
HAL Id: tel-02317745
https://theses.hal.science/tel-02317745v1

Submitted on 16 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preuves symboliques de propriétés d’indistinguabilité
calculatoire
Adrien Koutsos

To cite this version:
Adrien Koutsos. Preuves symboliques de propriétés d’indistinguabilité calculatoire. Informatique et
langage [cs.CL]. Université Paris Saclay (COmUE), 2019. Français. �NNT : 2019SACLN029�. �tel-
02317745�

https://theses.hal.science/tel-02317745v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LN
02

9

Preuves symboliques de propriétés
d’indistinguabilité calculatoire

Thèse de doctorat de l’Université Paris-Saclay
préparée à École Normale Supérieure Paris-Saclay
au sein du Laboratoire Spécification et Vérification

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Cachan, le 27 septembre 2019, par

ADRIEN KOUTSOS

Composition du Jury :

Catuscia Palamidessi
Directrice de Recherche, INRIA Présidente

Cas Cremers
Professeur, CISPA Helmholtz Rapporteur

Bogdan Warinschi
Professeur, University of Bristol Rapporteur

Myrto Arapinis
Reader, University of Edinburgh Examinatrice

Bruno Blanchet
Directeur de Recherche, INRIA Examinateur

Hubert Comon
Professeur, ENS Paris-Saclay Directeur de thèse

Résumé

Notre société utilise de nombreux systèmes de communications. Parce que ces systèmes sont omniprésents
et sont utilisés pour échanger des informations sensibles, ils doivent être protégés. Cela est fait à l’aide
de protocoles cryptographiques. Essentiellement, un protocole est un ensemble de règles détaillant com-
ment des entités, par exemples des systèmes informatisés, doivent communiquer, et un protocole cryp-
tographique est un protocole qui cherche à garantir certaines propriétés de sécurité. Il est crucial que ces
protocoles assurent bien les propriétés de sécurité qu’ils affirment avoir, car les échecs peuvent avoir des
conséquences importantes. Par exemple, ils peuvent entraîner des fuites de données confidentielles, ou
des atteintes majeures au respect de la vie privée des utilisateurs.

Malheureusement, concevoir des protocoles cryptographiques est notoirement difficile, comme le mon-
tre la régularité avec laquelle de nouvelles attaques sont découvertes. De plus, des attaques sont trouvées
régulièrement même sur des protocoles de premier plan, tel le protocole TLS qui est utilisé pour sécuriser
les connections HTTPS. Nous pensons que la vérification formelle est le meilleur moyen d’avoir de bonnes
garanties dans la sécurité d’un protocole. Essentiellement, il s’agit de prouver mathématiquement qu’un
protocole satisfait une certaine propriété de sécurité. Bien entendu, ce n’est pas une tâche aisée. Tout
d’abord, il faut modéliser fidèlement le protocole et la propriété de sécurité, tout en abstrayant les aspects
du système qui ne sont pas pertinents. Ensuite, il faut prouver que le modèle du protocole satisfait bien
la propriété voulue. En particulier, cela nécessite d’avoir formalisé la classe d’attaquants contre laquelle
la propriété doit être valide. Plusieurs classes d’attaquants ont été proposées dans la littérature.

Un modèle d’attaquants populaire, le modèle de Dolev-Yao, donne à l’attaquant le contrôle du réseau:
celui-ci peut intercepter et rediriger tous les messages. De plus, l’attaquant peut modifier les messages
en utilisant un ensemble fixé de règles. Ce modèle est particulièrement adapté aux preuves automatiques
de propriétés de sécurité, mais il donne des garanties limitées, puisque l’on prouve seulement l’absence
d’attaques utilisant les capacités données à l’attaquant.

Un autre modèle d’attaquant, plus proche d’un attaquant réel, est celui de l’attaquant calculatoire.
Dans ce modèle, l’attaquant contrôle aussi le réseau. Cependant, celui-ci n’est pas restreint à un ensemble
fixé de règles: il peut effectuer n’importe quel calcul probabiliste polynomial. Ce modèle offre de meilleures
garanties de sécurité, mais les preuves sont plus difficiles à réaliser, sujettes à erreurs et plus difficiles à
automatiser.

Il existe une approche alternative, le modèle Bana-Comon. Dans ce modèle, on exprime la sécurité
d’un protocole comme un problème de satisfaisabilité d’un ensemble de formules de la logique du premier
ordre. Cet ensemble de formules contient la négation de la propriété de sécurité et un ensemble d’axiomes,
qui correspondent à des hypothèses d’implémentations, telle que la correction fonctionnelle, et à des
hypothèses cryptographiques sur les primitives de sécurité. Prouver l’insatisfaisabilité de cet ensemble
de formules implique la sécurité du protocole dans le modèle calculatoire. De plus, puisqu’il s’agit d’une
logique du premier ordre, ce modèle est adapté aux méthodes de preuves automatiques. Il existe deux
modèles Bana-Comon, qui ciblent différentes propriétés de sécurité. Le modèle le plus ancien est destiné
aux propriétés d’accessibilités, ou de traces, alors que le modèle le plus récent s’intéresse aux propriétés
d’équivalences. Ces dernières sont plus expressives, et sont nécessaires pour énoncer des propriétés liées
au respect de la vie privée, tels que l’anonymat ou la non-traçabilité.

i

ii

Notre objectif est de développer les techniques permettant de vérifier formellement des propriétés
d’équivalence sur des protocoles cryptographiques, en utilisant une méthode qui fournit de fortes garanties
de sécurités, tout en étant adaptée à des procédures de preuve automatique. Dans cette thèse, nous
défendons l’idée que le modèle Bana-Comon pour les propriétés d’équivalences satisfait ces objectifs.
Nous soutenons cette affirmation à l’aide de trois contributions.

Tout d’abord, nous étayons le modèle Bana-Comon en concevant des axiomes pour les fonctions
usuelles des protocoles de sécurités, comme le xor, et pour plusieurs hypothèses cryptographiques:
ind-cca1, cr-hk, euf-cma et prf.

Dans un second temps, nous illustrons l’utilité de ces axiomes et du modèle en réalisant deux études
de cas de protocoles concrets. Nous commençons avec deux protocoles relativement simples, kcl et lak.
Puisque des attaques contre ces protocoles sont connues, nous proposons des corrections, et prouvons que
les versions corrigées protègent la vie privée des utilisateurs, en supposant que les fonctions de hachages
sont des prf. Notre deuxième étude de cas est plus complexe. Dans cette étude de cas, nous nous
intéressons au protocole d’authentification 5G-AKA, qui est utilisé dans les réseaux de téléphonie mobile,
et montrons que de nombreuses attaques de la littérature sont applicables à ce protocole. Nous proposons
alors une version modifiée du protocole, que nous appelons AKA+, et nous prouvons à l’aide du modèle
Bana-Comon que celle-ci garantie l’authentification mutuelle et la non-traçabilité des utilisateurs. Ce
résultat est valide pour un nombre arbitraire d’utilisateurs et de sessions.

Finalement, nous étudions le problème de l’automatisation de la recherche de preuves dans le modèle
Bana-Comon. Pour cela, nous prouvons la décidabilité d’un ensemble de règles d’inférences qui est une
axiomatisation correcte, bien que incomplète, de l’indistingabilité calculatoire, lorsque l’on utilise un
schéma de chiffrement ind-cca2. Du point de vue d’un cryptographe, cela peut être interprété comme la
décidabilité d’un ensemble de transformations de jeux. Ce résultat repose sur des techniques de déduction
automatiques standards, comme la normalisation de termes et l’élimination de coupures.

Abstract

Our society extensively relies on communications systems. Because such systems are used to exchange
sensitive information and are pervasive, they need to be secured. Cryptographic protocols are what allow
us to have secure communications. Basically, a protocol is a set of rules detailing how entities, e.g.
computer systems, must communicate, and a cryptographic protocol is a protocol that aims at ensuring
some security properties. It is crucial that such protocols do not fail in providing the security properties
they claim, as such failures have dire consequences. For example, they can lead to sensitive data being
stolen, or to large scale privacy breaches.

Unfortunately, designing cryptographic protocols is notoriously hard, and major protocols are regu-
larly and successfully attacked. Moreover, this is true even for high-visibility protocols, such as the TLS
protocol which is used to secure HTTPS connections. Formal verification is the best way to get a strong
confidence in a protocol security. Basically, the goal is to mathematically prove that a protocol satisfies
some security property. Of course, this is not an easy task. First, we need to faithfully model the protocol
and the security property, while abstracting away irrelevant aspects of the system. Second, we have to
prove that the modeled protocol indeed satisfies the desired property. In particular, this requires us to
formally specify against what class of attackers the property must hold. Several classes of attackers have
been considered in the literature.

A popular attacker model, the Dolev-Yao attacker, grants the attacker the complete control of the
network: he can intercept and re-route all messages. Besides, the adversary is allowed to modify messages
using a fixed set of rules. This model is very amenable to automatic verification of security properties,
but the security obtained is limited: we only prove the absence of attacks using the capabilities granted
to the adversary.

Another attacker model, closer to a real world attacker, is the computational attacker model. This
adversary also controls the network, but this model does not restrict the attacker to a fixed set of
operations: the adversary can perform any probabilistic polynomial time computation. This model offers
stronger guarantees than the Dolev-Yao model, but formal proofs are harder to complete, more error-
prone, and more difficult to automate.

There is an alternative approach, the Bana-Comon model. In this model, we express the security of
a protocol as the unsatisfiability of a set of formulas in first-order logic. The formulas contain the nega-
tion of the security property and axioms, which reflect implementation assumptions, such as functional
correctness and cryptographic hypotheses on the security primitives. Carrying out a proof of unsatisfi-
ability in this logic entails the security of the protocol in the computational model. Moreover, because
this is a first-order logic, this model may be amenable to automated or mechanized proofs. There exist
two Bana-Comon models, which target different security properties. The oldest model aims at proving
reachability or trace properties, while the newest and less studied model targets equivalence properties.
These properties are more expressive, and allow to state privacy-related properties, such as anonymity
or unlinkability.

Our objective is to develop techniques to formally verify equivalence properties of cryptographic pro-
tocols, using a method that provides strong security guarantees while being amenable to automated
deduction techniques. In this thesis, we argue that the Bana-Comon model for equivalence properties
meets these goals. We support this claim through three different contributions.

iii

iv

First, we design axioms for the usual functions used in security protocols, such as the xor operator,
and for several cryptographic hypothesis: ind-cca1, cr-hk, euf-cma and prf.

Second, we illustrate the usefulness of these axioms and of the model by completing two case studies
of concrete protocols. We start with two simple RFID protocols, kcl and lak. As these protocols are
known to be unsecure, we propose security fixes, and prove that our fixed versions provide privacy under
the prf assumption. Our second case study is more involved. In this case study, we investigate the
5G-AKA authentication protocol used in mobile communication systems, and show that multiple privacy
attacks from the literature apply to this protocol. We then propose a fixed version of this protocol,
dubbed AKA+, and prove using the Bana-Comon approach that it provides mutual authentication and
a form of unlinkability. This result holds for any number of agents and sessions.

Finally, we study the problem of proof automation in the Bana-Comon model, by showing the decid-
ability of a set of inference rules which is a sound, though incomplete, axiomatization of computational
indistinguishability when using an ind-cca2 encryption scheme. From a cryptographer’s point of view,
this can be seen as the decidability of a fixed set of cryptographic game transformations. This result relies
on standard automated deduction techniques, such as term normalization and proof cut eliminations.

Contents

Contents v

1 Introduction 1
1.1 The Context . 1
1.2 Example: the AKA− Protocol . 2

1.2.1 Cryptographic Primitives . 2
1.2.2 The AKA− Protocol . 3

1.3 Security Properties . 4
1.4 Attacker Models . 5

1.4.1 Symbolic Model . 6
1.4.2 Computational Model . 6
1.4.3 Computational Soundness . 7
1.4.4 The Bana-Comon Model . 8

1.5 Limitations of the State of the Art . 9
1.6 Contributions . 10

1.6.1 RFID Protocols . 10
1.6.2 The AKA Protocol . 10
1.6.3 Deciding Indistinguishability . 11

1.7 Outline of the Thesis . 12

2 The Model 13
2.1 Preliminaries . 15
2.2 Syntax . 16

2.2.1 Syntax of the Logic . 16
2.2.2 Positions and Contexts . 18

2.3 Semantics . 18
2.3.1 Sorted First-order Semantics . 18
2.3.2 Computational Models . 20

2.4 Protocol and Their Semantics . 22
2.4.1 Labelled Transition Systems . 22
2.4.2 Computational Execution . 24
2.4.3 Symbolic Execution . 25

2.5 Axioms . 28
2.5.1 Structural Axioms . 29
2.5.2 Implementation Axioms . 33

2.6 Cryptographic Assumptions and Axioms . 35
2.6.1 The cca1 Axioms . 35
2.6.2 The cr-hk Axioms . 37
2.6.3 euf-mac Axioms . 38
2.6.4 prf Axioms . 42

2.7 Conclusion . 44

v

vi Contents

3 Privacy Proofs of RFID Protocols 45
3.1 Security Properties . 46

3.1.1 Privacy of RFID Protocols . 46
3.1.2 Privacy Labelled Transition System . 48

3.2 Two RFID Protocols . 50
3.2.1 A Known Attack on kcl . 50
3.2.2 kcl+, a Revised Version of kcl . 51
3.2.3 The lak Protocol . 53
3.2.4 A Stateless Revised Version of lak . 54
3.2.5 The lak+ Protocol . 55

3.3 Pseudo-Random Number Generator . 59
3.4 Conclusion . 60

4 The 5G-AKA Authentication Protocol Privacy 61
4.1 Introduction . 61
4.2 The 5G-AKA Protocol . 63

4.2.1 Description of the Protocol . 63
4.3 Unlinkability Attacks Against 5G-AKA . 65

4.3.1 imsi-Catcher Attack . 65
4.3.2 The Failure Message Attack . 66
4.3.3 The Encrypted imsi Replay Attack . 67
4.3.4 Attack Against The PRIV-AKA Protocol . 67
4.3.5 Sequence Numbers and Unlinkability . 68

4.4 The AKA+ Protocol . 68
4.4.1 Efficiency and Design Constraints . 69
4.4.2 Key Ideas . 69
4.4.3 Architecture and States . 70
4.4.4 The supi, guti and assign-guti Sub-Protocols 71

4.5 Unlinkability . 74
4.5.1 σ-Unlinkability . 75
4.5.2 A Subtle Attack . 76

4.6 Modeling in The Bana-Comon Logic . 77
4.6.1 The AKA+ Protocol Action Trace . 77
4.6.2 The AKA+ Protocol Symbolic Outputs and State Updates 79
4.6.3 Modeling σ-Unlinkability . 80
4.6.4 Ghost Variable . 84

4.7 Axioms . 84
4.7.1 Joint Cryptographic Assumptions . 85
4.7.2 Relations Among Cryptographic Assumptions . 85
4.7.3 Cryptographic Axioms . 87
4.7.4 Axioms . 88
4.7.5 Additional Axioms . 90

4.8 Security of the AKA+ Protocol . 91
4.8.1 Mutual Authentication of the AKA+ Protocol . 92
4.8.2 σ-Unlinkability of the AKA+ Protocol . 93

4.9 Mutual Authentication of the AKA+ Protocol . 93
4.9.1 Invariants and Necessary Acceptance Conditions 94
4.9.2 Authentication of the User by the Network . 96
4.9.3 Authentication of the Network by the User . 97
4.9.4 Injective Authentication of the Network by the User 100
4.9.5 Proof of Lemma 4.6 . 101

4.10 Acceptance Condition Characterizations . 104
4.10.1 A First Acceptance Condition Characterization . 104
4.10.2 Proof of Proposition 4.17 . 108
4.10.3 A Full Set of Acceptance Condition Characterizations 111
4.10.4 Proof of Lemma 4.11 . 112

Contents vii

4.10.5 gutiidu Concealment . 114
4.10.6 Stronger Characterizations . 118
4.10.7 Proof of Lemma 4.14 . 121

4.11 Unlinkability . 128
4.11.1 Resistance Against De-Synchronization Attacks . 128
4.11.2 The Case Term Construction . 129
4.11.3 Strengthened Induction Hypothesis . 129

4.12 Proof of Lemma 4.15 . 131
4.13 Proof of Proposition 4.20 . 159
4.14 Conclusion . 169

5 Deciding Indistinguishability 171
5.1 Introduction . 171
5.2 Axioms . 174

5.2.1 Comments and Examples . 176
5.3 The Term Rewriting System R . 178
5.4 The cca2 Axioms . 182

5.4.1 Closure Under Restr . 187
5.4.2 Length in the cca2 Axioms . 188

5.5 Main Result and Difficulties . 189
5.6 Commutations and Cut Eliminations . 194

5.6.1 Rule Commutations . 194
5.6.2 The Freeze Strategy . 198

5.7 Shape of the Terms . 202
5.7.1 Definitions . 203
5.7.2 Eager Reduction for AFAs . 205

5.8 Proof Form . 209
5.8.1 Early Proof Form . 209
5.8.2 Shape of the Terms . 210
5.8.3 Proof Form and Normalized Proof Form . 212
5.8.4 Restriction to Proofs in Normalized Proof Form . 212

5.9 Properties of Normalized Basic Terms . 214
5.9.1 Basic Term Extraction . 214
5.9.2 Well-Nested Sets . 219

5.10 Spurious Conditionals and Persistent Leaves . 224
5.10.1 Spurious Conditionals to Spurious Sets . 225
5.10.2 Persistent Terms . 227

5.11 Proof Cut Elimination . 231
5.11.1 Removing True and False From Basic Terms . 232
5.11.2 Basic Terms have Disjoints Conditionals and Leaves 234
5.11.3 Proof Cuts on Branches . 236
5.11.4 Main Lemma . 237

5.12 Bounding the Basic Terms . 241
5.12.1 α-Bounded Conditionals . 241
5.12.2 Bounding the Number of Nested Basic Conditionals 245
5.12.3 Candidate Sequences . 251

5.13 Conclusion . 255

6 Conclusion 257
6.1 Future Works . 258

Bibliography 259

General Index 267

Symbols Index 269

Chapter 1

Introduction

“So it goes.”

— Kurt Vonnegut

1.1 The Context

Our society extensively relies on communication systems. The most prominent communication systems
are very large scale systems, such as the Internet or the mobile phone cellular networks, through which
billions of users are connected. These systems are used by private individuals for messaging, online
shopping, accessing bank accounts, paying taxes... They are also used by organizations, such as companies
or states, to exchange sensitive data. But there are also smaller-scale and less visible communication
systems, which are no less pervasive. For example, RFID badges and smart cards are extensively used for
buildings access control or public transportation payment method. Often, the data exchanged through
these systems is sensitive, e.g. credit card number or bank account details, or contains information that the
user wants to keep private, e.g. his location. To prevent some malicious entity from stealing confidential
data, or breaching a user’s privacy, communication systems need to be secured.

Cryptographic protocols are what allow us to obtain secure communications. A protocol is a set of
rules stating how two or more entities must communicate. Theses rules not only specify the content of
the messages that are to be exchanged, but also the order and the recipients of these messages, as well as
how the entities local states evolve during the protocol execution. A cryptographic protocol is a protocol
that aims at ensuring some security properties. The HTTPS protocol is an example of cryptographic
protocol, and is used to secure communications between a server and a browser on the World Wide Web.
Another example of cryptographic protocol is the Authentication and Key Agreement (AKA) protocol,
which allows a mobile phone and its service provider to authenticate each other and to establish a shared
secret key. This key is used to protect future communications between the phone and the service provider.

Attacks Unfortunately, designing security protocols is hard, as can be seen from the numerous attacks
against them that have been discovered in the last decades. For example, the TLS protocol, which is
used to secure HTTPS connection, has been successfully attacked several times at the protocol level: the
LogJam attack [ABD+15] allowed a man-in-the-middle attacker to force a TLS connection to use 512 bit
Diffie-Hellman key exchange,1 which is easy to break using current computing capabilities. This is far from
being the only attack on TLS. To cite but a few: the TripleHandshake authentication attack [BDF+14];
or the freak downgrade attack [BBD+17a]. The TLS protocol is not the only major protocol to have
been attacked. For example, the mobile network authentication protocol AKA is subject to several
privacy attacks. The most important privacy attack against AKA is the imsi catcher attack [Str07].
Using this attack, a rogue antenna can collect the identities of all mobile devices in range, which allows
for large-scale surveillance. Note that, contrary to the TLS attacks, this privacy attack has not been
fixed in the currently deployed version of the protocol (fourth generation, or 4G).

1This is an export-grade key exchange: in the 90’s, the United States required that cryptographic software exported
abroad used weak keys on purpose, so that they could be easily broken by intelligence agencies.

1

2 Introduction

Formal Methods The fact that new attacks are regularly found on high-visibility protocols, such as
TLS and AKA, shows how difficult it is to design secure cryptographic protocols. An explanation for
this may be that the usual approach of bug finding, through automated testing, and bug fixing, does
not work for security protocols. This is because automated testing is made to find errors occurring
during executions of a program on random inputs. The problem is that a cryptographic protocol is not
executed in a random environment, but in a hostile one. A corner-case, which has a very low probability
of happening in a normal execution, may be systematically triggered by an adversary.

When this happens, or when the potential cost of a bug is deemed too high, such as in the aeronautic
space industry, we rely on formal verification instead of testing. Basically, the goal of formal verification
is to prove, in a mathematical sense, that some system satisfies some properties. Ideally, the proof
should be machine-checked, to avoid any errors. This approach gives very strong guarantees, and has
been successfully applied. For example, the flight-control program of some Airbus planes have been
successfully verified [BCC+15] using abstract interpretation techniques [CC77]. They proved the absence
of run-time errors such as division by zero or integer overflows.

To formally verify a system, we need to model the system, model the property, and prove that the
system satisfies the property. The modeling is often not obvious, as it requires the prover to abstract
away the aspects of the system that are irrelevant, while not forgetting to model any important feature.2
When modeling a security protocol, we first need to determine what are the network capabilities of the
adversary. A first possibility is to give only eavesdropping capacities to the adversary. Because he cannot
interfere with the execution of the protocol, such an adversary is called a passive adversary. A stronger
adversarial model, historically advocated by Needham and Schroeder in [NS78], also lets the adversary
intercept, reroute or even forge messages: the adversary has complete control of the network. Such an
adversary is called an active adversary.

1.2 Example: the AKA− Protocol

To make things more concrete, we give a simplified example of a real-world cryptographic protocol. The
Authentication and Key Agreement (AKA) is used in mobile communication networks, and is part of
a series of protocols which allow a user, typically a mobile phone, to connect wirelessly to its service
provider, in order to send and receive text messages and calls, or to access the Internet. As indicated by
its name, this is an authenticated key-exchange protocol. The goal of such a protocol is two-fold. First, it
must ensure that the two parties, here the user and its service provider, properly authenticated each other.
That is, after a successful completion of the protocol, the user must be certain that it communicated
with its service provider, and not another potentially malicious agent. Conversely, the service provider
must be certain of the identity of the user it interacted with. Then, this is a key-exchange protocol: at
the end of a successful execution of the protocol, the user and the service provider must have established
a shared and secret key, which they can use in subsequent communications.

There are several versions of the AKA protocol, one for each generation of mobile communication
networks. The currently deployed variants are the third (3G) and fourth (4G) generations AKA protocols,
but the fifth generation (5G) should be finalized soon, and drafts are already available. Our example,
which we call AKA−, is a simplified version of the 5G variant of AKA.

1.2.1 Cryptographic Primitives

Cryptographic primitives are the basic building blocks of cryptographic protocols, and provide interesting
security properties. We present here three standard such primitives: symmetric encryptions, asymmetric
encryptions and cryptographic hash functions.

Symmetric Encryption The best known, and oldest, cryptographic primitive is the symmetric en-
cryption. Basically, a symmetric encryption scheme comprises two functions, senc and sdec. The en-
cryption function senc takes as input a message m, called the plain-text, and a secret key k, and returns
an encrypted message senc(m, k), called the cipher-text. The cipher-text must reveal nothing about the

2This is difficult to do, as seemingly irrelevant feature of a system may be used by to break the wanted property. A
notable example of this in security are side-channel attacks [Koc96], which use timing or power-consumption information
to break apparently secure cryptographic primitives and protocols.

1.2. Example: the AKA− Protocol 3

message m to any agent who does not know the secret key k.3 But anybody in possession of the key
k should be able to retrieve the plain-text m from the cipher-text, using the decryption function sdec.
That is, we must have the following algebraic property:

sdec(senc(m, k), k) = m

The equation above models the functional correctness of the symmetric encryption. Modeling its security
is much harder, and depends on the class of attacker considered. We will say more on that point later.
Modern symmetric encryptions are either build using a block-cipher, such as the Advanced Encryption
Standard (AES) [DR02], or are stream ciphers (e.g. ChaCha20 [Ber08, NL15]).

Asymmetric Encryption The idea of asymmetric encryption is due to Diffie and Hellman [DH76] in
1976. It is motivated by the observation that, when using symmetric encryption, a user must have one
different secret key for every person he may wish to communicate with.4 One can avoid this by using two
different keys, an public key pk, used to encrypt messages, and a private key sk used to decrypt them.
We then have an encryption function {_}_, which takes has argument a message m and a public key pk,
and returns a cipher-text {m}pk. The decryption function dec takes as input a cipher-text and the secret
key sk, and returns the plain-text m. That is, if pk and sk are a matching public/private key pair, then:

dec({m}pk, sk) = m

The knowledge of the public key pk should not be of any help to decrypt a cipher-text {m}pk. Therefore,
as indicated by its name, it can safely be made public. Anybody can then use it to encrypt messages,
which can only be decrypted by the owner of the corresponding secret key.

Cryptographic Hash Function A cryptographic hash function is a function that maps a message m
of any length to a value of fixed length, called the hash of m, which should leak no information about
m. Because the co-domain of a hash function is finite and its domain is infinite, it is not injective. This
implies that there exist distinct messages with identical hashes, called collisions. While collision exists,
we require that they are difficult to find in practice. In particular, this means that the co-domain of a
hash function must be large enough to ensure that the probability to find a collision through a brute-force
search is very low. We may even make a stronger assumption, and ask that the hash function behaves
as a random function: it should be computationally infeasible to distinguish it from a truly random
function. An example of a modern cryptographic hash function is Keccak [BDPA14], which won the
SHA3 standardization competition.

