N
N

N

HAL

open science

Preuves symboliques de propriétés d’indistinguabilité
calculatoire

Adrien Koutsos

» To cite this version:

Adrien Koutsos. Preuves symboliques de propriétés d’indistinguabilité calculatoire. Informatique et
langage [cs.CL|. Université Paris Saclay (COmUE), 2019. Francais. NNT: 2019SACLN029 .

02317745

HAL Id: tel-02317745
https://theses.hal.science/tel-02317745
Submitted on 16 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

tel-

https://theses.hal.science/tel-02317745
https://hal.archives-ouvertes.fr

ecole

® norma_lle
universite supérieure
PARIS-SACLAY paris—saclay ——

Preuves symboliques de propriétés
d’indistinguabilité calculatoire

These de doctorat de I'Université Paris-Saclay
préparée a Ecole Normale Supérieure Paris-Saclay
au sein du Laboratoire Spécification et Vérification

Ecole doctorale n°580 Sciences et technologies de I'information et de la
communication (STIC)
Spécialité de doctorat : Informatique

NNT : 2019SACLNO029

Thése présentée et soutenue a Cachan, le 27 septembre 2019, par
ADRIEN KOUTSOS

Composition du Jury :

Catuscia Palamidessi
Directrice de Recherche, INRIA Présidente

Cas Cremers
Professeur, CISPA Helmholtz Rapporteur

Bogdan Warinschi

Professeur, University of Bristol Rapporteur
Myrto Arapinis

Reader, University of Edinburgh Examinatrice

Bruno Blanchet
Directeur de Recherche, INRIA Examinateur

Hubert Comon
Professeur, ENS Paris-Saclay Directeur de thése

fd
(O
p _—
O
e
O
o)
O
)
O
)
(7).
D
-
|_

Résumeé

Notre société utilise de nombreux systémes de communications. Parce que ces systémes sont omniprésents
et sont utilisés pour échanger des informations sensibles, ils doivent étre protégés. Cela est fait & l'aide
de protocoles cryptographiques. Essentiellement, un protocole est un ensemble de régles détaillant com-
ment des entités, par exemples des systémes informatisés, doivent communiquer, et un protocole cryp-
tographique est un protocole qui cherche & garantir certaines propriétés de sécurité. Il est crucial que ces
protocoles assurent bien les propriétés de sécurité qu’ils affirment avoir, car les échecs peuvent avoir des
conséquences importantes. Par exemple, ils peuvent entrainer des fuites de données confidentielles, ou
des atteintes majeures au respect de la vie privée des utilisateurs.

Malheureusement, concevoir des protocoles cryptographiques est notoirement difficile, comme le mon-
tre la régularité avec laquelle de nouvelles attaques sont découvertes. De plus, des attaques sont trouvées
réguliérement méme sur des protocoles de premier plan, tel le protocole TLS qui est utilisé pour sécuriser
les connections HT'TPS. Nous pensons que la vérification formelle est le meilleur moyen d’avoir de bonnes
garanties dans la sécurité d’un protocole. Essentiellement, il s’agit de prouver mathématiquement qu’un
protocole satisfait une certaine propriété de sécurité. Bien entendu, ce n’est pas une tache aisée. Tout
d’abord, il faut modéliser fidélement le protocole et la propriété de sécurité, tout en abstrayant les aspects
du systéme qui ne sont pas pertinents. Ensuite, il faut prouver que le modéle du protocole satisfait bien
la propriété voulue. En particulier, cela nécessite d’avoir formalisé la classe d’attaquants contre laquelle
la propriété doit étre valide. Plusieurs classes d’attaquants ont été proposées dans la littérature.

Un modéle d’attaquants populaire, le modéle de Dolev- Yao, donne & 'attaquant le controle du réseau:
celui-ci peut intercepter et rediriger tous les messages. De plus, 'attaquant peut modifier les messages
en utilisant un ensemble fixé de régles. Ce modéle est particuliérement adapté aux preuves automatiques
de propriétés de sécurité, mais il donne des garanties limitées, puisque I'on prouve seulement 1’absence
d’attaques utilisant les capacités données a ’attaquant.

Un autre modéle d’attaquant, plus proche d’un attaquant réel, est celui de [l’attaquant calculatoire.
Dans ce modéle, 'attaquant controle aussi le réseau. Cependant, celui-ci n’est pas restreint & un ensemble
fixé de régles: il peut effectuer n’importe quel calcul probabiliste polynomial. Ce modéle offre de meilleures
garanties de sécurité, mais les preuves sont plus difficiles & réaliser, sujettes a erreurs et plus difficiles a
automatiser.

Il existe une approche alternative, le modéle Bana-Comon. Dans ce modéle, on exprime la sécurité
d’un protocole comme un probléme de satisfaisabilité d’un ensemble de formules de la logique du premier
ordre. Cet ensemble de formules contient la négation de la propriété de sécurité et un ensemble d’aziomes,
qui correspondent & des hypothéses d’implémentations, telle que la correction fonctionnelle, et & des
hypotheéses cryptographiques sur les primitives de sécurité. Prouver 'insatisfaisabilité de cet ensemble
de formules implique la sécurité du protocole dans le modéle calculatoire. De plus, puisqu’il s’agit d’une
logique du premier ordre, ce modéle est adapté aux méthodes de preuves automatiques. Il existe deux
modéles Bana-Comon, qui ciblent différentes propriétés de sécurité. Le modéle le plus ancien est destiné
aux propriétés d’accessibilités, ou de traces, alors que le modéle le plus récent s’intéresse aux propriétés
d’équivalences. Ces derniéres sont plus expressives, et sont nécessaires pour énoncer des propriétés liées
au respect de la vie privée, tels que 'anonymat ou la non-tracabilité.

ii

Notre objectif est de développer les techniques permettant de vérifier formellement des propriétés
d’équivalence sur des protocoles cryptographiques, en utilisant une méthode qui fournit de fortes garanties
de sécurités, tout en étant adaptée a des procédures de preuve automatique. Dans cette thése, nous
défendons l'idée que le modéle Bana-Comon pour les propriétés d’équivalences satisfait ces objectifs.
Nous soutenons cette affirmation a ’aide de trois contributions.

Tout d’abord, nous étayons le modéle Bana-Comon en concevant des axiomes pour les fonctions
usuelles des protocoles de sécurités, comme le xor, et pour plusieurs hypothéses cryptographiques:
IND-CCA1, CR-HK, EUF-CMA et PRF.

Dans un second temps, nous illustrons 'utilité de ces axiomes et du modéle en réalisant deux études
de cas de protocoles concrets. Nous commengons avec deux protocoles relativement simples, KCL et LAK.
Puisque des attaques contre ces protocoles sont connues, nous proposons des corrections, et prouvons que
les versions corrigées protégent la vie privée des utilisateurs, en supposant que les fonctions de hachages
sont des PRF. Notre deuxiéme étude de cas est plus complexe. Dans cette étude de cas, nous nous
intéressons au protocole d’authentification 5G-AKA, qui est utilisé dans les réseaux de téléphonie mobile,
et montrons que de nombreuses attaques de la littérature sont applicables & ce protocole. Nous proposons
alors une version modifiée du protocole, que nous appelons AKA™, et nous prouvons a l’aide du modéle
Bana-Comon que celle-ci garantie I'authentification mutuelle et la non-tracabilité des utilisateurs. Ce
résultat est valide pour un nombre arbitraire d’utilisateurs et de sessions.

Finalement, nous étudions le probléme de I'automatisation de la recherche de preuves dans le modéle
Bana-Comon. Pour cela, nous prouvons la décidabilité d’un ensemble de régles d’inférences qui est une
axiomatisation correcte, bien que incompléte, de 'indistingabilité calculatoire, lorsque 1'on utilise un
schéma de chiffrement IND-CCAs. Du point de vue d’un cryptographe, cela peut étre interprété comme la
décidabilité d’un ensemble de transformations de jeux. Ce résultat repose sur des techniques de déduction
automatiques standards, comme la normalisation de termes et I’élimination de coupures.

Abstract

Our society extensively relies on communications systems. Because such systems are used to exchange
sensitive information and are pervasive, they need to be secured. Cryptographic protocols are what allow
us to have secure communications. Basically, a protocol is a set of rules detailing how entities, e.g.
computer systems, must communicate, and a cryptographic protocol is a protocol that aims at ensuring
some security properties. It is crucial that such protocols do not fail in providing the security properties
they claim, as such failures have dire consequences. For example, they can lead to sensitive data being
stolen, or to large scale privacy breaches.

Unfortunately, designing cryptographic protocols is notoriously hard, and major protocols are regu-
larly and successfully attacked. Moreover, this is true even for high-visibility protocols, such as the TLS
protocol which is used to secure HTTPS connections. Formal verification is the best way to get a strong
confidence in a protocol security. Basically, the goal is to mathematically prove that a protocol satisfies
some security property. Of course, this is not an easy task. First, we need to faithfully model the protocol
and the security property, while abstracting away irrelevant aspects of the system. Second, we have to
prove that the modeled protocol indeed satisfies the desired property. In particular, this requires us to
formally specify against what class of attackers the property must hold. Several classes of attackers have
been considered in the literature.

A popular attacker model, the Dolev-Yao attacker, grants the attacker the complete control of the
network: he can intercept and re-route all messages. Besides, the adversary is allowed to modify messages
using a fixed set of rules. This model is very amenable to automatic verification of security properties,
but the security obtained is limited: we only prove the absence of attacks using the capabilities granted
to the adversary.

Another attacker model, closer to a real world attacker, is the computational attacker model. This
adversary also controls the network, but this model does not restrict the attacker to a fixed set of
operations: the adversary can perform any probabilistic polynomial time computation. This model offers
stronger guarantees than the Dolev-Yao model, but formal proofs are harder to complete, more error-
prone, and more difficult to automate.

There is an alternative approach, the Bana-Comon model. In this model, we express the security of
a protocol as the unsatisfiability of a set of formulas in first-order logic. The formulas contain the nega-
tion of the security property and azioms, which reflect implementation assumptions, such as functional
correctness and cryptographic hypotheses on the security primitives. Carrying out a proof of unsatisfi-
ability in this logic entails the security of the protocol in the computational model. Moreover, because
this is a first-order logic, this model may be amenable to automated or mechanized proofs. There exist
two Bana-Comon models, which target different security properties. The oldest model aims at proving
reachability or trace properties, while the newest and less studied model targets equivalence properties.
These properties are more expressive, and allow to state privacy-related properties, such as anonymity
or unlinkability.

Our objective is to develop techniques to formally verify equivalence properties of cryptographic pro-
tocols, using a method that provides strong security guarantees while being amenable to automated
deduction techniques. In this thesis, we argue that the Bana-Comon model for equivalence properties
meets these goals. We support this claim through three different contributions.

iii

iv

First, we design axioms for the usual functions used in security protocols, such as the xor operator,
and for several cryptographic hypothesis: IND-CCA1, CR-HK, EUF-CMA and PRF.

Second, we illustrate the usefulness of these axioms and of the model by completing two case studies
of concrete protocols. We start with two simple RFID protocols, KCL and LAK. As these protocols are
known to be unsecure, we propose security fixes, and prove that our fixed versions provide privacy under
the PRF assumption. Our second case study is more involved. In this case study, we investigate the
5G-AKA authentication protocol used in mobile communication systems, and show that multiple privacy
attacks from the literature apply to this protocol. We then propose a fixed version of this protocol,
dubbed AKA™, and prove using the Bana-Comon approach that it provides mutual authentication and
a form of unlinkability. This result holds for any number of agents and sessions.

Finally, we study the problem of proof automation in the Bana-Comon model, by showing the decid-
ability of a set of inference rules which is a sound, though incomplete, axiomatization of computational
indistinguishability when using an IND-CCA5 encryption scheme. From a cryptographer’s point of view,
this can be seen as the decidability of a fixed set of cryptographic game transformations. This result relies
on standard automated deduction techniques, such as term normalization and proof cut eliminations.

Contents

Contents v
1 Introduction 1
1.1 The Context e e e e e e 1
1.2 Example: the AKA™ Protocol e 2
1.2.1 Cryptographic Primitives 2
1.2.2 The AKA™ Protocol e 3

1.3 Security Properties e 4
1.4 Attacker Models e e 5
1.4.1 Symbolic Model e 6
1.4.2 Computational Model 6

1.4.3 Computational Soundness 7
1.4.4 The Bana-Comon Model 8

1.5 Limitations of the State of the Art 9
1.6 Contributions e e e e e e 10
1.6.1 RFID Protocols. e e 10
1.6.2 The AKA Protocol e 10

1.6.3 Deciding Indistinguishability 000 oo 11

1.7 Outline of the Thesis e 12
2 The Model 13
2.1 Preliminaries e e e 15
2.2 Syntax e e 16
2.2.1 Syntax of the Logic 16
2.2.2 Positions and Contexts e e 18

2.3 SemantiCs e e e e e e e e e 18
2.3.1 Sorted First-order Semantics e 18
2.3.2 Computational Models L 20

2.4 Protocol and Their Semantics 22
2.4.1 Labelled Transition Systems 22
2.4.2 Computational Execution 24
2.4.3 Symbolic Execution 25

2.5 AXiomS ... L e e 28
2.5.1 Structural AXioms e 29
2.5.2 Implementation Axioms 33

2.6 Cryptographic Assumptions and Axioms 35
2.6.1 The CCAy Axioms e 35
2.6.2 The CR-HK AXIOMS« o v vttt i it e e e 37
2.6.3 EUF-MAC AXIOMS« o vttt e 38
2.6.4 PRF AXIOIMS o e e e 42

2.7 Conclusion e e e e 44

vi Contents
3 Privacy Proofs of RFID Protocols 45
3.1 Security Properties e 46
3.1.1 Privacy of RFID Protocols 46
3.1.2 Privacy Labelled Transition System 48

3.2 Two RFID Protocols o e 50
321 A Known Attack on KCLo 50
3.2.2 KcLT, a Revised Version of KCL 51
3.2.3 The LAK Protocol e 53
3.2.4 A Stateless Revised Version of LAK 54
3.2.5 The LAKT Protocol 55

3.3 Pseudo-Random Number Generator 59
3.4 Conclusion e e e 60
4 The 5G-AKA Authentication Protocol Privacy 61
4.1 Introduction L e e 61
4.2 The 5G-AKA Protocol e 63
4.2.1 Description of the Protocol o 63

4.3 Unlinkability Attacks Against 5G-AKA 65
4.3.1 1MsI-Catcher Attack 65
4.3.2 The Failure Message Attack 66
4.3.3 The Encrypted mvst Replay Attack 67
4.3.4 Attack Against The PRIV-AKA Protocol 67
4.3.5 Sequence Numbers and Unlinkability 68

4.4 The AKAT Protocol 68
4.4.1 Efficiency and Design Constraints 69
4.42 Keyldeas o e 69
4.4.3 Architecture and States L L 70
4.4.4 The supl, GUTI and ASSIGN-GUTI Sub-Protocols 71

4.5 Unlinkability 74
4.5.1 o-Unlinkability 75
4.5.2 A Subtle Attack 76

4.6 Modeling in The Bana-Comon Logic 77
4.6.1 The AKA™T Protocol Action Trace 7
4.6.2 The AKA™T Protocol Symbolic Outputs and State Updates 79
4.6.3 Modeling o-Unlinkability 80
4.6.4 Ghost Variable 84

4.7 AXioms e e e 84
4.7.1 Joint Cryptographic Assumptions 85
4.7.2 Relations Among Cryptographic Assumptions 85
4.7.3 Cryptographic Axioms L 87
4.7.4 Axioms e e e e 88
4.7.5 Additional Axioms e e 90

4.8 Security of the AKAT Protocol 91
4.8.1 Mutual Authentication of the AKA™ Protocol 92
4.8.2 o-Unlinkability of the AKAT Protocol 93

4.9 Mutual Authentication of the AKA™ Protocol 93
4.9.1 Invariants and Necessary Acceptance Conditions 94
4.9.2 Authentication of the User by the Network 96
4.9.3 Authentication of the Network by the User 97
4.9.4 Injective Authentication of the Network by the User 100
4.9.5 Proofof Lemma 4.6 101

4.10 Acceptance Condition Characterizations 104
4.10.1 A First Acceptance Condition Characterization 104
4.10.2 Proof of Proposition 4.17 108
4.10.3 A Full Set of Acceptance Condition Characterizations 111

4.10.4 Proof of Lemma 4.11 e 112

Contents

vii

4.10.5 GuTIy Concealment
4.10.6 Stronger Characterizations o
4.10.7 Proof of Lemma 4.14

4.11 Unlinkability

4.11.1 Resistance Against De-Synchronization Attacks
4.11.2 The Case Term Construction
4.11.3 Strengthened Induction Hypothesis,
4.12 Proof of Lemma 4.15 L e
4.13 Proof of Proposition 4.20

4.14 Conclusion .

5 Deciding Indistinguishability

5.1 Introduction .
5.2 Axioms . ..

5.2.1 Comments and Examples o
5.3 The Term Rewriting System R o
5.4 The CCAg AXIOMS e
5.4.1 Closure Under Restr
5.4.2 Length in the CCAg Axioms L
5.5 Main Result and Difficulties
5.6 Commutations and Cut Eliminations
5.6.1 Rule Commutations e
5.6.2 The Freeze Strategy e
5.7 Shapeof the Terms e
5.7.1 Definitions e
5.7.2 Eager Reduction for Apa, e

5.8 Proof Form .

5.8.1 Early Proof Form
5.8.2 Shapeofthe Terms. e
5.8.3 Proof Form and Normalized Proof Form
5.8.4 Restriction to Proofs in Normalized Proof Form
5.9 Properties of Normalized Basic Terms
5.9.1 Basic Term Extraction
5.9.2 Well-Nested Sets e
5.10 Spurious Conditionals and Persistent Leaves
5.10.1 Spurious Conditionals to Spurious Sets
5.10.2 Persistent Terms L
5.11 Proof Cut Elimination e
5.11.1 Removing True and False From Basic Terms
5.11.2 Basic Terms have Disjoints Conditionals and Leaves
5.11.3 Proof Cuts on Branches
5.11.4 Main Lemma e e e e
5.12 Bounding the Basic Terms L
5.12.1 a-Bounded Conditionals
5.12.2 Bounding the Number of Nested Basic Conditionals
5.12.3 Candidate Sequences e e e e

5.13 Conclusion .

6 Conclusion
6.1 Future Works

Bibliography
General Index

Symbols Index

114
118
121
128
128
129
129
131
159
169

171
171
174
176
178
182
187
188
189
194
194
198
202
203
205
209
209
210
212
212
214
214
219
224
225
227
231
232
234
236
237
241
241
245
251
255

257
258

259

267

269

CHAPTER 1

Introduction

“So it goes.”

— Kurt Vonnegut

1.1 The Context

Our society extensively relies on communication systems. The most prominent communication systems
are very large scale systems, such as the Internet or the mobile phone cellular networks, through which
billions of users are connected. These systems are used by private individuals for messaging, online
shopping, accessing bank accounts, paying taxes... They are also used by organizations, such as companies
or states, to exchange sensitive data. But there are also smaller-scale and less visible communication
systems, which are no less pervasive. For example, RFID badges and smart cards are extensively used for
buildings access control or public transportation payment method. Often, the data exchanged through
these systems is sensitive, e.g. credit card number or bank account details, or contains information that the
user wants to keep private, e.g. his location. To prevent some malicious entity from stealing confidential
data, or breaching a user’s privacy, communication systems need to be secured.

Cryptographic protocols are what allow us to obtain secure communications. A protocol is a set of
rules stating how two or more entities must communicate. Theses rules not only specify the content of
the messages that are to be exchanged, but also the order and the recipients of these messages, as well as
how the entities local states evolve during the protocol execution. A cryptographic protocol is a protocol
that aims at ensuring some security properties. The HTTPS protocol is an example of cryptographic
protocol, and is used to secure communications between a server and a browser on the World Wide Web.
Another example of cryptographic protocol is the Authentication and Key Agreement (AKA) protocol,
which allows a mobile phone and its service provider to authenticate each other and to establish a shared
secret key. This key is used to protect future communications between the phone and the service provider.

Attacks Unfortunately, designing security protocols is hard, as can be seen from the numerous attacks
against them that have been discovered in the last decades. For example, the TLS protocol, which is
used to secure HT'TPS connection, has been successfully attacked several times at the protocol level: the
LocJaM attack [ABDT 15| allowed a man-in-the-middle attacker to force a TLS connection to use 512 bit
Diffie-Hellman key exchange,' which is easy to break using current computing capabilities. This is far from
being the only attack on TLS. To cite but a few: the TRIPLEHANDSHAKE authentication attack [BDF*14];
or the FREAK downgrade attack [BBD*17a]. The TLS protocol is not the only major protocol to have
been attacked. For example, the mobile network authentication protocol AKA is subject to several
privacy attacks. The most important privacy attack against AKA is the 1MsI catcher attack [Str07].
Using this attack, a rogue antenna can collect the identities of all mobile devices in range, which allows
for large-scale surveillance. Note that, contrary to the TLS attacks, this privacy attack has not been
fixed in the currently deployed version of the protocol (fourth generation, or 4G).

IThis is an export-grade key exchange: in the 90’s, the United States required that cryptographic software exported
abroad used weak keys on purpose, so that they could be easily broken by intelligence agencies.

2 Introduction

Formal Methods The fact that new attacks are regularly found on high-visibility protocols, such as
TLS and AKA, shows how difficult it is to design secure cryptographic protocols. An explanation for
this may be that the usual approach of bug finding, through automated testing, and bug fixing, does
not work for security protocols. This is because automated testing is made to find errors occurring
during executions of a program on random inputs. The problem is that a cryptographic protocol is not
executed in a random environment, but in a hostile one. A corner-case, which has a very low probability
of happening in a normal execution, may be systematically triggered by an adversary.

When this happens, or when the potential cost of a bug is deemed too high, such as in the aeronautic
space industry, we rely on formal verification instead of testing. Basically, the goal of formal verification
is to prove, in a mathematical sense, that some system satisfies some properties. Ideally, the proof
should be machine-checked, to avoid any errors. This approach gives very strong guarantees, and has
been successfully applied. For example, the flight-control program of some Airbus planes have been
successfully verified [BCC*15]| using abstract interpretation techniques [CC77|. They proved the absence
of run-time errors such as division by zero or integer overflows.

To formally verify a system, we need to model the system, model the property, and prove that the
system satisfies the property. The modeling is often not obvious, as it requires the prover to abstract
away the aspects of the system that are irrelevant, while not forgetting to model any important feature.?
When modeling a security protocol, we first need to determine what are the network capabilities of the
adversary. A first possibility is to give only eavesdropping capacities to the adversary. Because he cannot
interfere with the execution of the protocol, such an adversary is called a passive adversary. A stronger
adversarial model, historically advocated by Needham and Schroeder in [NS78], also lets the adversary
intercept, reroute or even forge messages: the adversary has complete control of the network. Such an
adversary is called an active adversary.

1.2 Example: the AKA™ Protocol

To make things more concrete, we give a simplified example of a real-world cryptographic protocol. The
Authentication and Key Agreement (AKA) is used in mobile communication networks, and is part of
a series of protocols which allow a user, typically a mobile phone, to connect wirelessly to its service
provider, in order to send and receive text messages and calls, or to access the Internet. As indicated by
its name, this is an authenticated key-exchange protocol. The goal of such a protocol is two-fold. First, it
must ensure that the two parties, here the user and its service provider, properly authenticated each other.
That is, after a successful completion of the protocol, the user must be certain that it communicated
with its service provider, and not another potentially malicious agent. Conversely, the service provider
must be certain of the identity of the user it interacted with. Then, this is a key-exchange protocol: at
the end of a successful execution of the protocol, the user and the service provider must have established
a shared and secret key, which they can use in subsequent communications.

There are several versions of the AKA protocol, one for each generation of mobile communication
networks. The currently deployed variants are the third (3G) and fourth (4G) generations AKA protocols,
but the fifth generation (5G) should be finalized soon, and drafts are already available. Our example,
which we call AKA™, is a simplified version of the 5G variant of AKA.

1.2.1 Cryptographic Primitives

Cryptographic primitives are the basic building blocks of cryptographic protocols, and provide interesting
security properties. We present here three standard such primitives: symmetric encryptions, asymmetric
encryptions and cryptographic hash functions.

Symmetric Encryption The best known, and oldest, cryptographic primitive is the symmetric en-
cryption. Basically, a symmetric encryption scheme comprises two functions, senc and sdec. The en-
cryption function senc takes as input a message m, called the plain-text, and a secret key k, and returns
an encrypted message senc(m, k), called the cipher-tezt. The cipher-text must reveal nothing about the

2This is difficult to do, as seemingly irrelevant feature of a system may be used by to break the wanted property. A
notable example of this in security are side-channel attacks [Koc96], which use timing or power-consumption information
to break apparently secure cryptographic primitives and protocols.

1.2. Example: the AKA™ Protocol 3

message m to any agent who does not know the secret key k.> But anybody in possession of the key
k should be able to retrieve the plain-text m from the cipher-text, using the decryption function sdec.
That is, we must have the following algebraic property:

sdec(senc(m, k), k) =m

The equation above models the functional correctness of the symmetric encryption. Modeling its security
is much harder, and depends on the class of attacker considered. We will say more on that point later.
Modern symmetric encryptions are either build using a block-cipher, such as the Advanced Encryption
Standard (AES) [DR02], or are stream ciphers (e.g. ChaCha20 [Ber08, NL15]).

Asymmetric Encryption The idea of asymmetric encryption is due to Diffie and Hellman [DH76] in
1976. It is motivated by the observation that, when using symmetric encryption, a user must have one
different secret key for every person he may wish to communicate with.* One can avoid this by using two
different keys, an public key pk, used to encrypt messages, and a private key sk used to decrypt them.
We then have an encryption function { } , which takes has argument a message m and a public key pk,
and returns a cipher-text {m}pk. The decryption function dec takes as input a cipher-text and the secret
key sk, and returns the plain-text m. That is, if pk and sk are a matching public/private key pair, then:

dec({m} ,,sk) =m

The knowledge of the public key pk should not be of any help to decrypt a cipher-text {m}pk. Therefore,
as indicated by its name, it can safely be made public. Anybody can then use it to encrypt messages,
which can only be decrypted by the owner of the corresponding secret key.

Cryptographic Hash Function A cryptographic hash function is a function that maps a message m
of any length to a value of fixed length, called the hash of m, which should leak no information about
m. Because the co-domain of a hash function is finite and its domain is infinite, it is not injective. This
implies that there exist distinct messages with identical hashes, called collisions. While collision exists,
we require that they are difficult to find in practice. In particular, this means that the co-domain of a
hash function must be large enough to ensure that the probability to find a collision through a brute-force
search is very low. We may even make a stronger assumption, and ask that the hash function behaves
as a random function: it should be computationally infeasible to distinguish it from a truly random
function. An example of a modern cryptographic hash function is KEccAk [BDPA14]|, which won the
SHA3 standardization competition.

We will actually consider a variant of this, which are keyed hash function. A keyed hash function
H takes a key k as additional input, and returns a hash H(m,k). This is used to build a Message
Authentication Code (MAC). A MAC function attaches to a message an authentication code generated
using a secret key k. This authentication code can be used by anybody knowing the key k to verify that
the message has not be tampered with.

1.2.2 The AKA™ Protocol

We now describe the protocol depicted in Figure 1.1. This is a very simplified version of the 5G-AKA
protocol, with no re-synchronization mechanism. A quick word on notations: pairs are represented using
angled bracket, e.g. (a, b); and the i-th component of a pair can be retrieved using the i-th projection
function m; (for example, we every ¢ € {1,2}, we have that m;({a1, a2)) = a;).

The Setting In this protocol, a user A tries to establish a shared and authenticated key with its service
provider. The user and the service provider both store in memory a shared symmetric long-term secret
key k. The service provider has a secret key sky, and the user stores the corresponding public key pky.
An important feature of the AKA™ protocol is that a message that has already been accepted by the
user must not be accepted again by a future session. This is done using a sequence number SQN. This
sequence number is an integer value which is attached to the messages of the service provider, and is

3Except the plain-text length, which cannot be hidden if one wants to be able to encrypt messages of arbitrary length.
4E.g., this would require web browsers to store thousands of keys, which would pose a major key management problem.

4 Introduction

User A Service Provider
k, pky, SQNa k, sky, SQNg
{IDA}pkN

senc({n, sQNsg), k)

Input x: H SQNg + SQNg + 1 H

Xdec < sdec(x, k)

Nin, SQNj, < 71 (Xdec)7 7T2(Xdec)
|

’ SQNj, > SQNA + 1 i

@ senc(nin, k)

Figure 1.1: The AKA™ Protocol.

incremented by the user after each successful completion of the protocol. By incrementing the sequence
number when it accepts a message, the user ensures that this message cannot be accepted again, which
prevents messages of the protocol to be replayed by an adversary. The value of the sequence number
must be tracked by both the user and the service provider. Therefore, there are two different sequence
numbers, the service provider sequence number SQNg, and the user sequence number SQN,. Because the
sequence numbers must be tracked by the agents, the AKA™ protocol is a stateful protocol.

The Protocol The AKA™ protocol is a three-message protocol. The user initiates the protocol by
sending to its service provider the asymmetric encryption of its identity IDa using the public key pky.
When receiving this message, the service provider retrieves the identity using the secret key sky. It
then computes its answer, which is the symmetric encryption of a pair, using the secret key k. The
first component of the pair is a challenge n, which the service provider samples uniformly at random
among bit-strings of length 7,°> and the second component is the current value of the service provider
sequence number SQNg. After sending this message, the service provider updates its sequence number by
incrementing it by one.

When it receives a message x from the network, the user starts by decrypting it using the secret key
k, and stores the result in xgec. Then the user retrieves the challenge n and the service provider sequence
number SQNg from X4ec using, respectively, the first and second projection of xqec. At that point, the
user verifies that the sequence number SQNg it received has not been accepted before. To do this, the
user checks that SQNg > SQNp + 1 (morally, SQNp stores the highest sequence number accepted thus far).
If the test succeed, the user authenticated the service provider. Then, it updates the sequence number
SQNA by setting it to the value sQNg received from the network, and sends back the message senc(n, k).
This proves to the service provider that the user knows the key k. Finally, the user and the service
provider can both compute a session key from the challenge n and the long-term secret key k, using a
key-derivation mechanism which we do not describe here.

1.3 Security Properties

Before formally verifying such a protocol, there are some modeling issues that must be addressed. Mainly,
we need to decide how security is expressed. Basically, there are two components to this problem: we
need to state what must not happen during the execution of a given protocol (the security property), and
against what class of adversaries. There are roughly two classes of security properties, trace properties

5 is called the security parameter. Larger values of 7 yield a better security.

1.4. Attacker Models 5

and equivalence properties. Trace properties are simpler, and allow to express things like weak secrecy
or authentication. Equivalence properties are more complex, and are used, e.g., to state that a protocol
has some privacy properties (such as anonymity or unlinkability). We discuss and compare the different
classes of attackers later.

Trace Properties We call trace property any statement about a single execution of a protocol at
a time. A simple class of such properties is the class of reachability properties, which states that no
execution of a given system reaches a bad state. This is a very studied class of properties in the area
of formal verification. Weak secrecy is an example of reachability properties: informally, a value s in a
protocol P (typically a key or a random nonce) is weakly secret if any execution of P followed by a guess
Sguess Of s by the adversary is such that s # sguess. That is, the bad state is the event s = sgyess, and weak
secrecy holds if for any execution of P, no adversary can guess the value of s. Remark that the adversary
may be able to guess a portion of s, for example half of it. We only know that he cannot get the full
value.

There are trace properties that cannot be directly expressed as reachability properties. An example
of such properties that are used in security are correspondence properties [WL93|, which are of the form:

In any execution of P, if event A occurs, then event B occurred before it.

Authentication is modeled by a correspondence property. For example, consider a protocol between some
users Up,Us, ..., U, and a server S. Whenever a user U; tries to authenticate himself to the server by
running an authentication protocol, he emits an event start-auth;.° Moreover, whenever the server S
completes a session of the authentication protocol with what he believed was user U;, he emits an event
end-auth;. Then the protocol provides authentication if, for any execution, if end-auth; occurs at some
point in time, then the event start-auth; must occur before it. In natural language, if the server believes
he authenticated some user U;, then this user must have tried to authenticate himself to the server. In
that case, the attacker cannot make the server believe that he authenticated U; if this user never tried
to established a connection to the server. One can have more refined properties than the one presented
above, e.g. by attaching session numbers or protocol challenges to events. See [Low97] for a comparison
of different authentication properties.

Equivalence Properties Some important security properties cannot be expressed as trace properties.
Anonymity is a example of such a property. Basically, a protocol P is anonymity preserving if an adversary
cannot know if a given agent A was involved in an execution of P. In other words, the adversary cannot
distinguish between the scenario where P was executed by A and the scenario where P was executed by
some other agent B. This is fundamentally a property about two executions.

Such properties are called equivalence or indistinguishability properties, and state that two different
scenarios are indistinguishable to the adversary. Equivalence properties are more expressive than trace
properties, but are more complex to verify. There are many examples of indistinguishability properties in
security. All privacy properties are indistinguishability properties, e.g. unlinkability [Vau07| states that
the adversary cannot find any links between two executions of a protocol by the same agent. Strong
secrecy [Bla04] of a value v in P expresses the fact that the adversary cannot learn anything about v
during the execution of P. To model this, we ask that no adversary can distinguish between a scenario
where we leak the value v after completing the execution of the protocol P, and a scenario where we leak a
different random value v'. If the adversary can learn a single bit of information on v, such as the fact that
it satisfies some properties, then he could distinguish between the two scenarios: on the former scenario,
the property would always hold, while on the latter, it would only hold with probability one-half.

1.4 Attacker Models

The goal of formal verification of security protocols is to prove that a protocol satisfies a security property
against any adversary in some given class. Of course, different classes of adversaries yield different security
guarantees. On the one hand, we wish to show that a protocol is secure against a class of adversaries as

6 An event in an element of the execution of a protocol which is used to express some properties, but which is not visible
to the adversary.

6 Introduction

large as possible. On the other hand, if we consider a restricted class of adversaries, we may be able to
use some proof techniques, which can allow for machine-checked proof, or even automatic proof search.

1.4.1 Symbolic Model

The symbolic model, introduced by Dolev and Yao [DY83] in 1983, tries to cover logical attacks. By
logical attack, we mean an attack that does not try to break the cryptographic primitives used in the
encryption, but instead uses flaws in the logical control-flow of the protocol. These attacks are the worst
possible attacks, as they are independent of the implementation details, and are reliable.

While there are several ways of modeling such attackers and protocols, the applied pi-calculus [ABF18]
is arguably the most prominent. In the applied pi-calculus, messages are represented by terms in some
formal term algebra, which are build using constants, names (which model random challenges or session
numbers), and function symbols such as the pair {(_,) or the encryption senc(_,). A protocol is
an element of a protocol algebra, and can typically do inputs and outputs of terms, conditional tests,
parallel composition and replication.

The Adversary Since the adversary has complete control of the network, he knows all messages that
where outputted, and chooses what messages are sent to the agents, with some restrictions: to send a
message m to an agent, the adversary must be able to obtain m from his current knowledge (the sequence
of all messages outputted since the protocol started), using some fixed set of capabilities which have been
granted to him. These capabilities are expressed through rules, which can, for example, be given using
deduction rules. E.g, given a pair (a, b), the adversary can retrieve the first and second component of
the pair. Conversely, if he knows a and b then he knows the pair {(a, b). Or, if the adversary knows an
encryption senc(m, k) and the associated key k, he can get the plain-text m. Formally:

(a, b) (a,b) a b senc(m, sk) sk
a b (a, b) m

The adversary can only apply the rules that are given to him. This means that the verifier must be
careful to include all algebraic properties of the primitives used in its protocol. If such a property is
forgotten, attacks may be missed.

Tools This model is very amenable to automatic verification of security properties. Since security in
the symbolic model is undecidable [Hiit02], automated tools sometimes fail to find a proof of security
or an attack, or are restricted to a decidable subset of protocols and properties. There are several
automated tools for both trace or equivalence properties, based on various techniques such as Horn
clause resolution (e.g. ProVerif [Bla|), multi-set rewriting (e.g. Tamarin [MSCB13|) or constraint solving
(e.g. Deepsec [CKR18]).

1.4.2 Computational Model

Another attacker model, closer to a real world attacker, is the computational attacker model introduced
by [GM84] in 1984. In this model, we do not restrict the attacker to a fixed set of operations: we do not
try to “guess” which operations the adversary uses in an attack. Instead, the adversary can perform any
probabilistic polynomial time computation. Of course, this offers stronger guarantees than the symbolic
model, at the cost of more intricate model.

The Adversary More formally, messages are bit-strings, as in any real-world implementations. Ran-
dom challenges of the protocol are sampled uniformly among bit-strings of some given length (usually in
{0,1}", where 7 is the security parameter), and protocol agents and the adversary are (interactive) prob-
abilistic polynomial-time Turing machines (PPTMs). Security properties are usually expressed through
a game, where an adversary A interacts with the protocol through an oracle. There are typically two
scenarios, i.e. two oracles Qg, O; that the adversary may interact with. Eventually, A tries to guess in
what scenario he is by outputting a bit b. The advantage of the adversary is the probability that he
guessed correctly:

Adva(n) = |[Pr(A9"(17) =1) — Pr(A“°(1") = 1)| = |2.Pr(A°*(1") =b) — 1]

1.4. Attacker Models 7

This probability is a function of 7, the security parameter. In the asymptotic security setting, we say
that a protocol is secure if, for every adversary A, the advantage Adv 4(n) is negligible in 7, where a
function is negligible if it is asymptotically smaller than the inverse of any polynomials. In the concrete
security setting [BKRO0], we try to obtain precise upper-bounds on the advantage of A, as function of A
running time and its advantages against breaking cryptographic primitives of the protocol.

Security Proofs In the computational model, proofs are usually not unconditional, but rely on com-
putational hardness hypotheses, which assume that some problems are not solvable in probabilistic
polynomial-time. When trying to prove that a cryptographic primitive is secure, we usually rely on
low-level hardness hypotheses such as the Computational or Decisional Diffie-Hellman assumptions, or
the Discrete Logarithm assumption in some finite groups. When proving a cryptographic protocol, we
use higher-level assumptions, like the Indistinguishability against Chosen Plain-text Attack assumption
(IND-CPA). Basically, an asymmetric encryptions is IND-CPA if no adversary can distinguish between the
encryptions of two messages of the same length, even if we let the adversary choose the messages.

We then show that a protocol is secure, assuming that no adversary can solve efficiently some problems.
Conditional security proofs like this are reductions, as in complexity theory: given an adversary A
breaking the security property, we build an adversary B breaking the hardness assumption. Such proofs
are often long, complex and error-prone, even though game-hoping techniques [Sho04] allow to alleviate
some of the complexity by splitting the proof in successive small changes to the game.

Tools As expected, tools in the computational model are less automatic than tools in the symbolic
model. Nonetheless, there exists a tool, CRYPTOVERIF [Bla08|, which performs (semi-)automatic crypto-
graphic game transformations. Also, there are some interactive formal verification tools in the computa-
tional model, such as EASYCRYPT [BGHBL11], an interactive theorem prover relying on the probabilistic
Relational Hoare Logic, and F* [BBDT17b], a high-level functional programming language with build-in
support for verification. These two tools are interactive, with little support for automation.

1.4.3 Computational Soundness

There exists a line of research, due to Abadi and Rogaway [AR02|, which tries to bridge the two ap-
proaches. This approach, called the computational soundness approach, consists in proving that, under
some conditions, the security of a protocol in the symbolic model implies the security of the proto-
col in the computational model. In other words, the symbolic adversary is at least as strong as the
computational adversary. While the first computational soundness result were against a passive adver-
sary [AR02, BCKO09], there are many computational soundness results against active adversaries, e.g.
[MWO04] for encryptions, [JLMO05, BMU12, BMR14] for signatures, or [CKKWO06] for hash functions in
the Random Oracle Model. A survey of computational soundness results can be found in [CKW11].

There are several problems with this approach. First, these results make strong implementation and
cryptographic assumptions. For example, they usually have a parsing assumption, which assume that
all functions add unambiguous tags to their outputs. Then, there are some impossibility results for the
computational soundness method, e.g. for the xor operator [BP05, Unrl0]| or for one-way hash func-
tions [BPWO06]. Finally, the approach is not modular, as each result is for a specific set of cryptographic
primitives, cryptographic hypothesis and implementation assumptions. If we want to add support for
another primitive, or to change an implementation assumption, we need to prove a new theorem.”

One can wonder why such results are so complicated and have such a limited scope. In his PhD
thesis [Scelb|, Scerri suggests that this is because the symbolic adversary is defined through what he can
do, while the computational adversary is defined through what he cannot do (through the cryptographic
games that he cannot win). In other word, a symbolic adversary is defined through a smallest fix-point,
and a computational adversary through a greatest fix-point. A computational soundness result shows
that the symbolic adversary contains the computational one. This does not leave any leeway: if one
wishes to add a new cryptographic primitive, the symbolic adversary must be extended to ensure that
he captures all possible attacks against the new primitive. A way of avoiding these problems is to have
a class of adversaries which is both stronger than the computational adversary, and defined through a

"Nonetheless, some modularity can be achieved for computational soundness results. Indeed, in [CW11], the authors
define a computational soundness notion, called deduction soundness, that is extendable: basically, if a symbolic model is
shown to be deduction sound, then it can safely be extended with public data structure and asymmetric encryption.

8 Introduction

greatest fiz-point. This way, when we add new cryptographic primitives and hypotheses, we just need to
add restrictions (corresponding to the new primitives) on the symbolic adversary. Because we consider a
greatest fix-point, such restrictions can be designed independently from each other.

1.4.4 The Bana-Comon Model

This is the idea behind the Bana-Comon model [BC12|, also known as the Computationally Complete
Symbolic Attacker model. This is a first-order logic, in which messages as represented by terms. But
instead of specifying the adversary by what he can do, as in the Dolev-Yao model, the adversary is defined
negatively by what he cannot do, using a set of first-order axioms Ax. These axioms may reflect structural
properties of the logic, implementation assumptions on the primitives (e.g. functional correctness), or
cryptographic hypotheses on the primitives. We require that these axioms are computationally valid,
under some cryptographic assumptions. More precisely, we identify the subset of the first-order models
of our logic which correspond to computational models (basically, the interpretation domain is the set
of polynomial-time probabilistic Turing machines); and we require that the axioms Ax are valid in any
computational model where the cryptographic primitives satisfy our cryptographic assumptions.

Then, given a protocol and a security property, we can compute a formula 1 expressing the security of
the protocol. Showing the unsatisfiability of the conjunction of the axioms Ax and the negation of ¢ entails
the security of the protocol.® Indeed, we know that there exists no adversary that can simultaneously
satisfy the axioms Ax and break the security property. Since our axioms are computationally valid, we
deduce that the security property holds in all computational models: the protocol is secure.

Conversely, if the conjunction of the axioms and the negation of the security property are satisfiable,
it means that there exists an attacker breaking the security property and satisfying all the axioms. But
because we only required computational soundness of the axioms, and not computational completeness,
this attacker may not be a computational attacker.

Comparison with Other Models This model has several advantages over the three other approaches
presented so far. First, it gives strong security guarantees, as security in the Bana-Comon model im-
plies computational security. Second, this model is simpler than the computational model: there is no
probabilities and no security games, only first-order formulas. Third, because the security of a protocol
amounts to the unsatisfiability of a set of first-order formulas, we believe that this model is more amenable
to automatic verification than the computational model. Fourth, it does not allow for implicit assump-
tions. For example, if the security of a protocol relies on the fact that the first projection of a nonce
can (almost) never be confused with an agent’s name, then we need to add an axiom stating that this
is the case. Otherwise, the security proof cannot be completed. Proving a protocol in the Bana-Comon
model requires to make precise and explicit assumptions on the protocol implementation. Finally, it is
more modular than the computational soundness approach, as axioms for cryptographic hypothesis can
be designed and proved valid independently from each other.

A inherent drawback of the Bana-Comon approach is that it is only valid for protocols with a finite
number of sessions: we may only consider protocols with no unbounded replication. Still, it is possible
to show that a protocol is secure for any constant but arbitrarily large number of sessions. E.g. if v, is
a formula encoding the security of n sessions of a protocol, then it is sufficient to show that for every n,
Ax A =, is unsatisfiable. Typically, such a proof is done by induction over n. Note that security for any
constant number of sessions does not imply security for a number of sessions that depends on the security
parameter. Nonetheless, most attacks do not require polynomially-many sessions. Another drawback of
the Bana-Comon approach is that it is not quantitative. Security is asymptotic, and we do not obtain an
upper-bound on the advantage of an adversary, as in the concrete security approach [BKR00]. This is not
an inherent restriction of the logic, as we believe that an upper-bound on the adversary advantage can
be inferred from a proof. But bounds obtained using this method would probably be far from optimal,
and by consequence of little use.

Trace Properties The Bana-Comon model introduced in [BC12| is for trace properties only. This
model has been used in [BAS12] to prove the security of the Needham-Schroeder-Lowe protocol [Low95]

8In the Bana-Comon model of [BC12|, we must also add some ground formulas encoding the conditions under which
the protocol is executable.

1.5. Limitations of the State of the Art 9

(NSL). In [BHO13], the authors gives an alternative and simpler semantics for the logic based on Kripke
structures, and use it to prove the correction of key-usability axioms (e.g. for KDM-CCA3). Finally,
in [CCS13] the authors study the automation of proofs in this model. They show that the problem of
checking the satisfiability of a set of clauses corresponding to axioms the Bana-Comon model for trace
properties is decidable in polynomial-time, using a Horn clause saturation procedure. A variant of this
decision procedure is implemented in the SCARY tool [Scel5], which has been used to prove the security
of standard cryptographic protocols (e.g. NSL) for a small number of sessions, and found a new attack
on Andrew Secure RPC protocol [Sat89).

Equivalence Properties Many crucial security properties, such as strong secrecy or privacy, are in-
herently equivalence properties, and therefore out of the scope of [BC12]. To be able to prove such
properties, Bana and Comon proposed a new model for equivalence properties in [BCL14]. This logic has
only one predicate symbol ~, which stands for the computational indistinguishability relation. That is,
given two terms u and v, which are symbolic representations of bit-string distributions, the formula u ~ v
holds if no adversary can distinguish between the two distributions, except with a negligible advantage.
While this model relies on the same ideas as in [BC12] (a symbolic representation of protocol messages
and an axiomatization of what the adversary cannot do), its formulas and axioms are very different. We
believe this logic is simpler than the trace logic: it has a simple first-order semantics, only one predi-
cate, and more intuitive axioms. Nonetheless, proofs of non-toy protocols in the Bana-Comon model for
equivalence properties are challenging, as we will see in Chapter 4.

In [BCL14], Bana and Comon designed a small set of axioms, including axioms for IND-CPA and Key
Privacy (KP) cryptographic assumptions. They illustrated their method on a simple example, by showing
the privacy of the Private Authentication protocol with a decoy message [AF04].

1.5 Limitations of the State of the Art

Ideally, we would like to have a model that provides strong security guarantees and that is amenable to
automated proof search. Moreover, this model should support equivalence properties, as these are more
expressive than trace properties.

As we saw, the two oldest and most established attacker models, namely the symbolic and computa-
tional models, fail to achieve these properties simultaneously. Indeed, while there exist several tools to
automate proofs in the symbolic model, its security guarantees are not strong enough, as it only consider
attacks that can be executed using the capabilities that the prover granted to the adversary. As for
the computational model, it is indeed more realistic and offers strong guarantees, but the level of proof
automation achieved by current tools in this model is not satisfactory, either because they often fail to
automatically find proofs, or because they require users to do extensive manual proofs.

We mentioned the computational soundness approach, which tries to get the best of both worlds by
proving that, in some cases, security in the symbolic model implies computational security. This allows to
use an automated tool in the symbolic model to prove that a protocol is computationally secure. Unfor-
tunately, computational soundness results come at a high cost, as they usually make strong assumptions
on the protocol implementations and on the cryptographic primitives, which limit their applicability.
Moreover, this approach scales poorly because of its lack of modularity: to add a new cryptographic
primitive, one often need to show a new computational soundness result, with new assumptions.

We presented an alternative approach, due to Bana and Comon. Because we are interested in equiv-
alence properties, we discard the Bana-Comon model for trace properties [BC12|, and focus on the
equivalence model in [BCL14]. This model looks promising: first, security in the Bana-Comon model
implies computational security; then, this approach is modular, since axioms can be designed and proved
valid independently for every cryptographic primitive; finally, because this is a first-order logic, it may be
amenable to automated deduction techniques, as it turned out to be the case in the Bana-Comon model
for trace properties [CCS13]. But, when this thesis started, the Bana-Comon model usefulness remained
to be shown: there was no case study of non-toy protocols, only a small set of axioms had been designed,
and there was no support for proof automation.

Related Works Since the Start of This Thesis In parallel to this thesis, some works have been
done using the Bana-Comon equivalence model. These works address some of the concerns we had on

10 Introduction

the model, in particular about its applicability and its small set of axioms. In [BC16], the authors
design axioms for several cryptographic hypothesis: asymmetric encryption (IND-CCA; and IND-CCAs),
signatures (EUF-CMA) and for the Decisional Diffie-Hellman assumption. With these axioms, they prove
that the Diffie-Hellman key-exchange provides real-or-random secrecy [AFPO05] of the shared key. They
also prove several properties of the NSL protocol, including authentication and real-or-random secrecy
of the shared nonces. In [SS16], the authors design and prove secure a key wrapping API. Interestingly,
their proof is modular in the choice of the symmetric encryption used in the wrapping mechanism: the
authors design intermediate axioms for the wrapping mechanism, prove the security of the wrapping API
using these axioms, and show that both randomized and deterministic symmetric encryption schemes
satisfy the intermediate axioms. This is a nice benefit of the Bana-Comon approach. Finally, in [BCE18],
the authors analyze the vote privacy of the FOO voting protocol [FO092|. First, they design axioms for
blind signatures [Cha82]. Second, they found new attacks on the privacy of the FOO protocol, when the
candidate identities or the messages signatures are of different lengths. These are typical examples of
implicit implementation assumptions that can be found using the Bana-Comon approach. Then, under
the proper assumptions, they prove that the FOO protocol provides vote privacy.

1.6 Contributions

The goal of this thesis was to develop techniques to formally verify equivalence properties of cryptographic
protocols. Moreover, we wanted a method that provides strong security guarantees while being amenable
to automated deduction techniques. The Bana-Comon model for equivalence properties seemed to be
a good candidate, but its applicability to real-world protocols remained to be shown, and there was no
support for proof automation in this model. We tried to address these two shortcomings in this thesis.

1.6.1 RFID Protocols

First, we completed the case study of two RFID authentication protocols, KCL [KCL07] and LAK [LAKO06],
in which a reader is trying to authenticate a tag. An RFID tag is a small cryptographic device which
has low computing capabilities. Therefore, tags do not rely on advanced and complex cryptographic
primitives to achieve authentication. e.g. the two examples we consider use only hash functions, the xor
operator and pairs. This makes them good candidates for a first application of the Bana-Comon approach,
as we only need to design axioms for a small set of functions. In particular, we designed axioms for hash
functions and for the xor operator.” Axioms for the xor include a uniform distribution axiom, as well
as functional correctness axioms for associativity, commutativity, unit rule and nilpotence. The hash
functions axioms are more interesting, as they depend on the cryptographic assumptions we make. We
designed two axiom schemas, for the Collision Resistance and Pseudo-Random Function assumptions.

Case Study As RFID tags may be carried all the time by their users, it is crucial that they provide
some form of privacy. There exists many definitions of privacy, e.g. [HPVP11, Vau07, JW09]. We chose
the notion of Privacy from Juels and Weis [JW09| because it is simple and game-based, and translated it
into the Bana-Comon model. Using this, we studied the KCL and LAK protocols. These two protocols are
known to be insecure (privacy attacks can be found in [VDRO08, HBD16]). Therefore, we designed fixed
versions of these protocols, KCLT and LAKT. Then, depending on the implementation assumptions we
make (e.g. the cryptographic hypotheses on the hash function), we either provide an attack or a security
proof. Specifically, under the appropriate assumptions, we prove Privacy for two tags and six interactions
for LAKT, and for any number of interactions for KCLT. The latter proof is by induction on the number of
interactions. We reuse this proof technique later on a much more complex protocol, the AKA™ protocol.

1.6.2 The AKA Protocol

Next, we studied the AKA protocol. More precisely, we studied its 5G version, the 5G-AKA protocol, as
it is described in the 3GPP draft [T'S318]. We presented a simplified version of this protocol in Section 1.2.
Mobile phone users often carry their phone with them everywhere, and could be easily and thoroughly

9Remark that the Bana-Comon model can handle the xor operator without difficulties, contrary to the symbolic
model [BP05].

1.6. Contributions 11

tracked through them. Therefore, it is important that mobile network protocols, such as the 5G-AKA
protocol, provide some privacy. Previous versions of this protocol, the 3G-AKA and 4G-AKA protocol,
are vulnerable to a famous linkability attack, the 1MsI-catcher attack [Str07]. This is a major attack, as
it is reliable (the attack always work), cheap to deploy, and large scale (every mobile phone in range of a
rogue antenna can be tracked). The 5G version of the AKA protocol allows the mobile phone to hide its
permanent identity using an asymmetric encryption scheme, which prevents the IMSI catcher attack.!?
But this is not enough for privacy: we show that several known privacy attacks against the previous
versions of the protocol still apply to the 5G version [FOR16, AMR™12, BHP*17|, except for the 1MST
catcher attack. While studying these attacks, we found a privacy attack against another protocol, the
PRIV-AKA protocol. This protocol is a significantly modified version of AKA, which is designed and
claimed unlinkable in [FOR16]. Our attack is new, and consists in permanently de-synchronizing the
mobile phone from its service provider. The fact that a user is de-synchronized can be detected by an
attacker, which leads to a unlinkability attack.

Fixing the Protocol We then proposed a fixed version of the 5G-AKA protocol, called AKA™T. We
designed this protocol to provide better privacy guarantees than the 5G-AKA protocol, while using the
same cryptographic primitives and satisfying the same constraints (as much as possible). We then study
its privacy. Here, we do not use Juel and Weis’s Privacy, but the unlinkability property, which is a stronger
notion of privacy inspired from [HPVP11]| and Vaudenay’s unlinkability [Vau07]. Our protocol does not
satisfy this property: there is an attack. Actually, we believe that under the design constraint of the
5G-AKA protocol, unlinkability cannot be achieved. Still, we are able to prove that our protocol provides
a weaker property, called o-unlinkability. This is a new property which we designed. Basically, a protocol
is o-unlinkability if it is unlinkable for some scenarios of the standard unlinkability. This property is
parametric in the set of scenarios that must be considered. If this set is empty, we have nothing to prove,
and the protocol provides no privacy guarantees. If this set contains all possible scenarios, then the
protocol satisfies the standard unlinkability property. By considering sets of scenarios between these two
extremes, we can have a fine-grained quantification of a protocol’s privacy. As in the RFID case study,
we express this property using labelled transition systems.

Cryptographic Assumptions and Axioms To prove that the AKA™T protocol satisfies the o-
unlinkability property, we have to design new axioms. First, the AKA™ protocol has to assume that
the hash functions are jointly pseudo random functions, i.e. that they are simultaneously computation-
ally indistinguishable from random functions. Therefore, we introduce new axioms for the joint PRF
assumptions, as well as the joint Collision Resistance and joint Unforgeability against Chosen-Message
Attacks assumptions. We also design axiom schemas for the standard Unforgeability against Chosen-
Message Attacks assumption.

Security Proofs Using these axioms, we prove that the 5G-AKA protocol satisfies the o-unlinkability
property. This proof is for any number of agents and sessions which does not depend on the security
parameter. As for the KCLT protocol, this proof is by induction on the number of interactions between
the adversary and the agents, but is much more involved. First, we show several necessary acceptance
conditions. These are correspondence properties giving necessary conditions for a message to be accepted
at some point of the protocol execution. Typically, such a property states that a message can only be
accepted if the adversary honestly forwarded some messages. Using these conditions, we prove that the
AKAT™ protocol provides mutual authentication between the mobile phone and the service provider. Then,
we refine the acceptance conditions to obtain acceptance characterizations, i.e. necessary and sufficient
conditions for a message to be accepted. Finally, we prove that the AKA™ protocol is o-unlinkable.

1.6.3 Deciding Indistinguishability

Our last contribution is the design of a complete and terminating strategy for a fragment of the Bana-
Comon indistinguishability logic. We identify a set of axioms Ax which is both expressive enough to
complete proofs of concrete formulas, and computationally sound under the appropriate cryptographic

10Unfortunately, the 3GPP consortium made usage of an asymmetric encryption optional. Therefore, the next generation
of mobile phones may continue to be vulnerable to the 1vmsi-catcher attack.

12 Introduction

assumption (IND-CCAg). Then, we show that the satisfiability problem of this fragment is decidable.
More precisely, given a ground formula 4 ~ ¥, we can decide whether Ax A 4 ¢¢ ¥ is unsatisfiable:

Input: A ground formula @ ~ .
Question: Is Ax A @ o ¥ unsatisfiable?

All the axioms in Ax are Horn clauses, therefore to show the unsatisfiability of AxAd ¢ ¥ we use resolution
with a negative strategy (which is complete, see [CL73]). A proof by resolution with a negative strategy
can be seen as a proof tree where each node is indexed by the axiom of Ax used at this resolution step.
By consequence, we see axioms in Ax as inference rules and look for a derivation of the goal @ ~ v. Our
proof search incrementally builds a partial proof tree whose root is @ ~ ¥, trying to close all branches
by applying a unitary inference rule (i.e. a rule with no premise). The only unitary axioms in Ax are
cryptographic axioms, which reflect the cryptographic hypothesis made on the security primitives (e.g.
that the encryption function hides its content, as in {0}, ~ {1},). We use a specialized handling of
equalities in the axioms: we have a set of equalities R, which includes functional correctness equalities,
and properties of the if then else | such as:

m({x,y)) == if b then (if b then z else y) else z = if b then « else z

We then introduce its congruence closure =g, and have a rewriting axiom:

t~u
s~u

R whenever s=pgt

Actually, since s =g t is a side-condition (=g is not a predicate of the logic), this is not a single axiom,
but a recursive countable set of axioms (i.e. an axiom schema). This axiom is problematic, as it allows
to rewrite a term s into any R-equal term ¢, which can be arbitrarily large. This is the main obstacle
to achieve decidability which we had to overcome. We sketch, in a high-level fashion, how we did it.
First, we design a particular ordered strategy for our logic. An ordered strategy restrict the proof search
space, by requiring that inference rules are applied in a specific order. We show that our ordered strategy
is complete through several commutation lemmas. Our strategy ensures that R rules all occur at the
beginning of the proof. Moreover, the other axioms are such that bounding the initial R applications
bound the rest of the derivation. To bound the initial rewritings, we identify several proof cuts which
introduce unbounded sub-terms, and find proof cut eliminations to remove them. Unfortunately, most
of these proof cut eliminations are not local rewriting of the proof-tree, but are global, which makes the
proof cut eliminations lemmas non-trivial. Finally, we prove that cut-free proofs are of bounded size.
This yields a decision procedure for our satisfiability problem.

1.7 Outline of the Thesis

We give the outline of this thesis. We present the Bana-Comon indistinguishability logic in Chapter 2.
The model we used is basically the model of [BCL14], with a small extension to allow for protocols with
an arbitrary number of sessions (using infinite LTS). In this chapter, we also present most of the axioms
we designed during this thesis. In Chapter 3, we present our RFID protocols case study. The larger
case study of the AKA protocol is in Chapter 4. The most theoretical part of this thesis, the decision
procedure, is described in Chapter 5. Finally, we conclude in Chapter 6.

CHAPTER 2

The Model

In this chapter, we present our version of the Bana-Comon first-order logic for indistinguishability. We give
a general way of modeling security protocols and properties using labelled transition systems, and show
how the computational semantics of these protocols relate to the logic. Basically, given an interpretation
M. of functions as Turing machines, a protocol is secure in M. if and only if a countable set of formulas
(¢i)ien of the logic are valid in M. (seen as a first-order model). To use this, we design a set of formulas
Ax, called azioms, which state what the adversary cannot do. Then, for every i, we show that the
conjunction of the axioms Ax and the negation of ¢; is unsatisfiable. We deduce that the protocol is
secure for any implementation M. of the protocol’s functions satisfying the axioms Ax.

The Bana-Comon Logic The Bana-Comon logic for indistinguishability was introduced in [BCL14].
This is a sorted first-order logic, in which terms represent messages of the protocol sent over the network.
For example, the term (A, n) represents a message which comprises two parts: an agent name A (which
is a constant function symbol), and a name n (taken in the set of names N'), representing a random
uniform sampling in {0, 1}" (where 7 is the security parameter). A key idea in the logic is to use special
adversarial function symbols gg, g1, -+ € G to represent the adversary’s inputs. Morally, these function
symbols are uninterpreted, which allows to model the fact that the adversary can do any polynomial-time
computation. These adversarial function symbols receive as input the current knowledge of the adversary
¢ (the frame), which is simply the sequence of all messages sent over the network since the protocol started
(since messages are modeled by terms, ¢ is a sequence of terms). For example, g({(A, n)) represents
anything the adversary can compute after having intercepted the message (A, n). More generally, if ¢
is the current frame, then g(¢) represents any message that can be computed by the adversary at that
point of the protocol execution.

In order to be able to represent messages of the protocol by terms, the control-flow of the protocol
needs to be internalized in the logic. This is done by encoding tests of the protocol agents by boolean
terms, and branching using the if then else function symbol. For example, imagine a protocol where
some agent A behaves as follows: first A waits for a message from the network; then, after receiving a
message X, A checks whether this message is equal to some secret value secret; if this is the case, A outputs
its identity IDa, otherwise it outputs an constant error message Error. This is modeled by the term:

if eq(g(¢), secret) then 1D else Error

_,) is a function symbol representing the equality check, IDa and Error are constant function
symbols and, we recall, g(¢) is a term representing the input from the network.

Formulas of the logic are built using the usual Boolean connectives and FO quantifiers, and a single
predicate, ~, which stands for indistinguishability. The semantics of the logic is the usual first-order
semantics: each sort is interpreted as a domain and function symbols and predicates are interpreted
as, respectively, functions and subsets of the appropriate domains. Still, since we want to interpret
sequences of terms representing executions of protocols, we are particularly interested in computational
models, in which terms are interpreted as probabilistic polynomial-time Turing machines (PPTMs), and ~
is interpreted as computational indistinguishability. Intuitively, given an implementation of the protocol
functions 7 and an adversary A (which is a PPTM), we obtain a computational model as follows:

where eq(_,

13

14 The Model

e Protocol function symbols are interpreted using the protocol implementation Z. Basically, the
implementation Z associates to every protocol function symbol f its implementation Z(f), which is
a polynomial-time Turing machine.

e Names in N are interpreted as uniform random samplings in {0, 1}".

e Finally, we let the adversary A choose the interpretation of every adversarial function symbol g € G.
Since A is polynomially-bounded, the interpretation .A(g) of ¢ is also polynomially-bounded.

Basically, a computational model M. corresponds to the interaction of a given adversary A with an
implementation of the protocol functions Z.

Protocols as Labelled Transition Systems As in [BCL14], we do not assume an input language
(such as the applied pi-calculus [ABF18]) for protocols. Instead, protocols are defined using a labelled
transition systems (LTS). The transitions of the LTS correspond to the actions available to the adversary,
and the nodes of the LTS record the static component of the protocol state, i.e. the part of the state
that does not depend on the random samplings or conditional branching of the protocol agents. Our
definition of protocols as LTS differ from [BCL14] in several ways:

e In the original paper by Bana and Comon, protocols are finite LTS, which cannot model protocols
with an unbounded number of sessions and agents. This restriction stems from the fact that the
Bana-Comon logic cannot soundly model the security of protocols whose number of sessions is a
function of the security parameter. Still, using the Bana-Comon logic, it is possible to prove that a
protocol is secure for an arbitrary number of sessions, as long as it is independent from the security
parameter. Therefore, we model protocols using potentially infinite LTS. To ensure that from any
attacker we can extract a winning attacker against a finite fixed trace of the LTS, we require that
the LTS is finitely branching.

e In [BCL14|, the transitions of the LTS are guarded using conditional terms. Bana and Comon
then show how to compute, from any protocol P, a protocol fold(P) where each node has at most
one out-going transition with no guard. Basically, the guard checks are pushed inside the protocol
message, using a technique similar to the one used in [CB13]|. We decided to bypass this step, and
not to use guards in the LTS transitions. Of course, messages can still be guarded by including
tests directly in the protocol terms (as in a folded protocol).

e The Bana-Comon logic is well-suited to prove stateful protocols, which is something hard to do in
other formalisms. By consequence, we chose to include state updates in the LTS transitions. This
allows us to easily model protocols such as LAK [LAKO06], kcL [KCLO7] or AKA [TS318].

Protocol Executions Given a computational model M. interpreting a protocol P’s function symbols
and the adversarial functions, we define the computational execution of P by letting the adversary choose
the transition to execute at every step i of the protocol. This is done using special adversarial function
symbols to; € G, which models the adversary unknown choice of action.

Similarly, we define the fix-trace execution of P, where we fix the sequence of actions (the action
trace) to execute in advance, instead of letting the adversary choose the next action on the fly. Because
protocols are finitely branching, and because we only consider attacker against a finite, though arbitrary
long, sequences of actions, we can show that the adaptive and fix-trace semantics of protocol are related:
there is no winning adversary against P if, for every trace of action 7, there is no winning adversary
against the execution of P with actions 7.

Once the action trace 7 is fixed, it is very easy to build a formula ¢, of the logic representing the
execution of the protocol with trace 7. By consequence, we have reduced the problem of showing the
security of a protocol P in a computational model M. to the problem of proving that, for every 7, the
formula ¢, is valid in M.

Axioms Of course, any non-trivial protocol will not be secure in any computational model M.. E.g.,
any real-world protocol is probably not secure if the encryption function symbol is interpreted as the
function that always returns the plain-text. By consequence, we are going to show that a protocol is
secure in some class of models. We do this by restricting the models that have to be considered using
axioms Ax, where an axiom is a formula of the logic stating something that the adversary cannot do.
Axioms are of two kinds:

2.1. Preliminaries 15

e Structural axioms are properties that are valid in all computational models. For example, the
function application axiom: L
U ~ U
f(a@) ~ f()
states that to show that two terms f(@) and f(¥') are indistinguishable, it is sufficient to show that
the arguments @ and v are indistinguishable.

2

FA

2

Since, eventually, we only care about computational models, adding such axioms is always safe.

e Implementation arioms are not valid in all computational models, and instead reflect assumptions
on the protocol’s implementation. For example, the axiom:

{m}gx ~ {0(m)} 5k

states that no adversary can distinguish between the encryption of a message m using public key
pk and encryption randomness n., and the encryption of length of m zeros. While this axiom is not
valid in general, we will show that it is valid (under some syntactic side-conditions on m) in any
computational model where the function symbol { }- is interpreted as an encryption satisfying
some cryptographic properties (here IND-CCA7). -

Because of the syntactic side-condition on m, this axiom is actually an axiom schema, i.e. a recursive
infinite set of axioms. We design such axiom schema for four usual cryptographic assumptions:

— Indistinguishability against Chosen-Ciphertexts Attacks (IND-CCA1).
— Collision-Resistance under Hidden-Key attacks (CR-HK).

— Unforgeability against Chosen-Message Attacks (EUF-CMA).

— Pseudo Random Functions (PRF).

Outline We present some preliminary definitions in Section 2.1. In Section 2.2, we give the syntax of
the logic. In Section 2.3, we present the first-order logic and computational semantics. In Section 2.4,
we define protocols as labelled transition systems, give their semantics and prove the soundness theorem
relating protocol executions and the logic. In Section 2.5, we present the structural axioms we designed,
show their soundness, and give axiomatizations of several standard protocol function symbols (encryp-
tions, pairs, xor and boolean tests). Finally, in Section 2.6 we translate several cryptographic assumptions
into axiom schemata, and show their soundness.

2.1 Preliminaries

We write vectors using an arrow, as in «. Given a vector w, we let |w| be its length, and for every
1 <4 < |, w; is the é-th element of @. Given a function f : A — B, we let dom(f) be its domain A, and
codom(f) be its co-domain B. For any random variable f from a probability space Q to a measurable
space A, we let [w € Q: f(w)] denote the distribution over A induced by f.

Words and Languages Given a finite or infinite set of symbols ¥, called an alphabet, we let X* be
the set of finite words over X, and 3¢ the set of infinite words. The concatenation of two words w; and
wy is denoted by w; - we, and we let € be the empty word. Given a symbol a € 3, we let a“ be the only
infinite word such that a - a¥ = a“. Finally, for every word w, we let |w| stands for the length of w.

Probability Measure on Infinite Tapes We consider Turing machines over the alphabet ¥ = {0, 1}.
In our model, we use infinite random tapes. We give here the definition of a standard probability measure
I on infinite tapes 3“. Basically, we see infinite tapes as binary representations of real numbers in the
interval [0, 1[, and we use the Lebesgue measure on [0, 1[. Formally, let <jex be the lexicographic ordering
on X¥ such that 04 < 1-0%. Let wp,w; € ¥* such that wg - 04 <jex wy - 0“. The cylinder C}ﬁ; is the
subset of 3¢ defined by:

{U) | wo * 0* Slex w élex wi - Ow}

One can easily check that finite disjoint unions of cylinders are a ring of subsets of ¥“ (i.e. non-empty,
closed under finite union and closed under relative complement).

16 The Model

We define the function pg from finite disjoint unions of cylinders to R as follows:

v Cylinder Cg)}é./llo (Cgé) = 0.71)1 — 0.’11}0 V(Cl)lej Mo (UleICZ) = Z Mo (CZ)
el

po is a pre-measure (i.e. po is o-additive and uo(@) = 0). Moreover, uo(X¥) = 1. Therefore, using
Carathéodory’s extension theorem we can extend p into a measure p,, on the o-algebra generated by
the sets of finite disjoint unions of cylinders. Moreover, because po(X*) = 1, this measure is unique and
is a probability measure.

2.2 Syntax

2.2.1 Syntax of the Logic

Sorts and Types The Bana-Comon indistinguishability logic is a sorted logic, with only two sorts
term and bool. For every n € N, we let Types,, be the set of types of n-ary functions:

Types,, = {(dy x --- xd;, = dyy1) | Vi,d; € {term,bool}}

Terms Let F be a set of function symbols, and arity : 7 + N their arity. We let f,, € F denote the
fact that f € F and arity(f) = a. Let N/ be a countable set of names (representing random samplings)
and X a countable set of variables. All names in N have sort term, and every variable in X comes with
a sort. We assume that there is infinitely many variables of each sort. Finally, every function symbol
f/a € F has at least one type, and we let types(f) be the types of f. We require that types(f) C Types,,
and that for every (di,...,d,) € {term,bool}”, there exists at most one d € {term,bool} such that
(dy x -+ xd,, = d) € types(f).

The set F of function symbols comprises a countable set of adversarial function symbols G (represent-
ing the adversary computations), and a set of protocol function symbols F,. We require that G contains
an infinite number of function symbols of arity n for every n € N. We also ask that F, contains at least
the function symbols 0,9, true,, false,o, len/, eq/, and if_then_else_/g, with the following types:

0/ :— term true o, false o :— bool eqy term? — bool len,; : term — term

bool x bool? — bool

if_then_else_ 5 : {)
bool x term® — term

We let F\js be F without the if _then_else_ function symbol, and for any subset S of F, N and X, we

let 7(S) be the set of terms built upon S (we require that terms are well-typed). Given a term ¢, the

type of t is its larger type, where bool is smaller than term.

Given a term ¢, we let st(¢) be the set of subterms of ¢ and var(t) = st(t) N X’ be its variables. Given a
set of variables X', a substitution 6 over X is a function from the set of variables X to some set of terms
T(S). We sometimes use a post-fix notation for substitutions: given a term ¢ and a substitution 6, we
let t0 denote the application of 0 to t.

Example 2.1. We re-use the example from the introduction. The term:
if eq(g(¢),secret) then DA else Error

can be used to model the output of an agent that checks if its input g(¢) is equal to a secret value secret
(which can be a constant function symbol, a name in N, or a more complex term). If this is the case,
the agent outputs its identity IDa, and otherwise it sends an error message Error. O

Example 2.2. We give an example of modeling of a full protocol, the AKA™ protocol described in
Figure 1.1. First, the signature: we use a constant function symbol IDa for the user’s identity, the pub-
lic/private key functions pk(_),sk(_), asymmetric encryption and decryption { }—, dec(_,), symmet-
ric encryption and decryption senc(_,),sdec(,), thepair (_,), projections my, o, the greater-than

2.2. Syntax 17

test geq(_,), the successor _ + 1 and the error messages Unknownld, error. We give their types:

Unknownld, error, IDa : — term geq(_,) : term? — bool { }- : term® = term

pk(), sk(_), m(_), m(), (_+1) : term — term

dec(_,),senc(,),sdec(,), (,) : term?® = term

The public/private key pair take as argument the seed used in the key generation. Corresponding
public/private keys are keys with the same random, e.g. the public key pk(n) corresponds to the private
key sk(n). The asymmetric encryption takes the encryption randomness as an extra parameter: {IDA};f(N
is the encryption of IDa using public key pk, and randomness ne.

We let pk, = pk(ny) and sky = sk(ny), where ny € N, be the public/private key of the service provider.
The shared long-term symmetric key k is a name in A/. Then, the initial message from the user to the
service provider is simply the term {IDA}:f(N, where n. € NV.

When receiving an input x, the service provider retrieves the encrypted identity and checks whether it
is equal to the stored identity using the test eq(dec(x, sky),Da). If the test succeed, the network sends the
encryption of a random nonce n € A/ and of the current value of the sequence number SQNg (represented
by the term o'"(SQNg)). If the test fails, it sends the error message Unknownld. This yields the message:

ts[x] = if eq(dec(x, sky),Da) then senc((n, o™ (sQNs)), k)
else Unknownld

It also updates the sequence number if the test is successful. The updated sequence number is represented
by the term o(SQNg) given below:

o (sQNg) = if eq(dec(x, sky), IDa) then o™"(sQNg) + 1
else ai”(SQNS)

When getting an answer y, the user decrypts the message using the key k, which yield tg4ec = sdec(y, k).
It then extracts the service provider sequence number from tgec using s (fdec), and checks that it is larger
than its sequence number 0™ (SQN,) using the term:

accept = geq(ms(tdec), 0" (SQNA) + 1)
Finally, the user’s answer and the updated sequence number are represented by the terms:

ta = if accept then senc(my (tdec), k) else error
0(SQNp) = if accept then my(tgec) else o™ (SQNA) O
Formulas For every integer n € N, we have one predicate symbol ~,, of arity 2n, which represents

the equivalence between two vectors of terms of length n. We require that pairs of terms at matching
positions (i.e. at position i and n + i) have the same sort. Formally, ~,, has the following types:

~pt {L x L | L € {bool, term}"}

For every £ € {bool,term}" and terms ui, ..., Un,v1,..., v, of sort L2, ~y, (U1,..., Up,V1,...,0,) is an
atomic formula. From now on, we will use an infix notation for ~,,, writing uy,...,un ~n v1,...,0n
instead of ~, (u1,...,Un,v1,...,0,). Moreover, we omit the index n when it is not necessary.

Formulas are obtained using atomic formulas, T, L, the Boolean connectives A,V,—-,— and the
first-order quantifiers V, 3.

Example 2.3. For example, the formula:
if g() then ng else ny ~n

states that sampling from ng or ni, depending on the branch chosen by the adversarial function g(), is
equivalent to sampling from a single name n.

As a second example, we can express the fact that the first message of the AKA™ protocol in Figure 1.1
guarantees the user anonymity: the formula {IDA};;N ~ {IDB};;N states that users A and B first messages
are indistinguishable. O

18 The Model

2.2.2 Positions and Contexts

We formally define the standard notions of positions of a term and of contexts. We also use the notion
of if-context, which is a context that uses only the if then else function symbol.

Definition 2.1. A position is a word in N*. The value of a term ¢ at a position p, denoted by (), is
the partial function defined inductively as follows:

(t)|e = ¢ B
(f(u()?"')un—l))‘i‘p _ {(“i)|p ifi<n

undefined otherwise

We say that a position is valid in t if (t), is defined. The set of positions of a term is the set of positions
which are valid in ¢, and is denoted pos(t).

Definition 2.2. A context D[]z (written D when there is no confusion) on a signature S is a term in:

TS Aly lyeT})

where Z are distinct special variables called holes. A one-holed context is a context with one hole (in
which case we write D]] where [] is the only variable).

For all contexts D[z, Co,...,Cp_1 with |Z| = n, we let D[(C};);<n] be the context D[]z in which we
substitute, for every 0 < ¢ < m, all occurrences of the hole [|;, by C;.

If-Contexts Often, we want to distinguish between holes that contain “internal” conditionals, and holes
that contain terms appearing at the leaves. To do this we introduce the notion of if-context. An if-context
D]z is a context using only the if _then_else_ function symbol and two sets of holes variables: Z is
for conditionals and ¥ is for leaves.

Definition 2.3. For all distinct variables &, %/, an if-context D[]z.5 is a context in:
T(if _then _else {[l.|z€ZUy})

such that for all position p, D, = if b then u else v implies:
e befll:|zeT}

e uvd{[,|zer}

Example 2.4. Let & = x1, 29,23 and ¥ = y1, Y2, Y3, Y4, We give below two representations of the same
if-context D[]zoy (the term on the left, and the labelled tree on the right):

s
7N

else [},

if [lo, then (if [z, then if [|,, then [],, else []y2>

else (if [J; then [Jy, else [],,) [l lys (v [us

2.3 Semantics

2.3.1 Sorted First-order Semantics

We use the classical semantics for sorted first-order logic: every sort is interpreted by some domain and
function symbols and predicates are interpreted as, respectively, functions of the appropriate domains
and relations on these domains.

2.3. Semantics 19

Model Formally, an model M is a tuple (Dterm: Poool, [[n, [I, []p), where the domains Dierm and Dpool
are for terms of sort, respectively, term and bool. We require that:

e The name interpretation [], associates to every name n € N a member of Dierm-

e The function symbol interpretation [Jf associates to every f,, € F and type s = (dy,...,d, —
dnt1) € types(f) a function:

Dierm if d; = term

$:Dyx---xD, =D, here, f), D; =
If]z: D1 +1 where, for every 7 {Db00| if d. — bool

L

e The predicate interpretation []

associates to every predicate ~,, and £ € {bool, term}™ a subset of:

(D1><---><Dn)2

Term Interpretation We then define inductively the interpretation of a term in M. Let o a valuation
from X to the appropriate domains. We define [_]%, as follows:

e For any z € X, [z]% = o(z).
e For every n € N, [n]%, = [n]a-
e Let f € F and uy,...,u, be terms with types dy,...,d, such that s = (dy x --- X d,, = dpy1) €

types(f). Then:
[f s un)] = [FIR (Tuad s - TunlRa)

If the function symbol f has a unique type s, we omit it and write [f]f instead of [f]3.

Because we have a sorted logic, the fact that [_]%, is well-defined on term is not immediate from the
definition, and must be shown.

Proposition 2.1. For every model M, [_[%4 is a total function from T(F,N,X) to Dierm U Dpool-
Moreover, for every term t, if t is of sort term (resp. bool), then [t]3, is a member of Dierm (Tesp.
Dbool)-

Proof. We show this by structural induction on the term. For the function symbol case, we rely on the
fact that for every f € F and (dy,...,d,) € {term, bool}", there exists at most on d € {term, bool} such
that (dy x -+ x d, = dpy1) € types(f). []

If ¢ is a ground term (i.e. var(¢) = @) then its interpretation is independent from the valuation o. In
that case, we omit o and write [¢] .

Formula Interpretation We extend [_]%, to interpret formulas in {True, False} as follows:
o [L]%4 = False and [T]%, = True.
o [-¢]%4 = True iff [¢]%, = False.
[o A]9y = True iff [9]%, = [¥]% = True.
[oVY]a = [-(=¢ A)54
[¢ = ¥]% = [-¢ V)5
Let = be a variable of sort dom. Then [[Hx.qb]]j/[= True iff there exists v € Dgom such that
[[¢]]J"\;1 = True where:

Lo
Vyezaa—'(y):{” Y=

o(y) otherwise

o [Vz.¢]% = [-Fz.—¢]%-
e Let n € N and £ € {bool,term}™. For every terms ui, ..., U, v1,. .., v, of sort £
[ut, o supn ~n v1, 0] %0 HE ([ua]%s - - s [un] s Tol 3 - - -5 [on]) € [[Nn]]g

A formula ¢ is valid in M, denoted by = ¢, if and only if for every valuation o, [¢]%, = True.
Finally we say that a formula is valid, denoted by | ¢, if and only if ¢ is valid in all models, i.e. for all
M we have = .

20 The Model

2.3.2 Computational Models

We focus on a particular class of such models, the computational models (introduced in [BCL14]). Morally,
a computational model corresponds to the interaction of a protocol implementation, which associates to
every protocol function symbol in F, its implementation, with an polynomial-time adversary, which we
let interpret the adversarial function symbols in G. A computational model is a model where we interpret
terms as probabilistic polynomial-time Turing Machines (PPTMs) and the predicates ~ as computational
indistinguishability. Formally, a model M¢ = (Dterm, Dbool, [In, [I, []p) is & computational model if:

® Dierm is the set of deterministic polynomial-time Turing machines equipped with an input tape,
which is also the working tape, and two additional infinite read-only tapes p1, p2, the random tapes,
used for random samplings.! We need two random tapes to prevent the adversary from seeing the
protocol random samplings (such as a secret key’s random seed). More specifically, the tape p;
is for the protocol random samplings, while p, is for the adversary random samplings. This will
appear in the restrictions on the function symbols interpretations below. The machines in Dierm
must run in polynomial-time with respect to the length of the input tape only.

e bool is the restriction of term to machines that return only the bit-strings 0 or 1.

e A name n € A is interpreted as a machine that, on input (w, p1, p2) where w is of length 7, extracts
a word of length 7 from the first random tape p;. Furthermore we require that different names
extract disjoint parts of p;.

e The interpretation of the function symbols true o, false,o, len/1, 0,1, eq/, and if_then_else_/3 by
[_Iz is fixed, and the expected one:

— [true]; (resp. [false];) is the machine that, on input (m, p1, p2), returns the bit-string 1 (resp. 0).

— [len]¢ (resp. [0]%) is the function that, given a machine m, returns the machine M such that,
on any input (w, p1, p2), M(w, p1, p2) returns the lengths of m(w, p1, p2) in binary (resp. the
bit-string 0™).

— The interpretation of eq is the same for its two types. [eq]; is a function that takes as input
two machines (mq,ms) and returns a polynomial-time machine M such that:

L if my(w, p1, p2) = ma(w, p1, p2)
M (wa P1, p2) = .
0 otherwise
— The interpretation of if then else does not depend on the types of its arguments. The func-
tion [if _then else]¢ takes as input three machines (mj, ma, m3) and returns a polynomial-
time machine M such that:

mQ(waplaPQ) if ml(waphpQ) =1
M(wa P1, p2) = .
ms(w, p1,p2) otherwise
o Let f € F,\{if_then_else_,true, false,eq,len,0} be a protocol function symbol, and s =d; x - - x
dp, — dpy1 € types(f). Then [f]; is defined by a deterministic polynomial-time Turing machine
M/ with n input tapes as follows: [f]¢ is the function that, on input (ms,...,m,) € Dg, x---x Dy,
returns a machine [f]z(m1,...,my) in Dy, , such that for every (w, p1, p2):

[[f]]?(mh e ’mN)(w7p17P2) = Mg (ml(w7p17p2)5 cee 7mn(w7p17p2))

This is just the composition of MJ with (mq,...,m,). Observe that M/ is deterministic and has
no direct access to the random tapes p1, p2. Nonetheless, it can access to the random tapes through
its argument (myq,...,m,). This ensures that all random samplings must appear explicitly in the
terms.

e Let g € G be an adversarial function symbol, and s =dy x --- x d,, = dp,+1 € types(g). Adversarial
function symbols are interpreted as protocol function symbols, except that they have an additional
input tape for p,. More precisely, [g]; is characterized by a deterministic polynomial-time Turing

1We represent probabilistic Turing machine using deterministic Turing machine with explicit (infinite) random tapes.

2.3. Semantics 21

machine MY with n + 1 input tapes as follows: [g]; is the function that, on input (m1,...,my) €

Dy, x --- x Dy, , returns a machine [g]§(mi,...,my) in Dy, ., such that for every (w, p1, p2):

[[g]]?(mh e 7mn)(w7 P1, P2) = Mg (m1<wa P1, P2)7 e amQ(w, P1, ;02)7 P2)
M9 has access to the random tape ps2, which allows the adversary to perform random samplings.
It has no direct access to the protocol random tape p;.

e Let n € N. The predicate ~,, is interpreted as computational indistinguishability ~,,.
Let (dy,...,d,) € {bool,term}", for every machines my,...,m,,m},...,m. in (Dy,,...,Dq,)%, we

have my,...,my, =, mi,...,m., iff for every PPTM A, the following quantity is negligible in 7:

Pr (p1,p2 + A(17, (mi(1", p1, p2))1<i<n, p2) = 1)
— Pr(p1, p2: A", (m;(17, p1, p2))1<i<n, p2) = 1)

where p; and po are drawn using p,, among the set of infinite random tapes. Again, observe that
A has direct access to p2 but not p;.

Syntactic Sugar We introduce a shorter notation for [], by writing:

[ul’bg instead of [u] am. (17, p1, p2)
We also lift the definition of [Jaq. to tuples of terms. Let @ = wq,...,u, be a vector of ground
terms, then [@]aq, is such that for every (w, p1, p2):
[[ﬁ]]}l\)/,lrc)hpz — ([[ul]]%lljl,pz’ e [[un]]l,/‘\}/,lchm)

The important point is that all [u;] s, are evaluated using the same random tapes p1, po.

Remark 2.1 (Bit-String Distributions). Alternatively, we can see [] a4, as interpreting vectors of terms
as family of distributions of bit-strings vectors, indexed by the security parameter 1. More precisely, let
M. be a computational model and @ be a vector of ground term . Then for all 7, we let d, be the
distribution:

y = propn T
Then, two families of distributions of bit-string vectors (d,), and (dy,),,, indexed by 7, are indistinguishable
if and only if for every PPTM A, the following quantity is negligible in 7:

|Pr(p1,p2: A", dy(p1,p2),p2) =1) = Pr(p1,p2 0 A1, d; (p1,p2), p2) = 1)

Observe that A and d,, (resp. d;) uses the same random tape, i.e. we correlate the distribution d,, (resp.
d;,) and the random samplings of the adversary A. O

Example 2.5. Consider the first formula in Example 2.3. Let ng,ni,n € N and g € F of arity 0. Then
in every computational model M., we know that:

M. Eif g() then ng else n; ~n

Indeed, the term on the left represents the message obtained by letting the adversary choose a branch,
and then sampling from ny or n; accordingly, which is semantically equivalent to directly performing a
random sampling, as done on the right.

We now focus on the second formula of Example 2.3, which we recall below:

{IDA};ekN ~ {IDB ;ekN (21)

This formula is not true in every computational model M. For example, if M is such that:
e the encryption function symbol is interpreted as the function returning its first argument (hence
for every u,v,w, [{u}¥Im. = [u]m.)-
e DA and IDg are interpreted as two distinct elements of Dieym, e.g. 0 and 1.

Then the formula in (2.1) does not hold in M.. Indeed, there is a simple distinguisher A, returning true
if and only if it receives 0 as input, which wins (2.1) with probability one. O

22 The Model

2.4 Protocol and Their Semantics

As in [BCL14]|, we model protocols as abstract labelled transition systems. There are two differences
between our modeling and the one in [BCL14]. First, our LTS includes state updates, which allows us
to model stateful protocols, such as LAK or AKA. Second, we consider infinite LTS instead of finite
ones. This allows us to model protocols with an arbitrary number of agents and sessions. Note however
that our soundness result will hold only for adversaries having a constant (w.r.t. the security parameter),
though arbitrary large, number of interactions with the protocol.

2.4.1 Labelled Transition Systems

A protocol P is a tuple (Q, £, Vars,, ¢, ¢, 0c,0) where:

e Q. L and Vars, are the (possibly infinite) sets of, respectively, nodes, action labels and state
variables. A node ¢ € Q records the static component of a protocol execution. Typically, this
includes the number of agents and running sessions. Action labels are the actions available to the
adversary (e.g. creating a new user, starting a new session, or sending a message). Finally, state
variables are symbolic handles used to refer to the memory of the agents.

e ¢. € Q is the initial node.
e The initial frame ¢, is a vector of terms in 7 (F, N). It represents the initial adversarial knowledge.
e The initial state o is a total substitution from Vars, to T (F,N).

e 0 is the transition relation associating to every node ¢ a finite (non-empty) set d(q) of transitions of
the form (a,t,0"P, ¢") where @ € L is the transition label, ¢ is a term of sort term representing the
message output when executing the transition, the state update o"P is a finite substitution from
Vars, to terms and ¢’ is a node. We require that:

{t} Ucodom(c"P) C T(F,N,Vars,, {xin})

where x;, & Vars,. That is, the outputted message ¢ and the state update o“P depend only on the
current state (through Vars,) and the message that was inputted from the network (through x;,).

For every ¢ € Q and « € L, there must exists at most one transition in 6(q) labelled by a.

e There is a distinguished label nop € £ such that for every ¢ € Q, (nop,0,¢,q) € 6(q).

We say that a label « is enabled in a node ¢ if there exists a transition in 6(¢q) labelled by . We also
let enblp(q) be the set of labels enabled in g. Observe that enblp(g) is never empty since it contains at
least nop.

For all ¢ € Q and « € enblp(q), we let 69(q, @) = ¢’ where ¢’ is the unique member of Q such that
(o, , ,¢')€0.

Example 2.6. As a first example, we present one session of the AKA™ protocol given in Figure 1.1,
which we started to model in Example 2.2. We recall that one session of the AKA™ protocol between
a user A and its service provider S comprises three messages, two from A and one from S. We use the
nodes Q to record what messages have already been sent. Therefore, we let Q = Qa x Qg where:

Oa = {started, running, done} Qs = {started, done}

For example, we are in a node (started,) if A has not yet sent any message, and we are in a node
(running,) if A already sent its first message, but not the second message.

At any point of the protocol execution, only two actions are available to the adversary: it can either in-
teract with A or with S. Therefore, we let £ = {A,S}. The set of state variables is Vars, = {SQNa, SQNs},
which are used to store the current value of the sequence numbers. Initially, the two agents have not
sent any messages, the service provider public key is made available to the adversary, and we initialize
the sequence numbers SQN and SQNg to some constant values sqn-inity and sqn-initg:

sgn-init if x = SQN
g. = (started, started) e = pky Vx € Vars,, o(x) = . A l QNa
sqn-initg if x = SQNg

Finally, we describe the transition relations 4. For every ¢ € Q, («,t, 0", ¢') € §(¢q) when:

2.4. Protocol and Their Semantics 23

o if ¢ = (started, gs) and a = A then we have the first user message:

q' = (running, gs) t = {a}; o =¢

e if ¢ = (running, ¢s) and a = A, then we have the second (and last) user message:
¢ = (done, gs) tdec = sdec(Xin, k) accept = geq(ma(tdec), SQNA + 1)
t = if accept then senc(m (tgec), k) €lse error o'? = sQNp > if accept then o (tgec) €lse SQNA
o if ¢ = (ga,started) and a = S, then we have the service provider message:
q = (ga, done) t = if eq(dec(xin, sky), IDa) then senc({n, SQNg), k) else Unknownld
o'"? = sQNg > if eq(dec(xin, sky),IDa) then SQNg + 1 else SQNg
In this example, the LTS is finite, as we consider only one session of the protocol. O
Example 2.7. We now give a more complex example. We still model the AKA™ protocol, but this
time we consider a setting with an arbitrary number of users, each with a different identity. To reduce

the complexity of the example, every user runs only one sessions. We let S = {ID; | i € N} be a set of
identities, which are indexed by an integer i. The set of nodes Q is:

Q{((IDlzbl,...,IDl:bl),> ‘v1§i§l,IDieS A Vlgjgn,ije{l,...,l}}

(i1 : a1, ... 0n : ay) Aby,....ba1,...,a, € {true,false}
Being in the state (IDy : by,...,ID; : b;), (i1 : a1, ...,i, : a,) should be interpreted as follows:
e There are [users, with identities IDq,...,ID;. Moreover, for every i, b; is true iff user 1D; has not

sent its last message yet.

e There are n service provider sessions, where the j-th network session is communicating with user
D;; (hence i; must be in {1,...,l}). Moreover, for every j, a; is true iff the service provider session
i; has not sent its last message yet.

The set of state variable Vars, contains, for every ID € S, the variables SQN;” and SQNg’ storing, respec-
tively, the user and service provider version of the sequence number. Initially, there are no users and
no service provider sessions. The initial frame contains only the service provider public key pk,, and all
sequence numbers are initialized using constants sqn-init}y and sqn-initg’.

in sqn-inity if x = SQNIP
ge = (0),0) o = pky Vx € Vars,, oe(x) = {

sqn-initg” i x = SQNZ
The set of action labels is:
L= {NewUser, NewNetwork;, UserMsg,, NetMsg; | i€ N}

We describe the available action labels in node ¢ = (IDg : by,...,1D; : b;), (i1 : a1,...,%, : ay,). For every
transition, we underline, in the new node ¢’, the changes between ¢ and ¢'.

o NewUser creates a new user with identity ID;41:

+1
t= {IDl+1}:=kN o'? =€ q = ((ID1 2by,...,ID; by, IDg1q < true), (i1 : @y, . .., ip ¢ an))

e For any i € {1,...,l}, NewNetwork, creates a new service provider session communicating with ID;:

t = Nothing o'P =¢ ¢ = (D : by, ..., :by), (i1t a1,. .., in : Gy, true))

24 The Model

e For every ¢ € {1,...,1} such that b; is true, UserMsg, lets the adversary send a message to ID; and
get the user’s output. Let ID = ID; and tgec = sdec(xin, kip), the action is defined by:

accept = geq(ma(tdec), SQN;, + 1) t = if accept then senc(m (tgec), kip) €lse error
o'? = sQNy > if accept then ma(tgec) else SQNYY

¢ = ((1Dy : by,...,ID; : false, ..., ID; : by), (i1 : @y, iyt ay))
We set b; to false in the node since ID; sent its last message.

e For every j € {1,...,n}, such that a; is true, NetMsg;, lets the adversary send a message to the
session i; of the service provider and get its output. Let ID = ID;;, the action is defined by:

t = if eq(dec(xin, sky), ID) then senc((n? , SQNP) k) else Unknownld

o'? = SQNg’ — if eq(dec(xin, sky),ID) then SQNg” + 1 else SQNg’

q = ((1D1 by, Dyt by), (i1 s ans ... i false, an))

We set a; to false in the state since the j-th session of the service provider sent its last message.
Remark that the set of available actions in a node g € Q can be arbitrarily large, but remains finite. [

2.4.2 Computational Execution

We are now going to define what it means to execute a protocol. Let M. be a computational model,
and P = (Q, L,Vars,, G, ¢c,0,0) be a protocol. We assume that £ is equipped with an arbitrary non-
ambiguous encoding ~ into bit-strings. This is used to let the adversary choose the action it wants to
execute, by writing the encoding of the action on its output tape.

When executing a protocol, at every step ¢ € N, we let the adversary choose both the input message
and the action to be executed. For this, we symbolically represent inputs and action choices using the
reserved function symbols in G (which can be interpreted by any probabilistic polynomial-time function).
More precisely:

e the i-th input is computed using the adversarial function symbols g;().

e the i-th action to be executed is chosen using the adversarial function symbol to;(_). We do not
force to; to return only valid encodings of labels in £. Instead, we interpret any invalid encoding
as nop.

The function symbols g;(_) and to;(_) are of arity |¢p. + i|.
We define what is a symbolic frame and a symbolic state of P.

Definition 2.4. A symbolic frame is a finite sequence of terms in 7 (F,N).
Definition 2.5. A symbolic state of P is a total function o from variables Vars, to terms in T (F, N).

Computational Trace Let n € N and p;, p2 be two random tapes. The trace tracef/[c(ln,phpg) of
the execution of P with security parameter n on random tapes p1, p2 is the sequence:

tracely, (17, p1, p2) = (qi i, [P 000" [0)00)ien

where, for every ¢ € N:

1. ¢; is a node of @ and qg = q..

2. ¢; is a sequence of terms in T (F,N) and ¢g = ¢..
3. o0, is a symbolic state of P and o¢ = o..
4

. «a; is such that a; = [[tol(cl)l)]]77 P02 [to; (s)]] #P1P2 s a valid encoding of a label in §9(q), and
a; = nop otherwise. Let (ay, t, ot) 5(¢;), the
i

Gir1=4 Xin > gi(®i)) Dit1 = ¢, 10;

o'Pl; if x € dom(o"P)

Vx € Vars,, 0;11(x) =
oi+1() {cr,;(x) otherwise

2.4. Protocol and Their Semantics 25

We also let g-tracef/lc(%ma p2) = ([Pl X0"")ien and ¢-s-tracel, (0, p1, p2) = (¢i)ien-

Computational Execution A computational trace is with fixed 7, p1, p2. The computational execu-
tion of P in M. is a sequence, indexed by the length i, of sequences, indexed by the security parameter
7, of random variables representing the execution of the i-th first actions of P with security parameter
1. Formally:

execf,lc = <([P1702 : g'traceitc(%ﬂlaPz)(i)DneN>
ieN

The order in which we introduce 4,1, p1, p2 is important here. Since our model is only sound for a finite
number of messages, we first introduce the length of the protocol execution i. Then, for a fixed length
i, we see the execution of the i-th first messages of P as a sequences of random variables indexed by the
security parameter (as we did in Remark 2.1).

It is not meaningful to compare protocols with different set of labels:
Definition 2.6. Two protocols P and Q) are compatible if they have the same set of labels.
We can now state what it means for two protocol to be indistinguishable:

Definition 2.7. Let M. be a computational model. Two compatible protocols P and () are indistin-
guishable in M., denoted by P =~ Q iff for every i € N:

execl (1) ~um, execfg,lc(i)

2.4.3 Symbolic Execution

We now define a way of symbolically executing a protocol P = (Q, £, Vars,, g, ¢, 0c,0). Instead of query-
ing the computational model M. at every step to get the next action to be executed using [to;(#:)] .,
we fix the sequence of actions 7 (the action trace) to be executed. For every action trace 7, this yields a
symbolic frame of the same length. The symbolic execution of P at depth [is then the collection of all
symbolic execution of P on any action trace of length [.

Action Traces L may be infinite, hence there may be an infinite number of action traces of length I.
But because P is a finitely branching LTS, the symbolic execution of P at depth [contains a finite number
of distinct symbolic frames. Therefore we can consider only a finite set of action traces to symbolically
evaluates P at depth [, which we define below.

First, for every ¢ € Q, we lift 9 to any finite sequence of labels 7 in the expected fashion, and we lift
enblp to any finite sequence of labels 7:

39(q,€) = ¢ 89(q, 7 @) = 69(0%(¢q, 7),) enblp(7) = enblp(6%(qe, 7))
We now define the set of action traces of P of length I:
Definition 2.8. For every protocol P and [€ N, we let T;(P) be the set of P action traces of length I:
To(P) = {e} Tiri(P)={r-a| 7€ T(P),a cenblp(T)}
For every protocol) compatible with P, we also let T;(P,Q) = T;(P) U T;(Q).
Proposition 2.2. For every protocol P and for every i € N, T;(P) is finite.

Proof. This directly follows from the fact that P is a finitely branching LTS. |

26 The Model

Symbolic Executions We now define the symbolic execution of a protocol with a fixed action trace
7 of length [. We do not require that 7 be in T;(P). Instead, as in a computational execution, we treat
any invalid action label as nop.

Definition 2.9. Let 7 = ay,...,a;_1 be a finite sequence of labels in £. The symbolic trace s-trace’’ (1)
of the execution of P = (Q, £, Vars,, g, ¢c,0c,0) on 7 is the sequence:

P
s-trace; = (qs, ¢, 04)o<i<

where, for every ¢ € N:

1. ¢; is a node of @ and ¢y = q..

2. ¢; is a sequence of terms in 7 (F,N) and ¢g = ¢.
3. o0; is a symbolic state of P and o¢ = o..
4

. Let @ = q; if «v; is a valid encoding of a label in enblp(g), and « = nop otherwise. Let (a,t, 0", ¢’) €
0(g;), then:

giy1 =¢ 0; = 05 - (Xin — gi(0:)) Giy1 = ¢i, t0;

“Pg, if x € dom(oP
Vx € Vars,,0;41(x) = oo) (%)
0;(x) otherwise
We let ¢-s-tracel’ = (¢;)o<i<i be the sequence of symbolic frames extracted from the symbolic trace
s-trace”’ (1) and ¢ = ¢; be the final symbolic frame.

Soundness Theorem We can now state the soundness theorem linking computational and symbolic
executions: given a computational model M. and two compatible protocols P and @, if the formula
of ~ ¢@ is valid in M. for every action trace 7 € |J; T;(P,Q), then P and Q are computational
indistinguishable, i.e. P~ Q.

Intuitively, this is because if P %, @Q, then there exist a depth [and an adversary 4 with a non-
negligible advantage in distinguishing [steps of P from [steps of). Because T;(P,Q) is finite, the
adversary has only a finite number of choices of action trace. Moreover, the advantage of A against P
and @ with an adaptive choice of action can be upper-bounded by the sum, over all possible choices
of action trace 7, of the advantage of A against P and () with fixed trace 7. Since A’s advantage is
non-negligible, and since the sum is finite, this implies that there exists some 7 € T;(P, Q) such that A
has a non-negligible advantage in distinguishing P and) with fixed trace 7.

Theorem 2.1. Let P and Q) be two compatible protocols and M. be a computational model. If, for every
€N and 7 € T)(P,Q), we have M. = ¢ ~ ¢@, then:

Prpm Q

Proof. We prove this by contraposition. Assume that P %, @, by definition there exist a depth { and
an adversary A such that A has a non-negligible probability of distinguishing exec};, (I) and exec%lc(l),
i.e. the following quantity is not negligible:

Pr (pla P2 - A(17I7 a_trace_/li/lc(naplap2)(l)7p2) = 1)

: (2.2)
— Pr (pl,pg : A(1777qb—tracef\?/lc(n,pl,pg)(l)7p2) = 1)

Trace Events For every 7 = ayp,...,o—1 € T;(P,Q), we want to define the family of events (E7),:

E7 . “with security parameter 7, the trace of actions chosen during the execution of [steps of P is 7”
To define E7, we just need to define, for every 0 <+¢ < [, the event:

E7 . : “with security parameter 7, the i-th action chosen during the execution of P is «;”

Let ¢-s-tracel’ = (¢;)o<i<;- We have two cases:

2.4. Protocol and Their Semantics 27

e If oy is an enabled actions of P, E”, is the event:

[p1, p2 : [tor(o)I0H " = i

e If oy is not enabled, it is treated as nop. Therefore we let to;(¢;) be any value which is treated as
nop by the computational semantics. E;’J is the event:

(o1, p2 = [tor ()]0 ”> & {@ | a € enblp(r,..1)}]

In general, E, is the union of both cases above:

' (ozl S enblp(7'|1w’l) A\ [[t01<¢l>]]7\’/£1’p2 = &Z)
PUP2E (r genblp(ry,) A Ttor()]0 " & {@ | a € enblp(my. 1)}

For every 7 and 7, the following two random variables are the same:
e executing [steps of P in M. with security parameter n conditioned on EY.

e sampling from ¢’ in M, with security parameter 7.
Formally we have:

propa s -tracel (1,1, p2) () | B = [p1, o2 [0F 4] (2.3)

We also define the symmetrical events:
EM: “with security parameter 7, the trace of actions chosen during the execution of I steps of Q is 7"
Which satisfies: _

pr, pa : d-tracely (1, p1,p2)(1) | E’T”} = [p1,p2 : [2100"] (2.4)

Upper-Bounding A’s Advantage To conclude, we just need to upper-bound A’s advantage in dis-
tinguishing P and Q. Using (2.3), we get that for every n:

Pr (P17P2 : -A<1n7(Z_tracefpi/lc(nvplaPQ)(lLp2> = 1) =

> Pr(py,p2 AQ7 [@F1R02, p2) = 1) x Pr(EY)
TGT{,(P,Q)

Similarly, using (2.4) we get that:

Pr <P17p2 : A(lnag‘trace%/[c(/]%p17p2)(l)7p2) = 1) =

Z Pr (p1,p2 : _A(]_U’ [[ng]]zy/ﬁhm?p?) = 1) X PI‘(E,/,_W)
TET(P,Q)

Since Pr(E?) < 1, Pr(E!") < 1 and bounding the absolute value of the sum by the sum of the absolute
values, we get that (2.2) is upper-bounded by:

Z |PI‘ (PlvPZ : A(lna [[gbf]]n/\/[’p:’p2ap2) = 1) - Pr (plapQ : A(lnv [[ng}]nchl’p?vPQ) = 1)|
TETi(P,Q)

Since (2.2) is non-negligible, the quantity above is non-negligible. Using Proposition 2.2, we know that
T,(P,Q) is finite. A finite sum is non-negligible iff one of its terms is non-negligible. Hence there exists
7 € T;(P, Q) such that:

’PI‘ (Pl, P2 - A(lnv Hd)f]]%’ll’pz»p?) = 1) — Pr (Pl,PQ : A(lnv [[(z)g]]n,/\’/lil’pzvpﬂ = 1)|

is non-negligible, which implies that M. [¢f ~ ¢%. |

28 The Model

Completeness We would like to state the converse statement, i.e. that if P = @ then for every
leNand 7€ Ty(P,Q), Mc = ¢ ~ ¢%. This is quite intuitive: if there is an attack against P and Q
for a fixed trace 7, then there is an adaptive attack against P and @ (we simply let the adversary pick
the trace 7). The problem is that the adversary’s action choices are “stored” in the computational model
M, in the interpretation of the function symbols to;. Therefore we cannot use the same computational
model M. Formally:

Proposition 2.3. For every compatible protocols P and Q that do not use the function symbols {to; |
l € N}, for every computational model M., if there exists | € N and 7 € T;(P,Q) such that:

M ¢F ~ 6%

then there exists a computational model M/, which may differ from M. only on the interpretation of
{to; | 1 € N}, such that P #p Q.

