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ABSTRACT 

The investigation of metamorphic processes in the Earth’s crust is integral to understanding 

the formation and evolution of the Earth. These processes control the preservation potential 

of the geochronological rock record and give us insight into, amongst others, the pressure 

and temperature conditions of the Earth’s interior. Further, they control fluid generation and 

consumption within the crust which influences global geochemical cycles within the 

lithosphere, hydrosphere and atmosphere. This has important implications on the global 

climate and the creation of conditions conducive to life. The dominant mechanism of change 

both within and between these systems are compositional changes invoked by processes of 

mass transfer. Modern quantitative phase equilibrium modelling allows the calculation of 

the stable phase assemblage of a rock system at equilibrium given its pressure, temperature 

and bulk chemical composition. However, current software programs have limited 

functionalities for the sophisticated handling of a changing bulk composition. A new 

software tool (Rcrust) has been developed that allows the modelling of points in pressure–

temperature–bulk composition space in which bulk compositional changes can be passed 

between points as the system evolves. This new methodology enables quantitative process-

oriented investigation of the evolution of rocks with a focus on mass transfer. Mass transfer 

within the crust generally occurs through partial melting and melt redistribution. These 

processes themselves are highly dependent on the chemical distribution of the crust in 

particular the water content of rocks undergoing metamorphism, thus the fluid state of rocks 

undergoing partial melting is investigated. It is found that metapelitic rocks begin melting at 

the fluid-saturated solidus regardless of their fluid state unless the subsolidus P-T path of the 

rock is sufficiently steep such that total water loss from the hydrous silicates of the rock 

cause the system to become less than fully-hydrated. 

Further, as Earth’s crustal differentiation proceeds largely by production and emplacement 

of granitic magmas (many of which are sourced from the melting of pelitic protoliths), a 

number of source controls are investigated for their relative effect on the bulk composition 

of melts produced by sequential melting and melt loss of a metapelitic starting bulk 

composition. It is found that the fluid state of the system is shown to have the strongest 

control on melt compositions with the pressure-temperature path having subordinate control 

on the volume and composition of melts produced. 

This thesis presents key examples of the use of Rcrust to model the behaviour of open 

systems as well as the software developed in order to solve these problems and the graphical 
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user interface built to enable its distribution and reuse in the petrology community. 

Keywords: Rcrust, metamorphism; mass transfer, crustal differentiation, phase equilibrium 

modelling  
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OPSOMMING 

Metamorfisme is die sleutel dryfkrag van die mineraalverspreiding binne en stabilisering van 

die kontinentale kors deur middel van chemiese differensiasie. As sodanig ondersoekende 

metamorfe prosesse in die kors is integraal om die vorming en evolusie van die Aarde te 

verstaan. Hierdie prosesse beheer die bewaringspotensiaal van die geochronologiese 

rotsrekord en gee ons insig in onder andere die druk en temperatuurtoestande van die Aarde 

se binnekant. Verder beheer hulle vloeistofopwekking en verbruik binne die kors wat globale 

geochemiese siklusse in die litosfeer, hidrosfeer en atmosfeer beïnvloed. Dit het belangrike 

implikasies op die globale klimaat en die skep van lewensverwante omstandighede. 

Die oorheersende meganisme van verandering binne en tussen hierdie stelsels is 

komposisionele veranderinge wat deur massaprosesse toegepas word. Moderne kwantitatiewe 

fase-ewewigsmodellering laat die berekening van die stabiele fase-samestelling van 'n 

rotsstelsel teen ewewig toe, gegee sy druk, temperatuur en grootmaat chemiese samestelling. 

Huidige sagteware programme het egter beperkte funksionaliteite vir die gesofistikeerde 

hantering van 'n veranderende grootmaat samestelling. 'n Nuwe sagteware-instrument 

(Rcrust) is ontwikkel wat die modellering van punte in druk-temperatuur-massa-

samestellingsruimte toelaat waarin grootmaat komposisionele veranderinge tussen punte 

verloop kan word as die stelsel ontwikkel. Hierdie nuwe metodologie stel kwantitatiewe 

proses-georiënteerde ondersoek in na die evolusie van rotse met die fokus op massa-oordrag. 

Massa-oordrag binne die kors kom gewoonlik voor deur middel van gedeeltelike smelt en 

smeltherverdeling. Hierdie prosesse self is hoogs afhanklik van die chemiese verspreiding 

van die kors, veral die waterinhoud van gesteentes wat metamorfose ondergaan. Die 

vloeistandstaat van rotse wat gedeeltelike smelting ondergaan, word dus ondersoek. Daar 

word bevind dat metapelitiese gesteentes begin smelt by die vloeistofversadigde solidus, 

ongeag hul vloeistand, tensy die subsolidus P–T-pad van die rots voldoende steil is, sodat 

totale waterverlies uit die waterige silikate van die rots veroorsaak dat die stelsel minder as 

ten volle gehidreer word. 

Aangesien Aard se korsdifferensiasie hoofsaaklik deur produksie en inplanting van 

granietmagmas ontstaan (waarvan baie afkomstig is van die smelt van pelitiese protoliete), is 

'n aantal bronkontroles ondersoek vir hul relatiewe effek op die grootmaat samestellings van 

smeltprodukte wat deur opeenvolgende smelting en smelt verlies van 'n metapeliet begin 

massa samestelling geproduseer word. Daar word bevind dat die vloeistoestand van die 

stelsel getoon word om die sterkste beheer op smeltkomposisies te hê, met die druk-
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temperatuurpad ondergeskikte beheer op die volume en samestelling van smelt wat 

geproduseer word. 

Hierdie proefskrif bied sleutel voorbeelde vir die gebruik van Rcrust om die gedrag van oop 

stelsels te modelleer, sowel as om die sagteware wat ontwikkel is om hierdie probleme op te 

los en die grafiese gebruikerskoppelvlak wat opgebou is om sy verspreiding en hergebruik in 

die petrolgemeenskap moontlik te maak, op te los. 

Sleutelwoorde: Rcrust, metamorfose; massa-oordrag, korsdifferensiasie, fase-

ewewigsmodellering  
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RÉSUMÉ 

Le métamorphisme est un phénomène majeur affectant la distribution des phases minérales 

au sein de la croûte continentale et participant à sa stabilisation. L’étude des processus 

métamorphiques est donc essentielle pour comprendre la formation et l’évolution de la 

Terre. Ces processus exercent un contrôle sur le potentiel de préservation des roches à sa 

surface et nous renseignent entre autres sur les conditions de pression–température régnant 

en profondeur. Ils contrôlent également la production et le stockage de fluides au sein de la 

croûte ce qui influence les cycles géochimiques au sein de la lithosphère, de l’hydrosphère 

et de l’atmosphère et a, de fait, des implications importantes sur le climat et l’apparition de 

la vie sur Terre.  

La principale source de variabilité au sein de ces systèmes correspond à des changements de 

composition chimique résultant eux-mêmes de transferts de matière. Les techniques 

modernes de modélisation quantitative des équilibres de phases permettent de calculer 

l’assemblage minéralogique stable au sein d’un système à l’équilibre pour lequel les 

paramètres pression, température et composition chimique sont connus. Ceci étant, les 

programmes informatiques actuels ne possèdent que de fonctionnalités limitées pour 

modéliser et appréhender les conséquences de changements de composition chimique du 

système au cours du métamorphisme. Un nouvel outil informatique (Rcrust) a été développé 

pour permettre de calculer l’assemblage minéralogique stable dans un système soumis à des 

variations de composition lors de son évolution dans l’espace multidimensionnel pression–

température–composition chimique. Cette nouvelle approche méthodologique permet 

d’étudier de manière quantitative les processus métamorphiques et en particulier les 

conséquences des transferts de matière. Au sein de la croûte, ces derniers sont généralement 

associés à la fusion partielle des roches et à la migration des liquides magmatiques. Ces 

phénomènes sont tous deux fortement contrôlés par la composition chimique des roches 

crustales, en particulier leur teneur en eau. Ainsi, ce travail s’intéresse au rôle et à l’état des 

fluides présents dans les roches lors des phénomènes de fusion partielle. Il est ainsi montré 

que les métapélites commencent à fondre en franchissant leur solidus saturé en fluide, et ce, 

quel que soit leur état de saturation vis-à-vis de ce fluide. Une exception à ce comportement 

s’observe dans le cas où le trajet pression–température suivi par la roche comprend une 

importante décompression quasi-isotherme en conditions subsolidus. Ceci a pour 

conséquence d’entrainer une perte en eau du système qui présentera ainsi un assemblage 

minéralogique différent de celui observé lorsque la teneur en eau est maximisée au solidus 
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sans atteindre la saturation (conditions dites d’hydratation maximale). 

La différenciation de la croûte continentale résulte de la production et migration de magmas 

granitiques dont une partie importante est issue de la fusion de protolithes pélitiques. Ainsi, 

les conséquences de variations compositionnelles au sein de telles sources sur la chimie des 

liquides produits par fusion partielle ont été appréhendées en modélisant une séquence 

d’évènements de fusion/extraction, reproduisant un comportement en système ouvert. Il est 

montré que l’état du système vis-à-vis des fluides est le paramètre qui exerce le plus fort 

contrôle sur la composition chimique des liquides produits. 

Ce travail de thèse présente une série d’exemples illustrant l’utilisation de Rcrust pour 

modéliser les systèmes ouverts tout en précisant la méthodologie suivie pour l’élaboration 

de l’outil ainsi que l’interface graphique construite afin de permettre sa distribution et son 

utilisation au sein de la communauté pétrologique. 

Mots-clés: Rcrust, métamorphisme, transfert de matière, différenciation crustale, 

modélisation des équilibres de phases 
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CHAPTER 1 

INTRODUCTION 

The formation of igneous and metamorphic rocks is fundamental to determining the 

chemistry of the Earth’s crust. Processes of metamorphic devolatilisation, partial melting, 

magma emplacement, fractional crystallisation and hydrothermal alteration, amongst others, 

cause the redistribution of elements within the crust. Partial melting and melt migration into 

the upper crust, in particular, redistributes heat producing elements within the crust 

depleting the lower crust in these incompatible elements and enriching the upper crust. This 

in conjunction with the formation of the mantle lithospheric keel is fundamental to the 

stability of Earth’s continents. These processes and their effects can extend to the Earth’s 

surface through volcanic activity, hydrothermal venting and the tectonic exhumation of 

rocks leading to their exposure at the surface and weathering. Consequently, H2O and CO2 

can be released to the atmosphere/hydrosphere or re-absorbed into the lithosphere by 

weathering, sedimentation and lithification. Thus lithospheric processes can directly affect 

the hydrosphere and atmosphere as evidenced by major disturbances in the global 

geochemical cycles (Friend, 1973; Amiotte Suchet and Probst, 1995). This has important 

implications for secular changes in the Earth’s climate and the availability of nutrients to the 

biosphere. 

Since the majority of crustal processes occurring at depth are inaccessible to direct 

observation, observations of these processes must come from the incomplete sample set of 

rocks brought to the surface through erosion, uplift or transport through volcanic plumbing 

systems. In order to extend this dataset, laboratory experiments are conducted which aim to 

reproduce the conditions of the Earth’s interior and then expose either natural or artificially 

created samples to these conditions. Other types of experiments commonly functioning in 

simple systems or using individual minerals measure the range of physical and chemical 

parameters necessary to define the thermodynamic properties of minerals and fluids. This 

thermodynamic data can be used to infer the conditions of a natural rock’s formation (Spear 

et al., 2016). 

Building on this dataset by cross referencing geochemical studies of natural rocks and 

experimental studies allowed individual mineral reactions to be identified (Berman, 1991). 

Compilations of reactions in a simple chemical system were first displayed on petrogenetic 

grids (Albee, 1965)(e.g. Fig. 1). The compilation of internally consistent thermodynamic 
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datasets allowed the quantitative calculation of subsolidus phase equilibria (Helgeson et al., 

1978; Powell and Holland, 1985, 1988; Gottschalk, 1997; Holland and Powell, 1998).  

 

Fig. 1. Petrogenetic grid in pressure (P)–temperature (T) space showing the location of 

selected reactions in the system K2O–Al2O3–SiO2–H2O (KASH) taken from Spear et al. 

(1999). Abbreviations are given as follows: And = andalusite, As = Al2SiO5, IP1 = Invariant 

point, Kfs = K-feldspar, Ky = kyanite, L = liquid, Ms = muscovite, Qtz = quartz, Sil = 

sillimanite, V = H2O. Note: Reaction number 5 will only be observed in sillimanite absent 

rocks 

 

In order to investigate the possible reactions that a single rock could experience, 

compositionally relevant phase diagrams were created from petrogenetic grids by 

considering a single bulk composition thereby creating isochemical phase diagrams of P–T–

X space (Hensen and Essene, 1971; Hensen and Harley, 1990) (e.g. Fig. 2). These diagrams 

were initially termed ‘pseudosections’ but that name has recently been argued to be removed 

from common usage in favour of the term “metamorphic assemblage diagrams” (Spear and 

Pattison, 2017). Expansion of these data sets to include fluids and melts along with the 

creation of activity-composition models which describe phases by proportions of respective 

compositional endmembers has allowed more complicated systems to be investigated and 

for pressure-temperature conditions above the solidus to be investigated (Berman, 1988; 

Powell and Holland, 1988; Ghiorso and Sack, 1995; Holland and Powell, 2011; White et al., 

2014). 
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Fig. 2. Pressure (P)–temperature (T) isochemical phase diagram calculated in the system 

K2O–FeO–MgO–Al2O3–SiO2–H2O for a pelite composition: Al2O3=41.89, MgO=18.19, 

FeO=27.29, and K2O=12.63 (in mol.%) taken from Powell et al. (1998). Muscovite, quartz 

and water are in excess. Abbreviations are given as follows: and = andalusite; bi = biotite; 

chl = chlorite; g = garnet; ky = kyanite; sill = sillimanite; st = staurolite. Note: this diagram 

only shows phase assemblage fields applicable to this specific bulk composition. 

 

Computer programs have been used to perform phase equilibrium modelling by either using 

the simultaneous solution of non-linear equations as is the case in THERMOCALC (Powell 

and Holland, 1988; Powell et al., 1998) or the minimization of Gibbs free energy of the 

system (∆G) as is the case in Perple_X (Connolly and Kerrick, 1987; Connolly, 2005) and 

Theriak/Domino (De Capitani and Petrakakis, 2010). This modelling traditionally focuses 

on considering one bulk composition in isochemical phase diagrams or on the linear scaling 

between two bulk compositions in isobaric or isothermic phase diagrams. Lab experiments 

also primarily focus on systems occurring in equilibrium and those that consider melting 

generally only simulate equilibrium batch melting due to the technical limitations of 

performing phase fractionations in an experimental capsule and the challenge of diminishing 

volumes of the products produced if fractionation is induced. However, in some cases the 

modelling of natural systems mandates a more sophisticated handling of a changing bulk 

composition. 

Recent studies have begun to focus on the effects of compositional changes in open systems 

(Brown and Korhonen, 2009; Yakymchuk and Brown, 2014; Stuck, 2016; Webb et al., 
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2015). As rocks are buried and subjected to processes of metamorphism they can dehydrate 

(White and Powell, 2010; Webb et al., 2015) or experience periods of fluid infiltration 

(Johnson et al., 2003; Korhonen et al., 2012) and hydrothermal alteration (White et al., 

2003; Riesco et al., 2004; Nicoli and Dyck, 2018). If these systems reach sufficiently high 

temperatures, they can begin to melt and experience melt loss (Vigneresse and Burg, 2000; 

White et al., 2002; White and Powell, 2010; Brown and Korhonen, 2009; Johnson et al., 

2011; Diener and Fagereng, 2014; Yakymchuk and Brown, 2014; Mayne et al., 2016; 

Morrissey et al., 2016; Stuck and Diener, 2018). The movement of melts or magmas can 

form complicated systems involving entrainment of minerals to melt (Taylor and Stevens, 

2010; Garcia-Arias and Stevens; Stevens et al., 2007; Clemens and Stevens, 2012) as well as 

magma mixing, mingling and hybridisation (Beard et al., 2005; Clemens and Stevens, 

2012). At sites of emplacement magma systems may differentiate further through processes 

of fractional crystallisation or assimilation (Blevin and Chappell, 1992; Linnen and Keppler, 

2002). Throughout these processes chemical fractionation of major element, trace element 

and isotope systems occurs producing a complex array of chemical signatures which could 

provide insight into the mechanisms of compositional change in these rocks. 

López-Carmona et al. (2014) classify the potential changes to the effective bulk composition 

of a rock (the portion of the rock that is available to the reacting assemblage of phases) into 

two mechanisms. “Open system behaviour” (discussed above) and “successive 

(re)equilibrations” which result from the growth of crystals with slow intracrystalline 

diffusion thereby temporarily removing their chemical constituents from the reactive system 

until diffusion may make them re-available. These two mechanisms can occur in 

conjunction with each other. 

Lanari and Engi (2017) have presented a methodology (Lanari et al., 2018) and software 

tool (Lanari et al., 2014) for approximating and interrogating the volumes of equilibration in 

a rock which has compositionally zoned minerals. However, current thermodynamic 

modelling software has limited functionalities for dealing with the bulk compositional 

changes induced by “Open system behaviour”. Here I classify bulk compositional changes 

occurring in open systems as phase manipulations consisting of phase additions (e.g. fluid 

infiltration, wall rock assimilation) and phase extractions (e.g. dehydration, melt loss). The 

functionalities of the three most commonly used thermodynamic modelling programs for 

metamorphic studies in performing phase manipulations are detailed below and summarised 

in Table 1. 
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The use of current thermodynamic modelling software to model open system behaviour 

THERMOCALC 

A “read bulk info” script can be used to manually change the abundance of a phase and 

recalculate a bulk composition. This can be iteratively used to increase the proportion of a 

phase or to fractionate a phase e.g. (Zeh, 2006). By calculating individual panels each time 

the bulk composition changes a stitched model of open system processes can be created e.g. 

(Yakymchuk and Brown, 2014) (Fig.3). 

 

Fig. 3. Molar proportion of phases plotted against temperature for isobaric heating at 12 

kbar starting with an average amphibolite-facies pelite composition calculated using 

THERMOCALC. The system is considered as conditionally open with melt loss induced by 

removing six-sevenths of the melt present wherever the P–T path intersects the 7 mol.% 

melt isopleth using the ‘read-bulk-info’ script. Abbreviations are as follows: Bt = biotite, 

Grt = garnet, Ilm = Ilmenite, Kfs = K-feldspar, Ky = kyanite, Liq = liquid, MLx = melt loss 

event, Ms = muscovite, Pl = plagioclase feldspar, Qtz = quartz. Taken from Yakymchuk and 

Brown (2014).  

 

Theriak/Domino 

Input commands in the “drv-file” can be specified to remove or add a set proportion of 

phase(s) from the system along a calculation path (De Capitani and Petrakakis, 2010) (Fig. 

4). Commands can also be specified to remove or add set compositions along a path. 
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Fig. 4. Fractionation of garnet in a metapelite along a prograde P–T path calculated using 

Theriak/Domino. At incremental steps along the path the composition of the newly grown 

garnet is subtracted from the bulk composition. X shows the composition of the garnet in the 

reactive system as Alm = almandine, Gr = grossular and Py = pyrope. n shows the modal 

amount of phases in the reactive system as Bi = biotite, Chl = chlorite, Ctd = chloritoid, Grt 

= garnet, Ky = kyanite, Ms = muscovite, Parg = pargasite, Pg = paragonite, Pl = plagioclase, 

St = staurolite. The light-shaded area is a P–T segment where garnet is not growing and x is 

not defined. Taken from De Capitani and Petrakakis (2010). 

 

Perple_X 

“Phase fractionation calculations” can be performed by selecting this option during creation 

of the build file. This fractionation can be along isobaric, isothermic or a user defined P-T 

path (Connolly, 2005) (Fig. 5). Fractionation must remove all of a given phase(s) and the 

independent variable used to increment the calculation path must increase or decrease 

continuously.  

 

Fig. 5. Melt loss from an average metapelitic bulk composition along a clockwise 
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decompression path (red arrow in left panel on top of an isochemical phase diagram of 

pressure–temperature space of the same composition) calculated using Perple_X. All melt is 

extracted from the system whenever it occurs as a stable phase. The volume percentage of 

the phases in the reactive system are shown in the right panel as AbPl = plagioclase feldspar, 

Bio = biotite, Gt = garnet, hCrd = cordierite, ky = kyanite, Pheng = phengite, q = quartz, San 

= sanadine, sill = sillimanite. Taken from (Connolly, 2018). 

 

Table 1. Suitability of commonly used thermodynamic modelling programs for phase 

equilibrium modelling in open systems 

Software Calculation 

method 

Refinements User Input Phase manipulations 

Thermocalc 

[1] 

Solution of 

nonlinear 

equations 

Not applicable 

(individual 

reaction lines are 

calculated) 

Command 

line and 

scripts 

At a single point, manually change 

proportion of phase(s) 

Theriak 

Domino [2] 

Gibbs free 

energy 

minimisation 

Reaction 

boundary 

gridded 

refinement 

Command 

line or text 

file input 

Along a single path, fractionation or 

addition of a set proportion of 

phase(s) or set proportion of 

chemical components 

Perple_X 

[3] 

Gibbs free 

energy 

minimisation 

Fixed regular 

grid refinement 

Executable 

queries or 

text file 

input  

Along a single path, fractionation of 

the full proportion of selected 

phase(s). Paths must be defined with 

one variable increasing or 

decreasing i.e. no loops 

[1] http://www.metamorph.geo.uni-mainz.de/thermocalc/; [2] 

https://titan.minpet.unibas.ch/minpet/theriak/theruser.html; [3] http://www.perplex.ethz.ch/ 

 

The need for sophisticated handling of bulk compositional changes induced by phase 

manipulations 

The presented thermodynamic modelling softwares have been shown to be able to model 

some open system processes however their use in this manner becomes restrictive when 

attempting to handle more complex open system behaviour that closer approximates the 

natural system. In such cases there may be a need to consider: 

 Multiple phase fractionations concurrently (e.g. extraction of melt and peritectic 

minerals),  

 Conditional phase manipulations (e.g. extraction of melt when a melt threshold is 

http://www.metamorph.geo.uni-mainz.de/thermocalc/
https://titan.minpet.unibas.ch/minpet/theriak/theruser.html
http://www.perplex.ethz.ch/
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exceeded) 

 Phase manipulation proportions that are relative to the system (e.g. retention of melt 

on grain boundaries during melt extraction) 

 Complex P–T paths (e.g. multi-stage metamorphism) 

 A variety of conditional arguments in one modelling space (e.g. prograde 

devolatilisation of a subsolidus assemblage followed by melt loss of that assemblage 

above the solidus) 

 Multiple potential P–T paths (e.g. the water content of a subsolidus rock is pressure 

dependent thus modelling in P–T space with a single water content introduces 

inherent inconsistencies) 

 Compositional heterogeneity on the mineral, rock and crustal scale 

 

Aims of this study 

This study aims to present a methodology for the modelling of phase equilibrium in open 

systems. This methodology seeks to address the current limitations of thermodynamic 

software in the handling of bulk compositional changes induced by open system behaviour.  

Further, this study aims to use these new tools to build a model for crustal anatexis in which 

the effects of compositional change throughout this process is investigated. In order to 

accurately model anatexis this study will develop a methodology for the handling of the 

subsolidus fluid state of a system before anatexis. The combined effect of the pressure-

temperature and bulk composition in this system, with sophisticated control of fluid state, 

will be investigated for its control on the position of the solidus. The controls of fluid state, 

P–T path and melt loss threshold will then be investigated for their effect on the resultant 

bulk composition of melts cumulatively extracted from a protolith. These source controls 

will be compared for their relative strength of influence and contrast with the effect of 

compositional heterogeneity in the source. 

 

Structure of the thesis 

This thesis presents the software program Rcrust (the name deriving from the fact that it is 

written in R and was developed to solve problems in crustal petrology) as a tool for the 

modelling of phase equilibrium in open systems. 
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Performing process oriented investigations 

Chapter 2 presents the way in which the new functionalities of Rcrust allowed a 

methodology to be developed using mass transfer to perform process oriented investigations 

in open systems. These methodologies were built concurrently with further developments of 

Rcrust with the aim of creating a thermodynamically constrained model for crustal anatexis. 

The first challenge to this model was accurately determining the water content of a 

metamorphic rock. During the subsolidus prograde metamorphism of a rock the total water 

content of a rock may lie within the hydrous silicates of the rock, may exist as a free fluid 

phase in the limited pore space of the rock, or exceeding this, must leave the system. Rcrust 

models this behaviour by setting a maximum allowable amount of free water that can occur 

in the system and extracting all water that exceeds this amount. This allows the rock to 

progressively loose total water content from the reactive subsystem during its subsolidus 

evolution. Once the solidus is crossed melt is produced at the interface between reactant 

minerals. As this melt amount builds up an interconnected melt network may form and if it 

exceeds some critical threshold melt loss may occur. This process is thought to have a 

maximum critical threshold value by which it will occur estimated by the melt connectivity 

transition by Rosenberg and Handy (2005). Rcrust simulates this melt loss by extracting 

melt from the reactive subsystem whenever the melt threshold is exceeded and leaves a 

fraction of this melt behind to estimate melt retention on grain boundaries. 

The effect of subsolidus water loss and its dependence on P–T path 

Concurrent to building the methodology for performing process oriented investigations 

using Rcrust process-oriented investigations were undertaken to divulge the effects of 

compositional change on open systems. Chapter 3 presents a detailed study of the effect of 

subsolidus water loss on the position of the solidus in P–T space. When modelling 

subsolidus prograde water loss close to the solidus it is found that even fluid-absent rocks 

have the ability to melt at the fluid-saturated solidus as incremental heating before the 

solidus decreases the total water contained in the hydrous silicates freeing water to form a 

free phase in the porosity of the rock and participate in potential melting reactions. It seems 

that the fluid saturated solidus can only be crossed without melting if the subsolidus P–T 

path of the rock is sufficiently steep such that the increase in total water contained in the 

hydrous silicates as a function of pressure exceeds the decrease in total water contained in 

the hydrous silicates as a function of temperature, resulting in the rock becoming water 

deficient, i.e. not fully-hydrated. 
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The effect of source controls on open system melt compositions 

These new tools and methodologies for modelling subsolidus water content, supersolidus 

melt threshold and varying P–T paths are used in Chapter 4 to investigate the effect of 

source controls on the composition of melt batches extracted sequentially from a metapelitic 

protolith. The resultant compositional effect of the source controls of fluid state, melt 

threshold and P–T path are compared and contrast to the effect of compositional variance in 

the protolith. It is found that the fluid state of the system is shown to have the strongest 

control on melt compositions with the pressure-temperature path having subordinate control 

on the volume and composition of melts produced. 

A brief history of the development of Rcrust 

Rcrust was developed following an iterative approach first implemented by Jean-François 

Moyen in response to extensive discussions with Arnaud Villaros and Gautier Nicoli which 

also culminated in a publication in the International Journal of Earth Sciences (Villaros et 

al., 2018). Phase stabilities are determined by calling and interpreting output from meemum 

from the Perple_X suite (Connolly and Kerrick, 1987; Connolly, 2009) via calls from the R 

environment. These calls were first developed by Jean-François Moyen during a research 

stay at Stellenbosch University in January 2013 and further refined by Jean-François Moyen 

and Gautier Nicoli in late 2013. In January 2014 the project was handed over to Matthew 

Mayne who became the sole programming developer from that point forward. 

Compositional manipulations were split into two groups (phase additions and phase 

extractions) and sequenced within runs to allow path dependent processes with simultaneous 

additions and extractions. A graphical user interface was developed (Fig.3) using tcl/tk 

(Ousterhout and Jones, 2009) within R to handle user inputs and display processed outputs. 

In 2015 a new parsing method was employed in collaboration with Lars Kaislaniemi making 

use of a compiled form of meemum to speed up total calculation time (Mayne et al., 2016). 

A complete overhaul of the program began in 2016 in which a systematic methodology was 

employed to enable new modules to be activated or deactivated at points along the iterative 

loop. A new syntax was developed allowing a user defined modelling space to be built and 

conditions applied within this space to simulate the desired modelling output. The graphical 

user interface was redeveloped (Fig. 3) using the R package: Shiny (RStudio, 2014) in order 

to match these changes in functionality and to offer platform independence. File inputs of 

parameters were enabled and conditional inputs developed including phase thresholds and 

retention settings. A dependence solver was built to determine calculation order of points 

when points pass on compositional changes along user defined paths. Output routines were 
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built to process data and produce graphical outputs for contour diagrams of the modelling 

space, relative phase abundances along specific paths and for the creation of phase 

assemblage maps. 

 

Fig. 6. Old Tcl/Tk interface (left) built on Microsoft Windows “widgets” and new Shiny 

interface (right) operating platform independently from a browser. 

 

Presentation of the modelling tool: Rcrust 

The software program Rcrust is attached to this thesis as Addendum A: an electronic 

appendix. Addendum B present a user manual for installing and using the program and 

Addendum C present a fully commented description and presentation of the programming 

code.  

 

Supplementary data 

Addendum D provides the supplementary data for Chapter 4 
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ABSTRACT 

 

Modern quantitative phase equilibria modelling allows the calculation of the stable phase 

assemblage of a rock system given its pressure, temperature and bulk composition. A new 

software tool (Rcrust) has been developed that allows the modelling of points in pressure–

temperature–bulk composition space in which bulk compositional changes can be passed 

from point to point as the system evolves. This new methodology enables quantitative 

process-oriented investigation of the evolution of rocks. Procedures are outlined here for 

using this tool to model: 1) the control of the water content of a subsolidus system based on 

available pore space; 2) triggering of melt loss events when a critical melt volume threshold 

is exceeded, while allowing a portion of melt retention; 3) entrainment of crystals during 

segregation and ascent of granitic magmas from its source; 4) modification of the 

composition of granite magmas due to fractional crystallization and 5) progressive 

availability (through dissolution) of slow diffusing species and their control on the effective 

bulk composition of a system. These cases collectively illustrate thermodynamically 

constrained methods for modelling systems that involve mass transfer. 

 

Keywords: Phase equilibria modelling; Rcrust; effective bulk composition; water content; 

anatexis; melt loss; peritectic entrainment; fractional crystallization; volume of 

equilibration; dissolution–precipitation.  
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INTRODUCTION 

Given the pressure (P), temperature (T) and bulk composition (X) of a rock, quantitative 

phase equilibria modelling can predict the stable phase assemblages, the P–T fields of 

stability of these assemblages, phase modes and phase compositions, that characterize the 

system at equilibrium see THERMOCALC (Powell and Holland, 1988; Powell et al., 1998), 

Perple_X (Connolly and Kerrick, 1987) and Theriak/Domino (De Capitani and Petrakakis, 

2010). This technique has become a standard tool in metamorphic studies, most commonly 

involving analysis via calculation of isochemical phase diagram sections known as 

pseudosections e.g. Yakymchuk (2017) or metamorphic assemblage diagrams (MADs) 

(Spear and Pattison, 2017). Recent studies have begun to consider the effects of bulk 

compositional change in rocks undergoing metamorphism, e.g. through melt loss 

(Yakymchuk and Brown, 2014; Morrissey et al., 2016; Vigneresse and Burg, 2000; Brown 

and Korhonen, 2009; White and Powell, 2002, 2010; Diener and Fagereng, 2014; Mayne et 

al., 2016; Johnson et al., 2011), fluid loss (White and Powell, 2010), fluid infiltration 

(Korhonen et al., 2012; Johnson et al., 2003) and/or metasomatism (White et al., 2003; 

Riesco et al., 2004; Nicoli and Dyck, 2018). In these studies, isochemical phase diagram 

sections are limiting and alternative methods have been employed. To account for a 

changing bulk composition via subtraction or addition of portions of one or more phases, 

isothermal P–X or isobaric T–X diagrams are commonly used, in which bulk composition is 

allowed to vary between two predetermined endmembers. In cases where more than one 

compositional change is required, a number of individually calculated panels are stitched 

together (Yakymchuk and Brown, 2014; White and Powell, 2002; Brown and Korhonen, 

2009; Johnson et al., 2011). However, when investigating processes that sequentially alter 

the bulk composition of a system within P–T space, manual calculation and stitching of 

diagrams becomes restrictive. An alternative, to this calculation of predetermined phase 

changes, is to include parameters for physical mechanisms of mass transfer within a 

calculation such that bulk compositional changes occur within a system based on properties 

that the system obtains such as phase abundances or phase compositions (Connolly, 2005; 

Karpov et al., 1997; Ghiorso and Sack, 1995). The need for increasingly more sophisticated 

models that allow this style of mass transfer prompted the creation of a path dependent 

thermodynamic modelling tool (called ‘Rcrust’) which automates the handling of bulk 

compositional change in a modelled P–T–X space (Mayne et al., 2016). This paper serves as 

a summary of the functionalities of this program and demonstrates some applications in 
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performing process-oriented investigations that inherently involve bulk compositional 

change. This provides a useful tool for reconciling petrographic observations and chemical 

analyses with thermodynamic modelling at a variety of scales within complex systems in 

order to better understand phase equilibria. 

 

RCRUST: A NEW PHASE EQUILIBRIUM MODELLING TOOL 

 

Path dependence of the reactive subsystem 

 

Rcrust operates by assigning P–T–X conditions to a number of points that define a 

modelling space. A Perple_X routine is then used which minimizes the Gibbs free energy of 

the system in order to predict the equilibrium phase assemblage at each point (Connolly, 

2005, 2009). Modelling can be performed on compositions including pelites, greywackes, 

calc-silicates and mafic rocks as far as the available solution models in Perple_X allow 

within the full P-T range of crustal metamorphism and magmatism. Further information 

about modelling tolerances can be found in the solution model files and references therein. 

What is unique in Rcrust’s methodology is that the conditions of points in the modelling 

space can be assigned with reference to other points. If dependencies are assigned, then 

calculations first solve the hierarchy of dependence of points, after which calculations 

proceed sequentially along paths that connect the points. This ‘path dependence’ allows bulk 

compositional changes to be passed on from point to point, thereby permitting investigation 

of processes that are dependent on the evolving assemblage as the rock moves through 

pressure–temperature–bulk compositional space. 

To best model the behaviour of rock systems that gain or lose material, it is helpful to 

consider the system as consisting of a number of subsystems which are, at least temporarily, 

in chemical isolation from one another. For example, the bulk composition of a rock, or the 

full system (FS), can be thought of as consisting of: 1. a reactive subsystem (RS) which 

represents the portion that is currently in chemical equilibrium at the P–T conditions of the 

system; 2. an extract subsystem (ES) which represents the portion that has been extracted 

from the RS, during the current and prior steps, and is no longer in chemical equilibrium 

with the RS. The ES is not subject to further phase equilibrium modelling; and 3. an isolated 

subsystem (IS) which represents that portion of the FS that has not yet contributed to the 

reactive subsystem but may later become part of it (Fig. 1). In this way a rock undergoing 

anatexis, for example, can be thought of as a portion which is currently melting (the reactive 
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subsystem), a portion which has been extracted through melt loss (the extract subsystem) 

and a portion, for example, the cores of compositionally zoned pre-anatectic porphyroblasts 

that have yet to contribute to the effective bulk composition of the reactive subsystem (the 

isolated subsystem). By transferring bulk material between these systems as the path 

progresses we can effectively model processes that effect a rocks evolution. 

 

 

 

Fig. 1. Division of the bulk composition of the rock (full system) into a portion that is not yet 

incorporated into the chemical system (isolated subsystem); a portion that contains the chemical 

system currently in thermodynamic equilibrium (reactive subsystem) and a portion that is no 

longer part of the chemical system (extract subsystem). Effective bulk compositional change 

can be induced in the rock by moving crystals and/or melt and/or fluid between these 

subsystems. 

 

 Modelling setup 

 

The Rcrust program is operated through a graphical user interface written in R Copyright© 

2016 the R Foundation for Statistical Computing (R Core Team, 2016) and therefore 

requires a working version of R which can be downloaded freely from http://www.R-

project.org/. The Rcrust interface writes a text document which is read by the calculation 

routine when run. This enforces reproducibility between calculations as a record of all input 

parameters is saved with each calculation. These input files can be shared between users to 

allow direct correlation between calculations. For advanced users the GUI can be bypassed 
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by manually editing input files and accessing Rcrust directly from the console. 

In a standard calculation the user first defines the size of the modelling space by setting the 

number of points in the P–T window to be considered. Once the number of points has been 

defined, P–T conditions are then attributed to each point by defining functions (Fig. 2b). 

These definitions can be as simple as individually assigning P–T values for each point or 

may be complex functions that define, for example a non-linear P–T path (e.g. the clockwise 

P–T loop in Mayne et al. fig. 5). Importantly, the axes of the modelling space do not have to 

be P and T, but may be a function of bulk composition or the progression of P–T–X paths or 

any other variable of interest. The next parameter that the user needs to define is the bulk 

composition (Fig. 2c). Again, this can be simple, for example comprising the weight 

percentage of each of the oxides that define the reactive subsystem, or a more complex 

function of subsystems from a previously calculated point (e.g. the bulk composition of the 

reactive subsystem of the previous point along a P–T path). This functionality allows the 

user to create P–T paths that have path dependent bulk compositions. 

At any point during a calculation, phase manipulations can be used to alter the bulk 

composition of subsystems by either adding or extracting phases to or from the reactive 

subsystem (Fig. 2d). Such manipulations can be statically defined prior to the calculation of 

phase assemblages (for example to add a set amount of water progressively into the system 

as a function of progress along a path) or dynamically defined in response to phase 

assemblage proportions (e.g. melt loss events triggered by exceeding a critical melt 

threshold). The latter also allows phase manipulations to respond to P–T dependent criteria, 

for example the volume of a phase in the phase assemblage (which itself is also dependent 

on pressure). The combination of phase manipulations and path dependence can be used to 

approximate mechanistic processes affecting the evolution of a rock. Output data can be 

viewed directly in the Rcrust interface or exported as text or postscript files for editing. 

Graphing routines are available in Rcrust, including an interpolation routine for projecting 

P–T paths onto a grid to allow contouring, and a routine for the creation of “phase 

assemblage maps”, a term proposed here to describe graphs that show the change in phase 

assemblage of a system where pressure, temperature and bulk composition can be 

independently variable and path-dependent within the diagram (i.e. not a pseudosection) 

from a grid of points (Fig. 2e). 
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Fig. 2. Procedure for modelling using the phase equilibria tool Rcrust. (a) Define the number 

of points in the modelling space. (b) Assign pressure and temperature conditions. (c) Assign 

the bulk composition of the reactive subsystem. (d) Define any required phase additions or 

phase extractions. (e) project outputs to grids and export contour, phase diagram sections or 

phase assemblage maps. 

 

PERFORMING PROCESS-ORIENTED INVESTIGATIONS 

 

To illustrate the methodology by which process-oriented investigations can be undertaken 

modelling was performed in Rcrust version 2017-10-26 (Mayne et al., 2016) with a 

compiled form of the meemum function from the Perple_X suite of programs (Connolly, 
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2009). The NCKFMASHTO chemical system was utilized with the 2011 revised 

hp11ver.dat thermodynamic data file from the internally consistent dataset of (Holland and 

Powell, 2011). Solution models were chosen which are consistent with the slightly 

simplified chemistry of the bulk system (e.g. the chemical system does not account for Mn) 

yet takes into account substitutions that are important in stabilizing phases (e.g. Ti in 

biotite). The following solution models were used from solution_model_679.dat: Fsp(C1) 

for plagioclase and alkali-feldspar (Holland and Powell, 2003), Cpx(HP) for clinopyroxene 

(Holland and Powell, 1996), Ep(HP11) for epidote (Holland and Powell, 2011), Sp(WPC) 

for spinel (White et al., 2002), Ilm(WPH) for ilmenite (White et al., 2000) and the latest 

White et al (2014) set of models: Bi(W) for biotite, Crd(W) for cordierite, Gt(W) for garnet, 

melt(W) for melt, Mica(W) for micas, Opx(W) for orthopyroxene, St(W) for staurolite. 

Abbreviations for phases in figures except for melt and mica were taken from Whitney & 

Evans (2010) as Bt, Biotite; Crd, cordierite; Fsp, plagioclase and alkali-feldspar; Grt, garnet; 

H2O, liquid water; Ilm, ilmenite; Qz, quartz; Sil, sillimanite; Spl, spinel; St, staurolite. 

 

 Dynamic setting of subsolidus water content of the Reactive System 

 

The water content of the combined hydrous silicate phases of a subsolidus rock changes as a 

function of pressure and temperature as both the abundance and composition of those 

hydrous silicates changes. Any H2O that cannot be accommodated by the hydrous phases 

must either be contained within the pore space or must leave the rock system. To model this 

behaviour, the bulk composition of the system can be set to start with an excess of water and 

phase extraction routines set such that free water is extracted whenever its volume exceeds 

some value that is considered to represent a reasonable estimate of the porosity. Figure. 3 

shows the phase relations for an average pelite bulk composition (Table 1) from Ague 

(1991) which evolved along an isobaric 7 kbar heating path from 670 to 920 °C. The bulk 

composition begins with an excess of water (10 wt.%) and all water that exceeds 0.1 vol.% 

is extracted in each step. Water extracted from the reactive subsystem is kept in isolation 

from the reactive subsystem and the abundance of phases are only shown relative to the 

phases within the reactive subsystem. This process is described in further detail in Mayne et 

al (2017). 
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Table 1. Bulk composition of an average amphibolite-facies pelite from Ague (1991) 

 

 

 

Fig. 3. Modelling subsolidus water content by starting with excess water and then extracting 

all water that exceeds 0.1 vol.% (approximating a pore space). Phase abundance in wt.% of the 

reactive subsystem versus temperature for the isobaric heating path at 7 kbar from 670-920 °C 

starting with the pelite bulk composition in Table 1. The wt.% oxide in the bulk composition 

of the reactive subsystem is shown normalised to the starting bulk composition of the path. 
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 Melt loss through critical threshold values and retention amounts 

 

When rocks melt, the melt initially forms along grain boundaries. As melting progresses, the 

volume of melt may reach some critical value such that it forms an interconnected network 

and can be extracted from the local rock system (Yakymchuk and Brown, 2014; Brown and 

Korhonen, 2009). To design a system which is open to melt loss, a critical melt threshold, 

upon which melt loss will occur, needs to be defined, for example when 80% of grain 

boundaries become melt bearing (the melt connectivity transition (MCT) proposed by 

(Rosenberg & Handy (2005). These thresholds can be approximated by volumetric 

constraints (MCT achieved at c. 7 vol.%) and incorporated into modelling parameters. When 

melt loss events occur they are very unlikely to be 100% efficient; some melt will inevitably 

remain within isolated pores/pockets and/or on grain boundaries. To model this behaviour, 

phase extraction routines can be defined to trigger when the volume of melt exceeds a set 

value, and to extract some proportion of that melt, perhaps leaving a small amount (e.g. 1 

vol.%) in the reactive subsystem to account for melt retention on grain boundaries. This 

process is extensively discussed in the literature (Yakymchuk and Brown, 2014; Morrissey 

et al., 2016; Vigneresse and Burg, 2000; Brown and Korhonen, 2009; White and Powell, 

2002, 2010; Diener and Fagereng, 2014; Johnson et al., 2011). Figure 4 shows the phase 

relations for the isobaric heating path with water extraction routines as described in Figure 3 

but with an additional extraction routine set to occur whenever 7 vol.% melt is exceeded 

extracting all melt except 1 vol.%. The cumulative melt extracted from the reactive 

subsystem is labelled as “Melt_es” and is isolated from the reactive subsystem. Rcrust’s 

abilities in this regard are described further in Mayne et al. (2016). Farina et al. (2017) use 

this methodology to correlate multi-pulsed magmatism in the Monte Capanne pluton with 

multimodal distribution of zircon ages in order to estimate the duration of partial melting 

and the timescale of melt extraction from the source. 
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Fig. 4. Melt loss triggered when melt volume exceeds 7 vol.% and set to extract all melt except 

1 vol.% (approximating melt retention on grain boundaries) for the isobaric heating path at 7 

kbar from 670-920 °C. Handling of subsolidus water content and starting bulk composition as 

in Figure 3. The wt.% oxide in the bulk composition of the reactive subsystem is shown 

normalised to the starting bulk composition of the path. 
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 Entrainment of phases to melt (magma loss) 

 

Melts often entrain crystals such as peritectic minerals on segregation from the source 

(Stevens et al., 2007). This creates magmas whose chemical composition is some 

combination of the volume of segregated melt and the composition and abundance of the 

entrained crystals. When these magmas segregate, the bulk composition of the reactive 

anatectic system is changed, with implications for subsequent melting behaviour. Phase 

extraction routines can be modified to model this behaviour by extracting proportions of 

additional phases whenever melt loss events are triggered. Within modelling functions, 

some peritectic mineral products formed by melting reactions may have the same name as 

pre-existing minerals e.g. plagioclase feldspar. In order to distinguish between the pre-

existing subsolidus phases and the newly formed peritectic phases a ‘delta function’ can be 

applied. The delta function allows the user to specify only the portion of a mineral phase 

that increased in mass during melting. This can be used, for example, to selectively extract 

peritectic minerals along with melt (Stevens et al., 2017). Figure 5 shows the phase relations 

for the isobaric heating path with water and melt extraction described in Figure 3 and Figure 

4 respectively. Additional to these conditions, when melt extraction events occur 30% of the 

increase in mass, of any phase excluding melt, between the current point and either the last 

melt extraction event or the last melt absent point (whichever comes first) is extracted. The 

cumulative extract constituting the extract subsystem is shown in Figure 5 and its bulk 

composition is recorded in Table 2. 
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Fig. 5. Melt loss with entrainment of 30% of the increase in mass of all phases except melt 

between the current melt loss event and either the previous melt loss event or melt absent point 

(whichever is closer to the current event) for the isobaric heating path at 7 kbar from 670-920 

°C. Melt threshold, handling of subsolidus water content and starting bulk composition as in 

Figure 4. The wt.% oxide in the bulk composition of the reactive subsystem is shown 

normalised to the starting bulk composition of the path. 

 

 

Table 2. Bulk composition of the cumulative extract subsystem formed by subsolidus water 

loss, supersolidus melt loss and entrainment described in Figure 5  
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 Fractional crystallisation 

 

Mechanisms of filter pressing or crystal settling may cause magma systems to fractionate, 

whereby a portion of crystalized phases are separated from the magma system (García-Arias 

and Stevens, 2017b). This loss of crystals changes the bulk composition of the magma and 

subsequent crystallization path followed by the remainder of the system. Depending on the 

mechanism involved, this process can be modelled by setting phase extraction routines to 

extract the crystals from the magma under several different circumstances. These extractions 

can be set relative to the cooling rate of the magma system or triggered when set criteria are 

met, such as when a threshold volume of crystals is exceeded (Bachmann and Bergantz, 

2004; Stevens et al., 2017) or when the difference in density between a phase and melt 

exceeds a certain threshold. Figure 6 starts with the bulk composition of the cumulative 

extract system achieved in Figure 5 (Table 2) representing a magma emplaced at the same 

depth as extraction (7 kbar) which subsequently isobarically cools and crystallizes. To 

simulate a process of filter pressing, whenever, the total volume of solid phases (all phases 

excluding melt and H2O) in the reactive subsystem exceeds 20 vol.%, 90% of all solid 

phases are extracted. 
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Fig. 6. Fractional crystallisation of the cumulative extract subsystem formed by Figure 5 

(representing a magma source), 90% of all solid phases (all phases except melt and H2O) are 

extracted whenever the cumulative solid phases exceed 20 vol.% of the reactive subsystem 

along the isobaric cooling path at 7 kbar from 920-640 °C. The wt.% oxide in the bulk 

composition of the reactive subsystem is shown normalised to the starting bulk composition of 

the path. 
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 Limited availability of phases 

 

The diffusion of elements within crystals such as plagioclase or garnet is extremely slow 

(Morse, 1984; Zuluaga et al., 2005; Johannes and Koepke, 2001; Tajčmanová et al., 2007). 

Within anatectic systems, a dissolution–reprecipitation mechanism may operate that is 

orders of magnitude faster than intra-crystalline diffusion and may represent the rate 

limiting control on the availability of components from such phases to participate in melting 

reactions (García-Arias and Stevens, 2017a; Johannes and Koepke, 2001; Taylor et al., 

2014). The role of this behaviour in changing the bulk composition of anatectic systems can 

be approximated by dividing each crystal into an inner core, whose components are 

effectively isolated from contributing to the chemical equilibrium of the full system, and an 

outer rim that contains the chemically available components. With increasing time and 

temperature and decreasing crystal size, components formerly contained within the 

unreactive core become available to participate in reactions (Nicoli et al., 2017; Tajčmanová 

et al., 2007; Madlakana and Stevens, 2018). This process can be modelled by removing a 

portion of the bulk composition of the rock (the cores of grains) thereby creating an isolated 

subsystem. Portions of this isolated subsystem can then be transferred back into the reactive 

subsystem, for example as a function of P, T or melt volume (Stevens et al., 2017). Figure 7 

shows the phase relations for the isobaric heating path at 7 kbar from 670 to 920°C where 

95% of all feldspar present in the first step of the calculation is extracted and then added 

progressively back into the reactive subsystem. The mass of feldspar returned in each step is 

given as 0.01×(meltvol%)2 until all feldspar is returned. Subsolidus water content is handled 

the same as in Figure 3. 
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Fig. 7. Limited availability of feldspar modelled by extracting 95% of all feldspar occurring in 

the reactive subsystem at the start of the path and then progressively reintroduced to the reactive 

subsystem as a function of melt volume (where mass of feldspar integrated in each step = 0.01 

X (meltvol.%)2)) for the isobaric heating path at 7 kbar from 670-920 °C. Handling of subsolidus 

water content and starting bulk composition as in Figure 3. The wt.% oxide in the bulk 

composition of the reactive subsystem is shown normalised to the starting bulk composition of 

the path. 
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CONCLUSIONS 

The presented methodology illustrates how process-oriented investigations can be 

performed by splitting the effective bulk composition of a system into a number of 

subsystems and then manipulating bulk compositional proportions between these systems. 

