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Chapter 1

General introduction

Motivation and research context

Liquid injection engines are extensively used in industrial and transportation systems. Indeed, storing
the reactant under a liquid state provides a very compact energy source, which is particularly beneficial
to transportation devices. Nonetheless, the two-phase flows involved in such liquid injection systems
are highly complex, and their modeling is still a very active field of research.

Thanks to the swift development of the computing capacity, the accurate representation of two-phase
flows has become a reasonable target. Yet, their modeling, and especially the representation of liquid-
gas interfaces still raises many unresolved questions.

In addition to this complexity, the topology of the flow for liquid injection systems is known to be
strongly impacted by the operating pressure of the chamber. At low pressure, the capillary forces are
responsible for the surface tension, causing the liquid jet to break into smaller inclusions (ligaments,
droplets) when subject to shear stress. When the pressure crosses the limit of the critical pressure, the
capillary forces responsible for the structure of the liquid-gas interface are observed to progressively
vanish. In the supercritical regime, the interface has disappeared and the injected flow has become a
single-phase flow with large density variations.

g
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2
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&
b

Figure 1.1: Photography of a test of Ariane VI'’s Vulcain engine (source: www.futura-sciences.com)

In the industry, there are multiple examples of two-phase flows that operate under a very wide range
of pressure, for which the transition from subcritical to supercritical states may be encountered. In
particular, at ignition, the transient regime of a liquid rocket engine typically starts at low pressure
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and reaches a supercritical pressure in the steady regime. For instance, the Vulcain engine of Ariane
V and Ariane VI (see figure 1.1) is ignited at atmospheric pressure and its operating pressure is
typically Py, = 11.5 MPa, while the critical pressure of the injected liquid oxygen is PS5, = 5.043 MPa.
Similarly, during the compression phase of a Diesel engine, the pressure within a cylinder reaches
about P, = 4 MPa, while the critical pressure of heptane, the main constituent of Diesel fuel is
P¢, ,n,, = 1.82 MPa. In these contexts, the disappearance of the interface may be encountered —
although the supercritical nature of these flows also depends on the multicomponent mixing within the
chamber, so that two-phase flows may be encountered at pressures higher than the critical pressure of
the pure components.

The accurate description of these injection processes is essential for the development of safe and
efficient devices. A variety of physical phenomena are involved in these reactive flows, which result
in a very high complexity. To quote but a few, the precise description of these flows involves non-
ideal thermodynamics, phase change, compressibility effects, heat transfer, multicomponent transport,
turbulence and chemical reactions. All these phenomena are very different in nature and involve various
length scales, typically ranging from about one meter to a few nanometers.

Also, the mathematical nature of the models that describe these phenomena are not always compatible.
In this respect, simulating an interface generally requires to use tailored numerical methods.

Different aspects of the simulation of both subcritical two-phase flows and supercritical flows are
described in what follows, in order to present the research context in which the present thesis work is
led.

Modeling supercritical flows

The modeling of supercritical reactive flows has been the object of very intense research efforts for
about 30 years, and now benefits from a rather wide literature. Especially in the context of space
propulsion devices, this modeling effort has been supported by experimental campaigns conducted by
the DLR! and the AFRL? [Oschwald et al., 2006, Segal and Polikhov, 2008], and by ONERA? and
Laboratoire EM2C [Habiballah et al., 2006, Candel et al., 2006].

The general modeling strategy that is commonly accepted relies on the use of real gas thermodynam-
ics [Poling et al., 2001] in order to account for the non-ideal molecular interactions that occur at high
pressure. In particular, cubic equations of state [Soave, 1972, Peng and Robinson, 1976] with appro-
priate mixing rules are widely used, as they provide good representation of the fluid properties. This
allowed to evidence the consequences of supercritical injection on the flow and flame dynamics [Oe-
felein, 2005, Bellan, 2006, Ribert et al., 2008, Schmitt et al., 2011, Giovangigli et al., 2011, Giovangigli
and Matuszewski, 2012]. For instance, results from [Schmitt, 2019] are illustrated in figure 1.2, showing
an accurate prediction of the flame structure and length.

Such developments paved the way for the investigation of more complex coupled phenomena such as
combustion instabilities [Urbano et al., 2016], applied to practical configurations.

In order to address the modeling of supercritical flows, the present work follows the general guidelines
provided by these previous works, as they offer convincing results. In particular, cubic equations of
state are chosen to address the non-ideal thermodynamics, as they provide a good trade-off between
accuracy, complexity and computational cost.

It is worth underlining that despite the convincing results obtained by the community of supercritical
flow modeling, some aspects can still be improved and are still studied. For example, one can evoke the
question of conservative transport, which is known to generate noise when applied with cubic equations
of states, which motivated the recent works of [Pantano et al., 2017] and [Lacaze et al., 2019].

1Deutsche Zentrum fiir Luft- and Raumfahrt
2 American Air Force Research Laboratory
30ffice National d’Etudes et de Recherches Aérospatiales
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Figure 1.2: Comparison between experimental and large-eddy simulation results for supercritical combustion. Upper
half: Mean OH concentration from large-eddy simulation. Lower half: Abel transform of OH* emission from experiments
[Singla et al., 2005, Juniper et al., 2000]. d is the oxygen injector diameter. Dashed lines indicate the position of the
flame, experimentally obtained as the zone maximum emission. The pictures are courtesy of [Schmitt, 2019].

Modeling subcritical flows

As previously said, the study of liquid injection in subcritical regimes requires to address two-phase
flows and in particular to handle the liquid-gas interface. A very rich literature is available on the
interface modeling methods. They rely on various approaches, representing the interface either as
a sharp or a diffuse zone, and using either a Lagrangian or an Fulerian formulation to ensure the
interface transport. These approaches have different range of applications. An overview of the works
on liquid-gas interface modeling is the object of chapter 3 of the present manuscript.

Since reactive compressible two-phase flows are targeted by the present study, the choice of interface
model has been oriented towards towards hyperbolic diffuse interface methods, and more precisely the
hyperbolic multifluid methods. Indeed, such methods are well-suited to compressible applications, for
which they guarantee discrete conservation of the mass, momentum and energy.

The different multifluid methods are generally referred to using the number of transport equations
they involve:

— the T-equation models [Baer and Nunziato, 1986, Saurel and Abgrall, 1999, Furfaro and Saurel,
2016] allow the phases to be in full disequilibrium, so that they can locally have different velocities,
pressures, temperatures and chemical potentials.

— the 5-equation models [Kapila et al., 2001, Allaire et al., 2002, Murrone and Guillard, 2005]
assume that the phases have locally identical pressure and velocity values, considering the short
relaxation time that characterizes such mechanical disequilibria at the liquid-gas interface.

— the 4-equation and 3-equation models [Le Martelot et al., 2014, Chiapolino et al., 2016,Chiapolino
et al., 2017] push further the equilibrium assumptions between phases. The 4-equation model
considers that the phases are in velocity, pressure and temperature equilibrium, and the 3-
equation model considers that they are in velocity, pressure, temperature and chemical potential
equilibrium, respectively. This is particularly adapted for stiff phase change situations.
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An example of a simulation result for a multifluid method is given in figure 1.3.
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Figure 1.3: Snapshots of a simulation of boiling water using a multifluid model in [Le Martelot et al., 2014].

These models require a thermodynamic closure for each phase. Generally, the gas phase is represented
by an ideal gas mixture, while the liquid phase is described by either a stiffened gas [Le Métayer et al.,
2004] or a Noble-Abel stiffened gas (NASG) [Le Métayer and Saurel, 2016] equation of state. This
choice of equations of state is convenient as they provide valuable convexity properties and are easily
invertible. Yet, it is not naturally suited for an extension towards supercritical regimes. Indeed, there
is no trivial way to define a unique equation of state for the single supercritical phase from the two
equations of state used in the subcritical regime.

This motivated the idea of using a single cubic equation of state to describe liquid, vapour and super-
critical states, as planned by the ANR* project “Sub/Super Jet” in which the present work takes its
place. Nonetheless, the use of cubic equations of state in subcritical regimes is not straightforward, as
such equations are not unconditionally convex, unlike the ideal gas, stiffened gas or NASG equations
of states.

In this respect, a specific care must be taken to guarantee that the states predicted by the cubic
equation of state remains in its domain of convexity. Thanks to this formulation, the developments
proposed in the current work, based on the 3-equation and 4-equation models, provide a method
that can cover the range of both subcritical and supercritical regimes. In a multicomponent context,
the choice of this formulation requires to handle complex multicomponent real gas thermodynamic
equilibrium computations [Michelsen and Mollerup, 2004].

It is worth noting that very recently, the community of Diesel injection modeling has also shown a
growing interest for the simulation of subcritical to supercritical flows. Gathered around the challenge
of reproducing experimental results provided by the ECN®, the works of [Matheis and Hickel, 2018], [Ma
et al., 2019] and [Yi et al., 2019] have also investigated the use of a single cubic equation of state for
liquid, vapour and supercritical states.

Numerical methods

The numerical methods used with multifluid methods generally consist in finite-volume methods as-
sociated with approximate Riemann solvers [Saurel and Abgrall, 1999, Allaire et al., 2002, Murrone
and Guillard, 2005]. In this context, second-order of accuracy is generally achieved by means of slope
reconstruction techniques using the neighbour values (MUSCL schemes [Toro, 2013]). As liquid-gas
interface problems are likely to involve stiff gradients that cause the reconstruction methods to gener-
ate spurious oscillations in the solution, the slope reconstruction process is classically associated with
a slope limitation technique, allowing to guarantee positivity preservation.

4 Agence Nationale de la Recherche
5Engine Combustion Network [Pickett et al., 2010]
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An originality of the present thesis consists in using finite element methods, more precisely Taylor-
Galerkin methods [Donea and Huerta, 2003, Colin and Rudgyard, 2000] in order to compute the
numerical transport of the multifluid equations. This required to provide specific derivations on the
models in order to integrate them in a Taylor-Galerkin framework. Such methods are very efficient low-
dissipation methods that are particularly adapted to the large-eddy simulation of reactive flows. They
are used by AVBP, a HPC® unstructured multicomponent LES solver, co-developed by CERFACS and
IFPEN, in which the present developments have been implemented.

In addition to the integration of a multifluid method into a finite-element framework, the question of
positivity preservation has been investigated. In particular, a study of finite-element methods with
flux-corrected transport was conducted, based on the works of [Boris and Book, 1973, Lohner et al.,
1988, Kuzmin et al., 2004, Kuzmin et al., 2012]. This study led to the proposition of a positivity
preserving method based on two-step Tayor-Galerkin schemes.

Objectives of the thesis

The objective of the present Ph.D thesis is to set up a solver able to cover the range of subcritical to
supercritical regimes. To achieve this, an extension to subcritical two-phase flows of the pre-existing
supercritical flow solver of AVBP is provided. Subsequently, the solver is applied to multidimensional
test cases to demonstrate the feasibility of such computations.

Outline of the manuscript

The present manuscript is structured as follows.

Chapter 2 introduces the non-ideal thermodynamics involved in the targeted flows. In particular, high-
pressure effects are presented and the family of cubic equations of states are introduced. In addition, the
theoretical description and practical computation of two-phase equilibrium, in the subcritical context,
are provided. More specifically, the two-phase equilibrium is described in a single-component and a
multicomponent context, and a computationally efficient approximate formulation of the two-phase
equilibrium multicomponent is proposed.

Chapter 3 then details the different methods that may be used to model liquid-gas interfaces. This
literature review is split into two classically admitted families: sharp interface models and diffuse
interface models. Among the first family, the volume-of-fluid (VoF), the level-set and the front-tracking
methods are presented. Then, diffuse interface methods are described, first considering the phase-field
methods and eventually the multifluid methods. This chapter allows to evidence the relevance of
multifluid methods according to the targeted applications.

Chapter 4 is dedicated to numerical methods. It recalls the general properties of hyperbolic con-
servation laws, presenting different approximate Riemann solvers that are important to handle the
existing works on multifluid methods. Then, different types of numerical methods, which have been
implemented and studied during this Ph.D thesis, are presented. In particular, cell-centered methods
such as the Godunov-like methods and the Runge-Kutta discontinuous Galerkin methods are intro-
duced. Then, vertex-centered methods are presented, including the Runge-Kutta-Galerkin method and
Taylor-Galerkin methods. In this latter section, original developments on the finite-element methods
with flux-corrected transport are presented.

Chapter 5 then summarizes the required developments for the implementation of the multifluid 3-
equation and 4-equation models in AVBP. In particular, the Jacobian matrices of the flux function
required by the Taylor-Galerkin methods are derived, and characteristic boundary conditions are for-
mulated. These developments are provided for both the approximate multicomponent equilibrium

6high-performance computing
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formulation and the exact multicomponent equilibrium. Academic numerical test cases are then pro-
vided in order to validate the implementation of the method.

Chapter 6 is dedicated to multidimensional numerical simulations. The Mascotte configuration of ON-
ERA is studied, for which a 10 bar (subcritical) operating point is considered. First, two-dimensional
computations are provided: a first one using the 3-equation model with the approximate equilibrium,
a second one with the 4-equation model with the approximate equilibrium, and a third one with the
4-equation model and the exact equilibrium, in order to compare the different strategies. Then, a
three-dimensional reactive case, using the 3-equation model with the simplified equilibrium, is com-
puted and compared to experimental data. A last section is dedicated to simulations of the ECN Spray
A configuration, on which the 3-equation model with simplified equilibrium is applied.

Chapter 7 focuses on the spurious pressure oscillations caused by the multifluid models which were
observed in the previous chapter. In particular, elementary test cases are run considering 5-equation,
4-equation and 3-equation models in order to analyse their respective behaviour in terms of spurious
pressure oscillations, as such discussion is quite original and can be extremely useful.

Chapter 8 finally investigates an hypothesis on the cause of the spurious pressure noise encountered
with the 3-equation model. As the discontinuity of the speed of sound at the limit between the single-
phase regime and the two-phase regime in the 3-equation model could indeed be responsible for this
noise, an more regular thermodynamic closure is proposed. The set of thermodynamic properties for
the regularized equation of state is derived. The continuity of the speed of sound is shown to be
restored, and simple computations are provided in order to check whether this strategy reduced the
spurious noise generation.



Chapter 2

Non-ideal thermodynamics and
two-phase equilibrium

This chapter is dedicated to the thermodynamic developments required for the description
of non-ideal two-phase flows. In particular, the family of cubic equations of state and their
properties are recalled. The computation of two-phase equilibrium with such equations of
state is then presented both for single-component and multi-component mixtures.

2.1 The fundamental laws of thermodynamics

The development of thermodynamics is motivated by the need for macroscopic models able to deal with
systems of high complexity. Such complexity arises from the study of matter at a macroscopic scale,
which cannot be viably described by studying thoroughly the dynamics of its elementary components
(e.g. the molecules). Thermodynamics allow for the global description of the state of matter and its
transformations through the application of two fundamental laws. In this section, these laws are briefly
recalled, and the relevant thermodynamic quantities and notations are introduced.

2.1.1 The first law of thermodynamics

Let Q be a thermodynamic system of volume V. We denote by Q¢ the surroundings of 2. The system
can be characterized by the way it interacts with its surroundings, as depicted in Figure 2.1

@ c QC
o g—— ] e
L7 \2// Q
:I Q “I

(a) Open thermodynamic system (b) Closed thermodynamic system (c) Isolated thermodynamic system
Figure 2.1: Different interactions between a thermodynamic system and its surroundings
The considered thermodynamic system is filled by a fluid, made of molecules that interact together. The

amount of matter contained in €2 is denoted by n = Zf\;l n;, in moles, with total mass m = Zfil ms,
where N, is the number of chemical species in the mixture.
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The thermodynamical energy content of the fluid is described by its internal energy (also called sensible
energy), denoted &, consisting in the sum of the kinetic energy of thermal motion — which excludes the
advective kinetic energy — and the potential energy of interaction between the molecules [Hirschfelder
et al., 1954]. The internal energy is a state function, meaning that it only depends on the current state
of the system and not on the way this state has been obtained. The total energy of the system is then
defined as the sum of its internal energy, its advective kinetic energy, and the external potential energy
due to volume forces such as gravity:

gtot :(‘:3 +gc+gp (211)

The first law of thermodynamics can be expressed as follows:
The total energy of an isolated system is constant.

Equivalently, for a closed system £, it can be written as the following identity:
dgtot == 6Q + 5W, (212)

stating that the variations of the energy of a closed system are exactly equal to the amount of heat
0@ and work W exchanged with its surroundings. In other words, the total energy is a conservative
quantity.

2.1.2 The second law of thermodynamics

The first law presented above is a pillar of the theory of physics, but it is insufficient to completely
describe the evolution of thermodynamic systems. Indeed, some physical processes — such as the
homogenization of temperature when pouring together cold and hot water — are observed to occur
spontaneously in one way, but cannot spontaneously go back to their initial state, even though such
transformation would not violate the first law. The asymmetry characterizing such phenomena is not
addressed by the first law and requires the formulation of a second law.

The second law, as formulated by Lord Kelvin in 1851, is:

“It is impossible, by means of inanimate material agency, to derive mechanical effect from any

portion of matter by cooling it below the temperature of the coldest of the surrounding objects.”
An equivalent expression was published by Rudolf Clausius in 1854, as:

“Heat can never pass from a colder to a warmer body without some other change, connected
therewith, occurring at the same time.”

The second law can be put into a mathematical form, by postulating the existence of an extensive
quantity called entropy, denoted S, such that for any infinitesimal transformation of a closed system
), one has

as = %@ + 0Sier (2.1.3)
T
with
0Sir 2> 0, (2.1.4)

where Sj,, denotes the internal and external irreversibilities caused by the transformation. Similarly
to the internal energy, the entropy S is also a state funcion.

Entropy is interpreted in the field of theory of information and in statistical physics as a measure of
disorder within the system. It can be expressed [Hirschfelder et al., 1954] as a function of the number
of possible microscopic states #£2 that correspond to the macroscopic state of the system. In the case
of equiprobable microstates, it verifies S = kp In (#£2), with kp the Boltzmann constant.
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2.1.3 Important thermodynamic relations

2.1.3.1 Variance of a thermodynamic system and Euler’s theorem

The wvariance (Var(f2)) of a thermodynamic system €2 denotes the number of independent variables
necessary to define the state of the system, i.e. the number of independent variables required to
evaluate its extensive state functions, such as sensible energy or entropy. For instance, it is observed
that knowing the temperature, pressure and mass of a monocomponent gas is sufficient to completely
determine its thermodynamic state (in extensive variables), hence a variance Var = 3. For a gas or
a liquid consisting of N, species, the variance increases to Var = 2 + N,. For example, the sensible
energy of a system {2 can be expressed as a function of its entropy, volume and mass composition, so
that

Es=[f(S,V,mq,...,mn,). (2.1.5)
Its differential thus reads
N
o€ o€ N 0€
A& = — ds 2 d = dm;. 2.1.6
oS Vom; + oy Sm; V+i:21 om; S,Vimjei " ( )

The partial derivative of & with respect to S (respectively V and m;) defines the temperature T
of the system (resp. the pressure P and mass-specific partial Gibbs energy g;) [Poling et al., 2001].
Equation (2.1.6) then writes

N,
A&, =TdS -~ PdV+ > g;dm, (2.1.7)

i=1

which is called the Gibbs relation. The temperature, pressure and mass-specific partial Gibbs energy
are intensive properties of the system, i.e. independent of the volume V.

From this point, it is interesting to remark that, using the extensive nature of the system sensible
energy &, its entropy S and its components masses (m;);=1. n., the system AQ obtained by scaling
system Q by a factor A > 0 results in equally scaling its energy A, entropy AS, volume AV and i*®
species mass Am;. In other words, for any factor A > 0, one has

As = f(AS, AV, dmy, ..., Amnp,) . (2.1.8)

Mathematically, the extensive sensible energy & is said to be a 1-homogeneous function in the extensive
variables. Indeed, a function is said to be k-homogeneous in its variables when it verifies, for a scalar
A, the relation f (Axy,...,Azy,) = A¥f (21,...,2,). Differentiating equation (2.1.8) with respect to the
scaling factor A then yields

oA oA

N, ‘
ONE) _ 7 00S) Pa(a):\V) +Zgi3(;}\z%)7 (2.1.9)

which finally gives the so-called Euler’s theorem:

N
Es zTS—PV—i—Zgimi. (2.1.10)

i=1

Differentiating Euler’s theorem (2.1.10) and subtracting Gibbs relation (2.1.7) provides the Gibbs-
Duhem relation:

N,
> m;dg; = -8dT + VdP. (2.1.11)
=1
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2.1.3.2 Thermodynamic potentials and Maxwell relations
2.1.8.2.1 Additional state functions

From the definition of the sensible energy, it is possible to introduce other quantities to equivalently
represent the energetic contents of the system. We then note the sensible enthalpy of the system H,
defined as

Hs =E + PV, (2.1.12)
the Helmholtz energy (or free energy)

Fo=E TS, (2.1.13)
and the Gibbs energy (or free enthalpy)

G=E+PV-TS. (2.1.14)

These thermodynamic potentials are convenient quantities to represent the system regarding available
data. Indeed, their differentials read

N,

dH, =TdS+VdP+ Y gidm,, (2.1.15a)
=1

Ns

dF, = -SdT — PAV+ Y _ g;dm;, (2.1.15Db)
=1
Ns

dG = —SdT +VdP + > g; dm;, (2.1.15¢)
i=1

For example, enthalpy is a handy quantity to describe a system that undergoes isentropic or isobaric
transformations, whereas Gibbs energy is interesting when isothermal or isobaric transformations are
involved.

2.1.8.2.2 Maxwell relations

It appears from equations (2.1.7) and (2.1.15) that thermodynamic state variables can be characterized
by different ways. For instance, for the pressure P, one has

08,
v

R,

P = =—
oV

. (2.1.16)

T,’I’I’Lj

S,m;

Interesting relations can also be obtained by means of Schwarz’s (or Young’s) theorem, when applied
to the second-order derivatives of the thermodynamic potentials. For example, the sensible energy

reads:
€, OE.
0 ( ov s,mj> _ 9 ( oS v,m) ) (2.1.17)
oS 192%
V,mj; S,m;
so that
opP oT
- — = — (2.1.18)
oS V,mj; 8V S,mj
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A whole set of relations between thermodynamic state variables differentials can then be derived this
way. These relations are called Maxwell relations, and can be summarized as:

_ g%; . = g% o , (2.1.19a)
gTTD " % - (2.1.19b)
g% e %D . (2.1.19¢)
g% = 2% . (2.1.19d)

Such relations will be useful for the thermodynamic derivations of the present work.

2.1.3.3 Intensive definitions of the state functions

It is possible to introduce intensive forms of the state functions, by defining their mass-specific coun-
terparts (in J - kg~!). They are noted as follows:

ey = (2.1.20a)

85 HS ‘FS
el = ; = 5 g=
m m

g
—
The mass-specific entropy (in J - kg=! - K~!) and the mass-specific volume (in m? - kg=1) write

S ; v = K (2.1.20Db)

Es=— ; Hy=-— ; F== 3 G== (2.1.21a)
n n n n

(the Gibbs energy is written G because of its identity with the chemical potential which is usually

noted this way) and for the molar entropy (in J-mol~! - K~!) and molar volume (in m? - mol=1),
S 1%
§=2 5 V=2 (2.1.21b)
n n
Finally, the notation for volume-specific thermodynamic potentials (in J - m~3) is
Es ~ Hs PR g
L T S R A . 2.1.22
€=, Y fs=75 i=5 ( a)
and for the volume-specific entropy (in J- m~=3 - K~!) and the density (in kg - m~3),
S m 1
;=2 . -z 2.1.22b
Ty P=y =% ( )

It is possible to reformulate Maxwell relations using the intensive (e.g. mass-specific) form of the
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variables:
%1: - 2 %’; " (2.1.23a)
% e 2 g% " (2.1.23b)
gi; = _ %’*’; . (2.1.23¢)
;’% = p2 (%i . (2.1.23d)

The composition of the mixture can be described by the vector of intensive variables Y, defined as

m;

Y; = —. 2.1.24
i (21.24)
N
Y; is the mass fraction of species ¢, and one has Z Y, =1.
i=1

Similarly, the differentials of the mass-specific thermodynamic potentials can be expressed as

Ns
des =Tds—Pdv+ Zgi dy;, (Gibbs relation) (2.1.25a)
=1
N
dhy =Tds+vdP+ ) g;dY;, (2.1.25b)
=1
Ns
dfe=—sdT —Pdv+» g dY, (2.1.25¢)
=1
Ns
dg=—sdT +vdP+ Y g;dY;. (2.1.25d)
=1

where equation (2.1.25a) is the mass-specific form of Gibbs relation (2.1.7).

It is worth mentioning that an extensive quantity is a 1-homogeneous function in its extensive param-
eters, and a 0-homogeneous function in its intensive parameters.

2.1.4 Closing the system

Now that the thermodynamic quantities and notations have been set, one can observe that the de-
scription of the system is incomplete. As said before, the definition of a thermodynamic system (with
extensive variables) has a variance of (Ng+2). In other words, once that (Ns+ 2) variables have
been set, the complete system state should be defined. Yet, describing the system with a thermody-
namic potential (for instance the sensible energy & defined in equation (2.1.10)) provides one relation
between 2(N, + 2) variables, namely

[P7T787V7m1a"' yMMNG, g1, 7gNs]'

Thus, there is so far only 1 equation for a system of 2(Ng + 2) unknowns with (Ng + 2) degrees of
freedom, which means that (Ny + 1) relations are missing to close the system.
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The N, first closure relations are usually provided by defining the reference mass-specific isochoric
heat capacity cgﬂ- of the different species (i = 1...N;):

0o Oes

v (Tovpoa}/; - 1)7 (2126)
or|,

C

where cg,i represents the variation of sensible energy with respect to the temperature for an isochoric
transformation, at the reference temperature and pressure (7°, PY) and for a pure component i. It is
obtained by empirical relations based on experimental measurements.

The missing closure relation is provided by defining an equation of state of the system, which can
usually be expressed as a relation between the pressure, the temperature, the density and the mixture
composition Y = {Y;}, ~,- The derivation and properties of equations of state of interest for this
work are the object of the next section.

2.2 Modeling non-ideal thermodynamics

The physical description of a fluid can be addressed at different scales. The usual approach in classical
thermodynamics is to gather the complexity of the microscopic phenomena that rule the system into an
algebraic relation between macroscopic variables, called the Fquation of State (EoS) of the system. In
this section, the construction of theoretically important EoS are presented and related to the relevant
physical phenomena they describe.

2.2.1 Towards real-gas equations of state

2.2.1.1 Ideal gases

Following the need for simple macroscopic models motivated by the intensive use of steam machines
during the industrial revolution, the ideal gas model has been established in the early 19" century
from empirical observations, by combining Gay-Lussac’s, Charles’ and Avogadro’s laws together. It has
been stated that, for an ideal gas, its pressure P, volume V, temperature 7" and amount of substance
n are linked by the relation:

PV =nRT, (2.2.1)

where R = 8.3144598 J - mol~! - K~! is the universal gas constant. This law can be equivalently
written under the volume-specific form:

P(p,T.Y) = piT, (2.2.2)

_ _ -1
where 7 = RW ™! with W(Y) = (Zivzl YiW;1> the molar mass of the gas mixture and W, the
molar mass of the i*" component. A property of the ideal gas law is that, by defining for each chemical
species the partial pressure P; = Y;pr;T with r; = RW;l, one has P, = X, P with X, = % the P
component’s mole fraction. As the mole fractions sum to unity, this yields the so-called Dalton’s law,
which states that

N,

P=> P (Yi,p,T) (2.2.3)
=1

for an ideal mixture. The partial pressure depends only on the mixture density and temperature,
and the considered species properties. In this respect, the partial pressure of the component ¢ is
independent of the nature of the other components, which is an noteworthy feature of ideal mixtures.
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It has been observed that gases at relatively low pressures satisfyingly follow this EoS. Later on, the
development of the Kinetic Theory of Gases provided a demonstration to this law, by modeling the
gas molecules as hard spheres only interacting together through collisions. The hard-sphere model can
be expressed as an infinitely stiff interaction potential between molecules VHS:

0 if 7> rmg
HS __ min
Vit = { +oo  if r < Tin (2.2.4)

Unfortunately, the errors made by this very simple model become unacceptable when the molecular
interactions are no longer dominated by mere collisions. In particular, this is the case when the density
increases, which corresponds to a high pressure and a low temperature. The deviation from the ideal
gas behaviour can be characterized by introducing the compressibility factor Z, which is illustrated in
Figure 2.2.