We will actually consider a variant of this, which are keyed hash function. A keyed hash function
H takes a key k as additional input, and returns a hash H(m, k). This is used to build a Message
Authentication Code (MAC). A MAC function attaches to a message an authentication code generated
using a secret key k. This authentication code can be used by anybody knowing the key k to verify that
the message has not be tampered with.

1.2.2 The AKA− Protocol

We now describe the protocol depicted in Figure 1.1. This is a very simplified version of the 5G-AKA
protocol, with no re-synchronization mechanism. A quick word on notations: pairs are represented using
angled bracket, e.g. 〈a , b〉; and the i-th component of a pair can be retrieved using the i-th projection
function πi (for example, we every i ∈ {1, 2}, we have that πi(〈a1 , a2〉) = ai).

The Setting In this protocol, a user A tries to establish a shared and authenticated key with its service
provider. The user and the service provider both store in memory a shared symmetric long-term secret
key k. The service provider has a secret key skn, and the user stores the corresponding public key pkn.
An important feature of the AKA− protocol is that a message that has already been accepted by the
user must not be accepted again by a future session. This is done using a sequence number sqn. This
sequence number is an integer value which is attached to the messages of the service provider, and is

3Except the plain-text length, which cannot be hidden if one wants to be able to encrypt messages of arbitrary length.
4E.g., this would require web browsers to store thousands of keys, which would pose a major key management problem.

4 Introduction

User A

k, pkn, sqnA

Service Provider

k, skn, sqnS

{idA}pkn

senc(〈n , sqnS〉, k)

Input x:
xdec ← sdec(x, k)
nin, sqnin ← π1(xdec), π2(xdec)

sqnS ← sqnS + 1

sqnA ← sqnin senc(nin, k)

sqnin ≥ sqnA + 1

Figure 1.1: The AKA− Protocol.

incremented by the user after each successful completion of the protocol. By incrementing the sequence
number when it accepts a message, the user ensures that this message cannot be accepted again, which
prevents messages of the protocol to be replayed by an adversary. The value of the sequence number
must be tracked by both the user and the service provider. Therefore, there are two different sequence
numbers, the service provider sequence number sqnS, and the user sequence number sqnA. Because the
sequence numbers must be tracked by the agents, the AKA− protocol is a stateful protocol.

The Protocol The AKA− protocol is a three-message protocol. The user initiates the protocol by
sending to its service provider the asymmetric encryption of its identity idA using the public key pkn.
When receiving this message, the service provider retrieves the identity using the secret key skn. It
then computes its answer, which is the symmetric encryption of a pair, using the secret key k. The
first component of the pair is a challenge n, which the service provider samples uniformly at random
among bit-strings of length η,5 and the second component is the current value of the service provider
sequence number sqnS. After sending this message, the service provider updates its sequence number by
incrementing it by one.

When it receives a message x from the network, the user starts by decrypting it using the secret key
k, and stores the result in xdec. Then the user retrieves the challenge n and the service provider sequence
number sqnS from xdec using, respectively, the first and second projection of xdec. At that point, the
user verifies that the sequence number sqnS it received has not been accepted before. To do this, the
user checks that sqnS ≥ sqnA + 1 (morally, sqnA stores the highest sequence number accepted thus far).
If the test succeed, the user authenticated the service provider. Then, it updates the sequence number
sqnA by setting it to the value sqnS received from the network, and sends back the message senc(n, k).
This proves to the service provider that the user knows the key k. Finally, the user and the service
provider can both compute a session key from the challenge n and the long-term secret key k, using a
key-derivation mechanism which we do not describe here.

1.3 Security Properties

Before formally verifying such a protocol, there are some modeling issues that must be addressed. Mainly,
we need to decide how security is expressed. Basically, there are two components to this problem: we
need to state what must not happen during the execution of a given protocol (the security property), and
against what class of adversaries. There are roughly two classes of security properties, trace properties

5η is called the security parameter. Larger values of η yield a better security.

1.4. Attacker Models 5

and equivalence properties. Trace properties are simpler, and allow to express things like weak secrecy
or authentication. Equivalence properties are more complex, and are used, e.g., to state that a protocol
has some privacy properties (such as anonymity or unlinkability). We discuss and compare the different
classes of attackers later.

Trace Properties We call trace property any statement about a single execution of a protocol at
a time. A simple class of such properties is the class of reachability properties, which states that no
execution of a given system reaches a bad state. This is a very studied class of properties in the area
of formal verification. Weak secrecy is an example of reachability properties: informally, a value s in a
protocol P (typically a key or a random nonce) is weakly secret if any execution of P followed by a guess
sguess of s by the adversary is such that s 6= sguess. That is, the bad state is the event s = sguess, and weak
secrecy holds if for any execution of P , no adversary can guess the value of s. Remark that the adversary
may be able to guess a portion of s, for example half of it. We only know that he cannot get the full
value.

There are trace properties that cannot be directly expressed as reachability properties. An example
of such properties that are used in security are correspondence properties [WL93], which are of the form:

In any execution of P , if event A occurs, then event B occurred before it.

Authentication is modeled by a correspondence property. For example, consider a protocol between some
users U1,U2, . . . ,Un and a server S. Whenever a user Ui tries to authenticate himself to the server by
running an authentication protocol, he emits an event start-authi.6 Moreover, whenever the server S
completes a session of the authentication protocol with what he believed was user Uj , he emits an event
end-authj . Then the protocol provides authentication if, for any execution, if end-authj occurs at some
point in time, then the event start-authj must occur before it. In natural language, if the server believes
he authenticated some user Uj , then this user must have tried to authenticate himself to the server. In
that case, the attacker cannot make the server believe that he authenticated Uj if this user never tried
to established a connection to the server. One can have more refined properties than the one presented
above, e.g. by attaching session numbers or protocol challenges to events. See [Low97] for a comparison
of different authentication properties.

Equivalence Properties Some important security properties cannot be expressed as trace properties.
Anonymity is a example of such a property. Basically, a protocol P is anonymity preserving if an adversary
cannot know if a given agent A was involved in an execution of P . In other words, the adversary cannot
distinguish between the scenario where P was executed by A and the scenario where P was executed by
some other agent B. This is fundamentally a property about two executions.

Such properties are called equivalence or indistinguishability properties, and state that two different
scenarios are indistinguishable to the adversary. Equivalence properties are more expressive than trace
properties, but are more complex to verify. There are many examples of indistinguishability properties in
security. All privacy properties are indistinguishability properties, e.g. unlinkability [Vau07] states that
the adversary cannot find any links between two executions of a protocol by the same agent. Strong
secrecy [Bla04] of a value v in P expresses the fact that the adversary cannot learn anything about v
during the execution of P . To model this, we ask that no adversary can distinguish between a scenario
where we leak the value v after completing the execution of the protocol P , and a scenario where we leak a
different random value v′. If the adversary can learn a single bit of information on v, such as the fact that
it satisfies some properties, then he could distinguish between the two scenarios: on the former scenario,
the property would always hold, while on the latter, it would only hold with probability one-half.

1.4 Attacker Models

The goal of formal verification of security protocols is to prove that a protocol satisfies a security property
against any adversary in some given class. Of course, different classes of adversaries yield different security
guarantees. On the one hand, we wish to show that a protocol is secure against a class of adversaries as

6An event in an element of the execution of a protocol which is used to express some properties, but which is not visible
to the adversary.

6 Introduction

large as possible. On the other hand, if we consider a restricted class of adversaries, we may be able to
use some proof techniques, which can allow for machine-checked proof, or even automatic proof search.

1.4.1 Symbolic Model

The symbolic model, introduced by Dolev and Yao [DY83] in 1983, tries to cover logical attacks. By
logical attack, we mean an attack that does not try to break the cryptographic primitives used in the
encryption, but instead uses flaws in the logical control-flow of the protocol. These attacks are the worst
possible attacks, as they are independent of the implementation details, and are reliable.

While there are several ways of modeling such attackers and protocols, the applied pi-calculus [ABF18]
is arguably the most prominent. In the applied pi-calculus, messages are represented by terms in some
formal term algebra, which are build using constants, names (which model random challenges or session
numbers), and function symbols such as the pair 〈_ , _〉 or the encryption senc(_,_). A protocol is
an element of a protocol algebra, and can typically do inputs and outputs of terms, conditional tests,
parallel composition and replication.

The Adversary Since the adversary has complete control of the network, he knows all messages that
where outputted, and chooses what messages are sent to the agents, with some restrictions: to send a
message m to an agent, the adversary must be able to obtain m from his current knowledge (the sequence
of all messages outputted since the protocol started), using some fixed set of capabilities which have been
granted to him. These capabilities are expressed through rules, which can, for example, be given using
deduction rules. E.g, given a pair 〈a , b〉, the adversary can retrieve the first and second component of
the pair. Conversely, if he knows a and b then he knows the pair 〈a , b〉. Or, if the adversary knows an
encryption senc(m, k) and the associated key k, he can get the plain-text m. Formally:

〈a , b〉
a

〈a , b〉
b

a b

〈a , b〉
senc(m, sk) sk

m

The adversary can only apply the rules that are given to him. This means that the verifier must be
careful to include all algebraic properties of the primitives used in its protocol. If such a property is
forgotten, attacks may be missed.

Tools This model is very amenable to automatic verification of security properties. Since security in
the symbolic model is undecidable [Hüt02], automated tools sometimes fail to find a proof of security
or an attack, or are restricted to a decidable subset of protocols and properties. There are several
automated tools for both trace or equivalence properties, based on various techniques such as Horn
clause resolution (e.g. ProVerif [Bla]), multi-set rewriting (e.g. Tamarin [MSCB13]) or constraint solving
(e.g. Deepsec [CKR18]).

1.4.2 Computational Model

Another attacker model, closer to a real world attacker, is the computational attacker model introduced
by [GM84] in 1984. In this model, we do not restrict the attacker to a fixed set of operations: we do not
try to “guess” which operations the adversary uses in an attack. Instead, the adversary can perform any
probabilistic polynomial time computation. Of course, this offers stronger guarantees than the symbolic
model, at the cost of more intricate model.

The Adversary More formally, messages are bit-strings, as in any real-world implementations. Ran-
dom challenges of the protocol are sampled uniformly among bit-strings of some given length (usually in
{0, 1}η, where η is the security parameter), and protocol agents and the adversary are (interactive) prob-
abilistic polynomial-time Turing machines (PPTMs). Security properties are usually expressed through
a game, where an adversary A interacts with the protocol through an oracle. There are typically two
scenarios, i.e. two oracles O0,O1 that the adversary may interact with. Eventually, A tries to guess in
what scenario he is by outputting a bit b. The advantage of the adversary is the probability that he
guessed correctly:

AdvA(η) =
∣∣Pr(AO1(1η) = 1)−Pr(AO0(1η) = 1)

∣∣ =
∣∣2 .Pr(AOb(1η) = b)− 1

∣∣

1.4. Attacker Models 7

This probability is a function of η, the security parameter. In the asymptotic security setting, we say
that a protocol is secure if, for every adversary A, the advantage AdvA(η) is negligible in η, where a
function is negligible if it is asymptotically smaller than the inverse of any polynomials. In the concrete
security setting [BKR00], we try to obtain precise upper-bounds on the advantage of A, as function of A
running time and its advantages against breaking cryptographic primitives of the protocol.

Security Proofs In the computational model, proofs are usually not unconditional, but rely on com-
putational hardness hypotheses, which assume that some problems are not solvable in probabilistic
polynomial-time. When trying to prove that a cryptographic primitive is secure, we usually rely on
low-level hardness hypotheses such as the Computational or Decisional Diffie-Hellman assumptions, or
the Discrete Logarithm assumption in some finite groups. When proving a cryptographic protocol, we
use higher-level assumptions, like the Indistinguishability against Chosen Plain-text Attack assumption
(ind-cpa). Basically, an asymmetric encryptions is ind-cpa if no adversary can distinguish between the
encryptions of two messages of the same length, even if we let the adversary choose the messages.

We then show that a protocol is secure, assuming that no adversary can solve efficiently some problems.
Conditional security proofs like this are reductions, as in complexity theory: given an adversary A
breaking the security property, we build an adversary B breaking the hardness assumption. Such proofs
are often long, complex and error-prone, even though game-hoping techniques [Sho04] allow to alleviate
some of the complexity by splitting the proof in successive small changes to the game.

Tools As expected, tools in the computational model are less automatic than tools in the symbolic
model. Nonetheless, there exists a tool, CryptoVerif [Bla08], which performs (semi-)automatic crypto-
graphic game transformations. Also, there are some interactive formal verification tools in the computa-
tional model, such as EasyCrypt [BGHB11], an interactive theorem prover relying on the probabilistic
Relational Hoare Logic, and F∗ [BBD+17b], a high-level functional programming language with build-in
support for verification. These two tools are interactive, with little support for automation.

1.4.3 Computational Soundness

There exists a line of research, due to Abadi and Rogaway [AR02], which tries to bridge the two ap-
proaches. This approach, called the computational soundness approach, consists in proving that, under
some conditions, the security of a protocol in the symbolic model implies the security of the proto-
col in the computational model. In other words, the symbolic adversary is at least as strong as the
computational adversary. While the first computational soundness result were against a passive adver-
sary [AR02, BCK09], there are many computational soundness results against active adversaries, e.g.
[MW04] for encryptions, [JLM05, BMU12, BMR14] for signatures, or [CKKW06] for hash functions in
the Random Oracle Model. A survey of computational soundness results can be found in [CKW11].

There are several problems with this approach. First, these results make strong implementation and
cryptographic assumptions. For example, they usually have a parsing assumption, which assume that
all functions add unambiguous tags to their outputs. Then, there are some impossibility results for the
computational soundness method, e.g. for the xor operator [BP05, Unr10] or for one-way hash func-
tions [BPW06]. Finally, the approach is not modular, as each result is for a specific set of cryptographic
primitives, cryptographic hypothesis and implementation assumptions. If we want to add support for
another primitive, or to change an implementation assumption, we need to prove a new theorem.7

One can wonder why such results are so complicated and have such a limited scope. In his PhD
thesis [Sce15], Scerri suggests that this is because the symbolic adversary is defined through what he can
do, while the computational adversary is defined through what he cannot do (through the cryptographic
games that he cannot win). In other word, a symbolic adversary is defined through a smallest fix-point,
and a computational adversary through a greatest fix-point. A computational soundness result shows
that the symbolic adversary contains the computational one. This does not leave any leeway: if one
wishes to add a new cryptographic primitive, the symbolic adversary must be extended to ensure that
he captures all possible attacks against the new primitive. A way of avoiding these problems is to have
a class of adversaries which is both stronger than the computational adversary, and defined through a

7Nonetheless, some modularity can be achieved for computational soundness results. Indeed, in [CW11], the authors
define a computational soundness notion, called deduction soundness, that is extendable: basically, if a symbolic model is
shown to be deduction sound, then it can safely be extended with public data structure and asymmetric encryption.

8 Introduction

greatest fix-point. This way, when we add new cryptographic primitives and hypotheses, we just need to
add restrictions (corresponding to the new primitives) on the symbolic adversary. Because we consider a
greatest fix-point, such restrictions can be designed independently from each other.

1.4.4 The Bana-Comon Model

This is the idea behind the Bana-Comon model [BC12], also known as the Computationally Complete
Symbolic Attacker model. This is a first-order logic, in which messages as represented by terms. But
instead of specifying the adversary by what he can do, as in the Dolev-Yao model, the adversary is defined
negatively by what he cannot do, using a set of first-order axioms Ax. These axioms may reflect structural
properties of the logic, implementation assumptions on the primitives (e.g. functional correctness), or
cryptographic hypotheses on the primitives. We require that these axioms are computationally valid,
under some cryptographic assumptions. More precisely, we identify the subset of the first-order models
of our logic which correspond to computational models (basically, the interpretation domain is the set
of polynomial-time probabilistic Turing machines); and we require that the axioms Ax are valid in any
computational model where the cryptographic primitives satisfy our cryptographic assumptions.

Then, given a protocol and a security property, we can compute a formula ψ expressing the security of
the protocol. Showing the unsatisfiability of the conjunction of the axioms Ax and the negation of ψ entails
the security of the protocol.8 Indeed, we know that there exists no adversary that can simultaneously
satisfy the axioms Ax and break the security property. Since our axioms are computationally valid, we
deduce that the security property ψ holds in all computational models: the protocol is secure.

Conversely, if the conjunction of the axioms and the negation of the security property are satisfiable,
it means that there exists an attacker breaking the security property and satisfying all the axioms. But
because we only required computational soundness of the axioms, and not computational completeness,
this attacker may not be a computational attacker.

Comparison with Other Models This model has several advantages over the three other approaches
presented so far. First, it gives strong security guarantees, as security in the Bana-Comon model im-
plies computational security. Second, this model is simpler than the computational model: there is no
probabilities and no security games, only first-order formulas. Third, because the security of a protocol
amounts to the unsatisfiability of a set of first-order formulas, we believe that this model is more amenable
to automatic verification than the computational model. Fourth, it does not allow for implicit assump-
tions. For example, if the security of a protocol relies on the fact that the first projection of a nonce
can (almost) never be confused with an agent’s name, then we need to add an axiom stating that this
is the case. Otherwise, the security proof cannot be completed. Proving a protocol in the Bana-Comon
model requires to make precise and explicit assumptions on the protocol implementation. Finally, it is
more modular than the computational soundness approach, as axioms for cryptographic hypothesis can
be designed and proved valid independently from each other.

A inherent drawback of the Bana-Comon approach is that it is only valid for protocols with a finite
number of sessions: we may only consider protocols with no unbounded replication. Still, it is possible
to show that a protocol is secure for any constant but arbitrarily large number of sessions. E.g. if ψn is
a formula encoding the security of n sessions of a protocol, then it is sufficient to show that for every n,
Ax∧¬ψn is unsatisfiable. Typically, such a proof is done by induction over n. Note that security for any
constant number of sessions does not imply security for a number of sessions that depends on the security
parameter. Nonetheless, most attacks do not require polynomially-many sessions. Another drawback of
the Bana-Comon approach is that it is not quantitative. Security is asymptotic, and we do not obtain an
upper-bound on the advantage of an adversary, as in the concrete security approach [BKR00]. This is not
an inherent restriction of the logic, as we believe that an upper-bound on the adversary advantage can
be inferred from a proof. But bounds obtained using this method would probably be far from optimal,
and by consequence of little use.

Trace Properties The Bana-Comon model introduced in [BC12] is for trace properties only. This
model has been used in [BAS12] to prove the security of the Needham-Schroeder-Lowe protocol [Low95]

8In the Bana-Comon model of [BC12], we must also add some ground formulas encoding the conditions under which
the protocol is executable.

1.5. Limitations of the State of the Art 9

(NSL). In [BHO13], the authors gives an alternative and simpler semantics for the logic based on Kripke
structures, and use it to prove the correction of key-usability axioms (e.g. for kdm-cca2). Finally,
in [CCS13] the authors study the automation of proofs in this model. They show that the problem of
checking the satisfiability of a set of clauses corresponding to axioms the Bana-Comon model for trace
properties is decidable in polynomial-time, using a Horn clause saturation procedure. A variant of this
decision procedure is implemented in the scary tool [Sce15], which has been used to prove the security
of standard cryptographic protocols (e.g. NSL) for a small number of sessions, and found a new attack
on Andrew Secure RPC protocol [Sat89].

Equivalence Properties Many crucial security properties, such as strong secrecy or privacy, are in-
herently equivalence properties, and therefore out of the scope of [BC12]. To be able to prove such
properties, Bana and Comon proposed a new model for equivalence properties in [BCL14]. This logic has
only one predicate symbol ∼, which stands for the computational indistinguishability relation. That is,
given two terms u and v, which are symbolic representations of bit-string distributions, the formula u ∼ v
holds if no adversary can distinguish between the two distributions, except with a negligible advantage.
While this model relies on the same ideas as in [BC12] (a symbolic representation of protocol messages
and an axiomatization of what the adversary cannot do), its formulas and axioms are very different. We
believe this logic is simpler than the trace logic: it has a simple first-order semantics, only one predi-
cate, and more intuitive axioms. Nonetheless, proofs of non-toy protocols in the Bana-Comon model for
equivalence properties are challenging, as we will see in Chapter 4.

In [BCL14], Bana and Comon designed a small set of axioms, including axioms for ind-cpa and Key
Privacy (kp) cryptographic assumptions. They illustrated their method on a simple example, by showing
the privacy of the Private Authentication protocol with a decoy message [AF04].

1.5 Limitations of the State of the Art

Ideally, we would like to have a model that provides strong security guarantees and that is amenable to
automated proof search. Moreover, this model should support equivalence properties, as these are more
expressive than trace properties.

As we saw, the two oldest and most established attacker models, namely the symbolic and computa-
tional models, fail to achieve these properties simultaneously. Indeed, while there exist several tools to
automate proofs in the symbolic model, its security guarantees are not strong enough, as it only consider
attacks that can be executed using the capabilities that the prover granted to the adversary. As for
the computational model, it is indeed more realistic and offers strong guarantees, but the level of proof
automation achieved by current tools in this model is not satisfactory, either because they often fail to
automatically find proofs, or because they require users to do extensive manual proofs.

We mentioned the computational soundness approach, which tries to get the best of both worlds by
proving that, in some cases, security in the symbolic model implies computational security. This allows to
use an automated tool in the symbolic model to prove that a protocol is computationally secure. Unfor-
tunately, computational soundness results come at a high cost, as they usually make strong assumptions
on the protocol implementations and on the cryptographic primitives, which limit their applicability.
Moreover, this approach scales poorly because of its lack of modularity: to add a new cryptographic
primitive, one often need to show a new computational soundness result, with new assumptions.

We presented an alternative approach, due to Bana and Comon. Because we are interested in equiv-
alence properties, we discard the Bana-Comon model for trace properties [BC12], and focus on the
equivalence model in [BCL14]. This model looks promising: first, security in the Bana-Comon model
implies computational security; then, this approach is modular, since axioms can be designed and proved
valid independently for every cryptographic primitive; finally, because this is a first-order logic, it may be
amenable to automated deduction techniques, as it turned out to be the case in the Bana-Comon model
for trace properties [CCS13]. But, when this thesis started, the Bana-Comon model usefulness remained
to be shown: there was no case study of non-toy protocols, only a small set of axioms had been designed,
and there was no support for proof automation.

Related Works Since the Start of This Thesis In parallel to this thesis, some works have been
done using the Bana-Comon equivalence model. These works address some of the concerns we had on

10 Introduction

the model, in particular about its applicability and its small set of axioms. In [BC16], the authors
design axioms for several cryptographic hypothesis: asymmetric encryption (ind-cca1 and ind-cca2),
signatures (euf-cma) and for the Decisional Diffie-Hellman assumption. With these axioms, they prove
that the Diffie-Hellman key-exchange provides real-or-random secrecy [AFP05] of the shared key. They
also prove several properties of the NSL protocol, including authentication and real-or-random secrecy
of the shared nonces. In [SS16], the authors design and prove secure a key wrapping API. Interestingly,
their proof is modular in the choice of the symmetric encryption used in the wrapping mechanism: the
authors design intermediate axioms for the wrapping mechanism, prove the security of the wrapping API
using these axioms, and show that both randomized and deterministic symmetric encryption schemes
satisfy the intermediate axioms. This is a nice benefit of the Bana-Comon approach. Finally, in [BCE18],
the authors analyze the vote privacy of the FOO voting protocol [FOO92]. First, they design axioms for
blind signatures [Cha82]. Second, they found new attacks on the privacy of the FOO protocol, when the
candidate identities or the messages signatures are of different lengths. These are typical examples of
implicit implementation assumptions that can be found using the Bana-Comon approach. Then, under
the proper assumptions, they prove that the FOO protocol provides vote privacy.

1.6 Contributions

The goal of this thesis was to develop techniques to formally verify equivalence properties of cryptographic
protocols. Moreover, we wanted a method that provides strong security guarantees while being amenable
to automated deduction techniques. The Bana-Comon model for equivalence properties seemed to be
a good candidate, but its applicability to real-world protocols remained to be shown, and there was no
support for proof automation in this model. We tried to address these two shortcomings in this thesis.

1.6.1 RFID Protocols

First, we completed the case study of two RFID authentication protocols, kcl [KCL07] and lak [LAK06],
in which a reader is trying to authenticate a tag. An RFID tag is a small cryptographic device which
has low computing capabilities. Therefore, tags do not rely on advanced and complex cryptographic
primitives to achieve authentication. e.g. the two examples we consider use only hash functions, the xor
operator and pairs. This makes them good candidates for a first application of the Bana-Comon approach,
as we only need to design axioms for a small set of functions. In particular, we designed axioms for hash
functions and for the xor operator.9 Axioms for the xor include a uniform distribution axiom, as well
as functional correctness axioms for associativity, commutativity, unit rule and nilpotence. The hash
functions axioms are more interesting, as they depend on the cryptographic assumptions we make. We
designed two axiom schemas, for the Collision Resistance and Pseudo-Random Function assumptions.

Case Study As RFID tags may be carried all the time by their users, it is crucial that they provide
some form of privacy. There exists many definitions of privacy, e.g. [HPVP11, Vau07, JW09]. We chose
the notion of Privacy from Juels and Weis [JW09] because it is simple and game-based, and translated it
into the Bana-Comon model. Using this, we studied the kcl and lak protocols. These two protocols are
known to be insecure (privacy attacks can be found in [VDR08, HBD16]). Therefore, we designed fixed
versions of these protocols, kcl+ and lak+. Then, depending on the implementation assumptions we
make (e.g. the cryptographic hypotheses on the hash function), we either provide an attack or a security
proof. Specifically, under the appropriate assumptions, we prove Privacy for two tags and six interactions
for lak+, and for any number of interactions for kcl+. The latter proof is by induction on the number of
interactions. We reuse this proof technique later on a much more complex protocol, the AKA+ protocol.

1.6.2 The AKA Protocol

Next, we studied the AKA protocol. More precisely, we studied its 5G version, the 5G-AKA protocol, as
it is described in the 3GPP draft [TS318]. We presented a simplified version of this protocol in Section 1.2.
Mobile phone users often carry their phone with them everywhere, and could be easily and thoroughly

9Remark that the Bana-Comon model can handle the xor operator without difficulties, contrary to the symbolic
model [BP05].