Proof. Take an adversary A, a depth [and an action trace 7 € T;(P, Q) such that A has a non-negligible
probability of distinguishing between ¢ and ¢@, i.e.:

Pr (p1,p2 : AL, [0ET%0072, p2) = 1) — Pr(p1,p2 : A1, [6CTH072, p2) = 1)

is non-negligible. We simply let M. be the computational model M. where we modify the interpretation
of {to; | 0 <4 < I} by having [to;] be the machine that ignores its arguments and always returns &;
where «; is the i-th action in 7. Using the fact that P does not use the function symbols {to; | I € N},
we can check that for every 7, p1, pa:

[or 0" = o-tracely. (1, pr, p2) (1)

Similarly:
[[d)?}];]\;,lﬂchpz = g'tracef\%tc’ (777 P1, pQ)(l)

We deduce that A has a non-negligible probability of distinguishing the computational executions of P
and Q in M., ie. P& Q. [|

2.5 Axioms

When studying two protocols P and (), we cannot just show that P and @ are indistinguishable in some
fixed computational model M. for several reasons:

e First, we would need to fully specify the implementation of every protocol function symbols, e.g.,
how is the pair implemented, how projections behave on ill-formed inputs etc. Not only would
this be very tedious, but it would also be a waste of time. For example, if there is no way for the
adversary to have the protocols’ agents try to compute projections of ill-formed pairs, then we do
not need to know how projections handle bad inputs.

e This is too restrictive: if we show security in some model M., and we later decide to change the
implementation of some functions, we need to redo the whole proof.

e Lastly, we do not know the implementation of the adversarial function symbols. We need to let
them be any probabilistic polynomial-time Turing machine.

Instead, we use an axiomatic approach, restricting the models that have to be considered using axioms,
which are formulas of the logic. Then, given a set of axioms Ax (potentially infinite) and two compatible
protocols P and @, if we show that for every [and 7 € T;(P,Q), the formula ¢f # ¢@ is inconsistent
with Ax, then we know that there exists no model M (hence no computational model either) satisfying
Ax such that M |= ¢F + ¢%@. Hence, using the soundness Theorem 2.1, we know that P =~ @ in every
computational model M. such that the axioms Ax hold.

2.5. Axioms 29

Structural and Implementation Axioms We define the axioms that we will need later. Axioms
can be of two kind:
e Structural axioms represent properties that hold in every computational model. This includes
axioms such as the symmetry of ~, or properties of the if then else function symbol (since its
interpretation is fixed).

e Implementation axioms reflect implementation assumptions, such as the functional correctness of
the pair and projections (e.g. m1 ({u, v)) =), or cryptographic assumptions on the security primi-
tives (e.g. EUF-CMA or IND-CPA).

All our axioms are universally quantified Horn clauses or recursive schemata of ground Horn clauses.
Therefore, to show the unsatisfiability of Ax A @ # ¥ (where Ax is a given set of axioms and @ # ¥ is
a ground formula), we use resolution with a negative strategy (which is complete, see [CL73]). As all
axioms are Horn clauses, a proof by resolution with a negative strategy can be seen as a proof tree where
each node is indexed by the axiom of Ax used at this resolution step. Hence, axioms will be given as
inference rules (where variables are implicitly universally quantified).

2.5.1 Structural Axioms

Almost all the axioms in this subsection have been introduced in the literature, see [BCL14, CK17, BC16].

Equality Computational indistinguishability is an equivalence relation (i.e. reflexive, symmetric and
transitive). But we can observe that it is not a congruence. E.g. take a computational model M., we
know that two names n and n’ are indistinguishable (since they are interpreted as independent uniform
random sampling in {0,1}"), and n is indistinguishable from itself. Therefore:

McEn~n' McEn~n

But the formula n,n ~ n’,n is not valid in M. Indeed, there is a simple PPTM that can distinguish
between n,n and n’,n: simply test whether the two arguments are equal, if so return 1 and otherwise
return 0. Then, with overwhelming probability, this machine will guess from which distribution its input
was sampled from.

Even though ~ is not a congruence, we can get a congruence from it: if eq(s,¢) ~ true holds in
all models then, using the semantics of eq(_,), in every computational model M, [s] and [t] are
identical except for a negligible number of samplings. Hence all properties of equality hold: this relation
is symmetric, reflexive, transitive and closed under function applications. Moreover, we can replace
any occurrence of s by ¢t in a formula without changing its semantics with respect to computational
indistinguishability. We let s = ¢ be the shorthand for eq(s,t) ~ true, and we introduce the axioms:

V=1Uu u=w w =7

u=u =refl L= —Ym T=1 =-trans
Uy = Vo Up = Up U, t~T s=t
=-subst ! Equ
05+ Un) = 0y---yUn u,8 ~v
Flugr- - un) = (v o) (fe7) s~

Finally, we have equality axioms reflecting properties of the function symbols with a fixed interpre-
tation, which are given in Figure 2.1. When writing equality axioms, we usually omit the over-line: e.g.,
we write eq(z, x) instead of eq(z, x).

Most of these axioms deal with the if then else function symbols. We give a quick informal descrip-
tion: E; contains properties of zero and equality; Eo and E3 contain, respectively, the homomorphism
properties and simplification rules of the if then else ; and E4 allows to change the order in which
conditional tests are performed.

Other Axioms We now give an informal description of the structural axioms given in Figure 2.2 that
we have not introduced yet:

e Perm allows to change the terms order, using the same permutation 7 on both sides of ~.

Ug(1)y++ 5 Un(n) ™~ Un(1)y -+ Un(n)
Ulye oo yUp ~YVUly...,Un

Perm

30 The Model

0(0(x) (x)
eq(z,z) = true
f(@,if b then z else y,7) = if b then f(u,x,0) else f(u,y,v) (f € Rif)
if (if b then a else ¢) then x else y = if b then (if a then z else y) else (if ¢ then z else y)
if bthen z else z =z
if true then z else y = =
if false then x else y = y
if b then (if b then z else y) else z = if b then « else z
if b then x else (if b then y else z) = if b then z else 2
if b then (if a then x else y) else z = if a then (if b then z else 2) else (if b then y else 2)
if b then z else (if a then y else z) = if a then (if b then x else y) else (if b then z else 2)
Figure 2.1: Equality Axioms E;,Es, E3, Ey4
— =-refl v=Y —sym U=w__ W=Y _ trans To = 1o tn = n =-subst
u=u U= u=v flug, ..y un) = f(vo, ..., vn)
Ut~ T s=t U (1)y -« -y Ur(n) ~ VUn(1)s - -+ Vn(n) U,s~U,t
’JSNﬁ EqU Uly -y Up ~ V1y...,Un Perm U ~T Restr
’171,171'\"[71,172 ’IISNﬁ, Refl U~
D TR —— Sym
F(@r), o ~ f(@2), 5 Tss bt P i g
U ~ W W~ T 4 ~7T . .
P Trans T~ T Fresh when n ¢ st(@) and n’ ¢ st(?)

— a-equ . S . .
i U When a is an injective renaming of names in N’

U~ U
- i @, C [if eq(s,t) then Cylt] else w] ~ ¥
eq(t, n) = false when n ¢ st(?) @, C [if eq(s,t) then Cyls] else w] ~ T IFT
W, b, (ui)i ~ W’ bV, (u)); ﬁ@@meWNwiS
w, (if b then u; else v;); ~ w’, (if b’ then u else v});

Conventions: 7 is a permutation of {1,...,n} and f € F.
Figure 2.2: Some Structural Axioms.

e Restr is a strengthening axiom, stating that to prove that @ ~ ¢, it is sufficient to show the stronger

property u,s ~ U, t.
i, t
Restr

Sy

s
U

~

e The function application axiom FA states that to prove that two images (by f € F) are indistin-
guishable, it is sufficient to show that the arguments are indistinguishable.

2.5.

Axioms 31

Dup states that giving twice the same value to an adversary is equivalent to giving it only once.

7SN/177

S

Dup

—

U,8,8~U,t,t

Refl, Sym and Trans states that indistinguishability is a reflexive, symmetrical and transitive relation.

U~ W ~T
Sym — Trans
U~

——— Refl
U~ U

Fresh states that giving a value uniformly sampled at random and independent from the rest of
the distribution is useless. We guarantee that n is independent from by requiring that n does
not appear in @’s subterms (and similarly for n” and ¥'). By consequence, this is not a universally
quantified axiom. Instead, this is a recursive infinite set of axioms, one for each ground formula
satisfying the side-condition.

o Fresh when n ¢ st(@) and n’ ¢ st(?)

=]
SIREST)

~Y
a,n ~
The a-equ axioms allow to rename all the names appearing in #, using an injective renaming «:

- a-equ . L . .
i ~ o 9 When « is an injective renaming of names in N’

=-ind is a axiom schema stating that, if ¢ is independent from a uniform random sampling n, then
t is never equal to n, except for a negligible number of samplings.

eq(t,n) = false =ind " when n ¢ st(1)

The IFT axioms allows to replace a term s by a term ¢ if it appears in the then branch of a eq(s, t)
conditional. Again, this is an axiom schema.

w0, C [if eq(s,t) then Cyt] else w] ~ ¥ T
u,C [if eq(s,t) then Cy[s] else w]| ~ ¥

The CS axioms states that in order to show that:
if b then w else v ~ if b’ then v else v/

it is sufficient to show that the then branches and the else branches are indistinguishable, when
giving to the adversary the value of the conditional (i.e. b on the left and b’ on the right). We can
do better, by considering simultaneously several terms starting with the same conditional. We also
allow some terms @ and @' on the left and right to stay untouched.

1177b, (ul)l Nu_jlvblv(u;)i ’lI;,b7 (vz)z Nu_j,7b/7(Ug)i

W, (if b then u; else v;); ~ @', (if ¥’ then u} else v});

CS

Remark 2.2. In the CS axioms, we need to give the conditional b to the adversary. For example, assume
that F, contains two constant function symbols one and zero. Then, in every computational model M_.:

M. [zero ~ zero M. = one ~ one

But if M. is such that zero’s interpretation is different from one’s interpretation, then:

M. [~ if true then zero else one ~ if false then zero else one O

The conjunction of the equality axioms in Figure 2.1 and the axioms in Figure 2.2 form the set of

structural axioms AXstruct-

Definition 2.10. We let Axstruet be the union of sets of axioms in Figure 2.1 and Figure 2.2.

32

The Model

Structural axioms are valid in all computational models.

Proposition 2.4. The axioms AXstruct are valid in all computational models.

Proof. The axioms in Figure 2.1 and the four first axioms of Figure 2.2 are all immediate properties of
the function symbols interpretations in any computational model.

All the remaining axioms are proved using the same kind of argument: given a adversary breaking
the conclusion, we show that there exists an adversary breaking one of the premises.

The axioms Perm, Restr, Dup are very similar. We only detail the proof for one of them, Dup.
Assume a winning adversary A against i,s,s ~ ¥,t,t, we can define an adversary B against
i,s ~ ¥,t has follows: on input @, z, return A(W, z, z). The advantage of B against @,s ~ ¥, is
exactly the advantage of A against i, s, s ~ ¥, t,t, which is non-negligible by hypothesis.

Assume that s = ¢ holds in every computational model, and that there exists a winning adversary
A against @,s ~ ¢. Recall that s = ¢ is the formula eq(s,t) ~ true. Since eq is interpreted as
actual equality, we know that in every computational model, [s]’{""* = [t]f""* except for a
negligible subset of random tapes pq, p2 of measure m,(n). By consequence, the advantage of A
against @, t ~ ¥ is the advantage of A against @, s ~ U, plus or minus the negligible quantity m,(n).
Hence A has a non-negligible advantage against o,t ~ 7.

For the FA axiom, assume a winning adversary A against f(i;),7; ~ f(ii2),v2. Let MY be the
Turing machine used in M. to define [f]5, semantics, where s is the type of .

We define an adversary B against iy, v; ~ i1, 72 as follows: on input @, Wz, compute M/ (@),
storing the result in =, and then return A(z,ws) (MY runs in polynomial-time, therefore B is still
polynomial-time).

—

The advantage of B against @y, ~ 1,72 is exactly the advantage of A against f(i@1), 01 ~
f(ta), ¥, which is non-negligible by hypothesis.

Refl is obvious: no adversary can distinguish between two identical distributions.

Sym follows from the fact that the definition of computational indistinguishability is symmetrical.
For Trans, take a winning adversary A against @ ~ ¢'. Using the triangular inequality:

|P1“ (Phpz : A(ln:[[ﬁ]]nﬁhil’p2702)) - Pr (P1,02 : A(1n7[[77]m}1p617p2’;02))f <
|Pr (o1, p2 + A, [T]7, p2)) — Pr(p1,p2 = A [@]R7, p2))|
+ [Pr(p1,p2 0 AQ", [W]R072, p2)) — Pr (o1, p2 = AL [GIR072, p2))]
Since the left quantity is non-negligible, one of the two quantities on the right must be non-negligible.
This shows that A is winning against @ ~ @ or @ ~ v.

For Fresh, given a winning adversary against @,n ~ ¥/, n’, we build a winning adversary B against
i ~ ¥: B simply samples the uniform random value itself before calling A.

For =-ind, using the independence, we can upper-bound the probability of collision by 1/27, which

is negligible.

For the IFT axiom, we just need to observe that in every computational model M, the distributions:
[@, C [if eq(s,t) then Cy[s] else w]] . and [, C if eq(s,t) then Cy[t] else w]] am.

are the same except for a negligible number of samplings. Hence any winning adversary against the

conclusion is a winning adversary against the premise.

It only remain to show that CS is valid. Let M. be a computational mode, and A be a winning
adversary against:
W, (if b then u; else v;); ~ @', (if b then u} else v});

3 t
in Mc. We let pi,pr1,p,r and pr, be the quantities:

it Pr(pups s A [SIR0 % o) A [B1R052)
pei : Pr(pi,pe o A [STRE2, po) A - (D)%)
pie : Pr(py,pa o AL TEIRE"2 p2) A IV]R0072)
Pryr Pf(pl,pz : A(l",[[_]]’7 /’17/’27p2)/\ -[B']% pl,pz)

2.5. Axioms 33

We define the adversary B; against 7, b, (u;); ~ @', b, (u});:

Bi(Z,a,(mi)i) = {A(f’ (mi)i) ifa=1

1 otherwise
Then:
Pr (p1,p2 : Be(1", [0, b, (ui)il k{7, p2)) = i+ Pr (p1, p2 = —[b]R0"2) (2.5)
Pr (p17p2 : Bt(1n7 IIU_;/v blv (ufi)i]]n_/\,/lihpzapZ)) = Pir + Pr (pla p2 ﬁ[[bl]]n/\)/[p:’pQ) (26)

Since we assumed W, b, (u;); ~ @', ¥, (u}); to hold in any computational model, we know that b ~ b’
also holds in any computational model. Since b and o’ are of sort bool, and since b ~ b" holds in
M, we know that the two quantities below:

PI‘ (/017p2 : [[b]]n/\;tpchp2) PI' (pl,pQ N [[b/]]nj\;lp:’lu)

are equal except for a negligible number of samplings (otherwise, we could easily break b ~ b in
M.). Using this fact, (2.5) and (2.6) we deduce that B, advantage against @, b, (u;); ~ @', b, (u});
is |pi) — pir| (up-to a negligible quantity).

We define the adversary B, against W, b, (v;); ~ @', b, (v});:

1 otherwise

Bi(%,a, (m;);) = {

Similarly, we can check that Be has an advantage |p,; — pr.r| (up-to a negligible quantity).
To conclude, we observe that the advantage of A against § ~ tis D11 + Pey — Dy — Pre|, which is
upper-bounded by |pii — pir| + |pri — prr|. It follows that B, or Be has a non-negligible advantage

of winning against their respective formulas. |

2.5.2 Implementation Axioms

Implementation axioms are axioms that are not valid in all computational models. When studying
the security of a protocol, implementation axioms are what allow the prover to put requirements on the
protocol concrete implementations. For example, we can require that the first projection of a pair is equal
to the first element of the pair, or that distinct constant function symbols representing agents names are
never equal. Then, if we can show that the conjunction of the structural axioms, the implementation
axioms and the negation of the security property hold, we know that the protocol is secure in any
computational model where the implementation axioms hold.

Of course, we use different implementation axioms for different protocols. Still, we give some examples
of frequent axioms in the section.

Pair and Asymmetric Encryption As a first example, we consider pairs (,) /20 projections 7y,
72,1, public key pk /1, brivate key sk/; and asymmetric encryption and decryption {} /3 and dec/,. En-
cryptions are of the form {u};f((n) where u is the plain-text, pk(n) is the public key (where n € N is the
random seed used during the key generation), and ne € N is the explicit encryption randomness.

We then have the axioms Ax(y for pairs and Axgec for encryptions:

Ax(y o mi((z1, 22)) = 2; (where i € {1,2}) Axgec : dec({z}oy(,,sk(y)) ==

Xor Axiomatization Assume that ©/5,0,9 € F. We want @ and 0 to have some of the properties
of, respectively, bit-wise xor and the bit-string containing 7 zeros. First, we have the usual ACUN
(associativity, commutativity, unit and nilpotence) axioms:

2@ (ydz)=(zDy)Ddz TDYy=ydz 0Odr== xdx=0

34 The Model

While the actual bit-wise xor? satisfy the axioms above, these axioms are valid in other computational
models. For example, we can interpret the & function symbol as the function that, on every inputs,
return 7 zeroes. Or, more plausibly, we can interpret @ has the function that only return bit-strings of
length exactly (padding or truncating its inputs if necessary).

To study protocols relying on the xor (e.g. KCL, LAK or AKA), we need the following axiom:

w,n~ 7 len(t) = len(n)

Ut®dn~J

@-ind when n ¢ st(d,7,t) (2.7)

Basically, this axioms states that the xor of a term ¢ and an uniform random value n is indistinguishable
from an uniform random value, as long as ¢t and n are independent and of the same length. The fact that
t and n are independent is checked by requiring that n does not appear in ¢ in the syntactic side-condition
n ¢ st(u, ¥, t) (therefore this is an infinite schema of ground axioms). We define the set of axioms Axg:

Definition 2.11. Axg is the conjunction of the ACUN axioms and the axiom schema @-ind in (2.7).

Booleans It is often convenient, or necessary, to add functions symbols for boolean operations:
and, or, imply, equiv : bool® — bool neg : bool — bool

We can also add an axiom linking the if then else function symbol with the boolean function symbols
whenever the then and else branches are of sort bool:

if a then b else ¢ = or (and(a, b), and(neg(a), c)) (2.8)

where a, b and ¢ are variables of sort bool. Instead of adding multiple axioms allowing to reason on terms
with boolean function symbols, we use a single axiom schema stating that if two terms, seen as formulas
in first-order logic with equality, are equivalent, then they are equal:

ty and ty are encoding of ¢ and v ¢ < 1 valid in FO(=)

— (2.9)

Again, this is a recursive schema of ground axioms: t4 and ¢, are ground terms.

Example 2.8. For example, we can obtain De Morgan’s laws:

neg(and(a, b)) = or(neg(a), neg(b)) neg(or(a,b)) = and(neg(a), neg(b))

If we consider first-order logic with equality and injectivity of the pair function symbols, we obtain:

imply (neg(eq((u. v}, (s, #))),or(neg(eq(u, s)), neg(eq(v,)))) = true O

This allow to push part of the reasoning outside the Bana-Comon logic, into some standard logic,
without having to fix the way we reason in the outer logic: the proof that ¢ and ¥ are equivalent takes
place in the meta-logic. In practice, we use a logic with more axioms than FO(=). For example, in
the study of the AKA protocol, we will need to do reasoning about conjunctions of inequalities between
integer sequence numbers, for which we need, e.g., properties of orderings. We define the set of axioms
AXpool:

Definition 2.12. Axpeol is the conjunction of the axioms in (2.8) and (2.9).

Notations The prefix notation for boolean terms is cumbersome to use. Therefore, we introduce infix
notations for and, or, imply, equiv, neg, eq:

/\7 \/7 %7 <;>7 _.|7 i

We use the usual precedence, e.g. a Vb Acis aV (bAc). For every boolean term b, when there is no
confusion, we write b instead of b ~ true.

2When xoring bit-strings of different lengths, the shorter bit-string is padded with Os to the length of the longer one.

2.6. Cryptographic Assumptions and Axioms 35

While it may seems that we need to be careful not to confuse = and =, this is actually not the case.
Indeed, the formula a = b is, by definition, the formula eq(a,b) ~ true, which is also the formula a = b.
Moreover, the following two rules are admissible using the axioms in Figure 2.1 and 2.2:

a=>h (a =b) =true
(a=b) =true a=b
We give the derivations below:
a=b
a=b~ true
(a =b),true ~ true, true
= — FA — — =-refl Refl
(a =b) = true ~ true = true (true = true) = true Equ true ~ true e (a = b) = true
(a =b) = true ~ true a=10br~ true au
a =b) = true a=b
(

Ax-Interpretation Instead of proving that a protocol is secure in any computational model, we are
going to prove that it is secure in any computational model satisfying some implementation assumptions
(such as AXdec, AXg ...). To make the distinction between implementation axioms, which only restrict the
interpretations of the function in F,, and other axioms, which restrict all function symbols interpretations,
including function symbols in G, we introduce the notion of Ax-interpretation.

Definition 2.13. For every set of axioms Ax, an Ax-interpretation Z. for F, is a computational model
Z. on signature F, such that Z. = Ax.

Given an adversary A and an Ax-interpretation Z. on F,, we can lift Z. to a full computational model
on signature (Fp,§G) by letting A interpret all functions in G.

2.6 Cryptographic Assumptions and Axioms

We now explain how we translated several cryptographic assumptions into axioms. Before starting, we
introduce some notations used to define side-conditions of cryptographic axioms.

Definition 2.14. For every ground terms @, ¥, we let fresh(u;) hold if and only if no term in @ is a
subterm of a term in ¥, i.e.:
{ulued}nst(@) =10

Definition 2.15. Let s, % be ground terms and Cz . be a context with one distinguished hole variable -
such that the hole variable - appears exactly once in Cz .. We let s Co, 4 holds whenever s appears in
@ only in subterms of the form C[w, s]. Formally:

Yu € i,Vp € pos(u),uy, = s — 3 € T(F,N),3q € pos(u) s.t. ¢ <pAujg=C[w,s]

We generalize this to n contexts Cq,...,C,, by allowing s to appear only as subterm of one of the Cjs.
Formally, we let s C¢, .. ¢, U if and only if:

Vu € i,Vp € pos(u),up, = s — 3 € T(F,N),3q € pos(u),31 <i<nst. qg<pAug=Ci[w, s
Example 2.9. Two examples:

® n Cpo(),sk(-) U states that the nonce n appears only in terms of the form pk(n) or sk(n) in .

@ sk(n) Cyec() U states that the secret key sk(n) appears only in decryption position in . O

2.6.1 The ccA; Axioms

In the computational model, the security of a cryptographic primitive is expressed through a game
between a challenger and an attacker (which is a PPTM) that tries to break the primitive.

We informally recall the IND-CCA5 game (for Indistinguishability against Chosen Ciphertexts Attacks,
see [BDPR98|). First, the challenger computes a public/private key pair (pk(n), sk(n)) (using a nonce n
of length 7 uniformly sampled), and sends pk(n) to the attacker. The adversary has access to two oracles:

36 The Model

e A left-right oracle OfR(n) that takes two messages mg, my of the same length as input and returns
{mb};ﬁ(n), where b is an internal random bit uniformly drawn at the beginning by the challenger
and n,. is a fresh nonce.

o A decryption oracle Ogec(n) that, given m, returns dec(m, sk(n)) if m was not submitted to the O_r
oracle yet, and length of m zeros otherwise.

Remark that the two oracles have a shared memory. The advantage Adv’*?(n) of an adversary A against
this game is the probability for A to guess the bit b:

| Pr(n : AO.{R(n),Odec(n) (1) = 1) _ Pr(n . AOER(n),Ode:(n) (17) = 1) |

CCAg

An encryption scheme is IND-CCA; if the advantage Adv’,"*(n) of any adversary A is negligible in 1. The
IND-CCA; game is the restriction of this game where the adversary cannot call Ogec after having called
OLr. An encryption scheme is IND-CCA; if AdviCAl(n) is negligible for any adversary A.

In this section, we only present axioms for the simpler IND-CCA; game. We will present axioms for

the IND-CCA5 game later, in Chapter 5, Section 5.4.

The cca] Axioms We define first a set of axioms CCA{:
Definition 2.16. We let cCAj be the set of axioms:

fresh(ne; @, s, 1)
when . .
N Eok(),sk(-) Uy Syt A sk(n) Cdec() U, St

len(s) = len(t)

@, {8} ok ~ @ {th k)

CCAf

This set of axioms CCAj is very similar to the one used in [BCL14]. The only difference is that in
[BCL14], the length equality requirement is not a premise of the axiom. Instead, if the length are not
equal they return a error message. We found our version of the axiom simpler to use.?

We have the following soundness property:

Proposition 2.5. The CCA azioms are valid in any computational model where ({}, dec, pk, sk) is in-
terpreted as an IND-CCA1 secure encryption scheme.

Proof. The proof is by contradiction, and is given below.

We assume that there is a computational model M. where the encryption scheme is IND-CCA; secure,
and such that there is an instance @, {s};;(n) ~ U, {t};i(n) of the axioms cCA§ which is not valid. We
deduce that there exists an attacker A that can distinguish between the left and right terms, i.e. the
following quantity is non-negligible:

‘Pr(pl,pg LAY, [T, {0 o LR, p2) = 1) — Pr(py, pa ALY, [, {1} 05 o TR0 p2) = 1)((2.10)

Using A, we can build an adversary B with a non-negligible advantage against the IND-CCA1 game. First,
B samples a vector of bit-strings @, ss, ts from [@, s, t] ., querying the decryption oracle whenever it
needs to compute a subterm of the from dec(_,sk(n)). Remark that the syntactic side-conditions:

n Epk(~),sk(-) ’II,S,t Sk(n) Edec(i,-) ﬁ787t

guarantee that this is always possible. Afterward, B queries the left-or-right oracle with (ss,ts) to get
a value a. Here, we need the side-condition fresh(ne; @, s,t) to guarantee that the random value ne has
not been sampled by B. Indeed, the value n, is sampled by the challenger, and is not available to B. If
the challenger internal bit b is O then @, a has been sampled from [a, {s}};]m., and if the challenger

internal bit is 1 then %, a has been sampled from [, {t}gek(n)]]Mc:

o {[w,{s};;(n)ﬂm ith—0
[[ﬁ’ {t}:r((n)ﬂ/\/l: ifb=1

Finally, B returns A(#s,a). It is easy to check that the advantage of B against the IND-CCA; game is
exactly the advantage of A against @, {s};;(n) ~ U, {t};i(n) This advantage is the quantity in (2.10),
which we assumed non-negligible. Hence B is winning against the IND-CCA; game. Contradiction. |

3The two formulations should be equivalent provided that you have the CS and Equ axioms, and that you can do basic
reasoning on lengths (though we did not prove it).

2.6. Cryptographic Assumptions and Axioms 37

The ccA; Axioms We define the axioms CCA1, which are more convenient to use than ccaj. Basically,
CCA; is the axiom CCA] where we applied transitivity to have different terms u, ¥ on each side.

Definition 2.17. We let cCA; be the set of axioms:

fresh(ne, n.; @, 7, s, t)
u,len(s) ~ ¥, len(¥) cony . @ =pk(n), A T =pk(n),
n - 7 when .
@, {S}pr((n) ~ T, {t};;(n,) N Cpk(),sk() @, 8 A sk(n) Cgec() 4,

n' Cok(-)sk() U, A sk(n') Edec(,r) v,t

We have the following soundness theorem:

Proposition 2.6. The CCA; azioms are valid in any computational model where ({}, dec, pk, sk) is in-
terpreted as an IND-CCA1 secure encryption scheme.

Proof. We are going to give a direct derivation of the axioms CCA;, using rules that are valid in all com-
putational models where ({}, dec, pk,sk) is interpreted as an IND-CCA; secure encryption scheme. The
derivation mostly rely on the Trans and the CCA] axioms. First, we use transitivity to split the goal
i, {s}g;(n) ~ T, {t}n°k) into three sub-goals, by replacing the plain-texts with zeros:

A A

@, {s}onny ~ @, {0(len(s))} o5) ~ ¥ {O(Ien(t))};;(n,) ~ T, {t};f((n,)

~

We deal with the left and right sub-goals using the ccAj axioms. We deal with the length equality
constraint of the CCA; axioms using the axioms:

len(t) = len(0(len(t))) len(s) = len(0(len(s)))

which are valid in any computational model, using the fact that len interpretation is fixed. Finally, for
the middle sub-goal, we deconstruct the terms using the FA rule and then apply Dup and Fresh. Putting
everything together:

len(s) = len(0(len(s))) s o
{5 s ~ 0 {00en()} oy 1 @ {0Cen()} 5y ~ T {5
7 Trans
’&:7 {S}:E(n) ~ 177 {t};;(n’)
/ len(t) = len(0(len(t))) oA
i@, {0(len(s)) }or ey ~ 75 {0(len(t))} 05) 7, {o(|en(t))};4k(n,) ~ 7, {t};ﬁ(n,)
Trans

i, {0(len(s)} o5) ~ o At} oi)

u,len(s) ~ ¥, len(t)

i, len(s),ne ~ ¥, len(t), n. Fresh
i@, len(s), pk(n), ne ~ 7, len(t), p (o
@, {0(len(s))}35) ~ 7, {0(len(8) }og o,

Dup
FA3

2.6.2 The CcR-HK Axioms

We now give the axioms we designed for keyed-hash function satisfying the Collision Resistance assump-
tion. The idea is that, if a hash function H(-, k) is collision-resistant, then no polynomial-time adversary
can find distinct messages having the same image by H(-, k). Formally:

38 The Model

Definition 2.18 (CrR-HK [GBO01]). A hash function H is said to be collision resistant under hidden-key
attacks iff for any PPTM A with oracle access to the keyed hash function, the following quantity:

Pr(k : A% (17) = (mq, ma),mq # my and H(mq, k) = H(ma, k))
is negligible, where k is drawn uniformly at random in {0, 1}".
We translate this game in the logic as follows:

Definition 2.19. We let CR be the set of axioms:

CR
H(m1,k) =H(ma, k) = mq =my when k Ty) ma,ma

Remark 2.3. We need the implication here, we cannot simply state that, when the terms m; and mo
are distinct, we have:
(H(mq, k) = H(mg, k)) = false (2.11)

For instance, take m; = g(u) and ms = g(u’) where u,u’ are distinct and g is an attacker’s function
symbol. Then, even though m; and my are syntactically distinct, the function symbol g can be inter-
preted, e.g., as a function that discards its argument and always returns the same value. In such a case,
the computational interpretations of m; and ms are identical, and the formula in (2.11) is not valid. O

Proposition 2.7. The CR axioms are valid in any computational model where the function symbol H is
interpreted as a CR-HK keyed hash function.

Proof. Let b be the following boolean term:
H(mi, k) =H(ma, k) = mq =maq

Let M. be a computational model such that H is interpreted by as collision-resistant keyed hash function,
and assume that there exists an adversary A such that:

|PI' (PlvPZ : A(lna [[b]];?\’/lp:’pzva)) - Pr (pla P2t A(lnv [[true]]n/\/[)pchf)QapQ)) |

is non-negligible. Since b is a boolean term, [[b]]nMpc 1P2 € {0,1}, hence the existence of A is equivalent to:

Pr (p1,p2 : [b]40"* = 0) is non-negligible (2.12)

We are going to define an adversary B against the CR-HK game. Since the only occurrences of k in m;
and mo are as second argument of H, the adversary B can sample two value a; and by from, respectively,
[mi]am, and [me]a. (names different from k are uniformly sampled by B, and subterms of the form
H(u, k) are computed by calling the hash oracle). The adversary B returns (a; , ag). Then:
Pr (k : BOel (1M) = (1, o) , 1 # o2 and H(z1, k) = H(zy, k))

= Pr(p1,p2 : [ma] 0" # [ma] X072 A [H(ma, KR = [H(me, k)ﬂnf\/]pcl’pz)

= Pr(p1,p2 : = ([H(ma, IR = [Hime, IR = [mal 7 = [mae]007))

= Pr (pl,pg : a[H(mq, k) = H(msg, k) = mq = mz]]nMw:um)

= Pr(p1,p2 : [H(m, k) =H(ma, k) = my = ma] Vi = 0)

which by hypothesis (2.12) is non-negligible. [|

2.6.3 EUF-MAC Axioms

A Mac schema is a pair (Mac (), Verify(_, ,)) where Mac creates symmetric signatures of messages,
and Verify checks that some message has a valid signature. For every 7, they must satisfy the following
soundness relation:

Vk € {0,1}",Vm € {0,1}*. Verify(m, Mac, (m), k) = true

Moreover, Mac, () must be computationally unforgeable, even when letting the adversary have access
to a Mac oracle OMaCk(')' To successively forge a Mac, the adversary must find a pair (m, o) such that

Verify(m, o, k) and m was never queried to the oracle OMack(.). Formally:

2.6. Cryptographic Assumptions and Axioms 39

Definition 2.20. A Mac schema (Mac, Verify) is unforgeable against chosen-message attacks (EUF-CMA)
iff for every PPTM A, the following quantity:

Pr (k : AOM“k(')(ln) = (m, o), m not queried to OMaCk(') and Verify(m, o, k))

is negligible, where k is drawn in {0, 1}".

We explain how we translate this cryptographic assumption in the logic. Given two terms m, s where
m is a message and s is a (candidate) forgery of a Mac of m, if s is a valid forgery (i.e. Verify(m, s, k)
holds) then s must be a honestly generated Mac. Moreover, the set of honest Macs is simply the set of
all subterms of m and s which are of the form Mac,(_). This motivates the following definition:

Definition 2.21. We let set-macyk(u) be the set of Maced terms, using key k, in wu:
set-macy(u) = {m | Mac,(m) € st(u)}
We can now give the EUF-MAC axioms:

Definition 2.22. We let EUF-MAC be the set of axioms:

k ;Mac.(_) 8, m

_ — . EUF-MAC L
Verify(m, s, k) = Vg8 =Macy(u) whe S = set-macy (s, m)

For these axioms to be valid, we need the Mac schema to be such that every message has exactly one
valid Mac. Formally, we require that:

VEk € {0,1}",Vm € {0,1}*. Verify(m, s,k) = true — s = Mac,(m) (2.13)

Proposition 2.8. The EUF-MAC azioms are valid in any computational model where (Mac, Verify) is
interpreted as an EUF-CMA secure function and satisfies (2.13).

Proof. We assume that there is a computational model M. where (Mac, Verify) is interpreted as an
EUF-CMA secure function. Moreover, we assume that there is an instance:

: EUF-MAC
Verify(m, s, k) = \/,cq 5= Maci(u)

of the EUF-MAC axioms which is not valid in M., where S = set-maci (s, m). Therefore we know that the
following quantity is non-negligible:

Pr (1, s+ [Verify(m, s, QIR A [V e 5 = Mac, ()] 37
Or, equivalently, the following quantity is non-negligible:

Pr (pl,pg . [Verify(m, s, k)]]y\’/lp:"p2 A /\ues[[s]]?\",lpcl’p2 + [[Mack(u)]]y\’,lp:’pz) (2.14)

Using M., we can build an adversary A against the EUF-CMA game. The adversary A simply samples
two values as, an, from [s]ap, and [m]aq., by sampling all the subterms of s and m in a bottom-up
fashion. The adversary calls the Mac oracle Oy ac, () whenever he needs to sample a value from a subterm
of the form Mac, (_). Remark that the side-condition k CMac. () S, m ensures that this is always possible.
Then A returns as, a,,. Using the property (2.13), we know that m was never queried to the Mac oracle.
Hence, the advantage of A against the EUF-CMA game is exactly the quantity (2.14). It follows that A
has a non-negligible probability of winning the game. Contradiction. |

P-EUF-MAC; Axioms We can refine the unforgeability axioms EUF-MAC using a finite partition of the
outcomes, which is quite useful in proofs.

Definition 2.23. A finite family of conditionals (b;);cs is a valid CS partition under some axioms Ax if
the following formula is valid in every computational model satisfying the axioms Ax:

<\/1 bi A /.\#j b; # bj) = true

40 The Model

Definition 2.24. For every terms b, t, we let [b]¢t be the term if b then ¢ else defaut, where defaut is a
constant function symbol of types term and bool.

We can have a more precise axiom, by considering a valid CS partition (b;);c; and applying the
EUF-MAC axiom once for each element of the partition.

Definition 2.25. We let P-EUF-MAC, be the set of axioms:

k EMac () s,m

i (bi)icr is a valid CS partition

Verify(m, s, k) \/ b; A \/ s=Mac,(u) when < There exists (s;,m;)ics s.t. for every ¢ € T
i€l u€S; [bi]si = [bi]s A [b]m; = [bi]m

S; = set-mack(s;, m;)

Proposition 2.9. The P-EUF-MAC; azioms are valid in any computational model where (Mac, Verify) is
interpreted as an EUF-CMA secure function and satisfies (2.13).

Proof. To show this, we prove that the P-EUF-MAC, axioms are a logical consequences of the axioms
EUF-MAC and the axioms in Figure 2.1 and 2.2. The proof is pretty straightforward:

Verify(m, s, k) — \/ b; A Verify(m, s, k) (Since (b;)ier is a valid CS partition)
iel
= \/ b; A Verify(m;, s;, k) (Since [b;]s; = [bi]s and [b;])m; = [bi]m)
iel
= \/ bi A \/ si = Mac (u) (Using EUF-MAC for every i € I)
i€l u€S;
5 \/biA\/ s=Mac(u) |
el u€ES;

P-EUF-MAC Axioms We can further refine the unforgeability axioms, by noticing that Macs appearing
only in boolean conditionals can be ignored. For this, we let strict-st(u) be the set of subterms of u
appearing outside u’s conditionals. The definition is by structural induction on u.

Definition 2.26. For every u, we let strict-st(u) be the set of subterms of u appearing outside conditionals:

strict-st(if b then w else v) = {if b then u else v} U strict-st(u) U strict-st(v)
strict-st(f(u)) = {f(@)} U, ez strict-st(u) (Vf e F\{if_then else })

We define the set of strict Mac subterms of a term wu:

Definition 2.27. We let strict-set-macy(u) be the set of mac-ed terms under key k in u appearing outside
a conditional:
strict-set-macy (u) = {m | Mac,(m) € strict-st(u)}

We give the axioms:
Definition 2.28. We let P-EUF-MAC be the set of axioms:

k EMac,(_) s,m
(b;)ier is a valid CS partition

Verify(m, s, k) = Viel bi AV yeg, 8 =Mac,(u) when 1 There exists (si, m;)ier s.t. for every i € T
[bi]Si = [bl]S A [bl]ml = [bz}m
S; = strict-set-mac(s;, m;)

Proposition 2.10. The P-EUF-MAC azioms are valid in any computational model where (Mac, Verify) is
interpreted as an EUF-CMA secure function and satisfies (2.13).

2.6. Cryptographic Assumptions and Axioms 41

Proof. First, we are going to show that the following axioms are a logical consequences of the axioms
EUF-MAC and the structural axioms AXestruct-

k EMaCf(_) s, m

e — . 2.15
erify(m, s, k) Vies s acy (u) when {S = strict-set-macy (s, m) ()

Assuming the axioms above are valid, it is easy to conclude by repeating the proof of Proposition 2.9,
using the axioms above instead of EUF-MAC.

To show that the axioms in (2.15) are admissible, we are going to pull out all conditionals using the
properties of the if then else function symbols. This yields a term of the form C[Eoé’] where the terms
¢ are of the form Verify(u', s’, k). Then, we apply the EUF-MAC axioms to every e € €. Finally, we rewrite
back the conditionals. To be able to do this last step, we need, when we pulled out the conditionals, to
remember which conditional appeared where. We do this by replacing a conditional b with either true,
or falsey,, where the lower-script b is a label that we attach to the term.

This motivates the following definition: for every boolean term b, we let Val, = {trues,false;}. We
extend this to vector of conditionals by having Val,,, . ., = Valy, x---x Val,,. Basically, for every vector

of conditionals B , choosing a vector of terms o/ € Val Ei correspond to choosing a valuation of 5 .

We start showing the validity of (2.15). Let E be the set of conditionals appearing in s, m, and C be
an if-context such that:

Verify(m, s, k) < C [5 o (Verify(ml[7/3), s[7 /), k))DeValg}

where ¢[t /U] denotes the substitution of every occurrence of ¢ by @ in ¢. For every 7 € Valg, let
Sy = set-macy(s[7/3],m[7/3]). By applying EUF-MAC to every Verify(m[7 /3], s[7 /5], k) we get:
Verify(m, s, k) = C[g o (\./UES,y s[ﬁ/g] = Mack(u))ﬁe\/alg}
Since any conditional of s[i7 /] or m[7/f] is of the form true, or false, for some label 2, we know that:
Sy = set-macy(s[7 /5], m[i7/3]) = strict-set-macy (s[7 /5], m[7/3])
Moreover, we can check that:
strict-set-macy(s[77 /], m[7/3]) = (strict-set-macy (s, m)) [7 /3]

Let S = strict-set-maci(s,m), we just showed that Sy = S[77/5]. Hence:

—

C|F o (Vucs, 517/8) = Mac(w) peva, | = C|F @ (Vucsioss 41715 = Mac(w) ey, |
2 C[F o (Vaes = Macy () [7/8]) ey, |

= \/ s = Mac, (u) [|
uesS

CR-KEY_ Axioms Finally, we have an axiom stating that two macs generated with distinct random
keys cannot be equal.

Definition 2.29. We let CR-KEY» be the set of axioms:

ka kl EMac,(_) u,v

Mac, (u) = Mac,, (v) = false ~ when {k, K e N KK

Proposition 2.11. The CR-KEYy azioms are valid in any computational model where (Mac, Verify) is
interpreted as an EUF-CMA secure function.

We now give the proof of the above proposition.*

4This proof is due to Bruno Blanchet.

42 The Model

Proof. Assume that there exists a computational model M. and an instance:

Mac, (u) = Mac,/ (v) = false

of the CR-KEY axioms which is not valid in Mc. Then we know that [Mac,(u)] and [Macy (v)] coincide
on a non-negligible number of samplings. W.l.0.g. we assume that |u|+ |v| is minimal among all instances
of the axioms that are not valid. First, remark that:
Mac, (u) = Mac,. (v) -+ Verify(v, Mac, (u), k")
= \/ v=0' (where S = set-macy (v, u))
v'eS
using the EUF-MAC and CR axioms.” Hence:

Mac, (u) = Mac,/ (v) = \/ Mac, (u) = Mac,, (v")
v'eS

Since v’ is a strict subset of u or v, we know that for every v' € S, |u|+ |[v'| < |u|+max(|ul, |v|). Since S is

a finite set, and since Mac, (u) =Mac,, (v) is valid for a non-negligible number of samplings, we know that

there exists some v’ € S such that Mac, (u) = Mac,,(v') is valid for a non-negligible number of samplings.
By the same reasoning:

Mac (u) = Macy, (v) = Verify(u, Macy, (v), k)

= \/ Mac, (u") = Mac, (v) (where S’ = set-macy(u, v))
u’ €S’

where, for every v’ € S’ |u/| 4+ |v| < |v| + max(|ul, |v]). Again, since S’ is finite, there exists v’ € S’ such
that Macy (u’) = Mac,/(v) is valid for a non-negligible number of samplings.

Therefore we can always pick u’,v" such that |u'| + [v'| < |u| + |v| and Mac, (u) = Mac,.(v') is valid
for a non-negligible number of samplings (if |u| < |v|, we take v’ = v and v' € S, and if |v| < |u|, we take
u’ € S and v' = v). Contradiction. []

2.6.4 PRF Axioms

We now present the axioms we designed for keyed hash functions satisfying the Pseudo Random Function
(PRF) assumption. Informally, a keyed hash function H(:, k) is a PRF if its outputs are computationally
indistinguishable from the outputs of a random function. Formally:

Definition 2.30 (PRF [Gol01, GGMS6]). Let H(-,-) : {0,1}*x{0,1}" — {0,1}" be a keyed hash function.
The function H is a Pseudo Random Function iff, for any PPTM adversary A with access to an oracle Oy:

Pr(k: A%HC0(17) =1) = Pr(g: A% (17) = 1)

is negligible, where:
e k is drawn uniformly in {0,1}".
o g is drawn uniformly in the set of all functions from {0,1}* to {0,1}".

Here are the axioms:

Definition 2.31. We let PRF be the set of axioms:

fresh(n; i, m)

a,if vielmimi then 0 else H(m, k) when { k Ty . i@,m

~ 10 if Viepm =m; then O else n {mq | i€} = {u]Hu,k) € st(i,m)}

Proposition 2.12. The PRF azioms are valid in any computational model where H is interpreted as a
PRF function.

5Which is valid, as an EUF-cMa secure function is also cr-HK. We give a proof of (a generalization of) this in Section 4.7.2.

2.6. Cryptographic Assumptions and Axioms 43

Proof. Consider a computational model M? where H is interpreted as a PRF function, and an instance
of the axiom schema which is not valid in M?:

i, if Vielmimi then 0 else H(m, k)

~ u,if \/;c; m=m; then 0 else n

= (H(mg, k))ses and 7]}, b]] be contexts such that #[h] = @, blh] = Vicrea(m,m;) and such that
k & st(¥,b). To get a contradiction, we just have to show that:

Pr(p1. po A([1F], B HGm, 010 ™) = 1) ~ Pr(p1, po + (B[BRI ™) = 1) (2.16)

Let M. be an extension of M2 where we added two function symbols g, g’ € Fp which are interpreted as
random functions. Observe that M. is not a computational model, because we require that function in
Fp are interpreted as deterministic polynomial-time functions. Still, M. is a first-order model. Moreover,
M. and MQ’s interpretations coincide on terms which do not use g and ¢’. Hence, to prove (2.16) it is
sufficient to show that:

Pr(p1, ps + A(IFR), BRIHm, L) = 1) = Pr(ps, po : AR BRI) = 1) (2.17)

Let 7 = (g(my))icr. It is straightforward to check that, thanks to the PRF assumption of H, we can
replace all subterms of the form H(x, k) by g(x) on the left:

PI‘(P1,P2 : A([W[EL [b[ﬁ]]H(ma k)]]ﬁhpcl’pz) = 1) ~ Pr(p1,ﬂ2 : A(I[U[F]v [b[F]]g(m)Mf’pz) = 1)
Moreover, using the fact that the subterm g(m) is guarded by b[7"], we know that, except for a negligible
number of samplings, m is never queried to the random function g, except once, in [b[7 [Jg(m). It follows
that we can safely replace the last call to g(m) by a call to ¢’(m), which yields:

Pr(p1,p2 = A([O[7], p[7 [lg(m)IRf1 %) = 1) = Pr(p1, p2 : A([T[7], [b[F)lg'(m)]340 ") = 1)

c

Now, using again the PRF property of H, we know that:

Pr(p1, pz + A([3[7], b7 lg' (m)I%5 ") = 1) = Pr(pv. p2 : A([F[R], blA]]g (m)] 30 7*) = 1)

c

-

Finally, since ¢’ appears only once in ¥[h], [b[l_i]] g'(m), we can replace ¢’(m) by a fresh nonce. Hence:

Pr(p1, p2 + A([T[R], bR]lg' (M) k0 72) = 1) = Pr(p1, p2 « A([F[R], [BR]In]307*) = 1)

c

Which concludes the proof of (2.17). [|

Remark 2.4. If we have a valid instance of PRF:

. PRF
i,if \/;c; m =m; then 0 else H(m, k)

~ i,if \/;c;m =m; then 0 else n

then, using transitivity, we know that:

i PRF
,if \/,.; m=m; then 0 else H(m, k) .

1 Vier i ’ @,if \/,c;m =m; then 0 else n ~ ¥/
~ ,if \/ielmimi then O else n

— Trans
,if \/;c;m =m; then 0 else H(m,k) ~ ¥

Therefore the following axiom schema is admissible using PRF and the transitivity axiom Trans:

. . . fresh(n; @, m)
,if \/;c;m=m; then 0 else n ~ ¥

PRF when { k CH() u,m

,if \/;c; m=m; then 0 else H(m, k) ~ v {mi | i€ I} = {u| Hu,k) < st(@,m)}

We will prefer the axiom schema above over the axiom schema given in Definition 2.31. By notation
abuse, we also refer to the above axioms as PRF. O

44 The Model

2.7 Conclusion

We presented the syntax and semantics of the Bana-Comon logic for indistinguishability. We also defined
computational models as a special case of sorted first-order models, where terms are interpreted as
probabilistic polynomial-time Turing machines and ~ is interpreted as computational indistinguishability.

Secondly, we defined protocols as infinite but finitely branching labelled transition systems. We gave
two semantics for protocols: a computational semantics where the adversary adaptively chooses the next
action to execute, and a symbolic semantics where the action sequence is fixed in advance. Because we
require protocols to be finitely branching, we showed that these two notion are related: indistinguisha-
bility in the symbolic semantics, in some computational model M., implies indistinguishability in the
computational semantics in M.. Moreover, showing that two protocols are indistinguishable in Mq,
for the symbolic semantics, immediately translates into the Bana-Comon logic: it amounts to proving
validity of some (infinite) set of formulas in M.

This definition of protocols as labelled transition systems is generic. We believe it can capture any
notion of security appearing in the literature. We support this claim in the next two chapters by con-
structing labelled transition systems for, in Chapter 3, Juels and Weis notion of Privacy [JW09], and in
Chapter 4, a variant of Vaudenay’s unlinkability [Vau07].

Finally, we explained how to restrict the models that have to be considered when proving actual
protocols. We do this through axioms: on the one hand, structural axioms are valid in any compu-
tational model, and therefore can be safely added; on the other hand, implementation axioms forbid
some computational models and reflect properties that must hold in any concrete implementation of the
protocol studied. We designed several useful sets of implementation axioms for pairs, decryption, xor
and boolean functions. Moreover, we translated four standard cryptographic assumptions into axioms:
Indistinguishability against Chosen-Ciphertexts Attacks, Collision-Resistance under Hidden-Key attacks,
Unforgeability against Chosen-Message Attacks and Pseudo Random Functions.

CHAPTER 3

Privacy Proofs of RFID Protocols

In this chapter, we illustrate the usefulness of the Bana-Comon approach and the axioms we designed in
Chapter 2, by proving the security of two RFID protocols (more precisely their privacy). RFID protocols
are usually simple protocols, due to the low computing capabilities of a RFID tag: the protocols mostly
rely on hashing, xoring and concatenation. This is why they are a useful first application of the model:
we do not need complex axioms, and security proofs remain tractable.

Contributions Our contributions are:

e First, to express computational privacy. There are various definitions of privacy for RFID protocols.
We choose to formalize the notion of Privacy from [JW09]. As usual in computational security, this
is a game-based definition, where an adversary tries to guess the challenger internal bit . The
game is designed in such a way that guessing the bit b amount to guessing some tag’s identity.

Of course, other definitions can be expressed in a similar way.! We follow the approach presented
in Chapter 2:

— given a protocol P, we define a labelled transition system priv-lts,(P). Here, b is a boolean
parameter which corresponds to the challenger internal bit in the Privacy game. We actually
go one step further: we let priv-lts;"" (P) be the restriction of priv-lts,(P) to some given set of
traces, called (n, m)-privacy traces. This restricted LTS captures exactly the notion of Privacy
for n tags and m interactions between the adversary and the reader and tags.

— using Theorem 2.1, we know that to show Privacy for n tags and m interactions in some
computational model M, it is sufficient to prove that for every (n,m)-privacy trace 7:

Mc): ¢Eriv-ltstrue(P) ~ ¢Eriv-lts;a|5e(P)

e We use this proof technique on two examples taken from [VDRO8]: koL [KCL07] and LAK [LAKO6].
As far as we know, all published RFID protocols, that do not rely on encryption, are computationally
insecure. This is also the case of these two protocols. We propose modified versions of the protocols,
KCLT and LAK™, which prevent the known attacks. Some of the modified versions are secure in
the Dolev-Yao model. Depending on the assumptions on the primitives, they may however be
insecure in the computational model. For instance, if we assume the hash function to be pre-image
resistant and one-way, the corrected version of LAK, proved in the symbolic model in [HBD16], is not
necessarily computationally secure: there might be attacks on both authentication and unlinkability.
We actually need a family of keyed hash functions, which satisfies the PRF assumption. With the
appropriate implementation assumptions, we formally prove the security of the two protocols. For
LAK™T, we prove Privacy for two tags and six interactions, and for KCL*, we prove Privacy for two
tags and any number of interactions. The latter proof is by induction on the number of interactions.
This is a proof technique that we will use again, on a larger scale, to prove unlinkability of a variant
of the AKA protocol in Chapter 4.

1E.g., we will express a variant of Vaudenay’s unlinkability [Vau07] in Chapter 4

45

46 Privacy Proofs of RFID Protocols

Related Work RFID protocols have been studied, attacked, patched and automatically proved in
the Dolev-Yao model (see for instance [HBD16]). On the computational side, [Vau07| investigates the
computational definitions of unlinkability, together with examples of RFID protocols that satisfy (or not)
the definitions. There are however very few proofs of security in the computational model and, to our
knowledge, no formal security proof. For instance, an RFID protocol is proposed in [LBAMOT], together
with a (claimed) universally composable proof. The proof is however quite informal, and attacks were
found on this protocol (see [OP08]). Admittedly, such attacks can be easily circumvented, but this shows
that a formal approach is useful, if not necessary. Similarly, as reported in [JW09], other RFID protocols
that were claimed secure turned out to be broken.

A large fraction of RFID protocols, the so-called Ultralightweight RFID protocols (e.g. [Chi07] and
[PCERAO0S]), aim at ensuring only weak security properties against passive attackers, because of the strong
constraints on the number of gates in the RFID tags. We do not consider such protocols here.

Outline In Section 3.1 we recall the definition of privacy of a RFID protocol given by Juels and Weis
in [JW09], and we show how this property can be translated as a labelled transition system. In Section 3.2
we describe the KCL and LAK protocols, we give known attacks on them and formally prove the security of
fixed versions of the protocols. We also show that relaxing the assumptions yields some attacks. Finally,
in Section 3.3, we show (as expected) that abstracting pseudo-random numbers with random numbers is
sound, provided that the seed is not used for any other purpose.

3.1 Security Properties

Radio Frequency IDentification (RFID) systems allow to wirelessly identify objects. These systems are
composed of readers and tags. Readers are radio-transmiters connected through a secure channel to a
single server hosting a database with all the tracked objects information. Tags are wireless transponders
attached to physical objects that have a limited memory and computational capacity (to reduce costs).
To keep things simple, we assume a setting with a single reader, which represents both the database and
the physical radio-transmitters.

Example 3.1. As an example, we use a simple version of the KCL protocol. The original protocol
from [KCLO07] is informally described below:

Ta R
ka ka
nR

(A@nt, nT ® H(ng, ka))

The key ka is a shared secret key between the tag T and the reader R. Names nt,ng are randomly
generated by, respectively, the tag and the reader, at the beginning of the protocol; this will be justified
in Section 3.3. The protocol is expected to ensure both authentication and unlinkability. O

3.1.1 Privacy of RFID Protocols

We use the notion of Privacy for RFID protocols from Juels and Weis [JW09], which we informally recall.
This is a game-based definition, in which the adversary is a probabilistic polynomial-time Turing machine
interacting with a reader R and a finite set of tags {T1,..., T} (also probabilistic Turing machines). The
interactions between the adversary and the agents are through a fixed communication interface, which is
described below and in Figure 3.1:
e A tag T, stores a secret key k;, an identity ID;, a session identifier sid and the previous [challenge-
response pairs of the current session. It has the following interface:

— SETKEY: Corrupts the tag by returning its old key k; and identity 1D;, and allows the adversary
to choose a new key k; and a new id 1D,

3.1. Security Properties 47

First Phase: Second Phase:
T T Ty

O | B | O B | 9 =)

2125 |28 & 2 =

S2 e (128 | = &

H|H |»n H | |»n = a

A READERINIT R A READERINIT R
READERMSG READERMSG
> b/

Figure 3.1: Privacy game with two tags T1, To. The adversary A wins if b = b’.

— TAGINIT: Initialize a tag with a session identifier sid’. The tag deletes the previous session
identifier and the logged challenge-response pairs.

— TAGMSsG: The tag receives a challenge ¢; and returns a response r; (that was computed using
the key, the session identifier and the logged challenge-response pairs). Additionally, the tag
logs the challenge-response pair (¢;,7;).

e The reader R stores some private key material (for example a master secret key, the tags private
keys ...) and entries of the form (sid, status,cg,ro,...,c;) where status is either open or closed
depending on whether the session is completed or on-going. It has the following interface:

— READERINIT: Returns a fresh session identifier sid? along with the first challenge c,. The
reader also stores a new entry of the form (sid, open, c,).

— READERMsG: The reader receives a session identifier sid and a response r;. It looks for a
data entry of the form (sid,open,co,ro,...,¢;), appends the message r; to the data entry,
and either closes the session (by changing the status from open to closed) or outputs a new
challenge message ¢;+1 (possibly 0) and appends it to the data entry.

The adversary is allowed to corrupt (by a SETKEY command) up to n — 2 tags. At the end of a first
phase of computations and interactions with the reader R and tags {T1,...,T,}, the tags T,,—1 and T,
are removed from the set of available tags. The adversary is not allowed to corrupt the tags T, _; and
T,, during the first phase. Then one of these tags is chosen uniformly at random by sampling a bit b and
made accessible to the adversary as an oracle. The adversary performs a second phase of computations
and interactions with the reader R, the tags {T1,..., T,—2}, as well as the randomly selected tag T, —115
(obviously the adversary is not allowed to corrupt T,_114). Finally the adversary outputs a bit &', and
wins if it guessed the chosen tag (that is if b = 0’). A protocol is said to verify m-Privacy if any adversary
A using at most m calls to the interfaces, has a probability of winning the game bounded by % + faln),
where f4 is a negligible function in the security parameter. f4(n) is the advantage of A against the
m-Privacy game.

Remark 3.1. Our definition of privacy is slightly different from the one in [JW09]:

e We do not assume that the reader answers ‘“reject” or “accept” when a session is completed. We can
easily encode this feature by adding an answer from the reader at the end of the protocol with the
corresponding message. Not taking this as the default behavior allows to model adversaries that
are less powerful and do not have access to the result of the protocol.

o We use m-Privacy, whereas [JW09] uses (r, s, t)-Privacy where r and s are a bound on the number of
calls to READERINIT and TAGINIT respectively, and ¢ is a bound on the running time. We dropped

2We use as session identifier the number of interactions with the agents since the game started.

48

Privacy Proofs of RFID Protocols

|
(init, 0)

ADDTAGL Lo \{SETKEY, 1, SETKEY, } o \{SETKEY; -1}

J

AppTac l

S Phas S PHAs
(init7n) TARTPHASE {(phasel,n7m) |m} TARTPHASE2

~ {(phasey,n,m) | m}

ADDTAGL

Figure 3.2: The Labelled Transition System priv-1ts,(P) for Bouded Session Privacy.

the explicit mention of ¢ as we are only interested in proving privacy against any polynomial time
adversary. Moreover using m or r, s is equivalent, as, for a given protocol, the number of calls to
the interfaces is bounded by the number of calls to READERINIT and to TAGINIT, and conversely.

In [JW09], at the end of the first phase, the adversary chooses two uncorrupted tags T;, and T;,,
which are removed from the set of available tags. Then one of these tags is made accessible through
an oracle depending on the internal bit . We use a simpler definition, and always remove the tags
T,_1 and T,,. When considering attacks with a finite number of interactions between the adversary
and the reader and tags, both definitions coincide: this is just a renaming of the tags. O

3.1.2 Privacy Labelled Transition System

We now construct a labelled transition system priv-lts(P) corresponding to the Privacy game for a
protocol P. Actually, we define simultaneously two LTS using an internal bit b, which corresponds to the
Privacy game internal bit. The LTS priv-lts,(P) is depicted in Figure 3.2, and defined below.

e In a zeroth phase, we let the adversary choose the number of tags. We let Qg be the set of nodes

{(init,7) | ¢ € N}. Intuitively, we are in node (init,) if there are currently ¢ tags. For every
(init,7) € Qp, we have a transition adding a tag:

(ADDTAG, void, €, (init,i + 1)) € §(init, 7)

where void is a constant function symbol. Initially, we are in the state g. = (init,0). The protocol
specification must contain the initial internal memory o.. Moreover, the set of state variables Vars,,
must contain, for every i, at least the variables:

— @k, Tip, storing, respectively, the key and the identity of tag T,.

— (24,j);<r storing the j-th challenge-response of tag T,. Remark that the protocol must have a

finite number of challenge-response phase L.

At any time, we can stop adding tags and start the first phase of the protocol. We let Q; =
{(phasey,i,m) | i,m € N} be the set of nodes of phase one. The integer ¢ is the number of tags that
were added in the zeroth phase, and m is a counter which is incremented at every transitions. We
use m to ensure freshness of names (by indexing them with m), and to upper-bound the number
of sessions of the reader. For every i,m € N, we have the transition:

(STARTPHASE1, void, ¢, (phase;, ,0)) € d(init, %)

In the first phase we let the adversary interacts with the reader and the tags. We let I']" be the set
of possible actions of an adversary interacting with n tags and mpg reader sessions:

e = {SETKEY;, TAGINIT;, TAGMSG;, READERINIT, READERMSG; |1 < i <n,1 <j < mpg}

The protocol specification must comprise, for every action o € I', a term t, representing the
answer of the reader or tag to the action o. We assume that ¢, contains only fresh names®. If

3We use the integer counter m in the node to index names in tq.

3.1. Security Properties 49
we want to re-use a name, we need to store it in a state variable. We also have a state update
obP representing the modifications to the reader and tags internal memory when executing «. In
phase one, we can execute any action of I''?, except corrupting the tags T,,_; or T,. For every
a € TR\ {SETKEY,,—1, SETKEY,, }, we have the transition:

(a, o, 08P, (phase;, n,m + 1)) € d(phase;, n, m)
e We start phase two of the privacy game whenever we want. Let Qg = {(phasey,i,m) | i,m € N},
and for every i,m € N we have the transition:
(STARTPHASE, void, O preps (Phasey, i, m)) € &(phasey,i,m)
Where oy, sets all logged challenge-response pairs of tags T,,—1 and T,, to unset, and keep the tag
T,_1 or T, according to the internal bit b:
unset if x=xn_1; or Ty 5, where j < L
o-grep(x) = xkn,prb if x= Tk, 1
Tip,_14p M X=Tip,
e Phase two works like phase one, except that we have one less tag and are not allowed to corrupt

the tag T,_1. Therefore, for every a € I'}'® \{SETKEY,,_1 }, we have the transition:

(o, o, 0P, (phasey, m, m + 1)) € d(phasey, n,m)

Example 3.2. Let us return to Example 3.1. Each tag T4, has an identifier A; and a key ky4,. In the
KCL protocol the TAGINIT; call is useless because the tag has only one message to send in a round of
the protocol (TAGINIT; is used to tell a tag to stop the current round of the protocol and to start a new

one).

We describe the terms ¢, and state updates o when in state (phase;, i, m) or (phasey,i,m):

tserKey; = (Tk; , T,): the data of the tag ¢ are disclosed.

UEE:TKEW = {zx, = gxev; Xin), Tio, > giv, (Xin) }: the key and id of the tag i are set to values chosen

by the attacker (gxpy,,gin; € G).

tracMse; = (T, ® n1, nT @ H(Xin, 2,)): the reply of the tag i follows the protocol, according to its
local store.

OTheMse, = € there is no update in this case (nothing is stored for further verifications in this
particular protocol)

tReapsrInr = (M, NF): when starting a new session, the reader sends the session identifier m and
a new challenge ng'.

OReaperiny Updates the local memory of the reader:
up

_.m m
ReaperInt — € = nr U

Privacy Traces A trace of actions 7 of priv-lts,(P) is uniquely characterized by:

The number of tags n, which is the number of actions ADDTAG in 7.

The number of interactions in the first phase p, which is the number of actions between STARTPHASE;
and STARTPHASE,.

The number of interactions in the second phase ¢, which is the number of actions after STARTPHASE,.

The sequence of actions (a;)1<i<ptq it

(TI\{SETKEY,,_1, SETKEYn})1<Z<p X (thll\{SETKEY”_l})

1<I<q

We call such a trace a (n,p,q)-privacy trace. We also use the name of (n,m)-privacy trace (where
m = p+q), when we do not care about the precise splitting of actions between phase one and phase two.

Using this, we can define privacy of a RFID protocol for a given number of tags n and interactions
with the adversary.

50 Privacy Proofs of RFID Protocols

Definition 3.1 (m-Fixed Trace Privacy). Given an Ax-interpretation Z. of the function symbols in F,, a
protocol P satisfies m-Fixed Trace Privacy for n tags if for every (n, m)-privacy trace 7 and computational
models M. extending Z., we have:

M. = ¢priv_ltstrue(P) ~ ¢PriV-1tSra|.=(P)
T T
We can now state the soundness theorem linking Fixed Trace Privacy to Juels and Weis’s Privacy.

Theorem 3.1. Let Z. be an Ax-interpretation of the function symbols in F,. If a protocol P satisfies
m-Fized Trace Privacy for n tags in Z. then it satisfies m-Privacy for n tags in Z..

Proof. Let I be an Ax-interpretation of the function symbols in F,. Then a protocol P verifies m-Privacy
with n tags in Z if and only if for every adversary A, the advantage of A against the m-Privacy game
is negligible. The conjunction of an interpretation Z. of the function symbols in F, and an adversary
A yields a computational model M4 extending Z.. Let priv-lts,”"™(P) be the restriction of priv-lts,(P)
to (n,m)-privacy traces. Then a protocol P verifies m-Privacy with n tags if and only if for every
adversary A:

priv-ltsgye (P) ~aqa priv-ltsg i (P) (3.1)

Then, using Theorem 2.1, we know that to have (3.1) it is sufficient to show that for every 7:

false

priv-lts;: ™ (P)
-

M.g\ ': ¢Eriv—lts:l,;:"(1:’) ~
Or equivalently, for every m, (n,m)-privacy trace 7, we have to show that:

Mf ': d)griv—lts"ue(P) ~ ¢Eriv—lts;a|se(l)) m

3.2 Two RFID Protocols

We are now going to describe two RFID protocols, LAK and KCL, as well as attacks, patches and security
proofs of the fixed versions.

We first consider that names are randomly generated numbers, even though, because of the limited
computing capabilities of the tags, they have to be implemented using a Cryptographic Pseudo-Random
Number Generator (PRNG). This issue will be discussed in the Section 3.3: we will show that we can
always safely abstract the pseudo random numbers as random numbers, provided that a PRNG is used
and the random seed is never used for other purposes.

3.2.1 A Known Attack on KCL

Let us return to the example of the KCL protocol:

Ta R
] o]
nR

<A Dnt,ntD H(nR, kA)>

As reported in [VDROS], there is an attack that we depict in Figure 3.3. In this attack the tag is
challenged twice with the same name: observing the exchanges between the tag and the reader, the
adversary can replay the name. Finally the adversary checks if he is talking with the same tag by xoring
the two components of the message sent by the second tag, and verifies whether the result is the same as
what he obtained with the same operation in the first session.

In the left execution, the xor of the two part of the tag answers is the same:

Ta®nt ®nt @ H(nR, ka) = Ta @ ny @ nfr @ H(ng, ka)
= Ta @ H(ng, ka)

Whereas, in the right execution, we obtain two values Ta @ H(ng,ka) and Tg @ H(ng, kg) which will be
different with high probability.

3.2. Two RFID Protocols 51

Ta hR R Ta R R
(Ta @n1, nT @ H(ngr, ka)) (Ta @ nT, nT ® H(nr, ka))

Ta nR E Ts nR E
<TA€BH£|-, anEBH(nR,kA» <TB€Bn£|-7 nir@H(nR;kB»

| | | |

Figure 3.3: Attack against the original KCL protocol

3.2.2 KcL', a Revised Version of KCL

We propose a simple correction to the KCL protocol: we replace the first occurrence of the name nt with
its hash, breaking the algebraic property that was used in the attack. This protocol is depicted below.
To our knowledge, there exists no formal study of this revised version.

Ta R
ka ka
nR

(A@H(nt,ka), nT ®H(ngr, ka))

We now illustrate our method by showing that the KCL™ protocol verifies m-Privacy with two tags A
and B. Assuming collision resistance only, there is actually an attack on the protocol KCL™ (exactly the
attack described later in Section 3.2.4). We therefore assume the PRF property.

To prove privacy of the KCLT protocol, we need some assumptions on the protocol primitives. We
require that the pair, xor and boolean functions satisfy the axioms Ax), Axg and Axpeo We gave in
Subsection 2.5.2. Moreover, we need some assumption on the length of agent names and hashes: we
require that agent names and hashes are of length 7 (the security parameter). Since names in A are
always of length 7 in a computational model, we state that len(X) = len(n) and len(H(z,y)) = len(n) (for
any agent X and n € \).

Definition 3.2. We let Ax,fig be the union of Ax(y, Axg, Axpool and, for any n € N, the length axioms:

len(X) = len(n) " where X € {A, B} len(H(z,) = len(n) /"

Theorem 3.2 (Unlinkability of KcL™). For every m, the KCL' protocol verifies m-Fized Trace Privacy
for two tags for every Ax,fqg-interpretation I of F, where H is interpreted as an PRF function.

Proof. Using Theorem 3.1, it is sufficient to show that P satisfies m-Fixed Trace Privacy for two tags.
In this proof, we write g(¢) instead of g;(¢) with i = |¢|, where g; € G. Moreover, the primed version

of a term t is the term %, in which the names ny,...,n; appearing in ¢ have been replaced by the primed
names n’,...,n;. We will use t!f (where Id = A or B) to denote the response of the tag Tiq to a challenge:

ty = (ld @ H(nr,kia) , n7 & H(g(¢), kia))

We prove this by induction on m. Let ¢, ¢~> be two sequences of terms from the m-Fixed Trace Privacy
definition, i.e.

¢ = (bgriv—ltstme(P) (5 = (bgriv—ltsmn(P)

for some (2, p, ¢)-privacy trace 7 (with p + ¢ = m). By induction hypothesis, we assume that we have a
derivation of ¢ ~ ¢ (in the base case, this is the reflexivity of ~). We have two cases.

52 Privacy Proofs of RFID Protocols

If the adversary decides to start a new session with the reader, we need to show that ¢,ng ~ qg, nR
where ng is fresh in ¢, ¢. In that case, we apply the Fresh axiom and the induction hypothesis:

L(? Fresh
¢7 nR ~ ¢a nR

Otherwise, the adversary decides to interact with the tags, e.g. A on the left and B on the right (the
other cases are identical). In that case, we have to show that ¢, tg ~ ¢, tg where:

ty = (A@H(nT,ka), nT @ H(g(9), kn)) 2= (B@H(nt ke), nT ® H(g(9), ke))
We let n be a fresh name and v, @Z) be the sequences of terms:

’(/}E¢7HTEBH(9(¢)7|(A) 1;5(57 nT@H(g(é>7kB)

We start (from the root) our proof by applying the FA axiom (breaking the pair) and then to introduce
an intermediate term A@n since, intuitively, H(nt, ka) (resp. H(nT, kg)) should be indistinguishable from
a random number.

’l/}a H(nTa kA) ~ 1/)7 n

1p7’A‘7H(n—|—>kA) N¢7A7n F'AFA
w7A@H(nT7kA)Nw7A@n Pl
= Trans
¥, A@H(nt,ka) ~ ¢,B@® H(nT, kg)

Oty ~d, 17

where P; is a derivation of), A@®n ~ 1), B ® H(nT,kg).

Left Derivation We have to find first a a derivation of ¢, H(nT,ka) ~ %,n. The ultimate goal is to
apply the PRF axioms. For that, we need to introduce, on both sides of the ~ predicate, equality tests
between the last message hashed under key ka (i.e. nt), and all the previous hashed messages under key
ka. We let my,...,m; be the set of messages hashed with ka in ¢. We know that these messages are
either names n%, or of the form g(¢') where ¢’ is a strict prefix of ¢.

Let o« = H(nT,ka), 8 =n. For all 1 <i <1 we let e; = eq(nT,m;), and s* be the term:

if e1 then z else ... if ¢; then x else x

We observe that, for every term u, u = s* is derivable from the equality axioms. We are now going to
use the CS axiom to split the proof. To do so we introduce for every 1 < i <[the term u?:

.
if 1 then 0 else ...if e;_1 then O else if e; then x else 0

And the term uf ;:
if 1 then 0 else ...if ¢; then 0 else z

By repeatedly applying the CS axiom we obtain:

Vie{l,...,l+1}, ¥,e1,...,e, uf Nﬁ,el,...,el,uf
11[}5 SH(nT’kA) ~ 1/’75"
wa H(“Tu kA) ~ ’(/}7n

First note that, using the =-ind axiom, we derive, for every 1 < <[, ¢; = false. This allows us to deal

CS

Equ

with cases 1 to [, since this implies that u® = u$* = 0 is derivable. Therefore we have for all ¢ € {1,...,1}:
i, false, ... false,0 ~ 1), false, ..., false, 0 Refl
Equ

(B
¢7€1a-~-ael7u? Nwaelv"welvui

Consider now the case i =1+ 1. The conditions on the occurrences of H and ka are satisfied, thanks to
the choice of eq,...,e;. Hence we can use the PRF axiom:

3.2. Two RFID Protocols 53

—————— PRF
U~ 1, l
Y, false, ... false,ui, | ~ ¢, false, ..., false,u;
3 Equ
¢7617"'7elvul11 Nwﬂelv"'vehu]

Right Derivation (P;) Now, we have to derive ¢, A@®n ~ ¥, B @ H(nr, kg). We start by replacing A
with B, splitting again the proof in two subgoals:
p,Aeon~9,Bdn), Bon~1,BaH(nT ks)
¢, A®©n~,BoH(nT, ks)
For the right part, we first decompose the goal:

Trans

1/3, H(nTt,kg) ~ @Z, n S
Y,n ~ 1, H(nT, kg)
¥,B,n ~ 1, B,H(nT, kg)
Y, B@n ~ 1), Ba®H(nT, kg)

Then, the derivation of v, H(nt,kg) ~ U, n is similar to the derivation of ¥, H(nt,ka) ~ 1, n.
For the left part, since n is fresh in ¢ and 1), we use the @®-ind axioms twice and the Fresh axiom:

ym

FA

M Fresh | -
Y,n~1h,n len(A) =len(n) > <" len(B) =len(n) en2
@-ind

l/J»A@nN(/;,B@n

It only remains to show that ¢ ~ 1[) First, we split the proof in three sub-proofs using transitivity:
LSim RSim

6,01 @ H(g(9),ka) ~ 6, nT ~ §,nT ~ &, n7 & H(g(0), ke)

MSim
And we conclude using @-ind and Fresh:

o~ ¢ Fresh
LSim MSim fes RSim o
¢,n1 @ H(g(4), ka) ~ ¢,nT © H(g(¢), ks)
d~q Ref ——————— H| N e H|
& Fresh |en(H(g(¢)’ kA)) -ien — Fresh Ien(H(g(qb), kB)) -en
¢,nt ~ o,nT _ é.nT ~ o, nT B
= len(nT) _ = len(nT) .
LSim -ind RSim Grind g

To keep the proof tractable, we considered only two tags. This means, in particular, that these tags
cannot be corrupted tags. Nonetheless, our method is expressive enough for multiple tags, including
corrupted ones, though we did not complete the proof in that case.

3.2.3 The LAK Protocol

The left part of Figure 3.4 describes the original protocol from [LAKO6]. As mentioned before, this is
a simplified version of the LAK protocol, without the key server. In the LAK protocol, the reader shares
a private key ka with each of its tags Ta, and h is an hash function. This is a stateful protocol: the
key is updated after each successful completion of the protocol, and the reader keeps in kOA the previous
value of the key. This value is used as a backup in case Ta has not completed the protocol (for example
because the last message was lost) and therefore not updated its version of the key. The protocol allows
to recover from such a desynchronization: the reader R can use the previous version of ka at the next

54 Privacy Proofs of RFID Protocols

The LAK Protocol Authentication Attack Against LAK
Ta R
(nr. h(ng & nr & ka)) (n, hlng & 17 & ka))
ka = h(ka) ; k& = ka E nls R
h(h(ng @ nt @ ka) © ng & ka) (R ®nr @ nT, h(ng @& nT S ka))
ka = h(ka) h(h(nr ® nt @ ka) ® nk ® ka)
.]]

Figure 3.4: The LAK Protocol (Left) and a Known Authentication Attack Against LAK (Right).

round (which is the version used by Ta) and finish the protocol. The protocol is supposed to achieve
mutual authentication and unlinkability. Even though such properties can be defined in various ways, we
recall below a known attack against the LAK protocol, which will force us to modify it.

An Attack on LAK An attack on authentication is described in [VDROS8] and is depicted in the right
part of Figure 3.4. In this attack, the adversary simply observes the beginning of an honest execution
of the protocol (without completing the protocol, so that the reader and the tag do not update the key)
between a tag A and the reader. The adversary obtains h(ng & nt @ ka) and the names ng,nt . He then
interacts with the reader to get a new name ni and impersonates the tag A by choosing the returned tag
n% such that ng @ nf = ng & nr.

3.2.4 A Stateless Revised Version of LAK

In [HBD16], the authors consider a corrected (and stateless) version of the protocol, which they proved
secure. This version of the protocol is described below:

Ta R
[ka ka
nR

(n7, h({nr,nT,kA)))

h ((h({nr,nT,ka)), NR, ka))
| |

This new version avoids the previous attack, which relied on the algebraic properties of exclusive-or.
Formally, the protocol is described in the applied pi-calculus in [HBD16], in which they prove the strong
unlinkability property of [ACRR10] in the Dolev-Yao model for an unbounded number of sessions.

Attack Against Stateless LAK Since the stateless version of LAK was proved in the symbolic model,
no computational security assumptions were made on h. We show in Figure 3.5 that choosing h to be
a one-way cryptographic hash function (OW-CPA and Strongly Collision Resistant for example) is not
enough to guarantee unlinkability.

The attack is quite simple: it suffices that the hash function h leaks a few bits of the hashed message
(which is possible for an one-way hash function). This means that, when hashing a message of the form
(nr, nT, k), the hash function h will leak some bits of the agent key k. Since the keys are drawn uniformly
at random, there is a non negligible probability for the leaked bits to be different when hashing messages

3.2. Two RFID Protocols 55

Ta R E Ta R E
(nT, h({nr, nT,ka))) (nT, h({nr, nT,ka)))

TA n;? E TB nk E
<n£|'7 h(<ni?7n£|'vk/-\>)> <n£|'7 h(<n;?vn£|'vk3>)>

| | | |

Figure 3.5: Unlinkability Attack in Two Rounds Against the Stateless LAK Protocol

Ta R
nR

<nT s H(c(nR, nT), kA)>

H(c(H(c(nr,nT), ka), nR), ka)

Figure 3.6: The LAK™ Protocol

with different keys. In particular an adversary will be be able to distinguish h({ng, nT,ka)), h({nk, nf, ka))
from h({ng, nT,ka)), h({ng, ns, kg)) with high probability.

Observe that this attack would still work if we modified the protocol to update the keys after a
successful execution of the protocol (in other word, if we consider the original LAK protocol with con-
catenation instead of xor), because the attacker could start executions of the protocol without finishing
them, preventing the keys from being updated.

Remark 3.2. In the original paper introducing LAK [LAKO06]|, the hash function is described as a one-
way cryptographic hash function, which a priori does not prevent the attack described above. However,
in the security analysis section, the authors assume the function to be indistinguishable from a random
oracle, which prevents the attack. It is actually sufficient to assume PRF, for which there are effective
constructions (subject to hardness assumptions). O

3.2.5 The LAKT Protocol

We describe here a stateless version of the LAK protocol, that we call LAKT. The protocol is depicted in
Figure 3.6. As in the LAK protocol, the reader shares with each tag a secret key k. We use a keyed-hash
function that is assumed to be PRF to prevent the attack depicted in Section 3.2.4. This protocol uses a
function ¢ that combines the names. It could be a priori a xor, as in the original protocol, or a pairing,
as in the revised version of [HBD16] or something else. We look for sufficient conditions on this function
¢, such that the protocol is secure.

We start by describing two different attacks that rely on some properties of the function c. In each
case, we give a sufficient condition on c that prevents the attack. Next, we show that these two conditions
are sufficient to prove that the LAK™ protocol verifies the Bounded Session Privacy property.

First Attack: The attack depicted below is a generalization of the attack from [VDROS§]. It works when
there exists a function s (computable in probabilistic polynomial time) such that the quantity below is
not negligible:

Pr(ng,nT,ng : c(ng, nT) = c(nk, s(nr, nT,ng))) (3.2)

56 Privacy Proofs of RFID Protocols

Ta " E Ta " E
(n7, H(c(g1,n7). ka)) (nT . H(c(g1,n7). ka))
Ta s(nr) E Te s(nr) £
(0%, H(c(s(nm), nF), k) (nf, H(c(s(n7), n%), ke))
] N] N

Figure 3.7: Unlinkability Attack Against LAKT

This condition is satisfied if ¢ is the xor operation (e.g. by taking s(ng, nt,ng) = ng © nt & ng).

Ta - E
(n7, H(c(nr,n7), ka))

E Nk R
(s(nr, nT,nR), H(c(ng,nT),ka))
H(c(H(c(nr,nT),ka), nR), ka)

. N

The attacker starts by sending a name ng to the tag, and gets the name nt chosen by the tag as well as
the hash H(c(ngr, n7),ka). Then the attacker initiates a second round of the protocol with the reader. The
reader sends first a name ng. The attacker is then able to answer, re-using the hash H(c(ng, n7), ka) sent
by the tag in the first round, choosing s(ng, nT, ng) as a replacement of the name n%. Using Equation (3.2),
there is a non negligible probability for the reader to accept the forged message as genuine.

This attack can be prevented by requiring ¢ to be injective on its first argument:

Va,b,z,y. eq(c(a,b),c(z,y)) = eq(a, z)

Second Attack: We have an unlinkability attack if we can distinguish between the answers of the tags,
even though the hash function is assumed to be a PRF. This is possible if there exists a constant g; and
a function s such that:

Pr(z,y: c(g1,2) = c(s(x),y)) is not negligible (3.3)

If this is the case, then the unlinkability attack described in Figure 3.7 has a non negligible probability
of success in distinguishing two consecutive rounds with the same tag A from one round with the tag A
and one round with the tag B.

The attack works as follows: it starts by impersonating the reader, sends g; to the tag and gets the
response (nt, H(c(g1,nT),ka)). Then the attacker initiates a new round of the protocol by sending s(nT)
to the second tag. Using Equation 3.3, there is a non negligible probability that the hash in the response
from the tag A in the second round of the protocol is the same as in the first round, whereas this will not
be the case if the second round is initiated with B.

This attack can be prevented by asking c to be injective on its second argument:

Va,b,z,y. eq(c(a,b),c(x,y)) = eq(b,y)

3.2. Two RFID Protocols 57

if eq(u,u’) then false else eq(c(u,v),c(u’,v")) = false
if eq(v,v’) then false else eq(c(u,v),c(u’,v")) = false

Figure 3.8: Injectivity Axioms on the Combination Function c

o= <nT’ ((g(¢2)’n%’)7kA)>

B = H(c(nk, m1(g(43))), ka)

7 = H(c(m(9(¢3)), k) k)

€1 =ng = (¢0) e1 = c(ng, m1(9(¢3))) = c(g(¢o),nT) (in term sgﬂ)
€2 = ng =R ea = c(ng, m1(g(43))) = c(nr, m1(g9(¢1))) (in term ¢)
€ =k =m2(9(01)) es = c(ng, m1(9(¢3))) = c(ma(g(¢1)).nr) (in term £)
;= ﬂf(g(fgf : } e1 = clnh 1 (9(69))) = clg(@2),) (in term s2)
EZ i :': i :;EZEZ;;;} es = c(nk, m1(g(93)) = c(ma(9(¢s)),nk) (in term £5,)

Figure 3.9: Term Definitions for the LAK" Unlinkability Proof

Unlinkability of the LAKT Protocol To prevent all the attacks against LAKT described above, we
are going to require ¢ to be right and left injective. This can easily be expressed in the logic using the
two axioms in Figure 3.8, which are satisfied, for instance, when c is a the pair function.

Three messages are sent in a complete session of the LAKT protocol: two by the reader and one by
the tag. Therefore, if we want to show interesting properties of the LAK™ protocol, we need to consider
at least 6 terms in the trace (two full sessions, e.g. twice with the same tag Ta or with the tag Ta and
the tag Tg). This leads us to consider the 6-Fixed Trace Privacy of the LAK™ protocol.

Theorem 3.3. The LAKT protocol verifies 6-Privacy with two tags for every Ax.g-interpretation Z. of
Fp where H is interpreted as a PRF function and where the injectivity azioms of Figure 3.8 are valid.
In particular, the following formula is derivable:

/B B
NR, S¢0,t¢1, nR7 S¢2,t¢3 ~ NR, S¢O7t¢17nR, 8¢2’t:ﬁ

where:

s¢ = (nr, H(c(g(o) n), Kia))

t(lf = [H(C(HR, 7T'1 k/d) = 7T2] H(C(Trg(g((b)), nR), k/d>
¢0 = R ¢1 = MR, Sgo ¢2 = MR, Sgo’t{;l
¢3 = NR, S¢O) t¢17 nf‘?a s:z;AQ ¢3 = NR, 8/(20’ tl(gﬂ anv S:;&Bz

As with the KCL* protocol, by induction on m, it should be possible to generalize the result to an
arbitrary m-Fixed Trace Privacy, although we did not do the proof.

Proof. Unsurprisingly, it turns out that left and right injectivity of ¢ implies the injectivity of c. That is,
the following formula is derivable using AXstruct, AXrfid and the structural axioms AXsryct:

eq(c(u,v),c(u’,v")) <> if eq(u,u’) then v =1" else false (3.4)

The proof is straightforward using left and right injectivity and the if then else axioms.

Most of the formulas are easy to prove, so we are going to focus on the formula explicitly given in
the theorem statement, which is in our opinion the hardest case. Before starting, we define several new
terms in Figure 3.9. We have similar definition for the tilded versions &, B, ¥, We start by applying
the FA axiom several times:

58 Privacy Proofs of RFID Protocols

. a 7 T o~a =Y
Proof Tree P;: ¢, uf,uy ~ ¢, U, uf
- = & 5 Fresh
¢,U1,n7u1 ~¢,u1,n,u1 %
o B .7 a ,n .7 a ,n .7 T o~a ~n =Y FA T o~a ~n =Y T ~a =B =7
¢,u1,u1,u1 N¢au13ulau1 ¢7u17u17u1 N¢au13ulau1 ¢,u1,u1,u1 Nd)?ul,ulaul

5 — 5 Trans
g ~a ~B
(ﬁ)u%aulaul N(Z),U%,Ul,ul

Proof Tree P,: o, ust ~ ¢, us
- ~——- Fresh
¢,U1,n N¢au13n

¢, uf uf ~ ¢, uf u] puf,uf ~ ¢, uf, i

¢,af, uf ~ ¢, uf, a]

PR S Trans
d)aulvul N¢vu1au1

Figure 3.10: Derivations P; and Ps

QSQ,Oé,ﬁy'Y ~ d)Zv&vﬂv;?
¢3at:£ ~ ¢37t2£
We are now going to use the CS axiom on the conditional ey4,e; to split the proof. To do so we
introduce the term:

FA*

u® = if e4 then (if e5 then x else z) else (if e5 then x else z)
and the terms:

uj = if e4 then 0 else (if e5 then 0 else z)
uj = if ey then 0 else (if e5 then z else 0)
ug = if e4 then (if es then 0 else x) else 0
uf = if ey then (if e5 then x else 0) else 0

Similarly we introduced the tilded versions of these terms. We observe that for all term s we have
s =u® and s = @°. Therefore we can apply the CS axiom, which gives us:

Vi e {la s a4}a ¢)27€4,€5,U?,U?,u2’ ~ ¢27é47é5aa' aﬂ‘
¢27a7ﬂ7’7/~¢270~[751’7
We let ¢ = @2, e4,e5 and ¢ = ¢, €4, €5.

Case i =1 Let n be a fresh name, we start by the derivation P; displayed in Figure 3.10. Using =-ind
we know that ¢; = e = €3 = false, and using the left injectivity of c this shows that e; = eo = e3 = false.
Therefore we know that:

u? = vP = if e; then 0 else if ey then 0 else (if €5 then 0 else (u?))

u] = v" = if e; then 0 else if ez then 0 else (if e3 then 0 else (uf))

Hence we can apply the PRF axiom, which shows that:

a B .7 a ,n Y PRI
¢7u17v 7u1 N¢,U1,U 7u1

a , B 7 a ,n 7
¢7u1au17u1 N¢7u17u1au1

Similarly we show that:

= . - —— PRF
~& ~n S ~a ~B ~7
¢7ulavvu1’\/¢au17v57u1

— —— 5 Equ
~a o ~no ~Y ~Oo P~
¢,U1,U1,U1N¢7U1,U1,U/1

3.3. Pseudo-Random Number Generator 59

It remains to show that ¢, uf,u] ~ ¢~), ag, 11'1? We do this exactly like we did to get rid of the uf and

ﬂ’f . First we use FA, Trans and Fresh to get the derivation P, displayed in Figure 3.10.

The formulas ¢, uf,u] ~ ¢,us,u] and g?),ﬂ‘f‘,ﬁ? ~ g{),ﬂf‘,ﬁ’f are dealt with exactly like we did for
o, uf, u’f yul ~ ¢, us, ul, ul, introducing the corresponding conditional tests. We do not detail these two
cases, but notice that the right injectivity of c is needed for them.

We now need to show that ¢, uf ~ ¢~>, @$, which is done by applying the FA axiom several time:

¢23 n;?a n£|'7 H(C(Q(QSQ), nll')) kA) ~ ¢27 n;}v n£|'7 H(C(g(¢2)a nir)a kB)
¢z ~ <l:53~~ A
(ba u(ly ~ ¢7u(11

Let 1 = ¢2, ng, n&, it is then easy to show that ¥, H(c(g(d2),), ka) ~ ¥, H(c(g(d2), n’), ka) is derivable
using the fact that nf is fresh in ¢, the right injectivity of ¢ and the PRF axiom.

FA™

Case i = 2 and 3 These case are very similar to the case i = 1, except that we need to use the Dup
axiom at some point to get rid of the double occurrence of v (in case i = 2) or « (in case i = 3).

Case i =4 Using (3.4) we know that
eq = if €4 then € else false es = if €5 then € else false
Since booleans €} = m1(g(¢3)) = nt and €5 = ng =11 (g9(¢p3)) we have:

if € then €5 else false = if €} then nk = n; else false
= if €} then false else false
= false

And therefore, for all term v we have uj = 0. Similarly we have 4§ = 0 This means that we have:

¢3 ~ b3
¢703070N¢~5707030

B 7 B A Equ
a Y a Y
¢7u47u4au4 N¢7u47u47u4

We already showed in the case i = 1 that ¢3 ~ 3 is derivable. |

3.3 Pseudo-Random Number Generator

A PRNG uses an internal state, which is updated at each call, and outputs a pseudo random number.
This can be modeled by a function G taking the internal state as input, and outputing a pair with the
new internal state and the generated pseudo random number (retrieved using the projections 7g and
7o) Besides, a function initg is used to initialized the internal state with a random seed (which can be
hard-coded in the tag).

Definition 3.3. A PRNG is a tuple of polynomial functions (G, initg, 7g, 7,) such that for every PPTM
A and for every n, the following quantity is negligible in #:

|Pr(r e {0,1}7 : A(mo(S0),---To(8n)) =1) = Pr(ro,...,r, € {0,1}": A(rg,...,r) = 1)]
where so = G(initg(r, 1)) and for all 0 <i < n, ;41 = G(wg(si)).
This can be translated in the logic using the PRNG axioms.

Definition 3.4. We let PRNG be the set of axioms:

so = G(initg(n))

() () PRNG L
To(80)s -+, To(Sn) ~ No,... Ny when _
0 0 Y0 <i<mn, sit1 = G(ms(s;))

60 Privacy Proofs of RFID Protocols

The soundness of these axioms is an immediate consequence of Definition 3.3.

Proposition 3.1. The PRNG azioms are valid in any computational model M. where (G, inits) is inter-
preted as a PRNG.

For each protocol where a strict separation exists between the cryptographic material used for random
number generation and the other primitives (e.g. encryption keys), pseudo random numbers generated
using a PRNG can be abstracted as random numbers.

Proposition 3.2. For every names n, (n;);<n and contexts Uy, ..., Uy, that do not contain these names,
the following formula is derivable using the structural axioms AXstrucr and the PRNG azioms:

Uolm0(50)]s - -+, Un[mo(sn)] ~ Uslnols ..., Unlnn)
where so = G(initg(n)) and Y0 <i < n, ;41 = G(ws(si)).
Proof. Let n,(n;);<n, and Up,...,U, be such that Up,...,U, do not contain n,(n;);<n. Let sp =
G(initg(n)) and V0 < i < n, s;41 = G(ms(s;)). We want to give a derivation of:

Uo[m6(50)]s - -+ s Unl[mo(sn)] ~ Uolnol, - - ., Unlny]

the structural axioms Axsiruet and the PRNG axioms.
For all 4, we let the context C; and the names (n} ;); be such that U; = C;[(n} ;);] and C; does not
contain any name (only function applications and holes) Then using the FA axiom we have:

((np)i)1<n,(7ro 51)) ((;

))1<n’()ZSVL
(('L])]’Tro

i)i
32)) ((f,j)])z<n
(0[<nfj>nwo<sz>l)i§n (Gln?)i,

Now, we can use the Dup axiom to get rid of multiple occurrences of the same name: indeed if there exists

a name m such that m = n? jand m = n, J then we can keep only one occurrence of m. Let my,..., m;
;

be such that for all i # j,m; # m; and {m; | <1} = {n}, | i <n,j}, then:

Perm

(
(

FA*

(mi)ign ’ (ﬂ-o(si))ign ~ (mi)ign) (ni)ign
((”f,j)j)ign (o (50)) i< ~ ((”f,j)j)ign s (N)i<n

Now by assumptions we know that {n, (n;);<,}N{m; | i <1} = 0, therefore we can apply the Fresh axiom
for all i <[to get rid of m;. Finally we conclude with the PRNG axiom:

*

Dup

PRNG

(Mo (5i))i<n ~ (Mi)i<n b
(MDr2n > (o5 san ~ (Mi)izn s ()yan T u

Remark 3.3 (Forward Secrecy). We did not study forward secrecy of RFID protocols, but this could
easily be done. The standard forward secrecy assumption on a PRNG states that leaking the internal
state mg(sy) of the PRNG (e.g. with a physical attack on the RFID chip) does not allow the adversary to
gain any information about the previously generated names (m,(s,))i<n. This could be expressed in the
logic using, for example, the following axioms:

so = G(initg(n))

o yoe3To\Sn), n) "~ Noy ...y Nn, n h .
To(S0) To(Sn), Ts(Sn) ~ ng Np, Ts(sn,) when {VO§z<n, 501 = Gls(s0)

3.4 Conclusion

We gave a framework for formally proving the security of RFID protocols in the computational model,
by expressing Juels and Weis notion of Privacy in the Bana-Comon model, using our labelled transition
system approach. We then illustrated this method on two examples, providing formal security proofs. We
also showed that the security assumptions used in the proofs of these two protocols cannot be weakened
(at least not in an obvious way).

CHAPTER 4

The 5G-AKA Authentication Protocol
Privacy

The protocols and the privacy property studied in Chapter 3 are simple. Although the simplicity of this
case study makes it a good first application of the Bana-Comon approach, it leaves us wondering how the
method would fare on a more involved example. In this chapter, we remedy this problem, by studying a
complex protocol and property. More precisely, we investigate the security of the 5G-AKA authentication
protocol described in the 5G mobile communication standards.

5G-AKA is a new version of the AKA protocol, which tries to achieve a better privacy than the 3G and
4G versions, through the use of asymmetric randomized encryption. Nonetheless, we show that except
for the IMsI-catcher attack, all known attacks against 5G-AKA privacy still apply. Therefore, we modify
the 5G-AKA protocol to prevent these attacks, while satisfying 5G-AKA efficiency constraints as much
as possible. Then, using the Bana-Comon indistinguishability logic, we formally prove that our protocol
is o-unlinkable. This is a new security notion, which allows for a fine-grained quantification of a protocol
privacy. We also prove mutual authentication as a secondary result.

4.1 Introduction

Mobile communication technologies are widely used for voice, text and Internet access. These technologies
allow a subscriber’s device, typically a mobile phone, to connect wirelessly to an antenna, and from there
to its service provider. The two most recent generations of mobile communication standards, the 3G
and 4G standards, have been designed by the 3GPP consortium. The fifth generation (5G) of mobile
communication standards is being finalized, and drafts are now available |[T'S318|. These standards
describe protocols that aim at providing security guarantees to the subscribers and service providers.
One of the most important such protocol is the Authentication and Key Agreement (AKA) protocol,
which allows a subscriber and its service provider to establish a shared secret key in an authenticated
fashion. There are different variants of the AKA protocol, one for each generation.

In the 3G and 4G-AKA protocols, the subscriber and its service provider share a long term secret key.
The subscriber stores this key in a cryptographic chip, the Universal Subscriber Identity Module (USIM),
which also performs all the cryptographic computations. Because of the USIM limited computational
power, the protocols only use symmetric key cryptography without any pseudo-random number generation
on the subscriber side. Therefore the subscriber does not use a random challenge to prevent replay
attacks, but instead relies on a sequence number SQN. Since the sequence number has to be tracked by
the subscriber and its service provider, the AKA protocols are stateful.

Because a user could be easily tracked through its mobile phone, it is important that the AKA
protocols provide privacy guarantees. The 3G and 4G-AKA protocols try to do that using temporary
identities. While this provides some privacy against a passive adversary, this is not enough against an
active adversary. Indeed, these protocols allow an antenna to ask for a user permanent identity when it
does not know its temporary identity (this naturally happens in roaming situations). This mechanism is
abused by IMSI-catchers [Str07] to collect the permanent identities of all mobile devices in range.

The 1MSI-catcher attack is not the only known attack against the privacy of the AKA protocols.
In [BHP'17], the authors show how an attacker can obtain the least significant bits of a subscriber’s

61

62 The 5G-AKA Authentication Protocol Privacy

sequence number, which allows the attacker to monitor the user’s activity. The authors of [AMRT12]
describe a linkability attack against the 3G-AKA protocol. This attack is similar to the attack on the
French e-passport [ACRR10], and relies on the fact that 3G-AKA protocol uses different error messages
if the authentication failed because of a bad Mac or because a de-synchronization occurred.

The 5G standards include changes to the AKA protocol to improve its privacy guarantees. In 5G-AKA,
a user never sends its permanent identity in plain-text. Instead, it encrypts it using a randomized
asymmetric encryption with its service provider public key. While this prevents the iMsi-catcher attack,
this is not sufficient to get unlinkability. Indeed, the attacks from [AMR™ 12, BHP*17] against the 3G and
4G-AKA protocols still apply. Moreover, the authors of [FOR16| proposed an attack against a variant
of the AKA protocol introduced in [AMR™12], which uses the fact that an encrypted identity can be
replayed. It turns out that their attack also applies to 5G-AKA.

Objectives Our goal is to improve the privacy of 5G-AKA while satisfying its design and efficiency
constraints. In particular, our protocol should be as efficient as the 5G-AKA protocol, have a similar
communication complexity and rely on the same cryptographic primitives. Moreover, we want formal
guarantees on the privacy provided by our protocol.

Related Work There are several formal analysis of AKA protocols in the symbolic models. In [CKR18],
the authors use the DEEPSEC tool to prove unlinkability of the protocol for three sessions. In [AMR"12]
and [vdBVdR15], the authors use PROVERIF to prove unlinkability of AKA variants for, respectively, three
sessions and an unbounded number of sessions. In these three works, the authors abstracted away several
key features of the protocol. Because DEEPSEC and PROVERIF do not support the xor operator, they re-
placed it with a symmetric encryption. Moreover, sequence numbers are modeled by nonces in [AMR112]
and [CKR18]. While [vdBVdR15] models the sequence number update, they assume it is always incre-
mented by one, which is incorrect. Finally, none of these works modeled the re-synchronization or the
temporary identity mechanisms. Because of these inaccuracies in their models, they all miss attacks.

In [BDH" 18], the authors use the TAMARIN prover to analyse multiple properties of 5G-AKA. For each
property, they either find a proof, or exhibit an attack. To our knowledge, this is the most precise symbolic
analysis of an AKA protocol. For example, they correctly model the xor and the re-synchronization
mechanisms, and they represent sequence numbers as integers (which makes their model stateful). Still,
they decided not to include the temporary identity mechanism. Using this model, they successfully
rediscover the linkability attack from [AMRT12].

We are aware of two analysis of AKA protocols in the computational model. In [FOR16], the authors
present a significantly modified version of AKA, called PRIV-AKA, and claim it is unlinkable. However,
we discovered a linkability attack against the protocol, which falsifies the authors claim. In [LSWW14],
the authors study the 4G-AKA protocol without its first message. They show that this reduced protocol
satisfies a form of anonymity (which is weaker than unlinkability). Because they consider a weak privacy
property for a reduced protocol, they fail to capture the linkability attacks from the literature.

Contributions This chapter contributions are:

o We study the privacy of the 5G-AKA protocol described in the 3GPP draft [TS318]. Thanks to the
introduction of asymmetric encryption, the 5G version of AKA is not vulnerable to the 1MSI-catcher
attack. However, we show that the linkability attacks from [FOR16, AMR*12, BHPT 17| against
older versions of AKA still apply to 5G-AKA.

e We present a new linkability attack against PRIV-AKA, a significantly modified version of the
AKA protocol introduced and claimed unlinkable in [FOR16]. This attack exploits the fact that, in
PRIV-AKA, a message can be delayed to yield a state update later in the execution of the protocol,
where it can be detected.

e We propose the AKA™ protocol, which is a modified version of 5G-AKA with better privacy guar-
antees and satisfying the same design and efficiency constraints.

e We introduce a new privacy property, called o-unlinkability, inspired from [HPVP11] and Vaude-
nay’s Strong Privacy [Vau07]. Our property is parametric and allows us to have a fine-grained
quantification of a protocol privacy.

4.2. The 5G-AKA Protocol 63

e We formally prove that AKA™ satisfies the o-unlinkability property in the Bana-Comon model.
Our proof is for any number of agents and sessions that are not related to the security parameter.
We also show that AKA™ provides mutual authentication.

Outline In Section 4.2 and 4.3 we describe the 5G-AKA protocol and the known linkability attacks
against it. We present the AKA™ protocol in Section 4.4, and we define the o-unlinkability property in
Section 4.5. We show how we model the AKA™ protocol using the Bana-Comon logic in Section 4.6, and
we describe the set of axioms we use in this chapter in Section 4.7. In Section 4.8, we state and sketch
the proofs of the mutual authentication and o-unlinkability of AKA™. We prove mutual authentication
in Section 4.9. In Section 4.10, we give some acceptance characterization conditions, which we use in
Section 4.11 to prove that the AKA™ protocol is o-unlinkable. Finally, we conclude in Section 4.14.

Starred Proofs and Sections Several proofs and sections of this chapter are annotated by a star %,
followed by a page number. This indicates that they are technical, and that the rest of the chapter should
be understandable without reading them. The page number corresponds to the page the technical proof
or section ends.

