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Abstract

The evaluation of security products is a key issue in cybersecurity. Numerous tools and
methods can evaluate the properties of services (compliance with the specifications,
workload processing capacity, resilience to attacks) and security products (policy ac-
curacy, attack coverage, performances overhead, workload processing capacity).

Most existing methods only evaluate some of those properties. Methods, like testbed
environments, that can cover all aspects are costly in resources and manpower. Few
structures can afford the deployment and maintenance of those testbed environments.
In this thesis, we propose a new method to generate at a large scale evaluation data
that match the evaluator’s evaluation requirements.

We base our method on the deployment of a small program on a lightweight virtual
network. That program reproduces model data according to the need of the evaluator.
Those needs are translated into levels of realism. Those levels match the characteristics
of the model data preserved by the simulation program.

We formally present our method and introduce additional requirements (customiza-
tion, reproducibility, realism, accuracy, scalability) as properties of our model. We also
explain the step by step construction of our prototype along with the experimental
validation of our method.

Although our prototype’s functions are currently limited, we can still use our pro-
totype to evaluate a security product. We first introduce a methodology to apply our
method to the evaluation of services and security products. We then conduct a series of
experiments according to the methodology to evaluate an intrusion detection system.

Our evaluation of an intrusion detection system illustrates the advantages of our
method but it also underline the current limitation of our prototype. We propose a
series of improvements and development to conduct to transform our current limited
prototype into an efficient evaluation tool that can evaluate services and security prod-
ucts alike.
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CHAPTER

1 Introduction

1.1 Context

Information systems in companies and governments heavily depend on security prod-
ucts to protect information and infrastructure. There exists a wide variety of security
products: firewall, IDS, antivirus, WAF (Web Application Firewall), SBC (Session Bor-
der Control), DLP (Data Leak Prevention), etc. to protect their system and assets. It
is difficult for the administrator of a system to select the optimal products, organize
them in a functioning topology and properly supervise all those different products. It
is crucial for the administrator to have a thorough, fair comparison of the security
products.

The evaluation of security products covers a wide range of considerations that
need to be tested: the security properties of the product (security policy, attack cov-
erage,workload processing capacity, etc., [Milenkoski et al. 2015]), the impact on the
system (performances overhead and overhead for the users [Kainda et al. 2010]), and
the impact on already deployed security products (avoid inconsistencies in the deploy-
ment of configuration policies [Garcia-Alfaro et al. 2011]). As such, we require reliable
evaluation tools that can adapt to the needs of the evaluator.

A large variety of solutions exists to evaluate the different aspects of security prod-
ucts. They can broadly be divided into semantic tests that evaluate specific properties
of the product, and load tests that evaluate the workload processing capacity of the
product. The semantic tests are mostly home-grown, targeting specific functionalities
or vulnerabilities of the evaluation target and are often not scalable. To deploy those
tests at a large scale, the evaluator needs a large network infrastructure like a testbed
environment. On the other hand, intensive tests highly stress resources of the evalua-
tion target and can be used at a large scale. However, they solely target some resources
(memory, CPU, I/O, etc.) and their executions are easily detectable. So, security prod-
ucts that are not evaluated in a testbed are exposed to two separate tests that neither
accurately reflect the real-world environment. In an operational context, security prod-
ucts must ensure specific functionalities or protect against a variety of attacks while
under the stress of a large amount of regular traffic. Current evaluations mostly test
those two aspects separately and do not take into account the impact of the stress
regular traffic on the functionalities of security products. That problem was already
highlighted in 2003 by the U.S. Department of Commerce in [Mell et al. 2003].
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To properly evaluate security products in an operational context close to real world,
apart from providing traces from the real world, evaluators employ testbed environ-
ments. Testbed environments provide an extensive network infrastructure that can
launch a large variety of semantic tests to generate evaluation data whose content is
fully known and that is close to real-world activity. To reduce deployment and mainte-
nance costs, testbed environments often turn to virtual network infrastructure. Despite
that, the main drawback is the resource and time costs needed to set up, configure and
maintain the testbed. While being an efficient solution to evaluate security products in
an operational context, the cost is too high for most structures. We need an affordable
evaluation tool or environment that can provide evaluation data with a high level of
semantic at large scale. The evaluation data must be adaptable to the needs of the
evaluator and offer the possibility to cover all kinds of evaluation.

1.2 Objectives and contributions

The goal of this thesis is to conceive and validate a method to generate evaluation data
that provide specific and controlled interactions with the evaluation target of semantic
tests at a large scale. To do that, we propose a new network simulation method that is
independent of the nature of the the virtual network infrastructure and can work on a
virtual environment with lesser cost requirements than the virtual networks used in a
testbed environment.

Our method must also adapt to the evaluator’s requirements. Evaluations do not
all have the same goals and needs. Some evaluations might need to control the data
at the application level while others may only require data with much lower criteria
(e.g., a volumetric evaluation). Evaluators should be able to choose a tradeoff between
the level of control over the data and the resources they are willing to spend. In this
thesis, our method offers several functions to generate data with different criteria, with
different levels of realism. The higher the level of realism the evaluator needs, the more
stringent the requirements for the input of the associated function will be.

Our contributions are of several types:

• We conceive a formal model of our method and extract several properties of our
model to ensure we are as close as possible to ideal data generation method (re-
producible, realistic, scalable, accurate, adaptable).

• From that model, we implement a prototype of our method on a lightweight sim-
ulator and simulate the network activity of a small company. We also present the
experimental verification data and identify the strengths and weaknesses of our
implementation [Bajan et al. 2018].

• We also devise a methodology to apply our method for the evaluation
of security products and services. We illustrate this methodology with the
evaluation of an open-source security product with our network simulation
prototype[Bajan et al. 2019].



1.3. OUTLINE OF THE THESIS 3

1.3 Outline of the thesis

Chapter 2 presents a general overview of the evaluation of security products and ser-
vices. This overview starts with the presentation of fundamental knowledge of the
evaluation of services and security products as they require the verification of different
properties. This chapter also presents the different tools available to the evaluation of
products and the different types of existing virtual networks.

Chapter 3 presents the formal model of our simulation. It begins with the definition
of our different concepts. We deduce the properties of our model to attain an ideal data
generation method for evaluation.

Chapter 4 describes the simulation network we developed according to our model.
We give the steps necessary for the prototype along with the procedure to obtain the
required inputs. We also explain the choice we made for the network infrastructure and
the performance results we obtained.

Chapter 5 presents the application of our method. We explain the evaluation
methodology to follow in the evaluation of security products and services and apply it
to the evaluation of a security product. We analyze the results and explain what the
current shortcomings of our method and prototype are and propose some improvements
and future developments.

Finally, we conclude our work and discuss perspectives in Chapter 6.





CHAPTER

2 Evaluation of security
products:
a broad overview

Security products are meant to be deployed in an operational, real-life context. The
managers of computer systems must be assured that the product they select can:

• handle an operational context: in real-life use, the product must process large
volumes of requests from users and accomplish all its functionalities. If the product
does not handle the required volume of requests or does not comply with its
specifications, it can not be used in an operational context.

• provide accurate results: the manager of the network needs to know if he can trust
the result of the products that monitor and secure the network. For example, if
the product is a firewall, the manager needs to know that the security rules are
correctly applied.

• provide exploitable results: the evaluated target must provide results that can be
understood and used by the manager. If important information is overwhelmed by
irrelevant or less urgent information, the manager would not be able to appropri-
ately react.

Those requirements are difficult to evaluate outside of an evaluation context close
to an operational environment. In that context, the evaluation of security products is
also linked to the performance and behavior of the services present on the network,
especially for a security product like an intrusion detection system (IDS) or a firewall.
In-line security products are placed on the path of network activity between users
and services on a computer system. Those security products take measures (authorize,
block, alert, etc.) according to the data that pass through them. In consequence, the
evaluation of such products requires that the evaluation target analyzes exchanges be-
tween users and services. The consideration of the evaluation of services is thus relevant
to the evaluation of security products. Those two types of evaluation targets, security
products and services, present similar concerns and rely on similar tools. Moreover, it
is valuable to know the impact that the insertion of a security product has over the
performance of services.
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Thus, we consider as our evaluation targets the combination of both services and
security products. Even if the evaluation of services and security products presents some
similarities, the properties to verify in their evaluation are different. Therefore, before
going into the details of our proposed method and approach to network simulation,
there is a need to explain the fundamentals of the evaluation of security products and
services, and to describe the evaluation tools and current methods for creating virtual
networks.

2.1 Fundamental knowledge of the evaluation of se-
curity products and services

Figure 2.1 illustrates the different elements involved in an evaluation. The evaluation
target can be either a service or a security product. Their evaluation requires an en-
vironment that provides a network and actors. The actors can be regular users or
attackers. Depending on the nature of the evaluation target, it can require the pres-
ence of both types of targets. For example, security products can be in-line products
like a firewall, or they can be out-of-band, like an authentication server.

Figure 2.1 – Elements of an evaluation

In-line security products are placed in the network so that incoming traffic has to
go through them before reaching its destination. They only work when placed in the
middle of the traffic between actors and services. They can have an action on that
traffic. Thus the evaluation of such products requires the presence of services alongside
the security product. On the other hand, the evaluation of most services does not
require the presence of a security product. Similarly, an evaluation that verifies the
compliance of a service with specifications does not require the presence of an attacker.

Services and security products are the targets of a large variety of evaluations, each
with different goals in mind. Such evaluations aim to verify specific properties that can
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be different for services and security products. In this section, we describe the main
properties for services and security products.

2.1.1 Evaluation of services

A service must be able to meet the needs of the users (supporting enough requests for
operational use, compliance to the specifications, etc.) with a reasonable performance
overhead (memory, CPU, I/O, energy, etc.). It must also be able to resist the actions
of an attacker in the case a security product does not adequately protect it. Thus, the
evaluation of services must verify the following properties:

• compliance with the specifications

• workload processing capacity

• resilience to attacks

The first goal of the evaluation of a service is to verify that the service complies
with its design. For services produced with model-driven engineering (UML, SysML,
etc.), there are two steps to this evaluation: a validation of the model (does this service
meet the needs?) and a verification of the model (was this service correctly built?).
In [Gogolla and Hilken 2016], the authors propose essential use cases for model explo-
ration, validation, and verification of a structural UML model enriched by OCL (Object
Constraint Language) invariants and demonstrate them on a model validator.

The workload processing capacity is an evaluation of the capacity of the product to
handle a large number of requests and significant stress. The goal of such an evaluation
is to ensure that the service will be resilient when in operation and can meet the
demands of users. This evaluation can determine if enough resources were allocated to
the service, or if it can provide inputs to improve the performances of the service. For
example, [Nahum et al. 2007] studied the performance of a SIP server according to the
scenario and use of the protocol.

Lastly, a service can be evaluated based on its resilience to attacks. Services need
to be able to resist attacks on their own as much as possible, even before additional
protection and detection layers are added. The goal of such an evaluation is to determine
the scope of the attacks the service can resist or not. This evaluation aims to find
vulnerabilities due to configuration flaws and vulnerabilities specific to the service
itself. According to the complexity and widespread use of the products, a consequent
number of vulnerabilities can be discovered each year. The product vendor must then
plan to fix the vulnerabilities as soon as possible while those using or depending on
that product must check if their own version is vulnerable and act in consequence. The
more vulnerabilities a product has, the more consequent is the security risk of using
this product. To help predict the discovery of vulnerability in the two major HTTP
servers (Apache Server and IIS), [Alhazmi and Malaiya 2006] carried out a detailed
analysis of the prediction capabilities of two models for the discovery of vulnerabilities.
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2.1.2 Evaluation of Security Products

Many types of security products exist: firewall, IDS, antivirus, WAF (Web Application
Firewall), SBC (Session Border Control), DLP (Data Leak Prevention), etc. It is nec-
essary to know how well they detect and/or block attacks (accuracy, attack coverage,
workload processing capacity) and how much overhead they impose on the system.

Therefore, the evaluation of a security product aims at validating the following
properties:

• policy accuracy

• attack coverage

• performance overhead

• workload processing capacity

Policy accuracy regards the correctness of the judgement of the security product.
That judgement can take different forms: detecting an attack, accepting credentials,
detecting abnormal behavior, etc. The evaluation of this property requires the security
product to judge a mixed set of interactions (attack/regular, accepted/rejected, etc.).
The correctness of that judgement is based on the policy of the security product that
can be flawed or impacted by configuration issues. In [Garcia-Alfaro et al. 2011], the
authors present a management tool that analyzes configuration policies and assists in
the deployment of configuration policies of network security components. The goal is to
ensure the absence of inconsistencies in the policies of security products on the network.
This property is also linked to the issue of the base-rate fallacy[Axelsson 2000] in in-line
security products like IDSs, where too many false positive alerts(falsely raised alerts)
make the security product unusable for the supervisor of the system. In the evaluation
of this property we want to know the optimal configuration of the security product
that minimize the false-positive while maximizing the true-positive rate.

The evaluation of attack coverage aims to determine the range of attacks that can
impact the security product, the range of attacks successfully blocked by the secu-
rity product and those that are not handle by it. It allows the evaluator to know the
strengths and weaknesses of the security products in the range of known attacks or
vulnerabilities. This help the administrator of a network to know an appropriate com-
bination of security products for its system. The coverage limit of the security product
can be the direct results of its scope and level of layer examination. Some products
examine only the transport layers while others examine up till the application layer.
The attack coverage of a security product can also be impacted by the configuration
of the product.

Finally, the evaluation of performance overhead deals with the resources consumed
by the security product. However, performance overhead usually focuses on the impact
of the addition of a security product on the performances of the network. An inline
security product analyzes the network traffic that passes through it. Therefore, if the
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security product has poor performances, it can slow down the overall traffic on the net-
work. Similarly, if an out-of-band security product replies to requests slowly, it can also
impact the performances of services that depend on that security product. For exam-
ple, the use of DNSSEC to secure DNS against cache poisoning attacks has a negative
impact on the performances of networks, as pointed out in [Migault et al. 2010].

2.2 Overview of evaluation tools

The evaluation targets, like services and security products, must be verified in
all kinds of properties. A large variety of tools exists to evaluate those aspects.
They can be divided into two types: executable workloads (2.2.1) and traces
(2.2.2)[Milenkoski et al. 2015]. Executable workloads are meant to generate evaluation
data during live testing and traces are records of real-life activity or artificial activity
that are used as inputs in offline testing. Trace are records of an activity. They can
be records from real world activity or an artificial activity generated by executable
workloads. Those two types of methods are not completely separated from each other
but represent two different types of testing: live and offline.

2.2.1 Executable workloads

Executable workloads are employed for live testing a security product. They run on a
physical machine, a virtual machine or a virtual network to generate data that will be
fed to a tested security product. The support on which the executable workload runs
depends on the nature of the tested product (network-based or host-based product)
or the resources available to evaluators (physical network, emulated virtual network,
or simulated virtual network). The differences between the various networks used for
support are explained in Section 2.3.

Executable workloads allow the test of security products in a context close to an
operational context and are often used to create traces for other structures that cannot
handle the investment of live testing. This investment has numerous forms: malicious
workloads often work on a specific victim environment that needs to be reproduced
and set up. That environment needs to be restored to its previous state after each ex-
periment. The malicious workload might also crash the victim environment and render
it unstable. All those tasks are time-consuming and expensive.

The survey by [Milenkoski et al. 2015] on common practices of IDS evaluation de-
scribes four kinds of executable workloads. Workload drivers and manual genera-
tion are used to generate pure benign workloads (with no attack). Exploit database
and vulnerability and attack injection are used to generate pure malicious work-
loads (contains only attacks). Mixed executable workloads, or workloads that contain
both malicious and legitimate traffic, are a mix of different executable workloads gen-
erating pure benign and pure malicious workloads. We present summary of the survey
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on the different types of executable workloads in the following tables: Table 2.1, Table
2.2, Table 2.3 and Table 2.4.

Drivers designed to generate artificial pure benign evaluation dataDescription with different characteristics (e.g., CPU-intensive, I/O intensive, ...)
Types of evaluation data Pure benign evaluation data

Types of security products Works for network-based and host-based security products
Advantages + Customization of the intensity behavior of the workload

Disadvantages - Often, it does not resemble real life data
Examples SPEC CPU2006, iozone, Postmark, httpbench, UnixBench, ...

Table 2.1 – Summary of the analysis of workload drivers

In Table 2.1, we see that workload drivers are drivers designed to produce a
customizable pure benign workload with a specific intensity of one characteristic
of the workload. Those workloads are used to evaluate the performances of secu-
rity products for intensive benign workloads. However, the generated workloads are
characteristic to the driver and do not closely mimic real-life workloads. Workload
drivers are mainly used to evaluate the workload processing capacity of evaluation
targets. They do not evaluate all functionalities of the evaluation targets making
them unsuitable for the verification of compliance to the specifications. Also, as the
interactions of workload drivers with evaluation targets do not resemble the oper-
ational use in real-life, they can be detrimental to the evaluation of products with
a learning phase, like anomaly-based IDS. Examples of such drivers are the SPEC
CPU 2006 [Henning 2006][Ming et al. 2017] that generates CPU-intensive workloads,
ApacheBench [Riley et al. 2008][Jin et al. 2013] that generates intensive HTTP work-
loads. and iozone [Jin et al. 2013] that generates intensive I/O.

The execution of real system users’ tasks known to exerciseDescription system resources
Types of evaluation data Pure benign evaluation data

Types of security products Often used for host-based security products
+ With a realistic activity model, it resembles real-life workloadsAdvantages + Suitable for traces in a recording testbed environment
- Temporal and intensity characteristic cannot be customizedDisadvantages - Require substantial amount of manpower

Examples
[Srivastava et al. 2008],
[Lombardi and Di Pietro 2011],
[Reeves et al. 2012]

Table 2.2 – Summary of the analysis of manual generation

The second method to create benign executable workloads is manual generation.
Table 2.2 presents the strengths and weaknesses of manually generating traffic where
the evaluator executes user tasks on real systems that use a specific portion of the
resources. Examples of such tasks are copying large files to force a large quantity of
I/O on the system, or file encoding to emulate CPU-intensive tasks. With a realistic
activity model, workloads generated that way will closely resemble those found in real
life. That method is preferred for the generation of workloads on testbeds. However, the
intensity and time-control of those workloads cannot be customized like in workload
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drivers as they are difficult to control and predict. Moreover, this method may require
consequent manpower and resources. We also consider in that category homegrown
scripts that can either execute consuming tasks or verify the specification of a service
or a security product. Those scripts are highly specific and difficult to generalize to a
large scale. Thus this method is suited to verify the compliance with the specifications
of the evaluation target but challenging to apply in the evaluation of the workload
processing capacity.

