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Résumé

Mots clés : systèmes ferroviaires, régulation du trafic, réseaux de Petri, évaluation de
performance, simulation stochastique, tables horaires, planification

Problématique
De par leur efficacité et leur haute fréquence de service, les réseaux ferroviaires urbains
constituent une solution de mobilité privilégiée dans les grandes villes. Ce haut niveau
de demande requiert, par conséquent, le maintien d’une qualité de service adéquate. Les
opérateurs de ces systèmes emploient différents outils et techniques pour une gestion
efficace du trafic. Nous nous intéressons, dans ce travail, à l’analyse et l’évaluation de
performance de ces méthodes.

Dans notre contexte, un système ferroviaire peut être vu comme une configuration de
voies décrivant la topologie, un ensemble de trains et un planning de circulation de ces
trains pendant la journée. Une journée d’exploitation est décrite par ce qu’on appelle une
table horaire, c.-à-d. un planning dans lequel sont référencés toutes les dates désirées de
départs et d’arrivées des trains des et aux stations. Or, ce planning est une vision idéal-
isée de la réalité et n’est jamais parfaitement respecté. En effet, pendant une journée
d’exploitation, la circulation des trains est très souvent perturbée par différents événe-
ments, comme par exemple, des pannes matérielles, un malaise d’un passager ou encore
plus fréquemment, des passagers qui retiennent les portes. Ces événements perturba-
teurs engendrent des arrêts indésirables des trains ; ce qui, non seulement, retarde les
départs ou arrivées de ces trains, mais en plus, peut créer des conflits dans la table horaire
entre les différents événements à venir. Lorsque le retard est local et de courte durée, il
peut facilement être rattrapé en écourtant le temps de stationnement à la station suiv-
ante du train affecté, ou en choisissant un profil de vitesse plus véloce. Toutefois, il arrive
que, dans certains cas, ce retard ne soit pas récupérable sur une seule station, et mène
vers des dates de passage qui rentrent en conflit avec celles d’autres trains, notamment
au niveau des jonctions.

Afin de pallier aux retards, les opérateurs des systèmes ferroviaires utilisent un ensem-
ble de politiques de régulation du traffic, chaque politique visant à accomplir un objectif
bien défini. Des exemples de politiques de régulation sont : rattrapage du retard (ou de
l’avance) au plus tôt en jouant sur les temps de course et de stationnement, égalisation
des headways2 entre les trains, ou des politiques plus élaborées à objectifs multiples. Le
but final de la régulation du trafic consiste à fournir un service qui satisfait au mieux un
ensemble d’indicateurs de performance. Or, les politiques de régulation du trafic tradi-
tionnellement utilisées sont, pour la plupart, définies sous formes de règles, et construites
et validées sur la base d’une approche empirique. Par conséquent, leur optimalité n’est
pas prouvée et donc pas garantie. C’est dans ce cadre précis que viens ce travail pour
fournir des outils de vérification et d’évaluation de performance des politiques de régula-
tion.

Par ailleurs, la supervision du trafic ferroviaire se base sur des plans horaires utilisés
comme références. Nous nous intéressons donc, additionnellement, à des questions de
réalisabilité de ces plans horaires par les systèmes dans un contexte temporel et proba-
biliste.

2 Temps entre deux passages successifs de trains par le même point.
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Modèles pour la circulation des trains
Un réseau ferroviaire peut être vu comme un système à événements discrets (SED), c.-à-d.
un système dans lequel l’espace d’états est discret et la transition d’état est déclenchée
par un événement et non pas par le temps, contrairement aux systèmes à temps continu
ou à temps discret (discrétisé). Considéré en tant que tel, un réseau ferroviaire peut alors
être modélisé par un réseau de Petri, un modèle mathématique (et graphique) bien adapté
à la représentation des SEDs. Cependant, le modèle standard des réseaux de Petri n’est
pas suffisant pour faire apparaître le temps et la stochasticité d’une manière explicite. En
effet, la considération de ces deux aspects-ci est indispensable pour traîter des problèmes
principalement dus aux retards aléatoires dont le système est sujet.

Dans un système ferroviaire urbain, les trains circulent avec des vitesses pouvant attein-
dre les 80 km/h. A de telles vitesses, le faible coefficient d’adhérence des roues sur les rails
pénalise les durées de freinage. Afin d’éviter toute collision entre les trains circulant dans
la même direction, on s’assure de réserver à tout instant une portion de la voie exclusive à
chaque train, pour qu’il n’y ait jamais deux trains (ou plus) dans une même portion. Cette
technique de réservation des voies est appellé le cantonnement. Il existe deux méthodes
de cantonnement : le cantonnement fixe, et le cantonnement mobile (déformable)

Cantonnement fixe. C’est une méthode classique qui consiste à découper les voies en
portions et d’allouer une ou plusieurs portions successives à chaque train d’une manière
exclusive. Comme abstraction d’un système ferroviaire à cantonnement fixe, nous util-
isons le modèle des réseau de Petri temporels stochastiques [39], mais avec une séman-
tique élémentaire. Dans ce modèle, des jetons (marquage) représentent les trains, des
places représenteront des états (p. ex. train en stationnement, train en course.), et des
transitions représentent les événements de départ et d’arrivée. Un intervalle de temps est
associé à chaque événement et représente les durées possibles devant s’écouler avant que
cet événement ne puisse se produire (p. ex. temps de stationnement, temps de course.).
De même, une fonction de répartition de probabilité est associée à chaque événement et
est définie sur son intervalle. C’est cette fonction qui va permettre de générer des retards
aléatoires sur les départs et arrivées. La sémantique élémentaire, quant à elle, permet
d’interdire que deux jetons (trains) occupent la même place, à tout instant.

Cantonnement mobile. Le cantonnement fixe est une méthode robuste, mais elle peut
être trop pessimiste par rapport aux capacités réelles du système en termes de densité des
trains pouvant circuler en même temps. Le cantonnement mobile est une technique plus
moderne qui permet de définir des enveloppes autour des trains à tout instant. Il assure
une distance entre les trains en bannissant les contacts entre toute paire d’enveloppes.
Nous proposons un modèle qui simplifie le cantonnement mobile : les réseaux de Petri
à trajectoires. C’est un modèle de réseaux de Petri dans lequel les places contiennent
des trajectoires au lieu de simples jetons. Le modèle permet d’avoir plusieurs trajectoires
(et donc trains) dans la même place, mais impose qu’une distance soit toujours assurée
entre chaque paire de trajectoires. Il autorise donc des headways inférieurs aux headways
minimums dans un système modélisé par un réseau de Petri classique.

Simulation de la régulation du trafic
L’approche adoptée pour l’analyse de la régulation est la simulation. Cependant, un mod-
èle de circulation des trains, tel que défini ici, ne permet pas, à lui seul, de simuler des
actions de contrôle-commande. Pour ce faire, il faut définir un modèle de table horaire
ainsi qu’un modèle pour la régulation. Nous nous sommes donc appuyés sur une formu-
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lation à base de graphe de contraintes pour représenter la table horaire de référence. Les
nœuds du graphe modélisent les événements (départs et arrivées) et portent leurs dates
d’occurrence désirées ou effectives, et les arcs du graphe modélisent les contraintes de
précédence entre les événements. Quant à la régulation, elle est encodée telle quelle,
sous forme d’algorithme, et communique avec le modèle de circulation des trains (réseau
de Petri) et la table horaire (graphe de contraintes) pour envoyer des consignes de régula-
tion. Ce modèle modulaire réseau-graphe-commande permet d’effectuer des simulations
aléatoires dans lequelles (a) le comportement désiré est dicté par le graphe, (b) le com-
portement réel est simulé par le réseau, et (c) le contrôle-commande par l’algorithme de
régulation. Un outil de simulation a été développé à partir de ce modèle : SIMSTORS (pour
simulateur de systèmes stochastiques sous régulation). Il a été testé sur une ligne d’un
réseau ferroviaire urbain réel, et a permis de simuler, en une quarantaine de secondes,
4 heures de trafic, avec 50 trains circulant sur 24 stations ; ce qui constitue un gain de
×360 en comparaison avec une simulation temps-réel.

Evaluation de performance
L’évaluation de performances d’une politique de régulation se fait à travers l’observation
des résultats de simulation. Après la construction du réseau de Petri correspondant au
système étudié, la description d’une table horaire de référence, et le choix d’une politique
de régulation, une simulation du système sur toute la durée de la table horaire peut
être lancée. Toutefois, dans un système stochastique, la considération d’un échantillon
aléatoire, c.-à-d. une seule exécution aléatoire du système, ne permet pas de faire des
observations concluantes. En effet, un échantillon ne peut pas résumer, à lui seul, le
comportement global du système, et peut même, dans certains cas, fournir des résultats
extrêmes, avec des probabilités d’occurrence faibles (donc rares). La bonne approche est
la méthode de Monte-Carlo qui consiste à procéder à un grand nombre n d’exécutions
aléatoires et de calculer ensuite une moyenne x̄ d’une quantité observée en sortie de
ces exécutions. Cependant, ceci n’est pas suffisant car cette moyenne est une moyenne
empirique et dépend fortement du nombre d’exécutions n ; elle ne reflète pas forcément la
moyenne théorique (réelle) µ. Selon la loi des grandes nombres, la moyenne empirique x̄
tend vers la moyenne théorique µ quand n tend vers +∞. Sur la base du théorème central
limite [66], il est possible de calculer un intervalle I, avec une certitude c ∈ [0,1] que
la moyenne théorique soit dans cet intervalle. L’intervalle I est fonction du niveau de
certitude, qui est choisi arbitrairement et préallablement au calcul de I. Afin d’obtenir
des intervalles étroits avec un grand niveau de certitude, il est nécessaire d’effectuer un
grand nombre de simulations n.

La qualité du service ferroviaire est jaugée par des indicateurs clés de performance (ICP).
Ces ICPs peuvent avoir la forme d’une mesure de la ponctualité des trains (p. ex. le nom-
bre de missions de trains s’étant effectuées avec un retard supérieur à x minutes), d’une
mesure de la régularité du service (p. ex. le nombre de départs s’étant effecutés avec des
headways proche des headways planifiés, avec une tolérance de x minutes), ou d’autres
mesures qui quantifient le retard, l’économie d’énergie, le confort des passagers, etc. Afin
d’évaluer l’efficacité d’une politique de régulation, il suffit de définir un ou des ICPs, de
lancer des simulations avec cette politique de régulation, et d’observer le niveau de satis-
faction de ces ICPs par le système régulé.
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Réalisabilité des plans horaires
La construction d’une table horaire de référence optimale pour un système ferroviaire ur-
bain est un problème complexe. En effet, quand bien même certains paramètres tels que
les limites de vitesses des trains et les contraintes dues à la topologie du réseau sont bien
connus et maitrisés, ce n’est pas le cas pour certains facteurs externes tels que la distribu-
tion des passagers pendant une journée sur le réseau ou leur comportement, les pannes
matérielles, etc. En considérant les vitesses des trains, leur capacités de freinage, leurs
longeurs, leur itinéraire désirés ainsi que d’autres paramètres, un système peut être mod-
élisé par un ensemble de contraintes. La construction d’une table horaire équivaudrait
ensuite à résoudre ce système de contraintes. Cependant, les modèles obtenus sont sou-
vent très importants en taille. Ceci oblige les experts en construction de table horaire
à faire des simplifications et des approximations. Il en résulte que la solution obtenue
ne soit pas optimale. Quand un système et un plan horaire correspondant sont conçues
séparement, rien ne garantit que ce système pourra bien réaliser le plan horaire consid-
éré. En raison de la stochasticité inhérentes aux systèmes de transport, qui peuvent être
vus comme des systèmes stochastiques à variables aléatoires continues, la probabilité de
réaliser parfaitement un plan horaire se trouve nulle. Il est donc plus pertinent de se
poser la question : « Un système peut-il réaliser un plan horaire avec un certain niveau de
tolérence aux erreurs prédéfini ?», ou encore mieux : « Un système peut-il réaliser un plan
horaire avec un certain niveau de tolérence aux erreurs prédéfini et avec une probabilité
significative ?» Afin de répondre à ces questions, nous proposons, dans ce travail, une
approche analytique basée sur le dépliage de réseaux de Petri temporels stochastiques à
sémantique élémentaire (RdPSTe).

Tout d’abord, nous modélisons le système étudié par un RdPSTe, et le plan horaire qu’il
doit satisfaire par un graphe. Les nœuds du graphes sont datés et représentent les dates
désirées d’ocurrence des événements. Nous déplions ensuite le RdPSTe structurellement,
c.-à-d. sans tenir compte du temps et de la stochasticité, à la manière d’ESPARZA et
al. [26]. Ensuite, dans un second temps, nous associons un ensemble de contraintes
aux nœuds du dépliage (conditions et événements). Ces contraintes assurent la précé-
dence, l’urgence, la cohérence du comportement temporel avec le réseau, et interdisent
l’utilisation de la même ressource par plusieurs jetons. Une fois ces contraintes établies,
la résolution du problème de réalisabilité se fait en deux temps également : (a) la véri-
fication de l’existence d’une execution temporelle (un processus) du réseau qui reflète le
plan horaire et qui s’intègre bien dans le dépliage structurel, et ensuite (b) la vérification
de la satisfiabilité des contraintes temporelles par les processus trouvés. Ceci permet
de répondre à la première question. Pour répondre à la seconde question qui consid-
ère les probabilités, nous construisons un arbre dont les feuilles sont des classes d’états
stochastiques transitoires [39]. Intuitivement, une classe d’état est une représentation
symbolique d’un ensemble d’états accessibles par le tir d’une même transition à partir
d’une autre classe. Une fois cet arbre construit, jusqu’à une profondeur donnée, il suffit
de trouver un processus correspondant à un chemin dans l’arbre et s’exécutant avec une
probabilité strictement positive.

Enfin, cette méthode peut naturellement être généralisée aux systèmes de transport ur-
bain, ferroviaire et aérien (bus, trains et avions) ainsi que les lignes de production au-
tomatisées ou tout autre système analogue.
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1
Introduction

Mobility is, more than ever, a key ingredient for the development of our modern societies.
Many transportation modes are available in urban areas: tramways, buses, taxis, metros,
and more recently light shared vehicles such as bicycles or scooters. In densely populated
cities (e.g., New York, Paris, Tokyo. . . ), the demand for public mobility options is explod-
ing; this is due to many factors such as the increasing cost of fuel, and consequently
of individual transportation [31], the concentration of population and jobs around large
cities [29], and the separation of residential and working areas. Among the available
transportation modes, public rail transport is one of the safest, most affordable, and most
efficient ones. To answer a growing demand, stakeholders have to provide the physical
infrastructures for urban rail systems (URS), but also means to operate them in the most
efficient way. This work focuses particularly on rail rapid transit systems, i.e., rail sys-
tems that operate along their own right-of-way, with no access for other vehicles or for
pedestrians [10].

URSs are part of the answer to the ever-increasing mobility needs in metropolitan areas.
However, every rail system has bounded capacity due to physical and safety constraints.
Indeed, trains have limited payloads, speeds and breaking capabilities, and have to be
separated by safety distances in order to avoid collisions. These physical limitations im-
pose an upper bound to the average time between successive train departures at stations,
and consequently the number of passengers that can use metros, even when networks
are operated at their maximal capacities. Beyond the capacity limitations, disturbances
also limit the efficiency of URSs. Rail traffic is frequently subject to disrupting events.
Examples of such events are failures of signaling systems, poor weather conditions (wet
tracks, black ice, wind. . . ) and passenger misconduct. This last cause of disturbance is
prominent: straphangers holding doors is one of the main causes of delay [17]. Such
disturbances divert the system from its ideal behavior and reduce its performance, and
in the most severe situations cause durable instability. A challenge in URSs is hence to
operate a network to achieve satisfactory capacity, especially at peak hours, even when
incidents can delay trains. Efficiency of a railway system is often evaluated according to a
quality standard, that defines measures for the quality of the provided service, and takes
several criteria into account: delays, power consumption, passengers comfort, etc.
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Traffic management

In order to cope with the effects of disturbances effects and to improve traffic, opera-
tors rely on the expertise of human dispatchers along with a set of traffic management
policies. The term regulation is also frequently used to refer to these management poli-
cies. Each policy is an algorithm that has a specific objective, ranging from trains delays
minimization to energy savings. The most common policies play with trains’ dwell and
running time profiles to minimize delays or equalize headways1. Basic policies simply im-
pose a fixed interval for trains’ departures from termini or reduce dwell times to recover
from delays; while more elaborate ones aim at optimizing several criteria simultaneously.
These algorithms are mostly constructed empirically to give an answer to specific traffic
management problems, but, while they provide fairly good performance, their optimality
is not proven. In addition to this, hardly any comparison between their performances is
concluded.

In order to verify the well functioning of traffic management algorithms, rail solution
providers such as ALSTOM often use very detailed simulation platforms. Such platforms
are deployed in late phases of projects, and provide a faithful representation of the con-
sidered rail system: a quasi-exact copy of the mimicked system that only emulates trains
and tracks. Testing traffic management algorithms is performed by running specific sce-
narios on the platform. This solution provides reliable results but only in late phases of
a project, and at a significant cost. The nature of such a tool only allows for real-time
simulations in which simulating a scenario takes the same time as in the reproduced real
system. This does not allow for sampling techniques such as Monte-Carlo simulation to
assess the general stochastic behavior of the system2, as it would take an unreasonable
amount of time to perform an exhaustive simulation campaign considering a significant
set of randomly chosen disturbances. In a similar way, using simulation techniques with
precise models and discretization of time (such as RAILSYS [58] or OPENTRACK [54])
is too costly to evaluate performance of a railway system and of its traffic management
policies.

In parallel to the problem of performance evaluation of traffic management policies, oper-
ators frequently consider robustness issues. To simplify traffic management, a frequent
technique is to adhere to a predetermined scenario called schedule. Schedules are optimal
planning of departures and arrivals of trains, and are built to provide good performance,
and also to resist minor delays that are unavoidable during a day of operation, i.e., al-
low for fast recovery using management policies. Many traffic management techniques
try to adhere to a predetermined schedule. Similarly, many performance measures are
evaluated by computing a distance between a log of a realized day w.r.t. to a predeter-
mined schedule. It is hence important to be sure that a given schedule can be properly
implemented by the running system. An important question in this context is called
realizability, and asks whether a given schedule is achievable by a URS.

The objective of this thesis is to provide effective tools and techniques to evaluate
and compare traffic management policies, and to improve their efficiency. We ad-
dress this challenge through the definition of formal models, that are sufficiently

1A headway is the difference in time between two successive passages from the same point of two trains
running in the same direction.

2More details in Section 2.3.
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accurate but yet allow for fast simulation of metros for long durations. The final ob-
jective is to compute metrics obtained by analyzing logs recorded during extensive
simulation campaigns.

This thesis took place in the context of Project P22, an industrial collaboration between
INRIA and ALSTOM that was focused on the analysis of traffic management algorithms.

Contribution: a concurrent stochastic and timed model for
URSs

One of the main difficulties for the analysis of performance of URSs lies in finding a model
that allows for efficient simulations to be able to perform Monte-Carlo experiments, i.e.,
execute a large number of random simulation runs in a reasonable amount of time. This
calls for the use of models that abstract some details of the network and of rolling stock to
speed up simulation. However, to obtain significant metrics, the considered models have
to be accurate enough to reproduce the behavior of URSs, and in particular timing and
randomness issues.

Trains movements in URSs can be decomposed as successions of running periods (a train
is moving from one station to the next one) and dwell periods (the train is stopped at a
station and passengers can board or alight from the train). A natural approach when
considering cyber-physical systems is to use hybrid models. In this thesis, we follow a
different approach. We consider that the train dynamics need not be finely depicted to
obtain significant results on the performance of regulation algorithms, and model them
with timed stochastic discrete-event systems (DES). We propose a framework to evaluate
performance of traffic management algorithms for URSs using variants of stochastic time
Petri nets (STPN). In particular, we show that STPNs are precise enough to model train
movements and constraints linked to network topologies at an accurate enough abstrac-
tion level. We also show, through experimentation, that the concurrent nature of this
model allows for fast simulations and, hence, for Monte-Carlo simulation campaigns to
evaluate performance of URSs.

Petri nets [61] and their timed and stochastic variants have been widely used to model
DESs. They have also been used to model toy examples in the railway community (BEHRMANN

et al. [8] have, for instance, used such a model for the verification of railroad crossings),
but rarely to model complete systems with dozens of trains. Similarly, fluid variants of
Petri nets [60] have been proposed to model networks that convey quantities of objects.
However, none of the existing models (up to our knowledge) allows to address at the same
time durations, random disturbances, and adaptation mechanisms to ensure conformance
to a desired schedule or performance. Indeed, the operation of a rail system normally fol-
lows a predefined schedule for departures and arrivals of trains. In the context of rail
systems, this schedule is called a timetable. A timetable is an idealized vision of the de-
sired and expected behavior of a system. It mainly consists of a series of dated departures
and arrivals for a set of considered trains. A standard objective for train management is
to follow as much as possible the schedule given by a timetable.

The models proposed in this thesis for URSs are stochastic variants of time Petri nets.
These variants allow for the description of operations that take time such as trains trav-
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eling from a station to another, dwelling at platforms or turnback maneuvers, and discrete
events such as departures and arrivals. They also enable the representation of random
delays due to disturbances. They implement timing and physical constraints such as
safety distances between trains and speed limitations. More importantly, these models
integrate regulation schemes, introduced as a particular controller that can impose ex-
ecution of a transition or delay it (this is used to represent a particular speed or dwell
time chosen by a regulation algorithm). These models are used to simulate the behavior
of a real URS, provide an answer to the realizability question, and compute performance
metrics for a URS with a particular regulation algorithm.

An orthogonal but yet important concern in the context of an industrial collaboration is
modularity and reusability of the models. In this work, we adopt a modular modeling ap-
proach with three main components: 1. a module to animate trains and generate random
delays, 2. one to represent the desired behavior (the timetable), and 3. one to describe
the control mechanism that allows to recover from delays and get back to the desired
behavior.

During a simulation these three components communicate to reproduce the behavior of
a real controlled system. With this software architecture, it is rather straightforward to
replace a regulation algorithm by another one, and run experiments to compare two traf-
fic management policies. Simulation campaigns allow to record logs of days of operations,
and then, to compute performance indicators, and assess the quality of a particular traffic
management policy.

Outline

This document is organized as follows:

We first recall, in Chapter 2, some notions of probability theory. Probabilities are es-
sential to model variations in durations of dwell and running times of trains. We also
introduce a well known random sampling technique, namely the inverse transform sam-
pling, that will be used to draw sample durations during the simulations. The second
point addressed in this chapter is Monte-Carlo simulation. It is at the heart of our per-
formance analysis method for URSs. We recall important theorems, namely the law of
large numbers, that says that a sample mean converges toward the expected value of a
random variable when the size of the sample grows. We also recall the central limit theo-
rem that is a key ingredient to guarantee that this mean lies within a confidence interval
for a chosen accuracy. These two results are essential to guarantee well foundedness of
the Monte-Carlo simulation technique used in Chapter 7 to evaluate the performance of
traffic management algorithms. We also recall, in this chapter, the Fourier–Motzkin vari-
able elimination method. This technique is used to eliminate variables from a system of
inequalities. It is used to prove that such a system has a solution and also to project these
systems on a subset of their variables. This technique will be used later in Chapter 6 to
guarantee existence of a solution for the implementation of a schedule.

Chapter 3 provides the necessary background on URSs. We introduce the notion of
timetable that is a schedule for train departures and arrivals. It is a key ingredient
in URSs as it is used both to control the system and as a reference to evaluate its perfor-
mance. We then detail specificities of network topologies, and show two different signal-
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ing systems for these topologies: the fixed-block (FB) and moving-block (MB) policies. In
a FB policy, tracks are divided into portions (blocks) that can be occupied by at most one
train at a time. In a MB policy, several trains can occupy the same track portion provided
they respect certain security distances. We will see, in Chapter 5, that using one policy
or the other has an impact on the type of models that we need to use. This chapter also
defines traffic management and presents different techniques used by rail operators. We
also formalize several standardized indicators used to address performance of URSs, the
so called key performance indicators (KPI).

Then, Chapter 4 is a state of the art on techniques and models used in URSs. It mainly
focuses on: (a) timetable design and management approaches, and (b) models for the rep-
resentation and simulation of train movements in rail systems—or, more generally, for
systems with routing and scheduling objectives. In particular, we consider time Petri nets,
stochastic Petri nets, batches Petri nets, and queuing networks. We show that the fea-
tures that need to be addressed to assess performance of traffic management techniques
cannot be handled with these models which justifies the introduction of new models in
Chapter 5.

In Chapter 5, we introduce two models developed to specify URSs with FB and MB poli-
cies. These models are variants of STPNs where distributions are associated with tran-
sitions and represent variability in dwell and transit times of trains. In the FB model,
trains are represented as tokens. The model uses an elementary semantics to avoid train
collision: a departure is forbidden if the next track portion is occupied. The MB model
replaces tokens by train trajectories. In this model, train departures are constrained
by the trajectories of other trains in the system (to satisfy safety headways). For these
two models, we define a particular type of asymmetric distributions that model the fact
that delays are more probable than advances. We equip the two models with a formal
semantics that is at the heart of the simulation tool presented in Chapter 7.

Chapter 6 addresses the question of schedules realizability. Given a schedule for train
operations, and a low-level description of the system for which the schedule is designed,
we define a technique to check that the schedule is compatible with, at least, one run
of the system, represented as an STPN. This question is called boolean realizability. It
is solved using unfolding techniques: we show that boolean realizability can be brought
back to the question of existence of an embedding of a schedule in a time process of an
unfolding of the net representing the system. The difficulty here is that embedding is
not a monotonous property. To cope with this problem, we show that this question can
be answered on a bounded unfolding whose depth depends on the considered schedule
and net. The second contribution of this chapter is probabilistic realizability. Indeed,
boolean realizability does not address probabilities, and a realizable schedule might be
realizable with a very low or null probability. We first define probabilistic realizability as
the realizabbility of a schedule up to some imprecision with a sufficiently high probability.
We answer this question using transient analysis techniques [39].

In Chapter 7, we show how the models introduced in Chapter 5 can be used to simu-
late operation of URSs under a specific traffic management algorithm and to evaluate
their performance. We introduce the architecture of the SIMSTORS tool (for Simulator
for Stochastic Regulated Systems) that we have developed during this project. We show
results obtained on a real case study (namely the line 1 of Santiago’s metro) with our tool.
Beyond computation of performance indicators, we show how the importance of distur-
bances impacts the stability of the system: for small disturbances, simulation shows the
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time needed for traffic management techniques to get back to a normal situation, while
for important disturbances, the system can never recover from delays. This shows that
our simulation tool can also be used to measure the robustness of a URS to disturbances.

The last chapter of this thesis concludes this work. We summarize and discuss the
achieved results, list possible improvements of the techniques and tools used in this the-
sis, and draw lines for future research directions.
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2
Preliminaries

This chapter introduces basic definitions of probability theory, Monte-Carlo simulation,
and variable elimination that will be used later in the document.

2.1 Basic notions of probability theory

The models proposed in chapter 5 specify random durations (for dwell or running times).
These duration will be captured by sampling values for random variables. A random
variable X is a variable whose possible values are numerical outcomes of a random phe-
nomenon. In other words, the value of a random variable is the result of a random ex-
periment. Random variables can be discrete (they take values from a finite or infinite but
countable domain), or continuous.

Definition 2.1 (random variable)
A random variable X : Ω→ E is a function that associates each element from a set of
outcomes Ω with an element from a measurable space E (usually real numbers). The set
of outcomes of X is called the sample space. ♦

An event is a subset of Ω. The result of a random experiment is denoted ω. For a discrete
random variable X , the probability that X takes value k is the probability of the event
{ω : X (ω) = k}, and is written P [X = k]1, or simply pX (k). The function pX is called the
probability mass function of X . The probability that X takes a value in a measurable set
S ⊆ E is written as P [X ∈ S].

Definition 2.2 (support)
The support of a random variable X is the set of values that X can take with a strictly
positive probability. ♦

Definition 2.3 (probability density function)
A probability density function (PDF) of a (continuous) random variable X is a function

1Only applicable to discrete random variables.
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associates to any given sample in the sample space the relative likelihood that the value
of the random variable equals that sample. PDFs are usually denoted by fX (x). ♦

Probability Density Functions are used to associate probabilities to events depicting the
fact that a random variable falls in a particular range of values. The probability for X to
take values in a given interval [a,b] is

P [a ≤ X ≤ b],
∫ b

a
fX (x) dx .

As a consequence, the probability of a single value is null. A graphical interpretation of
PDFs is given by the area located between the horizontal axis and the density function
between a and b. A PDF can only take nonnegative values and its integral over its domain
is equal to 1.

Definition 2.4 (cumulative distribution function)
A cumulative distribution function (CDF) of a random variable X describes the probability
for X to take a value less than or equal to x. A CDF for variable X is usually denoted
by FX , i.e. FX (x) is the probability that random variable X takes a value smaller than x.
FX (x) can be expressed as a function of fX (x);

FX (x),
∫ x

−∞
fX (y) dy .

Given two real numbers a and b, with a ≤ b, we have:

P [a ≤ X ≤ b]= F(b)−F(a). ♦

Definition 2.5 (expected value)
The expected value E [X ] of a given random variable X is the probability-weighted average
of all possible values of X .

For discrete variables, the expected value is given by

E [X ],
∑
xiıΩ

pX (xi)xi

For continuous variables, the expected value is given by

E [X ],
∫ +∞

−∞
xfX (x) dx .

To simplify notations, we will often write µX instead of E [X ]. µX is also called the theo-
retical mean of X . ♦

Definition 2.6 (variance)
The variance V [X ] of a random variable X is the expected value of the squared deviation
from the mean µX . The variance of X quantifies the amount of dispersion of X around its
expected value. For discrete variables, it is defined as

V [X ],
∑

xi∈Ω
pX (xi).(xi −µ)2.

12



For continuous variables, it is defined as

V [X ],
∫ +∞

−∞
(
x−µ)2 fX (x) dx . ♦

Definition 2.7 (standard deviation)
The standard deviation of a random variable X quantifies the amount of dispersion of a
set of data values. It is defined as the square root of its variance V [X ]. A low standard
deviation indicates that the data points tend to be close to the expected value µX , while a
high standard deviation indicates that the data points are spread out over a wider range
of values It is frequently used to measure confidence in statistical conclusions. We denote
the standard deviation of X by σX ,

p
V [X ]. ♦

We can now show two frequent examples of continuous distributions, namely the normal
distribution and the uniform distribution.

Definition 2.8 (normal distribution)
The normal (or Gaussian) distribution is a probability law that is suitable for the mod-
eling of natural phenomenons which exact distributions are not known. The PDF of a
normal distribution is defined according to two parameters µ and σ, where µ is the ex-
pected value and σ is the standard variation as follows:

gµ,σ2(x),
1

σ
p

2π
e−

1
2 ( x−µ

σ )2

When a random variable X follows a normal law of parameters µ,σ, we say that X is
normally distributed and write X ∼N (µ,σ2).

Furthermore, N (0,1) is called the standard normal law. ♦

−2 0

x

gµ,σ2(x)

Figure 2.1: Gaussian distribution with parameters (0,1) (plain line) and (-2,0.5) (dashed
line).

Definition 2.9 (uniform distribution)
The uniform distribution is a probability distribution that gives the same probability to
all intervals of identical size in the distributions’s support. A uniform distribution with
support [a,b] is denoted by U(a,b), and its PDF is defined as

ua,b(x),

{
1

b−a if x ∈ [a,b]
0 otherwise.

♦

Definition 2.10 (Weibull distribution)
The probability density function of a Weibull distribution is a law of the form

wλ,k(x),

{
k
λ

.( x
λ

)k−1.e−(x/λ)k
if x ≥ 0

0 otherwise.
♦

13



In this definition, k represents a shape parameter, and λ the scale parameter of the dis-
tribution. Weibull functions are interesting, as they allow for the modeling of asymmetric
distributions. This is particularly important in Metro networks, where the probability of
a delay is higher than the probability of an advance.

x

wk=1.5,λ=1(x)

Figure 2.2: Weibull distribution with parameter k = 1.5,λ= 1.

2.2 Random sampling

Pseudo-random number sampling consists in generating pseudo-random numbers that
are distributed according to a given probability distribution. Given a variable X with
PDF fX (x) and CDF FX (x), one has to sample values in a way that is consistent with
fX (x) and FX (x). Methods to sample values for a variable with a non-uniform distri-
bution usually rely on pseudo-random generator producing numbers that are uniformly
distributed. A well-known technique is the inverse transform sampling method (a.k.a.
the Smirnov method). This technique can generate pseudo-random samples from a given
CDF FX . A prerequisite is that FX is invertible, that is, for a cumulative distribution
function, strictly increasing over its support. The Smirnov method is the following:

Algorithm 2.1: Inverse Transform Sampling

input : An invertible CDF FX
output: A pseudo-random value x

1 sample a value u from the standard uniform distribution U(0,1) in the interval
[0,1]

2 return x = F−1
X (u)

It is hence sufficient to have a pseudo-random generator for U(0,1) to draw samples for
a variable X with CDF FX . One may wonder why such a simple technique works. We
have F−1

X (u) = inf {x | F(x) ≥ u}. Now, if U is a uniform random variable on [0,1], then
F−1(U) has FX as CDF. This can be easily shown, as P(F−1

X (U) ≤ x) =P(U ≤ FX (x)) as FX
is monotonic. Now as U is uniform on [0,1], we have that P(U ≤ y)= y for every y in [0,1].
Hence we have P(F−1

X (U)≤ x)= F(x).

The inverse transform sampling technique applies in many contexts. One can notice, for
instance, that CDF for variables with normal laws, uniform laws, or Weibull distributions
are strictly growing and invertible. With a pseudo random number generator for a ran-
dom variable X , one can perform an arbitrary number of experiments, and approach via
sampling the expected value µX . For a given variable X , let S = x1, . . . xn be a sequence
of n realizations of X (i.e. a sequence of values sampled independently according to the
distribution associated to X ). The sampled mean X n for sequence S is X n , 1

n
∑n

i=1 xi.
According to the strong law of large numbers (SLLN), the sampled mean of a random
variable converges to the expected value µX .
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Theorem 2.1 (Strong law of large numbers)
Let X be a random variable, then the sample mean X n converges almost surely to µX , that
is

P
[

lim
n→+∞ X n =µX

]
= 1

♦

The strong law of large numbers is an important result: it guarantees that the average of
the results obtained from a large number of experiments with variable X should be close
to its expected value, and will tend to become closer as more experiments are performed.

2.3 Monte-Carlo simulation

Monte-Carlo (MC) simulation methods are a broad set of algorithms that rely on ran-
domness to solve problems (that can be deterministic) that are generally hard to solve by
means of analysis techniques. The principal idea is to run an extensive number of random
experiments for the same process, and to derive conclusions from the average observed
behavior.

When the expected value µX is unknown, it can be estimated by sampling a subset of
outcomes S, {x1, x2, . . . , xn} of size n, and calculating its mean value. We generally denote
this value by X S and call it the sample mean of S (or the estimator of µX ). It is obtained
by

X S ,
1
n

n∑
i=1

xi .

Now, to estimate the standard deviation through the sample S, one can use the formula

σS ,

√
1

n−1

n∑
i=1

(
xi −µ

)2 ;

but, since the expected value µ is unknown, we instead use

σ̂S ,

√
1

n−1

n∑
i=1

(
xi − X S

)2
.

2.3.1 Central Limit Theorem

The central limit theorem (CLT) is the basis of the MC method: Monte-Carlo simulation
can be used to estimate characteristics of physical system (e.g., the surface of a lake),
or an output of a random process (e.g., chance of drawing heads following a coin toss).
Monte-Carlo simulation estimate a mean from a set of values obtained by repeating the
same stochastic experiment a large number of times. However, the estimated mean may
not be reliable enough in a probabilistic context. The central limit theorem provides a
notion of certainty to the estimated value obtained through simulation.
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We recall that according to the law of large numbers (LLN), a given sample mean X S
converges to the expected value µ as n approaches +∞. The (classical) CLT gives a de-
scription of the stochastic fluctuations around µ during this convergence. It states that
the sampled mean of a large number of independent identically distributed variables
X1, . . . Xn approaches a normal distribution, regardless of the underlying distribution.
More precisely:

Theorem 2.2 (central limit theorem)
Given S, {X1, X2, . . . , Xn} a series of independent identically distributed random variables
of expected value µ and variance σ2, and X S ,

1
n

∑n
i=1 X i an estimator of µ; then, the

random variable

X S −µ
σ

/p
n

(2.1)

converges in law toward the standard normal law N (0,1) when n −→+∞. ♦

The CLT is important: it implies that probabilistic and statistical methods that work
on normal distributions also work on many other types of distributions. More interest-
ingly, relating a distribution for a random variable X with the normal law allows for the
definition of confidence intervals.

2.3.2 Confidence intervals

Let µ be an unknown expected value of a random variable in a stochastic system. Using
MC simulation, one can calculate an interval I , [α,β], with a certain confidence that µ
lies in this interval.

Before calculating I, the first step is to choose a desired level of confidence c ∈ [0,1] with
which the expected value is sought to lie in [α,β]. A high c means a high level of confi-
dence. We always have

P
[
µ ∈ [α,β]

]= c .

Now, following a number n of simulation runs, one will obtain a sample mean X S and
an estimated standard deviation σ̂S. To compute the α and β, the endpoints of I, it
is necessary to calculate an additional value γ called the z-score. This value gives an
interval [−γ,+γ] such that∫ +γ

−γ
g0,1(x) dx= c ,

where g0,1 is the standard normal function.

γ is obtained from the inverse of the standard normal distribution’s CDF. Note, however,
that there exists no explicit form of this CDF and, therefore, z-scores are rather found in
precalculated tables, called the z-tables.

Once X S, σ̂S, and γ known, the values of α and β are obtained by[
α, X S −γ · (σ̂S

/p
n)

β, X S +γ · (σ̂S
/p

n) .

16



Remark 2.1
The statement

X S −γ · (σ̂S
/p

n)≤µ≤ X S +γ · (σ̂S
/p

n)

is obtained by a trivial transformation2, from

−γ≤ X S −µ
σ

/p
n

≤+γ

that is a direct consequence of the CLT. ♦

This approach is illustrated by the example hereafter.

Example 2.1. Let us suppose that the desired level of confidence is c = 0.95. The z-score
associated with c is then γ≈ 1.96.

According to Figure 2.3, that depicts a standard normal distribution, there is a 95%

chance to see our standardized mean X S−µ
σ/
p

n in the interval [−1.96,+1.96], that is

P

[
−1.96≤ X −µ

σ/
p

n
≤+1.96

]
≈ 0.95.

−1.96 0 1.96
0

0.1

0.2

0.3

0.4

x

fX (x)
95% of total area

Figure 2.3: Area below the PDF of the standard normal distribution in [−1.96,+1.96]

With a simple transformation, we obtain the endpoints of the confidence interval[
α= X −1.96 · (σ/

p
n)

β= X +1.96 · (σ/
p

n) .
(2.2)

Now suppose that our sequence of samples is S = {8,10,5,10,8,9,7,11,13,10,2,10,10}.
It is of size n = 10 and produces a sample mean X S ≈ 8.69. Supposing also that σ is

2n.b., we suppose here that the standard deviation σ is also unknown and replace it with its estimation
σ̂S .
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unknown, computing an estimate yields σ̂≈ 2.81. Using Formula (2.2), we obtain

P
[
7.16≤µ≤ 10.22

]≈ 0.95.

In a nutshell, MC simulation is performed through the following steps:

1. generate n samples to obtain a sequence S, {X1, X2, . . . , Xn},

2. compute the sample mean X S and the estimated standard deviation σ̂S,

3. choose a confidence level c with which we want the expected value µ to be in a
confidence interval I = [α,β],

4. find the corresponding γ in a z-table or by means of a scientific computing software
(e.g., R or MATLAB),

5. deduce the endpoints α and β of the confidence interval according to Formula (2.2).

We can finally say that the outcome is expected to lie within the interval [α,β] with
(c ·100)% certainty.

2.4 Fourier–Motzkin elimination

In Chapter 6, we will work with symbolic descriptions of durations, depicted by sets of
linear constraints. To manipulate constraints in a symbolic way, elimination is a key
operation. A constraint A(x1, . . . , xr) over a set of real-valued variables V = {x1, . . . xr} is
a set of linear inequalities. Assuming that A(x1, . . . xr) contains n inequalities, it can be
depicted as a conjunction of the form

A(x1, . . . , xn)=



a1,1.x1 +a2,1.x2 +·· ·+ar,1.xr ≤ b1
∧ a1,2.x1 +a2,2.x2 +·· ·+ar,2.xr ≤ bn
.
.
∧ a1,n.x1 +a2,n.x2 +·· ·+ar,n.xr ≤ bn

where ai, j ’s and b′
js are rational values. A(x1, . . . xr) is satisfiable if one can find a val-

uation for x1, . . . , xr such that replacing each variable xi by its value yields a tautology
for each inequality. Elimination of a variable xr from a system A(x1, . . . xr) with n in-
equalities consists in computing another equivalent constraint B(x1, . . . xr−1), i.e. such
that A(x1, . . . xr) and B(x1, . . . xr−1) have the same solutions over the remaining variables.
In particular, A(x1, . . . xr) is satisfiable iff B(x1, . . . xr−1) is satisfiable. Elimination is hence
a key technique to decide if a system of inequalities has a solution: one can eliminate all
variables and check that the result obtained after elimination is a tautology.