4.2 The 5G-AKA Protocol

We present the 5G-AKA protocol described in the 3GPP standards [TS318]. This is a three-party au-
thentication protocol between:

e The User Equipment (UE). This is the subscriber’s physical device using the mobile communication
network (e.g. a mobile phone). Each UF contains a cryptographic chip, the Universal Subscriber
Identity Module (USIM), which stores the user confidential material (such as secret keys).

e The Home Network (HN), which is the subscriber’s service provider. It maintains a database with
the necessary data to authenticate its subscribers.

e The Serving Network (SN). It controls the base station (the antenna) the UE is communicating
with through a wireless channel.

If the HN has a base station nearby the UE, then the HN and the SN are the same entity. But this is
not always the case (e.g. in roaming situations). When no base station from the user’s HN are in range,
the UFE uses another network’s base station.

The UFE and its corresponding HN share some confidential key material and the Subscription Perma-
nent Identifier (SUPI), which uniquely identifies the UE. The SN does not have access to the secret key
material. It follows that all cryptographic computations are performed by the HN, and sent to the SN
through a secure channel. The SN also forwards all the information it gets from the UF to the HN. But
the UE permanent identity is not kept hidden from the SN: after a successful authentication, the HN
sends the SUPI to the SN. This is not technically needed, but is done for legal reasons. Indeed, the SN
needs to know whom it is serving to be able to answer to Lawful Interception requests.

Therefore, privacy requires to trust both the HN and the SN. Since, in addition, they communicate
through a secure channel, we decided to model them as a single entity and we include the SN inside the
HN. A description of the protocol with three distinct parties can be found in [BDHT18].

4.2.1 Description of the Protocol

The 5G standard proposes two authentication protocols, EAP-AKA’ and 5G-AKA. Since their differences
are not relevant for privacy, we only describe the 5G-AKA protocol.

Cryptographic Primitives As in the 3G and 4G variants, the 5G-AKA protocol uses several keyed
cryptographic one-way functions: f'—f°, f* and f*. These functions are used both for integrity and
confidentiality, and take as input a long term secret key k (which is different for each subscriber).

A major novelty in the 5G version of AKA is the introduction of an asymmetric randomized encryption
{};f(Here pk is the public key, and n. is the encryption randomness. Previous versions of AKA did
not use asymmetric encryption because the USIM, which is a cryptographic micro-processor, had no
randomness generation capabilities. The asymmetric encryption is used to conceal the identity of the
UE, by sending {SUPI} ¢ instead of transmitting the SUPI in clear (as in 3G and 4G-AKA).

64 The 5G-AKA Authentication Protocol Privacy

UE HN

H SUPI, GUTI, k, pky, SQNy, H H SUPI, GUTI, K, sky, SQN H

GUTI or {SUPI} %
N

lif GUTI was used: GUTI « UnSet|

(n,sQN, @ fi(n), f((sQny, n)))

Input x: | SQN < sQny + 1]
e, SQN; m1(x), ma(x) & 2 (ny)
bmac < fi ({SQN,, n,)) = m3(x)
bson ¢ range(SQNy, SQN,)

bmac /\ bSQN
S SQN,
QN + SQN 2(n)

k

b]
|_‘_'7_"“:°_1 “Auth-Failure”
|

I:)mac A _‘bSQN ‘

(san, & F(n), £ ((sany , ny)))

Input y:

SQNF i (y) @ f* (n)

if " ((SQNF, n)) = ma(y) then SQNy ¢ SQNF + 1
I

n n

Conventions: < denotes assignments, and has a lower priority than the equality comparison operator =.

Figure 4.1: The 5G-AKA Protocol

Temporary Identities After a successful run of the protocol, the HN may issue a temporary identity,
a Globally Unique Temporary Identifier (GUTI), to the UE. Each GUTI can be used in at most one session
to replace the encrypted identity {SUPI}:f(. It is renewed after each use. Using a GUTI allows to avoid
computing the asymmetric encryption. This saves a pseudo-random number generation and the expensive
computation of an asymmetric encryption.

Sequence Numbers The 5G-AKA protocol prevents replay attacks using a sequence number SQN
instead of a random challenge. This sequence number is included in the messages, incremented after each
successful run of the protocol, and must be tracked and updated by the UE and the HN. As it may get
de-synchronized (e.g. because a message is lost), there are two versions of it: the UFE sequence number
SQNy, and the HN sequence number SQN,.

State The UE and HN share the UF identity SUPI, a long-term symmetric secret key k, a sequence
number SQN, and the HN public key pk,. The UE also stores in GUTI the value of the last temporary
identity assigned to it (if there is one). Finally, the HN stores the secret key sky corresponding to pky,
its version SQNy of every UFE’s sequence number and a mapping between the GUTIs and the SUPIs.

Authentication Protocol The 5G-AKA protocol is represented in Figure 4.1. We now describe an
honest execution of the protocol. First, the UF initiates the protocol by identifying itself to the HN,
which it can do in two different ways:

4.3. Unlinkability Attacks Against 5G-AKA 65

e It can send a temporary identity GUTI, if one was assigned to it. After sending the GUTI, the UFE
sets it to UnSet to ensure that it will not be used more than once. Otherwise, it would allow an
adversary to link sessions together.

e It can send its concealed permanent identity {SUPI}giN, using the HN public key pk, and a fresh
randomness ne.

Upon reception of an identifying message, the HN retrieves the permanent identity SUPI: if it received a
temporary identity GUTI, this is done through a database look-up; and if a concealed permanent identity
was used, it uses sky to decrypt it. It can then recover SQN, and the key k associated to the identity
SUPI from its memory. The HN then generates a fresh nonce n. It masks the sequence number SQNy
by xoring it with fﬁ(n), and mac the message by computing f&((SQNN7 n)). It then sends the message
(n,sany @ fi(n), fi((sQny, n))).

When receiving this message, the UE computes fﬁ(n). With it, it unmasks SQN, and checks the
authenticity of the message by re-computing fi((SQNN, n)) and verifying that it is equal to the third
component of the message. It also checks whether SQN, and SQN,, are in range'. If both checks succeed,
the UF sets SQN, to SQN,, which prevents this message from being accepted again. It then sends fﬁ(n)
to prove to HN the knowledge of k. If the authenticity check fails, an “Auth-Failure” message is sent.
Finally, if the authenticity check succeeds but the range check fails, UF starts the re-synchronization
sub-protocol, which we describe below.

Re-synchronization The re-synchronization protocol allows the HN to obtain the current value of
SQN,. First, the UF masks SQN, by xoring it with fﬁ’*(n)7 mac the message using fi’*((SQNU7 n)) and
sends the pair (SQN, ® fE’*(n) , f&’*(<SQNU, n))). When receiving this message, the HN unmasks SQNy
and checks the mac. If the authentication test is successful, HN sets the value of SQN, to sQN, + 1. This
ensures that HN first message in the next session of the protocol is in the correct range.

GUTI Assignment There is a final component of the protocol which is not described in Figure 4.1 (as
it is not used in the privacy attacks we present later). After a successful run of the protocol, the HN
generates a new temporary identity GUTI and links it to the UE’s permanent identity in its database.
Then, it sends the concealed fresh GUTI to the UE. The sub-protocol used to send a fresh GUTI is not
used in the privacy attacks we present in the next session. Therefore, we omit its description.

4.3 Unlinkability Attacks Against 5G-AKA

We present in this section several attacks against AKA that appeared in the literature. All these attacks
but one (the IMsI-catcher attack) carry over to 5G-AKA. Moreover, several fixes of the 3G and 4G
versions of AKA have been proposed. We discuss the two most relevant fixes, the first by Arapinis et
al. [AMR"12], and the second by Fouque et al. [FOR16].

None of these fixes are satisfactory. The modified AKA protocol given in [AMR 12| has been shown
flawed in [FOR16|. The authors of [FOR16] then propose their own protocol, called PRIV-AKA, and
claim it is unlinkable (they only provide a proof sketch). While analyzing the PRIV-AKA protocol, we
discovered an attack allowing to permanently de-synchronize the UE and the HN. Since a de-synchronized
UE can be easily tracked (after being de-synchronized, the UFE rejects all further messages), our attack is
also an unlinkability attack. This is in direct contradiction with the security property claimed in [FOR16].
This is a novel attack that never appeared in the literature.

4.3.1 1MsI-Catcher Attack

All the older versions of AKA (4G and earlier) are vulnerable to the 1MSI-catcher attack [Str07]. This
attack simply relies on the fact that, in these versions of AKA, the permanent identity (called the
International Mobile Subscriber Identity or 1IMSI in the 4G specifications) is not encrypted but sent in
plain-text. Moreover, even if a temporary identity is used (a Temporary Mobile Subscriber Identity or
TMSI), an attacker can simply send a Permanent-ID-Request message to obtain the UE’s permanent
identity. The attack is depicted in Figure 4.2.

1The specification is loose: it only requires that sQN, < sQNy < sQNy + C, where C is some constant chosen by the HN.

66 The 5G-AKA Authentication Protocol Privacy

vE TMSI or IMSI Atta:cker
"

[.
| If TMSI received

“Permanent-ID-Request”

IMSI

Figure 4.2: An mMsi-Catcher Attack

UEIMSIt HN
tauth = (n,SQNy ® 2 (n), fL((SQNy, n)))
fe(n)
UE s Attacker
| tauth
I

’ If IMST’ # IMSI, “
| “Auth-Failure”

1
’ If IMST' = IMSI; |

(sQNy @ f5 (n,) , f*((sQNy , ny)))

Figure 4.3: The Failure Message Attack by [AMR™12].

This necessitates an active attacker with its own base station. At the time, this required specialized
hardware, and was believed to be too expensive. This is no longer the case, and can be done for a few
hundreds dollars (see [SSBT16]).

4.3.2 The Failure Message Attack

In [AMRT12], Arapinis et al. propose to use an asymmetric encryption to protect against the IMsI-catcher
attack: each UF carries the public-key of its corresponding HN, and uses it to encrypt its permanent
identity. This is basically the solution that was adopted by 3GPP for the 5G version of AKA. Interestingly,
they show that this is not enough to ensure privacy, and give a linkability attack that does not rely on the
identification message sent by UE. While their attack is against the 3G-AKA protocol, it is applicable to
the 5G-AKA protocol.

The Attack The attack is depicted in Figure 4.3, and works in two phases. First, the adversary
eavesdrops a successful run of the protocol between the HN and the target UE with identity 1MsI, and
stores the authentication message taun sent by HN. In a second phase, the attacker A tries to determine
whether a UE with identity 1MsT’ is the initial UE (i.e. whether IMSI’ = IMSL;). To do this, A initiates a
new session of the protocol and replays the message tauth. If IMSI” # IMSI, then the mac test fails, and
UE,s answers “Auth-Failure”. If iMSI’ = IMSI;, then the mac test succeeds but the range test fails, and
UE sy sends a re-synchronization message.

The adversary can distinguish between the two messages, and therefore knows if it is interacting with
the original or a different UE. Moreover, the second phase of the attack can be repeated every time the
adversary wants to check for the presence of the tracked user IMSI; in its vicinity.

4.3. Unlinkability Attacks Against 5G-AKA 67

UEIMSIt n HN
{IMSIt}pf(N

UEB s) HN
n Ne
{mvsr'} o / {mvstepop

tauth = (n,5QN, @ f2(n), fL({sQNy , n)))

’ If IMST' # IMSI; i
| Failure Message

1
’ If IMST' = IMSI, |

| fﬁ(nr)

Figure 4.4: The Encrypted 1mMsI Replay Attack by [FOR16].

Proposed Fix To protect against the failure message attack, the authors of [AMR'12| propose that
the UF encrypts both error message using the public key pk, of the HN, making them indistinguishable.
To the adversary, there is no distinctions between an authentication and a de-synchronization failure.
The fixed AKA protocol, without the identifying message {IMSI}Z;N, was formally checked in the symbolic
model using the PROVERIF tool. Because this message was omitted in the model, an attack was missed.
We present this attack in the next section.

4.3.3 The Encrypted 1Ms1 Replay Attack

In [FOR16], Fouque et al. give an attack against the fixed AKA proposed by Arapinis et al. in [AMRT12].
Their attack, described in Figure 4.4, uses the fact the identifying message {IMSIt}gekN in the proposed
AKA protocol by Arapinis et al. can be replayed.

In a first phase, the attacker A eavesdrops and stores the identifying message {IMSIt}g;N of an honest
session between the user UE,s, it wants to track and the HN. Then, every time 4 wants to determine

whether some user UE,sy is the tracked user UFE,q,, it intercepts the identifying message {1msr’ };f(
sent by UE,sr, and replaces it with the stored message {IMSIt};; . Finally, A lets the protocol continue
without further tampering. We have two possible outcomes:

o If IMST' # IMSI; then the message taun sent by HN is mac-ed using the wrong key, and the UE
rejects the message. Hence the attacker observes a failure message.

e If IMSI’ = IMSI; then t,,, is accepted by UFEsr, and the attacker observes a success message.
Therefore the attacker knows if it is interacting with UE(IMSIL;) or not, which breaks unlinkability.

4.3.4 Attack Against The PRIV-AKA Protocol

The authors of [FOR16] then propose the PRIV-AKA protocol, which is a significantly modified version
of AKA. The authors claim that their protocol achieves authentication and client unlinkability. But
we discovered a de-synchronization attack: it is possible to permanently de-synchronize the UE and the
HN. Our attack uses the fact that in PRIV-AKA, the HN sequence number is incremented only upon
reception of the confirmation message from the UE. Therefore, by intercepting the last message from the
UE, we can prevent the HN from incrementing its sequence number. We now describe the attack.

We run a session of the protocol, but we intercept the last message and store it for latter use. Note
that the HN’s session is not closed. At that point, the UF and the HN are de-synchronized by one. We
re-synchronize them by running a full session of the protocol. We then re-iterate the steps described
above: we run a session of the protocol, prevent the last message from arriving at the HN, and then

68 The 5G-AKA Authentication Protocol Privacy

run a full session of the protocol to re-synchronize the AN and the UE. Now the UFE and the HN are
synchronized, and we have two stored messages, one for each uncompleted session. We then send the two
messages to the corresponding HN sessions, which accept them and increment the sequence number. In
the end, it is incremented by two.

The problem is that the UE and the HN cannot recover from a de-synchronization by two. We believe
that this was missed by the authors of [FOR16].? Remark that this attack is also an unlinkability attack.
To attack some user UFEg’s privacy, we permanently de-synchronize it. Then each time UFE;g; tries to
run the PRIV-AKA protocol, it will abort, which allows the adversary to track it.

Remark 4.1. Our attack requires that the HN does not close the first session when we execute the
second session. At the end of the attack, before sending the two stored messages, there are two HN
sessions simultaneously opened for the same UE. If the HN closes any un-finished sessions when starting
a new session with the same UEF, our attack does not work.

But this makes another unlinkability attack possible. Indeed, closing a session because of some later
session between the HN and the same UF reveals a link between the two sessions. We describe the attack.
First, we start a session i between a user UEp and the HN, but we intercept and store the last message
ta from the user. Then, we let the HN run a full session with some user UFEx. Finally, we complete the
initial session i by sending the stored message ta to the HN. Here, we have two cases. If X = A, then the
HN closed the first session when it completed the second. Hence it rejects ta. If X # A, then the first
session is still opened, and it accepts ta.

Closing a session may leak information to the adversary. Protocols which aim at providing unlinka-
bility must explicit when sessions can safely be closed. By default, we assume a session stays open. In
a real implementation, a timeout tied to the session (and not the user identity) could be used to avoid
keeping sessions opened forever. O

4.3.5 Sequence Numbers and Unlinkability

We conjecture that it is not possible to achieve functionality (i.e. honest sessions eventually succeed),
authentication and unlinkability at the same time when using a sequence number based protocol with no
random number generation capabilities in the UF side. We briefly explain our intuition.

In any sequence number based protocol, the agents may become de-synchronized because they cannot
know if their last message has been received.? Furthermore, the attacker can cause de-synchronization
by blocking messages. The problem is that we have contradictory requirements. On the one hand, to
ensure authentication, an agent must reject a replayed message. On the other hand, in order to guarantee
unlinkability, an honest agent has to behave the same way when receiving a message from a synchronized
agent or from a de-synchronized agent. Since functionality requires that a message from a synchronized
agent is accepted, it follows that a message from a de-synchronized agent must be accepted. Intuitively, it
seems to us that an honest agent cannot distinguish between a protocol message which is being replayed
and an honest protocol message from a de-synchronized agent. It follows that a replayed message should
be both rejected and accepted, which is a contradiction.

This is only a conjecture. We do not have a formal statement, or a proof. Actually, it is unclear how
to formally define the set of protocols that rely on sequence numbers to achieve authentication. Note
however that all requirements can be satisfied simultaneously if we allow both parties to generate random
challenges in each session (in AKA, only HN uses a random challenge). Examples of challenge based
unlinkable authentication protocols can be found in [HBD16].

4.4 The AKA™' Protocol

We now describe our principal contribution, which is the design of the AKA™ protocol. This is a fixed
version of the 5G-AKA protocol offering some form of privacy against an active attacker. First, we explicit
the efficiency and design constraints. We then describe the AKA™ protocol, and explain how we designed
this protocol from 5G-AKA by fixing all the previously described attacks. As we mentioned before,
we think unlinkability cannot be achieved under these constraints. Nonetheless, our protocol satisfies

24the two sequence numbers may become desynchronized by one step [-..]. Further desynchronization is prevented |...]”
(p. 266 [FOR16])
3Indeed, in an asynchronous communication system one never knows if the last message has been received.

4.4. The AKA™ Protocol 69

some weaker notion of unlinkability that we call o-unlinkability. This is a new security property that we
introduce. Finally, we will show a subtle attack, and explain how we fine-tuned AKA™ to prevent it.

4.4.1 Efficiency and Design Constraints

We now explicit the protocol design constraints. These constraints are necessary for an efficient, inex-
pensive to implement and backward compatible protocol. Observe that, in a mobile setting, it is very
important to avoid expensive computations as they quickly drain the UFE’s battery.

Communication Complexity In 5G-AKA, authentication is achieved using only three messages: two
messages are sent by the UE, and one by the HN. We want our protocol to have a similar communication
complexity. While we did not manage to use only three messages in all scenarios, our protocol achieves
authentication in less than four messages.

Cryptographic primitives We recall that all cryptographic primitives are computed in the USIM,
where they are implemented in hardware. It follows that using more primitives in the UE would make
the USIM more voluminous and expensive. Hence we restricc AKA™ to the cryptographic primitives
used in 5G-AKA: we use only symmetric keyed one-way functions and asymmetric encryption. Notice
that the USIM cannot do asymmetric decryption. As in 5G-AKA, we use some in-expensive functions,
e.g. xor, pairs, by-one increments and boolean tests. We believe that relying on the same cryptographic
primitives helps ensuring backward compatibility, and would simplify the protocol deployment.

Random Number Generation In5G-AKA, the UF generates at most one nonce per session, which is
used to randomize the asymmetric encryption. Moreover, if the UF was assigned a GUTI in the previous
session then there is no random number generation. Remark that when the UFE and the HN are de-
synchronized, the authentication fails and the UFE sends a re-synchronization message. Since the session
fails, no fresh GUTI is assigned to the UE. Hence, the next session of the protocol has to conceal the SUPI
using {SUPI}SEN, which requires a random number generation. Therefore, we constrain our protocol to
use at most one random number generation by the UFE per session, and only if no GUTI has been assigned

or if the UFE and the HN have been de-synchronized.

Summary We summarize the constraints for AKA™:

e It must use at most four messages per sessions.

e The UE may use only keyed one-way functions and asymmetric encryption. The HN may use these
functions, plus asymmetric decryption.

e The UE may generate at most one random number per session, and only if no GUTI is available, or
if re-synchronization with the HN is necessary.

4.4.2 Key Ideas

In this section, we present the two key ideas used in the design of the AKA™ protocol.

Postponed Re-Synchronization Message We recall that whenever the UE and the HN are de-
synchronized, the authentication fails and the UE sends a re-synchronization message. The problem is
that this message can be distinguished from a Mac failure message, which allows the attack presented
in Section 4.3.2. Since the session fails, no GUTI is assigned to the UFE, and the next session will use
the asymmetric encryption to conceal the SUPI. The first key idea is to piggy-back on the randomized
encryption of the next session to send a concealed re-synchronization message. More precisely, we replace
the message {SUPI}; by {(SUPI, SQNy)}5i . This has several advantages:

e We can remove the re-synchronization message that lead to the unlinkability attack presented in
Section 4.3.2. In AKA™, whenever the mac check or the range check fails, the same failure message
is sent.

e This does not require more random number generation by the UE, since a random number is already
being generated to conceal the SUPI in the next session.

70 The 5G-AKA Authentication Protocol Privacy

SUPI Sub-Protocol GUTI Sub-Protocol

~

ASSIGN-GUTI Sub-Protocol

Figure 4.5: General Architecture of the AKA' Protocol

The 3GPP technical specification (see [TS318|, Annex C) requires that the asymmetric encryption used
in the 5G-AKA protocol is the ECIES encryption scheme, which is an hybrid encryption scheme. Hybrid
encryption schemes use a randomized asymmetric encryption to conceal a temporary key. This key is
then used to encrypt the message using a symmetric encryption, which is in-expensive. Hence encrypting
the pair (SUPI, SQN,) is almost as fast as encrypting only SUPI, and requires the UFE to generate the same
amount of randomness.

HN Challenge Before Identification To prevent the Encrypted iMs1 Replay Attack of Section 4.3.3,
we add a random challenge n from the HN. The UF initiates the protocol by requesting a challenge
without identifying itself. When requested, the HN generates and sends a fresh challenge n to the UE,
which includes it in its response by mac-ing it with the SUPI using a symmetric one-way function Mac!
with key k.. The UE response is now:

({{supt, sav,)}, Macky ({(supt, saxo) g, m))

This challenge is only needed when the encrypted permanent identity is used. If the UF uses a temporary
identity GUTI, then we do not need to use a random challenge. Indeed, temporary identities can only be
used once before being discarded, and are therefore not subject to replay attacks. By consequence we
split the protocol in two sub-protocols:
e The SUPI sub-protocol uses a random challenge from the HN, encrypts the permanent identity and
allows to re-synchronize the UF and the HN.

e The GUTI sub-protocol is initiated by the UFE using a temporary identity.
In the sUPI sub-protocol, the UE’s answer includes the challenge. We use this to save one message: the
last confirmation step from the UFE is not needed, and is removed. The resulting sub-protocol has four
messages. Observe that the GUTI sub-protocol is faster, since it uses only three messages.

4.4.3 Architecture and States

Instead of a monolithic protocol, we have three sub-protocols: the SUPI and GUTI sub-protocols, which
handle authentication; and the ASSIGN-GUTI sub-protocol, which is run after authentication has been
achieved and assigns a fresh temporary identity to the UE. A full session of the AKA™ protocol comprises
a session of the SUPI or GUTI sub-protocols, followed by a session of the ASSIGN-GUTI sub-protocol. This
is graphically depicted in Figure 4.5.

Since the GUTI sub-protocol uses only three messages and does not require the UE to generate a
random number or compute an asymmetric encryption, it is faster than the SUPI sub-protocol. By
consequence, the UFE should always use the GUTI sub-protocol if it has a temporary identity available.

The HN runs concurrently an arbitrary number of sessions, but a subscriber cannot run more than
one session at the same time. Of course, sessions from different subscribers may be concurrently running.
We associate a unique integer, the session number, to every session, and we use HN(j) and UFE(j) to
refer to the j-th session of, respectively, the HN and the UE with identity ID.

One-Way Functions We separate functions that are used only for confidentiality from functions that
are also used for integrity. We have two confidentiality functions f and f", which use the key k, and
five integrity functions Mac'~ Mac®, which use the key kn. We require that f and f" (resp. Mac'-Mac®)
satisfy jointly the PRF assumption. This is a new assumption, which requires that these functions are
simultaneously computationally indistinguishable from random functions.

4.4. The AKA™ Protocol 71

Definition 4.1 (Jointly PRF Functions). Let Hy(:,"),..., H,(-,) be a finite family of keyed hash functions
from {0,1}* x {0,1}7 to {0,1}". The functions Hy, ..., H, are Jointly Pseudo Random Functions if, for
any PPTM adversary A with access to oracles Oy, ,..., Oy, :

|Pr(k AOH1<-,k>»---vOHn<uk)(177) =1)—Pr(gi,...,gn: ,4091(»»---70%(-)(177) =1)|

is negligible, where:
e k is drawn uniformly in {0, 1}".

® gi1,...,9, are drawn uniformly in the set of all functions from {0,1}* to {0,1}".
Observe that if Hy, ..., H, are jointly PRF then, in particular, every individual H; is a PRF.

Remark 4.2. While this is a non-usual assumption, it is simple to build a set of functions Hy,..., H,
which are jointly PRF from a single PRF H. First, let (tag;(-))1<i<n be a set of tagging functions.
We require that these functions are unambiguous, i.e. for all bit-strings u,v and i # j we must have
tag;(u) # tag;(v). Then for every 1 < i < n, we let H;(z,y) = H(tag;(z),y). It is straightforward to
show that if H is a PRF then Hy,..., H, are jointly PRF. O

UE Persistent State FEach UE,, with identity ID has a state state]’ persistent across sessions. It
contains the following immutable values: the permanent identity SUPI = ID, the confidentiality key k'°,
the integrity key ki- and the HN’s public key pk,. The states also contain mutable values: the sequence
number SQN, the temporary identity GUTI, and the boolean valid-guti,. We have valid-guti, = false
whenever no valid temporary identity is assigned to the UE. Finally, there are mutable values that
are not persistent across sessions. E.g. b-auth, stores HN’s random challenge, and e-auth, stores HN's
random challenge when the authentication is successful.

HN Persistent State The HN state statey contains the secret key sky corresponding to the public key
pky. Also, for every subscriber with identity 1D, it stores the keys k'™ and k,,, the permanent identity
SUPI = ID, the HN version of the sequence number SQN;P and the temporary identity GUTIY. It stores in
session’ the random challenge of the last session that was either a successful SUPI session which modified
the sequence number, or a GUTI session which authenticated 1D. This is used to detect and prevent some
subtle attacks, which we present later. Finally, every session HN(j) stores in b-auth’, the identity claimed
by the UF, and in e-auth’, the identity of the UF it authenticated.

4.4.4 The supPl, GUTI and ASSIGN-GUTI Sub-Protocols

We describe honest executions of the three sub-protocols of the AKA™ protocol. An honest execution is
an execution where the adversary dutifully forwards the messages without tampering. Each execution is
between a UE and HN(j).

The supPI Sub-Protocol This protocol uses the UE’s permanent identity, re-synchronizes the UFE and
the HN and is expensive to run. The protocol is sketched in Figure 4.6.

The UFE initiates the protocol by requesting a challenge from the network. When asked, HN(j) sends
a fresh challenge n?. After receiving n?, the UFE stores it in b-auth,, and answers with the encryption of
its permanent identity together with the current value of its sequence number, using the HN public key
pk,. It also includes the mac of this encryption and of the challenge, which yields the message:

({(suPr, sQN,)}%, . Macks ({(sUPT, sQN)T L 07))

Then the UFE increments its sequence number by one. When it gets this message, the HN retrieves the
pair (SUPI, SQNy) by decrypting the encryption using its secret key sky. For every identity ID, it checks
if sUPI = ID and if the mac is correct. If this is the case, HN authenticated 1D, and it stores ID in b-auth’,
and e-auth’. After having authenticated 1D, HN checks whether the sequence number SQN, it received is
greater than or equal to SQN'P. If this holds, it sets SQNI” to SQN,, + 1, stores n? in session)’, generates
a fresh temporary identity GUTIY and stores it into GUTI'®. This additional check ensures that the HN
sequence number is always increasing, which is a crucial property of the protocol.

If the HN authenticated 1D, it sends a confirmation message Macfs ((n? , SQN, + 1)) to the UE. This
message is sent even if the received sequence number SQN, is smaller than SQNY. When receiving the

72 The 5G-AKA Authentication Protocol Privacy

UE HN(j)

statel” statey

Request_Challenge

nJ

Input n,: b-authy < n,

({{sUPt, 5aN)}% , Macks ({{sUPT, SQN,)} ., n,)))

H SQN, < SQN, + 1 H Input y:
(IDy, SQN,) < dec(m1(y), sky)
biac < m2(y) = Macyn ((m1(y) , n?))
AID, = ID
ID 1

D
Inc €~ PMac \ SQN; > SQN}\ID
if by, then b-auth’, e-auth?, <—

if bj. then SQNY <« sQN, + 1
session), < n’
GUTLY < GUTV

. b
MacZs ((n?, san, + 1)) [PMac

Input z:
bok <z = Macﬁ.rg((b—authu, SQNy))
e-auth, < if bgx then b-auth, else fail

. .

Figure 4.6: The supI Sub-Protocol of the AKA™ Protocol

confirmation message, if the mac is valid then the UE authenticated the HN, and it stores in e-auth, the
initial random challenge (which it keeps in b-authy). If the mac test fails, it stores in e-auth, the special
value fail.

The GUTI Sub-Protocol This protocol uses the UE’s temporary identity, requires synchronization to
succeed and is inexpensive. The protocol is sketched in Figure 4.7.

When valid-guti, is true, the UFE can initiate the protocol by sending its temporary identity GUTI,.
The UE then sets valid-guti,, to false to guarantee that this temporary identity is not used again. When
receiving a temporary identity x, HN looks if there is an ID such that GUTIY is equal to x and is not
UnSet. If the temporary identity belongs to 1D, it sets GUTI® to UnSet and stores ID in b-auth?. Then it
generates a random challenge n’, stores it in sessionl’, and sends it to the UE, together with the xor of
the sequence number SQN'® with fio (n’), and a mac:

(07, 5QNY @ fioo ('), Maci ((n7 , SQNY, GUTIY)))

When it receives this message, the UE retrieves the challenge n/ at the beginning of the message,
computes fio(n?) and uses this value to unconceal the sequence number SQN'P. It then computes
Macpo ((n? ,SQN'P , GUTI,)) and compares it to the mac received from the network. If the macs are
not eraual, or if the range check range(sQN,, SQN'?) fails, it puts fail into b-auth, and e-authy to record
that the authentication was not successful. If both tests succeed, it stores in b-auth, and e-auth, the
random challenge, increments SQN,, by one and sends the confirmation message Macﬁm (n7). When receiv-
ing this message, the HN verifies that the mac is correct. If this is the case then the HN authenticated

4.4. The AKA™ Protocol 73

UE HN(j)

statey

valid-guti
g GUTIy

H valid-guti,, + false H Input x:
bip ¢ GUTIY = x A GUTILY # UnSet
if b;p then GuTIy <+ UnSet
b-auth], «+ 1D
sessiony, < n’

l bip

(n? ,SQN'P & fio (n7) , Macin ((n7, SQN'® | GUTIP)))

Input y:
nr, SQN, 1 (y), ma(y) @ fuo (n,)
bace ¢ 73(y) = Macin ((n,,SQN, , GUTI,)))
A range(SQNy, SQN,)
if bace then b-authy, e-auth, < n,
SQNy — SQNy +1
if =baec then b-auth,, e-auth, «+ fail

bacc ‘

Macﬁlnn‘(n,)

Input z:

Mac < (b-auth = 1D) A (z = Macyw (n))
Inc

if by, then e-auth’ < 1D
if b then sQNY < sQNy +1
GUTIy 4 GUTF

. .

Figure 4.7: The GuTI Sub-Protocol of the AKA™ Protocol

< bpac A sessiony” = n/

the UE, and stores ID into e-authy’. Then, HN checks whether session is still equal to the challenge n’
stored in it at the beginning of the session. If this is true, the HN increments SQN® by one, generates a
fresh temporary identity GUTIY and stores it into GUTIY.

The ASSIGN-GUTI Sub-Protocol The ASSIGN-GUTI sub-protocol is run after a successful authenti-
cation, regardless of the authentication sub-protocol used. It assigns a fresh temporary identity to the
UE to allow the next AKA™ session to run the faster GUTI sub-protocol. It is depicted in Figure 4.8.

The HN conceals the temporary identity GUTI generated by the authentication sub-protocol by
xoring it with . (n/), and macs it. When receiving this message, UE unconceals the temporary identity
GUTIYP by xoring its first component with f» (e-authy,) (since e-auth, contains the HN’s challenge after
authentication). Then UFE checks that the mac is correct and that the authentication was successful. If
it is the case, it stores GUTI? in GUTI, and sets valid-guti, to true.

74 The 5G-AKA Authentication Protocol Privacy

UE HN(j)

statel”

(GUTV & i (n) , Macye ((GUTI , n7)))

’ e-auth} = D

Input x:

GUTI, = 71 (x) @ fyn (e-authy)

bace ¢+ (m2(x) = Macﬁlra«GUTIr7 e-authy)))
A (e-auth, # fail)

GUTIy < if byee then GUTI, else UnSet

valid-guti, < bacc

. n

Figure 4.8: The ASSIGN-GUTI Sub-Protocol of the AKA™ Protocol

4.5 Unlinkability

We now define the unlinkability property we use, which is inspired from [HPVP11] and Vaudenay’s
privacy [Vau07].

Definition The property is defined by a game in which an adversary tries to link together some sub-
scriber’s sessions. The adversary is a PPTM which interacts, through oracles, with N different subscribers
with identities IDq,...,IDy, and with the HN. The adversary cannot use a subscriber’s permanent iden-
tity to refer to it, as it may not know it. Instead, we associate a virtual handler vh to any subscriber
currently running a session of the protocol. We maintain a list lfee of all subscribers that are ready to
start a session. We now describe the oracles Op:

e StartSession(): starts a new HN session and returns its session number j.

e SendHN(m, j) (resp. SendUE(m,vh)): sends the message m to HN(j) (resp. the UFE associated with
vh), and returns HN(j) (resp. vh) answer.

e ResultHN(j) (resp. ResultUE(vh)): returns true if HN(j) (resp. the UE associated with vh) has
made a successful authentication.

e DrawUE(ID;,,ID;,): checks that ID;, and ID;, are both in lge. If that is the case, returns a new
virtual handler pointing to ID;,, depending on an internal secret bit b. Then, it removes ID;, and
ID;, from Ifree.

b

e FreeUE(vh): makes the virtual handler vh no longer valid, and adds back to lfee the two identities
that were removed when the virtual handler was created.

We recall that a function is negligible if and only if it is asymptotically smaller than the inverse of
any polynomial. An adversary A interacting with O is winning the g-unlinkability game if: 4 makes
less than ¢ calls to the oracles; and it can guess the value of the internal bit b with a probability better
than 1/2 by a non-negligible margin, i.e. if the following quantity is non negligible in 7:

|2 x Pr(b: A% (17) =b) — 1|

Finally, a protocol is g-unlinkable if there are no winning adversaries against the g-unlinkability game.

Corruption In [HPVP11, Vau07], the adversary is allowed to corrupt some tags using a Corrupt
oracle. Several classes of adversary are defined by restricting its access to the corruption oracle. A strong
adversary has unrestricted access, a destructive adversary can no longer use a tag after corrupting it (it
is destroyed), a forward adversary can only follow a Corrupt call by further Corrupt calls, and finally a

4.5. Unlinkability 75

UE,
oA GUTIp HN

UE,,, where IDx = IDa or IDg HN
IDx = IDA

S NoGuti

N—
IDx = IDpg

[| [|

Figure 4.9: Consecutive GUTI Sessions of AKA' Are Not Unlinkable.

weak adversary cannot use Corrupt at all. A protocol is C unlinkable if no adversary in C can win the
unlinkability game. Clearly, we have the following relations:

strong = destructive = forward = weak

The 5G-AKA protocol does not provide forward secrecy: indeed, obtaining the long-term secret of a UFE
allows to decrypt all its past messages. By consequence, the best we can hope for is weak unlinkability.
Since such adversaries cannot call Corrupt, we removed the oracle from our definition.

Wide Adversary Remark that the adversary knows if the protocol was successful or not using the
ResultUE and ResultHN oracles (such an adversary is called wide in Vaudenay’s terminology [Vau07]).
Indeed, in an authenticated key agreement protocol, this information is always available to the adversary:
if the key exchange succeeds then it is followed by another protocol using the newly established key; while
if it fails then either a new key-exchange session is initiated, or no message is sent. Hence the adversary
knows if the key exchange was successful by passive monitoring.

4.5.1 o-Unlinkability

In accord with our conjecture in Section 4.3.5, the AKA™ protocol is not unlinkable. Indeed, an adversary
A can easily win the linkability game. First, A ensures that IDs and IDg have a valid temporary identity
assigned: A calls DrawUE(IDa, IDa) to obtain a virtual handler for IDa, and runs a SUPI and ASSIGN-GUTI
sessions between IDp and the HN with no interruptions. This assigns a temporary identity to IDa. We
use the same procedure for IDg.

Then, A executes the attack described in Figure 4.9. It starts a GUTI session with IDa, and intercepts
the last message. At that point, IDa no longer has a temporary identity, while IDg still does. Then, it
calls DrawUE(IDa, IDg), which returns a virtual handler vh to IDa or 1Dg. The attacker then starts a new
GUTI session with vh. If vh is a handler for IDa, the UE returns NoGuti.* If vh aliases IDg, the UFE returns
the temporary identity GUTIA. The adversary A can distinguish between these two cases, and therefore
wins the game.

o-Unlinkability To prevent this, we want to forbid DrawUE to be called on de-synchronized subscribers.
We do this by modifying the state of the user chosen by DrawUE. We let o be an update on the state of
the subscribers. We then define the oracle DrawUE, (ID;,, ID;,): it checks that IDa and IDg are both free,
then applies the update o to 1D;,’s state, and returns a new virtual handler pointing to 1D;,. The (g, 0)-
unlinkability game is the g-unlinkability game in which we replace DrawUE with DrawUE,. A protocol is
(g, o)-unlinkable if and only if there is no winning adversary against the (¢, o)-unlinkability game. Finally,
a protocol is o-unlinkable if it is (g, o)-unlinkable for any q.

4This is the special constant message the user sends whenever a temporary identity is asked from him. This message
was omitted in the description of the protocol in Figure 4.7. We refer the reader to the next section for the complete formal
modeling of the AKA™ protocol.

76 The 5G-AKA Authentication Protocol Privacy

Figure 4.10: Two indistinguishable executions. Square (resp. round) nodes are executions of the SUPI
(resp. GUTI) protocol. Each time the SUPI protocol is used, we can change the subscriber’s identity.

UEip, HN
GUTI

tauth . /

UEyp, or UE,, HN

| SUPI Session |

/ tauth

| GUTI Session |

Figure 4.11: A Subtle Attack Against The AKAT . Protocol

no-inc

Application to AKA™ The privacy guarantees given by the g-unlinkability property depend on the
choice of . The idea is to choose a o that allows to establish privacy in some scenarios of the standard
unlinkability game.”

We illustrate this on the AKA™ protocol. Let o, = valid-guti,, ~ false be the function that makes the
UE’s temporary identity not valid. This simulates the fact that the GUTI has been used and is no longer
available. If the UE’s temporary identity is not valid, then it can only run the SUPI sub-protocol. Hence,
if the AKA™ protocol is oy-unlinkable, then no adversary can distinguish between a normal execution
and an execution where we change the identity of a subscriber each time it runs the SUPI sub-protocol.
We give in Figure 4.10 an example of such a scenario. We now state our main result:

Theorem 4.1. The AKA™ protocol is o-unlinkable for an arbitrary number of agents and sessions when
the asymmetric encryption { }- is IND-CCAy secure and f and f* (resp. I\/Iaclfl\/lac‘r’) satisfy jointly the
PRF assumption. -

This result is shown later in the chapter. The intuition is that no adversary can distinguish between
two sessions of the SUPI protocol. Moreover, the SUPI protocol has two important properties. First, it re-
synchronizes the user with the HN, which prevents the attacker from using any prior de-synchronization.
Second, the AKA™ protocol is designed in such a way that no message sent by the UE before a successful
SUPI session can modify the HN’s state after the SUPI session. Therefore, any time the SUPI protocol is
run, we get a “clean slate” and we can change the subscriber’s identity. Note that we have a trade-off
between efficiency and privacy: the SUPI protocol is more expensive to run, but provides more privacy.

4.5.2 A Subtle Attack

We now explain what is the role of session)’, and how it prevents a subtle attack against the oy-

unlinkability of AKAT. We let AKAT . be the AKA™ protocol where we modify the GUTI sub-protocol

no-inc

5Remark that when o is the empty state update, the o-unlinkability and unlinkability properties coincide.

4.6. Modeling in The Bana-Comon Logic 77

we described in Figure 4.7: in the state update of the HN’s last input, we remove the check session)y = n’
(i.e. by = byac)- The attack is described in Figure 4.11.

First, we run a session of the GUTI sub-protocol between UE,,, and the HN, but we do not forward
the last message t,ueh to the HN. We then call DrawUE, ,(IDa, IDg), which returns a virtual handler vh
to IDp or IDg. We run a full session using the SUPI sub-protocol with vh, and then send the message
tauth to the HN. We can check that, because we removed the condition sessiony = n’ from by, this
message causes the HN to increment SQNP4 by one. At that point, UE,;, is de-synchronized but UE,y is
synchronized. Finally, we run a session of the GUTI sub-protocol. The session has two possible outcomes:
if vh aliases to A then it fails, while if vh aliases to B, it succeeds. This leads to an attack.

When we removed the condition session)” = n?, we broke the “clean slate” property of the SUPI sub-
protocol: we can use a message from a session that started before the SUPI session to modify the state
after the SUPI session. sessiony allows to detect whether another session has been executed since the
current session started, and to prevent the update of the sequence number when this is the case.

4.6 Modeling in The Bana-Comon Logic

We use the Bana-Comon logic to model the oy-unlinkability of the AKA™ protocol. To improve read-
ability, protocol descriptions often omit some details: e.g., in Section 4.4, we sometimes omitted the
description of the error messages. In other words, the AKA™ protocol presented in Section 4.4 is under-
specified. The failure message attack of [AMRT12] demonstrates that such details may be crucial for
security. Therefore, before proving the AKA™ protocol’s security, we need to fully formalize it, and to
make all assumptions explicit. We see two possible approaches:

e The first option, which we did not choose, consists in specifying the AKA™ protocol in the computa-
tional model. In that case, the agents are interactive Turing machines, which need to be described,
and the assumptions are properties of these machines. Since the oy-unlinkability property is game-
based, it directly applies to such a specification. Then, we translate the oy-unlinkability of this
protocol as the indistinguishability of two LTS. This require a tedious proof showing that the trans-
lation is sound. We also need to translate the assumptions into axioms of the logic. Finally, we
have to prove that the two LTS are indistinguishable in the logic.

e The other option, which we opted for, consists in directly describing the protocol in the Bana-
Comon logic, using a LTS. The assumptions on the protocol can be directly expressed in the logic
using axioms. This is simpler than describing the protocol and the assumptions as interactive
Turing machines and properties of these machines, and then translating them. Moreover, we do
not need any soundness proof. The problem with this approach lies in the security property, as
oy-unlinkability is a game-based property. Even though it is straightforward to express directly the
ou-unlinkability of a protocol using LTSs,® we cannot establish a formal link between the game-
based and LTS-based properties, since the game-based setting was never fully formalized. Instead,
we informally argue that our formal LT'S-based definition of o -unlinkability corresponds to the
game-based definition of Section 4.5.1.

4.6.1 The AKA™ Protocol Action Trace

We let S be a countable set of zero-arity function symbols, which are used to represent identities. We
are going to define the AKA]"{, protocol, which is the AKA™ protocol on N identities Sig = {ID1,...,IDy}.
The full AKA™ protocol can be obtained from the protocols (AKAE) Nen using a construction similar to
the one in Section 3.1.2, with a initial phase selecting the number of agents.

Symbolic State For every identity ID € Siy, we use several variables to represent UE,’s state. E.g.
SQNI” and GUTLY store, respectively, UE,;’s sequence number and temporary identity. Similarly, we have
variables for HN's state, e.g. SQNY. We let Vars, be the set of variables used in AKA]"\',:

Vars. — U SQN'?, GUTI, e-auth;, b-auth}}’, e-auth’,
7 b-auth’, s-valid-guti;;’, valid-gutiy, , session}’
ae{u,N}
JEN,IDESyy

6 As o, -unlinkability requires that the executions of specific scenarios of the protocol are indistinguishable.

78 The 5G-AKA Authentication Protocol Privacy

Transition System Q;>: Transition System QJ:

géj—l —»[PU;D(]', 0) PU (4, 1)HPUm(j7 2)}

T~

FU () PN, 0)

g1 TU (4, 0) TU(j,1) FN(j)

g5t Nsip ()

Convention: where £57 = {PUID(jo,i),TUID(jO,i),FUID(jo),NSID(jo) | jo < j}, the initial states of QI
are PU;p(0,0) and TU,,(0,0), and the initial states of Q% are PN(j,0) and TN(j,0). Every state of Q}
and QY is final.

Figure 4.12: The Transition Systems Used to Define Valid Action Traces.

We recall that a symbolic state o is a mapping from Vars, to terms. Intuitively, o(x) is a term representing
(the distribution of) the value of x.

Example 4.1. We can express the fact that GUTI}? is unset in a symbolic state o by having o(GUTL?) =
UnSet. Also, given a state o, we can state that o’ is the state o in which we incremented sQN! by having
o’(x) be the term o (SQNP) 4+ 1 if x is sQNIP, and o(x) otherwise. O

Action Labels In the (g, oy)-unlinkability game, the adversary chooses dynamically which oracle it
wants to call. This is not convenient to use in proofs, as we do not know statically the ¢-th action of
the adversary. We prefer an alternative point-of-view, in which the trace of oracle calls is fixed. Then,
there are no winning adversaries against the oy-unlinkability game with a fixed trace of oracle calls if
the adversary’s interactions with the oracles when b = 0 are indistinguishable from the interactions with
the oracles when b = 1.

For every set of identities Siy, we use the following action labels £ to represent symbolic calls to the
(¢, ow)-unlinkability oracles:

® NS;5(j) represents a call to DrawUE, (ID, _) when b = 0 or DrawUE, (_,ID) when b = 1.

e PU(j,%) (resp. TUp(4,4)) is the i-th user message in the session UE;,(j) of the SUPI (resp. GUTI)
sub-protocol.

e FU,5(j) is the only user message in the session UFE,(j) of the ASSIGN-GUTI sub-protocol.

e PN(j,i) (resp. TN(j,4)) is the i-th network message in the session HN(j) of the SUPI (resp. GUTI)
sub-protocol.

e FN(j) is the only network message in the session HN(j) of the ASSIGN-GUTI sub-protocol.

The remaining oracle calls either have no outputs and do not modify the state (e.g. StartSession),
or can be simulated using the oracles above. E.g., since the HN sends an error message whenever the
protocol is not successful, the output of ResultHN can be deduced from the protocol messages.

Valid Action Traces We recall that an action trace T is a finite sequence of action labels. Remark
that some sequences of actions do not correspond to a valid execution of the protocol. E.g. since the
session UE;,(j) cannot execute both the SUPI and the GUTI protocols, a valid action trace cannot contain
both PU(j,) and TU;p(j,). Similarly, the HN’s second message in the SUPI protocol cannot be sent
before the first message, hence PN(j,1) cannot appear before PN(j,0) in 7. This motivate the definition
of walid action traces.

Definition 4.2. Let (Q}”)pes, and (Q{,)]EN be the transition systems in Figure 4.12. A trace 7 =

aig, ..., aiy, is a valid action trace of the protocol AKA} if and only if 7 is an interleaving of the words

0 l .
Wipy s« s Wipy, Wy, - - -, W, - .. Where:

4.6. Modeling in The Bana-Comon Logic 79

e for every 1 < j < N, wyp, is a run of VY.

e for every j € N, wi is a run of QY.

Example 4.2. We give valid action traces corresponding to the honest execution of AKAE between
UE(i) and HN(j). If the SUPI protocol is used, we have the trace 74, (ID):

PU(4,0), PN(J,0), PUrp(4,1),PN(J, 1), PUsp(4,2), FN(j), FUsp ()
And if the GUTI sub-protocol is used, the trace Té’UjTI(ID):
TUID(i7 O)a TN(j7 O)a TUID(iv 1)a TN(.ja 1)7 FN(j)v FUID(i)

Which such notations, the left trace 7; of the attack described in Figure 4.11, in which the adversary only
interacts with A, is:

TUA(0,0), TN(0,0), TUA(0, 1), 7835, (A), TN(0, 1), 72:%, (A)

Similarly, we can give the right trace 7, in which the adversary interacts with A and B:

TUA(0,0), TN(0,0), TUA(0, 1), 7951, (B), TN(0, 1), 742, (B) O

4.6.2 The AKA™ Protocol Symbolic Outputs and State Updates

In Section 2.4 of Chapter 2, we represented the symbolic output ¢, and symbolic state update o, of a
protocol P when executing the action ai € £ using terms with variables in {xj,} U Vars,. Then, for any
action trace 7, this defined the symbolic trace:

P
s-trace; = (_, ¢i,0i)o<i<i

where ¢; is a finite sequence of ground terms representing the sequence of messages observed by the
adversary when executing the protocol P on the action trace 7, and o; is the symbolic state after 7.
Recall that in Chapter 2, we let ¢f be the last symbolic frame in s-tracel’, i.e. ¢. Similarly, we define
the last symbolic state o', and the last message observe ¢

Definition 4.3. For every action trace 7 and protocol P, if s—tracef = (_,¢i,0i)o<i<i and t is the last
term in ¢y, i.e. ¢y = ,t, then we let:

tf t 071.3 oy
Moreover, if 7 is the largest strict prefix of 7, i.e. 7 = 79, ai, then we let oi"F = 0'71_2 be the symbolic state
before the execution of the last action; and ¢i"P = qﬁfo be the sequence of all messages observed during

the execution of 7, except for the last message.

Description of AKA™ We describe the symbolic messages and state updates of AKA™. In this

chapter, we only consider the AKA™ protocol. Therefore, when the number of identities N is irrelevant,
. . . AKAL, AKAY AKAJ
we omit the protocol name and write ¢,, o, and ¢, instead of ¢ , Or and ¢ . We start by

definition the initial frame ¢, and initial symbolic state.

Definition 4.4. The initial frame of the AKA™ protocol is ¢. = pk,, and its initial symbolic state o, is
the function from Vars, to terms defined by having, for every ID € Sig and j € N:

o.(sQN?) = sqn-init.” o.(SQNY) = sqn-initly oe(GUTIY) = UnSet oc(e-authy) = fail
oc(b-authy) = fail o(e-auth?) = fail oc(b-auth!) = fail oc(s-valid-guti;;) = false

oc(valid-gutiy) = false oe(sessiony’) = UnSet

80 The 5G-AKA Authentication Protocol Privacy

Now, for every action label ai, we define t,; and o," using the variables {xjn} UVars,. As an example,
we describe the second message and state update of the session UE,(j) for the SUPI sub-protocol, which
corresponds to the action ai = PU;p(j,1). We recall the relevant part of Figure 4.6:

UE
L
|

Input n,: b-authy < n,

({0, sQN,)¥ Mack, ({1, san,)}%5 ne)

H SQN, < SQN, + 1 H

First, we build a term representing the asymmetric encryption of the pair containing the UE’s permanent

identity 1D and its sequence number. The permanent identity ID is simply represented using a constant

function symbol ID, and UE,,’s sequence number is stored in the variable sqQNIP. Finally, we use the
nd

o - Notice that the

encryption is randomized using a nonce nl, and that the freshness of the randomness is guaranteed by

indexing the nonce with the session number j. Finally, we can give 5 and o,

asymmetric encryption function symbol to build the term ¢’ = {(ID, sQNy)}

SQN'® 5 suc(sQN'P) e-auth), — fail
ta = {2, Macko ((t2, xin))) ol = { b-authy — xi, GUTLP — UnSet
valid-gutiy, — false

Remark that we omitted some state updates in the description of the protocol in Figure 4.6. For example,
UE,, temporary identity GUTI? is reset when starting the SUPI sub-protocol. In the Bana-Comon model,
these details are made explicit.

The description of ¢, and o, for the other actions can be found in Figure 4.13 and Figure 4.14.
Observe that we describe one more message for the SUPI and GUTI protocols than in Section 4.4. This is
because we added one message (PUp(j,2) for suPI and TN(j, 1) for GuTI) for proof purposes, to simulate
the ResultUE and ResultHN oracles. Also, notice that in the GUTI protocol, when HN receives an
unassigned GUTI, it sends a decoy message to a special dummy identity IDgum.

Remark 4.3. For every action trace T = To, ai, the symbolic term ¢, can be thained from t5 by
replacing every occurrence of xin by g(¢7'), and every state variable x € Vars, by o7"(x). For example, if
ai = PUp(j, 1), then 2" = {(ID, o/"(sQN'))}"

P, and:

_ SQNP > suc(af(sQNP?)) e-auth) — fail
tr = (15", Macen ({5, g(41)))) o' = { b-authy — g(¢") GUTI'® — UnSet
valid-guti,; > false

We can get o, similarly. In Figure 4.13 and Figure 4.14, several intermediate terms are defined for some
action labels, e.g. acceptl’, msgl’. Here also we lift these definitions to action traces. For example, for

ai = PU;p(4,2) and 7 = _, ai, we let:

accept’ = eq(g(4l), Macs (0" (b-authi®) , o™ (sQN))) 0

4.6.3 Modeling o-Unlinkability

We associate, to any execution of the (g, oy)-unlinkability game with a fixed trace of oracle calls, a pair
of action traces (77,7,), which corresponds to the adversary’s interactions with the oracles when b is,
respectively, 0 and 1. We do this as follows:
e First, we consider a valid action trace 7 on a set of identities Sy, seen as virtual handlers. The
trace 7 is the sequence of oracle calls as seen by the adversary.

e We consider a mapping 6; which associates, to every virtual handler in S,,, an identity in Sy,
where Sig = {IDy,...,IDx}. This mapping must check that new virtual handlers are associated to

4.6. Modeling in The Bana-Comon Logic

81

Case ai = NS;p(j). oof = valid-guti;; — false

ai
Case ai = PU;p(4,0). tasj = Request_Challenge

Case ai = PN(j,0). ty = n/

ne then:

Case ai = PUp(j, 1). Let 157 = {(ID, SQN?) } i

_ 1
ta = (137, Macys ({57, xin)))
S = [saNy = suc(sQN'P) e-authy, — fail valid-gutiy, — false
ai b-auth;’ — Xin GUTL? +— UnSet

Case ai = PN(4j,1). Let tgec = dec(m(xin), sky), and let:

accept))’ = eq(7r2(x;n),Macigi(@rl(x;n), n))) A eq(71(tdec), ID;)
inc-accept,” = accepty;’ A geq(m2(tdec), SQNL)
tai = if acceptl; then Maciuw, ((n7, suc(ma(tdec))))

else if accept.; then Macyi, ((n , suc(ma(tdec))))

else Unknownld

D; D

v if inc-accept])” then n’ else sessiony

session N

GUTIY? > if inc-acceptl,’ then GUTI else GUTIL!
SQNY — if inc-accept).” then suc(ma(tqec)) else SQNY
up

ai b-auth? , e-auth? s if accept,; then ID;

else if accept},? then 1Dy

else Unknownld

Case ai = PUp(J, 2).

accept’ = eq(Xin, MacE£(<b—authLD, SQNP)))
tai = if accepty; then ok else error
0. = e-authy — if accept)); then b-auth; else fail
Case ai = FN(j).
msgl,’ = (GUTY @ fiw, (n), Mac)w, ((GUTY , n’)))
ta = if eq(e-auth, 1D;) then msg™*

IDo
ai

else if eq(e-auth?,1D,) then msg
else Unknownld

Case ai = FU;p (). Let tour = m1(Xin) @ fio (e-authy’), then:

acceptl, = eq(ﬂg(xin),Macﬁg(@GUTI, e-auth;’))) A —eq(e-auth;’, fail)

tai = if accepty; then ok else error
Jup valid-guti}, ~ accept.;
@ | QUTI — if acceptl. then tquqp else UnSet

Convention: For every j € N, Ut € N.

Figure 4.13: The Symbolic Terms and States for NS;,(j) and the SUPI and ASSIGN-GUTI Sub-Protocols.

82 The 5G-AKA Authentication Protocol Privacy

Case ai = TU(4,0).

ta = if valid-gutiy, then GUTI}” else NoGuti
wp _ J valid-guti;’ — false e-authy, > fail
ai s-valid-guti;, > valid-gutiy, b-auth; — fail

Case ai = TN(j,0). Let ¢ty = SQNI# @ fio; (n7), then:

msg;?"' = <n3 atIE];’" , Macixr:i (<n] ,SQNLDi) GUTI;\IDi>)>
accept™ = eq(GUTI, xin) A —eq(GUTIP?, UnSet)
tai = if accepty;' then msg.;*

ID2

else if accepty;? then msg;

1D
else msg,; 4

1D

GUTI," — if accept]” then UnSet else GuTI"

session* — if accept},’ then n’ else session

ot = { b-auth{ > if accept,;" then ID;
ID

else if accept,;” then 1Dy

else Unknownld

Case ai = TUp (], 1). Let tson = m2(Xin) @ fur (71 (Xin)), then:

accept’? = eq(ms(xin), Macks (1 (kin) , fsan » GUTI®))) A s-valid-guti® A range(SQNT, fuaw)
ta = if accept’ then Macys (1 (xin)) else error
- ai

ai

b-auth,, e-auth; ~ if acceptl; then 1 (xi) else fail
SQN; > if acceptl; then suc(sQN}’) else SQNIY

Case ai = TN(j7,1).

acceptl)’ = eq(xin, Macp o, (n7)) A eq(b-auth’,, 1D;)
inc-acceptly’ = acceptly’ A eq(sessiony,n)
tsi = if \/, acceptl.” then ok else error

SQNY* + if inc-accept,]* then suc(sQNy”)

ID;
else sQNy,
GUTIY? > if inc-acceptl.’ then GUT else GUTIL!
up _ . .
%ai = Y e-auth], ~ if acceptl." then ID;

else if accept},? then 1D,

else Unknownld

Convention: For every j € N, cuTl? € N.

Figure 4.14: The Symbolic Terms and States the GUTI Sub-Protocol.

4.6. Modeling in The Bana-Comon Logic 83

identities in lfee: for every identity ID € Sig, this mapping must be such that, at any point in 7,
there is at most one virtual handler which is alive and mapped to 1D by 6;. Similarly, we consider
a mapping 6, for the right side.

e Finally, we let 7; be the action trace obtained from 7 by replacing the virtual handler by the cor-
responding concrete identities using #;, and re-numbering the session numbers. We define similarly
7 using 6,.. Then Rfj\lf contains the pair of action trace (7, 7).

We define what it means for the AKAY, protocol to be is o -unlinkable.

Definition 4.5. The protocol AKA]J(, is oy-unlinkable in any computational model satisfying the axioms

Ax if, for every (7;,7,) € RY, we can derive ¢,, ~ ¢,, using Ax.

Proposition 4.1. fo is reflexive, symmetric and transitive. Moreover, for every T € support(Rfl\;), T

. . . +
is a valid action trace of AKAY .

Proof. We show this by induction over the valid action trace 7, on virtual identities Sy, used to define
7. We omit the details. [|

Most Anonymised Trace Given an action trace 7 € support(Rf},’), there is a particular and unique
action trace 7 which is the “most anonymised trace” corresponding to 7. Intuitively, 7 is the trace 7
where we changed a user identity every time we could (i.e. every time NS;,() appears). This is useful to
prove that the AKA™ protocol is oy-unlinkable, as it reduces the number of cases we have to consider:
we only need to show that we can derive ¢, ~ ¢, for every 7 € support(Rﬂ\().

There is a small difficulty here: the number if identities in 7 is not the same as in 7. Therefore, on the
right side we need to consider an execution of the AKA™ protocol with more identities. More precisely,
since the number of identities in 7 is upper-bounded by |Sig| X |7| = N X |7], it is sufficient to prove that
for every T € support(RY), for every N > N x ||, there exists a derivation of:

+
A g (41)
To do this, we consider a countable subset Spiq = {A; | ¢ € N} of 8. The set Spig is a set of base
identities. Then, for every base identity A;, we have copies A; = A;1,...,A;c,... of A;. The first copy
A; 1 is always A;, and all the copies are distinct function symbols. Moreover, for every (i,5) # (i, j'), the
function symbols A; ; and Ay ;s are distinct.

Definition 4.6. Given an identity A, ., we let fresh-id(A,) = Ap 41, and given a base identity A1 we
let copies-id(Ap1) = {Ap,; | 1 <i < C'}. We require that all these identities are distinct:

q = L‘ﬂi,jeN{AiJ}
where & denotes the disjoint union.
A basic action trace is an action trace using only base identities {Ay 1 | b € N}.

Definition 4.7. An action trace 7 is basic if it only uses network action labels and user action labels
Xin(_) where ID is a base identity, i.e. ID € Spq.

Then, for every basic action trace 7, we let 7 be the most anonymised action trace corresponding to 7.

Definition 4.8. For every basic action trace 7, we let 7 be the action trace obtained from 7 by re-
placing, each time we encounter an action NS, (j), all subsequent actions with agent ID by actions with
agent fresh-id(ID):
NSy (j), 70[¥ID/ID] when 7 = NS;5(j), 70 and vID = fresh-id(1D)
T = —_—
- ai, o when 7 = ai, 79 and ai & {NS;,(j) | ID € Si4,J € N}

Proposition 4.2. If 7 is a valid basic action trace on identities Sig then T is a valid action trace using
less than |Si| % |7| distinct identities.

Proof. The proof is straightforward by induction over 7. |

84 The 5G-AKA Authentication Protocol Privacy

We can check that for every (7;,7.) € RN we have 7, = 7. Moreover, ~ is a transitive relation.
Therefore, instead of proving that for every R (7, 7,) the formula in (4.1) Ax, it is sufficient to show
that for every 7 € support(Rfj\f), we can derive:

AKAT AKAYL

T ~ (bz
where N is larger than the number of distinct identities used in 7. Formally:

Proposition 4.3. Let Ax be a set of axioms including Trans and Sym. The AKA?{, protocol is o -
unlinkable in any computational model satisfying some axioms Ax if for every T € support(Rfl\f), for every
N > N x |7], there is a derivation using Ax of:

AKAY AKAL

T ~ T

Proof. Let (1, 7.) € Rfj\lf . Using Proposition 4.2, we know that 7; and 7, are valid action traces of
AKAj\',. Since 7; = 7,, and using the transitivity and symmetry axioms Trans and Sym, we get the
wanted derivation:

AKAT AKAJ AKA, AKAT
T N~ (b‘rz ~ Or, oo~ ¢TT N
AKA+ A;A (Trans 4+ Sym)*
o N d)Tr N []

Notations We introduce some useful notations.

Definition 4.9. We define some functions on action traces:
e Given an action trace 7, we let <, be the restriction of < to the set of strict prefixes of 7, i.e.
Ty <, T iff 79 <7 and 71 < T.
e We extend <, to symbolic actions as follows: we have ai <, 7 (resp. 71 <, ai) iff there exists 7o
such that h(72) = ai and 79 <, 71 (resp. 71 <, T2).

Definition 4.10. Given a basic trace 7 and a basic identity ID = A; o, we let v-(ID) be the identity A;;
where [is the number of occurrences of NS;p(_) in 7.

4.6.4 Ghost Variable

To show that the AKAE protocol is oy-unlinkable, we need to know, for every identity ID € Siq, if there
was a successful SUPI session since the last NS;,(_). To do this, we extend the set of variables Vars, by
adding a ghost variable synci® for every ID € S;g. We also extend the symbolic state updates of NS;p(_)
and PUp(7,2) as follows:
e For ai = Ns;p(j):
e {valid—gutigD > false
T syncl? s false

e For ai = PU,, (7, 2):

up —
o =

e-auth!” — if accept’” then o' (b-auth!’) else fail
sync'® — o' (sync'®) V accept”

Remark that the variable sync® is read only to update its value. It is not used in the actual protocol.
By consequence, the AKAY, protocol is o,-unlinkable if and only if the extended AKA}, protocol is
oy-unlinkable. We extend the initial symbolic state o by adding o.(syncl®) = false.

4.7 Axioms

In this section, we describe the set of axioms used to prove the AKA™ protocol oy-unlinkability. First,
we give the definitions of the non-standard joint cryptographic assumptions we use in Section 4.7.1, and
prove relations among them in Section 4.7.2. We translate these assumptions into axioms of the logic in
Section 4.7.3. Finally, we give the implementation axioms in Section 4.7.4, and some additional axioms
in Section 4.7.5.

4.7. Axioms 85

4.7.1 Joint Cryptographic Assumptions

In Section 2.5 of Chapter 2, we presented axioms for the CR-HK, EUF-MAC and PRF cryptographic as-
sumptions. Unfortunately, we cannot use these axioms for AKA™, as the hash functions of this protocol
share the same secret key. Instead, we define variants of our cryptographic axioms for families of hash
functions which are jointly CR-HK, EUF-MAC or PRF.

The functions H, Hy, ..., H; are jointly CR-HK if no adversary can build a collision for H (-, k), even
if it has oracle access to H(*, km), H1(*;km), ..., Hi(-, km)-

Definition 4.11. A function H is CR-HK secure with a key jointly used by Hy, ..., H; if for every PPTM
A, the following quantity is negligible in 7:

Pr(km : (my,ma) AOH(-,km)ﬁOHl(v,km)’“wOHl(-,km)(177),777,1 % mo and H(my, kyn) = H(ma, km))
where kp is drawn uniformly in {0, 1}7.

Similarly, the functions H, Hy, ..., H; are jointly EUF-MAC if no adversary can forge a mac of H (-, ky),
even if it has oracle access to H (-, km), H1(*;km), -, Hi(*, km)-

Definition 4.12. A function H is EUF-MAC secure with a key jointly used by Hy,..., H; if for every
PPTM A, the following quantity is negligible in #:

Pr(km : (m,0) + ACH k) Oty Ckm) -+ Oy k) (1), not queried to Ok (k) and 0 = H(m, k))
where kp is drawn uniformly in {0, 1}7.

Finally, the functions H, Hy, ..., H; are jointly PRF if they are simultaneously computationally indis-
tinguishable from random functions g, g1, ..., g.

Definition 4.13. Let Hy(-,-),. .., Hy(,-) be a finite family of keyed hash functions from {0, 1}* x {0, 1}"7
to {0,1}7. The functions Hy,..., H, are Jointly Pseudo Random Functions if, for any PPTM adversary
A with access to oracles Oy, ,...,Oy,:

|Pr(k: A9mC0Omcm (1) = 1) — Pr(gy, ..., gn 1 A%107Cm0 (17) = 1)|
is negligible, where:

e k is drawn uniformly in {0,1}".

® gi,...,9, are drawn uniformly in the set of all functions from {0,1}* to {0,1}".

4.7.2 Relations Among Cryptographic Assumptions

It is well known that we have the following relation between the standard cryptographic assumptions:
PRF = EUF-MAC = CR-HK
These relations have a joint version counterpart, which we prove below:
Joint PRF = Joint EUF-MAC = Joint CR-HK

Proposition 4.4. If the functions H, Hy, ..., H; are jointly PRF then H is EUF-MAC secure with a key
jointly used by Hy, ..., H;.

Proof. The proof is almost the same than the proof showing that if a function H is a PRF then H is
EUF-MAC secure, and is by reduction. If H is not EUF-MAC secure with a key jointly used by Hi,..., H;
then there exists an adversary 4 winning the corresponding game with a non-negligible probability. It is
simple to build from 4 an adversary B against the joint PRF property of H, Hy,..., H;.

First, B runs the adversary A, forwarding and logging its oracle calls. Eventually, A returns a pair
(m, o). Then, B queries the first oracle on m, which returns a value ¢’. Finally, B returns 1 if and only
if A never queried the first oracle on m and ¢’ = o. Then:

86 The 5G-AKA Authentication Protocol Privacy

e If B is interacting with the oracles Oy (. 1n)s O, (- km)s - -+ s OH (- km)s its probability of returning 1
is exactly the advantage of A against the EUF-MAC game with key jointly used.
o If B is interacting with the oracles Ogy(.y, Oy, (., ..., Oy, () Where g,g1,..., g are random functions,

then its probability of returning 1 is the probability of having g(m) = o knowing that m was never
queried to g. Since g is a random function, this is less than 1/27.

Since A has a non-negligible advantage against the EUF-MAC game with key jointly used, we deduce that
B has a non-negligible advantage against the joint PRF game. |

Proposition 4.5. If H is EUF-MAC secure with a key jointly used by Hy, ..., H; then H is CR secure
with a key jointly used by Hy,..., H;.

Proof. Assume that we have an adversary A against the joint CR-HK game. We are going to build an
adversary B against the joint EUF-MAC game. W.l.o.g. we can assume that:

o A makes at most p(n) calls to the hash oracle for Oy, (. k..), where p is a polynomial.

e A never calls the hash oracle Oy, (. k) on the same value twice.

e A’s candidate collision pair (mj,ms) has been submitted to the oracle OH, (- km)- Moreover, my is
the last query to the oracle Oy, (. .-
e A’s output is a well-formed message only when it is a valid collision pair.
We use (’)H(k) £O denote the oracles Oy, (. x - OH, (- k)~ O input 17, the adversary B does:
e First, it guesses randomly two mdlces 1,7 in [[l,p(). If ¢ > j, it aborts.
e Then, it simulates A, forwarding its calls to the oracles Oﬁ(. ko)’ with two exceptions:
— The j-th query u; to the oracle Oy, (. k., is not forwarded. Instead, B sends to A the result of
the i-th query u; to the oracle Oy, (. ..y (i-e. Hi(us, km)).
— If there is a j + 1-th query to Oy, (. k..), B aborts.
o Finally, B gets a pair (m1, ms) from A. It checks whether m; = u; and mo = u;. If not, it aborts.
Otherwise, it returns (u;, Hi(u;, km)).
The probability of B winning the game is exactly the probability of B winning the game and not aborting.
Moreover, if B does not abort, A output a pair (mq,mg) which it believes is a valid collision. Therefore

B wins if and only if (m1,ms) is a valid collision. We use p; for B random tape, and ps for A random
tape.” Then we can lower-bound the probability that B wins as follows:

Pr(pl, P2, Km BOHC km) (p1, p2) wins)

= Pr(p1,p2,km : B¢k (py, py) wins A —abort(B))
= Pr(pl,pg, 0 (my,ma) AOB(pl’k'“)(,og) AHi(mi, km) = Hi(ma, km) A —\abort(B))
> Pr(pl,pg, 0 (my,me) AOB(pl’k"‘)(pg) A Hi(mi, km) = Hi(ma, km) A —abort(B)

| A9 k) () wins) x Pr(pz, km : ACACkem) (p3) wins)

Knowing that ACHAC dam) (p2) wins, the probability over ps that B correctly guessed the index of ACACdem) (p2)’s
query of my to the oracle and the number of ACHC k) (p2)’s queries is p(#. Hence:

> Pr(pl,pg, km : (m1,me) AOB(pl’k"‘)(pg) A Hi(my, km) = Hi(ma, km) A —abort(B)
1
2

| ACHCkm) (py) wins A guessed(B)) x Pr(p2, ke : AZRCkm) (py) wins) x o)
p\n

Knowing that B guessed properly, and that Aoﬁ<’v"m>(p2) wins, we know that the oracles Oy(kn) and
Og(p1, km) have the same outputs on A(p2)’s queries. By consequence:

> Pr(pl,pg, km : (m1,mg) Aoﬁ(""m)(pg) A Hi(mi, km) = Hi(ma, km) A —abort(B)
| ACACkm) (pg) wins A guessed(B)) x Pr(pa, km : ACHC k) (pg) wins) x ﬁ
bn

7Of course, B has access to ps since it simulates A. But it only uses it for the simulation, not for its own coin tosses.

4.7. Axioms 87

In that case, we know that B does not abort and that the game is won. Therefore:

> Pr ,km:AOﬁ(w"M wins) X
= Pr(p, () wins) x 2o

Which, by hypothesis, is non-negligible. |

4.7.3 Cryptographic Axioms

We translate these games in the logic for the two families of functions (Mac’);<j<5 and (f,f"). As
expected, these axioms are very similar to the axioms of Section 2.5 in Chapter 2. First, some definitions.

Definition 4.14. For every ground term u, we define three set of subterms of w:

o We let set—macim(u) be the set of Mac’ terms under key kp, in u:
set-mac) (u) = {m | Mac]_(m) € st(u)}

o We let strict—set—macﬁm(u) be the set of mac-ed terms under key k,, and tag j in v appearing outside
a conditional:

strict—set—macﬁm (u) ={m| Macim (m) € strict-st(u)}
e For every g € {f,f"}, we let set-prf}(u) be the set of g terms under key k in u:
set-prf{ (u) = {m | gx(m) € st(u)}
The axioms are given in Figure 4.15, and are sound under the appropriate cryptographic assumptions.

Proposition 4.6. The axioms in Figure 4.15 are valid in any computational model where:

CR/ (Mac")1<i<5 are jointly CR-HK
EUF-MAC?, P-EUF-MAC? and CR-KEYY, | (Mac'),<i<5 are jointly EUF-MAC
PRF-MAC/ (Mac')1<i<5 are jointly PRF
PRF-f and PRF-f" (F,) are jointly PRF

Proof. The proof are exactly the same than in Section 2.5 of Chapter 2. Therefore, we omit the details. W

Remark 4.4. Similarly to what we observed in Remark 2.4 of Chapter 2, the following axiom schema
is admissible using PRF-MAC? + Trans:

fresh(n; @, m
a,if \/,c;eq(m,m;) then 0 else n ~ @/ ()

= when I(m EMaCf(_) ﬁ7m

@,if \/,.,eq(m,m;) then 0 else Mac! (m) ~ @ .
Vierea(i) k,,.() (mi|iel) = set—mac{(m(d,m)

By a notation abuse, we refer also to the axiom above as PRF-MAC’. The same remark applies to PRF-f
and PRF-f'. O

Definition 4.15. We let Axcrypto be the set of cryptographic axioms:

_ _ J _ _fr _ J J
AXcrypto = CCA1 U (PRF-MAC)1§j§5 U PRF-f U PRF-f" U (EUF-MAC >1§j§5 U (cr)1855

Proposition 4.7. The azioms in AXcrypro are valid in any computational model where the asymmetric
encryption {_}- is IND-CCA; secure and f and f’ (resp. Mac'—Mac®) are jointly PRF.

Proof. For ccA1, this is from Propositions 2.6. For the other axioms, we know using Proposition 4.4
and Proposition 4.5 that f and f" (resp. Mac'~Mac®) are jointly EUF-MAC and CR-HK. Therefore we can
conclude using Proposition 4.6.]

88 The 5G-AKA Authentication Protocol Privacy

Macﬁm (mq) = Macﬂm (mg) = m1 = mgy when km Emac () M1, m2 (cR/)
s=Macd (m)—\,.q5=Mac (u) when km Etac=(_) &M (EUF-MACY)
m ues m S = set-mac;_(s,m)
' I(m EMac_—(i) s, m
s = Macy_(m) — (bi)ier is a valid CS partition
\/ b A \/ ¢ — Macf;m () when H(Si,mi).ig s.t. Viel . (P-EUF-MAC/)
il ues; [bi]si = [bis A [biJmi = [bi]m
S; = strict-set-mac], (s;,m;)
; ; km7 kin EMac#()y U,V j
Mac) (u) = Macjk:" (v) = false ~ when {kmk:n cN (CR-KEYZ,)

fresh(n; @, m)

i, !f Vicred(m,m;) then 0 else Macﬁm (M) when ¢ km EMac—() @, m (PRF-MACY)
~ i,if \/;c;eq(m,m;) then O else n (my i T} = set—macf; (@,m)
fresh(n; @, m)
,if \/;c;eq(m,m;) then 0 else g, (m) when { kT ()¢) @,m (PRF-g)
~ ,if \/,c;eq(m,m;) then 0 else n N

{mi | i eI} = set-prf(d,m)

Convention: 1 < j <5 and g € {f,f'}.

Figure 4.15: Axioms for Joint Cryptographic Assumptions

4.7.4 Axioms

We define the set of axioms Ax we use to prove that the AKA™ protocol provides mutual authentication
and oy -unlinkability. This set of axioms contains mostly axioms we presented in Chapter 2, plus some
additional axioms which are specific to the AKA™ protocol.

We define the set of constants S, which contains the set of identities S, the integers 0 and 1, and
the special values UnSet, Unknownld, fail, defaut and error. This set does not include all the constants of
the AKA™, but only the ones whose interpretations must be distinct (this is enforced by an axiom later).

Definition 4.16. We define the set Scg¢ of constant function symbols:
Sest := S U {UnSet, Unknownld, fail, defaut, error, 0, 1}
We now define the set of axioms Ax:

Definition 4.17. Ax is the set of axioms Ax = Axstruct U AXimpl U AXcrypto, Where:

® AXgiruct 18 the set of structural axioms, which are given in Figure 2.1 and Figure 2.2.
® AXcrypto is the set of cryptographic axioms in Figure 4.15, plus the CCA; axiom given in Section 2.6.1.
® AXimpl is the set of implementation axioms. It includes:

— The axioms Ax(y, Axdec; Axg and Axpool from Section 2.5.2.

— The new axioms in Figure 4.16, which we describe below.

Description The only new axioms are the axioms in Figure 4.16. We quickly describe them:

4.7. Axioms 89

o The set Axeq of equality and dis-equality azioms:

#-Const for every A, B € St

mi({x1, @, x3)) =x; forie {1,2,3} eq(A, B) = false st A%B
e The set AXjen of length axioms:
len(u) = len(s) len(v) = len(t)
len((u, v)) =len({(s, t)) len(1D1) = len(1iD2) for every ID1,ID2 € S

len(suc(sqn-init;’)) = len(sqn-init;’) for every ID € S

len(sqn-init;’?) = len(sqn-init’2) for every IDy, 1Dy € S
len(sqn-init}’) = len(n) for every ID € S;§,n € N len(0%) =z len(1*) =z
len(u) # 0 len(v) # 0 A#B len(A)#0 x#0 |
-n
len(x) # 0 when x € Scet len({u, v)) #0 len({(w, v)) #0 A® #£ BY &
o The set Axinj of injectivity axzioms:
EQInj({- EQInj .
—eq(u, s) Aeq({u, v), (s, t)) = false Qnj((-> _)) —eq(v,t) ANeq({u, v), (s, t)) = false Qinj({_ -))
 EQW({})
—eq(u, v) Aeq({u} ik oy, {v} o)) = false
o The set Axson Of sequence number axioms:
- . — ——5 SQN-ini
range(u, v) = eq(u, v) suc(u) =u+1 sqn-inity’ < sqn-inity for every ID € Sig
m when « are ground terms
o and Th(Z,0,1,+, —, =,<) E ¢[Z]
Figure 4.16: The Set of Axiom Aximpl = AXite U AXeq U AXjen U Axinj U AXgan.-
o The set Axeq contains additional axioms satisfied by the equality function symbol eq(_,). It

includes properties of triples and projections, and dis-equality axioms for the element of Ses;. The
dis-equality axioms require that all the elements of Scst must be interpreted by distinct bit-strings:

eq(A, B) = false 7-Const for every A,B € Sest s.t. AZB

o Axie, is the set of implementation axioms on the length function len(_). In particular, all identities
in S must have the same lengths, and not be of length 0. Similarly, sequence numbers must have
the same lengths. There are also some axioms to reason on lengths, e.g.:

len(u) = len(s) len(v) = len(t) len(u) # 0 len(v) # 0
len({u, v)) =len({s, t)) len({u, v)) #0 len({u, v)) #0

o The set Axinj contains injectivity axioms for the pair and encryption. For example, for the pair, we
have the left injectivity axioms:

—ea(u 5) Aeal{a, o) (s, 1) = false T LTI =)

o The set Axgqn contains sequence numbers axioms. In particular, it requires that:

90 The 5G-AKA Authentication Protocol Privacy

— The range and successor functions are, resp., an equality check and a by-one increment:

range(u, v) = eq(u,0) s Zutl
— Initially, the HN sequence number is no larger than the UFE sequence number.

— — SQN-ini
sqn-inity,” < sqn-init;’ for every ID € Sjj

— For any term ¢[] encoding of a boolean formula, if ¢[d] is valid in the first-order theory
Th(Z,0,1,+, —,=, <) then ¢[u] = true is a valid axiom.

o[il] = true when @ are ground terms and Th(Z,0,1,+, —, =, <) = ¢[¥]

Notations In the rest of this chapter, the set of axioms Ax is fixed, and we stop to specify that we use
it: we say that we have a derivation of a formula ¢ to mean that ¢ can be deduced from Ax. Furthermore,
we say that ¢ holds when there is a derivation of ¢.

Moreover, we abuse notations and write © = v instead of u = v. We can always disambiguate using
the context: if we expect a term, then u = v stands for the term eq(u, v), whereas if a formula is expected
then u = v stands for eq(u,v) ~ true. We extends this to any boolean term: if b is a boolean term then
we say that b holds if we can show that b ~ true holds. For example, o,(SQNY) > o, (SQNY) holds if we
can show that geq(o,(SQNIP), o, (SQNY)) ~ true.

4.7.5 % (p. 91) Additional Axioms

We present additional axioms, and show that they are logical consequences of the axioms Ax.

Definition 4.18. We let Simp denote a sequence of applications of R, FA and Dup, i.e.:

+

g/\/

T+

~

W)

(R + FA + Dup)*

Simp when

<y

’L_[N

St

~

S

Definition 4.19 (The indep-branch Axioms). Let @, b be ground terms, C[] an if-context and n, (n;)se;
nonces. If n, (n;);c; are distinct and such that fresh(n, (n;);er; @, b, C]]), then the following inference rule
is an instance of the indep-branch axiom:

indep-branch

’J,C[b & (ni)ig] ~ ﬂ', n
Proposition 4.8. The indep-branch axioms are a consequence of the Ax axioms.

Proof. To prove this, we first introduce the if-context C|] on the right to match the shape of the left side.
We then split the proof using CS, and conclude by applying Fresh. This yields the derivation:

) — ——— Fresh
Viel,iw,b,n; ~u,b,n

U,C[Eo (ni)ieﬂ ~ E,C[EO (n)ieI}
ﬁ,C[gO(ni)iel] ~,n u

cs*

It is often convenient to apply the FA axiom under an if-context C.

Definition 4.20. Let 7,0, (ui)icr.1<j<n, (u; j)ier,1<j<n be ground terms and C an if-context. Then
the following inference rule is an instance of the FA. axiom:

FA.

7, (Clbo (Ui,j)iel])lgjgn ~ 7, (C" o (u;7j)iel]>1§jgn
7,C[b o (f((wi)i<icn))ser) ~ T C0 o (F((])i<i<n) i)

Proposition 4.9. The FA: axioms are a consequence of the Ax axioms.

4.8. Security of the AKA™ Protocol 91

Proof. First, we pull the f function outside of the if-context C' using the homomorphism properties of
the if then else . Finally we apply the FA axiom. This yields the derivation:

7, (Cb o (uig)ier]) ey ~ T (OB 0 (U yier]), <o,
7, f(Cb o (uigier])ycjen ~ T (C[6 0 (W])ier]) <5c,
[(f((uiy 1<J<n))iel] ~ C[B" © (f((UQ,j)lijS"DmJ "

Finally, the following axioms state that two encryptions with different randomness are almost never
equal. This requires that the encrypted messages are not of length zero.

Proposition 4.10. For every ground terms u,v, the following axiom is a consequence of the Ax axioms:

len(u) = len(v) len(u) # 0 ne # e

N o _ when < fresh(ne, n; u,v)
eq({u} i {0} pigny) = false

N Epi(),sk(-) U0 A SK(N) Egec() U,V

Proof. We give directly the derivation:

len(v) = len(v) Refl
Refl
pk(n), {u}pk(n)’ len(v) ~ pk(n), {u}pk(n)7 len(v) N len(v) = len(1'en(v))
- CCA1
pk(n), {u}p;(n)v {U}pﬁ(m ~ pk(n), {U}gﬁ(ny {1Ien(v)}:i(n)
v - o Restr
{ud gm0k ~ gy 11" o) FA
ea({ulgi i {Vpkm) = ealudgiins (11550 eq({ulpi s {1}k) = false N
/ rans
ea({ul ot oy {v};ﬁ<n)) = false
To show eq({u};;(n), {1'3"(”)}2i(n)) = false, we use the transitivity axiom again:
({u}pk({1Ien(v)}pk<n)) - eq({olen(u)}pk(n {1Ien(v)}pk<n) ({Olen(u)}pk({1Ien(v)}pk<)) = false .
rans
eq({u}pﬁ(m, {1'e"<”>}p;<n)) = false
Now, we give the derivation of the left premise:
Refl len(u) = len(u) Refl
pk(n)7 {1|en(v)}n;k (n)? len(u) ~ pk(n)7 {1|en(v)};;k (n)? len(u) |en(u) = |en(0len(u)) CCA
7 1
Pk(n), {} g 1117} By ~ pR(), {002) (1o Restr
{u}pk(n){llen(v)}pk(n) ~ {Olen u)}:i(n {1Ien(v)}pk(n)
Q{135 117 i) = 0000 g {17)
And finally we prove the right premise eq({0'*"(*) } {1'6“(”)} o) = false:
- _C t -
a0, 1) =false 7 "' [en©@)Z0 len(u) £0 |
eq(0'en(®) 1len(v)) = false “ned
i ! : EQInj({-}-) + R
eq({0'en(} e {1}) = false u

4.8 Security of the AKA™ Protocol

We now state the authentication and oy-unlinkability lemmas, and sketch the proofs. The full proofs are
given later, in Sections 4.9, 4.10 and 4.11.

92 The 5G-AKA Authentication Protocol Privacy

4.8.1 Mutual Authentication of the AKA™ Protocol

Authentication is modeled by a correspondence property [WL93] of the form “in any execution, if event
A occurs, then event B occurred”. This can be translated in the Bana-Comon indistinguishability logic.

Authentication of the User by the Network AKA™ guarantees authentication of the user by the
network if in any execution, if HN(j) believes it authenticated UE,,, then UE, stated earlier that it had
initiated the protocol with HN(j).

We recall that e-auth’, stores the identity of the UFE authenticated by HN(j), and that UF,, stores
in b-auth; the random challenge it received. Moreover, the session HN(j) is uniquely identified by
its random challenge n’. Therefore, authentication of the user by the network is modeled by stating
that, for any valid action trace 7, if o (e-auth!) = 1D then there exists some prefix 7/ of 7 such that
o, (b-auth;’) = nJ. Let < be the prefix ordering on action traces, then:

Lemma 4.1. For every valid trace T on Sig, ID € Sjg and j € N, we have:
or(e-authl) =10 — \/___ o, (b-auth®) = ni

The key ingredients to show this lemma are necessary conditions for a message to be accepted by the
network. Basically, a message can be accepted only if it was honestly generated by a subscriber. These
necessary conditions rely on the unforgeability and collision-resistance of (Mac’);<;<s.

Necessary Acceptance Conditions Using the EUF-MAC’/ and CR/ axioms, we can find necessary
conditions for a message to be accepted. We illustrate this on the HN’s second message in the SUPI sub-
protocol. We depict the beginning of the execution between session UE, (i) and session HN(j) below:

UEp (z) ; HN(j)
. PN(j, 0)

({00, san)}7e, Mack ({0 sane)}73 . nd)))
PUp (7, 1) PN(j, 1)

We then prove that if a message is accepted by HN(j) as coming from UE,;, then the first component
of this message must have been honestly generated by a session of UE,,. Moreover, we know that this
session received the challenge n7.

Lemma 4.2. Let 1D € Sy and 7 be a valid trace on Siy ending with PN(j,1). Then:

accept® 5 \/ (malg(6) = 157 A g(67) =)
T1=_,PUp(_,1)=27

Proof sktech. Let tqec be the term dec(m;(g(¢")),sky). Then HN(j) accepts the last message iff the
following test succeeds:

m2(g(47)) = Macys ((m1(9(#7)) , n7)) A 1 (tdec) = ID
By applying EUF-MAC! to the underlined part above, we know that if the test holds then my(g(4")) is
equal to one of the honest Mac&f‘ subterms of 7 (g(4")), which are the terms:

(Macke ((#1°. g(07)))) (4.2)

T1=_,PUp(_,1)=<T
(Macly ((m (g(6), n))) | (4.3)
m T1=_,PN(j1,1)<T
Where < is the strict version of <. We know that PN(j,1) cannot appear twice in 7. Hence for every
71 = _,PN(j1,1) < 7, we know that j; # j. Since distinct nonces are never equal, except for a negligible
number of samplings, we derive that eq(n?*,n’) = false. Using an axiom stating that the pair is injective
and the CR! axiom, we can show that m(g(4")) cannot by equal to one of the terms in (4.3).
Finally, for every 71 = ,PUp(_,1) < 7, using CR! and the pair injectivity axioms we derive that:

(Macks ((ra(g(6)) , 7)) = Macky (122, g(65)))) = mi(g(6r) = £2° AT = g(o17) =

We prove a similar lemma for TN(j, 1). Lemma 4.1’s proof is straightforward using these two properties.

4.9. Mutual Authentication of the AKA™ Protocol 93

Authentication of the Network by the User The AKA™ protocol also provides authentication of
the network by the user. That is, in any execution, if UFE, believes it authenticated session HN(j) then
HN(j) stated that it had initiated the protocol with UE;,. Formally:

Lemma 4.3. For every valid trace T on Siy, ID € Siy and j € N, we have:
or(e-authy) =n — \/___ o (b-authl) =D

This is shown using the same techniques than for Lemma 4.1.

4.8.2 o-Unlinkability of the AKA™ Protocol

Lemma 4.2 gives a necessary condition for a message to be accepted by PN(j, 1) as coming from 1D. We
can actually go further, and show that a message is accepted by PN(j,1) as coming from ID if and only
if it was honestly generated by a session of UF;, which received the challenge n’.

Lemma 4.4. Let 1D € Sy and 7 be a valid trace ending with PN(j,1). There exists a derivation of:

accept? & \/ (9(é") = tn, Agln) = 1)

T1=_ ,PUm(_ 71)57'

We prove similar lemmas for most actions of the AKA™ protocol. Basically, these lemmas state that a
message is accepted if and only if it is part of an honest execution of the protocol between UE,, and HN.
This allow us to replace each acceptance conditional accept’” by a disjunction over all possible honest
partial transcripts of the protocol.

We now state the o,-unlinkability lemma:

Lemma 4.5. The AKAX, protocol is oy-unlinkable in any computational model satisfying the axioms Ax.

Proof sktech. Using Proposition 4.3, we only need to show that for every valid basic action trace 7, there
exists a derivation of ¢, ~ ¢, (where the left frame is a frame of the AKAJ; protocol, and the right frame
of the AKAX, protocol for N large enough). The full proof is long and technical, and is by induction on
7. Take a valid action trace 7, we assume by induction that there is a derivation of ¢" ~ ¢". We want
to build a derivation of ¢, ¢, ~ ¢", ¢, using the inference rules in Ax.

First, we rewrite t, using acceptance characterization lemmas, such as Lemma 4.4. This replaces each
accept’” by a case disjunction over all honest executions on the left side. Similarly, we rewrite ¢, as a case
disjunction over honest executions on the right side. Our goal is then to find a matching between left
and right transcripts such that matched transcripts are indistinguishable. If a left and right transcript
correspond to the same trace of oracle calls, this is easy. But since the left and right traces of oracle
calls may differ, this is not always possible. E.g., some left transcript may not have a corresponding
right transcript. When this happens, we have two possibilities: instead of a one-to-one match we build
a many-to-one match, e.g. matching a left transcript to several right transcripts; or we show that some
transcripts always result in a failure of the protocol. Showing the latter is complicated, as it requires to
precisely track the possible values of SQN{” and SQN}’ across multiple sessions of the protocol to prove
that some transcripts always yield a de-synchronization between UE,, and HN. |

4.9 Mutual Authentication of the AKA™' Protocol

We now prove that the AKA™ protocol provides mutual authentication. This section is organized as
follows: we state some useful properties and necessary acceptance conditions in Section 4.9.1 (we postpone
the proofs of the necessary acceptance conditions to Section 4.9.5); then, we prove authentication of the
user by the network in Section 4.9.2, and authentication of the network by the user in Section 4.9.3; finally,
we prove that we actually have injective authentication of the network by the user in Section 4.9.4.

94 The 5G-AKA Authentication Protocol Privacy

4.9.1 Invariants and Necessary Acceptance Conditions

We start by proving some properties of the AKA™ protocol. First, we show that the sequence numbers
are always of the same length. This is an easy consequence of the length axioms.

Proposition 4.11. For every valid action traces 7,7 on Siq, ID1,1D3 € Sig and n € N:
len(a™(sQNIP*)) = len(o™" (sQNIP2)) len(a™(sQNIP*)) = len(o™ (SQNIPY)) len(a™(sQNP*)) = len(n)

Proof. We show only the first equality, as the proofs of the other two equalities are similar. First, we
prove by induction over 7 that for every ID € Sy, there exists an if-context C, terms b and integers (k;);
such that:

oM (sQN?) = C[b o (suc (sqn-init™™));)]

Therefore, let C7, Cs, l;l, 52 and (k});, (k?)j be such that:
oM (SQN'1) = C4[by o (suck (sqn-init™1));] oM (SQNIP2)) = Calby © (suc’s (sqn-init™>2)),]
Using the axioms in Axen, we show that for every ,7/, 3, j':
kl . . ID k! - -ID k2 . . ID k2)
len(suc™ (sqn-init;’*)) = len(suc™ (sgn-init;*)) = len(suc”i (sqn-init;’?)) = len(suc”s’ (sqn-init;?))
Therefore, using R we have a derivation of:
len(o™ (SQNI)) = len(o ™ (sQN i) .

The following proposition states that ny appears only in the HN public key pk(ny) and secret key
sk(ny), and that for every ID € Siq, the keys k'™ and k!> appear only in key position in Mac' - Mac®. These
properties will be useful to apply the cryptographic axioms later.

Proposition 4.12 (Invariant (INV-KEY)). For all valid action trace 7 on Sijg = {ID1,...,IDN}, we have:
Ny Epk(~),sk(-) br A Sk(nN) Edec(_,~) Or
VISZSN, klr;% EMaw(i)ﬁb‘r
VI<i< N, kP L)) or
Proof. The proof is straightforward by induction on 7. |

The following proposition states that if a user 1D has no valid temporary identity at instant 75 (i.e.
07, (GUTLY) = UnSet), and if every ASSIGN-GUTI sub-protocol session run by ID between the instants 7o
and 7; failed (i.e. for every 71 = | FU;p(j1) such that Ty <7 T1 <7 Ti, We have —acceptl’), then 1D does
not have a valid temporary identity at instant 7; (i.e. o (GUTL?) = UnSet). Formally:

Proposition 4.13. For every valid action trace T on Siq, for every 19 <, 7; and ID € S;q, we have:

0., (GUTLY) = UnSet A /\ —accept? — o7 (GUTIY) = UnSet
T1=_,Fuip(41)
T2 =TT1<TT§
Proof. The proof is straightforward by induction on 7;. |
We let session be the (partial) function mapping an action label ai to its network session number j.

Definition 4.21. We define the partial session function:
session(ai) = j when ai = X(j,) where X € {PN, TN, FN}

We let s-started;(7) be the predicate holding exactly on action traces where the j-th session of the
network started, i.e. where session(ai) = j for some ai appearing in .

Definition 4.22. For every action trace 7, we let s-started;(7) be true if and only if there exists ai € 7
such that session(ai) = j.

4.9.

Mutual Authentication of the AKA™ Protocol 95

We now describe some properties of AKA™. They are formally defined and shown after.

The property (A1) states that the HN challenge n/ cannot appear in the frame ¢, if the session j
has not started yet. Formally, if —s-started;(7) then n/ ¢ st(¢,).

The properties (A2) and (A3) give conditions under which some user sequence number has
changed.

(A4) expresses the fact that two different users IDy, ID2 can never have the same temporary identities
on the server side. This is intuitive, as the server samples temporary identities uniformly at random,
and should never assign the same identity to two different users.

(A5), (A6) and (AT) state that if the network accepts a message, then there is no ambiguity on
the sender. That is, for every IDy # 1Dy, we cannot have accept’”® and accept;”* simultaneously.

Finally, (A8) says that if the user ID believes he authenticated the session j of the network (i.e.
o'"(e-authy’) = n?), then it must have received the challenge n/ when he started his current session
(i.e. o'"(b-auth;’) = n’).

Proposition 4.14. Let 7 = _,ai be a valid action trace on Sig, then:

1.
2.

3.

/.

5.

6.

(A1) If —s-started;(1) then n? & st(¢,).
(A2) For all 7o = ,PU;p(jo,2) 37 and 71 = _,PU(J1,2) X 7, if 10 # 71 then:

oin (SQNI) £ 07 (SN D)
(A3) For every 1o = _,PUp(Jo,2), m = _,PU(j1,1) such that 71 < 7o, if jo # j1 then:
01" (SQNI) # suc(o™ (sQxi))
(A4) For every 1Dy, 1Dy € Siy such that IDg # 1Dy :
(o"(QUTIP®) # UnSet A o (GUTIYY) # UnSet) — o(GUTIN®) # o (GUTIP!)
(A5), (A6) , (A7) If ai = PN(4,1), TN(J,0) or TN(4, 1), then for every IDg # 1Dq,
(—accept’™) v (—accept!)

(A8) For every 1D € Sig,j € N, ci"(e-auth;)) = n? — o/"(b-authy) = n’.

Proof. All these properties are simple to show:

(A1) is trivial by induction over .

(A2) and (A3) both follow from the fact that if 7 = _, PU(j, 1) then o-(sQN?) = suc(oi"(sQN'P)),
and therefore o (SQNI?) > o!"(SQNIP).

(A5) and (AT) follow easily from the unforgeability axioms EUF-MAC, and the collision resistance
axioms CR-KEY.

To prove (A4), we first observe that for every ID € Siy, we initially have o.(GUTIP) = UnSet, and
that the only value we store in GUTIY are UnSet or GUTI' for some ¢ € N. Therefore it is easy to
show that for every 7, < 7:

ol (GUTIY) # UnSet — \/ 0" (quTry’) = qurr’
i€S
where & C N is the set of network session number appearing in 7. Moreover, we can only store
GUTI' in GUTIY at PN(4,1) or TN(4,1), and by validity 7 cannot contain both PN(¢,1) and TN(4, 1).
We conclude observing that we cannot have accept”® and accept>! if 7, = _,PN(i, 1) or _, TN(3, 1)
using (A5) and (A7). The result follows.
(A6) is a consequence of (A4).

(AB) follows from the fact that whenever a new session of the protocol is started, we reset both
b-auth;” and e-auth;’. Then e-auth; is either set to fail or to b-auth};. |

96 The 5G-AKA Authentication Protocol Privacy

We can now state and prove our first necessary acceptance conditions.

Lemma 4.6. Let 7 = _,ai be a valid action trace on Sig, then:
1. (Acel) If ai=PN(j,1), then for every ID € Siy:
in in nio in j
accept? =\ (mlo(6l) = {(ip, ol (soxE)IE A g(oln) =)
T[):_,PU;D(jo,l)KT

2. (Acc2) If ai=PU\p(j,2). Let 1 = ,PUL(j,1) < 7. Then:

accepty = \/ accepth A g(6f) =" A m(g(¢lh)) = {(iD, o¥ (saN))5,

T0=_,PN(jg,1)
T1=7T7T0

To help the reader, we graphically represents how the instants 71, 7o and T are situated:®

PU(j, 1) PN(jo, 1) PU(j,2)
rod . s
T1 T0 T

3. (Acc3) If ai=TU(j,1) then:
y <accept‘:; A (g(#m) = W0 AT (g(@i7) = o (saNP) & fk<nf°>>

1D
acceptT - A in ID\ __ _in 1D
o7 (GUTI) = o)f (GUTLY)

T0=_,TN(jg,0)
To=<T

4. (Acc4) If ai = TN(4,1) then:

accept? — \/ accept’ Ami(g(¢n)) =n’
To=_,TUpp(_,1)<7T
Proof. The proof of this lemma is given later, in Section 4.9.5. |

4.9.2 Authentication of the User by the Network

We now prove that the AKA™ protocol provides authentication of the user by the network. Remark that
the lemma below subsumes Lemma 4.1.

Lemma 4.7. For every valid action trace T on Sig, the AKA™ protocol provides authentication of the
user by the network:

VID € Sig,j €N, o, (e-auth’) =10 — \/ o (b-auth) = n
T/ T
Moreover, if T = _,TN(j,1) then:

acceptl’ — \/ 0 (b-auth?) = n’

To=_,TUp(_,1)<T

Proof % (p. 97). We prove this by induction on 7. First, for 7 = ¢ we have that for every ID € Sy,
or(e-auth?) = fail # 1D by axiom #-Const. Therefore the property holds. ‘

Let 7 = _,ai. Let j € N be a session number. Remark that if o2P(e-auth)) = L, and if the
authentication property holds just before the instant 7, i.e.:

VID € S, o (e-auth) =1 — \/ o™ (b-authy) = n’
T/ <T

then the authentication property for j holds at instant 7. Therefore we only need to consider the action
labels ai = PN(j, 1) and ai = TN(j, 1).

8We will often use such pictures in this chapter. They are particularly useful when more than two instants are being
considered simultaneously. Some conventions: the horizontal line represents the action trace whose name is on the left,
before the semi-column (e.g. “7 :” here); instants are represented in their order of appearance at the bottom of the horizontal
line; at the top of the line, we indicate (when it is known) the last action of an instant (e.g. here 71 ends by puip (4, 1)).

4.9. Mutual Authentication of the AKA™ Protocol 97

e Case ai = PN(j, 1): Let ID € Siy. Using #-Const, we get that JT(e—authﬂ) = ID — accept”. Using
(Accl) of Proposition 4.14, we deduce that:

o, (e-auth’) =0 — \/ g(¢") =n (4.4)

T0:_7PUID(j071)<T

By validity of 7, there exists 7 such that 7o = _, PN(j,0) < 7. Let 79 <, 72, we have —s-started; (7).
Using (A1), we get that n? & st(¢!l'). It follows from axiom =-ind that g(¢i) # n?. Hence:

\V g(om) =1’ \V o gl =n (4.5)

TO:_,PUID(jO,1)<‘r -rofzjiu%(i‘g,m
Let 7o be such that 7 <, 70 < 7 and 79 = _, PUip (o, 1). Since o4, (b-authy’) = g(¢"), we have:

g(#") =nl — o, (b-auth!’) = n’

70

Hence putting (4.4) and (4.5) together, we get:

o, (e-auth!) =m0 — \/ o, (b-auth’) = n’
T0=_,PUip(Jg,1)
To<rTO<T
Since {19 | 70 = _,PUip(jo, 1) ATa < To < T} is a subset of {my | 70 <X 7}, we deduce that:

or(e-auth!) =m0 — — \/ o (b-auth;’) = n/

To T

e Case ai = TN(j, 1): This case is similar to the previous one. First, we check that #-Const implies
that o, (e-auth’) = ID — accept’®. Moreover, using (Acc4), we know that:

accepty — \/ accept, A mp (g(d)'%)) =n’
To=_,TUp(_,1)<7
Moreover, for every 79 = _, TUpp(_,1) < 7, we have:

accept’ A mi(g(¢in)) =n’ = o (b-auth) =n’

Hence:
accept’” — \/ accept,, A m1(g(::))) =n’
To=_,TUp(_,1)<T
— \/ o, (b-auth?’) = n
T0=_,TUp(_,1)<T
— \/ o (b-auth;’) = n’ |
ToXT

4.9.3 Authentication of the Network by the User

We prove that the AKA™ protocols provides authentication of the network by the user. We actually
prove the stronger result that for any valid action trace 7, if the authentication of UE,, succeeded at
instant 7 (i.e. o!"(e-auth;’) # fail), then there exists some j € N such that UE,, authenticated HN(j).

Lemma 4.8. For all valid action trace T on Sig, the AKA™Y protocol provides authentication of the
network by the user. Formally, for every 1D € Siy and j € N, we let:

suc-auth, (ID) = o, (e-authy) # fail auth.(ID, j) = o, (b-auth!) = ID A 0’ = o, (e-auth)

Then:
VID € Sig, suc-auth;(1ID) — \/, oy, (r) aUths(ID, j)

98 The 5G-AKA Authentication Protocol Privacy

Proof % (p. 100). We prove this by induction on 7. First, for 7 = € we have that for every ID € Sy,
o, (e-auth}’) = fail. Therefore the property holds. Let 7 = 79, ai, and assume by induction that:

VID € Sig, suc-authr, (ID) = V¢ garved, (ry) AUt~ (ID,)
If for every jy and ID we have:
oY (b-auth?®) = | 0P (e-auth!”) = L

then, by induction hypothesis, we have authentication of the network by the user at 7. Therefore it
only remains to show that authentication holds for 7 in the cases where ai is equal to PN(j,1), PU;5(j, 1),
PUID(ja 2)’ TUID(j7 0)3 TN(j7 0) or TUID(ja 1)

Before starting the case disjunction, remark that if we can prove that for every IDg € S;q and jo € N:

(suc-auth,(IDg) A auth(IDg,jo)) ¢ (suc-auth,,(IDg) A auth.,(IDg, jo)) (4.6)

Then we can directly conclude by applying the induction hypothesis. We now do a case disjunction on ai.
e Cases ai = PU,(j, 1) and ai = TU;(4,0). In both cases, we have o, (e-auth;]) = fail, and therefore
the property trivially holds for ID. Besides, for every 1Dy # ID and jp € N, (4.6) holds.

e Case ai = TU;p(j,1). For all IDg # ID and for all jo € N, we easily check that (4.6) holds. It only
remains to show that:
suc-auth-(ID) = \/{ arted, () aUth- (1D, 9)

Let k = k™. We observe that:

suc-auth,(ID) — o, (e-authy’) # fail
— accept!®

et mlo) =k)
7 i in (5q j by (Acc3
\/, < T2(g(¢")) = o' (SQNIP) @ fi(ndo) (by ()
T0=_7TN(]070)-<T
Let 79 = TN(jo, 0) such that 79 <, 7. Then:
71(g(¢™)) = n¥° Aaccept’ — o, (e-authl”) = n?