1.6. Contributions 11

tracked through them. Therefore, it is important that mobile network protocols, such as the 5G-AKA
protocol, provide some privacy. Previous versions of this protocol, the 3G-AKA and 4G-AKA protocol,
are vulnerable to a famous linkability attack, the imsi-catcher attack [Str07]. This is a major attack, as
it is reliable (the attack always work), cheap to deploy, and large scale (every mobile phone in range of a
rogue antenna can be tracked). The 5G version of the AKA protocol allows the mobile phone to hide its
permanent identity using an asymmetric encryption scheme, which prevents the imsi catcher attack.10
But this is not enough for privacy: we show that several known privacy attacks against the previous
versions of the protocol still apply to the 5G version [FOR16, AMR+12, BHP+17], except for the imsi
catcher attack. While studying these attacks, we found a privacy attack against another protocol, the
PRIV-AKA protocol. This protocol is a significantly modified version of AKA, which is designed and
claimed unlinkable in [FOR16]. Our attack is new, and consists in permanently de-synchronizing the
mobile phone from its service provider. The fact that a user is de-synchronized can be detected by an
attacker, which leads to a unlinkability attack.

Fixing the Protocol We then proposed a fixed version of the 5G-AKA protocol, called AKA+. We
designed this protocol to provide better privacy guarantees than the 5G-AKA protocol, while using the
same cryptographic primitives and satisfying the same constraints (as much as possible). We then study
its privacy. Here, we do not use Juel and Weis’s Privacy, but the unlinkability property, which is a stronger
notion of privacy inspired from [HPVP11] and Vaudenay’s unlinkability [Vau07]. Our protocol does not
satisfy this property: there is an attack. Actually, we believe that under the design constraint of the
5G-AKA protocol, unlinkability cannot be achieved. Still, we are able to prove that our protocol provides
a weaker property, called σ-unlinkability. This is a new property which we designed. Basically, a protocol
is σ-unlinkability if it is unlinkable for some scenarios of the standard unlinkability. This property is
parametric in the set of scenarios that must be considered. If this set is empty, we have nothing to prove,
and the protocol provides no privacy guarantees. If this set contains all possible scenarios, then the
protocol satisfies the standard unlinkability property. By considering sets of scenarios between these two
extremes, we can have a fine-grained quantification of a protocol’s privacy. As in the RFID case study,
we express this property using labelled transition systems.

Cryptographic Assumptions and Axioms To prove that the AKA+ protocol satisfies the σ-
unlinkability property, we have to design new axioms. First, the AKA+ protocol has to assume that
the hash functions are jointly pseudo random functions, i.e. that they are simultaneously computation-
ally indistinguishable from random functions. Therefore, we introduce new axioms for the joint prf
assumptions, as well as the joint Collision Resistance and joint Unforgeability against Chosen-Message
Attacks assumptions. We also design axiom schemas for the standard Unforgeability against Chosen-
Message Attacks assumption.

Security Proofs Using these axioms, we prove that the 5G-AKA protocol satisfies the σ-unlinkability
property. This proof is for any number of agents and sessions which does not depend on the security
parameter. As for the kcl+ protocol, this proof is by induction on the number of interactions between
the adversary and the agents, but is much more involved. First, we show several necessary acceptance
conditions. These are correspondence properties giving necessary conditions for a message to be accepted
at some point of the protocol execution. Typically, such a property states that a message can only be
accepted if the adversary honestly forwarded some messages. Using these conditions, we prove that the
AKA+ protocol provides mutual authentication between the mobile phone and the service provider. Then,
we refine the acceptance conditions to obtain acceptance characterizations, i.e. necessary and sufficient
conditions for a message to be accepted. Finally, we prove that the AKA+ protocol is σ-unlinkable.

1.6.3 Deciding Indistinguishability

Our last contribution is the design of a complete and terminating strategy for a fragment of the Bana-
Comon indistinguishability logic. We identify a set of axioms Ax which is both expressive enough to
complete proofs of concrete formulas, and computationally sound under the appropriate cryptographic

10Unfortunately, the 3GPP consortium made usage of an asymmetric encryption optional. Therefore, the next generation
of mobile phones may continue to be vulnerable to the imsi-catcher attack.

12 Introduction

assumption (ind-cca2). Then, we show that the satisfiability problem of this fragment is decidable.
More precisely, given a ground formula ~u ∼ ~v, we can decide whether Ax ∧ ~u 6∼ ~v is unsatisfiable:

Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

All the axioms in Ax are Horn clauses, therefore to show the unsatisfiability of Ax∧~u 6∼ ~v we use resolution
with a negative strategy (which is complete, see [CL73]). A proof by resolution with a negative strategy
can be seen as a proof tree where each node is indexed by the axiom of Ax used at this resolution step.
By consequence, we see axioms in Ax as inference rules and look for a derivation of the goal ~u ∼ ~v. Our
proof search incrementally builds a partial proof tree whose root is ~u ∼ ~v, trying to close all branches
by applying a unitary inference rule (i.e. a rule with no premise). The only unitary axioms in Ax are
cryptographic axioms, which reflect the cryptographic hypothesis made on the security primitives (e.g.
that the encryption function hides its content, as in {0}pk ∼ {1}pk). We use a specialized handling of
equalities in the axioms: we have a set of equalities R, which includes functional correctness equalities,
and properties of the if_then_else_, such as:

π1(〈x , y〉) = x if b then (if b then x else y) else z = if b then x else z

We then introduce its congruence closure =R, and have a rewriting axiom:

t ∼ u
s ∼ u R whenever s =R t

Actually, since s =R t is a side-condition (=R is not a predicate of the logic), this is not a single axiom,
but a recursive countable set of axioms (i.e. an axiom schema). This axiom is problematic, as it allows
to rewrite a term s into any R-equal term t, which can be arbitrarily large. This is the main obstacle
to achieve decidability which we had to overcome. We sketch, in a high-level fashion, how we did it.
First, we design a particular ordered strategy for our logic. An ordered strategy restrict the proof search
space, by requiring that inference rules are applied in a specific order. We show that our ordered strategy
is complete through several commutation lemmas. Our strategy ensures that R rules all occur at the
beginning of the proof. Moreover, the other axioms are such that bounding the initial R applications
bound the rest of the derivation. To bound the initial rewritings, we identify several proof cuts which
introduce unbounded sub-terms, and find proof cut eliminations to remove them. Unfortunately, most
of these proof cut eliminations are not local rewriting of the proof-tree, but are global, which makes the
proof cut eliminations lemmas non-trivial. Finally, we prove that cut-free proofs are of bounded size.
This yields a decision procedure for our satisfiability problem.

1.7 Outline of the Thesis

We give the outline of this thesis. We present the Bana-Comon indistinguishability logic in Chapter 2.
The model we used is basically the model of [BCL14], with a small extension to allow for protocols with
an arbitrary number of sessions (using infinite LTS). In this chapter, we also present most of the axioms
we designed during this thesis. In Chapter 3, we present our RFID protocols case study. The larger
case study of the AKA protocol is in Chapter 4. The most theoretical part of this thesis, the decision
procedure, is described in Chapter 5. Finally, we conclude in Chapter 6.

Chapter 2

The Model

In this chapter, we present our version of the Bana-Comon first-order logic for indistinguishability. We give
a general way of modeling security protocols and properties using labelled transition systems, and show
how the computational semantics of these protocols relate to the logic. Basically, given an interpretation
Mc of functions as Turing machines, a protocol is secure inMc if and only if a countable set of formulas
(φi)i∈N of the logic are valid inMc (seen as a first-order model). To use this, we design a set of formulas
Ax, called axioms, which state what the adversary cannot do. Then, for every i, we show that the
conjunction of the axioms Ax and the negation of φi is unsatisfiable. We deduce that the protocol is
secure for any implementationMc of the protocol’s functions satisfying the axioms Ax.

The Bana-Comon Logic The Bana-Comon logic for indistinguishability was introduced in [BCL14].
This is a sorted first-order logic, in which terms represent messages of the protocol sent over the network.
For example, the term 〈A , n〉 represents a message which comprises two parts: an agent name A (which
is a constant function symbol), and a name n (taken in the set of names N), representing a random
uniform sampling in {0, 1}η (where η is the security parameter). A key idea in the logic is to use special
adversarial function symbols g0, g1, · · · ∈ G to represent the adversary’s inputs. Morally, these function
symbols are uninterpreted, which allows to model the fact that the adversary can do any polynomial-time
computation. These adversarial function symbols receive as input the current knowledge of the adversary
φ (the frame), which is simply the sequence of all messages sent over the network since the protocol started
(since messages are modeled by terms, φ is a sequence of terms). For example, g(〈A , n〉) represents
anything the adversary can compute after having intercepted the message 〈A , n〉. More generally, if φ
is the current frame, then g(φ) represents any message that can be computed by the adversary at that
point of the protocol execution.

In order to be able to represent messages of the protocol by terms, the control-flow of the protocol
needs to be internalized in the logic. This is done by encoding tests of the protocol agents by boolean
terms, and branching using the if_then_else_ function symbol. For example, imagine a protocol where
some agent A behaves as follows: first A waits for a message from the network; then, after receiving a
message x, A checks whether this message is equal to some secret value secret; if this is the case, A outputs
its identity idA, otherwise it outputs an constant error message Error. This is modeled by the term:

if eq(g(φ), secret) then idA else Error

where eq(_,_) is a function symbol representing the equality check, idA and Error are constant function
symbols and, we recall, g(φ) is a term representing the input from the network.

Formulas of the logic are built using the usual Boolean connectives and fo quantifiers, and a single
predicate, ∼, which stands for indistinguishability. The semantics of the logic is the usual first-order
semantics: each sort is interpreted as a domain and function symbols and predicates are interpreted
as, respectively, functions and subsets of the appropriate domains. Still, since we want to interpret
sequences of terms representing executions of protocols, we are particularly interested in computational
models, in which terms are interpreted as probabilistic polynomial-time Turing machines (PPTMs), and ∼
is interpreted as computational indistinguishability. Intuitively, given an implementation of the protocol
functions I and an adversary A (which is a PPTM), we obtain a computational model as follows:

13

14 The Model

• Protocol function symbols are interpreted using the protocol implementation I. Basically, the
implementation I associates to every protocol function symbol f its implementation I(f), which is
a polynomial-time Turing machine.

• Names in N are interpreted as uniform random samplings in {0, 1}η.
• Finally, we let the adversary A choose the interpretation of every adversarial function symbol g ∈ G.
Since A is polynomially-bounded, the interpretation A(g) of g is also polynomially-bounded.

Basically, a computational model Mc corresponds to the interaction of a given adversary A with an
implementation of the protocol functions I.

Protocols as Labelled Transition Systems As in [BCL14], we do not assume an input language
(such as the applied pi-calculus [ABF18]) for protocols. Instead, protocols are defined using a labelled
transition systems (LTS). The transitions of the LTS correspond to the actions available to the adversary,
and the nodes of the LTS record the static component of the protocol state, i.e. the part of the state
that does not depend on the random samplings or conditional branching of the protocol agents. Our
definition of protocols as LTS differ from [BCL14] in several ways:

• In the original paper by Bana and Comon, protocols are finite LTS, which cannot model protocols
with an unbounded number of sessions and agents. This restriction stems from the fact that the
Bana-Comon logic cannot soundly model the security of protocols whose number of sessions is a
function of the security parameter. Still, using the Bana-Comon logic, it is possible to prove that a
protocol is secure for an arbitrary number of sessions, as long as it is independent from the security
parameter. Therefore, we model protocols using potentially infinite LTS. To ensure that from any
attacker we can extract a winning attacker against a finite fixed trace of the LTS, we require that
the LTS is finitely branching.

• In [BCL14], the transitions of the LTS are guarded using conditional terms. Bana and Comon
then show how to compute, from any protocol P , a protocol fold(P) where each node has at most
one out-going transition with no guard. Basically, the guard checks are pushed inside the protocol
message, using a technique similar to the one used in [CB13]. We decided to bypass this step, and
not to use guards in the LTS transitions. Of course, messages can still be guarded by including
tests directly in the protocol terms (as in a folded protocol).

• The Bana-Comon logic is well-suited to prove stateful protocols, which is something hard to do in
other formalisms. By consequence, we chose to include state updates in the LTS transitions. This
allows us to easily model protocols such as lak [LAK06], kcl [KCL07] or AKA [TS318].

Protocol Executions Given a computational modelMc interpreting a protocol P ’s function symbols
and the adversarial functions, we define the computational execution of P by letting the adversary choose
the transition to execute at every step i of the protocol. This is done using special adversarial function
symbols toi ∈ G, which models the adversary unknown choice of action.

Similarly, we define the fix-trace execution of P , where we fix the sequence of actions (the action
trace) to execute in advance, instead of letting the adversary choose the next action on the fly. Because
protocols are finitely branching, and because we only consider attacker against a finite, though arbitrary
long, sequences of actions, we can show that the adaptive and fix-trace semantics of protocol are related:
there is no winning adversary against P if, for every trace of action τ , there is no winning adversary
against the execution of P with actions τ .

Once the action trace τ is fixed, it is very easy to build a formula φτ of the logic representing the
execution of the protocol with trace τ . By consequence, we have reduced the problem of showing the
security of a protocol P in a computational modelMc to the problem of proving that, for every τ , the
formula φτ is valid inMc.

Axioms Of course, any non-trivial protocol will not be secure in any computational modelMc. E.g.,
any real-world protocol is probably not secure if the encryption function symbol is interpreted as the
function that always returns the plain-text. By consequence, we are going to show that a protocol is
secure in some class of models. We do this by restricting the models that have to be considered using
axioms Ax, where an axiom is a formula of the logic stating something that the adversary cannot do.
Axioms are of two kinds:

2.1. Preliminaries 15

• Structural axioms are properties that are valid in all computational models. For example, the
function application axiom:

~u ∼ ~v
f(~u) ∼ f(~v)

FA

states that to show that two terms f(~u) and f(~v) are indistinguishable, it is sufficient to show that
the arguments ~u and ~v are indistinguishable.
Since, eventually, we only care about computational models, adding such axioms is always safe.

• Implementation axioms are not valid in all computational models, and instead reflect assumptions
on the protocol’s implementation. For example, the axiom:

{m}ne
pk ∼ {0(m)}ne

pk

states that no adversary can distinguish between the encryption of a message m using public key
pk and encryption randomness ne, and the encryption of length of m zeros. While this axiom is not
valid in general, we will show that it is valid (under some syntactic side-conditions on m) in any
computational model where the function symbol {_}__ is interpreted as an encryption satisfying
some cryptographic properties (here ind-cca1).
Because of the syntactic side-condition onm, this axiom is actually an axiom schema, i.e. a recursive
infinite set of axioms. We design such axiom schema for four usual cryptographic assumptions:

– Indistinguishability against Chosen-Ciphertexts Attacks (ind-cca1).
– Collision-Resistance under Hidden-Key attacks (cr-hk).
– Unforgeability against Chosen-Message Attacks (euf-cma).
– Pseudo Random Functions (prf).

Outline We present some preliminary definitions in Section 2.1. In Section 2.2, we give the syntax of
the logic. In Section 2.3, we present the first-order logic and computational semantics. In Section 2.4,
we define protocols as labelled transition systems, give their semantics and prove the soundness theorem
relating protocol executions and the logic. In Section 2.5, we present the structural axioms we designed,
show their soundness, and give axiomatizations of several standard protocol function symbols (encryp-
tions, pairs, xor and boolean tests). Finally, in Section 2.6 we translate several cryptographic assumptions
into axiom schemata, and show their soundness.

2.1 Preliminaries

We write vectors using an arrow, as in ~w. Given a vector ~w, we let |~w| be its length, and for every
1 ≤ i ≤ |~w|, ~wi is the i-th element of ~w. Given a function f : A 7→ B, we let dom(f) be its domain A, and
codom(f) be its co-domain B. For any random variable f from a probability space Ω to a measurable
space A, we let [w ∈ Ω : f(w)] denote the distribution over A induced by f .

Words and Languages Given a finite or infinite set of symbols Σ, called an alphabet, we let Σ∗ be
the set of finite words over Σ, and Σω the set of infinite words. The concatenation of two words w1 and
w2 is denoted by w1 · w2, and we let ε be the empty word. Given a symbol a ∈ Σ, we let aω be the only
infinite word such that a · aω = aω. Finally, for every word w, we let |w| stands for the length of w.

Probability Measure on Infinite Tapes We consider Turing machines over the alphabet Σ = {0, 1}.
In our model, we use infinite random tapes. We give here the definition of a standard probability measure
µω on infinite tapes Σω. Basically, we see infinite tapes as binary representations of real numbers in the
interval [0, 1[, and we use the Lebesgue measure on [0, 1[. Formally, let ≤lex be the lexicographic ordering
on Σω such that 0ω < 1 · 0ω. Let w0, w1 ∈ Σ∗ such that w0 · 0ω ≤lex w1 · 0ω. The cylinder Cw1

w0
is the

subset of Σω defined by:
{w | w0 · 0ω ≤lex w ≤lex w1 · 0ω}

One can easily check that finite disjoint unions of cylinders are a ring of subsets of Σω (i.e. non-empty,
closed under finite union and closed under relative complement).

16 The Model

We define the function µ0 from finite disjoint unions of cylinders to R as follows:

∀ cylinder Cw1
w0
. µ0

(
Cw1
w0

)
= 0.w1 − 0.w0 ∀(Ci)i∈I . µ0

(⋃
i∈ICi

)
=
∑
i∈I

µ0 (Ci)

µ0 is a pre-measure (i.e. µ0 is σ-additive and µ0(∅) = 0). Moreover, µ0(Σω) = 1. Therefore, using
Carathéodory’s extension theorem we can extend µ0 into a measure µω on the σ-algebra generated by
the sets of finite disjoint unions of cylinders. Moreover, because µ0(Σω) = 1, this measure is unique and
is a probability measure.

2.2 Syntax

2.2.1 Syntax of the Logic

Sorts and Types The Bana-Comon indistinguishability logic is a sorted logic, with only two sorts
term and bool. For every n ∈ N, we let Typesn be the set of types of n-ary functions:

Typesn = {(d1 × · · · × dn → dn+1) | ∀i, di ∈ {term, bool}}

Terms Let F be a set of function symbols, and arity : F 7→ N their arity. We let f/a ∈ F denote the
fact that f ∈ F and arity(f) = a. Let N be a countable set of names (representing random samplings)
and X a countable set of variables. All names in N have sort term, and every variable in X comes with
a sort. We assume that there is infinitely many variables of each sort. Finally, every function symbol
f/a ∈ F has at least one type, and we let types(f) be the types of f . We require that types(f) ⊆ Typesn,
and that for every (d1, . . . , dn) ∈ {term, bool}n, there exists at most one d ∈ {term, bool} such that
(d1 × · · · × dn → d) ∈ types(f).

The set F of function symbols comprises a countable set of adversarial function symbols G (represent-
ing the adversary computations), and a set of protocol function symbols Fp. We require that G contains
an infinite number of function symbols of arity n for every n ∈ N. We also ask that Fp contains at least
the function symbols 0/0, true/0, false/0, len/1, eq/2 and if_then_else_/3, with the following types:

0/0 :→ term true/0, false/0 :→ bool eq/2 : term2 → bool len/1 : term→ term

if_then_else_/3 :

{
bool× bool2 → bool
bool× term2 → term

We let F\if be F without the if_then_else_ function symbol, and for any subset S of F , N and X , we
let T (S) be the set of terms built upon S (we require that terms are well-typed). Given a term t, the
type of t is its larger type, where bool is smaller than term.

Given a term t, we let st(t) be the set of subterms of t and var(t) = st(t)∩X be its variables. Given a
set of variables X , a substitution θ over X is a function from the set of variables X to some set of terms
T (S). We sometimes use a post-fix notation for substitutions: given a term t and a substitution θ, we
let tθ denote the application of θ to t.

Example 2.1. We re-use the example from the introduction. The term:

if eq(g(φ), secret) then idA else Error

can be used to model the output of an agent that checks if its input g(φ) is equal to a secret value secret
(which can be a constant function symbol, a name in N , or a more complex term). If this is the case,
the agent outputs its identity idA, and otherwise it sends an error message Error. �

Example 2.2. We give an example of modeling of a full protocol, the AKA− protocol described in
Figure 1.1. First, the signature: we use a constant function symbol idA for the user’s identity, the pub-
lic/private key functions pk(_), sk(_), asymmetric encryption and decryption {_}__, dec(_,_), symmet-
ric encryption and decryption senc(_,_), sdec(_,_), the pair 〈_ , _〉, projections π1, π2, the greater-than

2.2. Syntax 17

test geq(_,_), the successor _ + 1 and the error messages UnknownId, error. We give their types:

UnknownId, error, idA :→ term geq(_,_) : term2 → bool {_}__ : term3 → term

pk(_), sk(_), π1(_), π2(_), (_ + 1) : term→ term

dec(_,_), senc(_,_), sdec(_,_), 〈_ , _〉 : term2 → term

The public/private key pair take as argument the seed used in the key generation. Corresponding
public/private keys are keys with the same random, e.g. the public key pk(n) corresponds to the private
key sk(n). The asymmetric encryption takes the encryption randomness as an extra parameter: {idA}ne

pkn
is the encryption of idA using public key pkn and randomness ne.

We let pkn ≡ pk(nn) and skn ≡ sk(nn), where nn ∈ N , be the public/private key of the service provider.
The shared long-term symmetric key k is a name in N . Then, the initial message from the user to the
service provider is simply the term {idA}ne

pkn
, where ne ∈ N .

When receiving an input x, the service provider retrieves the encrypted identity and checks whether it
is equal to the stored identity using the test eq(dec(x, skn), idA). If the test succeed, the network sends the
encryption of a random nonce n ∈ N and of the current value of the sequence number sqnS (represented
by the term σin(sqnS)). If the test fails, it sends the error message UnknownId. This yields the message:

tS[x] ≡ if eq(dec(x, skn), idA) then senc(〈n , σin(sqnS)〉, k)

else UnknownId

It also updates the sequence number if the test is successful. The updated sequence number is represented
by the term σ(sqnS) given below:

σ(sqnS) ≡ if eq(dec(x, skn), idA) then σin(sqnS) + 1

else σin(sqnS)

When getting an answer y, the user decrypts the message using the key k, which yield tdec ≡ sdec(y, k).
It then extracts the service provider sequence number from tdec using π2(tdec), and checks that it is larger
than its sequence number σin(sqnA) using the term:

accept ≡ geq(π2(tdec), σ
in(sqnA) + 1)

Finally, the user’s answer and the updated sequence number are represented by the terms:

tA ≡ if accept then senc(π1(tdec), k) else error

σ(sqnA) ≡ if accept then π2(tdec) else σin(sqnA) �

Formulas For every integer n ∈ N, we have one predicate symbol ∼n of arity 2n, which represents
the equivalence between two vectors of terms of length n. We require that pairs of terms at matching
positions (i.e. at position i and n+ i) have the same sort. Formally, ∼n has the following types:

∼n: {L × L | L ∈ {bool, term}n}

For every L ∈ {bool, term}n and terms u1, . . . , un, v1, . . . , vn of sort L2, ∼n (u1, . . . , un, v1, . . . , vn) is an
atomic formula. From now on, we will use an infix notation for ∼n, writing u1, . . . , un ∼n v1, . . . , vn
instead of ∼n (u1, . . . , un, v1, . . . , vn). Moreover, we omit the index n when it is not necessary.

Formulas are obtained using atomic formulas, >, ⊥, the Boolean connectives ∧,∨,¬,→ and the
first-order quantifiers ∀,∃.

Example 2.3. For example, the formula:

if g() then n0 else n1 ∼ n

states that sampling from n0 or n1, depending on the branch chosen by the adversarial function g(), is
equivalent to sampling from a single name n.

As a second example, we can express the fact that the first message of the AKA− protocol in Figure 1.1
guarantees the user anonymity: the formula {idA}ne

pkn
∼ {idB}ne

pkn
states that users A and B first messages

are indistinguishable. �

18 The Model

2.2.2 Positions and Contexts

We formally define the standard notions of positions of a term and of contexts. We also use the notion
of if-context, which is a context that uses only the if_then_else_ function symbol.

Definition 2.1. A position is a word in N∗. The value of a term t at a position p, denoted by (t)|p, is
the partial function defined inductively as follows:

(t)|ε = t

(f(u0, . . . , un−1))|i.p =

{
(ui)|p if i < n

undefined otherwise

We say that a position is valid in t if (t)|p is defined. The set of positions of a term is the set of positions
which are valid in t, and is denoted pos(t).

Definition 2.2. A context D[]~x (written D when there is no confusion) on a signature S is a term in:

T (S, {[]y | y ∈ ~x})

where ~x are distinct special variables called holes. A one-holed context is a context with one hole (in
which case we write D[] where [] is the only variable).

For all contexts D[]~x , C0, . . . , Cn−1 with |~x | = n, we let D[(Ci)i<n] be the context D[]~x in which we
substitute, for every 0 ≤ i < n, all occurrences of the hole []xi by Ci.

If-Contexts Often, we want to distinguish between holes that contain “internal” conditionals, and holes
that contain terms appearing at the leaves. To do this we introduce the notion of if-context. An if-context
D[]~x�~y is a context using only the if_then_else_ function symbol and two sets of holes variables: ~x is
for conditionals and ~y is for leaves.

Definition 2.3. For all distinct variables ~x, ~y , an if-context D[]~x�~y is a context in:

T (if_then_else_, {[]z | z ∈ ~x ∪ ~y})

such that for all position p, D|p ≡ if b then u else v implies:
• b ∈ {[]z | z ∈ ~x}
• u, v 6∈ {[]z | z ∈ ~x}

Example 2.4. Let ~x = x1, x2, x3 and ~y = y1, y2, y3, y4, we give below two representations of the same
if-context D[]~x�~y (the term on the left, and the labelled tree on the right):

if []x1
then

(
if []x2 then if []x1 then []y1 else []y2

else []y3

)
else (if []x3

then []y2 else []y4)

[]x1

[]x2

[]x1

[]y1 []y2

[]y3

[]x3

[]y2 []y4

�

2.3 Semantics

2.3.1 Sorted First-order Semantics

We use the classical semantics for sorted first-order logic: every sort is interpreted by some domain and
function symbols and predicates are interpreted as, respectively, functions of the appropriate domains
and relations on these domains.