Manual assembly Readily available
Security researchers typically use an exploit database

Description Evaluators normally obtain attack
scripts from public exploit
repositories

Many researchers employ
penetration testing tools as
a readily available exploit
database

Types of evaluation data Pure malicious evaluation data

Types of security products Used for network-based and
host-based security products

Of limited use for host-based
security products

Advantages

+ Freely available tools like
Metasploit enables a
customizable and automated
platform exploitation with an
up-to-date exploit database
+ Many of the exploits can
be used without crashing
the victim environment

Disadvantages

- Locating and adapting exploits
is time-consuming and requires
in-depth knowledge of the inner-
working and architecture of the
product
- Public exploit repositories
do not feature techniques for
evaluating the detection of
evasive attacks

- Most exploits are executed
from remote sources making
them useful for network-
based products but of
limited use to host-based
product

Examples [Mell et al. 2003],
[Lombardi and Di Pietro 2011]

Metasploit, Nikto, w3af,
Nessus

Table 2.3 – Summary of the analysis of exploit databases

To evaluate the resilience to attacks on services or the properties of security prod-
ucts, the evaluator can manually attack the target, make his own attack script (exploit)
or use an exploit database. We describe that method in Table 2.3. To generate pure ma-
licious workload, evaluators commonly use an exploit database, a database of scripted
attacks. It is also possible to assemble databases with the help of public exploit reposito-
ries manually. However, manually assembling an exploit database requires consequent
of human resources and time to research and adapt the exploits. Many researchers
prefer to use penetration testing tools such as Metasploit, a readily available exploit
database. It is kept up-to-date and is freely available. However, many of the available
exploits focus on network-based security products.

We present the last executable form of workloads in Table 2.4. It uses the principle
of software fault injection to inject vulnerabilities and attacks. It injects exploitable
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vulnerable code in a victim platform in order to attack the platform. It is useful in the
case where an exploit is not a viable option. However, it requires in-depth knowledge
of the architecture of the security product and its inner-working.

Description

Artificial injection of exploitable vulnerable code in a
target platform and then attacking the platform.
It relies on the principles of the more general research
area of fault-injection.

Types of evaluation data Pure malicious evaluation data
Types of security products Used for network-based and host-based security products

Advantages + Although not yet mature, it is useful in cases when collection
of attack scripts that exploit vulnerabilities is unfeasible

Disadvantages
- The injection of attacks such that the sensors of a security
product under test are exercised requires in-depth knowledge
of the architecture and mechanism of the product

Examples [Fonseca et al. 2014]

Table 2.4 – Summary of the analysis of vulnerability and attack injection

Workload drivers, manual generation, exploit databases and vulnerability and at-
tack injection are the four kinds of executable workloads commonly used for the eval-
uation of security products. Those methods can evaluate the different properties of
services and security products separately. There also exists tools specialized in looking
for known vulnerabilities – vulnerability scanners (e.g., Arachni, OWASP, OpenVAS,
etc.) – or unknown vulnerabilities – fuzzing tools (Antiparser, Peach, Wapiti, Web-
fuzzer, etc.). They are specialized in evaluating the resilience to attacks of services. All
those methods need an execution environment specific to the evaluation target and the
malicious workloads used. That specific environment is often the barrier, along with
the manpower and resources needed, that prevents evaluators from using this kind of
methods, especially in the case of network-based security products that often require
a testbed.

2.2.2 Traces

We call a trace the capture of activity. Depending on the needs of the tested security
product, it could be packet captures, log files, resource consumption, etc. Traces are
replayed with tools (ex: TCPreplay for network traces) and do not require a specific
environment. Evaluators do not spend many resources to feed the traces to the security
product, but the challenges of using traces often lie in the constitution of the ground
truth.

The ground truth is an exact representation of the content of the traces. The entries
in the ground truth is linked to the granularity of control of the evaluation. An entry
can be at the level of logs (a line or a group of lines), at the level of packets (a
packet, a segment, a flow), or combination of both. The inputs that informed each
entry of the ground truth depends on the evaluator’s level of control on the evaluation,
the granularity of the simulation. It contains labels indicating the classification of
each entry (for example: benign/attack) along with other information relevant to the
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evaluation of the performances of security products (for example which type of attack
that entry is). The accuracy of the evaluation depends on the correct composition of
the ground truth. However, the ground truth is not always easy to compose, either
because some information is missing (anonymized data) or because we are not sure of
the delimitation between attacks and regular traffic (real-world production trace) or
with other attacks (honeypots). Moreover, traces become quickly outdated as trends
and attacks evolve fast.

In the survey [Milenkoski et al. 2015] on common practices of IDS evaluation, traces
methods are split into two approaches: trace acquisition and trace generation. Trace
acquisition concerns the use of traces made available to the evaluator from real-world
activity or a fabricated activity modeled as a reference for the community. However,
the evaluator does not always have access to traces adapted for his evaluation. In that
case, the evaluator generates traces to be reused multiple times or shared with others:
it is trace generation. The evaluator often captures traces in an isolated environment
like a testbed, or with a honeypot. We summarized the information of the survey on
trace acquisition in Table 2.5 and on trace generation in Table 2.6.

Real-world production trace Publicly available trace

Description
The process of obtaining real-world production traces from an
organization (i.e., proprietary traces) or obtaining publicly
available traces that are intended for use in security research

Types of evaluation data Pure benign, pure malicious and mixed evaluation data
Types of security products Used for network-based and host-based security products

Advantages + Real-life workload
+ No legal restraints to use it
+ The ground truth is
included with the traces

Disadvantages

- Difficult to obtain due to
privacy concerns
- The anonymization of the data
may remove relevant data for the
evaluation
- The ground truth is difficult to
construct

- It often contains errors and
is quickly outdated
- In-depth knowledge of
the characteristics of the
recorded activities to avoid
inaccurate interpretation
of results of studies

Examples [Seeberg and Petrovic 2007],
[Coull et al. 2007]

DARPA/KDD-99, CAIDA,
DEFCON, ITA, LBNL/ICSI,
MawiLab

Table 2.5 – Summary of the analysis of trace acquisition

Table 2.5 presents the two main type traces that an evaluator can acquire: real-world
production traces and publicly available traces. The real-world production traces are
traces that an organization has captured from its activity and made publicly available
or available to a group of evaluators. Those traces are as close to reality as evaluation
data can be but are also a source of concern for the organization that distributed
them. They contain a lot of private data of the organization that can be damaging for
the organization or its employees. The traces are anonymized to prevent hurting the
interests of the organization. However, those techniques often either delete a significant
amount of relevant data for the evaluator or not hide enough private information. A
balance between those two conflicting interests must be found, and that conflict often
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renders companies and other organizations unwilling to share traces of their activity.
Moreover, as the traces are from real-world production, they are not labeled. The
constitution of the ground truth is another challenge of using real-world production
traces. A lot of time and human resources are needed to describe the traces entirely and,
even then the correctness of the ground truth cannot be fully guaranteed. Traces from
the real world can evaluate the workload processing capacity and resilience to attacks
of services but cannot guarantee an evaluation of the compliance with the specifications
unless the traces are specifically designed for the evaluation target. Traces are more
convenient to use in the evaluation of in-line security products as the traces do not
have to adapt to the security product. However, the uncertainty in the reliability of
the ground truth does not make it a practical method to evaluate the policy accuracy
of security products.

The other kind of trace acquisition presented in Table 2.5 is publicly available
traces. It consists in datasets that are made available to the public, often from large-
scale experiments made to generate traces close to the real world without having to
worry about privacy and anonymization. There are no legal constraints to use those
traces, but they have their risks. They often contain errors and are quickly outdated.
They do not always match the victim environment of the evaluator, so the evaluator
needs to have an in-depth knowledge of the dataset, the conditions of generation of the
dataset and the ground truth. Otherwise, it could lead to an inaccurate interpretation
of the results of the study of the evaluator.

When an evaluator does not have access to the appropriate traces, he can generate
his own traces. Once generated, those traces are reused for other evaluations or by other
evaluators of his research group. One of the possible methods for generating traces
consists in using executable workloads (like the manual generation) and capturing
traces in an isolated environment: a testbed environment. A testbed environment is
large scale network environment where an evaluator can execute workloads (homegrown
scripts, drivers, exploits, etc.) on a large number of machines (physical or virtual) to
produce an artificial, but close to reality, activity. However, as we highlight in Table
2.6, building and maintaining a testbed is costly, especially for large-scale network
activity, and the methods used for generating the workloads may be faulty or too
simplistic. Moreover, even if a realistic model of activity is used to generate accurate
and complex workloads, it will produce one-time datasets. The model of activity will
become outdated and needs to be changed after a given period of time. The generation
of the traces has to be redone periodically, or with every significant change to the
activity model.

In Table 2.6, the other method that an IDS evaluator can use to generate his own
traces is honeypots. Honeypots reproduce the interactions of real targets and trick real-
world attackers into thinking that they face a real vulnerable system or services. Then
the honeypots capture the actions performed by the attacker and the results. They
are classified according to the level of interaction they can have with the attacker.
Low-level interactions honeypots are easy to maintain and can generate a ground truth
without difficulty, but they are also easy to detect for an attacker. On the other hand,
honeypots with a high level of interactions are difficult to detect for the attacker and
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Testbed environment Honeypots
To avoid issues with acquiring traces, the evaluator generates
its own traces to share.

Description Traces are generated in a recording
testbed environment that executes
executable workloads

By mimicking real systems
and/or vulnerable services,
honeypots record malicious
activity performed by an
attacker without his
knowledge

Types of evaluation data Pure benign, pure malicious and
mixed evaluation data Pure malicious evaluation data

Types of security products Used for network-based and host-based security products

Advantages
+ Used to generate publicly
available traces to be used as
a reference by the community

+ Ideal for generation of
realistic pure malicious traces
+ Low level of interaction
honeypots are easy to maintain
and the activity is easy to label
+ High level of interaction
honeypots are more flexible
and hard to detect

Disadvantages

- It is costly to build a testbed that
scales to realistic production
environments
- The method used to generate an
activity may use faulty or simplistic
methods
- With a realistic activity model,
the realistic traces are still one-time
datasets

- The outcome of a trace
generation campaign is
uncertain.
- Low level of interaction
honeypots are easy to detect
- High level of interaction
honeypots are expensive to
maintain and require time-
consuming analysis of the
recorded activity

Examples [Cunningham et al. 1999],
[Shiravi et al. 2012]

Sebek, Argos, honeybrid,
HoneySpider, honey,
nepenthes, ...

Table 2.6 – Summary of the analysis of trace generation

are more flexible than low-level ones. However, they are expensive to maintain, and
the composition of the ground truth and the analysis of the attacker’s activity is time-
consuming.

To sum it up, traces are great tools for evaluators to feed a practical activity to
a security product at a low cost. Evaluators can either obtain traces from the real-
world or from publicly available source that are used as reference datasets by the
community. However, those traces can often be outdated or not target the evaluator
use case. According to the evaluation target of the evaluator, the traces might need
to be extremely specific. In consequence, evaluators can generate their own traces to
share with other evaluators and reuse in other evaluations. They capture the activity
on a testbed environment or attacks from honeypots with various levels of interaction.
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2.2.3 Summary and analysis

Executable workloads and traces have different strengths and weaknesses. They can be
used broadly or limited to the evaluation of specific properties. In Table 2.7, we sum
up the evaluation properties of those different methods.

Compliance (Comp.), Processing (Proc.), Resilience (Resi.)
Services Security products

Comp. Proc. Resi. Policy Coverage Overhead Proc.
drivers X X X
manual generation X X X partial
exploit database X X X
V&A injection X X partial
real-world production partial X partial partial partial X X
publicly available partial X X X partial X X
testbed environments X X X X X X X
honeypots partial partial partial

Table 2.7 – Targets of the evaluation tools

Drivers can generate a large number of predetermined traffic that exercise the work-
load processing capacity of evaluation targets. They can also target specific resources
of the evaluation targets to evaluate the performance overhead of a security product.

Homegrown scripts or manually generated activity can verify every functionality of
an evaluation target. It is very suitable to evaluate the compliance with the specifica-
tions of an evaluation target, whether it is to test the functionalities of a service or the
correctness of the policy of a security product. Homegrown scripts or manual attacks
can be made to target specific vulnerabilities or try complex attack vectors. However,
a lot of time and work is needed to make scripts and to generate a large number of
attacks manually. While it can be useful in the resilience evaluation of services, home-
grown scripts and manual attacks can limit the coverage of the evaluation of a security
product.

Exploit databases are a practical choice to generate a large variety of attacks in an
attack coverage evaluation. They are tools that can test a large variety of known vulner-
abilities of services and security products. Exploit databases are used in the evaluation
of the resilience of services and the accuracy of the policy of security products.

Vulnerability and attacks injections are a complementary solution to exploits. They
can provide a way to generate attacks that can not be made with exploit scripts.
However, the scope of current tools that rely on this technique is limited. They can
handle a smaller attack coverage than exploit databases. This method can cover the
same aspects than exploit databases but with more limitation.

Traces from real-world production can be used to evaluate the compliance with the
specifications of services but are not practical. The traces need to target the specific
product and be large enough to cover all the functionalities of the evaluation target.
Traces from real-world production offer large samples of production data. Once replayed
to services with a proper program, those traces can generate the stress of production
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use. It assures that the services and security products can handle real-life production
workloads. However, this method has limits for evaluation with attacks. An evaluator
cannot be sure to correctly identify all attacks in the traces.

Honeypots are tools that solely focus on attacks. The attacks captured are real-
world attacks and can be known or unknown attacks. However, like for real-world
production traces, it is difficult for the evaluator to know when a specific attack begins
or ends. Moreover, the evaluator cannot predict the attacks that would be captured by
the honeypots. Thus, complete coverage of attacks is a challenge.

Testbed environments are the most appropriate methods to evaluate services and
security products. Those environments use different executable workloads on a large
virtual network. Testbed environments apply homegrown scripts, manual generation
of activity and attacks and exploit databases at a large scale. Thus, this method is
proficient in every type of evaluation. The main drawbacks of that method are the
resource costs and manpower needed to set up, maintain and use the environment.

Publicly available traces are the referential method to compare security products.
They are records of large scale experiment on testbed environments. It is affordable
method for the scientific community to have a high quality evaluation of their targets.
The goal of publicly available traces is to produce a large dataset to others evaluators
that might not have the resources to create that dataset. It was designed for the test
of the processing capacity of services and security products. Moreover, the attacks in
the traces are clearly identified and the ground truth is reliable. In consequence they
are one of the most used evaluation tool of the scientific community with some traces
being famously used for decades like DARPA / KDD 99.

However, publicly available traces present different issues. As for real-world
production traces it is not adapted to the evaluation of services and out-of-
band security products that requires an exact match between the evaluation tar-
get and the content of the traces. But beyond that issue, publicly available
traces are quickly outdated and the framework of the experiment behind them
are flawed. [McHugh 2000] was the first to propose a critical analysis of the ex-
perimental framework of DARPA. Since then multiple new datasets were pro-
posed and employed by the community while taking into consideration of the
critics raised by McHugh: NSL-KDD[Brown et al. 2009], DEFCON[Nehinbe 2009],
CAIDA[Yavanoglu and Aydos 2017], LBNL[Nechaev et al. 2004], etc. The framework
and record process of those datasets were in turn also criticized by the community
and some offered new frameworks ([Bhuyan et al. 2015], [Moustafa and Slay 2016],
[Gharib et al. 2016], [Sharafaldin et al. 2018], etc.). However, those datasets faced
the same issues: benchmark datasets need to be constantly updated due to the
rapid evolution of malwares and attack strategies. The effort of the community
to improve the evaluation methods of security products has been to either offer
frameworks with criteria on how to produce quality evaluation datasets on testbed
environments[Gharib et al. 2016], or to propose tools to generate synthetic data with
a realistic statistical distribution[Vasilomanolakis et al. 2016][Shiravi et al. 2012].
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Those efforts improve the quality of the traces publicly available to the community
but depend on testbed environments for their capture and must be continuously up-
dated. They do not tackle the issue of the cost that such an environment require. We
want to look into the different kinds of network environments to identify virtualization
tools that can reduce that cost.

2.3 Virtual network infrastructures

As previously described, a lot of different tools exist to evaluate services and security
products. Among them, executable workloads require an isolated and controlled net-
work environment to generate evaluation data without outside interferences or leaks.
There are two main methods to create the network structure of such an environment:
a physical network or a virtual network. A physical network build solely for testing is
expensive and lack flexibility. Changing the topology of a network for every evaluation
is costly. A more realistic solution is to use a virtual network. However, the term virtual
network is used to describe several types of networks with each a different meaning and
definition.

A general definition of a virtual network is the following:

In essence, a Virtual Network, in its elementary form, consists of a group of
Virtual Nodes interconnected via dedicated Virtual Links.[Houidi et al. 2009]

A virtual node is the virtual equivalent of every network equipment and machines
involved in a network: routers, switch, end-points machines, servers, etc. A virtual link
is a link that connects the virtual network interfaces of the virtual nodes. A single
virtual link can stretch over several physical links or connect two virtual interfaces on
the same server.

Among the products called network simulators are simulators based on a mathe-
matical representation of the behavior of network equipments. It is not the kind of
virtual network we consider as network virtualization. A virtual network is a network
where at least part of its components is virtualized, in which a software version of the
components replaces hardware components. According to if the endpoint nodes of the
virtual network are simulated or not, we can classify the virtual networks into two
types: network simulation and network emulation.

There is no clear consensus on the difference between network simulation and net-
work emulation. We consider virtualized networks like overlay networks as belonging
to network emulation and simulated network as belonging to network simulation.

2.3.1 Network emulation

We call network emulation a virtual network created on top of one or several physical
networks with various features and capacities. A virtual network emulator virtualizes
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the links and the nodes in between the links of the physical networks and creates a
virtual network that possesses the features and capabilities of the physical networks.
The topology of that virtual network will be independent of the topologies of the
physical networks. And thus, it can be configured in an entirely different way from the
physical networks to comply with the needs of the user for that virtual network. Several
virtual networks can coexist on top of one or several physical networks. They can be
quickly redesigned to fit different needs. The goal of virtual network emulation is to
aggregate resources from multiple physical networks and offer end-to-end services to end
users. It is also possible for the virtual network to serve as the basis of another virtual
network created wholly or partly on top of it as illustrated in Figure 4.4 extracted from
a survey on network virtualization[Chowdhury and Boutaba 2010].

Figure 2.2 – Representation of network virtualization architecture in
[Chowdhury and Boutaba 2010]

In Figure 4.4, we have two infrastructure Providers (InP1 and InP2) who provide
the physical network that they manage to a Service Provider (SP1). SP1 uses the
two networks to create his virtual network (VN1), which allows user U1, connected
to the first network of InP1, and user U2 connected to the second network of InP2,
to communicate. The other Service Provider (SP2) uses the physical network of InP1
and part of the virtual network VN1, created by SP1, to create its virtual network
(VN2). U1, U2, and U3 can choose either VN1 or VN2 to communicate. The two
virtual networks VN1 and VN2 are independent and do not interfere with each other.

