
HAL Id: tel-02316944
https://theses.hal.science/tel-02316944

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of new software tools for phase equilibria
modelling of open systems

Matthew Mayne

To cite this version:
Matthew Mayne. Development of new software tools for phase equilibria modelling of open systems.
Earth Sciences. Université de Lyon, 2018. English. �NNT : 2018LYSES038�. �tel-02316944�

https://theses.hal.science/tel-02316944
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2018LYSES038

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’Université Jean Monnet, Saint Etienne

Ecole Doctorale N° accréditation 488

Sciences, Ingénierie, Santé

Spécialité / discipline de doctorat : Sciences de la terre, Pétrologie

Soutenue publiquement le 03/12/2018, par :

Matthew Jason Mayne

Titre de la thèse :
Développement de nouveaux outils

informatiques permettant de modéliser

les équilibres de phases en système

ouvert

Devant le jury composé de :

White, Richard Professeur, University of St Andrews Président du jury, rapporteur

Tajcmanová, Lucie Professeur, Heidelberg University Rapporteur
Lanari, Pierre Docteur, University of Bern Examinateur
Dziggel, Annika Docteur, Aachen University Examinateur

Stevens, Gary Professeur, Stellenbosch University Co-directeur.rice de thèse
Moyen, Jean-François Professeur, Université Jean Monnet Co-directeur.rice de thèse

iii

ABSTRACT

The investigation of metamorphic processes in the Earth’s crust is integral to understanding

the formation and evolution of the Earth. These processes control the preservation potential

of the geochronological rock record and give us insight into, amongst others, the pressure

and temperature conditions of the Earth’s interior. Further, they control fluid generation and

consumption within the crust which influences global geochemical cycles within the

lithosphere, hydrosphere and atmosphere. This has important implications on the global

climate and the creation of conditions conducive to life. The dominant mechanism of change

both within and between these systems are compositional changes invoked by processes of

mass transfer. Modern quantitative phase equilibrium modelling allows the calculation of

the stable phase assemblage of a rock system at equilibrium given its pressure, temperature

and bulk chemical composition. However, current software programs have limited

functionalities for the sophisticated handling of a changing bulk composition. A new

software tool (Rcrust) has been developed that allows the modelling of points in pressure–

temperature–bulk composition space in which bulk compositional changes can be passed

between points as the system evolves. This new methodology enables quantitative process-

oriented investigation of the evolution of rocks with a focus on mass transfer. Mass transfer

within the crust generally occurs through partial melting and melt redistribution. These

processes themselves are highly dependent on the chemical distribution of the crust in

particular the water content of rocks undergoing metamorphism, thus the fluid state of rocks

undergoing partial melting is investigated. It is found that metapelitic rocks begin melting at

the fluid-saturated solidus regardless of their fluid state unless the subsolidus P-T path of the

rock is sufficiently steep such that total water loss from the hydrous silicates of the rock

cause the system to become less than fully-hydrated.

Further, as Earth’s crustal differentiation proceeds largely by production and emplacement

of granitic magmas (many of which are sourced from the melting of pelitic protoliths), a

number of source controls are investigated for their relative effect on the bulk composition

of melts produced by sequential melting and melt loss of a metapelitic starting bulk

composition. It is found that the fluid state of the system is shown to have the strongest

control on melt compositions with the pressure-temperature path having subordinate control

on the volume and composition of melts produced.

This thesis presents key examples of the use of Rcrust to model the behaviour of open

systems as well as the software developed in order to solve these problems and the graphical

iv

user interface built to enable its distribution and reuse in the petrology community.

Keywords: Rcrust, metamorphism; mass transfer, crustal differentiation, phase equilibrium

modelling

v

OPSOMMING

Metamorfisme is die sleutel dryfkrag van die mineraalverspreiding binne en stabilisering van

die kontinentale kors deur middel van chemiese differensiasie. As sodanig ondersoekende

metamorfe prosesse in die kors is integraal om die vorming en evolusie van die Aarde te

verstaan. Hierdie prosesse beheer die bewaringspotensiaal van die geochronologiese

rotsrekord en gee ons insig in onder andere die druk en temperatuurtoestande van die Aarde

se binnekant. Verder beheer hulle vloeistofopwekking en verbruik binne die kors wat globale

geochemiese siklusse in die litosfeer, hidrosfeer en atmosfeer beïnvloed. Dit het belangrike

implikasies op die globale klimaat en die skep van lewensverwante omstandighede.

Die oorheersende meganisme van verandering binne en tussen hierdie stelsels is

komposisionele veranderinge wat deur massaprosesse toegepas word. Moderne kwantitatiewe

fase-ewewigsmodellering laat die berekening van die stabiele fase-samestelling van 'n

rotsstelsel teen ewewig toe, gegee sy druk, temperatuur en grootmaat chemiese samestelling.

Huidige sagteware programme het egter beperkte funksionaliteite vir die gesofistikeerde

hantering van 'n veranderende grootmaat samestelling. 'n Nuwe sagteware-instrument

(Rcrust) is ontwikkel wat die modellering van punte in druk-temperatuur-massa-

samestellingsruimte toelaat waarin grootmaat komposisionele veranderinge tussen punte

verloop kan word as die stelsel ontwikkel. Hierdie nuwe metodologie stel kwantitatiewe

proses-georiënteerde ondersoek in na die evolusie van rotse met die fokus op massa-oordrag.

Massa-oordrag binne die kors kom gewoonlik voor deur middel van gedeeltelike smelt en

smeltherverdeling. Hierdie prosesse self is hoogs afhanklik van die chemiese verspreiding

van die kors, veral die waterinhoud van gesteentes wat metamorfose ondergaan. Die

vloeistandstaat van rotse wat gedeeltelike smelting ondergaan, word dus ondersoek. Daar

word bevind dat metapelitiese gesteentes begin smelt by die vloeistofversadigde solidus,

ongeag hul vloeistand, tensy die subsolidus P–T-pad van die rots voldoende steil is, sodat

totale waterverlies uit die waterige silikate van die rots veroorsaak dat die stelsel minder as

ten volle gehidreer word.

Aangesien Aard se korsdifferensiasie hoofsaaklik deur produksie en inplanting van

granietmagmas ontstaan (waarvan baie afkomstig is van die smelt van pelitiese protoliete), is

'n aantal bronkontroles ondersoek vir hul relatiewe effek op die grootmaat samestellings van

smeltprodukte wat deur opeenvolgende smelting en smelt verlies van 'n metapeliet begin

massa samestelling geproduseer word. Daar word bevind dat die vloeistoestand van die

stelsel getoon word om die sterkste beheer op smeltkomposisies te hê, met die druk-

vi

temperatuurpad ondergeskikte beheer op die volume en samestelling van smelt wat

geproduseer word.

Hierdie proefskrif bied sleutel voorbeelde vir die gebruik van Rcrust om die gedrag van oop

stelsels te modelleer, sowel as om die sagteware wat ontwikkel is om hierdie probleme op te

los en die grafiese gebruikerskoppelvlak wat opgebou is om sy verspreiding en hergebruik in

die petrolgemeenskap moontlik te maak, op te los.

Sleutelwoorde: Rcrust, metamorfose; massa-oordrag, korsdifferensiasie, fase-

ewewigsmodellering

vii

RÉSUMÉ

Le métamorphisme est un phénomène majeur affectant la distribution des phases minérales

au sein de la croûte continentale et participant à sa stabilisation. L’étude des processus

métamorphiques est donc essentielle pour comprendre la formation et l’évolution de la

Terre. Ces processus exercent un contrôle sur le potentiel de préservation des roches à sa

surface et nous renseignent entre autres sur les conditions de pression–température régnant

en profondeur. Ils contrôlent également la production et le stockage de fluides au sein de la

croûte ce qui influence les cycles géochimiques au sein de la lithosphère, de l’hydrosphère

et de l’atmosphère et a, de fait, des implications importantes sur le climat et l’apparition de

la vie sur Terre.

La principale source de variabilité au sein de ces systèmes correspond à des changements de

composition chimique résultant eux-mêmes de transferts de matière. Les techniques

modernes de modélisation quantitative des équilibres de phases permettent de calculer

l’assemblage minéralogique stable au sein d’un système à l’équilibre pour lequel les

paramètres pression, température et composition chimique sont connus. Ceci étant, les

programmes informatiques actuels ne possèdent que de fonctionnalités limitées pour

modéliser et appréhender les conséquences de changements de composition chimique du

système au cours du métamorphisme. Un nouvel outil informatique (Rcrust) a été développé

pour permettre de calculer l’assemblage minéralogique stable dans un système soumis à des

variations de composition lors de son évolution dans l’espace multidimensionnel pression–

température–composition chimique. Cette nouvelle approche méthodologique permet

d’étudier de manière quantitative les processus métamorphiques et en particulier les

conséquences des transferts de matière. Au sein de la croûte, ces derniers sont généralement

associés à la fusion partielle des roches et à la migration des liquides magmatiques. Ces

phénomènes sont tous deux fortement contrôlés par la composition chimique des roches

crustales, en particulier leur teneur en eau. Ainsi, ce travail s’intéresse au rôle et à l’état des

fluides présents dans les roches lors des phénomènes de fusion partielle. Il est ainsi montré

que les métapélites commencent à fondre en franchissant leur solidus saturé en fluide, et ce,

quel que soit leur état de saturation vis-à-vis de ce fluide. Une exception à ce comportement

s’observe dans le cas où le trajet pression–température suivi par la roche comprend une

importante décompression quasi-isotherme en conditions subsolidus. Ceci a pour

conséquence d’entrainer une perte en eau du système qui présentera ainsi un assemblage

minéralogique différent de celui observé lorsque la teneur en eau est maximisée au solidus

viii

sans atteindre la saturation (conditions dites d’hydratation maximale).

La différenciation de la croûte continentale résulte de la production et migration de magmas

granitiques dont une partie importante est issue de la fusion de protolithes pélitiques. Ainsi,

les conséquences de variations compositionnelles au sein de telles sources sur la chimie des

liquides produits par fusion partielle ont été appréhendées en modélisant une séquence

d’évènements de fusion/extraction, reproduisant un comportement en système ouvert. Il est

montré que l’état du système vis-à-vis des fluides est le paramètre qui exerce le plus fort

contrôle sur la composition chimique des liquides produits.

Ce travail de thèse présente une série d’exemples illustrant l’utilisation de Rcrust pour

modéliser les systèmes ouverts tout en précisant la méthodologie suivie pour l’élaboration

de l’outil ainsi que l’interface graphique construite afin de permettre sa distribution et son

utilisation au sein de la communauté pétrologique.

Mots-clés: Rcrust, métamorphisme, transfert de matière, différenciation crustale,

modélisation des équilibres de phases

ix

ACKNOWLEDGEMENTS

First off I would like to say a massive thank you to my supervisors Gary Stevens, Jeff

Moyen and Tim Johnson. I have learnt so much by working with each of you and in this

way you have shaped my abilities and future potentials as a scientist. The time you spent on

me is much appreciated. Thank you also needs to go to all the incredible role models I have

met in the petrological community, there are too many to mention here so I will just make a

special mention to Chris Yakymchuck: for your meticulous reviews and extensive

discussions; and Lars Kaislaniemi for your help with the wrapper and teaching me to

compile.

Further special mention needs to go to my two abstract translators and all round life

coaches: Simon Couzinié, thank you for our intense discussions on every rock face and all

the crazy adventures we managed to squeeze in amongst those, thank you for welcoming me

into your family and always jumping to help me at a moment’s notice. Kirstin Cilliers thank

you for being an absolute inspiration, your energy and enthusiasm for life is contagious, I

wouldn’t have gotten here without it.

I also would not have been able to get anywhere without the bureaucratic and administrative

support of Tannie Loxie, Gillian Strydom, George Olivier, Emmanuelle Beretta, Narine Van

Den Berg, Jannike Bergh and the staff at ResidHotel. Also thank you Wendy Knott-Craig

from IOM3 for the incredible opportunities you afforded me and for the friendship we

developed.

Thank you to everyone who opened up their lab (and often their couch) to me during my

travels with special mention to Martin Hand, Renée Tamblyn, Kiara Alessio and Laura

Morrissey at the University of Adelaide; Erin Martin, Kate Glasson, Michael Hartnady, Jo

Moore, Eleanore Blereau and Denis Fougerouse at Curtin University; Jeroen van Hunen and

Ian Chaplin at Durham Universit; Robyn Ormond at University of Johannesburg; Tawnee

Britt at the University of Pretoria; Matthias Schmitz and Kathrin Schneider at Friedrich-

Schiller-Universität Jena. Thank you all for going above and beyond.

Un gros bisous to the people of the LMV: Adrien Vezinet for all the climbing, running,

camping, via ferrata, stupeflip and so much more, you made my stay an adventure; to

Bogdana Radu for letting me sleep on your couch and constantly expanding my music

horizons; to Gautier Nicoli for our in depth discussions and “beers till the bull”; to Cynthia

Sanchez-Garrido for your constant patience; to Cyril Chelle-Michou for introducing me to

the best gallette in town; to Oscar Laurent and Arnaud Villaros you are the best braaing

x

Frenchmen I have ever met; to Lucile Dessimoulie and Théo Mouhrier for sharing those

“times well wasted” and forest adventures; to Damien Fourure for instantly including me in

everything; to Delphine Smittarello for the games of pool and Antonin Laurent for the hikes;

to Maud Herbelin and Ratiba Kared for so willingly opening your office to me; to Michael

Mintrone for translating the Zodiac knight; to Camille Dusséaux for Montpellier ramblings;

to Capucine Albert for our random meetings and finally to the honorary LMV man Lucas

Cassini thank you for your incredible company, for every time you joined me running up

that hill and every time we visited Lipopette.

To the South African lab old and new thank you: to Valby van Schijndel and Jeanne Taylor

for hiring me in your adventures; to Marcos García Arias for teaching me the way of

Perple_X; to Shawn Kitt, Tomas Hedin and Duncan Hall for including me in the STDM

experience and the tennis games; to Andrew Watson for the food lovers burgers and Johnny

Gold, to Lunga Bam for the imperative advice on family; to Sara Burness for helping me

limp down Lion’s Head and your constant stream of infectious happiness; to Nonkuselo

Madlakana for your daily motivations and that ferry crossing; to Tolene Kruger for those

custard danishes; to Kathryn Cutts for the park runs; to Shane Doggart for the crazy geology

talks, flat earth theorists and that pegmatite; to Tsitsi Emmanuel for our existential

conversations; to Joshua Chisambi for being the neatest and nicest office neighbour; to

Marelize Grobbelaar for the best hand delivered sandwich in town; to Raphael Gordilho for

introducing me to the strangest Brazilian food; to Roxanne Soorajlal for including me in

your work and braving Rcrust; to Moses Angombe for those after work beers and that

orthophoto; to Lebogang Babedi for the late night lab discussions; to Alice Petronio for your

music suggestions; to Schalk Walters for teaching me the meaning of kindness; to Robyn

Symons for the belly dancing lessons and Louis Jonk for the magic lessons; to Perpetua

Okoye for your constant motivations in checking up on me; and to Kirstyn Barrat for always

showing me there is a reason to laugh. To the new lab: Ian Weir, Jared Van Rooyen, Jean

Loock, Ryan Cloete, Ismael Kangueehi; Charl Cilliers and Marisa Storm thank you for

providing and continuing such a fun and welcoming work environment this place has always

felt like home. And finally a special mention to the next wave of Co-tutellers to Helena Fest

for those roadtrips, balcony beers and fusebal games; to Moritz Muhlberg for Canyon,

always saying yes to every adventure and for leading the hike when I needed you to and to

Tahnee Otto for immediately becoming one of us on arrival I wish you all the best of luck

for the future and am confident you will succeed.

To my UCT family: Antónia de Carvalho, Simon Schorn; Lorena Tafur Martin Giger and

xi

Tristan Stuck thank you for always making me feel welcome in the house of the “rival”.

How do I even mention “the pack”: to Ben Whitehead, Anya Eilers and Sabrina Skeat you

were with me through every late night NARGA session, every cold morning packing down

tents and will always remember to not mention “front-left”. You supported me from the

moment I chose who I wanted to be, and incredibly could see this moment coming before I

knew it myself. You built me up every step of the way along our rapidly diverging lives and

for that I am forever in your debt.

To Sabrina Kumschick an incredibly special thank you for your “unbiased” support and

dedication. You calmed me when things were mad and psyched me up when I felt down.

You inspire me every day and give me the strength to be more than I am.

Finally, to my incredible family who have suffered through it all my whole life, you were

behind me in every step and unconditionally believed in me especially when you weren’t

quite sure what I was doing: Corbin, Karen and Alan Mayne I will never be able to describe

what your love means to me.

Then of course thank you to Stellenbosch University and my funder: The financial

assistance of the National Research Foundation (NRF) towards this research is hereby

acknowledged. Opinions expressed and conclusions arrived at, are those of the author and

are not necessarily to be attributed to the NRF. Funding by the French Embassy of South

Africa to M.J.Mayne and by the South African Research Chairs Initiative (SARChl) to G.

Stevens is gratefully acknowledged. M.J. Mayne acknowledges support from the European

Research Council (project MASE, ERC StG 279828 to J. van Hunen).

xii

TABLE OF CONTENTS

Declaration

Abstract

Opsomming

Résumé

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Abbreviations

Chapter 1: Introduction

Chapter 2: Presentation of research paper 1: Performing process–

oriented investigations involving mass transfer using Rcrust: a new

phase equilibrium modelling tool

Chapter 3: Presentation of research paper 2: The trajectory of the P–T

path controls the onset of melting in metasedimentary rocks

Chapter 4: Presentation of research paper 3: A phase equilibrium

investigation of selected source controls on the composition of melt

batches generated by sequential melting of an average metapelite

Chapter 5: Conclusion and future perspectives

Bibliography

Addendum A: Electronic copy of Rcrust software

Addendum B: User manual for Rcrust

Addendum C: Presentation of the programming code for Rcrust

Addendum D: Supplementary data for Research Paper 3

Page

ii

iii

v

vii

ix

xii

xiii

xvi

xvii

1

15

38

59

89

97

A:1

B:1-37

C:1-83

D:1

xiii

LIST OF FIGURES

Chapter 1

Fig. 1 Example of a petrogenetic grid taken from Spear et al.

(1999)

Fig. 2 Example of a pressure-temperature isochemical phase

diagram taken from Powell et al. (1998)

Fig. 3 Modelling of melt extraction using THERMOCALC taken

from Yakymchuk and Brown (2014)

Fig. 4 Modelling of garnet fractionation using Theriak/Domino

taken from De Capitani and Petrakakis (2010)

Fig. 5 Modelling of melt extraction using Perple_X taken from

(Connolly, 2018)

Fig. 6 Old and new Graphical user interface built for Rcrust

Chapter 2

Fig. 1 Division of the bulk composition of the Full System into

portions representing the reactive subsystem, isolated

subsystem and extract subsystem respectively

Fig. 2 Rcrust modelling procedure

Fig. 3 Modelling of subsolidus water loss

Fig. 4 Modelling melt loss events

Fig. 5 Modelling entrainment of phases during melt loss

Page

2

3

5

6

6

11

20

22

24

26

28

xiv

Fig. 6 Modelling fractional crystallisation of cumulative extract

subsystem

Fig. 7 Modelling limited availability of feldspar

Chapter 3

Fig. 1 P–T diagrams illustrating three modelled path arrays

Fig. 2 Phase abundance and water abundance in the reactive

subsystem for fluid-saturated, fluid-absent and fluid

restricted rocks

Fig. 3 Melt abundance and solidi in P–T space produced by

different path arrays

Fig. 4 Details of the fluid absent system projected from the P–T

origin

Chapter 4

Fig. 1 Starting bulk compositions produced by varying Mg# and

Ca#

Fig. 2 Phase abundance and cumulative melt produced along P–T–

X paths for fluid-saturated, fluid-absent and fluid restricted

rocks

Fig. 3 Bulk compositions of natural data array of s-type granites and

modelled melt extracts for the source controls: Mg#, Ca#,

H2O, P–T and Melt threshold expressed as wt.% oxide versus

wt.% SiO2

Page

30

32

44

48

50

52

67

69

72

xv

Fig. 4 Bulk compositions of natural data array of s-type granites and

modelled melt extracts for the source controls: Mg#, Ca#,

H2O, P–T and Melt threshold expressed as MgO + FeOt;

Mg#; A/CNK and Na/Ca all versus wt.% SiO2

Fig. 5 Bulk compositions of natural data array of s-type granites and

modelled melt extracts grouped by fluid state and temperature

intervals

Chapter 5

Fig. 1 Comparison of isochemical phase diagrams and phase

assemblage maps created in Rcrust

Page

74

78

92

xvi

LIST OF TABLES

Chapter 1

Table. 1. Suitability of commonly used thermodynamic modelling

programs for phase equilibrium modelling in open systems

Chapter 2

Table. 1. Starting bulk composition for calculations

Table. 2. Bulk composition of the cumulative extract subsystem formed

by subsolidus water loss, supersolidus melt loss and

entrainment

Chapter 3

Table. 1. Modelling modes for handling of bulk H2O content

Table. 2. Starting bulk composition for calculations

Chapter 4

Table. 1. Initial bulk compositions used in the construction of path

dependent P-T-X paths with magnesium number (Mg#) and

calcium number (Ca#) altered where applicable.

Table. 2. Summary of the source controls considered and each of their

3 cases.

Chapter 5

Table. 1. Suitability of the software presented in this thesis for phase

equilibrium modelling in open systems

Page

7

24

28

46

46

66

66

89

xvii

LIST OF ABBREVIATIONS

Minerals:

Abbreviations for rock forming minerals were taken from Whitney & Evans (2010) as:

Bt Biotite

Crd Cordierite

Fsp Feldspar (plagioclase and alkali)

Grt Garnet

H2O Water

Ilm Ilmenite

Ky Kyanite

Opx Orthopyroxene

Qz Quartz

Sil Sillimanite

Spl Spinel

St Staurolite

Terminology:

* Multiplication

/ Division

∆P/∆T or dP/dT Pressure versus temperature gradient

A/CNK Al2O3/(CaO+Na2O+K2O) by mol.%

aH2O Water activity

An% Anorthite percentage of feldspar as Ca/(Ca+Na)*100 by mol.%

xviii

Ca# Calcium number of the bulk as Ca/(Ca + Na)*100 by mol.%

cos trigonometric function cosine

IS Isolated subsystem

E–HPG Eclogite–high–pressure granulite

ES Extract subsystem

FS Full system

G–UHT Granulite–ultrahigh temperature

GNU GNU's Not Unix

Al Aluminium

Ca Calcium

°C Degrees Celsius

Fe Iron

FeOt Total Iron as FeO + 0.89981*Fe2O3 by wt.%

GCDkit Geochemical Data Toolkit

GUI Graphical user interface

H Hydrogen

IBH Isobaric heating

ITD Isothermal decompression

K Potassium

kbar kilobar

MAD Metamorphic assemblage diagrams

MCT Melt Connectivity Transition

Mg Magnesium

xix

Mg# Magnesium number as Mg/(Fe + Mg)*100 by mol.%

mol.% molar percentage

Mn Manganese

Na Sodium

NCKFMASHTO Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O

O Oxygen

ORCiD Open Researcher and Contributor ID

P-T-X Pressure-Temperature-Bulk composition

pi mathematical constant ∏

RS Reactive subsystem

Si Silicon

sin trigonometric function sine

Ti Titanium

vol.% volume percentage

wt.% weight percentage

x_i an increment in the vector direction x

y_i an increment in the vector direction y

1

CHAPTER 1

INTRODUCTION

The formation of igneous and metamorphic rocks is fundamental to determining the

chemistry of the Earth’s crust. Processes of metamorphic devolatilisation, partial melting,

magma emplacement, fractional crystallisation and hydrothermal alteration, amongst others,

cause the redistribution of elements within the crust. Partial melting and melt migration into

the upper crust, in particular, redistributes heat producing elements within the crust

depleting the lower crust in these incompatible elements and enriching the upper crust. This

in conjunction with the formation of the mantle lithospheric keel is fundamental to the

stability of Earth’s continents. These processes and their effects can extend to the Earth’s

surface through volcanic activity, hydrothermal venting and the tectonic exhumation of

rocks leading to their exposure at the surface and weathering. Consequently, H2O and CO2

can be released to the atmosphere/hydrosphere or re-absorbed into the lithosphere by

weathering, sedimentation and lithification. Thus lithospheric processes can directly affect

the hydrosphere and atmosphere as evidenced by major disturbances in the global

geochemical cycles (Friend, 1973; Amiotte Suchet and Probst, 1995). This has important

implications for secular changes in the Earth’s climate and the availability of nutrients to the

biosphere.

Since the majority of crustal processes occurring at depth are inaccessible to direct

observation, observations of these processes must come from the incomplete sample set of

rocks brought to the surface through erosion, uplift or transport through volcanic plumbing

systems. In order to extend this dataset, laboratory experiments are conducted which aim to

reproduce the conditions of the Earth’s interior and then expose either natural or artificially

created samples to these conditions. Other types of experiments commonly functioning in

simple systems or using individual minerals measure the range of physical and chemical

parameters necessary to define the thermodynamic properties of minerals and fluids. This

thermodynamic data can be used to infer the conditions of a natural rock’s formation (Spear

et al., 2016).

Building on this dataset by cross referencing geochemical studies of natural rocks and

experimental studies allowed individual mineral reactions to be identified (Berman, 1991).

Compilations of reactions in a simple chemical system were first displayed on petrogenetic

grids (Albee, 1965)(e.g. Fig. 1). The compilation of internally consistent thermodynamic

2

datasets allowed the quantitative calculation of subsolidus phase equilibria (Helgeson et al.,

1978; Powell and Holland, 1985, 1988; Gottschalk, 1997; Holland and Powell, 1998).

Fig. 1. Petrogenetic grid in pressure (P)–temperature (T) space showing the location of

selected reactions in the system K2O–Al2O3–SiO2–H2O (KASH) taken from Spear et al.

(1999). Abbreviations are given as follows: And = andalusite, As = Al2SiO5, IP1 = Invariant

point, Kfs = K-feldspar, Ky = kyanite, L = liquid, Ms = muscovite, Qtz = quartz, Sil =

sillimanite, V = H2O. Note: Reaction number 5 will only be observed in sillimanite absent

rocks

In order to investigate the possible reactions that a single rock could experience,

compositionally relevant phase diagrams were created from petrogenetic grids by

considering a single bulk composition thereby creating isochemical phase diagrams of P–T–

X space (Hensen and Essene, 1971; Hensen and Harley, 1990) (e.g. Fig. 2). These diagrams

were initially termed ‘pseudosections’ but that name has recently been argued to be removed

from common usage in favour of the term “metamorphic assemblage diagrams” (Spear and

Pattison, 2017). Expansion of these data sets to include fluids and melts along with the

creation of activity-composition models which describe phases by proportions of respective

compositional endmembers has allowed more complicated systems to be investigated and

for pressure-temperature conditions above the solidus to be investigated (Berman, 1988;

Powell and Holland, 1988; Ghiorso and Sack, 1995; Holland and Powell, 2011; White et al.,

2014).

3

Fig. 2. Pressure (P)–temperature (T) isochemical phase diagram calculated in the system

K2O–FeO–MgO–Al2O3–SiO2–H2O for a pelite composition: Al2O3=41.89, MgO=18.19,

FeO=27.29, and K2O=12.63 (in mol.%) taken from Powell et al. (1998). Muscovite, quartz

and water are in excess. Abbreviations are given as follows: and = andalusite; bi = biotite;

chl = chlorite; g = garnet; ky = kyanite; sill = sillimanite; st = staurolite. Note: this diagram

only shows phase assemblage fields applicable to this specific bulk composition.

Computer programs have been used to perform phase equilibrium modelling by either using

the simultaneous solution of non-linear equations as is the case in THERMOCALC (Powell

and Holland, 1988; Powell et al., 1998) or the minimization of Gibbs free energy of the

system (∆G) as is the case in Perple_X (Connolly and Kerrick, 1987; Connolly, 2005) and

Theriak/Domino (De Capitani and Petrakakis, 2010). This modelling traditionally focuses

on considering one bulk composition in isochemical phase diagrams or on the linear scaling

between two bulk compositions in isobaric or isothermic phase diagrams. Lab experiments

also primarily focus on systems occurring in equilibrium and those that consider melting

generally only simulate equilibrium batch melting due to the technical limitations of

performing phase fractionations in an experimental capsule and the challenge of diminishing

volumes of the products produced if fractionation is induced. However, in some cases the

modelling of natural systems mandates a more sophisticated handling of a changing bulk

composition.

Recent studies have begun to focus on the effects of compositional changes in open systems

(Brown and Korhonen, 2009; Yakymchuk and Brown, 2014; Stuck, 2016; Webb et al.,

4

2015). As rocks are buried and subjected to processes of metamorphism they can dehydrate

(White and Powell, 2010; Webb et al., 2015) or experience periods of fluid infiltration

(Johnson et al., 2003; Korhonen et al., 2012) and hydrothermal alteration (White et al.,

2003; Riesco et al., 2004; Nicoli and Dyck, 2018). If these systems reach sufficiently high

temperatures, they can begin to melt and experience melt loss (Vigneresse and Burg, 2000;

White et al., 2002; White and Powell, 2010; Brown and Korhonen, 2009; Johnson et al.,

2011; Diener and Fagereng, 2014; Yakymchuk and Brown, 2014; Mayne et al., 2016;

Morrissey et al., 2016; Stuck and Diener, 2018). The movement of melts or magmas can

form complicated systems involving entrainment of minerals to melt (Taylor and Stevens,

2010; Garcia-Arias and Stevens; Stevens et al., 2007; Clemens and Stevens, 2012) as well as

magma mixing, mingling and hybridisation (Beard et al., 2005; Clemens and Stevens,

2012). At sites of emplacement magma systems may differentiate further through processes

of fractional crystallisation or assimilation (Blevin and Chappell, 1992; Linnen and Keppler,

2002). Throughout these processes chemical fractionation of major element, trace element

and isotope systems occurs producing a complex array of chemical signatures which could

provide insight into the mechanisms of compositional change in these rocks.

López-Carmona et al. (2014) classify the potential changes to the effective bulk composition

of a rock (the portion of the rock that is available to the reacting assemblage of phases) into

two mechanisms. “Open system behaviour” (discussed above) and “successive

(re)equilibrations” which result from the growth of crystals with slow intracrystalline

diffusion thereby temporarily removing their chemical constituents from the reactive system

until diffusion may make them re-available. These two mechanisms can occur in

conjunction with each other.

Lanari and Engi (2017) have presented a methodology (Lanari et al., 2018) and software

tool (Lanari et al., 2014) for approximating and interrogating the volumes of equilibration in

a rock which has compositionally zoned minerals. However, current thermodynamic

modelling software has limited functionalities for dealing with the bulk compositional

changes induced by “Open system behaviour”. Here I classify bulk compositional changes

occurring in open systems as phase manipulations consisting of phase additions (e.g. fluid

infiltration, wall rock assimilation) and phase extractions (e.g. dehydration, melt loss). The

functionalities of the three most commonly used thermodynamic modelling programs for

metamorphic studies in performing phase manipulations are detailed below and summarised

in Table 1.

5

The use of current thermodynamic modelling software to model open system behaviour

THERMOCALC

A “read bulk info” script can be used to manually change the abundance of a phase and

recalculate a bulk composition. This can be iteratively used to increase the proportion of a

phase or to fractionate a phase e.g. (Zeh, 2006). By calculating individual panels each time

the bulk composition changes a stitched model of open system processes can be created e.g.

(Yakymchuk and Brown, 2014) (Fig.3).

Fig. 3. Molar proportion of phases plotted against temperature for isobaric heating at 12

kbar starting with an average amphibolite-facies pelite composition calculated using

THERMOCALC. The system is considered as conditionally open with melt loss induced by

removing six-sevenths of the melt present wherever the P–T path intersects the 7 mol.%

melt isopleth using the ‘read-bulk-info’ script. Abbreviations are as follows: Bt = biotite,

Grt = garnet, Ilm = Ilmenite, Kfs = K-feldspar, Ky = kyanite, Liq = liquid, MLx = melt loss

event, Ms = muscovite, Pl = plagioclase feldspar, Qtz = quartz. Taken from Yakymchuk and

Brown (2014).

Theriak/Domino

Input commands in the “drv-file” can be specified to remove or add a set proportion of

phase(s) from the system along a calculation path (De Capitani and Petrakakis, 2010) (Fig.

4). Commands can also be specified to remove or add set compositions along a path.

6

Fig. 4. Fractionation of garnet in a metapelite along a prograde P–T path calculated using

Theriak/Domino. At incremental steps along the path the composition of the newly grown

garnet is subtracted from the bulk composition. X shows the composition of the garnet in the

reactive system as Alm = almandine, Gr = grossular and Py = pyrope. n shows the modal

amount of phases in the reactive system as Bi = biotite, Chl = chlorite, Ctd = chloritoid, Grt

= garnet, Ky = kyanite, Ms = muscovite, Parg = pargasite, Pg = paragonite, Pl = plagioclase,

St = staurolite. The light-shaded area is a P–T segment where garnet is not growing and x is

not defined. Taken from De Capitani and Petrakakis (2010).

Perple_X

“Phase fractionation calculations” can be performed by selecting this option during creation

of the build file. This fractionation can be along isobaric, isothermic or a user defined P-T

path (Connolly, 2005) (Fig. 5). Fractionation must remove all of a given phase(s) and the

independent variable used to increment the calculation path must increase or decrease

continuously.

Fig. 5. Melt loss from an average metapelitic bulk composition along a clockwise

7

decompression path (red arrow in left panel on top of an isochemical phase diagram of

pressure–temperature space of the same composition) calculated using Perple_X. All melt is

extracted from the system whenever it occurs as a stable phase. The volume percentage of

the phases in the reactive system are shown in the right panel as AbPl = plagioclase feldspar,

Bio = biotite, Gt = garnet, hCrd = cordierite, ky = kyanite, Pheng = phengite, q = quartz, San

= sanadine, sill = sillimanite. Taken from (Connolly, 2018).

Table 1. Suitability of commonly used thermodynamic modelling programs for phase

equilibrium modelling in open systems

Software Calculation

method

Refinements User Input Phase manipulations

Thermocalc

[1]

Solution of

nonlinear

equations

Not applicable

(individual

reaction lines are

calculated)

Command

line and

scripts

At a single point, manually change

proportion of phase(s)

Theriak

Domino [2]

Gibbs free

energy

minimisation

Reaction

boundary

gridded

refinement

Command

line or text

file input

Along a single path, fractionation or

addition of a set proportion of

phase(s) or set proportion of

chemical components

Perple_X

[3]

Gibbs free

energy

minimisation

Fixed regular

grid refinement

Executable

queries or

text file

input

Along a single path, fractionation of

the full proportion of selected

phase(s). Paths must be defined with

one variable increasing or

decreasing i.e. no loops

[1] http://www.metamorph.geo.uni-mainz.de/thermocalc/; [2]

https://titan.minpet.unibas.ch/minpet/theriak/theruser.html; [3] http://www.perplex.ethz.ch/

The need for sophisticated handling of bulk compositional changes induced by phase

manipulations

The presented thermodynamic modelling softwares have been shown to be able to model

some open system processes however their use in this manner becomes restrictive when

attempting to handle more complex open system behaviour that closer approximates the

natural system. In such cases there may be a need to consider:

 Multiple phase fractionations concurrently (e.g. extraction of melt and peritectic

minerals),

 Conditional phase manipulations (e.g. extraction of melt when a melt threshold is

http://www.metamorph.geo.uni-mainz.de/thermocalc/
https://titan.minpet.unibas.ch/minpet/theriak/theruser.html
http://www.perplex.ethz.ch/

8

exceeded)

 Phase manipulation proportions that are relative to the system (e.g. retention of melt

on grain boundaries during melt extraction)

 Complex P–T paths (e.g. multi-stage metamorphism)

 A variety of conditional arguments in one modelling space (e.g. prograde

devolatilisation of a subsolidus assemblage followed by melt loss of that assemblage

above the solidus)

 Multiple potential P–T paths (e.g. the water content of a subsolidus rock is pressure

dependent thus modelling in P–T space with a single water content introduces

inherent inconsistencies)

 Compositional heterogeneity on the mineral, rock and crustal scale

Aims of this study

This study aims to present a methodology for the modelling of phase equilibrium in open

systems. This methodology seeks to address the current limitations of thermodynamic

software in the handling of bulk compositional changes induced by open system behaviour.

Further, this study aims to use these new tools to build a model for crustal anatexis in which

the effects of compositional change throughout this process is investigated. In order to

accurately model anatexis this study will develop a methodology for the handling of the

subsolidus fluid state of a system before anatexis. The combined effect of the pressure-

temperature and bulk composition in this system, with sophisticated control of fluid state,

will be investigated for its control on the position of the solidus. The controls of fluid state,

P–T path and melt loss threshold will then be investigated for their effect on the resultant

bulk composition of melts cumulatively extracted from a protolith. These source controls

will be compared for their relative strength of influence and contrast with the effect of

compositional heterogeneity in the source.

Structure of the thesis

This thesis presents the software program Rcrust (the name deriving from the fact that it is

written in R and was developed to solve problems in crustal petrology) as a tool for the

modelling of phase equilibrium in open systems.

9

Performing process oriented investigations

Chapter 2 presents the way in which the new functionalities of Rcrust allowed a

methodology to be developed using mass transfer to perform process oriented investigations

in open systems. These methodologies were built concurrently with further developments of

Rcrust with the aim of creating a thermodynamically constrained model for crustal anatexis.

The first challenge to this model was accurately determining the water content of a

metamorphic rock. During the subsolidus prograde metamorphism of a rock the total water

content of a rock may lie within the hydrous silicates of the rock, may exist as a free fluid

phase in the limited pore space of the rock, or exceeding this, must leave the system. Rcrust

models this behaviour by setting a maximum allowable amount of free water that can occur

in the system and extracting all water that exceeds this amount. This allows the rock to

progressively loose total water content from the reactive subsystem during its subsolidus

evolution. Once the solidus is crossed melt is produced at the interface between reactant

minerals. As this melt amount builds up an interconnected melt network may form and if it

exceeds some critical threshold melt loss may occur. This process is thought to have a

maximum critical threshold value by which it will occur estimated by the melt connectivity

transition by Rosenberg and Handy (2005). Rcrust simulates this melt loss by extracting

melt from the reactive subsystem whenever the melt threshold is exceeded and leaves a

fraction of this melt behind to estimate melt retention on grain boundaries.

The effect of subsolidus water loss and its dependence on P–T path

Concurrent to building the methodology for performing process oriented investigations

using Rcrust process-oriented investigations were undertaken to divulge the effects of

compositional change on open systems. Chapter 3 presents a detailed study of the effect of

subsolidus water loss on the position of the solidus in P–T space. When modelling

subsolidus prograde water loss close to the solidus it is found that even fluid-absent rocks

have the ability to melt at the fluid-saturated solidus as incremental heating before the

solidus decreases the total water contained in the hydrous silicates freeing water to form a

free phase in the porosity of the rock and participate in potential melting reactions. It seems

that the fluid saturated solidus can only be crossed without melting if the subsolidus P–T

path of the rock is sufficiently steep such that the increase in total water contained in the

hydrous silicates as a function of pressure exceeds the decrease in total water contained in

the hydrous silicates as a function of temperature, resulting in the rock becoming water

deficient, i.e. not fully-hydrated.

10

The effect of source controls on open system melt compositions

These new tools and methodologies for modelling subsolidus water content, supersolidus

melt threshold and varying P–T paths are used in Chapter 4 to investigate the effect of

source controls on the composition of melt batches extracted sequentially from a metapelitic

protolith. The resultant compositional effect of the source controls of fluid state, melt

threshold and P–T path are compared and contrast to the effect of compositional variance in

the protolith. It is found that the fluid state of the system is shown to have the strongest

control on melt compositions with the pressure-temperature path having subordinate control

on the volume and composition of melts produced.

A brief history of the development of Rcrust

Rcrust was developed following an iterative approach first implemented by Jean-François

Moyen in response to extensive discussions with Arnaud Villaros and Gautier Nicoli which

also culminated in a publication in the International Journal of Earth Sciences (Villaros et

al., 2018). Phase stabilities are determined by calling and interpreting output from meemum

from the Perple_X suite (Connolly and Kerrick, 1987; Connolly, 2009) via calls from the R

environment. These calls were first developed by Jean-François Moyen during a research

stay at Stellenbosch University in January 2013 and further refined by Jean-François Moyen

and Gautier Nicoli in late 2013. In January 2014 the project was handed over to Matthew

Mayne who became the sole programming developer from that point forward.

Compositional manipulations were split into two groups (phase additions and phase

extractions) and sequenced within runs to allow path dependent processes with simultaneous

additions and extractions. A graphical user interface was developed (Fig.3) using tcl/tk

(Ousterhout and Jones, 2009) within R to handle user inputs and display processed outputs.

In 2015 a new parsing method was employed in collaboration with Lars Kaislaniemi making

use of a compiled form of meemum to speed up total calculation time (Mayne et al., 2016).

A complete overhaul of the program began in 2016 in which a systematic methodology was

employed to enable new modules to be activated or deactivated at points along the iterative

loop. A new syntax was developed allowing a user defined modelling space to be built and

conditions applied within this space to simulate the desired modelling output. The graphical

user interface was redeveloped (Fig. 3) using the R package: Shiny (RStudio, 2014) in order

to match these changes in functionality and to offer platform independence. File inputs of

parameters were enabled and conditional inputs developed including phase thresholds and

retention settings. A dependence solver was built to determine calculation order of points

when points pass on compositional changes along user defined paths. Output routines were

11

built to process data and produce graphical outputs for contour diagrams of the modelling

space, relative phase abundances along specific paths and for the creation of phase

assemblage maps.

Fig. 6. Old Tcl/Tk interface (left) built on Microsoft Windows “widgets” and new Shiny

interface (right) operating platform independently from a browser.

Presentation of the modelling tool: Rcrust

The software program Rcrust is attached to this thesis as Addendum A: an electronic

appendix. Addendum B present a user manual for installing and using the program and

Addendum C present a fully commented description and presentation of the programming

code.

Supplementary data

Addendum D provides the supplementary data for Chapter 4

12

REFERENCES

Albee, A.L., 1965, A petrogenetic grid for the Fe-Mg silicates of pelitic schists: American Journal of Science,

v. 263, p. 512–536.

Amiotte Suchet, P., and Probst, J.L., 1995, A global model for present-day atmospheric/soil CO2 consumption

by chemical erosion of continental rocks (GEM-CO2): Tellus, v. 47B, p. 273–280.

Beard, J.S., Ragland, P.C., and Crawford, M.L., 2005, Reactive bulk assimilation: A model for crust-mantle

mixing in silicic magmas: Geology, v. 33, p. 681–684, doi: 10.1130/G21470.1.

Berman, R.G., 1988, Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-

MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Journal of Petrology, v. 29, p. 445–522.

Berman, R.G., 1991, Thermobarometry Using Multi-Equilibrium Calculations: a New Technique, With

Petrological Applications: Canadian Mineralogist, v. 29, p. 833–855.

Blevin, P.L., and Chappell, B.W., 1992, The role of magma sources, oxidation states and fractionation in

determining the granite metallogeny of eastern Australia: Transactions of the Royal Society of

Edinburgh: Earth Sciences, v. 83, p. 305–316, doi: 10.1017/S0263593300007987.

Brown, M., and Korhonen, F.J., 2009, Some Remarks on Melting and Extreme Metamorphism of Crustal

Rocks, in Physics and Chemistry of the Earth’s Interior, p. 67–87.

De Capitani, C., and Petrakakis, K., 2010, The computation of equilibrium assemblage diagrams with

Theriak/Domino software: American Mineralogist, v. 95, p. 1006–1016, doi:

10.2138/am.2010.3354.

Clemens, J.D., and Stevens, G., 2012, What controls chemical variation in granitic magmas? Lithos, v. 134-

135, p. 317–329, doi: 10.1016/j.lithos.2012.01.001.

Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for geodynamic

modeling and its application to subduction zone decarbonation: Earth and Planetary Science

Letters, v. 236, p. 524–541, doi: 10.1016/j.epsl.2005.04.033.

Connolly, J.A.D., 2018, Phase (Melt) Fractionation with Perple_X:,

http://www.perplex.ethz.ch/perplex_phase_fractionation.html (accessed October 2018).

Connolly, J.A.D., 2009, The geodynamic equation of state: What and how: Geochemistry, Geophysics,

Geosystems, v. 10, p. 1–19, doi: 10.1029/2009GC002540.

Connolly, J.A.D., and Kerrick, D.M., 1987, An algorithm and computer program for calculating composition

phase diagrams: Calphad, v. 11, p. 1–55, doi: 10.1016/0364-5916(87)90018-6.

Diener, J.F.A., and Fagereng, Å., 2014, The influence of melting and melt drainage on crustal rheology during

orogenesis: Journal of Geophysical Research : Solid Earth, v. 119, p. 6193–6210, doi:

10.1002/2014JB011088.Received.

Friend, J.P., 1973, The Global Sulfur Cycle, in S.I., R. ed., Chemistry of the Lower Atmosphere, Springer, p.

177–178.

Garcia-Arias, M., and Stevens, G. Melting behavior of a metasedimentary source: Consequences for S-type

granite magma compositions.: Journal of Chemical Information and Modeling,.

Ghiorso, M.S., and Sack, R.O., 1995, Chemical mass transfer in magmatic processes IV . A revised and

internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid

equilibria in magmatic systems at elevated temperatures and pressures: Contributions to

Mineralogy and Petrology, v. 119, p. 197–212.

Gottschalk, M., 1997, Internally consistent thermodynamic data for rock-forming minerals in the system SiO2-

TiO2-Al2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2: European Journal of Mineralogy, v. 9, p.

175–223.

Helgeson, H.C., Delany, J.M., and Nesbitt, H.W., 1978, Summary and critique of the thermodynamic

properties of rock-forming minerals: American Journal of Science, v. 278A, p. 1–229.

Hensen, B.J., and Essene, E.J., 1971, Stability of pyrope-quartz in the system MgO-Al2O3-SiO2:

Contributions to Mineralogy and Petrology, v. 30, p. 72–83.

Hensen, B.J., and Harley, S.L., 1990, Graphical analysis of P—T—X relations in granulite facies metapelites,

in High-temperature metamorphism and crustal anatexis, Netherlands, Springer, p. 19–56.

Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset

13

for phases of petrological interest, involving a new equation of state for solids: Journal of

Metamorphic Geology, v. 29, p. 333–383, doi: 10.1111/j.1525-1314.2010.00923.x.

Holland, T., and Powell, R., 1998, An internally consistent thermodynamic data set for phases of petrological

interest: Journal of Metamorphic Geology, v. 16, p. 309–343.

Johnson, T., Gibson, R.L., Brown, M., Buick, I., and Cartwright, I., 2003, Partial Melting of Metapelitic Rocks

Beneath the Bushveld Complex , South Africa: Journal of Petrology, v. 44, p. 301–314, doi:

10.1093/petrology/44.5.789.

Johnson, T.E., White, R.W., and Brown, M., 2011, A year in the life of an aluminous metapelite xenolith —

The role of heating rates , reaction overstep , H2O retention and melt loss: Lithos, v. 124, p.

132–143, doi: 10.1016/j.lithos.2010.08.009.

Korhonen, F.J., Powell, R., and Stout, J.H., 2012, Stability of sapphirine + quartz in the oxidized rocks of the

Wilson Lake terrane, Labrador: Calculated equilibria in NCKFMASHTO: Journal of

Metamorphic Geology, v. 30, p. 21–36, doi: 10.1111/j.1525-1314.2011.00954.x.

Lanari, P., Bovay, T., Airaghi, L., and Centrella, S., 2018, Quantitative compositional mapping of mineral

phases by electron probe micro-analyser:.

Lanari, P., and Engi, M., 2017, Local Bulk Composition Effects on Metamorphic Mineral Assemblages:

Reviews in Mineralogy and Geochemistry, v. 83, p. 55–102, doi: 10.2138/rmg.2017.83.3.

Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E.G., and Schwartz, S., 2014,

XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and

geothermobarometry: Computers and Geosciences, v. 62, p. 227–240, doi:

10.1016/j.cageo.2013.08.010.

Linnen, R.L., and Keppler, H., 2002, Melt composition control of Zr/Hf fractionation in magmatic processes:

Geochimica et Cosmochimica Acta, v. 66, p. 3293–3301, doi: 10.1016/S0016-7037(02)00924-9.

López-Carmona, A., Gutiérrez-Alonso, G., Tishin, P.A., and Gertner, I.F., 2014, Thermodynamic modelling of

metamorphic processes: state of the art in pseudosection approach: IOP Conference Series: Earth

and Environmental Science, v. 110.

Mayne, M.J., Moyen, J.F., Stevens, G., and Kaislaniemi, L., 2016, Rcrust: a tool for calculating path-

dependent open system processes and application to melt loss: Journal of Metamorphic Geology,

v. 34, p. 663–682, doi: 10.1111/jmg.12199.

Morrissey, L.J., Hand, M., Lane, K., Kelsey, D.E., and Dutch, R.A., 2016, Upgrading iron-ore deposits by melt

loss during granulite facies metamorphism: Ore Geology Reviews, v. 74, p. 101–121, doi:

10.1016/j.oregeorev.2015.11.012.

Nicoli, G., and Dyck, B., 2018, Exploring the metamorphic consequences of secular change in the siliciclastic

compositions of continental margins: Geoscience Frontiers, p. 1–9, doi:

10.1016/j.gsf.2017.12.009.

Ousterhout, J.K., and Jones, K., 2009, Tcl and the Tk toolkit:.

Powell, R., and Holland, T., 1988, An internally consistent dataset with uncertainties and correlations: 3.

Applications to geobarometry, worked examples and a computer program: Journal of

Metamorphic Geology, v. 6, p. 173–204, doi: 10.1111/j.1525-1314.1988.tb00415.x.

Powell, R., and Holland, T.J.B., 1985, An internally consistent thermodynamic dataset with uncertainties and

correlations: 1. Methods and a worked example.: Journal of Metamorphic Geology, v. 3, p. 327–

342.

Powell, R., Holland, T., and Worley, B., 1998, Calculating phase diagrams involving solid solutions via non-

linear equations, with examples using THERMOCALC: Journal of Metamorphic Geology, v. 16,

p. 577–588, doi: 10.1111/j.1525-1314.1998.00157.x.

Riesco, M., Stüwe, K., Reche, J., and Martinez, F.J., 2004, Silica depleted melting of pelites. Petrogenetic grid

and application to the Susqueda aureole, Spain: Journal of Metamorphic Geology, v. 22, p. 475–

494, doi: 10.1111/j.1525-1314.2004.00527.x.

Rosenberg, C.L., and Handy, M.R., 2005, Experimental deformation of partially melted granite revisited:

Implications for the continental crust: Journal of Metamorphic Geology, v. 23, p. 19–28, doi:

10.1111/j.1525-1314.2005.00555.x.

RStudio, 2014, Shiny: Easy web applications in R:, http://shiny.rstudio.com.

14

Spear, F.S., Kohn, M.J., and Cheney, J.T., 1999, P -T paths from anatectic pelites: Contributions to

Mineralogy and Petrology, v. 134, p. 17–32.

Spear, F.S., and Pattison, D.R.M., 2017, The implications of overstepping for metamorphic assemblage

diagrams (MADs): Chemical Geology, v. 457, p. 38–46, doi: 10.1016/j.chemgeo.2017.03.011.

Spear, F.S., Pattison, D.R.M., and Cheney, J.T., 2016, The metamorphosis of metamorphic petrology:

Geological Society of America Special Paper, v. 523, p. 31–74, doi: 10.1130/2016.2523(02).

Stevens, G., Villaros, A., and Moyen, J.F., 2007, Selective peritectic garnet entertainment as the origin of

geochemical diversity in S-type granites: Geology, v. 35, p. 9–12, doi: 10.1130/G22959A.1.

Stuck, T.J., 2016, Mineral Equilibria Constraints on Open-System Melting and Consequences of Melt Loss in

Metabasic Rocks: 61 p.

Stuck, T.J., and Diener, J.F.A., 2018, Mineral equilibria constraints on open-system melting in metamafic

compositions: Journal of Metamorphic Geology, v. 36, p. 255–281, doi: 10.1111/jmg.12292.

Taylor, J., and Stevens, G., 2010, Selective entrainment of peritectic garnet into S-type granitic magmas:

Evidence from Archaean mid-crustal anatectites: Lithos, v. 120, p. 277–292, doi:

10.1016/j.lithos.2010.08.015.

Vigneresse, J.L., and Burg, J.P., 2000, Continuous vs. discontinuous melt segregation in migmatites: Insights

from a cellular automaton model: Terra Nova, v. 12, p. 188–192, doi: 10.1046/j.1365-

3121.2000.00299.x.

Villaros, A., Laurent, O., Couzinié, S., Moyen, J.F., and Mintrone, M., 2018, Plutons and domes: the

consequences of anatectic magma extraction—example from the southeastern French Massif

Central: International Journal of Earth Sciences, p. 1–24, doi: 10.1007/s00531-018-1630-x.

Webb, G., Powell, R., and McLaren, S., 2015, Phase equilibria constraints on the melt fertility of crustal rocks:

The effect of subsolidus water loss: Journal of Metamorphic Geology, v. 33, p. 147–165, doi:

10.1111/jmg.12114.

White, R.W., and Powell, R., 2010, Retrograde melt-residue interaction and the formation of near-anhydrous

leucosomes in migmatites: Journal of Metamorphic Geology, v. 28, p. 579–597, doi:

10.1111/j.1525-1314.2010.00881.x.

White, R.W., Powell, R., and Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich metapelitic

granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria

calculations in the system: Journal of Metamorphic Geology, v. 20, p. 41–55, doi:

10.1046/j.0263-4929.2001.00349.x.

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R., 2014, New mineral activity-

composition relations for thermodynamic calculations in metapelitic systems: Journal of

Metamorphic Geology, v. 32, doi: 10.1111/jmg.12071.

White, R.W., Powell, R., and Phillips, G.N., 2003, A mineral equilibria study of the hydrothermal alteration in

mafic greenschist facies rocks at Kalgoorlie, Western Australia: Journal of Metamorphic

Geology, v. 21, p. 455–468, doi: 10.1046/j.1525-1314.2003.00454.x.

Yakymchuk, C., and Brown, M., 2014, Consequences of open-system melting in tectonics: Journal of the

Geological Society, v. 171, p. 21–40, doi: 10.1144/jgs2013-039.

Zeh, A., 2006, Calculation of garnet fractionation in metamorphic rocks, with application to a flat-top, Y-rich

garnet population from the Ruhla Crystalline Complex, Central Germany: Journal of Petrology,

v. 47, p. 2335–2356, doi: 10.1093/petrology/egl046.

15

CHAPTER 2

PRESENTATION OF RESEARCH PAPER 1: PERFORMING

PROCESS-ORIENTED INVESTIGATIONS INVOLVING MASS

TRANSFER USING RCRUST: A NEW PHASE EQUILIBRIUM

MODELLING TOOL

This paper, first authored by Matthew Mayne, was accepted for publication in the

Geological Society of London Special Issue: Making granites: petrogenetic processes,

tectonic environments and secular variations.

The following aspects of the research were done independently by Matthew Mayne while

receiving standard supervision by his supervisors Gary Stevens, Jean-François Moyen and

Tim Johnson: (i) writing of programming code; (ii) conducting phase equilibrium

modelling; (iii) generation of the figures; (v) writing of the manuscript

16

Performing process-oriented investigations involving

mass transfer using Rcrust: a new phase equilibrium

modelling tool

Matthew Jason Mayne 1 ,2 ,* , Gary Stevens 1 , Jean-François Moyen 2 &

Tim Johnson 3

1University of Stellenbosch, Department of Earth Sciences, Private Bag X1, 7602

Matieland, South Africa

2Université de Lyon, Laboratoire Magmas et Volcans, UJM-UCA-CNRS-IRD, 42023 Saint-

Etienne, France

3Curtin University, Department of Applied Geology, WA 6845 Perth, Australia

*Corresponding author (e-mail: mmayne@sun.ac.za)

Authors’ ORCiDs:

Matthew Jason Mayne, 0000-0002-2103-9647;

Gary Stevens, 0000-0003-1593-9419;

Jean-François Moyen, 0000-0002-0065-2442

Tim Johnson 0000-0001-8704-4396

Abbreviated title: “Performing process-oriented investigations with Rcrust”

17

ABSTRACT

Modern quantitative phase equilibria modelling allows the calculation of the stable phase

assemblage of a rock system given its pressure, temperature and bulk composition. A new

software tool (Rcrust) has been developed that allows the modelling of points in pressure–

temperature–bulk composition space in which bulk compositional changes can be passed

from point to point as the system evolves. This new methodology enables quantitative

process-oriented investigation of the evolution of rocks. Procedures are outlined here for

using this tool to model: 1) the control of the water content of a subsolidus system based on

available pore space; 2) triggering of melt loss events when a critical melt volume threshold

is exceeded, while allowing a portion of melt retention; 3) entrainment of crystals during

segregation and ascent of granitic magmas from its source; 4) modification of the

composition of granite magmas due to fractional crystallization and 5) progressive

availability (through dissolution) of slow diffusing species and their control on the effective

bulk composition of a system. These cases collectively illustrate thermodynamically

constrained methods for modelling systems that involve mass transfer.

Keywords: Phase equilibria modelling; Rcrust; effective bulk composition; water content;

anatexis; melt loss; peritectic entrainment; fractional crystallization; volume of

equilibration; dissolution–precipitation.

18

INTRODUCTION

Given the pressure (P), temperature (T) and bulk composition (X) of a rock, quantitative

phase equilibria modelling can predict the stable phase assemblages, the P–T fields of

stability of these assemblages, phase modes and phase compositions, that characterize the

system at equilibrium see THERMOCALC (Powell and Holland, 1988; Powell et al., 1998),

Perple_X (Connolly and Kerrick, 1987) and Theriak/Domino (De Capitani and Petrakakis,

2010). This technique has become a standard tool in metamorphic studies, most commonly

involving analysis via calculation of isochemical phase diagram sections known as

pseudosections e.g. Yakymchuk (2017) or metamorphic assemblage diagrams (MADs)

(Spear and Pattison, 2017). Recent studies have begun to consider the effects of bulk

compositional change in rocks undergoing metamorphism, e.g. through melt loss

(Yakymchuk and Brown, 2014; Morrissey et al., 2016; Vigneresse and Burg, 2000; Brown

and Korhonen, 2009; White and Powell, 2002, 2010; Diener and Fagereng, 2014; Mayne et

al., 2016; Johnson et al., 2011), fluid loss (White and Powell, 2010), fluid infiltration

(Korhonen et al., 2012; Johnson et al., 2003) and/or metasomatism (White et al., 2003;

Riesco et al., 2004; Nicoli and Dyck, 2018). In these studies, isochemical phase diagram

sections are limiting and alternative methods have been employed. To account for a

changing bulk composition via subtraction or addition of portions of one or more phases,

isothermal P–X or isobaric T–X diagrams are commonly used, in which bulk composition is

allowed to vary between two predetermined endmembers. In cases where more than one

compositional change is required, a number of individually calculated panels are stitched

together (Yakymchuk and Brown, 2014; White and Powell, 2002; Brown and Korhonen,

2009; Johnson et al., 2011). However, when investigating processes that sequentially alter

the bulk composition of a system within P–T space, manual calculation and stitching of

diagrams becomes restrictive. An alternative, to this calculation of predetermined phase

changes, is to include parameters for physical mechanisms of mass transfer within a

calculation such that bulk compositional changes occur within a system based on properties

that the system obtains such as phase abundances or phase compositions (Connolly, 2005;

Karpov et al., 1997; Ghiorso and Sack, 1995). The need for increasingly more sophisticated

models that allow this style of mass transfer prompted the creation of a path dependent

thermodynamic modelling tool (called ‘Rcrust’) which automates the handling of bulk

compositional change in a modelled P–T–X space (Mayne et al., 2016). This paper serves as

a summary of the functionalities of this program and demonstrates some applications in

19

performing process-oriented investigations that inherently involve bulk compositional

change. This provides a useful tool for reconciling petrographic observations and chemical

analyses with thermodynamic modelling at a variety of scales within complex systems in

order to better understand phase equilibria.