PV P

Z2=—o=— 2.2.5
RT  prT’ ( )

with V' the molar volume defined in (2.1.21b). Z is observed to vary relatively strongly with the

" H,

—

Compression factor Z

Figure 2.2: Illustration of the deviation of the compressibility factor from unity (corresponding to the ideal gas law)
when varying the pressure, along 0 °C isothermal lines for different chemical species. Data for this picture is taken
from [Atkins et al., 2018].

pressure. Although the compressibility factor of the different species tends to unity at low pressures,
the behaviour of Z in the neighbourhood of P = 0 involves different slopes.

2.2.1.2 Non-ideal molecular interactions

In this respect, more complex molecular interactions have to be considered. Although the exhaustive
description of molecules mechanics would require to address quantum effects, approximate models have
been proposed to capture the overall trends. They take advantage of the statistical convergence of the
quantum systems towards classical mechanics.

A rather simple representation consists in expressing the non-ideal molecular interactions as a potential
well [Hirschfelder et al., 1954, Atkins et al., 2018], so that molecules repel each other at close distances
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but attract each other further away. For example, such form includes Morse’s potential V™, or Lennard-
Jones’ (LJ) potential V). They can be formulated as:

VM(r)=Vv?

exp (2111 2) ’j‘;) — 2exp <ln (2) r—m)] : (2.2.6a)

To To — O

6] s

where 7 is the intermolecular distance. rg, ¢ and V° are the model parameters, respectively the

Morse minimal-potential distance, the zero-potential distance, and the depth of the potential well (cf.
figure 2.3). It is readily seen that when the intermolecular distance is such that r > r¢, an attractive
interaction will occur. Conversely, for r < rg, the interaction will become repulsive.

VLJ (T) — 4V0

Var(r)

—Vo °

o To I I I r
Figure 2.3: Typical shape of an attractive-repulsive molecular interaction potential. Here, the Morse potential is depicted.

At low temperatures, and high densities, the molecules are close enough and the kinetic energy of
thermal motion becomes small enough for them to be trapped in the potential well. The molecules are
bound together by their attractive interaction, which characterizes a liquid state.

It is important to note that the interaction parameters depend on the considered chemical species.
For instance, when two molecules of different chemical nature interact, the Lennard-Jones potential

becomes
12 6
Uij . Uij
r r

with Vi = /VOV) and 045 = ”TUJ Thus, it is not possible to treat the thermodynamics of the

different species independently, as for ideal gases, for example through Dalton’s law, since crossed
terms appear in the molecular interactions.

LJ _ 0
Vi (r) = 4Vy; (2.2.7)

Pushing forward the Kinetic Theory of Gases allows to formulate an EoS that uses more detailed
descriptions of the molecular interactions, considering in particular multiple molecules interaction at
once. This leads to the formulation of the Virial EoS [Poling et al., 2001], which writes as a polynomial
series of the inverse of the volume:

K
RT By(T)
P=—+4+RT E . 2.2.8
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Equation (2.2.8) expresses the Virial EoS truncated at order K, in which the term of k' degree
expresses the non-ideal interactions between k different molecules. The coefficients By (T') can be
expressed as functions of the chosen interaction potential. Thus, they depend on the temperature and
the species composition of the mixture.

Unfortunately, the coefficients of the Virial EoS are generally difficult to evaluate. The EoS is then
often truncated at low-degree terms (typically 2 or 3). This limits its use to the prediction of only
small deviations from the ideal gas behaviour. Nonetheless, this EoS is of major theoretical interest as
it provides a description of the fluid that can be fed with conceptually any interaction potential form,
and expanded to an arbitrary order.

In addition to their ability to explain the behaviour of high-pressure gases, the non-ideal molecular

interactions are observed to be responsible for strong changes in the topology of matter, as they underly
the existence of liguid phases.

2.2.1.3 Fluid phases, the liquid-vapour interface and the critical point

The state of matter of a pure component varies with the nature of the predominant molecular interac-
tions occurring within it. Figure 2.4 displays the typical phase diagram of a pure (single-component)
system. The lines correspond to thermodynamic points where two phases can coexist. The areas
delimited by these lines correspond to pure-phase areas.

P
A

supercritical
region

»
»

T

Figure 2.4: Typical phase diagram for a pure system. Point C denotes the critical point. Point D denotes the triple
point, where the three phases can coexist.

In the liquid phase, the density is high enough and the kinetic energy of thermal motion small enough
for the molecules to remain bound together (trapped in the potential well shown in Figure 2.3). In
the gas phase, the density being lower, the short-range attractive forces are weaker and the molecules
mostly interact through the repulsive forces. The simultaneous coexistence of both liquid and vapour
phases introduces an anisotropy along the transition region between the two phases: the interface. This
anisotropy results in a force called surface tension, which tends to minimize the surface of interaction,
causing for example the break-up of liquid droplets into smaller inclusions when the interface is too
deformed by the hydrodynamic constraints.

When the temperature increases, the molecules in the liquid phase acquire more and more kinetic
energy of thermal motion up to a point where the potential well of attractive interaction is no longer
sufficient to maintain them bound together. As the attractive forces get weaker and weaker, the
anisotropy between the liquid and the gas at the interface decreases. Thus, the surface tension drops,
and the thickness of the interface becomes increasingly diffuse. At the critical point (see figure 2.4),
the surface tension and the liquid-gas interface have vanished and a smooth transition between variable
densities is observed, similarly to what is shown in Figure 2.5.
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(a) Subcritical jet

(b) Supercritical jet

Figure 2.5: Shadowgraph images of LN2/He injection at sub- and supercritical conditions (Taken from [Mayer et al.,
1998]). 2.5a displays a typical subcritical behaviour with sharp liquid-gas interface, ligaments and droplets formation.
2.5b illustrates the fading of surface tension, which results in a diffused liquid-vapour interface: the flow becomes a mere
turbulent mixing of variable-density fluid.

For a single-component system, the critical point is characterized by (T, P, pc), respectively the critical
temperature T, critical pressure P, and critical density pe.

2.2.1.4 The corresponding states principle

The study of fluids relatively to their critical properties has been shown by van der Waals to be
particularly relevant. Indeed, when plotting the compressibility factor Z defined in (2.2.5) with respect
to the reduced pressure P,, defined as

P
P=—, 2.2.9
5 (2:29)
at different reduced temperatures 7;., defined by
T
T = —, 2.2.1
. (2.2.10)

and for different pure species, he has noticed that, their behaviour is strongly similar, as depicted in
Figure 2.6.
This statement led van der Waals to formulate the corresponding states principle (CSP):

“Real gases at a given reduced temperature and reduced pressure have the same reduced volume.”
Naturally, this principle is a simplified model. In particular, polar or highly non-spherical molecules
are known to show discrepancies with this principle. To overcome this, additional parameters, such
as the acentric factor (see Section 2.2.1.5) can be taken into account. However, this principle is a key
element for the development of the widely used cubic EoS which provide a satisfying and universal
estimation of the thermodynamics of real gas mixtures with a reduced number of parameters.

2.2.1.5 The van der Waals EoS

In the late XIX'" century, van der Waals [van der Waals, 1873] introduced a rather simple equation of
state to describe the real gas effects more accurately. Global physical considerations can be exposed
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Figure 2.6: Compressibility factor Z with respect to the reduced pressure P, for different values of 7). and different pure
species. The data for this image is taken from [Atkins et al., 2018]

to justify the construction of this EoS. The first idea is that the volume appearing in the expression
of repulsive effect in the EoS should take into account the bulk of the molecules. In this respect,
the covolume b is added to the ideal gas law, so that the repulsive effects are now represented by
V7E€m = lpfgp, with b™ being the molar counterpart of b. Furthermore, attractive interactions have
two joint effects on the pressure. They reduce both the strength and the frequency of the collisions on
a given surface. Considering that each of these effects, taken separately, is proportional to the density

(or molar concentration), the pressure is corrected by the term

~1m

_ 9 G
_7‘/27

with @ a proportionality coefficient and @™ its molar counterpart. Both coefficients @ and b are assumed
independent of the temperature and of the density. They are properties of the chemical species involved
in the mixture and then only depend on the mixture composition, described either by the species mole
fractions X (with X; = n;/n) or by the mass fractions Y.

Finally, the van der Waals EoS writes, in a molar form:

RT a™
PVTX)=———— — 2.2.11
( )=V Ty e ( )
or also, in its mass-specific form:
T
P(p,T,Y) =~ G (2.2.12)
1—bp

The global behaviour of the van der Waals EoS is depicted in Figure 2.7. One can see that, unlike for
ideal gases, isothermal lines have inflexion points. Also, along an isothermal line T', up to three values
of the specific-volume v (or the density p) can be found for the same pressure P. Mathematically, this
comes from the cubic nature of the EoS, hence the name of this class of EoS. Physically, the existence
of multiple positive density solutions conveys the possible simultaneous existence of liquid and gas
phases. Moreover, Figure 2.7 shows that above a particular value of the temperature, the isothermal
lines become monotonic: phase coexistence is no more possible. This temperature corresponds to the
critical temperature T, of the considered species.
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Figure 2.7: Clapeyron diagram displaying isothermal lines for the van der Waals EoS applied to pure O2. Dashed lines
indicate the corresponding isothermal lines computed with the ideal gas EoS. Point C denotes the critical point.

For a species i, the critical properties appear in the definition of the parameters a and b, which take
the form:

277’?T3i m 27R2T3ﬂ- 2.9.13
a; = m, <~ a, = TPCJ ( L. a)
T . RT, ;
by = == — bt = 2.2.13b
! SPC’i ’ ¢ 8Pc,i ( )

This EoS is described by [Poling et al., 2001] as a two-parameter CSP EoS. Indeed, only two parame-
ters, Tc; and P, ;, are needed to characterize the EoS specifically for the i*® component.

For multicomponent mixtures, the van der Waals mixing rules [Poling et al., 2001] allow to estimate
the mixture parameters a and b, as

N, N

a(Y) = > V;Y; (1 - ki) Jaia; — a™(T) = XiX; (1 - kij) \/aa™ (2.2.14a)
=1 =1
N, N

bY) =Y Yib;, — b= Xibp (2.2.14b)
i=1 i=1

with k;; = kj; being the binary interaction coefficients, which are specific to each pair of species.

Despite its theoretical interest and its ability to predict global tendencies of the fluid state evolution,
the van der Waals EoS suffers from high discrepancies with respect to experimental data for some
chemical species. Indeed, this EoS formulation assumes that molecules are spherical and non-polar.
To improve the quantitative predictions of the van der Waals EoS for non-spherical molecules, a family
of enhanced cubic EoS have been proposed. They are described in the next section.

2.2.2 Three-parameter CSP cubic equations of state

One century after van der Waals’ pioneering work, motivated by a need for increased accuracy, a large
variety of cubic equations of state have been developed [Poling et al., 2001], in particular between 1972
and 1998. Among them, two EoS are especially used for numerical simulation of real-gas flows. The
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first one is an extension of the Redlich-Kwong EoS, proposed by Soave [Soave, 1972] and resulting in
the so-called Soave-Redlich-Kwong (SRK) EoS. The second one was introduced a few years later by
Peng and Robinson (PR) [Peng and Robinson, 1976]. This section describes these EoS in more details,
as they will be used as the thermodynamic closure for the present work. All the relevant quantities
needed for this work are also presented.

2.2.2.1 Equation of state formulation

The SRK and PR EoS write respectively, in a molar form:

RT a™(T)
P (p, T, X) = — — —, 2.2.15a
o T X = o ey (2.2.15)
RT a™ (T
Por(p, T, X) = — — “ ) —, (2.2.15b)
V—bm y2 4 opmy — pm
or, in a mass-specific form:
T a(T)p?
Pawc(p, T,Y) = 2 M, (2.2.16a)
1—-bp 1+0bp
T a(T)p?
Po(p. T.Y) = 7= — oy (2.2.16b)
1—bp 1+2bp—b2p?
These cubic EoS may be gathered into the following form:
T a(T)p?
P(p.1,Y) = " AT (2.2.17)

C1—bp 1 + e1bp — e9b2p?

with parameters €1 and €2 given in Table 2.1.

EoS vdW SRK PR
€1 0 1 2
€2 0 0 1
€12 0 1 2\/§

Table 2.1: Cubic EoS parameters for SRK and PR. €12, defined as €15 = 4 /a% + 4eo, is a useful coefficient for the
thermodynamic developments presented in Section 2.2.2.2.

Two major modifications are made compared to the van der Waals EoS: the attractive term is modified
to include effects of the covolume, and the attractive coefficient a is now given as a function of the
temperature: its formulation introduces a new parameter, the acentric factor w; [Poling et al., 2001].
This coefficient represents the deviation of the molecule from a perfectly spherical shape.

The covolume and the attractive coefficient for a species 7 read,

(I)ci
a;(T) = W’Q U, (T)2 or a™(T) = &,V (T)? (2.2.18a)
i
il RT:;
bi = by 2t or b = by (2.2.18b)
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with the following definitions:

R2T?,
d.; =Py PC:Z, (2.2.19a)
T
Wi(T) =1+ o [ 14/ | (2.2.19b)
Woi = o + Prwi + aw; - (2.2.19¢)

The constants by, ®g, ¥g, Y1, 12 characterize the considered EoS. Their values are summarized in
Table 2.2.

Coefficient PR SRK
bo 0.427480 0.086640
D 0.457236 0.077796
Yo 0.37464 0.48508
1 1.54226 1.5517
o —0.26992 —0.15613

Table 2.2: Values of PR and SRK EoS coefficients, from [Poling et al., 2001].

Given a mixture state (T, P,Y), computing the density requires to find the roots of the following cubic
equation:

(1 +e1bp — 5252p2) (1 — E,o) P+ (1 — Bp) ap® — (1 +e1bp — 5252p2) prT =0, (2.2.20)

hence the name of this family of EoS. Details about its resolution using Cardano’s method are provided
in Appendix A.2.

2.2.2.2 Thermodynamic potentials

From the EoS definition, one can derive all the thermodynamic properties of the fluid. This is achieved
by evaluating the so-called departure values [Poling et al., 2001]. These quantities allow to describe the
evolution of a thermodynamic property ¢ of a real fluid, from a state (Py,71,Y) to another (P2, T5,Y),
as depicted in Figure 2.8.

The departure value %ng(P, T,Y), represents the difference between the real-gas value of the quantity

¢ and its ideal-gas counterpart ¢'“, evaluated at the same thermodynamic point (P, T,Y):

In Figure 2.8, the red thermodynamic path AG and the blue one ABDEFG are equivalent. The path
ABDEFG actually consists in splitting the variations of ¢ in two parts. The first part consists in
the evolution of the reference ideal-gas state, corresponding to the sub-path BDFEF. The second one
is the variation of the state function ¢ with respect to the reference ideal-gas state when including
the non-ideal molecular interactions, corresponding to the sub-paths AB and FG. At this point, it is
interesting to note that, as the pressure tends to zero, the non-ideal molecular interactions vanish and
the real-gas state tends to the ideal-gas one, which writes:

lim [q’)(P, T.Y) - ¢'°(P,T,Y)| = 0. (2.2.22)
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Figure 2.8: Thermodynamic path to compute variations of a thermodynamic potential for a real-gas EoS. Real-gas
isothermal lines are displayed in black solid lines, while ideal-gas isothermal lines are the green dash-dotted lines. Red
and blue lines with arrows denote two equivalent thermodynamic paths.

In this respect, the departure value can be evaluated by integrating the deviation of the real-gas state
with the ideal-gas one from the zero-pressure limit, which reads:

P
0

8¢IG
- opP

dP,. (2.2.23)

TY

T.Y

An equivalent reasoning can be led by defining the residual value %(b(p, T,Y ), which correspond to

the difference between ¢ and ¢'“ evaluated at the same temperature, composition and density [Poling
et al., 2001]. Similarly to the departure values, the residual values can be computed using the fact
that the non-ideal molecular interactions vanish in the zero-density limit, i.e.

lim |¢(p, T,Y) — ¢'%(p, T,Y)| =0, (2.2.24)

p—0

so that the residual value reads

99
do

8¢)IG
TY do

o
Ad(p, T,Y) = ¢(p,T.Y) = ¢'“(p, T, Y) = /0 (2.2.25)

TY
In practice, it is more convenient to use the departure values. For example, a liquid and its vapour
at equilibrium share the same pressure and temperature, so that their thermodynamic state evaluated
with the departure values have the same reference ideal-gas state, whereas evaluating their state with
residual values would involve different reference ideal-gas states, since their densities are different.
Nonetheless, as the cubic EoS is defined explicitly with respect to the density, it is convenient to
reformulate the departure values as a function of the temperature, the density and the composition.
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This can be done by introducing Pig = pr’I" and decomposing the departure value into:
A¢(p,T.Y) = ¢ (P(p,T.Y),T.Y) - ¢'“ (P(p,T.Y),T.Y),
=o(P(p,T.Y),T,Y) — ¢'°(Pc,T,Y) + ¢'°(Pic, T.Y) — ¢'°(P(p,T,Y),T,Y).

@ ©)

(2.2.26)
In this expression, the term denoted by (1) is actually equal to the residual value (1) = %(ﬁ(p(P, 7,.Y),T, X) .

Introducing prc(p, T,Y) = %, the term denoted (2) can be interpreted as

14 6¢IG
do

do (2.2.27)
T

@=¢"(p.1.Y) — ¢'"“(p1c, T.Y) =/

PIG

so that the final formulation of the departure values reads:

do. (2.2.28)

14 3¢)IG
8o T.Y) = 20(p. T.Y) + [
7Y

o Oo

Following these considerations, the departure values of different thermodynamic quantities are sum-
marized hereafter, and their expression for SRK and PR EoS are provided.

The sensible energy departure value writes

P
%es(p7T7X) :/ <P - L oP
0

< T do, (2.2.29a)
ot ¢ oT p,Y>

since the sensible energy of an ideal gas depends only on its temperature and its composition,

1G
Oe,

=0. 2.2.29b
| =0 (2:2.29b)

T.Y

This yields, for PR and SRK EoS:

a—Ta 2 - b
Aes(p, T,Y) = 22 % [ 21 (1= e12)pb ) (2.2.29¢)
P beqs 24 (61 + €12)pb

with coefficients €1, €5 and €15 defined in Table 2.1.

The enthalpy departure value is

(P T P P
Ahs(p, T,Y) = / —- - = — do+ — — 7T, 2.2.30a
sl ) 0 (@2 0* 0T p,y> p ( )
yielding
a—Ta 2 — b P
Ahap, 1Y) = =10, (2 mewleb) | P oy (2.2.30b)
P beqs 2+(51 +€12)pb 1%

The departure Helmoltz energy is given by

P(P FT P
Afi(p,T,Y :/ <)d FTln(); 2.2.31a
Afs(p ) g ) T ( )
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which boils down to

Af(pT.Y) = -2 1n (W) — Tl (P> . (2.2.31D)

bea 24 (617 —e12)p

The Gibbs energy departure value is

PP T P P
Ag(p,T.Y) = / (2 _ T) do — 7T n <> + (2.2.32a)
0 1Y o pr

which reads

_ 9 _ b P (1 - Bp) P
Ag(p, T,Y) = =2 In ERACRIEA IRl PR I S | B (2.2.32b)
r be12 2+ (e1 +e12)pb prT p
and, finally, the entropy departure value is computed as
Plr 1 OP P
As(p, T.Y) = -— = — d In{ — ), 2.2.33
As(p.1Y) = [ L) 5ol orrmn (L) (22.33)
which reads
As(T,p,Y) = ——"—1In 2r(ezen)bo) o (2T (2.2.33b)
F be1o 24 (e1+¢e12)bp prT

The expressions for the reference values that are used to compute the thermodynamic potentials,
corresponding to the ideal gas law, are provided in Appendix A.1.

Finally, one can introduce the fugacity f (not to be mistaken with the free energy fs), an additional
thermodynamic quantity homogeneous to a pressure, which characterizes the departure Gibbs energy.
It is defined as:

£ o _ 7 P(1—0bp
i (L) = Agp 7, y) = % [ 2= E2)eb ) oty g, M + 2 (2230
P F be1a 24 (e1 +e12)pb prT P

The fugacity is homogeneous to a pressure, and one can also define the dimensionless fugacity coefficient
©, as

Sl

= (2.2.35)

Then, the fugacity coefficient writes

B _ (6,/5612)
piT (2 + (1 — m)pZ) exp (P _ 1> . (2.2.36)
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2.2.2.3 Multicomponent mixtures and partial quantities

In a multicomponent mixture, it is interesting to define the partial thermodynamic quantities of species,
that characterize the dependence of mixture thermodynamic quantities to the amount of the considered
species.

The partial quantity of a mass-specific thermodynamic potential ¢ for the i*" species writes:

3 (m¢)

om; T,Pymjsi

&i(T, P,{m1,...mn.}) = (2.2.37)

Using the 1-homogeneity of the extensive thermodynamic potential m¢(T, P, {m1,...,my_}) with re-
spect to the extensive variables {mj,...,my,}, it is obvious that the partial quantities of a mixture
verify

Ns
> Yigi(T, P {m,....mn,}) = (T, P, {mq, ..., mn, }). (2.2.38)
i=1

The partial specific volume v;(p, T,Y’) of the i*" component reads:

T rb; — 2e9b )b;
wp YY) =8 | —— [+ 22 ) & P (e1 = 263bp)budp 221/%
1—bp 1+ e1bp — 202p% \ 14 e1bp — e2b2p?

(2.2.39)

For PR and SRK EoS, the partial sensible energy obtained by differentiating its departure value (2.2.29¢)
and reference value (A.1.1) reads

9 _ b a—Ta)b;

ceilp. T¥) = (M) 23" Yilau — Tal) - %
€12 + (g1 +e12)p P (2.2.40)

a—Ta' b; — 2p i
I PP ST,
b 1+ei1pb—e3p?b? '
The partial enthalpy is then

1 2+ (e1 — €12)pb a — Ta")bs

hoi(p, T,Y) =——In <M> 23 Vilan ~ Taj) —
beia 24 (e1 +e12)pb k=1 b (2.2.41)

a—Ta bi — p2bu;
4720 PPN puy— T+ RIS(T).
b 14 e1pb— e9p?? ’

Because the definitions of the Helmoltz and Gibbs energies involve the entropy, it is important to
first introduce the notion of entropy of mizing within ideal mixtures. Indeed, in a mixture of ideal
gases, the partial entropy of the i'" component is not simply given by applying (A.1.3) to species
1. An additional entropy term must be considered, to take into account the fact that mixing several
gases together introduces more disorder than when considering one delimited volume per species. This
additional term is called the entropy of mixing. It can be obtained from Dalton’s law. Compared to the
case where each species has its own delimited volume V? = % at temperature and pressure (T, P),
the mixed state involves instead the partial pressures P; = X; P = %, with V' the volume of the
whole mixture. The species behave as if it had undergone an isothermal expansion from the pressure
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P to the partial pressure X;P. The entropy of mixing is then equivalent to the entropy change due to
this expansion, and takes the following form:

s X)) = —r;In (X;) (2.2.42)

2

which is obviously positive in agreement with the Second Law, since X; € [0, 1].

To sum up, the partial entropy of species i is given by

si(p, T,Y) = 5% (p, T,Ys = 1) + s (Xi) + Asi(p, T,Y) (2.2.43)

which reads

N _ _
1 = 'b; 2 — b
(0T Y) = —— 23 vap, — 0| 2+ (e1—e1)pb
be1o = ’ b 24+ (81 + 512) pb

/

a  pb; — prbu P (b 47 |1 P(1— bp) . (2.2.44)
= = = = (Vi — 05 i || = | —
b1l+eibp—egb?p? 1—10p X, prT

+ s1G(P/(FT), T, Y; = 1).

Finally, the partial Helmoltz and Gibbs energies can be computed, yielding:

T _ N,
1 2 b\ |ab: .
F(pTY) =—Tn 2+ (eate)pb) jabi Yiau
€12 2+ (g1 — e12)pb b =
. o . (2.2.45)
LA iz orr e | (XWT> ~1
b1+ e1pb— eap?b? P

— piTv; + f14(P/(FT),T,Y; = 1),

1 2 - b ab;
gi(p,T,Y) ==——1In -F(&—W QZYkaik -
be1o 2+ (61 +€12)pb b

_ 2.2.46)
+ ( —rT) %—I—riTln e
p

+9i%(P/(FT),T,Y; = 1).

It is also convenient to introduce the fugacities of the species in the mixture, which are defined by

) fi(p, T,Y)
T1 —_ _—
ri In < X.P

) =Agi(p, T.Y). (2.2.47)

Eventually, the fugacity coefficient of the i*" species is defined as

fi

: 2.2.4

‘Pi(pﬂ T, X) =
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2.2.2.4 Other important thermodynamic quantities

The heat capacities must also be modified to account for the real gas effects. The departure isochoric
heat capacity is given by

PT 9°P
%cv(p, T.Y) = 7/0 2 or? do, (2.2.49a)
P
which is expressed, for SRK and PR EoS, as
d*a 2 —e12)b
Acy(p, T,Y) = T (T)In 2t(a—cn)bo) (2.2.49b)
P dT 2+ (e1+¢e12)bp
It is also useful to introduce the isobaric thermal expansion coefficient o, defined as:
1 dp
O((p,T,X) =~ a7 ) (2250)
p OT |py
and the isothermal compressibility coefficient 3, which reads
1 9p
( » OP|py
For the cubic EoS, they respectively write
oP pr da 0?
« aT7X = aT7X am = 7T;X = T I = = 2252&
(p ) =B(p ) 37 v B(p ) TR P o wr p—— ( )
—1
T ap (2 + €1bp>
Blp,T.Y) = — — - —— 1 . (2.2.52b)
(1 - bp) (1 +eibp— 5262p2)
The real gas isobaric heat capacity can then be obtained as:
2
T
(0 T.Y) =y + = (2.2.53)

pB’
in which the isochoric heat capacities includes the departure terms of equation (2.2.49).
Finally, a last quantity that is relevant for this work is the isentropic speed of sound, denoted ¢, defined

by:

oP c
Ep,T,Y) = —| = 2. 2.2.54
(p,T.Y) o9 .= e ( )

2.2.3 Other relevant equations of state

2.2.3.1 The stiffened gas (SG) EoS

This equation of state was introduced by [Le Métayer et al., 2004] to provide a simple form able to
treat liquid-vapour mixtures within a compressible framework [Le Martelot et al., 2014, Chiapolino



28 2.2 Modeling non-ideal thermodynamics

et al., 2016]. This EoS is presented as it is extensively used in the context of multifluid methods, e.g.
in these latter references. It writes

P(P, T) = p(’Y - 1) T — P007 (2255)

This EoS involves several tuning parameters, fitted on experimental data. For liquid-vapour simula-
tions, two sets of parameters are necessary: one for the liquid phase (P ¢, 027 0>Vt €0,¢, So,¢) and one for
the vapour phase (P v, c?w, Yo, €0,05 50,0). A method for their estimation is provided in [Le Métayer
et al., 2004]. Because these parameters are constant, this EoS lacks accuracy when used on a wide
range of temperatures and pressures.

It is readily seen that the stiffened gas EoS consists in shifting the ideal gas law by a constant value
P,,. Naturally, for P, = 0, this EoS degenerates to the ideal gas law. In practice, the vapour phase
EoS is defined with P, , = 0, while the liquid phase has a positive value for P, ; [Le Martelot et al.,
2014, Chiapolino et al., 2016].

Computing the thermodynamic quantities for this EoS using the departure values methodology of
paragraph 2.2.2.2 yields (¢! being assumed constant with respect to the temperature):

Ps
es(p,T) = AT + == 4 ey, (2.2.56)
p

0

The isochoric heat capacity departure value is zero, so that ¢,(p, T) = ¢

heat capacity ¢,(p,T) = cg =~c.

is a constant, as is the isobaric

A convenient explicit density-energy form of the SG EoS (2.2.55) is also available:

P(p,es) =p(v—1)(es — eo) — 7Pos. (2.2.57)

Another advantage of this EoS is the absence of non-linear terms compared to the cubic EoS (and
in particular the repulsive term), which are known to be a source of spurious pressure noise when
used in a numerical simulation where the conservative quantities (p, pt, pey) are simply transported
[Pantano et al., 2017, Lacaze et al., 2019]. Note that, nonetheless, spurious noise is encountered for
the stiffened gas EoS, and even for the ideal gas law, when a multicomponent flow is considered, as
studied by [Abgrall, 1996], this phenomenon being observed when a non-constant heat capacity ratio
v is considered. On the other hand, this EoS does not account for the critical point.

2.2.3.2 The Noble-Abel stiffened gas (NASG) EoS

An improvement of the stiffened gas EoS has been proposed by the same authors [Le Métayer and
Saurel, 2016]. Tt consists in adding a covolume parameter b to the repulsive term in the same fashion
as for the van der Waals EoS, in order to increase the range of validity of the SG EoS.