Network emulation requires a physical network to sustain its virtual network and
only offers to virtualize the links and nodes in between. To test network security prod-
ucts we chose not to use a physical network because it would be too costly. Furthermore,
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even if we constructed a physical network to support our virtual network, we still need
active endpoint nodes that create the activity and attacks required for the tests. A
virtual network set up by a network emulator does not virtualize the endpoints of a
network. Endpoints like physical machines or virtual machines can be connected to the
virtual network but handling those endpoints is beyond the scope of the emulator.

2.3.2 Network Simulation

Figure 2.3 – Working principle of a network simulator

Network simulation entails the virtualization of links and in-between nodes like
network emulation, but it also virtualizes endpoint nodes. It is more relevant for testing
and experiments than network emulation. The most common way to create a virtual
network in network simulation is to create virtual machines as endpoints and connect
them with virtual links and virtualized network equipment like switches and routers.

Figure 4.5 shows the general principle of how a network simulator commonly works.
A network simulator uses two programs to create a virtual network:

• A virtualization software: it creates and manages Virtual Machines (VMs) –the
endpoints of our virtual network (example: VirtualBox)

• A virtual network framework: it creates network specific in-between nodes (switch
and routers) and virtual links between the virtual interfaces of all nodes (example:
VDE[Davoli 2005])
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In most cases, it also includes a management component to quickly set up and
configure the nodes of the network and spare the user from having to deal with all
the compatibility details between the program managing the virtual machines and the
program managing the network elements.

2.3.3 Virtual Machines

The virtualization software is the main distinguishing factor for network simulators
available on the market. The program used by the simulator has particularities that
result in various types of VM and types of network simulators. In general, we can divide
the VMs into two main types: the system VMs and the process VMs. These two types
of VMs were defined by James E. Smith and Ravi Nair as follows:

"A process VM is a virtual platform that executes an individual process. This
type of VM exists solely to support the process; it is created when the process
is created and terminates when the process terminates. In contrast, a sys-
tem VM provides a complete, persistent system environment that supports
an operating system along with its many user processes. It provides the guest
operating system with access to virtual hardware resources, including net-
working, I/O, and perhaps a graphical user interface along with a processor
and memory."[Smith and Nair 2005]

Figure 2.4 – Description of process VM and system VM from [Smith and Nair 2005]
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Figure 2.4 illustrates several differences between process VM and system VM. A
system VM virtualization software virtualizes the hardware of a machine and lets the
user install an OS on that virtualized hardware. An example of system VM virtualiza-
tion software is VirtualBox. In a process VM virtualization software, the user can only
run processes on the virtualized OS forced on by the virtualization software. The im-
posed virtualized OS is dependent on the method used by the virtualization software.
An example of process VM virtualization software is Wine. Containers are also process
VMs.

A user using a system VM virtualization software can choose the OS to install,
but the user needs to configure it himself in most cases. Moreover, the process can be
lengthy and the launch of dozens of system VMs at the same time costs a lot in term
of computational resources. A process VM is designed to start quickly and does not
need much configuration effort. Moreover, the resources required for a process VM are
a lot cheaper. Scalability is also one of the main features of process VMs, making them
interesting for building significant virtual networks. The drawback of process VMs is
that virtualization softwares use different methods to simulate the OS (clonable kernel,
bundles of commonly used libraries, etc.) and those methods limit the capabilities of
the process VM.

The method employed by the virtualization software to create a VM can further
divide the process VMs and system VMs into more types of process VMs and system
VMs. Each of these methods has a different approach to tackle the virtualization chal-
lenge peculiar to either system VMs – intercept the system call of guest OS – or process
VMs – virtualizing the guest OS. Different methods create different results, and net-
work simulators then choose different virtualizing software according to the features
those methods provide. It leads to various network simulators that do not have the
same purpose.

For example, Hynesim handles system VMs and relies on virtualizing softwares
such as VirtualBox, QEMU/KVM, LXC, and VMware. Meanwhile, IMUNES creates
virtual networks with process VMs using the method described in[Zec 2003]. Another
example of process VM network simulator is Mininet. Mininet uses namespaces to
create different VMs and can easily create more than a hundred VMs in a virtual
network in under a minute on an average computer. However, because Mininet uses
namespaces, all the created VMs use a Linux kernel, and they share the same file
system. Not only is there no isolation between the namespaces but it also creates
problems for services as all services share the same configuration files.

Overall, network simulators using system VMs can create very realistic virtual net-
works with a large variety of virtual hosts that are not dependent on the OS of the
host machine. However, that virtual network consumes many resources, and each vir-
tual host needs a specific configuration. Network simulators using process VMs can
create a massive number of lightweight VMs rapidly with different topologies. The
virtual hosts do not require an individual configuration. They can use the programs
installed on the host system and possess a file system where any change is discarded at
the end of the simulation. However, on the downside, the virtual host OS depends on
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the network simulator, and the virtual machines can do limited actions on the virtual
networks.

In a nutshell, a system VM virtual network allows diversity but is resource expen-
sive, while a process VM virtual network is easy to create and less costly, but the
virtual hosts’ capacities are limited. Table 2.8 presents a classification of a few existing
network simulators:

System network simulator Process network simulator

Cloonix[Peach et al. 2016] Marionnet[Loddo and Saiu 2008]
Hynesim[Prigent et al. 2005] Mininet[De Oliveira et al. 2014]

GNS3[Welsh 2013] MLN[Begnum 2006]
Unified Networking Lab[Vlasyuk et al. 2016] Netkit[Rimondini 2007]

IMUNES[Puljiz and Mikuc 2006]
CORE[Ahrenholz et al. 2008]

Table 2.8 – Examples of network simulators

At this point, choosing a network simulator requires selecting the proper trade-
off: either simulating a complete network capable of diversity, but at a high cost, or
simulating a network quickly and at a larger scale, but with restrictions on what the
virtual hosts can do. Most virtual networks used in the evaluation of security products
and services, like testbed environments, are built by network simulator using system
VMs or an overlay network connected to system VMs. Both solutions are expensive
in resources but necessary to execute the workload drivers or script that generate the
evaluation data.

2.4 Conclusion

The evaluation of services and security products consists in the verification of sev-
eral heterogenous properties (compliance with the specifications, processing capacity,
resilience, policy accuracy, etc.). Those properties are verified with different methods
and tools. The role of the evaluator is to select compatible tools together, compose
them on a network infrastructure and orchestrate them to work together to obtain a
reliable evaluation of the target. Such tasks consume time and resources, especially to
evaluate all properties of services and security products.

So far, only testbed environments can test all properties of services and security
products. They can deploy at a large scale homegrown scripts or involve a large number
of evaluator to manually generate activity. Contrary to real-world traces, the evaluator
has full knowledge of the data produced. However, the resource and time needed to set
up and maintain such an environment are high, especially when the scale is significant.
One of the reasons for that cost is the virtual infrastructure of testbed environments.
Testbed environments generally relies on system VMs. Such VMs properly support the
application and programs generating data.



24
CHAPTER 2. EVALUATION OF SECURITY PRODUCTS:

A BROAD OVERVIEW

Other virtual networks that relies on process VMs cannot support those programs.
Those virtual networks are a lot more cost efficient at a large scale. The only thing
limiting their use is the lack of method to generate reliable evaluation data with the
available resources. The goal of this thesis is to propose an alternative method to
effectively reduce the effective costs of virtual networks in an evaluation context. We
aim to propose a new method of generation of data that is independent of the virtual
infrastructure and can function on less expensive infrastructure like a virtual network
using process VMs.



CHAPTER

3 Formal Model of
Simulation

Looking at the current state of the art on evaluation tools and virtualization techniques,
we realized that one of the limitations for a commonly used and broad evaluation tool
is the cost and human resources of the solution that can cover all the aspects of an
evaluation. Rather than working on improving the virtualization tools, we decided to
take another approach on the issue.

From the observation of testbed environments, we devise a method to produce eval-
uation data with a lower infrastructure requirement. By looking at the advantages of
the different evaluation tools, we also identify five properties that an ideal evaluation
method should have. An ideal evaluation tool is an affordable tool that can be : repro-
ducible, realistic, adaptable, accurate and scalable. Then, we elaborate a formal model
of our approach with which we could express those requirements.

A formal representation of our model allows us to present a generic approach of
our intuition that is not restrained to a single implementation. We are conscious that
network simulators, although they can belong to the same categories, do not use similar
simulation techniques. The support of different network infrastructure can give to our
model different properties that may interest evaluators. In the same fashion, implemen-
tation choices can also impact the properties and capacity of our model. The formal
model present a generic model that allows for different implementation approaches.
Moreover, the formalisation of the properties of our model provide a concrete verifica-
tion of those properties. By clearly defining the properties of our model, we can devise
tests to verify that the implementation is in accordance with the model.

In our model, we define several core concepts: elementary actions, data generating
functions, scenarios, and scripts. After those definitions and the presentation of our
simulation model, we deduce formal requirements on our model according to the five
ideal criteria. In short, we added several properties to our model to ensure to respect
as closely as possible the criteria of an ideal method.
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3.1 Observations & Intuition

As we previously mentioned, testbed environments are the current most adequate so-
lution in the evaluation of security tools and services. However, the cost of setting
up, maintaining, and using those environments are too expensive for most structures.
One of the reasons for that cost is the network infrastructure that can be composed
of physical machines or system VMs. Evaluators must use machines that can support
a wide range of application and programs and lighter VMs like process VMs do not
support those applications.

We propose to change the way to produce evaluation data on a simulation network
infrastructure. Rather than deploying a machine that runs all the real-life programs
(browser, pdf readers, mail clients, office programs, etc.), we have a single simulation
program that can reproduce the data of those programs. We do not need to have an
actual browser making requests in VMs to generate traffic for a network-based security
product or a web client. We can run a program that does not require a GUI (contrary
to a browser) and produces requests similar to a browser. As long as the generated data
is accepted the same way by the services, there is no need for the real-world programs
and applications.

Thus, from that idea, we develop a method to reproduce model data that can be
accepted by services. We present that method and our concepts in Section 3.2.

3.1.1 Our requirements for an evaluation data method

Our ambition is to propose an evaluation data method that can incorporate most of
the strengths of the existing while leaving their weaknesses.

To accomplish that, we highlight five goals, or requirements for an ideal method,
that represent the most relevant aspect of the current state of the art.

Ideally, an evaluation data method must be:

• Customizable: one of the main strengths of executable workloads is that the eval-
uators can customize the generated activity to match their needs. It allows them
to use the same tools to test a security product with different metrics. Meanwhile
traces only allow the test of one scenario per trace. We want our method to be
able to offer a wide variety of parameters to modulate and produce evaluation
data according to the needs of the evaluator. We also want our method to avoid
the usual issue of the freshness of traces.

• Reproducible: one of the biggest weakness of executable workloads is that it
is often time-consuming to restore the victim environment to its previous state,
especially in a sophisticated setting like a testbed. A significant advantage of traces
is that it is easy to feed to a security product. In consequence, traces are used as a
standard for the community. We want a method that can provide evaluation data
with little to no overhead to restore an evaluation environment.
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• Realistic: real-world production traces and honeypots allow evaluators to confront
security products and services with real-life data and attacks. With a realistic
activity model, manual generation can produce a close to real life evaluation data.
Its capture, after deployment at a large scale in a testbed environment, are the
publicly available traces. The community considers that method of generating
data as sufficiently realistic to be used as a reference. As such, we want our ideal
method to be able to provide realistic evaluation data to the level of publicly
available traces provided with a realistic activity model. We also want our ideal
method to avoid the same issues with privacy as real-world production traces.

• Accurate: one of the main weakness of traces obtained from real-world production
and high-level of interaction honeypots is the difficulty to generate the ground
truth of traces. The evaluator cannot guarantee the accuracy and correctness of
the generated ground truth. Isolating attacks from one another or legitimate traffic
is challenging. An ideal evaluation data method should have full knowledge of the
activity generated.

• Scalable: large-scale testbeds allow the evaluators to generate complex and re-
alistic traffic despite the large cost of doing so. Publicly available traces aim to
provide that complex traffic at structures that cannot afford that high cost. We
want our method to be able to generate the evaluation data of large scale networks
while offering the possibility to choose the size of this network.

These five criteria are the goals we fix for our evaluation data method. Even if
our method ends up not being as ideal, we want our approach to respect as much as
possible the requirements of an ideal method.

We also want to be able to provide evaluation data for live testings and offline
testings. As such, we want our method to be close to executable workloads. Indeed,
this type of evaluation data method that allows live testings and generates traces for
offline testings.

3.2 Concepts and Definitions

The evaluation data method we propose is similar to workload drivers but with key
differences. We execute small programs to generate evaluation data on the hosts of
the network environment. However, those programs do not execute tasks known to
exercise specific system resources, like SPEC CPU2000, or a series of empty traffic
targeting a specific protocol, like httpbench. Those programs replay the data of traces
corresponding to small actions on virtual hosts. The host’s actions coordinate with the
actions of the other hosts in an activity scenario. The generated data are not identical
to the traces but preserve the relevant features, in accordance with the needs of the
evaluator.
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We produce simulation data identically to the model data up to the limit of the
need of the evaluator. For example, if the evaluator is only interested in the data up
to the transport layer, we do not need to produce realistic application layer data.

We explain our model further in this section. We define concepts on which we build
a formal description of our methodology.

3.2.1 Elementary actions

We call Elementary action (AS
H) a sequence of interactions that represents an action

between two actors of the activity. Those actors are either a Host – a source of generated
data (H) – or a Service – a set of functionalities available to a Host (S). A Service can
be an external server or an internal service.

AS
H = (IS

H,0, . . . , IS
H,n) where IS

H,i = interaction i between the host H and the service S

To simplify the notation, we note AS
H as AH or, if there is no ambiguity on the

Host, A.

The goal of Elementary actions is to divide the activity we simulate in individual
actions that correspond to an entry of the ground truth, such as "connection to the
web interface of a webmail server". The ground truth is an exact representation of the
activity generated. So a finer set of Elementary actions for an activity means a finer
representation of the simulated activity and a finer control of the activity model for
the evaluator. Roughly translated, even if the model does not forbid it, an Elementary
action is not meant to be a large set of interactions like "a day of activity of user U".
An Elementary action intends to represent a small action like "connection to service
S" or "adding an entry to service S ′".

In our methodology, we distinguish real activity (R) – not issued from our simulation
method – and simulated activity (S) – issued from our simulation method.

For each Elementary action, we acquireModel data that are the captured data of the
execution of this Elementary action during real activity (AR). Model data take different
forms (traces, logs, values, etc.) according to the nature of the data the evaluation target
can handle.

dmodel = {Capture(AR
0 ), . . . , Capture(AR

n )}

Furthermore, the evaluator can classify the Model data. The evaluator relies on that
classification to help label the resulting Simulation data and create a labeled ground
truth. However, the evaluator is in charge of deciding a classification as it can change
according to the need of the evaluator, or to the target of the evaluation. For example,
the evaluator can create two classes of Model data to represent malicious activity and
benign activity, respectively.
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dmalicious = {Capture(AR
0 ), . . . , Capture(AR

m)} where ∀i ∈ J0, mK,
Ai is a malicious elementary action

dbenign = {Capture(AR
0 ), . . . , Capture(AR

b )} where ∀i ∈ J0, bK,
Ai is a benign elementary action

In other contexts, the evaluator can define other classes. For the evaluation of admin-
istration tools of a network, the actors to consider are different (security: attacker/user,
administration: admin/user/client) and the evaluator will have to define classes of data
accordingly.

After capturing Model data for every Elementary action relevant for the evaluation,
the resulting set of Model data is then given as an input to a Data generating function.

3.2.2 Data generating function

We simply define a Data generating function (f) as a function that creates Simulation
data from Model data. Simulation data (dsimulation) is the execution of an Elementary
action (A) during a simulated activity.

A Data generating function (f) takes two inputs: Model data (dmodel) and a set of
Elementary action parameters (pA). We define later the Elementary action parameters.
To simplify the notation, when the set of Elementary action parameters is empty –
f(dmodel, ∅) – we note it f(dmodel).

Our definition of Data generating function does not includes requirements on the
output, the Simulation data. We express our demands for Simulation data as Equiva-
lence.

We call Equivalence (∼) the fact that two activity data (Model data or Simulation
data) have the same properties.

dactivity ∈ {dmodel, dsimulation}
dactivity ∼ d′ activity ⇐⇒ Properties(dactivity) = Properties(d′ activity)

It is important to specify that the only identical properties of two equivalent data
are the properties of interest to the evaluator. So if not all properties are necessarily
identical, it means that two equivalent data are not necessarily identical. For example,
if the evaluator has interest only in the size of the packets, two packets with the same
size but different content will be equivalent.
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Property 1 Two equivalent data are not necessarily identical:

∀d, d′ ∈ D, d ∼ d′ 6⇒ d = d′

The fact that two equivalent data are not necessarily identical is especially true
when we consider Data generating function that generates data with time-sensitive
fields (for example timestamp or random numbers). However, we do not consider the
time as an input of the Data generating function because we are not concern by the
strict identicallity of the data but by its equivalence. And the equivalence of the data
is not impacted by the time.

The properties of the data are of different forms: acknowledgement of the data by the
Service, size of sent packets, value of a measure, etc. They represent the level of realism
chosen by the evaluator. Different Data reproducing functions can conserve different
properties from the same Model data. The Simulation data produced by different Data
generating functions are not necessarily equivalent even if they used the same Model
data.

f(dmodel) = dsimulation

f ′(dmodel) = d′ simulation

}
6⇒ dsimulation ∼ d′ simulation

The evaluator selects a set of Elementary actions to decide the granularity of control
over the simulation and he chooses a Data generating function to reproduce the prop-
erties of the data he requires. If the Data generating function that produces Simulation
data from a dataset of Model data cannot produce data with the same properties, it
is useless for the evaluator. Thus, we define the following verification property of Data
generating functions:

Property 2 A Data generating function f is said to be useful to a set of Model
data D if all Simulation data generated by f from any Model data that belong to D
is equivalent to the data used as model.

∀ d ∈ D, f(d) ∼ d ⇔ f is useful to D

The evaluator has to choose a Data generating function according to the properties
he wants to simulate in his evaluation. The evaluator makes that choice with Simulation
parameters.

We call Simulation parameters (psimulation) a set of parameters given by the eval-
uator that defines the choice of a Data generating function f . fpsimulation is the Data
generating function selected by the Simulation parameters among a pool of n functions
({f 0, . . . , fn}).

psimulation = {p0, . . . , pn} / f psimulation(dmodel) = dsimulation

The evaluator selects a Data generating function with Simulation parameters for
the properties preserved by Property 2. The evaluator also provides the Data gener-
ating function with additional parameters called Elementary action parameters (pA).
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Elementary action parameters allow the evaluator to modify the behavior of the Data
generating function. It can be to match a larger dataset of Model data or to provide a
finer control.