Rcrust’s unique ability to assign bulk compositions by dependence and dynamic phase 

manipulations allows path dependence to exist between points in modelling space. The 

consequence of this path dependence is the ability to model in simultaneously changing 

pressure, temperature and bulk compositional space. Path dependence restricts modelling 

results to be directional (along paths). This can be used as an advantage as this new form of 

modelling is suited for investigating processes that effect the progressive evolution of a rock 

system. By setting appropriate phase manipulations, processes of mass transfer can be 

simulated to gain insights into the controlling factors behind this chemical evolution. This 

style of modelling introduces a unique set of phase diagram sections in which any variable, 

including bulk composition may change independently within a calculation. I suggest 

terming these diagrams “phase assemblage maps” in order to distinguish the independence 

of their pressure, temperature and chemical variability from traditional pseudosections 

which are either isobaric, isothermal, isochemical or composite panel versions of these. This 

would prevent misinterpretations of these diagrams that do not take into account their path 

dependence and implications thereof. As a matter of convention to aid understanding of 

these diagrams I further suggest that complete descriptions of the modelled P-T paths and 

starting bulk composition should always accompany such diagrams to the point of 

reproducibility. Caution should be exercised when interpreting the accuracy of these 

diagrams as they are intrinsically limited by the accuracy of the thermodynamic datasets that 

they rely on as well as the accuracy of the activity–composition models which are used to 

predict variations in the thermodynamic properties of the solution phases (solid and liquid) 

as they change composition.  

The methods presented in this paper exemplify the novel ability of path dependent P–T–X 

calculations to investigate processes of compositional change in a thermodynamically 

constrained manner. Future work could use the combination of phase manipulations and 

path dependence to investigate the mechanistic processes that affect the evolution of a rock 

by building models based on mass transfer between bulk compositions of subsystems. As 

these models become more sophisticated they could begin to consider crucial controls on 

phase equilibria such as kinetic obstacles to equilibration reactions (Nicoli et al., 2017; 
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Tajčmanová et al., 2007; Madlakana and Stevens, 2018) local bulk composition effects 

(Lanari and Engi, 2017) or the effect of local stress on equilibration volumes (Wheeler, 

2018, 2014). Further, component partitioning between phases could be used to provide 

estimates of trace element and isotope compositions (Yakymchuk et al., 2018; Gardiner et 

al., 2018). These additional considerations come with their own uncertainties that the reader 

must be mindful of. Incrementally building on these methodologies opens up new lines of 

investigation into the studying of petrogenetic processes. 
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CHAPTER 3 

PRESENTATION OF RESEARCH PAPER 2: THE TRAJECTORY OF 

THE P–T PATH CONTROLS THE ONSET OF MELTING IN 

METASEDIMENTARY ROCKS. 

 

This paper, first authored by Matthew Mayne, is under review for publication in the Journal 

of Metamorphic Geology. 

 

The following aspects of the research were done independently by Matthew Mayne while 

receiving standard supervision by his supervisors Gary Stevens, Jean-François Moyen and 

Tim Johnson: (i) writing of programming code; (ii) conducting phase equilibirium 

modelling; (iii) generation of the figures; (v) writing of the manuscript 
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ABSTRACT 

 

The partial melting behaviour of rocks is critically dependant on the pressure–temperature 

(P–T) location of the solidus. As rocks lose water during their subsolidus evolution, the 

higher the temperature at which the solidus is encountered, the lower the water content 

available to drive future anatexis of any given rock. Consequently, understanding the 

location of the solidus in P–T space is critical to understanding the metamorphic evolution 

of anatectic rocks and their fertility for the production of granitic melt. Despite wide 

application of these techniques, conventional phase equilibrium modelling that is based on a 

single or a limited number of “stitched” bulk compositions cannot handle bulk-rock water 

content realistically. The reason for this is that the water content of any fully-hydrated rock 

changes as a function of pressure and temperature. This study uses Rcrust, a new software 

tool that allows calculation of phase equilibria in systems with a continually changing bulk 

composition, to investigate the partial melting of an average metapelite composition. Three 

different fluid states are considered: fluid-saturated with an abundant H2O-rich fluid; fluid-

absent, which has no fluid phase but begins calculations as fully-hydrated; and fluid-

restricted which has a restricted quantity of free water (0.1 vol.%) filling pore spaces. The 

behaviour of the system under all three fluid states was investigated along a variety of linear 

prograde P–T paths that culminate in granulite and eclogite facies P–T conditions. Three 

fundamental aspects of partial melting behaviour were revealed that cannot be determined 

without the ability to continuously vary the bulk composition: (1) the fluid-absent solidus 

and the wet solidus are identical for all but steep P–T paths; (2) the bulk water content at the 

solidus of an average metapelite varies substantially as a function of pressure; (3) rocks 

following steep P–T paths (∆P/∆T > 6 kbar/100 °C) will melt at significantly higher 

temperature than the wet solidus, because the increase in total water contained in the 

hydrous silicates as a function of pressure exceeds the decrease in total water contained in 

the hydrous silicates as a function of temperature, resulting in the rock becoming water 

deficient, i.e. not fully-hydrated. 

 

Keywords: Rcrust, anatexis; bulk water content; pressure-temperature paths; wet solidus 
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INTRODUCTION 

The beginning of melting in the continental crust is controlled by pressure, temperature and 

bulk composition. Bulk compositions with sufficient H2O to contain a discrete fluid phase 

will melt at the appropriate fluid-saturated solidus e.g. (Thompson, 1982; Spear et al., 1999; 

Johannes and Koepke, 2001), whilst rocks with insufficient water to allow a fluid phase to 

form are considered to melt at the lowest temperature fluid-absent incongruent melting 

reaction that the metamorphic assemblage allows e.g. (Stevens and Clemens, 1993). For 

aluminous metapelites this will commonly be the fluid-absent incongruent melting reaction 

involving muscovite e.g. (Huang and Wyllie, 1981), which is located at significantly higher 

temperature than the pelite wet solidus. The fluid-absent solidus for biotite-bearing rocks 

without muscovite is located at even higher temperatures within the granulite facies 

(Vielzeuf and Montel, 1994; Stevens et al., 1995). Thus, there is general consensus that the 

presence or absence of water in the subsolidus assemblage exerts the strongest control on 

the temperature at which partial melting begins in common crustal rocks e.g. (Waters, 1988; 

Weinberg and Hasalová, 2015; Clemens et al., 2016). However, the onset of fluid-absent 

melting is extremely difficult to define accurately. 

Experimentally, the fluid-absent solidus is hard to identify because of the slow kinetics of 

the melting reactions, particularly those involving plagioclase e.g. (Johannes et al., 1994; 

Johannes and Koepke, 2001), and the difficulty of identifying small fractions of quenched 

melt in experimental run products. An additional challenge is the unavoidable inclusion of 

gas into the capsule (normally air), that must lower aH2O on the grain boundaries of the 

charge. Crystallization experiments suffer similar kinetic problems and are likely to 

systematically underestimate solidus temperatures. 

Phase equilibria studies also have difficulty in investigating the onset of anatexis in fluid-

absent systems across a range of pressures because established software for phase equilibria 

modelling have limited abilities for the automated handling of bulk compositional changes 

within pressure–temperature space. Most studies that assume fluid-absent conditions of 

anatexis determine bulk rock H2O content using isobaric T–X(H2O) sections and set bulk 

H2O content at the maximum value possible before the appearance of melt without the 

presence of a free water phase. This commonly results in the first melt being produced 

through incongruent melting reactions that involve breakdown of micas, typically in the 

temperature range of 700 to 850 °C for mid– to lower crustal pressures (Vielzeuf and 

Holloway, 1988; Stevens et al., 1997; Brown and Korhonen, 2009; Yakymchuk and Brown, 
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2014). Other studies make the assumption that there is a small amount of H2O available in 

pore spaces leading to minor H2O-saturated melting at the wet solidus, and may also use 

isobaric T–X(H2O) sections or modes of hydrous minerals coupled with stoichiometric 

amount of H2O in these minerals (Indares et al., 2008) to determine appropriate bulk rock 

H2O content at a specific pressure. However, if one considers the variations in assemblage 

and mineral mode inherent to any relevant pseudosection, it is clear that the water content of 

the subsolidus mineral assemblage varies as a function of both pressure and temperature. 

Fixed–composition pseudosections can therefore only constitute an accurate representation 

of the behaviour of the system at the specific pressure used to constrain the H2O content of 

the system; all pressures below and above that value must either over- or underestimate the 

H2O content (Webb et al., 2015). These inaccuracies in bulk H2O content are likely to cause 

significant discrepancies in melting behaviour as a function of pressure in pseudosections 

constructed in this way. Similarly, it is impossible for an experimental investigation of fully-

hydrated, fluid-absent or fluid-restricted partial melting to be conducted at a range of 

pressures using the same starting material because the correct water content for defining this 

state is unique to a specific pressure. This study presents a new method for constraining the 

H2O content of the subsolidus system through progressive water loss during prograde 

metamorphism. This method is used to investigate the position of the solidus in pressure–

temperature space, the bulk rock water content at the solidus as a function of pressure and 

the influence of the trajectory of the P–T path on the melting behaviour of such rocks under 

upper amphibolite, eclogite and granulite facies conditions for a single pelite bulk 

composition. 

 

METHODOLOGY 

The phase equilibria tool Rcrust (Mayne et al., 2016) allows modelling to be conducted 

along P–T paths with bulk composition as a variable. It does this by breaking each P–T path 

into a number of points in P–T space. Each point passes on any bulk compositional changes 

induced by modelling functions to the next point on its respective path. Since these points 

are calculated in a progressive order, they have path dependent bulk compositions. 

In order to systematically evaluate the effect of the steepness of the P–T path on the partial 

melting behaviour of the system three different fanned arrays of linear prograde P–T paths 

were modelled, one projecting a fanned array from the P–T origin (0 °C; 0 kbar) (Fig. 1a), 

one starting at the origin and then following a P–T path till a fanned projection from 650 °C 
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and 5 kbar (Fig. 1b) and one starting at the origin and then following a P–T path till a fanned 

projection from 650 °C and 10 kbar (Fig. 1c). This produced P–T paths that arrive at the 

same amphibolite, granulite and eclogite facies P–T conditions by travelling along different 

trajectories through P–T space. 

The first set of paths start at the P–T origin (0 °C; 0 kbar) and increment pressure (in kbar) 

as sin((y_i-1+6)*pi/180)*10/140*(x_i-1) and temperature (in °C) as cos((y_i-

1+6)*pi/180)*280/140*(x_i-1) where y_i increments the dP/dT of the individual paths in the 

set and x_i increments the steps along each respective path. From this fanned array of paths 

two points were chosen (650 °C;5 kbar and 650 °C;10 kbar) from which to project 

inflections of the P–T path. The bulk compositions achieved at these points by following the 

original P–T array from the origin were used as the initial compositions for two further 

fanned arrays projecting from these points. This ensures that bulk compositional changes 

from the P–T origin array are inherited by the paths originating at 650 °C;5 kbar and 650 

°C;10 kbar. 
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Fig. 1. P–T diagrams illustrating the modelled path arrays and their intersections with the 

fields of eclogite–high–pressure granulite (E–HPG) and granulite–ultrahigh temperature (G–

UHT) peak metamorphic conditions, as defined by (Brown, 2014). The 0 kbar array (grey 

dashed arrows) maintains a range of relatively flat P–T slopes from the origin across the 

modelled P–T space. The 5 kbar array (red lines) and 10 kbar array (green lines) begin with 

the bulk composition attained by the relative path on the 0 kbar array at 650 °C; 5 kbar (path 

for 5 kbar array) and 650 °C; 10 kbar (path for 10 kbar array) respectively. These arrays then 

propagate a range of changed P/T gradients while modelling continues to remove water 

to ensure a fully-hydrated, fluid-absent, or fluid-restricted subsolidus assemblage. The 

position of the fluid-saturated solidus (calculated in this study) is shown as a thick dashed 

line for reference. 

 

Modelling was conducted in three different fluid modes (Table 1), fluid-saturated, fluid-

absent and fluid-restricted with 0.1 vol.% water (approximating a water filled pore space). In 

the fluid-saturated mode, H2O content in the bulk rock was set to 17 wt.%, which produced a 

water-bearing assemblage under all P–T conditions investigated. In fluid-absent mode, phase 

assemblages were calculated for each P–T array with the fluid-saturated composition at the 

origin but with the software set to remove any free water and recalculate the composition at 

each step along the path. This maintains the subsolidus assemblage in a fully-hydrated, fluid-

absent state, as long as subsolidus reactions encountered by prograde P–T paths do not 

consume H2O. In the fluid restricted mode exactly the same procedure was followed but with 

the software set to retain water sufficient to fill a nominal pore space, here taken as 0.1 vol.% 

of the rock, which likely represents a maximum value for high-grade metamorphic rocks 

e.g.(Thompson, 1983; Stevens and Clemens, 1993; Yardley, 2009; Brown and Korhonen, 

2009; Yakymchuk and Brown, 2014). In fluid-absent or fluid restricted mode, if subsolidus 

reactions encountered by prograde P–T paths consume H2O the system may become fluid-

absent as water is not added back in to the system.  

Phase equilibrium modelling was performed on an average amphibolite–facies metapelite 

composition (Table 2) from (Ague, 1991) in the NCKFMASHTO (Na2O–CaO–K2O–FeO–

MgO–Al2O3–SiO2–H2O–TiO2–O) chemical system. Calculations were performed using 

Rcrust (version 2017–02–14) (Mayne et al., 2016) based on a compiled form of meemum 

from Perplex 6.7.3 (Connolly, 2009) and the thermodynamic data file hp11ver.dat (Holland 

and Powell, 2011). Activity–composition (a–x) models from solution_model_673.dat were 
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used as follows: Bi(W), Crd(W), Gt(W), Ilm(W), melt(W), Mica(W), St(W) and Opx(W) 

from the internally consistent set of solution models produced by (White et al., 2014) for 

biotite, cordierite, garnet, ilmenite, melt, white mica, staurolite and orthopyroxene 

respectively; Fsp(C1) for feldspars (Holland and Powell, 2003); Ep(HP11) for epidote 

(Holland and Powell, 2011) and Sp(WPC) for spinel (White et al., 2002). 

 

 

Table 1. Modelling modes for handling of bulk H2O content in this study as fluid-saturated, 

fluid-absent and fluid restricted. 

 

 

 

Table 2. Starting bulk composition for modelling as the average amphibolite-facies pelite 

from Ague (1991) after H2O adjustment to ensure water begins in excess (17 wt.%). 
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RESULTS 

Melting reactions as a function of fluid mode 

Phase relations for the path marked “Path for 5 kbar array” (Fig. 1a) are shown in Figure 2. 

This system begins at the P–T origin with a bulk H2O content of 17 wt.%. In fluid-saturated 

mode this ensures a water-bearing assemblage for the entire length of the path with water 

abundance in the reactive subsystem beginning at ~ 15 wt.% rising to 16 wt.% at the solidus 

and then falling progressively during melting to 8 wt.% as the melt volume grows (Fig. 2a). 

In this system melting begins with a reaction involving white mica at 680 °C producing ~ 15 

wt.% melt followed by melting involving biotite until 880 °C producing a further ~ 55 wt.% 

melt and finally melting involving cordierite producing ~ 13 wt.% melt, culminating in a 

total of 83 wt.% melt by 970 °C (Fig. 2d). When comparing this system to the other fluid 

modes it helps to note that the renormalized abundance of melt in the reactive subsystem 

excluding the abundance of water equates to approximately 17, 60 and 14 wt.% melt, 

respectively, producing a total of 91 wt.% melt in the reactive subsystem excluding the 

abundance of water. Further, note that in order to achieve this high degree of melting the 

average pelite composition used became quartz deficient by approximately 750°C. 

In fluid-absent mode there is no free water in the reactive subsystem (Fig. 2b). Water is 

extracted whenever it forms as a free phase (Fig. 2g) which occurs intermittently below the 

solidus culminating in just above 15.7 wt.% water extracted cumulatively by the solidus at 

682°C. No further water is formed or extracted above the solidus. Melting begins at 682 °C 

producing less than 1 wt.% melt up till 688 °C, after which white mica is exhausted 

producing ~ 5 wt.% melt (Fig. 2b). From 688 °C onwards melting involving biotite produces 

~ 17 wt.% melt by 825 °C after which melting involving cordierite produces a further ~ 25 

wt.% melt by 910 °C and finally melting involving feldspar and quartz produces a further ~ 

19 wt.% melt by the end of the path. This results in a total of ~ 66 wt.% melt by 1000 °C. 

Quartz is depleted by 940°C. 

Modelling in the fluid restricted mode produced short intervals along the path with a water 

filled porosity resulting in <0.025 wt.% water in the reactive subsystem. This equates with 

the maximum allowable 0.1 vol.% pore space set in the modelling. The water extraction 

events follow a similar pattern to those in the fluid absent mode resulting in a cumulative 

15.7 wt.% water extracted by the solidus at 680 °C. Overall, the partial melting behaviour is 

near identical to that observed in the fluid absent, mode with only a 2 °C lower solidus and 

slightly more melt produced before the exhaustion of white mica (also less than 1 wt.% by 

688 °C) (Fig. 2c). 
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Fig. 2. Diagrams portraying the partial melting behaviour along the “Path for 5 kbar array” 

path shown in Figure 1a for the three fluid modes considered: (a-c) Water in the reactive 

subsystem (wt.%) as a function of temperature shows the difference between the three 

modelled fluid modes, i.e. fluid-saturated, fluid-absent and fluid restricted. Note the 

variation in scale for the y-axis. (d-f) Phase abundance as weight percentage of the reactive 

subsystem. (g-h) water extracted from the reactive subsystem as weight percentage of the 

full system. (i-j) cumulative water extracted from the reactive subsystem as weight 

percentage of the full system. Abbreviations for phases in figures except for melt, water and 

mica were taken from (Whitney and Evans, 2010) as Bt, Biotite; Crd, cordierite; Fsp, 

plagioclase and alkali-feldspar; Grt, garnet; Ilm, ilmenite; Opx, orthopyroxene; Qz, quartz; 

Sil, sillimanite; Spl, spinel; St, staurolite.  
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Effect of fluid state and P–T trajectory on the position of the solidus 

The solidi produced by the 3 fluid modes in combination with the path array originating at 0 

°C;0 kbar, are all within 2 °C of each other despite the inclusion of a fluid-absent rock in the 

modelling (Fig. 3). This is in agreement with the findings of (Webb et al., 2015) who 

demonstrated using isobaric T–XH2O sections, that subsolidus water loss from rocks 

undergoing prograde metamorphism migrates the rock composition towards the minimum 

saturation point on the boundary of the wet-melting field. This study follows the same 

approach but in P–T space because bulk composition may vary simultaneously with P and 

T. The findings indicate that fully-hydrated fluid absent rocks do melt at the wet solidus, 

even in fluid-absent systems. In order to assess the potential effect of the P–T path trajectory 

on partial melting behaviour, each of the 3 fluid modes described above are modelled along 

the 3 P–T path arrays described in Figure 1. The results indicate that, for the fluid saturated 

case, the wet solidus is unaffected by the trajectory of the prograde P–T path; the solidus is 

located at ~ 680 °C between 2.5 and 15 kbar (Fig. 3a), irrespective of the path taken by the 

rock to reach the solidus. The position of this calculated solidus is in broad agreement with 

the results of experimental studies and other phase equilibrium investigations using a 

conventional pseudosection approach (Thompson, 1982; Spear et al., 1999; Johannes and 

Koepke, 2001). This behaviour contrasts strongly with the solidus behaviour for the two 

modes where water content is handled in a more petrologically realistic manner. In both the 

fluid-absent and fluid-restricted modes, the results in terms of phase assemblage and 

positions of the path dependent solidi were identical, so only the fluid-absent system is 

shown and discussed further. For these systems, the three modelled path arrays each 

produced a different solidus (Fig. 3e). The path array originating at 0 °C;0 kbar, underwent 

melting at the wet solidus as described above (Fig. 3b). However, evolution along the P–T 

path arrays originating at 5 and 10 kbar and 650 °C produced very different behaviour. Both 

these arrays contain P–T paths that are substantially steeper than those of the array 

originating at 0 kbar (Fig.3 c & d) and the fluid-absent and fluid-restricted rocks evolving 

along paths with ∆P/∆T < 6 kbar/100 °C melted at the wet solidus. However, for both 

systems, rocks evolving along steeper paths do not melt at the wet solidus, rather they map 

out a solidus which shifts to progressively higher temperature as pressure increases. For the 

array originating at 5 kbar this results in the solidus at 15 kbar being located at a temperature 

> 100 °C higher than the equivalent 0 kbar array’s solidus. The portion of the solidus for the 

5 kbar path arrays that is located at a temperature above the fluid-saturated solidus is located 



50 
 

within ~ 25 °C of the modelled white mica out boundary (Fig. 4c). Consequently, the steep 

P–T paths that produce this higher temperature solidus appear to record the fluid-absent 

incongruent melting reaction involving white mica at pressures above approximately 7 kbar. 

For both the fluid-restricted and fluid absent systems, the path array originating at 10 kbar 

records similar behaviour to the equivalent 5 kbar path array, matching the fluid-saturated 

solidus at lower pressure, and departing from it at higher pressure, but in this case the point 

of departure is located at ~11.5 kbar (Fig. 3d) because it is only above this pressure that the 

paths attain the prerequisite steepness. At 15 kbar the 10 kbar array is located >50 °C higher 

than the 0 kbar path array solidus. 

 

 

Fig. 3. Melt abundance as weight percentage of the reactive subsystem (renormalized to 

100% after excluding the abundance of water) for a) the fluid-saturated system; b) the fluid-
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absent system originating at the P–T origin; c) the fluid-absent system beginning at the P–T 

origin but inflecting to a fanned array at 650 °C, 5 kbar; d) the fluid-absent system beginning 

at the P–T origin but inflecting to a fanned array at 650 °C, 10 kbar. e) Relative positions of 

the solidi produced by the fluid-saturated system and the fluid-absent system from the three 

arrays considered with respect to the fields of eclogite–high–pressure granulite (E–HPG) 

and granulite–ultrahigh temperature (G–UHT) peak metamorphic conditions, as defined by 

(Brown, 2014) 

 

Effect of fluid state and P–T trajectory on the melt production 

Fluid saturated melting produces a large amount of melt close to the solidus with a tight 

grouping of melt wt.% contours near the solidus (calculated as melt abundance renormalized 

to 100% after excluding the abundance of water) (Fig. 3a). The system consists of up to 60 

wt.% melt by 800 °C (Fig. 3a). For paths originating at the origin in the fluid-absent and 

fluid-restricted systems, the initial amount of melt produced is low with the 1 wt.% melt 

contour being separated from the solidus by 15 to >50 °C (Fig. 3b). A systematic increase in 

melt volume with temperature is observed in these paths above 800 °C with an average 

increase of approximately 10 wt.% melt per 30 °C.  

Between approximately 3 and 4.5 kbar the solidus intersects a P–T field in which biotite is 

the only hydrous mineral, with white mica and cordierite present as an additional hydrous 

phase at higher and lower pressures respectively (Fig. 4 c- e). The H2O content of the rock 

along this portion of the solidus is constant at ~ 1 wt.% (Fig. 4b), indicating that the biotite 

mode and water content do not vary as a function of pressure in this area of the phase 

diagram. The consequences of this are visible as a bulge to higher temperatures in the melt 

isopleths (up to 30 °C) for paths that travelled through the pressure–temperature field of this 

assemblage (Fig. 3b). A maximum melt abundance of 80 wt.% is obtained for this system at 

low pressures (<8.5 kbar). 

Melt abundance contours for paths originating at 650 °C, 5kbar in fluid-absent and fluid 

restricted systems show similar features to those originating at the origin. Contours are 

strongly temperature dependent, show systematic increases above 800 °C and are deflected 

to higher temperature at high pressures. A maximum of 80 wt.% melt is produced for 

pressures between 3. and 8.5 kbar at 1 100 °C. Below 800 °C, however, marked differences 

are found with the solidus, the 1, and the 10 wt.% melt contour all deflected at high pressure 

to near coincidence at 825 °C, 15 kbar. Additionally, the anomalous shift to higher 
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temperatures experienced by the 0.65 kbar/100 °C path from the origin is erased by the 

inflection of the P–T paths at 650 °C, 5kbar and an increase in temperature of contours is 

observed only for paths inflecting to a steepness less than -2 kbar/100 °C (Fig. 3c). 

Melt production for the paths originating at 650 °C, 10kbar in fluid-absent and fluid 

restricted systems are near identical to those produced by paths originating at 650 °C, 5kbar 

with the only significant differences being less deflected contours below 800 °C; at high 

pressure and a lack of any anomalous increase in temperature of contours for steeply 

downwards inflecting paths (Fig. 3d). 

 

 

Fig. 4. P–T diagram showing the P–T path array originating at the P–T origin (grey dashed 

arrows). a) The grey shading represents the total H2O (as wt.% of the system) contained 

within the hydrous silicates white mica, biotite and cordierite, contoured from 0 (white) to 

2.6 (dark grey) for the fluid absent system. Weight percentage of H2O in the entire system 

(including melt) is contoured in 0.2 wt.% increments (blue dotted lines) and the weight 

percentage of melt in the reactive subsystem is contoured (orange dashed lines). b) Weight 

percentage of H2O in the bulk system at the solidus for the fluid-absent and the fluid-

restricted systems as a function of pressure. (c-e) Weight proportion of the solid system 

contained as H2O in white mica, biotite and cordierite. f) Degree of water saturation of melt 

given by the H2O in melt in the fluid-absent mode divided by the H2O in melt in fluid-

saturated mode, expressed as a percentage.  
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Rock water content at the solidus as a function of pressure 

The H2O content of the fluid-absent system at the solidus produced by paths from the origin 

varies by 1.6 wt.% (from 0.8 to 2.4 wt.%) (Fig. 4b) over the pressure range investigated and 

generally increases as a function of pressure. This substantial range in water content clearly 

illustrates the deficiencies in trying to model anatexis over a pressure range using a single 

bulk composition. The water content of the fluid restricted system at this solidus is only 

minutely higher than the fluid-absent rock at the same pressure (Fig.4b). For both fluid-

absent and fluid restricted systems above the solidus, bulk H2O content remains constant 

along each path as no supersolidus free water can form due to the presence of water-

undersaturated melt (Fig. 4f). Above the solidus all H2O is accommodated either in melt or 

within melt and hydrous silicates (Fig. 4a). The hydrous silicates that are stable within this 

bulk composition in the relevant P–T range are white mica (Fig. 4c), biotite (Fig. 4d) and 

cordierite (Fig. 4e). With increasing pressure, the stability of the hydrous silicates 

accommodates larger total water content (up to 2.6 wt.% of the reactive subsystem) by 

increasing the phase abundance of the hydrous silicates and by preferentially forming 

hydrous silicates that contain more water (e.g. white mica rather than biotite) (Fig. 4a, c-e). 

If P–T paths are steeper than the H2O in hydrous silicate contours in Figure 4a (for example 

paths with P/ T > 6 kbar/100 °C in Figure 3c) then the abundance of white mica may 

increase and the abundance of biotite may decrease to such an extent that the rock system 

becomes fluid-deficient. If this happens the system may cross the position of the fluid-

saturated solidus without melting and only begin melting at the first fluid absent melting 

reaction the path intersects 
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DISCUSSION AND CONCLUSIONS 

The methodology presented allows phase equilibrium modelling to investigate the P–T path 

dependent partial melting of rocks with realistic H2O contents, over a range of pressures and 

temperatures. The results demonstrate that for rocks undergoing heating without a 

substantial pressure increase, all metapelitic rocks will melt at the wet solidus, irrespective 

of fluid state. The reason for this is that in the fluid-absent system, biotite H2O content 

decreases as a function of temperature (Fig. 4d). Once the rock reaches the position of the 

wet solidus, the decrease in biotite H2O content with the next increment of temperature 

increase allows for melt formation without the appearance of a fluid–phase. This liberation 

of water from biotite can also be seen in the water extraction behaviour of single paths in the 

fluid-absent and fluid restricted systems (Fig. 2 g,h). This is almost congruent fluid-absent 

anatexis as it is accompanied by only minor shifts in biotite and plagioclase compositions 

and it results in low melt volumes. Thus, phase equilibrium modelling using the best 

available models for activity–composition relations in the solid– and liquid–solution phases, 

in combination with a correct handling of H2O, demonstrates that the idea that fluid-absent 

rocks will only melt at the experimentally determined conditions of muscovite– and biotite–

driven incongruent melting, is incorrect. As also detailed by (Webb et al., 2015), the main 

reasons why experimental studies have missed this behaviour are that experiments using a 

single composition cannot properly map out fluid-absent partial melting behaviour over a 

range of pressures, or the natural decrease in water content that occurs as subsolidus rocks 

evolve to higher temperature. The modelling predicts that melting at conditions at or close to 

the wet solidus is inevitable for most rocks. Possible examples of field areas where evidence 

of this type of low temperature anatexis are preserved are the Damara Belt of Namibia 

(Ward et al., 2008) and in the Famatinian Orogen of NW Argentina (Sola et al., 2017). With 

no melt loss, biotite bearing assemblages appear to melt progressively between the fluid-

absent solidus and the point at which biotite disappears (Fig. 4a).  

At common granulite facies temperatures, melt proportion appears to be a rather well 

defined function of temperature, with surprisingly little pressure influence at 800 °C the 

system contains ~ 10 wt.% melt, at 850 °C this figure is ~ 20 wt.%. Maximum melt 

proportions are attained in the fluid-saturated system at 90 wt.% with more than 60 wt.% of 

this melt being produced below 850 °C. The fluid-absent and fluid restricted system 

produces significantly less melt (with a maximum of 80 wt.%) only producing melt above 1 

wt.% after 750 °C with a systematic increase in melt above 800 °C at an average of 10 wt.% 
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melt per 30 °C. Importantly, the melts present at relatively low temperatures are 

significantly water under-saturated (Fig. 4f) and consequently can ascend to achieve crustal 

differentiation if they are able to segregate from their sources. This implies that fluid-absent 

melting does makes a substantial contribution to low-temperature melting (< 850 C) and that 

these melts have significant assent potential due to their water-undersaturated character. 

Being able to adjust system water content incrementally to simulate fully-hydrated, fluid-

absent conditions and fluid-restricted, water-present conditions over a range of pressures 

also allows the path dependency of partial melting behaviour to be investigated. This has 

demonstrated that if metapelitic rocks cross the position of the wet solidus in the field of 

white mica stability along a sufficiently steep positive P–T path, the solidus is displaced to 

significantly higher temperature than the fluid-saturated solidus. This appears to be a result 

of white mica mode growing at the expense of biotite as a function of pressure, as the rock 

progresses along the prograde path (Fig. 4 c,d). In the fluid-restricted case this results in the 

subsolidus rock consuming the 0.1 vol.% pore water through phengite producing reactions 

and the rock becoming fluid-absent before the water-saturated solidus is encountered (Fig. 

4a). Under these conditions, the rocks in both fluid-absent and fluid restricted systems are 

less than fully-hydrated and the resultant decrease in water activity favours white mica 

stability over melt and melting is delayed to higher temperature. This phenomenon could 

effect a large number of rocks which undergo prograde evolution along steep P–T paths into 

the high pressure amphibolite facies and eclogite facies. This could provide a mechanism for 

such rocks to remain solid for a considerable time along these steep paths crossing the wet 

solidus after which shallowing of the P–T path and/or subsequent heating would produce 

substantial melt volumes (Fig. 3 c,d). 

DOWNLOAD 

Rcrust is free to download and use under the GNU copyleft. The latest version of the 

software can be found on either of the two institutional addresses at: http://www.univ-st-

etienne.fr/rcrust or http://www.sun.ac.za/english/faculty/science/earthsciences/rcrust. 

Alternatively, the software can be downloaded by contacting the corresponding author. 

ACKNOWLEDGMENTS 

The financial assistance of the National Research Foundation (NRF) is gratefully 

acknowledged, as is funding by the French Embassy of South Africa to M. Mayne and by 

the SARChl initiative to G. Stevens. The authors would like to thank Frank Spear, Dave 

Kelsey and an anonymous reviewer for their comments on an earlier form of this 



56 
 

manuscript. Special thanks are given to Chris Yakymchuk for identifying the requirement of 

path dependent bulk H2O contents for phase equilibria modelling in P–T space during his 

review of Mayne et al (2016). Your comment led us to produce the methodology presented 

in this paper as a possible solution. 

SUPPLEMENTARY MATERIAL* 

Files for reproducing the results presented are contained in the zipped folder 

“Mayne_et_al_2018_2_modelling_files”. PA0, PA5 and PA10 denote the path arrays 

originating from the P–T origin, from 650 °C; 5 kbar and from 650 °C; 10 kbar respectively. 

Fluid saturated calculations were perfomed using the PA0 array and fluid states of fluid-

absent and fluid-restricted are shown for each of the possible path arrays. A process of 

gridded interpolation was performed on each array in order to plot a square regular gridded 

contour diagram, these files are presented with a suffix of “_grid” added to their project 

name. To open the files download Rcrust from 

https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust and replace the “Projects” 

and “data” folders with those in the zipped folder. Open each project by double clicking the 

appropriate x.RData file. 

*For the thesis examiners’ convenience these files are already copied into the electronic copy of Rcrust 

provided in Addendum A, to open them simply install Rcrust following the user manual in Addendum B, open 

the “Projects” directory of Rcrust, open the project of choice and double click on the .RData file contained in 

the project file  
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ABSTRACT 

 

The ability of Rcrust (Mayne et al., 2016) to conduct path dependent phase equilibrium 

modelling with automated changing bulk compositions allows for a phase equilibrium 

approach to investigate an array of source controls for their effect on the bulk compositions 

of melts produced by sequential melting events. The following source controls of the rock 

system are considered: 1. Initial magnesium and iron content; 2. Initial sodium and calcium 

content; 3. fluid state; 4. Pressure-temperature path followed by the system and 5. threshold 

by which melt extractions in the system are triggered. The permutation of 3 cases for each of 

these source controls resulted in 243 different modelled pressure-temperature-bulk 

composition paths with which the melting of an average pelite composition is investigated. 

The resultant melt compositions are compared to that of a natural granite data set and 

provide a good fit for the incompatible elements Na2O and K2O with the allowance that 

granites most likely form as magmas consisting of melt and ferromagnesian rich crystals. 

The fluid state of the system is shown to have the strongest control on melt compositions 

with the pressure-temperature path having subordinate control on the volume and 

composition of melts produced. 

 

Keywords: Phase equilibria modelling; Rcrust; source controls, fluid state, pressure-

temperature path  
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INTRODUCTION 

Granite plutons and batholiths (senso lato) commonly exhibit a substantial range in major 

and trace element compositions, within co-magmatic rocks e.g. (Brown and Pressley, 1999; 

Stevens et al., 2007). Studies seeking to explain this commonly propose a range of different 

processes that occur in the magma plumbing systems or in magma chambers, and that are 

interpreted to modify magmas of originally homogenous composition. Processes such as 

unmixing of entrained residuum e.g. (Chappell et al., 1987), fractional crystallization e.g. 

(Foden et al., 2002; Breaks, Frederick and Moore, 1992), assimilation of wall rocks e.g. 

(Beard et al., 2005; DePaolo, 1981), or mixing with other magmas e.g. (Barbarin, 1988; 

Collins, 1996), all feature prominently in the literature, yet as discussed by (Clemens and 

Stevens, 2012), are unlikely to provide viable explanations for the major element, trace 

element and isotopic variations recorded within large granite bodies. 

Some petrogenetic processes proposed to account for the observed range of magma 

compositions do occur in the source. For example, the variable degrees of entrainment of the 

peritectic assemblage proposed by Stevens et al. (2007), Clemens et al. (2011) and Villaros 

and Stevens (2009) to explain compositional variation in the S-type granites of the Cape 

Granite Suite. These studies propose that incompatible major element concentrations in 

granites reflect the compositions and proportions of reactant minerals in the source, whilst 

compatible element concentrations principally reflect the amount of peritectic assemblage 

entrained to the magma in the source, during biotite fluid-absent melting. When combined 

with efficient extraction of magma from the source as different batches that do not mingle in 

the plumbing systems e.g. (Brown and Pressley, 1999), the changes in melting reaction 

stoichiometry that occur with increasing temperature and decreasing water content are 

recognised to produce a range of magma compositions e.g. (Farina and Stevens, 2011). The 

water content of rocks, as well as the absence or availability of a water-rich fluid phase, both 

have a profound effect on melt composition and the temperature of melt generation. The role 

of water content of the system in determining melt productivity is also dependant on the 

shape of the P–T path, through the control of pressure on the solubility of water in melt. 

Despite the fact that source compositional variation, including water content, P-T condition 

of anatexis, and the volume of melt that is retained in the source prior to magma extraction, 

all clearly may have a profound effect on magma chemistry, relatively few studies recognise 

that these factors may play a role in shaping the compositional range recorded in granites. 

The majority of studies that have attempted to interpret the origins of major element 
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chemical variation within granites assume the involvement of large volumes of melt of 

homogenous composition. For even relatively small sized bodies this is a highly unrealistic 

assumption for two reasons. Firstly, even if the source rocks retain melt until a single large 

batch is segregated and delivered to construct the pluton, it is very unlikely that the source 

rocks, and thus the melt, will be compositionally homogenous. This conclusion is based on 

the observations that all rock sequences that may represent fertile sources of granite magma, 

such as hydrated volcanic sequences of mafic to intermediate composition, as well as clastic 

sediments with a considerable hydrous mineral fraction, are typically compositionally 

variable on a metre to sub-metre scale; additionally, the volume of source rocks must be 

significantly larger than the volume of the magmatic rocks produced. Thus, for even small 

plutons, melt must drain from a sufficiently large volume of source rocks that compositional 

variation in the source is unavoidable. Secondly, it is very unlikely that the source rocks 

deliver melt in a single large batch (Clemens et al., 2016), potentially facilitating 

homogenization by mixing and diffusion after segregation. Both exposed granulite facies 

source rocks and granites contain compositional and textural evidence to support 

incremental or continual drainage of melt from the source e.g. (Coleman et al., 2004; de 

Saint Blanquat et al., 2011). Examples of restitic granulites that have yielded at least 25 

vol.% melt, contain compositional layering at a decimetre to metre scale that is interpreted 

to represent compositional layering within the protolith e.g. (Taylor and Stevens, 2010). 

Contacts between layers are sharp and mineral assemblages within different layers are not in 

equilibrium e.g. orthopyroxene- and sillimanite-bearing assemblages in adjacent layers 

(Stevens and Reenen, 1992). Such rocks must have lost melt episodically, in small batches, 

or continuously. If not, they would have developed diatexitic textures, with disruption of 

regular layering. Evidence from some S-type leucogranites indicates that melt batches are 

indeed very rapidly transported from source to pluton and do not remain in the source for 

any significant time after formation. These rocks have bulk compositions that are zircon 

undersaturated at reasonable estimates for magma temperature, yet contain zircon inherited 

from the source, supporting estimates of melt residency in the source of no more than 500 

years (Villaros et al., 2009). Continuous or episodic melt extraction will result in different 

melt compositions leaving the source, as the melting reactions change as anatexis of the 

source progresses e.g. (Farina and Stevens, 2011). 

From the arguments above, granites derived from partial melting of the crust can be 

assumed to be principally constructed from melt batches that had different compositions at 

the point of segregation from the source. Investigation of the role of source composition in 
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controlling melt compositions is hampered by the fact that almost all available data from 

experimental petrology represent the consequences of batch melting, mapped out over a 

range of pressures and temperatures. Typically, a single composition or a small number of 

different compositions is investigated e.g. (Stevens et al., 1997). The advent of Rcrust 

(Mayne et al., 2016), software which allows path dependant phase equilibrium modelling 

with changing bulk composition, allows the source control on the compositions of individual 

batches of melt leaving the source to be investigated using a phase equilibrium modelling 

approach. As there are an almost infinitely large number of potential variables that could be 

investigated. However, this study has aimed to investigate the control of Mg#, Na/Ca ratio 

and fluid state, as well as the effect of melt volume prior to melt extraction and the steepness 

of the P–T path on the compositions of melt batches produced from a metapelite undergoing 

progressive melting. 

 

METHODOLOGY 

 

The source parameters that were investigated in this study can be divided into compositional 

parameters and physical parameters. For the compositional parameters, the compositions 

used were based on the average pelite composition of Ague (1991) (Table 1). In order to 

approximate chemical heterogeneity in the metapelite source, the magnesium number (Mg#) 

= Mg/(Fe + Mg)*100 [mol.%] and calcium number (Ca#) = Ca/(Ca + Na)*100 [mol.%] of 

the bulk composition was varied. The Mg# of the Ague (1991) average is 20, two additional 

bulk compositions were generated by changing the atomic ratio of Mg to Fe to create Mg# = 

41 and 60. Similarly, the Ca# for the Ague (1991) average is 19 and the atomic proportions 

of Ca and Na were varied for each of the 3 Mg# bulk compositions to produce additional 

bulk compositions with Ca# = 32 and 42. Thus, excluding variations in water content, 9 

different bulk compositions were used: the permutation of 3 magnesium numbers and 3 

calcium numbers. At conditions just below the water-present solidus, these rock 

compositions are all characterized by assemblages dominated by quartz, plagioclase, biotite 

and muscovite, and at a reference P-T condition of 640 °C and 7 kbar, the mineral modes 

and plagioclase anorthite contents are indicated in Figure 1. Note that the plagioclase 

anorthite contents are higher than the Ca#’s of the rocks and also vary as a function of the 

Mg#. This is because Na is taken up by both muscovite and biotite, but in different amounts, 

and the mode of biotite and muscovite vary as a function of Mg#, whilst at this P-T 

condition, Ca is accommodated almost completely within plagioclase. 
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Water content was varied between three different fluid states (H2O) across the 9 

compositions described above. Firstly, each of the rocks was modelled as having 10 wt.% 

water in the bulk composition. This was sufficient to keep the assemblage water saturated to 

a temperature above 920 °C, the upper limit of the modelling conducted in this study. These 

compositions are termed water in excess. An additional set of compositions was modelled as 

fully-hydrated, fluid-absent. This was achieved by starting with the water in excess 

composition and setting the software to remove all water present as a free phase at each step 

of the prograde evolution of the rock. A final situation considered was for water to be 

porosity limited that is: water to be present at the water-saturated solidus only as a pore fluid 

filling a nominal porosity. In this case the software was set to start with water in excess and 

at each increment of prograde evolution to remove all free water except for 0.1 vol.%.  The 

combination of the three different fluid states, with the variations in bulk rock Mg# and Ca#, 

produces 27 different sets of compositional parameters that were modelled.  

The 27 different sets of bulk compositional parameters were considered to evolve along 

three possible pressure-temperature paths (P-T). The first of these was an isobaric heating 

path at 7 kbar originating at 640 °C. The second, originating at the same point was a linear 

path to 920 °C and 9.5 kbar. The third, also originates at the same point and is a linear path 

to 920 °C and 12 kbar. In the discussion that follows these paths are referred to respectively 

as isobaric, gentle and steep. A second physical parameter considered in the modelling was 

the degree of melt retention in the source prior to melt extraction (Melt threshold). Values of 

1, 7 and 10 vol.% melt were used as the trigger for melt extraction. Upon this threshold 

being exceeded, melt was extracted down to 1 vol.% which was assumed to represent the 

amount of melt retained on grain boundaries and therefore inaccessible to extraction. The 

combination of compositional parameters, with three P-T path scenarios and three Melt 

thresholds resulted in a total of 5 different source controls being investigated, each of which 

have 3 possible cases, culminating in 35 different models (Table 2). 
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Table 1. Initial bulk composition used in the construction of path dependent P-T-X paths in 

wt.% as the average amphibolite-facies pelite from Ague (1991). The composition shown 

forms the baseline for calculating the 9 starting bulk compositions shown in Figure 1 with 

magnesium number (Mg#) and calcium number (Ca#) altered where applicable. 

 

 

Table 2. Summary of the source controls considered and each of their 3 cases. 
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Fig. 1. Starting 9 bulk compositions produced by altering the Mg# and Ca# of the average 

pelite composition of Ague (1991)(Table 1) expressed as wt.% oxides normalized to the 

Ague (1991) average with the phase assemblage produced by each bulk composition at 640 

°C; 7 kbar expressed as wt.% of each phase present. The anorthite percentage as 

An%=Ca/(Ca+Na)*100 [mol.%] of feldspar is reported above each phase assemblage. 

Abbreviations for phases except for melt and mica were taken from Whitney and Evans 

(2010) as Bt, Biotite; Fsp, plagioclase and alkali-feldspar; Grt, garnet; Ilm, ilmenite; Ky, 

kyanite; Qz, quartz; Spl, spinel; St, staurolite. 

 

Calculations were performed in Rcrust version 2017-10-26  (Mayne et al., 2016) using a 

compiled form of the meemum function (version 6.7.9) from the Perple_X suite of programs 

(Connolly, 2009) in the NCKFMASHTO chemical system utilizing the 2011 revised 

hp11ver.dat thermodynamic data file from the internally consistent dataset of Holland and 

Powell (2011). Solution models were chosen which are consistent with the slightly 

simplified chemistry of the bulk system (e.g. the chemical system does not account for Mn) 

yet takes into account substitutions that are important in stabilizing phases (e.g. Ti in 

biotite). The following solution models were used from solution_model_679.dat: Fsp(C1) 

for plagioclase and alkali-feldspar (Holland and Powell, 2003), Cpx(HP) for clinopyroxene 

(Holland and Powell, 1996), Ep(HP11) for epidote (Holland and Powell, 2011), Sp(WPC) 

for spinel (White et al., 2002), Ilm(WPH) for ilmenite (White et al., 2000) and the latest 

White et al. (2014) set of models: Bi(W) for biotite, Crd(W) for cordierite, Gt(W) for garnet, 
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melt(W) for melt, Mica(W) for micas, Opx(W) for orthopyroxene, St(W) for staurolite. All 

the P-T paths modelled start at 640 °C and 7 kbar with 10 wt.% H2O. This results in a free 

water phase being present at the beginning of each path, with water lost as appropriate to the 

model situation from the 642 °C step onwards. 

 

RESULTS 

 

The phase assemblage plots and melt production information as a function of temperature, 

for the Ague (1991) average Mg# and Ca# bulk composition, with 7 vol.% melt extraction 

threshold, evolving along the gentle prograde heating path (640°C; 7kbar to 920°C; 9.5 

kbar) for three fluid cases are illustrated in Figure 2. The diagram illustrates some important 

fundamentals regarding the role of water during partial melting. The case with water limited 

to a nominal porosity and the fully-hydrated, fluid-absent case yield similar results because 

the bulk rock water contents of each of these water restricted cases at the solidus are similar. 

Each of the three cases considered undergoes melting at 684 °C, but the water restricted case 

predicts less than 3 vol.% melt in the system between 684 and approximately 735 °C, where 

there is a pulse of melt to >7 vol.% triggering the extraction of melt. This pulse of melt is 

the consequence of muscovite being consumed by an incongruent melting reaction. 

Sillimanite mode increases distinctly at the muscovite-out temperature as sillimanite is the 

primary crystalline product of the incongruent melting reaction which consumes muscovite.  

Following the disappearance of muscovite and the melt extraction event, melt modes 

increase very slightly as a function of temperature between 735 and 770 °C, where biotite 

mode begins to decrease as a function of temperature, with a corresponding increase in melt 

abundance. Biotite incongruent melting results in the appearance of peritectic garnet and 

triggers three melt extraction events between 770 and 850 °C, the temperature at which 

biotite disappears. Heating between 850 and 920 °C produces a single further melt 

extraction event. This last pulse of melt extraction occurs at a slightly higher temperature in 

the fully-hydrated, fluid-absent system, relative to the rock with 0.1 vol.% pore-water in the 

subsolidus assemblage. Thus, the melting of both water restricted rocks is controlled by the 

incongruent melting behaviour of the micas. Quartz and plagioclase remain in significant 

proportions in the residuum, despite the rocks having lost 20 vol.% melt. 
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Fig. 2. Phase abundance and cumulative melt (both in wt.% relative to the full system) 

produced along P-T-X paths investigating water content (H2O) as a source control on melt 

production considering 3 cases: a) fully-hydrated, fluid-absent; b) porosity limited to 0.1 

vol.% and c) water in excess. For the 3 paths shown here Mg# and Ca# are taken as the 

Ague (1991) average with melt extraction events triggered by a 7 vol.% melt threshold 

along the gentle prograde heating path (640°C; 7kbar to 920°C; 9.5 kbar). Step resolution of 

paths is set at 2°C. Abbreviations for phases except for melt and mica were taken from 

Whitney and Evans (2010) as Bt, Biotite; Fsp, plagioclase and alkali-feldspar; Grt, garnet; 

H2O, liquid water; Ilm, ilmenite; Ky, kyanite; Qz, quartz; Sil, sillimanite; Spl, spinel; St, 

staurolite. 

