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Abstract 

 Surface waters are important resources for the biosphere and the anthroposphere. 
Surface waters preserve diverse habitat, support biodiversity and provide ecosystem 
service by controlling nutrient cycles and global carbon. Surface waters are essential 
for human's everyday life, such as for irrigation, drinking-water and/or the production 
of energy (power plants, hydro-electricity). Further, surface waters through flooding 
can pose hazards to human, settlements and infrastructures. Monitoring the dynamic 
changes of surface waters is crucial for decision making process and policy. 

 Remote sensing data can provide information on surface waters. Nowadays, 
satellite remote sensing has gone through a revolution with the launch of the Sentinel-
1 SAR data and Sentinel-2 optical data with high revisit time at medium to high spatial 
resolution. Those data can provide time series and multi-source data which are essential 
in providing more information to upgrade ability in observing surface water. Analyzing 
such massive datasets is challenging in terms of knowledge extraction and processing 
as nearly fully automated processing chains are needed to enable systematic detection 
of water surfaces. 

 In this context, the objectives of the work are to propose new (e.g. fully automated) 
approaches for surface water detection and flood extents detection by exploring the 
single and combined used of Sentinel-1 and Sentinel-2 data. 

 We presents the Water-S1 method developed for Sentinel-1 image processing. The 
method is tested and validated on several flood events that occurred in Central Ireland, 
Northern England and Northwest Italy. For all test cases, the results show that surface 
water are estimated with an average F-measure about 0.8. However, omission of 
permanent river beds are observed for the three experiments. Thus, further 
improvements of the processing chain could include the analysis of SAR time-series to 
amplify the signal of permanent riverbeds through spatio-temporal averaging. 

 We propose a methodology for surface waters detection by combining Sentinel-1 
and Sentinel-2 data time series based on image fusion approach in decision-level with 
a Bayesian sum for the operator. The method is experimented for surface water over 
Ireland. The proposed methodology allows reducing the noise and increasing the 
accuracy of the detection of the permanent surface water. Moreover, the analysis of 
image time series allows a better monitoring of temporary surface water. 

 Another methods are tested, such as: (i) the use of SAR polarimetry for surface 
water classification and (ii) feature-level image fusion for comparison and assessment 
of the best fusion approach. Validation of proposed methods on different thematic 
context is presented through two different experiments of massive processing. 

 Although the use of remote sensing data as operational source of information 
for surface water and flood observations still requires development, the methods and 
tests proposed in this PhD thesis are promising.
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Résumé 

 

 Les eaux de surface sont des ressources importantes pour la biosphère et 
l'anthroposphère. Elles favorisent la préservation des habitats, le développement de la 
biodiversité et le maintien des services écosystémiques en contrôlant le cycle des 
nutriments et le carbone à l’échelle mondiale. Elles sont essentielles à la vie quotidienne 
de l’homme, notamment pour l'irrigation, la consommation d’eau potable, la production 

hydro-électrique, etc. Par ailleurs, lors des inondations, elles peuvent présenter des 
dangers pour l'homme, les habitations et les infrastructures. La surveillance des 
changements dynamiques des eaux de surface a donc un rôle primordial pour guider les 
choix des gestionnaires dans le processus d’aide à la décision. 

 L’imagerie satellitaire constitue une source de données adaptée permettant de 

fournir des informations sur les eaux de surface. De nos jours, la télédétection 
satellitaire a connu une révolution avec le lancement des satellites Sentinel-1 (Radar) 
et Sentinel-2 (Optique) qui disposent d’une haute fréquence de revisite et d’une 

résolution spatiale moyenne à élevée. Ces données peuvent fournir des séries 
temporelles essentielles pour apporter davantage d'informations afin d'améliorer la 
capacité d'observation des eaux de surface. L’exploitation de telles données massives 

et multi-sources pose des défis en termes d’extraction de connaissances et de processus 

de traitement d’images car les chaines de traitement doivent être le plus automatiques 

possibles. 

 Dans ce contexte, l'objectif de ce travail de thèse est de proposer de nouvelles 
approches permettant de cartographier l’extension spatiales des eaux de surface et des 

inondations, en explorant l'utilisation unique et combinée des données Sentinel-1 et 
Sentinel-2. 

 Nous présentons une méthode Water-S1 qui est développée pour le traitement 
automatique d'image Sentinel-1. La méthode est testée et validée pour trois zones 
d’étude affectées par des inondations survenues dans la partie centrale de l’Irlande, dans 

le nord de l'Angleterre et dans le nord-ouest de l'Italie. Pour tous les cas d’étude, les 

résultats montrent une bonne estimation des eaux de surface avec une moyenne de F-
measure d’environ 0,8. Cependant, des erreurs d’omissions sur les lits de rivière 

permanents sont observées quel que soit le site d’étude. Ainsi, de nouvelles 

améliorations de la chaîne de traitement pourraient inclure l’analyse de séries 

temporelles d’images Sentinel-1 afin d’améliorer la détection des eaux de surface 

permanentes localisées dans les lits de rivières. 

 Nous proposons une méthodologie pour la détection des eaux de surface en 
combinant les séries temporelles de données Sentinel-1 et Sentinel-2 basées sur 
l’approche de fusion d’images au « niveau décision » fondée sur la théorie bayésienne. 

La méthode est expérimentée pour les eaux de surfaces en Irlande. Les résultats 
indiquent une réduction du bruit et une augmentation de la précision de la détection des 
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eaux de surfaces permanentes. De plus, l'analyse des séries temporelles d'images permet 
un meilleur suivi des eaux de surface temporaires. 

 Les autres méthodes de détection sont ensuite testées, telles que: (i) l’utilisation de 

la polarimétrie RSO pour la classification des eaux de surface et (ii) la fusion d’images 

au « niveau des attributs » pour la comparaison et l’évaluation de la meilleure approche 

de fusion. La validation des méthodes proposées sur différents contextes thématiques 
est ensuite présentée à travers deux expériences différentes de traitement massif. 
 Bien que l'utilisation de données de télédétection comme outils opérationnels 
pour l'observation des surfaces en eau (permanentes et temporaires) reste à finaliser, 
les résultats proposés dans cette thèse sont très prometteurs. 
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1.1 Importance of surface water  

About 71% of the Earth’s surface is covered by water. Only 3% of water is classified 

as fresh water and only 0.3% of this category is labelled as surface water distributed 

into lakes, rivers, wetland areas, and the other surface water table (Perlman, 1998). It 

corresponds to surface water on inland bodies (Figure 1. 1). Despite this repartition, 

surface water is important resource for the biosphere and the anthroposphere. It remains 

the most abundant natural resource and the major driving force on our planet which 

supports numerous ecosystems, commercial and cultural services. It becomes a critical 

parameter for climate changes analysis (GCOS, 2011 in Pekel et al., 2014), diverse 

habitat preservation and biodiversity support (Brönmark and Hansson, 2002; Duker and 

Bore, 2001; Palmer et al., 2015). On a global scale, surface water is significant 

component of nutrient cycles and global carbon (Bastviken et al., 2011; Tranvik et al., 

2009 in Palmer et al., 2015). In the human’s daily life, surface water is used for 

irrigation, drinking-water, power plant, recreation, fisheries, ecotourism, transport, 

religious uses, etc. 

 

Figure 1. 1. Earth's water distribution (modified from Perlman, 1998). 

The pressure on surface water will continue to increase in the coming years because of 

increased frequency of drought, urbanization, urban population growth, deforestation, 

increased use of fertilizers and pesticides, and spread of invasive species. It is expected 
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that the quality of surface water will deteriorate with continued warming due to global 

climate change. 

Surface water on inland bodies can classically categorizes in two thematic classes: (1) 

permanent surface water and (2) temporary surface water. 

Permanent surface water is defined as surface water areas which retaining most of 

their volumes over the year and that do not dry up. Its variations are mostly dependent 

on the hydro-meteorological cycle with rainfall, evaporation and possible overtopping 

of streams. Permanent surface water is usually in the form of rivers or lakes. River is 

identified as water courses, which may be a waterway (Wetzel, 2001), whereas lake is 

non-flowing, enclosed water bodies filled with water within a lake basin not directly 

linked with the sea (Anderson et al., 1976). At times when there is little or no rain, the 

water level of permanent surface water is maintained by groundwater contributions. 

The extent and distribution of the permanent surface water are yet poorly and unevenly 

known at the global scale, since their size varies from small (i.e., ponds) to very large 

(i.e., Great Lakes) often creating inconsistencies in detection and inventory over broad 

geographic scale (Ogashawara et al., 2017). Moreover, mapping permanent surface 

water is also valuable in the context of severe drought response and for water resources 

management. They can also serve for the validation of hydraulic models (Matgen et al., 

2010; Pappenberger et al., 2007; Schumann et al., 2009). 

Temporary surface water is part of surface water areas which experiences a recurrent 

dry phase of varying duration, such as small ponds, puddles and wetlands, or 

correspond to surfaces frequently affected by flooding. Floods can cover various events 

based on their size, duration, and causes. Three types of floods can be generally 

distinguished based on these criteria (Figure 1. 2). 

 

Figure 1. 2. Examples of floods: (a) Plain floods; (b) Flash floods; (c) Coastal floods. 
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· Plain floods take place mainly in a plain area (Figure 1. 2a). They are caused by 

rains occur in long time or melting snow and ice, that also depend on soil 

saturation. Usually, when the dikes along rivers unable to resist flood discharge, 

it leads to wide areas flooding (Menne and Murray, 2013). This type of flood can 

affect wide areas for long-lasting period. 

· Flash floods are caused by heavy or intense rainfall (Figure 1. 2b). This type of 

floods can also be referred to as local and sudden floods which affect small area. 

Normally they occur in small catchments in mountainous areas due to intensive 

precipitation, thin soils, and high run off velocities (Menne and Murray, 2013). 

The duration of flash floods is short but causes great damage. In some areas next 

to a volcano, flash floods can be caused by a mixture of lahar (cold lava) and high 

rainfall. 

· Coastal floods are one type of floods caused by sea level rise, high tides, tsunami 

and land subsidence (Figure 1. 2c). It is identified as coastal areas inundation that 

covers a larger area than the one caused by normal tides. This type of flood last 

for long time period and can affect wide areas, however the extent depends on 

topography, erosion conditions and the barriers on the coast (natural or man-

made) (Cwik, 2017). 

 

Figure 1. 3. Percentage of damages caused by each type of natural disasters (modified from 

Duggar et al., 2016). 

Surface waters through flooding can pose hazards to human, settlements and 

infrastructures (Feyisa et al., 2014). Floods become a representation of the most 
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common type in natural disaster which have led to losses of lives and property, as well 

as internal displacement and lack of resources (Schlaffer et al., 2012). Floods can affect 

residential areas, buildings, or farm areas, also contaminate waters and lead to diseases. 

From 1980 to 2015, Duggar et al. (2016) highlights that 25.3% of global damage caused 

by natural hazards are due to flooding (Figure 1. 3). Floods can be considered as the 

most costly type of hazard in terms of property damage and fatalities (Martinis, 2010). 

Since it is impossible to avoid flood risks or prevent their occurrence, flood disaster 

management is important to reduce their effects. Flood mapping to identify sites in high 

hazard zones is one of the powerful tools for this purpose (Voigt et al., 2007). Mapping 

floods will be beneficial to urban and infrastructure planners, risk managers and disaster 

response, insurance and emergency services during extreme and intense rainfall events. 

For the both study cases (permanent and temporary surface water), Earth Observation 

(EO) data from optical or Synthetic Aperture Radar (SAR) sensors offers a relevant 

alternative for mapping and monitoring surface water resources. 

 

1.2 Remote sensing of surface water  

The information of surface water can be retrieved from remote sensing data. The main 

advantage of remote sensing is its capability to perform frequent large-scale synoptic. 

The data provides first order information which are dynamic, real-time and low-cost 

compared with in-situ observation data (Du et al., 2016). Remote sensing observes 

Earth’s surface objects by measurement of electromagnetic (EM) energy (Janssen and 

Huurneman, 2001). The general concept of remote sensing explained that EM radiation 

from Earth’s surface objects are measured and translated to information about those 

objects (De Jong and Van der Meer, 2004). 

Based on its system, remote sensing can be divided into two types (Figure 1. 4): 

· Passive remote sensing uses the sun energy as its source and detects reflected 

energy from Earth’s surface objects. This system also detects emitted energy from 

the Earth’s surface itself. 
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· Active remote sensing produces EM radiation itself and transmitted it to Earth’s 

objects. The system captures the backscattering energy from those objects (Janssen 

and Huurneman, 2001). 

 

Figure 1. 4. Remote sensing system (active and passive) (modified from Janssen and 

Huurneman, 2001). 

 

1.2.1 Optical remote sensing characteristics (passive) 

Passive or optical remote sensing relies on sunlight reflection, can only works during 

daylight. Optical remote sensing needs to handle atmospheric conditions, as an effect 

of various illumination conditions of the sun  (Janssen and Huurneman, 2001). In the 

electromagnetic spectrum, optical remote sensing domain extends from the visible 

range to the infrared range. Visible has 400 – 700 nm wavelengths while infrared has a 

wavelength around 700 nm – 1 mm. Visible region of spectrum take only small portion 

of EM spectrum. Infrared has longer wavelength compared to visible spectrum. It can 

be used for many applications such as calculate surface temperature (3 – 14 µm for 

Thermal Infrared) or vegetation condition. In the Thermal Infrared (TIR) remote 

sensing, sensor captures directly emitted energy from the earth, thus it can operate day 

or night (Janssen and Huurneman, 2001). 
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Table 1. 1. Examples of several types of sensors in optical remote sensing. 

Type 

Examples 

Sensors 
Spatial 

coverage 

Temporal 

resolution 

Spatial 

resolution 

Panchromatic 
Landsat ~ 185 km 16 days 15 m 

SPOT 60 to 80 km 1 to 5 days 1.5 to 10 m 

Multispectral 
Landsat ~ 185 km 16 days 30 to 120 m 

SPOT 60 to 80 km 1 to 5 days 6 to 20 m 

 Sentinel-2 290 km 2 to 10 days 10 to 60 m 

Super-spectral 
MODIS 2330 km 1 to 2 days 250 m – 1 km 

WorldView-3 13.1 km <1 to 5 days 1.24 – 30 m 

Hyperspectral 
AVIRIS 12 km 1 year 20 m 

EO-1 Hyperion 7.75 km 16 days 30 m 

 

There are several types of sensors in optical remote sensing (Table 1. 1): 

(1) Panchromatic imagery consists of a single spectral band or broad band 

(Schowengerdt, 2007). Panchromatic imaging combines the information from the 

visible bands. Instead of partitioning information into different spectra, 

panchromatic is established by using the total energy in the visible spectrum. It 

provides a single intensity value per pixel and is visualized in a greyscale image. 

Panchromatic image usually has higher spatial resolution than multispectral 

images. Most of satellites such as Landsat, Digital Globe’s range of satellites and 

SPOT constellation produce panchromatic image in addition to multispectral 

image. 

 

(2) Multispectral imagery consists of multiple bands or multiple numbers of wave 

bands, typically 3 to 10 spectral bands. Most optical remote sensing systems 

acquire images in this mode (e.g., Landsat, SPOT). Multispectral mode is often 

more valuable than panchromatic because it supplies rich spectral information 

(Schowengerdt, 2007). 
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(3) Super-spectral imagery consists of more than ten spectral bands, with bandwiths 

narrower than multispectral (e.g. Worldview-3 with 28 bands and MODIS with 

36 bands). Short-Wave Infrared bands (SWIR) add spectral coverage to the 

invisible range with the advantage to penetrate haze, fog, smog, dust and smoke. 

 

(4) Hyperspectral imagery collects information as a series of narrow and contiguous 

wavelength bands at 10 to 20 nm intervals. Hyperspectral can contain as many as 

200 (or more) spectral bands (e.g., AVIRIS, EO-1 Hyperion) (Lillesand et al., 

2015). The numerous bands of hyperspectral provide more sensitive to subtle 

variations in reflected energy, thus have a greater potential to detect differences 

among land and water features. 

 

Figure 1. 5. Spectral reflectance for different types of land cover (modified from Lillesand et 

al., 2015). 

Figure 1. 5 shows average spectral reflectance for various types of land cover. Each 

land cover type reflects different energy which result different unique curve from each 
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other. The spectral reflectance of water is small due to energy absorption by water 

bodies. Thus in the passive remote sensing image, surface water will appear dark or 

with low pixel values. However, surface water reflectance also depends on turbidity of 

water, which is caused by organic or inorganic materials in the waters. Water with 

suspended sediments normally will have higher reflectance than water without 

suspended sediments (Lillesand et al., 2015). 

Optical multispectral imagery is then frequently used for surface water mapping 

(Verpoorter et al., 2012). It provides good delineation of surface water areas if clouds, 

trees and floating vegetations do not obscure the water surface. The most commonly 

used spectral bands for vegetation and water mapping are green, red and near-infrared. 

Near-infrared can strongly absorbed by water, but reflected by land. Thus they are 

mainly effective for mapping water area (Klemas, 2015). 

During a flood, waters will inundate vegetation, urban areas, etc. Their reflectance will 

be different from surface water area. In urban areas, artificial surfaces may have very 

low reflectance mistakenly labelled as flooded areas. At the opposite, flooded areas can 

have very high reflectance due to, for example, specular reflections of surrounding 

buildings or a shallow water layer over a bright pavement. Urban area is recognized as 

a highly complicated type of land cover in the remote sensing applications context 

including floods monitoring (Refice et al., 2017). 

Some previous researches provide successful use of optical data in surface water 

mapping. Quite a few studies use MODIS for waters mapping (Lee et al., 2015; Ottinger 

et al., 2013). This imagery has coarse spatial resolution (250m, 500m and 1000m) and 

36 spectral bands. This image is free for all users and available via a simple self-

registration at Earth Explorer USGS (United States Geological Survey) (USGS, n.d.) 

Landsat image (Figure 1. 13a), with medium spatial resolution (30 meters) and 11 bands 

(Figure 1. 6), has been used on many studies related to surface water mapping 

(Brakenridge and Anderson, 2006; Feyisa et al., 2014; Frazier and Page, 2000; Jiang et 

al., 2014; Ogilvie et al., 2018). SPOT is another optical sensor providing also useful 

imagery in surface water delineation (e.g., Blasco et al., 1992; Davranche et al., 2010; 

Fisher and Danaher, 2013; Musa et al., 2015), with a higher spatial resolution (10 to 20 

m) than Landsat imagery and 5 bands (Figure 1. 6). Landsat imagery is also freely 

available since the beginning of the mission (1976) at Earth Explorer USGS. For SPOT 



Chapter 1. Introduction, research questions and objectives 

 

11 

imagery, even if the archive of Spot World Heritage (SWH) become available for the 

community (1986-2010) through the data and services THEIA infrastructure, these 

images are not completely available with a user-friendly access. 

Optical imagery with very high spatial resolution (metric and sub-metric) can be used 

to detect small-sized water bodies (Du et al., 2016; C. Huang et al., 2018). However, 

the presence of shadows in the image can affect water detection and these images are 

often unsuitable for mapping large water bodies due to their small scene coverage. In 

addition, the revisit frequency for most of these sensors, and the availability of most of 

their images, is also largely limited due to their access are not freely distributed for all 

users (Huang et al., 2018). Despite these limitations, there are quite many applications 

based on IKONOS, Pléiades or WorldView-2 imagery (Figure 1. 6) to detect surface 

water (Huang et al., 2015; Liew et al., 2011; Marcus and Fonstad, 2008; Sidle et al., 

2007; Yesou et al., 2015) 

As a continuation of the Global Monitoring for Environment and Security (GMES) 

program, the European Commission (EC) and the European Space Agency (ESA) 

initiate Copernicus program. This Earth observation program provides freely 

distributed data to all users. As part of this program, the Sentinel constellation has been 

launched. The optical component is composed of two satellites: Sentinel 2A and 2B. 

These data products are available in the Open Access Hub (https://scihub.copernicus. 

eu/) (ESA, 2014). Sentinel-2 (A and B) provides high spatial resolution and high 

temporal resolution (10 days at the equator with one satellite, and 5 days with 2 satellites 

under cloud-free conditions which results in 2-3 days at mid-latitudes). 

Sentinel-2 carries an optical instrument with 13 spectral bands (Figure 1. 6). The four 

bands at 10 meter resolution and six bands at 20 meter resolution satisfy requirements 

for enhanced land-cover classification and for the retrieval of geophysical parameters. 

These six bands include three bands in the ‘red edge', provide key information on the 

vegetation state. Bands at 60 meter are dedicated mainly to atmospheric corrections and 

cirrus-cloud screening. 

Optical data are very sensitive to cloud cover. In some European Countries, the cloud 

cover percentage average is varying from 30 to 70% (Direction de la Climatologie, 

2009). The acquisition of exploitable optical time series data is almost impossible. In 
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winter and spring period, cloud cover appears more often, when they are precisely the 

crucial period for monitoring hydrological dynamics. In conclusion, the arrival of 

optical imagery with a high temporal resolution would be benefit but active remote 

sensing remains actually, the best acquisition mode due to its independence to the 

atmospheric condition. 

 

Figure 1. 6. Bands and their wavelength from several optical remote sensing data. 

 

1.2.2 Active remote sensing characteristics 

There are some types of instrument in active remote sensing system where the most 

useful for surface water are LIDAR and RADAR (EOSDIS, 2018). LIDAR (Light 

Detection and Ranging) instrument measures distance to a target by illuminating the 

target with pulsed laser light and measuring the reflected pulses with a sensor. 

Differences in laser return times and wavelengths can then be used to make digital 3-D 

representations of the target. LIDAR is often used for surface water mapping (e.g., 

Morsy et al., 2018; Schlaffer et al., 2015) but its use implies significant cost, especially 

for mapping large area (Cazals, 2017). 

Radar is particularly adapted to the mapping and monitoring of surface water for several 

reasons. First, radar can supply their own illumination, thus it can capture image of 

Earth’s surface in day or night. Second, radar can penetrate cloud cover, light rain, or 
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fog. It can overcome optical data limitation related to cloud cover. Third, radar is 

sensitive to the presence of smooth open surface water. Radar data usually have a high 

contrast of backscatter energy between smooth open water bodies and dry land areas 

(Schumann, 2017). 

 

Figure 1. 7. Radar system illustrated in block diagram (modified from Chan and Koo, 2008). 

Radar works in microwaves range of EM spectrum with radio frequency. Generally, 

radar system consists of transmitter to generate a high power of electromagnetic wave, 

switch to direct signal to antenna and return echo to receiver, antenna to transmit EM 

pulse towards object of study and collects returned echoes, receiver to convert returned 

signal to digital number, then recorder to store data values (Figure 1. 7) (Chan and Koo, 

2008). 

One type of radar for water mapping is altimeter. This instrument measures the distance 

between the Earth and the satellite and is generally used to estimate the topography of 

oceans’s surface. This instrument is also used to measure the water level elevation of 

continental waters such as large lakes or rivers (Calmant et al., 2008). 

SAR (Synthetic Aperture Radar) is also one type of Radar used very often for surface 

water mapping. Aperture, one of the words from SAR abbreviation, means the antenna 

collects the reflected energy and form an image. SAR principle is to take advantage of 

Doppler history from radar echoes generated by the forward motion of the satellite to 

synthesize a large antenna. Thus, it is called “synthetic aperture”. This allows high 

azimuth resolution in the resulting image despite a physically small antenna (Sarmap, 

2009). 
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Figure 1. 8. Illustration of slant range and ground range (modified from Van Zyl and Kim, 

2010). 

SAR transmits signal in a side-looking direction towards the Earth’s surface objects 

with a look angle and an incidence angle. Different from optical imagery, spatial 

resolution in SAR image is defined by range and azimuth resolution. Azimuth 

resolution is the ability of SAR system to separate two objects targets in the along-track 

direction of the sensor (Martinis, 2010). The azimuth increases with increasing distance 

from the SAR satellite. Range (across-track) resolution is dependent on length of SAR 

system pulsed (Sarmap, 2009). Range resolution consists of slant-range and ground-

range resolutions. Slant range is the length between the sensor and the target. Ground 

range is the length between the sensor ground track and the target (Figure 1. 8) (Van 

Zyl and Kim, 2010). 

SAR imagery can have different wavelengths (Table 1. 2). The longer the wavelength 

(shorter frequency), the stronger is the penetration into Earth’s surface object. For 

example, in the Figure 1. 9, L band with longer wavelength than X and C band can 

penetrate more into the vegetation and, on dry conditions, to some extent, into the soil 

(for instance dry snow or sand). 
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Table 1. 2. Band types of SAR (modified from Sarmap, 2009). 

Band 

types 
Wavelength 

SAR 

Sensors 
Temporal 

resolution 

Spatial 

resolution 

P-band ~ 65 cm AIRSAR - 60 cm 

L-band ~ 23 cm 

JERS-1 SAR 44 days 18 m 

ALOS- 1/2 PALSAR 14 to 46 days 3 to 100 m 

SEASAT-1 17 days 25 m 

SIR-A/B/C/X-SAR - 13 to 58 m 

S-band ~ 10 cm Almaz-1 - 10 to 15 m 

C-band ~ 5 cm 

ERS-1/2 SAR 35 days 25 m 

SIR-C/X-SAR - 26 m 

ENVISAT 35 days 30 m to 1 km 

RADARSAT-1/2 24 days 3 to 100 m 

RISAT-1 25 days 1 to 50 m 

Sentinel-1 6 to 12 days 1.7 to 93 m 

X-band ~ 3 cm 

SIR-C/X-SAR - 10 to 20 m 

SRTM - 30 to 90 m 

TerraSAR-X/TanDEM-X 11 days 25 cm to 40 m 

COSMO-SkyMed 16 days 1 to 100 m 

K-band ~ 1.2 cm Military domain - - 

 

Figure 1. 9. Penetration of SAR signals from some bands (X, C and L band) (Sarmap, 2009). 
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Figure 1. 10. (a) Illustration of random walks in speckle effect; (b) Horizontal and vertical 

polarizations (Sarmap, 2009). 

Brightness variation in SAR image is not smooth. It has granular texture called speckle 

(Van Zyl and Kim, 2010). Speckle is produced by the interference of EM waves 

scattered from Earth’s surface objects. Each target contributes backscatter energy when 

illuminated by SAR, which is then coherently added to all scatterers called random 

walks (Figure 1. 10a) (Sarmap, 2009). The wavelength of SAR signals can transmit and 

receive either horizontal (H) or vertical (V) electric field vectors (Figure 1. 10b). This 

term called polarization and normally there are four types of polarization (HH, HV, VV 

and VH). 

 

Figure 1. 11. SAR geometric effects: Layover, b’ appears closer than a’ in SAR image; 

Foreshortening, d’ and e’ are closer together in SAR image; Shadowing, h’ to i’ not 

illuminated by the SAR (Van Zyl and Kim, 2010). 
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Due to geometric properties of SAR data in range and azimuth direction there are some 

effects in SAR image. First effect is foreshortening which makes areas that slope toward 

the sensor look shorter in the image and areas that slope away from the sensor look 

longer in the image than in horizontal areas. Second effect, layover, appears in the 

extreme case where the slope is larger than the incidence angle. Mountainous area 

would look as if it is projected over the region in front of it. Shadowing, as the third 

effect, occurs when radar waves cannot illuminate steep slope which facing away from 

the radar, thus the area on that slope cannot be imaged (Figure 1. 11) (Van Zyl and Kim, 

2010). 

Interaction between SAR signals with water bodies depends on water surface condition 

(Figure 1. 12). For smooth open water, specular backscattering will generally occur 

because its smooth surface acts like a mirror for SAR signals. In this case, only very 

little energy will be scattered back to the SAR sensor. Therefore, in the image, it will 

appear dark (Figure 1. 13 c and d). Opposed to smooth open water, rough open water 

reflects SAR pulse in all directions, called diffuse surface backscattering, and a portion 

of the energy is scattered back to the radar sensor. Thus, in the image, it will appear 

brighter than smooth open water (Martinis, 2010; Yuan et al., 2015). 

Considering flooded vegetation areas, SAR pulse will penetrate vegetation and generate 

double-bounce backscattering, the enhanced one, and diffuse volume backscattering. 

Double-bounce backscattering occurs when SAR signals bounce twice off water 

surface and vegetation, then most of the energy is reflected back to the SAR sensor. 

The enhanced double-bounce backscattering will occur when SAR pulse bounces more 

than twice off water surface and several parts of vegetation. Diffuse volume 

backscattering will occur when SAR signal cannot penetrate vegetation canopy, thus 

the pulse will scatter because of the rough surface on vegetation canopy. Double-

bounce backscattering and diffuse volume backscattering will make object appear 

brighter in the SAR image. 

Double-bounce backscattering and the enhanced one can be occurred also in the flooded 

urban areas. SAR signal will bounce to the existing buildings and flood waters. Double 

backscattering strengths make flooded areas appear brighter. On the other hand, smooth 

artificial surfaces in the urban areas will act like a mirror and thus resulting in a dark 

apparition because of specular backscattering (Martinis, 2010). Those two things will 
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cause errors in image interpretation, especially in separating flooded and not-flooded 

areas in the zone of urban. 

 

Figure 1. 12 Backscattering types related to surface water areas (modified from Martinis, 

2010; Yuan et al., 2015). 

Since almost 20 years, SAR sensors have increasingly been used for large-scale surface 

water mapping mainly at medium spatial resolutions, using X-band (SIR-C/X-SAR, 

SRTM), C-band (ERS-1/2 AMI, Envisat ASAR, RADARSAT-1, RISAT-1, SIR-C/X-

SAR) (Baghdadi et al., 2001; Manjusree et al., 2012), and L-band (SEASAT-1, JERS-

1, ALOS PALSAR, SIR-A/B/C/X-SAR). The launch of the X-band TerraSAR-

X/TanDEM-X and COSMO-SkyMed (CSK) constellations with very high spatial 

resolutions (up to 0.24 m for the TerraSAR-X Staring SpotLight mode) increased 

capabilities for estimating flood extent and for flood monitoring in the case of complex, 

small-scale and operational scenarios are available. The potential of this new generation 

X-band data has already been demonstrated by several use cases in flood emergency 

situations (e.g., Martinis et al., 2015a; Martinis and Twele, 2010; Pierdicca et al., 2013). 

Unfortunately, those very high resolution of SAR data are not accessible for all users. 

The first of the five missions that ESA is developing for the Copernicus initiative is 

Sentinel 1, a constellation of two polar-orbiting satellites (ESA, 2014). The satellites 

carry a C-band synthetic-aperture radar instrument which is within the 4–8 GHz 

frequency range (7.5–3.75 cm wavelength). Sentinel-1 provides high spatial resolution 

(about 20 meters in Interferometric Wide swath (IW) mode) and high temporal 
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resolution (a 12-day repeat cycle for one satellite, and 6-day for the pair). The data 

products are freely access in the scihub (https://scihub.copernicus.eu/). The potential of 

Sentinel-1 in mapping water bodies has been provided in some papers (e.g.,  Huang et 

al., 2018; Martinis, 2017; Twele et al., 2016). 

In the future, the National Aeronautics and Space Administration (NASA) and CNES, 

the French space agency, in partnership with Canadian Space Agency (CSA) and UK 

Space Agency (UKSA) developed the Surface Water Ocean Topography (SWOT) 

mission. This mission carries a Ka-band radar interferometer sensor. This mission is 

planned for launch in 2021 and intends to provide a major improvement in the 

availability of surface extent and storage change for surface water bodies such as lakes, 

reservoirs, wetlands, and rivers globally, also give information about water levels 

(Cazals, 2017). 

 

Figure 1. 13. Surface water in Grand-Est, France, seen by different sensors: (a) Landsat 8 

image (natural color composite), (b) Sentinel-2 image (natural color composite), (c) ALOS-2 

image (Sigma-nought HH), (d) Sentinel-2 image (Sigma-nought VV). 
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1.3 Research questions, hypotheses and structure of the 

manuscript 

The availability of the Sentinel constellation in providing open data with optical and 

SAR imagery leads to the explosive growth of remote sensing data. The launch of that 

constellation can provide multi-source data and give unprecedented type of 

information. High temporal resolution provided from Sentinel leads to the availability 

of time series data and offer new opportunities for better understanding in Earth’s 

surface changes. This deluge of satellite data correspond to “Satellite Image Time 

Series (SITS)” and provide a larger data series with short time interval between two 

images. Related to surface water mapping and monitoring, the SITS will give a new 

tools in observing surface water changes for either long or short time period. In 

addition, the availability of multi-source data can offer complementary information for 

surface water mapping. 