The Fourier–Motzkin elimination (FME) method is an algorithm for eliminating variables
from a system of linear inequalities. Without loss of generality, we will assume that we
eliminate variable xr. The method eliminates xr with the following steps:
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Partition The set of inequalities in A(x1, . . . xr) can be partitioned into three sets of
inequalities A+(x1, . . . xr), A−(x1, . . . xr), and A∅(x1, . . . xr−1).

A+(x1, . . . xr) is the set of inequalities in A(x1, . . . xr) that are of the form

xr ≤ b j −
r−1∑
k=1

ak, j.xk

A−(x1, . . . xr) is the set of inequalities in A(x1, . . . xr) that are of the form

−xr ≤ b j −
r−1∑
k=1

ak, j.xk

and A∅(x1, . . . xr−1) is the set of inequalities that do not contain xr, i.e. of the form a1, j.x1+
ar−1, j.xr−1 +0.xr ≤ b j.

Clearly, a valuation is a solution for A(x1, . . . xr) iff it is a solution for A+(x1, . . . xr), A−(x1, . . . xr)
and A∅(x1, . . . xr−1). Let m be the number on inequalities in A+(x1 . . . , xr), q be the num-
ber of inequalities in A−(x1 . . . , xr). A+(x1 . . . , xn) defines a constraint of the form

∧
i=1..m

xr ≤
A+

i (x1, . . . , xr−1) where A+
i is an expression of the form bi−∑r−1

k=1 ai,k.xk. Similarly A−(x1 . . . , xn)
defines a constraint of the form

∧
i=1..q

xr ≥ A−
i (x1, . . . , xr−1) where A−

i is an expression of the

form bi −∑r−1
k=1 ai,k.xk.

The original system can be written as

A∅∧max
(
A−

1 (x1, . . . , xr−1), . . . , A−
q (x1, . . . , xr−1)

)
≤ xr ≤min

(
A+

1 (x1, . . . , xr−1), . . . , A+
m(x1, . . . , xr−1)

)
Obviously, there exists a valuation for x1, . . . , xr iff there exists a valuation for x1, . . . xr−1
satisfying the following constraint:

A∅∧max
(
A−

1 (x1, . . . , xr−1), . . . , A−
q (x1, . . . , xr−1)

)
≤min

(
A+

1 (x1, . . . , xr−1), . . . , A+
m(x1, . . . , xr−1)

)
min and max can then be eliminated by considering conjunctions of pairwise comparisons
of A−

i ’s and A+
j ’s, leading to a constraint of the form:

B(x1, . . . xr−1)= A∅∧ ∧
i=1...q, j=1...m

A−
i (x1, . . . xr−1)≤ A+

j (x1, . . . xr−1)

That is we obtain, in addition to A∅, conjunctions of inequalities of the form bi −a1,i.x1−
a2,i.x2 − . . .ar−1,i.xr−1 ≤ b j −a1, j.x1 −a2, j − . . .ar−1, j.xr−1 That can be rewritten as (a1, j −
a1,i).x1 + (a2, j −a2,i).x2 +·· ·+ (ar−1, j −ar−1,i).xr−1 ≤ b j −bi

which is still a system of linear inequalities, but over x1, . . . xr−1.
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Example 2.2. Let A(x1, x2, x3) be the following system of linear inequalities

A(x1, x2, x3),



α1 ≤ x1 ≤β1

α2 ≤ x2 ≤β2

α3 ≤ x3 ≤β3

−γ21 ≤ x1 − x2 ≤+γ12

−γ31 ≤ x1 − x3 ≤+γ13

−γ32 ≤ x2 − x3 ≤+γ23

and let x1 be the variable to eliminate.

The first step consists in identifying A∅(x2, x3), the subsystem of inequalities in which x1
does not appear, as follows

A(x1, x2, x3)=



α1 ≤ x1 ≤β1

−γ21 ≤ x1 − x2 ≤ γ12

−γ31 ≤ x1 − x3 ≤ γ13

α2 ≤ x2 ≤β2

α3 ≤ x3 ≤β3

−γ32 ≤ x2 − x3 ≤ γ23

, A∅(x2, x3)

We then isolate x1 by rewriting the remaining inequalities, as follows

A(x1, x2, x3)=


α1 ≤ x1 ≤+β1

x2 −γ21 ≤ x1 ≤+x2 +γ12

x3 −γ31 ≤ x1 ≤+x3 +γ13

A∅(x2, x3)

One can easily see that a solution for this system is a valuation for x1, x2, x3 that satisfies
A∅, and where x1 is greater than the maximum value of its left bounds and smaller than
the minimum value of its right bounds in the system of inequalities. Hence, we have :

A(x1, x2, x3)= A∅∧max
(
α1, x2 −γ21, x3 −γ31

)≤ x1 ≤min
(
β1, x2 +γ12, x3 +γ13

)
Then, after elimination of x1, one just compares the lower and upper bounds for x1 to
obtain

B(x2, x3)= A∅(x2, x3)∧max
(
α1, x2 −γ21, x3 −γ31

)≤min
(
β1, x2 +γ12, x3 +γ13

)︸ ︷︷ ︸
θ

Note that the inequality θ in this example is a system of 3×3 inequalities. Last, we
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obtain :

B(x2, x3)= A∅(x2, x3)∧



α1 ≤β1

x2 −γ21 ≤β1

x3 −γ31 ≤β1

α1 ≤ x2 +γ12

x2 −γ21 ≤ x2 +γ12

x3 −γ31 ≤ x2 +γ12

α1 ≤ x3 +γ13

x2 −γ21 ≤ x3 +γ13

x3 −γ31 ≤ x3 +γ13

and finally

B(x2, x3)=



α2 ≤ x2 ≤β2

α1 +γ12 ≤ x2 ≤β1 +γ21

α3 ≤ x3 ≤β3

α1 +γ13 ≤ x3 ≤β1 +γ31

−γ32 ≤ x2 − x3 ≤ γ23

−γ12 −γ31 ≤ x2 − x3 ≤ γ13 +γ21

≤α1 −β1 ≤ 0
0 ≤ γ12 +γ21

0 ≤ γ13 +γ31 .

Let m = |A+(x1, . . . xr)| and q = |A−(x1, . . . xr)|. Elimination of a variable xr from A(x1, . . . xr)
produces a new system of inequalities of maximum size m×q+|A∅(x1, . . . xr−1)|. The worst
case for elimination of xr from a set of n inequalities occurs when A∅(x1, . . . xr−1)=; and
m = q = n/2. In this case, elimination produces (n/2)2 inequalities. Thus, for r consecutive
eliminations, the size of the obtained system is in O(4 · (n/4)2r

), i.e. is doubly exponential.
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3
Context: Urban rail systems

The objective of this chapter is to detail the context of the thesis, that is, management of
urban train systems. We introduce the notions of network topologies, timetables, traffic
management policies, performance indicators, and signaling systems. To facilitate read-
ing of the rest of the document, we end this chapter with a glossary of terms frequently
used in urban trains management.

3.1 Network topologies

Seen from a high-level perspective, urban rail systems (URSs) are composed of fleets of
trains transporting passengers through a network. Each network is composed of stations
and interstations arranged into a given topology. This topology is defined by the configu-
ration of tracks (interstations) and trains’ stopping points (stations). Topologies can vary
from simple lines or circles to more complex configurations such as star-shaped topologies
or grids.

Figure 3.1 gives examples of URS topologies. Subfigure 3.1c is a single line. This type
of topology can be met for instance in Algiers and Rennes Metros. Subfigure 3.1a is a
ring topology. This type of topology is used, for instance in the Glasgow Subway, which
is a 10.5 km long bi-directional circle. Subfigure 3.1b is an X-shaped topology. Such a
topology can be seen on the RER B line in Paris. This topology also appears in more
complex systems where common track portions are shared by several lines (e.g., Brussels
and Amsterdam Metro). Note that topologies show how station are interconnected, but
that connections are most often bidirectional, and usually physically implemented by
pairs of parallel tracks, allowing trains to run in both directions.

Traffic management in simple topologies where commercial lines are well separated is
usually performed by considering each line independently. However, even the simplest
lines contain junctions and forks that allow for insertions and removals of trains from a
line, for turnback maneuvers, and for trains’ overtakings. In terms of configuration of
tracks, junctions and forks are Y-shaped track portions. What differentiates the former
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(a) Ring (b) X-shaped

(c) Line

Figure 3.1: Examples of topologies of urban rail networks

from the latter is the direction of trains movements. A junction, as illustrated in Fig-
ure 3.2, is the convergence of trains toward the same point; while a fork is a divergence.

Figure 3.2: A junction (top) and a fork (bottom)

During traffic management, junctions and forks call for a particular care, and impose con-
straints in the scheduling of trains’ order and times of passage. The arrivals of trains at
junctions should be planned to fulfill headway constraints. Furthermore, junctions and
forks use shunts that must be properly positioned before trains passage. Hence, when
two trains arrive at a fork and do not follow the same direction, the time that elapses
between the two trains must be sufficient to position the shunt properly. Similarly, trains
shall not be too close from its predecessor. The rule is to maintain a security distance to
avoid collision. If the distance between two trains falls below this safety threshold, the
second train has to brake. A proper scheduling prevents the use of emergency braking
and collisions that could be caused by two trains converging at the same junction. Tracks
and trains are equipped with signaling systems that allow for the localization of trains
and provide the occupation status of sections of the network. Human operators in trains
usually rely on fixed signals: traffic lights with several colors: green, yellow, and red.
Red means that the position immediately ahead is occupied, and the driver should brake
immediately. Yellow means that a train is ahead, but at reasonable distance, and that
the driver should reduce his speed. Green color means that the track ahead is free for
a sufficiently long distance, and that the driver can run his train at commercial speed.
Driverless trains use more advanced systems, but with the same spirit, meant to guaran-
tee safety of passengers. These signaling and protection mechanisms ensure that trains
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are sufficiently spaced and run at appropriate speeds to avoid collisions and unnecessary
emergency brakings.

An operation day of a URS consists in performing commercial train services. Each train
is associated with a service that defines its complete path in the network, along with
stopping and speed time profiles. Services can be seen as a chain of successive trips
where each trip starts from an origin terminus and ends in a destination terminus. A
pair of sucessive trips in two opposite travel directions is usually linked with a turnback
maneuver. During each trip, trains serve a number of stations at which they have to stop
for the boarding and alighting of passengers. These stopping times are called dwell times
and should normally be equal to the durations specified in the service associated with the
considered train. However, during the operation day and especially at peak hours, these
dwell times may not be respected: a heavy load of passengers increases boarding and
alighting times, and sometimes doors closing are delayed. Some scenarios even include
passengers deliberately holding trains’ doors, a source of significant service degradation.
On the other hand, other disturbances may occur at interstation level and lead to a forced
change in speed profiles. Disturbances in interstations can be due to small incidents on
tracks, but also to bad weather conditions.

3.2 Timetables

To facilitate traffic management, operators use predefined schedules that specify arrivals
and departure dates of trains, but also ordering of these trains at forks and junctions.
This reference schedule is called a reference timetable. Each commercial line has several
reference timetables corresponding to an expected scenario: normal work day, holiday,
weekend... When disturbances occur, operators use traffic management techniques to
bring the system back to a reference behavior. In the rest of the paper, we will designate
by Σst the set of stations appearing in the network, and by Σtr the set of operated trains.

Definition 3.1 (reference timetable)
A reference timetable can be formalized as a tuple T , 〈N,→,d,TP,TR,ST〉, where

• 〈N,→〉 is a directed acyclic graph (DAG) where
◦ N , {n1,n2, . . . ,nq} is a set of events, and
◦ →⊆ N2 is a precedence relation.

For all pair of events, ∀ni,n j ∈→ means ni has to occur before n j.
We usually simply write ni → n j.

• d : N →R≥0 assigns, to each event ni ∈ N, a reference date di , d(ni);
• TP : N → {DEP,ARR} assigns, to each event, a type: departure (DEP) or arrival

(ARR);
• TR : N →Σtr assigns, to each event, a train tr from the set of operated train Σtr; and
• ST : N →Σst assigns, to each event, a station st from the set of stations Σst. ♦

During operation, timetable-based traffic management techniques try to keep the sys-
tem running as close as possible to the reference timetable. However, when the system
is exposed to a significant level of disturbance, the reference timetable may become un-
achievable, i.e., we know in advance that events in a subset N ′ ⊆ N cannot and will not
occur at their reference dates. To illustrate this, let us, for example, suppose that a train
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tr1 was planned to arrive at station st5 at date 1000, but that it is delayed by 35 sec-
onds and arrives at its next station st5 at a date

.
da

5 = 1000+ 35. Let us also suppose
that train tr1 was scheduled to dwell for 18 seconds at station level before departing at
date dd

5 = 1000+18. We can clearly see here that the planned departure date cannot be
achieved anymore, even if the dwell time is reduced, as

.
da

5 > dd
5 . For this reason, instead

of aiming at realizing the reference timetable all along the operation day, operators use a
copy of this reference timetable and update it. Updating a timetable means changing the
occurrence dates of departures and arrivals so that the new dates obtained are compatible
with the current delays of trains. Updating a timetable may also imply rescheduling of
trains passages at forks and junctions, and optimization of some quality objectives. The
updated timetable is a schedule that is achievable from the current state of the network,
provided the system is not subject to new disturbances. This updated timetable differs
from the reference timetable. It is modified online during the operation day. To keep
track of the current state of the network, of the dates for the arrivals and departure that
have already occurred, and of the expected ones, we use a timetable structure with more
information called the active timetable.

Definition 3.2 (active timetable)
An active timetable can be defined as a tuple

∼
T , 〈N,→,

.
d, d̂,TP,TR,ST,EX〉 where

• N, →, TP, TR, and ST keep the same definition as in Definition 3.1;
• EX : N → {>,⊥} indicates whether each event ni ∈ N is executed (>) or not (⊥);
•

.
d : EX−1({>}) → R≥0 assigns, to each executed event, an effective occurrence date;
and

• d̂ : EX−1({⊥})→R≥0 assigns, to each nonexecuted event, a reference date d̂(ni). ♦

The active timetable can be divided into two parts:

• the executed timetable
.

T , a restriction of components of
∼
T to executed events, and

• the new (realizable) timetable T̂ , a restriction to nonexecuted events.

At the end of an operation day, the executed timetable
.

T gives the dates of occurrence of
all events, and can be used a a log to derive daily, weekly or monthly statistics.

Active timetables are not simply used to record realized dates of arrivals and departures
of trains. They are used to give orders to trains. To realize the yet unexecuted part of
an active timetable, trains have to leave at the prescribed dates, and run at speeds that
allow them to arrive at the expected date at the next station.

In addition to the reference or active timetable, events occurrence dates are subject to
constraint, that originate from maximal speeds and minimal dwell time. As a train has a
maximal speed, if a node n represents a departure and another node n′ the next arrival
of the same train, then the time that must elapse between the two events is the minimal
time that a train takes to go from one station to the other. If n represents an arrival at a
station, and n′ the next departure, then the time that must elapse between the occurrence
of n and n′ is the minimal dwell time specified for the network. Last if n represents an
arrival of a train, and n′ the arrival Of the next train at the same position in the network,
then the time that must elapse between these two events is the minimal headway for the
network. We assume that in, addition to the reference and active timetable, a partial map
C : N×N specifying minimal time that must elapse between successor events is provided.

Remark 3.1
The set of events N can be split into Nd , {nd

1 ,nd
2 , . . . ,nd

qd} and Na , {na
1,na

2, . . . ,na
qa} for
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the subset of departures and arrivals, respectively. These subsets can themselves be
decomposed into more subsets to regroup events by train, by station, or both. ♦

Remark 3.2
For each event n, or each event’s date d(n),

.
d(n), etc., we will often simplify notations

and associate a subscript or a superscript that indicates its characteristics, i.e., its corre-
sponding type, train index, station index, etc. For example, depending on context, we will
write

.
dd

i,t j ,sk
to denote the occurrence date

.
d(n) of a departure event n with index i in N,

and corresponding to a train of index t j in Σtr and a station indexed by sk in Σst. On the
other hand, when the context is clear, we will drop these indexes and simply write

.
d or.

dd. ♦

Safety and deviation compensation
One of the main concerns during the construction of a timetable is safety: trains must run
at appropriate speeds and respect safety headways. These headways are the minimum
times that can elapse between the passage of two successive trains from the same point,
in such a way that if the leading train stops, the trailing train will be able to break and
stop in time, avoiding a head-to-tail collision. In commercial timetables, trains are always
separated, at all times, by at least safety headways plus certain margins. These margins
serve safety, but are also used to recover from delays by selecting faster speed profiles
if needed. Nevertheless, playing on speeds as a means of deviation compensation (i.e.,
delay or advance recovery) is usually not the most efficient approach to recover from a de-
lay, as trains usually recover one second between two stations by increasing their speed.
On the other hand, dwell times can be significantly reduced or increased, and offer more
interesting recovery solutions than reduction of running times. Reducing a dwell time
when a train is late allows for departures at dates that are as close as possible to the one
prescribed by the timetable. These mechanisms that play on dwell and running times to
recover from a primary delay are one example of a broader set of traffic management tech-
niques that allow the system to get back to a desired operation state. These techniques
can be defined with rules, as functions of the current state of the system, with algorithms,
etc. Their objective is to achieve the best possible service by providing adapted dwell or
speed orders. This quality of service is usually quantified by KPIs that give a measure of
punctuality of trains, regularity of service, or other passenger-centric indicators such as
density of passengers or regularity expressed in terms of passenger waiting times [5].

3.3 Traffic management

Traffic management uses of a set of different techniques. The applied techniques depend
on the operation day scenario, on the line, and also on decisions taken by operators. Each
technique has its own purposes and aims at optimizing certain metrics. It can be seen as
a function REG that takes as input an active timetable

∼
T and returns an updated active

timetable
∼
T

′= REG(
∼
T ).

Traffic management techniques can be classified into two main categories: terminus and
mainline. Terminus traffic management techniques set the dates of train departures from
termini during insertions into the commercial line or turnback maneuvers. Mainline
techniques, on the other hand, handle scheduling of train departures and arrivals at
stations. These two types of techniques are operated jointly and in parallel. Each category
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comprises a set of techniques (also called policies). We present hereafter some of the
techniques used in the industry.

3.3.1 Terminus policy

Operator policy
In this policy, a human operator is in charge of setting departure dates of trains from
termini. It does not rely on any automation mechanism. A departure date from a given
terminus is usually function of (a) the preceding arrival date at the terminus and (b) an
interval of possible values for the dwell time at the terminus. The operator chooses a
value from this interval to compensate eventual deviations (w.r.t. the planned dates) and
ensure a departure in time. If the deviation is too important, it will inevitably propagate
to the next station.

Interval policy
Instead of aiming for a respect of the departure dates planned in a reference timetable,
and especially when these dates becomes unfeasible, operators may want to simply pro-
vide a regular service in terms of intervals between departures. To do so, two approaches
are possible.

The first approach consists in setting a departure date for a train from a terminus, and
then, setting all following departures based on that date and a given constant interval δ.
Given an ith departure date d̂i, j from a terminus j, the kth next departure from the same
terminus is simply computed by

d̂′
i+k, j = d̂i, j +k ·δ .

This approach takes into account the theoretical departures dates of trains without con-
sidering eventual deviations. In doing so, the constant interval δ is not guaranteed. This
policy is generally used in degraded situations.

The second approach computes the departures dates of trains from the observed effective
departure dates of the preceding train and a given desired interval δ. Given the ith

departure date
.
d i, j from a terminus j, the next departure date is computed by

d̂′
i+1, j =

.
d i, j +δ ,

where
.
d i, j is the date of the observed effective ith departure (which can be different from

the reference date d̂i, j). This method ensures a certain regularity at terminus level but
may result in significant deviations with respect to the original reference timetable, as it
propagates delays.

3.3.2 Mainline policies

No action policy
In some scenarios, and especially when a rail system has already deviated too much from
its planned behavior, it is possible to choose simply not to apply any traffic management
action. This is practically done through selecting a no action policy in which trains keep
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their nominal dwell times and proceed without trying to recover from delays. This is a
degraded mode where delay (and advance) is only observed and logged. This leads to a
shift in timetable events’ dates according to the observed deviations. No particular action
is taken, but this is considered as a valid traffic management technique and it is one of the
actual possible choices an operator can take. The active timetable has to be recomputed,
nevertheless, to update the predicted dates of future events.

Schedule policy
Timetable or schedule policy is one of the most natural and commonly used traffic man-
agement techniques. It uses a reference timetable and aims to get back to it, as soon
as possible, whenever a deviation (a delay or an advance) occurs. At the beginning of
an operation day, the active timetable is a copy of this reference timetable. The active
timetable is updated during the operation day to record deviations, and return to the ref-
erence timetable. The deviation compensation mechanism plays with trains’ dwell times
at stations and running times between them. For example, when a train arrives late at
a station, its dwell time is reduced. If the delay is small, this reduction can be suffi-
cient to let the train leave the station at that date scheduled in the reference timetable.
However, networks impose minimal (and maximal) dwell times to let sufficient time for
passengers to board or alight. Hence, reducing a dwell time to its minimal value may
not be sufficient to recover from a primary delay. In this case, the delay recovery can be
performed progressively through the reduction of the dwell times for several successive
stations. Sometimes, running times are also used as a recovery mechanism and are re-
duced by selecting faster train speed profiles. One should note, however, that the delay
compensation using running times is usually less efficient than with dwell times, due to
the limitations in trains’ speeds and to the short distances between stations.

The constraints on minimum and maximum dwell and running times are defined as in-
tervals containing the nominal values for these operations. These intervals are defined
as [∆(st),∆(st)] for each station st by the traffic management policy. They are gener-
ally not constant; they change over the course of the operation day. Given ∆(st) a nom-
inal dwell or running time value for station st, the differences η(st) , ∆(st)−∆(st) and

η(st), ∆(st)−∆(st) between the endpoints of the interval and the nominal value for an
operation are called deviation compensation time margins. Time margins are used in this
policy, and the bigger they are, the faster the network will absorb deviations and get back
to a reference timetable.

Example 3.1
To illustrate this traffic management policy, let us suppose that, in an active timetable

∼
T ,

a train tr expected to arrive at a station st at date d̂a = 100 is delayed by ω = 8 seconds,
and arrives at

.
da = 100+8. Suppose also that the departure from station st was scheduled

at d̂d = 100+20, with a nominal dwell time dt = 20 and time margins [−10,+60]. This
policy will then choose a new dwell time dt′ = 20−8 seconds, and in doing so, the train
will be able to depart in time. If the delay is bigger, e.g., ω = 12, and given that the
minimum allowed dwell time is ∆(st) = 20−10 seconds, the train would depart at a new
date d̂d′ = (100+12)+10 with a delay of 2 seconds w.r.t. the scheduled date d̂d. ♦

Let us now show how to recompute earliest dates of events in an active timetable by play-
ing with dwell times. Let x be a node that is delayed, i.e., such that d(x)< ḋ(x). The idea
is to compute all successors of x, i.e., nodes whose occurrence date can be impacted by the
delay, and propagate the minimal possible delay among these nodes by executing them

29



at the earliest possible date occurring after their planned execution date. To compute
the new date of an event, we first need to know the date of all its predecessors. For this,
we affect new dates according to a topological order, that is a total order on nodes, that
guarantees that, if x → y, then x occurs before y in the topological order. We do not de-
tail topological ordering algorithm, and refer readers to [43], p258. Algorithm 3.1 below
shows how modifications can be easily propagated in an active timetable.

Algorithm 3.1: Rescheduling a timetable after a primary delay

input : A timetable
∼
T = (N,→,d, d̂,TP,TR,ST,EX ),

a node x, its expected date d̂(x),
its actual realization date ḋ(x)

output: an updated timetable
∼
T

′

/* Build successors of x */

1 Succ(x)= {x}
2 while Succ′ 6= Succ(x) do
3 Succ(x)= Succ′(x)
4 Succ′(x)= Succ(x)∪ {y | ∃n ∈ Succ(x)∧n → y}

5 Build a topological order n1 . . .nk on Succ(x)
6 for i ∈ 1..k do

/* update the occurrence date of ni */

7 dpred =max{d(x)+C(x,ni) | x → ni}
8 d′(ni)=max(d(ni),dpred)

9 return T ′

Smooth recovery policy
The smooth recovery policy tries to lead the system back to a reference timetable, and uses
time margins to compensate deviation, as in schedule policy. However, instead of trying
to return to the reference timetable as soon as possible, this policy tries to smoothen
the deviation recovery process. When a train deviates from its planned schedule, the
delay creates a time gap, i.e. a change in the normal distance and time headway to its
predecessors and successors. To reduce this gap, a subset of the preceding trains and of
the successor trains is selected. The speed and dwell times of these selected trains are
adapted to fill the gap that the delayed train has created. Furthermore, in order to avoid
creation of time and space gaps around selected trains, the changes applied to their dwell
or running times are weighted: trains that are close to the initial delayed train are subject
to important changes, and farther trains are less affected. These weights are determined
empirically.

Local adjustement policy
This policy is another elaborate traffic management policy that consists in compensating
deviations by trying to get as close as possible to the reference timetable while ensuring
reasonable headways. Following a deviation on a train, a hold signal is sent to the trailing
or leading train—or both—w.r.t. the affected train. These trains will then themselves
send hold signals to their trailing or leading trains. In doing so some signals may cancel
each other or reduce the holding time at station level. This is an example of a policy
where the combination of local actions can lead to a global improvement of the quality of
service. This is a rule-based policy in which the amount of holding time is determined by
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comparing the deviations with a set of thresholds. As for the smooth recovery policy, this
policy is tuned empirically.

3.4 Performance evaluation

To assess the performance of traffic management techniques and, more generally, to mea-
sure the quality of the provided service, operators compute Key Performance Indicators
(KPIs for short) from recorded logs. KPIs give a quantitative measure of punctuality of
services, of their regularity, of passengers waiting times, etc. Furthermore, KPIs are also
used to establish contracts between stakeholders of public transports and operators. In
many cities, contracts fix thresholds for some KPIs. Failing to meet the recommended
thresholds the result in financial penalties.

The metro division of the international organization for public transport (UITP) has de-
fined a set of KPIs to measure the quality of the provided service in URSs [5]. These KPIs
aim to guarantee service quality with objective indicators computed from logs recorded
during operation of the network (e.g., number of trips that are delayed by more than x
minutes), but also consider service quality perceived by passengers (e.g., estimated wait-
ing times).

Examples of KPIs are the following.

3.4.1 Service punctuality

Punctuality of service in transport systems is one of the most important criteria. The
UITP defines punctuality indicators depending on the frequency of the considered ser-
vice. It divides urban rail service into two categories: high-frequency and low-frequency
services.

High-frequency services. When a URS is operated at a high frequency (e.g., one train
leaving each station every 2 minutes 1), measuring punctuality as the adherence of trains
departure or arrival dates to a fixed reference timetable is irrelevant. As high-frequency
services are usually provided at peak hours, what really matters to passengers in this
situation is the absence of fluctuations in trip durations.

Let us suppose that the set of all trips (from a departure terminus to an arrival terminus)
are indexed with i = 1,2, . . . ,n, where n is the total number of trips. Let us also denote by
δi the total duration of trip i in the reference timetable, and

.
δi the realized total duration

of trip i. The high-frequency service punctuality criterion is then computed w.r.t. a given
tolerance threshold ε (expressed in seconds), and is given by

KPH(T ,
.

T ),
1
n
·
∣∣∣ n⋃

i=1

{ .
δi |

.
δi −δi ≤ ε

}∣∣∣ .

Intuitively, it is the ration of trips that are performed within their reference duration, up
to a tolerance of ε time units.

1No rigorous definition of low and high frequency is given by the UITP.
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Low-frequency services. In low frequency services (for instance when one train leaves
a station every 20 minutes), passengers rely on published schedules and want trains to
arrive and leave at their scheduled times. The corresponding KPI measures the propor-
tion of train arrivals that occur on time (w.r.t. the reference timetable), i.e. with a delay
smaller than a threshold ε. This KPI can be defined for all stations or just for a subset
of important nodes in the network. Let us suppose that all arrivals at the considered
stations are simply indexed by i = 1,2, . . . ,n, with n the number of all considered arrivals.
Denoting da

i the date of the ith arrival in the reference timetable T , and
.
da

i the date of
the corresponding effective arrival in the realized timetable

.
T , the formula for this KPI

is

KPL(T ,
.

T ),
1
n
·
∣∣∣ n⋃

i=1
{
.
da

i |
.
da

i −da
i ≤ ε}

∣∣∣ .

3.4.2 Service regularity

Regularity of service can be measured from two different perspectives: it can be consid-
ered in terms of passenger waiting times at stations, or in terms of headways.

Waiting times. This measure reflects passengers’ experience and is a frequently used
indicator according to the UITP [5]. It estimates the proportion of passengers that have
to wait for a train more than x minutes at a subset of specified stations. It is measured
based on planned headways and thresholds on acceptable waiting times.

Let us suppose that the considered stations are indexed by k = 1,2, . . . ,m, and that de-
partures from each station k are indexed by ik = 1,2, . . . ,nk. Let dd

ik
denote the reference

date of the ith departure from station k. We define the ith reference arrival headway by
hd

ik
, dd

ik+1 −dd
ik

, i.e., the difference between two successive arrival dates at station k in

the reference timetable T . Similarly, ḣd
ik
, ḋd

ik+1 − ḋd
ik

defines the realized headway. The
passenger waiting times KPI is then defined by the formula

KRW(T ),
m∑

k=1

nk∑
ik=1

wf ik
·wtik

ḣd
ik

,

where

• wtik is the (maximum) acceptable waiting time for a headway equal to hd
ik

, and
• wf ik

is a weighting factor that reflects passenger demand. It is function of the
reference headway, and varies according to the time of the day and week. It is
required that

∑m
k=1

∑nk
ik=1 wf ik

= 1.

Headway. Regularity of service can also be measured as the ration of realized head-
ways that are the durations planned in the timetable. This KPI calculates the percentage
of durations between departures that are close to the reference headway hd

ik
, with a tol-

erance of ±ε. Denoting
.
dd

ik
the date of the ith effective departure from station k, and
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.
hd

ik
= .

dd
ik+1 −

.
dd

ik
the ith effective departure headway, the headway KPI is given by

KRH(T ,
.

T ),
1
n
·
∣∣∣ m⋃

k=1

nk⋃
ik=1

{ .
hd

ik
| .
hd

ik
∈ [hd

ik
−ε,hd

ik
+ε]

}∣∣∣ .

3.4.3 Other indicators

Punctuality and regularity are common criteria to assess service quality in transport
systems. The UITP proposes several other criteria, we list some of them below:

Service availability. This KPI measures how a service provider’s complies with the
promised transport supply. It is the ratio of car-kilometers produced divided by the num-
ber of car-kilometers planned. The number of car-kilometers measures the total distance
run by trains, and is computed as the number of trains multiplied by the average length
of their trips in kilometers.

Service reliability. This KPI computes the distance (in kilometers) ran by trains be-
tween important incidents, i.e between two train cancellations or between incidents caus-
ing delays of more than x minutes. It is the ratio:

number of car-kilometers produced
number of failures leading to a delay> x

.

Passenger density. This KPI measures the percentage of passengers that benefit from
a sufficient space during their trips. Imposing a passenger density of x requires that
trains are loaded with less than x passengers per square meter. The value of x reflects
the worst acceptable crowding conditions. This parameter usually ranges from 3.5 to
5.5 pgr/m2. Note that this KPI is a subjective one, as the acceptable value for x depends
on the considered city.

Remark 3.3
From the above examples, one can see that KPIs are parameterized : they are defined
according to thresholds, that are negotiated among stakeholders of metro management.
Some KPI Measures are used only for passenger information, for statistics. However, in
some cases, these KPIs are contractualized and failing to provide the promised quality
results in financial penalties. Of course, UTS operators are not liable to delays originat-
ing from force majeure events such as passenger sickness, natural disasters,... The KPIs
presented above are the ones recommended by the UITP [5]. However, many measures
can be invented and evaluated from logs of operation days, so operators and stakehold-
ers can decide to use other KPIs. Operators also have their own internal indicators for
performance evaluation. ♦

3.5 Block signaling systems

Trains in motion are large, heavy and fast objects. The coefficient of friction between
wheels and rails is low. As a result, if a danger of collision is detected, a train cannot
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be stopped or rerouted quickly to avoid an accident. For this reason, it is of paramount
importance to carefully build and update trains trajectories in such a way that trains are
separated by a distance allowing emergency braking. This distance is called the safety
headway and is usually expressed in time. A safety headway is a duration that is larger
that the time needed by a train to get immobilized after it starts braking. It depends
on several parameters such as speeds of trains, their lengths, their braking capacities,
reaction times, etc. In order to ensure that safety headways are respected, URSs rely on
block signaling systems, i.e., mechanisms that define blocks and impose that each block
be occupied by at most one train at the same time. Block signaling systems fit into two
categories: FB systems and MB systems. We hereafter provide a presentation of both
systems.

3.5.1 Fixed-block systems

sti

b j b j+1

trk

b j+2 b j+3

trk+1

b j+4

sti+1

b j+5

Figure 3.3: Fixed-block policy principle

In FB signaling systems, the blocks are portions of tracks usually delimited by signals. A
block is considered occupied as soon as a part of a train is located in this track portion. In
old rail systems, trains’ localization is performed with track circuits that only indicate if
a train is present on a block, without giving its exact position. As a consequence, a train
can occupy two consecutive blocks at the same time. In high speed URS, safety imposes to
leave a free block between two consecutive trains running at maximal speed. The example
shown in Figure 3.3 shows two trains traveling in the same direction and separated by
a block. In these kind of systems, 3-aspect signals are used instead of green/red 2-aspect
signals. Green signal means proceed normally and ensures that the signal after the block
which the train is entering is not red; yellow (or orange) signal means proceed with a
reduced speed as next signal is red; and red means stop the train.

Block sizes vary depending on the frequency of the service and are carefully calculated
to optimize the traffic flow. Among the parameters that have to be taken into account
when calculating the lengths of blocks, we can find: the length of trains, the maximum
possible speed over the line sections, different trains’ speeds, braking characteristics of
trains, sighting distances, and an estimation of reaction times.

FB signaling systems is a reliable technique for ensuring safe trains’ spacing. However,
it is a pessimistic approach that operates systems at capacities lower than what they can
actually handle.

3.5.2 Moving-block systems

In recent URS systems, moving blocks signaling systems are replacing fixed block sys-
tems. The moving block policy as described by Pearson [55] states that “A train is con-
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tinuously supplied with accurate information of the position of the nearest obstacle on the
track ahead of it [. . . ] it may be a preceding train, which itself may be moving or station-
ary. The speed of the train is constantly checked and adjusted [. . . ] so that it is always
possible for the train to be brought to rest without colliding with the obstacle." Moving
blocks are defined as virtual boxes that envelop trains and move with them. The size of
the envelope can also be dynamically adapted to the current speed of a trains. Safety is
ensured by adjusting trains speeds in such a way that envelopes never overlap, even in
case of emergency braking. Figure 3.4 gives an example of moving block: two trains trk
and trk+1 are moving in the same direction. The dotted boxes around trains are their
envelopes.

For a MB approach to be applicable, trains’ exact positions must be known in real-time.
For that, operators rely on communication-based train control (CBTC) systems: auto-
matic train control systems based on the continuous communication between trains through
radio signals.

sti trk trk+1 sti+1

Figure 3.4: Moving-block policy principle

Moving block systems allow for shorter headways than fixed block systems. In particular,
the headway between two trains is usually shorter than the time needed by a train to
cover a whole physical block. To compare FB and MB systems, HILL and BOND used
a discrete event simulator written with the SIMSCRIPT simulation language [37]. They
simulated 3 trains running along a straight line with four stations and a fixed dwell
time with fixed block ans moving block signaling, and computed the minimal achievable
headways in function of maximum allowed speeds of trains. An achievable minimum
headway is the minimum possible headway for which trains’ movements are not disturbed
due to spacing constraints. They showed that these minimum headways are smaller in
the system with MB signaling than with FB signaling.

3.6 Glossary

To facilitate further reading, we provide a list of definitions for the terms frequently used
in document related to Urban train systems.

Block A physical or virtual portion of tracks that must be occupied by at most one train
at all instants.

Carousel A circuit forming a loop that trains run through, shuttling back and forth. It
can, for instance, be a loop among others of a single commercial line.

Depot A large train parking area.

Deviation A delay or an advance w.r.t. a planned schedule.
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Dwell time The time a train spends on a station’s platform for the alighting and board-
ing of passengers. It includes the time needed to open and close the doors.

Fork A Y-shaped track configuration at which two (or more) train paths diverge.

Headway The time difference between the passage dates at a given point of two consec-
utive trains traveling in the same direction.

Headway (safety) The minimum headway that ensures that no head-to-tail collision
between trains occurs, and avoids the recourse to unnecessary emergency braking.

Junction A Y-shaped track configuration at which train paths converge. It can be seen
as the opposite of a fork.

Key performance indicator A performance measurement formula.

Operation We use the term operation to describe either trains dwelling at stations or
running between stations. We, therefore, have two types of operations: dwell oper-
ations and running operations.

Maneuver We call maneuver any series of movements that define trains turnbacks at
termini, trains insertion or extraction from a line, etc.

Running time The time between the moment a train starts leaving a station and the
moment it completely stops at the next one.

Timetable A description of an order on train operations (departures and arrivals), and
of their occurrence dates.

Timetable (active) A timetable used during operation for traffic management. It can
evolve during the day.

Timetable (realized) A timetable in which all events have already occured.

Timetable (reference) A timetable describing the ideal behavior of the system.

Time margin A duration that can be subtracted from a dwell or running time to com-
pensate a deviation.

Trip A series of operations that start with a departure from a given terminus and end
with an arrival at a destination terminus.

Trip chaining Linking two successive trips, usually by a turnback maneuver.

Route A virtual path of trains passing by a succession of stations.

Service A set of chained trips. Each train has to be associated with a service to perform
trips. At the beginning of an operation day, trains move from a depot to the com-
mercial lines to begin their services; and at the end of their services, they are either
brought back to the depot or parked at parking platforms to be reinserted later.

Terminus A station from which a trip starts or at which a trip ends.
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4
State of the art

This section is a state of the art. It focuses mainly on models used in the litterature to
represent compute and maintain timetables, on models used to represent objects routing
in a network (mainly Petri net variants) and last on queuing networks, used as a way to
compute performance of railway systems.

4.1 Timetables: modeling and design

Timetables are a simplified models of train movements between stations during a fixed
period (usually a few hours or an operation day). They are central components for traf-
fic control in rapid transit systems (RTS). They describe train trajectories, specify the
desired departure and arrival dates of trains and also fix an order on trains passage at
forks and joins and in shared sections.When a day, week or month of operation is com-
plete, timetables are used as references for the analysis of achieved performance.

Timetables also play a role in safety, and to guarantee performances: as already seen in
chapter 3 trains are subject to safety constraints, to service quality constraints, etc. A
way to fulfill these constraints is to specify train trajectories in advance in a reference
timetable that represents the ideal behavior of the system, and to operate the network is
such a way that it realizes this timetable. In practice, operators define a set of timeta-
bles for each line. Each timetable is used in a specific context: working days, weekends,
holidays, etc. For example, train departure headways in timetables are generally longer
during weekends than during working days. The construction of these timetables is a
nontrivial task that amounts to solving an optimization problem called the timetabling
problem.

Formally, a timetable is a set of events, with an ordering, and a function that associates
a date to each of these events.

Definition 4.1. A timetable (TT) is a tuple TH = 〈G (S),∆0〉 where G (S) = N,−→ is an
acyclic graph and ∆0 : N → Q≥0 is a function that associates a desired (arrival or depar-
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ture) date to each node of the solution. We furthermore require that when there is an arc
from ni to n j, ∆0(n j)−∆0(ni)≥λi j.

The requirement on function ∆0 indicates that the timing constraints must be preserved.
Note that ∆0 is not unique. A possible function is the dating function that attaches to each
node the earliest execution date to each node n, i.e. the maximal sum of weights along a
path from the initial node to n. However, it is obvious that this solution is not robust :
any delayed event ni impers the execution dates of the next arrivals and departures, that
must occur at earliest at the date of ni plus the time constraint imposed by edges leaving
ni. A preferable solution is to consider a buffer time b, and to attach inductively dates to
nodes : a node ni can be attached a date ∆0(ni)=max

e ji
(∆0(n j)+λ ji)+b, that is the earliest

date allowed by the predecessors of ni, plus a time buffer b, that allows the represented
event to occur late without delaying its successors. This way, the time buffer b may avoid
constant re-evaluation of execution dates of events after each delay.

4.1.1 The timetabling problem

Given a desired rail service expressed as a set of train trips subject to constraints such
as: trains’ speed profiles, dwell times at stations, design headways, drivers’ schedules,
energy consumption, etc., the timetabling problem consists in finding an optimal schedule
for train departures and arrivals that meets all constraints. The value to optimize can be
for instance a KPI.