 

In contrast, the availability of water controls the melting behaviour of the rock in the water 

in excess case; there is always as much melt in the system as the temperature and melt 

depleted composition will allow. Muscovite mode reduces markedly at the solidus, as do the 

modes of quartz and plagioclase. Muscovite disappears at approximately 700 °C and 

sillimanite mode grows with the decrease in muscovite, reflecting the incongruent melting 

of muscovite. Peritectic garnet appears at approximately 710 °C, marking this temperature 

as the point at which biotite decomposition makes a significant contribution to incongruent 

melting. The mode of biotite, quartz and plagioclase decrease substantially from this 

temperature to approximately 750 °C. Melt extraction events occur with a frequency of 

approximately one per 10 °C between the solidus and 750 °C. At this temperature the 

plagioclase composition in the residuum becomes anorthite, supressing further biotite 
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melting to approximately 780 °C. Significant reduction in biotite and quartz mode occurs 

between 780 and 800 °C, with a number of corresponding melt extraction events. At 800 °C 

quartz is depleted and no further melt extraction events are triggered until approximately 

870 °C, where biotite and sillimanite participate in an incongruent melting reaction which 

produces peritectic spinel which ends when biotite is exhausted at 900 °C. 

The compositions of each melt extraction event produced along each of the possible P-T-X 

paths are plotted in Figures 3-4. The compositions of 548 bulk compositions reported for 

naturally occurring S-type granites (Euzen, 1993; Goad and Cerny, 1981; Scaillet et al., 

1990; Nabelek et al., 1992; Solgadi et al., 2007; Williamson et al., 1996, 1997; Hine et al., 

1978; Maas et al., 1997; Castro et al., 1999; Scheepers and Armstrong, 2002; Scheepers and 

Poujol, 2002; Bea et al., 1994; Ayres and Harris, 1997; Downes et al., 1990; Downes and 

Duthou, 1988; Chappell, 1978; Chappell and White, 1992; Birch, 1978; Bourne and Danis, 

1987; Day and Weiblen, 1986; Georget and Martineau, 1986; Holtz and Johannes, 1991; 

Inger and Harris, 1993; Villaros, 2004; Sandeman and Clark, 2003; Scheepers, 1990) 

(Supplementary data: presented in Addendum D) are plotted for reference, although 

comparison between these rock compositions and the modelled melt compositions is only 

presented in the discussion. This dataset is filtered to only include samples that had been 

reported as being fresh and where possible thin section analysis was performed to ensure 

that only fresh samples were considered. Both the natural data and modelled data are 

normalised to the NCKFMAST chemical system where F is given as FeOt = FeO + 

0.89981*Fe2O3 by wt.% when FeO/Fe2O3 data was available (all the modelled data and a 

subset of the natural data) or else assuming all iron is ferrous. Harker plots are shown for 

major elements in the chemical system modelled with exceptions of H2O and O as there is 

insufficient data on these components in the natural array considered to provide a 

comparison and TiO2 as this component is not included in the current melt(W) solution 

model. 

Modelled data is grouped by each of the 3 possible cases for each source control with 

colours assigned by Colorbrewer (Brewer, 2002). Alphahull approximation (Pateiro-López 

and Rodríquez-Casal, 2010) is performed on each case using an alpha value of 150 in order 

to calculate the bounding area for each subset of the modelled data in y vs SiO2 space for y 

as CaO, Na2O, K2O, Al2O3, MgO + FeOt, Mg#, A/CNK and Na/Ca using GCDkit 

(Janoušek et al., 2006). A vector connecting the centroid of each bounding area is drawn as 

an arrow pointing towards the highest valued case (e.g. highest water content considered). 

The length of the vector gives an indication of the magnitude by which the bounding areas 
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are shifted relative to one another by the source control of interest and therefore its relative 

strength in controlling the resultant melt composition. These vectors of source control are 

reproduced on the right of the diagram centred to a dimensionless panel for comparison.
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Fig. 3. Bulk compositions of natural data array of s-type granites and modelled melt extracts for the source controls: Mg#, Ca#, H2O, P-T and 

Melt threshold expressed as wt.% oxide versus wt.% SiO2. Weight percentages are normalised to the NCKFMAST chemical system. Modelled 

points are coloured according to the case considered for each source control (see Table 2) as low (light blue), medium (blue) and high (dark 

blue). Arrows link the central points of the space defined by each modelling case and point towards the highest valued case. Arrows produced 

by each source control are copied and centred on a unit-less diagram to the right of the figure for comparison. 
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Fig. 4. Bulk compositions of natural data array of s-type granites and modelled melt extracts for the source controls: Mg#, Ca#, H2O, P-T and 

Melt threshold expressed as MgO + FeOt = MgO + FeO + 0.89981*Fe2O3 [wt.%]; Mg# = MgO/(FeOt + MgO)*100 [mol.%]; A/CNK = 

Al2O3/(CaO+Na2O+K2O) [mol.%] and Na/Ca [mol.%] all versus wt.% SiO2. Weight percentages are normalised to the NCKFMAST chemical 

system. Modelled points are coloured according to the case considered for each source control (see Table 2) as low (light blue), medium (blue) 

and high (dark blue). Arrows link the central points of the space defined by each modelling case and point towards the highest valued case. 

Arrows produced by each source control are copied and centred on a unit-less diagram to the right of the figure for comparison. 
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In both the water in excess and water restricted cases, the details of the melting behaviour 

and assemblage evolution vary significantly with P-T path steepness and rock composition. 

This is because pressure has a strong control on water solubility in the melt and on the 

mineralogy of the anhydrous ferromagnesian assemblage, whilst Mg# and Ca# have a strong 

control on the relative proportions of biotite, muscovite and plagioclase in the rocks (Fig. 1). 

However, allowing for these variations, all the modelling conducted in this study produces 

behaviour which is generally consistent with that described above. Each of the water in 

excess rocks produce three pulses of melt production, irrespective of the melt extraction 

threshold. For the gentle prograde heating example illustrated in Figure 2, the first of these 

occurs between the solidus and 740 °C. In this temperature interval, a large volume of melt 

(~50 vol.%) is produced through water fluxed incongruent reactions that consume 

muscovite and biotite along with quartz and plagioclase. These melts have SiO2 contents 

very close to 75 wt.% and are characterised by Na2O and K2O contents that, respectively, 

vary inversely and proportionally with temperature (Fig. 5). This reflects the change in the 

stoichiometry of the low-temperature water present incongruent melting reactions to 

consume increasing amounts of mica as temperature increases. A second pulse of melt 

production occurs between 770 and 790 °C due to biotite + quartz + anorthite + H2O 

incongruent melting. The melts have SiO2 contents that range from 75 down to 63 wt.%, as 

well as very low Na2O contents (<0.5 wt.%) and high K2O contents (> 6 wt.%). A third 

pulse of melt production occurs between 870 and 900 °C, where biotite, sillimanite, garnet 

and H2O melt incongruently to produce melt and peritectic spinel. This produces melts 

which range in SiO2 content from 72 to 60 wt.% SiO2, with close to 0 wt.% Na2O, K2O 

between 6 and 12 wt.%, CaO between 2 and 5 wt.%, with very high Al2O3, between 17 and 

25 wt.%. Note that the exceptions to this are the portion of the light blue data array in Figure 

5 which extend to low K2O contents. These data points represent low Mg# rocks which 

evolved along the isobaric heating path at 7 kbar with melt extraction at a 1 vol.% melt 

threshold (thus recording small melt extraction amounts). In this situation biotite is depleted 

at relatively low temperature and these melt compositions are produced by incongruent 

melting of garnet, sillimanite and H2O. 

The water restricted models display considerably smaller compositional ranges of melt 

composition and two pulses of melt production (Fig. 5). The first is the consequence of 

incongruent melting reactions involving muscovite, the second is the result of incongruent 

melting reactions involving biotite. For both melt pulses, the melts range in composition 

between 72 and 75 wt.% SiO2, with K2O between 3 and 6.5 wt.%, Na2O between 3 and 6 
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wt.% and CaO < 1wt.%. The models with restricted water always produce approximately 

one third of the total melt volume produced by the water in excess rock at 920 °C. In the 

examples highlighted above, cumulative melt extracted from the system equates to 19.8 

wt.% for the fully-hydrated, fluid-absent system; 20.0 wt.% for the porosity limited system 

and 71.4 wt.% for the water in excess system. 
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Fig. 5. Bulk compositions of natural data array of s-type granites and modelled melt extracts produced by varying the source controls: Mg#, 

Ca#, P-T and Melt threshold for the fluid case of water in excess (top) and fully-hydrated, fluid-absent (bottom). Modelled points are coloured 

according to the P-T path as isobaric (light blue), gentle (blue) and steep (dark blue). Melt extracts are grouped into 3 progressive temperature 

intervals with increasing temperature to the right of the figure. Weight percentages are normalised to the NCKFMAST chemical system. 
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DISCUSSION 

 

The different source controls investigated in this study do not have equally significant 

influences on the composition of melt batches produced by progressive melting and melt 

extraction. The results indicate the hierarchy of influence on melt composition to be: 1. the 

presence or absence of water; 2. the pressure of melting; 3. the Ca# of the rock; 4. the Mg# 

of the rock; 5. Melt threshold (see size of compositional vectors on the right of Figs. 3&4). 

Ignoring the presence or absence of water, the nine bulk compositions investigated in this 

study vary substantially in terms of mode and composition of the reactant minerals, although 

all are metapelitic, with both muscovite and biotite present in the subsolidus assemblage 

along with quartz, plagioclase and aluminous minerals such as staurolite and/or aluminium 

silicates. Given the range in compositions it is noteworthy that on Figure 5, the different P-T 

path arrays are closely grouped, yet clearly discernible on almost every Harker plot. As the 

data for each P-T path include data on the compositions of the melt batches produced by all 

nine rock compositions, the variation in melt compositions produced by the compositional 

range covered is clearly subordinate to that induced by pressure of melting.  

In making comparisons between the modelled melt compositions and the natural granite 

compositions, it needs to be considered that the granites are likely to represent mixtures of 

minerals and melts e.g. (Clemens and Stevens, 2012). Most hypotheses seeking to explain 

the petrogenesis of S-type granites can account for this. Restite entrainment and peritectic 

assemblage entrainment propose that a mineral load is carried out of the source during 

magma mobilization out of the source. Wall rock assimilation by melting can introduce 

peritectic minerals to the magma at the level of assimilation (Lackey et al., 2011). Mixing 

between hotter mafic magmas with a granitic melt will also produce an assemblage of 

ferromagnesian mineral in the resultant mixture. The results of this study, which covered the 

full range of temperature of anatexis that may be commonly attained in the mid to deep 

crust, also confirm the fact that common granites are mixtures of melt and a mineral 

assemblage. Despite the large number of permutations considered and the relatively high 

maximum temperatures used in the modelling, no melts are produced that have MgO and 

FeO contents as high as common granites (Fig. 4). Within the natural rock dataset FeO + 

MgO are inversely correlated with SiO2 content (R2 = 0.73) and FeO and MgO are positively 

correlated with TiO2 (R
2 = 0.74). The modelled behaviour of TiO2 could not be explored in 

this study because the activity-composition model for melts does not include TiO2. These 

correlations are considerably better if the population considered is a single co-magmatic 
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suite e.g. (Stevens et al., 2007). Stevens et al. (2007) have demonstrated that as K2O and 

TiO2 are poorly correlated, and K2O decreases as a function of TiO2 and FeO + MgO, it is 

extremely unlikely that these major element geochemical characteristics in granites are a 

function of mixing with mafic magma or biotite accumulation. Stevens et al. (2007) and 

Clemens and Stevens (2012) argue that such well correlated positive associations between 

compatible elements are a consequence of entrainment of the peritectic assemblage produced 

principally by incongruent melting reactions involving biotite in the case of S-type granites, 

and incongruent melting reactions involving biotite and hornblende in the case of I-type 

granites. In the case of S-type granites the peritectic assemblage would consist principally of 

garnet and ilmenite or garnet, ilmenite and plagioclase e.g. (Madlakana and Stevens, 2018), 

whereas in I-type granites it would consist of clinopyroxene, orthopyroxene and plagioclase. 

Consequently, on Harker plots such as FeO vs SiO2, modelled melt compositions do not 

coincide with the natural granite population. In contrast, where the element of interest is an 

incompatible element that is readily accommodated in the melt, e.g. Na2O or K2O, the 

agreement between the range of concentrations defined by the natural rocks and that defined 

by the modelled melts may be expected to be good, where the modelled scenario is 

appropriate to the genesis of the granites. 

All of the permutations of physical parameters and rock chemistry considered in the case of 

the water-restricted modelling produce melt compositions that could conceivably be 

involved in S-type granite genesis. The melt compositions change slightly as a function of P-

T path and slightly as a function of temperature (Fig. 5), but generally occupy space on 

major element bivariate plots that is within the range of compositions defined by the 

granites. Entrainment of an appropriate peritectic assemblage produces compositional trends 

that are very similar to those portrayed by the natural rocks e.g. (García-Arias and Stevens, 

2017a). Very importantly, because mica decomposition regulates the reactions, the melt 

compositions map out very similar ranges in Na2O and K2O as defined by the granites. If 

dilution by a peritectic assemblage is also taken into account (García-Arias and Stevens, 

2017a) the modelled magma compositions will agree very well with the natural granites with 

SiO2 < 76 wt.%. In the water in excess examples a substantial number of the melt 

compositions defined have no natural rock equivalents. These are compositions with SiO2 in 

the range of granites and granodiorites, but with Na2O < 1 wt.% and/or with K2O > 6 wt.%. 

The low Na2O compositions are produced by melting once plagioclase in the residuum has 

become strongly enriched in anorthite, whilst the high K2O melts result from this melting, as 

well as further melting of biotite in the absence of quartz. The melt volumes produced are 
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substantial (> 20 vol.%) thus if such melting occurred in nature the results would be 

discernible in the rock record. Consequently, it can be concluded that such melting does not 

occur in nature. In Figure 5, water in excess melting of metapelites at relatively low 

temperature can be observed in terms of Na2O and K2O content in the melt as melting 

proceeds with increasing temperature. The melts produced close to the solidus have Na2O > 

6 wt.% and K2O < 2 wt.%, with SiO2 = 75 wt.%. Such compositions do occur in the natural 

rock population but they are rare. As melting progresses Na2O in successive melt batches 

decreases and K2O increases, as the stoichiometry of the melting reaction changes to 

consume less plagioclase and more muscovite. The melt compositions thus approach the 

compositions of common granites better. For melting along the gentle heating P-T path at 7 

kbar, once approximately 40 vol.% melt has been extracted, the composition of the melt 

batches is sufficiently low in Na2O (< 1.5 wt.%) and high in K2O (> 7wt.%) that it can be 

concluded that no natural correlatives exist. This melt volume correlates with approximately 

3.7 wt.% water consumed by the melting process and a temperature of only 740 °C. Further 

melting produces only increasingly more unusual extremely high K2O melt compositions 

(Fig. 5). 

The porosity of amphibolite facies metamorphic rocks is such that only a small amount of 

pore fluid may exist in the source prior to anatexis, as has been modelled in this study. The 

inclusion of this small amount of free water has a negligible effect on the melting history of 

the rock. Thus, melting with water in excess requires addition of water by some process. As 

it is not possible to move water through rocks above the water saturated solidus, such 

melting must occur at the interface between the hot rocks undergoing anatexis and the source 

of H2O. This suggests that this process is likely to be most efficient at the solidus. The melt 

compositions produced are well characterised in this study, yet are rare in the natural rock 

record, leading to the conclusion that water fluxed melting of metapelites has not produced a 

significant proportion of the rocks reflected in the natural rock dataset used in this study. 

The melt compositions modelled in this study attain a maximum SiO2 content of 

approximately 76 wt.%; many granites have higher SiO2 contents than this. This is a function 

of the fact that this study has examined melt compositions in the source, at lower pressure 

melts are more SiO2 rich. Alternatively, fractional crystallization in the upper crust could 

provide a mechanism for producing granites with SiO2 between 76 wt.% and 79 wt.% SiO2 

from melts similar to those predicted in this study.  
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CONCLUSIONS 

 

This study explored the compositions of melt batches produced by progressive melting for 

243 permutations of bulk composition, P-T path steepness, fluid state and details of melt 

extraction. Of these 81 cases were for water in excess, with the other 2/3 of cases reflecting 

water restricted or internally buffered conditions. The findings of this study provide valuable 

insights into the role of source controls in creating major element geochemical diversity in 

granites. The presence or absence of a water rich fluid in the source and the P-T path 

followed by the rock exert the strongest controls on melt compositions. Within metapelitic 

sources, compositional factors such as bulk rock Ca# and Mg# exert a minor influence, as 

does the amount of melt retention in the source prior to melt extraction, assuming the 

threshold is not greater than 10 vol.%. The greatest impact of P-T path steepness, for the 

range investigated, is that steeper paths produce slightly lower melt SiO2 contents. This 

occurs for sources that are both quartz-saturated and for melt depleted sources where all 

quartz has been consumed. Thus it is a consequence of pressure on the modelled melt 

composition, not solely a function of aSiO2. 

Given that granite magmas predominantly represent mixtures of melts and crystals, with Fe, 

Mg, Ti, Ca and Al enriched in the crystal assemblage over melt, the most informative 

element concentrations in the modelled melts to compare with granite compositions are 

Na2O and K2O. These incompatible element concentrations in granites are likely to most 

closely approximate the compositions of the melts from which the granites formed. Water in 

excess melting of metapelites produces high melt yields (> 60 vol.%). A substantial volume 

of melt is produced at relatively low temperature (20 vol.% by 710 °C) and these melts have 

compositions that are unlike common granites as their K2O/Na2O ratios are low. Between 

710 and 750 °C, water in excess melting occurs via the incongruent melting of muscovite 

and biotite and produced melt batches with compositions similar to normal granites. At 

higher temperature a number of incongruent melting reactions involving assemblages such 

as biotite, quartz and anorthite; biotite and quartz; biotite and sillimanite, produce melt 

batches with very low Na2O and high K2O that are unlike any common granites. In natural 

rocks, porosity considerations dictate that water in excess melting required addition of water 

to the rocks. Assuming geological circumstances that would allow for this, e.g. the thrusting 

of hot rocks over cold and then heating of both rock units to drive devolatilisation of the 

underlying rocks and melting of the overlying rocks, this modelling suggests that metapelites 

in the overlying unit would produce at least 20% of melts that are peraluminous 
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plagiogranites with K2O as low at 1 wt.%.That such rocks are uncommon in the rock record 

suggests that such water in excess melting does not contribute significantly to the inventory 

of granites. At moderate temperatures, 710 to 750 °C, this process does produce melts and 

peritectic assemblages that could lead to reasonable granite compositions. However, this 

portion of the melting behaviour cannot be accessed without prior melt depletion, so the 

paucity of low K peraluminous plagiogranites suggests that rocks never get there. 

Fluid restricted partial melting of metapelites in the P-T ranges investigated in this study 

produces melt compositions that generally fit well with the petrogenesis of common 

peraluminous granites, if allowance is made for a process such as peritectic assemblage 

entrainment to increase FeO, MgO and A/CNK and produce the characteristic good 

correlation between FeO + MgO and TiO2. The modelled melts have maximum SiO2 = 76 

wt.% and this is lower than the value for many peraluminous leucocratic granites. These 

granites were either shaped by melt batches generated at substantially lower pressures than 7 

kbar, or they have been shaped by crystal fractionation at low pressures. Some relatively low 

K2O/Na2O melt compositions also define the water restricted melt compositions produced at 

low temperature. This is a consequence of the fact that both the fully-hydrated, fluid-absent 

and pore water bearing rock compositions used do melt at the water-saturated solidus. 

However, the resultant melts that fall outside the range of normal granites make up a small 

fraction of the volume of melt produced from these rocks (< 3 vol.%) 

DOWNLOAD 

Rcrust is free to download and use under the GNU copyleft. The latest version of the 

software can be found on either of the two institutional addresses at: http://www.univ-st-

etienne.fr/rcrust or http://www.sun.ac.za/english/faculty/science/earthsciences/rcrust. 

Alternatively, the software can be downloaded by contacting the corresponding author. 
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SUPPLEMENTARY MATERIAL* 

The full dataset of modelled melt compositions produced in this study and the array of s-type 

granite data used for comparison are contained in Addendum D. Files for reproducing 

figures 3-5 are contained in the zipped folder “Mayne_et_al_2018_3_modelling_files”. To 

open these download Rcrust from 

https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust and replace the “Projects” 

and “data” folders with those in the zipped folder. Open each project by double clicking the 

appropriate x.RData file. 

*For the thesis examiners’ convenience these files are already copied into the electronic copy of Rcrust 

provided in Addendum A, to open them simply install Rcrust following the user manual in Addendum B, open 

the “Projects” directory of Rcrust, open the project of choice and double click on the .RData file contained in 

the project file 
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CHAPTER 5 

CONCLUSION AND FUTURE PERSPECTIVES 

Preliminary results from the creation and implementation of the Rcrust software tool appears 

to confirm that open system processes can be effectively investigated through path 

dependent modelling in P–T–X space. By altering the bulk composition of a number of 

subsystems in a defined modelling space, where compositional changes are inherited along 

dependent paths, processes of mass transfer have been simulated. This new methodology and 

its software implementation in Rcrust addresses the need for thermodynamically constrained 

modelling of complex open system behaviour (Table 1). 

 

Table 1. Summary of the capabilities of Rcrust for comparison with information presented 

on other phase equilibrium modelling softwares presented in Chapter 1 Table 1 detailing the 

suitability of each respective software program for performing phase equilibrium modelling 

in open systems 

Software Calculation 

method 

Graphical 

refinements 

User Input Phase manipulations 

Rcrust [1] Inherited from 

Perple_X 

None Graphical 

user 

interface, 

text file 

input or R 

console 

input 

Along multiple paths, 

multiple concurrent phase 

manipulations as conditional 

phase additions and 

extractions that can be set 

proportions or defined 

relative to system properties 

[1] https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust 

 

The methodology presented can deal with phase fractionations or additions concurrently. 

These phase manipulations can be triggered by conditions on the reactive system and can 

effect multiple phases by proportional changes that are set prior to calculation or can be 

defined relative to system properties (e.g. melt retention). The procedure for defining 

dependent paths allows multiple complex P–T–X paths to be investigated simultaneously 

with calculations running sequentially through points within a path. Through these 

functionalities this new tool enables lines of investigation previously inaccessible to phase 

equilibrium modelling. The creation of these functions has focused on dealing with the most 

common chemical fluxes in metamorphic systems. These are the loss of subsolidus fluids 

https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust
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during prograde evolution; and at higher temperatures the loss of melts or magmas. Both of 

these processes have been accounted for in the modelling and the current software can 

handle their contributions to the effective bulk compostion of the system concurrently in 

modelling space. 

The presented papers, that constitute this thesis, document methodologies for using Rcrust to 

perform process-oriented investigations that involve mass transfer. These methodologies 

address the dynamic setting of subsolidus water content in a system undergoing prograde 

metamorphism; the triggering of melt loss events in a conditionally open system with melt 

retention on grain boundaries; the entrainment of phases to melt during melt loss (including 

the possibility of phase selective entrainment); the fractional crystallisation of magmas 

whereby the proportion of solid crystals in a cooling magma can trigger crystal loss from 

that magma; and the limiting of the availability of slow diffusing phases from contributing to 

the bulk composition of the chemically reactive subsystem. 

The methodology for dynamic setting of subsolidus water loss is investigated further for its 

effect on the onset of anatexis and the control of the P–T path on this behaviour. It is found 

that the trajectory of the P–T path of a rock can influence the conditions under which melting 

begins and can effect the melt fertility of a metasedimentary protolith. This is a result of the 

progression of the P–T path controlling which subsolidus reactions are experienced by the 

rock on its prograde path and thus determining the total water content of the rock once 

anatexis begins. The combination of fluid state and P–T path appear to be the dominant 

source control on the compositions of melts produced by sequential melt loss from a 

metasedimentary protolith. These controls appear stronger than both the effects of 

compositional heterogeneity of the source as well as of volumetric controls on melt loss 

events. 

Potential limitations 

The main limitation for all metamorphic studies following a phase equilibrium approach is 

the delineation of equilibrium domains on the mineral and rock scale: the successive 

(re)equilibrations described by López-Carmona et al. (2014) as also evidence by the 

common observation of chemically zoned minerals. To determine what portions of the rock 

are in mutual equilibrium and what each of these domains could represent in the rock’s 

complex P–T–X history presents the greatest challenge to its petrological interpretation 

(Lanari and Engi, 2017; Yakymchuk et al., 2017; Yakymchuk, 2017; Spear et al., 2016). 

Rcrust offers potential solutions for modelling this behaviour which are difficult to 
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implement with other software programs. By considering each domain in the rock as a 

subsystem in Rcrust we may be able to unravel some of the complex relations inherent in 

these systems and find constraints for the mechanisms by which they interact. Further 

possible limitations to all phase equilibiium modelling lie in the restraints imposed by the 

compositional range of the available thermodynamic data and the activity–composition 

models developed from this data. In Rcrust since chemical fluxes can be large, for example 

when considering continuous melt loss from rocks attaining high temperatures (~1000 °C) 

the bulk compositional shifts experienced by the residium could take the composition of the 

effective bulk composition out of the range that the thermodynamic models were designed to 

handle. 

New path dependent diagrams and a suggested protocol for reporting 

Rcrust presents a functionally unique form of phase equilibrium modelling as it’s 

methodology of setting path dependence allows the pressure temperature and bulk 

composition of the system to all vary simultaneously in modelling space. If composition is 

set to be constant traditional isochemical phase diagrams (metamorphic assemblage 

diagrams) of P–T space can be produced (e.g. Fig. 1a). However, if phase manipulations are 

applied to the system, then bulk compositional changes can occur within the defined P–T 

space and the resultant diagrams can no longer be read in the same way as isochemical phase 

diagrams (e.g. Fig. 1b). Instead the reader must be made aware of the direction of the 

constituent paths that produced the diagram and must take care to only interpret petrological 

changes invoked in these systems along each respective path rather than across paths. It is 

proposed that these compositionally variable diagrams be termed “phase assemblage maps” 

in order to avoid the confusion of them being interpreted as isochemical phase diagrams. 

Further it is proposed that by convention these diagrams must be accompanied by indicators 

of their paths’ directions and positions in P–T space (e.g. the symbol above Fig.1b and the 

overprint arrows in Chapter 3: Figs 1, 3 & 4). 
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Fig. 1. (a) Isochemical phase diagram calculated using Rcrust in the system Na2O-CaO-K2O-

FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2 for an average amphibolite facies metapelite. 

Individual isobaric heating and isothermal decompression paths in this P–T space are 

labelled as IBH and ITD respectively. (b) Phase assemblage diagram calculated in Rcrust by 

compiling multiple isobaric heating paths that all start with the same bulk composition 

described above. Melt extraction is set to occur along each path whenever a 7 vol.% 

threshold is exceeded and remove all melt present except 1 vol.% in order to approximate 

melt retention on grain boundaries. The bulk composition of each point within a path is 

passed to the next point in sequence thereby creating a path dependent bulk composition 

which inherits compositional changes invoked by previous melt loss events Both diagrams 

are taken from Mayne et al. (2016). 

Documented uses of Rcrust 

Rcrust has been used by the following authors for phase equilibrium investigations. The 

projects I was personally involved in are identified with a *. In these projects I programmed 

functional improvements to Rcrust in response to the respective author’s requests. All other 

projects are solely the work of the respective authors and are listed here only to document 

the scope of the current use of the Rcrust software.  

Entrainment of peritectic phases* 

Nicoli et al (2017) used Rcrust to simulate melt loss with entrainment of peritectic garnet. 

They used this model to explain the formation of K2O-poor leucosomes in the Southern 

Marginal Zone of the Limpopo Belt, South Africa as the result of multi-step disequilibrium 

partial melting. Rcrust allowed melt extractions to be triggered by a melt threshold and 

extract garnet in combination with melt at each of these events. 
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Fractional crystallisation* 

Soorajlal (2017) proposed a low temperature filter pressing model for Buddusò I-type 

granites and mafic enclaves in Sardinia, Italy in which melt is displaced from a crystal mush 

in order to produce a cumulate portion with granodioritic composition and an extract portion 

with leucogranitic composition. Soorajlal modelled the sequential extraction of melt from the 

reactive subsystem in equilibrium at a number of fixed P–T conditions in order to simulate a 

process of melt loss through filter pressing. Rcrust allowed melt loss events to be triggered 

by the cumulative proportion of crystals in the system. Work by Farina (2018) further 

develops the phase equilibrium constraints on this process of fractional crystallisation. 

Crystallisation sequences 

Holness et al (2018) used Rcrust in their investigation of the conditions of alkali-feldspar 

crystallisation. They found an apparent disconnect between phase equilibrium modelling 

predicting alkali-feldspars to begin crystallising late at relatively low temperatures in 

contrast to the field evidence in many granites containing large subhedral-to-euhedral K-

feldspar phenocrysts. 

Compositional constraints in planetary sciences 

Mohit Melwani of the Jet Propulsion Laboratory of the Californian Institute of Technology 

used Rcrust to investigate melt formation and migration on early Mars in order to constrain 

the mass of volatile species (including SO2) degassed from volcanoes over time. Mohit has 

also used Rcrust to investigate melt production and migration from the melt source regions 

within Europa’s silicate interior (Melwani Daswani and Vance, 2018a, 2018b) 

Estimating the duration of partial melting 

Farina et al (2017) used Rcrust to correlate multi-pulsed magmatism in the Monte Capanne 

pluton with multimodal distribution of zircon ages in order to estimate the duration of partial 

melting and the timescale of melt extraction from the source  

Identifying fluid state during crustal melting 

Schwindinger (2018) and Schwindinger et al (2018) used Rcrust to simulate a conditionally 

open system effected by melt loss events. They found that the main indicator for water 

present melting of metasedimentary sources undergoing anatexis is the melt fraction 

produced, with the composition of melt and peritectic phases appearing to be insensitive to 

the fluid state of the system. 

The role of thermal gradients in crustal melting  

Juan David Montenegro of the National University of Colombia used Rcrust to model melt 

loss along different thermal gradients in order to assess the production and evolution of 
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tonalite–trondhjemite–granodiorite magmas in the Archean and its implications for the 

generation of continental crust. 

 

Future work 

The above projects demonstrate the broad scope of Rcrust’s use and highlight its 

contribution to the petrological community. Up till now the development of Rcrust has 

largely focused on addressing compositional changes invoked by open system behaviour. 

Future work will build on expanding functionalities to the user and further developing these 

methodologies. In addition, there are a number of new directions that Rcrust can further 

develop: 

Kinetic restraints on equilibrium 

The limiting of the availability of a phase from contributing to the effective bulk 

composition of the reactive system is only partly addressed in Chapter 2. Future work could 

build models to consider the effect of the kinetic speed of reactions in limiting the 

equilibration volume of a system (Lanari and Engi, 2017). Here the diffusion rate of 

chemical components within slow diffusing phases such as garnet (Caddick et al., 2010) or 

plagioclase feldspar (Tajčmanová et al., 2007) could be integrated into modelling 

procedures. This could control the rate at which chemical components from a chemically 

zoned phase are available to the reactive bulk. 

Consideration of trace elements in thermodynamic modelling 

A major hesitation for igneous petrologists to adopt phase equilibrium modelling has been in 

the inability of current software to model trace element behaviour especially in magmatic 

systems. Including trace element data in thermodynamic databases and in the activity–

composition models would require immense time, effort and resources. For processes 

occurring above the solidus, however, an easier alternative would be to use partition 

coefficients to approximate the fractionation of trace elements as the magmatic system 

evolves. 

Saturation model for zircon 

Another major limitation to the modelling of trace elements is the lack of appropriate 

thermodynamic models for the accessory phases which are often the largest sinks for trace 

elements. Some of the accessory phases for example zircon could be approximated using 

saturation models which assume that all of a given trace element e.g. zirconium above that 

which the current stable phases of the system can accommodate must exist in a given 
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accessory phase here zircon. This allows a thermodynamically unconstrained abundance of 

zircon to be approximated and manipulated by the modelling software as if it were 

determined phase. 

 

Building on each of these procedures in an open source software platform will allow 

cumulative functionalities to be integrated into future modelling packages. In this way I aim 

to create an internally consistent, thermodynamically and kinetically constrained model for 

crustal anatexis. 
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ADDENDA 

ADDENDUM A: Electronic copy of Rcrust software 

Included within the thesis files for evaluation is an electronic copy of the Rcrust program 

developed as part of the thesis by M.J. Mayne. 
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ADDENDUM B: User manual for Rcrust 

Included within the thesis files for evaluation is the user manual for the Rcrust program. 
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GETTING STARTED 

Installation 

Rcrust was developed using version 3.3.0 (2016-05-03) of R. Copyright © 2016 the R Foundation for 

Statistical Computing. To install Rcrust perform the following steps: 

1. Copy the Rcrust folder to a location of your choice (preferably a root directory for example 
C:\ or D:\). The result should be similar to the picture below with all the Rcrust files 
contained in single directory for example D:\\Rcrust\ 

 
Figure 1 - Rcrust file structure located in the root directory D:\\Rcrust\ 

2. Install a working version of R on your system (at least version 3.3.0). The latest version of R 
used in the development of Rcrust is located in the folder “R installs” for your convenience. 
Warning: Rcrust requires the 64 bit version of R. When installing R please ensure “64-bit 
Files” is ticked. 

 

 

Figure 2 - R installation instruction ensuring at least "64-bit Files" is ticked 

*Alternatively newer versions of R (which may not be compatible with Rcrust) can be 

downloaded from http://www.r-project.org/ or for windows can be found directly at 

http://cran.r-project.org/bin/windows/base/  

1 

2 

http://www.r-project.org/
http://cran.r-project.org/bin/windows/base/
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3. Open the folder called code in the Rcrust folder. 
 

 
 

Figure 3 – Rcrust file (circled in red) within code folder. The Rcrust file location here is D:\\Rcrust\code\Rcrust.RData 

 

4. Copy the Rcrust file found in the code folder (~/Rcrust/code/Rcrust.RData). This can be done 
by right clicking on the file (circled in red above) and selecting “Copy” or by selecting the file 
and pressing “Ctrl”+”c”. 

5. Paste the Rcrust file as a shortcut on the Desktop. This can be done by right clicking on the 
Desktop and selecting “Paste shortcut”. 
 

 
Figure 4 – Paste shortcut option selected for Rcrust file 

 

6. Rename this file to “Rcrust”. Double click on this shortcut to open Rcrust. 

7. Rcrust requires the R package called “shiny”, If this is not installed on your computer when 
you open Rcrust, Rcrust will try to install it (this requires an internet connection). Follow the 
prompts to complete installation of the package (it may ask you if you wish to create a 
personal library – choose yes). Alternatively, shiny can be downloaded here: 
http://shiny.rstudio.com/ . 

Each new project will be automatically saved in the “Projects” folder along with its associated 

inputs and outputs. To load a previously saved project simply double click the “xxx.RData” file in 

the associated project folder or open Rcrust from the desktop shortcut and load the project via 

the Rcrust GUI. 

5 

4 

3 

http://shiny.rstudio.com/


  B:5 

Concept 

 

Rcrust is an R program aimed at modelling with path dependence. The program functions by 

calculating a number of points in P-T-X space where a bulk composition is passed between points. 

This creates path dependence as points within the path rely on the outcomes of previous points for 

their calculation. The bulk composition can be altered at each point by phase manipulations 

consisting of phase additions and/or phase extractions. Phase stabilities for each point are calculated 

by using a compiled form of Perple_X (Connolly & Kerrick, 1987; Connolly, 2005, 2009). 

Rcrust manages calculations by splitting the full thermodynamic system (FS) into 3 subsystems: The 

reactive subsystem (RS) which contains the phases in thermodynamic equilibrium; The addition 

subsystem (AS) where phases are waiting to be added to the reactive subsystem; and the extract 

subsystem (ES) where phases extracted from the reactive subsystem are stored. The reactive 

subsystem is in thermodynamic equilibrium with the P-T-X conditions of each point and is re-

equilibrated after each P-T-X change. The addition and extract subsystems are in thermodynamic 

isolation from other subsystems and from the P-T-X conditions of each point.  

  

Figure 5 - Relationships between systems (left) and flow chart (right) illustrating the Rcrust program structure for a single 

path. The user inputs the calculation’s resolution, starting bulk composition, P-T path and phase manipulation settings. 

Each step in a path consists of two runs and an output. The first run is shown in a solid line, the second run in a dashed 

line and the outputs in a dotted line. Circles show the system or subsystem involved in each step as AS (addition 

subsystem), ES (extract subsystem), FS (full system) or RS (reactive subsystem). Arrows show interactions between 

systems. From (Mayne et al., 2016) 

Parameters for calculations are accessible to the user via the Rcrust Graphical User Interface (GUI). 

This GUI writes data to a text file which is then input to the program thus allowing the user to edit 

the file ‘behind’ the GUI as well as save inputs for re-use. The code files are extensively commented, 

and described in this document. The calculations routines are defined in several files, written in a 

modular way that should allow easy addition of features if required. For example, the Phase 

Extraction routine has been modified to suit the needs of magma extraction where additional 

capabilities allow melt extraction to leave a set melt retention amount behind. 
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Figure 6 - Flow chart of the magma extraction routine. Grey hexagon shaped boxes are decision points. Coding variables 

are in italics. The for phase loop (dotted line) is repeated until each phase tagged for extraction has been considered. If 

Retention mode is active melt is considered last so that other phases extracted are accounted for in its calculation. From 

(Mayne et al., 2016) 

Rcrust results should easily be loaded into GCDkit and examined from there. 

It is important to remember a few things: 

- Rcrust is in development. It is not mature software. It is very unstable at the best of times, 
and very unforgiving in terms of improperly formatted inputs, etc. When Rcrust fails, it will 
try to generate some human-readable error messages: read them! It may well give you hints 
at things you can correct in your inputs. 

- Most of the errors you will see are related to incorrect input (files with incorrect number of 
lines etc.); or to exotic phases being produced by meemum. 

Rcrust calls a set of binary files containing the thermodynamic equations thus relying on published 

databases (Holland and Powell typically). The output will never be better than the underlying 

thermodynamic model. Since we focus on melting, we are tied to the capacities (and limitations) of 

the melt models. For example, melt(HP) does not include Titanium therefore its use in a system 

containing Ti can over/under estimate melt abundance. 
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Examples 

Below are 3 example simulations to get you started using Rcrust. All you need to do to complete the 

examples is to perform the actions written in bold numbered text. Explanations of what these actions 

achieve are given between steps. 

Example1 – Simple 

Follow the bold numbered steps 

To begin the first example open Rcrust via the desktop shortcut. 

1. Double click the Rcrust desktop shortcut 
This will launch the R console and an empty Rcrust Graphical User Interface (GUI) in your default web 

browser. The “Working File” (circled in red) shows you which file is currently being worked on and 

the “Projects Directory” (circled in green) shows you where the projects folder is located. The Rcrust 

toolbar (in grey) contains buttons for file management. 

 

 
Figure 7 -Rcrust GUI and R Console (blue). Highlighted are the positions of the Projects Directory (green), Working File 

(red) and Rcrust toolbar (black). 

2. Type “Example1” into the text box on the right of Working File and then click the Load 
button from the Rcrust toolbar 

The data previously saved in the “Example1” file is now loaded into R and previously saved input 

parameters are loaded into the Rcrust GUI. To ensure that we do not overwrite any data lets 

rename the Working File. 

3. Rename Example1 by typing “Example_simple” into the Working File textbox then click the 
Save button from the Rcrust toolbar 

This will save the current Rcrust GUI inputs into a new file named “Example_simple”. The Rcrust GUI 

should now look similar to Figure 8. 

Projects Directory 

Rcrust Toolbar 

Working File 

R Console 
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Figure 8 - Rcrust GUI with Example1 (Example_simple) parameters loaded. The GUI consists of a number of tabs. The 

Input Parameters tab sets the size, P-T conditions and bulk composition (X) of the simulation. 

This example calculates the phases encountered at points in P-T-X space. Input parameters are 

grouped into collapsible panels: 

 Size Panel 

The Size panel sets the number of points in the simulation (here 4 points in the X direction multiplied 

by 3 in the Y direction). Points in the simulation space are identified by tuples written as {x_i ; y_i} 

where i denotes the current point. 

 

Figure 9 – Simulation space with point coordinates defined by tuples {x_i ; y_i} 

 Pressure and Temperature Panel 

Parameters in the simulation space are filled by a number of definitions. Each unique definition is 

applied over a range between the tuples From { x_a ; y_a } and To { x_b ; y_b } where a and b denote 

the start and end points of a rectangular range. Each definition sets its attributes as constants or as 

Y 

X 

{x_i ; y_i} = {4 ; 3} 

Size 

Pressure and 

Temperature 

Bulk 

Composition 
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functions of the point’s position. X and Y positions of points are accessed by the variables x_i and y_i 

respectively. In the Pressure and Temperature Panel we set the Pressure in kilobars and 

Temperature in degrees Celsius for each point. In this example Pressure decreases along the y-axis by 

1 kbar per point (7-y_i) and Temperature increases along the x-axis by 20 °C per point (670+x_i*20). 

 Bulk Composition Panel 

The bulk composition of the system is made up of a number of major elements expressed as wt.% 

elemental oxides. For this simple example we define the bulk composition to be constant across the 

full P-T space, and we give it the value of the average amphibolite-facies pelite composition 

considered in (Mayne et al., 2016). 

 Na2O MgO Al2O3 SiO2 K2O CaO TiO2 FeO O2 H2O 

wt.% 1.82 3.28 20.45 56.97 4.09 1.56 1.05 8.5 0.62 1.96 

Table 1 – Average amphibolite facies pelite composition considered in (Mayne et al., 2016). 

To get started let’s run a reconnaissance simulation: 

4. Click the Run button from the Rcrust toolbar 

This will save inputs in the Rcrust GUI and launch the calculation procedure into the R console. 

Navigate to the R console now. The R console should now have a few lines of text in it (like the figure 

below): If your simulation successfully initialized like the one below then we are ready to start the 

calculation. If your console failed to initialize the program try reloading the original “Example1” file 

by closing Rcrust then starting from step 1 again, if problems persist try reinstalling Rcrust or report 

the problem to the developers (mjmayne@outlook.com).  

 

Figure 10 - The Rcrust calculation is launched into the R Console which tracks the calculation progress and is currently 

waiting for a response to continue or to abort. 
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5. Click anywhere in the R console to activate it then press [enter] to continue 

The calculation will run for 12 points :4 in the X direction by 3 in the Y direction. The results will 

automatically be saved to file and you will be prompted to select outputs. 

6. Once the calculation is complete, navigate back to the Rcrust GUI and Select the Outputs 
tab 

Here we see a compilation data file for the points in our simulation. To compare points, click the 

“Select Output” drop down and choose “Grid”. 

7. Choose “Grid” under “Select Output” 

Grid allows easy comparisons between points for example choose: 

 Select Output = Grid 
o Variable = wt% and Melt_rs 

 

8. Choose Variable=“wt%” and ”Melt_rs” 

The output should now match Figure 11. This shows us the amount of melt in the Reactive 

Subsystem (RS) over our point selection in P-T-X space. Remember we set temperature to increase 

along the x-axis and pressure to decrease along the y-axis. With that in mind, we see that the solidus 

(boundary between liquid and solid) at lower pressures is crossed by lower temperatures (this is a 

good illustration of the pressure dependence of melting). For further outputs you can deal directly 

with the data in the R console (hint: you can plot data directly into GCDkit). To access the data in R 

console, click the “Console” button on the Rcrust toolbar to launch a browser access. To return to the 

Rgui at any point type “c” then press [enter].  

 

  

 
Figure 11 – Grid output Data for Example_simple 
showing weight percentage of melt in the reactive 
subsystem for the P-T-X points selected

 
To view a graphical output of this data toggle the “View” selection to “Plot”. This will plot a filled 

contour graph of the selected data which can be saved directly as a .ps file through the “Save To File” 

button at the bottom of the selection panel. 

9. Toggle the “View” selection from “Data” to “Plot” and choose “Bottom Axis” as 
“Temperature”, “Left Axis” as “Pressure” 

 

  

 
 
Figure 12 – Grid output Plot for Example_simple 
showing weight percentage of melt in the reactive 
subsystem for the P-T-X points selected as a filled 
contour plot
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Example2 – Phase extraction 

Phase extractions can remove phases from the reactive subsystem. This is used to simulate scenarios 
such as melt loss or fractional crystallization. 

 

 

 
Figure 13 – Example of melt extraction along a P-T-X 
path from (Mayne et al., 2016): Weight percentage of 
phases verses temperature in degrees Celsius for a 
fixed pressure of 12 kbar. Starting composition taken as 
an average amphibolite facies pelite (Table 1). Melt is 
extracted whenever a 7 vol.% threshold is met. 

 
Let’s perform melt extraction along a path in the P-T-X space explored by Example1. 

1. Load Example2 by opening Rcrust, typing ‘Example2’ in working file and clicking “Load” 
To ensure that we do not overwrite any data lets rename the Working File. 

2. Rename the file by typing “Example_extract” into Working File then click the Save button 
from the Rcrust toolbar 

This will save the current Rcrust GUI inputs into a new file named “Example_extract”. The Rcrust GUI 
should now look like the images below: 

 

 
Figure 14 - Rcrust GUI inputs for Example_extract 
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This example calculates an open system dependent path in P-T-X space. The bulk composition of the 
Reactive Subsystem is altered by phase manipulations encountered along the path. Phase 
Manipulations are grouped into collapsible panels: 

 Phase Addition 

Phases such as intruding fluids, segregated melts or residual crystals can be incorporated into the 

reactive subsystem. These additions are defined by the major elemental oxides chosen in “Bulk 

composition”. 

 Phase Extraction 

Phases in the reactive subsystem can be extracted when set conditions are met. These conditions are 

defined as logical arguments such as “TRUE”/”FALSE” to extract for every point/no points 

respectively. Alternatively a logical argument can be built of the form “phase,operand,value,unit” 

where phase = name of the phase/solution model, operand = (<,<=,==,>=,>,!=), value = a number and 

unit = the phase property to test. In this example we want to trigger extraction whenever a melt 

threshold is reached so our conditional argument is “Melt,>=,7,wt%”. *note that each argument in 

the condition is separated by a comma. 

When the condition is met phase extraction is triggered on the reactive subsystem. For each phase 

listed in Phases for Extraction we need to define the amount of the phase to extract. This can be a 

numeric value (interpreted as grams relative to the starting mass in grams defined in the Bulk 

Composition Panel), or a percentage of the current value. In this example we extract all melt (100%). 

 

Figure 15 - Phase extraction definition for Example_extract 

To save you time we have pre-run this calculation so you can directly view the results by selecting the 

Outputs tab. 

3. Select the Outputs tab in the Rcrust GUI 

A custom output selection is available for viewing phase abundances along a path. 

4. Choose “Phase Abundance Along Path” under “Select Output” 

Here you can select which axis the path traverses (axis), which path you wish to consider (path), 

select the (Start Point) and (End Point) of the path and add a label for the column names. 

5. Set “End Point” as 25 

The output should now match Figure 16. 
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Figure 16 – Phase Abundance Along Path output for Example_extract showing mass of each phase in the full system (FS) 
across the P-T-X points selected. 

This output highlights a few key features of the phase extraction function:  

 Outputs in the Phase Abundance along path plotter are expressed as wt.%  

 The second melt extraction event extracts more than 7 vol.% melt (relative to the full 
system)(red box) even though the melt extraction threshold was set to be 7 vol.% 

Reason -> Evaluations are only performed at each point thus if the resolution (number of points) is 

low then large changes can occur between each point. 

 Subsequent melt extraction events may appear less than the melt extraction threshold 
(green boxes) 

Reason -> The melt extraction threshold is evaluated relative to the Reactive Subsystem (which itself 

is shrinking due to melt extraction events) thus equivalent proportions of melt equate to different 

proportions when compared to the full system (FS). 
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Example3 - Multi-path functionality 

Multiple paths can be compiled in P-T-X space to produce path-dependent P-T mode diagrams. In 

these diagrams a plane in P-T space is filled with points originating from dependent paths. 