2.3. Semantics 19

Model Formally, an modelM is a tuple (Dterm,Dbool, [[]]n, [[]]f, [[]]p), where the domains Dterm and Dbool
are for terms of sort, respectively, term and bool. We require that:

• The name interpretation [[]]n associates to every name n ∈ N a member of Dterm.
• The function symbol interpretation [[]]f associates to every f/n ∈ F and type s = (d1, . . . , dn →
dn+1) ∈ types(f) a function:

[[f]]sf : D1 × · · · × Dn → Dn+1 where, for every i, Di =

{
Dterm if di = term
Dbool if di = bool

• The predicate interpretation [[]]Lp associates to every predicate ∼n and L ∈ {bool, term}n a subset of:

(D1 × · · · × Dn)
2

Term Interpretation We then define inductively the interpretation of a term inM. Let σ a valuation
from X to the appropriate domains. We define [[_]]σM as follows:

• For any x ∈ X , [[x]]σM = σ(x).
• For every n ∈ N , [[n]]σM = [[n]]n.
• Let f ∈ F and u1, . . . , un be terms with types d1, . . . , dn such that s = (d1 × · · · × dn → dn+1) ∈
types(f). Then:

[[f(u1, . . . , un)]]σM = [[f]]sf ([[u1]]σM, . . . , [[un]]σM)

If the function symbol f has a unique type s, we omit it and write [[f]]f instead of [[f]]sf .
Because we have a sorted logic, the fact that [[_]]σM is well-defined on term is not immediate from the

definition, and must be shown.

Proposition 2.1. For every model M, [[_]]σM is a total function from T (F ,N ,X) to Dterm ∪ Dbool.
Moreover, for every term t, if t is of sort term (resp. bool), then [[t]]σM is a member of Dterm (resp.
Dbool).

Proof. We show this by structural induction on the term. For the function symbol case, we rely on the
fact that for every f ∈ F and (d1, . . . , dn) ∈ {term, bool}n, there exists at most on d ∈ {term, bool} such
that (d1 × · · · × dn → dn+1) ∈ types(f). �

If t is a ground term (i.e. var(t) = ∅) then its interpretation is independent from the valuation σ. In
that case, we omit σ and write [[t]]M.

Formula Interpretation We extend [[_]]σM to interpret formulas in {True,False} as follows:
• [[⊥]]σM = False and [[>]]σM = True.
• [[¬φ]]σM = True iff [[φ]]σM = False.
• [[φ ∧ ψ]]σM = True iff [[φ]]σM = [[ψ]]σM = True.
• [[φ ∨ ψ]]σM = [[¬(¬φ ∧ ¬ψ)]]σM.
• [[φ→ ψ]]σM = [[¬φ ∨ ψ)]]σM.
• Let x be a variable of sort dom. Then [[∃x.φ]]σM = True iff there exists v ∈ Ddom such that

[[φ]]σ
′

M = True where:

∀y ∈ X , σ′(y) =

{
v if y = x

σ(y) otherwise

• [[∀x.φ]]σM = [[¬∃x.¬φ]]σM.
• Let n ∈ N and L ∈ {bool, term}n. For every terms u1, . . . , un, v1, . . . , vn of sort L2:

[[u1, . . . , un ∼n v1, . . . , vn]]σM iff ([[u1]]σM, . . . , [[un]]σM, [[v1]]σM, . . . , [[vn]]σM) ∈ [[∼n]]Lp

A formula φ is valid in M, denoted by |=M φ, if and only if for every valuation σ, [[φ]]σM = True.
Finally we say that a formula is valid, denoted by |= φ, if and only if φ is valid in all models, i.e. for all
M we have |=M φ.

20 The Model

2.3.2 Computational Models

We focus on a particular class of such models, the computational models (introduced in [BCL14]). Morally,
a computational model corresponds to the interaction of a protocol implementation, which associates to
every protocol function symbol in Fp its implementation, with an polynomial-time adversary, which we
let interpret the adversarial function symbols in G. A computational model is a model where we interpret
terms as probabilistic polynomial-time Turing Machines (PPTMs) and the predicates ∼ as computational
indistinguishability. Formally, a modelMc = (Dterm,Dbool, [[]]n, [[]]f, [[]]p) is a computational model if:

• Dterm is the set of deterministic polynomial-time Turing machines equipped with an input tape,
which is also the working tape, and two additional infinite read-only tapes ρ1, ρ2, the random tapes,
used for random samplings.1 We need two random tapes to prevent the adversary from seeing the
protocol random samplings (such as a secret key’s random seed). More specifically, the tape ρ1

is for the protocol random samplings, while ρ2 is for the adversary random samplings. This will
appear in the restrictions on the function symbols interpretations below. The machines in Dterm
must run in polynomial-time with respect to the length of the input tape only.

• bool is the restriction of term to machines that return only the bit-strings 0 or 1.

• A name n ∈ N is interpreted as a machine that, on input (w, ρ1, ρ2) where w is of length η, extracts
a word of length η from the first random tape ρ1. Furthermore we require that different names
extract disjoint parts of ρ1.

• The interpretation of the function symbols true/0, false/0, len/1, 0/1, eq/2 and if_then_else_/3 by
[[_]]sf is fixed, and the expected one:

– [[true]]sf (resp. [[false]]sf) is the machine that, on input (m, ρ1, ρ2), returns the bit-string 1 (resp. 0).
– [[len]]f (resp. [[0]]sf) is the function that, given a machine m, returns the machine M such that,

on any input (w, ρ1, ρ2), M(w, ρ1, ρ2) returns the lengths of m(w, ρ1, ρ2) in binary (resp. the
bit-string 0|m|).

– The interpretation of eq is the same for its two types. [[eq]]sf is a function that takes as input
two machines (m1,m2) and returns a polynomial-time machine M such that:

M(w, ρ1, ρ2) =

{
1 if m1(w, ρ1, ρ2) = m2(w, ρ1, ρ2)

0 otherwise

– The interpretation of if_then_else_ does not depend on the types of its arguments. The func-
tion [[if_then_else_]]f takes as input three machines (m1,m2,m3) and returns a polynomial-
time machine M such that:

M(w, ρ1, ρ2) =

{
m2(w, ρ1, ρ2) if m1(w, ρ1, ρ2) = 1

m3(w, ρ1, ρ2) otherwise

• Let f ∈ Fp\{if_then_else_, true, false, eq, len,0} be a protocol function symbol, and s = d1 × · · · ×
dn → dn+1 ∈ types(f). Then [[f]]sf is defined by a deterministic polynomial-time Turing machine
Mf

c with n input tapes as follows: [[f]]sf is the function that, on input (m1, . . . ,mn) ∈ Dd1×· · ·×Ddn ,
returns a machine [[f]]sf(m1, . . . ,mn) in Ddn+1 such that for every (w, ρ1, ρ2):

[[f]]sf(m1, . . . ,mn)(w, ρ1, ρ2) =Mf
c (m1(w, ρ1, ρ2), . . . ,mn(w, ρ1, ρ2))

This is just the composition ofMf
c with (m1, . . . ,mn). Observe thatMf

c is deterministic and has
no direct access to the random tapes ρ1, ρ2. Nonetheless, it can access to the random tapes through
its argument (m1, . . . ,mn). This ensures that all random samplings must appear explicitly in the
terms.

• Let g ∈ G be an adversarial function symbol, and s = d1 × · · · × dn → dn+1 ∈ types(g). Adversarial
function symbols are interpreted as protocol function symbols, except that they have an additional
input tape for ρ2. More precisely, [[g]]sf is characterized by a deterministic polynomial-time Turing

1We represent probabilistic Turing machine using deterministic Turing machine with explicit (infinite) random tapes.

2.3. Semantics 21

machineMg
c with n+ 1 input tapes as follows: [[g]]sf is the function that, on input (m1, . . . ,mn) ∈

Dd1 × · · · × Ddn , returns a machine [[g]]sf(m1, . . . ,mn) in Ddn+1 such that for every (w, ρ1, ρ2):

[[g]]sf(m1, . . . ,mn)(w, ρ1, ρ2) =Mg
c (m1(w, ρ1, ρ2), . . . ,m2(w, ρ1, ρ2), ρ2)

Mg
c has access to the random tape ρ2, which allows the adversary to perform random samplings.

It has no direct access to the protocol random tape ρ1.
• Let n ∈ N. The predicate ∼n is interpreted as computational indistinguishability ≈n.
Let (d1, . . . , dn) ∈ {bool, term}n, for every machines m1, . . . ,mn,m

′
1, . . . ,m

′
n in (Dd1 , . . . ,Ddn)2, we

have m1, . . . ,mn ≈n m′1, . . . ,m′n iff for every PPTM A, the following quantity is negligible in η:∣∣∣∣∣ Pr (ρ1, ρ2 : A(1η, (mi(1
η, ρ1, ρ2))1≤i≤n, ρ2) = 1)

− Pr (ρ1, ρ2 : A(1η, (m′i(1
η, ρ1, ρ2))1≤i≤n, ρ2) = 1)

∣∣∣∣∣
where ρ1 and ρ2 are drawn using µω among the set of infinite random tapes. Again, observe that
A has direct access to ρ2 but not ρ1.

Syntactic Sugar We introduce a shorter notation for [[_]], by writing:

[[u]]η,ρ1,ρ2Mc
instead of [[u]]Mc(1

η, ρ1, ρ2)

We also lift the definition of [[_]]Mc to tuples of terms. Let ~u = u1, . . . , un be a vector of ground
terms, then [[~u]]Mc is such that for every (w, ρ1, ρ2):

[[~u]]w,ρ1,ρ2Mc
=
(
[[u1]]w,ρ1,ρ2Mc

, . . . , [[un]]w,ρ1,ρ2Mc

)
The important point is that all [[ui]]Mc are evaluated using the same random tapes ρ1, ρ2.

Remark 2.1 (Bit-String Distributions). Alternatively, we can see [[_]]Mc as interpreting vectors of terms
as family of distributions of bit-strings vectors, indexed by the security parameter η. More precisely, let
Mc be a computational model and ~u be a vector of ground term ~u . Then for all η, we let dη be the
distribution:

dη =
[
ρ1, ρ2 : [[~u]]η,ρ1,ρ2Mc

]
Then, two families of distributions of bit-string vectors (dη)η and (d′η)η, indexed by η, are indistinguishable
if and only if for every PPTM A, the following quantity is negligible in η:∣∣Pr (ρ1, ρ2 : A (1η, dη(ρ1, ρ2), ρ2) = 1)−Pr

(
ρ1, ρ2 : A

(
1η, d′η(ρ1, ρ2), ρ2

)
= 1
)∣∣

Observe that A and dη (resp. d′η) uses the same random tape, i.e. we correlate the distribution dη (resp.
d′η) and the random samplings of the adversary A. �

Example 2.5. Consider the first formula in Example 2.3. Let n0, n1, n ∈ N and g ∈ F of arity 0. Then
in every computational modelMc, we know that:

Mc |= if g() then n0 else n1 ∼ n

Indeed, the term on the left represents the message obtained by letting the adversary choose a branch,
and then sampling from n0 or n1 accordingly, which is semantically equivalent to directly performing a
random sampling, as done on the right.

We now focus on the second formula of Example 2.3, which we recall below:

{idA}ne
pkn
∼ {idB}ne

pkn
(2.1)

This formula is not true in every computational modelMc. For example, ifMc is such that:
• the encryption function symbol is interpreted as the function returning its first argument (hence

for every u, v, w, [[{u}wv]]Mc = [[u]]Mc).
• idA and idB are interpreted as two distinct elements of Dterm, e.g. 0 and 1.

Then the formula in (2.1) does not hold inMc. Indeed, there is a simple distinguisher A, returning true
if and only if it receives 0 as input, which wins (2.1) with probability one. �

22 The Model

2.4 Protocol and Their Semantics

As in [BCL14], we model protocols as abstract labelled transition systems. There are two differences
between our modeling and the one in [BCL14]. First, our LTS includes state updates, which allows us
to model stateful protocols, such as lak or AKA. Second, we consider infinite LTS instead of finite
ones. This allows us to model protocols with an arbitrary number of agents and sessions. Note however
that our soundness result will hold only for adversaries having a constant (w.r.t. the security parameter),
though arbitrary large, number of interactions with the protocol.

2.4.1 Labelled Transition Systems

A protocol P is a tuple (Q,L,Varsσ, qε, φε, σε, δ) where:
• Q, L and Varsσ are the (possibly infinite) sets of, respectively, nodes, action labels and state
variables. A node q ∈ Q records the static component of a protocol execution. Typically, this
includes the number of agents and running sessions. Action labels are the actions available to the
adversary (e.g. creating a new user, starting a new session, or sending a message). Finally, state
variables are symbolic handles used to refer to the memory of the agents.

• qε ∈ Q is the initial node.
• The initial frame φε is a vector of terms in T (F ,N). It represents the initial adversarial knowledge.
• The initial state σε is a total substitution from Varsσ to T (F ,N).
• δ is the transition relation associating to every node q a finite (non-empty) set δ(q) of transitions of
the form (α, t, σup, q′) where α ∈ L is the transition label, t is a term of sort term representing the
message output when executing the transition, the state update σup is a finite substitution from
Varsσ to terms and q′ is a node. We require that:

{t} ∪ codom(σup) ⊆ T (F ,N ,Varsσ, {xin})

where xin 6∈ Varsσ. That is, the outputted message t and the state update σup depend only on the
current state (through Varsσ) and the message that was inputted from the network (through xin).
For every q ∈ Q and α ∈ L, there must exists at most one transition in δ(q) labelled by α.

• There is a distinguished label nop ∈ L such that for every q ∈ Q, (nop,0, ε, q) ∈ δ(q).
We say that a label α is enabled in a node q if there exists a transition in δ(q) labelled by α. We also

let enblP (q) be the set of labels enabled in q. Observe that enblP (q) is never empty since it contains at
least nop.

For all q ∈ Q and α ∈ enblP (q), we let δq(q, α) = q′ where q′ is the unique member of Q such that
(α,_,_, q′) ∈ δ.

Example 2.6. As a first example, we present one session of the AKA− protocol given in Figure 1.1,
which we started to model in Example 2.2. We recall that one session of the AKA− protocol between
a user A and its service provider S comprises three messages, two from A and one from S. We use the
nodes Q to record what messages have already been sent. Therefore, we let Q = QA ×QS where:

QA = {started, running, done} QS = {started, done}

For example, we are in a node (started,_) if A has not yet sent any message, and we are in a node
(running,_) if A already sent its first message, but not the second message.

At any point of the protocol execution, only two actions are available to the adversary: it can either in-
teract with A or with S. Therefore, we let L = {A, S}. The set of state variables is Varsσ = {sqnA, sqnS},
which are used to store the current value of the sequence numbers. Initially, the two agents have not
sent any messages, the service provider public key is made available to the adversary, and we initialize
the sequence numbers sqnA and sqnS to some constant values sqn-initA and sqn-initS:

qε = (started, started) φε = pkn ∀x ∈ Varsσ, σε(x) =

{
sqn-initA if x = sqnA

sqn-initS if x = sqnS

Finally, we describe the transition relations δ. For every q ∈ Q, (α, t, σup, q′) ∈ δ(q) when:

2.4. Protocol and Their Semantics 23

• if q = (started, qS) and α = A then we have the first user message:

q′ = (running, qS) t ≡ {idA}ne
pkn

σup = ε

• if q = (running, qS) and α = A, then we have the second (and last) user message:

q′ = (done, qS) tdec ≡ sdec(xin, k) accept ≡ geq(π2(tdec), sqnA + 1)

t ≡ if accept then senc(π1(tdec), k) else error σup = sqnA 7→ if accept then π2(tdec) else sqnA

• if q = (qA, started) and α = S, then we have the service provider message:

q′ = (qA, done) t ≡ if eq(dec(xin, skn), idA) then senc(〈n , sqnS〉, k) else UnknownId

σup = sqnS 7→ if eq(dec(xin, skn), idA) then sqnS + 1 else sqnS

In this example, the LTS is finite, as we consider only one session of the protocol. �

Example 2.7. We now give a more complex example. We still model the AKA− protocol, but this
time we consider a setting with an arbitrary number of users, each with a different identity. To reduce
the complexity of the example, every user runs only one sessions. We let S = {idi | i ∈ N} be a set of
identities, which are indexed by an integer i. The set of nodes Q is:

Q =

{(
(id1 : b1, . . . , idl : bl),

(i1 : a1, . . . , in : an)

) ∣∣∣ ∀1 ≤ i ≤ l, idi ∈ S ∧ ∀1 ≤ j ≤ n, ij ∈ {1, . . . , l}
∧ b1, . . . , bl, a1, . . . , an ∈ {true, false}

}

Being in the state (id1 : b1, . . . , idl : bl), (i1 : a1, . . . , in : an) should be interpreted as follows:
• There are l users, with identities id1, . . . , idl. Moreover, for every i, bi is true iff user idi has not

sent its last message yet.

• There are n service provider sessions, where the j-th network session is communicating with user
idij (hence ij must be in {1, . . . , l}). Moreover, for every j, aj is true iff the service provider session
ij has not sent its last message yet.

The set of state variable Varsσ contains, for every id ∈ S, the variables sqnid
u and sqnid

S storing, respec-
tively, the user and service provider version of the sequence number. Initially, there are no users and
no service provider sessions. The initial frame contains only the service provider public key pkn, and all
sequence numbers are initialized using constants sqn-initidu and sqn-initidS .

qε = ((), ()) φinε ≡ pkn ∀x ∈ Varsσ, σε(x) =

{
sqn-initidu if x = sqnid

u

sqn-initidS if x = sqnid
S

The set of action labels is:

L =
{
NewUser, NewNetworki, UserMsgi, NetMsgj | i ∈ N

}
We describe the available action labels in node q = (id1 : b1, . . . , idl : bl), (i1 : a1, . . . , in : an). For every
transition, we underline, in the new node q′, the changes between q and q′.

• NewUser creates a new user with identity idl+1:

t ≡ {idl+1}
nl+1
e

pkn
σup = ε q′ =

(
(id1 : b1, . . . , idl : bl, idl+1 : true), (i1 : a1, . . . , in : an)

)
• For any i ∈ {1, . . . , l}, NewNetworki creates a new service provider session communicating with idi:

t ≡ Nothing σup = ε q′ = ((id1 : b1, . . . , idl : bl), (i1 : a1, . . . , in : an, i : true))

24 The Model

• For every i ∈ {1, . . . , l} such that bi is true, UserMsgi lets the adversary send a message to idi and
get the user’s output. Let id = idi and tdec ≡ sdec(xin, kid), the action is defined by:

accept ≡ geq(π2(tdec), sqnid
u + 1) t ≡ if accept then senc(π1(tdec), kid) else error

σup = sqnid
u 7→ if accept then π2(tdec) else sqnid

u

q′ =
(
(id1 : b1, . . . , idi : false, . . . , idl : bl), (i1 : a1, . . . , in : an)

)
We set bi to false in the node since idi sent its last message.

• For every j ∈ {1, . . . , n}, such that aj is true, NetMsgj , lets the adversary send a message to the
session ij of the service provider and get its output. Let id = idij , the action is defined by:

t ≡ if eq(dec(xin, skn), id) then senc(〈nj , sqnid
S 〉, kid) else UnknownId

σup = sqnid
S 7→ if eq(dec(xin, skn), id) then sqnid

S + 1 else sqnid
S

q′ =
(

(id1 : b1, . . . , idl : bl), (i1 : a1, . . . , ij : false, . . . , in : an)
)

We set aj to false in the state since the j-th session of the service provider sent its last message.
Remark that the set of available actions in a node q ∈ Q can be arbitrarily large, but remains finite. �

2.4.2 Computational Execution

We are now going to define what it means to execute a protocol. Let Mc be a computational model,
and P = (Q,L,Varsσ, qε, φε, σε, δ) be a protocol. We assume that L is equipped with an arbitrary non-
ambiguous encoding ·̃ into bit-strings. This is used to let the adversary choose the action it wants to
execute, by writing the encoding of the action on its output tape.

When executing a protocol, at every step i ∈ N, we let the adversary choose both the input message
and the action to be executed. For this, we symbolically represent inputs and action choices using the
reserved function symbols in G (which can be interpreted by any probabilistic polynomial-time function).
More precisely:

• the i-th input is computed using the adversarial function symbols gi(_).
• the i-th action to be executed is chosen using the adversarial function symbol toi(_). We do not
force toi to return only valid encodings of labels in L. Instead, we interpret any invalid encoding
as nop.

The function symbols gi(_) and toi(_) are of arity |φε + i|.
We define what is a symbolic frame and a symbolic state of P .

Definition 2.4. A symbolic frame is a finite sequence of terms in T (F ,N).

Definition 2.5. A symbolic state of P is a total function σ from variables Varsσ to terms in T (F ,N).

Computational Trace Let η ∈ N and ρ1, ρ2 be two random tapes. The trace tracePMc
(1η, ρ1, ρ2) of

the execution of P with security parameter η on random tapes ρ1, ρ2 is the sequence:

tracePMc
(1η, ρ1, ρ2) = (qi, αi, [[φi]]

η,ρ1,ρ2
Mc

, [[σi]]
η,ρ1,ρ2
Mc

)i∈N

where, for every i ∈ N:
1. qi is a node of Q and q0 = qε.
2. φi is a sequence of terms in T (F ,N) and φ0 = φε.
3. σi is a symbolic state of P and σ0 = σε.
4. αi is such that α̃i = [[toi(φi)]]

η,ρ1,ρ2
Mc

if [[toi(φi)]]
η,ρ1,ρ2
Mc

is a valid encoding of a label in δq(q), and
αi = nop otherwise. Let (αi, t, σ

up, q′) ∈ δ(qi), then:

qi+1 = q′ θi = σi · (xin 7→ gi(φi)) φi+1 = φi, tθi

∀x ∈ Varsσ, σi+1(x) =

{
σupθi if x ∈ dom(σup)

σi(x) otherwise

2.4. Protocol and Their Semantics 25

We also let φ̃-tracePMc
(η, ρ1, ρ2) = ([[φi]]

η,ρ1,ρ2
Mc

)i∈N and φ-s-tracePMc
(η, ρ1, ρ2) = (φi)i∈N.

Computational Execution A computational trace is with fixed η, ρ1, ρ2. The computational execu-
tion of P inMc is a sequence, indexed by the length i, of sequences, indexed by the security parameter
η, of random variables representing the execution of the i-th first actions of P with security parameter
η. Formally:

execPMc
=

(([
ρ1, ρ2 : φ̃-tracePMc

(η, ρ1, ρ2)(i)
])

η∈N

)
i∈N

The order in which we introduce i, η, ρ1, ρ2 is important here. Since our model is only sound for a finite
number of messages, we first introduce the length of the protocol execution i. Then, for a fixed length
i, we see the execution of the i-th first messages of P as a sequences of random variables indexed by the
security parameter (as we did in Remark 2.1).

It is not meaningful to compare protocols with different set of labels:

Definition 2.6. Two protocols P and Q are compatible if they have the same set of labels.

We can now state what it means for two protocol to be indistinguishable:

Definition 2.7. Let Mc be a computational model. Two compatible protocols P and Q are indistin-
guishable inMc, denoted by P ≈Mc Q iff for every i ∈ N:

execPMc
(i) ≈Mc exec

Q
Mc

(i)

2.4.3 Symbolic Execution

We now define a way of symbolically executing a protocol P = (Q,L,Varsσ, qε, φε, σε, δ). Instead of query-
ing the computational modelMc at every step to get the next action to be executed using [[toi(φi)]]Mc ,
we fix the sequence of actions τ (the action trace) to be executed. For every action trace τ , this yields a
symbolic frame of the same length. The symbolic execution of P at depth l is then the collection of all
symbolic execution of P on any action trace of length l.

Action Traces L may be infinite, hence there may be an infinite number of action traces of length l.
But because P is a finitely branching LTS, the symbolic execution of P at depth l contains a finite number
of distinct symbolic frames. Therefore we can consider only a finite set of action traces to symbolically
evaluates P at depth l, which we define below.

First, for every q ∈ Q, we lift δq to any finite sequence of labels τ in the expected fashion, and we lift
enblP to any finite sequence of labels τ :

δq(q, ε) = q δq(q, τ · α) = δq(δq(q, τ), α) enblP (τ) = enblP (δq(qε, τ))

We now define the set of action traces of P of length l:

Definition 2.8. For every protocol P and l ∈ N, we let Tl(P) be the set of P action traces of length l:

T0(P) = {ε} Tl+1(P) = {τ · α | τ ∈ Tl(P), α ∈ enblP (τ)}

For every protocol Q compatible with P , we also let Tl(P,Q) = Tl(P) ∪ Tl(Q).

Proposition 2.2. For every protocol P and for every i ∈ N, Ti(P) is finite.

Proof. This directly follows from the fact that P is a finitely branching LTS. �

26 The Model

Symbolic Executions We now define the symbolic execution of a protocol with a fixed action trace
τ of length l. We do not require that τ be in Tl(P). Instead, as in a computational execution, we treat
any invalid action label as nop.

Definition 2.9. Let τ = α0, . . . , αl−1 be a finite sequence of labels in L. The symbolic trace s-traceP (τ)
of the execution of P = (Q,L,Varsσ, qε, φε, σε, δ) on τ is the sequence:

s-tracePτ = (qi, φi, σi)0≤i≤l

where, for every i ∈ N:
1. qi is a node of Q and q0 = qε.
2. φi is a sequence of terms in T (F ,N) and φ0 = φε.
3. σi is a symbolic state of P and σ0 = σε.
4. Let α = αi if αi is a valid encoding of a label in enblP (q), and α = nop otherwise. Let (α, t, σup, q′) ∈
δ(qi), then:

qi+1 = q′ θi = σi · (xin 7→ gi(φi)) φi+1 = φi, tθi

∀x ∈ Varsσ, σi+1(x) =

{
σupθi if x ∈ dom(σup)

σi(x) otherwise

We let φ-s-tracePτ = (φi)0≤i≤l be the sequence of symbolic frames extracted from the symbolic trace
s-traceP (τ) and φPτ = φl be the final symbolic frame.

Soundness Theorem We can now state the soundness theorem linking computational and symbolic
executions: given a computational model Mc and two compatible protocols P and Q, if the formula
φPτ ∼ φQτ is valid in Mc for every action trace τ ∈

⋃
l Tl(P,Q), then P and Q are computational

indistinguishable, i.e. P ≈Mc Q.
Intuitively, this is because if P 6≈Mc Q, then there exist a depth l and an adversary A with a non-

negligible advantage in distinguishing l steps of P from l steps of Q. Because Tl(P,Q) is finite, the
adversary has only a finite number of choices of action trace. Moreover, the advantage of A against P
and Q with an adaptive choice of action can be upper-bounded by the sum, over all possible choices
of action trace τ , of the advantage of A against P and Q with fixed trace τ . Since A’s advantage is
non-negligible, and since the sum is finite, this implies that there exists some τ ∈ Tl(P,Q) such that A
has a non-negligible advantage in distinguishing P and Q with fixed trace τ .