Moreover using (A7) we know that acceptly — 07, (b-auth’®) = 1. Using the validity of 7, we
can easily show that for all 79 < 7/ < 7 we have o7} (b-auth]’) = L. We deduce that accept)® —
or(b-auth??) = 0. Hence:

suc-auth,(ID) — \/ auth, (1D, jo) — \/ auth (1D, jo)

To=_,TN(jo,0)<T s-started;, (7)

e Case ai = PU(j,2). For all 1Dy # ID and for all jo € N, we check that (4.6) holds. It remains to
prove that:
suc-auth-(ID) = V/, jarteq; (r) aUth-(ID, j)

First, we observe that:
suc-auth,(ID) — accept;”

accept’ A g(¢n) =nd A |
- v (mi(g(éin)) = {(ID, ol (SQNIP)) s > (by (Acc2))

T0=_,PN(jg,1)
T1=_,PUip(4,1)
T1=X770
Let 7o = ,PN(jo,1), 1 = _,PUp(4,1) such that 7 <, 79. Let 79 = | PN(jp,0), by validity of 7

we know that 75 <, 79. Moreover, if 71 <, 7o then by (A1) we have n/° ¢ st('Tnl), and therefore
using =-ind we obtain that g(¢") # n’°. Hence:

7370
suc-auth,(ID) — \/ accept;” A accept;, A g(") =nl Am (g(d)'%)) = {(ip, o (SQNLD)>};%(N
O
T9=_,PN(jg,0)

T2=X7T1 X770

4.9. Mutual Authentication of the AKA™ Protocol 99

We know that g(¢") = n/o — o, (b-authy’) = n?°, and that:

accept? — o, (b-auth!’) = accept!” — o, (e-authy) = o, (b-auth;’)

We represent graphically all the information we have below:

T2 = _aPN(jOaO) 1 = _7PUID(ja 1) To = _7PN(j071) T = _7PUID(j’2)
2 | | :
| | |
o | |
or (b-authy) =g(¢7)) ‘ ‘
—po | o, (e-auth’) =0, (b-auth;) !
I (6]

—nJo
JTO(b—authiO) = ID NN NN NNNND

It follows that 47! _ — auth, (1D, jo). Hence:

2,70
suc-auth,(ID) — \/ auth.(iD,jo) — \/ auth.(p, jo)
To=_,PN(jo,1) s-started,;
T1=_,PUn(J4,1) reedio (T)
To=_,PN(jg,0)

T2<7T1 =770

e Case ai = PN(j,1). For all ID € Sig and for all jo € N such that jy, # j we have:
suc-auth, (ID) = suc-auth., (ID) auth, (1D, jo) = auth,, (1D, jo)

Hence (4.6) holds. It only remains the case where ID € Sy and j, = j. By validity of 7 we

know that o™"(b-auth’) = fail. From #-Const it follows that o™"(b-auth’) # 1D, and therefore
auth,, (ID, j) <« false.

To conclude this case, we only need to show that (suc-auth,(ID) A auth,(ID, j)) « false. We recall
that suc-auth, (ID) = o, (e-auth;’) # fail. The only instants that can set e-auth;; to something other
than fail are PU;(_,2) and TU;p(_, 1). Formally, we show by induction on 7 that:

o, (e-auth}) # fail — \/ accept? Ao, (e-authy) = 0., (e-authy) (4.7)
ro =T

T0=_,PUin(_,2)
VvV Tg=TUip(_,1)

Therefore we only have to prove that for any 7y in the disjunction above, we have:

(suc-auth.(ID) A auth, (1D, j) A accept’” A o, (e-authy’) = o, (e-authy’)) > false
We have two cases:

— Let 70 = _,PUip(Jo,2) = 7. By validity of 7, we know that there exists 7o <, 79 such that
T2 = _7PUID(j07 1) By (ACCZ):

accepty;, — \/ g(¢ln) =n't

T1=_,PN(j1,1)
T2 =771 =770

Moreover, accept’ A g(¢in) = n/t — o, (e-authy’) = ni*. Therefore:

accept) A or(e-authy’) = o, (e-authy’) — \/ o, (e-auth!”) = nt

T1=_,PN(j1,1)
72771 =770

Since 19 < 7 we know that for every 71 = | PN(j1,1) € {m | 2 < 71 <+ To}, j1 # j. Using
=-ind we deduce that n/* # n’. Since auth,(ID, j) — n/ = o, (e-auth;’), we obtain that:

accept? A o,(e-authy’) = 0., (e-authy’) A auth, (1D, j) — \/ nf = nit

T1=_,PN(j1,1)
T2 <7 T1=770

— false

100 The 5G-AKA Authentication Protocol Privacy

— Let 79 =, TUp(Jo,1) <X 7. We do a similar reasoning. By (Acc3):
acceptl) — \V mlg(el)) =n
T1=_,TN(j1,0)
T1=<77T0

Remark that accept’ A m(g(¢ln)) = ni* — o, (e-auth;’) = n’. Hence:

accept? Ao,(e-authy’) = 0., (e-authy) — \/ o, (e-auth;’) = n’?
T1=_,TN(j1,0)
T1<r70
By validity of 7, we know that for every 71 = ,TN(j1,0) such that 7, <, 79, we have j; # j,
and by consequence n?* # n’. Since auth,(ID, j) — n/ = o, (e-authy’), we obtain that:

accept)? Ao (e-authy’) = 0., (e-authy’) A auth, (1D, j) — \/ nd = nit

T1=_,TN(j1,0)
T1=77T0

— false
e Case ai = TN(4,0). Again, for all ID € Sig and for all j; € N such that jg # j:
suc-auth, (ID) = suc-auth,, (ID) auth, (1D, jo) = auth,, (1D, jo)

Hence (4.6) holds. It only remains the case jo = j. We know that o/"(b-auth?) = fail, therefore
suc-auth,, (ID, j) = false, which in turn implies that:

(suc-auth,, (ID) A auth,,(ID, j)) < false

Moreover: .
auth, (D, j) — n? = o (e-auth’)

Remark that o, (e-authy’) = oi"(e-auth;’). Using (A1) we easily show that n/ does not appear in
st(oi"(e-auth;’)). Therefore —auth, (D, j) by =-ind. [|

Using Lemma 4.8, we can prove Lemma 4.3, which we recall below:
Lemma (4.3). For every valid action trace 7 on Sig, ID € Siy and j € N, we have:
or(e-authy) =n' — \ .. oy (b-auth’) = 1D

Proof. Let T be a valid action trace. First, observe that o, (e-auth;’) = n? implies that o, (e-auth;,’) # fail.
Therefore, using Lemma 4.8 we get that:

o-(e-auth’) = n! — o, (e-authl’) # fail
— suc-auth(ID)
- \/s—startedj/('r) aUthT(Iva/) (By Lemma 48)

Since (nf = o, (e-auth!®) A ni" = o, (e-auth!®)) < false if j # j:

— o, (b-auth?) = D

= Vo<, o, (b-auth!) = 1D [|

4.9.4 Injective Authentication of the Network by the User
We actually can show that the authentication of the network by the user is injective.

Lemma 4.9. For every valid action trace T on Siy, the AKA™ protocol provides injective authentication
of the network by the user. Formally, for every 1D € S;qy and j € N, we define the formula:

inj-auth_(ID,j) = auth.(ID,j) A N\ iz; —auth.(ID,1)
s-started; (T)

Then:
VID € Sig, suc-auth,(ID) = \/, ;ared, () inj-auth, (1D, j)

4.9. Mutual Authentication of the AKA™ Protocol 101

Proof. First, we show that for 1D € Sq and ig,4; € N with ig # 41:
suc-auth,(ID) — (—auth.(ID,4g) V —auth, (1D, 1)) (4.8)
Indeed:
suc-auth, (ID) A auth,(ID,ig) A auth,(ID,4;) — n% = o, (e-auth!’) An" = o, (e-auth}’)
Using =-ind, we know that nt # n‘. Therefore:
n® = g, (e-auth!”) A nt = o, (e-auth’) — false
This concludes the proof of (4.8). From Lemma 4.8 we know that:
VID € Sig, suc-auth7(ID) — V/_ g,peq, () auth7 (D,)
Moreover, using (4.8) we have that for every ID € Sig,j € N:

suc-auth, (ID) A auth,(ID,j) — A i»%; —auth.(ID,?)

s-started;; (1)

We deduce that:
VID € Siq, suc-auth.(ID) — \/S_Startedj(T) inj-auth_(1D,) [|

Finally, we prove that 1D authenticated jo at 7 if and only if n/o = o, (e-auth;).
Proposition 4.15. For every valid action trace T, for every jo € N:
inj-auth_(ID, jo) < n’° = o, (e-auth})
Proof. To do this we show both directions. The first direction is trivial:
inj-auth_(ID, jo) — auth,(ID,jy) — n’ = ¢'"(e-auth!”)
We now prove the converse direction:

n’ = gi"(e-auth!”) — suc-auth, (ID) (Using =-ind)
- \/s—startedj1 (1) inj_aUthr<ID7j1) (Lemma 49)

We conclude by observing that for every ji # jo:
n’® = o, (e-auth}’) Ainj-auth,(ID, j;) — n?® = o, (e-auth”) A n’t = o, (e-auth!’)

— false (Using =-ind) W

4.9.5 % (p. 104) Proof of Lemma 4.6
Proof of (Acc1). Let ai = PN(j,1) and ky, = ki. Recall that:
accept)” = eq(my(dec(m1(g(47)),sky)), D) A eq(m2(g(¢7)), Maci, ((m1(9(€7)) , n”)))

We apply the P-EUF-MAC! axiom (invariant (INV-KEY) guarantees that the syntactic side-conditions
hold):

accept) — ma(g(4)) = Mac ({m1(g(¢7)), n’))

i i Jo i
- V ma(g(¢)) = Macy ({(1p, o (sQNP))Iok » 9(&h))
70:7;PUID(j071)'<T
Finally, we use cr!, EQInj({_, -)) and EQInj({-, _)) to show that for every 7o = ,PU;,(jo,1) < T:

m1(9(47)) = {(10, O’i_r:)(SQNILP)>};£z Ari=gen) m

102 The 5G-AKA Authentication Protocol Privacy

Proof of (Acc2). If ai = PU(4,2). Let km = k. Recall that:
accept = g(67) = MacZ, (o (b-autht®) , o (sx)))

Graphically, we are in the situation:

PUp(j, 1) PN(jo, 1) PU(j,2)
v 4 . ‘
T1 T0 T

Part 1 We are going to apply the P-EUF-MAC? axiom. We let:
S = {T() | T = _,PN(]'O71) < 7’}

and for all Sy C S we let:

(/\ accept’;) (Aiﬂaccept':;)

T0€So T0ESo

Then (bs,)s,cs is a valid CS partition. It is straightforward to check that for every Sy C S, for every
To = _,PN(jo,1) < 7, if 79 € Sy then we can rewrite [bg,]t-, into a term [bso]t by removing the branch
corresponding to acceptID Therefore:

Macam(<nj0 , suc(ma (dec(my (g(fo)),skN))») € set-macj _ (tfg) if and only if 79 € Sp

Hence by applying the P-EUF-MAC? axiom we get that:

accept;y — \/ bs, A \/ gb'" Macﬁm(<nj0 , suc(ma(dec(m (g(::))),skN))»)

SoCS To€So

For Sy =), we have:

(Vg6 = Mack_((n, suc(ms(dec(m (9(61) ski))))

T0E€So
Hence:
accepty — \/ bs, A \/ gb'" Macﬁm«nj,suc(ﬂg(dec(m(g(::))),skN))»)
SSOC:(D T0E€So
0

— \/ \/ accepty, A g(¢'") = Macam(<nj,suc(7r2(dec(7r1(g(';L)),skN)))))

S0CS 19€Sp
So#0

— Vo acceptd A g(éf) = Macg ((n’, suc(mz(dec(mi (9(¢})), skx))))

T0=_,PN(jg,1)
TO=T
o"(b-auth!?), ¢ (sQN'P)) =
— \/ accepty, A < : (v) (:1)> (cr?)
ro=_ G0, (n”, suc(mz(dec(m1(g(¢7,)), sk))))
TO<T

\/ accept)) A o"(b-authl?) = n’ (EQInj({_, >)>
A o (sQNy) = suc(ma(dec(mi (g()), sky))) and EQInj({-, _))

To=_,PN(jp,1)
To<T

Part 2 It only remains to show that we can restrict ourselves to the 7y such that 71 <, 7. Using
(Accl) we know that:

accepty? — \V mle(en) = {(p, o (sany >} . Ag(¢'n)—nﬂo

T/=_,puip(§/,1)
' <r70

4.9. Mutual Authentication of the AKA™ Protocol 103

Let 7" = ,PUip(j’,1) such that 7" <, 79. We now show that if j' # j then the tests fail, which proves
the impossibility of replaying an old message here. Assume j’ # j, then:

v

on (SQNY) = suc(ma(dec(mi (g(6M), sk) A m(g(@n)) = {(1D, o™ (saN) } e
— oP(SQNY) = suc(o’f (saNy))

— false (By (A3))
We deduce that:
accept,’ — \/ accepty) A g(d)iT"l) =n’ A mi(g('Tr;)) = {(p, oi (sQnyy)>}pk [|
TOZ_,PN(jo,l)
71770

Proof of (Acc3). Let ai = TU,,(j,1) and k = k'™”. We know that:
accept) — m3(g(dF)) = Maci_ ((m1(g(¢1)) , m2(g(dF)) @ fi(mi(g(4}))) , o (GUTIY)))

We are going to apply the P-EUF-MAC? axiom. We let S be the set of terms:

S = {7_0 | T0 = _aTN(j()? 1) = T}
and for all Sy C S we let:
bs, :(/\ accept'T':;) /\(/\ ﬁaccept'T':(’))
T0ESo T0€S0

Then (bs,)s,cs is a valid CS partition. It is straightforward to check that for every Sy C S, for every
To = _,TN(jo,1) < 7, if 79 € S then we can rewrite [bs,]ts, into a term [bs,]t2° by removing the branch
corresponding to accept. Therefore:

l\/IacEm((nj0 Lo (SQNI), ol (GUTIY))) € set-maci (¢2°) if and only if 7o € So
Hence by applying the P-EUF-MAC? axiom we get that:

accept® = \/ bg, A \/ ms(g() = Mac} (", 0l (sQni?), o (GUTIY)))
SoCS T0ESo

By cr3, EQInj({_, -)) and EQInj({(-, _)) we know that for every 7o = , TN(jo,1) € S:
Maci; ((m1(g(¢7)) . m2(9(6)) @ fi(mi(9(d}))) . o (GUTLY))) = Macy_({n°, o (SQNY) , o (GUTLY)))

= m(g(dy)) = n’ Ama(g(97)) @ fi(mi(g(¢7))) = or (sQNY) Ao (GUTLY) = opp (GUTIY)

Using the idempotence of the & we know that:
(m1(9(@F)) = 0% A m2(9(dF)) @ fi(mi (9(#]))) = oy (sQNY)) — ma(g(eF)) = ofy (saNy) & fie(n”)

Moreover, remark that if Sy NSy = 0, we have:

=V bse A\ ma(g(el) = Maci_((n,ofh (sNy) , ofh (GUTIY)))

SoCS T0ESo

Putting everything together, we get that:

accept® = \/ bs, A\ melg(@M) = Maci_((n¥* 0™ (sQN) , o (GUTI?)))

SpCs T0E€So
So#0

o\ accept Ama(g(6) = Mac], (0,0 (sox?) 0¥ (GUTI)))
SoCS 19€S8y
S0

— \/ accept’” A ms(g(¢r)) = Mac} _((n70, o (sQN) , o (GUTIY)))
To=_,TN(jo,0)<T

. AT = 0" (SQN'?) @ fi (n¥°
W s Al = OO = TRCRDI R

T0:7,TN(j0,0)<T /\ U;'n (GUTI{D) = UITr[l) (GUTI;\!D)

104 The 5G-AKA Authentication Protocol Privacy

Proof of (Acc4). We are going to apply the P-EUF-MAC* axiom. Welet S = {7y | 7o = _, TU1»(Jo, 1) < 7},
and for all Sy C S we let :

/\ accepty) A /\ —accepty,)
T0E€So T0€S0

Then (bs,)s,cs is a valid CS partition. It is straightforward to check that for every Sy C S, for every
To = _,TUp(jo, 1) < 7:

[bS] _ [bSO}Macﬁm (7Tl (g(Tg))) if o €50
o [bs,]error if 9 € Sp

Hence by applying the P-EUF-MAC* axiom we get that:

9(7) = Macf, () =\ bsy A g(67) = Maci, (ma(9(47,)

SoCS ToESo

Remark that for Sy = 0, we have:

~(bso A Viyes, 9(67) = Mac, (m1(9(61))))

Hence: _ .
9(¢") = Macy_(n7) = \/ bs, A \/ 9(¢") = Macy_ (m1(9(4])))
g(()];; To€So

Let So C S with Sy # 0, and let 79 € Sp. Using the cR* axiom we know that:

9(#) = Macy_(n?) A g(¢7) = Mac (mi(g(d7,))) — m(g(dh)) =n’

Therefore:
g(L"):Mack \/ bs, N \/ (¢n) = Macﬁm(m(g(::,)))
SpCS ToESo
So#0
SV ks n V) mieen) =
SpCs T0E€So
So#0

And using the fact that bs, — accept}?:

g(é) =Macl, (n) >\ accept,, Am(g(eh)) = .

To=_,TUp(_,1)<7

4.10 Acceptance Condition Characterizations

In this section, we prove acceptance characterizations, i.e. necessary and sufficient conditions for a mes-
sage to be accepted by the user or the network. This section is organized as follows: we start by showing
some properties of the AKA™ protocol, which we use to obtain a first set of acceptance characterizations
in Section 4.10.1 and Section 4.10.3; then, using these conditions, we prove in Section 4.10.5 that the tem-
porary identity GUTL? is concealed until the subscriber starts a session of the GUTI sub-protocol; finally,
using the GUTI concealment property, we prove stronger acceptance characterizations in Section 4.10.6.

4.10.1 A First Acceptance Condition Characterization

Before proving our first acceptance characterizations, we show two properties of the AKA™ protocol.
The property (B1) states that the user and network sequence numbers are increasing, i.e. for every
valid action trace 7, and for every prefixes 71,7y of 7 such that 7y < 71, we have:

070 (SQNY) < o7, (SQNY) 7o (SQNY) < o7, (SQNY)

4.10. Acceptance Condition Characterizations 105

TN(jOaO) TUID(ji: 1) TN(jO»l) FN(.jO) NSID(_) TUID(j71)
v ‘ . U S S
70 Ti Tn Tx T1
! | l
oi (saN?) \
on(sQNiP) o, (SQN'P) = oln (sQNiP)

Figure 4.17: Graphical Representation of the Proof of Proposition 4.16

The property (B2) is more complex. Let jo be a network session that authenticated a user at instant
7 (i.e. o (e-authl’) # Unknownld), and let 1D be a user. We assume that ID has been reseted since the
session jo, and that 1D already ran a full session of the AKA™ protocol: formally, 7 = FU,,(_) and
FN(jo) <+ NS;p(_). Then either the HN session jo did not authenticate ID, or the current value value of
e-auth; is not n7°. In both case we have —inj-auth_(ID, jo).

We show (B2) by contradiction, by proving that if it does not hold, then there is a sequence number
inconsistency. In that case, we prove that there exists an instant 7, such that o™ (sQNP) < ol (SQNIP).
We describe in an informal fashion how this is done. First, we prove that when a message is accepted,
the user and network sequence numbers must be equal between some instants of the protocol executions
(we prove two such equalities). Moreover, the sequence number are not decreasing (B1), and the user
increments his sequence number at the instant TU,,(,1) if it accepts. This allows us to obtain the
situation depicted in Figure 4.17. We will use this proof technique multiple times in this chapter.

Proposition 4.16. For every valid action trace T = _,ai on Sig and identity 1D € Siy:
e (B1) For every 1o X 11 =X 7, for every X € {U,N}, we have 0., (SQNY) < o, (SQNY).
e (B2) If ai = FU,(j) then for every and jo € N, if FN(jo) < NSip(_) then:

o, (e-auth’®) # Unknownld — —inj-auth_(1D, jo)

Proof % (p. 106). Let 7 = _, ai be a valid action trace and ID € S;q. The property (B1) is straightforward
by induction over 7. Therefore, we focus on (B2).
Let 7, = ,FN(jo) < 7. We do a case disjunction on the sub-protocol used by the user:
o If there exists 71 s.t. 71 = _,TU;p(4,1) < 7. By validity of 7, there exists 7, < 7, with 7, =
_,PN(jo,1) or _,TN(jo,1). We can check that 7, < 7, < 71 < 7.
Assume that 7, = ,PN(jo,1). The sub-protocols used by the user and the network are different.
In that case, it is very easy to show that we cannot have authentication. To prove this formally,
observe first that inj-auth, (ID, jo) — accept}’. Therefore, using (Acc3):

inj-auth_(ID, jo) — \/ o, (e-auth!’) = n’2
To=_,TN(j2,0)
To=<T1
For every 79 = _, TN(jo,0) < 71, we know that js # jo (since 7, = _,PN(jo, 1)). Hence:

inj-auth_(ID, jo) — o, (e-authl’) # n’® — false

Which is what we wanted.

Now, assume that 7, = , TN(jo, 1). We give a graphical representation of this case in Figure 4.17.
The idea is that inj-auth_(ID, jo) implies that UE,,(j) must have accepted HN(jo) at instant 7y.
But since HN(jo) ran the GUTI sub-protocol at instant 7,, which is before 71, is must have accepted
messages from a prior UE,(j;) session (with j; # 7). It follows that HN(jo) must have accepted
two different UE,, sessions, j; and j. This will yield a contradiction on sequence numbers.

106 The 5G-AKA Authentication Protocol Privacy

We now prove this formally. First, observe that o, (e-auth’®) # fail and o, (e-auth’®) = o, (e-auth’®).
Moreover, it is straightforward to check that for every valid action trace 7':
inj-auth_, (ID, jo) A 0 (e-auth?®) % Unknownld A o, (e-auth’®) +# fail
— 0 (e-auth’”) = o, (b-auth?)
Hence we deduce that:
inj-auth_(ID, jo) A 07 (e-auth?®) # Unknownld — o, (e-auth’’) = o, (b-auth’®)
Since inj-auth_ (1D, jo) — o, (b-auth?®) = D, we get that:
inj-auth_(ID, jo) A oy (e-auth?®) # Unknownld — o, (e-auth’) = 1p
Moreover, o, (e-auth’®) = 1D — accept’ . Using (Acc4) on 7,:
accept — \/ accept)) Ay (g(¢'7’1)) = nlo
Ti=_,TUip(ji,1)<Tn
Let 79 = TN(jo,0) and 73, = _, TU;p (445, 1) < 7. Observe that 7; # 1. Using (Acc3), we get that:
accept™ A (g(61)) = 7 — range(o™ (SQNP), 0" (SQN)) = o (SQN™) = o' (sQNT)

Recall that inj-auth_(ID, jo) — accept’>. Moreover, inj-auth_(ID,jo) — m1(g(¢")) = nf. Hence
using (Acc3) again we get:

accept™ A1 (g(é")) = 0 — range(o™ (SQN), ™ (SQNI)) — o™ (sQN') = 01" (SQN'P)

Putting everything together:

, oM (sQN'?) = 0" (SQN'P
inj-auth.. (1D, jo) A o (e-auth’?) # Unknownld — (. (SQN) (5)>

A o (sQNE) = 0¥ (saN)
> o (saxP) = o (sani)

Finally, accept’> — ol (SQNI?) < o+, (SQNI), and using (B1) we know that o, (SQNI?) < o™ (sQNP).
We deduce that:

inj-auth, (ID, jo) A o~ (e-auth?®) # Unknownld — o™ (SQNI) = o' (sQNIP) < o™ (SQN'P)
— false

This concludes this case.

o If there exists 11 = ,PU(j,2) < 7. Let 73 = ,PU(j,1) < 71, we know that 7, < 73. Remark
that inj-auth_(ID, jo) — acceptl’, and using (Acc2) we easily get that:
accept;, — \/ 0., (e-auth!”) = n’2
T2=_,PN(j2,1)
T3 =Ty <71
Since no 1D action occurred between 11 and 7, we have o, (e-auth’) = o, (e-auth;’). Moreover,
inj-auth_(ID, jo) — o, (e-auth},) = n’°. Finally, for every 7o = ,PN(j2,1) such that 73 < 75 < 71,
since 7, < 73 we know that js # jo. It follows that:
inj-auth_(ID, jo) — V ra=_.(a N0 =nJ2 — false n

T3 =Tg<T1
We now prove a first acceptance characterization:

Lemma 4.10. For every valid action trace T = _,ai on Siy and identity 1D € Siy:

4.10. Acceptance Condition Characterizations 107

e (Equl) If ai=Fuy(j). For every o = ,FN(jo) < T, we let:
funm = (inj—authT(ID,jo) /\qiT“(e—authiD) # Unkn?wnld r -)
' Ami(g(¢7)) = GUTI® @ f((n0) A 72(g(¢T)) = Macy ((GuTr”, n?))
Then:
acceptl’ < Vo= i<+ fu-trgr’

ToATNsID(_)

Proof *(p. 107). Using Lemma 4.9 we know that:

suc-auth, (ID) — \/ inj-auth, (1D, jo)

s-started;, ()
Let k = k;p and ky,, = k. Since:

accept’” = suc-auth,(ID) A m2(g(¢")) = Mac;_((m1(g(¢l")) & fi (0" (e-authl)), o' (e-auth))))

EQMac

And since inj-auth_(ID, jo) — suc-auth,(ID) we have:

accepty < \/ inj-auth_(ID, jo) A EQMac

s-started;, (7)

o \/ infauth, (1D, jo) A ma(g(é) = Mac,, (w1 (g(é)) @ fi(n¥o) , n¥o))

s-started, (7)
Using the P-EUF-MAC® and CR® axioms, it is easy to show that for every jo € N:

m1(g(¢™)) @ f (n¥0) = GuTI®

.)) .) . if] T
m(g(67)) = Mack ((ma(g(é") @ Fi(n") , ni)) — <Ag;n(e-authgo>¢unknown|d>) €

false otherwise
Hence:
accept’® \/__ . (inj'a“thr(IDajo) A gﬁ‘(e—authi“) £ Unkn.ownld | |)
T T T A (g(6i1) = GUTE? @ (170) A malg(9) = Mac, (Ut)
& Voe mGo<r fU-tris’
We conclude using (B2):
accepty < \/TOT:;:&X?ST fu-tr;.7° -

Using this acceptance characterization, we prove additional properties of the protocol:

e (B3): if the user has a valid temporary identity (i.e. o, (valid-guti;)), then the variable GUTI is
not unset.

(B4): if the network sequence number for ID increased between two instants 7o and 7y, then this
increase has been recorded by the variable sessionly: there must exists an instant 7, between 75 and
71 such that 0" (sessiony’) = n’*, where 7, ends by TN(j,,0), TN(j;,1) or PN(jz, 1).

e (B5): the network sequence number is always smaller than the user sequence number: for every

ID, we have 0,(SQNY) < o-(SQNP).

e (B6): if 7y is the last reset of user ID (i.e. o = ,NS;p() < 7 and 79 A, NS;p(_)), and if ID is
synced at an instant 7; between 7y and 7, then the network sequence number at instant 7y is greater
than the user sequence number at the time of the reset (i.e. at 79).

e (B7): if no ASSIGN-GUTI session took place since the last reset of user ID, then ID has no valid
temporary identity.

108 The 5G-AKA Authentication Protocol Privacy

Proposition 4.17. For every valid action trace T = _,ai on Sig and identity ID € Siy:
e (B3) o, (valid-gutiyy) — o,(GUTIP) # UnSet.
e (B4) For every 7o <, 71:

1D in D in . ID .
0, (SQNY) < o (sQNy) — \/ o (session’) = n’:
To<7rTe <771
Te=_,TN(jz,0), _,TN(jg,1) or _,PN(jz,1)

e (B5) 0-(sQNy) < o,-(SQNP).
e (B6) For every 79 <, 71 such that 7o = ,NS;p(_) or e, and such that 79 A+ NSip(_), we have:

or, (syncy’) = o7, (SQNY) > 04, (SQNY)
e (B7) If for all 7" < 7 such that 7" 4, NS;p(_) we have 7" # | Fu,(_), then:

o, (valid-gutiy)) — false

4.10.2 % (p. 111) Proof of Proposition 4.17

Proof of (B8). We show this by induction over 7. If 7 = ¢, we know from Definition 4.4 that o (valid-guti;,) =
false and o.(GUTLY) = UnSet. Therefore the property holds. Let 7 = 7, ai, assume by induction that
the property holds for 7o. If ai is different from TU(4,0), PUs(j,1) and FU(j) then oUP(valid-guti) =
o®P(GUTL?) = L, in which case we conclude immediately by induction hypothesis. We have three cases
remaining:

o If ai = TU\5(4,0) or ai = PU,p(j, 1) then o*P(GUTLY) = false. Therefore the property holds.

o If ai = FU(j), using (Equl) we can check that:

accept)” — \/ o+ (GUTIP) = GUTH® — 0, (GUTI) # UnSet
T1=_,FN(jg) =T
71 Arnoin (L)

We conclude by observing that o.(valid-guti”) = accept'”. [|
Proof of (B4). We prove this directly. Intuitively, this holds because if o, (SQNI?) < oi" (SQNI”) then we
know that sQN!* was updated between 75 and 71. Moreover, if such an update occurs at 7,, = _, PN(j,, 1)
or TN(jz, 1) then sessiony has to be equal to n’= after the update. Finally, the fact that sessiony is equal
to nJ= for some 7, between 75 and 7 with 7, = | TN(j;,0), ,TN(jz, 1) or _,PN(jz,1) is an invariant

of the protocol. Now we give the formal proof.

First, we remark that sQNY is updated only at PN(_, 1) and TN(_,1). Moreover, each update either
left SQN)’ unchanged or increments it by at least one. Finally, it is updated at 7, < 7 if and only if
inc-accept;” holds. If follows that:

1D in 1D H 1D
0, (SQNY) < o (sQNy) — \/ inc-accept;”
To=<r Ty =TT
T$=,_wTN2(ja;,1) or _IYPN(jwyl)

We know that for every 7 <, 7, <, 7, if:
® 7, =, ,PN(js,1) then inc-accepty — o, (sessiony’) = n'=.
e 7, = _,TN(jz,1) then since inc-accept]” = inc-accept)’ A o'" (session)’) = n=, we know that
inc-accept;, — 0" (session)) = n’=. Besides, since session, is not updated at TN(j,,1) we de-
duce that inc-accept)’ — o, (session,’) = ni=.

Hence:
0, (SQNY) < o (sQNy) — \/ o, (sessiony) = n’® (4.9)
T =TT <T1
Te=, ,TN(jg,1) or _,PN(jg,1)
Let 79 <, T <, 71 such that 7, =, | TN(j.,1) or _,PN(ju, 1). Now, we prove by induction over 7/ such

that 7, < 7 < 7y that:

o, (session?) = nf* — \/ o, (sessiony) = ni»

T Jp <7
Tn=_,"N(jn,0), _,™N(jn,1) or _,PN(jn.1)

4.10. Acceptance Condition Characterizations 109

If 7/ = 7, this is obvious. For the inductive case, we do a disjunction over the final action of 7/. If
sessiony, is not updated then we conclude by induction, otherwise we are in one of the following cases:

o If 7/ = ,TN(j’,0) then we do a case disjunction on accept.>:
—accept’> — o,/ (session’”) = o' (session™?) (4.10)
Hence:

—accept)y A o, (sessiony’) = n’*

— \/ o, (session’) = n/» (By induction hypothesis and (4.10))
T STn <7
Tr=_™Nn,0), Lt (in,1) or _,PN(in,1)
— \/ o, (sessiony’) = n’» (Relaxing the condition 7,, < 7')
T S <7
= _ NG, 0), (i, 1) or _,PN(Gin,1)
Moreover,
. 5 . y
accept’s — o,/ (sessiony’) =n’ — \/ o, (sessiony’) = ni»
T X7n <7’
Tn=_,TN(jn,0), ,TN(jn,1) or _,PN(jn,1)

This concludes this case.

o If 7, = | PN(jn, 1) then the proof is the same than in the previous case, but doing a case disjunction
over inc-accept.’.

Let 79" be such that 7 = 7¢/,ai;. By applying the induction hypothesis to 7o/, we get:

o, (sessiony) = n/* — \/ 07 (sessiony) = nim — \/ ol (session’) = n’n
w2 <70 T TR <T1
Tn=_,TN(jn,0), ,TN(jn,1) or _,PN(jn,1) Tn=_,TN(jn,0), _,TN(jn,1) or _,PN(jn,1)
We conclude using (4.9) and the property above. [|

Proof of (B5). We prove this by induction over 7. For 7 = ¢, from Definition 4.4 we know that
0.(SQNIP) = sqn-init;” and o (SQNY) = sgn-inity . Using sSQN-ini, we know that sqn-inity < sqn-inity’ .
For the inductive case, let 7 = 7¢, ai and assume that the property holds for 7p. We have three cases:
e If ai is such that sQN}? is not updated. Using (B1) we know that o, (SQNIP) > o, (SQNY), and we
conclude by applying the induction hypothesis.

e If ai = PN(4, 1), then we do a case disjunction on inc-accept’". If it is true then:

inc-accept’” » \/ o (sQP) = olf (sanPP) (By (Accl))
T():_,PU[D(j0,1)<T
=/ o(sany) = ot (sQNY) A oln (sQNP) < o (SQNY) (By (B1))

70:77PU|D(j0;1)<T

—or(sQNY) < o, (SQNY)

If inc-accept!’ is false then —inc-accept!” — o, (SQN'P) = ¢i"(SQN'), and we conclude by applying
the induction hypothesis.

e If ai = TN(j, 1), then we do a case disjunction on inc-accept,”. First we handle the case where it is
true. We summarize graphically this case in Figure 4.18. Let 72 = ,TN(4,0) < 7. We know that
inc-accept)” — o!"(sessiony;) = n’/. Moreover:

oi"(session®) = n? — /\ 0" (session'”) # ne
To<T1 <T
L= NG00, TN (i, 1) or | PNz ,1)
— 0,,(SQNP) < " (sQN'P) (Using the contrapositive of (B4))

— o, (sQNP) = o (sQN") (Using (B1))

110 The 5G-AKA Authentication Protocol Privacy

T —e o o o ~—
T2 1 T

: : +
o, (SQNY) o7 (SQNY) ———— o+ (SQNY)

o1 (sQNE) — 7 (sNP) < o- (sQNy)

Figure 4.18: Graphical Representation Used in the Proof of (B5).

NSip(_) . . .
or € PU(7,1) PN(jz, 1) PUL(4,2)
ro—e . . . -
T0 Ti Tx Tn T1
| | |
Oy (SQNLD) < Ory (SQN{\:D)
/ —_
<)
07, (SQNY) o (SQNY)

Figure 4.19: Graphical Representation Used in the Proof of (B6).

We know that inc-accept” — accept!®. Moreover, using (Acc3) and (Acc4), we check that:

accept’® — \/ ol (sQny) = ol (sQny)
T1=_,Tump(_,1)
T <T] =T

Besides, accept’” — o, (SQNI?) = 0" (SQNIP) + 1, and using (B1) we know that o, (SQNI?) <
o, (sSQNIP). Finally, inc-accept) — o,(SQNY) = o!"(sQNY) + 1. Putting everything together:

inc-accepty — o (sQNY) < o, (SQN},)

Which is what we wanted.
If inc-accept! is false then —inc-accept!” — o, (sQN'P) = o/"(SQN'P), and we conclude by applying

the induction hypothesis. |
Proof of (B6). First, observe that:
o7, (sync?) — \/ accept” (4.11)
Tn=_,PUp(j,2)
TQ=R TR <T1
Let 7, = ,PUp(4,2) such that 79 < 7, < 71. Let ; = ,PU(j,1) such that ;, < 7,,. We know that
Ti < To. We give a graphical summary of this proof in Figure 4.19. First, we apply (Acc2):
. . . . J
accepty) — \/ accept, A g(¢r) =n’" A m(g(or)) = {(iD, o (SQNLD»};;N (4.12)
Te=_PN(jz,1)

TR Te=<Tn
Let 7, = _,PN(jg, 1) such that 7; < 7, < 7,,. Using (B1), we get that o, (SQNIP) < o' (sQN'”) and that
0r, (8QNY) < 04, (SQNY). There are two cases, depending on whether we have inc-accept’ .
e We know that inc-accepty — o, (SQNI’) = o' (sQNIP) + 1 > ol (sQN[P). Putting everything
together, we get that:

accept)” Alinc-accept; — 07,(SQNy’) < o7, (SQNY)

4.10. Acceptance Condition Characterizations 111

o We know that:

J
ne

" ol (sQNP) < ot (sQN')

accept™ A -inc-accept’ A (g(¢7)) = {(ID, o' (sQNI))}

Moreover, -inc-accept), — o' (SQNIP) = o, (SQNI?). We recall that o, (SQNI?) < o' (sQNIP) and
that o, (SQNY) < 0., (SQNY). Therefore:

J
ne

accept? A inc-accept A (g(¢)) = {(ID, o (SQNP)) I = oy (SQNP) < 07, (5QND)

Using (4.12) and the two cases above, we get that accept]” — 0., (SQN?) < o7, (SQNY).
Since this is true for all 7, = ,PU(J,2) such that 79 < 7, < 71, we deduce from (4.11) that

01, (Sync) = 0y (SQNY) < oy, (SQNT) n

Proof of (B7). Let 7ys = € or NS;p(_) be such that 7ys < 7 and 7vs A7 NSip(_). We show by induction
over 7/ with 7ys < 7/ < 7 that o, (valid-guti;) = false.

For 7" = 7y, this is true using from Definition 4.4 if if 75 = €, and from the protocol term definitions
if 7ys = NS;p(_). The inductive case is straightforward. [|

4.10.3 A Full Set of Acceptance Condition Characterizations
We now design acceptance condition characterizations for all relevant action labels.

Lemma 4.11. For every valid action trace T = _,ai on Sig and identity ID € Siy:
e (Equ2) If ai = PU5(j,2). Let 7o = _,PUp(j,1) such that 7o < 7. For every 7w = _,PN(j1,1), let:

g™ = Macﬁ:2(<nj1 , suc(oln (sQN))))

Ag(én) =n? A mi(g(@)) = {0, o (sQNP) 1

H n:7Ty —
supl-tr,, - =

Then:
accept)” + \/ supi-try)
T1=_ NG,
To=<rT1

e (Equ3) If ai=PN(j,1). Then:
9(6n) = W Ami(g(e) = (D, o7 (saN))}E
st \A malg(6F)) = Macks ({0, 072 (saN))Y2E. 9(617))

e \/ g(Tl):nj/\g((rbr):t‘rl

T1=_,PUip(j1,1)
T =T

D
accept” <+

e (Equ4) If ai=TU\5(j,1). For every 1 = _,TN(jo,0) such that 71 < 7, we let:

m3(9(97)) = Macy, (", o, (SQNY) , 07" (GUTLY))) A 07 (s-valid-gutiy;)

et = | A range(o(sQNP), o (SQNI)) A g(611) = ot (GUTID) Ay (g(6)) = 0

u:T
Ama(g(87) = o (SQN) & () A 0 (GUTI?) = o7 (GUTI)

Then:
n:T 1D 1D n:T
(c-triTt — accept’?) -, o 0 accept® \/ c-trT
1 T1=_,TN(jg,0)
<7

e (Equ5) If ai=TN(j,1). Let 1 = ,TN(4,0) such that 71 < 7, and let ID € Siy. Then:

accept)” + \/ ctrlT A g(olh) = Macﬁg(nj)

Ti=_,Tump (4;,1)
T1=7T4

112 The 5G-AKA Authentication Protocol Privacy

4.10.4 % (p. 114) Proof of Lemma 4.11
Proof of (Equ2). Using (Acc2) we know that:

accept? & \/ accept® A g(6) =0 A m(g(o)) = {(1D, ol (sQNT)) 1

T1=_,PN(j1,1)
T2 =TT]

9(07) = Macy (v, o7 (sQNY))) A g(@h,) ="
oV

i \AT(g(#1) = {(ID, o™ (sQN) }e

T2=TT1

Since oi"(SQNIP) = suc(o (sQNIP)):

9(é") = Macs (v, suc(a™ (sQN™)))) A g(@h) = n*
o\

b \Am(g(6)) = {(ID, ol (sQNP))} e

T2 =TT1

R \/ supi-trg) . |

T1=_,PN(j1,1)
T2 =771

Proof of (Equ3). Using (Accl) it is easy to check that:

acceptl’ _ . '
r— < \ A T(g(6) = Macky ((m(g(67)) 1))

Which can be rewritten as follows (we identify above, using waves and dots, which equalities are used,
and which terms are rewritten):

g(oin) = w1 Ami(g(9M) = {(1D, o™ (sQN)) }1F,
T1=_,PUp(j1,1)<T A 772(g(¢m)) = Mac&:ﬁ(<{<ID’ O-E:l (SQNIUD»}EF; ’ g(¢71>>)

First, observe that:

in nil in nit in
{0, ol (SN =miltn) Macky({{0, 0% (SQNPDYE L 9(6))) = ma(t-,)
We conclude using the injectivity of the pair.]
Proof of (Equ4). Using (Acc3) we know that:
accept” A acceptl) Am in)) = ndo
accept;’ < \/ Pt " Pr 1(9(67) o .
e Yoo \ATa(g(6) = o7 (5QN) @ () A 0" (GUTI?) = o (GuT?)
T =T

Inlining the definition of accept”:

V (accept‘D Ag(¢lh) = ol (QUTIY) A o' (GUTIY) # UnSet A 71 (g(4lr)) = nj°>
ATa(g(¢) = o (SQNP) @ fu(n¥0) A o (GUTIP) = o' (GUTID)

T1=_,TN(j0,0)
T1<T

Inlining the definition of accept’:

m3(9(4l)) = Maci,_ ((m1(g(¢))) , ma(g(¢) @ fi(mi(g(4}))) » o (GUTIY)))
A 7 (s-valid-gutit®) A range(™ (SQN), ma(g(¢i™)) @ fi (w1 (g(6™)))
g(¢l") = o (GUTIY) A o (GUTIY) # UnSet A i (g(¢l)) = n°

T1

oV
T1=_,TN(jp,0)

=T

Ama(g(8) = o (5QNP) @ fil(n7*) A o™ (GUTIP) = o' (GUTIY)

4.10. Acceptance Condition Characterizations 113

We rewrite 7 (g(¢")) into nio:

m3(9(47)) = Mac (0™, m3(g(¢7)) @ fi(n) , o7 (GUTLY)))

T1

Ama(g(4)) = ol (SNP) & i) A o (GUTI?) = o' (L)

mi=_mG0.0) g(¢) = o (GUTIY) A ol (GUTLY) # UnSet A 71 (g(¢F')) = n’°

We rewrite ma(g(¢r')) @ fi(n??) into o (SQNIP):

m3(g(#)) = Macy (0", o7, (sQNY) , o7 (GUTIY)))

> _) S _ 4 (4.13)
ne_nuoo | Ag(éh) = ol (GUTIP) A o™t (GUTI) # UnSet A i (g(617)) = e

T

Ama(g(87)) = o7 (SQN™) & (070 A 0" (GUTI?) = 077 (GUTIE)

Let o =, TU;p(jo,0) < 7. By validity of 7, there are no user ID actions between 75 and 7, and therefore
it is easy to check that ol (s-valid-guti;) — UI:T:Z (valid-guti;’), and that oi*(GUTLY) = o7 (GUTLY). lI\I/D[ore-
over, using (B3) we know that ol (valid-guti,’) — ol (GUTI) # UnSet. Therefore o' (s-valid-guti,’) —
oM (GUTI) # UnSet. It follows that:

(oM (GuTI?) = ol (GUTIY) A 0if (s-valid-gutiy)) — o (GUTIY) # UnSet
Hence we can simplify (4.13) by removing o'" (GUTI) # UnSet. This yields:

73(g(6)) = Mack_((n¥o o (sQN) , o (GUTIP))) A o' (s-valid-gutit”)

T

accept” ¢ \/ | Arange(o(SQNP), o (SQNP)) A g(6h) = 07 (GUTID) A i (9(6)) = "
N\ A o (g(6)) = oF, (5ND) @ () A 0P (GUTI?) = o (GUTIY)
> \/ c-trpt
le_vT_z’(jOvO)
T1 T
Finally, we check that for every 71 = _, TN(jo,0) such that 7 < 7, we have c-trj’7* — accept!”. [

Proof of (Equ5). Using (Acc4) we know that:

accept’” < \/ accept’” A accept,. A mi(g(¢")) = n?

T

Ti=_,TUp(ji,1) <7

Moreover, using (Equ4) we know that:

accept)’ < V accept)’ A c-tri Amy(g(¢lf)) = n/
Ti=_.Tuip (4;,1) <7
To=_,TN(j2,0)<T;
Let 72 = _,TN(j2,0) < 7;. Then we know that c-tr]7> — m1(g(¢™")) = n/2. Therefore using =-ind we

know that if jo # j:

(ctrl2 Ami(g(¢n) = n?) = (m1(g(¢)) = n?> Ami(g(4)) = n?) — false

Hence:
accept” + \/ accept?” Actri7t Ami(g(ol)) = n?
Ti=_,Tuip(4;,1)
T1=7T4
“ \/ accept)” A c-tryi (Since c-tr™ — mi(g(¢™n)) = nd)
T;=_,Tup(j4,1)

T1=7T4

114 The 5G-AKA Authentication Protocol Privacy

We inline the definition of accept’™:

- \/ 9(é") = Macyw(n?) A olf (b-auth]) = ID A c-tr 7!
T;=_,Tuip(j4,1)
T1=rT;
Using (Equ4), we know that for every 7y = _, TN(jo, 0) such that 7y < 7, c-tr[i7* — acceptl’. Moreover,

using (A6) we know that accept;) — oin (b-auth?) = ID. Besides, oin (b-auth?) = 1D — ¢/ (b-auth’) = ID.
Hence c-tr’™ — ¢/"(b-auth’) = ID. By consequence:
accept;y <> \/ g(¢™) = Macyn (n?) A c-trgt [|
Ti=_,TUip(4;,1)
T1I=TT;
4.10.5 GuTI®? Concealment

Lemma 4.12. Let 7 be a valid action trace on Sig and 1Dy € Sjg. For every 7, = _,TN(jq,1) or
Ta = _,PN(ja, 1) such that 7, < 7, and for every 1, = PUy, (Ji, 1) or 7y = TUip, (ji, 1) such that 7, < 74, if:

{m [7 <7 71} N {PU, (4, _), TU,(J, _),FU,(4) | j € N} C {PUip, (Jji, 2), FUin, (i) }
Then there exists a derivation of:
inc-accepti™* A o, (b-auth*) = n’* A accepti™s — g(¢') # GuTH*
Proof % (p. 118). Let 5, be the term:
Br = inc-accepti* A o, (b-auth*) = n’* A accepti™
For every 7, < 7, = 7, we let lea kiTr; be the vector containing the terms (in an arbitrary but fixed order):
° IeakiT':) if 7, = 79, aig and 7, < 7.

The term 3.
All the keys except k'™, ki,* and the asymmetric secret key sky.

All elements of o', except:
— All the user 1D, values, i.e. for every X, ol (x!Px) ¢ IeakiT"I.
— The network’s GUTI value of user IDy, i.e. o (GUTIR*) ¢ leak .

e For every 7, X 7, < 7 such that 7,, = ,FN(j), the term Macﬁgx(nj).

e Forevery 7, < 7, < 7suchthat 7, = ,PN(j,1) then I\/Iacff-rzx (n?), for every 79 = _,PUp (jia, 1) < 7,
the term Maco. ((n? , suc(o™ (SQNT)))).

Let cUTI be a fresh name. We show by induction on 7 in 7, = 77 < 7 that there are derivations of:

[8-] (¢, leaky,, cUTP*) ~ [B;](¢r,, leak,,,cUTI) and Br = o, (GUTIP*) = GuTI*

We depict the situation below:

TUip, (Ji, 1) TN(ja, 1)
or PUp, (j;, 1) or PN(jg,1)
\ \
T —@ L @ L]
Ty Ta T1 T
Case 1y =7, First, 3; — inc-accepty®, and inc-accept’* — o, (GUTI*) = GUTV<. Therefore:

Br — 07, (GUTIP®) = GUTP®

Then, we observe from the definition of leak,, that GuTIe ¢ st(leak,,) (since o, (GUTI’*) is not in
leak,). Moreover GUTI’* does not appear in ¢! and ¢,,. Besides, GUTI is a fresh name. By consequence
we can apply the Fresh axiom, and then conclude using Refl:

(3]0 Jeak) ~ [3](9% eakt)

[B-](i,,[‘l,|eaki:1,GUTIj“) ~ [B-](L"l,leakin GUTI)

T1?

Refl

Fresh

4.10. Acceptance Condition Characterizations 115

TUIDX (jia 1) TN(ja7 1)
PUp, (jn, 1) or PUy, (ji, 1) or PN(jg, 1) PN(j,1)
T —e o ° ° o~
Tn Tb Ta T1
| '
| |
e |
<
or, (SQNY) o (sQNy)
o (sQNy) o (sQNY) 0r, (SQNY)

Figure 4.20: Graphical Representation Used in the Proof of Lemma 4.12

Case 7, < 71 Let ai be such that m; = _,ai. Assume by induction that we have derivations of:
[8-] (¢, leak!” ,cuTie) ~ [B.](¢",leak! , GuTi) (4.14)
By — o (GUTIY™) = GUTP® (4.15)

Part 1 First, we show that: 4
Br — o, (GUTIY®) = GUTP®

Since we know that (4.15) holds, we just need to look at the ai that update GUTI* to conclude:
e If ai = TN(j,0). Using (4.14), we know that [B;]g(¢i") # GuT+. Hence using (4.15):

Br = o, (GUTIY®) # g(4}))

Which shows that 3, — —accept;’. This concludes this case.

e If ai = PN(j,1). Since 7, = TN(jq, 1) or PN(jg, 1), we know by validity of 7 that j, # j. We give a
graphical summary of this proof in Figure 4.20. Using (Equ3) we know that:

. . . . Jin
accept’>x — \V g(¢) = n? Ami(g(ll)) = {10y, ol (sQNP)) }oe (4.16)
Tn=_,PUip(Jn,1)
Tn <T1

Since j, # j we know that n/ # n’a. Moreover:

o, (b-auth®) = nf* A accept’™ — g(¢r) = ne

)

Hence 3, — g(¢i) # nd. Moreover, for every 7/ between 7, and 71, we know that 7/ # PU, (_, 1).
Therefore we know that:

))) . in
Br Naccepty* — Vo g(@n) =07 Ami(g(en)) = {(iDx, oln (saNy*)) boi
"'n:;:‘gliéjnyl)
Let 7, = ,PUp(jn, 1) such that 7,, < 7. We know that:

Br = 07, (SQNY™) = 0, (SQN™) = suc(o7, (SQNY™))
Since o, (SQNI>*) < o' (SQNI*x) and o (SQNIPx) < ol (SQNIPx), we deduce that:

B, Aaccept’t A g(éh) = ni = o' (sQNi*) > o (sQN')

T1

Moreover:

Jn
Ne

B A inc-acceptiys A g(6n) = 09 Ami(g(6h)) = {10, o7 (saNE) 1
— o (saN7) < o (saN)

116 The 5G-AKA Authentication Protocol Privacy

Hence:

Jn

Br Naccept™x A g(¢) = n? Ami(g(l)) = {(IDx, ol (SQNI™))}7s — —inc-accept*

T1 pky T1
Using (4.16), this shows that:

B~ A accept>* — —inc-accept!™* (4.17)

T1 T1

This concludes this case.

e If ai = TN(j,1). Since 7, = TN(jqu, 1) or PN(jq, 1), we know by validity of 7 that j, # j. From the
induction hypothesis we know that 8, — ¢! (GUTIPx) = GUTV=. It is easy to check that:

o (GUTIY) = GUTP® — olf (sessiony) = n’®
Hence, since j # jqu:
Dy

By — of(sessiony) = n’e — ol (session*) # n’

IDx

— -inc-accept™ — o, (GUTIY®) = oif (GUTIR) = GUTP*

Which concludes this case.

Part 2 We now show that:

[8:] (¢r,, leaks,, cUTP*) ~ [B.] (¢, leak,,,cUTI)

We do a case disjunction on ai. We only details the case where ai is a symbolic action of user 1D, with
ID # IDy, and the case where ai = FN(j,). All the other cases are similar to these two cases, and their
proof will only be sketched.

e If ai is a symbolic action of user ID, with ID # ID,, then for every u € leak,, \leak} (resp. u =t;,)

in

we show that there exists a many-hole context C,, such that u = Cy[¢},

contain any nonce in N.

|eakiTn1] and C,, does not

We only detail the case ai = FU;5(j). First, observe that:

eq(m2(g(¢h,)), Maci,, ((m1(g(¢h)) @ fi (o7, (e-auth’)) , o (e-authi?)))))

accepty = AT _
Pt (A —eq(oll (e-authy), fail)
All the underliped subterms are in q[)iT”I, |eal_<iT"17 therefore there exists Chccepr such that accept], =
Caccept (@2, leak]]. Remark that leak, \leaky = {o" (valid-gutiy’), o™ (GUTL?)}. Moreover:

T

tr, = if accept] then ok else error ol (valid-guti’) = accept!

T1

o (GuTIY) = if accept’ then mi(g(4r)) @ fi (o' (e-authy’)) else UnSet

in
T17

in

I, leak

Using the fact that all the underlined subterms are in ¢
build the wanted contexts.

and using Chccept it is easy to

We then conclude using the FA rule under context, the Dup rule and the induction hypothesis:

[8:] (6, leak ,cuTre) ~ [B.] (4", leak! , cuTr)
[ﬂ‘r] (qbrlv lea kl:l) GUTIjua (Cu [qbiplv lea ki:l])ue{t.,.l Jleakr, \Ieaki;‘l}

~ [ﬁ‘r] (qsl:la leakifrnl , GUTI, (Cu[I-Pla leaki'rnl])ue{t.rl 7Ieak,l\leaki;‘1 })

[B+] (7, leak,,, curtie) ~ [B:](¢r, leak,,, cUTI)

(FAc + Dup)*

o If ai = FN(j,). It is easy to check that:

o (e-authl®) # D, — ™" (GUTIP®) # GUTE® — ¢'"(GUTLY™) # GUTI*

4.10. Acceptance Condition Characterizations 117

Therefore using the induction property (4.15) we deduce that 8, — ol (e-auth!*) = 1D,. More-
over by validity of 7, there are no session j, network actions between 7, and 7;. It follows that
o (e-auth]") = 1D, — ol (e-auth]’) = ID,. Hence:

[B-]tr, = [B-1(GUTV* & fiin, (n7) , Macye ((GUTP® , 7))
Observe that:
T1?

8] (s, leaky,, GUTV®) = [B,] (1, (GUTP* @ fiine (n7) , Macye ((GUTE? , /7)), leak” , GuTE*)

We are now going to apply the PRF-f axiom on the left to replace GUTI & f/, (n’e) with GUT @ n¢

where nf is a fresh nonce. For every 5 = | FU() < 71, we use (Equl) to replace every
occurrences of accept,, in ¢, IeaI«'T“1 , B> with:
_ n:T3
Y2 = \/ fu'tru:'rg
T3=_,FN(_)=<Tg
75 Ay N5 ()

which yields the terms ¢/, leak’", .. We can check that:

T1 T1)
set—prfL.rDx (Vry) €{n? | I = |FN(p) <71}
And that: . _ .
set-prf L (o7, |eak¢?) ={n” |3 = |FN(p) <7}

Therefore we can apply the PRF-f axiom as wanted: first we replace ¢l , |eakiT"1 , Br by ¢Q{‘, lea k'TT, Br
using rule R; then we apply the PRF-f axiom; and finally we rewrite all v, back into accepti>~.

Finally, we use the @-indep axiom to replace GUTI?* @ ns with a fresh nonce nf. This yields:

[B+] (¢l (ng, Maci[rgx((GUlea . n7e))), leakl” , cutr’®) ~ [B:](¢r,, leakr, , GuTr)

- - - - - - ®-inde
[6.] (97, (GUTE e, Mach, ((GUTE | 1)), leaklh, GUTE™) ~ [B,] (6 leakry, GUTE) "

[B:](¢l, (GuTr?® @ ng, Macimx(<GUT1ja , n7e))), leak , cut’®) ~ [B:](¢r,, leaks, , GuTr)
[85] (¢4, (GUTP® @ fom (%), Macp, ((GUTE® , n9%))), leakiT, GuTI®) ~ [B:] (¢, leakr,, GuTI)

[8:] (ém,, leaks,, GUTI?) ~ [B,](¢r,, leaky, , GUTI)

PRF-f

R

We do a similar reasoning to replace Macliu. ((GUTIe , n=)) with a fresh nonce n/ using the
PRF-MAC® axiom (we omit the details):

[B:] (o™, (nf, nf'), |eaki:1,GUTIj“) ~ [B-] (#r,, leak,,, cuTI)

[B+] (o, (n, Maci:x((GUTIJG, nja>)>,leakin auTre) ~ [B;](¢s,, leak,,, GUTI)

T1) T1?

(R + PRF-MACP)*

We then do the same thing on the right side, and use the FA axiom under context

[B+] (i, i, n;’,|eaki:1,GUTIj“) ~ [B-] (¢, nf, n§/,|eaki:1,GUTI)

T1?

- - , - - FA
[B:] (¢, (nf, nf) ,leakl ,quTte) ~ [B;](¢M, (nf, nf),leak , cuTI) A :
8] (61, (nf, 0} leak™ , GUTH=) ~ [B,] (6r,, leaks,, GuTI))
Using the fact that 5, € IeakiTnl, we have:
[ﬁf] (¢iT"1,|eakiTnl,GUTIjﬂ),n§, n¢, ~ [BT}(Tl,|eakT1,GUTI),n§, n{, Simp
[B+] (o, i, né’,leakiT'LGUTIja) ~ [B:] (¢l ni, n}’,leakiTnl,GUTI)
We then conclude using Fresh twice:
18+ (L[‘l,|eaki7:,GUTIj“) ~ [5:] (gbiTr‘l,IeakiT”l,GUTI) ,
., Fresh

[B:](iT"I,leaki,rnl,GUTIj“),n;, nf ~ [B:](‘T"l,leakiT”l,GUTI),nf7 ny

118 The 5G-AKA Authentication Protocol Privacy

e We now sketch the proof of the induction property for the remaining cases:

in

— Ifai = FN(j) with j # j,. First, we decompose ., into terms of ¢ , lea kiTn17 except for the term:

(GUTV & fin. (n?), Macpe ((GUTV , n7)))

The rest of the proof goes as in case ai = FN(j,). On both side, we do the following;:

* We apply the PRF-f axiom to replace GUTI @ fiw, (n/) with GUTI/ @ n¢ where n¢ is a fresh
nonce.

* We use the @-ind axiom to replace GUTH @ n¢ with a fresh nonce n;
* We apply the PRF-MAC® axiom to replace Maci‘,ﬁx ({(auTl , n?)) with a fresh nonce nf'.
Finally we use Fresh to get rid of the introduced nonces nf and n{’.

— If ai = TN(4,0). Using the induction hypothesis we know that 3, — —accepti’. We can
therefore rewrite all occurrences of accept)>* into false under the condition 3;. This removes
all occurrences of ¢! (GUTIP*) in Ieale\IeakiT"1 and t,,. We can then decompose the resulting
terms into terms of ¢, leak’ .

— If ai = TN(j,1). We can decompose |eale\|eakiT"1 and t,, into terms of ¢I" , |eakiTn1 (we use the
. _ 4 4
fact that leaky contains Macymx (n/)).
— If ai = PN(j,0). This is trivial using Fresh.

— If ai = PN(j,1). We use (Equ3) to rewrite all occurrences of accept”* in Ieale\IeakiT"1 and t,;:

accept)* > \/ g(@l) =’ Ag(elh) =t,

To=_,PUipy (§2,1)
To<T1

We can then decompose the resulting terms into terms of (;SiT"I, Ieakirnl. This uses the fact that

the terms:
(Macze (0, suc(of(5QNDN) - oy, 0
T =Ty
are included in |eaki7"17 since {7o = _,PUp (j2,1) | e <71} ={m2 = _,PUp (j2,1) | T2 < Tp}.

— If ai is a symbolic action of user ID, with ID = IDy, then either ai = PU, (j;, 2) or ai = FUp_(J;).
x If ai = PUp, (i, 2), then we show using (Equ2) that:
Br — (accept™* > g(¢) = t,)

Therefore we can rewrite accept™ into g(¢") = t,, under 3, in t,. The resulting term
can be easily decomposed into terms of d)L"l, leak’ .

% ai = FUpp (j;). We do a similar reasoning, but using (Equl) instead of (Equ2). We omit
the details. [

4.10.6 Stronger Characterizations

Using the GUTI concealment lemma, we can show the following stronger version of (Acc3):

Lemma 4.13. For every valid action trace T = _,ai on Sig and identity ID € Siy:
e (StrAccl) If ai= TU,,(j,1). Let 71 = _,TU;»(4,0) such that 7, < 7, and let k= K”. Then:

TUp (.77 0) TN(jl» 0) TUip (]7 1)
S a a
T1 T0 T
accept® — \/ accepty, A 9(¢;’;) = ‘72 (qurry) A mi(g(l)) = n’
T Ve \A ma(g(é) = ol (sQNP) @ () A o (GUTIP) = o (GUTIY)

T1=7TQ

4.10. Acceptance Condition Characterizations 119

Proof % (p. 120). First, by applying (Acc3) we get that:

accept® A (g(¢™) = n?° A ma(g(é")) = 0" (sQN'P) @ fi (n’°
e\ (Bl Ama(6) = 0 Ama(o(6F) = RSN RO
o Vo \ AR (GUTI?) = of (GuTI?)
To=T
We have accept?® — o' (s-valid-gutiy), and ol (s-valid-guti;’) — olf) (valid-gutiy’). Let 70 = _, TN(jo,0),
we know that accept}, — o} (GUTIY) # UnSet. Therefore:
o acceptyy Ami(g(dF)) = 07 Ama(g(dF)) = o (SQNY) @ fu(n™°)
accept,y — \/) .
o= o \ A0 (GUTLY) = o (GUTLY) A o7 (GUTLY) # UnSet A o7 (valid-guti,’)
TO<T
We want to get a contradiction if 79 < 71. Let 7 = _, TN(jo,0) < 7, and assume that 79 < 71. If there
does not exists any 7o such that 72 = | FU,5(j;) < 71, then it is easy to show that o"(GUTI?) = UnSet.
In that case, from the equation above we get that —accept!”, which concludes this case.
Therefore, let 79 be maximal w.r.t. < such that 7 = | FU(j;) < 71. We have 1o £, FUp(_).

Assume that there exists a user ID action between 75 and 7y. It is easy to show by induction over 7 in
T2 < 7' < 71 that, since there are no FU,5(_) action between 75 and 71, we have —\O'i_nl (valid-guti;’). This
implies —accept’”, which concludes this case.
Therefore we can safely assume that there are no user ID actions between 75 and 7. We deduce that
oin (valid-gutiy’) — accept!>. Hence accept’” — accept’”. By applying (Equl) to 75, we know that:
acceptl” — \/ fu-try® (4.19)

uiTy

Ta=_,FN(ja) <72
TaATNSIp(_)

We recall that:

fute™ T inj-auth_, (D, jo) A o' (e-auth?*) # Unknownld
u-tr. 2 = .)
"7 =\ A mig(6n)) = GUTE @ F(n) A ma(g(é)) = Mack, ((GuTi , nie))

Let 7, = ,FN(j,) < 72 such that 7, 4, NS;p(_). We know that there exists 7, = ,PN(j,,1) or
Tn = _, TN(ja, 1) such that 7, < 74, and that fu-trj.”* — accept’® . Let 7, = _,PU;p(js, 1) or _, TU;p(ji, 1)
such that 7, < 72. If 7, < 7;, we show using (Accl) if 7,, = ,PN(jq, 1) or (Accd) if 7, = ,PN(jq, 1)
that we have —fu-trj.”¢. Therefore, we assume that 7; < 7,,. We depict the situation below:

PUID(jial) PN(jaal)

or TUp (ji, 1) or TN(ja, 1) FN(Jja) FU (J3) TUip (4, 0) TUp(j, 1)

R o o o o -
T Tn Ta T2 T T

We check that fu-trj.¢ — o, (GUTLY) = GUTV+. Moreover, since there are no user ID actions between
7o and 71 or between 71 and T, 0., (GUTLY) = o"(GUTEY). From (4.18), we know that accept’® —
oM (GuTry) = of (GuTIy). It follows that:

accept” A fu-tri7e — ol (GUTIY) = GUTL* (4.20)

T

n:Tq

If 7y < 7, then it is easy to check that 0" (GUTIP) % cUTF. Therefore we have —(accept’® A fu-trj72).

Now, we assume that 7, < 79. Recall that we assumed 79 < 71. Our goal is to apply the GUTI
concealment lemma (Lemma 4.12) to 79 get a contradiction. We can check that the following hypothesis
of Lemma 4.12 is true:

{7 | 7 <7 7} N {PUWL(J,), TU (],), FU(J) | 7 € N} C {PU(ji,2), FUb (i)}
We deduce that:

inc-accept” A o, (b-authy’) = n/* A accept’™ — g(¢) # cuTr (4.21)

Ti

120 The 5G-AKA Authentication Protocol Privacy

We know that: ‘
fu-try.72 — accept) A o, (b-authy’) = n’e (4.22)

Moreover, winc-accepty’ — o, (GUTIY) # GUTF*. It is then straightforward to check that —inc-accept —
07, (GUTIY) # GUTE=. Therefore, using (4.20) we get that:

accept’” A fu-tri7¢ A —inc-accept)’ — (0l (GUTIY) = GUTP* A 0l (GUTIY) # GUTE*) — false
Hence accept?® A fu-trj.7¢ — inc-accept}’ . Therefore using (4.21) and (4.22), we get:

accept” A fu-tr7e — g(¢") # cuTP* (4.23)
We have accept® — g(¢lf) = o (GUTIY). We get from this, (4.20) and (4.23) that:

accept;” A fu-trj.72 A accept — false
This holds for every 7, = ,FN(j,) < 72. We deduce from (4.19) that:

accept;” A accept, — false

Since we have this for every 79 < 71, we can rewrite (4.18) to get:

accepty, AT M) =nfo AT) = ol (SQN') @ fi (nd0
et o\ < Pt A a(61) (gl =))
o= 0o \ AN 07 (GUTLY) = ol (GuTIy)
T1 <70 <T

N:Tq

To conclude, we observe that accept’® A fu-try 7 — o (GUTI?) = GUTF+. We recall that accept® —
g(opn) = a::)(GUTI‘ND). We conclude using (4.20) that:

7o

accept!” A fu-tr7e — ol (GUTLY) = g(¢!N)

70

Since this holds for every 7, = ,FN(j,) < 72, we deduce from (4.19) that:

accept;” A accept;, — aL“l(GUTIIUD) =g(o")

70

Hence using (4.24) we get:
y <acceptl Am(g(é) = 0 A ma(g(6h)) = o (sQNE) @ fk<nf0>>
[

aCCthL.D in 1D in 1D in
0=_,™(jg,0) Nor (GUTIU) = UTO (GUTIN) A Or (GUTIU) = g(¢70)
T =T =T

We now prove the following strong acceptance characterization properties:

Lemma 4.14. For every valid action trace T = _,ai on Sig and identity ID € Siy:
e (StrEqul) If ai = FU,(j). Let o = _,TU(4,0) or _,PU(J,1) such that o < T, then:
accept)” <> \/ fu-tr). !
T2<-T1=_,FN(jo)

e (StrEqu2) If ai = TU,,(4,1). Let 72 = ,TU;p(4,0) such that 7o < 7. Then for every 11 such that

71 = _,TN(j1,0) and 7o <, 71, we let:
mi(g(¢F)) = ' A ma(g(¢F) = o7 (SQNY) @ fo (1)
e A 773((61) = Macjw ((n, o7 (SQNY) , o (GUTIY)))
part-try.r, » = i i i . .
> 9(¢1") = o (GuTL?) A o (GUTLP) = o (GUTIY) A ol (valid-gutiy’)
A range((SQNP), o (sQNE))
Then:

n:Ty
u:Te,T

(part try: — accepty A acceptfi) = (1,0 accept;” < \/ part-tr,

T2=TT1

U'TQT

T1=_,TN(j1,0)
To<TT1

4.10. Acceptance Condition Characterizations 121

e (StrEqu3) If ai = TN(j,1). Let m = _,TN(4,0) such that 1 < 7. Let ID € Siy and 7;, 72 be such
that 7, = 77TUID(ji; 1), Ty = 7,TUID(].1',0) and T <, T <, T;. Let:

full-tr7T = part-tr"T A g(ol") = Macﬁﬁ(nj)

u:T2,T; u:T2,T;

Then:

(full—tr":Tl’T — accept;” A accept” A acceptﬂz) o= Ui (35,0) accept’’ +> \/ full-tr™ 7"

u:T2,7T; i u:T2,7T;
Ti=_,Tup(j4,1)

T2RTT1I=T T4 T2=_,TUip(43,0)
T;=_,Tuip(34;4,1)
T2 =771 <7T;

e (StrEqu4) If ai = PUs(j,2) then for every 1 = _,PN(j1,1) such that 7o <, 71, we have:

-0 (sync®) A supi-tryt - — inc-accept;, A o"(SQNP) — o, (SQNI?) = 0
Moreover:

- (sync!®) A accept’ — o (SQN'?) — o, (SQN?) =0

4.10.7 x (p. 127) Proof of Lemma 4.14
Proof of (StrEqu1). First, we apply (Equl):

n:iT
accept)” > \/ fu-tr. !

T1=_,FN(jg)<T
71 AT Nsip (L)

Let 1 = ,FN(jo) < 7. Remark that if 75 < 7 then 71 4; NS;p(_). Hence to conclude we just need to
show that if 71 < 72 then —fu-tr].7*.

Let 7, = ,PU;p(4,2) or _,TU;p(4,1) such that 7, < 7. We do a case disjunction on 7;:
o If 7, = _,PUL(j,2). We know that fu-trj." — accept”, hence by applying (Acc2) to 7;:
n:Ty

futrli =\ accept? A g(@f) =0t A mi(g(dF)) = {(D, o (sQNT)) }i,

Te=_,PN(jz,1)
To=Te <T;

We know that fu-try" — g(¢) = n/o. We deduce that the main term of the disjunction above is
false whenever j, # jo. Hence we have —fu-tr]..* if there does not exist any 7 such that 7 < 79 < 7

and 7 = _,PN(jo, 1).

If 71 < 75 then we know that for every 7, if 790 = ,PN(jo, 1) < 7 then 79 < 71, and by transitivity
To < T2. Hence there does not exist any 79 such that 7 < 79 < 7; and 79 = _, PN(jo, 1). We deduce
that if 71 < 7o then —fu-trj..* holds, which is what we wanted.

o If ;= _,TU,(j,1). We know that fu-tr;' — accept’’, hence by applying (StrAccl) to 7;:
(2 A alh) =of(eum) A mlalo)) <o
SV \A malg(6n) = o (sax) @ fi(ne) A o (GUT?) = o (GUTE)
To =Ty <T;

Similarly to what we did for 7, = | PU5(j;,2), the main term above if false if j, # jo. Hence we
have —fu-tr;.." if there does not exist any 7y such that 7 < 79 < 7; and 70 = _, TN(jy,0). Since
this is the case whenever 7 < 72, we deduce that if 71 < 72 then —fu-tr{.”* holds. [|

Proof of (StrEqu2). We repeating the proof of (Equ4), but using (StrAccl) instead of (Acc3). All
the reasonings we did apply, only the set of 7y the disjunction quantifies upon changes. We quantify over
71in {m | 1 = _,TN(jo,0) Ao <, 71} instead of {m; | 71 = _,TN(jo,0) A7 < 7}. We get that:
75(g(6)) = Mac,_ (070, 0™ (SQN®) , oM (GUTED))) A 01" (s-valid-guti)
accept” «» \V Arange(ol (SQNIP), ol (SQNI)) A g(@f) = o' (GUTIY) A m1(g(lr)) = n?
LY \ A ma(g(6) = o (sQNP) @ fi(n°) A o (GUTLP) = o (GUTIP)

122 The 5G-AKA Authentication Protocol Privacy

Since no user ID action occurs between 7, and 7, we know that:
oM (QuTr?) = o (GUTILY) ol (s-valid-gutiy’) < o' (valid-gutiy’)

Using this, we can rewrite the characterization of accept)” as follows (we underline the subterms where
rewriting occurred):

m3(g(d")) = Macam((njf’ ,aiT"l (sQny), oiT”Q(GUTI‘UD») A oiTr; (valid-gutiy)’)
accept? &5 \/ | Arange(o(sQNP), o (SQNP)) A g(9) = o (GUTIP) A i (g(6)) = "

P00\ A my(g(¢M) = o (5QNP) @ fi (n0) A 0" (GUTIP) = o (GUTID)

T

We rewrite aiT"1 (GUTIY) into UiT"z (GUTIY):

m3(g(oM)) = Macﬁm(<nj0 7criT“1 (sQNy), O'E,;(GUTIIUD») A 02‘2 (valid-gutiy,’)

Y. A range(o™™ (SQNI), o' (SQNIP)) A g(¢h) = o'n (GUTID) A my(g(¢") = n
T1=_,TN(jg,0)
T\ Amy(g(oim) = o (SQNIP) @ fi(n7°) Ao (GUTI?) = o' (GUTIP)

Finally we re-order the conjuncts:

m1(g(d) = 01 A mo(g(dlh) = ot (SaND) @ fieo ()
")) = Macj (7', o' (sQNP), o (GUTI?)))

o V A ((¢
e G | A g(@F): " (GUTIP) A olf (GUTLY) = ol (GUTIY) A o'f (valid-guti;))
To=<TrT1 .
A range(o™(sQN), o™ (sQN'P))
“ \/ part-try 7t
T1=_,TN(jg,0)
To<TT1
Finally, for every 71 = _, TN(j1,0)72 <, 71 we can check that:
part-tr; 7! — accept;’ A accept;) |
Proof of (StrEqu3). The proof that:
accept’” <« \/ full-trg 707
T9=_,TUp(4;,0)
Ti=_,Tum (4;,1)

TQ=7TT1=<7T;

is exactly the same than the proof of (Equ5), but using (StrEqu2) instead of (Equ4).
Finally, it is straightforward to check that for every 7o = | TU;r(5;,0), 73 = _, TUp(js, 1) such that
T <, T1 <, T; We have:
full-trgi7 7 — accept)” A accept} A accept;) |

u:72,7;

Proof of (StrEqu4). Let 7o = PU5(j,1) such that 75 < 7. Using (Equ2), we know that:

acceptl” « \/ supi-try)
T1=_,PN(j1,1)
To<rT1
Therefore to prove (StrEqu4) it is sufficient to show that for every 7 such that 74 = | PN(j1,1) and

Ty <, T1 We have:
—0i" (synciP) A supi-tri7t | — inc-accept! A ol (SQNY) — o, (SQNT) = 0 A 0, (SQNY) — 0 (SQNY) = 0

u:T2,T

Hence let 71 with 4 = | PN(j1,1) and 70 <, 7.

4.10. Acceptance Condition Characterizations 123

pUID(j7 1) PN(jh 1) PUID(j7 2)
T —e o o o
T2 T1 T

o (sQNi?) +1 o, (sQNy) ol (SQNIP)

Figure 4.21: First Graphical Representation Used in the Proof of Lemma 4.14

Part 1 First, we are going to show that:

—o™"(sync®) A supi-tr . — 04, (SQNY) = 0, (sQNy) (4.25)
We know that inc-accept — o, (SQNy’) = 0, (SQNy’), which is what we wanted. Hence it only remains
to show (4.25) when —inc-accept;’. Using (B5) we know that o, (SQNY) < o, (sQNy). By validity of 7
there are no user action between 75 and 7, hence o (SQN¥) = o, (SQNI’). Observe that:

n:7y
u:rTe,T

supi-tr A —inc-accept! — ol (SQNIY) > olf (SQNIP) 0ry (SQNIP) = ol (sQNIP) + 1

We summarize this graphically in Figure 4.21. We deduce that:

- (sync'®) A supi-tr,i7! A —inc-accept;) — o (SQNT) < ol (sQNI) < ol (SQNP) + 1
— oM (SQNP) = o' (SQNIP) + 1
— 07, (SQNY) = 0, (SQNY) (4.26)
Which is what we wanted to show.
Part 2 We now show that:
—o'"(sync!®) A supi-try . — or, (SQNY) > ol (SQNY) (4.27)
First, notice that:
inc-accepty, — o, (SQNY) = o' (SQNY) + 1
— 0., (SQNP) > ol (SQNIP)
— o7, (SQNY) > o7 (saNy) (By (B1))

Therefore we only need to prove:

A —inc-accept;y) — o, (SQNy) > o)) (SQNY)

T2

—a'"(sync®) A supi-tryl) .
Which is straightforward:

n:iTy
uiTe, T

1D

—o/"(sync'®) A supi-tr A —inc-accept! — o, (SQNY) = o' (SQNT) + 1 (By (4.26))

1D

— 0., (SQNY) > o (SQNIP)

— 07, (SQNY) > 0., (SQNY) (By (B5))
Which concludes the proof of (4.27).
Part 3 We give the proof of:
—o"(sync’®) A supi-try . = 07 (SQNY) = 04, (SQNY) A 0 (SQN) = 0 (SQNY) (4.28)

By validity of 7 we know that o, (SQNIP) = 0., (SQNI’), therefore using (4.25) we know that:

=" (sync'®) A supi-tr™ ™ — o, (SQN'?) = o, (SQN'P)

u:Te,T

n:Ty

To conclude, we need to show that SQN'® was kept unchanged since 71, i.e. that —ai"(sync'®) Asu pi-try.. -
implies that o, (SQN¥) = 0,.(SQNP). This requires that no SUPI or GUTI network session incremented
SQNY. Therefore we need to show the two following properties:

124 The 5G-AKA Authentication Protocol Privacy

PUL(j,1) PN(j1, 1) PN(ji, 1) or TN(ji, 1) PU(J,2)
s : ‘ .
T2 T1 T T
O—Tl(SQN{\'D) = (SQNIP) = in (sQN'P)
SUC(O'!,_n2 (SQNLD)) :0'7'7‘, QNy') = 07, (SQNy _ OUT(SQNLD)
Ory (SQN{JD) = = OUT(SQNLD) =

Figure 4.22: Second Graphical Representation Used in the Proof of Lemma 4.14

e SUPI: For every 71 <, 7; such that 7, = | PN(j;,1):

—oi (syncl?) A supi-triTl - — —inc-acceptl (4.29)
e GUTI: For every 7 <, 7; such that 7, = | TN(j;, 1):

—oil (syncl?) A supi-triT! . — —inc-acceptl’ (4.30)

Assuming the two properties above, showing that (4.28) holds is easy. First, using (4.29) and (4.30) we
know that:

n:Ty

—o"(sync®) A supi-tri) . — 0,(sQNY) = or, (SQNY)

We know that o, (sQN'P) = oi"(sQN'?). We deduce that o, (sQN?) = o, (sSQN?), which concludes this

case. We summarize this graphically in Figure 4.22.

Part 4 (Proof of (4.29)) Let 7y <, 7; such that 7, = ,PN(j;,1). Using (Accl) we know that:

accept!? — Vo mlgen) = {(ip, oh (s} Ag(eh) = v

Tl:_valD(j/71)<TTi

We know that supi-tr[i7! - — g(¢l) = n/t # ni. Moreover from the validity of 7 we know that for every
7' such that:
T2 = _7PUID<ja 1) <7 = _7ai// =rT= _7PUID(j? 2)

We have ai” # pU,(_,). Hence:

. . . . 3’ . .
Supi-tr[iT! A accept’ Vo meen) = {(p, o (s A g(on) = n
T'=_,Pup(j/,1)<+T2
Which implies that:
supi-tr.7} Ainc-accept)) — \/ o7, (SQN?) = suc(o™ (sQN'P))

T'=_,PUp(j/,1)<,T2

We recall (4.25):

n:Ty

0" (syncl®) A supi-tryiT, — oy, (SQNI) = o, (5QND)

Let 7/ = ,PUL(j,1) <, T2. We know using (B1) that:
0 (SQN) < 7y, (SQND) 00/ (SQND) < 7, (SQN)

Moreover using (A2) we know that o,/ (SQNIY) # 0., (SQNIP), hence o,/ (SQNIP) < 0., (SQNP). We sum-
marize what we know graphically in Figure 4.23. Therefore:

in D s Ty : 1D
=0 (syncy’) A supi-tri 7t Ainc-accept’

4.10. Acceptance Condition Characterizations 125

PUID(jI»1> PUID(j,l) PN(jhl) PN(jhl)
" . . .
T’ T2 T1 T;
< 01, (SQNDP)

o7/ (SQNY) oxo\
: \0\0% (sQNy)

oy (5QN') <

Figure 4.23: Third Graphical Representation Used in the Proof of Lemma 4.14

07 (SQNP) < 07, (SQNIP) A, (SQNP) = o7, (SQNTY)
- \/ Ao, (SQNY) < 04, (SQNY) Ao+, (SQNY) = 0,/ (SQNY)
T’:i,PUm(j/,l)<7—7'2 71 N/ —= YT N Ti N T U
— \/ o (SQNY) < o, (SQNY,)
T'=_,Pup(j’,1)<+T2
— false

Which concludes this proof.

Part 5 (Proof of (4.30)) Let 7 <, 7; such that 7, = , TN(j;,1). Using Lemma 4.7, we know that:
accept’” — o (e-auth!) =10 — \/ o, (b-authl?) = nJ
T/=_,Tup(_,1)
T <rTy

Since supi-tryt wrk . = op,(b-authy) = nf'. As we know that

nit # n’i, we deduce that supi-tr[;7! = — o, (b-authy’) # n?*. Moreover using the validity of 7 we know
that o, (b-auth;’) = o, (b-auth). Therefore:

— g(¢n) = n’t, we know that supi-tr[/}

n:Ty

supi-tr[) - Aaccepty) — \/ o, (b-authl)) = n’:
T/=_,1upp(_,1)
T/ <rTg
Let 7/ = ,TUp(,1) with 7/ <, 7. We know that o, (b-auth}y) = n/i implies that o, (b-auth;’) # fail,

and therefore accept!’ holds:
o (b-auth)”) = n?t — o, (b-auth}’) # fail — accept™®

By applying (Acc3) we know that:

acceptl — \/ m(g(elh)) = n’t

Ti'=_,™N(4},0) <7’

Since [accept'S]o (b-authy) = [accept'®] 7 (9(¢)) we deduce:

o (b-auth!”) = nfi — false if 7' <, TN(ji, 0)
Hence if 7/ <, TN(j;,0) we know that — (supi-tr[i7! A accept’), which is what we wanted to show.
Therefore let 7;" = |, TN(j;,0), and assume 7;" <, 7/. We summarize graphically this below:
r—b : . ! . :
/ / T2 1 Ti T

Ti T

126 The 5G-AKA Authentication Protocol Privacy

We recall (4.27): _ _
—o(syncy) Asupi-trilt - — ol (sQNy) < or, (SQNY)

uiTe,T

Hence, using (B4) we know that:

in 1D H n:Ty s ID\ _ J.
-0y (syncy’) Asupi-tryilr o — \/ o (sessiony’) = nf*
T2 2Tz 3T
Tz=_,TN(jz,0) or _,TN(jz,1) or _,PN(jz,1)

Since TN(j;,0) <, 72 and 71 <, TN(j;,1):

n:Ty

—o™"(sync®) A supi-triTl - — o, (session)y) # n’

For every 7 < 77 we have:

. . %4 H . . .
if inc-accept;”, then n? else o)/ (sessiony’) if 77 = |, PN(5",1)
HPR (5] . i’ i . . .
o (sessiony’) = ¢ if accept), then n/ else o', (sessiony’) if 7 = _,7TN(j",0)
oin, (sessiony”) otherwise

Since 7/ £, TN(j;,0), we know that after having set o, (session’) to n/t at 71, it can never be set to nfi.
Formally, we show by induction that:

o, (sessiony) # n’* — o (sessionyy) # n’é
We conclude by observing that o' (session)’) # n/i — —inc-accept.”.

Part 6 To conclude the proof of (StrEqu4), it only remains to show that:

n:7i

—oi"(sync'®) A supi-trj! - — inc-accepty) (4.31)

n:Ty
u:7T2,T

Since supi-tr — accept'™®, and since:
T1?

accept? A —inc-accept;) <« ol (SQNY) > ol (SQNy)
To show that (4.31) holds, it is sufficient to show that:

-o/"(sync'®) A supi-tr 7T — UiTnl (sQny) < UiTnz (sQNyY)

uiTe,T

We generalize this, and show by induction that for every 7, such that 7 < 7, <, 7, we have:

-0 (sync®) A supi-tr™ T — o, (SQNP) < ai.”z (sQny)

u:72,T

If 7, = 75, this is immediate using (B5) and the fact that o, (SQNI’) = o™ (sQNI*). Therefore let
Tn >+ T2, and assume by induction that:

—oiM (synci?) Asupi-trit L — o (sQNY) < o (sQNP)

u:7re,T

We then have three cases:

o If 7, # _,PN(_,1) and 7, # _,TN(_, 1), we know that o, (SQNI°) = o™ (SQNI), and we conclude
directly using the induction hypothesis.

o If 7, = ,PN(jp,1). Using (Equ3) we know that:
07, (SQN) £ 0 (SQNP) — accept
9(87) =’ Am(g(e,)) = {(ID, o7 (saN)) i,

et \A ma(g(6)) = Machy (({(ID, o™ (sx2))}0, g(4i2)))

Te<7Tn

%

07’

T

4.10. Acceptance Condition Characterizations 127

n:Ty
uiTe,T

Since 7, <, 71, we know that j, # j1. Moreover, supi-tr — g(gbig) = n’'. By consequence:

supi-tr"t - — g('7“2) £ nin

u:T2,T

Which shows that —(supi-tr,..! = A 0.,). Hence:

uiry,T
supi-triTl A o, (SQNI) # o (SQNY) — V6
Observe that for every 7, = ,PUjp(jz, 1) such that 7, <, 7o:
0r, — 07, (SQNY) = if 0! (SQNIY) < ol (SQNY) then ol (SQNI) else ol (SQNI)

Using (B1), we know that ¢! (SQN”) < i (SQNIP). Therefore we have the inequality:

0, — 0., (SQNY) < if 0N (SQNT) < ol (SQNI?) then o' (SQNI) else ol (SQNY)

And using the induction hypothesis, we get that:

—o (syncl?) A supi-triTt A6y, — o, (SQNY) < olf (SQNY)

u:re,T
Hence:
=" (sync'®) A supi-tr™ Tt A o, (SQN'D) # UIT':L(SQNLD) — o, (sQNy) < UiT"2 (sQNy)

u:T2,T

From which we deduce, using the induction hypothesis, that:

—oi" (syncl?) A supi-triTl . — o, (SQNY) < o' (SQNIP)

u:T2,T
e If 7, = ,TN(jn,1). Using (StrEqu2), we know that:

1D i D 1D N7\
or, (SQNY) # o (sQNy’) — accept] — \/ full-trg "7

Tz'=_,TUp (jz,0)

Tn/=_,TN(jn,0)

Tz =_,TUp(Jx,1)

o' <rTn/ <rTe <170
Let 7, = ,TUp(Jz, 1), 7' = _,TN(jn,0), 72’ = _, TUip(ju,0) s.t. 7" <7 7' <7 T2 <+ 7. Then:
full-try 7" 7" Alinc-accepty, — /\ -inc-accepty — o.,/(SQNY) = ol (SQNY)

’
Tn'<7Ti=7Tn

Moreover, since:

full-tr) 7", 7" Ainc-accepty) — o (SQNY) = o,/ (SQNY)

uTy’ T,
We deduce that:

fuII—trL’:::::: — 0, (SQNI) = if inc-accept!® then suc(a' (SQNI)) else " (sQNIP)

By validity of 7, we know that j, # j and that 7, =7 T2 Therefore using (B1) we know that
or, (SQNY) < ol (SQNy?). Moreover o, (SQN?) = suc(ol (sQN’)). Hence:

. ’
fulltry " T — o, (sQNy) < if inc-accept;” then o7 (SQN.) else o7 (SQNY’)

And using the induction hypothesis, we get that:

H . . ’ .
—a (syncy’) Asupi-tri A full-triT T — o (SQNY) < o (SQNYY)

u:Te,T T

Hence:

oM (syncl?) A supi-trliTE , Aoy (SQNI) £ o7 (SQN) = o, (5aND) < o' (sQNT)

u:T2,T

From which we deduce, using the induction hypothesis, that:

—o'"(sync’®) A supi-tr" T — o, (SQN'?) < aiTnz (sQNyY) [|

uiTe2,T

128 The 5G-AKA Authentication Protocol Privacy

4.11 Unlinkability

In this section, we prove the oy-unlinkability of the AKA™ protocol. To do this, we need, for every valid
basic action trace 7, to show that there exists a derivation of ¢, ~ ¢,. We show this by induction on 7.

4.11.1 Resistance Against De-Synchronization Attacks

To show that the GUTI protocol is oy-unlinkable, we need the protocol the be secure against de-
synchronization attacks: for every agent 1D, the adversary should not be able to keep ID synchronized in
the left protocol, while de-synchronizing v, (ID) in the right protocol.

Therefore, we need the range check on the sequence number to hold on the left if and only if the range
check holds on the right. More precisely, for every left identity 1D and matching right identity v, (ID), the
result of the range checks should be indistinguishable:

range(a, (SQN™), 0. (SQN'?)) ~ range(o, (sani™ "), o, (sqnim))) (4.32)

Unfortunately, this property is not a invariant of the AKA™ protocol, for two reasons:

e First, knowing that the range checks are indistinguishable after a symbolic execution 7 is not enough
to show that they are indistinguishable after 7y = 7,ai (for some ai). For example, take a model
where range(u, v) is implemented as a check that the difference between u and v lies in some interval:

[range(u,v)] if and only if [u] — [v] € {0,...,D}
for some constant D > 0, and where suc is an increment by one. Then, a priori, we may have:

[o-(sQN)] — [o-(sQNP)] =0 € {0,..., D}
[o2(sQny D] = [or(sany ™)] = D € {0,..., D}

While (4.32) holds for 7, it does not hold for 7 = 7, PU,(j, 1). Indeed, after executing PU,(j, 1):

[or, (sQNY)] — [or, (sany)] =1 € {0,..., D}
[0 (S5)] — o, (50827) = D+ 1 ¢ {0,..., D}

To avoid this, we require that range(_,) and suc(_) are implemented as, respectively, an equality
check and an integer by-one increment. Moreover, we strengthen the induction property to show
that the difference between the sequence numbers are indistinguishable, i.e.:

o (SQN) — o, (SQN) ~ o (sqnym) — o (sqny ™)) (4.33)

e Second, the property in (4.33) does not always hold: after a Ns;,(_) action, the agent ID and
the network may be synchronized on the left (if, e.g., the SUPI protocol has just been successfully
executed), but v, (ID) is not synchronized with the network.

Even though the property does not hold, there is no o,-unlinkability attack. Indeed a desynchro-
nization attack would need the GUTI protocol to succeed on the left and fail on the right. But the
GUTI protocol requires that a fresh GUTI has been established between ID (resp. v, (ID)) and the
network. This can only be achieved through a honest execution of the SUPI protocol. As such a
execution will re-synchronize the agent and the network sequence numbers on both side, there is no
attack.

To model this, we extended, in Section 4.6.4, the state with a new boolean variable, syncl’, that
records whether there was a successful execution of the SUPI protocol with agent ID since the last
reset NS;p(_). This variable is only here for proof purposes, and is never used in the actual protocol.
We can then state the synchronization invariant:

if o-(syncy) then o, (SQNY) — o, (SQNY) if UL(SYncZT(ID)) then UI(SQNZT('D)) _ UL(SQN;T(ID))
else error else error

sync-diff’? sync-diffs™ (1p)

4.11. Unlinkability 129

4.11.2 The Case Term Construction

We give some definitions that are useful to handle sequences of if then else in terms.
Definition 4.23. Let L = (i1,...,4;) be a list of indices, and (b;);cr, (¢;)icr two list of terms. Then:

if bil then m;, else case((bi)ieLo : (mi)ie,;o) when L 75 ? and Lo = (ig, ey il)

CgsLe((bi)ieL ((mi)ier) = { i€Lo

v defaut otherwise

We often abuse notation, and write casl:e(bi :m;) instead of (;asLe((bi)ieL 2 (my)ier)-
S 1€

Proposition 4.18. Let L = (i1,...,4) be a list of indices, and (b;)icr, (t;)icr two list of terms. If
(bi)icr is a CS partition, then for any permutation m of {1,...,1}, if we let Ly = (ix(1),---,ix1) then:

cigsLe(bi tmy) = iceaLsie(bi 1my)

In that case, we write {Case }(bz- :my;) (i.e. we use a set notation instead of list notation).
i€{i1,..,%1

Proof. The proof is straightforward by induction over |L]|. [|

If (bs)icr is such that (\/,., b;) = true then the case where all tests fail and we return defaut never
happens. This motivates the introduction of a second definition.

Definition 4.24. Let L = (iy,...,%;) be a list of indices with I > 1, and (b;)ier, (t;)icr two list of terms.
Then:

) N) N _ [AST)
si%aLse((bz)zeL t(mi)ier) =

if b;, then m;, else caze((bi)ieLo 2(my)iery) if Lo = (i2,...,4) and I > 1

Proposition 4.19. For every list of terms (b;)icr and (t;)icr, if (\;cp, bi) = true then:

case(b; : m;) = s-case(b; :m;)
i€l i€l

Proof. We omit the proof. [|

4.11.3 Strengthened Induction Hypothesis

We want to prove that for every valid action trace 7, we have a derivation of:

AKAT AKAYL

T ~ QT

for some N = C.N large enough (more precisely, C' must be larger than |r|). Instead of proving the
formula above, we prove that we have a derivation of the stronger formula:

AKAT AKAT
G0N lreveal? ~ ¢p X r-reveal®

where I-revealf and r-revealf are terms used in the proof by induction on 7. Basically, we anticipate and
include in I—revealf and r—reveaITC elements that we will need later in the proof. Morally, they contain
terms representing information that can be safely leaked to the adversary, either because he already
knows it, or because he can learn this information later in the protocol execution.

Definition 4.25. Let 7 = 79, ai be a valid basic action trace on Sjg and C an integer. Then revealf is a
list of elements of the form u ~ v containing exactly the elements:

1. All the elements from reveal%.

130 The 5G-AKA Authentication Protocol Privacy

2. For every identity ID, let:
m-suci’® = [o,(valid-guti;)]o, (GUTL)

Then, for every ID € S, reveaITC contains the following elements:

O'T(Valid‘gutig)) ~ Uz(Va“d‘gUtiZT('D)) m—SUCi EFD ~ m—SuCiZ"(ID) O-T(syncle) N Ul(synCZT(ID))
sync-diff,” ~ Sync_diff;r(m)

3. If ai # Ns_(_) then for every identity ID € Sig:

vr (ID)

O’T(SQNIUD) — g-i_n(SQNLD) ~ UL(SQNU) _ O'E,;(SQNgT(ID))

4. If ai = TUID(j7 O)7 then:
o, (s-valid-gutiy)) ~ Ul(s—valid—gutiZ*(‘D))

5. If ai = PU(j, 1), then:
{(D, o (NP~ {(v- (D), o (sant)3T
Macks (({(D, o™ (SQNP) I 9(6)) ~ Macl,. i (({(v+(1D) , o (sant)} . o))

6. If ai = PU,p(_,2), TUR(_ ,1) or FUL(_):

o-(e-auth®) ~ o, (e-auth’” (™))
7. If TUL (4, 1) then for every 7 = , TN(jo,0) such that TU,5(5,0) <, 74:

Macﬁ‘g(njo) ~ Maci,g(m)(nj")
8. If ai = PN(4, 1) then for every ID € Sy, for every 71 = | PU(j1,1) < 7 such that 7 £, NS;p(_):

Macps ((n7, suc(o™ (sQn)))) ~ Mac, w ((n' , suc(ol (sant™™)))))

9. If ai = PN(j, 1) or ai = TN(j, 1), for every identity ID € Siq, we let:

net-e-auth,(ID,j) = eq(o,(e-auth’), D)

net-e-auth_(ID,j) = \V eq(o (e-auth}), ID)

IDEcopies-id (D)
Then we ask that:
net-e-auth, (ID,j) ~ net-e-auth (1D,)
10. If ai = FN(j) for every identity ID € Sig we let {ID,,...,ID; } = copies-id;(ID). We define:

t-suci-®, (1D, j) = GUTH @ flw(n?)

t-suci-©_(ID,j) = s-case (eq(o, (e-auth’),ID;) : GUTI & fiw, (n))
t-mac,(ID,5) = Macpw ((GUTH |, nf))
t-mac,(ID,j) = scase (eq(o,(e-auth!),ID,): Maciﬁi ((cutl , n?)))

Then we ask that:
cur? ~ curd
[net-e-auth, (1D, j)] (t-suci-®, (1D, j)) ~ [net-e-auth_ (1D, j)] (t—suci—@T(ID,j))

[net-e-auth, (1D, j)] (t-mac, (1D, j)) ~ [net-e-auth (1D, j)] (t—macl(ID,j))

4.12. %« Proof of Lemma 4.15 131

Let (u; ~ v;);er be such that reveaITC = (u; ~ v;)ier. Then we let I—reveaITC = (u;)ier be the list of left
elements of reveal®, and r-reveal® = (v;);¢; list of left elements of reveal® (in the same order).

Lemma 4.15. Let N be a number of identities, T a valid basic action trace on N identities, C' a number

of copies larger than |7| and N = C.N. Then there exists a derivation of:

AKAT AKAT,
¢r "N lerevealS ~ ¢r X r-reveal®

Proof. The proof is given in Section 4.12. |

Using this lemma, we can prove Theorem 4.1, which we recall below:

Theorem. The AKA™ protocol is oy-unlinkable for an arbitrary number of agents and sessions when
the asymmetric encryption {_}— is IND-CCA; secure and f and f* (resp. Mac'—Mac®) satisfy jointly the
PRF assumption. B

Proof. Using Proposition 4.3, we only need to show that for every 7 € support(Ry), there is a derivation of:

+ AKAT
P (4.34)

Moreover, using Proposition 4.1, we know that for every 7 € support(Ry), 7 is a valid action trace.
Moreover, 7 uses only the identities {IDy,...,IDy}, and is by consequence a basic action trace. Therefore,
it is sufficient to prove that there exists a derivation of the formula in (4.34) for every valid basic action
trace 7. We conclude using the Restr rule and Lemma 4.15:

AKAT AKAY,
dr 0N lreveal? ~ ¢r % r-reveal?
— Restr
AKAT AKAY

4.12 % (p. 159) Proof of Lemma 4.15

The proof is by induction over 7. For 7 = ¢, we just need to check that the elements of item 2 of
Definition 4.25 are indistinguishable, which is obvious from the definition of o, in Definition 4.4.

We now show the inductive case: let T = 79, ai be a valid basic action trace on Sy, and let C' > |7|.
From now on, the number of copies C' is implicit, and we omit it (except when necessary). We want to
build of derivation of:

o7, l-reveal, ~ ¢, r-reveal,

By induction, we assume that there exists a derivation of:
@7, l-reveal,, ~ @7, r-reveal

The proof is a case disjunction on the value of ai. Before starting, we assume that the following proposition
is true (we postpone its proof to the end of this chapter, in Section 4.13).

Proposition 4.20. For every basic valid action trace T = _,ai on Sig

e (Derl) For every identity ID € S;q, for every 7 such that 71 < 7 and 71 A+ NS;p(_), there exist
derivations using only Simp of:

¢, I-reveal,, ~ gf);”, r-reveal

in 1D in 1D in 1D 5imp
l-reveal,, o (sync’) A o' (SQN) < o (SQNY)

v, (ID) vr(ID)

~ r-revealm,ag’(syncU)/\UiL"(SQNN) < Uirnl(SQNZT(ID))

@7, I-reveal,, ~ ¢, r-reveal,

in 1D in 1D in 1D Simp
l-reveal,,, ol (sync”) A ol (SQNY') < o7 (SQNY)

~ r-reveal,,, ol (synci™ ™)) A on (squym ()

) < oiz“(SQNZ*(ID))

132 The 5G-AKA Authentication Protocol Privacy

e (Der2) If ai = Fuy,(j). For every ID € Si, for every 71 = ,FN(jo) < 7 such that 7 A NSip(_):

— Wehave 1y = _,FN(jo), T = _,FU,_(in)(J), 0 <z T and 71 A NS, _(ip)(_). Therefore, fu—tr[‘,i%1
is well-defined.

— There is a derivation of:

@7, I-reveal,, ~ ¢, r-reveal,,

- ; - — Simp
¢, I-reveal,, fu-try ™ ~ @ln, r-reveal ., , fu-try 7
e (Der3) If ai=TU,(j,1). For every 7y = _,TN(j1,0), 72 = _,TUr(4,0) such that 7o <, 71 :
TUID(jv 0) TN(jl? 0) TUip (]? 1)
S " :
T2 T1 T
— Wehave s = _,TU, (1)(4,0), L = _, TU,_(0)(J, 1) and 72 <. 71 <, 7. Therefore, part—trﬂ%71
is well-defined.
— There is a derivation of:
@™, I-reveal,, ~ ¢ r-reveal,,
— Simp

Kl

- K . n:
@7, l-reveal,, part-try7l ~ @', r-reveal,, part-tryz, -

e (Der4) If ai=TN(j,1). For every ID € Siy, i = _,TUp(J;,1), m = _,TN(4,0), 72 = _, TU(j;,0)
such that 79 <, 7 <, T5:

TUID(jivo) TN(ja 0) TUID(jia 1) TN(.jv 1)
;o 4 ; : ‘
T2 T1 T; T
— We have 75 = _sTU,,, () (Ji,0), 7 = _,TU,,, () (Jis 1) and 79 <; 71 <; 7 <; 7. Therefore,

full—trﬂ%é s well-defined.

— There is a derivation of:

@7, I-reveal,, ~ ¢, r-reveal,,

- : - - Simp
¢l I-reveal, full-try 77~ $IF r-reveal full—trﬂ}%é
Proof. The proof is given in Section 4.13 |
We now proceed with the proof of Lemma 4.15. Let ai be such that 7 =, ai.

4.12.1 Case ai = NS;p(§)

We know that ai = NS,_(p)(j) and v;(1D) = fresh-id(v-, (ID)). Moreover, ¢, = ¢! and ¢, = ¢i". Hence
I-reveal . and I-reveal,, coincide everywhere except on:

o, (valid-guti'®) ~ o (valid-guti’~ (™) sync-diff” ~ sync—difF;’(ID) m-suci'” ~ m-suci ;*(ID)
We conclude with the following derivation:

@7, l-reveal,, ~ @7, r-reveal,,

mp

@7, I-reveal,, false, defaut, false ~ ¢, r-reveal, false, defaut, false R

T

@', -reveal,,, o, (valid-gutiy’), m-suci >, sync-diff.”