 

 
 

Figure 17 – Example of a composite path-dependent P-T 
mode diagram from (Mayne et al., 2016): Colours scale 
the weight percentage of melt in the reactive 
subsystem (RS). Starting composition at 640 °C and 12 
kbar taken as an average amphibolite facies pelite 
(Table 1). Melt is extracted whenever a 7 wt.% 
threshold is met and leaves behind 1 wt.% 
approximating melt retention on grain boundaries. The 
simulation space is filled by a number of isothermal 
decompression paths that each originate off a 12 kbar 
isobaric heating path. 

 
Let’s create a path-dependent P-T mode diagram by decompressing off of the path investigated in 

Example2. 

1. Load Example3 by opening Rcrust, typing ‘Example3’ in working file and clicking “Load” 
To ensure that we do not overwrite any data lets rename the Working File. 

2. Rename the file by typing “Example_multi” into Working File then click the Save button 
from the Rcrust toolbar 

This will save the current Rcrust GUI inputs into a new file named “Example_multi”. The Rcrust GUI 

should now look like Figure 18. 
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Figure 18 - Rcrust GUI inputs for Example_multi 

 

This example creates a composite path-dependent P-T mode diagram. It does this by first calculating 

an open system isobaric heating path at 12 kbar (IBH12) and then calculating a number of isothermal 

decompression paths that each originate from a point on IBH12. Points along IBH12 are each 

dependent on the reactive subsystem of the point one to the left of itself on the x-axis. Points along 

decompression paths are each dependent on the point one above itself on the y-axis. Melt loss is 

defined to occur whenever a 7 vol.% melt threshold is met and melt is extracted until 1 wt.% melt is 

left behind (this is achieved using the “retain(amount,unit)” function). 

 

Figure 19 - Grid output for Example_multi showing volume percent of melt in the reactive subsystem (RS) 
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Figure 20 – Phase assemblage map for Example_multi showing field labels as numbers 
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REFERENCE MANUAL 

Rcrust File Management 

The top line of the Rcrust GUI hosts a toolbar of file management buttons. User inputs are saved in a 

text document (Working File) which is located in the Projects folder of Rcrust (Projects Directory). 

This file is written, read or run in Rcrust by the Save, Load and Run buttons. 

 

 

 

Save 

Saves the Working File’s inputs and calculation results. Each working file is assigned its own project 

folder in the Projects Directory. Parameters currently in the Rcrust GUI are saved to the Inputs folder 

as a text document. Additional parameters can be passed to Rcrust by placing them in the text 

document after the line (#   Additional Parameters). Calculation results are saved as an R workspace 

in the project folder. 

Load 

Loads the Working File’s inputs and calculation results. Reads the working file from the inputs folder 

and loads its options in the Rcrust GUI. Replaces the current workspace with that of the Working 

File’s. 

Run 

Saves the current Rcrust GUI inputs and runs the Rcrust calculation according to these parameters. 

Follow prompts in the R console to calculate the results. Once the results are complete you will be 

prompted to select outputs through the Rcrust GUI. Outputs written to file are saved in the Ouputs 

folder of the project Advanced users can access the results directly in the R console by pressing [esc] 

to activate the console (this is helpful for loading data into GCDkit). To relaunch the Rcrust GUI type 

'runApp()' then press [Enter] 

Clear 

Clears current values in the Rcrust GUI 

Console 

Launches a browser in the R console giving you direct access to the coding environment and all 

calculated data 

  

Projects 

Rcrust Toolbar 

Working File 

Status 
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List of Parameters 

User inputs are listed here in a systematic fashion for clarity. The parameter name (the name that 

appears in the Rcrust GUI) is listed first followed by the variable name (the name of the variable 

accessible in the R console). The data type required for the parameter is listed in the second box. The 

third box contains possible values for the parameter and identifies any default value. Below this is a 

description as to what the parameter controls. 

 

Example Parameter 

{ex_par} 
Integer 0 = closed 

1 = open 

Default = 0 

Example definition for the parameter  

 

Input Parameters 

 
Tuple definitions 

From 
{pt_from_#} 

 Tuple {1;1}<= 
pt_from_#<={x_n;y_n} 

 The beginning of the definition selection 

 

To 
{pt_to_#} 

Tuple pt_from_#<=pt_to_#<={x_n;y_n} 

The end of the definition selection 

 
Size 

Specify here the size of the simulation (resolution) you want to calculate: how many points in the X 

and Y directions. 

 

X 
{x_n} 

Numeric 1< x_n 

The total number of points in the X direction 

 

Y 
{y_n} 

Numeric 1< y_n 

The total number of points in the Y direction 

  

Parameter description Default value 

Parameter name Data type Possible values 

Variable name 
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Pressure and Temperature 

 
Number of PT definitions 
{n_pt_def} 

Numeric 1< n_pt_def 

The number of definitions to use for assigning pressure and temperature values 

 

Pressure (kbar) 
{pressure_#} 

Numeric/Expression 0<P 

The pressure in kilobars of the Reactive Subsystem (RS). *(1 kbar = 0.1 GPa = 986,92 atm). 
This can be a constant or an expression built using the variables x_i, y_i, real numbers and 
Arithmetic Operators. e.g. 12-(y_i-1)*0.3 to decompress along the y-axis by 0.3kbar per step 
starting at 12 kbar. 

 

Temperature (°C) 
{temperature_#} 

Numeric/Expression 0<T 

The temperature in degrees Celsius of the Reactive Subsystem (RS). *(1 °C = 274.15 K = 33.8°F) 
This can be a constant or an expression built using the variables x_i, y_i, real numbers and 
Arithmetic Operators. e.g. 660+(x_i-1)*50 to heat along the x-axis by 50°C per step starting at 
660°C. 

 

PT definition 
{pt_def} 

String Options: input 

Advanced setting toggling the PT definition mode. Used to allow PT definition from file. *pt 
definition from file still to come 

 

{pt_definitions} Listed Definition  

Pressure and temperature definitions of the form  
pt_definitions<-list("{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#"), 
"{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#")) 

 

Additional Settings (main.r) 

{PT_restrictions} Comma-separated-strings  

P-T conditions which should not be calculated. Use if projecting array through array where points 
should be ignored 
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Bulk composition 

 

Number of Component 
Transformations 
{n_comp_trans} 

Numeric 0<= n_comp_trans 

The number of component transformations to apply to the currently available chemical 
components: the possible components for transformation are set by the thermodynamic data file 

 

Replace component 
{old_comp_#} 

String  

The current component to replace 

 

New component 
{new_comp_#} 

String <6 characters, All capitals 

The name of the new component. This name must consist of less than 6 characters and must be 
all in capital letters. 

 

NA2O,MGO,... 
{comp_#} 

Comma-separated numeric  

The value of the new component as a factor of the available components:. This must be a string 
of comma separated numbers of which a total of no-more-than 11 can be non-zero. For 
example, if we wish to use the component O instead of O2 and our starting chemical 
components are NA2O,MGO,AL2O3,SIO2,K2O,CAO,TIO2,MNO,FEO,NIO,ZRO2,CL2,02,H2O,C02 
we would use: 0,0,0,0,0,0,0,0,0,0,0,0,0.5,0,0 If we wish to use FE2O3 we would use: 
0,0,0,0,0,0,0,0,2,0,0,0,0.5,0,0 

 

Major elements 
{major_elements} 

Comma-separated-strings  

The major element components used to define the bulk composition. 

 

Number of bulk definitions 
{n_bulk_def} 

Numeric 1<= n_bulk_def 

The number of definitions to use for assigning bulk compositional values. 
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NA2O,MGO,...,mass Comma-separated-
values/expressions 

e.g. 1.5, 20.2, 40.8, 100 
e.g. rs{x_i-1;y_i} 

The wt.% of each elemental oxide listed in “Major elements” (above) as well as the relative 
starting mass (in grams) of the Reactive Subsystem (RS). 
Expressions can use real numbers, Arithmetic Operators, x_i, y_i, x_n, y_n and any tuples of the 
form xs{#;#} where xs is any of rs,as,es,fs and # uses real numbers, Arithmetic Operators , x_i, 
y_i, x_n and/or y_n 
If xs{#;#} is of length 1 it will be repeated to fill the required terms. 
i.e. To make the full bulk composition of one point dependent on another first initialise the 
starting composition and then set the dependent points as rs{x_i-1; y_i} for dependence on the 
x-axis or rs{x_i ; y_i-1} for dependence on the y-axis 

 

Import definitions from file 
{bulk_def_file} 

Boolean TRUE    = Import from file 
FALSE  = definition via input 

Choose whether bulk definitions are read from input or imported from a text file (.txt) located in 
the Inputs folder. 

 

Bulk file 
{bulk_file} 

Character string e.g. bulk.txt 

The name of the input file containing the bulk composition definitions (the name must end with 
.txt). The bulk file must be a tab delimited text file (.txt) containing the columns “From”, “To”, your 
selection of major elements and “Mass”. For example: 
 

 
 
This text file can be easily exported from an excel file using File\Save As\Text (tab delimited) (*.txt) 

            
 
The input file must provide bulk definitions for all points in the chosen modelling space {x_n;y_n} 
with numbers in the “From” and “To” arguments separated by a semicolon (;). 
The bulk definitions describe the wt.% of each elemental oxide as well as the relative starting mass 
(in grams) of the Reactive Subsystem (RS). Expressions can use real numbers, r operators, x_i, y_i, 
x_n, y_n and any tuples of the form xs{#;#} where xs is any of rs,as,es,fs and # uses real numbers, r 
operators, x_i, y_i, x_n and/or y_n 
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Phase Manipulations 

Phase Addition 

 

Perform Phase Addition? 
{ph_add} 

Boolean TRUE/FALSE 

Add phases/components into the Reactive Subsystem (RS) at specified points? 

 

Number of addition 
definitions 
{n_ph_add_def} 

Numeric  

The number of definitions to use for assigning phase additions. 

 

Condition 
{ph_add_con_#} 

Logical/expression Options: 
TRUE 
FALSE 
ph{Melt,vol%}>=7 

A conditional argument that evaluates to a Boolean answer of TRUE or FALSE. 
Note: if directly providing argument as TRUE or FALSE ensure all capitals. 
 
For example to add phases whenever melt exceeds a 7 vol% threshold you would use the 
following condition: ph{Melt,vol%}>=7 if “Melt” is the alias assigned in the solution model 
file used 

 

Phases for addition 
{ph_add_phs_#} 

Comma-separated-strings  

Phases to be considered for phase addition in each definition. This can be any name as it is 
only the respective chemical components that are added to the system not the phase 
itself, thus the phase name is just a place holder for the user to remember what they are 
adding. 

 

#,#,mass Comma-separated-values  

The wt.% of each elemental oxide listed in “Major elements” (Bulk composition tab) as well 
as the relative mass (in grams) of the phases/components to add. 
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Phase Extraction 

 

Perform Phase Extraction? 
{ph_extr} 

Boolean TRUE/FALSE 

Extract phases from the Reactive Subsystem (RS) when specified criteria are met? 

 

Re-equilibrate reactive 
subsystem after phase 
extraction? 
{reequilibrate_steps} 

Boolean TRUE/FALSE 

Use the bulk composition at the end of extraction to recalculate phase stabilities 

 

Number of extraction 
definitions 
{n_ph_extr_def} 

Numeric  

The number of definitions to use for assigning phase extractions. 

 

Condition 
{ph_extr_con_#} 

Logical/expression Options: 
TRUE 
FALSE 
ph{Melt,vol%}>=7 

A conditional argument that evaluates to a Boolean answer of TRUE or FALSE. 
Note: if directly providing argument as TRUE or FALSE ensure all capitals. 
 
Expressions should be of the form described in “Extraction expressions” below. 
 
For example to extract phases whenever melt exceeds a 7 vol% threshold you would use 
the following condition: ph{Melt,vol%}>=7 if “Melt” is the alias assigned in the solution 
model file used 
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Phases for extraction 
{ph_extr_phs_#} 

Comma-separated-strings  

Phases to be considered for phase extraction in each definition. These can be any alias in 
the solution model file chosen (Phase Models tab) or any pure phase output by Perple_X 
(see Perple_X 
http://www.perplex.ethz.ch/ 
Perple_X Solution Model Glossary) and THERMOCALC’s list of mineral abbreviations). 
*Can use “any_phase” to set generic arguments 

 

[Phase extraction 
proportions] 
{ph_extr_phs_#_phase} 

Numeric / percentage / 
expression 

e.g. 
10% 
5          (mass relative to a starting 
mass of 100 for the full system) 
retain{2;vol%;Melt} 
delta{Melt ; x_i-1 ; y_i ; mass}*0.5 

Define the proportion of phase to extract for each phase listed in “Phases for extraction”. 
Proportions can be given as: 

1. A percentage of what is present (e.g. 10%) *you must include the percentage sign 
for this  

or 
2. A set mass relative to the full system (100). If this amount is larger than what is 

present the full amount of the present phase will be extracted. 
or 

3. As functions of the form described in “Extraction expressions” below. 
 

*Can use “any_phase” to set generic arguments for all phases that are present but don’t 
already have a phase extraction proportion set i.e. pre existing definitions take 
precedence. 

 

Extraction 
expressions 

Numeric / percentage / 
expression 

 

Extraction expressions can be evaluated for conditions or proportions consisting of x_i, y_i, 
real numbers, Arithmetic Operators, Logical Operators, {} and (). where {} separate terms 
for calculation order and () are reserved for solution model names. 
The following functions can be called by placing the function name before {} with function 
terms inside the brackets separated by commas (,) or semi-colons (;). 

 retain{amount ; unit ; phase} 
o Retention extracts all but a set amount of a phase from the reactive 

subsystem where unit can be “mass”,”wt%” or “vol%”. In phase proportion 
boxes can omit “phase” to extract current phase. 

o e.g. retain{2;vol%;Melt} will extract melt from the reactive subsystem until 
2 vol% of melt remains, this is useful for approximating melt retention on 
grain boundaries. This can also be written as retain{2;vol%} 

o *Warning: when utilising multiple phase extraction definitions ensure that 
the retention definition is last in order to retain to the finalised bulk. 

 delta{phase ; x_a ; y_a ; unit} 
o Delta calculates the incremental difference of a phase between the current 

point (point b) and a previous point (point a) such that:  
delta=phase_modeb - phase_modea. 
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*point a may be described as “prev_ext_X” where 
X is the name of any phase or “prev_ext” to use the 
name of the extracting phase as default 

o phase = phase for extraction ; x_a and y_a describe the position of the 
previous calculated point and unit is one of “mass” or “wt%”. 

*phase may be described with “+” separating 
individual phase terms e.g. to calculate deltas for 
the alumina silicates phase would be “ky+and+sill” 

o e.g. delta{Melt ; x_i-1 ; y_i ; mass}*0.5 to extract half of the delta mass for 
Melt when paths progress with increasing x_i values. 

 ph{phase;unit;x_i;y_i} 
o returns the requested variable (unit) for the given phase in the reactive 

subsystem. Where unit can be any column name in calc_phases and x_i 
and y_i are the current point by default, if ph{} is only given two arguments 
the current point will be evaluated by default. 
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Modelling Options 

Modelling Data 

 

Meemum version 
{meemum_path} 

String Example = meemum.exe 

The name of the meemum executable to be used in ~Rcrust/data for phase stability calculations. 

 

Perple_X Option File 
{perplex_option_file} 

Strings Example = perplex_option.dat 

The perplex option file present in ~Rcrust/data which controls extra settings for phase stability 
calculations. 

 

Thermodynamic Data File 
{thermodynamic_data_file} 

String Example = hp11ver.dat 

The thermodynamic data file present in ~Rcrust/data to be used for phase stability calculations. 

 

Solution Models File 
{solution_models_file} 

String Example = solution_model_673.dat 

The solution model file present in ~Rcrust/data from which solution models can be chosen. 

 

Solution models 
{use_sol_models} 

Comma-separated-strings  

The solution models to use in phase stability calculations sourced from the Solution Models File. 
 (see Perple_X 
http://www.perplex.ethz.ch/ 
Perple_X Solution Model Glossary) 

 

Additional optional parameters 
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Saturated components 
{saturated_components} 

String  

Set saturated components 

 

Saturated phase components 
{saturated_phase_components} 

String  

Set saturated phase components 

 

Independent potential/fugacity/activity 
{independent_potential_fugacity_activity} 

String  

Set independent potentials fugacities or activities 

 

Exclude phases 
{exclude_phases} 

String  

Set phases to be excluded from consideration during Gibbs energy minimisation 

 

Extra Settings 

 

When calculation is 
complete: 
{end_of_calc} 

String Options: 
Return to interface 
Logout 
Shutdown 
Default = Return to interface 
 

Action to be performed when a calculation is complete. 
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Outputs 

Phase Aliases 
{ phase_aliases} 

Comma separated strings e.g. TiBio(HP)=Bt,Gt(WPH)=Gt 

A list of aliases to use for renaming phases of the form TiBio(HP)=Bt,Gt(WPH)=Gt,etc. 
To hide a phase from plotting use the alias “hide” e.g. TiBio(HP)=hide. 

 

Select Output = Data File 

View the output data as a single filtered table 

 

Select Output = Grid 

View the output data by selecting a single variable to express on a grid of x_i and y_i coordinates. 

Contour plotting can be achieved by selecting View>Plot. 
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Select Output = Phase Abundance Along Path 

View phase abundance data by weight along a path in the x or y direction. 

Phase abundance graphs can be viewed as 100% stacked column graphs by selecting View>Plot 
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Select Output = PAM 

Create a phase assemblage map by merging fields in x-y space with identical assemblages. 
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File Management 

Functions for file management. See Rcrust File management for more details 

Projects Directory 
{projects_directory} 

String  

Absolute location of the projects directory within the Rcrust folder. 

 

Working File 
{working_file} 

String  

Name of the current file under operation. Each file has its own folder within the projects directory 
containing results of simulations (#.RData file), “Inputs” and “Outputs”. 

 

Save 
{on_save} 

Function call  

Saves the current GUI inputs and workspace to the working_file. 

 

Load 
{on_load} 

Function call  

Loads the previously saved working_file into the GUI inputs and workspace. 

 

Run 
{manual_load} 

Function call  

Saves the current GUI inputs and workspace to the working_file. Then launches the Rcrust 
calculation 

 

Clear 
{on_clear} 

Function call  

Clears the current GUI inputs and workspace. 

 

Console 
{stopApp} 

Function call  

Closes the current GUI to allow interaction with the R console. To relaunch the Rcrust GUI type 
'runApp()' then press [Enter]. 

 

Perple_x options 

Options parsed to wrapper calculation set in init_meem.r 
 

Number of chemical 

components 

{number_components} 

Integer Default = 15 

The number of chemical components to build the major elements from. 
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Unit for bulk 

composition 

definition 

Integer 0 = molar % 

1 = weight % 

Default = 1 

The unit proportion to use for bulk composition definition. 

 

Advanced user options 

Static variable options accessible through main.r 
 
Calculation mode 

{calc_mode} 
Character vector normal 

Default = normal 

Advanced setting toggling the calculation mode. 

 

Reaction buffering 

{reaction_buffering} 
Boolean T (TRUE) 

F (FALSE) 

Default = FALSE 

Allows reaction buffering (threshold buffering) whereby phase extractions set on conditions are 
postponed by the number of reaction buffer steps to ensure continued exceedance of the 
threshold. 
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Useful functions in the R Console 

c  Continue steps in a browser (if accessed by clicking “Console” in the Rcrust GUI then 

closes the browser and returns to the Rcrust GUI) 

ls()     List all objects in the current environment 

ls(envir=.GlobalEnv)  List all objects in the global environment 

Q()     Quits the current session 

[Ctrl]+[w]   Toggles buffering of outputs 

Rcrust()   Manually launches the Rcrust GUI 

To access the R console out of a browser click anywhere in the R console window and press [esc]. 

This will close the Rcrust GUI which has current control over the console. To relaunch the Rcrust GUI 

at any time simply type runApp() and press [enter]. 

Rcrust variables 

PT[[bulk]][[step]]$press$temp list 

List of pressure and temperature conditions for each step in each bulk 

 

crust[[bulk]][[step]][phase,detail] list 

The full system (FS). Contains details of the reactive subsystem (RS) at each step along with 
cumulative extract (ES) and addition (AS) subsystems. Phases in crust are reported as cumulative 
weighted averages. 

 

c0[detail] vector 

Bulk composition passed between points 

 

workingfile Character vector 

The current Working File  

 

work_dir Character vector 

The current Working Directory. This is the location of the folder containing the Working File 

 

Running Rcrust 

Relaunch GUI 
{.First()} or {Rcrust()} 

Function call  

Relaunches the Rcrust GUI from the R console 

 

Manually initiate calculation 
{manual_load} 

Function call  

Sends the current working file to be calculated 
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Rcrust Outputs 

Data file 
{data_file()} 

Function call  

Compiles calculation results into a table 

 

Write data file 
{write_data_file} 

Function call  

Writes compilation table to file 

 

Grid data 
{grid_data()} 

Function call  

Compiles an X Y grid of the values of a given variable 

 

Write grid file 
{write_grid_file} 

Function call  

Writes X Y grid to file 

 

R Syntax 

Arithmetic 
Operators 

  

 
 

 

Logical Operators   
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Development 

 

Developers of new features should know a few things on the structure of the code. When developing 

custom functions please stick to these conventions. 

The following files are required; they must all be in the same directory (these are contained within 

the Rcrust folder which should simply be copied to the desired location): 

1) From Perple_X suite (in the folder called “data”): 
a. The various datafiles you wish to use, these include: thermodynamic datafiles and 

solution model files, typically hp04ver.dat and solution_model.dat as well as the 
Perple_X option file, perplex_option.dat. 

b. Meemum.exe 
c. The rest of Perple_X (vertex, build, werami, etc.) are not required. 

 

2) From Rcrust (in the folder called “code”):  
a. ui.r and server.r, these build the Rcrust Graphical User Interface (GUI) 
b. main.r, this houses the main calls to run Rcrust 
c. meemum_connect.r, the functions for calling and interpreting outputs from 

meemum 
d. Various init_xxx files, used to transform user input in data structures that Rcrust can 

understand. 
i. init_bulk.r   sets the bulk composition(s) of the system 

ii. init_pt.r   sets the P–T conditions 
iii. init_ph_add.r   sets the phases to add 
iv. init_ph_extr.r   sets the phases to extract 
v. init_meem.r  writes user inputs into a meemum build file 

vi. init_dependence determines the calculation order of points 
vii. init_wrapper  the phase stability calculator from Perple_X 

e. parse_meem, a temporary Perple_X build file created to pass data into the wrapper 
f. run.Rcrust.r, the Rcrust calculation loop to be called for each point 
Technically, each function works c0 which tracks the bulk compositional changes invoked 

by phase manipulations. main.r loops through each point, calculating and modifying the 

phases according to the chosen definitions and eventually stores the final product in a 

list called crust, whose structure is crust[[y_i]][[x_i]]. So, for instance the SiO2 

content in the melt of point y_i=4 and x_i=2 is 

crust[[4]][[2]][“melt(HP)”,”SIO2”] 

g. Various xxx.dll files which contain compiled libraries needed to perform calculations 
within R 
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Troubleshooting 

A list of known errors that are unavoidable or are still to be fixed. 

Bulk_ss system properties 

Warning: some bulk system properties are reported as molar properties but perplex considers the 

bulk system to be one mol thus all molar properties need to be adjusted accordingly 

Molar phase proportions 

Only weight definitions of bulk and phases is currently possible, read.meemum cannot read molar 

phase proportions. If molar proportions for bulk are entered, then bulk is molar but individual phases 

are weights thus phase extractions crash. 

Buffered Output 

The R console by default returns a buffered output which forces the console to only refresh when 

flush.console() is called. To disable the buffering and view run data live deselect from R toolbar 

Misc/Buffered Output. 

External Sources 

Perple_X 
http://www.perplex.ethz.ch/ 

Perple_X Solution Model Glossary 
http://www.perplex.ethz.ch/PerpleX_solution_model_glossary.html 

THERMOCALC’s list of mineral abbreviations 
http://www.metamorph.geo.uni-mainz.de/thermocalc/documentation/abbreviations/index.html 
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ADDENDUM C: Presentation of the programming code for Rcrust 

Included within the thesis files for evaluation is the programming code of the Rcrust program. 

This code is heavily commented throughout and is divided into a number of separate files for 

convenience. Each file is preceded by a brief description of its overall purpose and a summary 

of the tasks it performs. 

 

File structure 

Purpose       File name             Page 

Initialise P-T conditions    init_pt.r    5 

Initialise bulk compositions    init_bulk.r    7 

Initialise phase additions    init_ph_add.r    10 

Initialise phase extractions    init_ph_extr.r    11 

Initialise dependence structure   init_dependence.r   11 

Initialise meemum     init_meem.r    14 

Rcrust launcher     main.r     16 

Rcrust calculation loop    run.Rcrust.r    21 

Wrapper for phase stability calculations  init_wrapper.r    32 

Meemum connect     meemum_connect.r   34 

Server       server.r    36 

User interface     ui.r     80 

 

Brief description of code 

Rcrust operates by receiving user input through a graphical user interface (GUI built using 

server.r and ui.r) which writes parameters for modelling into a text file (the file is stored in 

the projects directory within the workingfile in the inputs folder). The text file itself can be 

altered and additional parameters accessed. This file is then loaded into the current 

environment and program initialisation begins. A modelling space is set up consisting of a 

number of points which record information including temperature, pressure and bulk 

composition of each point (init_pt.r and init_bulk.r). Phase manipulations are optionaly set 

on points to be analysed during the calculation of phase stabilities for each point 

(init_ph_add.r and init_ph_extr.r) which can alter the chemical composition of points. Input 

parameters are examined for possible dependence relations and these dependence relations 

are solved to determine the calculation order of points (init_dependence.r). A dummy 

“meemum build file” is created to parse modelling settings to “meemum” from Perple_X 
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(init_meem.r). In sequential order Rcrust runs through each point (main.r): a calculation loop 

(run.Rcrust.r) is called which adds chemical contributions to the reactive bulk composition 

(c0) then calls a wrapper function (wrapper.r) that interrogates meemum with the pressure, 

temperature and bulk composition of the reactive bulk (meemum_connect.r). Meemum then 

uses Gibbs free energy minimisation to predict the most stable phase assemblage for the 

system and returns results to Rcrust. Phase extractions are then performed on this 

assemblage and the new altered bulk composition is optionally recalculated for its new phase 

assemblage. This final data is stored at its point coordinates within the modelling space 

(crust) and the next point in the calculation order is calculated. Since points are calculated in 

sequential order determined by dependence relations, the reactive bulk composition of each 

subsystem can be passed between points thus inheriting compositional changes. Once all 

points are calculated focus is returned to the graphical user interface where outputs can be 

filtered, saved and graphed. 

 

Methodology and syntax utilised in programming code 

Tags 

Tags to be used within code 

# fix-tag requires urgent implementation critical to stability of 

program 

# mod-tag   non-urgent addition that would improve program 

Variables 

#variable-def definition of a variable created and the syntax to be used 

within the variable structure 

crust[[y_i]][[x_i]]  two dimensional array holding outputs for each point 

input_pt[[y_i]][[x_i]] two dimensional array holding pressure and temperature 

conditions of each point 

input_bulk[[y_i]][[x_i]] two dimensional array holding bulk composition and relative 

mass for each point 

input_ph_add[[y_i]][[x_i]] two dimensional array holding phase addition definitions for 

each point 

input_ph_extr[[y_i]][[x_i]] two dimensional array holding phase extraction definitions 

for each point 
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dependencies[[y_i]][[x_i]] two dimensional array holding references for each 

dependent point (evaluates functions of the form rs{x_i-

1,y_i}+5-as{x_n-2,y_i*2}) 

 

available components chemical components available for component 

transformations, set in thermodynamic data file 

major_elements/comps  the current chemical components to use 

c0 point specific bulk composition and relative mass (to be 

passed between points) 

use_sol_models  the current solution models to use 

calc_choice  selector for calculation method 

comp_mat   matrix recording the status of calculation of all points 

project_directory  folder storing all projects 

working_file   the current project 

tuples    vector notation for identifying points in x,y space 

x_i  the current increment in the x direction 

x_n  the maximum increment in the x direction 

y_i  the current increment in the y direction 

y_n  the maximum increment in the y direction 

Functions 

#function-def definition of a function and the syntax to be used within the 

function calls 

wrapper(comps,c0,press,temp,calc_choice="read.meemum") 

run.Rcrust(comps,c0,press,temp,ph_extr_pnt,cumul_extract_pnt=NULL,ph_add_pnt,cumul_add_pnt

=NULL) 

run.meemum(meemum.path="",build.file="",meemum.order="",press=press*1000,temp=temp+273.

15,bulk="",components="",pt_comp=pt_comp) 

get_val(y_i,x_i,phase,variable,crust=crust,oxy_num=24,site_ocup="biotite",select=1) 

eval_expr(expr,calc_phases=calc_phases,crust=crust) 

Evaluate expression given calc_phases and crust, “()” are for solution models, “{}” are for 

function terms and bodmas. Evaluate any “{“ and any word before it up until “}” 
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Evaluates the following subfunctions 

ph{phase;unit;x_i;y_i} 

delta{ph;x_#;y_#;unit} 

retain{amount;unit;ph} 

Calculate mass of retention phases to extract: extract till retention amount of 

retention phases is left, where ph can be omitted to take on the current ph 

return{phase;amount} 

 where amount can be % or mass 

Triggers 

exit_calc   leave calculation 

reequilibrate_steps  calculate point again after phase manipulations 

pass    tag points to be left out 

silent_calc   limit the messages to console 

System labels 

rs    reactive subsystem 

is    isolated subsystem 

es    extract subsystem 

es_cumul   cumulative subsystem 

Advanced functionalities not yet worked into GUI 

scale_bulk_x_i    scale a composition incrementally across x-i 
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Initialise P-T conditions (init_pt.r) 

Creates a two dimensional data structure that will record pressure and temperature conditions 

of the form: 

input_pt[[y_i]][[x_i]]$Pressure,$Temperature 

Reads either pressure and temperature definitions defined in the graphical user interface or 

imported from a file of the form: 

 pt_definitions<-list("{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#"), 

"{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#")) 

Populates pressure and temperature conditions for each point or assigns dependence 

Performs error validation ensuring that all points have an assigned pressure and temperature 

conditions 

 
############################################ 

# 

#  Initialize PT conditions 

# 

############################################ 

cat("Initializing PT conditions...\n") 

# fix-tag: error handling 

input_pt<-rep(list(rep(list(c(Pressure=NULL,Temperature=NULL)),x_n)),y_n)  

############################################# 

# 

#  PT definition from configuration file 

# 

############################################ 

if(pt_def=="input"){ 

cat("Calculating PT conditions from inputs...\n") 

pnts<-unlist(strsplit(names(pt_definitions),"_")) 

for(h in 1:length(pt_definitions)){ 

a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";")) 

b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";")) 

for(x_i in a[1]:b[1]){ 

for(y_i in a[2]:b[2]){ 

press<-eval(parse(text=paste0(pt_definitions[[h]][1]))) 

temp<-eval(parse(text=paste0(pt_definitions[[h]][2]))) 

input_pt[[y_i]][[x_i]]<-matrix(c(press,temp),nrow=1,dimnames = 

list("PT",c("Pressure","Temperature"))) 

} 

} 

} 

} 

############################################# 

# 

#  PT definition from input file 

# 

############################################ 

if(pt_def=="file"){ 

# mod-tag: cleanup below 

cat("Reading PT conditions from file...\n") 

PT_file<-paste(work_dir,"/Projects/",workingfile,"/Inputs/PT.txt",sep="") 

PT0<-read.table(PT_file,sep="\t") 

    if(any(is.na(PT0[1,]))){ 

    warning("Error at init_pt.r\nError in PT file, NA found in column names, 

probably a tab left at the end of the first row, will try to rectify and continue") 

# mod-tag: Surely there's a better way to make a matrix numeric? 

      make_numeric_mat<-function(x){ 

  y<-matrix(as.numeric(as.vector(as.matrix(x))),nrow(x),) 

  rownames(y)<-rownames(x) 
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  colnames(y)<-colnames(x) 

  return(y) 

  } 

  err<-length(PT0[1,]) 

  mat<-PT0[-1,-1] 

  colnames(mat)<-as.character(unlist(PT0[1,1:(err-1)])) 

  rownames(mat)<-1:(nrow(PT0)-1) 

  PT0<-make_numeric_mat(mat) 

  } 

  for(i in 1:nrow(PT0)){ 

  PT[[PT0[i,1]]][[PT0[i,2]]]$press<-PT0[i,3] 

  PT[[PT0[i,1]]][[PT0[i,2]]]$temp<-PT0[i,4] 

  } 

} 

############################################# 

# 

#  Error validation 

# 

############################################ 

for(y_i in 1:y_n){ 

  for(x_i in 1:x_n){ 

    if(is.null(input_pt[[y_i]][[x_i]])){cat("Error: No pt defined for x_i =",x_i," 

y_i =",y_i," \n");stop()} 

    } 

} 

cat("Done with PT conditions\n") 

cat("..............................................\n") 
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Initialise bulk compositions (init_bulk.r) 

Creates a two dimensional data structure that will record bulk chemical conditions of the 

form: 

input_bulk[[y_i]][[x_i]]$major_elements,$mass 

where major_elements is a list of chemical components as wt.% oxides 

and mass is a numeric value against which to scale the reactive subsystem 

Reads either bulk compositional definitions defined in the graphical user interface or imported 

from a file of the form: 

 bulk_definitions<-list("{x_a,y_a}_{x_b,y_b}"=c(major_elements_wt.%,"mass"), 

"{x_a,y_a}_{x_b,y_b}"=c(major_elements_wt.%,"mass")) 

where major_elements_wt.% is a comma separated list of real numbers as weight percentage 

of each chemical component or terms of the from rs{x_i;y_i} to assign dependence relations. 

Possible dependents = rs,fs,es,as non-dependents = c0,x_i,y_i,x_n,y_n 

If the only one term is given e.g. rs{x_i;y_i} then this will be copied for all chemical 

components 

Populates bulk composition conditions for each point or assigns dependence 

Performs error validation ensuring that all points have an assigned bulk composition condition 

 

############################################# 

# 

#  Initialize bulk composition data (only major elements for now) 

# 

############################################ 

cat("Initializing bulk composition...\n") 

#fix-tag: error handling 

# Error handling 

if(exists("bulk_def")){ 

if(bulk_def=="input"){ 

cat("Bulk composition defined from inputs...\n") 

}else{ 

if(bulk_def=="file"){ 

cat("Bulk composition defined from file...\n") 

}else{ 

cat("Error ! No valid option specified for major composition...\n") 

stop() 

} 

} 

}else{ 

cat("Error ! bulk_def not specified...\n") 

stop() 

} 

# Create data structure 

cat("P-T-X space under investigation with x =",x_n,"and y =",y_n,"\n") 

input_bulk<-rep(list(rep(list(NULL),x_n)),y_n)  

############################################# 

# 

#  Bulk definition from input 

# 

############################################ 

## Majors 
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if(bulk_def=="input"){ 

cat("Creating bulk compositions from definitions in configuration file\n") 

#fix-tag should set Mass and volume somewhere but can only normalise once 

expressions have been evaluated before parsing to Rcrust() 

pnts<-unlist(strsplit(names(bulk_definitions),"_")) 

for(h in 1:(length(bulk_definitions))){ 

a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";")) 

b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";")) 

for(x_i in a[1]:b[1]){ 

for(y_i in a[2]:b[2]){ 

  if(length(bulk_definitions[[h]])==1){ 

    input_bulk[[y_i]][[x_i]]<-rep(bulk_definitions[[h]],length(major_elements)+1) 

  }else{ 

    input_bulk[[y_i]][[x_i]]<-c(bulk_definitions[[h]]) 

  } 

  

if(!length(c(major_elements,"mass"))==length(input_bulk[[y_i]][[x_i]])){cat(paste0(

"Error number of entries in input_bulk (",length(input_bulk[[y_i]][[x_i]]),") is 

not equal to major elements + 1 (",length(c(major_elements,"mass")),") for x_i = 

",x_i,"; y_i = ",y_i,"\n"));stop()} 

names(input_bulk[[y_i]][[x_i]])<-c(major_elements,"mass") 

#Apply Scaling on x_i - Note if assigning dependence do not leave gaps while 

scaling 

#mod-tag: work this into GUI 

scale_bulk_x_i<-FALSE 

if(scale_bulk_x_i){ 

if(x_i>1){ 

leftmost<-0 

for(i in 2:(x_i-1)){if(is.null(input_bulk[[y_i]][[i]])){leftmost<-i 

break 

}} 

incr<-1 

for(i in leftmost:(x_i-1)){ 

#scale proportionate value to distance 

b_prop<-incr/(length(leftmost:(x_i-1))+1) 

input_bulk[[y_i]][[i]]<-

as.numeric(input_bulk[[y_i]][[x_i]])*b_prop+as.numeric(input_bulk[[y_i]][[leftmost-

1]])*(1-b_prop) 

names(input_bulk[[y_i]][[i]])<-c(major_elements,"mass") 

class(input_bulk[[y_i]][[i]])<-"character" 

incr<-incr+1 

} 

} 

} 

} 

} 

} 

} 

############################################# 

# 

#  Bulk definition from file 

# 

############################################ 

## Majors 

if(bulk_def=="file"){ 

cat("Bulk composition for majors defined from bulk file:",bulk_file,"\n") 

  bulk_file_loc<-paste0(projects_directory,"/",working_file,"/Inputs/",bulk_file) 

  if(file.exists(bulk_file_loc)){ 

  table_in<-as.matrix(read.table(bulk_file_loc,sep="\t")) 

  table_out<-table_in[-1,,drop=FALSE] 

  colnames(table_out)<-table_in[1,] 

  major_elements<-setdiff(table_in[1,],c("from","to","mass")) 

   for(h in 1:nrow(table_out)){ 

    a<-unlist(strsplit(table_out[h,1],split=";")) 

    b<-unlist(strsplit(table_out[h,2],split=";")) 

    for(x_i in a[1]:b[1]){ 

      for(y_i in a[2]:b[2]){ 

        input_bulk[[y_i]][[x_i]]<-table_out[h,c(-1,-2)] 
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        names(input_bulk[[y_i]][[x_i]])<-c(major_elements,"mass") 

      } 

    } 

    } 

  }else{ 

    cat("Error during bulk initialisation\nBulk file: ",bulk_file_loc," not found") 

    stop() 

  } 

} 

############################################# 

# 

#  Error validation 

# 

############################################ 

for(y_i in 1:y_n){ 

  for(x_i in 1:x_n){ 

    if(is.null(input_bulk[[y_i]][[x_i]])){cat("Error: No bulk defined for x_i 

=",x_i," y_i =",y_i," \n");stop()} 

  } 

} 

cat("Done with bulk composition preparation\n") 

cat("..............................................\n") 
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Initialise phase additions (init_ph_add.r) 

Creates a two dimensional data structure that will record phase addition conditions of the 

form: 

input_ph_add[[y_i]][[x_i]] 

Reads either phase addition definitions defined in the graphical user interface or imported 

from a file of the form: 

 ph_add_definitions<-

list("{x_a,y_a}_{x_b,y_b}"=c(major_element_proportions,"mass"), 

"{x_a,y_a}_{x_b,y_b}"=c(major_elements,"mass")) 

where major_element_proportions is a comma separated list of real numbers for each phase 

 
############################################# 

# 

#  Initialize phase addition options 

# 

############################################ 

#handles definitions of the form: ph_add_definitions<-

list("{1,1}_{10,1}"=c(2.95,0.618,15.3,7.11,5.17,0.15,0.183,6.44,63.5,5),"{1,1}_{10,

1}"=c(2.95,0.618,15.3,7.11,5.17,0.15,0.183,6.44,63.5,2)) 

if(ph_add){ 

  cat("Setting phase addition options...\n") 

  # fix-tag: error handling 

  # Create data structure 

  input_ph_add<-rep(list(rep(list(NULL),x_n)),y_n) 

  ############################################# 

  # 

  #  Phase addition from input definitions 

  # 

  ############################################ 

  cat("Setting phase additions from definitions in configuration file\n") 

  pnts<-unlist(strsplit(names(ph_add_definitions),"_")) 

  for(h in 1:length(ph_add_definitions)){ 

    a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";")) 

    b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";")) 

    if(length(ph_add_definitions[[h]])==length(c(major_elements,"mass"))){ 

    names(ph_add_definitions[[h]])<-c(major_elements,"mass")} 

    for(x_i in a[1]:b[1]){ 

      for(y_i in a[2]:b[2]){ 

        if(is.null(input_ph_add[[y_i]][[x_i]])){ 

          input_ph_add[[y_i]][[x_i]]<-list(ph_add_definitions[[h]]) 

        }else{ 

          input_ph_add[[y_i]][[x_i]][[length(input_ph_add[[y_i]][[x_i]])+1]]<-

ph_add_definitions[[h]] 

        } 

      } 

    } 

  } 

}else{ 

  cat("No phase addition.\n") 

} 

cat("Done with phase addition options\n") 

cat("..............................................\n")     
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Initialise phase extractions (init_ph_extr.r) 

Creates a two dimensional data structure that will record phase extraction conditions of the 

form: 

input_ph_extr[[y_i]][[x_i]] 

Reads either phase addition definitions defined in the graphical user interface or imported 

from a file of the form: 

 ph_extr_definitions<-

list("{x_a,y_a}_{x_b,y_b}"=c(condition=”expression”,Ph_#1,Ph_#2,…,Ph_#x), 

"{x_a,y_a}_{x_b,y_b}"=c(condition=”expression”,Ph_#1,Ph_#2,…,Ph_#x)) 

where ph_# denotes a number of different phases and their proportion of phase proportion 

statement by which they should be extracted. 

 

############################################# 

# 

#  Initialize phase extraction options 

# 

############################################ 

#handles definitions of the form: ph_extr_definitions<-

list("{1,1}_{6,1}"=c(condition="melt(HP)>=8wt.%",Pl="20%",ky="3","melt(HP)"="rt(4,w

t.%)"),"{4,1}_{9,1}"=c(condition="melt(HP)>=8wt.%",Pl="20%",ky="3","melt(HP)"="rt(4

,wt.%)")) 

if(ph_extr){ 

cat("Setting phase extraction options...\n") 

  # fix-tag: error handling 

  # Create data structure 

  input_ph_extr<-rep(list(rep(list(NULL),x_n)),y_n) 

  ############################################# 

  # 

  #  Phase extraction from input definitions 

  # 

  ############################################ 

cat("Setting phase extractions from definitions in configuration file\n") 

  pnts<-unlist(strsplit(names(ph_extr_definitions),"_")) 

  for(h in 1:length(ph_extr_definitions)){ 

    a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";")) 

    b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";")) 

    for(x_i in a[1]:b[1]){ 

      for(y_i in a[2]:b[2]){ 

        if(is.null(input_ph_extr[[y_i]][[x_i]])){ 

        input_ph_extr[[y_i]][[x_i]]<-list(ph_extr_definitions[[h]]) 

        }else{ 

        input_ph_extr[[y_i]][[x_i]][[length(input_ph_extr[[y_i]][[x_i]])+1]]<-

ph_extr_definitions[[h]] 

        }         

      } 

    } 

  } 

}else{ 

cat("No phase extraction.\n") 

} 

cat("Done with phase extraction options\n") 

cat("..............................................\n")     
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Initialise dependence structure (init_dependence.r) 

Creates a two dimensional data structure that will record dependence relations of the form: 

dependencies [[y_i]][[x_i]] 

Searches through points and for each chemical component in “major_elements” evaluates the 

expression for dependence 

Merges common dependence and determines tiers for hierarchy of dependence 

Determines calculation order from tiers 

Performs error validation to ensure all dependences have been resolves to a determinable 

element 

 

############################################# 

# 

#  Determine the dependence relations between points 

# 

############################################ 

# Bulk Composition *For now dependence is only on composition 

#possible handled variables  dependents = rs,fs,es,as   non-dependents = 

c0,x_i,y_i,x_n,y_n 

#handles functions of the form"rs{x_i-1,y_i}+5-as{x_n-2,y_i*2}" 

#fixtag error handling 

dependencies<-rep(list(rep(list(),x_n)),y_n)  

#for each point 

for(y_i in 1:y_n){ 

for(x_i in 1:x_n){ 

dependence<-NULL 

# for each major element 

for(maj_i in 1:length(major_elements)){ 

#pull out tuples that major element for that point is dependent on 

  #fix-tag: look at main.r for bulk comp to allow multiple rs calls in one tuple 

n<-

gsub("rs","",gsub("es","",gsub("as","",gsub("fs","",input_bulk[[y_i]][[x_i]][maj_i]

)))) 

left_brac<-gregexpr("\\{", n)[[1]] 

right_brac<-gregexpr("\\}", n)[[1]] 

tuples<-NULL 

for(tup_i in 1:length(left_brac)){ 

tuples<-c(tuples,substr(n, left_brac[tup_i], right_brac[tup_i])) 

} 

if(tuples==""){dependence="base"}else{ 

split_tuples<-strsplit(gsub("\\{","",gsub("\\}","",tuples)),split=";") 

for(split_i in 1:length(split_tuples)){ 

dependence<-

c(dependence,paste(eval(parse(text=split_tuples[[split_i]][1])),eval(parse(text=spl

it_tuples[[split_i]][2])),sep=";")) 

} 

} 

} 

#Keep common dependence 

dependencies[[y_i]][[x_i]]<-union(dependence,dependence) 

} 

} 

######################## 

# Determine tiers 

######################## 

tiers<-rep(list(rep(list(NULL),x_n)),y_n) 

eval_dep<-dependencies 

for(y_i in 1:y_n){ 

  for(x_i in 1:x_n){ 
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tier_counter<-0 

while(is.null(tiers[[y_i]][[x_i]])){ 

if(eval_dep[[y_i]][[x_i]]=="base"){ 

  tiers[[y_i]][[x_i]]<-1+tier_counter 

}else{ 

tier_counter<-tier_counter+1 

#Evaluate dependencies 

new_dep<-NULL 

for(dep_i in 1:length(eval_dep[[y_i]][[x_i]])){ 

  dep_pos<-strsplit(eval_dep[[y_i]][[x_i]][dep_i],split=";")[[1]] 

  new_dep<-

c(new_dep,dependencies[[as.numeric(dep_pos[2])]][[as.numeric(dep_pos[1])]]) 

} 

#keep common dependence 

eval_dep[[y_i]][[x_i]]<-union(new_dep,new_dep) 

} 

} 

} 

} 

######################## 

# Determine calculation order 

######################## 

tiers_union<-union(unlist(tiers),unlist(tiers)) 

calc_order<-rep(list(rep(list(rep(list(),1)),1)),length(tiers_union)) 

group_num<-0 

for(i in tiers_union){ 

  group_num<-group_num+1 

  first_in_group<-TRUE 

for(y_i in 1:y_n){ 

  for(x_i in 1:x_n){ 

if(tiers[[y_i]][[x_i]]==i){ 

if(first_in_group){ 

  calc_num<-0 

} 

calc_num<-calc_num+1 

first_in_group<-FALSE 

calc_order[[group_num]][[calc_num]]<-list(x_i=x_i,y_i=y_i) 

} 

} 

} 

} 

############################################# 

# 

#  Error validation 

# 

############################################ 

for(y_i in 1:y_n){ 

  for(x_i in 1:x_n){ 

    if(is.null(dependencies[[y_i]][[x_i]])){cat("Error: No dependence defined for 

x_i =",x_i," y_i =",y_i," \n");stop()} 

  } 

} 

if(!length(unlist(calc_order))/2==x_n*y_n){cat("Error: Calculation order could not 

be determined\n");stop()} 

cat("Done with dependence determination\n") 

cat("..............................................\n") 
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Initialise meemum (init_meem.r) 

Creates component transformations from parameters parsed through GUI 

Sets components matrix with placeholder composition 

Writes dummy Perple_X “build” file to be read by “meemum” 

 

############################################# 

# 

#  Create a meemum build file 

# 

############################################ 

cat("Creating meemum build file...\n") 

# mod-tag: to be worked into Gui 

number_components<-15 

molar_vs_wt<-1 

#new_name must be less than 6 characters 

#can only build components with total of 11 or less components 

#replace components each time 

transformations<-NULL 

n_comp_trans<-0 

if(exists("comp_transformations")){ 

  if(length(comp_transformations)>=1&!all(comp_transformations=="")){   

n_comp_trans<-length(comp_transformations) 

} 

} 

 

if(n_comp_trans>0){ 

for(i in 1:length(comp_transformations)){ 

  new_comp<-strsplit(names(comp_transformations)[i],split="_")[[1]][2] 

  old_comp<-strsplit(names(comp_transformations)[i],split="_")[[1]][1] 

transformations<-c(transformations,paste(new_comp,paste(rep(" ",6-

nchar(new_comp)),collapse=""),which(available_components==old_comp)," component 

transformation\n",paste(strsplit(comp_transformations[[i]],",")[[1]],collapse="   

"),sep="")) 

} 

} 

################## 

# Create components matrix 

comp_mat<-NULL 

 for(ox in major_elements){ 

 comp_mat<-c(comp_mat,paste(ox,"     1  1.00000  0.00000  

",if(molar_vs_wt==1){"weight amount"}else{"molar amount"},"\n",sep="")) 

 } 

# Write dummy meemum build file 

dummy<-paste( 

data_directory,"/",thermodynamic_data_file,"     thermodynamic data file 

no_print | print generates print output 

no_plot     | no_plot suppresses plot output 

", 

data_directory,"/",solution_models_file,"     solution model file, blank = none 

parse_meem 

", 

data_directory,"/",perplex_option_file,"     computational option file 

    5 calculation type: 0 - composition, 1 - Schreinemakers, 3 - Mixed, 4 - gwash, 

5 - gridded min, 7 - 1d fract, 8 - gwash 9 - 2d fract, 10 - 7 w/file input 

    0 unused place holder, post 06 

    0 unused place holder, post 06 

    0 unused place holder, post 06 

    0 unused place holder, post 06 

    0 unused place holder, post 06 

    0 unused place holder, post 06 

    0 unused place holder, post 06 

    0 unused place holder, post 06 
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    0 unused place holder, post 06 

    ",n_comp_trans," number component transformations\n    ", 

    number_components," number of components in the data base\n", 

    paste(transformations,collapse="\n"),"\n", 

    molar_vs_wt," component amounts, 0 - molar, 1 weight 

    0 unused place holder, post 06 

    0 unused place holder, post 06 

    0 unused place holder, post 05 

    5 ifug EoS for saturated phase 

    2 gridded minimization dimension (1 or 2) 

    0 special dependencies: 0 - P and T independent, 1 - P(T), 2 - T(P) 

 0.00000      0.00000      0.00000      0.00000      0.00000     Geothermal 

gradient polynomial coeffs. 