The timetabling problem can be expressed as a mixed integer linear programming (MILP)
problem. The canonical formulation of MILP problems is the following:

minx,y cT x+hT y
subject to: Ax+G y≤ b

x ≥ 0
y≥ 0 (integral)

A and G are matrices; x, y, c, h and b are vectors; cT x+ hT y is the objective function
to minimize; x contains variables that can take non-integer values, and y variables that
must take integer values.

A natural question once the timetabling problem has been defined is: why not reschedule
departures and arrivals online with MILP to achieve the best possible KPI at the end
of an operation day ? Though this idea is theoretically relevant, it cannot be applied in
practice. It is well known that MILP (and hence the timetabling problem) is NP-complete
(see for instance [64]). Further, for a standard metro line with 40 trains and 20 stations
running with the highest possible performance, the number of departures and arrivals
rapidly (and hence the number of variables) rapidly exceeds a million. A requirement of
regulation is to provide fast answers: the time that can elapse between a train arrival
in a station and the decision of a regulation algorithm should not exceed the minimal
dwell time at this station, and is usually bounded to a few seconds. Timetabling are par-
ticular kinds of MILP problems, with simple linear constraints (of the form di+1 ≥ di + c,
where c is a constant), where one can expect efficient resolution techniques. Nevertheless,
due to the size of the problems to solve, MILP cannot be used in real-time for regulation.
Further, searching for optimal dates for a period that exceeds 30 minute is very often
useless, and delays are very frequent, and hence force to reconsider scheduled dates at
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almost every arrival. Hence, an optimal solution computed at date t has few chances to
be consistent 30 minutes later.

As a consequence, the preferred use of timetabling solutions is to find optimal (or quasi op-
timal if the problem to solve is too big) timetables, and then rely of regulation algorithms
to stick to this reference schedule. In the rest of this section, we list several models that
have been used to represent and maintain timetables, and techniques to compute optimal
or quasi-optimal timetables.

4.1.2 Models

Space-time graphs
A simple and common representation of timetables is the space-time graph. It is a two-
dimensional diagram in which abscissae represent locations (stations) in the rail network,
and ordinates represent time. On this diagram, train trajectories are drawn as paths
between stations: a point in the diagram is always part of a given train trajectory and
depicts its presence at a station at a certain point in time; an edge connecting two points
p0 = (x0, y0) and p1 = (x1, y1) describes the timed movement of a train between the two
stations corresponding to p0 and p1. Note that if x0 = x1, then the train is dwelling and
stays at the associated station for a duration y1 − y0. Formally, a trajectory Tk for a train
k is a sequence of points Tk = p0.p1. . . . pm.

space

time

s i

s i+
1

s i+
2

s i+
3

s i+
6

s i+
4

s i+
7

s i+
5

Tk

Tk+1

T’k+1

Tk+2

T’k+2

Figure 4.1: Example of a space-time graph with alternative paths

CACCHIANI et al. [12] rely on this representation to show the ideal timetable and the
real (effective) timetable for a set of trains. They describe a rail network by a graph
N = 〈S,E∪ A〉 where S = {s0, s1, . . . , sm−1} is a set of nodes, E = {e0, e1, . . . , en−1} a set of
edges, and A = {a0,a1, . . . ,ap−1} a set of arcs. Each node si represents a station; an edge
e j is a bidirectional track of the form e j = (sa, sb) with (a,b) ∈ {0,1, . . . ,m−1}2. An arc is
a track that can be traveled in only one direction. A train trajectory is a directed path
of N, with dates associated to arrival and departures in stations. A timetable is defined
as the union of trajectories for a set of considered trains. It is also possible to represent
alternative timetables for a train, that can be used if the optimal initial one cannot be
realized.
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Figure 4.2 shows a partial timetable with highlighted trajectories of 3 trains indexed by k,
k+1 and k+2. Ideal trajectories are depicted in solid lines and alternative ones in dashed
lines. Normally, to complete the timetable, two fictitious nodes are added to symbolically
represent the origin and destination of trains. In this scenario, trains trk+2 and trk+1 will
ideally pass by stations si+3 and si+4 to reach si+5, but also have the possibility of taking
the alternative path si+6 → si+7 → si+5.

Stepped blocking-times diagrams
In 1959, HAPPEL [33] introduced a method to represent occupation times of blocks by
trains in a fixed-block system. Using this method, each train trajectory is represented
by a blocking-time stairway in a space-time diagram, as illustrated in Figure 4.2. Steps
of the stairway include all safety margins needed to ensure that no collision occurs. For
this condition to hold, all stairways must be disjoint in the space-time diagram. Safety
margins include: route formation time (time between train route request transmission
and route reply reception), sighting time, approaching time to the next signal, clearing
time (time between the moment when the train’s head leaves a block and when its tail
leaves the same block), and route release time. These steps can be seen as the occupation
of the network by trains, or in a more quantitative way as a consumption of line capacity
by trains. Here capacity is the ability to move a specific amount of traffic over a given
route within a timeframe.

t

d

bi j

hi j

bi j

Figure 4.2: A stepped blocking-times diagram

This model has later been used to compute timetables with ADLER’s concatenation method [2].
The main idea is to push "stairways" as close as possible to each other while making
sure there is no overlapping between stairs. This technique compute timetables with the
minimal capacity consumption for a set of train movements. More details on this tech-
nique can be found in the article on railway infrastructure capacity assessing methods by
BÜKER [11].

Figure 4.2, shows blocking-times for two successive trains tri and tr j. hi j represents the
imposed safety headway between the two trains while bi j represents a time buffer used
avoid propagation of delays from tri to tr j. In fact, concatenation of blocking-times with-
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out considering buffers, produces a timetable in which schedules of all successor trains of
a delayed metro must be recomputed when an incident occurs, regardless of the ampli-
tude of the delay. So, this type of optimal timetable is not robust enough to delays to be
operational. One can easily see that inserting buffers is important, and that robustness
of a timetable can decrease when its capacity improves. Introduction of buffers increases
the number of variables and hence the complexity of the timetabling problem.

Alternative graphs
The model of alternative graphs was originally proposed by MASCIS and PACCIARELLI [47,
48] as a means to design and solve jobshop scheduling problems (JSP). In this type of
problems, a finite set of jobs (tasks) have to be assigned to a set of resources (machines).
The objective is to minimize the makespan, i.e., the time needed to process all jobs.

Rail scheduling problems can be assimilated to jobshop problems where jobs are trains
movements and resources are track portions. This model was used by D’ARIANO et
al. [18, 19] to address the problem of real-time optimization of rail traffic in mainlines af-
ter disturbances. An alternative graph is a compact representation of all possible schedul-
ings of tasks in system that satisfy a set of predetermined constraints.

n11 n12 n13 n14 n15 n16

ns ⊕ ⊕ ⊕ ⊕ ⊕ n f

n21 n22 n23 n24 n25 n26

λs,11

λ11,12 λ12,13 λ13,14 λ14,15 λ15,16

λ16, f

λs,21

λ21,22 λ22,23 λ23,24 λ24,25 λ25,26

λ26, f

λ12,21 λ13,22 λ14,23 λ15,24 λ16,25

λ22,11 λ23,12 λ24,13 λ25,14 λ26,15

same event
same train

Figure 4.3: Example of an alternative graph

Formally speaking, an alternative graph is a tuple G = 〈N,F, A,Λ〉 where

• N is a set of nodes. Each node is graphically represented by a circle and models a
particular operation. Operations last for given durations that can, for instance, be
the running time of a train on a rail track portion or its dwelling time at a station.
In addition to these nodes, two dummy nodes, ns and n f , are included in N. They
respectively indicate the beginning and the end of the modeled schedule.

• F is a set of fixed arcs. An arc is a node (ni,n j) ∈ N2 that indicates the existence of
a time constraint between the beginning of the operation (modeled by) ni and the
beginning of operation n j. Fixed arcs represent constraints that are always valid
and have to be taken into account in all schedules alternatives. (e.g., the minimal
running time of a train to cover a track portion.) Graphically, fixed arcs are drawn
as solid arrows.

• A is a set of pairs of alternative arcs. Alternative arcs indicate possible priori-
ties between pairs of events. In the context of rail systems, these events are of
different trains. These arcs come by pairs and the constraints they model are mu-
tually exclusive. We graphically represent alternative arcs by dotted arrows with
an exlusive-or (xor) symbol near each pair. Formally a pair of alternative arcs in A
is a pair (e i j, ekl) where e = (ni,n j) and ekl = (nk,nl) are pairs or nodes.
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We will denote by E the set of all arcs of the alternative graph; namely, fixed arcs
of F and alternative arcs in the pairs of A. E = F ∪ {e | ∃(e, e′) ∈ A∨∃(e′, e) ∈ A}. For
simplicity, we will use the notation e i j to designate an arc from ni to n j, instead of
(ni,n j).

• Λ : E → Q>0 is a function that associates a strictly positive rational value to each
arc. This value defines a time constraint on the occurrence dates of the events at
the origin and destination of an arc. Again, we shall write λi j to designate the time
constraint Λ(e i j) between nodes ni and n j. This constraint represents the duration
of the operation corresponding to node ni; it also represents the minimum time that
has to elapse before operation n j can start.

In a metro network, track portions delimited by blocks, forks and joins can be considered
as resources, that can be used by at most one train. Some operations in an alternative
graph use the same resources, and hence cannot occur concurrently. One can think for
instance of two operations represented by nodes ni,n j that depict respectively train ti
entering a fork section and train t j entering the same fork. Clearly, ni has to occur
before n j or n j before ni to avoid a collision. The situation where two or more trains
ask to enter the same track portion is called a conflict. When a conflict exists, one can
represent the need for a scheduling of operation with an alternative arc

(
(ni,n j), (n j,ni)

)
.

Solving one conflict means choosing one arc or the other in the alternative. Generalized
to the whole set of conflicts in the alternative graph, this problem is called the conflict
resolution problem (CRP).

Formally: given an alternative graph G = 〈N,F, A,Λ〉, a selection of alternative arcs is
a set of arcs obtained by choosing only one arc from each pair of arcs in A. A selection
is complete if it contains exactly one arc from each pair. It is a solution if the graph
G (S)= 〈N,F∪S,Λ〉 does not contain cycles (cycles denote contradictory constraints of the
form "a occurs before b and b occurs before a"). Conflict resolution consists then in finding
a complete and consistent selection for G . Once a solution is found for an alternative
graph, building a consistent schedule consists in choosing a date dn for each node n such
that the dates meet all constraints. If one wants, for instance, the earliest completion
dates for arrival and departures of trains, an easy adaptation of the flooding algorithm 3.1
depicted in Chapter 2 can associate a date to each node in a time that is linear in the size
of F ∪S.

D’ARIANO et al. propose a CRP resolution approach based on a branch and bound algo-
rithm coupled with a set of heuristics to improve computation speed [18] to build timeta-
bles. The algorithm returns a conflict-free scheduling of trains and at the same time
minimizes a criterion such as the maximal realization date of all events. Notice, however,
that if the criterion chosen is minimization of completion date for a timetable, then dates
chosen for nodes are the earliest possible ones, and the timetable obtained is not robust
to even small perturbations.

Systems of inequalities
Alternative graphs can be modeled equivalently as a system of inequalities in which vari-
ables can either be real valued variables x1, . . . , xn where xn is a variable for node n ∈ N, or
boolean variables b1, . . . ,bm where ba is a variable for pair of arcs a ∈ A (conflicting pairs
of pairs of nodes). The system then consists in inequalities of the form xn′ −xn ≥Λ(

(n,n′)
)

for fixed arcs, statements of the form ba ∈ {true, false}, and constraints of the form (ba =
true) ⇒ (

xn11 − xn00 ≥Λ
(
(n11,n00)

))
and (ba = false) ⇒ (

xn01 − xn10 ≥Λ
(
(n01,n10)

))
, denoting
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the fact that some constraints on dates depend on the order of train passages in shared
sections. A timetable is then an real valuation for x variables and a boolean valuation for
b variables. Finding a valuation for variables in this system obviously produces a solution
for an alternative graph, and gives an occurrence date for every node.

4.2 Formal models for objects routing

Tests performed directly on real systems, when feasible, tend to be extremely costly and
time consuming. Systems are, thus, generally abstracted to a model, and with a certain
degree of simplification. Formal modeling of systems allows for automated analysis of
their behaviors. Models for rail systems share many aspects with manufacturing sys-
tems and production lines. Many models for discrete event systems with resources and
time exist. In this section, we focus on Petri nets variants. The reason is that Petri net
naturally model independence among actions, which is natural in railway operations rep-
resentation, consider resources, and all build on a natural graphical representation in
which objects (tokens, colored tokens, ...) are moved from a place to another. This family
of formalisms seems well adapted to urban train systems. In the following, we present
several variants of Petri nets, with time and randomness, and explain why these existing
models cannot be used directly to model metro networks.

4.2.1 Petri nets

Petri nets are a powerful modeling formalism that has long been used to model, ana-
lyze and control DESs. It is particularly adapted to model systems with concurrent and
asynchronous processes. Petri nets are a good compromise between expressiveness and
decidability: they are more expressive than finite automata, but yet, several properties
such as, termination, boundedness, coverability [40] (see also [28]) and even reachabil-
ity [49] are decidable properties. This allows, in particular, to verify that an undesirable
state of a system is not accessible. Similarly, Petri nets allow for control techniques [27] to
ensure that the modeled system never reaches a bad state. Petri nets can model resources
(modeled as tokens in places) mutual exclusion in concurrent systems,... Last, they can
be represented as graphs, which aspect is often close to the system they model.

The origin of Petri nets dates back to C. A. PETRI’s Ph.D. thesis [57]. There exist numer-
ous variants of Petri net models. Therefore, when simply speaking about Petri nets, we
generally refer to the model defined in this section that we will call the classical model.

A net is a bipartite directed graph and is defined as follows:

Definition 4.1 (net)
A net is the tuple 〈P,T, A〉 where P = {p0, p1, . . . , pn−1} is a nonempty set of places, T =
{t0, t1, . . . , tm−1} is a nonempty set of transitions, and A ⊆ (P ×T)∪ (T ×P) is a set of arcs
(also called the flow relation). ♦

We also assume that places and transitions are distinct sets, i.e., P ∩T , ∅, and that
each place in a net (resp. transition) is connected to a transition (resp. a place), i.e.,
∀x ∈ P,∃y ∈ T,〈x, y〉 ∈ A∨〈y, x〉 ∈ A, and ∀x ∈ T,∃y ∈ P,〈x, y〉 ∈ A∨〈y, x〉 ∈ A.
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Places in a net model resources and states of components of the modeled system. Brought
back to urban train systems, a place can model a track portion in a rail system. Transi-
tions represent events such as departures or arrivals of trains.

Definition 4.2 (Petri net)
A Petri net is a tuple 〈P,T, A,W , M0〉 where:

• 〈P,T, A〉 is a net;
• W : A →N>0 an arc multiplicy (or arc weighting) function; and
• M0 : P →N is the initial marking. ♦

In a Petri net, a marking assigns a natural number of tokens to each place. We denote by
M(p) the number of tokens that marking M associates to place p. Intuitively, a token in
a place can be seen, for example, as a train in a station or a piece in a machine. In doing
so, the marking gives a representation of local states of the underlying system, and its
global state.

Petri nets are a dynamic model in which the initial marking represents the initial global
state of the modeled system. From this state, it is possible to perform actions that lead to a
change of marking. Actions are performed by firing transitions. This operation consumes
tokens from places and produces new tokens in other places. Arcs in A dictate the flow
of tokens, and W indicates the number of tokens to be consumed and produced during
transition firing.

Definition 4.3 (preset and postset)
We define the preset (preconditions set) of a given transition t as the set of input places of
t: •t, {p | 〈p, t〉 ∈ A}. Similarly, the postset (postconditions set) of a transition t is the set
of its output places: t•, {p | 〈t, p〉 ∈ A}.

This notation can be used for places: for each place p ∈ P, •p denotes the set of transitions
that may produce tokens in p, and p• denotes the set of transitions that may consume
tokens from p. ♦

p0 p1

p2 p3

p4 p5 p6

t0

t1 t2 t3

2

3

Figure 4.4: Example of a Petri net

Figure 4.4 is a graphical representation of a Petri net. Places are represented by circles,
transitions by filled rectangles, arcs by arrows, tokens by dots, and arc multiplicity by
numbers on top of arcs (usually omitted when equal to 1). Places and transitions may be
labeled to indicate which conditions and actions they represent in the underlying system.
Markings are represented by putting a certain number of tokens in the marked places.
On this example, M(p0)= 2 which is symbolized by two tokens in place p0.
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Remark 4.1 (basic Petri net). In the particular case where all arcs have weight 1, W is
usually dropped from definitions and is implicit from the flow relation. In this case, we
will say that the considered Petri net is basic.

Semantics
Petri net semantics define moves between markings. Moving from a marking M to a
new marking M′ is performed by firing a transition t ∈ T. Firing a transition models the
execution of the event corresponding to t in the underlying system. A transition t can fire
only when it is enabled.

Definition 4.4 (enabledness)
A transition t ∈ T is enabled by a marking M iff ∀p ∈ •t, M(p) ≥ W(p, t). The set of all
transitions enabled by a marking M is denoted enab(M). ♦

Definition 4.5 (firing)
Firing an enabled transition t from a marking M consists in:

1. consuming W(p, t) tokens from each place p in its preset •t, leading to a temporary
marking Mtmp,

∀p ∈ P : Mtmp(p),

{
M(p)−W(p, t) if p ∈ •t,
M(p) otherwise

2. producing W(t, p) tokens in each place p in its postset t•, leading to a new marking
M′.

∀p ∈ P : M′(p),

{
Mtmp(p)+W(t, p) if p ∈ t•,
Mtmp(p) otherwise

We will writes M t−−→ M′ when firing t from marking M produces marking M′. ♦

From this firing rule, we introduce the two convenient notions of persistency and new
enabledness.

Definition 4.6 (persistency and new enabledness)
Given a marking M and an enabled transition t ∈ enab(M), we define the set of persistent
transitions, after firing t from M, as:

pers(M, t), enab(Mtmp)\{t}.

and the set of newly enabled transitions as:

newl(M, t), enab(M′)\pers(M, t). ♦

Remark 4.2 (safe and elementary net). When there exists a bound K such that, for every
marking M of a basic Petri that is reachable from the initial marking M0, and for every
place p ∈ P, M(p) ≤ K , we say that the net is K-bounded. When a net is 1-bounded, it is
called a safe Petri net. Last, a semantic variant of Petri nets allows firing of a transition
t only if, for every place p ∈ t•, M(p) = 0 (one cannot produce a resource in an already
occupied place). Nets with this semantic variant are called an elementary net.
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Petri nets with inhibitor arcs
This model adds inhibitor arcs [56]. These arcs add the possibility to condition firing of a
transition to absence of tokens in some places.

Definition 4.7 (Petri net with inhibitor arcs)
A Petri net (with inhibitor arcs) is a tuple 〈P,T, A, ◦A,W , M0〉 where P, T, A, W and M0
have the same meaning as in Petri nets, and ◦A ⊆ P ×T is a set of inhibitor arcs. We
will assume that inhibitor and flow arcs are exclusive, that is an arc (p, t) is either in
◦A or in A. Given a transition t ∈ T, we denote by ◦t the set of inhibiting places of t.
◦t, {p | 〈p, t〉 ∈ ◦A}. ♦

p0 p1

p2

p3

t0 t1

t2

Figure 4.5: Example of a Petri net with inhibitor arcs

Definition 4.8 (enabledness—with inhibitor arcs)
For Petri nets with inhibitor arcs, a transition t ∈ T is enabled by a marking M, iff it is
enabled by M according to definition 4.4 and all its inhibiting places are empty. We will
denote by ◦t the set of places that inhibit t, that is ◦t = {p ∈ P | ∃(p, t) ∈ ◦A} We define the
set of enabled transition by a marking M (in this context) as:

enab(M), {t ∈ T | ∀p ∈ •t, M(p)>W(p, t)∧∀p′ ∈ ◦t, M(p′)= 0}.

♦

Figure 4.5 gives an example of a Petri net with 2 inhibitor arcs. They forbid firing of
transitions t0 and t1 when p2 contains a token. In this net, transitions t0 and t1 cannot
fire from marking M = 〈1,1,1,0〉. Inhibitor arcs can be used to represent block constraints
in urban train sytems, i.e. impose that a train cannot enter an already occupied track
portion.

Remark 4.3. (expressiveness) Adding inhibitor arcs to Petri nets gives them the expres-
sive power of Turing machines. As a consequence, all the properties that are decidable for
Petri nets (termination, boundedness, coverability, reachability) are undecidable for nets
with inhibitor arcs.

When more than one transition is enabled by a marking M, only one transition can fire.
Every transition can fire from M, but standard Petri nets do not specify the probabil-
ity of firing of each transition. Similarly, Petri nets do not address time. Several timed
and stochastic variants have been proposed. In the next sections, we present timed and
stochastic variants that were relevant for the definition of the models introduced in Chap-
ter 5.
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4.2.2 Time Petri nets

In rail systems, time is an important factor. Train trips have nominal durations but
are also subject to fluctuations due to some delays. These delays emerge randomly from
different sources, e.g., technical failures, accidents, door-holding, etc. Guaranteeing safety
and comfort of passengers calls for a proper reaction to these delays and for a proper
modeling that integrates time.

There exist two major families of temporal extensions of Petri nets: time Petri nets
(TPN) [52, 42] and timed Petri nets (TdPN) [59, 38]. Time Petri nets attach time con-
straints to transitions, and enforce firings of transitions to occur within a certain time
interval after their enabling. Timed Petri net attach ages to token, and constraints to
arcs. A transition is allowed to fire if the constraints on arcs from the preset of the tran-
sition to the transition are met. Coverability, termination and boundedness are decidable
for timed Petri nets [1], but undecidable for time Petri nets. Reachability is undecidable
for both models. In this section, we will mainly consider time Petri nets [52] and their
variants.

Let us denote by I+ the set of intervals with positive rational endpoints; i.e., all intervals
of the form [α,β], [α,β), (α,β] and (α,β), with α ∈Q≥0, β ∈Q≥0 ∪+∞ and α≤β.

Definition 4.9 (time Petri net)
A time Petri net is a tuple 〈P,T, A,W , M0, Is〉 where P, T, A, W and M0 are places ,
transitions, arcs, and an initial marking, Is : T → I+ is a function that associates a static
time interval to transitions. ♦

The endpoints of the interval Is(t) are usually called the (static) earliest and latest firing
time of transition t. They are respectively denoted by efts(t) and lfts(t).

Semantics
A TPN can be seen as a classical Petri net in which execution times of transitions are
restricted, i.e., a Petri net is a particular case of a TPN in which all transitions are as-
sociated with the interval [0,+∞). The principle of TPNs semantics is that a transition
fires when it has been enabled for a duration d ∈ Is(t). Hence markings are not sufficient
to take time constraints into account, and the semantics of TPNs is described in terms of
discrete and timed moves from a configuration to the next one. Configurations memorize
place contents, but also the time elapsed since enablings of transitions.

Definition 4.10 (configuration—of a TPN)
A configuration (state) of a TPN is a pair 〈M,ν〉 where:

• M is a marking, and
• ν : enab(M)→R+ is a clock value.

♦

The execution of a TPN can be described in terms of timed moves, that let a certain
duration elapse, and discrete moves, that fire transitions and move tokens according to
a standard Petri net semantics. Function ν recalls the time that has elapsed since the
last enabling of each enabled transition during an execution of the net. We denote by
ν+d the clock valuation that associates value ν(t)+d to transition t. A timed move from a
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configuration (M,ν) to a configuration (M,ν+d) can occur, iff, for every enabled transition
t, ν(t)+d ≤ lfts(t). This type of move is denoted by (M,ν) d−→ (M,ν+d)

A discrete move from a configuration (M,ν) to (M′,ν′) is performed by firing a transition t.
This discrete move is allowed only if t is enabled by M , and ν(t) ∈ Is(t′). The marking M′

obtained is the usual marking in the untimed Petri net semantics. Last, the valuation ν′

is computed as follows:

∀t′ ∈ enab(M′) : ν′(t′)=


ν(t) if t′ ∈ pers(M, t)
0 if t′ ∈ newl(M, t) or t′ = t
is undefined otherwise

Calculation of the new firing intervals is done as follows:

∀t′ ∈ enab(M′) : I ′(t′),

{
[max(0,eft(t′)−d), lft(t′)−d] if t′ ∈ pers(M, t)
Is(t′) if t′ ∈ newl(M, t)

An important feature of time Petri nets is urgency. Time cannot elapse if there exists
an enabled transition t such that Is(t) = [α,β] (or IS(t) = (α,β]) and ν(t) = β. Intuitively,
time cannot elapse if a transition has been elapsed for a duration that reaches the highest
possible duration allowed by Is(t). In this case, t or a transition that is enabled in (M,ν)
must fire before time elapses. This rule give time Petri nets their expressive power. From
a more pragmatic point of view, urgency allows for the specification of situations in which
events have to occur before a certain date. In the context of UTS, this allows for instance
to specify that a train must leave a station at latest two seconds after the departure order
was given. Urgency is hence an important feature in the context of this thesis.

Time Petri nets allow for the design of models with clocks, delays, urgency, .... However,
one can notice that randomness is still missing. Indeed, when several transitions are
firable from a configuration, TPNs do not affect any probability to these transitions. Sim-
ilarly, a transition t can remain enabled for the whole interval [0, lfts(t)] and fire after a
duration comprised in Is(t), but this dense space of legal durations is not probabilized.

4.2.3 Stochastic Petri nets

Stochastic Petri nets [53, 7] bring randomness in Petri nets. More precisely, possible firing
times of transitions in this model are exponentially distributed. As a result, instead of
knowing in which interval of time a transition is expected to fire, we know what is the
probability of a transition firing before (or after) given times.

Definition 4.11 (stochastic Petri net)
A stochastic Petri net (SPN) is a tuple 〈P,T, A, M0,λ〉 where:

• P, T, A, and M0 form a Petri net, and
• λ : T →Q≥0 a function that, to each transition t ∈ T, assigns a rate.

♦

If we denote by ζt the random variable representing the time-to-fire of a given transition
t ∈ T, then ζt is exponentially distributed and its CDF is given by Fζt (x), 1− e−λ(t)·x.
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When a transition t is enabled, the average time for it to fire is given by 1
/
λ(t). If more

than one transition are enabled by a marking M, then the probability for each enabled
transition t to fire first is equal to λ(t)

/∑
t′∈enab(M)λ(t′).

There exists an extension of SPNs called generalized stochastic Petri nets (GSPN) [3, 7].
In this variant, the set of transitions is composed of timed transitions that fire after a
random exponentially distributed enabling time, as in SPNs, and immediate transitions
that fire in zero time once enabled. When multiple immediate transitions are firable at
the same time, the transition that fires is chosen according to a probability determined
by weights of enabled immediate transitions. Finally, when both immediate and timed
transitions are firable at the same time, only immediate transitions can fire.

4.2.4 Stochastic time Petri nets

In the model of SPNs/GSPNs, random variables are exponentially distributed. This
choice facilitates analysis, but is too restrictive in many situations. For instance, the
time needed to move from one station to another is not exponentially distributed, and is
rather close to a Weibull distribution. SPNs do not allow to model many other stochastic
systems whose random variables are not necessarily exponentially distributed. For this
reason, VICARIO et al. [13, 39] propose the extension of STPNs.

Definition 4.12 (stochastic time Petri net)
A stochastic time Petri net is a tuple 〈P,T, A, ◦A, M0, Is,F ,W 〉 where:

• P, T, A, ◦A, M0, and Is form a (basic) time Petri net with inhibitor arcs;
• F : T → Σcdf associate each transition t ∈ T with a CDF denoted Ft , F (t) with

dom(Ft)= Is(t); and
• W : T →R>0 associate each transition with a weight.

♦

For convenience, we will only assign closed intervals and open intervals of the form
[α,+∞) to transitions of stochastic time Petri nets. For each transition t ∈ T, let ζt denote
the random variable with CDF Ft, and let {ζ〈t,0〉,ζ〈t,1〉,ζ〈t,2〉 . . . } denote the set of (possibly
infinite) outcomes of a random sampling experiment from Is(t) according to Ft.

Semantics
Definition 4.13 (configuration—of an STPN)
A configuration of a STPN is a tuple 〈M,τ〉 where:

• M is a marking; and
• τ : enab(M)→R≥0 associates each enabled transition with a time-to-fire.

♦

Intuitively, τ(t) is the time that t has to wait before being fired or disabled. In STPNs, a
transition can fire if it is enabled, and its time to fire is equal to 0. Given a configuration
〈M,τ〉, we define the set of firable transitions as:

fira
(〈M,τ〉), {t ∈ enab(M) | τ(t)= 0}.
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The semantics of an STPN is then defiend in terms of a time move or a discrete move.

A discrete move from a configuration 〈M,τ〉 consists in firing a firable transition t ∈
fira

(〈M,τ〉). This firing leads to a configuration 〈M′,τ′〉. M′ is obtained following the
regular firing rule of Petri nets (cf. Def. 4.5)

New times-to-fire are calculated as follows:

∀t′ ∈ enab(M′) : τ′(t′),

{
τ(t′) if t′ ∈ pers(M, t)
ζ〈t,i〉 if t′ ∈ newl(M, t) or t′ = t

Here, ζ〈t,i〉 is a value sampled randomly from Is(t). In practice, this sampling can be
performed with the inverse transform sampling method.

A time move from a configuration 〈M,τ〉 is performed by letting time elapse by a strictly
positive duration θ ≤mint∈enab(M)τ(t), and leads to a new configuration 〈M′,τ′〉.
In time moves, the marking stays unchanged, i.e., M′,M, and times-to-fire are reduced
by the elapsed time:

∀t′ ∈ enab(M′) : τ′(t′)= τ(t′)−θ.

An execution of an STPN consists in a succession of time and discrete moves, e.g. a run
of the form:

〈M,τ〉 tx−−−→〈M′,τ′〉 θ0−−−→〈M",τ"〉 θ1−−−→ . . .
ty−−−→〈M(k),τ(k)〉 tz−−−→ . . .

Following this semantics, from any configuration only one type of move can be performed,
i.e., when one transition (or more) is firable, only a discrete move can be performed, and
when time can elapse, no transition is firable and only time moves can be performed.

When a time move is possible, an infinite number of time moves can theoretically be
carried out. However, simulations usually perform the greatest possible time move with
θ = mint∈fira(〈M,τ〉)τ(t). This approach allows for a considerable gain in execution time
when using STPNs for simulation, in comparison with approaches in which time is dis-
cretized using a fixed period.

In some cases, more than one transition may be firable at the same time. In this case,
transition weights are used, and the probability of firing a firable transition t is equal to
W (t)

/∑
ti∈enab(M) W (ti).

4.2.5 Batches Petri nets

Certain variants of Petri nets (e.g., classical, time and stochastic variants) represent mov-
ing objects as tokens. These are discrete entities that move along a network. To model
continuous quantities such (e.g., fluids), other models were later proposed, such as: con-
tinuous Petri nets (CPN) [21], in which places contain continuous quantities instead of to-
kens, and transitions consume place contents at a given rate, hybrid Petri nets (HPN) [4],
that allow for the representation of continuous and discrete quantities in the same model;
and later, batches Petri nets (BPN) [24], that was designed specifically for the represen-
tation of systems with circulating parts on conveyor belts and accumulation phenomena.
Interestingly, the generalized version of this model, namely generalized batches Petri
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nets (GBPN) [22, 23], allows for the modeling and analysis of high speed systems, and for
the synthesis of control policies.

We refer interested readers to [22, 23] for a complete description of the model and of its
semantics. In this section,we will mainly give an idea of the element appearing in a batch
Petri nets.

Definition 4.14 (generalized batches Petri net)
A GBPN is a tuple 〈P,T, A,W ,type,char,mark0,temp〉 in which:

• P, T, A, and W are Petri net places, transitions, arcs and multiplicity function;
• type : P ∪T → {D,C,B} associates each node (p or t) with a type:

discrete (D), continuous (C) or batch (B);
• char : P∩type−1[{B}]→R3

≥0 associates each batch place pi with a triple of character-
istics: 〈veli,deni, lgti〉 for driving speed, maximum density, and length;

• mark0 is the initial marking; and
• temp : T →Q≥0 associates each transition t with a nonnegative rational number.

♦

Figure 4.6: Elements of batches Petri nets: a) discrete places b) continuous places c) batch
places d) discrete transitions e) continuous transitions f) batch transitions

Figure 4.6 lists elements that appear in batches Petri nets. Discrete places a) and dis-
crete transitions d) have the same meanings as in Petri nets. Discrete places can contain
tokens, that are moved by discrete transitions. Continuous places b) contain real quanti-
ties, that can be consumed by continuous transitions e) or batch transitions f . Continuous
places can represent tanks, energy levels,... Last, batch places contain batches, i.e. loads
of matter that are conveyed from the beginning of the place to its end in batches. Batch
transitions consume and produce the contents on continuous places and of batch places.
Batch places are filled and emptied by continuous and batch transitions.

A batch place can be seen as a conveyor, with a length and a speed. A batch is a load
of matter with a density, a length and a position. Batch places contain several batches,
that all move toward the end of the place at the same speed. Batch transitions consume
the contents of their input continuous or batch places at some rate. They can be seen
as machine processing A marking of a GBPNs associates to each discrete place a integer
(number of tokens), to each continuous place a real value, and to each batch place a
sequence of batches.

The evolution of places contents follows a mixed discrete/ continuous mode: discrete tran-
sition move tokens among discrete places, and batch/continuous transitions modify the
contents of batch/continuous places at some rate when their are enabled. Controlling a
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batch Petri net consists in controlling discrete transitions, and in fixing the rate of con-
tinuous and batch transitions.

Figure 4.7: An example system modeled with a batches Petri nets

The example of Figure 4.7 is a simple plant model processing arrival with two machines.
Quantities of matter to manufacture are produced by transition t0 in place p0. The con-
tents of place p0 can be sent to batch p3 by transition t3 when place p1 is filled and sent
to batch p4 by transition t4 when place p2 is filled. Last transitions t5 and t6 release
the contents of batches in place p5. In this type of model, transition t1 has a particular
production rate, and by playing with the speed of batches and with transitions t1 and t2,
one can control at which speed the contents of place p0 is transferred to place p5.

Batch Petri nets allow for the simulation of a wide range of DESs. Although batch ele-
ments and related mechanisms were initially designed to model production systems with
accumulation phenomena, GBPNs can effectively be used to design control policies for
transportation networks [23]. Batch places can be seen as portions of highways, with
configurable speed constraints as a means of flow decongestion. It is to be noted that
this model is at least as expressive as CPNs and HPNs as the sets of batch, continuous
or discrete places and transitions can be empty, leading to instances of the aforemen-
tioned models. Batch mechanisms allowed for simulation of a portion of Netherlands’
A12 highway and performance evaluation of the used speed control policies [23] using the
A12segment tool [65].

Despite their expressiveness, batches Petri nets miss a few ingredients to model rail-
way systems. Indeed, UTS need to consider random delays, which cannot be modeled in
batches or continuous places/transitions, that have deterministic behaviors governed by
the chosen rates of transitions. Another mismatch between UTS and batch Petri nets is
that trains are discrete elements with a certain speed and length, and cannot be consid-
ered as a splittable flow of matter. Further, batch places cannot be used to model track in
their current configurations: the contents of a batch place move at a unique speed, while
trains have their own speed.

Despite the expressive power and appealing features of stochastic time Petri nets and
batch Petri nets, these models are not sufficient to model regulated urban train systems.
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For this reasons two new variants of stochastic time Petri nets were modeled. They are
described in chapter 5.

4.2.6 Queuing networks

In order to optimize the use of capacity and traffic flow, several models for stochastic
train operation were proposed [32]. One of the pioneering efforts in this field of research
lay in the queuing theory based approach proposed by SCHWANHÄUSSER [62]. It aims
at estimating the secondary delay following disturbances in a rail system. This delay
corresponds to the mean queue length and is function of the distribution of primary delay,
buffer time, mean headway, train sequence, and priority. The chosen model is of type
M/D/1, i.e., arrivals are determined by a Poisson process (Markovian process), jobs service
times are fixed (Deterministic), and with 1 server. The admitted level of hinder is defined
empirically by the maximum queue length which equals the maximum total secondary
delay per day. It is given by the equation: LW =α · e−β·pP where: LW is the queue length,
α and β are coefficients, and pP probability of passenger trains. Operation quality is
assessed by dividing the estimated queue length by the maximum queue length with 0.5
as a result standing for very good, 1 for acceptable, and 1.5 unsatisfactory quality.

The estimation of scheduled and unscheduled waiting times as a measure of operations’
quality of a timetable is implemented in the software ANKE (German abbreviation for
Analytic Network Capacity Determination) tool, developed at RWTH Aachen [67].

Due to the restrictive aspect of the M/D/1 queue, models of type G/G/1 (with General, i.e.,
arbitrary distributions) and M/G/1 were later proposed by WAKOB [68] and HERTEL [36]
respectively.
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5
Models for regulated metro

systems

This chapter proposes two models for urban train systems. These models are variants of
Stochastic Time Petri nets introduced in Chapter 4. As already explained in Chapter 4,
standard models of Petri nets miss some elements to represent features of urban train
systems. In this chapter, we extend STPNs and define two models: the first one, intro-
duced in Section 5.2 is a variant of STPNs with asymmetric distributions and a blocking
semantics. In this model, trains are represented by tokens. The model is well adapted
to represent URSs with fixed block policies. The second model, introduced in section 5.3
is also a variant of STPNs, but where trains are represented by trajectories. This model
was inspired by STPNs, continuous nets and Batch Petri nets, but with some differences
that are highlighted in the section. This model is well adapted to represent URSs with
moving block policies. Both models rely on particular random distributions described in
section 5.1

5.1 Random deviations

One of the first requirements in models for urban train systems is the capacity to faith-
fully represent the delays occurring during trips and at dwell times. To this extent, we
first discuss the general shape of probability distributions that will be used in our models
to represent delays.

During a normal operation day, train departures and arrivals are planned at certain
known dates, usually specified in a timetable. However, these dates are rarely perfectly
met, due to various disturbances delaying trains (doors problems, slight speed variations,
weather conditions....) to which the system is exposed. Most of the time, events occur
at dates that are slightly earlier or slightly later than the reference date specified in the
timetable. Usually, these delays or advances are small (only a few seconds), and large dif-
ferences between the planned date of an event and the real occurrence date are very rare.
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In order to model this randomness, a natural approach is to consider dwell and running
times as random variables following a probability law. The law depicting the duration of
a dwell time or of a running time can be one of the off-the-shelf distributions (exponen-
tial law, normal laws, uniform law) seen in Chapter 2. However, these distributions are
not always adapted to durations appearing in Urban Train Systems. If the duration of
a given operation o is represented by a continuous random variable X , then the mode of
variable X (the most probable value) should represent the nominal duration value for the
duration of this operation. For instance, if a train transit from station sta to station stb
is expected to last δ time units, then δ should be the mode of the distribution depicting
the duration of a trip from station sta to station stb. Obviously, this duration cannot be
represented by an uniform law. Normal distributions are better candidates, but yet are
still too symmetric to model delays and advances of trains. Indeed, if the duration of an
operation o is represented by a normally distributed random variable, the probability of
a delayed is equal to the probability of an advance. Experience shows that, in reality, the
probability of delays is substantially higher than the probability of avdances (w.r.t the
nominal duration specified in the system) and that advance is bounded (due to maximal
speed of trains and to minimal dwell times). This intuition was confirmed by analysis of
three months of logs for the line 1 of Santiago’s metro, showing asymmetric histograms.
Figure 5.1 shows a typical distribution of trip durations between tow chosen consecutive
stations in Santiago’s Metro line 1. Obviously, this histogram does not coincide with a
normal law.

Figure 5.1: A histogram for the duration of trips between two stations of Santiago’s Metro
line 1 (3 months of logs)

Truncated expolynomial functions [39] are good candidates for specification of random
durations in URSs. Truncated expolynomial functions compose several exponential laws,
and can take positive values only on an given interval [α,β]. The curves drawn for these
functions are asymmetrical truncated bell-shaped curves. A PDF f defined with a trun-
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cated expolynomial function is described as follows:

f (x)=


n∑

i=1
ci · xai · e−λi ·x if x ∈ [α,β]

0 otherwise.

with c ∈N, a ∈R, and λ ∈R≥0.

When f (x) defines a PDF of a random variable, its integral over its domain has to be equal
to 1.

+∞∫
−∞

f (x)dx =
β∫
α

f (x)dx = 1.

x

f (x)

15 16 17 18 19 20 21 22 23 24 25

0.1
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0.3

0.4
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Gaussian

Figure 5.2: Comparison between Gaussian and truncated expolynomial functions

Figure 5.2 illustrates the advantage of using truncated expolynomial functions. The
curves represented here are the Gaussian function N (20,1) in the background, and the
function d(x)= 19+ f (x), where f (x) is the expolynomial function 6.20·x2.95 ·e−3.00·x+0.30·
x1.50 · e−1.20·x defined on interval [0,6]. N (20,1) is represented by the blue area in the
background, and d(x) with a thick line. One can notice that f (x) could be obtained with
a Weibull function. However, truncated expolynomial functions allow for the definition
of distributions with several local maximal probabilities (peaks in the curve), depicting
for instance, the most probable duration for a dwell time, and the second most probable
duration when an incident occurs as doors close.