Sentinel-1 mission can provide SAR data with various spatial resolution, various 

polarizations and the most important, it support high temporal resolution (up to 6-day 

for the pair of two polar-orbiting satellites). The high quality data of Sentinel-1 

provided on an open and free basis are an attractive source of information for 

researchers. With their high temporal resolution, Sentinel-1 data can offer new 

opportunity for more understanding hydrological dynamics and phenomenon. They can 

increase capabilities for estimating flood extent and for flood monitoring. There’s has 

been little research done to investigate the usefulness of Sentinel-1 for surface water 

mapping, while the design of this mission for operating in a pre-programmed conflict-

free mode ensuring consistent long-term data archives (Torres et al., 2012) and the 

possibility of fully-automated surface water services (Twele et al., 2016) have been 

studied. It is important to address this gap by investigating thoroughly the potential of 

Sentinel-1 data for the efficient and reliable surface water mapping. 

Sentinel-2 mission can bring systematic global acquisitions of fine spatial resolution 

multispectral images with a fine revisit frequency, which is important for the next 

generation of operational products, such as surface water monitoring. The Sentinel-2 

images would surely be of great significance for surface water mapping, due to its 
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appealing properties (the four bands at 10 meter resolution and up to 2 days revisit time) 

and the free access (Du et al., 2016). 

With this evolution in term of data to process, some challenges appear. The first one is 

the high temporal frequency caused high volume of data which implies to propose new 

methods for data processing and analysis, as conventional method will not be sufficient 

to take into account of this temporal dimension and to manage massive data. The other 

one is manual or supervised processing methods which are not adapted with SITS and 

multi-source data. That is because, manual processing method used the expert 

intervention which must be reduced through the automation in the processing chain in 

order to obtain information rapidly and efficiently, also to improve results’ realibility 

and precision. 

In this context, the main objective of this PhD thesis is to propose new (e.g. fully 

automated) approaches for surface water detection by exploring the single and 

combined used of Sentinel-1 and Sentinel-2 data, with the first focus on SAR data. In 

order to achieve this objective, several thematical and methodological research 

questions related to the enhancement of surface water mapping are listed: 

¾ What is the suitability and which methods are adapted and robust for an 

operational exploitation of Sentinel-1 data ? 

¾ What is the contribution of Sentinel-1 times series ? 

¾ What is the contribution of multi-sensor data ? 

In this context, the proposed research is focus on the development of operational 

methods for surface water mapping based on Sentinel 1&2 times series. The objective 

is to map permanent and temporary surface water with a high accuracy assessment at 

the 1:25 000 scale. 

Based on these research questions, three hypotheses are addressed: 

1. Satellite Image Time Series data can enhance surface water mapping. 

2. Multi-sensor images are useful and relevant for surface water mapping and 

monitoring. 

3. The proposed methods can be successfully applied for another thematic 

application. 
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In order to answer the research questions and to check the hypotheses, this PhD thesis 

has following structure: 

Chapter 2 presents the state-of-the-art methods for the detection of surface water 

successively in radar imagery, in optical imagery, and by combining both sources of 

information. 

Chapter 3 provides the datasets and study areas use to develop and validate the 

proposed methods. This chapter presents existing database or web-services of surface 

water. Pre-processing step of Sentinel 1&2 imagery is also detailed. 

Chapter 4 will focus on the detection of surface water by SAR data, due to its capability 

to acquire observations during periods of persistent cloud cover, when flood events 

often occur. The usefulness of the C-band Sentinel-1 sensor mission for surface water 

mapping purposes will be thoroughly investigated. To the best of our knowledge, 

several semi-automatic and automatic tools already exist for surface water mapping 

from SAR data (Huth et al., 2015; Martinis et al., 2015b; Schlaffer et al., 2012; 

Westerhoff et al., 2013), but currently only a few scientific references present a fully 

automatic water detection method, especially tuned for Sentinel-1 imagery (Twele et 

al., 2016). The literature proposes a large number of methods for detecting surface 

waters from SAR data. We aim to find the best configurations in order to map surface 

waters automatically and rapidly using Sentinel-1 imagery. Thus, this chapter will 

present the Water-S1 method (detection of surface waters) developed for Sentinel-1 

image. 

Chapter 5 explores the contribution of Sentinel-1 time series data for the detection of 

permanent surface water. In order to explore the potentialities of the temporal 

information, we explore also how to take into account of this temporal analysis in the 

processing chain. This chapter also investigates Sentinel-2 as new optical data for 

surface water mapping. In this context, we decide to explore the potentialities of multi-

source sensor (passive and active such as Sentinel-1 and Sentinel-2) to improve surface 

water mapping. 

Chapter 6 presents some experiments in order to observe another methods for surface 

water detection. Sentinel-1 polarimetric data for surface water mapping are 
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investigated. We will evaluate also another approach of image fusion, classically tested 

in the literature. Finally, to support the demonstration of our proposed methods and to 

qualify their reproducibility to other thematic context, some experiments related to very 

different thematic applications are performed. 

Finally, Chapter 7 concludes the manuscript by summarizing the results and by 

presenting some perspectives. 

During this study, operational methods are developed by maximizing the use of free 

software or free programming language. Sentinel-1 pre-processing is performed in 

Sentinel Application Platform (SNAP)1 provided by European Space Agency (ESA). 

Polarimetric processing of Sentinel-1 is performed also in SNAP. With the help of 

Sen2Cor2 plugin, Sentinel-2 pre-processing is also carried out in SNAP. Algorithmic 

developments and statistical analysis are executed in R3 and Python4. Geographical 

treatments and accuracy assessments of results are performed using QGIS5. 

 

 

The PhD work has been supported by the Indonesia Endowment Fund for Education 

(LPDP), Ministry of Finance, Republic of Indonesia and the French funded program 

ANR TIMES (ANR-17-CE23-0015-01). It is a continuation of the various works carried 

out at LIVE and EOST on satellite image time series processing for the analysis of 

environmental processes. It is a contribution to the program A2S—Alsace Aval Sentinel 

of University of Strasbourg on the development of innovative processing chains for 

Sentinel data. 

 

1. http ://step.esa.int/main/toolboxes/snap/ 
2. http://step.esa.int/main/third-party-plugins-2/sen2cor/ 
3. https://www.r-project.org/ 
4. https://www.python.org/ 
5. https://www.qgis.org/en/site/ 
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The previous chapter allowed us to understand surface water as our object of study, its 

definition and importance. It also provided us with the characteristics of surface water 

in the remote sensing data. This chapter aims to discussing the state of the art of surface 

water mapping methods based on remote sensing techniques and presents existing 

surface water products. The purpose is not to present an exhaustive review of the large 

amount of published works, but to give an overview of the methods existing for surface 

water mapping. 

This chapter presents the existing methods using single-date optical (section 2.1) and 

SAR remote sensing data (section 2.2) allowing surface water mapping. In the section 

2.3, a review of methods based on time series (2.3.1) and multisource (2.3.2) data is 

presented. These methods allow improving surface water mapping. They are also used 

for surface water monitoring. The last section (section 2.4) summarizes existing 

services, tools and products or database of surface water derived from massive 

processing of remote sensing data. 

 

2.1 Optical remote sensing for surface water detection 

In case of favorable weather conditions, optical Earth Observation (EO) sensors are the 

preferred information source for the detection of surface water due to their 

straightforward interpretability. Numerous single-date methods have been developed in 

the literature to mapping surface water with optical imagery. 

Many methods are derived based on the low reflectance return from surface water 

bodies: 

· Density slicing method (Figure 2. 1) is a simple way which has been reported 

successfully extracting surface water from single band or multispectral optical 

imagery (Frazier and Page, 2000). This method is simple and effective to 

distinguish water from the other areas. However, in this method, result depends 

on the selection of threshold value. Errors are common because of the mixing of 

water pixels with different land cover types. 
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Figure 2. 1. Example of density slicing results in Landsat TM bands (Frazier and Page, 2000). 

· Edge detection is also a simple method to delineate surface water (Shah et al., 

2011). As the previous method, the selection of appropriate threshold value is 

important for this method. 

· Classification methods, either unsupervised or supervised (Figure 2. 2) are also 

classically used to extract water bodies from multispectral imagery (Banukumar 

et al., 2011; Chen et al., 2014; Frazier and Page, 2000; Kingsford et al., 1997; 

Taylor and Mosiman, 2003). Unsupervised classification can minimize human 

error because it does not use any user-defined training classes. Yet, unsupervised 

classification relies purely on spectral and statistical information to clusters pixels 

in a dataset in order to determine classes that may not necessarily correspond to 

the informational categories of interest. Supervised classification has more 

control over the type of classes defined within a geographic area. However the 

training data selected for a given class does not account for the variation in 

environmental conditions throughout the study area. 

· Decision tree for surface water delineation can also be built from multispectral 

imagery (Acharya et al., 2016; Sun et al., 2011). However, this method makes use 

of classification rules which are difficult to build and sometimes can not be 

applied universally. 
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Figure 2. 2. Illustration of (a) unsupervised and (b) supervised classification method. 

The easy and effective way to distinguish water and non-water areas is to use water 

indices. This method combines spectral bands using various algebraic operations to 

increase the difference between water bodies and land. Many indices have been 

developed to extract surface water areas or flood inundation extent (Huang et al., 2018): 

· The Tasseled Cap Wetness Index (TCW) is developed by Crist (1985) to separate 

water and non-water objects. This index is derived from six bands of surface 

reflectance data and set a threshold of 0. The comparison performed by Zhou et 

al. (2017) shows many non-water pixels that were mistakenly classified into water 

pixels in the result using TCW. 

· The Normalized Difference Vegetation Index (NDVI) is known to show small 

values for water body, thus surface water areas are easily observed by low NDVI 

values (e.g., Khand et al., 2017). Nevertheless, this index is more appropriate to 

extract vegetation area because it does not directly provide information about 

surface water area. 

· The Normalized Difference Water Index (NDWI) is the first generation of water 

index (McFeeters, 1996). This index makes use of Near Infrared (NIR) band to 

reflect water’s characteristics. NDWI proved to work well in separating water 
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body and vegetation but has limitations when it comes to soil and built up area 

(Figure 2. 3 a). 

· The Modified Normalized Difference Water Index (MNDWI) is developed by 

replacing the NIR band in NDWI with the Short-Wave Infrared (SWIR) band 

(Figure 2. 3 b). The SWIR band is less sensitive to concentration of sediments in 

the water than the NIR band. Thus this index is believed to be more stable than 

NDWI, especially in detecting water features for water regions with backgrounds 

dominated by built-up land areas (Gautama et al., 2015). Yet, for some optical 

data, the combination of the SWIR band and Green band in MNDWI can degrade 

image quality due to different spatial resolution of bands. MNDWI also has 

limitation in  discriminating water and snow due to the normalized difference 

between Green band and SWIR band for snow is as high as that of water (Huang 

et al., 2018). 

· The Wetness component of K-T transformation is proposed for extracting the wet 

areas from the optical image, not only surface water area but also humid area 

(Wang et al., 2013). However, this method produced the confusion of water and 

buildings existing in image. 

· The Automated Water Extraction Index (AWEI) is a new index proposed by 

Feyisa et al. (2014) (Figure 2. 3-c) as an alternative and improve water index, 

especially in extracting water information from areas where noisy results are 

expected because of the presence of shadows and built-up surfaces. This index 

was developed for Landsat images and consists of two indices, AWEInsh, working 

well when there are no shadows, and AWEIsh, allowing further distinguishes 

between water pixels and shadow pixels. AWEI is found more efficient in 

detecting water features in urban areas than in large open surface water (Rokni et 

al., 2014). 

· The Water Index (WI2015) is proposed by Fisher et al. (2016) using statistical 

analysis of surface reflectance on Visible, NIR, and SWIR bands. This index was 

developed for Landsat data. Surface reflectance as an input for this index is 

believed to be more accurate than the used of digital number (DN or top of 

atmosphere (ToA) reflectance. However, conversion process from DN to surface 

relectance is usually requires a lot of computation and time-consuming (Huang et 

al., 2018). 
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Figure 2. 3. Example of water indices results (a) Normalized Difference Water Index 

(NDWI), (b) Modified Normalized Difference Water Index (MNDWI), (c) Automated Water 

Extraction Index (AWEI) (modified from Sharma et al., 2015). 

Thresholding is one of important issues in surface water mapping. Methods, such as 

density slicing, edge detection and water indices are applied thresholding to extract 

surface water. The selection of thresholds value is tricky and sometimes difficult to be 

generalised due to different characteristics of surface water in each images. The results 

sometimes misclassify mountain shadows, urban areas or other background noise as 

water bodies, if a threshold is not selected appropriately. Thus, manual adjusment on 

the threshold is needed to achieve more accurate results. Automatic extraction can be 

performed by applying single threshold for all data. Huang, et al. (2014) performed this 

technique using Open Water Likelihood (OWL) index proposed by Guerschman et al. 

(2011) which was a regression model based on five variables that are relevant to surface 

water and has stable values. Another automatic method is proposed by Zhang et al. 

(2018) using Modified Histogram Bimodal Method (MHBM). This method seeks 

minimum values in the threshold range to achieve an automated dynamic threshold. 
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Automatic thresholding using Otsu algorithm is applied by Buma et al. (2018) to map 

surface water extent of Lake Chad. 

All the methods mentioned above usually use pixel-based values to extract surface 

water. However, methods based on pixel values will be difficult to deal with very high 

spatial resolution images. When very high spatial resolution images are used, Object-

Based Image Analysis (OBIA) is more appropriate. The idea is to classify objects based 

on their characteristic texture features (Dronova et al., 2015). But this type of method 

requires high processing for the segmentation step, which mostly limits the size of the 

processed image in dependence on the used software package (Hahmann et al., 2008). 

Furthermore, in order to achieve useful results it is necessary to have solid expertise on 

relevant features. 

For many years, several efforts have been devoted to develop surface water extraction 

methods from optical remote sensing data, including automatic method. Although the 

principle of extracting surface water from optical sensors is straightforward, it is also 

important to accept their limitation. The most critical one is that they are easily affected 

by cloud obscuration. In these conditions, several methods have been developed in the 

literature using SAR images. 

 

2.2 SAR remote sensing for surface water detection 

Several methods can be found in the literature to map surface water from SAR imagery. 

Using single-date data, the methods are only able to detect surface water extension. 

Identification of floods areas can be obtained using integration of additional 

information about pre-flood condition. 

Thresholding (Figure 2. 4) is one of the most common adopted methods in SAR 

imagery to discriminate between water and non-water area (e.g., Bartsch et al., 2012; 

Cazals, 2017; Muster et al., 2013; Yamazaki et al., 2013). The approach is based on the 

low radar return from surface water. Its advantage is represented by the computation 

efficiency that could make it suitable for rapid mapping purposes (Martinis, 2010). 

However, the choice of the threshold value is a critical aspect because it depends on 

environmental parameters of the study area (e.g. land cover), as well as on system 
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parameters (frequency band, polarization, and observation angle). Surface water can be 

extracted using this technique in moderate roughness conditions of the water surface, 

as the contrast between the water and non-water class is significant. In the case of 

double-bounce backscattering or the enhanced one due to flooded vegetation, rough 

water surfaces or flooded urban areas (see Chapter 1), thresholds value will be more 

difficult to determine. Therefore, thresholding method sometimes does not provide 

satisfactory results in vegetated, forested, and urban areas or in the presence of wind 

that roughens the surface water (Pulvirenti et al., 2012). 

 

Figure 2. 4. Illustration of thresholding method. 

Two approaches are existing to set a threshold for water surface detection on single-

SAR image: 

· Manual determination can be performed by visual interpretation of image 

histogram and trial-and-error procedures.  Henry et al. (2006) applied this method 

to intensity image of multi polarization ENVISAT data (HH, HV and VV). 

Similar applications have been conducted by Lang et al. (2008) using sigma-

nought image of Radarsat-1 with HH polarization and Matgen et al. (2007) using 

intensity image of ENVISAT data with VH polarization. This simple technique 

can provide interactive threshold which adapted to surface water characteristics 

from each images. Yet, the quality of result from this technique depends on the 

subjective interpretation of the operator. 
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· Automatic thresholding for surface water mapping can be based on several 

algorithms. 

ü It can be performed using the Otsu algorithm. This method selects the 

threshold value that maximizes the between-class variances of the histogram. 

This is optimal for thresholding large objects from the background, which 

means that it is strongly depended on bimodality of histogram. Schumann et 

al. (2010) apply this method for sigma-nought image of ENVISAT with VV 

polarization. 

ü One of the limitations of Otsu algorithm is the threshold value can over or 

underestimate the extent of surface water when the bimodality of histograms 

is unbalanced (Behnamian et al., 2017). To address this, a modified version 

of Otsu’s thresholding algorithm called valley emphasis has been developed. 

It attempts to select a threshold that is closer to the valley between the two 

modes. Li and Wang (2015) use this method for intensity image of Radarsat-

2 imagery with HV polarization. 

ü Automatic thresholding can be based on statistical modeling of histograms. 

Matgen et al. (2011) applied this method to intensity image of RADARSAT-

1 with HH polarization. Similar applications have been conducted by 

Martinis et al. (2009) using sigma-nought image of TerraSAR-X imagery 

with HH polarization. They manage to reduce user intervention, yet the 

method only works successful in smooth water surface due to sufficient 

contrast between land and smooth water surface. 

Several supervised and unsupervised classification methods can also identify the 

surface water on SAR images. Study of De Roo et al. (1999) used a maximum 

likelihood classification of supervised method for separated flooded and non-flooded 

areas. Yet, supervised method needs user intervention for determined training sites. 

Unsupervised classification in ALOS PALSAR imagery in order to mapping regional 

inundation was presented in Chapman et al. (2015). The result shown a good 

performance for open water extent, but not in the regions where there may be 

differences in sensitivity to widespread and shallow seasonal flooding event. The 

disadvantage of unsupervised methods are it relies purely on spectral and statistical 

information, also it has less control over the type of classes. 
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Figure 2. 5. Illustration of OBIA steps : (1) SAR data, (2) segmentation, (3) first 

classification, (4) second classification (modified from Simon et al., 2014) 

Most of the above mentioned studies are consider pixels as smallest geometrical 

components of raster data (pixel-based). The surface water detection is performed 

without taken into account contextual information. Misclassification will often occurs 

due to salt-and-pepper appearance affecting result accuracy. In very high resolution of 

SAR data, Earth’ surface objects are usally larger than the pixel size. Therefore, 

although the pixels represent different spectral properties, they can be the same object. 

OBIA (Figure 2. 5) for SAR imagery has increasingly developed in surface water 

mapping during recent years (e.g., Evans et al., 2010; Hahmann et al., 2008; Simon et 

al., 2014) to overcome this problem. This approach has advantages for improving 

classification with combination of spectral characteristic and contextual information. 

However, this method classifies image elements by segmentation phase using limited 

contextual information. OBIA does not consider inter-spatial relationships between 

different scale representations in SAR image and does not explore more the inter-spatial 

relationships between adjacent objects (Martinis, 2010). 

Several researches use topographic data as additional information to improve surface 

water detection result. The purpose of integration is to detect surface water beneath 

vegetation by removing water-like areas based on hydrological assumption (Clement et 

al., 2017; Martinis, 2017). With this concept, flood mapping procedure is presented by 

Pierdicca et al. (2008) using fuzzy sets theory. The method integrates digital elevation 

model (DEM) with SAR data. 
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Segmentation approach such as region growing methods has been used by some studies 

in the past for surface water detection. The expansion of seeded regions is based on 

their statistical characteristics and will stop according to reached conditions. For 

instance, Malnes et al. (2002) presents region growing method for RADARSAT-1 data. 

Surface water areas are determined based on the seeded regions which growing within 

three standard deviations from the mean intensity value. In recent years, Active Contour 

Models (ACMs) or snake algorithms are popular method to extract surface water from 

SAR data based on region growing (e.g., De Roo et al., 1999; Matgen et al., 2007; 

Schumann et al., 2009). Dynamic curvilinear contour is used in these algorithms to 

search through image space iteratively until it founds surface water boundaries.  

In conclusion, most of the surface water mapping methods based on single-date optical 

or SAR images and proposed in the literature require a considerable amount of user 

intervention. This human intervention is not practical for operational mapping and is 

not adapted to the new generation of optical (Sentinel 2) and SAR data (Sentinel-1), 

which are characterized by increased temporal resolution. Indeed, contextual 

information, such as the correlation among neighboring pixels must be taken into 

account, considering that individual pixels are not independent random variables but 

form a random field. Since few years, multi-temporal image analysis has proven their 

superiority to mono-temporal approaches in image processing to extract surface water 

and to monitor these surfaces. 

 

2.3 Multi-temporal and multi-source data for surface water 

mapping and monitoring 

2.3.1 Satellite Image Time Series: value and existing methods 

Satellite Image Time Series (SITS) is defined as a set of satellite images taken from the 

same scene at different times. Analysis using SITS has proven producing better results 

and more popular than single-date approaches for surface water mapping (e.g., 

Martinis, 2010; Mitchell et al., 2015; Pulvirenti et al., 2012; Schlaffer et al., 2015; Zhao 

et al., 2014).  A single-date approach is typically only able to distinguish water and non-

water area. The approach uses multi-date, multi-temporal or time series analysis opens 
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the opportunity to be able to classify surface water; for example, distinguish permanent 

surface water and temporary surface water (floods). It also provides a way for surface 

water monitoring, floods detection, changes detection which simply cannot be done 

only with mono-date. With the redundancy of information provided in SITS data, the 

quality of surface water detection and mapping can be increased (Clement et al., 2017; 

Martinis, 2017). 

In the case of optical data, study in Lunetta and Balogh (1999) proposed the use of SITS 

with Landsat 5 TM imagery for wetlands identification, as one of temporary surface 

water area. They use a GIS rule-based classification model in an attempt to improve the 

classification accuracies of the wetland classes. Limitations of this approach are related 

to expert intervention or reference in order to determine parameters to classify wetland 

land cover. 

Another use of optical SITS was proposed by Mueller et al. (2016) for water 

observations in Australia. The method classifies permanent and temporary surface 

water based on their occurrence in observations. A water detection algorithm was used 

based on a decision tree classifier, and a comparison methodology using a logistic 

regression. The method shows that it is operationally feasible to apply a single 

algorithm over many different environmental and climatic conditions and achieve a 

high degree of accuracy. However, some known errors remain, mainly derived from 

shadow produced by clouds and steep terrain. Important additional errors also derived 

from data anomalies and urban structures. 

As for SAR data, study in Martinez and Toan (2007) presented the use of SITS for flood 

dynamics and spatial distribution of vegetation based on decision rules over two 

decision variables. However, discrimination between open surface water, bare soils and 

low vegetated areas present a lower accuracy with this method. Another study of SITS 

using supervised classification was applied by Zhao et al. (2014) to a series of 

polarimetric SAR data for floodplain seasonal inundation monitoring. They have 

hypothesis that the interaction between radar signals and land-cover types at the 

different seasons can be learned further using composite polarimetric features. 

Unfortunately, the result shows that the intensity of the single polarization performed 

better than the composite features for classification predictor of the floodplain. 
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Unsupervised clustering method using SITS was presented by Pulvirenti et al. (2012) 

to map flooded areas from SAR data. The procedure is based on an automatic image 

segmentation technique and on the interpretation of the radar return from the segments 

derived from an electromagnetic model. However, the methodology needs to be further 

tested on different case studies because it was specifically designed to deal with multi-

temporal, single channel, high resolution radar data provided by COSMOSkyMed. 

Change detection and thresholding methodology has been developed using Sentinel-1 

images to map floods events in Clement et al. (2017). Yet there are still 

misclassification of urban features and a problem in smaller scale pluvial inundation. 

Automatic thresholds analysis was applied by Schlaffer et al. (2015) for flood detection 

from multi-temporal SAR data. Harmonic analysis of a multi-temporal time series was 

done and classified by means of an automatic threshold optimization. Noise is reduced 

by using multi-temporal data and no interaction by the user is required. However, the 

need to calibrate the harmonic model and preprocess SAR time series data make 

computational cost increasing, thus it become the disadvantages of this approach. 

Martinis and Twele (2010) extent their study with SITS in automatic tile-based 

parametric thresholding approach to extract flood using a hybrid multi-contextual 

Markov image model of unsupervised change detection methods. They showed that 

computational demands and classification error can be reduced using hybrid model. 

Nevertheless, this method does not flexibly react with the diversity in multi modal 

histogram of SAR image. Subtraction method and MNF (Minimum Noise Fraction) 

were applied by Mitchell et al. (2015) to multi-date SAR imagery in order to map spatial 

data of inundation extent. The final water result was produced using the intersection of 

low backscatter areas in MNF images and band difference. However, this approach 

needs user intervention and works in pixel-based. 

 

2.3.2 Multi-source data: value and existing methods 

The possibility to collect different kinds of observations over a same area has 

considerably increased with the multiplication of sensors. It can now be said that remote 

sensing is ‘multi-modal’ (Gómez-Chova et al., 2015) or multi-source. As described in 
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section 2.1 and 2.2, the sensors can be use different modalities (optic, radar, etc). Even 

for a same modality, they can exhibit very distinct characteristics (for instance optical 

sensors show different spectral configurations (number of spectral bands, position and 

width of the spectral bands), spatial resolutions, and revisit times). The possibility to 

capture genuine time series is then increased. 

As a consequence, combining remote sensing data with different characteristics is a 

standard remote sensing problem that has been extensively investigated in the literature 

(Chavez, 1991). The main aim consists in fusing multi-sensor information as a means 

of combining the respective advantages of each sensor (Goyal and Wahla, 2015; Pohl 

and Van Genderen, 1998). Combining existing sensors can mitigate limitations of any 

one particular sensor for various land cover issues (Gamba, 2014; Joshi et al., 2016). 

Complementary observations can thus be exploited for land cover mapping purposes. 

More specifically, many case studies present methods for surface water extraction 

based on multi-source (optic and SAR) image fusion. 

Fusion of heterogeneous image source has been widely investigated in the remote 

sensing (Benediktsson et al., 2018; Chavez, 1991; Pohl and Van Genderen, 1998; 

Schmitt and Zhu, 2016). Image fusion can be implemented at three different levels 

(Ghassemian, 2016; Liu et al., 2018a): (1) pixel level, (2) feature level and (3) decision 

level (Figure 2. 6). 

Image fusion at pixel level combines two or more geometrically registered images of 

the same scene into a single image that is more easily interpreted than any of the 

originals. The aim is to obtain information of greater quality. For that purpose, pan-

sharpening is a well-known technique that integrates the geometric details of a high 

resolution panchromatic image and the color information of a low spatial resolution 

multispectral. 

Image fusion at feature level deals with data at higher processing levels than pixel 

level methods. At first, feature extraction procedures are applied. For instance, the 

extraction of objects is obtained by segmentation procedures. Then, features (spectral 

or spatial indices, texture-based, etc) are computed from each image sources. Examples 

of remote sensing fusion methods at feature level, applied to several landcover types, 



Chapter 2. The state of the art 

 

 

40 

can be found in Ban and Jacob (2013); Dechesne et al. (2017); Fauvel et al. (2007); 

Wegner et al. (2011); Xia et al. (2018). 

 

Figure 2. 6. Fusion levels: (a) pixel level, (b) feature level, (c) decision level (modified from 

Ghassemian, 2016). 

Image fusion at decision level is the process of merging information from several 

individual data sources after each data source has undergone a preliminary 

classification. First, the input images are processed individually for information 

extraction. Then, the decision rules are used to combine extracted information to 

resolve differences and furnish a better understanding of the observed objects. Decision 

level fusion has great uses in the distributed and parallel processing systems. 



Chapter 2. The state of the art 

 

 

41 

This type of approach is commonly used for surface water extraction. When images 

originate from several sensors, the most relevant method for data fusion is to combine 

the images with the surface waters results extracted individually for each image source 

(Pohl and Van Genderen, 1998; Wendl et al., 2018; Zadeh, 1976). For instance, Wang 

et al. (2011) use RADARSAT and Landsat imagery to extract surface water 

information. RADARSAT images effectively extract the open water areas and a large 

number of small water bodies using supervised classification method. Meanwhile, 

Landsat imagery separated vegetation and water bodies using wetness index and 

vegetation index (NDVI). Then, the results were fused. The study demonstrated that the 

complementary information of RADARSAT SAR images and Landsat ETM+ images 

can achieve semi-automatic and rapid extraction of water information. However, the 

accuracy of this method depends on the accuracy of the surface water extraction from 

each image. Westerhoff et al. (2013) fuse SAR and MODIS in order to produce water 

imagery. Water extraction in that study uses thresholding method. Yet, there is no 

global threshold to make binary surface water map. The threshold values are varies, 

depending on the area in the world and the incidence angle. Another method from 

Chengquan et al. (2018) presents decision level fusion of multi-temporal and multi-

source satellites data to monitoring surface water dynamics. They use machine learning 

(DeVries et al., 2017; Huang et al., 2018) for each satellites images then merge the 

results. 

In conclusion, using image times series and data fusion techniques to increase the 

accuracy of permanent surface waters extraction is promising (Bourgeau-Chavez et al., 

2009; Liu et al., 2018b; Riffler et al., 2018). Combining data of different properties and 

data acquired at several periods can improve image classification (Riffler et al., 2018). 

For instance, Aires et al. (2018) presents inundation mapping using multi-temporal and 

multi-source satellites data. They merge and classify features extracted from various 

type of satellites imagery. Approach from Riffler et al. (2018) shows decision-level 

fusion using multi-temporal and multi-source satellites data to produce water and 

wetness index. However, eventhough promising, there are only a few studies combining 

multi-temporal and multi-source approach. 
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2.4 Review of existing products, tools and services for 

surface water mapping 

Many databases at several scales are mapping surface water areas by using massive 

processing of optical and/or SAR images times series. 

At global scale, Landsat times series have been processed to propose the Global 

Surface Water (GSW) product (Figure 2. 7a) computed by the EC-Joint Research 

Centre (The European Commission’s Joint Research Centre, n.d.). This product is 

generated from 30 m spatial resolution Landsat images with a minimum mapping unit 

of 10 ha. This product allows quantifying changes of surface waters over a period of 32 

years (1984-2015) using expert non-parametric classifiers. It also propose a water 

seasonality product for 2014-2015, water occurrence and water transition maps (Pekel 

et al., 2016). 

Another product, the SRTM Water Body is available at global scale by National 

Geospatial-Intelligence Agency (NGA) (USGS, n.d.). It is derived from radar data 

(SRTM Digital Terrain Elevation Data) with a minimum mapping unit of 10 ha (Figure 

2. 7b). The elevation data are classified based on topographic rules to identify oceans, 

lakes and rivers. This product provide minimum surface area of at least 10 ha (Messager 

et al., 2016). 

The Global Lakes and Wetlands Database (GLWD) of WWF and the University of 

Kassel is a third available product mapping water surfaces (Lehner and Döll, 2004). 

This is generated from various cartographic sources documenting lakes, reservoirs and 

wetlands on a global scale (Figure 2. 7c). The product combines the best existing global 

and regional maps that were aggregated at a 1 km spatial resolution using expert 

concepts and thresholds (WWF, n.d.). The product provides a minimum mapping unit 

of 10 ha. 

The Water and Wetness product from EC-COPERNICUS (Figure 2. 7d) is produced 

from Landsat, Sentinel-1, ENVISAT-ASAR and ancillary GIS datasets (Copernicus, 

n.d.). Thresholding is used to derive surface waters from optical and SAR data before 

fusing the results with GIS datasets to generate the final classification. The minimum 

mapping unit for this product is 400 m2. The product does not map small river channels 
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and streams of widths less than 40 m (Langanke, 2016). Two classes of waters are 

categorized in this product: the “permanent water” class (e.g. rivers and lakes) 

corresponds to water surfaces identified in, at least, 80% of all observations; the 

“temporary water” class corresponds to water surfaces identified in more than 25% and 

less than 80% of all observations. 

Figure 2. 7 presents an overview of the existing products over a study case in Ireland 

(see Chapter 3). Consequently, these existing surface waters products are relevant for 

some applications but do not fulfill all the current needs of the science and water 

management communities. For instance, GLWD and SRTM Water Body do not 

identify small surface waters of less than 10 ha and narrow water bodies such as 

watercourses or streams. GSW is based on Landsat imagery with gaps in the 

observation records because of the occurrence of clouds. The Water and Wetness 

product is already using Sentinel-1 data but relies on 30-m spatial resolution Landsat 

imagery. 