  

begin thermodynamic component list 

",paste(comp_mat,collapse=""), 

"end thermodynamic component list 

                                 

begin saturated component list 

",paste(unlist(strsplit(saturated_components,split=",")),collapse="\n")," 

end saturated component list 

 

 

begin saturated phase component list 

",paste(unlist(strsplit(saturated_phase_components,split=",")),collapse="\n")," 

end saturated phase component list 

 

 

begin independent potential/fugacity/activity list 

",paste(unlist(strsplit(independent_potential_fugacity_activity,split=",")),collaps

e="\n")," 

end independent potential list 

 

 

begin excluded phase list 

",paste(unlist(strsplit(exclude_phases,split=",")),collapse="\n")," 

end excluded phase list 

 

 

begin solution phase list 

",paste(use_sol_models,collapse="\n"), 

"\nend solution phase list 

 

 0.0000      0.0000     0.00000000  0.0000      0.0000     max p, t, xco2, u1, u2 

 0.0000      0.0000     0.00000000  0.0000      0.0000     min p, t, xco2, u1, u2 

 0.0000      0.0000     0.00000000  0.0000      0.0000     unused place holder post 

06 

 

 2  1  4  5  3   indices of 1st & 2nd independent & sectioning variables 

",sep="") 

write(dummy,file=paste0(data_directory,"/parse_meem.dat")) 

cat("Created meemum build file as 

",paste0(data_directory,"/parse_meem.dat"),"\n",sep="") 

cat("..............................................\n") 
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Rcrust launcher (main.r) 

Initialises packages and functions to be used on runtime 

Applies additional settings accessible to advanced users (including functionalities not yet 

worked into GUI) 

Sets data structures 

Evaluates dependent values to populate all fields of required parameters 

Sets up calculation loop to sequentially call “run.Rcrust” saving outputs in “crust” and re-

evaluate dependences by tier levels 

Saves image of R environment on completion of calculation loop 

 

############################### 

## Rcrust (main.r) 

############################### 

# Function for shortcut 

.First<-function(){ 

first_load<<-FALSE 

  #Load dependencies 

  library(utils) 

  if(!require(shiny)){ 

  install.packages("shiny")} 

  library(shiny,quietly=TRUE) 

    if(!require(raster)){ 

  install.packages("raster")} 

    if(!require(rgeos)){ 

  install.packages("rgeos")} 

      if(!require(grDevices)){ 

  install.packages("grDevices")} 

  #Launch GUI 

  Rcrust<<-function(){ 

    #Load dependencies 

  library(utils) 

  if(!require(shiny)){ 

  install.packages("shiny")} 

  library(shiny) 

    if(!require(raster)){ 

  install.packages("raster")} 

    if(!require(rgeos)){ 

  install.packages("rgeos")} 

      if(!require(grDevices)){ 

  install.packages("grDevices")} 

    #If working directory is x\Projects\y then set to x\code 

  if(length(grep("Rcrust/Projects/",getwd()))==1){ 

  setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code")) 

  } 

    runApp() 

  } 

  #Launch without GUI 

  manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

3),"Projects")){ 

    

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

    source("main.r") 

  } 

  #If working directory is x\Projects\y then set to x\code 

  if(length(grep("Rcrust/Projects/",getwd()))==1){ 

  setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code")) 
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  first_load<<-TRUE 

  } 

  runApp() 

  } 

 #Launch without GUI 

  manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

3),"Projects")){ 

    

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

    source("main.r") 

  } 

############################################# 

# 

# Additional Settings (Advanced users) 

# 

############################################# 

############################################# 

#Errors 

run_errors<<-NULL 

exit_calc<<-FALSE 

pause_on_error<<-FALSE 

# Calculation settings 

request_readline<-FALSE 

stop_errors<-NULL 

#Determine calculation mode   #normal,parallel (still to come) 

calc_mode<-"normal"      

silent_calc<-TRUE 

cumulate_on_rs<-TRUE 

# PT settings 

pt_def<-"input" 

PT_restrictions<-c("Pressure_>_0","Temperature_>_0") 

#PT_restrictions<-

c("Pressure_>_2.5","Pressure_<_20","Temperature_>_600","Temperature_<_1100") 

#Reaction buffering 

reaction_buffering<<-FALSE 

reaction_buffer_steps<<-1 

start_in_reaction<<-FALSE 

merge_duplicates<<-FALSE 

# Sec to clock function 

      sec_to_clock<-function(total_sec){ 

   hr<-floor(total_sec/3600) 

   mn<-floor((total_sec-hr*3600)/60) 

   if(mn<10){mn_0<-"0"}else{mn_0<-NULL} 

   sec<-total_sec-hr*3600-mn*60 

   if(sec<10){sec_0<-"0"}else{sec_0<-NULL} 

   clock<-paste(hr,":",mn_0,mn,":",sec_0,sec,sep="") 

   return(clock) 

   } 

############################################# 

# 

# Set defaults 

# 

############################################# 

############################################# 

if(class(try(reequilibrate_steps,silent=TRUE))=="try-error"){ 

reequilibrate_steps<-TRUE 

} 

if(class(try(calc_choice,silent=TRUE))=="try-error"){ 

calc_choice<-"read.meemum"      #options = lars.wrap,read.meemum 

} 

if(class(try(data_directory,silent=TRUE))=="try-error"){ 

data_directory<-gsub("/code","/data",getwd()) 

}    

############################################# 

# 

# Initialize datastructures 

# 
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############################################# 

cat("\n") 

source("run.Rcrust.r")      # The function doing the job 

chk_valid<-try( 

{source("init_bulk.r")      # Bulk composition 

source("init_wrapper.r")    # Initialise wrapper function 

source("meemum_connect.r")      # Initialise run and read meemum functions 

source("init_meem.r")           # Create meemum build file 

source("init_pt.r")         # PT conditions 

source("init_ph_add.r")     #phase addition 

source("init_ph_extr.r")    #phase extraction 

source("init_dependence.r")         # Determine dependence relations 

} 

) 

#Input validation 

input_valid<-TRUE 

if(class(chk_valid)=="try-error"){ 

  cat("Initiation failed\n") 

  input_valid<-FALSE 

  }   

if(input_valid){ 

if(request_readline){ 

cat("Initiation succesful:\n   Please read the above lines and make sure this is 

what you wanted.\n") 

rd<-readline(prompt="Choose \"n\" to abort or press [enter] to continue\n") 

}else{ 

cat("Initiation succesful:\n   Computation beginning\n") 

rd<-"pass"} 

if(!rd=="n"){ 

  #Normal calc by tiers 

  #get values and pass them to run.Rcrust 

  #Create calculation structures 

  #variable-def: crust[[y_i]][[x_i]] 

  crust<-rep(list(rep(list(NULL),x_n)),y_n) 

  cumul_extract<-rep(list(rep(list(NULL),x_n)),y_n) 

  cumul_add<-rep(list(rep(list(NULL),x_n)),y_n) 

  calculation_matrix<-matrix(0,y_n,x_n) 

  strt<<-proc.time() 

  # Refresh input values for groups (j) and their members (i) 

    for(j in 1:length(calc_order)){ 

    for(i in 1:length(calc_order[[j]])){ 

      #get and assign variables for each point in this calc group 

    x_i<-calc_order[[j]][[i]]$x_i 

    y_i<-calc_order[[j]][[i]]$y_i 

    #Get c0 

      c0<-input_bulk[[y_i]][[x_i]] 

      #replace rs,es,as,fs tuples with values 

      for(k in 1:length(c0)){ 

        c0_k<-c0[k] 

        left_brac<-gregexpr("\\{", c0_k)[[1]] 

        right_brac<-gregexpr("\\}", c0_k)[[1]] 

        if(left_brac[1]>0){ 

        subsystem<-NULL 

        for(kk in 1:length(left_brac)){ 

          subsystem<-c(subsystem,substr(c0[k],(left_brac[kk]-2),left_brac[kk]-1)) 

        } 

        tuples<-NULL 

        for(tup_i in 1:length(left_brac)){ 

          tuples<-c(tuples,substr(c0_k, left_brac[tup_i], right_brac[tup_i])) 

        } 

        split_tuples<-strsplit(gsub("\\{","",gsub("\\}","",tuples)),split=";") 

        #Grab dependent point if cumulating extracts - caution this only works if 

dependent entirely on one point 

        if(k==1&ph_extr&cumulate_on_rs){dep_pnt<-

c(eval(parse(text=split_tuples[[1]][1])),eval(parse(text=split_tuples[[1]][2]))) 

        crust_rows<-rownames(crust[[dep_pnt[2]]][[dep_pnt[1]]]) 
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        parse_cumul_extract<-

crust[[dep_pnt[2]]][[dep_pnt[1]]][crust_rows[grep("_es_cumul",crust_rows)],,drop=FA

LSE] 

        if(!length(parse_cumul_extract)==0){cumul_extract[[y_i]][[x_i]]<-

parse_cumul_extract} 

        } 

        #Grab dependent point if cumulating additions - caution this only works if 

dependent entirely on one point 

        if(k==1&ph_add&cumulate_on_rs){dep_pnt<-

c(eval(parse(text=split_tuples[[1]][1])),eval(parse(text=split_tuples[[1]][2]))) 

        crust_rows<-rownames(crust[[dep_pnt[2]]][[dep_pnt[1]]]) 

        parse_cumul_addition<-

crust[[dep_pnt[2]]][[dep_pnt[1]]][crust_rows[grep("_as_cumul",crust_rows)],,drop=FA

LSE] 

        if(!length(parse_cumul_addition)==0){cumul_add[[y_i]][[x_i]]<-

parse_cumul_addition} 

        } 

        #substitute in value 

        c0_k<-gsub("rs","",gsub("es","",gsub("as","",gsub("fs","",c0_k)))) 

        c0_k<-gsub("\\{","",gsub("\\}","",c0_k)) 

        for(split_i in 1:length(split_tuples)){ 

          outval<-

try(crust[[eval(parse(text=split_tuples[[split_i]][2]))]][[eval(parse(text=split_tu

ples[[split_i]][1]))]][paste0("Bulk_",subsystem[split_i]),names(c0_k)],silent=TRUE) 

          if(class(outval)=="try-error"){ 

          outval<-0 

          } 

          if(is.null(outval)){ 

          c0_k_try<-0}else{ 

          c0_k_try<-

try(sub(paste0(unlist(split_tuples[split_i]),collapse=";"),outval,c0_k)) 

          } 

          if(class(c0_k_try)!="try-error"){c0_k<-c0_k_try} 

        } 

        } 

         c0[k]<-eval(parse(text=c0_k)) 

      } 

      # Make numeric 

      nam<-names(c0) 

      c0<-as.numeric(c0) 

      names(c0)<-nam 

      # Save to input_bulk 

      input_bulk[[y_i]][[x_i]]<-c0 

    } 

      if(calc_mode=="normal"){ 

      #run Rcrust in singular for each point in the calc group 

      for(i in 1:length(calc_order[[j]])){ 

        x_i<-calc_order[[j]][[i]]$x_i 

        y_i<-calc_order[[j]][[i]]$y_i 

        if(silent_calc){ 

            #Calculate times 

            pull_time<-proc.time()-strt 

            total_sec<-round(pull_time[3]) 

            run_time<-sec_to_clock(total_sec) 

          cat("Computing Point","x_i=",x_i," ; y_i=",y_i,"... Simulation 

",round(sum(calculation_matrix!=0)/(nrow(calculation_matrix)*ncol(calculation_matri

x))*100,2),"% complete\n") 

          cat("Total run time:",run_time,"\n") 

          flush.console() 

        } 

        #Check if point should be calculated 

        #variable-def: 0=remaining,1=calculated,2=aborted 

        PT_split<-strsplit(PT_restrictions,split="_") 

        for(i in 1:length(PT_restrictions)){ 

        chk<-

paste(input_pt[[y_i]][[x_i]][,PT_split[[i]][1]],PT_split[[i]][2],PT_split[[i]][3],c

ollapse="") 

        if(!eval(parse(text=chk))){calculation_matrix[y_i,x_i]<-2 
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        crust[[y_i]][[x_i]]<-matrix(c0,1,) 

        rownames(crust[[y_i]][[x_i]])<-"Bulk_rs" 

        colnames(crust[[y_i]][[x_i]])<-names(c0) 

        } 

        } 

        strsplit(PT_restrictions,split="_") 

        if(calculation_matrix[y_i,x_i]==0){ 

        crust[[y_i]][[x_i]]<-run.Rcrust(comps=comps,c0=input_bulk[[y_i]][[x_i]], 

              press=input_pt[[y_i]][[x_i]][1], 

              temp=input_pt[[y_i]][[x_i]][2], 

              ph_extr_pnt=input_ph_extr[[y_i]][[x_i]], 

              cumul_extract_pnt=cumul_extract[[y_i]][[x_i]], 

              ph_add_pnt=input_ph_add[[y_i]][[x_i]], 

              cumul_add_pnt=cumul_add[[y_i]][[x_i]] 

              ) 

              calculation_matrix[y_i,x_i]<-1 

              } 

              } 

        }    

        } 

    } 

#Save data 

save.image(file=paste0(projects_directory,"/",working_file,"/",working_file,".RData

")) 

cat("\n\nDone with calculations:\nResults saved to 

",paste0(projects_directory,"/",working_file,"/",working_file,".RData"),"\n\nSelect 

outputs through the Rcrust GUI or press esc to edit data in the Rconsole\n") 

flush.console() 

} 
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Rcrust calculation loop (run.Rcrust.r) 

Loads functions for: 

merging of phase lines (summing extensive properties and averaging intensive 

properties) 

evaluating a Boolean condition that handles missing values as false 

evaluating expressions parsed with “{}”. This allows custom functions to be built and 

called from phase expressions 

Runs until told to exit 

Adds phases from the isolated subsystem into the reactive subsystem if applicable 

Calculates stable phases of the system given the pressure, temperature and bulk 

composition of the system by calling a wrapper function that communicates with 

meemum from Perple_X 

Renames duplicate phases and splits feldspar phases into Pl or Kf based on CaO/K2O 

ratio 

Extracts phases from reactive subsystem into extract subsystem where applicable 

Creates extract subsystem and cumulative extract subsystem 

Compiles full system to be saved as a point in “crust” 

Flushes response to console  

 

############################################# 

# 

# Main Rcrust Loop (run.Rcrust.r) 

# 

############################################# 

#function-def:run.Rcrust<-

function(comps,c0,press,temp,ph_extr_pnt,cumul_extract_pnt=NULL,ph_add_pnt,cumul_ad

d_pnt=NULL) 

run.Rcrust<-

function(comps,c0,press,temp,ph_extr_pnt,cumul_extract_pnt=NULL,ph_add_pnt,cumul_ad

d_pnt=NULL,...){ 

  ############################################# 

  # 

  # Ancillary function to merge several lines (by mass) 

  # 

  ############################################ 

  .wtd.add<-function(thelines,prop="mass",avname="Averaged"){ 

    if(nrow(thelines)==1){ 

      foo<-thelines 

    }else{ 

      # Two sets of cols 

      if(exists_and_true(calc_mol)){ 

        extensive.cn<-c("wt%","vol%","mol%","mol")    # Extensive properties (mass 

dependant) -- add the others if required 

      }else{ 

        extensive.cn<-c("wt%")  

      } 

       

      intensive.cn<-setdiff(colnames(thelines),c(prop,extensive.cn)) 
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      foo<-matrix(rep(0,length(colnames(thelines))),nrow=1) 

      colnames(foo)<-colnames(thelines) 

      # Intensive 

      foo[,intensive.cn]<-

thelines[,prop]%*%thelines[,intensive.cn,drop=F]/sum(thelines[,prop]) 

      # Extensive 

      foo[,prop]<-sum(thelines[,prop]) 

      if(!length(intersect(extensive.cn,thelines))==0){ 

        foo[,extensive.cn]<-colSums(thelines[,extensive.cn])} 

    } 

    rownames(foo)<-avname 

    return(foo) 

  } 

  #exists_and_true 

exists_and_true<<-function(x){ 

chk<-try(x,silent=TRUE) 

if(class(chk)=="try-error"){return(FALSE)}else{ 

return(x) 

} 

} 

  ############################################# 

  # 

  # Expression evaluator 

  # 

  ############################################ 

  #function-def: eval_expr<-function(expr,calc_phases=calc_phases,crust=crust) 

  #Evaluate expression a given calc_phases and crust 

          #() are for solution models, {} are for function terms and bodmas 

          #evaluate any { and word before it up until }        

          eval_expr<-function(expr,calc_phases=calc_phases,crust=crust){ 

          #wrap outside for evaluation 

          a<-paste0("{",expr,"}") 

          while(!unlist(gregexpr("[{]",a))[1]==-1){ 

          letters<-gregexpr("[a-z]",a) 

          left_bracs<-unlist(gregexpr("[{]",a)) 

          names(left_bracs)<-rep("left",length(left_bracs)) 

          right_bracs<-unlist(gregexpr("[}]",a)) 

          names(right_bracs)<-rep("right",length(right_bracs)) 

          bracs<-sort(c(left_bracs,right_bracs)) 

          #Find inner brackets 

          i<-1 

          while(!(names(bracs)[i]=="left"&names(bracs)[i+1]=="right")){ 

          i<-i+1 

          } 

          #evaluate inner brackets 

          #If require function call find name 

          j<-1 

          while((bracs[i]-j)%in%letters[[1]]){ 

          j<-j+1 

          } 

          #if j==1 dont require function call, else j+1 is first letter of function 

name 

          if(!j==1){ 

          funct_name<-substr(a,bracs[i]-j+1,bracs[i]-1) 

          #apply function 

          if(funct_name=="ph"){ 

          #arguments of the form ph{phase;unit;x_i;y_i} where unit can be any 

column name in calc_phases and x_i and y_i are the current point by default 

          ph_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]] 

          if(length(ph_args)==2){ 

          #current_variable 

          chk_var<-

try(eval(parse(text="calc_phases[ph_args[1],ph_args[2]]")),silent=TRUE) 

            if(class(chk_var)=="try-error"){ 

              out<-0 

            }else{ 

              out<-chk_var 

            } 
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            }else{ 

            #past_variable 

            #default look in rs 

            if(length(grep("_rs", ph_args[1]))==0&length(grep("_es", 

ph_args[1]))==0){ 

            ph_args[1]<-paste0(ph_args[1],"_rs") 

            } 

          chk_var<-

try(eval(parse(text="crust[[eval(parse(text=ph_args[[4]]))]][[eval(parse(text=ph_ar

gs[[3]]))]][ph_args[1],ph_args[2]]")),silent=TRUE) 

            if(class(chk_var)=="try-error"){ 

              out<-0 

            }else{ 

              out<-chk_var 

            } 

            } 

          } 

          if(funct_name=="delta"){ 

          skip_delta<-FALSE 

          #arguments of the form delta{ph;x_#;y_#;unit} where unit can be wt% or 

mass 

          delta_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]] 

          delta_phs<-delta_args[1] 

          if(substring(delta_args[2],1,8)=="prev_ext"){ 

          find_ph<-substring(delta_args[2],10) 

          pnt<-"find" 

          l<-1 

          while(pnt=="find"){ 

          #find earliest of phase extraction or phase absent point, if neither show 

warning and take pnt=1 

          #find previous increase in _es_cumul 

          chk_pnt<-try(crust[[y_i]][[x_i-

l]][paste0(find_ph,"_es"),"mass"],silent=TRUE) 

          if(class(chk_pnt)=="try-error"){ 

          chk_pnt<-try(crust[[y_i]][[x_i-

l]][paste0(find_ph,"_rs"),"mass"],silent=TRUE) 

          if(class(chk_pnt)=="try-error"){ 

          pnt<-x_i-l 

          cat(paste0("Delta calculated to previous phase absent point at x_i = 

",pnt,"\n")) 

          } 

          }else{ 

          pnt<-x_i-l 

          cat(paste0("Delta calculated to previous extract at x_i = ",pnt,"\n")) 

          } 

          if((x_i-l)==1&pnt=="find"){ 

          pnt<-x_i-l 

          cat(paste0("Delta calculated to first point at x_i = ",pnt,"\n")) 

          } 

          l<-l+1 

          } 

          delta_index_x<-pnt 

          }else{ 

          delta_index_x<-eval(parse(text=delta_args[2]))} 

          if(!(delta_index_x<=x_n&delta_index_x>=1)){cat("Warning delta_index_x not 

<x_n and >=1, skipping this delta calculation\n");skip_delta<-TRUE} 

          delta_index_y<-eval(parse(text=delta_args[3])) 

          if(!(delta_index_y<=y_n&delta_index_y>=1)){cat("Warning delta_index_y not 

<y_n and >=1, skipping this delta calculation\n");skip_delta<-TRUE} 

          delta_unit<-delta_args[4] 

          if(!(delta_unit=="mass"|delta_unit=="wt%")){ 

          cat("Error delta only currently accepted as mass or wt%\n") 

          stop()} 

          if(!skip_delta){ 

            current_mode<-0 

            previous_mode<-0 

            #Check for plus sign (e.g. aluminosilicate given as sill+ky+and) 

            delta_phases<-strsplit(delta_args[1],"+",fixed=TRUE)[[1]] 
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            for(each_ph in delta_phases){ 

            #current_mode 

            chk_var<-

try(eval(parse(text="calc_phases[each_ph,delta_unit]")),silent=TRUE) 

            if(!class(chk_var)=="try-error"){ 

            current_mode<-current_mode+chk_var 

            } 

            #previous_mode 

            delta_phase_rs<-paste(each_ph,"_rs",sep="") 

            chk_var<-

try(eval(parse(text="crust[[delta_index_y]][[delta_index_x]][delta_phase_rs,delta_u

nit]")),silent=TRUE) 

            if(!class(chk_var)=="try-error"){ 

            previous_mode<-previous_mode+chk_var 

            } 

            } 

          #delta 

          if(current_mode>previous_mode){ 

          out<-current_mode-previous_mode}else{ 

          out<-0 

          } 

          }else{out<-0} 

          } 

          if(funct_name=="retain"){ 

         #c# If Retention Mode - Calculate mass of retention phases to extract 

            #c# Extract till retention amount of retention phases is left 

            #arguments of the form retain{amount;unit;ph} where ph can be omitted 

to take on the current ph 

          retain_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]] 

          ret<-as.numeric(retain_args[1]) 

          retention_unit<-retain_args[2] 

          if(!is.na(retain_args[3])){ph<-retain_args[3]} 

            bulk_no<-which(rownames(calc_phases)=="Bulk_rs") 

            ph_no<-which(rownames(calc_phases)==ph) 

            if(retention_unit=="mass"){ 

            system_less_ret<-calc_phases[-c(bulk_no,ph_no),"mass"] 

              if(calc_phases[ph,"mass"]<=ret){ 

              out<-0 

              }else{ 

              out<-calc_phases[ph,"mass"]-ret 

              } 

            } 

            if(retention_unit=="vol%"){ 

            system_less_ret<-calc_phases[-c(bulk_no,ph_no),"vol%"] 

            if(calc_phases[ph,"vol%"]<=ret){ 

            out<-0 

            }else{ 

            new_ret_vol<-(ret*(sum(system_less_ret)))/(100-ret) 

            new_ret_mass<-new_ret_vol*calc_phases[ph,"mass"]/calc_phases[ph,"vol%"] 

            out<-calc_phases[ph,"mass"]-new_ret_mass 

              } 

            } 

                        if(retention_unit=="wt%"){ 

            system_less_ret<-calc_phases[-c(bulk_no,ph_no),"wt%"] 

              if(calc_phases[ph,"wt%"]<=ret){ 

              out<-0 

              }else{ 

              new_ret_wt<-(ret*(sum(system_less_ret)))/(100-ret) 

              new_ret_mass<-new_ret_wt*calc_phases[ph,"mass"]/calc_phases[ph,"wt%"] 

              out<-calc_phases[ph,"mass"]-new_ret_mass 

              } 

            } 

          } 

          if(funct_name=="return"){ 

            #arguments of the form return{phase;amount} where amount can be % or 

mass 

          return_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]] 

          #check if phase is in extract cumul subsystem 



  C:25 

          chk_var<-

try(eval(parse(text=paste0("cumul_extract_pnt[\"",return_args[1],"_es_cumul\",\"mas

s\"]"))),silent=TRUE) 

          if(class(chk_var)!="try-error"){ 

          if(!is.null(chk_var)){ 

          percentage<-FALSE 

                  #if percentage tag to calculate 

          if(length(grep("%",return_args[2]))!=0){ 

          percentage<-TRUE 

          return_args[2]<-gsub("%","",return_args[2]) 

          } 

          #evaluate for number 

            chk_num<-try(eval(parse(text=return_args[2])),silent=TRUE) 

            if(class(chk_num)=="try-error"){ 

          cat("Error phase addition could not evaluate isolated function 

correctly") 

          stop() 

            } 

          #calculate 

          if(percentage){ 

          take<-chk_num/100*chk_var 

          leave<-(100-chk_num)/100*chk_var 

          }else{ 

          take<-chk_num 

          leave<-as.numeric(chk_var)-chk_num 

          } 

          if(leave<0){ 

          take<-chk_var 

          leave<-0} 

          #transfer 

          cumul_extract_pnt[paste0(return_args[1],"_es_cumul"),"mass"]<<-leave 

          #leave calc 

          a<-

paste(c(cumul_extract_pnt[paste0(return_args[1],"_es_cumul"),comps],take),collapse=

",") 

          break 

          }else{ 

           cat(paste0("Phase ",return_args[1]," not found in extract cumul\n")) 

           a<-paste(rep(0,length(comps)+1),collapse=",") 

           break 

           out<-"" 

          } 

          }else{ 

           cat(paste0("Phase ",return_args[1]," not found in extract cumul\n")) 

           a<-paste(rep(0,length(comps)+1),collapse=",") 

           break 

           out<-"" 

          } 

          } 

          #replace inner brackets with function output 

          a<-paste(substr(a,1,bracs[i]-

j),out,substr(a,bracs[i+1]+1,nchar(a)),sep="") 

          }else{ 

          #evaluate inner brackets for bodmas output 

          out<-eval(parse(text=substr(a,bracs[i]+1,bracs[i+1]-1))) 

          a<-paste(substr(a,1,bracs[i]-

j),out,substr(a,bracs[i+1]+1,nchar(a)),sep="") 

          } 

          } 

          return(a) 

          } 

calc<-TRUE 

pass<-1 

extract<-NULL 

addition_subsystem<-NULL 

  while(calc){ 

    # Phase addition 

    if(ph_add){ 
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      if(pass==1){ 

      if(!is.null(ph_add_pnt)){ 

        # mod-tag:DFM addition (Disequilibrium Fractional Melting calculation) 

        if(ph_add_pnt[[1]][[1]]=="dfm"){ 

          #Disequilibrium Fractional Melting calculation 

          current_pnt<-run.Rcrust(comps=comps,c0=c0, 

                                  press=input_pt[[y_i]][[x_i]][1], 

                                  temp=input_pt[[y_i]][[x_i]][2], 

                                  ph_extr_pnt=NULL, 

                                  cumul_extract_pnt=NULL, 

                                  ph_add_pnt=NULL 

          ) 

          next_pnt<-run.Rcrust(comps=comps,c0=c0, 

                               press=input_pt[[y_i]][[x_i+1]][1], 

                               temp=input_pt[[y_i]][[x_i+1]][2], 

                               ph_extr_pnt=NULL, 

                               cumul_extract_pnt=NULL, 

                               ph_add_pnt=NULL 

          ) 

          #Pl dfm calculation...  X(Pl consum) = (Na(melt_2)  X(melt_2) + Na(Kfs_2)  

X(Kfs_2) - Na(Ms_1)  X(Ms_1))/Na(Pl_2) 

          Na_melt_2<-try(next_pnt[paste0(melt.name,"_rs"),"NA2O"],silent=TRUE) 

          if(class(Na_melt_2)=="try-error"){Na_melt_2<-0} 

          X_melt_2<-try(next_pnt[paste0(melt.name,"_rs"),"wt%"],silent=TRUE) 

          if(class(X_melt_2)=="try-error"){X_melt_2<-0} 

          Na_Kf_2<-try(next_pnt["Kf_rs","NA2O"],silent=TRUE) 

          if(class(Na_Kf_2)=="try-error"){Na_Kf_2<-0} 

          X_Kf_2<-try(next_pnt["Kf_rs","wt%"],silent=TRUE) 

          if(class(X_Kf_2)=="try-error"){X_Kf_2<-0} 

          Na_Ms_1<-try(current_pnt["Mica(CHA)_rs","NA2O"],silent=TRUE) 

          if(class(Na_Ms_1)=="try-error"){Na_Ms_1<-0} 

          X_Ms_1<-try(current_pnt["Mica(CHA)_rs","wt%"],silent=TRUE) 

          if(class(X_Ms_1)=="try-error"){X_Ms_1<-0} 

          Na_Pl_2<-try(next_pnt["Pl_rs","NA2O"],silent=TRUE) 

          if(class(Na_Pl_2)=="try-error"){cat("Error, Plagioclase not found in 

second point")}else{ 

            X_Pl_consm<-(Na_melt_2*X_melt_2+Na_Kf_2*X_Kf_2-Na_Ms_1*X_Ms_1)/Na_Pl_2 

            X_Pl_1<-try(current_pnt["Pl_rs","mass"],silent=TRUE) 

            if(class(X_Pl_1)=="try-error"){cat("Error, Plagioclase not found in 

first point")}else{   

              if(X_Pl_consm<X_Pl_1){ 

                #Place unreacted Pl in addition subsystem 

                addition_subsystem<-current_pnt["Pl_rs",,drop=FALSE] 

                addition_subsystem["Pl_rs","mass"]<-

addition_subsystem["Pl_rs","mass"]-X_Pl_consm 

                rownames(addition_subsystem)<-"Pl_as" 

                #recalculate new c0 with only the reactive Pl amount 

                current_pnt["Pl_rs","mass"]<-X_Pl_consm 

                current_pnt["Bulk_rs","mass"]<-0 

                c0<-.wtd.add(current_pnt)[,names(c0)] 

              } 

            } 

          } 

        } 

        else{ 

        #Standard addition 

    grab<-c(major_elements,"mass") 

    grab_phases<-NULL 

  for(add_def_no in 1:length(ph_add_pnt)){ 

   #Evaluate if addition is required 

    statement<-ph_add_pnt[[add_def_no]]["condition"] 

  #if statement is true 

  if(is.na(as.logical(eval_expr(statement,calc_phases,crust)))){cat(paste0("Error 

condition for phase addition definition number ",add_def_no," as ",statement," does 

not evaluate to logical output\n"));stop()} 

  if(as.logical(eval_expr(statement,calc_phases,crust))){ 

        for(add_ph in 2:length(ph_add_pnt[[add_def_no]])){ 

        #Evaluate expression unless numeric comma seperated vector 
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if(any(is.na(suppressWarnings(as.numeric(strsplit(ph_add_pnt[[add_def_no]][add_ph],

",")[[1]]))))){ 

        ph_add_pnt[[add_def_no]][add_ph]<-

eval_expr(ph_add_pnt[[add_def_no]][add_ph],calc_phases,crust) 

        } 

        } 

          add_mat<-matrix(c(as.numeric(unlist(strsplit(ph_add_pnt[[add_def_no]][-

1],","))),c0),length(ph_add_pnt[[add_def_no]]),byrow=TRUE) 

          colnames(add_mat)<-c(major_elements,"mass") 

          # Calculate new c0 

          c0[c(major_elements,"mass")]<-

c(.wtd.add(add_mat,prop="mass",avname="Bulk_rs"))  

  }else{ 

    if(!silent_calc){cat("\nNo addition at this point for this condition\n")} 

  } 

  }      

        } 

          } 

      } 

      } 

  #Calculate phases 

comps<<-names(c0[-length(c0)]) 

calc_phases<-try(wrapper(comps,c0,press,temp,calc_choice),silent=TRUE) 

if(class(calc_phases)=="try-error"){ 

cat("Oops, an error occured while calculating phases\n at ",press," kbar and 

",temp," C for the bulk composition:\n ",major_elements,"\n",c0,"\n") 

run_errors<<-c(run_errors,y_i,x_i) 

if(pause_on_error){ 

browser() 

}else{ 

exit_calc<<-TRUE 

} 

} 

calc<-FALSE 

    #mod-tag: calculate traces here and then zircon and monazite saturation 

    #fix-tag: renaming felspars twice (need to work this into earlier position so 

that renamed phases are extractable) 

if(!exit_calc){ 

if(!is.na(match("Bulk_rs",rownames(calc_phases)))){ 

  #rename kf 

  if(length(intersect(major_elements,c("CAO","K2O")))==2){ 

  split_names<-strsplit(rownames(calc_phases),"_","") 

  first_names<-NULL 

  for(i in 1:length(split_names)){ 

  first_names<-c(first_names,split_names[[i]][1]) 

  } 

  for(ph in which(first_names=="Fsp")){ 

    if(calc_phases[ph,"K2O"]<=0){calc_phases[ph,"K2O"]<-0.0001} 

    if(calc_phases[ph,"CAO"]/calc_phases[ph,"K2O"]>1){ 

      rownames(calc_phases)[ph]<-"Pl" 

    }else{ 

    rownames(calc_phases)[ph]<-"Kf" 

    } 

  } 

  } 

  #number duplicates 

    for(ph in rownames(calc_phases)[which(duplicated(rownames(calc_phases)))]){ 

        rownames(calc_phases)[which(rownames(calc_phases)==ph)[-1]]<-

paste0(ph,"_",1:length(which(rownames(calc_phases)==ph)[-1])) 

    } 

} 

} 

if(!exit_calc){  

  #Phase Extraction 

if(ph_extr){ 

    #pass_1 extraction 

if(!is.null(ph_extr_pnt)){ 
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if(pass==1){ 

    grab<-c(major_elements,"mass") 

    grab_phases<-NULL 

  for(ex_def_no in 1:length(ph_extr_pnt)){ 

   #Evaluate if extraction is required 

    statement<-ph_extr_pnt[[ex_def_no]]["condition"] 

  #if statement is true 

  if(is.na(as.logical(eval_expr(statement,calc_phases,crust)))){cat(paste0("Error 

condition for phase extraction definition number ",ex_def_no," as ",statement," 

does not evaluate to logical output\n"));stop()} 

  if(as.logical(eval_expr(statement,calc_phases,crust))){ 

    #must evaluate conditions in order then phases in order, retain phases must be 

last, cannot have overlapping extract conditions that target the same phase 

    extr_phases<-

names(ph_extr_pnt[[ex_def_no]])[2:length(ph_extr_pnt[[ex_def_no]])] 

    if(any(extr_phases=="any_phase")){ 

    #old_extr_phases<-extr_phases 

    while(length(which(extr_phases=="any_phase"))!=0){ 

    rep_no<-which(extr_phases=="any_phase")[1] 

    #Remove bulk 

    cur_phases<-rownames(calc_phases)[-nrow(calc_phases)] 

    #Remove phases with existing definitions 

    existing_defs<-NULL 

    for(i in 1:length(ph_extr_definitions)){ 

    existing_defs<-union(existing_defs,names(ph_extr_definitions[[i]])) 

    } 

    cur_phases<-setdiff(cur_phases,existing_defs) 

    x<-as.list(extr_phases) 

    x[[rep_no]]<-cur_phases 

    extr_phases<-unlist(x) 

    } 

    extr_vals<-unlist(lapply(1:length(extr_phases),function(i){ 

    gsub("any_phase",extr_phases[i],ph_extr_pnt[[ex_def_no]]["any_phase"])} 

    )) 

    names(extr_vals)<-extr_phases 

    ex_def<-names(ph_extr_pnt[[ex_def_no]])[-1] 

    ex_def<-ex_def[-which(ex_def=="any_phase")] 

    extr_vals[ex_def]<-ph_extr_pnt[[ex_def_no]][ex_def] 

    }else{ 

    extr_vals<-ph_extr_pnt[[ex_def_no]][extr_phases] 

    } 

    for(ph in extr_phases){ 

    #If extract phase is present 

      if(length(which(rownames(calc_phases)==ph))>0){ 

      #grab phase details 

        chk<-try(calc_phases[ph,grab,drop=FALSE],silent=TRUE) 

        if(!class(chk)=="try-error"){        

          grab_phases<-rbind(grab_phases,calc_phases[ph,grab,drop=FALSE]) 

        } 

        #Evaluate for extraction value unless ending in % sign 

        a<-extr_vals[ph] 

        

if(!substring(extr_vals[ph],nchar(extr_vals[ph]),nchar(extr_vals[ph]))=="%"){ 

        a<-eval_expr(a,calc_phases,crust) 

        } 

        #Evaluate unless extraction value is non numeric 

        if(!is.na(suppressWarnings(as.numeric(gsub("%","",a))))){ 

        #If number then take smallest of number or mass present 

        if(regexpr("%",a)[1]==-1){ 

        class(a)<-"numeric" 

         if(a<calc_phases[ph,"mass"]){ 

                  grab_phases[ph,"mass"]<-as.numeric(a) 

                  calc_phases[ph,"mass"]<-calc_phases[ph,"mass"]-

grab_phases[ph,"mass"] 

                }else{ 

                  calc_phases[ph,"mass"]<-0 

                } 

        }else{ 
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         #If percentage then take as proportion 

        grab_phases[ph,"mass"]<-

round(calc_phases[ph,"mass"]*as.numeric(gsub("%","",a))/100,6) 

        calc_phases[ph,"mass"]<-round(calc_phases[ph,"mass"],6)-

grab_phases[ph,"mass"]      

        } 

        }else{ 

        cat("Error in expression used for extraction\n") 

        stop() 

        }        

     } 

    } 

  }else{ 

    if(!silent_calc){cat("\nNo extraction at this point for this condition\n")} 

  } 

  } 

   

   #Check for negatives 

    if(any(calc_phases[,"mass"]<0)|any(grab_phases[,"mass"]<0)){ 

    cat("Error negative mass produced upon extraction\n") 

    } 

  #h# Create Extract 

  if(!sum(grab_phases[,"mass"])==0){ 

    #c# Place extracts into extract and calculate Bulk_es 

    extr_bulk<-.wtd.add(grab_phases,prop="mass",avname="Bulk_es") 

    rownames(grab_phases)<-paste0(rownames(grab_phases),"_es") 

    extract<-rbind(grab_phases,extr_bulk) 

    #c# Calculate new c0 

    c0[c(major_elements,"mass")]<-c(.wtd.add(calc_phases[-

which(rownames(calc_phases)=="Bulk_rs"),c(major_elements,"mass")])) 

    #Recalculate mass dependent properties in calc_phases if not re-equilibrating 

    if(!reequilibrate_steps){ 

    calc_phases[,"mol"][-which(rownames(calc_phases)=="Bulk_rs")]<-

calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")]/(calc_phases[,"wt%"][-

which(rownames(calc_phases)=="Bulk_rs")]/calc_phases[,"mol"][-

which(rownames(calc_phases)=="Bulk_rs")]) 

    calc_phases[,"mol%"][-which(rownames(calc_phases)=="Bulk_rs")]<-

calc_phases[,"mol"][-

which(rownames(calc_phases)=="Bulk_rs")]/sum(calc_phases[,"mol"][-

which(rownames(calc_phases)=="Bulk_rs")])*100 

    calc_phases[,"wt%"][-which(rownames(calc_phases)=="Bulk_rs")]<-

calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")]/sum(calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")])*100 

    vols<-calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")]/calc_phases[,"Density(kg/m3)"][-

which(rownames(calc_phases)=="Bulk_rs")] 

    calc_phases[,"vol%"][-which(rownames(calc_phases)=="Bulk_rs")]<-

vols/sum(vols)*100 

    calc_phases["Bulk_rs",names(c0)]<-c0 

    #mod-tag: check that changed all mass dependent properties 

    } 

    } 

  #if(changed c0 comp) then trigger for recalculation 

  if(reequilibrate_steps){ 

  if(!all(calc_phases["Bulk_rs",names(c0)]==c0)){ 

    calc<-TRUE 

    } 

    } 

} 

} 

#end extraction 

} 

  pass<-pass+1   

} 

 } 

#end calculation 
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#if successful calc phases 

if(!exit_calc){ 

if(!is.na(match("Bulk_rs",rownames(calc_phases)))){ 

  #rename kf 

  if(length(intersect(major_elements,c("CAO","K2O")))==2){ 

  for(ph in which(rownames(calc_phases)=="Fsp")){ 

    if(calc_phases[ph,"K2O"]<=0){calc_phases[ph,"K2O"]<-0.0001} 

    if(calc_phases[ph,"CAO"]/calc_phases[ph,"K2O"]>1){ 

      rownames(calc_phases)[ph]<-"Pl" 

    }else{ 

    rownames(calc_phases)[ph]<-"Kf" 

    } 

  } 

  } 

  #number duplicates 

    for(ph in rownames(calc_phases)[which(duplicated(rownames(calc_phases)))]){ 

        rownames(calc_phases)[which(rownames(calc_phases)==ph)[-1]]<-

paste0(ph,"_",1:length(which(rownames(calc_phases)==ph)[-1])) 

    } 

  #add rs labels 

  rownames(calc_phases)[-match("Bulk_rs",rownames(calc_phases))]<-

paste0(rownames(calc_phases)[-match("Bulk_rs",rownames(calc_phases))],"_rs") 

} 

#Update combined extracts 

combined_extracts<-NULL 

#Expand extract 

if(!is.null(extract)){ 

expanded<-matrix(0,nrow(extract),ncol(calc_phases)) 

rownames(expanded)<-rownames(extract) 

colnames(expanded)<-colnames(calc_phases) 

expanded[rownames(extract),colnames(extract)]<-extract 

extract<-expanded 

} 

#Calculate new cumul_extract_pnt 

if(is.null(cumul_extract_pnt)){ 

  new_cumul_extract<-extract 

}else{ 

rownames(cumul_extract_pnt)<-gsub("_cumul","",rownames(cumul_extract_pnt)) 

all_extr<-union(rownames(extract),rownames(cumul_extract_pnt)) 

new_cumul_extract<-matrix(0,length(all_extr),ncol(calc_phases)) 

rownames(new_cumul_extract)<-all_extr 

for(nam_i in all_extr){ 

  #In extract and cumul - .wtd.add 

  

if(length(which(rownames(extract)==nam_i))>0&length(which(rownames(cumul_extract_pn

t)==nam_i))>0){ 

    new_cumul_extract[nam_i,]<-

.wtd.add(rbind(cumul_extract_pnt[nam_i,],extract[nam_i,]))   

  } 

  #In extract- extract 

  

if(length(which(rownames(extract)==nam_i))>0&!length(which(rownames(cumul_extract_p

nt)==nam_i))>0){ 

    new_cumul_extract[nam_i,]<-extract[nam_i,] 

  } 

  #In cumul- cumul 

  

if(!length(which(rownames(extract)==nam_i))>0&length(which(rownames(cumul_extract_p

nt)==nam_i))>0){ 

    new_cumul_extract[nam_i,]<-cumul_extract_pnt[nam_i,] 

  } 

} 

#Calculate new Bulk_es_cumul 

colnames(new_cumul_extract)<-colnames(cumul_extract_pnt) 

new_cumul_extract<-rbind(new_cumul_extract[-

(which(rownames(new_cumul_extract)=="Bulk_es")),,drop=FALSE],.wtd.add(new_cumul_ext

ract[-(which(rownames(new_cumul_extract)=="Bulk_es")),,drop=FALSE],,"Bulk_es")) 

} 
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if(!is.null(new_cumul_extract)){ 

rownames(new_cumul_extract)<-paste0(rownames(new_cumul_extract),"_cumul") 

} 

combined_extracts<-rbind(extract,new_cumul_extract) 

#Update IS 

#Calculate new cumul_add_pnt 

if(is.null(cumul_add_pnt)){ 

  new_cumul_add<-addition_subsystem 

}else{ 

  rownames(cumul_add_pnt)<-gsub("_cumul","",rownames(cumul_add_pnt)) 

  all_add<-union(rownames(addition_subsystem),rownames(cumul_add_pnt)) 

  new_cumul_add<-matrix(0,length(all_add),ncol(calc_phases)) 

  rownames(new_cumul_add)<-all_add 

  for(nam_i in all_add){ 

    #In add and cumul - .wtd.add 

    

if(length(which(rownames(addition_subsystem)==nam_i))>0&length(which(rownames(cumul

_add_pnt)==nam_i))>0){ 

      new_cumul_add[nam_i,]<-

.wtd.add(rbind(cumul_add_pnt[nam_i,],addition_subsystem[nam_i,]))   

    } 

    #In addition_subsystem           - addition_subsystem 

    

if(length(which(rownames(addition_subsystem)==nam_i))>0&!length(which(rownames(cumu

l_add_pnt)==nam_i))>0){ 

      new_cumul_add[nam_i,]<-addition_subsystem[nam_i,] 

    } 

    #In cumul             - cumul 

    

if(!length(which(rownames(addition_subsystem)==nam_i))>0&length(which(rownames(cumu

l_add_pnt)==nam_i))>0){ 

      new_cumul_add[nam_i,]<-cumul_add_pnt[nam_i,] 

    } 

  } 

} 

if(!is.null(new_cumul_add)){ 

  rownames(new_cumul_add)<-paste0(rownames(new_cumul_add),"_cumul") 

} 

combined_add<-rbind(addition_subsystem,new_cumul_add) 

  #Compile Full System 

full_system<-rbind(calc_phases,combined_extracts,combined_add) 

}else{ 

# Return Blank Comp 

full_system<-

matrix(0,2,length(c0)+1,dimnames=list(c("Error","Bulk_error"),c("wt%",names(c0)))) 

} 

  #Output results to console 

if(silent_calc){ 

#flush.console() 

}else{ 

cat("-------------------------------\n","Input:\n",paste0("x_i = ",x_i,"y_i = 

",y_i,"P = ",press," kbar"," ;     T = ",temp," C\n")) 

print(c0) 

cat("-------------------------------\n","Output:\n") 

print(full_system[,c(major_elements,"mass")]) 

flush.console() 

} 

return(full_system) 

} 
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Wrapper for phase stability calculations (init_wrapper.r) 

Contains functions for calculating the stable phases of a system given its pressure, 

temperature and bulk composition 

Older versions called a compiled form of meemum from Perple_X to save calculation time 

however the documented experience of users prefers accessibility to multiple versions of 

Perple_X so that a wider choice of solution models and chemical systems is available. 