In the rest of the chapter, we will use truncated expolynomial functions to model dwell
and running times and their perturbations.
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5.2 Stochastic time Petri nets with blocking semantics

In this section, we propose a model for URS. This model uses a variant of Stochastic
Time Petri nets introduced in chapter 4, a timetable, and a regulation algorithm that
recomputes timetables. To encode fixed block signaling systems, we define a particular
blocking semantics, i.e. an elementary semantics of nets that forbids a train to enter
a section that is already occupied by a train. We model the effects of regulation with
particular control places, that are ignored to consider transitions as enabled, but must be
filled if a transition needs to fire. These places serve as interface between a timetable,
that dictates possible dates of departure, and the physical system descried by the blocking
STPN.

The semantics of our model is a synchronized execution of a Stochastic Petri net and of a
timetable that is constantly updated by a rescheduling algorithm. We detail the seman-
tics of each part of the model, and then show how the net and the timetable synchronize.

5.2.1 Semantics of stochastic Petri nets

We recall that a STPN is a tuple 〈P,T, A, ◦A, M0, Is,F ,W 〉. The blocking semantics of
stochastic Petri nets consists in discrete transitions firings and timed moves.

Definition 5.1. A transition t is enabled in a marking m if and only if there is at least
one token in each of its input places, and none of it inhibiting places is marked. We denote
by enab(m) the subset of transitions enabled by a marking m and define it as:

enab(m)= {t ∈ T | ∀p ∈ •t,m(p)> 0∧∀p ∈ ◦t,m(p)= 0}

The semantics of TPNs is expressed in terms of moves between configurations. Intuitively,
a configuration remembers the localization of trains, and the time remaining before a
departure or an arrival of a train. Discrete transitions change markings (i.e. change the
localization of trains) and timed moves let time elapse, hence decreasing the remaining
time before a departure or an arrival.

Definition 5.2. A configuration of a STPN is a tuple CN = 〈m,τ〉 where

• m is a marking of the STPN,
• τ : enab(m)−→R≥0 is a function that assigns to each transition ti enabled by mark-

ing m a positive real value τi = τ(ti) that represents the time left to fire transition
ti.

Definition 5.3. A transition t is firable in a configuration CN if it is enabled by the
marking of the configuration m, its time to fire τ(t) is equal to 0, and all places in the
postset of t are empty.

This definition of firability enforces an elementary semantics. In the rest of the section,
we will denote by fira(CN ) the set of firable transitions in configuration CN . For a given
τ : T →R≥0 and a value δ ∈R>0, we define the mapping τ−δ as the mapping that associates
τ(t)−δ to any transition t in Dom(τ).

To avoid train collisions, signals forbid trains to enter a section that is already occupied
by another train. In our net model, this will block firing of some transitions.
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Definition 5.4 (blocked transition). A transition t is blocked in a configuration 〈m,τ〉
if and only if it is enabled by m, its time to fire τt is equal to 0, and one of its postset
places contains a token. The set of blocked transitions in a configuration 〈m,τ〉 is formally
defined as follows:

blck(〈m,τ〉)= {t ∈ enab(m) | ∃p ∈ t•,m(p)> 0∧τ(t)= 0}

Timed moves
A timed move from a configuration 〈m,τ〉 to another configuration 〈m,τ′〉 consists in let-
ting a strictly positive duration δ elapse. To be allowed, δ must be positive and smaller
than all times to fire associated by τ to any transition enabled but not blocked in m. After
a timed move, the new configuration reached is 〈m,τ′〉, i.e. times to fire of all enabled
transitions are decreased by δ time units. Blocked transitions keep their time to fire set
to 0. This can be formally written as follows:

δ> 0
∧ ∀t ∈ enab(m)\blck(〈m,τ〉),τ(t)≥ δ∧τ′(t)= τ(t)−δ
∧ ∀t ∈ blck(〈m,τ〉),τ′(t)= τ(t)

〈m,τ〉 δ−→〈m,τ′〉

If one wants time steps to be maximal, the rule becomes:

δ> 0∧δ=min {τ(t) | t ∈ enab(m)\blck(〈m,τ〉)}
∧ ∀t ∈ enab(m)\blck(〈m,τ〉),τ(t)≥ δ∧τ′(t)= τ(t)−δ
∧ ∀t ∈ blck(〈m,τ〉),τ′(t)= τ(t)

〈m,τ〉 δ−→〈m,τ′〉

Discrete moves
Blocking STPN also evolve through discrete moves, that is firing of transitions. Let m
be a marking, and let t ∈ enab(m). We define as usual the temporary marking mtmp =
m − •t. We say that a transition ti is newly enabled after firing of transition t from
m if ti ∈ enab(m′) and either ti = t or ti ∉ enab(mtmp). Similarly, we will say that a
transition ti is persistent after the firing of t from m if it is enabled in m and remains
enabled in mtmp. We denote by newl(m, t) the set of newly enabled transitions and
by pers(m, t) = enab(mtmp)∩ enab(m) the set of persistent transitions. For a transition
ti ∈ newl(m, t), a new time to fire in [eft(ti), lft(ti)] is sampled according to the CDF Fti

attached to transition ti.

A discrete move from a configuration 〈m,τ〉 to a configuration 〈m′,τ′〉 via firing of transi-
tion t is formally defined as the operational rule below:
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t ∈ fira(〈m,τ〉)
∧ m′ = m− •t+ t•

∧ ∀ti ∈ pers(m, t),τ′(ti)= τ(ti)
∧ ∀ti ∈ newl(m, t),τ′(ti) ∈ [eft(ti), lft(ti)]

〈m,τ〉 t−→〈m′,τ′〉

One can notice that this operational rule allows any value in [eft(ti), lft(ti)] for the time to
fire of ti. We can now address the probability distribution on discrete moves: When more
than one transition is firable in a given configuration CN , each firable transition tk has a
probability to fire equal to Pfire(tk), where:

Pfire(tk)= W (tk)∑
ti∈fira(CN )

W (ti)

Discrete moves represent departures or arrivals of trains. Sampled values are durations
that are chosen for dwell times or trip times. From a given configuration 〈m,τ〉 when
transition t fires, denoting by ζi = samp(Fti ) the value sampled for a newly enabled tran-
sition ti, the probability to obtain ζi as time to fire for ti is consistent with the CDF Fti ,
that is P(ζi < x)= Fti (x) for any x ∈ [eft(ti), lft(ti)]. Though no probability is explicitly men-
tioned in the semantics rules, the choice of a particular move, and the sampling of new
values obey probability distributions. Hence the probability to move from 〈m,τ〉 to 〈m′,τ′〉
is equal to the probability to fire transition t among all firable transitions, multiplied by
the probability that samplings of times to fire for newly enabled transitions results in τ′.

p1

t1 [0,6]

p2

Figure 5.3: A simple STPN

Consider the example of Figure 5.3, and let us suppose that the net is in configuration
〈m,τ〉, with m(p1) = 1, m(p2) = 0, τ(t1) = 5.5. This configuration can let 5.5 time units
elapse, and then fire t1. After this firing, a new time to fire d1 is sampled for t1, leading
to a configuration 〈m,τ′〉, where τ′(t1)= d1.

Discrete departure orders
In the rest of this document, we will need to address marking changes due to the con-
text of use of an STPN (namely departure orders sent by a timetable-based regulation
scheme). A marking change is hence only a move from a configuration 〈m,τ〉 to a config-
uration 〈m′,τ′〉 due to a change of marking from m to m′ (departure orders will mainly
add one tokens to a control place. These departure orders will be a way to synchronize
the execution of a timetable and that of a STPN. For this reason, we need to redefine the
notions of newly enabled and persistent transitions for such contextual marking changes.

Definition 5.5. Let m, m′ be two markings. We will say that a transition t is persis-
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tent with respect to contextual marking evolution from m to m′ if t is enabled in m and
m′. However, this marking change is not a firing of t, which forces us to redefine the
notion of enabledness. We will say that t is newly enabled with respect to contextual
marking evolution from m to m′ if t is not enabled in m and is enabled in m′. We denote
by pers(m,m′) = enab(m′)∩ enab(m) the set of persistent transitions after the evolution
from m to m′. We denote by newl(m,m′) = enab(m′) \ enab(m) the set of newly enabled
transitions after the evolution from m to m′.

The semantic rule defining a contextual change appending a token to place p is defined
as follows:

m′ = m+ {p}
∧ ∀ti ∈ enab(m),τ′(ti)= τ(ti)
∧ ∀ti ∈ newl(m,m′),τ′(ti)= samp(Fti )

〈m,τ〉 p−→〈m′,τ′〉
Figure 5.4 illustrates how STPNs can be used to model a railway network, departures
and arrivals. Here places p j represents a station, and pk represent two a track portion.
Place p j−go represents a departure order needed to fire transition t j−go (the departure
of a train. Place p j−out is filled when a train has started to move from the station (but
it has not yet effectively entered the next section). Transition t j fires at the end of the
nominal dwell time. A train enters the next section after firing of the transition tk (the
next section is represented by place pk). For clarity, we have represented departure or-
der with a gray token (as in place p j−go), and trains with black ones (as in place p j).
However, the semantics of the STPN does not consider colors for tokens. To complete the
picture, one can associate cumulative distributions to transitions. For transition t j−go,
this distribution represents the time needed to leave the station once the departure order
is given by the timetable. This time can vary between 0 and 10 seconds, depending on the
crowd in station, on door closure problems, etc... For transition t j, tk, tl , the distribution
symbolizes the trip time, that is the time needed to move from one section to the next one.

p j t j−go
[0,10]

p j−go

p j−outt j
[30,30]

tk
[0,0]

pk tl
[200,110]

Figure 5.4: Transitions and places from a STPN model of a metro network.

5.2.2 Timetable Execution

The second ingredient of our model is a timetable. A railway system is driven accord-
ing to a schedule, which is an a priori choice of for departures and arrival dates. This
schedule is a purely theoretical view of the real system, in which delay and failures may
impose changes to the planned schedule. We hence consider that during the execution
of a timetable, departures or arrivals can occur at different dates than those originally
planned. However, the operators use regulation policies to minimize the effect of delays,
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and try to stick to the daily schedule.

As for Petri nets, we define configurations for timetables. A configuration of a timetable
will have to remember which events have already been executed and their occurrence
dates, the departure orders that have been sent, and the expected dates of remaining
unexecuted events.

Definition 5.6. A configuration of a timetable TH = 〈G (S),∆0〉 is a tuple CT = 〈X ,D,∆〉
where

• X ⊆ N is a set of nodes depicting the set of executed events from the timetable.
• D is a set of nodes that symbolize the departure orders that have already been sent

to the corresponding trains, but did not necessarily occur.
• ∆ : N →Q≥0 is a dating function that assigns an effective date to each node of X and

an estimated date to each node ni ∈ N \ X

The initial configuration C 0
T of a timetable TH is 〈∅,∅,∆0〉.

We represent departure orders that have been sent as a subset of departure events D.
This set is essential to avoid filling twice a departure order place, and differentiate depar-
tures that are allowed (i.e. appear in D) and those that are executed (i.e. appear in X ).
Hence, in a configuration CT = 〈X ,D,∆〉, D needs not be contained in X . This distinction
between order and execution of the order allows to add delays at station due to doors or
passengers problems.

Figure 5.5 is an example of a configuration, with 2 trains, and 4 events for each train. In
this picture, gray nodes represent events that have already been executed (X = ni1,n j1,
nk1,ni1,n j2). White events represent events that are planned in the timetable, but have
not yet been executed. For convenience, we also represent the last executed event as an
event with bold font. The departure orders that have been sent are represented by doubly
circled events, that is D = {ni1,ni2,nk1,nk2}. On this drawing, one can immediately notice
that some black events (ni1,ni2andnk1) are doubly circled: they correspond to departures
that have been executed after the order was sent. The doubly circled event nk2 is not yet
executed, however, an order corresponding to this departure has been sent to the trains.

Remark: for simplicity, we consider that departure orders are never lost and sent only
once.

ni1 n j1 nk1 nl1

ni2 nj2 nk2 nl2

Figure 5.5: Configuration of a timetable

Let us recall that timetables dated graphs. A timetable hence gives an ordering on events.
The main idea in timetable execution is to execute events in the prescribed order and at
the chosen date in the timetable. To use the ordering imposed by a timetable, we first
need to define the notions of predecessors and successors of an event in a timetable.

Definition 5.7. A direct predecessor of a node ni is a node n j such that (n j,ni) is an arc
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of the timetable.A direct successor of ni is a node n j such that (ni,n j) is an arc of the
timetable. We will denote by dσ−(ni) the set of all the direct predecessors of node ni and
dσ+(ni) the set of its direct successors.

Note that a node can have more than one direct predecessor (resp. direct successor) and
can be the direct predecessor (resp. direct successor) of more than one node.

ni1

ni2

ni3

n j

λi1, j

λi2, j

λi3, j

n j

ni1

ni2

ni3

λ j,i1

λ j,i2

λ j,i3

Figure 5.6: Direct predecessor and direct successor nodes

Definition 5.8. A node ni is a predecessor (respectively a successor) of a node n j in a
timetable TT if there exists a sequence of nodes (n0, ...,nk) such that ∀0≤ i < k, (ni,ni+1)
is an edge of TT and ni = n0 ∧n j = nk (respectively n j = n0 ∧ni = nk).

We will denote by σ−(ni) (resp. σ+(ni)) the set of all predecessors (resp. successors) of
node ni.

Given a timetable TH = 〈G (S),∆0〉, and a configuration CT = 〈X ,D,∆〉, we will denote by
f irstexec(TH,CT ) = {n ∈ N \ X | Øn′,n ∈ E∩ (N \ X )2} the minimal set of nodes in the yet
unexecuted part of the timetable. These nodes are the next events that can be executed
from configuration CT . Similarly, we can define the next departure orders to be given, as
NextDep(TH,CT )= ( f irstexec(TH,CT )∩Nd)\ D. The next departure orders correspond
to departure events that can be executed (preceding arrivals have already occurred) and
for which a departure order was not already sent.

We are now ready to describe the execution of a timetable. Timetables semantics rules
can be decomposed into timed moves (letting time elapse), orders, and actual execution
observation. Execution of a semantic rule depends on the current date. The semantic
rules follow the following requirements:

• departure orders are sent on time, according to the current schedule
• departures can not occur earlier than scheduled, but can be delayed
• arrival can occur earlier or later than expected.
• the system can simply let time elapse, but not up the the point where a departure

order is forgotten.

The semantics rules hereafter recall a configuration CT of a timetable and the current
date d. They describe what happens when time elapses, or when an event occurs.If an
event occurs at a date that differs from the expected date, then a re-scheduling of the
remaining part of the timetable may have to occur. We describe this rescheduling as a
function h() that transforms a timetable into another timetable. This function considers
the initial constraints in the graph, the set of executed events, the last event executed,
and the current date to change dates of remaining events in the timetable.

Timed moves: From a configuration CT = 〈X ,D,∆〉 at a date d, one can safely let δ
time units elapse if the new date reached does not exceed the dates of next departure
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orders.

d+δ<min(∆(NextDep(TH,CT )))

〈X ,D,∆〉,d δ−→〈X ,D,∆〉,d+δ

departure order: A departure order is sent whenever the date to leave is reached.
Note that this departure order can only be sent when the preceding arrival has already
occurred, that is when the train receiving the order is in station.

n ∈ NextDep(TH,CT )
∧d =∆(n)

〈X ,D,∆〉,d d(n)−→〈X ,D∪ {n},∆〉,d

early arrival: When a train arrives earlier than expected at a station, its arrival date
is memorized.

n ∈ f irstexec(TH,CT )∩Na
∧d <∆(n)

〈X ,D,∆〉,d n−→〈X ∪ {n},D,∆[n→d]〉,d

where ∆[n→d] is the dating function that associates ∆(n′) to any node n′ 6= n, and d to node
n1

Late arrival: When a train arrives at a station with a delay, several situations can
occur. Either this delay can be absorbed by reducing the dwell time of the train, or there
is a need to reschedule the next departure of this train, and of other causally dependent
events. This rescheduling is made by a regulation algorithm, symbolized by function h().
We do not detail a particular rescheduling algorithm. The next subsection is devoted to
rescheduling, and presents a simple delay propagation algorithm. The late arrival rule
can be defined as follows:

n ∈ f irstexec(TH,CT )∩Na
∧d >∆(n)

〈X ,D,∆〉,d n−→〈X ∪ {n},D,h(X ,∆,d,n)〉,d

Late departure
Late departure follows the same rule as late arrival, with the additional constraint that
a departure order must have been given before the departure occurs.

1We do not consider cases where timetables are rescheduled when a train arrives early, but the rule can
be adapted to reschedule the timetable.
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n ∈ f irstexec(TH,CT )∩D
∧d >∆(n)

〈X ,D,∆〉,d n−→〈X ∪ {n},D,h(X ,∆,d,n)〉,d

On time events
Events that occur at dates originally planned by the schedule do not require re-scheduling.

n ∈ f irstexec(TH,CT )∩D
∧d =∆(n)

〈X ,D,∆〉,d n−→〈X ∪ {n},D,∆〉,d

n ∈ f irstexec(TH,CT )∩Na
∧d =∆(n)

〈X ,D,∆〉,d n−→〈X ∪ {n},D,∆〉,d

5.2.3 Regulation functions

In section 5.2.1, we have seen how to simulate physical infrastructure and random delays
with a blocking variant of stochastic Petri net. We have defined runs of a system as
prescribed by a timetable: events (departure or arrivals) occurs early, on time or late,
and the timetable can send departure orders. Upon delayed event, the timetable can be
recomputed using a a regulation function, implemented as a rescheduling algorithms. We
now formalize rescheduling policies.

Departure order are given at dates specified by a timetable. Actual departures may occur
later than expected, arrivals may occur earlier or later than expected. Delays may im-
pose changes to the expected schedule, and these changes are performed according to a
rescheduling policy. So far, we have let this rescheduling policy unspecified (it was simply
given as a function h(.) transforming a timetable into another timetable). We can now
formalize these functions, and give an example of rescheduling function that compute the
smallest allowed shift in a timetable.

Definition 5.9 (regulation function). Let T denote the set of all timetables, C their pos-
sible configurations, and G denote the set of all alternative graphs. A regulation function
is a function γ : T ×C ×G ×N ×R>0 →T .

We assume that the timetable that is executed is a solution obtained from a given alter-
native graph. Intuitively, a regulation function takes as input a timetable and its config-
uration, the alternative graph from which the timetable was computed, an event identity
and its occurrence date. This is the event that caused the rescheduling. The output of
a regulation function is a new timetable. As h(.) may use an alternative graph, one can
even design function that changes the order of events, for instance to reorder passages of
trains at forks. We furthermore impose that regulation functions do not reschedule events
originally planned before the occurrence date of the event causing the rescheduling.
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Computing a new timetable may consist in a simple shift of dates, taking into account
the constraints on dates of events inherited from the alternative graph. However, resche-
duling may mean choosing a completely different set of alternative arcs for the yet unex-
ecuted part of the alternative graph. In particular, it can allow to choose different routes
for train, swap trains orders, etc.

Let us now define a simple regulation function γ that simply shifts the occurrence dates of
events to the earliest date greater than the original schedule that satisfies all constraints
on selected (fixed) arcs.

That is γ(∆,C = (X ,D,∆),k,d) is the solution ∆′ of the set of equations

∀x ∈ X ,∆′(x)=∆′(x)
∀x ∈ N \ X ,∆′(x)≥∆′(x)
∀(x, y) ∈ E,∆′(y)−∆′(x)≥λ(x, y)

A new earliest date for all unexecuted events can be easily obtained by a propagation
algorithm such as algorithm 3.1 introduces in Chapter 4.

5.2.4 Scheduled simulation of a train system

The semantics of a regulated urban train systems is a joint simulation of a real system,
represented as a Petri net, and of a timetable. We have seen in previous sections how
to define individual semantics of Stochastic timed Petri nets, and of timetables. The two
models are composed the following way:

• the timetable acts as a controller for departure transitions in the Petri net, by in-
serting tokens in specific departure places.

• the transitions of the STPN symbolize departures and arrivals. They correspond to
nodes of the timetable, hence transitions of the STPN and nodes of the timetable
are executed jointly in semantic rules. The execution date of an STPN transition
is used to produce random changes with respect to the scheduled dates of events.
Large delay may impose rescheduling of a timetable.

We now need to define how transitions, places, and events are mapped to allow joint sim-
ulation of two models. We fix a timetable TH= 〈G (S),∆0〉, a Petri net STPN= 〈P,T,L,H,
m0,T,T,F ,W 〉, and a regulation policy h. In the rest of this section, we will denote by
Σtr the set of trains and by Σsc the set of railways sections (track portions).

Among these sections we distinguish a particular set Σst ⊂ Σsc of sections, that repre-
sent stations. Intuitively, a station is a section where a train has to stop and stay for a
minimum dwell time. However, some track portions are not stations, and trains simply
cross them without loading or unloading passengers. A train can leave the station when
it receives a departure order (this is symbolized by a particular place that is filled accord-
ing to orders coming from the timetable execution) and the next station is unoccupied by
another train.

On the Petri net side, we will distinguish the set Ta ⊂ T of arrival transitions, whose
firing represent an arrival of a train at a section, and the set and Td ⊂ T of departure
transitions whose firing represent the beginning of the trip of a train from a track portion
to another track portion. Note that we interpret the term "departure" as the fact that a
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train has started to move, and not as the fact that the train has left the section. A train is
considered to have effectively left the station only when it enters the next section of the
line.

We let Parr ⊂ P denote a set of arrival places. An arrival place containing a token repre-
sents a train stopped at a station. We let Pdep ⊂ P denote a set of departure places. A
departure place containing a token is interpreted as a train on a trip to the next track
portion. Let Pc ⊂ P denote a set of departure control places used to give departure orders.
Such departure places contain a token when a departure order was given (note that even
if the departure order is given, the train need not move immediately).

The last ingredient of our model is a pair of mappings Ψt, ψc that allow to connect nodes
of the timetable and places/transitions of the Petri net in our model. We let Ψt : Ta →℘N
denote a function that associates a set of arrival nodes to each arrival transition tarr ∈ Ta,
and a set of departure nodes to each departure transition tdep ∈ Td. This map will be
used to find which event of a timetable corresponds to the execution of a transition in
the stochastic net. Similarly, departure orders scheduled from the timetable control the
execution of the net by adding a token at a desired control place. The relation between
departure orders of the timetable and control places of the stochastic net is defined as a
map ψc : Nd → Pc that associates a departure control place to each departure node in the
timetable.

As one can notice, several nodes of the timetable are attached to a transition of the Petri
net. However, at a given instant d, considering the set of events X that have already been
executed, one can easily find which event corresponds to a given transition t. We define
the function corr : 2N ×T → N as the mapping that indicates which node of the timetable
corresponds to a given transition. More precisely, we set:

corr(X , t)= {n ∈Ψt(t) | Øn′ ∈Ψt(t)\ X ,n′ ∈σ+(n)}

As departures /arrivals from a chosen section should be ordered in the timetable, corr(X , t)
should contain at most one element. Abusing the notation, we will write n = corr(X , t) to
denote that corr(X , t)= {n}.

A railway system is a pair (TT, N) composed of a timetable and of a Petri net. The overall
semantics of railway system combines the execution of the schedule provided by timetable
TT, which decides at which dates the departure orders must be sent to the physical net-
work, and an execution of the Petri net N, which provides execution dates for arrival
and departure transitions. These dates are subject to randomized variations with re-
spect to the expected dates planned in the timetable. A configuration of a railway system
(TT, N) is a triple 〈CT ,CN ,d〉, where CT = 〈X ,D,∆〉 is a configuration of timetable TT,
CN = 〈m,τ〉 is a configuration of the Petri net N, and d ∈R is the current date.

A joint simulation of a timetable and of a Petri net consists of timed moves, and discrete
moves that are allowed by both models.

Timed moves:
Timed moves consist in letting time elapse if both the Petri net and the timetable allow
it from their configurations at current date. A delay x ∈ R can elapse in a configuration
〈CT ,CN ,d〉 as soon as x does not exceed the maximal delay allowed by the timetable and
by the Petri net. We avoid successive samplings of delays, and choose to let time elapse
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until the unique earliest date d +δ of occurrence of an event. In other words, d +δ is
equal to the earliest date of a departure order in the timetable, or of a transition firing
in the STPN, and δ is the delay that elapses from current configuration. This way, time
progresses until occurrence of the next event, which allows for efficient asynchronous and
simulation. Time elapsing is described by the following semantic rule:

〈X ,D,∆〉,d〉 δ−→〈〈X ,D,∆〉,d′〉
〈m,τ〉 δ−→〈m,τ′〉
d′ = d+δ

〈〈m,τ〉,〈X ,D,∆〉,d〉 δ−→〈〈m,τ′〉,〈X ,D,∆〉,d′〉

This way, time progresses until occurrence of the next event, which allows for efficient
asynchronous simulation.

Discrete moves
Several kinds of discrete moves can occur: a departure order imposed by the timetable, an
arrival, or a departure decided by the Petri net, and expected from the current timetable
configuration. The only technical point here is to relate departure orders with places
of the Petri net that symbolize such orders, and transitions of the Petri nets with the
corresponding event in the timetable. Then, the current date allows to decide whether the
event occurs early, late, or on time. A discrete move hence consists in firing a transition
or in appending a token in a control place.

Firing a transition t in the STPN means moving from a configuration 〈m,τ〉 to a new
configuration 〈m′,τ′〉. Now, this transition should correspond to a departure/arrival event
scheduled in the timetable. Let ne = corr(X , t) denote the next executable node that corre-
sponds an execution of transition t in the timetable. Upon execution of t, node ne is added
to the set of executed nodes X . Dates in ∆(n) are updated: ∆(ne) is defined, and takes as
value the actual date d, dates of executed nodes X and nodes that are not a successor of
ne stay unchanged while dates of successors of ne are recomputed according to the chosen
regulation algorithm.

The semantic rule describing the discrete move caused by firing a transition (departure
or arrival) is defined as follows:

t ∈ Ta∪Td
〈m,τ〉 t−→〈m′,τ′〉
n = corr(X , t)
〈X ,D,∆〉,d n−→〈X ′,D′,∆′〉,d

〈〈m,τ〉,〈X ,D,∆〉,d〉 t−→〈〈m′,τ′〉,〈X ′,D′,∆′〉,d〉

Note : ∆′ is the dating function that is recomputed during the timetable move.

When the next event occurring is a departure order (that is a discrete move imposed by
the timetable, symbolized by a node n), we append a token in the departure control place
p =ψc(n) associated with node n. This leads to a new marking m′ and a new TTF vector
τ′, as defined by the contextual change rule in the semantics of STPN seen earlier
in this chapter. Similarly, the configuration of the timetable is changed according to the
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departure rule. These changes are described by the following joint rules:

p =ψc(n)
〈m,τ〉 p−→〈m′,τ′〉
〈X ,D,∆〉,d d(n)−→〈X ,D′,∆〉,d

〈〈m,τ〉,〈X ,D,∆〉,d〉 p−→〈〈m′,τ′〉,〈X ,D′,∆〉,d〉

Conclusions on blocking STPNs
The blocking STPNs presented in this section can model urban train systems with a fixed
block policy, regulation schemes, and timetables. The way to build a SPTN from a metro
topology is rather straightforward : blocks and stations are symbolized by places, tran-
sitions represent arrival, departures, ends of waiting times, transit to the next block,....
Overall, the STPN corresponding to a given topology can be obtained by assembling com-
ponent of the form of the pieces of net in Figure 5.4.

The difficult part for this model is to build large timetables, and automate this process as
much as possible, and then to establish the correspondences between transitions in the
STPN and events in the timetable. This model was used to simulate an existing Metro
line, namely Line 1 of Santiago’s network. The results of the simulation campaign are
presented and discussed in Chapter 7.
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5.3 Trajectory Petri nets

STPNs with blocking semantics are a rough abstraction of fixed block systems, and cannot
model systems with moving blocks. For the representation of moving block systems, we
introduce trajectory Petri nets. The particularity of this model is that places contain
trajectories instead of tokens. A trajectory in a place not only provides the current state of
the modeled object, but also the expected changes in its position over time. Trajectories in
this model are abstracted to a succession of segments. We provide their formal definition
hereafter.

5.3.1 Trajectories

Definition 5.1 (point)
A point is a pair of coordinates pt , 〈x, y〉 ∈ R≥0 ∪ {+∞}×R≥0. We define addition over
points as: 〈x0, y0〉+〈x1, y1〉, 〈x0 + x1, y0 + y1〉. ♦

Points are used to define segments, but, in some particular cases, a pair of points may
represent a ray; in this case, the second point’s abscissa is +∞. Rays are necessary for
the representation of trajectories of unknown duration. More details are provided in the
semantics section for trajectory Petri nets.

Definition 5.2 (segment)
A segment is an ordered pair of points sg, 〈pt0,pt1〉 with the conditions: x0 6= +∞ (first abscissa of segment has a finite value)

∧ x1 ≥ x0 ∧ y1 ≤ y0 (segment has increasing abscissae and a decreasing ordinate)
∧ x1 = x0 =⇒ y1 = y0

We say that a point pt , 〈x, y〉 belongs to a segment sg , [〈x0, y0〉,〈x1, y1〉], and write
pt ∈ sg, iff

pt= pt0 if pt1 = pt0
x ≥ x0 ∧ y= y0 if x1 =+∞
y= (x− x0) · y1 − y0

x1 − x0
+ y0 otherwise.

♦

Definition 5.3 (trajectory)
A trajectory is an ordered set of consecutive segments tj, {sgk | k = 0,1, . . . ,Ns j −1}. Ns j ∈
N is the size of trajectory tj, i.e., the number of its segments.

For convenience, given an ordered set of trajectories {tj0, tj1, . . . ,tjNj−1}, we write:

• sg j,k to denote the kth segment of trajectory tj j;
• pt j,k,l to denote the lth point of segment sg j,k; and
• x j,k,l and yj,k,l to respectively denote the abscissa and ordinate of point pt j,k,l .

As segments of a trajectory must be consecutive, they satisfy : ∀k = 0,1, . . . ,Ns j − 2 :
pt j,k,1, pt j,k+1,0. ♦
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Figure 5.7: Example of a trajectory

Each trajectory tj j can be seen as a function that defines distance to an arrival as a
function of time, and maps abscissae (time) of its segments to ordinates (distance):

tj j :
Ns j−1⋃

k=0
[x j,k,0, x j,k,1]→

Ns j−1⋃
k=0

[yj,k,0, yj,k,1].

We will write y = tj j(x) to refer to the ordinate of a point 〈x, y〉 in a segment sg j,k of
trajectory tj j. We similarly write: x = tj−1

j (y) to refer to the abscissa corresponding to
ordinate y in trajectory tj j. If tj j is not injective, we will abusively use the notation tj−1

j (y)
to refer to the minimal abscissa such that that tj j(x)= y.

We say that a trajectory tj j , {sg0,sg1, . . . ,sgNs j−1} covers a distance d ∈R>0 iff

• pt j,0,0 = 〈0,d〉; and
• yj,Ns j−1,1 = 0.

Figure 5.7 depicts an example trajectory with 3 segments covering a distance d = 1400 m.

To define trajectory Petri nets and their semantics, we first need to introduce the notions
of upward shift, exclusion zone, blocking, and left shift hereafter.
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Figure 5.8: Upward shift and exclusion zone of a trajectory
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Definition 5.4 (upward shift)
Given a trajectory tj j and a headway h ∈ R>0, we define the upward shift of tj j (w.r.t.
headway h) as tjh

j such that:

• dom(tjh
j ), dom(tj j) (trajectories have the same abscissae); and

• ∀x ∈ dom(tjh
j ) : tjh

j (x), tj j(x)+h (ordinates are increased by h). ♦

The upward shift of a trajectory is used to define an exclusion zone in a time-space di-
agram contained between tj j and tjh

j . If a train has a trajectory tj j and is followed by
another train with trajectory tji, then, if tji respects the safety headway h, it should not
cross this exclusion zone. that should not contain a trajectory if headway h w.r.t. trajec-
tory tj j is respected. The upward shift can be easily computed by adding 〈0,h〉 to every
point in tj j.

Figure 5.8 shows a trajectory, its upward shift by a headway h = 600 m, and the exclusion
zone they form.

Definition 5.5 (blocking)
Let tj j0

and tj j1
be two trajectories. We say that trajectory tj j0

blocks trajectory tj j1
w.r.t.

some headway h iff:

• tj j0
(0)< tj j1

(0) (tj j1
is above tj j0

); and
• ∃x ∈ dom(tj j0

)∩dom(tj j1
) : tjh

j0
(x)> tj j1

(x) (tj j1
contains points below tjh

j0
).

We say that trajectory tj j0
blocks tj j1

at abscissa x ∈ dom(tj j0
)∩dom(tj j1

) iff:

• tj j0
blocks tj j1

; and
• x is the minimal abscissa the satisfies tjh

j0
(z)= tj j1

(z) with z ∈ dom(tj j0
).

By extension, we can also say that tj j0
blocks tj j1

at the blocking point ptb(tj j0
, tj j1

), 〈x, y〉
with y= tj j1

(x). ♦
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Figure 5.9: A trajectory blocking another

Figure 5.9 depicts a trajectory tj j blocking trajectory tj j+1. This configuration is unde-
sired as it violates the safety headway h. The exclusion zone between a trajectory and
its upward shift should not contain any point belonging to another trajectory when the
headway h is respected.
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Definition 5.6 (left shift)
Let tj j , {sg0,sg1, . . . ,sgNs j−1} be a trajectory of size Ns j. The left shift of trajectory tj j
by δ time units consists in a horizontal translation to the left hand side of the trajectory
followed by a truncation, removing the part with resulting negative abscissae. It leads to
the trajectory tj[−δ]

j , {sg[−δ]
j,k | k = 0,1, . . . ,Ns−K −1} such that:

• K ∈ {0,1, . . . ,Ns−1} is the smallest index for which x j,K ,1 −δ > 0 (index of the first
segment containing positive abscissae after a horizontal translation by δ);

• sg[−δ]
j,0 , [〈0, tj j(δ)〉,〈x j,K ,1−δ, yj,K ,1〉] (segment K is translated then truncated at x =

0 to form the first segment of the new trajectory); and
• ∀k = 1,2, . . . ,Ns−K−1 : sg[−δ]

j,k , [〈x j,k+K ,0−δ, yj,k+K ,0〉,〈x j,k+K ,1−δ, yj,k+K ,1〉] (remain-
ing segments are translated to the left hand side to form the new segments). ♦

5.3.2 Trajectory Petri nets

Definition 5.7 (trajectory place)
A trajectory place is a place that contains trajectories instead of tokens. Each trajectory
place pi has a length g i ∈R>0 and a safety headway hi ∈R>0. ♦

When a rail system is modeled with a trajectory Petri net, trajectory places represent
track portions that can be occupied by several trains at the same time. Trajectories inside
trajectory places are the expected trajectories for trains traveling on these track portions
at a given instant.

Definition 5.8 (place content)
We define the content of a trajectory place pi as a sequence of trajectories ct(pi),, {tji, j |
j = 0,1, . . . ,n−1} where n ∈N is the number of trajectories of pi. Note that a place content
can be empty. ♦

Given a place content ct(pi), we write:
• sgi, j,k to denote the kth segment of trajectory tji, j;
• pti, j,k,l to denote the lth point of segment sgi, j,k, with l ∈ {0,1}; and
• xi, j,k,l and yi, j,k,l to denote the abscissa and ordinate of point pti, j,k,l , respectively.

Definition 5.9 (content consistency)
We say that a given place content ct(pi), {tji, j | j = 0,1, . . . ,m−1} is distance-consistent
w.r.t. d ∈ R>0 iff all trajectories in the place content are below distance d, i.e., ∀ j =
0,1, . . . ,m−1 : yi, j,0,0 ≤ d

We say that ct(pi) is headway-consistent w.r.t. h ∈R>0 iff no trajectory blocks another, i.e.,
iff:

∀ j = 0,1, . . . ,m−2,∀x ∈R≥0 ∪ {+∞} : x ∈ dom(tji, j) =⇒ tji, j+1(x)≥ tjh
i, j(x).

A place content is consistent iff it is distance-consistent and headway-consistent. We
require, in particular, that a place content ct(pi) is distance-consistent w.r.t. g i and
headway-consistent w.r.t. hi. ♦

We can now define trajectory Petri nets.

Definition 5.10 (trajectory Petri net)
A trajectory Petri net is a tuple 〈P,T, M0, A,F ,D,H 〉 where:
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• P , PTr ∪Pb is a nonempty set of places, partitioned into a set of trajectory places
and a set of boolean places;

• T is a nonempty set of transitions;
• M0 is the initial marking, a function that associates an integer number of tokens to

each boolean place, and a consistent place content to each trajectory place;
• A, •A∪ A• defines the flow relation: •A ⊆ P ×T and A• ⊆ T ×P;
• F : T →Σcdf assigns a CDF to each transition;
• D : PTr →R>0 assigns a distance (length) g i ,D(pi) to each trajectory place pi; and
• H : PTr →R>0 assigns a safety headway hi ,H (pi) to each trajectory place pi. ♦

We impose the structural restriction that each transition has at most, one trajectory place
in its preset and at most one trajectory place in its postset. Additionally, a transition can
have a trajectory place in its preset iff it has one in its postset. These are sufficient
conditions for the representation of rail systems, and necessary for the chosen semantics
for this model (detailed in Section 5.3.3).

The semantics of trajectory Petri nets is defined in terms of discrete and timed moves.
Each event modifies the content of one or more trajectory places through the application
of a combination of operations. Possible operations are:

• creation of a new trajectory in a place content;
• destruction (removal) of a trajectory from a place content;
• blocking of trajectories in a place content;
• unblocking of trajectories in a place content;
• adaptation of trajectories to comply with the safety headway; and
• application of a left shift on trajectories.

These operations are detailed below.
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Figure 5.10: Trajectories in places of a trajectory Petri net

In what follows, we will consider a place pi of length g i, and its content ct(pi) with Nj
trajectories. When referring to a given trajectory tji, j ∈ ct(pi), we will denote by Nsi, j ,
|tji, j| the number of its segments.

Creation of a trajectory

Creating a new trajectory in a place content ct(pi) consists in appending a trajectory
tji,Nj that covers the length g i of place pi. It aims at modeling the entry of a new entity
(train) in the place at position y= g i and provides its desired trajectory. The form of this
trajectory can vary depending on different speed profiles, and acceleration and deceler-
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ation phases. We will here describe a simple version in which the created trajectory is
abstracted to a single segment trajectory defined based on g i and a given time τ ∈Q>0.

The creation process consists in generating a trajectory that starts at the beginning of the
place (pti,Nj,0,0, 〈0, g i〉) and ends at its end (yi,Nj,0,1, 0), with xi,Nj,0,1, τ, assuming τ is
known. When defining the semantics of a trajectory net in terms of operations, τ will be
a sampled random duration. The resulting trajectory will be tji,Nj, [〈0, g i〉,〈τ,0〉].
Destruction of a trajectory

The destruction of a trajectory tji, j consists in removing it from ct(pi), and reindexing the
remaining trajectories, starting from 0 while keeping the same order.

The destruction of a trajectory tji, j is possible only if:

• j = 0 (it is the first trajectory); and
• tji, j = {[〈0,0〉,〈0,0〉]} (it is single point-shaped).

Adaptation of a trajectory

When a trajectory tji, j of size Nsi, j in a place content ct(pi) blocks another trajectory tji, j+1
of size Nsi, j+1, an adaptation of trajectory tji, j+1 is required to ensure that it is always
kept at a distance at least equal to the safety headway hi of place pi. This adaptation
operation replaces trajectory tji, j+1 by a new trajectory called its residue.

Before defining the residue, let us use the following contextual notations:

• ptb, 〈xb, yb〉 denotes the blocking point ptb(tji, j, tji, j+1) (cf. Def. 5.5);
• kb0 denotes the index of the segment in trajectory tji, j that contains point ptb (i.e.,

ptb ∈ sgi, j,kb0
), kb1 denotes the index of the segment in trajectories tji, j+1 that con-

tains point ptb (i.e., ptb ∈ sgi, j+1,kb1
);

• pth, 〈xh, yh〉 denotes the point of intersection between the horizontal line of ordi-
nate y= hi and trajectory tji, j+1, with xh,min{x ∈ dom(tji, j+1) | tji, j+1(x)= hi};

• kh denotes the index of the segment of trajectory tji, j+1 containing point pth; and
• Ns0 and Ns1 respectively denote Nsi, j and Nsi, j+1.
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Figure 5.11: Example of a situation where an adaptation of trajectory tji, j+1 is needed

Fig. 5.11 shows two trajectories in a place content ct(pi) with a headway hi. In this
example, trajectory tji, j has Ns0 = 5 segments, and trajectory tji, j+1 has Ns1 = 8 segments.
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Trajectory tji, j blocks trajectory tji, j+1 at point ptb; and ptb belongs to segments kb0 = 1
and kb1 = 2.

Definition 5.11 (residue)
Let ct(pi) be a content of a trajectory place pi of headway hi, and tji, j a trajectory blocking
another trajectory tji, j+1 at point ptb. The residue of trajectory tji, j+1 w.r.t. trajectory tji, j
and headway hi is the trajectory:

tji, j+1 \ tji, j , tj′i, j+1, {sg′i, j+1,k | k = 0,1, . . . ,Ns1 +kb1 +Ns0 −kb0 −kh+2}.