I
~ qs‘I", r-reveal,, al(valid—guti?(m))7 m-suci ;T(ID), sync—difFZT(ID)

4.12. %« Proof of Lemma 4.15 133

4.12.2 Case ai = PN(j,0)

We know that ai = PN(j,0). Here |-reveal; and I-reveal,, coincides completely. Using invariant (A1) we
know that n’ ¢ st(¢!"), and n’ ¢ st(¢r,). Therefore we conclude this case using the axiom Fresh:

P, l-reveal,, ~ (b'" r-reveal

- Fresh

¢, I-reveal,,, nd ~ 7', r-reveal,,, n/

4.12.3 Case ai = PUyp(j,1)

We know that ai = PU,_()(j, 1). Here I-reveal, and I-reveal,, coincides everywhere except on the pairs:
o, (valid-guti®®) ~ o, (valid-guti”” ™) m-suci ~ m-suci ") sync-diff” ~ sync-difF;T('D)
or(SQNP) — ol (SQNY) ~ op(sani) — ol (s)

{(D, o (sQE))}nn ~ {(v- (D), o (sant)oe

Macly (({{1D. o (SQND)I3E .+ 9(67)) ~ Macy o ({(v7(10) . o (sQxe "))k . g(0)

Part 1 We know that o, (valid-guti’®) = o, (valid-guti’”"™) = false. We deduce that m-suci'® =
m-suci ;*(ID) = defaut. It follows that:

#'", I-reveal,, ~ ¢", r-reveal,,
= *

. FA
@i, I-reveal ., false, defaut ~ ¢, r-reveal,, false, defaut (4.35)

@i, I-reveal,, o (valid-guti”), m-suci” ~ ¢, r-reveal,,, o, (valid-guti,” 710)) 'm- ~suci 47 ()
Part 2 We have:

o+ (SQNP) — o (sQN'P) = suc(a"(SQN'?)) — " (SQN'P) =1
o (sQny) — ;‘(SQNZ’(‘D)) — suc(ail"(SQN”’(ID)))— '”(SQN”T(ID)) -1

And:
sync-diff’ = [o,(syncl?)] (0-(SQNP) — o-(SQNY)) = [0 (syncl)] (suc(sync-diff))
Similarly, sync-diff.” V- (ip) = [olr n(sync))} (suc(sync—diffzg(m))). Hence:

@i, I-reveal, ~ ¢, r-reveal,

i - (1D i (D) H (D) Dup*
@i, I-reveal,, o (synciP), sync-diff) ~ ¢, r-reveal,,, oir (syncUT)7sync—d|ffg . (436)
- mp .
o, l-reveal,,, sync-diff®, o, (sQN'?) — oM (sQN')
~ ¢, r-reveal,, sync-diffs ") o, (sani ™)) — o (s)
Part 3 Let s; = len((iD, oi"(sQN'?))). Using the cca; axiom we directly have that:
len(iD) = len(v-(1D)) len(c™" (sQNI)) = len(o™™ (s ™))
" I-revealy,, s; ~ ¢, r-reveal,,, s; len((1D, 0" (sQN'?))) = len({v-(1D) , o' (sqny™ ™)) (4.37)
T CCA1

oI, I-revealry, {(ID, o (SQNI))}7E ~ ¢, rrevealry, {(v- (1) , o' (sani™ ™))}

Moreover, using Proposition 4.11, we know that:

len(o" (SQN'™)) = len(o™™(sQN%" ™)) = len(sqn-init™®)

134 The 5G-AKA Authentication Protocol Privacy

We deduce that s; = len((ID, sqn-init’)), therefore:

@M, I-reveal,, ~ @M, r-reveal,,
= and

: in ID\) v, (ID)
o', l-reveal,,, s; ~ 7, r-reveal,, s len(7 (saN)) = len(o7 (sQNu™ ™))

This completes the derivation in (4.37).

Part 4 To conclude, it only remains to deal with the Mac! terms. We start by computing set—mac&m:

set- mackm(qﬁ" l-reveal,,) = {({(ID7 ol ' (sQny))}pk , g(o" ") T =, PUp(f1,1) < T}
U {{mg(dh)). n") |7 = _,PN(ji, 1) <7}
We want to get rid of the second set above: using (Equ3), we know that for every 74 = | PN(j1,1) < 7:

9(d7) =’ Ami(g(67,)) = {(Ip, o7 (sany’)>}pk

accept)’ _) _ (4.38)
e \A ma(g(éh,)) = Macky ({0, o7 (5N Y2E, ()
We let ¥’ be the vector of terms ¢ |-reveal,, where we replaced every occurrence of accept” (where
71 = ,PN(j1,1) < 7) by the equivalent term from (4.38). We can check that we have:
set—mac&;ra(\ll') = {<{<ID ol (SQNID»}pk , g(on N m=_,PUp(j1,1) < T}
For every 71 = _,PU;p(j1,1) < 7, using Proposition 4.11 we know that:

len((ID, 0" (sQNI?))) = len((ID, ol (SQN)))

Moreover, using the axioms in Ax, we know that len({iD, ¢i"(sQN'"))) # 0. Therefore, using Proposi-
tion 4.10 we get that we have:

i in nil
{(D, o (sQNP)}E # {(ID, o7 (saN)) } 15
Hence by left injectivity of (-,):
({(p, o (s ok > 9(6) # ({(1D, OQ(SQNLD)HPT(, 9(80)
It follows that we can apply the PRF-MAC! axiom to replace the following term by a fresh nonce n:

Macke ({(1D, o (sQN)}3 , (6)))

We then rewrite every occurrence of the right-hand side of (4.38) into accept!”:

#", l-reveal, ,n ~ EI",r—reveaIToMaciru“T(,D)(({(VT(ID) (SQNZT(ID))>};£N , 9(¢M))

1
qSiT",I—revealTo, Maciﬂ({(lD oi"(sQN'P)>};§ ,g(¢i")>) PRE-MAC
~ ¢i£, r-reveal,,, Maci;T(]D>(<{<VT(1D) (SQNZT(ID)»};%(N , g(qﬁg)))
We then do the same on the right side (we omit the details), and conclude using Fresh:
¢L", l-reveal,, ~ (bil”, r-reveal
gbiT”, l-reveal,,n ~ qSiT", r-reveal,,, n Fresh
- PRF-MAC!

O Ireveals,, n ~ OIF r-reveals, Macy, i (({(v+(10), ol (s))}E | (o))

We conclude the proof by combining the derivation above with the derivations in (4.35), (4.36) and (4.37),
and by using the induction hypothesis.

135

4.12. %« Proof of Lemma 4.15

4.12.4 Case ai = PN(j,1)

We know that ai = PN(4,1). For every ID € Siq, let My, be the set:
M, = {7‘2 ‘ Ty = _,PUID(jl,l) <TAT2 747— NSID(_)}
Here I-reveal,; and |-reveal,, coincides everywhere except on the following pairs:
(sync-diff? ~ sync-difFZf(m))IDE&cl (net-e-auth. (1D, j) ~ net—e—authL(ID7j))mes_‘I
i S NUT(ID))
QN >)>) T2 € Mip,IDESyy

(Macﬁﬁ((nj , suc(oln (SQNIP)))) ~ Macirynr(m)((nj ; suc(o (
Part 1 Let ID € Sjq, we consider all the new sessions started with identity 1D in 7:

{NSip(0), - -+, NS (hip) } = {NSip (@) | NSip(7) € 7}

This induce a partition of symbolic actions in 7 for identity ID. Indeed, let £ be such that ID = Ay o, and

for every —1 <i </, let ID, = Ay ;+1. Then we define, for every —1 < i </[:
NSip(2) <7 71 < NSpp(i+ 1) if 0 < <lp

71| T = _,PUp(j1,1) A { 71 < NS;p(0) ifi=-1
NSip(lp) <7 71 < T ifi=1

. and for every —1 < i < [:

(-
T, =

i
17,

And Tip ={m | = _,PUp(j1,1) ATy < 7}. We have Ti, = L*.'J—1gigzm
and T, = {n|n=_,PUp (j1,1)Ams <71}

Vr € T}, v, (D) = In,

Part 2 Using (Equ3) we know that:
. . . . J1
9(¢7,) = n’ Ami(g(¢7)) = {{iD, o7, (sQny)) bk
accept)” + .) (4.39)
. 1 . j
mi=_runG)eTn \A m2(9(¢7)) = Maciew ({(ID, o7, (sany)) ok 1 9(47,)))
bID
T1
For all 71 € Tip, we let b” be the main term of the disjunction above.
Similarly, using (Equ3) on 7, we have that for every —1 <14 < [;:
. . . .) J1
. g(¢h) =n? Ami(9(6)) = {(; , oF, (sQNe™)) }oi.
acceptr ' < \/ - - " (4.40)
- i 1 i 1D, e i
= rontnners, \A ma(g(6n) = Macke, (([{D, , o (sax2)15, g(om)))
Moreover, if we let {ID; ,;,...,ID,,} be such that:
copies-id(ID) = {ID,...,1D; }W{ID; \;,...,ID, }
Then, for all i > l,5, we have acceptr < false. Therefore, using (A5), we can show that:
) D> ptr) g)
net-e-auth’” <« \/ accepty’ (4.41)
—1<i<l
Part 3 For every 71,7 € T)p such that 74 # 72, 71 = _,PU;pr(j1,1) and 7o = | PU(Ja,1), using
Proposition 4.10 and 4.11 we can show that:
DY ABE = (D, ol (sQNP)) }pk, = {(, o (saNP)) i, — false

o Abr — false

Similarly, for every 7,1 € TI% such that 7 # 7o:

Z1

136 The 5G-AKA Authentication Protocol Privacy

Moreover, since for all identities ID; # IDg, we have eq(ID1, ID2) = false we know that:
—(accept’™! A accept’®?) —(accept”* A accept}’?)

T

We deduce that:

(((blﬁ)nem)mesuv/\mesifacceptlf) and (((%)Tleﬂ%Aflﬁiﬁlm)mesid»/\mecopies-idc(sid)_‘accept:})
—_—

bunk bunk

are CS partitions. Besides, for all 7 € T}, we have:
[b2] (- = Macaxg((nj , suc(o” (sQNiP)))) and [bunk] (t- = Unknownld)
From Proposition 4.18 we deduce:

t; = if =bynk then case (b :Macﬁ£(<nj , suc(on (SQNIP))))

e (4.42)
else Unknownld
Similarly, for every —1 < i <, for every 7 € T":
B2 (12 = Mack, (0, suc(ol (sax®))) and [by] (1 = Unknownld)

71

Again, from Proposition 4.18 we deduce:

tr = if 2bunk then case (b7i: I\/Iacimi ((n?, suc(o™ (sQNy™))))
—Elﬁeirg?lu B B
IDESy

else Unknownld

Since Tip = W_;<,<;, Ti» and since V7 € Ti, D, = v,, (ID), we know that:

t; = if =bynk then case (bzl(m) : Maciu,lm) ((n?, suc(aL"l(SQNZn (m))>))
el ™ - (4.43)

else Unknownld
Part 4 We are going to show that for every ID € Siy, —1 < i < lp, and 71 = PUR(j1,1) € TfD
o, l-reveal,, b2 ~ ¢, r-reveal,, by (4.44)

For this, we rewrite b}> and bF¢ using, respectively, (4.39) and (4.40). First, remark that the following
pairs of terms are in reveal,,:

ndt

(n/,) ({00, o (s 135, {{wr, (0), ol (sni ')

1 i1

(Macks (({{0, o (5N 1" (1)), Macks., o (({(vr, (D) , o (s@Ne)R g(0i2))))

Therefore:

@7, l-reveal,, ~ @7, r-reveal,,

- — = — Simp (4.45)
@, l-reveal), b0 ~ @7, r-reveal,,, b

This concludes the proof of (4.44). Combining this with (4.39), (4.40) and (4.41), we have:

#'", l-reveal,, ~ ngil", r-reveal

Simp
in 1D in D,
o7, l-reveal), (b"'l)neTl{),—lgiglm ~ Pz, r-reveal,,, (*Q)Tleﬂf,,—lﬁiglm] (4.46)
imp

oir, l-reveal,, net-e-auth” ~ ¢, r-reveal, net-e-auth;”

4.12. %« Proof of Lemma 4.15 137

And:
@M, l-reveal,, ~ ¢, r-reveal,,

Simp
in 1D,
T, r-reveal (lle)neT"g,—lgiglm . (4.47)

Simp

o, l-reveal,, (b")7'1€T.i —1<i<ly

@M, I-reveal), bynk ~ qb , r-reveal,, bunk

We can now prove that ¢, ~ t,. First we rewrite ¢, and ¢, using, respectively, (4.42) and (4.43). Then
we split the proof with FA, and combine it with (4.45) and (4.47). This yields:

¢i7”,|—revea|To,(Macﬁﬁ((, suc(o™™ (sQNI°))>))TIET s,

~ ¢i£, r-reveal,, (MaciuT1 w ({07, suc(a™" (SQNZT1 (ID))))))

T1E€TH,IDESY

o™, l-revealr, , bunk, (bﬂ?, Macﬁﬂ(nj , suc(oiT"I(SQNLD))») (4.48)

T1E€Tp,IDESY

~ 0if, rerevealr, bue, (B Macl.,, o (7, suc(oly (st)

71 E€Tp,IDESY

- Simp
", |- reveaITO,tT ~ ¢, r-reveal,,, t,;

Notice that for every 1D € Sig, My, = T». Therefore the Mac part in reveal, \reveal,, appears in the
derivation above, i.e.:

(Macﬁﬂ(| suc(o™ (SQNI)))), MacZ,. o ((n?, suc(o” (SQNZT(ID))»)TZEM bes,

2 (07 suc(olh (sany™)

| | (4.49)
C (Macﬁ.ﬁ((nj , suc(ar, (sQNy)))), Mac

T1 E’T‘D,IDESM

Part 5 Let ID € Sig. Our goal is to apply the PRF-MAC? hypothesis to Mackm(< , suc(oi" (sQNIP))))
simultaneously for every 7 € T}, in:

U = ¢ Lreveal,,, (Macﬁ.rﬁ((nj , suc(o™ (SQNIUD))>)>

T1€Tp,IDESY
Using (Equ2) we know that for every NS5 (lip) <- 7i = _, PUip(4s, 2):
accepty, < \/ g(¢'") = Macﬁ:a((njl . suc(o (sQNIP)))) A g(¢in) = n't (4.50)
T1=_,PN(j1,1)
T2=_,PUip(j;,1)
T =rT] =T
Let ¥’ be the formula obtained from W by rewriting every accept)” s.t. NSip(lip) <+ 7i = _, PUip(Ji, 2)

usmg the ‘equation above. Then we can check that for every 7 € T, there is only one occurrence of
Macis ((n7, suc(a™ (sQN'P)))) in ¥’ Moreover:

set-mac?, (U') \{(n’, suc(ol (sQN?)))} =
{(n?, suc(o (sQNP))) | 72 € Tip A1 # T2}
U {(n?, suc(ma(dec(m1(g(¢N)),sky)))) | 7o = _,PN(jo,1) < 7}

To apply the PRF-MAC? axioms, it is sufficient to show that for every element u in the set above, we have
((n, suc(of) (sQNY))) # u:
e Using (A2) we know that for every 71,7, € T}, if 71 # 72 then ol (SQNIP)) # ol (SQNI”)). Hence:

(n?, suc(alf (sany))) # (0, suc(alf (sany?)))
e for every 7; = ,PN(jo,1) < 7, we have jo < j, hence n%® # n’/ and by consequence:

(07, suc(o (SQN™))) # (0", suc(ma(dec(m1(g(67))., k)

138 The 5G-AKA Authentication Protocol Privacy

We can conclude: we rewrite ¥ into ¥'; we apply PRF-MAC? for every 71 € T, replacing the term
Macﬁxg((nj , suc(ol! (sQNyY)))) by a fresh nonce n’>™; and we rewrite any term of (4.50) back into accept!”.
Doing this for every identity ID € Sy, this yields:

in 75T1
P, l-reveal,, (n)neT,D,mesid

~ ¢>'“ r—reveaITO,<Mac vy oy ({07, suc(o (SQNZTI(ID))))))

T71€Tp,IDESY

: : (Simp + PRF-MAC?)*
¢ I-reveal,, (Maczmunﬂ : suc(o—:‘l(SQN;D)»))
m T1€Tp,IDESY

N(;S r—reveaITO,<I\/IaC vey ooy ({07, suc(o (SQNZH(ID)))>))

71€Tp,IDESyY
We do the same thing on the Big-side, which yields (we omit the details):
¢, l-reveal,, ~ ¢, r-reveal,

on, I revealTo,(nj’”)

= i Fresh*
s r—revealTo,(n ')

~
T1E€TH,IDESY T1E€TH,IDESY

, (Simp + PRF-MAC?)*
in J5T1
PN, l-reveal,, (n >neT.D,meSid
. 2 ; vy, (ID)
~ ¢£‘,r—revealTO,(Mackyrl(m)((nJ , suc(on " (sQNyt))
m 71 E€TIp,IDESy

Combining this with (4.48), we get:

#", I-reveal,, in_r-reveal,,

A", l-reveal , , t ~¢i” r-reveal,,,t (4.51)
T TO0Y YT T TOY YT

Part 6 We now deal with the sync-diff” ~ sync-diffzf(m) part. We first handle the case where o (sync!P)

is false. Observe that i (syncl?) = ol (synclP), o' (syncﬁT(ID)) =on (syncﬁr(m)) and that the pair of terms

(o (synclP), on (sync”"™))) appears in reveal,,. Moreover:

[~a"(sync'®)]sync-diff’> = error [~ (syncUT())]sync—diffzf(m) = error
Hence:
l-reveal,, , [0 (sync®)]sync-diffi’ ~ r—reveaITO,[ail"(syncz*(ID))]sync—difF;*(m) _
I—reveaITo,aiT“(syncID) [o" (sync!®)]sync-diff”, [ﬂai"(syncll?)}sync—diffm >imp
~ r-reveal,, ot (sync” -G)),[o;‘(syncﬁ*(ID))]sync—difF;T(ID),[" (syncy v (12 sync- dncF”T(ID . (4.52)
l-reveal,, sync-diff,” ~ r-reveal,, sync-diff.” (ip) FA
Therefore we can focus on the case where oi"(sync'®) is true. For all ID € Sy, we let:
incSQNP = my(dec(m (g(67)), Sk)) > o (sQN1)
Then:
o (syncy’ .
["(sync'®)]|sync-diff’® = case | b® u (/\inTc-(SéN;)> then o7 (SQNYY) — suc(o7! (sQN?) (4.53)
e else [0 (sync]?)]sync-diff
And:
[(synct” ™) sync-diffs ()
if ((sync?(m))> then o™ (sQn" ™)) — suc(o™ (san’ ™))
case | pvr(®) A mc—SQN;T(ID) - (4.54)

T1 ET%Z'D
else [o'F (syncg’(m))]sync—diff:g(ID)

Take 7 € Ty, and let 7; be such that 7, = ,NS;p({;p) and 7, < 7. We have two cases:

4.12. %« Proof of Lemma 4.15

139

. If 71 <r NSip(lip), then using (B1) and (B6), we know that on (sQNIP) < o (sQNIP) and that

oin (syncl?) — o (sQNIP) > o' (sQNIP). We summarize this below:

PUID(j17 1) NSID(lID) PN(j7 1)
T —e o o
T1 Ti T

. < .
o (SQNY) ———— o (sQNy)
&
o (SQNY)

Hence —(b> A o' (synci) A inc-SQN'P).

Now we look at the right protocol: since 71 <, NS;5(l,), we know that v, (ID) = D, _, for some

p > 0. Hence v, (ID) # ID; = v, (ID), which implies that:

an (1p) Vry (1p)

bry — acceptr — ﬂaccept;*('[’) — /\ ﬂbg(m)

T ETP
We deduce that:
B> A ol (syncl?)]sync-diff,” = b A 0" (syncl?)]sync-diff,”
(b7) A Ji"(sync?())]sync—diffzf(m) = b’ () A cri"(syncﬁT(D))]sync—diffg(m)
Since (sync—difFITr(’),sync—diffg(m)) € reveal,,, we have:

v, (ID
I-reveal,,, b ~ r—revealm,bnl()

0+ 07, .
l-reveal), b, o (sync?), sync-diff). ~ r—reveaITO,le(ID),aiL"(syncZ*(ID)),sync—difF”*(ID) o)
l-reveal ., b A 0" (sync?)]sync-diff> ~ r-reveal, [br;*) A o (syncy” (2D lsync- dn‘F”T('D
Combining this with (4.45), we can get rid of !> ~ by;" (),
¢, l-reveal,, ~ ¢l r-reveal,
¢, l-reveal,, b2 A ol (syncl?)|sync-diff (4.55)
~ ¢ r-reveal,,, by,) ai"(syncgf(°)]sync—diffzf(m)

o If 71 A; NSip(lip), then v, (ID) = v, (ID). Let ID = v, (ID), and using (4.53) and (4.54) we get that:

B> A ol (sync?)]sync-diff,’ = [b2 A ol (syncl)] (ol (sQNIP) — suc(a" (sQNT)))

+if o A oM (sync!®) A inc- SQNID then -1 else 0
(b2 A o (sync?)sync-diff> = {lﬁ A o (syncy } ((sQNT) — suc(ag‘(SQNN*)))

=T1

+if b5 A o (synci) A inc-SQNZ then -1 else 0

Hence using (4.45) we get:

7, l-reveal), bE A o (syncy’) Ainc-SQNY ~ @Y, r-revealr, bf’ A ol (sync) A inc-sQNE

- - - Dup
P I-revealy, b2 o (syncl), o' (SQNY) — " (SQNY), B2 A o (synck) A inc-SQNY

~ o r-revealr,, by, o (sync?), o (SQNI2) — o' (SQNE), B2 A o (synci?) A inc-SQNE

) 2Ty

- - - F
o7, l-revealr, (b7, A o7 (syncy)]sync-diff? ~ @T, r-revealr,, [bF A on (syncy?)]sync-diff>

We split the proof in two, depending on whether JiTnl (sync?) is true or not.

140 The 5G-AKA Authentication Protocol Privacy

— If it is true, this is simple:
(aiTnl (sync?) ABE A oi"(sync®) A inc-SQNYY) <> (B2 A Ji" (synciP) A aiTnl (sQNP) < UiT”(SQN;,D))
(o (synci?) A B2 A olf'(synci?) A ine-SQNR) ¢ (B2 A o (synci?) A ol (SQNTY) < o (SQNK))

Hence using (4.45) we get:

P, l-reveal,,, o (syncID) A a'" (sQN'P) < oM (sQNIP)

~ QST , r-reveal,,, o) (syncU) Ao (SQNU) < i"(S(,QNIN*D)
mp

o, l-reveal), B> A o (synci®) A o' (SQNIP) < o (SQNI)

~ ¢ ,r—reveaITwQ% Aol (syncU) Aol (SQN;) < ol (sQNy)

¢, l-reveal,, ol (synci?) A B2 A o (syncl®) A inc-SQNT

~ ¢ rreveal, ol (syncy’) A b2 by Aoy " (sync?) A inc-SQNE

We conclude the case ol (synci®) using (Derl):
I—revealm ~ r-reveal)
Simp

" l-reveal,,, ot (synci®) A o (SQNTY) < o (SQNI)

~ ¢£, r-reveaITO,aLl(s,yncU) Aol (SQNU) < ol(SQNINQ)

— If sync? is false at 7; and true at 7, then we know that there is an instant 7 < 7, such that
-0 (syncl?) A ol (synci?). Since syncl” is only updated at instant PU,(_,) and Ns;p(_),
and since 71 A, NS;p(_), the only possibilities are 7, of the form ,PU5(jq,2). In that case,
we must have accept;”. Formally, it is straightforward to show by induction that:

B2 A =0l (syncl?) Aol (syncl) — \/ —oi" (sync”) A accept!® (4.56)

Ta=_,PUp(ja,2)
T <rTa

Using (StrEqu4), we know that:
accept” A ol (syncl) — o, (SQNT) = oy, (SQND)
We know that o, (SQNI) = ol (sQNI?) and o, (SQNIY) = o' (SQNI). Moreover using (B1):
o (SQNy) < 0., (SQNY) o7, (SQNP) < 0" (sQN'P)

Finally, we know that o, (SQNI?) = ¢ (SQN!?) + 1, and therefore o, (SQNI?) > o™ (sQN'P).
We summarize this graphically in Figure 4.24. Therefore:

—ol! (sync?) A accept’ — o (syncl) < o (syncl?)
Hence we deduce from (4.56) that:
b A =0 (syncl®) A o (syncl”) — inc-SQNIP
Similarly, we show that:
B2 A =0l (synci’) A oy (synci?) — inc-SQNE
Hence using (4.45) we get:

in in
@7, l-reveal, ~ ¢T,r-reveal, .

in |- [D) phiD 5 in 1D in . | in ID b@ in ID DUP
o, I-reveal ., o™ (synci?) T (syncy’) ~ @7, r-revealr,, o7 (syncy), by, o (syncy)

I 7—17 T1

in in 1D 1D in 1D Simp
@7, l-reveal), —all (sync’) A b2 Aol (syncy)

~ d) ,r-reveal,,, o' (syncI) A lﬁ A a'"(sync{TD)

=71

ng'" I- revealm,ﬂai" (synci®) A B2 A o (syncl®) Ainc-SQNE

~ ¢ r-reveal, ol (syncU) A bz A ol (synci’) A inc-SQNE2

4.12. %« Proof of Lemma 4.15 141

NSip(_) ‘ ‘ ‘

or € PUID(]la]-) PUID(]aa 2) PN(]7 1)
R o o o
Ti T1 Ta T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

olh (sQNIP) — ol (sQNiP)

Figure 4.24: Graphical Representation Used in the Proof of the Case PN(j, 1) of Lemma 4.15.

Combining the derivations we build above, we get a derivation of:

o l-reveal,, ~ ¢ r-reveal,,

S (4.57)

¢in, I-reveal, [b2 A ol (synci?)|sync-diff;” ~ @i r-reveal,, [b7,' 7 A ol (syncy)]sync-diff
Part 7 It only remains to put everything together. First combining (4.45), (4.55) and (4.57), we get:

", l-reveal,, ~ " r-reveal,,

¢ l-reveal,, (b2, [0 (synci?) A b2 |sync-diff;’)

71 T1€Tp
Vr, (ID i 1D Vr, (ID -
~ ¢T,r-revea|m, (ﬁl(), [oF (syncy) /\Qll()]sync—dlfflf) o
T1 D

: : : FA*
@i, I-reveal, [0l (synclP)|sync-diff,” ~ @I r-reveal,,, [0 (syncy”)|sync-diff>

Combine with (4.52), this yields:

@, l-reveal,, ~ ¢ r-reveal,,

#'", l-reveal,, , sync-d ncI:'TD ~ @i r-reveal,,, sync-diff>

We conclude the proof of this case by combining this derivation with (4.46) and (4.51) (recall that the
Macs in reveal, \reveal,, were handled in (4.49)).

4.12.5 Case ai = PU;p(J,2)

We know that ai = PU,_(;)(j,2). Here l-reveal, and I-reveal,, coincides everywhere except on the pairs:

sync-diff” ~ sync—difFZ’('D) or(e-auth®) ~ o, (e-auth’” (™) o-(sync®) ~ o (sync/ ™)

Therefore we are looking for a derivation of:

@™, l-reveal,, , sync-diff®, o, (e-auth!®), o (sync'®), accept'® (458)
P =) 4.58
~ ¢, r-reveal,,, sync-diff” ") o (e-auth? (™)), o, (sync ™)), accept’”(”)

Let 7o = _,PU(j,1) < 7. We know that 7o A, NS;p(_), and therefore 75 = _,PU,,_(1p)(j,1). Also:
o (b-auth)?) = o, (b-authl”) = g(¢™) o™ (b-authy™ ")) = o, (b-authl” ")) = g(¢n)

Hence we can start deconstructing the terms using FA and simplifying with Dup:

V- (ID)

F”T(”) ,accepty

@i, l-reveal), sync-diff,” accept’® ~ ¢, r-reveal,,, sync-difl i
imp

d)i:7 |_revea|7_0,sync dlf ,accept ag(¢7'2>

accept”*(”)) g(¢L2)

~ ¢, r-reveal,,, sync-diff.” (ip)

P

Simp

142 The 5G-AKA Authentication Protocol Privacy

Part 1 We now focus on accept’”. Let:
T = {Tl |7'1 = _,PN(jl,l)/\TQ <7 T1 <7‘}
Using (Equ2) we know that:
9(#") = Macky (07", suc(o™ (sQN™)))) A g(gin) = nit
accept)” + \/) " . i
in in D e
T1=_,PN(j1,1)€T A 7r1(9(7—1)) = {<ID3 Ory (SQNU)>}pkN
Using again (Equ2) on 7 (which is a valid action trace) we also have:
9(47) = Mact o (07", suc(oly (sani™™)))) A g(@lh) = n¥
ri=_penGier \A m1(g(2)) = {(i>"), U;(SQNZT(ID)»};TW

accept;*(”)) “

It is straightforward to check that the formulas above can be decomposed using FA into matching elements

of " I-reveal,, ~ qbil“, r-reveal,,. Indeed, for every 4 = ,PN(j1,1) € T, since 72 <, 71 and 75 A, NS;p(_):
(Maci ((n?, suc(alf) (sQNp)))), Maciry"r(,,g)«nj1 : suc(ag(SQN?(ID)))))) € reveal,, (n?*,nt) € reveal,,

v, (in)

({0, o™ (5N} (0¥ (™) 0! (saniT ™))%) € revealy,
Hence:

@7, l-reveal,, ~ @F, r-reveal,

in D in v (1D) (459)
@7, |-reveal,, accept” ~ ¢TI, r-reveal,,,accept;

Part 2 We focus on sync-diff.”. First we get rid of the case where oi"(sync'®) is true. Indeed, we have:

[0 (sync?)|sync-diff” = [o™"(synci?)]suc(sync-diff;.)
[cril"(syncZT('D))]sync—difFZT(ID) = [ailn(syncZT(ID))]suc(sync—diffg(m))
And:
(sync—diff'T’?),sync—diffg(m)) € reveal,, (ol (sync{JD)7ag‘(sync5’(ID))) € reveal,,
Therefore:
¢, I-reveal,, [-o™ (synci?)]sync-diff’ ~ ¢ r-reveal,,, [0l (syncz’(ID))]sync—difF;’(ID) _
@i, I-reveal,, sync-diff,’ ~ @i, r-reveal,,, sync—difF;’(ID) >imp
Similarly:
[~a"(sync'®) A —accept®]|sync-diffl® = error [ﬁail"(syncﬁf(m)) A —accept’]sync-diffs ™) = error
Hence we can go one step further:
¢, |-reveal,,,accept’™, [-o™"(sync®) A accept’®]sync-diff”
~ gbiz", r-revealm,accept?(m),[ﬁaizn (syncﬁ*(m)) A accept” (ID)}sync—difF;*(ID) _ (4.60)
@i, l-reveal,, accept’, sync-diff,” ~ ¢, r-reveal,, acceptZT(ID), sync—diffzf(m) mP
Part 3 Using (StrEqu4) twice, we know that for every 7 € T
-0 (synciP) A accept® — sync-diffl =0 -0y (sync/ ™) A accept’” (™) — sync—diffZ’(ID) =0
Therefore we can extend the derivation in (4.60):
¢, I-reveal,,, accept’” ~ il", r-reveal ., accept;’(m) _
@i, l-reveal, accept’”, sync-diff” ~ @in, r—reveaITO,accept;’(ID), sync—diffzf(m) >imp

We conclude using the derivation in (4.59) and the induction hypothesis.

4.12. %« Proof of Lemma 4.15 143

4.12.6 Case ai = FN(j)

We know that ai = FN(j). Here I-reveal, and I-reveal,, coincides everywhere except on the pairs:

Gutl ~ GUTY
[net-e-auth, (1D, j)] (t-suci-&, (1D, j)) ~ [net-e-auth (1D, j)](t-suci-& (1D, j))
[net-e-auth, (1D, j)] (t-mac, (1D, j)) ~ [net-e-auth (1D, j)](t-mac, (1D, j))
for every identity ID € Sig.

Part 1 Let ID € §q. Using Lemma 4.7, we know that:

UT(e—authi) =D — \/ o (b-auth;’) = n?

T' T
We check that:
if net-e-auth, (A1, j) then if net-e-auth, (Ay, j) then
(t-suci-®- (A1, J), t-mac, (A1, 7)) (tsuci-®_(A1,), tmac, (A1, j))
_ else if net-e-auth. (A, j) then _ else if net-e-auth (Ao, j) then
’ (t-suci-®7 (A2, j) , t-mac.(As, j)) - (tsuci-® (A2,), t-mac, (A, j))

else Unknownld else Unknownld

Using the FA axiom, we split ¢, and ¢, as follows:

(net-e-auth.(A;, j), [net-e-auth.(A;, j)]t-suci-&-(A;, j), [net-e-auth.(A;, j)]t-mac- (A, j)).

~ (net-e-auth, (A;, j), [net-e-auth_(A;, j)]t-suci-& (A, j), [net-e-auth_(A;, j)]t=mac, (A;, j)),_ 5
T T T = — = FA*
t~t,

Since:
(net—e—authT(/—\i,j), net-e—authL(Ai,j)) € reveal,,

We just need to prove that there is a derivation of:

¢, l-reveal,, , ([net-e-auth. (A;, j)]t-suci-- (A;, j), [net—e—authT(Ai,j)]t—macT(Ai,j))iSB

Cz(Ai’j))igB

~ ¢ r-reveal,,, ([net-e-auth (A;, j)|t-suci-& (A;,), [net-e-auth_(A;, j)]t-ma
Assume that we have a proof of

¢!, l-reveal), ([net-e-auth, (A;, j)]t-suci-@, (A, j), [net—e—authT(Ai,j)]t—macT(Ai,j))KB (161)
- 4.61

in /
~ ¢ l-revealr,, (nij, ni ;).
And:

oy r-reveal,,, (n;;, ng’j)iSB

. 4.62
~ ¢, r-reveal,, ([net-e-auth, (A;, j)]t-suci-® (A;,j), [net-e-auth_(A;, j)]t=mac, (Ai, 7)), (4.62)

Where for all {n; ;,n; ;|1 <i < B} are fresh distinct nonces. Since:

#", l-reveal,, ~ ¢ r-reveal,,

. Fresh
in n li
o, l-reveal (nm»7 nm-)KB ~ @7, r-reveal,,, (nm»7 ni»j)i<B

We can conclude using the transitivity axiom Trans and the induction hypothesis.

144 The 5G-AKA Authentication Protocol Privacy

Part 2 It only remains to give derivations of the formulas in (4.61) and (4.62). We only give the proof
for Eq. (4.62) (the derivation of (4.61) is similar).

Instead of doing the proof simultaneously for all i in {1, ..., B}, we give the proof for a single i. We let
the reader check that the syntactic side-conditions necessary for the derivations for ¢ and ', with i # ¢,
are compatible. Therefore the derivations can be sequentially composed, which yield the full proof.

Let 1 <4 < B. By transitivity, we only have to show that:

(biln,r—reveaIT07 Nij, N ~ (b;‘,r—revealm, nij, [net-e-auth (A;, j)t-mac_(A;, j) (4.63)

i3
And:

;“, r-reveal,,, n;j, [net-e-auth (A;, j)lt-mac, (A;,) (164)
~ @7, r-reveal,,, [net-e-auth (A;, j)|t-suci-©_(A;, j), [net-e-auth_(A;, j)|t=-mac, (A;, j)

T

Derivation of (4.64) Let {ID,...,ID;} = copies-id~(ID;). We define, for every 0 < y < [, the partially
randomized terms t-suci-©Y (ID;, j):

t-suci-&Y(1p;, j) = if eq(o,(e-auth?), 1D,) then nij

else if eq(al(e—authi),@y—l) then nly’;l

else if eq(o,(e-auth]), D,) then GUTY & i, (n’)

else GUTY @ fiw, (n?)
Remark that:
[net—e-authL(Ai,j)]t—suci-@E(IDi7j) = [net-e-auth_(A;, j)]t-suci-©_(A;, j)

And that:

" r-reveal,. , n; ; net-e-auth_(A;,] — indep-branch
T 17 Tos 14,75 net-e-auth, 1,])}t—macT(Al,j

~ ¢iI", r-reveal,,, [net—e—authL(Ai,j)]t—suci—@lT(IDi,j)7 [net-e-auth_(A;, j)]t-mac, (A;, j)

Hence by transitivity, to prove that there exists a derivation of Formula (4.64) it is sufficient to prove
that, for every 0 < y <, that we have a derivation of ¢,_1 ~ ¢, where:

by—1 = il”, r-reveal,,, [net—e—authz(Ai,j)]t—suci—@ﬁ_l(IDi,j), [net-e-auth_ (A;, j)]t-mac_ (A;, j)
by

Let 1 <y < B, we are going to give a derivation of ¢,_1 ~ ¢,. This is done in two times:
e First, we are going to use the PRF-f" axiom applied to f', with key k'™, to replace GUTF & f}w, (n?)

with GUTI & n}" (where n}¥ is a fresh nonce).

Observe that there is only one occurrence of fw, (n7) in ¢,_1 (and none in ¢,). Moreover:

iL”, r-revealr,, [net-e-auth, (A;, j)|t-suci-@&¥(ID;, j), [net-e-auth, (A;, j)t-mac, (A;, j)

set-prf (i, (6y-1,0,)\{n'} = {0l (e-auth?) |71 = _ Fup (p) < 7}
U {n? |7 =_,FN(p) <7}
Let 71 = _,FN(p) < 7. We know that p # j, and therefore that —(n? = n’).We still need guards
for off (e-auth”) = n/, for every 7 = _,FUyp (p) < 7. The problem is that we do not have

(oln (e-authy’) = n?) = false. We solve this problem by rewriting ¢, 1 (resp. ¢,) into the vector of

terms ¢; _; (resp. ¢) obtained by replacing any occurrence of accept%y by:

\/ inj-auth_ (ID,, jo) A on (e-auth?®) # Unknownld (465)
. o N . 4.6
ro=_FN(io)<T1 A1 (g<¢|n)) = GUTI® & f, Dy (nj[)) A 7T2(g(¢71)) = Macify (<GUTIJO) n]0>)

T1
T0 ATy NSID,,)

4.12. %« Proof of Lemma 4.15 145

Which is sound using (Equl). We then have:

set-prf o, (¢') = {n” |7 = _,FN(p) <7}

Therefore we can apply the PRF-f" axioms as wanted: first we replace ¢,_1 and ¢, by #,—1 and @,
using rule R; then we apply the PRF-f" axiom; and finally we rewrite any term of the form (4.65)
back into accept%y.
o Then, we use the @-ind axiom to replace GUTY @& n;'g with n .
Derivation of (4.63) We use the same proof technique. We define, for every 0 < y < I, the partially
randomized terms t-mac¥ (1D;, j):

t-mac’(ID;,j) = if eq(o,(e-auth]),ID;) then nl!,

y—1

else if eq(al(e—auth{]),myfl) then ng,]

else if eq(o,(e-auth]), ID,) then Macify ((cutl , n?))

else Maciml ((Gut¥ , n?))
Remark that:
[net—e—authl(/-\i,j)]t—macg(IDi,j) = [net-e-auth (A, j)|t=-mac, (A;, j)

And that:

indep-branch

in in ; l ;
T, r-reveal ,, n; j,n ", r-revealr,, n; j, [net-e-auth (A, j)|t-mac; (A;, j)

L
iJ

Hence by transitivity, to prove that there exists a derivation of Formula (4.63) it is sufficient to prove
that, for every 0 < y <[, that we have a derivation of ¢, _1 ~ 1, where:

Yy—1 = gy, r-revealy,, n;j, [net—e—authl(AZ—,j)]t-macgfl(IDi,j)
Uy

Let 1 <y < B, we are going to give a derivation of ¢,_; ~ 1,. For this, we are going to use the

Yy, r-revealr,, n; ;, [net-e-auth (A;, j)]t=-mac¥ (1D, j)

. . 1D P . -
PRF-MAC® axiom with key km", to replace Macimy ((Gurl, n?)) with a fresh nonce ;. Observe that
5 m
1

there is only one occurrence of Mac’w, ((GUTI , n’)) in ¢,_1 (and none in v,). Moreover:

Km?
set-macu, (Vy—1,%y) \ {{QUTI n/)} =
{{cut?, n?) | 74y = _,FN(p) < 7}
U {(m(a(6h)) @ (o (e-authit™)) , o (e-auth ™)) | 1 = _,N(p) < 7}
Let 71 = ,FN(p) < 7. Since GUTF is a fresh nonce, using =-ind and the injectivity of the pair:
S((Gutd,) = (QUTI? , n?)) =((GuT , n7) = (my (g(¢n) @ (0™ (e-auth® ")), o™ (e-auth *)))

Therefore we can directly apply the PRF-MAC® axiom, which concludes this case.

4.12.7 Case ai = FU;p(j)
We know that ai = FU,_(;5)(j). Here |-reveal, and |-reveal,, coincides everywhere except on the pairs:
o, (valid-guti®) ~ o, (valid-guti’” (™)

if o (valid-guti,’) then o, (GUTIL) if o (valid-guti?” ™)) then UL(GUTIST(ID))
else defaut else defaut

11D
m-suci . 1D
™ m-suci 27 (®)

146 The 5G-AKA Authentication Protocol Privacy

(1p

Moreover, we need to show that accept’® ~ accepty”).First, using FA and Dup, we check that it is

sufficient to give a derivation of:
@ |-reveal,, accept’’, m-suci > ~ ng'" r-reveal,,, accept"T(ID) m-suci vr (D) (4.66)

Using (Equl) twice:

acceptl > /= Gy« fu-trgt acceptTT() \/ ri= ety <+ fu-trors
1 Arnsin (L) 1 Arnsin()
Let:
{jo,--sqy={i| 7= _,FNGE) <7 AT 4 NS;p()}
We check that:
{o, -y ={i["= _,FN(@i) < 2 AT A NS, 10y (L)}
For all 0 < i <1, let 7;, be such that 7;, = _,FN(j;) < 7. One can check that:
m-suci ™ = if fu-tr}:%0 then GuUTI® m-suci 2 v (D) — if fu-trya> 7 then GuTI°
else if fu-try: 77t then GUTI! else if fu-trg2t then GUTI!
else GuTI! else qUTI!

We can now start giving a derivation of (4.66):

. s . n:T;.
N l-reveal,, (fu—tr?,;:“) ~ ¢, r-reveal, (fu—tru;zjl)z‘gl

i<l .
in n:T;. . in N7y, i Dup
o, l-reveal -, (fu—tru;ﬁ)Kl, (GUTIJ’/)KI ~ ¢, r-reveal, (fu—tru;T)Kl, (GUTI 1)i<l)
= = = — FA
oir, l-reveal, , accept!l, m-suci P ~ ¢ r—reveaITmacceptTT(P) , m-suci 7 vr (D)

Since for all 1 < <[, (GUTPi ~ GUTI?) € reveal,,. We conclude using (Der2) for every 0 <i <:

@i, I-reveal,, ~ @', r-reveal

FA*

#", l-reveal,,, (fu—trﬂi?i)igl ~ qbil“, r-reveal,, (fu—trzigi)igl

4.12.8 Case ai = TU;p(4,0)
Let ID = v, (ID), we know that ai = TU,;(j,0). l-reveal, and I-reveal,, coincides everywhere except on:

o (valid-gutiy’) ~ o, (valid-guti”) o (s-valid-guti;)) ~ o, (s-valid-guti?) m-suci)’ ~ m-suci
Handling these is simple since:

o (valid-gutiy’) = false o, (valid-guti;”) = false o, (s-valid-gutil”) = o'"(valid-guti?)
o, (s-valid-guti;?) = ail” (valid-gutit?) m-suci ® = defaut m-suci 7 = defaut

Observe that:

t, = if o (valid-guti;’) then m-suci!® else NoGuti t; = if ol (valid-gutii’) then m- -suci 7> else NoGuti

Since (ol (valid-gutiy), o' (valid-gutii*)) € reveal,, and (m-suci’® ~ m-suci ;) € reveal,,, we conclude:

o, IreveaITo ~ qbi“,r—revealm

*

@i, l-reveal, o' (valid-gutiy’), m-suci ;, NoGuti ~ @', r-reveal -, oif (valid-gutii>), m-suci 2, NoGuti S
imp

o, l-reveal,,, t, ~ (bg,r—revealm, T

4.12. %« Proof of Lemma 4.15 147

4.12.9 Case ai = TN(j,0)

We know that ai = TN(j,0). Using (A6), we know that for every ID # ID’, —accept’® > —accept™ .
Therefore the answer from the network does not depend on the order in which we make the accept’®
tests. Formally, the following list of conditionals is a CS partition:

((acceptITD)IDesid, /\ ﬁaccept'TD)
IDESY

To get a uniform notation, we let accepty dm = A S —accept’®, and Sext-id = Sid U{IDdum }. Hence using
Proposition 4.18 we get that:
t, = case (accept®:msg”
plase (accept;”:msg.”)
We are now going to show that for every ID € Sext-id, the term msg!® can be replaced by <nJ n® . n
(where (n8)pes,, 4 and (nM2¢),cs_ . are fresh distinct nonces). We will then conclude easily using the
Fresh axiom.

Let 1Dq,...,ID; be an arbitrary enumeration of Sey.iq- For every 1 < n < [, and for every ID; €
{ID1,...,1D;}, we let:

Mac>

7 &3] Mac Yo
<n s Nip, ,nIDi> ifi<n

D;

rnd-msg..’ = o
rnd-msg ifi>n

And we let ¢, be the term t, where the subterms msg!® have been replaced by <nJ n® . nMa°> for the

first n identities:

t, = case (accept :rnd-msg)’)
IDES e id

We check that tg = ¢,.

Part 1 We now show that for every 1 < n <[, we have a derivation of:
o l-reveal,, t, 1 ~ ¢ l-reveal,,t, (4.67)

Let n be in {1,...,l}. Let ID = 1D,,, k = k'™ and ky, = k;,,. We are going to apply PRF-f axiom with key
k to replace fi(n’) by nyp, where n;, is a fresh nonce. Recall that:

msgl® = (n?,o"(sQN') Bfin (n?), Macin ((n?, 0" (sQNP) | " (GUTIP))))
N—_———r m

Uson UMac

We let ¢ be the context with one hole (which has only one occurrence) such that:
1/)[<nj sy @ fioo (n7) uMac>] = <;SiT", I-reveal,, tn—1 1/)[<nj ,nd I“]";'C)] = gbiT", l-reveal,,, ty,
Let 1] = ¢[(n? , usqn @ [], umac)]. Notice that:
set-prf (= {m(@l)|n=_,TUp(p,1) <7} U {n’ |7 =_,IN(p) < 7}

We want to get rid of the sub-terms of the form fi (w1 (¢)), for any 71 such that 7, = _, TUp(p, 1) < 7.
To do this, for every 1 = _,TU;p(p,1) < 7, we let 73 = _, TU;p(jp,0) < 7, and we apply (StrEqu2) to
rewrite all occurrence of accept’ in 1)y using:

accept < \/ part-tr. 2 (4.68)

u:T3,T1

To=_,TN(j1,0)
T3=71T2=71 71

This yields a vector of terms (] with one hole. It is easy to check that:

set-prf i () = {n? |7 = _,TN(p) < 7}
By validity of 7, we know that for every 7 = | TN(p) < 7, we have p # j. Therefore using Fresh we have
—=(n? = n?). Tt follows that we can apply the PRF-f axiom in v} [fi(n?)], replacing fi(n?) by ny,, which

148 The 5G-AKA Authentication Protocol Privacy

yields #{[n;p]. More precisely, we deconstruct the context ¢, using FA, without touching at the mac
terms, until we get 1, fu(n?) ~ 0, n;p, at which point we can apply the PRF-f axiom. We then rewrite any
term of the form in (4.68) back 1nt0 acceptl®, obtaining 1o [np] = z/1[<n Uson @ Nip uMac>]. We then use

@®-ind to replace usqn @ nip by n&. For this, we use the fact that len(usqy) = len(n;,) by Proposition 4.11.

U_f’ fk(nj) ~ U_J’, Nip PRE-f w[<nj 5 nIEIB)) uMac>] ~ ¢[<n3 n% s nMa°>] "
1/1[<n7 » Usqn D np s uMac>] ~ ’1)[}[<n‘7 n[ﬂg , nMac>} @-In
- FA*
¢6[fk(n])] ~ q/jé[nm] d}O nID ~ <n] n%7 nMac>}
Trans

D)) ~ D07 ., it
D0, tsqn @ oo (09, unac)] ~ [0, 0, nMac)]

", l-reveal,,, t,—1 ~ ¢ l-reveal, , t,

We now the same thing with upmac, applying PRF-MAC? axiom to replace umac by nM2¢. The proof is

similar to the one we just did for PRF-f, and we omit the details. We conclude using Reﬂ. This yields:

P[(n?,n, M) ~ P[(n? niE, nip)]

Refl

¢[<nj) n% , 7-’*Mac>} ~ Z/JKHJ nlég) nMac>]
Part 2 Using the fact that tg = ¢, and (4.67), and using the transitivity axiom, we get:
P, l-reveal,,, t, ~ @M l-reveal,, .t

Moreover, using the indep-branch axiom we know that:

indep-branch
¢, l-reveal,,, t; ~ @, l-reveal,,,n

where n is a fresh nonce. Using transitivity again, we get a derivation of:

@™, l-reveal,,, t, ~ ¢, l-reveal,,,n (4.69)
Repeating everything we did in Part 1, we can show that we have a derivation of:

", r-reveal n ~ q§ ,r-reveal, , t, (4.70)

where n’ is a fresh nonce. We then conclude using the transitivity and Fresh:

(4.69) o in (4.70)
o0, l-reveal, ~ @, r-reveal,, — -
gi) l-reveal,,, t- - - - Fresh @7, r-reveal ,n
@1 l-reveal,,,n ~ @' r-reveal,,,n o
~ ¢\ l-reveal,,,n - ~ @7, r-reveal,,, t.
o - — Trans
O l-reveal,,, t; ~ @I r-reveal,,,t,;

4.12.10 Case ai = TU;p(j,1)

We know that ai = TU, ()(j,1). Let ID = v,(ID). By validity of 7, we know that there exists 7 =
_,TU;(4,0) such that 7o < 7. Here I-reveal, and I|-reveal,, coincides everywhere except on:

0-(SQNP) — o' (SQNY) ~ 0.(SQNY) — oo (SQNTY) o,(e-authy’) ~ o, (e-auth?)

T =TT]
First, using (StrEqu2) twice we know that:

. niT:
accept;” < \/ part-trj7! accept?” < \/ part-tryz, -

T1=_,TN(j1,0) T1=_,TN(j1,0)
To=TT1 T2=TT1

4.12. %« Proof of Lemma 4.15 149

Using (Der3) we know that for every 71 = , TN(j1,0) such that 7 <, 71 we have a derivation:

@7, |-reveal,, ~ @, r-reveal,

- _ , n— Simp (4.71)
@7, l-reveal,, part-try 7l -~ @T, r-reveal,, part-tryz, -
Therefore we can build the following derivation:
o, l-reveal,, ~ ¢ r-reveal,, _
in st ;1 n:T1 Slmp
¢7—) l_reveal‘rm (part_trU;Tg,T) TlZ,jN(th) ~ d)lv r—revealm, (part'tru:i,z) T1Z,;“N(j1v0) (472)
i 2771 i — 2771 Slmp
@7, |-reveal,, accept” ~ @I, r-reveal,,,accepts
Part 1 We can check that for every 1 = ,TN(j1,0) such that 7 <, 71:
. 5 n:T 5
part-tr)7l — o, (e-authy’) = n’! part-tryz, » — o, (e-authy’) = n?
—accept’” — o, (e-authy)) = fail —accept2 — o, (e-authy’) = fail

And (nft,n91) € reveal,,. Therefore we can decompose o (e-auth;’) and o, (e-auth;”) using FA and get rid
of the resulting terms using (4.71) and (4.72):

#", l-reveal,, ~ qbiln,r—reveaIT0

in 1D n:T 7 Simp
‘T1 1 i
o, l-reveal,, accept)?, (part-trji” . nt) n_ TG0 fail
e
. n:Ty ; .
~ ¢ rreveal,,, accept, (part-truzy,r, /') 1= w0, fail
r - To=<rT1 .
in : D n:Ty J1 : Simp (4 73)
¢ l-reveal,,, if accept}’ then case (part-try.7t . :n’t) else fail .
T1=_, 1
To=rT1

H . n:7i 5 .
~ @7, r-reveal,,, if accepty then case (part-try7, ,:n’!) else fail

T1=_,TN(j1,0)
To<7T1 R
@i, l-reveal,, o-(e-auth)’) ~ ¢, r-reveal,,, o, (e-auth?)
Part 2 Observe that for every 71 = _, TN(j1,0) such that 7 <, 71:
n:T1 D in D\ __ US| 1D in ID\
part-try 7! — 0, (SQN) —or(sQNy) =1 part-try7, r — 0, (SQNy) — o7 (sQNy) =1
—accept’™ — 0, (SQN'?) — oM (sQN'?) = 0 —accept — 0. (SQNY) — 0" (SQNT) = 0

It is then easy to adapt the derivation in (4.73) to get a derivation of (we omit the details):

@7, l-reveal, ~ @I, r-reveal,

: - : — — Simp (4.74)
PF, l-reveal,, 0, (SQNY) — o (SQNY) ~ @F, r-reveal, , 0. (SQNy) — o (sQNy)
Part 3 We finally take care of ¢, and the Mac* terms. First, we check that for every 11 = _,TN(4j1,0)
such that 7 <, 7q:
n:Ty _ 4 Jo nTL = 4 Jo
part-tri7} - — ¢ = Macyw (n’°) part-tryz, r — tr = Mac,m(n’°)
—acceptl’ — ¢, = error —accepty — t, = error

Similarly to what we did in (4.73), we decompose ¢, and ¢, using (4.71) and (4.72). Omitting the detail
of the derivation, this yield:

in 4 jo
e e ™ P, r-reveal (Mackg(n)) e G
T2=TT1 T2=TT]

, 4
@, l-reveal ., (Mackm(n”))

- - Simp
@7, l-reveal ,, t, ~ o, r-reveal,, t,

150 The 5G-AKA Authentication Protocol Privacy

Observe that the Mac? terms here are exactly the Mac? terms in I-reveal,\I|-reveal,. To conclude this
proof, it only remains to give a derivation of:

in 4 Jo in 4 Jo
QST,I—revealTO,(MackE(n)) e e ™ ¢1,r-revea|70,(Mack%(n) G

T2=TT]1 T2=TT]1

For every 71 = ,TN(j1,0) such that 75 <, 71, we are going to apply the PRF-MAC? axiom with key ki,
to replace Macﬁm (n?9) by a fresh nonce n.,. Let ¢ = ¢!, I-reveal,,, observe that:

set-mact (¢) = {m1(g(:‘a)) | Ta = _,TUp(Ju, 1) < 7} U{n"" | 7, = _,TN(jp, 1) < 7}
Let: _
T = {n” | T = _,TN(jo,O) NTo <r 7'1}
Our goal is to rewrite 1 into a vector of terms v such that set-macl (11) N'T = . This will allow us to
apply the PRF-MAC* axiom. We are going to rewrite v as follows:

o Let 7, = ,TU;p(Ja, 1) < 7. By validity of 7, we know that 7, <, 72, and that there exists
To = _,TUip(ja,0) <7 7o Using (StrEqu2), we know that:
accept,’ \/ part-try7e
ro=_ ™N(iz,0)

Tp<7Tex<TTa

We let o be the right-hand side of the equation above. Using this, we can check that:

tr, = if &” then case (part-trj :Macps (n’%)) else error
a Te=_,TN(jg,0 ota m
%b<-7w(<11—7a)
Let x” be the right-hand side of the equation above. For every 7, = _,TN(j,0), if nj= ¢
set-mac;, (o, k) then 7, <, 7,. Therefore:
set-macy, (@, k) NT
C {nj“” | 72 =, TN(jz, 0) A7 < Ta} N {nj(’ | 1= _,TN(jo,0) Ao <, 7'1}
= {njz | 72 = ,TN(Jz,0) ATy <7 Ta A T2 <1 7'3,}

By validity of 7, we know that 7, <, 7. This implies that whenever 7, <, 7, and 75 <, 7., we
have 7, <, 79 <, 7,. Hence:

set-macy, (o, k2)NT = 0 (4.75)
Let 1o be 1) in which we replace, for every 7, = _, TU;p(ja, 1) < 7, any occurrence of accept]”’ and

tr, by, respectively, o)° and x}”, for every 7,. We then have:

set-macy, (o) = {n’" |7, = _,TN(jn,1) < 7} U U set-macyy, (a2, kI)
Tasz“;lu(javl)

And using (4.75), we know that:

set-macy, (o) NT = {n’" | 7, = _, TN(jn,1) < 7} (4.76)
e Let 7, = ,TN(jn,1) and 7, = , TN(jn,0) such that 7, <, 7,,. Using (StrEqu3), we know that:
accept’ \/ full-tr) " ?//,’T:"
;'=_,TUup(4;,0)
Ti=_,Tuip(j;,1)

’ ’
Ty X1 Tn X7+ 7; <1tTn

Let AI* be the right-hand side of the equation above. We check that if ni» € set-mac;, (A) then
there exists 7; = _,TU;p(j;, 1) such that 7; <, 7,. Since 7; < 7, we know that j; # j. Therefore

T; <, T2, and we can show that:
set-macy, (AP)NT = 0 (4.77)

Let 11 be)y in which we replace, for every 7, = ,TN(jn,1) and 7,/ = _, TN(j,,0) such that
7' <+ Tn, any occurrence of accept)” by A . Using (4.76) and (4.77), we can check that:

set-mact (Y1) NT = 0

‘Which is what we wanted to show.

4.12. %« Proof of Lemma 4.15 151

Part 4 Let 74 = ,TN(jo,0) be such that 75 <, 71. For every 71 = |, TN(j§, 0) be such that 5 <, 7/,
if ji # jo then (no = n’°) « false. Moreover, since set-mac (1) N'T = (), we know that for every
n € set-maci, (¢1), (n = n?°) < false.

We can therefore apply simultaneously the PRF-MAC? axiom with key ki, for every 71 = _, TN(jg,0)

such that 75 <, 71, to replace I\/Iacffx"n‘(njo) by a fresh nonce n,,. We then rewrite back ¢, into . This
yield the derivation: _
" l-reveal), (N7,) mi=_mGo.00 ~ €

T2 =TT]
R
wl’ (nTl) T1=_,TN(jp,0) C
S PRF-MAC?
4 : -
¥, (Mackzg(”jo)) n=_mGo.0) ~ §
TQ<=7T1 R

A", I-reveal,,, (Macﬁ.rg(njo)) n=_mGo.0 ~ G
T2=TT]1

where: . ‘
C = (b;‘? r-revealTU, ((Macﬁ%(nm)) T1=_,™(j0,0)

T2=TT1

Observe that we never used the fact that 7 was a basic trace of actions above, but only the fact that 7 is
a valid trace of actions. Therefore the same reasoning applies to ¢, and for every 71 = _, TN(jo, 0) such
that 7 <, 71, we replace Macﬁg(njo) by a fresh nonce n’. . We conclude using Fresh:

@T, l-reveal,, ~ ¢, r-reveal,,

- - Fresh
i
¢I7[1? I—reVealT[), (nTl) T1=_,TN(jg,0) I:a r—reVeal-,—O, (nTl) T1=_,TN(jp,0)
EhaSL — AL R + PRF-MAC?
¢, l-revealy, (nr,) = _mGoor ~ @7, r-revealy, (Maco(n¥©)) r,— i
T 70 \N7my Tlf,ﬁN(Jo,O) T T0> ke Tl—_,_:'N(jo,U)
Te<rT1 To<rT1

Which concludes this proof.

4.12.11 Case ai = TN(j,1)

We know that ai = TN(j,1). Here I-reveal, and I-reveal,, coincides everywhere except on:

net-e-auth.(ID, j) ~ net-e-auth_(ID, j) sync-diff” ~ sync—difF;*(ID)
Let ID € Sig, 73 = _,TUID(ji, 1), 1 = _,TN(_]',O)7 Ty = _,TUID(jZ‘,O) such that m» <, 7 <, 7;:
TUID(ji7 0) TN(ja O) TUID(jz’a 1) ai = TN(ja 1)
e a : ‘
T2 T1 T; T

Let f = full-tr} 727 and f = full-traizy 7, Using (Derd) we know that we have the following derivation:

#'", l-reveal,, ~ qﬁil", r-reveal

T

Simp (4.78)

¢, l-reveal , f ~ ¢ r-reveal,,f

Since f — accept’, we have:

. . if " (session’®) = n’ th diff®
[f A 0" (sync™®)Jsyne-diff® = [f A o™ (sync)] (' o7 (session,’) = n’ then suc(sync 'TU)>

else sync-diff}

Case 1 Assume that 7, = | TUp(Ji, 1) <7 NSip(_). Let 7ws =, NS;p(jins) be the latest session reset in
T, 1.e. Tys <7 T and Tys A7 NS;p(_). We show by induction that for every 7’ such that 7ys < 7’ we have:

f Aoi"(session) =n? — o, (SQN) = 0,/ (SQN'P) (4.79)

Let 7/ be such that s < 7'
e If 7/ = 75 then the property trivially holds.

152 The 5G-AKA Authentication Protocol Privacy

o If 75 <, 7'. The only cases where sQNI° is updated are PN(j’, 1) and TN(j',1):
— If 7/ = ,PN(j’,1): since 7 = TN(j, 1) we know by validity of 7 that j' # j. Therefore:

inc-accept’S — o/ (session™) = n?’ — o, (session®) # n/ — " (session'”) #£ n’
It follows that:
oM (session’) = n — —inc-accept’S — " (SQN'?) = o/ (SQNIP)

And we conclude by applying the induction hypothesis.
—If 7/ = ,1TN(j’,1): since 7 = TN(j,1) and 7" < 7, we know that ;' # j (by validity of 7).
Therefore:

oM (session’) = n? — —inc-accept’s — o (SQN'?) = o,/ (SQNIP)

And we conclude by applying the induction hypothesis.
This concludes the proof of (4.79). We prove by induction over 7/ in NS;5(jys) < 7/ =X 7 that:

f Aoi"(session®) = n? — =0,/ (syncP) (4.80)

Let ai’ be such that 7/ = _,ai’.

e The case ai’ = NS (jys) is trivial since we then have o,/(sync’®) = false.
e If ai’ # PU(_,2), then since NS(jys) A+ NS(_) we know that ai’ # Ns(_). Hence o (synci®) = L,
which implies o,/ (sync;?) = ol (sync}?). By induction hypothesis we know that:
f A ai"(session) = n? — =o' (sync”)

which concludes this case.

o If ai' = PU,(j',2). Let 7" = ,PU,(j’,1) < 7. By validity of 7 we know that 7ys <, 7"/ Using
(Equ2) we know that:

acceptyy <> \/ = enrr) SUpi-tri

T el <!

!

And using (StrEqu4):

T

—o™% (sync®) A supi-triD, . = 000 (SQN) — o (SQNP) = 0

Using (4.79), we know that:
f Aai"(sessionl) =ni — o, (SQN) = ™, (SQN'?) A 07, (SQNP) = 07, (SQNTP)
Therefore:

f Ao(session) =nd — o, (SQNP) = o/ (SQN'P)

T

Using (B5) we know that o/, (SQNP) < 0’;2” (sQny?), and by (B1) we know that o, (SQNY) <
0./ (SQNY’). Moreover o, (SQNY) = suc(ol, (SQNY)) < o, (sQNy). We summarize all of this
graphically in Figure 4.25. Putting everything together we get that:

f A =aif (syncl®) A supi-trliT . = 0 (SQNT) < o (SQNP) — false
We deduce that:
, — false

f A =o' (sync’®) A accept’s — \/ f A =o' (sync’®) A supi—trJ‘fT:;

/= _,pn(5" 1)
pup (37, 1) =r 7! <r 7!

Moreover, using the induction hypothesis we know that:
f Ao"(session’) = nf — =0 (syncP)
Therefore:

f Aoi"(session”) = n? — —accept., — -0 (sync®)

4.12. %« Proof of Lemma 4.15 153

NS (Js) PUL (5", 1) PN(j",1) PUL (5, 2)
b : : : ‘“
TNS ,7_/// 7_/I 7_/
oin, (SQNIP) — o/ (SQNIP)
[IA - Il

O'E:/// (SQN{JD)

o (50N o2 (SQN)

Figure 4.25: First Graphical Representation Used in the Proof of the Case TN(j,1) of Lemma 4.15.

This concludes the proof of (4.80). Using (4.80) we get that f A oi"(sync'®) — oi"(session)’) # n?. Hence:
[flsync-diff> = [f A 0" (synci?)]sync-diff,>

o (ID))

We know that f — accept,
(1

Moreover, v.,(ID) # v,(ID), hence using (A5) we know that f —

—accept? "™, Hence:

[ﬂsync—diffz*(m) =[fA oril"(syncET(ID))]sync—diffg(m)
Using the derivation in (4.78) and the fact that:
(UiT"(syncLD),ailn(syncf(m))) € reveal,, (sync—difF'T'Z,sync—diffg(m)) € reveal,,
We can build the derivation:

#'", l-reveal,, ~ qﬁil", r-reveal

T

. . — Simp
@7, l-reveal,, f, o (syncy’), sync-diff (481)
~ ¢, r-reveal,,, f, ai;(syncﬁ*(m)), sync—diffig(m) '
- : — mp
o, l-reveal,, [flsync-diff,” ~ ¢, r-reveal, [ﬂsync—difF;’(ID)
Case 2 Assume that 7, = |, TU;p(j;, 1) A7 NSip(_). We introduce the term 6py (resp. 0ry) which states
that no SUPI (resp. GUTI) network session has been initiated which ID between 7, and 7:
Opy = /\ —inc-accept.) Oy = /\ —acceptlh
T/=_,pN(_,1) T/=TN(_,0)
T <77’ T =77/

It is easy to show that: ' _
(fA ol (sessiony) = n?) <> (FA Oy Abry)

We are now going to show that for every 71 < 7/, P(7’) holds where P(7'):

P(r") = (fAOp) — (0’7-/ (GUTI?) = UnSet A 0,/ (session) = n? A /\ —accept}’) (4.82)

T

ety
/1 =n(_,0)

Since f — accept,, , we know that f — o, (GUTIY) = UnSet. This shows that P(7;) holds. Let 7y <, 7/,
where 7/ = 7{,ai’, and assume P(7}) holds by induction. We have four cases:

o Ifai’ ¢ {TN(_,0),TN(_,1),PN(_,1)} then P(r") = P(7}), which concludes this case.

e If ai' = TN(_,0), then using the induction hypothesis P(7)) we know that f A O,y — 0" (GUTIP) =
UnSet. Therefore f A 0py — —accept'S. We know that f A Opy — o' (sessionyy’) = n/. We conclude by
observing that:

—accept® Aol (GUTIY) = UnSet Aot (sessiony) = n/ — (o (GUTIY) = UnSet A o (session)y’) = n?)

e Ifai’ = TN(j’,1). Since 7" < 7, we know that j # j'. Therefore o' (session)’) = n/ — o (session}’) #
nd’. We deduce that f A Opy — —accept);. This concludes this case.

154 The 5G-AKA Authentication Protocol Privacy

e Ifai' = ,PN(_,1). We know that f A 05y — —inc-accept’;. We conclude using the facts that:
—inc-accept’, — o,/ (session) = o™ (session'”) —inc-accept’ — o/ (GUTIP) = o' (GUTIP)

By applying (4.82) at instant 79, we get that:

(fA oM (session?) = n?) <> (FAfpy AbOry) <> (FABpy) (4.83)
Part 1 Let 7' = ,PN(j/,1), with 7 <, 7/. Let 7, = PN(j’, 0). Using (Equ3) we know that:
. .y . . nia
g(¢n) =n’ Ami(g(¢7)) = {(ID, o7 (SQNT)) }oi
accepty, . . i . (4.84)
et \A ma(g(é) = Macks (({(D, o™ (sQNW V", g(6in)
To=rTa=<r7’ m N
A7l
We define:
o NSip(jns) if there exists jys s.t. NSip(jns) <+ 7 and NSip(Jins) A+ NSip(_).
" € otherwise
Let 7, = ,PUip(ja, 1) such that 7§ <, 74 <, 7'. Since 7, = _, TU;5(j;,1) 4+ NSip(_), we have only three

interleavings possible: 7, < Tys, Tas <r Ta <7 T2, Ti <r Tq. First, we are going to show that in the first
two cases we have:
! . D
f AN — —inc-accept

o If 7, <; Tys, we have the following interleaving:

PUin(Ja; 1) NSw(_) TUw(ji;0) TN(j,0) PN(%, 1) TN(j,1)
)
*

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

By definition of inc-acceptl’, and using the fact that)\I; — accept’; we know that:
AT Ainc-acceptl; — o' (sQNP) < ol (sQNIP)
To conclude this case, we only need to show that:
AT Ainc-acceptl, — o (SQNIP) < ol (SQNI) (4.85)
From which we obtain directly a contradiction, implies that:
fA)\:; — —inc-accept; when 7, <r Tys (4.86)

The proof of (4.85) is by (B1) and (B6)°. We give a graphical representation in Figure 4.26.

o If s <+ T4 <, T2, we have the following interleaving:

NSip(_) . . ‘ , .

or € PUip(Ja, 1) TUn(4:,0) TN(j,0) PN(j', 1) TN(j, 1)
ro—b ‘ ! ! . .
Tns Ta To T1 7! T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

We know that)\:;1 — 0., (GUTI?) = UnSet, and that f — ¢ (cuTI®). By (B3), we get f —
o (GUTLY) # UnSet. This means that GUTI; is unset at 7,, but set at 7. Therefore there

9Using the fact that f — 01;‘2 (synci?) and oir"Q(sync{JD) — o,/ (synciP)

4.12. %« Proof of Lemma 4.15 155

PUp (ja, 1) NS (Jws) PN(j’, 1)
r—4 : o
Ta < Tns T/
o (SQNY) ——— o7 (SQNY)

&

o' (sQN™)

Figure 4.26: Second Graphical Representation Used in the Proof of the Case TN(j,1) of Lemma 4.15.

was a successful run of the protocol (SUPI or GUTI) between 7, and 7o. More precisely, using
Proposition 4.13 we have:

fAN = o, (GUTE?) = UnSet A o™ (GUTI™®) # UnSet

— \/ accept.’, (4.87)
T”Ziy"lfn)(j”)
Ta=<77!" <179
Let 7/ = | FUp(j”) such that 7, <, 7/ <, 5. We then have two cases:

— Assume j” = j,. In order to have acceptl,, we need the SUPI or GUTI session j” to have been

executed before 7”. Intuitively, this cannot happen if j” = j, because the user session j, is
interacting with the network session j’, and 7/ <, 7/. Formally, using the fact that j” = j,
we are going to show that:

—(AT" A accept™) (4.88)
First, by (Equl) we know that:
accepty, — \/ inj-auth_, (1D, j)
FN(jm)ﬁir“NSm(_)
— \/ o, (b-auth’*) = D A ™" (e-auth™) = n’

FN(jo) £ -1/ Nsin(_)

By (A8) we get:

— \V o', (b-auth’*) = 1p A 6™, (b-auth!®) = ni= (4.89)
FN(jo) L7 NSip (_)

We know that)\I; — ol (b-auth’) = ni’. Moreover, using the validity of 7 we know that
b-auth} is not updated between 7, and 7", therefore AT — o', (b-auth}’) = n?". Putting this
together with (4.89), and using the fact that:

(% (b-auth?) = n= A o™ (b-auth!’) = n?") — false if j, # 7
We get:
accepti, A)\Z; — o, (b-auth!) = D A 0", (b-auth™®) = n’’
Since 77 <, 7, we know that criT"/,(b—authi/) = fail. Hence:

— o (b—authil) =1ID Ao (b—authfl) = fail — false

T T

Which concludes the proof of (4.88).
— Assume j” # j,. Intuitively, we know that accept!’, implies that SQNI® and SQN have been

T

incremented and synchronized between 7, and 7. Therefore we know that the test inc-accept.’
fails. Formally, we show that:

P, = o (SQN'?) < 0%, (SQNIP) (4.90)

T

accept

156 The 5G-AKA Authentication Protocol Privacy

We give the outline of the proof. First, we apply (StrEqul) to 7”. Then, we take 7} =
_LFN(je) < 7. Welet 71/ = | PN(je, 1) or _, TN(je, 1) such that 7" < 7/, and we do a case
disjunction on 77"
« If 77/ = ,PN(je,1), then we use (StrEqud4) on it, and we show that o, (SQNIP) <
o, (sQN'P) by doing a case disjunction on inc—acceptf{/.
« If 77 = ,TN(je, 1), then we use (StrEqu2) on it, and we show that o, (SQNIP) <
o, (SQNY) using (B4)
We omit the details.
Using (B1) we know that o™, (SQNP) < o™ (sQNI?) and o' (sQN'”) < o, (SQN”). Hence, we
deduce from (4.90) that:

accept’, — o (SQNI?) < ol (SQNY)

Moreover, by definition of inc-accept., and using the fact that)\Z; — accept; we know that:

AT Ainc-accept)) — ol (SQNY) < o (SQNP)

Putting the two equations above together:

1D
!

AT Ainc-accept)) A accept), — false

Hence:
’
AT Aacceptl, — —inc-accept])

From (4.87), (4.88) and the equation above, we deduce that:

’ ’ .
fAN — \/ fAN Aaccepty, — \/ —inc-acceptl>
T!=_,ruip(5') T!=_ ruip (')
Ta=rT! <179 Ta=<77! <179
Hence:
’ .
fAN. — -inc-accept)) when Ty <7 Ta <+ T2 (4.91)

Part 2 Using (4.86) and (4.91), we know that we can focus on the (partial) SUPI sessions that started
after 7;, i.e. the sessions with transcript of the from A7 , where 7, = _,PUip(ja, 1), 7/ = _,PN(j’,1) and
T; =<+ Tq <+ 7'. Formally, we have:

(fABsy) < fA /\ —inc-accept,,

T/=_,pN(_,1)
Ty <77/

< fA /\ accept’ — —inc-accept,

T/=_,pN(_,1)
Ty’

< fA /\ /\:; — —inc-accept, (By (4.84))

T/=_,pN(j’,1)

T4=_,Pn(5’,0)

Ta=_,PUip(ja,1)
Ty <77/

Th=rTa=<r7’

 fA /\ A:; — -inc-accept; (By (4.86) and (4.91))

Ta=_,PUp(Ja,1)
T/=_,pN(j’,1)
Ti=<rTa=<77’

We represent graphically the shape of the interleavings that we need to consider:

NSip(_) .)) . .)

or € TUID(.]i7O) TN(],O) TUID(]ivl) PUID(](I71) PN(.jlvl) TN(.]71)
S : : : a ! 1
TNs T2 T1 Ti Ta 7./ T

157

4.12. %« Proof of Lemma 4.15

TUID(ji7 0) TN(j> O) TUID(ji7 1) PUID(ja) 1) PN(j/7 1) TN(j7 1)
— ‘ ‘ ‘ . ‘
T2 T1 Ti Ta T/ T
i i !
,,,,,,,,,,,, o _________
in 1D S in 1D
o (SQN'P) —— o™ (SQNIP)
= N
o (SQNY) oin (SQN'P)

Figure 4.27: Third Graphical Representation Used in the Proof of the Case TN(j,1) of Lemma 4.15.

We are now going to show that if at least one partial SUPI session that started after 7; accepts

Part 3
(ie. fA /\Z; holds), then we have o'"(session)’) # n’. First, from what we showed in Part 2, and using

(4.83) we know that:

— (fA ol (session)y) = n?) « —fV \/ fANT Ainc-accept!

Ta=_,PUip(ja,1)

T'=_,pN(j’,1)
Ti<rTa=<7T7’

- -fv.\/ fAN]

Ta=_,PUip(ja,1)
T/=_,pN(i",1)
Ti<rTa <77/

In a first time, assume that for every 7, =

We know show that the converse implication holds.
_,PUp(Ja,1) and 7 = | PN(4’, 1) such that 7; <. 7, <, 7/ we have:
(4.92)

. . . ,
f AN A —inc-accept), — o) (session,’) # n’

Then we know that: / _
-fv \/ fAX. — —(fA ol (sessiony) = n)

Ta=_,PUp(ja,1)
T'=_,pN(j’,1)
Ti<rTa =77/
Therefore: _
—(fA ol (sessiony) = n?) < —fv \/ fAN (4.93)
Ta=_,PUip(Ja,1)
T/=_,pn(j7,1)
Ti<rTa=<r7’
We now give the proof of (4.92). Let 7, = ,PUp(ja,1) and 7/ = ,PN(j’,1) such that 7; <, 7, <, 7/
f — of (sQNY) = o (sQNi)

We know that:
AT A -inc-acceptl, — o (sQNy) < o (SQNY)

Moreover by (B1) we know that o™ (SQNIP) < ol (sQNIP). We summarize this graphically in Figure 4.27

We deduce that:) _
f A AT A -inc-accepts — ol (SQNY) < o (SQNY)

\/ inc-accept;”

Te=TN(jz,1)
T1=<rTe <77

Moreover:
ol (SQNyY) < o (sQNy) — \/ inc-accept;” V
To=PN(jz,1)
T =<7 T <77’

For every 7, = PN(j, 1) such that 71 <, 7, <, 7 we have j, # j. Therefore:
o, (session®) = nJs — oi"(session!”) # n’

\/ inc-accept, — \/
T =PN(jz,1)

T1=r T <77

Tz =PN(jg,1)

‘r1<-r7'.7c<7-7'/

158 The 5G-AKA Authentication Protocol Privacy

And:
\/ inc-accept;” — \/ o (sessiony’) = n’* — ol'(sessiony’) # n’
Te=TN(jz,1) Te=TN(jz,1)
Ty <rTe <77/ T =7 T <77/

This concludes the proof of (4.92).
The proofs in Part 1 to 3 only used the fact that 7 is a valid action trace. We never used the fact
that 7 is a basic trace. Therefore, carrying out the same proof, we can show that:

—(f A o (session’™ ")) = nT) > ~fV \/ fAN (4.94)
Ta=_,PUip(ja,1) o
T/=_,pNn(j',1)

!
Ti=TTa =TT

Part 4 Let 7, = ,PU;s(ja,1) and 7/ = ,PN(j’,1) be such that 7; <, 7, <, 7. Observing that:

(n7'.0) e revealr, ({0, of, (D) i {{(10) o (s)R € revealy,

(Macky ({0, o™ (SN2 }5E , 9618), Macky, o ({ (v (1D) o (st)R g(oin))) € revealy,
It is straightforward to show that we have a derivation of:

#'", l-reveal,, ~ ¢i1"a r-reveal

T

- — Simp
in T in T
@7, l-reveal), AT~ @7, r-revealr,, A7,

Using (4.93) and (4.94), and combining the derivation above with the derivation in (4.78), we can build
the following derivation:

@7, l-reveal,,, ~ ¢, r-reveal,,,

(Dup, FA)*

. , . -
o l-reveal), fA =\ ra=_ruwtany TAAD ~ @ r-reveal ,fA =\ ra= runGan TAME,
r’:__,PN(j’,l) @ - r’:__.PN(j’,l) -

Ti=<rTa <77/ Ti<rTa=<rT!

(4.95)

R

Pir, l-reveal,,, f A olf (session’) = n/ ~ ¢l r-reveal,,,f A cfiln(session;*(m)) =n’

We know that:
[flsync-diff> = if f A ol (syncl”) A ol (session}) = n’ then suc(sync-diff.")
else sync-diff;,
[flsync-diff" (™) = if £ A o (synch™"™) A ol (session’” ™)) = n then suc(sync-diffZ7 ™)

else sync-diff/ ™)

Hence, using (4.95) and the fact that:

(o (syncl), aiTj(syncZT(ID)) € reveal,, (sync-diff®, sync-diff’> ")) € reveal,,

We have a derivation of:

@7, l-reveal,, ~ @7, r-reveal,,

. . Simp 4.96
P, I-reveal,, [flsync-diff” ~ ¢, r-reveal,,, [ﬂsync—diffzf(m) (4.96)

Part 5 Using (StrEqu3), we know that:

D n:iTy,T
accept) \/ full-trg: 27
T;=_,Tuip(j4,1)
T1=_,TN(j,0)
T2=_,TUip(j;,0)

T2=XTrT1=7T;

4.13.% Proof of Proposition 4.20

159

We split between the cases 7; <, Tys and 7; A, Tys:

ni7Ty,7 ni7Ty,7
© \/ full-trj7 7 v \ full-tr) 77
T;=_,Tup(j;,1) Ti=_,TUip(4;,1)
T1=_,TN(4,0) T1=_,TN(4,0)
To=_,TUp(j;,0) To=_,TUp(j;,0)

T2 <771 <7T; <7 TNs TNS =T T2=7T1<7T;

If 7; <7 Txs then v, (ID) = v, (ID) # v,-(ID), and if 7; A; 7ys then v, (ID) = v, (ID) =
using (StrEqu3) on 7, that:

v (ID). It follows,

niTyL,T niTyL,T
\/ acceptz + \/ full-tryiz, = accept’;f(m) VRN \/ full-tryiz 7,
IDE copies-id ¢~ (1) Ti=_,TUp (4;,1) Ti=_»TUy_(ip) (d3>1)
IDF#v (D) T1=_,TN(j,0) T1=_,TN(4,0)
To=_,TUip(4;,0) 72=7,TUV7_(‘D)(ji,O)

T2 <771 =7 T; <7 TNs

TNS =T T2 =771 =<7T;

Hence, using (4.81) if 7; <, NS;p, and (4.96) if 7; £, NS;p, we can build the following derivation:

@7, l-reveal,, ~ @7, r-reveal,,

- ' mp
¢, l-revealy,, sync-diff” ~ ¢ r-reveal,,, sync—difFZT(lD)
Part 6 Observe that:
net-e-auth.(ID, j) > accept;’ net-e-auth (1D, j) V

IDEcopies-id - (1D)

We therefore easily obtain the derivation:

@7, I-reveal,, ~ @I, r-reveal,,

@M, I-reveal,,, net-e-auth.. (1D, j) ~ izn, r-reveal,,, net-e-auth_ (1D, j)

Finally, we know that:

Vives, accepty < V¢, accept’net-e-auth.(ID, j)

ID .
\/IDGS;d ,IDEcopies-id - (ID) acceptr <> VIDGSid MZ(ID’])
It follows that:

@7, l-reveal,, ~ @7, r-reveal,,

in v in
o, -reveal -, \/mesid net-e-auth,” ~ ¢, r-reveal. , \/\ c;adom

net-e-auth (1D, 5)

in 1D in 1D
o7, -revealr, Ve 5., accepty ~ T, r-revealr,, \/\pc s | inecopies-id,. (1n) 3CCEPty

¢, l-reveal ,, t, ~ ¢, r-reveal,,t,

4.13 % (p. 168) Proof of Proposition 4.20

Proof of (Der1). We have two cases:

accept

Simp

FA*

o cither there exists such that NS;,(I) < 7 and NS, (1) A NS;p(_). In that case we have NS, (1) <, 7.

e or for every i, NS (i) A 1.

Let ID = v, (ID). We summarize this graphically in Figure 4.28. In both case, for every 71 <X 7/ < 7:

(07 (SQNI) — 0™ (SQNIY), 01/ (SQNEY) — 05} (SQNTY)) € revealy,
(I (sync)] (o7 (sx2) -
We know that:

o7 (SQNY) — 07 (SQNT) = o7y (SQNY) — o (SQNY) =

T 37/

o (SQND)), [0 (synci?)] (o (sQNy) — o (SQNE))) € reveal,

S on(saxt?) - ol (sax)

160 The 5G-AKA Authentication Protocol Privacy

NS (1) or € 7—1 r
T —e . o
o (sa) o ()

oin (sQNP) — ol (sQNY
oin(sQNP) — ot (saNe)

o (sQNY)

ail" (sQNyY)

o (SQNY) — o (SQNT)

in S NQ in 1D

0'1(QNy) P () - (rg(SQN{T‘)) oy (SQNU)
= ¢ ¢ ¢
NS;p(l) or € s T

Figure 4.28: First Graphical Representation of the Proof of (Derl)

And:
o (sync’) A o (SQNY) < o7 (saNy)
o o (syner?) A (o7 (SQNT) = o7 (SQNT)) + [0 (synep?)] (o7 (sQNy) — o7 (SQNy)) < 0)
Similarly:
oM (SQNT) — o'f (SQNT) =) 0 (SQNTY) — oin (SQNT)
7137’
And:

o (synci’) A ol (SQNY) < 02(SQN17D)
< or(synct?) A (o (sQNi) — o (sQNT)) + [o7 (synci)] (o2 (sQNy) — o (sQN))) < 0)
Putting everything together, we get:

l-reveal;, ~ r-reveal;,

in

l-reveal,,, ol (syncl), [0 (sync?)] (oM (sQNI) — oM (sQNT)), (o4 (SQNT) — o'f (sQNTP),)ﬁjT,

~r-reveal o (sync), [0 (sync)] (o (sQNy) — o (SQNT)), (07 (SQNT) — oif (SQNE),)7157/

l-reveal,,, o (syncl?) A oM (SQNT) < ol (SQNTP)

100 Y11

~ r-reveal,,, o (sync’) A o (SQNY) < o' (SQNT)

The derivation of (4.20) is very similar. We omit the details, and only give the graphical representation
of its proof in Figure 4.29. [|

Proof of (Der3). Since 7 is valid, we know that for every 7/, if 72 <, 7/ then 7/ # Ns;5(_). It follows

that 7o = _,TU, (1)(j,0) and 7 = _,TU, (1p)(j,1). The fact that 7 <, 7y is then straightforward.

Letting ID = v, (ID), we can then check that part-tr)7l —and part—trﬂ%i are as described in Figure 4.30.
We have two cases.

Case 1 Assume that for all 7/ <, 71 such that 7/ £, NS;p(_) we have 7/ £ [FU().
Then we know that for all 7/ <, 71 such that 7" £, NS,_(p)(_) we have 7 # _,FU,_¢p)(_). Therefore
using (B7) twice we get:
part-tr’:7! _ — false part—trz%’1 — false

u:re,T

4.13. % Proof of Proposition 4.20 161

NS (1) or € ol -
T —.‘ " ‘.
oin (sQN'P) , oi"(SQNIP)

oin(sQNP) — ol (sQNY)

of (sQN) - o (sox)
o (sQNy)

Y
Uii (sQNyY)

ol (3QNY) — ol (sQNe)

in S NQ in 1D

o7, (SQNY) oM (sQNE) — o'n (sQnt?) o7 (SaNv)
S ¢ ¢
NS (1) or € s T

Figure 4.29: Second Graphical Representation for the Proof of (Derl)

m(g(¢7)) ="t A ma(g(¢F)) = o (SQNY) @ fige (n7)

A ma(g(e7)) = Macie ((n”! ;o7 (sQNy) , o (GUTIY)))
part-trli’t =

uTe,T

m(g(¢7)) ="t A ma(g(¢F)) = of) (SQNY) @ fiee (n!)

A ma(g(@)) = Macs (0", o™ (sani2) , off (GuTe2)))

n:7Ty
part-tryz, r =

Figure 4.30: Terms part-tr;7} _ and part—trﬂii:;I in the Proof of (Der3).
Therefore we have a trivial derivation:

@7, I-reveal,, ~ @7, r-reveal,,

in | o, fal in I+, fal FA
@7, l-reveal, false ~ ¢, r-reveal , false (4.97)

#", I-reveal,,, part-trji7l -~ #", r-reveal,, part—trEE::;,I
Case 2 First, we are going to introduce various instants corresponding to previous sessions of the
protocol. Eventually, we will be in the situation depicted in Figure 4.31.

Assume that there exists 73 = _,FUp(jo) such that 73 <, 71, 73 A7 NS;p(_) and 73 £, FUip(_). Then
T3 = _,FUy (0)(_); T3 <z T1, T3 £z NS, () (_) and 73 £+ FU,_(p)(_)-

Assume that jo = j, then we know that 7 <, 73, which is absurd. Therefore jg # j. Using the validity
of 7, we know that 73 cannot occur between 7 = | TU;;(4,0) and 7 =, TU;5(4,0). Hence 13 <, 7o.

162 The 5G-AKA Authentication Protocol Privacy

Let 7ys be the latest Ns;p(), if it exists, or € otherwise: 7ys = ,NS;p(_) or € and 7ys A+ NSpp(_).
Let 7, be _,TU;r(jo,0) or _,PUs(jo, 1) be the beginning of the UF session associated to 73. We know
that 7ys <7 T2 <+ 73.

We know that part-tr}:7! _ — ol (valid-gutiy,’). As 75 A FU(_), we know that there are no FU,,(_)
action between 73 and 7o. If there exists an action by user ID between 73 and 7o, then we have either
73 <, PUp(_,1) <, T3 or 73 <, TU;p(_,0) <, 72. In both case, valid-guti; is set to false, and cannot be
set back to something else without a FU;(_) action. It follows that if there exists a user action between
73 and 73 then -0 (valid-gutiy’). Using the same reasoning we have —oi" (valid-gutit”) if there exists a
user action between 73 and 5. Hence in that case the derivation (4.97) works.

By consequence we now assume that:

{ ,1Un(), ,PUn(_,), FUp()}IN{7 |3 <r 7 < 2} =0

It follows that —accept’> — —olf (valid-gutiy’), hence part-tr;i7l . — accepty,. Also, we deduce that

07, (GUTIY) = o (GUTIY). Applying (StrEqul), we know that:

n:Tq
u:Ts

accepty) < \/ fu-tr

Te<7rTa= _,FN(ja)<+T3

Therefore:

uT2,T uiTe,T

part-trhiTl ¢ \/ fu-try. 72 A part-trj7}
Te=<rTa = _,FN(ja)=7T3

Similarly, we show that o, (GUTI) = o (GUTIU) and that:

n:7y ni7g niTy
part-tryms - \/ fu-try7s A part-truz, -

Te=7Ta = _,FN(ja)=<+T3
We can start building the wanted derivation:

in n: Ta n:Ty
o7, l-revealy,, (fu-tri7s Apart-trfT!) NG

in Ta T
~ ¢ rreveal,, (fu—tru;E A part—tru;Q7I)TT<TTa: EN(ia) <o

"
in I n: ‘ra FA
o, l-reveal \/ fu-tr).7* A part-try;

Te=rTa = _,FN(ja)=<+T3

. n:t, n:7Ty
~ ¢;‘7 r-reveal,, \/ fu—tru;i‘; A part-tryz, -

Tz <7Ta = _7FN(ja)'<'r7-3

UT2T

. R
. . n:Ty
@M, I-reveal,,, part-tr Tt~ @' r-reveal,,, part-tryr,

u:To,T
Let 7, = ,FN(j,) be such that 7, <, 7, <, 73. Let 7, be _,TN(ju, 1) or _,PN(j,,1) such that
Ty <+ Tq. To conclude, we just need to build a derivation of:

niT1
u:to,T

H n:T, n:7Ty
T, l-reveal,, fu-trj.7® A part-tr ~ @7, r-reveal,,, fu-tryz; A part-tryz -

The proof consist in rewriting fu- tr o A\ part- try g - and fu- tru Ts > A part- tru 72 7 such that they can be de-

composed (using FA) into correspondmg parts appearing in reveal,,. We do this piece by piece: the waved
underlined part first, the dotted underlined and the dashed underlined part. We represent graphically
the protocols executions in Figure 4.31.

Part 1 (Waves) We are going to give a derivation of:
N, l-revealr,, fu-try72 A olf (GUTIY) = olf (GUTIY) ~ ¢If, r-reveal,,, fu-tryzs A oif (GUTIT) = oif (GUTIY)

u:Ts

Recall that o, (GUTIP) = ¢! (GUTI) and UE(GUTILQ) = o!" (GUTIY). Hence it is sufficient to prove that:

o, |-reveal,, , fu-tr), e N o (GUTIY) = ol (QUTLY) ~ qbil", r—revealm,fu—trz% A UE(GUTILQ) = U_i,_l(GUTliTD)

4.13. % Proof of Proposition 4.20 163

NSip() TUp(j0,0) TN(ja, 1)
or e or PUip(Jo,1) or PN(jg,1) FN(jq) FUb(jo) TUn(4,0) TN(j1,0) Tuw(j,1)
- é . . ‘ ‘ ‘ ‘

e

Tns Tx Tb Ta T3 T2 T1

Figure 4.31: Graphical Representation of the Protocol Executions

We know that:

[fu-tryire]or, (GUTLY) = [fu-tryir]GUTr®
Hence:
n:T,

(fu-try7e A ory (GUTIY) = ol (GUTLY)) <> (fu-tr

uiTs

in 1D la
b Ao (GUTIY) = GUTI®)
Intuitively, the only way we can have o™ (QUTI) = GUTI* is:
e if the SUPI or GUTI network session j, accepts with the increasing sequence number condition.
e and if 0" (QUTIP) was not over-written between 7, and 7.

It is actually straightforward to show by induction that:

in D 7 H D H 1D 1D
ol (GUTL,) # GUTF® ¢ (ﬁmc—acceptn v \/ inc-accept;, V \/ acceptT,>
=_ (1) '=_,m(’,0)
or v/=_,pN(j/,1) Tp<rT/ <771

Tp<rT/ <771

Hence:
n:T, ID\ __ _in 1D
fu-try 2 Ao, (GUTILY) = ol (GUTIY)
« fu-trj e Ainc-accepty, A /\ —inc-acceptih A /\ —acceptlh
T/=_,7N(j’,1) T/=_,1Nn(j7,0)
or v/=_,pN(j’,1) Tp<rT/ <7711
<77/ <771
< fu-tr}7¢ Alinc-accept]) A /\ —inc-acceptn A /\ g(¢r) # auTr=
T/=_,TN(j’,1) T/=_,1Nn(j',0)
or 7/=_,PN(j',1) Tp=rT/ <1711
Tp=<rT/ <77
For every 7, = ,TN(_,1) or _,PN(_,1), we know that SQNI is incremented at 7, if and only if

inc-accept;” is true. Therefore:
inc-accept) <> o (SQNY) < o, (SQNI)
Using the fact that o' (SQNI*) = o7, (SQNI?), we can rewrite this as:
inc-accepty <+ oo (SQNY) — ol (SQNY) < 0, (SQNY) — 07, (SQNIP)
Using this remark we can show that:
fu-trire A ory (GUTIY) = o' (GUTIY)

3
in D in D) — v
o7, (sQNy) — o7, (sQNy)) R (oy (SQNY) am(SQNU)> AN g(ém) # curr

'=_,mNn(’,0)
7';,<7-7',<7—"'1

« fu-triile A
v < 04 (SQNY) — 07, (SQNY)

Doing exactly the same reasoning, we show that:
fu-trazs A oy (CUTIR) = o) (GUTIY)
o (sa?) — o (sQN;E’))) (or, (s0) - an,(SQNi?)>)

P fu-trﬂii:i: A o .
< 04, (SQNY) — 04, (SQNY)

A g6 # Gure
T/=_,TN(j/,0)
Ty =T <771

164 The 5G-AKA Authentication Protocol Privacy

We introduce some notation that will be used later: for every action trace 7 = 79, ai and identity 1D, we
let sync-diff-in” = sync-diff .
We now split the proof in two, dependlng on whether o'f (sync”)) is true or false. Let 1) = fu-trj./® A
on (uTr) = o (GUTLP) and ¢ = fu- “try e 5 Aot (GUTIU)=o (GUTIN). Using the fact that:
(o (synci?), og(syncILTD)) € reveal,,
We can build the derivation:
#'", l-reveal,,, olf (sync“”) A, =0T P(sync?) Ay~ ng ,r-reveal o (syncI) A, o' (syncU) AU
(b'“ l-reveal,,, o'™" (syncyy), iT"b(syncIL?) A, =ol " (syncy’) Ay
~ @7, r-reveal,,, o7 (syncU), Ug(synciJ) A, -0l (syncU)AY

Dup

", l-reveal, , 1) ~ @ r-reveal, , v Simp
T TO Y T TOY

We now build a derivation of ¢/, I- revealTo, (syncID) A1 and of ¢", |-reveal,,, —\02 (synci®) A ap:

e Using the fact that we have o (synci?),we know that:

o (syncl?) Afu-trjire A or, (GUTLY) = o (GUTIY)

u:7s

' -diff-inl’ -diffl” . 4
< oy (syncy’) Afu-trg e A (*yne I me) A (=yne I v) A /\ g(o) # curre

1D 1D
< sync-diff; = sync-diff-in_ o)
Ty =T <771

Similarly we get that:
olf (synct?) A fu-truzs A o4, (GUTI) = olf (GUTIY)

o sync-diff-in}> sync- dlfFID _ _
o o (syncU) A fu-tryzs A A A /\ g(¢y) # GuTrre

< sync-diff> = sync-diff-in’>

__,TN(j'.O)
rb<7—‘r/<7—-rl

Moreover, we know that:

((curre, GUTI*) € reveal,,) »— (.0 (sync-diff-in} , sync-diff-in}>) € reveal,,

Tp=rT! <71

(sync-diff-in, sync-diff-in72) € reveal, (sync-diffy, sync-diff7) € reveal,

(o (sync?), oif (synct?)) € reveal,
And using (Der2), we know that we have a derivation of:

@7, l-reveal,, ~ @I, r-reveal,

- — - Simp
o7, l-reveal, fu-tri 7t ~ ¢, r-reveal, fu-tr:

u:Ts

n’Ta

Using this, we can rewrite aiT (sync!®) A4 and o (syncU) A as two terms that decompose, using
FA, into matching part of reveal,,. By consequence we can build the following derivation:

in |-reveal, ¢ ~ ¢ r-reveal,
0 T 0

: : Simp 4.98
@i, l-revealr,, o (synci®) A ~ @, r-reveal,,, ol (synci”) A (4.98)

e We now focus on the case where we have —olf (synciP).
First, assume that 7, = ,TN(j4,1). In that case, we know that fu-trj’* — accept”. Since
accept’> — o (synciP), we get that (—o™ (synci®) A 1)) <+ false. Similarly we have (ﬂa (syncy”) A

n’Ta

1) «+ false. By consequence, we have a trivial derivation:

@M, l-reveal,, ~ " r-reveal,,

#'", I-reveal,,, false ~ ¢, r-reveal,,, false

. - Simp
¢, l-reveal,,, =o' (syncl?) A ~ @i, r-reveal,,, =o' (syncy”) A ¢

4.13. % Proof of Proposition 4.20 165

Now assume that 7, = ,PN(ju,1). Since 73 = _,FU(jo) < 7, we know by validity of 7 there
there exists 7/ = _,PUp(jo,2) or _, TU;p(jo, 1) such that 7/ <, 73. It is straightforward to check
that if 7/ = _, TUy,(jo, 1) then since 7, = _, PN(Jja, 1) we have fu-tr);r <> false and fu-tru:ry <> false.
Building the wanted derivation is then trivial.

Therefore assume that 7/ = _, PU,p(jo,2). Observe that fu-tr). "¢ — acceptl). We have two cases:
— Assume 7’ <, 7,. Using (Equ2), we know that:

acceptl) — \/ ol” (b-auth’) = n

Tn=_,PN(jn,1)
Te<rTn<r7!

— o> (b-authy’) # n’e (Since 7/ <, T3)
Moreover:
fu-tr)7e — o> (e-authy’) = n?* — o (b-authy’) = n’

n:Tq
u:Ts

Therefore fu-tr — false. Similarly fu—trﬂi% — false. Hence we have a trivial derivation.

— Assume 7, <, 7. We summarize graphically the situation below:

NS () . ,] . . .

or € PUID(JOJ 1) PN(]aa 1) PUID(]Oa 2) FUID(]O) TN(]h 0) TUID(.77 1)

e ‘ e G
TNSs Tz Tb 7—/ T3 T1 T

First, since there are no ID actions between 7, and 7/, we know that - (synci?) — =™ (synci?).
Recall that fu-tr}. 7% — accept). Using (Equ2), it is simple to check that fu-tr}.7* Aacceptl) —
su pi—trl':'_r:i”T,. Therefore:

-0l (sync?) Afu-trgi7e — =o'l (syncl) A accept!h
A O';—n’ (SQNLD) =0n (SQNLD)

— inc-accept
™A 0 (SQNY) = 0 (SQNY)

(By (StrEqu4))

Using again the fact that there are no ID actions between 7, and 7/, we know that aiTr; (sQNp) =
ol (syncl?). Moreover o' (synciP) = o/ (synclP), therefore o™ (SQNI?) = o (sync®). Similarly,

we know that o,/ (SQNP) = " (SQN'P). Summarizing:

NSip(_) - .
or € PU(jo, 1) PN(ja, 1) PUyp(jo, 2) FUpp(jo) TN(j1,0) TU,(j, 1)
D ; a : : : .
Tas T T - T3 e T
) | . |
o (5a) = o, (o)
B Il
o7 (SQNY) —— o7/ (SQNIP)

Therefore we get that:

=0l (synci?) A fu-trfire A o, (GUTIY)

u:Ts

. _ 0, (SQNY) — o/ (SQNY) . ,
< -0 (syncy’) A fu-trg e A i TD . [IJD A /\ g(¢l) # aurre
- UTl (SQNN) - UTl (SQNU)

ol (GuTIy)

r/=_,m(",0)
Ty =T <771

166 The 5G-AKA Authentication Protocol Privacy

Besides, accept! — o/ (synciP). Since 7/ <, 7 we know that o (syncl”) — o™ (synci®). Hence:

o (synci®) A fu-trile A o, (GUTIY) = oif (GUTLY)

u:Ts

“ (sync“)) A fu-trgi 7 A sync-diff) = sync-diff-in}) A /\ g(¢™") # cuTre

7-/77 ™(j’,0)
Ty =<7 <17y

Similarly:
—o™" (synct) A fu-truize A o, (GUTIR) = o T (GUTIY)

& =0 (synci?) A fu-traize A sync-diffs = sync-diff-in’> A /\ g(¢) # quTre
7-’:7,TN(j’,0)
Ty =y <rT1

And using (Der2), we know that we have a derivation of:

@i, I-reveal,, ~ ¢, r-reveal,

. ——— Simp
oI, l-reveal,, fu-trg7e ~ ¢, r-reveal, fu-tr
Moreover, we know that:
((curr+, cUTr®) € revealr,) »— w0 (sync-diff-in)” , sync-diff-in>) € reveal,
Tp<rT/ <7711 —
(sync-diffy’, sync-diff5) € reveal,, (o (sync?), on (synct?)) € reveal,

Similarly to what we did in (4.98), we can rewrite =o' (synci®) A ¢ and —o'f (syncU) A as
two terms that decompose, using FA, into matching part of reveal,,. By consequence we can
build the following derivation:

#", l-reveal i ~ (;Siln,r—reveaITU

. Sim
#'", l-reveal,,, — b(sync{f’) AN ~ @7, rreveal,,, o] (syncU) AU P
Part 2 (Dots) Using (StrEqu2) we know that part-trj7l =~ — accept’. Therefore, using (A6),

part-trl:7t - — ﬁaccept'T?/ for every 1D’ # ID. It follows that part-tr}i7! = — ¢, = msg!”, and therefore:

uiTe,T uiT2,T

part-trl: 7t — 7T2(7f7—1) = O’i_nl (SQNLD) (&5 ﬂ(m(njl)

uiT2,T

And:
part-tr)it — w3ty) = Maci:z((njl ,Ji.”l (sQny), UiT"l(GUTIiJD»)

uiTy, T

Since no action from agent ID occurs between 75 and 71, we know that o' (GUTIP) = o7 (GUTI). Hence:

part-tryTt — m3(ty,) = Macin (0!, 0l (sQNy) , olf (GUTIY)))

uiTe, T

Hence we can rewrite part-tr{i:7! = as follows:

T (g(@F) = nt A ma(g(d) = ma(try) A m3(g(d})) = m3(tr,)

partrf . = | 1 9(9%) :({%@‘Eﬁi) A on(Gun) = on (GUIY) A op (valid-gutiy)

. . . . n:7Ty
By a similar reasoning we rewrite part-tr,:7, » as follows:

mi(g(dy)) = 0’ A ma(g(97)) = maltr,) A ms(g(e7)) = ms(tr)

A g(¢h) = on (GUTI) A ol (GUTIY) = o (GUTIY) A oin (valid-guti?)

n:7T1
part-try7, r =

A range(ol (SQNE), O’i_i(SQN;TD))

4.13. % Proof of Proposition 4.20 167

Part 3 (Dash) Since part-tr}:7! _ — o™ (valid-guti;’) we know that:

u:T2,T
part-tr}™t — o (GUTIY) = m-suci’

uiTy, T

Besides, as o/ (valid-gutiy’) — o' (sync!®), and since o' (valid-gutiy,’) — o™ (valid-guti,’) (because 7o <. 71
and T2 A, NS;p(_)), we know that:

part-tl) - — (range(oh(SQN), o) (SQN2)) &+ (o1 (valic-guti?) A o (sx) = o (sa))
Similarly we have:
part- try— T2 = o (G.UTIU) = m—suci?
part—trﬂ%yz — (range(ailn(SQN%),0£(SQN:T)) ~ < " (valid-guti®) A 0’ "(SQNT) = £(SQNIN*D)>)
Moreover:
(m-suci’® ~ m-suci®) € reveal, (o7 (valid-gutiyy) ~ ol (valid-gutii?)) € reveal,,
Finally, using (Derl), we know that we have a derivation of:

l-reveal;, ~ r-reveal,,

- - Simp
l-reveal ., o' (valid-gutiy) A ol (SQNI?) = ol (SQNIP)
~ r-reveal,,, o (valid-gutiy’) A oiL"(SQNILTD) = 0" (SQNY)
Part 4 (conclusion) To conclude, we combine the derivations of Part 1, Part 2 and Part 3. |
Proof of (Der4). Recall that:
full-tr, 27 = part-try 7t Ag(on) = Macﬁﬁ(nj)
TUp (]za O) TN(j, O) TUID(ji> 1) TN(j, 1)
v : ‘ .
T2 T1 Ti T
The fact that 7 = _,T 1(ID)(‘%,O), o= _,TU,) (Ji,1) and 70 <; 71 <; 7; is straightforward

from (Der3). It is easy to check that:

ni7Ti,T

full-tryz, 7, = part- trazs Tz,n A 9((?5) = Macim i (n)

Moreover, (Macgs(n), MaciuT1 w (n?)) € reveal,,. By (Der3), there exists a derivation using FA and
Dup of: "
@ir, l-reveal) ~ ¢, r-reveal,

H . H n:7Ty
@7, I-reveal,, part-trj7l _ ~ @F, r-reveal,,, part-truz,

It is therefore easy to built the wanted derivation using only FA and Dup.]