RCRUST: A NEW PHASE EQUILIBRIUM MODELLING TOOL

Path dependence of the reactive subsystem

Rcrust operates by assigning P–T–X conditions to a number of points that define a

modelling space. A Perple_X routine is then used which minimizes the Gibbs free energy of

the system in order to predict the equilibrium phase assemblage at each point (Connolly,

2005, 2009). Modelling can be performed on compositions including pelites, greywackes,

calc-silicates and mafic rocks as far as the available solution models in Perple_X allow

within the full P-T range of crustal metamorphism and magmatism. Further information

about modelling tolerances can be found in the solution model files and references therein.

What is unique in Rcrust’s methodology is that the conditions of points in the modelling

space can be assigned with reference to other points. If dependencies are assigned, then

calculations first solve the hierarchy of dependence of points, after which calculations

proceed sequentially along paths that connect the points. This ‘path dependence’ allows bulk

compositional changes to be passed on from point to point, thereby permitting investigation

of processes that are dependent on the evolving assemblage as the rock moves through

pressure–temperature–bulk compositional space.

To best model the behaviour of rock systems that gain or lose material, it is helpful to

consider the system as consisting of a number of subsystems which are, at least temporarily,

in chemical isolation from one another. For example, the bulk composition of a rock, or the

full system (FS), can be thought of as consisting of: 1. a reactive subsystem (RS) which

represents the portion that is currently in chemical equilibrium at the P–T conditions of the

system; 2. an extract subsystem (ES) which represents the portion that has been extracted

from the RS, during the current and prior steps, and is no longer in chemical equilibrium

with the RS. The ES is not subject to further phase equilibrium modelling; and 3. an isolated

subsystem (IS) which represents that portion of the FS that has not yet contributed to the

reactive subsystem but may later become part of it (Fig. 1). In this way a rock undergoing

anatexis, for example, can be thought of as a portion which is currently melting (the reactive

20

subsystem), a portion which has been extracted through melt loss (the extract subsystem)

and a portion, for example, the cores of compositionally zoned pre-anatectic porphyroblasts

that have yet to contribute to the effective bulk composition of the reactive subsystem (the

isolated subsystem). By transferring bulk material between these systems as the path

progresses we can effectively model processes that effect a rocks evolution.

Fig. 1. Division of the bulk composition of the rock (full system) into a portion that is not yet

incorporated into the chemical system (isolated subsystem); a portion that contains the chemical

system currently in thermodynamic equilibrium (reactive subsystem) and a portion that is no

longer part of the chemical system (extract subsystem). Effective bulk compositional change

can be induced in the rock by moving crystals and/or melt and/or fluid between these

subsystems.

 Modelling setup

The Rcrust program is operated through a graphical user interface written in R Copyright©

2016 the R Foundation for Statistical Computing (R Core Team, 2016) and therefore

requires a working version of R which can be downloaded freely from http://www.R-

project.org/. The Rcrust interface writes a text document which is read by the calculation

routine when run. This enforces reproducibility between calculations as a record of all input

parameters is saved with each calculation. These input files can be shared between users to

allow direct correlation between calculations. For advanced users the GUI can be bypassed

21

by manually editing input files and accessing Rcrust directly from the console.

In a standard calculation the user first defines the size of the modelling space by setting the

number of points in the P–T window to be considered. Once the number of points has been

defined, P–T conditions are then attributed to each point by defining functions (Fig. 2b).

These definitions can be as simple as individually assigning P–T values for each point or

may be complex functions that define, for example a non-linear P–T path (e.g. the clockwise

P–T loop in Mayne et al. fig. 5). Importantly, the axes of the modelling space do not have to

be P and T, but may be a function of bulk composition or the progression of P–T–X paths or

any other variable of interest. The next parameter that the user needs to define is the bulk

composition (Fig. 2c). Again, this can be simple, for example comprising the weight

percentage of each of the oxides that define the reactive subsystem, or a more complex

function of subsystems from a previously calculated point (e.g. the bulk composition of the

reactive subsystem of the previous point along a P–T path). This functionality allows the

user to create P–T paths that have path dependent bulk compositions.

At any point during a calculation, phase manipulations can be used to alter the bulk

composition of subsystems by either adding or extracting phases to or from the reactive

subsystem (Fig. 2d). Such manipulations can be statically defined prior to the calculation of

phase assemblages (for example to add a set amount of water progressively into the system

as a function of progress along a path) or dynamically defined in response to phase

assemblage proportions (e.g. melt loss events triggered by exceeding a critical melt

threshold). The latter also allows phase manipulations to respond to P–T dependent criteria,

for example the volume of a phase in the phase assemblage (which itself is also dependent

on pressure). The combination of phase manipulations and path dependence can be used to

approximate mechanistic processes affecting the evolution of a rock. Output data can be

viewed directly in the Rcrust interface or exported as text or postscript files for editing.

Graphing routines are available in Rcrust, including an interpolation routine for projecting

P–T paths onto a grid to allow contouring, and a routine for the creation of “phase

assemblage maps”, a term proposed here to describe graphs that show the change in phase

assemblage of a system where pressure, temperature and bulk composition can be

independently variable and path-dependent within the diagram (i.e. not a pseudosection)

from a grid of points (Fig. 2e).

22

Fig. 2. Procedure for modelling using the phase equilibria tool Rcrust. (a) Define the number

of points in the modelling space. (b) Assign pressure and temperature conditions. (c) Assign

the bulk composition of the reactive subsystem. (d) Define any required phase additions or

phase extractions. (e) project outputs to grids and export contour, phase diagram sections or

phase assemblage maps.

PERFORMING PROCESS-ORIENTED INVESTIGATIONS

To illustrate the methodology by which process-oriented investigations can be undertaken

modelling was performed in Rcrust version 2017-10-26 (Mayne et al., 2016) with a

compiled form of the meemum function from the Perple_X suite of programs (Connolly,

23

2009). The NCKFMASHTO chemical system was utilized with the 2011 revised

hp11ver.dat thermodynamic data file from the internally consistent dataset of (Holland and

Powell, 2011). Solution models were chosen which are consistent with the slightly

simplified chemistry of the bulk system (e.g. the chemical system does not account for Mn)

yet takes into account substitutions that are important in stabilizing phases (e.g. Ti in

biotite). The following solution models were used from solution_model_679.dat: Fsp(C1)

for plagioclase and alkali-feldspar (Holland and Powell, 2003), Cpx(HP) for clinopyroxene

(Holland and Powell, 1996), Ep(HP11) for epidote (Holland and Powell, 2011), Sp(WPC)

for spinel (White et al., 2002), Ilm(WPH) for ilmenite (White et al., 2000) and the latest

White et al (2014) set of models: Bi(W) for biotite, Crd(W) for cordierite, Gt(W) for garnet,

melt(W) for melt, Mica(W) for micas, Opx(W) for orthopyroxene, St(W) for staurolite.

Abbreviations for phases in figures except for melt and mica were taken from Whitney &

Evans (2010) as Bt, Biotite; Crd, cordierite; Fsp, plagioclase and alkali-feldspar; Grt, garnet;

H2O, liquid water; Ilm, ilmenite; Qz, quartz; Sil, sillimanite; Spl, spinel; St, staurolite.

 Dynamic setting of subsolidus water content of the Reactive System

The water content of the combined hydrous silicate phases of a subsolidus rock changes as a

function of pressure and temperature as both the abundance and composition of those

hydrous silicates changes. Any H2O that cannot be accommodated by the hydrous phases

must either be contained within the pore space or must leave the rock system. To model this

behaviour, the bulk composition of the system can be set to start with an excess of water and

phase extraction routines set such that free water is extracted whenever its volume exceeds

some value that is considered to represent a reasonable estimate of the porosity. Figure. 3

shows the phase relations for an average pelite bulk composition (Table 1) from Ague

(1991) which evolved along an isobaric 7 kbar heating path from 670 to 920 °C. The bulk

composition begins with an excess of water (10 wt.%) and all water that exceeds 0.1 vol.%

is extracted in each step. Water extracted from the reactive subsystem is kept in isolation

from the reactive subsystem and the abundance of phases are only shown relative to the

phases within the reactive subsystem. This process is described in further detail in Mayne et

al (2017).

24

Table 1. Bulk composition of an average amphibolite-facies pelite from Ague (1991)

Fig. 3. Modelling subsolidus water content by starting with excess water and then extracting

all water that exceeds 0.1 vol.% (approximating a pore space). Phase abundance in wt.% of the

reactive subsystem versus temperature for the isobaric heating path at 7 kbar from 670-920 °C

starting with the pelite bulk composition in Table 1. The wt.% oxide in the bulk composition

of the reactive subsystem is shown normalised to the starting bulk composition of the path.

25

 Melt loss through critical threshold values and retention amounts

When rocks melt, the melt initially forms along grain boundaries. As melting progresses, the

volume of melt may reach some critical value such that it forms an interconnected network

and can be extracted from the local rock system (Yakymchuk and Brown, 2014; Brown and

Korhonen, 2009). To design a system which is open to melt loss, a critical melt threshold,

upon which melt loss will occur, needs to be defined, for example when 80% of grain

boundaries become melt bearing (the melt connectivity transition (MCT) proposed by

(Rosenberg & Handy (2005). These thresholds can be approximated by volumetric

constraints (MCT achieved at c. 7 vol.%) and incorporated into modelling parameters. When

melt loss events occur they are very unlikely to be 100% efficient; some melt will inevitably

remain within isolated pores/pockets and/or on grain boundaries. To model this behaviour,

phase extraction routines can be defined to trigger when the volume of melt exceeds a set

value, and to extract some proportion of that melt, perhaps leaving a small amount (e.g. 1

vol.%) in the reactive subsystem to account for melt retention on grain boundaries. This

process is extensively discussed in the literature (Yakymchuk and Brown, 2014; Morrissey

et al., 2016; Vigneresse and Burg, 2000; Brown and Korhonen, 2009; White and Powell,

2002, 2010; Diener and Fagereng, 2014; Johnson et al., 2011). Figure 4 shows the phase

relations for the isobaric heating path with water extraction routines as described in Figure 3

but with an additional extraction routine set to occur whenever 7 vol.% melt is exceeded

extracting all melt except 1 vol.%. The cumulative melt extracted from the reactive

subsystem is labelled as “Melt_es” and is isolated from the reactive subsystem. Rcrust’s

abilities in this regard are described further in Mayne et al. (2016). Farina et al. (2017) use

this methodology to correlate multi-pulsed magmatism in the Monte Capanne pluton with

multimodal distribution of zircon ages in order to estimate the duration of partial melting

and the timescale of melt extraction from the source.

26

Fig. 4. Melt loss triggered when melt volume exceeds 7 vol.% and set to extract all melt except

1 vol.% (approximating melt retention on grain boundaries) for the isobaric heating path at 7

kbar from 670-920 °C. Handling of subsolidus water content and starting bulk composition as

in Figure 3. The wt.% oxide in the bulk composition of the reactive subsystem is shown

normalised to the starting bulk composition of the path.

27

 Entrainment of phases to melt (magma loss)

Melts often entrain crystals such as peritectic minerals on segregation from the source

(Stevens et al., 2007). This creates magmas whose chemical composition is some

combination of the volume of segregated melt and the composition and abundance of the

entrained crystals. When these magmas segregate, the bulk composition of the reactive

anatectic system is changed, with implications for subsequent melting behaviour. Phase

extraction routines can be modified to model this behaviour by extracting proportions of

additional phases whenever melt loss events are triggered. Within modelling functions,

some peritectic mineral products formed by melting reactions may have the same name as

pre-existing minerals e.g. plagioclase feldspar. In order to distinguish between the pre-

existing subsolidus phases and the newly formed peritectic phases a ‘delta function’ can be

applied. The delta function allows the user to specify only the portion of a mineral phase

that increased in mass during melting. This can be used, for example, to selectively extract

peritectic minerals along with melt (Stevens et al., 2017). Figure 5 shows the phase relations

for the isobaric heating path with water and melt extraction described in Figure 3 and Figure

4 respectively. Additional to these conditions, when melt extraction events occur 30% of the

increase in mass, of any phase excluding melt, between the current point and either the last

melt extraction event or the last melt absent point (whichever comes first) is extracted. The

cumulative extract constituting the extract subsystem is shown in Figure 5 and its bulk

composition is recorded in Table 2.

28

Fig. 5. Melt loss with entrainment of 30% of the increase in mass of all phases except melt

between the current melt loss event and either the previous melt loss event or melt absent point

(whichever is closer to the current event) for the isobaric heating path at 7 kbar from 670-920

°C. Melt threshold, handling of subsolidus water content and starting bulk composition as in

Figure 4. The wt.% oxide in the bulk composition of the reactive subsystem is shown

normalised to the starting bulk composition of the path.

Table 2. Bulk composition of the cumulative extract subsystem formed by subsolidus water

loss, supersolidus melt loss and entrainment described in Figure 5

29

 Fractional crystallisation

Mechanisms of filter pressing or crystal settling may cause magma systems to fractionate,

whereby a portion of crystalized phases are separated from the magma system (García-Arias

and Stevens, 2017b). This loss of crystals changes the bulk composition of the magma and

subsequent crystallization path followed by the remainder of the system. Depending on the

mechanism involved, this process can be modelled by setting phase extraction routines to

extract the crystals from the magma under several different circumstances. These extractions

can be set relative to the cooling rate of the magma system or triggered when set criteria are

met, such as when a threshold volume of crystals is exceeded (Bachmann and Bergantz,

2004; Stevens et al., 2017) or when the difference in density between a phase and melt

exceeds a certain threshold. Figure 6 starts with the bulk composition of the cumulative

extract system achieved in Figure 5 (Table 2) representing a magma emplaced at the same

depth as extraction (7 kbar) which subsequently isobarically cools and crystallizes. To

simulate a process of filter pressing, whenever, the total volume of solid phases (all phases

excluding melt and H2O) in the reactive subsystem exceeds 20 vol.%, 90% of all solid

phases are extracted.

30

Fig. 6. Fractional crystallisation of the cumulative extract subsystem formed by Figure 5

(representing a magma source), 90% of all solid phases (all phases except melt and H2O) are

extracted whenever the cumulative solid phases exceed 20 vol.% of the reactive subsystem

along the isobaric cooling path at 7 kbar from 920-640 °C. The wt.% oxide in the bulk

composition of the reactive subsystem is shown normalised to the starting bulk composition of

the path.

31

 Limited availability of phases

The diffusion of elements within crystals such as plagioclase or garnet is extremely slow

(Morse, 1984; Zuluaga et al., 2005; Johannes and Koepke, 2001; Tajčmanová et al., 2007).

Within anatectic systems, a dissolution–reprecipitation mechanism may operate that is

orders of magnitude faster than intra-crystalline diffusion and may represent the rate

limiting control on the availability of components from such phases to participate in melting

reactions (García-Arias and Stevens, 2017a; Johannes and Koepke, 2001; Taylor et al.,

2014). The role of this behaviour in changing the bulk composition of anatectic systems can

be approximated by dividing each crystal into an inner core, whose components are

effectively isolated from contributing to the chemical equilibrium of the full system, and an

outer rim that contains the chemically available components. With increasing time and

temperature and decreasing crystal size, components formerly contained within the

unreactive core become available to participate in reactions (Nicoli et al., 2017; Tajčmanová

et al., 2007; Madlakana and Stevens, 2018). This process can be modelled by removing a

portion of the bulk composition of the rock (the cores of grains) thereby creating an isolated

subsystem. Portions of this isolated subsystem can then be transferred back into the reactive

subsystem, for example as a function of P, T or melt volume (Stevens et al., 2017). Figure 7

shows the phase relations for the isobaric heating path at 7 kbar from 670 to 920°C where

95% of all feldspar present in the first step of the calculation is extracted and then added

progressively back into the reactive subsystem. The mass of feldspar returned in each step is

given as 0.01×(meltvol%)2 until all feldspar is returned. Subsolidus water content is handled

the same as in Figure 3.

32

Fig. 7. Limited availability of feldspar modelled by extracting 95% of all feldspar occurring in

the reactive subsystem at the start of the path and then progressively reintroduced to the reactive

subsystem as a function of melt volume (where mass of feldspar integrated in each step = 0.01

X (meltvol.%)2)) for the isobaric heating path at 7 kbar from 670-920 °C. Handling of subsolidus

water content and starting bulk composition as in Figure 3. The wt.% oxide in the bulk

composition of the reactive subsystem is shown normalised to the starting bulk composition of

the path.

33

CONCLUSIONS

The presented methodology illustrates how process-oriented investigations can be

performed by splitting the effective bulk composition of a system into a number of

subsystems and then manipulating bulk compositional proportions between these systems.

Rcrust’s unique ability to assign bulk compositions by dependence and dynamic phase

manipulations allows path dependence to exist between points in modelling space. The

consequence of this path dependence is the ability to model in simultaneously changing

pressure, temperature and bulk compositional space. Path dependence restricts modelling

results to be directional (along paths). This can be used as an advantage as this new form of

modelling is suited for investigating processes that effect the progressive evolution of a rock

system. By setting appropriate phase manipulations, processes of mass transfer can be

simulated to gain insights into the controlling factors behind this chemical evolution. This

style of modelling introduces a unique set of phase diagram sections in which any variable,

including bulk composition may change independently within a calculation. I suggest

terming these diagrams “phase assemblage maps” in order to distinguish the independence

of their pressure, temperature and chemical variability from traditional pseudosections

which are either isobaric, isothermal, isochemical or composite panel versions of these. This

would prevent misinterpretations of these diagrams that do not take into account their path

dependence and implications thereof. As a matter of convention to aid understanding of

these diagrams I further suggest that complete descriptions of the modelled P-T paths and

starting bulk composition should always accompany such diagrams to the point of

reproducibility. Caution should be exercised when interpreting the accuracy of these

diagrams as they are intrinsically limited by the accuracy of the thermodynamic datasets that

they rely on as well as the accuracy of the activity–composition models which are used to

predict variations in the thermodynamic properties of the solution phases (solid and liquid)

as they change composition.

The methods presented in this paper exemplify the novel ability of path dependent P–T–X

calculations to investigate processes of compositional change in a thermodynamically

constrained manner. Future work could use the combination of phase manipulations and

path dependence to investigate the mechanistic processes that affect the evolution of a rock

by building models based on mass transfer between bulk compositions of subsystems. As

these models become more sophisticated they could begin to consider crucial controls on

phase equilibria such as kinetic obstacles to equilibration reactions (Nicoli et al., 2017;

34

Tajčmanová et al., 2007; Madlakana and Stevens, 2018) local bulk composition effects

(Lanari and Engi, 2017) or the effect of local stress on equilibration volumes (Wheeler,

2018, 2014). Further, component partitioning between phases could be used to provide

estimates of trace element and isotope compositions (Yakymchuk et al., 2018; Gardiner et

al., 2018). These additional considerations come with their own uncertainties that the reader

must be mindful of. Incrementally building on these methodologies opens up new lines of

investigation into the studying of petrogenetic processes.

ACKNOWLEDGEMENTS

The financial assistance of the National Research Foundation (NRF) towards this research is

hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the

author and are not necessarily to be attributed to the NRF. Funding by the French Embassy

of South Africa to M.Mayne and by the South African Research Chairs Initiative (SARChl)

to G. Stevens is gratefully acknowledged. The authors thank Gautier Nicoli and an

anonymous reviewer for their helpful comments on the manuscript

SUPPLEMENTARY MATERIAL*

Files for reproducing figures 3-7 are contained in the zipped folder

“Mayne_et_al_2018_1_modelling_files”. To open these download Rcrust from

https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust and replace the “Projects”

and “data” folders with those in the zipped folder. Open each project by double clicking the

appropriate x.RData file.

 *For the thesis examiners’ convenience these files are already copied into the electronic copy of Rcrust

provided in Addendum A, to open them simply install Rcrust following the user manual in Addendum B, open

the “Projects” directory of Rcrust, open the project of choice and double click on the .RData file contained in

the project file

35

REFERENCES

Ague, J.J., 1991, Evidence for major mass transfer and volume strain during regional metamorphism of pelites:

Geology, v. 19, p. 855–858.

Bachmann, O., and Bergantz, G.W., 2004, On the origin of crystal-poor rhyolites: Extracted from batholithic

crystal mushes: Journal of Petrology, v. 45, p. 1565–1582, doi: 10.1093/petrology/egh019.

Brown, M., and Korhonen, F.J., 2009, Some Remarks on Melting and Extreme Metamorphism of Crustal

Rocks, in Physics and Chemistry of the Earth’s Interior, p. 67–87.

De Capitani, C., and Petrakakis, K., 2010, The computation of equilibrium assemblage diagrams with

Theriak/Domino software: American Mineralogist, v. 95, p. 1006–1016, doi:

10.2138/am.2010.3354.

Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for geodynamic

modeling and its application to subduction zone decarbonation: Earth and Planetary Science

Letters, v. 236, p. 524–541, doi: 10.1016/j.epsl.2005.04.033.

Connolly, J.A.D., 2009, The geodynamic equation of state: What and how: Geochemistry, Geophysics,

Geosystems, v. 10, p. 1–19, doi: 10.1029/2009GC002540.

Connolly, J.A.D., and Kerrick, D.M., 1987, An algorithm and computer program for calculating composition

phase diagrams: Calphad, v. 11, p. 1–55, doi: 10.1016/0364-5916(87)90018-6.

Diener, J.F.A., and Fagereng, Å., 2014, The influence of melting and melt drainage on crustal rheology during

orogenesis: Journal of Geophysical Research : Solid Earth, v. 119, p. 6193–6210, doi:

10.1002/2014JB011088.Received.

Farina, F., Stevens, G., Dini, A., and Schaltegger, U., 2017, Small-scale zircon age variability in the Monte

Capanne pluton revealing the timescale of crustal melting and melt extraction, in Goldschmidt

2017 Abstract,.

García-Arias, M., and Stevens, G., 2017a, Phase equilibrium modelling of granite magma petrogenesis : A . An

evaluation of the magma compositions produced by crystal entrainment in the source: Lithos, v.

277, p. 131–153, doi: 10.1016/j.lithos.2016.09.028.

García-Arias, M., and Stevens, G., 2017b, Phase equilibrium modelling of granite magma petrogenesis : B . An

evaluation of the magma compositions that result from fractional crystallization: Lithos, v. 277,

p. 109–130, doi: 10.1016/j.lithos.2016.09.027.

Gardiner, N.J., Johnson, T.E., Kirkland, C.L., and Smithies, R.H., 2018, Melting controls on the lutetium–

hafnium evolution of Archaean crust: Precambrian Research, v. 305, p. 479–488, doi:

10.1016/j.precamres.2017.12.026.

Ghiorso, M.S., and Sack, R.O., 1995, Chemical mass transfer in magmatic processes IV . A revised and

internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid

equilibria in magmatic systems at elevated temperatures and pressures: Contributions to

Mineralogy and Petrology, v. 119, p. 197–212.

Holland, T., and Powell, R., 2003, Activity-compositions relations for phases in petrological calculations: An

asymetric multicomponent formulation: Contributions to Mineralogy and Petrology, v. 145, p.

492–501, doi: 10.1007/s00410-003-0464-z.

Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset

for phases of petrological interest, involving a new equation of state for solids: Journal of

Metamorphic Geology, v. 29, p. 333–383, doi: 10.1111/j.1525-1314.2010.00923.x.

Holland, T.J.B., and Powell, R., 1996, Thermodymanics of Order-Disorder in Minerals. II. Symmetric

Formulism Applied to Solid Solutions: American Mineralogist, v. 81, p. 1425–1437.

Johannes, W., and Koepke, J., 2001, Incomplete reaction of plagioclase in experimental dehydration melting of

amphibolite: Australian Journal of Earth Sciences, v. 48, p. 581–590, doi: 10.1046/j.1440-

0952.2001.00876.x.

Johnson, T., Gibson, R.L., Brown, M., Buick, I., and Cartwright, I., 2003, Partial Melting of Metapelitic Rocks

Beneath the Bushveld Complex , South Africa: Journal of Petrology, v. 44, p. 301–314, doi:

10.1093/petrology/44.5.789.

Johnson, T.E., White, R.W., and Brown, M., 2011, A year in the life of an aluminous metapelite xenolith —

36

The role of heating rates , reaction overstep , H2O retention and melt loss: Lithos, v. 124, p.

132–143, doi: 10.1016/j.lithos.2010.08.009.

Karpov, I.K., Chudnenko, K.V., and Kulik, D.A., 1997, Modeling chemical mass transfer in geochemical

processes; thermodynamic relations, conditions of equilibira and numerical algorithms:

American Journal of Science, v. 297, p. 767–806.

Korhonen, F.J., Powell, R., and Stout, J.H., 2012, Stability of sapphirine + quartz in the oxidized rocks of the

Wilson Lake terrane, Labrador: Calculated equilibria in NCKFMASHTO: Journal of

Metamorphic Geology, v. 30, p. 21–36, doi: 10.1111/j.1525-1314.2011.00954.x.

Lanari, P., and Engi, M., 2017, Local Bulk Composition Effects on Metamorphic Mineral Assemblages:

Reviews in Mineralogy and Geochemistry, v. 83, p. 55–102, doi: 10.2138/rmg.2017.83.3.

Madlakana, N., and Stevens, G., 2018, Plagioclase disequilibrium induced during fluid-absent biotite-

breakdown melting in metapelites: Journal of Metamorphic Geology, doi: 10.1111/jmg.12429.

Mayne, M.J., Moyen, J.F., Stevens, G., and Kaislaniemi, L., 2016, Rcrust: a tool for calculating path-

dependent open system processes and application to melt loss: Journal of Metamorphic Geology,

v. 34, p. 663–682, doi: 10.1111/jmg.12199.

Mayne, M.J., Stevens, G., Moyen, J.F., and Johnson, T.E., 2017, The shape of the P-T path controls the onset

of crustal anatexis, in Goldschmidt 2017 Abstract,.

Morrissey, L.J., Hand, M., Lane, K., Kelsey, D.E., and Dutch, R.A., 2016, Upgrading iron-ore deposits by melt

loss during granulite facies metamorphism: Ore Geology Reviews, v. 74, p. 101–121, doi:

10.1016/j.oregeorev.2015.11.012.

Morse, S.A., 1984, Cation Diffusion in Plagioclase Feldspar: Science, v. 225, p. 504–505.

Nicoli, G., and Dyck, B., 2018, Exploring the metamorphic consequences of secular change in the siliciclastic

compositions of continental margins: Geoscience Frontiers, p. 1–9, doi:

10.1016/j.gsf.2017.12.009.

Nicoli, G., Stevens, G., Moyen, J.F., Vezinet, A., and Mayne, M.J., 2017, Insights into the complexity of

crustal differentiation: K2O-poor leucosomes within metasedimentary migmatites from the

Southern Marginal Zone of the Limpopo Belt, South Africa.: Journal of Metamorphic Geology,

doi: 10.1111/jmg.12265.

Powell, R., and Holland, T., 1988, An internally consistent dataset with uncertainties and correlations: 3.

Applications to geobarometry, worked examples and a computer program: Journal of

Metamorphic Geology, v. 6, p. 173–204, doi: 10.1111/j.1525-1314.1988.tb00415.x.

Powell, R., Holland, T., and Worley, B., 1998, Calculating phase diagrams involving solid solutions via non-

linear equations, with examples using THERMOCALC: Journal of Metamorphic Geology, v. 16,

p. 577–588, doi: 10.1111/j.1525-1314.1998.00157.x.

R Core Team, 2016, R: A Language and Environment for Statistical Computing:, https://www.r-project.org/.

Riesco, M., Stüwe, K., Reche, J., and Martinez, F.J., 2004, Silica depleted melting of pelites. Petrogenetic grid

and application to the Susqueda aureole, Spain: Journal of Metamorphic Geology, v. 22, p. 475–

494, doi: 10.1111/j.1525-1314.2004.00527.x.

Rosenberg, C.L., and Handy, M.R., 2005, Experimental deformation of partially melted granite revisited:

Implications for the continental crust: Journal of Metamorphic Geology, v. 23, p. 19–28, doi:

10.1111/j.1525-1314.2005.00555.x.

Spear, F.S., and Pattison, D.R.M., 2017, The implications of overstepping for metamorphic assemblage

diagrams (MADs): Chemical Geology, v. 457, p. 38–46, doi: 10.1016/j.chemgeo.2017.03.011.

Stevens, G., Clemens, J.D., and Mayne, M.J., 2017, The origins of geochemical trends in felsic igneous rocks :

Insight into processes in the source., in Goldschmidt 2017 Abstract,.

Stevens, G., Villaros, A., and Moyen, J.F., 2007, Selective peritectic garnet entertainment as the origin of

geochemical diversity in S-type granites: Geology, v. 35, p. 9–12, doi: 10.1130/G22959A.1.

Tajčmanová, L., Konopásek, J., and Connolly, J.A.D., 2007, Diffusion-controlled development of silica-

undersaturated domains in felsic granulites of the Bohemian Massif (Variscan belt of Central

Europe): Contributions to Mineralogy and Petrology, v. 153, p. 237–250, doi: 10.1007/s00410-

006-0143-y.

Taylor, J., Nicoli, G., Stevens, G., Frei, D., and Moyen, J., 2014, The processes that control leucosome

37

compositions in metasedimentary granulites : perspectives from the Southern Marginal Zone

migmatites , Limpopo Belt , South Africa: Journal of Metamorphic Geology, v. 32, p. 713–742,

doi: 10.1111/jmg.12087.

Vigneresse, J.L., and Burg, J.P., 2000, Continuous vs. discontinuous melt segregation in migmatites: Insights

from a cellular automaton model: Terra Nova, v. 12, p. 188–192, doi: 10.1046/j.1365-

3121.2000.00299.x.

Wheeler, J., 2014, Dramatic effects of stress on metamorphic reactions: Geology, v. 42, p. 647–650, doi:

10.1130/G35718.1.

Wheeler, J., 2018, The effects of stress on reactions in the Earth: Sometimes rather mean, usually normal,

always important: Journal of Metamorphic Geology, v. 36, p. 439–461, doi: 10.1111/jmg.12299.

White, R.W., and Powell, R., 2002, Melt loss and the preservation of granulite facies mineral assemblages:

Journal of Metamorphic Geology, v. 20, p. 621–632, doi: 10.1046/j.1525-1314.2002.00206.x.

White, R.W., and Powell, R., 2010, Retrograde melt-residue interaction and the formation of near-anhydrous

leucosomes in migmatites: Journal of Metamorphic Geology, v. 28, p. 579–597, doi:

10.1111/j.1525-1314.2010.00881.x.

White, R.W., Powell, R., and Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich metapelitic

granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria

calculations in the system: Journal of Metamorphic Geology, v. 20, p. 41–55, doi:

10.1046/j.0263-4929.2001.00349.x.

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R., 2014, New mineral activity-

composition relations for thermodynamic calculations in metapelitic systems: Journal of

Metamorphic Geology, v. 32, doi: 10.1111/jmg.12071.

White, R.W., Powell, R., Holland, T.J.B., and Worley, B., 2000, The effect of TiO2 and Fe2O3 on metapelitic

assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in

the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3: Journal of Metamorphic Geology,

v. 18, p. 497–511.

White, R.W., Powell, R., and Phillips, G.N., 2003, A mineral equilibria study of the hydrothermal alteration in

mafic greenschist facies rocks at Kalgoorlie, Western Australia: Journal of Metamorphic

Geology, v. 21, p. 455–468, doi: 10.1046/j.1525-1314.2003.00454.x.

Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American

Mineralogist, v. 95, p. 185–187, doi: 10.2138/am.2010.3371.

Yakymchuk, C., 2017, Applying phase equilibria modelling to metamorphic and geological processes: Recent

developments and future potential: Geoscience Canada, v. 44, p. 27–46, doi:

10.12789/geocanj.2017.44.114.

Yakymchuk, C., and Brown, M., 2014, Consequences of open-system melting in tectonics: Journal of the

Geological Society, v. 171, p. 21–40, doi: 10.1144/jgs2013-039.

Yakymchuk, C., Kirkland, C.L., and Clark, C., 2018, Th/U ratios in metamorphic zircon: Journal of

Metamorphic Geology, v. 00, p. 1–23, doi: https://doi.org/10.1111/jmg.12307.

Zuluaga, C.A., Stowell, H.H., and Tinkham, D.K., 2005, The effect of zoned garnet on metapelite

pseudosection topology and calculated metamorphic P-T paths: American Mineralogist, v. 90, p.

1619–1628, doi: 10.2138/am.2005.1741.

38

CHAPTER 3

PRESENTATION OF RESEARCH PAPER 2: THE TRAJECTORY OF

THE P–T PATH CONTROLS THE ONSET OF MELTING IN

METASEDIMENTARY ROCKS.

This paper, first authored by Matthew Mayne, is under review for publication in the Journal

of Metamorphic Geology.

The following aspects of the research were done independently by Matthew Mayne while

receiving standard supervision by his supervisors Gary Stevens, Jean-François Moyen and

Tim Johnson: (i) writing of programming code; (ii) conducting phase equilibirium

modelling; (iii) generation of the figures; (v) writing of the manuscript

39

The trajectory of the P–T path controls the onset of

melting in metasedimentary rocks.

Matthew Jason Mayne 1 ,2 ,* , Gary Stevens 1 , Jean-François Moyen 2 &

Tim Johnson 3

1University of Stellenbosch, Department of Earth Sciences, Private Bag X1, 7602

Matieland, South Africa

2Université de Lyon, Laboratoire Magmas et Volcans, UJM-UCA-CNRS-IRD, 42023 Saint-

Etienne, France

3Curtin University, Department of Applied Geology, WA 6845 Perth, Australia

*Corresponding author (e-mail: mmayne@sun.ac.za)

Authors’ ORCiDs:

Matthew Jason Mayne, 0000-0002-2103-9647;

Gary Stevens, 0000-0003-1593-9419;

Jean-François Moyen, 0000-0002-0065-2442

Tim Johnson 0000-0001-8704-4396

Abbreviated title: “The P–T path controls the onset of melting”

40

ABSTRACT

The partial melting behaviour of rocks is critically dependant on the pressure–temperature

(P–T) location of the solidus. As rocks lose water during their subsolidus evolution, the

higher the temperature at which the solidus is encountered, the lower the water content

available to drive future anatexis of any given rock. Consequently, understanding the

location of the solidus in P–T space is critical to understanding the metamorphic evolution

of anatectic rocks and their fertility for the production of granitic melt. Despite wide

application of these techniques, conventional phase equilibrium modelling that is based on a

single or a limited number of “stitched” bulk compositions cannot handle bulk-rock water

content realistically. The reason for this is that the water content of any fully-hydrated rock

changes as a function of pressure and temperature. This study uses Rcrust, a new software

tool that allows calculation of phase equilibria in systems with a continually changing bulk

composition, to investigate the partial melting of an average metapelite composition. Three

different fluid states are considered: fluid-saturated with an abundant H2O-rich fluid; fluid-

absent, which has no fluid phase but begins calculations as fully-hydrated; and fluid-

restricted which has a restricted quantity of free water (0.1 vol.%) filling pore spaces. The

behaviour of the system under all three fluid states was investigated along a variety of linear

prograde P–T paths that culminate in granulite and eclogite facies P–T conditions. Three

fundamental aspects of partial melting behaviour were revealed that cannot be determined

without the ability to continuously vary the bulk composition: (1) the fluid-absent solidus

and the wet solidus are identical for all but steep P–T paths; (2) the bulk water content at the

solidus of an average metapelite varies substantially as a function of pressure; (3) rocks

following steep P–T paths (∆P/∆T > 6 kbar/100 °C) will melt at significantly higher

temperature than the wet solidus, because the increase in total water contained in the

hydrous silicates as a function of pressure exceeds the decrease in total water contained in

the hydrous silicates as a function of temperature, resulting in the rock becoming water

deficient, i.e. not fully-hydrated.

Keywords: Rcrust, anatexis; bulk water content; pressure-temperature paths; wet solidus

41

INTRODUCTION

The beginning of melting in the continental crust is controlled by pressure, temperature and

bulk composition. Bulk compositions with sufficient H2O to contain a discrete fluid phase

will melt at the appropriate fluid-saturated solidus e.g. (Thompson, 1982; Spear et al., 1999;

Johannes and Koepke, 2001), whilst rocks with insufficient water to allow a fluid phase to

form are considered to melt at the lowest temperature fluid-absent incongruent melting

reaction that the metamorphic assemblage allows e.g. (Stevens and Clemens, 1993). For

aluminous metapelites this will commonly be the fluid-absent incongruent melting reaction

involving muscovite e.g. (Huang and Wyllie, 1981), which is located at significantly higher

temperature than the pelite wet solidus. The fluid-absent solidus for biotite-bearing rocks

without muscovite is located at even higher temperatures within the granulite facies

(Vielzeuf and Montel, 1994; Stevens et al., 1995). Thus, there is general consensus that the

presence or absence of water in the subsolidus assemblage exerts the strongest control on

the temperature at which partial melting begins in common crustal rocks e.g. (Waters, 1988;

Weinberg and Hasalová, 2015; Clemens et al., 2016). However, the onset of fluid-absent

melting is extremely difficult to define accurately.

Experimentally, the fluid-absent solidus is hard to identify because of the slow kinetics of

the melting reactions, particularly those involving plagioclase e.g. (Johannes et al., 1994;

Johannes and Koepke, 2001), and the difficulty of identifying small fractions of quenched

melt in experimental run products. An additional challenge is the unavoidable inclusion of

gas into the capsule (normally air), that must lower aH2O on the grain boundaries of the

charge. Crystallization experiments suffer similar kinetic problems and are likely to

systematically underestimate solidus temperatures.

Phase equilibria studies also have difficulty in investigating the onset of anatexis in fluid-

absent systems across a range of pressures because established software for phase equilibria

modelling have limited abilities for the automated handling of bulk compositional changes

within pressure–temperature space. Most studies that assume fluid-absent conditions of

anatexis determine bulk rock H2O content using isobaric T–X(H2O) sections and set bulk

H2O content at the maximum value possible before the appearance of melt without the

presence of a free water phase. This commonly results in the first melt being produced

through incongruent melting reactions that involve breakdown of micas, typically in the

temperature range of 700 to 850 °C for mid– to lower crustal pressures (Vielzeuf and

Holloway, 1988; Stevens et al., 1997; Brown and Korhonen, 2009; Yakymchuk and Brown,

42

2014). Other studies make the assumption that there is a small amount of H2O available in

pore spaces leading to minor H2O-saturated melting at the wet solidus, and may also use

isobaric T–X(H2O) sections or modes of hydrous minerals coupled with stoichiometric

amount of H2O in these minerals (Indares et al., 2008) to determine appropriate bulk rock

H2O content at a specific pressure. However, if one considers the variations in assemblage

and mineral mode inherent to any relevant pseudosection, it is clear that the water content of

the subsolidus mineral assemblage varies as a function of both pressure and temperature.

Fixed–composition pseudosections can therefore only constitute an accurate representation

of the behaviour of the system at the specific pressure used to constrain the H2O content of

the system; all pressures below and above that value must either over- or underestimate the

H2O content (Webb et al., 2015). These inaccuracies in bulk H2O content are likely to cause

significant discrepancies in melting behaviour as a function of pressure in pseudosections

constructed in this way. Similarly, it is impossible for an experimental investigation of fully-

hydrated, fluid-absent or fluid-restricted partial melting to be conducted at a range of

pressures using the same starting material because the correct water content for defining this

state is unique to a specific pressure. This study presents a new method for constraining the

H2O content of the subsolidus system through progressive water loss during prograde

metamorphism. This method is used to investigate the position of the solidus in pressure–

temperature space, the bulk rock water content at the solidus as a function of pressure and

the influence of the trajectory of the P–T path on the melting behaviour of such rocks under

upper amphibolite, eclogite and granulite facies conditions for a single pelite bulk

composition.

METHODOLOGY

The phase equilibria tool Rcrust (Mayne et al., 2016) allows modelling to be conducted

along P–T paths with bulk composition as a variable. It does this by breaking each P–T path

into a number of points in P–T space. Each point passes on any bulk compositional changes

induced by modelling functions to the next point on its respective path. Since these points

are calculated in a progressive order, they have path dependent bulk compositions.

In order to systematically evaluate the effect of the steepness of the P–T path on the partial

melting behaviour of the system three different fanned arrays of linear prograde P–T paths

were modelled, one projecting a fanned array from the P–T origin (0 °C; 0 kbar) (Fig. 1a),

one starting at the origin and then following a P–T path till a fanned projection from 650 °C

43

and 5 kbar (Fig. 1b) and one starting at the origin and then following a P–T path till a fanned

projection from 650 °C and 10 kbar (Fig. 1c). This produced P–T paths that arrive at the

same amphibolite, granulite and eclogite facies P–T conditions by travelling along different

trajectories through P–T space.

The first set of paths start at the P–T origin (0 °C; 0 kbar) and increment pressure (in kbar)

as sin((y_i-1+6)*pi/180)*10/140*(x_i-1) and temperature (in °C) as cos((y_i-

1+6)*pi/180)*280/140*(x_i-1) where y_i increments the dP/dT of the individual paths in the

set and x_i increments the steps along each respective path. From this fanned array of paths

two points were chosen (650 °C;5 kbar and 650 °C;10 kbar) from which to project

inflections of the P–T path. The bulk compositions achieved at these points by following the

original P–T array from the origin were used as the initial compositions for two further

fanned arrays projecting from these points. This ensures that bulk compositional changes

from the P–T origin array are inherited by the paths originating at 650 °C;5 kbar and 650

°C;10 kbar.

44

45

Fig. 1. P–T diagrams illustrating the modelled path arrays and their intersections with the

fields of eclogite–high–pressure granulite (E–HPG) and granulite–ultrahigh temperature (G–

UHT) peak metamorphic conditions, as defined by (Brown, 2014). The 0 kbar array (grey

dashed arrows) maintains a range of relatively flat P–T slopes from the origin across the

modelled P–T space. The 5 kbar array (red lines) and 10 kbar array (green lines) begin with

the bulk composition attained by the relative path on the 0 kbar array at 650 °C; 5 kbar (path

for 5 kbar array) and 650 °C; 10 kbar (path for 10 kbar array) respectively. These arrays then

propagate a range of changed P/T gradients while modelling continues to remove water

to ensure a fully-hydrated, fluid-absent, or fluid-restricted subsolidus assemblage. The

position of the fluid-saturated solidus (calculated in this study) is shown as a thick dashed

line for reference.

Modelling was conducted in three different fluid modes (Table 1), fluid-saturated, fluid-

absent and fluid-restricted with 0.1 vol.% water (approximating a water filled pore space). In

the fluid-saturated mode, H2O content in the bulk rock was set to 17 wt.%, which produced a

water-bearing assemblage under all P–T conditions investigated. In fluid-absent mode, phase

assemblages were calculated for each P–T array with the fluid-saturated composition at the

origin but with the software set to remove any free water and recalculate the composition at

each step along the path. This maintains the subsolidus assemblage in a fully-hydrated, fluid-

absent state, as long as subsolidus reactions encountered by prograde P–T paths do not

consume H2O. In the fluid restricted mode exactly the same procedure was followed but with

the software set to retain water sufficient to fill a nominal pore space, here taken as 0.1 vol.%

of the rock, which likely represents a maximum value for high-grade metamorphic rocks

e.g.(Thompson, 1983; Stevens and Clemens, 1993; Yardley, 2009; Brown and Korhonen,

2009; Yakymchuk and Brown, 2014). In fluid-absent or fluid restricted mode, if subsolidus

reactions encountered by prograde P–T paths consume H2O the system may become fluid-

absent as water is not added back in to the system.

Phase equilibrium modelling was performed on an average amphibolite–facies metapelite

composition (Table 2) from (Ague, 1991) in the NCKFMASHTO (Na2O–CaO–K2O–FeO–

MgO–Al2O3–SiO2–H2O–TiO2–O) chemical system. Calculations were performed using

Rcrust (version 2017–02–14) (Mayne et al., 2016) based on a compiled form of meemum

from Perplex 6.7.3 (Connolly, 2009) and the thermodynamic data file hp11ver.dat (Holland

and Powell, 2011). Activity–composition (a–x) models from solution_model_673.dat were

46

used as follows: Bi(W), Crd(W), Gt(W), Ilm(W), melt(W), Mica(W), St(W) and Opx(W)

from the internally consistent set of solution models produced by (White et al., 2014) for

biotite, cordierite, garnet, ilmenite, melt, white mica, staurolite and orthopyroxene

respectively; Fsp(C1) for feldspars (Holland and Powell, 2003); Ep(HP11) for epidote

(Holland and Powell, 2011) and Sp(WPC) for spinel (White et al., 2002).

Table 1. Modelling modes for handling of bulk H2O content in this study as fluid-saturated,

fluid-absent and fluid restricted.

Table 2. Starting bulk composition for modelling as the average amphibolite-facies pelite

from Ague (1991) after H2O adjustment to ensure water begins in excess (17 wt.%).

47

RESULTS

Melting reactions as a function of fluid mode

Phase relations for the path marked “Path for 5 kbar array” (Fig. 1a) are shown in Figure 2.

This system begins at the P–T origin with a bulk H2O content of 17 wt.%. In fluid-saturated

mode this ensures a water-bearing assemblage for the entire length of the path with water

abundance in the reactive subsystem beginning at ~ 15 wt.% rising to 16 wt.% at the solidus

and then falling progressively during melting to 8 wt.% as the melt volume grows (Fig. 2a).

In this system melting begins with a reaction involving white mica at 680 °C producing ~ 15

wt.% melt followed by melting involving biotite until 880 °C producing a further ~ 55 wt.%

melt and finally melting involving cordierite producing ~ 13 wt.% melt, culminating in a

total of 83 wt.% melt by 970 °C (Fig. 2d). When comparing this system to the other fluid

modes it helps to note that the renormalized abundance of melt in the reactive subsystem

excluding the abundance of water equates to approximately 17, 60 and 14 wt.% melt,

respectively, producing a total of 91 wt.% melt in the reactive subsystem excluding the

abundance of water. Further, note that in order to achieve this high degree of melting the

average pelite composition used became quartz deficient by approximately 750°C.

In fluid-absent mode there is no free water in the reactive subsystem (Fig. 2b). Water is

extracted whenever it forms as a free phase (Fig. 2g) which occurs intermittently below the

solidus culminating in just above 15.7 wt.% water extracted cumulatively by the solidus at

682°C. No further water is formed or extracted above the solidus. Melting begins at 682 °C

producing less than 1 wt.% melt up till 688 °C, after which white mica is exhausted

producing ~ 5 wt.% melt (Fig. 2b). From 688 °C onwards melting involving biotite produces

~ 17 wt.% melt by 825 °C after which melting involving cordierite produces a further ~ 25

wt.% melt by 910 °C and finally melting involving feldspar and quartz produces a further ~

19 wt.% melt by the end of the path. This results in a total of ~ 66 wt.% melt by 1000 °C.

Quartz is depleted by 940°C.

Modelling in the fluid restricted mode produced short intervals along the path with a water

filled porosity resulting in <0.025 wt.% water in the reactive subsystem. This equates with

the maximum allowable 0.1 vol.% pore space set in the modelling. The water extraction

events follow a similar pattern to those in the fluid absent mode resulting in a cumulative

15.7 wt.% water extracted by the solidus at 680 °C. Overall, the partial melting behaviour is

near identical to that observed in the fluid absent, mode with only a 2 °C lower solidus and

slightly more melt produced before the exhaustion of white mica (also less than 1 wt.% by

688 °C) (Fig. 2c).

48

Fig. 2. Diagrams portraying the partial melting behaviour along the “Path for 5 kbar array”

path shown in Figure 1a for the three fluid modes considered: (a-c) Water in the reactive

subsystem (wt.%) as a function of temperature shows the difference between the three

modelled fluid modes, i.e. fluid-saturated, fluid-absent and fluid restricted. Note the

variation in scale for the y-axis. (d-f) Phase abundance as weight percentage of the reactive

subsystem. (g-h) water extracted from the reactive subsystem as weight percentage of the

full system. (i-j) cumulative water extracted from the reactive subsystem as weight

percentage of the full system. Abbreviations for phases in figures except for melt, water and

mica were taken from (Whitney and Evans, 2010) as Bt, Biotite; Crd, cordierite; Fsp,

plagioclase and alkali-feldspar; Grt, garnet; Ilm, ilmenite; Opx, orthopyroxene; Qz, quartz;

Sil, sillimanite; Spl, spinel; St, staurolite.

49

Effect of fluid state and P–T trajectory on the position of the solidus

The solidi produced by the 3 fluid modes in combination with the path array originating at 0

°C;0 kbar, are all within 2 °C of each other despite the inclusion of a fluid-absent rock in the

modelling (Fig. 3). This is in agreement with the findings of (Webb et al., 2015) who

demonstrated using isobaric T–XH2O sections, that subsolidus water loss from rocks

undergoing prograde metamorphism migrates the rock composition towards the minimum

saturation point on the boundary of the wet-melting field. This study follows the same

approach but in P–T space because bulk composition may vary simultaneously with P and

T. The findings indicate that fully-hydrated fluid absent rocks do melt at the wet solidus,

even in fluid-absent systems. In order to assess the potential effect of the P–T path trajectory

on partial melting behaviour, each of the 3 fluid modes described above are modelled along

the 3 P–T path arrays described in Figure 1. The results indicate that, for the fluid saturated

case, the wet solidus is unaffected by the trajectory of the prograde P–T path; the solidus is

located at ~ 680 °C between 2.5 and 15 kbar (Fig. 3a), irrespective of the path taken by the

rock to reach the solidus. The position of this calculated solidus is in broad agreement with

the results of experimental studies and other phase equilibrium investigations using a

conventional pseudosection approach (Thompson, 1982; Spear et al., 1999; Johannes and

Koepke, 2001). This behaviour contrasts strongly with the solidus behaviour for the two

modes where water content is handled in a more petrologically realistic manner. In both the

fluid-absent and fluid-restricted modes, the results in terms of phase assemblage and

positions of the path dependent solidi were identical, so only the fluid-absent system is

shown and discussed further. For these systems, the three modelled path arrays each

produced a different solidus (Fig. 3e). The path array originating at 0 °C;0 kbar, underwent

melting at the wet solidus as described above (Fig. 3b). However, evolution along the P–T

path arrays originating at 5 and 10 kbar and 650 °C produced very different behaviour. Both

these arrays contain P–T paths that are substantially steeper than those of the array

originating at 0 kbar (Fig.3 c & d) and the fluid-absent and fluid-restricted rocks evolving

along paths with ∆P/∆T < 6 kbar/100 °C melted at the wet solidus. However, for both

systems, rocks evolving along steeper paths do not melt at the wet solidus, rather they map

out a solidus which shifts to progressively higher temperature as pressure increases. For the

array originating at 5 kbar this results in the solidus at 15 kbar being located at a temperature

> 100 °C higher than the equivalent 0 kbar array’s solidus. The portion of the solidus for the

5 kbar path arrays that is located at a temperature above the fluid-saturated solidus is located

50

within ~ 25 °C of the modelled white mica out boundary (Fig. 4c). Consequently, the steep

P–T paths that produce this higher temperature solidus appear to record the fluid-absent

incongruent melting reaction involving white mica at pressures above approximately 7 kbar.

For both the fluid-restricted and fluid absent systems, the path array originating at 10 kbar

records similar behaviour to the equivalent 5 kbar path array, matching the fluid-saturated

solidus at lower pressure, and departing from it at higher pressure, but in this case the point

of departure is located at ~11.5 kbar (Fig. 3d) because it is only above this pressure that the

paths attain the prerequisite steepness. At 15 kbar the 10 kbar array is located >50 °C higher

than the 0 kbar path array solidus.

Fig. 3. Melt abundance as weight percentage of the reactive subsystem (renormalized to

100% after excluding the abundance of water) for a) the fluid-saturated system; b) the fluid-

51

absent system originating at the P–T origin; c) the fluid-absent system beginning at the P–T

origin but inflecting to a fanned array at 650 °C, 5 kbar; d) the fluid-absent system beginning

at the P–T origin but inflecting to a fanned array at 650 °C, 10 kbar. e) Relative positions of

the solidi produced by the fluid-saturated system and the fluid-absent system from the three

arrays considered with respect to the fields of eclogite–high–pressure granulite (E–HPG)

and granulite–ultrahigh temperature (G–UHT) peak metamorphic conditions, as defined by

(Brown, 2014)

Effect of fluid state and P–T trajectory on the melt production

Fluid saturated melting produces a large amount of melt close to the solidus with a tight

grouping of melt wt.% contours near the solidus (calculated as melt abundance renormalized

to 100% after excluding the abundance of water) (Fig. 3a). The system consists of up to 60

wt.% melt by 800 °C (Fig. 3a). For paths originating at the origin in the fluid-absent and

fluid-restricted systems, the initial amount of melt produced is low with the 1 wt.% melt

contour being separated from the solidus by 15 to >50 °C (Fig. 3b). A systematic increase in

melt volume with temperature is observed in these paths above 800 °C with an average

increase of approximately 10 wt.% melt per 30 °C.

Between approximately 3 and 4.5 kbar the solidus intersects a P–T field in which biotite is

the only hydrous mineral, with white mica and cordierite present as an additional hydrous

phase at higher and lower pressures respectively (Fig. 4 c- e). The H2O content of the rock

along this portion of the solidus is constant at ~ 1 wt.% (Fig. 4b), indicating that the biotite

mode and water content do not vary as a function of pressure in this area of the phase

diagram. The consequences of this are visible as a bulge to higher temperatures in the melt

isopleths (up to 30 °C) for paths that travelled through the pressure–temperature field of this

assemblage (Fig. 3b). A maximum melt abundance of 80 wt.% is obtained for this system at

low pressures (<8.5 kbar).

Melt abundance contours for paths originating at 650 °C, 5kbar in fluid-absent and fluid

restricted systems show similar features to those originating at the origin. Contours are

strongly temperature dependent, show systematic increases above 800 °C and are deflected

to higher temperature at high pressures. A maximum of 80 wt.% melt is produced for

pressures between 3. and 8.5 kbar at 1 100 °C. Below 800 °C, however, marked differences

are found with the solidus, the 1, and the 10 wt.% melt contour all deflected at high pressure

to near coincidence at 825 °C, 15 kbar. Additionally, the anomalous shift to higher

52

temperatures experienced by the 0.65 kbar/100 °C path from the origin is erased by the

inflection of the P–T paths at 650 °C, 5kbar and an increase in temperature of contours is

observed only for paths inflecting to a steepness less than -2 kbar/100 °C (Fig. 3c).

Melt production for the paths originating at 650 °C, 10kbar in fluid-absent and fluid

restricted systems are near identical to those produced by paths originating at 650 °C, 5kbar

with the only significant differences being less deflected contours below 800 °C; at high

pressure and a lack of any anomalous increase in temperature of contours for steeply

downwards inflecting paths (Fig. 3d).

Fig. 4. P–T diagram showing the P–T path array originating at the P–T origin (grey dashed

arrows). a) The grey shading represents the total H2O (as wt.% of the system) contained

within the hydrous silicates white mica, biotite and cordierite, contoured from 0 (white) to

2.6 (dark grey) for the fluid absent system. Weight percentage of H2O in the entire system

(including melt) is contoured in 0.2 wt.% increments (blue dotted lines) and the weight

percentage of melt in the reactive subsystem is contoured (orange dashed lines). b) Weight

percentage of H2O in the bulk system at the solidus for the fluid-absent and the fluid-

restricted systems as a function of pressure. (c-e) Weight proportion of the solid system

contained as H2O in white mica, biotite and cordierite. f) Degree of water saturation of melt

given by the H2O in melt in the fluid-absent mode divided by the H2O in melt in fluid-

saturated mode, expressed as a percentage.

53

Rock water content at the solidus as a function of pressure

The H2O content of the fluid-absent system at the solidus produced by paths from the origin

varies by 1.6 wt.% (from 0.8 to 2.4 wt.%) (Fig. 4b) over the pressure range investigated and

generally increases as a function of pressure. This substantial range in water content clearly

illustrates the deficiencies in trying to model anatexis over a pressure range using a single

bulk composition. The water content of the fluid restricted system at this solidus is only

minutely higher than the fluid-absent rock at the same pressure (Fig.4b). For both fluid-

absent and fluid restricted systems above the solidus, bulk H2O content remains constant

along each path as no supersolidus free water can form due to the presence of water-

undersaturated melt (Fig. 4f). Above the solidus all H2O is accommodated either in melt or

within melt and hydrous silicates (Fig. 4a). The hydrous silicates that are stable within this

bulk composition in the relevant P–T range are white mica (Fig. 4c), biotite (Fig. 4d) and

cordierite (Fig. 4e). With increasing pressure, the stability of the hydrous silicates

accommodates larger total water content (up to 2.6 wt.% of the reactive subsystem) by

increasing the phase abundance of the hydrous silicates and by preferentially forming

hydrous silicates that contain more water (e.g. white mica rather than biotite) (Fig. 4a, c-e).

If P–T paths are steeper than the H2O in hydrous silicate contours in Figure 4a (for example

paths with P/ T > 6 kbar/100 °C in Figure 3c) then the abundance of white mica may

increase and the abundance of biotite may decrease to such an extent that the rock system

becomes fluid-deficient. If this happens the system may cross the position of the fluid-

saturated solidus without melting and only begin melting at the first fluid absent melting

reaction the path intersects

54

DISCUSSION AND CONCLUSIONS

The methodology presented allows phase equilibrium modelling to investigate the P–T path

dependent partial melting of rocks with realistic H2O contents, over a range of pressures and

temperatures. The results demonstrate that for rocks undergoing heating without a

substantial pressure increase, all metapelitic rocks will melt at the wet solidus, irrespective

of fluid state. The reason for this is that in the fluid-absent system, biotite H2O content

decreases as a function of temperature (Fig. 4d). Once the rock reaches the position of the

wet solidus, the decrease in biotite H2O content with the next increment of temperature

increase allows for melt formation without the appearance of a fluid–phase. This liberation

of water from biotite can also be seen in the water extraction behaviour of single paths in the

fluid-absent and fluid restricted systems (Fig. 2 g,h). This is almost congruent fluid-absent

anatexis as it is accompanied by only minor shifts in biotite and plagioclase compositions

and it results in low melt volumes. Thus, phase equilibrium modelling using the best

available models for activity–composition relations in the solid– and liquid–solution phases,

in combination with a correct handling of H2O, demonstrates that the idea that fluid-absent

rocks will only melt at the experimentally determined conditions of muscovite– and biotite–

driven incongruent melting, is incorrect. As also detailed by (Webb et al., 2015), the main

reasons why experimental studies have missed this behaviour are that experiments using a

single composition cannot properly map out fluid-absent partial melting behaviour over a

range of pressures, or the natural decrease in water content that occurs as subsolidus rocks

evolve to higher temperature. The modelling predicts that melting at conditions at or close to

the wet solidus is inevitable for most rocks. Possible examples of field areas where evidence

of this type of low temperature anatexis are preserved are the Damara Belt of Namibia

(Ward et al., 2008) and in the Famatinian Orogen of NW Argentina (Sola et al., 2017). With

no melt loss, biotite bearing assemblages appear to melt progressively between the fluid-

absent solidus and the point at which biotite disappears (Fig. 4a).

At common granulite facies temperatures, melt proportion appears to be a rather well

defined function of temperature, with surprisingly little pressure influence at 800 °C the

system contains ~ 10 wt.% melt, at 850 °C this figure is ~ 20 wt.%. Maximum melt

proportions are attained in the fluid-saturated system at 90 wt.% with more than 60 wt.% of

this melt being produced below 850 °C. The fluid-absent and fluid restricted system

produces significantly less melt (with a maximum of 80 wt.%) only producing melt above 1

wt.% after 750 °C with a systematic increase in melt above 800 °C at an average of 10 wt.%

55

melt per 30 °C. Importantly, the melts present at relatively low temperatures are

significantly water under-saturated (Fig. 4f) and consequently can ascend to achieve crustal

differentiation if they are able to segregate from their sources. This implies that fluid-absent

melting does makes a substantial contribution to low-temperature melting (< 850 C) and that

these melts have significant assent potential due to their water-undersaturated character.

Being able to adjust system water content incrementally to simulate fully-hydrated, fluid-

absent conditions and fluid-restricted, water-present conditions over a range of pressures

also allows the path dependency of partial melting behaviour to be investigated. This has

demonstrated that if metapelitic rocks cross the position of the wet solidus in the field of

white mica stability along a sufficiently steep positive P–T path, the solidus is displaced to

significantly higher temperature than the fluid-saturated solidus. This appears to be a result

of white mica mode growing at the expense of biotite as a function of pressure, as the rock

progresses along the prograde path (Fig. 4 c,d). In the fluid-restricted case this results in the

subsolidus rock consuming the 0.1 vol.% pore water through phengite producing reactions

and the rock becoming fluid-absent before the water-saturated solidus is encountered (Fig.