The Noble-Abel Stiffened Gas (NASG) EoS expresses as:

p(y—1)cT

~ Ps. (2.2.58)

Computing the sensible energy using its departure value yields

1—-0bp

es(p, T) =c, T+ Py + ep. (2.2.59)

The choice was made to present only the relevant EoS in the scope of this work. On the one hand, the
different cubic EoS offer a good trade-off between simplicity and accuracy, and can be used to describe
the liquid, vapour and supercritical states of a fluid. On the other hand, the SG and NASG EoS are
convenient to treat liquid-gas mixtures and have an even simpler form.
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Nevertheless, it is worth mentioning that a variety of other algebraic EoS have been developed, either
for other purposes, e.g. solid-state EoS like the Mie-Griineisen EoS, or taking more complex forms
than the cubic EoS (2.2.17), e.g. the Benedict-Webb-Rubin EoS. Although not exhaustive, [Poling
et al., 2001] provides a good overview of the different EoS that can be applied to describe liquids and
gases.

2.3 Thermodynamic equilibrium for a single-component fluid

The description of the thermodynamics of two-phase mixtures is a cornerstone of diffuse interface
models addressing phase change phenomena [Saurel et al., 2008, Le Martelot et al., 2014]. This section
recalls the notion of thermodynamic equilibrium and details its practical computation.

2.3.1 Thermodynamic stability and equilibrium

2.3.1.1 Gibbs-Duhem stability criterion

According to the second principle, the spontaneous evolution of a system always tends to maximize its
entropy. The thermodynamic equilibrium then naturally corresponds to the maximum entropy state
of the system. Let Q be a closed thermodynamic system (cf. Figure 2.1 page 7). € is surrounded by
Q¢, so that the global system QU Q¢ is isolated. Assume that Q¢ is much larger than €2 so that it is at
constant pressure and temperature Py, Tp. If {2 spontaneously exchanges small amounts of work AW
and heat AQ with Q¢ its sensible energy will change, by virtue of the First Law (see section 2.1.1
page 7), as

AE, = AQ + AW (2.3.1)

The work is associated with a variation of the molar volume AV that verifies AW = —PyAV. The
heat is associated with a variation of entropy AQ = TpAS..y and the total entropy variation is
given by AS = AS.ey + ASj;, the sum of the reversible and irreversible entropy changes. Finally,
Equation (2.3.1) becomes:

AE, —ToAS + P AV = =Ty ASyr, (232)

From the Second Law (see section 2.1.2), this yields an inequality ruling the spontaneous evolution of
the system Q:

Now, the condition for the system to be thermodynamically stable is that it cannot spontaneously
evolve. Then, the system is stable under the Gibbs-Duhem stability condition, when

AE, — TyAS + Py AV > 0. (2.3.4)

This condition can then be applied to various systems. For the simplest case of a closed and isolated
system (i.e. with constant volume and energy), (2.3.4) becomes

AS <0, (2.3.5)

so that the system is stable when its entropy is maximum. If the system is isobaric and isothermal,
(2.3.4) boils down to

AG >0, (2.3.6)

so that the system is stable when its Gibbs energy is minimum.
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Similarly, for a system at constant volume and temperature, the stability corresponds to a minimum
Helmoltz energy F. For a system at constant entropy and pressure, the stability consists in a minimum
enthalpy H, state, and for a system at constant volume and entropy, it corresponds to a minimum
sensible energy FE state.

2.3.1.2 Thermodynamic stability for cubic EoS at given (T, P)

The cubic nature of vDW, PR and SRK EoS implies the possible existence of up to three candidate
values for the density, for a given couple (T, P), as described in Appendix A.2 and as depicted in
Figure 2.7 page 19. Among the solutions, the globally stable one is the one of minimal Gibbs energy
g, as illustrated in Figure 2.9.

— T=T
=
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g
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‘bD
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Figure 2.9: Determination of the stable root of a cubic EoS when multiple positive density roots are found. Here, p3 is
the solution of minimum Gibbs energy and is then the stable solution, corresponding to a gas state.

2.3.1.3 Local thermodynamic stability condition

The stability criterion of a phase can be expressed in terms of the Hessian matrix of the sensible
energy. Indeed, from the stability condition (2.3.4), a second-order Taylor-expansion of the internal
energy around its equilibrium value yields

oF O
AE, =25 _nla sl v pla
a5 |, ~To| AT Gy |, TR AY
) - i (2.3.7)
1 9°B, 92, | 8°E,
LB g s ASAY + L DBl Az
3 952 § ST gsav ARV 5 Gz ) ve=0

Using the definitions of the partial derivatives of E with respect to S and V', which are respectively
Ty and — Py, one has immediately

0%E 1 0%E
S A A - S
asav 202V 3 G

1 9%E,

2
— > 0. .9,
e AV2 >0 (2.3.8)

S

AS? +
1%
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Hence, the Hessian matrix of the sensible energy must be positive definite, which corresponds to

0%E,
> 3.
552 >0, (2.3.9a)
A%
0°E,| O%E, 0%E,
: _ > 2.3.
V2 s 052 v 050V =0, (2.3.9b)

which, using Maxwell’s relations (2.1.23), boils down to

T
o >0, (2.3.10a)
1
— >0. 2.3.10b
P ( )
Finally, the single-component phase local stability condition is

{CU >0, (2.3.11a)

B > 0. (2.3.11b)

The first condition (2.3.11a) is actually always verified. Yet, the second condition, (2.3.11b) appears
to be violated in some cases by the cubic EoS, as it can be seen in Figure 2.9. Indeed, by its defini-
tion (2.2.51), the positivity of beta is equivalent to a negative slope in the Clapeyron diagram (P, v).
This criterion is then verified everywhere except between the extrema of the subcritical isothermal
lines. Hence, when the cubic EoS has three roots, the intermediate value always corresponds to an
unstable state. The minimum Gibbs energy is the stable state, and the other one is in a metastable
state: it is locally stable from condition (2.3.11), but globally unstable as there exists a more stable
state.

2.3.1.4 Two-phase equilibrium

We consider now an isolated system containing two phases. The liquid phase properties are indexed
by ¢ and the vapour phase properties by v. The mass, volume, energy and entropy of the system can
be decomposed as

m=my+my, (2.3.12a)
V=Vr+V,, (2.3.12b)
gs = gs,l + gs,q), (2312C)
S=8+3G,. (2.3.12d)
and, the system being isolated,
dm = dmy + dm, =0, (2.3.13a)
dav=4dV,+dv, =0, (2.3.13Db)
d€s = d&sp +dE&, = 0. (2.3.13c)

The gibbs relation (2.1.7) applied to each phase writes

d&sp =Ty dSe — Py dVe + ge dmy, (2.3.14a)
dgs,v =T,dS, — P, dV, + ge dm,,. (2314b)



32 2.3 Thermodynamic equilibrium for a single-component fluid

The equilibrium condition implies that the total entropy differential is zero. Combined with (2.3.13)
and (2.3.14), it yields:

(Tg — Tv) dS, — (Pg — Pv) dVy + (g¢ — go) dmy = 0. (2.3.15)

This relation must be verified for any transformation, hence the liquid-vapour equilibrium condition:

P =P, (2.3.16a)
T, =T, (2.3.16b)
9o = Go. (2.3.16¢)

For a two-phase system at thermodynamic equilibrium, this defines the equilibrium pressure P = P, =
P, and the equilibrium temperature T' = T, = T,,. The liquid fractions can be defined as:
e me _ Ve

Ty = ; Yo = ; 2=

2.3.1
- - 3k (2:3.17)

which are respectively the liquid mole fraction, the liquid mass fraction and the liquid volume fraction.
Obviously, the vapour fractions verify z, = (1 — x¢), ¥, = (1 —y¢) and 2z, = (1 — z).

The two-phase mixture density is then

m
p= V = Z¢py + (1 — Zé)pv- (2318)

Similarly, the mass-specific volume of the mixture is
1%
v= = yevet (1 —yep)vy. (2.3.19)

More generally, any mass-specific quantity (thermodynamic potentials, entropy) is computed as a
barycenter between their liquid and vapour counterpart with respective weights y, and (1 — yp).

2.3.1.5 Spinodal and binodal regions

From the previous paragraphs, it appears that in the (P, v) Clapeyron diagram, the region of instability,
called the spinodal region and the region of metastability, called the binodal region can be delimited.
Metastability characterizes thermodynamic states that are locally stable in the sense of (2.3.11), but
globally unstable, as they do not satisfy the Gibbs-Duhem stability criterion (2.3.4).

This representation is depicted in Figure 2.10. It appears that the spinodal and binodal envelopes
meet at the critical point. The area over the critical point contains the supercritical states. The area
on the left of the binodal envelope contains the stable liquid phase, whereas the grey hatched area
on the left side of the spinodal envelope contains the metastable liquid. The area on the right of the
binodal envelope contains the stable vapour states, and the grey hatched area on the right side of the
spinodal envelope contains the metastable vapour.

For a given subcritical pressure P, the two intersections with the binodal dome belong to the same
isothermal line: it corresponds to the saturation temperature of pressure P, written T%2*(P). The two
points correspond to the saturated liquid and vapour densities p;(P) and p,(P). Note that, by duality,
the system can be equivalently defined with respect to the temperature, by defining its saturation
pressure T5'(P) and saturated liquid and vapour densities pg(T') and p,(T).

2.3.1.6 Clausius-Clapeyron relation and saturation derivatives

As demonstrated in paragraph 2.3.1.4, the two-phase equilibria obey System (2.3.16). In particular,
their Gibbs energies remain equal. Then, for an infinitesimal evolution of the system state, the two-
phase equilibrium will evolve following

dge = dg,. (2.3.20)
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Figure 2.10: Clapeyron diagram for O2. Black lines denote the isotherms predicted by the cubic (here SRk) EoS. The
blue line is the saturated pressure corresponding to the subcritical isotherm Ti,,. The orange dotted line is the binodal
envelope. The red dashed line is the spinodal envelope. The spinodal region of thermodynamic instability is hatched
with black lines [\\], while the binodal region of metastable is hatched with gray lines [//]. The critical point is denoted
by C.

Developping the expression of the Gibbs energy (2.1.25d) for each phase yields

1 1
—s5¢dT + —dP = —s,dT + — dP, (2.3.21)
Pe Pu

which gives an analytic expression that rules the variations of the temperature and pressure for a
two-phase system at equilibrium:

T —
L Y e (2.3.22)
APl pope(sv = se)

Using the equality of the Gibbs energies and of the temperatures, the entropy can be substituted to
obtain the Clausius-Clapeyron relation:

dT T (pe — pv)
_ ) 2.3.23
dpP sat  PvPe (ho — he) ( )

This very important relation allows to compute the variations of any phase quantity for two-phase
systems in equilibrium. The saturation derivatives can then be defined: for a thermodynamic quantity
&4 of phase ¢ € {¢,v}, one defines

do| _dG@PHT) _ | AP O (2.3.24)

ar |, dr oT |p  dT |, OP |y -
and

Ao | _ d&@™(P),P) _ dT| 06| | 9% (2.3.25)

dP |, dp dP|,, 0P|, OT|p o
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For example for the density of the phase ¢ € {¢,v}, it reads

dr
dr

dP

Ipy
—PpQy + PoBy a7 |,

P,

dos | _ 9po

| = ot (2.3.26)

sat sat

Similarly, the variations of the sensible energy of the phase ¢ € {E, v} at saturation is given by:

d dP 0 P —ayT P\ dT
deg|  _ %es Geo| _ PP masT (. _ % (2.3.27)
dr sat or P sat ap P 7 dP
Another important differential is that of the liquid volume fraction at saturation, given by:
1 dp[ dpv
dzy = 1—2 dT + dp. 2.3.28
¢ pg dT ( é) dT sat Pe — Po r ( )

2.3.2 Practical computation of the equilibrium

2.3.2.1 Computation for cubic EoS using the corresponding states principle (CSP)

To describe the saturation for cubic EoS, it is actually interesting to reduce the problem thanks to
a change of variables. Indeed, similarly to the usual cubic EoS computations that can be unified for
all chemical components through the corresponding states principle (CSP), it is possible to reduce the
search for the saturated states of any pure component to a unique universal computation.

There is yet a subtlety compared to the usual reduced variables presented with the van der Waals
EoS. Indeed, for SRK and PR EoS, since the attractive coefficient depends on the temperature, and the
acentric factor was introduced (see Section 2.2.1.4), the usual system of reduced variables T, = l P =
P , Vi = 7= does not allow to formulate a unique saturated state definition for all components In
order to overcome this, the following reduced-saturation (Rsat) variables are introduced in the present
work:

vl (2.3.292)
bp
Pb
BN 2.3.2
T (2.3.29Dh)
gz D) (2.3.29¢)
brT

v will be called the Rsat-volume, 7 the Rsat-pressure, and 6 the Rsat-temperature (although it has
the dimension of the inverse of a temperature).

The cubic EoS may then be rewritten under the form:

1 0

0) = — 2.3.30
m(1,9) v—1 124+ev—cy’ ( )
and the fugacity coefficient expression also reduces to:
( 0
1 w+er—e2]\epn
0) = —-1). 2.3.31
QD(I/, ) 77(1/—1) |:2V+€1+€12:| exp(m/ ) ( 33 )

This shows that the search for the saturation pressure takes the same form for any mixture. Indeed, it
appears in equations (2.3.30) and (2.3.31) that only the EoS-specific parameters are left: the species-
specific parameters do no longer appear. Global properties of the reduced cubic EoS are further
analyzed in Appendix A.3.
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For a given mixture at a given temperature, 6 is known. Determination of the Rsat-pressure m at
saturation requires to find 753 such that:

gD(’lTsat, Vmin(ﬂ_sat’ 9)) _ (p(ﬂ'sat, Vmaux(ﬂ_sat7 0))7 (2332)

where v™ (7, 0) and ™3 (r, #) are the minimum and maximum positive roots of the reduced cubic

equation
1 0 — 1 0
Ve 4 [51 -1- } V2 + {51 — (g +52)} v+ |e2 < + 1) - 1 =0. (2.3.33)
7 7r T 7r

Note that for 7 = 7%¢(6), one has

1

Vmin(ﬂ_sat,6> — U@(e) = =—, (2.3.34&)
bpe
Vmax(ﬂ_sat,e) — Vv(g) — i (2334b)
bpw
The following notation is used:
po(m) = ¢ (m, ™" (7, 0)), (2.3.35a)
oo () = (7, ™ (7, 0)). (2.3.35Db)

To solve this problem, a Newton-Raphson procedure may be used. The function to be canceled is
given by

fo o7 pu(m,0) — pu(m,0), (2.3.36)

the derivative of which is

. 1 1
fo(m) = <ym‘n(ﬂ', 0) — 7r) pe(m,0) — (Vmax(w, 0) — 7r> oy (m, 0). (2.3.37)
If 7(F) is the k™ iterate, its update reads
k k k
D) (k) _ fo(x®) — o) _ oo(r™,0) — %'(77( ),6) . (2.3.39)
J(x ) ymin (8, )iy (1), 6) — ymex (), )0, (), 6)

The solver iterates until the relative difference of the fugacity coeflicients is under a tolerance value

Y — Yoy

— T < €tol- 2.3.39
max (g, ©y) Ctol ( )

In practice, this saturation computation is processed outline once and for all, for any component. It
is then stored in a table that contains 6,v4(6),v,(6), and also %, ‘ij”éj, to allow cubic polynomial
interpolation. There is no need to store 7(6) since the saturation pressure can be directly computed

from the EoS knowing the temperature and phases densities.

2.3.2.2 Computing the equilibrium using the tabulated CSP-reduced saturation

The table being computed, the practical equilibrium calculation is now described. The different cases
depend on the nature of the input data for which the thermodynamic equilibrium must be computed.

Case 1: When, for a given chemical species, the temperature and the density (p,T) are known,
reading the table is straightforward.
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(i)

(i)

(iii)

(iv)

2.3 Thermodynamic equilibrium for a single-component fluid

First of all, when the temperature is higher than the critical temperature of the fluid, the state
is always stable and it can be computed directly from the cubic EoS. This corresponds to the
case O(T) < 0°, with 0° given in Appendices A.3.2, A.3.3 and A.3.4 for the different cubic EoS.

Before using the table, it is necessary to check if the one-phase solution is the stable solution.
This is done by computing the one phase pressure P'¢ directly from the cubic EoS (2.2.17).
Then, the roots of the EoS corresponding to (7, P'?) are computed. If only one root is positive,
it is necessarily p and the one-phase state is then stable. If multiple roots are found, their fugacity
coefficients are compared. If the input density p is the root that minimizes the fugacity coefficient,
then the one-phase state is stable. Otherwise, the equilibrium corresponds to a two-phase state
and the table must be read.

If a two-phase state was found in the previous stability test, the equilibrium state must be
evaluated. First, the Rsat-temperature should be computed from Equation (2.3.29¢). The corre-
sponding values v (6) and v, (6) are obtained using a cubic polynomial interpolation between the
table points. Then, the saturated values p; and p, are computed by inverting equation (2.3.29a).
The system pressure is then necessarily the saturation pressure, which can be computed using
the EoS, evaluated as P** = P (py, T) = P (p,, T). The sensitivity of the pressure with respect
to density being much lower in the vapour phase than in the liquid phase — because of the latter
lower compressibility — it is better to evaluate the pressure using the vapour density p,.

Else, if the density is higher than py, the state (p,T') is a stable liquid state and the pressure is
directly computed from the EoS, as P(p,T'). Similar computation is done if p < p,(T"), when the
state (p, T) corresponds to a stable vapour state.

Case 2: For a given chemical species, given the pressure and the density (p, P), it is necessary
to find the temperature value of the saturation. Indeed, it would not be possible to directly tabulate
and read the Rsat-pressure, since its value depends on the temperature, which is not known at the
moment. The proposed strategy is described below.

(i)

First, the single-phase temperature 7% is computed directly from the EoS. The correspond-
ing Rsat-temperature 6(7'%) is then compared to the critical Rsat-temperature of the EoS. If
O(T1?) < 6°, then the solution is necessarily stable since the fluid is in a supercritical state. In
the subcritical case 8(T'?) > ¢, the input density p is compared to the saturated liquid and
vapour densities: if p & [p,(T'?), pe(T*?)], then the single-phase solution is the stable solution.
Otherwise, a two-phase state must be computed.

If the stable solution corresponds to a two-phase equilibrium, the saturation temperature must
be obtained by a Newton-Raphson method. From a first-guess value of temperature 7°, the
update of the temperature is defined as

Psat (Tk) _pP
dT

TH =Tk — (2.3.40)

The derivative of the saturation pressure with respect to the temperature dg;at is given by the

Clausius-Clapeyron relation (2.3.23), and the quantity P**(T*) is evaluated by reading the table.
psat(T*)_p
P

The iterations run until the convergence condition is met, defined by < €tol-

Case 3: The last case is the search for the equilibrium state given the density and the sensible
energy (p, es). This case is important because it corresponds to the situation that occurs in two-phase
simulations, as the solver transports the conservative quantities.

(i)

(i)

First, a Newton-Raphson method is performed directly on the EoS to find the temperature 79,
assuming a single-phase state. Then, the stability of the couple (p, T1?) is evaluated as in Case 1.
If the single-phase state is stable, the solution temperature 7% is kept. If the state is unstable,
it is necessary to undergo another iterative method.

A Newton-Raphson method is used to retrieve the two-phase equilibrium, the update of which
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being

es(ﬂ) Tk) — €s

TH =Tk - : (2.3.41)

with the mixture sensible energy given by e (T*) = L [2,pe,(T*) 4 (1 — 2¢)pves(T*)] and the

p—pu(TF)
pe(TF)—po(T*) "

1
p

liquid mass fraction z, = The derivative is evaluated as

Oeg 0z dpeey dpye,
= |(peee — pves) o= | + 2 + (1 — z) (2.3.42)
ar |, [ ar|, ar |, ar |,
Oes 1| e, —ep dpe dpo
- zepo —| + (1 —z0)pe —— (2.3.43)
oT o P [ Pt = Pv < dr sat dT sat
dey de,
+2ep0 | (1= 20)py = (2.3.44)
dr sat ar sat

The saturation derivatives are given in paragraph 2.3.1.6.

(iii) In practice, it happens that the convergence is somehow hard to reach, especially when the input
state (p, es) corresponds to a near-critical point or a near-pure state.

To overcome the possible convergence issues, when two successive sensible energy iterates egk_l) =
es(p, T*=1) and elP) = es(p, T™)) are around the target value ey, that is to say e, € {egk_l), egk)} ,

the zero-finding numerical method is switched to a Brent-like method. In more details, the fol-
lowing bounding values are introduced:

el"f = min (egk_l)7 egk)) , e3P = max (egk_l), e@) , (2.3.45a)

S

T — min (T(’“l), T(’“)) , TS9P — max (T“‘f*l), T(’“)) . (2.3.45b)

The next iteration is then obtained by computing a Newton-Raphson step at the midpoint
Tmid — 7Ti"f§Tsup so that

. R Trnid — ey
TNR _ pmid _ 6(”’3#. (2.3.46)
ar |,
The update is then taken as:
TNR if TNR c [Tinf’ Tsup:| ,
T(k+1) _ (2.3.47)

id otherwise.

Finally, the research interval is reduced as follows: if e{"™) < e, then T = T*+1 anqd

~ k+1 . ‘ , k+1
elnf = e otherwise 5% = T*+D and eSIP = eF D,

2.3.3 Approximate multicomponent two-phase equilibrium for Cubic EoS
2.3.3.1 DMotivation and nature of the approximation

Because the target applications of the present work consist in simulating reactive flows, it is necessary
to deal with multicomponent mixtures. Yet, the exact computation of a multiphase equilibrium in
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the case of a multicomponent mixtures — which is detailed in section 2.4 — can become a tedious task
and represent a heavy computational cost. Indeed, the computation of the equilibrium requires to
search for the global minimum of a function of N, variables to evaluate the stability of the single-
phase mixture, and then requires an additional iterative method in Ny dimensions to find the stable
multiphase state [Michelsen and Mollerup, 2004]. In this respect, the exact multiphase equilibrium
computation for multicomponent flows, especially when going towards detailed chemical mechanisms
for combustion, may become computationally out of range.

Furthermore, this work uses diffuse interface models (see section 3.3.2 for more details), in which the
interface region where the two-phase states may be encountered, consists in an artificial mixture. The
main requirement for this artificial mixture is to include a thermodynamic closure that guarantees the
global hyperbolicity of the transport equations, as shown in Chapter 5.

This work then proposes an approximate equilibrium formulation that guarantees the hyperbolicity of
the system while keeping an identical algorithm complexity for any number of components.
The approximated equilibrium consists in imposing that both phases have equal composition. In other

£
words, the i*® species mass fraction within the liquid phase Yf = % and the species mass fraction

v
my

within the vapour phase Y;" = % are assumed to be equal Yf = Y. Then, they are equal to the
overall species mass fraction, and the approximated equilibrium can be summarized by the following
assumption:

Y; =Y/ =Y. (2.3.48)

2.3.3.2 Approximate equilibrium condition

Starting from the former simplifying hypothesis, we now derive the equilibrium condition from con-
siderations similar to section 2.3.1.4. We consider an isolated system containing two phases and N
chemical species respecting hypothesis (2.3.48). The liquid phase properties are indexed by ¢ and the
vapour phase properties by v. The mass, volume, energy and entropy of the system can be decomposed
as

m; = mi +my for all i € {1..N,}, (2.3.49a)
V=V, +V,, (2.3.49D)
Es =Espt+ &, (2.3.49¢)
§ =81+ 8, (2.3.49d)

where mf and m? denote respectively the mass of the i*" species in the liquid and in the vapour phases.
As in section 2.3.1.4, the system being isolated, the following differentials are zero:

dm =dmg +dm, =0 (2.3.50a)
AV =dV,+dV, =0 (2.3.50b)
A€, = dE,y + dE,, =0 (2.3.50¢)

Writing the Gibbs relation (2.1.7) applied to each phase, one has

N

d&sp =Ty dS; — PpdVy+ Y gos dm, (2.3.51a)
=1
N

A&y, =T,dS, — PydVy + > guidmy. (2.3.51b)

i=1
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Using hypothesis (2.3.48), the components mass within the phases verify

f = Y;émz =Y,my (2352&)
;=Y. "m, =Y,m,. (2.3.52b)
The global composition Y of a closed system being constant, one has
dmf = d(Yime) = Y; dmy (2.3.53a)
dm} = d(Yim,) = Y; dm,,. (2.3.53Db)

Then, using the identities

N, N
Y Yigri=g¢c and > Yigei =g, (2.3.54)
=1 =1

system (2.3.51) becomes

d&sp =Ty dSp — P, dVy + ge dmy, (2.3.55a)
dgs,v =T, dS, — P, dV, + g, dm,,. (2355b)

The equilibrium condition corresponds to a maximum entropy state. Then, the total entropy differen-
tial is zero, which, combined with equations (2.3.50) and (2.3.51), corresponds to

(Tg — Tv) dsS, — (Pg — Pv) dV, + (gg — gv) dm, = 0. (2356)

This relation must be verified for any transformation, hence the simplified liquid-vapour equilibrium
condition:

P, =P, (2.3.57a)
T, =T,, (2.3.57b)
9e = G- (2.3.57¢)

This criterion has eventually the same expression as criterion (2.3.16), except that it is now applied in
the context of multicomponent mixtures.

2.3.3.3 Extended Clausius-Clapeyron relation

Applying the simplified equilibrium hypotheses allows to formulate a relation that links the derivatives
of the quantities P,T,Y together for two-phase states. As in paragraph 2.3.1.6, one can use the
equilibrium condition (2.3.57) to obtain

dge = dgo. (2.3.58)
Developping the expression of the Gibbs energy (2.1.25d) for each phase yields
1 N, 1 N,
—spdT + —dP+ Y gr;dY; = —s,dT+ —dP+ Y _g,;dY;, (2.3.59)
pe i=1 Pv i=1

which provides an extended Clausius-Clapeyron relation for multicomponent mixture assuming simpli-
fied equilibrium, formulated as

N,
Pt — Pv Gu,i — Gei
dl'= ————dP + — 7 dY;. 2.3.60
Pepu (Su — 5¢) ; Sy — 8¢ ( )

The existence of such relation is another advantage of the simplified equilibrium, since there exists no
equivalent analytic relation for the exact multicomponent equilibrium.



40 2.4 Ezxact two-phase multicomponent equilibrium

2.3.3.4 Practical computation of the equilibrium

The practical computation of the equilibrium is identical to the single-species one. Indeed, the reduced
variables v, 0, 7 defined in equation (2.3.29) allow, even for a multicomponent mixture, to derive a
unique formulation of the equilibrium, regardless of the mixture composition.

Under the simplified equilibrium hypothesis (2.3.48), the stability condition of a phase is similar to
the single-component case. Thus, the methods presented in paragraph 2.3.2.2 for the different input
data can be directly transposed to the multi-component case, in order to compute the simplified
equilibrium.

2.4 Exact two-phase multicomponent equilibrium

In this section, the exact multicomponent two-phase equilibrium computation is described. For a
comprehensive description and review of the methods used to find the multiphase multicomponent
equilibrium, the reader is referred to [Michelsen and Mollerup, 2004]. Part of the work presented in
this section, namely the tangent plane distance stability analysis and the equilibrium computation
for a given state (7', P, X) was implemented in collaboration with Thomas Laroche, Ph.D student at
CERFACS (Toulouse), whose contribution is warmly acknowledged.

2.4.1 Equilibrium formulation

2.4.1.1 Equilibrium condition

As for the previous equilibrium characterizations, a closed and isolated two-phase system £ is consid-
ered. The global system quantities can again be decomposed into

m; = mi +my for all ¢ € {1..N,}, (2.4.1a)
V=V +V,, (2.4.1b)
Eu= Euyt Eun, (2.4.1¢)
S=8+S,. (2.4.1d)

As in section 2.3.3.2, the system ) being isolated, the following differentials are zero:

dm; =dm{ +dmy =0  foralli € {1..N,}, (2.4.2a)
Ay = dV, +dV, =0, (2.4.2b)
d&s = d&sp + d&s, = 0. (2.4.2¢)

Writing the gibbs relation (2.1.7) applied to each phase, one has

N,
d&sp =T, dSy — PpdVy + Z gei dmy, (2.4.3a)
i1
N,
A&y, =T,dS, = PydVy + > goidm?. (2.4.3b)
i1

Since the thermodynamic equilibrium of the isolated system () is reached at maximum entropy, dS = 0,
and combining [(2.4.3a) + (2.4.3b)] with (2.4.2) yields

N
(Ty = T,) dSy — (Pr = Py) dVe+ Y (gei — go.i) dmf = 0. (2.4.4)

=1
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This relation must be verified for any transformation (dS;, dV,,dm¢), hence the liquid-vapour equilib-
rium necessary condition:

P =P, (2.4.52)
T, =T, (2.4.5b)
gt =g? for all i € {1..N,}. (2.4.5¢)

Note that this is only a necessary condition: different compositions may verify this relation. Indeed,
the condition dS = 0 is only a necessary condition for the composition to maximize the entropy. The
only globally stable equilibrium state is characterized by the one being the global minimum of the
Gibbs energy.