We call Elementary action parameters (pA) associated to an Elementary action A a
set of parameters provided to a Data generating function to produce Simulation data
that can impact positively the usefulness of the Data generating function.

pA = {pA
0 , . . . , pA

n} /
f(dA, pA) is useful to D
f(dA, 0) is useful to D′

}
⇒ D′ ⊆ D

For example, we take a Data generating function that conserves the property "ac-
knowledgement of the data by the Service" of traces given to it. That function will
change time-sensitive information on the input data, like a cookie or a session ID.
However, different Services may mark those information differently. A service S1 might
mark the session ID with the tag "&session_id=" while a service S2 will mark it with
the tag "&_session=". Some services might also have other additional change in their
interactions that other services do not have. To avoid having a different Data generating
function for every service due to those insignificant differences, we want to parametrize
the transformations applied by the Data generating function.

Moreover, the evaluator might want to produce Simulation data from the same
Model data but with different results. For example, the evaluator wants to reproduce
the Elementary action "connect to a webmail" with the conservation of the property
"acknowledgement of the data by the Service". However, left as it is, the Simulation data
always present the same credentials. The evaluator may want to simulate connection
to the webmail with different IDs without having to have a different Model data for
every set of credentials. It is necessary to be able to parameter the function to make
small modifications rather than having a lot of Model data for the same Elementary
action.

To avoid having to make a Data generating function that conserves the property
"acknowledgement of the data by the Service" for each Service of the simulation, or
having a lot of different data as model for a same Elementary action, we provide
parameters to Data generating functions to modify the Simulation data produced,
while conserving the properties of the data.

3.2.3 Scenario and scripts

A Script is the representation of a realistic behavior of a Host. We define a Script as a
sequence of Elementary actions coupled with Elementary action parameters.

ScriptH = ([A0,H , pA0 ], . . . , ([An,H , pAn ])

A Script (ScriptH) is defined for each individual Host. It describes the activity it
must generate during the simulation. The set of Scripts is called the Scenario (Sce) of
the simulation.
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Sce = {ScriptH0 , . . . , ScriptHn}

A Script can be represented as a graph of actions, as illustrated in Figure3.1.

A0,H , pA0 A1,H , pA1 A2,H , pA2 . . .

Figure 3.1 – Example of a Script

Finally, the data exchanged by the program that controls the simulation and the
Host that runs a Data generating function are the Control data (dcontrol) and are essen-
tially the ground truth of the simulation. The compilation of the Control data informs
us of all the actions taken during the simulated activity.

3.3 Model and concept application

We presented the basic concepts of our model. Now we can apply those concepts to
explain our model. We also translate criteria for an ideal method into properties of our
model and constraints on our implementation.

3.3.1 The model

′ ′

Figure 3.2 – Generation of simulated activity from short traces

Figure 3.2 is a representation of our model. The evaluator provides the simulation
control program with the Simulation parameters (psimulation) and the Scenario (Sce):

Sce = {ScriptH0 , ScriptH1} = {([A, pA], . . . ), ([A, p′ A], . . .)}
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The simulation control program interprets the Scenario and the Simulation param-
eters and deduces the number of Hosts in the current simulation. It instructs the Hosts
H0 and H1 to reproduce the Elementary action (A) with the parameters psimulation

and pA. Then, each Host retrieves the Model data associated to the Elementary action
(dmodel

A ) and executes the Data generating function (f) selected by the Simulation pa-
rameters. That function produces Simulation data representing the Elementary action
(dsimulation

A ), which are sent to a Service. The use of different Elementary action param-
eters by H0 and H1 results in the generation of different Simulation data even when
the Data generating function and the Model Data are the same:

dsimulation
A = fpsimulation(dmodel

A , pA)
d′ simulation

A = fpsimulation(dmodel
A , p′ A)

 6⇒ dsimulation
A = d′ simulation

A

After the Hosts inform the simulation control program that they finished simulating
the Elementary action A, they await the next simulation orders from the simulation
control program.

The model we presented is the situation where all the Hosts are simulated and the
Services are real services. If a subset of the Hosts also acted as Services, they could
also initiate the generation of Simulation data according to requests received from other
Hosts in the form of other Simulation data.

In our model, the processing of the Control data of Hosts simulated by our model
makes the ground truth of the simulation. Therefore, we do not process data from
Hosts unrelated to the simulation (external hosts connected to the simulation). The
evaluators must incorporate those elements to their ground truth.

Lastly, we must present one of the significant issues of our model: the parameteri-
zation of the Elementary actions. The parameterization is the addition of Elementary
action parameters to extend the scope and variability of the Data generating function
while still preserving various data properties. However, the higher level the preserved
properties are, the more complex the reproduction of Elementary actions becomes.
Therefore, designing a Data generating function for a highly realistic simulation, where
not only packet size is preserved but also data acknowledgment, requires to consider
three main aspects:

• types: identification and generation of short-lived data like tokens, identifiers of
session, etc.

• semantics: modification of inputs with a high semantic value in the Model data:
credentials, mail selection, mail content, etc.

• scalability: a large scale execution of the Data generation function can have con-
sequences on the previous aspects and requires additional changes (e.g., creation
of multiple user accounts in the Service database).

These three aspects are integrated to the Elementary action parameters. However,
a few in-depth issues still require further consideration and development in order to
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elaborate a model able to adapt to various test situations without the intervention of the
evaluator. The typing issue can be solved with methods based on machine learning, but
others may require specific methodologies according to the context of the evaluation.
For example, in the case of the reproduction of a real-life network, the semantic and
scalability issues can be solved with analysis of an extended Model data acquisition
period. The evaluator can identify and highlight in the Model data inputs with a high
semantic value for the simulation.

3.3.2 Ideal criteria: application of our concepts

An ideal evaluation data method must be reproducible, realistic, customizable, accurate
and scalable. We want our method for evaluation data to respect as many of those
requirements as possible. In this subsection, we discuss how to translate the require-
ments into properties of the model of our method or, in case it is not possible, into
implementation requirements.

Reproducibility

Reproducibility concerns two different aspects: an experiment realized several times in
the same condition must produce the same results, and a previous experiment should
not impact a new experiment – the ability to restore the simulation environment to a
starting state.

The first requirement of reproducibility means that when reproducing a similar
event in the same context, our simulation must provide a similar result. We translate
it in a property on Data generating functions:

Property 3 (Reproducibility property of Data generating function) A Data
generating function f is said to be reproducible if, for any Model data, the result-
ing Simulation data generated at every instant is equivalent to any Simulation data
previously produced with the same input data.

∀d ∈ D, ∀t′ 6= t
at instant t, f(d) = dsimulation

at instant t′, f(d) = d′ simulation

}
f is reproducible ⇔ dsimulation ∼ d′ simulation

The second requirement of reproducibility is not a requirement on our model but
on the virtual infrastructure of our simulation. The implementation of our model must
allow the creation networks in similar conditions without any lasting impact from any
previous use of the simulation. This requirement will impact the choice we make for
the network support of our simulation implementation.
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Realism

The realism of our simulation depends on two factors:

• The Data generating function and Model data: the Simulation data produced is
only as realistic as the Data generating function and the input data allow. The
verification property of the Data generating function (cf. Property 2) ascertains
that the Simulation data produced is as realistic as the Model data used as input of
the Data generating function. Thus, for Simulation data to be realistic, the Model
data must also be considered realistic for the same criteria of realism. Moreover,
the Data generating function must preserve the properties of the Model data that
one considered as realistic.

• The Scenario: the activity our simulation produce is only as realistic as the Sce-
nario. At its core, the Scenario is the activity model of the evaluator for the
simulation. A realistic activity model with realistic Model data will result in a
realistic activity. We want our model to verify that property.

Property 4 (Verification property of the Scenario) The Model data generated
by a real activity according to a Scenario must be equivalent to the Simulation data
generated by a simulated activity of the same Scenario.

In short, our simulation model can generate an activity according to a Scenario with
the guarantee that the properties of the Simulation data are as realistic as the input
data. As to which properties are guaranteed, it will depend on the Data generating
function chosen by the evaluator. In a more concrete example, if our method makes
a simulation of a network activity with a Data generating function that preserves the
packet size of the model data, we can guarantee that the Simulation data produced
will present a volumetric network activity as realistic as the Scenario of the simulation
and the Model data.

Adaptability

The Scenario allows the evaluator to generate the activity of different activity models.
With a large variety of Elementary actions, the evaluator can create complex Scenarios
and obtain realistic Hosts’ behavior during the simulation. Moreover, the smaller the
Elementary actions are, the more precisely the evaluator can control the simulation
and create Scenarios adapted to its needs.

The Elementary action parameters can preserve the realism of the Simulation data
while offering another degree of customization. The evaluator can significantly improve
the semantic value of the Simulation data by using those parameters to modify cus-
tomizable inputs in the Model data (credentials, POST form inputs, etc.).

The variety of Data generating functions to select from is one strength of our model.
Each Data generating function offers a guarantee of realism as seen in Section 3.3.2. We
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can define levels of realism that correspond to the selection of different Data generating
functions. As the realism property of our model partly depend on the Data generating
function, a customizable Data generating function means an adaptable realism of the
simulation.

Figure 3.3 – Levels of realism

In Figure 3.3, we describe several levels of realism associated with several Data gen-
erating functions. We divide these levels into three main types: Temporal, Network
and System.

The first type, Temporal, is the minimal level of realism possible and is useful only
when the evaluator is solely interested in the elapsed time of different Scenarios. In
this case, the simulation of activity consists of Hosts waiting the average time of each
Elementary action.

The second type of levels of realism, Network, is chosen when an evaluator is solely
interested in the simulated network traffic. We identify three levels for this type:

• Reproduce packet volume: if the evaluator has an interest in the network
charge of the simulation, with no interest for the content. From the Model data of
each Elementary action, the Data generating function reproduces all the packets
up to the transport layer before padding the payload with random bytes to match
the size of the input data’s packets.

• Reproduce packets: if the evaluator is interested in reproducing the input data
with the full payload. The Data generating function reproduces the packets while
changing the appropriate fields (tokens, session IDs, etc.) for a correct exchange
between the Host and the Service.

• Reproduce modified packets: if the evaluator needs more precise control than
the previous Reproduce packets level of realism. The Data generating func-
tion produces the packets as described above, but Elementary action parameters
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customize the output. For example, if the Data generating function reproduces
the Model data to connect to the webmail server, the evaluator also modify the
credentials used to connect to the Service by the Model data.

Finally, the third type of realism is System. It is the highest level of realism we
describe for the simulation. With Reproduction of system data, we want to repro-
duce the system data measured on the Hosts so that it matches the Model data. For
the highest degree of realism we want the Data generating function to reproduce the
data of service applications – to provide network and system data without executing
the applications. It is, in essence, a Simulated machine.

All those different levels of realism correspond to different Data generating functions
that the evaluator can select for its evaluation simulation. It is also possible to imagine
and add other levels of realism or Data generating functions with different uses. Those
levels of realism represent our implementation goal for a customizable realism of our
model.

The nature of the Model data described in each type of level of realism is different.
Temporal uses measure values as Model data, Network have network traces, and the
Model data of System are a combination of system data and network traces.

To sum it up, the evaluators can customize the simulation of our model according
to:

• The scenario and network topology (size, topology, connexion to external networks,
. . . )

• The Model data: the scope of Elementary actions (smaller or larger number of
interactions)

• The Elementary action parameters: customize inputs with semantic value (creden-
tials, information fields, submission contents, etc.)

• The Data generating function: the evaluator can select a level of realism useful for
a specific dataset or the preservation of specific properties.

Accuracy

The constitution of the ground truth is deduced from the analysis of the Control data.
We want the Control data of our model to contain the information on the input of
every event (psimulation, A, pA), to know when the Host has reproduced the Elementary
action, how long it took him to do it and what was the result (success, failure, error,
etc.).

Our simulation must guarantee that information. We translate it into an implemen-
tation requirement of our model:
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Property 5 (Implementation requirement) The Control data of the simulation
must include the following information for every entry of the Scenario associated to an
Elementary action:

• The Elementary action taken by an Host

• The timestamp of that action

• The Elementary action parameters sent with the action

• The result of that Elementary action

• The time it took to carry it

By combining this information with the traces used for each Elementary action, it
is possible to label a record of the activity generated by the simulation of our model
quite simply.

In our model, each Host only receives instructions to replay one Elementary action
at a time. Only the simulation control program knows the full Scenario and knows
which Elementary action and Elementary action parameter any given Host will replay
next. Each Host is in a stateless situation at any given point of the simulation. We could
choose to give the Script of the Host to each of them at the start of the simulation
and let them deal with the execution of the Script. However, it would introduce the
risk of having the Hosts act out of sync with each other. Especially when introducing
elements of randomness in the Scripts of the Hosts.

With a centralization of the decision-making process of the simulation, we have a
central point with full knowledge of the situation of the simulation at any given point
in time, which facilitates the constitution of the ground truth of the simulation.

However, our model is not connected to the output of the tested product. Our model
solely handles the data sent to the tested product. It is able to label the Simulation
data produced. While our model also received data, it does not know if the data was
correctly processed by external components. For example, it has no access to their
logs. Those elements are necessary for a complete ground truth. For example, if our
simulation asks an Host to reproduce the Elementary action "connect to the webmail
server of the company", we will know what Data generating function it used, when
and how long it took for the Host to do it and if the execution of the function went
well. However, we do not have access to the log of the webmail server telling us if the
connection was successful. That information is not present in the Control data. The
evaluator would have to provide that information to the ground truth generated by
the simulation. In the previous example, we assumed that we are in the case where we
simulate only the clients of real-life services. If we also simulated the Services, then the
Control data would also contain the information on the output of the tested product.

The scope we guarantee for the constitution of an accurate ground truth only goes as
far as the elements simulated by our simulation goes. The constitution of the ground
truth with the data of external elements connected to our simulation is left to the
evaluator.
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Scalability

Scalability is an essential issue for evaluation data. It is a property that rapidly increases
the difficulty and cost of most methods to generate evaluation data. However, it is
an interesting property because it allows the constitution of complex and large-scale
activity close to a real-world environment. One of the interesting property of having a
scalable network simulation is that the Simulation data generated by two Hosts (H0
and H1) is not the same thing as the Simulation data of a single Host H0 doing the
same action twice.

∃{d, fpsimulation

, pA}/
dsimulation

H0 = fpsimulation

H0 (d, pA)

dsimulation
H1 = fpsimulation

H1 (d, pA)

 dsimulation
H0 ∪dsimulation

H1 6= dsimulation
H0 ∗2

In the same way, having 50 Hosts making one connection is not the same thing that
having one Host making 50 connections at the same time. The impact on the tested
product is also not the same, especially if that security product must follow the activity
of each user separately.

Our model guarantees that if two Hosts use the same useful Data generating function
on the same Model data, then the resulting Simulation data are equivalent.

Proof.

• According to Property 2:

f is useful to D, if ∀d ∈ D, d ∼ dsimulation = f(d)

• So, if the Hosts H0 and H1 produce Simulation data with f then:

∀{d, pA}/
dsimulation

H0 = fH0(d, pA)
dsimulation

H1 = fH1(d, pA)

}
⇒ dsimulation

H0 ∼ d and dsimulation
H1 ∼ d

• The definition of equivalence is that two data are equivalent if and only if their
properties are the same. So:

dsimulation
H0 ∼ d ⇐⇒ Properties(dsimulation

H0 ) = Properties(d)
dsimulation

H1 ∼ d ⇐⇒ Properties(dsimulation
H1 ) = Properties(d)

}

⇒ Properties(dsimulation
H0 ) = Properties(dsimulation

H1 )

and Properties(dsimulation
H0 ) = Properties(dsimulation

H1 ) ⇐⇒ dsimulation
H0 ∼ dsimulation

H1

• So, we have:

∀{d, pA}/
dsimulation

H0 = fH0(d, pA)
dsimulation

H1 = fH1(d, pA)

}
⇒ dsimulation

H0 ∼ dsimulation
H1
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Moreover, according to Property 1, we know that two equivalent data are not nec-
essarily equal to each other (d ∼ d′ 6⇒ d = d′). Therefore, it exists a case where
two Model data are equivalent and not equal. So:

∃{d, fpsimulation

, pA}/
dsimulation

H0 = fpsimulation

H0 (d, pA)

dsimulation
H1 = fpsimulation

H1 (d, pA)


dsimulation

H0 ∼ dsimulation
H1 and dsimulation

H0 6= dsimulation
H1

So, if we produce dsimulation
H0 once more on each side we obtain the following result

on our model:

∃{d, fpsimulation

, pA}/
dsimulation

H0 = fpsimulation

H0 (d, pA)

dsimulation
H1 = fpsimulation

H1 (d, pA)

 dsimulation
H0 ∪dsimulation

H1 6= dsimulation
H0 ∗2

�

We now have proof that one of the main interesting aspects of a scalable simulation
is not in opposition to our model. With our model, we can produce the activity of n
Hosts that would be different from doing the same activity n times simultaneously on
a single Host.

The other aspect to consider with scalability is the network infrastructure. To
achieve a scalable simulation, we must impose some requirement on the network in-
frastructure:

Property 6 (Implementation requirement 2) The network infrastructure sup-
porting the simulation model must be capable of scalability. It should:

• Use virtual hosts: it is not possible to have a scalable network with physical hosts
so our network support must use virtual hosts.

• Have low setup time and resources requirements: resources consumption and the
workforce required for setting up a vast network are what often prevent evaluation
data methods from being scalable.

Following the second requirement, we aim to make our simulation model work on
a virtual network using process VMs.

3.4 Conclusion

Most of the resources of the system VMs are not used during the simulation on testbed
environments. Lighter VMs would significantly reduce the cost and maintenance of
testbeds environments, but they are unable to execute real-world production applica-
tions and programs. We solve that issue by replacing the execution of those applications
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with the reproduction of their data. From that point, we defined a series of concepts to
present a formal presentation of our simulation model. We developed that formal model
for two reasons: to have a model independent from implementation choices and allow
the proposition of several implementation approach, and to formally express properties
that can be validated in a concrete fashion. In this model, we instruct virtual hosts
to reproduce Model data with a specific level of realism (Data generating function).
The hosts will follow a Script from the Scenario defined by the evaluator. This Script
defines a series of Elementary actions to reproduce.

From our analysis of existing methods, we also presented five criteria of what we
consider as an ideal method to generate evaluation data: reproducibility, realism, adapt-
ability, accuracy, and scalability. From our formal model, we extracted several prop-
erties and implementation requirements. That analysis also highlighted the strengths
(customizable level of realism, scalability, centralization of the decision-making pro-
cess, etc.) and weaknesses (ground truth of external components, the complexity of
high-level Data generating function, parametrization issue, etc.) of our current model.