4a). Under these conditions, the rocks in both fluid-absent and fluid restricted systems are

less than fully-hydrated and the resultant decrease in water activity favours white mica

stability over melt and melting is delayed to higher temperature. This phenomenon could

effect a large number of rocks which undergo prograde evolution along steep P–T paths into

the high pressure amphibolite facies and eclogite facies. This could provide a mechanism for

such rocks to remain solid for a considerable time along these steep paths crossing the wet

solidus after which shallowing of the P–T path and/or subsequent heating would produce

substantial melt volumes (Fig. 3 c,d).

DOWNLOAD

Rcrust is free to download and use under the GNU copyleft. The latest version of the

software can be found on either of the two institutional addresses at: http://www.univ-st-

etienne.fr/rcrust or http://www.sun.ac.za/english/faculty/science/earthsciences/rcrust.

Alternatively, the software can be downloaded by contacting the corresponding author.

ACKNOWLEDGMENTS

The financial assistance of the National Research Foundation (NRF) is gratefully

acknowledged, as is funding by the French Embassy of South Africa to M. Mayne and by

the SARChl initiative to G. Stevens. The authors would like to thank Frank Spear, Dave

Kelsey and an anonymous reviewer for their comments on an earlier form of this

56

manuscript. Special thanks are given to Chris Yakymchuk for identifying the requirement of

path dependent bulk H2O contents for phase equilibria modelling in P–T space during his

review of Mayne et al (2016). Your comment led us to produce the methodology presented

in this paper as a possible solution.

SUPPLEMENTARY MATERIAL*

Files for reproducing the results presented are contained in the zipped folder

“Mayne_et_al_2018_2_modelling_files”. PA0, PA5 and PA10 denote the path arrays

originating from the P–T origin, from 650 °C; 5 kbar and from 650 °C; 10 kbar respectively.

Fluid saturated calculations were perfomed using the PA0 array and fluid states of fluid-

absent and fluid-restricted are shown for each of the possible path arrays. A process of

gridded interpolation was performed on each array in order to plot a square regular gridded

contour diagram, these files are presented with a suffix of “_grid” added to their project

name. To open the files download Rcrust from

https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust and replace the “Projects”

and “data” folders with those in the zipped folder. Open each project by double clicking the

appropriate x.RData file.

*For the thesis examiners’ convenience these files are already copied into the electronic copy of Rcrust

provided in Addendum A, to open them simply install Rcrust following the user manual in Addendum B, open

the “Projects” directory of Rcrust, open the project of choice and double click on the .RData file contained in

the project file

57

REFERENCES

Ague, J.J., 1991, Evidence for major mass transfer and volume strain during regional metamorphism of pelites:

Geology, v. 19, p. 855–858.

Brown, M., 2014, The contribution of metamorphic petrology to understanding lithosphere evolution and

geodynamics: Geoscience Frontiers, v. 5, p. 553–569.

Brown, M., and Korhonen, F.J., 2009, Some Remarks on Melting and Extreme Metamorphism of Crustal

Rocks, in Physics and Chemistry of the Earth’s Interior, p. 67–87.

Clemens, J.D., Buick, I.S., and Stevens, G., 2016, Fluids, melting, granulites and granites: A commentary:

Precambrian Research, v. 278, p. 394–399, doi: 10.1016/j.precamres.2016.01.001.

Connolly, J.A.D., 2009, The geodynamic equation of state: What and how: Geochemistry, Geophysics,

Geosystems, v. 10, p. 1–19, doi: 10.1029/2009GC002540.

Holland, T., and Powell, R., 2003, Activity-compositions relations for phases in petrological calculations: An

asymetric multicomponent formulation: Contributions to Mineralogy and Petrology, v. 145, p.

492–501, doi: 10.1007/s00410-003-0464-z.

Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset

for phases of petrological interest, involving a new equation of state for solids: Journal of

Metamorphic Geology, v. 29, p. 333–383, doi: 10.1111/j.1525-1314.2010.00923.x.

Huang, W.L., and Wyllie, P.J., 1981, Phase Relationships of S-Type Granite with H20 to 35 kbar : Muscovite

Granite From Harney Peak , South Dakota: Journal of Geophysical Research, v. 86, p. 10515–

10529.

Indares, A., White, R.W., and Powell, R., 2008, Phase equilibria modelling of kyanite-bearing anatectic

paragneisses from the central Grenville Province: Journal of Metamorphic Geology, v. 26, p.

815–836, doi: 10.1111/j.1525-1314.2008.00788.x.

Johannes, W., and Koepke, J., 2001, Incomplete reaction of plagioclase in experimental dehydration melting of

amphibolite: Australian Journal of Earth Sciences, v. 48, p. 581–590, doi: 10.1046/j.1440-

0952.2001.00876.x.

Johannes, W., Koepke, J., and Behrens, H., 1994, Partial melting reactions of plagioclases and plagioclase-

bearing systems, in Feldspars and their Reactions, Springer Netherlands, p. 161–194.

Mayne, M.J., Moyen, J.F., Stevens, G., and Kaislaniemi, L., 2016, Rcrust: a tool for calculating path-

dependent open system processes and application to melt loss: Journal of Metamorphic Geology,

v. 34, p. 663–682, doi: 10.1111/jmg.12199.

Sola, A.M., Hasalova, P., Weinberg, R.F., Suzano, N.O., Becchio, R.A., Hongn, F.D., and Botelho, N., 2017,

Low-P melting of metapelitic rocks and the role of H2O : Insights from phase equilibria

modelling: Journal of Metamorphic Geology, v. 35, p. 1131–1159, doi: 10.1111/jmg.12279.

Spear, F.S., Kohn, M.J., and Cheney, J.T., 1999, P -T paths from anatectic pelites: Contributions to

Mineralogy and Petrology, v. 134, p. 17–32.

Stevens, G., and Clemens, J.D., 1993, Fluid-absent melting and the roles of fluids in the lithosphere: a slanted

summary? Chemical Geology, v. 108, p. 1–17.

Stevens, G., Clemens, J.D., and Droop, G.T.R., 1995, Hydrous cordierite in granulites and crustal magma

production: Geology, v. 23, p. 925–928, doi: 10.1130/0091-

7613(1995)023<0925:HCIGAC>2.3.CO.

Stevens, G., Clemens, and Droop, G.T.R., 1997, Melt production during granulite-facies anatexis:

experimental data from “primitive” metasedimentary protoliths: Contributions to Mineralogy

and Petrology, v. 128, p. 352–370.

Thompson, A.B., 1982, Dehydration melting of pelitic rocks and the generation of H2O-undersaturated

granitic liquids: American Journal of Science, v. 282, p. 1567–1595.

Thompson, A.B., 1983, Fluid-absent metamorphism: Journal of the Geological Society, London, v. 140, p.

533–547.

Vielzeuf, D., and Holloway, J.R., 1988, Experimental determination of the fluid-absent melting relations in the

pelitic system Consequences for crustal differentiation: Contributions to Mineralogy and

Petrology, v. 98, p. 257–276, doi: 10.1007/BF00375178.

58

Vielzeuf, D., and Montel, J.M., 1994, Partial melting of metagreywackes. Part I. Fluid-absent experiments and

phase relationships: Contributions to Mineralogy and Petrology, v. 117, p. 375–393, doi:

10.1007/BF00307272.

Ward, R.A., Stevens, G., and Kisters, A., 2008, Fluid and deformation induced partial melting and melt

volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia: Lithos, v.

105, p. 253–271.

Waters, D.J., 1988, Partial melting and the formation of granulite facies assemblages in Namaqualand, South

Africa: Journal of Metamorphic Geology, v. 6, p. 387–404, doi: 10.1111/j.1525-

1314.1988.tb00430.x.

Webb, G., Powell, R., and McLaren, S., 2015, Phase equilibria constraints on the melt fertility of crustal rocks:

The effect of subsolidus water loss: Journal of Metamorphic Geology, v. 33, p. 147–165, doi:

10.1111/jmg.12114.

Weinberg, R.F., and Hasalová, P., 2015, Water-fluxed melting of the continental crust: A review: Lithos, v.

212-215, doi: 10.1016/j.lithos.2014.08.021.

White, R.W., Powell, R., and Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich metapelitic

granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria

calculations in the system: Journal of Metamorphic Geology, v. 20, p. 41–55, doi:

10.1046/j.0263-4929.2001.00349.x.

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R., 2014, New mineral activity-

composition relations for thermodynamic calculations in metapelitic systems: Journal of

Metamorphic Geology, v. 32, doi: 10.1111/jmg.12071.

Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American

Mineralogist, v. 95, p. 185–187, doi: 10.2138/am.2010.3371.

Yakymchuk, C., and Brown, M., 2014, Consequences of open-system melting in tectonics: Journal of the

Geological Society, v. 171, p. 21–40, doi: 10.1144/jgs2013-039.

Yardley, B.W.D., 2009, The role of water in the evolution of the continental crust: Journal of the Geological

Society, London, v. 166, p. 585–600, doi: 10.1144/0016-76492008-101.

59

CHAPTER 4

PRESENTATION OF RESEARCH PAPER 3: A PHASE EQUILIBRIUM

INVESTIGATION OF SELECTED SOURCE CONTROLS ON THE

COMPOSITION OF MELT BATCHES GENERATED BY SEQUENTIAL

MELTING OF AN AVERAGE METAPELITE

This paper, first authored by Matthew Mayne, is accepted upon revision for publication in

the Geological Society of London Special Issue: Making granites: petrogenetic processes,

tectonic environments and secular variations.

The following aspects of the research were done independently by Matthew Mayne while

receiving standard supervision by his supervisors Gary Stevens and Jean-François Moyen:

(i) writing of programming code; (ii) conducting phase equilibrium modelling; (iii)

generation of the figures; (v) writing of the manuscript

60

A phase equilibrium investigation of selected source

controls on the composition of melt batches generated by

sequential melting of an average metapelite

Matthew Jason Mayne 1 ,2 ,* , Gary Stevens 1 , Jean-François Moyen 2

1University of Stellenbosch, Department of Earth Sciences, Private Bag X1, 7602

Matieland, South Africa

2Université de Lyon, Laboratoire Magmas et Volcans, UJM-UCA-CNRS-IRD, 42023 Saint-

Etienne, France

*Corresponding author (e-mail: mmayne@sun.ac.za)

Authors’ ORCiDs:

Matthew Jason Mayne, 0000-0002-2103-9647;

Gary Stevens, 0000-0003-1593-9419;

Jean-François Moyen, 0000-0002-0065-2442

Abbreviated title: “Source controls on melting of a metapelite”

61

ABSTRACT

The ability of Rcrust (Mayne et al., 2016) to conduct path dependent phase equilibrium

modelling with automated changing bulk compositions allows for a phase equilibrium

approach to investigate an array of source controls for their effect on the bulk compositions

of melts produced by sequential melting events. The following source controls of the rock

system are considered: 1. Initial magnesium and iron content; 2. Initial sodium and calcium

content; 3. fluid state; 4. Pressure-temperature path followed by the system and 5. threshold

by which melt extractions in the system are triggered. The permutation of 3 cases for each of

these source controls resulted in 243 different modelled pressure-temperature-bulk

composition paths with which the melting of an average pelite composition is investigated.

The resultant melt compositions are compared to that of a natural granite data set and

provide a good fit for the incompatible elements Na2O and K2O with the allowance that

granites most likely form as magmas consisting of melt and ferromagnesian rich crystals.

The fluid state of the system is shown to have the strongest control on melt compositions

with the pressure-temperature path having subordinate control on the volume and

composition of melts produced.

Keywords: Phase equilibria modelling; Rcrust; source controls, fluid state, pressure-

temperature path

62

INTRODUCTION

Granite plutons and batholiths (senso lato) commonly exhibit a substantial range in major

and trace element compositions, within co-magmatic rocks e.g. (Brown and Pressley, 1999;

Stevens et al., 2007). Studies seeking to explain this commonly propose a range of different

processes that occur in the magma plumbing systems or in magma chambers, and that are

interpreted to modify magmas of originally homogenous composition. Processes such as

unmixing of entrained residuum e.g. (Chappell et al., 1987), fractional crystallization e.g.

(Foden et al., 2002; Breaks, Frederick and Moore, 1992), assimilation of wall rocks e.g.

(Beard et al., 2005; DePaolo, 1981), or mixing with other magmas e.g. (Barbarin, 1988;

Collins, 1996), all feature prominently in the literature, yet as discussed by (Clemens and

Stevens, 2012), are unlikely to provide viable explanations for the major element, trace

element and isotopic variations recorded within large granite bodies.

Some petrogenetic processes proposed to account for the observed range of magma

compositions do occur in the source. For example, the variable degrees of entrainment of the

peritectic assemblage proposed by Stevens et al. (2007), Clemens et al. (2011) and Villaros

and Stevens (2009) to explain compositional variation in the S-type granites of the Cape

Granite Suite. These studies propose that incompatible major element concentrations in

granites reflect the compositions and proportions of reactant minerals in the source, whilst

compatible element concentrations principally reflect the amount of peritectic assemblage

entrained to the magma in the source, during biotite fluid-absent melting. When combined

with efficient extraction of magma from the source as different batches that do not mingle in

the plumbing systems e.g. (Brown and Pressley, 1999), the changes in melting reaction

stoichiometry that occur with increasing temperature and decreasing water content are

recognised to produce a range of magma compositions e.g. (Farina and Stevens, 2011). The

water content of rocks, as well as the absence or availability of a water-rich fluid phase, both

have a profound effect on melt composition and the temperature of melt generation. The role

of water content of the system in determining melt productivity is also dependant on the

shape of the P–T path, through the control of pressure on the solubility of water in melt.

Despite the fact that source compositional variation, including water content, P-T condition

of anatexis, and the volume of melt that is retained in the source prior to magma extraction,

all clearly may have a profound effect on magma chemistry, relatively few studies recognise

that these factors may play a role in shaping the compositional range recorded in granites.

The majority of studies that have attempted to interpret the origins of major element

63

chemical variation within granites assume the involvement of large volumes of melt of

homogenous composition. For even relatively small sized bodies this is a highly unrealistic

assumption for two reasons. Firstly, even if the source rocks retain melt until a single large

batch is segregated and delivered to construct the pluton, it is very unlikely that the source

rocks, and thus the melt, will be compositionally homogenous. This conclusion is based on

the observations that all rock sequences that may represent fertile sources of granite magma,

such as hydrated volcanic sequences of mafic to intermediate composition, as well as clastic

sediments with a considerable hydrous mineral fraction, are typically compositionally

variable on a metre to sub-metre scale; additionally, the volume of source rocks must be

significantly larger than the volume of the magmatic rocks produced. Thus, for even small

plutons, melt must drain from a sufficiently large volume of source rocks that compositional

variation in the source is unavoidable. Secondly, it is very unlikely that the source rocks

deliver melt in a single large batch (Clemens et al., 2016), potentially facilitating

homogenization by mixing and diffusion after segregation. Both exposed granulite facies

source rocks and granites contain compositional and textural evidence to support

incremental or continual drainage of melt from the source e.g. (Coleman et al., 2004; de

Saint Blanquat et al., 2011). Examples of restitic granulites that have yielded at least 25

vol.% melt, contain compositional layering at a decimetre to metre scale that is interpreted

to represent compositional layering within the protolith e.g. (Taylor and Stevens, 2010).

Contacts between layers are sharp and mineral assemblages within different layers are not in

equilibrium e.g. orthopyroxene- and sillimanite-bearing assemblages in adjacent layers

(Stevens and Reenen, 1992). Such rocks must have lost melt episodically, in small batches,

or continuously. If not, they would have developed diatexitic textures, with disruption of

regular layering. Evidence from some S-type leucogranites indicates that melt batches are

indeed very rapidly transported from source to pluton and do not remain in the source for

any significant time after formation. These rocks have bulk compositions that are zircon

undersaturated at reasonable estimates for magma temperature, yet contain zircon inherited

from the source, supporting estimates of melt residency in the source of no more than 500

years (Villaros et al., 2009). Continuous or episodic melt extraction will result in different

melt compositions leaving the source, as the melting reactions change as anatexis of the

source progresses e.g. (Farina and Stevens, 2011).

From the arguments above, granites derived from partial melting of the crust can be

assumed to be principally constructed from melt batches that had different compositions at

the point of segregation from the source. Investigation of the role of source composition in

64

controlling melt compositions is hampered by the fact that almost all available data from

experimental petrology represent the consequences of batch melting, mapped out over a

range of pressures and temperatures. Typically, a single composition or a small number of

different compositions is investigated e.g. (Stevens et al., 1997). The advent of Rcrust

(Mayne et al., 2016), software which allows path dependant phase equilibrium modelling

with changing bulk composition, allows the source control on the compositions of individual

batches of melt leaving the source to be investigated using a phase equilibrium modelling

approach. As there are an almost infinitely large number of potential variables that could be

investigated. However, this study has aimed to investigate the control of Mg#, Na/Ca ratio

and fluid state, as well as the effect of melt volume prior to melt extraction and the steepness

of the P–T path on the compositions of melt batches produced from a metapelite undergoing

progressive melting.

METHODOLOGY

The source parameters that were investigated in this study can be divided into compositional

parameters and physical parameters. For the compositional parameters, the compositions

used were based on the average pelite composition of Ague (1991) (Table 1). In order to

approximate chemical heterogeneity in the metapelite source, the magnesium number (Mg#)

= Mg/(Fe + Mg)*100 [mol.%] and calcium number (Ca#) = Ca/(Ca + Na)*100 [mol.%] of

the bulk composition was varied. The Mg# of the Ague (1991) average is 20, two additional

bulk compositions were generated by changing the atomic ratio of Mg to Fe to create Mg# =

41 and 60. Similarly, the Ca# for the Ague (1991) average is 19 and the atomic proportions

of Ca and Na were varied for each of the 3 Mg# bulk compositions to produce additional

bulk compositions with Ca# = 32 and 42. Thus, excluding variations in water content, 9

different bulk compositions were used: the permutation of 3 magnesium numbers and 3

calcium numbers. At conditions just below the water-present solidus, these rock

compositions are all characterized by assemblages dominated by quartz, plagioclase, biotite

and muscovite, and at a reference P-T condition of 640 °C and 7 kbar, the mineral modes

and plagioclase anorthite contents are indicated in Figure 1. Note that the plagioclase

anorthite contents are higher than the Ca#’s of the rocks and also vary as a function of the

Mg#. This is because Na is taken up by both muscovite and biotite, but in different amounts,

and the mode of biotite and muscovite vary as a function of Mg#, whilst at this P-T

condition, Ca is accommodated almost completely within plagioclase.

65

Water content was varied between three different fluid states (H2O) across the 9

compositions described above. Firstly, each of the rocks was modelled as having 10 wt.%

water in the bulk composition. This was sufficient to keep the assemblage water saturated to

a temperature above 920 °C, the upper limit of the modelling conducted in this study. These

compositions are termed water in excess. An additional set of compositions was modelled as

fully-hydrated, fluid-absent. This was achieved by starting with the water in excess

composition and setting the software to remove all water present as a free phase at each step

of the prograde evolution of the rock. A final situation considered was for water to be

porosity limited that is: water to be present at the water-saturated solidus only as a pore fluid

filling a nominal porosity. In this case the software was set to start with water in excess and

at each increment of prograde evolution to remove all free water except for 0.1 vol.%. The

combination of the three different fluid states, with the variations in bulk rock Mg# and Ca#,

produces 27 different sets of compositional parameters that were modelled.

The 27 different sets of bulk compositional parameters were considered to evolve along

three possible pressure-temperature paths (P-T). The first of these was an isobaric heating

path at 7 kbar originating at 640 °C. The second, originating at the same point was a linear

path to 920 °C and 9.5 kbar. The third, also originates at the same point and is a linear path

to 920 °C and 12 kbar. In the discussion that follows these paths are referred to respectively

as isobaric, gentle and steep. A second physical parameter considered in the modelling was

the degree of melt retention in the source prior to melt extraction (Melt threshold). Values of

1, 7 and 10 vol.% melt were used as the trigger for melt extraction. Upon this threshold

being exceeded, melt was extracted down to 1 vol.% which was assumed to represent the

amount of melt retained on grain boundaries and therefore inaccessible to extraction. The

combination of compositional parameters, with three P-T path scenarios and three Melt

thresholds resulted in a total of 5 different source controls being investigated, each of which

have 3 possible cases, culminating in 35 different models (Table 2).

66

Table 1. Initial bulk composition used in the construction of path dependent P-T-X paths in

wt.% as the average amphibolite-facies pelite from Ague (1991). The composition shown

forms the baseline for calculating the 9 starting bulk compositions shown in Figure 1 with

magnesium number (Mg#) and calcium number (Ca#) altered where applicable.

Table 2. Summary of the source controls considered and each of their 3 cases.

67

Fig. 1. Starting 9 bulk compositions produced by altering the Mg# and Ca# of the average

pelite composition of Ague (1991)(Table 1) expressed as wt.% oxides normalized to the

Ague (1991) average with the phase assemblage produced by each bulk composition at 640

°C; 7 kbar expressed as wt.% of each phase present. The anorthite percentage as

An%=Ca/(Ca+Na)*100 [mol.%] of feldspar is reported above each phase assemblage.

Abbreviations for phases except for melt and mica were taken from Whitney and Evans

(2010) as Bt, Biotite; Fsp, plagioclase and alkali-feldspar; Grt, garnet; Ilm, ilmenite; Ky,

kyanite; Qz, quartz; Spl, spinel; St, staurolite.

Calculations were performed in Rcrust version 2017-10-26 (Mayne et al., 2016) using a

compiled form of the meemum function (version 6.7.9) from the Perple_X suite of programs

(Connolly, 2009) in the NCKFMASHTO chemical system utilizing the 2011 revised

hp11ver.dat thermodynamic data file from the internally consistent dataset of Holland and

Powell (2011). Solution models were chosen which are consistent with the slightly

simplified chemistry of the bulk system (e.g. the chemical system does not account for Mn)

yet takes into account substitutions that are important in stabilizing phases (e.g. Ti in

biotite). The following solution models were used from solution_model_679.dat: Fsp(C1)

for plagioclase and alkali-feldspar (Holland and Powell, 2003), Cpx(HP) for clinopyroxene

(Holland and Powell, 1996), Ep(HP11) for epidote (Holland and Powell, 2011), Sp(WPC)

for spinel (White et al., 2002), Ilm(WPH) for ilmenite (White et al., 2000) and the latest

White et al. (2014) set of models: Bi(W) for biotite, Crd(W) for cordierite, Gt(W) for garnet,

68

melt(W) for melt, Mica(W) for micas, Opx(W) for orthopyroxene, St(W) for staurolite. All

the P-T paths modelled start at 640 °C and 7 kbar with 10 wt.% H2O. This results in a free

water phase being present at the beginning of each path, with water lost as appropriate to the

model situation from the 642 °C step onwards.

RESULTS

The phase assemblage plots and melt production information as a function of temperature,

for the Ague (1991) average Mg# and Ca# bulk composition, with 7 vol.% melt extraction

threshold, evolving along the gentle prograde heating path (640°C; 7kbar to 920°C; 9.5

kbar) for three fluid cases are illustrated in Figure 2. The diagram illustrates some important

fundamentals regarding the role of water during partial melting. The case with water limited

to a nominal porosity and the fully-hydrated, fluid-absent case yield similar results because

the bulk rock water contents of each of these water restricted cases at the solidus are similar.

Each of the three cases considered undergoes melting at 684 °C, but the water restricted case

predicts less than 3 vol.% melt in the system between 684 and approximately 735 °C, where

there is a pulse of melt to >7 vol.% triggering the extraction of melt. This pulse of melt is

the consequence of muscovite being consumed by an incongruent melting reaction.

Sillimanite mode increases distinctly at the muscovite-out temperature as sillimanite is the

primary crystalline product of the incongruent melting reaction which consumes muscovite.

Following the disappearance of muscovite and the melt extraction event, melt modes

increase very slightly as a function of temperature between 735 and 770 °C, where biotite

mode begins to decrease as a function of temperature, with a corresponding increase in melt

abundance. Biotite incongruent melting results in the appearance of peritectic garnet and

triggers three melt extraction events between 770 and 850 °C, the temperature at which

biotite disappears. Heating between 850 and 920 °C produces a single further melt

extraction event. This last pulse of melt extraction occurs at a slightly higher temperature in

the fully-hydrated, fluid-absent system, relative to the rock with 0.1 vol.% pore-water in the

subsolidus assemblage. Thus, the melting of both water restricted rocks is controlled by the

incongruent melting behaviour of the micas. Quartz and plagioclase remain in significant

proportions in the residuum, despite the rocks having lost 20 vol.% melt.

69

Fig. 2. Phase abundance and cumulative melt (both in wt.% relative to the full system)

produced along P-T-X paths investigating water content (H2O) as a source control on melt

production considering 3 cases: a) fully-hydrated, fluid-absent; b) porosity limited to 0.1

vol.% and c) water in excess. For the 3 paths shown here Mg# and Ca# are taken as the

Ague (1991) average with melt extraction events triggered by a 7 vol.% melt threshold

along the gentle prograde heating path (640°C; 7kbar to 920°C; 9.5 kbar). Step resolution of

paths is set at 2°C. Abbreviations for phases except for melt and mica were taken from

Whitney and Evans (2010) as Bt, Biotite; Fsp, plagioclase and alkali-feldspar; Grt, garnet;

H2O, liquid water; Ilm, ilmenite; Ky, kyanite; Qz, quartz; Sil, sillimanite; Spl, spinel; St,

staurolite.

In contrast, the availability of water controls the melting behaviour of the rock in the water

in excess case; there is always as much melt in the system as the temperature and melt

depleted composition will allow. Muscovite mode reduces markedly at the solidus, as do the

modes of quartz and plagioclase. Muscovite disappears at approximately 700 °C and

sillimanite mode grows with the decrease in muscovite, reflecting the incongruent melting

of muscovite. Peritectic garnet appears at approximately 710 °C, marking this temperature

as the point at which biotite decomposition makes a significant contribution to incongruent

melting. The mode of biotite, quartz and plagioclase decrease substantially from this

temperature to approximately 750 °C. Melt extraction events occur with a frequency of

approximately one per 10 °C between the solidus and 750 °C. At this temperature the

plagioclase composition in the residuum becomes anorthite, supressing further biotite

70

melting to approximately 780 °C. Significant reduction in biotite and quartz mode occurs

between 780 and 800 °C, with a number of corresponding melt extraction events. At 800 °C

quartz is depleted and no further melt extraction events are triggered until approximately

870 °C, where biotite and sillimanite participate in an incongruent melting reaction which

produces peritectic spinel which ends when biotite is exhausted at 900 °C.

The compositions of each melt extraction event produced along each of the possible P-T-X

paths are plotted in Figures 3-4. The compositions of 548 bulk compositions reported for

naturally occurring S-type granites (Euzen, 1993; Goad and Cerny, 1981; Scaillet et al.,

1990; Nabelek et al., 1992; Solgadi et al., 2007; Williamson et al., 1996, 1997; Hine et al.,

1978; Maas et al., 1997; Castro et al., 1999; Scheepers and Armstrong, 2002; Scheepers and

Poujol, 2002; Bea et al., 1994; Ayres and Harris, 1997; Downes et al., 1990; Downes and

Duthou, 1988; Chappell, 1978; Chappell and White, 1992; Birch, 1978; Bourne and Danis,

1987; Day and Weiblen, 1986; Georget and Martineau, 1986; Holtz and Johannes, 1991;

Inger and Harris, 1993; Villaros, 2004; Sandeman and Clark, 2003; Scheepers, 1990)

(Supplementary data: presented in Addendum D) are plotted for reference, although

comparison between these rock compositions and the modelled melt compositions is only

presented in the discussion. This dataset is filtered to only include samples that had been

reported as being fresh and where possible thin section analysis was performed to ensure

that only fresh samples were considered. Both the natural data and modelled data are

normalised to the NCKFMAST chemical system where F is given as FeOt = FeO +

0.89981*Fe2O3 by wt.% when FeO/Fe2O3 data was available (all the modelled data and a

subset of the natural data) or else assuming all iron is ferrous. Harker plots are shown for

major elements in the chemical system modelled with exceptions of H2O and O as there is

insufficient data on these components in the natural array considered to provide a

comparison and TiO2 as this component is not included in the current melt(W) solution

model.

Modelled data is grouped by each of the 3 possible cases for each source control with

colours assigned by Colorbrewer (Brewer, 2002). Alphahull approximation (Pateiro-López

and Rodríquez-Casal, 2010) is performed on each case using an alpha value of 150 in order

to calculate the bounding area for each subset of the modelled data in y vs SiO2 space for y

as CaO, Na2O, K2O, Al2O3, MgO + FeOt, Mg#, A/CNK and Na/Ca using GCDkit

(Janoušek et al., 2006). A vector connecting the centroid of each bounding area is drawn as

an arrow pointing towards the highest valued case (e.g. highest water content considered).

The length of the vector gives an indication of the magnitude by which the bounding areas

71

are shifted relative to one another by the source control of interest and therefore its relative

strength in controlling the resultant melt composition. These vectors of source control are

reproduced on the right of the diagram centred to a dimensionless panel for comparison.

72

73

Fig. 3. Bulk compositions of natural data array of s-type granites and modelled melt extracts for the source controls: Mg#, Ca#, H2O, P-T and

Melt threshold expressed as wt.% oxide versus wt.% SiO2. Weight percentages are normalised to the NCKFMAST chemical system. Modelled

points are coloured according to the case considered for each source control (see Table 2) as low (light blue), medium (blue) and high (dark

blue). Arrows link the central points of the space defined by each modelling case and point towards the highest valued case. Arrows produced

by each source control are copied and centred on a unit-less diagram to the right of the figure for comparison.

74

75

Fig. 4. Bulk compositions of natural data array of s-type granites and modelled melt extracts for the source controls: Mg#, Ca#, H2O, P-T and

Melt threshold expressed as MgO + FeOt = MgO + FeO + 0.89981*Fe2O3 [wt.%]; Mg# = MgO/(FeOt + MgO)*100 [mol.%]; A/CNK =

Al2O3/(CaO+Na2O+K2O) [mol.%] and Na/Ca [mol.%] all versus wt.% SiO2. Weight percentages are normalised to the NCKFMAST chemical

system. Modelled points are coloured according to the case considered for each source control (see Table 2) as low (light blue), medium (blue)

and high (dark blue). Arrows link the central points of the space defined by each modelling case and point towards the highest valued case.

Arrows produced by each source control are copied and centred on a unit-less diagram to the right of the figure for comparison.

76

In both the water in excess and water restricted cases, the details of the melting behaviour

and assemblage evolution vary significantly with P-T path steepness and rock composition.

This is because pressure has a strong control on water solubility in the melt and on the

mineralogy of the anhydrous ferromagnesian assemblage, whilst Mg# and Ca# have a strong

control on the relative proportions of biotite, muscovite and plagioclase in the rocks (Fig. 1).

However, allowing for these variations, all the modelling conducted in this study produces

behaviour which is generally consistent with that described above. Each of the water in

excess rocks produce three pulses of melt production, irrespective of the melt extraction

threshold. For the gentle prograde heating example illustrated in Figure 2, the first of these

occurs between the solidus and 740 °C. In this temperature interval, a large volume of melt

(~50 vol.%) is produced through water fluxed incongruent reactions that consume

muscovite and biotite along with quartz and plagioclase. These melts have SiO2 contents

very close to 75 wt.% and are characterised by Na2O and K2O contents that, respectively,

vary inversely and proportionally with temperature (Fig. 5). This reflects the change in the

stoichiometry of the low-temperature water present incongruent melting reactions to

consume increasing amounts of mica as temperature increases. A second pulse of melt

production occurs between 770 and 790 °C due to biotite + quartz + anorthite + H2O

incongruent melting. The melts have SiO2 contents that range from 75 down to 63 wt.%, as

well as very low Na2O contents (<0.5 wt.%) and high K2O contents (> 6 wt.%). A third

pulse of melt production occurs between 870 and 900 °C, where biotite, sillimanite, garnet

and H2O melt incongruently to produce melt and peritectic spinel. This produces melts

which range in SiO2 content from 72 to 60 wt.% SiO2, with close to 0 wt.% Na2O, K2O

between 6 and 12 wt.%, CaO between 2 and 5 wt.%, with very high Al2O3, between 17 and

25 wt.%. Note that the exceptions to this are the portion of the light blue data array in Figure

5 which extend to low K2O contents. These data points represent low Mg# rocks which

evolved along the isobaric heating path at 7 kbar with melt extraction at a 1 vol.% melt

threshold (thus recording small melt extraction amounts). In this situation biotite is depleted

at relatively low temperature and these melt compositions are produced by incongruent

melting of garnet, sillimanite and H2O.

The water restricted models display considerably smaller compositional ranges of melt

composition and two pulses of melt production (Fig. 5). The first is the consequence of

incongruent melting reactions involving muscovite, the second is the result of incongruent

melting reactions involving biotite. For both melt pulses, the melts range in composition

between 72 and 75 wt.% SiO2, with K2O between 3 and 6.5 wt.%, Na2O between 3 and 6

77

wt.% and CaO < 1wt.%. The models with restricted water always produce approximately

one third of the total melt volume produced by the water in excess rock at 920 °C. In the

examples highlighted above, cumulative melt extracted from the system equates to 19.8

wt.% for the fully-hydrated, fluid-absent system; 20.0 wt.% for the porosity limited system

and 71.4 wt.% for the water in excess system.

78

Fig. 5. Bulk compositions of natural data array of s-type granites and modelled melt extracts produced by varying the source controls: Mg#,

Ca#, P-T and Melt threshold for the fluid case of water in excess (top) and fully-hydrated, fluid-absent (bottom). Modelled points are coloured

according to the P-T path as isobaric (light blue), gentle (blue) and steep (dark blue). Melt extracts are grouped into 3 progressive temperature

intervals with increasing temperature to the right of the figure. Weight percentages are normalised to the NCKFMAST chemical system.

79

DISCUSSION

The different source controls investigated in this study do not have equally significant

influences on the composition of melt batches produced by progressive melting and melt

extraction. The results indicate the hierarchy of influence on melt composition to be: 1. the

presence or absence of water; 2. the pressure of melting; 3. the Ca# of the rock; 4. the Mg#

of the rock; 5. Melt threshold (see size of compositional vectors on the right of Figs. 3&4).

Ignoring the presence or absence of water, the nine bulk compositions investigated in this

study vary substantially in terms of mode and composition of the reactant minerals, although

all are metapelitic, with both muscovite and biotite present in the subsolidus assemblage

along with quartz, plagioclase and aluminous minerals such as staurolite and/or aluminium

silicates. Given the range in compositions it is noteworthy that on Figure 5, the different P-T

path arrays are closely grouped, yet clearly discernible on almost every Harker plot. As the

data for each P-T path include data on the compositions of the melt batches produced by all

nine rock compositions, the variation in melt compositions produced by the compositional

range covered is clearly subordinate to that induced by pressure of melting.

In making comparisons between the modelled melt compositions and the natural granite

compositions, it needs to be considered that the granites are likely to represent mixtures of

minerals and melts e.g. (Clemens and Stevens, 2012). Most hypotheses seeking to explain

the petrogenesis of S-type granites can account for this. Restite entrainment and peritectic

assemblage entrainment propose that a mineral load is carried out of the source during

magma mobilization out of the source. Wall rock assimilation by melting can introduce

peritectic minerals to the magma at the level of assimilation (Lackey et al., 2011). Mixing

between hotter mafic magmas with a granitic melt will also produce an assemblage of

ferromagnesian mineral in the resultant mixture. The results of this study, which covered the

full range of temperature of anatexis that may be commonly attained in the mid to deep

crust, also confirm the fact that common granites are mixtures of melt and a mineral

assemblage. Despite the large number of permutations considered and the relatively high

maximum temperatures used in the modelling, no melts are produced that have MgO and

FeO contents as high as common granites (Fig. 4). Within the natural rock dataset FeO +

MgO are inversely correlated with SiO2 content (R2 = 0.73) and FeO and MgO are positively

correlated with TiO2 (R
2 = 0.74). The modelled behaviour of TiO2 could not be explored in

this study because the activity-composition model for melts does not include TiO2. These

correlations are considerably better if the population considered is a single co-magmatic

 80

suite e.g. (Stevens et al., 2007). Stevens et al. (2007) have demonstrated that as K2O and

TiO2 are poorly correlated, and K2O decreases as a function of TiO2 and FeO + MgO, it is

extremely unlikely that these major element geochemical characteristics in granites are a

function of mixing with mafic magma or biotite accumulation. Stevens et al. (2007) and

Clemens and Stevens (2012) argue that such well correlated positive associations between

compatible elements are a consequence of entrainment of the peritectic assemblage produced

principally by incongruent melting reactions involving biotite in the case of S-type granites,

and incongruent melting reactions involving biotite and hornblende in the case of I-type

granites. In the case of S-type granites the peritectic assemblage would consist principally of

garnet and ilmenite or garnet, ilmenite and plagioclase e.g. (Madlakana and Stevens, 2018),

whereas in I-type granites it would consist of clinopyroxene, orthopyroxene and plagioclase.

Consequently, on Harker plots such as FeO vs SiO2, modelled melt compositions do not

coincide with the natural granite population. In contrast, where the element of interest is an

incompatible element that is readily accommodated in the melt, e.g. Na2O or K2O, the

agreement between the range of concentrations defined by the natural rocks and that defined

by the modelled melts may be expected to be good, where the modelled scenario is

appropriate to the genesis of the granites.

All of the permutations of physical parameters and rock chemistry considered in the case of

the water-restricted modelling produce melt compositions that could conceivably be

involved in S-type granite genesis. The melt compositions change slightly as a function of P-

T path and slightly as a function of temperature (Fig. 5), but generally occupy space on

major element bivariate plots that is within the range of compositions defined by the

granites. Entrainment of an appropriate peritectic assemblage produces compositional trends

that are very similar to those portrayed by the natural rocks e.g. (García-Arias and Stevens,

2017a). Very importantly, because mica decomposition regulates the reactions, the melt

compositions map out very similar ranges in Na2O and K2O as defined by the granites. If

dilution by a peritectic assemblage is also taken into account (García-Arias and Stevens,

2017a) the modelled magma compositions will agree very well with the natural granites with

SiO2 < 76 wt.%. In the water in excess examples a substantial number of the melt

compositions defined have no natural rock equivalents. These are compositions with SiO2 in

the range of granites and granodiorites, but with Na2O < 1 wt.% and/or with K2O > 6 wt.%.

The low Na2O compositions are produced by melting once plagioclase in the residuum has

become strongly enriched in anorthite, whilst the high K2O melts result from this melting, as

well as further melting of biotite in the absence of quartz. The melt volumes produced are

 81

substantial (> 20 vol.%) thus if such melting occurred in nature the results would be

discernible in the rock record. Consequently, it can be concluded that such melting does not

occur in nature. In Figure 5, water in excess melting of metapelites at relatively low

temperature can be observed in terms of Na2O and K2O content in the melt as melting

proceeds with increasing temperature. The melts produced close to the solidus have Na2O >

6 wt.% and K2O < 2 wt.%, with SiO2 = 75 wt.%. Such compositions do occur in the natural

rock population but they are rare. As melting progresses Na2O in successive melt batches

decreases and K2O increases, as the stoichiometry of the melting reaction changes to

consume less plagioclase and more muscovite. The melt compositions thus approach the

compositions of common granites better. For melting along the gentle heating P-T path at 7

kbar, once approximately 40 vol.% melt has been extracted, the composition of the melt

batches is sufficiently low in Na2O (< 1.5 wt.%) and high in K2O (> 7wt.%) that it can be

concluded that no natural correlatives exist. This melt volume correlates with approximately

3.7 wt.% water consumed by the melting process and a temperature of only 740 °C. Further

melting produces only increasingly more unusual extremely high K2O melt compositions

(Fig. 5).

The porosity of amphibolite facies metamorphic rocks is such that only a small amount of

pore fluid may exist in the source prior to anatexis, as has been modelled in this study. The

inclusion of this small amount of free water has a negligible effect on the melting history of

the rock. Thus, melting with water in excess requires addition of water by some process. As

it is not possible to move water through rocks above the water saturated solidus, such

melting must occur at the interface between the hot rocks undergoing anatexis and the source

of H2O. This suggests that this process is likely to be most efficient at the solidus. The melt

compositions produced are well characterised in this study, yet are rare in the natural rock

record, leading to the conclusion that water fluxed melting of metapelites has not produced a

significant proportion of the rocks reflected in the natural rock dataset used in this study.

The melt compositions modelled in this study attain a maximum SiO2 content of

approximately 76 wt.%; many granites have higher SiO2 contents than this. This is a function

of the fact that this study has examined melt compositions in the source, at lower pressure

melts are more SiO2 rich. Alternatively, fractional crystallization in the upper crust could

provide a mechanism for producing granites with SiO2 between 76 wt.% and 79 wt.% SiO2

from melts similar to those predicted in this study.

 82

CONCLUSIONS

This study explored the compositions of melt batches produced by progressive melting for

243 permutations of bulk composition, P-T path steepness, fluid state and details of melt

extraction. Of these 81 cases were for water in excess, with the other 2/3 of cases reflecting

water restricted or internally buffered conditions. The findings of this study provide valuable

insights into the role of source controls in creating major element geochemical diversity in

granites. The presence or absence of a water rich fluid in the source and the P-T path

followed by the rock exert the strongest controls on melt compositions. Within metapelitic

sources, compositional factors such as bulk rock Ca# and Mg# exert a minor influence, as

does the amount of melt retention in the source prior to melt extraction, assuming the

threshold is not greater than 10 vol.%. The greatest impact of P-T path steepness, for the

range investigated, is that steeper paths produce slightly lower melt SiO2 contents. This

occurs for sources that are both quartz-saturated and for melt depleted sources where all

quartz has been consumed. Thus it is a consequence of pressure on the modelled melt

composition, not solely a function of aSiO2.

Given that granite magmas predominantly represent mixtures of melts and crystals, with Fe,

Mg, Ti, Ca and Al enriched in the crystal assemblage over melt, the most informative

element concentrations in the modelled melts to compare with granite compositions are

Na2O and K2O. These incompatible element concentrations in granites are likely to most

closely approximate the compositions of the melts from which the granites formed. Water in

excess melting of metapelites produces high melt yields (> 60 vol.%). A substantial volume

of melt is produced at relatively low temperature (20 vol.% by 710 °C) and these melts have

compositions that are unlike common granites as their K2O/Na2O ratios are low. Between

710 and 750 °C, water in excess melting occurs via the incongruent melting of muscovite

and biotite and produced melt batches with compositions similar to normal granites. At

higher temperature a number of incongruent melting reactions involving assemblages such

as biotite, quartz and anorthite; biotite and quartz; biotite and sillimanite, produce melt

batches with very low Na2O and high K2O that are unlike any common granites. In natural

rocks, porosity considerations dictate that water in excess melting required addition of water

to the rocks. Assuming geological circumstances that would allow for this, e.g. the thrusting

of hot rocks over cold and then heating of both rock units to drive devolatilisation of the

underlying rocks and melting of the overlying rocks, this modelling suggests that metapelites

in the overlying unit would produce at least 20% of melts that are peraluminous

 83

plagiogranites with K2O as low at 1 wt.%.That such rocks are uncommon in the rock record

suggests that such water in excess melting does not contribute significantly to the inventory

of granites. At moderate temperatures, 710 to 750 °C, this process does produce melts and

peritectic assemblages that could lead to reasonable granite compositions. However, this

portion of the melting behaviour cannot be accessed without prior melt depletion, so the

paucity of low K peraluminous plagiogranites suggests that rocks never get there.

Fluid restricted partial melting of metapelites in the P-T ranges investigated in this study

produces melt compositions that generally fit well with the petrogenesis of common

peraluminous granites, if allowance is made for a process such as peritectic assemblage

entrainment to increase FeO, MgO and A/CNK and produce the characteristic good

correlation between FeO + MgO and TiO2. The modelled melts have maximum SiO2 = 76

wt.% and this is lower than the value for many peraluminous leucocratic granites. These

granites were either shaped by melt batches generated at substantially lower pressures than 7

kbar, or they have been shaped by crystal fractionation at low pressures. Some relatively low

K2O/Na2O melt compositions also define the water restricted melt compositions produced at

low temperature. This is a consequence of the fact that both the fully-hydrated, fluid-absent

and pore water bearing rock compositions used do melt at the water-saturated solidus.

However, the resultant melts that fall outside the range of normal granites make up a small

fraction of the volume of melt produced from these rocks (< 3 vol.%)

DOWNLOAD

Rcrust is free to download and use under the GNU copyleft. The latest version of the

software can be found on either of the two institutional addresses at: http://www.univ-st-

etienne.fr/rcrust or http://www.sun.ac.za/english/faculty/science/earthsciences/rcrust.

Alternatively, the software can be downloaded by contacting the corresponding author.

ACKNOWLEDGEMENTS

The financial assistance of the National Research Foundation (NRF) towards this research is

hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author

and are not necessarily to be attributed to the NRF. Funding by the French Embassy of South

Africa to M.Mayne and by the South African Research Chairs Initiative (SARChl) to G.

Stevens is gratefully acknowledged.

 84

SUPPLEMENTARY MATERIAL*

The full dataset of modelled melt compositions produced in this study and the array of s-type

granite data used for comparison are contained in Addendum D. Files for reproducing

figures 3-5 are contained in the zipped folder “Mayne_et_al_2018_3_modelling_files”. To

open these download Rcrust from

https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust and replace the “Projects”

and “data” folders with those in the zipped folder. Open each project by double clicking the

appropriate x.RData file.

*For the thesis examiners’ convenience these files are already copied into the electronic copy of Rcrust

provided in Addendum A, to open them simply install Rcrust following the user manual in Addendum B, open

the “Projects” directory of Rcrust, open the project of choice and double click on the .RData file contained in

the project file

 85

REFERENCES

Ague, J.J., 1991, Evidence for major mass transfer and volume strain during regional metamorphism of pelites:

Geology, v. 19, p. 855–858.

Ayres, M., and Harris, N., 1997, REE fractionation and Nd-isotope disequilibrium during crustal anatexis:

Constraints from Himalayan leucogranites: Chemical Geology, v. 139, p. 249–269, doi:

10.1016/S0009-2541(97)00038-7.

Barbarin, B., 1988, Field evidence for successive mixing and mingling between the Piolard Diorite and the

Saint-Julien-la-Vêtre Monzogranite (Nord-Forez, Massif Central, France): Canadian Journal of

Earth Sciences, v. 25, p. 49–59.

Bea, F., Pereira, M.D., Corretgé, L.G., and Fershtater, G.B., 1994, Differentiation of strongly peraluminous,

perphosphorus granites: The pedrobernardo pluton, central Spain: Geochimica et Cosmochimica

Acta, v. 58, p. 2609–2627, doi: 10.1016/0016-7037(94)90132-5.

Beard, J.S., Ragland, P.C., and Crawford, M.L., 2005, Reactive bulk assimilation: A model for crust-mantle

mixing in silicic magmas: Geology, v. 33, p. 681–684, doi: 10.1130/G21470.1.

Birch, W.D., 1978, Petrogenesis of some palaeozoic rhyolites in Victoria: Australian Journal of Earth Sciences,

v. 25, p. 75–87, doi: 10.1080/00167617808729015.

Bourne, J., and Danis, D., 1987, A proposed model for the formation of reversely zoned plutons based on study

of the Lacorne Complex, Superior Province, Quebec: Canadian Journal of Earth Sciences, v. 24,

p. 2506–2520.

Breaks, Frederick, W., and Moore, J.M., 1992, The Ghost Lake Batholith, Superior Province of northwestern

Ontario: a fertile, s-type, peraluminous granite - rare-element pegmatite system: Canadian

Mineralogist, v. 30, p. 835–875.

Brewer, C., 2002, ColorBrewer:, www.ColorBrewer.org (accessed May 2018).

Brown, M., and Pressley, R.A., 1999, Crustal Melting in Nature: Prosecuting Source Processes: Physics and

Chemistry of the Earth, Part A: Solid Earth and Geodesy, v. 24, p. 305–316.

Castro, A., Patiño Douce, A.E., Corretgé, L.G., De La Rosa, J.D., El-Biad, M., and El-Hmidi, H.H., 1999,

Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of

granite petrogenesis: Contributions to Mineralogy and Petrology, v. 135, p. 255–276, doi:

10.1007/s004100050511.

Chappell, B.W., 1978, Granitoids from the moonbi district, new england batholith, eastern Australia: Journal of

the Geological Society of Australia, v. 25, p. 267–283, doi: 10.1080/00167617808729035.

Chappell, B.W., and White, A.J.R., 1992, I-Type and S-Type granites in the Lachlan Fold Belt: Transactions of

the Royal Society of Edinburgh-Earth Sciences, v. 83, p. 1–26, doi: Doi

10.1017/S0263593300007720.

Chappell, B.W., White, A.J.R., and Wyborn, D., 1987, The importance of residual source material (restite) in

granite petrogenesis: Journal of Petrology, v. 28, p. 1111–1138.

Clemens, J.D., Buick, I.S., and Stevens, G., 2016, Fluids, melting, granulites and granites: A commentary:

Precambrian Research, v. 278, p. 394–399, doi: 10.1016/j.precamres.2016.01.001.

Clemens, J.D., and Stevens, G., 2012, What controls chemical variation in granitic magmas? Lithos, v. 134-

135, p. 317–329, doi: 10.1016/j.lithos.2012.01.001.

Clemens, J.D., Stevens, G., and Farina, F., 2011, The enigmatic sources of I-type granites : The peritectic

connexion: Lithos, v. 126, p. 174–181, doi: 10.1016/j.lithos.2011.07.004.

Coleman, D.S., Gray, W., and Glazner, A.F., 2004, Rethinking the emplacement and evolution of zoned

plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite ,

California: Geology, v. 32, p. 433–436, doi: 10.1130/G20220.1.

Collins, W.J., 1996, Lachlan Fold Belt granitoids: products of three component mixing: Earth and

Environmental Science Transactions of The Royal Society of Edinburgh, v. 87, p. 171–181.

Connolly, J.A.D., 2009, The geodynamic equation of state: What and how: Geochemistry, Geophysics,

Geosystems, v. 10, p. 1–19, doi: 10.1029/2009GC002540.

Day, W., and Weiblen, P., 1986, Origin of late Archean granite: geochemical evidence from the Vermilion

Granitic Complex of northern Minnesota: Contributions to Mineralogy and Petrology, v. 93, p.

283–296.

 86

DePaolo, D.J., 1981, Trace element and isotopic effects of combined wallrock assimilation and fractional

crystallization: Earth and Planetary Science Letters, v. 53, p. 189–202.

Downes, H., Dupuy, C., and Leyreloup, A.F., 1990, Crustal evolution of the Hercynian belt of Western Europe:

Evidence from lower-crustal granulitic xenoliths (French Massif Central): Chemical Geology, v.

83, p. 209–231, doi: 10.1016/0009-2541(90)90281-B.

Downes, H., and Duthou, J.L., 1988, Isotopic and trace-element arguments for the lower-crustal origin of

Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France).: Chemical

Geology, v. 68, p. 291–308.

Euzen, T., 1993, Pétrogenèse des granites de collision post-épaississement : Le cas des granites crustaux et

mantelliques du complexe de Pontivy-Rostrenen (Massif Armoricain France): Université de

Rennes, 341 p.

Farina, F., and Stevens, G., 2011, Source controlled 87Sr/86 Sr isotope variability in granitic magmas : The

inevitable consequence of mineral-scale isotopic disequilibrium in the protolith: Lithos, v. 122, p.

189–200, doi: 10.1016/j.lithos.2011.01.001.

Foden, J.D., Elburg, M.A., Turner, S.P., Sandiford, M., O’Callaghan, J., and Mitchell, S., 2002, Granite

production in the Delamerian orogen, South Australia: Journal of the Geological Society, v. 159,

p. 557–575.

García-Arias, M., and Stevens, G., 2017, Phase equilibrium modelling of granite magma petrogenesis : A . An

evaluation of the magma compositions produced by crystal entrainment in the source: Lithos, v.

277, p. 131–153, doi: 10.1016/j.lithos.2016.09.028.

Georget, Y., and Martineau, F., 1986, Age tardi-hercynien et origine crustale du granite de Brignogan

(Finistère, France). Conséquences sur l’interprétation des granites Nordarmoricains: Comptes

rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers,

Sciences de la Terre, v. 302, p. 237–242.

Goad, B.E., and Cerny, P., 1981, Peraluminous pegmatitic granites and their pegmatite aureoles in the

Winnipeg River district, southeastern Manitoba: Canadian Mineralogist, v. 19, p. 177–194.

Hine, R., Williams, I.S., Chappell, B.W., and White, A.J.R., 1978, Contrasts between i- and s-type granitoids of

the kosciusko batholith: Journal of the Geological Society of Australia, v. 25, p. 219–234, doi:

10.1080/00167617808729029.

Holland, T., and Powell, R., 2003, Activity-compositions relations for phases in petrological calculations: An

asymetric multicomponent formulation: Contributions to Mineralogy and Petrology, v. 145, p.

492–501, doi: 10.1007/s00410-003-0464-z.

Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset

for phases of petrological interest, involving a new equation of state for solids: Journal of

Metamorphic Geology, v. 29, p. 333–383, doi: 10.1111/j.1525-1314.2010.00923.x.

Holland, T.J.B., and Powell, R., 1996, Thermodymanics of Order-Disorder in Minerals. II. Symmetric

Formulism Applied to Solid Solutions: American Mineralogist, v. 81, p. 1425–1437.

Holtz, F., and Johannes, W., 1991, Genesis of peraluminous granites I. Experimental investigation of melt

compositions at 3 and 5 kb and various H2O activities: Journal of Petrology, v. 32, p. 935–958.

Inger, S., and Harris, N., 1993, Geochemical constraints on leucogranite magmatism in the Langtang Valley,

Nepal Himalaya: Journal of Petrology, v. 34, p. 345–368.

Janoušek, V., Farrow, C.M., and Erban, V., 2006, Interpretation of whole-rock geochemical data in igneous

geochemistry: Introducing Geochemical Data Toolkit (GCDkit): Journal of Petrology, v. 47, p.

1255–1259, doi: 10.1093/petrology/egl013.

Lackey, J.S., Erdmann, S., Hark, J.S., Nowak, R.M., Murray, K.E., Clarke, D.B., and Valley, J.W., 2011,

Tracing garnet origins in granitoid rocks by oxygen isotope analysis: Examples from the South

Mountain Batholith, Nova Scotia: The Canadian Mineralogist, v. 49, p. 417–440, doi:

10.3749/canmin.49.2.417.

Maas, R., Nicholls, I.A., and Legg, C., 1997, Igneous and metamorphic enclaves in the S-type Deddick

Granodiorite, Lachlan fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic

evidence for crustal melting and magma mixing: Journal of Petrology, v. 38, p. 815–841, doi:

10.1093/petroj/38.7.815.

Madlakana, N., and Stevens, G., 2018, Plagioclase disequilibrium induced during fluid-absent biotite-

 87

breakdown melting in metapelites: Journal of Metamorphic Geology, doi: 10.1111/jmg.12429.

Mayne, M.J., Moyen, J.F., Stevens, G., and Kaislaniemi, L., 2016, Rcrust: a tool for calculating path-dependent

open system processes and application to melt loss: Journal of Metamorphic Geology, v. 34, p.

663–682, doi: 10.1111/jmg.12199.

Nabelek, P.I., Russ-Nabelek, C., and Haeussler, G.T., 1992, Stable isotope evidence for the petrogenesis and

fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota:

Geochimica et Cosmochimica Acta, v. 56, p. 403–417, doi: 10.1016/0016-7037(92)90141-5.

Pateiro-López, B., and Rodríquez-Casal, A., 2010, Generalizing the Convex Hull of a Sample : The R Package

Alphahull: Journal of Statistical software, v. 34, p. 1–28, doi:

http://dx.doi.org/10.18637/jss.v034.i05.

de Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., and Tikoff, B., 2011,

Multiscale magmatic cyclicity , duration of pluton construction, and the paradoxical relationship

between tectonism and plutonism in continental arcs: Tectonophysics, v. 500, p. 20–33, doi:

10.1016/j.tecto.2009.12.009.

Sandeman, H.A., and Clark, A.H., 2003, Glass-rich, Cordierite–Biotite Rhyodacite, Valle Ninahuisa, Puno, SE

Peru: Petrological Evidence for Hybridization of “Lachlan S-type” and Potassic Mafic Magmas:

Journal of Petrology, v. 44, p. 355–385, doi: 10.1093/petrology/44.2.355.

Scaillet, B., France-Lanord, C., and Le Fort, P., 1990, Badrinath-Gangotri plutons (Garhwal, India):

petrological and geochemical evidence for fractionation processes in a high Himalayan

leucogranite: Journal of Volcanology and Geothermal Research, v. 44, p. 163–188, doi:

10.1016/0377-0273(90)90017-A.

Scheepers, R., 1990, Magmatic association and radioelement geochemistry of selected Cape Granites with

special reference to subalkaline and leucogranitic phases: Stellenbosch University, 151 p.

Scheepers, R., and Armstrong, R., 2002, New U-Pb SHRIMP zircon ages of the Cape Granite Suite:

implications for the magmatic evolution of the Saldania Belt: South African Journal of Geology,

v. 105, p. 241–256.

Scheepers, R., and Poujol, M., 2002, U-Pb zircon age of Cape Granite Suite ignimbrites: characteristics of the

last phases of the Saldanian magmatism: South African Journal of Geology, v. 105, p. 163–178,

doi: 10.2113/105.2.163.

Solgadi, F., Moyen, J.F., Vanderhaeghe, O., Sawyer, E.W., and Reisberg, L., 2007, The role of crustal anatexis

and mantle-derived magmas in the genesis of synorogenic Hercynian granites of the Livradois

area, French massif central: Canadian Mineralogist, v. 45, p. 581–606, doi:

10.2113/gscanmin.45.3.581.

Stevens, G., Clemens, and Droop, G.T.R., 1997, Melt production during granulite-facies anatexis: experimental

data from “primitive” metasedimentary protoliths: Contributions to Mineralogy and Petrology, v.

128, p. 352–370.

Stevens, G., and Reenen, D. van R., 1992, Partial melting and the origin of metapelitic granulites in the

Southern Marginal Zone of the Limpopo Belt, South Africa: Precambrian Research, v. 55, p.

303–319.

Stevens, G., Villaros, A., and Moyen, J.F., 2007, Selective peritectic garnet entertainment as the origin of

geochemical diversity in S-type granites: Geology, v. 35, p. 9–12, doi: 10.1130/G22959A.1.

Taylor, J., and Stevens, G., 2010, Selective entrainment of peritectic garnet into S-type granitic magmas:

Evidence from Archaean mid-crustal anatectites: Lithos, v. 120, p. 277–292, doi:

10.1016/j.lithos.2010.08.015.

Villaros, A., 2004, Fusion partielle d’une croute hétérogène (metapelites et orthogneiss) à moyenne to haute

pression: Grenoble University, 60 p.

Villaros, A., and Stevens, G., 2009, The trace element compositions of S-type granites: evidence for

disequilibrium melting and accessory phase entrainment in the source: Contributions to

Mineralogy and Petrology, v. 158, p. 543–561, doi: 10.1007/s00410-009-0396-3.

Villaros, A., Stevens, G., and Buick, I.S., 2009, Tracking S-type granite from source to emplacement : Clues

from garnet in the Cape Granite Suite: Lithos, v. 112, p. 217–235, doi:

10.1016/j.lithos.2009.02.011.

White, R.W., Powell, R., and Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich metapelitic

 88

granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria

calculations in the system: Journal of Metamorphic Geology, v. 20, p. 41–55, doi:

10.1046/j.0263-4929.2001.00349.x.

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R., 2014, New mineral activity-

composition relations for thermodynamic calculations in metapelitic systems: Journal of

Metamorphic Geology, v. 32, doi: 10.1111/jmg.12071.

White, R.W., Powell, R., Holland, T.J.B., and Worley, B., 2000, The effect of TiO2 and Fe2O3 on metapelitic

assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in

the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3: Journal of Metamorphic Geology,

v. 18, p. 497–511.

Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American

Mineralogist, v. 95, p. 185–187, doi: 10.2138/am.2010.3371.