Proof of (Der2). We recall that:

futmn = (inj-auth_(ID, jo) A ™" (e- auth]‘)) # Unknownld)
A i (g(éM)) = GUITI & £ () A ma(g(é")) = Mack, ((GuTi, i)

fut T (inj-auth_ (v-(1D), jo) A a'"(e—authj") # Unknownld)
=7 A mlg(en) = qurio & f(wio) A m(g(én) = Mac], ((GuTs , o))

The 5G-AKA Authentication Protocol Privacy

168
Let jo € N, and 79 be such that 7 = 7g, ai. It is straightforward to check that for any n € N:

01, (e-auth’®) = Unknownld « /\ —net-e-auth, (A;, jo)

1<i<B
unk
o+, (e-auth)’) = Unknownld < /\ —net-e-auth, (A, jo)
1<i<B
unk -

Since for all 1 < i < B:
(net-e-auth (A, jo) ~ net-e-auth_(A;, jo)) € reveal,

and since fu-trj..* A unk — false and fu—trﬂi%1 Aunk — false, we deduce that

H n:7Ty
,l-reveal,, bj, A —unk ~ @', r-reveal,, fu-tr, = A —unk Duc*
up

(bin
T
@M, I-reveal,,, unk, false, fu-trg..*
@', I-reveal,, , unk, fu-tr}: 7" A unk, fu-tr) .7t A —unk
unk

. n:Ty
A —unk ~ @l r-reveal ., unk, false, fu-tr,:z~ A —unk
— R

. n:Ty n:7Ty
~¢7, r-reveal,,, unk, fu-try:= A unk, fu-try 7 A =
n:l
u:T

R+ FA"

#'", l-reveal,,, fu-tri. .t ~ gbil" , r-reveal ., fu-tr

From the definitions, we get that:
o"(b-auth?’) = 1> — (0" (e-auth!®) = 1D V o' (e-auth!®) = Unknownld)

Therefore:
fu-trjt A—unk — ol"(e-auth!’) =10 — net-e-auth,(ID, jo)
Moreover:
GUTE® @ f(n?°) = [net-e-auth. (1D, jo)]t-suci-&, (1D, jo)
A Macﬁm(<GUT1j° , n79)) = [net-e-auth. (ID, jo)]t-mac, (ID, jo)

net-e-auth,(ID, jo) — <

Using Proposition 4.15 on 7:
inj-auth, (1D, jo) ¢ n?® = oi"(e-authy’)

Using the observations above, we can rewrite fu-tr;.." A —unk as follows:
n’o = gi"(e-auth!’) A —unk

A 71(g(¢")) = [net-e-auth. (1D, jo)]t-suci-&®. (1D, jo)

fu-trg ' A —unk =
A ma(g(#F)) = [net-e-auth, (1D, jo)]t-mac, (1D, jo)

Similarly, we can rewrite fu—tr[}i% A —unk as follows:
nfo = og‘(e—auch*(lD)) A —unk
nity A—unk = N T (g(¢l)]t—SUCi—@L(ID,jo)

fu-tryiz
A ma(g(¢y)) = [net-e-auth (1

")) = [net-e-auth_(ID, jo
D, jo)ltzmac, (1D, jo)

We can now conclude the proof:
@M, I-reveal,, ~ ¢", r-reveal,, . .
— R + FA™ + Dup

"
. . nity
,l-reveal, fu-tr ™" A —unk ~ @I, r-reveal,, fu-tr, 7 A —unk

o

4.14. Conclusion 169

4.14 Conclusion

We studied the privacy provided by the 5G-AKA authentication protocol. While this protocol is not
vulnerable to IMSI catchers, we showed that several privacy attacks from the literature apply to it. We
also discovered a novel desynchronization attack against PRIV-AKA, a modified version of AKA, even
though it had been claimed secure.

We then proposed the AKA™ protocol. This is a fixed version of 5G-AKA, which is both efficient
and has improved privacy guarantees. To study AKA™’s privacy, we defined the o-unlinkability property.
This is a new parametric privacy property, which requires the prover to establish privacy only for a subset
of the standard unlinkability game scenarios. Finally, we formally proved that AKA™ provides mutual
authentication and o -unlinkability for any number of agents and sessions. Our proof is carried out in
the Bana-Comon model, which is well-suited to the formal analysis of stateful protocols.

CHAPTER 5

Deciding Indistinguishability

The security proofs in the case studies of Chapter 3 and Chapter 4 are hand-made. Of course, this poses
the question of their validity. In particular, the security analysis of the AKA™ protocol in Chapter 4 is
very long and tedious, and would strongly benefit from some tool support. In this chapter, we try to
remedy to this problem by studying the problem of proof automation in the Bana-Comon equivalence
model. Our main result is the decidability of a subset of the axioms presented in Chapter 2, which
are a computationally sound, though incomplete, axiomatization of computational indistinguishability
for protocols, with a bounded number of sessions, whose security is based on an IND-CCAs encryption
scheme. Alternatively, our result can be viewed as the decidability of a family of cryptographic game
transformations. Our proof relies on term rewriting and automated deduction techniques.

5.1 Introduction

When trying to prove a protocol, there are three possible outcomes: either we find a proof, which gives
security guarantees corresponding to the attacker model; or we find an attack, meaning that the protocol
is insecure; or the tool or the user (for interactive provers) could not carry out the proof and failed to
find an attack. The latter case may happen for two different reasons. First, we could neither find a proof
nor an attack because the proof method used is incomplete. In that case, we need either to make new
assumptions and try again, or to use another proof technique. Second, the tool may not terminate on the
protocol considered. This is problematic, as we do not know if we should continue waiting, and consume
more resources and memory, or try another method.

This can be avoided for decidable classes of protocols and properties. Of course, such classes depend
on both the attacker model and the security properties considered. We give here a non-exhaustive
survey of such results. In the symbolic model, [CCZ10] shows decidability of secrecy (a reachability
property) for a bounded number of sessions. In [DOT17], the authors show the decidability of a secrecy
property for depth-bounded protocols, with an unbounded number of sessions, using Well-Structured
Transition Systems [FS01]. Chrétien et al [CCD15| show the decidability of indistinguishability properties
for a restricted class of protocols. E.g., they consider processes communicating on distinct channels and
without else branches. The authors of [CCD17] show the decidability of symbolic equivalence for a
bounded number of sessions, but with conditional branching.

In the computational model, we are aware of only one direct result. In [CCS13], the authors show the
decidability of the security of a formula in the BC model, for reachability properties, for a bounded num-
ber of sessions. But there is an indirect way of getting decidability in the computational model, through
a computational soundness theorem (e.g. [AR02]). A computational soundness theorem states that, for
some given classes of protocols and properties, symbolic security implies computational security. These
results usually make strong implementation assumptions (e.g. parsing assumptions, or the absence of
dishonest keys), and require that the security primitives satisfy strong cryptographic hypothesis. By com-
bining a decidability result in the symbolic model with a computational soundness theorem, which applies
to the considered classes of protocols and properties (e.g. [BMU12] for reachability properties, or [BMR14]
for indistinguishability properties), we obtain a decidability result in the computational model.

171

172 Deciding Indistinguishability

Contributions We tackle this problem in the Bana-Comon model. More precisely, we identify a subset
Ax of the axioms presented in Chapter 2 which is both decidable and expressive enough to carry out proofs
of security protocols. For this, we design a alternative set of axioms for the IND-CCA5 cryptographic
assumption [BDPRIS|, which are more amenable to automated deduction than the axioms presented in
Chapter 2 (for IND-CCA1). Our main result is the decidability of the problem:

Input: A ground formula @ ~ 7.
Question: Is Ax A & «¢ ¥ unsatisfiable?

The main difficulty lies in dealing with equalities (defined through a term rewriting system R). First we
show the completeness of an ordered strategy by commuting rule applications. This allows us to have
only one rewriting modulo R at the beginning of the proof. We then bound the size of the terms after
this rewriting as follows: we identify a class of proof cuts introducing arbitrary subterms; we give proof
cut eliminations to remove them; and finally, we show that cut-free proofs are of bounded size w.r.t. the
size of the conclusion.

Game Transformations Our result can be reinterpreted as the decidability of the problem of deter-
mining whether there exists a sequence of game transformations [Sho04, BRO6] that allows to prove the
security of a protocol. Indeed, one can associate to every axiom in Ax either a cryptographic assumption
or a game transformation.

Each unitary axiom in Ax (i.e. each atomic formula) corresponds to an instantiation of the IND-CCA2
game. For instance, in the simpler case of IND-CPA security of an encryption {_};k, no polynomial-time
adversary can distinguish between two cipher-texts, even if it chooses the two corresponding plain-texts.
Initially, the public key pk is given to the adversary, who computes a pair of plain-texts g(pk): g is
interpreted as the adversary’s computation. Then the two cipher-texts, corresponding to the encryptions
of the first and second components of g(pk), should be indistinguishable. This yields the unitary axiom:

{m1(9(pk)) }pk ~ {m2(g(Pk)) }pi
Similarly, non-unitary axioms correspond to cryptographic game transformations. E.g., the FA axiom:

i~
f(@) ~ f(0)

states that if no adversary can distinguish between the arguments of a function call, then no adversary
can distinguish between the images. As for a cryptographic game transformation, the soundness of this
axiom is shown by reduction. Given a winning adversary .4 against the conclusion f(@) ~ f(¥), we build
a winning adversary B against @ ~ ¥: the adversary B, on input @ (which was sampled from # or),
computes f(w) and then gives the result to the distinguisher .A. The advantage of B against 4 ~ ¥ is
then the advantage of A against f(@) ~ f(¥), which is (by hypothesis) non negligible.

By interpreting every axiom in Ax as a cryptographic assumption or a game transformation, and the
goal formula 4 ~ ¥ as the initial game, our result can be reformulated as showing the decidability of the

following problem:

FA

Input: An initial game @ ~ v.
Question: Is there a sequence of game transformations in Ax showing that @ ~ ¥/ is secure?

From this point of view, our result guarantees a kind of sub-formula property for the intermediate games
appearing in the game transformation proof. We may only consider intermediate games that are in a
finite set computable from the original protocol: the other games are provably unnecessary detours. To
our knowledge, our result is the first showing the decidability of a class of game transformations.

Scope and Limitations To achieve decidability, we had to remove or restrict some axioms. The most
important restriction is arguably that we do not include the transitivity axiom. The transitivity axiom
states that to show that u ~ ¥/, it is sufficient to find a W such that & ~ w and @ ~ ¢. Obviously, this axiom
is problematic for decidability, as the vector of term «w must be guessed, and may be arbitrarily large.
Therefore, instead of directly including transitivity, we push it inside the CCAs axiom schema, by allowing
instances of the CCA5 axiom to deal simultaneously with multiple keys and interleaved encryptions. Of
course, this is at the cost of a more complex axiom. We do not know if our problem remains decidable
when we include the transitivity axiom.

5.2. Axioms 173

Applications The Bana-Comon indistinguishability model has been used to analyse RFID protocols,
in Chapter 3, and a variant of the AKA protocol in Chapter 4. Moreover, it has also been used by Scerri
and Stanley-Oakes to analyse a key-wrapping API [SS16], and by Bana, Chadha and Eeralla to prove
an e-voting protocol [BCE18]. Ideally, we would like future case studies to be carried out automatically
and machine checked. Because our procedure has a high complexity, it is unclear whether it can be used
directly for this. Still, our procedure could be a building block in a tool doing an incomplete but faster
heuristic exploration of the proof space.

CRYPTOVERIF and EASYCRYPT are based on game transformations, directly in the former and
through the pRHL logic in the latter. Therefore, our result could be used to bring automation to these
tools. Of course, both tools allow for more rules. Still, we could identify which game transformations
or rules correspond to our axioms, and apply our result to obtain decidability for this subset of game
transformations.

Related Works In [BCG*t13|, the authors design a set of inference rules to prove CPA and CCA
security of asymmetric encryption schemes in the Random Oracle Model. The paper also presents an
attack finding algorithm. The authors of [BCG*13] do not provide a decision algorithm for the designed
inference rules. However, they designed proof search heuristics and implemented an automated tool,
called ZooCrypt, to synthesize new CCA encryption schemes. For small schemes, this procedure can show
CCA security or find an attack in more than 80% of the cases. In 20% of the cases, security remains
undecided. Additionally, ZooCrypt automatically generates concrete security bounds.

In [JR12], the authors study proof automation in the UC framework [Can01]. They design a complete
procedure for deciding the existence of a simulator, for ideal and real functionalities using if-then-else,
equality, random samplings and xor. Therefore their algorithm cannot be used to analyse functionalities
relying on more complex functions (e.g., public key encryption), or stateful functionalities. This restricts
the protocols that can be checked. Still, their method is semantically complete (while we are complete
w.r.t. a fixed set of inference rules): if there exists a simulator, they will find it.

In [BDK 10|, the authors show the decidability of the problem of the equality of two distributions, for
a specific equational theory (concatenation, projection and xor). Then, for arbitrary equational theories,
they design a proof system for proving the equality of two distributions. This second contribution has
similarities with our work, but differ in two ways.

First, the proof system of [BDK*10] shares some rules with ours, e.g. the R, Dup and FA rules. But
it does not allow for reasoning on terms using if _then else . E.g., they do not have a counterpart to the
CS rule. This is a major difference, as most of the difficulties encountered in the design of our decision
procedure result from the if then else conditionals. Moreover, there are no rules corresponding to
cryptographic assumptions, as our CCAs rules. Because of this and the lack of support for reasoning on
branching terms, the analysis of security protocols is out of the scope of [BDK'10)].

Second, the authors do not provide a decision procedure for their inference rules, but instead rely on
heuristics.

Outline We introduce the axioms in Section 5.2, which include, in particular, the equality axioms R
and the cryptographic axioms CCAy. In Section 5.3, we prove that the set of equality axioms R can
be defined using a convergent term rewriting system — . In Section 5.4, we define the cryptographic
axioms CCAso, and prove some properties of these axioms. We state the main result in Section 5.5, and
depict the difficulties of the proof. We prove several rule commutations in Section 5.6, which allow
us to obtain a complete ordered strategy for our fragment. In Section 5.7, we prove, through a cut
elimination procedure, that we can use an eager reduction strategy for some rules of R. We then define a
normal form for derivations, and prove that we can assume w.l.o.g. that derivations are in normal form in
Section 5.8. We prove key properties of terms appearing in derivation in normal form in Section 5.9, and in
Section 5.10 we characterize subterms that corresponds to detours in proof. We use this characterization
in Section 5.11 to show a first main proof cut elimination lemma. We prove a second main proof cut
elimination lemma in Section 5.12, and show that the resulting derivations contain only subterms of
bounded size. Finally, we conclude in Section 5.13.

174 Deciding Indistinguishability

Ur(1)s - -5 Uar(n) ~ Vr(1)s- - - Vn(n) b a,t Rest ¢ ; 0
- o estr or any s = =
ULy .oy Up ~ V1, ..., Up erm u Y rRY u

ﬁ,tNU7t/ U~ U
Dup Y

Uy, U1 ~ U, Ua
. —— FA\0 where f € F VAT
f(u1)7U1Nf(u2)7U2 \ f \0 u,t,twv,t/,t/

U_;v ba (vl)l ~ IB/, bl? (U;)Z no
v, (if b/ then u} else v});

i

’LE, b, (UZ)Z ~ 117/7 b/» (u/)l
f ' i
or any b,b" € T(Fr, V), w, (if b then u; else v;); ~

Conventions: 7 is a permutation of {1,...,n}.

Figure 5.1: The Axioms Struct-Ax.

5.2 Axioms

For the strategy, we use only a subset of the axioms presented in Figure 2.2 of Chapter 2, with some
restrictions. Arguably, the most important restriction is the interdiction of the transitivity rule Trans.
Indeed, this rule requires to guess a intermediate term, which is, a priori, arbitrarily large. Before
discussing the restrictions on the axioms, we define some subsets of the set of function symbols F:

Definition 5.1. We let F\q, F\if and F\jr,o be the subsets of F defined by:
Fo=F\{0(_)} Fif = F\{if_then_else_} Fiifo = F\{O(_),if_then_else_}

Restrictions We give in Figure 5.1 the structural axioms used in this chapter. We comment on some
of the restrictions:
e We restrict the case study rule, by only considering instances of the rule where the conditionals b
and b’ are if-free. This restriction is used in the decidability proof, but might be unnecessary. We
let CSi° be the rule:

117, b7 (ul)l ~ /LU/7 b/a (ui)i 117, b7 (Ui)i ~ ’lI]”, b/a (U;)l

CcSiy hen b, b’ i
o, (if b then u; else v;); ~ ', (if b’ then u} else v}); i when b,b"€ T(Fyn N),

o We replace the equality rule Equ by a weaker rule R. Basically, instead of having the formula v = v
as premise (like in Equ), we require that u can be rewritten into v using a set equalities R (given
in Figure 5.2). We give details about this change later in this section.

o We use a modified version of the cCAy axioms, which already includes transitivity (as we did not
include it in the set of axioms). We give some high-level details later in this section, and present
the full axioms in Section 5.4.

e We reserve the function symbol 0/, for the CCAz axioms. In particular, we forbid to apply the
Function Application rule FA\g to O(_). This is necessary for technical reasons, but may be
unnecessary for decidability. We let FA\g be the rule:

Uy, V1 ~ Uz, V2

F
Flin), 1 ~ fliia), 50 ©

where f € Fo

Equality Axioms To handle equalities automatically, we are going to replace the equality axioms given
in Figure 2.1 by rewrite rules: we introduce a set of equalities R (given in Figure 5.2) and its congruence
closure =g. We split R in four sub-parts: R; contains the functional correctness assumptions on the pair
and encryption; Re and Rg contain, respectively, the homomorphism properties and simplification rules
of the if then else ; and R4 allows to change the order in which conditional tests are performed.

We then introduce a recursive set of rules to replace the equality rule Equ:

<y

~

t
’37 R (s,t ground terms with s =p t)

~

SR

<L

5.2. Axioms 175

I17$2 = Ty

dec {x}pk y),sk() ==z

eq x, ac —true

f(@,if b then z else y,¥) = if b then f(@,x,¥) else f(,y, V) (f € F)
if (if b then a else ¢) then z else y = if b then (if a then z else y) else (if ¢ then x else y)

if bthen z else x ==
if true then x else y = x
if false then z else y = y
if b then (if b then x else y) else z = if b then x else 2z
if b then x else (if b then y else z) = if b then x else z

if b then (if a then x else y) else z = if a then (if b then z else z) else (if b then y else 2)
if b then z else (if a then y else z) = if a then (if b then z else y) else (if b then z else z)

Figure 5.2: R = R{URsU R3U Ry

It turns out that there exists a convergent orientation —r of =g.! We describe how we orient

equalities of R, and prove that the resulting term rewriting system is convergent, later, in Section 5.3.
Still, we anticipate and give the outlines of the orientation now.
We let R<3 be RiURyUR3. By orienting R<3 from left to right, and carefully choosing an orientation
for the ground instances of R4, we can build a recursive convergent term rewriting system — g:
e First, we choose the orientation of the rules in R4. This is done by using a Lexicographic Path
Ordering [DJ90] on the conditionals, modified using a user-chosen total order >, on if-free R<s-
irreducible conditionals. We show that the resulting term rewriting system is locally confluent.

e Then, we show local confluence and termination of our term rewriting system. We deduce that it
is convergent using Newman’s lemma.

Theorem 5.1. There exists an orientation —gr, of Ra4 such that the resulting term rewriting system
—R=""Rey Y 7Ry is convergent on ground terms.

The ccA; Axioms Before giving the CCAs axioms, we recall the CCA{ axioms from Section 2.6.1:

len(u) = len(v)
@, {u} gy ~ T {0}giny

fresh(ne; W, u, v)

CCAS when { (5.1)

n Epk(‘),sk(~) u’i,u,v A Sk(n) Edec(_,~) u_jauvv

Remark 5.1. We do not use the stronger cCA; axioms. The cCA; axiom schema allows to have a
different vectors of terms @ and @’ on the left and the right, but must be provided with a proof of
w ~ w’. The cCA axioms are simpler and easier to handle. O

To extend this axiom to the IND-CCAy game, we need to deal with calls to the decryption oracle
performed after some calls to the left-right oracle. For example, consider the case where one call (u,v)
was made. Let o = {u}pk(n and o/ = {v}pk (ny De the result of the call on, respectively, the left and the
right. A naive first try could be to state that decryptions are indistinguishable. That is, if we let s = t[q]
and s’ = t[a/], then dec(s,sk(n)) ~ dec(s’,sk(n)). But this is not valid: for example, take u = 0,v = 1,
t = g([]) (where [] is a hole variable). Then the adversary can, by interpreting g as the identity function,
obtain a term semantically equal to 0 on the left and 1 on the right. This allows him to distinguish
between the left and right cases.

1 Actually, there are many such orientations, as we will see later.

176 Deciding Indistinguishability

We prevent this by adding a guard checking that we are not decrypting « on the left (resp. o on
the right): if not, we return the decryption dec(t[a],sk(n)) (resp. dec(t[e'],sk(n))) asked for, otherwise
we return a dummy message 0(dec(t[a],sk(n))) (resp. O(dec(t[a/],sk(n)))). CCA2® is the (recursive) set
of unitary axioms:

W, a,if eq(t[a],) then 0(dec(t[a],sk(n))) ~ @, ,if eq(t[a’], a’) then O(dec(t[c/],sk(n))) CCAZ

else dec(t[c],sk(n)) else dec(t[a'],sk(n))

under the side-conditions of the cCAj axioms in (5.1), plus a side-condition on length (that we omit here),
to account for the fact that we removed the premise len(u) = len(v). We do not prove validity of these
axioms yet, as we are going to use a modified version CCA5 of this axiom schemas:
e We are going to allow for any number of calls to the left-right oracle, by adding a guard for each
call. We use extra syntactic side-conditions to remove superfluous guards.

e In the axioms Struct-Ax given in Figure 5.1, we did not include the alpha renaming axiom «a-equ.
Instead, our CCA5 axiom schema is closed under a-renaming.

e We restrict ¢ to be without if then else and 0(). This is needed in the completeness proof.
e Finally, the axioms allow for an arbitrary number of public/private key pairs to be used simultane-

ously, and an instance of the axiom can contain any number of interleaved left-right and decryption
oracles calls.

Remark 5.2. The last point is what allows us to avoid transitivity in proofs. For example, consider four
encryptions, two of them (« and) using the public key pk(n), and the other two (8 and §) using the
public key pk(n’):

a={A}%kw F=1Bliw) 7=1Ckkm 9=1{Dhw)

Then the following formula is a valid instance of the CCA5 axioms on, simultaneously, pk(n) and pk(n’):

@ B y,s COre(pkin),pk(n))

However, proving the above formula using CCA2 only on one key at a time, as in [BCL14], uses a hybrid

argument, which requires transitivity:
CCA k(n’ ——— < CCA k
2(p (n)) ’5 ~ 7’5 2(p (n))

a,B~7,6 L

a,fB~a,d

5.2.1 Comments and Examples

Our set of axioms is not complete w.r.t. the computational interpretation semantics. Indeed, being
so would mean axiomatizing exactly which distributions (computable in polynomial time) can be dis-
tinguished by PPTMs, which is unrealistic and would lead to undecidability. E.g., if we completely
axiomatized IND-CCA5, then showing the satisfiability of our set of axioms would show the existence of
IND-CCA» functions, which is an open problem.

Still, our axioms are expressive enough to complete concrete proofs of security. We illustrate this
on two examples: a proof of the simple formula from Example 2.3 and a proof of the security of one
round of the NSL protocol [Low95]. Of course, such proofs can be found automatically using our decision
procedure.

Example 5.1. We give a proof of the formula below:
if g() then ng else ny ~n

First, we introduce a conditional ¢g() on the right to match the structure of the left side using R. Then,
we split the proof in two using the CSj° axiom. We conclude using the reflexivity modulo a-renaming
axiom (this axiom is subsumed by CCA2, therefore we do not include it in AX).
—————~— Refl —~———~— Refl
g()anONg()7n g()?nlwg()7n S_no
if g() then ng else ny ~ if g() then n else n R if

if g() then ng else ny ~n O

5.2. Axioms 177

Example 5.2 (Proof of NsL). We consider a simple setting with one initiator A, one respondent B and
no key server. An execution of the NSL protocol is given in Figure 5.3.

We write this in the logic. First, we let pka = pk(na) and ska = sk(na) be the public/private key pair
of agent A (we define similarly (pkg, skg)). Since A does not wait for any input before sending its first
message, we put it into the initial frame:

®o = pka, Pkg, {(na, A) EEB

Then, both agents wait for a message before sending a single reply. When receiving xa (resp. xg), the
answer of agent A (resp. B) is expressed in the logic as follows:
talxa] = if eq(m (dec(xa,ska)),na) then
if eq(ma(ma(dec(xa,ska))), B) then
{1 (m2(dec(xa, ska))) o,
tglxg] = if eq(ma(dec(xg,skg)),A) then
{(mi(dec(xs,sks)), (ns, B))}oi,

During an execution of the protocol, the adversary has several choices. First, it decides whether to
interact with A or B first. We focus on the case where it first sends a message to B (the other case is
similar). Then, it can honestly forward the messages or forge new ones. E.g., when sending the first
message to B, it can either forward A’s message {(na, A>};ﬁB or forge a new message. We are going to
prove the security of the protocol in the following case (the other cases are similar):

o the first message, sent to B, is honest. Therefore we take xg = {(na, A)}3; . and B answers:
tg[xe] =r {(na, (ne, B))} ok,

e the second message, sent to A, is forged. Therefore we take xa = g(¢1), where ¢1 = ¢y, tg[xg]. As,
a priori, nothing prevents g(¢;) from being equal to tg[xg], we use the conditional eq(g(¢1), ts[xs])
to ensure that this message is forged. The answer from A is then:

s =if eq(g(¢1), te[xs]) then 0 else ta[g(41)] (5.2)

We show the secrecy of the nonce ng: we let tg[xg] (resp. s’) be the term ¢g[xg] (resp. s) where we
replaced all occurrences of ng by 0. For example, tg[xg] =r {(na, (0, B))};,l(A. This yields the goal:

o, te[x8], s ~ ¢o, tp[xs], 5’ (5.3)

We let § be the guarded decryption that will be used in the cCA5 axiom:

d =if eq(g(¢1), te[xs]) then 0(dec(g(¢1),ska)) (5.4)
else dec(g(¢1),ska)

and ss be the term s where all occurrences of dec(g(¢1),ska) have been replaced by §. We have s =g ss.
We also introduce shorthands for some subterms of ss: we let as, bs and es be the terms eq(m1(d), na),
eq(m2(m2(0))), B) and {mi(m2(6))} ok - We define &', s5,, aj,, b, and e, similarly.

We then rewrite s and s” into s5 and s}, using R. Then we apply FA\ ¢ several times, first to deconstruct
ss and sj,, and then to deconstruct as,bs and aj,,bs,. Finally, we use Dup to remove duplicates, and
we apply CCAy simultaneously on key pairs (pka,ska) and (pkg,skg) (we omit here the details of the
syntactic side-conditions that have to be checked):

CCAo
(FA\Oa DUp)*
(FA\0, Dup)*

¢OatB[XB]’ nA,(S, €5 ~ ¢07t:3[XB nA75l7€:5/
b0, t[xB]; as, bs, es ~ ¢o,tz[xB
¢07tB[XBL S5~ ¢07t/B [XB]7 S:S’

¢o,te[xB],s ~ ¢o,tg[x8], s’ O

J,
l,

dy Uy el

178 Deciding Indistinguishability

A {(na, A)o0, B
{{na, (ne, B))} ok,

{ne} ok,

Figure 5.3: The NSL protocol.

Remark 5.3. The process of computing the formula in (5.3) from the protocol description can be done
automatically, using a simple procedure similar to the folding procedure from [BCL14]. The formula in
(5.3) has already been split between the honest and dishonest cases using the case study axiom CS}°
(we omit the CSi° applications to keep the proof readable). For example, the term in (5.2) is the “else”
branch of a CS{® application on conditional eq(g(¢1), tg[xg]) (which does not contain nested conditionals,
as required by the CS}° side-condition). O

5.3 The Term Rewriting System R

In this section, we orient the equalities in =g, and show that the resulting Term Rewriting System is
convergent. First, we recall the definition of a Lexicographic Path Ordering [DJ90].

Definition 5.2. Let >y be a total precedence over function symbols. The lexicographic path ordering
associated with >y is the total order on ground terms defined by:

Jie[l,n] st s>t
s=f(51,...,80) =t =g(t1,...,tm) iff Cor f=gAVje[l,m],s>=1t; As1,...,80 =tex t1,--. tn
or f=fgAVjel,m],s>t;

Let > be a total precedence on F, N such that if then_else_ is the smallest element (elements of
N are treated as function symbols of arity zero). We define the lexicographic path ordering > on ground
terms using > .

Definition 5.3. Let > be the lexicographic path ordering on 7 (F,) using precedence > .

Now, we want to have some leeway in the ordering of terms. We do this by letting >, be an arbitrary
total order on if-free conditionals that are R<s-irreducible. We define the extension >'75’° of =, to arbitrary
ground conditionals. Basically, =!P° compares if-free R<s-irreducible conditionals using >,,; conditionals
that are not if-free or not R<s-irreducible are compared using >; and we choose the behavior of =P on
cross-cases (i.e. one if-free R<g-irreducible conditional and one not if-free or not R<s-irreducible) so as
to have a pre-order.

Definition 5.4. For any total ordering >, on ground if-free R<z-irreducible terms, we let ='P° be the
relation defined by:

b>y,a if a and b are if-free and R<s-irreducible
s lpo b>a if a and b are not if-free or not R<s-irreducible
a= =
v true if a is if-free and R<s-irreducible, and b is not

false if b is if-free and R<s-irreducible, and a is not

We then order R, using =!P°.

Definition 5.5. For any total ordering >, on ground if-free R<s-irreducible terms, we let — R be the
ordering of R4 defined by:

if b then (if a then = else y) else z — if a then (if b then x else 2) else (if b then y else z) (when b =!P° a)
if b then = else (if a then y else z) — if a then (if b then x else y) else (if b then x else 2) (when b =P q)

5.3. The Term Rewriting System R 179

Moreover, we let -+ p-u=—pg, U =g, U =g, U —Rru-

The term rewriting system — g>-. is an orientation of the rules given in Figure 5.2. When the ordering
>, 18 irrelevant, we write — g instead of —g-.. We state the convergence theorem.

Theorem 5.2. For all >, the term rewriting system — g-. 1S convergent on ground terms.

Observe that this result subsumes Theorem 5.1.

Proof. Using Newman’s lemma, we only need to prove that — -« is locally confluent and terminating.

Local Confluence We show that all critical pairs are joinable. Normally, we would rely on some
automated checker for local confluence. Unfortunately, as we rely on a side-condition to orient Ry (using
a LPO), writing down the rules in a tool is not straightforward. By consequence we believe it is simpler
to manually check that every critical pair is joinable. We give below the most interesting critical pairs,

and show how we join them. For every critical pair, we underline the starting term.
e Critical Pairs R;/(R; UR;UR3URy): we only show the critical pairs involving 7 () (the critical
pairs with 7o(_) are similar), and for eq(_,). The critical pairs involving dec(,) are similar

to the critical pairs involving w1 (_), and the critical pairs for O(_) are trivial.

if b then u else v <2 if b then m ({u, w)) else m ({v, w))
71 ((if b then w else v, w)) — if b then u else v

w 4 if b then w else w +2 if b then 7 ((w, u)) else mo((w, v))
m1({w, if b then u else v)) — w

true <« eq(if b then u else v, if b then u else v)

— if b then eq(u, if b then u else v) else eq(v, if b then u else v)

— if b then (if b then eq(u, u) else eq(u,v)) else eq(v, if b then u else v)
— if b then eq(u,u) else eq(v,if b then u else v)

— if b then true else eq(v, if b then u else v)

—*if b then true else true

— true

e Critical Pairs Ry/Ry: we assume that b =!P° c. The other possible orderings are handled in the
same fashion.

if ¢ then (if b then f(u,s) else f(v,s)) else (if b then f(u,t) else f(v,t)

if ¢ then f(if b then u else v, s) else f(if b then u else v, ¢

f(if b then u else v, if c then s else ¢

2
%

— if b then f(u,if ¢ then s else t) else f(v,if ¢ then s else ¢
—2 if b then (if c then f(u,s) else f(u,t)) else (if ¢ then f(v,s) else f(v,t)

)
)
)
)
)
—" if ¢ then (if b then f(u, s) else f(v, s)) else (if b then f(u,t) else f(v,t))

e Critical Pairs Ry/Rjs:

f(u,w) + f(if true then u else v, w) — if true then f(u,w) else f(v,w) = f(u,w)

f(u,v) < f(if b then w else u,v) — if b then f(u,v) else f(u,v) — f(u,v)

if b then f(u,s) else f(w,s) —
f(if b then u else w, s) —
f(if b then (if b then u else v) else w, s)

180 Deciding Indistinguishability

— if b then f(if b then u else v, s) else f(w,s)
— if b then (if b then f(u,s) else f(v,s)) else f(w,s)
— if b then f(u,s) else f(w,s)

e Critical Pairs Ry/R4: we assume that a =!P° b =!P° ¢ =!P° 4 The other possible orderings are
handled in the same fashion.

*

if d then (if b then (if a then u else v) else w) else (if ¢ then (if a then u else v) else w) <+

if a then if d then (if b then u else w) else (if ¢ then u else w) 2

else if d then (if b then v else w) else (if ¢ then v else w)
if a then (if (if d then b else ¢) then u else w) else (if (if d then b else ¢) then v else w) <«

if (if d then b else ¢) then (if a then u else v) else w

— if d then (if b then (if a then u else v) else w) else (if ¢ then (if a then u else v) else w)

e Critical Pairs R3/Rj3:
w < if true then u else u — u

u < if true then u else v <« if true then (if true then u else v) else w

— if true then w else w — u

if b then u else v < if b then (if b then u else v) else (if b then u else v)

— if b then wu else (if b then wu else v) — if b then u else v

e Critical Pairs R3/Ry:

if @ then w else v —

if b then (if a then wu else v) else (if a then u else v)

— if a then (if b then w else (if a then u else v)) else (if b then v else (if a then w else v))

—2if a then if a then (if b then u else u) else (if b then u else v)
else if a then (if b then v else u) else (if b then v else v)

—2if a then (if b then u else u) else (if b then v else v)

—2if g then u else v

e Critical Pairs R,/R4: we assume that a =!P° b =!P° ¢. The other possible orderings are handled
in the same fashion.

if ¢ then if b then (if a then w else s) else (if a then v else s) —
else if b then (if a then u else t) else (if a then v else t)

if ¢ then (if a then (if b then u else v) else s) else (if a then (if b then v else u) else) +

if a then (if b then u else v) else (if ¢ then s else t)

— if b then (if a then w else (if ¢ then s else t)) else (if a then v else (if ¢ then s else t))

—“ if b then if ¢ then (if a then u else s) else (if a then w else t)
else if ¢ then (if a then v else s) else (if a then v else t)

if ¢ then if b then (if a then w else s) else (if a then v else s)
else if b then (if a then u else t) else (if a then v else t)

Termination To prove termination, we let Fierm be the signature F to which we added a symbol ify(,)
for every if-free R<s-irreducible conditional b:

Frerm = F U {ifb(7)| beT(FiN),bis a Res-irreducible Conditional}

5.3. The Term Rewriting System R 181

_>R’2 {f(ﬂ:, ifb(mv y)’ﬁ) - Ifb(f<ﬁ7x’17)’ f(a7y717)) (f € f\if)

iforue(T, y) = @
iffalse(x7 y) -y

=g, | ife(z, 2) =2
ify ((ifo(2,), 2) = ifo(z, 2)
ify(z, (ifu(y, 2))) = ifs(, 2)
if b then (if a then x else y) else z — if a then (if b then x else z) else (if b then y else z)
(b > a, a,b not if-free or not R<g-irreducible)
— RO »

4 | if b then x else (if a then y else z) — if a then (if b then z else y) else (if b then z else 2)

(b = a, a,b not if-free or not R<s-irreducible)

if b then (if,(z, y)) else z — if,((if b then x else z), (if b then y else 2))
(b not if-free or not R<g-irreducible)

— Rl _

B3) if b then o else (ifa(y, 2)) — ifo((if b then x else y), (if b then x else 2))
(

b not if-free or not R<s-irreducible)

—>RZ

ify ((ifa (2, y)) » 2) = ifa((ifo(z, 2)), (f(y, 2))) (b >ua)
ify(z, (ifa(y, 2))) = ifa((ifo(z, y)), (ifo(z, 2))) (b>ua)

—gi {if b then u else v — ify(u, v) (b if-free and R<s-irreducible)

Figure 5.4: The Relations — gy, —Rys R0 R, T R2 and — i used for termination

This yields an infinite countable signature. We extend the precedence > ¢ to Fierm by having the function
symbols {ify(,)} be smaller than all the other function symbols, and ify(,) > ifs(,) if and only if
b >, a. Observe that the extended precedence is still a total order.

We then consider the term rewriting system — g/ on T (Fierm, N), defined by removing — g, from — g
and adding all the rules in Figure 5.4:

—r=—Rr, U—=R, U—=p, U—Rr, U—p, U —RY U —R! U —R2 U —pi

One can easily (but tediously) check that > is compatible with — g/: the only non-trivial cases are
the cases in —p, (the first rule is decreasing because f > if_then_else_, the second rule using the
lexicographic order), in — g, (same arguments than for Ry) and the cases in — o, — g1, — g2 (where we
use the side conditions b > a, b >, a ...).

Since > is a lexicographic path ordering we know that it is total and well-founded on ground-terms.
Therefore — g/ is a terminating term rewriting systems on ground terms.

To conclude, one just has to observe that for every ground terms u, v and integer n, if u —>g) v then

there exist u’,v’ such that u _>!Ri u, v _>!Ri v’ and v/ —>§§,") v’. That is, we have the following diagram

(black edges stand for universal quantifications, red edges for existentials):

u _— v
R

R'J' R'J‘

/ * /

u E— (

182 Deciding Indistinguishability

This result can be proved by induction on n. Since — g/ is terminating on ground terms, and since
any infinite sequence for — can be translated into an infinite sequence for — g/, it follows that — g is
terminating on ground terms.]

The normal form of term t by —g~. is of the form C [l; © U], where 5, 4 are if-free terms in R-normal
form. We are going to call b the conditionals of ¢ | g-., and @ its leaves.

Definition 5.6. An if-free term is a term that does not use the if then else function symbols. For
every if-free terms b, @, if ¢ is the term C[b o @] then we let cond-st(t) be the set of conditionals b, and
leave-st(t) be the set of terms .

Example 5.3. Let by, by, t1,to, t3 be if-free terms, and let s be the following term (we give the labelled
tree representation of s on the right):

by
if by then if by then t; else ¢y i3

ba
else t3 / \
t1 to

Then cond-st(s) = {b1, b2} and leave-st(s) = {t1, ta,t3}. O

Interestingly, the leaves and conditionals of ¢ | z-. do not depend on the order >, on ground condi-
tionals. Formally:

Proposition 5.1. Let >, and >!, be two total orderings on if-free R<s-irreducible conditionals. Then
for every ground term t we have:

leave-st(t | g~) = leave-st(t | -/,) and cond-st(t | p-u) = cond-st(t | -1,)
Proof. Let C,C’ be two if-contexts such that ¢ | z-.= C[bo @] and ¢ lpr =07 [’ o @] where:

b = leave-st(t | p-u) @ = cond-st(t Lr-u) b' = leave-st(t bre1) @' = cond-st(t | p.,)

—

We know that Clbo] —* e [b' o @']. Since the terms b, @, b’ and @’ are if-free and in R-normal form,
we can only apply the rules:

if b then z else x —
if true then z else y — «
if false then x else y — ¥y
if b then (if b then x else y) else z — if b then x else z
if b then x else (if b then y else z) — if b then x else z
if b then (if a then x else y) else z — if a then (if b then = else 2) else (if b then y else z) (when b =!P° a)
if b then x else (if a then y else z) — if a then (if b then x else y) else (if b then x else 2) (when b >='P°)

Moreover, if a term C4 [@1071] can be rewritten in one step into Cy[@2072] using one of the rules above then
iy C @y and Uy C ¥'1. Hence, by induction, b’ C b and @’ C @. Similarly, since C'[b" o @] =%, C[bo],
we get that b C b’ and @ C 4’. We deduce that b = b’ and 4 = 4’. [|

By consequence, for any term wu, the sets leave-st(t | r) and cond-st(t |r) are always well-defined, by
taking an arbitrary ordering of if-free R<s-irreducible conditionals.

5.4 The ccA, Axioms

We define and prove correct a recursive set of axioms for an IND-CCA, encryption scheme. For the sake
of simplicity, we first ignore all length constraints. We explain how length constraints are added and
handled to the logic in Section 5.4.2.

5.4. The ccAs; Axioms 183

Multi-Users IND-cCcA; Game Consider the following multi-users IND-CCA5 game: the adversary
receives n public-keys. For each key pk;, he has access to a left-right oracle O r(pk;,b) that takes two
messages mg, 1 as input and returns {mb};ﬁi, where b is an internal random bit uniformly drawn at
the beginning by the challenger (the same b is used for all left-right oracles) and n,. is a fresh nonce.
Moreover, for all key pairs (pk;, sk;), the adversary has access to an sk; decryption oracle Ogec(sk;), but
cannot call Ogec(sk;) on a cipher-text returned by O r(pk;,b) (to do this, the two oracles use a shared
memory where all encryption requests are logged). The advantage of an adversary against this game and
the multi-user IND-CCAs security are defined as usual.

It is known that if an encryption scheme is IND-CCA5 then it is also multi-users IND-CCAg (see [BBMOO]).
Therefore, we allow multiple key pairs to appear in the CCA; axioms, and multiple encryptions over dif-
ferent terms using the same public key (each encryption corresponds to one call to a left-right oracle).

Decryption Guards If we want the following to hold in any computational model

dec(t[{ur}p, - {un}pp],sk) ~ dec(t[{vi}ne, .-, {vn}oe], k)

S s’

then we need to make sure that s is different from all {u;}}} and that s is different from all {v;} ;. This

is done by introducing all the unwanted equalities in if then else tests and making sure that we are

in the else branch of all these tests, so as to have a “safe call” to the decryption oracle. Moreover, the

adversary is allowed to use values obtained from previous calls to the decryption oracle in future calls.
To do this, we use the following function:

Definition 5.7. We define the function else” by induction:

else”(0,z) = o
else” ((eq(a, b)) =: T, z) = if eq(a,b) then 0(x) else else™ (T, x)

1 2
Example 5.4. Let u = t[{vl}gﬂ, {v2};U- Then:

else* ((eq(ua {vl}:ﬁ% €q (U, {U2}g;)) ’ dec(u, Sk)) =
if eq(u, {vl};i) then 0(dec(u, sk)) else if eq(u, {’Ug};i) then 0(dec(u, sk)) else dec(u, sk)

Morally, this represents a safe call to the decryption oracle. O

Definition of ccA; We use the following notations: for any finite set K of valid private keys, K T, u
holds if for all sk € IC, the secret key sk appears only in decryption position in @; nodec(K, @) denotes that
for all sk(n) € K, the only occurrences of n are in subterms pk(n); hidden-rand(7; @) denotes that for all
n. € 7, n,. appears only in encryption randomness position and is not used with two distinct plaintexts.

We are now going to define by induction the CCA5 axiom. In order to do this we define by induction
a binary relation RX, g ON CCAg executions, where K is the finite set of private keys used in the terms
(corresponding to the public keys sent by the challenger).

Definition 5.8. Let K be a set of private keys. (¢, Xenc, Xdec, Trand, Pencs Adec) 1S & CCA5 execution if:
e ¢ is a vector of ground terms in T(F,N).

o X and Xyec are two disjoint sets of variables used as handles for, respectively, encryptions and
decryptions.

® Orand IS a substitution from Xene to N.

® Oenc and Agec are substitutions from, respectively, Xenc and Xyec, to ground terms in T (F,).

Ovands Benc and Agec co-domains are the sets of, respectively, encryption randomness, encryption oracle
calls and decryption oracle calls in ¢. Intuitively, we have:

K ! ! 1
((,ZS, Xenca Xdem Orand; eenm)‘dec)RCCAg (11[}3 Xenm Xdem Orands Vencs)‘dec)

when we can build ¢ and v using function symbols, matching encryption oracle calls and matching
decryption oracle calls.

184 Deciding Indistinguishability

Definition 5.9. Let K be a finite set of private keys. We define the binary relation R(’,CC Ag by induction:

1. No Call to the Oracles: if K Ty ¢ then (¢,(Z)7(Z)7(Z),(Z),(Z))RC’CCAS (¢,0,0,0,0,0) for every sequence ¢
of ground terms in 7(F,N') such that nodec(K;).

2. Encryption Case: Let x a fresh variable that does not appear in Xene U Xgec, Sk be a secret key
in K and pk the corresponding public key. Then:

((¢a {u};l:)7 Xenc U {I}a Xdem Orand U {I = nr}; eenc U {I = {U};ﬁ}a /\dec)
R(ISCCAg ((¢7 {U};&)v Xe"c U {$}7 Xdem o':and U {{,C = n;}7 etlanc U {{,C = {’U};ﬁ}v)‘ijec)

if there exist t,t" € T(F\0, N, Xenc) such that:

o (¢, Xenc, Xdec: Trand; Bencs Adec) REoag (¥, Xencs Xdec: Orands Foncs Adec)
® U= tAdec, V=N
e nodec(K;t,t’'), which ensures that the only decryptions are calls to the oracle.
e fresh(n,,n.; ¢, u,v,v) and hidden-rand(Xencorand U XencTlang; s ts ¥, v)

3. Decryption Case: Let sk € I, pk the corresponding public key and z be a fresh variable. Then:

((¢,else” (1, dec(u, sk))) , Xenc, Xdec U {2}, Orand, encs Adec U {2 + else”™ (I, dec(u, sk))})
RfCAg (1, else™ (I, dec(v, sk))) , Xenc, Xdec U {2}, Orands Ooncs Aec U {7 > else™ (I, dec(v, sk))})

if there exists t € T(F\if,0, N, Xenc, Xdec) Such that:

4 (¢’a Xenca Xdecv Orand, eenca)\dec)RgcAg (l/f» Xencv Xdeca O—;anda eénca /\éiec)

)\élec'

e Consider the set), of variables z € X such that the encryption binded to z directly appears
in u, i.e. appears outside of another encryption. That is, z must appear in the term u where

we substituted every encryption {_}7; € codom(fenc) by {0}

® U = thencAdec and v = 0.,

ZOrand € U{{O}Eﬁ/{_}gi {_}ok € codom(fenc) } L r

Then [is the sequence of guards I = (eq(u,y1), - - . ,€q(u, Ym)) where (Y1, ..., Ym) = sort(Vubenc)-
Similarly, I’ = (eq(v,9}), .. .,eq(v,y.,)) where (yi,...,y.,) = sort(Vubl.c)>.
e nodec(K;t) and hidden-rand(XencOrand U XencOlang: @, u, ¥, v)

where sort is a deterministic function sorting terms according to an arbitrary linear order.

Remark 5.4. In the decryption case, we add a guard only for encryption that appear directly in wu.
Without this restriction, we would add one guard eq(u, zfenc) for every & € Xenc such that axfenc is an
encryption using public-key pk.

For example, if Xenc = {0, 21,22} and Oenc = {z0 — @p, 1 — a1, T2 — az} where:

Qg — {mo};ﬁ aq — {ml};i a9 {Oél};ﬁ

then to guard dec(g(az), sk), we need to add three guards, eq(g(az), ap), eq(g(az), a1) and eq(g(az), az).
This yields the term:

it eq(g(as), a0) then O(dec(g(az), sk)
else if eq(g(az), 1) then 0(dec(g(az),sk))
else if eq(g(az), a2) then 0(dec(g(az),sk))

(9(az), sk)

(el

else ec(g(ag), sk

But here, the adversary, represented by the adversarial function g, is computing the query to the decryp-
tion oracle using only . Hence, it cannot use ay, which is hidden by the encryption, nor ag which does

2Remark that we use, for v, the set), defined using u. As we will see later, this is not a problem because YV, = V.

5.4. The ccAs; Axioms 185

not appear at all. Therefore, there is no need to add the guards eq(g(a2), ap) and eq(g(as), a1), since g
has a negligible probability of returning ag or a;.

To remove unnecessary guards when building the decryption oracle call dec(u,sk), we require that
eq(u,) is added to the list of guards if and only if « = {_}], appears directly in u. This yields smaller
axioms, e.g. the term dec(g(as),sk) is guarded by:

if eq(g(az), a) then 0(dec(g(az),sk))
else dec(g(az), sk)

Finally, the sort function is used to ensure that guards are always in the same order, which guarantees
that two calls with the same terms are guarded in the same way. O

We can now define the recursive set of axioms cCA§ and show their validity. We also state and prove
a key property of these axioms.

Definition 5.10. ccaj is the set of unitary axioms ¢ ~ 1y, where u is a renaming of names in A and
there exist two CCAs executions),)’ such that:

Y= (¢7 Xenm Xdec, Orand, 9enc> >\dec) yl = (% Xenc: Xdec; Ur/'andﬂ 9;,1(:7)‘iiec) Yy RéCCAg yl
In that case, we say that (),)’) is a valid ccad application, and ¢ ~ tp is a valid ccAg instance.

Proposition 5.2. All formulas in CCAS are computationally valid if the encryption scheme is IND-CCAg.

Proof. First, ¢ ~ 1u is computationally valid if and only if ¢ ~ 1 is computationally valid. Hence,
w.l.o.g. we consider pu empty. Let M. be a computational model where the encryption and decryption
symbol are interpreted as an IND-CCAy encryption scheme. Let ¢ ~ 1 be a valid instance of CCA§ such
that [¢] %, [¢] i-e. there is a PPTM A that has a non-negligible advantage of distinguishing these two
distributions.

Since ¢ ~ 1) is an instance of CCAs we know that there exist two CCAy executions such that:

K / / 1
(¢7 XenCa Xdea Orand> 0enC7 AdeC)RCCA% (1#, Xenm Xdeca Orand» Henc,)‘dec)

We are going to build from ¢ and ¥ a winning attacker against the multi-user IND-CCAs game. This
attacker has access to a LR oracle and a decryption oracle for all keys in K. We are going to build by
induction on RX, s @ algorithm B that samples from [¢] or [¢] (depending on the oracles internal bit).
The algorithm B uses a memoisation technique: it builds a store whose keys are subterms of ¢, vy already
encountered and variable in Xgne U Xgec, and values are elements of the M. domain.

1. (¢,0,0,0,0, (Z))RC’CCAg (¢,0,0,0,0,0): for every term t in the vector ¢, B samples from [t] by induction

as follows:

e if ¢ is in the store then B returns its value.

e nonce n: B draws n uniformly at random and stores the drawn value.
Remark that nodec(KC, ¢) ensures that n is not used in a secret key sk appearing in K, which
we could not compute. If it is a public key pk, either the corresponding secret key sk is such
that sk € IC and the challenger sent us a random sample from [pk], or sk does not appear in
K and then B can draw the corresponding key pair itself.

e f(t1,...,tn), then B inductively samples the function arguments ([t1], ..., [t1]) and then sam-
ples from [f] ([t1], .-, [t1]). B stores the value at the key f(t1,...,tn).

2. Encryption Case:

((¢7 {u}:ﬁ)7 Xenc U {x}y Xdec, Orand U {.’E = n’l‘}) Benc U {-T = {u};ﬁ};)\dec)
K ” ,
RCCAS’ ((1/)7 {U}gk)a Kenc U {$}7 Xdec, O't/«and U {:17 = n;}v oclanc U {"E = {v};k}v Aéiec)
Since we have fresh(n,.,n’; ¢, u, 1, v) we know that the top-level terms do not appear in the store.

It is easy to check that B inductive definition is such that B store has a value associated with every
variable in Xenc U Xgec and that, if & € Xene, then the store value of z is either sampled from [28enc]

186 Deciding Indistinguishability

or from [z6.,.] (depending on the challenger internal bit), and that if z € Xjec then the store value
of z is either sampled from [zAgec] or from [z\,.] (depending on the challenger internal bit). We
also observe that if the challenger internal bit is 0 then for all w:

Ovr(pk, b)([u], [v]) = Ovr(pk, b)([u], w)
Similarly if the challenger internal bit is 1 then for all w:
Ovr(pk, b)([u], [v]) = Orr(pk, b)(w, [v])

B samples two values «, 8 such that if the challenger internal bit is 0 then « is sampled from [u]
and if the challenger internal bit is 1 then $ is sampled from [v]. Therefore whatever the challenger
internal is bit, OLr(pk,b)(a, 3) is sampled from Or(pk, b)([u], [v]):

e « issampled from [u] using the case 1 algorithm. Remark that when we encounter a decryption
under sk’ € K, we know that it was already sampled and can therefore retrieve it from the
store.

e similarly, 5 is sampled from [v] using the case 1 algorithm.

The condition nodec(KC;t,t') ensures that no secret key from K appears in u, v anywhere else than
in decryption positions for already queried oracle calls (which can therefore be retrieved from the
store), and the two conditions fresh(n,, n’; ¢, u, %, v) and hidden-rand(XencOrand UXencOlangs @ U, ¥, V)
ensure that all randomness used by the challenger left-right oracles do not appear anywhere else
than in encryption randomness position for the corresponding left-right oracle calls.?

We store the result of the left-right oracle call at key x.

3. Decryption Case:

((¢, else™ (1, dec(u, sk))) , Xenc, Xdec U {2}, Trand, Oencs Adec U {2z — else™ (1, dec(u, sk))})
RE o (1, else® (I, dec(v, 5k))) , Xenc, Xdee U {2}, 0lands Ornes Mec U {2 = else™ (I, dec(v, sk))})

CCAG enc

We know that u = tfencAdec and v = 0., A,... B uses the case 1 algorithm to sample v from
[t0encAdec] or [t Aol depending on the challenger internal bit. nodec(KC;t) ensures that no call
to the decryption oracles are needed and hidden-rand(Xencorand U XencOlang; @, U, ¥, v) guarantee that
the randomness drawn by the challenger for LR oracle encryptions do not appear in t.

Observe that all calls to OLr(pk, b) have already been stored. Let 160enc, - .., Zpbenc be the corre-
sponding keys in the store. Hence if v is equal to any of the values stored at keys x10enc, - - ., Tpfenc
then B return [0] (), otherwise B can call the decryption oracle Ogec(sk) on 7.

As we observed in Remark 5.4, if the challenger internal bit is 0, checking whether ~ is different
from the values sampled from [z160enc], . . . , [Zpbfenc] amounts to checking whether ~ is different from
the values sampled from [y1],. .., [ym], except for a negligible number of samplings. Therefore we
are sampling from the correct distribution (up to a negligible number of samplings).

Moreover, the set of variables x € X¢nc such that the encryption binded to x in e, appears directly
in the left decryption u:

20vand € u{{0}0i /{_}oi [{_}or € codom(fenc)} L

/
enc

is exactly the set of variables x such that the encryption binded to x in 6., . appears directly in the

right decryption v:

worand € v{{0}55/{_}pi | {_}pi € codom(¥znc)} L
Hence, if the internal bit is 1 then checking whether ~ is different from the values sampled from
[x10Lc]s - - -, [xpBinc] amounts to checking whether v is different from the values sampled from
[vils-- -, [v..], except for a negligible number of samplings.
We store the result at key z.

The attacker against the multi-user IND-CCAs game simply returns A(B). Since B samples either
from [¢] if b = 0 or from [¢)] if b = 1 (up to a negligible number of samplings), and since A has a
non-negligible advantage of distinguishing [¢] from [¢/] we know that the attacker has a non-negligible
advantage against the multi-user IND-CCA5 game.]

3We omit for now the length check, which is dealt with later.

5.4. The ccAs; Axioms 187

5.4.1 Closure Under Restr

To close our logic under Restr, we need the unitary axioms to be closed. Therefore, we let CCA5 be the
closure of ccA§ under Restr.

Definition 5.11. CCA5 is the set of formula ¢ ~ 1) such that we have the derivation:
Restr
¢~

The main contribution of this sub-section, given below, states that any instance @ ~ ¢ of CCAs can
be automatically extended into an instance @’ ~ ¥ of cCA§ of, at most, polynomial size.

Proposition 5.3. For every instance i ~ U of CCAg, there exists ©1,VU1 such that U,1u, ~ ¥,01 is an
instance of CCA§ (modulo Perm) and |@1|+|¥'1| is of polynomial size in |i|+|VU|. We let completion(d ~ ¥)
be the formula U, 1@, ~ U, V7.

Proof. We first show how to extend an instance of CCA5 into an instance of cCAg. Let (u;)ier ~ (vi)ier

be an instance of ccag. Let I’ C I, we want to extend (u;);e; ~ (v;)icr into an instance of ccag. Let
& = (ui)ier, ¥ = (vi)ier, since (u;)ier ~ (vi)ier is an instance of CCA% we have:

K / / I
(¢7 XenCa Xdea Orand; 0enC7 AdeC)RCCA% (1#, Xenm Xdeca Orand» Henc,)‘dec)

/
4ec: Moreover, for

(hence we have

For all z € Xenc U Xyec, we let i, € T be the index corresponding t0 Z0encAdec ~ 0L A
all z € Xyec, we let t;, be the context used for the decryption in the definition of R,

CCAg
TAdec = else” (1, dec(t;, fencAdec) SK)).

Outline We are going to define I'", I', I" C I and (@;)ic, (9;)ics (where J = I'" U I' U ") such that:

o " I I are pair-wise disjoints and I’ C I'".

® (@;)ies ~ (D;)ics is an instance of cCAS of polynomial size with respect to >, [ui| + |v;l.
Intuitively, " is the subset of indices of I\I’ of the terms that are subterm of (u;)icr ~ (v;)icrr on the
left and on the right, i.e. for all i € I'", u; € st((u;)ier) and v; € st((v;)ier). The terms whose index is
in I'" are easy to handle, as they are immediately bounded by the terms whose indices is in I’.

Then, I' is the subset of indices of I\I’ of the terms that are subterms of (u;);cr ~ (v;)ierr on the
left only (i.e. for every i € I', we only know that u; € st((u;)ier/)). Terms with indices in I' are easy to
bound on the left, but not on the right. To bound the right terms, we introduce dummy messages (by
replace encryptions by encryption of ¢(), where g is an adversarial function symbol in G). Similarly I" is
the subset of indices of T\I’ of the terms that are subterms of (u;);crr ~ (vi)icrr on the right only.

First, we define I'", I', I", and then we define the corresponding CCAY instance (@;)ies ~ (i)ies-

Inductive Definition of the Left and Right Appearance Sets We define by induction on i € I’
the sets I!, IT C I. Intuitively, I! is the set of indices of I needed so that wu; is well-defined (same for I7
and v;). Let ¢ € I, we do a case disjunction on the rule applied to u;,v; in RfCAg,:

e No Call to the Oracles: In that case we take I! = IT = {i}.

e Encryption Case: let t,t’ € T(F\o, N, Xgec) such that u; = {tAgec}— and v; = {t' A, }-. To
have u; well-defined, we need all the decryptions in u; to be well-defined (same for v;). Hence let:

i={u U I r={u Y 1

TE XgeNst(t) TEXy Nst(t)

e Decryption Case: recall that u; = else” (I, dec(u, sk)) where u = t;0cncAdec. Therefore we need all
encryption in Xenc Nst(t;) and decryption in Xgec Nst(t;) to be defined, on the left and on the right.
Hence we let:

I'={i}u U I Ir={i}u U I,

TE(XgeeUXenc)Nst(t;) TE(XgeeUXenc)Nst(t;)

188 Deciding Indistinguishability

We let:

mr=Jrnyrn r'=\Jrnyur r=Jrnyur

iel’ iel’ iel’ iel’ iel’ iel’

These three sets are disjoint and form a partition of (J;. I' U I'. Remark that for every i € I]l», u; is a

subterm of u;. Hence, for every i € I'" U I', there exists j € I’ such that u; is a subterm of u;.

Building the New Instance We define (by induction on i) the terms (;);c s, by letting 4; be:
e u; when i € I'" U T
e {g()}pk when i € I" and w; is an encryption, with u; = {_},.
o else*([,dec(i, sk)) when i € I" and u; is a decryption, where u; = else® (I, dec(u, sk)), t = tifenc Adec,
[is the sequence of guards | = (eq(u,y1),-..,eq(u, ym)) where (y1,...,Ym) = sort(Vybenc). Then
we take:
— @ = tifenc Adec, Where Oenc = {x— a;, | 2 € Xenc} and Adec = {z = 0, |2 € Xec}-
- l = (eq(ﬂv gl)a sty Eq(a) ij)) Where (glv e 7gm) = Sort(yueenC)'

Similarly, we define ¥; for every i € J.

Conclusion Let J =TI UI'UI". To conclude, we check that (Ui)icg ~ (Ui)ic:
e is a cCA§ instance. This is done by induction on i € J.
e is of polynomial size w.r.t. (u;)icr ~ (v;)icr .

We omit the details of the proof of the first point.
For the second point, we first show by induction on i that |I!| < |u;| and |I7| < |v;]. We deduce that:

= Umor] <31+ 1 <> uil + il

icel’ iel’ iel’

Let i € I'm U I', we know that there exists j € I’ such that u; is a subterm of uj. Since U; = u;, we
deduce that || < |u;| < > cp [uj| + |vj].

Let ¢ € I". If @; is an encryption then it is of constant size. Assume ; is a decryption. Then 4; is the
decryption v; where any encryption whose index is in I'" has been replaced by its left counterpart, and
any encryption whose index is in I” has been replaced by a dummy encryption (the case I' cannot happen,
since ¢ € I"). Since there are at most |v;] — 1 such encryptions (as v; contain at least one occurrence
of the dec function symbol), and since any encryption with index in I'” or I" is upper-bounded by
> jer |ujl +|vjl, we get that:

~ 2
i) < Joil + (Joil = 1) Jugl =+ [vg] < Juil. > Jugl =+ vl < (D Jugl + [vl)

Jjer’ jer’ jer’

We deduce that (i;)ics ~ (9;)ic is of polynomial size in 3~ [uj] + [v;]. []

5.4.2 Length in the cca; Axioms

If we want the formula {t}}, ~ {t' };L, to be a valid application of the cCAy axioms, we need to make
sure that ¢t and ¢’ are of the same length. Since the length of terms depend on implementation details
(e.g. how is the pair (_,) implemented), we let the user supply implementation assumptions. We use a
predicate symbol EQL(_,) in the logic, together with some derivation rules D (supplied by the user),
and we require that they verify the following properties:
e Complexity: for every u, v, we can decide whether EQL(u, v) is a consequence of Dy in polynomial
time in |u| + |v].

e Branch Invariance: for all terms b, u,v,t, if EQL(if b then u else v, t) is derivable using Dy then
EQL(u, t) and EQL(v, t) are derivable using D .

5.5. Main Result and Difficulties 189

Length(n) =1, Length(0;,) = 1.
Length(u) = Length(u) if u =g «’ and Length(u), Length(u’) are not undefined
Length((u, v)) = Length(u) + Length(v) + [) Vi..Length(pad,; (u)) = l.
Vk.Length({u}p) = E.lfbiock) + lgy if Length(u) = E.lpiock

Vk.Length(dec(u, sk)) = k.lpiock if Length(u) = k.l fpiocky + I3

Length(u) if Length(u) = Length(v)

Length(if b then u else v) = {undefined otherwise

Figure 5.5: Definition of the Length partial function.

We add to all cCAs instances the side condition EQL(m;, m,.) for every encryption oracle call on (m;, m;).
Then, we know that our CCA, instances are valid in any computational model M. where the encryption
is interpreted as a IND-CCA9 encryption scheme, and where the following property holds: for every ground
terms u, v, if EQL(u, v) is derivable using D\, then:

[length(u)] v, = [length(v)]um.

Example: Block Cipher We give here an example of derivation rules D that axiomatize the fact
that the encryption function is built upon a block cipher, taking blocks of length lpock and returning
blocks of length Ifpjock}. The length constant Iy is used to represent the constant length used, e.g., for
the IV and the HMAC.

We let L be a set of length constants, and we define a length expression to be an expression of the
form), ; ki.l, where L is a finite subset of £ and (k;)icr are positive integers. We consider length
expressions modulo commutativity (i.e. 3.l; + 4.1y &~ 4.l3 + 3.l1), and we assume that for every length
expression [, there exists a function symbol pad;, € F. Intuitively pad, is function padding messages to
length [: if the message is too long it truncates it, and if the message is too short it pads it. Similarly,
we assume that for every [., we have a function symbol 0;, € F or arity zero which, intuitively, returns
le zeroes. Also, we assume that £ contains the following length constants: Iy, lene; lblocks In-

We define the Length (partial) function on terms in Figure 5.5. Then, we let Di be the (recursive) set
of unitary axioms:

Length(u) = Length(v) # undefined
EQL(u, v)

Proposition 5.4. The function Length is well defined, and the set of axioms Dy satisfies the soundness
and branch invariance properties.

Proof. To check that Length is well defined, one just need to look at the critical pairs in the definition
and check that they are joinable. Soundness is easy, as [Length] s, is just an under-approximation of
[length] aq. in every computational model M. where the encryption is interpreted as a block cipher, the
padding functions are interpreted as expected etc.

Finally, branch invariance follows directly from the definition of Length(if b then u else v). |

Remark 5.5. We can allow the user to add any set of length equations, as long as the branch invari-
ance property holds and the Length function is well-defined. E.g. one may wish to add equations like
Length(A) = Length(B) = Length(C') = lagent- a

5.5 Main Result and Difficulties

We let Ax be the conjunction of Struct-Ax and CCAs. We now state our main result.

190 Deciding Indistinguishability

Theorem (Main Result). The following problem is decidable:
Input: A ground formula U ~ v.
Question: Is Ax N\ U ¢ U unsatisfiable?

We give here an overview of the problems that have to be overcome in order to obtain the decidability
result. Before starting, a few comments. We close all rules under permutations. The Sym rule commutes
with all the other rules, and the CCA5 unitary axioms are closed under Sym. Therefore we can remove
Perm and Sym from the set of rules. Observe that CSy°, FA\0,Dup and ccay are all decreasing rules,
i.e. the premises are smaller than the conclusion. The only non-decreasing rules are R, which may
rewrite a term into a larger one, and Restr, which we eliminate later. Therefore, to obtain a complete
and terminating strategy for Ax, we need to bound the size of the terms introduced when applying the
R rule. The main result of this chapter is a characterization of unnecessary rewritings, which will yield
a bound on the size of the premises of a useful R application. We will deduce an upper-bound on the
minimal proof of a formula, if it exists.

First, we define a way of describing fragments of our logic:

Definition 5.12. For every formula ¢, we write P - ¢ if P is a proof of ¢.

Definition 5.13. Let ¥ be the set of axiom names, seen as an alphabet. For all £ C ¥*, we let (L) be
the fragment of our logic defined by: a formula ¢ is in the fragment iff there exists a proof P such that
P I ¢ and, for every branch p of P, the word w obtained by collecting the axiom names along p (starting
from the root) is in L.

Example 5.5. The derivation in Example 5.1, page 176 is the fragments:

3 (R-CSIP - Refl) 0

Necessary Introductions As we saw in Example 5.1, it might be necessary to use R in the “wrong
direction”, typically to introduce new conditionals. A priori, this yields an unbounded search space.
Therefore our goal is to characterize in which situations we need to use R in the “wrong direction”, and
with which instances. We identify two necessary reasons for introducing new conditionals.

e First, to match the shape of the term on the other side, like g() in Example 5.1:

if g() then ng else ny ~ if g() then n else n

if g() then ng else ny ~n

In this case, the introduced conditional is exactly the conditional that appeared on the other side of
~. With more complex examples this may not be the case. Nonetheless, an introduced conditional
is always bounded by the conditional it matches.

e Second, we might introduce a guard in order to fit to the definition of safe decryptions in the CCAs
axioms, as in (5.4) in Example 5.2. Here also, the introduced guard will be of bounded size. Indeed,
guards of dec(s,sk) are of the form eq(s,a) where « is a subterm of s. Therefore, for a fixed s,
there are a bounded number of them, and they are of bounded size.

These two (informally defined) conditions are actually sufficient: any other rewriting is a unnecessary
detour. We illustrate this on an example:

Example 5.6 (Cut Elimination). We consider a proof of s ~ ¢ where the CS}’ rule is applied on two
conditionals that have just been introduced by the R rule:

a,s ~b,t a,s ~b,t o

if a then s else s ~ if b then ¢ else ¢ R if
s~t

Here, the conditional a and b can be of arbitrary size. Intuitively, this is not a problem since any proof
of a,s ~ b,t includes a proof of s ~ t. O

The idea is that we can extract a proof of s ~ t from any proof of a, s ~ b,t. We prove this by showing
that Restr applications can be eliminated.

191

Main Result and Difficulties

5.5.

Lemma 5.1 (Restr Elimination). If P+ @ ~ ¢ with P in the fragment:

F ((CSif 4+ R+ FA\g + Dup + CCA; + Restr)*)

then there exists P’ such that P' =1 ~ ¥ and P’ contains no Restr applications. Moreover:

o the height of P’ is no larger than the height of P.
e if P is in a fragment F(L) where L is closed by sub-words then P’ is in F(L).

Proof. We do a proof by induction on the height of the derivation P of @ ~ ¢. More precisely, we prove
that for any height n and formula @ ~ ¥, for any derivation P of & ~ ¥ in the fragment:

F ((CS§° 4+ R+ FA\o + Dup + CCA; + Restr)*)

such that P is of height n, there exists a derivation P’ with no Restr of % ~ ¥ of height no larger than n.
Assume that we have a derivation P of @ ~ ¢ where the last rule applied is Restr:

—

.8
Restr

<y

~

u,

S| =y
<

~

We discriminate on the second last rule applied:
e If it is a unitary axiom we conclude easily using the fact that unitary axioms are closed under Restr.

o If it is a FA\ axiom and ¢ is not involved in this function application then P is of the form:

(A4)
a, 't~ v,0 1 P
f(ﬁ)a ﬁ'7FN f(ﬁ)v 17/72?/
F@, @~ f@), 5 e

"~ ¥,7" in the wanted

To conclude, we apply the induction hypothesis to extract a proof of 4, u
fragment from (A). We conclude by applying the FA\q rule:

S (A A
S E 2/] ind._hyp. : (A/) apply FAvo S ooy (ﬂ 2/
u,u’,t~ v, 0t Restr = R = U, U~ U, T FALo
u, 4’ ~ v,7 ’ ’ f(@),d ~ f(v),0’

e If it is a FA\g axiom and ¢ is involved in this function application then P is of the form:

 (4)
_ ﬁd,a’:ﬁ'mf@’,a/’q FA
a,a’, f(a") ~ 0,0, f("
— Restr
u ~v

By applying the induction hypothesis, we extract a proof of 4 ~ ¢’ in the wanted fragment directly

(A) ind.:h>yp. (AI)
w,u’,u" ~ 0,0, 0" U~T
o If it is CSi™:
L (4) : (B)
Wo, W1,b, (vi)icrug ~ Wo, WLV, (v))icrus Cgno
i

Wo, W1,b, (wi)iervs ~ Wy, WY, b, (ug)ierus
Wo, W1, (If b then u; else Ui)ie[uj ~ ’LU6,U_}”1, (If b’ then u; else U;)ieIUJ Rest
estr

—

—

Wo, (if b then w; else v;);er ~ W, (if b’ then u} else v});er

192 Deciding Indistinguishability

We apply the induction hypothesis twice:
- (4)

L C ind. hyp. D (A
Wo,w1,b, (wi)ierus ~ wWo, w1, (up)iervs Restr — Wo,b, (us)icr f\.uz(I)”)b’ (u))ier
u707b7 (ui)iel ~ U_I’é),b/,('l,b;)ie[T e 0 e
: (B) :
= N RN N ind. hyp. : B/
Wo,wW1,b, ('Ui)iEIUJ ng)ywlpb/v(v;)ieluJ = - ’ (—»/)/ ’
- e Restr Wo,b, (vi)ier ~ Wo,b', (v])ier
Wo,b, (vi)ier ~ W, b, (Uz‘)iel
‘We obtain the derivation:
L (A) L (B)
Wo,b, (us)ier ~ Wy, b, (uf)icr Wo,b, (vi)ier ~ Wo,b', (v])icr Cgno
if

Wo, (if b then u; else v;);er ~ W, (if b’ then u} else v);er
e The Dup and R axioms are trivial to handle.]

Remark 5.6. In the proof, we need the CCA5 axioms to be closed under Restr. Note that this created
some problems, which we dealt with earlier, in Section 5.4.1. O

Using this lemma, we can deal with Example 5.6 by doing a proof cut elimination. More generally,
by induction on the proof size, we can guarantee that no such proof cuts appear. This is the strategy
we are going to follow: look for proof cuts that introduce unbounded new terms, eliminate them, and
show that after sufficiently many cut eliminations all the subterms appearing in the proof are bounded by
the (R-normal form of the) conclusion. But a proof may contain more complex behaviors than just the
introduction of a conditional followed by a CS7° application. For example the conditional being matched
could have been itself introduced earlier to match another conditional, which itself was introduced to
match a third conditional etc.

Example 5.7. We illustrate this on an example. When it is more convenient, we write terms containing
only if then else and other subterms (handled as constants) as binary trees; we also index some
subterms with a number, which helps keeping track of them across rule applications. Consider the
derivation:

L (4)
Qy, b2a bi&v Usy Ws, Ug, V7 ™~ d17 Ca, d:ﬂ» Sy4, t57 Te, D7 FA(3)
\O0
5] dl
7N\ /N
b, U7 Co p7
/N ~ /N
Uy b3 Sa d‘g
/ N\ /N
W5 Ug ts Te

if @ then u else v ~ if c then s else ¢

where p = if ¢ then s else ¢t. Here the conditionals b, d and the terms w, r are, a priori, arbitrary. Therefore
we would like to bound them or remove them through a cut elimination. The cut elimination technique
used in Example 5.6 does not apply here because we cannot extract a proof of a ~ c.

But we can extract a proof of b,,b; ~ ¢,,ds;. Using the axioms soundness, this means that in every
appropriate computational model, [b, b] = [c, d]. Therefore, no adversary can distinguish between getting
twice the same value sampled from [b] and getting a pair of values sampled from [c¢,d]. In particular,
leln,p = [d]y,p, except for a negligible number of random tapes p. O

A First Key Lemma A natural question is to ask whether the semantic equality [c] = [d] implies a
syntactic equality. While this is not the case in general, there are fragments of our logic in which this
holds. To define such a fragment, we annotate the rules FA\g by the function symbol involved, and we
let FA; = {FA; | f € F\ir,o} be the restriction of FA\g to function symbols different from if _then _else .
Formulas that can be proven in the fragment §(FAs* - Dup® - CCA3) have a particular shape, which is
completely characterized by the rules applied in the derivation:

5.5. Main Result and Difficulties 193

Proposition 5.5. For all bt/ € T(F,N), if b ~ V' is in the fragment F(FAs" - Dup® - CCAs) then
b= CW, (a;);, (decj);], V = Cl, ()i, (dec;-)j] and the CCAq instance applied is (up-to a-renaming):

W, ()i, (decy)j ~ 0, ()i, (dec));
where (o, o), are the encryption oracle calls and (dec;, dec;-)j are the decryption oracle calls.

Proof. This is easy immediate by induction on the proof derivation. |

Using this characterization, we proof the following key lemma:
Lemma 5.2. For all b,b', 0", if b,b ~ V', b" is in the fragment F(FAS" - Dup® - CCA3) then b’ =1b".

Proof. From Proposition 5.5 we have:

b= Cl[wl, (O‘é)iellv (decé‘)jeﬂ] V= Cl[wla (O‘él)iella (deC;'l)jeJl]
b=C"[W", (a7)ierr, (dec]) jer] V' =CT[@", (o)ierr, (dec]) je]

Assume that C' # C”. Let p be the position of a hole of C* such that p is a valid position but not a
hole position in C™ (if this is not the case, invert b’ and b”). Then we have three cases:
e The hole at b, is mapped to a term u € w'. Then, we can rewrite the proof such that p is a hole
position in both terms.
e The hole at b), is mapped to an encryption oracle call {m g*k(n) in b and {m’};;(n) in &'. Since
{m};f((n) is an encryption in the CCAy application, we know from the freshness side-condition that

ne does not appear in w”. But since C‘Tp is not a hole, the proof of b, b ~ b, " includes the sub-proof:

7 CCAo

Ne

cy e~

...7m,pk(n),ner\;...,m’,pk(n),ne

A ~ A)

FA\o

Since ne is a name in A and cannot be modified by any rules in { R, FAg, Dup}. Therefore ne € w".
This contradict the freshness side-condition. Absurd.

e If the hole at b, is mapped to a decryption oracle call decéO in b. Since CIZJ is not a hole, and since
function applications on FAg cannot be applied on the if then else function symbols we know
that there exists m, m’ such that decio = dec(m, sk(n)) and dec;lO = dec(m’, sk(n)). Moreover, since
decéO is a decryption in the CCAs application, we know from the key-usability side-condition that
sk(n) appears only in decryption position in w". Then the reasoning we have in the previous cases
applies here. Indeed, we know that C’l’; is not a hole, hence the proof of b,b ~ b, 0" includes one of
the following sub-proofs:

CCAg
comen~ ... om/n
» » CCAs :
s (n)f:v""s (n) coomun o~ oomln EA
: or k(n) ~...,m/ sk b
...ymysk(n) ~ ... m/ sk(n) FA m, sk(n) : ' sk(n)
7 \0 :
...,dec(m,sk(n)) ~ ... ,dec(m/, sk(n)) . mysk(n) ~ ../, sk(n) A
. dec(m, sk(n)) ~ ... dec(m’,sk(n)) ‘°
Hence either n € @" or sk(n) € W". Absurd. [|

Using this lemma, we can deal with Example 5.7 whenever the proof of a,,b,,bs ~ d;, cy,ds lies in
the fragment §(FAs™ - Dup™ - CCA2). Using a first time the lemma on by, by ~ ¢,,ds we obtain ¢ = d, and
using again the lemma on a,,b, ~ d;, ¢, (since d = ¢) we deduce a = b. Hence:

a1, bs, b, U, s, UG, V7 ~ dy, Co,ds, 84,T5,76, D7 = Gy, Ao, A3, Us, W5, Ug, V7 ~ C1, Co,y Cs, Sa, t5, T, Pr

194 Deciding Indistinguishability

Therefore, using Lemma 5.1, we can extract a proof:

LA

A1, Us, V7 ~ C1, S4, P7

Where, we recall, p = if ¢ then s else t. Hence we have the cut elimination:

: (A
A1, Usy U7 ~ Ciy 84, P7 FA\()
C
a, 7\
/N ~ 84 ¢
Uy V7 /N
S t

if @ then w else v ~ if ¢ then s else ¢

Notice that all sub-terms above are bounded, although the conditional ¢ appears twice on the right.

Proof Sketch We sketch the outline of the completeness proof:

e Commutations: first we show that we can assume that rules are applied in some given order. We
prove this by showing some commutation results and adding new rules.

e Proof Cut Eliminations: through proof cut eliminations, we guarantee that every conditional
appearing in the proof is a-bounded. Intuitively a conditional is a-bounded if it is a subterm of
the conclusion or if it guards a decryption appearing in an a-bounded term.

e Decision Procedure: we give a procedure that, given a goal formula t ~ t/, computes the set of
a-bounded terms for this formula. We show that this procedure computes a finite set, and deduce
that the proof search is finite. This yields an effective algorithm to decide our problem.

5.6 Commutations and Cut Eliminations

In this section we show, through rule commutations, that we can restrict ourselves to proofs using rules
in some given order. This is done through two rule commutations lemmas, and a proof cut elimination.
In the next section, we show how this restricts the shapes of the terms appearing in a proof.

5.6.1 Rule Commutations

Everything in this subsection applies to any set U of unitary axioms closed under Restr. We specialize
to CCA5 later. We start by showing a set of rule commutations of the form w = w’, where w and w’ are
words over the set of rule names. An entry w = w’ means that a derivation in w can be rewritten into a
derivation in w’, with the same conclusion and premises. Here are the basic commutations we use:

Lemma 5.3. The following rule commutations are correct:

Dup- R = R-Dup
Dup-FA\p = FA,- Dup
Dup-CS}¥ = CSi§¥ - Dup

FAw-R = R-FAy
FA\U C Zco = R CS?fo' FA\O

Proof. The commutations can be found in Figure 5.6.]

Using these rules, we obtain a first restriction.

Lemma 5.4. For any set of unitary azioms U closed under Restr, the ordered strategy:
S((CSF + R)* - FASy - Dup® - U)

is complete for F((CSF + FA\ o + R+ Dup + U)*).

195

5.6. Commutations and Cut Eliminations
Delay FA\q
oFA\O-Cinf = R-CS} FA\O

no

w1, W2, ba (U’L)’L’GIUJ ~ Wy, Wo, b 5 (Ui)iGIUJ
if

FA\o

C

W1, Wa,b, (ui)ierug ~ Wy, Wh, b, (uf)icrus
Wy, Wa, (if b then u; else v;)icrug ~ Wh, Wh, (if V' then u) else v});crus

W1, (if b then u; else v;);er, f(We, (if b then u; else v;);cr)

wi, (if o/ then u} else v});cr, f(Wh, (if b then u} else v});cs)

~

Can be rewritten into:
Wwi,Wa2, b, (UZ)ZGIUJ ~ w17w27b) (Ui)iEIUJ

1171,’(172,[7, (ui)iEIUJ Nu_j,lvwévb/;(ué)iGIUJ FA FA
= = \0 . = \0
W1, b, (ui)ier, f(Wa, (ui)ics) W1, b, (vi)ier, f(Wa, (vi)ies)
~ W, (ug)ier, f(0Y, (w))ies) ~ 117/1,5/ (vi)ier, [(@Y, (v)ier) Cono
i

w1, (if b then u2 else v;)ier,if b then f(Wa, (u;)icy) else f(wWa, (vi)icr)

~

W, (if b/ then u} else v});cy,if b’ then f(w5,

(uf)ics) else f(w5, (v))ies)

W1, (if b then u; else v;)er, f(Wa,

if b then u; else v;)ics)

(
Wi, (if o' then u} else v});cr, f(W5, (if b then u} else v});cs)

~

e FAo-R = R-FA:

21,71 ~ @, 7, 71,71 ~ @), 7!
3 —»1 —»/1,—»/1 R = = —'/1’ 1——/ FA\O
w0, ~u, v FA\o = Uy, f(U1) ~a, f(T7) R
i, f(7) ~a’, f(v') a, f(0) ~a’, f(v')

Delay Dup

e Dup-R = R-Dup.
If the R rules involves a term which is not duplicated then this is trivial. Assume the R rewriting

involves a duplicated term, and that t =g s and t’ =y s':

u,v,s~u', v, s U, 8~ D
R ——— ' —— Dup
U, v,t~u',v',t D = u,v,$U,8s~Uu,V,s8,U,S8
e t — t —/ =/ t/ —/ t/ Up el t —»t /) =/ t/ —/ t/ R
u),U’ 7’U7 Nu’/U’)U7 u7v7 7U7 Nu)v7 7v7

e Dup-FA\g = FA{q - Dup.
Similarly if the FA\g rules does not involve a duplicated term then this is trivial. Otherwise

- - - —1 = =/ ﬁ’\’ﬁ

U,U,w""u 71) ,'LU — e e] =/ = = = =) DUp

- - —— — FA\O i,0,W,0,w ~u,v 4,0, FA

u,v,f(w)wu,v,f(w) = JER S\ o o [y BNy \0
77). 5) ~ T)7 O D I B e
~ 0
’LL,'U, 7U7 u 31}7 w 7U7 w 17 f()7177f(u7) ﬁ/,ﬁl,f(’lﬁl 7’17/,}“('[17,) \
e Dup-CS{® = CS;° - Dup. Commutation of Dup with CSF° is similar.

Figure 5.6: Function Application and Duplicate Rules Commutations

196 Deciding Indistinguishability

Proof. Using Lemma 5.3, we commute all the Dup to the right, which yields F((CS{°+R+FA\g)*-Dup®-U).
Then, we commute all FA\q to the right, stopping at the first Dup.]

Example 5.8. We give an example of such a proof rewriting:

T~z T,T~ 2,2 DUIF;A
m(x, y) ~ 2 FA 7 ~ , 0
\0 £E,g(l’) z,g(Z)
iz, 5) ~ 90 o 40w ~ 90
g(m(z, y)) g(m(z, y)) ~ 9(2),9(2) g(m({z,), g(mz,) ~ 9(2),9(2) O

Splitting the FA o Rule To go further, we split the function application rules FA\g as follows: if the
deconstructed symbol is if _then_else_ then we denote the function application by FA\q(b, "), where b, b’
are the involved conditionals; if the deconstructed symbol f is in F\j o, then we denote the function
application by FA;. We give below the two new rules:

@, 7 ~ 5t
i, f(T) ~ 3, f(F)
The set of rule names is now infinite, since there is a rule FA\q(b, ') for every pair of ground terms b, '.

Intuitively, we want to use R at the beginning of the proof only. This is helpful since, as we observed

earlier, all the other rules are decreasing (i.e. premises are smaller than the conclusion). The problem is
that we cannot fully commute CS}° and R. For example, in:

w,a,u,v ~7,b,s,t

FA(b, V) FA;

W, if a then u else v ~ 7,if b then s else ¢

ai,up ~ c, 81 az,v1 ~ C2,t
o T Tav~cil R
a,u ~CcC,Ss a,v ~ C, no (55)
if @ then u else v ~ if ¢ then s else ¢ if

we can commute the rewritings on u,v,s and ¢, but not on a and ¢ because they appear twice in the
premises, and a1 and as may be different (same for ¢; and ¢3).

We solve this by adding new rules to track relations between branches. We first give simplified
versions. For every if-free ground conditionals a and ¢ in R-normal form, we introduce the rules:

i,C|[[a]a],] ~7,C'[[c]c]] .y ai,un~ci,s ag, v ~ Ca,t css
@, Cla] ~ 0,C"[] X if a then u else v ~ if c then selset -

where [[] is a new symbol of sort bool®> — bool, and of fixed semantics: it ignores its arguments and
has the semantics [a]. Intuitively, a stands for the conditional a, and a1, as are, respectively, the

left and right versions of a. Then, using these rules, we can rewrite the derivation in (5.5):

a1,U1 ~ €1, 81 ag, vy ~ Ca, 1 b

i [a1[a2], then us else vy ~if [c1[cz] then sy else f;
if [a]a], then u else v ~if [c]c]_ then selset R

if a then w else v ~ if ¢ then s else ¢

2Box®

The 2Box® allows to introduce two versions of a and ¢, which can be independently rewritten. Using this,
we can do both rewritings before applying the CSZ rule.
Let us define formally the unrestricted rules. First, we denote B the set of new function symbols.

Definition 5.14. We let B be the set of function symbols:
FU {E]:]b | b if-free ground conditional}

We need the functions in B to block the if-homomorphism to ensure that for all [a]c], € st(?),
[a] = [c] = [b]. Therefore the set of equalities Ro is not extended to B. For example we have:
‘if a then c else dle‘b 7 if a then [c]e], else b

The R rule is replaced by Rp which has an extra side-condition: Ry can rewrite @, u[s] into W, u[t] as long
as), us]’s boxed conditionals {[a]c], € st(,u[s])} contain t’s boxed conditionals {[a]c], € st(t)}.

5.6. Commutations and Cut Eliminations 197

Definition 5.15. We let Ry be the following axiom schema:

Ry whens=gtand {[a]c], €st(t)} C {[a]c], € st(iF, uls])}

The side-condition ensures that no new arbitrary b is introduced. New boxed conditionals are
only introduced through the 2Box rule. Similarly, the FA\ o axiom is not extended to B: boxed conditionals
can only be open using the CSy rule.

—

w,uft] ~T

w,uls] ~ T

Example 5.9. We give two examples of valid application of the Ry rules. The first Ry application is
valid because we do not introduce any boxed conditional on the left, and because we remove a boxed
conditional on the right. The second Ry application is valid because the introduced boxed conditional
already appears in the conclusion:

if eq(g({0}pk), {0}pk) then dec(g({0}pk),sk) ~ v if [a]c], then (if [a]c], then u else w) ~t
else dec(g({0}pk), sk) else v R
a

R
dec(g({0}), sk) ~ if [a]c], then v else v N if [a]c], then uelse v ~ ¢ O

When boxing a conditional ¢, we want the term ¢ indexing the box CD to characterize ¢’s

semantics in a proof invariant way. By consequence, we replace all boxes in ¢ by a, and we
a

normalize the resulting term. Formally, we introduce the following erasure function which removes boxed

conditional:

Definition 5.16. We let 2erase be the function defined on if-free ground terms by:

2erase(b) if t = b

2erase(t) = ¢ n ift=nandneN
f(2erase(ty),...,2erase(t,)) ift= f(t1,...,tn) and f #if then else

Example 5.10. We give a simple example with a term containing only one boxed conditional [a]c],:
2erase (eq(if [a]c], then u else v,A)) = eq(if b then u else v, A) O

This function is used to define the full (not simplified) versions of 2Box and CSg:

Definition 5.17. We let 2Box and CSp be the axioms:

- S aral A

U,C |:2erase(a)lR:| ~u ’C |:2erase(a’)¢1?:| when a.d’ € T(J—_- UB N)
— — — 2Box) \if)
@, Cla] ~d’,C'[a]

’117, ay, (ul)l ~ w/7 a/17 (u;)l ’lE, az, (Ul)l ~ 117/, al2? (U;)l

W, (if then wu; else v,) ~ (if , then u] else vé)
Remark that for the CSp rule to be sound we need [a1], [az] and [a] to be equal, up to a negligible

number of samplings (same for a}, a) and a). This is not enforced by the rules, so it has to be an invariant
of our strategy.

Definition 5.18. A term ¢ is well-formed if and only if for every [a[c], € st(t), a =r ¢ =r b. We lift
this to formulas as expected.

CSo when a,a’ € T(RinN)

Proposition 5.6. The following rules preserve well-formedness:
R, 2Box, CSg, FA, {FA\ (b, b")}, Dup
Besides, Rg, CSg and 2Box are sound on well-formed formulas.

Proof. The only rule not obviously preserving well-formedness is Ry, but its side-conditions guarantee
the well-formedness invariant. The only rule that is not always sound is CSg, and it is trivially sound on
well-formed formulas. []

Remark 5.7. We extend cond-st to terms in 7(B,N) in a non-obvious way, by erasing all boxes.
Formally, for all t € T(B,N), we let:

cond-st(t) = cond-st(2erase(t)) O

198 Deciding Indistinguishability

Ordered Strategy We can now give the new rule commutations.

Lemma 5.5. The following rule commutations are correct:

FAs- FAo(b,V') = R-FA(b,b')- FAS - Dup

CSD . RD = RD : CSD
CS[] - 2Box = RD - 2Box - CSD
Proof. The rule commutations can be found in Figure 5.7. |

This allows to have Ry rules only at the beginning of the proof.
Lemma 5.6. For any set of unitary azioms U closed under Restr, the ordered strategy:
F((2Box+ R)* - CS' - {FA\o(b,b")}* - FAS" - Dup® - U)
is complete for F((CSF + FA\ o + R+ Dup + U)*).
Proof. We start from the result of Lemma 5.4, split the FA\g rules and commute rules until we get:
F((CSE + R)™ - {FA\o(D,b)}" - FAS" - Dup® - U)

We then replace all applications of CSi° by 2Box - CSp. All a introduced are immediately “opened”
by a CSy application, hence we know that the side-conditions of R hold every time we apply R. Therefore
we can replace all applications of R by Rg, which yields:

F((CSp + 2Box + R)™ - {FA\o(b,0')}* - FAS™ - Dup™ - U)

Finally we commute the CSy applications to the right. |

5.6.2 The Freeze Strategy

We now show that we can restrict the terms on which the rules in {FA\o(b,b)} can be applied: when we
apply a rule in {FA\o(b,b')}, we “freeze” the conditionals b and b’ to forbid any further applications of
{FA\o(b,¥')} to them.

Example 5.11. Let a; = if b; then ¢; else d; (i € {1,2}), we want to forbid the following partial deriva-
tion to appear:

b17617d17u17U1 ~ bQ’CZ,dQ’U27,U2 FA\O(bl b2)

FA\O(ah az)

ai,uy, v ~ a2, U2, V2

if a; then u; else v; ~ if ay then uy else vy O

For this, we define a new function symbol ~ arity one, which allows to freeze a conditional and prevent
applications of {FA\o(b,b')}. Basically, when we apply a rule in {FA\o(b,b)} on the conditionals b; and by:

by = if ay then u else v; by = if ay then uy else vy

We replace, in the premise, a; by @7 in b1 and as by a3 in bs. Then, we show that we can restrict ourselves
to proofs where we never apply FA\o on a frozen if _then_else_ conditional.

Definition 5.19. Let ~ be a new function symbol of arity one. For every ground term s, we let s be:

___|ifbthen uelse v if s=if bthen u else v
S =
s if s € T(Fr, N)

Moreover we replace every FA\q(b1,b2) by the rule BFA(b1, b2) which freezes conditionals by and bs:

5.6. Commutations and Cut Eliminations 199

o FA;-FA\o(b,b') = R-FA\g(b,V') - FAS" - Dup

b tN =/ = bl / t/
__ iu,v,b,s, 1:711,7 s, FA\O(b,b’)
u'un‘bthenselsetwuv if b then s’ else ¢/ A
, f(¥,if b then s else t) ~ f(_" if ¥’ then s’ else t') !
Can be rewritten into:
i,b,s,T,t~a b, s, Tt
/= ! = ’ Dup

@,b,v,s,T,t ~u, b0, s 0t @)
4’7 b) y) 7t 7b,7 7) ‘”7t, f
0,0, 1(7,5), [5,0) ~ @Y (), I) o)

i,if b then f(7,s) else f(T,t) ~@,if b’ then f(¥',s') else f(¥',t) R
i, f(T,if b then s else t) ~ @, f(¥,if b’ then s else t')

L CSD . RD = R[\ . CSDI
(wjl')j7 b17 (uzl)l ~ (w;'l)ﬁ b/la (u:.l)l (wg)ﬁ b25 (Uzl)l ~ (w;?)j? bl27 (vil)i R
O

(w))j, an, (ui)i ~ (w});, dh, (uf)i D(%b%@%(%%%@% s
a

(w;y);, (if [a1] m then u; else v;);)j, (if then uj else vj);

can be rewritten into:

(wjl')jv b17 (uzl)l ~ (wé'l)jv lla (u{Ll)i (w?)ﬁ b2v (Uzl)’b ~ (wgl)jv b/27 (U’El)i cs
o
(if then w; else w3);, (if b then u} else v});
. / / 1 1y .
~ (if b/ then w/' else wf?);, (if b then uj else v);

(wj);, (if [a1] m then u; else v;););, (if , then uj else v});

0

o CSy-2Box = Ro-2Box-CSq. Let bt € T(F¢UB,N), and let:

bo = 2erase(b),LR and b/D 2erase(b’) r

Then the following proof:

b)), a2[b], (vi[b])s
b']);, az[b'], (vi[b']):

(ws[b])s (if [ax[e] [aalt]] then wife] else vib]), ~ (wj[b));, (if a, then w/[/] else v/[}]),

can be rewritten into:

(wslta])s,arbol, (ulbol): ~ (iREDs, il (lED:
(w;[0]);, a1 [b], (uslb])i ~ (w}[6]);, i [b], (ui[6'])s N (wf[
J CSy

G ~ (0,08) a2, (s)
~ (W),) ~ (W} [B]);, aalb), (vilb)) s

(if ar[bo] [azb]| then w;[bo] else w [b])j , (if a then w; [b] else w[b])i

~ (if ay[bi] | ab[t'] | then w[b] else w;-[b’]) ,(if ai o] [ab[t] | then wj[by] else v;[b'])
a’ j a’ i

(if ar[b] [aalt]]| then w;[b] else wj[b}) , (if ar[o] [aalt] | then ui[e] else vi[b]>i 2o
~ (i ma then w)[1] else w;[¥]) , (if m , then u/[V'] else vi[D'])
J a i Ry

(w; (8], (if [ar 0] azl] then u;[t] else wilt])

7

~ (), (if | 4] [ablb']| | then ui[y] else vi[b'])

a 3

The commutation with an application of 2Box in the right branch is exactly the same.

Figure 5.7: Function Application and Boxed Case Study Rules Commutations

200 Deciding Indistinguishability

Definition 5.20. We let BFA be the rule:

wlablvulvvl ~ ’LU27627U2,’U2

BFA(b1, b2)

Wy, if by then uy else v ~ Wa,if by then us else vy

We let {BFA(b1,b2)} be the restriction of {BFA(by,b2)} to instances where b; and by are not frozen.
Finally, we let UnF be the rule which unfreezes all conditionals: every b is replaced by b.

Example 5.12. If the conditionals b’ is if-free then:

bo bo
/N oo
a0 by ,8,t~ b8t a/ \b st~ b st
Lo 1 » 9 99y
/ N\ RN
ay as a as
, BFA and UnF
y °~b v bo
o 1 ~ / N\ /N oo A
al/ \(12 s t ag by) Syt~ b/a st
/ N\
/ \ ay as
s t O

We can extend the Restr elimination procedure of Lemma 5.1 to deal with the new rules CSy and
2Box (but not Rp):

Lemma 5.7. If P+ 4 ~ ¥ with P in the fragment:
¥ ((CSD + 2Box + FA\ g + Dup + cCA3 + Restr)*)

then there exists P’ such that P' = 1 ~ ¥ and P’ contains no Restr applications. Moreover:
e the height of P’ is no larger than the height of P.

e if P is in a fragment F(L) where L is closed by sub-words then P’ is in F(L).

Proof. This is the same proof than for Lemma 5.1, without the R case and replacing the CS}° axiom by
the CSy axiom. Note that the 2Box rule is trivial to handle. [|

We can state the following ordered strategy lemma:

Lemma 5.8. For any set of unitary azioms U closed under Restr, the ordered strategy:
F((2Box+ Rn)* - CSY - {BFA(b,b')}* - UnF - FAS" - Dup® - U)
is complete for F((CSF + FA\ o+ R+ Dup + U)*).

Basically, the proof consists in eliminating all proof cuts of the shape given in Example 5.11. The
cut elimination is simple, though voluminous. Before starting the proof, we define the induction ordering
used in the proof.

Proof ordering Let us consider the following well-founded order on proofs: a proof is interpreted by
the multi-set of pair (b,d’) appearing as (potentially frozen) labels of BFA applications where we erased
the function symbol —. We then order these multi-set using the multi-set ordering >,u1t, which is induced
by the product ordering >, which itself is built upon an arbitrary total rewrite ordering on ground terms
without boxes > (e.g a LPO for some arbitrary precedence over function symbols).

Example 5.13. Assume that by = if b then a else cand by = if ' then o’ else ¢. Let P; be the derivation:

/ / /
b7a,c,u1,v1 Nbaaac7u237}2

UnF
BFA(b,)
BFA(by, bo)

7 o
b,a,C,Ul,’Ul NbaaacaUQaUQ

by, uy, vy ~ by, ug, v2
if by then uy else v; ~ if by then uqy else vy

5.6. Commutations and Cut Eliminations 201

And P, be the derivation:

/ / /
baa7cau1avl Nb,a,C,Ug,’Ug

= ——= = UnF
-~ F / i /
b,a,C,UhUl Nb,CL,C,’UQ,UQ

= —— = Dup
> e / I /
baavulvvlvcuuhvl ~b , 7, U2,V2,C, U2, V2

BFA(c,)

b,a,uy,vy,if ¢ then uy else vi ~ V', a’, uz,va,if ¢’ then us else vy

BFA(a,a’)

b,if a then uy else vy, if ¢ then u; else vy ~ U/, if a then uy else vo, if ¢’ then uy else v
) 1 1 1 1) 2 2, 2 2 BFA(b, b/)

if b then (if a then u; else v1) else (if ¢ then wu; else vq)

~ if b then (if a’ then uy else vg) else (if ¢’ then uy else vg)

R

if by then wuy else v; ~ if by then uqy else vy

Observe that P, and P, are two different derivations of the same formula. P; and P, are respectively
interpreted as the multi-sets:

{(b17b2)’ (b7 b/)} and {(b7 b/)v(aval)7(c7 C/)}

Remark that when interpreting the derivation as multi-sets, we unfroze the conditionals. The conditionals
b,a,c (resp. V',d’, ') are strict subterms of by (resp. bz), therefore we have (b1, b2) =« (b,b'), (b1,b2) >«
(a,a’) and (b1, b2) =« (¢,). Hence:

{(bla b2)a (bv b/)} ~mult {(bv b,)v (av a/)7 (C’ Cl)}

By consequence, P, is a smaller proof of if by then u; else vy ~ if by then uy else v than Pj. O

Proof of Lemma 5.8. First we are going to show a cut elimination strategy to get rid of the deconstruction
of frozen conditionals introduced by:

SR A) R N)
wlablau17v1Nw27b2,u2av2

BFA(b1, b
w1, if by then uy else vy ~ Wy, if by then us else vy (b1, 52)

Assume now that u ~ v is not provable without deconstructing frozen conditionals introduced as
described above. We consider a proof P; of u ~ v that we suppose minimal for »,,1;. We consider the
first conditionals (b1, b2) (starting from the bottom) which are deconstructed. We let by = if b then a else ¢
and by = if b’ then o’ else ¢/, we know that our proof has the following shape:

D (A3)
'357) 7'N _’/737 /7 /7 g’ - T
LMY T Y BEAG,)
fab17nglvb27g/
: (A2)
13176171/#17/01 N'U?Q,I;;,UQ,’UQ
BFA(by,b
w1, if by then uq else v ~ 1o, if by then uy else vy (b1, 52)
: (A1)
Cif by then wu; else v1] ~ C[if by then uy else vo]
U~ U

Where C' is a one-hole context. Since (by,b2) are the first conditionals deconstructed in this proof we
know that C' is such that the hole does not appear in a conditional branch. This proof can be rewritten

202 Deciding Indistinguishability

as the following proof Ps:

: (A3)
f7b7a757?j~f/7 b/7a/7cl7g’/
: (A2)
wlab7a7ga Uy,v1 ~ 1E2,b’,a’,c’,u2,v2
—= —— = Dup
- ~ ~ = ! /
_ ’lUl,b,CLUl,’UhC,ul,UlNWQ,I’)V,?',UQ,UQ,C7’LL2,U2 BFA(C,C,)
wW1,b,a,uy,v,if c then uy else v; ~ wWa, V', a’, us, va,if ¢’ then usy else vy ,
BFA(a,a’)

w1, b,if a then uy else vy, if ¢ then uq else v1 ~ Wo, ¥, if a’ then us else vq,if ¢’ then us else vy

: . : BFA(b, ')
W1, if b then (if a then uy else vy) else (if ¢ then uy else vq)

~ Wa,if b then (if a’ then uy else vy) else (if ¢’ then uy else vy)
D (Ay)
C[if b then (if a then u; else vy1) else (if ¢ then uy else v1)]

~ C[if b then (if a’ then uy else vy) else (if ¢’ then uy else vs)]

Cif by then wu; else v1] ~ C[if by then uy else vs] R

u~v

One can check that A; remains the same in the second proof tree since the hole in C' is not in a conditional
branch. The Aq, A, A3 parts are the same in both proofs, so let M be the interpretation of Ay, As, A3
as a multi-set. Then the interpretation of P, and P» are, respectively, the multi-sets:

M U{(b1,b2), (b, 1)} and M U{(b,V),(a,a’),(c,c)}

Therefore P» is a strictly smaller proof of u ~ v than P; (this is almost the same multi-sets than in
Example 5.13). Absurd. u

5.7 Shape of the Terms

Most of the completeness results shown before are for any set of unitary axioms closed under Restr. We
now specialize these results to CCAs, to get some further restrictions.