 

Figure 2. 7. An overview of the existing products over the study case in Ireland. (a) Global 

Surface Water ; (b) SRTM Water Body ; (c) GLWD ; (d) Water and Wetness. 

With increased access to large or massive volumes of remotely sensed data and 

innovative techniques for optimizing the processing and interpretation of those data, a 

recent issue is to propose online tools or services to map surface water. 

The Surface Water Mapping tool leverages the extensive archive of Landsat data in 

the Google Earth Engine archive and Google’s cloud processing power to quickly 
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calculate past patterns of surface water extent from multiple layers of Landsat imagery. 

The tool consists of a Google Earth Engine application and a user friendly web interface 

which allows the user to specify the period evaluated and other calculation parameters 

that are then executed in a cloud service. Results are displayed on screen and can be 

downloaded for specified areas. An example of this tool is available here: 

http://surface-water-servir.adpc.net/. 

Another example of tool is the WATERS GeoViewer which is an EPA (Environmental 

Protection Agency) GeoPlatform based webmapping application (https://www.epa. 

gov/waterdata/waters-geoviewer). It provides acess to data at the national level of the 

Unites States. 

WaMaPro is also a user friendly tool for water surface derivation from SAR data 

developed at the German Remote Sensing Data Center (DFD) of the German Aerospace 

Centre (DLR). The tool is described in detail in Gstaiger et al. (2012); Huth et al. 

(2015); Kuenzer et al. (2013). The method uses simple thresholding and morphological 

filtering approach to extract water covered areas from the backscatter images. The 

method requires user intervention for thresholding. 

RaMaFlood is tool for semi-automatic flood extent mapping developed by DFD and 

DLR. It is using an interactive object-based classification algorithm (Martinis et al., 

2015b). The TerraSAR-X Flood Service (TFS) and the TanDEM-X Water 

Indication Mask processor (TDX WAM) are water detection tools based on a fully-

automatic processing of TerraSAR-X and TanDEM-X images (Martinis, 2010; 

Martinis et al., 2015b). The Canada Centre for Remote Sensing has developed the 

FnFCE (Forest non-Forest Class Extraction) water detection tool for the automated 

extraction of water bodies, but this tool only ingests Radarsat images (Short et al., 

2009). 

NASA’s Goddard’s Office of Applied Science proposes an automated global daily 

surface water mapping service (http://oas.gsfc.nasa.gov/floodmap/). As one of the first 

SAR-based services, the Fast Access to Imagery for Rapid Exploitation (FAIRE) 

service hosted on the ESA’s Grid Processing on Demand system (G-POD, 

http://gpod.eo.esa.int/) provides automatic SAR pre-processing and change detection 

capabilities which can be triggered on demand by a user via a web-interface. Automatic 



Chapter 2. The state of the art 

 

 

45 

algorithms for medium resolution surface water mapping have been presented by 

(Schlaffer et al., 2012), e.g. Fully Automatic Aqua Processing Service/FAAPS) and 

(Westerhoff et al., 2013). 

Generally, in all countries, surface water database are provided in national topographic 

database. For instance, there are BD TOPO Hydrography (IGN, 2014) contains 

hydrographic networks data of France (http://professionnels.ign.fr/bdtopo) and the 

national database of the Irish Environmental Protection Agency (EPA, n.d.) provides 

river and lakes data of Ireland (http://www.epa.ie/irelandsenvironment/) (see Chapter 

3). 

 

Conclusions of Chapter 2 

Remote sensing technology provides effective ways to observe surface water due to its 

advantages in acquiring Earth observation information at a range of spatial, temporal, 

and thematic scales. Optical imagery has been used for many surface water mapping 

applications due to its straightforward interpretability. Yet, a perfect method that works 

for all cases has not yet been developed, contributions to the methods are still expected 

in the future. 

The limit in using optical imagery is related to weather conditions. This type of image 

is sensitive to the presence of cloud cover. Therefore, several methods have been 

developed in the literature using SAR images. This type of image has more benefits 

because of its capability to transmit and receives signals in any weather conditions. 

SAR image can penetrate cloud and sometimes can also penetrate vegetation. 

Unfortunately, most of the surface water mapping methods based on single-date optical 

or SAR images require a considerable amount of user intervention. It is not adapted to 

Sentinel-2 and Sentinel-1 as the new generation of remote sensing data with high 

temporal resolution. Furthermore, contextual information, such as the correlation 

among neighboring pixels must be taken into account. 

Multi-temporal image analysis has proven their superiority to mono-temporal 

approaches to extract and monitor surface water. The approach opens the opportunity 

for surface water monitoring, floods detection, changes detection and to classify surface 
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water; for example, distinguish permanent surface water and temporary surface water 

(floods). With the increasing demand of understanding surface water over the world, 

multiple sources of remote sensing data with long time series can be employed to serve 

this purpose. However, the studies combining multi-temporal and multi-source 

approach are still few. 

Several databases are mapping surface water areas by using massive processing of 

optical and/or SAR images times series. Nevertheless, the existing surface water 

databases are relevant for some applications but do not fulfill all the current needs of 

the science and water management communities. Therefore another method which can 

handle multi-source and time series data and provide surface water database must be 

developed. 

The next chapter introduces the datasets, study areas, and pre-processing of Sentinel-1 

and Sentinel-2 data. 
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This chapter will provide information about the selected study areas to propose methods 

in exploiting the new Constellation of Sentinel-1 and Sentinel-2 times series for 

mapping and monitoring surface water. The section 3.1 explains the choice of three 

study cases in Ireland, England and Italy submitted to extreme flooding events. Two 

others areas of interest are then selected to validate our developments. The satellite 

image times series used in this study (S1&S2) and the other data used will be presented. 

The section 3.2 describes the applied pre-processing procedures for Sentinel-1 and 

Sentinel-2 images. 

 

3.1 Study area and datasets 

In this section, a technical description of the Sentinel 1 and 2 image products (Sub-

section 3.1.1) is presented. The selected study sites with the list of remote sensing 

images (S1 and S2) used and their coverage areas are also presented (Sub-section 3.1.2). 

3.1.1 The Sentinel Constellation: Sentinel-1 and Sentinel-2 products 

Sentinel-1 is the first of the Copernicus program by the European Commission (EC) 

and the European Space Agency (ESA). The mission is composed of a constellation of 

two satellites, Sentinel-1A and Sentinel-1B, placed in the same orbit, with sun-

synchronous, near-polar, circular orbit at a height of 693 km. Sentinel-1 offers a C-SAR 

instrument (see Chapter 1) and it operates in four acquisition modes with ascending and 

descending geometry: 

¾ Stripmap (SM) provides coverage with a 5 m by 5 m resolution over a narrow 

swath width of 80 km; 

¾ Interferometric Wide swath (IW) mode combining a large swath width (250 km) 

with a moderate geometric resolution (5 m by 20 m); 

¾ Extra Wide swath (EW) mode has five sub-swaths and a lower resolution (20 m 

by 40 m); 

¾ Wave mode (WV) acquisitions are composed of stripmap (20 km by 20 km), 

acquired alternately on two different incidence angles. 
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Sentinel-1 in each mode can provide Level-0, Level-1 SLC, Level-1 GRD, and Level-

2 OCN data. The SAR Level-0 products consist of compressed unfocused SAR raw 

data. The product intended for most data users is Level-1 data, which consists of two 

types, i.e., Single Look Complex (SLC) and Ground Range Detected (GRD). Level-1 

SLC products consist of focused SAR data, geo-referenced using orbit and altitude data 

from the satellite, and provided in slant-range geometry. The products include a single 

look in each dimension using the full available signal bandwidth and complex samples 

(real and imaginary). The products consist of amplitude and phase information. 

Level-1 GRD products consist of focused SAR data that has been detected, multi-

looked and projected to ground range using a terrestrial ellipsoid model. Pixel values 

represent detected magnitude, while phase information is lost. The resulting product 

has approximately square resolution pixels and square pixel spacing with reduced 

speckle, and with thermal noise removed. GRD products can be in one of three 

resolutions: Full Resolution (FR), High Resolution (HR) and Medium Resolution 

(MR). The resolution is dependent upon the amount of multi-looking performed. Level-

1 GRD products are available in MR and HR for IW and EW modes, MR for WV mode 

and MR, HR and FR for SM mode. 

Level-2 OCN products include components for Ocean Swell spectra (OSW) providing 

continuity with ERS and ASAR WV and two new components: Ocean Wind Fields 

(OWI) and Surface Radial Velocities (RVL). 

Sentinel-1 instruments supports operation in single polarization (HH or VV) and dual 

polarization (HH+HV or VV+VH). Wave mode is available in single polarization, 

while SM, IW, and EW modes in single and dual polarization. (Bourbigot et al., 2016; 

Cwik, 2017; ESA, 2012). After the literature review about surface water and methods 

to extract its area (see Chapter 1 and 2), only the data products from Sentinel-1 Level-

1 in IW mode are used and only high resolution products in double polarization 

(VV+VH) are used. In order to assess the potentialities of the finest spatial resolution 

images, only the GRD products are used for proposed method. In the case of SAR 

polarimetry experiment, SLC products are used. The spatial resolution of range by 

azimuth is 2.7×22 m to 3.5×22 m for SLC product while for GRD product, spatial 

resolution is 20×22 m. 
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Sentinel-2 mission comprises a constellation of two polar-orbiting satellites (Sentinel-

2A and Sentinel-2B) placed in the same orbit, phased at 180° to each other. The 

coverage limits are from between latitudes 56° south and 84° north. It is wide-swath 

(290 km), high-resolution and multispectral imaging mission. Its optical instrument 

samples 13 spectral bands: 

· Four bands of Sentinel-2 with 10 m spatial resolution: Band 2 (490 nm), Band 

3 (560 nm), Band 4 (665 nm) and B8 (842 nm); 

· Six bands at 20 m: Band 5 (705 nm), Band 6 (740 nm), Band 7 (783 nm), Band 

8a (865 nm), Band 11 (1610 nm) and Band 12 (2190 nm); 

· Three bands at 60 m: Band 1 (443 nm), Band 9 (940 nm) and Band 10 (1375 

nm). 

The products are available in Level-1C (Top Of Atmosphere (TOA) reflectances). The 

products at Level-2A (Bottom Of Atmosphere (BOA) reflectance images) can be 

obtained using the ground segment or by the Sentinel-2 Toolbox. In some areas, 

Sentinel-2 Level-2A are directly available and can be downloaded from the THEIA - 

Land Data Center (Theia, 2018). In this research, Sentinel-2 data are used to assess the 

contribution of high spatial resolution optical data in mapping surface water. In order 

to utilize the finest spatial resolution, only the four spectral bands with 10 m spatial 

resolution are used (B2, B3, B4 and B8). 

 

3.1.2 Study sites, images used and reference data 

Three test areas in Ireland, England and Italy are chosen as the first study areas based 

on our main research objective, to propose an operational and fully automatic 

methodology to extract temporary surface water (flooding), detailed in Chapter 4. The 

selection of these three areas of interest are also based on the availability of reference 

data (part 3.1.2.1). Test area of Ireland is selected also for mapping permanent surface 

water, detailed in Chapter 5. The other two sites in Grand-Est and Indonesia are chosen 

to validate the application of our methodology in some different thematic case study 

(part 3.1.2.2). 
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3.1.2.1 Sites of interest for testing developed methodology 

In order to assess the results of our proposed method (Chapter 4) in extracting 

temporary surface water (flooding), we have selected three sites in Europe where the 

COPERNICUS Emergency Management (EM) Service has been activated during the 

period 2015 and 2016 (corresponding to the beginning of our research). This service 

produces flood maps of those sites using ESRI World Imagery, COSMO-SkyMed, 

Radarsat-2, and other images other than Sentinel imagery. Those flood maps are used 

in this study for reference data. The data can be downloaded freely from the website: 

https://emergency.copernicus.eu/mapping/map-of-activations (Figure 3. 1). 

 

Figure 3. 1. Copernicus website to access floods maps. 

During the winter 2015 – 2016, three extreme floods events are occurred in Ireland 

(EMSR149 activation), in England (EMSR150 activation), and in Italy (EMSR192 

activation) – Figure 3. 2. Each site is described below and the Sentinel 1 and Sentinel 

2 images used are listed. 
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Figure 3. 2. Study areas with extreme flooding events during 2015-2016. 

Zone A – Ireland, Zone B – England and Zone C – Italy. 
 

· Ireland (Zone A) 

The first site is located in Ireland, especially in central areas of the island (Figure 3. 4). 

During Storm Desmond on the 4th December 2015, heavy rain with a 24 h total 

precipitation of 160.8 mm was reported at Keenagh Beg (County Mayo, Ireland) 

(Éireann, 2015). The storm led to a severe flooding event during winter 2015-2016, 

altering the spatial extent of surface waters for some days. This 100-year record flood 

event particularly affects the catchment of the Shannon River (Figure 3. 4).  Areas such 

as Ennis, Gort, Roscommon, Ballinasloe, and Portumna had been severely affected. 

Road networks, grasslands and croplands were submerged during the flooding 

(National Directorate for Fire and Emergency Management, 2016) (Figure 3. 3). 

Therefore those areas are of specific interest in our study. 

 

Figure 3. 3. Photos of flood in central area of Ireland (Pollak, 2016). 



Chapter 3. Study area, datasets and pre-processing of Sentinel 1&2 

 

 

54 

Figure 3. 4 and Table 3. 1 present Sentinel-1 & 2 coverage areas and the list of  images 

used in Ireland between the end of 2015 and 2016. All Sentinel-1 images are in 

ascending mode. 

 

Figure 3. 4. Study area in Ireland with Sentinel-1 & 2 coverage areas. 

Table 3. 1. Images used for the Ireland study area. 

Track 

number 
Levels 

Sentinel-1 

acquisition 

Time 

series 
Information 

Track 

number 

Sentinel-2 

acquisition 

Cloud 

cover 

74 L1 GRD 22/11/2015 t1 Dry / / / 

74 L1 GRD 16/12/2015 t2 Flooding 
23 22/12/2015 5.6% 

74 L1 GRD 28/12/2015 t3 Dry 

74 L1 GRD 09/01/2016 t4 Flooding / / / 

74 L1 GRD 14/02/2016 t5 Dry 
/ / / 

74 L1 GRD 26/02/2016 t6 Dry 

74 L1 GRD 09/03/2016 t7 Dry 
/ / / 

74 L1 GRD 21/03/2016 t8 Dry 

74 L1 GRD 14/04/2016 t9 Dry / / / 

74 L1 GRD 08/05/2016 t10 Dry / / / 

1 L1 GRD 08/06/2016 t11 Dry / / / 

1 L1 GRD 14/07/2016 t12 Dry 23 18/07/2016 6.6% 

1 L1 GRD 19/08/2016 t13 Dry / / / 

1 L1 GRD 12/09/2016 t14 Dry / / / 

1 L1 GRD 18/10/2016 t15 Dry 
/ / / 

1 L1 GRD 30/10/2016 t16 Dry 

     23 06/11/2016 4.5% 

74 L1 SLC 16/12/2015 - Flooding    
74 L1 SLC 09/01/2016 - Flooding    
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For Chapter 4, Sentinel-1 scene 1 (track number 74) images are used in order to process 

a large area including Roscommon, Ennis, Gort, Ballinasloe and Portumna (Figure 3. 

4). Since Chapter 4 is only focused on flooding events, four images of Sentinel-1 IW 

GRD are used (Sentinel-1 22/11/2015, 16/12/2015, 09/01/2016 and 14/02/2016). Those 

images include pre-event, during event and post-event images of floods. 

This first site is also interesting for testing the methodology as (1) the density of 

permanent surface waters (e.g. lakes and rivers) is high and (2) the variation in spatial 

extents over the season is moderated because of the oceanic temperate climate. For 

those reasons, this study case has been selected to answer our second main research 

questions related to the potentialities of times series to improve permanent surface 

water extraction and to monitor flooding. All listed images of Sentinel-1 IW GRD 

(Table 3. 1) have been used for Chapter 5.  

For analysis of multi-source images in Chapter 5, only three cloud-free Sentinel 2 

images are available (cloud cover less than 15%). For SAR polarimetry analysis 

presented in Chapter 6, Sentinel-1 SLC mode is used during the flooding events (16/12 

and 09/01/2015). 

 

· England (Zone B) 

For the second test site, an area in England (activations n ° 150) has been selected. On 

22nd December 2015, around three weeks after Storm Desmond, Storm Eva occurred 

and caused heavy rainfalls (about 215 mm 24h rainfall) in the Yorkshire area (British 

Geological Survey, 2015). A series of downpours leading to extensive flooding which 

particularly affected a large zone of West Yorkshire including the city of Leeds was 

observed (Figure 3. 5). Related to the flooding event, this area become the second area 

of interest in this study. Figure 3. 6 and Table 3. 2 present coverage areas of England 

and images used (Sentinel-1 IW image in descending mode and Sentinel-2 image). This 

study area is used only for Chapter 4. 
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Figure 3. 5. Photos of flood in England site area (Etherington-Smith, 2015; York Press, 2016). 

 

Figure 3. 6. Study area of England with Sentinel-1 & 2 coverage areas. 

Table 3. 2. Images used for England. 

Track 

number 
Levels 

Sentinel-1 

acquisition 
Information 

Track 

number 

Sentinel-2 

acquisition 

Cloud 

cover 

81 L1 GRD 29/12/2015 Flooding 137 29/12/2015 11% 

 

· Italy (Zone C) 

In order to validate the methods developments in Chapter 4, a third study case submitted 

to flooding event has been selected. Starting on 21st November 2016, persistent rainfalls 

with levels of up to 200 mm in around 12 hours were recorded in some areas of north 

west Italy (Figure 3. 8). Those areas reported to be facing some of the worst flooding 

in 20 years. Floods that arise have caused damages and difficulties such as mud 

deposits, vehicle destruction and road cut-offs. Two deaths were reported and hundreds 
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of people were evacuated (Copernicus, 2016). Table 3. 3 shows Sentinel-1 IW in 

descending mode and Sentinel-2 images used in this study. 

 

Figure 3. 7. Photos of flood in Italy site area (euronews, 2016). 

 

Figure 3. 8. Study area of Italy with Sentinel-1 & 2 coverage areas. 

Table 3. 3. Images used for Italy. 

Track 

number 
Levels 

Sentinel-1 

acquisition 
Information 

Track 

number 

Sentinel-2 

acquisition 

Cloud 

cover 

66 L1 GRD 28/11/2016 Flooding 65 08/11/2016 3.4% 

 

3.1.2.2 Sites of interest for validation in different thematic context 

In order to validate our methodological approach, we decided to select two other areas 

of interest in two different countries (France and Indonesia). 
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· Grand-Est, France: monitoring floods plain 

The first one is related to a recent event of flooding during the winter 2018 in the Grand-

Est Region. The objective is to apply the method of Chapter 4 to produce rapidly floods 

maps around the catchment of the Zorn River (next to Brumath – Figure 3. 10).  Another 

purpose is to apply the time series analysis method of Chapter 5 to extract permanent 

surface water. 

The passage of the Storm Eleanor (Cyclone Burglind) had already brought significant 

amounts of rain in 2-3 January 2018 and affected Ireland, the United Kingdom, France, 

the Benelux, Germany, Austria and Switzerland. After the storm, heavy rainfall 

occurred and caused several overflowing floods in France including the Grand-Est 

region (CCR, 2018; Mertz, 2018). Data reported that January become unusually wet in 

Grand-Est region. Surplus of precipitation which is already present at the end of 

December increased and reached to more than 50%. The data also stated that the 

minimum river discharge measured in France during the month of January were above 

normal (eaufrance, 2018). 

One of the main river in Grand-Est, the Zorn, was overwhelmed by those strong 

precipitations and caused inundation in its surrounding areas (Figure 3. 9). On 23 

January 2018, data reported that floods occurred in Zorn watershed near to the 

municipalities of Brumath, Hoerdt and Hochfelden (Sertit, 2018). Zorn River lies in the 

Moselle and Bas-Rhin departments with 580 km of linear streams. Historically, floods 

are frequently occurred in the Zorn watershed area. The municipalities of Eschbourg, 

Brumath and Dossenheim-sur-Zinsel are the most affected floods areas (Conseil 

Général du Bas-Rhin, 2012). 

 

Figure 3. 9. Photos of flood in Grand-Est site area (Aurélien Willem, 2018). 
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Figure 3. 10. Study area of Grand-Est with Sentinel-1 & 2 coverage areas. 

For this application, 11 images of Sentinel-1 IW GRD from short-term periods in 2017 

and 2018, with short range intervals, minimum interval is 1 day and maximum interval 

is 22 days have been downloaded (Table 3. 4). Coverage areas of images used can be 

seen in Figure 3. 10 with their ID number. Post-events images of Sentinel-2 are only 

used for qualitative assessment due to no images are available during the floods events. 

For quantitative assessment, flood reference map produced by ICUBE-SERTIT is used 

(Sertit, 2018). The map is produced within the framework of the EUGENIUS H2020 

project (European Group of Enterprises for a Network of Information Using Space). 

The project provides regional (local) small and mid-size flood monitoring service based 

on the combined exploitation of Copernicus satellite data (especially Sentinel-1 and 

Sentinel-2) and local data (eugenius, 2018). 
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Table 3. 4. Images used for Grand-Est. 

ID 
Track 

number 
Levels 

Sentinel-1 

acquisition 

SAR 

Acquisition 

Mode 

Information 
Track 

number 

Sentinel-2 

acquisition 

Cloud 

cover 

1 66 L1 GRD 10/10/2014 Descending Dry / / / 

1 66 L1 GRD 15/03/2015 Descending Dry / / / 

2 139 L1 GRD 04/12/2017 Descending Dry / / / 

2 139 L1 GRD 16/12/2017 Descending Dry / / / 

3 15 L1 GRD 19/12/2017 Ascending Dry / / / 

4 139 L1 GRD 22/12/2017 Descending Dry / / / 

5 15 L1 GRD 31/12/2017 Ascending Dry / / / 

6 88 L1 GRD 05/01/2018 Ascending Flooding / / / 

7 15 L1 GRD 06/01/2018 Ascending Flooding / / / 

8 88 L1 GRD 11/01/2018 Ascending Dry / / / 

8 88 L1 GRD 23/01/2018 Ascending Flooding / / / 

6 88 L1 GRD 29/01/2018 Ascending Dry / / / 

4 139 L1 GRD 20/02/2018 Descending Dry / / / 

/ / / / / / 108 24/07/2018 0.72% 

/ / / / / / 108 03/08/2018 0.64% 

/ / / / / / 108 28/08/2018 4.05% 

 

· Bengawan Solo (East Java – Indonesia): monitoring river changes 

The last area of interest is located in the Bengawan Solo watershed, especially in the 

downstream area. This area is situated in East Java, Indonesia and covers the 

Bojonegoro, Tuban and Lamongan districts. Bengawan Solo River is recorded as the 

longest and the largest river on Java Island, Indonesia (Figure 3. 11). Thus, this river 

becomes one of the biggest water resources in Java, Indonesia. Flood occurred almost 

annually in the Bengawan Solo watershed (Rahmawaty, 2015). On the other hand, 

based on water resource balances, Bengawan Solo watershed also showed a water 

deficit (Anna et al., 2017). 

The downstream area of Bengawan Solo River is a meeting place of water flow from 

two sources of the river (sources come from Wonogiri and Ponorogo). That is why this 

area has the highest flood risk. Another reason is due to erosion in the upstream area of 

Bengawan Solo River which created sedimentation in the Bengawan Solo downstream. 
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In addition, damage on the catchment area leads to a decrease in groundwater and 

increase in surface flow, therefore causing flooding during the rainy season and drought 

during the dry season. Based on those reasons, this area is specifically interesting in 

this study for thematic application. 

 

Figure 3. 11. Study area of Bengawan Solo River downstream with Sentinel-1 & 2 coverage 

areas. 

 

Table 3. 5. Images used for Bengawan Solo. 

Scene 
Track 

number 
Levels 

Sentinel-1 

acquisition 

SAR 

Acquisition 

Mode 

Track 

number 

Sentinel-2 

acquisition 

Cloud 

cover 

1 3 L1 GRD 22/01/2017 Descending / / / 

2 3 L1 GRD 15/02/2017 Descending / / / 

3 3 L1 GRD 11/03/2017 Descending / / / 

3 3 L1 GRD 04/04/2017 Descending / / / 

3 3 L1 GRD 10/05/2017 Descending / / / 

3 3 L1 GRD 15/06/2017 Descending / / / 

3 3 L1 GRD 09/07/2017 Descending / / / 

3 3 L1 GRD 14/08/2017 Descending 89 07/08/2017 0.08% 

3 3 L1 GRD 07/09/2017 Descending / / / 

3 3 L1 GRD 13/10/2017 Descending / / / 

3 3 L1 GRD 18/11/2017 Descending / / / 

3 3 L1 GRD 12/12/2107 Descending / / / 
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For Bengawan Solo River downstream, 12 images of Sentinel-1 IW GRD are used. 

Those images were obtained in a one year period (2017), with one image for each month 

(Table 3. 5). Coverage areas of the images used can be seen in Figure 3. 11. The test 

areas are also represented in Figure 3. 11. For the study area of Bengawan Solo, 

Sentinel-2 image is used only for qualitative assessment. 

 

3.1.3 Other reference data 

Some other reference data are used in this research as complementary data to explore 

or sample surface water and to improve our methods. Usually, these data come from 

National Reference Structure such as IGN for France or Environmental Protection 

Agency (EPA) for Ireland. Two types of data have been used: (1) national topographic 

database and (2) Digital Elevation Model (DEM), rainfall and in-situ data. 

 

3.1.3.1 National Topographic database 

The BD TOPO (thematic – Hydrography) (IGN, 2014) serves as reference data for 

preliminary statistical analysis in surface water detection (Section 3.2). The data contain 

hydrographic networks such as streams, water bodies, reservoirs and water points. BD 

TOPO is exploitable at scales ranging from 1: 5,000 to 1: 50,000 and has maximum 

accuracy 0.5 m. The data are used for making training sample classes and also for 

accuracy assessment. 

The national database of the Irish Environmental Protection Agency (EPA, n.d.) 

provides water data such us river networks and lakes in Ireland with scale either be 

1:250,000 or 1:1,000,000. This data are used for visual comparison with another surface 

water products and surface water extracted from proposed method in Chapter 5.  

Topographical map from the Indonesian Geospatial Information Agency (BIG, 2017) 

is used for the thematic application in Indonesia. This map provides land use classes 

with a map scale of 1: 25,000. Water class and irrigation croplands class from this map 

are needed to assess and analyze the result. 
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Figure 3. 12. Examples of national database of surface water: (a) River and lakes from Irish 
EPA in Ireland study area, (b) Surface water database from BD TOPO IGN in Grand-Est 

study area. 

 

3.1.3.2 Global Topographic database of surface water 

For the evaluation of permanent water result, the Water and Wetness product by EC-

COPERNICUS is used as the reference (see Chapter 2 – Section 2.4). The Water and 

Wetness product derived permanent water class for the 2015 reference year. The class 

consists of permanent inland lakes (natural), artificial ponds (permanent fish ponds, 

reservoir), natural ponds (permanent open surface waters), rivers, channels 

(permanently with water), liquid dump sites (permanent) and surface waters with 

floating vegetation which are detectable using remote sensing techniques (Langanke, 

2016). 

 

3.1.3.3 SRTM 30-meter Digital Elevation Model 

SRTM (Shuttle Radar Topography Mission) version 3, 1 Arc-Second Global is used in 

this study. This SRTM data is a type of Digital Elevation Model (DEM) which can be 

downloaded for free in (USGS, n.d.). SRTM data are generated from SIR-C/X-SAR 
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instruments which has an approximate altitude of 233 km. The specifications of SRTM 

version 3 are 30 m x 30 m of spatial resolution with ≤ 16 m absolute vertical height 

accuracy, ≤ 10 m relative vertical height accuracy and ≤ 20 m absolute horizontal 

circular accuracy. 

From SRTM data, Height above Nearest Drainage (HAND) can be generated. HAND 

is a new quantitative topographic algorithm in the form of terrain index based on the 

drainage network (Donchyts et al., 2016; Nobre et al., 2011; Rennó et al., 2008). HAND 

is used to account for limitation of surface waters area. With HAND, false positive of 

surface water detections which are located high above the nearest drainage line can 

potentially be removed. 

 

3.1.3.4 Other statistical data 

For the temporal analysis in Chapter 5, rainfall data is collected. It was taken from 

four stations (Shannon airport, Gurteen, Athenry, and Mount Dillon) in Ireland at 

November 2015 until October 2016 (Éireann, n.d.). Those stations were chosen because 

they are located in and around the Ireland study area. The rainfall data can be 

downloaded freely in Met éireann, The Irish Meteorological Service 

(https://www.met.ie/climate/ available-data/monthly-data). 

In Chapter 6, river discharge estimation is performed for the Bengawan Solo river, 

especially in the downstream area. For the result validation and comparison, in-situ 

measured data from PUSDATARU Central Java Indonesia (PUSTADARU, 2017) is 

used. This in-situ data can be accessed on Open Data - PUSTADARU 

(https://pusdataru.jatengprov.go.id/). 

 

3.2 Pre-processing of Sentinel-1&2 data 

The objective of this section is first to explore the potential of Sentinel-1 image related 

to surface water detection (Sub-section 3.2.1). Sentinel-1 is free available satellite 

images in C-band which has higher revisit time than the other free SAR images. 
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Potentially, it can increase capabilities to detect surface waters and flood, also 

monitoring their change. However, only a few studies investigate the usefulness of the 

C-band Sentinel-1 sensor mission for surface water extraction (Huang et al., 2018; 

Martinis, 2017). In this context, we made some evaluations to explore and define: 

(a) The Minimum Unit Area  

(b) The optimal polarization mode 

(c) The optimal feature 

(d) The influence of speckle filtering 

Based on these results, pre-processing steps will be applied on Sentinel 1 amplitude 

data (Sub-section 3.2.2). Finally, pre-processing steps for Sentinel 2 is detailed (Sub-

section 3.2.3). 

 

3.2.1 Analysis / Parameters of Sentinel-1 data 

a. Identification of the Minimum Unit Area (MUA) 

Surface water in Sentinel-1 images cannot be extracted if the area is too small. The area 

of one pixel on Sentinel-1 IW GRD high resolution image is approximately 440 m2. 

One pixel is not enough to label it as surface waters. Water areas can be detected from 

Sentinel-1 images in the form of pixel sets. In this research, using some sample classes, 

the spatial ability of Sentinel-1 to detect surface water will be tested in order to define 

MUA. These tests have been performed on the study area of Grand-Est with Sentinel-

1 IW GRD in 2014 and 2015 (Table 3. 4) because it constitutes a well-documented area 

in term of existing topographic database (see part 3.1.2.1).  

Three sample classes of surface water are defined based on their area or number of 

pixels:  

1) Surface water with area of less than 0.5 ha. The value of 0.5 ha is determined 

based on area estimation of 10 pixels;  

2) Surface water with area of more than or equal to 0.5 ha but less than 1 ha. This 

class is determined based on area estimation of more than 10 pixels to ± 25 

pixels;  
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3) Surface water with area of more than or equal to 1 ha but less than 1.5 ha. This 

class is determined in order to test if area of 1 ha or more can be extracted from 

Sentinel-1 image. 

One sample class of non-surface water (land) is created in order to observe its 

separability with sample classes of surface water. All samples are created using BD 

TOPO IGN as mask to extract pixel values from the sigma-nought image of Sentinel-1 

(10/10/2014) VV polarization (see part b below). Pixels’ values distribution from the 

extraction results are then compared based on their type of classes (Figure 3. 13). 

 

Figure 3. 13. Comparison of pixel values distribution from each sample class.  

From those graphs, it can be seen that two sample classes of surface water with area of 

less than 1 ha have a distribution range value of almost the same as the land sample 

class. Only the surface water class with area of more than or equal to 1 ha but less than 

1.5 ha has separate distribution from the land sample class. Thus, it can be concluded 

that with the spatial resolution of Sentinel-1 image, detection of surface water with area 

of less than 1 ha will be difficult. Consequently, for quantitative assessment of surface 

water mapping results, only areas greater than or equal to 1 ha will be retained in the 

reference maps. 