Segments of the residue trajectory are constructed as follows:

(a) The first segments of trajectory tji, j+1 stay unchanged up to the segment containing
ptb, i.e., segment sgi, j+1,kb1

.

sg′i, j+1,k, sgi, j+1,k if k ∈ {0,1, . . . ,kb1 −1}.

Here, this part of trajectory tji, j+1 respects the headway hi and can thus be kept as
is.

(b) The segment sgi, j+1,kb1
containing ptb is replaced by two segments. The first seg-

ment starts with the first point of sgi, j+1,kb1
and ends with point ptb.

sg′i, j+1,k, [pti, j+1,k,0,ptb] if k = kb1.

Here we split segment sgi, j+1,kb1
in two parts and keep only the part of the segment

that does respect the headway hi.

The second segment start with point ptb and ends with point pth
i, j,kb0,1 inherited

from the shadow of trajectory tji, j (w.r.t. headway hi).

sg′i, j+1,k, [ptb,pth
i, j,kb0,1] if k = kb1 +1.

This new segment keeps a distance of hi between trajectory tji, j and the new tra-
jectory tj′i, j+1.

(c) The following segments are copies of segments of trajectory tjh
i, j until the last seg-

ment sgh
i, j,Ns0−1.

sg′i, j+1,k, sgh
i, j,kb0−kb1+k−1 if k ∈ {kb1 +2,kb1 +3, . . . ,kb1 +Ns0 −kb0}.

Here, we simply keep an exact distance of hi between trajectories tji, j and tj′i, j+1 by
copying the remaining part of tjh

i, j until its end.

(d) From this point on, the residue trajectory will mimic the remaining part of the
original trajectory, but horizontally translated to the right hand side in order to
meet at the end of segment sg′i,k,kb1+Ns0−kb0

. The next segment is then composed
of the last point of the shadow trajectory tjh

i, j and the point pti, j+1,kh,1 translated to
the right.

sg′i, j+1,k, [pth
i, j,Ns−1,1,pti, j+1,kh,1+pth

i, j,Ns0−1,1−pth] if k = kb1+Ns0−kb0+1;

with pth, 〈tj−1
i, j+1(hi),hi〉.
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The remaining segments are translated copies of the last segments of the original
trajectory that are below y= hi.

sg′i, j+1,k, [pti, j+1,k′,0 +pth
i, j,Ns0−1,1 −pth,pti, j+1,k′,1 +pth

i, j,Ns0−1,1 −pth]

if k ∈ {kb1+Ns0−kb0+2,kb1+Ns0−kb0+3, . . . ,kb1+Ns0−kb0−kh+Ns1};

with k′, k− (kb1 +Ns0 −kb0 +2)+ (kh+1). ♦
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Figure 5.12: Residue

Fig. 5.12 shows the result of the adaptation of trajectory tji, j+1 to trajectory tji, j in Fig-
ure 5.11 in order to respect the headway hi.

Blocking a place content

Blocking a given a place content ct(pi) consists in replacing the value of the last abscissa
xi,0,|tji,0|,1 of the first trajectory tji,0 by +∞. This operation is performed when a trajectory
reaches its end (i.e. is a single point 〈0,0〉, and the train represented by this trajectory
cannot move to the next place (due to safety requirements). The first train in the place
stops, and to meet safety headways, all following trains have to stop at distance hi from
their predecessor. As the duration of this stop is not known in advance, all train trajecto-
ries will end with a horizontal segment.

Blocking changes the first trajectory tji,0 into an horizontal ray at y = 0, and its up-
ward shift into an horizontal ray at y = hi that forces adaptation of trajectory tji,1,
i.e., replace it by its residue w.r.t. tji,0. This residue will end with a horizontal ray
[〈tj−1

i,1(hi),hi〉,〈tj−1
i,1(hi),+∞〉]. Trajectory then extends to the next trajectory tji,2, that will

end with an horizontal segment at height 2.hi, and so on for the whole place contents.

Unblocking a place content

When a place content is in a blocked state but safety requirements do not prevent the
entity modeled by the first trajectory from reaching its next state in another trajectory
place anymore, then the content should go back to a normal unblocked state (trains re-
sume their journey. To do so, all trajectories recover their initial shape by replacing the
horizontal ray part with the segments previously changed by the blocking operation.

Application of a left shift
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Applying a left shift of δ time units to a place content ct(pi) simply amounts to individ-
ually applying a left shift of δ to each trajectory in ct(pi), as described in Def. 5.6. This
produces a new place content ct′(pi). The main use of this transformation is to symbolize
time elapsing.

5.3.3 Semantics

Now that basic operations on place contents are defiend we can give a semantics to tra-
jectory nets. We recall briefly that a trajectory net is a variant of STPN, i.e. a tuple
〈P,T, M0, A,F ,D,H 〉 where P,T, A,F ,D,H have the same meaning as in STPNs, but
where subset PTr ⊆ P of places contain trajectories instead of tokens. Markings hence
associate place contents (sequences of trajectories) to places in PTr and standard tokens
to other places.

Definition 5.12 (configuration)
A configuration of a trajectory Petri net is a pair 〈M,U〉 with:

• M is a marking that assigns a nonnegative integer (number of tokens) to each
boolean place and a consistent place content to each trajectory place; and

• U is a function that assigns a consistent place content to some trajectory places
that are blocked. These place contents contain the desired trajectories that trains
should follow when they are not blocked anymore.

We denote the unblocked content of each trajectory place pi by:

U(pi), {uci | i = 0,1, . . . ,mi −1};

where mi designates the number of unblocked versions of trajectories of place pi. ♦

Definition 5.13 (usable place)
A place pi is usable if the first trajectory in its content is the single point-shaped trajectory
[〈0,0〉,〈0,0〉] ♦

Definition 5.14 (enabledness)
A transition t is enabled by a marking M iff there exists at least one token in each boolean
place of its preset, the trajectory place in its preset is usable.

We formally define the set of enabled transitions by a marking M by:

enab(C ), {t ∈ T | (∀p ∈ •t∩Pb : M(p)≥ 1)∧
(∀pi ∈ •t∩PTr : |M(pi)| ≥ 1∧tji,0 = {[〈0,0〉,〈0,0〉]})}.

♦

Informally, as trajectory places represent track segments, a transition that has a trajec-
tory place pi in its preset is enabled if the first train represented by a trajectory in the
contents of pi has reached the end of the track segment.

Definition 5.15 (firability)
A transition is firable in a configuration C iff it is enabled by the marking of C and each
place in its postset contains enough space at its beginning to insert a new trajectory.
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More precisely, we define the set of firable transition in configuration C by:

fira(C ), {t ∈ enab(M) | ∀pi ∈ t•∩PTr : ct(pi)=∅∨ g i − yi,|ct(pi)|−1,0,0 ≥ hi}. ♦

Intuitively, a transition is firable if the train movement that it represents (entering the
next track portion, leaving a station, entering a station) is allowed by the safety require-
ments.

The execution of a trajectory Petri net starts from an initial configuration, and is defined
with different types of moves.

Blocking move Trajectories are used to represent trains moving on a track. When a
train’s trajectory is the first trajectory tji,0 of a place pi and is of the form [〈0,0〉,〈0,0〉], it
means that the train has ended it’s dwell or running operation and is ready to begin its
next dwell or running operation. Normally, a firable transition t in the postset of pi is
fired, tji,0 is removed from M(pi) and a new trajectory is created in the trajectory place
pi′ in the postset of t. However, if there is no available space in pi′ (i.e. g′

i−tjk(0), where k
is the last trajectory in p′

i is smaller than the safety headway h′
i), then no trajectory can

be added to its content. In this case, the content of place pi must be blocked, according to
the blocking operation defined above.

A blocking move from a configuration 〈M,U〉 occurs when a place pi contains a trajectory
of the form [〈0,0〉,〈0,0〉], but none of the transitions in pi

• is firable. This blocking move
leads to a new configuration 〈M′,U ′〉 in which:

• the marking of boolean places stays unchanged, i.e., ∀p ∈Pb : M′(p),M(p).
• the content of a trajectory places pi is updated by a blocking operation.
• copies of original trajectories before the blocking procedure are memorized by un-

blocked content function U ′.

U ′(pi), {tji, j | j = 1,2, . . . ,Nj−1}.

Note that there is no need to store the first trajectory tji,0.
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Figure 5.13: Nonfirable transition due to safety requirements

The example of Figure 5.13 shows a transition that is ready to fire but cannot due to
safety requirements in place p1. If we set h1 = 300 and g1 = 1400, then tj1,1(0) must be
smaller than 1100 to let enough space in place p1 for insertion of a new trajectory. As
a consequence, the content of place p0 is blocked, resulting in the trajectories shown in
Figure 5.14.
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Figure 5.14: Trajectories in a blocked place

A blocking move is denoted by: 〈M,U〉 block(pi)−−−−−−−−→ 〈M′,U ′〉. We now give the semantics
rule for blocking

U(pi)= ε∧ pi is usable

〈M,U〉 block(pi)−−−−−−−−→〈M′,U ′〉
Timed move

A timed move from a configuration 〈M,U〉 consists in simply letting time elapse for a
duration δ when no action (a discrete move or a blocking move) is possible. The value of
δ corresponds to the maximum amount of time that can elapse and after which an action
becomes possible. A time move is performed in one step through application of a left shift
of δ to contents of all trajectory places.

Let us assume that in configuration 〈M,U〉. For each place, we can define the following
quantities.

dα(pi) is the time needed for the first trajectory in ct(pi) to becomes a point, i.e. letting
tji,0 be this trajectory, dα = tj−1

i,0(0);

dβ(pi) is the time needed before the last trajectory in the contents of pi leaves a sufficient
headway for insertion, i.e. if tji,k is the last trajectory in the place content of pi, dβ(pi)=
tj−1

i,k(g i −hi).

Then, the time that can elapse from configuration 〈M,U〉 is a value smaller than the
minimal amount of time before a place contents becomes blocked, or before a transition
becomes firable, either because a place contents can be unlocked or because a train arrives
at the end of its track.

step(〈M,U〉)=min
(

min{dα(pi) |U(pi)=;},
min{dβ(pi) | ∃t, pi ∈ t•,∃p j ∈ •t,U(p j) 6= ;}

)
A timed move then consists in choosing a value δ≤ step(C ), and then letting trajectories
evolve during δ time units, i.e. perform a left shift by δ in all place contents and blocked
contents: For every pi ∈ PTr, M′(pi)= shift(ct(pi),δ). If pi is blocked, then every trajectory
tji,k in U(pi) is shifted by a value that is the minimal value between δ and tji,k(k.hi)
(U memorizes how to resume a trajectory, and hence as trajectory k becomes horizontal
when reaching distance k.hi, the whole part of tji,k depicting the part of the trajectory
from distance k.hi to 0 has to be remembered.
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A timed move is denoted by: 〈M,U〉 δ−−−→〈M′,U ′〉. We hence have the following rule:

f ira(〈M,U〉)=;∧δ≤ step(〈M,U〉)
〈M,U〉 δ−−−→〈M′,U ′〉
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Figure 5.15: Shifted place contents

Fig. 5.15 shows the result after shifting the contents of places p0 and p1 from Fig. 5.14 by
5 time units. One can notice on this figure that the last trajectory of place p1 now leaves
enough space for insertion of a trajectory. As a consequence, transition t0 becomes firable.

Discrete move

A discrete move consists in firing a transition t among the set of firable transitions. It
moves tokens and trajectories from their current places in the preset of t to new places in
the postset of t. This is performed by:

(a) removing one token from each boolean place in the preset of t:

∀p ∈ •t∩Pb : M′(p),M(p)−1.

(b) removing the first trajectory from the trajectory place p j in the preset of t:

M′(p j),M(p j)\{tj j,0}.

If p j was blocked (i.e., U(p j) 6=∅) replace M(p j) by U(p j) and set U(p)=∅.

(c) adding a token to each boolean place in the postset of transition t:

∀p ∈ t•∩Pb : M′(p),M(p)+1.

(d) creating a new trajectory {[〈0, g i〉,〈τ,0〉]} in the content of the trajectory place in the
postset of transition t; with τ sampled from Ft,F (t), and adapting it w.r.t. the last
trajectory in t•∩PTr, if necessary.

A discrete move is denoted by 〈M,U〉 t−−→ 〈M′,U〉. Note that due to random sampling,
there can be several successor configuration for 〈M,U〉. We denote by Succ(〈M,U〉, t) the
set of successor configuration that can be reached when firing t from 〈M,U〉.
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t ∈ f ira(〈M,U〉)
〈M′,U ′〉 ∈ Succ(〈M,U〉, t)

〈M,U〉 t−−→〈M′,U ′〉
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Figure 5.16: Transition firing in a trajectory Petri net

Figure 5.16 represents the configuration obtained after firing transition t0 from the con-
figuration in Figure 5.15. This configuration was obtained by removing the first trajectory
from p0 and creating a new trajectory in place p1. Notice that in this example, the new
trajectory added to p1 needs not be adapted w.r.t the contents of p1 as is does not cross
the upward shift of other trajectories.

5.3.4 Comments

The trajectory nets presented in this section can model urban train systems with a mov-
ing block policy, regulation schemes, and timetables. The way to obtain a trajectory net
from a given topology is the same as for blocking STPNs. The model contains several
simplifications such as the linear shapes of trajectories, headways defined as fixed dis-
tances, headways associated to places instead of actual running entities (trains). Obvi-
ously, this model can be refined to consider more complex trajectories with acceleration
and decelerations encoded as polynoms, dynamic headways that depend on trains speed,
etc.. However, refinement of the model increases the time needed to create, block and
adapt trajectories, and hence can slow down the simulation process. For example, find-
ing the intersection between a trajectory and a trajectory shadow in the current model is
easy, but using polynomial trajectories may significantly increase computation time.

This model can be seen as a discretization of a time-space diagram (TSD) in which we
only have a partial and local vision of the expected trajectories of trains, and the rest is
generated during the execution of the system. Note also that when a train gets close to
the end of the place it is occupying (usually when it is about to enter a station), it may
get closer to the preceding train in a following place than allowed in real situations. The
main reason it that our model does not impose safety headway between different places.
The semantics has to be refined to take into account this particular situation, and adapt
the first trajectory of a given place according to the last trajectory of its following place.
This can be made possible by introducing an inter-place headway hp,p′ between pairs of
consecutive places p and p′ (in terms of topology) but this will bring additional complexity
to the model, and thus longer computation times.
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The model depicted in this section has been implemented, and showed good performances
that are comparable to simulation times measured for STPNs with blocking semantics.
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6
Realizability of schedules

In the predecing chapters, we have introduced timetables, that are a priori schedules of
train operations, designed to optimize performance of urban train systems. Timetables
can be seen as partial orders among basic tasks, that abstract low-level implementation
details, and are decorated with dates and timing constraints. We have introduced two
models, namely STPNs with a blocking semantics and trajectory nets as a model of trains
behaviors of the network. If a system realizes correctly a timetable, then it meets the KPI
objectives that led to the construction of this particular timetable. If incidents occur (and
such incidents are unavoidable in a normal operation day) regulation algorithms have to
compensate them to return to the desired timetable.

In this setting, an implicit assumption is that the timetable can be realized up to some
minor corrections brought by the regulation. However, designing a correct and optimal
schedule for a system is a complex problem. On one hand, occurrence dates of events can
be seen as variables, and correct and optimal schedules as optimal solutions (w.r.t. some
criteria) for a set of constraints over these variables. Linear programming solutions have
been proposed to optimize scheduling in train networks [18, 20]. On the other hand, opti-
mal solutions (for instance, w.r.t. completion date) are not necessarily the most probable
nor the most robust ones.

Consequently, optimal and realizable schedules are not necessarily robust enough if they
impose tight realization dates to systems that are subject to random variations. Further,
schedules and models for physical networks need not be built simultaneously, and some
discrepancies can appear between the desired schedule, and the behaviors that can be
implemented by the low-level system. Hence, nothing guarantees a priori that the system
is able to realize a given schedule.

This calls for tools to check realizability of a schedule. One can expect systems designers
and timetable experts to share a common understanding of the behavior of their system;
so, in general, the answer to the boolean realizability question “Is the given schedule
realizable by the system?” should be positive. However, being able to realize a schedule
does not mean that the probability to comply with a particular schedule is high enough.
Obviously, in systems with random delays which values are sampled from continuous
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distributions, the probability to realize a schedule with precise dates is null. Beyond
boolean realizability, a schedule shall, thus, be considered as realizable if it can be realized
up to some bounded imprecision, and with a significant probability. This leads to the
notion of probabilistic realizability.

In this chapter, we address realizability of schedules by STPNs with a blocking semantics
introduced in section 5.2. We consider scheduling of important events identified in a
timetable, and not necessarily the whole table, which leaves more flexibility to realize
a particular schedule. We use a partial order semantics, unfoldings [50, 26], symbolic
techniques [14, 16] and transient analysis [39] to address the questions of boolean and
probabilistic realizability.

The chapter is organized into 5 parts. We first give a precise definition of schedules and of
the realizability questions We then propose a notion of process for STPNS with a blocking
semantics. Surprisingly, extensions of unfoldings and processes is not a straightforward,
as blocking introduces timing constraints that have to be considered and changes the
standard notion of urgency. We introduce symbolic representation of time constraints in
unfoldings to represent possible timed executions of a blocking STPN. With this model,
one can address infinite classes of processes symbolically. However, this raises an im-
portant issue, as satisfiability of a set of constraints on occurrence dates of events is not
monotonous. Fortunately, unfolding a net up to a sufficient depth allows to characterize
processes that can be executed in a fixed amount of time.

This central result is then used to address boolean realizability: the problem is solved by
checking that a particular schedule can be embedded into a process of a bounded unfold-
ing of a net. Once the (finite) set of processes that embed a schedule are characterized,
we use it to evaluate the probability to realize at least one of them, leading to the notion
of probabilistic realizability. We last show how to check boolean and quantitative realiz-
ability on a practical example; that is, verification of correct scheduling of train trips in
an RTS.

The results presented in this chapter were published in [34, 35], we hence refer interested
readers to these papers for proofs of theorems introduced in this chapter.

6.1 Schedules

Schedules are objects of everyday’s life, and are both used as documentation for a system
(for instance, bus and train schedules indicate to users when and where to take a metro),
and to guide a system along behaviors that guarantee some quality of service. In the
context of transportation systems, schedules are known as timetables.

As shown in Chapter 4 the natural notion to encode timetables is a partially ordered
sets of events decorated with dates. Events represent the beginning or end of a task, the
departure or arrival of a train or a bus, etc. Partial ordering among events allows to ac-
count for linearity in individual trajectories, and for causal dependencies due to exclusive
resource use. The dates decorating these partial orders are dates that comply with the
dependencies, and also with some physical characteristics of the modeled systems: a train
move from a station sti to the following one sti+1 in its itinerary takes time, which shall
be reflected by the dates attached to departures and arrivals at different stations.
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Now, one can be interested in higher-level views of the desired behavior of a system, and
abstract away some events and dependencies that appear in a full timetable. This is
captured by the notion of schedule, which is a way to describe an ordering on a subset of
events occurring in a system, and can be interpreted as some form of partial requirement.
This raises the question of whether a particular schedule can be effectively realized by
the system. As schedules and system models are descriptions of the same system, one can
expect the answer to be positive in most of cases. However, solutions returned by a solver
for a constraint problem are optimal solutions w.r.t. some criteria, but not necessarily
the most plausible nor the most robust ones. Indeed, for obvious reasons, one cannot
ask a bus to reach each stop at the earliest possible date: such solution makes systems
poorly robust to random delays, that necessarily occur in transport systems. Providing
the ability to check that a schedule is realizable with reasonable chances is, hence, an
essential tool to design schedules. A way to answer this question is to ask the probability
that a schedule is realized by the system.

Formally, a schedule describes causal dependencies among tasks, and timing constraints
on their respective starting dates. Schedules are defined as decorated partial orders, and
allow timing constraints among tasks that are not causally related.

Definition 6.1 (schedule)
Formally speaking, a schedule over a finite alphabet A is a quadruple S , 〈N,→,λ,C〉
where

• N is a set of nodes,
• →⊆ N ×N is an acyclic precedence relation,
• λ : N →A is a labeling of nodes, and
• C : N ×N 7→Q>0 is a partial function that associates a minimum time constraint to

pairs of nodes.

A dating function for a schedule S is a function d : N →Q≥0 that satisfies all constraints
of C and →, i.e., 〈n,n′〉 ∈→⇒ d(n)≤ d(n′), and x = C(n,n′)⇒ x ≤ d(n′)−d(n). ♦

This model for schedules borrows many ingredients from timetables, but with the abil-
ity to impose timing constraint on events that are not causally related. Intuitively, if
x = C(n,n′), then n′ cannot occur earlier than x time units after n, and if 〈n,n′〉 ∈→, then
n precedes n′ (causally). Constraints model, for example, the minimal times needed to
perform tasks and initiate the next ones in production cells, or the times needed for trains
to move from a station to another. A schedule S is consistent if the graph 〈N,→ def(C)〉
does not contain cycles (def(C) is the domain of definition of the partial function C). Nat-
urally, consistent schedules admit at least one dating function.

Even consistent schedules might not be realizable by an existing physical system, due for
instance to trip durations. When a schedule is realizable, the probability to achieve it can
also be very low.

Consider the example of Figure 6.1. This Figure represents the beginning of a schedule
for three trains, where only departure dates are planned. The departures for each train
are depicted as boxes, carrying a label of the form i : dJ, where i is the event number, and
dJ means that this event is a departure from station J. Furthermore, an execution date
is attached to each node. One can see on this drawing that schedules are partial orders
containing train trajectories. However, there are some dependencies among events from
distinct trains: for instance, our schedule imposes that the second departure of the day

87



1 : dA
08:02

2 : dB
08:04

3 : dC
08:06

4 : dD
08:09

5 : dC
08:03

6 : dD
08:05

7 : dE
08:10

8 : dF
08:11

9 : dF

08:10

10 : dE

08:12

11 : dD

08:14

12 : dD
08:17

Figure 6.1: A possible schedule for train departures in a metro network

at station D (event 6 : dD) precedes departure 3 : dC from station C. Similarly, 7 : dE
must precede 12 : dD. This schedule makes sense, as some metro networks are operated
only according to the departure dates and the end of a line. Now, a sensible question
is: “Can a network realize this schedule?”; or, more precisely, “Can the STPN designed
for this network (with additional control places) realize such a schedule starting at 08:00
with a train at station A, a train at station C, and a train at station F?” The answer to
this question is not straightforward. Even if the answer is positive, the next step is to
ask whether this schedule, with a tolerance of, e.g., 1 minute delay for each departure, is
probable enough. If the answer is that the probability to realize our schedule is very low,
then this schedule should not be considered as operational.

6.2 Partial order semantics of STPNs

Let us consider the representation of a piece of network shown in Figure 6.2. In this
example, a train is dwelling at a station A (represented by p0). When its dwelling time
is up after a certain duration, and it is ready to depart, the train can be controlled to
move towards two different destinations B and C. This translates into, either the firing
of transition t0, or t1, to respectively transfer the token into place p1, or p2. Similarly, if
the token is in place p2 it will reach p3 through the firing of t2. However, decision of firing
t0 or t1 are dependent on the content of additional control places p4 and p5. Indeed, firing
t0 requires a token in p0 and p4 while firing t1 requires tokens in p0 and p5. Once can
also notice that control places p4 and p5 share one token between them at all times. This
simple mechanism allows to model guiding of trains towards different possible routes.
PDFs f0, f1, and f2 respectively attached to transitions t0, t1, and t2 are represented at
the bottom of Figure 6.2.

In this example, a train staying at station A will leave after a dwell time comprised
between 60 and 80 seconds, provided that its destination place is empty. Dwell times in
place p0 have different distributions in the interval [60,80], depicted by functions f0 and
f1. Distribution choice depends on whether the train leaves for station B or station C.
The run from A to C lasts between 130 and 140 seconds, and the distribution of running
time is depicted by function f2. Now, if a train is ready to leave station A to go to C
after a sufficient dwell time, but another train already occupies the track portion from A
to C, then departure is forbidden. In our model, this is implemented by the elementary
semantics that says that a transition can fire only when its postset is empty. In particular,
in our example, this means that a token will enter place p1 (resp. place p2) at the earliest
60 seconds after p0 was filled, and at the latest 80 seconds after, if p4 (resp. p5) contains
a token. However, even if p4 (resp. p5) contains a token, there is no guarantee that the
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p0 (A)

t1 (dA-C)

[60,80]

t0 (dA-B)

[60,80]

p1 (A-B)

p2 (A-C)
t2 (aB-C)

[130,140]

p3 (C)

p4 (cA-B)

p5 (cA-C)

60 65 70 75 80
0

0.1

0.2

0.3

0.4
f0

60 65 70 75 80
0

0.1

0.2

0.3

0.4
f1

130 132 134 136 138 140
0

0.1

0.2

0.3

0.4
f2

Figure 6.2: STPN representation of a shunting mechanism in a rail network

dwell time of a token in p0 is smaller than 80 seconds, despite urgency. Indeed, if places
p5 and p2 are filled, transition t1 has to wait for p2 to be empty to fire, which may occur
at the earliest 130 seconds and at the latest 140 seconds later.

One of the possible executions of the STPN of Figure 6.2 is the following: Assuming that
the value sampled for t1 and t2 are respectively ζ1 = 62 and ζ2 = 132, then time ζ1 is
elapsed after 62 time units, but t1 cannot yet fire as place p2 is occupied. Hence, one has
to wait 132 time units, fire t2, and then fire t1.

In terms of timed word, this execution can be represented as u, 〈t2,132〉·〈t1,132〉. Equiv-
alently, one can describe this execution as a time process TP of N0 (see later in this section
for the formal definition). Roughly speaking, a time process unfolds the STPN and asso-
ciates an execution date to occurrences of transitions. The time process corresponding
to timed word u is given in Figure 6.3. Note, on this example, that even if the first oc-
currences of t1 and t2 seem to be concurrent (they occur at the same dates, and are not
causally related), the elementary semantics imposes that t0

2 occurs before t0
1.

t01 132 t02 132

p0
4p0

0 p0
2

p0
5p1

2
p0

3

Figure 6.3: A time process of N0
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As already highlighted in [6] for TPNs, timed words give a sequential and interleaved
view for executions of inherently concurrent models. Time processes, on the other hand,
bring a noninterleaved semantics. They are defined as causal nets equipped with dating
functions.

Definition 6.2 (causal net)
A causal net is a finite acyclic net Cn, 〈P,T, A〉 where ∀p ∈ P : |p•| ≤ 1∧|•p| ≤ 1; i.e., each
place in a causal net has, at most, one transition in its preset (no merging) and, at most,
one transition in its postset (no conflict). ♦

Definition 6.3 (causality)
Given a pair of places p, p′ ∈ P, we define the causality relation ≺ and write p ≺ p′ iff
p•∩ •p′ 6=∅. We denote by ¹ the reflexive transitive closure of ≺. When places p and p′

are incomparable with ¹, we say that they are concurrent, and write p ∥ p′ iff p 6¹ p′ and
p′ 6¹ p. Theses definitions extend to transitions. ♦

Definition 6.4 (time process)
A time process is a pair TP, 〈Cn,θ〉 where

• Cn, 〈B,E, A〉 is a causal net, and
• θ : E →R≥0 assigns to each transition in E a nonnegative real date, that is coherent

with causality: ∀e, e′ ∈ E : e ¹ e′ =⇒ θ(e)≤ θ(e′).

In time processes, places in B are called conditions, and transitions in E are called events.
The depth of a time process TP is the total number of events found in the longest path of
the graph 〈B∪E, A〉. ♦

Intuitively, in a time process TP of an STPN N , events in E represent occurences of
firings of transitions of N , and conditions in B represent the conditions needed to fire
these transitions (i.e. occurrences of place fillings) and the result of transitions firings.

We denote by tr(e) the transition t attached to an event e, and by pl(b) the place p asso-
ciated with a condition b. To differentiate between occurrences of transition firings, an
event will be defined as a pair e, 〈X , t〉, where t is the transition whose firing is repre-
sented by e and X is the set of conditions it requires. Similarly, a condition is defined
as a pair b , 〈e, p〉, where e is the event whose occurrence generates condition b, and
p is the place whose filling is represented by b. The flow relations are, hence, implicit:
•e, {b ∈ X | e = 〈X , t〉} and similarly e• , {b ∈ B | b = 〈e, p〉}, and for b, 〈e, p〉, •b, e and
b•, {e ∈ E | b ∈ •e}. (n.b., as the preset •b of a condition b is always a singleton, we slightly
abuse notations and write e = •b instead of the set {e} = •b.) Following these definitions,
we will often drop flow relations and simply refer to time processes as triples of the form
TP, 〈B,E,θ〉.
Given an STPN N , for every timed word u in the timed language of N , we can compute a
time process TPu depicting execution of events occurring in u. The construction of a time
processes from a timed word described below is the same as in [6]. It does not consider
probabilities. As the construction starts from an executable word of N , the construction
does not need to address blocking. We denote by TPu the time process obtained from a
timed word u = 〈a0,dt0〉〈a1,dt1〉 . . .〈aq−1,dtq−1〉 ∈L (N ). It can be built incrementally by
adding transition occurrences with their associated dates, one after the other, starting
from an initial set of conditions B0, {〈p,⊥〉 | p ∈ M0} where ⊥ is a dummy event used as a
generator of initial conditions. This event is not represented in the graphical illustrations
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of time processes. Intuitively, this construction adds one event after another, following
the ordering and dates given in u. At each step, newly appended events are attached to
maximal conditions in the already built process.

Definition 6.5 (maximal conditions)
A condition b ∈ B in a time process TP = 〈B,E,θ〉 is maximal if it has an empty postset.
We denote by maxb(TP) the set of maximal conditions of a time process TP, i.e.,

maxb(TP), {b ∈ B | b• =∅}.

♦

We can now give an inductive construction technique to build a time process TPu from a
timed word u = 〈t1,dt1〉 · 〈t2,d2〉 · · · 〈tq,dtq〉 ∈L (N ):

At each step i ≤ q, TPu,i , 〈Bi,E i,θi〉 denotes the time process built after i steps, i.e. after
reading the the prefix
〈a1,dt1〉 . . .〈ai,di〉 of u.

The construction starts at step i = 0 from the initial time process TPu,0, 〈B0,E0,θ0〉. We
use a dummy event ⊥ that sets the initial contents of places according to M0. We then
have: B0, {〈⊥, p〉 | p ∈ M0}, E0, {⊥}, θ0 : {⊥}→ {0}, as the execution starts at date 0.

Then, at every step i ∈ {1, . . . , q}, we build TPu,i = 〈Bi,E i,θi〉 from TPu,i = 〈Bi−1,E i−1,θi−1〉
as follows:

We compute the set of maximal conditions that are occurrences of places in the preset
of ti. Formally, this set is X i , {b ∈ maxb(TPu,i−1) | pl(b) ∈ •ti}. The new event added is
e i , 〈ti, X i〉. Then,

• Bi ,Bi−1 ∪ {〈p, e i〉 | p ∈ t•i };
• E i ,E i−1 ∪ {e i}
• θi(e)= θi−1(e) if e ∈ E i−1 and θi(e)= di if e = e i.

The construction ends with TPu,TPu,q.

p0

t0 [0,6]

p1

p2

t1 [2,8]

(a)

p0
0

t00 5.5

p1
0 p0

1

t10 8.1 t01 8.1

p2
0 p0

2p1
1

(b)

Figure 6.4: An example STPN N1 and one of its time processes
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Figure 6.4-b is an example of a time process of STPN N1. In this example, event t j
i

and condition p j
i respectively denote the ( j−1)th occurrence of transition ti and place pi.

This time process corresponds to the timed word u = 〈t0,5.5〉 · 〈t1,8.1〉 · 〈t0,8.1〉 ∈ L (N1).
It contains causal dependencies among events (e.g., from t0

0 to t0
1). One can also notice

that, due to the blocking semantics, event t1
0 cannot occur before t0

1 as t0 cannot fire as
long as place p1 is filled. However, this information is not explicitly shown in the time
process description. The timed language L (N ) of a TPN can be reconstructed as the set
of linearizations of its time processes.

Given a time process TP of N , one can find a word u such that TPu = TP. Such a word
is obtained by finding a total order on events in TP that considers causality and dates of
events, but also blocking. Once a total ordering e1...e|TP| where e i = 〈ti, X i〉 is found u =
(t1,θ(e1)) . . . (t|TP|,θ(e|TP|)). Preserving causality and time means that for a pair of events
e, e′ with e 6= e′, e must appear before e′ in the generated word if θ(e) < θ(e′) or if e ¹ e′.
Note that due to blocking semantics, some causality and time-preserving interleavings
may not produce valid timed words of L (N ): in the time process of Figure 6.4-b, t1

0
cannot occur before t1

0, even if both transitions have the same date. A correct ordering
among events with identical dates in a process TPu can, however, be found by checking
that a chosen ordering does not prevent occurrence of other transitions.

Realizability

Elementary semantics allows to handle safety requirements for systems with critical re-
sources. However, this semantics makes reasoning on systems harder, and brings no
guarantee on the liveness of a system. On our example of Figure 6.2, a possible wish of
designers is that trains stay no longer than 80 seconds at station A, and one train out of
two goes to C. The second requirement is easily implemented by the simple additional
control represented by the dashed places and flows. However, nothing guarantees a priori
the first requirement, i.e., that place p2 is emptied at the latest 80 seconds after a token
has entered p0. So, even if the model seems correct, trains may have to wait longer than
expected a priori.

The question of whether a STPN can implement a predetermined schedule is called real-
izability. To check whether a consistent schedule S can be realized by a system, described
as an STPN N . we want to verify that there exists a time process TP of N and an em-
bedding function ψ mapping abstract events of S onto concrete events of TP, such that
causally related events of S are causally dependent in TP, and dates of events in TP meet
the constraints on their abstract representation.

In Sections 6.5 and 6.6, we show how to check realizability of a schedule S by an STPN
N , and how to compute a lower bound on the probability that S is realized by N . This
allows in particular to check that the probability of realization of a schedule is strictly
positive, or above a given threshold.

6.3 Unfolding of STPNs with blocking semantics

A time process emphasizes concurrency but only gives a partial order view of a single
timed word. However, a net may have an infinite number of time process. Further, an
infinite number of time processes can have the same structure but different dating func-
tions. This is for instance the case of the process in Figure 6.4-b. It is, hence, interesting
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to consider symbolic time processes, that define constraints on events’ dates, instead of
exact dates. Similarly, to avoid recomputing the structural part of each symbolic time
process, we will work with unfoldings, i.e., structures that contain all symbolic time pro-
cesses of an STPN but factorize common prefixes. Symbolic unfoldings were introduced
for TPNs by SEMENOV and Yakovlev [63] and later used by CHATAIN and Jard [15]. In
this section, we show how to unfold STPNs with a blocking semantics, and how to extract
symbolic time processes from this unfolding. Our aim is to find the minimal structure that
encompasses prefixes of all symbolic time processes that embed a schedule of known dura-
tion. We show (theorem 6.1 in this section) that if a system cannot execute arbitrary large
sets of events without necessarily progressing time, then unfolding up to some bounded
depth is sufficient.

Definition 6.6 (time progress)
An STPN N guarantees time progress iff the following condition is met:

∃δ ∈Q>0,∀t ∈ T,∀u = 〈t1,d1〉 · · · 〈ti,θ0〉 · · · 〈ti+1,θ1〉 · · · ∈L (N ) with i ∈N : δ≤ θ1 −θ0,

i.e., there exists a minimum strictly positive duration δ that must elapse before two suc-
cessive firings of the same transition. ♦

Time progress is close to nonzenoness property, and is easily met (e.g., if no transition has
an earliest firing time of 0, or if there is no sequence of transitions that can be repreated
and take 0 time units,...). The example of Figure 6.4 does not guarantee time progress as,
according to STPN semantics, this net allows an arbitrary number of firings of transition
t0 to occur at date 0. However, such specification can be considered as ill-formed. In train
networks, some time must elapse between two consecutive departures of a train from
a station, as well as between two consecutive departures or arrivals of the same train.
Hence, URSs models ensure properties that are stronger than time progress property
(transition can only fire a minimum amount of time after being enabled). More gener-
ally, many STPNs modeling real-life cases exclusively contain transitions with rational
intervals of the form [α,β] or [α,+∞), where α> 0, which is sufficient to guarantee time
progress. An interesting consequence of time progress is that any execution of duration
∆ of an STPN that guarantees time progress is a sequence of at most |T| · d∆

δ
e transition

firings. It means that for systems such as URSs that run for a predetermined period (e.g.,
a metro system usually operates from 05:00 to 01:00), it is sufficient to consider behaviors
of a model up to a bounded horizon to address their properties over that period and, in
particular, check realizability.

As in processes, unfoldings will contain occurrences of place fillings (a set of conditions
B), and occurrences of transition firings (a set of events E). We use the same recursive
notations for conditions and events: b, 〈•b,pl(b)〉 and e, 〈•e,tr(e)〉, and a dummy initial
event ⊥ to define the set B0 of initial conditions in an unfolding. We also use relations
≺ and ¹ as defined for processes. The main difference between processes and unfoldings
is that conditions have a single successor event in time process, and several successor
events in unfoldings (branching).

The rest of the chapter addresses realizability in the following way:

• We first define a notion of structural unfolding and show how to extract the
untimed structure of time processes from it.
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• We then decorate these processes to obtain symbolic processes, i.e., processes
with constraints on their associated variables. Solutions to these constraints
define execution dates of events.

• we show that all timed processes executable in a bounded duration ∆ can be
captured by symbolic processes of an unfolding developed up to a bounded
depth

• We use this property to verify realizability, i.e., verify that some embedding
from a schedule S to the finite set of symbolic processes exists

• We then give tools to compute the probability of time process that embed S.

6.3.1 Structural unfolding

To define structural unfoldings, we first recall the notions of occurrence nets, branching
processes, and recall the unfolding algorithm used by ESPARZA et al. [26].

Definition 6.1. An occurrence net is an acyclic Petri net ON = (B,E,F,Cut0) where the
elements of B are conditions and those of E are events. and Cut0 ⊆ B such that: As ON
is acyclic, and hence <F, F+ and ≤F, F∗ are strict and weak partial orders; We say
that two events e, e′ are in conflict and write e]e′ iff there exists f ≤F e, f ′ ≤F e′ such that
f 6= f ′, and •f ∩ •f ′ 6= ;. We furthermore impose that:

• ∀e ∈ E : ¬(e#e) (no event is in conflict with itself);
• ∀b ∈ B, |•(b)| ≤ 1 (every condition has a unique predecessor);
• ON is finitary: for all x ∈ E∪B, the set Past(x), {y | y≤ x} is finite; and
• Cut0 contains exactly the <-minimal nodes of ON.

Definition 6.7 (Branching processes)
A branching process [25] of a STPN N = (P,T, A,λ) is a triple U = (ON,h,λ′) where ON=
(B,E) is an occurrence net, h is a homomorphism from B to P and from E to T and
∀e ∈ E,λ′(e) = λ(h(e)). A process of a net N is a branching process of N such that for
every condition b ∈ B, |(b)•| ≤ 1, or equivalently, such that E is a configuration (it is a
causal net). ♦

If BR1 = (B1,E1, F̂1,Cut0,h1,λ′
1) and BR2 = (B2,E2, F̂2,Cut0,h2,λ′

2) are two branching
processes of N , BR1 is a prefix of BR2 iff E1 ⊆ E2, and F̂1,h1,λ′

1 are the respective
restrictions of F̂2,h2,λ′

2 to B1 and E1. The unfolding of N , denoted by U (N ), is the
maximal branching process w.r.t. the prefix relation. This unfolding can be infinite, but in
this chapter, we will only consider finite structures and unfold nets up to a certain depth.

Definition 6.8 (causal past and closure)
The causal past of a condition b ∈ B is a set ↑ b , {b′ ∈ B | b′ ¹ b}, i.e., all predecessor
conditions of b. A set of conditions B′ ⊆ B is causally closed iff ∀b ∈ B′,↑ b ⊆ B′. These
definitions extend to events. ♦

Definition 6.9 (preprocess)
A preprocess of a finite branching process U = 〈B,E〉 is a pair 〈B′,E′〉 such that B′ ,
•E′∪E′•, and E′ ⊆ E is a maximal (i.e., there is no larger preprocess containing B′ and
E′), causally closed and conflict free set of events. ΣPP(U ) denotes the set of preprocesses
of U . ♦
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Preprocesses of an unfolding of an STPN N represent potential executions of N when
timing constraints are forgotten. We use the term preprocess to emphasize that these
nets only extracts events and conditions, but is not yet a time process, as there might be
no valid dating function for it.