2.4.1.2 Alternative formulation of the equilibrium

The two-phase multicomponent equilibrium condition can be reformulated in a convenient way for
computing the equilibrium compositions, by introducing the K-factors. At a given temperature and
pressure, the stability of a two-phase mixture (2.4.5) can be expressed in terms of the fugacities, and
summarized into

fir, P, XY = fo(T,P,X")  forallie{l1..N,}, (2.4.6a)
2 X'+ (1-2)X" =X, (2.4.6b)
3 (Xf - Xf) —0, (2.4.6¢)
=1

where the last equation expresses the fact that mole fractions of liquid and vapour phases sum to unity.

The K-factors are now defined as

X7
so that equation (2.4.6b) can be rewritten as
X,
Xlo 2 2.4.8a
¢ Ty + (1 — xg)Ki ( )
K; X;
XV =i (2.4.8b)

g Ty + (1 —l‘g)Ki

Using the fugacity coefficients ¢, since ff = X!ptP and fi” = X?p!P, the equilibrium condi-
tion (2.4.6a) can be combined to the definition of the K-factors (2.4.7) to yield

_o

K; : (2.4.9)
2
and (2.4.6¢) becomes
N,
SO Xi (K —1)
=0. 2.4.10
o (E(—l—(l—(ﬂ[) K’L ( )

These last two equations characterize the equilibrium for a given (T, P, X). Equation (2.4.10) is called
the Rachford-Rice equation, and will be useful in finding the equilibrium, which is the purpose of the
next section.
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2.4.2 Stability analysis

2.4.2.1 Gibbs’ tangent plane condition of stability

According to paragraph 2.4.1.1, a mathematical formulation for the stability test must be formulated.
In order to evaluate the stability of a one-phase mixture for a given temperature, pressure and molar
composition (T, P, X), one can consider the Gibbs energy variation that would yield the formation
of an infinitesimal amount dng moles of a new phase ¢’ of composition &, where ¢ is the mole
fraction of the i*® component within phase ¢’. This transformation is depicted in Figure 2.11. As it is
convenient here to work with molar quantities instead of mass-specific quantities, the chemical potential

( f’) LN Lot of each species is preferred to its mass-specific counterpart that is the specific Gibbs
1€[1,Ns];0=£,v

energy (g?) N bt The definition of the chemical potential is given in equation (2.1.21a).
i€[[1,Ns];0=£,v

n—ongy

6n¢/

Figure 2.11: Transformation corresponding to the formation of énys of a trial phase @'

The change in the Gibbs energy of the system due to this isothermal and isobaric transformation is:
N
G =dny 3 & {M(T, Pg) — (T, P, X)|. (2.4.11)
i=1

The single-phase solution is known to be thermodynamically stable if it is the composition that min-
imizes the system Gibbs energy. Then, for the one-phase state to be stable, the variation of Gibbs
energy due to the formation of phase ¢’ should be necessarily positive.

This allows to formulate the Gibbs’ tangent plane condition of stability for a single-phase solution
[Michelsen and Mollerup, 2004]: the single-phase composition stability is characterized by

Ns
VE D& |m(T PE) - m(T.P.X)| 0. (2.4.12)
=1

2.4.2.2 The tangent plane distance

From the previous section, it appears relevant to define the tangent plane distance function TPD as a
function of the trial phase composition £ for a given initial state (7', P, X), as:

N
TPD() = > &(uilT, P.&) = (T, P. X)). (2.4.13)

The TPD function corresponds to the relative position of the Gibbs energy function with respect to

its tangent plane at (7, P, X), as depicted in Figure 2.12a.

Note that a dimensionless version of the TPD function, tpd = T2 can be defined in terms of the

RT
fugacity coefficient:

TPD(£)

tpd(§) = RT ifx‘ [ln (&) +1n (%‘(Ty P@)) - di] ; (2.4.14)
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The TPD function allows for a convenient graphical interpretation of the stability test for a binary
mixture. To this purpose, if one defines the Gibbs energy of mizing G™*(&;1) of a solution in the state
(T, P) and composition (1,1 — &) as

G™(6) = & [(TL P.&) = p§(T.P)] + (1= &) [12(T. P&1) — p3(T. P)] . (2.4.15)

where pd(T, P) = u;(T, P,& = 1) = G(T, P,& = 1) denotes the value of the chemical potential of the
pure component i in the state (T, P). Note that the minimization of Gibbs energy G is equivalent to
the minimization of the Gibbs energy of mixing G™X, since the latter is equal to the former shifted
by the quantity u9 + &1 (11 — p2). This linear modification obviously does not modify the tpd values
and, subsequently, preserves the stability analysis conclusions. The introduction of the Gibbs energy
of mixing is just more convenient for graphical representation purposes.

A graphical representation of the tpd test is provided in Figure 2.12. The tangent plane being a
hyperplane of a Ns-dimension space, it corresponds to a straight line in the binary mixture case.
This illustrative tpd test shows an unstable case as negative values of the tpd-function are found in
Figure 2.12a.

It appears in Figure 2.12b that the two-phase equilibrium states correspond to the convex hull of the
Gibbs energy of mixing.

2.4.3 Computing the equilibrium at given (7, P, X)
2.4.3.1 Stability test
2.4.3.1.1 Description of the method

Before attempting to compute a two-phase equilibrium state, it is necessary to verify the stability of
the single-phase state (T, P, X). The tpd stability analysis can be reduced to the evaluation of the
tpd function sign at its minima. The strategy then consists in the following steps:

i) Find the location of each local minimum of the tpd function
ii) Evaluate the sign of the tpd function at each local minimum

The search for the minimum of tpd(§) for £ € [0, 1] must obey the following constraint:

N
d &—1=0. (2.4.16)
i=1

This constraint can be addressed by introducing the Lagrangian function L:

N, N, N,
LEN=tpd€) A [D &G—1| =) &Gn&+Inp; —d)—A D> &—1]. (2.4.17)
=1 =1 =1

The stationary points of function £, i.e. its minima, maxima and saddle points, represent the stationary
points of the tpd and hence contain the tpd local minima. The partial derivatives of £ at stationary
points are such that :

oL

% = &+, —di+1—A, i=1,2,..,N,, (2.4.18a)

NS
% =— Zfi +1=0. (2.4.18b)
i=1
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tpd

(a) Graphical representation of the tpd function which
tests the stability of the composition X = (X1,1 — X1).
This state is unstable, as there exist compositions (ac-
tually any composition with & > £9) for which the tpd
function takes negative values. An example of a two-
phase state minimizing the Gibbs energy, corresponding
to this example, is displayed in the top Figure 2.12b.

Gl’l’lix
0 X{x, QO X 1 &
t t >
< -
Vi -
4 T
Gm:x
eq req
0 Xy X7 &1
(b) Top diagram: an example of two-phase

mixture of respective compositions X¢ and X ¢
The thick black cross at abscissa X; represents
the two-phase mixture Gibbs energy of mixing.
Bottom diagram: the equilibrium Gibbs energy of
mixing is represented in solid lines. The green region cor-
responds to a two-phase mixture. The dot-dashed line
shows the unstable one-phase region. The equilibrium
compositions of the two-phase mixtures are X' #°? and
X'

Figure 2.12: Graphical representation of the stability analysis and two-phase equilibrium for a binary mixture.

Finally, at the stationary points of £ denoted (§S, A5), the tpd-function verifies

N N,
tpd(£°) = Zfis(lnfis +Ing; —d;) = Zfis()\s —=X-1
i=1 i=1

(2.4.19)

The stability condition is then that for all stationary points of £, AS > 1.

In practice, an unconstrained formulation is actually preferred. Instead of working with the mole

fractions £ of the incipient phase, its extensive composition n’ = {n;}

substance) can be used directly, so that n'€ = n/, with n’ =3

tm(n') =1+ Zn; (ln (nf) +In (gi(n))) — d; — 1) )

tm(n') = (1 —n'+n'In (n')) + n'tpd ( %

i—1_ . (in terms of amount of

Nsl n;. The function tm is defined as

(2.4.20a)

(2.4.20b)
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The stationary points n’ S of tm satisty :

%:? —In (ngs) +1In (@i (n’s)> —d;=0, i=1,2,..,N.. (2.4.21)
At the stationary points we obtain :

tm (@’S) —1-n" (2.4.22)

So that finally, the condition for stability is that at each stationary points of tm, the total amount of
substance is such that n’ < 1. In the scope of this work, the research of the stationary points of tm
is made by a successive substitution method. From a first-guess trial composition n’ (0), the update for
the composition at iteration (k + 1) is obtained from

In (n;(kﬂ)) =d; —In <<pi (n/(k))> , (2.4.23)

for i € {1...Ns}. The values of the first guess are computed, as recommended in [Michelsen and
Mollerup, 2004] and used in [Matheis and Hickel, 2018] using Wilson’s approximation of the K-factors,
which reads

In (K;) = In (P]“j) +5.373 (1 + w;) (1 - TT) . (2.4.24)

This approximation is based on a vapour pressure correlation of the form In (P) = A— % (more details

can be found in [Michelsen and Mollerup, 2004], Chapter 10). Two initial guesses are then used:

2.4.3.1.2  Example of stability test

In order to illustrate the results from TPD stability tests, the stability region of a Ha-Ng mixture is
now compared with results from [Matuszewski, 2011]. The results are presented in figure 2.13, and are
correspond properly to the expected results.

200
— 83.15K TPD

99.82K TPD
83.15K Mat.

1751

1501 ©
¢ 99.82K Mat.
— 1257 o 83.15K expe. o
E 100 * 99.82K expe.
a8
751
50
251
0 : : .
0.0 0.2 0.4 0.6 0.8 1.0

X,

2

Figure 2.13: Stability region of a H2-N2 mixture obtained from the TPD analysis. The results from the TPD analysis
are displayed in solid lines. Comparison data consist in experimental points (filled symbols) and computation results
(white symbols) both taken from [Matuszewski, 2011].
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2.4.3.1.3 Remark on the stability of multicomponent miztures

The thermodynamic instabilities of single-component mixtures are of mechanical nature, in the sense
that they correspond to a negative isothermal compressibility coefficient 5. For multicomponent mix-

tures, the instabilities may also be of chemical nature, in the sense that they can be driven by variations
of the chemical composition of the phases.

This higher complexity in the instabilities of multicomponent mixtures results in more complex phase
behaviours than for the single-component instabilities. In this respect, [Van Konynenburg and Scott,
1980] showed that the cubic equations of state are able to predict the various phase stability patterns in
the case of binary mixtures, and classified them into different types. This classification is summarized
in figure 2.14, which shows a projection on the (T, P) plane of the stability regions for binary mixtures.
The white-filled areas correspond to regions where the mixture is stable for any composition. Blue-
filled areas correspond to thermodynamic points (7, P) for which there exist mixture compositions
that lead to liquid-vapour phase separation. Red-filled areas correspond to thermodynamic points
for which there exist mixture compositions that lead to liquid-liquid phase separation (non-miscible
liquids). The blue lines correspond to the saturation curves for the pure components (denoted 1 and
2). The red lines denote thermodynamic points along which there exist compositions that lead to the
coexistence of three phases (two liquid phases and one vapour phase).

Pk PR PAS,
)
‘\
POt C2 ‘\ POtLablN CQ Cg
/,,
4
S
&
(a) Type I T T T
PAA PA
1
A
1 ,z"_---"‘~~~\ Csy Oy Cy
\
\
T (e) Type V T (f) Type VI T

Figure 2.14: Classification of the patterns of thermodynamic instability regions of binary mixtures. Projection on the
(T, P) plane of the (X1,T, P) three-dimensional phase stability diagram. /v denote denotes the line along which two
liquid phases and a vapour phase can coexist for certain compositions. UCEP stands for upper critical end point and

LCEP for lower critical end point, the points where two of the three coexisting phase become identical. For more details,
the reader is referred to [Prausnitz et al., 1998].

More details about the different instability patterns can be found in chapter 12 of [Prausnitz et al.,
1998].
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It is worth noting that the implemented multicomponent solver for the present work is restricted
to equilibriums between two phases, so that three-phase coexistence points are not considered at the
moment. The reader is referred to [Michelsen and Mollerup, 2004] for more details on N-phase stability
analysis and equilibrium computations.

2.4.3.2 Finding the equilibrium two-phase composition for unstable states

Once an unstable state has been spotted, it is necessary to find the compositions of the two equilibrium
phases. This can be achieved by means of a successive substitution method using the K-factors defined
in equation (2.4.7). Starting from an initial guess for the K-factors, Ki(o), the following iterative
procedure is used to find the equilibrium.

From values of the K-factors K Z-(k) obtained at iteration (k), the estimates of the phases composition

Xz(k) and X*® can be computed by solving the Rachford-Rice equation (2.4.10). This is done by
finding the zero of function RR(z/(), defined by:

vooX (KM -1)

RR(z¢) = . (2.4.26)
i1 e+ (1 — ) Ki(k)
The derivative of this function reads
Ns Xz (Kz(k) _ 1)2
RR'(z¢) = 5 > 0. (2.4.27)

i=1 [acg + (1 —zy) Ki(k)}

This monotonically increasing function then has one zero for z, € [0,1] provided RR(0) < 0 and
RR(1) > 0.

The solution x; of the Rachford-Rice equation is then used to compute the phases compositions as

xt® _ Xi - (2.4.28a)
zo+ (1 -2 K;
X, K™
xp®) = i (2.4.28b)

ze+ (1 -2 KM

Note that the interval in which the solution should be searched for can be reduced using the consistency
of phases’ mole fractions Xf < 1and X/ < 1. Indeed, for any component i with a K-factor smaller
than unity, the consistency of the liquid mole fraction gives

(k)
X, — K,
T > 7&), (2.4.29a)
1-K;
and the one of the vapour mole fraction
K® (1 - X,
xy < % (2.4.29b)
K7 -1
The initial bounds for the zero-finding are then
: X, — KW
" =max [ max { ——»,0], (2.4.30a)
) i=1.N. | 1_ Ki(k)

KM (- X,
2y ™ =min | min K- X) 1. (2.4.30b)
i=t.N, | KM

7
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If RR(z"™) > 0 or RR(z}"®*) < 0, the problem has no solution within [0, 1] and the computation fails
for the current value of the K-factors. A better initial guess for the K-factors is then required. Note
that for the practical cases computed in the scope of this work, there have always been at least one
initial guess K(©, defined from Wilson’s K-factors (2.4.24) that achieved convergence.

If one has the conform inequalities RR (z}*™) < 0 or RR(z}"®*) > 0, these quantities are used as initial
bounds for the iterative zero-finding method. It is then successively updated by computing a Newton

step from the midpoint value z}°V = z, — gg((zi)), with x, = % If RR(2}°%) < 0, then zj®
is updated to "™ = zJ°V. Otherwise, x}*** is updated to z"** = 2%, until a convergence criterion

is met. The global successive substitution method is convergent provided the initial guesses are good
enough. For more details about convergence, the reader is referred to Chapter 10 of [Michelsen and
Mollerup, 2004].

2.4.4 Computing the equilibrium at given (p, e;, X)

This section describes the practical implementation of the equilibrium within the hyperbolic solver, that
allows to retrieve the thermodynamic equilibrium state from the transported conservative variables.
In order to retrieve the thermodynamic equilibrium state from given (p, es, X), an outer-loop based
on a Newton-Raphson algorithm is used.

2.4.4.1 Preliminary checks
2.4.4.1.1 The case of single-component and quasi-single-component mixtures

Before effectively applying the iterative solver to search for a possible two-phase equilibrium, the max-

imum value of the species mole fractions X.x = r{laﬁ | {X,} is computed. The mixture composition
1€[1,N,

is considered to be very close to a single-component mixture if
Xmax >1- €lc, (2431)

with €1, a threshold value typically set to e;. = 10~ in the present work. In this case, the exact
multicomponent equilibrium is not computed. Instead, the approximate thermodynamic equilibrium of
section 2.3.3 is considered. This allows to save time and also to avoid convergence issue, since in practice
the exact multicomponent equilibrium computation is observed to have difficulties to converge when
the mixture is very close to a single-component one. The stability test for approximate equilibrium
is then applied and, if the mixture is found to be unstable, the approximate two-phase equilibrium is
computed.

Note that this differs from the strategy of [Matheis and Hickel, 2018], who simply assume the phase to
be stable when condition (2.4.31) is verified. This may yield the wrong fluid state for example if the
flow is such that a single-component region undergoes cavitation. Conversely, the method presently
described allows to find any unstable state, whether the fluid is a single-component or multicomponent
mixture.

2.4.4.1.2  FEvaluating the stability of the single-phase solution

If condition (2.4.31) is not met, the single-phase state T'-Phase pl-phase corresponding to the given
dataset (p,es, X) is computed. Then, the stability test of section 2.4.3.1.1 is applied to the obtained
state (7'-Phase  pl-phase x7) = If the mixture is stable, the single-phase solution is kept. Otherwise,
the two-phase state at equilibrium must be computed, by means of an iterative procedure. This is
described in the following.
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2.4.4.2 Tterative loop

2.4.4.2.1 First guess

An initial guess (T(O)7 PO X (0)) of the fluid state is used, typically taken from the previous iteration
n:

(T(O))P(0)7£(0)) — (Tn,PTL,Xn) ) (2432>

2.4.4.2.2 Iterations

A two-dimensional Newton-Raphson iterative strategy is then applied. The objective function consid-
ered is

(k)
p(k)

P (T(k)’P(k)’XnJrl) _

2.4.33
€g (T(k)ap(k)axn-i_l) — €n+1 ( )

fobj

)

S

where p (T(k), P(’“),X"H) and e (T(k), P(k),X"H) are the two-phase mixture density and sensible
energy, obtained from the equilibrium computation of section 2.4.3.2, applied to the current iteration
state (709, P09, X1,

The Jacobian matrix J°% of the objective function f° is computed numerically, as no analytic
formulation for this function is available. It reads

p(T(k)+AT,P(k),X”Jrl)—p(T(k)—AT,P(k),X”Jrl) p(T(k),P(k)—l-AP,X"Jrl)—p(T(k),P(k)—AP,§"+1)
TP 2AT 2AP
es (T(k)+AT,P(k> ,é”"'l) —es (T(k) 7AT,P(1“),§"+1) es (T(’C) ,P(k)+AP,§"+1) —es (T(k) ,p(k) 7AP,§"+1)
2AT 2AD
(2.4.34)
2.4.4.2.3 Final state
The solver iterates until the following criterion is fulfilled:
P (T(k:)’P(k)’XnJrl) _
s <€, (2.4.35a)
e <T<k>’ Pk, Xm) _entl
s <€, (2.4.35b)

with € a convergence threshold.

2.4.5 [Illustration of the different equilibrium computations

2.4.5.1 Hj-Os mixture

We now consider a Hy-O4 interface, for which we compute both the exact and approximate equilibriums.
The pressure is set to P = 10 bar, as this will be the operating pressure for simulations of Chapter 6.
The input profile for the density and species is given as:

ph, [1 = Fo(2)], (2.4.362)
pYo,(x) = pd, fo(2), (2.4.36b)
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with the values p?{z = 0.8 kg/m? and poo2 = 1200 kg/m3. The profile f, is given by:

folz) = % {1 +erf (10 (x - 1/2))] , (2.4.37)

where erf is the error function, defined as

_1 ¢
VT

The results of the equilibrium computations are presented in figure 2.15.

erf(z) e dr. (2.4.38)
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Figure 2.15: Comparison of the thermodynamic quantities within an interface at P = 10 bar and P = 20 bar for the exact
and approximate equilibriums, considering an Ha-O2 mixture. Solid lines denote the profiles for the exact equilibrium
computation. Dotted lines represent the approximate equilibrium computations.

The obtained profiles are very similar. The approximate equilibrium tends to slightly shift the profiles
towards the cold/pure-Os region. The temperature values obtained within the interface are close, and
the widths of the two-phase diffuse interface region, where y, € ]0, 1[ are almost equal.

This validates the use of the approximate equilibrium formulation for the liquid rocket engine injection
simulations that will be proposed in Chapter 6.

Note that when going to higher pressures, typically above the critical pressure of the pure components
(see figure 2.16b), the approximate computation appears not to retrieve a two-phase region, the liquid
volume fraction switching directly from zero to one without intermediary values. This can be explained
by the fact that the approximate equilibrium formulation, being similar to a single-component compu-
tation, addresses mechanical instabilities but not chemical instabilities. As the mechanical instabilities
vanish when the pressure is too high compared to the critical pressure of the pure components, the
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Figure 2.16: Comparison of the thermodynamic quantities within an interface at P = 40 bar and P = 60 bar for the exact
and approximate equilibriums, considering an Ha-O2 mixture. Solid lines denote the profiles for the exact equilibrium
computation. Dotted lines represent the approximate equilibrium computations. The approximate computation at 60
bar displays no thermodynamic instability, switching from pure "vapour-like" fluid with y, = 0 to pure "liquid-like" fluid
with Yy = 1.

approximate equilibrium formulation does not allow to retrieve the unstable zone. Therefore, computa-
tions in pressure ranges above the pure components critical pressures require the exact multicomponent
equilibrium computation.

Note that at higher pressures (see figure 2.17), there is no more instability, even for the exact formu-
lation, so that both computations predict the same thermodynamic state.
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Figure 2.17: Comparison of the thermodynamic quantities within an interface at P = 80 bar and P = 100 bar for
the exact and approximate equilibriums, considering an H2-Og mixture. Solid lines denote the profiles for the exact
equilibrium computation. Dotted lines represent the approximate equilibrium computations.

2.4.5.2 CHy4-Os mixture

An additional illustration of comparisons between the approximate and exact equilibriums for a CHy-
O, mixture is displayed through figures 2.18 to 2.20. Similar density and species profiles are considered,
with value py, = 10 kg/m?® all other input values being identical to the previous Ha-Os case.

Again, very similar results are observed with the two formulations at low pressures (see figures 2.18
and 2.19a). Above the pure components critical pressure, as observed in the previous paragraph, the
approximate equilibrium computation does not retrieve the two-phase region (see figure 2.19b). The
results become identical again at higher pressures, where there is no more instability, for the simplified
as well as for the exact formulation (see figure 2.20).
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Figure 2.18: Comparison of the thermodynamic quantities within an interface at P = 10 bar and P = 20 bar for the exact
and approximate equilibriums, considering an CH4-O2 mixture. Solid lines denote the profiles for the exact equilibrium
computation. Dotted lines represent the approximate equilibrium computations.
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2.4 Ezxact two-phase multicomponent equilibrium
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Figure 2.19: Comparison of the thermodynamic quantities within an interface at P = 40 bar and P = 60 bar for the exact

and approximate equilibriums, considering an CH4-O2 mixture. Solid lines denote the profiles for the exact equilibrium
computation. Dotted lines represent the approximate equilibrium computations.
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Figure 2.20: Comparison of the thermodynamic quantities within an interface at P = 80 bar and P = 100 bar for

the exact and approximate equilibriums, considering an CH4-O2 mixture. Solid lines denote the profiles for the exact
equilibrium computation. Dotted lines represent the approximate equilibrium computations.
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2.5 Conclusion

This chapter recalled the basic principles of thermodynamics, and the theoretical background that
allows to address non-ideal thermodynamics. In particular, the family of cubic EoS was carefully
studied, as they provide a relevant framework for the target applications.

Then, thermodynamic stability has been introduced, in the cases of single-component and multicom-
ponent mixtures. The two-phase equilibrium condition for unstable states has been described, and its
practical computation has been presented. In particular, the tangent plane distance stability test and
the algorithm for the computation of the two-phase equilibrium have been described, requiring rather
complex calculations.

In order to reduce the complexity of equilibrium calculations, an approximate formulation of the
thermodynamic equilibrium has been proposed, and its relevance in the case of a Ho-Os mixture in the
operating conditions of a case of interest — to be described in chapter 6 — has been evidenced. For this
simplified equilibrium formulation, a efficient computational method was proposed, based on reduced
saturation properties.

After this description of the thermodynamics, the subsequent chapter focuses on the state-of-the-art
of interface modeling techniques.



Chapter 3

Interface modeling

This chapter proposes a brief overview of the most commonly used methods for the modeling
of separate two-phase flows. In particular, the representation of the interface and the de-
scription of pure phases are recalled for the different modeling strategies, and their range of
interest is recalled.

3.1 Introduction

Liquid injection is encountered in a majority of internal combustion engines. The efficiency and
quality of the combustion process is tightly related with the effectiveness of the injection, atomization
and evaporation of the liquid reactant. If the modeling and simulation of such flows are of primary
importance for industrial applications, they also represent a theoretical challenge that is actively faced
by many research groups.

The typical topology encountered when atomizing a liquid jet with coaxial injection is displayed in
Figure 3.1. The first part of the jet consists of a potential core which further destabilizes. The joint

Figure 3.1: Experimental case of a liquid water jet breakup by high-speed coaxial annular air flow (picture taken
from [Charalampous et al., 2009]).

contributions of the shear stresses due to the velocity difference and of the surface tension lead to
a primary breakup of the jet. The resulting liquid ligaments and large droplets are then subject to
a secondary breakup process, that yields the smaller droplets. These dynamics eventually increase
the total surface of the liquid-vapour interface, enhancing the evaporation process that is of major
importance in the context of combustion systems.

Three main regimes are typically encountered along the atomization of a liquid jet, as depicted in
Figure 3.2. The present work focuses on the modeling of the separate two-phase flow regime. In
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this context, the flow to be solved consists in regions of single-phase flows (the bulk phases), that are
separated by an interface. The typical order of magnitude of the liquid-vapour interface thickness, is
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Figure 3.2: Schematic representation of the different two-phase flow regimes encountered in a liquid jet atomization.

about 107'% m to 107 m. In this respect, the modeling of two-phase flows within industrial burners
of a typical size of 107! m involves huge scale disparities, which are largely non-affordable for direct
computation.

In order to overcome this issue, different strategies have been considered and are briefly summarized in
what follows. First section 3.2 presents the family of sharp-interface methods. Such methods represent
the interface as a discontinuity between the liquid and the gas phases. Then, section 3.3 is dedicated
to the description of the family of diffuse-interface methods, which treat the liquid-vapour interface as
a diffuse medium with a proper thickness. This will allow in particular to support the choice of the
present work to use a diffuse-interface method, namely a multifluid method.

3.2 Sharp-interface methods

The family of sharp-interface methods (SIM) represent the interface as a sharp discontinuity between
the phases. From this idea, a variety of strategies can be used to transport the interface, reconstruct
its topology, and address the coupling between the evolution of the phases and the interface. In the
present section, overviews of the three main SIM strategies are presented sequentially, each of them
having multiple variants.

First, the level-set method is presented in section 3.2.1. It is based on the representation of the interface
as an iso-value of the level-set function, e.g. the zero-value line of the signed distance to the interface.
This level-set function is then transported and frequently re-initialized to remain representative of the
signed distance value. Although this strategy is very straightforward to implement, it suffers relatively
strong mass-conservation issues. Advanced formulations, using other level-set function formulations
and re-initialization strategies, allow to reduce the mass-conservation errors, to the cost of an increased
complexity. Such methods usually need to be combined with high-order numerical methods.

Then, section 3.2.2 describes the volume-of-fluid method. This method is dedicated to the simulation of
incompressible flows. It consists in transporting the phases volume fraction to reconstruct the interface
topology. The interface reconstruction is performed by means of optimization methods. Once obtained,
the interface geometry is used to transport the volume fraction using a semi-Lagrangian transport.
Such transport is typically performed by dimensional splitting strategies for structured meshes. In
the unstructured case, geometric methods are required, leading to an increasing complexity with the
number of dimensions. The advantage of the volume-of-fluid method is that, the volume fraction being
directly transported, it ensures discrete mass conservation.

Finally, the front-tracking method is studied in section 3.2.3. This method can be used for both incom-
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pressible and compressible two-phase flows. In a nutshell, it consists in tracking the interface positions
by means of Lagrangian markers carried with the flow. The markers transport is straightforward and
allow for an efficient tracking of the interface. Conversely, such method is subject to mass-conservation
issues. Also, the markers regularly need to be redistributed homogeneously along the interface when the
deformation is strong or when interfaces merge, which can deteriorate the simplicity and effectiveness
of the method.

3.2.1 Level-set methods

The level-set (LS) method consists in representing the interface as an isocontour of a smooth quantity
® (the LS function). This idea was first proposed by [Osher and Sethian, 1988] to address front
propagation in combustion and crystal growth problems. Then, [Mulder et al., 1992] and [Sussman
et al., 1994] extended this idea to treat Rayleigh-Taylor instabilities in the context of two-phase flows.
More recently, the idea was further improved by [Olsson and Kreiss, 2005, Desjardins et al., 2008] to
provide formulations that conserves the level-set function and enhance mass conservation.