Williamson, B.J., Downes, H., Thirlwall, M.F., and Beard, A., 1997, Geochemical constraints on restite

composition and unmixing in the Velay anatectic granite, French Massif Central: Lithos, v. 40, p.

295–319, doi: 10.1016/S0024-4937(97)00033-9.

Williamson, B.J., Shaw, A., Downes, H., and Thirlwall, M.F., 1996, Geochemical constraints on the genesis of

Hercynian two-mica leucogranites from the Massif Central, France: Chemical Geology, v. 127,

p. 25–42, doi: 10.1016/0009-2541(95)00105-0.

 89

CHAPTER 5

CONCLUSION AND FUTURE PERSPECTIVES

Preliminary results from the creation and implementation of the Rcrust software tool appears

to confirm that open system processes can be effectively investigated through path

dependent modelling in P–T–X space. By altering the bulk composition of a number of

subsystems in a defined modelling space, where compositional changes are inherited along

dependent paths, processes of mass transfer have been simulated. This new methodology and

its software implementation in Rcrust addresses the need for thermodynamically constrained

modelling of complex open system behaviour (Table 1).

Table 1. Summary of the capabilities of Rcrust for comparison with information presented

on other phase equilibrium modelling softwares presented in Chapter 1 Table 1 detailing the

suitability of each respective software program for performing phase equilibrium modelling

in open systems

Software Calculation

method

Graphical

refinements

User Input Phase manipulations

Rcrust [1] Inherited from

Perple_X

None Graphical

user

interface,

text file

input or R

console

input

Along multiple paths,

multiple concurrent phase

manipulations as conditional

phase additions and

extractions that can be set

proportions or defined

relative to system properties

[1] https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust

The methodology presented can deal with phase fractionations or additions concurrently.

These phase manipulations can be triggered by conditions on the reactive system and can

effect multiple phases by proportional changes that are set prior to calculation or can be

defined relative to system properties (e.g. melt retention). The procedure for defining

dependent paths allows multiple complex P–T–X paths to be investigated simultaneously

with calculations running sequentially through points within a path. Through these

functionalities this new tool enables lines of investigation previously inaccessible to phase

equilibrium modelling. The creation of these functions has focused on dealing with the most

common chemical fluxes in metamorphic systems. These are the loss of subsolidus fluids

https://www.sun.ac.za/english/faculty/science/earthsciences/rcrust

 90

during prograde evolution; and at higher temperatures the loss of melts or magmas. Both of

these processes have been accounted for in the modelling and the current software can

handle their contributions to the effective bulk compostion of the system concurrently in

modelling space.

The presented papers, that constitute this thesis, document methodologies for using Rcrust to

perform process-oriented investigations that involve mass transfer. These methodologies

address the dynamic setting of subsolidus water content in a system undergoing prograde

metamorphism; the triggering of melt loss events in a conditionally open system with melt

retention on grain boundaries; the entrainment of phases to melt during melt loss (including

the possibility of phase selective entrainment); the fractional crystallisation of magmas

whereby the proportion of solid crystals in a cooling magma can trigger crystal loss from

that magma; and the limiting of the availability of slow diffusing phases from contributing to

the bulk composition of the chemically reactive subsystem.

The methodology for dynamic setting of subsolidus water loss is investigated further for its

effect on the onset of anatexis and the control of the P–T path on this behaviour. It is found

that the trajectory of the P–T path of a rock can influence the conditions under which melting

begins and can effect the melt fertility of a metasedimentary protolith. This is a result of the

progression of the P–T path controlling which subsolidus reactions are experienced by the

rock on its prograde path and thus determining the total water content of the rock once

anatexis begins. The combination of fluid state and P–T path appear to be the dominant

source control on the compositions of melts produced by sequential melt loss from a

metasedimentary protolith. These controls appear stronger than both the effects of

compositional heterogeneity of the source as well as of volumetric controls on melt loss

events.

Potential limitations

The main limitation for all metamorphic studies following a phase equilibrium approach is

the delineation of equilibrium domains on the mineral and rock scale: the successive

(re)equilibrations described by López-Carmona et al. (2014) as also evidence by the

common observation of chemically zoned minerals. To determine what portions of the rock

are in mutual equilibrium and what each of these domains could represent in the rock’s

complex P–T–X history presents the greatest challenge to its petrological interpretation

(Lanari and Engi, 2017; Yakymchuk et al., 2017; Yakymchuk, 2017; Spear et al., 2016).

Rcrust offers potential solutions for modelling this behaviour which are difficult to

 91

implement with other software programs. By considering each domain in the rock as a

subsystem in Rcrust we may be able to unravel some of the complex relations inherent in

these systems and find constraints for the mechanisms by which they interact. Further

possible limitations to all phase equilibiium modelling lie in the restraints imposed by the

compositional range of the available thermodynamic data and the activity–composition

models developed from this data. In Rcrust since chemical fluxes can be large, for example

when considering continuous melt loss from rocks attaining high temperatures (~1000 °C)

the bulk compositional shifts experienced by the residium could take the composition of the

effective bulk composition out of the range that the thermodynamic models were designed to

handle.

New path dependent diagrams and a suggested protocol for reporting

Rcrust presents a functionally unique form of phase equilibrium modelling as it’s

methodology of setting path dependence allows the pressure temperature and bulk

composition of the system to all vary simultaneously in modelling space. If composition is

set to be constant traditional isochemical phase diagrams (metamorphic assemblage

diagrams) of P–T space can be produced (e.g. Fig. 1a). However, if phase manipulations are

applied to the system, then bulk compositional changes can occur within the defined P–T

space and the resultant diagrams can no longer be read in the same way as isochemical phase

diagrams (e.g. Fig. 1b). Instead the reader must be made aware of the direction of the

constituent paths that produced the diagram and must take care to only interpret petrological

changes invoked in these systems along each respective path rather than across paths. It is

proposed that these compositionally variable diagrams be termed “phase assemblage maps”

in order to avoid the confusion of them being interpreted as isochemical phase diagrams.

Further it is proposed that by convention these diagrams must be accompanied by indicators

of their paths’ directions and positions in P–T space (e.g. the symbol above Fig.1b and the

overprint arrows in Chapter 3: Figs 1, 3 & 4).

 92

Fig. 1. (a) Isochemical phase diagram calculated using Rcrust in the system Na2O-CaO-K2O-

FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2 for an average amphibolite facies metapelite.

Individual isobaric heating and isothermal decompression paths in this P–T space are

labelled as IBH and ITD respectively. (b) Phase assemblage diagram calculated in Rcrust by

compiling multiple isobaric heating paths that all start with the same bulk composition

described above. Melt extraction is set to occur along each path whenever a 7 vol.%

threshold is exceeded and remove all melt present except 1 vol.% in order to approximate

melt retention on grain boundaries. The bulk composition of each point within a path is

passed to the next point in sequence thereby creating a path dependent bulk composition

which inherits compositional changes invoked by previous melt loss events Both diagrams

are taken from Mayne et al. (2016).

Documented uses of Rcrust

Rcrust has been used by the following authors for phase equilibrium investigations. The

projects I was personally involved in are identified with a *. In these projects I programmed

functional improvements to Rcrust in response to the respective author’s requests. All other

projects are solely the work of the respective authors and are listed here only to document

the scope of the current use of the Rcrust software.

Entrainment of peritectic phases*

Nicoli et al (2017) used Rcrust to simulate melt loss with entrainment of peritectic garnet.

They used this model to explain the formation of K2O-poor leucosomes in the Southern

Marginal Zone of the Limpopo Belt, South Africa as the result of multi-step disequilibrium

partial melting. Rcrust allowed melt extractions to be triggered by a melt threshold and

extract garnet in combination with melt at each of these events.

 93

Fractional crystallisation*

Soorajlal (2017) proposed a low temperature filter pressing model for Buddusò I-type

granites and mafic enclaves in Sardinia, Italy in which melt is displaced from a crystal mush

in order to produce a cumulate portion with granodioritic composition and an extract portion

with leucogranitic composition. Soorajlal modelled the sequential extraction of melt from the

reactive subsystem in equilibrium at a number of fixed P–T conditions in order to simulate a

process of melt loss through filter pressing. Rcrust allowed melt loss events to be triggered

by the cumulative proportion of crystals in the system. Work by Farina (2018) further

develops the phase equilibrium constraints on this process of fractional crystallisation.

Crystallisation sequences

Holness et al (2018) used Rcrust in their investigation of the conditions of alkali-feldspar

crystallisation. They found an apparent disconnect between phase equilibrium modelling

predicting alkali-feldspars to begin crystallising late at relatively low temperatures in

contrast to the field evidence in many granites containing large subhedral-to-euhedral K-

feldspar phenocrysts.

Compositional constraints in planetary sciences

Mohit Melwani of the Jet Propulsion Laboratory of the Californian Institute of Technology

used Rcrust to investigate melt formation and migration on early Mars in order to constrain

the mass of volatile species (including SO2) degassed from volcanoes over time. Mohit has

also used Rcrust to investigate melt production and migration from the melt source regions

within Europa’s silicate interior (Melwani Daswani and Vance, 2018a, 2018b)

Estimating the duration of partial melting

Farina et al (2017) used Rcrust to correlate multi-pulsed magmatism in the Monte Capanne

pluton with multimodal distribution of zircon ages in order to estimate the duration of partial

melting and the timescale of melt extraction from the source

Identifying fluid state during crustal melting

Schwindinger (2018) and Schwindinger et al (2018) used Rcrust to simulate a conditionally

open system effected by melt loss events. They found that the main indicator for water

present melting of metasedimentary sources undergoing anatexis is the melt fraction

produced, with the composition of melt and peritectic phases appearing to be insensitive to

the fluid state of the system.

The role of thermal gradients in crustal melting

Juan David Montenegro of the National University of Colombia used Rcrust to model melt

loss along different thermal gradients in order to assess the production and evolution of

 94

tonalite–trondhjemite–granodiorite magmas in the Archean and its implications for the

generation of continental crust.

Future work

The above projects demonstrate the broad scope of Rcrust’s use and highlight its

contribution to the petrological community. Up till now the development of Rcrust has

largely focused on addressing compositional changes invoked by open system behaviour.

Future work will build on expanding functionalities to the user and further developing these

methodologies. In addition, there are a number of new directions that Rcrust can further

develop:

Kinetic restraints on equilibrium

The limiting of the availability of a phase from contributing to the effective bulk

composition of the reactive system is only partly addressed in Chapter 2. Future work could

build models to consider the effect of the kinetic speed of reactions in limiting the

equilibration volume of a system (Lanari and Engi, 2017). Here the diffusion rate of

chemical components within slow diffusing phases such as garnet (Caddick et al., 2010) or

plagioclase feldspar (Tajčmanová et al., 2007) could be integrated into modelling

procedures. This could control the rate at which chemical components from a chemically

zoned phase are available to the reactive bulk.

Consideration of trace elements in thermodynamic modelling

A major hesitation for igneous petrologists to adopt phase equilibrium modelling has been in

the inability of current software to model trace element behaviour especially in magmatic

systems. Including trace element data in thermodynamic databases and in the activity–

composition models would require immense time, effort and resources. For processes

occurring above the solidus, however, an easier alternative would be to use partition

coefficients to approximate the fractionation of trace elements as the magmatic system

evolves.

Saturation model for zircon

Another major limitation to the modelling of trace elements is the lack of appropriate

thermodynamic models for the accessory phases which are often the largest sinks for trace

elements. Some of the accessory phases for example zircon could be approximated using

saturation models which assume that all of a given trace element e.g. zirconium above that

which the current stable phases of the system can accommodate must exist in a given

 95

accessory phase here zircon. This allows a thermodynamically unconstrained abundance of

zircon to be approximated and manipulated by the modelling software as if it were

determined phase.

Building on each of these procedures in an open source software platform will allow

cumulative functionalities to be integrated into future modelling packages. In this way I aim

to create an internally consistent, thermodynamically and kinetically constrained model for

crustal anatexis.

 96

REFERENCES

Caddick, M.J., Konopásek, J., and Thompson, A.B., 2010, Preservation of garnet growth zoning and the

duration of prograde metamorphism: Journal of Petrology, v. 51, p. 2327–2347, doi:

10.1093/petrology/egq059.

Farina, F., 2018, Petrogenesis of the zoned Budduso Pluton (Sardegna, Italy): phase equilibria constraints on

fractional crystallization: Geological Society of London Special Issue: Making granites:

petrogenetic processes, tectonic environments and secular variations,.

Farina, F., Stevens, G., Dini, A., and Schaltegger, U., 2017, Small-scale zircon age variability in the Monte

Capanne pluton revealing the timescale of crustal melting and melt extraction, in Goldschmidt

2017 Abstract,.

Holness, M.B., Clemens, J.D., and Vernon, R.H., 2018, How deceptive are microstructures in granitic rocks?

Answers from integrated physical theory, phase equilibrium, and direct observations:

Contributions to Mineralogy and Petrology, v. 173, p. 62, doi: 10.1007/s00410-018-1488-8.

Lanari, P., and Engi, M., 2017, Local Bulk Composition Effects on Metamorphic Mineral Assemblages:

Reviews in Mineralogy and Geochemistry, v. 83, p. 55–102, doi: 10.2138/rmg.2017.83.3.

Mayne, M.J., Moyen, J.F., Stevens, G., and Kaislaniemi, L., 2016, Rcrust: a tool for calculating path-dependent

open system processes and application to melt loss: Journal of Metamorphic Geology, v. 34, p.

663–682, doi: 10.1111/jmg.12199.

Melwani Daswani, M., and Vance, S.D., 2018a, Melt production, eruption and degassing from Europa’s

interior: effects on composition over time, in Europa Deep Dive 2: Composition 2018,.

Melwani Daswani, M., and Vance, S.D., 2018b, Thermal-Compositional Evolution of Europa’s Interior and

Ocean Since Accretion, in American Geophysical Union,.

Nicoli, G., Stevens, G., Moyen, J.F., Vezinet, A., and Mayne, M.J., 2017, Insights into the complexity of

crustal differentiation: K2O-poor leucosomes within metasedimentary migmatites from the

Southern Marginal Zone of the Limpopo Belt, South Africa.: Journal of Metamorphic Geology,

doi: 10.1111/jmg.12265.

Schwindinger, M., 2018, The Birthplace of Granite. Mechanisms controlling the evolution of granite magma

within the source : Examples from Kangaroo Island, South Australia: 135 p.

Schwindinger, M., Weinberg, R.F., and Clos, F., 2018, Wet or dry? The difficulty of identifying the presence of

water during crustal melting: Journal of Metamorphic Geology, v. Submitted.

Soorajlal, R., 2017, An investigation of the petrogenesis of the Buddusò I-type granites and its mafic enclaves

in Sardinia, Italy.

Spear, F.S., Pattison, D.R.M., and Cheney, J.T., 2016, The metamorphosis of metamorphic petrology:

Geological Society of America Special Paper, v. 523, p. 31–74, doi: 10.1130/2016.2523(02).

Tajčmanová, L., Konopásek, J., and Connolly, J.A.D., 2007, Diffusion-controlled development of silica-

undersaturated domains in felsic granulites of the Bohemian Massif (Variscan belt of Central

Europe): Contributions to Mineralogy and Petrology, v. 153, p. 237–250, doi: 10.1007/s00410-

006-0143-y.

Yakymchuk, C., 2017, Applying phase equilibria modelling to metamorphic and geological processes: Recent

developments and future potential: Geoscience Canada, v. 44, p. 27–46, doi:

10.12789/geocanj.2017.44.114.

Yakymchuk, C., Clark, C., and White, R.W., 2017, Phase Relations, Reaction Sequences and Petrochronology:

Reviews in Mineralogy and Geochemistry, v. 83, p. 13 LP – 53, doi: 10.2138/rmg.2017.83.2.

97

BIBLIOGRAPHY

Ague, J.J., 1991, Evidence for major mass transfer and volume strain during regional metamorphism of pelites:

Geology, v. 19, p. 855–858.

Albee, A.L., 1965, A petrogenetic grid for the Fe-Mg silicates of pelitic schists: American Journal of Science,

v. 263, p. 512–536.

Amiotte Suchet, P., and Probst, J.L., 1995, A global model for present-day atmospheric/soil CO2 consumption

by chemical erosion of continental rocks (GEM-CO2): Tellus, v. 47B, p. 273–280.

Ayres, M., and Harris, N., 1997, REE fractionation and Nd-isotope disequilibrium during crustal anatexis:

Constraints from Himalayan leucogranites: Chemical Geology, v. 139, p. 249–269, doi:

10.1016/S0009-2541(97)00038-7.

Bachmann, O., and Bergantz, G.W., 2004, On the origin of crystal-poor rhyolites: Extracted from batholithic

crystal mushes: Journal of Petrology, v. 45, p. 1565–1582, doi: 10.1093/petrology/egh019.

Barbarin, B., 1988, Field evidence for successive mixing and mingling between the Piolard Diorite and the

Saint-Julien-la-Vêtre Monzogranite (Nord-Forez, Massif Central, France): Canadian Journal of

Earth Sciences, v. 25, p. 49–59.

Bea, F., Pereira, M.D., Corretgé, L.G., and Fershtater, G.B., 1994, Differentiation of strongly peraluminous,

perphosphorus granites: The pedrobernardo pluton, central Spain: Geochimica et Cosmochimica

Acta, v. 58, p. 2609–2627, doi: 10.1016/0016-7037(94)90132-5.

Beard, J.S., Ragland, P.C., and Crawford, M.L., 2005, Reactive bulk assimilation: A model for crust-mantle

mixing in silicic magmas: Geology, v. 33, p. 681–684, doi: 10.1130/G21470.1.

Berman, R.G., 1988, Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-

MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Journal of Petrology, v. 29, p. 445–522.

Berman, R.G., 1991, Thermobarometry Using Multi-Equilibrium Calculations: a New Technique, With

Petrological Applications: Canadian Mineralogist, v. 29, p. 833–855.

Birch, W.D., 1978, Petrogenesis of some palaeozoic rhyolites in Victoria: Australian Journal of Earth Sciences,

v. 25, p. 75–87, doi: 10.1080/00167617808729015.

Blevin, P.L., and Chappell, B.W., 1992, The role of magma sources, oxidation states and fractionation in

determining the granite metallogeny of eastern Australia: Transactions of the Royal Society of

Edinburgh: Earth Sciences, v. 83, p. 305–316, doi: 10.1017/S0263593300007987.

Bourne, J., and Danis, D., 1987, A proposed model for the formation of reversely zoned plutons based on study

of the Lacorne Complex, Superior Province, Quebec: Canadian Journal of Earth Sciences, v. 24,

p. 2506–2520.

Breaks, Frederick, W., and Moore, J.M., 1992, The Ghost Lake Batholith, Superior Province of northwestern

Ontario: a fertile, s-type, peraluminous granite - rare-element pegmatite system: Canadian

Mineralogist, v. 30, p. 835–875.

Brewer, C., 2002, ColorBrewer:, www.ColorBrewer.org (accessed May 2018).

Brown, M., 2014, The contribution of metamorphic petrology to understanding lithosphere evolution and

geodynamics: Geoscience Frontiers, v. 5, p. 553–569.

Brown, M., and Korhonen, F.J., 2009, Some Remarks on Melting and Extreme Metamorphism of Crustal

Rocks, in Physics and Chemistry of the Earth’s Interior, p. 67–87.

Brown, M., and Pressley, R.A., 1999, Crustal Melting in Nature: Prosecuting Source Processes: Physics and

Chemistry of the Earth, Part A: Solid Earth and Geodesy, v. 24, p. 305–316.

Caddick, M.J., Konopásek, J., and Thompson, A.B., 2010, Preservation of garnet growth zoning and the

duration of prograde metamorphism: Journal of Petrology, v. 51, p. 2327–2347, doi:

10.1093/petrology/egq059.

De Capitani, C., and Petrakakis, K., 2010, The computation of equilibrium assemblage diagrams with

Theriak/Domino software: American Mineralogist, v. 95, p. 1006–1016, doi:

10.2138/am.2010.3354.

Castro, A., Patiño Douce, A.E., Corretgé, L.G., De La Rosa, J.D., El-Biad, M., and El-Hmidi, H.H., 1999,

Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of

granite petrogenesis: Contributions to Mineralogy and Petrology, v. 135, p. 255–276, doi:

 98

10.1007/s004100050511.

Chappell, B.W., 1978, Granitoids from the moonbi district, new england batholith, eastern Australia: Journal of

the Geological Society of Australia, v. 25, p. 267–283, doi: 10.1080/00167617808729035.

Chappell, B.W., and White, A.J.R., 1992, I-Type and S-Type granites in the Lachlan Fold Belt: Transactions of

the Royal Society of Edinburgh-Earth Sciences, v. 83, p. 1–26, doi: Doi

10.1017/S0263593300007720.

Chappell, B.W., White, A.J.R., and Wyborn, D., 1987, The importance of residual source material (restite) in

granite petrogenesis: Journal of Petrology, v. 28, p. 1111–1138.

Clemens, J.D., Buick, I.S., and Stevens, G., 2016, Fluids, melting, granulites and granites: A commentary:

Precambrian Research, v. 278, p. 394–399, doi: 10.1016/j.precamres.2016.01.001.

Clemens, J.D., and Stevens, G., 2012, What controls chemical variation in granitic magmas? Lithos, v. 134-

135, p. 317–329, doi: 10.1016/j.lithos.2012.01.001.

Clemens, J.D., Stevens, G., and Farina, F., 2011, The enigmatic sources of I-type granites : The peritectic

connexion: Lithos, v. 126, p. 174–181, doi: 10.1016/j.lithos.2011.07.004.

Coleman, D.S., Gray, W., and Glazner, A.F., 2004, Rethinking the emplacement and evolution of zoned

plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite ,

California: Geology, v. 32, p. 433–436, doi: 10.1130/G20220.1.

Collins, W.J., 1996, Lachlan Fold Belt granitoids: products of three component mixing: Earth and

Environmental Science Transactions of The Royal Society of Edinburgh, v. 87, p. 171–181.

Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for geodynamic

modeling and its application to subduction zone decarbonation: Earth and Planetary Science

Letters, v. 236, p. 524–541, doi: 10.1016/j.epsl.2005.04.033.

Connolly, J.A.D., 2018, Phase (Melt) Fractionation with Perple_X:,

http://www.perplex.ethz.ch/perplex_phase_fractionation.html (accessed October 2018).

Connolly, J.A.D., 2009, The geodynamic equation of state: What and how: Geochemistry, Geophysics,

Geosystems, v. 10, p. 1–19, doi: 10.1029/2009GC002540.

Connolly, J.A.D., and Kerrick, D.M., 1987, An algorithm and computer program for calculating composition

phase diagrams: Calphad, v. 11, p. 1–55, doi: 10.1016/0364-5916(87)90018-6.

Day, W., and Weiblen, P., 1986, Origin of late Archean granite: geochemical evidence from the Vermilion

Granitic Complex of northern Minnesota: Contributions to Mineralogy and Petrology, v. 93, p.

283–296.

DePaolo, D.J., 1981, Trace element and isotopic effects of combined wallrock assimilation and fractional

crystallization: Earth and Planetary Science Letters, v. 53, p. 189–202.

Diener, J.F.A., and Fagereng, Å., 2014, The influence of melting and melt drainage on crustal rheology during

orogenesis: Journal of Geophysical Research : Solid Earth, v. 119, p. 6193–6210, doi:

10.1002/2014JB011088.Received.

Downes, H., Dupuy, C., and Leyreloup, A.F., 1990, Crustal evolution of the Hercynian belt of Western Europe:

Evidence from lower-crustal granulitic xenoliths (French Massif Central): Chemical Geology, v.

83, p. 209–231, doi: 10.1016/0009-2541(90)90281-B.

Downes, H., and Duthou, J.L., 1988, Isotopic and trace-element arguments for the lower-crustal origin of

Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France).: Chemical

Geology, v. 68, p. 291–308.

Euzen, T., 1993, Pétrogenèse des granites de collision post-épaississement : Le cas des granites crustaux et

mantelliques du complexe de Pontivy-Rostrenen (Massif Armoricain France): Université de

Rennes, 341 p.

Farina, F., 2018, Petrogenesis of the zoned Budduso Pluton (Sardegna, Italy): phase equilibria constraints on

fractional crystallization: Geological Society of London Special Issue: Making granites:

petrogenetic processes, tectonic environments and secular variations,.

Farina, F., and Stevens, G., 2011, Source controlled 87Sr/86 Sr isotope variability in granitic magmas : The

inevitable consequence of mineral-scale isotopic disequilibrium in the protolith: Lithos, v. 122, p.

189–200, doi: 10.1016/j.lithos.2011.01.001.

Farina, F., Stevens, G., Dini, A., and Schaltegger, U., 2017, Small-scale zircon age variability in the Monte

Capanne pluton revealing the timescale of crustal melting and melt extraction, in Goldschmidt

 99

2017 Abstract,.

Foden, J.D., Elburg, M.A., Turner, S.P., Sandiford, M., O’Callaghan, J., and Mitchell, S., 2002, Granite

production in the Delamerian orogen, South Australia: Journal of the Geological Society, v. 159,

p. 557–575.

Friend, J.P., 1973, The Global Sulfur Cycle, in S.I., R. ed., Chemistry of the Lower Atmosphere, Springer, p.

177–178.

Garcia-Arias, M., and Stevens, G. Melting behavior of a metasedimentary source: Consequences for S-type

granite magma compositions.: Journal of Chemical Information and Modeling,.

García-Arias, M., and Stevens, G., 2017a, Phase equilibrium modelling of granite magma petrogenesis : A . An

evaluation of the magma compositions produced by crystal entrainment in the source: Lithos, v.

277, p. 131–153, doi: 10.1016/j.lithos.2016.09.028.

García-Arias, M., and Stevens, G., 2017b, Phase equilibrium modelling of granite magma petrogenesis : B . An

evaluation of the magma compositions that result from fractional crystallization: Lithos, v. 277,

p. 109–130, doi: 10.1016/j.lithos.2016.09.027.

Gardiner, N.J., Johnson, T.E., Kirkland, C.L., and Smithies, R.H., 2018, Melting controls on the lutetium–

hafnium evolution of Archaean crust: Precambrian Research, v. 305, p. 479–488, doi:

10.1016/j.precamres.2017.12.026.

Georget, Y., and Martineau, F., 1986, Age tardi-hercynien et origine crustale du granite de Brignogan

(Finistère, France). Conséquences sur l’interprétation des granites Nordarmoricains: Comptes

rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers,

Sciences de la Terre, v. 302, p. 237–242.

Ghiorso, M.S., and Sack, R.O., 1995, Chemical mass transfer in magmatic processes IV . A revised and

internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid

equilibria in magmatic systems at elevated temperatures and pressures: Contributions to

Mineralogy and Petrology, v. 119, p. 197–212.

Goad, B.E., and Cerny, P., 1981, Peraluminous pegmatitic granites and their pegmatite aureoles in the

Winnipeg River district, southeastern Manitoba: Canadian Mineralogist, v. 19, p. 177–194.

Gottschalk, M., 1997, Internally consistent thermodynamic data for rock-forming minerals in the system SiO2-

TiO2-Al2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2: European Journal of Mineralogy, v. 9, p.

175–223.

Helgeson, H.C., Delany, J.M., and Nesbitt, H.W., 1978, Summary and critique of the thermodynamic

properties of rock-forming minerals: American Journal of Science, v. 278A, p. 1–229.

Hensen, B.J., and Essene, E.J., 1971, Stability of pyrope-quartz in the system MgO-Al2O3-SiO2: Contributions

to Mineralogy and Petrology, v. 30, p. 72–83.

Hensen, B.J., and Harley, S.L., 1990, Graphical analysis of P—T—X relations in granulite facies metapelites,

in High-temperature metamorphism and crustal anatexis, Netherlands, Springer, p. 19–56.

Hine, R., Williams, I.S., Chappell, B.W., and White, A.J.R., 1978, Contrasts between i- and s-type granitoids of

the kosciusko batholith: Journal of the Geological Society of Australia, v. 25, p. 219–234, doi:

10.1080/00167617808729029.

Holland, T., and Powell, R., 2003, Activity-compositions relations for phases in petrological calculations: An

asymetric multicomponent formulation: Contributions to Mineralogy and Petrology, v. 145, p.

492–501, doi: 10.1007/s00410-003-0464-z.

Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset

for phases of petrological interest, involving a new equation of state for solids: Journal of

Metamorphic Geology, v. 29, p. 333–383, doi: 10.1111/j.1525-1314.2010.00923.x.

Holland, T., and Powell, R., 1998, An internally consistent thermodynamic data set for phases of petrological

interest: Journal of Metamorphic Geology, v. 16, p. 309–343.

Holland, T.J.B., and Powell, R., 1996, Thermodymanics of Order-Disorder in Minerals. II. Symmetric

Formulism Applied to Solid Solutions: American Mineralogist, v. 81, p. 1425–1437.

Holness, M.B., Clemens, J.D., and Vernon, R.H., 2018, How deceptive are microstructures in granitic rocks?

Answers from integrated physical theory, phase equilibrium, and direct observations:

Contributions to Mineralogy and Petrology, v. 173, p. 62, doi: 10.1007/s00410-018-1488-8.

Holtz, F., and Johannes, W., 1991, Genesis of peraluminous granites I. Experimental investigation of melt

 100

compositions at 3 and 5 kb and various H2O activities: Journal of Petrology, v. 32, p. 935–958.

Huang, W.L., and Wyllie, P.J., 1981, Phase Relationships of S-Type Granite with H20 to 35 kbar : Muscovite

Granite From Harney Peak , South Dakota: Journal of Geophysical Research, v. 86, p. 10515–

10529.

Indares, A., White, R.W., and Powell, R., 2008, Phase equilibria modelling of kyanite-bearing anatectic

paragneisses from the central Grenville Province: Journal of Metamorphic Geology, v. 26, p.

815–836, doi: 10.1111/j.1525-1314.2008.00788.x.

Inger, S., and Harris, N., 1993, Geochemical constraints on leucogranite magmatism in the Langtang Valley,

Nepal Himalaya: Journal of Petrology, v. 34, p. 345–368.

Janoušek, V., Farrow, C.M., and Erban, V., 2006, Interpretation of whole-rock geochemical data in igneous

geochemistry: Introducing Geochemical Data Toolkit (GCDkit): Journal of Petrology, v. 47, p.

1255–1259, doi: 10.1093/petrology/egl013.

Johannes, W., and Koepke, J., 2001, Incomplete reaction of plagioclase in experimental dehydration melting of

amphibolite: Australian Journal of Earth Sciences, v. 48, p. 581–590, doi: 10.1046/j.1440-

0952.2001.00876.x.

Johannes, W., Koepke, J., and Behrens, H., 1994, Partial melting reactions of plagioclases and plagioclase-

bearing systems, in Feldspars and their Reactions, Springer Netherlands, p. 161–194.

Johnson, T., Gibson, R.L., Brown, M., Buick, I., and Cartwright, I., 2003, Partial Melting of Metapelitic Rocks

Beneath the Bushveld Complex , South Africa: Journal of Petrology, v. 44, p. 301–314, doi:

10.1093/petrology/44.5.789.

Johnson, T.E., White, R.W., and Brown, M., 2011, A year in the life of an aluminous metapelite xenolith —

The role of heating rates , reaction overstep , H2O retention and melt loss: Lithos, v. 124, p. 132–

143, doi: 10.1016/j.lithos.2010.08.009.

Karpov, I.K., Chudnenko, K.V., and Kulik, D.A., 1997, Modeling chemical mass transfer in geochemical

processes; thermodynamic relations, conditions of equilibira and numerical algorithms: American

Journal of Science, v. 297, p. 767–806.

Korhonen, F.J., Powell, R., and Stout, J.H., 2012, Stability of sapphirine + quartz in the oxidized rocks of the

Wilson Lake terrane, Labrador: Calculated equilibria in NCKFMASHTO: Journal of

Metamorphic Geology, v. 30, p. 21–36, doi: 10.1111/j.1525-1314.2011.00954.x.

Lackey, J.S., Erdmann, S., Hark, J.S., Nowak, R.M., Murray, K.E., Clarke, D.B., and Valley, J.W., 2011,

Tracing garnet origins in granitoid rocks by oxygen isotope analysis: Examples from the South

Mountain Batholith, Nova Scotia: The Canadian Mineralogist, v. 49, p. 417–440, doi:

10.3749/canmin.49.2.417.

Lanari, P., Bovay, T., Airaghi, L., and Centrella, S., 2018, Quantitative compositional mapping of mineral

phases by electron probe micro-analyser:.

Lanari, P., and Engi, M., 2017, Local Bulk Composition Effects on Metamorphic Mineral Assemblages:

Reviews in Mineralogy and Geochemistry, v. 83, p. 55–102, doi: 10.2138/rmg.2017.83.3.

Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E.G., and Schwartz, S., 2014,

XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and

geothermobarometry: Computers and Geosciences, v. 62, p. 227–240, doi:

10.1016/j.cageo.2013.08.010.

Linnen, R.L., and Keppler, H., 2002, Melt composition control of Zr/Hf fractionation in magmatic processes:

Geochimica et Cosmochimica Acta, v. 66, p. 3293–3301, doi: 10.1016/S0016-7037(02)00924-9.

López-Carmona, A., Gutiérrez-Alonso, G., Tishin, P.A., and Gertner, I.F., 2014, Thermodynamic modelling of

metamorphic processes: state of the art in pseudosection approach: IOP Conference Series: Earth

and Environmental Science, v. 110.

Maas, R., Nicholls, I.A., and Legg, C., 1997, Igneous and metamorphic enclaves in the S-type Deddick

Granodiorite, Lachlan fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic

evidence for crustal melting and magma mixing: Journal of Petrology, v. 38, p. 815–841, doi:

10.1093/petroj/38.7.815.

Madlakana, N., and Stevens, G., 2018, Plagioclase disequilibrium induced during fluid-absent biotite-

breakdown melting in metapelites: Journal of Metamorphic Geology, doi: 10.1111/jmg.12429.

Mayne, M.J., Moyen, J.F., Stevens, G., and Kaislaniemi, L., 2016, Rcrust: a tool for calculating path-dependent

 101

open system processes and application to melt loss: Journal of Metamorphic Geology, v. 34, p.

663–682, doi: 10.1111/jmg.12199.

Mayne, M.J., Stevens, G., Moyen, J.F., and Johnson, T.E., 2017, The shape of the P-T path controls the onset

of crustal anatexis, in Goldschmidt 2017 Abstract,.

Melwani Daswani, M., and Vance, S.D., 2018a, Melt production, eruption and degassing from Europa’s

interior: effects on composition over time, in Europa Deep Dive 2: Composition 2018,.

Melwani Daswani, M., and Vance, S.D., 2018b, Thermal-Compositional Evolution of Europa’s Interior and

Ocean Since Accretion, in American Geophysical Union,.

Morrissey, L.J., Hand, M., Lane, K., Kelsey, D.E., and Dutch, R.A., 2016, Upgrading iron-ore deposits by melt

loss during granulite facies metamorphism: Ore Geology Reviews, v. 74, p. 101–121, doi:

10.1016/j.oregeorev.2015.11.012.

Morse, S.A., 1984, Cation Diffusion in Plagioclase Feldspar: Science, v. 225, p. 504–505.

Nabelek, P.I., Russ-Nabelek, C., and Haeussler, G.T., 1992, Stable isotope evidence for the petrogenesis and

fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota:

Geochimica et Cosmochimica Acta, v. 56, p. 403–417, doi: 10.1016/0016-7037(92)90141-5.

Nicoli, G., and Dyck, B., 2018, Exploring the metamorphic consequences of secular change in the siliciclastic

compositions of continental margins: Geoscience Frontiers, p. 1–9, doi:

10.1016/j.gsf.2017.12.009.

Nicoli, G., Stevens, G., Moyen, J.F., Vezinet, A., and Mayne, M.J., 2017, Insights into the complexity of

crustal differentiation: K2O-poor leucosomes within metasedimentary migmatites from the

Southern Marginal Zone of the Limpopo Belt, South Africa.: Journal of Metamorphic Geology,

doi: 10.1111/jmg.12265.

Ousterhout, J.K., and Jones, K., 2009, Tcl and the Tk toolkit:.

Pateiro-López, B., and Rodríquez-Casal, A., 2010, Generalizing the Convex Hull of a Sample : The R Package

Alphahull: Journal of Statistical software, v. 34, p. 1–28, doi:

http://dx.doi.org/10.18637/jss.v034.i05.

Powell, R., and Holland, T., 1988, An internally consistent dataset with uncertainties and correlations: 3.

Applications to geobarometry, worked examples and a computer program: Journal of

Metamorphic Geology, v. 6, p. 173–204, doi: 10.1111/j.1525-1314.1988.tb00415.x.

Powell, R., and Holland, T.J.B., 1985, An internally consistent thermodynamic dataset with uncertainties and

correlations: 1. Methods and a worked example.: Journal of Metamorphic Geology, v. 3, p. 327–

342.

Powell, R., Holland, T., and Worley, B., 1998, Calculating phase diagrams involving solid solutions via non-

linear equations, with examples using THERMOCALC: Journal of Metamorphic Geology, v. 16,

p. 577–588, doi: 10.1111/j.1525-1314.1998.00157.x.

R Core Team, 2016, R: A Language and Environment for Statistical Computing:, https://www.r-project.org/.

Riesco, M., Stüwe, K., Reche, J., and Martinez, F.J., 2004, Silica depleted melting of pelites. Petrogenetic grid

and application to the Susqueda aureole, Spain: Journal of Metamorphic Geology, v. 22, p. 475–

494, doi: 10.1111/j.1525-1314.2004.00527.x.

Rosenberg, C.L., and Handy, M.R., 2005, Experimental deformation of partially melted granite revisited:

Implications for the continental crust: Journal of Metamorphic Geology, v. 23, p. 19–28, doi:

10.1111/j.1525-1314.2005.00555.x.

RStudio, 2014, Shiny: Easy web applications in R:, http://shiny.rstudio.com.

de Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., and Tikoff, B., 2011,

Multiscale magmatic cyclicity , duration of pluton construction, and the paradoxical relationship

between tectonism and plutonism in continental arcs: Tectonophysics, v. 500, p. 20–33, doi:

10.1016/j.tecto.2009.12.009.

Sandeman, H.A., and Clark, A.H., 2003, Glass-rich, Cordierite–Biotite Rhyodacite, Valle Ninahuisa, Puno, SE

Peru: Petrological Evidence for Hybridization of “Lachlan S-type” and Potassic Mafic Magmas:

Journal of Petrology, v. 44, p. 355–385, doi: 10.1093/petrology/44.2.355.

Scaillet, B., France-Lanord, C., and Le Fort, P., 1990, Badrinath-Gangotri plutons (Garhwal, India):

petrological and geochemical evidence for fractionation processes in a high Himalayan

leucogranite: Journal of Volcanology and Geothermal Research, v. 44, p. 163–188, doi:

 102

10.1016/0377-0273(90)90017-A.

Scheepers, R., 1990, Magmatic association and radioelement geochemistry of selected Cape Granites with

special reference to subalkaline and leucogranitic phases: Stellenbosch University, 151 p.

Scheepers, R., and Armstrong, R., 2002, New U-Pb SHRIMP zircon ages of the Cape Granite Suite:

implications for the magmatic evolution of the Saldania Belt: South African Journal of Geology,

v. 105, p. 241–256.

Scheepers, R., and Poujol, M., 2002, U-Pb zircon age of Cape Granite Suite ignimbrites: characteristics of the

last phases of the Saldanian magmatism: South African Journal of Geology, v. 105, p. 163–178,

doi: 10.2113/105.2.163.

Schwindinger, M., 2018, The Birthplace of Granite. Mechanisms controlling the evolution of granite magma

within the source : Examples from Kangaroo Island, South Australia: 135 p.

Schwindinger, M., Weinberg, R.F., and Clos, F., 2018, Wet or dry? The difficulty of identifying the presence of

water during crustal melting: Journal of Metamorphic Geology, v. Submitted.

Sola, A.M., Hasalova, P., Weinberg, R.F., Suzano, N.O., Becchio, R.A., Hongn, F.D., and Botelho, N., 2017,

Low-P melting of metapelitic rocks and the role of H2O : Insights from phase equilibria

modelling: Journal of Metamorphic Geology, v. 35, p. 1131–1159, doi: 10.1111/jmg.12279.

Solgadi, F., Moyen, J.F., Vanderhaeghe, O., Sawyer, E.W., and Reisberg, L., 2007, The role of crustal anatexis

and mantle-derived magmas in the genesis of synorogenic Hercynian granites of the Livradois

area, French massif central: Canadian Mineralogist, v. 45, p. 581–606, doi:

10.2113/gscanmin.45.3.581.

Soorajlal, R., 2017, An investigation of the petrogenesis of the Buddusò I-type granites and its mafic enclaves

in Sardinia, Italy.

Spear, F.S., Kohn, M.J., and Cheney, J.T., 1999, P -T paths from anatectic pelites: Contributions to Mineralogy

and Petrology, v. 134, p. 17–32.

Spear, F.S., and Pattison, D.R.M., 2017, The implications of overstepping for metamorphic assemblage

diagrams (MADs): Chemical Geology, v. 457, p. 38–46, doi: 10.1016/j.chemgeo.2017.03.011.

Spear, F.S., Pattison, D.R.M., and Cheney, J.T., 2016, The metamorphosis of metamorphic petrology:

Geological Society of America Special Paper, v. 523, p. 31–74, doi: 10.1130/2016.2523(02).

Stevens, G., and Clemens, J.D., 1993, Fluid-absent melting and the roles of fluids in the lithosphere: a slanted

summary? Chemical Geology, v. 108, p. 1–17.

Stevens, G., Clemens, J.D., and Droop, G.T.R., 1995, Hydrous cordierite in granulites and crustal magma

production: Geology, v. 23, p. 925–928, doi: 10.1130/0091-

7613(1995)023<0925:HCIGAC>2.3.CO.

Stevens, G., Clemens, and Droop, G.T.R., 1997, Melt production during granulite-facies anatexis: experimental

data from “primitive” metasedimentary protoliths: Contributions to Mineralogy and Petrology, v.

128, p. 352–370.

Stevens, G., Clemens, J.D., and Mayne, M.J., 2017, The origins of geochemical trends in felsic igneous rocks :

Insight into processes in the source., in Goldschmidt 2017 Abstract,.

Stevens, G., and Reenen, D. van R., 1992, Partial melting and the origin of metapelitic granulites in the

Southern Marginal Zone of the Limpopo Belt, South Africa: Precambrian Research, v. 55, p.

303–319.

Stevens, G., Villaros, A., and Moyen, J.F., 2007, Selective peritectic garnet entertainment as the origin of

geochemical diversity in S-type granites: Geology, v. 35, p. 9–12, doi: 10.1130/G22959A.1.

Stuck, T.J., 2016, Mineral Equilibria Constraints on Open-System Melting and Consequences of Melt Loss in

Metabasic Rocks: 61 p.

Stuck, T.J., and Diener, J.F.A., 2018, Mineral equilibria constraints on open-system melting in metamafic

compositions: Journal of Metamorphic Geology, v. 36, p. 255–281, doi: 10.1111/jmg.12292.

Tajčmanová, L., Konopásek, J., and Connolly, J.A.D., 2007, Diffusion-controlled development of silica-

undersaturated domains in felsic granulites of the Bohemian Massif (Variscan belt of Central

Europe): Contributions to Mineralogy and Petrology, v. 153, p. 237–250, doi: 10.1007/s00410-

006-0143-y.

Taylor, J., Nicoli, G., Stevens, G., Frei, D., and Moyen, J., 2014, The processes that control leucosome

compositions in metasedimentary granulites : perspectives from the Southern Marginal Zone

 103

migmatites , Limpopo Belt , South Africa: Journal of Metamorphic Geology, v. 32, p. 713–742,

doi: 10.1111/jmg.12087.

Taylor, J., and Stevens, G., 2010, Selective entrainment of peritectic garnet into S-type granitic magmas:

Evidence from Archaean mid-crustal anatectites: Lithos, v. 120, p. 277–292, doi:

10.1016/j.lithos.2010.08.015.

Thompson, A.B., 1982, Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic

liquids: American Journal of Science, v. 282, p. 1567–1595.

Thompson, A.B., 1983, Fluid-absent metamorphism: Journal of the Geological Society, London, v. 140, p.

533–547.

Vielzeuf, D., and Holloway, J.R., 1988, Experimental determination of the fluid-absent melting relations in the

pelitic system Consequences for crustal differentiation: Contributions to Mineralogy and

Petrology, v. 98, p. 257–276, doi: 10.1007/BF00375178.

Vielzeuf, D., and Montel, J.M., 1994, Partial melting of metagreywackes. Part I. Fluid-absent experiments and

phase relationships: Contributions to Mineralogy and Petrology, v. 117, p. 375–393, doi:

10.1007/BF00307272.

Vigneresse, J.L., and Burg, J.P., 2000, Continuous vs. discontinuous melt segregation in migmatites: Insights

from a cellular automaton model: Terra Nova, v. 12, p. 188–192, doi: 10.1046/j.1365-

3121.2000.00299.x.

Villaros, A., 2004, Fusion partielle d’une croute hétérogène (metapelites et orthogneiss) à moyenne to haute

pression: Grenoble University, 60 p.

Villaros, A., Laurent, O., Couzinié, S., Moyen, J.F., and Mintrone, M., 2018, Plutons and domes: the

consequences of anatectic magma extraction—example from the southeastern French Massif

Central: International Journal of Earth Sciences, p. 1–24, doi: 10.1007/s00531-018-1630-x.

Villaros, A., and Stevens, G., 2009, The trace element compositions of S-type granites: evidence for

disequilibrium melting and accessory phase entrainment in the source: Contributions to

Mineralogy and Petrology, v. 158, p. 543–561, doi: 10.1007/s00410-009-0396-3.

Villaros, A., Stevens, G., and Buick, I.S., 2009, Tracking S-type granite from source to emplacement : Clues

from garnet in the Cape Granite Suite: Lithos, v. 112, p. 217–235, doi:

10.1016/j.lithos.2009.02.011.

Ward, R.A., Stevens, G., and Kisters, A., 2008, Fluid and deformation induced partial melting and melt

volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia: Lithos, v.

105, p. 253–271.

Waters, D.J., 1988, Partial melting and the formation of granulite facies assemblages in Namaqualand, South

Africa: Journal of Metamorphic Geology, v. 6, p. 387–404, doi: 10.1111/j.1525-

1314.1988.tb00430.x.

Webb, G., Powell, R., and McLaren, S., 2015, Phase equilibria constraints on the melt fertility of crustal rocks:

The effect of subsolidus water loss: Journal of Metamorphic Geology, v. 33, p. 147–165, doi:

10.1111/jmg.12114.

Weinberg, R.F., and Hasalová, P., 2015, Water-fluxed melting of the continental crust: A review: Lithos, v.

212-215, doi: 10.1016/j.lithos.2014.08.021.

Wheeler, J., 2014, Dramatic effects of stress on metamorphic reactions: Geology, v. 42, p. 647–650, doi:

10.1130/G35718.1.

Wheeler, J., 2018, The effects of stress on reactions in the Earth: Sometimes rather mean, usually normal,

always important: Journal of Metamorphic Geology, v. 36, p. 439–461, doi: 10.1111/jmg.12299.

White, R.W., and Powell, R., 2002, Melt loss and the preservation of granulite facies mineral assemblages:

Journal of Metamorphic Geology, v. 20, p. 621–632, doi: 10.1046/j.1525-1314.2002.00206.x.

White, R.W., and Powell, R., 2010, Retrograde melt-residue interaction and the formation of near-anhydrous

leucosomes in migmatites: Journal of Metamorphic Geology, v. 28, p. 579–597, doi:

10.1111/j.1525-1314.2010.00881.x.

White, R.W., Powell, R., and Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich metapelitic

granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria

calculations in the system: Journal of Metamorphic Geology, v. 20, p. 41–55, doi:

10.1046/j.0263-4929.2001.00349.x.

 104

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R., 2014, New mineral activity-

composition relations for thermodynamic calculations in metapelitic systems: Journal of

Metamorphic Geology, v. 32, doi: 10.1111/jmg.12071.

White, R.W., Powell, R., Holland, T.J.B., and Worley, B., 2000, The effect of TiO2 and Fe2O3 on metapelitic

assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in

the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3: Journal of Metamorphic Geology,

v. 18, p. 497–511.

White, R.W., Powell, R., and Phillips, G.N., 2003, A mineral equilibria study of the hydrothermal alteration in

mafic greenschist facies rocks at Kalgoorlie, Western Australia: Journal of Metamorphic

Geology, v. 21, p. 455–468, doi: 10.1046/j.1525-1314.2003.00454.x.

Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American

Mineralogist, v. 95, p. 185–187, doi: 10.2138/am.2010.3371.

Williamson, B.J., Downes, H., Thirlwall, M.F., and Beard, A., 1997, Geochemical constraints on restite

composition and unmixing in the Velay anatectic granite, French Massif Central: Lithos, v. 40, p.

295–319, doi: 10.1016/S0024-4937(97)00033-9.

Williamson, B.J., Shaw, A., Downes, H., and Thirlwall, M.F., 1996, Geochemical constraints on the genesis of

Hercynian two-mica leucogranites from the Massif Central, France: Chemical Geology, v. 127,

p. 25–42, doi: 10.1016/0009-2541(95)00105-0.

Yakymchuk, C., 2017, Applying phase equilibria modelling to metamorphic and geological processes: Recent

developments and future potential: Geoscience Canada, v. 44, p. 27–46, doi:

10.12789/geocanj.2017.44.114.

Yakymchuk, C., and Brown, M., 2014, Consequences of open-system melting in tectonics: Journal of the

Geological Society, v. 171, p. 21–40, doi: 10.1144/jgs2013-039.

Yakymchuk, C., Clark, C., and White, R.W., 2017, Phase Relations, Reaction Sequences and Petrochronology:

Reviews in Mineralogy and Geochemistry, v. 83, p. 13 LP – 53, doi: 10.2138/rmg.2017.83.2.

Yakymchuk, C., Kirkland, C.L., and Clark, C., 2018, Th/U ratios in metamorphic zircon: Journal of

Metamorphic Geology, v. 00, p. 1–23, doi: https://doi.org/10.1111/jmg.12307.

Yardley, B.W.D., 2009, The role of water in the evolution of the continental crust: Journal of the Geological

Society, London, v. 166, p. 585–600, doi: 10.1144/0016-76492008-101.

Zeh, A., 2006, Calculation of garnet fractionation in metamorphic rocks, with application to a flat-top, Y-rich

garnet population from the Ruhla Crystalline Complex, Central Germany: Journal of Petrology,

v. 47, p. 2335–2356, doi: 10.1093/petrology/egl046.

Zuluaga, C.A., Stowell, H.H., and Tinkham, D.K., 2005, The effect of zoned garnet on metapelite

pseudosection topology and calculated metamorphic P-T paths: American Mineralogist, v. 90, p.

1619–1628, doi: 10.2138/am.2005.1741.

 A:1

ADDENDA

ADDENDUM A: Electronic copy of Rcrust software

Included within the thesis files for evaluation is an electronic copy of the Rcrust program

developed as part of the thesis by M.J. Mayne.

 B:1

ADDENDUM B: User manual for Rcrust

Included within the thesis files for evaluation is the user manual for the Rcrust program.

 B:2

Phase stabilities with path-dependence

Version 27 September 2018 (for help contact mjmayne@outlook.com)

Getting started

Installation .. 3

Concept ... 5

Example1 – Simple .. 7

Example2 – Phase extraction.. 12

Example3 – Multi-path functionality .. 15

Reference manual

Rcrust file management ... 18

List of Parameters ... 19

Useful functions .. 34

Development .. 36

Troubleshooting ... 37

References .. 37

 B:3

GETTING STARTED

Installation

Rcrust was developed using version 3.3.0 (2016-05-03) of R. Copyright © 2016 the R Foundation for

Statistical Computing. To install Rcrust perform the following steps:

1. Copy the Rcrust folder to a location of your choice (preferably a root directory for example
C:\ or D:\). The result should be similar to the picture below with all the Rcrust files
contained in single directory for example D:\\Rcrust\

Figure 1 - Rcrust file structure located in the root directory D:\\Rcrust\

2. Install a working version of R on your system (at least version 3.3.0). The latest version of R
used in the development of Rcrust is located in the folder “R installs” for your convenience.
Warning: Rcrust requires the 64 bit version of R. When installing R please ensure “64-bit
Files” is ticked.

Figure 2 - R installation instruction ensuring at least "64-bit Files" is ticked

*Alternatively newer versions of R (which may not be compatible with Rcrust) can be

downloaded from http://www.r-project.org/ or for windows can be found directly at

http://cran.r-project.org/bin/windows/base/

1

2

http://www.r-project.org/
http://cran.r-project.org/bin/windows/base/

 B:4

3. Open the folder called code in the Rcrust folder.

Figure 3 – Rcrust file (circled in red) within code folder. The Rcrust file location here is D:\\Rcrust\code\Rcrust.RData

4. Copy the Rcrust file found in the code folder (~/Rcrust/code/Rcrust.RData). This can be done
by right clicking on the file (circled in red above) and selecting “Copy” or by selecting the file
and pressing “Ctrl”+”c”.

5. Paste the Rcrust file as a shortcut on the Desktop. This can be done by right clicking on the
Desktop and selecting “Paste shortcut”.

Figure 4 – Paste shortcut option selected for Rcrust file

6. Rename this file to “Rcrust”. Double click on this shortcut to open Rcrust.

7. Rcrust requires the R package called “shiny”, If this is not installed on your computer when
you open Rcrust, Rcrust will try to install it (this requires an internet connection). Follow the
prompts to complete installation of the package (it may ask you if you wish to create a
personal library – choose yes). Alternatively, shiny can be downloaded here:
http://shiny.rstudio.com/ .

Each new project will be automatically saved in the “Projects” folder along with its associated

inputs and outputs. To load a previously saved project simply double click the “xxx.RData” file in

the associated project folder or open Rcrust from the desktop shortcut and load the project via

the Rcrust GUI.

5

4

3

http://shiny.rstudio.com/

 B:5

Concept

Rcrust is an R program aimed at modelling with path dependence. The program functions by

calculating a number of points in P-T-X space where a bulk composition is passed between points.

This creates path dependence as points within the path rely on the outcomes of previous points for

their calculation. The bulk composition can be altered at each point by phase manipulations

consisting of phase additions and/or phase extractions. Phase stabilities for each point are calculated

by using a compiled form of Perple_X (Connolly & Kerrick, 1987; Connolly, 2005, 2009).

Rcrust manages calculations by splitting the full thermodynamic system (FS) into 3 subsystems: The

reactive subsystem (RS) which contains the phases in thermodynamic equilibrium; The addition

subsystem (AS) where phases are waiting to be added to the reactive subsystem; and the extract

subsystem (ES) where phases extracted from the reactive subsystem are stored. The reactive

subsystem is in thermodynamic equilibrium with the P-T-X conditions of each point and is re-

equilibrated after each P-T-X change. The addition and extract subsystems are in thermodynamic

isolation from other subsystems and from the P-T-X conditions of each point.

Figure 5 - Relationships between systems (left) and flow chart (right) illustrating the Rcrust program structure for a single

path. The user inputs the calculation’s resolution, starting bulk composition, P-T path and phase manipulation settings.

Each step in a path consists of two runs and an output. The first run is shown in a solid line, the second run in a dashed

line and the outputs in a dotted line. Circles show the system or subsystem involved in each step as AS (addition

subsystem), ES (extract subsystem), FS (full system) or RS (reactive subsystem). Arrows show interactions between

systems. From (Mayne et al., 2016)

Parameters for calculations are accessible to the user via the Rcrust Graphical User Interface (GUI).

This GUI writes data to a text file which is then input to the program thus allowing the user to edit

the file ‘behind’ the GUI as well as save inputs for re-use. The code files are extensively commented,

and described in this document. The calculations routines are defined in several files, written in a

modular way that should allow easy addition of features if required. For example, the Phase

Extraction routine has been modified to suit the needs of magma extraction where additional

capabilities allow melt extraction to leave a set melt retention amount behind.

 B:6

Figure 6 - Flow chart of the magma extraction routine. Grey hexagon shaped boxes are decision points. Coding variables

are in italics. The for phase loop (dotted line) is repeated until each phase tagged for extraction has been considered. If

Retention mode is active melt is considered last so that other phases extracted are accounted for in its calculation. From

(Mayne et al., 2016)

Rcrust results should easily be loaded into GCDkit and examined from there.

It is important to remember a few things:

- Rcrust is in development. It is not mature software. It is very unstable at the best of times,
and very unforgiving in terms of improperly formatted inputs, etc. When Rcrust fails, it will
try to generate some human-readable error messages: read them! It may well give you hints
at things you can correct in your inputs.

- Most of the errors you will see are related to incorrect input (files with incorrect number of
lines etc.); or to exotic phases being produced by meemum.

Rcrust calls a set of binary files containing the thermodynamic equations thus relying on published

databases (Holland and Powell typically). The output will never be better than the underlying

thermodynamic model. Since we focus on melting, we are tied to the capacities (and limitations) of

the melt models. For example, melt(HP) does not include Titanium therefore its use in a system

containing Ti can over/under estimate melt abundance.

 B:7

Examples

Below are 3 example simulations to get you started using Rcrust. All you need to do to complete the

examples is to perform the actions written in bold numbered text. Explanations of what these actions

achieve are given between steps.

Example1 – Simple

Follow the bold numbered steps

To begin the first example open Rcrust via the desktop shortcut.

1. Double click the Rcrust desktop shortcut
This will launch the R console and an empty Rcrust Graphical User Interface (GUI) in your default web

browser. The “Working File” (circled in red) shows you which file is currently being worked on and

the “Projects Directory” (circled in green) shows you where the projects folder is located. The Rcrust

toolbar (in grey) contains buttons for file management.

Figure 7 -Rcrust GUI and R Console (blue). Highlighted are the positions of the Projects Directory (green), Working File

(red) and Rcrust toolbar (black).

2. Type “Example1” into the text box on the right of Working File and then click the Load
button from the Rcrust toolbar

The data previously saved in the “Example1” file is now loaded into R and previously saved input

parameters are loaded into the Rcrust GUI. To ensure that we do not overwrite any data lets

rename the Working File.

3. Rename Example1 by typing “Example_simple” into the Working File textbox then click the
Save button from the Rcrust toolbar

This will save the current Rcrust GUI inputs into a new file named “Example_simple”. The Rcrust GUI

should now look similar to Figure 8.

Projects Directory

Rcrust Toolbar

Working File

R Console

 B:8

Figure 8 - Rcrust GUI with Example1 (Example_simple) parameters loaded. The GUI consists of a number of tabs. The

Input Parameters tab sets the size, P-T conditions and bulk composition (X) of the simulation.

This example calculates the phases encountered at points in P-T-X space. Input parameters are

grouped into collapsible panels:

 Size Panel

The Size panel sets the number of points in the simulation (here 4 points in the X direction multiplied

by 3 in the Y direction). Points in the simulation space are identified by tuples written as {x_i ; y_i}

where i denotes the current point.

Figure 9 – Simulation space with point coordinates defined by tuples {x_i ; y_i}

 Pressure and Temperature Panel

Parameters in the simulation space are filled by a number of definitions. Each unique definition is

applied over a range between the tuples From { x_a ; y_a } and To { x_b ; y_b } where a and b denote

the start and end points of a rectangular range. Each definition sets its attributes as constants or as

Y

X

{x_i ; y_i} = {4 ; 3}

Size

Pressure and

Temperature

Bulk

Composition

 B:9

functions of the point’s position. X and Y positions of points are accessed by the variables x_i and y_i

respectively. In the Pressure and Temperature Panel we set the Pressure in kilobars and

Temperature in degrees Celsius for each point. In this example Pressure decreases along the y-axis by

1 kbar per point (7-y_i) and Temperature increases along the x-axis by 20 °C per point (670+x_i*20).

 Bulk Composition Panel

The bulk composition of the system is made up of a number of major elements expressed as wt.%

elemental oxides. For this simple example we define the bulk composition to be constant across the

full P-T space, and we give it the value of the average amphibolite-facies pelite composition

considered in (Mayne et al., 2016).

 Na2O MgO Al2O3 SiO2 K2O CaO TiO2 FeO O2 H2O

wt.% 1.82 3.28 20.45 56.97 4.09 1.56 1.05 8.5 0.62 1.96

Table 1 – Average amphibolite facies pelite composition considered in (Mayne et al., 2016).