 

b. Comparison between VV and VH polarizations 

Polarization choice plays a role in detecting surface water. In general, HH polarization 

provides the most obvious discrimination between surface water and other types of land 

cover classes (Henry, 2004; Pulvirenti et al., 2012; Yamazaki et al., 2013). Low 
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scattering of the horizontal component signal from the open water made vivid 

separability between water and non-water area. HH and VV as co-polarizations lead to 

nearly identical separability of class distributions over a smooth open water area. 

However, an increase in surface roughness reduces the ability to discriminate between 

water and land in VV more than in HH polarization. Over smooth open water area, co-

polarization offers improved class separability in comparison to cross-polarization 

(Martinis, 2010). 

Several researches denote the superiority of the cross-polarization of HV and VH 

(Henry, 2004; Solbø and Solheim, 2005) over co-polarization VV in terms of a rough 

open water. That is why a VV polarized signal is more sensitive to ripples and waves. 

Combining backscatter variations in different polarizations could potentially improve 

the accuracy of surface waters mapping. However, multi-polarization can cause a 

reduction in resolution and coverage. 

The Sentinel-1 IW used in this study consists of two polarizations, i.e. VV and VH. 

With the intention of focusing in temporal observation in the next discussion, we will 

limit our study in just one type. Consequently, it is necessary to analyze both VV and 

VH polarizations in order to determine which polarization type will be used in this study 

for water and non-water separation. 

In order to compare between VV and VH polarization, two Sentinel-1 GRD images 

acquired in 10/10/2014 and 15/03/2015 are used. Preliminary test is done by performing 

manual thresholding method to extract surface water from sigma-nought of those 

images. Water model and land model were calculated from sigma nought images using 

finite mixture model (Benaglia et al., 2009). Afterwards, the threshold is determined 

based on the intersected values between the two models. In this process, the histogram 

of pixel distribution values become important in relation to model building in finite 

mixture models. Therefore, in the selection of the polarization type, the histogram and 

models are the main things to be considered. 

Table 3. 6 presents the histograms of pixel value distributions from sigma-nought 

images VV and VH in two different dates. Those histograms and blue lines showed 

bimodal distribution which is very important in creating the two different models. Table 



Chapter 3. Study area, datasets and pre-processing of Sentinel 1&2 

 

 

68 

3. 6 also denotes water and land fitted models in a density distribution. Water model is 

showed in red density line while land model is in green lines. 

 

Table 3. 6. Histograms and fitted models of sigma-nought images. 

Sigma-nought Histograms Fitted Models 

10/10/2014 VV 

 

 

10/10/2014 VH 

  

15/03/2015 VV 

  

15/03/2015 VH 
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The histogram of sigma-nought VH 15/03/2015 has a different pattern with the other 

histograms. Another histograms indicated very clear bimodal distribution, while this 

histogram looks almost like unimodal distribution. Two peaks of the histogram are very 

close. The different patterns of the histograms made different patterns in fitted models. 

The histogram from sigma-nought VH 15/03/2015 make it difficult to create two 

models. Difficulty in creating two models will affect the determination of the threshold 

value. In the case of sigma-nought VH 15/03/2015, the separability between two classes 

would produce many errors, because the histogram distribution did not show a 

separation in its pattern. 

Quantitative analysis to compare VV and VH polarizations can be done using ROC 

(Receiver Operating Characteristic) calculation (Fawcett, 2006). The results can be 

seen Table 3. 7. ROC calculations produce two parameters, namely the True Positive 

Rate (TPR) and the False Positive Rate (FPR). ROC shows better result than the others 

if it has higher True Positive Rate and lower False Positive Rate (Fawcett, 2006). 

 

Table 3. 7. ROC calculation results. 

Sigma-nought images Threshold FPR TPR 

10/10/2014 VV ≤ -17.8 1.45% 89.22% 

10/10/2014 VH ≤ -23 1.93% 91.52% 

15/03/2015 VV ≤ -19.8 0.97% 89.55% 

15/03/2015 VH ≤ -21.8 43.88% 94.66% 

 

From Table 3. 7, it can be seen that VH polarization tends to have higher TPR. 

However, we can notice the percentage of FPR value for sigma-nought VH 15/03/2015 

is very high compared to another images (about 44%), while the difference in TPR 

values are only about one until three percent between VV and VH. VH polarization also 

tends to have an irregular histogram which make it difficult to build models which 

subsequently causes errors in the surface water extraction results. Accordingly, in this 

study, VV polarization is selected as data input for subsequent processes. 
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c. Selection of optimal feature for surface water mapping 

Some features can be extracted from Sentinel-1 (10/10/2014) GRD image in VV 

polarization. In this section, five features are extracted. Two features are calculated 

directly from raw data of Sentinel-1 GRD image (1- amplitude and 2- intensity images). 

Three others features are produced by radiometric calibration: 3- sigma-nought, 4- beta-

nought and 5- gamma images (Figure 3. 14). 

 

Figure 3. 14. Original and calibrated products from Sentinel-1 IW GRDH image. 

Correlation analysis (Gogtay and Thatte, 2017) which describes the connection 

(strength and direction) between variables (two by two) is then computed in order to 

observe the relationship between features (Table 3. 8).  High values in correlation 

analysis result mean strong connection between both variables. If the features within 

have high correlation between each other, use of all features will be useless, because 

the features will not have unique values which can completed with each other. 

However, if there are features with low correlation values between each other, those 

features can be used for next processing. 

The results show very high correlation values between features. There are no low values 

of correlation between features. As a consequence of this condition, it would be more 

effective if only one feature is used. In this case, sigma-nought is chosen because it is 

the power returned to the antenna from the horizontal (ground) plane and is thus in the 

realm of ground range (Sarmap, 2009). That condition is very appropriate with the type 

of Sentinel-1 data used in this study (GRD products). Furthermore, the sigma-nought 

is a calibrated product which is better than non-calibrated products (in terms of 

amplitude and intensity). Many studies used sigma-nought for surface water mapping 
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from SAR data and described the capabilities of this feature (Lee et al., 2015; Matgen 

et al., 2010; Pulvirenti et al., 2012; Schlaffer et al., 2012). 

 

Table 3. 8. Correlation between features observed from water and land sample classes. 

Parameters 
Correlation 

Water Land 

Sigma - Beta 0.9999954 0.9999493  

Sigma - Gamma 0.9999958  0.9999496   

Sigma - Amplitude 0.9999818 0.9997938  

Sigma - Intensity 0.9999818 0.9997938  

Beta - Gamma 0.9999824 0.9997977  

Beta - Amplitude 0.9999955 0.9999476  

Beta - Intensity 0.9999955 0.9999476  

Gamma - Amplitude 0.9999601 0.9995395 

Gamma - Intensity 0.9999601 0.9995395 

Amplitude - Intensity 1 1 

 

d. Influence of speckle filtering in surface water areas 

One common problem of SAR data is the appearance of speckle noise. It appears as 

random spots of images with bright and dark spots which can degrade the image quality 

and reduce its potential for interpretation (Lee and Pottier, 2009). Sentinel-1 imagery 

also has speckle noise in their raw data. One of the approaches to reduce speckle noise 

is speckle filtering. In speckle filtering, there are many methods, for example mean, 

median, Lee, etc. 

Some of speckle filtering methods have been analyzed in order to understand the best 

method which can be used in the pre-processing procedure (Sub-section 3.3.2). 

Analysis is performed by calculating the filter evaluation index (ENL and speckle 

index) of surface water areas after filtering (Huang and Genderen, 1996; Wang et al., 

2012). In this evaluation, sample class is used as a mask to determine the boundary of 

surface water areas. The observation is conducted with two different values of 

parameters for each spatial filtering method (Table 3. 9). 
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Table 3. 9. Statistical characteristics and filter evaluation index of filtered images in surface 

water area. 

Method 
Windows Size / 

Description 
Mean 

Standard 

deviation 
ENL 

Speckle 

Index 

Mean 
3x3 -73.7116 4.2255 304.3100 -0,0573 

5x5 -73.2597 4.3316 286.0402 -0,0591 

Median 
3x3 -74.1611 3.9887 345.6955 -0,0538 

5x5 -74.1693 3.6993 401.9880 -0,0499 

Gamma Map 
3x3 -73.7129 4.2233 304.6343 -0,0573 

5x5 -73.1263 4.4423 287.5962 -0,0607 

Lee 
3x3 -73.7123 4.2243 304.4844 -0,0573 

5x5 -73.2643 4.3251 286.9367 -0,0590 

Frost (k:2) 
3x3 -73.8231 4.1135 322.0718 -0,0557 

5x5 -73.7409 4.0095 338.2488 -0,0544 

Refined Lee 
3000 -73.5072 4.1872 308.1866 -0,0569 

5000 -73.5069 4.1889 307.9346 -0,0570 

 

Table 3. 9 describes the statistical characteristics (mean, standard deviation) and filter 

evaluation index (ENL, speckle index) of the filtered images of the surface water area. 

The higher value of ENL (Equivalent Number of Looks) for a filter means the higher 

the efficiency is in smoothing speckle noise over homogeneous areas. The smaller the 

speckle index means the less speckle noise is left in the images. From Table 3. 9, the 

median method using a window of 5x5 pixels has the higher ENL value and smaller 

speckle index value. Therefore, Median 5x5 will be used as the speckle filtering 

method in this study. 

Speckle filter with median method is one of the filtering methods using kernel. It 

replaced the pixel value with the median value of the neighboring pixels. The median 

value is calculated by sorting pixel values from the surrounding neighborhood into 

numerical order and replacing the pixel value with the center pixel value. If neighboring 

pixels consist of an even number, the median value will be determined by the average 

of two central pixel values. Because of its robustness, if there is one single pixel in the 

neighborhood with an unrepresentative value, it will not affect median value. The 

median filter did not create any new pixel values; as it uses the pixel value from one of 
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the neighboring pixels, it will not produce unrealistic values when filtering around the 

edges. Consequently, the median filter is better at preserving sharp edges than the mean 

filter (Saxena and Rathore, 2013). 

For summarizing, the analysis performed in this sub-section allows us to define some 

parameters of the Sentinel 1 amplitude data. The VV polarization, with the sigma-

nought features from Sentinel-1 GRD images will be used to assess the potentiality of 

Sentinel-1 in extracting surface water areas around 1 ha. For the next section, in the 

pre-processing procedure, the median filter with a 5x5 size will be used for spekle 

filtering. 

 

3.2.2 Pre-processing steps of Sentinel-1 amplitude data 

Image pre-processing is applied to each Sentinel-1 IW GRD dataset in order to reduce 

orbital errors, speckle noise, and geometric distortion (Figure 3. 15). 

 

Figure 3. 15. Step by step in pre-processing of Sentinel-1 GRD (amplitude data) and their 
results visualization. 

The first processing step comprises the application of precise Sentinel orbits, which 

can be obtained from SNAP (Sentinel Application Platform) (Foumelis, 2015; Stewart, 
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2016) and considerably improve the geolocation accuracy. Sentinel-1 data actually have 

some problems with their orbit information in metadata. This problem caused a non-

accurate effect when they are superimposed. Thus to be able to overcome this problem, 

orbit data of Sentinel-1 images must be updated with available orbit file data. This step 

called apply orbit file. 

In the second step, to transform raw amplitude images to calibrated products for the 

quantitative use of SAR images, we used also SNAP software. Based on discussion 

above (Sub-section 3.2.1) sigma-nought was selected among available calibrated 

products from SNAP, such as amplitude, intensity, beta-nought, and gamma. 

In the third and fourth steps, in order to reduce speckle noise, multilook and speckle 

filtering with a Median filter and window size of 5 × 5 pixels were used based on 

discussion above (Sub-section 3.2.1). 

Subsequently, in the fifth step, Range Doppler Terrain Correction is applied to 

geocode the images. Some reasons can cause distortion of distance in SAR images. For 

example diverse topographic in scene from satellite’s sensors which produce SAR 

effects (e.g. layover, shadow, foreshortening). The other reason is the tilt of the satellite 

sensor. Those are the examples of causes in image distortion, generally where image 

data lie not directly at the sensor’s nadir location. In order to solve these distortions, 

terrain corrections are performed (Mahapatra and Hanssen, 2011). 

In the terrain correction step, radiometric normalization is done in order to minimize 

the influence of the local incident angle on the image (Warner et al., 1996). It is 

important, because local incident angle can affect the value of backscattering image. 

The same object, if the value of local incident angle is different, it can create different 

backscattering value. Thus, radiometric normalization is carried out. Radiometric 

normalization applied in this study is based on method proposed by (Kellndorfer et al., 

1998) with equation as shown below. 

!"#$%
&  = !'(()*+#),

&  
-./01234
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   (3.1) 
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Where :,'% is described as the angle between the incoming radiation vector and the 

projected surface normal vector into range plane. In the implementation, it is the local 

incidence angle projected into the range plane (Schreier, 1993). 

In the Figure 3. 15, SAR image will appear upside down before terrain correction 

process. The geometry provided in that image is represented by a collection of 

backscattering ordered in time, both in azimuth and range. SAR image presented in 

Figure 3. 15 is in ascending mode, thus it appears north-south flipped. If SAR image is 

in descending mode, it will appears east-west flipped. Terrain correction make image 

projected geographically correct and fix that orientation issue. 

 

3.2.3 Pre-processing steps of Sentinel-2 data 

Image pre-processing is applied to each Sentinel-2 data in order to obtain Bottom of 

Atmosphere (BoA) values, remove cloud and shadow areas and obtaining water 

index (Figure 3. 16). 

 

Figure 3. 16. Pre-processing steps of Sentinel-2 data. 

In the first step, the Sentinel-2 level 1C (Top of Atmosphere (ToA) values) are 

corrected to level 2A (BoA values) using Sen2Cor tools available in SNAP (Louis et 

al., 2016). The correction must be done to remove the effects of all gaseous and aerosols 

properties of the atmosphere from the image. The result has BoA and can be used to 

extract accurate spectral information from features on the Earth's surface. 
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The second step is cloud and shadow masking. As been stated before, optical data are 

sensitive to cloud cover which can also produce shadow area in the image. Cloud and 

shadow masks can be obtained from Scene Classification product resulted in Sentinel-

2 level 2A. Those masks can be used to remove cloud and shadow areas from image in 

order to get accurate result. 

The third step consists of NDWI2 calculation. Normalized Difference Water Index 

(NDWI) may refer to one of at least two remote sensing-derived indexes related to 

liquid water. The first one is used to monitor changes in water content of leaves, using 

near-infrared (NIR) and short-wave infrared (SWIR) wavelengths. The second one is 

used to monitor changes related to water content in water bodies, using green and NIR 

wavelengths. NDWI2 (Equation 3.2) is the name in SNAP sofware which calculate 

water index using the second combination. This index classically used to extract surface 

water (Du et al., 2016; McFeeters, 1996), calculated at 10 m spatial resolution and is 

used for feature extraction.  

NDWI2 = 
;<=4>4<?@

;<=4A4<?@
      (3.2) 

where B3 is the green band and B8 is the near-infrared band. 

 

 

This chapter presented the datasets necessary for performing surface water mapping in 

this study. The technical description of the datasets were presented. The study areas 

were described and the background about the selected study areas were provided. Lists 

of Sentinel-1 and 2 used in this study were presented. Their coverage areas were also 

provided. The pre-processing of Sentinel-1 image including its exploratory analysis 

were presented. The pre-processing of Sentinel-2 imagery was also detailed. The next 

chapter will introduce the Water-S1 method developed for Sentinel-1. 
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The previous chapter provided information about the datasets necessary for performing 

surface water mapping. It described the selected study areas and presented lists of 

Sentinel-1 and 2 images used in this study. It also presented softwares used and pre-

processing of Sentinel-1 amplitude data. This chapter will present the automatic 

mapping of surface water (the Water-S1 method) developed for Sentinel-1 image 

processing. 

This chapter was written based on an article published in the Remote Sensing MDPI 

journal 2018 volume 10, issues 2: A Method for Automatic and Rapid Mapping of Water 

Surfaces from Sentinel-1 Imagery (Bioresita, F., Puissant, A., Stumpf, A., and Malet 

J.P., 2018). Some redundancies can then appear in this chapter. 

 

4.1 Introduction 

Several SAR-based water detection algorithms have been proposed in the literature (see 

Chapter 2). Among the methods, thresholding is the most commonly adopted method 

for SAR image analysis to discriminate water and non-water areas. However, based on 

discussion in Chapter 2, it is difficult to determine the optimal threshold value for a 

scene/landscape, which implies the need for user intervention. 

The number of SAR-based water detection algorithms and automatic flood mapping 

services has increased in the last years (see Chapter 2). In most cases, a certain amount 

of user interaction is needed for data collection, pre-processing, and integration of 

auxiliary data in the processing pipelines. Hence, while several semi-automatic and 

automatic tools already exist, there are, to the best of our knowledge, currently only a 

few scientific references which present a fully automatic water detection processor for 

surface water mapping from Sentinel-1 imagery (Clement et al., 2017; Martinis, 2017; 

Twele et al., 2016). This method uses thresholding on individual pixels ignoring the 

correlation among neighboring pixels. Considering that individual pixels are not 

independent random variables but form a random field (Schindler, 2012), the potential 

to improve the accuracy of the flood extent maps exists. 
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The objectives of this chapter are thus (1) to investigate the use of bilateral filtering as 

a smooth labeling method for defining the thresholds; (2) to integrate 

hydrologic/topographic information in the detection using the ‘Height above nearest 

drainage’ (HAND) index (Rennó et al., 2008); and (3) to quantitatively evaluate the 

accuracy of our proposed fully-automated SAR-based water detection algorithm for 

Sentinel-1 data. 

 

4.2 Methods 

Three test areas are used in this chapter i.e., Ireland, England and Italy. Lists of images 

used have been detailed in Chapter 3. In order to assess our results, floods maps from 

COPERNICUS EM Service (Copernicus, n.d.) are used. 

The automatic processing chain proposed in this chapter is described in Figure 4. 1. It 

includes five components: (i) pre-processing of raw Sentinel-1 data which has been 

detailed in Chapter 3, (ii) a tiling approach in order to focus on water surface areas 

automatically, (iii) class modeling with Finite Mixture Models (Benaglia et al., 2009) 

to produce probability map based on established class models, (iv) bilateral filtering 

(Schindler, 2012) for smooth labelling, and (v) post-processing and accuracy 

assessment. 

In this chapter, we try to compare two scenarios of the processing chain based on the 

use of the HAND map. In the first scenario, the HAND index is applied in the pre-

processing step to limit the considered area for the next processing step in order to avoid 

misclassification. In the second scenario, the HAND index is used as a final post-

processing step for the amount of misclassified areas in the surface water maps. 

Moreover, we also perform a sensibility analysis of tile size used for the tiling approach 

in order to find a suitable tile size to be used in the processing. 
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Figure 4. 1. Flowchart showing the overall proposed methods. 

 

4.2.1 Processing chain 

4.2.1.1. Image tiling using a Modified Split-Based Approach (MSBA) 

A Split-Based Approach (SBA) was originally proposed by (Bovolo and Bruzzone, 

2007) for flood detection with Radarsat images. This approach comprises a tiling of the 

satellite imagery into smaller sub scenes of a user-defined size and a successive local 

thresholding analysis. The approach’s performance has been confirmed in many studies 

for automatic mapping in remote sensing, (e.g., Chini et al., 2015; Martinis et al., 2009). 

The original SBA approach relies on the coefficient of variation to pre-select tiles for 

further processing and a global thresholding method to produce binary maps of surface 

water coverage. As noted by the authors, global thresholding methods are well adapted 

for small scene extents but face problems for the larger scene extents of Sentinel-1 with 

higher backscatter variances resulting from variations in the incidence angle. 

To address this issue, we proposed a modified split-based approach which only applied 

pre-selection tiles for class modelling. Images are first automatically tiled into squared 

non-overlapping blocks. The tiles selection is then performed to choose only image 

tiles, which contain some portion of surface waters. This selection is based on 
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Hartigan’s dip statistic (HDS) value (Freeman and Dale, 2013). The underlying 

hypothesis is that tiles with surface waters and land areas have bimodal grey-value 

distributions. HDS is used to distinguish between tiles with unimodal and bimodal 

distributions. P-values resulting from the HDS test are considered with values less than 

0.05, indicating statistically significant bimodality (Freeman and Dale, 2013). Thus, 

only tiles with a p-value of less than 0.05 will be used for the subsequent class 

modelling with finite mixture models. In this context, it is important to note that this 

processing step only concerns the pre-selection for the class modeling, whereas the 

entire image is processed for the generation of the final water surface maps. 

 

4.2.1.2. Class modelling with Finite Mixture Models (FMM) 

The Finite Mixture Models represent the existence of subclass diversity with a limited 

number of distributions. They allow the decomposition of probability distributions into 

subgroups assuming that the observed distribution is the result of a mixture of sub-

populations which are distributed according to a particular form (i.e., Gaussian). A 

popular method for modeling the parameters of the probability distributions 

contributing to the mixture is Expectation-Maximization (EM) (Benaglia et al., 2009). 

The experimental results presented in this chapter rely on the assumption of a mixture 

of two Gaussian components, whereas the underlying implementation also allows the 

use of skewed distributions such as the Gamma function. Their initial means are 

determined automatically from the binned histograms and the standard deviation is set 

as 3 for the respective tile. The probability of surface waters is set as 0.1 in accordance 

with previous works (Bazi et al., 2007; Martinis et al., 2009), suggesting that a 

minimum amount of 10% of each class is sufficient for accurate threshold detection. 

Sensitivity tests of these parameters are performed to quantify the influence of standard 

deviation and probability parameters in this process. The EM-based distribution fitting 

is performed over a maximum of 1000 iterations and tiles for which convergence is not 

reached within this number of iterations are excluded only for the calculation of the 

threshold value. Instead of directly determining the threshold value, this process is used 

to compute posterior probabilities to generate surface water probability maps. 
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The standard EM algorithm for normal mixtures is based on a first step called the E-

step (Equation 4.1) and followed by a second step called the M-step (Equation 4.2) 

(Benaglia et al., 2009). In the E-step, it searches for the expected value p of the complete 

likelihood for all i = 1, . . . , n and j = 1, . . . , m at iteration t, from a given 

parameterization (λ, ϕ(x)). 

!"#($) = %& + ' *#,($)-#,($)(.")
*#($)-#($)(.")#/0# 1

2&
   (4.1) 

In the M-step, it finds the model parameters λ that maximize the conditional expected 

values from the E-step. 

*#($3&)4= 
&
5 ' !"#($)5"6& , for j = 1, . . . , m.  (4.2) 

After computing the model parameters for each tile, we calculate the average of those 

parameters to derive a global set of parameters. Then, using the global parameters, 

posterior probabilities (Equation 4.1) are computed for each pixel of the entire image. 

 

4.2.1.3. Smooth labelling using a Bilateral Filtering approach 

Binary thresholding methods commonly treat each pixel independently to assign class 

labels such as land and surface water areas. However, considering the spatial auto-

correlations among nearby pixels, it can be assumed that nearby pixels tend to have the 

same class label (smoothness assumption) (Schindler, 2012). 

Based on this assumption, bilateral filtering is used as a strategy for smooth labelling 

and the suppression of small spurious detection. This filter is a non-linear, edge-

preserving, and noise-reducing smoothing filter commonly used in image processing. 

The intensity value at each pixel in an image is replaced by a weighted average of 

intensity values from nearby pixels. The resulting image is subsequently transformed 

into a binary image assigning all pixels with a probability of surface water greater than 

0.9 as water surface. 
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4.2.1.4. Post-processing 

In the post-processing step, the accuracy of final binary maps is assessed by calculating 

classical measures (overall accuracy, F-measure (van Rijsbergen, 1979), true positive 

rates, false positive rates, omission and commission errors) obtained by a comparison 

with very-high resolution Copernicus products (Copernicus, n.d.). 

 

4.2.2 Comparison of two scenarios using HAND maps 

A previous study showed the advantages of using HAND maps for flood mapping 

(Clement et al., 2017; Twele et al., 2016) to remove false positive surface water 

detections which are located high above the nearest drainage line. In order to create 

HAND maps, stream networks are defined with a 10 ha threshold (Montgomery and 

Dietrich, 1988). For this study, a HAND threshold of 15 m (Nobre et al., 2011; Twele 

et al., 2016) is used. 

In this chapter, we performed two approaches to improve the accuracy of the surface 

water mapping. The first approach is using the HAND map in the pre-processing step, 

while the second approach employs the HAND map in the post-processing step. A 

comparison of the results will determine the best scenario for this study. A tile size of 

10 km will be used in both of the scenarios. 

 

4.2.2.1 Scenario 1: Use of HAND maps in Pre-processing 

For the first scenario, we use a HAND map in the pre-processing step, after subsetting 

the sigma-nought image in the study area boundary. All areas with a HAND index of 

>15 m are excluded from all further processing steps including the computation of the 

HDS, finite mixture modelling, the generation of the probability maps, bilateral 

filtering, and the generation of the final maps. In this scenario, potential false positives 

are removed in the initial stage of the processing chain and will thus not impact the 

statistical analysis. A further advantage of this scenario is the reduction of the amount 

of data and hence faster processing. 
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4.2.2.2 Scenario 2: Use of HAND maps in Post-processing 

In the second scenario, we use a HAND map only in the post-processing step after 

labeling the surface water class. In order to reduce misclassification, we subset surface 

water areas in the HAND ≤ 15 m boundaries and produced the final surface waters map. 

In this scenario, all previous processing steps are based on the entire input image. 

 

4.2.3 Sensitivity analysis of tile size used in tilling approach 

It is a known issue that statistical thresholding methods applied to subsets of the image 

are sensitive to the size of the individual tiles (Martinis et al., 2009). The default tile 

size used in this study is 10 × 10 km due to the spatial extent of a Sentinel-1 image 

(250 km swath), but it cannot be excluded that increasing or reducing the tile size might 

improve or degrade the accuracy of the final maps. Using the first processing scenario, 

tile sizes of 2.5 km and 5 km are also evaluated and compared for the three study areas. 

 

4.3 Results 

4.3.1 Influence of FMM parameters values 

Given that FMMs are sensitive to the initial values set for standard deviations and prior 

class probabilities, the impact of variations in the initial parameter settings on the final 

class model is examined. The influence of FMM parameter values is assessed for the 

Sentinel-1 image (9 January 2016). This analysis is performed for three tiles in the 

Ireland study area, which are deemed representative for different proportions of land 

and surface waters (Figure 4. 2). In Tile (a), surface waters cover more than 70% of the 

area, while in Tile (b), land and surface waters cover the same proportion of areas. In 

Tile (c), the majority is land surface. FMMs are initialized on these three tiles testing 

initialization values from 1 to 9 and from 0.1 to 0.9 for the standard deviation and prior 

class probabilities, respectively. 
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Figure 4. 2. Variation of standard deviation (a1, b1, c1) and surface water probabilities (a2, 

b2, c2) in the initial values of FMM parameters to output models for different proportions of 

land and surface waters in tiles. 

The results of this evaluation are presented in Figure 4. 2. In the standard deviation 

column, we give various values of standard deviation as initial values and observe mean 

and probability values of the model. The graphs indicate the mean and probability 

values of the model associated with initial values of the standard deviation. 

Subsequently, in the column with surface water probabilities, we give various values 
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of probability as initial values and observed the mean and standard deviation values of 

the model. Figure 4. 2 shows that image tiles with large portions of surface water areas 

converge to the same stable output model no matter which initial values are selected. 

Contrarily, Tile (c), which includes rather small portions of surface water area, tends to 

generate marginal solutions with standard deviations above 3 or prior probabilities for 

the surface water class above 0.5. For Tile (b), which presents an intermediate 

contribution of water surfaces, the FMMs converge to a stable solution below standard 

deviations of 7 and water class probabilities of 0.7. Considering the result of this 

analysis, the use of a standard deviation of 3 and prior probability of 0.1 was considered 

as sufficiently low to assure that the FMMs will generally converge to stable solutions 

with a good approximation of the bimodal distributions. 

 

4.3.2 Sensitivity of Bilateral Filtering parameter 

The size of the filtering window and its influence on the results is also analyzed. The 

sensitivity of the classification accuracy to changes in these parameters is evaluated 

empirically for the image Sentinel-1 scene recorded on 9 January 2016 over the Gort 

area in Ireland study area. 

 

Figure 4. 3. Dependence of classification result on bilateral filter window size indicated (a) by 

overall accuracy and (b) F-measure value. 

Figure 4. 3 represents the dependence of overall accuracy and F-measure on changes in 

the window size. It can be seen that a window size of 5 × 5 pixels yields the optimal 
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result with the overall accuracy reaching 99.07% and F-measure at 0.84. Therefore, for 

all experiments, the bilateral filtering window was fixed to 5 × 5 pixels. 

Figure 4. 3 also shows that bilateral filtering yields higher overall accuracies when 

compared to unfiltered maps over a wide range of window sizes between 3 × 3 pixels 

and 17 × 17 pixels. This clearly justifies the use of bilateral filter as a smooth labeling 

method in this study. 

 

4.3.3 Results comparison between Scenario 1 and Scenario 2 

Based on a comparison of quantitative evaluation results from scenario 1 and 2, there 

are no significant differences in all evaluation parameter values between the two 

scenarios. However, compared to scenario 2, scenario 1 gives slightly better evaluation 

results. This can be seen in Figure 4. 4, which displays the F-measure values from all 

images. In the F-measure graph, the higher the value signifies the better the results. 

Figure 4. 4 shows higher values for scenario 1 for two images and the same values for 

the other images. Thus, the use of scenario 1 is recommended and will be applied for 

this study. 

 

Figure 4. 4. Comparison of F-measure between scenarios 1 and 2. 
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4.3.4 Sensitivity of tile size in MSBA and FMM steps 

A sensitivity analysis is carried out in all three study areas through a quantitative 

assessment of the results with different tile sizes. Using scenario 1 and all further 

processing steps as explained above, only the tile size used in the MSBA and FMM 

steps is changed to values of 10 km, 5 km, and 2.5 km. A quantitative comparison 

against the available reference maps in Ireland study area is presented in Table 4. 1 and 

indicates only subtle differences between three tile sizes. While small variations exist 

regarding the tradeoff between TPR and FPR, the F-measures are indistinguishable. 

 

Table 4. 1. Result assessment for three different tile sizes in the study area of Ireland. 

Evaluation 

22/11/2015 16/12/2015 9/1/2016 14/02/2016 

10 km 5 km 2.5 km 10 km 5 km 2.5 km 10 km 5 km 2.5 km 10 km 5 km 2.5 km 

Overall accuracy 99.41% 99.40% 99.40% 98.68% 98.68% 98.68% 98.68% 98.67% 98.66% 99.35% 99.36% 99.38% 

F-measure 0.88 0.88 0.88 0.77 0.77 0.78 0.92 0.92 0.92 0.88 0.88 0.88 

TPR 81.27% 81.65% 81.44% 66.96% 67.04% 67.83% 89.67% 89.42% 89.18% 86.42% 86.26% 86.51% 

FPR 0.09% 0.10% 0.10% 0.22% 0.22% 0.24% 0.47% 0.45% 0.44% 0.29% 0.27% 0.31% 

Omission error 18.73% 18.35% 18.56% 33.04% 32.96% 32.17% 10.32% 10.58% 10.82% 13.58% 13.74% 13.49% 

Commission error 3.79% 4.29% 4.06% 8.54% 8.60% 9.31% 5.26% 5.10% 4.96% 10.80% 10.22% 11.29% 

 

Table 4. 2. Result assessment for three different tile sizes in the study areas of England and 

Italy. 

Evaluation 
England 29 December 2015 Italy 28 November 2016 

10 km 10 km 5 km 2.5 km 5 km 2.5 km 

Overall accuracy 98.40% 98.68% 98.75% 98.75% 98.42% 98.40% 

F-measure 0.75 0.64 0.66 0.7 0.76 0.76 

TPR 62.44% 48.51% 52.11% 61.05% 66.13% 67.36% 

FPR 0.15% 0.10% 0.11% 0.33% 0.28% 0.36% 

Omission error 37.56% 51.49% 47.89% 38.95% 33.87% 32.64% 

Commission error 5.72% 7.50% 8.15% 18.17% 9.57% 11.64% 

 



Chapter 4. Detection of surface water area using mono-date Sentinel-1 amplitude data 

 

 

90 

Similarly, in study area of England, a smaller tile size seems to favor both a higher TPR 

and a higher FPR, whereas the F-measure remains rather stable among all tested tile 

sizes (Table 4. 2). On the other hand, the results for study area of Italy indicate a 

significant improvement from an F-measure of 0.64 towards 0.7 when using smaller 

tile sizes (Table 4. 2). This might be due to smaller water surfaces in study area of Italy, 

which are less likely to be omitted at smaller tile sizes. 