We now have to select a network simulator platform that can fill the requirements of
our method and to propose an implementation of our model. The resulting prototype
will serve to validate the strengths highlighted by our model but also look for de-
velopment possibilities to compensate and reduce the weaknesses of our formal model.
Mainly, we can look for possible tools that can reduce the preparation and configuration
burden of the evaluator.





CHAPTER

4 Simulation plateform

In this chapter, we present the implementation choices and issues we encountered in
the making of a prototype for our model. The conception of our prototype followed
in several steps: the selection and capture of Model data, the development of Data
generating functions, and the deployment of the prototype on a simulated network.
We made choices on the Model data to capture (what Service to use as a model, how
to capture it, the Elementary actions to reproduce, etc.), on our approach for Data
generating functions, and the network infrastructure to use. The prototype serves as
an illustration of our model. Its functionalities are limited as its goal is to prove the
feasibility and to gauge the potential of our method along with identifying the current
issues of our model. Though the current preparatory steps of our prototype may burden
the evaluator, we also propose different approaches to mitigate the issues and transform
the prototype into a functional evaluation tool.

4.1 Capture of model data

The Model data of our model is the referential data used by Data generating functions
to produce Simulation data. We define the realism of our simulation on how close the
Simulation data are to the Model data in the eyes of the evaluator. The Model data
is the measuring stick of the quality of our simulation as the Simulation data of our
model can at most be only as realistic as the Model data. As such, the capture of Model
data is an important step of the implementation of our method.

Before the actual capture of Model data, we have to decide on a reference network.
That network will serve as a source of Model data and as a comparison with the
simulated data. For that network, we did not have a physical network available with full
control and access to capture the data. We chose a target topology that we reproduced
in a virtual network with system VMs. As presented in Section 2.3.3, a virtual network
with system VMs is the optimal virtual environment. However, system VMs have large
resources costs. Testbed environments often use virtual network with system VMs
and the publicly available traces captured on those networks serve as a reference for
the research community. As such, we make the assumption that, with appropriately
configured services, the data captured on such a network are realistic enough to be
used as Model data.
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4.1.1 Reference network

We use Hynesim to create the virtual reference network. It is an open-source network
simulator that connects system VMs in a virtual network. It handles a variety of vir-
tualization software like QEMU, VirtualBox, and VMware.

We chose to reproduce the network of a small company with typical services. In
that network:

• most services are external: webmail, website, data storage, etc. We assume that a
small company would mostly use cloud services

• some services are internal: printer, DNS, DHCP, LDAP. We use the DNS server to
refer for the local resolution of the domain name of the company (mycompany.com)
toward the external services.

• the company has a single connection point to services, such as a regular Internet
Box.

Figure 4.1 – Topology of our reference network

Figure 4.1 shows the reference network created on Hynesim. For each type of ex-
ternal service, we instantiated several servers on VMs. For example, for the website
server we set up an Apache server VM, a NGIX server VM, and a LiteSpeed server
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VM. For the webmail server, we create a VM for a Postfix server, a UbuntuServer Mail,
a Zimbra webmail, and a Sendmail server each. The goal of that approach is to provide
a variety of sources for the Model data.

In a further development stage of the prototype, we mainly focused on the Model
data of a Postfix server with the addition of the open-source Roundcube webmail layer
on top of it. We focused on a single type of service because of time constraints. However,
one of the potential development axes of our prototype is to develop a database ofModel
data. One of the limitations of the current model is the amount of preparation work
that falls upon the shoulders of the evaluator. Indeed, the evaluator must capture his
own Model data, which means instantiating a reference network. As such, to transform
the current prototype in a practical tool, we want the prototype to provide Model data
from a wide range of services. With such a practice, the evaluator would not have to
configure and install services on system VMs to generate Model data. The evaluator
could therefore directly use a database of elementary action for a set of services.

For each type of services (mail, website, storage, etc.), this database would offer the
Model data of:

• different programs with the same functionalities (for example Apache, NGINX,
LiteSpeed, etc. for webservers)

• different versions of the same program (for the reproduction of attacks specific to
a version of a product)

• the interactions with different types of clients (the requests can be different ac-
cording to the client’s OS or browser)

The database does not need to include Model data for all those situations. If the
difference in the Model data is relatively minor (change over a small number of entries),
those small changes can be implemented in the Data generating function thanks to
Elementary actions parameters.

4.1.2 Definition of the sets of Elementary actions

Once the reference network is set up, we can start the process of actually capturing
the Model data. We define the Model data as the captured data of the execution of
Elementary actions. Thus, for each service, we need a set of Elementary actions to
execute.

In our preliminary definition of Elementary actions, we also consider the role of the
simulated actors in our simulation. The idea is that each action is available to one or
several actors of the simulation. An evaluator decides different roles for the actors of its
evaluation (examples: employees, attackers, administrator, commercial, CEO, clients,
etc.). Those roles are attributed differently according to the goal of the evaluation and
highlight categories of simulated users. Those categories can have different criteria. For
example, users that are legitimate or not on the network (employees, clients, attackers),



46 CHAPTER 4. SIMULATION PLATEFORM

that may have access to different resources (employees, administrator, commercial,
clients) or that are priority targets (administrator, CEO). It may be useful for the
evaluator to separate the actions that are specific to some categories.

Here, we consider categories of authorized actors: employee (regular user), admin-
istrator and commercial employee. Each category of actor can execute different sets of
actions. If a user from a specific category executes an Elementary action from another
category of users, it should be considered as abnormal behavior.

We devise the set of Elementary actions into two subsets. The first subset is com-
prised of the Elementary actions that every actor can execute. This subset is defined
as follows:

• connection to the webmail: the user opens a browser (Firefox) and loads the
url of the webmail server (http://mail.mycompany.com/~roundcube/). The user
then inputs his credentials and clicks the "Connect" button.

• open an email: the user continues on the browser page opened by the "connection
to the webmail". The user clicks on the first email of the list of emails in the
reception box. The user stays on that page for a few seconds and then returns to
the homepage of the webmail.

• delete an email: the user continues on the browser page opened by the "con-
nection to the webmail". The users looks in the homepage for the email from a
specified address with a specified subject. If that email is in the list, the user selects
that email and clicks the "Delete" button.

• write an email: the user continues on the browser page opened by the "connection
to the webmail". The user clicks on the "New message" button. Then the user fills
the form with the specified destination address and content before he clicks the
"Send" button.

• disconnection from the webmail: the user continues on the browser page
opened by the "connection to the webmail". The user clicks the "Log out" but-
ton of the webmail and closes the browser page.

Those Elementary actions are not the full extent of the functionalities of the webmail
server. A large variety of more complex Elementary actions can be imagined. For
example, we could have Elementary actions to open specific emails, write an email
to several destination addresses, put in copy addresses, delete several emails at the
same time, open the attachments of emails, add addresses to contacts, etc. We limit
ourselves to what we considere the most basic need to simulate the regular activity of
an employee (the regular user of our system).

The second subset of Elementary actions are the actions specific to a single category
of actors (the administrators and commercial users):

• add an account: the administrator opens a browser page and loads the ad-
ministration page of the database of the webmail (http://mail.mycompany.com/

http://mail.mycompany.com/~roundcube/
http://mail.mycompany.com/phpmyadmin/
http://mail.mycompany.com/phpmyadmin/
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phpmyadmin/). The administrator inputs administrative credentials and clicks on
the "Connect" button. The user then a SQL command to add an account on the
database. The users logs out and closes the browser page.

• delete an account: same as the previous Elementary action, except that the
administrator enters a SQL command to delete an account.

• connect to "contact@mycompany.com": the same as "connection to the web-
mail" except that the commercial employee enters the credentials of the contact
address of the company.

Based on these Elementary actions, the process to capture Model data is defined
as follows. First, we create a Selenium script for each Elementary actions. The Model
data of those actions are the PCAP files captured from the execution of the Selenium
script. We capture each Model data several times.

We then compare those files together to be sure to not employ an outlier. By doing
that comparison, we noticed a small issue for the Elementary actions that connect to
the webmail. The first Model data captured of the action was significantly bigger that
the following captures. That difference in size in the Model data captured for the same
Elementary action is due to the browser that loaded the page for the first time and
cache some data (fonts, logos, etc.). When that connection is made a second time, the
browser does not request those data a second time and thus significantly reduce the
size of captured Model data.

Elementary actions can be context-sensitive and provide different Model data for
the same interaction. In our formalism, the evaluator can either make an Elementary
action for each context, or – if the change in the Model data is small – adapt the
Simulation data with Elementary actions parameters. In our case, we decide on the
first solution and use a longer PCAP file as Model data. Those model data are more
diverse in content than the second set of data that consist almost only of HTML code
requests.

4.2 Data generating functions

At this point, we have set up a reference network, defined a number of Elementary
actions, and we are able to capture Model data for each of those Elementary actions.
Now, we need to define Data generating functions and verify that they possess the
properties we defined in our model.

We present the Data generating functions introduced in the previous chapter, in
Figure 3.3. We explain our implementation of the Data generating functions for the
Temporal and Network levels of realism. We did not have the time to implement the
Data generating functions of the System level of realism but we present our intuition
on how to accomplish it. Also, we experimentally test those functions and analyze the
results.

http://mail.mycompany.com/phpmyadmin/
http://mail.mycompany.com/phpmyadmin/
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We also expand on the impact of Elementary action parameters on Data generating
function and the tools we can develop to help in the creation of other functions.

4.2.1 Simulation control program

To deploy and test the Data generating functions, we created a simulation program to
produce Elementary actions – for real and simulated activity – and to capture different
types of Model data. This program serves as the basis of the simulation control program
of our simulation. We present the program architecture in Figure 4.2.

Figure 4.2 – Architecture of our simulation program

The simulation program in Figure 4.2 is deployed on the reference network built
on Hynesim and serves as the basis for the simulation control program of our network
simulation with Mininet. The simulation control VM is a QEMU VM added to the
reference network shown in Figure 4.1. That VM is connected with a different virtual
network with the users VMs. The user VMs (Host 1 to 4) are connected to two sepa-
rated virtual networks: the internal network in black (on the right side of the hosts –
172.16.4.0/24) and a simulation control network in red (on the left side of the hosts –
10.20.0.0/24). In the internal network, only simulated data or real data are exchanged,
while in the simulation control network there are only Control data.

For the interactions between the simulation control GUI and the hosts, we use a
XML RPC server provided by Hynesim called the Action Manager server. That server is
listening on the simulation control server and waits for a message telling it to execute a
Python script with the provided arguments. Each Python script executed by the Action
Manager server is a Data generating function and the arguments are Elementary action
parameters.
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The host VMs wait for instructions from the simulation control VM to do one or
both of the following actions:

• Execute an Elementary action:

– As real activity: the VM will execute a Selenium script to open a browser and
do a series of actions as if it were a real user. For now, we only implemented
"real" actions that happen through a browser because of our current limited
simulation target. However we could easily imagine using a bash script instead
and execute more complex actions.

– As simulated activity: the VM will execute a Python script of a Data gener-
ating function with Elementary action parameters. The action is executed in
the reference network and not in the simulated network. That function of the
simulation control program serves to verify the proper working of the Data
generating function and will be the basis of the simulation control program
on the simulation network.

• Capture Model data:

– We ask the host VM to capture the Model data of one or several types (tem-
poral, network, or system) through different means (register execution time
in MySQL, create a PCAP file with tshark, capture logs, etc.).

– The capture can acquire from real or simulated activities. Captured data
from simulated activity can then be compared to the data from real activity
to verify that their properties are the same.

– Each captured data file indicates the name of the Elementary action, the type
of activity (real or simulated), and a timestamp.

Each of those actions can be manually decided by the evaluator in the simulation
control GUI or automatically executed by the simulation program with a provided
script.

This simulation control program and the listening servers on the host VMs serve
as the basis for our development of Data generating function with a Network level of
realism.

4.2.2 Levels of realism

As explained in the previous chapter, we call level of realism a set of Data generating
functions that preserves properties of the Model data. We categorized those levels into
three main types according to the type of Model data: temporal (uses time measure-
ments as Model data, network (uses network traces), and system (uses several system
data like logs, resource usages, etc.). The division into those types is not strict as more
complex Data generating functions of higher levels of realism may require the data of
lower level (for example, the Simulated machine level – the highest level we presented
in Section 3.3.2 – simulates system and network data).
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Temporal

The goal of this level of realism is to have virtual hosts wait the average time of
execution of an action. This level of realism does not have an application use. We
devised this level as a starting point and simple example of a Data generating function.

We created a Selenium script of each Elementary action we chose. On a QEMU VM,
we ran that script ten times for each action and registered in a database the execution
time of each action. Then we created a Python script that upon receiving an average
time and standard deviation will wait for this average time more or less the standard
deviation before sending an action-completed message.

Network

We defined three Data generating functions for the Network level of realism. The first
Data generating function is the reproduction of solely the volume of packets. For this
function we chose to keep the packet headers identical toModel data up to the transport
layer included. The sole modification we made inside the header layers are changing
the addresses of the packets to match simulation target.

The second Data generating function for this level of realism is the reproduction of
packets. The packets that are reproduced must be accepted by the service as the Model
data would be. In short, the Data generating function conserves the "acknowledgment
by the service" property of the Model data. Our approach to that Data generating
function is to have a main script that handles the actual reproduction of packets but
calls a specialized script to handle key moments of the process that may differ from
service to service. These key moments are the following:

• The initial state: does the service requires specific variables? A token? A cookie?
etc.

• Before sending a HTTP request: should the variables in the header change, be
removed or should new ones be added? It also adapt the request content according
to the evaluator instructions with Elementary action parameters.

• When receiving a response: should we look for specific outputs in the answer?

• Retrieval process of the token: with what keyword can we identify the token field
in the packet? Does that token require particular treatment before sending?

• The first connection: what variables should be removed or added from the header
once the first connection is successful?

• Cookie: which model should it follow? What should it contain?

Although the main script is generic for all services, other scripts are service-specific
and the identification of the changes to make for the key moments and the creation of
the specialized script can be long and difficult according to the targeted service. The
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creation of the specialized script for this Data generating function imposes another
heavy burden to the evaluator who wants to use our method with this function.

However, there are several ways to avoid and/or solve that issue:

• To avoid this issue, the evaluator can use a service simulated by our method with
a similar Data generating funtion. If the evaluation target of the evaluator is not
a service but a security product, the evaluator may not require the verification of
a valid cookie or token. Reproducing the Model data with the same (or random)
token and cookies has little impact on the evaluated security product. There is no
need for specialized scripts.

• To solve that issue, we can add to the simulation program presented in Figure 4.2
an identification and learning process (machine learning or otherwise) to automat-
ically identify and deduce how parameters of the Model data change over several
instances for the exact same action. The simulation program we presented allows
for an easy replication and capture of a same Elementary action. An addition to
that program could deduce the specialized script adapted to the service.

• Another method to solve the issue would be to execute in the virtual hosts the
portion of the code that indicates the variables required by the service and what
treatment should be applied. Even if the process VMs we use do not have the
resources to handle any GUI like a browser, it should have enough resources to
apply a simple portion of code. However, it might impact the performances.

We implemented the first solution and create an hybrid of a simulated service. The
approach is quite simple: we use the exact same Data generating function with a global
setting and put together all the packets of the Model data of each Elementary action.
When the simulated service receives a request, it reproduces the packet from its pool
of packets that answered that request. When a request is present inside several Model
data, thus leading to several possible answers, the simulated service replies with the
first one on the list. The obtained results were promising but inconsistent. However,
we worry that our approach might be flawed. The more Elementary actions a service
contains, the higher the chance of request packets being used in different Elementary
actions but with different results. Therefore, the higher the number of Elementary
actions on a service, the higher the risk of failure.

We can improve our method by determining which Elementary action is behind
each request. We can do that by examing past requests of the user and guessing which
Elementary action that request is most likely associated with. We left those proposals
for further development of the presented model.

The third and last level of realism to consider is an improved version of the previous
Data generating function. We call that function adaptive replay. While creating
Selenium scripts to execute Elementary actions with a real browser, we realized that
there was a series of user inputs that would differ from user to user or from session
to session, such as credentials, email content, unread emails or nearly every input in a
POST form. The previous Data generating function simply uses the exact same user
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inputs as the Model data for every instance. Rather than having Model data for every
set of user inputs, we proposed a Data generating function that would preserve the
same properties but can modify user inputs through Elementary action parameters.

The proper modification of those inputs is easier for user inputs than hidden param-
eters like tokens or cookies. The identification and modification of those parameters
can be not trivial and require trials and errors to manually deduce the proper handling
of those parameters. A possible solution would be to have an identification and learning
process to automatically identify and deduce how parameters of the Model data change
over several instances. The comparison of several instances of the Model data of a same
Elementary action is an efficient tool to identify those parameters. To deduce the mod-
ifications, we can try several basic transformations (copy, incrementation, addition of
time, etc.) of the identified fields or compare with Model data of the same Elementary
action with different user inputs.

System

The reproduction of system Model data is interesting for the evaluation of system secu-
rity products. System security products analyze system data of the server or computer
upon which they are install to raise or correct issues on that system. A good exam-
ple would be an anti-virus. To evaluate a single anti-virus, a regular system VM is
far more efficient that our proposed evaluation environment. However, those products
often report to a central supervision server any attack they detect. A large scale de-
ployment of an environment with a reporting of system security products is a necessity
in the study of propagation effects, weak signals, detection of compromised machines
in a sane environment, and others current attacks that are difficult to study without a
large amount of ressources.

The first Data generating function on the System level of realism is a function
whose sole focus is to provide the simulation data for system security products. It has
no need of network Model data. The first difficulty we predict for that level of realism
is the identification of the Model data. System security products use a far larger variety
of data than network security products. They can analyze logs, critical files, resources
consumption, etc. Different system security products may analyze different files and logs
for their reporting or use different programs to fetch resource consumption information.

We can take several approaches for our simulations:

• On the evaluation target:

– If the evaluator wants to solely evaluate the supervision service: our Data
generating function can be a function that simulates the report data of the
system security products. It is an easier function to implement as there is only
one type of Model data to simulate. The principle is similar to our approach
for the Network level of realism However, it does not evaluate the supervision
system as a whole, just the supervision server in charge of collecting and
analyzing the reports of security products.
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– If the evaluator wants to also evaluate the system security products: the task
is more complex and must first start by an identification of the inputs of
the system security products. We may need to change the network simulator
we are using (Mininet) for another network simulator that provides stronger
isolation (c.f. Section 4.3). Indeed, in Mininet all VMs share the same file
system, making every VM have the same changes when modifying logs and
important files.