Theorem 2.1. Let P and Q be two compatible protocols andMc be a computational model. If, for every
l ∈ N and τ ∈ Tl(P,Q), we haveMc |= φPτ ∼ φQτ , then:

P ≈Mc Q

Proof. We prove this by contraposition. Assume that P 6≈Mc Q, by definition there exist a depth l and
an adversary A such that A has a non-negligible probability of distinguishing execPMc

(l) and execQMc
(l),

i.e. the following quantity is not negligible:∣∣∣∣∣∣∣
Pr
(
ρ1, ρ2 : A(1η, φ̃-tracePMc

(η, ρ1, ρ2)(l), ρ2) = 1
)

− Pr
(
ρ1, ρ2 : A(1η, φ̃-traceQMc

(η, ρ1, ρ2)(l), ρ2) = 1
)
∣∣∣∣∣∣∣ (2.2)

Trace Events For every τ = α0, . . . , αl−1 ∈ Ti(P,Q), we want to define the family of events (Eητ)η:

Eητ : “with security parameter η, the trace of actions chosen during the execution of l steps of P is τ ”

To define Eητ , we just need to define, for every 0 ≤ i < l, the event:

Eητ,i : “with security parameter η, the i-th action chosen during the execution of P is αi”

Let φ-s-tracePτ = (φi)0≤i≤l. We have two cases:

2.4. Protocol and Their Semantics 27

• If αl is an enabled actions of P , Eητ,l is the event:[
ρ1, ρ2 : [[tol(φl)]]

η,ρ1,ρ2
Mc

= α̃l
]

• If αl is not enabled, it is treated as nop. Therefore we let tol(φl) be any value which is treated as
nop by the computational semantics. Eητ,l is the event:[

ρ1, ρ2 : [[tol(φl)]]
η,ρ1,ρ2
Mc

6∈
{
α̃ | α ∈ enblP (τ|1,...,l)

}]
In general, Eητ,l is the union of both cases above:[

ρ1, ρ2 :

(
αl ∈ enblP (τ|1,...,l) ∧ [[tol(φl)]]

η,ρ1,ρ2
Mc

= α̃l
)

∨
(
αl 6∈ enblP (τ|1,...,l) ∧ [[tol(φl)]]

η,ρ1,ρ2
Mc

6∈
{
α̃ | α ∈ enblP (τ|1,...,l)

})]

For every τ and η, the following two random variables are the same:
• executing l steps of P inMc with security parameter η conditioned on Eητ .

• sampling from φPτ inMc with security parameter η.
Formally we have: [

ρ1, ρ2 : φ̃-tracePMc
(η, ρ1, ρ2)(l) | Eητ

]
=
[
ρ1, ρ2 : [[φPτ]]η,ρ1,ρ2Mc

]
(2.3)

We also define the symmetrical events:

E′ητ : “with security parameter η, the trace of actions chosen during the execution of l steps of Q is τ ”

Which satisfies: [
ρ1, ρ2 : φ̃-traceQMc

(η, ρ1, ρ2)(l) | E′ητ
]

=
[
ρ1, ρ2 : [[φQτ]]η,ρ1,ρ2Mc

]
(2.4)

Upper-Bounding A’s Advantage To conclude, we just need to upper-bound A’s advantage in dis-
tinguishing P and Q. Using (2.3), we get that for every η:

Pr
(
ρ1, ρ2 : A(1η, φ̃-tracePMc

(η, ρ1, ρ2)(l), ρ2) = 1
)

=∑
τ∈Ti(P,Q)

Pr
(
ρ1, ρ2 : A(1η, [[φPτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)
×Pr(Eητ)

Similarly, using (2.4) we get that:

Pr
(
ρ1, ρ2 : A(1η, φ̃-traceQMc

(η, ρ1, ρ2)(l), ρ2) = 1
)

=∑
τ∈Ti(P,Q)

Pr
(
ρ1, ρ2 : A(1η, [[φQτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)
×Pr(E′ητ)

Since Pr(Eητ) ≤ 1, Pr(E′ητ) ≤ 1 and bounding the absolute value of the sum by the sum of the absolute
values, we get that (2.2) is upper-bounded by:∑

τ∈Ti(P,Q)

∣∣Pr
(
ρ1, ρ2 : A(1η, [[φPτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)
− Pr

(
ρ1, ρ2 : A(1η, [[φQτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)∣∣

Since (2.2) is non-negligible, the quantity above is non-negligible. Using Proposition 2.2, we know that
Ti(P,Q) is finite. A finite sum is non-negligible iff one of its terms is non-negligible. Hence there exists
τ ∈ Ti(P,Q) such that:∣∣Pr

(
ρ1, ρ2 : A(1η, [[φPτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)
− Pr

(
ρ1, ρ2 : A(1η, [[φQτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)∣∣

is non-negligible, which implies thatMc 6|= φPτ ∼ φQτ . �

28 The Model

Completeness We would like to state the converse statement, i.e. that if P ≈Mc Q then for every
l ∈ N and τ ∈ Tl(P,Q), Mc |= φPτ ∼ φQτ . This is quite intuitive: if there is an attack against P and Q
for a fixed trace τ , then there is an adaptive attack against P and Q (we simply let the adversary pick
the trace τ). The problem is that the adversary’s action choices are “stored” in the computational model
Mc, in the interpretation of the function symbols toi. Therefore we cannot use the same computational
modelMc. Formally:

Proposition 2.3. For every compatible protocols P and Q that do not use the function symbols {tol |
l ∈ N}, for every computational modelMc, if there exists l ∈ N and τ ∈ Tl(P,Q) such that:

Mc 6|= φPτ ∼ φQτ

then there exists a computational model Mc
′, which may differ from Mc only on the interpretation of

{tol | l ∈ N}, such that P 6≈Mc′ Q.

Proof. Take an adversary A, a depth l and an action trace τ ∈ Tl(P,Q) such that A has a non-negligible
probability of distinguishing between φPτ and φQτ , i.e.:∣∣Pr

(
ρ1, ρ2 : A(1η, [[φPτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)
− Pr

(
ρ1, ρ2 : A(1η, [[φQτ]]η,ρ1,ρ2Mc

, ρ2) = 1
)∣∣

is non-negligible. We simply letMc
′ be the computational modelMc where we modify the interpretation

of {toi | 0 ≤ i < l} by having [[toi]] be the machine that ignores its arguments and always returns α̃i
where αi is the i-th action in τ . Using the fact that P does not use the function symbols {tol | l ∈ N},
we can check that for every η, ρ1, ρ2:

[[φPτ]]η,ρ1,ρ2Mc
= φ̃-tracePMc′

(η, ρ1, ρ2)(l)

Similarly:

[[φQτ]]η,ρ1,ρ2Mc
= φ̃-traceQMc′

(η, ρ1, ρ2)(l)

We deduce that A has a non-negligible probability of distinguishing the computational executions of P
and Q inMc

′, i.e. P 6≈Mc′ Q. �

2.5 Axioms

When studying two protocols P and Q, we cannot just show that P and Q are indistinguishable in some
fixed computational modelMc for several reasons:

• First, we would need to fully specify the implementation of every protocol function symbols, e.g.,
how is the pair implemented, how projections behave on ill-formed inputs etc. Not only would
this be very tedious, but it would also be a waste of time. For example, if there is no way for the
adversary to have the protocols’ agents try to compute projections of ill-formed pairs, then we do
not need to know how projections handle bad inputs.

• This is too restrictive: if we show security in some model Mc, and we later decide to change the
implementation of some functions, we need to redo the whole proof.

• Lastly, we do not know the implementation of the adversarial function symbols. We need to let
them be any probabilistic polynomial-time Turing machine.

Instead, we use an axiomatic approach, restricting the models that have to be considered using axioms,
which are formulas of the logic. Then, given a set of axioms Ax (potentially infinite) and two compatible
protocols P and Q, if we show that for every l and τ ∈ Tl(P,Q), the formula φPτ 6∼ φQτ is inconsistent
with Ax, then we know that there exists no modelM (hence no computational model either) satisfying
Ax such thatM |= φPτ 6∼ φQτ . Hence, using the soundness Theorem 2.1, we know that P ≈Mc Q in every
computational modelMc such that the axioms Ax hold.

2.5. Axioms 29

Structural and Implementation Axioms We define the axioms that we will need later. Axioms
can be of two kind:

• Structural axioms represent properties that hold in every computational model. This includes
axioms such as the symmetry of ∼, or properties of the if_then_else_ function symbol (since its
interpretation is fixed).

• Implementation axioms reflect implementation assumptions, such as the functional correctness of
the pair and projections (e.g. π1(〈u , v〉) = u), or cryptographic assumptions on the security primi-
tives (e.g. euf-cma or ind-cpa).

All our axioms are universally quantified Horn clauses or recursive schemata of ground Horn clauses.
Therefore, to show the unsatisfiability of Ax ∧ ~u 6∼ ~v (where Ax is a given set of axioms and ~u 6∼ ~v is
a ground formula), we use resolution with a negative strategy (which is complete, see [CL73]). As all
axioms are Horn clauses, a proof by resolution with a negative strategy can be seen as a proof tree where
each node is indexed by the axiom of Ax used at this resolution step. Hence, axioms will be given as
inference rules (where variables are implicitly universally quantified).

2.5.1 Structural Axioms

Almost all the axioms in this subsection have been introduced in the literature, see [BCL14, CK17, BC16].

Equality Computational indistinguishability is an equivalence relation (i.e. reflexive, symmetric and
transitive). But we can observe that it is not a congruence. E.g. take a computational model Mc, we
know that two names n and n′ are indistinguishable (since they are interpreted as independent uniform
random sampling in {0, 1}η), and n is indistinguishable from itself. Therefore:

Mc |= n ∼ n′ Mc |= n ∼ n

But the formula n, n ∼ n′, n is not valid in Mc. Indeed, there is a simple PPTM that can distinguish
between n, n and n′, n: simply test whether the two arguments are equal, if so return 1 and otherwise
return 0. Then, with overwhelming probability, this machine will guess from which distribution its input
was sampled from.

Even though ∼ is not a congruence, we can get a congruence from it: if eq(s, t) ∼ true holds in
all models then, using the semantics of eq(_,_), in every computational model Mc, [[s]] and [[t]] are
identical except for a negligible number of samplings. Hence all properties of equality hold: this relation
is symmetric, reflexive, transitive and closed under function applications. Moreover, we can replace
any occurrence of s by t in a formula without changing its semantics with respect to computational
indistinguishability. We let s = t be the shorthand for eq(s, t) ∼ true, and we introduce the axioms:

u = u =-refl v = u
u = v

=-sym u = w w = v
u = v =-trans

u0 = v0 . . . un = vn
f(u0, . . . , un) = f(v0, . . . , vn)

=-subst (f ∈ F)
~u, t ∼ ~v s = t

~u, s ∼ ~v Equ

Finally, we have equality axioms reflecting properties of the function symbols with a fixed interpre-
tation, which are given in Figure 2.1. When writing equality axioms, we usually omit the over-line: e.g.,
we write eq(x, x) instead of eq(x, x).

Most of these axioms deal with the if_then_else_ function symbols. We give a quick informal descrip-
tion: E1 contains properties of zero and equality; E2 and E3 contain, respectively, the homomorphism
properties and simplification rules of the if_then_else_; and E4 allows to change the order in which
conditional tests are performed.

Other Axioms We now give an informal description of the structural axioms given in Figure 2.2 that
we have not introduced yet:

• Perm allows to change the terms order, using the same permutation π on both sides of ∼.
uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)

u1, . . . , un ∼ v1, . . . , vn Perm

30 The Model

E1

{
0(0(x)) = 0(x)

eq(x, x) = true

E2

{
f(~u, if b then x else y,~v) = if b then f(~u, x,~v) else f(~u, y,~v) (f ∈ F\if)
if (if b then a else c) then x else y = if b then (if a then x else y) else (if c then x else y)

E3

if b then x else x = x

if true then x else y = x

if false then x else y = y

if b then (if b then x else y) else z = if b then x else z
if b then x else (if b then y else z) = if b then x else z

E4

{
if b then (if a then x else y) else z = if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) = if a then (if b then x else y) else (if b then x else z)

Figure 2.1: Equality Axioms E1,E2,E3,E4

u = u =-refl v = u
u = v

=-sym u = w w = v
u = v =-trans

u0 = v0 . . . un = vn
f(u0, . . . , un) = f(v0, . . . , vn)

=-subst

~u, t ∼ ~v s = t

~u, s ∼ ~v Equ
uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)

u1, . . . , un ∼ v1, . . . , vn Perm
~u, s ∼ ~v , t
~u ∼ ~v Restr

~u1, ~v1 ∼ ~u1, ~v2

f(~u1), ~v1 ∼ f(~u2), ~v2
FA

~u, s ∼ ~v , t
~u, s, s ∼ ~v , t, t Dup ~u ∼ ~u Refl ~v ∼ ~u

~u ∼ ~v Sym

~u ∼ ~w ~w ∼ ~v
~u ∼ ~v Trans ~u ∼ ~v

~u, n ∼ ~v , n′ Fresh when n 6∈ st(~u) and n′ 6∈ st(~v)

~u ∼ ~uα
α-equ when α is an injective renaming of names in N

eq(t, n) = false =-ind when n 6∈ st(t)
~u,C [if eq(s, t) then C0[t] else w] ∼ ~v
~u,C [if eq(s, t) then C0[s] else w] ∼ ~v IFT

~w , b, (ui)i ∼ ~w ′, b′, (u′i)i ~w , b, (vi)i ∼ ~w ′, b′, (v′i)i
~w , (if b then ui else vi)i ∼ ~w ′, (if b′ then u′i else v

′
i)i

CS

Conventions: π is a permutation of {1, . . . , n} and f ∈ F .

Figure 2.2: Some Structural Axioms.

• Restr is a strengthening axiom, stating that to prove that ~u ∼ ~v , it is sufficient to show the stronger
property ~u, s ∼ ~v , t.

~u, s ∼ ~v , t
~u ∼ ~v Restr

• The function application axiom FA states that to prove that two images (by f ∈ F) are indistin-
guishable, it is sufficient to show that the arguments are indistinguishable.

~u1, ~v1 ∼ ~u1, ~v2

f(~u1), ~v1 ∼ f(~u2), ~v2
FA

2.5. Axioms 31

• Dup states that giving twice the same value to an adversary is equivalent to giving it only once.

~u, s ∼ ~v , t
~u, s, s ∼ ~v , t, t Dup

• Refl,Sym and Trans states that indistinguishability is a reflexive, symmetrical and transitive relation.

~u ∼ ~u Refl ~v ∼ ~u
~u ∼ ~v Sym ~u ∼ ~w ~w ∼ ~v

~u ∼ ~v Trans

• Fresh states that giving a value uniformly sampled at random and independent from the rest of
the distribution is useless. We guarantee that n is independent from ~u by requiring that n does
not appear in ~u ’s subterms (and similarly for n′ and ~v). By consequence, this is not a universally
quantified axiom. Instead, this is a recursive infinite set of axioms, one for each ground formula
satisfying the side-condition.

~u ∼ ~v
~u, n ∼ ~v , n′ Fresh when n 6∈ st(~u) and n′ 6∈ st(~v)

• The α-equ axioms allow to rename all the names appearing in ~u , using an injective renaming α:

~u ∼ ~uα
α-equ when α is an injective renaming of names in N

• =-ind is a axiom schema stating that, if t is independent from a uniform random sampling n, then
t is never equal to n, except for a negligible number of samplings.

eq(t, n) = false =-ind when n 6∈ st(t)

• The IFT axioms allows to replace a term s by a term t if it appears in the then branch of a eq(s, t)
conditional. Again, this is an axiom schema.

~u,C [if eq(s, t) then C0[t] else w] ∼ ~v
~u,C [if eq(s, t) then C0[s] else w] ∼ ~v IFT

• The CS axioms states that in order to show that:

if b then u else v ∼ if b′ then u′ else v′

it is sufficient to show that the then branches and the else branches are indistinguishable, when
giving to the adversary the value of the conditional (i.e. b on the left and b′ on the right). We can
do better, by considering simultaneously several terms starting with the same conditional. We also
allow some terms ~w and ~w ′ on the left and right to stay untouched.

~w , b, (ui)i ∼ ~w ′, b′, (u′i)i ~w , b, (vi)i ∼ ~w ′, b′, (v′i)i
~w , (if b then ui else vi)i ∼ ~w ′, (if b′ then u′i else v

′
i)i

CS

Remark 2.2. In the CS axioms, we need to give the conditional b to the adversary. For example, assume
that Fp contains two constant function symbols one and zero. Then, in every computational modelMc:

Mc |= zero ∼ zero Mc |= one ∼ one

But ifMc is such that zero’s interpretation is different from one’s interpretation, then:

Mc 6|= if true then zero else one ∼ if false then zero else one �

The conjunction of the equality axioms in Figure 2.1 and the axioms in Figure 2.2 form the set of
structural axioms Axstruct.

Definition 2.10. We let Axstruct be the union of sets of axioms in Figure 2.1 and Figure 2.2.

32 The Model

Structural axioms are valid in all computational models.

Proposition 2.4. The axioms Axstruct are valid in all computational models.

Proof. The axioms in Figure 2.1 and the four first axioms of Figure 2.2 are all immediate properties of
the function symbols interpretations in any computational model.

All the remaining axioms are proved using the same kind of argument: given a adversary breaking
the conclusion, we show that there exists an adversary breaking one of the premises.

• The axioms Perm,Restr,Dup are very similar. We only detail the proof for one of them, Dup.
Assume a winning adversary A against ~u, s, s ∼ ~v , t, t, we can define an adversary B against
~u, s ∼ ~v , t has follows: on input ~w , x, return A(~w , x, x). The advantage of B against ~u, s ∼ ~v , t is
exactly the advantage of A against ~u, s, s ∼ ~v , t, t, which is non-negligible by hypothesis.

• Assume that s = t holds in every computational model, and that there exists a winning adversary
A against ~u, s ∼ ~v . Recall that s = t is the formula eq(s, t) ∼ true. Since eq is interpreted as
actual equality, we know that in every computational model, [[s]]η,ρ1,ρ2Mc

= [[t]]η,ρ1,ρ2Mc
except for a

negligible subset of random tapes ρ1, ρ2 of measure mρ(η). By consequence, the advantage of A
against ~u, t ∼ ~v is the advantage of A against ~u, s ∼ ~v , plus or minus the negligible quantity mρ(η).
Hence A has a non-negligible advantage against ~u, t ∼ ~v .

• For the FA axiom, assume a winning adversary A against f(~u1), ~v1 ∼ f(~u2), ~v2. Let Mf
c be the

Turing machine used inMc to define [[f]]sMc
semantics, where s is the type of ~u1.

We define an adversary B against ~u1, ~v1 ∼ ~u1, ~v2 as follows: on input ~w 1, ~w 2, compute Mf
c (~w 1),

storing the result in x, and then return A(x, ~w 2) (Mf
c runs in polynomial-time, therefore B is still

polynomial-time).
The advantage of B against ~u1, ~v1 ∼ ~u1, ~v2 is exactly the advantage of A against f(~u1), ~v1 ∼
f(~u2), ~v2, which is non-negligible by hypothesis.

• Refl is obvious: no adversary can distinguish between two identical distributions.
• Sym follows from the fact that the definition of computational indistinguishability is symmetrical.
• For Trans, take a winning adversary A against ~u ∼ ~v . Using the triangular inequality:∣∣Pr

(
ρ1, ρ2 : A(1η, [[~u]]η,ρ1,ρ2Mc

, ρ2)
)
− Pr

(
ρ1, ρ2 : A(1η, [[~v]]η,ρ1,ρ2Mc

, ρ2)
)∣∣ ≤∣∣Pr

(
ρ1, ρ2 : A(1η, [[~u]]η,ρ1,ρ2Mc

, ρ2)
)
− Pr

(
ρ1, ρ2 : A(1η, [[~w]]η,ρ1,ρ2Mc

, ρ2)
)∣∣

+
∣∣Pr

(
ρ1, ρ2 : A(1η, [[~w]]η,ρ1,ρ2Mc

, ρ2)
)
− Pr

(
ρ1, ρ2 : A(1η, [[~v]]η,ρ1,ρ2Mc

, ρ2)
)∣∣

Since the left quantity is non-negligible, one of the two quantities on the right must be non-negligible.
This shows that A is winning against ~u ∼ ~w or ~w ∼ ~v .

• For Fresh, given a winning adversary against ~u, n ∼ ~v , n′, we build a winning adversary B against
~u ∼ ~v : B simply samples the uniform random value itself before calling A.

• For =-ind, using the independence, we can upper-bound the probability of collision by 1/2η, which
is negligible.

• For the IFT axiom, we just need to observe that in every computational modelMc, the distributions:

[[~u,C [if eq(s, t) then C0[s] else w]]]Mc and [[~u,C [if eq(s, t) then C0[t] else w]]]Mc

are the same except for a negligible number of samplings. Hence any winning adversary against the
conclusion is a winning adversary against the premise.

• It only remain to show that CS is valid. Let Mc be a computational mode, and A be a winning
adversary against:

~w , (if b then ui else vi)i︸ ︷︷ ︸
~s

∼ ~w ′, (if b′ then u′i else v
′
i)i︸ ︷︷ ︸

~t

inMc. We let pl,l, pr,l, pl,r and pr,r be the quantities:

pl,l : Pr
(
ρ1, ρ2 : A(1η, [[~s]]η,ρ1,ρ2Mc

, ρ2)∧ [[b]]η,ρ1,ρ2Mc

)
pr,l : Pr

(
ρ1, ρ2 : A(1η, [[~s]]η,ρ1,ρ2Mc

, ρ2)∧ ¬[[b]]η,ρ1,ρ2Mc

)
pl,r : Pr

(
ρ1, ρ2 : A(1η, [[~t]]η,ρ1,ρ2Mc

, ρ2)∧ [[b′]]η,ρ1,ρ2Mc

)
pr,r : Pr

(
ρ1, ρ2 : A(1η, [[~t]]η,ρ1,ρ2Mc

, ρ2)∧ ¬[[b′]]η,ρ1,ρ2Mc

)

2.5. Axioms 33

We define the adversary Bt against ~w , b, (ui)i ∼ ~w ′, b′, (u′i)i:

Bt(~x, a, (mi)i) =

{
A(~x, (mi)i) if a = 1

1 otherwise

Then:

Pr
(
ρ1, ρ2 : Bt(1η, [[~w , b, (ui)i]]η,ρ1,ρ2Mc

, ρ2)
)

= pl,l + Pr
(
ρ1, ρ2 : ¬[[b]]η,ρ1,ρ2Mc

)
(2.5)

Pr
(
ρ1, ρ2 : Bt(1η, [[~w ′, b′, (u′i)i]]

η,ρ1,ρ2
Mc

, ρ2)
)

= pl,r + Pr
(
ρ1, ρ2 : ¬[[b′]]η,ρ1,ρ2Mc

)
(2.6)

Since we assumed ~w , b, (ui)i ∼ ~w ′, b′, (u′i)i to hold in any computational model, we know that b ∼ b′
also holds in any computational model. Since b and b′ are of sort bool, and since b ∼ b′ holds in
Mc, we know that the two quantities below:

Pr
(
ρ1, ρ2 : [[b]]η,ρ1,ρ2Mc

)
Pr
(
ρ1, ρ2 : [[b′]]η,ρ1,ρ2Mc

)
are equal except for a negligible number of samplings (otherwise, we could easily break b ∼ b′ in
Mc). Using this fact, (2.5) and (2.6) we deduce that Bt advantage against ~w , b, (ui)i ∼ ~w ′, b′, (u′i)i
is |pl,l − pl,r| (up-to a negligible quantity).
We define the adversary Be against ~w , b, (vi)i ∼ ~w ′, b′, (v′i)i:

Bt(~x, a, (mi)i) =

{
A(~x, (mi)i) if a = 0

1 otherwise

Similarly, we can check that Be has an advantage |pr,l − pr,r| (up-to a negligible quantity).
To conclude, we observe that the advantage of A against ~s ∼ ~t is |pl,l + pr,l − pl,r − pr,r|, which is
upper-bounded by |pl,l − pl,r| + |pr,l − pr,r|. It follows that Bt or Be has a non-negligible advantage
of winning against their respective formulas. �

2.5.2 Implementation Axioms

Implementation axioms are axioms that are not valid in all computational models. When studying
the security of a protocol, implementation axioms are what allow the prover to put requirements on the
protocol concrete implementations. For example, we can require that the first projection of a pair is equal
to the first element of the pair, or that distinct constant function symbols representing agents names are
never equal. Then, if we can show that the conjunction of the structural axioms, the implementation
axioms and the negation of the security property hold, we know that the protocol is secure in any
computational model where the implementation axioms hold.

Of course, we use different implementation axioms for different protocols. Still, we give some examples
of frequent axioms in the section.

Pair and Asymmetric Encryption As a first example, we consider pairs 〈 , 〉/2, projections π1/1,
π2/1, public key pk/1, private key sk/1 and asymmetric encryption and decryption {}/3 and dec/2. En-
cryptions are of the form {u}ne

pk(n) where u is the plain-text, pk(n) is the public key (where n ∈ N is the
random seed used during the key generation), and ne ∈ N is the explicit encryption randomness.

We then have the axioms Ax〈 , 〉 for pairs and Axdec for encryptions:

Ax〈 , 〉 : πi(〈x1 , x2〉) = xi (where i ∈ {1, 2}) Axdec : dec({x}zpk(y), sk(y)) = x

Xor Axiomatization Assume that ⊕/2, 0/0 ∈ F . We want ⊕ and 0 to have some of the properties
of, respectively, bit-wise xor and the bit-string containing η zeros. First, we have the usual ACUN
(associativity, commutativity, unit and nilpotence) axioms:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ y = y ⊕ x 0⊕ x = x x⊕ x = 0

34 The Model

While the actual bit-wise xor2 satisfy the axioms above, these axioms are valid in other computational
models. For example, we can interpret the ⊕ function symbol as the function that, on every inputs,
return η zeroes. Or, more plausibly, we can interpret ⊕ has the function that only return bit-strings of
length exactly η (padding or truncating its inputs if necessary).