 

4.4 Discussion 

Generally, the accuracy assessment shows very high overall accuracies of about 98% 

for each of the study sites. Moreover, the commission error remains below 20% for all 

test zones. The final quantitative evaluation of surface water extraction results is 

presented in Table 4. 3. The presented results are obtained fully automatically using 

scenario 1 and a tile size of 10 km. As shown in the previous section, further 

improvements can be expected through an adaptation of the tile size, whereas we prefer 

to present here the results obtained with a default value that is more realistic for an 

operational scenario. 

For each zone, a map depicting the extent of surface waters is presented and several 

zooms overlaying Sentinel-2 imagery allow a better visualization of results. The surface 

water detection in study area of Ireland shows results with F-measures ranging from 

0.77 to 0.92. Figure 4. 5a–d show that false negatives occur mainly along the borders 

of surface water bodies, where most of the false positives are also located. In the Ennis 

area, the narrow river with a width of around 50 m cannot be detected. This is probably 

due to vegetation along the river banks and increased turbulence along the permanent 

riverbed which leads to increased backscattering in those areas (see Figure 4. 5d). 

Flooded areas are detected in wetland areas along Shannon River (Figure 4. 5b). 

The evaluation of study area of England shows an adequate performance of the 

automatic detection with an F-measure value of 0.75. The study area of England 

comprises numerous narrow river sections which, even during flooding events, do not 

exceed 100 m in width and are consequently difficult to detect with Sentinel-1 (see 

Figure 4. 6d). Similar to study area of Ireland, the detection of these sections is further 
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complicated by tree-and hedge lines along the river banks, as well as greater turbulence 

and hence water surface roughness along the permanent riverbed. 

Study area of Italy comprises several narrow river sections in Sale regions, which 

similarly leads to omission errors of about 51%. Some false negatives are visible along 

the borders of Po River (see Figure 4. 7a,b) and mostly appear in the bar or river bank 

areas (see Figure 4. 7c,d). In particular, it seems that several bar and river banks already 

reemerged after the main flooding event on 25 and 26 November 2016. The omission 

is hence due to the acquisition delay of Sentinel-1 because, at the time of imaging, these 

areas where not submerged. 

 

Table 4. 3. Quantitative evaluation of surface water extraction results (using scenario 1 and 

tile size 10 km). 

Study 

Area 

Image 

Date 
Event 

Overall 

Accuracy 
F-measure 

True 

Positive 

Rate 

False 

Positive 

Rate 

Omission 

error 

Commission 

error 

Ireland 

22/11/2015 Before floods 99.41% 0.88 81.27% 0.09% 18.73% 3.79% 

16/12/2015 Floods occurred 98.68% 0.77 66.96% 0.22% 33.04% 8.54% 

09/01/2016 Floods occurred 98.68% 0.92 89.67% 0.47% 10.32% 5.26% 

14/02/2016 After floods 99.35% 0.88 86.42% 0.29% 13.58% 10.80% 

 England 29/12/2015 Floods occurred 98.40% 0.75 62.44% 0.15% 37.56% 5.726 

Italy 28/11/2016 Floods occurred 98.68% 0.64 48.51% 0.10% 51.49% 7.50% 

 

Given the persistent omission of permanent river beds at all three study sites, further 

improvements of the processing chain could include the analysis of SAR time-series to 

amplify the signal of permanent riverbeds through spatio-temporal averaging. 

Considering these results, our new automatic chain processing for floods detection and 

rapid surface water mapping using Sentinel-1 data appears to be efficient for mapping 

flood events and water surfaces. It has been applied to three major floods events in 

Ireland, the United Kingdom, and Italy with largely favorable results. The proposed 

method features a short processing time. For instance, using a computer with multiple 

Intel Duo processors of 1.90 GHz and 32 GB RAM, the time of processing is about 10 

h per Sentinel-1 image. Multiple images can be processed easily in parallel. Rapid 

mapping can hence be achieved in less than half a day after the image data is made 

publicly available. Given the variable landscape characteristics at the investigated sites, 
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we consider that the processing chain can also be deployed for rapid mapping in other 

geographic regions. Probabilistic map products can also be derived to better guide 

further intervention by human operators if required. 

 

Figure 4. 5. Surface water extraction result in the study area of Ireland with several zoom 

areas overlaying Sentinel-2. 
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Figure 4. 6. Surface water extraction result in the study area of England with several zoom 

areas overlaying Sentinel-2 imagery. 
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Figure 4. 7. Surface water extraction result in the study area of Italy with several zoom areas 

overlaying Sentinel-2 imagery. 

In this study, the methodology was specifically designed for the analyses of Sentinel-1 

data and the suitability of the method for rapid surface water mapping was explored. 

The method is adapted to the particular features of high spatial resolution Sentinel-1 

data which are different from the other available automatic tools targeting the use of 

SAR images with a very high spatial resolution (e.g., Martinis et al., 2015; Wendleder 

et al., 2013). Since the required Sentinel-1 input data is publicly available without 

restriction, it will be easy to access unlimited data of Sentinel-1 and process it for 

surface water mapping. 
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4.5 Conclusions 

The objective of the study in this chapter has been twofold. First, to assess the suitability 

of Sentinel-1 data for flood detection and surface waters mapping. Second, to construct 

automatic chain processing for surface waters extraction. To this end, we presented an 

approach consisting of pixels modelling, probability maps, and a smoothness 

assumption in order to capture floods and surface waters. 

We developed a modified SBA method to facilitate focusing on surface water areas 

rather than the entire image scene observed. Finite Mixture Models are found to be 

suitable for the automatic modelling of surface water class and land. Using bilateral 

filtering for smooth labeling from a probability map led to more accurate results than 

using direct thresholding. HAND maps are used as terrain filters in order to remove 

potential false positives early on in the processing chain. A comparison of two 

procedures integrating HAND in the pre- or post-processing showed better results when 

used already in the pre-processing step. Sensitivity analysis of tile size pointed out the 

importance of surface water areas to determine tile size. Yet, a default tile size of 10 

km can yield high overall accuracies. Our results show that we were able to estimate 

floods and surface waters in the three study areas with an average F-measure of about 

0.8. 

Using Sentinel-1 as free SAR data with wide area monitoring capabilities, we 

established a processing chain which can extract floods and surface water areas 

automatically. The automatic approach has been tested for three floods events in 

Ireland, England, and Italy, suggesting an applicability for rapid flood mapping at other 

sites beyond the presented study areas. 

 

 

This chapter has outlined the automatic mapping of surface water (the Water-S1 

method) developed for Sentinel-1 image processing and discussed the results. The next 

chapter will explore the contribution of multi-temporal and multi-source data for 

increasing the detection and mapping of surface water.
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The previous chapter has been explored mono-date Sentinel-1 imagery related to 

surface water mapping. The Water-S1 method as automatic mapping developed for 

Sentinel-1 image in detecting surface water has been presented. This chapter will 

provide the contribution’s analysis of multi-source data (Sentinel-1 and Sentinel-2) for 

increasing the detection and mapping of surface water. 

This chapter was written based on an article accepted in March 2019 to International 

Journal of Remote Sensing entitled Fusion of Sentinel-1 and Sentinel-2 Image Time 

Series for Permanent and Temporary Surface Water Mapping (Bioresita, F., Puissant, 

A., Stumpf, A., and Malet J.P.). Some redundancies can then appear in this chapter. 

 

5.1 Introduction 

As been reminded in Chapter 2, some databases of surface water are available such as 

the Global Surface Water product of the EC-Joint Research Centre (The European 

Commission’s Joint Research Centre, 2016), the SRTM Water Body product of 

National Geospatial-Intelligence Agency (NGA, 2005), the Global Lakes and Wetlands 

Database (GLWD) of WWF and the University of Kassel, Germany (Lehner and Döll, 

2004), the Water and Wetness product from EC-COPERNICUS (Copernicus, 2015a) 

or the Landsat Level-3 Dynamic Surface Water Extent (DSWE) Science Product from 

Earth Resources Observation and Science (EROS) Center (EROS Center, 2018). 

Consequently, these existing surface waters products are relevant for some applications 

but do not fulfill all the current needs of the science and water management 

communities. For instance, GLWD and SRTM Water Body do not identify small 

surface waters of less than 10 ha and narrow water bodies such as watercourses or 

streams. GSW and the DSWE products are based on Landsat imagery with gaps in the 

observation records because of the occurrence of clouds. The Water and Wetness 

product is already using Sentinel-1 data but relies on 30-m spatial resolution Landsat 

imagery. 

Figure 5. 1 presents an overview of the existing products over the case study in Ireland 

as well as the national database of the Irish Environmental Protection Agency (EPA, 
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2017). Over the study area, the extension of the surface water is respectively of ± 92 

km2 in GSW, ± 120 km2 in GLWD, ± 114 km2 in SRTM Water Body, ± 99 km2 in 

Water & Wetness, and ± 111 km2 in the national EPA database. 

 

Figure 5. 1. An overview of the existing products over the study case in Ireland. (a) the 

national database of the Irish EPA ; (b) GLWD ; (c) SRTM Water Body ; (d) GSW ; (e) 

Water and Wetness. 

A method for automatic and rapid mapping of water surfaces has been presented in 

Chapter 4 (Bioresita et al., 2018). The method uses finite mixture models and bilateral 

filtering as a smooth labeling for defining the thresholds. The method gives successful 

results in terms of water surface extraction (and in all subsequent cases) as it relies on 

significant contrast of pixel values between water and non-water areas. However, the 

method gives misclassification if non-water areas have lower backscattering values 

than water areas such as airport runways or some smooth agricultural fields where 

specular reflexion is observed. 

The high revisiting time of Sentinel-1 and Sentinel-2, together with spatial resolution 

in the range 10 to 30 m is hypothesized to fill the gap for producing maps of permanent 

water bodies at monthly time scale. Methods combining SAR and optical imagery for 

water surface detection are seldom though they offer complementary information. 

Optical data provide information on the multispectral reflectivity of surface waters 

whereas SAR data provide information on the texture (Chaouch et al., 2012; Markert 

et al., 2018) of the surface waters. Using image times series and data fusion techniques 

to increase the accuracy of permanent surface waters extraction is promising 
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(Bourgeau-Chavez et al., 2009; Liu et al., 2018; Riffler et al., 2018). Combining data 

of different properties and data acquired at several periods can improve image 

classification (Riffler et al., 2018). The studies presented by (Du et al., 2016) and 

(Bourgeau-Chavez et al., 2009) applied this concept to extract surface waters.  

The objective of our work is to investigate, quantify and measure the performance of 

Sentinel-1 and Sentinel-2 time series for improving surface waters mapping by applying 

fusion techniques. The approach is being tested on image time series over study area of 

Ireland (± 3657 km2) using a time series of sixteen Sentinel-1 IW GRD images and 

three Sentinel-2 images (See Chapter 3). 

 

5.2 Methodology 

The general methodology is described in Figure 5. 2. The detection of the surface waters 

and the calculation on the probability of occurrence are carried out on the Sentinel-1 

images with the Water-S1 method presented in Chapter 4. An adaptation of the Water-

S1 method is used for the processing of the optical Sentinel-2 data (see Sub-section 

5.2.1). The occurrence maps obtained for the two time series (Sentinel-1, Sentinel-2) 

are combined using decision level methods (see Sub-section 5.2.2). Finally, the fused 

results are evaluated for the permanent water bodies and for the temporary flooded areas 

for the corresponding time periods (see Sub-section 5.2.3). 
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Figure 5. 2. Methodological workflow. 

 

5.2.1 Extraction of surface waters and calculation of probability of 

occurrence maps from Sentinel-1 and Sentinel-2 images 

The processing of Sentinel-1 IW GRDH image is based on the Water-S1 method 

described in Chapter 4 and summarized in Figure 5. 3. The first step consists of a 

correction of orbital errors, speckle noise and geometric distortion of the data. The 

application of precise Sentinel orbits, the radiometric calibration of the SAR images to 

Sigma-nought images, the multi-looking, the filtering of speckle, and terrain relief are 
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applied in the Sentinel Application Platform / SNAP (Foumelis, 2015; Stewart, 2016) 

(See Chapter 3). Then, a subset of Sigma-nought images is masked using the Height 

above Nearest Drainage (HAND) terrain index. This index is based on the drainage 

network and is used to constrain the processing area in order to avoid classification 

errors in topographically non-plausible water areas. 

 

Figure 5. 3. Flowchart of surface waters extraction: Water-S1 method (for Sentinel-1) and 

modified Water-S1 method applied to Sentinel-2 mono-date images. 

A threshold of HAND <15 m is applied in order to filter the false positives of surface 

waters located above the nearest drainage line. Then, a statistical modified Split-Based 

Approach (SBA) is used in order to tile the input images into squared non-overlapping 

blocks of 10x10 km size and to select the tiles for class modeling. The strategy for tile 

selection consists in choosing only the image tile which contain some portions of 

surface waters based on Hartigan’s dip statistic (HDS) value (Freeman and Dale, 2013). 

Class modeling is performed by applying Finite Mixture Models (FMM) (Benaglia et 

al., 2009). The model parameters for each tile are calculated, then global sets of 

parameters are defined and probabilities of occurrences are computed. Finally, a 
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labeling using Bilateral Filtering is applied to the occurrence images (Schindler, 2012). 

The filtered occurrence probability images are then used as input data for image fusion. 

For Sentinel-2 image processing, the general workflow of Water-S1 is applied with 

some adaptations. First, the Sentinel-2 level 1C (Top of Atmosphere values) are 

corrected to level 2A (Bottom of Atmosphere values) using Sen2Cor tools available in 

SNAP (Louis et al., 2016), and cloud and shadow area are masked. The NDWI2 water 

index (Equation 5.1), classically used to extract water surfaces (Du et al., 2016; 

McFeeters, 1996), is calculated at 10-m spatial resolution and is used for feature 

extraction.  

NDWI2 = 
(!"#$#!%)

(!"#&#!%)
      (5.1) 

where B3 is the green band and B8 is the near-infrared band. 

The HAND topographic index (Nobre et al., 2011) is calculated on the SRTM 

topography and applied to the NDWI2 images in order to remove regions located above 

the nearest drainage line and avoid misclassification. 

 

5.2.2 Methods of image fusion: decision-level fusion rules 

Image fusion can be implemented at three different levels: (a) pixel, (b) feature, or (c) 

decision level (Liu et al., 2018). When images originate from several sensors, the most 

relevant method for data fusion is to combine the images with the surface waters results 

extracted individually for each image source (Pohl and Van Genderen, 1998; Wendl et 

al., 2018; Zadeh, 1976). 

Several methods of decision level fusion are compared in order to identify the most 

suitable approach for surface waters. This information is fused in order to create value-

added layers (Zadeh, 1976). Probabilities of occurrence of surface waters are 

calculated, first, in order to evaluate the interest of time series to enhance the mapping 

and, second, to evaluate the complementarity of results from the SAR and optical 

sensors. All calculations are performed at pixel level by combining the probabilities of 

occurrence of each experiment (experiment 1 = time series of Sentinel-1 data, 
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experiment 2 = time series of Sentinel-2 data, experiment 3 = time series of Sentinel-1 

and Sentinel-2 data). The final image fusion is expressed in terms of posterior 

probability. 

The fuzzy logic method and the Bayesian method are tested for the decision level 

fusion. The most powerful fusion method identified for Sentinel-1 results is then 

applied for the fusion of the Sentinel-2 results and for the fusion of Sentinel-1 and 

Sentinel-2 results (see point 5.3.1.1). 

Image fusion using fuzzy logic (Wendl et al., 2018) is powerful to combine uncertain 

data. Considering a reference set L of classes, then a fuzzy set A in L, is a set of ordered 

pairs: 

A = [(x, PA(x) | x ' L)]    (5.2) 

where PA * L → [0, 1] is the membership function of A in L which range is a subset of 

the nonnegative real numbers whose supremum is finite. The algorithm proposed by 

(Wendl et al., 2018) is used for the calculation. It uses a minimum number of fuzzy 

logic operators (Equation 5.3). The details of the membership functions are presented 

in Figure 5. 4. The fuzzy logic minimum operator is used based on the accurate results 

obtained by (Wendl et al., 2018) for urban land use classification. 

Pfusion(x) = Min (PA(x), PB(x))    (5.3) 

 

Figure 5. 4. Decision-level Fusion: Application of the fuzzy logic minimum operator, with 

example of combination of Sentinel-1 posterior probability maps (t1 and t2, see Table 3.1). 
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The second approach for data fusion is Bayesian, with algorithm proposed by (Wendl 

et al., 2018). Bayesian approach is also used based on the accurate results obtained by 

(Wendl et al., 2018) for urban land use classification. It executes image fusion based 

on the operator product (Equation 5.4) or operator sum (Equation 5.5). 

Pfusion(x) = PA(x) × PB(x)    (5.4) 

Pfusion(x) = PA(x) + PB(x)    (5.5) 

where PA and PB are the posterior probability maps. 

 

5.2.3 Evaluation procedure 

A threshold of 90% is used to differentiate the permanent surface water (posterior 

probability > 90%) from other classes (posterior probability < 90%). The “permanent 

water” class of the Water and Wetness product is used as the reference product for the 

evaluation of the “permanent surface water” class detected with our methodology. The 

reasons are that the Water and Wetness product is produced from Sentinel-1 (Figure 5. 

1e; see Section 5.1), and has nearly the same spatial resolution as our results.. 

The “temporary surface water” class in our study was extracted from Sentinel-1 images 

using the “permanent surface water” map issued from the best fusion algorithm 

(Bayesian Sum S1&S2) as a mask. Due to the flooding events of December 2015 and 

January 2016, the “temporary surface water” class of the Water and Wetness product 

cannot be used as reference data. Therefore, for the evaluation of the “temporary 

surface water” class detected with our methodology, the Copernicus Emergency 

Management Service (EMS) (Copernicus, 2015b) maps are used. For the period of 

interest, only one EMS product is available (9 January 2016). 

All the quantitative assessments are based on the calculation of confusion matrices and 

of indicators such as the Overall accuracy, the F-measure, the True Positive Rate (TPR), 

the False Positive Rate, and the Omission and Commission error. Qualitative 

assessment is also applied and presented in Section 5.3 for the “permanent surface 

water” (see Sub-section 5.3.1) and “temporary surface water” (see Sub-section 5.3.2). 
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5.3 Results 

5.3.1 Mapping of “permanent surface water” 

5.3.1.1 Mono-date detection of surface water from Sentinel-1 and Sentinel-2 

images 

Figure 5. 5 presents the detection of surface water over the region of Portumna (Figure 

5. 1, C2) for the 16 Sentinel-1 images and the 3 Sentinel-2 images expressed in terms 

of occurrence probability maps. The maps are binarized in two classes (presence and 

absence of water) using a posterior probability threshold > 90% (Bioresita et al., 2018). 

The surface extents vary in the range 86 to 225 km2 over the period. In the Sentinel-1 

time series, during the flooding period of Winter 2015/2016, waters are detected in the 

North area of Lough Derg until 14th February 2016. Extraction of surface waters in 

April, June and October 2016 present some errors due to roughness of the water 

surfaces caused by wind and turbulence effects. Roughness causes a higher 

backscattering signal and therefore an enhanced brightness in the SAR data. 

In the Sentinel-2 image of December 2015, surface waters are clearly depicted in the 

north area of Lough Derg. Due to the presence of thin cirrus and dark pixels areas, 

surface water areas are overestimated for the Sentinel-2 image of November 2016. In 

order to overcome those problems, decision-level fusion is applied on the mono-date 

water detection. 
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Figure 5. 5. Surface water detected for the 16 Sentinel-1 images and the 3 Sentinel-2 images 

in terms of occurrence probability maps, with a zoom on the region of Portumna (C2). 
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5.3.1.2 Multi-date detection of “permanent surface water” bodies with time 

series image fusion 

Results of image fusion of the Sentinel-1 time series images are presented in Figure 5. 

6. All fusion results present a reduction of the noise level. However, comparison with 

the reference product indicates different performance of the decision-level rules. Test 1 

(operator fuzzy logic Min) only identifies fractions of Lough Derg and is not able to 

identify the permanent surface waters along Shannon River; test 2 (Bayesian operator 

product) does not identify Lough Derg and the Shannon River (presence of false 

negative); test 3 (Bayesian operator Sum) gives the best results with the identification 

of the Shannon River and of nearly the full area of Lough Derg. 

 

Figure 5. 6. Decision-level fusion results for the Sentinel-1 time series over the region of 

Portumna, with details (zoom) on the north bank of Lough Dergh and for the three methods of 

image fusion. 

The quantitative assessment (Table 5. 1) indicates high overall accuracies of above 

99%. Test 2 gives very low F-measure with a value of about 0.55 and True Positive 

Rate (TPR) with a value of about 38%. Omission error of Test 2 is very high reaching 

61%. Test 1 gives better F-measure than Test 2 with a value of 0.77 but the TPR is low 

with a value of 62%. Omission error in Test 1 is also high with a value of 37%. Those 

measures explain the appearance of a large amount of false negatives (Figure 5. 6) for 

Test 1 and Test 2 even if the overall accuracies are high. Test 3 shows the highest overall 

accuracy and F-measure with a value of 0.99, a high TPR with a value of 98% and low 
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omission error with a value of 1.4%. As a consequence, the Bayesian sum operator is 

used and applied for the fusion of the multi-temporal Sentinel-2 images (experiment 2), 

and for the fusion of Sentinel-1 and Sentinel-2 times series (experiment 3). 

Table 5. 2 summarizes the comparison of the three experiments of image fusion to the 

Water & Wetness products considered as reference data. Results of decision-level 

fusion from Sentinel-2 images (Experiment 2) are presented in Figure 5. 7. Experiment 

2 gives the best TPR and omission error than the other experiments, but it is based only 

on three images with a low cloud density. Experiment 2 allows detecting both the Lough 

Derg and the Shannon River at high accuracy with an overall accuracy of 99%, a F-

measure of 0.98 and a TPR of 99%. 

Table 5. 1. Classification accuracy of Sentinel-1 time series for the three methods of decision-

level fusion. 

Tests Methods 
Overall 

Accuracy 
F-measure 

True 

Positive 

Rate 

False 

Positive 

Rate 

Omission 

error 

Commission 

error 

Test 1 Fuzzy MIN 99.50% 0.77 62.473% 0.002% 37.52% 0.30% 

Test 2 Bayesian Product 99.32% 0.55 38.301% 0.001% 61.69% 0.26% 

Test 3 Bayesian Sum 99.94% 0.99 98.602% 0.023% 1.39% 0.83% 

 

 

Figure 5. 7. Decision-level fusion results for the Sentinel-2 images over the region of 

Portumna, with details (zoom) on the north bank of Lough Dergh. 



Chapter 5. Detection of surface water area using time series of S1 amplitude and S2 data 

 

 

111 

 

Figure 5. 8. Decision-level fusion results for the Sentinel-1 and Sentinel-2 images over the 

region of Portumna, with details (zoom) on the Shannon River (sector a, b, c) and the north 

bank of Lough Dergh (sector d). 
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Table 5. 2. Comparison of images fusion results with Water & Wetness reference data. 

Experiments 

(with Bayesian operator Sum) 

Overall 

Accuracy 
F-measure 

True 

Positive 

Rate 

False 

Positive 

Rate 

Omission 

error 

Commission 

error 

Experiment 1 (S1) 99.94% 0.98 98.60% 0.02% 1.40% 0.83% 

Experiment 2 (S2) 99.95% 0.98 99.20% 0.04% 0.80% 1.79% 

Experiment 3 (S1 & S2) 99.95% 0.99 98.31% 0.01% 1.69% 0.34% 

 

Results of decision-level fusion from Sentinel-1 and Sentinel-2 time series (Experiment 

3) are presented in Figure 5. 8. Experiment 3 gives better values in terms of F-measure 

(0.99), FPR (0.01%) and commission error (0.34%) than the other experiments. The 

surface waters are detected at very high accuracy with an overall accuracy of more than 

99%. The omission error is very low (1.7%). A few false negatives are observed mainly 

along the borders of the surface water bodies (Figure 5. 8; sectors a, b, c). False positives 

are detected on the borders of Lough Derg (Figure 5. 8; sector d). 

Considering all the parameters using for accuracy assessment, the best result is obtained 

with the fusion of Sentinel-1 and Sentinel-2 times series with the Bayesian operator 

sum. 

 

5.3.2 Mapping of “temporary surface water”: flooded areas 

"Temporary surface water" bodies are extracted for the Sentinel-1 image of 09/01/2016 

by applying the “permanent surface water” map resulted from experiment 3 as a mask. 

Table 5. 3 indicates high overall accuracy (> 98%), F-measure (0.90) and TPR (86%) 

for the detection of these "temporary surface water" bodies; the omission error is low 

(13.9%). 
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Table 5. 3. Comparison of image fusion results to the flood map of EMS Copernicus used as 

reference data for the date 9 January 2016. 

Date 
Overall 

Accuracy 
F-measure 

True Positive 

Rate 

False Positive 

Rate 

Omission 

error 

Commission 

error 

09/01/2016 98.79% 0.90 86.07% 0.35% 13.92% 5.72% 

 

Figure 5. 9 identifies false positives along the borders of the Lough Derg lake and along 

the Shannon River. These false positives are related to sandbank in the course of the 

river or to narrow river banks identified as "temporary surface water" in our results 

while they are identified as "permanent surface water" in the flood map of the 

Copernicus Emergency Management Service (EMSR149). The image fusion method 

allows mapping almost all flooded areas as proven by the little amount of false 

negatives (Figure 5. 9). 
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Figure 5. 9. Detection of the "temporary surface water" bodies in the Sentinel-1 image of 9 

January 2016 and comparison to the flood map of Copernicus EMS, with details (zoom) on 

the Shannon River (sector a, b, c) and the north bank of Lough Dergh (sector d). 
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5.4 Discussion 

Surface water dynamics can be monitored from the detection of “temporary surface 

water” from the time series images. These surfaces are extracted by applying the 

“permanent surface water” (detected in experiment 3) as a mask to posterior probability 

of Sentinel-1 time series. The remaining surfaces correspond to “temporary surface 

water” bodies (ca. 900 km2 over the study area). These areas are presented in a 

frequency map (Figure 5. 10a) which mapping the number of time a pixel is classified 

in "temporary surface water" bodies over the study area and for the complete time 

series. These areas are close to the main streams and located in the most flat areas of 

the region Figure 5. 10a). The pixels only classified once as "temporary surface water" 

bodies represents nearly 49% of the surfaces and can be excluded from "temporary 

surface water" bodies as they can be considered as noise or misclassification. The pixels 

with a frequency higher than 9 correspond to areas spatially close to the "permanent 

surface water" bodies and represent about 3% of the the surfaces. Therefore, the pixels 

classified at least 2 times and less than 9 times (Figure 5. 10b) are considered as the 

final "temporary surface water" maps. 

 

Figure 5. 10. Frequency map and histogram of "temporary surface water" bodies detected in 

the Sentinel-1 time series (16 images). 

It is further possible to relate the detected "temporary surface water" bodies to the 

annual rainfall amounts. In December 2015, the largest amount of "temporary surface 
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water" bodies are observed over the one year period (Figure 5. 11) in relation to Storm 

Desmond (McCarthy et al., 2016). In January 2016, for lower amount of monthly 

rainfall, flooded areas are still observed because the water did not infiltrate in the soil 

or was evacuated by the drainage network. In Spring and Summer 2016, the surfaces of 

"temporary surface water" bodies decrease in relation to the decrease in rainfall. In 

May and June 2016, the detected water bodies seems to be overestimated probably 

because of higher noise in the Sentinel-1 images caused by strong wind and rough water 

surfaces. In Autumn 2016, only small surfaces of "temporary surface water" bodies are 

detected; the precipitation events of September 2016 did not cause flooding. 

 

Figure 5. 11. Distribution of "temporary surface water" bodies per period and relation to the 

monthly rainfall amount for one hydrological year (November 2015 – October 2016). 

The spatio-temporal dynamics of the "temporary surface water" bodies is further 

analyzed for the period November 2015 to April 2016 by interpretating the frequency 

value 2 to 4 (Figure 5. 12). The histogram of the possible pairwise combination 

(frequency 2) indicates that the maximum surfaces of flooded areas are observed for 

the period t2-t3 and t3-t4 (Figure 5. 12a); these flooded areas correspond spatially to 

local agricultural lands flooded during less than 4 weeks. The histogram of the possible 

combination of frequency 3 indicates that the maximum surfaces of flooded areas are 

observed for the period t2-t3-t4 (Figure 5. 12b); these flooded areas correspond spatially 

to larger agricultural lands flooded during less than 6 weeks. Finally, the histogram of 
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the possible combination of frequency 4 indicates that the maximum surfaces of flooded 

areas are observed for the period t2-t3-t4-t5 (Figure 5. 12c); these flooded areas 

correspond spatially to agricultural lands and wetlands flooded during more than 8 

weeks. 
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Figure 5. 12. Distribution and mapping of temporary surface water’ pixels classified (a) twice, 

(b) third or (c) fourth during the flood period (from t2 to t9 e.g. Figure 5. 11). 
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The results show high similarity of permanent surface water with the Water & Wetness 

product using other fusion method. In this study, the methodology was specifically 

designed for the properties of Sentinel-1 and Sentinel-2 data. Since these data are freely 

available, it is possible to re-analyze other flooding events in order to estimate 

statistically the proportion of land being regularly flooded which will be useful for flood 

risk management, especially for large catchments, region or nation-wide analyses. 

Considering the results, the proposed method could be established as a permanent 

service solution for global surface water mapping. However, it is important to extend 

the observation period for example to 5 years in order to be able to better understand 

surface water behaviour. 

 

5.5 Conclusions and perspectives 

A methodology for combining surface waters detected from SAR (Sentinel-1) and 

optical (Sentinel-2) sensors is proposed using decision-level fusion rules. The 

methodology is applied over one hydrological year for the catchment of the Shannon 

river (Ireland) which has been severely impacted by flooding in Winter 2015/2016. The 

proposed methodology allows reducing the noise and increasing the detection level for 

time series of Sentinel-1 images, for multi-date Sentinel-2 images, and for the 

combination of both SAR and optical time series. Decision level rules are being tested 

for the particular case of surface water detection indicating that the Bayesian operator 

Sum is suitable for such application. Moreover, the analysis of image time series allows 

a better detection of both "permanent surface water" bodies (rivers and lakes) and 

"temporary surface water" bodies (flooded areas). It is further demonstrated that the 

fusion of SAR and optical time series increase the accuracy of the detection of the 

"permanent surface water" bodies. The proposed methodology is generic and does not 

require user interaction suggesting to be applicable for the monitoring of "permanent 

surface water" bodies over large areas and at high temporal frequency, with the 

possibility of using it as a permanent service if integrated on high performance 

computing centers. For the monitoring of "temporary surface water" bodies, the use of 

decision-level rules allows quantifying the probability of occurrence of inundated 

terrains at the pixel scale giving the possibility to understand the space and time 
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dynamics of the flooding. Such approach is of interest for improving flood risk 

management procedures. 

 

 

This chapter has outlined the analysis in multi-source and multi temporal remote 

sensing data contribution for surface water mapping. Contribution of Sentinel-1 time 

series and Sentinel-2 multi-temporal imagery for mapping permanent water are 

analyzed through decision-level image fusion. The next chapter will presents another 

methods tested for surface water mapping and validation of proposed method for 

another thematic context. 
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The previous chapter presented the contribution of multi-source and multi temporal 

remote sensing data for mapping surface water. This chapter will present another 

methods tested for surface water detection (Section 6.1) and two different experiments 

of massive processing to check the reproducibility of our proposed methods (Section 

6.2). 

 

6.1 Another methods  

The objective of this section is to observe another methods in detecting surface water 

based on (1) the value of the SAR polarimetry (Sub-section 6.1.1) and (2) the fusion 

technique (Sub-section 6.1.2). 

 

6.1.1 The value of SAR polarimetry for surface water mapping 

In Chapter 1, we explained that SAR waves have polarization (horizontal and vertical). 

Different earth’s surface objects will reflect SAR waves with different values of 

intensities. However, some objects, especially with anisotropic materials often reflect 

SAR waves with different polarizations and different intensities. Some target objects 

also can convert one polarization into another. For example, SAR sensor emits SAR 

wave with vertical polarization but target object reflect it to horizontal polarization, 

vice versa. Several images can be obtained from the same series of pulse by transmitting 

various types of polarizations and using receiving antennas with a specific polarization. 