Thus the dominant calculation method is now a direct call to meemum from Perple_X 

Placing this call within a wrapper assists in handling error response and allows outputs to be 

formatted to be readable by Rcrust 

Replaces placeholder composition in parse_meem.dat with composition of the given point to 

be calculated (c0) 

Calls run.meemum to calculate results and read.meemum to format results 

 

############################################# 

# 

#  Wrapper.r containing calls to meemum from Perple_X 

# 

############################################ 

#function-def:wrapper<-function(comps,c0,press,temp,calc_choice="read.meemum") 

wrapper<-function(comps,c0,press,temp,calc_choice="read.meemum"){ 

############################################# 

# 

# Wrapper function, gives some exception handling 

# So an error in the calc does not necessarily kill all the previous results ! 

# 

############################################ 

if(!(calc_choice=="read.meemum"|calc_choice=="lars.wrap")){ 

cat("\nError: ",calc_choice,"Is not an appropriate calculation choice 

(calc_choice)\n") 

stop() 

} 

if(calc_choice=="read.meemum"){ 

#control comps order 

input_file<-

readLines(paste0(gsub("Projects","data",projects_directory),"/parse_meem.dat")) 

comp_mat<-NULL 

 for(ox in major_elements){ 

 comp_mat<-c(comp_mat,paste0(ox,"     1  ",c0[which(major_elements==ox)],"  0.00000  

",if(molar_vs_wt==1){"weight amount"}else{"molar amount"},sep="")) 

 } 

start_write<-grep("begin thermodynamic component list",input_file)+1 

end_write<-grep("end thermodynamic component list",input_file)-1 

input_file[start_write:end_write]<-comp_mat 

write(input_file, file = 

paste0(gsub("Projects","data",projects_directory),"/parse_meem.dat")) 

# mod-tag: have to bring c0 into global, look for alternative 

c0<<-c0 

calc_out<-read.meemum(run.meemum(comps,c0,press,temp,meemum_path)) 

} 

# mod-tag: Do we still need "lars.wrap"? 

if(calc_choice=="lars.wrap"){ 

#mod-tag: check if need to normalise c0 or if perplex does this 

#a (Options: P, T, bulk composition in given order) 

  a <- .Call("R_phaseq", as.numeric(press*1000), as.numeric(temp+273.15), 

as.numeric(c0[comps])) 

  #'a' is a list, with following components: 
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#    1 - Return value (should be zero in case of successful minimization 

#    2 - Amounts of stable phases (wt% or mol, depending on PerpleX options) 

#    3 - Names of the stable phases 

#    4 - Compositions of stable phases (a[[4]][[i]][j] for phase a[[3]][[i]],  

#        element comps[j] (wt% or mol, depending on PerpleX options)* PerpleX 

options not editable 

#    5 - Bulk properties 

#    6 - System properties of stable phases (a[[6]][[i]][j] for phase a[[3]][[i]], 

system property [j] 

#Check for error 

error<<-FALSE 

chk_call<-try(length(a[[3]])==length(a[[4]]),silent=TRUE) 

if(class(chk_call)=="try-error"){ 

error<<-TRUE 

} 

else{ 

if(!chk_call){ 

error<<-TRUE 

} 

} 

out_colnames<<-

c("wt%","vol%",comps,"mass","V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","V0

(km/s)","Vp(km/s)","Vs(km/s)","Vp/Vs","Rho(kg/m3)","Cp(J/K)","alpha(1/K)","beta(1/b

ar)","S(J/K)","N(g)","Cp/Cv") 

if(!error){ 

  #compile phases 

phases<-NULL 

for(ii in 1:length(a[[3]])){ 

one<-matrix(a[[4]][[ii]],1,length(a[[4]][[ii]])) 

prop_one<-matrix(a[[6]][[ii]],1,length(a[[6]][[ii]])) 

phases<-rbind(phases,cbind(one,prop_one)) 

} 

colnames(phases)<-

c(comps,"V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","V0(km/s)","Vp(km/s)","

Vs(km/s)","Vp/Vs","Rho(kg/m3)","?","Cp(J/K)","alpha(1/K)","beta(1/bar)","S(J/K)","?

?","N(g)",17,18,19,20,21,22,23,24,25,26,"Cp/Cv") 

# Create mass and wt columns 

wt<-matrix(a[[2]],length(a[[3]]),1) 

colnames(wt)<-"wt%" 

mass<-matrix(a[[2]]/100*c0["mass"],length(a[[3]]),1) 

colnames(mass)<-"mass" 

# Create vol% columns 

vol<-(wt/phases[,"Rho(kg/m3)",drop=FALSE])/(100/a[[5]][10])*100 

colnames(vol)<-"vol%"                  

#Create Bulk 

bulk_row<-matrix(c(100,100,c0[],a[[5]]),1) 

rownames(bulk_row)<-"Bulk_rs" 

# Compile calc_out 

calc_out<-

cbind(wt,vol,phases[,names(c0[1:length(comps)])],mass,phases[,(length(comps)+1):nco

l(phases)]) 

rownames(calc_out)<-a[[3]] 

calc_out<-rbind(calc_out,bulk_row) 

calc_out<-calc_out[,out_colnames,drop=FALSE] 

}else{ 

# Return Blank Comp 

colmns<-c("wt%",out_colnames) 

calc_out<-matrix(0,2,length(out_colnames)) 

rownames(calc_out)<-c("Error","Bulk_error") 

colnames(calc_out)<-out_colnames 

} 

} 

return(calc_out) 

} 
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Meemum connect (meemum_connect.r) 

Run.meemum calls meemum.exe in the code folder of Rcrust with the current pressure, 

temperature and bulk composition of the system 

Read.meemum formats the outputs from meemum.exe to be readable by Rcrust 

Compile matrix of phases 

Number duplicate phases 

Merge data tables of parameters for each phase 

Create Bulk_rs 

 

######################################################## 

# Run meemum with parameters 

######################################################## 

#function-def:run.meemum<-

function(meemum.path="",build.file="",meemum.order="",press=press*1000,temp=temp+27

3.15,bulk="",components="",pt_comp=pt_comp) 

run.meemum<-function(comps=comps,c0=c0,press=press,temp=temp,meemum_path=""){                   

                    parms<-

c(paste0(data_directory,"/parse_meem"),"n",c(temp+273.15,press*1000),"0","0") 

                    res<-

system(shQuote(paste0(data_directory,"/",meemum_path)),invisible=T,input=parms,inte

rn=T) 

return(res) 

} 

##################################### 

# Parse meemum .prn file 

##################################### 

read.meemum<-function(meemum_in=meemum_in){ 

#Grab data matrix after line given line text 

data_matrix_from_line<-function(line_text){ 

ln_given<-grep(line_text,meemum_in) 

nm_phases<-which(nchar(meemum_in[-(1:ln_given)])==0)[1]-2 

text_given<-meemum_in[(ln_given+1):(ln_given+nm_phases+1)] 

text_altered<-trimws(text_given) 

text_altered<-gsub(" %","%",text_altered) 

# mod-tag: remove system - fluid for now, may be useful in future to have access to 

this data 

text_altered<-gsub("System - fluid","System-fluid",text_altered) 

text_altered<-gsub("Poisson ratio","Poisson_ratio",text_altered) 

text_altered<-strsplit(text_altered,split="\\s{1,}") 

col_names<-c("Phase",text_altered[[1]]) 

mat_out<-matrix(unlist(text_altered)[-c(1:(length(col_names)-

1))],nm_phases,byrow=TRUE) 

colnames(mat_out)<-col_names 

#number duplicates 

for(ph in mat_out[which(duplicated(mat_out[,1])),1]){ 

      mat_out[which(mat_out[,1]==ph)[-1],1]<-

paste0(ph,"_",1:length(which(mat_out[,1]==ph)[-1])) 

} 

return(mat_out) 

} 

#merge data tables by common first field with rows in same order 

merge_matrix<-function(a,b){ 

full_rows<-union(a[,1],b[,1]) 

#add extra row of NA to any table that needs it 

max_row<-max(nrow(a),nrow(b)) 

if(nrow(a)<max_row){ 

a<-rbind(a,matrix(NA,max_row-nrow(a),ncol(a))) 

} 
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if(nrow(b)<max_row){ 

b<-rbind(b,matrix(NA,max_row-nrow(b),ncol(b))) 

} 

#rename first row 

a[,1]<-full_rows 

#delete key row in second table 

b<-b[,-1] 

#merge 

return(cbind(a,b)) 

} 

#grab crust output by merging tables 

#reorder major elements 

ph_comp_mat<-data_matrix_from_line("Phase Compositions") 

ph_comp_mat<-

ph_comp_mat[,c(setdiff(colnames(ph_comp_mat),major_elements),major_elements),drop=F

ALSE] 

#merge info 

merge_1<-merge_matrix(ph_comp_mat,data_matrix_from_line("Molar Properties and 

Density")) 

merge_2<-merge_matrix(merge_1,data_matrix_from_line("Seismic Properties")) 

#make numeric and set phase column as row names 

meemum_out<-merge_2[,-1] 

meemum_out<-matrix(as.numeric(meemum_out),nrow(meemum_out)) 

rownames(meemum_out)<-merge_2[,1] 

colnames(meemum_out)<-colnames(merge_2)[-1] 

# mod-tag: remove system - fluid properties for now, may be useful in future to 

have access to this data 

chk_call<-try(meemum_out["System-fluid",],silent=TRUE) 

if(class(chk_call)!="try-error"){ 

meemum_out<-meemum_out[-grep("System-fluid",rownames(meemum_out)),] 

} 

#merge phases with the same name 

if(merge_duplicates){ 

rownames(meemum_out)<-gsub("_[0-9]","",rownames(meemum_out)) 

while(any(duplicated(rownames(meemum_out)))){ 

ph<-rownames(meemum_out)[which(duplicated(rownames(meemum_out)))[1]] 

thelines<-meemum_out[which(rownames(meemum_out)==ph),] 

prop<-"wt%" 

new<-.wtd.add(thelines,prop,ph) 

meemum_out<-rbind(new,meemum_out[-which(rownames(meemum_out)==ph),]) 

} 

} 

#Create Bulk_rs with system 

new_names<-rownames(meemum_out) 

new_names[which(new_names=="System")]<-"Bulk_rs" 

rownames(meemum_out)<-new_names 

meemum_out["Bulk_rs",comps]<-c0[comps] 

#Set % to 100 for Bulk_rs 

chk_call<-try(meemum_out["Bulk_rs","vol%"],silent=TRUE) 

if(class(chk_call)!="try-error"){ 

meemum_out["Bulk_rs","wt%"]<-100 

} 

chk_call<-try(meemum_out["Bulk_rs","vol%"],silent=TRUE) 

if(class(chk_call)!="try-error"){ 

meemum_out["Bulk_rs","vol%"]<-100 

} 

chk_call<-try(meemum_out["Bulk_rs","vol%"],silent=TRUE) 

if(class(chk_call)!="try-error"){ 

meemum_out["Bulk_rs","mol%"]<-100 

} 

mass<-matrix(meemum_out[,"wt%"]/100*c0["mass"],nrow(meemum_out),1) 

colnames(mass)<-"mass" 

meemum_out<-cbind(mass,meemum_out) 

return(meemum_out) 

} 
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Server (server.r) 

Define functions for manipulating data in Rcrust 

Define functions to be used for formatting and plotting outputs 

Set reactive values and build reactive stores for GUI 

Define save function to write GUI inputs into text file 

Define load function which reads text file input to populate GUI inputs 

Define clear function to reset GUI inputs 

Define console function to give access to the direct environment 

Define run function to source Rcrust calculation loop with saved input variables 

Dynamically create GUI inputs based on current selections 

Dynamically create view outputs and filter data relative to the intended output 

 

############################### 

## Rcrust (server.r) 

############################### 

## 

# Functions 

## 

#function-def: 

get_val(y_i,x_i,phase,variable,crust=crust,oxy_num=24,site_ocup="biotite",select=1) 

get_val<-

function(y_i,x_i,phase,variable,crust=crust,oxy_num=24,site_ocup="biotite",select=1

){ 

if(variable=="Temperature"|variable=="Pressure"){ 

chk<-

try(input_pt[[y_i]][[x_i]][which(colnames(input_pt[[1]][[1]])==variable)],silent=TR

UE) 

if(class(chk)=="try-error"){val<-0}else{ 

val<-input_pt[[y_i]][[x_i]][which(colnames(input_pt[[1]][[1]])==variable)]} 

return(val) 

} 

if(variable=="Min_formula"){ 

return(Min_formula(y_i,x_i,phase,oxy_num,site_ocup,crust=crust)[as.numeric(select)]

)} 

chk<-try(crust[[y_i]][[x_i]][phase,variable],silent=TRUE) 

if(class(chk)=="try-error"){val<-0}else{ 

if(class(chk)=="NULL"){val<-NA}else{ 

val<-crust[[y_i]][[x_i]][phase,variable] 

}} 

return(val) 

} 

#function-def:sub_brackets(x) 

#substitute brackets for obrac and cbrac  

sub_brackets<-function(x){ 

return(gsub("\\(","_obrac_",gsub("\\)","_cbrac_",x))) 

} 

#function-def:ret_brackets(x) 

#return brackets from place holders obrac and cbrac 

ret_brackets<-function(x){ 

return(gsub("_obrac_","\\(",gsub("_cbrac_","\\)",x))) 

} 

#function-def:.wtd.add(thelines,prop="mass",avname="Averaged") 
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 .wtd.add<<-function(thelines,prop="mass",avname="Averaged"){ 

    if(nrow(thelines)==1){ 

      foo<-thelines 

    }else{ 

     #fix-tag: is N(g) extensive or intensive 

      extensive.cn<-c("wt%","vol%","mol%","mol","mass") 

      extensive.cn<-intersect(extensive.cn,colnames(thelines)) 

      intensive.cn<-setdiff(colnames(thelines),c(prop,extensive.cn,"Phase")) 

      foo<-matrix(rep(0,length(colnames(thelines))),nrow=1) 

      colnames(foo)<-colnames(thelines) 

      suppressWarnings(class(thelines)<-"numeric") 

      # Intensive 

      foo[,intensive.cn]<-

thelines[,prop]%*%thelines[,intensive.cn,drop=F]/sum(thelines[,prop]) 

      # Extensive 

      for(i in extensive.cn){ 

      foo[1,i]<-sum(thelines[,i]) 

      } 

    } 

    rownames(foo)<-avname 

    return(foo) 

  }   

#function-def:check_tuple(tuple)   

check_tuple<-function(tuple=""){ 

  if(tuple==""){return(list("Valid tuple",""))} 

  split_tuple<-unlist(strsplit(gsub("\\{","",gsub("\\}","",tuple)),split=",|;")) 

  if(!length(split_tuple)==2){return(list("Error: Tuple is invalid",NULL))} 

  for(k in 1:length(split_tuple)){ 

    if(is.na(suppressWarnings(as.numeric(split_tuple[k])))){return(list("Error: 

Tuple argument is non-numeric",NULL))}  

    if(as.numeric(split_tuple[k])<1){return(list("Error: Tuple argument is less 

than 1",NULL))} 

    if(!as.numeric(split_tuple[k])%%1==0){return(list("Error: Tuple argument is not 

a whole number",NULL))} 

  } 

  return(list("Valid tuple",paste0("{",paste(split_tuple,collapse=";"),"}"))) 

} 

#function-def:flip_y(mat)   

#matrix reflection in y direction 

flip_y<-function(mat){   

mat_out<-mat[nrow(mat):1,,drop=FALSE] 

return(mat_out) 

    } 

#function-def:flip_x(mat)  

#matrix reflection in x direction 

flip_x<-function(mat){   

mat_out<-mat[,ncol(mat):1,drop=FALSE] 

return(mat_out) 

    }    

#function-def:rotate(x)  

#Matrix rotation 

rotate<-function(x)t(apply(x, 2, rev))   

substrRight <- function(x, n){ 

  substr(x, nchar(x)-n+1, nchar(x)) 

} 

#function-

def:phase_abundance(crust,axis,path=1,p_a=1,p_b=p_a,path_label="Point",input_pt=NUL

L)  

phase_abundance<-

function(crust,axis,path=1,p_a=1,p_b=p_a,path_label="Point",input_pt=NULL){ 

  #Header 

  outname<-switch(axis, 

         x=paste0("Phase adundance vs ",path_label," for {",p_a,";",path,"} to 

{",p_b,";",path,"}"),  

         y=paste0("Phase adundance vs ",path_label," for {",path,";",p_a,"} to 

{",path,";",p_b,"}") 

  )   

  #Abundance rows 
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  switch(axis, 

          x={pnt_y<-"path";pnt_x<-"p_i"}, 

          y={pnt_y<-"p_i";pnt_x<-"path"} 

          ) 

    all_phases<-NULL 

    for(p_i in p_a:p_b){ 

      all_phases<-

union(all_phases,rownames(crust[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))

]])) 

    } 

    #reorder into rs,es,es_cumul,as 

    rs_phases<-all_phases[grepl(".*_rs",all_phases)] 

    rs_bulk<-grep("Bulk_rs",rs_phases) 

    es_phases<-all_phases[grepl(".*_es",all_phases)] 

    es_cumul<-grep(".*_es_cumul",es_phases) 

    as_phases<-all_phases[grepl(".*_as",all_phases)] 

    all_phases<-c(rs_phases[-rs_bulk],rs_phases[rs_bulk],es_phases[-

es_cumul],es_phases[es_cumul],as_phases) 

    abundance_rows<-NULL 

    for(ph in all_phases){ 

      abundace_phase<-NULL 

      for(p_i in p_a:p_b){ 

        chk_phase<-

try(crust[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))]][ph,"mass"],silent=T

RUE) 

        if(class(chk_phase)=="try-error"){ 

          abundace_phase<-c(abundace_phase,0) 

        }else{ 

          abundace_phase<-

c(abundace_phase,crust[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))]][ph,"ma

ss"])   

        } 

      } 

      abundance_rows<-rbind(abundance_rows,matrix(abundace_phase,1)) 

    } 

    rownames(abundance_rows)<-all_phases 

    col_nms<-p_a:p_b 

    if(!path_label=="Point"){ 

    if(path_label=="Pressure(kbar)"|path_label=="Temperature(C)"){ 

    switch(path_label,"Pressure(kbar)"=slct<-1,"Temperature(C)"=slct<-2) 

    if(!is.null(input_pt)){ 

      col_nms<-NULL 

      for(p_i in p_a:p_b){ 

        col_nms<-

c(col_nms,input_pt[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))]][slct]) 

      } 

    } 

    } 

    } 

    colnames(abundance_rows)<-col_nms 

  return(list(outname,abundance_rows)) 

} 

#function-

def:write_phase_abundance(data,working_file=working_file,projects_directory=project

s_directory,file_type)  

write_phase_abundance<-

function(data,working_file=working_file,projects_directory=projects_directory,file_

type){ 

  outfile_path<-

paste0(projects_directory,"/",working_file,"/Outputs/",working_file," 

",data[[1]],file_type) 

  if(file_type==".txt"){ 

    write.table(data[[2]],outfile_path,sep="\t",quote=F,row.names = TRUE) 

  } 

  if(file_type==".csv"){ 

    write_test<-try(write.csv(data[[2]],outfile_path,row.names = TRUE),silent=TRUE) 

    if(class(write_test)=="try-error"){ 



  C:39 

      cat("Error cannot write to ",outfile_path,", please close all programs that 

may be accessing the file then try again\n") 

      return(paste0("Error could not save phase abundance file: ",outfile_path,", 

file may be open in another program, please 

      close all programs that may be accessing the file then try again\n")) 

    } 

  } 

  cat("File written to ",data[[1]],"\n") 

return(paste0("Phase abundance file saved to 

",projects_directory,"/",working_file,"/Outputs/\n")) 

} 

#function-def:get_PAM_names(crust,PAM_system) 

get_PAM_names<-function(crust,PAM_system){ 

y_n<-length(crust) 

x_n<-length(crust[[1]]) 

#Group phases 

PAM<-matrix(0,y_n,x_n) 

for(x_i in 1:x_n){ 

for(y_i in 1:y_n){ 

#Grab phases from system under consideration 

if(PAM_system=="Reactive Subsystem"){ 

grab<-

rownames(crust[[y_i]][[x_i]])[which(substrRight(rownames(crust[[y_i]][[x_i]]),3)=="

_rs")] 

} 

if(PAM_system=="Extract Subsystem"){ 

grab<-

rownames(crust[[y_i]][[x_i]])[which(substrRight(rownames(crust[[y_i]][[x_i]]),3)=="

_es")] 

} 

if(PAM_system=="Full System"){ 

grab<-rownames(crust[[y_i]][[x_i]]) 

} 

if(length(grab)>0){ 

#Remove bulk arguments 

grab<-grab[-which(grab=="Bulk_rs"|grab=="Bulk_es"|grab=="Bulk_es_cumul")] 

if(!PAM_system=="Full System"){ 

#remove identifiers 

for(i in 1:length(grab)){ 

grab[i]<-substr(grab[i],1,nchar(grab[i])-3) 

} 

} 

        #Reorder alphabetically 

        grab<-sort(grab) 

}        

        collapsed<-paste(grab,collapse="+") 

        if(collapsed==""){collapsed<-"No Phases"} 

        PAM[y_i,x_i]<-collapsed 

} 

} 

PAM_names<-setdiff(intersect(PAM,PAM),"0") 

return(list(PAM_names,PAM)) 

} 

#function-def:PAM_calc(crust,PAM_system,compile_PAM=FALSE,PAM_compilation=NULL) 

PAM_calc<-function(crust,PAM_system,compile_PAM=FALSE,PAM_compilation=NULL){ 

PAM_data<-get_PAM_names(crust,PAM_system) 

PAM<-PAM_data[[2]] 

if(compile_PAM){ 

validate(need(file.exists(paste0(sub("/code","/Projects",getwd()),"/Compile/",PAM_c

ompilation," compilation legend.txt")),paste0(PAM_compilation," compilation 

legend.txt not found in ",sub("/code","/Projects",getwd()),"/Compile/","\nPlease 

compile legend first"))) 

compilation_names<-

read.table(paste0(sub("/code","/Projects",getwd()),"/Compile/",PAM_compilation," 

compilation legend.txt")) 

class(compilation_names)<-"vector" 

PAM_names<-as.character(compilation_names[[2]])}else{ 

PAM_names<-PAM_data[[1]] 
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} 

# Shade by number of phases (variance) 

        no_phs<-NULL 

for(i in 1:length(PAM_names)){ 

        no_phs<-c(no_phs,length(strsplit(PAM_names,split="+",fixed=TRUE)[[i]])) 

    } 

PAM_names<-PAM_names[rev(order(no_phs,PAM_names))] 

#Populate grid 

    for(y_i in 1:length(crust)){ 

            for(x_i in 1:length(crust[[1]])){ 

            if(!PAM[y_i,x_i]==0){ 

            PAM[y_i,x_i]<-which(PAM_names==PAM[y_i,x_i]) 

} 

} 

} 

mode(PAM)<-"numeric" 

# Pull_common phases from legend 

nam<-strsplit(PAM_names,split="+",fixed=TRUE) 

inter<-nam[[1]] 

if(length(PAM_names)>1){ 

for(i in 1:length(PAM_names)){ 

inter<-intersect(inter,nam[[i]]) 

} 

} 

all_pres<-paste(inter,collapse="+") 

internam<-list() 

for(i in 1:length(PAM_names)){ 

internam[[i]]<-setdiff(nam[[i]],inter) 

} 

new_nam<-list() 

for(i in 1:length(PAM_names)){ 

if(length(internam[[i]])>0){ 

new_nam[i]<-paste(internam[[i]],collapse="+") 

}else{ 

new_nam[i]<-"-" 

} 

} 

PAM_names<-unlist(new_nam) 

PAM_legend<-1:length(PAM_names) 

names(PAM_legend)<-PAM_names 

#if compiling save individual legend (phases relevant to this specific section) 

compile_PAM_legend<-NULL 

if(compile_PAM){ 

compile_PAM_legend<-PAM_legend 

PAM_legend<-PAM_legend[sort((setdiff(intersect(PAM,PAM),"0")))] 

} 

    #Flip y-axis for matrix drawing 

    PAM<-flip_y(PAM) 

    library(raster) 

    library(rgeos) 

    x<-raster::raster(PAM) 

    pol <- raster::rasterToPolygons(x,dissolve=TRUE) 

    #create label ids 

    pol_ex<-extract(x,pol) 

    pol_id<-NULL 

    for(i in 1:length(pol_ex)){ 

    pol_id<-c(pol_id,pol_ex[[i]][1]) 

    } 

return(list(PAM,PAM_legend,all_pres,pol,pol_id,compile_PAM_legend)) 

} 

#function-

def:data_file(crust,x_n=length(crust[[1]]),y_n=length(crust),choose_columns=NULL,ch

oose_rows=NULL,choose_points="All") 

data_file<-

function(crust,x_n=length(crust[[1]]),y_n=length(crust),choose_columns=NULL,choose_

rows=NULL,choose_points="All"){  

  #######################################################################   

  #Outputs select_data list 
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  #Settings for outputing data_file 

   

  # choose_columns    options =   from crust 

("wt%",comps,"mass","V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","V0(km/s)",

"Vp(km/s)","Vs(km/s)","Vp/Vs","Rho(kg/m3)","Cp(J/K)","alpha(1/K)","beta(1/bar)","S(

J/K)","N(g)","Cp/Cv") 

  #                               from other 

("Phase","y_i","x_i","Pressure(kbar)","Temperature(C)") 

  #                               Brief 

  #                               All 

  #                   default = All   

  #choose_columns<-c("All") 

  #choose_columns<-c("Brief") 

   

  #choose_rows       default = All   

  #choose_rows       options =  Reactive subsystem 

  #                             Extract subsystem 

  #                             Addition subsystem 

  #choose_rows<-c("All") 

  #choose_rows<-c("Bio(TCC)_rs","Bulk_rs") 

   

  #choose_points           default = All 

   

  ####################################################################### 

  #fix-tag: number duplicate names (feldspar, mica) 

  validate(need(!choose_points=="","To select points enter arguments seperated by 

commas of the form {x_a;y_a} for single points or {x_a;y_a}:{x_b;y_b} for ranges 

where a<=b<=n")) 

  if(choose_points=="All"){choose_points<-paste("{1;1}:{",x_n,";",y_n,"}",sep="")} 

  choose_points<-unlist(strsplit(choose_points,split=",")) 

  choose_points<-

unlist(strsplit(gsub("\\{","",gsub("\\}","",choose_points)),split=",")) 

  choose_points<-strsplit(choose_points,split=":|;") 

  data_out<-NULL 

  for(i in 1:length(choose_points)){ 

  x_a<-as.numeric(choose_points[[i]][1]) 

  y_a<-as.numeric(choose_points[[i]][2]) 

  if(length(choose_points[[i]])>2){ 

  x_b<-as.numeric(choose_points[[i]][3]) 

  y_b<-as.numeric(choose_points[[i]][4]) 

  }else{ 

  x_b<-as.numeric(choose_points[[i]][1]) 

  y_b<-as.numeric(choose_points[[i]][2]) 

  } 

  #error validation on selection (range must be possible i.e. b>=a,b<=n) 

  validate(need(all(x_a<=x_b,y_a<=y_b,x_b<=x_n,y_b<=y_n),"To select points enter 

arguments seperated by commas of the form {x_a;y_a} for single points or 

{x_a;y_a}:{x_b;y_b} for ranges where a<=b<=n")) 

  for(y_i in y_a:y_b){ 

    for(x_i in x_a:x_b){ 

    #fix-tag: create validation here for erronous pixels 

    #error validation for point existence 

    if(is.null(crust[[y_i]][[x_i]])){ 

    #fix-tag: only works if point 1;1 is populated - dont know how many columns 

otherwise 

    new_pnt<-matrix(NA,1,(ncol(crust[[1]][[1]])+6)) 

    new_pnt[1,1]<-paste("Blank",y_i,x_i,sep="_") 

    }else{ 

      ID<-matrix(paste(rownames(crust[[y_i]][[x_i]]),y_i,x_i,sep="_"),ncol=1) 

      colnames(ID)<-"ID" 

      phase<-matrix(rownames(crust[[y_i]][[x_i]]),ncol=1) 

      colnames(phase)<-"Phase" 

      pnt<-matrix(c(y_i,x_i),nrow=nrow(crust[[y_i]][[x_i]]),ncol=2,byrow=TRUE) 

      colnames(pnt)<-c("y_i","x_i") 

      if(exists("input_pt")){ 

      p_t<-

matrix(input_pt[[y_i]][[x_i]],nrow=nrow(crust[[y_i]][[x_i]]),ncol=2,byrow=TRUE) 

      }else{ 
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      p_t<-matrix(0,nrow=nrow(crust[[y_i]][[x_i]]),ncol=2,byrow=TRUE) 

      } 

      colnames(p_t)<-c("Pressure(kbar)","Temperature(C)") 

      new_pnt<-cbind(ID,phase,pnt,p_t,signif(crust[[y_i]][[x_i]],4)) 

      rownames(new_pnt)<-ID 

      } 

      data_out<-rbind(data_out,new_pnt) 

    } 

    } 

  } 

   if(is.null(choose_columns)){ 

    choose_columns<-colnames(data_out) 

  } 

  if(any(choose_columns=="Brief")){ 

    choose_columns<-union(choose_columns[-

which(choose_columns=="Brief")],c("ID","Phase","y_i","x_i","Pressure(kbar)","Temper

ature(C)","wt%",comps,"mass")) 

  } 

    if(is.null(choose_rows)){ 

      select_rows<-1:nrow(data_out) 

    }else{ 

    if(choose_rows=="All"){ 

    select_rows<-1:nrow(data_out)}else{ 

      select_rows<-NULL 

      if(!is.na(match("Reactive subsystem",choose_rows))){ 

      rs_rows<-grep("_rs",rownames(data_out)) 

      choose_rows<-choose_rows[-match("Reactive subsystem",choose_rows)] 

      select_rows<-union(select_rows,rs_rows) 

      } 

      if(!is.na(match("Extract subsystem",choose_rows))){ 

        rs_rows<-grep("_es",rownames(data_out)) 

        choose_rows<-choose_rows[-match("Extract subsystem",choose_rows)] 

        select_rows<-union(select_rows,rs_rows) 

      } 

      for(row_arg in choose_rows){ 

      chk_names<-NULL 

      for(i in 1:length(rownames(data_out))){ 

      chk_names<-c(chk_names,paste(strsplit(rownames(data_out),"_")[[i]][c(-3,-

4)],collapse="_")) 

      } 

        select_rows<-union(select_rows,which(chk_names==row_arg)) 

      } 

      } 

    } 

    data_out<-data_out[sort(select_rows),choose_columns,drop=FALSE]   

    rownames(data_out)<-NULL 

  return(data_out) 

} 

#function-

def:write_data_file(data_out,working_file=working_file,projects_directory=projects_

directory,file_type=".csv") 

write_data_file<-

function(data_out,working_file=working_file,projects_directory=projects_directory,f

ile_type=".csv"){ 

  #file_type           options = ".csv", ".txt" 

   #                    default = ".csv" 

outfile_path<-

paste0(projects_directory,"/",working_file,"/Outputs/",working_file,"_data_file",fi

le_type) 

  if(length(data_out)>0){ 

  if(file_type==".txt"){ 

    write.table(data_out,outfile_path,sep="\t",quote=F,row.names = FALSE) 

    cat("File written to ",outfile_path,"\n")  

  } 

  if(file_type==".csv"){ 

    write_test<-try( write.csv(data_out,outfile_path,row.names = 

FALSE),silent=TRUE) 

    if(class(write_test)=="try-error"){ 
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      cat("Error cannot write to ",outfile_path,", please close all programs that 

may be accessing the file then try again\n") 

      return(paste0("Error could not save Data File: file may be open in another 

program, please close all programs that may be accessing the file then try 

again\n")) 

    } 

    cat("File written to ",outfile_path,"\n") 

  } 

  if(file_type==".ps"){ 

  cat("Error cannot write Data File to .ps format\n") 

  return(paste0("Error cannot write Data File to .ps format\n")) 

  } 

  } 

  return(paste0("Data File saved to 

",paste0(projects_directory,"/",working_file,"/Outputs/"),"\n")) 

} 

#function-

def:grid_data(Grid_variable,Grid_variable_phase="Bulk_rs",crust_in=crust_out(),inpu

t_pt_in=input_pt,oxy_num=24,site_ocup="biotite",select=1) 

grid_data<-

function(Grid_variable,Grid_variable_phase="Bulk_rs",crust_in=crust_out(),input_pt_

in=input_pt,oxy_num=24,site_ocup="biotite",select=1){ 

                x_n<-length(crust_in[[1]]) 

                y_n<-length(crust_in) 

                if(!is.null(Grid_variable)){ 

                grid_out_mat<-matrix(0,y_n,x_n) 

                 for(x_i in 1:x_n){ 

                 for(y_i in 1:y_n){ 

                 grid_out_mat[y_i,x_i]<-

get_val(y_i,x_i,Grid_variable_phase,Grid_variable,crust_in,oxy_num,site_ocup,select

) 

                 } 

                 } 

                #Flip matrix so origin is bottom left (psuedosection convention) 

                grid_out_mat<-flip_y(grid_out_mat) 

                

if(Grid_variable=="y_i"|Grid_variable=="x_i"|Grid_variable=="Temperature"|Grid_vari

able=="Pressure"){ 

                grid_out_title<-Grid_variable 

                }else{ 

                grid_out_title<-paste(Grid_variable_phase,Grid_variable) 

                } 

                suppressWarnings(mode(grid_out_mat)<-"numeric")          

                return(list(grid_out_title,grid_out_mat)) 

                } 

} 

#function-def:.First() 

# Function for shortcut 

.First<-function(){ 

  library(utils) 

    if(!require(shiny)){ 

  install.packages("shiny")} 

  library(shiny) 

  #Launch with GUI function 

  Rcrust<<-function(){ 

   #If working directory is x\Projects\y then set to x\code 

    if(length(grep("Rcrust/Projects/",getwd()))==1){ 

    setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code")) 

    } 

    runApp() 

  } 

  #function-

def:manual_load(working_file,projects_directory=paste0(substring(getwd(),1,nchar(ge

twd())-4),"Projects")) 

  #Launch without GUI function 

  manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

4),"Projects")){ 



  C:44 

    

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

    source("main.r") 

  } 

  #launch the GUI 

  #If working directory is x\Projects\y then set to x\code 

  if(length(grep("Rcrust/Projects/",getwd()))==1){ 

  setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code")) 

  } 

  runApp() 

  } 

  #function-def:Rcrust() 

  #Launch with GUI function 

  Rcrust<<-function(){ 

   #If working directory is x\Projects\y then set to x\code 

    if(length(grep("Rcrust/Projects/",getwd()))==1){ 

    setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code")) 

    } 

    runApp() 

  } 

  #Launch without GUI function 

  manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

4),"Projects")){ 

    

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

    source("main.r") 

  } 

#function-def:error_handling(working_file,projects_directory) 

#error handling on button press 

error_handling<-function(working_file,projects_directory){ 

  if(projects_directory==""){return("Error: no projects directory specified")} 

  if(!dir.exists(projects_directory)){return("Error: projects directory does not 

exist")} 

  if(working_file==""){return("Error: no working file specified")} 

  return("error handling passed")} 

#function-def:bl(x) 

#blank function : returns a value or quotes "" if blank 

bl<-function(x){ 

  if(is.null(x)){return("\"\"")}else 

  {if(x==""){return("\"\"")}else{ 

    return(x) 

  }}} 

#function-def:bl(str_to_phases) 

#string to phases function : takes a string e.g. "melt(HP),Pl,q" and returns a 

vector of the phases e.g. "melt(HP)","Pl","q" 

str_to_phases<-function(x){ 

  x_list<-strsplit(x,",") 

  if(length(x_list)==0){ 

    x_out<-NULL 

  }else{ 

    x_out<-x_list[[1]][1] 

    if(length(x_list[[1]])>1){ 

      for(mi in 2:length(x_list[[1]])){ 

        x_out<-c(x_out,x_list[[1]][mi]) 

      } 

    } 

  } 

  return(x_out) 

} 

#function-def:pasteq(x) 

#pasteq fubction: collapse vector into comma seperated terms with quotes around 

them 

pasteq<-function(x){ 

      if(length(x)==0){paste0("\"",x,"\"",collapse=",")}else{ 

          a<-"" 

          y<-NULL     

      for(i in 1:length(x)){ 
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        if(is.null(x[i])){y<-c(y,"")}else{ 

          if(x[i]==a){y<-c(y,"")}else{ 

            #if want to remove all quotes (dont know if I want this) then 

gsub('"',"",x) 

            #remove enclosing quotes if present 

            x_split<-strsplit(as.character(x[i]),split="")[[1]] 

            if(x_split[1]=="\""){x_split[1]<-""} 

            if(x_split[length(x_split)]=="\""){x_split[length(x_split)]<-""} 

            x[i]<-paste(x_split,collapse="") 

 

            y<-c(y,x[i])}}} 

                paste0("\"",y,"\"",collapse=",") 

      }} 

## 

# Shiny Server 

## 

shinyServer(function(input, output,session) { 

  #Stop app when browser closed 

  session$onSessionEnded(stopApp)   

  #Global Variables (all variables that must be kept between load events needs to 

be in the vector keep_on_load) 

  keep_on_load<<-c("from_clear_button","from_copy","first_load") 

  from_clear_button<<-FALSE 

  from_copy<<-FALSE   

  #Reactive variables (globally accessed) 

  #Reactive stores 

  pt_definitions_r<-reactiveValues(data = "") 

  bulk_definitions_r<-reactiveValues(data = NULL) 

  ph_add_definitions_r<-reactiveValues(data = NULL) 

  ph_extr_definitions_r<-reactiveValues(data = NULL) 

  solution_models_file_r<-reactiveValues(data = NULL) 

  available_components_r<-reactiveValues()  

  comp_transformations_r<-reactiveValues(data = NULL) 

  current_components_r<-reactiveValues(data= NULL) 

  major_elements_r<-reactiveValues(data= NULL) 

  #mod-tag - this is a quick fix 

  use_sol_models_r<-reactiveValues(data = NULL) 

  #store_r contains output data from runs 

  store_r<-

reactiveValues(crust_r=NULL,input_pt_r=NULL,input_bulk_r=NULL,major_elements_r=NULL

) 

  #initialise a passing message for error checking and reporting 

  reactive_message <- reactiveValues(data = NULL) 

  load_pt_r<-reactiveValues(data = NULL) 

  #save data reactive   

  save_data_file <- reactive({ 

    #Grab working file and projects directory 

    working_file<-input$working_file 

    projects_directory<-input$projects_directory  

    #error handling 

    reactive_message$data <-error_handling(working_file,projects_directory) 

    if(reactive_message$data=="error handling passed"){ 

      #if error handling is passed 

      #Return success message 

      return(paste0("File saved to 

",projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

    }else{ 

      #Return error message 

      return(reactive_message$data) 

    } 

    }) 

  #Save function 

  on_save <- reactive({ 

    #Grab working file and projects directory 

    working_file<-input$working_file 

    projects_directory<-input$projects_directory  

    #Replace projects directory if from copy 

    if(!exists("from_copy")){from_copy<<-FALSE} 
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    if(from_copy){ 

    projects_directory<-copy_directory 

    from_copy<<-FALSE 

    } 

    #error handling 

    reactive_message$data <-error_handling(working_file,projects_directory) 

    if(reactive_message$data=="error handling passed"){ 

      #if error handling is passed 

      w_file<-paste0("###############\n#\n#   Rcrust input 

file\n#\n###############\n# Location of project files\n", 

                     "working_file<-",pasteq(working_file),"\n", 

                     "projects_directory<-",pasteq(projects_directory ),"\n") 

      

if(!input$x_n==""){if(is.na(suppressWarnings(as.numeric(input$x_n)))){return("Error

: X must be numeric")} 

      if(as.numeric(input$x_n)<1){return("Error: X must be greater than 1")} 

      if(!as.numeric(input$x_n)%%1==0){return("Error: X must be a whole number")}} 

      

if(!input$y_n==""){if(is.na(suppressWarnings(as.numeric(input$y_n)))){return("Error

: Y must be numeric")} 

      if(as.numeric(input$y_n)<1){return("Error: Y must be greater than 1")} 

      if(!as.numeric(input$y_n)%%1==0){return("Error: Y must be a whole number")}} 

        w_size<-paste0("###############\n#\n#   Size data\n#\n###############\n# 

number of points in x and y directions\n", 

                     "x_n<-",bl(input$x_n),"\n", 

                     "y_n<-",bl(input$y_n),"\n") 

        if(input$n_pt_def=="load"){ 

          if(!all(pt_definitions_r$data=="")){ 

          list_pt<-NULL 

          for(i in 1:length(pt_definitions_r$data)){ 

          list_pt<-

c(list_pt,paste0("\"",names(pt_definitions_r$data)[i],"\"=c(",pasteq(pt_definitions

_r$data[[i]]),")")) 

          } 

          pt_definitions<-paste0("list(",paste0(list_pt,collapse=","),")") 

          }else{ 

          pt_definitions<-""   

          } 

          }else{ 

        if(!input$n_pt_def==""){ 

          #Error validation 

        if(is.na(suppressWarnings(as.numeric(input$n_pt_def)))){return("Error: 

Number of PT definitions must be numeric")}   

        if(as.numeric(input$n_pt_def)<1){return("Error: Number of PT definitions 

must be greater than 0")} 

        if(!as.numeric(input$n_pt_def)%%1==0){return("Error: Number of PT 

definitions must be a whole number")} 

        list_pt<-NULL 

      for(i in 1:as.numeric(input$n_pt_def)){ 

        #check tuples 

        from<-check_tuple(eval(parse(text=paste0("input$pt_from_",i)))) 

        if(!from[[1]]=="Valid tuple"){ 

        return(paste0("Error in PT Definition:     ",from[[1]]))   

        } 

        to<-check_tuple(eval(parse(text=paste0("input$pt_to_",i)))) 

        if(!to[[1]]=="Valid tuple"){ 

          return(paste0("Error in PT Definition:     ",to[[1]]))   

        } 

        list_pt<-

c(list_pt,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",pasteq(eval(parse(text=paste0("

input$pressure_",i)))),",",pasteq(eval(parse(text=paste0("input$temperature_",i))))

,")")) 

      } 

        pt_definitions<-paste0("list(",paste0(list_pt,collapse=","),")") 

      }else{ 

        pt_definitions<-"" 

      } 

        }  
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      w_pt<-paste0("###############\n#\n#   PT data\n#\n###############\n", 

                  "pt_def<-\"input\"                         #input,file\n", 

                  "pt_definitions<-",bl(pt_definitions),"\n" 

      ) 

      if(input$n_comp_trans=="load"){ 

        if(!all(comp_transformations_r$data=="")){ 

          list_trans<-NULL 

          for(i in 1:length(comp_transformations_r$data)){ 

            list_trans<-

c(list_trans,paste0("\"",names(comp_transformations_r$data)[i],"\"=c(",pasteq(comp_

transformations_r$data[[i]]),")")) 

          } 

          comp_transformations<-paste0("list(",paste0(list_trans,collapse=","),")") 

        }else{ 

          comp_transformations<-""   

        } 

      }else{ 

        if(!input$n_comp_trans==""){ 

          #Error validation 

          

if(is.na(suppressWarnings(as.numeric(input$n_comp_trans)))){return("Error: Number 

of Component transformations must be numeric")}   

          if(as.numeric(input$n_comp_trans)<1){return("Error: Number of Component 

transformations must be greater than 0")} 

          if(!as.numeric(input$n_comp_trans)%%1==0){return("Error: Number of 

Component transformations must be a whole number")} 

          list_trans<-NULL 

          for(i in 1:as.numeric(input$n_comp_trans)){ 

            list_trans<-

c(list_trans,paste0("\"",eval(parse(text=paste0("input$old_comp_",i))),"_",eval(par

se(text=paste0("input$new_comp_",i))),"\"=c(",pasteq(eval(parse(text=paste0("input$

comp_",i)))),")")) 

          } 

          comp_transformations<-paste0("list(",paste0(list_trans,collapse=","),")") 

        }else{ 

          comp_transformations<-"" 

        } 

      }  

      if(input$n_bulk_def=="load"){ 

        if(!all(bulk_definitions_r$data=="")){ 

        list_bulk<-NULL 

        for(i in 1:length(bulk_definitions_r$data)){ 

          list_bulk<-

c(list_bulk,paste0("\"",names(bulk_definitions_r$data)[i],"\"=c(",pasteq(bulk_defin

itions_r$data[[i]]),")")) 

        } 

        bulk_definitions<-paste0("list(",paste0(list_bulk,collapse=","),")") 

        }else{ 

        bulk_definitions<-""   

        } 

      }else{ 

        if(!input$n_bulk_def==""){ 

          #Error validation 

          if(is.na(suppressWarnings(as.numeric(input$n_bulk_def)))){return("Error: 

Number of Bulk definitions must be numeric")}   

          if(as.numeric(input$n_bulk_def)<1){return("Error: Number of Bulk 

definitions must be greater than 0")} 

          if(!as.numeric(input$n_bulk_def)%%1==0){return("Error: Number of Bulk 

definitions must be a whole number")} 

          list_bulk<-NULL 

          for(i in 1:as.numeric(input$n_bulk_def)){ 

            #check tuples 

            from<-check_tuple(eval(parse(text=paste0("input$bulk_from_",i)))) 

            if(!from[[1]]=="Valid tuple"){ 

              return(paste0("Error in Bulk Definition:     ",from[[1]]))   

            } 

            to<-check_tuple(eval(parse(text=paste0("input$bulk_to_",i)))) 

            if(!to[[1]]=="Valid tuple"){ 
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              return(paste0("Error in Bulk Definition:     ",to[[1]]))   

            } 

            bulk_eval<-

strsplit(eval(parse(text=paste0("input$bulk_",i))),split=",")[[1]] 

            #place in quotes 

            for(j in 1:length(bulk_eval)){ 

                bulk_eval[j]<-pasteq(bulk_eval[j]) 

            } 

            list_bulk<-

c(list_bulk,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",paste(bulk_eval,collapse=",")

,")")) 

          } 

          bulk_definitions<-paste0("list(",paste0(list_bulk,collapse=","),")") 

        }else{ 

          bulk_definitions<-"" 

        } 

      } 

      if(!is.null(input$major_elements)){ 

      if(any(input$major_elements=="load")){ 

        major_elements<-major_elements_r$data 

      }else{ 

        major_elements<-unlist(strsplit(input$major_elements,split=",")) 

        } 

      }else{ 

        major_elements<-"" 

      } 

      if(input$bulk_def_file==FALSE){bulk_def<-"input"}else{bulk_def<-"file"} 

      w_bulk_composition<-paste0("###############\n#\n#   Bulk composition data 

\n#\n###############\n", 

                                 "comp_transformations<-

c(",bl(comp_transformations),")\n", 

                                 "bulk_def<-",pasteq(bulk_def),"                         

#input,file\n", 

                                 "major_elements<-c(",pasteq(major_elements),")\n",      

                                 "bulk_definitions<-c(",bl(bulk_definitions),")\n", 

                                 "bulk_file<-",pasteq(input$bulk_file),"\n" 

      ) 

      if(input$ph_add){ 

        if(input$n_ph_add_def=="load"){ 

          if(!all(ph_add_definitions_r$data=="")){ 

          list_ph_add<-NULL 

          for(i in 1:length(ph_add_definitions_r$data)){ 

            qt_names<-unlist(lapply(names(ph_add_definitions_r$data[[i]]),pasteq)) 

            qt_values<-unlist(lapply(ph_add_definitions_r$data[[i]],pasteq)) 

            list_ph_add<-

c(list_ph_add,paste0("\"",names(ph_add_definitions_r$data)[i],"\"=c(",paste(qt_name

s,qt_values,collapse=",",sep="="),")"))   

          } 

          ph_add_definitions<-paste0("list(",paste0(list_ph_add,collapse=","),")") 

          }else{ 

          ph_add_definitions<-""  

          } 

        }else{ 

          if(!input$n_ph_add_def==""){ 

            #Error validation 

            

if(is.na(suppressWarnings(as.numeric(input$n_ph_add_def)))){return("Error: Number 

of Phase Addition definitions must be numeric")}   

            if(as.numeric(input$n_ph_add_def)<1){return("Error: Number of Phase 

Addition definitions must be greater than 0")} 

            if(!as.numeric(input$n_ph_add_def)%%1==0){return("Error: Number of 

Phase Addition definitions must be a whole number")} 

            list_ph_add<-NULL 

            for(i in 1:as.numeric(input$n_ph_add_def)){ 

              ph_add_defs<-NULL 

              #check tuples 

              from<-check_tuple(eval(parse(text=paste0("input$ph_add_from_",i)))) 

              if(!from[[1]]=="Valid tuple"){ 
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                return(paste0("Error in Phase Addition Definition:     

",from[[1]]))   

              } 

              to<-check_tuple(eval(parse(text=paste0("input$ph_add_to_",i)))) 

              if(!to[[1]]=="Valid tuple"){ 

                return(paste0("Error in Phase Addition Definition:     ",to[[1]]))   

              } 

               ph_add_con<-

paste0("condition=",pasteq(eval(parse(text=paste0('input$ph_add_con_',i))))) 

              phases<-

unlist(strsplit(eval(parse(text=paste0('input$ph_add_phs_',i))),split=",")) 

               for(j in 1:length(phases)){ 

                ph_add_defs<-

c(ph_add_defs,paste0(pasteq(phases[j]),"=",pasteq(eval(parse(text=paste0('input$ph_

add_phs_',i,'_',phases[j])))))) 

              } 

              list_ph_add<-

c(list_ph_add,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",paste0(c(ph_add_con,ph_add_

defs),collapse=","),")")) 

            } 

            ph_add_definitions<-

paste0("list(",paste0(list_ph_add,collapse=","),")") 

          }else{ 

            ph_add_definitions<-"" 

          } 

        } 

      }else{ph_add_definitions<-""} 

      w_phase_addition<-paste0("###############\n#\n#   Phase 

addition\n#\n###############\n", 

                               "ph_add<-",input$ph_add,"\n", 

                               "ph_add_definitions<-

c(",bl(ph_add_definitions),")\n" 