Definition 6.10 (cuts in preprocesses)
A cut of a preprocess is a set of concurrent conditions. As they originate from a preprocess,
these conditions have no conflicting events in their causal past. They represent place con-
tents that can be consumed by the next firable transitions at some point in an execution.
Given a preprocess 〈B,E〉, the set of all its possible cuts is denoted Cuts(B,E). ♦

Unfolding a Petri net simply consists in successively appending events and resulting con-
ditions to cuts of already built processes. Following the work of MCMILLAN [51] and
ESPARZA et al. [26], we inductively build unfoldings U0,U1 . . . . Each step k adds new
events, and their postset, to the preceding unfolding Uk−1. We start with the initial un-
folding U0, 〈B0,∅〉 where B0, {〈⊥, p〉 | p ∈ m0}. The induction step is defined as follows:

Algorithm 6.1: An unfolding algorithm

input : an unfolding Uk, 〈Bk,Ek〉 (obtained at step k)
output: an unfolding Uk+1

1 Build the set Cuts(Uk) of cuts of Uk
2 Cuts(Uk)= {C ⊆ Bk | ∃〈X ,Y 〉 ∈ΣPP(Uk),C ∈ Cuts(X ,Y )}
3 Build the set of possible events

Ê = {〈B, t〉 ∈ (2Bk ×T)\ Ek | ∃C ∈ Cuts(Uk),B ⊆ C∧ •t = pl(B)}
4 Build the conditions produced by possible events B̂ = {〈〈B, t〉, p〉 ∈ Ê× t•}.
5 return Uk+1 = 〈Bk ∪ B̂,Ek ∪ Ê〉

Intuitively, the set of possible events Ê contains occurrences of transitions whose preset
is contained in a cut of a preprocess of Uk, and B̂ adds the conditions produced by Ê. If
one wants to restrict the construction of the unfolding to obtain a structure of bounded
depth, computation of Ê can be easily adapted to contain only events at depth smaller
than some given K . In such a case, the construction stops with a finite unfolding UK .

Definition 6.11 (competition)
We say that two events are in competition and write eg e′ when they fill a common place,
i.e., tr(e)•∩ tr(e′)• 6=∅ ♦

The structural unfolding of an STPN does not consider timing issues nor blockings. How-
ever, existence of competing events may result in unsatisfiable constraints on occurrence
dates of events (one cannot, for instance, fire two competing events at any date). Hence,
a preprocess of ΣPP(UK ) need not be the untimed version of a time process obtained from
a word in L (N ). Indeed, urgent transitions can forbid firing of other conflicting tran-
sitions. Similarly, blockings prevent an event from occurring as long as a condition in
its postset is filled. They may even prevent events in a preprocess from being executed
if a needed place is never freed. However, time processes of an STPN N can be built
from processes of its untimed unfolding. We will show later that, once constrained, time
processes of N are only prefixes of preprocesses in ΣPP(UK ) with associated timing func-
tion that satisfy requirement on dates that only depend on the considered preprocess.
We reintroduce time in unfoldings by attaching constraints to events and conditions of
preprocesses.
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6.4 Constraints to introduce time in processes

The unfolding of a net only consider causal dependencies and conflicts among transitions
occurrences. To introduce time and competition in unfoldings, we introduce variables as
follows:

• Condition variables: We associate to each condition b ∈ B positive real valued
variables dob(b) and dod(b) that respectively represent some ith date of birth of a
token in place pl(b), and the date at which this token is consumed.

• event variables: we associate to each event e ∈ E positive real valued variables
doe(e), dor(e) and θ(e) that respectively define the dates of the ith enabling, the date
at which firability holds, and the firing date of transition tr(e) represented by event
e.

We denote by Var(B,E) the set of variables for a branching process with conditions b
end events E. Var(B,E)

⋃
b∈B dob(b)∪dod(b)∪⋃

e∈E doe(e)∪dor(e)∪θ(e). A constraint over
Var(B,E) is a boolean combination of atoms of the form x ./ y, where x ∈ Var(B,E), ./ ∈
{<,>,≤,≥} and y is either a variable from Var(E,B) or a real constant value. A set of
constraints C over a set of variables V is satisfiable iff there exists at least one valuation
v : V → R such that replacing each occurrence of each variable x (and y) by its valuation
v(x) yields a tautology. We denote by Sol(C) the set of valuations that satisfy C.

Let UK , 〈BK ,EK 〉 be the structural unfolding of an STPN N up to depth K , and let
B, •E∪E• be a set of conditions contained in BK , and E ⊆ EK a conflict free and causally
closed set of events. We define ΦB,E as the set of constraints attached to conditions in B
and events in E, (i.e., defined over a set of variables Var(B,E)), assuming that executions
of N start at a fixed date dt0. Constraints in ΦB,E are set to guarantee:

• net constraints: occurrence dates of events are compatible with the earliest and
latest firing times of transitions in N ,

• causal precedence:if event e precedes event e′, then θ(e)≤ θ(e′),
• no overlapping conditions: if b,b′ represent occurrences of the same place, then

intervals [dob(b),dod(b)] and [dob(b′),dod(b′)] have, at most, one common point,
• urgency

an urgent transition with empty postset fires if no other urgent transition fires
before; and, in particular, for every event e ∈ E, there is no event that becomes
firable and urgent before e.

Conditions

Let us first define the constraints associated with each condition in b ∈ B. Recalling that
variable dob(b) represents the date at which condition b is created,ΦB,E must first impose
that for every condition b ∈ B0, ΦB,E contains a constraint of the form dob(b) = dt0. For
every other condition b = 〈e, p〉 ∈ B \ B0, as the date of birth of b is exactly the occurrence
date of e, we impose that ΦB,E contains a constrint dob(b) = θ(e). Despite this equality,
we will use both variables θ(e) and dob(b) to enhance readability. Recall that dod(b) is a
variable that designates the date at which a place is emptied by some transition firing,
dod(b) is hence the occurrence date of an event that has b as predecessor. Within a conflict
free set of events, this event is unique.

In the considered subset of conditions B, several conditions b,b′,b′′ . . . may represent
fillings of the same place (pl(b) = pl(b′) = pl(b′′) = . . . ). The set B can, thus, be seen as a
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partition B = ⋃
p∈P Bp, where Bp = {b ∈ B | pl(b) = p}, i.e. each condition in Bp represents

a particular filling of place p.

Definition 6.12 (siblings and family)
Given a preprocess 〈B,E〉 and a condition b ∈ B, the siblings of b are the conditions asso-
ciated with the same place as b and that are concurrent with b. More formally, we denote
by Sib(B,E,b) , {b′ ∈ B \ {b} | pl(b) = pl(b′)∧ b ∥ b′} the set of siblings of b in preprocess
〈B,E〉.
We also define the family of a set of conditions X ∈ B as the union of all their siblings.
We denote the family of a set of conditions X in a preprocess 〈B,E〉 by Fam(B,E, X ) ,⋃

b∈X Sib(b). We will simply write Sib(b) and Fam(X ) when B and E are clear from the
context. ♦

Due to elementary semantics, all conditions in a particular subset Bp must have dis-
joint existence dates, that is, for every b,b′ ∈ Bp with b 6= b′, the intersection between
[dob(b),dod(b′)] and [dob(b′),dod(b)] is either empty, or limited to a single value. We will
write no-ov(b,b′) (for no overlapping) to define a constraint that imposes such conditions
on dates of birth and death of b and b′. More formally,

no-ov(b,b′),


dod(b)≤ dob(b′)∨dod(b)≤ dob(b) if b• 6=∅∧b′• 6=∅ ,

dod(b)≤ dob(b′) if b• 6=∅∧b′• =∅ ,

dod(b′)≤ dob(b) otherwise.

To enforce elementary semantics, constraint no-ov(b,b′) must hold for every pair of con-
ditions b,b′ such that b ∈ Bp. Note that if b ¹ b′, then the constraint among events and
transitions immediately ensures dob(b) ≤ dod(b) ≤ dob(b′) ≤ dod(b′), so one needs not ad-
ditional constraints to avoid overlapping between existence dates of b and b′. However,
for pairs of concurrent conditions, no causal relation enforce automatically that existence
dates of conditions do not overlap. Hence, to define processes with consistent timing, we
have to ensure the existence dates of every condition does not collide with the existence of
all its siblings. Hence ΦB,E must contain a constraint of the form nob(b) (for no blocking)
for every condition in B.

nob(b),
∧

b′∈Sib(b)
no-ov(b,b′).

In words, condition b does not hold during the validity dates of any concurrent condi-
tion representing the same place. In particular, a time process of N cannot contain two
maximal conditions with the same place.

Events

Let us now consider the constraints attached to events. An event e , 〈X , t〉 is an occur-
rence of a firing of transition t that needs conditions in X to be fulfilled to become enabled.
Calling doe(e) the date of enabling of e, we have ∀e ∈ E :

doe(e)=max
b∈X

dob(b).

We define the date of readiness dor(e) of event e, the date at which time-to-fire of transition
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t elapses totally (i.e., becomes null). As the initial time-to-fire is samples from interval
[eft(t), lft(t)] an occurrence of a transition becomes firable at least, eft(t) time units and,
at most, lft(t) time units after the date of enabling doe(e). Hence, ΦB,E must contain the
following constraint const-ready(e) for every event e ∈ E, where:

const-ready(e), doe(e)+eft(t)≤ dor(e)≤ doe(e)+ lft(t).

As a consequence of elementary semantics, execution of e does not always immediately
occur when e is ready. It occurs after dor(e), and as soon as the places filled by e are
empty, i.e., e occurs at a date of firing θ(e) at which no place in t• is occupied. An accurate
date of firing of e w.r.t. the blocking semantics is guaranteed by integrating for each event
e ∈ E the constraint acc-firing(e) to ΦB,E, where:

acc-firing(e), θ(e)= dob(b)∧nob(b).

Last, as STPN semantics is urgent, once ready, e has to fire at the earliest possible date.
This is encoded by the constraint

θ(e)=max
(
dor(e),min

(
R≥0 \

⋃
b∈Fam(e•)(dob(b),dod(b))

))
.

p1
0

t1
1e

p1
1b

p2
1b0

t1
2

p3
1b1

t1
3

p2
2

p3
1b2

t1
4

p3
3

(a)

dob(b0) dod(b0)
b0

dob(b1) dod(b1)
b1

dob(b0) dod(b0)
b2

b

(b)

Figure 6.5: Constraints on dates of birth of tokens in a shared place.

Figure 6.5 shows the effect of blocking and possible firing dates for some event with a
condition b in its postset. The top of the figure is a part of a preprocess, with conditions
b, b0, b1, and b2 referring to the same place p1. Suppose that values of variables dob(bi)
and dod(bi) for all i ∈ {0,1,2} are already known. The situation is depicted by the drawing
at the bottom of Figure 6.5. Horizontal lines represent real axis, and line portion between
brackets represent intervals [dob(bi),dod(bi)]. According to the considered preprocess,
we have Sib(b), {b0,b1,b2}. Then [dob(b),dod(b)] have to be fully contained into one of
the thick segments of the Figure. An event with b in its postset, as event e in the depicted
preprocess, can only occur at dates contained in these thick segments.

Similarly, event e must occur before all its conflicting events. If an event e′ in conflict
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with e is executed, at least one condition in •e is consumed, and e cannot appear in a
time process containing e′. Hence, for every event e ∈ E, ΦB,E must include the additional
constraint

∧
e′]e nmu(e, e′) (for not more urgent) to guarantee that there exists no other

event that is forced to occur before e due to urgency. We define nmu(e, e′) as the following
constraint:

nmu(e, e′), θ(e)≥ doe(e′)+ lft(tr(e′)) =⇒ tiled(e, e′)∨∨
e′′∥e preempt(e′, e′′)

where

• e′′ ∥ e refers to events that are concurrent with e in the considered set of events E;
• preempt(e′, e′′), θ(e′′)≤min((doe(e′)+lft(tr(e′)),θ(e))∩ fre(e′)) is the preemption con-

dition, and it means that e′′ disabled e′ by consuming a condition in •e′′;
• fre(e′), R≥0 \ {[dob(b),dod(b)] | ∃b′ ∈ e′•,b ∈ I(b′)} is the set of free intervals, i.e., in

which places attached to conditions in e′• are empty; and
• tiled(e, e′), fre(e′)∩ [doe(e′)+ lft(tr(e′)),θ(e)]=∅.

Constraint nmu(e, e′) means that if e′ is in conflict with e, then at least one condition in
•e′ is consumed before e′ can fire, or if e′ becomes firable before e fires, the urgent firing
of e′ is delayed by blockings so that e can occur. As for constraint attached to blockings,
nmu(e, e′) can be expressed as a boolean combination of inequalities. One can also notice
that nmu(e, e′) can be expressed without referring to variables attached to event e′ nor
e′•, as doe(e′)=maxbi∈•e′ dob(bi) and the intersection of Sib(b) and e′• is empty.

For causally closed sets of events and conditions B∪E contained in some preprocess of
UK , the constraint ΦB,E applying on events and conditions of B∪E is now defined as
ΦB,E ,

∧
x∈B∪EΦB,E(x) where:

∀b ∈ B,ΦB,E(b),


dob(b)= dt0 if b ∈ B0 and b is maximal,
dob(b)= dt0 ∧dob(b)≤ dod(b) if b ∈ B0,
dob(b)= θ(•b) if b ∉ B0 and b is maximal,
dob(b)= θ(•b)∧dob(b)≤ dod(b) otherwise.

∧ nob(b)

∀e ∈ E,ΦB,E(e),



doe(e)=maxb∈•e dob(b)
∧ doe(e)+eft(tr(e))≤ dor(e)≤ doe(e)+ lft(tr(e))
∧ dor(e)≤ θ(e)
∧ ∧

b∈•e dod(b)= θ(e)
∧ ∧

b∈e• θ(e)= dob(b)
∧ ∧

e′]e nmu(e, e′)

Let us now address maximality of symbolic prefixes w.r.t. urgent events occurrences.

Definition 6.13 (symbolic prefix)
Given a preprocess PP , 〈B,E〉 of an unfolding UK , a symbolic prefix of PP is a triple
SPP = 〈B′,E′,ΦB′,E′〉 where E′ ⊆ E is a causally closed set of elements, and B′, •E′∪E′•.
ΦB′,E′ is the set of all constraints that help fulfilling net constraints, causality, overlap-
ping, and urgency. ♦
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An important point to notice is that in a symbolic prefix 〈B,E,ΦB,E〉, 〈B,E〉 is a pre-
process, i.e. E and B are causally closed sets of events and conditions. However,
the constraint ΦB,E can be unsatisfiable, i.e. there might be no timed non-blocking
realization of 〈B,E,ΦB,E〉. Hence a symbolic prefix is not always a symbolic charac-
terization for a set of time processes.

Let SPP, 〈B′,E′,ΦB′,E′〉 be a symbolic prefix of preprocess PP, 〈B,E〉. Symbolic process
SPP is maximal w.r.t. urgent events occurrences iff no more event of PP must necessarily
belong to SPP. This property of SPP holds if every event f ∈ B′• ∩ E that could have
become urgent before the last date of all events in E′ was prevented from firing, due to
blocking. This property of prefixes can be verified as a property Φmax( f ) that has to be
satisfied for every f ∈ B′•∩E. Letting C f , pl−1( f •)∩B′ denote the set of conditions of
B′ whose place appears in the postset of f , SPP is maximal iff for every f ∈ B′•∩E, the
following constraint is not satisfiable:

Φmax( f ),


ΦB′,E′

∧ eft( f )+maxb∈•f dob(b)≤ θ( f ) (a)

∧ ∨
X∈2C f maxx∈X dod(x)≤ θ( f )≤minx∈C f \X dob(x) (b)

∧ θ( f )≤maxe′∈E′ θ(e′) (c)

Intuitively, Φmax( f ) means that event f that is not in the symbolic process: (a) becomes
urgent, (b) is not blocked by conditions in B′, and (c) has to fire before the execution of the
last event in E′. If Φmax( f ) is satisfiable, then f should appear in the process.

We can now define symbolic processes, and show how instantiation of their variables de-
fine time processes of N . Roughly speaking, a symbolic process is a prefix of a preprocess
of UK (and, hence, a causal net) decorated with a satisfiable set of constraints on oc-
currence dates of events. Before formalizing symbolic processes, let us highlight three
important remarks.

Remark 6.1 (constraints). An unfolding up to depth K misses some constraints on occur-
rence dates of events due to blockings by conditions that do not belong to UK but would
appear in some larger unfolding UK ′ , with K ′ > K , We will however show (cf. Propo-
sition 6.1 and Theorem 6.1) that with time progress assumption, unfolding N up to a
sufficient depth guarantees that all constraints regarding events with θ(e) ≤ D are con-
sidered. This allows to define symbolic processes representing the time processes of N

that are executable in less than D time units.

Remark 6.2 (event depth). Unfoldings consider depth of events, and not their dates.
Hence, if a process contains an event e occurring at some date greater than d, and an-
other event e′ that belongs to the same preprocess and becomes urgent before date d,
then e′ must belong to the process, even if it lays at a greater depth than e.

Definition 6.14 (symbolic process)
A symbolic process of an unfolding UK = 〈EK ,BK 〉 is a triple Sp, 〈B′,E′,ΦB′,E′〉 that is is
a symbolic prefix of some preprocess PP, 〈B,E〉 of UK in which ΦB′,E′ is satisfiable, and
such that E′ is maximal w.r.t. urgent events occurrence in PP. ♦

Intuitively, a symbolic process is a prefix where all transitions that had to be fire have
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been integrated the the set of events. As already mentioned, it is not sufficient to equip a
preprocess 〈B,E〉 of UK constraintΦB,E to obtain a symbolic process. Indeed, some events
in a preprocess might be competing for the same resource, and make ΦB,E unsatisfiable.
Consider for instance the STPN of Figure 6.6-a). Its unfolding is represented in b), and
two of its symbolic processes in c) and d). For readability, we have omitted constraints.
One can however notice that there exists no symbolic process containing two occurrences
of transition t3, because conditions p0

4 and p1
4 are maximal and represent the same place

p4.

p2

t0 [0,4]t1 [0,4]
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Figure 6.6: An STPN with conflicts and blockings (a), its symbolic unfolding (b), and two
of its symbolic processes (c) and (d).

A crux in the construction of symbolic processes of UK is to find appropriate maximal
and causally closed sets of events with satisfiable constraints. This can be costly: as
illustrated by the example of Figure 6.6, satisfiability of constraints is not monotonous:
the constraints for processes in Fig 6.6−c) and d) are satisfiable. However, adding one
occurrence of transition t3 yields unsatisfiable constraints. Satisfiability of a prefix of
size n hence does not imply satisfiability of a larger prefix of size n+1. The converse
implication is also false: if a constraint associated with a prefix of size n is not satisfiable,
appending a new event may introduce blockings that delay urgent transitions, yielding
satisfiability of a constraint on a prefix of size n+1. So, unsatisfiability of constraints
cannot be used as a criterion to stop incremental construction of unfoldings.

Definition 6.15 (execution of a symbolic process)
Let Sp, 〈B,E,ΦB,E〉 be a symbolic process of an unfolding UK . An execution of Sp is a
time process TP , 〈B,E,θ〉 where θ is a solution of ΦB,E. For a given θ, we denote by
Spθ , 〈B,E,θ〉 the time process obtained from Sp. A tuple 〈B,E,θ〉 is a time process of a
given unfolding UK iff it is an execution of one of its symbolic processes. ♦

Informally, symbolic preprocesses select maximal conflict free sets of events in an un-
folding. Symbolic processes extract executable prefixes from symbolic preprocesses, and
executions attach dates to events of symbolic processes to obtain time processes.

We shall respectively denote by S P RSp(UK ) and by T P TP(UK ) the set of symbolic
processes and time processes of UK .

We can now show that under time progress assumption, unfoldings and their symbolic
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processes capture the elementary semantics of STPNs, i.e. represent all their time pro-
cesses. Given an STPN that guarantees time progress with a minimal elapsing of δ time
units between successive occurrences of each transition t ∈ T, and given a maximal date
D, we want to build an unfolding U D of N that contains all events that might be executed
before D, but also all conditions and events which may impact firing dates of these events.
We can show that U D is finite and that its processes are of depth at most H = dD−dt0

δ
e·|T|.

Let b , 〈e, p〉 be a condition of an unfolding Un obtained at step n. Let Sib∗(b) be the
set of conditions that may occur in the same process as b, represent the same place, and
are not predecessors or successors of b in any unfolding Un+k obtained from Un. Clearly,
dates of birth and death of conditions in Sib∗(b) may influence the date of birth and death
of b, or even prevent b from appearing in the same process as some conditions in Sib∗(b).
However, in general, Sib∗(b) need not be finite, and at step n, Sib∗(b) is not fully contained
in a preprocess of Un. Fortunately, under time progress assumption, we can show that
elements of Sib∗(b) that can influence dob(b) appear in some bounded unfolding UK .

Proposition 6.1. Let N be an STPN guaranteeing time progress of δ time units (between
consecutive occurrences of each transition). For every date D ∈ R≥0 and condition b in an
unfolding Un, there exists K ≥ n such that {b′ ∈Sib∗(b) | dob(b′)≤ D} is contained in UK .

This proposition means that if some event cannot occur at dor(e) due to a blocking, i.e.,
θ(e) 6= dor(e), then one can discover all conditions that prevent this firing from occurring
in a bounded extension of the current unfolding.

Theorem 6.1. Let N be an STPN guaranteeing time progress of δ time units. The set of
time processes executable by N in D time units is a set of prefixes of time processes of UK ,
with K = dD

δ
e× |T|2 containing only events with date less than or equal to D.

We do not detail the proofs of Proposition 6.1 and Theorem 6.1 here, and refer interested
reader to Appendix A.1 and Appendix A.2 for detailed proofs. This theorem is central
for realizability: it means that is is sufficient to unfold a net up to a depth that guaran-
tees finding all processes that realize a particular schedule. We explain how in the next
section.

6.5 Boolean realizability of schedules

We can now address the question of realizability of a high-level description of operations
(a schedule S) by a system (described by a STPN N ). Considered in a purely boolean
setting, this question can be rewritten as: “Is there an execution of N that implements
S?” In many cases, a positive answer to this question is not sufficient: as STPNs are
equipped with continuous probability distributions, the probability of a particular execu-
tion TP, 〈E,B,θ〉 is always null. A sensible way to address realizability is a quantitative
approach requiring that the set of executions of N implementing S has a strictly positive
probability. In this section, we first formalize the notion of realization of a schedule by an
execution, and define boolean realizability. We then define probabilistic realizability, and
show how an underapproximation of the probability to realize a schedule can be computed
using a transient tree construction [39].

First of all, the connection between high-level description of operations in S and their
implementation in N is defined via a realization function.
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Definition 6.16 (realization function)
A realization function for a schedule S and an STPN N is a map r : A → 2T that assigns
a subset of transitions from T to each letter of A , with ∀a ∈A ,∀a′ ∈A \{a} : r(a)∩ r(a′)=
∅. ♦

A realization function describes which low-level actions implement a high-level operation
of a schedule. Each letter a from A can be interpreted as an operation performed through
the firing of any transition from the subset of transitions r(a). Allowing r(a) to be a
subset of T provides some flexibility in the definition of schedules: in a production cell, for
example, a manufacturing step a for an item can be implemented by different processes on
different machines. Similarly, in a train network, a departure of a train from a particular
station in the schedule can correspond to several departures using different tracks, or to
departure with different speed profiles, which is encoded with several transitions in an
STPN. Realization functions, hence, relate actions in schedules to several transitions in
an STPN. The condition r(a)∩ r(a′) =∅ prevents ambiguity by enforcing each transition
to appear, at most, once in the image of r. Note that r(A ) ⊆ T, i.e., the realization of a
schedule may need many intermediate steps that are depicted in the low-level description
of a system, but are not considered in the high-level view provided by a schedule. This
allows, in particular, to define schedules that constrain dates for a subset of events, and
leave dates of other events free from any constraint. In the context of RTSs, this allows
for the verification of realizability of schedules that focus on a subset of stations, e.g.,
requiring a departure from a chosen station every x minutes during a normal day of
operation. Transitions in r(A ) are called realizations of A .

Definition 6.17 (embedding)
Let S, 〈N,→,λ,C〉 be a schedule, Sp, 〈B,E,Φ〉 be a symbolic process of N and r : A →
2T be a realization function. We say that S embeds into Sp (w.r.t. r and d), and write
S ,→Sp iff there exists an injective function ψ : N → E such that:

∀n ∈ N : tr
(
ψ(n)

) ∈ r
(
λ(n)

)
(embedding is consistent with labeling)

∧ ∀〈n,n′〉 ∈→ :ψ(n)¹ψ(n′) (causal precedence is respected)

∧ Ø f ≤ψ(min(n)) : tr( f ) ∈ r(A ) (embedding starts on 1st compatible events)

∧ ∀e ≤ f ≤ g : e =ψ(n)∧ g =ψ(n′′)∧ tr( f ) ∈ r(A ) (embedding misses...

⇒∃n′ : f =ψ(n′)∧n →∗ n′ →∗ n′′ ...no compatible event)

♦

S embeds in Sp iff there is a way to label every node n of S by a letter from r
(
λ(n)

)
, and

obtain a structure that is contained in some restriction of a prefix of Sp to events that
are realizations of actions from A , and to a subset of its causal ordering. This way, a
process respects the ordering described in S, does not forget actions, and does not insert
realizations that are not the image by ψ of any high-level operation between two mapped
realizations, or before the image by ψ of minimal nodes in the schedule. Note that there
can be several ways to embed S into a process of N .

Definition 6.18 (realizability)
Let d be a dating function for a schedule S, 〈N,→,λ,C〉, and r be a realization function.
The pair 〈S,d〉 is realizable by Sp, 〈E,B,Φ〉 (w.r.t. r) iff there exists an embedding ψ

from S to Sp, and furthermore, Φψ,S,d ,Φ∧∧
n∈N θ

(
ψ(n)

) = d(n) is satisfiable. 〈S,d〉 is
realizable by N (w.r.t. r and d) iff there exists a symbolic process Sp that realizes S. ♦
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Realizability of a schedule S , 〈N,→,λ,C〉 with constraints C stands for realizability of
any of dating function d meeting constraints C. Very often, we also address realizability
of a schedule with respect to a fixed dating function d. Letting Cψ denote the conjunction
of inequalities obtained by replacing every assignment 〈i, j〉→ v in map C by inequalities
v ≤ θ

(
ψ

(
n j

))−θ(
ψ(ni)

)
, we will say that S is realizable by Sp (w.r.t. r) iff there exists an

embedding ψ from S to Sp, and Φψ,S,C ,Φ∧Cψ is satisfiable. Similarly, when nodes of
schedules are assigned a precise date by a map d, we can define Cd ,Cψ∧∧

n∈N θ(ψ(n))=
d(n), and Φψ,S,d ,Φ∧Cd. We write Sp |= S when S is realizable by Sp, and N |= S when
S is realizable by some symbolic process of N .

Finding the set of embedding functionsΨ, {ψ0,ψ1, . . . ,ψk−1} that satisfy the conditions of
definition 6.17 is achieved building iteratively injective functions meeting the embedding
requirements, by matching at every step minimal yet unexplored nodes of S with minimal
unmatched nodes of Sp. This construction is depicted in Algorithm 6.2. We will define an
embedding function f as a set pairs of the form 〈n, e〉, interpreted as f (n) = e. We define
in particular the empty embedding f⊥, that is undefined for every node of N, and will
be used as starting point of the algorithm. For a given function f , will write f ∪〈n, e〉 to
denote the extension of f to {n}, that associates e to node n, and f (n′) to every other node
n′ ∈ dom( f ).

Algorithm 6.2: Computation of embeddings of a schedule in a symbolic process

1 input: a schedule S, 〈N,→,λ,C〉, a symbolic process Sp, 〈E,B,Φ〉;
2 Ψ :=∅; // the set of solutions is initially empty

3 F := { f⊥}; // the exploration starts from the undefined map

4 while F 6=∅ do
5 choose f ∈ F;
6 MINS, f :=min→

(
N \dom( f )

)
;

7 if MinS, f =∅ then ; // all nodes of S have an image in E8

9 Ψ :=Ψ∪ { f }; // f is an embedding

10 else
11 F := F \{ f }; // we will explore extensions of partial embedding f
12 MINE , f :=min¹

(
E \ image( f )

)
;

13 FOUND := false;
14 while MinS, f 6=∅∧Found= false do
15 choose n ∈ MINS, f ;
16 MINS, f := MINS, f \{n};
17 CAND := {e ∈ MINE , f | tr(e) ∈ r

(
λ(n)

)∧∀n′ ∈ dpred
→

(n), f (n′)¹ e};

18 if Cand 6=∅ then
19 F := F ∪⋃

e∈CAND{ f ∪〈n, e〉}; // update f with pairs 〈n, e〉 that

meet the matching criteria and add the new functions to

candidate embeddings

20 FOUND := true;

Algorithm 6.2 computes the set ΨS,Sp of embeddings of a schedule S in a symbolic pro-
cess Sp. If there exists an embedding ψ ∈ΨS,Sp from S to a symbolic process Sp, such
that Φψ,S,C (resp. Φψ,S,d) is satisfiable, then S is realizable by Sp. Realizability, hence,
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consists in finding at least one symbolic process of N with an appropriate embedding
in ψ ∈ΨS,Sp. When a maximal occurrence date D for operations in S is provided, and
when N guarantees time progress, such a process is a process of unfolding UK (where
K is the bound given in Proposition 6.1). We can then compute the set of symbolic
processes S P RSp , {Sp0,Sp1, . . . ,SpN−1} of UK that embed S, and similarly, for each
Spi ∈ S P RSp, the set of possible embedding functions Ψi , {ψi,0,ψi,1, . . . ,ψi,Ni−1} for
which constraint Φψ,S,C (resp. Φψ,S,d) is satisfiable.
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Figure 6.7: Realizability of a schedule for a metro network with two lines and a shared
track.

Let us consider the example of figure 6.7. This toy example depicts two train carousels:
line 1 serves stations A, B and C, and line 2 serves stations D, B′ and C′. Both lines share
a common track portion between stations B,C and B′,C′, and line 1 uses two trains. The
upper left picture shows the aspect of both lines and stations, and the bottom left figure
an STPN model of this network (we do not show distributions). Stations are represented
by places labeled by station names, and track portions between two stations by places
labeled by pairs of letters representing the connected stations (e.g., place CA represents
the track from C to A). Transitions consuming tokens from a station place represent
trains departures, and transitions consuming tokens from a track place are arrivals. A
possible required schedule (middle of the figure) is that one train leaves every 10 time
units from station A on line 1, starting from date 10, and one train leaves station B′

every 10 time units, but starting from date 15. Arrivals of trains and departures from
other stations are not represented and are, hence, not constrained. Departures from A
are nodes labeled by dA and departures from B′ are nodes labeled by dB′ . The rightmost
part of the figure is a structural unfolding of the net. We set r(dA), {t5} and r(dB′), {t7}.
Note that the topmost occurrence of place OK, that plays the role of a boolean flag in a
critical section, can be both consumed by occurrences t1

1 and t2
1 of transition t1, which is a

standard conflict. Note also that events t1
4 and t2

4 output a token in place A. Even if these
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events are not in conflict, due to standard semantics (i.e., nonblocking), their firing dates
may influence one another. The way operations of the schedule inject in a process of the
net is symbolized by dotted lines. Notice that if t1

5 has to fire at date 10, then according
to intervals attached to transitions, t1

4 has to fire at date 5. This means that there exists
a unique way to guarantee a departure from station A at date 10, which is to sample the
smallest running time from C to A and the smallest possible dwell time at station A. The
schedule of Figure 6.7 is, thus, realizable. However, the probability of occurrence of this
schedule with precise dates is null (again, due to continuity of random variables).

6.6 Probabilistic realizability

The example of Figure 6.7 shows that boolean realizability characterizes an embedding
that is consistent with time constraints, but not the probability to realize a schedule.
Consider the STPN of Figure 6.8. This simple STPN has two symbolic processes: Sp1 in
which transition t1 fires, and Sp2 in which t2 fires. The probability of process Sp1 is the
probability that a value v1 sampled to assign a time-to-fire to t1 is smaller or equal to
another value v2 sampled independently to assign a time-to-fire to t2. Clearly, the prob-
ability that v1 ≤ v2 is equal to the probability that v1 ∈ [0,1] (which is equal to 1). The
probability of the second process Sp2 is equal to the probability that v2 ≤ v1, but the set of
values allowing this inequality is restricted to a single point 〈v1,v2〉 = 〈1,1〉. Conforming
to continuous probability distributions semantics, the probability of this point, and con-
sequently, the probability of executing a time process that is consistent with constraints
in Sp2 is null. A schedule S composed of a single node n with a realization function such
that r

(
λ(n)

)
, {t2}, and a date d(n) , 1 are realizable according to Definition 6.17, but

with null probability. Let us slightly change the example of Figure 6.8-a). We now assign
interval [0,3] to transition t1 in the STPN and interval [1,4] to transition t2. We keep
the same schedule S and realization function r, but require that d(n) = 2. The probabil-
ity that t2 fires from the initial marking is equal to the probability that v2 ≤ v1, which
is not null (we explain below and in A.4 how to compute the probability of such domain
and the joint probability of v1 and v2), and is equal to the joint probability of values of
v1 and v2 laying in domain v2 ≤ v1 depicted by the filled zone in Figure 6.8-b). How-
ever, within this continuous domain of possible values, the probability to fire t2 exactly
at date 2 as required by dating function d is still null. Nevertheless, if t2 is allowed
to fire at date 2 with some imprecision α, then the probability to realize the expected
schedule is equal to the integration of the joint probability distribution over the domain
where (v2 ≤ v1)∧ (2−α≤ v2 ≤ 2+α) (represented as a dashed part in Figure 6.8-b), which
can be strictly positive if distributions attached to t1 and t2 are properly set. Note that
requiring dates to be implemented up to some imprecision does not necessarily increase
the probability to realize a schedule: in the example of Figure 6.8-a) with intervals [0,1]
and [1,2], the only way to realize the schedule S mentioned before with date d(n) = 1,
up to some imprecision, is to execute the unique time process in which t2 fires at date
1, and the probability of this process is null. More generally, the probability to realize
a schedule, when the embedding relation leaves a single possible occurrence date for at
least, one event in the chosen symbolic process, is always null.

Boolean realizability is a first step to check that a schedule and an implementation are not
totally orthogonal visions of a system. However, examples 6.7 and 6.8 demonstrate that
it is not precise enough. They also show that boolean realizability up to imprecision still
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Figure 6.8: a) An example STPN b) A domain for τ(t1),τ(t2) allowing firing of t2,
assuming I(t1)= [0,3] and I(t2)= [1,4].

allows to consider sets of processes with null probabilities as realizations of a schedule.
An accurate notion of realizability should require that schedules embed into symbolic
processes of UK with strictly positive probability and up to some admissible imprecision
on dates of events, bounded by some value α ∈ Q≥0. When a schedule is constrained
by a precise map d, every operation x in a schedule should now be implemented by an
occurrence t j

i of a transition t at date θ(t j
i ) ∈ [max(d(x)−α,0),d(x)+α]. Once an injection

ψ from a schedule S , 〈N,→,λ,C〉 to a symbolic process Sp is found, the constraint to
obtain realizability of a dating function d up to imprecision α becomes

Φψ,S,d±α,Φ∧ ∧
n∈N

max(d(n)−α,0)≤ θ(ψ(n))≤ d(n)+α.

One can, similarly, require that constraints C in S be realized up to imprecision α, i.e.,
require that constraints of the form v ≤ d(n j)−d(ni), imposed by map C, are implemented
in the low-level STPN by a time process satisfying a relaxed constraint of the form v−
α ≤ θ

(
ψ(n j)

)− θ(
ψ(ni)

)
. From a practical point of view, this notion of realization up to

bounded imprecision is more natural than boolean realizability. Indeed, for systems such
as train networks, one cannot expect a schedule to be realized with perfect precision, but
rather that differences between realized and scheduled dates be of slight or negligible
significance. To measure the probability of realizing a schedule, we define as P [Sp] the
probability of the set of time processes of Sp. When an embedding ψ from S to Sp exists,
we define as P

[
Sp∧Sol(Φψ,S,d±α)

]
the probability of time processes that are realizations

of Sp in which dates of events are solutions of Φψ,S,d±α.

Definition 6.19 (probabilistic realizability)
Let d be a dating function with maximal date D for a schedule S , 〈N,→,λ,C〉, and r a
realization function. The pair 〈S,d〉 is realizable with nonnull probability (w.r.t. r) up to
imprecision α iff there exists an embedding ψ of S into a symbolic process Sp of UK such
that P(Sp∧Sol(Φψ,S,d±α))> 0. ♦

This definition requires that a symbolic process of N embeds S, and that the probability
that this process is executed and satisfies all timing constraints imposed by the STPN,
and by the dating function, is strictly positive. We will now show how to compute this
probability using a transient execution tree, as proposed by HORVÁTH et al. [39]. A tran-
sient execution tree is a tree whose vertices are stochastic state classes.

Definition 6.2 (transient stochastic state class). A transient stochastic state class (or
class, for short) of an STPN N is a tuple Σ, 〈M,C,D,blk,urg〉 where M is a marking.
For a given class, we define a set of variables XM with support C representing the pos-
sible times-to-fire of transitions enabled by marking M such that for every x in XM , the
elimination of all other variables from C yields a nonempty set of possible values that is
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different from {0}; D is a PDF over C, blk is a set of blocked transitions, and urg is a set
of urgent transitions.

Roughly speaking, classes are abstract representations of markings, time domains for
sampled values attached to enabled transitions, and of their distributions over the ab-
stract domain. The notion of state class was already used for TPN analysis [9, 45],
stochastic state classes, hence, only add a probabilistic dimension. In a stochastic state
class, transitions that are enabled but not blocked nor urgent are assigned a time-to-fire.
We will denote by xi the variable describing the time to fire associated to a transition
ti, and by XM the set of all variables attached to enabled transitions in M. The do-
main C can be described by a set of inequalities of the form xi − x j ./ v or xi ./ v with
./ ∈ {<,>,≤,≥,=} and v ∈ Q. It represents possible values for times-to-fire attached to
transitions. Similarly, the distribution D is a PDF defined on R|XM |

≥0 , giving probability of
values of xi1 , . . . , xi|XM | . When needed, we can also include in XM , a particular variable
xage representing the time elapsed since the beginning of an execution. The probability
to fire a particular transition from a class and move to a successor class is computed as
an integration over the time domain allowing this transition to fire first. On the example
of Figure 6.8 (with intervals [0,3] and [1,4]), this corresponds to integration of a joint
distribution for values v1 and v2 over the filled area.

One can assume that the system under study starts from a known initial marking M0

with initial known times-to-fire, represented as a point of R
|XM0 |
≥0 . The construction of

the transient tree starts from class 〈M0,C0,D0,blk0,urg0〉, where C0 is a single point
defining known times-to-fire, D0 associates probability 1 to the single point in C0, and 0
to R

|XM0 |
≥0 \ C0 (i.e., a Dirac distribution).

Then, the transient tree is built by iterating a construction of successors for already
found classes. Let 〈M,C,D,blk,urg〉 be a class such that urg , ∅, and let ti be an en-
abled transition in this class. Then, one can compute the domain defined by constraint
C′ , C ∧ {xi ≤ x j | xi 6= x j ∈ XM}, that imposes that ti is the first transition to fire, i.e.,
it has the smallest time-to-fire in the class. If C′ is satisfiable, then ti is effectively
firable, and one can compute the probability pi that ti fires first, and the successor class
〈Mi,Ci,D i,blki,urgi〉 reached after firing ti. First of all, we have pi ,

∫
C′ D(xi1 . . . xi|XM |),

i.e., the probability of all values for XM in which xi is the smallest variable. The successor
class 〈Mi,Ci,D i,blki,urgi〉 is then obtained as follows:

• Mi is the marking M \ •ti ∪ ti
•. Sets blki and urgi can be updated as follows: a

blocked transition remains blocked if it is enabled by Mi and its postset is not freed
by firing ti. It can also become urgent if its postset is freed, or be disabled if firing ti
removes a token from its preset. Similarly, urgent transitions can become blocked,
remain urgent, or be disabled.

• We reuse the technique of LIME and ROUX [45] to compute Ci. We start from C′.
We first make a variable change of the form x j , xi + x′j (to consider the fact that
all times-to-fire are decreased by the value of xi). We, then, eliminate all variables
associated to transitions disabled by firing ti (for instance using the FME method).
After that, we add new constraints of the form x′k ∈ I(tk), for every newly enabled
transition tk. This represents the fact that a new time-to-fire is sampled. Last, we
rename all x′k variables to xk to obtain Ci.

• D i is obtained in an almost similar way, using the procedure given by HORVÁTH et
al. [39]. We have already computed the probability pi to fire ti from 〈M,C,D,blk,urg〉.
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As ti fires before any other transition from class 〈M,C,D,blk,urg〉 we first compute
a new distribution Da defined over C′ such that Da(XM) , D(XM )

p that conditions

values of variables in X a
M , XM \{xi} knowing that xi has the smallest value in XM .

The next step is to build the distribution of probabilities once xi is eliminated, i.e.,
a distribution Db(X a

M) computed as Db(X a
M),

∫ maxi
mini

Da({x j + xi | i 6= j}), where mini

is the minimal value of xi in C′ and maxi its maximal value. This integration is
repeated for every variable attached to a transition disabled by firing of ti. The last
step consists in integrating the newly created variables and their distributions to
Db. Let XMi \ XM , {xk1 . . . xkq }, where tk1 . . . tkq are newly enabled transitions. As
the value of each xk j represents a newly sampled time-to-fire, it does not depend
on former values of variables, we have D i ,Db ·F(xk1) . . .F(xkq ). D i is defined over
domain Ci defining possible values of variables in XMi .

The construction of a successor class when urg 6=∅ follows similar lines, i.e., consists in
computing successor marking, domain and distribution. The main difference is that an
urgent transition necessarily has a time-to-fire equal to 0. Futhermore, it may compete
with other urgent transitions. The probability to fire ti ∈ urg is, hence, Pfire(ti),W (ti)

/∑
t j∈urg W (t j).