3.2.1.1 Signed-distance level-set method

Early works, e.g. [Sussman et al., 1994], used to define the LS function ® as the signed normal distance
d to the interface I'y, so that

(2, t)| =|d(Z,T1(t)] = ilrerlli?(t)|x -z, (3.2.1)

with for instance ®(Z,t) < 0 on the liquid side and ®(Z,t) > 0 on the vapour side. This distance
function obviously fulfills the following conditions:

’6d‘ =1 forZ e
d=0 for # € T'y(¢),

(3.2.2)

where (2 is the computational domain.

The interface corresponds to the iso-level ® = 0. The interface position is then tracked by solving the
following evolution equation for the level-set function:

0P

— + V- (®d) =0. (3.2.3)

ot
Naturally, equation (3.2.3) does not generally guarantee that ® remains a distance function. Therefore,
a reinitialization step is performed after each transport iteration to overcome this issue. The reini-
tialization step is formulated by [Sussman et al., 1994] as the steady-state resolution of the following

equation:

9P _ Gion (@) (1 —’ﬁp‘) : (3.2.4)
or
with the sign function defined as
-1 if®d <O,
sign (@) = 0 if®=0, (3.2.5)
1 if®>0.

It is clear that the exact resolution of equation (3.2.4) preserves the 0-LS function isovalue and does
not modify the interface location. Nonetheless, the numerical errors made with the resolution of (3.2.4)
induce modifications in the 0-LS function isovalue. In such method, both the LS transport (3.2.3) and
its reinitialization generate mass conservation errors which are unacceptably high, hence a need for
improved LS methods.
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3.2.1.2 Conservative level-set method

As pointed out by [Olsson and Kreiss, 2005], if the LS function were instead a Heaviside function, and
if the numerical resolution of the transport equation (3.2.3) were conservative, the interface location
would be exactly transported and there would be no mass conservation error. As it is not possible to
transport a Heaviside function accurately using classic hyperbolic numerical methods, the following
smoothed Heaviside function H, is used instead:

0, U < -,
Ho(W) = 142y Ly (%) e<U<e, (3.2.6)
1, U > e,

with € a smearing parameter. The LS function is defined as
O(Z,t) = Ho(d(Z,T1(1))), (3.2.7)

in which case the interface corresponds to ® = 0.5. Similarly, the LS function can be defined using a
hyperbolic tangent function, as in [Desjardins et al., 2008]:

o(Z,t) = % 1+ tanh (d(x",I‘](t)))] , (3.2.8)

2¢e

Again, the interface corresponds to the isolevel & = 0.5.

The smearing parameter ¢ is then defined relatively to the mesh size, for the variations of the initial
level-set profile & (&) to be resolved. This definition allows to directly use function ® to represent the
density and viscosity variations across the interface, without having to use the distance d(Z,T'y,).

In [Olsson and Kreiss, 2005], the re-initialization step consists in the following evolution equation:

0P
5 V- (@ (1—®)7) =cAD. (3.2.9)
-
This equation is solved in the pseudo-time 7 until the stationary solution is reached. The divergence
term on the left-hand side acts as a compressive term to prevent the numerical diffusion of the profile.
The right-hand side term is a diffusive term. The two adverse contributions of the compressive and
diffusive terms maintain the interface thickness to a typical value close to 2e.

Since both the transport (3.2.3) and reinitialization (3.2.9) are conservative, this method is called the
conservative level-set method. Nevertheless, this denomination refers to the exact conservation of the
LS function and is not to be mistaken with the mass conservation, which is not exactly guaranteed.

The reinitialization (3.2.9) involves an isotropic diffusion, causing modifications of the LS function in
the direction tangent to the interface that are not counterbalanced by the compressive term which
only acts on the normal direction, generating mass conservation error. In order to overcome this
problem, [Olsson et al., 2007] proposed the following anisotropic-diffusion version of the re-initialization
equation:

g—erv-(<1>(1—<I>)ﬁ)=v-(a(vq>-ﬁ)ﬁ). (3.2.10)

From a given LS function field, different strategies can be adopted to approximate the interface normals
on the grid. Early methods use the normalized gradient of the LS function as the interface normal,

4q

]

i = (3.2.11)

q
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In [Desjardins et al., 2008], it is observed that the direct computation of the normals from the trans-
ported LS function leads to improper approximations of the normals, as soon as spurious oscillations
are present on ®. In this case, an additional reinitialization step is processed as a pre-treatment to
rebuild the distance function d from the LS function ® using a fast marching method. The interface
normals are then computed as

q

d
d

ﬁ:

(3.2.12)

4q

The obtained normal vector is kept constant throughout the iterations of the reinitialization step
described by equation (3.2.10).

3.2.1.3 Numerical methods

The fundamental advantage of the LS method is that the quantity transported to represent the sharp
interface is smooth, allowing for a well-behaved numerical transport. In the conservative LS method
of [Olsson et al., 2007], as the normals are computed using the conservative LS function (3.2.11), it is
important to prevent numerical oscillations on ®. In this context, high-order accuracy can be achieved
either by means of non-linear total variation diminishing (TVD) methods, such as the MUSCL scheme
of [van Leer, 1979], combined with a flux limiter [Sweby, 1984] or using higher-order weighted essentially
non-oscillatory (WENO) schemes from [Liu et al., 1994].

In their accurate conservative level-set formulation, [Desjardins et al., 2008] take advantage of their
robust interface normal approximation from equation (3.2.12). As this method is radically less sensitive
to numerical oscillations, a non-oscillatory numerical scheme is not absolutely necessary, hence their
choice for cheaper higher-order methods such as the high-order upstream centered schemes (HOUC)

—
(

exploited in [Nourgaliev and Theofanous, 2007].

A computational example from [Desjardins et al., 2008] is provided in Figure 3.3.

exact

. 1 . I . I . 1 .
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Time

(a) Snapshots of the interface. (b) Mass conservation error with respect to time.

Figure 3.3: Level-set simulation of the turbulent atomization of a liquid Diesel jet, taken from [Desjardins et al., 2008].

3.2.1.4 Compressible flows

The LS method can also be formulated in the context of compressible flows [Fedkiw et al.,; 1999, Abgrall
and Karni, 2001, Kinzel et al., 2018]. Because of the strong variations of the thermodynamic properties
between the liquid and gas phases, the direct computation of the fluid transport using classic numerical
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methods yields high numerical errors and leads to strong pressure errors. This issue can be addressed
by means of the ghost-fluid method of [Fedkiw et al., 1999]. In this method, the flux computations at
the interface for each phase is done by considering the other phase’s volume as filled with a “ghost”
version of the former phase. This way, the flux computations do not suffer from the strong variations of
the fluid properties, and spurious pressure oscillations are prevented. The ghost-fluid state is computed
by using the real fluids pressure and velocity values, and by extrapolating the entropy, as depicted in
Figure 3.4. In [Fedkiw et al., 1999], a constant entropy extrapolation is used. Once the fluxes have

Ghost-fluid 1

Ghost-fluid 2

extrapo

] ] ] ] ]
T T T T T >
Ti—1 T; Zint Tit1 Tit2 x

Figure 3.4: Illustration of the ghost-fluid method. Fluid 1 and Fluid 2 refer to the transported phases (e.g. liquid and
vapour). The dashed line represents the interface between phases.

been computed for each phase, the solutions are combined to rebuild the actual real fluid using the
LS function. This treatment is not conservative (in all three variables mass, momentum and energy),
similarly to the incompressible LS formulation. In order to allow for an increased grid resolution in
zones where the LS function evolution leads to mass-conservation errors, the LS method can be used
in combination with adaptive mesh refinement (AMR) techniques. This strategy is applied in [Fedkiw
et al., 1999] in a compressible context and a snapshot of the computation is displayed in Figure 3.5. It is

Figure 3.5: Schlieren image of a bubble-shock interaction using the level-set ghost-fluid method. The dashed lines
represent the initial conditions, the red one displaying the initial shock front position and the blue one the initial
interface location. The blue solid line displays the interface state at the time of the snapshot. Image taken from [Fedkiw
et al., 1999].

worth mentioning that the appearance/disappearance of phases (e.g. in the case of boiling or cavitating
flows) is not addressed by the LS method, since the LS function is only advected and reinitialized.
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3.2.1.5 Conclusions

The level-set method provides a convenient framework that is relatively simple to formulate and imple-
ment, and allows to simulate atomization, coalescence of jets with complex geometries, provided a fine
enough grid. The compressible formulation of the LS method also provides an interesting framework
towards the simulation.

The major drawback of such method is the absence of discrete mass conservation due to the non-
conservation of the volume bounded by the isosurface representing the interface. In the compressible
context, all the transported variables are subject to conservation errors, which may harm the compu-
tational accuracy after a certain physical time.

3.2.2 Volume-of-fluid methods

The volume-of-fluid methods (VoF) find their origins in the works of [DeBar, 1974,Noh and Woodward,
1976, Hirt and Nichols, 1981]. This methods consists in reconstructing the interface geometry, using
the knowledge of the liquid volume fraction z, (also called VoF function in this context) within each
cell volume V;;, defined as

Vi,ij 1 / oo e
() = 22— 1) dz, 3.2.13
20,45(t) Vo "V b, Xe(%,t) dif ( )

where V is the volume of the considered cell and x, the characteristic function of the presence of the
liquid, that is

1 if the liquid phase is present at position Z and time ¢,

0 otherwise. (3.2.14)

Xxe(Z,t) = {

3.2.2.1 Interface representation

The VoF method relies on an interface reconstruction, in order to obtain the sharp interface topology
from the knowledge of the VoF function. A simple and widely used strategy is to approximate the
sharp interface by a linear function within each cell (a line in 2D or a plane in 3D). This interface
representation is referred to as the Piecewise Linear Interface Calculation (PLIC) method, introduced
in [Youngs, 1982]. An even more elementary method, called Simple Line Interface Reconstruction
(SLIC) [Noh and Woodward, 1976], consists in considering that the interface is parallel to a cell face,
allowing for a more straightforward implementation at the cost of the accuarcy of the reconstruction.
These techniques are depicted in Figure 3.6.

In order to perform PLIC reconstruction, the normal vector to the interface must be computed.

3.2.2.2 Interface normal reconstruction

The basic idea driving the interface normal reconstruction strategies is to use the neighbouring cells
VoF function values in order to find the best approximation of the local interface position and direction.

The Parker’s and Youngs’ method [Parker and Youngs, 1992] proposes a direct computation of the inter-
face normal by considering that the interface normal is colinear to Vz,. This gradient is approximated
from central differences of the VoF function. The details of this method can be found in [Pilliod Jr and
Puckett, 2004], in which it is also shown that the Parker and Youngs’ method is unable to reconstruct
all linear interfaces exactly — a necessary condition for the method to be second-order accurate.

Conversely, the Least-square VoF interface reconstruction algorithm (LVIRA), achieves second-order
accurate reconstruction of curved interfaces through an iterative procedure. It consists in finding the
interface normal 77;; which, for a linear interface extrapolation over the direct neighbours, minimizes the
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Figure 3.6: VoF reconstruction of an interface within a mesh. The numbers indicate the value of the VoF function zy.
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For structured grids, the efficient LVIRA method (ELVIRA) counsists in reducing this minimization
problem to only six candidate normal reconstructions. These candidates are obtained from finite
differences of the VoF function values within the neighbour cells and is shown to maintain second-
order accuracy by [Pilliod Jr and Puckett, 2004].

For unstructured grids, the geometric least-squares method (GLS) of [Mosso et al., 1996] is able to re-
construct all linear interfaces exactly. It consists in iteratively approaching the normal to the interface.
For a cell containing an interface, the middle of the interface within each neighbour is taken. For each
pair of neighbours, the interface middles are connected by a straight line (in 2D). The normal to this
straight line is used to define an approximate interface normal. The normal update is obtained from a
least-square regression from all such approximate normals obtained for each pair of neighbours. This
process is repeated until convergence. It achieves second-order accuracy in unstructured meshes, at
the cost of expensive iterations, since each iteration requires the reconstruction of the whole interface.

Although these classic methods are still commonly used (see for instance [Owkes and Desjardins, 2014]),
it is worth mentioning that the development of interface normal reconstruction techniques is still an
active research topic among VoF-related works (e.g. the embedded height-function method of [Ivey and
Moin, 2015]), in order to provide efficient and accurate methods for 3D unstructured hybrid meshes.

Another interesting strategy to obtain the interface normal is to transport the material centroid in
addition to the VoF function, which relates to the first-order moment of the characteristic function
x¢ [Dyadechko and Shashkov, 2005]. This method is called the Moment-of-Fluid method and allows
for a straightforward reconstruction of the normal at the cost of an additional transport equation.
The coupled level-set and volume-of-fluid (CLSVOF) strategy of [Sussman and Puckett, 2000] trans-
ports a level-set function in addition to the VoF function. The level-set function is then used to
compute the interface normal. The interface is then obtained as having this normal and is positioned
in the cell to match the value of the VoF function.
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3.2.2.3 Interface transport

This method applies to incompressible flows, and is described by the set of equations

% +i-Vp=0, (3.2.16a)
=0, (3.2.16b)

@+(Vﬁ) zl'Jr}VP* (3.2.16¢)

5 p =0, 2.

0z .

(th TV (3.2.16d)

Unlike the mass and momentum transports, the VoF function evolution is evaluated using the knowl-
edge of the interface topology thanks to a semi-Lagrangian transport.

If the one-dimensional semi-Lagrangian transport allows for a straigthforward computation of the
VoF function flux, the multidimensional case raises non-trivial issues, that are still currently stud-
ied. Historically, as the first VoF methods were applied to structured meshes, dimensional splitting
methods have been considered [Hirt and Nichols, 1981]. Such methods require to perform an interface
reconstruction after the transport along each dimension. A particular care must be taken to ensure
conservation when using dimensional splitting. Indeed, although the multi-dimensional velocity fluid is
solenoidal, there is no reason for the velocity fluid along each separate direction to be divergence-free.
In this respect, [Weymouth and Yue, 2010] describes a dimensional-splitting strategy that preserves
mass conservation.

In order to get rid of the splitting error, unsplit transport methods, relying on geometric considerations
have been introduced by [Pilliod Jr and Puckett, 2004] for two-dimensional cases. Unsplit methods are
still an active research field — see for example [Herndndez et al., 2008, Owkes and Desjardins, 2014, Tvey
and Moin, 2017] — for the development of three-dimensional computationally efficient methods. One
of the main challenges in such methods is to avoid the VoF function fluxes to be overlapping, which
would jeopardize the conservation of the VoF function. For example, in [Owkes and Desjardins, 2014],
the velocities are evaluated at the cell’s vertices. This is illustrated in Figure 3.7.

operlapping
[~ 7| Auxes
x
>
(a) Overlapping fluxes when using (b) Non-overlapping fluxes using
face velocities (green arrows) vertex velocities (green arrows)

Figure 3.7: Unsplit strategy for VoF function fluxes evaluation

In this latter reference, the three-dimensional extension is achieved by decomposing the flux volume
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into a collection of simplices (tetrahedron) in each of which the amount of liquid is evaluated. This
approach also requires to correct the flux volume in order to guarantee discrete conservation.

3.2.2.4 Example of volume-of-fluid application

An example of application is depicted in Figure 3.8. It shows the ability of the volume-of-fluid method
to predict the primary and secondary breakups of the jet. Ligaments are formed, and break up into
small droplets.

Figure 3.8: Atomization of a water jet in quiescent air. Taken from [Le Chenadec and Pitsch, 2013].

3.2.2.5 Conclusion

The VoF method is a currently actively studied method that allows for a conservative transport in
the context of incompressible flows. Although the underlying idea is simple, its application requires to
take specific care. In particular, increased complexity is encountered when dealing with unstructured
multidimensional implementations.

3.2.3 Front-tracking methods

The front-tracking method [Glimm et al., 1981] consists in using Lagrangian markers to track the
position of the interface. The interface is then assimilated to a line (in 2D) or a surface (in 3D)
connecting the markers together, obtained either by linear or higher-order interpolation.

This method has the ability to solve incompressible or compressible flows. Unlike the VOF method
for incompressible flows, the conservation of mass and energy for the phases is not guaranteed, as the
transport of the front markers and the reconstruction of the interface do not guarantee such conser-
vation. In addition, the method requires intensive transfers of information between the Lagrangian
markers and the flow field.

The different operations applied to the markers in the front-tracking method are now briefly described.
These operations — and in particular the involved data management — are responsible for the high
complexity of implementation for this method, which is one of its main drawbacks.

3.2.3.1 Transporting the markers

The propagation of the markers is performed by integrating the local flow velocity over time. For
example, Runge-Kutta methods can be used. For a marker m, and the classical RK4 method, this
writes

1
vt = gm 4 5 (@1 + 2 + 203 + 1) Al (3.2.17)

m
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with
@ =@, 1), (3.2.18a)
i = (T, + 3t + 4t (3.2.18D)
T (:E?n + A, %) : (3.2.18¢)
iy = 4 (T, + Atiis, t + At), (3.2.18d)

where 4 (Z,t) is an approximated local flow velocity at point & and time .

It is readily seen that this method has no reason to strictly guarantee mass conservation for the phases.
In addition, each marker being advected separately, any error made on the marker transport causes the
mass bounded by the finally reconstructed interface to vary from its initial value. Two issues can be
responsible for transport errors. First, the discrete integration scheme, for instance (3.2.17), introduces
numerical errors. High-order methods naturally lead to reduced numerical errors and improve mass
conservation. Second, the interpolation method used to approximate the local flow velocity v (x, t) from
the values of the velocity at the grid points can lead to errors. Indeed, a non-solenoidal approximate
velocity field can be obtained even though a divergence-free velocity field has been guaranteed by the
Eulerian transport scheme at grid points. For this reason, one can take advantage of the improved
interpolation methods developed by the Immersed Boundary Method community ( [Peskin and Printz,
1993, Muldoon and Acharya, 2008]) to provide divergence-free velocity at the marker positions.

3.2.3.2 Reseeding the interface markers

Once the markers have been transported, the deformations of the interface may lead to an unbalanced
marker distribution along the interface. In order to maintain a satisfying representation of the interface,
it can be necessary to reseed the markers, by removing and/or adding some of them [Popinet and
Zaleski, 1999].

This requires to have a versatile data structure to aggregate the interface data, that must typically
contain the marker indices, their position and their neighbouring markers they are connected to.
Reseeding causes this data structure to be modified at various point and the links between neighbouring
markers must be properly updated. In addition, when two interfaces collide, a merging must be
performed, and the interface data must be updated in this respect. Similarly, when the flow dynamics
pinch off a phase inclusion, the corresponding interface must split in two different interfaces to render
the break-up. For example, the results of [Shin and Juric, 2002] for the simulation of such interface
topology changes are depicted in Figure 3.9.

3.2.3.3 Retro-coupling with the flow

Once the interface markers have been transported, the interface is reconstructed using interpolation
methods such as cubic spline interpolation. The new interface position and topology is then used to
evaluate the Eulerian flow properties to solve for the Navier-Stokes equations.

In the incompressible case, the interface location allows to directly update the density values, since it
is assumed constant within each phase. The velocities and pressure are updated subsequently.

In the compressible case, it is possible to use the interface position information to update the flow fields
using a ghost-fluid method (see Paragraph 3.2.1.4) to transport the phases, as done in [Terashima and
Tryggvason, 2009]. The two-phase Navier-Stokes equations are then solved for both fluids and their
respective ghost-fluids and combined back into the flow field solution. Note that, again, the inexact
evaluation of the interface position results in conservation errors. A bubble-shock interaction example
solved using this strategy is depicted in Figure 3.10.
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Figure 3.9: Results of a grazing droplet collision front-tracking simulation. The droplets first coalesce and then break-up
into two droplets. Taken from [Shin and Juric, 2002]

3.2.3.4 Conclusion on the front-tracking methods

The front-tracking method have been used in various situations and can provide satisfying results to
both compressible and incompressible flow simulations. If the interface transport is easy to formulate,
one must be careful with the treatment of high interface deformations and topology changes, in order
to always maintain a satisfying distribution of the markers along the interface. As for the level-set
method, the front-tracking strategy does not guarantee discrete mass conservation. Finally, one of
the main drawbacks of the front-tracking methods is the very high complexity of the implementation,
requiring a specific data structure for the interfaces and complex operations for the markers reseeding,
interface reconstruction and dynamic coupling with the flow model.

3.2.4 Conclusion

Among the sharp interface methods, only the volume-of-fluid method has the property to guarantee
discrete mass conservation to the cost of intensive geometric computations when used with unstructured
meshes. Also, this method is only functional in the incompressible context.

On the other hand, the level-set and front-tracking methods track the interface by means of, respec-
tively, Eulerian or Lagrangian transports. Such methods can be adapted to compressible cases by
means of the ghost-fluid method, which unfortunately suffer conservation issues. Also, these methods
do not address interface formation or disappearance as they require an initially existing interface that
will further evolve with transport and reinitialization/reseeding processes.

In order to elude such drawbacks, the diffuse interface methods are now considered.
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Figure 3.10: Compressible front-tracking simulation of an air bubble in water hit by a shock. The pictures are taken
from [Terashima and Tryggvason, 2009].

3.3 Diffuse-interface methods

Among the Diffuse Interface Methods, two major subfamilies can be defined. The first one, called
phase field methods, relies on an enhanced physical description of the interface thermodynamics. This
interface model thereby intrinsically contains the physical phenomena that characterize the interface
— in particular the surface tension. In this context, the interface thickness must be resolved on the
computational grid, or methods must be found to artificially thicken the interface. This class of
methods has a strong theoretical interest as its construction is anchored in the physics occurring at
the interface, but still raises numerical questions.

The other class of methods is called multifiluid methods. They consist in representing the interface at
a macroscopic level by numerically smearing the interface thickness. The artificially diffused interface
zone then requires particular care to be treated, in order to avoid this zone to spread nonphysically
across the domain. In this framework, the physical properties of the interface, such as the surface
tension, can be incorporated afterwards to the model, which benefits from its high modularity.

This section presents an overview of the concepts and achievements of both methods, with a particular
emphasis put on multifluid models, since the present work can be related to such methods.

3.3.1 Phase field methods

The phase field (PF) methods consist in introducing an order parameter ®, a smoothly varying color
function to characterize each phase. Unlike the level-set function used in the eponymous method
presented in section 3.2.1, this color function is representative of a thermodynamic quantity and varies
gradually from one phase to the other. The example of a liquid-gas mixture, assuming ® = &, in the
liquid and ® = ®, in the gas phase, modeled by a PF method is displayed in Figure 3.11.

In the framework of PF models, the capillary effects are intrinsically contained in the interface de-
scription. Thereby, unlike the interface representation for sharp interface methods (cf. Section 3.2),
the interface description for PF methods and the capillary effects cannot be treated separately.
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Figure 3.11: Gradually varying thermodynamic quantity ® used as a phase field to represent the fluid topology and
thermodynamics.

3.3.1.1 Single-component mixtures

For a single-component inviscid mixture, the fluid density can be used as the order parameter ® = p.
The continuous representation of interfaces in single-component fluids was developed by [Rayleigh,
1892] and [van der Waals, 1893], who inferred gradient theories based on the van der Waals EoS. In
this theory, the interface is identified by the gradient of the density. The capillary effects are interpreted
as an additional capillary energy, corresponding to a potential energy of capillarity. In this respect,
the volume-specific Helmoltz energy fsc of a capillary fluid is derived:

. . . A /o N2

FeT 0, 9p) = fu(Tp) + 5 (Vo) (3.3.)
with fs the Helmoltz energy defined in (2.1.22a) with X the capillary coefficient, in m” - s72. One can
then show that the enthalpy and Gibbs energy are not modified by the capillary energy. Conversely,
the mass-specific sensible energy and Helmoltz energy of a capillary fluid read:

c ~ A ~ 2

es(T.p,Vp) =es(T,p) + % (Vp) : (3.3.2a)
c ~ A = 2

[T, p,Vp) = [s(T,p) + % (Vp) ; (3.3.2b)

and the corresponding pressure is

c = = 2
PE(T,p,9p) = P(T.p) = 5 (V) - (3.3.3)
It is worth noting that, since the capillary effects do not modify the Gibbs energy, the bulk phases
state of a liquid-vapour interface at equilibrium corresponds to the saturation values predicted by the
EoS.

In [van der Waals, 1893], it is shown that a direct expression of the surface tension coefficient o can
be formulated. Considering a liquid-vapour interface at temperature 7', throughout which the density
gradually evolves from the liquid density p§*'(T") at position Z, to the vapour density p5**(T') at position
Z,, the surface tension coefficient reads

o= /w A (W)z 7. dz, (3.3.4)

Te

where 77 is the interface normal.
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This enhanced thermodynamic description involves a modification of the stress tensor of the capillary
fluid, as shown by [Korteweg, 1901, Rocard, 1967]. Thereby, enhanced conservation equations can be
obtained by application of the wvirtual power principle [Seppecher, 1987]:

% +V - (pil) =0, (3.3.5a)
ot
% +V- [,mz@) i+ P +A\Vp® W} =0, (3.3.5b)
a c N - _ — —

g:t +V- [(peg + P™) a4 A (Vp ® Vp) -+ ApVp (V : U)] =0. (3.3.5¢)

The tensor A (6;}@ 6/)) is usually referred to as Korteweg’s tensor. The total energy ef of the
capillary fluid is the sum of its internal and kinetic energies:

¢ = (T, p, Vp) + ee. (3.3.6)

A mechanical pressure term P™ appears in (3.3.5), which is defined as the isotropic part of the stress
tensor:

pP™ = Pp°+ % (6/})2 —pV - ()\6,0). (3.3.7)

For an isothermal subcritical interface, the stationary solution of system (3.3.5) implies that the in-
terface has a proper thickness h;,;, which depends on the temperature and the value of the capillary
coefficient [Jamet, 1998].

This theory is very promising as it provides a continuous formulation of two-phase flows conservation
equations, which natively includes the interface physics. Nonetheless, typical values for the interface
width being of the order of 107° m to 10~ m for subcritical temperatures far from the critical point.
Then, it is practically non-affordable to use a mesh to resolve the interface width for direct numerical
simulations of turbulent flows in which the Kolmogorov scales typically range from 107% m to 10~% m,
so that the smallest flow scales are typically 3 orders of magnitude larger than the interface scale.

This motivated the works of [Jamet, 1998], who proposed a strategy to thicken the interface without
modifying its global dynamic properties (typically surface tension). Yet, this method was only appli-
cable in the vicinity of the critical point. Later on, the same author [Jamet et al., 2001] proposed a
more general strategy which consists in modifying the thermodynamics within the interface, resulting
in a greatly increased complexity and computational cost. The recent work of [Nayigizente et al., 2018]
introduced a more efficient thickening method. An example of the destabilization and atomization of
a liquid jet in a periodic domain using this latter method is depicted in Figure 3.12.

However, despite these promising works on the second gradient theory, there remain obstacles to
overcome. The main one concerns the mathematical characterization of system (3.3.5) to properly
derive adapted numerical methods and boundary conditions. Indeed, this system does not fall under
the PDE classifications classically used in fluid mechanics as it involves third-order spatial derivatives
of transported quantities. In particular, the question of the speed of sound within the interface is
unclear.

3.3.1.2 Multicomponent mixtures

The extension to multicomponent mixtures, which is of major importance towards combustion model-
ing applications, has been studied by [Fouillet, 2003], [Gaillard, 2015] for binary mixtures. Despite the
additional complexity arising from the multicomponent character of the mixture, these studies keep
only a single order parameter, the density, as for the single-component case.
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Figure 3.12: Atomization of a liquid N2 jet in a gaseous N2 environment. Taken from [Nayigizente et al., 2018]

Conversely, the Cahn-Hilliard equation proposed in [Cahn and Hilliard, 1958], in the context of phase
separation problems in binary alloys, uses the concentration z; of the component 1 as the order
parameter. This equation reads [Jacqmin, 1999]:

0 =
% +i -V, = kV2u§, (3.3.8)
with @ the flow velocity, x a diffusion coefficient and p§ the chemical potential of component 1, which

reads

dFs(l‘l)

_ 2
G AV (3.3.9)

s = p — AV2zy =
with the capillary term —AVZ2z;. The quantity Fy(z;) denotes the molar Helmoltz energy of the
homogeneous system with composition z;, and is assumed to have the usual form given in Figure 3.13.
In this respect, the equilibrium of a mixture made of two phases ¢ and ¢’ corresponds to the respective
concentrations (z¢)° and (2% )e.