To study protocols relying on the xor (e.g. kcl, lak or AKA), we need the following axiom:

~u, n ∼ ~v len(t) = len(n)

~u, t⊕ n ∼ ~v ⊕-ind when n 6∈ st(~u,~v , t) (2.7)

Basically, this axioms states that the xor of a term t and an uniform random value n is indistinguishable
from an uniform random value, as long as t and n are independent and of the same length. The fact that
t and n are independent is checked by requiring that n does not appear in t in the syntactic side-condition
n 6∈ st(~u,~v , t) (therefore this is an infinite schema of ground axioms). We define the set of axioms Ax⊕:

Definition 2.11. Ax⊕ is the conjunction of the ACUN axioms and the axiom schema ⊕-ind in (2.7).

Booleans It is often convenient, or necessary, to add functions symbols for boolean operations:

and, or, imply, equiv : bool2 → bool neg : bool→ bool

We can also add an axiom linking the if_then_else_ function symbol with the boolean function symbols
whenever the then and else branches are of sort bool:

if a then b else c = or (and(a, b), and(neg(a), c)) (2.8)

where a, b and c are variables of sort bool. Instead of adding multiple axioms allowing to reason on terms
with boolean function symbols, we use a single axiom schema stating that if two terms, seen as formulas
in first-order logic with equality, are equivalent, then they are equal:

tφ and tψ are encoding of φ and ψ φ⇔ ψ valid in fo(=)

tφ = tψ
(2.9)

Again, this is a recursive schema of ground axioms: tφ and tψ are ground terms.

Example 2.8. For example, we can obtain De Morgan’s laws:

neg(and(a, b)) = or(neg(a), neg(b)) neg(or(a, b)) = and(neg(a), neg(b))

If we consider first-order logic with equality and injectivity of the pair function symbols, we obtain:

imply (neg(eq(〈u , v〉 , 〈s , t〉)), or(neg(eq(u, s)), neg(eq(v, t)))) = true �

This allow to push part of the reasoning outside the Bana-Comon logic, into some standard logic,
without having to fix the way we reason in the outer logic: the proof that φ and ψ are equivalent takes
place in the meta-logic. In practice, we use a logic with more axioms than fo(=). For example, in
the study of the AKA protocol, we will need to do reasoning about conjunctions of inequalities between
integer sequence numbers, for which we need, e.g., properties of orderings. We define the set of axioms
Axbool:

Definition 2.12. Axbool is the conjunction of the axioms in (2.8) and (2.9).

Notations The prefix notation for boolean terms is cumbersome to use. Therefore, we introduce infix
notations for and, or, imply, equiv, neg, eq:

∧̇, ∨̇, →̇, ↔̇, ¬̇, =̇

We use the usual precedence, e.g. a ∨̇ b ∧̇ c is a ∨̇ (b ∧̇ c). For every boolean term b, when there is no
confusion, we write b instead of b ∼ true.

2When xoring bit-strings of different lengths, the shorter bit-string is padded with 0s to the length of the longer one.

2.6. Cryptographic Assumptions and Axioms 35

While it may seems that we need to be careful not to confuse =̇ and =, this is actually not the case.
Indeed, the formula a =̇ b is, by definition, the formula eq(a, b) ∼ true, which is also the formula a = b.
Moreover, the following two rules are admissible using the axioms in Figure 2.1 and 2.2:

a =̇ b
(a =̇ b) =̇ true

(a =̇ b) =̇ true
a =̇ b

We give the derivations below:

a =̇ b
a =̇ b ∼ true

(a =̇ b), true ∼ true, true FA

(a =̇ b) =̇ true ∼ true =̇ true FA
(true =̇ true) = true =-refl

(a =̇ b) =̇ true ∼ true
Equ

(a =̇ b) =̇ true

true ∼ true Refl (a =̇ b) =̇ true
a =̇ b ∼ true

Equ

a =̇ b

Ax-Interpretation Instead of proving that a protocol is secure in any computational model, we are
going to prove that it is secure in any computational model satisfying some implementation assumptions
(such as Axdec,Ax⊕ ...). To make the distinction between implementation axioms, which only restrict the
interpretations of the function in Fp, and other axioms, which restrict all function symbols interpretations,
including function symbols in G, we introduce the notion of Ax-interpretation.

Definition 2.13. For every set of axioms Ax, an Ax-interpretation Ic for Fp is a computational model
Ic on signature Fp such that Ic |= Ax.

Given an adversary A and an Ax-interpretation Ic on Fp, we can lift Ic to a full computational model
on signature (Fp,G) by letting A interpret all functions in G.

2.6 Cryptographic Assumptions and Axioms

We now explain how we translated several cryptographic assumptions into axioms. Before starting, we
introduce some notations used to define side-conditions of cryptographic axioms.

Definition 2.14. For every ground terms ~u,~v , we let fresh(~u ;~v) hold if and only if no term in ~u is a
subterm of a term in ~v , i.e.:

{u | u ∈ ~u} ∩ st(~v) = ∅

Definition 2.15. Let s, ~u be ground terms and C~x,· be a context with one distinguished hole variable ·
such that the hole variable · appears exactly once in C~x,·. We let s vC~x,· ~u holds whenever s appears in
~u only in subterms of the form C[~w , s]. Formally:

∀u ∈ ~u,∀p ∈ pos(u), u|p ≡ s→ ∃~w ∈ T (F ,N),∃q ∈ pos(u) s.t. q ≤ p ∧ u|q ≡ C[~w , s]

We generalize this to n contexts C1, . . . , Cn, by allowing s to appear only as subterm of one of the Cis.
Formally, we let s vC1,...,Cn ~u if and only if:

∀u ∈ ~u,∀p ∈ pos(u), u|p ≡ s→ ∃~w ∈ T (F ,N),∃q ∈ pos(u),∃1 ≤ i ≤ n s.t. q ≤ p ∧ u|q ≡ Ci[~w , s]

Example 2.9. Two examples:
• n vpk(·),sk(·) ~u states that the nonce n appears only in terms of the form pk(n) or sk(n) in ~u .
• sk(n) vdec(_,·) ~u states that the secret key sk(n) appears only in decryption position in ~u . �

2.6.1 The cca1 Axioms

In the computational model, the security of a cryptographic primitive is expressed through a game
between a challenger and an attacker (which is a PPTM) that tries to break the primitive.

We informally recall the ind-cca2 game (for Indistinguishability against Chosen Ciphertexts Attacks,
see [BDPR98]). First, the challenger computes a public/private key pair (pk(n), sk(n)) (using a nonce n
of length η uniformly sampled), and sends pk(n) to the attacker. The adversary has access to two oracles:

36 The Model

• A left-right oracle ObLR(n) that takes two messages m0,m1 of the same length as input and returns
{mb}nrpk(n), where b is an internal random bit uniformly drawn at the beginning by the challenger
and nr is a fresh nonce.

• A decryption oracle Odec(n) that, given m, returns dec(m, sk(n)) if m was not submitted to the OLR
oracle yet, and length of m zeros otherwise.

Remark that the two oracles have a shared memory. The advantage Advcca2

A (η) of an adversary A against
this game is the probability for A to guess the bit b:∣∣ Pr

(
n : AO

1
LR(n),Odec(n) (1η) = 1

)
− Pr

(
n : AO

0
LR(n),Odec(n) (1η) = 1

) ∣∣
An encryption scheme is ind-cca2 if the advantage Advcca2

A (η) of any adversary A is negligible in η. The
ind-cca1 game is the restriction of this game where the adversary cannot call Odec after having called
OLR. An encryption scheme is ind-cca1 if AdvCCA1A (η) is negligible for any adversary A.

In this section, we only present axioms for the simpler ind-cca1 game. We will present axioms for
the ind-cca2 game later, in Chapter 5, Section 5.4.

The ccas1 Axioms We define first a set of axioms ccas1:

Definition 2.16. We let ccas1 be the set of axioms:

len(s) = len(t)

~u, {s}ne
pk(n) ∼ ~u, {t}

ne
pk(n)

ccas1 when

{
fresh(ne; ~u, s, t)
n vpk(·),sk(·) ~u, s, t ∧ sk(n) vdec(_,·) ~u, s, t

This set of axioms ccas1 is very similar to the one used in [BCL14]. The only difference is that in
[BCL14], the length equality requirement is not a premise of the axiom. Instead, if the length are not
equal they return a error message. We found our version of the axiom simpler to use.3

We have the following soundness property:

Proposition 2.5. The ccas1 axioms are valid in any computational model where ({}, dec, pk, sk) is in-
terpreted as an ind-cca1 secure encryption scheme.

Proof. The proof is by contradiction, and is given below.
We assume that there is a computational modelMc where the encryption scheme is ind-cca1 secure,

and such that there is an instance ~u, {s}ne
pk(n) ∼ ~v , {t}ne

pk(n) of the axioms ccas1 which is not valid. We
deduce that there exists an attacker A that can distinguish between the left and right terms, i.e. the
following quantity is non-negligible:∣∣∣Pr

(
ρ1, ρ2 : A(1η, [[~u, {s}ne

pk(n)]]
η,ρ1,ρ2
Mc

, ρ2) = 1
)
−Pr

(
ρ1, ρ2 : A(1η, [[~u, {t}ne

pk(n)]]
η,ρ1,ρ2
Mc

, ρ2) = 1
)∣∣∣ (2.10)

Using A, we can build an adversary B with a non-negligible advantage against the ind-cca1 game. First,
B samples a vector of bit-strings ~us, ss, ts from [[~u, s, t]]Mc , querying the decryption oracle whenever it
needs to compute a subterm of the from dec(_, sk(n)). Remark that the syntactic side-conditions:

n vpk(·),sk(·) ~u, s, t sk(n) vdec(_,·) ~u, s, t

guarantee that this is always possible. Afterward, B queries the left-or-right oracle with (ss, ts) to get
a value a. Here, we need the side-condition fresh(ne; ~u, s, t) to guarantee that the random value ne has
not been sampled by B. Indeed, the value ne is sampled by the challenger, and is not available to B. If
the challenger internal bit b is 0 then ~us, a has been sampled from [[~u, {s}ne

pk(n)]]Mc , and if the challenger
internal bit is 1 then ~us, a has been sampled from [[~u, {t}ne

pk(n)]]Mc :

~us, a
$←

{
[[~u, {s}ne

pk(n)]]Mc if b = 0

[[~u, {t}ne
pk(n)]]Mc if b = 1

Finally, B returns A(~us, a). It is easy to check that the advantage of B against the ind-cca1 game is
exactly the advantage of A against ~u, {s}ne

pk(n) ∼ ~v , {t}ne
pk(n) This advantage is the quantity in (2.10),

which we assumed non-negligible. Hence B is winning against the ind-cca1 game. Contradiction. �
3The two formulations should be equivalent provided that you have the CS and Equ axioms, and that you can do basic

reasoning on lengths (though we did not prove it).

2.6. Cryptographic Assumptions and Axioms 37

The cca1 Axioms We define the axioms cca1, which are more convenient to use than ccas1. Basically,
cca1 is the axiom ccas1 where we applied transitivity to have different terms ~u , ~v on each side.

Definition 2.17. We let cca1 be the set of axioms:

~u, len(s) ∼ ~v , len(t)

~u, {s}ne
pk(n) ∼ ~v , {t}

n′e
pk(n′)

cca1 when

fresh(ne, n′e; ~u,~v , s, t)
~u ≡ pk(n),_ ∧ ~v ≡ pk(n′),_
n vpk(·),sk(·) ~u, s ∧ sk(n) vdec(_,·) ~u, s

n′ vpk(·),sk(·) ~v , t ∧ sk(n′) vdec(_,·) ~v , t

We have the following soundness theorem:

Proposition 2.6. The cca1 axioms are valid in any computational model where ({}, dec, pk, sk) is in-
terpreted as an ind-cca1 secure encryption scheme.

Proof. We are going to give a direct derivation of the axioms cca1, using rules that are valid in all com-
putational models where ({}, dec, pk, sk) is interpreted as an ind-cca1 secure encryption scheme. The
derivation mostly rely on the Trans and the ccas1 axioms. First, we use transitivity to split the goal
~u, {s}ne

pk(n) ∼ ~v , {t}
n′e
pk(n′) into three sub-goals, by replacing the plain-texts with zeros:

~u, {s}ne
pk(n) ∼ ~u, {0(len(s))}ne

pk(n) ∼ ~v , {0(len(t))}n
′
e

pk(n′) ∼ ~v , {t}
n′e
pk(n′)

We deal with the left and right sub-goals using the ccas1 axioms. We deal with the length equality
constraint of the ccas1 axioms using the axioms:

len(t) = len(0(len(t))) len(s) = len(0(len(s)))

which are valid in any computational model, using the fact that len interpretation is fixed. Finally, for
the middle sub-goal, we deconstruct the terms using the FA rule and then apply Dup and Fresh. Putting
everything together:

len(s) = len(0(len(s)))

~u, {s}ne
pk(n) ∼ ~u, {0(len(s))}ne

pk(n)

ccas1 ~u, {0(len(s))}ne
pk(n) ∼ ~v , {t}

n′e
pk(n′)

~u, {s}ne
pk(n) ∼ ~v , {t}

n′e
pk(n′)

Trans

~u, {0(len(s))}ne
pk(n) ∼ ~v , {0(len(t))}n

′
e

pk(n′)

len(t) = len(0(len(t)))

~v , {0(len(t))}n
′
e

pk(n′) ∼ ~v , {t}
n′e
pk(n′)

ccas1

~u, {0(len(s))}ne
pk(n) ∼ ~v , {t}

n′e
pk(n′)

Trans

~u, len(s) ∼ ~v , len(t)

~u, len(s), ne ∼ ~v , len(t), n′e
Fresh

~u, len(s), pk(n), ne ∼ ~v , len(t), pk(n′), n′e
Dup

~u, {0(len(s))}ne
pk(n) ∼ ~v , {0(len(t))}n

′
e

pk(n′)

FA3

�

2.6.2 The cr-hk Axioms

We now give the axioms we designed for keyed-hash function satisfying the Collision Resistance assump-
tion. The idea is that, if a hash function H(·, k) is collision-resistant, then no polynomial-time adversary
can find distinct messages having the same image by H(·, k). Formally:

38 The Model

Definition 2.18 (cr-hk [GB01]). A hash function H is said to be collision resistant under hidden-key
attacks iff for any PPTM A with oracle access to the keyed hash function, the following quantity:

Pr
(
k : AOH(·,k)(1η) = 〈m1 , m2〉 ,m1 6= m2 and H(m1, k) = H(m2, k)

)
is negligible, where k is drawn uniformly at random in {0, 1}η.

We translate this game in the logic as follows:

Definition 2.19. We let cr be the set of axioms:

H(m1, k) =̇ H(m2, k) →̇ m1 =̇m2
cr when k vH(_,·) m1,m2

Remark 2.3. We need the implication here, we cannot simply state that, when the terms m1 and m2

are distinct, we have:
(H(m1, k) =̇ H(m2, k)) = false (2.11)

For instance, take m1 = g(u) and m2 = g(u′) where u, u′ are distinct and g is an attacker’s function
symbol. Then, even though m1 and m2 are syntactically distinct, the function symbol g can be inter-
preted, e.g., as a function that discards its argument and always returns the same value. In such a case,
the computational interpretations of m1 and m2 are identical, and the formula in (2.11) is not valid. �

Proposition 2.7. The cr axioms are valid in any computational model where the function symbol H is
interpreted as a cr-hk keyed hash function.

Proof. Let b be the following boolean term:

H(m1, k) =̇ H(m2, k) →̇ m1 =̇m2

LetMc be a computational model such that H is interpreted by as collision-resistant keyed hash function,
and assume that there exists an adversary A such that:∣∣Pr

(
ρ1, ρ2 : A(1η, [[b]]η,ρ1,ρ2Mc

, ρ2)
)
−Pr

(
ρ1, ρ2 : A(1η, [[true]]η,ρ1,ρ2Mc

, ρ2)
) ∣∣

is non-negligible. Since b is a boolean term, [[b]]η,ρ1,ρ2Mc
∈ {0, 1}, hence the existence of A is equivalent to:

Pr
(
ρ1, ρ2 : [[b]]η,ρ1,ρ2Mc

= 0
)
is non-negligible (2.12)

We are going to define an adversary B against the cr-hk game. Since the only occurrences of k in m1

and m2 are as second argument of H, the adversary B can sample two value a1 and b2 from, respectively,
[[m1]]Mc and [[m2]]Mc (names different from k are uniformly sampled by B, and subterms of the form
H(u, k) are computed by calling the hash oracle). The adversary B returns 〈a1 , a2〉. Then:

Pr
(
k : BOH(·,k)(1η) = 〈x1 , x2〉 , x1 6= x2 and H(x1, k) = H(x2, k)

)
= Pr

(
ρ1, ρ2 : [[m1]]η,ρ1,ρ2Mc

6= [[m2]]η,ρ1,ρ2Mc
∧ [[H(m1, k)]]η,ρ1,ρ2Mc

= [[H(m2, k)]]η,ρ1,ρ2Mc

)
= Pr

(
ρ1, ρ2 : ¬

(
[[H(m1, k)]]η,ρ1,ρ2Mc

= [[H(m2, k)]]η,ρ1,ρ2Mc
→ [[m1]]η,ρ1,ρ2Mc

= [[m2]]η,ρ1,ρ2Mc

))
= Pr

(
ρ1, ρ2 : ¬[[H(m1, k) =̇ H(m2, k) →̇m1 =̇m2]]η,ρ1,ρ2Mc

)
= Pr

(
ρ1, ρ2 : [[H(m1, k) =̇ H(m2, k) →̇m1 =̇m2]]η,ρ1,ρ2Mc

= 0
)

which by hypothesis (2.12) is non-negligible. �

2.6.3 euf-mac Axioms

A Mac schema is a pair (Mac_(_),Verify(_,_,_)) where Mac creates symmetric signatures of messages,
and Verify checks that some message has a valid signature. For every η, they must satisfy the following
soundness relation:

∀k ∈ {0, 1}η,∀m ∈ {0, 1}∗. Verify(m,Mack(m), k) = true

Moreover, Mack(·) must be computationally unforgeable, even when letting the adversary have access
to a Mac oracle OMack(·). To successively forge a Mac, the adversary must find a pair (m,σ) such that
Verify(m,σ, k) and m was never queried to the oracle OMack(·). Formally:

2.6. Cryptographic Assumptions and Axioms 39

Definition 2.20. A Mac schema (Mac,Verify) is unforgeable against chosen-message attacks (euf-cma)
iff for every PPTM A, the following quantity:

Pr
(
k : AOMac

k
(·)(1η) = 〈m, σ〉 ,m not queried to OMack(·) and Verify(m,σ, k)

)
is negligible, where k is drawn in {0, 1}η.

We explain how we translate this cryptographic assumption in the logic. Given two terms m, s where
m is a message and s is a (candidate) forgery of a Mac of m, if s is a valid forgery (i.e. Verify(m, s, k)
holds) then s must be a honestly generated Mac. Moreover, the set of honest Macs is simply the set of
all subterms of m and s which are of the form Mack(_). This motivates the following definition:

Definition 2.21. We let set-mack(u) be the set of Maced terms, using key k, in u:

set-mack(u) = {m | Mack(m) ∈ st(u)}

We can now give the euf-mac axioms:

Definition 2.22. We let euf-mac be the set of axioms:

Verify(m, s, k) →̇
∨̇
u∈S s =̇ Mack(u)

euf-mac
when

{
k vMac·(_) s,m

S = set-mack(s,m)

For these axioms to be valid, we need the Mac schema to be such that every message has exactly one
valid Mac. Formally, we require that:

∀k ∈ {0, 1}η,∀m ∈ {0, 1}∗. Verify(m, s, k) = true → s = Mack(m) (2.13)

Proposition 2.8. The euf-mac axioms are valid in any computational model where (Mac,Verify) is
interpreted as an euf-cma secure function and satisfies (2.13).

Proof. We assume that there is a computational model Mc where (Mac,Verify) is interpreted as an
euf-cma secure function. Moreover, we assume that there is an instance:

Verify(m, s, k) →̇
∨̇
u∈S s =̇ Mack(u)

euf-mac

of the euf-mac axioms which is not valid inMc, where S = set-mack(s,m). Therefore we know that the
following quantity is non-negligible:

Pr
(
ρ1, ρ2 : [[Verify(m, s, k)]]η,ρ1,ρ2Mc

∧ ¬[[
∨̇
u∈S s =̇ Mack(u)]]η,ρ1,ρ2Mc

)
Or, equivalently, the following quantity is non-negligible:

Pr
(
ρ1, ρ2 : [[Verify(m, s, k)]]η,ρ1,ρ2Mc

∧
∧
u∈S [[s]]η,ρ1,ρ2Mc

6= [[Mack(u)]]η,ρ1,ρ2Mc

)
(2.14)

Using Mc, we can build an adversary A against the euf-cma game. The adversary A simply samples
two values as, am from [[s]]Mc and [[m]]Mc , by sampling all the subterms of s and m in a bottom-up
fashion. The adversary calls the Mac oracle OMack(·) whenever he needs to sample a value from a subterm
of the form Mack(_). Remark that the side-condition k vMac·(_) s,m ensures that this is always possible.
Then A returns as, am. Using the property (2.13), we know that m was never queried to the Mac oracle.
Hence, the advantage of A against the euf-cma game is exactly the quantity (2.14). It follows that A
has a non-negligible probability of winning the game. Contradiction. �

p-euf-macs Axioms We can refine the unforgeability axioms euf-mac using a finite partition of the
outcomes, which is quite useful in proofs.

Definition 2.23. A finite family of conditionals (bi)i∈I is a valid CS partition under some axioms Ax if
the following formula is valid in every computational model satisfying the axioms Ax:(∨̇

i bi ∧̇
∧̇
i 6=j bi

˙6= bj

)
= true

40 The Model

Definition 2.24. For every terms b, t, we let [b]t be the term if b then t else defaut, where defaut is a
constant function symbol of types term and bool.

We can have a more precise axiom, by considering a valid CS partition (bi)i∈I and applying the
euf-mac axiom once for each element of the partition.

Definition 2.25. We let p-euf-macs be the set of axioms:

Verify(m, s, k) →̇
∨̇
i∈I

bi ∧̇
∨̇
u∈Si

s =̇ Mack(u) when

k vMac·(_) s,m

(bi)i∈I is a valid CS partition
There exists (si,mi)i∈I s.t. for every i ∈ I

[bi]si = [bi]s ∧ [bi]mi = [bi]m

Si = set-mack(si,mi)

Proposition 2.9. The p-euf-macs axioms are valid in any computational model where (Mac,Verify) is
interpreted as an euf-cma secure function and satisfies (2.13).

Proof. To show this, we prove that the p-euf-macs axioms are a logical consequences of the axioms
euf-mac and the axioms in Figure 2.1 and 2.2. The proof is pretty straightforward:

Verify(m, s, k) →
∨̇
i∈I

bi ∧̇ Verify(m, s, k) (Since (bi)i∈I is a valid CS partition)

→̇
∨̇
i∈I

bi ∧̇ Verify(mi, si, k) (Since [bi]si = [bi]s and [bi]mi = [bi]m)

→̇
∨̇
i∈I

bi ∧̇
∨̇
u∈Si

si =̇ Mack(u) (Using euf-mac for every i ∈ I)

→̇
∨
i∈I

bi ∧̇
∨̇
u∈Si

s =̇ Mack(u) �

p-euf-mac Axioms We can further refine the unforgeability axioms, by noticing that Macs appearing
only in boolean conditionals can be ignored. For this, we let strict-st(u) be the set of subterms of u
appearing outside u’s conditionals. The definition is by structural induction on u.

Definition 2.26. For every u, we let strict-st(u) be the set of subterms of u appearing outside conditionals:

strict-st(if b then u else v) = {if b then u else v} ∪ strict-st(u) ∪ strict-st(v)

strict-st(f(~u)) = {f(~u)} ∪
⋃
u∈~u strict-st(u) (∀f ∈ F\{if_then_else_})

We define the set of strict Mac subterms of a term u:

Definition 2.27. We let strict-set-mack(u) be the set of mac-ed terms under key k in u appearing outside
a conditional:

strict-set-mack(u) = {m | Mack(m) ∈ strict-st(u)}

We give the axioms:

Definition 2.28. We let p-euf-mac be the set of axioms:

Verify(m, s, k) →̇
∨̇
i∈I bi ∧̇

∨
u∈Si s =̇ Mack(u) when

k vMac·(_) s,m

(bi)i∈I is a valid CS partition
There exists (si,mi)i∈I s.t. for every i ∈ I

[bi]si = [bi]s ∧ [bi]mi = [bi]m

Si = strict-set-mack(si,mi)

Proposition 2.10. The p-euf-mac axioms are valid in any computational model where (Mac,Verify) is
interpreted as an euf-cma secure function and satisfies (2.13).

2.6. Cryptographic Assumptions and Axioms 41

Proof. First, we are going to show that the following axioms are a logical consequences of the axioms
euf-mac and the structural axioms Axstruct.

Verify(m, s, k) →̇
∨
u∈S s =̇ Mack(u) when

{
k vMac_· (_) s,m

S ≡ strict-set-mack(s,m)
(2.15)

Assuming the axioms above are valid, it is easy to conclude by repeating the proof of Proposition 2.9,
using the axioms above instead of euf-mac.

To show that the axioms in (2.15) are admissible, we are going to pull out all conditionals using the
properties of the if_then_else_ function symbols. This yields a term of the form C[~β �~e] where the terms
~e are of the form Verify(u′, s′, k). Then, we apply the euf-mac axioms to every e ∈ ~e . Finally, we rewrite
back the conditionals. To be able to do this last step, we need, when we pulled out the conditionals, to
remember which conditional appeared where. We do this by replacing a conditional b with either trueb
or falseb, where the lower-script b is a label that we attach to the term.

This motivates the following definition: for every boolean term b, we let Valb = {trueb, falseb}. We
extend this to vector of conditionals by having Valu0,...,ul = Valu0

×· · ·×Valul . Basically, for every vector
of conditionals ~β , choosing a vector of terms ~ν ∈ Val~β correspond to choosing a valuation of ~β .