When applying the unitary axioms CCA5, we would like to require that terms are in R-normal form,
e.g. to avoid the application of CCAs to terms with an unbounded component, such as w1 ({u, v)).
Unfortunately, the side-conditions of CCA5 are not stable by R. E.g., consider the CCA5 instance:

CCA-

{if eq(g(ny), ny) then A else B} ~{C}¥

pk(n) pk(n)

The R-normal form of the left term is:

if eq(g(ny), ny) then {A};E(n) else {B}:E(n)

which cannot be used in a valid cCAs instance, since the conditional eq(g(n,), n,) should be somehow
“hidden” by the encryption. To avoid this difficulty, we use a different normal form for terms: we try to
be as close as possible to the R-normal form, while keeping conditional branching below their encryption.
This normalization strategy preserves the shape of the terms required by the CCAs axiom, as well as its
side-conditions. In other word, if @ ~ ¥ is a valid CCA5 instance then its normalization i, ~ v, is also a
valid CcCA5 instance. We illustrate this on an example. The term:

{if (if b then a else ¢) then {if d then u else v}k else w}:i

is normalized as follows:
{if b then if a then {if d then u else v}, else w}n2
(5.6)

else if ¢ then {if d then u else v} 7} else w .
p

Observe that CCA5 side-conditions are preserved. For example, the condition on occurrences of encryption
randomness in (5.6) holds: e.g. the randomness n; is only used for the encryption {if d then w else v};f(.

5.7. Shape of the Terms 203

5.7.1 Definitions

We omit the rewriting strategy for now. Instead, we describe the final shape of the terms, and prove
some of their properties terms. We let A, be the ordered strategy from Lemma 5.8, and we define several
restriction of A, :

F((2Box + Ry)*- CS5-{BFA(b,b')}* - UnF - FAS" - Dup® - cCA2) (As)
F(CS5-{BFA(b, ') }* - UnF - FA," - Dup® - CCA,) (Acs,))
F({BFA(b,b')}* - UnF-FAS" - Dup” - CCA3) (Agex)

{S"(FAS* - Dup™ - CCAQ) (Apa,)

The rule CSy is the only branching rule, therefore, after applying all the CSy rules, we can associate to
each branch [of the proof a left ccas trace §; = (K, Ry, £, D;) of the cCA5 axiom, where K;, Ry, & and
D, are the sets of, respectively, secret keys, encryption randomness, encryptions and decryptions on the
left side. Similarly we have a right cca, trace S| = (K}, R}, &/, Dj).

Definition 5.21. A cCA3 trace S is a tuple (K, R, &, D) where:
K C {sk(n) | n € N'} is a set of secret keys.

e R C N is a set of encryption randomness.

€ S {{m} i | ne € R Ask(n) € K} is a set of encryptions.

D C {dec(m,sk(n)) | sk(n) € K} is a set of decryptions.
Given a CCA; instance ¢ ~ v and its corresponding CCA§ application:

(__, Xenc, Xdec; Trands encs Adec) Riscas (s Xenc, Xdees Tands Ooncs Mdec)
we define the left ccay trace S = I-trace(¢ ~) by:
8 = (K, XencOrand; Xenclenc, XdecAdec)
We define similarly its right cCAg trace S’ = r-trace(¢ ~).

Let ¢ ~ 1) be a CCAs instance and S = I-trace(¢ ~ 1) be its left ccay trace. We use S to define the
normal form of the terms appearing, on the left, in branch using the CCA5 instance ¢ ~ 1. This is done
through four mutually inductive definitions:

e S-encryption oracle calls are well-formed encryptions.
e S-decryption oracle calls are well-formed decryptions.

e S-normalized basic terms are terms built using function symbols in Ao and well-formed encryp-
tions and decryptions.
o S-normalized simple terms are combinations of normalized basic terms using if then else .

Later, we prove that all intermediate terms in proofs can be assumed to be in these normal forms. To
keep the proof tractable, this will be done in two steps. Therefore we introduce two versions of some
forms. E.g., we define S-simple terms to be terms having a particular form, and S-normalized simple
terms to be S-simple terms satisfying some further properties.

A public/private key pair is valid if the same name has been used to generate the keys.

Definition 5.22. A valid public/private key pair is a pair of terms (pk(n),sk(n)) where n is a name.

An S-encryption oracle call is a valid encryption in £ of the form {u};f(, where ne is a valid encryption
randomness in R, pk is a valid public/private key pair appearing in K and the encrypted plain-text w is,
inductively, a S-normalized simple term.

Definition 5.23. A S-encryption oracle call is a term of the form {u}; where:
. {u};; € &, ne € R, (pk,sk) is a valid public/private key pair and with sk € K.

e v is a S-normalized simple terms.

204 Deciding Indistinguishability

Ny

) I\
pk

0(dec(t, sk)) dec(t,sk)
Encryption Oracle Call Decryption Oracle Call

Convention: «y,...,«a, are the encryptions of £ under pk appearing directly in t.

Figure 5.8: Shapes of Encryption and Decryption Oracle Calls

Similarly, a S-decryption oracle calls t is valid decryption in D under secret key sk € K such that all
other encryptions and decryptions appearing directly in ¢, either in guards or in the decrypted term, are
themselves S-encryption oracle calls and S-decryption oracle calls.

Definition 5.24. A S-decryption oracle call is a term of the form C'[§¢ (s;)i<p] in D where:
e (pk,sk) is valid public/private key pair and sk € K.

e There exists a context u if-free and in R-normal form, and a term ¢ such that:
t = ul(a;);, (deck)r] Vi < p, s; = 0(dec(t,sk)) sp = dec(t, sk) Vg € g, g=eq(t,a;)

e For all j, o; is a S-encryption oracle call.

e For all k, decy, is a S-decryption oracle call.
(a;); are called u’s encryptions. We often write (decy)s to denote a vector of decryption oracle calls.

Figure 5.8 gives a visual representation of the shapes of encryption and decryption oracle calls.
A S-basic term is a term build using S-encryption oracle calls, S-decryption oracle calls, function
symbols in Fjto and names in N, with some restrictions. More precisely, we require that:

e We do not use names in R, as this would contradict CCA5 randomness side-conditions.

e We do not decrypt terms using secret keys in K.

Definition 5.25. A S-basic term is a term of the form U[w, (o;);, (deck)s] where:
e U and oJ are if-free, U does not contain 0(_), fresh(R; @) and nodec(C, w).

o (aj); are S-encryption oracle calls.
o (decy)y are S-decryption oracle calls.
A S-basic conditional is a S-basic term of sort bool.

A S-normalized basic term is a a S-basic term that has been built without introducing any R-redex.

Definition 5.26. A S-normalized basic term is a S-basic term of the form U[w, (a;);, (decy)s] where:
e (aj); are encryptions under (pk;,sk;);, and (decy); are decryptions under (pky, sk).
o U, ({[I;}x,)s> (dec([lk; ski))x] is in R-normal form.

A S-normalized basic conditional is a S-normalized basic term of sort bool.

Finally, a S-simple term is a term build using only S-basic term and the if then else function
symbols. Moreover, if we use only S-normalized basic term, then we get an a S-normalized simple term.

Definition 5.27. A S-simple term (resp. S-normalized simple term) is a term of the form C[Eoﬁ] where:

5.7. Shape of the Terms 205

e (' is an if-context.
e b are S-basic conditionals (resp. S-normalized basic conditionals).
o i are S-basic terms (resp. S-normalized basic terms).
Remark 5.8. For all term u, the guards of a S;-decryption oracle calls are S;-normalized basic terms.

But the leaves of S-decryption oracle calls are not S-normalized basic terms, because they do not satisfy
the condition nodec(KC, -). O

Orderings The inductive definition of S-normalized basic terms naturally gives us a well-founded
relation <??1d between S-normalized basic terms, S-normalized simple terms, S-decryption oracle calls
and S-encryption oracle calls.

Definition 5.28. <%, is the reflexive and transitive closure of the relation <° defined as:
e For all S-encryption oracle call t = {u}},, u <St.

For all S-decryption oracle call:

t=C1g o (sil(aj);, (deck)r])i<p]

for all j, o <5 t and for all k, dec, < t.

—

e For all S-normalized basic term ¢ = U, (o), (decy)x], for all j, aij <5 ¢ and for all k, decy, < t.

i (
e For all S-normalized simple term ¢t = C[gou], Vb € g,b <Stand Vu € @,u <5 t.

We let <¢ be union of the restriction of <, to the instances where the left term is a S-normalized
basic term, and the set of guards appearing in the right-term. Formally:

Definition 5.29. Let <i'nSd be the reflexive and transitive closure of the order <’°, which has the same
definition than <, apart for the S-decryption oracle call:

e For all S-decryption oracle call:

t=C[7 o (sil(ay);, (deck)r])i<p]
for all j, a; <'S t; for all k, decy, <’® ¢; and for all b € g, b <'S ¢.

We finally define <¢, by requiring that for every terms wu, v:

u<$ v iff w<{S v and wisa S-normalized basic term

5.7.2 Eager Reduction for Aga,

We state here a key result about the Apa, = F(FAs™-Dup”-cCAs) fragment, which deals with the following
proof cut: when trying to prove that u ~ u’ holds, one may rewrite u and v’ into, respectively, 71 ({u, v))
and m ((u', v')), using R. The problem is that v and v are arbitrary large terms, which makes the proof
space unbounded. E.g. this is the case in the following proof:

L (P)

u, v ~u, v

m({(u, v)) ~m (W, v)

u~u

FAR - FA(
R

Of course there is a shortcut here: P is a proof of u,v ~ u/,v’, hence by Restr we have a proof of u ~ u/'.
Using the Restr elimination procedure (Lemma 5.1), we obtain a proof Pe,; of u ~ u’ such that Py is no
larger than P. By generalizing this proof cut elimination, we are going to show that if we have a proof
Ptaga, B~ B’ where B and 3’ are basic terms, then we can rewrite 8 and 3’ into normalized basic terms
7,7 such that there exists P’ no larger than P with P’ 4., v~ 7'

To prove this, we may have to extract several sub-proofs of P, and then recombine them into a single
proof P’. While the rule FAs and Dup can be easily re-combined, this is not the case for cCAy. Therefore,
given a finite family of CCAy instances (u; ~ ¥;);ecr, we give a sufficient condition guaranteeing that they
can be recombined into a single proof (@;);cr ~ (¥;)icr-

206 Deciding Indistinguishability

Definition 5.30. For every proof P in Aga,, we let instance(P) be the unique CCA5 instance used in P.

Example 5.14. If P is the proof:

- = ; n CCAo
W, (a)ier, (decj)jes ~ W, (af)ier, (decj)jeJ

- — ; FAS* - Dup®
Clw, (a;)ier, (decj)jes] ~ Cl, (af)icr, (dec;) je]

then instance(P) is the CCA9 instance W, (o)ier, (decj)jes ~ W, (&)ier, (dec;)jej. O

We say that a CCA5 instance ¢ is a sub-instance of another CCA5 instance v if the set of encryptions
and decryptions of ¢ are included into, respectively, the set of encryptions and decryptions of v. Moreover,
we require that the symmetric part of ¢ contains only sub-terms of the symmetric part of .

Definition 5.31. A cCA, instance:
wo, (i)iery, (dec;)jes, ~ @o, (af)icr,, (dec)) je,
is a sub-instance of a CCAs instance:
W, (i)ier, (decj)jes ~ W, (a)ier, (dec)) je
if and only if st(wy) C st(w), Iy € I and Jy C J.

The following proposition allows to re-combine several proofs Pi,..., P,, as long as there exists a
CCA4 instance @ ~ ¥ such that for every ¢, instance(FP;) is a sub-instance of @ ~ .

Proposition 5.7. Let (Bn)nen and (B,)nen be such that for every n € N, there exists a proof Py = aga,
Bn ~ B,. If there exists a CCAy instance @ ~ U such that for every n, instance(P,) is a sub-instance of
i ~ U, then there exists P such that:

o P l_.AFAﬁ (ﬁn)nEN ~ (6;1)716N
e instance(P) is a sub-instance of @ ~ v.

e P contain the same number of FAs rules than the derivations Py, ..., Py altogether.

Proof. Axioms FAg and Dup verify a frame property. More precisely:

/ —

<

~ o i, @~
Ny Azx then for every), w, of the same length =

w|,12'~

r

if

g &
S <2

Ax

r

Therefore we can easily combine all proofs (P,)nen. For every n € N, we let instance(P,) = @, ~ U,
Moreover, we let (U,)nen ~ (0,)nen be the formula obtained from (@,)nen ~ (@),)nen by removing all
duplicates, and where for every n, ¥,, C 4, and ¢/, C @}. Then we have the derivation:

(Un)neN ~ ("7In)neN
Dup®
(ﬁn)neN N (ﬁln)nEN

(6n)n€N ~ (ﬁ?lz)neN

Now, we want to conclude by applying the cCAs axiom. The problem is that cCAs does not verify the
frame property. But using the fact that for every n, @, ~ 4/, is a sub-instance of @ ~ ¥, and that
(Un)nen ~ (U],)nen does not contain duplicates, we can check that (¥,)nen ~ (¥7,)nen is a sub-instance
of @ ~ ¢. Hence we have a valid derivation in Aga,. []

Lemma 5.9. Let Ptyp,, B~ 3 and 8,8 be the, respectively, left and right CCAy trace corresponding
to instance(P). If B and ' are, respectively, S-basic term and S’-basic term then there exist v =g 8 and
~' =g B’ such that:

e v and ' are, respectively, S-normalized basic term and S’-normalized basic term.

5.7. Shape of the Terms 207

e There exists P' such that P' Fag,, v ~ 7/, instance(P') is a sub-instance of instance(P) and P’
contains less FAs rules than P.

Proof. Let § = (K, R,E,D). We prove the lemma by induction on the number of FA rules in P. If P
has no FAs application, then we have three cases:
e 3 and ' are identical, up to a-renaming. In that case, we can check that y =8 |gr and v = ' |
satisfy the wanted properties.

e B and f are, resp., a S-encryption oracle call and a 8&’-encryption oracle call. Since an S-encryption
oracle call is also a S-normalized basic term, we conclude by taking v = 8 and +' = 3.

e 3 and B’ are, resp., a S-decryption oracle call and a S’-decryption oracle call. Similarly, a S-
decryption oracle call is also a S-normalized basic term. We conclude by taking v = 8 and ' = 3.

For the inductive case, 8 and ' must start with the same function symbol. Hence:

/BEf(Bla"'vﬁn) B/Ef(/BL)B:L)

First, we check that (1,...,5, are S-basic terms. Indeed, the only way that some ; could not be a
S-basic term was if 8 was an S-encryption oracle call or a S-decryption oracle call. Then, f must be

{_}- ordec(_,_):

e in the former case, 8 = { }" where n. € R and one of the f; is equal to ne. Since S is a S-basic
term, we know that fresh(R;n.). Contradiction.

e in the latter case, § = dec(_,sk(n)) where sk(n) € K. Since S is a S-basic term, we know that
nodec(/C, sk(n)). Contradiction.

Hence fi,. .., B, are S-basic terms. Similarly 81, ..., 3, are S’-basic terms.

Using Lemma 5.1, we know that for every 4, we can extract from P a proof of Q; Fag,, Bi ~ 3. One
can check that the procedure described in Lemma 5.1 is such that P has as many FA\q applications than
all the (Q;); altogether. By induction hypothesis, let:

Pl l_.AFA. ’le’y{a 7Pn l_.AFA. ’YTLN’Y;L

be such that for every i, v; =g 8:, vi =r ', i is a S-normalized basic term and v, is a §’-normalized
basic term, instance(P;) is a sub-instance of instance(P) and P; has less FAg applications than Q;. By
Proposition 5.7, there exists a proof P’ of:

P’ }_AFA, (Yn)nen ~ (VQ)nEN

such that instance(P’) is a sub-instance of instance(P) and P’ has as many FAs applications than the
(P;); altogether. Since P; has less FAs applications than @;, and since P has as many FAg applications
than all the (Q;); altogether, P’ has less FAg applications than P.

f(B1,-..,0n) and f(B1,...,5)) can only have R; redexes at the top-level. If they have no R; redexes,
then f(51,...,08,) and f(By,...,B)) are, respectively, S-normalized basic term and &’-normalized basic
term. We conclude by applying FA;:

()
717"')771’\"717""71/1
FA;
FOnse) ~ FOns)
Therefore, assume f(B1,...,5,) or f(By,-..,0,) have a Ry redex. We have several cases:

e Both left and right sides can be reduced by m;({x1, x2)) — x;. W.lLo.g. we assume ¢ = 1:

(15 72) ~ {715 73)
({71, 72)) ~ m ({115 72))

FA.,

We look at the next rule in P’:

— If it is CCAg, then (y1, 72) and (71, 74) are the same terms, up to a-renaming. We conclude
by taking v = 1 and 7' = ;.

208 Deciding Indistinguishability

— Or it is a function application:

(@)
V1,92 ~ V1 Vb
(1, 72) ~ (1, 72)
m({(v1s 72)) ~ ({715 72)

A

Using Lemma 5.1, we extract from @ a proof Q" 4., 71 ~ 71 no larger than Q. We conclude
by taking v =1 and 7/ = +4:

(@)
T~ R (5.7)
({71, 72) ~ ({715 72)

e Only one side can be reduced by m;((z1, z2)) — x;. Therefore the next rule applied in (P’) must
be CCAs (since the head function symbols differ). But in a ccAy application, we cannot have
(_,)y~ f'(_)with f' # (,). Contradiction.

e Both sides can be reduced by dec({z}y,,,sk(n)) — x. Hence n = 2, 71,72 = {u}p,),sk(n),
Yy vy = {u }pk(n,),sk(n’) and P’ is of the form:
{0y () ~ (1 SO
dec({1t} .y sK(1)) ~ dec({u} o, k()

FAd ec

We look at the next rule applied on {u};k(n), o~ {u'};L(n/), _. If it is a function application then
we have a shortcut using Lemma 5.1, as we did for (5.7). If it is CCAg, we have two cases:

— {u};k(n) and {u’};;((n,) are the same terms, up to a-renaming. We conclude by taking v = u
and v = u’.
- {u}gk(n) and {u };L(n,) are, respectively, a S-encryption oracle call and a &’-encryption oracle

call. Then sk(n) € K. Since 75 = sk(n) and v2 is a S-normalized basic term, we know that
nodec(/C, sk(n)). Contradiction.

e Only one side can be reduced by dec({x};k(n), sk(n)) — x. Then (P’) is necessarily of the form:

{t} iy sk(n) ~ {2/}, 5K (')
dec({t}5 (), sk(n)) ~ dec({t'} 7, sk'(n"))

FAd ec

We look at the next rule applied to {t},

— Ifit is COAg, then p’ = pk(n’). Therefore the right side can be reduced by dec({z}[, /. sk(n)) —
x. Contradiction.

— If it is FAy y_ then there is a proof of _pk(n),sk(n) ~ _,p’,sk(n"), which implies that p" =
pk(n’). Therefore the right side can be reduced by dec({z}]y) sk(n’)) — z. Contradiction.

and {t/ };t

e Both side can be reduced by eq(z,x) — true. In this case the proof cut elimination is trivial.

e Only one side can be reduced by eq(z,z) — true. Therefore we have a proof of the form:

tt~t
eq(t,t) ~eq(t',t")

eq(,)

Using Lemma 5.2 we know that ¢’ = ¢, therefore both side can be reduced by eq(z,z) — true.
Contradiction. |

5.8. Proof Form 209

5.8 Proof Form

5.8.1 Early Proof Form

We showed in Lemma 5.8 that:
T ((2Box + Rp)* - CSY - {BFA(b,b')}* - UnF - FAS" - Dup” - CCAQ) (Ay)

is complete for F((CS{” + FA\o + R + Dup + CCA2)*). Let us consider a proof P following this ordering.
The only branching rule in A, is the CSy rule, which has two premises. Hence after having completed
all the CSy applications we know that the proof will be non-branching and in Aggz. We want to name
each branch of the proof tree, and its corresponding instance of the CCAs axiom. To do so, we index each
branch of the proof tree P by some [€ L where L is a finite set of labels,

Definition 5.32. We let FP be the proof system - with branch annotations. When P FP ¢ ~ ¢/, we let
label(P) be the set of labels annotating the branches in P, and for all [€ label(P), we let instance(P,1)
be the cCA5 instance used in branch .

When applying the CSy rule on two boxed conditionals b and , e know that the

sub-proofs of by ~ b} and by ~ b} lie in the fragment Acs,,. This gives us useful information on the shape
of the terms. To use this, we define the extract; and extract, functions which allow to retrieve the left and
right sub-proofs of, respectively, by ~ b} and by ~ 5.

Definition 5.33. Given a proof P+ i ~ ¢ and a position h in the proof P such that:

’lﬁ, bla (ul)l ~ 1[)'/7 blla (u;)l U_ja b2> (Uz)z ~ 'Lﬁlv bl27 (v;)z

Fin = w, (if b then u; else v;), ~ @, (if b/ then u; else v}),

We let extracti(h, P) be proof of by ~ b} extracted from Pj,, and extract,(h, P) be proof of by ~ b
extracted from P, using the Restr elimination procedure described in the proof of Lemma 5.7.

CSy

Using this, we define what are proofs in early proof form.

Definition 5.34. For all terms ¢,t’ and proofs P such that P I—‘j4csD t ~ t', we say that P proof in early

proof form if t and ¢’ are of the following form:

t= C[(bh)heH o (W)lelabel(P)} At = C[(b’h)

where H is a set of positions in P such that:

/
her © (ul)lelabel(P)

e for all h € H, the rule applied at position h in P is a CSg rule on the conditionals:

(T [T,

o Let PM = extract|(h, P) and P = extract,(h, P), then:

o ’ b/h, I b/hr

PU D B~ 0™ and PR D bt~ b

and these two proofs are in early proof form.

e label(P™) C label(P), and for all I € label(P™), instance(P™,1) is a sub-instance of instance(P, ()
(same for label(P"r)).

e For all [€ label(P), the proof of u; ~ uj extracted from P is in the fragment Aggz.

Moreover, we let cs-pos(P) = H.

Proposition 5.8. For all terms t,t' and proofs P such that P FAcsD t ~t', there exists a labelling P’ of
P such that P’ H‘Q‘CSD t ~t' and P’ is in early proof form.

210 Deciding Indistinguishability

Proof. We can check that the proof P has the wanted shape and is properly labelled by induction on the
size of the proof, by observing that for all h € cs-pos(P) and x € {l,r}, extracts(h, P) is of size strictly
smaller that P. We only need to do some a-renaming to have the labelling of the sub-proofs coincide.
Finally we can check that the resulting proof @ is such that for all h € cs-pos(Q),x € {l,r}, for all [€
label(extract,(h, P)), the CCA5 instance instance(extract,(h, P),[) is a sub-instance of instance(P,). This
follows from the fact that extracty(h, P) is obtained through the Restr elimination procedure from P. W

We define below the set index(P) of all positions of P where a CSp rule is applied. This includes the
set of positions cs-pos(P), as well as the CSy applications in sub-proofs of conditionals b ~ b’. This set
is naturally ordered using the prefix ordering on positions.

Definition 5.35. Let P '_E)élcs t ~t' in early proof form.
O
e We let index(P) be the set of indices where CSp rules occur in the proof P:

index(P) = cs-pos(P) U U index (extract|(h, P)) U index (extract,(h, P))
h€cs-pos(P)

e For all h,h' € index(t, P), we let < be the ancestor relation on positions, defined by h < &’ if and
only if h is a strict prefix of h'.

e For all h = hy, where h € index(P) and x € {l,r}, we let cs-posp(h) = cs-pos(extracty(h, P)). When
there is no ambiguity on the proof P, we write cs-pos(h) instead of cs-posp(h).

We define the set h-branch(l) of positions of P where a CSg rule is applied on the branch {. Of course,
for all [€ label(P), € € h-branch(l) since € is the index of the toplevel proof P.

Definition 5.36. Let P l_l;lcsm t ~t' in early proof form. For all [€ label(P), we define:
h-branchp(l) = {h« | h € index(P) Ax € {l,r} Al € label(extracty(h, P))} U {e}

We abuse the notation and say that h € h-branchp (1) if there exists x € {I, r} such that hy € h-branchp(1).
In that case, we say that x is the direction taken at h in [.
We omit the proof P when there is no ambiguity, writing h-branch(l) instead of h-branchp(l).

5.8.2 Shape of the Terms

For all proofs in Ay, all R rewritings are done at the beginning of the proofs in the (2Box + Ry)* part,
and, afterwards, all rules (apart from Dup) only “peel off” terms by removing the top-most function
symbol. Therefore the terms just after (2Box+ R)* characterize the shape of the subsequent proof. This
observation is illustrated in Figure 5.9. Recall that for all P l—'fAcsD t ~ t' in early proof form, we have:

t= C|:(bh)hGH < (Ul)l€|abe|(P):| and t = C[(b/h)heH < (u;)lelabel(P)]

where for all I € label(P), the extraction from P of the sub-proof of u; ~ v is in the fragment Aggz.
Therefore, for every [, u; and u; are of the form:

w = Dy[(Bin)ier, © (Ym)mens, | up = Dy[(Bi)ien © (Y1) men, |

where D; is an if-context and:
e (Bit)ier, and (B;;)ier, are conditionals such that the sub-proofs (8;; ~ B;)ie1, extracted from P
are in -AFA,-
e (vj1)jem, and (7} ,;)jen, are terms such that the sub-proofs (v ~ 7} ;)jem, extracted from P are
in Aga,.
Using these notation, we give some definitions:

Definition 5.37. Let P I—&CSD t ~ t' in early proof form. For every [€ label(P), we let:
o (b,b) <& . (t ~t, P)if and only if there exists hg € cs-pos(P) such that b = b0 and b’ = b'ho.

—Cs~vCs

5.8. Proof Form 211

Acsg
cs:
by | 7
(Lorlo,n),
} Acsg
} FA*
777777777 z (BFA(, b))

(Bio); (Bi,m); } FAL
FA,*

70,0 V0,0 Yo,m Yrm,m

Figure 5.9: The shape of the term is determined by the proof.

o (8,8) <&l (t ~ ', P) if and only if there exists i € I; such that 3 = 3;; and ' = g,l
e (7,7) Sf’Nll (t ~t', P) if and only if there exists m € M; such that v = v, and 7' =, ;.

Remark 5.9. Let P FE’%SD t ~ t' in early proof form and L = label(P). Then:

t = C{_ o (Dy [(ﬂ)ﬁgi’L(t,P) © (V)WSFvl(t,P)])leL}
and ' = C’{_ o (Dl [(5/)[362,1“,7}3) o (7/)7/§f”(t/,P)])leL} O

These relations allow use to obtain all pairs of terms appearing at the root level in P. We naturally
define the asymmetric relation <, from <,.,:

efinition 5.38. Let t ~ 1" in early proot form. For every [€ labe and x € {c,l,cs}, we let:
Definition 5.38. L PI—E’L‘CSD i ly ff F y [€ label(P d I 1

Vs. s < (t, P) if and only if (s,)<L (t~t,P)

Let h € index(P) and x € {I,r}. We lift these relations to hy using the proof extract,(h, P).

Definition 5.39. Let P }—E’%sm t ~ t' in early proof form. Let [€ label(P), h € index(P), x € {l,r} and
b, b’ be such that extract,(h, P) is a proof of b ~ b'. Then:
e For any A € {c~c,|~I, cs~cs}:

Vs, s (s,8") <t (t ~t, P) if and only if (s,8") <K' (b ~ V', extract,(h, P))
e For any A € {c,l,cs}:
Vs. s <l (t, P) if and only if s <% (b, extract,(h, P))
Remark 5.10. We extend these notations to proofs P such that P }—5’4> t ~t'. Let P’ be such that:
p!

pP= Y (2Box + Rn)*

and P’ FE’ACSD to ~ ty, then (s,s’) §Zl (t ~ t',P) if and only if (s,s') §21 (to ~ &5, P') for any

A € {c~c,|~l cs~cs}. We have a similar definition for A € {c, |, cs}. O

212 Deciding Indistinguishability

5.8.3 Proof Form and Normalized Proof Form

Definition 5.40. Let P I—E’%SD t ~ t' in early proof form and L = label(P). Let S; be the left trace of
the CCAy instance used in branch [, and S] be the right trace of instance(P, [):

S}” = I-trace(instance(P, 1)) S/¥ = r-trace(instance(P, 1))

We say that P is in proof form if and only if, for every [€ L:
e for every h € cs-pos(P) and z € {l,r}, the proof extract,(h, P) is in proof forms.

o (B,8) <l (t~t,P), Bisa S-basic term and (' is a S'-basic term.

e (v,7) gfjl (t ~t',P), v is a S-basic term and +' is a §’-basic term.
We obtain the definition of normalized proof form by replacing, in the definition above, basic term by
normalized basic term, and proof form by normalized proof form.

We write P F"Pf ¢t ~ ¢/ whenever P is a proof of t ~ ¢ in normalized proof form.

Let P F"Pf ¢ ~ ¢/, we already defined the set of conditionals <" (¢, P) used in the BFA rules in the
sub-proof P of at index h and branch [. In the case of proof in normalized proof form, these conditionals
are normalized basic conditional. Similarly the set of leaf terms S,h’l (t, P) in the sub-proof of P of at
index h and branch [is a set of normalized basic terms. Recall that a basic term may contain other
basic terms in its subterm. Hence we can define the set of all normalized basic terms appearing in the
subterms of <! (¢, P)U §|h’l (t, P).

Definition 5.41. For every P F"Pf ¢t ~ ¢/, for every term s, s SEQZ (t, P) if and only if there exists
u(<hl U g{”)(t,P) such that s §ft’ u.

5.8.4 Restriction to Proofs in Normalized Proof Form

=/

Definition 5.42. We let CCA; be the restriction of CCAy to cases W, (o), (decj); ~ @', (af);, (decg)j
where:

e (a;);, (a}); are encryption oracle calls.

e (dec;);, (dec)); are decryption oracle calls.
Lemma 5.10. The following strategy is complete for F((CSiF + FA\o + R + Dup + CCA2)*):
5((2Box + Ro)* - CS*, - {BFA(b,b')}* - UnF - FA* - Dup” - CCA3)
Proof. By Lemma 5.8, the following strategy is complete for F(CS{® + FA\q + R + Dup + CCA2):
5((2Box + Ro)* - CS?, - {BFA(b,b')}* - UnF - FA* - Dup” - CCAs) (A,)

For every proof P FP ¢ ~ t' in this fragment, we let L7 = label(P) the set of branch indices of P.
Moreover, we let SI’ = (KF',RF,EF, DF) be the left trace of the CCAs instance of branch [, i.e. Sf =
I-trace(instance(P,1)). Finally, we define the order <!, as follows: for all u,u’ € EF UDF, we let u <4 o/
hold if u is a strict subterm of u’.

We are going to show that for every proof P of t ~ ¢’ in A, , there exists a proof Q of t ~ ¢’ such that
for every [€ label(Q), SZQ and DlQ are sets of, respectively, SlQ -encryption oracle calls and SlQ -decryption
oracle calls, and the right part of @ and P are the same. We prove this by induction on the number of
elements of J, EP UDY that are not S -encryption oracle calls or SF-decryption oracle calls.

Let P be a proof of t ~ ', 1 € L and let u minimal for <} which is not a S} -encryption oracle call
or a SlP -decryption oracle call. We have two cases:

o If u € & is an encryption. We know that u = {m}p. where the corresponding secret key sk is in
KF. Let (ay)x be EF Nst(m), and (dec,,),, be D Nst(m). Let C be the smallest context such that:

m = C[(o), (decy)p]

5.8. Proof Form 213

From the definition of cCAz, we know that C[] does not contain the 0() function symbol. We
let A be an if-context and (B;[])i, (Un[])m be if-free contexts in R-normal form such that C[] =r
A[(B;[])i © (Un|]))m]. Let mg be the term:

mo = A[(Bi[(ar), (decn)n])i o (Un[(ak)k, (decn)n])m]

We know that mo =g m. We are going to show that my is a Sf’-simple term. Since C[] does not
contain the 0(_) function symbol, we know that the contexts (B;[]); and (Up[])m do not contain
0(_). By minimality of u, we know that the (ay)), are Sf'-encryption oracle calls, and the (dec,,),
are SlP -decryption oracle calls. For every k, ay is of the shape ap = {_};ﬁk For every n, we let
sk, be the secret key used in dec,,. Assume that there is some ¢ such that:

m= Bi[({[]k};ﬁk)k‘v (dec({]n, skn))n]

is not in R-normal form. Since B;[| is in R-normal form, we can only have a redex at one of the
encryption. More precisely, there must exist some k such that dec({]] k}gﬁk,skk) is a subterm of m.

By consequence, sky, is a subterm of B;[]. But since sky, € K}, we know that st(B;) does not contain
sky (ski can only appear in D}). Contradiction. Hence m is in R-normal form, which implies that
(Bil(ow)k, (decy,)n])i are SE-normalized basic terms. Similarly we prove that (U, [(cu)k, (decp)n])m
are S’ -normalized basic terms. Hence myg is a S -normalized simple term.

We then rewrite, using R, every occurrence of {m}7 by {mo}J in branch [of P. We check that this
yields a valid proof @. The only difficulty lies in making sure that the side-conditions of the cca,
application for the decryptions still holds. Their is one subtlety here: an encryption a = {ma}gﬁ
must be guarded in some dec(ug,sk) iff it appears directly in ug. This side-condition is preserved
as it is stable by any R rewriting (hence in particular the rewriting of {m}J into {mo}g).

We can check that the resulting proof Q of ¢t ~ ' has a smaller number of terms in SlQ u ’DlQ

which are not SlQ—encryption oracle calls or SlQ-decryption oracle calls. Since all other branches
I" € Lp\{l} are left unchanged, and since the right part of the proof (corresponding to t') is also
left unchanged we can conclude using the induction hypothesis.

e One can check that the case where u = C[(ge)e © (5a)a<p) € DY is a decryption cannot happen. M
We are now ready to prove that F"Pf is complete.

Lemma 5.11. The restriction of the fragment Ay to formulas provable in F"Pf is complete for:
S((CSF + FA\ o + R + Dup + CCA2)")
Proof. Using Lemma 5.10, the following strategy is complete for F((CS{® 4+ FA\q + R + Dup + CCA3)*):
F((2Box + Rp)* - €S - {BFA(b,b')}* - UnF - FAS* - Dup® - CCA3)

First we show that this strategy remains complete even if with restrict it to proofs such that the terms
after (2Box + Rn)* are in proof form. Let I—ACSD t ~ t', we want to find to =g t,t, =g t’ and P’ such
that P’ F"Pf ¢ ~ ¢/,

By Proposition 5.8, we know that there exists P such that P I—'j4csD t ~t'. Let h € index(P),x € {l,r},
h = h, and let b" b be such that extract.(h, P) l_l;lcsz, b" ~ b™M. First, we prove that we can ensure

that for every (3,5')(<h U S,hw’l,)(t ~ t/, P), the terms 8 and /' are, respectively, Sf -basic term and

>c~c
S/F-basic terms. We know that:

B = B[w, (o), (decy) k] p' = B[, (a});, (decy)k

where B and B’ are if-free and o, («;);, (decy), ~ @, (o), (dec},)y is a sub-instance of instance(P,).

Since this is a sub-instance, we know that fresh(R/;) and nodec(KY,). Moreover, using the fact
that instance(P,[) is a CCA; instance, we know that (a;); and (decy)y are, respectively, S} -encryption
oracle calls and S/’-decryption oracle calls. Therefore if i is if-free then j is a S/’-basic term.

214 Deciding Indistinguishability

Assume that @ is not if-free. Then there exists contexts B, B., By, B1 such that:
B = B.[if B. then By else B1]] =g if B, then B.[By] else B.[Bi]
Let to be the term obtained from ¢ by replacing this occurrence of 3 by:

if Be[d, (@;);, (decy)x] then (Be[Bo])[@, (@;);, (decy)s] else (Be[Bi)[w, (a;);, (decy)x]

Similarly we define t{, by replacing 8’ by the corresponding term. Then to =g ¢ and t; = t'. Moreover
it is easy to check that the formula ¢y ~ t{ is provable in I—E’4CSD, as we replaced one BFA application by

three BFA applications (without changing the encryptions, decryptions or branches of the proof etc ...).
We replaced B by three terms B, B.[Bo|, Bc[B1] containing strictly less if then else applications.
Hence, by induction, we ensure that all such contexts B are if-free, by repeating the proof rewriting
above. We deduce that there exists a proof @) of t ~ t’ where @ is in proof form.
To obtain a normalized proof form, we only have to apply the Lemma 5.9 to all branches [, and to
commute the new R rewriting to the bottom of the proof. |

5.9 Properties of Normalized Basic Terms

5.9.1 Basic Term Extraction

Definition 5.43. We call a conditional context a context C[]z such that all holes appear in the conditional
part of an if _then_else_. Formally, for every position p, if C, is a hole [J, then p = p’.0 and there exist
u and v such that:

Clpy = if |5 then u else v

We say that u is an almost conditional context if u a conditional context or a hole.

Example 5.15. We give an example of a conditional context C' with two holes on the left, and a context
C’ which is not a conditional context on the right (since it has holes in leaf positions):

/ \ / \
1P 1P
C= (c/ \d> o and ' = (c/ \d> o
/ N\ / N\
to Hu to b
/ AN / \
tq to Hy []z O

The main goal of this subsection is to show the following lemma.

Lemma 5.12. For all P =Pt ~ ', for all h,l and B, < 7bt L (t,P), there exists an almost conditional
context '] such that:

B =p"[6] and leave-st(3 |g) N cond-st (B’[] J,R) =0

Before delving in the proof, we would like to remark that the above lemma is not entirely satisfactory.
Consider the following example:

Bo = eq({if b then s else t}pk(n), 0) B1 = eq({if) then u else u}pk(0)
r if bthen eq({s}};,0) else eq({t}} ,0)

ﬁg 56

where 3,85 & cond-st(u |r) and s #g t. Then f§,5; & cond-st(51 |r), because 3 disappear using
the rule if x then y else y — y in R. Hence, Lemma 5.12 could choose 81 = 1. Of course this situation
cannot occur, as we cannot have 3§ be a subterm of 3; (this contradicts the freshness side-condition of

5.9. Properties of Normalized Basic Terms 215

encryptions’ randomnesses in the CCA5 axiom). But we cannot rule this situation out simply by applying
the lemma, we have to make a more in-depth analysis. We would like to a stronger version of this lemma
that somehow directly “includes” the above observation.

To do this we introduce over-approximations leave-st(-) and cond-st(-) of, respectively, leave-st(- | r)
and cond-st(- Lr). Then, we show that Lemma 5.12 holds for leave-st(-) and cond-st(+).

Definition 5.44. We define the function leave-st from the set of terms to the set of if-free terms in
R-normal form:

leave-st(ug, . .., upn) = U;<yleave-st(u;) leave-st(if b then u else v) = leave-st(u, v)
leave-st(f(uo, ..., un)) = {f(vo,--.,vn) Lr| Vi < n,v; € leave-st(u;)} (Vf € Fg UN)
We define the function cond-st from the set of terms to the set of if-free conditionals in R-normal form:

cond-st(uo, . .., Upn) = Uj<pcond-st(u;) cond-st(f()) = cond-st(@) (Vf € FjUN)

cond-st(if b then u else v) = cond-st(b) U leave-st(b) U cond-st(u, v)

Remark 5.11. There are multiples over-approximations. For example, assuming that b, u, v, w, s,t are
if-free terms in R-normal forms, there in an over-approximation in the if then else case:

b b
Ieave—st((u/ b)iR):{u,w} M(u/ b):{u,v,w}

/N /N
vooow vow

\

There in another over-approximation in the f case:

Ieave—st(f(u/b\v , s/b\t) Ir) ={f(u,s), f(v,t)}

eavesi(7(0L T)) =) S, f09). S 0.0)

cond-st() inherits from leave-st() over-approximations, and also over-approximates in the if then else
case. E.g., while cond-st(¢ | g) never contains conditionals which are spurious in ¢, the set cond-st(¢) may:

cond—st(,b\u iR) =0 M(,b\u) = {b}

u u

O

leave-st(-) is a sound over-approximation of leave-st(- |g). Moreover, leave-st(-) and leave-st(- |g)
coincides on terms in R-normal form. The same properties hold for leave-st(-) and leave-st(-).

Proposition 5.9. leave-st and cond-st are sound over-approrimations:

o For all u —% v/, leave-st(u) D leave-st(u’). Moreover leave-st(u | g) = leave-st(u | r).

e For all u —% v/, cond-st(u) D cond-st(u’). Moreover cond-st(u |r) = cond-st(u |g).

Proof. The facts that leave-st(u |r) = leave-st(u |gr) and cond-st(u |r) = cond-st(u |g) are straight-
forward to show. Let us prove by induction on —7% that for all u —% ', leave-st(u) D leave-st(u’).
If w = o this is immediate, assume that v —r v —% «. By induction hypothesis we know that
leave-st(v) D leave-st(u'). Therefore, we only need to show that leave-st(u) D leave-st(v). We do a case
disjunction on the rule applied at u — v (we omit the redundant or obvious cases):

o u =if b then (if b then s else t) else w and v = if b then s else w then:

leave-st(u) = leave-st(s) U leave-st(t) U leave-st(w)

D leave-st(s) U leave-st(w)

= leave-st(v)

216 Deciding Indistinguishability

e 1 = if b then s else s and v = s then:

leave-st(u) = leave-st(s) = leave-st(v)

o u = if (if b then a else ¢) then s else t and v = if b then (if a then s else t) else (if ¢ then s else t):

leave-st(u) = leave-st(s) U leave-st(t) = leave-st(v)

o u = if b then (if a then s else t) else w and v = if a then (if b then s else w) else (if b then ¢ else w):

leave-st(u) = leave-st(s) U leave-st(t) U leave-st(w) = leave-st(v)

e u= f(,if b then 5 else t) and v = if b then f(7,) else f(u,1) then:

leave-st(u) = {f(@',@") |r| Vi, w; € leave-st(w;) A Vj,w] € leave-st(s;) U leave-st(t;)}

I

U{f(@'",@") Lr| Vi, w; € leave-st(w;) A Vj,w] € leave-st(t;)}

)
{f(@',@") Lr| Vi, w] € leave-st(w;) A Vj, w] € leave-st(s;)}
)
leave-st(f(w, 5)) U leave-st(f (i, 1))

v v

leave-st(v)

o (u=mi({(s1, 82)), v=35;), (u= dec({m}pk(n), k(n)), v=m) and (u = eq(z,x), v = x) are trivial.

Similarly, we show by induction on —%, that for all u —% «’, cond-st(u) 2 cond-st(u). If w = u/ this is
immediate, assume that w —r v =% «’. By induction hypothesis we know that leave-st(v) D leave-st(u’).
Therefore, we only need to show that leave-st(u) D leave-st(v). We do a case disjunction on the rule
applied at u — g v (we omit the redundant or obvious cases):

o u = if b then (if b then s else t) else w and v = if b then s else w then:

cond-st(u) = cond-st(s,t,w) U cond-st(b) U leave-st(b)
D cond-st(s, w) U cond-st(b) U leave-st(b)
D cond-st(v)

e (u = if b then (if a then s else t) else w, v = if a then (if b then s else w) else (if b then ¢ else w))
and (u = if b then s else s, v = s) are simple.

o u = if (if b then a else ¢) then s else t and v = if b then (if a then s else t) else (if ¢ then s else t)
then:

cond-st(u) = cond-st(b, a, ¢, s, t) U leave-st(b, a, ¢) = cond-st(v)

e u = f(,if b then 5 else t) and v = if b then f(u,3) else f(w,#) then:

cond-st(u) = cond-st(b, i, 5, 1) U leave-st(b) = cond-st(v)

o (u = m((s1,52)), v=-s;), (u dec({m}pk(n)7 k(n)), v = m) and (u = eq(z,z), v = x) are
trivial. m

Corollary 5.1. For every term u, leave-st(u) 2D leave-st(u Lr) and cond-st(u) 2 cond-st(u |r).
Let us show the following helpful propositions:

Proposition 5.10. For all S;-normalized basic terms 3,3 if:

leave-st(3) N leave-st(B3’) # ()

then we have Sj-normalized basic terms B[, (a?);, (6%)] and B[, (a?);, (0"%))] such that:
B = Bl@, (a’);, (6")] B' = B, (a”);, (6")]

V4, leave-st(a’) Nleave-st(a?) # () VEk, leave-st(6") N Teave-st(6'%) #

5.9. Properties of Normalized Basic Terms 217

Proof. We have S;-normalized basic terms B[, (o), (6%);] and D[@’, (a7);, ("%))] such that:
B8 = B[, (a’);, (6")1] 8= D@’ (7);, (6™)4]
Since 3, 3’ are S;-normalized basic terms, we know that:
Bl ({{]5}-);, (dec([]r, _))x] D", ({11;3-);, (dec((x: _))x]
are in R-normal form, that BJ], D[], W, @’ are if-free and that BJ], D[] do not contain 0(_). Hence:

leave-st(3) = { B[&, (a’);, (d")k] | Vj,a’ € leave-st(a?) A Vk,d" € leave-st(6*)}
leave-st(8') = { D[, (a7);, (d"*)k] | Vj,a” € leave-st(a?) A Vk,d" € leave-st(5'%)}

Similarly to what we did in the proof of Lemma 5.2, we prove that we can assume that B[] = DJ]
by induction on the number of hole positions in B[] or D] such that (B[])|, differs from (D[])}, (modulo
hole renaming). Knowing that B[] = D[], it is then straightforward to show that:

W=’ V4, leave-st(a?) Nleave-st(a’) # () Vk, Teave-st(6*) N leave-st(6'%) #)

The base case is trivial, let us prove the inductive case. Let B[, (a’);, (d*)x] and D[, (a'7);, (d'%)x]
be such that:

Vi, k.a’ € leave-st(a?) A d* € leave-st(6*) Vi, k.a"” € leave-st(a/?) A d'* € leave-st(6'%)

and:

B[, (a?);, (d")x] = D[@’, (a'7);, (d'*);] € Teave-st(8) N leave-st(j3’)
First, observe that if a position p is valid in both BJ[] and D[], and is not a hole in both contexts, then
B[] and DJ] coincide on p.
Let p be the position of a hole in B[] such that p is a valid position in D[], but not a hole (if p is not
valid in D[], invert B[] and DI]). We then have three cases depending on (B[]),:

e B contains a hole [], at position p such that §), € @w. Then let D be the context D in which we
replaced the term at position p by [, (where y is a fresh hole variable) and let @' be the terms @’
extended by f,, (binded to [J,). Then B differs D on a smaller number of hole position, therefore
we can conclude by induction hypothesis.

e B contains a hole [|, at position p such that j3|, is an encryption oracle call {m}gﬁ(np). Since
{m}g[(‘(np) € & is an encryption in an instance of a CCA5 application, we know from the freshness
side-condition that n, does not appear in w and that n, € R;.

Moreover since 8’ is a S;-normalized basic term, we know that fresh(R;;w’). But since p is a valid
non-hole position in D, we have n, € w’. Absurd.

e Similarly if B contains a hole [J, at position p such that 3|, is a decryption oracle call dec(m, sk(n)).
Since dec(m,sk(n)) is a decryption oracle call we know that sk(n) € K;. Moreover since g’ is a
Si-normalized basic term, we know that nodec(/C;,w’). But since p is a valid non-hole position in
D, we know that either sk(n) € @’ or n € w’. Absurd. []

We can now state the following proposition.

Proposition 5.11. For all S;-normalized basic terms (3,5, we have 8 = 8’ whenever:

leave-st(3) N leave-st(3') # ()

Proof. We show this by induction on |3|+|3’|. Using Proposition 5.10 we know that we have S;-normalized
basic terms B[, (), (6%)], B[W, ('), (6'%)x] such that:

8= B, (o)), (6")] B8 = B, (o), (5™)x]

V4, leave-st(a?) Nleave-st(a’?) # () Vk, leave-st(6") N leave-st(6'%) #

218 Deciding Indistinguishability

To conclude we only need to show that for all j, leave-st(a’) N leave-st(a’?) # @) implies that o/ = o
and that leave-st(6%) Nleave-st(§’%) # () implies that 6* = §’*. The former is immediate, as leave-st(a?) N
leave-st(a/?) # () implies that o? = {m};ﬂ(n) and o7 = {m'};ﬂ(n). Since o, a/? € & and since there is as

most one Sj-encryption oracle call with the same randomness, we have m = m’. It only remains to show
that for all k, §* = §’*. Since 6%, §’* are S;-decryption oracle calls we know that

¥ = C 7 o (si)i<p] §*=C"g" o (s7)izp]
where:
e There exists contexts u, v, if-free and in R-normal form, such that:
Vi < p, s; = 0(dec(u[(a;);, (decy)], sk)) sp = dec(u(ej);, (decy)x], sk)
Vg € g, g = eq(ul(;);, (deck)i], org) where ag € (a;);
Vi <, s, = 0(dec(u/[(a})), (dech)], sK)) s/, = dec(u[(a});, (dec))], sK)

Vg e g, g=eq(u[(c));, (dec;)k},a’g) where aj, € (a});

e (aj);, (a}); are Si-encryption oracle calls.

o (decy), (decy) are Sj-decryption oracle call.

Since leave-st(6*) Nleave-st(6’%) # 0, and since u, v’ are if-free and in R-normal form we know that u = u’,
for all j, leave-st(a;) N leave-st(a}) and for all k, leave-st(decy) N leave-st(dec},). Tt follows, by induction
hypothesis, that for all j, a; = a} and for all k, decj, = decj,. We only have to check that the guards are
the same. Since 6%, 8% € D;, we know from the definition of the cCAy axioms that 6% (resp. ¢’%) has one
guard for every encryption a € & such that o = {_}}, and n appear directly in s, (resp. s,). Since we
showed that s, = s},, we deduce that 8%, 6’% have the same guards. Since guards are sorted according to
an arbitrary but fixed order (the sort function in the definition of RX, az), we know that ok = o'k, n

Corollary 5.2. For all P+"P't ~t', for all h,1:
(i) for all B, 8" <Ml (¢, P) if leave-st(3 | r) Nleave-st(8’ Lg) # 0 then B = B,
(ii) for all v,7' §7’l (t, P) if leave-st(y Lr) Nleave-st(y' Lr) # 0 then v =+'.
(iii) for all B <Bl (t,P), v <P (t, P) if leave-st(B |r) N leave-st(y r) # 0 then § =~.
We can now show the following lemma, which subsumes Lemma 5.12:

Lemma 5.13. For all P F"Pf ¢t ~ t, for all h,l and 3,5 SZ}Z (t, P), there exists an almost conditional
context]| such that:

B'=p18 and leave-st(B Lg)Ncond-st(B']]) =0

Proof. Let ! € label(P). We prove by mutual induction on the definition of S;-normalized simple terms, S;-
normalized basic terms, S;-encryption oracle calls and S;-decryption oracle calls that for every u € st(3’)
such that w is in one of the four above cases, there exists a conditional context u.[] such that:

u = ue [f] leave-st(8 |) N cond-st (u.[]) =0 leave-st(i.) = leave-st()

Moreover if u is a Sj-normalized basic term then there exists an almost conditional context ugq[] such
that:

u = ug [B] leave-st(83 | g) N ((cond-st (uq[]) U leave-st (uq[])) =0

e Normalized Simple Term: Let u = C [l; © §], where b are S;-normalized basic conditionals and
§ are Sj-normalized basic terms. Let by[] and §.[] be contexts obtained from b, by induction
hypothesis such that b, § = by[f], 5[] and:

leave-st(5.[]) = leave-st(5) leave-st(3 Lg) N (cond—st(gd[], s.[l)u Ieave—st(gd[])) =0

5.9. Properties of Normalized Basic Terms 219

Moreover:
cond-st(C[by[] ¢ 5.[]]) = cond-st(by]], 5.[]) Uleave-st(b 4[])

leave-st(C[b 4[] © 7.[]]) = leave-st(5.[]) = leave-st(5) = leave-st(C[b ¢ 7))

Hence we can take @, = C[bg[] o 5.[]).
e Normalized Basic Term: Let u = B[, (a);, (dec’);] be a Sj-normalized basic term. Let
(al);, (af); and (decl);, (dec]); be the contexts obtained by applying the induction hypothesis

to (a'); and (dec’);. Using the fact that:
leave-st((a’);, (decl);) = leave-st((a');, (dec’);)
and since B and @ are if-free, one can check that:
leave-st(B[w, (al);, (dec!);]) = leave-st(B[w, (a');, (dec’),])
It is then immediate to check that u. = B[, (al);, (dec’);] satisfies the wanted properties.
It remains to construct the context wug[]. If leave-st(3 | g) N leave-st(u) = O then uy = u, satisfies
the wanted properties. Otherwise using Proposition 5.11 we know that § = u, hence we can take
ug =[]
e Encryption Oracle Call: The proof done for the normalized basic term case applies here.

e Decryption Oracle Call: The proof done for the normalized simple term case applies here. M

5.9.2 Well-Nested Sets
Definition 5.45. A simple term C[a ¢ l_;] is said to be flat if @, b are if-free terms in R-normal forms.

Definition 5.46. We let well-nested be the smallest relation between sets (C, D) of flat terms such that:
(a) (C,D) is well-nested if for every Col@o < bo] € C:

VO[@obleCUD, bonad =0
(b) (C,D) is well-nested if for every 8y = Coldg © bo] € C:
(i) For all 8 = C[d@ ob] € CUD, there exist two if-contexts Cj, Cf such that:
B =g if By then Chla@l o 5] else CY[a} o b))
where d”B,&'g C d’\go and 5@5% Cb.
(ii) The following couples of sets are well-nested:
({%[aﬂ 0B | Cla ob) e c} , {ogg[aﬁ oby) | Claob) e D})
({cg[ag oB4) | Claob] € c} , {cg[ag oBY)| Claob] € D})
Proposition 5.12. If (C,D) wverifies the property (a) above, then it satisfies properties (i) and (ii).
Proof. Trivial by taking Cj = Cjy = C. [|

Definition 5.47. We let head be the partial function defined on terms such that for all f € F, for all
terms £, head(f(f)) = f.

Definition 5.48. For all conditional contexts Cy, C1, we let Cy L. Cy be the conditional context, if it
exists, defined as follows: pos(C; U. Cy) = pos(Cp) N pos(Cy) and for all position p in pos(Cy U C1):

a if head((Co)|p) = head((C1)p) =a (a € FUN)
(CoUcCr)p =4[if (Co)pp = [Jo A (head((C1)}p) = [J2 V head((C1)}p) = a) (a € FUN)
Jo i (C1)p = Ju A (head((Co)py) = [V head((Co)yy) =a) (a € FUN)

If such a conditional context does not exist, then Cy L. C7 is the special element undefined. We also let:

undefined L. Cy = C U, undefined = undefined

220 Deciding Indistinguishability

Example 5.16. For all conditionals a, b, c,d, e, f and terms tg,...,ts , if we let:
Co = a Cr = (y C; = a
/ \ / \ / N\
HZ b []w t3
/N i3 / N\ i3 7N\
c d C d to e
/N /N N
t() e tO Hz ! 2
VRN /N
t1 to t1 to
Then we have:
ColU. Cr = [y CiUc.Cy = [y ColU: Cy = Co
/ / \
[l \
/N i3 [t3
c d \
/ \ /
to - to [l
/ N\ / \
t1 to 1 to O

Definition 5.49. We let C. be the relation on conditional contexts defined as follows: for all conditional
contexts Cp, C1, we let Cy C. C; hold if pos(C1) C pos(Cp) and for all position p in pos(Ch):

a then head((Co)jp) = a where (a € FUN)

if head((C1)),) = {[]z then head((Co),) € F UN U {[lz}

Moreover we let Cy C. undefined for all conditional context Cy (and undefined C. undefined).

Example 5.17. Using the conditional contexts defined in Example 5.16, we have, for example, the
following relations:

/N
Hw i3
Co Ce Co Eec / N\
to (&
/ \
M 1 to
LI_I
4\ i
[]w tS 7
VAN C Hw i3
tO []u =c . / \
VRN 0 []u
/ N\
3] to t t -

Proposition 5.13. Let S.. be the set of conditional contexts extended with undefined. Then (See,Ue, Cc)
is a semi-lattice. That is, we have the following properties:

(i) Uc is associative, commutative, idempotent.
(ii) Cc is an pre-order (i.e. reflexive and transitive).

(iii) For all Cy,Cy € See, we have Cy T, (Co U C) and C1 Ec (Co U C1). Moreover (Coy Ue Cy) is the
least upper-bound of Cy and Cy.

5.9. Properties of Normalized Basic Terms 221

Proof. These properties are straightforward to show, we are only going to give the proof that (Cy U. Cq)
is the least upper-bound of Cy and C7. Assume that there is C' such that:

CO ECCECCO Ue Cl Cl ECCEC CYO ucc'l

If Cp U C7 = undefined then one can check that C' = undefined. Otherwise we know that pos(CoU.C1) =
pos(Cy) N pos(C1), and that:

pos(Cp) 2 pos(C) 2 pos(Cp Uc C1) pos(C1) 2 pos(C) 2 pos(Cy L Cy)

Hence pos(C) = pos(CoUC1). Using the fact that CC.CylL.Cq we know that for all position p € pos(C),
if head((Co Uc C1)jp) = a (with a € F UN) then head(C),) = a. If head((Cy Lic C1)|,) = [l then either
head(C|,) = [J. or head(C|,) = a (with a € F UN). In the former case there is nothing to show,
in the the latter case observe that head((Co Uc C1)jp) = [J» implies that either head((Co)|,) = [J» or
head((C1)|p) = [Jo- W.l.o.g. assume head((Co)|,) = [Jo- Then using the fact that Cy C. C, we know that
head((Co)|p) = []» implies that head((Co)|,) = [Jo- Absurd.

Therefore Vp € pos(C), head(C),) = head((Co L C1)|p). Moreover pos(C) = pos(Co L. C1). Hence
C=Cyl (1. [|

Let Cy, Cy € S.. such that Cy C. Cy. Moreover, assume that:
vap/ € p05(01)7 (Cl)\p = (Cl)\p’ = Hw = (CO)lp = (CO)I;D'

Then, we know that Cy and C; coincides on pos(C}). Therefore, any — g reduction done on C; can be
mimicked on Cy. We simultaneously reduce C; and Cp, which yields the terms C7 and C{, where C is
in R-normal form. Then the conditionals of C7] which do not have hole variables (i.e. cond-st(C] Lr) N
T (Fr, N)) all appear directly as subterm of Cj, hence are in cond-st(Cj).

Proposition 5.14. For every Cy,C1 € S, if Co C. Cy and if:
Vp,p" € pos(C1), (C1)p = (C1) 1 = [Jlo = (Co)pp = (Co)ppr
then cond-st(C1 Lr) N T (F\inN) C cond-st(Cp).

Proof. Assume that Cy C. Cy, with Cp, C; # undefined (the cases Cy = undefined and Cy = undefined are
easy to handle, with the convention that cond-st(undefined) = @), and that:

Vp,p' € pos(C1), (C1)p = (Cr)ppr = [l = (Co)jp = (Co) (5:8)

First we show that we can extend this property as follows:

Vp,p" € pos(Ch), (C1))p = (Ch)jpy = (Co)jp = (Co)pr
Let ¢ = p-qo and ¢ = p- qo be positions in pos(Cy). Since (C1)), = (C1)p, we know that head((C1)|q) =
head((C’l)|q,).

e If head((C1)|q) = a (with a € FUN) then, from the fact that Cp C.Cy we get that head((Co)q) = a,
and that head((Co)|y) = a.

e If head((C1)|4) = [l then using (5.8) we get that (Co)|, = (Co)p -

5.

—~
=}
N

Then, we show by induction on the length of the reduction sequence that for all C{ such that C; —%, C1,
there exists Cj such that C) Cc C1, (5.8) holds for Cj, C1 and Cy —7% Cj. Graphically (hypothesis are in
black, goals are in red):

(5.8) holds
CQ Ec CVl
R* R*
Ch Ce C1

222 Deciding Indistinguishability

Let — g be — g without the non left-linear rules, which are:

if zthenyelsey —y dec({z}py(y): sk(y)) — @
if w then (if w then z else y) else z — if w then z else z

if w then z else (if w then y else z) — if w then z else 2

We mimic all reduction — g on C; by a reduction on Cy, while maintaining C. and the invariant of (5.8).

Mimicking rules in — g is easy as they are left-linear. To mimic rules in (=g \ — /), we use (5.9).
Therefore let C] be in R-normal form such that C; =5 C7. Let C{ be such that C} T C1,(5.8) holds

for C}y, C} and Cy —% Ch. C} is of the form D[b, I;H o @] where b, @ are if-free and in R-normal form, b

does not contain any hole variable and b [is a vector of hole variables. Therefore:

cond-st(Cy L) N T (A, N) = cond-st(C}) N T (Fp, N) = b

Finally, we observe that b C cond-st(C}), and that cond-st(C}) C cond-st(Cy) by Proposition 5.9. [|
Lemma 5.14. For all P F"Pft ~t, for all h,1, the following couple of sets is well-nested:

({8 4nl B <2 (&P} {7 dal v < (1, P)})

Proof. We do this proof in the case h = €. The other cases are identical.

Part 1 We consider an arbitrary ordering (5;)1<i<iy., Of
{815 < (t,P)}
Using Lemma 5.13, we know that all i # 4, there exists a conditional context §; such that:
Bi = Bi[Bi,] and leave-st(B;, |r) Om(ﬁi) =0

From now on we use Bfig) to denote this conditional context, and [J;, the hole variable used in the

conditional contexts {ﬁgi") | 1 <i<imax}- We extend this notation to ig = 0 by letting Bi(o) = 6.
Let 1 < i < imax, and let Iy, ..., 1, be a sequence of distinct indices in {0, ..., imax} such that Io = 0.
Using Proposition 5.13.((iii)) we know that for every 0 < jo < n, if i # [;, then:

lj i
Bz(o) C. UCanBi(l)
Using Proposition 5.14, we deduce that:
cond—st(ﬁi(lj")) D cond-st(L <y, Bflj) e) NT(FeN)
Which implies that:

leave-st(B, Jr) N cond—st(Uej<n BZ.(lj) Ir) =0 (5.10)
Moreover, if n =ng + 1 and ¢ # [,, 41, we can check that:
l; l; 1.
chgngﬂi(2 = (Ucj<no+1 51(')){ucjﬁno l(nZJ)Jrl/Hlnoﬂ}
=R if (Uejeny B, then (Uejengsr A7) {true/[, ..} (5.11)

else (Ucj<nr1 A7) {false/[]1, .. }

Part 2 Similarly, let (Vm)i<m<mu., be an arbitrary ordering of:
{rlv <M & P))
Let 1 <ip < tmax- For every m, we have 77(,30) such that:
Y =95 [Bi,] and leave-st(B;, Lr) N cond-st(y{)) =0

Moreover, we let 7(0) = vn. Let 1 < m < mpax, and let I, ..., [, be a sequence of distinct indices in

{0, ..., imax} such that i = 0. We have equations corresponding to (5.10) and (5.11), with I_chgn’yﬁrlﬁ)

instead of Li; Snﬂi(l") .

5.9. Properties of Normalized Basic Terms 223

Part 3 Consider the following family of couples of sets:

! ,
{((Uejzn B 1es/ I, 15 S0} 4n)i s (Uejan 104es /iy 15 0} bR) e,) |
lo, ..., 1, distinct indices in {0, ..., %max} s.t. o =0 and (e;)1<j<n € {true,false}”} (5.12)

We show by decreasing induction on n, starting from n = iy + 1 down to n = 0, that all the elements
above are well-nested.
Let l, ..., 1, be distinct indices in {0,...,imax} such that lp = 0, and let (e;)1<;j<n € {true, false}".

Base case If n = nyax + 1 then from (5.10) we get that for every I # 4 in {1,..., imax}:

leave-st(B; L.r) N cond-st((Ucj<n B) {e; /[l |5 <} Lr) =0

Moreover: 4
leave-st ((Ucj<, ﬁl(])){ej/ﬂj |j <n}lr) Cleave-st(3 Lr)
Hence:
leave-st((Ucj<p B){es/l; | 5 < n} Lr) Neond-st((Uej<n B9V {e; /1 17 <n}ir) =0 (5.13)
Similarly, for every 1 < m < mpax:
leave-st((Ucj<n B){es/[; | 5 <n} dr) Neond-st((Uej<n 7)) {es/; |5 <n} dr) =0

By consequence, the following set is well-nested:

((Uejen B/} ba) 1cicr (Uejen ¥4 /053 4R) 1 cmam)

Inductive Case If n < npax # 0, then from (5.11) we get that for every I # i in {1,..., imax}:

(Uej<n /3§lf>){elj/[]l |j<n} =g
if ((Uejn B) en, /1, 15 < n}) then (Ucjenir B7)en, /Il 15 < n}{true/[ln,,,}
else (Uejenss B7){er, /01, |5 < n}{false/ [, }
As we did for (5.13), we can show that for every i # I, ;1:

)1 r) N eond-st((Uejemgn BN e, /i, |7 <n+ 1} Ir) =0

Ieave—st(l_lcj<nﬁln+1

Where ¢;, ., is either true or false. Similarly, for every m:

Ieave—st(ucjgnﬁlijl Lr) Ncond-st((Uej<nin Al){el /i 1i<n+1}lr) =0

Moreover, by induction hypothesis, we know that:

((l—ICan+1 Bz‘(lj)){elj/[]lj | J<n+ 1} IR)i’ ((uC]<n+1 ’Vz){el /Hlj | Jj<n+]-} IR),L)

is well-nested for ¢ = true and for ¢; = false. We deduce that the following set is well nested:

n+1

((Uejen B8 e/, 15 <0} ba) ((Uejen 9) er, /I, 15 <0} Lr),)

Conclusion Recall that ﬂi(lO) = Bfo) = f3;. Hence:

n41

({84nl 8 <" &P} {7 dnl 7 <7 ()}

is the couple of sets:

((|_|Cj§0 /BZ(IJ)) \I/R)1§i§imax7 ((quSO ’YSYZL]))} \LR)1§mSmmax)

which is the family of well-nested sets in (5.12), and is therefore well-nested. [|

224 Deciding Indistinguishability

5.10 Spurious Conditionals and Persistent Leaves

An if-free conditionals b is spurious in a term ¢ if, when we normalize ¢, the conditional b disappears. For
example, the conditional b is spurious in if b then 0 else 0.

Definition 5.50. An if-free conditional b is said to be spurious in a term ¢t if b [zr& cond-st(t | r).

An if-free term wu is persistent in a term t if, when we normalize ¢, the term u does not disappear. For
example, ng is persistent in if b then nq else if b then ny else ny, but ny is not.

Definition 5.51. An if-free terms u is said to be persistent in a term ¢ if u [g€ cond-st(t |g).

The notion of spurious set is related to the notion of spurious conditional. A set of position S in a
term is a spurious set if we can safely replace in ¢ the terms at positions S by true.

Definition 5.52. A set of positions .S is spurious in a term ¢ if it is non-empty and t[true/x | x € S] =g
t[false/xz | © € S] =g t. A spurious set is minimal (resp. mazimal) if it has not strict spurious subset
(resp. overset), and a spurious set is rooted if there exists p € S such that Vp' € S;p < p’ (ie. is a
common ancestor of all positions in 5).

Example 5.18. Let a = eq(A4,0) and b = eq(B,0) be two conditionals. Consider the following term ¢:

if b then if a then if b then T else U
else V
else if @ then T

else if a then V else V

Then the conditional b is spurious in ¢, since b is not a subterm of ¢ [zr= if a then T else V. Moreover
the conditional a is a subterm of ¢ | g, hence is not spurious. Nonetheless, the set of position S = {220}
is spurious. Indeed we have:

if b then if a then if b then T else U =pr if bthenif a then if b then T else U
else V else V
else if a then T’ else if @ then T’
else if @220 then V else V else if 220 then V else V

=g if b then if a then if b then T else U
else V
else if a then T’

else if 220 then V else V O

First Objective Let t be a term, and a be a spurious conditional in ¢ such that a is a sub-term of ¢.
If this happens in a proof P F"°ft ~ ¢/, we would like to find a proof-cut elimination getting rid of a. A
way of building such a cut elimination is to find a set of positions S which is spurious in both ¢ and ¢,
and such that for every p € S and |, = a. Then, under some conditions on S, we may be able to obtain
a proof P’ -"Pf t{true/S} ~ t'{true/S}. If we can repeat this proof cut sufficiently many times, we may
eventually remove all occurrences of a in t.

Our first goal is the following: given a term ¢ and a spurious conditional @ in ¢, and given a set of
positions S such that for every p € S and ¢/, = a, we give sufficient conditions under which S is a spurious
set in ¢t. This is done in Section 5.10.1.

5.10. Spurious Conditionals and Persistent Leaves 225

Second Objective Consider a proof P F"Pft ~ t'. where t is of the form:
t = C(Bi)ier © (v5)je]

where (5;)ier and (v;)jes are S-normalized basic terms and S is the left ccay trace of P. Remember
that we showed in Corollary 5.2.(ii) that for every j,j’ € J:

leave-st(vy; Lr) Nleave-st(v;s Lr) # 0 implies that ~; =~

This followed from the fact that given a leaf u € leave-st(7y; |r), there exists a unique way of completing
u into a S-normalized basic term. Moreover, we will see later that |y;| is bounded by |u|. Assume that
we can show that, for every j, leave-st(vy; Lr) contains a persistent term in ¢, i.e. that leave-st(y; Jr) N
leave-st(t | r) is non-empty. Since leave-st(t |r) is bounded by the size of the normal form of ¢, we just
bounded the size of the set {v; | j € J}.

Therefore, a way of bounding the size of the S-normalized basic terms (v;);jes is to show that they
all have a persistent leaf. In other word, we want to prove that we can assume, w.l.o.g., that for every j:

leave-st(7y; Lr) N leave-st(t |r) # 0

This is a key lemma to show decidability. In Section 5.10.2, we give sufficient conditions for this to hold.

5.10.1 Spurious Conditionals to Spurious Sets
We give sufficient conditions under which a set of positions S is spurious in a term ¢.

Lemma 5.15. Let a,a, 5, ¢ be if-free conditionals in R-normal form. Let s be the context:
T|=B [60 (13, ifClbod,[]] then u else v)}

Let t be the term 7la], and assume that a is spurious in t, and that:

e a&dUb U {true, false} U cond-st(u | z) U cond-st(v |).

e a & p where p is the set of conditionals appearing on the path from the root to if C[EOEL', a) then u else v.
Then t = t[a] =g T[true].

Proof. We start by observing that:

if C[b o@,a] then u else v =p if a then if C[b o @, true] then u else v

else if C[b o @, false] then u else v
Let C, [l_;u ofu] and C, [EU o Fv] be the R-normal forms of u and v. Let Cj, C, be such that :

if C[b o @,true] then u else v =g O]

Sl S

- -
buabvv
- -

bua bU?

if C[b o, false] then u else v =g C,[)

Since a & cond-st(u |), cond-st(v |) we know that a & b,,b,. Moreover since a ¢ @ Ub we know
that a € by, b,,b,d. Therefore:

a ¢ cond—st(Cl[gu,gv75,d’ ofu,fv]) a¢ cond—st(CT[Eu,gv,g,é' ofu,fv])

We get rid in C; and C,. of all the conditionals appearing in p. We let @' and @" be such that:

@ Chy b, b,d\p @ Cbuy,by,b,d\p
and C}, C/. such that:
B [50 (w,cl[zu,z?v,z?,aofu,{v])} =r B0 (@,C)[a@ o T, To))] (5.14)
B [50 (w,cr[gu,5v75,a ofu,Fv]>] —p B[¢o (,CLa" 0T Ty])] (5.15)

We know that a € @' and a & a".

226 Deciding Indistinguishability

02/61\w1
wg/ \cs

Cp, ws
if C[bod] thenu "

else v

Figure 5.10: Example of if-context B’

Case 1 If there exists ¢y € & such that the path p from the root of ¢ to if C[b o @] then u else v contains
one of the following shapes, where solid edges represent one element of the path p, and dotted edges
represent a summary of a part of the path p.

(A) (B) (C) (D)
Co Co

AN /
true false

Co Co \ /
/ AN

In these four cases, the result is easy to show, since we can do any rewriting we want. For example, in
case (A), we use the fact that:

if x then y else (if = then v else z) —7; if z then y else (if z then v/ else z) (for all term v')

to rewrite (if C[b o @, a] then u else v) into the term (if a then if C[b o @, true| then u else v else).

Case 2 Let s[] be such that ¢ = s[if C[b o @] then u else v]. If none of the shapes of Case 1 occurs,
then we know that there exists B’ and & such that s[] =g B’ [¢ o (&, [])] and the path p’ from the root
of s to [] is a subset of p and does not contain duplicates, true and false. The existence of such a B’ is
proved by induction on the number of duplicate conditionals, true and false occurring on p’: indeed since
the shape (A) and (B) (resp. (C) and (D)) are forbidden in p, we know that if we have a duplicate (resp.
true or false) then we can always rewrite B such that the hole containing s does not disappear.

Let p' = cy,...,cp, we take B’ minimal, i.e. only a branch ¢y, ..., ¢,. We give an example of such an
if-context in Figure 5.10.
Wet let & = wyq,...,w,, and we have:
s=p B'lc1,...,cnowr, ..., wy,][]

We let =, be a total ordering on if-free conditional in R-normal form such that the n + 1 maximum
elements are ¢; >, -+ > ¢, =, a. For every y, we let W;[d; ¢ €;] be the R, -normal form of w;. Then:

s—p B {cl, eno (Wildi o)), []}

We get rid of any occurrence of ¢y, ..., ¢, in (d;);. For every i, we let W/[d} o €] be terms in R-normal
form such that d; N {c¢; | j <i} =0 and:

s=p B [01, en o (WidL o @l]), s []}

5.10. Spurious Conditionals and Persistent Leaves 227

Using (5.14) and (5.15) we get:

_— if a then CJ[a@' o ty,1,]
t=p B |c1,....cno (Wd}oel]),_ | T,
= else C[a" oty)

It is then quite easy to show by induction on the length of the reduction sequence that there exists a
sequence 1 <4y < --- < 4 < n and an if-context B” such that:

. if @ then CJ[@' o t,,1,]
B lci,...,cno (W][dio€l])._ S lr
(1 mn ([])zgn else C,’,[d"otu, v] —u
= B’

- if @ then CJ[@' o1, 1]
Ciryoees Cip © (WAL 0 €3]) 5y (else C/[@" o1, 1] R
r us bv

tir,

We deduce from this that a is spurious in:
if a then CJ[@' ot,,1,] else CL[a" 0Ty, 1,

Since a will stay the top-most conditional in the R-normal form of this term (because of the order >,
= —r

we chose), and since a # true a # false and a ¢ @',d", there is only one rule that can be applied:
if a then x else x — x. Consequently:

—

Cl/[ajl O{uagv] =R C;[C_ir OF“JU]

Hence:

Hence using (5.14) we get:

=g - — —

t=pg B[Eo (d)’,Cl[gu,bv,b,ﬁotu,tv])] =R B[E’o (u’i,if C[Eo(i,true] then u else v)] [|

5.10.2 Persistent Terms

Let a be a conditional and s[] be a context. The following proposition give sufficient conditions under
which the persistent terms of s[a] are exactly the persistent terms of s[true] and s[false].

- =

Proposition 5.15. Let a,(d;,b;):, (¢},t;); be if-free terms in R-normal form such that for every i,
aga;Ub; Uc;, and let s[] be a context such that:

sl = B (Gl (0B,), o (Ds[¢, [o F5)), |

Then leave-st(sla] | r) = leave-st(s[true] | r) U leave-st(s[false] | r).

Proof. We know that s[a] =g if a then s[true] else s[false]. Let -, be a total order on if-free conditionals
in R-normal form such that a is minimal. It is straightforward to check that:

sla] {r-« = (if a then s[true] else s[false]) | gpru
_ J(sltrue]) Lr-u if s[true] =g~ s[false]
| if a then (s[true]) Lgr-. else (s[false]) Jr~. otherwise

Therefore:
leave-st(s[a] L r-u) = leave-st(s[true] L g-u) U leave-st(s[false] L g-u)

The wanted result follows from Proposition 5.1. |

228 Deciding Indistinguishability

We show the following technical proposition, that we use later in this section. Given a conditional
a and two terms t; and t,., we give sufficient conditions under which a persistent term in ¢; or ¢, is a
persistent term in if a then ¢; else t,.

Proposition 5.16 (Persistent Term Lifting). Consider the terms:

Claoh] =B |(Clldtobl]), o (Diehoft),| tr=B"[(Clla; o), o (D}l o 13))]
where:
o For every x € {l,r}, i and j, the terms @} ,bl , J,ff are if-free and in R-normal form.

e @,b are if-free, in R-normal form and (@ Ub) N {true, false} = (.
o b0 (Upein i @5,69) =0 and b0 (U,eqrry 5 €5) = 0.
N

leave-st(t; Jr) U leave-st(t, Lr) C leave-st <(ifC[d ob] then t; else t,) ¢R>

Proof. We prove this by induction on |a|.

Base Case If |@| = 0 then C[@ o b] = b, where b is if-free. Let >, be any total order on if-free
conditionals in R-normal form such that b is minimal. We then let D;[d; ¢ t;] and D,[d, ¢ t,] be the
R, -normal form of ¢; and ¢,. By Proposition 5.1, we know that:

leave-st(t; Lr) = leave-st(t; Lr_) = leave-st (D@, o 1)) Ir..) (5.16)

Using the fact that ("’bbi)i and c}fé)- are if-free and in R-normal form, it is simple to show by

induction on the length of the reduction that @; C (al,bl);, (@ ct);. Since b ¢ (Useqiry,i @7 b7) and

2R J REa

b (Upeqiry,j> €5), this shows that b € @,. Similarly @, C (af b7)s, (c7); and b & @,

(if b then ¢t; else t,.) {r-u = (if b then D;[d,; <>t_}] else D,.[d, ofr]) IR

Since b is and if-free conditional in R-normal form minimal for >, since D;[a; ¢ i 1] and D, [@, o t_}] are
in Ry -normal form, since b ¢ {true,false} and since b ¢ @; U @, there is only one rule that may be
applicable: if b then x else x — x. Therefore:

tidR-u if t) =p-u t
(if b then #; else t,.) Lpru = { . TR~ V=R b
if b then ¢; g~ else t, | g-. otherwise

Which shows the wanted result.

Inductive Case Assume that the result holds for m, and consider @, a of length m + 1. First:

if Cld,a¢ 5] then ¢; else ¢, =g if a then if C[d,trueog then ¢; else ¢,

]
else if C[@, false o b] then t; else ,

Let s;[] be a context such that s;[a] = t; and a & cond-st(s;[] 4r). Similarly, let s,.[] be such that s,.[a] = t,
and a ¢ cond-st(s,[] Lr). We are going to rewrite the then branch to replace any occurrence of a by true.
Similarly, we rewrite the else branch to replace any occurrence of a by false.

Moreover, we get rid of true and false in C[@, trueob] and C|[@, falseob]. Let C'[@’ ob’] and C"[@" ob"]
be such that:

Cla@ ob] =g if a then C'[@’ o b'] else C"'[a@" o b"]

5.10. Spurious Conditionals and Persistent Leaves 229

with @’ U@"” C @\{a} and b’ Ub"” C b\{a}. Then:

if C[@,true o b] then t; else t, =g | if C'[@’ o b'] then s;[true] else s,[true]

if C[@,false o b] then t; else t, =g |if C"[@" ob"] then s;[false] else s,[false]

We start by checking that the induction hypothesis on the red framed term. The first condition is trivial,
we check the other:

e Since @ C @, b’ Cb and (@ Ub) N {true, false} = (), we know that (@’ Ub’) N {true, false} = 0.
e The term s;[a] is obtained from t; by replacing every occurrence of a by true. Hence, since true ¢ b ,
b’ C b and:
bN (U:L’E{l,r},i 6:’ b'f) =0 bN (U:ce{l,’r},j 5’7) =0

We know that the third condition holds.
e Since @' Ca, b’ Cband @Nb =0, we know that @' Nb’ = 0.
By applying the induction hypothesis, we deduce that:

leave-st(s;[true] | z) U leave-st(s,[true] | z) C|leave-st(if C'[a@’ o b'] then s;[true] else s,[true] |)

Similarly, by applying the induction hypothesis on the rewriting of the blue framed term, we get:

—

leave-st(s;[false] L r) U leave-st(s,[false] | gr) C|leave-st(if C”'[@” ¢ b"] then s;[false] else s.[false] | r)

Finally, we apply again the induction hypothesis (with m = 0) to the term u below:

u = if a then | leave-st(if C'[@’ o b'] then s;[true] else s,[true] |)

—

else | leave-st(if C”[@" ¢ b"] then s;[false] else s, [false] | r)

We get that:

leave-st(u L) 2 leave-st

leave-st(if C'[@’ o b'] then s;[true] else s,.[true] |) ¢R>

U leave-st (leave-st(if C"'[a" ¢ b"] then s;[false] else s,[false] |) ¢R)

By applying Proposition 5.15 twice, we know that:

leave-st(t; Lr) U leave-st(t, |r) =
leave-st(s;[true] [g) U leave-st(s,.[true] | r) U leave-st(s;[false] | r) U leave-st(s,[false] |r)

Hence we deduce that:
leave-st(t; | r) U leave-st(t, 1) C leave-st(u |) = leave-st(if C[@,a o b] then ; else ¢, | z) [|

We are now ready to prove the main lemma of this section, which, under some conditions, shows that
all leaf term ~y of a term ¢ has a persistent leaf.

Lemma 5.16. Let s be a term of the form:

s=A [JO (Bi[(Bia), o (7j7l)j])l}

such that:
(1) d are if-free and in R-normal form, and for every i,1, cond-st(53;,; Lr) N leave-st(B;,; Lr) = 0.

230 Deciding Indistinguishability

(i) (ch U1 leave-st(B;, Lr)) N{true, false} = 0.
iii) For every positions p < p' in A[_ o (By);] such that s,, = ¢ and s, = (', we have:
— lp Ip

leave-st(¢ Lr) N leave-st(¢’ [r) =0

(iv) For everyl,i,j, leave-st(B;; L r) Nleave-st(B;,; Lr) # O implies that 5;; = B;,.

(v) For every l, the following couple of sets is well-nested:
({Big drl i}t {70 Lrl 5})

then for every l,j, v contains a persistent term in s, i.e. leave-st(vy;; | r) Nleave-st(s | r) # 0.

-

Proof. We start by showing that the property holds when d = () and A = []. We deal with the general
case afterward.

Part 1 For all 7,7, we let C;[], D,[] be if-contexts and a,, gi,é'j, fj be if-free terms in R-normal form
such that:

d; = cond-st(5; Ir) b; = leave-st(f5; I r) ¢; = cond-st(v; |r) £ = leave-st(vy; |r)
Bi br = Cild; o b;] Vi br = Djlé; ot

We know that: . R
s=p B [(Ci[ﬁi o bil), o (Djle; <>tj])j:|

satisfying conditions (i) to (v). We prove the proposition by structural induction on BJ].

Part 1: Base Case The base case is simple. It suffices to notice that since @t are if-free and in

R-normal form:
leave-st(s [r) = leave-st(D[¢ o t] {g) C T

Part 1: Inductive Case Consider:

s=if C()[a:o <o 50] then Bl [(Cl[ﬁl & gi])iell & (DJ [EJ O{j])jEJL:|

else B” [(C’i[ﬁi © gi])iel*‘ o (Djl¢; <>Fj})jeﬂ}

Using the well-nested hypothesis, for every j € I' U I", there exist two if-context C%, Y such that:
Cjld; obj] =r if Coldo o bo] then C}[@; o b'] else C/[a" o]

where @', d’/ C d’j\go and 5;, E;’ - l_)'j, Similarly, for every j € J' U J7, there exist D%, DY such that:

—

D;[¢j o t;] =g if Col@o o bo] then D}[¢} o "] else CY[¢/ o "]

where ¢”, ¢ C d;\bo and t’

§1Cj t" Ct;. Then:

Jjry =

J

s = if Cold@o © bo] then | B! {(cg[a;ozg})ﬂlo(D;[E;o{'])jeﬂ} Strue

else | B [(C;’[d’;%%’])

<& (D;/ [E;/ & {;/])jEJT:| Sfalse

iel”

We want to show that for all j € J' U J", 3t € £;.t € leave-st(s |g). Let j € J! (the proof for j € J"
is similar). We are going to apply the induction hypothesis to syue (for j € J”, we apply the induction
hypothesis to sgise). Lets check that the premises hold for sipye:

5.11. Proof Cut Elimination 231

(i) and (ii) trivially hold.
e For (iii), we use the fact that we know that the property holds in s for every positions € < p < p’
in if [] then B! else B", and the fact that for every i € I' UI", b C b'.

e Checking that (iv) holds is straightforward. Assume that there exists 4,5 € I' such that I;; nb L#0.
Since 5; Cb; and 5’] - l;j we know that b; N Ej # (). Therefore C;[d; ogi] = Cjla; ogj]. Hence:
Cila; o bi] = Cjla} o b'] Cilai obj] = Cjlay ob}]

e Using the inductive property of well-nested couples (item (iv)) we know that the following couple
of sets is well-nested:

({c;[a;oz?;} ueﬂuﬂu{o}} (D& o 1] | j € Jluf}j)

Since, for every (C, D), (C’, D), if (C,D) is well-nested and C' C C A D’ C D then (C',D’) is well-
nested, we know that the following couple of sets is well-nested:

({c;[a;oz?;meﬂu{()}} (D), <>t]|j€Jl}j)

We can apply the induction hypothesis to s¢ue, which shows that for all j € J*, there exists ¢ € f; such
that ¢ € leave-st(stue +r). To conclude, we have to lift this to leave-st(s |g).

Let S = I'uI"u{0}uJ'UJr, and S’ = S\{0}. We apply Proposition 5.16 to show that ¢ €
leave-st(s Lr). The only difficulty lies in showing that:

7 Sroo Tr R = o=\
bOm(UzES’a’w % b ’bl7 1,02)*@

We know that by N (U;cq @5,a7,c,¢/) =0 (since @; C @;\bo,...), so it only remains to show that:

’L’ 1) 7

bon | J b}.b7 = (5.17)

17

€S’

For every i € S’, we know that l;; C b; and 5;’ C b;. Hence, if goﬁgg # () or bo ﬁgg’ # () then biNbo # (.
Since Cy|] is at the root of s, we know using (iii) that b; N bo = 0. Hence (5.17) holds.

Part 2 For the general case, we just observe that we can take:

Al(lla)geq o (Bill))]

We only need to check that the property (i)-(v) are verified for B[]. Properties (i)-(iv) are straightforward.
For (v), we only observe that, since d are if-free and in R-normal form, if (C,D) is well-nested then
(CUd,D) is well-nested. [|

Bl

5.11 Proof Cut Elimination

Consider a proof P F"f ¢ ~ ¢, Lemma 5.16 shows that, under some conditions, any normalized basic
term -y gf’l (t, P) has a persistent leaf in ¢, i.e. leave-st(vy |g) Nleave-st(t | r) # 0. To apply this lemma,
we need to have a proof P satisfying the hypothesis of Lemma 5.16. We give simplified version of these
conditions below:

(i) for every B, <& (¢, P), we have cond-st(3 |g) N leave-st(8 Lr) = 0.

(i) (Upgcei p)leavest(8 Lr)) N {true, false} = 0.

iii) For every 3, 8" <! (t, P) and positions p < p’ in t such that ¢, = 8 and t,, = ', we have:
c lp [p

leave-st(3 L) N leave-st(8’ [r) =0

(iv) For every B3, 8" <! (t, P), if leave-st(B | r) N leave-st(3’ | r) #) then 8 = j3.

232 Deciding Indistinguishability

(v) The following couple of sets is well-nested:
({8 4al =" (,P)} {7 dnl v < (1, P)})

For each property above, we give the proposition or lemma proving that it holds, or we announce in
which section we will prove it.
(i) In other word, this means that every normalized basic terms has disjoint conditionals and leaves.
We will prove this in Section 5.11.2.

(ii) For this to hold, we need to prove that, w.l.o.g., we can assume that true and false do not appear
in the leaves of normalized basic terms. We will show this in Section 5.11.1.

(iii) This requires two non-trivial proof cut, which we explain in Section 5.11.3. It relies on Lemma 5.2.
(iv) This is a consequence of Proposition 5.11, which we already proved.

(v) We showed that these sets are well-nested in Lemma 5.14.

The rest of this section is organized as follows: in Section 5.11.1 we deal with (ii), by showing that we
can assume that true and false do not appear in proof in normal proof form; in Section 5.11.2 we prove
that conditionals and leaves of basic terms are disjoints, which we need for (i); in Section 5.11.3, we give
examples of proof cut elimination used to obtain (iii); finally, in Section 5.11.4, we use Lemma 5.16 to
prove that we can assume, w.l.o.g., that every leaf term appearing ¢ has a persistent leaf in .

5.11.1 Removing True and False From Basic Terms

In this section, we prove that we can assume, w.l.o.g., that true and false do not appear in the leaves of
normalized basic terms.

Key Observation Let s be an if-free in R-normal form, s can be rewritten into a complex term wu:

u=C {(DZ[FM <o i)ﬂ)) OE}
3
that is not if-free. Basically, the following proposition shows that as long as the term u does not contain
true and false conditionals, the term s will always appear in the right-most and left-most branches of C.
This is actually an invariant preserved by the term rewriting system R without the rules:

if true then v else w — w if false then v else w — w

Proposition 5.17. For all if-free term s in R-normal form, if s =g C[(Di [@; ¢ gl])l o ﬂ where:
e tU,;(@; U l_)'z) are if-free and in R-normal form.

e For every i such that D;[d; ¢ l_)’z] is a term appearing on the left-most (resp. right-most) branch of
C, we have that false ¢ @; Ub; (resp. true ¢ @; Ub;).
Then the left-most (resp. right-most) element of t is s.

Proof. If suffices to show that the existence of a decomposition satisfying these two properties is preserved
by — g, which is simple. We conclude by observing that since s is if-free, the only decomposition of s | g

into C {(Dl [di o EZD , of} is such that C' = [|. Hence ¢ is a single element u, and u = s | = s. [|

We would like to prove that for every b, there exists no derivation of b ~ true or b ~ false. Such
derivations would be problematic since true and false are conditionals of constant size, but b could be
of any size (and we are trying to bound all conditionals appearing in a proof). Also, the else branch
of a true conditional can contain anything and is, a priori, not bounded by the proof conclusion. Using
Proposition 5.17 we proved above, we show that there exists no proof of b ~ true or false, as long as b is
if-free and the proof is in the fragment A, .

Proposition 5.18. Let b an if-free conditional in R-normal, with b # false (resp. b % true). Then there
exists no derivation of b ~ false (resp. b ~ true) in A. .

5.11. Proof Cut Elimination 233

(7,

A
Ry
Y
AN

Figure 5.11: Shape of the Term in the Proof of Proposition 5.18

heH

Proof. We prove only that there is no derivation of b ~ false in A, (the proof that there is no derivation
of b ~ true in A, is exactly the same). We prove this by contradiction. Let b an if-free conditional
in R-normal form which is not true and false, and let P be such that P F"Pf b ~ false. We choose the
conditional b such that its proof P is of minimal size.

First the minimality of the derivation implies that for all h € index(P), for all by such that by <h (b, P)
or by < (false, P), by #r false. Let H = cs-pos(P). We now focus on the left-most branch of the proof.

—Cs

First Part Let [€ label(P). First we show that for all 8 <&! (b, P), B #r false. Assume that this is
not the case, let 3 =p false and 3’ be such that (3, 8') <& (b ~ false, P). If 3 =g 3’ =g false then there
is an easy proof cut elimination which yields a smaller proof P’ of b ~ false.

Hence assume 3’ #p false. If 5 =p false then leave-st(5 |r) = leave-st(false | r) = {false}. Since § is
a normalized basic conditional (for the CCA3 trace S of its branch in P), and since false is a normalized
basic conditional, using Proposition 5.11 we have 3 = false.

There exists a derivation of 8 ~ 3 in F(FAs* - Dup® - cCAs). Since S = false, no rules in FA; are
applied. Therefore the derivation is only an application of CCAy, which is not possible. Similarly we do
not have 8 #g false and 3’ =g false.

Part 2 Using Proposition 5.11 we know that 8 #pg false implies that for all u € leave-st(8 [gr), u #
false. Moreover, for any term w, w g does not contain false in its conditionals (or we could apply
if false then z else y — y). Hence for every a € cond-st(8 |r), a # false.

We let (v,7) Sf’l (b ~ false, P) be the left-most elements (as shown in Figure 5.11). For all a €
cond-st(y |r), a Z false. Hence if we let ug € leave-st(y [r) be the left-most leave element of v |, then
by Proposition 5.17 we know that ug = b. Recall that b #g false.

Similarly, by applying the exact same reasoning to the other side, we know that the left-most leaf
element u(, of 7' | g is false, and by Proposition 5.11 we get that ' = false. Since there exists a derivation
of v ~ v in F(FAs" -Dup™-CCA3), no rule in FAq is applied. Therefore the derivation is only an application
of ccAy. Contradiction. [|

Thanks to this proposition, we can ensure that any proof P of t ~ t' does not contain a CS or BFA
application on true or false: if we have a CSy or BFA application on (true, true) or (false, false) then there
is an easy proof cut elimination, and the previous proposition ensures that there are no CSy or BFA
applications on (true, b), (b, true), (false, b) or (b,false) (with b #g false, true).

234 Deciding Indistinguishability

Proposition 5.19. For all P F"Pf ¢t ~ t', there exists P’ such that P' F"Pf t ~ t' and for all | €
label(P'), h € index(P'),x € {I,r} we have:

vB e (<Mt u <t P))u (it u<in@, P)), {false true} Nleave-st(3 Lg) =0
Proof. Through simple proof cut eliminations, We can construct a proof P’ from P such that:

{(true, true), (false, false)} N (<M<l (t ~t/, P)U <Ix_ (t~t/,P)) =0

—Cs~Cs

Then using Proposition 5.18 we know that for all:

(B,8") € (<Ll (t ~ 1/, PYU <z o (t~ 1, P))

—Cs~Cs

the conditionals 8 and 8’ are such that 5 #pg false and 8’ #g false (same with true). Finally if 8 #£g false
then using Proposition 5.11 we know that for every u € leave-st(8 | r), u # false (idem with true). [|

5.11.2 Basic Terms have Disjoints Conditionals and Leaves

We now prove that every normalized basic terms has disjoint conditionals and leaves.Let 5 be a normalized
basic terms. First. we show that every conditional term b in cond-st(8 | r) is the leaf of another normalized
basic term (', which is a strict subterm of 3. Therefore, if cond-st(8 |r) N leave-st(8 |g) # @ then there
exists 3’ such that leave-st(8 |r) N leave-st(8’ [r) # 0. Using Proposition 5.11, we deduce that g = 5,
which contradicts the fact that 3’ is a strict sub-term of 3.

First, we define the set of normalized basic conditionals appearing in a term ¢.

Definition 5.53. For all term t, we let <‘§c t be the set of S-normalized basic conditional appearing in
t, defined inductively by:

e If ¢ is a S-normalized simple term C[b o @], then:
<pet=0b U (<gb) U (<p 1)
o If t is a S-normalized basic term B[W, (a;);, (dec;),], then:

<gc t = U <l§c a; U U <l§c decj
i J

e For every S-encryption oracle call ¢t = {u}gk7 then:
<fc t = <fc U

e For every S-decryption oracle call C [l_; o], let s, sk be such that s is if-free and the terms in 4 are
of the form 0(dec(s[(cv), (dec;);],sk)) or dec(s[(c), (dec;);], sk). Then:

<‘gct:l; U (<‘Ecl;) U U<‘Ecai U U<‘Ecdecj
g J

We show that the over-approximated set of conditionals cond-st(3) is exactly the over-approximated
set of leaves of the normalized basic conditionals that are subterm of 5.

Proposition 5.20. For every term [such that B is a S-normalized basic term, S-normalized simple
term, S-decryption oracle call or S-encryption oracle call:

cond-st(f) = U leave-st(u)

S
u<p B

Proof. We prove this by induction on the order <f1d7 which, we recall, is the order stemming from S-
normalized basic terms, S-normalized simple terms, S-decryption oracle calls or S-encryption oracle calls
mutually inductive definitions.

5.11. Proof Cut Elimination 235

Base Case If § is minimal for <i‘?1d, then we have the following cases:

e S-decryption oracle call: (is of the form C [Z; o @], and there exists s, sk such that terms in @ are
of the form 0(dec(s,sk)) or dec(s,sk), and s is if-free. Moreover by minimality of 3 the vector of

terms b must be empty, since for all b € b b is a S-normalized basic term.
Hence cond-st(8) = (). Finally since (3 is minimal there are no u such that u <2_ 3.

e S-encryption oracle call case cannot happen, as § would not be minimal.

e S-normalized basic term: § contains no if then else symbol, hence cond-st(8) =). Moreover since
[is minimal there are no u such that <fc 5.

e S-normalized simple term case cannot happen, as [would not be minimal.

Inductive Case Let (3 be such that for all 8/ # 8, if 8/ <7, 3 then the property holds for 3.

e S-normalized basic term: f is of the form B[W, (a;);, (decj);]. The result is then immediate by
induction hypothesis and using the definition of cond-st(-) and <‘bsc:

cond-st(3) = U cond-st(a;) U U cond-st(dec;) (By definition of cond-st(-))

= U U leave-st(u) U U U leave-st(u) (By induction hypothesis)

i u<b:a,, J u<h:decj
= U leave-st(u) (By definition of <)
oy

e S-decryption oracle call: t is of the form C[§ ¢ @], where there exists s,sk such that terms in @ are
of the form 0(dec(s[(cv), (dec;);],sk)) or dec(s[(cv), (dec;);],sk), and s is if-free. Then:

cond-st(5) = U cond-st(o;) u U cond-st(dec;) U cond-st(g) U leave-st(g)
i J
(By definition of cond-st(+))

= U U leave-st(u U U leave-st(u) U U leave-st(u) U leave-st(g)

i u<|’cozZ J u<b:decj u<sg

(By induction hypothesis: remark that guards in § are S-normalized basic terms s.t. § <g. 3)

= U leave-st(u) (By definition of <§.)
u<fcﬂ
e S-encryption oracle call: ¢ is of the form {s}],, then:

cond-st() = cond-st(s) (By definition of cond-st(-))
= U leave-st(u) (By induction hypothesis)

u<fcs
= U leave-st(u) (By definition of <)

u<fcﬁ

e S-normalized simple term: ¢ is of the form C’[l; o ¥]. Then:

cond-st(3) = cond-st(b) U cond-st(¥) Uleave-st(b) (By definition of cond-st(-))
= U leave-st(u) U U leave-st(u) U leave-st(b) (By induction hypothesis)

“<ch U<fc77
= U leave-st(u) (By definition of <¢.) W

S
u<p B

236 Deciding Indistinguishability

We can now prove that every normalized basic terms has disjoint conditionals and leaves, using
Proposition 5.11 and the result above.

Proposition 5.21. Let P +"P"t ~ t'. Then for all h,1 for all § SZ}Z (t, P), cond-st(B3) N leave-st(8) = 0.

Proof. Let h,l and 3 g';;l (t, P) be such that cond-st(3) Nleave-st(3) # (. By Proposition 5.20 this means
that there exists a Sf-normalized basic term u <g! 3 such that leave-st(u) N leave-st(3) # 0.
By Proposition 5.11, u = 8. But u <fé B implies that u is a strict subterm of 5. Absurd. |

5.11.3 Proof Cuts on Branches

For the hypothesis (iii) of Lemma 5.16 to hold, we need to make sure that the same conditional never
appear twice in the same branch?. Therefore, we need to show that if some normalized basic term 3
appears twice in the same branch, then there is a proof cut. We have three possibilities:

e The two occurrences of 3 are involved in BFA applications.
e The two occurrences of 8 are involved in CSy applications.

e One occurrence of f is with an BFA application, the other with a CSy applications.
We only present proof cut eliminations for the first two cases. We deal with the cross case later.

BFA Rule We already used this cut elimination to deal with Example 5.7 for conditionals involved in
BFA applications. The cuts we want to eliminate are of the form:

a1, Qo, Uz, Va, W5 ~ b1, Co, T3, 84,15

BFA
a; bl
/ N\ / \
as W Cy ts (5.18)
/ N\ ~ / \
Uz Uy T3 Sy
o T

Using Lemma 5.1, we extract a proof of a;,a, ~ by, c,, which, thanks to the ordered strategy, is in
F(FAS" - Dup™ - ccAy). From Lemma 5.2 we get that b = c¢. We then replace (5.18) by:

Ay, U3z, W5 ~ bl)’r.SvtS

BFA
a; bl
/N ~ /N
Us Ws T3 ts

g ~T

We retrieve a proof in A, by pulling R to the beginning of the proof.

CS; Rule The CSy case is more complicated. E.g., take two boxed CSy conditionals for the same if-free
conditional a, and two arbitrary CSg conditionals for the right side:

a” = |al a (i € {1,2}) b]DEb &=\ c

Consider the following cut:

: (4) : (B) L (0)
) Lol l l g -) -
a’lvawu‘SNbHCZarS a17a57U4Nb17C£754 (fnw5~b717ts CS(Q)
O 0 O
ay b
/ N\ / AN
]
as Ws -~ c5 ts
/A /A
U3z Uy T3 S84
| — —_———

g T

4Indeed, we recall that Proposition 5.11 shows that if leave-st(3 | r) N leave-st(8’ L r) # 0 then g = A’

5.11. Proof Cut Elimination 237

As we did for BFA, we can extract from (A), using Lemma 5.1, a proof of a',a’ ~ b',c,. But using the
ordered strategy, we get that this proof is in Acs,, which we recall is the fragment:

F(CS: - {BFA(b,1')}* - UnF - FAS* - Dup® - CCA)

Therefore we cannot apply Lemma 5.2. To deal with this cut, we generalize Lemma 5.2 to the case where
the proof is in Acs,. For this, we need the extra assumptions that a!,al,b!,c), are if-free, which is a
side-condition of CSg.

Lemma 5.17. For every terms a,a’,b, ¢ with if-free R-normal forms, if a =g a’ and P " a,a’ ~ b, ¢
then b =g c.

Proof. Let t = (a,a) and t' = (b, c), we know that there exists P’ such that P’ F"Pf ¢ ~ ' since
P " a,a’ ~ b,c. Using Proposition 5.19, we can assume that for every h € index(P), [, x:

V@ e ((S?x’l U Sf};’l)(t, P’)) U ((S?x’l U §£‘;‘7l)(t’,P’)) , {false, true} Nleave-st(3 [g) =0

Let (v,7) gf’l (t ~ t', P) be the left-most elements of ¢t and ¢'. By Proposition 5.17 we know that
(a, ay Jre leave-st(y lr) and (b, ¢) Lr€ leave-st(y’ |r). More precisely we know that (b, ¢) is the
left-most element of 7' | g.

Since « ~ «/ is provable in F(FAs* - Dup* - CCAz), we know that there exist Sf -normalized basic terms
71,72 and S;F'-normalized basic terms v;, 74 such that v =g (y1, 12), ¥ =r (71, 75), and v1,72 ~ ¥}, 7%
is provable in F(FAs* - Dup® - cCAg).

Moreover a € leave-st(y; L) and a € leave-st(y2 | r), hence leave-st(y; |g) N leave-st(y2 1) # 0. By
Proposition 5.11 we deduce that v; = 7s.

Therefore there exists a proof of 71,71 ~ 71,75 in F(FAs™ - Dup™ - cCAz). By Lemma 5.2, v{ = v5. We
conclude by observing that since (b, ¢) is the let-most element of 4" | g, b and ¢ are the left-most element
of, respectively, v; and 7. Therefore b = c. [|

We now deal with the cut above. Using Lemma 5.17, we know that b =g c. Since b, ¢ are in R-normal
form, b = ¢ and therefore b} =g b =g ¢; (using well-formedness). Similarly a' =g, a =g_ a5. This
yields the (cut-free) proof:

. I :
: (A) : (C)
l l ;
alauSNblar:} aLwSNbLtS cs
|
m} (]
a;y bl
/ \ ~ , \
Us Ws T3 ts
Ry
o~T

where (A') is extracted from (A) by Lemma 5.7. Finally, to get a proof in A, , we commute the Ry
rewriting to the beginning.

5.11.4 Main Lemma

Definition 5.54. A directed path ‘Sp"is a sequence (bg,dp), ..., (bn,dy) where by, ...,b, are conditionals
and do, .. .,d, (the directions) are in {then, else}.

Two directed paths 5p_’ and 6/3" have the same directions if:

e they have the same length.

e the sequences of directions dy,...,d, and dj, ..., d], extracted from, resp., 5,3 and 5[)”, are equal.

Given a directed path 5/3', we let g stands for the sequence of conditionals extracted from 5p_'.
Example 5.19. Let s be the term of Example 5.3, which we recall below:
if b; then if by then t; else ¢

else t3

Then 6;7: (b1, then), (ba, else) is the directed path corresponding to the branch starting at the root of s
and ending at the term t5. Moreover, g = by, bs. O

238 Deciding Indistinguishability

Definition 5.55. Let P F"Pf ¢ ~ t/, we know that ¢ is of the form:

t=C {(bh)heH o (Dl [(B)ngvl(t,p) © ('Y)»Ygl‘l(t,P)])leJ

For all I, we let:
. 5cs—path5*l(t, P) be the directed path of conditional occurring from the root of ¢ to D;[] in P.