• On the Data generating functions:

– Have a Data generating function for each source of Model data. According
to that approach, the evaluator has a panel of Data generating functions to
execute for each Elementary action. The evaluator must use one for each input
of the system security products. That approach can cause timing issues as the
Data generating functions may not be executed at the same time, especially
if there is a large number of inputs to consider. However, this may not be an
issue with system security product with a periodic activation (for example, if
the analysis of logs and files only occurs every XX minutes). This approach is
very interesting if we are to consider partial signal of an attack (some of the
Simulated data can be reproduced from an attack while the others are not).

– Have a Data generating function for each system security product. The sim-
ulation is then tailored for a specific security product and does not require
the evaluator to know all the inputs, if provided with the Data generating
function. We also avoid an accumulation of delays between the inputs due
to the execution of successive Data generating functions for one Elementary
action. However, it limits the degree of control over the inputs of the security
product and the Data generating function can not be reused for other secu-
rity products. This approach is more appropriate for security products with a
quicker response and an evaluation system with a variety of system security
products.

• On the simulation of files and logs:

– The Data generating function can directly modify the files and logs that the
system security product uses. However, this may pose an issue if some of the
impacted files are important for the proper activity of the VM.

– To avoid the previous issue we may redirect the system security product
towards a copy of all the contentious files and logs. But it is possible that we
have to directly modify the security product if we can not redirect it through
aliases.

• On the simulation of resources consumption:

– The simulation of resources consumption can be tricky. We can try to inter-
cept or replace the programs in charge of collecting the resources consumption
to report the simulated value to the security product.



54 CHAPTER 4. SIMULATION PLATEFORM

– An even trickier solution would be to execute tasks with similar resource
consumption. The main point of our simulation method is to be able to
capitalize on light network simulation that can not handle the execution of
the actual task. So, to preserve that aspect, if we are to leave the programs in
charge of collecting resource consumption, we can determine a series of tasks
that can be executed on a process VM with a predetermined consumption of
resources. However, it is difficult to have an exact prediction of the resources
consumed by the task and it may not properly reflect the consumption on
real machines. The best we can possibly do with such method is to have tasks
that generate a wide range of resource consumption (low, medium, high) and
use those levels to create abnormal consumption. We do not have tasks that
create resources consumption similar to the model but only proportionally
similar.

In short, we can either simulate the reports sent by actual security products to the
supervision server, or try to extend our model to the more complex tasks of simulating
system activity on process VMs. The first one is easier to implement and can be based
on the Data generating functions of the Network level of realism as we just have to
reproduce the packets sent by security products to the supervision server. However,
this does not allow our model to evaluate actual system security products. The second
approach presents multiple technical challenges on the reproduction of simulated files
and resources consumption and imposes more stringent requirements on the selection of
the network infrastructure of our simulation. But it allows us to have a more complex
simulation system that can evaluate all types of security products and supervision
systems.

The focus of our development has mostly been in the design of the model, the
conception of the prototype, Data generating functions of the Network level of realism,
and conducting validation experiments.

4.3 Network infrastructure

For the network infrastructure of our simulation, we must select a network simulator
that matches the criteria we raised for our simulation. The traditional approach for a
network simulator is to recreate a functional virtual network that could, in its ideal
form, completely replace the original network but with the added advantage that the
virtual network is easier to recreate and can be returned to its original configuration.

Our needs for a network simulator are different. We do not want to create a func-
tional virtual network capable of replacing the original network. We want to create a
network simulator that does not reproduce end-points nodes with all their functions
but reproduces only the adaptable behavior of those nodes.

Figure 4.3 illustrates how our simulator works. Our simulator controls process VMs
as end-point nodes, uses them to produce the Simulation data needed for our specific
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Figure 4.3 – Architecture of our network simulator

test, and make them interact with real services that are not aware of the difference.
The services responses can also be simulated by our simulator.

4.3.1 Comparison between Mininet and IMUNES

To select the network simulator for our networking support, we must clearly identify
our needs. We reduce our selection of network simulators from the taxonomy of vir-
tualization products in Appendix A to two network simulators, namely Mininet and
IMUNES, according to those criteria:

• a network simulator that uses process VMs

• open-source

• updated in the recent years

• easy to use

• used by the community
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Mininet

Mininet[De Oliveira et al. 2014] is an open source network simulator which describes
itself as a network emulation orchestration system. It is able to simulate all the elements
of a network (switches, routers, links, hosts) on a single Linux kernel by promptly
creating numerous namespaces that will be the domains of the Mininet hosts. These
domains can behave like real machines and it is possible to run arbitrary programs
installed on the host system on those domains and even start SSHD to access them.
Each Mininet host acts as if they have their own kernel without any difference with a
real machine. However each virtual host, or namespace, created by Mininet shares the
same host file system and PID space. There is very little isolation between the virtual
hosts created by Mininet and this is a major drawback as illustrated in Figure 4.4.

Figure 4.4 – Creation of namespaces by Mininet

Figure 4.4 illustrates that all virtual hosts created by Mininet share the file sys-
tem and PID space of the host system. This process creates limitation. Software that
depends on other operating system kernels cannot be executed and programs running
into each namespace will share the same configuration files and PID space.

Mininet can efficiently generate a large quantity of virtual hosts sharing the same
kernel and connect them together with virtual links, switches and routers according
to either a predefined structure in the command line or by the use of CLI or python
script to generate a customized network.

The virtual networks created by Mininet can be connected to external networks by
adding an external interface to a virtual host and virtual hosts are able to write on
virtual Ethernet interfaces in a manner close to real interface. The sent packets are
subject to delays and link speed, and are processed by the virtual switches and routers
as they would be by real hardware. The performances when two programs communicate
through Mininet are quite close to those of native machines.
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As a test, we use Mininet as the network backbone of our approach to network
simulation in a nominal case with 5 virtual hosts. The results are close to what we
expected. We observe that it effectively creates the needed virtual network, and the
virtual hosts can correctly create packets like a real machine. The creation of virtual
hosts is quite easy and an individual configuration for each virtual host is not needed.
By using Python scripts, Mininet can be used to assure the scalability features of
our network simulator. The lack of isolation between the virtual hosts, while not an
obstacle for our simulation, can potentially impact the final results and the validity of
the simulation at a large scale.

To conclude our evaluation of Mininet, we found out the following advantages at
using Mininet:

+ Mininet complies with our needs for the network simulator.

+ It is easy to use through Python scripts. It makes the creation of customized virtual
network easier.

+ Mininet can be deployed on any Linux kernel.

But we also noticed some drawbacks to Mininet:

- There is little isolation between Mininet hosts as they share the host file system
and PID space.

- Mininet is not distributed and can only work on a single system. It creates limi-
tation in resources.

- Mininet hosts can only execute programs on Linux kernel.

IMUNES

IMUNES[Puljiz and Mikuc 2006] is another open source network simulator that uses
process VMs for virtual hosts. IMUNES also works on a single kernel but, contrary to
Mininet, it does not create virtual hosts with a Linux kernel but a FreeBSD kernel.
IMUNES uses a different method for virtualization. Those virtual hosts are not names-
paces like in Mininet but vimages, virtual hosts constructed using Jails and clonable
network stack in the FreeBSD kernel[Zec 2003].

Mininet and IMUNES hosts have similar capabilities as IMUNES hosts are also
capable of executing programs on FreeBSD kernel and they can be accessed by SSH if
the daemon is started.

However contrary to namespaces used in Mininet, vimages have a more thorough
isolation between them. They no longer share the same PID space and file system as
the host system. Each virtual host in IMUNES has the same file system at start but
it evolves independently afterwards. It means that a new file created in the file system
of one virtual host is not created in the file system of other virtual host like it was in
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Figure 4.5 – Creation of vimages by IMUNES

Mininet. The file system used as reference for the virtual hosts when they are created is
the /var/imunes/vroot repertory of the host file system. This repertory is represented
by File system HV ROOT in Figure 4.5.

At the end of the simulation, any change added to the reference file system is
discarded and the next simulation will start anew with the reference file system for
every host. Another difference between Mininet hosts and IMUNES hosts is that the
PID space of each created virtual host is independent from the start in IMUNES.

In the end, as illustrated in Figure 4.5, vimages and namespaces are working in a
similar way but vimage provides better isolation and actually has a separate file system
and PID space for each virtual host. As for the virtual network connecting the virtual
host, it stays similar to Mininet. The virtual hosts write on virtual Ethernet interfaces
as they would on a real one and the packets are processed by switches, routers and
links like in a real network with the same limitations that could be customized (delay,
limit speed, queuing, bandwidth, duplicate packets, lost packets...).

As we did with Mininet, we also tested IMUNES as the networking support of our
approach to network simulation in a nominal case with 5 virtual hosts. The results
were similar to those of Mininet but we noticed a few differences in concept. One
difference is the concept of custom-configuration that does not exist in Mininet. A
custom-configuration is a script, possibly in bash, that the virtual host will execute at
its creation. It can enable virtual hosts to start specific services from the very beginning.
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IMUNES also differentiates itself from Mininet in its use. Mininet can either be used
with the CLI or launch predefined architecture, in command line or create a customized
network with a Python script. With IMUNES there is no CLI but a GUI to create an
architecture and save that architecture in a custom file describing the nodes of the
network and the links connecting them. Simulations are started in IMUNES from the
GUI or in a command line with a custom file. However, a new network from scratch
can not be created with a command line. This detail has its importance because using
a GUI is ill-versed for scalability purpose and being able to immediately add a large
number of hosts is important for scalability.

Our analysis of IMUNES showed that:

+ IMUNES complies with our network simulator criteria and presents features sim-
ilar to Mininet.

+ It has the added bonus of providing isolation between the virtual hosts

+ IMUNES can run on any FreeBSD kernel.

- IMUNES is not distributed

- IMUNES only executes FreeBSD programs

- The GUI is ill-versed for scalability

4.3.2 Justifications for the choice of Mininet as the network
infrastructure

Although IMUNES has the added advantage of having an isolation between its virtual
hosts, it also has a lot of implementation difficulties.

We implemented two versions of our simulation prototype using Mininet and
IMUNES respectively as the network infrastructure but IMUNES needed far more
efforts to implement and carried issues when trying to create a larger scale simulation.
It took far more time than Mininet to launch a similarly scaled simulation and the
results obtained were inconsistent as we upped the scale. Moreover, it created various
compatibility issues as we developed our prototype on a Linux OS rather than FreeBSD.
The results obtained at a small scale where IMUNES was stable were not conclusive
enough to convince us to invest more effort into the development of a prototype with
IMUNES.

Although the technical challenges provided by IMUNES were not impossible to
overcome, the fact that the results obtained were at best equal to Mininet pushed to
cut short our losses and select the working prototype with Mininet.

However, the goal of our prototype is to be able to conduct experiments to validate
our proposed model of generation of evaluation data. More work and improvements
are needed to make it a performant tool and to that end a different choice for network
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infrastructure might emerge. Indeed, our model aims to be independent of the network
infrastructure and our choice of network infrastructure for our prototype should not
limit the future development and evaluation tools based on our method. We do not
claim that Mininet is the best network infrastructure for our method but it was the
most appropriate network structure for the development of our prototype.

4.4 Experimental validation

In this section, we present the validation experiments and results of the highest level
of realism we implemented: reproducing modified packets. It is the highest Network
level of realism where the Data generating function preserves the "acknowledgement
by the service" property while allowing to modify user inputs with Elementary action
parameters.

In Section 3.2 and Subsection 3.3.2, we identified a series of properties that our
model must respect to work properly and to be as close as possible to our criteria of a
data generation method:

• the verification property of Data generating functions (c.f. Property 2)

• the reproducibility property of Data generating functions (c.f. Property 3)

• the verification property of the Scenario (c.f. Property 4)

• the implementation requirement on Control data (c.f. Property 5)

• the implementation requirement for scalability (c.f. Property 6)

In our experiment we must confirm that those properties are verified by our proto-
type and our Data generating function. We developed our prototype taking the imple-
mentation requirements (Properties 5 and 6) into consideration.

We selected the network simulator Mininet in accordance to Property 6: it relies on
lightweight virtual machines and can create a large amount of virtual hosts (around a
thousand) connected with virtual links in a few minutes on a regular computer. Mininet
uses the lightweight virtualization mechanisms built into the Linux OS: processes run-
ning in network namespaces, and virtual Ethernet pairs. Mininet can emulate links,
hosts, switches, and controllers at a very low resource cost.

Concerning Property 5, we simply ask the simulation control program to write in a
file the information required by that property.

Thus, the challenge of those experiments is to validate the verification property of
Data generating functions (Property 2), the reproducibility property of Data generating
functions (Property 3), and the verification property of the Scenario (Property 4).
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4.4.1 Experiments context

For our experiments, we simulate the activity of 50 to 200 Hosts representing regular
employees of a small company interacting with the Service of a Roundcube webmail
server on a Postfix mail server. A simulation control program follows the Script de-
scribed in Figure 5.5 for all the Hosts of the simulation. In Figure 5.5, the Elementary
actions are in bold while actions that do not generate activity data are in a regular
font. The Host can simulate two different series of Elementary actions after a waiting
period of X seconds each time. Therefore, the intensity of the Script can be modulated
by modifying the value of X.

Wait X seconds

Connect to webmail

Read last email

Disconnect

p = 0.5

Wait X seconds

Connect to webmail

Read last email

Send email

Disconnect

p = 0.5

p = 0.2

p = 0.8

Figure 4.6 – Generation of simulated activity from short traces

We verify the properties with two separate experiments. The first experiment is a
control experiment. We deploy 5 virtual machines on the network simulator Hynesim
and make them generate the activity of our simulation. We script the Elementary ac-
tions of the Script described in Figure 5.5 with the web driver Selenium and make the
virtual machines use their browser to interact with the webmail server. This experi-
ment provides referential values for our second experiment. We expect proportionality
between these values and the results of our simulation, with respect to the number of
Hosts.

In the second experiment, we simulate different number of Hosts (5, 50, 100, 150,
200 and 250) in Mininet and make them generate the activity of regular users using a
webmail service for 30 minutes. We measure the activity at three different points: the
webmail server, the network simulator Mininet and the server hosting the simulation.
Every 30 seconds, we measure four parameters: CPU usage, memory usage, network
I/O, and disk I/O. Figure 4.7 is an example of the measured activity. It represents the
network traffic received and sent by the webmail server with 50 simulated Hosts. Each
Host follows the Script described in Figure 5.5, with X = 30. The webmail server sent
several times more packets than it received. This difference is consistent with the fact
that content requests take a lot less packets than sending that content.
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Figure 4.7 – Network traffic of the webmail server for a single experiment (50 Hosts)

We also retrieve the logs produced by the webmail server during both experiments.
The quantity and content of the logs is analyzed in Table 4.1 and Table 4.2. Both
experiments are done twenty times for each set of parameters to ensure the consistency
of the results (Property 3). In the results, we display the average value and standard
deviation of those twenty experiments.

4.4.2 Performance results

To verify the verification property of Data generating functions (Property 2), we must
check that the simulated data had the same impact on the service as the Model data. It
entails that the log entries of the service from the second experiment must be similar to
the log entries of the referential experiment. The verification property of the Scenario
(Property 4) indicates that the results should also be proportional to the results from
real activity. Thus the simulated activity must be equivalent to the referential experi-
ment in a similar context but it also must match our expectation in different contexts
(different number of simulated hosts). Lastly, we verify the reproducibility property of
Data generating functions (Property 3) by doing 20 instances for each set of parameters
of the second experiment. Each instance must be equivalent to the other instances for
the same set of parameters (modulo the randomness factor in our Scenario). Thus the
standard deviation of our results must be in an acceptable range.

Table 4.1 represents the quantity of logs produced by the webmail server during both
experiments. We display the average number of lines in the log files of the webmail and
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5 VMs 5 Hosts 50 Hosts 100 Hosts
Filenames avg stdev avg stdev avg stdev avg stdev
userlogins 90 9 112 10 1032 36 2084 45
imap 43245 5070 57775 5306 487883 22742 984642 28820
sql 4955 525 6703 563 56081 1886 113031 2452

150 Hosts 200 Hosts 250 Hosts
Filenames avg stdev avg stdev avg stdev
userlogins 3085 52 4121 53 5118 74
imap 1450507 27792 1933823 21117 2748252 35985
sql 167138 2964 223427 2906 265354 4688

Table 4.1 – Number of lines in the webmail log files.

their standard deviation. The first column is the name of the main log files produced
by the server: "userlogins" logs every connection (successful or not), "imap" logs every
instruction from the server that uses the IMAP protocol, and "sql" logs every interaction
between the server and its database. The entries under the name "5 VMs" correspond
to the results of the referential experiment while the other entries are the results of the
simulation experiment.

The analysis of the number of entries into each log files serves as a rough indicator
to known if the simulated traffic matches our expectation. By comparing the number
of entries during the second experiment (increasing number of hosts simulated by our
prototype) with the number of entries in the control experiment, we can determine if
those entries meet our expectations.

The number of lines in "userlogins" represents the number of connections during
the experiments (one line per connection) and can be used to calculate the number
of sessions created during both experiments. Figure 4.8 shows the average number of
sessions created during the second experiment and its standard deviation according to
the number of simulated Hosts. We also estimate the average number of sessions inferred
from the results of the control experiment, based on proportionality (avg("5 VMs")×
number of Hosts

5 ).

We observe that the number of sessions created during the second experiment is
close to our estimation. Our simulation produces more sessions than expected. This
is due to the fact that our Data generating function reproduces the Model data of an
Elementary action faster than the browser of the virtual machines. Hence, in a period
of 30 minutes, the simulated activity has gone through more cycles of the Script than
the control experiment. A projection of the number of lines of the other log files ("imap"
and "sql") displays similar results. These results establish that the simulated activity
produces a consistent amount of logs.

Another rough indicator is the quantity of traffic produced by both experiments.
In Figure 4.9, we examine the network traffic produced by our simulated activity. The
lower plain (blue) and upper plain (red) lines represent the average number of bytes,
respectively received and sent by the webmail server every 30 seconds, along with the
standard deviation in dashed lines. For comparison, the black lines with respectively
circles and triangles correspond to the estimation of the expected results for received
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Figure 4.8 – Number of sessions created during simulation (plain blue line)
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Figure 4.9 – Network traffic of the webmail server



4.4. EXPERIMENTAL VALIDATION 65

and sent traffic based on the control experiment. As before, the results of the second
experiment are close to our estimation. The deviation can be justified with the same
explanation regarding the activity speed difference. This deviation is also partly due
to cached data. Since these data are stored on the host after the first connection, the
amount of exchanged data during the first connection is higher than during subsequent
sessions.

However, our Data generating function does not take caching mechanisms into ac-
count. Therefore, our simulated connections request more data from the webmail server
than estimated. Adding Elementary action parameters to modify the behavior of the
function can solve this issue as we did for previous typing and semantic issues. We pre-
viously discussed (Subsection 4.2.2) methods to improve the addition of Elementary
action parameters in Data generating functions.

