions from the
others.
The first chapter consists in a general introduction on
point processes followed by a focus on Hawkes pro-
cesses and more specifically on the properties of the
widely used exponential kernels parametrization. In
the following chapter, we introduce an adaptive penali-
zation technique to model the information propagation
on social networks with Hawkes processes. This pe-
nalization is able to take into account the prior know-
ledge on the social network characteristics. Our tech-
nique uses data-driven weighted penalties induced by
a careful analysis of the generalization error.
Next, we focus on convex optimization and recall

the recent progresses made with stochastic first or-
der methods using variance reduction techniques.
The fourth chapter is dedicated to an adaptation of
these techniques to Hawkes processes. Indeed, their
loss function does not meet the gradient-Lipschitz
assumption that is required by the latest first order
methods. Thus, we work under another smoothness
assumption and obtain a linear convergence rate.
Besides, our algorithm is compatible with the linear
constraints of the model even though it usually re-
quires second order methods that are very expensive
in high dimensions.
Finally, the last chapter introduces a new statistical
learning library for Python 3 with a particular empha-
sis on time-dependent models. Called tick, this library
relies on a C++ implementation and state-of-the-art
optimization algorithms to provide very fast compu-
tations in a single node multi-core setting. Open-
sourced and published on Github, this library has
been used all along this thesis to perform benchmarks
and experiments.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Contents
	Introduction
	Background on Hawkes processes
	Sparse and low-rank multivariate Hawkes processes
	Background on composite sum minimization with first order methods
	Dual optimization without the gradient-Lipschitz assumption
	tick: a Python library for statistical learning

	Background on Hawkes processes
	Temporal point processes
	Definition
	Goodness-of-fit

	Hawkes processes
	Multivariate Hawkes processes
	Simulation
	Estimation
	Exponential kernels

	Sparse and low-rank multivariate Hawkes processes
	Introduction
	The multivariate Hawkes model and the least-squares functional
	A new data-driven matrix martingale Bernstein's inequality
	Notations
	A non-observable matrix martingale Bernstein's inequality
	Data-driven matrix martingale Bernstein's inequalities

	The procedure
	A sharp oracle inequality
	Numerical experiments
	Conclusion
	Proofs

	Background on first order composite sum minimization
	Composite sum minimization
	Batch gradient descent
	Stochastic gradient descent
	Variance reduced stochastic gradient descent
	Numerical comparison

	 Dual optimization without the gradient-Lipschitz assumption
	Introduction
	A tighter smoothness assumption
	The Shifted SDCA algorithm
	Proximal algorithm
	Importance sampling

	Applications to Poisson regression and Hawkes processes
	Linear Poisson regression
	Hawkes processes
	Closed form solution and bounds on dual variables

	Experiments
	Poisson regression
	Hawkes processes
	Heuristic initialization
	Using mini batches
	About the pessimistic upper bounds

	Conclusion
	Proofs

	 tick: a Python library for statistical learning
	Introduction
	Existing Libraries
	Package Architecture
	Hawkes
	Benchmarks
	Examples
	Estimate Hawkes intensity
	Fit Hawkes on finance data
	SVRG with an adaptive step size
	Lower precision to accelerate algorithms

	Hawkes with non constant exogenous intensity
	Asynchronous stochastic solvers

	Bibliography
	Résumé des contributions
	Résumé des contributions
	Les processus de Hawkes
	Processus de Hawkes multivariés, sparses et de faible rang
	Minimisation de sommes composites avec des méthodes du premier ordre
	Optimisation duale sans l'hypothèse de gradient-Lipschitz
	tick: une bibliothèque Python pour l'apprentissage statistique