. 5cs—pathi’l (t ~ t', P) be the directed path of pairs of conditionals occurring from the root of (¢,t’)
to Dy[] in P.
We extend this to all & € index(P),x € {l,r} by having:

Ies-path™! (¢, P) = %cs-path®! (b, extract,(h, P))
and ‘cs-path™!(t ~ t', P) = °cs-path®! (b ~ ¥/, extract,(h, P))

where extract,(h, P) is a proof of b ~ b'.
We let the depth of a position A in P to be the number of nested applications of the CSy rule to h.

Definition 5.56. Let P F"Pf ¢t ~ ¢/. For every h € index(P), we let if-depth(h) be the depth of h in P,
defined by:
0 if h € cs-pos(P)
if-depthp(h) = ¢ 1+ if-depthi(h) if 3g € cs-pos(P) s.t. h € index(P') where P' = extract|(g, P)
1+ if-depthpr(h) if Jg € cs-pos(P) s.t. h € index(P") where P" = extract,(g, P)
Lemma 5.18. Let P F"Pft ~t'. There exists P’ such that P’ F"P*t ~ t' and for all h € index(P') with
h # ¢, for all x € {I,r}, if we let h = hy and P" = extract,(h, P') be the proof of b" ~ b'" then for all
| € label(Ph):
(a) The proof P does not use the {BFA(b,b')} rules.
(b) cs-path™ (t, P) (resp. cs-path™'(t', P)) does not contain two occurrences of the same conditional.
(¢) For all ~ gf’l (t, P'), (b" |r) € leave-st(y Lr) and for all v' gf”l (', P"), (b'" | r) € leave-st(y’ [r).
(d) For all B <& (t,P'), leave-st(8 |) N cs-path®'(t, P) = 0 (same for t').
(e) For all v <¢' (t, P'), leave-st(t |r) N leave-st(y L) # 0 (same fort').
Proof. Using Proposition 5.19, we know that we have P such that P F"Pf t ~ ¢’ and for all | € label(P),h €
index(P),x € {I,r} we have:
vB e (<htu<leht, P))u (<t u <leh(, P)), {false, true} Nleave-st(B Lg) =0 (5.19)
First, we rewrite the proof P so that all CS}° applications are of the form:

b, (ui); ~ ', (uj)i b, (vi)s ~ V', (v])i

i 7 no

(if b then u; else v;); ~ (if b’ then u} else v]); " (5.20)

We prove by induction on n, starting with the inner-most CS}° conditionals, that there exists P such
that P F"f ¢ ~#', (5.19) is true for P and the following properties hold for all h, b’ € index(P):
(i) If if-depthp(h) > n then the extract)(h, P) and extract,(h, P) do not use the {BFA(b,b')} rules.
(i) If if-depth»(h) > n then for all x, I, cs-path™ (¢, P) and cs-path™!(#’, P) do not contain two occur-
rences of the same conditional.
(iii) If if-depthp(h) > n then for all x, if extractc(h, P) is the proof of b ~ b’ then for all I, for all
vy §|h"’l (t,P), (b{r) € leave-st(y) and for all v/ Slhx’l (t',P), (V' lr) € leave-st(y' |gr).
(iv) If if-depthp(h) < n then for all h, b’ € index(P) such that h < &/, if we let A" be such that b’ = h-h”
and x be such that A" € index(extract(h, P)), then for all X', for all [€ label(extract. (h', P)), we

have)
5cs—pathh*’l(t7 P)D 5cs—pathhx~l(t, P)

Let nyax be the maximal if-depth in the proof of ¢ ~ t':

Nmax = heirrf}ii}({(P) if-depthp(h)

5.11. Proof Cut Elimination 239

O¢cs-pathho:l (¢, P) %cs-pathho:l (¢, P)

{CSa(b,b)}

{BFA(b,b')}

Figure 5.12: Corresponding occurrences of b and b in the proof of Lemma 5.18

Base Case We are going to show that the invariants hold at nyax + 1. Invariants (i), (ii) and (iii) are
obvious, since there exists no h such that if-depthp(h) > nyax + 1; and invariant (iv) is a consequence of
the rewriting done in (5.20).

Inductive Case: Assume that the property holds for n 4+ 1 and let us show that it holds for n.

Step 1 Let [€ label(P) and ho € h-branch(l) such that if-depthp(ho) = n. Let xo € {l,r} and hg = ho,,
We start by showing that for all I, for all 8 <ho:! (¢, P), if there exists b € cs—pathho’l(t,P) such that
b € leave-st(f | g) then there exists (b, ') € cs-path™ (¢, P) and (3, 8') <Ml (t ~ ', P) s.t.:

o U € leave-st(f’' |r).

e There exists a directed path J 7 (resp. 5;7 ") of the conditionals occurring from the root of 8 | g (resp.
B Lr) to a leave b (resp. b') such that °7 C °cs-pathhol(¢, P) (resp. 5’ C cs-pathhoil(¢, P)).
This is described in Figure 5.12.

Let 8 <ho! (¢, P) and b € cs-path™! (¢, P) such that b € leave-st(8). We know that there exists b’
and ' such that (b,b') € cs-path™(¢, P) and (3, 8') <ol (t ~t', P).

Let h € cs-pos(extract,, (ho, P)) and x be the direction taken in [at h be such that extract(h, P) is
the rule CSq(b,b’). We know that extract.(h, P) is a proof of a ~ a’, where a =g b and @’ =g b'. As
if-depth(h) = n + 1 we know by induction hypothesis (i) that extract,(h, P) does not uses {BFA(b,t')}.
Hence the set Sf’l (a, extracty(h, P)) is the singleton {7;} and the set §|€’l (@, extracty(h, P)) is the
singleton {~/}. Let H = index(extracty(h, P)), we have:

a= C[(bg)geH o (’Yla)la] a = C[(blg)geH © ('Yl/a)la}

By induction hypothesis (iii) we know that b € leave-st(v; |r) and b’ € leave-st(y] |g). v and 3 are
S;-normalized basic terms, hence using Proposition 5.11 we know that 8 = ;. We can extract from the
branch [of P a proof of vy, 8 ~ 7,8 in F(FAs* - Dup™ - CCA3). Therefore, using Lemma 5.2, we get that
B =~j. Since b’ € leave-st(v] L r), we deduce that b € leave-st(8’ |g). This concludes the proof of the
first bullet point.

We now prove the second bullet point. By induction hypothesis (iv) we know that:

Scs-path™ ! (¢, P) D %cs-path™!(¢, P) Ocs-path™ ! (', P) D °cs-path™!(¢', P)

By definition of g, cond-st(7; Jr) = cond-st(8 |r) 2 5. We can do better, and obtained an inclusion in
the directed conditional path. First, we know that:

240 Deciding Indistinguishability

e a=C[(b)gen© ('Yla)la]a a =g b and b is if-free and in R-normal form.

e Invariant (ii) holds, hence °cs-path™(t, P) does not contain two occurrences of the same condi-
tional.

e %cs-path!(t, P) does not contain true and false.
The existence of a decomposition as described above is invariant by (chunks of) — g-. reductions, for a
well-chosen ordering »,. At the end of the reduction, we have b. By looking at the reduction backward,
we see that b is a leaf of 4; | g~u, such that the directed path 5p_’ from the root of v; | g~ to b is included
in the path from the root of a to ;.

We deduce that 5;7 - 6cs—pathhx’l(t7P). By consequence, 5;7 - 5cs—pathh°’l(t,P). Similarly we show
that °5” C °cs-pathMol (¢, P).

Step 2 By doing some proof cut elimination, we can guarantee that for all I, for all 8 <hol (¢, P):
leave-st(3 | z) N cs-path™ ! (¢, P) = 0

Assume this is not the case: using Step 1 we have:

05 C %cs-path™! (¢, P) 5 C O¢cs-path™ ! (', P)
Therefore we can rewrite 8 and 8’ into, respectively, b and b’ (this is possible because we have an inclusion
between the directed paths, not just the paths). We can then rewrite b and b’ into true if we are on the
then branch of b and b’ (i.e. x = 1), and false if we are on the else branch (i.e. x =r). Finally we get rid
of true and false using R, and check that the resulting proof verifies (5.19) and the induction invariants.

Step 2 b. Then we show that we can assume that (ii) holds through some proof rewriting, while
maintaining invariant (iv).

Let (a,a’), (b,b') <ho . (t, P) such that a = b and they are on the same branch [. Since they are
on the same branch, we can extract a proof Q F"°f a,a ~ a’,1’. Moreover a |g,a’ |g,b' |g are if-free,
therefore by Lemma 5.17 we have o’ = b'. We then do our standard proof cut elimination to get rid of
the duplicate. We need to make sure that this preserves invariant (iv): this follows from the fact that

invariant (iv) holds for P at depth n + 1 and that the cut takes place at depth n.
Step 3 We then show that (iii) holds. Let b" b0 be such that extracty,(h, P) F"Pf bho ~ p/ho. We

know that:
mm=c |:<bh>hEHho ¢ (D?O [(ﬂ)ﬁﬁto'l(t,l’) ¢ (7)7<|h0’l(t’P)Dl€Lh°}

where H" = cs-pos(extract,, (ho, P)) and L' = label(extract,, (ho, P)).

To prove that for all I, for all v glh"’l (t, P), we have b"o | p€ leave-st(y L), we only need to show
that the hypotheses of Lemma 5.16 hold for " (then we do the same thing with 5" to show that for all
v §|h°’l (t', P) we have b | r€ leave-st(y' |r)):

e (5.16.i): the only difficulty lies in proving that for all 8 <ho:! (¢, P), cond-st(3 |r) N leave-st(5 L) = 0,

which is shown in Proposition 5.21.
e (5.16.ii): this is a consequence of the fact that (5.19) holds for P.

e (5.16.iii): for pairs in (cs—pathh”’l(L‘,P))2 this was shown in Step 2 b. For couples of positions
in D;‘O X D;‘O we have a proof cut elimination (which we already described in Section 5.11.3): let
p < p’ be the positions in b of By, 3 <ho-! (¢, P) on the same branch such that leave-st(3y) N
leave-st(f1) # (. By Proposition 5.11 we know that Sy = 81. Let fj, 3] be the conditionals at
positions, respectively, p and p’ in b"°. We know that (8o, 8), (81, 3;) <hot (t ~ ', P). We can
extract from P a proof of:

/803 50 ~ ﬂév 51
in §(FAs* - Dup® - CCAy), hence using Lemma 5.2 we get that 8, = 8;. Therefore we can do the
following proof cut elimination: if p’ is on the then branch of p then we can rewrite 5, and]
into true in, respectively, b" and "o. We then rewrite the two terms using R to remove the true
conditionals. This yields a new proof @ in proof normal form, such that (5.19) and the induction
invariants hold. We do a similar cut elimination with false if p’ is in the else of p.
Finally the result proven at Step 2 shows that we do not have cross cases cs—pathho’l(t, P) x D;‘O.

5.12. Bounding the Basic Terms 241

e (5.16.iv): this is a consequence of Corollary 5.2.(i).

e (5.16.v): this is a consequence of Lemma 5.14.

Step 4 We conclude by showing that we can get rid of the {BFA(b, ')} applications.
ho,!

Using Corollary 5.2.(ii) and the proof @ constructed at Step 3, we know that for all v,~" <" (¢, Q),
v = ' (and the same holds for (#',Q)). Therefore there is a proof cut elimination that allows us to
remove all {BFA(b,b')} applications, by rewriting:

D —O(W)fys,“‘)’l(t,@)} and Dl o (1), oty g

into, respectively, vy and 7 (where g Slho’l (t,Q) and v} Slho’l t',Q)).

Conclusion To conclude, we can first observe that the properties (a),(b) and (c) are implied by, re-
spectively, (i), (ii) and (iii) for n = 0. The proof that (d) (resp. (e)) holds is exactly the same than the
one we did at Step 2 (resp. Step 3). [|

5.12 Bounding the Basic Terms

5.12.1 o«o-Bounded Conditionals

We are ready to do the final proof cut eliminations, which will yield derivation of bounded size w.r.t.
|t Lr |+t L& |. To bound the size of cut-free derivations, we are going to bound the size of all normalized
basic terms and case-study conditionals appearing in such derivations. To do this, we first introduce the
notion of (¢, P)-a-bounded terms, where P F"Pf ¢ ~ ¢/, and then prove that (¢, P)-a-bounded terms
are of bounded size w.rt. |t g |+ |t' lr |. Basically, a term § in SE{Z (t,P) or cs-path™(t, P) is
(t, P)-a-bounded if we are in one of the following case:

e [is a normalized basic term, and 8 has a leaf term appearing in st(¢ |g). Since § is uniquely

characterized by its leaf terms, this bound g.

e Let 8’ be the term matching § on the right. If 8’ shares a leaf term with st(¢’ |g), then, by the
previous observation, 3’ is bounded. Since 8 and 8’ differ only by the content of their encryptions,
this also bound £.

e If B is a case-study conditional (i.e. in cs-path™ (¢, P)), and if there exists a (¢, P)-a-bounded
normalized basic term € such that S appears in ¢’s leaf terms. Indeed, since € is bounded, it has
finitely many leaf terms, which are of bounded size. Hence S is also of bounded size.

e If 3 is a normalized basic terms used in the sub-proof of b ~ b, where b and b’ are (¢, P)-a-bounded
case-study conditionals, and if b appears in (’s leaf terms. Again, since § is uniquely characterized
by any of its leaf terms, and since b is bounded, we know that § is bounded.

e Finally, if 8 is a decryption guard of some decryption oracle call d, where d appears in a (¢, P)-a-
bounded normalized basic term . Since ¢ is bounded, and since § is a sub-term of (, the term 8
is also bounded.

We formally define what is a (¢, P)-a-bounded terms.

Definition 5.57. For all P F"?f ¢ ~ ¢/, the set of (¢, P)-a-bounded terms is the smallest subset of:
{B13h,1.8<p t,P)}U{b]|3n.be cspath™(t, P)}

such that for all h, 1, for all 8 (<[Ucs-path™) (¢, P), § is (t, P)-a-bounded if:
e Base case: h = e and leave-st(8 [g) Nst(t | g) # 0.

e Base case: h = € and there exists 8’ such that:

(8,8 (S,E’Nl, U <ol ch—pathi’l) (t~t,P)

—Cn~C

and leave-st(8’' Lr) Nst(t' Ir) # 0.

242 Deciding Indistinguishability

e Inductive case, same label: € cs-path™ (¢, P) and there exists e SE;Z (t, P) such that ¢ is
(t, P)-a-bounded and § € leave-st(c |r).

e Inductive case, different labels: 3 g[;;l (t, P), there exists h’ such that h € cs-pos(h’) and
be cs—pathh/’l(t, P) such that b is (¢, P)-a-bounded and b € leave-st(8 | r).
e Inductive case, guard: 3 SE;Z (t, P), there exists ¢ SE{Z (t, P) such that:
— ¢ = B[W, ()i, (dec;);] is (¢, P)-a-bounded.
— Bis a guard of a S’-decryption oracle call d € (dec;);.
We continue our proof cut eliminations, starting from the derivations constructed in Lemma 5.18.
We let P F"Pf ¢ ~ t' be the restriction of F"Pf to derivations satisfying the properties guaranteed by

Lemma 5.18 which use only (¢, P)-a-bounded terms. Moreover, we require that no basic conditionals
appears twice on the same branch.

Definition 5.58. For all proof P, term t,t’, we write P ngft ~ t'if:
(I) PF"Pf¢ ~ ¢ and the properties (a) to (e) of Lemma 5.18 hold.

(IT) The following sets are sets of, respectively, (¢, P)-a-bounded and (¥, P)-a-bounded terms:
{81315 <y (¢, P)} U {b]3nb <k (8, P)}
{8 3n 0.8 <Pl (¢, P} u{b | 3h b <h (¢, P))
(III) For every [€ label(e), for every path j of S-normalized basic conditional from the root of ¢ to
some leave, p does not contain any duplicates. The same property must hold for ¢'.
We now prove the last proof cut elimination lemma.
Lemma 5.19. F" is complete for F"Pf.

Proof. Let P be such that P F"Pf t ~ #/, where P is obtained using Lemma 5.18. Therefore P satisfies
the item (I) of Definition 5.58. Now, we are going to build from P a proof P’ of t ~ t' that satisfies the
item (II) and (IIT) of Definition 5.58.

We are going to show that, if there exists g in:

(B1300.8<y (1, P)yU{b|3nb<h (t, P}

such that g is not (¢, P)-a-bounded, then there is a cut elimination removing 5 (we describe the cut
elimination used later in the proof). Moreover, the resulting proof will have a smaller number of basic
terms which are not (¢, P)-a-bounded, hence we will conclude by induction. First, we want to pick a
term [maximal for a carefully chosen relation.

Order <, Let <4 be the transitive closure of the relation <, on:

U {@wias<g @pP)yu |J {(bh)]30becspath™(t,P)}

h€index(P) heindex(P)
defined by:

h=h"AC(g[];l (t, P) A (is a guard of some decryption oracle call d € st(¢’)
(¢, h) <, (¢ W) iff Sh=h"A(e cs-path™! (¢, P) A ¢/ ggﬁ (t, P) A ¢ € leave-st((’ |Rr)
h>h'AC §E£Z (t,P)NC € cs—pathh/’l(t,P) A ¢ € leave-st(¢ | Rr)

First we show that <, is a strict order. As it is transitive, we just need to show that it is an antisymmetric
relation. For all h, the restriction <2 of <4 to:

{(8,h) | 3.8 <t (t,P)} U {(b,h) | 3. € cs-path™(t, P)}

5.12. Bounding the Basic Terms 243

is a strict order, as it is included in the embedding relation. To show that <, is a strict order on its full
domain, we simply use the facts that for all h, <; is a strict order and that when we go from the domain

of <2 to the domain of <2/, we have h’ > h.

W.l.o.g. we assume that (3, h) is maximal for <, among the set of terms that are not (¢, P)-a-bounded.
Consider an arbitrary [such that h € h-branch(l). Since $ is not (¢, P)-a-bounded, we know that if g is
a guard of some decryption oracle call d € st(¢) with ¢ §E£Z (t, P), then (is not (¢, P)-a-bounded. By

maximality of 3, it follows that if 8 SE;I (t, P) then 8 is not a decryption guard of any ¢ SE;I (t, P).

Case h = ¢ First we are going to describe what to do for h = ¢. From Lemma 5.18.(e), we know that
for every [€ label(P), for all §|E’l (t, P), the basic term 7 is (¢, P)-a-bounded. Therefore ﬁfl (t, P).
Moreover, from Lemma 5.18.(d) we get that 8 <! (¢, P) and 8 € cs-path®!(¢, P) are mutually exclusive.
Putting everything together, we have three cases:

(i) either 8 (£F' U <& (t, P) and 8 ¢ cs-path® (¢, P).
(i) or B (£7' U £5Y) (t, P) and 8 € cs-path®! (¢, P).

(iii) B (£ U £ (t, P) and B & cs-path®!(t, P).
We first focus on case (i). We explain how to deal with (ii) and (iii) later.

e (i), Part 1 Assume that we are in case i). Let ' be such that (3, 8') (<&L.) (t ~ t', P). Since j is
not (t, P)-a-bounded we know that for all u € leave-st(8 |g), for all v’ € leave-st(8’ [r), u and v’
are spurious in, respectively, ¢t and t'. We let:

t=Clbeso Dy [(Bi)ics © (Ym)menr] A
t' = C[glcs oD [(Bz{)ieJ © (Vin)meM] ’A/]

where, for every i € J, (B, 8l) <&l. (t ~ ', P), and for every m € M, (Y, V) <ol (t ~t,P).

—cn~c —l~l
Moreover, we assume that for every ¢ € J, the hole [|; (which is mapped to 3;) appears exactly once

in D;. We define the set of indices I = {i € J | 8 = 5;}. Using Corollary 5.2.(i), we know that:
I ={ieJ|leave-st(3 |r) Nleave-st(3; Lr) # 0}
We know that we have a proof of (3;)icr ~ (8})ics in the fragment F(FAs*-Dup” - CCAz). Therefore:
Vo, b e {Bilielt, b=V =0 (5.21)

Indeed, if |I| = 1 then this is obvious, and if |I| > 1 we use Lemma 5.2 (since all the terms on the
left are the same). We let I' = {i € J | 8’ = 5}}. Using the same proof than for I, we know that
I'={i e J|leave-st(8’ | r) N leave-st(B] Lr) # 0}. We deduce from this that:

Vo, e {Biliel'h, b=V =8 (5.22)

From (5.21) we get that I C I’ and conversely from (5.22) we get that I’ C I. Therefore we have
the equality I = I'.

e (i), Part 2 For every i ¢ I, using Lemma 5.12 on § we know that there exists B; [] such that:
B8] = Bi and leave-st(3 | z) N cond-st(3;[] Lr) =0
Similarly, for every m € M, there exists 7,,[] such that:
FmlB] = Ym and leave-st(3 L r) N cond-st(¥,[] 4r) =0
Then we have:
£ =C [0 (D [(Bi)ics © mdmerd] -)

c
= C [beso (D1 [(Brer (BilDisr) © Gl rnenr] - 2)

244 Deciding Indistinguishability

Let Cylbgoiig) = 8 Lr. We have:

Dy [((ﬁ)ieh (B; [5])i€1) © (@m[ﬁ])meM}
—n if Cylbg o @s] then Dy [((true)icr, (Filtruel)igr) © (mltrue]) e]

else Dy [((false)icr, (Filfalsel)igr) © (Fumlfalse]) |

Since @ 3 = leave-st(3 L), for every u € @, i € J and m € M, we know that u ¢ cond-st(53;[])
and u ¢ cond-st(,,[] $r). Let p be the conditionals appearing on the path from the root of ¢ to
D,[_]. Using Lemma 5.18.(d), we know that @z N g = 0. Let (uo)oco be such that @ = (u)oco-
By applying Lemma 5.15 to all u we know that:

__’ if Cg {55 Oﬁg] then Dy [((true)l-el, (Bl [true])igf) o (% [true])m]
C bcs <& ~ aA
_ else D [((false)icr, (Filfalse])ig) o (Fiffalse]),,
__’ if Cg {55 S (true)o} then D, [((true)iel, (Bi[true])igj) o (‘yi[true])m}
—p O |beso) A
_ else D; [((false)iel, (3; [false])¢€1> o (%[false])m}
—r C [ECS o (Dl [((true)ig, (B [true])i@) o (3 [true])m} ,A)} (5.23)

e (i), Part 2.b We do exactly the same thing on the other side: for all i ¢ I we know that there
exists G/[] such that:

B8 = Bl and leave-st(3’ | r) N cond-st(B[] Lr) =0
And, for every m € M, there exists 4,,[] such that:

181 =0, and leave-st(3’ | r) N cond-st(7,,[] 4r) =0

Then by the same reasoning we have:
¢ = O[5 o (DB, o hment])]
= C[o (D [((8)ier BB Digr) © Ginl8Dmers] 2)]
=1 C [l o (D [((trueyicr, (Biltrueligr) o (3 ftrue]) ey] A7) | (5.24)

Observe that corresponding sub-terms of (5.23) and (5.24) can be matched to corresponding sub-
terms of ¢ and t'. Tt is straightforward to build a proof of the equivalence of (5.23) and (5.24) using
P, except for the cCA, applications side-conditions. We argue why the side-conditions carry over
from the derivation P later in the proof.

e (ii) and (iii) The case (ii) works similarly to the case (i), except that we use Lemma 5.17 instead
of Lemma 5.2. The case (iii) is exactly like the case (i) when taking I = 0.

Case h#¢ In that case, thanks to Lemma 5.18.(a), we know that 8 £M! (¢, P). We have three cases:

(a) either g, (t, P): using Lemma 5.18.(c), there exists hg,b" such that h € cs-pos(hg), b* €

cs—pathho’l(t,P) and (b |gr) € leave-st(3 [r). Since h € cs-pos(hg) implies that hy < h, we

know that 3 <, b". We then have two cases. Either b" is (¢, P)-a-bounded, and then using the

inductive case for different labels of the definition of (¢, P)-a-bounded terms, we know that g is

(t, P)-abounded. Absurd. Or b" is not (¢, P)-a-bounded, which contradicts the maximality of 3
among the set of terms which are not (¢, P)-abounded. Absurd.

(b) either ﬁlh’l (t, P) and 8 € cs-path™! (¢, P): this case is done exactly like case (ii).
(c) either g g,"’l (t, P) and B & cs-path™! (¢, P): this case is done exactly like case (iii).

5.12. Bounding the Basic Terms 245

Valid Proof Rewriting We do the rewritings described above for every h such that (5, h) is maximal
for <, and for every [such that j SE{I (t,P)or B e cs—pathh’l(t, P), simultaneously. It remains to check
that this is a valid cut elimination. The only difficulty lies in checking that all the side-conditions of the
CCAg axiom hold. This is tedious, but here are the key ingredients:
e [is not a guard, and the encryptions that need to be guarded in a decryption are invariant by our
proof cut elimination. Therefore decryptions that were well-guarded before are still well-guarded
after the cut.

e We did the proof rewriting simultaneously for all h such that (3, h) is maximal for <,. Consider
h" such that (3,h") is not maximal for <,: then there exists h such that (3,h) is maximal for <,
and h < h’. Therefore, the sub-proof at index h’ is removed by the proof rewriting. This ensure
that, for all branch [where a rewriting occurred, we removed all occurrences of 5. Therefore, if
an encryption used to contain § then all occurrences of this encryption have been rewritten in the
same way. This guarantees that the freshness condition on encryption randomness still holds.

e The length constraints on encryption oracle calls still holds thanks to the branch invariance property
of the length predicate EQL(_,).

Conclusion This concludes the proof of the second bullet point of the definition F"Pf. The third bullet
point is much simpler. We want to show that for all I € label(e), for every path § of Sf’-normalized basic
conditional from the root of ¢ to some leave, g does not contain any duplicates. We show this by proof cut
elimination as follows: let (3, 8) <&, (¢, P) and (B, 8]) <&, (¢, P), using Lemma 5.2 we have 8 = j3;.
Since they are on the same branch, one may rewrite the lowest occurrence of 8 and) into their then
branch (we could also use the else branch). This yield a smaller proof, and one can check that all the

other properties are invariant of this proof cut elimination. We directly concludes by induction.]

5.12.2 Bounding the Number of Nested Basic Conditionals

We use the previous lemma to bound the number of basic conditionals appearing in a proof P FnPf
t ~ t'. Looking at the definition of (¢, P)-a-bounded terms, one may try to show that for every 8 €
(gE;l (t, P) U cs-path™ (¢, P)), if B is (t, P)-a-bounded then there exists u € leave-st(3 |z) such that
u € st(t Lg)Ust(¢' Lr). Since st(t | g)Ust(t' Lr) is finite, and since a basic term is uniquely characterized
by any of its leaves, this would allow us to bound the number of basic terms appearing in P FPf ¢ ~ ¢/,

Unfortunately, this is not always the case. Indeed, consider (3,3’) <M (t ~ t/, P) such that ' has a
leaf term appearing in ¢/, but S shares no leaf term with 3’ nor ¢:

leave-st(83 | g) N leave-st(B' |g) =0 leave-st(B |g) Nst(t r) =0 leave-st(3’ [r) Nst(t' Lg) # 0

B’ is a-bounded since it shares a leaf term with ¢/, and using the second case, 3 is a-bounded too. But
3 shares no leaf term with ¢ and ¢'.

Still, we can bound B. Since (3,8") <M (t ~ ', P), we observe that 8 = B[, (a;);, (dec;);] and
B = B[W, (), (dec;)j]. Using the fact that leave-st(5’ Lr) Nst(t’ Lr) and that § is a S-normalized
basic term, we know that every leaf u € leave-st(8 |g) is in st(t’ |gr), modulo the content of the S-
encryption oracle calls. This motivate the introduction of the notion of leaf frame.

Leaf frame Let 8 be a S-normalized basic term, and u,v € leave-st(8 |r) be leaf terms of 8. Then
u and v only differ by their encryptions. That is, if one replace all the zero decryptions O(dec(_,sk))
by dec(_,sk), and all the leaves of encryptions {m}}, by {[la}p (Where « is the unique term of & such
that o = {_}J,) in u and in v then you get the same context. We formalize this below, and use it to
generalize Proposition 5.11.

Definition 5.59. Let P F"Pf t ~ ' and [be a branch label in label(P). We define the left leaf frame
I-frame!” of 8 € (SE;Z (t, P) U cs-path™ (¢, P)) inductively as follows:

{lla}pk if Ja = {m}y, € A {_tok
LframeP (s) = dec(l—fr}a:)melp(s),sk) if sk € KF A s = 0(dec(s, sk))
I-frame; (v) if s =if b then u else v

f((I-fra mef(ui))i) otherwise

246 Deciding Indistinguishability

We also let I—framelp(ﬂ) be I—framelP(B) where we make every hole variable appear at most once, by
replacing a hole variable [|, occurring at position p in 8 by [|ap-

We define the right leaf frame r-frame; (and its underlined version r-frame;’) of 3 € (SE;I (t',P)U
cs—pathh’l(t’, P)), using &/* instead of EF.

Remark 5.12. We have two remarks:
e We state some results only for |-frame. The corresponding results for r-frame are obtained by
Symietry.

e The hole variables in |-fra melP (8) are annotated by both the position p of the hole and the encryption
« that appears at p in 5. By consequence, if two normalized basic terms 3 and 3’ are such that
-frame] (3) and |-frame;” (3) share a hole variable [], p, it means that 8 and ' contain the same
encryption o at the same position p. This is crucial, as we want I—framelp to uniquely characterize
normalized basic terms. d

Example 5.20. For all S/ -decryption oracle call dec guarding dec(s[(a;);, (dec;);], sk), if for all i, a; =
{_}pk, then:

-frame] (dec) = dec (s[({ﬂa}:f()l, (I—framelp(decj))j],sk>

We also give an example of I—framelp. Assuming that ag = {A};ﬁ and o = {B};f< are encryptions in & :

Lframe;” ((ao , (a1, @0))) = ({Jao,00 pk » ({100 pk s {110} pi) O
Proposition 5.22. Let P -"P't ~t' and | € label(P). Let b be an if-free term in R-normal form. For
every Sj-normalized basic terms ~y, if b € leave-st(y | z) then |-framef (b) = I-frame; (7).
Proof. This is by induction on the size of ~. |

Proposition 5.23. Let P F"P ¢ ~ t' and | € label(P). For every S;-normalized basic terms 3,3, if
I-frame} (3) = I-frame; (') then 8 = /3.

Proof. The proof is exactly the same than for Proposition 5.11. |
Proposition 5.24. Let P F"P"t ~ t' and | € label(P). For all h, if (b,b') <Pl _ (t ~ ', P) then there

—CS~CS

exists h and (v,7') (<L U S;i’,l) (t ~t', P) such that b € leave-st(y | g) and b’ € leave-st(y' |r).

—cCcn~C

Proof. Let h,x be such that h = hy. Let hg € cs-pos(extracty(h, P)) and xq be such that xq is the direction
taken in [at position hg, and such that @Q = extracty, (ho, P) is a proof of b ~ ¥'.
Using the fact that the sub-proofs of CSy conditionals of P do not use the BFA rule, we know that Q
lies in the fragment:
F(CSy - FAS™ - Dup® - CCA3)

Let (v,7) §|€’Nl| (b~ b',Q). Using the property (c) of Lemma 5.18 (which holds thanks to F"Pf), we know
that b € leave-st(y |r) and b € leave-st(y' |r). [|

Proposition 5.25. Let P F"P't ~t' and | € label(P). For all h, if (8,3") (<h!_ U S;’N’I, Ucs-path™") (t ~
t', P) then |-frame/ (B) = r-frame} (5').
Proof. First we deal with the case (3, 3') (<Ml U S,hw’ll) (t ~t', P). We know that we can extract a proof
Q (from P) such that Q F"Pf 3 ~ 3’ and Q is in the fragment §(FA* - Dup® - CCA3). The result follows
from the definitions of I-frame] and r-frame; .

Now we deal with the case (8, 3’) (cs—pathlll) (t ~ t', P). Using Proposition 5.24 we know that there

exists h’ and (7,7') (<ML U S:i’ll) (t ~t', P) such that 8 € leave-st(y | r) and 5’ € leave-st(y’ Lr). Since S
is if-free and in R-normal form, we obtain that |-frame] (3) = I-frame; () by applying Proposition 5.22.
Similarly r-frame] (') = r-frame/ (7). Moreover, from the previous case, we get that I-frame/ (v) =

r-frame! (7). Hence |-frame! (3) = r-frame! (3'). [|

Proposition 5.26. Let P F"f t ~ ' and | € label(P). For every S;-normalized basic terms S, ',
I-frame;” (B) = I-frame] (8') if and only if |-frame; (8) = |-frame] (3').

5.12. Bounding the Basic Terms 247

Proof. This is obvious, since the hole variable annotations in I—framelp uniquely characterize both the
position of the hole and the encryption appearing at this position.]

Proposition 5.27. Let P "t ~ t' and | € label(P). For every S;-normalized basic terms (3,3 and
substitutions 6,0, if |-frame} (3)0 = |-frame! (80" then |-frame! (8) = |-frame] (3').

Proof. We prove this by induction on the size of 8. The base case is trivial, lets deal with the inductive
case. Let 3 and 8/ be S -normalized basic terms, we know that 8 = B[, (o;);, (dec;);] where:

o for every i, a; = {m;}p € EP.
K2

e for every j, dec; is a decryption oracle call for dec(s;,sk;) in D} .
Similarly, we have a decomposition of 8’ into B'[w@’, (o), (dec;)j]. By definition of I-frame] , and using
the fact that fresh(RF; 1), we have:

-frame; (8) = B[, ({[]ai};f(i)i,dec(l—framef(sj),skj)]

Similarly:

I-frame!” (8') = B'[i’, ({[]a;};i;)mdeC('-framef(SS-)»Sk})]

We have three cases:

e Either 8 = {m}}, € EP. Then |-frame/ (8) = {lls,0}pk- By definition of I-frame, and using the
fact that |-frame/ (8)0 = I-frame] (3')6’, we get that 3’ is of the form {m/}3. We deduce from the
freshness side condition of n that m' = m.

e Or 3 = dec where dec is a S -decryption oracle call guarding dec(s,sk). Then I—framelp(ﬂ) =

dec(I-frame; (s), sk)p, where p is the substitution that lifts positions of s into positions of dec(s, sk),
i.e. for every a € & and position p € pos(s):

#ap) = Ja,0p

By definition of I-frame, and using the fact that |-frame} (3)0 = |-frame; (5’)0’ and that 3 is a
S -normalized basic term, we get that 3’ is also some dec’ where dec’ is a SF-decryption oracle
call guarding dec(s’, sk).

Moreover we have |-frame] (s)uf) = I-frame; (s')uf, and s, s" are S/’-normalized basic terms. Hence
by induction hypothesis l-frame] (s) = l-frame] (s’), which concludes this case.

e Or we are not in one of the two cases above. Then, there exists f € Ao s.t. = f(u1,...,un)
and 8/ = f(u},...,ul), where uy,...,u, and u},..., ul, are Slp—normalized basic term. Hence

I-frame! (8) and I-frame] (') both starts with the function symbol f.

Moreover, if we let, for very 1 < ¢ < n, u; be the lifting substitution such that, for every a € ElP
and position p, f1i([la,p) = [la,i-p, then:

-frame; (8) = f(I-frame; (u1)p1, ..., -frame; () pin)
I-frame/ (8') = f(l-frame} (v})pua, . . ., --frame] (u!,) i)
We apply 6 to the equations above, and use the fact that I—framelP(B)Q = I-framelp(ﬁ’)G:

f(-frame! (u1) 1, . . ., -frame! (u,) pnf) = I-frame! (8)6
= |-frame} (3')0
f(-frame}” (u)) 10, . . .,)-frame; (u’,) pin6)

Hence, for every 1 < ¢ <mn, I—framelp(ui)uﬂ = I—framelp(u;),ui@. By induction hypothesis, we deduce
that -frame; (u;) = |-frame] (u}). Therefore I-frame] (8) = I-frame] (3'). [|

Definition 5.60. We let < be the strict, well-founded, subterm ordering.

248 Deciding Indistinguishability

Nested Sequences of Basic Conditionals We want to bound the number of nested basic conditional

appearing in P F"f ¢ ~ ¢/. Using the contrapositive of Proposition 5.23, we know that when 8 < 3’ we

have |-frame; () # |-frame; (8'). Moreover, using Proposition 5.26 and Proposition 5.27, we know that

I-frame; () # I-frame] (3') implies that |-frame; (8)6 # l-frame;” (8')0 (for every substitutions 6, 6").
Therefore, for any sequence of nested Sf”-normalized basic conditionals:

61 st -0 <st Bn

and for any substitutions 61, ..., 6,, we know that (I—framef(ﬂi)ei)lgign is a sequence of pair-wise distinct
terms. Tu use this, we prove that there there exists a sequence of substitutions 6y, ...,6, such that:
{\-frame/ (81)01,. .., L-frame/ (8,0, } € B(t, 1)

where B(t,1') is a set of bounded size w.r.t. [t|+|t'|. Since the (I-frame] (53;);)1<i<n are pair-wise distinct,
using a pigeon-hole argument we get that n < |B(t,t')].

We outline the end of this sub-section. First, we define the set of terms B(t,t'), and show the existence
of the substitutions (6;);. Then, we bound the size of B(t¢,t’). Finally, we bound the number of nested
basic conditional n using a pigeon-hole argument.

Definition 5.61. Let u be an if-free term. We let (i (u) be the set of terms obtained from u by replacing
some occurrences of 0(dec(w,sk)) by dec(w,sk) (where sk € K), non-deterministically stopping at some
encryptions. Formally:

{dec(v,sk) | w € v € ((w)} if u = 0(dec(w, sk)) and sk € K
Ce(u) =< {u U {{v};ﬁ(n) |v e (c(m)} ifu= {m};ﬁ(n) and sk(n) € K
{f(v1,...,vn) | Vi,v; € ic(u;)} otherwise, where u = f(uq,...,un)

Moreover, given a set of ground terms S, we let guards,-(S) be an over-approximation of the set of guards
of terms in S:

guards,(S) = {eq(s,a) | dec(s,sk(n)) e SAa={_} € st(s) Ask(n) € K}

pk(n)

Definition 5.62. Let Sk(t) be the set of private keys appearing in ¢ |g, i.e. Sk(t) = {sk(n) | sk(n) €
st(t Lr)}. For every term t, we let B(t) be the set:

Bty = (J U Cic (u) U guards (Cxe (u)
KCS(t) wu € st(leave-st(t Lr))
Vu € st(cond-st(t Lr))

Moreover, we let B(¢,t') = B(t) U B(t').

Proposition 5.28. Let P F"Pf t ~ ' and | € label(P). Let 8 be a S -normalized basic conditional.
Then, for every u € leave-st(B | r), there exists 0 such that |-frame; (8)6 € Cic(u).

Proof. We show this by induction on |f|.
e If § is an encryption {m}}, € &, then -frame]” (3) = {llg,0}px and:

leave-st(5 L) = {{v}p. | v € leave-st(m |r)}

Let u € leave-st(8 |r), there exists u,, € leave-st(m |r) such that u = {un}p,. Let 0 be the
substitution mapping [|g,0 t0 %,. Then:

Lframe;” (8)0 = {un }p = v € (r (u)
e If 3 is a decryption oracle call in Df for dec(s, sk), the:

leave-st(8 | g) C {dec(us,sk) | us € leave-st(s L r)} U {0(dec(us,sk)) | us € leave-st(s | r)}

5.12.

Bounding the Basic Terms 249

Let u € leave-st(8 | r), there exists us € leave-st(s |r) such that u = dec(us, sk) or u = 0(dec(us, sk)).
Since s is a S/ -normalized basic term, by induction hypothesis we have 6 such that I—framefD ()0 €
Ckr (us). Moreover:

-frame; (8) = dec(I-frame; (s), k)

where 4 is a renaming of hole variables. Let 6/ = ;1 ~16, then:
I-frame; (8)0' = dec(I-frame; (s)up ™10, sk) = dec(l-frame; (s)8, sk) € G (u)

Otherwise, 8 = f(Bi,...,n) where, for every 1 <i <n, 3; is a Sf -normalized basic term. Then,
using the fact that 3 is a S’ -normalized basic term, we check that:

leave-st(S Lr) C {f(v1,...,v,) | Vi,v; € leave-st(B; Lr)}

Let u € leave-st(8 |gr), there exists vy, ..., v, such that for every 1 < i < n v; € leave-st(8; {r) and
u= f(v1,...,v,). By induction hypothesis, there exists 61,...,6,, such that for every 1 <i < n:

I-frame;” (3;)0; € G (v3)

For very 1 < i < n, let u; be the lifting substitution such that, for every a € £ and position p,
/‘i([]a,p) = Ha,i~p- Then:

Lframe;” (B) = f(l-frame; (B1) 1, . - ., I-frame” (B,) pin)
Observe that the substitutions (u;60;)1<i<n have disjoint domains. Let 6 = u16; ... p1n6,. Then:
I-frame” (8)0 = f(I-frame/ (B1)p161, .. . , l-frame/ (B) pn6y)

We know that f cannot be the function symbol 0(_) (since FA\o cannot be applied on 0(_)). It
follows that:

f(-frame;” (B1) 161, . . ., -frame] (B, pinbyn) € Cer (u) []

We lift the previous result to a-bounded conditionals.

Lemma 5.20. Let P """t ~ ', | a branch label in label(P), h a proof index and B € (SZ;Z (t,P)U
cs-path™(t, P)). If B is (t, P)-a-bounded then there exists a substitution 0 s.t. |-frame! (3)0 € B(t,t').

Proof. We prove this by induction on the well-founded order underlying the inductive definition of (¢, P)-
a-bounded terms.

Base case: Assume h = ¢ and leave-st(8 |g) Nst(t Jg) # 0. Let u € leave-st(8 Lg) Nst(t |r), we
have u in R-normal form and if-free, therefore u € st(leave-st(t |r) U cond-st(t | r)). Moreover, by
Proposition 5.28, there exists # such that |-frame] (3)0 € Ckr (u). Hence -frame] (8)0 € B(t,t').

Base case: Assume h = € and there exists 3’ such that:
(B,8) (S U<elcU<ii) (t~ 1, P) and leave-st(8' Lg) Nst(t Lr) # 0

By Proposition 5.25 we know that I-frame; (8) = r-frame/ (8'). By Proposition 5.26, we deduce
that |-frame] (3) = r-frame; (4’). From the previous case we know that there exists 6 such that
r-frame]” (8')0 € B(t'). Therefore |-frame; (3)8 € B(t').

Inductive case, same label: Assume 3 € cs-path™!(, P) and that there exists ¢ SE;I (t,P)
such that ¢ is (¢, P)-a-bounded and S € leave-st(e |g). By induction hypothesis we have 6 such
that l-frame; ()0 € B(t,). We know that 3 is if-free and in R-normal form and that ¢ is a Sf-
normalized basic term. Therefore, by Proposition 5.22, we have I-frame] (8) = I-frame; (). Hence,
using Proposition 5.26, -frame; (8)60 € B(t,t').

Inductive case, different labels: Similar to the previous case.
Inductive case, guard: If there exists € SE;Z (t, P) such that:
— ¢ = B[W, ()i, (dec;);] is (¢, P)-a-bounded.

250 Deciding Indistinguishability

— Bis a guard of a S'-decryption oracle call d € (dec;);.

By induction hypothesis there exists 6 such that l-frame; (¢)0 € B(t,t'). Moreover let (pk;); and
(ni)i be such that Vi,a; = {_}}j . Then:

ramef’ () = B [, ({[la,)3,),» (Hramef (dec)) |

Therefore there exists a renaming of hole variables p such that l-frame} (d)ué € st(l-frame/ (¢)6).
Since B(t,t') is closed under st, this implies that:

-frame] (d)uf € B(t,t')

d is of the form dec(s, sk) where sk € K. Since members of guards,-(_) are of the form eq(_,), we
know that there exists some u € st(leave-st(t |z) U cond-st(t | z)) such that |-frame; (d)ué € Cx(u).
Since (3 is a guard of d, § is of the form eq(s, o) where « is an encryption under key pk (corresponding
to sk) and randomness n appearing directly in s. It follows that:

I-frame]” (d) = dec(I-frame] (), sk) I-frame; (8) = eq(I-frame] (s), {Hatox)
Since a appears directly in s, and since l-frame/” (d)u6 € (i (u), there exists 6’ such that:
I-frame; (8)6' € guardsy((x(u)) € B(t,t') []

We now bound the size of B(t).

Proposition 5.29. For every term t, for every u € B(t), we have |u| < |t g |. Moreover:
B(t)] < [t L |21

Proof. An over-approximation of the set of terms (x(u) is obtained from w by choosing a subset of
positions of u where decryptions over keys in I occur, and removing 0 before the subterms at these
positions (if there is one). Hence each element of (i (u) is of size at most |u|. Moreover, for every
u € st(leave-st(t | g) U cond-st(t | r)), we have u € st(t | r), and therefore |u| < |t | g |. Therefore the set
Cic(u) contains terms of size at most |t g |.

Let dec(s, sk) € (c(u), then |dec(s,sk)| = |s| + 3 and for every « appearing in s:

lea(s,)| = |s| + |a| + 1 < 2]s| + 1 < 2|dec(s,sk)| < 2|t | |

Hence the set guardsy((ic(u)) contains terms of size at most 2|t L g |. We deduce that for every v € B(t),
|v| < 2|t Lr |. Moreover, by upper-bounding the positions of dec(s,sk) where an encryption might be,
there are at most |s| — 1 < |t Lr | — 1 such «, independently of the set of keys K. It follows that:

U guardsi(¢e(w)| < [¢e(u)l-(t b [—1)
KCSi(t)

Independently of the set of keys K chosen, we have at most |st(t |g)| < |t Lr | choices for u, and the
set UICCSk(t) Cxc(u) contains at most 2/%/ < 2/t4%l elements (we choose the positions where we remove 0s).
Hence:

IN

U Gelu) U guardse (e (w)| U «@|+| U guardsc(Celw)

KCS(t) KCS(t) KCS(t)
(G ()] + ([t dr | = 1) J¢c(u)] < [t dr [215!

IN

By consequence:
IBO)| < [t Lr ||t Lg |21870 < |t |5 221000 =

Finally, we apply a pigeon-hole argument to bound the number of nested basic terms.

Lemma 5.21. Let P F"Pft ~ t'. Let 1 be a branch label in label(P), h a proof index. Let (B;)i<n such
that for all i, 3; SZ}Z (t,P). If B1 <st -+ <st Bn then n < |B(t,t')].

5.12. Bounding the Basic Terms 251

Proof. For every i # j, we know, using Proposition 5.23, that I—framelp(ﬂi) E3 I—framelP(ﬁj). By Proposi-
tion 5.26, we deduce that |—framef(6i) % I-framelp(ﬁj). Since P F"ft ~ ', we know that for every i, j3;
is (t, P)-a-bounded. Using Lemma 5.20, we deduce that for every ¢, there exists a substitution 6; such
that:

I-frame]” (3:)0; € B(t,t')

Using the contrapositive of Proposition 5.27, we have that for every i # j:
I-frame;”(8,)0; # l-frame;” (5;)6;

Therefore, by a pigeon-hole argument, n < |B(t,t')]. |

5.12.3 Candidate Sequences

Let P FPf ¢ ~ /. For all n < |B(t,t')|, we are going to define the set U,, of normalized basic terms that
may appear in P using n nested basic terms. We then show that these sets are finite and recursive, and
give an upper-bound on their size which does not depend on n. This allows us to conclude by showing
that the existence of a proof using our (complete) strategy is decidable.

Definition 5.63. An a-context C is a context such that all holes appear below the encryption function
symbol, with proper randomness and encryption key. More precisely, for every position p € pos(C), if
Clp = [] then p = p’ -0 and there exist two nonces n, n, such that C),, = {]] g;(n).

Moreover, we require that every hole appears at most once.

Remark 5.13. For every 8 §E§l (t, P), the context |-frame; (3) is an a-context. O

Let t and ¢’ be two ground terms. We now define what is a valid candidate sequence (Uy,, Ay)nen for
t,t'. Basically, U,, corresponds to basic terms at nested depth n that could appear, on the left, in a proof
of F'Pf ¢ ~ #', while A, is the set of left encryptions oracle calls built using basic terms in U, _;.

Definition 5.64. Let ¢, be two terms. A sequence of pairs of sets of ground terms (U,,, A,)nen is a
valid candidate sequence for t,t' if:

o Uy =B(t,t') and Ay = 0.
e Forn >0, A,41 can be any set of terms that satisfies the following constraints (with the convention

that A_; = 0): A,41 contains A,, and for all a« € A, 11\ Ay, o = {D[l;o @] ;l:(np) where:

— b U are in U, 1 and there exists { }™ € st(t Lg) Ust(t' |z).

— for every branch p C b of D[g o], p does not contain duplicates.
— A, does not contain any terms of the form {_}".
e For n > 0, we let U, 41 is the set of term defined from U,, and A,, as follows: U, 1 contains U,
plus any element that can be obtained through the following construction:
— Take a a-context C' such that there exists 6 with C6 € B(¢,t').
— Let []1, ..., [Jo be the variables of C, and let a, .. ., a, be encryptions in A,. Forall1l < k < a,
let s; be such that {s;}- = a; € A,,.

— Let vg = C[(s;)1<i<a). Then let v be the term obtained from vy as follows: take positions
P1,--+ ,Po € pos(C) such that for all 1 <i <o, C,, = dec(_,sk;) (where sk; is a valid private
key, i.e. of the form sk(n;)); for every 1 < i < o, replace in vy the subterm dec(s, sk) at position
p by DI[g o W], where ¢ are terms in U, of the form eq(s,a) (with « = { }" € A, and «
directly appears in s) and Yw € @, w = dec(s, sk) or w = 0(dec(s, sk)). -

Proposition 5.30. Let P F"Pf t ~ t'. For | € label(P), there exists a valid candidate sequence
(Un,, Ap)nen for t,t" such that:

Usiierc U U ad Uespath®' () | leavest U i)
h h

n<|B(t,t")| n<|B(t,t")|

252 Deciding Indistinguishability

Proof. First, we show that there exists a valid candidate sequence such that the inclusion holds when
taking the union over N on the right, and s.t. for every n, A, contains only valid encryptions in SZP , lLe.:

s=U=iepc | t and U A.cegf (5.25)
h

n<+oo neN

Before starting the construction of the valid candidate sequence, we make some observations: if one fixes
(An)nen, there is at most one sequence (U,)nen such that (U, A,)nen is a valid candidate sequence.

Moreover this sequence is non-decreasing in (A,)nen. More precisely, if (U, An)nen and (U], A}) nen
are valid candidate sequences such that for every n, A, C Al , then for every n, U,, CU),.

We now describe a procedure that recursively construct S’ € S and a valid candidate sequence
(Un, An)nen such that S is a subset of |, <, ., Un (eventually, we will show that &’ = §). Moreover we
require (A,)nen to be minimal in the following sense: if o = C [5 o @] is in Ap,41\A, then there exists
v €b U such that v € Un\Uyp—1 (in other words, we add new encryptions in A,, as soon as we can).

Initially we take A, = 0 for every n, (U,)nen such that (U,, A,)nen is a valid candidate sequence
and &’ = (). While &’ # S, we pick an element 5 in S\S’ such that 8 is minimal for < in S\S’. Then
we add 8 to &’ and update (A,)nen as follows:

Case 1 If §is minimal for < in S, we have 3 of the form B[, (a;)ier, (dec;) es]. By minimality of 3,
we have I = () and for all j € J, dec; has no encryptions in Elp , and by consequence no guards. It follows

that (3 is if-free and in R-normal form, hence I—framefP (8) = B. By consequence, using Lemma 5.20, we
get that 8 € B(t,t') = Uy (since Uy does not depends on the sets (A,)nen).

Case 2 Let § such that for all 5/ < 8, 8’ € §’. Since &' C Upenly, and since {5’ | f <s 8} is finite,
there exists n,, such that:

{8 8" <& B} N (SE;Z (t, P)U cs—pathh’l(t,P)> - U U,

0<n<nmg,
From Lemma 5.20 we have a substitution 6 such that:
-frame; (8)6 € B(t,t')

We then just need to show that we can obtain £ from I-framelP (8) using the procedure defining U, , +1:
e For all encryption a = {m}], € st(8) N &P, we know that m = C[b o @] where b, <s 3. Hence

b, are in Up<n<n,,Un. We then have two cases:
— either U,enA, already contains an encryption o/ with randomness n. Since U,enA, C &F,

and using the side-condition of the CCAs application, we know that a = o’ € U,enA,. By
minimality of the (A,)nen we know that « € A, 4.

— or UpenA, does not contain an encryption with randomness n. Then we simply add « to A/,
where n’ < n,, + 1 is the smallest possible: we know that there exists such a n’ since adding «
to A, yields, after completion of the (U,)nen, a valid candidate sequence (one can check that

for all branch p of C [l_; o], p does not contain duplicates, using the third bullet point of the
definition of -"Pf).

Then we replace in |-frame!” (8) the holes [Jo, _ by {C[b ¢]}p. This produce a term vp.

e Finally we also replace in vy every occurrence of dec(_,sk) or O(dec(,sk)) in st(-frame! (3)) by
the corresponding SlP -decryption oracle call, which is possible since the guards g of this decryption
oracle calls are such that § < 3, hence are in Uy<p<n,, Un-

Conclusion We show that when S = S’ we have:

snly U =8n |J U (5.26)

n<+oo n<|B(t,t")|

5.12. Bounding the Basic Terms 253

Assume that S N U|B(t,t’)|—1 cSs ﬂZ/[|B(t7t/)‘, take B € SN (u|B(t,t’)\\Z/{|B(t,t’)\—1)- We know that g =
B[w, ()3, (decj);] and that there is an encryption « in (a;); or in the encryptions of the (dec;); such
that o € Ajg,iy)—1\A|B,v)—2 (otherwise § would be in S N U,y -1). Let a = {C[EOU]}gk, by
minimality of the (A;,),en we know that there is some v € b Ui such that v € Us ey —1 \U B¢, 1) |—2-
Since 3 is in S and since v is a S -normalized basic term appearing in 8 we know that v € S. Let
Bo = B, p1 = v, we have v € SN (U p(t,¢1)|—1 \U|B(t,+7)|—2)- By induction we can build a sequence of terms
B, for n € {0,...,|B(t,t')|} such that for all 0 < n < |B(¢,t')], B, € SN (Z/{‘B(t,tr)|,i\u‘5(t’t/)|,(i+1)) and
Brnt1 <st Bn (with the convention U_; = (). We built a sequence of terms in S, strictly ordered by <g
and of length |B(t,¢')] + 1. This contradicts Lemma 5.21. Absurd.
To finish, it remains to show that:

U cs-path™ (¢, P) C U leave-st (Uy, Lr)
h

n<|B(t,t")]
Let b in J,, cs-path™! (¢, P). Using Proposition 5.24 we know that there exists v g’g;’l (t, P) such that
b € leave-st(y g). Since v € U, |,y Un LR, We have b € U, 5.4 leave-st (Un Lr). |

Proposition 5.31. For all terms u, let C, be the set of a-contexts:
C, ={C | 30.CO = u A every hole appears at most once}

and C& be C, quotiented by the a-renaming of holes relation. Then |C2| < 21¥I.

Proof. The set of contexts C can be injected in the subsets of positions of u as follows: for every context
C, associate to C' the set of positions of u such that C), is a hole. This is invariant by a-renaming and
uniquely characterizes C modulo hole renaming. It follows that there are less element of C& than subsets
of pos(u), i.e. 2/Pos(Wl = olul, [|

Proposition 5.32. Let t and t' be two ground terms, N = |t g |+ [t' Lr |. For every valid candidate
sequence (Up, Ap)nen and n € N:

|A,| <N U, < N?.23N

Proof. For every n, A, contains only terms of the form o = {m}, where {_}"" € st(t |r) Ust(t' |r).
Moreover, A, cannot contain two encryptions using the same randomness. Therefore |A,| < N.

For every n, the only leeway we have while constructing the terms in U, is in the choice of the a-
context C, as the content of the encryptions is determined by A,,_1, and the guards that are added are

determined by U,,_1. The a-context C is picked in the following set:
U a
weB(t,t")
which, using Proposition 5.29 and Proposition 5.31, we can bound by:

ce S ce < 22.N S N2.2N.22'N _ N2.23'N [
U > el >
)

u€B(t,t’

uw€B(t,t") uw€B(t,t")

Proposition 5.33. Let ¢,t be two ground terms and N = |t g |+ |t/ Lr |. For every valid candidate
sequence (Up, Ap)nen and n € N:

Yu € U Un, |ul < 9Q(N) . 287
n<|B(t,t")]|

Where Q(X) is a polynomial of degree 4.

Proof. Even though there are at most |B(t,t')|.N2.23" distinct basic terms appearing in branch [at
proof index h, these terms may be much larger. Let U, (resp. A,) be an upper bound on the size of a

term in U, (resp. A,). Then for every 0 < n < |B(¢,t')] and « € A, 41\ Ay, « is of the form {C[goﬂ']}gk,

254 Deciding Indistinguishability

where b , 4 are in U, and C is such that no term appears twice on the same branch. Recall that we call
branch the ordered list of inner conditionals, which does not include the final leaf. If follows that C is
of depth at most |U,| + 1, and therefore has at most 2!!*2 — 1 conditional and leaf terms. To bound

|C [Z; o]|, we need to bound the size of each of its internal and leaf terms, which we do using U,,. We get:
|Clbod]| < |C|+1C|.U, <2.|C|. U, <2U1+3 1,

since U, is greater than 1 (terms can not be of size 0). Therefore |a| < 4+ 2/“~I+3 7, Using the bound
from Proposition 5.32, we can take:

A, =44 N2+

Now let u = C[()ier, (decj)jes] in Upy1\Uy. We know that Vi € I,|o;| < A,,. There are at most
|C| hole occurrences in C, hence |I| < |C] and |J| < |C|. To bound |u|, we also need to bound the
size of the decryption guards. There are at most N guards for each decryption (since only element of
A, may be guarded, and |A4,| < N), and each guard is in U, so of size bounded by U,. Moreover,
guarded decryptions have at most N + 1 leaf, where each life is of size at most |C[(c)icr, ([])jes]| +1 <
|C| + |I].An + 1. Hence every decryption’s size is upper-bounded by:

N+ N.U, + (N +1).(|C| + |I].A, + 1)

Finally |C] is such that there there exists 6 such that C8 € B(t,t), hence |C| < 2.N using Proposition 5.29.
Hence, assuming U,, > N (which will be the case):

|Cl(v)ier, (decj)jesll < |C]+[I].An + |J[.(N + N.Up + (N +1).(|C] + [I]. Ap + 1))

<
< 2N +2N.A, + 2N.(N + N.U, + (N + 1).(2N + 2N. A, + 1))

Seen as a multi-variate polynomial in N, A4,, and U,,, we have only monomials N, N.A4,,, N2, N2.U,,, N3
and N3.A4,,. Hence there exists a constant L such that:

uw< LN3(A, +U,) < LN3(4 42N 28y 1 U,

231\7

Hence there exists some polynomial Qg of degree two such that v < 290(N)-2"" 17 We let Uy = N, and

Upiq = 2900MN-2"Y 7 Then:

Uiy -1 < Q\B(t,t/)lQo(N)-?SN_Un < 2N2~2N~Q0(N)-23N_Un < 2N2~Q0(N)-24N.Un

Hence we have a polynomial Q(N) = N2.Qo(N), which is of degree four. |
Corollary 5.3. Let P F"P't ~t' and N = |B(t,t')|. Forl € label(P) and for all proof index h:

24.N

Yu € (SZ;} (t, P) U cs-path™(t, P)) |ul < 29

Proof. Direct consequence of Proposition 5.30 and Proposition 5.33. |

To conclude, we only need to bound the number of nested CSy conditionals.

Proposition 5.34. Let P F'Pft ~ ' and (h;)1<i<n be a sequence of indices of P such that for every
1<i<n, hij1 € cs-posp(h;) and hy = €. Then n < |B(t,t')| + 1. Moreover |label(P)| < 2181,

Proof. Let | € label(P) be such that h,, € h-branch(l). The proof consists in building an increasing
sequence of SlP—normalized basic terms 81 <g -+ <st Bm from (h;)1<i<y, of length m > n. We then
concludes using Lemma 5.21.

If h, # ¢, then h,, is of the form A} . We know that extract,, (h"™, P) is a proof of b" ~ b in Acs.
Moreover b" | g is in cs-path™ ! (¢, P) and is (¢, P)-a~bounded. Be definition of (¢, P)-a-bounded terms,
we know that there exists (85,j)1<j<k, (with k, > 1) such that:

o for all 1 < j < kn, By <pr "' (£, P).

o b" [g€ leave-st(fn1 dr)-

5.13. Conclusion 255

ho1,l
® Bk, <"1 (, P).
o forall 1 <j <k,, B,; is a guard of a decryption in 3, ji1, and therefore 3, ; <st Bn, j+1-
If h,—1 # €, then since 3, it (t, P) is (t, P)-a-bounded, and since for any [§E"‘1’l (t,P), Bn,;

is not a guard of 8, we know tlllat we are in the inductive case with different labels of Ehe definition of
(t, P)-a-bounded terms. Therefore there exists 5"~ € cs-path™~2'!(¢, P) such that b"~! € leave-st(fn, k,,)-

We then iterate this process until we reach €, building sequences (3;j)1<i<n,1<j<k; and (b%)1<i<n.
Since for all 4, b~ € leave-st(3;x, {r) and b~ € leave-st(B;—11 Lr) we know, using Proposition 5.11,

that 3 r, = Bi—1,1. Therefore we have:

Bra <st - <st Brkn = Brn-1,1 <st =+ <st Bno1,kn_1 """ <st B3,ks = B2,1 <st ==+ <st B2,ks

Moreover, for all i we have k; > 1, therefore we built an increasing sequence of S} -normalized basic
terms of length at least n — 1. It follows, using Lemma 5.21, that n — 1 < |B(¢,t')].

To upper-bound |label(P)|, we only need to observe that we cannot have two CSy applications on
the same conditional in a given branch. Consider the binary tree associated to the CSy applications in
P, labelled by the corresponding CSy conditionals (say, on the left). Then this tree is of depth at most
|B(t,')|, and therefore has at most 2/5%1)1 leaves. [|

Theorem (Main Result). The following problem is decidable in 3-NEXPTIME:
Input: A ground formula U ~ U.
Question: Is Ax\ U o0 U unsatisfiable?

Proof. Let 4 =wuq,...,up, ¥ =vq,...,v, and:

t=(ur, (oo (Un_1, un))) = (v, (.., (Un_1, vn)))

Using the FA, |y axiom, we know that if & ~ ¥ is derivable then ¢ ~ t' is derivable. Conversely, we

show that t ~ ' is derivable then @ ~ ¥ is derivable. For every 3 < i <, let p;[] be the i-th projection
defined using m; and o by:

> i> 1, = m(m () pull = 73 ()
Then: oy
)) : T4] FA<0
(pz[t])lizgg N({f))l[t])lgzgn R

Hence t ~ t' is derivable iff @ ~ ¥ is derivable. Moreover, the corresponding proof of @ ~ ¥ is of
polynomial size in the size of the proof of ¢ ~ t’. Therefore w.l.o.g. we can focus on the case || = |¥/| = 1.

Let N = |st(t {g)| + |st(t’ Lr)|. Using Proposition 5.34, we have bounded the number of branches
of the proof tree (by 2V 2'2N), and the number of nested CSy conditionals. For every branch, we non-
deterministically guesses a set of a-bounded basic terms that can appear in a proof P of P FWf ¢ ~ ¢/
using the valid candidate sequence algorithm (in polynomial time in O(N.23'N.2Q(N)‘24'N), using Propo-
sition 5.32 and Proposition 5.33). Then the procedure guesses the rule applications, and checks that
the candidate derivation is a valid proof. This is done in polynomial time in the size of the candidate
derivation. Remark that to check whether the leaves are valid CCA5 instances we use the polynomial-time
algorithm describe in Proposition 5.3. Finally, since |t | g | is at most exponential with respect to |¢|, this
yields a 3-NEXPTIME decision procedure that shows the decidability of our problem.]

5.13 Conclusion

We designed a decision procedure for a fragment of the Bana-Comon indistinguishability logic. This allows
to automatically verify that a protocol satisfies some security property. Our result can be reinterpreted,
in the cryptographic game transformation setting, as a cut elimination procedure that guarantees that
all intermediate games introduced in a proof are of bounded size w.r.t. the protocol studied.

A lot of work remains to be done. First, our decision procedure is in 3-NEXPTIME, which is a high
complexity. But, as we do not have any lower-bound, there may exist a more efficient decision procedure.

256 Deciding Indistinguishability

Finding such a lower-bound is another interesting direction of research. Then, our completeness result was
proven for ¢CAs only. We believe it can be extended to more primitives and cryptographic assumptions.
For example, signatures and EUF-CMA are very similar to asymmetric encryption and IND-CCAs, and
should be easy to handle (even combined with the CCAg axioms).

CHAPTER 6

Conclusion

There exist many tools for proving reachability or equivalence properties in the Dolev-Yao model, such
as ProVerif, Tamarin or Deepsec. These tools are often semi of fully automatic, reasonably efficient and
precise, and have been successfully used to analyse several security protocols. Unfortunately, the situation
is much less satisfactory in the computational model, where most tools are interactive (e.g. EASYCRYPT
and F*) or semi-automatic, such as CRYPTOVERIF. As this model offers stronger guarantees than the
Dolev-Yao model, it is crucial that progress be made there.

Therefore, our goal was to develop and study formal method techniques for proving computational
indistinguishability of cryptographic protocols that are amenable to proof automation. The Bana and
Comon equivalence model seemed to be a promising candidate for this. In this model, the security of a
protocol is expressed as the unsatisfiability of a set of first-order logic formulas. This approach provides
strong guarantees, as security in the Bana-Comon model implies security in the computational model.
Moreover, this is a symbolic approach, in which the protocol execution is modeled using first-order terms.
By consequence, it is potentially amenable to automated deduction techniques.

In this thesis, we showed that the Bana-Comon approach indeed fulfills our requirements, i.e. that it
can be used to complete security proofs of real-world protocols (in particular of privacy properties), and
that proof automation is indeed possible in this model. We did this through three different contributions.

Model and Axioms In Chapter 2, we presented the Bana-Comon model for indistinguishability, with
a small extension to allow for protocols with an unbounded number of sessions. Then, we presented
our first important contribution, which is the design of axioms of the logic for some frequent protocol
functions (e.g. the @), and for several cryptographic hypothesis (IND-CCA1, CR-HK, EUF-CMA and PRF).

Case Studies We showed the usefulness of the Bana-Comon approach and of our axioms through
several studies. In Chapter 3, we expressed a notion of privacy in the Bana-Comon logic, and proved that
two simple RFID protocols, LAKT and KCL™T, provide privacy under the PRF assumption. Moreover, we
showed that this assumption is somehow optimal, by providing attacks when the cryptographic hypothesis
are weakened.

In Chapter 4, we studied the 5G-AKA authentication protocol, and showed that several unlinkability
attacks against older versions of this protocol apply to it. Moreover, we found a new attack against the
PRIV-AKA protocol, which is a significantly modified version of the AKA protocol claimed secure by its
authors. Then, we proposed a fixed version of the 5G-AKA protocol, and proved that it provides some
form of unlinkability. Again, the proof uses the Bana-Comon logic, and is for any number of agents and
sessions independent from the security parameter.

Decidability Result Lastly, we argued that the Bana-Comon approach can be used to perform fully
automated proofs of security protocols in Chapter 5. In this chapter, we proved the decidability of
a set of axioms of the Bana-Comon logic which are computationally sound, though incomplete, under
the IND-CCAs cryptographic assumption. Basically, our result can be interpreted as the decidability
of a family of cryptographic game transformations. The proof relies on term rewriting and automated
deduction techniques such as proof cut eliminations. This is the most theoretical result of this thesis.

257

258 Conclusion

6.1 Future Works

There are many interesting lines of research for future works, and a lot remains to be done.

Extending the Model We presented axioms for four cryptographic hypotheses, but there exist many
more cryptographic primitives and hypothesis for which axioms remain to be designed. More interestingly,
we would like to find conditions under which a security proof in the Bana-Comon model, which is for
any number of sessions independent from the security parameter, can be lifted to a security proof for a
polynomial number of sessions. Fixing this short-coming of the Bana-Comon method would help make
this approach more attractive to cryptographers.

Scope of the Decidability Result It would be interesting to study the limits and the scope of the
decidability result. First, a limitation of our decidability result is its rigidity: the result is proved for a
fixed axiomatization, and in a non-modular way. We would like to design general sufficient conditions
under which the satisfiability problem associated to a set of Bana-Comon axioms is decidable. This seems
a good way of extending the result to more cryptographic primitives, such as signatures or hash functions.

Second, we only have an upper bound on the complexity of the satisfiability problem. We would like
to improve on the current bound, which is pretty high, and to find a matching lower bound. In a similar
vein, it would be interesting to prove that if we extend the set of axioms, either the satisfiability problem
becomes undecidable, or it has a very high complexity.

The AKA™' Protocol There are several questions related to the AKA™ protocol. First, our security
analysis is in a simplified two-party setting. It would be nice to prove that the protocol is secure in the
more complex three-party setting, with an honest or dishonest Serving Network. Moreover, we would like
to prove that the AKA™ protocol is at a sweet spot between privacy and the amount of random number
generation on the user side, as we conjectured. In other words, we want to prove an impossibility result
stating that no protocol with as much random number generation as AKA™ can provide more privacy.

Proof Automation While the security proofs of the two RFID protocols of Chapter 3 remain tractable,
the proofs for the AKA™ protocol in Chapter 4 are extremely tedious and lengthy. This highlights the
need for mechanized proofs in the Bana-Comon indistinguishability logic, in an automated or interactive
fashion. Unfortunately, the proofs of the AKA™ protocol are out-of-scope of the decidability result of
Chapter 5: first because the cryptographic hypothesis are different (PRF vs IND-CCA3); and second,
because the axiom system used to prove the AKA™ protocol is much more expressive than the axiom
system of the decision result. It seems unlikely that the decidability result can be extended to the full
axiom system of the AKA™ protocol proofs.

Of course, the obvious and usual solution is to drop either completeness or termination. In the case
of the AKA™ protocol, there is one interesting avenue of research, which originates in the observation
that around half of the intermediate properties shown in the AKA™ security proofs are correspondence
properties. Basically, they are formula schemata of the following form:

VTa w‘r — \/ ¢‘r7‘r’

{r'|7'27NO(T,7")}

where 7 an 7" are instants of the protocol execution; v, and ¢, are simple formulas, typically con-
junctions of literals; and 6(r,7’) is an instant constraint, e.g. 7/ = | FN(j) A 7 # 7. Moreover, the
cryptographic axioms for unforgeability and collision-resistance are of the same form. We believe that,
for this fragment of the logic, it should be possible to design a reasonably efficient proof search strategy.
If successful, this would allow to mechanize half of the AKA™ proofs, and would be a major first and
necessary step in the direction of full automation.

[ABDT15]

[ABF18]|

[ACRR10]

[AF04]

[AFPO5)

[AMR*12]

[AR02]

[BAS12]

[BBD*+17a]

[BBD*17b]

Bibliography

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green,
J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
Benjamin VanderSloot, Eric Wustrow, Santiago Zanella Béguelin, and Paul Zimmermann.
Imperfect forward secrecy: How diffie-hellman fails in practice. In ACM Conference on
Computer and Communications Security, pages 5—17. ACM, 2015.

Martin Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus: Mobile values,
new names, and secure communication. J. ACM, 65(1):1:1-1:41, 2018.

Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, pages 107-121. IEEE Computer Society, 2010.

Martin Abadi and Cédric Fournet. Private authentication. Theor. Comput. Sci., 322(3):427—
476, 2004.

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. In Public Key Cryptography, volume 3386 of Lecture
Notes in Computer Science, pages 65—84. Springer, 2005.

Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin Redon,
and Ravishankar Borgaonkar. New privacy issues in mobile telephony: fix and verification.
In the ACM Conference on Computer and Communications Security, CCS’12, pages 205—
216. ACM, 2012.

Martin Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). J. Cryptology, 15(2):103-127, 2002.

Gergei Bana, Pedro Adao, and Hideki Sakurada. Computationally complete symbolic at-
tacker in action. In FSTTCS, volume 18 of LIPIcs, pages 546-560. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
messy state of the union: taming the composite state machines of TLS. Commun. ACM,
60(2):99-107, 2017.

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Haw-
blitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay R. Lorch,
Kenji Maillard, Jianyang Pan, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro,
Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella
Béguelin, and Jean Karim Zinzindohoue. Everest: Towards a verified, drop-in replacement
of HTTPS. In SNAPL, volume 71 of LIPIcs, pages 1:1-1:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

259

260

Bibliography

[BBMOO]

[BC12|

[BC16|

[BCC*15]

[BCE18]

[BCG*13]

[BCKO09)

[BCL14]

[BDF+14]

[BDH*18]

[BDK*10]

[BDPA14]

[BDPROS]

[Ber08]

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-
user setting: Security proofs and improvements. In EUROCRYPT, volume 1807 of LNCS,
pages 259-274. Springer, 2000.

G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker. In Principles of Security and Trust, 2012, volume 7215 of LNCS,
pages 189-208. Springer, 2012.

Gergei Bana and Rohit Chadha. Verification methods for the computationally complete
symbolic attacker based on indistinguishability. TACR Cryptology ePrint Archive, 2016:69,
2016.

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, An-
toine Miné, and Xavier Rival. Static analysis and verification of aerospace software by ab-
stract interpretation. Foundations and Trends in Programming Languages, 2(2-3):71-190,
2015.

Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. Formal analysis of vote privacy using
computationally complete symbolic attacker. In ESORICS (2), volume 11099 of LNCS,
pages 350-372. Springer, 2018.

Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine Lakhnech,
Benedikt Schmidt, and Santiago Zanella Béguelin. Fully automated analysis of padding-
based encryption in the computational model. In ACM Conference on Computer and Com-
munications Security, pages 1247-1260. ACM, 2013.

Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound implemen-
tations of equational theories against passive adversaries. Inf. Comput., 207(4):496-520,
2009.

G. Bana and H. Comon-Lundh. A computationally complete symbolic attacker for equiv-
alence properties. In 2014 ACM Conference on Computer and Communications Security,
CCS 14, pages 609-620. ACM, 2014.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and
Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking and fixing authentication
over TLS. In IFEFE Symposium on Security and Privacy, pages 98-113. IEEE Computer
Society, 2014.

David A. Basin, Jannik Dreier, Lucca Hirschi, Savsa Radomirovi’c, Ralf Sasse, and Vincent
Stettler. A formal analysis of 5G authentication. In the ACM Conference on Computer and
Communications Security, CCS’18. ACM, 2018.

Gilles Barthe, Marion Daubignard, Bruce M. Kapron, Yassine Lakhnech, and Vincent La-
porte. On the equality of probabilistic terms. In Edmund M. Clarke and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers,
volume 6355 of LNCS, pages 46—63. Springer, 2010.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. The making of
KECCAK. Cryptologia, 38(1):26-60, 2014.

Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among
notions of security for public-key encryption schemes. In CRYPTO, volume 1462 of LNCS,
pages 26-45. Springer, 1998.

Daniel J. Bernstein. The Salsa20 family of stream ciphers. In The eSTREAM Finalists,
volume 4986 of Lecture Notes in Computer Science, pages 84-97. Springer, 2008.

Bibliography 261

[BGHBI11]

[BHO13)|

[BHP*17]

[BKROO|

[Bla]

[Bla04]

[Bla08]

[BMR14]

[BMU12]

[BPO5]

[BPWO6|

[BRO6]

[Can01]

[CB13|

|cCT7]

[CCD15]

[CCD17]

G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin. Computer-aided security proofs
for the working cryptographer. In Advances in Cryptology - CRYPTO, 2011, volume 6841
of LNCS, pages 71-90. Springer, 2011.

Gergei Bana, Koji Hasebe, and Mitsuhiro Okada. Computationally complete symbolic
attacker and key exchange. In ACM Conference on Computer and Communications Security,
pages 1231-1246. ACM, 2013.

Ravishankar Borgaonkar, Lucca Hirshi, Shinjo Park, Altaf Shaik, Andrew Martin, and
Jean-Pierre Seifert. New adventures in spying 3G & 4G users: Locate, track, monitor, 2017.
Briefing at BlackHat USA 2017.

Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci., 61(3):362-399, 2000.

Bruno Blanchet. PROVERIF: Cryptographic protocols verifier in the formal model. available
at http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/.

Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Sympo-
stum on Security and Privacy, page 86. IEEE Computer Society, 2004.

Bruno Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Trans. Dependable Sec. Comput., 5(4):193-207, 2008.

Michael Backes, Esfandiar Mohammadi, and Tim Ruffing. Computational soundness results
for proverif - bridging the gap from trace properties to uniformity. In POST, volume 8414
of Lecture Notes in Computer Science, pages 42—62. Springer, 2014.

Michael Backes, Ankit Malik, and Dominique Unruh. Computational soundness without
protocol restrictions. In ACM Conference on Computer and Communications Security,
pages 699-711. ACM, 2012.

Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of dolev-
yao-style XOR. In ESORICS, volume 3679 of Lecture Notes in Computer Science, pages
178-196. Springer, 2005.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the BRSIM/UC sound-
ness of dolev-yao models with hashes. In ESORICS, volume 4189 of Lecture Notes in
Computer Science, pages 404-423. Springer, 2006.

Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In EUROCRYPT, volume 4004 of LNCS, pages 409-426.
Springer, 2006.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136-145. IEEE Computer Society, 2001.

Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with proverif.
In POST, volume 7796 of Lecture Notes in Computer Science, pages 226—246. Springer, 2013.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238-252. ACM, 1977.

Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace equivalence
for protocols with nonces. In CSF, pages 170-184. IEEE Computer Society, 2015.

V. Cheval, H. Comon-Lundh, and S. Delaune. A procedure for deciding symbolic equivalence
between sets of constraint systems. Inf. Comput., 255:94-125, 2017.

http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/

262

Bibliography

[cCS13)

[CCZ10]

[Cha82]

[Chi07]

[CK17]

[CKKWO6]

[CKR18]

[CKW11]

[CL73]

[CW11]

[DH76]

[DJ90]

[DOT17]

[DRO2]

[DY83]

[FOO92]

[FOR16]

Hubert Comon-Lundh, Véronique Cortier, and Guillaume Scerri. Tractable inference sys-
tems: An extension with a deducibility predicate. In CADE, volume 7898 of LNCS, pages
91-108. Springer, 2013.

Hubert Comon-Lundh, Véronique Cortier, and Eugen Zalinescu. Deciding security prop-
erties for cryptographic protocols. application to key cycles. ACM Trans. Comput. Log.,
11(2):9:1-9:42, 2010.

David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199-203.
Plenum Press, New York, 1982.

Hung-Yu Chien. SASI: A new ultralightweight RFID authentication protocol providing
strong authentication and strong integrity. IEEE Trans. Dependable Secur. Comput.,
4(4):337-340, October 2007.

H. Comon and A. Koutsos. Formal computational unlinkability proofs of RFID protocols.
In 30th Computer Security Foundations Symposium, 2017, pages 100-114. IEEE Computer
Society, 2017.

Véronique Cortier, Steve Kremer, Ralf Kiisters, and Bogdan Warinschi. Computationally
sound symbolic secrecy in the presence of hash functions. In FSTTCS, volume 4337 of
Lecture Notes in Computer Science, pages 176—187. Springer, 2006.

Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC: deciding equivalence
properties in security protocols theory and practice. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, pages 529-546. IEEE, 2018.

Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic methods
in computational analysis of cryptographic systems. J. Autom. Reasoning, 46(3-4):225-259,
2011.

Chin-Liang Chang and Richard C. T. Lee. Symbolic logic and mechanical theorem proving.
Computer science classics. Academic Press, 1973.

Véronique Cortier and Bogdan Warinschi. A composable computational soundness notion.
In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011, pages 63-74. ACM, 2011.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644-654, 1976.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B), pages 243-320.
Elsevier and MIT Press, 1990.

Emanuele D’Osualdo, Luke Ong, and Alwen Tiu. Deciding secrecy of security protocols for
an unbounded number of sessions: The case of depth-bounded processes. In CSF, pages
464-480. IEEE Computer Society, 2017.

Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, 2002.

Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE
Trans. Information Theory, 29(2):198-207, 1983.

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for
large scale elections. In AUSCRYPT, volume 718 of Lecture Notes in Computer Science,
pages 244-251. Springer, 1992.

Pierre-Alain Fouque, Cristina Onete, and Benjamin Richard. Achieving better privacy for
the 3gpp AKA protocol. PoPETs, 2016(4):255-275, 2016.

Bibliography 263

[FS01]

|GBO1]
|GGMS6|

[GMs4]

[Gol01]

[HBD16]

[HPVP11]

[Hiit02]

[JLMO5)

[JR12]

[TW09)

[KCLO7]

[Koc96]

[LAKOG|

[LBAMO7]

[Low95]

[Low97]

[LSWW14]

Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63-92, 2001.

Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography, 2001.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792-807, 1986.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270-299, 1984.

Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cam-
bridge University Press, 2001.

Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying privacy-type
properties: The unbounded case. In IEEE Symposium on Security and Privacy, SP 2016,
pages 564-581. IEEE Computer Society, 2016.

Jens Hermans, Andreas Pashalidis, Frederik Vercauteren, and Bart Preneel. A new RFID
privacy model. In ESORICS, volume 6879 of Lecture Notes in Computer Science, pages
568-587. Springer, 2011.

Hans Hiittel. Deciding framed bisimilarity. FElectr. Notes Theor. Comput. Sci., 68(6):1-18,
2002.

Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the picture: Sound-
ness of formal encryption in the presence of active adversaries. In ESOP, volume 3444 of
Lecture Notes in Computer Science, pages 172-185. Springer, 2005.

Charanjit S. Jutla and Arnab Roy. Decision procedures for simulatability. In ESORICS,
volume 7459 of LNCS, pages 573-590. Springer, 2012.

Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. ACM Trans. Inf. Syst.
Secur., 13(1):7:1-7:23, November 2009.

I. J. Kim, E. Y. Choi, and D. H. Lee. Secure mobile RFID system against privacy and
security problems. In Security, Privacy and Trust in Pervasive and Ubiquitous Computing,
2007. SECPerU 2007. Third International Workshop on, pages 6772, July 2007.

Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 104—113.
Springer, 1996.

Sangshin Lee, Tomoyuki Asano, and Kwangjo Kim. RFID mutual authentication scheme
based on synchronized secret information. In Symposium on cryptography and information
security, 2006.

Tri Van Le, Mike Burmester, and Breno de Medeiros. Universally composable and forward-
secure RFID authentication and authenticated key exchange. In Feng Bao and Steven
Miller, editors, Proceedings of the 2007 ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2007, Singapore, March 20-22, 2007, pages 242-252.
ACM, 2007.

Gavin Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Inf.
Process. Lett., 56(3):131-133, 1995.

Gavin Lowe. A hierarchy of authentication specification. In CSFW, pages 31-44. IEEE
Computer Society, 1997.

Ming-Feng Lee, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. Anonymity
guarantees of the UMTS/LTE authentication and connection protocol. Int. J. Inf. Sec.,
13(6):513-527, 2014.

264

Bibliography

[MSCB13]

[MW04]

[NL15]

[NST78]

[OPOS]

[PCEROS]

[Sat89]

[Scel5]

[Sho04]

[SS16]

[SSB16]

[Str07]
[TS318]
[Unr10]

[Vau07]

[vdBVdR15]

S. Meier, B. Schmidt, C. Cremers, and D. Basin. The tamarin prover for the symbolic anal-
ysis of security protocols. In 25th International Conference on Computer Aided Verification,
CAV’13, pages 696—701. Springer-Verlag, 2013.

Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the presence
of active adversaries. In TCC, volume 2951 of Lecture Notes in Computer Science, pages
133—-151. Springer, 2004.

Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF protocols. RFC 7539, RFC
Editor, May 2015. http://www.rfc-editor.org/rfc/rfc7539.txt.

Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993-999, 1978.

Khaled Ouafi and Raphael C.-W. Phan. Privacy of recent RFID authentication protocols.
In Liqun Chen, Yi Mu, and Willy Susilo, editors, Information Security Practice and Expe-
rience, 4th International Conference, ISPEC 2008, Sydney, Australia, April 21-23, 2008,
Proceedings, volume 4991 of Lecture Notes in Computer Science, pages 263—277. Springer,
2008.

Pedro Peris-Lopez, Julio César Hernandez Castro, Juan M. Estévez-Tapiador, and Arturo
Ribagorda. Advances in ultralightweight cryptography for low-cost RFID tags: Gossamer
protocol. In Kyo-Il Chung, Kiwook Sohn, and Moti Yung, editors, Information Security
Applications, 9th International Workshop, WISA 2008, Jeju Island, Korea, September 23-
25, 2008, Revised Selected Papers, volume 5379 of Lecture Notes in Computer Science, pages
56-68. Springer, 2008.

Mahadev Satyanarayanan. Integrating security in a large distributed system. ACM Trans.
Comput. Syst., 7(3):247-280, 1989.

Guillaume Scerri. Proofs of security protocols revisited. PhD thesis, Ecole Normale
Supérieure de Cachan, 2015.

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. JACR
Cryptology ePrint Archive, 2004:332, 2004. https://eprint.iacr.org/2004/332.

Guillaume Scerri and Ryan Stanley-Oakes. Analysis of key wrapping apis: Generic policies,
computational security. In IEEE 29th Computer Security Foundations Symposium, CSF
2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 281-295. IEEE Computer Society,
2016.

Altaf Shaik, Jean-Pierre Seifert, Ravishankar Borgaonkar, N. Asokan, and Valtteri Niemi.
Practical attacks against privacy and availability in 4g/lte mobile communication systems.
In 23rd Annual Network and Distributed System Security Symposium, NDSS. The Internet
Society, 2016.

Daehyun Strobel. IMSI catcher. Ruhr-Universitit Bochum, Seminar Work, 2007.
TS 33.501: Security architecture and procedures for 5G system, September 2018.

Dominique Unruh. The impossibility of computationally sound XOR. TACR Cryptology
ePrint Archive, 2010:389, 2010.

Serge Vaudenay. On privacy models for RFID. In ASIACRYPT 2007, 13th International
Conference on the Theory and Application of Cryptology and Information Security, LNCS,
pages 68-87. Springer, 2007.

Fabian van den Broek, Roel Verdult, and Joeri de Ruiter. Defeating IMSI catchers. In ACM
Conference on Computer and Communications Security, CCS’15, pages 340-351. ACM,
2015.

http://www.rfc-editor.org/rfc/rfc7539.txt
https://eprint.iacr.org/2004/332

Bibliography 265

[VDROS| Ton Van Deursen and Sasa Radomirovic. Attacks on RFID protocols. TACR Cryptology
ePrint Archive, 2008:310, 2008.

[WL93| T.Y.C. Woo and S. S. Lam. A semantic model for authentication protocols. In Proceedings

1998 IEEE Computer Society Symposium on Research in Security and Privacy, pages 178—
194, May 1993.

A

Acceptance condition
characterization, 104, 106, 111, 120
necessary-, 92, 96, 118

Arity, 16

Asymmetric encryption, 3

Authentication, 96, 97
injective-, 100
mutual-, 92

Axiom, 28
equality-, 29
function application, 30
structural-, 29

C

CCAo

execution, 183

sub-instance, 206

trace, 203
Computational indistinguishability, 21
Computational model, 6
Computational soundness, 7
Context, 18

a-, 251

almost conditional-, 214

conditional-, 214

If-, 18
Corruption, 74
Cryptographic axioms, 35

CCAo, 187

CCAS, 185

CCA1, 35

CR-HK, 37

PRF, 42

PRNG, 59

EUF-MAC, 38

Joint CR-HK, 85

Joint PRF, 70, 85

Joint EUF-MAC, 85
Cryptographic primitives, 2

267

General Index

Directed path, 237
Dolev-Yao, 6

E

Eager reduction, 205

Equivalence properties, 5

Execution
computational-, 24
symbolic, 26

F

Formula, 17
interpretation-, 19
valid-, 19
Forward secrecy, 60
Function symbols, see Signature F

G
Ghost variable, 84

Globally Unique Temporary Identifier, 64
GUTI;® concealment, 114

H

Hash function, 3
Home Network, 63

I

Implementation axioms, 33
boolean axioms AxXpool, 34
decryption axioms AXgec, 33
pair axioms Ax(y, 33
xor axioms Axg, 33

International Mobile Subscriber Identity, 65

Ax-Interpretation, 35

L

Labelled transition system, 22
Leaf frame, 245

268

General Index

Lexicographic Path Ordering, 178

M

Message Authentication Code, 3
Model, 19
computational-, 20

N
Name, 16

P

Path
directed, see Directed path
Permanent Identify, see Subscription
Permanent Identifier
Position, 18
Precedence, 178
Privacy, 46
Fixed Trace, 50
trace, 49
Probability measure on infinite tapes, 15
Proof form, 212
early, 209
normalized, 212
Protocol, 22
AKA (simplified), 2
5G-AKA, 63
KCL, 46, 50
kcLt, 51
LAK, 53
LAK (stateless), 54
LAKT, 55
NSL, 176
PRIV-AKA, 67
RFID, see RFID
compatible-, 25
indistinguishability-, 25
sub-
GUTI, 72
ASSIGN-GUTI, 73
supl, 71
Pseudo-random number generator, 59

R

Restr Elimination, 190
RFID, 46

S-basic term, 204

normalized, 204
S-decryption oracle call, 204
S-encryption oracle call, 203
S-normalized basic conditional, 204
S-simple term, 204

normalized, 204
Semantics, 18
classical-, 18
computational-, 20
Sequence Number, 64
Serving Network, 63
Set
spurious-, 224
well-nested-, see Well-nested set
Signature F, 16
adversarial function symbols G, 16
protocol function symbols Fp, 16
Sort, 16
Subscription Permanent Identifier, 63

Symbolic
frame, 24
state, 24

Symbolic model, see Dolev-Yao
Symmetric encryption, 2

T

Temporary identity, see Globally Unique
Temporary Identifier
Term, 16
(t, P)-a-bounded-, 241
ground-, 19
if-free, 182
interpretation-, 19
persistent-, 224

simple-, 219
spurious-, 224
sub-, 16

Term rewriting system, 178
convergent, 179

Trace
action-, 25
basic action-, 83
computational-, 24
valid action-, 78

Trace properties, 5

Type, 16
U
Unlinkability, 74
o-, 75, 80
User Equipment, 63
v

Valid candidate sequence, 251
Valid public/private key pair, 203

\%%
Well-nested set, 219

C[_<>], 18
RE.,q. 184

cC

[weQ f(w)], 15

A Mes 25
arity(f), 16
T(), 16

Ue, 219

M, 20
codom, 15
cs-posp, 210
dom, 15
extract;, 209
extract,, 209

3, 190

fresh, 35
h-branchp, 210
head, 219
hidden-rand, 183
if-depth p, 238
#f, 26

I-trace, 203

09, 22

enbl, 22

N, 16

Fam, 19

Py 16

nodec, 183
¢-s-tracel’, 26
pos(t), 18

05, 237

—R*u, 179
r-trace, 203
[[_]]Ma 19
session(ai), 94
s-started,; (1), 94
~n, 17
priv-lts; " (P), 50
priv-lts, (P), 48
2erase, 197

Symbols

269

Symbols

Axfig, 51
Axstruct, 31
Struct-Ax, 176
index(P), 210
instance(P), 206
label(P) 209
s-trace” (1), 26
Cc, 35
types(f), 16
var(t), 16
reveal®, 129
PRNG, 59

5G-AKA agents
HN, 63
SN, 63
UE, 63
5G-AKA identities
GUTI, 64
IMSI, 65
SUPI, 63
AKAT™ action labels
TN(j, 1), 78
TUID(J, i), 7
NG), T8
FUip(j), 7
PUb (],)
NS (4), 78
PN(j, 1), 78
AKA™ constants
fail, 79, 88
sqn-inity’, 79
sqn-init}’, 79
Unknownld, 88
UnSet, 79, 88
AKAT™ partial transcripts
c-trmm 111

uT

full-tr? 7T 121

u:ro,T;

fu-tr’: 7t 107

u:T

Index

270

Symbols Index

part-tri7t 120

supi-tr 7t 111
AKA™ properties
(A1), 95
(A2), 95
(A3), 95
(A4), 95
(A5), 95
(A6), 95
(A7), 95
(A8), 95
(B1), 105
(B2), 105
(B3), 108
(B4), 108
(B5), 108
(B6), 108
(B7), 108
(Der1), 131
(Der2), 132
(Der3), 132
(Der4), 132
Characterizations
(Equl), 107
(Equ2), 111
(Equ3), 111
(Equ4), 111
(Equ5), 111
(StrEqul), 120
(StrEqu2), 120
(StrEqu3), 121
(StrEqu4), 121
Necessary conditions
(Accl), 96
(Acc2), 96
(Ace3), 96
(Acc4), 96
(StrAccl), 118
AKA™ state variables
b-auth?, 77
b-auth;’, 77
e-auth?,, 77
e-auth,’, 77
GUTIY, 77
GUTILY, 77
SQNY, 77
SQN, 77
valid-gutiy,, 77
sync;?, 84
sessiony, 77
s-valid-gutiy,’, 77
AKA™ term vectors
leak’", 114
l-reveal, 131
r-revealf, 131

AKA™ terms

auth, (1D,), 97
¢r, 79
or, 79

in 79
inj-auth_(1D, 5), 100
", 79
m-suci’’, 130
net-e-auth, (1D, j), 130
suc-auth, (ID), 97
sync-diffl”, 128
t-mac, (1D, j), 130
t-suci-& (1D, §), 130
net-e-auth (ID, j), 130
t-mac_(1D, j), 130
t-suci-&_(ID, j), 130
tr, 79

AKA™ trace and identity functions

copies-id, 83
fresh-id, 83
vy, 84

=, 84

<., 84

T, 83

Axioms

R, 174

R, 197

CCAg, 212
CR-KEYZ,, 88
FA\0, 174

Fie, 16

BFA, 200
PRF-g, 88
PRF-MAC/, 87, 88
SQN-ini, 89, 90
CCA1, 37

CCAS, 36

CR, 38
EUF-MAC, 39
P-EUF-MAC, 40
P-EUF-MACy, 40
PRF, 42, 43
PRNG, 59

CR/, 88
EUF-MAC/, 88
P-EUF-MAC/, 88
=-ind, 31
=-refl, 29
=-subst, 29
=-sym, 29
=-trans, 29
#-Const, 89
2Box, 197

BFA, 200

CS, 31

Symbols Index

271

CSiP, 174

Dup, 31

Equ, 29

FA, 30
FA(b,b"), 196
FAf, 196

Fresh, 31

H-len, 51

IFT, 31

Perm, 29

Refl, 31

Restr, 30

Sym, 31

Trans, 31

I-neq, 89

CSh, 197
CCA2%, 176
ID-len, 51
EQInj({-}:), 89
EQInj((_, -)), 89
EQInJ(<= _>)’ 89

Boolean functions
=, 34
<, 34
-, 34
=, 34
Vv, 34
A, 34

Deducibility relations
Fnef 242
Fb. 209
Fref 212
-, 190

Fragments
A, 203
Acsg, 203
A, 203
Agex, 203

Leaf frames
I-frame]”, 245
r-frame]”, 245

-frame; , 245
r-frame;”, 245

Orders
C., 220
=Ipo 178
- 178
=, 178
=uy 179

P

Proof sub-term relations
<§ ., 234
6cs—path, 238
6cs—pathN, 238
<g, 205
<c, 211
<esy 211
<, 211
<ene; 211
SCSNCS7 210
§|~|7 211
<§d, 205
<ihd» 205

Set of subterms
cond-st(u), 182
leave-st(u), 182
set-macy (u), 39
set-mac; (u), 87
set-prf{ (u), 87
strict-set-macy (u), 40
strict-set-macy_(u), 87
strict-st(u), 40
st(u), 16
over-approximation

cond-st(u), 215
leave-st(u), 215

Sets of function symbols
B, 196
G, 16
Fue 174
Fiiso, 174
Fio, 174
Fo, 16
F, 16

universite

PARIS-SACLAY

Titre : Preuves symboliques de propriétés d’indistinguabilité calculatoire

Mots clés : Protocoles de sécurité, Sécurité calculatoire, Preuves automatiques, Indistinguabilité

Résumé Notre société utilise de nombreux
systemes de communications. Parce que ces
systemes sont omniprésents et sont utilisés pour
échanger des informations sensibles, ils doivent étre
protégés. Cela est fait a I'aide de protocoles cryp-
tographiques. |l est crucial que ces protocoles as-
surent bien les propriétés de sécurité qu’ils affirment
avoir, car les échecs peuvent avoir des conséguences
importantes. Malheureusement, concevoir des pro-
tocoles cryptographiques est notoirement difficile,
comme le montre la régularité avec laquelle de nou-
velles attagues sont découvertes. Nous pensons que
la vérification formelle est le meilleur moyen d’avoir
de bonnes garanties dans la sécurité d’un protocole: il
s’agit de prouver mathématiquement qu’un protocole
satisfait une certaine propriété de sécurité.

Notre objectif est de développer les techniques
permettant de vérifier formellement des propriétés
d’équivalence sur des protocoles cryptographiques,
en utilisant une méthode qui fournit de fortes ga-
ranties de sécurités, tout en étant adaptée a des
procédures de preuve automatique. Dans cette these,
nous défendons l'idée que le modéle Bana-Comon
pour les propriétés d’équivalences satisfait ces objec-

tifs. Nous soutenons cette affirmation a 'aide de trois
contributions.

Tout d’abord, nous étayons le modéle Bana-Comon
en concevant des axiomes pour les fonctions usuelles
des protocoles de sécurités, et pour plusieurs hy-
pothéses cryptographiques. Dans un second temps,
nous illustrons I'utilité de ces axiomes et du modele en
réalisant des études de cas de protocoles concrets:
nous étudions deux protocoles RFID, KCL et LAK,
ainsi que le protocole d’authentification 5G-AKA, qui
est utilisé dans les réseaux de téléphonie mobile.
Pour chacun de ces protocoles, nous montrons des
attaques existentes ou nouvelles, proposons des ver-
sions corrigées de ces protocoles, et prouvons que
celles-ci sont sécurisées. Finalement, nous étudions
le probléme de I'automatisation de la recherche de
preuves dans le modele Bana-Comon. Pour cela,
nous prouvons la décidabilitt d’'un ensemble de
regles d'inférences qui est une axiomatisation cor-
recte, bien que incompléte, de I'indistingabilité calcu-
latoire, lorsque I'on utilise un schéma de chiffrement
IND-CCA,. Du point de vue d’un cryptographe, cela
peut étre interprété comme la décidabilité d'un en-
semble de transformations de jeux.

Title : Symbolic Proofs of Computational Indistinguishability

Keywords : Security protocols, Computational security, Automatic proofs, Indistinguishability

Abstract : Our society extensively relies on commu-
nications systems. Because such systems are used
to exchange sensitive information and are pervasive,
they need to be secured. Cryptographic protocols are
what allow us to have secure communications. It is
crucial that such protocols do not fail in providing
the security properties they claim, as failures have
dire consequences. Unfortunately, designing crypto-
graphic protocols is notoriously hard, and major pro-
tocols are regularly and successfully attacked. We
argue that formal verification is the best way to get
a strong confidence in a protocol security. Basically,
the goal is to mathematically prove that a protocol sa-
tisfies some security property.

Our objective is to develop techniques to formally ve-
rify equivalence properties of cryptographic protocols,
using a method that provides strong security guaran-
tees while being amenable to automated deduction
techniques. In this thesis, we argue that the Bana-
Comon model for equivalence properties meets these

goals. We support our claim through three different
contributions.

First, we design axioms for the usual functions used in
security protocols, and for several cryptographic hypo-
thesis. Second, we illustrate the usefulness of these
axioms and of the model by completing case studies
of concrete protocols: we study two RFID protocols,
KCL and LAK, as well as the 5G-AKA authentica-
tion protocol used in mobile communication systems.
For each of these protocols, we show existing or new
attacks against current versions, propose fixes, and
prove that the fixed versions are secure. Finally, we
study the problem of proof automation in the Bana-
Comon model, by showing the decidability of a set
of inference rules which is a sound, though incom-
plete, axiomatization of computational indistinguisha-
bility when using an IND-CCA, encryption scheme.
From a cryptographer’s point of view, this can be seen
as the decidability of a fixed set of cryptographic game
transformations.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Contents
	Introduction
	The Context
	Example: the AKA- Protocol
	Cryptographic Primitives
	The AKA- Protocol

	Security Properties
	Attacker Models
	Symbolic Model
	Computational Model
	Computational Soundness
	The Bana-Comon Model

	Limitations of the State of the Art
	Contributions
	RFID Protocols
	The AKA Protocol
	Deciding Indistinguishability

	Outline of the Thesis

	The Model
	Preliminaries
	Syntax
	Syntax of the Logic
	Positions and Contexts

	Semantics
	Sorted First-order Semantics
	Computational Models

	Protocol and Their Semantics
	Labelled Transition Systems
	Computational Execution
	Symbolic Execution

	Axioms
	Structural Axioms
	Implementation Axioms

	Cryptographic Assumptions and Axioms
	The CCA1 Axioms
	The CR-HK Axioms
	EUF-MAC Axioms
	PRF Axioms

	Conclusion

	Privacy Proofs of RFID Protocols
	Security Properties
	Privacy of RFID Protocols
	Privacy Labelled Transition System

	Two RFID Protocols
	A Known Attack on KCL
	KCL+, a Revised Version of KCL
	The LAK Protocol
	A Stateless Revised Version of LAK
	The LAK+ Protocol

	Pseudo-Random Number Generator
	Conclusion

	The 5G-AKA Authentication Protocol Privacy
	Introduction
	The 5G-AKA Protocol
	Description of the Protocol

	Unlinkability Attacks Against 5G-AKA
	IMSI-Catcher Attack
	The Failure Message Attack
	The Encrypted IMSI Replay Attack
	Attack Against The PrivAKA Protocol
	Sequence Numbers and Unlinkability

	The AKA+ Protocol
	Efficiency and Design Constraints
	Key Ideas
	Architecture and States
	The SUPI, GUTI and ASSIGN-GUTI Sub-Protocols

	Unlinkability
	sigma-Unlinkability
	A Subtle Attack

	Modeling in The Bana-Comon Logic
	The AKA+ Protocol Action Trace
	The AKA+ Protocol Symbolic Outputs and State Updates
	Modeling sigma-Unlinkability
	Ghost Variable

	Axioms
	Joint Cryptographic Assumptions
	Relations Among Cryptographic Assumptions
	Cryptographic Axioms
	Axioms
	Additional Axioms

	Security of the AKA+ Protocol
	Mutual Authentication of the AKA+ Protocol
	Sigma-Unlinkability of the AKA+ Protocol

	Mutual Authentication of the AKA+ Protocol
	Invariants and Necessary Acceptance Conditions
	Authentication of the User by the Network
	Authentication of the Network by the User
	Injective Authentication of the Network by the User
	Proof of Lemma 4.6

	Acceptance Condition Characterizations
	A First Acceptance Condition Characterization
	Proof of Proposition 4.17
	A Full Set of Acceptance Condition Characterizations
	Proof of Lemma 4.11
	GUTI Concealment
	Stronger Characterizations
	Proof of Lemma 4.14

	Unlinkability
	Resistance Against De-Synchronization Attacks
	The Case Term Construction
	Strengthened Induction Hypothesis

	Proof of Lemma 4.15
	Case ai = NS(j)
	Case ai = PN(j,0)
	Case ai = PU(j,1)
	Case ai = PN(j,1)
	Case ai = PU(j,2)
	Case ai = FN(j)
	Case ai = FU(j)
	Case ai = TU(j,0)
	Case ai = TN(j,0)
	Case ai = TU(j,1)
	Case ai = TN(j,1)

	Proof of Proposition 4.20
	Conclusion

	Deciding Indistinguishability
	Introduction
	Axioms
	Comments and Examples

	The Term Rewriting System R
	The CCA2 Axioms
	Closure Under Restr
	Length in the CCA2 Axioms

	Main Result and Difficulties
	Commutations and Cut Eliminations
	Rule Commutations
	The Freeze Strategy

	Shape of the Terms
	Definitions
	Eager Reduction for Afas

	Proof Form
	Early Proof Form
	Shape of the Terms
	Proof Form and Normalized Proof Form
	Restriction to Proofs in Normalized Proof Form

	Properties of Normalized Basic Terms
	Basic Term Extraction
	Well-Nested Sets

	Spurious Conditionals and Persistent Leaves
	Spurious Conditionals to Spurious Sets
	Persistent Terms

	Proof Cut Elimination
	Removing True and False From Basic Terms
	Basic Terms have Disjoints Conditionals and Leaves
	Proof Cuts on Branches
	Main Lemma

	Bounding the Basic Terms
	alpha-Bounded Conditionals
	Bounding the Number of Nested Basic Conditionals
	Candidate Sequences

	Conclusion

	Conclusion
	Future Works

	Bibliography
	General Index
	Symbols Index