Despite those issues, we have shown that the simulated activity of the second ex-
periment generated a large network activity proportionally to the number of simulated
Hosts, as expected. We respect our expectation of scalability. We now focus on proving
that the activity semantics was also preserved.

4.4.3 Semantic results

For each Elementary action of the activity Script, we look for log entries that could act
as signatures for the action. We select those signatures by comparing the logs of the
different Elementary actions. The log entries that appeared for only one Elementary
action are selected as signatures of that action.

Those log entries are used to verify that the server acknowledges the simulation
data as it would real actions. We also manually verified the correctness of the Data
generating function for some Elementary actions. For example, we ask the simulation
to do the "read the email" action for a different email that the one in the Model data.
Or to do the "connect to the webmail" action with purposely wrong credentials. In
both cases, the manual analysis of the simulated data showes that the webmail server
properly acknowledged the simulated data.

Signatures from log entries is a more global form of verification. By comparing these
signatures in both experiments, we obtain the results displayed in Table 4.2.

From Table 4.2, the following observations can be made:

• the number of signatures for the "connect" Elementary action is slightly inferior
to the number of sessions (the number of lines from "userlogins") observed for 150
Hosts and above. It is explained by the fact that the signatures correspond to the
number of successful connections to the webmail server. If we remove the number
of lines in the "userlogins" file that correspond to failed connections, we find the
exact number of signatures for the "connect" Elementary action.

• the number of signature for the "disconnect" Elementary action corresponds to the
exact number of sessions observed in Table 4.1.
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5 VMs 5 Hosts 50 Hosts 100 Hosts
Signatures Actions avg stdev avg stdev avg stdev avg stdev
imap.sign1 connect 90 9 122 10 1032 36 2079 44
imap.sign2 connect 90 9 122 10 1032 36 2079 44
imap.sign3 connect 90 9 122 10 1032 36 2079 44
imap.sign4 connect 90 9 122 10 1032 36 2079 44
imap.sign5 connect 90 9 122 10 1032 36 2079 44
imap.sign6 connect 90 9 122 10 1032 36 2079 44
imap.sign7 connect 90 9 122 10 1032 36 2079 44
imap.sign8 connect 90 9 122 10 1032 36 2079 44
imap.sign9 connect 90 9 122 10 1032 36 2079 44
imap.sign10 connect 90 9 122 10 1032 36 2079 44
sql.sign1 connect 90 9 122 10 1032 36 2079 44
sql.sign2 disconnect 90 9 122 10 1032 36 2079 44
imap.sign11 open 89 9 122 10 1028 36 2069 44

150 Hosts 200 Hosts 250 Hosts
Signatures Actions avg stdev avg stdev avg stdev
imap.sign1 connect 3075 55 4118 54 4874 87
imap.sign2 connect 3075 55 4118 54 4874 87
imap.sign3 connect 3075 55 4118 54 4874 87
imap.sign4 connect 3075 55 4118 54 4874 87
imap.sign5 connect 3075 55 4118 54 4874 87
imap.sign6 connect 3075 55 4118 54 4874 87
imap.sign7 connect 3075 55 4118 54 4874 87
imap.sign8 connect 3075 55 4118 54 4874 87
imap.sign9 connect 3075 55 4118 54 4873 88
imap.sign10 connect 3075 55 4118 54 4873 88
sql.sign1 connect 3075 55 4118 54 4874 87
sql.sign2 disconnect 3085 52 4121 53 5118 74
imap.sign11 open 3059 52 4090 53 4808 91

Table 4.2 – Signature log entries.

• the number of signatures for the "open" Elementary action is slightly inferior to
the number of signatures for the "connect" Elementary action for 50 Hosts and
above. It is likely due to the experiment ending before the last Script cycle ended
for a few Hosts.

• no characteristic entry for the "send an email" Elementary action could be found
in the "userlogins", "imap" and "sql" log files.

The failure of several connections in our simulation may also be due to the pa-
rameterization of the Data generating function. The adapted replay Data generating
function was designed to modify short-lived information from the Model data like the
token or the session identifier according to the server reply from the requests. However,
such modification was not included in the first request. The webmail server possibly
refused some connections because they contained the same information at the same
time. Therefore, an improvement of the typing of the adapted replay Data generating
function should raise the number of successful connections with a high number of sim-
ulated Hosts. Table 4.2 shows that for each successful session in our simulated activity,
the webmail server correctly interpreted the Elementary actions.
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To sum up the results analysis, our prototype generates a simulated activity that
produces a realistic amount of network traffic and logs from the webmail server (Prop-
erty 4). Moreover, the webmail server produces the appropriate number of logs reflect-
ing the correct semantics. Each simulated Elementary action resulted in the same log
entries as a real one (Property 2). Each result was verified twenty times (Property 3).
Therefore, our prototype succeeds in providing scalable and realistic data generation,
thus validating our model.

4.5 Conclusion

In this chapter, we discussed the issues we encountered in the establishment of a proto-
type of our method: the acquisition of Model data, the development of Data generating
functions, the selection of a network infrastructure, and the experimental verification
of our prototype.

For each of those issues, we explained how we treated the issue and proposed meth-
ods for better solutions to the issues we could not solve. We also explained the future
directions for our prototype: more Elementary actions, improved acquisition of Model
data coupled with the automatic treatment of Elementary action parameters, the Sys-
tem level of realisms, a prototype with isolation between virtual hosts, etc. Despite not
attaining all our ambitions, we developed a prototype that verified all the properties
and requirements of our simulation method. Although the results of this prototype
tend to degrade after a certain point in scaling, the results are good enough to attempt
to apply our prototype to an actual evaluation of a security product or service. We
attempt such evaluation in the next chapter.

We proved that our method, despite all its requirements and imposed properties,
is implementable and shows a lot of potential. Currently, a lot of preparation work
is required from the evaluator to use our prototype but the proposed improvements
can greatly reduce that burden. If in future development we can create stable and
complete tools that can support multiple network infrastructures, we would have a
powerful evaluation tool and process that can adapt to the available resources of the
evaluator, the evaluation target requirements and goal of the evaluator.





CHAPTER

5 Evaluation of services
and security products

In the previous chapter, we discussed the prototype we developed based on our model
and the requirements we established in Chapter 3. The scope of the prototype is still
limited, and improvements are possible. However, the experimental results of the ver-
ification experiments showed that the prototype could be used for the evaluation of
services and security products as long as we stay inside the operational range of the
prototype.

To that effect, we discuss in this chapter of the methodologies to apply to evaluate
security products and service. We describe the place of our network simulation in the
topology of an evaluation. According to the type of products evaluated and the amount
of preparation work the evaluator is willing to do, our simulation can be one element
among several tools or the sole tool of the evaluation. Indeed, our simulation can be
connected to external components to reduce the preparation burden of the evaluator.
However, the addition of external components implies more effort to be made on the
composition of the ground truth.

To illustrate our methodology and present a use case of our simulation, we eval-
uate an open-source IDS called Suricata. For that evaluation, we choose to follow a
methodology that uses external components as the source of attacks and malicious
traffic. Although the current capacity of the prototype limits the obtained results, it
shows some interesting results that confirm the needs for this type of simulation.

5.1 Methodologies

5.1.1 Objectives of the methodology

Before explaining how to apply our proposed simulation method to the evaluation
method, it is good to recall some of the notions we presented in the evaluation of
services and security products in Chapter 2, Section 2.1.

As illustrated in Figure 5.1, an evaluation requires two elements: an evaluation
target and an evaluation environment. The evaluation targets we consider are either
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Figure 5.1 – Elements of an evaluation

services or security products. However, according to the type of target, our evaluation
may include both services and security products. For example, in-line security products
like IDSs or firewalls require other services in the evaluation. In-line security products
analyze traffic between two actors (two services, a service and a user, or two users) and
deduce the action to take. Unlike out-of-band security products like an authentification
server, in-line security products are not security products that are directly requested by
services or users. Thus, we cannot evaluate their actions without generating exchanges
between services and users.

An evaluation also requires an evaluation environment that provides a network and
actors. We can further divide the actors according to the need of the evaluator. In a
security evaluation of security products, we divide those actors into regular users and
attackers. In the performance evaluation of services, the evaluator can decide to divide
the actors according to their role in the evaluation (employees, clients, administrator,
developers, etc.). The categories of actors in a simulation are not fixed and can change
according to the need of the evaluator. Our simulation model does not have to provide
all those roles. We choose a network infrastructure that can connect external compo-
nents to the simulation, and the evaluator can delegate some of those roles to external
components.

In this chapter, we develop an evaluation methodology based on our method that
takes into consideration the type of evaluation target and the diversity of roles of the
actors of the simulation. We propose methodologies to evaluate services and security
products that can either solely rely on our simulation or that employ external compo-
nents for some roles to lighten the burden on the evaluator. We explain the advantages
and drawbacks of each choice.

5.1.2 Evaluation of services

Figure 5.2 shows the general topology of the network simulation. The virtualized struc-
ture of the simulation creates the hosts and connects them in a simulated network. We
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Figure 5.2 – Simulation general topology

connect the evaluated target to that network along with other external components
that the evaluator may use. To use the simulation, the evaluator must provide three
inputs: the Model data that the simulation will reproduce, the level of realism of the
simulation, and the Scenario of the simulation.

The evaluator must provide Model data for each Elementary action. Those Elemen-
tary actions will correspond to entries of the ground truth of the actions taken by the
users. To ensure the compliance with the specifications, we select as Elementary ac-
tions each functionality of the evaluation target. The evaluator must manually execute
each functionality of the service and record the resulting data, which form the Model
data. The nature of that data can change according to the input requirements of the
data generating function of the simulation. It can be values, logs, network traces, or
otherwise.

The level of realism is not an actual input of the simulation model, but one of the
simulation parameters. It corresponds to a Data generating function that reproduces
the model data while preserving one or several properties of the model data (size of
packets, acknowledgment by the service, waiting time, etc.). We discussed the several
levels of realism we implemented in Section 4.2.2. The choice of the level of realism is a
critical step to produce Simulation data that are realistic to the eyes of the evaluator.

The third input required for the simulation is the Scenario. This Scenario is com-
posed of sets of Elementary actions and Elementary action parameters. Those Elemen-
tary actions are the functionalities of the services. Just like the functionalities might
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require parameters, the evaluator has to provide Elementary action parameters neces-
sary for the compliance to the specification. Those parameters may be requirements for
the proper working of the Elementary actions (e.g., credentials) or inputs to improve
the variety of the Simulation data (e.g., contents of an email).

Figure 5.3 – Sequential diagram of the simulation

Figure 5.3 illustrates the sequential process of the simulation with the elements
previously explained. The figure displays only one of the virtual hosts of the n hosts
that interact simultaneously with the target. In this example, the evaluator gives a
scenario that required the host Hi to simulate the Elementary action A1 followed by
the action A2. The virtual host generates the data on the client side of A1 with the data
generating function f corresponding to the selected level of realism. The host gives f
the model data of the action A1 and the Elementary action parameters in the scenario.
With an appropriate scenario, the network simulation can make a large number of
clients use all the functionalities of the service, verifying both the compliance to the
specifications and the workload processing capacity.

For the production of attacks, there are two solutions: the evaluator can either
provide inputs for attacks as he would for other elementary actions or connect an
external source of attacks (exploit database, physical attacker, vulnerability scanner,
etc.) to the simulated network. The simulation model uses the same data generating
function to produce malicious or benign data. Thus, the generation of malicious attacks
requires the same inputs as benign data. It can be burdensome for the evaluator to
capture sufficient Model data to reach a decent variety of attacks to evaluate the attack
coverage of the services. The use of an external component like a vulnerability scanner
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can be more appropriate for such tasks. If the evaluator only needs to cover a small
variety of attacks, the burden on the evaluator would be much smaller.

The last step of every evaluation is the analysis of the experimental results. This
step is a comparison of the ground truths of the different components of the evaluation:
services, security products, network, and users. The evaluator compares the ground
truth of the evaluated target with the ground truth of other components. Thus, in
the study of discrepancies, we can ascertain if the mistake comes from the evaluated
product or the evaluation method.

The network simulation provides the network environment and actors (regular users
and attackers). The ground truth for the actors are the Scenario and Control data
generated by the simulation. They display which Elementary actions were simulated
by which host with which parameters. For the network, an analysis of the network
traces can constitute a ground truth. Indeed, by identifying specific URLs or specific
packets, or if the attacker comes from an external component, we can identify the
network traces based on the IP addresses. We then compare that ground truth to the
simulation scenario or control data.

To sum up, in addition to the necessary inputs for the simulation we presented in
the previous chapter, the evaluator that evaluates a service must:

• capture Model data for each functionality of the service

• decide if the simulation simulates all actors (regular users and attackers) or relies
on external components for some roles

• have a ground truth of a component of the simulation other than our simulation
for comparison. It can be the analysis of network traces. The ground truth of other
actors must complete the ground truth of the simulation if external components
are involved.

5.1.3 Security Products

When evaluating an in-line security product, the evaluator must configure the sim-
ulation to generate traffic between users and services. Contrary to the evaluation of
services, that traffic does not need to cover every functionalities of the services. So
long that the evaluator constructs a realistic activity model of the interaction with the
services (the Scenario) it will be enough.

In the evaluation of an out-of-band security product, the evaluator is no longer re-
quired to generate a simulated activity between users and services. Like the evaluation
of services, the evaluator must first identify the actors interacting with the functionali-
ties of the security product and reproduce these interactions. They can be interactions
between the security product and users or between the security product and services
or both. The evaluator must then capture the model data of those interactions.

The evaluator may construct different Scenarios according to different situations
(regular use of services, overload of requests, under attack, etc.) and generate Simula-
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tion data of several services protected by the same security product. The attacks can
be Elementary actions of that Scenario or external components. Like in the evaluation
of services, to ensure a proper evaluation of the attack coverage, we advise the use of
an external component as a source of attacks. However, the addition of the ground
truth of the external component is left to the evaluator.

We mentioned in Chapter 2 that the evaluation of security products consists of the
verification of four properties: policy accuracy, attack coverage, workload processing
capacity and performance overhead. The network simulation can verify these properties
on a security product.

The policy accuracy represents the accuracy of the judgment of the security product,
and its evaluation depends on the configuration of the security products. To properly
evaluate this property a reliable ground truth is required. Its difficulty depends on
the topology chosen, more precisely if it includes external components or not. If the
evaluation includes external components, additional work must be done to generate
a complete ground truth of the evaluation, but the external network interface of the
components make their traffic easily identifiable.

The "attack coverage" property also generates additional work for the evaluator
according to the topology choice. If the simulation simulates the attackers, the evaluator
must capture a large amount of the model data added to match the variety of attacks
of an external attacker.

The "workload processing capacity" property is inherent to our simulation method.
The method aims to generate consequent benign traffic along with attacks for an eval-
uation closer to production context.

The last property of the "performance overhead" evaluation requires an additional
step to the experiment. The network simulation can be supported on a single server. It
is quite easy to measure the performances of the server as a whole for two experiments.
The first experiment is the simulation without the security product, and the second
experiment consists of the same simulation with the security product. The difference
between the two should provide the performance overhead due to the security product.

5.2 Evaluation of an IDS

In this section, we present an application of the previous methodology for the evaluation
of a security product, focusing on the Suricata IDS. The goal of this evaluation is to
verify the impact of a consequent volume of benign data on the detection rate of
Suricata. We also want to look for differences in the analysis by Suricata between
live and offline traffic. We call live analysis the alerts generated by Suricata during
the simulation and offline analysis the alerts generated by Suricata from the network
traces captured from the simulation. The main difference between the two analysis is
that during the live analysis, Suricata is under stress to keep up with the flow of data
passing through it, while in the offline analysis Suricata reads the traces at its own
pace.
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Figure 5.4 – Topology of our evaluation of Suricata

Figure 5.4 describes the topology of our evaluation of Suricata. The simulation is
created and managed by the prototype described in Chapter 4. We chose to have an
external service and an external attacker to evaluate the IDS. We set up Suricata with
the rules of EmergingThreat as available in January 2018. We left the basic configura-
tion of Suricata. The external service is a webmail server (Postfix + Roundcube) that
we set up to look like the webmail server of a small company. The external attacker is
OpenVAS, a vulnerability scanner. We used the scan named "Full and fast" that test
62 families of vulnerability. We scan the external server, and the probe passes through
the simulated network. This scan lasts an average of 23 minutes and starts 3 minutes
after the start of the simulation scenario of 30 minutes of benign activity.

The simulated hosts are the employees of a small company. The employees all follow
the same script of activity shown in Figure 5.5.

Figure 5.5 represents the decision graph of the Elementary actions performed by
each host. The host waits X seconds before deciding with a probability of 0.5 to perform
the first series of Elementary actions (connect → read email → disconnect). It then
waits X seconds again and decides with a probability of 0.2 to perform the second
series of Elementary actions (connect → read mail → write mail → disconnect). Each
simulated host repeats that script for the whole duration of the simulation.
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Wait X seconds

Connect to webmail

Read last email

Disconnect

p = 0.5

Wait X seconds

Connect to webmail

Read last email

Send email

Disconnect

p = 0.5

p = 0.2

p = 0.8

Figure 5.5 – Script of the benign activity

We regulate the intensity of the generated benign traffic with the number of hosts
simulated during the experiment (50, 100, 150, 200 or 250 hosts), and we control
the intensity of the script by changing the waiting period X between each series of
Elementary actions (10 or 30 seconds). The data generating function (selected by the
level of realism) that we choose for this evaluation is a function that generates the
same packets as the model data but modifies some elements so that the webmail server
may accept them. They are two types of modifications: modifications for the sake of
variability and modification for the sake of functionality. The first kind modifies a
part of the content of the model data that may differ from user to user (examples:
credentials, email content, etc.). The second modifications focus on elements that are
time sensitive and, therefore, must be changed to be accepted by the service (e.g., the
token ID, the cookies, the IP addresses, etc.). They do not affect the variability but
maintain the consistency of the data generation function.

5.2.1 Evaluation with benign traffic

Before starting the test with mixed traffic, we need to have a reference point for benign
traffic and malicious traffic. We start with benign traffic. We do the evaluation without
the external attacker OpenVAS. The goal is to obtain a reference point for the quantity
of simulated data generated solely by the simulation and see if these benign data raise
any alert on the IDS. We test different numbers of hosts and different waiting periods.
We do each experiment for a set of parameters (number of hosts, waiting period X) 20
times.