      ) 

      if(input$ph_extr){ 

        if(input$n_ph_extr_def=="load"){ 

          if(!all(ph_extr_definitions_r$data=="")){ 

            list_ph_extr<-NULL 

            for(i in 1:length(ph_extr_definitions_r$data)){ 

              qt_names<-

unlist(lapply(names(ph_extr_definitions_r$data[[i]]),pasteq)) 

              qt_values<-unlist(lapply(ph_extr_definitions_r$data[[i]],pasteq)) 

              list_ph_extr<-

c(list_ph_extr,paste0("\"",names(ph_extr_definitions_r$data)[i],"\"=c(",paste(qt_na

mes,qt_values,collapse=",",sep="="),")"))   

            } 

            ph_extr_definitions<-

paste0("list(",paste0(list_ph_extr,collapse=","),")") 

          }else{ 

            ph_extr_definitions<-""  

          } 

        }else{ 

          if(!input$n_ph_extr_def==""){   

            #Error validation 

            

if(is.na(suppressWarnings(as.numeric(input$n_ph_extr_def)))){return("Error: Number 

of Phase Extraction definitions must be numeric")}   

            if(as.numeric(input$n_ph_extr_def)<1){return("Error: Number of Phase 

Extraction definitions must be greater than 0")} 

            if(!as.numeric(input$n_ph_extr_def)%%1==0){return("Error: Number of 

Phase Extraction definitions must be a whole number")} 

            list_ph_extr<-NULL 

            for(i in 1:as.numeric(input$n_ph_extr_def)){ 

              ph_extr_defs<-NULL 

              #check tuples 

              from<-check_tuple(eval(parse(text=paste0("input$ph_extr_from_",i)))) 

              if(!from[[1]]=="Valid tuple"){ 

                return(paste0("Error in Phase Extraction Definition:     

",from[[1]]))   
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              } 

              to<-check_tuple(eval(parse(text=paste0("input$ph_extr_to_",i)))) 

              if(!to[[1]]=="Valid tuple"){ 

                return(paste0("Error in Phase Extraction Definition:     

",to[[1]]))   

              } 

              ph_extr_con<-

paste0("condition=",pasteq(eval(parse(text=paste0('input$ph_extr_con_',i))))) 

              phases<-

unlist(strsplit(eval(parse(text=paste0('input$ph_extr_phs_',i))),split=",")) 

               for(j in 1:length(phases)){ 

                ph_extr_defs<-

c(ph_extr_defs,paste0(pasteq(phases[j]),"=",pasteq(eval(parse(text=paste0('input$ph

_extr_phs_',i,'_',sub_brackets(phases[j]))))))) 

              } 

              list_ph_extr<-

c(list_ph_extr,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",paste0(c(ph_extr_con,ph_ex

tr_defs),collapse=","),")")) 

            } 

            ph_extr_definitions<-

paste0("list(",paste0(list_ph_extr,collapse=","),")") 

          }else{ 

            ph_extr_definitions<-"" 

          } 

        } 

      }else{ph_extr_definitions<-""} 

      w_phase_extraction<-paste0("###############\n#\n#   Phase 

extraction\n#\n###############\n", 

                                 "ph_extr<-",input$ph_extr,"\n", 

                                 "reequilibrate_steps<-

",input$reequilibrate_steps,"\n", 

                                 "ph_extr_definitions<-

c(",bl(ph_extr_definitions),")\n" 

      ) 

        if(input$solution_models_file=="load"){ 

          if(!exists("solution_models_file")){solution_models_file<-""} 

        }else{ 

          solution_models_file<-input$solution_models_file 

          use_sol_models_r$data<-input$use_sol_models 

        } 

    #error validation for meemum path 

    if(input$meemum_path==""){return("Error: No meemum path defined")} 

    

if(!file.exists(paste0(data_directory,"/",input$meemum_path))){return(paste0("Error

: Meemum not found at ",paste0(data_directory,"/",input$meemum_path)))} 

      w_modelling_options<-paste0("###############\n#\n#   Modelling 

Options\n#\n###############\n", 

                                  "thermodynamic_data_file<-

",pasteq(input$thermodynamic_data_file),"\n", 

                                  "solution_models_file<-

",pasteq(solution_models_file),"\n", 

                                  "meemum_path<-",pasteq(input$meemum_path),"\n", 

                                  "perplex_option_file<-

",pasteq(input$perplex_option_file),"\n", 

                                  "use_sol_models<-

c(",pasteq(use_sol_models_r$data),")\n", 

                                  "saturated_components<-

",pasteq(input$saturated_components),"\n", 

                                  "saturated_phase_components<-

",pasteq(input$saturated_phase_components),"\n", 

                                "independent_potential_fugacity_activity<-

",pasteq(input$independent_potential_fugacity_activity),"\n", 

                                  "exclude_phases<-

",pasteq(input$exclude_phases),"\n", 

                                  "end_of_calc<-",pasteq(input$end_of_calc),"\n") 

      w_output_options<-paste0("###############\n#\n#   Output 

Options\n#\n###############\n", 
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                                  "phase_aliases<-

",pasteq(input$phase_aliases),"\n", 

                                  "PAM_compilation<-

",pasteq(input$PAM_compilation),"\n", 

                                  "compile_PAM<-",pasteq(input$compile_PAM),"\n")                              

      #Compile all tabs into a page 

      thepage<-

c(w_file,w_size,w_pt,w_bulk_composition,w_phase_addition,w_phase_extraction,w_model

ling_options,w_output_options) 

      # If directory doesnt exist, create it 

      if(!dir.exists(paste0(projects_directory,"/",working_file))){ 

        dir.create(paste0(projects_directory,"/",working_file)) 

      } 

      if(!dir.exists(paste0(projects_directory,"/",working_file,"/Inputs/"))){ 

        dir.create(paste0(projects_directory,"/",working_file,"/Inputs/")) 

      } 

      if(!dir.exists(paste0(projects_directory,"/",working_file,"/Outputs/"))){ 

        dir.create(paste0(projects_directory,"/",working_file,"/Outputs/")) 

      } 

      #Grab additional parameters if file already exists 

      add_text<-NULL 

      

if(file.exists(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,"

.txt"))){ 

      scanned<-

scan(file=paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

),what="character",sep="\n",quiet=TRUE) 

      break_line<-which(scanned=="#   Additional Parameters") 

      if(length(break_line)==1){ 

        add_text<-scanned[break_line:length(scanned)] 

      } 

      } 

      #Save .txt file 

      write(c(thepage,add_text), file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

      #Save workspace 

      working_file<<-input$working_file 

      

save.image(file=paste0(projects_directory,"/",working_file,"/",working_file,".RData

")) 

      #Return success message 

      return(paste0("File saved to 

",projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

    }else{ 

      #Return error message 

      return(reactive_message$data) 

    } 

  }) 

  #Load function 

  on_load <- reactive({ 

    projects_directory<-input$projects_directory 

    working_file<-input$working_file 

    #error handling 

    reactive_message$data <-error_handling(working_file,projects_directory) 

    if(reactive_message$data=="error handling passed"){ 

      #Remove current workspace but keeping marker: from clear button 

      #mod-tag: should we really be clearing workspace? can't we just overwrite 

values for load? 

      rm(list=ls()) 

      rm(list=setdiff(ls(envir=.GlobalEnv),c("keep_on_load",keep_on_load)),envir = 

.GlobalEnv) 

      #clear reactive stores 

      pt_definitions_r$data<-NULL 

      bulk_definitions_r$data<-NULL 

      ph_add_definitions_r$data<-NULL 

      ph_extr_definitions_r$data<-NULL 

      #Load .txt unless from clear button 

      if(from_clear_button){ 
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        projects_directory<-input$projects_directory 

        working_file<-input$working_file 

        }else{ 

      

source(paste0(input$projects_directory,"/",input$working_file,"/Inputs/",input$work

ing_file,".txt")) 

      } 

      #Values to load 

      load_variables<-

c("x_n"="inp","y_n"="inp","n_pt_def"="reactive","n_comp_trans"="reactive","bulk_def

_file"="checkbox","major_elements"="reactive_select","n_bulk_def"="reactive","bulk_

file"="inp","ph_add"="checkbox","n_ph_add_def"="reactive","ph_extr"="checkbox","ree

quilibrate_steps"="checkbox","n_ph_extr_def"="reactive","thermodynamic_data_file"="

inp","saturated_components"="inp","saturated_phase_components"="inp","independent_p

otential_fugacity_activity"="inp","exclude_phases"="inp","end_of_calc"="inp","solut

ion_models_file"="reactive","perplex_option_file"="inp","meemum_path"="inp","phase_

aliases"="inp","PAM_compilation"="inp","compile_PAM"="checkbox") 

      #load reactive stores 

      if(exists("pt_definitions")){ 

        pt_definitions_r$data<-pt_definitions 

      } 

      if(exists("bulk_definitions")){ 

      bulk_definitions_r$data<-bulk_definitions 

      } 

      if(exists("comp_transformations")){ 

        comp_transformations_r$data<-comp_transformations 

      } 

      if(exists("ph_add_definitions")){ 

        ph_add_definitions_r$data<-ph_add_definitions 

      } 

      if(exists("ph_extr_definitions")){ 

        ph_extr_definitions_r$data<-ph_extr_definitions 

      } 

      if(exists("solution_models_file")){ 

        solution_models_file_r$data<-solution_models_file 

      } 

      if(exists("use_sol_models")){ 

        use_sol_models_r$data<-use_sol_models 

      } 

      if(exists("major_elements")){ 

        major_elements_r$data<-major_elements 

      } 

      #custom loads 

      #bulk_def 

      if(exists("bulk_def")){if(bulk_def=="input"){bulk_def_file<-

FALSE}else{bulk_def_file<-TRUE}}else{bulk_def_file<-FALSE} 

      #get addition phases 

      if(is.null(ph_add_definitions_r$data[[1]][1])){add_phases<-""}else{ 

        add_phases<-

paste(setdiff(names(ph_add_definitions_r$data[[1]]),"condition"),collapse=",") 

      } 

      #get extract phases 

      if(is.null(ph_extr_definitions_r$data[[1]][1])){extr_phases<-""}else{ 

        extr_phases<-

paste(setdiff(names(ph_extr_definitions_r$data[[1]]),"condition"),collapse=",") 

      } 

      #load values 

      for(i in 1:length(load_variables)){ 

        if(load_variables[i]=="reactive"){ 

            updateTextInput(session,names(load_variables)[i],value="load") 

        } 

        if(load_variables[i]=="reactive_select"){ 

          updateSelectizeInput(session,names(load_variables)[i],selected="load") 

        } 

        if(load_variables[i]=="inp"){ 

            if(exists(names(load_variables)[i])){ 
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updateTextInput(session,names(load_variables)[i],value=eval(parse(text=names(load_v

ariables)[i]))) 

            }else{ 

              updateTextInput(session,names(load_variables)[i],value="")     

            } 

        } 

        #modtag - remove this 

        if(load_variables[i]=="def_count"){ 

          def_name<-

sub("n_","",sub("_def","_definitions",names(load_variables)[i])) 

          if(exists(def_name)){ 

            if(is.null(eval(parse(text=def_name))[[1]][1])){val_out<-""} 

            else{if(eval(parse(text=def_name))[[1]][1]==""){val_out<-""} 

              else{val_out<-length(eval(parse(text=def_name)))}}}else{val_out<-""} 

                   updateTextInput(session,names(load_variables)[i],value=val_out)     

        } 

        if(load_variables[i]=="checkbox"){ 

          if(exists(names(load_variables)[i])){ 

        updateCheckboxInput(session,names(load_variables)[i],value = 

eval(parse(text=names(load_variables)[i]))) 

          }else{ 

          #False is default for all load checkboxes 

        updateCheckboxInput(session,names(load_variables)[i],value = FALSE)    

          } 

            } 

        if(load_variables[i]=="select"){ 

          if(exists(names(load_variables)[i])){ 

        updateSelectInput(session, 

names(load_variables)[i],selected=eval(parse(text=names(load_variables)[i]))) 

          }else{ 

        updateSelectInput(session, names(load_variables)[i],selected="") 

          } 

            } 

      } 

      #Return success message 

      if(from_clear_button){ 

        from_clear_button<<-FALSE 

        return(paste0("Inputs and workspace cleared")) 

      }else{ 

        return(paste0("Loaded 

",projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))  

      } 

    }else{ 

      #Return error message 

      return(reactive_message$data) 

    } 

    }) 

  #Toolbar buttons 

    #Load button 

  observeEvent(input$load, { 

    #load the file from input$working_file 

    working_file<-input$working_file 

  projects_directory<-input$projects_directory 

    #error handling 

    reactive_message$data <-error_handling(working_file,projects_directory) 

      if(reactive_message$data=="error handling passed"){ 

         #load 

        

if(file.exists(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,"

.txt"))){ 

        reactive_message$data <- paste0(on_load()) 

        }else{ 

        reactive_message$data <- paste0("No input file found at 

",paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

        } 

        #Load workspace if it exists (previous calculation results) 
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if(file.exists(paste0(projects_directory,"/",working_file,"/",working_file,".RData"

))){ 

          

load(paste0(projects_directory,"/",working_file,"/",working_file,".RData"),envir=.G

lobalEnv) 

        } 

        #Refresh reactive outputs if they exist 

        if(exists("crust")){store_r$crust_r<-crust} 

        if(exists("input_pt")){store_r$input_pt_r<-input_pt} 

        if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk} 

        if(exists("major_elements")){store_r$major_elements_r<-major_elements} 

    }else{ 

      reactive_message$data 

    }                

  }) 

    #Clear button 

  observeEvent(input$clear, { 

      #delete selection inputs 

    from_clear_button<<-TRUE 

    reactive_message$data <- paste0(on_load()) 

}) 

    #Console button 

  observeEvent(input$console, { 

  cat("To regain access to the Rcrust GUI type \'c\' then press enter\n") 

    browser() 

}) 

    #Run Button 

  observeEvent(input$run, { 

    #Grab working file and projects directory 

    working_file<-input$working_file 

    projects_directory<-input$projects_directory  

    #error handling 

    reactive_message$data <-error_handling(working_file,projects_directory) 

    if(reactive_message$data=="error handling passed"){ 

      #if error handling is passed 

      #GUI level validation check that have at least minimum of P,T,and X 

definitions in GUI 

      var_missing<-NULL 

      chk_variables<-

c("input$x_n","input$y_n","input$n_pt_def","input$n_bulk_def","input$major_elements

") 

      for(i in rev(chk_variables)){if(any(eval(parse(text=i))=="")){var_missing<-

i}} 

      if(!is.null(var_missing)){reactive_message$data <- paste0("Error: Cannot run 

calculation. Missing ",var_missing);return(reactive_message$data)} 

      #Save 

      reactive_message$data <- paste0(on_save()) 

      # source the saved variables into the workspace 

      

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

      #Run 

      source("main.r") 

      reactive_message$data <- paste0("Calculation complete, Results saved to 

",projects_directory,"/",working_file,"/",working_file,".RData\n Select outputs 

throught the 'Outputs' tab") 

      #Save copy to directory 

        if(FALSE){copy_directory<<-"H:/Rcrust/Projects" 

        from_copy<<-TRUE 

        reactive_message$data <- paste0(on_save()) 

    } 

      #End of Calculation 

if(!exists("end_of_calc")){end_of_calc<-"Return to Interface"}   

      #Email report 

      if(FALSE){ 

      library(gmailr) 

      mime() %>% 

        to("mjmayne@outlook.com") %>% 
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        from("matt.mayne.1992@gmail.com") %>% 

        html_body("Body text") -> html_msg  

        html_msg %>% 

        subject(paste0(working_file," completed successfully after ",run_time,"with 

finish option ",end_of_calc)) %>% 

        

#attach_file(paste0(projects_directory,"/",working_file,"/",working_file,".RData")) 

-> file_attachment  

        #attach_file(paste0(projects_directory,"/Yak_PT fh any_all/Yak_PT fh 

any_all.RData")) -> file_attachment  

        send_message()     

        } 

if(end_of_calc=="Logout"){system('shutdown -l')} 

if(end_of_calc=="Shutdown"){system('shutdown -s')} 

      #Refresh reactive outputs if they exist 

      if(exists("crust")){store_r$crust_r<-crust} 

      if(exists("input_pt")){store_r$input_pt_r<-input_pt} 

      if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk} 

      if(exists("major_elements")){store_r$major_elements_r<-major_elements} 

      } 

})   

    #Save button 

  observeEvent(input$save, { 

  reactive_message$data <- paste0(on_save()) 

}) 

    #Send error/success messages to GUI 

  output$print_message <- renderText({ 

  if (is.null(reactive_message$data)) return() 

  paste0(reactive_message$data) 

}) 

  # Dyanmically use number of PT definitions to create the correct number of 

From,To,P,T inputs 

    output$pt <- renderUI({ 

    if(input$n_pt_def=="load"){ 

      if(all(pt_definitions_r$data=="")|is.null(pt_definitions_r$data)){ 

        def_num<-"" 

      }else{ 

      def_num<-length(pt_definitions_r$data) 

      } 

      updateTextInput(session,"n_pt_def",value=def_num) 

    }else{ 

      def_num<-input$n_pt_def 

    } 

      if(!(is.null(def_num)|def_num==""|def_num==0)){ 

      validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of 

PT definitions must be numeric"}else{NULL}) 

      validate(if(as.numeric(def_num)<1){"Error: Number of PT definitions must be 

greater than 0"}else{NULL}) 

      validate(if(!as.numeric(def_num)%%1==0){"Error: Number of PT definitions must 

be a whole number"}else{NULL}) 

      fixedRow( 

        lapply(1:(as.numeric(def_num)*4), function(i) { 

          a<-1; ii<-i  

          while(ii>4){ii<-ii-4;a<-a+1} 

          if(ii==1){chk_From<-

try(unlist(strsplit(names(pt_definitions_r$data)[a],split="_"))[1],silent=TRUE) 

                    if(class(chk_From)=="try-error"){chk_From<-NULL} 

                    

column(2,textInput(paste0('pt_from_',a),'From',value=chk_From))}else{ 

          if(ii==2){chk_To<-

try(unlist(strsplit(names(pt_definitions_r$data)[a],split="_"))[2],silent=TRUE) 

                    if(class(chk_To)=="try-error"){chk_To<-NULL} 

                    column(2,textInput(paste0('pt_to_',a),'To',value=chk_To))}else{ 

          if(ii==3){chk_pressure<-try(pt_definitions_r$data[[a]][1],silent=TRUE) 

                    if(class(chk_pressure)=="try-error"){chk_pressure<-NULL} 

                    column(4,textInput(paste0('pressure_',a),'Pressure 

(kbar)',value=chk_pressure))}else{ 

          if(ii==4){chk_temperature<-try(pt_definitions_r$data[[a]][2],silent=TRUE) 
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                    if(class(chk_temperature)=="try-error"){chk_temperature<-NULL} 

                    column(4,textInput(paste0('temperature_',a),'Temperature 

(C)',value=chk_temperature)) 

                }}}}}) 

      ) 

      } 

      }) 

       #Import P-T definitions button 

  observeEvent(input$import_pt, { 

  #bugtag - try rather updating text to have only a local load 

#updateTextInput(session,input$n_ph_add_def,value="load") 

  reactive_message$data <- paste0(on_save()) 

  #Import definitions from file (csv of definitions or txt as Rcrust input file) 

  #read Rcrust Input file 

  if(input$file_pt["type"]=="text/plain"){ 

  data_in<-readLines(paste(input$file_pt[4])) 

  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

  if(!length(grep("pt_definitions<-",data_in))==0){ 

  if(length(grep("pt_definitions<-",input_file))==0){ 

  input_file<-c(input_file,grep("pt_definitions<-",data_in)) 

  }else{ 

  input_file[grep("pt_definitions<-",input_file)]<-data_in[grep("pt_definitions<-

",data_in)] 

  } 

  }  

  write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  }else{ 

  #read csv of definitions 

  data_in<-as.matrix(read.csv(paste(input$file_pt[4]))) 

  lines_all<-NULL 

  for(line_no in 1:nrow(data_in)){ 

  line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(\"",data_in[line_no,5],"\",\"",data_in[line_no,6],"\")",s

ep="") 

  if(line_no==1){lines_all<-paste("pt_definitions<-list(",line_i,sep="")}else{ 

  lines_all<-paste(lines_all,line_i,sep=",") 

  } 

  if(line_no==nrow(data_in)){ 

  lines_all<-paste(lines_all,")",sep="") 

  } 

  } 

  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

  if(length(grep("pt_definitions<-",input_file))==0){ 

  input_file<-c(input_file,lines_all) 

  }else{ 

  input_file[grep("pt_definitions<-",input_file)]<-lines_all 

  } 

  write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  } 

  reactive_message$data <- paste0(on_load()) 

}) 

    # Dyanmically use number of component transformations to create the correct 

number of inputs 

    output$trans <- renderUI({ 

      if(input$n_comp_trans=="load"){ 

        

if(all(comp_transformations_r$data=="")|is.null(comp_transformations_r$data)){ 

          def_num<-"" 

        }else{ 

          def_num<-length(comp_transformations_r$data) 

        } 
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        updateTextInput(session,"n_comp_trans",value=def_num) 

      }else{ 

        def_num<-input$n_comp_trans 

      } 

      if(!(is.null(def_num)|def_num==""|def_num==0)){ 

        validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of 

Component transformations must be numeric"}else{NULL}) 

        validate(if(as.numeric(def_num)<1){"Error: Number of Component 

transformations must be greater than 0"}else{NULL}) 

        validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Components 

transformations must be a whole number"}else{NULL}) 

        fixedRow( 

          lapply(1:(as.numeric(def_num)*3), function(i) { 

            a<-1; ii<-i  

            while(ii>3){ii<-ii-3;a<-a+1} 

            if(ii==1){chk_old<-

try(unlist(strsplit(names(comp_transformations_r$data)[a],split="_"))[1],silent=TRU

E) 

            if(class(chk_old)=="try-error"){chk_old<-NULL} 

            column(2,textInput(paste0('old_comp_',a),'Replace 

component',value=chk_old))}else{ 

              #mod-tag: better to have a select input but for some reason it doesnt 

work well with column()           

              

#column(2,selectizeInput(paste0('old_comp_',a),'Replace',c("",available_components_

r$data),selected=chk_old))}else{ 

            if(ii==2){chk_new<-

try(unlist(strsplit(names(comp_transformations_r$data)[a],split="_"))[2],silent=TRU

E) 

                      if(class(chk_new)=="try-error"){chk_new<-NULL} 

                      column(2,textInput(paste0('new_comp_',a),'New 

component',value=chk_new))}else{ 

            if(ii==3){ 

                  comp_label<-paste(available_components_r$current,collapse = ",") 

                  chk_comp<-try(comp_transformations_r$data[[a]],silent=TRUE) 

                  if(class(chk_comp)=="try-error"){chk_comp<-NULL} 

                  

column(8,textInput(paste0('comp_',a),comp_label,value=paste(chk_comp,collapse=","))

)}else{ 

                  }}}}) 

        ) 

      } 

    }) 

     #Component transformation 

    observe({ 

    available_components<-NULL 

    suppressWarnings(qq_try<-

try(scan(file=gsub("Rcrust/code",paste0("Rcrust/data/",input$thermodynamic_data_fil

e),getwd()),what="character",sep="\n",quiet=TRUE),silent=TRUE)) 

    if(class(qq_try)!="try-error"){ 

    qq<-qq_try 

    start_foo<-grep("begin_components",qq) 

    end_foo<-grep("end_components",qq) 

    qq<-qq[(start_foo+1):(end_foo-1)] 

    qq<-strsplit(qq," ") 

    for(i in 1:length(qq)){ 

    available_components<-c(available_components,qq[[i]][1]) 

    } 

    } 

    available_components_r$current<-available_components 

    }) 

    #Component transformation 

    observe({ 

      #use current component transformation inputs to update current components_r 

and selection in major elements 

      current_components<-available_components_r$current 

      chk_trans<-FALSE 

      if(!is.na(suppressWarnings(as.numeric(input$n_comp_trans)))){ 
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        if(!as.numeric(input$n_comp_trans)<1){ 

          if(as.numeric(input$n_comp_trans)%%1==0){ 

            chk_trans<-TRUE 

          } 

        }} 

      if(chk_trans){ 

        for(i in 1:input$n_comp_trans){ 

          pos<-

which(current_components==eval(parse(text=paste0("input$old_comp_",i)))) 

          current_components[pos]<-eval(parse(text=paste0("input$new_comp_",i))) 

        } 

      } 

      current_components_r$data<-current_components 

        }) 

    output$maj <- renderUI({ 

      #fix-tag: does not work if have multiple component transformations, scoping 

means we come here after first transformation is complete because we alter "current 

components" 

      if(!input$n_comp_trans=="load"){ 

      if(any(input$major_elements=="load")){ 

      selectizeInput('major_elements', 'Major elements', 

c(major_elements_r$data,setdiff(current_components_r$data,major_elements_r$data),"l

oad"),selected=major_elements_r$data,multiple=TRUE) 

      }else{ 

      selectizeInput('major_elements', 'Major elements', 

c(input$major_elements,setdiff(current_components_r$data,input$major_elements),"loa

d"),selected=input$major_elements,multiple=TRUE) 

      }     

      } 

      }) 

    # Dyanmically use number of bulk definitions to create the correct number of 

From,To,bulk inputs 

    output$bulk <- renderUI({ 

      if(input$n_bulk_def=="load"){ 

        if(all(bulk_definitions_r$data=="")|is.null(bulk_definitions_r$data)){ 

          def_num<-"" 

        }else{ 

          def_num<-length(bulk_definitions_r$data) 

        } 

        updateTextInput(session,"n_bulk_def",value=def_num) 

      }else{ 

        def_num<-input$n_bulk_def 

      } 

      if(!(is.null(def_num)|def_num==""|def_num==0)){ 

        validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of 

Bulk definitions must be numeric"}else{NULL}) 

        validate(if(as.numeric(def_num)<1){"Error: Number of Bulk definitions must 

be greater than 0"}else{NULL}) 

        validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Bulk definitions 

must be a whole number"}else{NULL}) 

        fixedRow( 

          lapply(1:(as.numeric(def_num)*3), function(i) { 

            a<-1; ii<-i  

            while(ii>3){ii<-ii-3;a<-a+1} 

            if(ii==1){chk_From<-

try(unlist(strsplit(names(bulk_definitions_r$data)[a],split="_"))[1],silent=TRUE) 

            if(class(chk_From)=="try-error"){chk_From<-NULL} 

            column(2,textInput(paste0('bulk_from_',a),'From',value=chk_From))}else{ 

              if(ii==2){chk_To<-

try(unlist(strsplit(names(bulk_definitions_r$data)[a],split="_"))[2],silent=TRUE) 

              if(class(chk_To)=="try-error"){chk_To<-NULL} 

              column(2,textInput(paste0('bulk_to_',a),'To',value=chk_To))}else{ 

                if(ii==3){ 

                  if(is.null(input$major_elements)){ 

                    bulk_label<-"Please choose major elements above" 

                  }else{ 

                    bulk_label<-paste(c(input$major_elements,"mass"),collapse = 

",") 
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                  } 

                  chk_bulk<-try(bulk_definitions_r$data[[a]],silent=TRUE) 

                if(class(chk_bulk)=="try-error"){chk_bulk<-NULL} 

                

column(8,textInput(paste0('bulk_',a),bulk_label,value=paste(chk_bulk,collapse=","))

)}else{ 

    }}}}) 

        ) 

      } 

    }) 

 #Import bulk definitions button 

  observeEvent(input$import_bulk, { 

  #mod-tag: try rather updating text to have only a local load 

#updateTextInput(session,input$n_ph_add_def,value="load") 

  reactive_message$data <- paste0(on_save()) 

  #Import definitions from file (csv of definitions or txt as Rcrust input file) 

  #read Rcrust Input file 

  if(input$file_bulk["type"]=="text/plain"){ 

  data_in<-readLines(paste(input$file_bulk[4])) 

  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

  if(!length(grep("comp_transformations<-",data_in))==0){ 

  if(length(grep("comp_transformations<-",input_file))==0){ 

  input_file<-c(input_file,grep("comp_transformations<-",data_in)) 

  }else{ 

  input_file[grep("comp_transformations<-",input_file)]<-

data_in[grep("comp_transformations<-",data_in)] 

  } 

  } 

    if(!length(grep("major_elements<-",data_in))==0){ 

  if(length(grep("major_elements<-",input_file))==0){ 

  input_file<-c(input_file,grep("major_elements<-",data_in)) 

  }else{ 

  input_file[grep("major_elements<-",input_file)]<-data_in[grep("major_elements<-

",data_in)] 

  } 

  } 

  if(!length(grep("bulk_definitions<-",data_in))==0){ 

  if(length(grep("bulk_definitions<-",input_file))==0){ 

  input_file<-c(input_file,grep("bulk_definitions<-",data_in)) 

  }else{ 

  input_file[grep("bulk_definitions<-",input_file)]<-

data_in[grep("bulk_definitions<-",data_in)] 

  } 

  }  

  write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  }else{ 

  #read csv of definitions 

  data_in<-as.matrix(read.csv(paste(input$file_bulk[4]))) 

  lines_all<-NULL 

  for(line_no in 1:nrow(data_in)){ 

  line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(\"",paste(data_in[line_no,c(-1,-2,-3,-

4)],collapse="\",\""),"\")",sep="") 

  if(line_no==1){lines_all<-paste("bulk_definitions<-c(list(",line_i,sep="")}else{ 

  lines_all<-paste(lines_all,line_i,sep=",") 

  } 

  if(line_no==nrow(data_in)){ 

  lines_all<-paste(lines_all,"))",sep="") 

  } 

  } 

  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

  if(length(grep("bulk_definitions<-",input_file))==0){ 
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  input_file<-c(input_file,lines_all) 

  }else{ 

  input_file[grep("bulk_definitions<-",input_file)]<-lines_all 

  } 

  write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  } 

  reactive_message$data <- paste0(on_load()) 

})   

    # Dyanmically use number of Phase Addition definitions to create the correct 

number of From,To,P,T inputs 

    output$ph_add <- renderUI({ 

      if(input$n_ph_add_def=="load"){ 

        if(all(ph_add_definitions_r$data=="")|is.null(ph_add_definitions_r$data)){ 

          def_num<-"" 

        }else{ 

          def_num<-length(ph_add_definitions_r$data) 

        } 

        updateTextInput(session,"n_ph_add_def",value=def_num) 

      }else{ 

        def_num<-input$n_ph_add_def 

      } 

      if(!(is.null(def_num)|def_num==""|def_num==0)){ 

        validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of 

Phase Addition definitions must be numeric"}else{NULL}) 

        validate(if(as.numeric(def_num)<1){"Error: Number of Phase Addition 

definitions must be greater than 0"}else{NULL}) 

        validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Phase Addition 

definitions must be a whole number"}else{NULL}) 

        fixedRow( 

          lapply(1:(as.numeric(def_num)*5), function(i) { 

            a<-1; ii<-i  

            while(ii>5){ii<-ii-5;a<-a+1} 

            if(ii==1){chk_From<-

try(unlist(strsplit(names(ph_add_definitions_r$data)[a],split="_"))[1],silent=TRUE) 

            if(class(chk_From)=="try-error"){chk_From<-NULL} 

            

column(2,textInput(paste0('ph_add_from_',a),'From',value=chk_From))}else{ 

              if(ii==2){chk_To<-

try(unlist(strsplit(names(ph_add_definitions_r$data)[a],split="_"))[2],silent=TRUE) 

              if(class(chk_To)=="try-error"){chk_To<-NULL} 

              column(2,textInput(paste0('ph_add_to_',a),'To',value=chk_To))}else{ 

                if(ii==3){chk_Condition<-

try(ph_add_definitions_r$data[[a]][["condition"]],silent=TRUE) 

                if(class(chk_Condition)=="try-error"){chk_Condition<-NULL} 

                

column(3,textInput(paste0('ph_add_con_',a),'Condition',value=chk_Condition))}else{ 

                if(ii==4){ 

                chk_Phases<-try(paste(names(ph_add_definitions_r$data[[a]][-

1]),collapse=","),silent=TRUE) 

                if(class(chk_Phases)=="try-error"){chk_Phases<-NULL} 

                

column(4,textInput(paste0('ph_add_phs_',a),'Phases',value=chk_Phases)) 

                }else{ 

                if(ii==5){ 

                 column(12,uiOutput(paste0("ph_add_",a))) 

                } 

                }}       

                  }}}) 

           

        ) 

      } 

    }) 

    #auto create phase addition inputs given number of phases 

            observe({ 

    

if(all(!input$n_ph_add_def=="load",!is.null(input$n_ph_add_def),!input$n_ph_add_def

=="",!input$n_ph_add_def==0)){ 
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    lapply(1:input$n_ph_add_def, function(i) { 

    eval(parse(text=paste0("output$ph_add_",i,"<-renderUI({ 

    a<-i 

    chk_Phases<-try(eval(parse(text=paste0(\'input$ph_add_phs_\',a))),silent=TRUE) 

                    if(!is.null(chk_Phases)){ 

                    if(!chk_Phases==\"\"){ 

                    phases<-unlist(strsplit(chk_Phases,split=\",\")) 

                        fixedRow( 

                        lapply(1:(length(phases)), function(j) { 

                        chk_in_ph<-

try(ph_add_definitions_r$data[[a]][phases[j]],silent=TRUE) 

                        if(class(chk_in_ph)==\"try-error\"){chk_in_ph<-NULL} 

                        

column(3,textInput(paste0(\'ph_add_phs_\',a,\'_\',phases[j]),phases[j],value=chk_in

_ph)) 

                        })) 

                        }} 

                        })"))) 

    }) 

    } 

    }) 

   #Import addition definitions button 

  observeEvent(input$import_ph_add, { 

  #mod-tag: try rather updating text to have only a local load 

#updateTextInput(session,input$n_ph_add_def,value="load") 

  reactive_message$data <- paste0(on_save()) 

  #Import definitions from file (csv of definitions or txt as Rcrust input file) 

  #read Rcrust Input file 

  if(input$file_ph_add["type"]=="text/plain"){ 

  data_in<-readLines(paste(input$file_ph_add[4])) 

  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

  if(!length(grep("ph_add<-",data_in))==0){ 

  if(length(grep("ph_add<-",input_file))==0){ 

  input_file<-c(input_file,grep("ph_add<-",data_in)) 

  }else{ 

  input_file[grep("ph_add<-",input_file)]<-data_in[grep("ph_add<-",data_in)] 

  } 

  } 

  if(!length(grep("ph_add_definitions<-",data_in))==0){ 

  if(length(grep("ph_add_definitions<-",input_file))==0){ 

  input_file<-c(input_file,grep("ph_add_definitions<-",data_in)) 

  }else{ 

  input_file[grep("ph_add_definitions<-",input_file)]<-

data_in[grep("ph_add_definitions<-",data_in)] 

  } 

  }  

  write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  }else{ 

  #read csv of definitions 

  data_in<-as.matrix(read.csv(paste(input$file_ph_add[4])))  

  lines_all<-NULL 

  for(line_no in 1:nrow(data_in)){ 

  line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(condition=\"",data_in[line_no,5],"\",",data_in[line_no,6]

,")",sep="") 

  if(line_no==1){lines_all<-paste("ph_add_definitions<-

c(list(",line_i,sep="")}else{ 

  lines_all<-paste(lines_all,line_i,sep=",") 

  } 

  if(line_no==nrow(data_in)){ 

  lines_all<-paste(lines_all,"))",sep="") 

  } 

  } 
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  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

    if(length(grep("ph_add<-",input_file))==0){ 

  input_file<-c(input_file,"ph_add<-TRUE") 

  }else{ 

  input_file[grep("ph_add<-",input_file)]<-"ph_add<-TRUE" 

  } 

  if(length(grep("ph_add_definitions<-",input_file))==0){ 

  input_file<-c(input_file,lines_all) 

  }else{ 

  input_file[grep("ph_add_definitions<-",input_file)]<-lines_all 

  } 

  write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  } 

  reactive_message$data <- paste0(on_load()) 

  updateTextInput(session,input$file_ph_add,value="") 

}) 

    #Import extraction definitions button 

  observeEvent(input$import_ph_extr, { 

  #mod-tag: try rather updating text to have only a local load 

#updateTextInput(session,input$n_ph_extr_def,value="load") 

  reactive_message$data <- paste0(on_save()) 

  #Import definitions from file (csv of definitions or txt as Rcrust input file) 

  #read Rcrust Input file 

  if(input$file_ph_extr["type"]=="text/plain"){ 

  data_in<-readLines(paste(input$file_ph_extr[4])) 

  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

  if(!length(grep("ph_extr<-",data_in))==0){ 

  if(length(grep("ph_extr<-",input_file))==0){ 

  input_file<-c(input_file,grep("ph_extr<-",data_in)) 

  }else{ 

  input_file[grep("ph_extr<-",input_file)]<-data_in[grep("ph_extr<-",data_in)] 

  } 

  } 

  if(!length(grep("reequilibrate_steps<-",data_in))==0){ 

  if(length(grep("reequilibrate_steps<-",input_file))==0){ 

  input_file<-c(input_file,grep("reequilibrate_steps<-",data_in)) 

  }else{ 

  input_file[grep("reequilibrate_steps<-",input_file)]<-

data_in[grep("reequilibrate_steps<-",data_in)] 

  } 

  } 

  if(!length(grep("ph_extr_definitions<-",data_in))==0){ 

  if(length(grep("ph_extr_definitions<-",input_file))==0){ 

  input_file<-c(input_file,grep("ph_extr_definitions<-",data_in)) 

  }else{ 

  input_file[grep("ph_extr_definitions<-",input_file)]<-

data_in[grep("ph_extr_definitions<-",data_in)] 

  } 

  }    

   write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  }else{ 

  #read csv of definitions 

  data_in<-as.matrix(read.csv(paste(input$file_ph_extr[4]))) 

  lines_all<-NULL 

  for(line_no in 1:nrow(data_in)){ 

  line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(condition=\"",data_in[line_no,5],"\",",data_in[line_no,6]

,")",sep="") 

  if(line_no==1){lines_all<-paste("ph_extr_definitions<-

c(list(",line_i,sep="")}else{ 

  lines_all<-paste(lines_all,line_i,sep=",") 
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  } 

  if(line_no==nrow(data_in)){ 

  lines_all<-paste(lines_all,"))",sep="") 

  } 

  } 

  input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

)) 

  input_file[grep("ph_extr_definitions",input_file)]<-lines_all 

  write(input_file, file = 

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

  } 

  reactive_message$data <- paste0(on_load()) 

  updateTextInput(session,input$file_ph_extr,value="") 

}) 

    # Dyanmically use number of Phase Extraction definitions to create the correct 

number of From,To,P,T inputs 

    output$ph_extr <- renderUI({ 

      if(input$n_ph_extr_def=="load"){ 

        

if(all(ph_extr_definitions_r$data=="")|is.null(ph_extr_definitions_r$data)){ 

          def_num<-"" 

        }else{ 

          def_num<-length(ph_extr_definitions_r$data) 

        } 

        updateTextInput(session,"n_ph_extr_def",value=def_num) 

      }else{ 

        def_num<-input$n_ph_extr_def 

      } 

      if(!(is.null(def_num)|def_num==""|def_num==0)){ 

        validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of 

Phase Extraction definitions must be numeric"}else{NULL}) 

        validate(if(as.numeric(def_num)<1){"Error: Number of Phase Extraction 

definitions must be greater than 0"}else{NULL}) 

        validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Phase Extraction 

definitions must be a whole number"}else{NULL}) 

        fixedRow( 

          lapply(1:(as.numeric(def_num)*5), function(i) { 

            a<-1; ii<-i  

            while(ii>5){ii<-ii-5;a<-a+1} 

            if(ii==1){chk_From<-

try(unlist(strsplit(names(ph_extr_definitions_r$data)[a],split="_"))[1],silent=TRUE

) 

            if(class(chk_From)=="try-error"){chk_From<-NULL} 

            

column(2,textInput(paste0('ph_extr_from_',a),'From',value=chk_From))}else{ 

              if(ii==2){chk_To<-

try(unlist(strsplit(names(ph_extr_definitions_r$data)[a],split="_"))[2],silent=TRUE

) 

              if(class(chk_To)=="try-error"){chk_To<-NULL} 

              column(2,textInput(paste0('ph_extr_to_',a),'To',value=chk_To))}else{ 

                if(ii==3){chk_Condition<-

try(ph_extr_definitions_r$data[[a]][["condition"]],silent=TRUE) 

                if(class(chk_Condition)=="try-error"){chk_Condition<-NULL} 

                

column(3,textInput(paste0('ph_extr_con_',a),'Condition',value=chk_Condition))}else{ 

                if(ii==4){ 

                chk_Phases<-try(paste(names(ph_extr_definitions_r$data[[a]][-

1]),collapse=","),silent=TRUE) 

                if(class(chk_Phases)=="try-error"){chk_Phases<-NULL} 

                

column(4,textInput(paste0('ph_extr_phs_',a),'Phases',value=chk_Phases)) 

                }else{ 

                if(ii==5){ 

                 column(12,uiOutput(paste0("ph_extr_",a))) 

                } 

                }}}}}) 

        ) 
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      } 

    }) 

#auto create phase extraction inputs given number of phases 

            observe({ 

    

if(all(!input$n_ph_extr_def=="load",!is.null(input$n_ph_extr_def),!input$n_ph_extr_

def=="",!input$n_ph_extr_def==0)){ 

    lapply(1:input$n_ph_extr_def, function(i) { 

    eval(parse(text=paste0("output$ph_extr_",i,"<-renderUI({ 

    a<-i 

    chk_Phases<-try(eval(parse(text=paste0(\'input$ph_extr_phs_\',a))),silent=TRUE) 

                    if(!is.null(chk_Phases)){ 

                    if(!chk_Phases==\"\"){ 

                    phases<-unlist(strsplit(chk_Phases,split=\",\")) 

                        fixedRow( 

                        lapply(1:(length(phases)), function(j) { 

                        chk_in_ph<-

try(ph_extr_definitions_r$data[[a]][phases[j]],silent=TRUE) 

                        if(class(chk_in_ph)==\"try-error\"){chk_in_ph<-NULL} 

                        

column(3,textInput(paste0(\'ph_extr_phs_\',a,\'_\',sub_brackets(phases[j])),phases[

j],value=chk_in_ph)) 

                        })) 

                        }} 

                        })"))) 

    }) 

    } 

    }) 

    # Dyanmically use solution model file to build phase models selection 

    output$solution_models <- renderUI({ 

      if(input$solution_models_file=="load"){ 

        

if(all(solution_models_file_r$data=="")|is.null(solution_models_file_r$data)){ 

          solution_models_file<-"" 

        }else{ 

          solution_models_file<-solution_models_file_r$data 

        } 

        updateTextInput(session,"solution_models_file",value=solution_models_file) 

      } 

      if(!(is.null(input$solution_models_file)|input$solution_models_file=="")){ 

        data_directory<-gsub("/code","/data",getwd()) 

        if(!input$solution_models_file=="load"){ 

        validate(if(!dir.exists(data_directory)){return("Error: data directory does 

not exist")}else{NULL}) 

        

validate(if(!file.exists(paste0(data_directory,"/",input$solution_models_file))){re

turn("Error: Solution model file does not exist")}else{NULL}) 

        selectizeInput('use_sol_models', 'Solution models', 

solution_models_available_r(),selected=use_sol_models_r$data,multiple=TRUE) 

      } 

      } 

    }) 

        # Dyanmically use abundance phases to select which phases to show 

    output$select_abundance_phases <- renderUI({ 

    selectizeInput('show_abundance_phases', 'Show phases', 

c(abundance_phases_available_r(),"Reactive Subsystem","Extract 

Subsystem","Cumulative Extract Subsystem","Full 

System"),multiple=TRUE,selected="Reactive Subsystem") 

    }) 

            abundance_phases_available_r<- reactive({ 

     if(!is.null(input$axis)){   

    rownames(switch(input$axis, 

           

x=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_y),input$start_x

,input$end_x,input$path_label,input_pt = store_r$input_pt_r), 

           

y=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_x),input$start_y

,input$end_y,input$path_label,input_pt = store_r$input_pt_r) 
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    )[[2]])} 

    }) 

     #Create Compilation button 

    observeEvent(input$create_compilation,{ 

    #Compile PAM fields (corelation to other PAMs) 

    validate(need(!input$PAM_compilation=="","Please provide a comma seperated list 

of working files in PAM compilation")) 

    cat("Creating Compilation Legend for",input$PAM_compilation,"\n") 

    flush.console() 

    #mergers must contain the current file 

    mergers<-

sort(union(unlist(strsplit(input$PAM_compilation,",")),input$working_file)) 

    

if(!dir.exists(paste0(input$projects_directory,"/Compile"))){dir.create(paste0(inpu

t$projects_directory,"/Compile"))} 

    compile_names<-NULL 

    for(i in mergers){ 

    

attach(paste0(input$projects_directory,"/",i,"/",i,".RData"),warn.conflicts=FALSE) 

    pull_crust<-

get("crust",which(search()==paste0("file:",input$projects_directory,"/",i,"/",i,".R

Data"))) 

    

detach(pos=which(search()==paste0("file:",input$projects_directory,"/",i,"/",i,".RD

ata"))) 

    compile_names<-

union(compile_names,get_PAM_names(neaten_crust(pull_crust,input$phase_aliases),inpu

t$PAM_system)[[1]]) 

    } 

    

write.table(compile_names,paste0(input$projects_directory,"/Compile/",input$PAM_com

pilation," compilation legend.txt"),sep="\t",quote=F,col.names=FALSE) 

    cat("Compilation successfully created for",input$PAM_compilation,"\n") 

    flush.console() 

    }) 

    #Save Data button 

    observeEvent(input$save_data, { 

      switch(input$output_type, 

             "Data File"= 

               reactive_message$data <-

write_data_file(data_file(crust_out(),x_n=length(crust_out()[[1]]),y_n=length(crust

_out()),input$choose_columns,input$choose_rows,input$choose_points),input$working_f

ile,input$projects_directory,input$file_type), 

             "Grid"= 

            if(TRUE){reactive_message$data <-"Saving" 

               reactive_message$data <-draw_Grid_r()}, 

             "Phase Abundance Along Path"= 

            if(TRUE){reactive_message$data <-"Saving" 

               reactive_message$data <-draw_abundance_r()}, 

             "PAM"= 

            if(TRUE){reactive_message$data <-"Saving" 

               reactive_message$data <-draw_PAM_r()} 

             ) 

       

      }) 

          #GCDkit button 

    observeEvent(input$send_gcdkit, { 

    #mod-tag: perform maintenance on this functionality 

    library(GCDkit) 

    setwd("D:\\Rcrust\\code") 

    Rcrust() 

    eqq<-

data_file(crust,x_n=length(crust[[1]]),y_n=length(crust),choose_columns=NULL,choose

_rows=NULL,compile=c("y_i","x_i")) 

    eqq_mat<-eqq[[1]] 

    bb<-apply(eqq_mat,FUN=as.numeric,MARGIN=1) 

    accessVar("bb",GUI=FALSE) 

    #needs data frame with samples as lines and info as columns 
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        #accessVar("eqq",GUI=FALSE) 

      }) 

    solution_models_available_r <- reactive({ 

    solution_models_available<-NULL 

    data_directory<-gsub("/code","/data",getwd()) 

    qq<-

scan(file=paste0(data_directory,"/",input$solution_models_file),what="character",se

p="\n",quiet=TRUE) 

    foo<-grep("begin_model",qq) 

    for(i in 1:length(foo)){ 

      if(i==length(foo)){ 

        toto<-substr(qq[foo[i]:length(qq)],1,1) 

      }else{ 

        toto<-substr(qq[foo[i]:foo[i+1]],1,1) 

      } 

      modrow<-grep("[A-Za-z]",toto)[2] 

      line<-qq[foo[i]+modrow-1] 

      solution_models_available<-c(solution_models_available,strsplit(line," 

")[[1]][1]) 

    } 

    return(sort(solution_models_available)) 

    }) 

     grid_data_r <- reactive({ 

        if(input$Grid_variable=="Custom"){ 

        grid_in<-eval(parse(text=input$Custom_selection)) 

        }else{ 

        grid_in<-

grid_data(input$Grid_variable,input$Grid_variable_phase,crust_out(),input_pt) 

        } 

        #Remove values 

        if(input$remove_values!=""){ 

        for(val in unlist(strsplit(input$remove_values,split=",|;"))){ 

        for(i in 1:length(grid_in[[2]])){ 

        if(!is.na(grid_in[[2]][i])){ 

            if(length(unlist(strsplit(val,split="-")))>1){ 

                if(grid_in[[2]][i]>=unlist(strsplit(val,split="-

"))[1]&grid_in[[2]][i]<=unlist(strsplit(val,split="-"))[2]){grid_in[[2]][i]<-NA} 

            }else{ 

            if(grid_in[[2]][i]==val){grid_in[[2]][i]<-NA}}}} 

        } 

        } 

        #apply matrix rotations 

        if(input$rotation!=0){ 

        for(i in 1:input$rotation){ 

        grid_in[[2]]<-rotate(grid_in[[2]]) 