One can iteratively compute successors of classes to obtain a transient execution tree. As
our STPN is bounded, the number of markings and domains that can be generated induc-
tively at construction time is finite (as proved by BERTHOMIEU and DIAZ [9]). Urgent and
blocked transitions are also finite subsets of T. The distributions attached to transitions
of STPNs are expolynomial functions. Beyond their expressive power, expolynomial func-
tions are closed under projections, integrations, or multiplication. Furthermore, (joint)
distributions of clock values in a node can always be encoded as expolynomial functions.
This way, one can iteratively build a tree whose nodes contain markings, classes and ex-
polynomial distributions over these classes. However, as shown by HORVÁTH et al. [39],
the number of distributions that can be iteratively computed need not be finite. However,
as time progress is guaranteed, one can limit the construction to a bounded horizon. In
our case, we can be even more directive, and guide the tree construction to match execu-
tions of a particular symbolic process Sp. Indeed, we can consider only executions of a
tree that are executions of Sp by remembering at every step which transitions have been
executed, and forbidding any transition that is not among the possible next ones.

Details on the construction of this transient tree are provided in Appendix A.3.

After this transient tree construction, the (sum of) probabilities attached to paths of the
tree can be used to compute the probability of properties such as safety of a system within
a bounded horizon. In our case, the sum of probabilities of all paths that end with the
execution of a chosen symbolic process gives the probability to realize this process. If
this probability is not null, then there is a positive probability to realize the considered
schedule. Note that the computed value is only a lower bound for the exact probability
to realize a schedule: indeed there can be more than one process realizing a schedule.
However, computing the exact probability is rather involved, as distinct realizations of a
schedule are not necessarily independent.

Consider a transient tree that collects all symbolic executions of a particular process Sp.
Each of its paths

ρ, 〈M0,C0,D0,blk0,urg0〉 t1,p1−−−−−→〈M1,C1,D1, BLK1, URG1〉 . . . tk,pk−−−−−→〈Mk,Ck,Dk,blkk,urgk〉
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defines a feasible set of executions of Sp by N . The probability of execution ρ is the
product p1 · p2 · · · pk. By summing up probabilities of all paths of the transient tree that
are executions of Sp, one obtains the probability of Sp.

This immediately gives us an informal algorithm to check probabilistic realizability of a
schedule S, with a maximal date by an STPN N (that guarantees time progress):

First, unfold N up to a depth K computed according to the maximal date for the schedule;
find the set E of all processes of UK that embed S; for each symbolic process Sp ∈ E,
compute the part of the transient tree that corresponds to executions of Sp in N ; if the
schedule imposes precise dates, include in classes a variable xage that remembers the time
elapsed since the beginning of an execution, and add the constraint d(n)−α≤ xage ≤ d(n)+
α when firing a transition implementing some node n of the schedule; then, check the
probability of each path ending on a node where all transitions of Sp have been executed;
if one finds a path ρ in the transient tree with a complete execution of Sp and nonnull
probability Pρ, then P(Sp∧Sol(Φψ,S,d±α))≥Pρ > 0 and the algorithm can stop and return
a positive answer.

6.7 Use Case: realizability in a metro network

Is this section, we develop a complete case study: we consider realizability of a particular
schedule by a fleet of trains in a metro network. We show that one can depict a metro net-
work and a simple shunting mechanism with stochastic time Petri nets, decide whether
a particular schedule can be realized, and compute the probability of its realization.

Urban train systems are usually composed of closed imbricated loops, and the exam-
ple developed below is a network of this kind, that is representative of the architec-
ture of many metro lines. In metro networks, trains travel at predetermined speed
profiles following a predetermined itinerary. They move from a station to another fol-
lowing a track. A network is hence not just a simple cycle: it contains forks, junc-
tions, etc. Such complex topologies can easily be captured by the flow relations of a
Petri net. Consider for instance the example network of Figure 6.9. This network is
composed of 7 stations sA, sB, sC, sD, sE, sF, sG and bidirectional tracks. Each station
hence has two platforms, one for each direction, denoted respectively X and X for sta-
tion sX . A train in the network can be scheduled to serve repeatedly platforms along
trip A.B.C.D.E.F.G.Ḡ.F̄.Ē.D̄.C̄.B̄.Ā, or follow smaller loop trips A.B.C.D.D̄.C̄.B̄.Ā and
D.E.F.G.Ḡ.F̄.Ē.D̄. This situation is a frequent one in long circular metro lines connect-
ing suburbs and city centers. Indeed, in the mornings and evenings, it is more important
to bring commuters from their home to the city center than providing long trips along the
whole network.

We consider a setting where trains are isolated from one another via a so-called fixed-
block policy: track portions are reserved for one particular train. This prevents trains
from being too close to one another. Though this is not the only nor the most efficient
way to avoid collision, this mechanism is used in real systems 1. With such a fixed block
policy, one can address a train network at block level (i.e., attach a place to each portion
of the network that can be entered by at most one train), and model the effect of signaling
systems that avoid collision with a blocking semantics of nets.

1 https://en.wikipedia.org/wiki/Railway_signalling]Fixed_block

110



The Petri net at the bottom part of Figure 6.9 can represent this network: places are used
to represent stations or tracks between stations, and transitions model a possible move
from a part of the network to a consecutive one. The flow relation of this net is almost
isomorphic to the original network.

A B C D E F G

A B C D E F G

PA PA,B PB PB,C PC PC,D PD PD,E PE PE,F PF PF,G PG

PG,G

PA
PB,A PB

PC,B PC
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PA,A PD,D
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Figure 6.9: Modeling trains flows in a network with Petri nets

We will use the formalisms and the definition of realizability to give an answer to the
following questions:

• Given a particular schedule, is it realizable from a given configuration of the net?
Being able to answer this question allows to check whether the accumulated delays
of trains force rescheduling, especially to organize trains passage at track junctions.

• From a given configuration of the network, what is the probability that all trains in
a fleet complete their trips within less than 39 minutes ?

tout,H PDC t1 PD t2

•
PED t3

•
PE

•
PC t4 PCD t5

•
PD t6 PDE t7 PE

tout,L

t8

t9
PD,D

t10

t11
PD,D

C1

•C2

•
C3

C4

Figure 6.10: A zoom on the central part of the network

Consider the example of Figure 6.10. This net provides more details on the central part
of the network of Figure 6.9. The network is decomposed into an upper and lower part. In
the upper part, trains circulate from right to left, with places PDC, PED symbolizing track
portions respectively between stations D,C and E,D in this direction, and two places
PE and PD symbolizing platforms at stations E and D. Transitions t1, t2, t3 symbolize
respectively a departure from station D, an arrival at station D, and a departure from
station E. Trains leave this central part via transition tout,H .

Similarly, the lower part of the net of Figure 6.10 represents a part of the network where
trains circulate from left to right. It contains places PCD , PDE symbolizing track portion
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between stations C,D and D,E. Places PC,PD ,PE symbolize respectively platforms at
stations C,D,E. Transitions t4, t5, t6, t7 symbolize respectively departure from C, arrival
in D, departure from D, and arrival in E. Trains leave this central part via transition
tout,L.

Transitions t8, t9, t10, t11 and places PDD ,PDD are used to allow trains to move from the
upper part to the lower part, which is needed to perform small loop trips. Last, places
C1,C2 implement a flip-flop shunting mechanism to direct one train over two leaving
platform D towards platform D, and the other towards platform C. Places C3,C4 play the
same role to direct trains leaving platform D towards D or E.

With a perfect timing of trains, this simple shunting mechanism suffices to implement
two crossing small loops in the network. Consider again the network of Figure 6.10.
There are four trains, represented by tokens. We will call train1 the train symbolized
by a token in place PED , train2 the train symbolized by a token in place PE, train3 the
train symbolized by token in place PD and train4 the train represented by token in place
PC.

Let us now associate durations and distributions to transitions. For the sake of simplic-
ity, we consider identical distributions for dwell, running times and transfer from the
upper to the lower part of the net. We consider interstation distances of 2 kilometers,
and trains running at an average commercial speed of 35 km/h. That is, the sojourn
time of a token in places PDC PED , PCD and PDE should be defined by a distribution
with maximal probability around 205 seconds, with more probable delays than advance.
We furthermore consider that the distance needed to go from D to the track portion ED
is 0.5 km, but is performed at a speed of 20 km/h (similarly for moves from D to track
CD). Within this setting, sojourn time in places PDD and PDD should be a distribu-
tion centered around 90 seconds. Last, we associate a dwell time to every station. We
choose arbitrarily a value of 50 seconds for the most probable dwell time in the whole net-
work. It is very frequent that trains get late at stations due to passengers misbehavior.
However, we consider that dwell time cannot exceed 400 seconds. We hence associate to
transitions t9, t10 (transfer) the distribution f1 = 1.477 ·10−2 · (x−45)5 · e−1.1·(x−45), defined
only on interval [85,100]. We associate to transitions t2, t5, t7, tout,h (trips) distribution
f3 = 1.3413 ·10−3 · (x−200)4.e−0.5·(x−200) defined only on interval [200,220]. We last as-
sociate distribution f2 = 7.8125 · 10−3 · (x−45)2 · e−0.25(̇x−45) defined on interval [45,400]
to all other dwell transitions. The intervals associated to transitions, and the shape of
distributions are depicted on Figure 6.11.

Ideally, the expected trajectory ot trains 1 and 2 go through stations D, D and E, in
this order. The trajectories of trains 3 and 4 go through stations D, D and C. This
can be represented by the schedule of Figure 6.12. As we only consider departures from
platforms, we associate to nodes of the schedule labels of the form dX , where X is the
name of a platform. We can now relate departures from stations in the schedule and
concrete events in the net on Figure 6.10 using a realization function r, such that r(dD)=
{t1, t8}, r(dE) = {t3}, r(dC) = {t4}, r(dD) = {t6, t11}, r(dE) = {tout,L}. One can notice that
there are two possible ways to implement a departure from D or D.

Obviously, using the simple flip-flop shunting mechanism explained above, such a sched-
ule can be realized only if the order of trains in place PD is train 1, train 3, train 2, train 4,
and if the passage order in place PD is train 3, train 1, train 4, train 2. Let us assume
that we start from an initial configration where trains 1 and 3 have a remaining trip
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t8 [45,400] dD f2
t9 [85,100] − f1
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t11 [45,400] dD f2
tout,H [45,400] − f2
tout,L [45,400] dE f2

Figure 6.11: Distributions

duration of 10 seconds, that trains 2 is delayed and cannot leave PE before 320 seconds,
that train 4 is delayed and cannot leave PC before 300 seconds. This initial configura-
tion of the network can be easily encoded by attaching adequate times to fire to enabled
transitions t2, t3, t11, t4. Considering the schedules, one can safely add the constraint that
all trips are performed after 2300 time units. As the interval attached to transitions all
have lower bounds greater than 45, and as the net has 13 transitions, all timed processes
of the net in Figure 6.10 embedding the schedule of Figure 6.12 in less than 2300 time
units appear in an unfolding UK of depth at most K = d2300

45 e ·132 = 8788. Note however
that if trains behave as expected, all trains modeled in the example of Figure 6.10 will
eventually leave this part of the network after a finite time, and hence unfolding should
stop much earlier due to lack of appendable transitions. Yet, even without this a priori
information, as dwells and running consume time, this allows to represent the behavior
of the network with an unfolding of bounded depth. Then, from the initial configuration,
there exists time processes satisfying all time constraints due to dwell and running times.
Figure 6.13 is an example of such process. As usual, conditions are represented by circles
and events by squares. Due to lack of space, we do not give all constraints attached to
this process. They will contain constraints on event variables of the form:

doe(t1
2)= 0

dof (t1
2)= doe(t1

2)+10
dof (t1

2)≤ θ(t1
2)

....[
θ(t1

3),θ(t3
2)

]∩ [
θ(t1

10),θ(t2
2)

]=;
....

We indicate with red numbers associated with events a possible dating function d. One
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can verify that for any ordered pair of events e ≤ e′, we have d(e) < d(e′), that sojourn
times in places are compatible with dwell and running times, and that for any pair of
conditions P i

X , P j
X with j 6= i we have

[
d

(•(P i
X )

)
,d

(
(P i

X )•
)]∩[

d
(
•(P j

X )
)
,d

(
(P j

X )•
)]

=;.

n1 : dDtrain1 n2 : dD n3 : dE

n4 : dEtrain2 n5 : dD n6 : dD n7 : dE

n8 : dDtrain3 n9 : dD

n10 : dCtrain4 n11 : dD n12 : dD

Figure 6.12: A possible schedule for trains departures from initial configuration in Fig-
ure 6.10
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Figure 6.13: A witness for realizability of schedule in Figure 6.12

The time process of Figure 6.13 shows a possible realization of the schedule in Figure 6.12.
As we are dealing with continuous probabilities the probability of realizing exactly this
process with the specified dates is 0. However, one can easily notice that all dates in-
dicated on this process can be shifted by several time units. Indeed, as dates are not
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discrete values, there is an infinite number of time processes with the same conditions
and events but with different timing functions. This defines a class C of time processes
realizing our schedule with a non-null probability P(C ). Note that the probability of re-
alizing the schedule is greater than the probability P(C ) of executing a time process from
this class, as there could be more than one way of realizing the schedule. The value P(C )
can be computed by construction of a transient execution tree, starting from the initial
configuration, and in which nodes are of the form (Mi,Ci,D i), where Mi is a marking, Ci
represents possible values of TTFs attached to enabled transitions, and D i the probability
distribution with positive values on the domain Ci defined this way.

An execution of a time process from C necessarily starts from the initial configuration
given above, i.e, from node (M0,C0,D0, BLK0, URG0), with M0 = {PE,PED ,PC,PD}, BLK0 =
;,URG0 = ;. For each enabled transition ti, we define by xi the variable symbolizing
possible values of TTF (remaining time to fire) of ti. We hence have C0 = {x2 = 10; x3 =
320; x4 = 300; x11 = 10}, i.e. C0 is a point in R4

≥0. The distribution D0 associates probability
1 to the single point in C0. From this situation, two events can occur: either t2 fires after
10 time units, or t11 fires after 10 time units. As both events are enabled at the same date,
the probability to fire each one is defined according to weights attached to transitions. If
we assume that t2, t11 have the same weight, so the probability to fire t2 from (M0,C0,D0)
is 0.5.

Let us consider the effect of firing t2 at date 10: it affects marking, and remaining TTFs.
After firing t2 the possible configurations of the net are encoded by a node (M1,C1,D1,
BLK1, URG1) where M1 = {PE,PD ,PC,PD}, BLK0 =;,URG1 = {t11}. Upon firing of t2, tran-
sition t8 becomes enabled, and a new time to fire represented by variable x8 is sampled.
Hence the possible values for TTFs are depicted by the constraints in class C1 = {x3 =
310; x4 = 290;45 ≤ x8 ≤ 400}. The distribution D1 attached to this class is D1(x3, x4, x8) =
f2(x8) if (x3, x4, x8, x11) ∈ C1, and 0 otherwise.

From this class, transition t11 is urgent and has to fire immediately, with probability 1
yielding a new marking, and sampling of a new value for newly enabled transition t10, and
a new node (M2,C2,D2, BLK2, URG2) with M2 = {PE,PD ,PC,PDD}, BLK2 =;, URG2 =;. A
new value for TTF of transition t10 is sampled, yielding class C2 = {x3 = 310; x4 = 290;45≤
x8 ≤ 400;85≤ x10 ≤ 100}, and distribution D2 such that D2(x3, x4, x8, x10}= f2(x8). f1(x10) if
(x3, x4, x8, x10) ∈ C2, and 0 otherwise.

The next classes that can appear are more complex, and computing them is more involved.
Assume that transition t8 fires from a configuration of class C2. This means in particular
that t8 is the transition with the smallest TTF, that is x8 is smaller than x3, x4, x10. One
can easily check that some values for x3, x4, x8, x10 satisfy C′

2 = C2 ∪ {x8 ≤ x3; x8 ≤ x4; x8 ≤
x10}. This additional constraint has to be considered, both to compute the probability of
firing t8 and to compute the new class reached after firing t8. The class obtained after t8 is
(M3,C3,D3, BLK3, URG3) and is computed as follows. First M3 = {PE,PDD ,PC,PDD}. Then,
the new set of constraints is obtained using the standard construction of state classes:

• start from C′
2 = C2 ∪ {x8 ≤ x3; x8 ≤ x4; x8 ≤ x10}.

• do a variable substitution of the form xi = x8+x′i for all variables. This substitution
allows to propagate the fact that new values for x3, x4, x10 are decreased by the value
of x8.

• eliminate all variables related to disabled transitions (using the Fourier-Motzkin
method). In our case, only x8 must be eliminated.
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• add inequation(s) related to newly enabled transition(s). In our case, as t9 becomes
enabled, this amounts to inserting constraint 85≤ x9 ≤ 100.

• rename all x′i into xi

The class C3 obtained by substitution and elimination from C′
2 is C3 = {x3 − x4 = 20;0 ≤

x3 ≤ 265;0≤ x4 ≤ 245;0≤ x10 ≤ 55;210≤ x3 − x10 ≤ 225;190≤ x4 − x10 ≤ 205;85≤ x9 ≤ 100}.

Let us now consider distribution D3. We can compute the probability p of firing transition
t8 from node (M2,C2,D2) as the integration over all possible values of vector x3, x4, x8, x10
over C′

2, i.e.

p =
∫

C′
2

D2(x3, x4, x8, x10)=
∫ 100

45

∫ 100

x8

f2(x8) f1(x10)dx10 dx8

This value can be approximated to 0.171499, i.e., firing of t8 is not the most proba-
ble event in (M2,C2,D2, BLK2, URG2). We can now build D3, using the procedure given
by [39]. As t8 fires before any other transition from class (M2,C2,D2) we first compute a
new distribution Da

2 defined over C′
2 such that Da

2(x3, x4, x8, x10)= D2(x3,x4,x8,x10)
p . The next

step is to build the distribution of probabilities once x8 is eliminated, i.e. a distribution
Db

2 (x3, x4, x10) computed as Db
2 (x3, x4, x10)= ∫ 100

45 Da
2(x3+x8, x4+x8, x8, x10+x8). In general,

this integration is repeated for every variable attached to a disabled transition, but in
the current case, only x8 needs to be projected away. The last step consists in integrating
the newly created variable x9 and its distribution to Db

2 . As the value of x9 does not de-
pend on former values of x3, x4, x10, we have D3 = Db

2 . f1(x9), defined over a domain C3 for
variables x3, x4, x9, x10.

We can repeat this process for all transitions that are firable from any node to build a
transient execution tree. At the end of the construction, we can distinguish a set P T

of paths of the tree that end after execution of all events appearing in the process of
Figure 6.13. We can associate to each of these paths ρ ∈P T a probability pρ that is the
product of probabilities of each transition in ρ. Last, the probability P(C ) to execute the
process of Figure 6.13 is P(C )=∑

ρ∈P T pρ.

One of the key points in this technique is to integrate over variables domains. Recall
that

∫ b
a α · xn · e−λ·x = −α ·λ∫ b

a xn · −1
λ

e−λ·x = −α ·λ([xn · e−λ·x]b
a −

∫ b
a nxn−1 · e−λ·x). Hence,

probabilities can be computed exactly through an iterative process.

Let us now show how to ensure that an event n represented in a schedule occur at a fixed
date d(n)±α. As shown in [39], it is sufficient to add to state classes a variable xage ini-
tially set to 0, and that is incremented by the value of every variable xi at every state class
updated resulting from the firing of a transition ti. In other words, in every class, variable
xage describes possible value for the time that has elapsed since the beginning of the ex-
ecution of a process. When an event of a process representing occurrence of a node n (i.e,
such that ψ(n) = e which date must be d(n) up to imprecision α, it suffices to add to the
domains of the newly computed state class the constraint that d(n)−α≤ xage ≤ d(n)+α.
Integration follow the same principles as before, but over domains with one additional
dimension. For instance, if we impose that node n1 in the schedule of Figure 6.12 is exe-
cuted at a date 60±10, is suffices to maintain variable xage during construction of states
classes (M0,C0,D0, BLK0, URG0), (M1,C1,D1, BLK1, URG1), (M2,C2,D2, BLK2, URG2) as de-
fined above, and to impose during the construction of state class C3 the additional con-
straint that 50≤ xage ≤ 70. Similarly, completing a schedule S within a maximal amount
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of time ∆ amounts to imposing constraint d(n) ≤ ∆ at every maximal node n of S. This
means refining state classes reached by firing transitions representing these maximal
node with constraint xage ≤ ∆. Answering our second question on the use case then
amounts to checking for every process that embeds S and every final path in the asso-
ciated transient tree that constraint xa ge ≤ (39∗60) allows firing at least one transition
reaching a final node (i.e. where the schedule is completely executed) with positive prob-
ability.
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7
Simulation and Performance

Evaluation

This chapter addresses performance evaluation of traffic management techniques in ur-
ban rail systems. The approach adopted for this purpose is simulation-based and com-
putes mean values on KPIs after several simulation runs. The simulation framework
implements the model of Section 5.2 of Chapter 5. This model is implemented in the
SIMSTORS tool. The tools takes as input a description of a network, a reference timeta-
bles describing train services and thresholds on desired dwell and running times of trains.
SIMSTORS provides an efficient simulation framework : it can play several hours of rail
operation in less than a minute. This allows for simulation campaigns producing large
sets of logs or randomly generated runs, and then for the calculus of KPIs from these
logs. In this chapter, we demonstrate the capabilities of this simulation scheme on a case
study, and show how statistics can be derived through simulation campaigns.

7.1 Introduction

In Chapter 5, we have introduced Key Performance Indicators (KPIs) and regulation tech-
niques. The simplest of these techniques generally try to stick to a prescribed timetable
but complex proprietary algorithms are also in use. One can however notice that there
is no consensual mechanism considered as the best, as efficiency of such techniques de-
pends on many contextual factors such as line topologies, frequency of delays, or even
passenger civic-mindedness. Considering traffic management problems and evaluating
the performance of the to-be-used techniques on a line or network at early design stages
has several advantages. First, it allows to decide which technique is adapted to particu-
larities (e.g., interstation length, maximal train commercial speeds, number of trains) of
the line under construction. Second, it allows to build timetables and to estimate achiev-
able performance.

Several tools have been used to evaluate performance of mainline rail systems. Follow-
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ing the classification in [54], one can define these tools as macroscopic or microscopic
simulation tools. Macroscopic approaches abstract away details (e.g., fine modeling of
train acceleration and deceleration adherence to tracks...) and do not to consider trains
particularities for simulation; they usually lead to optimistic results. An example of such
macroscopic models is the NEMO tool [41]. This tool uses abstract network graphs to com-
pute timetables and detect possible bottlenecks. Microscopic approaches consider many
parameters of trains, of networks, and of their environments such as weather conditions,
passenger flows... Usually, these approaches consider how trains influence one another at
runtime. They use discrete-time synchronous techniques, i.e., repeatedly evaluate evolu-
tion of a network during user-defined time steps (e.g., one second). OpenTrack [54] is an
example of such simulation frameworks. Synchronous simulation is time consuming, and
many steps simulated by the tools are simply useless, as no interaction between trains
(forcing one of them to brake, for instance) nor change in trains behavior (excepted for
their positions) occurs during most of time steps. OpenTrack and NEMO, as well as com-
mercial software such as RailSys [58], target mainline systems, where delays between
departures and arrivals are rather long, and where small local disturbances have little
influence on service performance. Challenges for these models are to design timetables,
that are quite stable, and in case of failure in a network, find alternative paths for trains.
Computation of best alternative routes can take a few minutes without affecting too much
traffic. In urban networks, paradigms change: distances between trains are small, minor
disturbances may affect service quality, and advice has to be computed as fast as possible
to be of use. Hence, corrective mechanisms are quite reactive, and the computed solutions
to recover from a delay are applied as soon as possible. Models such as those proposed
in the SimMETRO tool [44] address performance of metro systems in a microscopic (and
stochastic) setting.

In this chapter, we describe a macroscopic performance evaluation scheme for traffic man-
agement algorithms in urban rail systems, that can be used at early design stages.

We use as a model for Urban Train Systems the blocking STPNs proposed in Chapter 5.
This model is abstract enough to allow efficient simulation (many characteristics of trains,
speed profiles, tracks and so on are abstracted away), yet accurate enough to derive useful
performance measures. We show that KPIs can be easily evaluated from our model, and
demonstrate its practical interest on a real case study, namely line 1 on Santiago’s metro.

7.2 Modeling

The design of our simulation framework, is modular: we decompose the system into 3
distinct parts that communicate:

1. Network and trains physical parts of a rail system (trains, tracks and signaling),
movements of trains (departures and arrivals), nominal operation times (dwell and
running times), and disturbances (advance and delay) are represented via an STPN
model equipped with elementary semantics;

2. timetable Our simulation algorithm uses a reference timetable depicting ideal de-
parture and arrival dates for trains, and an active timetable that is updated online
at execution time to handle primary delays and the changes brought by regulation
to cope with these disturbances.
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3. Regulation The last part of the simulator is composed of a traffic management
algorithm (control), implemented as a function that, when triggered, computes new
dates and updates the online timetable.

The whole system is simulated according to the the semantics of STPNs with blocking
semantics described in Section 5.2.4. Fig. 7.1 provides an overview of the simulation
framework. The STPN is at the bottom of the Figure; control is the dotted box that sends
orders to the STPN; and events are represented by a timetable, and are recorded in a log
at the end of each simulation run.

ta0

[95,120]

pd1

pc1

td1

[0,10]

pr1 ta1

[115,140]

pd2

td2

[0,10]

pc2
pr2
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[0,10]

pr3pc3control

timetable log

· · ·

· · ·

· · ·

Figure 7.1: The SIMSTORS simulation framework

STPNs with blocking semantics are abstractions of systems with a fixed block safety
policy. This safety policy is implemented on existing metro lines, and in particular in the
use case studied in this chapter, namely line 1 of Santiago’s metro. The same framework
can be used to study performances of systems with a moving block policy by replacing the
STPN component with a trajectory Petri net (cf. Section 5.3).

We recall that STPN models are equipped with control places (depicted by doubly circled
places in Figure 7.1), that are used to guarantee that trains leave a station only after a
departure order is explicitly given. Control places hence model departure orders. A con-
trol place is created for each station, and during execution time, a token in a control place
means that the departure from this station is allowed. As we use the blocking semantics
of section 5.2.4, departures never occur earlier than planned. However, one can easily
adapt this semantics to allow slight advances in the execution of the timetable part, to
allow advances. As previously stated, components of the simulation framework commu-
nicate with each other. In the initial state of the system, the STPN component comes
with empty control places. These places are filled when the online timetable component
indicates that the current date is equal to the planned date of a departure.

Let us consider the toy ring network of Figure 7.2. The left hand side subfigure depicts
a topology for a network with 3 stations st0, st1 and st2, and 3 interstations it0, it1 and
it2, respectively of length 2kms, 1.5kms, and 1.5kms. Train movements are performed
clockwise, i.e., st0 → st1 → st2 → st0 · · · To simplify the example, we consider that each
interstation is a single block. The right part of the figure represents a STPN modeling
behaviors of trains in this network. One can immediately notice that the graph composed
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Figure 7.2: STPN modeling of a simple ring topology with two trains

of places, transitions and flow relation of the STPN is a simple morphism of the graph
depicting the topology of the net corresponding synthesized: stations are symbolized by
places, and interstations replaced by a pattern with two transitions (symbolizing depar-
ture and arrival) and two places (symbolizing track from a station to the next one, and
departure orders). A similar mapping can be performed for any kind of network topology.
If one want to have more than one block between two stations, the simple Petri net pat-
tern is replaced by a longer patter with more places and more transitions. In the STPN
model of a URS, the set of places can be partitioned into a set of places representing
location of trains during dwell operations (pd0,pd1 . . . ), and during running operations
(pr0,pr1 . . . ). One can also add places representing safety mechanisms (ps0,ps1 . . . ), for
instance to prevent two trains entering a share track portion. Such situations can be
imposed in a network, beyond the blocking semantics, for instance when sharp curves
prevent trains crossing in opposite directions. Last, the set of places contain a set of con-
trol places (pc0,pc1 . . . in our example, represented as double-lined circles). Transitions
can be partitioned into two subsets: transitions for departures (td0, td1 . . . ) and transitions
arrivals (ta0, ta1 . . . ). We associate to each transition an interval and a CDF (not shown
on the figure) defined on this interval. intervals represent the possible ranges of dwell
and running time, and also give means to introduce random delays in the system. The
last ingredient to integrate to the model is a representation of trains. In STPNs with a
blocking semantics, trains are represented by a token located in a dwell or running place.
In our example, a trains is stopped at stations st0, and another train is on its way from
station st1 to st2.

Now, STPNs only describe the dynamics of trains, i.e., how they move from one track
portion to another, and the time needed to move from one part of the network to another
(with possible random delays). As already mentioned, delays are recovered using traffic
management techniques that should, hence, be considered when evaluating the overall
dynamics and performance on an urban rail network. Indeed, two different techniques
will not lead to the same performance. This justifies the modularity in the design of our
model that separates the traffic management algorithm from the rest of the system. We
can hence build once for all an STPN for a given topology, and use the same model with
different regulation algorithms to measure the KPIs achieved with a particular regula-
tion.
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Our simulation framework follows the semantics given in Chapter 5. So, the STPN is
not executed in isolation: train departures await orders from the control part, that are
generated only at dates planned in the timetable. In the same vein, involved regulation
techniques can change the trip of trains by sending departure orders to transitions sym-
bolizing departure on different track portions. However, in this chapter, we will mainly
simulate regulation techniques that change events dates, but not their ordering. In the
example of Figure 7.2, let us assume that the regulation used is a schedule policy (ex-
plained in Section 3.3.2 that tries to stick to a articular reference timetable. transition
ta1 is enabled by the token in place pr1. Let us suppose that we are at date d0 = 0, and
that the sampled time-to-fire value following this enabling is τ1 = 280 ∈ [250,300]. We
recall that the distribution associated with transition ta1 gives probabilities for the run-
ning time on interstation it1 (from st1 to st2), distributed around a nominal value. Let
us assume that the nominal value for the running time in interstation it1 is 275. This
means that the arrival at station st2 represented by firing of transition ta1 will occur 5
time units later than expected. In order to recover from this delay as early as possible,
our chosen traffic management technique will simply adapt the date next departure from
station st2: it will attempt at forcing it to occur at a date earlier by 5 (280−275) time
units than the nominal departure date. If the nominal dwell time is, e.g., 30 time units,
then departure from st2 should normally occur at date 310 (280+30), if regulation does
nothing. However, if the regulation adapts slightly the departure dates in the timetable,
a departure can occur at date 305 (275+30). Following adaptation of the timetable, a
token will be inserted in the control plce of the departure transition at this date 305, al-
lowing to recover from the primary delay. Note that it is still possible that this date of
departure will not be respected if, e.g., the sampled dwell time imposes a new additional
delay. Notice that with a schedule policy, one can only recover from delays at stations, nd
as a minimal dwell time is always imposed, the amount of time recovered at each station
is limited.

Implemented this way, our simulator relies on an abstract representation of train moves
but integrates real traffic management mechanisms. Even if the overall system built
this way is too complex to be formally analyzed (we recall that regulation algorithms can
be any type of code transforming a timetable), each module of our simulation framework
is simple enough to be designed separately. Equipped with a formal semantics (where
the regulation algorithm Is simply defined as a deterministic function), our framework
is well adapted to simulation. We have paid a particular attention to efficiency during
the application of semantics rules: to check that a transition is enabled, for instance, a
well adapted data structure needs only to consider the contents of places in the preset of
a transition. Similarly, firing a transition only changes the enabling of transitions which
consume tokens from the newly marked places, etc.

We have used this simulation framework to evaluate the performance of a traffic man-
agement technique on line 1 of Santiago’s metro. This line is a complex ring topology
with intertwined loops connecting 24 stations (cf. Figure 7.3). The STPN built for this
line is a net with a total of 645 places (all types included) and 294 transitions. The model
contains depots and turn back zones in addition to stations and their interconnections.
With this STPN, we can simulate 4 hours of operation of this line with 50 trains and
random disturbances, in approximately 19 seconds, on a computer with a CPU running
at 2.60GHz.
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Figure 7.3: Line 1 of Santiago’s metro

7.3 Simulation and results

We have simulated the first 4 hours of operation for line 1 of Santiago’s metro, with a
total of 50 trains operating on the line. Traffic is not immediately maximal but increases
progressively as trains are inserted in the network. The system was equipped with a
basic regulation algorithm that aims to stay as close as possible to a precomputed ideal
timetable TT id. The regulation adapts dwell times to recover from unexpected delays,
and maintains a feasible timetable that associates to departures and arrivals their ear-
liest possible occurrence date. We have repeated 100 times a simulation of 4 hours of
operation, recording each time departure and arrival dates at all stations. During each
simulation, dwell and running times for each event were randomly sampled from their
respective distributions. During this experimentation, the distributions attached to tran-
sitions were discretizations of asymmetric bell shaped curves (close to a discretization of
expolynomial functions).

At the end of the simulation campaign, the obtained data were a log of 100 simulated
runs, i.e. successions of departure and arrival dates for all steps of realized trips. Overall,
the simulation campaign took around 1 hour. Once obtained, the logs allow for computa-
tion of statistics and of KPIs. The KPI we have considered was the mean deviation w.r.t.
desired departure headways. This KPI measures to what extent a reference timetable
was properly realized.

Timetable deviations
Figure 7.4 depicts the mean deviations computed for each individual simulation. Abscissa
indicate the simulation number (ranging from 1 to 100). The different curves on the
picture represent the mean deviation w.r.t. to the ideal timetable TT id at each station (1
curve per station). The dark curve represents the data for one highlighted station, namely
Pajaritos, in running direction 1. We recall that we slightly abuse the term station, as for
each physical location of line 1, we have a station number for each running direction.
(There are two possible directions: direction 1 from station San Pablo to Los Dominicos,
and direction 2, the converse way.) From these recorded mean deviations w.r.t. timetable
TT id, one can observe the randomness in the simulation, as for each run, we obtain
different results.

Let n be the number of simulations performed during a campaign (in our case n = 100),
and let r j with j = 1,2, . . . ,n denote the jth simulation run. Let m be the number of
stations, and let us denote by stk the kth station on the line, with k = 1,2, . . . ,m. Events
occurring at a given station stk in a run r j are denoted e i, j,k with i = 1,2, . . . , qk. Note
that, during our simulation campaign, the number of events per station was the same
from a run to another.

Given an event e i, j,k (in run r j, at station stk), we denote by di, j,k the reference date for
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Figure 7.4: Mean deviations from reference timetable for n = 100 simulation runs

event e i, j,k, found in the ideal timetable TT id. It is is the ideal occurrence date at which
the event occurs if it is not delayed. Note that as di, j,k is the same for all runs, we can
simply write it as di,k. On the other hand, the effective occurrence of event e i, j,k is denoted
by

.
d i, j,k. The difference between these two dates for the same event is called the deviation

(from the reference timetable) and is denoted by δi, j,k,
.
d i, j,k −di,k.

Fig. 7.5 shows data collected during a single run of our simulation. It is a graph in
which several curves are superimposed. Each curve represents the evolution of devia-
tions at one station (in one direction of movement). Here, the curve associated with sta-
tion Pajaritos in direction 1 is highlighted with a dark line. Curves are superimposed to
show the general tendency of the evolution of deviations. Abscissae give occurrence dates
ḋ1,1,k, ḋ2,1,k, . . . , ḋqk,1,k, and ordinates give deviations δ1,1,k,δ2,1,k, . . . ,δqk,1,k. It might seem
surprising that deviations grow but this is due to the chosen parameters for the simula-
tion: we have deliberately selected high values of disturbances to be able to observe the
impact of regulation. One can see that, in the beginning of the simulation, regulation is
able to recover, more or less, from the disturbances but, as time progresses, the system
becomes unstable. This is due to the fact that more and more trains are inserted into the
network. As a consequence, it becomes harder for regulation algorithms to recover from
consequent delays, and bunching phenomena appear. That is, when a train is delayed for
too long, the distance between this train and its successor decreases. If this phenomenon
lasts for a too long time the whole fleet is is grouped in a small area of the network, and
each train is separated from its predecessor by a distance close to the safety headway.
Such configuration is undesirable as, first, the reference timetable is not respected, and
second, quality of provided service is highly degrades. Indeed, in buching situations, as
passengers have been waiting for a long time before a train arrives, they all board the
first trains. As a result, bunching leads to fleets composed of one or two heavily crowded
vehicles followed by almost empty ones.
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Figure 7.5: Evolution of deviations w.r.t. ref. timetable for one simulation run at each
station

Headways
Now, instead of reasoning in terms of deviations w.r.t. occurrence dates of arrivals or
departures, one can also consider headways, as they give a better measure of traffic regu-
larity. For headways to be relevant, they have to be measured only between events of the
same type (i.e., departures or arrivals). We will, thus, respectively write ed

i, j,k and ea
i, j,k

to denote the ith departure and arrival at station stk in run r j. Also, qd
k and qa

k denote
the total number of departures and arrivals at station stk (no mention of index j as there
is no need to differentiate between runs). In this context, a headway is the difference
between dates of two consecutive events of the same type. hd

i,k , d(ed
i+1,k)−d(ed

i,k) is the

reference headway at the (i+1)th departure from station stk, and ha
i,k , d(ea

i+1,k)−d(ea
i,k)

is the reference arrival headway. We denote by
.
h

d
i, j,k ,

.
d(ed

i+1, j,k)− .
d(ed

i, j,k) the effec-

tive headway at departure i+1 in run r j at station stk, and
.
h

a
i, j,k ,

.
d(ea

i+1, j,k)− .
d(ea

i, j,k)

the effective headway at arrival. We can then define h̄d
k ,

∑qd
k−1

i=1 hd
i,k

/(
qd

k −1
)

and h̄a
k ,∑qa

k−1
i=1 ha

i,k

/(
qa

k −1
)

as the mean reference headways for departures and arrivals at sta-

tion sk. Also, h̃d
j,k ,

∑qd
k−1

ix=1 ḣd
i, j,k

/(
qd

k −1
)

and h̃a
j,k ,

∑qa
k−1

i=1 ḣa
i, j,k

/(
qa

k −1
)

are the mean

effective departure and arrival headways at station sk during run r j, and finally h̃d
k ,

1
n

∑n
j=1 ḣd

j,k and h̃a
k ,

1
n

∑n
j=1 ḣa

j,k are the mean effective departure and arrival headways
at station sk for the simulation campaign (which is a mean of means for all runs). Nota-
tions are summarized in Table 7.1.

Figure 7.6 shows departure headways from Los Héroes station in running direction 1.
Abscissas depict events indexes, and ordinates the effective departure headways for one
simulation run. Reference headways are depicted in gray and effective headways in black.
One can observe that the regulation has an effect on headways. Indeed the curves of
reference and effective headways are different, but their general profile remains close
(there is no divergence in the effective headway curve). Now, one cannot draw conclusions
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from a single run of a stochastic simulation. In what follows, we give confidence intervals
for means of deviations between mean effective departure headways and mean reference
headways per station, derived from a simulation campaign of several runs (here, 100).

Figure 7.6: Effective and reference headways for st. Los Héroes, dir. 1 for one run

Simulation campaign
A stochastic simulation campaign can be used to estimate KPIs, with each KPI being
defined as the mean value M of some quantities ζi measured for each simulation run
r i (∀i ∈ {0,1, . . . ,n}). We call M , 1

n
∑n

i=1 ζi the sample mean of these quantities, and σ

the corresponding estimated standard deviation. As M is only the mean value for the
performed samples, it does not necessarily reflect the real mean µ for the studied KPI.
It is, thus, interesting to know how the computed value approaches µ. We compute a
confidence interval I , [α,β] that ensures that the real mean µ belongs to interval I, with
a certain confidence level c (see Section 2.3.2 to see how to compute a confidence intervals
for a chosen c ∈ [0,1]).

Figure 7.7: 99.9% confidence intervals for means of deviations between mean effective
departure headways and mean reference headways per station

Let us now consider a KPI measuring the mean deviation w.r.t. reference departure
headways for a station. The headway deviation for a departure event ed

i, j,k is defined

as θd
i, j,k ,

.
hd

i, j,k − hd
i,k. It is the difference between the effective headway and the refer-

ence headway. The mean departure headway deviation in a run r j at station sk is given

by θ̄d
j,k ,

1
qd

k−1

∑qd
k−1

i=1 θd
i, j,k. Finally, the mean headway deviation at station sk for a simu-

lation campaign of n runs is θ̄d
k ,

1
n

∑n
j=1 θ̄

d
j,k. The estimated standard deviation for this
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KPI in a simulation campaign of n runs is σk,

√
1

n−1
∑n

j=1

(
θ̄d

k − θ̄d
j,k

)2
.