Different combinations of polarization type can be used to synthesize color composite 

images which will be useful for Land Use and Land Cover classification (Chen and 

Wang, 2007). This technique is called SAR Polarimetry. 

Equation 6.1 below explains about scattering matrix (S) of SAR. The matrix is used to 

identify the scattering behavior of target objects after interaction with electromagnetic 

waves. The matrix is represented by a combination of horizontal and vertical 

polarization of transmitted and received signals (Kumar, 2016). 
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S = !"## "#$
"$# "$$%     (6.1) 

Where, HH is for horizontal transmit and horizontal receive, VV is for vertical transmit 

and vertical receive, HV is for horizontal transmit and vertical receive, and VH is for 

vertical transmit and horizontal receive. VV and HH polarization combinations are 

referred to like-polarized (co-polarization), because the transmitted and received state 

of polarizations are the same. HV and VH combinations are referred to cross-polarized 

due to the transmitted and received state of polarizations are orthogonal to one another 

(Woodhouse, 2005). Fully polarimetric data consists of all polarization combination 

(HH, HV, VV and VH). Yet, HV can be stated equal to VH, thus the effective complex 

scattering elements to build fully polarimetric data are HH, VV and HV (Kumar, 2016). 

As mentioned in Chapter 3, Sentinel-1 IW SLC mode available in this study only 

provides dual polarization data, VV and VH. It is not fully polarimetric data, thus, 

the equation 6.1 becomes the equation 6.2 below (Ji and Wu, 2015). 

S = !"## "#$
"$# 0 %     (6.2) 

where SHV equal to SVH, thus, the matrix will become like below. 

S = !"## "#$
"#$ 0 %     (6.3) 

and the corresponding scattering vector is 

k = ["## 2"#$]T      (6.4) 

SAR polarimetry can provide more information, thus it can upgrade object detection, 

extraction of edge, segmentation, classification, recognition and interpretation (Ji and 

Wu, 2015). Some references provide the usefulness of SAR polarimetry for monitoring 

surface water and explore its thematic classes (Irwin et al., 2018; Touzi et al., 2007). 

All our tests in Chapter 3 to 5 have been developed to highlight the interest of Sentinel 

1 amplitude data (GRD images). Then, the objective here is to assess the capability of 

SAR polarimetry data for mapping different sub-classes of surface water. 
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First investigation tries to enhance the classification of surface water by using basic 

polarimetric method, using backscattering image from different polarizations (VV and 

VH), based on unsupervised classification. The second investigation explores features 

extracted from dual polarization decomposition process and performs unsupervised 

classification of dual polarizations data.  

 

a. Classification using VV and VH polarizations 

In the literature, amplitude information of dual polalimetric SAR imagery has been 

already used in a classical supervised classification scheme for land cover mapping 

(e.g., Abdikan et al., 2016). In this study, we decided to explore the interest of these 

data to enhance the water class (result of Chapter 4) and discovering several thematic 

classes (wetlands, etc). The method proposes an unsupervised classification scheme 

based on different cases of RGB combination of dual polarization (Figure 6. 1).   

 

Figure 6. 1. Workflow of the first investigation. 

In this first investigation, Sentinel-1 image on 16th December 2015 when floods 

happened in Ireland (Figure 3.2 – Zone A) is used. Backscattering image (sigma-

nought) from VV and VH polarizations are then uses to build two different cases of 

RGB composition (Abdikan et al., 2016). Test 1 uses combination as follows: 

· Red (R) : Sigma-nought VV (dB) 

· Green (G) : Sigma-nought VH (dB) 

· Blue (B) : Sigma-nought VV (dB) / Sigma-nought VH (dB) 
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While Test 2 utilizes combination as follows: 

· Red (R) : Sigma-nought VV (dB) 

· Green (G) : Sigma-nought VV (dB) - Sigma-nought VH (dB) 

· Blue (B) : Sigma-nought VH (dB) 

After building RGB images, we limit our study area as been explained in Chapter 3 

(Figure 3.4). Then we used surface water areas resulted in Chapter 4 as a mask. We 

extract RGB images using the mask with the aim of focusing analysis in the surface 

water boundaries, (Figure 6. 2). Then we apply unsupervised classification based on K-

Means in order to explore cluster and to reduce user intervention towards automatic 

processing. Classification results are produced with 3 until 7 clusters (Figure 6.3 and 

6.4). 

 

Figure 6. 2. RGB visualization of combinations from (a) Test 1 and (b) Test 2 in surface water 
boundaries. 

 

The results are explored and assessed by visual interpretation. Figure 6. 3 show the 

results of classification with 3 clusters.  In the area 1, there are red cluster and green 

cluster. In this area, based on reference data, red areas can represent intertidal flats, 

while green areas mean water bodies. However, red areas in different part of image 

scene, for example in northeast of scene, represent large lake which is water bodies. In 

addition, in area 2, red class did not represent intertidal flats but it represents bog or 
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wetlands. Another classification results with 5 and 7 clusters (Figure 6. 4) show a salt-

and-pepper effect where it is not possible to identify several surface waters classes. . 

Test 2 also gives the same results (Figure 6. 5).  

 

 

Figure 6. 3. Classification result of Test 1 with 3 clusters (red = cluster 1 / blue = cluster 2 / 

green = cluster 3). 

 

Figure 6. 4. Classification results of Test 1 with (a) 5 clusters and (b) 7 clusters. 



Chapter 6. Possible improvements of the methods and validation on different thematic context 

 

 

128 

 

Figure 6. 5. Classification results of Test 2 with (a) 3 clusters, (b) 5 clusters and (b) 7 clusters. 

In these results, pixels values of RGB images will depend on sigma-nought 

characteristics. Sigma-nought images are influenced by surface roughness. The study 

area covers a large area. Sometimes, in the south part, surface water consists of smooth 

water surface while in the north part, surface water consists of rough water surface. The 

different surface roughness can be caused by rain or wind in the north part. Thus, even 

in the north and south parts, surface water corresponds to lake (for example), the sigma-

nought values will be different in both parts. This explanation clarifies why we get some 

classes (different colours) in the results but we can not interpret those classes into 

surface water thematic classes. 

 

b. Applying H/Alpha dual decomposition and H-Alpha dual classification 

In order to extract scattering mechanisms, target decomposition is an important method. 

This approach represents target scattering by several basic scattering mechanisms. The 

Sentinel Application Platform (SNAP) provides H/Alpha dual decomposition for 

Sentinel-1 dual polarization image. The H/Alpha decomposition is based on the Eigen 

decomposition of the coherency matrix. For a dual polarization SAR image, the 

coherency matrix of each pixel is 2x2 (Tdual), which is nonnegative definite and 

Hermitian. The eigenvalue decomposition of Tdual is shown below (Shan et al., 2011). 

Tdual = !&'' &'(
&'() &((% = U !*' *(% U

H = λ1u1u1
H +  λ2u2u2

H   (6.5) 
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where 

U = +,'' ,'(,(' ,((- = [,' ,(] and ui = ./13 [cos 43 sin 43 ./56]T (6.6) 

H denotes the conjugate transpose, and * denotes the conjugate. Then, the polarimetric 

entropy H and the scattering angle α can be derived as follows. 

H = 7 839:;(83(3<'  and = 83>:?@'A|,'3|B(
3<'     (6.7) 

where 

Pi = λi / C */
(

/<'
        (6.8) 

Besides features exploration from decomposition process, terrain and land use 

classification is also the important applications in SAR polarimetry. The land 

classification algorithms based on the target scattering mechanisms have led to highly 

descriptive results about the physical properties of the Earth’s surface. 

In this part, second investigation is conducted using Sentinel-1 IW image on 09th 

January 2016, when floods happened in Ireland. The investigation uses Sentinel-1 IW 

SLC image because it needs both amplitude and phase information. This second 

investigation consists of two experiments:  

(1) the first experiment explores features extracted from decomposition process; 

(2) the second experiment performs classification using those features. 

The objective is to observe features from H/Alpha dual decomposition and result from 

H-Alpha dual classification in detecting thematic classes of surface water. 

In order to perform H/Alpha dual decomposition or H-Alpha dual classification, pre-

processing steps including deburst, apply orbit file and polarimetric speckle 

filtering (Figure 6. 6) must be done. Sentinel-1 IW mode captures three sub-swaths. 

Each sub-swath consists of a series of bursts. In the SLC (Single Look Complex) level, 

each burst has been processed as a separate SLC image. Deburst process is applied in 

order to merging the sub-swaths and created wide area product. After deburst step, 
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apply orbit file is performed to solve problems in orbit information. Then, in order to 

clean up some of the speckle inherent in SAR images, polarimetric speckle filtering is 

applied. This filter can take advantage of all bands and preserve the complex 

information. 

 

Figure 6. 6. Workflow of second investigation. 

Polarimetric decomposition allows the separation of different scattering contributions 

and can be used to extract information about the scattering process. Using dual 

polarimetric data, only H/Alpha dual decomposition can be performed in SNAP 

software. This process is carried out after pre-processing steps. The entropy, anisotropy, 

and alpha images are the features resulted from this process after terrain correction 

(Figure 6. 7). 

H/Alpha dual decomposition results show separation of surface waters from the other 

land cover type, especially in entropy and alpha image (Figure 6. 7). Same with the first 

investigation, we limit our study area as been explained in Chapter 3. However, we 

performed the limitation to the results due to the SNAP software used for this 

investigation needs the whole image scene for the process. Then, we focus only on 

surface waters boundaries by applying mask as the first investigation (Figure 6. 1).  

Each feature resulted from H/Alpha dual decomposition does not represent different 

classes of surface waters (Figure 6. 8). Entropy and alpha images only present one 
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colour (blue). Anisotropy present some colours in the surface water boundaries. 

However, visual comparison with reference data (the national database of Ireland) show 

that those colours can not represent specific thematic classes of surface water. 

Compared with permanent and temporary surface water discussed in the Chapter 5, in 

the anisotropy image, permanent surface water will be represented with dominant red 

colour, while temporary surface water areas consist of several colours. 

 

Figure 6. 7. Results of H/Alpha dual decomposition ; (a) Entropy, (b) Anisotropy, (c) Alpha. 

 

Figure 6. 8. Results of H/Alpha dual decomposition in surface waters boundaries (Zone A – 

Ireland). 

A RGB color composition image with entropy in Red, anisotropy in Green, and alpha 

in Blue is built in order to explore surface waters (Figure 6. 9). Unfortunately, compared 

with reference data, the result also does not show different thematic classes of surface 
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waters. It can not distinguish between rivers, lakes and wetlands. The colors majority 

is red, but in some parts there are blue or green colors. 

 

Figure 6. 9. RGB image of entropy, anisotropy and alpha in surface waters boundaries. 

For terrain and land use classification, the H-Alpha dual classification is performed 

after pre-processing steps. The SNAP software used in this investigation only provides 

Whishart classifier for unsupervised classification of Sentinel-1 dual polarization data. 

Thus, the classification of dual polarimetric data uses a combination of entropy/alpha 

and unsupervised Whishart classifier. The unsupervised Wishart classification 

separates data into nine clusters corresponding to nine classes of different scattering 

mechanisms, using the zones defined in the H/Alpha plane. The Wishart classification 

will continue to compute the centers of the nine clusters, then reclassify the pixels based 

on their Wishart distances to cluster centers. This procedure will repeat several time 

until the user defined total number of iterations is reached (Lee et al., 2004). 

The result (Figure 6. 10) indicated that H-Alpha dual classification is successfully 

classified land cover from Sentinel-1 SLC data. However, it does not show different 

classes of surface waters. It can only extracted surface waters from the other land cover 

type, but it cannot divide surface waters into different classes. This process needs 

Sentinel-1 SLC type as an input image which have larger size than Sentinel-1 GRD 

type. 
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Figure 6. 10. Results of H-Alpha dual classification; (a) Classification result in all image 

scene, (b) Classification result in surface waters boundaries (zoom area). 

Using reference map of Copernicus EMSR149, extracted surface water from the 

classification has almost the same accuracy assessment with surface water extraction 

from Chapter 4. However, the result from Chapter 4 has slightly better assessment (see 

Table 4.3). Overall accuracy in Chapter 4 is 98.68% (Table 6. 1) while the result from 

this classification has value of 98.32%. F-measure value in Chapter 4 is 0.92 while in 

here it has value of 0.90. 

 

Table 6. 1. Accuracy assessment of extracted surface water from H-Alpha dual classification. 

Overall 

Accuracy 
F-measure 

True Positive 

Rate 

False Positive 

Rate 

Omission 

error 

Commission 

error 

98.32% 0.90 85.29% 0.44% 14.71% 5.19% 

 

The extent of surface water extracted from H-Alpha dual classification is presented with 

several zooms overlaying Sentinel-2 imagery in Figure 6. 11. The figure shows that 

false negatives occur mainly along the borders of surface water bodies, where most of 

the false positives are also located. 
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Figure 6. 11. Surface water extraction result from H-Alpha dual classification with several 
zoom areas overlaying Sentinel-2. 

In conclusion, these tests could not show the interest of our  investigations using dual 

polarization of SAR polarimetry methods, to map different surface waters thematic 

classes. The surface water extracted from H-Alpha dual classification has almost the 
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same accuracy values with surface water extraction from Chapter 4, with scarcely lower 

assessment. 

 

6.1.2 The value of multi-source image fusion at feature level 

In Chapter 2, we reminds that three levels of image fusion are existing: pixel-level, 

feature level and decision level. Classically in the literature, for surface water mapping, 

the use of optical and SAR fusion is in decision or feature levels. In Chapter 5, image 

fusion at decision level has been tested and assessed. In this sub-section, we investigate 

image fusion at the feature level where features are computed for each source 

separately and fed into the same classifer through a unique feature set. The classical 

supervised machine learning algorithm Random Forest has been chosen to classify 

surface water and to compare results with the proposed methods of Chapter 4.  

Feature level of images fusion are carried out using Principal Component Analysis 

(PCA) method. PCA is a statistical technique which converts multivariate data sets 

from intercorrelation variables into a new uncorrelated linear combination data set of 

original variables. This classical technique is considered useful for image fusion by 

reducing multidimensional data to lower dimensions while retaining most of the  

information (Karamizadeh et al., 2013). Computation in PCA include the calculation of 

covariance or correlation matrix, eigenvalues, eigenvectors and production of PCs 

bands (Pohl and Van Genderen, 1998). 

Random Forests (RF) are combination of tree predictors which each tree depends on 

random vector values taken independently and with the same distribution for all trees 

in the forest (Breiman, 2001). RF classification refers to a new approach that uses not 

only one, but many classifiers and their decisions are combined usually by plurality 

vote (Tian et al., 2016). RF classification are successfully applied in previous research 

for surface waters (e.g., Huang et al., 2018; Tian et al., 2016). Random Forest does not 

perform well when features are monotonic transformation of other features. Using PCA 

before performed RF classification can reduce the number of features and delete 

collinear features. 
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a. General methodology 

The general methodology is described in Figure 6. 12. Classical features derived from 

Sentinel-1 GRD time series images (S1), Sentinel-2 multi-temporal images (S2) and 

Sentinel-1 SLC with polarimetry features (S1-pol) will be calculated from each data 

sources. 

For Sentinel-1 GRD, time series imagery described in Chapter 5 are used again with 

sigma-nought VV as the feature. Since time series data consists of 16 images with 

different date, there will be 16 sigma-nought images as the features from this source. 

As for Sentinel-1 SLC, we will used polarimetry features which obtained from H/Alpha 

dual decomposition. The features are consisting of anisotropy, entropy and alpha 

images. The both images of Sentinel-1 SLC acquired on 16/12/2015 and 09/01/2016 

when floods occurred are used for test. Thus, there are six features from this polarimetry 

source. 

For Sentinel-2 data, the three multi-temporal images with low cloud cover uses in 

chapter 5 are tested.  For each image, 8 features are extracted i.e., Band 2, 3, 4, 8, 

NDWI2 and textures images (correlation, dissimilarity and homogeneity). The four 

main bands are used due to their high spatial resolution (10 meter), as for NDWI2 are 

used as representation of water index used in previous chapter. Some textures images 

from Band 8 are used to consider also the spatial relationship of pixels. Correlation, 

dissimilarity and homogeneity are selected based on their low correlation with the other 

textures images of Sentinel-2. Consequently, there are total of 24 features from this 

source. 

Based on these features, several tests are then performed which used four combination 

of sources as explained below (Figure 6. 12). 

· Test 1: feature-level image fusion of S2 and S1, 40 features in total. 

· Test 2: feature-level image fusion of S2 and S1-pol, 30 features in total. 

· Test 3: feature-level image fusion of S1 and S1-pol, 22 features in total. 

· Test 4: feature-level image fusion of S2, S1 and S1-pol, 46 features in total. 
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Figure 6. 12. Flowchart of processing steps in feature-level image fusion. 

 

b. Selection of PCs bands 

The second step consists to calculate the covariance matrix as the most common method 

to use in PCA with the majority of remote sensing datasets. An important issue in PCA 
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is to select the amount of the PCs bands which will be used for classification.  

Percentage of variance from PCs bands, their histograms and their cumulative values 

are used as criterias (Gniazdowski, 2017). The histograms showed percentage of 

variance, from largest to smallest, which the shape resembles a mountain slope. The 

amount of the extracted principal components can be selected from PCs bands located 

on the steep slope. 

 

Figure 6. 13. Percentage of variance from each PC Bands in all tests. 

Figure 6. 13 shows that PC Band 1 in all tests carry over 50% of the information. 

Cumulative percentage of variance from PCs Bands 1, 2 and 3 in all tests represented 

more than 70% of total variance. In addition, it can be seen from Figure 6. 13 that PCs 
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Bands 1, 2 and 3 are located in the steep slope in all tests, except test 3. PC Band 4 and 

the rest have shape like gentle slope. Therefore, PCs Bands 1, 2 and 3 from the results 

of PCA are selected to be used as input data in Random Forest (RF) classification. 

The contribution of features in selected PCs Bands is performed through the analysis 

of  eigenvectors values.. The eigenvectors indicate the proportion of each input feature 

contributes to each PC band. In test 1, sigma-nought VV 08/06/2016 and 18/10/2016 

have the biggest contribution in PCs Bands 1, 2 and 3 with high eigenvectors values. In 

test 2, entropy 16/12/2015 and anisotropy 09/01/2016 have greater impact than the other 

input features. For test 3, sigma-nought VV 08/05/2016, 30/10/2016 and 18/10/2016 

have the biggest contribution. For the last test (test 4) which combined features from 

all sources, entropy 16/12/2015 and anisotropy 09/01/2016 have the biggest impact as 

in test 2. 

If we look closely, in all tests, features from SAR data always have the biggest 

contribution. When combined with optical data (S2), features from S1 and S1-pol will 

give high contribution. In the test 3, when combination is from two types of SAR data, 

S1 with only amplitude values give higher contribution than S1-pol features. Yet, when 

all sources are combined, S1-pol features will give the biggest impact. The features 

contributions in PCs Bands 1, 2 and 3 will affected images results and give influence 

in outcome of classification. 

 

c. Random Forest (RF) classification 

For the third step, input data for RF classification are layer stacking of PCs Bands 1, 2 

and 3 (multi-bands image with PC Band 1 in red channel, PC Band 2 in green channel 

and PC Band 3 in blue channel). Training samples for this RF are result of experiment 

1 from Chapter 5 (Sentinel-1 time series image fusion result). The final results from 

each test are then assessed using Water and Wetness product. 

Table 6. 2 shows quantitative evaluation results for test 1 until test 4. From the 

assessment, it can be seen that Test 3 with Sentinel-1 combination between features 

from Sentinel-1 GRD and Sentinel-1 SLC (polarimetry) give the best statistical result. 

Test 3 gives the highest overall accuracy and F-measure than the other tests. 
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Table 6. 2. Accuracy assessment for four tests in feature level images fusion. 

Tests 
Overall 

Accuracy 
F-measure 

True 

Positive 

Rate 

False 

Positive 

Rate 

Omission 

error 

Commission 

error 

Test 1 (S2 & S1) 98.09% 0.74 92.23% 1.73% 7.77% 38.69% 

Test 2 (S2 & S1-pol) 97.63% 0.69 91.64% 2.19% 8.36% 44.52% 

Test 3 (S1 & S1-pol) 99.28% 0.89 97.84% 0.67% 2.16% 18.76% 

Test 4 (S2, S1, S1-pol) 97.09% 0.65 93.47% 2.80% 6.53% 50.22% 

 

Compared with result of Experiment 3 (S1 & S2) in Chapter 5 (see Table 5.2), Test 1 

in this investigation has lower values of accuracy assessment. Overall accuracy in 

Experiment 3 is 99.95% while Test 1 has value of 98.09%. F-measure value in 

Experiment 3 is 0.99 while Test 1 has value of 0.74. Overall, results from Chapter 5 

have higher accuracy assessment than all results tests in this investigation. 

 

Figure 6. 14. Visualization results from all tests in feature-level image fusion. 

Visual interpretation of results for all tests are represented in Figure 6. 14. The result 

from test 3 represents not only permanent surface water but also temporary surface 

water. Thus, there are many false positives appeared. It is due to classification input is 

PCs bands which represented variance in features. Floods areas in time series images 

give strong variance and captured by PCs bands. There is almost no false negative 
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appeared in all tests results. Only test 3 provided different extraction of water surfaces. 

In another tests, many false positives appeared outside floods or temporary area. 

In test 1, PCs Bands 1, 2 and 3 have highest contribution from sigma-nought VV 

08/06/2016 and 18/10/2016 which represent no-floods images. Therefore, result in test 

1 does not extract temporary surface water. As been discussed before, there are 

roughness of the water surfaces caused by wind and turbulence effects, thus some errors 

are appeared cause false positives in the result. In test 2 and test 4, the highest 

contribution come from entropy and anisotropy images which detect water in wetland 

areas. Therefore the results show scattered false positives mostly in wetland areas. 

From these analyzes, it can be concluded that multi-source image fusion at the feature-

level can not give better result in mapping permanent surface water than image fusion 

at the decision-level. However, this method can give high overall accuracy with more 

than 97% and high F-measure values, about 0.7. 

 

6.2 Validation on different thematic context through 

experiments of massive processing 

6.2.1 Monitoring surface water in Grand-Est region, France 

The purposes of this sub-section are to investigate the use of automatic mapping of 

surface water for spatio-temporal monitoring, to study the use of image fusion method 

proposed in Chapter 5 for mapping permanent surface water and to perform rapid 

mapping of temporary surface water for Zorn River flooding occurred during the winter 

2018 (described in Chapter 3 – Part 3.1.2.2). Spatio-temporal monitoring in the Part a 

will apply method from Chapter 4 and map surface water as a whole. Part b and c will 

apply methods in Chapter 5 in mapping permanent and temporary surface water. 
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a. Spatiotemporal distribution of surface waters in Grand-Est 

Using automatic mapping method from Chapter 4, eleven images of surface water are 

produced over short-time period (Table 3.4). The method is based on single data 

extraction (The Water-S1 method). 

 

Figure 6. 15. Spatiotemporal distribution of surface waters based on automatic and rapid 

mapping extraction. 

Figure 6. 15 represent spatiotemporal distribution of surface waters before, during and 

after floods events. In December 2017, water surfaces remain almost the same (Figure 

6.18). There are no drastic changes occurred in this month. In 5th and 6th January 2018, 

there are surface waters appear in the north areas. Probably due to Storm Eleanor which 

caused inundation in those date along Zorn River. In, 11th January 2018, those floods 

disappear. Nevertheless, those areas along Zorn River (north areas in the figures) 

become flooded again on 23rd January 2018 with larger distribution of waters due to 

heavy precipitation (Sertit, 2018). Then, on 29th January 2018 and February, water 

surfaces become normal again. With short range interval observation, we can see more 

dynamic changes of water surfaces. 
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b. Large coverage mapping of permanent surface water using time series image 

fusion 

In order to map permanent surface water in the study area, Sentinel-1 time series images 

fusion method in decision level using bayesian sum as presented in Chapter 5 will be 

applied. In Chapter 5, time series images consist of data in one year period. However, 

to acquire permanent surface water, time series images are based on three months 

period. It is interesting to investigate if three months period is adapted and sufficient in 

determining permanent surface water areas. 

 

Figure 6. 16. Permanent surface water result from image fusion. 

Quantitative evaluation is based on BDTopo IGN as reference data (Table 6. 3) and 

visual interpretation of results are presented in Figure 6. 16. Overall accuracy shows 

high value with more than 99% and F-measure provides value more than 0.7. Zorn 

River and Ill river are not detected due to their narrow width and the presence vegetation 

along their border which cover the signal, however Rhin River is successfully detected. 

In consequence, True Positive Rate only reaches about 60% and omission error reaches 

about 39%. However, there are almost no false positive and false negative appear, 

except in narrow rivers or border areas. Thus, the applied method using temporal image 

fusion allow value-added in acquiring permanent surface water in this case of short-

term period. These results are consistent with those obtained on the case study of Italy 

and confirm that Sentinel-1 images are suitable for minimum surface of 1 ha (see 

Chapter 3). 
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Table 6. 3. Quantitative evaluation of permanent surface water result from Sentinel-1 time 

series image fusion. 

Overall 

Accuracy 
F-measure 

True Positive 

Rate 

False Positive 

Rate 

Omission 

error 

Commission 

error 

99.31% 0.74 60.17% 0.02% 39.83% 2.20% 

 

c. Rapid mapping of temporary surface water, case study: Zorn River flooding, 

Grand-Est 

In this sub-section, temporary surface water is tried to be detected with focus on floods 

delineation. Using permanent surface water extracted in previous part (Part b of Sub-

section 6.2.1) as mask, temporary surface water are extracted from each single date. 

This sub-section applied methods proposed in Chapter 5. Based on reference data, 

floods are detected on 23th January 2018, yet based observations in Part a of Sub-section 

6.2.1, there are also floods in 5th and 6th January 2018. Thus, quantitative evaluations 

for floods areas are only performed for inundation result on 23th January 2018 (Table 

6. 4) with flood map produced by ICUBE-SERTIT as reference data (see Chapter 3 – 

Part 3.1.2.2). 

 

Table 6. 4 Quantitative evaluation of floods areas from Sentinel-1 single date image 

(23/01/2018). 

Overall 

Accuracy 
F-measure 

True Positive 

Rate 

False Positive 

Rate 

Omission 

error 

Commission 

error 

98.76% 0.90 86.50% 0.43% 13.50% 6.91% 

 

Even overall accuracy is lower than result of permanent surface water, the assessment 

from floods areas of 23th January 2018 results give better F-measure, True Positive Rate 

and omission error. In a qualitative point of view, with the visual interpretation in 

Figure 6. 17, floods along Zorn River are detected successfully with false positive and 

false negative appear only in the border area. 
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Figure 6. 17. Floods result from single date 23th January 2018. 

A monitoring analysis of temporary surface water is presented in Figure 6.18. During 

the short-term period, temporary surface water areas normally not exceeding 400 ha. 

Two peaks of temporary surface water areas are observed in 5th and 6th January 2018, 

also 23rd January 2018, reached more than 900 ha. 

For all the inundation period, flood reference map is only available for the 23rd January. 

Then to complete the visual assessment of this monitoring, we decide to collect data 

reference based on news media (Moreau, 2018) with floods photos. For instance Figure 

6. 19 shows photographies taken on 5th and 6th January 2018 showing flooded road at 

the exit of Krautwiller and floods between Krautwiller and Wingersheim. This visual 

interpretation highlight the relevance of our extraction for small areas, next to the river. 

Figure 6. 18. Dynamic changes of temporary surface water areas (ha). 
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Figure 6. 19. Floods detection on 5th and 6th January 2018. 

 

6.2.2 Monitoring Bengawan Solo River downstream area 

In this sub-section, the main objective is to apply our proposed methods for surface 

waters monitoring in subwatershed of Bengawan Solo downstream, Indonesia. The 

purposes are thus (1) to study the use of image fusion in decision level method for 

mapping permanent surface waters; (2) to monitor irrigated croplands along Bengawan 

Solo River; and (3) to investigate the use of automatic and rapid mapping of surface 

water in extracting information about bankfull width for river discharge estimation. 

 

a. Mapping permanent surface water of Bengawan Solo River, Indonesia 

Twelve posterior probability maps of surface waters are generated over one year period 

(2017 – details in Chapter 3 – Part 3.1.2.2). Permanent surface water in the study area 

is obtained using Sentinel-1 time series image fusion in decision level with bayesian 

sum method as presented in Chapter 5. The result is then transformed into a binary 

image assigning all pixels with posterior probability of surface water greater than 0.9 

as permanent surface water (Figure 6. 20). The accuracy assesment (Table 6. 5) is done 
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using surface waters classes of topography map from Indonesian Geospatial 

Information Agency (BIG, 2017). 

 

Figure 6. 20. Permanent surface water result of Bengawan Solo River, downstream area. 

Overall accuracy shows high value with more than 97%, F-measure provides value 

0.79, also very low False Positive Rate and commission error. Only omission error give 

value about 34% since the reference map was created at 1999. False positives and false 

negatives appeared in border area because of dynamical changes of waters in the river 

banks (Figure 6. 20a). Due to straightening, there are morphological changes in 

Bengawan Solo River which can be seen from false positive and false negative in Figure 

6. 20b&d. Land use changes, for example in Figure 6. 20c&d, from small lake to 

agricultural area also created false negative. Some fishponds are also detected as 

permanent surface water in our result led to appearance of false positive (Figure 6. 20d). 

Based on accuracy assessment and visual interpretation, we can conclude that our 

proposed and automatic method extract successfully permanent surface water in 

Bengawan Solo downstream. 
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Table 6. 5. Quantitative evaluation of permanent surface water result in Bengawan Solo 

downstream from Sentinel-1 time series image fusion. 

Overall 

Accuracy 

F-measure True Positive 

Rate 

False Positive 

Rate 

Omission 

error 

Commission 

error 

97.64% 0.79 65.91% 0.01% 34.08% 0.29% 

 

b. Monitoring water variability in irrigation croplands areas 

In this part, in order to monitor the water variability in irrigation cropland, temporary 

surface waters are detected. Using permanent surface water of previous part (a) as mask, 

temporary surface water can be extracted from each single date (12 images of Sentinel-

1). This part applies methods proposed in Chapter 5. Temporary surface waters from 

one year period are presented as a frequency map in Figure 6. 21. This map show how 

many times temporary surface water pixels appear in the time period. Surfaces as river 

banks, fispond and irrigation croplands are successfully extracted. 

Using irrigation croplands class from topography map of Indonesian Geospatial 

Information Agency as a mask (Figure 6. 22), temporary surface water can be focused 

only in the irrigation croplands area. The variation of water consists of frequency 1 until 

11. The variability of water surfaces is presented in the graphic shown in Figure 6. 23. 

This figure shows that during rainy season (October - March), water in irrigation 

croplands has larger area than during dry season (April – September). Anomalies are 

only seen in April and October, probably due to change of season. 
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Figure 6. 21. Frequency map of temporary surface water from Sentinel-1 time series (12 

images) in Bengawan Solo downstream. 

 

Figure 6. 22. Variability of water in irrigation croplands area as a frequency map. 
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Figure 6. 23. Dynamic variation of water in the irrigation cropland indicated by area (ha). 

First planting season in Indonesia commonly starts in November and ends in February 

(Wahyudi et al., 2014). The first planting season is identical with rainy season. In Figure 

6. 23, water covers a large area in those periods. For second planting season on March 

until June, water existence also seems sufficient, over 2000 hectares. However, in the 

third planting season from July to October, water surfaces are low. Especially in August 

and September with water existence less than 1000 hectares. This monitoring of water 

variability in irrigation cropland can be useful for government  as a basis for irrigation 

technique improvement. With enhancement of irrigation technique, it is expected to 

have larger water area in third planting season thus people can maintain or increase 

grain yield per unit area and volume of water. 

 

c. River discharge estimation in one year period (2017) 

One study related to river management is river discharge analysis. This approach allows 

to study the potential of drought or flooding. In the literature, river discharge can be 

estimate from satellite data, Sentinel-1 images, using equation 6.9 stated in (Bjerklie, 

2007). 