Figure 5.6 shows the average number of bytes received (blue with a left arrow) and
sent (red with a right arrow) every 30 seconds by the simulation from the webmail
server during the experiment. The solid lines are the experiments where the scenario
has a waiting period of 10 seconds between each series of simulated actions while the
dotted lines are the experiments where the waiting period is 30 seconds. The simulated
hosts request a variety of data for each page from the service webmail (HTML pages,
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Figure 5.6 – Network traffic of the evaluation with benign traffic.

fonts, links, logos, etc.) which results in the simulation receiving a lot more data than it
sends. Figure 5.6 shows that a more intensive scenario results in a significantly increased
amount of exchanged data.

This figure also shows that our current implementation prototype has difficulties
handling more than 150 hosts. The amount of generated data is proportional to the
number of hosts simulated on the first part of the graph up to 150 hosts. Beyond
that point the simulation encounters difficulties. The cause of such difficulties is still
unidentified and is the target of improvement of our current prototype. It can be due
to limitations of the network support (Mininet) or limitations on the service webmail
that may not be able to handle so many simultaneous connection requests for a set of
only five credentials. However, previous experiments tend to point a limitation on the
handling number of connections (around 6000) during the experiment, which would be
a limitation of our network support.

Despite that technical difficulty, we observe interesting results from this evaluation
of the generation of benign data. Coincidentally, this evaluation of the generation of
benign data also ends up being an evaluation of the external service of our simulation.
The graph in Figure 5.6 represents four days and 20 hours of continuous activity be-
tween the simulation and the webmail server. It evaluates the capacity of the webmail
server to process a consequent workload.

The experiments also reveal that our benign traffic is raising an alert on Suricata.
Indeed, we deliberately chose not to use encryption in the simulated traffic to limit
the issues in our evaluation. Thus it raises a Suricata alert when our simulated hosts
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connect to the service with credentials in clear text. It generates one alert each time
the "connect to the webmail" elementary action is simulated.

X = 10s X = 30s
Nbr hosts avg stdev avg stdev
50 2433 82 1044 33
100 4864 64 2065 50
150 5611 197 3077 65
200 5078 192 3287 452
250 3091 139 1227 285

Table 5.1 – Number of "clear password" alerts from Suricata

Table 5.1 shows the average number and standard deviation of alerts generated by
Suricata during the generation of benign traffic. We calculate the average and stan-
dard deviation out of the twenty experiments made for each set of parameters. These
numbers are also representative of the number of sessions created with the webmail
server during the experiment. The standard deviation of the number of alerts is rela-
tively high when one or several experiments encountered difficulties, especially when
the simulation reaches 150 hosts or more.

5.2.2 Evaluation with malicious traffic

After evaluating the benign data, we now focus on the malicious data. In the topology
of Figure 5.4, we only launch the simulated network without starting the activity of the
hosts. We then launch a scan of the service with the vulnerability scanner OpenVAS.
We observe the alerts raised by Suricata in Table 5.2.

Alert ID Live analysis Offline analysis
2006380 1 1
2012887 6 6
2016184 2 2
2019232 780 780
2019239 260 260
2022028 1040 1040
2220007 2 2
2220018 1 1
2221002 1 1
2221007 57 57
2221013 1 1
2221014 1 1
2221015 2 2
2221016 1 1
2221018 1 1
2221028 6 6
2230010 34 34

Table 5.2 – Number of alerts from Suricata (malicious only)
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Table 5.2 shows the number of alerts raised by Suricata, classified by alert ID.
The alert ID 2012887 corresponds to the alert that warns about the transmission of a
password in clear text, similar to the benign traffic analysis.

From Table 5.2, we can infer that the traffic solely generated by OpenVAS does not
create enough stress on Suricata to generate a difference between the offline and live
analysis.

5.2.3 Evaluation with mixed traffic

Lastly, we evaluate Suricata with mixed traffic generated by our simulation and Open-
VAS at the same time. We start the generation of benign traffic first then, after two
minutes, we start the vulnerability scan. We generate different levels of traffic intensity
(number of hosts + X), and we compare the alerts raised during the live and offline
analysis of Suricata. We expect the resulting alerts to be equal to the number of alerts
found for the same intensity of benign traffic plus the alerts raised with the malicious
traffic. To be consistent, we order OpenVAS to do the same vulnerability scan.

Figure 5.7 – Network traffic of the evaluation with mixed and benign traffic

Figure 5.7 presents the average number of bytes received (blue with a left arrow) and
sent (red with a right arrow) every 30 seconds by the simulation from the webmail server
during the experiments with mixed and benign traffic. For reference, we display the
results of the benign traffic in Figure 5.6 along with the results of the mixed traffic. In
this figure, the lines without dots represent the data exchanged during the mixed traffic
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50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Alert ID live off. live off. live off. live off. live off.
2006380 2 2 2 2 2 2 2 2 2 2
2012887 2460 2465 4813 4821 5526 5541 5069 5075 3044 3046
2016184 2 2 2 2 2 2 2 2 2 2
2019232 780 780 780 780 780 780 780 780 780 780
2019239 260 260 260 260 260 260 260 260 260 260
2022028 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040
2220007 2 2 2 2 2 2 2 2 2 2
2220018 1 0 1 0 1 0 1 0 1 0
2221002 2 1 2 1 2 1 2 1 2 1
2221007 57 56 57 56 57 56 57 56 57 56
2221013 1 1 1 1 1 1 1 1 1 1
2221014 1 1 1 1 1 1 1 1 1 1
2221015 2 2 2 2 2 2 2 2 2 2
2221016 1 1 1 1 1 1 1 1 1 1
2221018 2 0 2 0 2 0 2 0 1 0
2221028 6 5 6 5 6 5 6 5 6 5
2230010 33 33 32 32 33 33 32 32 33 32

Table 5.3 – Number of alerts from Suricata (mixed, X = 10s).

and the lines with dots (single or double) are the data exchanged during the benign
traffic generation. A solid line corresponds to mixed traffic with X = 10s, a dotted line
to mixed traffic with X = 30s, a dotted line with single dots to benign traffic with X
= 10s and finally a dotted line with double dots to benign traffic with X = 30s. As
in Figure 5.6, less intense scenarios (X = 30s) exchange a lower number of bytes than
more intense scenario (X = 10s). Moreover, apart from the mixed experiment launched
with limit parameters (150 hosts, X = 10s), the behavior of the mixed experiment is
close to the benign traffic experiment, as we expected.

Table 5.3 represents the average number of alerts raised by Suricata by alert ID for
the most intense scenario (X = 10s). For each number of hosts, we show the average
number of alerts raised live and offline by Suricata. For the most part, the results are
pretty similar to the profile of alerts showed in Table 5.2 except for alert 2012887 that
was raised both during the benign traffic and the mixed traffic. The range of variation
of this specific alert matches the results obtained for the evaluation with benign traffic
in Table 5.1.

However, Table 5.3 also shows that differences appear between offline and live anal-
ysis. Those differences are proof that Suricata operates slightly differently between a
live analysis and an offline analysis due to the stress inflicted on the IDS during the
simulation. With more substantial stress (more intensive scenario, more hosts and dif-
ferent configurations of Suricata) we can expose even more alerts that the IDS detects
in offline analysis but misses in the live analysis.

Table 5.4 shows the preliminary results of on-going experiments with a higher inten-
sity scenario (X = 5s), a more in-depth vulnerability scanning and more rules activated
on Suricata. The analysis of benign traffic shows none of those alerts. In these exper-
iments, a few interesting results appear. Alert 2200069 shows that there are attacks
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Mixed
OpenVAS 50 Hosts 100 Hosts 150 Hosts

Alert ID live off. live off. live off. live off.
2200069 7395 7617 7611 7252
2200074 20 60 79 71
2230010 44 44 32 31 33 33 33 33

Table 5.4 – Number of interesting alerts from Suricata (X = 5s)

that Suricata does not detect during a live analysis. Alert 2200074 produces more alerts
in mixed traffic than in an attack without benign traffic. On the contrary, we detect
fewer alerts 2230010 and 2230015 than expected with the addition of benign traffic.
The analysis of those experiments is still on-going, but an improvement of the current
limitations of the prototype could allow a deeper understanding of the behavior of the
IDS.

5.3 Conclusion

In this chapter, we defined a methodology for the evaluation of services and security
products. We can design an experiment using our network simulation that respects
all the properties of the evaluation of services and security products. However, our
methodology requires some preparation efforts from the evaluator. The evaluator needs
to provide model data and scenarios and must choose an appropriate data generating
function. He must also make topology choice (the use of external components, selection,
and composition of ground truth, actors interacting with the target, etc.) according
to his goals and his evaluation target. This method is still at its initial stage. We
can significantly reduce the preparation effort of the evaluator with the development
of further data generating functions, tools to identify time-sensitive inputs, and the
accumulation of model data.

To illustrate the proposed evaluation methodology, we present the experimental
results of an evaluation of a network-based IDS. We evaluate this IDS with our network
simulation using only benign traffic, only malicious traffic, and mixed traffic. After
incidentally evaluating the workload processing capacity of the external service of our
topology, we observed that the separate evaluation of benign traffic and malicious
traffic gave slightly different results than with mixed traffic. In particular, we observe
a difference in behavior between a live and offline analysis most likely due to the stress
of consequent benign traffic.

However, a more advanced prototype of the simulation could provide more devel-
opment of the model and the broaden scope of possible evaluations. It would also be
interesting to extend the experimental results to similar security products and products
of different types.
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6 Conclusion

We started this thesis from the observation that the evaluation of security products
is a large task with multiple aspects. A complete evaluation is not only an evaluation
of the properties of the security product but also of its impact on its operational
environment (actors, services, other security products). As such, evaluators require
tools or an environment that can test all kind of properties at an affordable operational
cost. The environment must be able to concurrently evaluate functionalities with a fine
comb (semantic tests) and evaluate at a scale that matches the operational context of
the evaluation target (load tests).

To that end, we established the current state of the evaluation of security products
and services. We identified the properties to evaluate for services (compliance with the
specifications, workload processing capacity, resilience to attacks) and security products
(policy accuracy, attack coverage, performance overhead, workload processing capac-
ity). We presented the tools employed by the community for those evaluations. Load
tests tools stress specific resources like workload drivers (HTTPBench, UnixBench, io-
zone, etc.). Other methods allow for semantic tests that verify specific functionalities
or vulnerabilities like manually generating activity, developing homegrown scripts, or
exploit databases. To obtain a combination of those tests and create an operational con-
text with the targeting of specific vulnerabilities and productive use of functionalities
with realistic intent, the evaluator must turn to traces from other sources (real-world
production, publicly available traces or honeypots) or testbed environments that allow
for the large scale deployment of semantic tests. However, all those methods can either
target parts of the properties that interest us, may not be adapted to specific needs
of the evaluator, may not guarantee full knowledge of its content, or requires a vast
amount of resources and time. The method that ended up as the closest to our goal
is a testbed environment, a method that requires many resources to set up and oper-
ate. Much of that cost is due to the network infrastructure required to support that
environment, leading to few being able to afford that cost.

In this thesis, we proposed a new approach to generate evaluation data at a large
scale that can rely on lower-cost network infrastructures like virtual networks that
use process virtual machines. The idea is to execute a program reproduce model data
to a level of realism acceptable to the evaluator. The simulation program does not
reproduce the model interaction (Elementary action) of the actor (user, attackers or
services) but solely the data of that interaction. This simulation program can then
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function on a lightweight network infrastructure at a large scale. The idea is to propose
a method that can exploit the advantages of its virtual network infrastructure. We
presented a formal model of our approach where we defined key concepts of our model
(Data generating functions,Model data, Elementary action parameters, etc.) along with
methods to judge if the produced data was acceptable to the evaluator (levels of realism
and notion of equivalent data over identical data). We imposed several requirements
over our evaluation method (reproducibility, realism, adaptability, accuracy, scalability)
and transformed them into verifiable properties of our model.

After proposing a formal model of our approach, we aimed to verify our model
through the implementation of a prototype. The construction of the prototype requires
several intermediary steps like the construction of the referential network, the definition
of Elementary actions and capture of the Model data, the creation of Data generating
functions that correspond to several levels of realism, the experimental validation of
those functions, the selection of the network infrastructure, etc. In this stage of devel-
opment, the preparation burden on the evaluator is quite consequent, especially in the
conception of Data generating functions and the incorporation of Elementary action
parameters. The identification of problematic elements to accomplish the preservation
of high-level properties (for example the "acknowledgment by the service" property)
is currently made by hand. We must manually inspect network traces to identify user
inputs nomenclature and hidden parameters of the services (token, identifiers, cookies,
etc.). However, we propose a method to deduce the parameters and try basic transfor-
mations through the comparison of several identical instances of the same Elementary
action, then the comparison of instances with different user inputs. We believe we can
implement a program to automatically deduce the vast majority of the processing of
those parameters. Our prototype can currently only reproduce network data, but we
presented our ideas to Data generating functions for the evaluation of system security
products. Our method may not be suited for the evaluation of a single system secu-
rity product, a regular system VM being appropriate for such task. The advantages of
our method appears in the evaluation of a security system that relies on system and
network security products with a supervision center.

Although the presented prototype is limited, it is enough to use for an example
application to the evaluation of a security product. We first define a methodology to
apply our data generation method to the evaluation of services and security products.
We offer to the evaluator the architectural choice of using our method solely to evaluate
their target or use external tools to reduce the preparation burden. We mostly advise
connecting an external component when evaluating the attack coverage property of
security product as the evaluator would have to capture the Model data for a large
number of attacks to have a decent coverage of possible attacks. We then applied the
proposed methodology in the example use case of an IDS. In the process, we conducted
several experiments: the generation of solely benign traffic, solely malicious traffic and
mixed traffic. We also wanted to evaluate the difference in behavior fo the IDS when
stressed in a live analysis of the traffic or when analyzing offline traffic. We showed that
our prototype generated enough stress on the IDS to generate a difference in analysis
between live traffic and offline traffic. We also highlighted several interesting data points
that showed the worth of further improving the development of our prototype. Serious
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work is still required to transform our limited prototype into an effective evaluation
tool. However, we showed through this thesis that our approach presents much potential
and offers a level of adaptability (scale, type of simulated data, different level of realism,
etc.) that is not offered by existing data generation method dedicated to the evaluation
of security products and services.
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APPENDIX

A Taxonomy of
virtualization
software

In this appendix we present a taxonomy of virtualization softwares we compiled. For
each software, we put together the following information:

• The name of the software

• If the software is obsolete

• The type of virtualization software:

– a regular virtualization software: this software creates and handles virtual
machines. VirtualBox is a good example.

– a network simulator: this software creates a virtual network connecting to-
gether virtual machines. We differentiate those softwares from network em-
ulator that virtualizes the resources of a physical network to create one or
several virtual networks. We explained more that distinction in Section 2.3.

– a network emulator
– a model simulator: we did not mention this type of software previously as it

is a type of virtualization outside our scope of interest. The type of virtual
network produced is a mathematical model of the network and the software
generates artificial network frames based on that model. This type of simula-
tor is mostly used for studying and developing network protocols. It can stop
the network at any time and analyze any frame exchange.

• The type of generated virtual machines: this entry is for virtualization softwares
and network simulators that uses virtual machines

• The latest release date we can find of the software

• If the software is open source or a commercial product
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Figure A.1 – Taxonomy of virtualization softwares
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Titre : Simulation d’activités et d’attaques : application à la cyberdéfense
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Résumé : L’évaluation de produits de sécurité est un
enjeu crucial de la cybersécurité. De nombreux pro-
duits et méthodes existent pour les propriétés des ser-
vices (conformité aux spécifications, traitement de la
charge et résistance aux attaques) et des produits de
sécurité (justesse de la décision, variété d’attaques
supportées, impact sur les performances et traitement
de la charge).
La plupart des méthodes existantes ne peuvent
évaluer qu’une partie de ces propriétés. Les
méthodes pouvant couvrir toutes ces propriétés,
comme les bancs de tests, nécessitent un fort coût
de ressources et main d’oeuvre. Peu de structures
peuvent se permettre de déployer et maintenir des
bancs de tests complets avec les outils actuels. Dans
cette thèse, nous proposons une nouvelle approche
pour générer des données d’évaluation à grande
échelle en respectant les exigences et besoins de
l’évaluateur.
Notre méthode est basée sur le déploiement
d’un simple programme capable de reproduire des
données modèles sur un réseau virtuel léger. Les exi-
gences de l’évaluateur sont traduites en différents ni-
veaux de réalisme correspondant à la préservation de

différentes caractéristiques de la donnée modèle sur
la donnée simulée.
Nous présentons en détails le formalisme de notre
méthode et imposons des critères d’exigences (adap-
tabilité, reproductibilité, réalisme, précision et pas-
sage à l’échelle) sur notre méthode. Nous ex-
pliquons également les étapes du développement
d’un prototype de cette méthode et les validations
expérimentales de nos exigences.
Bien que les fonctionnalités du prototype présentées
soient limitées, nous pouvons néanmoins utiliser ce
prototype pour faire une première évaluation d’un
produit de sécurité. Nous introduisons d’abord une
méthodologie pour évaluer des services et produits
de sécurité avec notre méthode puis nous faisons
une série d’expérimentations pour évaluer un outil de
détection d’intrusion.
Cette évaluation nous permet de souligner l’intérêt
et les avantages de notre méthode mais également
de présenter les limitations actuelles de notre proto-
type. Nous proposons également un ensemble d’axes
d’amélioration pour développer notre prototype en un
outil d’évaluation efficace.

Title : Simulation of activities and attacks: application to cyberdefense
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Abstract : The evaluation of security products is a
key issue in cybersecurity. Numerous tools and me-
thods can evaluate the properties of services (com-
pliance with the specifications, workload processing
capacity, resilience to attacks) and security products
(policy accuracy, attack coverage, performances ove-
rhead, workload processing capacity).
Most existing methods only evaluate some of those
properties. Methods, like testbed environments, that
can cover all aspects are costly in resources and man-
power. Few structures can afford the deployment and
maintenance of those testbed environments. In this
thesis, we propose a new method to generate at a
large scale evaluation data that match the evaluator’s
evaluation requirements.
We base our method on the deployment of a small
program on a lightweight virtual network. That pro-
gram reproduces model data according to the need of
the evaluator. Those needs are translated into levels
of realism. Those levels match the characteristics of
the model data preserved by the simulation program.

We formally present our method and introduce ad-
ditional requirements (customization, reproducibility,
realism, accuracy, scalability) as properties of our mo-
del. We also explain the step by step construction of
our prototype along with the experimental validation
of our method.
Although our prototype’s functions are currently limi-
ted, we can still use our prototype to evaluate a secu-
rity product. We first introduce a methodology to apply
our method to the evaluation of services and security
products. We then conduct a series of experiments
according to the methodology to evaluate an intrusion
detection system.
Our evaluation of an intrusion detection system illus-
trates the advantages of our method but it also under-
line the current limitation of our prototype. We propose
a series of improvements and development to conduct
to transform our current limited prototype into an effi-
cient evaluation tool that can evaluate services and
security products alike.
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