        }} 

        #apply matrix reflections 

        if(any(input$reflection=="Horizontal")){grid_in[[2]]<-flip_y(grid_in[[2]])} 

        if(any(input$reflection=="Vertical")){grid_in[[2]]<-flip_x(grid_in[[2]])} 

        validate(need(nrow(grid_in[[2]])>1,"Cannot plot a grid with only 1 row")) 

        validate(need(ncol(grid_in[[2]])>1,"Cannot plot a grid with only 1 

column")) 

    if(any(input$Grid_axes=="bottom")){bottom<-

create_Axes(input$Grid_bottom_axis,input$Grid_bottom_axis_grid_phase,input$Grid_bot

tom_axis_increments,"x",crust_out(),input_pt)}else{bottom<-NULL}   

    if(any(input$Grid_axes=="left")){left<-

create_Axes(input$Grid_left_axis,input$Grid_left_axis_grid_phase,input$Grid_left_ax

is_increments,"y",crust_out(),input_pt)}else{left<-NULL}   

    if(any(input$Grid_axes=="top")){top<-

create_Axes(input$Grid_top_axis,input$Grid_top_axis_grid_phase,input$Grid_top_axis_

increments,"x",crust_out(),input_pt,y_n)}else{top<-NULL}     

    if(any(input$Grid_axes=="right")){right<-

create_Axes(input$Grid_right_axis,input$Grid_right_axis_grid_phase,input$Grid_right

_axis_increments,"y",crust_out(),input_pt,x_n)}else{right<-NULL}     

    #mod-tag: look into rotations 

    #Apply rotations 

    #if(any(input$Grid_axes=="bottom")){colnames(grid_in[[2]])<-

paste0(create_Axes(input$Grid_bottom_axis,input$Grid_bottom_axis_grid_phase,length(
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crust[[1]])+1,"x",crust_out(),input_pt)[[2]][-

(length(crust[[1]])+1)],"_{",1:length(crust[[1]]),";1}")} 

    #if(any(input$Grid_axes=="left")){rownames(grid_in[[2]])<-

paste0(create_Axes(input$Grid_left_axis,input$Grid_left_axis_grid_phase,length(crus

t)+1,"y",crust_out(),input_pt)[[2]][-

(length(crust)+1)],"_{1;",1:length(crust),"}")}    

    return(list(grid_in[[1]],grid_in[[2]],bottom,left,top,right)) 

    }) 

    phase_abundance_r<-reactive({ 

    if(!is.null(input$axis)){   

    switch(input$axis, 

           

x=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_y),input$start_x

,input$end_x,input$path_label,input_pt = store_r$input_pt_r), 

           

y=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_x),input$start_y

,input$end_y,input$path_label,input_pt = store_r$input_pt_r) 

    ) 

    } 

    }) 

        PAM_r<-reactive({ 

        

PAM_calc(crust_out(),input$PAM_system,input$compile_PAM,input$PAM_compilation) 

    }) 

    neaten_crust<-function(crust_neat=NULL,phase_aliases=NULL){ 

    #rename using aliases if given 

    if(!phase_aliases==""){ 

    split_aliases<-strsplit(strsplit(phase_aliases,c(","))[[1]],"=") 

    phase_aliases<-NULL 

    phase_aliases_names<-NULL 

    for(i in 1:length(split_aliases)){ 

    phase_aliases<-c(phase_aliases,split_aliases[[i]][1]) 

    phase_aliases_names<-c(phase_aliases_names,split_aliases[[i]][2]) 

    } 

    names(phase_aliases)<-phase_aliases_names 

    #seperate merge commands 

    merge_aliases<-grep("&",phase_aliases,value=TRUE) 

    if(length(merge_aliases)!=0){ 

    phase_aliases<-phase_aliases[-grep("&",phase_aliases)] 

    } 

    merge_aliases<-strsplit(merge_aliases,"&") 

    if(length(merge_aliases)==0){merge_aliases<-""} 

    if(length(phase_aliases)==0){phase_aliases<-""} 

    if(all(phase_aliases!="")|all(merge_aliases!="")){ 

    for(x_i in 1:length(crust[[1]])){ 

    for(y_i in 1:length(crust)){ 

    delete<-NULL 

    grab<-rownames(crust_neat[[y_i]][[x_i]]) 

    if(length(grab)>0){ 

    grab_split<-strsplit(grab,"_") 

    grab_sys<-grab_name<-grab 

    for(ph in 1:length(grab)){ 

    grab_name[ph]<-grab_split[[ph]][1] 

    #if first part of system is numeric extract up to end of _ 

    if(!is.na(suppressWarnings(as.numeric(grab_split[[ph]][-1][1])))){ 

    grab_sys[ph]<-paste(grab_split[[ph]][c(-1,-2)],collapse="_") 

    }else{ 

    grab_sys[ph]<-paste(grab_split[[ph]][-1],collapse="_") 

    } 

    } 

    #rename using aliases 

    if(all(phase_aliases!="")){ 

    for(ph in 1:length(grab)){ 

    if(any(grab_name[ph]==phase_aliases)){ 

    #Rename feldspars 

        if(names(which(grab_name[ph]==phase_aliases))=="Pl|Kf"){ 

        if(length(intersect(major_elements,c("CAO","K2O")))==2){ 
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        # fix-tag: currently rename feldspars in two places, in order ot allow 

phase extraction, simplify this 

        if(crust_neat[[y_i]][[x_i]][ph,"CAO"]>crust_neat[[y_i]][[x_i]][ph,"K2O"]){ 

        grab_name[ph]<-"Pl" 

        }else{grab_name[ph]<-"Kf"} 

        } 

        }else{ 

    #Rename phases using aliases 

    grab_name[ph]<-names(which(grab_name[ph]==phase_aliases)[1]) 

    } 

    #label unwanted phases (phases of zero mass or phases labelled as "hide") 

        if(crust_neat[[y_i]][[x_i]][ph,"mass"]==0|grab_name[ph]=="hide"){ 

        delete<-c(delete,ph) 

        } 

        } 

        } 

    #number duplicates within systems 

    renamed<-paste(grab_name,grab_sys,sep="_") 

    num<-1 

    while(any(duplicated(renamed))){ 

    renamed[which(duplicated(renamed))]<-

paste(grab_name[which(duplicated(renamed))],num,grab_sys[which(duplicated(renamed))

],sep="_") 

    num<-num+1 

    } 

    rownames(crust_neat[[y_i]][[x_i]])<-renamed 

    } 

    #merge if required 

    if(all(merge_aliases!="")){ 

        systems<-c("rs","es","cumul") 

        for(sys in systems){ 

        for(merge_try in 1:length(merge_aliases)){ 

        merge_nos<-NULL 

        for(i in 1:length(merge_aliases[[merge_try]])){ 

        

if(any(paste(grab_name,grab_sys,sep="_")==paste(merge_aliases[[merge_try]][i],sys,s

ep="_"))){ 

        merge_nos<-union(merge_nos,which(grab_name==merge_aliases[[merge_try]][i])) 

        } 

        } 

        merger<-NULL 

        if(!is.null(merge_nos)){ 

        for(i in merge_nos){ 

        merger<-rbind(merger,crust_neat[[y_i]][[x_i]][i,,drop=FALSE]) 

        } 

        merged<-.wtd.add(merger,avname=names(merge_aliases)[merge_try])      

        crust_neat[[y_i]][[x_i]][merge_nos[1],]<-merged 

        rownames(crust_neat[[y_i]][[x_i]])[merge_nos[1]]<-

paste(names(merge_aliases)[merge_try],sys,sep="_") 

        if(length(merge_nos)>1){ 

        delete<-c(delete,merge_nos[-1]) 

        } 

        } 

        } 

        } 

        } 

    #remove unwanted phases 

    if(!is.null(delete)){ 

    crust_neat[[y_i]][[x_i]]<-crust_neat[[y_i]][[x_i]][-delete,] 

    } 

    } 

    } 

    } 

    } 

    } 

    return(crust_neat) 

    } 

    crust_out<-reactive({ 



  C:69 

    return(neaten_crust(store_r$crust_r,input$phase_aliases)) 

    }) 

        create_Axes<-

function(axes_variable,axes_variable_phase,axes_increments,axes_direction,crust=NUL

L,input_pt=NULL,axes_line=1){ 

    #Given axes_variable,axes_variable_phase,axes_increments,axes_direction create 

axis values       

    if(axes_increments=="Increments"){axes_increments<-11}else{axes_increments<-

as.numeric(axes_increments)} 

    if(axes_direction=="y"){ 

    i_n<-length(crust)/(axes_increments-1)*(0:(axes_increments-1))+1 

    }else{i_n<-length(crust[[1]])/(axes_increments-1)*(0:(axes_increments-1))+1} 

    if(axes_variable=="y_i"|axes_variable=="x_i"){ 

    axis_values<-i_n[-length(i_n)] 

    }else{ 

    axis_values<-NULL 

    for(i in i_n[-length(i_n)]){ 

    if(axes_direction=="y"){ 

    if(axes_variable=="Temperature"|axes_variable=="Pressure"){ 

    axis_values<-c(axis_values,input_pt[[i]][[axes_line]][,axes_variable]) 

    }else{ 

    chk<-

try(crust[[i]][[axes_line]][axes_variable_phase,axes_variable],silent=TRUE) 

    if(class(chk)=="try-error"){ 

    axis_values<-c(axis_values,0)}else{ 

    axis_values<-

c(axis_values,crust[[i]][[axes_line]][axes_variable_phase,axes_variable])} 

    } 

    }else{ 

    if(axes_variable=="Temperature"|axes_variable=="Pressure"){ 

    axis_values<-c(axis_values,input_pt[[axes_line]][[i]][,axes_variable]) 

    }else{ 

    chk<-

try(crust[[axes_line]][[i]][axes_variable_phase,axes_variable],silent=TRUE) 

    if(class(chk)=="try-error"){ 

    axis_values<-c(axis_values,0)}else{ 

    axis_values<-

c(axis_values,crust[[axes_line]][[i]][axes_variable_phase,axes_variable]) 

    } 

    } 

    } 

    } 

    } 

    axis_values<-

c(axis_values,axis_values[length(axis_values)]+axis_values[length(axis_values)]-

axis_values[length(axis_values)-1]) 

        

if(axes_variable=="y_i"|axes_variable=="x_i"|axes_variable=="Temperature"|axes_vari

able=="Pressure"){ 

        axis_title<-axes_variable 

        }else{ 

        axis_title<-paste(axes_variable_phase,axes_variable) 

        }    

    return(list(axis_title,signif(axis_values,digits=4))) 

        } 

        draw_Grid_r<-reactive({ 

        library(graphics) 

        library(grDevices) 

        validate(need(nrow(grid_data_r()[[2]])>1,"Cannot plot a grid with only 1 

row")) 

        validate(need(ncol(grid_data_r()[[2]])>1,"Cannot plot a grid with only 1 

column")) 

        bottom<-grid_data_r()[[3]] 

        left<-grid_data_r()[[4]] 

        top<-grid_data_r()[[5]] 

        right<-grid_data_r()[[6]] 

        action<-"View" 
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if(!is.null(reactive_message$data)){if(reactive_message$data=="Saving"){action<-

"Save"}} 

        if(action=="Save"){ 

        outfile_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le,"_grid_",gsub("\\/"," per ",grid_data_r()[[1]]),input$file_type) 

        if(input$file_type==".txt"){ 

        write.table(grid_data_r()[[2]],outfile_path,sep="\t",quote=F) 

        } 

        if(input$file_type==".csv"){ 

        write_test<-try(write.csv(grid_data_r()[[2]],outfile_path),silent=TRUE) 

        if(class(write_test)=="try-error"){ 

        cat("Error cannot write to ",outfile_path,", please close all programs that 

may be accessing the file then try again\n") 

        return(paste0("Error could not save Grid File: ",grid_data_r()[[1]],", file 

may be open in another program, please close all programs that may be accessing the 

file then try again\n")) 

        } 

        } 

        if(input$file_type==".ps"){ 

        outfile_path<-gsub("%","%%",outfile_path) 

        postscript(file=outfile_path,onefile=TRUE,horizontal=TRUE) 

        } 

        } 

        if(action=="View"|(action=="Save"&input$file_type==".ps")){ 

        filled.contour(t(flip_y(grid_data_r()[[2]])), 

        plot.axes={ 

        if(!is.null(bottom)){axis(1,(0:(length(bottom[[2]])-

1))/(length(bottom[[2]])-1),bottom[[2]])}else{NULL};  

        if(!is.null(left)){axis(2,(0:(length(left[[2]])-1))/(length(left[[2]])-

1),left[[2]])}else{NULL}; 

        if(!is.null(top)){axis(3,(0:(length(top[[2]])-1))/(length(top[[2]])-

1),top[[2]])}else{NULL}; 

        if(!is.null(right)){axis(4,(0:(length(right[[2]])-1))/(length(right[[2]])-

1),right[[2]])}else{NULL}},  

        color.palette=eval(parse(text=input$Grid_colours))) 

        #Colour options = 

gray.colors,heat.colours,terrain.colours,rainbow,topo.colours 

        if(!is.null(bottom)){mtext(bottom[[1]],1,line=3)} 

        if(!is.null(left)){mtext(left[[1]],2,line=3)} 

        if(!is.null(top)){mtext(top[[1]],3,line=3)} 

        if(!is.null(right)){mtext(right[[1]],4,line=3)}  

        if(action=="Save"){ 

        title(paste("Grid of ",gsub("\\/"," per ",grid_data_r()[[1]])," for 

",input$working_file)) 

        dev.off() 

        } 

        } 

        detach("package:graphics") 

        detach("package:grDevices") 

        if(action=="Save"){ 

        cat("File written to ",outfile_path,"\n") 

        return(paste0(paste("Grid of",gsub("\\/"," per ",grid_data_r()[[1]]))," 

saved to ",input$projects_directory,"/",input$working_file,"/Outputs/\n")) 

    } 

})   

draw_abundance_r<-reactive({ 

        #Plot phase abundance versus path cumulative column graph 

        library(graphics) 

        library(RColorBrewer) 

        library(grDevices) 

        #All RColorBrewer palettes display.brewer.all() 

        #Display a specific pallette display.brewer.pal(12,"Set3") 

        action<-"View" 

        

if(!is.null(reactive_message$data)){if(reactive_message$data=="Saving"){action<-

"Save"}} 
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        if(action=="Save"){ 

        outfile_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le,"_phase_abundance_",gsub("\\/"," per 

",phase_abundance_r()[[1]]),input$file_type) 

        if(input$file_type==".txt"){ 

        

write_phase_abundance(phase_abundance_r(),input$working_file,input$projects_directo

ry,input$file_type) 

        } 

        if(input$file_type==".csv"){ 

        write_test<-

try(write_phase_abundance(phase_abundance_r(),input$working_file,input$projects_dir

ectory,input$file_type),silent=TRUE) 

        if(class(write_test)=="try-error"){ 

        cat("Error cannot write file please close all programs that may be 

accessing the file then try again\n") 

        return(paste0("Error could not save Phase abundance File: file may be open 

in another program, please close all programs that may be accessing the file then 

try again\n")) 

        } 

        } 

        if(input$file_type==".ps"){ 

        cat("Error Functionality not available yet\n") 

        return(paste0("Error Functionality not available yet\n")) 

        # mod-tag: look into saving phase abundance directly to .ps 

        #outfile_path<-gsub("%","%%",outfile_path) 

        #postscript(file=outfile_path,onefile=TRUE,horizontal=TRUE) 

        } 

        } 

        if(action=="View"|(action=="Save"&input$file_type==".ps")){ 

        phase_abundance_data<-phase_abundance_r()[[2]] 

        #subset phases 

        if(!is.null(input$show_abundance_phases)){ 

        phases_to_show<-input$show_abundance_phases 

        phases_present<-rownames(phase_abundance_data) 

        if(any(phases_to_show=="Reactive Subsystem")){ 

        phases_to_show<-

union(phases_to_show,phases_present[setdiff(which(substrRight(phases_present,3)=="_

rs"),which(phases_present=="Bulk_rs"))]) 

        phases_to_show<-phases_to_show[-grep("Reactive Subsystem",phases_to_show)] 

        } 

        if(any(phases_to_show=="Extract Subsystem")){ 

        phases_to_show<-

union(phases_to_show,phases_present[setdiff(which(substrRight(phases_present,3)=="_

es"),which(phases_present=="Bulk_es"))]) 

        phases_to_show<-phases_to_show[-grep("Extract Subsystem",phases_to_show)] 

        } 

        if(any(phases_to_show=="Cumulative Extract Subsystem")){ 

        phases_to_show<-

union(phases_to_show,phases_present[setdiff(which(substrRight(phases_present,9)=="_

es_cumul"),which(phases_present=="Bulk_es_cumul"))]) 

        phases_to_show<-phases_to_show[-grep("Cumulative Extract 

Subsystem",phases_to_show)] 

        } 

        if(any(phases_to_show=="Full System")){ 

        phases_to_show<-union(phases_to_show,phases_present) 

        phases_to_show<-phases_to_show[-grep("Full System",phases_to_show)] 

        } 

        phase_abundance_data<-

phase_abundance_data[match(phases_to_show,rownames(phase_abundance_data)),,drop=FAL

SE] 

        } 

        #Normalise to percentage 

        phase_abundance_data<-apply(phase_abundance_data, 2, 

function(x){x*100/sum(x,na.rm=T)}) 

        #Set colour pallette 

        cols<-brewer.pal(min(nrow(phase_abundance_data),12), "Set3")  
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        #Plot 

        

barplot(phase_abundance_data,space=0,col=cols,border=NA,legend.text=(input$legend!=

"None"), args.legend=list(x =input$legend,bty = 

"n"),xlab=input$path_label,ylab="Phase abundance (wt.%)") 

        if(action=="Save"){ 

        title(paste("Grid of ",gsub("\\/"," per ",grid_data_r()[[1]])," for 

",input$working_file)) 

        dev.off() 

        } 

        } 

        detach("package:graphics") 

        detach("package:grDevices") 

        if(action=="Save"){ 

        cat("File written to ",outfile_path,"\n") 

        return(paste0(paste("Grid of",gsub("\\/"," per ",grid_data_r()[[1]]))," 

saved to ",input$projects_directory,"/",input$working_file,"/Outputs/\n")) 

    } 

}) 

        draw_PAM_r<-reactive({ 

        #Bind all_pres to PAM legend 

        PAM_legend<-c(PAM_r()[[3]],names(PAM_r()[[2]])) 

        names(PAM_legend)<-c("\"All fields are +\"",as.numeric(PAM_r()[[2]])) 

        compiled_legend<-c(PAM_r()[[3]],names(PAM_r()[[6]])) 

        names(compiled_legend)<-c("\"All fields are +\"",as.numeric(PAM_r()[[6]])) 

        action<-"View" 

        

if(!is.null(reactive_message$data)){if(reactive_message$data=="Saving"){action<-

"Save"}} 

        if(action=="Save"){ 

        outfile_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le," PAM",input$file_type) 

        outfile_legend_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le," PAM legend",input$file_type) 

        outfile_compile_legend_path<-

paste0(input$projects_directory,"/Compile/",paste(sort(union(unlist(strsplit(input$

PAM_compilation,",")),input$working_file)),collapse=",")," compile 

legend",input$file_type) 

         if(input$file_type==".txt"){ 

    write.table(PAM_r()[[1]],outfile_path,sep="\t",quote=F,row.names = TRUE) 

    write.table(PAM_legend,outfile_legend_path,sep="\t",quote=F,row.names = 

TRUE,col.names = FALSE) 

    

if(input$compile_PAM){write.table(compiled_legend,outfile_compile_legend_path,sep="

\t",quote=F,row.names = TRUE,col.names = FALSE)} 

  } 

  if(input$file_type==".csv"){ 

    write_test<-try(write.csv(PAM_r()[[1]],outfile_path,row.names = 

TRUE),silent=TRUE) 

    if(class(write_test)=="try-error"){ 

      cat("Error cannot write to ",outfile_path,", please close all programs that 

may be accessing the file then try again\n") 

      return(paste0("Error could not save phase assemblage map: ",outfile_path,", 

file may be open in another program, please close all programs that may be 

accessing the file then try again\n")) 

    } 

    write_test<-try(write.csv(PAM_legend,outfile_legend_path,row.names = 

TRUE,col.names = FALSE),silent=TRUE) 

    if(class(write_test)=="try-error"){ 

      cat("Error cannot write to ",outfile_legend_path,", please close all programs 

that may be accessing the file then try again\n") 

      return(paste0("Error could not save phase assemblage map legend: 

",outfile_legend_path,", file may be open in another program, please close all 

programs that may be accessing the file then try again\n")) 

    } 
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        if(input$compile_PAM){write_test<-

try(write.csv(compiled_legend,outfile_compile_legend_path,row.names = 

TRUE,col.names = FALSE),silent=TRUE) 

    if(class(write_test)=="try-error"){ 

      cat("Error cannot write to ",outfile_compile_legend_path,", please close all 

programs that may be accessing the file then try again\n") 

      return(paste0("Error could not save phase assemblage map legend: 

",outfile_compile_legend_path,", file may be open in another program, please close 

all programs that may be accessing the file then try again\n")) 

    } 

    } 

  } 

          if(input$file_type==".ps"){ 

        library(grDevices) 

        postscript(file=outfile_path,onefile=TRUE,horizontal=TRUE) 

        } 

        } 

        if(action=="View"|(action=="Save"&input$file_type==".ps")){ 

    library(graphics) 

    par(mar=c(5,4,4,5)+.1) 

    library(grDevices) 

    library(raster) 

    library(rgeos) 

    max_pol<-max(length(PAM_r()[[2]]),length(PAM_r()[[6]])) 

    raster::plot(PAM_r()[[4]],col=gray(1:max_pol/max_pol)[PAM_r()[[5]]]) 

    if(input$PAM_labels=="Numbers"){ 

    raster::text(gCentroid(PAM_r()[[4]], byid = TRUE),labels=PAM_r()[[5]],col = 

"Black") 

    }else{ 

    if(input$compile_PAM){ 

    raster::text(gCentroid(PAM_r()[[4]], byid = 

TRUE),labels=compiled_legend[PAM_r()[[5]]],col = "Black") 

    }else{ 

    raster::text(gCentroid(PAM_r()[[4]], byid = 

TRUE),labels=PAM_legend[PAM_r()[[5]]],col = "Black") 

    } 

    } 

        # Create axes 

    if(length(input$PAM_axes)>0){ 

    for(j in 1:length(input$PAM_axes)){ 

    #get variable and increment choice 

    var_choice<-

eval(parse(text=paste("input$PAM_",input$PAM_axes[j],"_axis",sep=""))) 

    

if(!(var_choice=="y_i"|var_choice=="x_i"|var_choice=="Temperature"|var_choice=="Pre

ssure")){ 

    grid_phase_choice<-

eval(parse(text=paste("input$PAM_",input$PAM_axes[j],"_axis_grid_phase",sep=""))) 

    } 

    increment_choice<-

eval(parse(text=paste("input$PAM_",input$PAM_axes[j],"_axis_increments",sep=""))) 

        if(increment_choice=="Increments"){increment_choice<-

11}else{increment_choice<-as.numeric(increment_choice)} 

    if(input$PAM_axes[j]=="left"|input$PAM_axes[j]=="right"){ 

    i_n<-length(crust)/(increment_choice-1)*(0:(increment_choice-1))+1 

    }else{i_n<-length(crust[[1]])/(increment_choice-1)*(0:(increment_choice-1))+1} 

    if(var_choice=="y_i"|var_choice=="x_i"){ 

    axis_values<-i_n[-length(i_n)] 

    }else{ 

    axis_values<-NULL 

    for(i in i_n[-length(i_n)]){ 

    if(input$PAM_axes[j]=="left"|input$PAM_axes[j]=="right"){ 

    if(var_choice=="Temperature"|var_choice=="Pressure"){ 

    axis_values<-c(axis_values,input_pt[[i]][[1]][,var_choice]) 

    }else{ 

    chk<-try(crust[[i]][[1]][grid_phase_choice,var_choice],silent=TRUE) 

    if(class(chk)=="try-error"){ 

    axis_values<-c(axis_values,0)}else{ 
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    axis_values<-c(axis_values,crust[[i]][[1]][grid_phase_choice,var_choice])} 

    } 

    }else{ 

    if(var_choice=="Temperature"|var_choice=="Pressure"){ 

    axis_values<-c(axis_values,input_pt[[1]][[i]][,var_choice]) 

    }else{ 

    chk<-try(crust[[1]][[i]][grid_phase_choice,var_choice],silent=TRUE) 

    if(class(chk)=="try-error"){ 

    axis_values<-c(axis_values,0)}else{ 

    axis_values<-c(axis_values,crust[[1]][[i]][grid_phase_choice,var_choice]) 

    } 

    } 

    } 

    } 

    } 

    axis_values<-

c(axis_values,axis_values[length(axis_values)]+axis_values[length(axis_values)]-

axis_values[length(axis_values)-1]) 

    #round to 2 significant figures 

    axis_values<-signif(axis_values,digits=4) 

    side_no<-switch(input$PAM_axes[j],"bottom"=1,"left"=2,"top"=3,"right"=4) 

    axis(side_no,(0:(increment_choice-1))/(increment_choice-1),axis_values) 

    

if(var_choice=="y_i"|var_choice=="x_i"|var_choice=="Temperature"|var_choice=="Press

ure"){ 

    mtext(var_choice, side=side_no, line=3) 

    }else{ 

    mtext(paste(grid_phase_choice,var_choice), side=side_no, line=3) 

    } 

    } 

    } 

    if(!PAM_r()[[3]]==""){ 

    title(,paste("All fields are +",PAM_r()[[3]])) 

  } 

#Add contour 

    if(!input$PAM_contour=="None"){ 

                grid_out_mat<-matrix(0,y_n,x_n) 

                if(input$PAM_contour=="Pressure"|input$PAM_contour=="Temperature"){ 

                for(x_i in 1:x_n){ 

                 for(y_i in 1:y_n){ 

            grid_out_mat[y_i,x_i]<-input_pt[[y_i]][[x_i]][,input$PAM_contour] 

                 } 

                 } 

                }else{ 

                 for(x_i in 1:x_n){ 

                 for(y_i in 1:y_n){ 

                 chk<-

try(crust_out()[[y_i]][[x_i]][input$PAM_contour_grid_phase,input$PAM_contour],silen

t=TRUE) 

    if(class(chk)=="try-error"){ grid_out_mat[y_i,x_i]<-0}else{ 

    grid_out_mat[y_i,x_i]<-chk 

    } 

                 } 

                 } 

                 }            

                x<-raster::raster(flip_y(grid_out_mat)) 

                if(input$PAM_contour_increments=="Default 

Increments"){raster::contour(x,add=TRUE,col="red")}else{ 

                

if(input$PAM_contour_increments=="In/Out"){raster::contour(x,add=TRUE,levels=0.0000

000000000000001,col="red")}else{ 

                

raster::contour(x,add=TRUE,nlevels=as.numeric(input$PAM_contour_increments),col="re

d") 

                } 

                } 

                } 

  if(action=="Save"){ 
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  title(paste("Phase Assemblage Map for",input$working_file),) 

  dev.off() 

    write.table(PAM_legend,outfile_legend_path,sep="\t",quote=F,row.names = 

TRUE,col.names = FALSE) 

    

if(input$compile_PAM){write.table(compiled_legend,outfile_compile_legend_path,sep="

\t",quote=F,row.names = TRUE,col.names = FALSE)} 

  } 

  detach("package:graphics") 

  detach("package:rgeos") 

  detach("package:raster") 

  detach("package:sp") 

  detach("package:grDevices") 

  } 

    if(action=="Save"){ 

    cat("File written to ",outfile_path,"\n") 

    cat("File written to ",outfile_legend_path,"\n") 

return(paste0("Phase Assemblage Map saved to 

",input$projects_directory,"/",input$working_file,"/Outputs/\n")) 

    }    

    }) 

    output$output_header<-renderText( 

      switch(input$output_type, 

             "Data File"=if(!is.null(store_r$crust_r)){"Compilation data file"}, 

             "Grid"=if(!is.null(grid_data_r())){paste0(grid_data_r()[[1]]," on 

(X,Y) grid")}, 

             "Phase Abundance Along 

Path"=if(!is.null(phase_abundance_r())){phase_abundance_r()[[1]]}, 

             "PAM"=if(!is.null(store_r$crust_r)){"Phase Assemblage Map"} 

    )) 

    # Dyanmically create output for viewing 

    output$output_view <- renderUI({ 

    if(!is.null(input$output_form)){ 

    switch(input$output_form, 

    "Data"=tableOutput("table"), 

    "Legend"=tableOutput("table"), 

    switch(input$output_type, 

              "PAM"=plotOutput("plot"), 

              "Grid"=plotOutput("plot"), 

              "Phase Abundance Along Path"=plotOutput("plot") 

    ) 

    ) 

    } 

    }) 

    output$table <- renderTable( 

      switch(input$output_type, 

              "Data 

File"=data_file(crust_out(),x_n=length(crust_out()[[1]]),y_n=length(crust_out()),in

put$choose_columns,input$choose_rows,input$choose_points), 

              "Grid"=if(!is.null(grid_data_r())){grid_data_r()[[2]]}, 

              "Phase Abundance Along Path"= phase_abundance_r()[[2]], 

              

"PAM"=matrix(names(PAM_r()[[2]]),,1,byrow=FALSE,dimnames=list(PAM_r()[[2]],paste("A

ll fields are +",PAM_r()[[3]]))) 

    ),rownames=TRUE 

    ) 

        output$plot <- renderPlot( 

      switch(input$output_type, 

             "PAM"=draw_PAM_r(), 

             "Grid"=draw_Grid_r(), 

             "Phase Abundance Along Path"=draw_abundance_r() 

    ) 

    ) 

            # Dyanmically create output form selections 

    output$output_form_selection <- renderUI({ 

    form_selection<-switch(input$output_type, 

             "Data File"="Data", 

             "PAM"=c("Legend","Plot"), 
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             c("Data","Plot") 

    ) 

    radioButtons('output_form',"View",form_selection,inline=TRUE) 

    }) 

     # Dyanmically create output selections 

    output$output_selection <- renderUI({ 

          #Refresh reactive outputs if they exist 

      if(exists("crust")){store_r$crust_r<-crust} 

      if(exists("input_pt")){store_r$input_pt_r<-input_pt} 

      if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk} 

      if(exists("major_elements")){store_r$major_elements_r<-major_elements} 

      if(is.null(store_r$crust_r)) 

      return("To select ouputs: first run calculation or load previously saved 

calculation 

             *(variables 'crust' and 'major_elements' must be present") 

      all_columns<-NULL 

      all_phases<-NULL 

      for(y_i in 1:length(crust_out())){ 

        for(x_i in 1:length(crust_out()[[1]])){ 

          all_columns<-union(all_columns,colnames(crust_out()[[y_i]][[x_i]])) 

          all_phases<-union(all_phases,rownames(crust_out()[[y_i]][[x_i]])) 

        } 

      } 

      #mod-tag: figure out better way of parsing multiple panels 

      conditionalPanel("true", 

      conditionalPanel("input.output_type == 'Data File'", 

      selectizeInput('choose_columns', 'Select Columns', 

c("All"="","Brief","ID","Phase","y_i","x_i","Pressure(kbar)","Temperature(C)","wt%"

,"vol%",major_elements,"mass","V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","

V0(km/s)","Vp(km/s)","Vs(km/s)","Vp/Vs","Rho(kg/m3)","Cp(J/K)","alpha(1/K)","beta(1

/bar)","S(J/K)","N(g)","Cp/Cv"),multiple=TRUE),               

      selectizeInput('choose_rows', 'Select System/Phase', c("All"="","Reactive 

subsystem","Extract subsystem",all_phases),multiple=TRUE), 

      textInput('choose_points','Select Points',"{1;1}") 

      ), 

      conditionalPanel("input.output_type == 'Grid'", 

        selectInput('Grid_variable', 'Variable', 

c("Pressure","Temperature",all_columns,"Custom"), 

selected="Pressure",selectize=TRUE), 

        conditionalPanel(condition= "input.Grid_variable.indexOf('Custom') != -1", 

        textInput('Custom_selection',"Custom Selection") 

        ), 

        

conditionalPanel("['Pressure','Temperature','Custom'].indexOf(input.Grid_variable) 

== -1", 

        selectInput('Grid_variable_phase', NULL, sort(all_phases), 

selected="Bulk_rs",selectize=TRUE)), 

        # mod-tag: allow incrments setting 

        #selectizeInput('Grid_variable_increments', NULL, 

c("Increments",3:y_n),"Increments") , 

        selectInput('Grid_axes', 'Labelled axes', c("bottom","left","top","right"), 

selected=c("bottom","left"),selectize=TRUE,multiple=TRUE), 

                       conditionalPanel(condition= 

"input.Grid_axes.indexOf('bottom') != -1", 

                        selectInput('Grid_bottom_axis', 'Bottom Axis', 

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="x_i",selectize=TRUE), 

                        

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.Grid_bottom_axis) 

== -1", 

                        selectInput('Grid_bottom_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('Grid_bottom_axis_increments', NULL, 

c("Increments",3:x_n),"Increments") 

                         ), 

                        conditionalPanel(condition= 

"input.Grid_axes.indexOf('left') != -1", 
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                        selectInput('Grid_left_axis', 'Left Axis', 

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="y_i",selectize=TRUE), 

                        

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.Grid_left_axis) == 

-1", 

                        selectInput('Grid_left_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('Grid_left_axis_increments', NULL, 

c("Increments",3:y_n),"Increments") 

                         ), 

                          conditionalPanel(condition= 

"input.Grid_axes.indexOf('top') != -1", 

                        selectInput('Grid_top_axis', 'Top Axis', 

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="x_i",selectize=TRUE), 

                        

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.Grid_top_axis) == 

-1", 

                        selectInput('Grid_top_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('Grid_top_axis_increments', NULL, 

c("Increments",3:x_n),"Increments") 

                         ), 

                          conditionalPanel(condition= 

"input.Grid_axes.indexOf('right') != -1", 

                        selectInput('Grid_right_axis', 'Right Axis', 

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="y_i",selectize=TRUE), 

                        

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.Grid_right_axis) 

== -1", 

                        selectInput('Grid_right_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('Grid_right_axis_increments', NULL, 

c("Increments",3:y_n),"Increments") 

                         ), 

      textInput('remove_values',"Remove Values"), 

      selectInput('Grid_colours', 'Colour Scheme', 

c("gray.colors","heat.colors","terrain.colors","rainbow","topo.colors"), 

selected="gray.colors",selectize=TRUE), 

      radioButtons("rotation","Rotation",c("0"=0,"90"=1,"180"=2,"270"=3), selected 

=0, inline = TRUE,width="200px"), 

      checkboxGroupInput("reflection","Reflection",c("Horizontal","Vertical")) 

      ), 

      conditionalPanel("input.output_type == 'Phase Abundance Along Path'", 

                       selectInput('axis', 'Axis', c("x","y"), 

selected="x",selectize=TRUE), 

                       conditionalPanel("input.axis == 'x'", 

                                        selectInput('path_y', 'Path', 

1:length(crust), selected=1,selectize=TRUE), 

                                        selectInput('start_x', 'Start Point', 

1:length(crust[[1]]), selected=1,selectize=TRUE), 

                                        selectInput('end_x', 'End Point', 

1:length(crust[[1]]), selected=1,selectize=TRUE) 

                       ), 

                       conditionalPanel("input.axis == 'y'", 

                                        selectInput('path_x', 'Path', 

1:length(crust[[1]]), selected=1,selectize=TRUE), 

                                        selectInput('start_y', 'Start Point', 

1:length(crust), selected=1,selectize=TRUE), 

                                        selectInput('end_y', 'End Point', 

1:length(crust), selected=1,selectize=TRUE) 

                       ), 

                       uiOutput("select_abundance_phases"), 

                       selectInput('path_label', 'Path Label', 

c("Point","Pressure(kbar)","Temperature(C)"), selected="Point",selectize=TRUE), 
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                       selectInput('legend', 'Legend', c("None","bottomright", 

"bottom", "bottomleft", "left", "topleft", "top", "topright", "right","center"), 

selected="topright",selectize=TRUE) 

      ), 

      conditionalPanel("input.output_type == 'PAM'", 

                       selectInput('PAM_system', 'System', c("Reactive 

Subsystem","Extract Subsystem","Full System"), selected="Reactive 

Subsystem",selectize=TRUE), 

                       selectInput('PAM_labels', 'Field Labels', 

c("Phases","Numbers"), selected="Phases",selectize=TRUE), 

                       selectInput('PAM_axes', 'Labelled axes', 

c("bottom","left","top","right"), 

selected=c("bottom","left"),selectize=TRUE,multiple=TRUE), 

                       conditionalPanel(condition= 

"input.PAM_axes.indexOf('bottom') != -1", 

                        selectInput('PAM_bottom_axis', 'Bottom Axis', 

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="x_i",selectize=TRUE), 

                        

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.PAM_bottom_axis) 

== -1", 

                        selectInput('PAM_bottom_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('PAM_bottom_axis_increments', NULL, 

c("Increments",3:x_n),"Increments") 

                         ), 

                        conditionalPanel(condition= "input.PAM_axes.indexOf('left') 

!= -1", 

                        selectInput('PAM_left_axis', 'Left Axis', 

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="y_i",selectize=TRUE), 

                        

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.PAM_left_axis) == 

-1", 

                        selectInput('PAM_left_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('PAM_left_axis_increments', NULL, 

c("Increments",3:y_n),"Increments") 

                         ), 

                          conditionalPanel(condition= 

"input.PAM_axes.indexOf('top') != -1", 

                        selectInput('PAM_top_axis', 'Top Axis', 

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="x_i",selectize=TRUE), 

                        

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.PAM_top_axis) == -

1", 

                        selectInput('PAM_top_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('PAM_top_axis_increments', NULL, 

c("Increments",3:x_n),"Increments") 

                         ), 

                          conditionalPanel(condition= 

"input.PAM_axes.indexOf('right') != -1", 

                        selectInput('PAM_right_axis', 'Right Axis', 

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="y_i",selectize=TRUE), 

                        

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.PAM_right_axis) == 

-1", 

                        selectInput('PAM_right_axis_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('PAM_right_axis_increments', NULL, 

c("Increments",3:y_n),"Increments") 

                         ), 

                         selectInput('PAM_contour', 'Contour', 

c("None","Pressure","Temperature",colnames(crust[[1]][[1]])), 

selected="None",selectize=TRUE), 
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conditionalPanel("['None','Pressure','Temperature'].indexOf(input.PAM_contour) == -

1", 

                        selectInput('PAM_contour_grid_phase', NULL, 

sort(all_phases), selected="Bulk_rs",selectize=TRUE)), 

                        selectizeInput('PAM_contour_increments', NULL, c("Default 

Increments","In/Out","Set Levels","Set Contours",3:y_n),"Default Increments"), 

                        textInput('PAM_compilation','PAM Compilation'), 

                        actionButton("create_compilation","Compile/Refresh 

Legend"), 

                        checkboxInput("compile_PAM", "Apply compilation?",value = 

FALSE) 

      ), 

      selectInput('file_type', 'File type', c(".csv",".txt",".ps"), 

selected=".csv",selectize=TRUE), 

      actionButton("save_data","Save To File") 

      # mod-tag: allow this functionality 

      #actionButton("send_gcdkit","Send To GCDkit") 

      ) 

    }) 

        #if working_file is not blank on first opening, load file 

        observe({ 

        if(!exists("first_load")){first_load<<-TRUE} 

        if(first_load){ 

        projects_directory<-input$projects_directory 

        working_file<-input$working_file 

         #error handling 

    reactive_message$data <-error_handling(working_file,projects_directory) 

      if(reactive_message$data=="error handling passed"){ 

         #load 

        

if(file.exists(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,"

.txt"))){ 

        reactive_message$data <- paste0(on_load()) 

        }else{ 

        reactive_message$data <- paste0("No input file found at 

",paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt")) 

        } 

        #Load workspace if it exists (previous calculation results) 

        

if(file.exists(paste0(projects_directory,"/",working_file,"/",working_file,".RData"

))){ 

          

load(paste0(projects_directory,"/",working_file,"/",working_file,".RData"),envir=.G

lobalEnv) 

        } 

        #Refresh reactive outputs if they exist 

        if(exists("crust")){store_r$crust_r<-crust} 

        if(exists("input_pt")){store_r$input_pt_r<-input_pt} 

        if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk} 

        if(exists("major_elements")){store_r$major_elements_r<-major_elements} 

    }else{ 

      reactive_message$data 

    } 

    } 

        first_load<<-FALSE 

        }) 

}) 
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User interface (ui.r) 

Build the skeleton of the user interface with a top toolbar and multiple conditional panels 

contained in grouped tabs as follows: 

 Toolbar 

o Projects directory 

o Working file 

o Save 

o Load 

o Run 

o Clear 

o Console 

 Input parameters tab 

o Size 

o Pressure and temperature 

o Bulk composition 

 Phase manipulations 

o Phase addition 

o Phase extraction 

 Modelling options 

o Modelling data 

o Additional optional parameters 

o Extra Settings 

 Outputs 

o Data file 

o Grid 

o Phase abundance 

o Phase assemblage maps 

 

############################### 
## Rcrust (ui.r) 

############################### 

#function-def: textInputRow(inputId, label, value = "") 

textInputRow<<-function (inputId, label, value = "")  

{ 

  div(style="display:inline-block", 

      tags$label(label, `for` = inputId),  

      tags$input(id = inputId, type = "text", value = value,class="input-small")) 

} 

shinyUI(fixedPage( 

# Add custom CSS & Javascript for Progress Indicator 

  tagList( 

    tags$head( 

      tags$link(rel="stylesheet", type="text/css",href="style.css"), 

      tags$script(type="text/javascript", src = "busy.js") 

    ) 

  ), 

  div(class = "busy",   

      p("Busy.."),  

      img(src="35.gif") 

  ), 

# Logo for Rcrust 

  titlePanel(img(src="Rcrust_logo.png", align = 

"left",width=150,height=60),windowTitle = "Rcrust"), 

  fixedRow(textInputRow("projects_directory","Projects 

Directory",value=paste0(substring(getwd(),1,nchar(getwd())-4),"Projects")), 
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           textInputRow("working_file","Working File",working_file), 

           

actionButton("save","Save"),actionButton("load","Load"),actionButton("run","Run"),a

ctionButton("clear","Clear"),actionButton("console","Console"),align="right"), 

  fixedRow(verbatimTextOutput("print_message")), 

#Define Tabs    

    tabsetPanel(id = "inTabset", 

#Input Parameters UI Tab  

tabPanel("Input Parameters", 

  #Size Panel 

  wellPanel("Size",actionButton("size_panel_minimiser", label = "..."), 

  conditionalPanel("(input.size_panel_minimiser)%2 == 0", 

  fixedRow( 

  column(3,textInput("x_n","X")), 

  column(3,textInput("y_n","Y")) 

  ) 

  ) 

  ), 

  #PT Panel 

  wellPanel("Pressure and Temperature",actionButton("pt_panel_minimiser", label = 

"..."),actionButton("pt_import_panel_minimiser", label = "<-"), 

  conditionalPanel("(input.pt_panel_minimiser)%2 == 0", 

    conditionalPanel("(input.pt_import_panel_minimiser)%2 == 1", 

        fileInput("file_pt", "Import P-T definitions"), 

        actionButton("import_pt","Import") 

  ), 

                    textInput("n_pt_def","Number of PT definitions"), 

    # Dynamic PT definition input boxes 

    uiOutput("pt") 

  )), 

  #Bulk Composition Panel 

  wellPanel("Bulk Composition",actionButton("bulk_comp_panel_minimiser", label = 

"..."),actionButton("bulk_import_panel_minimiser", label = "<-"), 

  conditionalPanel("(input.bulk_comp_panel_minimiser)%2 == 0", 

        conditionalPanel("(input.bulk_import_panel_minimiser)%2 == 1", 

            fileInput("file_bulk", "Import bulk composition definitions"), 

            actionButton("import_bulk","Import") 

  ), 

     textInput("n_comp_trans","Number of Component Transformations"), 

    # Dynamic transformation input boxes 

    uiOutput("trans"), 

    conditionalPanel("input.bulk_def_file == false", 

    uiOutput("maj"), 

    textInput("n_bulk_def","Number of bulk definitions"), 

    # Dynamic bulk definition input boxes 

    uiOutput("bulk") 

  ), 

  conditionalPanel("input.bulk_def_file == true", 

                   textInput("bulk_file","Bulk file") 

  ), 

  checkboxInput("bulk_def_file", "Import definitions from file",value = FALSE) 

  )) 

), 

#End of Input Parameters UI Tab 

#Phase Manipulations UI Tab  

tabPanel("Phase Manipulations",   

  #Phase Addition Panel 

  wellPanel("Phase Addition",actionButton("phase_addition_panel_minimiser", label = 

"..."),actionButton("phase_addition_import_panel_minimiser", label = "<-"), 

  conditionalPanel("(input.phase_addition_panel_minimiser)%2 == 0", 

   conditionalPanel("(input.phase_addition_import_panel_minimiser)%2 == 1", 

    fileInput("file_ph_add", "Import phase addition definitions"), 

    actionButton("import_ph_add","Import") 

  ), 

  checkboxInput("ph_add", "Perform Phase Addition?",value = FALSE), 

    conditionalPanel("input.ph_add == true", 

    textInput("n_ph_add_def","Number of addition definitions"), 

      # Dynamic phase addition definition input boxes 
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      uiOutput("ph_add") 

  ))), 

  #Phase Extraction Panel 

  wellPanel("Phase Extraction",actionButton("phase_extraction_panel_minimiser", 

label = "..."),actionButton("phase_extraction_import_panel_minimiser", label = "<-

"), 

  conditionalPanel("(input.phase_extraction_panel_minimiser)%2 == 0", 

  conditionalPanel("(input.phase_extraction_import_panel_minimiser)%2 == 1", 

    fileInput("file_ph_extr", "Import phase extraction definitions"), 

    actionButton("import_ph_extr","Import") 

  ), 

  checkboxInput("ph_extr", "Perform Phase Extraction?",value = FALSE), 

    conditionalPanel("input.ph_extr == true", 

    checkboxInput("reequilibrate_steps", "Re-equilibrate reactive subsystem after 

phase extraction?",value = TRUE), 

    textInput("n_ph_extr_def","Number of extraction definitions"), 

      # Dynamic phase extraction input boxes 

      uiOutput("ph_extr") 

    ))) 

), 

#End of Phase Manipulations UI Tab 

#Modelling Options UI Tab  

tabPanel("Modelling Options", 

  #Modelling data Panel 

  wellPanel("Modelling Data",actionButton("modelling_data_panel_minimiser", label = 

"..."), 

   conditionalPanel("(input.modelling_data_panel_minimiser)%2 == 0", 

      textInput("meemum_path","Meemum version","meemum.exe"), 

      textInput("perplex_option_file","Perple_X Option File","perplex_option.dat"), 

      textInput("thermodynamic_data_file","Thermodynamic Data File","hp11ver.dat"), 

      textInput("solution_models_file","Solution Models 

File","solution_model_673.dat"), 

      # Dynamic solution models input boxes 

      uiOutput("solution_models") 

               )), 

#Additional optional parameters Panel 

        wellPanel("Additional optional 

parameters",actionButton("additional_optional_parameters_panel_minimiser", label = 

"..."), 

          

conditionalPanel("(input.additional_optional_parameters_panel_minimiser)%2 == 0", 

                textInput("saturated_components","Saturated components"), 

                textInput("saturated_phase_components","Saturated phase 

components"), 

                textInput("independent_potential_fugacity_activity","Independent 

potential/fugacity/activity"), 

                textInput("exclude_phases","Exclude phases")                 

                 )), 

  #Extra Settings Panel 

  wellPanel("Extra Settings",actionButton("extra_settings_panel_minimiser", label = 

"..."), 

   conditionalPanel("(input.extra_settings_panel_minimiser)%2 == 0", 

      selectInput("end_of_calc","When calculation is complete:",c("Return to 

Interface"="Return to 

Interface","Logout"="Logout","Shutdown"="Shutdown"),selected="Return to 

Interface",selectize=TRUE) 

               )) 

  ), 

#End of Modelling Options UI Tab  

#Outputs UI Tab  

tabPanel("Outputs", 

         sidebarLayout( 

           sidebarPanel( 

            textInput('phase_aliases',"Phase Aliases"), 

            selectInput('output_type', 'Select Output', c("Data File","Grid","Phase 

Abundance Along Path","PAM"), selected="Data File",selectize=TRUE), 

            uiOutput("output_form_selection"), 

            # Dynamic output selection boxes 
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            uiOutput("output_selection") 

           ), 

           mainPanel( 

             h4(textOutput("output_header", container = span)), 

        uiOutput("output_view") 

           ) 

         )          

) 

,selected = "Input Parameters") 

#End of tabs     

) 

#End of page 

) 

#End of Shiny 
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ADDENDUM D: Supplementary data for Research Paper 3 

Included within the thesis files for evaluation is an excel document containing compositions 

of a natural s-type granite array and the modelled melt compositions produced by the study 

“A phase equilibrium investigation of selected source controls on the composition of melt 

batches generated by sequential melting of an average metapelite” developed as part of the 

thesis by M.J. Mayne. 
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