Fs
A

eq
Ho [

0 () @ 1 Tm

Figure 3.13: Helmoltz energy of the binary mixture.
The Helmoltz energy for the Cahn-Hilliard model reads, including the capillary effects:
A /> \2
FE=F+7 (Vx1> . (3.3.10)

This form is similar to equation (3.3.2b) with the order parameter being x1. An example of application
for this model is the spinodal decomposition in a binary alloy shown in Figure 3.14.
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t = 8000h>

Figure 3.14: Simulation of a spinodal decomposition using the Cahn-Hilliard equation by [Kim et al., 2016]

Despite the numerous applications of the Cahn-Hilliard equation, no compressible formulation based
on this model have been found. This limits the relevance of this method in the context of the present
work.

3.3.2 Multifluid methods

The multifluid methods have been introduced to address the need for two-phase models able to treat
compressible flows. It is thus natural that such models emerged in the context of deflagration-to-
detonation transition studies in the two-phase conditions of reactive granular materials flows. In their
pioneering work [Baer and Nunziato, 1986], Baer and Nunziato (BN) propose a two-phase flow model
that can be derived by averaging the phases’ transport equations around the interface, as reviewed
in [Drew, 1983]. By doing so, the interface — similar to a discontinuity at the flow typical lengthscale
— is smeared out and hence described by a diffuse region.

This makes possible the formulation of a continuous Eulerian description of the flow, so that the nu-
merical methods for the transport of single-phase flows can be adapted to treat the obtained hyperbolic
system. This seminal formulation has then been branched into a variety of reduced models with sim-
plified formulations for certain applications. A global overview of the methods, their properties and
applications is proposed in the following.

3.3.2.1 Transport models

3.8.2.1.1 The general non-equilibrium model

The BN model has been reformulated in various ways since its initial expression in [Baer and Nunziato,
1986]. A classic formulation [Saurel and Abgrall, 1999] of the 7-equation transport model of Baer and
Nunziato applied to a separate liquid-gas flow in one-dimension, for a single-component fluid and
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without phase change, is:

0z1ps n Ozepeug

o o _ g (3.3.11a)
82,;% L 8z%p;uv _ 0 (3.3.11b)
8zgapteue azzpeugx—l— 2Py _ +PI% T — (3.3.11c)
azvgzuv azvpuug;- zwPs _PI% b (1t — w2) (3.3.11d)
Bzegiet,g . 8(zepeet,g;- 2P)ue +P]U1% + kpPr (Py — P,) + kyur (ty — ug) (3.3.11e)
621,21(37” n 8(Zupq,et%;t 2 Py )ty _ —Pﬂu% — kpP; (P — P,) — kg (ty — ) (3.3.11f)
% - uf% = +kp(Pr — P,), (3.3.11g)

This model is usually referred to as the nonequilibrium model since the two phases are let free to take
different velocities, pressures, temperatures and chemical potentials. The left-hand side of equations
(3.3.11a) to (3.3.11f) represent the conservative transport of mass, momentum and energy for each
phase, while their right-hand side contains the conservative exchange terms, the sum of which being
zero. The last equation, (3.3.11g), is called the compaction equation. It renders the variations of the
phases’ volume, including in particular advective and compressibility-related effects.

This system of equations involves non-conservative terms that require a careful treatment for a proper
numerical resolution. This will be further mentioned in paragraph 3.3.2.3.

In addition to the phases’ quantities, this model contains two additional variables, the interface velocity
uy and the interface pressure P;. Since the terms in which they appear involve the gradient of a
transported quantity, %i;, their value has an impact on the hyperbolic nature of the flow. For instance,
as mentioned by [Saurel and Abgrall, 1999], considering the liquid to be incompressible and assuming
Pr = P, results in a non-hyperbolic system. In this respect, [Abgrall and Saurel, 2003] eludes the
need for these closures by formulating the source terms of (3.3.11) in terms of averaged values of the
local flow properties. In [Saurel and Abgrall, 1999], it is observed that across an liquid-gas interface,
the typical relaxation time of the velocity and pressure is short compared to the flow timescales. In
this respect, stiff mechanical relaxation is considered and constrains the phases to evolve with the
same pressure and velocity, imposed by an operator-splitting strategy, so that when the fluxes must be
computed, one necessarily has P, = P; = P, and uy = u; = u,. The authors show that such treatment
allows to recover the hyperbolicity of the system.

3.3.2.1.2  Velocity-pressure equilibrium model

Following the idea of [Saurel and Abgrall, 1999], Kapila’s model [Kapila et al., 2001] proposes a reduced
5-equation model with a single pressure and velocity for both phases. A thorough mathematical analysis
of this latter model has been subsequently provided by [Murrone and Guillard, 2005]. Kapila’s model
corresponds to an asymptotic limit of the BN model (3.3.11) with pressure and velocity relaxation. It



Chapter 3 - INTERFACE MODELING 75

reads

Ozypy | Ozypyu

o st (3.3.12a)
agfe azgr;eu _0 (3.3.12b)
% N Eﬁpuéfng _0 (3.3.12c)
c’)gtet N a(Peta‘; Plu _, (3.3.12d)
% + u% = z(1 — z¢) Z¢—p:f?1_—p;:)%ﬁ’¢ci % (3.3.12¢)

This system is hyperbolic provided the EoS used to close the phase-wise thermodynamics are convex.

Although pressures and velocities are kept equal between the liquid and gas phases, there remain
degrees of freedom in the disequilibrium between phases. In particular, the phases can take different
temperatures. It will be observed in Section 7.2 that this degree of freedom allows to avoid pressure
noise when transporting contact discontinuities.

A similar model was proposed by [Allaire et al., 2002]. This model is not strictly derived from the BN
model as it does not correspond to its asymptotic limit. It yet consists in a 5-equation model derived
from a phenomenological approach for which the compaction equation (3.3.12¢) reduces to

62’@ aZg

—— — =0. 3.3.13
or " ow (8:3.13)

This allows to get rid of the non-conservative term on the right-hand side of (3.3.12e) which is hard

to handle numerically. The consequences of this modification are that the characteristic waves of the

system are strongly modified, as shown by [Murrone and Guillard, 2005]. Indeed, the speed of sound

for Kapila’s model (3.3.12) is given by Wood’s speed of sound ¢y,

1
pey = == (3.3.14)
pec; | puc2

whilst the speed of sound for Allaire’s model is

2 2
¢ = zp&epecy + zv&,pvcv, (3.3.15)
20€e + 2u&o

with coefficients £, defined for ¢ € {¢,v} as

Ipgey
€ = : (3.3.16)
8P P

Another strategy introduced by [Saurel et al., 2009] consists in taking one step back to a 6-equation
model which assumes only velocity equilibrium, and treat the pressure equilibrium assumption by stiff
relaxation. This way, the form of the compaction equation of the 6-equation model is equivalent to the
one of the 7-equation (3.3.11g), which is easier to compute than the 5-equation compaction equation
(3.3.12e). Note that the corresponding speed of sound is also different from Wood’s, and reads

pc%eq = 20peCs + 2y puCa. (3.3.17)
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3.3.2.1.83 Further reduced models: the 4-equation and 3-equation models

When the assuming temperature equilibrium in addition to the velocity-pressure equilibrium, the 4-
equation model is obtained, which reads

0zypy . 0zypypu

2 et 0, (3.3.18a)
8285;)@ azé/;w _o, (3.3.18b)
% N fﬂpu(;%P _o, (3.3.18¢)
8§tet N 8(965; Plu _ 0, (3.3.184)

Considering in addition the equilibrium of chemical potentials between phases yields the 3-equation
model, also called the homogeneous equilibrium model, which has a form similar to the Euler equations:

dp | Opu
Opu  Opu®+ P
—t = .3.19b
5 + o 0, (3.3.19b)
Opey O (pey +P)u
o+ o =0. (3.3.19¢)

These models will be described in more details in paragraphs 3.3.2.2.1 and 3.3.2.2.2.

3.8.2.1.4 Hierarchy of the models and subcharacteristic condition

Multifluid models inherited from the nonequilibrium model (3.3.11) can be studied through the prism of
the subcharacteristic condition introduced by [Liu, 1987]. In order to formulate this condition [Lund,
2012], consider a PDE with hyperbolic transport and relaxation source terms (e.g. the BN model
(3.3.11)), which reads:

ou ou 1

— +H(U)—=—R(U 3.3.20

o U G = —R(U). (3:3.20)
with the hyperbolic operator I, the relaxation operator R, the relaxation characteristic time 7z and
the N transported variables U. From system (3.3.20), define the corresponding equilibrium system,
as

oU -\ 0U
S5+ 8 (0) =0 (3.3.21a)
U = eq(U), (3.3.21b)

where U is the reduced set of n < N variables of the equilibrium system. U = eq(U) is the equilibrium
state that cancels the relaxation terms R (eq(ﬁ)) =0, and G is the transport operator of the reduced

equilibrium system. For instance, if (3.3.20) represents the BN model, then (3.3.21a) can be Kapila’s
model (3.3.12)

Let the eigenvalues of H, evaluated at an equilibrium state U = eq(U), be given by

Ay < <A < < Ay, (3.3.22)
and the eigenvalues of G evaluated at the corresponding reduced state U be given by

M < <A< <\, (3.3.23)
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The equilibrium system (3.3.21) is said to fulfill the subcharacteristic condition with respect to the
relaxation system (3.3.20) if the eigenvalues verify

Vi € {1...7?,}, Az <\ < Ai+N—n~ (3324)

Under such considerations, it has been shown by [Lund, 2012] that the different models derived from the
single-velocity 6-equation version of the BN model by assuming equilibrium of pressure, temperature
and/or chemical potential do fulfill the subcharacteristic condition. In other words, the speed of sound
decreases as the number of equations of the model decreases, as displayed in Figure 3.15.
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Figure 3.15: Speed of sound for the 5-equation model of Allaire, the 5-equation model of Kapila, the velocity-
pressure-temperature equilibrium 4-equation model and the velocity-pressure-temperature-Gibbs free energy equilibrium
3-equation model.

3.3.2.2 Addressing additional physical phenomena

The fundamental multifiluid models and their relations with sub-models have been recalled. It is now
important to mention the ability of this class of models to incorporate additional physical phenomena
required by the possibly targeted applications.

3.8.2.2.1 Heat transfer

In order to incorporate heat transfer into the model, [Le Martelot et al., 2014] formulated Kapila’s
system (3.3.12) with the energy equation simply modified as

Opey 4 0 (pey + P)u — )‘mixg%
ot ox

Amix = 2eAe + 2, Ay being the mixture’s thermal conductivity coefficient.

Additionally, heat exchange between phases can be addressed following [Saurel et al., 2008]. Tt is
modeled in a relaxation form, as QY = k(T — Ty) with k7 a relaxation coefficient. This energy
transfer does not appear in the energy equation since it consists in a simple exchange between the

phases. Nevertheless, it modifies the compaction equation through its effect on the phases’ volume.
This reads

=0, (3.3.25)

1 1
Oz Oz puCZ — pec? ou f2 Tz
— = 1-— v — Lz Lo T, —1Ty), 3.3.26
ot tu Ox ze(l = 2) Dt z¢)p¢c§> 0x  zupeCs + 20puC rr ( ) ( )
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with the coefficients &, defined by (3.3.16).

In the limit of stiff thermal relaxation, the (velocity-)pressure-temperature equilibrium system is ob-
tained. It naturally reduces to the 4-equation model (3.3.18), which consists in a fully conservative
transport system. It is made of conservation equations for the whole mixture’s momentum and energy,
and conservation of each phases’ mass.

3.3.2.2.2 Phase change

In addition, phase change can be taken into account. This is usually achieved by considering a stiff
relaxation towards thermodynamic equilibrium [Saurel et al., 2008, Le Martelot et al., 2014, Chiapolino
et al., 2016, Chiapolino et al., 2017]. In this respect, the 4-equation model (3.3.18) is supplemented
with a relaxation term on the Gibbs free energy x4 (g — gv) to describe mass transfer between phases,
where k4 is the relaxation rate. The model reads

Ozypy | Ozypyu

5 5 = PHa (90— 90) (3.3.27a)
0z 0zepeus
aetpf (;Ze = —prg (90— gv) (3.3.27D)
Opu  Opu®+ P B
o g (3.3.27c)
dpey | O (pey +P)u
T = 0. (3.3.27d)

After the hyperbolic transport corresponding to system (3.3.18), the operator splitting procedure is
applied to compute the stiff relaxation to thermodynamic equilibrium, which is computed by solving

9e(p €5") = 9o (P37, €3), (3.3.28)

with equilibrium values corresponding to the transported density and energy:

2Pyt + 2505 = p (3.3.29a)
zyp e + 250 pled = pes. (3.3.29b)
[Saurel et al., 2008, Le Martelot et al., 2014] solve this for Stiffened Gas EoS closures using a Newton-
Raphson solver, while [Chiapolino et al., 2016, Chiapolino et al., 2017] propose an approximate single-
step resolution. Note that [Le Martelot et al., 2014] achieves the computation of a boiling flow as
depicted in Figure 3.16 by adding surface tension (see next paragraph) and gravity effects to the flow.
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Figure 3.16: Boiling flow simulation by [Le Martelot et al., 2014], addressing phase change, surface tension and gravity.
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Note that some particular canonical cases allow for a more accurate resolution of the equilibrium, as
empirical relations are available to model finite-time relaxation processes in the BN model (3.3.11).
For instance, in [Furfaro and Saurel, 2016], the BN model is used with phase change and temperature
relaxation terms to achieve a direct simulation of phase change for a droplet. Finite temperature and
phase change relaxation rates are evaluated by means of Sherwood and Nusselt numbers correlations,
following [Abramzon and Sirignano, 1989].

Also, very recent work of [Matheis and Hickel, 2018], inspired by the two-phase equilibrium compu-
tations of [Qiu et al., 2014], can be related to the family of multifluid methods, although the authors
do not claim such affiliation. The conservative evolution model would correspond to the equilibrium
version of system (3.3.27), which yields the 3-equation homogeneous equilibrium model (3.3.19). This
system is expressed by [Matheis and Hickel, 2018] in a multicomponent real gas context. Interesting
results were obtained for the large-eddy simulation of the ECN Spray A [Pickett et al., 2010].

9 pCle@P [kg/m3] 9 PNg,v [kg/m3]
— 1 —= 1
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= :2 OE 10 ‘:O ) = :; 0' 20 40 E4
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Figure 3.17: Large-eddy simulation of the Spray A test configuration of the Engine Combustion Network (ECN) [Pickett
et al., 2010]. These snapshots taken from [Matheis and Hickel, 2018] display the n-dodecane and nitrogen partial densities
within the vapour phase (coloured fields), while the temperature field is displayed in a gray scale where 2y ¢ [0.01,0.99].

3.8.2.2.3 Surface Tension

Surface tension effects can be incorporated into the model. In the context of Sharp Interface Methods,
it is represented as a surface force located at the interface. At a liquid-vapour interface, [Landau and
Lifshitz, 1987] provide an expression of the force balance, as:

(Py — P, + oK)t = (T4 — T)it + Vo, (3.3.30)

with Py the pressures in the bulk phase ¢ € {¢,v}, o the surface tension coefficient, x the interface
curvature, 71 the vector normal to the interface pointing from liquid to vapour and 74 the viscous stress
tensor in phase ¢.

As presented by [Brackbill et al., 1992], when neglecting the variations of the surface tension coefficient

and the viscous stress contributions along the interface, the surface force f: is normal to the interface
and writes

—

fs = oK. (3.3.31)

In the current context of Diffuse Interface Methods, the interface is represented with a finite thickness
ds. In this respect, the surface tension expression has to be formulated as a volume force f;, the
integral of which across the interface should yield the surface force as the interface thickness tends to
zero. In other words,

5s—0

lim fv dzr = / fS dZ,, (3.3.32)

with A an interfacial surface and V the corresponding volume of thickness 0. [Brackbill et al., 1992]
then shows that such volume force can be expressed by means of the variations of a color function
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across the interface. A natural choice for such color function is for instance the liquid volume fraction
z¢. This Continuum Surface Force (CSF) reads

—

fo = oK(Z)Vz, (3.3.33)

where the local interface curvature is approximated by

K(Z) = V- & , (3.3.34)
]

as the term within the divergence operator represents the vector normal to the interface.

Further developments have been led in order to improve the behaviour of the model. First, [Gueyffier
et al., 1999] proposed a conservative form of the surface force in the momentum equation. This reads,
in two or three dimensions,

opti

o +V-(pi @i+ PI—o1,) =0, (3.3.35)
with the surface tension tensor 7, defined as
- Vo @ V.
T, = sz‘ g Yo Ve (3.3.36)
VZg‘

Later-on, a conservative form was proposed by [Perigaud and Saurel, 2005] for the total energy equa-
tion, in the context of a 5-equation multifluid model. This requires to inject a surface tension potential
energy e, into the transported total energy ey = es + e. + e, of the form

o = 2|Vzd (3.3.37)
so that the energy conservation becomes
opey = . S
5 + V- ((pey + P) @ — o7, - @) = 0. (3.3.38)

Although this formulation is better than a mere source-term implementation of the surface tension,
the computation of the curvature from equation (3.3.34) is very sensitive to the local liquid mass
fraction topology, and may be ill-behaved when high-frequency numerical oscillations are present. In
this respect, the surface tension computations require a well resolved interface thickness — or, in other
words, a relatively diffused interface profile — for the curvature to be satisfyingly computed.

3.3.2.3 Numerical Methods
3.3.2.83.1 Hyperbolic transport

In its initial formulation [Baer and Nunziato, 1986], the non-equilibrium model was solved using an ‘old
fashioned’” method of lines together with an implicit ODE solver. The more recent methods are mostly
based on a finite-volume method for space discretization, as reviewed in [Saurel and Pantano, 2018],
as it provides a relevant framework for the study of wave propagation and shock—waves interactions.
The different multifluid systems can be summarized under the form (see e.g. [Murrone and Guillard,
2005)):

%‘; +V-F(U)+M(U)-VU = § (U), (3.3.39)
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where U are the transported variables, F(U) the conservative flux, M(U) the non-conservative trans-
port operator, and S the source terms operator (including the relaxation terms). The finite-volume
method framework consists in computing the evolution of the mean value U?, defined as

1
U= — / U(7,t") di (3.3.40)
Ve, Je

J

where the index j denotes the ;" cell of the computational grid. Equation (3.3.39) is then integrated.
This yields,

tn+1 tn+1

Uttt =uy - L / FU)idS dt — // M(U) - VU dU dt
Ve, ) Joc, Ve, J e,
e e (3.3.41)

The numerical resolution of this system is then generally performed using an operator-splitting strategy.
First order resolution typically consists in:

(i) computing the hyperbolic transport (including the non-conservative terms) by means of a Godunov-
type method. This requires to solve for a Riemann problem at cells’ boundaries, either exactly
or approximately, in order to evaluate the numerical fluxes involved in the update formulation.

(ii) computing the source terms from the obtained state.

Note that the need for solving Riemann problems for the typically used Godunov-like methods is one
of the motivations to carry out the systematic characteristic analysis of the multifluid systems, as done
in [Saurel and Abgrall, 1999, Allaire et al., 2002, Murrone and Guillard, 2005, Le Martelot et al., 2014].
The Riemann problem is usually solved approximately using the classic HLL [Harten et al., 1983] and
HLLC [Toro et al., 1994] solvers, or the Roe method [Roe, 1986].

Higher-order resolution is often achieved using a MUSCL scheme [van Leer, 1979] with limiters. In
presence of source terms, an advanced operator-splitting procedure [Strang, 1968] can be used, as done
in [Saurel and Abgrall, 1999].

3.3.2.3.2  Limiting the interface smearing

Although the liquid-gas interface is by definition of the method a diffuse zone, this artificial mixing
zone should remain constrained to a relatively thin zone during computation. In order to avoid the
numerical smearing of the interface, different strategies have been developed for 5-equation pressure-
velocity equilibrium models (3.3.12).

A first strategy consists in using a strongly anti-diffusive TVD transport for the transport of the phases’
volume fraction. Instead of transporting the volume fraction z, using a MUSCL scheme with second-
order TVD limiter, [Chiapolino et al., 2017] uses the Overbee limiter which is the most anti-diffusive
TVD limiter according to Sweby’s theory [Sweby, 1984]. The classic Minmod and Superbee limiters
are displayed together with the Overbee limiter in Figure 3.18. Minmod represents the most diffu-
sive second-order TVD method, while Superbee is the most anti-diffusive second-order TVD method.
Overbee goes beyond the second-order limit and consists in the most anti-diffusive TVD method. This
strategy is thus extremely straightforward to formulate since it only consists in changing the limiter
used in the MUSCL scheme. The results obtained from such method are shown in Figure 3.19. The
numerical smearing appears to be satisfyingly reduced compared to the case using the Superbee limiter.

One drawback of such method is the absence of explicit control of the diffuse interface thickness.
This can be obtained by another strategy, which consists in artificially compressing the interface by
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Figure 3.18: Sweby’s diagram [Sweby, 1984] for Minmod, Superbee and Overbee limiters. Coloured region represents
the TVD region. Hatched region is the second-order TVD region.

introduction of a source term into the volume fraction transport equation [Shukla et al., 2010]. This
strategy is close to the re-initialization step used by [Desjardins et al., 2008] for the Level-Set method,
and the compressive source term is similar to the one appearing for the Level-Set method, in equation
(3.2.9). The obtained transport-compressive evolution equation for the liquid volume fraction is then

% + @V =UV- {eh(ﬁz@‘ — 20 (1= z) ﬁ] , (3.3.42)

Vzy

where the interface normal is 77 = |§ , and Uy is a characteristic compression velocity of the interface,
zZy ‘

which is typically set to a much larger value than the flow velocity. In this respect, the solution is
always driven towards the compressed interface solution

1 n
w=g (1 + tanh <2€h>> . (3.3.43)

Note that the mixture’s density must take into account this interface compression. Its transport
equation is thereby supplemented with an corresponding compressive term, which finally reads

% + V-pit = H(2)Uoft - {ﬁ (ehﬁ : ﬁp) — (1 —2z) ﬁp} : (3.3.44)

where H(z;) is an indicative function of the interface region, that aims at preserving a classic p
transport away from the interface. Its value is taken by [Shukla et al., 2010] as

H(z;) = tanh [(W)Q] . (3.3.45)

The improvement of the results obtained with this methods are displayed in Figure 3.20. Note that
this method is unfortunately not conservative, as the total energy field of the sharpened solution is
recomputed from the pressure field and the sharpened density field.

3.3.2.4 Conclusion on the multifluid methods

The family of multifluid methods have been presented. It appears that this class of models, dedicated to
compressible flows, can address a wide variety of physical processes. In particular, it can be efficiently
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(a) Superbee limiter (b) Overbee limiter

Figure 3.19: Comparison of air-krypton bubble-shock interaction simulations with either Superbee or Overbee slope
limiters. Isolines of the liquid volume fraction are displayed. Image taken from [Chiapolino et al., 2017].

Figure 3.20: Liquid-volume fraction isolines for a Mach 1.22 air-helium shock-bubble interaction. Reduction of the
numerical smearing is observed between the top (no specific treatment) and bottom (compressive term added) fields.
Taken from [Shukla et al., 2010].

used for simulations involving phase change. Another advantage for such method is that it ensures
discrete conservation of the transported quantities. Conversely, its use generally requires to prevent
the interface smearing in order to avoid the artificial mixture of the diffuse interface to spread across
the computational domain. Also, several cells are needed in the direction normal to the interface to
represent it while only a single cell suffices for a volume-of-fluid or front-tracking model.

3.4 Conclusion

In this section, an overview of available two-phase models has been presented. The main properties of
the method according to the target application — which consists in LES computations of compressible
high-pressure flows in subcritical and supercritical conditions — are summarized in table 3.1. While the
volume of fluid method is not relevant for compressible applications, the level-set and front-tracking
methods violate mass, momentum and energy conservation. In addition, phase-field methods are a
promising family of models but still suffer some limitations as the interface needs to be artificially
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thickened. Also, the discretization of the governing equations for non-isothermal flows given by the
second-gradient theory is not straightforward as their mathematical structure does not correspond to
classically encountered PDEs in fluid mechanics. Finally, the multifluid methods have been presented.
They offer a versatile framework to deal with two-phase flows, as different levels of disequilibrium
between phases can be addressed, and physical effects (e.g. surface tension, phase change) can be
integrated. They are also able to treat formation and disappearance of interfaces. For these reasons,
they are suitable considering the target application, although they have some limitations. In particular,
they require several grid cells to capture the interface and are subject to progressive interface smearing.
The next chapter is dedicated to the description of the formulation of a multifluid method in the present

Method Discrete Compressible Main Main
conservation formulation advantage drawback
aple i
Level-set X v (ghost-fluid) 'S1mp'e meo Conservation error
multiple dimensions
Volume-of-Fluid v X Mass-conserving Not compressible
Front-tracking X v (ghost-fluid) . Straightforward Conservation error
interface transport
Phase-field v v Intrinsic i§terface Required resolution
physics scale
Multifluid v v Versatility & Interface smearing

fulfills conservation

Table 3.1: Summary of the main properties of the different interface methods.

context, providing the required developments for its use within the target LES solver.



Chapter 4

Numerical methods for hyperbolic
conservation laws

The present chapter presents the various numerical methods that have been implemented and
used in this Ph.D work. In particular, finite volume, finite element, discontinuous Galerkin
and residual distribution schemes are presented. Furthermore, a brief study of monotonicity
issues is conducted.

4.1 Introduction

Numerical analysis is a major field of applied mathematics, which addresses a great number of appli-
cations, especially in physics. In particular, flow modeling is a very demanding topic for numerical
methods, which obviously benefits from the boom in computational resources and capacities. The
development of numerical methods involves by nature different scientific fields and must typically take
into account multiple constraints such as mathematical constraints (e.g. stability, accuracy), physical
constraints (e.g. preservation of positivity of the density and pressure fields, conservation principles,
entropy) and computational constraints (e.g. parallel computing efficiency, low memory requirements).

First, section 4.2 introduces useful concepts and results for the study of hyperbolic conservation laws.
Then, section 4.3 defines global concepts of numerical analysis and discretization of the solution. Sec-
tion 4.4 is dedicated to the description of cell-centered methods, namely finite volume and discontinuous
Galerkin methods. Finally, section 4.5 presents vertex-centered methods, and more specifically finite
element methods among which the Taylor-Galerkin of the AVBP solver.

4.2 Hyperbolic conservation laws

The present work focuses in particular on the numerical resolution of hyperbolic partial differential
equations (PDE), and more particularly on hyperbolic conservation laws. This section briefly intro-
duces these concepts and the corresponding notations.

4.2.1 Definitions
4.2.1.1 Conservation laws

Let d € N* be the number of spatial dimensions and © C R? be the domain of study. 9 denotes the
frontiers of the domain.

Let Ny € N* be the number of conserved variables and U € U the vector of these variables, expressed
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as a function of the position and time:

U:R* xRt — S, (4.2.1)
(#,t) U (7,1), (4.2.2)

where S C R¥: denotes the admissible states for the conserved variables (e.g. verifying positivity of
the density, validity of the species mass fractions Y3 € [0,1]), and U is the space of functions from
R? x R* into S.

Then, U is ruled by a Conservation Law if there exists a Flux Function

ﬁ;{ s — (®%) (4.2.3)
U s FU),

such that U verifies the PDE:

Yy F(U)=o. (4.2.4)
ot
Note that in this entire chapter, the vector “arrow” symbol ~ indicates quantities having components
along the d spatial dimensions, whereas bold font indicates vectors of multiple variables. Obviously,
these notations can be continued so that the dot product notation - relates to the dot product over
spatial dimensions, and the double contraction product : also refers to spatial dimensions.

Problems involving conservation laws must be provided with initial and/or boundary conditions, lead-
ing to the typical boundary value problem:

ou  ~

E#—V F(U) =0, for (Z,t) € Q@ x RY, (4.2.5a)
Boundary Conditions (Dirichlet, Neumann, mixed...), for (Z,t) € 02 x R, (4.2.5b)
Initial conditions, for £ € Q,t = 0. (4.2.5¢)

4.2.1.2 Hyperbolicity

The directional Jacobian matrix of the flux function ﬁﬁ (U) is defined as

gz (U) = (4.2.6)

ou "™

with 7 the direction unit-vector of R%.

A conservation law is said to be hyperbolic, if the directional Jacobian matrix of the flux function is
diagonalizable with real eigenvalues [LeVeque, 1992]. In this case, we denote vz the spectral radius of

3

v (U) = max {\)\ﬁ| , AV € R™ such that J; (U) -V = Aﬁv} . (4.2.7)

4.2.1.3 Linear advection

For instance, the most simple hyperbolic equation consists in the linear advection of a scalar quantity
u at a constant velocity cg.

d=1, Ny=1 and f(u)=cou, (4.2.8)
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so that equation (4.2.4) writes:

ou ou

E_FCO%:O'

(4.2.9)

This simple equation is very convenient as it admits an analytical solution. Indeed, for an initial
solution profile u(z,t = 0) = up(x), the unique solution of (4.2.9) is given by:

YVt >0, wu(z,t)=up(z— cot). (4.2.10)
The linear advection equation — for its theoretical interest and simplicity — and Euler equations — for
its theoretical interest in flow modeling — are the two hyperbolic conservation laws that will be studied
in the present chapter. The next section is dedicated to the mathematical description of the Euler

equations.