We start showing the validity of (2.15). Let ~β be the set of conditionals appearing in s,m, and C be
an if-context such that:

Verify(m, s, k) ↔̇ C
[
~β �

(
Verify(m[~ν /~β], s[~ν /~β], k)

)
~ν∈Val~β

]
where t[~u/~v] denotes the substitution of every occurrence of ~v by ~u in t. For every ~ν ∈ Val~β , let
S~ν = set-mack(s[~ν /~β],m[~ν /~β]). By applying euf-mac to every Verify(m[~ν /~β], s[~ν /~β], k) we get:

Verify(m, s, k) →̇ C
[
~β �

(∨̇
u∈S~ν s[~ν /

~β] =̇ Mack(u)
)
~ν∈Val~β

]
Since any conditional of s[~ν /~β] or m[~ν /~β] is of the form truex or falsex for some label x, we know that:

S~ν = set-mack(s[~ν /~β],m[~ν /~β]) = strict-set-mack(s[~ν /~β],m[~ν /~β])

Moreover, we can check that:

strict-set-mack(s[~ν /~β],m[~ν /~β]) = (strict-set-mack(s,m)) [~ν /~β]

Let S = strict-set-mack(s,m), we just showed that S~ν = S[~ν /~β]. Hence:

C
[
~β �

(∨̇
u∈S~ν s[~ν /

~β] =̇ Mack(u)
)
~ν∈Val~β

]
→̇ C

[
~β �

(∨̇
u∈S[~ν /~β] s[~ν /

~β] =̇ Mack(u)
)
~ν∈Val~β

]
→̇ C

[
~β �

((∨̇
u∈S s =̇ Mack(u)

)
[~ν /~β]

)
~ν∈Val~β

]
→̇

∨̇
u∈S

s =̇ Mack(u) �

cr-key6= Axioms Finally, we have an axiom stating that two macs generated with distinct random
keys cannot be equal.

Definition 2.29. We let cr-key 6= be the set of axioms:

Mack(u) =̇ Mack′(v) →̇ false when

{
k, k′ vMac·(_) u, v

k, k′ ∈ N , k 6≡ k′

Proposition 2.11. The cr-key6= axioms are valid in any computational model where (Mac,Verify) is
interpreted as an euf-cma secure function.

We now give the proof of the above proposition.4

4This proof is due to Bruno Blanchet.

42 The Model

Proof. Assume that there exists a computational modelMc and an instance:

Mack(u) =̇ Mack′(v) →̇ false

of the cr-key6= axioms which is not valid inMc. Then we know that [[Mack(u)]] and [[Mack′(v)]] coincide
on a non-negligible number of samplings. W.l.o.g. we assume that |u|+ |v| is minimal among all instances
of the axioms that are not valid. First, remark that:

Mack(u) =̇ Mack′(v) →̇ Verify(v,Mack(u), k′)

→̇
∨
v′∈S

v =̇ v′ (where S = set-mack′(v, u))

using the euf-mac and cr axioms.5 Hence:

Mack(u) =̇ Mack′(v) →̇
∨
v′∈S

Mack(u) =̇ Mack′(v
′)

Since v′ is a strict subset of u or v, we know that for every v′ ∈ S, |u|+ |v′| < |u|+max(|u|, |v|). Since S is
a finite set, and since Mack(u) =̇Mack′(v) is valid for a non-negligible number of samplings, we know that
there exists some v′ ∈ S such that Mack(u) =̇Mack′(v′) is valid for a non-negligible number of samplings.

By the same reasoning:

Mack(u) =̇ Mack′(v) →̇ Verify(u,Mack′(v), k)

→̇
∨
u′∈S′

Mack(u
′) =̇ Mack′(v) (where S′ = set-mack(u, v))

where, for every u′ ∈ S′, |u′|+ |v| < |v|+ max(|u|, |v|). Again, since S′ is finite, there exists u′ ∈ S′ such
that Mack(u′) =̇ Mack′(v) is valid for a non-negligible number of samplings.

Therefore we can always pick u′, v′ such that |u′| + |v′| < |u| + |v| and Mack(u′) =̇ Mack′(v′) is valid
for a non-negligible number of samplings (if |u| ≤ |v|, we take u′ = u and v′ ∈ S, and if |v| ≤ |u|, we take
u′ ∈ S′ and v′ = v). Contradiction. �

2.6.4 prf Axioms

We now present the axioms we designed for keyed hash functions satisfying the Pseudo Random Function
(prf) assumption. Informally, a keyed hash function H(·, k) is a prf if its outputs are computationally
indistinguishable from the outputs of a random function. Formally:

Definition 2.30 (prf [Gol01, GGM86]). Let H(·, ·) : {0, 1}∗×{0, 1}η → {0, 1}η be a keyed hash function.
The function H is a Pseudo Random Function iff, for any PPTM adversary A with access to an oracle Of :

|Pr(k : AOH(·,k)(1η) = 1)−Pr(g : AOg(·)(1η) = 1)|

is negligible, where:
• k is drawn uniformly in {0, 1}η.
• g is drawn uniformly in the set of all functions from {0, 1}∗ to {0, 1}η.

Here are the axioms:

Definition 2.31. We let prf be the set of axioms:

~u, if
∨̇
i∈I m =̇mi then 0 else H(m, k)

∼ ~u, if
∨̇
i∈I m =̇mi then 0 else n

when

fresh(n; ~u,m)

k vH(_,·) ~u,m

{mi | i ∈ I} = {u | H(u, k) ∈ st(~u,m)}

Proposition 2.12. The prf axioms are valid in any computational model where H is interpreted as a
prf function.

5Which is valid, as an euf-cma secure function is also cr-hk. We give a proof of (a generalization of) this in Section 4.7.2.

2.6. Cryptographic Assumptions and Axioms 43

Proof. Consider a computational model M0
c where H is interpreted as a prf function, and an instance

of the axiom schema which is not valid inM0
c :

~u, if
∨̇
i∈I m =̇mi then 0 else H(m, k)

∼ ~u, if
∨̇
i∈I m =̇mi then 0 else n

Let ~h ≡ (H(mi, k))i∈I and ~v [], b[] be contexts such that ~v [~h] ≡ ~u , b[~h] ≡
∨
i∈I eq(m,mi) and such that

k 6∈ st(~v , b). To get a contradiction, we just have to show that:

Pr
(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]H(m, k)]]η,ρ1,ρ2M0

c

)
= 1
)
≈ Pr

(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]n]]η,ρ1,ρ2M0

c

)
= 1
)

(2.16)

LetMc be an extension ofM0
c where we added two function symbols g, g′ ∈ Fp which are interpreted as

random functions. Observe thatMc is not a computational model, because we require that function in
Fp are interpreted as deterministic polynomial-time functions. Still,Mc is a first-order model. Moreover,
Mc andM0

c ’s interpretations coincide on terms which do not use g and g′. Hence, to prove (2.16) it is
sufficient to show that:

Pr
(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]H(m, k)]]η,ρ1,ρ2Mc

)
= 1
)
≈ Pr

(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]n]]η,ρ1,ρ2Mc

)
= 1
)

(2.17)

Let ~r ≡ (g(mi))i∈I . It is straightforward to check that, thanks to the prf assumption of H, we can
replace all subterms of the form H(x, k) by g(x) on the left:

Pr
(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]H(m, k)]]η,ρ1,ρ2Mc

)
= 1
)
≈ Pr

(
ρ1, ρ2 : A

(
[[~v [~r], [b[~r]]g(m)]]η,ρ1,ρ2Mc

)
= 1
)

Moreover, using the fact that the subterm g(m) is guarded by b[~r], we know that, except for a negligible
number of samplings, m is never queried to the random function g, except once, in [b[~r]]g(m). It follows
that we can safely replace the last call to g(m) by a call to g′(m), which yields:

Pr
(
ρ1, ρ2 : A

(
[[~v [~r], [b[~r]]g(m)]]η,ρ1,ρ2Mc

)
= 1
)
≈ Pr

(
ρ1, ρ2 : A

(
[[~v [~r], [b[~r]]g′(m)]]η,ρ1,ρ2Mc

)
= 1
)

Now, using again the prf property of H, we know that:

Pr
(
ρ1, ρ2 : A

(
[[~v [~r], [b[~r]]g′(m)]]η,ρ1,ρ2Mc

)
= 1
)
≈ Pr

(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]g′(m)]]η,ρ1,ρ2Mc

)
= 1
)

Finally, since g′ appears only once in ~v [~h], [b[~h]]g′(m), we can replace g′(m) by a fresh nonce. Hence:

Pr
(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]g′(m)]]η,ρ1,ρ2Mc

)
= 1
)
≈ Pr

(
ρ1, ρ2 : A

(
[[~v [~h], [b[~h]]n]]η,ρ1,ρ2Mc

)
= 1
)

Which concludes the proof of (2.17). �

Remark 2.4. If we have a valid instance of prf:

~u, if
∨̇
i∈I m =̇mi then 0 else H(m, k)

∼ ~u, if
∨̇
i∈I m =̇mi then 0 else n

prf

then, using transitivity, we know that:

~u, if
∨̇
i∈I m =̇mi then 0 else H(m, k)

∼ ~u, if
∨̇
i∈I m =̇mi then 0 else n

prf

~u, if
∨̇
i∈I m =̇mi then 0 else n ∼ ~v

~u, if
∨̇
i∈I m =̇mi then 0 else H(m, k) ∼ ~v

Trans

Therefore the following axiom schema is admissible using prf and the transitivity axiom Trans:

~u, if
∨̇
i∈I m =̇mi then 0 else n ∼ ~v

~u, if
∨̇
i∈I m =̇mi then 0 else H(m, k) ∼ ~v

prf when

fresh(n; ~u,m)

k vH(_,·) ~u,m

{mi | i ∈ I} = {u | H(u, k) ∈ st(~u,m)}

We will prefer the axiom schema above over the axiom schema given in Definition 2.31. By notation
abuse, we also refer to the above axioms as prf. �

44 The Model

2.7 Conclusion

We presented the syntax and semantics of the Bana-Comon logic for indistinguishability. We also defined
computational models as a special case of sorted first-order models, where terms are interpreted as
probabilistic polynomial-time Turing machines and ∼ is interpreted as computational indistinguishability.

Secondly, we defined protocols as infinite but finitely branching labelled transition systems. We gave
two semantics for protocols: a computational semantics where the adversary adaptively chooses the next
action to execute, and a symbolic semantics where the action sequence is fixed in advance. Because we
require protocols to be finitely branching, we showed that these two notion are related: indistinguisha-
bility in the symbolic semantics, in some computational model Mc, implies indistinguishability in the
computational semantics in Mc. Moreover, showing that two protocols are indistinguishable in Mc,
for the symbolic semantics, immediately translates into the Bana-Comon logic: it amounts to proving
validity of some (infinite) set of formulas inMc.

This definition of protocols as labelled transition systems is generic. We believe it can capture any
notion of security appearing in the literature. We support this claim in the next two chapters by con-
structing labelled transition systems for, in Chapter 3, Juels and Weis notion of Privacy [JW09], and in
Chapter 4, a variant of Vaudenay’s unlinkability [Vau07].

Finally, we explained how to restrict the models that have to be considered when proving actual
protocols. We do this through axioms: on the one hand, structural axioms are valid in any compu-
tational model, and therefore can be safely added; on the other hand, implementation axioms forbid
some computational models and reflect properties that must hold in any concrete implementation of the
protocol studied. We designed several useful sets of implementation axioms for pairs, decryption, xor
and boolean functions. Moreover, we translated four standard cryptographic assumptions into axioms:
Indistinguishability against Chosen-Ciphertexts Attacks, Collision-Resistance under Hidden-Key attacks,
Unforgeability against Chosen-Message Attacks and Pseudo Random Functions.

Chapter 3

Privacy Proofs of RFID Protocols

In this chapter, we illustrate the usefulness of the Bana-Comon approach and the axioms we designed in
Chapter 2, by proving the security of two RFID protocols (more precisely their privacy). RFID protocols
are usually simple protocols, due to the low computing capabilities of a RFID tag: the protocols mostly
rely on hashing, xoring and concatenation. This is why they are a useful first application of the model:
we do not need complex axioms, and security proofs remain tractable.

Contributions Our contributions are:

• First, to express computational privacy. There are various definitions of privacy for RFID protocols.
We choose to formalize the notion of Privacy from [JW09]. As usual in computational security, this
is a game-based definition, where an adversary tries to guess the challenger internal bit b. The
game is designed in such a way that guessing the bit b amount to guessing some tag’s identity.
Of course, other definitions can be expressed in a similar way.1 We follow the approach presented
in Chapter 2:

– given a protocol P , we define a labelled transition system priv-ltsb(P). Here, b is a boolean
parameter which corresponds to the challenger internal bit in the Privacy game. We actually
go one step further: we let priv-ltsn,mb (P) be the restriction of priv-ltsb(P) to some given set of
traces, called (n,m)-privacy traces. This restricted LTS captures exactly the notion of Privacy
for n tags and m interactions between the adversary and the reader and tags.

– using Theorem 2.1, we know that to show Privacy for n tags and m interactions in some
computational modelMc, it is sufficient to prove that for every (n,m)-privacy trace τ :

Mc |= φpriv-ltstrue(P)
τ ∼ φpriv-ltsfalse(P)

τ

• We use this proof technique on two examples taken from [VDR08]: kcl [KCL07] and lak [LAK06].
As far as we know, all published RFID protocols, that do not rely on encryption, are computationally
insecure. This is also the case of these two protocols. We propose modified versions of the protocols,
kcl+ and lak+, which prevent the known attacks. Some of the modified versions are secure in
the Dolev-Yao model. Depending on the assumptions on the primitives, they may however be
insecure in the computational model. For instance, if we assume the hash function to be pre-image
resistant and one-way, the corrected version of lak, proved in the symbolic model in [HBD16], is not
necessarily computationally secure: there might be attacks on both authentication and unlinkability.
We actually need a family of keyed hash functions, which satisfies the prf assumption. With the
appropriate implementation assumptions, we formally prove the security of the two protocols. For
lak+, we prove Privacy for two tags and six interactions, and for kcl+, we prove Privacy for two
tags and any number of interactions. The latter proof is by induction on the number of interactions.
This is a proof technique that we will use again, on a larger scale, to prove unlinkability of a variant
of the AKA protocol in Chapter 4.

1E.g., we will express a variant of Vaudenay’s unlinkability [Vau07] in Chapter 4

45

46 Privacy Proofs of RFID Protocols

Related Work RFID protocols have been studied, attacked, patched and automatically proved in
the Dolev-Yao model (see for instance [HBD16]). On the computational side, [Vau07] investigates the
computational definitions of unlinkability, together with examples of RFID protocols that satisfy (or not)
the definitions. There are however very few proofs of security in the computational model and, to our
knowledge, no formal security proof. For instance, an RFID protocol is proposed in [LBdM07], together
with a (claimed) universally composable proof. The proof is however quite informal, and attacks were
found on this protocol (see [OP08]). Admittedly, such attacks can be easily circumvented, but this shows
that a formal approach is useful, if not necessary. Similarly, as reported in [JW09], other RFID protocols
that were claimed secure turned out to be broken.

A large fraction of RFID protocols, the so-called Ultralightweight RFID protocols (e.g. [Chi07] and
[PCER08]), aim at ensuring only weak security properties against passive attackers, because of the strong
constraints on the number of gates in the RFID tags. We do not consider such protocols here.

Outline In Section 3.1 we recall the definition of privacy of a RFID protocol given by Juels and Weis
in [JW09], and we show how this property can be translated as a labelled transition system. In Section 3.2
we describe the kcl and lak protocols, we give known attacks on them and formally prove the security of
fixed versions of the protocols. We also show that relaxing the assumptions yields some attacks. Finally,
in Section 3.3, we show (as expected) that abstracting pseudo-random numbers with random numbers is
sound, provided that the seed is not used for any other purpose.

3.1 Security Properties

Radio Frequency IDentification (RFID) systems allow to wirelessly identify objects. These systems are
composed of readers and tags. Readers are radio-transmiters connected through a secure channel to a
single server hosting a database with all the tracked objects information. Tags are wireless transponders
attached to physical objects that have a limited memory and computational capacity (to reduce costs).
To keep things simple, we assume a setting with a single reader, which represents both the database and
the physical radio-transmitters.

Example 3.1. As an example, we use a simple version of the kcl protocol. The original protocol
from [KCL07] is informally described below:

nR

〈A⊕ nT , nT ⊕ H(nR, kA)〉

TA

kA

R

kA

The key kA is a shared secret key between the tag TA and the reader R. Names nT, nR are randomly
generated by, respectively, the tag and the reader, at the beginning of the protocol; this will be justified
in Section 3.3. The protocol is expected to ensure both authentication and unlinkability. �

3.1.1 Privacy of RFID Protocols

We use the notion of Privacy for RFID protocols from Juels and Weis [JW09], which we informally recall.
This is a game-based definition, in which the adversary is a probabilistic polynomial-time Turing machine
interacting with a reader R and a finite set of tags {T1, . . . ,Tn} (also probabilistic Turing machines). The
interactions between the adversary and the agents are through a fixed communication interface, which is
described below and in Figure 3.1:

• A tag Ti stores a secret key ki, an identity idi, a session identifier sid and the previous l challenge-
response pairs of the current session. It has the following interface:

– SetKey: Corrupts the tag by returning its old key ki and identity idi, and allows the adversary
to choose a new key k′i and a new id id′i.

3.1. Security Properties 47

First Phase:

T1 T2

A R

S
et

K
ey

T
ag

In
it

T
ag

M
sg

S
et

K
ey

T
ag

In
it

T
ag

M
sg

ReaderInit

ReaderMsg

Second Phase:

Tb

A R

T
ag

In
it

T
ag

M
sg

S
et

K
ey

T
ag

In
it

T
ag

M
sg

ReaderInit

ReaderMsg

b′

Figure 3.1: Privacy game with two tags T1,T2. The adversary A wins if b = b′.

– TagInit: Initialize a tag with a session identifier sid′. The tag deletes the previous session
identifier and the logged challenge-response pairs.

– TagMsg: The tag receives a challenge ci and returns a response ri (that was computed using
the key, the session identifier and the logged challenge-response pairs). Additionally, the tag
logs the challenge-response pair (ci, ri).

• The reader R stores some private key material (for example a master secret key, the tags private
keys . . .) and entries of the form (sid, status, c0, r0, . . . , cl) where status is either open or closed
depending on whether the session is completed or on-going. It has the following interface:

– ReaderInit: Returns a fresh session identifier sid2 along with the first challenge co. The
reader also stores a new entry of the form (sid, open, co).

– ReaderMsg: The reader receives a session identifier sid and a response ri. It looks for a
data entry of the form (sid, open, c0, r0, . . . , ci), appends the message ri to the data entry,
and either closes the session (by changing the status from open to closed) or outputs a new
challenge message ci+1 (possibly 0) and appends it to the data entry.

The adversary is allowed to corrupt (by a SetKey command) up to n− 2 tags. At the end of a first
phase of computations and interactions with the reader R and tags {T1, . . . ,Tn}, the tags Tn−1 and Tn
are removed from the set of available tags. The adversary is not allowed to corrupt the tags Tn−1 and
Tn during the first phase. Then one of these tags is chosen uniformly at random by sampling a bit b and
made accessible to the adversary as an oracle. The adversary performs a second phase of computations
and interactions with the reader R, the tags {T1, . . . ,Tn−2}, as well as the randomly selected tag Tn−1+b

(obviously the adversary is not allowed to corrupt Tn−1+b). Finally the adversary outputs a bit b′, and
wins if it guessed the chosen tag (that is if b = b′). A protocol is said to verify m-Privacy if any adversary
A using at most m calls to the interfaces, has a probability of winning the game bounded by 1

2 + fA(η),
where fA is a negligible function in the security parameter. fA(η) is the advantage of A against the
m-Privacy game.

Remark 3.1. Our definition of privacy is slightly different from the one in [JW09]:
• We do not assume that the reader answers “reject” or “accept” when a session is completed. We can
easily encode this feature by adding an answer from the reader at the end of the protocol with the
corresponding message. Not taking this as the default behavior allows to model adversaries that
are less powerful and do not have access to the result of the protocol.

• We usem-Privacy, whereas [JW09] uses (r, s, t)-Privacy where r and s are a bound on the number of
calls to ReaderInit and TagInit respectively, and t is a bound on the running time. We dropped

2We use as session identifier the number of interactions with the agents since the game started.

48 Privacy Proofs of RFID Protocols

(init, 0)

··
·

(init, n)

··
·

{(phase1, n,m) | m} {(phase2, n,m) | m}

AddTag

AddTag

AddTag

StartPhase1 StartPhase2

Γmn \{SetKeyn−1,SetKeyn} Γmn−1\{SetKeyn−1}

Figure 3.2: The Labelled Transition System priv-ltsb(P) for Bouded Session Privacy.

the explicit mention of t as we are only interested in proving privacy against any polynomial time
adversary. Moreover using m or r, s is equivalent, as, for a given protocol, the number of calls to
the interfaces is bounded by the number of calls to ReaderInit and to TagInit, and conversely.

• In [JW09], at the end of the first phase, the adversary chooses two uncorrupted tags Ti0 and Ti1 ,
which are removed from the set of available tags. Then one of these tags is made accessible through
an oracle depending on the internal bit b. We use a simpler definition, and always remove the tags
Tn−1 and Tn. When considering attacks with a finite number of interactions between the adversary
and the reader and tags, both definitions coincide: this is just a renaming of the tags. �

3.1.2 Privacy Labelled Transition System

We now construct a labelled transition system priv-lts(P) corresponding to the Privacy game for a
protocol P. Actually, we define simultaneously two LTS using an internal bit b, which corresponds to the
Privacy game internal bit. The LTS priv-ltsb(P) is depicted in Figure 3.2, and defined below.

• In a zeroth phase, we let the adversary choose the number of tags. We let Q0 be the set of nodes
{(init, i) | i ∈ N}. Intuitively, we are in node (init, i) if there are currently i tags. For every
(init, i) ∈ Q0, we have a transition adding a tag:

(AddTag, void, ε, (init, i+ 1)) ∈ δ(init, i)

where void is a constant function symbol. Initially, we are in the state qε = (init, 0). The protocol
specification must contain the initial internal memory σε. Moreover, the set of state variables Varsσ
must contain, for every i, at least the variables:
– xki , xidi storing, respectively, the key and the identity of tag Ti.
– (xi,j)j≤L storing the j-th challenge-response of tag Ti. Remark that the protocol must have a

finite number of challenge-response phase L.
• At any time, we can stop adding tags and start the first phase of the protocol. We let Q1 =
{(phase1, i,m) | i,m ∈ N} be the set of nodes of phase one. The integer i is the number of tags that
were added in the zeroth phase, and m is a counter which is incremented at every transitions. We
use m to ensure freshness of names (by indexing them with m), and to upper-bound the number
of sessions of the reader. For every i,m ∈ N, we have the transition:

(StartPhase1, void, ε, (phase1, i, 0)) ∈ δ(init, i)

• In the first phase we let the adversary interacts with the reader and the tags. We let Γmn be the set
of possible actions of an adversary interacting with n tags and mR reader sessions:

ΓmRn = {SetKeyi,TagIniti,TagMsgi,ReaderInit,ReaderMsgj | 1 ≤ i ≤ n, 1 ≤ j ≤ mR}

The protocol specification must comprise, for every action α ∈ Γ, a term tα representing the
answer of the reader or tag to the action α. We assume that tα contains only fresh names3. If

3We use the integer counter m in the node to index names in tα.

3.1. Security Properties 49

we want to re-use a name, we need to store it in a state variable. We also have a state update
σupα representing the modifications to the reader and tags internal memory when executing α. In
phase one, we can execute any action of ΓmRn , except corrupting the tags Tn−1 or Tn. For every
α ∈ ΓmRn \{SetKeyn−1,SetKeyn}, we have the transition:

(α, tα, σ
up
α , (phase1, n,m+ 1)) ∈ δ(phase1, n,m)

• We start phase two of the privacy game whenever we want. Let Q2 = {(phase2, i,m) | i,m ∈ N},
and for every i,m ∈ N we have the transition:(

StartPhase2, void, σnprep, (phase2, i,m)
)
∈ δ(phase1, i,m)

Where σnprep sets all logged challenge-response pairs of tags Tn−1 and Tn to unset, and keep the tag
Tn−1 or Tn according to the internal bit b:

σnprep(x) =

unset if x = xn−1,j or xn,j , where j ≤ L
xkn−1+b

if x = xkn−1

xidn−1+b
if x = xidn−1

• Phase two works like phase one, except that we have one less tag and are not allowed to corrupt
the tag Tn−1. Therefore, for every α ∈ ΓmRn−1\{SetKeyn−1}, we have the transition:

(α, tα, σ
up
α , (phase2, n,m+ 1)) ∈ δ(phase2, n,m)

Example 3.2. Let us return to Example 3.1. Each tag TAi has an identifier Ai and a key kAi . In the
kcl protocol the TagIniti call is useless because the tag has only one message to send in a round of
the protocol (TagIniti is used to tell a tag to stop the current round of the protocol and to start a new
one). We describe the terms tα and state updates σupα when in state (phase1, i,m) or (phase2, i,m):

• tSetKeyi = 〈xki , xidi〉: the data of the tag i are disclosed.
• σupSetKeyi = {xki 7→ gkeyi(xin), xidi 7→ gidi(xin)}: the key and id of the tag i are set to values chosen
by the attacker (gkeyi , gidi ∈ G).

• tTagMsgi = 〈xidi ⊕ nT , nT ⊕ H(xin, xki)〉: the reply of the tag i follows the protocol, according to its
local store.

• σupTagMsgi = ε: there is no update in this case (nothing is stored for further verifications in this
particular protocol)

• tReaderInit = 〈m, nmR 〉: when starting a new session, the reader sends the session identifier m and
a new challenge nmR .

• σupReaderInit updates the local memory of the reader:

σupReaderInit = cm 7→ nmR �

Privacy Traces A trace of actions τ of priv-ltsb(P) is uniquely characterized by:
• The number of tags n, which is the number of actions AddTag in τ .
• The number of interactions in the first phase p, which is the number of actions between StartPhase1

and StartPhase2.
• The number of interactions in the second phase q, which is the number of actions after StartPhase2.
• The sequence of actions (αi)1≤i≤p+q in:(

Γln\{SetKeyn−1,SetKeyn}
)

1≤l≤p ×
(

Γp+ln−1\{SetKeyn−1}
)

1≤l≤q

We call such a trace a (n, p, q)-privacy trace. We also use the name of (n,m)-privacy trace (where
m = p+ q), when we do not care about the precise splitting of actions between phase one and phase two.

Using this, we can define privacy of a RFID protocol for a given number of tags n and interactions
with the adversary.