Figure 7.7 shows the confidence intervals computed for departure headway deviations at
each station. The parameters of the simulation are n = 100 runs, and the intervals are
computed for a confidence c = 0.999 (i.e., 99.9%). In this Figure, abscissae represent la-
belled stations, and ordinates give values of mean deviations w.r.t. reference departure
headway at the considered station. For each station, the graphics contain an interval
around the sample mean value computed from the simulation campaign (and symbolized
by ⊥>• ). One can notice that headway deviations grow progressively from station Pajar-
itos dir. 1 to Manquehue dir. 1, and from Manquehue dir. 2 to Pajaritos dir. 2. This is
explained by an accumulation of delays due to bottlenecks at both ends of the network.
One can also notice that mean headway deviations at the ends of the line (stations SP1,
NP1, HM1, LD1, SP2, NP2, HM2, and LD2) do not follow this general profile (they have
smaller effective headways). This is due to the fact that, at these stations, departures
are handled with more flexibility, as they are used for train insertions and turn-back ma-
neuvers. Accumulated delays can be recovered at these stations (up to a certain limit) by
considerably reducing dwell times or using fast turn back techniques. Last, one can see
that the chosen disturbance level for this simulation is too high to allow recovery from
delays by the selected regulation.

Figure 7.8: Illustration of delay recovery by a traffic management algorithm

In the case where small delays are selected, i.e., distributions are tight around nominal
values of dwell and running times, the adopted traffic management technique is able to
rapidly recover from deviations. This is illustrated in Figure 7.8. This Figure represents
a time-space diagram in which thin gray lines are nominal trajectories of trains, and
thick colored lines are the effective trajectories, i.e., the realized trajectories during a
simulation run. When these two types of trajectories are superimposed, it means that
the corresponding train events have occured at their nominal dates, and when shifted, it
means that the train was delayed (or in advance). In the example run shown in Figure 7.8,
and particularly in the circled area, one can see that the train was delayed and could get
back to its nominal behavior after a few stations. This phenomenon occurs all along this
simulation in which deviation values are small and shows the efficiency of the schedule
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policy for traffic management when delays are small.

e i, j,k ith event at station stk in run r j

ed
i, j,k ith departure from station stk in run r j

ea
i, j,k ith arrival at station stk in run r j

qd
k total number of departures from station stk

qa
k total number of arrivals at station stk

di, j reference date of event e i, j,k
.
d i, j,k effective occurrence date of event e i, j,k

δi, j,k timetable deviation for event e i, j,k

hd
i,k reference headway for the (i+1)th departure from station stk

ha
i,k reference headway for the (i+1)th arrival at station stk

.
h

d
i, j,k effective headway for the (i+1)th departure from station stk in run r j

.
h

a
i, j,k effective headway for the (i+1)th arrival at station stk in run r j

h̄d
k mean reference departure headway at station stk

h̄a
k mean reference arrival headway at station stk

h̃d
j,k mean effective departure headway at station stk for run r j

h̃a
j,k mean effective arrival headway at station stk for run r j

h̃d
k mean effective departure headway at station stk for all runs

h̃a
k mean effective arrival headway at station stk for all runs

θd
i, j,k ith departure headway deviation at station stk for run r j

θ̄d
j,k mean departure headway at station stk for run r j

θ̄d
k mean departure headway at station stk for all runs

σk estimated standard deviation at station stk for all runs

Table 7.1: Notation summary

7.4 Discussion and improvements

The simulation campaign performed in this Chapter was done with a model of a real
metro line namely, the Line 1 of Santiago’s Metro, with a hold-on regulation policy that
tries to stick as much as possible to a predetermined timetable. This first experimentation
allowed to obtain simulation results within a reasonable time (a few seconds of simulation
for 4 hours of operation of a real network, i.e., a real topology with its actual train fleet).
This shows feasibility of a simulation approach to evaluate performance of regulation
algorithms. Now, this simulation framework can be improved along several directions.

Distributions: First of all, distributions for delays were designed from an a priori knowl-
edge of normal dwell and running times between two stations extracted form existing logs
of Santiago’s metro. Such logs are not always available for all lines To guarantee that
these distributions are accurate enough, STPNs models and in particular distributions
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should be built from data collected after a long enough period of observation of trains and
passengers behaviors. This was the case for Santiago’s Metro line 1, but not necessarily
for any line under construction, or where signaling was changed recently.

A second issue regarding distributions is that the delays are modeled as Markovian noise.
In this setting, every delay is sampled independently from the others. In urban train
networks, latencies are correlated. For instance, if a train gets late, more passengers
will enter the train, which will increase the chances of incidents, and hence of delay.
Similarly, if a train is delayed due to bad weather between two stations, all trains of
the network are likely to be delayed on the same part of the network. This means that
sampling in our simulator should consider a context, and that distributions should be
conditional distributions of the form p (x | c1, c2, . . . , ck) where x is a delay, and c1, c2, . . . , ck
are variables representing the context (station, weather, day of the week, time of the
day, etc.) in which delay x is sampled. This change does not require much effort to be
integrated to our simulation model. However, it requires a lot of effort from designers to
evaluate the impact of an environmental factor on the distributions.

Train fleets: Another issue that should be considered is the impact of fleet composition
on performance of UTS. In the simulation that we have performed, we have considered
regulation techniques that cannot change composition of fleets to meet their objectives.
The number of running trains changes according to the period of the day, but follow
planned insertions and removals of trains: It would be interesting to consider regula-
tion techniques that can recommend to insert or remove trains to meet a desired KPI.
In a similar way, we have considered uniform fleets, i.e. trains all have the same com-
mercial speeds, the same length, capacities,etc. . This is however not the case in a real
networ: trains can have different speeds, capacities, etc. One can easily integrate to dis-
tributions (and to the context as described above) the type of each train when sampling
a dwell or running duration. As for all environmental factors, this difference between
trains can be easily defined using conditional distributions, but with an increased design
cost. However, such improvements should not penalize the efficiency of our simulation
framework.

Moving block: The experiments shown in this chapter use models for a line with a
fixed block policy, forbidding trains to enter an already occupied track section (block).
However, many lines follow a moving block policy [55]. In our simulation framework, the
STPN with blocking semantics can be replaced by a trajectory net. Changing the Petri
net part of the simulation framework to adapt to this change is currently under study.

Sampling: Currently, the sampling technique for an expolynomial probability density
function f with domain [u,v] uses a discretization of the cumulative distribution function
F(x) = ∫ x

0 f (y). That is we obtain a set of values x1, . . . xK , where K in the number of
slices for our cumulative function and xi = (v− u) · i/K . Then after sampling a value η

from the uniform distribution, we select the discrete value z = xi such that η lays within
[F(xi),F(xi+1)]. The sampling technique can result in a loss of accuracy if the probability
density function is too roughly discretized, or in a loss of performance if the sampling
technique uses a too fine discretization level and consequently sampling takes too much
time.

Regulation: The regulation considered in this chapter is a simple policy that tries to
stick to a predetermined timetable. The architecture of our tool uses regulation algo-
rithms as a particular module and replacing the current regulation by another one is
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quite simple. Currently, what our regulation does is: first receive an arrival date for a
train, then compare it with the expected date in a timetable. Last it propagates the delays
and taken decisions to the yet unexecuted part of the timetable. Changing this regulation
for another one (for instance, one that tries to maintain headways between trains) within
this architecture is an easy task, and other regulation techniques are currently under
implementation.

Passengers flows: the last aspect that may improve accuracy of the model is to consider
how passengers transfer from one line to another. Indeed, metro networks are often com-
posed of several interconnected lines. A flow of passengers entering a line at an endpoint
is likely to transfer to another line at a junction point of the network. This flow of pas-
sengers is often captured with Origin-Destination Matrices, in which entries indicate the
proportion of passengers alighting at station i that leave a train at station j, or which
proportion of passengers leaving at a junction station enter the next train of another line.
In its current status, our model does not integrate flows nor address the number of pas-
sengers. As already mentioned, the number of passengers impacts the distribution of
delays. However, integrating passengers flows to our model is likely to increase simula-
tion time dramatically, as it requires counting (or at least quantizing) trains population,
and remembering passengers alighting histories to guarantee faithful representation of
passengers flows. An inspiration for this improvement of our model and of our simula-
tion framework is the multiphase fluid Petri nets proposed in [30]. Another difficulty in
flows representation is that Origin-Destination matrices are not known a priori. They
are not available at early design stages. They have to be built once a metro network is
operational, which usually requires observation of passenger habits for long periods of
time.

7.5 Conclusion

In this chapter, we have detailed a framework for performance evaluation of regulation
algorithms on a particular metro line. This framework consists of a high-level model of
the network and of train moves, with random perturbations, in which a regulation algo-
rithm is inserted to correct these delays. The overall systems allow for fast simulation,
and hence for realization of simulation campaigns to obtain statistics on the efficiency of
a regulation algorithm to meet KPI objectives.

The proposed framework allowed us to derive statistics for a case study, namely Line 1 of
Santiago’s Metro. A key question raised by our study is the tradeoff between abstraction
(allowing efficiency of simulation) and accuracy of the statistics derived. Petri nets allow
for an accurate modeling of network topologies. The more challenging part to build metro
models is hence to find accurate distributions for running and dwell times. Of course,
at early stages of design, one can rely on expected characteristics of the network and
trains to design distributions a priori. As explained in Chapter 5, truncated expolynomial
functions allow for precise modeling of distributions in which trains are more likely to be
delayed than advanced. When sampling for such functions is too time consuming, these
functions can be approximated, but at the cost of a loss of precision.

For an existing system, when the challenge is not design but rather to adapt regulation
of train fleets and their paths to improve KPIs, one may want to work with accurate
distributions, that consider elements from context: passengers, trains, but also regulation
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itself. In such a situation, collected logs can help learning parameters of a distribution
for dwell or running time, but it remains a challenging task to estimate the contribution
of passengers or regulation decisions to the duration of a dwell time, as these parameters
are usually not remembered in logs. As a future work, we plan to use our tool to compare
regulation techniques, and to improve its accuracy by learning distributions.
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8
Conclusion

8.1 Contribution summary

This work has led to the development of models for urban rail systems, with a variant
for moving block systems and one for fixed block systems. A fully operational simulator
was developed based on these models: it takes as inputs: a rail topology, a description
of distributions for dwell and running time of trains (minimum, nominal and maximum
times), a set of trains and their initial positions, a representation of disturbances (cu-
mulative distribution functions), a description of a reference timetable that defines an
ordering on train operations and dates. This simulator allows for efficient simulation (4
hours of operation in a few seconds on a standard PC). A real case study was modeled
using original data from Santiago’s metro line 1. The observed simulated behaviors were
close to those observed in real logs of the line.

The second contribution of this thesis is a study of the realizability and of the robustness
of reference timetables. The proposed technique relies on transient analysis, unfolding,
and systems of inequalities. This method was not implemented, but it is already clear that
the proposed algorithms have a high complexity. So, practical application of realizability
should focus on realizability of short schedules on limited sets of events.

The last contribution of the thesis is a demonstration of the practical use of our simula-
tion framework for the evaluation of performance of regulation, through simulation of an
existing metro line and computation of statistics .

These works have led to the publications of journal and conference articles [a,b,c,d].

8.2 Perspectives and discussions

This section comments several aspects of our proposed models and approaches, analyzes
their limits, and gives perspectives for future research, with a distinction between short
and long term goals.
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8.2.1 Short term Perspectives

Distributions. In our models, random durations, delays, etc are represented by prob-
ability density functions, and are built based on certain assumptions (e.g., delays occur
with higher probability in comparison with that of advance), and from knowledge ac-
quired by analyzing data from past operation (logs) of systems already deployed. Recall-
ing that our simulation framework is meant to be used at early stages of projects, such
a priori knowledge is not always available, and PDFs may have to be chosen arbitrarily
by an experienced designer. However, the functions used in this case may not accurately
reflect the stochastic behavior of the real system once deployed. In fact, this behavior
will depend on many unknown parameters and will only be truly well known and un-
derstood much after the system is effectively deployed. A natural question is whether a
priori distributions are realistic enough to take definitive decisions on the effectiveness
of a regulation technique, or if definitive decisions shall be taken after several rounds
of experiments populating a model with distributions learnt from real field data. Now,
a very important point to note is that directly inferring distributions of dwell durations,
for instance, from raw real field data (i.e., logged departures and arrivals over a period
of time) does not always gives a faithful distribution, as the dwell times logged always
reflect both regulation decisions (which are not logged) and perturbations. Another risk
is to consider secondary delays as primary delays caused by incidents. This shows that
even when logs are available, one needs clever learning algorithms to derive distributions
of delays.

The last point of criticism for our models is that the models of STPN and trajectory Petri
nets suppose that random variables that model dwell and running times (and deviations)
are independent. However, this is not always the case in real situations. Indeed, there are
some correlations between delays and some elements of the system: for instance, when
the number of passengers increase at a given station, the chances to observe a delayed
departure increase too. This delayed departure causes more passengers accumulation
at the next station, and hence also impacts the next dwell duration. And so on... The
models proposed in this thesis do not capture these dependencies. This could be solved
by upgrading the models with an explicit representation of passengers. For this purpose,
origin-destination (OD) matrices can be used. They provide information on passenger
flows, and delays could depend on these matrices. However, the crux of the problem would
be that faithful matrices can only be built after observing a running metro network. Gen-
erally, these data are collected through extensive surveys, but they could also be obtained
from crowd mobile phone data [46]. Once a model for passengers is established, it suffices
to replace the CDFs in our model by a random deviation generator based on our passen-
ger behavior model. One must, however, always take into account the performance price
to pay while upgrading this model, as a big loss of performance would make it unsuitable
for Monte-Carlo simulations. Finally, note that even traffic management techniques could
have some effect on deviations originating from passenger behavior. Indeed, a technique
performing poorly at a station may force some passengers to choose other transportation
means, i.e., reduce the number of passengers in station. Currently, our model does not
address such psychological aspects of regulation.

Moving block modeling. In the trajectory Petri net (TjPN) model, safety headways
are represented as fixed distances. Although practical, this choice is an oversimplifica-
tion of the actual distances that must be kept between trains, and necessarily leads to
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discrepancies between the simulated and real movements of trains. In reality, a head-
way h between two trains is generally defined as function of several parameters, two of
which are the instantaneous speeds v0 and v1 of an upstream and a downstream train.
Abstracting safety headways to fixed distances improves computation time, and signifi-
cantly simplifies the adaptation of trajectories in a discrete event simulation context. In
fact, as speeds of trains change with time, and as headways depend on speed, the optimal
trajectory is the trajectory that maintains at any instant the highest possible speed meet-
ing instantaneous headway constraints. In the current setting, trajectories of trains are
adapted to the preceding trajectory in order to leave a train at a distance greater than a
headway h from its predecessor. With dynamic headways, computing an adaptation for a
new trajectory could be a more involved operation.

Traffic management policies. In SIMSTORS’ simulation framework, the traffic man-
agement component is an algorithm that is called upon occurrence of a triggering event
(e.g., the detection of a deviation from the timetable), and that updates the active timetable.
In our study, we have implemented a traffic management technique that aims at recover-
ing from delays, as early as possible, by reducing dwell times. More generally, any traffic
management technique can be seen as a function that takes a timetable and computes an
achievable timetable from the current state of the system, with some performance objec-
tive. A next step is the implementation of other traffic management techniques such as
headway deviation minimization or rule-based proprietary techniques. This will help as-
sessing and comparing their performances w.r.t. different criteria, and also increase the
confidence in the level of abstraction in our model. Another interesting aspect is to inte-
grate planning and optimization techniques to provide accurate timetables on a bounded
duration.

Timetable robustness. The set of constraints that define the realizable behavior of
a given STPN (see Capter 6 with elementary semantics is not minimal. Some of the
redundancies were deliberately used to improve readability of the proposed algorithms.
In particular, one does not need all event variables nor all condition variables. When it
comes to implementing our proposed methods, all unnecessary variables shall be removed
from the constraints associated to a pre-process. Although complexity questions were not
addressed so far, the cost of the proposed realizability verification approach is expected
to be high. In fact, the size of an unfolding can grow exponentially w.r.t. its depth, and
checking satisfiability of a set of constraints with disjunctions can also be costly. Satis-
fiability of constraints is not monotonous and, hence, cannot be used to stop unfolding.
However, embedding verification and unfolding can be done jointly: one can stop a branch
of unfolding as soon as a schedule does not embed (without considering time) in the pre-
process built along a branch of the unfolding.

Additionally, computation of realization probability for processes can be improved. We
use a transient tree construction [39] that builds a symbolic but interleaved representa-
tion of some processes. This clearly comes with a very high performance cost. Evaluating
probabilities of symbolic processes in a noninterleaved setting is subject for further re-
search. It is however well known that mixing concurrency and probabilities is a difficult
challenge.
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8.2.2 Long term Perspectives

Multicriteria optimization. The problems addressed in this work focus on timing
objectives. In mathematical optimization terms, solving a problem amounts to minimiz-
ing an objective function, such as the mean deviation for all events in a timetable or the
maximum deviation for each trip (defined from a terminus to another). In reality, timing
factors are not the only criteria that matter. In fact, an important criterion is energy con-
sumption. Other criteria could be passenger comfort or avoidance of emergency braking...
Once these criteria are mathematically formulated, it is possible to assign a weight to
each criterion and to define a unique objective functions or KPIs. One would then aim to
operate the system such that these KPIs are optimal. A next step would be to elaborate
multicriteria traffic management techniques (for instance minimization of delays with
minimization of energy consumption), and use SIMSTORS to find the right equilibrium
between these objectives.

Control synthesis. The main objective of the simulation scheme presented in this the-
sis is evaluation and comparison of performances of traffic management policies. These
regulation techniques are mainly rule-based ("if delay exceeds 10s, then reduce dwell
time"). When a set of policies already exists, one only has to compare their performance
and choose the most adapted regulation. However, evaluating performance of a regula-
tion does not says how to improve it. In our models, the part of the model depicting the
physical system is guided through control places, that are filled at dates prescribed by
a timetable. An interesting research direction is to synthesize control laws that will re-
place the traditional rule-based algorithms. It is not clear whether regulation can always
be expressed as timetable transformation rules, or if one needs to add ingredients to the
network (control states, for instance) to obtain an optimal regulation. Some Petri net
snippets that ensure safety on portions of a network, or allow to impose a given order of
passage of trains were already presented in examples of Chapter 6; other more complex
snippets could be developed to improve regulation.

Testing. Up to now, SIMSTORS was only tested on Santiago’s metro line 1, and on
some toy examples. This topology is bidirectional single line-shaped with possible turn-
backs at some central crossing points (intertwined loops). Although testing was success-
ful, this line is not the most complex existing topology. In fact, complexity in traffic man-
agement generally increases with the presence of forks and junctions or shared tracks
between lines. Hence, further testing on lines and networks with different shapes, e.g.,
y-shaped (Paris’ line 13), with shared tracks (Amsterdam’s urban network), etc. could
help finding the limits of our models and help consolidate them.

Realizability of schedules. In our study of timetable robustness, control actions are
not taken into account. The proposed analytical approach takes a timetable and checks if
it can resist to slight disturbances on events’ occurrence dates. We say that a timetable
is realizable up to some imprecision δ, when all events occur at their reference dates plus
or minus δ, with a high enough predefined probability. It is important to note that this
approach assumes that occurrence dates of events are only dictated by the CDFs attached
to transition of the STPN representing the system. In reality, these dates also depend on
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a traffic management policy. A major improvement for this approach would be to consider
the effects of regulation in realizability questions.

Finally, traffic management in urban transportation systems should be considered in a
multi modal context and not only at individual metro lines level. Dependences between
passenger flows in bus systems and urban rail systems should be identified, and control
policies designed to optimize the fluidity of passengers flows at the level of a whole city.
Such objectives are becoming more and more attainable with the rise of big data and
advanced computing, but call fro the development of new models and techniques.
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Acronyms

BPN batches Petri net 50

CBTC communication-based train control 35

CDF cumulative distribution function 12, 14, 16, 48, 49, 74, 122, 134, 136

CLT central limit theorem 15–17

CPN continuous Petri net 50, 52

CPU central processing unit 123

CRP conflict resolution problem 42

DAG directed acyclic graph 25

DES discrete-event system 7, 43, 52

FB fixed-block 9, 34, 35, 40

FME Fourier–Motzkin elimination 18, 108

GBPN generalized batches Petri net 50–52

GSPN generalized stochastic Petri net 49

HPN hybrid Petri net 50, 52

JSP jobshop scheduling problem 41

KPI key performance indicator 9, 27, 31–33, 119, 120, 127, 128, 136

LLN law of large numbers 16

MB moving-block 9, 34, 35

MC Monte-Carlo 15, 16, 18

139



MILP mixed integer linear programming 38

OD origin-destination 134

PDF probability density function 11–14, 57, 88, 108, 134

RTS rapid transit system 37, 86, 103

SPN stochastic Petri net 48, 49
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101–103, 105–107, 109, 110, 120–123, 134–136

TdPN timed Petri net 47

TjPN trajectory Petri net 134

TPN time Petri net 47, 90, 92, 93, 108

TSD time-space diagram 82

UITP international organization for public transport 31–33

URS urban rail system 5–10, 23, 25, 31, 34, 55, 56, 58, 93, 122
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A
Appendix

A.1 Proof of proposition 6.1

Proposition 6.1. Let N be a STPN guaranteeing time progress of δ time units (between
consecutive occurrences of each transition). For every date D ∈R≥0 and condition b in an
unfolding Un, there exists K ≥ n s.t. {b′ ∈ block(b) | dob(b′)≤ D} is contained in UK .

Proof. Consider a pre-process PP of Un, which depth is more than dD
δ
e.|T| events. Every

event of the unfolding appended at depth i consumes conditions that were created at
depth j < i, and at least one condition that was produced at step i of the unfolding. Hence,
for every event en and bn condition created at depth n, there exists a sequence b0 <
e1 < b1 < ·· · < en < bn of events and conditions of increasing depth (and also increasing
dates). With the time progress assumption, we know that every consecutive pair of events
representing the same transition occurs at lest at dates that differ by δ. Hence, an event
created at depth n has an occurrence date of at least δ.bn/|T|c. The occurrence date of an
event created at depth greater than D

δ
.|T| is hence greater than D. The number of events

and conditions created at step n and appearing in the same pre-process of Un is finite
(as creating an event uses exclusively at least one condition of the preceding step). It is
hence sufficient to unfold a net up to depth D

δ
.|T| to obtain the (finite) set of conditions

that refer to the same place as some condition b before a given date D. ■

A.2 Proof of Theorem 6.1

Proposition 6.1. Let N be a STPN guaranteeing time progress of δ time units. The set
of time processes executable by N in D time units are prefixes of time processes of UK ,
with K = dD

δ
e · |T| containing only events with date ≤ D.

Proof. We will show inclusion of the set of processes in the two directions. First of all,
we define an ordering on symbolic processes. Let E s = 〈E,B,Φ〉 and E s′ = 〈E′,B′,Φ′〉 be
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two symbolic processes. We will say that E s v E s′ iff there exists an event e′ such that
E′ = E∪ {e′}, B′ = B∪ e′•, and Φ=Φ′

|Var(E,B). ■
Lemma A.1. Let E s be a symbolic process of unfolding UK , starting from m0,d0, that is
satisfiable and complete. Let θ be one of its solutions guaranteeing ∀e ∈ E,θ(e)≤ D. Then,
there exists a sequence E s,0 = 〈E0,B0,Φ0〉 v E s,1 = 〈E1,B1,Φ1〉 · · · v E s of symbolic processes
of UK such that E0 =;, B0 = {〈⊥, p〉 | p ∈ m0} Φ0 = {θ(⊥)= d0 ∧ ∧

b∈B0

dob(b)= d0} and θ is a

solution for every E s,i and θ(e i)≤ θ(e i +1).

Proof. We can show this property by induction on the size of prefixes of E s. The base
hypothesis is straightforward, taking the sequence with only one symbolic process E s,0

without events. Suppose that this property is satisfied for symbolic processes up to size
n, and consider a satisfiable and complete symbolic process E s,n+1 of size n+1. Let θn+1
denote a solution for this process. A growing sequence from E s,0 to E s,n+1 exists.In this
sequence, the difference between E s,n+1 and E s,n is a single event e that is maximal in
E s,n+1 w.r.t. ordering on events ¹, and such that θ(e)≥ θ(x) for every event x in E s,n+1\{e},
and θ(e)≥ dob(b) for every b in E s,n+1 \{e}. Let En,Bn denote the set of events in E s,n+1 \
{e}. Let us denote by Φn+1|En,Bn the restriction of Φn+1 to variables attached to events
and conditions En,Bn. One has to remove variables θ(e), dod(b) for every b ∈ •e, and
dob(b) for every b ∈ e• using an elimination technique such as Fourier-Motzkin. Using the
properties of elimination, θ satisfies Φn+1 if and only if the restriction of θ to Var(En,Bn)
satisfies Φn+1|En,Bn . However, the restriction of θ is exactly θn, and as θ(e), dod(b) for
b ∈ e•, and dod(b) for b ∈ •e are all greater than variables in Var(En,Bn), the elimination
of variables is simply a projection on atoms that do not contain variables related to e, and
Φn+1|En,Bn =Φn. ■
Lemma A.2. Given a symbolic process E s of UK , one of its solutions θ, and an ordering
E s,0 = 〈E0,B0,Φ0〉 v E s,1 = 〈E1,B1,Φ1〉 · · · v E s as above, then the word uE s,θ = 〈t1,θ(e1)〉 . . .
〈t|E|,θ(e|E|)〉 is a timed word of L (N ).

Proof. Again we can prove this lemma by induction. The base case is obvious, as the
empty word ε is a timed word of L (N ). Let us suppose that the property is satisfied up
to n, that is for every process En of size n and solution θn meeting all constraints of En,
there exists an increasing sequence of prefixes of En such that the word associated with
this sequence is a timed word of L (N ).

Let us now consider a time process En+1 with n+1 events and one of its solutions θn+1.
As in Lemma A.1, one can find an event en+1 and a process En such that En and En+1 only
differ by addition of this single event. There exists a timed word un = 〈e1,θn+1(e1)〉 . . .
〈en,θn+1(en)〉 ∈ L (N ) corresponding to En. This word may lead the net to any config-
urations in a set Confn with identical markings, but distinct times to fire attached to
transitions. However, as we know that θn+1 meets all constraints of En+1, there exists
a configuration in Confn whose times to fire allow firing of en+1 at date θ(en+1), and
un+1 = un.〈en+1,θ(en+1)〉 ∈L (N ). ■

Note that assuming time progress, the dates attached to an event of a process of UK that
occur at a date smaller than D cannot be further constrained by addition of constraints
coming from events that are not in UK . The two lemmas above hence allow to conclude
that for a given symbolic process E s of unfolding UK , in which one considers events that
occur before date D, and for each solution of E s, we have E s

θ
= TPuE s ,θ for some word
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uE s,θ ∈ L (N ). Hence, the set of time processes of UK whose events occur before D is
contained in the set of time processes TP(L≤D(N )). All time processes of some pre-
process of UK (and hence all time processes of unfolding UK ) can be built from a timed
word that is executable by N in less than D time units, and are hence time processes of
N .

We now have to prove the converse direction, i.e., every time process associated with a
word u ∈L≤D(N ) is a time process of UK .

Lemma A.3. Let u ∈L≤D(N ). Then, TP(u) is a time process of UK .

Proof. We proceed by induction on the size of words. First, for the empty words, the
time process with only initial conditions is clearly a time process of UK . Let us now
assume that for every un = 〈e1,θ(e1)〉 . . .〈en,θ(en)〉 ∈ L≤D(N ) of length n, TP(un) is a
time process of UK . Let us consider a word un+1 = 〈e1,θ(e1)〉 . . .〈en,θ(en)〉.〈en+1,θ(en+1)〉 ∈
L≤D(N ). One can build a time process Eu for u = 〈e1,θ(e1)〉 . . .〈en,θ(en)〉. Clearly, as
un+1 ∈ L≤D(N ), word u leads from marking m0 to a marking that enables en+1. Let
ep1 , . . . , epk denote the k events that produce the tokens that are consumed by en+1. If
event en+1 is a firing of some transition t that occurs exactly when its time to fire has
expired, θ(en+1) meets the constraint eft(t)+max{θ(epi )} ≤ θ(en+1) ≤ lft(t)+max{θ(epi )}.
In any case, we have e f t(t)+max{θ(epi )} ≤ θ(en+1) (which is the only constraint w.r.t
predecessors imposed by constraint in the unfolding. Similarly, let eb1 , . . . ebq denote
the last events of u that free places in which t outputs some tokens (and hence may
have blocked the execution of t before θ(en+1)). We have θ(en+1) meets the constraint
max({θ(ebi )})≤ θ(en+1). Hence, any event that had to occur before θ(en+1) (due to urgency,
causality, or blockings) also appears in Eu. Hence, θ witnesses satisfiability of a set of con-
straints over occurrence dates of events e1, . . . , en, and one can safely append en+1 = (B, t)
to maximal places of Eu, and obtain a symbolic prefix Eun+1 (satisfiable, conflict free and
complete). It now remains to show that Eun+1 is a symbolic process of UK . As θ(en+1)≤ D,
en+1 appears in the unfolding of N at depth at most D

δ
, which is lower than K = dD

δ
e · |T|.

Hence, Eun+1 is an causally closed set of events that also contains all mandatory urgent
transition firings and place unblockings whose set of constraints is satisfiable, and con-
tained in UK , i.e., it is a symbolic process of UK . ■

A.3 Stochastic state class tree

In this part of the appendix, we detail how to build a stochastic state class tree for a
particular process of a stochastic Petri net with blocking semantics.

Definition A.1 (transient stochastic state class tree). A transient stochastic state class
tree for an STPN N (that we shall call tree, for short) is a directed acyclic graph S =
〈V ,◦→ ∪•→〉 where vertices in V are classes, edges in ◦→ represent firing transitions
after (symbolically) elapsing time, and edges in •→ represent firings of urgent transitions.
Every vertex in the tree has only one predecessor except for the root of the tree, denoted
v0, that has no predecessor. Edges carry probabilistic informations on transitions firings
and the sum of probabilities of all edges leaving the same vertex is equal to 1.

The construction of a tree starts from the initial class Σ0 (with marking m0, a domain C0
for the TTFs of transitions enabled in m0 and all other components defined accordingly,
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see appendix E) and inductively computes edges and reachable classes. Edges Σ
t,µ−→ Σ′

from a class Σ to a successor class Σ′ are labeled by a transition name t and by the
probability µ to fire t from Σ, and are of two forms:

Firing after elapsing time: A move Σ
ti ,µi◦→ Σ′ from Σ= 〈m,C,D, BLK, URG〉 to Σ′ = 〈m′,C′,

D′, BLK′, URG′〉, achievable with probability µi, consists in firing transition ti after sym-
bolically elapsing its TTF. Such a move is only allowed if URG =∅ and the TTF τi of ti is
less than or equal to TTFs of all other transitions that could fire from Σ. The time domain
C i from which ti can fire is hence C i = C ∩⋂

x j∈XM {xi ≤ x j}, and the probability of firing
ti from Σ is µi =

∫
C i D. We have m′ = m− •ti + ti

•. The new domain C′ and distribution
D′ are computed as for STPNs with non-blocking semantics: it is obtained by advancing
time, removing variables of disabled transitions and adding those of newly enabled tran-
sitions [39], and then removing variables of transitions whose domain is the singleton {0}.
The domain of a single variable xi in a domain C over several variables can be obtained
by eliminating all variables but ci from C. As soon as a variable has domain {0}, the time
to fire of the associated transition is necessarily zero, and the transition has to fire. It is
then stored in the set of urgent transitions if it is not blocked, and in the set of blocked
transitions otherwise. The set BLK′ is obtained by removing from BLK transitions that
were disabled by firing of ti and transitions that are not blocked anymore in m′ thanks
to the places freed by firing of ti (they become urgent), and adding transitions which are
enabled in m′ with a firing domain in C′ that is {0}. Finally, the set URG′ contains all en-
abled transitions that became urgent when firing ti, i.e., transitions with firing domain
{0} among enabled transitions, and formerly blocked transitions unblocked by ti.

Firing urgent transitions: In STPNs semantics, when more than one transition is
firable from a configuration, their weights are used to compute the probability of firing
each transition. This case can occur because of blocking semantics: an STPN can keep
several transitions blocked, and firing a transition can also unlock several of them at
the same time (all unblocked transitions become urgent). When a class Σ has urgent

transitions (URG 6=∅), only moves of the form Σ
ti ,µi•→ Σ′ are allowed. They consist in firing a

transition ti among urgent transitions in URG with probability µi =W (tk)
/∑

t j∈URG W (t j).
Components m′, C′ and D′ of the successor class are computed as for timed moves, with
the only difference that no time elapses before the firing of ti. Set BLK′ is obtained by
removing from BLK transitions that are unlocked or disabled by the firing of ti and adding
those that become blocked in m′, and URG’ contains transitions from URG that were not
disabled by firing of ti and transitions from BLK that were unblocked when firing ti.

Computing the probability of a process E s:

Transient trees are a priori infinite, but very often, one can work with a bounded hori-
zon. This is our case when evaluating the probability of realization in UK . Let Ψi =
{ψi,0,ψi,1, . . . ,ψi,n−1} denote all possible embeddings of a schedule S into a symbolic pro-
cess E s

i of N . We denote by P(Φψi, j ,d±α) the probability that N executes a time pro-
cess E s

i and realizes S within a precision of ±α when ψi, j is the embedding of S in E s
i .

We adapt the tree construction to consider only E s
i and embedding ψi, j, and compute

P(E s
i ∧Φψi, j ,d±α). We build a tree whose vertices of the form 〈Σ,S〉 memorize a class

and a suffix of E s
i not yet executed. We start from vertex 〈Σ0,E s

i 〉. We create an edge

〈Σ,S〉 tk,µk−−−→ (Σ′,S′) representing firing of a transition tk if there is a minimal event e in the
remaining suffix of E s

i , and tr(e)= tk. S′ is the new suffix obtained by removing e from S.
Σ′ is the successor class obtained after firing this transition from Σ. Edges are built as be-
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fore in the tree, but with an additional constraint: edges with label tk,µk and components
m, C, D, BLK, URG of classes are built with the additional requirement that when creating
an edge from an event e that is in the image of ψi, j, the firing time domain is restricted
to impose that e occurs in the time interval Ik = [max(0,d(ψ−1

i, j (e))−α),d(ψ−1
i, j (e))+α]. In

this case, the probability of firing tk = tr(e) becomes µk = ∫
Ck ∩C′k D, where C′k is the part

of C in which τk −τage (the firing date for e) belongs to Ik. We stop developing a branch
of the tree at vertices whose suffix does not contain events that are images of nodes in S
via ψi, j. The construction ends with a tree Si, j,α.

Transient tree Si, j,α measures the probability of solutions and of occurrence of a particu-
lar process. The probability P(E s

i ∧Φψi, j ,α) is computed as P(E s
i ∧Φψi, j ,α)=∑

ρ∈PATH(Si, j,α)P(ρ)
where PATH(Si, j,α) is the set of paths from 〈Σ0,E s

i 〉 to a leaf of Si, j,α, and the probabil-

ity P(ρ) of a path ρ = Σ0
ti ,µi−−−→ . . .

tl−1,µl−1−−−−−−→ Σl that start at Σ0 and end on a leaf Σl is the
product Πi∈{0,...,l−1}µi. As soon as P(E s

i ∧Φψi, j ,α) > 0, S has a non-null probability to be
realized (with a tolerance of ±α). Noticing that different embeddings yield disjoint paths
in their respective transient stochastic state class trees, the probability for a schedule to
be realized by a process is hence P(E s

i |= S)=∑
ψi, j∈Ψi P(E s

i ∧Φψi, j ,α).

Finally, denoting by E (PP,S) the symbolic processes of a pre-process PP that embed S,
the probability P(N |= S) is greater than max{P(E s

i ∧Φψi, j ,α) |PP ∈PP(UK )∧E s
i ∈ E (PP,S)}.

It is difficult to obtain more than a lower bound for realization, as symbolic processes of
E (PP,S) might have overlapping executions.

A.4 Derivation of components of successor class

We hereafter provide details on how to compute components C′ and D′ of a class Σ′ ob-

tained from a class Σ through a transition
ti ,µi◦→ . Derivation of components m′, BLK′ and

URG′ has already been covered and need not further explanations.

We shall use the following notations:

• given a time domain C delimiting the possible values of a set of variables XM =
{x0, x1, . . . , xN−1}, we will denote by C↓xi the projection of C that eliminates variable
xi from XM . The elimination is done via the Fourier-Motzkin method detailed in
Chapter 2.

• given a vector x
¯
= 〈x0, x1, . . . , xN−1〉, we denote by x

¯
\ xi the vector x

¯
from which

variable xi is removed, with i ∈ {0,1, . . . , N −1};
• the addition of a scalar x0 to each element of a vector x

¯
= 〈x1, x2, . . . , xn〉 is simply

written x
¯
+ x0.

Probability of firing: A transition ti can fire from class Σ iff ti is enabled by m and
no postset place of ti is occupied; that is ∀p ∈ t•,m(p) = 0. We also need its TTF xi to be
less than or equal to TTFs of all variables in XM ; transition ti will then fire from Σ with
probability µi, with:

µi =
∫

C i
D

C i is the time domain from which ti shall fire with all its TTF less than or equal to every
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variable in XM .

C i ,C∩ ⋂
x j∈XM

{xi ≤ x j}

Precedence condition: The assumption that ti fires before any other transition adds
conditions on the time vector and thus leads to a new random variable X a

M distributed
over C i according to the following conditional PDF:

Da = D
/
µi

Time elapsing and elimination: According to the semantics of STPNs, when ti fires,
TTFs of activated transitions are decreased by the value of the TTF of ti, namely τi. This
yields a new random variable X b

M = X a
M − xi distributed over the domain Cb = C i ↓xi in

which the variable attached to the fired transition ti is eliminated. The PDF of the new
multivariate random variable X b

M is then:

Db =
∫ MAXi

MINi
Da

where MINi and MAXi denote the bounds of the support of variable τi.

Disabling: If the firing of ti disables a transition t j, variable x j has to be eliminated
from the time vector, yielding a new vector X c

M = X b
M \x j distributed over Cc = Cb↓x j with

PDF:

Dc =
∫ MAX j

MIN j
Db

The same procedure is repeated for every disabled transition by the firing of ti. Let X c∗
M ,

Cc∗ and Dc∗ then respectively denote the resulting time vector, domain and PDF.

Newly enabling: If the firing of ti enables a transition tk, with PDF f tk over [eft(tk), lft(tk)],
then the new time vector, that we denote by X d

M′ , shall include an additional component
xk and shall be distributed over Cd = Cc∗× [eft(tk), lft(tk)] according to the PDF:

Dd = Dc∗× f tk (xk)

The same procedure is similarly repeated for every newly enabled transition to finally
obtain the PDF of the successor class Σ′.
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Titre : Évaluation de performances pour les techniques de régulation du trafic ferroviaire urbain 
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Résumé :  Le trafic ferroviaire urbain est 
quotidiennement sujet à des perturbations qui le 
dévient de son comportement nominal. Afin de 
minimiser l'impact de ces perturbations, les 
opérateurs ferroviaires usent de diverses 
techniques. Nonobstant leur efficacité,  
les performances de ces techniques ne sont 
généralement pas bien étudiées ni sont-elles 
optimales, car élaborées empiriquement. C'est 
dans ce cadre-ci que vient cet ouvrage fournir 
des solutions qui permettent d'évaluer ces 
techniques de régulation et d'en comparer les 
performances dans des contextes variés. 
L’approche proposée se base sur des variantes 
de réseaux de Petri comme modèles et sur la 
méthode de Monte-Carlo pour en simuler 
l’exécution.  
 

Cette combinaison a donné naissance à 
SIMSTORS, un outil de simulation pour les 
systèmes ferroviaires urbains, et plus 
généralement, pour les systèmes 
stochastiques régulés.  
Additionnellement, nous nous intéressons dans 
cette thèse à la problématique de la 
réalisabilité des tables horaires qui pilotent le 
trafic ferroviaire. Ces tables décrivent le 
comportement temporel désiré des systèmes 
pour lesquels elles sont conçues. Or, la 
construction de ces tables ne garantit pas 
toujours sa réalisabilité, notamment dans un 
contexte stochastique. Ainsi, nous proposons 
ici une méthode permettant de vérifier si une 
table horaire est bien réalisable avec une 
probabilité strictement positive. 
 

 

Title: Performance evaluation of urban rail traffic management techniques 

Keywords: rail systems, traffic management, Petri nets, performance evaluation, stochastic 
simulation, timetables 

Abstract:  Urban rail traffic is subject to 
numerous disrupting events that drift it from its 
nominal behavior. In order to minimize the 
impact of these disturbances, rail operators rely 
on a set of techniques. Despite their efficiency, 
performances of these techniques are rarely 
well studied, nor are they of proven optimality; a 
direct consequence of them being empirically 
built. It is in this particular context that comes 
our work to provide solutions that allow for the 
evaluation of such techniques and for the 
comparison of their relative performances in 
various scenarios. The proposed approach is 
based on variants of Petri nets as models, and 
on the Monte-Carlo method for the simulation of 
their execution.  

This combination has led to the development of 
SIMSTORS, a tool for the simulation of urban 
rail systems, and more generally, stochastic 
systems under dynamic rescheduling.  
Additionally, this thesis addresses the question 
of timetable realizability; that is whether or not 
a given timetable is indeed realizable by a 
system for which it was built. Indeed, a 
timetable is meant to drive the behavior of a 
system but there is no guarantee as to its 
realizability. We therefore propose a method 
for the verification of the realizability of 
timetables with a strictly positive probability. 
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