To get started let’s run a reconnaissance simulation:

4. Click the Run button from the Rcrust toolbar

This will save inputs in the Rcrust GUI and launch the calculation procedure into the R console.

Navigate to the R console now. The R console should now have a few lines of text in it (like the figure

below): If your simulation successfully initialized like the one below then we are ready to start the

calculation. If your console failed to initialize the program try reloading the original “Example1” file

by closing Rcrust then starting from step 1 again, if problems persist try reinstalling Rcrust or report

the problem to the developers (mjmayne@outlook.com).

Figure 10 - The Rcrust calculation is launched into the R Console which tracks the calculation progress and is currently

waiting for a response to continue or to abort.

 B:10

5. Click anywhere in the R console to activate it then press [enter] to continue

The calculation will run for 12 points :4 in the X direction by 3 in the Y direction. The results will

automatically be saved to file and you will be prompted to select outputs.

6. Once the calculation is complete, navigate back to the Rcrust GUI and Select the Outputs
tab

Here we see a compilation data file for the points in our simulation. To compare points, click the

“Select Output” drop down and choose “Grid”.

7. Choose “Grid” under “Select Output”

Grid allows easy comparisons between points for example choose:

 Select Output = Grid
o Variable = wt% and Melt_rs

8. Choose Variable=“wt%” and ”Melt_rs”

The output should now match Figure 11. This shows us the amount of melt in the Reactive

Subsystem (RS) over our point selection in P-T-X space. Remember we set temperature to increase

along the x-axis and pressure to decrease along the y-axis. With that in mind, we see that the solidus

(boundary between liquid and solid) at lower pressures is crossed by lower temperatures (this is a

good illustration of the pressure dependence of melting). For further outputs you can deal directly

with the data in the R console (hint: you can plot data directly into GCDkit). To access the data in R

console, click the “Console” button on the Rcrust toolbar to launch a browser access. To return to the

Rgui at any point type “c” then press [enter].

Figure 11 – Grid output Data for Example_simple
showing weight percentage of melt in the reactive
subsystem for the P-T-X points selected

To view a graphical output of this data toggle the “View” selection to “Plot”. This will plot a filled

contour graph of the selected data which can be saved directly as a .ps file through the “Save To File”

button at the bottom of the selection panel.

9. Toggle the “View” selection from “Data” to “Plot” and choose “Bottom Axis” as
“Temperature”, “Left Axis” as “Pressure”

Figure 12 – Grid output Plot for Example_simple
showing weight percentage of melt in the reactive
subsystem for the P-T-X points selected as a filled
contour plot

 B:11

 B:12

Example2 – Phase extraction

Phase extractions can remove phases from the reactive subsystem. This is used to simulate scenarios
such as melt loss or fractional crystallization.

Figure 13 – Example of melt extraction along a P-T-X
path from (Mayne et al., 2016): Weight percentage of
phases verses temperature in degrees Celsius for a
fixed pressure of 12 kbar. Starting composition taken as
an average amphibolite facies pelite (Table 1). Melt is
extracted whenever a 7 vol.% threshold is met.

Let’s perform melt extraction along a path in the P-T-X space explored by Example1.

1. Load Example2 by opening Rcrust, typing ‘Example2’ in working file and clicking “Load”
To ensure that we do not overwrite any data lets rename the Working File.

2. Rename the file by typing “Example_extract” into Working File then click the Save button
from the Rcrust toolbar

This will save the current Rcrust GUI inputs into a new file named “Example_extract”. The Rcrust GUI
should now look like the images below:

Figure 14 - Rcrust GUI inputs for Example_extract

 B:13

This example calculates an open system dependent path in P-T-X space. The bulk composition of the
Reactive Subsystem is altered by phase manipulations encountered along the path. Phase
Manipulations are grouped into collapsible panels:

 Phase Addition

Phases such as intruding fluids, segregated melts or residual crystals can be incorporated into the

reactive subsystem. These additions are defined by the major elemental oxides chosen in “Bulk

composition”.

 Phase Extraction

Phases in the reactive subsystem can be extracted when set conditions are met. These conditions are

defined as logical arguments such as “TRUE”/”FALSE” to extract for every point/no points

respectively. Alternatively a logical argument can be built of the form “phase,operand,value,unit”

where phase = name of the phase/solution model, operand = (<,<=,==,>=,>,!=), value = a number and

unit = the phase property to test. In this example we want to trigger extraction whenever a melt

threshold is reached so our conditional argument is “Melt,>=,7,wt%”. *note that each argument in

the condition is separated by a comma.

When the condition is met phase extraction is triggered on the reactive subsystem. For each phase

listed in Phases for Extraction we need to define the amount of the phase to extract. This can be a

numeric value (interpreted as grams relative to the starting mass in grams defined in the Bulk

Composition Panel), or a percentage of the current value. In this example we extract all melt (100%).

Figure 15 - Phase extraction definition for Example_extract

To save you time we have pre-run this calculation so you can directly view the results by selecting the

Outputs tab.

3. Select the Outputs tab in the Rcrust GUI

A custom output selection is available for viewing phase abundances along a path.

4. Choose “Phase Abundance Along Path” under “Select Output”

Here you can select which axis the path traverses (axis), which path you wish to consider (path),

select the (Start Point) and (End Point) of the path and add a label for the column names.

5. Set “End Point” as 25

The output should now match Figure 16.

 B:14

Figure 16 – Phase Abundance Along Path output for Example_extract showing mass of each phase in the full system (FS)
across the P-T-X points selected.

This output highlights a few key features of the phase extraction function:

 Outputs in the Phase Abundance along path plotter are expressed as wt.%

 The second melt extraction event extracts more than 7 vol.% melt (relative to the full
system)(red box) even though the melt extraction threshold was set to be 7 vol.%

Reason -> Evaluations are only performed at each point thus if the resolution (number of points) is

low then large changes can occur between each point.

 Subsequent melt extraction events may appear less than the melt extraction threshold
(green boxes)

Reason -> The melt extraction threshold is evaluated relative to the Reactive Subsystem (which itself

is shrinking due to melt extraction events) thus equivalent proportions of melt equate to different

proportions when compared to the full system (FS).

 B:15

Example3 - Multi-path functionality

Multiple paths can be compiled in P-T-X space to produce path-dependent P-T mode diagrams. In

these diagrams a plane in P-T space is filled with points originating from dependent paths.

Figure 17 – Example of a composite path-dependent P-T
mode diagram from (Mayne et al., 2016): Colours scale
the weight percentage of melt in the reactive
subsystem (RS). Starting composition at 640 °C and 12
kbar taken as an average amphibolite facies pelite
(Table 1). Melt is extracted whenever a 7 wt.%
threshold is met and leaves behind 1 wt.%
approximating melt retention on grain boundaries. The
simulation space is filled by a number of isothermal
decompression paths that each originate off a 12 kbar
isobaric heating path.

Let’s create a path-dependent P-T mode diagram by decompressing off of the path investigated in

Example2.

1. Load Example3 by opening Rcrust, typing ‘Example3’ in working file and clicking “Load”
To ensure that we do not overwrite any data lets rename the Working File.

2. Rename the file by typing “Example_multi” into Working File then click the Save button
from the Rcrust toolbar

This will save the current Rcrust GUI inputs into a new file named “Example_multi”. The Rcrust GUI

should now look like Figure 18.

 B:16

Figure 18 - Rcrust GUI inputs for Example_multi

This example creates a composite path-dependent P-T mode diagram. It does this by first calculating

an open system isobaric heating path at 12 kbar (IBH12) and then calculating a number of isothermal

decompression paths that each originate from a point on IBH12. Points along IBH12 are each

dependent on the reactive subsystem of the point one to the left of itself on the x-axis. Points along

decompression paths are each dependent on the point one above itself on the y-axis. Melt loss is

defined to occur whenever a 7 vol.% melt threshold is met and melt is extracted until 1 wt.% melt is

left behind (this is achieved using the “retain(amount,unit)” function).

Figure 19 - Grid output for Example_multi showing volume percent of melt in the reactive subsystem (RS)

 B:17

Figure 20 – Phase assemblage map for Example_multi showing field labels as numbers

 B:18

REFERENCE MANUAL

Rcrust File Management

The top line of the Rcrust GUI hosts a toolbar of file management buttons. User inputs are saved in a

text document (Working File) which is located in the Projects folder of Rcrust (Projects Directory).

This file is written, read or run in Rcrust by the Save, Load and Run buttons.

Save

Saves the Working File’s inputs and calculation results. Each working file is assigned its own project

folder in the Projects Directory. Parameters currently in the Rcrust GUI are saved to the Inputs folder

as a text document. Additional parameters can be passed to Rcrust by placing them in the text

document after the line (# Additional Parameters). Calculation results are saved as an R workspace

in the project folder.

Load

Loads the Working File’s inputs and calculation results. Reads the working file from the inputs folder

and loads its options in the Rcrust GUI. Replaces the current workspace with that of the Working

File’s.

Run

Saves the current Rcrust GUI inputs and runs the Rcrust calculation according to these parameters.

Follow prompts in the R console to calculate the results. Once the results are complete you will be

prompted to select outputs through the Rcrust GUI. Outputs written to file are saved in the Ouputs

folder of the project Advanced users can access the results directly in the R console by pressing [esc]

to activate the console (this is helpful for loading data into GCDkit). To relaunch the Rcrust GUI type

'runApp()' then press [Enter]

Clear

Clears current values in the Rcrust GUI

Console

Launches a browser in the R console giving you direct access to the coding environment and all

calculated data

Projects

Rcrust Toolbar

Working File

Status

 B:19

List of Parameters

User inputs are listed here in a systematic fashion for clarity. The parameter name (the name that

appears in the Rcrust GUI) is listed first followed by the variable name (the name of the variable

accessible in the R console). The data type required for the parameter is listed in the second box. The

third box contains possible values for the parameter and identifies any default value. Below this is a

description as to what the parameter controls.

Example Parameter

{ex_par}
Integer 0 = closed

1 = open

Default = 0

Example definition for the parameter

Input Parameters

Tuple definitions

From
{pt_from_#}

 Tuple {1;1}<=
pt_from_#<={x_n;y_n}

 The beginning of the definition selection

To
{pt_to_#}

Tuple pt_from_#<=pt_to_#<={x_n;y_n}

The end of the definition selection

Size

Specify here the size of the simulation (resolution) you want to calculate: how many points in the X

and Y directions.

X
{x_n}

Numeric 1< x_n

The total number of points in the X direction

Y
{y_n}

Numeric 1< y_n

The total number of points in the Y direction

Parameter description Default value

Parameter name Data type Possible values

Variable name

 B:20

Pressure and Temperature

Number of PT definitions
{n_pt_def}

Numeric 1< n_pt_def

The number of definitions to use for assigning pressure and temperature values

Pressure (kbar)
{pressure_#}

Numeric/Expression 0<P

The pressure in kilobars of the Reactive Subsystem (RS). *(1 kbar = 0.1 GPa = 986,92 atm).
This can be a constant or an expression built using the variables x_i, y_i, real numbers and
Arithmetic Operators. e.g. 12-(y_i-1)*0.3 to decompress along the y-axis by 0.3kbar per step
starting at 12 kbar.

Temperature (°C)
{temperature_#}

Numeric/Expression 0<T

The temperature in degrees Celsius of the Reactive Subsystem (RS). *(1 °C = 274.15 K = 33.8°F)
This can be a constant or an expression built using the variables x_i, y_i, real numbers and
Arithmetic Operators. e.g. 660+(x_i-1)*50 to heat along the x-axis by 50°C per step starting at
660°C.

PT definition
{pt_def}

String Options: input

Advanced setting toggling the PT definition mode. Used to allow PT definition from file. *pt
definition from file still to come

{pt_definitions} Listed Definition

Pressure and temperature definitions of the form
pt_definitions<-list("{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#"),
"{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#"))

Additional Settings (main.r)

{PT_restrictions} Comma-separated-strings

P-T conditions which should not be calculated. Use if projecting array through array where points
should be ignored

 B:21

Bulk composition

Number of Component
Transformations
{n_comp_trans}

Numeric 0<= n_comp_trans

The number of component transformations to apply to the currently available chemical
components: the possible components for transformation are set by the thermodynamic data file

Replace component
{old_comp_#}

String

The current component to replace

New component
{new_comp_#}

String <6 characters, All capitals

The name of the new component. This name must consist of less than 6 characters and must be
all in capital letters.

NA2O,MGO,...
{comp_#}

Comma-separated numeric

The value of the new component as a factor of the available components:. This must be a string
of comma separated numbers of which a total of no-more-than 11 can be non-zero. For
example, if we wish to use the component O instead of O2 and our starting chemical
components are NA2O,MGO,AL2O3,SIO2,K2O,CAO,TIO2,MNO,FEO,NIO,ZRO2,CL2,02,H2O,C02
we would use: 0,0,0,0,0,0,0,0,0,0,0,0,0.5,0,0 If we wish to use FE2O3 we would use:
0,0,0,0,0,0,0,0,2,0,0,0,0.5,0,0

Major elements
{major_elements}

Comma-separated-strings

The major element components used to define the bulk composition.

Number of bulk definitions
{n_bulk_def}

Numeric 1<= n_bulk_def

The number of definitions to use for assigning bulk compositional values.

 B:22

NA2O,MGO,...,mass Comma-separated-
values/expressions

e.g. 1.5, 20.2, 40.8, 100
e.g. rs{x_i-1;y_i}

The wt.% of each elemental oxide listed in “Major elements” (above) as well as the relative
starting mass (in grams) of the Reactive Subsystem (RS).
Expressions can use real numbers, Arithmetic Operators, x_i, y_i, x_n, y_n and any tuples of the
form xs{#;#} where xs is any of rs,as,es,fs and # uses real numbers, Arithmetic Operators , x_i,
y_i, x_n and/or y_n
If xs{#;#} is of length 1 it will be repeated to fill the required terms.
i.e. To make the full bulk composition of one point dependent on another first initialise the
starting composition and then set the dependent points as rs{x_i-1; y_i} for dependence on the
x-axis or rs{x_i ; y_i-1} for dependence on the y-axis

Import definitions from file
{bulk_def_file}

Boolean TRUE = Import from file
FALSE = definition via input

Choose whether bulk definitions are read from input or imported from a text file (.txt) located in
the Inputs folder.

Bulk file
{bulk_file}

Character string e.g. bulk.txt

The name of the input file containing the bulk composition definitions (the name must end with
.txt). The bulk file must be a tab delimited text file (.txt) containing the columns “From”, “To”, your
selection of major elements and “Mass”. For example:

This text file can be easily exported from an excel file using File\Save As\Text (tab delimited) (*.txt)

The input file must provide bulk definitions for all points in the chosen modelling space {x_n;y_n}
with numbers in the “From” and “To” arguments separated by a semicolon (;).
The bulk definitions describe the wt.% of each elemental oxide as well as the relative starting mass
(in grams) of the Reactive Subsystem (RS). Expressions can use real numbers, r operators, x_i, y_i,
x_n, y_n and any tuples of the form xs{#;#} where xs is any of rs,as,es,fs and # uses real numbers, r
operators, x_i, y_i, x_n and/or y_n

 B:23

Phase Manipulations

Phase Addition

Perform Phase Addition?
{ph_add}

Boolean TRUE/FALSE

Add phases/components into the Reactive Subsystem (RS) at specified points?

Number of addition
definitions
{n_ph_add_def}

Numeric

The number of definitions to use for assigning phase additions.

Condition
{ph_add_con_#}

Logical/expression Options:
TRUE
FALSE
ph{Melt,vol%}>=7

A conditional argument that evaluates to a Boolean answer of TRUE or FALSE.
Note: if directly providing argument as TRUE or FALSE ensure all capitals.

For example to add phases whenever melt exceeds a 7 vol% threshold you would use the
following condition: ph{Melt,vol%}>=7 if “Melt” is the alias assigned in the solution model
file used

Phases for addition
{ph_add_phs_#}

Comma-separated-strings

Phases to be considered for phase addition in each definition. This can be any name as it is
only the respective chemical components that are added to the system not the phase
itself, thus the phase name is just a place holder for the user to remember what they are
adding.

#,#,mass Comma-separated-values

The wt.% of each elemental oxide listed in “Major elements” (Bulk composition tab) as well
as the relative mass (in grams) of the phases/components to add.

 B:24

Phase Extraction

Perform Phase Extraction?
{ph_extr}

Boolean TRUE/FALSE

Extract phases from the Reactive Subsystem (RS) when specified criteria are met?

Re-equilibrate reactive
subsystem after phase
extraction?
{reequilibrate_steps}

Boolean TRUE/FALSE

Use the bulk composition at the end of extraction to recalculate phase stabilities

Number of extraction
definitions
{n_ph_extr_def}

Numeric

The number of definitions to use for assigning phase extractions.

Condition
{ph_extr_con_#}

Logical/expression Options:
TRUE
FALSE
ph{Melt,vol%}>=7

A conditional argument that evaluates to a Boolean answer of TRUE or FALSE.
Note: if directly providing argument as TRUE or FALSE ensure all capitals.

Expressions should be of the form described in “Extraction expressions” below.

For example to extract phases whenever melt exceeds a 7 vol% threshold you would use
the following condition: ph{Melt,vol%}>=7 if “Melt” is the alias assigned in the solution
model file used

 B:25

Phases for extraction
{ph_extr_phs_#}

Comma-separated-strings

Phases to be considered for phase extraction in each definition. These can be any alias in
the solution model file chosen (Phase Models tab) or any pure phase output by Perple_X
(see Perple_X
http://www.perplex.ethz.ch/
Perple_X Solution Model Glossary) and THERMOCALC’s list of mineral abbreviations).
*Can use “any_phase” to set generic arguments

[Phase extraction
proportions]
{ph_extr_phs_#_phase}

Numeric / percentage /
expression

e.g.
10%
5 (mass relative to a starting
mass of 100 for the full system)
retain{2;vol%;Melt}
delta{Melt ; x_i-1 ; y_i ; mass}*0.5

Define the proportion of phase to extract for each phase listed in “Phases for extraction”.
Proportions can be given as:

1. A percentage of what is present (e.g. 10%) *you must include the percentage sign
for this

or
2. A set mass relative to the full system (100). If this amount is larger than what is

present the full amount of the present phase will be extracted.
or

3. As functions of the form described in “Extraction expressions” below.

*Can use “any_phase” to set generic arguments for all phases that are present but don’t
already have a phase extraction proportion set i.e. pre existing definitions take
precedence.

Extraction
expressions

Numeric / percentage /
expression

Extraction expressions can be evaluated for conditions or proportions consisting of x_i, y_i,
real numbers, Arithmetic Operators, Logical Operators, {} and (). where {} separate terms
for calculation order and () are reserved for solution model names.
The following functions can be called by placing the function name before {} with function
terms inside the brackets separated by commas (,) or semi-colons (;).

 retain{amount ; unit ; phase}
o Retention extracts all but a set amount of a phase from the reactive

subsystem where unit can be “mass”,”wt%” or “vol%”. In phase proportion
boxes can omit “phase” to extract current phase.

o e.g. retain{2;vol%;Melt} will extract melt from the reactive subsystem until
2 vol% of melt remains, this is useful for approximating melt retention on
grain boundaries. This can also be written as retain{2;vol%}

o *Warning: when utilising multiple phase extraction definitions ensure that
the retention definition is last in order to retain to the finalised bulk.

 delta{phase ; x_a ; y_a ; unit}
o Delta calculates the incremental difference of a phase between the current

point (point b) and a previous point (point a) such that:
delta=phase_modeb - phase_modea.

 B:26

*point a may be described as “prev_ext_X” where
X is the name of any phase or “prev_ext” to use the
name of the extracting phase as default

o phase = phase for extraction ; x_a and y_a describe the position of the
previous calculated point and unit is one of “mass” or “wt%”.

*phase may be described with “+” separating
individual phase terms e.g. to calculate deltas for
the alumina silicates phase would be “ky+and+sill”

o e.g. delta{Melt ; x_i-1 ; y_i ; mass}*0.5 to extract half of the delta mass for
Melt when paths progress with increasing x_i values.

 ph{phase;unit;x_i;y_i}
o returns the requested variable (unit) for the given phase in the reactive

subsystem. Where unit can be any column name in calc_phases and x_i
and y_i are the current point by default, if ph{} is only given two arguments
the current point will be evaluated by default.

 B:27

Modelling Options

Modelling Data

Meemum version
{meemum_path}

String Example = meemum.exe

The name of the meemum executable to be used in ~Rcrust/data for phase stability calculations.

Perple_X Option File
{perplex_option_file}

Strings Example = perplex_option.dat

The perplex option file present in ~Rcrust/data which controls extra settings for phase stability
calculations.

Thermodynamic Data File
{thermodynamic_data_file}

String Example = hp11ver.dat

The thermodynamic data file present in ~Rcrust/data to be used for phase stability calculations.

Solution Models File
{solution_models_file}

String Example = solution_model_673.dat

The solution model file present in ~Rcrust/data from which solution models can be chosen.

Solution models
{use_sol_models}

Comma-separated-strings

The solution models to use in phase stability calculations sourced from the Solution Models File.
 (see Perple_X
http://www.perplex.ethz.ch/
Perple_X Solution Model Glossary)

Additional optional parameters

 B:28

Saturated components
{saturated_components}

String

Set saturated components

Saturated phase components
{saturated_phase_components}

String

Set saturated phase components

Independent potential/fugacity/activity
{independent_potential_fugacity_activity}

String

Set independent potentials fugacities or activities

Exclude phases
{exclude_phases}

String

Set phases to be excluded from consideration during Gibbs energy minimisation

Extra Settings

When calculation is
complete:
{end_of_calc}

String Options:
Return to interface
Logout
Shutdown
Default = Return to interface

Action to be performed when a calculation is complete.

 B:29

Outputs

Phase Aliases
{ phase_aliases}

Comma separated strings e.g. TiBio(HP)=Bt,Gt(WPH)=Gt

A list of aliases to use for renaming phases of the form TiBio(HP)=Bt,Gt(WPH)=Gt,etc.
To hide a phase from plotting use the alias “hide” e.g. TiBio(HP)=hide.

Select Output = Data File

View the output data as a single filtered table

Select Output = Grid

View the output data by selecting a single variable to express on a grid of x_i and y_i coordinates.

Contour plotting can be achieved by selecting View>Plot.

 B:30

Select Output = Phase Abundance Along Path

View phase abundance data by weight along a path in the x or y direction.

Phase abundance graphs can be viewed as 100% stacked column graphs by selecting View>Plot

 B:31

Select Output = PAM

Create a phase assemblage map by merging fields in x-y space with identical assemblages.

 B:32

File Management

Functions for file management. See Rcrust File management for more details

Projects Directory
{projects_directory}

String

Absolute location of the projects directory within the Rcrust folder.

Working File
{working_file}

String

Name of the current file under operation. Each file has its own folder within the projects directory
containing results of simulations (#.RData file), “Inputs” and “Outputs”.

Save
{on_save}

Function call

Saves the current GUI inputs and workspace to the working_file.

Load
{on_load}

Function call

Loads the previously saved working_file into the GUI inputs and workspace.

Run
{manual_load}

Function call

Saves the current GUI inputs and workspace to the working_file. Then launches the Rcrust
calculation

Clear
{on_clear}

Function call

Clears the current GUI inputs and workspace.

Console
{stopApp}

Function call

Closes the current GUI to allow interaction with the R console. To relaunch the Rcrust GUI type
'runApp()' then press [Enter].

Perple_x options

Options parsed to wrapper calculation set in init_meem.r

Number of chemical

components

{number_components}

Integer Default = 15

The number of chemical components to build the major elements from.

 B:33

Unit for bulk

composition

definition

Integer 0 = molar %

1 = weight %

Default = 1

The unit proportion to use for bulk composition definition.

Advanced user options

Static variable options accessible through main.r

Calculation mode

{calc_mode}
Character vector normal

Default = normal

Advanced setting toggling the calculation mode.

Reaction buffering

{reaction_buffering}
Boolean T (TRUE)

F (FALSE)

Default = FALSE

Allows reaction buffering (threshold buffering) whereby phase extractions set on conditions are
postponed by the number of reaction buffer steps to ensure continued exceedance of the
threshold.

 B:34

Useful functions in the R Console

c Continue steps in a browser (if accessed by clicking “Console” in the Rcrust GUI then

closes the browser and returns to the Rcrust GUI)

ls() List all objects in the current environment

ls(envir=.GlobalEnv) List all objects in the global environment

Q() Quits the current session

[Ctrl]+[w] Toggles buffering of outputs

Rcrust() Manually launches the Rcrust GUI

To access the R console out of a browser click anywhere in the R console window and press [esc].

This will close the Rcrust GUI which has current control over the console. To relaunch the Rcrust GUI

at any time simply type runApp() and press [enter].

Rcrust variables

PT[[bulk]][[step]]$press$temp list

List of pressure and temperature conditions for each step in each bulk

crust[[bulk]][[step]][phase,detail] list

The full system (FS). Contains details of the reactive subsystem (RS) at each step along with
cumulative extract (ES) and addition (AS) subsystems. Phases in crust are reported as cumulative
weighted averages.

c0[detail] vector

Bulk composition passed between points

workingfile Character vector

The current Working File

work_dir Character vector

The current Working Directory. This is the location of the folder containing the Working File

Running Rcrust

Relaunch GUI
{.First()} or {Rcrust()}

Function call

Relaunches the Rcrust GUI from the R console

Manually initiate calculation
{manual_load}

Function call

Sends the current working file to be calculated

 B:35

Rcrust Outputs

Data file
{data_file()}

Function call

Compiles calculation results into a table

Write data file
{write_data_file}

Function call

Writes compilation table to file

Grid data
{grid_data()}

Function call

Compiles an X Y grid of the values of a given variable

Write grid file
{write_grid_file}

Function call

Writes X Y grid to file

R Syntax

Arithmetic
Operators

Logical Operators

 B:36

Development

Developers of new features should know a few things on the structure of the code. When developing

custom functions please stick to these conventions.

The following files are required; they must all be in the same directory (these are contained within

the Rcrust folder which should simply be copied to the desired location):

1) From Perple_X suite (in the folder called “data”):
a. The various datafiles you wish to use, these include: thermodynamic datafiles and

solution model files, typically hp04ver.dat and solution_model.dat as well as the
Perple_X option file, perplex_option.dat.

b. Meemum.exe
c. The rest of Perple_X (vertex, build, werami, etc.) are not required.

2) From Rcrust (in the folder called “code”):
a. ui.r and server.r, these build the Rcrust Graphical User Interface (GUI)
b. main.r, this houses the main calls to run Rcrust
c. meemum_connect.r, the functions for calling and interpreting outputs from

meemum
d. Various init_xxx files, used to transform user input in data structures that Rcrust can

understand.
i. init_bulk.r sets the bulk composition(s) of the system

ii. init_pt.r sets the P–T conditions
iii. init_ph_add.r sets the phases to add
iv. init_ph_extr.r sets the phases to extract
v. init_meem.r writes user inputs into a meemum build file

vi. init_dependence determines the calculation order of points
vii. init_wrapper the phase stability calculator from Perple_X

e. parse_meem, a temporary Perple_X build file created to pass data into the wrapper
f. run.Rcrust.r, the Rcrust calculation loop to be called for each point
Technically, each function works c0 which tracks the bulk compositional changes invoked

by phase manipulations. main.r loops through each point, calculating and modifying the

phases according to the chosen definitions and eventually stores the final product in a

list called crust, whose structure is crust[[y_i]][[x_i]]. So, for instance the SiO2

content in the melt of point y_i=4 and x_i=2 is

crust[[4]][[2]][“melt(HP)”,”SIO2”]

g. Various xxx.dll files which contain compiled libraries needed to perform calculations
within R

 B:37

Troubleshooting

A list of known errors that are unavoidable or are still to be fixed.

Bulk_ss system properties

Warning: some bulk system properties are reported as molar properties but perplex considers the

bulk system to be one mol thus all molar properties need to be adjusted accordingly

Molar phase proportions

Only weight definitions of bulk and phases is currently possible, read.meemum cannot read molar

phase proportions. If molar proportions for bulk are entered, then bulk is molar but individual phases

are weights thus phase extractions crash.

Buffered Output

The R console by default returns a buffered output which forces the console to only refresh when

flush.console() is called. To disable the buffering and view run data live deselect from R toolbar

Misc/Buffered Output.

External Sources

Perple_X
http://www.perplex.ethz.ch/

Perple_X Solution Model Glossary
http://www.perplex.ethz.ch/PerpleX_solution_model_glossary.html

THERMOCALC’s list of mineral abbreviations
http://www.metamorph.geo.uni-mainz.de/thermocalc/documentation/abbreviations/index.html

REFERENCES

Mayne, M. J., Moyen, J. F., Stevens, G., & Kaislaniemi, L. (2016). Rcrust: a tool for calculating path‐

dependent open system processes and application to melt loss. Journal of Metamorphic Geology,

34(7), 663-682

Connolly, J.A.D., 2005. Computation of phase equilibria by linear programming: a tool for geodynamic

modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters,

236, 524–541.

Connolly, J.A.D., 2009. The geodynamic equation of state: what and how. Geochemistry, Geophysics,

Geosystems, 10, 1–19.

Connolly, J.A.D. & Kerrick, D.M., 1987. An algorithm and computer program for calculating

composition phase diagrams. Calphad, 11, 1–55.

http://www.perplex.ethz.ch/
http://www.perplex.ethz.ch/PerpleX_solution_model_glossary.html
http://www.metamorph.geo.uni-mainz.de/thermocalc/documentation/abbreviations/index.html

 C:1

ADDENDUM C: Presentation of the programming code for Rcrust

Included within the thesis files for evaluation is the programming code of the Rcrust program.

This code is heavily commented throughout and is divided into a number of separate files for

convenience. Each file is preceded by a brief description of its overall purpose and a summary

of the tasks it performs.

File structure

Purpose File name Page

Initialise P-T conditions init_pt.r 5

Initialise bulk compositions init_bulk.r 7

Initialise phase additions init_ph_add.r 10

Initialise phase extractions init_ph_extr.r 11

Initialise dependence structure init_dependence.r 11

Initialise meemum init_meem.r 14

Rcrust launcher main.r 16

Rcrust calculation loop run.Rcrust.r 21

Wrapper for phase stability calculations init_wrapper.r 32

Meemum connect meemum_connect.r 34

Server server.r 36

User interface ui.r 80

Brief description of code

Rcrust operates by receiving user input through a graphical user interface (GUI built using

server.r and ui.r) which writes parameters for modelling into a text file (the file is stored in

the projects directory within the workingfile in the inputs folder). The text file itself can be

altered and additional parameters accessed. This file is then loaded into the current

environment and program initialisation begins. A modelling space is set up consisting of a

number of points which record information including temperature, pressure and bulk

composition of each point (init_pt.r and init_bulk.r). Phase manipulations are optionaly set

on points to be analysed during the calculation of phase stabilities for each point

(init_ph_add.r and init_ph_extr.r) which can alter the chemical composition of points. Input

parameters are examined for possible dependence relations and these dependence relations

are solved to determine the calculation order of points (init_dependence.r). A dummy

“meemum build file” is created to parse modelling settings to “meemum” from Perple_X

 C:2

(init_meem.r). In sequential order Rcrust runs through each point (main.r): a calculation loop

(run.Rcrust.r) is called which adds chemical contributions to the reactive bulk composition

(c0) then calls a wrapper function (wrapper.r) that interrogates meemum with the pressure,

temperature and bulk composition of the reactive bulk (meemum_connect.r). Meemum then

uses Gibbs free energy minimisation to predict the most stable phase assemblage for the

system and returns results to Rcrust. Phase extractions are then performed on this

assemblage and the new altered bulk composition is optionally recalculated for its new phase

assemblage. This final data is stored at its point coordinates within the modelling space

(crust) and the next point in the calculation order is calculated. Since points are calculated in

sequential order determined by dependence relations, the reactive bulk composition of each

subsystem can be passed between points thus inheriting compositional changes. Once all

points are calculated focus is returned to the graphical user interface where outputs can be

filtered, saved and graphed.

Methodology and syntax utilised in programming code

Tags

Tags to be used within code

fix-tag requires urgent implementation critical to stability of

program

mod-tag non-urgent addition that would improve program

Variables

#variable-def definition of a variable created and the syntax to be used

within the variable structure

crust[[y_i]][[x_i]] two dimensional array holding outputs for each point

input_pt[[y_i]][[x_i]] two dimensional array holding pressure and temperature

conditions of each point

input_bulk[[y_i]][[x_i]] two dimensional array holding bulk composition and relative

mass for each point

input_ph_add[[y_i]][[x_i]] two dimensional array holding phase addition definitions for

each point

input_ph_extr[[y_i]][[x_i]] two dimensional array holding phase extraction definitions

for each point

 C:3

dependencies[[y_i]][[x_i]] two dimensional array holding references for each

dependent point (evaluates functions of the form rs{x_i-

1,y_i}+5-as{x_n-2,y_i*2})

available components chemical components available for component

transformations, set in thermodynamic data file

major_elements/comps the current chemical components to use

c0 point specific bulk composition and relative mass (to be

passed between points)

use_sol_models the current solution models to use

calc_choice selector for calculation method

comp_mat matrix recording the status of calculation of all points

project_directory folder storing all projects

working_file the current project

tuples vector notation for identifying points in x,y space

x_i the current increment in the x direction

x_n the maximum increment in the x direction

y_i the current increment in the y direction

y_n the maximum increment in the y direction

Functions

#function-def definition of a function and the syntax to be used within the

function calls

wrapper(comps,c0,press,temp,calc_choice="read.meemum")

run.Rcrust(comps,c0,press,temp,ph_extr_pnt,cumul_extract_pnt=NULL,ph_add_pnt,cumul_add_pnt

=NULL)

run.meemum(meemum.path="",build.file="",meemum.order="",press=press*1000,temp=temp+273.

15,bulk="",components="",pt_comp=pt_comp)

get_val(y_i,x_i,phase,variable,crust=crust,oxy_num=24,site_ocup="biotite",select=1)

eval_expr(expr,calc_phases=calc_phases,crust=crust)

Evaluate expression given calc_phases and crust, “()” are for solution models, “{}” are for

function terms and bodmas. Evaluate any “{“ and any word before it up until “}”

 C:4

Evaluates the following subfunctions

ph{phase;unit;x_i;y_i}

delta{ph;x_#;y_#;unit}

retain{amount;unit;ph}

Calculate mass of retention phases to extract: extract till retention amount of

retention phases is left, where ph can be omitted to take on the current ph

return{phase;amount}

 where amount can be % or mass

Triggers

exit_calc leave calculation

reequilibrate_steps calculate point again after phase manipulations

pass tag points to be left out

silent_calc limit the messages to console

System labels

rs reactive subsystem

is isolated subsystem

es extract subsystem

es_cumul cumulative subsystem

Advanced functionalities not yet worked into GUI

scale_bulk_x_i scale a composition incrementally across x-i

 C:5

Initialise P-T conditions (init_pt.r)

Creates a two dimensional data structure that will record pressure and temperature conditions

of the form:

input_pt[[y_i]][[x_i]]$Pressure,$Temperature

Reads either pressure and temperature definitions defined in the graphical user interface or

imported from a file of the form:

 pt_definitions<-list("{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#"),

"{x_a,y_a}_{x_b,y_b}"=c("pressure_#","temperature_#"))

Populates pressure and temperature conditions for each point or assigns dependence

Performs error validation ensuring that all points have an assigned pressure and temperature

conditions

Initialize PT conditions

cat("Initializing PT conditions...\n")

fix-tag: error handling

input_pt<-rep(list(rep(list(c(Pressure=NULL,Temperature=NULL)),x_n)),y_n)

PT definition from configuration file

if(pt_def=="input"){

cat("Calculating PT conditions from inputs...\n")

pnts<-unlist(strsplit(names(pt_definitions),"_"))

for(h in 1:length(pt_definitions)){

a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";"))

b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";"))

for(x_i in a[1]:b[1]){

for(y_i in a[2]:b[2]){

press<-eval(parse(text=paste0(pt_definitions[[h]][1])))

temp<-eval(parse(text=paste0(pt_definitions[[h]][2])))

input_pt[[y_i]][[x_i]]<-matrix(c(press,temp),nrow=1,dimnames =

list("PT",c("Pressure","Temperature")))

}

}

}

}

PT definition from input file

if(pt_def=="file"){

mod-tag: cleanup below

cat("Reading PT conditions from file...\n")

PT_file<-paste(work_dir,"/Projects/",workingfile,"/Inputs/PT.txt",sep="")

PT0<-read.table(PT_file,sep="\t")

 if(any(is.na(PT0[1,]))){

 warning("Error at init_pt.r\nError in PT file, NA found in column names,

probably a tab left at the end of the first row, will try to rectify and continue")

mod-tag: Surely there's a better way to make a matrix numeric?

 make_numeric_mat<-function(x){

 y<-matrix(as.numeric(as.vector(as.matrix(x))),nrow(x),)

 rownames(y)<-rownames(x)

 C:6

 colnames(y)<-colnames(x)

 return(y)

 }

 err<-length(PT0[1,])

 mat<-PT0[-1,-1]

 colnames(mat)<-as.character(unlist(PT0[1,1:(err-1)]))

 rownames(mat)<-1:(nrow(PT0)-1)

 PT0<-make_numeric_mat(mat)

 }

 for(i in 1:nrow(PT0)){

 PT[[PT0[i,1]]][[PT0[i,2]]]$press<-PT0[i,3]

 PT[[PT0[i,1]]][[PT0[i,2]]]$temp<-PT0[i,4]

 }

}

Error validation

for(y_i in 1:y_n){

 for(x_i in 1:x_n){

 if(is.null(input_pt[[y_i]][[x_i]])){cat("Error: No pt defined for x_i =",x_i,"

y_i =",y_i," \n");stop()}

 }

}

cat("Done with PT conditions\n")

cat("..\n")

 C:7

Initialise bulk compositions (init_bulk.r)

Creates a two dimensional data structure that will record bulk chemical conditions of the

form:

input_bulk[[y_i]][[x_i]]$major_elements,$mass

where major_elements is a list of chemical components as wt.% oxides

and mass is a numeric value against which to scale the reactive subsystem

Reads either bulk compositional definitions defined in the graphical user interface or imported

from a file of the form:

 bulk_definitions<-list("{x_a,y_a}_{x_b,y_b}"=c(major_elements_wt.%,"mass"),

"{x_a,y_a}_{x_b,y_b}"=c(major_elements_wt.%,"mass"))

where major_elements_wt.% is a comma separated list of real numbers as weight percentage

of each chemical component or terms of the from rs{x_i;y_i} to assign dependence relations.

Possible dependents = rs,fs,es,as non-dependents = c0,x_i,y_i,x_n,y_n

If the only one term is given e.g. rs{x_i;y_i} then this will be copied for all chemical

components

Populates bulk composition conditions for each point or assigns dependence

Performs error validation ensuring that all points have an assigned bulk composition condition

Initialize bulk composition data (only major elements for now)

cat("Initializing bulk composition...\n")

#fix-tag: error handling

Error handling

if(exists("bulk_def")){

if(bulk_def=="input"){

cat("Bulk composition defined from inputs...\n")

}else{

if(bulk_def=="file"){

cat("Bulk composition defined from file...\n")

}else{

cat("Error ! No valid option specified for major composition...\n")

stop()

}

}

}else{

cat("Error ! bulk_def not specified...\n")

stop()

}

Create data structure

cat("P-T-X space under investigation with x =",x_n,"and y =",y_n,"\n")

input_bulk<-rep(list(rep(list(NULL),x_n)),y_n)

Bulk definition from input

Majors

 C:8

if(bulk_def=="input"){

cat("Creating bulk compositions from definitions in configuration file\n")

#fix-tag should set Mass and volume somewhere but can only normalise once

expressions have been evaluated before parsing to Rcrust()

pnts<-unlist(strsplit(names(bulk_definitions),"_"))

for(h in 1:(length(bulk_definitions))){

a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";"))

b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";"))

for(x_i in a[1]:b[1]){

for(y_i in a[2]:b[2]){

 if(length(bulk_definitions[[h]])==1){

 input_bulk[[y_i]][[x_i]]<-rep(bulk_definitions[[h]],length(major_elements)+1)

 }else{

 input_bulk[[y_i]][[x_i]]<-c(bulk_definitions[[h]])

 }

if(!length(c(major_elements,"mass"))==length(input_bulk[[y_i]][[x_i]])){cat(paste0(

"Error number of entries in input_bulk (",length(input_bulk[[y_i]][[x_i]]),") is

not equal to major elements + 1 (",length(c(major_elements,"mass")),") for x_i =

",x_i,"; y_i = ",y_i,"\n"));stop()}

names(input_bulk[[y_i]][[x_i]])<-c(major_elements,"mass")

#Apply Scaling on x_i - Note if assigning dependence do not leave gaps while

scaling

#mod-tag: work this into GUI

scale_bulk_x_i<-FALSE

if(scale_bulk_x_i){

if(x_i>1){

leftmost<-0

for(i in 2:(x_i-1)){if(is.null(input_bulk[[y_i]][[i]])){leftmost<-i

break

}}

incr<-1

for(i in leftmost:(x_i-1)){

#scale proportionate value to distance

b_prop<-incr/(length(leftmost:(x_i-1))+1)

input_bulk[[y_i]][[i]]<-

as.numeric(input_bulk[[y_i]][[x_i]])*b_prop+as.numeric(input_bulk[[y_i]][[leftmost-

1]])*(1-b_prop)

names(input_bulk[[y_i]][[i]])<-c(major_elements,"mass")

class(input_bulk[[y_i]][[i]])<-"character"

incr<-incr+1

}

}

}

}

}

}

}

Bulk definition from file

Majors

if(bulk_def=="file"){

cat("Bulk composition for majors defined from bulk file:",bulk_file,"\n")

 bulk_file_loc<-paste0(projects_directory,"/",working_file,"/Inputs/",bulk_file)

 if(file.exists(bulk_file_loc)){

 table_in<-as.matrix(read.table(bulk_file_loc,sep="\t"))

 table_out<-table_in[-1,,drop=FALSE]

 colnames(table_out)<-table_in[1,]

 major_elements<-setdiff(table_in[1,],c("from","to","mass"))

 for(h in 1:nrow(table_out)){

 a<-unlist(strsplit(table_out[h,1],split=";"))

 b<-unlist(strsplit(table_out[h,2],split=";"))

 for(x_i in a[1]:b[1]){

 for(y_i in a[2]:b[2]){

 input_bulk[[y_i]][[x_i]]<-table_out[h,c(-1,-2)]

 C:9

 names(input_bulk[[y_i]][[x_i]])<-c(major_elements,"mass")

 }

 }

 }

 }else{

 cat("Error during bulk initialisation\nBulk file: ",bulk_file_loc," not found")

 stop()

 }

}

Error validation

for(y_i in 1:y_n){

 for(x_i in 1:x_n){

 if(is.null(input_bulk[[y_i]][[x_i]])){cat("Error: No bulk defined for x_i

=",x_i," y_i =",y_i," \n");stop()}

 }

}

cat("Done with bulk composition preparation\n")

cat("..\n")

 C:10

Initialise phase additions (init_ph_add.r)

Creates a two dimensional data structure that will record phase addition conditions of the

form:

input_ph_add[[y_i]][[x_i]]

Reads either phase addition definitions defined in the graphical user interface or imported

from a file of the form:

 ph_add_definitions<-

list("{x_a,y_a}_{x_b,y_b}"=c(major_element_proportions,"mass"),

"{x_a,y_a}_{x_b,y_b}"=c(major_elements,"mass"))

where major_element_proportions is a comma separated list of real numbers for each phase

Initialize phase addition options

#handles definitions of the form: ph_add_definitions<-

list("{1,1}_{10,1}"=c(2.95,0.618,15.3,7.11,5.17,0.15,0.183,6.44,63.5,5),"{1,1}_{10,

1}"=c(2.95,0.618,15.3,7.11,5.17,0.15,0.183,6.44,63.5,2))

if(ph_add){

 cat("Setting phase addition options...\n")

 # fix-tag: error handling

 # Create data structure

 input_ph_add<-rep(list(rep(list(NULL),x_n)),y_n)

 ###

 #

 # Phase addition from input definitions

 #

 ##

 cat("Setting phase additions from definitions in configuration file\n")

 pnts<-unlist(strsplit(names(ph_add_definitions),"_"))

 for(h in 1:length(ph_add_definitions)){

 a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";"))

 b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";"))

 if(length(ph_add_definitions[[h]])==length(c(major_elements,"mass"))){

 names(ph_add_definitions[[h]])<-c(major_elements,"mass")}

 for(x_i in a[1]:b[1]){

 for(y_i in a[2]:b[2]){

 if(is.null(input_ph_add[[y_i]][[x_i]])){

 input_ph_add[[y_i]][[x_i]]<-list(ph_add_definitions[[h]])

 }else{

 input_ph_add[[y_i]][[x_i]][[length(input_ph_add[[y_i]][[x_i]])+1]]<-

ph_add_definitions[[h]]

 }

 }

 }

 }

}else{

 cat("No phase addition.\n")

}

cat("Done with phase addition options\n")

cat("..\n")

 C:11

Initialise phase extractions (init_ph_extr.r)

Creates a two dimensional data structure that will record phase extraction conditions of the

form:

input_ph_extr[[y_i]][[x_i]]

Reads either phase addition definitions defined in the graphical user interface or imported

from a file of the form:

 ph_extr_definitions<-

list("{x_a,y_a}_{x_b,y_b}"=c(condition=”expression”,Ph_#1,Ph_#2,…,Ph_#x),

"{x_a,y_a}_{x_b,y_b}"=c(condition=”expression”,Ph_#1,Ph_#2,…,Ph_#x))

where ph_# denotes a number of different phases and their proportion of phase proportion

statement by which they should be extracted.

Initialize phase extraction options

#handles definitions of the form: ph_extr_definitions<-

list("{1,1}_{6,1}"=c(condition="melt(HP)>=8wt.%",Pl="20%",ky="3","melt(HP)"="rt(4,w

t.%)"),"{4,1}_{9,1}"=c(condition="melt(HP)>=8wt.%",Pl="20%",ky="3","melt(HP)"="rt(4

,wt.%)"))

if(ph_extr){

cat("Setting phase extraction options...\n")

 # fix-tag: error handling

 # Create data structure

 input_ph_extr<-rep(list(rep(list(NULL),x_n)),y_n)

 ###

 #

 # Phase extraction from input definitions

 #

 ##

cat("Setting phase extractions from definitions in configuration file\n")

 pnts<-unlist(strsplit(names(ph_extr_definitions),"_"))

 for(h in 1:length(ph_extr_definitions)){

 a<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2-1])),split=";"))

 b<-unlist(strsplit(gsub("\\{","",gsub("\\}","",pnts[h*2])),split=";"))

 for(x_i in a[1]:b[1]){

 for(y_i in a[2]:b[2]){

 if(is.null(input_ph_extr[[y_i]][[x_i]])){

 input_ph_extr[[y_i]][[x_i]]<-list(ph_extr_definitions[[h]])

 }else{

 input_ph_extr[[y_i]][[x_i]][[length(input_ph_extr[[y_i]][[x_i]])+1]]<-

ph_extr_definitions[[h]]

 }

 }

 }

 }

}else{

cat("No phase extraction.\n")

}

cat("Done with phase extraction options\n")

cat("..\n")

 C:12

Initialise dependence structure (init_dependence.r)

Creates a two dimensional data structure that will record dependence relations of the form:

dependencies [[y_i]][[x_i]]

Searches through points and for each chemical component in “major_elements” evaluates the

expression for dependence

Merges common dependence and determines tiers for hierarchy of dependence

Determines calculation order from tiers

Performs error validation to ensure all dependences have been resolves to a determinable

element

Determine the dependence relations between points

Bulk Composition *For now dependence is only on composition

#possible handled variables dependents = rs,fs,es,as non-dependents =

c0,x_i,y_i,x_n,y_n

#handles functions of the form"rs{x_i-1,y_i}+5-as{x_n-2,y_i*2}"

#fixtag error handling

dependencies<-rep(list(rep(list(),x_n)),y_n)

#for each point

for(y_i in 1:y_n){

for(x_i in 1:x_n){

dependence<-NULL

for each major element

for(maj_i in 1:length(major_elements)){

#pull out tuples that major element for that point is dependent on

 #fix-tag: look at main.r for bulk comp to allow multiple rs calls in one tuple

n<-

gsub("rs","",gsub("es","",gsub("as","",gsub("fs","",input_bulk[[y_i]][[x_i]][maj_i]

))))

left_brac<-gregexpr("\\{", n)[[1]]

right_brac<-gregexpr("\\}", n)[[1]]

tuples<-NULL

for(tup_i in 1:length(left_brac)){

tuples<-c(tuples,substr(n, left_brac[tup_i], right_brac[tup_i]))

}

if(tuples==""){dependence="base"}else{

split_tuples<-strsplit(gsub("\\{","",gsub("\\}","",tuples)),split=";")

for(split_i in 1:length(split_tuples)){

dependence<-

c(dependence,paste(eval(parse(text=split_tuples[[split_i]][1])),eval(parse(text=spl

it_tuples[[split_i]][2])),sep=";"))

}

}

}

#Keep common dependence

dependencies[[y_i]][[x_i]]<-union(dependence,dependence)

}

}

########################

Determine tiers

########################

tiers<-rep(list(rep(list(NULL),x_n)),y_n)

eval_dep<-dependencies

for(y_i in 1:y_n){

 for(x_i in 1:x_n){

 C:13

tier_counter<-0

while(is.null(tiers[[y_i]][[x_i]])){

if(eval_dep[[y_i]][[x_i]]=="base"){

 tiers[[y_i]][[x_i]]<-1+tier_counter

}else{

tier_counter<-tier_counter+1

#Evaluate dependencies

new_dep<-NULL

for(dep_i in 1:length(eval_dep[[y_i]][[x_i]])){

 dep_pos<-strsplit(eval_dep[[y_i]][[x_i]][dep_i],split=";")[[1]]

 new_dep<-

c(new_dep,dependencies[[as.numeric(dep_pos[2])]][[as.numeric(dep_pos[1])]])

}

#keep common dependence

eval_dep[[y_i]][[x_i]]<-union(new_dep,new_dep)

}

}

}

}

########################

Determine calculation order

########################

tiers_union<-union(unlist(tiers),unlist(tiers))

calc_order<-rep(list(rep(list(rep(list(),1)),1)),length(tiers_union))

group_num<-0

for(i in tiers_union){

 group_num<-group_num+1

 first_in_group<-TRUE

for(y_i in 1:y_n){

 for(x_i in 1:x_n){

if(tiers[[y_i]][[x_i]]==i){

if(first_in_group){

 calc_num<-0

}

calc_num<-calc_num+1

first_in_group<-FALSE

calc_order[[group_num]][[calc_num]]<-list(x_i=x_i,y_i=y_i)

}

}

}

}

Error validation

for(y_i in 1:y_n){

 for(x_i in 1:x_n){

 if(is.null(dependencies[[y_i]][[x_i]])){cat("Error: No dependence defined for

x_i =",x_i," y_i =",y_i," \n");stop()}

 }

}

if(!length(unlist(calc_order))/2==x_n*y_n){cat("Error: Calculation order could not

be determined\n");stop()}

cat("Done with dependence determination\n")

cat("..\n")

 C:14

Initialise meemum (init_meem.r)

Creates component transformations from parameters parsed through GUI

Sets components matrix with placeholder composition

Writes dummy Perple_X “build” file to be read by “meemum”

Create a meemum build file

cat("Creating meemum build file...\n")

mod-tag: to be worked into Gui

number_components<-15

molar_vs_wt<-1

#new_name must be less than 6 characters

#can only build components with total of 11 or less components

#replace components each time

transformations<-NULL

n_comp_trans<-0

if(exists("comp_transformations")){

 if(length(comp_transformations)>=1&!all(comp_transformations=="")){

n_comp_trans<-length(comp_transformations)

}

}

if(n_comp_trans>0){

for(i in 1:length(comp_transformations)){

 new_comp<-strsplit(names(comp_transformations)[i],split="_")[[1]][2]

 old_comp<-strsplit(names(comp_transformations)[i],split="_")[[1]][1]

transformations<-c(transformations,paste(new_comp,paste(rep(" ",6-

nchar(new_comp)),collapse=""),which(available_components==old_comp)," component

transformation\n",paste(strsplit(comp_transformations[[i]],",")[[1]],collapse="

"),sep=""))

}

}

##################

Create components matrix

comp_mat<-NULL

 for(ox in major_elements){

 comp_mat<-c(comp_mat,paste(ox," 1 1.00000 0.00000

",if(molar_vs_wt==1){"weight amount"}else{"molar amount"},"\n",sep=""))

 }

Write dummy meemum build file

dummy<-paste(

data_directory,"/",thermodynamic_data_file," thermodynamic data file

no_print | print generates print output

no_plot | no_plot suppresses plot output

",

data_directory,"/",solution_models_file," solution model file, blank = none

parse_meem

",

data_directory,"/",perplex_option_file," computational option file

 5 calculation type: 0 - composition, 1 - Schreinemakers, 3 - Mixed, 4 - gwash,

5 - gridded min, 7 - 1d fract, 8 - gwash 9 - 2d fract, 10 - 7 w/file input

 0 unused place holder, post 06

 0 unused place holder, post 06

 0 unused place holder, post 06

 0 unused place holder, post 06

 0 unused place holder, post 06

 0 unused place holder, post 06

 0 unused place holder, post 06

 0 unused place holder, post 06

 C:15

 0 unused place holder, post 06

 ",n_comp_trans," number component transformations\n ",

 number_components," number of components in the data base\n",

 paste(transformations,collapse="\n"),"\n",

 molar_vs_wt," component amounts, 0 - molar, 1 weight

 0 unused place holder, post 06

 0 unused place holder, post 06

 0 unused place holder, post 05

 5 ifug EoS for saturated phase

 2 gridded minimization dimension (1 or 2)

 0 special dependencies: 0 - P and T independent, 1 - P(T), 2 - T(P)

 0.00000 0.00000 0.00000 0.00000 0.00000 Geothermal

gradient polynomial coeffs.

begin thermodynamic component list

",paste(comp_mat,collapse=""),

"end thermodynamic component list

begin saturated component list

",paste(unlist(strsplit(saturated_components,split=",")),collapse="\n"),"

end saturated component list

begin saturated phase component list

",paste(unlist(strsplit(saturated_phase_components,split=",")),collapse="\n"),"

end saturated phase component list

begin independent potential/fugacity/activity list

",paste(unlist(strsplit(independent_potential_fugacity_activity,split=",")),collaps

e="\n"),"

end independent potential list

begin excluded phase list

",paste(unlist(strsplit(exclude_phases,split=",")),collapse="\n"),"

end excluded phase list

begin solution phase list

",paste(use_sol_models,collapse="\n"),

"\nend solution phase list

 0.0000 0.0000 0.00000000 0.0000 0.0000 max p, t, xco2, u1, u2

 0.0000 0.0000 0.00000000 0.0000 0.0000 min p, t, xco2, u1, u2

 0.0000 0.0000 0.00000000 0.0000 0.0000 unused place holder post

06

 2 1 4 5 3 indices of 1st & 2nd independent & sectioning variables

",sep="")

write(dummy,file=paste0(data_directory,"/parse_meem.dat"))

cat("Created meemum build file as

",paste0(data_directory,"/parse_meem.dat"),"\n",sep="")

cat("..\n")

 C:16

Rcrust launcher (main.r)

Initialises packages and functions to be used on runtime

Applies additional settings accessible to advanced users (including functionalities not yet

worked into GUI)

Sets data structures

Evaluates dependent values to populate all fields of required parameters

Sets up calculation loop to sequentially call “run.Rcrust” saving outputs in “crust” and re-

evaluate dependences by tier levels

Saves image of R environment on completion of calculation loop

###############################

Rcrust (main.r)

###############################

Function for shortcut

.First<-function(){

first_load<<-FALSE

 #Load dependencies

 library(utils)

 if(!require(shiny)){

 install.packages("shiny")}

 library(shiny,quietly=TRUE)

 if(!require(raster)){

 install.packages("raster")}

 if(!require(rgeos)){

 install.packages("rgeos")}

 if(!require(grDevices)){

 install.packages("grDevices")}

 #Launch GUI

 Rcrust<<-function(){

 #Load dependencies

 library(utils)

 if(!require(shiny)){

 install.packages("shiny")}

 library(shiny)

 if(!require(raster)){

 install.packages("raster")}

 if(!require(rgeos)){

 install.packages("rgeos")}

 if(!require(grDevices)){

 install.packages("grDevices")}

 #If working directory is x\Projects\y then set to x\code

 if(length(grep("Rcrust/Projects/",getwd()))==1){

 setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code"))

 }

 runApp()

 }

 #Launch without GUI

 manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

3),"Projects")){

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 source("main.r")

 }

 #If working directory is x\Projects\y then set to x\code

 if(length(grep("Rcrust/Projects/",getwd()))==1){

 setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code"))

 C:17

 first_load<<-TRUE

 }

 runApp()

 }

 #Launch without GUI

 manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

3),"Projects")){

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 source("main.r")

 }

Additional Settings (Advanced users)

#Errors

run_errors<<-NULL

exit_calc<<-FALSE

pause_on_error<<-FALSE

Calculation settings

request_readline<-FALSE

stop_errors<-NULL

#Determine calculation mode #normal,parallel (still to come)

calc_mode<-"normal"

silent_calc<-TRUE

cumulate_on_rs<-TRUE

PT settings

pt_def<-"input"

PT_restrictions<-c("Pressure_>_0","Temperature_>_0")

#PT_restrictions<-

c("Pressure_>_2.5","Pressure_<_20","Temperature_>_600","Temperature_<_1100")

#Reaction buffering

reaction_buffering<<-FALSE

reaction_buffer_steps<<-1

start_in_reaction<<-FALSE

merge_duplicates<<-FALSE

Sec to clock function

 sec_to_clock<-function(total_sec){

 hr<-floor(total_sec/3600)

 mn<-floor((total_sec-hr*3600)/60)

 if(mn<10){mn_0<-"0"}else{mn_0<-NULL}

 sec<-total_sec-hr*3600-mn*60

 if(sec<10){sec_0<-"0"}else{sec_0<-NULL}

 clock<-paste(hr,":",mn_0,mn,":",sec_0,sec,sep="")

 return(clock)

 }

Set defaults

if(class(try(reequilibrate_steps,silent=TRUE))=="try-error"){

reequilibrate_steps<-TRUE

}

if(class(try(calc_choice,silent=TRUE))=="try-error"){

calc_choice<-"read.meemum" #options = lars.wrap,read.meemum

}

if(class(try(data_directory,silent=TRUE))=="try-error"){

data_directory<-gsub("/code","/data",getwd())

}

Initialize datastructures

 C:18

cat("\n")

source("run.Rcrust.r") # The function doing the job

chk_valid<-try(

{source("init_bulk.r") # Bulk composition

source("init_wrapper.r") # Initialise wrapper function

source("meemum_connect.r") # Initialise run and read meemum functions

source("init_meem.r") # Create meemum build file

source("init_pt.r") # PT conditions

source("init_ph_add.r") #phase addition

source("init_ph_extr.r") #phase extraction

source("init_dependence.r") # Determine dependence relations

}

)

#Input validation

input_valid<-TRUE

if(class(chk_valid)=="try-error"){

 cat("Initiation failed\n")

 input_valid<-FALSE

 }

if(input_valid){

if(request_readline){

cat("Initiation succesful:\n Please read the above lines and make sure this is

what you wanted.\n")

rd<-readline(prompt="Choose \"n\" to abort or press [enter] to continue\n")

}else{

cat("Initiation succesful:\n Computation beginning\n")

rd<-"pass"}

if(!rd=="n"){

 #Normal calc by tiers

 #get values and pass them to run.Rcrust

 #Create calculation structures

 #variable-def: crust[[y_i]][[x_i]]

 crust<-rep(list(rep(list(NULL),x_n)),y_n)

 cumul_extract<-rep(list(rep(list(NULL),x_n)),y_n)

 cumul_add<-rep(list(rep(list(NULL),x_n)),y_n)

 calculation_matrix<-matrix(0,y_n,x_n)

 strt<<-proc.time()

 # Refresh input values for groups (j) and their members (i)

 for(j in 1:length(calc_order)){

 for(i in 1:length(calc_order[[j]])){

 #get and assign variables for each point in this calc group

 x_i<-calc_order[[j]][[i]]$x_i

 y_i<-calc_order[[j]][[i]]$y_i

 #Get c0

 c0<-input_bulk[[y_i]][[x_i]]