4.2.2 Euler equations

Hyperbolic PDEs are widely studied as they are tightly related with the modeling of transport phe-
nomena in physics. In particular, the Euler equations are an hyperbolic conservation law, provided
the convexity of the EoS as studied in Chapter 5. In the three-dimensional Cartesian case for a
multi-component fluid, the conservative variables and the corresponding flux function read:

oY1 puYi pvYq pwYy
pPYN, . puYn, pUYnN, pwYn,
U= and F(U) pu® + P pvu pwu (4.2.11)
pU puv pv? + P pwv
pw puw pLrw pw? + P
pet (pet + P)u  (pey + P)v  (pey + P)w

with p the fluid density, u the velocity, e; the total energy e; = es + e., where the kinetic energy is

given by e. =

2

L1a2,

Note that it can be convenient to introduce the fluxes along each space dimension z,y,z, F, (U),
Fy, (U) and F, (U), which correspond to the columns of the flux tensor given in (4.2.11), so that
(4.2.4) can be rewritten as

0U | 0F,(U)  0F,(U) , OF.(U)

ot Ox Oy 9z 0,

(4.2.12)

which is a more adapted form for the subsequent developments.

4.2.2.1 Pseudo-linearized form in conservative variables

The numerical resolution of hyperbolic systems requires to analyse their characteristic structure. This
can be done by expressing the conservative system of equations (4.2.12) in a pseudo-linear form, which
writes

ou
ot

ou
ox

U
dy

ouU

+ A(U) o=

+A4,(U) - —— + A:(U) 0, (4.2.13)

where the matrices A, (U), A,(U) and A,(U) represent Jacobian matrices of the flux vectors along
each dimension. Only the expression of A, (U) is now presented, as the other Jacobian matrices can



88 4.2 Hyperbolic conservation laws

be derived from it by a permutation of the dimensions and the corresponding velocities. Its entries
read

(Ax (U))” = 8Uj

(4.2.14)

Uk;
and its expression can be determined by developing the differential of the conservative volume-specific
total energy d(pey), as

p (u2 + 0% + wg)
2

d(per) = d(pes) + d( ) = d(pes) +ud(pu) +vd(pv) + wd(pw) — e.dp, (4.2.15)

which, expressing the differentials of pes and p using (P, pY1, .., pYn,) as independent variables, yields

N
S| 0 (pes 0 (pes
d(pey) = Z é)(gY) — eC] d(pY;) + gpp ) dP+ud(pu)+vd(pv) +wd(pw). (4.2.16)
i=1 v IPpYjz: pY;

Introducing the coefficients ¢ and (;),_, . defined by

P
¢ = 0 , (4.2.17a)
apes p,Y;
dpes
&= ) (4.2.17b)
Yilp oy,
it comes that
Ns
d(pey) d(pY;) + = R dP +ud(pu) +vd(pv) + wd(pw). (4.2.18)
=1
and the Jacobian matrix finally reads
[ 1-Y)u ~Y.u Yy 0 0 0 |
—Yiu e (1-Yn,)u YN, 0 0 0
AU) = | 24 (e —&) - —u+Clee—én) (2-Ou —Cv —Cw ¢
—uv e —uv v U 0 0
—Uw e —Uw w 0 U 0
[ee—€)C—mJu o [lee—€x)C—hu ho—u( —Co —Cw (1+Qu
(4.2.19)

It is worth mentioning that the form of the Jacobian matrix expressed in (4.2.19) stands for any
thermodynamic closure. The expression of coefficients ¢ and &;, which somehow encapsulate the
thermodynamic closure of the system, can then be obtained by expressing the differential of the
sensible energy with respect to pressure and the quantities pY;. By (4.2.16) and (4.2.18), it writes

N
d(pe,) = %dPJrZ&d(pYi) (4.2.20)
i=1

In the case of a cubic EoS, this yields

d(pes) = pﬁcv dP + Z [vl — hs,i] d(pY;) (4.2.21)
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so that
(= p;‘c , (4.2.22a)
g =220 —h,,. (4.2.22b)
(0%

4.2.2.2 Pseudo-linearized form in primitive variables

In order to further analyze the characteristic structure of equation (4.2.12), it is convenient to rewrite
equation (4.2.13) in terms of the primitive variables V', defined by

_ o, _
Y
v=|"N (4.2.23)
v
w
P
This writes
v v ov ov

and the matrices B, B, and B, are obtained by means of a change of basis. The transformation matrix
Tvu associated with the change of basis is obtained from

oU;
= 4.2.2
L Visj
which yields
! 0 0 0 0 0]
0 1 0O 0 0 O
Tvu = u u p 0 0 O0f> (4.2.26a)
v v 0 p 0 O
(ec+&1) -+ (ec+&n,) pu pv pw %
and
o 0 O 0 0 0
- 0 1 0 0 0 0
Tov = TVU = _U/p R —U/p 1/p 0 0 0 (4.2.26b)
_v/p R _v/p 0 1/p 0 0
,w/p fw/p 0 0 1/p 0
_C (ec—&) -+ Clec—&n,) —Cu —Cv —Cw C_

The Jacobian matrices in primitive variables can then be computed as

B, (V) = TyA«(U) Tyu, (4.2.27)
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and one gets

u 0 oY 00 0
0 U pYnN, 0O 0 0
B.(V)=1l0 --- 0 u 0 0 Y, (4.2.28)
0 -~ 0 0 w 0 0
0 0 0 u
0 pC(hsfg> 00 u

with £ = Zf\; Y;&;. Once again, this form is generic and stands for any thermodynamic closure.

4.2.2.3 Characteristic form and the speed of sound
Finally, the characteristic form is obtained by diagonalizing the matrix B,, which boils down to
A:(W) =Tyw B(V) Twv. (4.2.29)

This implies that there exist a set of variables W such that the Jacobian matrix of the system is
diagonalizable in these variables. Such variables are called the characteristic variables.

In characteristic variables, the diagonal Jacobian matrix reads:

A, (W) = diag (u, 7u,u—1/C(h5—§),u+\/§(hs—f)). (4.2.30)

Here appears the speed of sound ¢y of the hyperbolic system (4.2.12):

e =1/C (h 75). (4.2.31)

This expression can be recast into the following form:

52 _ % . (4.2.32)
py \P" O ly

2 2
Ccir =c° +
H Oeg

with 2 = 22

the square of the isentropic speed of sound.

dp sY
Proof:
First, it can be shown that & = %ZS) v using equation (4.2.20), as

N

1 ~ 0 (pes)

d(pes) = = dP + d(pY7),

¢ ; 9pYi P,pYjzi
N N

1 . O(pes) ~ O (pes)

=-dP+)» Y, dp+p dy;
¢ ; OpYi P.pYii z:zl OpYi P.pYji




Chapter 4 - NUMERICAL METHODS FOR HYPERBOLIC CONSERVATION LAWS 91

N,—1
Since Y verifies Yy, =1 — Z Y;, this relation becomes
=1
N,—1
J (pes d (pes
d(pes) = = dP+§dp+pZ (pes) _ 9lpes) dy;,
¢ i=1 9pYi P,pYjzi OpYw, P.pYjzn,

in which the differentiating variables P, p, (Yi);_, . _; are independent. This directly yields

9 (pes)

£= o

(4.2.33)

PY

Then, using the definitions of ¢, one has:

2 opP P 9(pes)
CH == (Y - —
9 (pes) oY dp PY
1 0P n P Oeg
= - €s — — P — €5
p Oes Y P dp PY
_ P OP OP| Oes
p2 ey by  Oesly Oplpy
Using a classic result of differential calculus, one has gp %‘ =— %—P and
“ly P lpy Plesy
9 P oP oP
CH=—5 73— —
p? Oes|,y  Opl..y

Another classic rule of differential calculus states that

oP oP oP Os
%ESY:FP&X gﬁ»xaipes,x
so that
gD OP| L oP| oP| s
p? Oes pY op |, Os pY dp Y
_op| o (P Ocs| 0P| s )
oplsy Oesl,y \pP* 0P|,y O0s|,y Op|. .y
S (mes] ) )
plyy Oesl,y \pP* 0s|,y Opl. vy
_or| , or (  dey )
Oplsy Oesl,y \P*  Oply

Finally, this hyperbolic system speed of sound reads
9 oP

P Qe
_ 2 P Oes , 4.2.34
CH & + aes oY <p2 6p S’Y> ( )

Note that once again, this form has been obtained without any assumption on the thermodynamic
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closure. However, for a single-phase mixture, the term between parentheses is zero, by virtue of the
mass-specific Gibbs relation (2.1.25a), and the classic result is found: the sound speed of the hyperbolic
system is equal to the thermodynamic isentropic sound speed, so that the diagonal matrix of eigenvalues
reads

A (W) =diag (u, -+ ,u,u — c,u+c), (4.2.35)

the matrix of left and right eigenvectors being respectively given by

1 ... 0 v/ 00 0]
0 1 ~Yw/2 0 0 0
Tvw = | 0 0 10 0> (4.2.36)
0 0 0 01 0
0 0 Ype 00 —1
0 0 Ype 00 1
(1 .. 0 0 0 Mje Mo
. 0 1 0 0 PYN/2c PYN/2¢
Twv =Tyw = |0 0 0 0 re2 pefa | (4.2.37)
0 01 0 0 0
0 0 0 1 0 0
0 0 00 -1 1/2

4.2.3 The Riemann problem

The Riemann problem is a fundamental mathematical problem that is of major importance for the
understanding and the resolution of hyperbolic problems. It consists in an boundary value problem
(BVP) involving two constant initial states. For example in 1D, for (z,t) € R x RT by

U  9F (U)

ot or
U ifz <0,
U(z,0) = Ug(z) = { U; 23>0 (4.2.38b)

=0, (4.2.38)

where Uy, and Ug denote the constant left and right states respectively. For each component k €
[1, N¢] of the conserved variables, the initial state is illustrated by Figure 4.1.

U i
A
Uk

Ug.i

.
>

0 x

Figure 4.1: Typical form of the initial solution of the Riemann problem for any conserved variable (Uk)kG[[l,Nc]]'
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4.2.3.1 The Riemann problem for a linear conservation equation

When considering a linear conservation equation, the Riemann problem is formulated as

ou  _9U

o +e o = 0, (4.2.39a)
U ifz <0

U(z,0) = Ug(z) = { U; >0 (4.2.39D)

where C is a constant diagonalizable matrix. Denoting by A its eigenvalues matrix sorted in ascending
order, one has

C=RAL. (4.2.40)
The characteristic variables defined by W = LU are then solution of the equivalent BVP

oW OW
o ' AE - (4.2.41a)
W(z,0) = Wy(z) = { W, =LUg if z <0,

Wpgr=LUgifz >0, (4.2.41b)

which is a set of Ny independent equations equivalent to the linear advection equation (4.2.9). At
a given time ¢ and for each eigenvalue k € [1, Ni], the corresponding characteristic variable Wy, is
piecewise constant, and the position zy(t) where its value switches from Wy ; to Wy, g is given by
2 (t) = A\gt. This is illustrated by Figure 4.2 in the case Ny = 3. The solution of the Riemann problem
(4.2.39) is then obtained by a change of variable from the characteristic variables to the conservative
variables:

Ul(x,t) = R-W(z,t), (4.2.42)
where

Wy p if ¢ < Agt,

4.2.43
Wi g if 2 > Mgt ( )

Wk(l',t) = {

4.2.3.2 The Riemann problem for the Euler equations
4.2.8.2.1 Description of the Riemann problem

The Riemann problem for the Euler equations is now studied, and the main results are briefly recalled.
For the sake of clarity, all the notions introduced here consider a one-dimensional configuration and
a single-component fluid, so that the Euler equations reduce to a three-equation system. The reader
is referred to [Toro, 2013] and [LeVeque, 1992] for more details. The nonlinear nature of the Euler
equations does not allow for an analytical formulation of the solution. Also, unlike the case of linear
hyperbolic conservation equations, the Euler equations involve more complex waves. Three types of
waves are possible:

— Shock Waves (SW), which consist in a discontinuous wave associated with a genuinely non-linear
field corresponding to the eigenvalues u — ¢ or u + ¢. Along a shock wave, the characteristics
from both sides converge to the shock. Note that although a shock wave is associated with the
eigenvalue u — ¢ or u—+ ¢, its actual propagation speed is generally not equal to this characteristic
speed.

— Rarefaction Waves (RW), which consist in a continuous wave associated with a genuinely non-
linear field corresponding to the eigenvalues u — ¢ or u + ¢. The characteristics on both sides of
a rarefaction waves are divergent and are connected by a rarefaction fan.
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Figure 4.2: Riemann problem for a hyperbolic conservation law, with Ny = 3. Top diagram depicts the propagation of the
characteristics at different speeds A(; 2 3} in the (z,t) diagram. Bottom diagram shows the values of the characteristic
quantities at time t1 > 0

— Contact Discontinuities (CD), wave associated with the linearly degenerate field corresponding
to the eigenvalue u. Through a contact discontinuity, the pressure and velocity fields are constant
but the density field — or, equivalently, the entropy field — can be discontinuous.

Due to the conservation constraints, the propagation speed Ssw of a shock wave is connected to the
pre-shock and post-shock states, Upre and Upese by the Rankine-Hugoniot relation:

F (Upost) - F (Uprc) = SSW (Upost - Uprc) (4244)

The typical pattern of the Riemann problem for the Euler equations is depicted in Figure 4.3. While
the leftmost and rightmost waves (numbered respectively 1 and 3), corresponding to the genuinely
non-linear fields, may be either a shock wave or a rarefaction wave, the center wave (number 2),
corresponding to the linearly degenerate field, is always a contact discontinuity. The star region
denotes the area between the two non-linear waves. The left-star and right-star states U} and Up
denote the (constant) states on both sides of the contact discontinuity: these are the unknowns of the
Riemann problem.

The different wave configurations that can be encountered are summarized in Figure 4.4. Note that
the patterns 4.4a or 4.4c correspond to the physical test configuration of a shock tube, where the initial
velocities are zero.
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Figure 4.3: The Riemann problem characteristic pattern for the Euler equations. Curly lines are used to represent the
waves of unknown nature. The dashed line represents the contact discontinuity.
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(a) RW-CD-SW pattern. Obtained for instance (b) RW-CD-RW pattern. Obtained for instance
when P, > Pr and uy, = ugr when P;, = Pg and up, < ur
t
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(c) SW-CD-RW pattern. Obtained for instance (d) SW-CD-SW pattern. Obtained for instance
when Py, < Pr and uy, = up when Py, = Pr and uy, > up

Figure 4.4: The different wave patterns that are possible for the Riemann problem with Euler equations. Note that
depending on the flow velocity, the three waves can be on the same side of the t axis: only the order of the different
waves is important in this illustration and the case of a subsonic Riemann problem is arbitrarily chosen to display the
wave patterns.

4.2.8.2.2 Interest for the numerical methods

For finite-volume methods or discontinuous-Galerkin methods (see section 4.4) to quote but a few,
the solution is discontinuous across cells boundaries. In this respect, it is necessary to evaluate the
flux of conservative variables that flows across the cells boundaries during a time step. As depicted
in Figure 4.5, this situation can be interpreted locally as a Riemann problem. Indeed, although the
Riemann problem assumes constant states for x € |—o0,0[ and = € [0,400[, an analogue situation
is found when “zooming” enough on each cell boundary. As long as no characteristic wave resulting
from interactions with the neighbour intercells reach the considered intercell, the flux corresponds to
the physical flux at the considered intercell location x5 obtained by the resolution of the Riemann
problem. This is precisely the idea of Godunov, who proposed to evaluate the intercell flux, or numerical
fluz by solving for a Riemann problem between states U, and U.;; and estimating the flux flowing
through the cell boundary (corresponding to = 0 in the Riemann problem frame) during the time
step. The condition of non-interaction with the characteristic waves resulting from neighbour intercell
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Figure 4.5: Riemann problem representation of the intercell fluxes

Riemann problems is analogue to a CFL condition (see paragraph 4.3.3.3), which writes

vAt
— <1 4.2.4
Sy, (4.2.45)

with v the speed of the fastest traveling wave within the whole mesh.

In his seminal paper [Godunov, 1959], Godunov provides an efficient iterative method that resolves
exactly the Riemann problem. The value of the intercell lux Fgoq is then computed as

Faoa = F (U(0)) (4.2.46)

Despite its efficiency, the complexity and computational cost of this resolution can be reduced by
considering approximate resolutions of the Riemann problem. Some examples of this strategy are now

presented.

4.2.3.3 Approximate resolution and numerical fluxes

4.2.8.3.1 The Harten-Laz-van Leer (HLL) approzimation

The HLL approximate Riemann solver of [Harten et al., 1983] consists in approximating the Riemann
problem by a two-wave problem. The contact discontinuity is omitted and a single “star” state is
considered at the center region, as shown in Figure 4.6. This simplified representation of the Riemann

t
o>
<

U;ILL C‘)%

U
Ugr

X

Figure 4.6: Approximation of the Riemann problem solution by the HLL flux.

problem is actually based on the following observation: considering S; and Sk the fastest signal
propagation speeds to the left and right directions, the integral of the conservation law (4.2.4) over
the control volume [Spto, Srto] X [0, to] for any time ¢y > 0 reads

Srto Srto to to
/ U (z,to) dx—/ U (z,0) dx—f—/ F (U (Sgto, 7)) d’T—/ F (U (Spto, 7)) dr = 0. (4.2.47)
S Srto 0 0

Lto

This directly reduces to

Srto
/ U(l‘ﬂfo) =ty (SRUR—SLUL-FFL—FR), (4248)
S

Lto
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which, divided by the width of the wave signal of the Riemann problem ty (Sg — SL.) yields

— U (z,t0) = 4.2.49
to(SR*SL) (x 0) Sr—SL ( )

This quantity happens to be independent of the time ¢y, and defines the approximate intermediate
state Ujypp:

1 /SRt0 SrUr - S .U, +F;, —Fg
S

Lto

SRUR — SLUL +FL - FR
Sr—SL '

Ul = (4.2.50)

The intercell flux Fyrr, is then defined as
Fr ifo0< Sy,
FuiL = F;ILL if Sp, <0< Sg, (4.2.51)
Fr if Sgp <0,

where, unlike for the Godunov flux, the intermediate flux in the subsonic case Fij;, is not equal to
F (UfiLL), but to

e SrFr — SLFr+ SrSL (Ur — UL)
HLL = Sn_ 5. ;

(4.2.52)

which is obtained by applying the Rankine-Hugoniot jump relations across the left or, equivalently,
the right wave.

The estimation of the wave speeds is then the following:

{SL :maX{uR—CR,UL —CL}7 (4.2.53&)
Sr =max{ugr + cr,ur +cp}. (4.2.53b)

4.2.8.8.2  Approxzimate Riemann problem corresponding to the Rusanov numerical fluz

The previous approximate Riemann problem can be even further simplified, by considering a unique
fastest signal speed S for both sides, so that S = —S and Sg = +S. This provides the Rusanov
intercell flux, see Figure 4.7. As the propagation speed magnitude S should be an upper bound of

t
\& x%

*
URusanov

Uy
Ur

P4

Figure 4.7: Approximation of the Riemann problem solution by the Rusanov flux.

the actual propagation speed of information of the exact Riemann problem, the value used by [Davis,
1988] is the following:

S =max {Jur — cr|,Jur + crlJur — crl.Jur + crl} . (4.2.54)
One can also use [Toro, 2013]

S =max {Jur| + cr,Jug| + cr} - (4.2.55)
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Then, the intermediate state for the approximate Riemann problem is

1 1
U;{us = 5 (UR + UL) + g (FL - FR) ) (4256)

and from equation (4.2.52), the Rusanov flux is

* 1
FRuS = (FL + FR) - §S (UR - UL) . (4257)

N |

As they do not account for the presence of a contact discontinuity, approximating an intercell flux
by the HLL flux (4.2.52) or Rusanov flux (4.2.57) will strongly smear the information carried by the
linearly degenerate field at velocity u, especially when |u| < ¢. Next section describes another classic
approximate Riemann solver that restores the three-wave pattern, conform with the exact Riemann
problem.

4.2.3.3.3 The Harten-Laz-van Leer + contact (HLLC) approzimation

In order to provide a better representation of the approximate solution, [Toro et al., 1994] proposed
a three-wave formulation, improving the HLL approximation by restoring the contact-discontinuity
propagation. This strategy, called HLLC, is illustrated by Figure 4.8. The approximate solution of the
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Figure 4.8: Approximation of the Riemann problem solution by the HLLC flux.

Riemann problem is given by

UL if 2/t < Sp,

Ugrrer if Sp <2/t < Sfipre

U (z,t) = (4.2.58)

Ulinie,r i Sfinne </t < Sr
UR if SR S l‘/t

The center wave being a contact discontinuity, the states on both sides Uz and Ufypc g shall
have the same pressure and velocity

* * *
{UHLLC = UgLLC,L = YHLLC,R> (4.2.59a)

Piire = Piree,r = Piiee,rs (4.2.59b)

and the propagation speed of the contact discontinuity is the intermediate flow velocity Sfic =
URLLC:
The Rankine-Hugoniot relation (4.2.44) applied across the left and right waves yields

StUtinre,r — F(UfiLre,r) = StUL — F(Up), (4.2.60a)
SrUnire,r — F (UnLne,r) = SrRUR — F(UR), (4.2.60b)
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which can be expressed in terms of pressure relations

Pivre,r = Pr+pn (S —ur) (SfinLe — ue) (4.2.61a)
Piire.r = Pr+pr(Sr —ur) (SiLrc — UR) - (4.2.61b)

Using the pressure equality (4.2.59), the contact discontinuity propagation speed is finally

Pr — Pr, + prur (St —ur) — prur (Sr — ur)

S = 4.2.62
fLLe pL (S —ur) — pr (Sr — ur) ( )
The intermediate states are obtained using equation (4.2.60) and read
g [ PL
—u .
Ul = # PLSHLLC , (4.2.63a)
LTPHLLG pregr + (Sfinne — ur) (IOLS;ILLC + stfLuL)
g [ PR
—u «
Uh = # PRSTILLC . (4.2.63b)
BT PHLLC | prey g + (Stine — UR) (PRSﬁLLc + stfRuR)

The intercell flux is finally obtained, as for the Godunov flux, by taking its value at abscissa x = 0, so
that

Fr if 0 < S,
F 7 Fiprer  if S <0< Shirres (4.2.64)
e Firrer  if Sirne <0 < Sk, -
Fpr if Sgp <0,

and by conservation requirements, the HLLC fluxes for the intermediate states read, from the Rankine-
Hugoniot relation,

Fiien =77 (UL) + S (UI*{LLC,L - UL) ) (4.2.65a)

Fiavroe,r = F (Ugr) + Sk (UI*{LLC,R - UR) . (4.2.65b)

4.2.8.8.4 The Roe fluzx

The last intercell flux to be presented in this section is the Roe fluz [Roe, 1986]. Such method is for
instance applied, in a multifluid context, in the work of [Allaire et al., 2002]. It relies on a philosophy
different from the previously described approximate Riemann solvers. In a nutshell, it consists in
reformulating the exact Riemann problem by writing the conservation equation in its quasi-linear
form:
ou ou
5 + A, (U) I =0, (4.2.66)

and approximating the jacobian matrix of the flux function A, as being constant:
A, (U) = A,, (4.2.67)

where the constant value is estimated from the left and right initial states A, = A, (Ur,Ug), and
verifies the consistency condition A, (U, U) = A, (U). The obtained Riemann problem is then solved
ezactly, as it consists in a linear Riemann problem, similar to (4.2.39).
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The comprehensive derivation of the Roe method can be found in [Toro, 2013], and the resulting
numerical flux can be written under the following form:

[F(UL) +F(Ug)] - %R(UL, Ur), (4.2.68)

DN | =

FRoe =
where R is given as a function of left and right states of the Riemann problem:
1 ¢, 1
R(UL,Ug) =lu—c"[& | u—c" | +u| [{u| +|u+c|€s | utc” (4.2.69)

htot —uc* B htot + uc*

In the above expression, the coefficients (§;);=1..5 and B are defined by

1 *
fo =52 (AP~ pe*au) (4.2.70a)
AP
& =A0) ~ (4.2.70D)
1 *
fo =52 (AP + pe*Au) (4.2.70¢)
u? hy
C

with the jump Ay for any quantity ¢ defined by Ay = ¢r — @1, the Roe mean values

VPLPL + \/PR‘PR7 (4.2.71a)

I VPL + /PR
o= VPLPR +/PRYL . (4.2.71b)

JPL + /PR

Different choices are possible for the speed of sound. Since the Roe flux is used in the present work
to reproduce some results of [Allaire et al., 2002], the same approximation is used, which reads

* @ . _ a(pes)
= & with ¢ = 9P )

(4.2.72)

At this point, the main properties of hyperbolic conservation laws have been introduced, and the
approximate Riemann solvers that are extensively applied to solve multifluid diffuse interface models
have been presented. The next section introduces the important concepts and notations that will be
used for the different numerical methods.

4.3 Numerical methods: preliminary definitions

4.3.1 Discretization

Finding an analytical solution to the initial value problem (4.2.5) is generally not possible, especially
for multidimensional cases. A common strategy is then to solve the problem approximately. This can
be done by introducing an approximate solution space VA, in order to represent the solution by means
of a finite set of values to be determined computationally. This set of values is called the degrees of
freedom (DoF) of the solution.
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The DoF can represent the values taken by the solution field at given spatial positions and given times,
which corresponds to a nodal discretization. Instead, the DoF can consist in the scalar coordinates of
the numerical solution in a chosen functional basis of a finite-dimensional space, typically a polynomial
basis (e.g. Legendre polynomials up to a certain order), or a trigonometric basis. This formulation is
called a modal discretization. The approximate finite-dimensional space YA must then be provided
with an approximate form of the differential operators constituting the hyperbolic conservation law
(possibly written under its weak form, as presented in paragraph 4.4.2.1.1).

This whole procedure is called a numerical method. Note that for finite-element methods, the approx-
imate space for the test functions may be either Vo (which corresponds to the Galerkin method, see
section 4.5.1) or a different finite-dimensional space (as for the Petrov-Galerkin methods, see e.g. [Donea
and Huerta, 2003]).

Although there exist spectral methods that use a global modal discretization of the domain, most
methods are based on a spatial division of the fluid domain €. Such division, called the mesh or the
grid, is described by a vocabulary and various features that are now briefly introduced.

4.3.1.1 Computational meshes

A computational mesh is defined as a tessellation Ty, of the fluid domain Q. In other words, it is a set
of elements € such that

o= e, (4.3.1a)

EeTy,
V(E,E) eTr, €#€& = dim(ENE') <dim(Q). (4.3.1b)

Although there is no theoretical limitation in the geometric nature of the mesh elements &, all elements
considered in this work are delimited by straight lines: polygons in 2D, polyhedrons in 3D. The volume
enclosed in the e element &, is denoted V..

Two families of meshes are defined depending on the nature of the arrangement of the elements:

— structured meshes consist of elements defined by a division of the domain € from a collection
of regular lines or planes. In a structured mesh, all the vertices are surrounded by a constant
number of neighbouring elements (except at the boundaries). The numbering and identification
of the elements (or vertices) and their neighbours is straightforward, as depicted in Figure 4.9a;

— unstructured meshes consist of a collection of elements in which the different vertices can have
various numbers of direct neighbours. Unstructured meshes require to store the position and
neighbours of the elements in a connectivity table. The use of such meshes generally restricts
the choice of numerical schemes to the ones of compact stencil (see paragraph 4.3.3.1), as it is
cumbersome and computationally expensive to find indirect neighbours of a cell or a node.

Structured meshes are very convenient for academic studies and the development of numerical methods,
as they are straightforward to implement and use. Although slightly more complex geometries than
a mere rectangle can be discretized using a structured mesh, e.g. by defining multiple structured
patches, their use is very limited regarding industrial configurations that involve complex geometries.
Unstructured meshes are best suited in this case, and they also offer more flexible local mesh refinement
capabilities.

Some useful notations are now introduced regardless of the considered type of mesh. For a vertex ¢, its
neighbouring elements (or, by abuse of language, its direct neighbour vertices) are denoted D;. Every
node i is associated with a dual cell C; (by opposition to the primal cells £). Different methods can
be used to construct the dual cells. A common and simple one is to join the middles of the edges
connected to ¢ with the centroids of the elements of D;, as displayed in Figure 4.10. Note that the set
of dual cells forms the dual mesh which also verifies the definition (4.3.1).
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(a) Structured mesh defined by two collections (b) Unstructured mesh. The red and blue ver-
of vertical and horizontal lines. A vertex and its tices have different number of direct neighbour
neighbours can be easily identified by numbering elements.

the lines of each collection. All vertices (except
at boundaries) have four direct neighbour ele-
ments.