River Discharge = 0D2EF'DGH     (6.9) 
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Where W is bankfull width. Bankfull width is the measurement of the lateral extent of 

the water surface elevation perpendicular to the channel at bankfull depth (Washington 

State Department of Natural Resources, 2004). The equation is used due to Bengawan 

Solo river has morphology type of meandering river. Equation 6.9  is developed 

specifically for meandering river type (Bjerklie, 2007). Equation 6.9 is regression 

equation which obtained from relationship of width and streamflow as been stated by 

(Leopold and Maddock Jr., 1953). 

 

Table 6. 6. In-situ measured data and Sentinel-1 estimation data of Bengawan Solo River 

discharge. *In-situ measured discharge of Bengawan Solo River from PUSDATARU Central 

Java Indonesia. 

Month 
In-situ measured 

discharge (m3/s)* 

Discharge estimation from 

Sentinel-1 (m3/s) 

Jan 335.66 354.63 

Feb 300.29 507.42 

Mar 201.70 261.64 

Apr 202.68 281.10 

May 186.63 212.23 

Jun 65.32 214.51 

Jul 30.52 202.94 

Aug 17.03 183.19 

Sep 32.15 142.57 

Oct 35.21 252.95 

Nov 65.13 264.66 

Dec 156.45 244.08 

 

Bankfull width can be obtained from Sentinel-1 IW GRD data. In this study, Bengawan 

Solo River are extracted in one year period (2017) from Sentinel-1 time series data 

using Water-S1 method proposed in Chapter 4. Bankfull width is then obtained using 

geometry calculation. After getting bankfull width, river discharge can be calculated 

using equation 6.9. The results are presented in Table 6. 6 and compared with in-situ 
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measured data from PUSDATARU Central Java Indonesia (PUSTADARU, 2017) 

(Figure 6. 24). 

 

Figure 6. 24. Comparison between in-situ river discharge and estimation from Sentinel-1. 

 

Figure 6. 25. Relationship between the satellite derived bankfull width and the in-situ 

measured discharge. 

From Table 6. 6 and Figure 6. 24, discharge estimation from Sentinel-1 can predicted 

closely in some months such as December, January, March, April and May.  In order 

to analyse relationship between in-situ measured discharge and discharge estimation 
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from Sentinel-1 data, coefficient of correlation (R) and coefficient of determination (R2) 

were calculated (Figure 6. 25). 

The coefficient of correlation can go between -1 and 1.  Value 1 indicates that the two 

variables are moving in unison, while value 0 means not correlated. In this study, 

coefficient of correlation shows value 0.78 which indicates strong relationship between 

discharge estimation from Sentinel-1 data and in-situ measured discharge. In the other 

side, using linear regression, coefficient of determination shows value 0.60 or 60% 

which means 60% of the change in the total of in-situ measured discharge is associated 

with the change in discharge estimation. 

Based on R2, which provides value more than 50%, it shows the validations for the 

remotely-sensed discharge estimation equations with bankfull width as been presented 

in equation 6.9. Equation 6.9 is provided sufficient estimation for Bengawan Solo river 

discharge related to its meandering river type. However, there is another parameter 

which must be considered, such as dam. In the Bengawan Solo river, there are dams 

which make river have higher water levels than normal. Those affected water surfaces 

width and created larger width than bankfull width. Uncertainty appears due to 

difficulty in verifying whether the width obtained from satellite imageries corresponded 

to bankfull conditions or not (Andreadis et al., 2013). Those are explained why there 

are overestimation of river discharge in some months. 

 

Figure 6. 26. Bengawan Solo River and its dam. 

Another reason is limitation in Sentinel-1 resolution. Sentinel-1 data use in measuring 

bankfull width is limited by its spatial resolution, i.e., about 20 m. River bankfull width 
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error is fixed to the Sentinel-1 pixel size (Sichangi et al., 2016). Uncertainty in bankfull 

width calculation lead to inaccuracy of river discharge. This explains why in the dry 

season, when normally river has narrower river width produced larger discharge than 

in-situ measurement. 

 

 

This chapter presented analysis of SAR polarimetry for surface water mapping. It also 

provided investigation of multi-source image fusion based on feature level. Moreover, 

it also presented massive processing for different case study: Grand-Est region, France 

and Bengawan Solo, Indonesia for validation of methods in different thematic context. 

The next chapter will provide general conclusions and perspectives. 
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This PhD thesis explores the single and combined use of Sentinel-1 and Sentinel-2 data 

either in mono-date image or multi-temporal image approach for surface water 

detection. We focused on the use of Sentinel-1 SAR data before combining it with 

Sentinel-2 optical data for complementary information. The technique includes 

automatic and rapid mapping of surface water from Sentinel-1 imagery. It also 

presented exploration of Satellite Image Time Series (SITS) and multi-source image 

fusion for improvements on surface water mapping. 

 

7.1 Key findings 

This study was guided by three research questions and three hypotheses. The answers 

of those questions are summarized in the sub-sections below. 

 

7.1.1 What is the suitability and which methods are adapted and 

robust for an operational exploitation of Sentinel-1 data? 

The suitability of Sentinel-1 for surface water mapping has been tested in Chapters 3 

and 4. Spatial analysis showed that surface waters can be identified easily from 

Sentinel-1 imagery if they have an area of about 1 ha or more. We studied the 

polarization types of Sentinel-1 for surface water detection. VV polarization has better 

ability to discriminate between smooth open water area and land than VH polarization. 

Thus VV polarization is more adapted for surface water mapping. Investigation of 

features from Sentinel-1 data such as amplitude, intensity, sigma-nought, beta-nought 

and gamma showed sigma-nought as the optimal feature for surface water mapping. As 

SAR data, Sentinel-1 has speckle noise which can reduce image quality for 

interpretation. Analysis in some speckle filtering methods generated a conclusion that 

the Median filter with window size 5 × 5 pixels is the best approach to reduce speckle. 

Several SAR-based water detection algorithms have been proposed in the literature. 

Among those methods, thresholding is the most commonly adopted method for SAR 

image analysis to discriminate water and non-water areas. There are many available 
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SAR-based water detection algorithms and automatic flood mapping services. Hence, 

while several semi-automatic and automatic tools already exist, there are, to the best of 

our knowledge, currently only a few scientific references which present a fully 

automatic water detection processor for surface water mapping from Sentinel-1 

imagery. The method uses thresholding on individual pixels ignoring the correlation 

among neighboring pixels. Considering that individual pixels are not independent 

random variables but in the form of a random field, the potential to improve the 

accuracy of the flood extent maps exists. To this end, we presented an approach 

consisting of pixels modelling, probability map, and smoothness assumption in order 

to detect floods and surface waters. 

We developed a modified SBA (Split Based Approach) method to enhance the focus 

on surface water areas rather than the whole image scene (Chapter 4). Finite Mixture 

Models are found to be suitable for the automatic modelling of surface waters and land 

classes. Using bilateral filtering for smooth labeling from a probability map led to more 

accurate results than using direct or empirical thresholding. HAND maps are used as 

terrain filters in order to remove potential false positives early on in the processing 

chain. Our results show that we were able to estimate floods and surface waters in three 

case studies with different spatial context with an average of F-measure about 0.8. 

The proposed method is fully automatic in the sense that it does not require human or 

expert intervention in the processing. The method will focus on surface water areas and 

extract them automatically. The parameters to process the data are already in the 

system, thus people who use this method do not need to manually input them. The 

operational method is developed using the programming language R and only needs a 

short processing time. The time of processing is about 10 h per Sentinel-1 image, using 

a computer with multiple Intel Duo processors of 1.90 GHz and 32 GB RAM. Multiple 

images can be processed easily in parallel. Rapid mapping can hence be achieved in 

less than half a day after the image data is made publicly available. In manual 

processing, longer time is needed to determine parameters, enter them for each image 

and multiple images must be processed one by one. This proposed automatic method 

has the potential to be developed and performed for operational rapid mapping in other 

geographic regions due to: (1) the variable landscape characteristics at the investigated 
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sites and (2) the use of Sentinel-1 as free SAR data with wide area monitoring 

capabilities. 

With our results, the suitability of Sentinel-1 for surface water mapping is verified. The 

adapted and robust methods for an operational exploitation of Sentinel-1 data have been 

proposed. The results are encouraging and constitute the first step to proposing 

operational image chain processing to help end-users quickly map flooding events or 

surface waters. 

 

7.1.2 What is the contribution of Sentinel-1 time series? 

The proposed methodology to explore the interest of Sentinel-1 time series in a 

processing chain has been developed in Chapter 5. This investigation is based on image 

fusion approach in decision-level with a Bayesian sum for the operator and gives 

relevant results to differentiate permanent and temporary surface water. Thus time 

series data can increase the detection level of surface water. The use of Satellite Image 

Time Series (SITS) can also reduce the noise qualitatively and quantitatively. Temporal 

data give variability of surface water areas during the long period of observation, thus 

can remove noises which only appear once or twice. Time series data also allow better 

understanding of temporary surface water in the context of space and time dynamics. 

Validation of the proposed method in Chapter 6 shows that time series data can also 

provide new or complementary information on the behavior of surface water or their 

evolution on a short-time period. Permanent surface water can also be extracted over 

short-time period of observation. With our results, we conclude that time series data 

can improve surface water mapping through the reduction of noise and detection of 

permanent and temporary surface water (Hypothesis 1). 

This proposed method based on time series data is a development from a previous 

automatic method in extracting surface water. With the help of the programming 

language Python, image fusion can be performed automatically. By using two 

computers that have the same specifications as sub-section 7.1.1, all processing can be 

carried out in about 3 days. For more rapid performance, more computers can be used 

because multiple images can be processed in parallel. 
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7.1.3 What is the contribution of multi-sensor data? 

First, in Chapter 5, we have showed that the fully automatic method proposed in 

Chapter 4 can also be applied for Sentinel-2 imagery, with some modifications in pre-

processing steps. The methods based on the NDWI2 water index or a times series of 

NDWI can give sufficient results. However, these methods with optical data are very 

dependent on the presence of cloud cover. Thus, it is more difficult to obtain time series 

data from this optical imagery, only multi-temporal images are available. 

Furthermore, the complementarity of Sentinel-1 and Sentinel-2 has been explored. The 

methodology to combine multi-sensor (multi source) imagery (SAR − Sentinel-1 and 

optical − Sentinel-2) is proposed using decision-level image fusion. Compared with the 

use of mono-source time series data, the combination of Sentinel-1 and Sentinel-2 

(multi-source) time series data can provide better accuracy in mapping permanent 

surface water. 

For the monitoring of temporary surface water, the use of decision-level image fusion 

allows quantifying the probability of occurrence of flooded terrains at the pixel scale 

giving the possibility to understand the dynamics of the flooding. Some maps of 

temporary surface water can be helpful in giving new information for decision makers, 

for example in monitoring water variability in irrigation cropland. The monitoring can 

be useful as a basis for irrigation technique improvement (Chapter 6). 

Another image fusion method in feature level followed by a Random Forest 

classification is also presented to compare and assess the best fusion approach. The 

result showed that decision-level image fusion give better performance than this 

approach. 

We can conclude that fusion of SAR and optical time series can increase the accuracy 

of the detection and enhance the mapping of the permanent surface water. It is also 

useful for better understand the flood dynamics and useful for decision making through 

analysis of temporary surface water (Hypothesis 2). 

Sentinel-1 SAR data in SLC mode can provide SAR polarimetry data. The 

investigations using those data showed that the separation of surface water areas from 

the other land cover can be done, but classification of surface water into different 



Chapter 7. General conclusions and perspectives 

 

 

161 

thematic classes cannot be conducted. Compared with Sentinel-1 GRD, SAR 

polarimetry data are longer to process due to their big amount of data. Thus, for the 

purpose of surface water mapping, SAR polarimetry seems not to be a good idea to 

pursue. However, in order to identify surface water thematic classes, taking the other 

SAR polarimetry data into consideration at finer spatial resolutions or with full-

polarization would be a good idea to explore. 

The proposed methods are successfully applied for massive processing in different case 

studies. They can extract permanent surface water in the Grand-Est region, France and 

can perform rapid mapping of temporary surface water for the Zorn River flooding. 

Transposing the methods to the Bengawan Solo River in Indonesia, they can map 

permanent surface water with relevant and encouraging result. The methods can be 

applied also to monitor waters variability in irrigation croplands areas. Moreover, the 

methods can be used for getting river banks’ full width information to estimate river 

discharge (Hypothesis 3). 

The massive processing in the case study of Grand-Est, France is executed in about 3 

days with 11 images as input. As for the case study of Bengawan Solo, Indonesia with 

12 images of input, it needs more time for processing, about 5 days, due to its 

application for water variability in irrigation croplands and river discharge estimation. 

Those processing speed can be reached using two computers with multiple Intel Duo 

processors of 1.90 GHz and 32 GB RAM. More computers can be used to process 

multiple images in parallel for more rapid performance. 

 

7.2 Perspectives 

This PhD thesis opens many perspectives, some rather operational, others 

methodological or thematic. Some of these perspectives are explored in this section. 

First, an automatic chain pocessing method for Sentinel-1 has been developped. Yet, 

there is a possibility to apply the method in other SAR data, for example ALOS-

PALSAR 2 data from Kalideos Alsace. We applied the method in ALOS-PALSAR 2 

before but we still need to observe the applicability result. 
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Second, the proposed methodology using a fusion of Sentinel-1 and Sentinel-2 image 

time series is generic. It does not require user interaction; suggesting that it is applicable 

for the monitoring of permanent surface water bodies over large areas and at high 

temporal frequency. It has the possibility to become a permanent service solution if 

integrated on high performance computing centers. In the case of temporary surface 

water, it can be explored more through detailed frequency map analysis for 

comprehensive understanding of the space and time dynamics. It is also possible to 

distinguish flooded and non-flooded area in the temporary surface water class using 

that analysis. Such approach is of interest for improving flood risk management 

procedures. Moreover, it is interesting to develop more the analysis so that the methods 

can adapt with the global use. 

However, it is important to extend the observation period for example to 5 years in 

order to be able to learn surface water behaviour. More data and information can be 

collected from long time period, then time series analysis can be developed using trend 

analysis. The analysis can be useful to cover annual changes of surface water, seasonal 

monitoring and better understanding of surface water behavior through time. In order 

to obtain global product, we also need to apply or tests the method in arid regions 

because it is difficult to map water area due to water and water non-alike area in those 

regions, effect of backsacttering values. 

Third, decision level image fusion with Bayesian sum operator can provide simple and 

rapid mapping. However, it will be interesting to analyze other methods beside fuzzy 

logic and Bayesian for image fusion. Besides the great many algorithms in the literature, 

there are also the deep learning algorithms that easily accommodate to different sources 

and missing data. Deep learning is a well-known method for massive data processing. 

Nowadays, it becomes a powerful, effective and flexible method to extract knowledge 

from data. It is not specific to data fusion, but it can accommodate data from different 

sources. However, a key point of this type of algorithm is the need of a large number 

of samples to train their network. The active learning approach arrives as a 

breakthrough in dealing with this issue. This approach can learn from a small number 

of examples to train their network, thus has a great potential in the image processing 

domain. Future research can include those methods (deep learning and active learning) 

for image fusion and compare with the results from this study. 
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Fourth, the operational system of automatic methods in this study are based on several 

free software and programming language. Future work is required to integrate all the 

processing, from pre-processing until post-processing, in one programming or create 

some plug-ins which can be placed in Sentinel Application Platform (SNAP). The 

integration will simplify and accelerate the image processing to produce maps of 

surface water. 

Lastly, the results from our proposed method using Sentinel data can also become the 

data learning towards the launch of Surface Water Ocean Topography (SWOT) mission 

in the future. The mission is planned for launch in 2021 and provides shorter 

wavelength (Ka-band) than Sentinel-1. This mission intends to provide a major 

improvement in the availability of surface extent and storage change for surface water 

bodies such as lakes, reservoirs, wetlands, and rivers globally, also give information 

about water levels. Therefore, the use of SWOT and Sentinels mission can be expected 

for monitoring spatiotemporal variations of surface water and creating surface water 

database on a global scale. 

Although the use of remote sensing data as operational source of information for surface 

water observations still requires development, the methods and tests proposed in this 

work are promising.
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1. Introduction, problématique et objectifs 

 Les eaux de surface sont des ressources importantes pour la biosphère et l'anthroposphère. 
Elles favorisent la préservation des habitats, le développement de la biodiversité et le maintien 
des services écosystémiques en contrôlant le cycle des nutriments et le carbone à l’échelle 

mondiale. Elles sont essentielles à la vie quotidienne de l’homme, notamment pour l'irrigation, 

la consommation d’eau potable, la production hydro-électrique, etc. Par ailleurs, lors des 
inondations, elles peuvent présenter des dangers pour l'homme, les habitations et les 
infrastructures. La surveillance des changements dynamiques des eaux de surface a donc un 
rôle primordial pour guider les choix des gestionnaires dans le processus d’aide à la décision. 

 L’imagerie satellitaire constitue une source de données adaptée permettant de fournir des 
informations sur les eaux de surface. De nos jours, la télédétection satellitaire a connu une 
révolution avec le lancement des satellites Sentinel-1 (Radar) et Sentinel-2 (Optique) qui 
disposent d’une haute fréquence de revisite et d’une résolution spatiale moyenne à élevée. Ces 

données peuvent fournir des séries temporelles essentielles pour apporter davantage 
d'informations afin d'améliorer la capacité d'observation des eaux de surface. L’exploitation de 
telles données massives et multi-sources pose des défis en termes d’extraction de connaissances 
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et de processus de traitement d’images car les chaines de traitement doivent être le plus 

automatiques possibles. 

 Dans ce contexte, l'objectif de ce travail de thèse est de proposer de nouvelles approches 
permettant de cartographier l’extension spatiale des eaux de surface permanente et temporaire 
(inondations), en explorant l'utilisation unique et combinée des données Sentinel-1 et Sentinel-
2. Afin d'atteindre cet objectif, ces problématiques liées à l'amélioration de la cartographie des 
eaux de surface sont synthétisées en trois questions : 

¾ Quelle est la pertinence et quelles méthodes sont adaptées et robustes pour une 

exploitation opérationnelle des données Sentinel-1 ? 

¾ Quel est l’apport de la haute fréquence temporelle des images Sentinel-1 ? 

¾ Que peuvent apporter les données multi-capteurs dans les méthodes automatiques ? 

Sur la base de ces problématiques, trois hypothèses sont émises : 

1. Les séries temporelles d'images satellites peuvent améliorer la cartographie des eaux 
de surface. 

2. Les images multi-capteurs sont utiles et pertinentes pour la cartographie et la 
surveillance des eaux de surface. 

3. Les méthodes proposées sont génériques et peuvent être appliquées et adaptées à 
d’autres applications thématiques. 

 

 

2. État de l’art 

 Cette partie a pour but d’examiner l’état de l’art des méthodes de cartographie des eaux de 

surface fondées par des méthodes de télédétection optique et radar et de présenter les produits 
existants des eaux de surface. 

2.1 Télédétection optique pour la détection des eaux de surface 

 En cas de conditions météorologiques favorables, les images satellites « optiques » 
constituent la source d’information privilégiée pour la détection des eaux de surface en raison 

de leur facilité d’interprétation. L'imagerie optique peut fournir une bonne information sur la 
délimitation des surfaces en eaux lorsque les nuages, les arbres ou la végétation ne masquent 
pas la surface d’eau. Plusieurs méthodes ont été développées dans la littérature pour 
cartographier les eaux de surface avec des images optiques. 

 Le découpage de densité, la détection des contours, les méthodes de classification (non 
supervisées ou supervisées) et les méthodes décisionnelles sont fondées sur une rétro-diffusion 
faible de l’eau de surface. Le moyen facile et efficace de distinguer les zones en eau des zones 
terrestre consiste à utiliser des indices d’eau (par exemple : TCW, NDVI, NDWI, MNDWI et 
AWEI). Le seuillage est l’un des problèmes importants de la cartographie des eaux de surface. 

Des méthodes telles que le découpage de densité, la détection des contours et les indices d'eau 
sont appliquées par seuillage pour extraire l'eau de surface. La sélection des seuils est délicate 
et parfois difficile à généraliser en raison des caractéristiques différentes de l’eau de surface 

dans chaque image. Ainsi, un ajustement manuel du seuil est nécessaire pour obtenir des 
résultats plus précis. Il existe des méthodes d'extraction automatique de seuillage pour 
cartographier les eaux de surface. 
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 Toutes les méthodes mentionnées ci-dessus utilisent généralement la réflectance des pixels 
pour extraire les eaux de surface. Cependant, avec des images à très haute résolution spatiale, 
les  méthodes de classification dite ‘orientée-objet’ conviennent mieux. 

 Bien que le principe de l'extraction de l'eau de surface à partir des capteurs optiques soit 
assez simple, il est également important de rappeler que la qualité de l’extraction est dépendante 
de la qualité des images en termes de couverture nuageuses puisque les images optiques sont 
dépendantes des conditions atmosphériques. Dans ces conditions, plusieurs méthodes ont été 
développées dans la littérature à partir des images issues de capteurs actifs (images Radar à 
Synthèse d’Ouverture – RSO). 

2.2 Télédétection RSO pour la détection des eaux de surface 

 La seuillage est aussi l’une des méthodes les plus couramment adoptées sur les images RSO 
pour distinguer les zones en eau des autres zones. L'approche est basée sur le retour faible des 
eaux de surface. Son avantage est représenté par l'efficacité du calcul qui pourrait le rendre 
approprié à des fins de cartographie rapide. Cependant, le choix de la valeur de seuil est un 
aspect critique car il dépend des paramètres environnementaux de la zone d'étude, ainsi que des 
paramètres du système. 

 Deux approches existent pour définir un seuil de détection de la surface de l'eau sur une 
image RSO : (i) la détermination manuelle peut être effectuée de manière empirique par 
interprétation visuelle de l'histogramme de l'image et par procédures d'essai et d'erreur, (ii) le 
seuillage automatique pour la cartographie des eaux de surface peut être basé sur plusieurs 
algorithmes (l'algorithme d'Otsu, valley emphasis, le seuillage automatique basé sur la 
modélisation statistique des histogrammes). 

 La plupart des études sus-mentionnées considèrent les pixels comme les plus petites 
composantes géométriques de données raster (à base de pixels). A très haute résolution spatiale, 
les objets de surface de la Terre sont généralement plus grands que la taille en pixels. Par 
conséquent, bien que les pixels représentent différentes propriétés spectrales, ils peuvent 
correspondre au même objet. La classification orientée objet sur ces images RSO s’est de plus 

en plus développée dans la cartographie des eaux de surface au cours des dernières années pour 
surmonter ce problème. Cette approche présente des avantages pour améliorer la classification 
en combinant des caractéristiques spectrales et des informations contextuelles. Cependant, cette 
méthode classe les éléments d'image par phase de segmentation à l'aide d'informations 
contextuelles limitées. 

 En conclusion, la plupart des méthodes de cartographie des eaux de surface basées sur des 
images optiques ou RSO à une seule date et proposée dans la littérature nécessitent une 
intervention considérable de la part de l'utilisateur. Cette intervention humaine n'est pas 
pratique pour la cartographie opérationnelle et n'est pas adaptée à la nouvelle génération de 
données optiques (Sentinel-2) et RSO (Sentinel-1), caractérisées par une résolution temporelle 
accrue. En effet, les informations contextuelles, telles que la corrélation entre les pixels voisins, 
doivent être prises en compte, étant donné que les pixels individuels ne sont pas des variables 
aléatoires indépendantes mais forment un champ aléatoire. Depuis quelques années, l'analyse 
d'images multi-temporelles a prouvé sa supériorité par rapport aux approches mono-
temporelles afin d'extraire les eaux de surface et de surveiller ces surfaces. 

2.3 Les données multi-temporelles et multi-sources pour la cartographie et la 

surveillance des eaux de surface 
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Les études utilisant des données multi-temporelles produisent de meilleurs résultats et sont 
plus largement plébiscitées que les approches mono-dates pour la cartographie des eaux de 
surface. Ce type d’approche ouvre la possibilité de surveiller les eaux de surface, de détecter 
les inondations, de détecter les changements et de classer les eaux de surface; par exemple, 
distinguer les eaux de surface permanentes et des eaux de surface temporaires (inondations). 
Avec la demande croissante de compréhension de la dynamiques des eaux de surface dans le 
monde, de multiples sources de données de télédétection avec des séries temporelles plus ou 
moins longues peuvent être utilisées à cette fin. Cependant, les études combinant une approche 
multi-temporelle et multi-source sont encore peu nombreuses. 

L’utilisation des données multi-temporelles et multi-capteurs peuvent augmenter la 
précision de la cartographie des eaux de surface. La fusion d’images multi-sources a été 
largement étudiée dans le domaine de la télédétection. La fusion d'images peut être mise en 
œuvre à trois niveaux différents: (1) au niveau de pixel, (2) au niveau des attributs et (3) au 
niveau décisionnel. La fusion d’images au « niveau décisionnel » est couramment utilisée dans 
la littérature pour l'extraction des eaux de surface. Lorsque les images proviennent de plusieurs 
capteurs, la méthode la plus pertinente pour la fusion de données consiste à combiner les images 
avec les résultats des eaux de surface extraites individuellement pour chaque source d'image. 

2.4 Les produits, outils et services existants pour la cartographie des eaux de surface 

 Il existe à l’heure actuelle un grand nombre des bases de données cartographiant les eaux 
de surface, telles que le produit Global Surface Water du EC-Joint Research Centre, le produit 
SRTM Water Body de la NGA, le produit Global Lakes and Wetlands Database (GLWD) de 
l’Université de Kassel (Allemagne) ou le produit Water and Wetness de EC-COPERNICUS. 

 Le nombre d'algorithmes de détection d'eau basés sur les images RSO et de services de 
cartographie automatique des inondations ont augmenté ces dernières années. Dans la plupart 
des cas, une certaine interaction de l'utilisateur est nécessaire pour la collecte, le prétraitement 
et l'intégration des données auxiliaires dans les « pipelines » de traitement. Le NASA’s 
Goddard’s Office of Applied Science propose un service mondial automatisé de cartographie 
des inondations et des eaux de surface (http://oas.gsfc.nasa.gov/floodmap/). Parmi les premiers 
services de RSO, le service FAIRE (Fast Access to Imagery for Rapid Exploitation) hébergé 
sur l’ESA’s Grid Processing on Demand system (G-POD, http://gpod.eo.esa.int/) fournit un pré-
traitement automatique des images RSO ainsi qu’un traitement de détection des changements 
qui peuvent être déclenché à la demande par un utilisateur via une interface web. 

 Des algorithmes automatiques pour la cartographie des eaux de surface à résolution 
moyenne existent également. Par exemple, Fully Automatic Aqua Processing Service (FAAPS) 
et WaMaPro ont implémenté le seuillage et le filtrage morphologique avec l'intervention de 
l'utilisateur. RaMaFlood a été développé pour la cartographie semi-automatique des étendues 
de crue en utilisant un algorithme interactif basé sur une méthode de classification orientée-
objet. Le TerraSAR-X Flood Service (TFS) et le TanDEM-X Water Indication Mask processor 

(TDX WAM) sont des outils de détection de l'eau basés sur le traitement entièrement 
automatique des images TerraSAR-X et TanDEM-X. Le Centre Canadien Télédétection a mis 
au point l'outil de détection de l'eau FnFCE (Forest non-Forest Class Extraction) pour 
l'extraction automatisée des masses d'eau, mais cet outil ingère uniquement les images 
Radarsat. 

 Néanmoins, les bases de données existantes sur les eaux de surface sont pertinentes pour 
certaines applications mais ne répondent pas à tous les besoins actuels des communautés 
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scientifiques et de la gestion de l'eau. Par conséquent, le développement d’autres méthodes 
capables de traiter à la fois des données multi-sources (multi-cpateurs) et des séries temporelles 
afin de fournir une cartographie des eaux de surface permetant d’analyser leurs dynamiques 
reste un besoin d’actualité. 

 

 

3. Site d’étude, données et prétraitement de Sentinel 1 & 2 

3.1 Site d’étude et données 

 Sur la base de notre objectif de recherche principal, nous avons choisis trois zones de test 
en Irlande, en Angleterre et en Italie, afin de proposer une méthodologie opérationnelle et 
entièrement automatique pour extraire les eaux de surface et notamment le phénomène naturel 
des inondations. La sélection de ces zones d’étude repose également sur la disponibilité des 
données de référence. Concernant la première zone de test en Irlande, notre choix permettra 
également de cartographier les eaux de surface permanentes. Afin de valider notre 
méthodologie à différentes études de cas thématiques, nous avons également intégré plusieurs 
sites situés en France (Région Grand Est) et en Indonésie. 

 Le premier site est localisé en Irlande, et plus particulièrement dans les zones centrales de 
l'île. Lors de la tempête Desmond le 4 décembre 2015, il a été signalé à Keenagh Beg (comté 
de Mayo), de fortes précipitations avec une hauteur totale de 160,8 mm sur 24 h. La tempête a 
provoqué de graves inondations au cours de l'hiver 2015-2016, modifiant l'étendue 
géographique des fleuves pendant plusieurs jours. Des régions telles qu'Ennis, Gort, 
Roscommon, Ballinasloe et Portumna ont été gravement touchées. Nous avons utilisés quatre  
images des satellites européens d’Observation de la Terre  « Sentinel-1 » IW GRD avec 
différentes dates :22/11/2015, 16/12/2015, 09/01/2016 et 14/02/2016. Ces images couvrent la 
zone d’étude avant, pendant et après le phénomène de crue. 

 Ce premier site est également intéressant pour tester notre méthodologie car (1) la densité 
des eaux de surface permanentes (par exemple, les lacs et les rivières) est élevée et (2) la 
variation de l’étendue spatiale du cours d’eau au cours de la saison est modérée en raison du 
climat tempéré océanique. Pour ces raisons, ce cas d'étude a été sélectionné pour répondre à 
nos deuxièmes grandes questions de recherche relatives aux potentialités des séries temporelles 
pour améliorer l'extraction permanente des informations concernant les eaux de surface, afin 
de surveiller les inondations. Les images temporelles de Sentinel-1 IW GRD (16 images) ont 
été utilisées pour cet objectif. 

 Pour l'analyse à partir des images multi-sources, trois images satellitaire de type « Sentinel 
2 » sont disponibles avec une couverture nuageuse relativement faible (inférieure à 15%). Pour 
l'analyse de la polarimétrie RSO, le mode Sentinel-1 SLC a été utilisé pour les épisodes 
d’inondations (16/12/15 et 09/01/2015). 

 Le deuxième site a été sélectionné dans la région du Yorkshire en Angleterre suite aux 
fortes inondations survenues le 22 décembre 2015. En effet, environ trois semaines après la 
tempête Desmond de notre premier site, la tempête Eva s'est abattue sur cette zone avec de 
fortes précipitations (hauteur de 215 mm de précipitations sur 24 h). Suite à cet évènement, de 
vastes inondations ont été observées sur une grande partie du West Yorkshire, y compris dans 
la ville de Leeds. Pour étudier cet épisode, nous avons utilisé les images de « Sentinel-1 » IW 
GRD en date du 29/12/2015. 



xxxvi 

 Un troisième site a été sélectionné en Italie suite à l’enregistrement de précipitations 

atteignant 200 mm en 12 heures le 21 novembre 2016, dans certaines régions du nord-ouest de 
l'Italie. Ces zones auraient été confrontées aux pires inondations de ces 20 dernières années. 
Nous avons utilisé pour l’étude de ce phénomène les images du 28/11/2016 issues Sentinel-1 
IW GRD en date du 28/11/2016 (en période d’inondation). 

 Pour le choix de notre quatrième site d’étude, le passage de la tempête Eleanor avait déjà 

provoqué des précipitations importantes les 2 et 3 janvier 2018, affectant l'Irlande, le Royaume-
Uni, la France, le Benelux, l'Allemagne, l'Autriche et la Suisse. Après la tempête, de fortes 
précipitations ont provoqué plusieurs inondations de grandes ampleurs en France, notamment 
dans la région du Grand-Est. L'un des principaux cours d'eau du Grand-Est, la Zorn, a été 
impacté par ces fortes précipitations, qui a provoqué un épisode de crue dans les zones 
environnantes. Cet épisode de crue dans le bassin versant de la Zorn a été enregistré le 23 
janvier 2018, près des municipalités de Brumath, Hoerdt et Hochfelden. Pour cet épisode, nous 
avons eu recours à onze images de Sentinel-1 IW GRD enregistrées entre 2017 et 2018, à des 
intervalles de temps relativement cours compris entre un jour et vingt-deux jours pour 
l’intervalle le plus long. 