 #replace rs,es,as,fs tuples with values

 for(k in 1:length(c0)){

 c0_k<-c0[k]

 left_brac<-gregexpr("\\{", c0_k)[[1]]

 right_brac<-gregexpr("\\}", c0_k)[[1]]

 if(left_brac[1]>0){

 subsystem<-NULL

 for(kk in 1:length(left_brac)){

 subsystem<-c(subsystem,substr(c0[k],(left_brac[kk]-2),left_brac[kk]-1))

 }

 tuples<-NULL

 for(tup_i in 1:length(left_brac)){

 tuples<-c(tuples,substr(c0_k, left_brac[tup_i], right_brac[tup_i]))

 }

 split_tuples<-strsplit(gsub("\\{","",gsub("\\}","",tuples)),split=";")

 #Grab dependent point if cumulating extracts - caution this only works if

dependent entirely on one point

 if(k==1&ph_extr&cumulate_on_rs){dep_pnt<-

c(eval(parse(text=split_tuples[[1]][1])),eval(parse(text=split_tuples[[1]][2])))

 crust_rows<-rownames(crust[[dep_pnt[2]]][[dep_pnt[1]]])

 C:19

 parse_cumul_extract<-

crust[[dep_pnt[2]]][[dep_pnt[1]]][crust_rows[grep("_es_cumul",crust_rows)],,drop=FA

LSE]

 if(!length(parse_cumul_extract)==0){cumul_extract[[y_i]][[x_i]]<-

parse_cumul_extract}

 }

 #Grab dependent point if cumulating additions - caution this only works if

dependent entirely on one point

 if(k==1&ph_add&cumulate_on_rs){dep_pnt<-

c(eval(parse(text=split_tuples[[1]][1])),eval(parse(text=split_tuples[[1]][2])))

 crust_rows<-rownames(crust[[dep_pnt[2]]][[dep_pnt[1]]])

 parse_cumul_addition<-

crust[[dep_pnt[2]]][[dep_pnt[1]]][crust_rows[grep("_as_cumul",crust_rows)],,drop=FA

LSE]

 if(!length(parse_cumul_addition)==0){cumul_add[[y_i]][[x_i]]<-

parse_cumul_addition}

 }

 #substitute in value

 c0_k<-gsub("rs","",gsub("es","",gsub("as","",gsub("fs","",c0_k))))

 c0_k<-gsub("\\{","",gsub("\\}","",c0_k))

 for(split_i in 1:length(split_tuples)){

 outval<-

try(crust[[eval(parse(text=split_tuples[[split_i]][2]))]][[eval(parse(text=split_tu

ples[[split_i]][1]))]][paste0("Bulk_",subsystem[split_i]),names(c0_k)],silent=TRUE)

 if(class(outval)=="try-error"){

 outval<-0

 }

 if(is.null(outval)){

 c0_k_try<-0}else{

 c0_k_try<-

try(sub(paste0(unlist(split_tuples[split_i]),collapse=";"),outval,c0_k))

 }

 if(class(c0_k_try)!="try-error"){c0_k<-c0_k_try}

 }

 }

 c0[k]<-eval(parse(text=c0_k))

 }

 # Make numeric

 nam<-names(c0)

 c0<-as.numeric(c0)

 names(c0)<-nam

 # Save to input_bulk

 input_bulk[[y_i]][[x_i]]<-c0

 }

 if(calc_mode=="normal"){

 #run Rcrust in singular for each point in the calc group

 for(i in 1:length(calc_order[[j]])){

 x_i<-calc_order[[j]][[i]]$x_i

 y_i<-calc_order[[j]][[i]]$y_i

 if(silent_calc){

 #Calculate times

 pull_time<-proc.time()-strt

 total_sec<-round(pull_time[3])

 run_time<-sec_to_clock(total_sec)

 cat("Computing Point","x_i=",x_i," ; y_i=",y_i,"... Simulation

",round(sum(calculation_matrix!=0)/(nrow(calculation_matrix)*ncol(calculation_matri

x))*100,2),"% complete\n")

 cat("Total run time:",run_time,"\n")

 flush.console()

 }

 #Check if point should be calculated

 #variable-def: 0=remaining,1=calculated,2=aborted

 PT_split<-strsplit(PT_restrictions,split="_")

 for(i in 1:length(PT_restrictions)){

 chk<-

paste(input_pt[[y_i]][[x_i]][,PT_split[[i]][1]],PT_split[[i]][2],PT_split[[i]][3],c

ollapse="")

 if(!eval(parse(text=chk))){calculation_matrix[y_i,x_i]<-2

 C:20

 crust[[y_i]][[x_i]]<-matrix(c0,1,)

 rownames(crust[[y_i]][[x_i]])<-"Bulk_rs"

 colnames(crust[[y_i]][[x_i]])<-names(c0)

 }

 }

 strsplit(PT_restrictions,split="_")

 if(calculation_matrix[y_i,x_i]==0){

 crust[[y_i]][[x_i]]<-run.Rcrust(comps=comps,c0=input_bulk[[y_i]][[x_i]],

 press=input_pt[[y_i]][[x_i]][1],

 temp=input_pt[[y_i]][[x_i]][2],

 ph_extr_pnt=input_ph_extr[[y_i]][[x_i]],

 cumul_extract_pnt=cumul_extract[[y_i]][[x_i]],

 ph_add_pnt=input_ph_add[[y_i]][[x_i]],

 cumul_add_pnt=cumul_add[[y_i]][[x_i]]

)

 calculation_matrix[y_i,x_i]<-1

 }

 }

 }

 }

 }

#Save data

save.image(file=paste0(projects_directory,"/",working_file,"/",working_file,".RData

"))

cat("\n\nDone with calculations:\nResults saved to

",paste0(projects_directory,"/",working_file,"/",working_file,".RData"),"\n\nSelect

outputs through the Rcrust GUI or press esc to edit data in the Rconsole\n")

flush.console()

}

 C:21

Rcrust calculation loop (run.Rcrust.r)

Loads functions for:

merging of phase lines (summing extensive properties and averaging intensive

properties)

evaluating a Boolean condition that handles missing values as false

evaluating expressions parsed with “{}”. This allows custom functions to be built and

called from phase expressions

Runs until told to exit

Adds phases from the isolated subsystem into the reactive subsystem if applicable

Calculates stable phases of the system given the pressure, temperature and bulk

composition of the system by calling a wrapper function that communicates with

meemum from Perple_X

Renames duplicate phases and splits feldspar phases into Pl or Kf based on CaO/K2O

ratio

Extracts phases from reactive subsystem into extract subsystem where applicable

Creates extract subsystem and cumulative extract subsystem

Compiles full system to be saved as a point in “crust”

Flushes response to console

Main Rcrust Loop (run.Rcrust.r)

#function-def:run.Rcrust<-

function(comps,c0,press,temp,ph_extr_pnt,cumul_extract_pnt=NULL,ph_add_pnt,cumul_ad

d_pnt=NULL)

run.Rcrust<-

function(comps,c0,press,temp,ph_extr_pnt,cumul_extract_pnt=NULL,ph_add_pnt,cumul_ad

d_pnt=NULL,...){

 ###

 #

 # Ancillary function to merge several lines (by mass)

 #

 ##

 .wtd.add<-function(thelines,prop="mass",avname="Averaged"){

 if(nrow(thelines)==1){

 foo<-thelines

 }else{

 # Two sets of cols

 if(exists_and_true(calc_mol)){

 extensive.cn<-c("wt%","vol%","mol%","mol") # Extensive properties (mass

dependant) -- add the others if required

 }else{

 extensive.cn<-c("wt%")

 }

 intensive.cn<-setdiff(colnames(thelines),c(prop,extensive.cn))

 C:22

 foo<-matrix(rep(0,length(colnames(thelines))),nrow=1)

 colnames(foo)<-colnames(thelines)

 # Intensive

 foo[,intensive.cn]<-

thelines[,prop]%*%thelines[,intensive.cn,drop=F]/sum(thelines[,prop])

 # Extensive

 foo[,prop]<-sum(thelines[,prop])

 if(!length(intersect(extensive.cn,thelines))==0){

 foo[,extensive.cn]<-colSums(thelines[,extensive.cn])}

 }

 rownames(foo)<-avname

 return(foo)

 }

 #exists_and_true

exists_and_true<<-function(x){

chk<-try(x,silent=TRUE)

if(class(chk)=="try-error"){return(FALSE)}else{

return(x)

}

}

 ###

 #

 # Expression evaluator

 #

 ##

 #function-def: eval_expr<-function(expr,calc_phases=calc_phases,crust=crust)

 #Evaluate expression a given calc_phases and crust

 #() are for solution models, {} are for function terms and bodmas

 #evaluate any { and word before it up until }

 eval_expr<-function(expr,calc_phases=calc_phases,crust=crust){

 #wrap outside for evaluation

 a<-paste0("{",expr,"}")

 while(!unlist(gregexpr("[{]",a))[1]==-1){

 letters<-gregexpr("[a-z]",a)

 left_bracs<-unlist(gregexpr("[{]",a))

 names(left_bracs)<-rep("left",length(left_bracs))

 right_bracs<-unlist(gregexpr("[}]",a))

 names(right_bracs)<-rep("right",length(right_bracs))

 bracs<-sort(c(left_bracs,right_bracs))

 #Find inner brackets

 i<-1

 while(!(names(bracs)[i]=="left"&names(bracs)[i+1]=="right")){

 i<-i+1

 }

 #evaluate inner brackets

 #If require function call find name

 j<-1

 while((bracs[i]-j)%in%letters[[1]]){

 j<-j+1

 }

 #if j==1 dont require function call, else j+1 is first letter of function

name

 if(!j==1){

 funct_name<-substr(a,bracs[i]-j+1,bracs[i]-1)

 #apply function

 if(funct_name=="ph"){

 #arguments of the form ph{phase;unit;x_i;y_i} where unit can be any

column name in calc_phases and x_i and y_i are the current point by default

 ph_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]]

 if(length(ph_args)==2){

 #current_variable

 chk_var<-

try(eval(parse(text="calc_phases[ph_args[1],ph_args[2]]")),silent=TRUE)

 if(class(chk_var)=="try-error"){

 out<-0

 }else{

 out<-chk_var

 }

 C:23

 }else{

 #past_variable

 #default look in rs

 if(length(grep("_rs", ph_args[1]))==0&length(grep("_es",

ph_args[1]))==0){

 ph_args[1]<-paste0(ph_args[1],"_rs")

 }

 chk_var<-

try(eval(parse(text="crust[[eval(parse(text=ph_args[[4]]))]][[eval(parse(text=ph_ar

gs[[3]]))]][ph_args[1],ph_args[2]]")),silent=TRUE)

 if(class(chk_var)=="try-error"){

 out<-0

 }else{

 out<-chk_var

 }

 }

 }

 if(funct_name=="delta"){

 skip_delta<-FALSE

 #arguments of the form delta{ph;x_#;y_#;unit} where unit can be wt% or

mass

 delta_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]]

 delta_phs<-delta_args[1]

 if(substring(delta_args[2],1,8)=="prev_ext"){

 find_ph<-substring(delta_args[2],10)

 pnt<-"find"

 l<-1

 while(pnt=="find"){

 #find earliest of phase extraction or phase absent point, if neither show

warning and take pnt=1

 #find previous increase in _es_cumul

 chk_pnt<-try(crust[[y_i]][[x_i-

l]][paste0(find_ph,"_es"),"mass"],silent=TRUE)

 if(class(chk_pnt)=="try-error"){

 chk_pnt<-try(crust[[y_i]][[x_i-

l]][paste0(find_ph,"_rs"),"mass"],silent=TRUE)

 if(class(chk_pnt)=="try-error"){

 pnt<-x_i-l

 cat(paste0("Delta calculated to previous phase absent point at x_i =

",pnt,"\n"))

 }

 }else{

 pnt<-x_i-l

 cat(paste0("Delta calculated to previous extract at x_i = ",pnt,"\n"))

 }

 if((x_i-l)==1&pnt=="find"){

 pnt<-x_i-l

 cat(paste0("Delta calculated to first point at x_i = ",pnt,"\n"))

 }

 l<-l+1

 }

 delta_index_x<-pnt

 }else{

 delta_index_x<-eval(parse(text=delta_args[2]))}

 if(!(delta_index_x<=x_n&delta_index_x>=1)){cat("Warning delta_index_x not

<x_n and >=1, skipping this delta calculation\n");skip_delta<-TRUE}

 delta_index_y<-eval(parse(text=delta_args[3]))

 if(!(delta_index_y<=y_n&delta_index_y>=1)){cat("Warning delta_index_y not

<y_n and >=1, skipping this delta calculation\n");skip_delta<-TRUE}

 delta_unit<-delta_args[4]

 if(!(delta_unit=="mass"|delta_unit=="wt%")){

 cat("Error delta only currently accepted as mass or wt%\n")

 stop()}

 if(!skip_delta){

 current_mode<-0

 previous_mode<-0

 #Check for plus sign (e.g. aluminosilicate given as sill+ky+and)

 delta_phases<-strsplit(delta_args[1],"+",fixed=TRUE)[[1]]

 C:24

 for(each_ph in delta_phases){

 #current_mode

 chk_var<-

try(eval(parse(text="calc_phases[each_ph,delta_unit]")),silent=TRUE)

 if(!class(chk_var)=="try-error"){

 current_mode<-current_mode+chk_var

 }

 #previous_mode

 delta_phase_rs<-paste(each_ph,"_rs",sep="")

 chk_var<-

try(eval(parse(text="crust[[delta_index_y]][[delta_index_x]][delta_phase_rs,delta_u

nit]")),silent=TRUE)

 if(!class(chk_var)=="try-error"){

 previous_mode<-previous_mode+chk_var

 }

 }

 #delta

 if(current_mode>previous_mode){

 out<-current_mode-previous_mode}else{

 out<-0

 }

 }else{out<-0}

 }

 if(funct_name=="retain"){

 #c# If Retention Mode - Calculate mass of retention phases to extract

 #c# Extract till retention amount of retention phases is left

 #arguments of the form retain{amount;unit;ph} where ph can be omitted

to take on the current ph

 retain_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]]

 ret<-as.numeric(retain_args[1])

 retention_unit<-retain_args[2]

 if(!is.na(retain_args[3])){ph<-retain_args[3]}

 bulk_no<-which(rownames(calc_phases)=="Bulk_rs")

 ph_no<-which(rownames(calc_phases)==ph)

 if(retention_unit=="mass"){

 system_less_ret<-calc_phases[-c(bulk_no,ph_no),"mass"]

 if(calc_phases[ph,"mass"]<=ret){

 out<-0

 }else{

 out<-calc_phases[ph,"mass"]-ret

 }

 }

 if(retention_unit=="vol%"){

 system_less_ret<-calc_phases[-c(bulk_no,ph_no),"vol%"]

 if(calc_phases[ph,"vol%"]<=ret){

 out<-0

 }else{

 new_ret_vol<-(ret*(sum(system_less_ret)))/(100-ret)

 new_ret_mass<-new_ret_vol*calc_phases[ph,"mass"]/calc_phases[ph,"vol%"]

 out<-calc_phases[ph,"mass"]-new_ret_mass

 }

 }

 if(retention_unit=="wt%"){

 system_less_ret<-calc_phases[-c(bulk_no,ph_no),"wt%"]

 if(calc_phases[ph,"wt%"]<=ret){

 out<-0

 }else{

 new_ret_wt<-(ret*(sum(system_less_ret)))/(100-ret)

 new_ret_mass<-new_ret_wt*calc_phases[ph,"mass"]/calc_phases[ph,"wt%"]

 out<-calc_phases[ph,"mass"]-new_ret_mass

 }

 }

 }

 if(funct_name=="return"){

 #arguments of the form return{phase;amount} where amount can be % or

mass

 return_args<-strsplit(substr(a,bracs[i]+1,bracs[i+1]-1),"[;,]")[[1]]

 #check if phase is in extract cumul subsystem

 C:25

 chk_var<-

try(eval(parse(text=paste0("cumul_extract_pnt[\"",return_args[1],"_es_cumul\",\"mas

s\"]"))),silent=TRUE)

 if(class(chk_var)!="try-error"){

 if(!is.null(chk_var)){

 percentage<-FALSE

 #if percentage tag to calculate

 if(length(grep("%",return_args[2]))!=0){

 percentage<-TRUE

 return_args[2]<-gsub("%","",return_args[2])

 }

 #evaluate for number

 chk_num<-try(eval(parse(text=return_args[2])),silent=TRUE)

 if(class(chk_num)=="try-error"){

 cat("Error phase addition could not evaluate isolated function

correctly")

 stop()

 }

 #calculate

 if(percentage){

 take<-chk_num/100*chk_var

 leave<-(100-chk_num)/100*chk_var

 }else{

 take<-chk_num

 leave<-as.numeric(chk_var)-chk_num

 }

 if(leave<0){

 take<-chk_var

 leave<-0}

 #transfer

 cumul_extract_pnt[paste0(return_args[1],"_es_cumul"),"mass"]<<-leave

 #leave calc

 a<-

paste(c(cumul_extract_pnt[paste0(return_args[1],"_es_cumul"),comps],take),collapse=

",")

 break

 }else{

 cat(paste0("Phase ",return_args[1]," not found in extract cumul\n"))

 a<-paste(rep(0,length(comps)+1),collapse=",")

 break

 out<-""

 }

 }else{

 cat(paste0("Phase ",return_args[1]," not found in extract cumul\n"))

 a<-paste(rep(0,length(comps)+1),collapse=",")

 break

 out<-""

 }

 }

 #replace inner brackets with function output

 a<-paste(substr(a,1,bracs[i]-

j),out,substr(a,bracs[i+1]+1,nchar(a)),sep="")

 }else{

 #evaluate inner brackets for bodmas output

 out<-eval(parse(text=substr(a,bracs[i]+1,bracs[i+1]-1)))

 a<-paste(substr(a,1,bracs[i]-

j),out,substr(a,bracs[i+1]+1,nchar(a)),sep="")

 }

 }

 return(a)

 }

calc<-TRUE

pass<-1

extract<-NULL

addition_subsystem<-NULL

 while(calc){

 # Phase addition

 if(ph_add){

 C:26

 if(pass==1){

 if(!is.null(ph_add_pnt)){

 # mod-tag:DFM addition (Disequilibrium Fractional Melting calculation)

 if(ph_add_pnt[[1]][[1]]=="dfm"){

 #Disequilibrium Fractional Melting calculation

 current_pnt<-run.Rcrust(comps=comps,c0=c0,

 press=input_pt[[y_i]][[x_i]][1],

 temp=input_pt[[y_i]][[x_i]][2],

 ph_extr_pnt=NULL,

 cumul_extract_pnt=NULL,

 ph_add_pnt=NULL

)

 next_pnt<-run.Rcrust(comps=comps,c0=c0,

 press=input_pt[[y_i]][[x_i+1]][1],

 temp=input_pt[[y_i]][[x_i+1]][2],

 ph_extr_pnt=NULL,

 cumul_extract_pnt=NULL,

 ph_add_pnt=NULL

)

 #Pl dfm calculation... X(Pl consum) = (Na(melt_2) X(melt_2) + Na(Kfs_2)

X(Kfs_2) - Na(Ms_1) X(Ms_1))/Na(Pl_2)

 Na_melt_2<-try(next_pnt[paste0(melt.name,"_rs"),"NA2O"],silent=TRUE)

 if(class(Na_melt_2)=="try-error"){Na_melt_2<-0}

 X_melt_2<-try(next_pnt[paste0(melt.name,"_rs"),"wt%"],silent=TRUE)

 if(class(X_melt_2)=="try-error"){X_melt_2<-0}

 Na_Kf_2<-try(next_pnt["Kf_rs","NA2O"],silent=TRUE)

 if(class(Na_Kf_2)=="try-error"){Na_Kf_2<-0}

 X_Kf_2<-try(next_pnt["Kf_rs","wt%"],silent=TRUE)

 if(class(X_Kf_2)=="try-error"){X_Kf_2<-0}

 Na_Ms_1<-try(current_pnt["Mica(CHA)_rs","NA2O"],silent=TRUE)

 if(class(Na_Ms_1)=="try-error"){Na_Ms_1<-0}

 X_Ms_1<-try(current_pnt["Mica(CHA)_rs","wt%"],silent=TRUE)

 if(class(X_Ms_1)=="try-error"){X_Ms_1<-0}

 Na_Pl_2<-try(next_pnt["Pl_rs","NA2O"],silent=TRUE)

 if(class(Na_Pl_2)=="try-error"){cat("Error, Plagioclase not found in

second point")}else{

 X_Pl_consm<-(Na_melt_2*X_melt_2+Na_Kf_2*X_Kf_2-Na_Ms_1*X_Ms_1)/Na_Pl_2

 X_Pl_1<-try(current_pnt["Pl_rs","mass"],silent=TRUE)

 if(class(X_Pl_1)=="try-error"){cat("Error, Plagioclase not found in

first point")}else{

 if(X_Pl_consm<X_Pl_1){

 #Place unreacted Pl in addition subsystem

 addition_subsystem<-current_pnt["Pl_rs",,drop=FALSE]

 addition_subsystem["Pl_rs","mass"]<-

addition_subsystem["Pl_rs","mass"]-X_Pl_consm

 rownames(addition_subsystem)<-"Pl_as"

 #recalculate new c0 with only the reactive Pl amount

 current_pnt["Pl_rs","mass"]<-X_Pl_consm

 current_pnt["Bulk_rs","mass"]<-0

 c0<-.wtd.add(current_pnt)[,names(c0)]

 }

 }

 }

 }

 else{

 #Standard addition

 grab<-c(major_elements,"mass")

 grab_phases<-NULL

 for(add_def_no in 1:length(ph_add_pnt)){

 #Evaluate if addition is required

 statement<-ph_add_pnt[[add_def_no]]["condition"]

 #if statement is true

 if(is.na(as.logical(eval_expr(statement,calc_phases,crust)))){cat(paste0("Error

condition for phase addition definition number ",add_def_no," as ",statement," does

not evaluate to logical output\n"));stop()}

 if(as.logical(eval_expr(statement,calc_phases,crust))){

 for(add_ph in 2:length(ph_add_pnt[[add_def_no]])){

 #Evaluate expression unless numeric comma seperated vector

 C:27

if(any(is.na(suppressWarnings(as.numeric(strsplit(ph_add_pnt[[add_def_no]][add_ph],

",")[[1]]))))){

 ph_add_pnt[[add_def_no]][add_ph]<-

eval_expr(ph_add_pnt[[add_def_no]][add_ph],calc_phases,crust)

 }

 }

 add_mat<-matrix(c(as.numeric(unlist(strsplit(ph_add_pnt[[add_def_no]][-

1],","))),c0),length(ph_add_pnt[[add_def_no]]),byrow=TRUE)

 colnames(add_mat)<-c(major_elements,"mass")

 # Calculate new c0

 c0[c(major_elements,"mass")]<-

c(.wtd.add(add_mat,prop="mass",avname="Bulk_rs"))

 }else{

 if(!silent_calc){cat("\nNo addition at this point for this condition\n")}

 }

 }

 }

 }

 }

 }

 #Calculate phases

comps<<-names(c0[-length(c0)])

calc_phases<-try(wrapper(comps,c0,press,temp,calc_choice),silent=TRUE)

if(class(calc_phases)=="try-error"){

cat("Oops, an error occured while calculating phases\n at ",press," kbar and

",temp," C for the bulk composition:\n ",major_elements,"\n",c0,"\n")

run_errors<<-c(run_errors,y_i,x_i)

if(pause_on_error){

browser()

}else{

exit_calc<<-TRUE

}

}

calc<-FALSE

 #mod-tag: calculate traces here and then zircon and monazite saturation

 #fix-tag: renaming felspars twice (need to work this into earlier position so

that renamed phases are extractable)

if(!exit_calc){

if(!is.na(match("Bulk_rs",rownames(calc_phases)))){

 #rename kf

 if(length(intersect(major_elements,c("CAO","K2O")))==2){

 split_names<-strsplit(rownames(calc_phases),"_","")

 first_names<-NULL

 for(i in 1:length(split_names)){

 first_names<-c(first_names,split_names[[i]][1])

 }

 for(ph in which(first_names=="Fsp")){

 if(calc_phases[ph,"K2O"]<=0){calc_phases[ph,"K2O"]<-0.0001}

 if(calc_phases[ph,"CAO"]/calc_phases[ph,"K2O"]>1){

 rownames(calc_phases)[ph]<-"Pl"

 }else{

 rownames(calc_phases)[ph]<-"Kf"

 }

 }

 }

 #number duplicates

 for(ph in rownames(calc_phases)[which(duplicated(rownames(calc_phases)))]){

 rownames(calc_phases)[which(rownames(calc_phases)==ph)[-1]]<-

paste0(ph,"_",1:length(which(rownames(calc_phases)==ph)[-1]))

 }

}

}

if(!exit_calc){

 #Phase Extraction

if(ph_extr){

 #pass_1 extraction

if(!is.null(ph_extr_pnt)){

 C:28

if(pass==1){

 grab<-c(major_elements,"mass")

 grab_phases<-NULL

 for(ex_def_no in 1:length(ph_extr_pnt)){

 #Evaluate if extraction is required

 statement<-ph_extr_pnt[[ex_def_no]]["condition"]

 #if statement is true

 if(is.na(as.logical(eval_expr(statement,calc_phases,crust)))){cat(paste0("Error

condition for phase extraction definition number ",ex_def_no," as ",statement,"

does not evaluate to logical output\n"));stop()}

 if(as.logical(eval_expr(statement,calc_phases,crust))){

 #must evaluate conditions in order then phases in order, retain phases must be

last, cannot have overlapping extract conditions that target the same phase

 extr_phases<-

names(ph_extr_pnt[[ex_def_no]])[2:length(ph_extr_pnt[[ex_def_no]])]

 if(any(extr_phases=="any_phase")){

 #old_extr_phases<-extr_phases

 while(length(which(extr_phases=="any_phase"))!=0){

 rep_no<-which(extr_phases=="any_phase")[1]

 #Remove bulk

 cur_phases<-rownames(calc_phases)[-nrow(calc_phases)]

 #Remove phases with existing definitions

 existing_defs<-NULL

 for(i in 1:length(ph_extr_definitions)){

 existing_defs<-union(existing_defs,names(ph_extr_definitions[[i]]))

 }

 cur_phases<-setdiff(cur_phases,existing_defs)

 x<-as.list(extr_phases)

 x[[rep_no]]<-cur_phases

 extr_phases<-unlist(x)

 }

 extr_vals<-unlist(lapply(1:length(extr_phases),function(i){

 gsub("any_phase",extr_phases[i],ph_extr_pnt[[ex_def_no]]["any_phase"])}

))

 names(extr_vals)<-extr_phases

 ex_def<-names(ph_extr_pnt[[ex_def_no]])[-1]

 ex_def<-ex_def[-which(ex_def=="any_phase")]

 extr_vals[ex_def]<-ph_extr_pnt[[ex_def_no]][ex_def]

 }else{

 extr_vals<-ph_extr_pnt[[ex_def_no]][extr_phases]

 }

 for(ph in extr_phases){

 #If extract phase is present

 if(length(which(rownames(calc_phases)==ph))>0){

 #grab phase details

 chk<-try(calc_phases[ph,grab,drop=FALSE],silent=TRUE)

 if(!class(chk)=="try-error"){

 grab_phases<-rbind(grab_phases,calc_phases[ph,grab,drop=FALSE])

 }

 #Evaluate for extraction value unless ending in % sign

 a<-extr_vals[ph]

if(!substring(extr_vals[ph],nchar(extr_vals[ph]),nchar(extr_vals[ph]))=="%"){

 a<-eval_expr(a,calc_phases,crust)

 }

 #Evaluate unless extraction value is non numeric

 if(!is.na(suppressWarnings(as.numeric(gsub("%","",a))))){

 #If number then take smallest of number or mass present

 if(regexpr("%",a)[1]==-1){

 class(a)<-"numeric"

 if(a<calc_phases[ph,"mass"]){

 grab_phases[ph,"mass"]<-as.numeric(a)

 calc_phases[ph,"mass"]<-calc_phases[ph,"mass"]-

grab_phases[ph,"mass"]

 }else{

 calc_phases[ph,"mass"]<-0

 }

 }else{

 C:29

 #If percentage then take as proportion

 grab_phases[ph,"mass"]<-

round(calc_phases[ph,"mass"]*as.numeric(gsub("%","",a))/100,6)

 calc_phases[ph,"mass"]<-round(calc_phases[ph,"mass"],6)-

grab_phases[ph,"mass"]

 }

 }else{

 cat("Error in expression used for extraction\n")

 stop()

 }

 }

 }

 }else{

 if(!silent_calc){cat("\nNo extraction at this point for this condition\n")}

 }

 }

 #Check for negatives

 if(any(calc_phases[,"mass"]<0)|any(grab_phases[,"mass"]<0)){

 cat("Error negative mass produced upon extraction\n")

 }

 #h# Create Extract

 if(!sum(grab_phases[,"mass"])==0){

 #c# Place extracts into extract and calculate Bulk_es

 extr_bulk<-.wtd.add(grab_phases,prop="mass",avname="Bulk_es")

 rownames(grab_phases)<-paste0(rownames(grab_phases),"_es")

 extract<-rbind(grab_phases,extr_bulk)

 #c# Calculate new c0

 c0[c(major_elements,"mass")]<-c(.wtd.add(calc_phases[-

which(rownames(calc_phases)=="Bulk_rs"),c(major_elements,"mass")]))

 #Recalculate mass dependent properties in calc_phases if not re-equilibrating

 if(!reequilibrate_steps){

 calc_phases[,"mol"][-which(rownames(calc_phases)=="Bulk_rs")]<-

calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")]/(calc_phases[,"wt%"][-

which(rownames(calc_phases)=="Bulk_rs")]/calc_phases[,"mol"][-

which(rownames(calc_phases)=="Bulk_rs")])

 calc_phases[,"mol%"][-which(rownames(calc_phases)=="Bulk_rs")]<-

calc_phases[,"mol"][-

which(rownames(calc_phases)=="Bulk_rs")]/sum(calc_phases[,"mol"][-

which(rownames(calc_phases)=="Bulk_rs")])*100

 calc_phases[,"wt%"][-which(rownames(calc_phases)=="Bulk_rs")]<-

calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")]/sum(calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")])*100

 vols<-calc_phases[,"mass"][-

which(rownames(calc_phases)=="Bulk_rs")]/calc_phases[,"Density(kg/m3)"][-

which(rownames(calc_phases)=="Bulk_rs")]

 calc_phases[,"vol%"][-which(rownames(calc_phases)=="Bulk_rs")]<-

vols/sum(vols)*100

 calc_phases["Bulk_rs",names(c0)]<-c0

 #mod-tag: check that changed all mass dependent properties

 }

 }

 #if(changed c0 comp) then trigger for recalculation

 if(reequilibrate_steps){

 if(!all(calc_phases["Bulk_rs",names(c0)]==c0)){

 calc<-TRUE

 }

 }

}

}

#end extraction

}

 pass<-pass+1

}

 }

#end calculation

 C:30

#if successful calc phases

if(!exit_calc){

if(!is.na(match("Bulk_rs",rownames(calc_phases)))){

 #rename kf

 if(length(intersect(major_elements,c("CAO","K2O")))==2){

 for(ph in which(rownames(calc_phases)=="Fsp")){

 if(calc_phases[ph,"K2O"]<=0){calc_phases[ph,"K2O"]<-0.0001}

 if(calc_phases[ph,"CAO"]/calc_phases[ph,"K2O"]>1){

 rownames(calc_phases)[ph]<-"Pl"

 }else{

 rownames(calc_phases)[ph]<-"Kf"

 }

 }

 }

 #number duplicates

 for(ph in rownames(calc_phases)[which(duplicated(rownames(calc_phases)))]){

 rownames(calc_phases)[which(rownames(calc_phases)==ph)[-1]]<-

paste0(ph,"_",1:length(which(rownames(calc_phases)==ph)[-1]))

 }

 #add rs labels

 rownames(calc_phases)[-match("Bulk_rs",rownames(calc_phases))]<-

paste0(rownames(calc_phases)[-match("Bulk_rs",rownames(calc_phases))],"_rs")

}

#Update combined extracts

combined_extracts<-NULL

#Expand extract

if(!is.null(extract)){

expanded<-matrix(0,nrow(extract),ncol(calc_phases))

rownames(expanded)<-rownames(extract)

colnames(expanded)<-colnames(calc_phases)

expanded[rownames(extract),colnames(extract)]<-extract

extract<-expanded

}

#Calculate new cumul_extract_pnt

if(is.null(cumul_extract_pnt)){

 new_cumul_extract<-extract

}else{

rownames(cumul_extract_pnt)<-gsub("_cumul","",rownames(cumul_extract_pnt))

all_extr<-union(rownames(extract),rownames(cumul_extract_pnt))

new_cumul_extract<-matrix(0,length(all_extr),ncol(calc_phases))

rownames(new_cumul_extract)<-all_extr

for(nam_i in all_extr){

 #In extract and cumul - .wtd.add

if(length(which(rownames(extract)==nam_i))>0&length(which(rownames(cumul_extract_pn

t)==nam_i))>0){

 new_cumul_extract[nam_i,]<-

.wtd.add(rbind(cumul_extract_pnt[nam_i,],extract[nam_i,]))

 }

 #In extract- extract

if(length(which(rownames(extract)==nam_i))>0&!length(which(rownames(cumul_extract_p

nt)==nam_i))>0){

 new_cumul_extract[nam_i,]<-extract[nam_i,]

 }

 #In cumul- cumul

if(!length(which(rownames(extract)==nam_i))>0&length(which(rownames(cumul_extract_p

nt)==nam_i))>0){

 new_cumul_extract[nam_i,]<-cumul_extract_pnt[nam_i,]

 }

}

#Calculate new Bulk_es_cumul

colnames(new_cumul_extract)<-colnames(cumul_extract_pnt)

new_cumul_extract<-rbind(new_cumul_extract[-

(which(rownames(new_cumul_extract)=="Bulk_es")),,drop=FALSE],.wtd.add(new_cumul_ext

ract[-(which(rownames(new_cumul_extract)=="Bulk_es")),,drop=FALSE],,"Bulk_es"))

}

 C:31

if(!is.null(new_cumul_extract)){

rownames(new_cumul_extract)<-paste0(rownames(new_cumul_extract),"_cumul")

}

combined_extracts<-rbind(extract,new_cumul_extract)

#Update IS

#Calculate new cumul_add_pnt

if(is.null(cumul_add_pnt)){

 new_cumul_add<-addition_subsystem

}else{

 rownames(cumul_add_pnt)<-gsub("_cumul","",rownames(cumul_add_pnt))

 all_add<-union(rownames(addition_subsystem),rownames(cumul_add_pnt))

 new_cumul_add<-matrix(0,length(all_add),ncol(calc_phases))

 rownames(new_cumul_add)<-all_add

 for(nam_i in all_add){

 #In add and cumul - .wtd.add

if(length(which(rownames(addition_subsystem)==nam_i))>0&length(which(rownames(cumul

_add_pnt)==nam_i))>0){

 new_cumul_add[nam_i,]<-

.wtd.add(rbind(cumul_add_pnt[nam_i,],addition_subsystem[nam_i,]))

 }

 #In addition_subsystem - addition_subsystem

if(length(which(rownames(addition_subsystem)==nam_i))>0&!length(which(rownames(cumu

l_add_pnt)==nam_i))>0){

 new_cumul_add[nam_i,]<-addition_subsystem[nam_i,]

 }

 #In cumul - cumul

if(!length(which(rownames(addition_subsystem)==nam_i))>0&length(which(rownames(cumu

l_add_pnt)==nam_i))>0){

 new_cumul_add[nam_i,]<-cumul_add_pnt[nam_i,]

 }

 }

}

if(!is.null(new_cumul_add)){

 rownames(new_cumul_add)<-paste0(rownames(new_cumul_add),"_cumul")

}

combined_add<-rbind(addition_subsystem,new_cumul_add)

 #Compile Full System

full_system<-rbind(calc_phases,combined_extracts,combined_add)

}else{

Return Blank Comp

full_system<-

matrix(0,2,length(c0)+1,dimnames=list(c("Error","Bulk_error"),c("wt%",names(c0))))

}

 #Output results to console

if(silent_calc){

#flush.console()

}else{

cat("-------------------------------\n","Input:\n",paste0("x_i = ",x_i,"y_i =

",y_i,"P = ",press," kbar"," ; T = ",temp," C\n"))

print(c0)

cat("-------------------------------\n","Output:\n")

print(full_system[,c(major_elements,"mass")])

flush.console()

}

return(full_system)

}

 C:32

Wrapper for phase stability calculations (init_wrapper.r)

Contains functions for calculating the stable phases of a system given its pressure,

temperature and bulk composition

Older versions called a compiled form of meemum from Perple_X to save calculation time

however the documented experience of users prefers accessibility to multiple versions of

Perple_X so that a wider choice of solution models and chemical systems is available.

Thus the dominant calculation method is now a direct call to meemum from Perple_X

Placing this call within a wrapper assists in handling error response and allows outputs to be

formatted to be readable by Rcrust

Replaces placeholder composition in parse_meem.dat with composition of the given point to

be calculated (c0)

Calls run.meemum to calculate results and read.meemum to format results

Wrapper.r containing calls to meemum from Perple_X

#function-def:wrapper<-function(comps,c0,press,temp,calc_choice="read.meemum")

wrapper<-function(comps,c0,press,temp,calc_choice="read.meemum"){

Wrapper function, gives some exception handling

So an error in the calc does not necessarily kill all the previous results !

if(!(calc_choice=="read.meemum"|calc_choice=="lars.wrap")){

cat("\nError: ",calc_choice,"Is not an appropriate calculation choice

(calc_choice)\n")

stop()

}

if(calc_choice=="read.meemum"){

#control comps order

input_file<-

readLines(paste0(gsub("Projects","data",projects_directory),"/parse_meem.dat"))

comp_mat<-NULL

 for(ox in major_elements){

 comp_mat<-c(comp_mat,paste0(ox," 1 ",c0[which(major_elements==ox)]," 0.00000

",if(molar_vs_wt==1){"weight amount"}else{"molar amount"},sep=""))

 }

start_write<-grep("begin thermodynamic component list",input_file)+1

end_write<-grep("end thermodynamic component list",input_file)-1

input_file[start_write:end_write]<-comp_mat

write(input_file, file =

paste0(gsub("Projects","data",projects_directory),"/parse_meem.dat"))

mod-tag: have to bring c0 into global, look for alternative

c0<<-c0

calc_out<-read.meemum(run.meemum(comps,c0,press,temp,meemum_path))

}

mod-tag: Do we still need "lars.wrap"?

if(calc_choice=="lars.wrap"){

#mod-tag: check if need to normalise c0 or if perplex does this

#a (Options: P, T, bulk composition in given order)

 a <- .Call("R_phaseq", as.numeric(press*1000), as.numeric(temp+273.15),

as.numeric(c0[comps]))

 #'a' is a list, with following components:

 C:33

1 - Return value (should be zero in case of successful minimization

2 - Amounts of stable phases (wt% or mol, depending on PerpleX options)

3 - Names of the stable phases

4 - Compositions of stable phases (a[[4]][[i]][j] for phase a[[3]][[i]],

element comps[j] (wt% or mol, depending on PerpleX options)* PerpleX

options not editable

5 - Bulk properties

6 - System properties of stable phases (a[[6]][[i]][j] for phase a[[3]][[i]],

system property [j]

#Check for error

error<<-FALSE

chk_call<-try(length(a[[3]])==length(a[[4]]),silent=TRUE)

if(class(chk_call)=="try-error"){

error<<-TRUE

}

else{

if(!chk_call){

error<<-TRUE

}

}

out_colnames<<-

c("wt%","vol%",comps,"mass","V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","V0

(km/s)","Vp(km/s)","Vs(km/s)","Vp/Vs","Rho(kg/m3)","Cp(J/K)","alpha(1/K)","beta(1/b

ar)","S(J/K)","N(g)","Cp/Cv")

if(!error){

 #compile phases

phases<-NULL

for(ii in 1:length(a[[3]])){

one<-matrix(a[[4]][[ii]],1,length(a[[4]][[ii]]))

prop_one<-matrix(a[[6]][[ii]],1,length(a[[6]][[ii]]))

phases<-rbind(phases,cbind(one,prop_one))

}

colnames(phases)<-

c(comps,"V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","V0(km/s)","Vp(km/s)","

Vs(km/s)","Vp/Vs","Rho(kg/m3)","?","Cp(J/K)","alpha(1/K)","beta(1/bar)","S(J/K)","?

?","N(g)",17,18,19,20,21,22,23,24,25,26,"Cp/Cv")

Create mass and wt columns

wt<-matrix(a[[2]],length(a[[3]]),1)

colnames(wt)<-"wt%"

mass<-matrix(a[[2]]/100*c0["mass"],length(a[[3]]),1)

colnames(mass)<-"mass"

Create vol% columns

vol<-(wt/phases[,"Rho(kg/m3)",drop=FALSE])/(100/a[[5]][10])*100

colnames(vol)<-"vol%"

#Create Bulk

bulk_row<-matrix(c(100,100,c0[],a[[5]]),1)

rownames(bulk_row)<-"Bulk_rs"

Compile calc_out

calc_out<-

cbind(wt,vol,phases[,names(c0[1:length(comps)])],mass,phases[,(length(comps)+1):nco

l(phases)])

rownames(calc_out)<-a[[3]]

calc_out<-rbind(calc_out,bulk_row)

calc_out<-calc_out[,out_colnames,drop=FALSE]

}else{

Return Blank Comp

colmns<-c("wt%",out_colnames)

calc_out<-matrix(0,2,length(out_colnames))

rownames(calc_out)<-c("Error","Bulk_error")

colnames(calc_out)<-out_colnames

}

}

return(calc_out)

}

 C:34

Meemum connect (meemum_connect.r)

Run.meemum calls meemum.exe in the code folder of Rcrust with the current pressure,

temperature and bulk composition of the system

Read.meemum formats the outputs from meemum.exe to be readable by Rcrust

Compile matrix of phases

Number duplicate phases

Merge data tables of parameters for each phase

Create Bulk_rs

Run meemum with parameters

#function-def:run.meemum<-

function(meemum.path="",build.file="",meemum.order="",press=press*1000,temp=temp+27

3.15,bulk="",components="",pt_comp=pt_comp)

run.meemum<-function(comps=comps,c0=c0,press=press,temp=temp,meemum_path=""){

 parms<-

c(paste0(data_directory,"/parse_meem"),"n",c(temp+273.15,press*1000),"0","0")

 res<-

system(shQuote(paste0(data_directory,"/",meemum_path)),invisible=T,input=parms,inte

rn=T)

return(res)

}

#####################################

Parse meemum .prn file

#####################################

read.meemum<-function(meemum_in=meemum_in){

#Grab data matrix after line given line text

data_matrix_from_line<-function(line_text){

ln_given<-grep(line_text,meemum_in)

nm_phases<-which(nchar(meemum_in[-(1:ln_given)])==0)[1]-2

text_given<-meemum_in[(ln_given+1):(ln_given+nm_phases+1)]

text_altered<-trimws(text_given)

text_altered<-gsub(" %","%",text_altered)

mod-tag: remove system - fluid for now, may be useful in future to have access to

this data

text_altered<-gsub("System - fluid","System-fluid",text_altered)

text_altered<-gsub("Poisson ratio","Poisson_ratio",text_altered)

text_altered<-strsplit(text_altered,split="\\s{1,}")

col_names<-c("Phase",text_altered[[1]])

mat_out<-matrix(unlist(text_altered)[-c(1:(length(col_names)-

1))],nm_phases,byrow=TRUE)

colnames(mat_out)<-col_names

#number duplicates

for(ph in mat_out[which(duplicated(mat_out[,1])),1]){

 mat_out[which(mat_out[,1]==ph)[-1],1]<-

paste0(ph,"_",1:length(which(mat_out[,1]==ph)[-1]))

}

return(mat_out)

}

#merge data tables by common first field with rows in same order

merge_matrix<-function(a,b){

full_rows<-union(a[,1],b[,1])

#add extra row of NA to any table that needs it

max_row<-max(nrow(a),nrow(b))

if(nrow(a)<max_row){

a<-rbind(a,matrix(NA,max_row-nrow(a),ncol(a)))

}

 C:35

if(nrow(b)<max_row){

b<-rbind(b,matrix(NA,max_row-nrow(b),ncol(b)))

}

#rename first row

a[,1]<-full_rows

#delete key row in second table

b<-b[,-1]

#merge

return(cbind(a,b))

}

#grab crust output by merging tables

#reorder major elements

ph_comp_mat<-data_matrix_from_line("Phase Compositions")

ph_comp_mat<-

ph_comp_mat[,c(setdiff(colnames(ph_comp_mat),major_elements),major_elements),drop=F

ALSE]

#merge info

merge_1<-merge_matrix(ph_comp_mat,data_matrix_from_line("Molar Properties and

Density"))

merge_2<-merge_matrix(merge_1,data_matrix_from_line("Seismic Properties"))

#make numeric and set phase column as row names

meemum_out<-merge_2[,-1]

meemum_out<-matrix(as.numeric(meemum_out),nrow(meemum_out))

rownames(meemum_out)<-merge_2[,1]

colnames(meemum_out)<-colnames(merge_2)[-1]

mod-tag: remove system - fluid properties for now, may be useful in future to

have access to this data

chk_call<-try(meemum_out["System-fluid",],silent=TRUE)

if(class(chk_call)!="try-error"){

meemum_out<-meemum_out[-grep("System-fluid",rownames(meemum_out)),]

}

#merge phases with the same name

if(merge_duplicates){

rownames(meemum_out)<-gsub("_[0-9]","",rownames(meemum_out))

while(any(duplicated(rownames(meemum_out)))){

ph<-rownames(meemum_out)[which(duplicated(rownames(meemum_out)))[1]]

thelines<-meemum_out[which(rownames(meemum_out)==ph),]

prop<-"wt%"

new<-.wtd.add(thelines,prop,ph)

meemum_out<-rbind(new,meemum_out[-which(rownames(meemum_out)==ph),])

}

}

#Create Bulk_rs with system

new_names<-rownames(meemum_out)

new_names[which(new_names=="System")]<-"Bulk_rs"

rownames(meemum_out)<-new_names

meemum_out["Bulk_rs",comps]<-c0[comps]

#Set % to 100 for Bulk_rs

chk_call<-try(meemum_out["Bulk_rs","vol%"],silent=TRUE)

if(class(chk_call)!="try-error"){

meemum_out["Bulk_rs","wt%"]<-100

}

chk_call<-try(meemum_out["Bulk_rs","vol%"],silent=TRUE)

if(class(chk_call)!="try-error"){

meemum_out["Bulk_rs","vol%"]<-100

}

chk_call<-try(meemum_out["Bulk_rs","vol%"],silent=TRUE)

if(class(chk_call)!="try-error"){

meemum_out["Bulk_rs","mol%"]<-100

}

mass<-matrix(meemum_out[,"wt%"]/100*c0["mass"],nrow(meemum_out),1)

colnames(mass)<-"mass"

meemum_out<-cbind(mass,meemum_out)

return(meemum_out)

}

 C:36

Server (server.r)

Define functions for manipulating data in Rcrust

Define functions to be used for formatting and plotting outputs

Set reactive values and build reactive stores for GUI

Define save function to write GUI inputs into text file

Define load function which reads text file input to populate GUI inputs

Define clear function to reset GUI inputs

Define console function to give access to the direct environment

Define run function to source Rcrust calculation loop with saved input variables

Dynamically create GUI inputs based on current selections

Dynamically create view outputs and filter data relative to the intended output

###############################

Rcrust (server.r)

###############################

Functions

#function-def:

get_val(y_i,x_i,phase,variable,crust=crust,oxy_num=24,site_ocup="biotite",select=1)

get_val<-

function(y_i,x_i,phase,variable,crust=crust,oxy_num=24,site_ocup="biotite",select=1

){

if(variable=="Temperature"|variable=="Pressure"){

chk<-

try(input_pt[[y_i]][[x_i]][which(colnames(input_pt[[1]][[1]])==variable)],silent=TR

UE)

if(class(chk)=="try-error"){val<-0}else{

val<-input_pt[[y_i]][[x_i]][which(colnames(input_pt[[1]][[1]])==variable)]}

return(val)

}

if(variable=="Min_formula"){

return(Min_formula(y_i,x_i,phase,oxy_num,site_ocup,crust=crust)[as.numeric(select)]

)}

chk<-try(crust[[y_i]][[x_i]][phase,variable],silent=TRUE)

if(class(chk)=="try-error"){val<-0}else{

if(class(chk)=="NULL"){val<-NA}else{

val<-crust[[y_i]][[x_i]][phase,variable]

}}

return(val)

}

#function-def:sub_brackets(x)

#substitute brackets for obrac and cbrac

sub_brackets<-function(x){

return(gsub("\\(","_obrac_",gsub("\\)","_cbrac_",x)))

}

#function-def:ret_brackets(x)

#return brackets from place holders obrac and cbrac

ret_brackets<-function(x){

return(gsub("_obrac_","\\(",gsub("_cbrac_","\\)",x)))

}

#function-def:.wtd.add(thelines,prop="mass",avname="Averaged")

 C:37

 .wtd.add<<-function(thelines,prop="mass",avname="Averaged"){

 if(nrow(thelines)==1){

 foo<-thelines

 }else{

 #fix-tag: is N(g) extensive or intensive

 extensive.cn<-c("wt%","vol%","mol%","mol","mass")

 extensive.cn<-intersect(extensive.cn,colnames(thelines))

 intensive.cn<-setdiff(colnames(thelines),c(prop,extensive.cn,"Phase"))

 foo<-matrix(rep(0,length(colnames(thelines))),nrow=1)

 colnames(foo)<-colnames(thelines)

 suppressWarnings(class(thelines)<-"numeric")

 # Intensive

 foo[,intensive.cn]<-

thelines[,prop]%*%thelines[,intensive.cn,drop=F]/sum(thelines[,prop])

 # Extensive

 for(i in extensive.cn){

 foo[1,i]<-sum(thelines[,i])

 }

 }

 rownames(foo)<-avname

 return(foo)

 }

#function-def:check_tuple(tuple)

check_tuple<-function(tuple=""){

 if(tuple==""){return(list("Valid tuple",""))}

 split_tuple<-unlist(strsplit(gsub("\\{","",gsub("\\}","",tuple)),split=",|;"))

 if(!length(split_tuple)==2){return(list("Error: Tuple is invalid",NULL))}

 for(k in 1:length(split_tuple)){

 if(is.na(suppressWarnings(as.numeric(split_tuple[k])))){return(list("Error:

Tuple argument is non-numeric",NULL))}

 if(as.numeric(split_tuple[k])<1){return(list("Error: Tuple argument is less

than 1",NULL))}

 if(!as.numeric(split_tuple[k])%%1==0){return(list("Error: Tuple argument is not

a whole number",NULL))}

 }

 return(list("Valid tuple",paste0("{",paste(split_tuple,collapse=";"),"}")))

}

#function-def:flip_y(mat)

#matrix reflection in y direction

flip_y<-function(mat){

mat_out<-mat[nrow(mat):1,,drop=FALSE]

return(mat_out)

 }

#function-def:flip_x(mat)

#matrix reflection in x direction

flip_x<-function(mat){

mat_out<-mat[,ncol(mat):1,drop=FALSE]

return(mat_out)

 }

#function-def:rotate(x)

#Matrix rotation

rotate<-function(x)t(apply(x, 2, rev))

substrRight <- function(x, n){

 substr(x, nchar(x)-n+1, nchar(x))

}

#function-

def:phase_abundance(crust,axis,path=1,p_a=1,p_b=p_a,path_label="Point",input_pt=NUL

L)

phase_abundance<-

function(crust,axis,path=1,p_a=1,p_b=p_a,path_label="Point",input_pt=NULL){

 #Header

 outname<-switch(axis,

 x=paste0("Phase adundance vs ",path_label," for {",p_a,";",path,"} to

{",p_b,";",path,"}"),

 y=paste0("Phase adundance vs ",path_label," for {",path,";",p_a,"} to

{",path,";",p_b,"}")

)

 #Abundance rows

 C:38

 switch(axis,

 x={pnt_y<-"path";pnt_x<-"p_i"},

 y={pnt_y<-"p_i";pnt_x<-"path"}

)

 all_phases<-NULL

 for(p_i in p_a:p_b){

 all_phases<-

union(all_phases,rownames(crust[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))

]]))

 }

 #reorder into rs,es,es_cumul,as

 rs_phases<-all_phases[grepl(".*_rs",all_phases)]

 rs_bulk<-grep("Bulk_rs",rs_phases)

 es_phases<-all_phases[grepl(".*_es",all_phases)]

 es_cumul<-grep(".*_es_cumul",es_phases)

 as_phases<-all_phases[grepl(".*_as",all_phases)]

 all_phases<-c(rs_phases[-rs_bulk],rs_phases[rs_bulk],es_phases[-

es_cumul],es_phases[es_cumul],as_phases)

 abundance_rows<-NULL

 for(ph in all_phases){

 abundace_phase<-NULL

 for(p_i in p_a:p_b){

 chk_phase<-

try(crust[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))]][ph,"mass"],silent=T

RUE)

 if(class(chk_phase)=="try-error"){

 abundace_phase<-c(abundace_phase,0)

 }else{

 abundace_phase<-

c(abundace_phase,crust[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))]][ph,"ma

ss"])

 }

 }

 abundance_rows<-rbind(abundance_rows,matrix(abundace_phase,1))

 }

 rownames(abundance_rows)<-all_phases

 col_nms<-p_a:p_b

 if(!path_label=="Point"){

 if(path_label=="Pressure(kbar)"|path_label=="Temperature(C)"){

 switch(path_label,"Pressure(kbar)"=slct<-1,"Temperature(C)"=slct<-2)

 if(!is.null(input_pt)){

 col_nms<-NULL

 for(p_i in p_a:p_b){

 col_nms<-

c(col_nms,input_pt[[eval(parse(text=pnt_y))]][[eval(parse(text=pnt_x))]][slct])

 }

 }

 }

 }

 colnames(abundance_rows)<-col_nms

 return(list(outname,abundance_rows))

}

#function-

def:write_phase_abundance(data,working_file=working_file,projects_directory=project

s_directory,file_type)

write_phase_abundance<-

function(data,working_file=working_file,projects_directory=projects_directory,file_

type){

 outfile_path<-

paste0(projects_directory,"/",working_file,"/Outputs/",working_file,"

",data[[1]],file_type)

 if(file_type==".txt"){

 write.table(data[[2]],outfile_path,sep="\t",quote=F,row.names = TRUE)

 }

 if(file_type==".csv"){

 write_test<-try(write.csv(data[[2]],outfile_path,row.names = TRUE),silent=TRUE)

 if(class(write_test)=="try-error"){

 C:39

 cat("Error cannot write to ",outfile_path,", please close all programs that

may be accessing the file then try again\n")

 return(paste0("Error could not save phase abundance file: ",outfile_path,",

file may be open in another program, please

 close all programs that may be accessing the file then try again\n"))

 }

 }

 cat("File written to ",data[[1]],"\n")

return(paste0("Phase abundance file saved to

",projects_directory,"/",working_file,"/Outputs/\n"))

}

#function-def:get_PAM_names(crust,PAM_system)

get_PAM_names<-function(crust,PAM_system){

y_n<-length(crust)

x_n<-length(crust[[1]])

#Group phases

PAM<-matrix(0,y_n,x_n)

for(x_i in 1:x_n){

for(y_i in 1:y_n){

#Grab phases from system under consideration

if(PAM_system=="Reactive Subsystem"){

grab<-

rownames(crust[[y_i]][[x_i]])[which(substrRight(rownames(crust[[y_i]][[x_i]]),3)=="

_rs")]

}

if(PAM_system=="Extract Subsystem"){

grab<-

rownames(crust[[y_i]][[x_i]])[which(substrRight(rownames(crust[[y_i]][[x_i]]),3)=="

_es")]

}

if(PAM_system=="Full System"){

grab<-rownames(crust[[y_i]][[x_i]])

}

if(length(grab)>0){

#Remove bulk arguments

grab<-grab[-which(grab=="Bulk_rs"|grab=="Bulk_es"|grab=="Bulk_es_cumul")]

if(!PAM_system=="Full System"){

#remove identifiers

for(i in 1:length(grab)){

grab[i]<-substr(grab[i],1,nchar(grab[i])-3)

}

}

 #Reorder alphabetically

 grab<-sort(grab)

}

 collapsed<-paste(grab,collapse="+")

 if(collapsed==""){collapsed<-"No Phases"}

 PAM[y_i,x_i]<-collapsed

}

}

PAM_names<-setdiff(intersect(PAM,PAM),"0")

return(list(PAM_names,PAM))

}

#function-def:PAM_calc(crust,PAM_system,compile_PAM=FALSE,PAM_compilation=NULL)

PAM_calc<-function(crust,PAM_system,compile_PAM=FALSE,PAM_compilation=NULL){

PAM_data<-get_PAM_names(crust,PAM_system)

PAM<-PAM_data[[2]]

if(compile_PAM){

validate(need(file.exists(paste0(sub("/code","/Projects",getwd()),"/Compile/",PAM_c

ompilation," compilation legend.txt")),paste0(PAM_compilation," compilation

legend.txt not found in ",sub("/code","/Projects",getwd()),"/Compile/","\nPlease

compile legend first")))

compilation_names<-

read.table(paste0(sub("/code","/Projects",getwd()),"/Compile/",PAM_compilation,"

compilation legend.txt"))

class(compilation_names)<-"vector"

PAM_names<-as.character(compilation_names[[2]])}else{

PAM_names<-PAM_data[[1]]

 C:40

}

Shade by number of phases (variance)

 no_phs<-NULL

for(i in 1:length(PAM_names)){

 no_phs<-c(no_phs,length(strsplit(PAM_names,split="+",fixed=TRUE)[[i]]))

 }

PAM_names<-PAM_names[rev(order(no_phs,PAM_names))]

#Populate grid

 for(y_i in 1:length(crust)){

 for(x_i in 1:length(crust[[1]])){

 if(!PAM[y_i,x_i]==0){

 PAM[y_i,x_i]<-which(PAM_names==PAM[y_i,x_i])

}

}

}

mode(PAM)<-"numeric"

Pull_common phases from legend

nam<-strsplit(PAM_names,split="+",fixed=TRUE)

inter<-nam[[1]]

if(length(PAM_names)>1){

for(i in 1:length(PAM_names)){

inter<-intersect(inter,nam[[i]])

}

}

all_pres<-paste(inter,collapse="+")

internam<-list()

for(i in 1:length(PAM_names)){

internam[[i]]<-setdiff(nam[[i]],inter)

}

new_nam<-list()

for(i in 1:length(PAM_names)){

if(length(internam[[i]])>0){

new_nam[i]<-paste(internam[[i]],collapse="+")

}else{

new_nam[i]<-"-"

}

}

PAM_names<-unlist(new_nam)

PAM_legend<-1:length(PAM_names)

names(PAM_legend)<-PAM_names

#if compiling save individual legend (phases relevant to this specific section)

compile_PAM_legend<-NULL

if(compile_PAM){

compile_PAM_legend<-PAM_legend

PAM_legend<-PAM_legend[sort((setdiff(intersect(PAM,PAM),"0")))]

}

 #Flip y-axis for matrix drawing

 PAM<-flip_y(PAM)

 library(raster)

 library(rgeos)

 x<-raster::raster(PAM)

 pol <- raster::rasterToPolygons(x,dissolve=TRUE)

 #create label ids

 pol_ex<-extract(x,pol)

 pol_id<-NULL

 for(i in 1:length(pol_ex)){

 pol_id<-c(pol_id,pol_ex[[i]][1])

 }

return(list(PAM,PAM_legend,all_pres,pol,pol_id,compile_PAM_legend))

}

#function-

def:data_file(crust,x_n=length(crust[[1]]),y_n=length(crust),choose_columns=NULL,ch

oose_rows=NULL,choose_points="All")

data_file<-

function(crust,x_n=length(crust[[1]]),y_n=length(crust),choose_columns=NULL,choose_

rows=NULL,choose_points="All"){

 ###

 #Outputs select_data list

 C:41

 #Settings for outputing data_file

 # choose_columns options = from crust

("wt%",comps,"mass","V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","V0(km/s)",

"Vp(km/s)","Vs(km/s)","Vp/Vs","Rho(kg/m3)","Cp(J/K)","alpha(1/K)","beta(1/bar)","S(