Figure 4.9: Structured and unstructured quadrangular meshes.

Figure 4.10: The dual cell associated with node i. The neighbour nodes ji,...,j5 € D; are represented. They are
connected by thick lines representing the primal mesh. Thin lines correspond to the dual mesh.

4.3.2 Representation of the solution

Once the geometry of the mesh has been defined, various options still remain to define the finite-
dimensional approximate space Va, as different sets of degrees of freedom (DoF) may be picked. The
different options are typically split into three families:

— cell-centered methods describe the solution properties cell by cell. The most common cell-centered
methods are finite-volume (FV) methods, for which the DoF correspond to the mean (integral)
value of the conserved variables within each cell, as illustrated by Figure 4.11a. Higher-order
representations of the solution within each cell are possible, e.g. in the framework of discontinuous
Galerkin (DG) methods, which rely on a cell-wise polynomial representation of the solution using
additional DoF within the cell. These methods are further described in section 4.4;

— wertex-centered methods, illustrated in Figure 4.11b, are the methods that represents the solution
by its values at the mesh nodes. This is typically the case of finite-difference methods, as well as
Galerkin methods, also called finite-element (FE) methods. These methods are further described
in section 4.5;

In this manuscript, only piecewise-polynomial representations of the solution are considered.
Although this way of sorting the numerical methods is convenient for their description, the difference
between them appears somehow blurry. For instance, it has been shown by [Mavriplis and Jameson,
1990] that, considering a regular triangular mesh in 2D, the P;-Galerkin method is equivalent to a
finite-volume method applied on the dual mesh.
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e
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(a) Cell-centered method (b) Vertex-centered formulation

——\

Figure 4.11: Illustration of the control volumes (filled areas) and data points (red dots) corresponding to different
formulations.

4.3.3 Properties of the numerical methods

4.3.3.1 Stencil

For a given DoF 1, the set of nodes that are used to compute the update u?“ is called the stencil of

the numerical method. According to formula (4.3.11), it corresponds for a given i to the ensemble of
DoF j such that ¢;; # 0. A stencil is said to be compact when the update of the solution at a given
DoF ¢ only depends on its direct neighbours D;.

The compactness of the stencil is an important feature in the context of unstructured meshes and
parallel computing, as it can be cumbersome and expensive to gather the values of the solution at
indirect neighbour DoF for non-compact stencils.

4.3.3.2 Numerical errors
4.8.8.2.1 Global error and consistency

For any kind of discretization and numerical scheme, the solution is expected to be closer and closer to
the solution as the number of DoF increases. This property is called the consistency of the numerical
method. The global error is measured as

e =[Ua - U], (4.3.2)

with U the exact solution and U, its discrete approximation obtained from the numerical method.

As the DoF are associated with a spatial discretization, the number of DoF can be associated with
the characteristic length of the mesh cells Az — provided the uniformity of the mesh refinement. The
spatial and temporal orders of a numerical method are the exponents r, and r; such that

eg = O(Az") where Az — 0, (4.3.3a)
ez = O(At™) where At — 0. (4.3.3b)
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4.3.8.2.2  Projection and truncation errors

To analyze the numerical error, it is relevant to introduce the projection of the exact solution over the
approximate space Pa (U). Applying the triangle inequality, the global error €, can then be decomposed
into

€g < €p + €, (4.34)

with
ep =[|[U - Pa(U)], (4.3.5a)
e =||Pa(U) — Ual|. (4.3.5b)

The error ey is called the projection error. It is typically dominated by AzP*!, where p is the polynomial
order of reconstruction of V. It measures the ability of the discrete solution space to approximate
accurately the exact solution.

The error ¢ is called the truncation error. This error measures the ability of the numerical method to
compute accurately the evolution of the discrete solution.

Asymptotically, a numerical method of order r, is then a numerical method for which both the pro-
jection and truncation errors decrease with rate r,, i.e.

ep <O(Az"™) and € < O(Az"*) when Az — 0 (4.3.6)

4.3.3.3 Stability

A numerical method is said to be stable when the discrete solution remains controllable, in the sense
that it does not blow up to infinity. This condition reads

3C>0 :VneN, |U"| < CHUOH (4.3.7)

with ||| a chosen norm over the finite-dimensional space Y, for instance a component-wise £X-norm,
K e N*:

l/K
NDoF K
T = | D07 : (4.3.8)
i=1
or the £°° norm:
U™|,, = max [U?|. 4.3.9
[0 =, max U] (139)

The stability of the numerical methods may depend on the time step At. For explicit hyperbolic
numerical methods, a linear stability condition can generally be formulated as a condition on the
Courant-Friedrich-Lewy (CFL) number nc, defined as

vAt
e = Ag (4.3.10)

with Az the mesh spatial step and v the spectral radius of Jacobian matrix of the physical flux F.
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4.3.3.4 Realizability of the solution

In addition to the order of accuracy, the stability and the convergence properties of the numerical
method, which are genuinely mathematical notions, a numerical method for a flow problem should
respect physical constraints. In particular, the pressure and density should remain positive quantities
and the mass fractions — of the species and the possibly transported phases — should remain within
[0,1]. Such constraints are referred to as the realizability constraints.

Consider now an explicit conservative numerical method of a scalar conservation law, assuming the
following form for the update:

Vie Mmoo, wt = + At ey (u) (= 7). (13.11)
J#i

The following introduces some relevant properties of numerical schemes. For the sake of simplicity,

they are introduced in assuming a one-dimensional context.

4.8.83.4.1 Monotone schemes

Following the nomenclature of [Hirsch, 1997], section 21.2, a numerical method of the form

up ™t =N; (u") (4.3.12)
is said to be monotone if
ON;
Vi € [1,npor] , : >0, (4.3.13)
Buj .
(uk)k;éj
which can be rewritten, using (4.3.11), as
Y (i,5) € [1,npor]”, ¢y > 0. (4.3.14)

4.8.3.4.2  Total variation diminishing (TVD) schemes

A numerical method is said to be total variation diminishing (TVD) if the total variation TV of the
approximate solution decreases along iterations. The total variation TV (u) of a scalar field u is defined

by
TV (u) = /Q

For example, for a piecewise-linear solution, the discrete total variation of the approximate solution
u™ reads

ou

—| dz. 4.3.1
| 4 (4.3.15)

Nnpor—1

TV@W") = > |uly —u}]. (4.3.16)

i=1
The TVD property of the numerical method then reads:
TV (u™) < TV (u™) < TV (u°). (4.3.17)

4.3.8.4.3 Monotonicity preserving schemes

A numerical method is said to be monotonicity preserving if for any monotonic discrete solution u™, the
update is u"*! is a monotonic discrete solution. Monotonicity preservation is equivalently characterized
by the two conditions: no new local extrema in x can be created as time evolves; the value of a local
minimum is non-decreasing and the value of a local mazimum is non-increasing.
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4.8.8.4.4 Hierarchy of the monotonicity properties

It is interesting to point out that the monotonicity properties can be ordered as follows (cf. [Hirsch,
1997], chapter 21):

{Monotonicity preserving schemes} - {TVD schemes} - {Monotone schemes}. (4.3.18)

4.8.8.4.5 Godunov’s theorem

A numerical scheme is said to be linear if the coefficients (cij) (i)e[1npor]? A€ independent of the solu-

tion. For instance, the first-order Godunov-like schemes of section 4.4.1.2, the Galerkin-Runge-Kutta
and Taylor-Galerkin schemes of sections 4.5.1.2.2 and 4.5.1.3, and the Runge-Kutta Discontinuous
Galerkin schemes presented in 4.4.2 are linear.

Linear schemes are convenient regarding the relative simplicity of their formulation. Nonetheless, an
important drawback is formulated by Godunov’s theorem, which states that a monotonicity preserving
linear scheme is at most first-order. In other words, the use of linear scheme implies a choice between
having a high-order scheme or a monotonicity-preserving scheme.

4.4 Cell-centered methods

4.4.1 Finite-volume methods

4.4.1.1 Finite-volume discretization

Finite-volume methods consist in approximating the solution by its mean value over an element. The
discrete solution is then piecewise constant and the value taken in a cell €, is:

U.(t) = Vi /{E U (z,t) dV. (4.4.1)

Integration of the conservation law (4.2.4) over a cell &, reads:

ou, 1 - B
5 +V€/8€V~]-'(U(x,t))dVO. (4.4.2)

Applying the Green-Gauss theorem yields

9U. + i/ F (U(z,t)) -d8 = 0. (4.4.3)
&,

ot Ve
The ordinary differential equation (4.4.3) is then discretized by a Forward-Euler method!

urtt =ur - g/ F (U(z,t)) -7 d8. (4.4.4)
Ve &,
Under the piecewise-constant representation of the solution, the evaluation of the flux at the cell faces
is not trivial, since the solution is discontinous at such point. In this respect, the normal flux across
the interface between two cells €. and €y is approximated by a numerical flur F (Ue, U f,ﬁ). This
numerical flux is said to be consistent with the physical flux, if

YU, Vi, F(U,U,i)=FU)- 7. (4.4.5)

This implies that the spatial discretization is consistent in the sense of 4.3.3.2.1. Different choices of
numerical fluxes are then possible, as described in the next paragraphs.

INote that instead of this latter first-order time marching scheme, higher-order Runge-Kutta methods (given in
Appendix C) can be used in conjunction with high-order spatial reconstruction to achieve higher-order accuracy.
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4.4.1.2 Godunov-like methods
4.4.1.2.1 The Godunov method

The Godunov method corresponds to the finite-volume discrete scheme (4.4.4), written

UZ+1 U - g F (Ue,Uf,ﬁ) Sefs (4.4.6)
Ve EfENe
where S.r is the area of the face separating cells £, and €, and 7 the normal vector, pointing
from €. to €y. The solution being discontinuous at the cell faces, the idea of Godunov [Godunov,
1959] is to interpret this configuration as a Riemann problem across the cell faces, as mentioned in
paragraph 4.2.3.2. The numerical flux F (Ue, Uy, ﬁ) is then the physical flux F at the face position,
as given by equation (4.2.46). It is obviously consistent.

This numerical method is stable under the CFL condition n¢ < 1.

4.4.1.2.2  Approximate numerical fluxes

In order to lighten the computation effort needed to evaluate the numerous numerical fluxes, approxi-
mate Riemann solvers can be used. In particular, description of the Harten-Laz-van Leer (HLL) flux
is provided in paragraph 4.2.3.3.1, and description of the HLL + contact (HLLC) flux is provided in
paragraph 4.2.3.3.3. An even simpler — yet the most diffusive — numerical flux is the Rusanov flux
which is mentioned in paragraph 4.2.3.3.2.

The interested reader shall find a rather comprehensive description of the various intercell fluxes
in [Toro, 2013].

4.4.1.3 Higher-order methods

The Godunov-like methods described above are very robust shock-capturing methods. Nonetheless,
they are only first-order in space [Toro, 2013]. It is yet possible to formulate higher-order methods in
the finite-volume context. This is typically done by improving the local representation of the data.

4.4.1.3.1 Monotonic upwind schemes for conservation laws (MUSCL)

The monotonic upwind scheme for conservation laws (MUSCL), proposed by Bram van Leer in [van
Leer, 1979], uses the values in neighbour cells to reconstruct a piecewise linear approximate solution.
For the sake of clarity, it is presented here in a one-dimensional context. The domain Q = [0, L] is

discretized into cells &, = [ze_l/g, xe+1/2} of length Ax = L/ng, with e € [1,n¢]. The abscissas of

the bounds of the elements are .,/ = eAz and their center is located at z. = (e + 1/2) Az,

In the one-dimensional scalar case, the reconstructed solution reads

T — T
Az

where o' is an evaluation of the local variations of the solution, typically

ue () = ug +

oy for x € |:£L'e_1/2,$e+1/2:| (4.4.7)

O = Uy — Uy (4.4.8)

The reconstruction is depicted in Figure 4.12.

As the reconstruction yields non-constant states within the cells, the Godunov strategy can be adapted
to the generalized Riemann problem as evoked by [Toro, 2013]. Yet, simpler formulations allow to elude
the resolution of the generalized Riemann problem. This is the case of the MUSCL-Hancock scheme,
which consists in the following steps
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Aup

_x
Le—1 Te Te41 -
Figure 4.12: Piecewise-linear MUSCL reconstruction for a scalar solution.
(i) reconstruct the piecewise-linear solution by
oy oy
ub =ut — == wf = =5, (4.4.9)
2 2
(ii) estimate intermediate state at time At/2
At
~L L L R
Uy, = u, + AL []-" (%) - F (ue )] , (4.4.10a)
At
~R R L R
Uy = U, + AL {]—' (%) - .7-'(u6 )} , (4.4.10b)

(iii) solve for the Riemann problem (4.2.38) — either exactly or approximately — at face x.yq/2 with

left and right values @, ut +1 to get the intercell flux F /s,

(iv) update the solution with

At
uptt = = 2 [Feays - Fe_m} . (4.4.11)

4.4.1.8.2  Slope limitation

Reconstructing the slope with formula (4.4.8) yields a solution for which the total variation is generally
higher than the total variation of the piecewise-constant solution. This may imply overshoots and
undershoots of the solution, in particular near local extrema. The global consequence of this issue
is that the scheme produces spurious oscillations that pollute the solution and may violate some
realizability constraints.

This unwanted behaviour is prevented by guaranteeing a reconstructed solution with total variation
smaller than the piecewise-constant solution. Instead of using directly formula (4.4.8) to evaluate the
local slope ¢, the following limitation is performed:

or = o(ry) (ugyr —ul) (4.4.12)
where ¢ : R — R is the slope limiter and r” denotes the slope ratio

ulr —ull
rp= (4.4.13)
ueJrl — Ue
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Different choices of slope limiters are possible. To quote but a few:

minmod: ¢ :r > max {0, min {1,7}}, (4.4.14a)

superbee: ¢ : 7+~ max {0, min{1,2r}, , min{2,r}}, (4.4.14b)

overbee: ¢ 7+ max {0, min{2,2r}}, (4.4.14c¢)
rtlr]

Leer: T . 4.4.14d

van Leer o T ( )

It is worth to mention that any negative value of the ratio r yields a zero value of the slope, which
means that any local extremum (corresponding to 77 < 0) will lead to a locally constant reconstruction,
preventing further increase of the local extremum, but capping at first-order the accuracy of the
scheme at extrema. The various choices of the slope limiters can be represented in a Sweby diagram
from [Sweby, 1984], see Figure 4.13. In particular, the higher the values of a slope limiter, the more anti-
diffusive the obtained scheme will be. Conversely, lower the values of the limiter mean higher numerical
diffusion. In this respect, the minmod and superbee limiters yield respectively the most and less
diffusive methods among second-order TVD schemes. As mentioned in paragraph 3.3.2.3.2, [Chiapolino
et al., 2017] give up the second-order reconstruction for the liquid volume fraction in the 5-equation
model (3.3.12) and prefers the overbee limiter, which is the most antidiffusive TVD limiter.

21 ;
= =
T
E /’I B S 4 >4
< ‘,’ . ....... ‘
s o
5 1 Bl -8 880
é —0- Minmod
- e --B-- Superbee
N
(@ —o— QOverbee
//0 ~4 van Leer
/
0¥ ! !
0 1 2 3

slope ratio r

Figure 4.13: Sweby diagram [Sweby, 1984]. Any limiter lying within the filled region is TVD. In addition, any limiter
lying within the hatched region provides a second-order reconstruction.

4.4.1.8.8 A word on higher-order F'V methods

There exists a zoology of higher-order FV methods. In the framework of MUSCL, higher degree
polynomial reconstructions may be considered. Quadratic functions are used in the piecewise-parabolic
method proposed by [Colella and Woodward, 1984]. The ENO and WENO methods of [Harten et al.,
1987] provide a framework for arbitrary-order polynomial reconstruction, adapting the reconstruction
stencil to prevent numerical oscillations.

On the other hand, a more recent method called multidimensional optimal order detection (MOOD)
method [Clain et al., 2011] achieves monotonicity by a posteriori limiting the order of reconstruction
within each cell. Starting from a polynomial reconstruction of degree p of the solution, the update is
evaluated. If an increase of the total variation is detected on the obtained update, the degree of the
reconstruction is decremented. The update is re-evaluated, until a solution is found which does not
increase the total variation.
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4.4.2 Runge-Kutta discontinuous Galerkin (RKDG) methods

The family of Runge-Kutta discontinuous Galerkin methods is now presented [Cockburn and Shu,
1998]. Tt conmsists in representing the solution by a polynomial function within each cell, without
requiring the solution to be continuous across the cells boundaries.

RKDG methods provide a convenient framework to achieve high-order transport, which will be useful
for the developments led in Chapter 8. First, the derivation of the RKDG method is presented in
section 4.4.2.1. This is done in a one-dimensional context, although the formalism allows for multi-
dimensional methods if considering multidimensional polynomial functions [Cockburn and Shu, 1998].
Then, in section 4.4.2.2, test cases and a convergence study are led to validate the implementation of
this numerical method, which be used later in this manuscript.

4.4.2.1 Derivation of the method

4.4.2.1.1 Weak formulation

In order to derive discontinuous-Galerkin methods, the first step is to express the PDE (4.2.4) in a
weak form, considering the functional space

V= {q§ 1 Q — RM | ¢ € CH(R) is of compact support} . (4.4.15)

A function ¢ : © € R? — R is said to be of compact support when there exists a compact — i.e.
closed and bounded — subset Qgupp C 2 such that:

Vo € QN Qeupp, ¢(z) = 0. (4.4.16)

For the sake of clarity, boundary conditions are ignored for the moment. One may for example claim
that the space domain 2 is periodic. The problem is reformulated as:

Find U such that for any test function w € V,Vt € R},

/Q (wa;tj + wia (giU))> dz = 0. (4.4.17)

Applying an integration by parts, one obtains the weak formulation of the problem:

Find U such that for any test function w € V,Vt € R},

/Q <waU _ 8w]—"(U)> dz =0, (4.4.18)

Let (1§)i=1.., denote a basis of PP(£,), the vector space (of dimension p + 1) of degree p polynomials
over element &.. Such basis allows to define the finite dimensional vector space

p
V.= ¢e 2 & — R, (be = Xe Z z’evie ) (vie)ie[[O,p]] € Rp+1 ) (4419)

=0

with x. the characteristic function of element E., defined by

(2) = 1 if x € &, (4.4.20)
Xel®) = 0 otherwise. o
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An approximate solution of (4.4.18) can be obtained by projection of the solution onto the finite
dimension space

n p
VA= QI) Q= R7 ¢ = ZX@ sz’evie ; (’Uf)ie[[l,p]],eeﬂl,neﬂ € R(p+1)><ne ; (4421>

using the polynomial basis (1§ );c[o,p] as test functions.

The weak form (4.4.18) then yields the following semi-discrete problem:

Find Ua(x,t) ZXG Z ()U3(t) such that

_ due OF (Up)
1..n° .. Cap J e =0.
Ve € {1..n°},Vi € {0..p}, jz:o(/‘ge?%w]dx) P —&-/521/)1 pe dzx =0

Integrating by parts the flux divergence integral yields:

(4.4.22)

JZ (/ s dx) —+ [¢5 (2)F (Ua) (@)] 707 —/ge]-'(UA) aaj dz =0, (4.4.23)

® ®

where the first term @ involves the mass matrix M, over element &., the entries of which read

Mij :/ wfw;dx (4424)
ge

The second term represents the border terms, while the volume terms correspond to the last term

4.4.2.1.2  Volume integral

The flux function in the volume integral is approximated by its projection over Va:

F (Ua(z,t)) ZXEZ¢ (4.4.25)

and the volume integral can then be evaluated thanks to quadrature rules using change of variable

~ _ 2(z—ze) .
==L

/ Z we ZF / %zf ¥¢(2(2)) dz (4.4.26a)

eJ 0

e

Z Z o (2(2q)) Y5 (2(Z4))wq, (4.4.26b)

where %, and w, are respectively the n® quadrature points in the reference element [—1,1] and the
associated weights. Details on the quadrature methods are given in appendix C.2. Gauss-Legendre
quadrature are used here, as they provide a high degree of evactness (equal to 2n% — 1).

The polynomial approximation of the flux function (4.4.25) is made so that the right hand side of
(4.4.26b) can be precomputed. Of course, such approximation is not mandatory, and one can instead
compute at each time step the volume terms of (4.4.23) with a numerical quadrature.
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4.4.2.1.3 Border terms

Border terms in (4.4.23) require to evaluate the flux at the faces? of the elements. The jump in
cell values can be treated as a Riemann problem that may be solved exactly or approximately. The
resulting numerical flur is then used at element faces. In the present work, either the HLLC flux or
the Rusanov flux are used (cf. section 4.2.3.3).

Note that the one-dimensional context greatly simplifies the border terms evaluation. Indeed, in the
multi-dimensional case, the border terms evaluation require to compute the integral of the numerical
flux over the boundary, along which the solution varies, e.g. by means of a quadrature rule.

4.4.2.1.4  Choice of the polynomial basis

The choice of the polynomial basis can follow two strategies. The first possibility, called nodal DG
methods, use a Lagrange polynomial basis. In this case, the coefficients U7 correspond to actual values
of the solution at some chosen nodes for each element e € [1,ng], (as In this context, the basis

functions ()

?)
v/4€[0,p]"
1[0 plee[Lime] representation of degree p is given by

x — x¢

b= [ =—=- (4.4.27)

x¢ — x¢
jelop] * J
J#i

As the Lagrange polynomials are not orthogonal in general, the mass matrix will not be diagonal.
Yet, since the choice of the Lagrange polynomials nodes is free, two possibilities will enhance the
computational efficiency:
— defining Lagrange nodes at Gauss-Legendre quadrature points for an efficient computation of the
volume integral term,
— defining Lagrange nodes at Gauss-Lobatto quadrature points for an efficient computation of edge
values, as edge points belong to the set of Gauss-Lobatto quadrature points.
Conversely, if the polynomial basis does not correspond to the Lagrange polynomial at the DoF, it is
called a modal DG method. In this context, one can choose — although this is not mandatory — an
orthogonal basis, which leads to a convenient diagonal mass matrix, that can be costlessly inverted.
For instance, one can choose the orthogonal family of Legendre polynomials:

Ps = %Z (Z) (z—1)"""(@+ 1. (4.4.28)

=0

Despite its computational advantage for the mass matrix inversion, it requires a computational effort
to evaluate the physical fluxes at Gauss quadrature points for the volume integral and for the boundary
terms calculation.

4.4.2.1.5  Summary

In this work, the following choices are made:

— The polynomial basis used to represent the approximate solution is the Lagrange Polynomials
set defined at Gauss-Legendre quadrature points,

— The Numerical Flux used is the Rusanov Flux.

2Note that the faces reduce to points in one dimension and to lines in two dimensions.
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4.4.2.2 Convergence order and validation

The error of a RKDG method in space evolves with a rate of convergence of O(AzP*1), for a PP DG
space discretization. The rate of convergence time is given by the order of the RK method. In practice,
a RK-(p+ 1) method is used to achieve space-time convergence of order (p+ 1) [Cockburn et al., 2000].

In order to validate the implementation of the RKDG method, mesh refinement numerical experiments
are led to verify that the theoretical convergence order is achieved by the solver.

4.4.2.2.1 Linear advection

The initial profile 4o used to test the RKDG with linear advection is up(z) = 1+ f(z) with the following
profile function:

[cos (27 (x — 0.5))} ’ if € [0.25,0.75],

flx) = (4.4.29)

0 otherwise.

Such profile has a C® regularity, allowing to perform high-order convergence analyses. Test cases are
made on a unitary-length periodic domain. The constant advection speed is ¢ = 1 m/s.

The results of the linear advection using RKDG schemes from order 1 to 3 are depicted in Figure 4.14.
For all three simulations, the spatial discretization consists in 20 elements. The CFL number for
all simulations is c¢fl = 0.2. The first-order RKDG method is equivalent to a finite volume method
with the Rusanov flux, which is also equivalent for the one-dimensional linear advection case to a
finite-difference upwind scheme in space with a forward-Euler time-marching. It is then natural to
obtain a bounded solution that is highly diffused in Figure 4.14a. The second-order scheme, using P!
elements, is much less diffusive but introduces a dispersion error. It is not monotonicity-preserving but
guarantees a higher-fidelity transport, as illustrated in Figure 4.14b. Finally, the third-order scheme is
even more accurate. Like the second-order scheme, it is not monotonicity-preserving, although neither
overshoot nor undershoot are clearly visible in Figure 4.14c.

The convergence rate of the different methods is evaluated numerically. The results are depicted in
Figure 4.15. The expected orders are retrieved, validating the implementation of the method.

The similar validation strategy is then applied in the case of Euler equations.
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Figure 4.14: Linear advection snapshots taken at t =0, t =1/2 and ¢t = 1.
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Figure 4.15: Convergence order for the linear advection equation. From top to bottom, the convergence results for
RKDG1, RKDG2 and RKDG3 are displayed. The columns correspond, from left to right, to the Li-norm, the La-norm,
and the Loo-norm. Dashed lines correspond to the expected slopes of order 1 in blue, 2 in orange and 3 in green.
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4.4.2.2.2  Euler equations

The test configuration which is now considered is the transport of a regular density perturbation in a
domain with constant pressure and velocity.
The NASG EoS presented in section 2.2.3.2 is used as the thermodynamic closure for the validation

test. The coefficients chosen are those of liquid Os, taken from the data provided by [Le Métayer and
Saurel, 2016] and displayed in table 4.1.

P [Pa]  b[m® kg™'] ¢ [J-K'-kg™'] v eo[J-kg ]

liquid 2036 x 10° 4.57 x 1074 791 2.2 —290222
vapour 0 0 299 1.85 29274

Table 4.1: NASG coefficients for Os.

The length of the periodic domain is L = 1 m. The initial density profile is given by

po(x) = py + paf(), (4.4.30)

with f(z) the regular profile given in (4.4.29). The numerical values are chosen to be in the liquid
phase according to [Le Métayer and Saurel, 2016], that is p, = 1100 [kg - m~3] and pa = 100 [kg - m~3].
The initial pressure value is Py(z) = 10 bar and the initial velocity is ug(z) = 20 m/s.

The number of elements in the mesh is n, = 20. Simulations are run using RKDG1, RKDG2 and
RKDGS3 schemes, with a Rusanov numerical flux. The results are displayed in Figure 4.16. Since the
velocity and pressure fields are preserved up to machine error, they are not displayed. As for the linear
advection case, the first-order scheme is diffusive. Actually, the amount of numerical diffusion is much
higher than for the linear advection case and a flat profile is already obtained after advection over half
the domain length. This is due to the use of a Rusanov flux, which achieves upwinding by adding
enough diffusion to compensate the highest propagation speed of information, which is u + ¢ in this
case. As the speed of sound is such that ¢ > u here, the numerical diffusion flattens the solution.

The numerical diffusion for the first-order scheme can be reduced by computing more accurately the
solution of the Riemann problem at the interface between cells, using for example a HLLC solver [Toro
et al., 1994]. Yet, as the object of this study focuses mainly on higher-order transport, the Rusanov
flux is sufficient to carry out the study as high-order space discretization is achieved by the high-order
polynomial representation of the solution.

Once again, the second-order scheme displays a better fidelity but has a relatively high dispersion
error. The third-order is naturally even more accurate, almost exactly fitting the analytical solution.
This is an noteworthy behaviour of the high-order methods: despite the high difference between the
transport velocity and the highest characteristic velocity, the high-order representation of the states at
elements boundaries prevent the smearing of the solution despite the use of a very diffusive numerical
flux.

The errors after 50 ms evaluated with the Li-norm, Lo-norm and L.,-norm are computed for all three
conservative variables (p, pu and pe;). The results for the second-order and third-order RKDG schemes
are displayed in Figure 4.17. The observed convergence rate is in agreement with the respectively
expected second- and third-order. This validates the implementation of the RKDG method with the
Euler equations.

4.4.2.3 A word on high-order positivity preserving DG methods

As the positivity preservation is an important issue in the numerical resolution of flow models, positivity
preserving schemes have been developed within the DG framework. The pioneering work of [Zhang
and Shu, 2010a] in this direction provided a DG scheme that preserves the positivity of the mean value



Chapter 4 - NUMERICAL METHODS FOR HYPERBOLIC CONSERVATION LAWS 117

1200 A § 1 )
— I\
5 1\
g 1\
E 1150 1 y T 1\
=, I |\
< 4
1100 1 . e ———
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
x [m] x [m] 