 Le dernier site d’étude se situe dans le bassin versant du fleuve de Bengawan Solo en 
Indonésie. Cette zone est située sur la partie occidentale de l’Ile de Java et couvre les districts 

de Bojonegoro, Tuban et Lamongan. Le fleuve Bengawan Solo est considéré comme le plus 
long et le plus grand fleuve de l'île de Java, en Indonésie. Cette rivière est considérée comme 
l'une des plus grandes ressources des eaux de cette partie de l’Indonésie. Toutefois, en observant 

son bilan hydrologique, on a observé de fortes variations en sur-abondance (épisodes de crues 
quasi annules) et déficit. Pour cette zone, nous avons utilisé douze images de type « Sentinel-1 
IW GRD ». Ces images couvrent l’année 2017 avec une fréquence d’une image par mois. 

 Afin de formaliser et d’éprouver notre méthodologie, nous avons également eu recours à 
d’autres types de données, notamment pour explorer ou échantillonner les eaux de surface. Ces 

données proviennent de structure de référence nationale telle que l’Institut Géographique 
National pour la France ou l’Environmental Protection Agency (EPA) pour l’Irlande. Deux 

types de données ont été utilisés: (1) la base de données topographique nationale et (2) le 
modèle numérique de terrain (MNT), les données pluviométriques et les données in situ. 

3.2 Prétraitement de Sentinel 1 & 2 

 L’objectif de cette partie est d’abord d’explorer le potentiel de l’image de type « Sentinel-
1 » liée à la détection des eaux de surface. Dans ce contexte, nous avons effectué des évaluations 
pour explorer et définir: 

a) L’unité minimum de surface 
Deux classes d'échantillons d'eaux de surface d'une superficie inférieure à 1 ha ont une 
valeur d'aire de répartition presque identique à celle de la classe d'échantillon terrestre. 
La classe des eaux de surface dont la superficie est supérieure ou égale à 1 ha est 
répartie séparément de la classe d'échantillons de terrain. Il sera donc difficile de 
détecter les eaux de surface inférieure à 1 ha avec la résolution spatiale des images de 
type « Sentinel-1 ». 

b) Le mode de polarisation optimal 
Nous pouvons noter que le pourcentage de taux de faux négatifs pour la polarisation 
VH est très élevé par rapport à la polarisation VH. L'histogramme irrégulier de la 
polarisation VH a également tendance à rendre difficile la construction de modèles, ce 
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qui entraîne par la suite des erreurs dans les résultats d'extraction des eaux de surface. 
En conséquence, nous avons retenu la polarisation VV pour cette étude. 

c) La caractéristique optimale 
Le sigma-naught est choisi comme la caractéristique optimale parce que c'est la 
puissance renvoyée à l'antenne par le plan horizontal (sol). Cette condition est très 
appropriée avec le type de données Sentinel-1 utilisé dans cette étude (produits GRD). 
De plus, le sigma-naught est un produit calibré qui est meilleur que les produits non 
calibrés (en termes d'amplitude et d'intensité). De nombreuses études ont utilisé sigma-
naught pour la cartographie des eaux de surface à partir de données RSO et ont décrit 
les fonctionnalités de cette fonction. 

d) Influence du filtrage  
Plus le valuer d’ENL (nombre de vues équivalent) est élevée pour un filtre et plus cela 
signifie que l'efficacité du lissage du bruit sur les zones homogènes est élevée. Plus 
l'indice de granularité est petit, moins il y a de bruit de granularité dans les images. 
Selon nos tests, la méthode fondée sur un filtre médian avec une fenêtre de 5x5 pixels 
a la valeur ENL la plus élevée et la valeur d'indice de granularité plus petite. Par 
conséquent, ce filtre sera utilisée comme méthode de filtrage dans cette étude. 

 Pour le pré-traitement des données d’amplitude Sentinel-1, la première étape consiste à 
appliquer des orbites Sentinel précises et à améliorer considérablement la précision de la 
géolocalisation. Dans la deuxième étape, nous transformons les images d'amplitude brutes en 
produits calibrées (sigma-naught) pour une utilisation quantitative des images RSO. Dans les 
troisième et quatrième étapes, afin de réduire le bruit, un filtre médian avec une taille de fenêtre 
de 5 × 5 pixels ont été utilisés. Ensuite, dans la cinquième étape, Une correction géomatrique 
est appliquée pour géocoder les images afin de résoudre la distorsion de la distance dans les 
images RSO. 

 Concernant les données de type « Sentinel-2 », nous appliquons un traitement afin de 
corriger les effets produits par les propriétés de l'atmosphère (sous forme de gaz et d'aérosols). 
Le résultat obtenu peut être utilisé pour extraire des informations spectrales précises des entités 
situées à la surface de la Terre. La deuxième étape est le masquage des nuages et des ombres. 
Ensuite, la troisième étape consiste à calculer un indice d’eau de surface (NDWI2). 

 

 

4. Détection des eaux de surface à l'aide des données d'amplitude 

Sentinel-1 

 Ce chapitre présente une méthode « Water-S1 » développée pour le traitement automatique 
d'images Sentinel-1. Il est basé sur un article publié dans la revue Remote Sensing MDPI 2018, 
volume 10, numéro 2 : A Method for Automatic and Rapid Mapping of Water Surfaces from 

Sentinel-1 Imagery. 

 Plusieurs algorithmes de détection de l'eau basés sur l’image RSO ont été proposés dans la 

littérature. Parmi les méthodes, le seuillage est la méthode la plus couramment adoptée pour 
l'analyse d'image RSO afin de différencier les zones en eau des zones terrestres. Cependant, il 
est difficile de déterminer la valeur seuil optimale pour une scène / paysage, ce qui implique la 
nécessité d'une intervention de l'utilisateur. 
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 Alors que plusieurs outils semi-automatiques et automatiques existent déjà, il n’existe, à 

notre connaissance, que très peu de références scientifiques présentant une méthode de 
détection qui soit entièrement automatique pour la cartographie des eaux de surface à partir 
d’images de Sentinel-1. Ces méthodes utilisent un seuillage sur des pixels « individuels » en 
ignorant la corrélation entre les pixels voisins. Étant donné que les pixels individuels ne sont 
pas des variables aléatoires indépendantes mais forment un champ aléatoire, le potentiel 
d'amélioration de la précision des cartes d'étendue d'inondation existe. 

 Les objectifs de cette partie sont donc (1) d’étudier l’utilisation du filtrage bilatéral en tant 

que méthode de smooth labeling pour définir automatiquement les seuils; (2) d’intégrer les 
informations hydrologiques / topographiques dans la détection à l’aide de l’indice 
topographique « Height above nearest drainage (HAND) »; et (3) d’évaluer quantitativement 
la précision de notre algorithme de détection de l’eau pour les données Sentinel-1. 

 La chaîne de traitement automatique est détaillée en présentant (i) le pré-traitement des 
données Sentinel-1, (ii) l’utilisation d’une méthode de tuilage (adaptée d’une méthode de 

fractionnement de l’espace) afin de se concentrer automatiquement sur les surfaces d’eau, (iii) 

la modélisation des classes avec un modèle de type Finite Mixture Models (FMMs) pour 
produire une carte de probabilité fondée sur les modèles de classes établis, (iv) le filtrage 
bilatéral de la classe et (v) le post-traitement final. La méthode est testée et validée sur trois 
zones d’étude affectées par des inondations (surfaces en eau temporaires) survenues dans la 
partie centrale de l’Irlande, dans le nord de l'Angleterre et dans le nord-ouest de l'Italie durant 
la période 2016-2017 (section 3.1). 

 Etant donné que le FMM est sensible aux valeurs initiales définies pour les écarts-types et 
aux probabilités de classes antérieures, nous examinons l'impact des variations des paramètres 
initiaux sur le modèle de classe final. L'influence des valeurs des paramètres FMM est évaluée 
pour l'image Sentinel-1 (9 janvier 2016). Cette analyse est réalisée pour trois tuiles dans la zone 
d’étude de l’Irlande, qui sont considérées comme étant représentatives de différentes 
proportions de surface d’eau et d’autres d’occupation du sol. Les résultats montrent que la tuile 
contenant de grandes quantités d'eau de surface convergent vers le même modèle de sortie 
stable, quelles que soient les valeurs initiales sélectionnées. À l’inverse, la tuile comprenant de 
très petites quantités d’eaux de surface tend à générer des solutions marginales avec des écarts-
types supérieurs à 3 ou des probabilités antérieures pour la classe d’eau de surface supérieure à 
0,5. Pour la tuile avec une proportion équilibrée de surfaces d'eau, le FMM converge vers une 
solution stable en dessous des écarts-types de 7 et des probabilités de classe d'eau de 0,7. 
Compte tenu des résultats de cette analyse, l’utilisation d’un écart type de 3 et d’une probabilité 

antérieure de 0,1 a été jugée suffisamment faible pour garantir la convergence du FMMs vers 
des solutions stables avec une bonne approximation des distributions bi-modales. 

 La taille de la fenêtre de filtrage et son influence sur les résultats sont également analysées. 
La sensibilité de la précision de la classification aux modifications de ces paramètres est évaluée 
de manière empirique pour la scène d'image Sentinel-1 enregistrée le 9 janvier 2016 dans la 
zone d'étude de Gort en Irlande. L'analyse montre qu'une taille de fenêtre de 5 × 5 pixels donne 
un résultat optimal. Par conséquent, pour toutes les expériences, la fenêtre de filtrage bilatéral 
a été fixée à 5 × 5 pixels. Il montre également que le filtrage bilatéral offre une précision globale 
supérieure par rapport aux cartes non filtrées. Ceci justifie clairement l’utilisation du filtre 

bilatéral comme méthode de lissage (smooth labelling) dans cette étude. 

 Par ailleurs, nous avons comparé deux scénarios de la chaîne de traitement basés sur 
l'utilisation de l’indice HAND. Dans le premier scénario, l’indice HAND est appliqué à l’étape 
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de prétraitement. Quant au deuxième scénario, l'indice HAND est utilisé comme dernière étape 
de post-traitement. D'après les résultats de l'évaluation des scénarios 1 et 2, il n'y a pas de 
différence significative entre les deux scénarios. Cependant, le scénario 1 donne des résultats 
d'évaluation légèrement meilleurs comparé au scénario 2. 

 Nous avons également efectué une analyse de sensibilité de la taille du tuilage. L'analyse a 
mis en évidence l'importance des zones d'eaux de surface pour déterminer la taille des tuiles. 
Cependant, par défaut une taille de tuile de 10 km donne des précisions globales élevées. 

 Pour tous les cas d’étude, les résultats ont montré une bonne estimation des eaux de surface 
avec une moyenne de F-measure d’environ 0,8. Cependant, des erreurs d’omissions sur les lits 

de rivière permanents sont observées quel que soit le site d’étude. Malgré tout, notre nouveau 
traitement automatique utilisant les données Sentinel-1 semble être efficace pour la 
cartographie des inondations et des surfaces d'eau. L'approche automatique testée pour les 
inondations en Irlande, en Angleterre et en Italie, suggère la production d’une cartographie 
opérationnelle (rapide) des inondations sur d'autres sites en dehors des zones d'étude présentées. 

 

 

5. Détection des eaux de surface à l'aide de séries temporelles de 

données Sentinel-1 et Sentinel-2 

 Dans ce chapitre, une méthodologie pour la détection des eaux de surface combinant les 
séries temporelles de données Sentinel-1 et Sentinel-2 est proposée. Celle-ci utilise l’approche 

de fusion d’images au « niveau décisionnel » fondée sur la théorie bayésienne. La méthode est 
expérimentée pour les eaux de surfaces en Irlande. Elle fait l’objet d’une publication soumise 
et acceptée avec révision mineure dans la revue International Journal of Remote Sensing. 

 La détection des eaux de surface et le calcul de la probabilité d'occurrence sont effectués 
sur les images Sentinel-1 avec la méthode Water-S1 (Chapitre 4). Une adaptation de la méthode 
Water-S1 est utilisée pour le traitement des données optiques Sentinel-2. Les cartes 
d'occurrences obtenues pour les deux séries temporelles (Sentinel-1, Sentinel-2) sont 
combinées à l'aide de l’approche de fusion d’images au « niveau décisionnel ». Enfin, les 
résultats fusionnés sont évalués sur la cartographie des surfaces d'eau permanentes et pour les 
zones inondées temporairement pour les périodes correspondantes. 

 Dans la série temporelle Sentinel-1, durant la période d'inondation de l'hiver 2015/2016, 
des eaux de surface sont détectées dans la zone nord de Lough Derg jusqu'au 14 février 2016. 
L'extraction des eaux de surface en avril, juin et octobre 2016 présente certaines erreurs dues à 
la rugosité des surfaces d’eau provoquées par le vent et la turbulence. Dans l'image Sentinel-2 
de décembre 2015, les eaux de surface sont clairement représentées dans la zone nord de Lough 
Derg. En raison de la présence d'une mince couche de cirrus, les zones d'eau de surface sont 
surestimées pour l'image Sentinel-2 de novembre 2016. Afin de résoudre ces problèmes, une 
technique fusion est appliquée. 

 Plusieurs méthodes de fusion au « niveau décisionnel » sont comparées (logique floue MIN, 
Bayesian product, Bayesian sum). Les probabilités d'occurrences d'eaux de surface sont 
calculées, d'une part, afin d'évaluer l'intérêt des séries temporelles pour améliorer la 
cartographie et, d'autre part, d'évaluer la complémentarité des résultats des capteurs RSO et 
optiques. Tous les calculs sont effectués au niveau des pixels en combinant les probabilités 
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d'occurrence de chaque test (test 1 = série temporelle des données Sentinelle-1, test 2 = série 
temporelle des données Sentinelle-2, test 3 = série temporelle des données Sentinelle 1 et 
Sentinelle -2). 

 La méthode fondée sur la logique floue MIN identifie uniquement les fractions de Lough; 
Le Bayesian product n'identifie pas le Lough Derg ni la rivière Shannon; Le Bayesian sum 

donne les meilleurs résultats avec l'identification de la rivière Shannon et de presque toute la 
superficie de Lough Derg. Cette méthode montre également la précision globale et la F-

measure les plus élevées par rapport aux deux autres méthodes. En conséquence, l'opérateur de 
Bayesian sum est utilisé et appliqué aux autres tests (test 2 et test 3). En tenant compte de tous 
les paramètres utilisés pour l’évaluation de la précision, le meilleur résultat est obtenu avec la 

fusion des séries temporelles Sentinel-1 et Sentinel-2 (test 3). 

 L'eau de surface temporaire est extraite pour l'image Sentinel-1 du 09/01/2016 en 
appliquant la carte des eaux de surface permanentes résultant du test 3 comme un masque. Le 
résultat montre une précision globale élevée (> 98%), une F-measure (0,90) et un taux de vrai 
positif (86%); l'erreur d'omission est faible (13,9%). Par ailleurs la dynamique des eaux de 
surface peut être surveillée avec la méthode de fusion au « niveau décision » par le calcul de 
cartes de fréquence. La méthode est appliquée aux masses des eaux de surface temporaires 
identifiées dans la série temporelles Sentinel-1. La carte de fréquence représente le nombre de 
fois qu'un pixel est classé dans les masses d'eau de surface temporaire pour la série temporelles. 
Les pixels classés une seule fois peuvent être considérés comme du bruit ou une classification 
erronée. Les pixels de fréquence supérieure à 9 correspondent à des zones proches des masses 
des eaux de surface permanentes. Nous pouvons relier la carte de fréquence des eaux de surface 
temporaires aux quantités de précipitations annuelles. La dynamique spatio-temporelle de l'eau 
de surface temporaire peut être analysée plus en détail. 

 En conclusion, les résultats indiquent une réduction du bruit et une augmentation de la 
précision de la détection des eaux de surfaces permanentes. De plus, l'analyse des séries 
temporelles d'images permet un meilleur suivi des eaux de surface temporaires (inondations). 

 

 

6. Les autres méthodes et validation sur différents contextes 

thématiques 

 Les autres méthodes de détection sont ensuite testées, telles que: (i) l’utilisation de la 

polarimétrie RSO pour la classification des eaux de surface et (ii) la fusion d’images au « niveau 

des attributs » pour la comparaison et l’évaluation de la meilleure approche de fusion. La 

validation des méthodes proposées sur différents contextes thématiques est ensuite présentée à 
travers deux expériences différentes de traitement massif de séries temporelles d’images 

Sentinel. 

6.1 Intérêt de la polarimétrie RSO pour la cartographie des eaux de surface 

 Dans la littérature, les informations d'amplitude d'imagerie RSO en double polarimétrie ont 
déjà été utilisées dans un système de classification classique supervisé pour la cartographie de 
la couverture terrestre. Dans cette étude, nous avons décidé d'explorer l'intérêt de ces données 
pour améliorer l’extraction de cette classe « eau » et éventuellement découvrir d’autres classes 
thématiques (test 1). La méthode propose un système de classification non-supervisé basé sur 
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différents cas de combinaison RVB de double polarisation. Les résultats montrent certaines 
classes d'eau de surface (couleurs différentes), mais nous ne pouvons pas interpréter ces classes 
comme des classes thématiques d'eau de surface pertinentes. 

 Le deuxième test (test 2) est réalisée à l'aide de l'image Sentinel-1 IW du 9 janvier 2016, 
au moment des inondations en Irlande. l’étude utilise une image Sentinel-1 IW SLC car elle 
nécessite à la fois des informations d'amplitude et de phase. Ce deuxième test consiste en deux 
expériences: 

(1) la première expérience explore les attributs extraits lors du processus de 
décomposition; 

(2) la deuxième expérience effectue la classification en utilisant ces caractéristiques. 

L'objectif est d'analyser les attributs de la décomposition double H/Alpha et le résultat de la 
classification double H-Alpha lors de la détection des classes thématiques d'eaux de surface. 

 Les résultats de la double décomposition H/Alpha montrent la séparation des eaux de 
surface de l'autre type d’occupation du sol, en particulier entre les images d’entropie et alpha. 

Chaque caractéristique résultant de la décomposition double H/Alpha ne représente pas 
différentes classes d'eaux de surface. 

 Dans un troisième test, nous avons effectué une classification des données polarimétriques 
doubles en utilisant une combinaison de classificateur H-Alpha et de classificateur de Whishart 
non-supervisé. Le résultat indique que la classification double H-Alpha (à partir de données 
Sentinel-1 SLC) permet une cartographie des différents mode d’occupation des sols . 
Cependant, cela ne permet pas de distinguer différentes classes d'eaux de surface. 

 En conclusion, ces tests n'ont pas permis de montrer l'intérêt de nos recherches utilisant la 
double polarisation des méthodes de polarimétrie RSO pour cartographier différentes classes 
thématiques des eaux de surface. 

6.2 Intérêt de la fusion d’images multi-sources au « niveau des attributs » 

 Nous avons étudié la fusion d’images au « niveau des attributs », où les caractéristiques 
sont calculées séparément pour chaque source et introduites dans la même méthode de 
classification via un ensemble unique d’attributs. L’algorithme classique d’apprentissage 

automatique supervisé Random Forest a ensuite été choisi pour classer les eaux de surface. La 
fusion d’images au « niveau des attributs » est réalisé à l'aide de la méthode d'analyse en 
composantes principales (ACP). 

 Des attributs classiques dérivés des images de série temporelle Sentinel-1 GRD (S1), des 
images multitemporelles Sentinel-2 (S2) et de Sentinel-1 SLC (attributs de polarimétrie S1-pol) 
ont été calculés à partir de chaque source de données. Sur la base de ces attributs, plusieurs tests 
de fusion au niveau des attributs sont ensuite effectués en combinant les sources : : 

¾ Test 1: calcul d’attributs dérivés de S2 et de S1 

¾ Test 2: calcul d’attributs dérivés de S2 et de S1-pol 

¾ Test 3: calcul d’attributs dérivés de S1 et S1-pol 

¾ Test 4: calcul d’attributs dérivés de S2, S1 et S1-pol 

 Les résultats montrent que le test 3 donne le meilleur résultat avec une précision globale et 
une F-measure les plus élevées. L'analyse permet de conclure que la fusion d’images multi-
sources au « niveau des attributs » ne peut pas donner de meilleurs résultats pour la cartographie 
de l'eau de surface permanente que la fusion d’images au « niveau décision ». Cependant, cette 
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méthode peut donner une précision globale élevée avec plus de 97% et des valeurs de F-

measure élevées, environ 0,7. 

6.3 Validation sur différents contextes thématiques 

 Cette partie présente deux applications thématiques des méthodes proposées sur des sites 
où les dynamiques des eaux de surface sont contrastées. La première application est effectuée 
sur la région Grand-Est (France), qui a subi un fort épisode d’inondations en janvier 2018. 

L’extension spatiale des inondations a été détectée avec une F-measure à 0,9 et des erreurs 
inférieures à 14 %. 

 La deuxième application est réalisée en aval de la rivière Solo (Java Oriental, Indonésie) 
où l’existence d’eau dans les cultures irriguées est déterminée. Le débit de la rivière est estimé 

à l'échelle annuelle avec un coefficient de corrélation de 0,78 indiquant une forte relation entre 
le débit estimé et le débit mesuré in-situ. À l'échelle de la saison, par exemple pour la saison 
sèche, les estimations de débit sont moins précises, principalement en raison de l'incertitude 
dans le calcul de la largeur. L'eau dans les cultures irriguées était faible de juillet à octobre, ce 
qui correspond à la troisième saison de plantation. Ce résultat suggère que la technique 
d'irrigation doit être améliorée pour obtenir une plus grande d’extension des surfaces d’eau 

pendant cette période de l'année, afin d'augmenter la production de rendement en grain. 

 

 

7. Conclusion et perspectives 

 Grâce à nos résultats, les potentiel de Sentinel-1 à la cartographie des eaux de surface a été 
prouvé. Des méthodes adaptées et robustes pour une exploitation opérationnelle des données 
Sentinel-1 ont été proposées. Les résultats sont encourageants et constituent la première étape 
pour proposer un traitement opérationnel de la chaîne d'images afin d'aider les utilisateurs 
finaux à cartographier rapidement les inondations ou les eaux de surface permenantes. 

 L'utilisation de séries temporelles d’images satellitaires peut augmenter le niveau de 
détection des eaux de surface et réduire qualitativement et quantitativement le bruit. Les séries 
temporelles permettent également de mieux comprendre la dynamique spatio-temporellesdes 
eaux de surface temporaires. Les séries temporelles peuvent également fournir des informations 
nouvelles ou complémentaires sur le comportement des eaux de surface ou leur évolution sur 
une courte période. 

 Comparée à l'utilisation des données séries temporelles mono-capteur, la combinaison des 
données séries temporelles Sentinel-1 et Sentinel-2 (multi-capteurs) peut fournir une meilleure 
précision dans la cartographie des eaux de surface permanentes. Pour la surveillance des eaux 
de surface temporaires, l'utilisation de la fusion d’images au « niveau décisionnel » permet de 
quantifier la probabilité d'occurrence de terrains inondés à l'échelle du pixel, ce qui permet de 
comprendre la dynamique de l'inondation. Les cartes produites des eaux de surface temporaires 
peuvent être utiles pour fournir de nouvelles informations aux décideurs, par exemple pour 
surveiller la variabilité de l'eau dans les terres de cultures irriguées.  

 Les méthodes proposées sont appliquées avec succès à un traitement massif dans 
différentes études de cas. Elles peuvent extraire des eaux de surface permanentes dans la région 
du Grand-Est, France, et permettent d’effectuer une cartographie rapide des eaux de surface 
temporaires pour les inondations de la rivière Zorn. En transposant les méthodes au fleuve 
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Bengawan Solo en Indonésie, elles permettent de cartographier les eaux de surface permanentes 
avec des résultats pertinents et encourageants. 

 En résumé, cette thèse a permis de répondre à nos questionnements de départ et elle ouvre 
de nombreuses perspectives. Premièrement, les données Sentinel-1 conviennent à la 
cartographie des eaux de surface et leurs méthodes opérationnelles ont été développées. 
Cependant, il est possible d'appliquer la méthode à d'autres données RSO, par exemple les 
données ALOS-PALSAR 2 de Kalideos Alsace. Nous avons déjà appliqué la méthode dans 
ALOS-PALSAR 2, mais nous devons encore observer le résultat de l'applicabilité. 

 Deuxièmement, la méthodologie proposée utilisant une fusion des séries temporelles des 
images Sentinel-1 et Sentinel-2 est générique. Il ne nécessite pas d'interaction de l'utilisateur; 
suggérant qu'il est applicable pour la surveillance des masses d'eau de surface permanentes sur 
de vastes zones et à une fréquence temporelle élevée. Elle a la possibilité de devenir une 
solution de service permanente s’elle est intégrée à des Centres de Calcul Hautes erformances. 
Dans le cas des eaux de surface temporaires, il est possible d’explorer plus la carte des 

fréquences pour une compréhension globale de la dynamique spatio-temporelle. Cependant, il 
est important d'étendre la période d'observation par exemple à 5 ans pour pouvoir apprendre le 
comportement des eaux de surface. Pour obtenir un produit global, nous devons également 
appliquer ou tester la méthode dans les régions arides, car il est difficile de cartographier les 
surfaces en eau dans ces régions. 

 Troisièmement, la fusion d’images au « niveau décision » avec l'opérateur de Bayesian sum 
peut fournir une cartographie simple et rapide. Cependant, il sera intéressant d'analyser d'autres 
méthodes pour la fusion d’images. Il existe également des algorithmes d'apprentissage profonds 
(Deep Learning) qui s'adaptent facilement à différentes sources et aux données manquantes. 
Cependant, un élément clé de ce type d'algorithme est la nécessité d'un grand nombre 
d'échantillons d’apprentissage pour construire leur réseau. Les approches fondée sur un 
apprentissage actif constitue une avancée décisive dans la résolution de ce problème. Ce type 
d’approche peut tirer des enseignements d’un petit nombre d’exemples pour construire son 
modèle, ce qui présente donc un grand potentiel dans le domaine du traitement d’images. Les 

recherches futures peuvent inclure ces méthodes (apprentissage profonf et apprentissage actif) 
pour la fusion d’images et les comparer aux résultats de cette étude. 

 Bien que l'utilisation de données de télédétection comme outils opérationnels pour 
l'observation des eaux de surface (permanentes et temporaires) reste à finaliser, les résultats 
proposés dans cette thèse sont très prometteurs. 
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Résumé 

Les eaux de surface sont des ressources importantes pour la biosphère et l'anthroposphère. Elles favorisent 
la préservation des habitats, le développement de la biodiversité et le maintien des services écosystémiques 
en contrôlant le cycle des nutriments et le carbone à l’échelle mondiale. Elles sont essentielles à la vie 
quotidienne de l’homme, notamment pour l'irrigation, la consommation d’eau potable, la production hydro-
électrique, etc. Par ailleurs, lors des inondations, elles peuvent présenter des dangers pour l'homme, les 
habitations et les infrastructures. La surveillance des changements dynamiques des eaux de surface a donc 
un rôle primordial pour guider les choix des gestionnaires dans le processus d’aide à la décision. 

L’imagerie satellitaire constitue une source de données adaptée permettant de fournir des informations sur les 
eaux de surface. De nos jours, la télédétection satellitaire a connu une révolution avec le lancement des 
satellites Sentinel-1 (Radar) et Sentinel-2 (Optique) qui disposent d’une haute fréquence de revisite et d’une 
résolution spatiale moyenne à élevée. Ces données peuvent fournir des séries temporelles essentielles pour 
apporter davantage d'informations afin d'améliorer la capacité d'observation des eaux de surface. 
L’exploitation de telles données massives et multi-sources pose des défis en termes d’extraction de 
connaissances et de processus de traitement d’images car les chaines de traitement doivent être le plus 
automatiques possibles. 

Dans ce contexte, l'objectif de ce travail de thèse est de proposer de nouvelles approches permettant de 
cartographier l’extension spatiales des eaux de surface et des inondations, en explorant l'utilisation unique et 
combinée des données Sentinel-1 et Sentinel-2. 

Nous présentons une méthode Water-S1 qui est développée pour le traitement automatique d'image Sentinel-
1. La méthode est testée et validée pour trois zones d’étude affectées par des inondations survenues dans la 
partie centrale de l’Irlande, dans le nord de l'Angleterre et dans le nord-ouest de l'Italie. Pour tous les cas 
d’étude, les résultats montrent une bonne estimation des eaux de surface avec une moyenne de F-measure 
d’environ 0,8. Cependant, des erreurs d’omissions sur les lits de rivière permanents sont observées quel que 
soit le site d’étude. Ainsi, de nouvelles améliorations de la chaîne de traitement pourraient inclure l’analyse de 
séries temporelles d’images Sentinel-1 afin d’améliorer la détection des eaux de surface permanentes 
localisées dans les lits de rivières. 

Nous proposons une méthodologie pour la détection des eaux de surface en combinant les séries temporelles 
de données Sentinel-1 et Sentinel-2 basées sur l’approche de fusion d’images au « niveau décision » fondée 
sur la théorie bayésienne. La méthode est expérimentée pour les eaux de surfaces en Irlande. Les résultats 
indiquent une réduction du bruit et une augmentation de la précision de la détection des eaux de surfaces 
permanentes. De plus, l'analyse des séries temporelles d'images permet un meilleur suivi des eaux de 
surface temporaires. 

Les autres méthodes de détection sont ensuite testées, telles que: (i) l’utilisation de la polarimétrie RSO pour 
la classification des eaux de surface et (ii) la fusion d’images au « niveau des attributs » pour la comparaison 
et l’évaluation de la meilleure approche de fusion. La validation des méthodes proposées sur différents 
contextes thématiques est ensuite présentée à travers deux expériences différentes de traitement massif. 

Bien que l'utilisation de données de télédétection comme outils opérationnels pour l'observation des surfaces 
en eau (permanentes et temporaires) reste à finaliser, les résultats proposés dans cette thèse sont très 
prometteurs. 

Mots-clés : surfaces en eau, Sentinel-1, Sentinel-2, traitement automatique, series temporelles, multi-
source, fusion 



 

Résumé en anglais 

Surface waters are important resources for the biosphere and the anthroposphere. Surface waters preserve 
diverse habitat, support biodiversity and provide ecosystem service by controlling nutrient cycles and global 
carbon. Surface waters are essential for human's everyday life, such as for irrigation, drinking-water and/or 
the production of energy (power plants, hydro-electricity). Further, surface waters through flooding can pose 
hazards to human, settlements and infrastructures. Monitoring the dynamic changes of surface waters is 
crucial for decision making process and policy. 

Remote sensing data can provide information on surface waters. Nowadays, satellite remote sensing has 
gone through a revolution with the launch of the Sentinel-1 SAR data and Sentinel-2 optical data with high 
revisit time at medium to high spatial resolution. Those data can provide time series and multi-source data 
which are essential in providing more information to upgrade ability in observing surface water. Analyzing 
such massive datasets is challenging in terms of knowledge extraction and processing as nearly fully 
automated processing chains are needed to enable systematic detection of water surfaces. 

In this context, the objectives of the work are to propose new (e.g. fully automated) approaches for surface 
water detection and flood extents detection by exploring the single and combined used of Sentinel-1 and 
Sentinel-2 data. 

We presents the Water-S1 method developed for Sentinel-1 image processing. The method is tested and 
validated on several flood events that occurred in Central Ireland, Northern England and Northwest Italy. For 
all test cases, the results show that surface water are estimated with an average F-measure about 0.8. 
However, omission of permanent river beds are observed for the three experiments. Thus, further 
improvements of the processing chain could include the analysis of SAR time-series to amplify the signal of 
permanent riverbeds through spatio-temporal averaging. 

We propose a methodology for surface waters detection by combining Sentinel-1 and Sentinel-2 data time 
series based on image fusion approach in decision-level with a Bayesian sum for the operator. The method is 
experimented for surface water over Ireland. The proposed methodology allows reducing the noise and 
increasing the accuracy of the detection of the permanent surface water. Moreover, the analysis of image time 
series allows a better monitoring of temporary surface water. 

Another methods are tested, such as: (i) the use of SAR polarimetry for surface water classification and (ii) 
feature-level image fusion for comparison and assessment of the best fusion approach. Validation of 
proposed methods on different thematic context is presented through two different experiments of massive 
processing. 

Although the use of remote sensing data as operational source of information for surface water and flood 
observations still requires development, the methods and tests proposed in this PhD thesis are promising. 

Keywords : surface waters, Sentinel-1, Sentinel-2, automated method, time series, multi-source, fusion 

 