J/K)","N(g)","Cp/Cv")

 # from other

("Phase","y_i","x_i","Pressure(kbar)","Temperature(C)")

 # Brief

 # All

 # default = All

 #choose_columns<-c("All")

 #choose_columns<-c("Brief")

 #choose_rows default = All

 #choose_rows options = Reactive subsystem

 # Extract subsystem

 # Addition subsystem

 #choose_rows<-c("All")

 #choose_rows<-c("Bio(TCC)_rs","Bulk_rs")

 #choose_points default = All

 ###

 #fix-tag: number duplicate names (feldspar, mica)

 validate(need(!choose_points=="","To select points enter arguments seperated by

commas of the form {x_a;y_a} for single points or {x_a;y_a}:{x_b;y_b} for ranges

where a<=b<=n"))

 if(choose_points=="All"){choose_points<-paste("{1;1}:{",x_n,";",y_n,"}",sep="")}

 choose_points<-unlist(strsplit(choose_points,split=","))

 choose_points<-

unlist(strsplit(gsub("\\{","",gsub("\\}","",choose_points)),split=","))

 choose_points<-strsplit(choose_points,split=":|;")

 data_out<-NULL

 for(i in 1:length(choose_points)){

 x_a<-as.numeric(choose_points[[i]][1])

 y_a<-as.numeric(choose_points[[i]][2])

 if(length(choose_points[[i]])>2){

 x_b<-as.numeric(choose_points[[i]][3])

 y_b<-as.numeric(choose_points[[i]][4])

 }else{

 x_b<-as.numeric(choose_points[[i]][1])

 y_b<-as.numeric(choose_points[[i]][2])

 }

 #error validation on selection (range must be possible i.e. b>=a,b<=n)

 validate(need(all(x_a<=x_b,y_a<=y_b,x_b<=x_n,y_b<=y_n),"To select points enter

arguments seperated by commas of the form {x_a;y_a} for single points or

{x_a;y_a}:{x_b;y_b} for ranges where a<=b<=n"))

 for(y_i in y_a:y_b){

 for(x_i in x_a:x_b){

 #fix-tag: create validation here for erronous pixels

 #error validation for point existence

 if(is.null(crust[[y_i]][[x_i]])){

 #fix-tag: only works if point 1;1 is populated - dont know how many columns

otherwise

 new_pnt<-matrix(NA,1,(ncol(crust[[1]][[1]])+6))

 new_pnt[1,1]<-paste("Blank",y_i,x_i,sep="_")

 }else{

 ID<-matrix(paste(rownames(crust[[y_i]][[x_i]]),y_i,x_i,sep="_"),ncol=1)

 colnames(ID)<-"ID"

 phase<-matrix(rownames(crust[[y_i]][[x_i]]),ncol=1)

 colnames(phase)<-"Phase"

 pnt<-matrix(c(y_i,x_i),nrow=nrow(crust[[y_i]][[x_i]]),ncol=2,byrow=TRUE)

 colnames(pnt)<-c("y_i","x_i")

 if(exists("input_pt")){

 p_t<-

matrix(input_pt[[y_i]][[x_i]],nrow=nrow(crust[[y_i]][[x_i]]),ncol=2,byrow=TRUE)

 }else{

 C:42

 p_t<-matrix(0,nrow=nrow(crust[[y_i]][[x_i]]),ncol=2,byrow=TRUE)

 }

 colnames(p_t)<-c("Pressure(kbar)","Temperature(C)")

 new_pnt<-cbind(ID,phase,pnt,p_t,signif(crust[[y_i]][[x_i]],4))

 rownames(new_pnt)<-ID

 }

 data_out<-rbind(data_out,new_pnt)

 }

 }

 }

 if(is.null(choose_columns)){

 choose_columns<-colnames(data_out)

 }

 if(any(choose_columns=="Brief")){

 choose_columns<-union(choose_columns[-

which(choose_columns=="Brief")],c("ID","Phase","y_i","x_i","Pressure(kbar)","Temper

ature(C)","wt%",comps,"mass"))

 }

 if(is.null(choose_rows)){

 select_rows<-1:nrow(data_out)

 }else{

 if(choose_rows=="All"){

 select_rows<-1:nrow(data_out)}else{

 select_rows<-NULL

 if(!is.na(match("Reactive subsystem",choose_rows))){

 rs_rows<-grep("_rs",rownames(data_out))

 choose_rows<-choose_rows[-match("Reactive subsystem",choose_rows)]

 select_rows<-union(select_rows,rs_rows)

 }

 if(!is.na(match("Extract subsystem",choose_rows))){

 rs_rows<-grep("_es",rownames(data_out))

 choose_rows<-choose_rows[-match("Extract subsystem",choose_rows)]

 select_rows<-union(select_rows,rs_rows)

 }

 for(row_arg in choose_rows){

 chk_names<-NULL

 for(i in 1:length(rownames(data_out))){

 chk_names<-c(chk_names,paste(strsplit(rownames(data_out),"_")[[i]][c(-3,-

4)],collapse="_"))

 }

 select_rows<-union(select_rows,which(chk_names==row_arg))

 }

 }

 }

 data_out<-data_out[sort(select_rows),choose_columns,drop=FALSE]

 rownames(data_out)<-NULL

 return(data_out)

}

#function-

def:write_data_file(data_out,working_file=working_file,projects_directory=projects_

directory,file_type=".csv")

write_data_file<-

function(data_out,working_file=working_file,projects_directory=projects_directory,f

ile_type=".csv"){

 #file_type options = ".csv", ".txt"

 # default = ".csv"

outfile_path<-

paste0(projects_directory,"/",working_file,"/Outputs/",working_file,"_data_file",fi

le_type)

 if(length(data_out)>0){

 if(file_type==".txt"){

 write.table(data_out,outfile_path,sep="\t",quote=F,row.names = FALSE)

 cat("File written to ",outfile_path,"\n")

 }

 if(file_type==".csv"){

 write_test<-try(write.csv(data_out,outfile_path,row.names =

FALSE),silent=TRUE)

 if(class(write_test)=="try-error"){

 C:43

 cat("Error cannot write to ",outfile_path,", please close all programs that

may be accessing the file then try again\n")

 return(paste0("Error could not save Data File: file may be open in another

program, please close all programs that may be accessing the file then try

again\n"))

 }

 cat("File written to ",outfile_path,"\n")

 }

 if(file_type==".ps"){

 cat("Error cannot write Data File to .ps format\n")

 return(paste0("Error cannot write Data File to .ps format\n"))

 }

 }

 return(paste0("Data File saved to

",paste0(projects_directory,"/",working_file,"/Outputs/"),"\n"))

}

#function-

def:grid_data(Grid_variable,Grid_variable_phase="Bulk_rs",crust_in=crust_out(),inpu

t_pt_in=input_pt,oxy_num=24,site_ocup="biotite",select=1)

grid_data<-

function(Grid_variable,Grid_variable_phase="Bulk_rs",crust_in=crust_out(),input_pt_

in=input_pt,oxy_num=24,site_ocup="biotite",select=1){

 x_n<-length(crust_in[[1]])

 y_n<-length(crust_in)

 if(!is.null(Grid_variable)){

 grid_out_mat<-matrix(0,y_n,x_n)

 for(x_i in 1:x_n){

 for(y_i in 1:y_n){

 grid_out_mat[y_i,x_i]<-

get_val(y_i,x_i,Grid_variable_phase,Grid_variable,crust_in,oxy_num,site_ocup,select

)

 }

 }

 #Flip matrix so origin is bottom left (psuedosection convention)

 grid_out_mat<-flip_y(grid_out_mat)

if(Grid_variable=="y_i"|Grid_variable=="x_i"|Grid_variable=="Temperature"|Grid_vari

able=="Pressure"){

 grid_out_title<-Grid_variable

 }else{

 grid_out_title<-paste(Grid_variable_phase,Grid_variable)

 }

 suppressWarnings(mode(grid_out_mat)<-"numeric")

 return(list(grid_out_title,grid_out_mat))

 }

}

#function-def:.First()

Function for shortcut

.First<-function(){

 library(utils)

 if(!require(shiny)){

 install.packages("shiny")}

 library(shiny)

 #Launch with GUI function

 Rcrust<<-function(){

 #If working directory is x\Projects\y then set to x\code

 if(length(grep("Rcrust/Projects/",getwd()))==1){

 setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code"))

 }

 runApp()

 }

 #function-

def:manual_load(working_file,projects_directory=paste0(substring(getwd(),1,nchar(ge

twd())-4),"Projects"))

 #Launch without GUI function

 manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

4),"Projects")){

 C:44

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 source("main.r")

 }

 #launch the GUI

 #If working directory is x\Projects\y then set to x\code

 if(length(grep("Rcrust/Projects/",getwd()))==1){

 setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code"))

 }

 runApp()

 }

 #function-def:Rcrust()

 #Launch with GUI function

 Rcrust<<-function(){

 #If working directory is x\Projects\y then set to x\code

 if(length(grep("Rcrust/Projects/",getwd()))==1){

 setwd(paste0(strsplit(getwd(),split="Projects")[[1]][1],"code"))

 }

 runApp()

 }

 #Launch without GUI function

 manual_load<<-

function(working_file,projects_directory=paste0(substring(getwd(),1,nchar(getwd())-

4),"Projects")){

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 source("main.r")

 }

#function-def:error_handling(working_file,projects_directory)

#error handling on button press

error_handling<-function(working_file,projects_directory){

 if(projects_directory==""){return("Error: no projects directory specified")}

 if(!dir.exists(projects_directory)){return("Error: projects directory does not

exist")}

 if(working_file==""){return("Error: no working file specified")}

 return("error handling passed")}

#function-def:bl(x)

#blank function : returns a value or quotes "" if blank

bl<-function(x){

 if(is.null(x)){return("\"\"")}else

 {if(x==""){return("\"\"")}else{

 return(x)

 }}}

#function-def:bl(str_to_phases)

#string to phases function : takes a string e.g. "melt(HP),Pl,q" and returns a

vector of the phases e.g. "melt(HP)","Pl","q"

str_to_phases<-function(x){

 x_list<-strsplit(x,",")

 if(length(x_list)==0){

 x_out<-NULL

 }else{

 x_out<-x_list[[1]][1]

 if(length(x_list[[1]])>1){

 for(mi in 2:length(x_list[[1]])){

 x_out<-c(x_out,x_list[[1]][mi])

 }

 }

 }

 return(x_out)

}

#function-def:pasteq(x)

#pasteq fubction: collapse vector into comma seperated terms with quotes around

them

pasteq<-function(x){

 if(length(x)==0){paste0("\"",x,"\"",collapse=",")}else{

 a<-""

 y<-NULL

 for(i in 1:length(x)){

 C:45

 if(is.null(x[i])){y<-c(y,"")}else{

 if(x[i]==a){y<-c(y,"")}else{

 #if want to remove all quotes (dont know if I want this) then

gsub('"',"",x)

 #remove enclosing quotes if present

 x_split<-strsplit(as.character(x[i]),split="")[[1]]

 if(x_split[1]=="\""){x_split[1]<-""}

 if(x_split[length(x_split)]=="\""){x_split[length(x_split)]<-""}

 x[i]<-paste(x_split,collapse="")

 y<-c(y,x[i])}}}

 paste0("\"",y,"\"",collapse=",")

 }}

Shiny Server

shinyServer(function(input, output,session) {

 #Stop app when browser closed

 session$onSessionEnded(stopApp)

 #Global Variables (all variables that must be kept between load events needs to

be in the vector keep_on_load)

 keep_on_load<<-c("from_clear_button","from_copy","first_load")

 from_clear_button<<-FALSE

 from_copy<<-FALSE

 #Reactive variables (globally accessed)

 #Reactive stores

 pt_definitions_r<-reactiveValues(data = "")

 bulk_definitions_r<-reactiveValues(data = NULL)

 ph_add_definitions_r<-reactiveValues(data = NULL)

 ph_extr_definitions_r<-reactiveValues(data = NULL)

 solution_models_file_r<-reactiveValues(data = NULL)

 available_components_r<-reactiveValues()

 comp_transformations_r<-reactiveValues(data = NULL)

 current_components_r<-reactiveValues(data= NULL)

 major_elements_r<-reactiveValues(data= NULL)

 #mod-tag - this is a quick fix

 use_sol_models_r<-reactiveValues(data = NULL)

 #store_r contains output data from runs

 store_r<-

reactiveValues(crust_r=NULL,input_pt_r=NULL,input_bulk_r=NULL,major_elements_r=NULL

)

 #initialise a passing message for error checking and reporting

 reactive_message <- reactiveValues(data = NULL)

 load_pt_r<-reactiveValues(data = NULL)

 #save data reactive

 save_data_file <- reactive({

 #Grab working file and projects directory

 working_file<-input$working_file

 projects_directory<-input$projects_directory

 #error handling

 reactive_message$data <-error_handling(working_file,projects_directory)

 if(reactive_message$data=="error handling passed"){

 #if error handling is passed

 #Return success message

 return(paste0("File saved to

",projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }else{

 #Return error message

 return(reactive_message$data)

 }

 })

 #Save function

 on_save <- reactive({

 #Grab working file and projects directory

 working_file<-input$working_file

 projects_directory<-input$projects_directory

 #Replace projects directory if from copy

 if(!exists("from_copy")){from_copy<<-FALSE}

 C:46

 if(from_copy){

 projects_directory<-copy_directory

 from_copy<<-FALSE

 }

 #error handling

 reactive_message$data <-error_handling(working_file,projects_directory)

 if(reactive_message$data=="error handling passed"){

 #if error handling is passed

 w_file<-paste0("###############\n#\n# Rcrust input

file\n#\n###############\n# Location of project files\n",

 "working_file<-",pasteq(working_file),"\n",

 "projects_directory<-",pasteq(projects_directory),"\n")

if(!input$x_n==""){if(is.na(suppressWarnings(as.numeric(input$x_n)))){return("Error

: X must be numeric")}

 if(as.numeric(input$x_n)<1){return("Error: X must be greater than 1")}

 if(!as.numeric(input$x_n)%%1==0){return("Error: X must be a whole number")}}

if(!input$y_n==""){if(is.na(suppressWarnings(as.numeric(input$y_n)))){return("Error

: Y must be numeric")}

 if(as.numeric(input$y_n)<1){return("Error: Y must be greater than 1")}

 if(!as.numeric(input$y_n)%%1==0){return("Error: Y must be a whole number")}}

 w_size<-paste0("###############\n#\n# Size data\n#\n###############\n#

number of points in x and y directions\n",

 "x_n<-",bl(input$x_n),"\n",

 "y_n<-",bl(input$y_n),"\n")

 if(input$n_pt_def=="load"){

 if(!all(pt_definitions_r$data=="")){

 list_pt<-NULL

 for(i in 1:length(pt_definitions_r$data)){

 list_pt<-

c(list_pt,paste0("\"",names(pt_definitions_r$data)[i],"\"=c(",pasteq(pt_definitions

_r$data[[i]]),")"))

 }

 pt_definitions<-paste0("list(",paste0(list_pt,collapse=","),")")

 }else{

 pt_definitions<-""

 }

 }else{

 if(!input$n_pt_def==""){

 #Error validation

 if(is.na(suppressWarnings(as.numeric(input$n_pt_def)))){return("Error:

Number of PT definitions must be numeric")}

 if(as.numeric(input$n_pt_def)<1){return("Error: Number of PT definitions

must be greater than 0")}

 if(!as.numeric(input$n_pt_def)%%1==0){return("Error: Number of PT

definitions must be a whole number")}

 list_pt<-NULL

 for(i in 1:as.numeric(input$n_pt_def)){

 #check tuples

 from<-check_tuple(eval(parse(text=paste0("input$pt_from_",i))))

 if(!from[[1]]=="Valid tuple"){

 return(paste0("Error in PT Definition: ",from[[1]]))

 }

 to<-check_tuple(eval(parse(text=paste0("input$pt_to_",i))))

 if(!to[[1]]=="Valid tuple"){

 return(paste0("Error in PT Definition: ",to[[1]]))

 }

 list_pt<-

c(list_pt,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",pasteq(eval(parse(text=paste0("

input$pressure_",i)))),",",pasteq(eval(parse(text=paste0("input$temperature_",i))))

,")"))

 }

 pt_definitions<-paste0("list(",paste0(list_pt,collapse=","),")")

 }else{

 pt_definitions<-""

 }

 }

 C:47

 w_pt<-paste0("###############\n#\n# PT data\n#\n###############\n",

 "pt_def<-\"input\" #input,file\n",

 "pt_definitions<-",bl(pt_definitions),"\n"

)

 if(input$n_comp_trans=="load"){

 if(!all(comp_transformations_r$data=="")){

 list_trans<-NULL

 for(i in 1:length(comp_transformations_r$data)){

 list_trans<-

c(list_trans,paste0("\"",names(comp_transformations_r$data)[i],"\"=c(",pasteq(comp_

transformations_r$data[[i]]),")"))

 }

 comp_transformations<-paste0("list(",paste0(list_trans,collapse=","),")")

 }else{

 comp_transformations<-""

 }

 }else{

 if(!input$n_comp_trans==""){

 #Error validation

if(is.na(suppressWarnings(as.numeric(input$n_comp_trans)))){return("Error: Number

of Component transformations must be numeric")}

 if(as.numeric(input$n_comp_trans)<1){return("Error: Number of Component

transformations must be greater than 0")}

 if(!as.numeric(input$n_comp_trans)%%1==0){return("Error: Number of

Component transformations must be a whole number")}

 list_trans<-NULL

 for(i in 1:as.numeric(input$n_comp_trans)){

 list_trans<-

c(list_trans,paste0("\"",eval(parse(text=paste0("input$old_comp_",i))),"_",eval(par

se(text=paste0("input$new_comp_",i))),"\"=c(",pasteq(eval(parse(text=paste0("input$

comp_",i)))),")"))

 }

 comp_transformations<-paste0("list(",paste0(list_trans,collapse=","),")")

 }else{

 comp_transformations<-""

 }

 }

 if(input$n_bulk_def=="load"){

 if(!all(bulk_definitions_r$data=="")){

 list_bulk<-NULL

 for(i in 1:length(bulk_definitions_r$data)){

 list_bulk<-

c(list_bulk,paste0("\"",names(bulk_definitions_r$data)[i],"\"=c(",pasteq(bulk_defin

itions_r$data[[i]]),")"))

 }

 bulk_definitions<-paste0("list(",paste0(list_bulk,collapse=","),")")

 }else{

 bulk_definitions<-""

 }

 }else{

 if(!input$n_bulk_def==""){

 #Error validation

 if(is.na(suppressWarnings(as.numeric(input$n_bulk_def)))){return("Error:

Number of Bulk definitions must be numeric")}

 if(as.numeric(input$n_bulk_def)<1){return("Error: Number of Bulk

definitions must be greater than 0")}

 if(!as.numeric(input$n_bulk_def)%%1==0){return("Error: Number of Bulk

definitions must be a whole number")}

 list_bulk<-NULL

 for(i in 1:as.numeric(input$n_bulk_def)){

 #check tuples

 from<-check_tuple(eval(parse(text=paste0("input$bulk_from_",i))))

 if(!from[[1]]=="Valid tuple"){

 return(paste0("Error in Bulk Definition: ",from[[1]]))

 }

 to<-check_tuple(eval(parse(text=paste0("input$bulk_to_",i))))

 if(!to[[1]]=="Valid tuple"){

 C:48

 return(paste0("Error in Bulk Definition: ",to[[1]]))

 }

 bulk_eval<-

strsplit(eval(parse(text=paste0("input$bulk_",i))),split=",")[[1]]

 #place in quotes

 for(j in 1:length(bulk_eval)){

 bulk_eval[j]<-pasteq(bulk_eval[j])

 }

 list_bulk<-

c(list_bulk,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",paste(bulk_eval,collapse=",")

,")"))

 }

 bulk_definitions<-paste0("list(",paste0(list_bulk,collapse=","),")")

 }else{

 bulk_definitions<-""

 }

 }

 if(!is.null(input$major_elements)){

 if(any(input$major_elements=="load")){

 major_elements<-major_elements_r$data

 }else{

 major_elements<-unlist(strsplit(input$major_elements,split=","))

 }

 }else{

 major_elements<-""

 }

 if(input$bulk_def_file==FALSE){bulk_def<-"input"}else{bulk_def<-"file"}

 w_bulk_composition<-paste0("###############\n#\n# Bulk composition data

\n#\n###############\n",

 "comp_transformations<-

c(",bl(comp_transformations),")\n",

 "bulk_def<-",pasteq(bulk_def),"

#input,file\n",

 "major_elements<-c(",pasteq(major_elements),")\n",

 "bulk_definitions<-c(",bl(bulk_definitions),")\n",

 "bulk_file<-",pasteq(input$bulk_file),"\n"

)

 if(input$ph_add){

 if(input$n_ph_add_def=="load"){

 if(!all(ph_add_definitions_r$data=="")){

 list_ph_add<-NULL

 for(i in 1:length(ph_add_definitions_r$data)){

 qt_names<-unlist(lapply(names(ph_add_definitions_r$data[[i]]),pasteq))

 qt_values<-unlist(lapply(ph_add_definitions_r$data[[i]],pasteq))

 list_ph_add<-

c(list_ph_add,paste0("\"",names(ph_add_definitions_r$data)[i],"\"=c(",paste(qt_name

s,qt_values,collapse=",",sep="="),")"))

 }

 ph_add_definitions<-paste0("list(",paste0(list_ph_add,collapse=","),")")

 }else{

 ph_add_definitions<-""

 }

 }else{

 if(!input$n_ph_add_def==""){

 #Error validation

if(is.na(suppressWarnings(as.numeric(input$n_ph_add_def)))){return("Error: Number

of Phase Addition definitions must be numeric")}

 if(as.numeric(input$n_ph_add_def)<1){return("Error: Number of Phase

Addition definitions must be greater than 0")}

 if(!as.numeric(input$n_ph_add_def)%%1==0){return("Error: Number of

Phase Addition definitions must be a whole number")}

 list_ph_add<-NULL

 for(i in 1:as.numeric(input$n_ph_add_def)){

 ph_add_defs<-NULL

 #check tuples

 from<-check_tuple(eval(parse(text=paste0("input$ph_add_from_",i))))

 if(!from[[1]]=="Valid tuple"){

 C:49

 return(paste0("Error in Phase Addition Definition:

",from[[1]]))

 }

 to<-check_tuple(eval(parse(text=paste0("input$ph_add_to_",i))))

 if(!to[[1]]=="Valid tuple"){

 return(paste0("Error in Phase Addition Definition: ",to[[1]]))

 }

 ph_add_con<-

paste0("condition=",pasteq(eval(parse(text=paste0('input$ph_add_con_',i)))))

 phases<-

unlist(strsplit(eval(parse(text=paste0('input$ph_add_phs_',i))),split=","))

 for(j in 1:length(phases)){

 ph_add_defs<-

c(ph_add_defs,paste0(pasteq(phases[j]),"=",pasteq(eval(parse(text=paste0('input$ph_

add_phs_',i,'_',phases[j]))))))

 }

 list_ph_add<-

c(list_ph_add,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",paste0(c(ph_add_con,ph_add_

defs),collapse=","),")"))

 }

 ph_add_definitions<-

paste0("list(",paste0(list_ph_add,collapse=","),")")

 }else{

 ph_add_definitions<-""

 }

 }

 }else{ph_add_definitions<-""}

 w_phase_addition<-paste0("###############\n#\n# Phase

addition\n#\n###############\n",

 "ph_add<-",input$ph_add,"\n",

 "ph_add_definitions<-

c(",bl(ph_add_definitions),")\n"

)

 if(input$ph_extr){

 if(input$n_ph_extr_def=="load"){

 if(!all(ph_extr_definitions_r$data=="")){

 list_ph_extr<-NULL

 for(i in 1:length(ph_extr_definitions_r$data)){

 qt_names<-

unlist(lapply(names(ph_extr_definitions_r$data[[i]]),pasteq))

 qt_values<-unlist(lapply(ph_extr_definitions_r$data[[i]],pasteq))

 list_ph_extr<-

c(list_ph_extr,paste0("\"",names(ph_extr_definitions_r$data)[i],"\"=c(",paste(qt_na

mes,qt_values,collapse=",",sep="="),")"))

 }

 ph_extr_definitions<-

paste0("list(",paste0(list_ph_extr,collapse=","),")")

 }else{

 ph_extr_definitions<-""

 }

 }else{

 if(!input$n_ph_extr_def==""){

 #Error validation

if(is.na(suppressWarnings(as.numeric(input$n_ph_extr_def)))){return("Error: Number

of Phase Extraction definitions must be numeric")}

 if(as.numeric(input$n_ph_extr_def)<1){return("Error: Number of Phase

Extraction definitions must be greater than 0")}

 if(!as.numeric(input$n_ph_extr_def)%%1==0){return("Error: Number of

Phase Extraction definitions must be a whole number")}

 list_ph_extr<-NULL

 for(i in 1:as.numeric(input$n_ph_extr_def)){

 ph_extr_defs<-NULL

 #check tuples

 from<-check_tuple(eval(parse(text=paste0("input$ph_extr_from_",i))))

 if(!from[[1]]=="Valid tuple"){

 return(paste0("Error in Phase Extraction Definition:

",from[[1]]))

 C:50

 }

 to<-check_tuple(eval(parse(text=paste0("input$ph_extr_to_",i))))

 if(!to[[1]]=="Valid tuple"){

 return(paste0("Error in Phase Extraction Definition:

",to[[1]]))

 }

 ph_extr_con<-

paste0("condition=",pasteq(eval(parse(text=paste0('input$ph_extr_con_',i)))))

 phases<-

unlist(strsplit(eval(parse(text=paste0('input$ph_extr_phs_',i))),split=","))

 for(j in 1:length(phases)){

 ph_extr_defs<-

c(ph_extr_defs,paste0(pasteq(phases[j]),"=",pasteq(eval(parse(text=paste0('input$ph

_extr_phs_',i,'_',sub_brackets(phases[j])))))))

 }

 list_ph_extr<-

c(list_ph_extr,paste0("\"",from[[2]],"_",to[[2]],"\"=c(",paste0(c(ph_extr_con,ph_ex

tr_defs),collapse=","),")"))

 }

 ph_extr_definitions<-

paste0("list(",paste0(list_ph_extr,collapse=","),")")

 }else{

 ph_extr_definitions<-""

 }

 }

 }else{ph_extr_definitions<-""}

 w_phase_extraction<-paste0("###############\n#\n# Phase

extraction\n#\n###############\n",

 "ph_extr<-",input$ph_extr,"\n",

 "reequilibrate_steps<-

",input$reequilibrate_steps,"\n",

 "ph_extr_definitions<-

c(",bl(ph_extr_definitions),")\n"

)

 if(input$solution_models_file=="load"){

 if(!exists("solution_models_file")){solution_models_file<-""}

 }else{

 solution_models_file<-input$solution_models_file

 use_sol_models_r$data<-input$use_sol_models

 }

 #error validation for meemum path

 if(input$meemum_path==""){return("Error: No meemum path defined")}

if(!file.exists(paste0(data_directory,"/",input$meemum_path))){return(paste0("Error

: Meemum not found at ",paste0(data_directory,"/",input$meemum_path)))}

 w_modelling_options<-paste0("###############\n#\n# Modelling

Options\n#\n###############\n",

 "thermodynamic_data_file<-

",pasteq(input$thermodynamic_data_file),"\n",

 "solution_models_file<-

",pasteq(solution_models_file),"\n",

 "meemum_path<-",pasteq(input$meemum_path),"\n",

 "perplex_option_file<-

",pasteq(input$perplex_option_file),"\n",

 "use_sol_models<-

c(",pasteq(use_sol_models_r$data),")\n",

 "saturated_components<-

",pasteq(input$saturated_components),"\n",

 "saturated_phase_components<-

",pasteq(input$saturated_phase_components),"\n",

 "independent_potential_fugacity_activity<-

",pasteq(input$independent_potential_fugacity_activity),"\n",

 "exclude_phases<-

",pasteq(input$exclude_phases),"\n",

 "end_of_calc<-",pasteq(input$end_of_calc),"\n")

 w_output_options<-paste0("###############\n#\n# Output

Options\n#\n###############\n",

 C:51

 "phase_aliases<-

",pasteq(input$phase_aliases),"\n",

 "PAM_compilation<-

",pasteq(input$PAM_compilation),"\n",

 "compile_PAM<-",pasteq(input$compile_PAM),"\n")

 #Compile all tabs into a page

 thepage<-

c(w_file,w_size,w_pt,w_bulk_composition,w_phase_addition,w_phase_extraction,w_model

ling_options,w_output_options)

 # If directory doesnt exist, create it

 if(!dir.exists(paste0(projects_directory,"/",working_file))){

 dir.create(paste0(projects_directory,"/",working_file))

 }

 if(!dir.exists(paste0(projects_directory,"/",working_file,"/Inputs/"))){

 dir.create(paste0(projects_directory,"/",working_file,"/Inputs/"))

 }

 if(!dir.exists(paste0(projects_directory,"/",working_file,"/Outputs/"))){

 dir.create(paste0(projects_directory,"/",working_file,"/Outputs/"))

 }

 #Grab additional parameters if file already exists

 add_text<-NULL

if(file.exists(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,"

.txt"))){

 scanned<-

scan(file=paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

),what="character",sep="\n",quiet=TRUE)

 break_line<-which(scanned=="# Additional Parameters")

 if(length(break_line)==1){

 add_text<-scanned[break_line:length(scanned)]

 }

 }

 #Save .txt file

 write(c(thepage,add_text), file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 #Save workspace

 working_file<<-input$working_file

save.image(file=paste0(projects_directory,"/",working_file,"/",working_file,".RData

"))

 #Return success message

 return(paste0("File saved to

",projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }else{

 #Return error message

 return(reactive_message$data)

 }

 })

 #Load function

 on_load <- reactive({

 projects_directory<-input$projects_directory

 working_file<-input$working_file

 #error handling

 reactive_message$data <-error_handling(working_file,projects_directory)

 if(reactive_message$data=="error handling passed"){

 #Remove current workspace but keeping marker: from clear button

 #mod-tag: should we really be clearing workspace? can't we just overwrite

values for load?

 rm(list=ls())

 rm(list=setdiff(ls(envir=.GlobalEnv),c("keep_on_load",keep_on_load)),envir =

.GlobalEnv)

 #clear reactive stores

 pt_definitions_r$data<-NULL

 bulk_definitions_r$data<-NULL

 ph_add_definitions_r$data<-NULL

 ph_extr_definitions_r$data<-NULL

 #Load .txt unless from clear button

 if(from_clear_button){

 C:52

 projects_directory<-input$projects_directory

 working_file<-input$working_file

 }else{

source(paste0(input$projects_directory,"/",input$working_file,"/Inputs/",input$work

ing_file,".txt"))

 }

 #Values to load

 load_variables<-

c("x_n"="inp","y_n"="inp","n_pt_def"="reactive","n_comp_trans"="reactive","bulk_def

_file"="checkbox","major_elements"="reactive_select","n_bulk_def"="reactive","bulk_

file"="inp","ph_add"="checkbox","n_ph_add_def"="reactive","ph_extr"="checkbox","ree

quilibrate_steps"="checkbox","n_ph_extr_def"="reactive","thermodynamic_data_file"="

inp","saturated_components"="inp","saturated_phase_components"="inp","independent_p

otential_fugacity_activity"="inp","exclude_phases"="inp","end_of_calc"="inp","solut

ion_models_file"="reactive","perplex_option_file"="inp","meemum_path"="inp","phase_

aliases"="inp","PAM_compilation"="inp","compile_PAM"="checkbox")

 #load reactive stores

 if(exists("pt_definitions")){

 pt_definitions_r$data<-pt_definitions

 }

 if(exists("bulk_definitions")){

 bulk_definitions_r$data<-bulk_definitions

 }

 if(exists("comp_transformations")){

 comp_transformations_r$data<-comp_transformations

 }

 if(exists("ph_add_definitions")){

 ph_add_definitions_r$data<-ph_add_definitions

 }

 if(exists("ph_extr_definitions")){

 ph_extr_definitions_r$data<-ph_extr_definitions

 }

 if(exists("solution_models_file")){

 solution_models_file_r$data<-solution_models_file

 }

 if(exists("use_sol_models")){

 use_sol_models_r$data<-use_sol_models

 }

 if(exists("major_elements")){

 major_elements_r$data<-major_elements

 }

 #custom loads

 #bulk_def

 if(exists("bulk_def")){if(bulk_def=="input"){bulk_def_file<-

FALSE}else{bulk_def_file<-TRUE}}else{bulk_def_file<-FALSE}

 #get addition phases

 if(is.null(ph_add_definitions_r$data[[1]][1])){add_phases<-""}else{

 add_phases<-

paste(setdiff(names(ph_add_definitions_r$data[[1]]),"condition"),collapse=",")

 }

 #get extract phases

 if(is.null(ph_extr_definitions_r$data[[1]][1])){extr_phases<-""}else{

 extr_phases<-

paste(setdiff(names(ph_extr_definitions_r$data[[1]]),"condition"),collapse=",")

 }

 #load values

 for(i in 1:length(load_variables)){

 if(load_variables[i]=="reactive"){

 updateTextInput(session,names(load_variables)[i],value="load")

 }

 if(load_variables[i]=="reactive_select"){

 updateSelectizeInput(session,names(load_variables)[i],selected="load")

 }

 if(load_variables[i]=="inp"){

 if(exists(names(load_variables)[i])){

 C:53

updateTextInput(session,names(load_variables)[i],value=eval(parse(text=names(load_v

ariables)[i])))

 }else{

 updateTextInput(session,names(load_variables)[i],value="")

 }

 }

 #modtag - remove this

 if(load_variables[i]=="def_count"){

 def_name<-

sub("n_","",sub("_def","_definitions",names(load_variables)[i]))

 if(exists(def_name)){

 if(is.null(eval(parse(text=def_name))[[1]][1])){val_out<-""}

 else{if(eval(parse(text=def_name))[[1]][1]==""){val_out<-""}

 else{val_out<-length(eval(parse(text=def_name)))}}}else{val_out<-""}

 updateTextInput(session,names(load_variables)[i],value=val_out)

 }

 if(load_variables[i]=="checkbox"){

 if(exists(names(load_variables)[i])){

 updateCheckboxInput(session,names(load_variables)[i],value =

eval(parse(text=names(load_variables)[i])))

 }else{

 #False is default for all load checkboxes

 updateCheckboxInput(session,names(load_variables)[i],value = FALSE)

 }

 }

 if(load_variables[i]=="select"){

 if(exists(names(load_variables)[i])){

 updateSelectInput(session,

names(load_variables)[i],selected=eval(parse(text=names(load_variables)[i])))

 }else{

 updateSelectInput(session, names(load_variables)[i],selected="")

 }

 }

 }

 #Return success message

 if(from_clear_button){

 from_clear_button<<-FALSE

 return(paste0("Inputs and workspace cleared"))

 }else{

 return(paste0("Loaded

",projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }

 }else{

 #Return error message

 return(reactive_message$data)

 }

 })

 #Toolbar buttons

 #Load button

 observeEvent(input$load, {

 #load the file from input$working_file

 working_file<-input$working_file

 projects_directory<-input$projects_directory

 #error handling

 reactive_message$data <-error_handling(working_file,projects_directory)

 if(reactive_message$data=="error handling passed"){

 #load

if(file.exists(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,"

.txt"))){

 reactive_message$data <- paste0(on_load())

 }else{

 reactive_message$data <- paste0("No input file found at

",paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }

 #Load workspace if it exists (previous calculation results)

 C:54

if(file.exists(paste0(projects_directory,"/",working_file,"/",working_file,".RData"

))){

load(paste0(projects_directory,"/",working_file,"/",working_file,".RData"),envir=.G

lobalEnv)

 }

 #Refresh reactive outputs if they exist

 if(exists("crust")){store_r$crust_r<-crust}

 if(exists("input_pt")){store_r$input_pt_r<-input_pt}

 if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk}

 if(exists("major_elements")){store_r$major_elements_r<-major_elements}

 }else{

 reactive_message$data

 }

 })

 #Clear button

 observeEvent(input$clear, {

 #delete selection inputs

 from_clear_button<<-TRUE

 reactive_message$data <- paste0(on_load())

})

 #Console button

 observeEvent(input$console, {

 cat("To regain access to the Rcrust GUI type \'c\' then press enter\n")

 browser()

})

 #Run Button

 observeEvent(input$run, {

 #Grab working file and projects directory

 working_file<-input$working_file

 projects_directory<-input$projects_directory

 #error handling

 reactive_message$data <-error_handling(working_file,projects_directory)

 if(reactive_message$data=="error handling passed"){

 #if error handling is passed

 #GUI level validation check that have at least minimum of P,T,and X

definitions in GUI

 var_missing<-NULL

 chk_variables<-

c("input$x_n","input$y_n","input$n_pt_def","input$n_bulk_def","input$major_elements

")

 for(i in rev(chk_variables)){if(any(eval(parse(text=i))=="")){var_missing<-

i}}

 if(!is.null(var_missing)){reactive_message$data <- paste0("Error: Cannot run

calculation. Missing ",var_missing);return(reactive_message$data)}

 #Save

 reactive_message$data <- paste0(on_save())

 # source the saved variables into the workspace

source(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 #Run

 source("main.r")

 reactive_message$data <- paste0("Calculation complete, Results saved to

",projects_directory,"/",working_file,"/",working_file,".RData\n Select outputs

throught the 'Outputs' tab")

 #Save copy to directory

 if(FALSE){copy_directory<<-"H:/Rcrust/Projects"

 from_copy<<-TRUE

 reactive_message$data <- paste0(on_save())

 }

 #End of Calculation

if(!exists("end_of_calc")){end_of_calc<-"Return to Interface"}

 #Email report

 if(FALSE){

 library(gmailr)

 mime() %>%

 to("mjmayne@outlook.com") %>%

 C:55

 from("matt.mayne.1992@gmail.com") %>%

 html_body("Body text") -> html_msg

 html_msg %>%

 subject(paste0(working_file," completed successfully after ",run_time,"with

finish option ",end_of_calc)) %>%

#attach_file(paste0(projects_directory,"/",working_file,"/",working_file,".RData"))

-> file_attachment

 #attach_file(paste0(projects_directory,"/Yak_PT fh any_all/Yak_PT fh

any_all.RData")) -> file_attachment

 send_message()

 }

if(end_of_calc=="Logout"){system('shutdown -l')}

if(end_of_calc=="Shutdown"){system('shutdown -s')}

 #Refresh reactive outputs if they exist

 if(exists("crust")){store_r$crust_r<-crust}

 if(exists("input_pt")){store_r$input_pt_r<-input_pt}

 if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk}

 if(exists("major_elements")){store_r$major_elements_r<-major_elements}

 }

})

 #Save button

 observeEvent(input$save, {

 reactive_message$data <- paste0(on_save())

})

 #Send error/success messages to GUI

 output$print_message <- renderText({

 if (is.null(reactive_message$data)) return()

 paste0(reactive_message$data)

})

 # Dyanmically use number of PT definitions to create the correct number of

From,To,P,T inputs

 output$pt <- renderUI({

 if(input$n_pt_def=="load"){

 if(all(pt_definitions_r$data=="")|is.null(pt_definitions_r$data)){

 def_num<-""

 }else{

 def_num<-length(pt_definitions_r$data)

 }

 updateTextInput(session,"n_pt_def",value=def_num)

 }else{

 def_num<-input$n_pt_def

 }

 if(!(is.null(def_num)|def_num==""|def_num==0)){

 validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of

PT definitions must be numeric"}else{NULL})

 validate(if(as.numeric(def_num)<1){"Error: Number of PT definitions must be

greater than 0"}else{NULL})

 validate(if(!as.numeric(def_num)%%1==0){"Error: Number of PT definitions must

be a whole number"}else{NULL})

 fixedRow(

 lapply(1:(as.numeric(def_num)*4), function(i) {

 a<-1; ii<-i

 while(ii>4){ii<-ii-4;a<-a+1}

 if(ii==1){chk_From<-

try(unlist(strsplit(names(pt_definitions_r$data)[a],split="_"))[1],silent=TRUE)

 if(class(chk_From)=="try-error"){chk_From<-NULL}

column(2,textInput(paste0('pt_from_',a),'From',value=chk_From))}else{

 if(ii==2){chk_To<-

try(unlist(strsplit(names(pt_definitions_r$data)[a],split="_"))[2],silent=TRUE)

 if(class(chk_To)=="try-error"){chk_To<-NULL}

 column(2,textInput(paste0('pt_to_',a),'To',value=chk_To))}else{

 if(ii==3){chk_pressure<-try(pt_definitions_r$data[[a]][1],silent=TRUE)

 if(class(chk_pressure)=="try-error"){chk_pressure<-NULL}

 column(4,textInput(paste0('pressure_',a),'Pressure

(kbar)',value=chk_pressure))}else{

 if(ii==4){chk_temperature<-try(pt_definitions_r$data[[a]][2],silent=TRUE)

 C:56

 if(class(chk_temperature)=="try-error"){chk_temperature<-NULL}

 column(4,textInput(paste0('temperature_',a),'Temperature

(C)',value=chk_temperature))

 }}}}})

)

 }

 })

 #Import P-T definitions button

 observeEvent(input$import_pt, {

 #bugtag - try rather updating text to have only a local load

#updateTextInput(session,input$n_ph_add_def,value="load")

 reactive_message$data <- paste0(on_save())

 #Import definitions from file (csv of definitions or txt as Rcrust input file)

 #read Rcrust Input file

 if(input$file_pt["type"]=="text/plain"){

 data_in<-readLines(paste(input$file_pt[4]))

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 if(!length(grep("pt_definitions<-",data_in))==0){

 if(length(grep("pt_definitions<-",input_file))==0){

 input_file<-c(input_file,grep("pt_definitions<-",data_in))

 }else{

 input_file[grep("pt_definitions<-",input_file)]<-data_in[grep("pt_definitions<-

",data_in)]

 }

 }

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }else{

 #read csv of definitions

 data_in<-as.matrix(read.csv(paste(input$file_pt[4])))

 lines_all<-NULL

 for(line_no in 1:nrow(data_in)){

 line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(\"",data_in[line_no,5],"\",\"",data_in[line_no,6],"\")",s

ep="")

 if(line_no==1){lines_all<-paste("pt_definitions<-list(",line_i,sep="")}else{

 lines_all<-paste(lines_all,line_i,sep=",")

 }

 if(line_no==nrow(data_in)){

 lines_all<-paste(lines_all,")",sep="")

 }

 }

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 if(length(grep("pt_definitions<-",input_file))==0){

 input_file<-c(input_file,lines_all)

 }else{

 input_file[grep("pt_definitions<-",input_file)]<-lines_all

 }

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }

 reactive_message$data <- paste0(on_load())

})

 # Dyanmically use number of component transformations to create the correct

number of inputs

 output$trans <- renderUI({

 if(input$n_comp_trans=="load"){

if(all(comp_transformations_r$data=="")|is.null(comp_transformations_r$data)){

 def_num<-""

 }else{

 def_num<-length(comp_transformations_r$data)

 }

 C:57

 updateTextInput(session,"n_comp_trans",value=def_num)

 }else{

 def_num<-input$n_comp_trans

 }

 if(!(is.null(def_num)|def_num==""|def_num==0)){

 validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of

Component transformations must be numeric"}else{NULL})

 validate(if(as.numeric(def_num)<1){"Error: Number of Component

transformations must be greater than 0"}else{NULL})

 validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Components

transformations must be a whole number"}else{NULL})

 fixedRow(

 lapply(1:(as.numeric(def_num)*3), function(i) {

 a<-1; ii<-i

 while(ii>3){ii<-ii-3;a<-a+1}

 if(ii==1){chk_old<-

try(unlist(strsplit(names(comp_transformations_r$data)[a],split="_"))[1],silent=TRU

E)

 if(class(chk_old)=="try-error"){chk_old<-NULL}

 column(2,textInput(paste0('old_comp_',a),'Replace

component',value=chk_old))}else{

 #mod-tag: better to have a select input but for some reason it doesnt

work well with column()

#column(2,selectizeInput(paste0('old_comp_',a),'Replace',c("",available_components_

r$data),selected=chk_old))}else{

 if(ii==2){chk_new<-

try(unlist(strsplit(names(comp_transformations_r$data)[a],split="_"))[2],silent=TRU

E)

 if(class(chk_new)=="try-error"){chk_new<-NULL}

 column(2,textInput(paste0('new_comp_',a),'New

component',value=chk_new))}else{

 if(ii==3){

 comp_label<-paste(available_components_r$current,collapse = ",")

 chk_comp<-try(comp_transformations_r$data[[a]],silent=TRUE)

 if(class(chk_comp)=="try-error"){chk_comp<-NULL}

column(8,textInput(paste0('comp_',a),comp_label,value=paste(chk_comp,collapse=","))

)}else{

 }}}})

)

 }

 })

 #Component transformation

 observe({

 available_components<-NULL

 suppressWarnings(qq_try<-

try(scan(file=gsub("Rcrust/code",paste0("Rcrust/data/",input$thermodynamic_data_fil

e),getwd()),what="character",sep="\n",quiet=TRUE),silent=TRUE))

 if(class(qq_try)!="try-error"){

 qq<-qq_try

 start_foo<-grep("begin_components",qq)

 end_foo<-grep("end_components",qq)

 qq<-qq[(start_foo+1):(end_foo-1)]

 qq<-strsplit(qq," ")

 for(i in 1:length(qq)){

 available_components<-c(available_components,qq[[i]][1])

 }

 }

 available_components_r$current<-available_components

 })

 #Component transformation

 observe({

 #use current component transformation inputs to update current components_r

and selection in major elements

 current_components<-available_components_r$current

 chk_trans<-FALSE

 if(!is.na(suppressWarnings(as.numeric(input$n_comp_trans)))){

 C:58

 if(!as.numeric(input$n_comp_trans)<1){

 if(as.numeric(input$n_comp_trans)%%1==0){

 chk_trans<-TRUE

 }

 }}

 if(chk_trans){

 for(i in 1:input$n_comp_trans){

 pos<-

which(current_components==eval(parse(text=paste0("input$old_comp_",i))))

 current_components[pos]<-eval(parse(text=paste0("input$new_comp_",i)))

 }

 }

 current_components_r$data<-current_components

 })

 output$maj <- renderUI({

 #fix-tag: does not work if have multiple component transformations, scoping

means we come here after first transformation is complete because we alter "current

components"

 if(!input$n_comp_trans=="load"){

 if(any(input$major_elements=="load")){

 selectizeInput('major_elements', 'Major elements',

c(major_elements_r$data,setdiff(current_components_r$data,major_elements_r$data),"l

oad"),selected=major_elements_r$data,multiple=TRUE)

 }else{

 selectizeInput('major_elements', 'Major elements',

c(input$major_elements,setdiff(current_components_r$data,input$major_elements),"loa

d"),selected=input$major_elements,multiple=TRUE)

 }

 }

 })

 # Dyanmically use number of bulk definitions to create the correct number of

From,To,bulk inputs

 output$bulk <- renderUI({

 if(input$n_bulk_def=="load"){

 if(all(bulk_definitions_r$data=="")|is.null(bulk_definitions_r$data)){

 def_num<-""

 }else{

 def_num<-length(bulk_definitions_r$data)

 }

 updateTextInput(session,"n_bulk_def",value=def_num)

 }else{

 def_num<-input$n_bulk_def

 }

 if(!(is.null(def_num)|def_num==""|def_num==0)){

 validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of

Bulk definitions must be numeric"}else{NULL})

 validate(if(as.numeric(def_num)<1){"Error: Number of Bulk definitions must

be greater than 0"}else{NULL})

 validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Bulk definitions

must be a whole number"}else{NULL})

 fixedRow(

 lapply(1:(as.numeric(def_num)*3), function(i) {

 a<-1; ii<-i

 while(ii>3){ii<-ii-3;a<-a+1}

 if(ii==1){chk_From<-

try(unlist(strsplit(names(bulk_definitions_r$data)[a],split="_"))[1],silent=TRUE)

 if(class(chk_From)=="try-error"){chk_From<-NULL}

 column(2,textInput(paste0('bulk_from_',a),'From',value=chk_From))}else{

 if(ii==2){chk_To<-

try(unlist(strsplit(names(bulk_definitions_r$data)[a],split="_"))[2],silent=TRUE)

 if(class(chk_To)=="try-error"){chk_To<-NULL}

 column(2,textInput(paste0('bulk_to_',a),'To',value=chk_To))}else{

 if(ii==3){

 if(is.null(input$major_elements)){

 bulk_label<-"Please choose major elements above"

 }else{

 bulk_label<-paste(c(input$major_elements,"mass"),collapse =

",")

 C:59

 }

 chk_bulk<-try(bulk_definitions_r$data[[a]],silent=TRUE)

 if(class(chk_bulk)=="try-error"){chk_bulk<-NULL}

column(8,textInput(paste0('bulk_',a),bulk_label,value=paste(chk_bulk,collapse=","))

)}else{

 }}}})

)

 }

 })

 #Import bulk definitions button

 observeEvent(input$import_bulk, {

 #mod-tag: try rather updating text to have only a local load

#updateTextInput(session,input$n_ph_add_def,value="load")

 reactive_message$data <- paste0(on_save())

 #Import definitions from file (csv of definitions or txt as Rcrust input file)

 #read Rcrust Input file

 if(input$file_bulk["type"]=="text/plain"){

 data_in<-readLines(paste(input$file_bulk[4]))

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 if(!length(grep("comp_transformations<-",data_in))==0){

 if(length(grep("comp_transformations<-",input_file))==0){

 input_file<-c(input_file,grep("comp_transformations<-",data_in))

 }else{

 input_file[grep("comp_transformations<-",input_file)]<-

data_in[grep("comp_transformations<-",data_in)]

 }

 }

 if(!length(grep("major_elements<-",data_in))==0){

 if(length(grep("major_elements<-",input_file))==0){

 input_file<-c(input_file,grep("major_elements<-",data_in))

 }else{

 input_file[grep("major_elements<-",input_file)]<-data_in[grep("major_elements<-

",data_in)]

 }

 }

 if(!length(grep("bulk_definitions<-",data_in))==0){

 if(length(grep("bulk_definitions<-",input_file))==0){

 input_file<-c(input_file,grep("bulk_definitions<-",data_in))

 }else{

 input_file[grep("bulk_definitions<-",input_file)]<-

data_in[grep("bulk_definitions<-",data_in)]

 }

 }

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }else{

 #read csv of definitions

 data_in<-as.matrix(read.csv(paste(input$file_bulk[4])))

 lines_all<-NULL

 for(line_no in 1:nrow(data_in)){

 line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(\"",paste(data_in[line_no,c(-1,-2,-3,-

4)],collapse="\",\""),"\")",sep="")

 if(line_no==1){lines_all<-paste("bulk_definitions<-c(list(",line_i,sep="")}else{

 lines_all<-paste(lines_all,line_i,sep=",")

 }

 if(line_no==nrow(data_in)){

 lines_all<-paste(lines_all,"))",sep="")

 }

 }

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 if(length(grep("bulk_definitions<-",input_file))==0){

 C:60

 input_file<-c(input_file,lines_all)

 }else{

 input_file[grep("bulk_definitions<-",input_file)]<-lines_all

 }

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }

 reactive_message$data <- paste0(on_load())

})

 # Dyanmically use number of Phase Addition definitions to create the correct

number of From,To,P,T inputs

 output$ph_add <- renderUI({

 if(input$n_ph_add_def=="load"){

 if(all(ph_add_definitions_r$data=="")|is.null(ph_add_definitions_r$data)){

 def_num<-""

 }else{

 def_num<-length(ph_add_definitions_r$data)

 }

 updateTextInput(session,"n_ph_add_def",value=def_num)

 }else{

 def_num<-input$n_ph_add_def

 }

 if(!(is.null(def_num)|def_num==""|def_num==0)){

 validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of

Phase Addition definitions must be numeric"}else{NULL})

 validate(if(as.numeric(def_num)<1){"Error: Number of Phase Addition

definitions must be greater than 0"}else{NULL})

 validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Phase Addition

definitions must be a whole number"}else{NULL})

 fixedRow(

 lapply(1:(as.numeric(def_num)*5), function(i) {

 a<-1; ii<-i

 while(ii>5){ii<-ii-5;a<-a+1}

 if(ii==1){chk_From<-

try(unlist(strsplit(names(ph_add_definitions_r$data)[a],split="_"))[1],silent=TRUE)

 if(class(chk_From)=="try-error"){chk_From<-NULL}

column(2,textInput(paste0('ph_add_from_',a),'From',value=chk_From))}else{

 if(ii==2){chk_To<-

try(unlist(strsplit(names(ph_add_definitions_r$data)[a],split="_"))[2],silent=TRUE)

 if(class(chk_To)=="try-error"){chk_To<-NULL}

 column(2,textInput(paste0('ph_add_to_',a),'To',value=chk_To))}else{

 if(ii==3){chk_Condition<-

try(ph_add_definitions_r$data[[a]][["condition"]],silent=TRUE)

 if(class(chk_Condition)=="try-error"){chk_Condition<-NULL}

column(3,textInput(paste0('ph_add_con_',a),'Condition',value=chk_Condition))}else{

 if(ii==4){

 chk_Phases<-try(paste(names(ph_add_definitions_r$data[[a]][-

1]),collapse=","),silent=TRUE)

 if(class(chk_Phases)=="try-error"){chk_Phases<-NULL}

column(4,textInput(paste0('ph_add_phs_',a),'Phases',value=chk_Phases))

 }else{

 if(ii==5){

 column(12,uiOutput(paste0("ph_add_",a)))

 }

 }}

 }}})

)

 }

 })

 #auto create phase addition inputs given number of phases

 observe({

if(all(!input$n_ph_add_def=="load",!is.null(input$n_ph_add_def),!input$n_ph_add_def

=="",!input$n_ph_add_def==0)){

 C:61

 lapply(1:input$n_ph_add_def, function(i) {

 eval(parse(text=paste0("output$ph_add_",i,"<-renderUI({

 a<-i

 chk_Phases<-try(eval(parse(text=paste0(\'input$ph_add_phs_\',a))),silent=TRUE)

 if(!is.null(chk_Phases)){

 if(!chk_Phases==\"\"){

 phases<-unlist(strsplit(chk_Phases,split=\",\"))

 fixedRow(

 lapply(1:(length(phases)), function(j) {

 chk_in_ph<-

try(ph_add_definitions_r$data[[a]][phases[j]],silent=TRUE)

 if(class(chk_in_ph)==\"try-error\"){chk_in_ph<-NULL}

column(3,textInput(paste0(\'ph_add_phs_\',a,\'_\',phases[j]),phases[j],value=chk_in

_ph))

 }))

 }}

 })")))

 })

 }

 })

 #Import addition definitions button

 observeEvent(input$import_ph_add, {

 #mod-tag: try rather updating text to have only a local load

#updateTextInput(session,input$n_ph_add_def,value="load")

 reactive_message$data <- paste0(on_save())

 #Import definitions from file (csv of definitions or txt as Rcrust input file)

 #read Rcrust Input file

 if(input$file_ph_add["type"]=="text/plain"){

 data_in<-readLines(paste(input$file_ph_add[4]))

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 if(!length(grep("ph_add<-",data_in))==0){

 if(length(grep("ph_add<-",input_file))==0){

 input_file<-c(input_file,grep("ph_add<-",data_in))

 }else{

 input_file[grep("ph_add<-",input_file)]<-data_in[grep("ph_add<-",data_in)]

 }

 }

 if(!length(grep("ph_add_definitions<-",data_in))==0){

 if(length(grep("ph_add_definitions<-",input_file))==0){

 input_file<-c(input_file,grep("ph_add_definitions<-",data_in))

 }else{

 input_file[grep("ph_add_definitions<-",input_file)]<-

data_in[grep("ph_add_definitions<-",data_in)]

 }

 }

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }else{

 #read csv of definitions

 data_in<-as.matrix(read.csv(paste(input$file_ph_add[4])))

 lines_all<-NULL

 for(line_no in 1:nrow(data_in)){

 line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(condition=\"",data_in[line_no,5],"\",",data_in[line_no,6]

,")",sep="")

 if(line_no==1){lines_all<-paste("ph_add_definitions<-

c(list(",line_i,sep="")}else{

 lines_all<-paste(lines_all,line_i,sep=",")

 }

 if(line_no==nrow(data_in)){

 lines_all<-paste(lines_all,"))",sep="")

 }

 }

 C:62

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 if(length(grep("ph_add<-",input_file))==0){

 input_file<-c(input_file,"ph_add<-TRUE")

 }else{

 input_file[grep("ph_add<-",input_file)]<-"ph_add<-TRUE"

 }

 if(length(grep("ph_add_definitions<-",input_file))==0){

 input_file<-c(input_file,lines_all)

 }else{

 input_file[grep("ph_add_definitions<-",input_file)]<-lines_all

 }

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }

 reactive_message$data <- paste0(on_load())

 updateTextInput(session,input$file_ph_add,value="")

})

 #Import extraction definitions button

 observeEvent(input$import_ph_extr, {

 #mod-tag: try rather updating text to have only a local load

#updateTextInput(session,input$n_ph_extr_def,value="load")

 reactive_message$data <- paste0(on_save())

 #Import definitions from file (csv of definitions or txt as Rcrust input file)

 #read Rcrust Input file

 if(input$file_ph_extr["type"]=="text/plain"){

 data_in<-readLines(paste(input$file_ph_extr[4]))

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 if(!length(grep("ph_extr<-",data_in))==0){

 if(length(grep("ph_extr<-",input_file))==0){

 input_file<-c(input_file,grep("ph_extr<-",data_in))

 }else{

 input_file[grep("ph_extr<-",input_file)]<-data_in[grep("ph_extr<-",data_in)]

 }

 }

 if(!length(grep("reequilibrate_steps<-",data_in))==0){

 if(length(grep("reequilibrate_steps<-",input_file))==0){

 input_file<-c(input_file,grep("reequilibrate_steps<-",data_in))

 }else{

 input_file[grep("reequilibrate_steps<-",input_file)]<-

data_in[grep("reequilibrate_steps<-",data_in)]

 }

 }

 if(!length(grep("ph_extr_definitions<-",data_in))==0){

 if(length(grep("ph_extr_definitions<-",input_file))==0){

 input_file<-c(input_file,grep("ph_extr_definitions<-",data_in))

 }else{

 input_file[grep("ph_extr_definitions<-",input_file)]<-

data_in[grep("ph_extr_definitions<-",data_in)]

 }

 }

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }else{

 #read csv of definitions

 data_in<-as.matrix(read.csv(paste(input$file_ph_extr[4])))

 lines_all<-NULL

 for(line_no in 1:nrow(data_in)){

 line_i<-

paste("\"{",data_in[line_no,1],";",data_in[line_no,2],"}_{",data_in[line_no,3],";",

data_in[line_no,4],"}\"=c(condition=\"",data_in[line_no,5],"\",",data_in[line_no,6]

,")",sep="")

 if(line_no==1){lines_all<-paste("ph_extr_definitions<-

c(list(",line_i,sep="")}else{

 lines_all<-paste(lines_all,line_i,sep=",")

 C:63

 }

 if(line_no==nrow(data_in)){

 lines_all<-paste(lines_all,"))",sep="")

 }

 }

 input_file<-

readLines(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"

))

 input_file[grep("ph_extr_definitions",input_file)]<-lines_all

 write(input_file, file =

paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }

 reactive_message$data <- paste0(on_load())

 updateTextInput(session,input$file_ph_extr,value="")

})

 # Dyanmically use number of Phase Extraction definitions to create the correct

number of From,To,P,T inputs

 output$ph_extr <- renderUI({

 if(input$n_ph_extr_def=="load"){

if(all(ph_extr_definitions_r$data=="")|is.null(ph_extr_definitions_r$data)){

 def_num<-""

 }else{

 def_num<-length(ph_extr_definitions_r$data)

 }

 updateTextInput(session,"n_ph_extr_def",value=def_num)

 }else{

 def_num<-input$n_ph_extr_def

 }

 if(!(is.null(def_num)|def_num==""|def_num==0)){

 validate(if(is.na(suppressWarnings(as.numeric(def_num)))){"Error: Number of

Phase Extraction definitions must be numeric"}else{NULL})

 validate(if(as.numeric(def_num)<1){"Error: Number of Phase Extraction

definitions must be greater than 0"}else{NULL})

 validate(if(!as.numeric(def_num)%%1==0){"Error: Number of Phase Extraction

definitions must be a whole number"}else{NULL})

 fixedRow(

 lapply(1:(as.numeric(def_num)*5), function(i) {

 a<-1; ii<-i

 while(ii>5){ii<-ii-5;a<-a+1}

 if(ii==1){chk_From<-

try(unlist(strsplit(names(ph_extr_definitions_r$data)[a],split="_"))[1],silent=TRUE

)

 if(class(chk_From)=="try-error"){chk_From<-NULL}

column(2,textInput(paste0('ph_extr_from_',a),'From',value=chk_From))}else{

 if(ii==2){chk_To<-

try(unlist(strsplit(names(ph_extr_definitions_r$data)[a],split="_"))[2],silent=TRUE

)

 if(class(chk_To)=="try-error"){chk_To<-NULL}

 column(2,textInput(paste0('ph_extr_to_',a),'To',value=chk_To))}else{

 if(ii==3){chk_Condition<-

try(ph_extr_definitions_r$data[[a]][["condition"]],silent=TRUE)

 if(class(chk_Condition)=="try-error"){chk_Condition<-NULL}

column(3,textInput(paste0('ph_extr_con_',a),'Condition',value=chk_Condition))}else{

 if(ii==4){

 chk_Phases<-try(paste(names(ph_extr_definitions_r$data[[a]][-

1]),collapse=","),silent=TRUE)

 if(class(chk_Phases)=="try-error"){chk_Phases<-NULL}

column(4,textInput(paste0('ph_extr_phs_',a),'Phases',value=chk_Phases))

 }else{

 if(ii==5){

 column(12,uiOutput(paste0("ph_extr_",a)))

 }

 }}}}})

)

 C:64

 }

 })

#auto create phase extraction inputs given number of phases

 observe({

if(all(!input$n_ph_extr_def=="load",!is.null(input$n_ph_extr_def),!input$n_ph_extr_

def=="",!input$n_ph_extr_def==0)){

 lapply(1:input$n_ph_extr_def, function(i) {

 eval(parse(text=paste0("output$ph_extr_",i,"<-renderUI({

 a<-i

 chk_Phases<-try(eval(parse(text=paste0(\'input$ph_extr_phs_\',a))),silent=TRUE)

 if(!is.null(chk_Phases)){

 if(!chk_Phases==\"\"){

 phases<-unlist(strsplit(chk_Phases,split=\",\"))

 fixedRow(

 lapply(1:(length(phases)), function(j) {

 chk_in_ph<-

try(ph_extr_definitions_r$data[[a]][phases[j]],silent=TRUE)

 if(class(chk_in_ph)==\"try-error\"){chk_in_ph<-NULL}

column(3,textInput(paste0(\'ph_extr_phs_\',a,\'_\',sub_brackets(phases[j])),phases[

j],value=chk_in_ph))

 }))

 }}

 })")))

 })

 }

 })

 # Dyanmically use solution model file to build phase models selection

 output$solution_models <- renderUI({

 if(input$solution_models_file=="load"){

if(all(solution_models_file_r$data=="")|is.null(solution_models_file_r$data)){

 solution_models_file<-""

 }else{

 solution_models_file<-solution_models_file_r$data

 }

 updateTextInput(session,"solution_models_file",value=solution_models_file)

 }

 if(!(is.null(input$solution_models_file)|input$solution_models_file=="")){

 data_directory<-gsub("/code","/data",getwd())

 if(!input$solution_models_file=="load"){

 validate(if(!dir.exists(data_directory)){return("Error: data directory does

not exist")}else{NULL})

validate(if(!file.exists(paste0(data_directory,"/",input$solution_models_file))){re

turn("Error: Solution model file does not exist")}else{NULL})

 selectizeInput('use_sol_models', 'Solution models',

solution_models_available_r(),selected=use_sol_models_r$data,multiple=TRUE)

 }

 }

 })

 # Dyanmically use abundance phases to select which phases to show

 output$select_abundance_phases <- renderUI({

 selectizeInput('show_abundance_phases', 'Show phases',

c(abundance_phases_available_r(),"Reactive Subsystem","Extract

Subsystem","Cumulative Extract Subsystem","Full

System"),multiple=TRUE,selected="Reactive Subsystem")

 })

 abundance_phases_available_r<- reactive({

 if(!is.null(input$axis)){

 rownames(switch(input$axis,

x=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_y),input$start_x

,input$end_x,input$path_label,input_pt = store_r$input_pt_r),

y=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_x),input$start_y

,input$end_y,input$path_label,input_pt = store_r$input_pt_r)

 C:65

)[[2]])}

 })

 #Create Compilation button

 observeEvent(input$create_compilation,{

 #Compile PAM fields (corelation to other PAMs)

 validate(need(!input$PAM_compilation=="","Please provide a comma seperated list

of working files in PAM compilation"))

 cat("Creating Compilation Legend for",input$PAM_compilation,"\n")

 flush.console()

 #mergers must contain the current file

 mergers<-

sort(union(unlist(strsplit(input$PAM_compilation,",")),input$working_file))

if(!dir.exists(paste0(input$projects_directory,"/Compile"))){dir.create(paste0(inpu

t$projects_directory,"/Compile"))}

 compile_names<-NULL

 for(i in mergers){

attach(paste0(input$projects_directory,"/",i,"/",i,".RData"),warn.conflicts=FALSE)

 pull_crust<-

get("crust",which(search()==paste0("file:",input$projects_directory,"/",i,"/",i,".R

Data")))

detach(pos=which(search()==paste0("file:",input$projects_directory,"/",i,"/",i,".RD

ata")))

 compile_names<-

union(compile_names,get_PAM_names(neaten_crust(pull_crust,input$phase_aliases),inpu

t$PAM_system)[[1]])

 }

write.table(compile_names,paste0(input$projects_directory,"/Compile/",input$PAM_com

pilation," compilation legend.txt"),sep="\t",quote=F,col.names=FALSE)

 cat("Compilation successfully created for",input$PAM_compilation,"\n")

 flush.console()

 })

 #Save Data button

 observeEvent(input$save_data, {

 switch(input$output_type,

 "Data File"=

 reactive_message$data <-

write_data_file(data_file(crust_out(),x_n=length(crust_out()[[1]]),y_n=length(crust

_out()),input$choose_columns,input$choose_rows,input$choose_points),input$working_f

ile,input$projects_directory,input$file_type),

 "Grid"=

 if(TRUE){reactive_message$data <-"Saving"

 reactive_message$data <-draw_Grid_r()},

 "Phase Abundance Along Path"=

 if(TRUE){reactive_message$data <-"Saving"

 reactive_message$data <-draw_abundance_r()},

 "PAM"=

 if(TRUE){reactive_message$data <-"Saving"

 reactive_message$data <-draw_PAM_r()}

)

 })

 #GCDkit button

 observeEvent(input$send_gcdkit, {

 #mod-tag: perform maintenance on this functionality

 library(GCDkit)

 setwd("D:\\Rcrust\\code")

 Rcrust()

 eqq<-

data_file(crust,x_n=length(crust[[1]]),y_n=length(crust),choose_columns=NULL,choose

_rows=NULL,compile=c("y_i","x_i"))

 eqq_mat<-eqq[[1]]

 bb<-apply(eqq_mat,FUN=as.numeric,MARGIN=1)

 accessVar("bb",GUI=FALSE)

 #needs data frame with samples as lines and info as columns

 C:66

 #accessVar("eqq",GUI=FALSE)

 })

 solution_models_available_r <- reactive({

 solution_models_available<-NULL

 data_directory<-gsub("/code","/data",getwd())

 qq<-

scan(file=paste0(data_directory,"/",input$solution_models_file),what="character",se

p="\n",quiet=TRUE)

 foo<-grep("begin_model",qq)

 for(i in 1:length(foo)){

 if(i==length(foo)){

 toto<-substr(qq[foo[i]:length(qq)],1,1)

 }else{

 toto<-substr(qq[foo[i]:foo[i+1]],1,1)

 }

 modrow<-grep("[A-Za-z]",toto)[2]

 line<-qq[foo[i]+modrow-1]

 solution_models_available<-c(solution_models_available,strsplit(line,"

")[[1]][1])

 }

 return(sort(solution_models_available))

 })

 grid_data_r <- reactive({

 if(input$Grid_variable=="Custom"){

 grid_in<-eval(parse(text=input$Custom_selection))

 }else{

 grid_in<-

grid_data(input$Grid_variable,input$Grid_variable_phase,crust_out(),input_pt)

 }

 #Remove values

 if(input$remove_values!=""){

 for(val in unlist(strsplit(input$remove_values,split=",|;"))){

 for(i in 1:length(grid_in[[2]])){

 if(!is.na(grid_in[[2]][i])){

 if(length(unlist(strsplit(val,split="-")))>1){

 if(grid_in[[2]][i]>=unlist(strsplit(val,split="-

"))[1]&grid_in[[2]][i]<=unlist(strsplit(val,split="-"))[2]){grid_in[[2]][i]<-NA}

 }else{

 if(grid_in[[2]][i]==val){grid_in[[2]][i]<-NA}}}}

 }

 }

 #apply matrix rotations

 if(input$rotation!=0){

 for(i in 1:input$rotation){

 grid_in[[2]]<-rotate(grid_in[[2]])

 }}

 #apply matrix reflections

 if(any(input$reflection=="Horizontal")){grid_in[[2]]<-flip_y(grid_in[[2]])}

 if(any(input$reflection=="Vertical")){grid_in[[2]]<-flip_x(grid_in[[2]])}

 validate(need(nrow(grid_in[[2]])>1,"Cannot plot a grid with only 1 row"))

 validate(need(ncol(grid_in[[2]])>1,"Cannot plot a grid with only 1

column"))

 if(any(input$Grid_axes=="bottom")){bottom<-

create_Axes(input$Grid_bottom_axis,input$Grid_bottom_axis_grid_phase,input$Grid_bot

tom_axis_increments,"x",crust_out(),input_pt)}else{bottom<-NULL}

 if(any(input$Grid_axes=="left")){left<-

create_Axes(input$Grid_left_axis,input$Grid_left_axis_grid_phase,input$Grid_left_ax

is_increments,"y",crust_out(),input_pt)}else{left<-NULL}

 if(any(input$Grid_axes=="top")){top<-

create_Axes(input$Grid_top_axis,input$Grid_top_axis_grid_phase,input$Grid_top_axis_

increments,"x",crust_out(),input_pt,y_n)}else{top<-NULL}

 if(any(input$Grid_axes=="right")){right<-

create_Axes(input$Grid_right_axis,input$Grid_right_axis_grid_phase,input$Grid_right

_axis_increments,"y",crust_out(),input_pt,x_n)}else{right<-NULL}

 #mod-tag: look into rotations

 #Apply rotations

 #if(any(input$Grid_axes=="bottom")){colnames(grid_in[[2]])<-

paste0(create_Axes(input$Grid_bottom_axis,input$Grid_bottom_axis_grid_phase,length(

 C:67

crust[[1]])+1,"x",crust_out(),input_pt)[[2]][-

(length(crust[[1]])+1)],"_{",1:length(crust[[1]]),";1}")}

 #if(any(input$Grid_axes=="left")){rownames(grid_in[[2]])<-

paste0(create_Axes(input$Grid_left_axis,input$Grid_left_axis_grid_phase,length(crus

t)+1,"y",crust_out(),input_pt)[[2]][-

(length(crust)+1)],"_{1;",1:length(crust),"}")}

 return(list(grid_in[[1]],grid_in[[2]],bottom,left,top,right))

 })

 phase_abundance_r<-reactive({

 if(!is.null(input$axis)){

 switch(input$axis,

x=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_y),input$start_x

,input$end_x,input$path_label,input_pt = store_r$input_pt_r),

y=phase_abundance(store_r$crust_r,input$axis,as.numeric(input$path_x),input$start_y

,input$end_y,input$path_label,input_pt = store_r$input_pt_r)

)

 }

 })

 PAM_r<-reactive({

PAM_calc(crust_out(),input$PAM_system,input$compile_PAM,input$PAM_compilation)

 })

 neaten_crust<-function(crust_neat=NULL,phase_aliases=NULL){

 #rename using aliases if given

 if(!phase_aliases==""){

 split_aliases<-strsplit(strsplit(phase_aliases,c(","))[[1]],"=")

 phase_aliases<-NULL

 phase_aliases_names<-NULL

 for(i in 1:length(split_aliases)){

 phase_aliases<-c(phase_aliases,split_aliases[[i]][1])

 phase_aliases_names<-c(phase_aliases_names,split_aliases[[i]][2])

 }

 names(phase_aliases)<-phase_aliases_names

 #seperate merge commands

 merge_aliases<-grep("&",phase_aliases,value=TRUE)

 if(length(merge_aliases)!=0){

 phase_aliases<-phase_aliases[-grep("&",phase_aliases)]

 }

 merge_aliases<-strsplit(merge_aliases,"&")

 if(length(merge_aliases)==0){merge_aliases<-""}

 if(length(phase_aliases)==0){phase_aliases<-""}

 if(all(phase_aliases!="")|all(merge_aliases!="")){

 for(x_i in 1:length(crust[[1]])){

 for(y_i in 1:length(crust)){

 delete<-NULL

 grab<-rownames(crust_neat[[y_i]][[x_i]])

 if(length(grab)>0){

 grab_split<-strsplit(grab,"_")

 grab_sys<-grab_name<-grab

 for(ph in 1:length(grab)){

 grab_name[ph]<-grab_split[[ph]][1]

 #if first part of system is numeric extract up to end of _

 if(!is.na(suppressWarnings(as.numeric(grab_split[[ph]][-1][1])))){

 grab_sys[ph]<-paste(grab_split[[ph]][c(-1,-2)],collapse="_")

 }else{

 grab_sys[ph]<-paste(grab_split[[ph]][-1],collapse="_")

 }

 }

 #rename using aliases

 if(all(phase_aliases!="")){

 for(ph in 1:length(grab)){

 if(any(grab_name[ph]==phase_aliases)){

 #Rename feldspars

 if(names(which(grab_name[ph]==phase_aliases))=="Pl|Kf"){

 if(length(intersect(major_elements,c("CAO","K2O")))==2){

 C:68

 # fix-tag: currently rename feldspars in two places, in order ot allow

phase extraction, simplify this

 if(crust_neat[[y_i]][[x_i]][ph,"CAO"]>crust_neat[[y_i]][[x_i]][ph,"K2O"]){

 grab_name[ph]<-"Pl"

 }else{grab_name[ph]<-"Kf"}

 }

 }else{

 #Rename phases using aliases

 grab_name[ph]<-names(which(grab_name[ph]==phase_aliases)[1])

 }

 #label unwanted phases (phases of zero mass or phases labelled as "hide")

 if(crust_neat[[y_i]][[x_i]][ph,"mass"]==0|grab_name[ph]=="hide"){

 delete<-c(delete,ph)

 }

 }

 }

 #number duplicates within systems

 renamed<-paste(grab_name,grab_sys,sep="_")

 num<-1

 while(any(duplicated(renamed))){

 renamed[which(duplicated(renamed))]<-

paste(grab_name[which(duplicated(renamed))],num,grab_sys[which(duplicated(renamed))

],sep="_")

 num<-num+1

 }

 rownames(crust_neat[[y_i]][[x_i]])<-renamed

 }

 #merge if required

 if(all(merge_aliases!="")){

 systems<-c("rs","es","cumul")

 for(sys in systems){

 for(merge_try in 1:length(merge_aliases)){

 merge_nos<-NULL

 for(i in 1:length(merge_aliases[[merge_try]])){

if(any(paste(grab_name,grab_sys,sep="_")==paste(merge_aliases[[merge_try]][i],sys,s

ep="_"))){

 merge_nos<-union(merge_nos,which(grab_name==merge_aliases[[merge_try]][i]))

 }

 }

 merger<-NULL

 if(!is.null(merge_nos)){

 for(i in merge_nos){

 merger<-rbind(merger,crust_neat[[y_i]][[x_i]][i,,drop=FALSE])

 }

 merged<-.wtd.add(merger,avname=names(merge_aliases)[merge_try])

 crust_neat[[y_i]][[x_i]][merge_nos[1],]<-merged

 rownames(crust_neat[[y_i]][[x_i]])[merge_nos[1]]<-

paste(names(merge_aliases)[merge_try],sys,sep="_")

 if(length(merge_nos)>1){

 delete<-c(delete,merge_nos[-1])

 }

 }

 }

 }

 }

 #remove unwanted phases

 if(!is.null(delete)){

 crust_neat[[y_i]][[x_i]]<-crust_neat[[y_i]][[x_i]][-delete,]

 }

 }

 }

 }

 }

 }

 return(crust_neat)

 }

 crust_out<-reactive({

 C:69

 return(neaten_crust(store_r$crust_r,input$phase_aliases))

 })

 create_Axes<-

function(axes_variable,axes_variable_phase,axes_increments,axes_direction,crust=NUL

L,input_pt=NULL,axes_line=1){

 #Given axes_variable,axes_variable_phase,axes_increments,axes_direction create

axis values

 if(axes_increments=="Increments"){axes_increments<-11}else{axes_increments<-

as.numeric(axes_increments)}

 if(axes_direction=="y"){

 i_n<-length(crust)/(axes_increments-1)*(0:(axes_increments-1))+1

 }else{i_n<-length(crust[[1]])/(axes_increments-1)*(0:(axes_increments-1))+1}

 if(axes_variable=="y_i"|axes_variable=="x_i"){

 axis_values<-i_n[-length(i_n)]

 }else{

 axis_values<-NULL

 for(i in i_n[-length(i_n)]){

 if(axes_direction=="y"){

 if(axes_variable=="Temperature"|axes_variable=="Pressure"){

 axis_values<-c(axis_values,input_pt[[i]][[axes_line]][,axes_variable])

 }else{

 chk<-

try(crust[[i]][[axes_line]][axes_variable_phase,axes_variable],silent=TRUE)

 if(class(chk)=="try-error"){

 axis_values<-c(axis_values,0)}else{

 axis_values<-

c(axis_values,crust[[i]][[axes_line]][axes_variable_phase,axes_variable])}

 }

 }else{

 if(axes_variable=="Temperature"|axes_variable=="Pressure"){

 axis_values<-c(axis_values,input_pt[[axes_line]][[i]][,axes_variable])

 }else{

 chk<-

try(crust[[axes_line]][[i]][axes_variable_phase,axes_variable],silent=TRUE)

 if(class(chk)=="try-error"){

 axis_values<-c(axis_values,0)}else{

 axis_values<-

c(axis_values,crust[[axes_line]][[i]][axes_variable_phase,axes_variable])

 }

 }

 }

 }

 }

 axis_values<-

c(axis_values,axis_values[length(axis_values)]+axis_values[length(axis_values)]-

axis_values[length(axis_values)-1])

if(axes_variable=="y_i"|axes_variable=="x_i"|axes_variable=="Temperature"|axes_vari

able=="Pressure"){

 axis_title<-axes_variable

 }else{

 axis_title<-paste(axes_variable_phase,axes_variable)

 }

 return(list(axis_title,signif(axis_values,digits=4)))

 }

 draw_Grid_r<-reactive({

 library(graphics)

 library(grDevices)

 validate(need(nrow(grid_data_r()[[2]])>1,"Cannot plot a grid with only 1

row"))

 validate(need(ncol(grid_data_r()[[2]])>1,"Cannot plot a grid with only 1

column"))

 bottom<-grid_data_r()[[3]]

 left<-grid_data_r()[[4]]

 top<-grid_data_r()[[5]]

 right<-grid_data_r()[[6]]

 action<-"View"

 C:70

if(!is.null(reactive_message$data)){if(reactive_message$data=="Saving"){action<-

"Save"}}

 if(action=="Save"){

 outfile_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le,"_grid_",gsub("\\/"," per ",grid_data_r()[[1]]),input$file_type)

 if(input$file_type==".txt"){

 write.table(grid_data_r()[[2]],outfile_path,sep="\t",quote=F)

 }

 if(input$file_type==".csv"){

 write_test<-try(write.csv(grid_data_r()[[2]],outfile_path),silent=TRUE)

 if(class(write_test)=="try-error"){

 cat("Error cannot write to ",outfile_path,", please close all programs that

may be accessing the file then try again\n")

 return(paste0("Error could not save Grid File: ",grid_data_r()[[1]],", file

may be open in another program, please close all programs that may be accessing the

file then try again\n"))

 }

 }

 if(input$file_type==".ps"){

 outfile_path<-gsub("%","%%",outfile_path)

 postscript(file=outfile_path,onefile=TRUE,horizontal=TRUE)

 }

 }

 if(action=="View"|(action=="Save"&input$file_type==".ps")){

 filled.contour(t(flip_y(grid_data_r()[[2]])),

 plot.axes={

 if(!is.null(bottom)){axis(1,(0:(length(bottom[[2]])-

1))/(length(bottom[[2]])-1),bottom[[2]])}else{NULL};

 if(!is.null(left)){axis(2,(0:(length(left[[2]])-1))/(length(left[[2]])-

1),left[[2]])}else{NULL};

 if(!is.null(top)){axis(3,(0:(length(top[[2]])-1))/(length(top[[2]])-

1),top[[2]])}else{NULL};

 if(!is.null(right)){axis(4,(0:(length(right[[2]])-1))/(length(right[[2]])-

1),right[[2]])}else{NULL}},

 color.palette=eval(parse(text=input$Grid_colours)))

 #Colour options =

gray.colors,heat.colours,terrain.colours,rainbow,topo.colours

 if(!is.null(bottom)){mtext(bottom[[1]],1,line=3)}

 if(!is.null(left)){mtext(left[[1]],2,line=3)}

 if(!is.null(top)){mtext(top[[1]],3,line=3)}

 if(!is.null(right)){mtext(right[[1]],4,line=3)}

 if(action=="Save"){

 title(paste("Grid of ",gsub("\\/"," per ",grid_data_r()[[1]])," for

",input$working_file))

 dev.off()

 }

 }

 detach("package:graphics")

 detach("package:grDevices")

 if(action=="Save"){

 cat("File written to ",outfile_path,"\n")

 return(paste0(paste("Grid of",gsub("\\/"," per ",grid_data_r()[[1]])),"

saved to ",input$projects_directory,"/",input$working_file,"/Outputs/\n"))

 }

})

draw_abundance_r<-reactive({

 #Plot phase abundance versus path cumulative column graph

 library(graphics)

 library(RColorBrewer)

 library(grDevices)

 #All RColorBrewer palettes display.brewer.all()

 #Display a specific pallette display.brewer.pal(12,"Set3")

 action<-"View"

if(!is.null(reactive_message$data)){if(reactive_message$data=="Saving"){action<-

"Save"}}

 C:71

 if(action=="Save"){

 outfile_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le,"_phase_abundance_",gsub("\\/"," per

",phase_abundance_r()[[1]]),input$file_type)

 if(input$file_type==".txt"){

write_phase_abundance(phase_abundance_r(),input$working_file,input$projects_directo

ry,input$file_type)

 }

 if(input$file_type==".csv"){

 write_test<-

try(write_phase_abundance(phase_abundance_r(),input$working_file,input$projects_dir

ectory,input$file_type),silent=TRUE)

 if(class(write_test)=="try-error"){

 cat("Error cannot write file please close all programs that may be

accessing the file then try again\n")

 return(paste0("Error could not save Phase abundance File: file may be open

in another program, please close all programs that may be accessing the file then

try again\n"))

 }

 }

 if(input$file_type==".ps"){

 cat("Error Functionality not available yet\n")

 return(paste0("Error Functionality not available yet\n"))

 # mod-tag: look into saving phase abundance directly to .ps

 #outfile_path<-gsub("%","%%",outfile_path)

 #postscript(file=outfile_path,onefile=TRUE,horizontal=TRUE)

 }

 }

 if(action=="View"|(action=="Save"&input$file_type==".ps")){

 phase_abundance_data<-phase_abundance_r()[[2]]

 #subset phases

 if(!is.null(input$show_abundance_phases)){

 phases_to_show<-input$show_abundance_phases

 phases_present<-rownames(phase_abundance_data)

 if(any(phases_to_show=="Reactive Subsystem")){

 phases_to_show<-

union(phases_to_show,phases_present[setdiff(which(substrRight(phases_present,3)=="_

rs"),which(phases_present=="Bulk_rs"))])

 phases_to_show<-phases_to_show[-grep("Reactive Subsystem",phases_to_show)]

 }

 if(any(phases_to_show=="Extract Subsystem")){

 phases_to_show<-

union(phases_to_show,phases_present[setdiff(which(substrRight(phases_present,3)=="_

es"),which(phases_present=="Bulk_es"))])

 phases_to_show<-phases_to_show[-grep("Extract Subsystem",phases_to_show)]

 }

 if(any(phases_to_show=="Cumulative Extract Subsystem")){

 phases_to_show<-

union(phases_to_show,phases_present[setdiff(which(substrRight(phases_present,9)=="_

es_cumul"),which(phases_present=="Bulk_es_cumul"))])

 phases_to_show<-phases_to_show[-grep("Cumulative Extract

Subsystem",phases_to_show)]

 }

 if(any(phases_to_show=="Full System")){

 phases_to_show<-union(phases_to_show,phases_present)

 phases_to_show<-phases_to_show[-grep("Full System",phases_to_show)]

 }

 phase_abundance_data<-

phase_abundance_data[match(phases_to_show,rownames(phase_abundance_data)),,drop=FAL

SE]

 }

 #Normalise to percentage

 phase_abundance_data<-apply(phase_abundance_data, 2,

function(x){x*100/sum(x,na.rm=T)})

 #Set colour pallette

 cols<-brewer.pal(min(nrow(phase_abundance_data),12), "Set3")

 C:72

 #Plot

barplot(phase_abundance_data,space=0,col=cols,border=NA,legend.text=(input$legend!=

"None"), args.legend=list(x =input$legend,bty =

"n"),xlab=input$path_label,ylab="Phase abundance (wt.%)")

 if(action=="Save"){

 title(paste("Grid of ",gsub("\\/"," per ",grid_data_r()[[1]])," for

",input$working_file))

 dev.off()

 }

 }

 detach("package:graphics")

 detach("package:grDevices")

 if(action=="Save"){

 cat("File written to ",outfile_path,"\n")

 return(paste0(paste("Grid of",gsub("\\/"," per ",grid_data_r()[[1]])),"

saved to ",input$projects_directory,"/",input$working_file,"/Outputs/\n"))

 }

})

 draw_PAM_r<-reactive({

 #Bind all_pres to PAM legend

 PAM_legend<-c(PAM_r()[[3]],names(PAM_r()[[2]]))

 names(PAM_legend)<-c("\"All fields are +\"",as.numeric(PAM_r()[[2]]))

 compiled_legend<-c(PAM_r()[[3]],names(PAM_r()[[6]]))

 names(compiled_legend)<-c("\"All fields are +\"",as.numeric(PAM_r()[[6]]))

 action<-"View"

if(!is.null(reactive_message$data)){if(reactive_message$data=="Saving"){action<-

"Save"}}

 if(action=="Save"){

 outfile_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le," PAM",input$file_type)

 outfile_legend_path<-

paste0(input$projects_directory,"/",input$working_file,"/Outputs/",input$working_fi

le," PAM legend",input$file_type)

 outfile_compile_legend_path<-

paste0(input$projects_directory,"/Compile/",paste(sort(union(unlist(strsplit(input$

PAM_compilation,",")),input$working_file)),collapse=",")," compile

legend",input$file_type)

 if(input$file_type==".txt"){

 write.table(PAM_r()[[1]],outfile_path,sep="\t",quote=F,row.names = TRUE)

 write.table(PAM_legend,outfile_legend_path,sep="\t",quote=F,row.names =

TRUE,col.names = FALSE)

if(input$compile_PAM){write.table(compiled_legend,outfile_compile_legend_path,sep="

\t",quote=F,row.names = TRUE,col.names = FALSE)}

 }

 if(input$file_type==".csv"){

 write_test<-try(write.csv(PAM_r()[[1]],outfile_path,row.names =

TRUE),silent=TRUE)

 if(class(write_test)=="try-error"){

 cat("Error cannot write to ",outfile_path,", please close all programs that

may be accessing the file then try again\n")

 return(paste0("Error could not save phase assemblage map: ",outfile_path,",

file may be open in another program, please close all programs that may be

accessing the file then try again\n"))

 }

 write_test<-try(write.csv(PAM_legend,outfile_legend_path,row.names =

TRUE,col.names = FALSE),silent=TRUE)

 if(class(write_test)=="try-error"){

 cat("Error cannot write to ",outfile_legend_path,", please close all programs

that may be accessing the file then try again\n")

 return(paste0("Error could not save phase assemblage map legend:

",outfile_legend_path,", file may be open in another program, please close all

programs that may be accessing the file then try again\n"))

 }

 C:73

 if(input$compile_PAM){write_test<-

try(write.csv(compiled_legend,outfile_compile_legend_path,row.names =

TRUE,col.names = FALSE),silent=TRUE)

 if(class(write_test)=="try-error"){

 cat("Error cannot write to ",outfile_compile_legend_path,", please close all

programs that may be accessing the file then try again\n")

 return(paste0("Error could not save phase assemblage map legend:

",outfile_compile_legend_path,", file may be open in another program, please close

all programs that may be accessing the file then try again\n"))

 }

 }

 }

 if(input$file_type==".ps"){

 library(grDevices)

 postscript(file=outfile_path,onefile=TRUE,horizontal=TRUE)

 }

 }

 if(action=="View"|(action=="Save"&input$file_type==".ps")){

 library(graphics)

 par(mar=c(5,4,4,5)+.1)

 library(grDevices)

 library(raster)

 library(rgeos)

 max_pol<-max(length(PAM_r()[[2]]),length(PAM_r()[[6]]))

 raster::plot(PAM_r()[[4]],col=gray(1:max_pol/max_pol)[PAM_r()[[5]]])

 if(input$PAM_labels=="Numbers"){

 raster::text(gCentroid(PAM_r()[[4]], byid = TRUE),labels=PAM_r()[[5]],col =

"Black")

 }else{

 if(input$compile_PAM){

 raster::text(gCentroid(PAM_r()[[4]], byid =

TRUE),labels=compiled_legend[PAM_r()[[5]]],col = "Black")

 }else{

 raster::text(gCentroid(PAM_r()[[4]], byid =

TRUE),labels=PAM_legend[PAM_r()[[5]]],col = "Black")

 }

 }

 # Create axes

 if(length(input$PAM_axes)>0){

 for(j in 1:length(input$PAM_axes)){

 #get variable and increment choice

 var_choice<-

eval(parse(text=paste("input$PAM_",input$PAM_axes[j],"_axis",sep="")))

if(!(var_choice=="y_i"|var_choice=="x_i"|var_choice=="Temperature"|var_choice=="Pre

ssure")){

 grid_phase_choice<-

eval(parse(text=paste("input$PAM_",input$PAM_axes[j],"_axis_grid_phase",sep="")))

 }

 increment_choice<-

eval(parse(text=paste("input$PAM_",input$PAM_axes[j],"_axis_increments",sep="")))

 if(increment_choice=="Increments"){increment_choice<-

11}else{increment_choice<-as.numeric(increment_choice)}

 if(input$PAM_axes[j]=="left"|input$PAM_axes[j]=="right"){

 i_n<-length(crust)/(increment_choice-1)*(0:(increment_choice-1))+1

 }else{i_n<-length(crust[[1]])/(increment_choice-1)*(0:(increment_choice-1))+1}

 if(var_choice=="y_i"|var_choice=="x_i"){

 axis_values<-i_n[-length(i_n)]

 }else{

 axis_values<-NULL

 for(i in i_n[-length(i_n)]){

 if(input$PAM_axes[j]=="left"|input$PAM_axes[j]=="right"){

 if(var_choice=="Temperature"|var_choice=="Pressure"){

 axis_values<-c(axis_values,input_pt[[i]][[1]][,var_choice])

 }else{

 chk<-try(crust[[i]][[1]][grid_phase_choice,var_choice],silent=TRUE)

 if(class(chk)=="try-error"){

 axis_values<-c(axis_values,0)}else{

 C:74

 axis_values<-c(axis_values,crust[[i]][[1]][grid_phase_choice,var_choice])}

 }

 }else{

 if(var_choice=="Temperature"|var_choice=="Pressure"){

 axis_values<-c(axis_values,input_pt[[1]][[i]][,var_choice])

 }else{

 chk<-try(crust[[1]][[i]][grid_phase_choice,var_choice],silent=TRUE)

 if(class(chk)=="try-error"){

 axis_values<-c(axis_values,0)}else{

 axis_values<-c(axis_values,crust[[1]][[i]][grid_phase_choice,var_choice])

 }

 }

 }

 }

 }

 axis_values<-

c(axis_values,axis_values[length(axis_values)]+axis_values[length(axis_values)]-

axis_values[length(axis_values)-1])

 #round to 2 significant figures

 axis_values<-signif(axis_values,digits=4)

 side_no<-switch(input$PAM_axes[j],"bottom"=1,"left"=2,"top"=3,"right"=4)

 axis(side_no,(0:(increment_choice-1))/(increment_choice-1),axis_values)

if(var_choice=="y_i"|var_choice=="x_i"|var_choice=="Temperature"|var_choice=="Press

ure"){

 mtext(var_choice, side=side_no, line=3)

 }else{

 mtext(paste(grid_phase_choice,var_choice), side=side_no, line=3)

 }

 }

 }

 if(!PAM_r()[[3]]==""){

 title(,paste("All fields are +",PAM_r()[[3]]))

 }

#Add contour

 if(!input$PAM_contour=="None"){

 grid_out_mat<-matrix(0,y_n,x_n)

 if(input$PAM_contour=="Pressure"|input$PAM_contour=="Temperature"){

 for(x_i in 1:x_n){

 for(y_i in 1:y_n){

 grid_out_mat[y_i,x_i]<-input_pt[[y_i]][[x_i]][,input$PAM_contour]

 }

 }

 }else{

 for(x_i in 1:x_n){

 for(y_i in 1:y_n){

 chk<-

try(crust_out()[[y_i]][[x_i]][input$PAM_contour_grid_phase,input$PAM_contour],silen

t=TRUE)

 if(class(chk)=="try-error"){ grid_out_mat[y_i,x_i]<-0}else{

 grid_out_mat[y_i,x_i]<-chk

 }

 }

 }

 }

 x<-raster::raster(flip_y(grid_out_mat))

 if(input$PAM_contour_increments=="Default

Increments"){raster::contour(x,add=TRUE,col="red")}else{

if(input$PAM_contour_increments=="In/Out"){raster::contour(x,add=TRUE,levels=0.0000

000000000000001,col="red")}else{

raster::contour(x,add=TRUE,nlevels=as.numeric(input$PAM_contour_increments),col="re

d")

 }

 }

 }

 if(action=="Save"){

 C:75

 title(paste("Phase Assemblage Map for",input$working_file),)

 dev.off()

 write.table(PAM_legend,outfile_legend_path,sep="\t",quote=F,row.names =

TRUE,col.names = FALSE)

if(input$compile_PAM){write.table(compiled_legend,outfile_compile_legend_path,sep="

\t",quote=F,row.names = TRUE,col.names = FALSE)}

 }

 detach("package:graphics")

 detach("package:rgeos")

 detach("package:raster")

 detach("package:sp")

 detach("package:grDevices")

 }

 if(action=="Save"){

 cat("File written to ",outfile_path,"\n")

 cat("File written to ",outfile_legend_path,"\n")

return(paste0("Phase Assemblage Map saved to

",input$projects_directory,"/",input$working_file,"/Outputs/\n"))

 }

 })

 output$output_header<-renderText(

 switch(input$output_type,

 "Data File"=if(!is.null(store_r$crust_r)){"Compilation data file"},

 "Grid"=if(!is.null(grid_data_r())){paste0(grid_data_r()[[1]]," on

(X,Y) grid")},

 "Phase Abundance Along

Path"=if(!is.null(phase_abundance_r())){phase_abundance_r()[[1]]},

 "PAM"=if(!is.null(store_r$crust_r)){"Phase Assemblage Map"}

))

 # Dyanmically create output for viewing

 output$output_view <- renderUI({

 if(!is.null(input$output_form)){

 switch(input$output_form,

 "Data"=tableOutput("table"),

 "Legend"=tableOutput("table"),

 switch(input$output_type,

 "PAM"=plotOutput("plot"),

 "Grid"=plotOutput("plot"),

 "Phase Abundance Along Path"=plotOutput("plot")

)

)

 }

 })

 output$table <- renderTable(

 switch(input$output_type,

 "Data

File"=data_file(crust_out(),x_n=length(crust_out()[[1]]),y_n=length(crust_out()),in

put$choose_columns,input$choose_rows,input$choose_points),

 "Grid"=if(!is.null(grid_data_r())){grid_data_r()[[2]]},

 "Phase Abundance Along Path"= phase_abundance_r()[[2]],

"PAM"=matrix(names(PAM_r()[[2]]),,1,byrow=FALSE,dimnames=list(PAM_r()[[2]],paste("A

ll fields are +",PAM_r()[[3]])))

),rownames=TRUE

)

 output$plot <- renderPlot(

 switch(input$output_type,

 "PAM"=draw_PAM_r(),

 "Grid"=draw_Grid_r(),

 "Phase Abundance Along Path"=draw_abundance_r()

)

)

 # Dyanmically create output form selections

 output$output_form_selection <- renderUI({

 form_selection<-switch(input$output_type,

 "Data File"="Data",

 "PAM"=c("Legend","Plot"),

 C:76

 c("Data","Plot")

)

 radioButtons('output_form',"View",form_selection,inline=TRUE)

 })

 # Dyanmically create output selections

 output$output_selection <- renderUI({

 #Refresh reactive outputs if they exist

 if(exists("crust")){store_r$crust_r<-crust}

 if(exists("input_pt")){store_r$input_pt_r<-input_pt}

 if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk}

 if(exists("major_elements")){store_r$major_elements_r<-major_elements}

 if(is.null(store_r$crust_r))

 return("To select ouputs: first run calculation or load previously saved

calculation

 *(variables 'crust' and 'major_elements' must be present")

 all_columns<-NULL

 all_phases<-NULL

 for(y_i in 1:length(crust_out())){

 for(x_i in 1:length(crust_out()[[1]])){

 all_columns<-union(all_columns,colnames(crust_out()[[y_i]][[x_i]]))

 all_phases<-union(all_phases,rownames(crust_out()[[y_i]][[x_i]]))

 }

 }

 #mod-tag: figure out better way of parsing multiple panels

 conditionalPanel("true",

 conditionalPanel("input.output_type == 'Data File'",

 selectizeInput('choose_columns', 'Select Columns',

c("All"="","Brief","ID","Phase","y_i","x_i","Pressure(kbar)","Temperature(C)","wt%"

,"vol%",major_elements,"mass","V(J/bar)","H(J)","Gruneisen_T","Ks(bar)","Mu(bar)","

V0(km/s)","Vp(km/s)","Vs(km/s)","Vp/Vs","Rho(kg/m3)","Cp(J/K)","alpha(1/K)","beta(1

/bar)","S(J/K)","N(g)","Cp/Cv"),multiple=TRUE),

 selectizeInput('choose_rows', 'Select System/Phase', c("All"="","Reactive

subsystem","Extract subsystem",all_phases),multiple=TRUE),

 textInput('choose_points','Select Points',"{1;1}")

),

 conditionalPanel("input.output_type == 'Grid'",

 selectInput('Grid_variable', 'Variable',

c("Pressure","Temperature",all_columns,"Custom"),

selected="Pressure",selectize=TRUE),

 conditionalPanel(condition= "input.Grid_variable.indexOf('Custom') != -1",

 textInput('Custom_selection',"Custom Selection")

),

conditionalPanel("['Pressure','Temperature','Custom'].indexOf(input.Grid_variable)

== -1",

 selectInput('Grid_variable_phase', NULL, sort(all_phases),

selected="Bulk_rs",selectize=TRUE)),

 # mod-tag: allow incrments setting

 #selectizeInput('Grid_variable_increments', NULL,

c("Increments",3:y_n),"Increments") ,

 selectInput('Grid_axes', 'Labelled axes', c("bottom","left","top","right"),

selected=c("bottom","left"),selectize=TRUE,multiple=TRUE),

 conditionalPanel(condition=

"input.Grid_axes.indexOf('bottom') != -1",

 selectInput('Grid_bottom_axis', 'Bottom Axis',

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="x_i",selectize=TRUE),

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.Grid_bottom_axis)

== -1",

 selectInput('Grid_bottom_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('Grid_bottom_axis_increments', NULL,

c("Increments",3:x_n),"Increments")

),

 conditionalPanel(condition=

"input.Grid_axes.indexOf('left') != -1",

 C:77

 selectInput('Grid_left_axis', 'Left Axis',

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="y_i",selectize=TRUE),

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.Grid_left_axis) ==

-1",

 selectInput('Grid_left_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('Grid_left_axis_increments', NULL,

c("Increments",3:y_n),"Increments")

),

 conditionalPanel(condition=

"input.Grid_axes.indexOf('top') != -1",

 selectInput('Grid_top_axis', 'Top Axis',

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="x_i",selectize=TRUE),

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.Grid_top_axis) ==

-1",

 selectInput('Grid_top_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('Grid_top_axis_increments', NULL,

c("Increments",3:x_n),"Increments")

),

 conditionalPanel(condition=

"input.Grid_axes.indexOf('right') != -1",

 selectInput('Grid_right_axis', 'Right Axis',

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="y_i",selectize=TRUE),

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.Grid_right_axis)

== -1",

 selectInput('Grid_right_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('Grid_right_axis_increments', NULL,

c("Increments",3:y_n),"Increments")

),

 textInput('remove_values',"Remove Values"),

 selectInput('Grid_colours', 'Colour Scheme',

c("gray.colors","heat.colors","terrain.colors","rainbow","topo.colors"),

selected="gray.colors",selectize=TRUE),

 radioButtons("rotation","Rotation",c("0"=0,"90"=1,"180"=2,"270"=3), selected

=0, inline = TRUE,width="200px"),

 checkboxGroupInput("reflection","Reflection",c("Horizontal","Vertical"))

),

 conditionalPanel("input.output_type == 'Phase Abundance Along Path'",

 selectInput('axis', 'Axis', c("x","y"),

selected="x",selectize=TRUE),

 conditionalPanel("input.axis == 'x'",

 selectInput('path_y', 'Path',

1:length(crust), selected=1,selectize=TRUE),

 selectInput('start_x', 'Start Point',

1:length(crust[[1]]), selected=1,selectize=TRUE),

 selectInput('end_x', 'End Point',

1:length(crust[[1]]), selected=1,selectize=TRUE)

),

 conditionalPanel("input.axis == 'y'",

 selectInput('path_x', 'Path',

1:length(crust[[1]]), selected=1,selectize=TRUE),

 selectInput('start_y', 'Start Point',

1:length(crust), selected=1,selectize=TRUE),

 selectInput('end_y', 'End Point',

1:length(crust), selected=1,selectize=TRUE)

),

 uiOutput("select_abundance_phases"),

 selectInput('path_label', 'Path Label',

c("Point","Pressure(kbar)","Temperature(C)"), selected="Point",selectize=TRUE),

 C:78

 selectInput('legend', 'Legend', c("None","bottomright",

"bottom", "bottomleft", "left", "topleft", "top", "topright", "right","center"),

selected="topright",selectize=TRUE)

),

 conditionalPanel("input.output_type == 'PAM'",

 selectInput('PAM_system', 'System', c("Reactive

Subsystem","Extract Subsystem","Full System"), selected="Reactive

Subsystem",selectize=TRUE),

 selectInput('PAM_labels', 'Field Labels',

c("Phases","Numbers"), selected="Phases",selectize=TRUE),

 selectInput('PAM_axes', 'Labelled axes',

c("bottom","left","top","right"),

selected=c("bottom","left"),selectize=TRUE,multiple=TRUE),

 conditionalPanel(condition=

"input.PAM_axes.indexOf('bottom') != -1",

 selectInput('PAM_bottom_axis', 'Bottom Axis',

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="x_i",selectize=TRUE),

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.PAM_bottom_axis)

== -1",

 selectInput('PAM_bottom_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('PAM_bottom_axis_increments', NULL,

c("Increments",3:x_n),"Increments")

),

 conditionalPanel(condition= "input.PAM_axes.indexOf('left')

!= -1",

 selectInput('PAM_left_axis', 'Left Axis',

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="y_i",selectize=TRUE),

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.PAM_left_axis) ==

-1",

 selectInput('PAM_left_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('PAM_left_axis_increments', NULL,

c("Increments",3:y_n),"Increments")

),

 conditionalPanel(condition=

"input.PAM_axes.indexOf('top') != -1",

 selectInput('PAM_top_axis', 'Top Axis',

c("x_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="x_i",selectize=TRUE),

conditionalPanel("['x_i','Pressure','Temperature'].indexOf(input.PAM_top_axis) == -

1",

 selectInput('PAM_top_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('PAM_top_axis_increments', NULL,

c("Increments",3:x_n),"Increments")

),

 conditionalPanel(condition=

"input.PAM_axes.indexOf('right') != -1",

 selectInput('PAM_right_axis', 'Right Axis',

c("y_i","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="y_i",selectize=TRUE),

conditionalPanel("['y_i','Pressure','Temperature'].indexOf(input.PAM_right_axis) ==

-1",

 selectInput('PAM_right_axis_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('PAM_right_axis_increments', NULL,

c("Increments",3:y_n),"Increments")

),

 selectInput('PAM_contour', 'Contour',

c("None","Pressure","Temperature",colnames(crust[[1]][[1]])),

selected="None",selectize=TRUE),

 C:79

conditionalPanel("['None','Pressure','Temperature'].indexOf(input.PAM_contour) == -

1",

 selectInput('PAM_contour_grid_phase', NULL,

sort(all_phases), selected="Bulk_rs",selectize=TRUE)),

 selectizeInput('PAM_contour_increments', NULL, c("Default

Increments","In/Out","Set Levels","Set Contours",3:y_n),"Default Increments"),

 textInput('PAM_compilation','PAM Compilation'),

 actionButton("create_compilation","Compile/Refresh

Legend"),

 checkboxInput("compile_PAM", "Apply compilation?",value =

FALSE)

),

 selectInput('file_type', 'File type', c(".csv",".txt",".ps"),

selected=".csv",selectize=TRUE),

 actionButton("save_data","Save To File")

 # mod-tag: allow this functionality

 #actionButton("send_gcdkit","Send To GCDkit")

)

 })

 #if working_file is not blank on first opening, load file

 observe({

 if(!exists("first_load")){first_load<<-TRUE}

 if(first_load){

 projects_directory<-input$projects_directory

 working_file<-input$working_file

 #error handling

 reactive_message$data <-error_handling(working_file,projects_directory)

 if(reactive_message$data=="error handling passed"){

 #load

if(file.exists(paste0(projects_directory,"/",working_file,"/Inputs/",working_file,"

.txt"))){

 reactive_message$data <- paste0(on_load())

 }else{

 reactive_message$data <- paste0("No input file found at

",paste0(projects_directory,"/",working_file,"/Inputs/",working_file,".txt"))

 }

 #Load workspace if it exists (previous calculation results)

if(file.exists(paste0(projects_directory,"/",working_file,"/",working_file,".RData"

))){

load(paste0(projects_directory,"/",working_file,"/",working_file,".RData"),envir=.G

lobalEnv)

 }

 #Refresh reactive outputs if they exist

 if(exists("crust")){store_r$crust_r<-crust}

 if(exists("input_pt")){store_r$input_pt_r<-input_pt}

 if(exists("input_bulk")){store_r$input_bulk_r<-input_bulk}

 if(exists("major_elements")){store_r$major_elements_r<-major_elements}

 }else{

 reactive_message$data

 }

 }

 first_load<<-FALSE

 })

})

 C:80

User interface (ui.r)

Build the skeleton of the user interface with a top toolbar and multiple conditional panels

contained in grouped tabs as follows:

 Toolbar

o Projects directory

o Working file

o Save

o Load

o Run

o Clear

o Console

 Input parameters tab

o Size

o Pressure and temperature

o Bulk composition

 Phase manipulations

o Phase addition

o Phase extraction

 Modelling options

o Modelling data

o Additional optional parameters

o Extra Settings

 Outputs

o Data file

o Grid

o Phase abundance

o Phase assemblage maps

###############################
Rcrust (ui.r)

###############################

#function-def: textInputRow(inputId, label, value = "")

textInputRow<<-function (inputId, label, value = "")

{

 div(style="display:inline-block",

 tags$label(label, `for` = inputId),

 tags$input(id = inputId, type = "text", value = value,class="input-small"))

}

shinyUI(fixedPage(

Add custom CSS & Javascript for Progress Indicator

 tagList(

 tags$head(

 tags$link(rel="stylesheet", type="text/css",href="style.css"),

 tags$script(type="text/javascript", src = "busy.js")

)

),

 div(class = "busy",

 p("Busy.."),

 img(src="35.gif")

),

Logo for Rcrust

 titlePanel(img(src="Rcrust_logo.png", align =

"left",width=150,height=60),windowTitle = "Rcrust"),

 fixedRow(textInputRow("projects_directory","Projects

Directory",value=paste0(substring(getwd(),1,nchar(getwd())-4),"Projects")),

 C:81

 textInputRow("working_file","Working File",working_file),

actionButton("save","Save"),actionButton("load","Load"),actionButton("run","Run"),a

ctionButton("clear","Clear"),actionButton("console","Console"),align="right"),

 fixedRow(verbatimTextOutput("print_message")),

#Define Tabs

 tabsetPanel(id = "inTabset",

#Input Parameters UI Tab

tabPanel("Input Parameters",

 #Size Panel

 wellPanel("Size",actionButton("size_panel_minimiser", label = "..."),

 conditionalPanel("(input.size_panel_minimiser)%2 == 0",

 fixedRow(

 column(3,textInput("x_n","X")),

 column(3,textInput("y_n","Y"))

)

)

),

 #PT Panel

 wellPanel("Pressure and Temperature",actionButton("pt_panel_minimiser", label =

"..."),actionButton("pt_import_panel_minimiser", label = "<-"),

 conditionalPanel("(input.pt_panel_minimiser)%2 == 0",

 conditionalPanel("(input.pt_import_panel_minimiser)%2 == 1",

 fileInput("file_pt", "Import P-T definitions"),

 actionButton("import_pt","Import")

),

 textInput("n_pt_def","Number of PT definitions"),

 # Dynamic PT definition input boxes

 uiOutput("pt")

)),

 #Bulk Composition Panel

 wellPanel("Bulk Composition",actionButton("bulk_comp_panel_minimiser", label =

"..."),actionButton("bulk_import_panel_minimiser", label = "<-"),

 conditionalPanel("(input.bulk_comp_panel_minimiser)%2 == 0",

 conditionalPanel("(input.bulk_import_panel_minimiser)%2 == 1",

 fileInput("file_bulk", "Import bulk composition definitions"),

 actionButton("import_bulk","Import")

),

 textInput("n_comp_trans","Number of Component Transformations"),

 # Dynamic transformation input boxes

 uiOutput("trans"),

 conditionalPanel("input.bulk_def_file == false",

 uiOutput("maj"),

 textInput("n_bulk_def","Number of bulk definitions"),

 # Dynamic bulk definition input boxes

 uiOutput("bulk")

),

 conditionalPanel("input.bulk_def_file == true",

 textInput("bulk_file","Bulk file")

),

 checkboxInput("bulk_def_file", "Import definitions from file",value = FALSE)

))

),

#End of Input Parameters UI Tab

#Phase Manipulations UI Tab

tabPanel("Phase Manipulations",

 #Phase Addition Panel

 wellPanel("Phase Addition",actionButton("phase_addition_panel_minimiser", label =

"..."),actionButton("phase_addition_import_panel_minimiser", label = "<-"),

 conditionalPanel("(input.phase_addition_panel_minimiser)%2 == 0",

 conditionalPanel("(input.phase_addition_import_panel_minimiser)%2 == 1",

 fileInput("file_ph_add", "Import phase addition definitions"),

 actionButton("import_ph_add","Import")

),

 checkboxInput("ph_add", "Perform Phase Addition?",value = FALSE),

 conditionalPanel("input.ph_add == true",

 textInput("n_ph_add_def","Number of addition definitions"),

 # Dynamic phase addition definition input boxes

 C:82

 uiOutput("ph_add")

))),

 #Phase Extraction Panel

 wellPanel("Phase Extraction",actionButton("phase_extraction_panel_minimiser",

label = "..."),actionButton("phase_extraction_import_panel_minimiser", label = "<-

"),

 conditionalPanel("(input.phase_extraction_panel_minimiser)%2 == 0",

 conditionalPanel("(input.phase_extraction_import_panel_minimiser)%2 == 1",

 fileInput("file_ph_extr", "Import phase extraction definitions"),

 actionButton("import_ph_extr","Import")

),

 checkboxInput("ph_extr", "Perform Phase Extraction?",value = FALSE),

 conditionalPanel("input.ph_extr == true",

 checkboxInput("reequilibrate_steps", "Re-equilibrate reactive subsystem after

phase extraction?",value = TRUE),

 textInput("n_ph_extr_def","Number of extraction definitions"),

 # Dynamic phase extraction input boxes

 uiOutput("ph_extr")

)))

),

#End of Phase Manipulations UI Tab

#Modelling Options UI Tab

tabPanel("Modelling Options",

 #Modelling data Panel

 wellPanel("Modelling Data",actionButton("modelling_data_panel_minimiser", label =

"..."),

 conditionalPanel("(input.modelling_data_panel_minimiser)%2 == 0",

 textInput("meemum_path","Meemum version","meemum.exe"),

 textInput("perplex_option_file","Perple_X Option File","perplex_option.dat"),

 textInput("thermodynamic_data_file","Thermodynamic Data File","hp11ver.dat"),

 textInput("solution_models_file","Solution Models

File","solution_model_673.dat"),

 # Dynamic solution models input boxes

 uiOutput("solution_models")

)),

#Additional optional parameters Panel

 wellPanel("Additional optional

parameters",actionButton("additional_optional_parameters_panel_minimiser", label =

"..."),

conditionalPanel("(input.additional_optional_parameters_panel_minimiser)%2 == 0",

 textInput("saturated_components","Saturated components"),

 textInput("saturated_phase_components","Saturated phase

components"),

 textInput("independent_potential_fugacity_activity","Independent

potential/fugacity/activity"),

 textInput("exclude_phases","Exclude phases")

)),

 #Extra Settings Panel

 wellPanel("Extra Settings",actionButton("extra_settings_panel_minimiser", label =

"..."),

 conditionalPanel("(input.extra_settings_panel_minimiser)%2 == 0",

 selectInput("end_of_calc","When calculation is complete:",c("Return to

Interface"="Return to

Interface","Logout"="Logout","Shutdown"="Shutdown"),selected="Return to

Interface",selectize=TRUE)

))

),

#End of Modelling Options UI Tab

#Outputs UI Tab

tabPanel("Outputs",

 sidebarLayout(

 sidebarPanel(

 textInput('phase_aliases',"Phase Aliases"),

 selectInput('output_type', 'Select Output', c("Data File","Grid","Phase

Abundance Along Path","PAM"), selected="Data File",selectize=TRUE),

 uiOutput("output_form_selection"),

 # Dynamic output selection boxes

 C:83

 uiOutput("output_selection")

),

 mainPanel(

 h4(textOutput("output_header", container = span)),

 uiOutput("output_view")

)

)

)

,selected = "Input Parameters")

#End of tabs

)

#End of page

)

#End of Shiny

 D:1

ADDENDUM D: Supplementary data for Research Paper 3

Included within the thesis files for evaluation is an excel document containing compositions

of a natural s-type granite array and the modelled melt compositions produced by the study

“A phase equilibrium investigation of selected source controls on the composition of melt

batches generated by sequential melting of an average metapelite” developed as part of the

thesis by M.J. Mayne.

	First page.pdf
	Thesis part.pdf
	DECLARATION
	ABSTRACT
	OPSOMMING
	
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	The use of current thermodynamic modelling software to model open system behaviour
	THERMOCALC
	Theriak/Domino
	Perple_X

	The need for sophisticated handling of bulk compositional changes induced by phase manipulations
	Aims of this study
	Structure of the thesis
	Performing process oriented investigations
	
	The effect of source controls on open system melt compositions
	A brief history of the development of Rcrust
	Presentation of the modelling tool: Rcrust
	Supplementary data

	REFERENCES

	CHAPTER 2
	PRESENTATION OF RESEARCH PAPER 1: PERFORMING PROCESS-ORIENTED INVESTIGATIONS INVOLVING MASS TRANSFER USING RCRUST: A NEW PHASE EQUILIBRIUM MODELLING TOOL
	ABSTRACT
	INTRODUCTION
	RCRUST: A NEW PHASE EQUILIBRIUM MODELLING TOOL
	Path dependence of the reactive subsystem
	Modelling setup

	PERFORMING PROCESS-ORIENTED INVESTIGATIONS
	Dynamic setting of subsolidus water content of the Reactive System
	Melt loss through critical threshold values and retention amounts
	Entrainment of phases to melt (magma loss)
	Fractional crystallisation
	Limited availability of phases

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	SUPPLEMENTARY MATERIAL*
	REFERENCES

	CHAPTER 3
	
	ABSTRACT
	INTRODUCTION
	METHODOLOGY
	RESULTS
	Melting reactions as a function of fluid mode
	
	
	Rock water content at the solidus as a function of pressure

	DISCUSSION AND CONCLUSIONS
	DOWNLOAD
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL*
	REFERENCES

	CHAPTER 4
	PRESENTATION OF RESEARCH PAPER 3: A PHASE EQUILIBRIUM INVESTIGATION OF SELECTED SOURCE CONTROLS ON THE COMPOSITION OF MELT BATCHES GENERATED BY SEQUENTIAL MELTING OF AN AVERAGE METAPELITE
	ABSTRACT
	INTRODUCTION
	METHODOLOGY
	RESULTS
	DISCUSSION
	CONCLUSIONS

	DOWNLOAD
	ACKNOWLEDGEMENTS

	SUPPLEMENTARY MATERIAL*
	REFERENCES

	CHAPTER 5
	CONCLUSION AND FUTURE PERSPECTIVES
	Potential limitations
	New path dependent diagrams and a suggested protocol for reporting
	Documented uses of Rcrust
	Entrainment of peritectic phases*
	Fractional crystallisation*
	Crystallisation sequences
	Compositional constraints in planetary sciences
	Estimating the duration of partial melting
	Identifying fluid state during crustal melting
	The role of thermal gradients in crustal melting

	Future work
	Kinetic restraints on equilibrium
	Consideration of trace elements in thermodynamic modelling
	Saturation model for zircon
	REFERENCES

	BIBLIOGRAPHY
	ADDENDA
	ADDENDUM A: Electronic copy of Rcrust software
	ADDENDUM B: User manual for Rcrust
	GETTING STARTED
	Installation
	Concept
	Examples
	
	
	Example3 - Multi-path functionality

	REFERENCE MANUAL
	Rcrust File Management
	Save
	Load
	Run
	Clear
	Console

	List of Parameters
	Input Parameters
	Tuple definitions
	Size
	Pressure and Temperature
	Bulk composition

	Phase Manipulations
	Phase Addition
	Phase Extraction

	Modelling Options
	Modelling Data
	Additional optional parameters
	Extra Settings

	Outputs
	Select Output = Data File
	Select Output = Grid
	Select Output = Phase Abundance Along Path
	Select Output = PAM

	File Management
	Perple_x options
	Advanced user options

	Useful functions in the R Console
	Rcrust variables
	Running Rcrust
	Rcrust Outputs
	R Syntax

	Development
	Troubleshooting
	Bulk_ss system properties
	Molar phase proportions
	Buffered Output

	External Sources
	Perple_X
	http://www.perplex.ethz.ch/
	Perple_X Solution Model Glossary
	

	REFERENCES

	ADDENDUM C: Presentation of the programming code for Rcrust
	File structure
	Brief description of code
	Methodology and syntax utilised in programming code
	Tags
	Variables
	Functions
	Triggers
	System labels
	Advanced functionalities not yet worked into GUI

	Initialise P-T conditions (init_pt.r)
	Initialise bulk compositions (init_bulk.r)
	Initialise phase additions (init_ph_add.r)
	Initialise phase extractions (init_ph_extr.r)
	Initialise dependence structure (init_dependence.r)
	Initialise meemum (init_meem.r)
	Rcrust launcher (main.r)
	Rcrust calculation loop (run.Rcrust.r)
	Wrapper for phase stability calculations (init_wrapper.r)
	Meemum connect (meemum_connect.r)
	Server (server.r)
	User interface (ui.r)