50 Privacy Proofs of RFID Protocols

Definition 3.1 (m-Fixed Trace Privacy). Given an Ax-interpretation Ic of the function symbols in Fp, a
protocol P satisfiesm-Fixed Trace Privacy for n tags if for every (n,m)-privacy trace τ and computational
modelsMc extending Ic, we have:

Mc |= φpriv-ltstrue(P)
τ ∼ φpriv-ltsfalse(P)

τ

We can now state the soundness theorem linking Fixed Trace Privacy to Juels and Weis’s Privacy.

Theorem 3.1. Let Ic be an Ax-interpretation of the function symbols in Fp. If a protocol P satisfies
m-Fixed Trace Privacy for n tags in Ic then it satisfies m-Privacy for n tags in Ic.

Proof. Let Ic be an Ax-interpretation of the function symbols in Fp. Then a protocol P verifiesm-Privacy
with n tags in Ic if and only if for every adversary A, the advantage of A against the m-Privacy game
is negligible. The conjunction of an interpretation Ic of the function symbols in Fp and an adversary
A yields a computational model MAc extending Ic. Let priv-ltsn,mb (P) be the restriction of priv-ltsb(P)
to (n,m)-privacy traces. Then a protocol P verifies m-Privacy with n tags if and only if for every
adversary A:

priv-ltsn,mtrue (P) ≈MAc priv-ltsn,mfalse(P) (3.1)

Then, using Theorem 2.1, we know that to have (3.1) it is sufficient to show that for every τ :

MAc |= φpriv-ltsn,mtrue (P)
τ ∼ φpriv-ltsn,mfalse (P)

τ

Or equivalently, for every m, (n,m)-privacy trace τ , we have to show that:

MAc |= φpriv-ltstrue(P)
τ ∼ φpriv-ltsfalse(P)

τ �

3.2 Two RFID Protocols

We are now going to describe two RFID protocols, lak and kcl, as well as attacks, patches and security
proofs of the fixed versions.

We first consider that names are randomly generated numbers, even though, because of the limited
computing capabilities of the tags, they have to be implemented using a Cryptographic Pseudo-Random
Number Generator (prng). This issue will be discussed in the Section 3.3: we will show that we can
always safely abstract the pseudo random numbers as random numbers, provided that a prng is used
and the random seed is never used for other purposes.

3.2.1 A Known Attack on kcl

Let us return to the example of the kcl protocol:

nR

〈A⊕ nT , nT ⊕ H(nR, kA)〉

TA

kA

R

kA

As reported in [VDR08], there is an attack that we depict in Figure 3.3. In this attack the tag is
challenged twice with the same name: observing the exchanges between the tag and the reader, the
adversary can replay the name. Finally the adversary checks if he is talking with the same tag by xoring
the two components of the message sent by the second tag, and verifies whether the result is the same as
what he obtained with the same operation in the first session.

In the left execution, the xor of the two part of the tag answers is the same:

TA ⊕ nT ⊕ nT ⊕ H(nR, kA) = TA ⊕ n′T ⊕ n′T ⊕ H(nR, kA)

= TA ⊕ H(nR, kA)

Whereas, in the right execution, we obtain two values TA ⊕ H(nR, kA) and TB ⊕ H(nR, kB) which will be
different with high probability.

3.2. Two RFID Protocols 51

nR

〈TA ⊕ nT , nT ⊕ H(nR, kA)〉

nR

〈TA ⊕ n′T , n
′
T ⊕ H(nR, kA)〉

nR

〈TA ⊕ nT , nT ⊕ H(nR, kA)〉

nR

〈TB ⊕ n′T , n
′
T ⊕ H(nR, kB)〉

TA R

TA E

TA R

TB E

Figure 3.3: Attack against the original kcl protocol

3.2.2 kcl+, a Revised Version of kcl

We propose a simple correction to the kcl protocol: we replace the first occurrence of the name nT with
its hash, breaking the algebraic property that was used in the attack. This protocol is depicted below.
To our knowledge, there exists no formal study of this revised version.

nR

〈A⊕ H(nT, kA) , nT ⊕ H(nR, kA)〉

TA

kA

R

kA

We now illustrate our method by showing that the kcl+ protocol verifies m-Privacy with two tags A
and B. Assuming collision resistance only, there is actually an attack on the protocol kcl+ (exactly the
attack described later in Section 3.2.4). We therefore assume the prf property.

To prove privacy of the kcl+ protocol, we need some assumptions on the protocol primitives. We
require that the pair, xor and boolean functions satisfy the axioms Ax〈 , 〉,Ax⊕ and Axbool we gave in
Subsection 2.5.2. Moreover, we need some assumption on the length of agent names and hashes: we
require that agent names and hashes are of length η (the security parameter). Since names in N are
always of length η in a computational model, we state that len(X) = len(n) and len(H(x, y)) = len(n) (for
any agent X and n ∈ N).

Definition 3.2. We let Axrfid be the union of Ax〈 , 〉,Ax⊕,Axbool and, for any n ∈ N , the length axioms:

len(X) = len(n)
id-len where X ∈ {A,B} len(H(x, y)) = len(n)

H-len

Theorem 3.2 (Unlinkability of kcl+). For every m, the kcl+ protocol verifies m-Fixed Trace Privacy
for two tags for every Axrfid-interpretation Ic of Fp where H is interpreted as an prf function.

Proof. Using Theorem 3.1, it is sufficient to show that P satisfies m-Fixed Trace Privacy for two tags.
In this proof, we write g(φ) instead of gi(φ) with i = |φ|, where gi ∈ G. Moreover, the primed version

of a term t is the term t, in which the names n1, . . . , nl appearing in t have been replaced by the primed
names n′1, . . . , n′l. We will use tIdφ (where Id = A or B) to denote the response of the tag TId to a challenge:

tIdφ = 〈Id⊕ H(nT, kId) , nT ⊕ H(g(φ), kId)〉

We prove this by induction on m. Let φ, φ̃ be two sequences of terms from the m-Fixed Trace Privacy
definition, i.e.

φ ≡ φpriv-ltstrue(P)
τ φ̃ ≡ φpriv-ltsfalse(P)

τ

for some (2, p, q)-privacy trace τ (with p+ q = m). By induction hypothesis, we assume that we have a
derivation of φ ∼ φ̃ (in the base case, this is the reflexivity of ∼). We have two cases.

52 Privacy Proofs of RFID Protocols

If the adversary decides to start a new session with the reader, we need to show that φ, nR ∼ φ̃, nR
where nR is fresh in φ, φ̃. In that case, we apply the Fresh axiom and the induction hypothesis:

φ ∼ φ̃
φ, nR ∼ φ̃, nR

Fresh

Otherwise, the adversary decides to interact with the tags, e.g. A on the left and B on the right (the
other cases are identical). In that case, we have to show that φ, tAφ ∼ φ̃, t̃ Bφ̃ where:

tAφ ≡ 〈A⊕ H(nT, kA) , nT ⊕ H(g(φ), kA)〉 t̃ B
φ̃
≡ 〈B⊕ H(nT, kB) , nT ⊕ H(g(φ̃), kB)〉

We let n be a fresh name and ψ, ψ̃ be the sequences of terms:

ψ ≡ φ, nT ⊕ H(g(φ), kA) ψ̃ ≡ φ̃, nT ⊕ H(g(φ̃), kB)

We start (from the root) our proof by applying the FA axiom (breaking the pair) and then to introduce
an intermediate term A⊕n since, intuitively, H(nT, kA) (resp. H(nT, kB)) should be indistinguishable from
a random number.

ψ,H(nT, kA) ∼ ψ, n
FA

ψ,A,H(nT, kA) ∼ ψ,A, n
FA

ψ,A⊕ H(nT, kA) ∼ ψ,A⊕ n P1
Trans

ψ,A⊕ H(nT, kA) ∼ ψ̃,B⊕ H(nT, kB)
FA

φ, tAφ ∼ φ̃, t̃Bφ̃

where P1 is a derivation of ψ,A⊕ n ∼ ψ̃,B⊕ H(nT, kB).

Left Derivation We have to find first a a derivation of ψ,H(nT, kA) ∼ ψ, n. The ultimate goal is to
apply the prf axioms. For that, we need to introduce, on both sides of the ∼ predicate, equality tests
between the last message hashed under key kA (i.e. nT), and all the previous hashed messages under key
kA. We let m1, . . . ,ml be the set of messages hashed with kA in φ. We know that these messages are
either names n′T, or of the form g(φ′) where φ′ is a strict prefix of φ.

Let α = H(nT, kA), β = n. For all 1 ≤ i ≤ l we let ei ≡ eq(nT,mi), and sx be the term:

if e1 then x else . . . if el then x else x

We observe that, for every term u, u = su is derivable from the equality axioms. We are now going to
use the CS axiom to split the proof. To do so we introduce for every 1 ≤ i ≤ l the term uxi :

if e1 then 0 else . . . if ei−1 then 0 else if ei then x else 0

And the term uxl+1:
if e1 then 0 else . . . if el then 0 else x

By repeatedly applying the CS axiom we obtain:

∀i ∈ {1, . . . , l + 1}, ψ, e1, . . . , el, u
α
i ∼ ψ̃, e1, . . . , el, u

β
i CS

ψ, sH(nT,kA) ∼ ψ, sn
Equ

ψ,H(nT, kA) ∼ ψ, n
First note that, using the =-ind axiom, we derive, for every 1 ≤ i ≤ l, ei = false. This allows us to deal
with cases 1 to l, since this implies that uαi = uαi = 0 is derivable. Therefore we have for all i ∈ {1, . . . , l}:

Refl
ψ, false, . . . , false, 0 ∼ ψ, false, . . . , false, 0

Equ
ψ, e1, . . . , el, u

α
i ∼ ψ, e1, . . . , el, u

β
i

Consider now the case i = l + 1. The conditions on the occurrences of H and kA are satisfied, thanks to
the choice of e1, . . . , el. Hence we can use the prf axiom:

3.2. Two RFID Protocols 53

prf
ψ, uα1 ∼ ψ, u

β
1

FAl
ψ, false, . . . , false, uαl+1 ∼ ψ, false, . . . , false, u

β
l+1 Equ

ψ, e1, . . . , el, u
α
1 ∼ ψ, e1, . . . , el, u

β
1

Right Derivation (P1) Now, we have to derive ψ,A⊕ n ∼ ψ̃,B⊕ H(nT, kB). We start by replacing A
with B, splitting again the proof in two subgoals:

ψ,A⊕ n ∼ ψ̃,B⊕ n ψ̃,B⊕ n ∼ ψ̃,B⊕ H(nT, kB)
Trans

ψ,A⊕ n ∼ ψ̃,B⊕ H(nT, kB)

For the right part, we first decompose the goal:

ψ̃,H(nT, kB) ∼ ψ̃, n
Sym

ψ̃, n ∼ ψ̃,H(nT, kB)
FA

ψ̃,B, n ∼ ψ̃,B,H(nT, kB)
FA

ψ̃,B⊕ n ∼ ψ̃,B⊕ H(nT, kB)

Then, the derivation of ψ̃,H(nT, kB) ∼ ψ̃, n is similar to the derivation of ψ,H(nT, kA) ∼ ψ, n.
For the left part, since n is fresh in ψ and ψ̃, we use the ⊕-ind axioms twice and the Fresh axiom:

ψ ∼ ψ̃
ψ, n ∼ ψ̃, n

Fresh
len(A) = len(n)

id-len len(B) = len(n)
id-len

ψ,A⊕ n ∼ ψ̃,B⊕ n
⊕-ind2

It only remains to show that ψ ∼ ψ̃. First, we split the proof in three sub-proofs using transitivity:

φ, nT ⊕ H(g(φ), kA) ∼ φ, nT ∼ φ̃, nT ∼ φ̃, nT ⊕ H(g(φ), kB)

LSim

MSim

RSim

And we conclude using ⊕-ind and Fresh:

LSim
φ ∼ φ̃
MSim Fresh RSim

φ, nT ⊕ H(g(φ), kA) ∼ φ̃, nT ⊕ H(g(φ), kB)
Trans2

φ ∼ φ Refl

φ, nT ∼ φ, nT
Fresh len(H(g(φ), kA))

= len(nT)

H-len

LSim ⊕-ind

φ̃ ∼ φ̃
Refl

φ̃, nT ∼ φ̃, nT
Fresh len(H(g(φ), kB))

= len(nT)

H-len

RSim ⊕-ind
�

To keep the proof tractable, we considered only two tags. This means, in particular, that these tags
cannot be corrupted tags. Nonetheless, our method is expressive enough for multiple tags, including
corrupted ones, though we did not complete the proof in that case.

3.2.3 The lak Protocol

The left part of Figure 3.4 describes the original protocol from [LAK06]. As mentioned before, this is
a simplified version of the lak protocol, without the key server. In the lak protocol, the reader shares
a private key kA with each of its tags TA, and h is an hash function. This is a stateful protocol: the
key is updated after each successful completion of the protocol, and the reader keeps in k0

A the previous
value of the key. This value is used as a backup in case TA has not completed the protocol (for example
because the last message was lost) and therefore not updated its version of the key. The protocol allows
to recover from such a desynchronization: the reader R can use the previous version of kA at the next

54 Privacy Proofs of RFID Protocols

nR

〈nT , h(nR ⊕ nT ⊕ kA)〉

h
(
h(nR ⊕ nT ⊕ kA)⊕ nR ⊕ kA

)

nR

〈nT , h(nR ⊕ nT ⊕ kA)〉

n′R

〈n′R ⊕ nR ⊕ nT , h(nR ⊕ nT ⊕ kA)〉

h
(
h(nR ⊕ nT ⊕ kA)⊕ n′R ⊕ kA

)

TA

kA

R

kA

The lak Protocol

kA = h(kA) ; k0
A = kA

kA = h(kA)

TA E

Authentication Attack Against lak

E R

Figure 3.4: The lak Protocol (Left) and a Known Authentication Attack Against lak (Right).

round (which is the version used by TA) and finish the protocol. The protocol is supposed to achieve
mutual authentication and unlinkability. Even though such properties can be defined in various ways, we
recall below a known attack against the lak protocol, which will force us to modify it.

An Attack on lak An attack on authentication is described in [VDR08] and is depicted in the right
part of Figure 3.4. In this attack, the adversary simply observes the beginning of an honest execution
of the protocol (without completing the protocol, so that the reader and the tag do not update the key)
between a tag A and the reader. The adversary obtains h(nR ⊕ nT ⊕ kA) and the names nR, nT . He then
interacts with the reader to get a new name n′R and impersonates the tag A by choosing the returned tag
n′T such that n′R ⊕ n′T = nR ⊕ nT.

3.2.4 A Stateless Revised Version of lak

In [HBD16], the authors consider a corrected (and stateless) version of the protocol, which they proved
secure. This version of the protocol is described below:

nR

〈nT , h(〈nR, nT, kA〉)〉

h (〈h(〈nR, nT, kA〉), nR, kA〉)

TA

kA

R

kA

This new version avoids the previous attack, which relied on the algebraic properties of exclusive-or.
Formally, the protocol is described in the applied pi-calculus in [HBD16], in which they prove the strong
unlinkability property of [ACRR10] in the Dolev-Yao model for an unbounded number of sessions.

Attack Against Stateless lak Since the stateless version of lak was proved in the symbolic model,
no computational security assumptions were made on h. We show in Figure 3.5 that choosing h to be
a one-way cryptographic hash function (OW-CPA and Strongly Collision Resistant for example) is not
enough to guarantee unlinkability.

The attack is quite simple: it suffices that the hash function h leaks a few bits of the hashed message
(which is possible for an one-way hash function). This means that, when hashing a message of the form
〈nR, nT, k〉, the hash function h will leak some bits of the agent key k. Since the keys are drawn uniformly
at random, there is a non negligible probability for the leaked bits to be different when hashing messages

3.2. Two RFID Protocols 55

nR

〈nT , h(〈nR, nT, kA〉)〉

n′R

〈n′T , h(〈n′R, n′T, kA〉)〉

nR

〈nT , h(〈nR, nT, kA〉)〉

n′R

〈n′T , h(〈n′R, n′T, kB〉)〉

TA E

TA E

TA E

TB E

Figure 3.5: Unlinkability Attack in Two Rounds Against the Stateless lak Protocol

nR

〈nT , H(c(nR, nT), kA)〉

H
(
c(H(c(nR, nT), kA), nR), kA

)

TA

kA

R

kA

Figure 3.6: The lak+ Protocol

with different keys. In particular an adversary will be be able to distinguish h(〈nR, nT, kA〉), h(〈n′R, n′T, kA〉)
from h(〈nR, nT, kA〉), h(〈n′R, n′T, kB〉) with high probability.

Observe that this attack would still work if we modified the protocol to update the keys after a
successful execution of the protocol (in other word, if we consider the original lak protocol with con-
catenation instead of xor), because the attacker could start executions of the protocol without finishing
them, preventing the keys from being updated.

Remark 3.2. In the original paper introducing lak [LAK06], the hash function is described as a one-
way cryptographic hash function, which a priori does not prevent the attack described above. However,
in the security analysis section, the authors assume the function to be indistinguishable from a random
oracle, which prevents the attack. It is actually sufficient to assume prf, for which there are effective
constructions (subject to hardness assumptions). �

3.2.5 The lak+ Protocol

We describe here a stateless version of the lak protocol, that we call lak+. The protocol is depicted in
Figure 3.6. As in the lak protocol, the reader shares with each tag a secret key k. We use a keyed-hash
function that is assumed to be prf to prevent the attack depicted in Section 3.2.4. This protocol uses a
function c that combines the names. It could be a priori a xor, as in the original protocol, or a pairing,
as in the revised version of [HBD16] or something else. We look for sufficient conditions on this function
c, such that the protocol is secure.

We start by describing two different attacks that rely on some properties of the function c. In each
case, we give a sufficient condition on c that prevents the attack. Next, we show that these two conditions
are sufficient to prove that the lak+ protocol verifies the Bounded Session Privacy property.

First Attack: The attack depicted below is a generalization of the attack from [VDR08]. It works when
there exists a function s (computable in probabilistic polynomial time) such that the quantity below is
not negligible:

Pr
(
nR, nT, n′R : c(nR, nT) = c(n′R, s(nR, nT, n

′
R))
)

(3.2)

56 Privacy Proofs of RFID Protocols

g1

〈nT , H(c(g1, nT), kA)〉

s(nT)

〈n′T , H(c(s(nT), n′T), kA)〉

g1

〈nT , H(c(g1, nT), kA)〉

s(nT)

〈n′T , H(c(s(nT), n′T), kB)〉

TA E

TA E

TA E

TB E

Figure 3.7: Unlinkability Attack Against lak+

This condition is satisfied if c is the xor operation (e.g. by taking s(nR, nT, n′R) = n′R ⊕ nT ⊕ n′R).

nR

〈nT , H(c(nR, nT), kA)〉

n′R

〈s(nR, nT, n′R) , H(c(nR, nT), kA)〉

H
(
c(H(c(nR, nT), kA), nR), kA

)

TA E

E R

The attacker starts by sending a name nR to the tag, and gets the name nT chosen by the tag as well as
the hash H(c(nR, nT), kA). Then the attacker initiates a second round of the protocol with the reader. The
reader sends first a name n′R. The attacker is then able to answer, re-using the hash H(c(nR, nT), kA) sent
by the tag in the first round, choosing s(nR, nT, n′R) as a replacement of the name n′T. Using Equation (3.2),
there is a non negligible probability for the reader to accept the forged message as genuine.

This attack can be prevented by requiring c to be injective on its first argument:

∀a, b, x, y. eq(c(a, b), c(x, y))⇒ eq(a, x)

Second Attack: We have an unlinkability attack if we can distinguish between the answers of the tags,
even though the hash function is assumed to be a prf. This is possible if there exists a constant g1 and
a function s such that:

Pr
(
x, y : c(g1, x) = c(s(x), y)

)
is not negligible (3.3)

If this is the case, then the unlinkability attack described in Figure 3.7 has a non negligible probability
of success in distinguishing two consecutive rounds with the same tag A from one round with the tag A
and one round with the tag B.

The attack works as follows: it starts by impersonating the reader, sends g1 to the tag and gets the
response 〈nT , H(c(g1, nT), kA)〉. Then the attacker initiates a new round of the protocol by sending s(nT)
to the second tag. Using Equation 3.3, there is a non negligible probability that the hash in the response
from the tag A in the second round of the protocol is the same as in the first round, whereas this will not
be the case if the second round is initiated with B.

This attack can be prevented by asking c to be injective on its second argument:

∀a, b, x, y. eq(c(a, b), c(x, y))⇒ eq(b, y)

3.2. Two RFID Protocols 57

if eq(u, u′) then false else eq(c(u, v), c(u′, v′)) = false
if eq(v, v′) then false else eq(c(u, v), c(u′, v′)) = false

Figure 3.8: Injectivity Axioms on the Combination Function c

α ≡ 〈n′T , H(c(g(φ2), n′T), kA)〉
β ≡ H

(
c(n′R, π1(g(φ3))), kA

)
γ ≡ H

(
c(π2(g(φ3)), n′R), kA

)
ε1 ≡ n′R =̇ g(φ0) e1 ≡ c(n′R, π1(g(φ3))) =̇ c(g(φ0), nT) (in term sAφ0

)

ε2 ≡ n′R =̇ nR e2 ≡ c(n′R, π1(g(φ3))) =̇ c(nR, π1(g(φ1))) (in term tAφ1
)

ε3 ≡ n′R =̇ π2(g(φ1)) e3 ≡ c(n′R, π1(g(φ3))) =̇ c(π2(g(φ1)), nR) (in term tAφ1
)

ε4 ≡ n′R =̇ g(φ2)

ε′4 ≡ π1(g(φ3)) =̇ n′T

}
e4 ≡ c(n′R, π1(g(φ3))) =̇ c(g(φ2), n′T) (in term sAφ2

)

ε5 ≡ n′R =̇ π1(g(φ3))

ε′5 ≡ n′R =̇ π2(g(φ3))

}
e5 ≡ c(n′R, π1(g(φ3))) =̇ c(π2(g(φ3)), n′R) (in term tAφ3

)

Figure 3.9: Term Definitions for the lak+ Unlinkability Proof

Unlinkability of the lak+ Protocol To prevent all the attacks against lak+ described above, we
are going to require c to be right and left injective. This can easily be expressed in the logic using the
two axioms in Figure 3.8, which are satisfied, for instance, when c is a the pair function.

Three messages are sent in a complete session of the lak+ protocol: two by the reader and one by
the tag. Therefore, if we want to show interesting properties of the lak+ protocol, we need to consider
at least 6 terms in the trace (two full sessions, e.g. twice with the same tag TA or with the tag TA and
the tag TB). This leads us to consider the 6-Fixed Trace Privacy of the lak+ protocol.

Theorem 3.3. The lak+ protocol verifies 6-Privacy with two tags for every Axrfid-interpretation Ic of
Fp where H is interpreted as a prf function and where the injectivity axioms of Figure 3.8 are valid.

In particular, the following formula is derivable:

nR, sAφ0
, tAφ1

, n′R, s
′A
φ2
, t′Aφ3

∼ nR, sAφ0
, tAφ1

, n′R, s
′B
φ2
, t′B
φ̃3

where:

sIdφ = 〈nT , H(c(g(φ), nT), kId)〉
tIdφ =

[
H
(
c(nR, π1(g(φ))), kId

)
=̇ π2(g(φ))

]
H
(
c(π2(g(φ)), nR), kId

)
φ0 = nR φ1 = nR, sAφ0

φ2 = nR, sAφ0
, tAφ1

φ3 = nR, sAφ0
, tAφ1

, n′R, s
′A
φ2

φ̃3 = nR, sAφ0
, tAφ1

, n′R, s
′B
φ2

As with the kcl+ protocol, by induction on m, it should be possible to generalize the result to an
arbitrary m-Fixed Trace Privacy, although we did not do the proof.

Proof. Unsurprisingly, it turns out that left and right injectivity of c implies the injectivity of c. That is,
the following formula is derivable using Axstruct, Axrfid and the structural axioms Axstruct:

eq(c(u, v), c(u′, v′)) ↔̇ if eq(u, u′) then v =̇ v′ else false (3.4)

The proof is straightforward using left and right injectivity and the if_then_else_ axioms.
Most of the formulas are easy to prove, so we are going to focus on the formula explicitly given in

the theorem statement, which is in our opinion the hardest case. Before starting, we define several new
terms in Figure 3.9. We have similar definition for the tilded versions α̃, β̃, γ̃, We start by applying
the FA axiom several times:

58 Privacy Proofs of RFID Protocols

Proof Tree P1:

φ, uα1 , u
β
1 , u

γ
1 ∼ φ, uα1 , un1, u

γ
1

φ, uα1 , u
γ
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1

φ, uα1 , n, u
γ
1 ∼ φ̃, ũα̃1 , n, ũ

γ̃
1

Fresh

φ, uα1 , u
n
1, u

γ
1 ∼ φ̃, ũα̃1 , ũn1, ũ

γ̃
1

FA∗
φ̃, ũα̃1 , ũ

n
1, ũ

γ̃
1 ∼ φ̃, ũα̃1 , ũ

β̃
1 , ũ

γ̃
1

φ, uα1 , u
β
1 , u

γ
1 ∼ φ̃, ũα̃1 , ũ

β̃
1 , ũ

γ̃
1

Trans

Proof Tree P2:

φ, uα1 , u
γ
1 ∼ φ, uα1 , un1

φ, uα1 ∼ φ̃, ũα̃1
φ, uα1 , n ∼ φ̃, ũα̃1 , n

Fresh

φ, uα1 , u
n
1 ∼ φ̃, ũα̃1 , ũn1

FA∗
φ̃, ũα̃1 , ũ

n
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1

φ, uα1 , u
γ
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1

Trans

Figure 3.10: Derivations P1 and P2

φ2, α, β, γ ∼ φ2, α̃, β̃, γ̃
FA∗

φ3, t
′A
φ3
∼ φ̃3, t

′B
φ̃3

We are now going to use the CS axiom on the conditional e4, e5 to split the proof. To do so we
introduce the term:

ux ≡ if e4 then
(
if e5 then x else x

)
else

(
if e5 then x else x

)
and the terms:

ux1 ≡ if e4 then 0 else
(
if e5 then 0 else x

)
ux2 ≡ if e4 then 0 else

(
if e5 then x else 0

)
ux3 ≡ if e4 then

(
if e5 then 0 else x

)
else 0

ux4 ≡ if e4 then
(
if e5 then x else 0

)
else 0

Similarly we introduced the tilded versions of these terms. We observe that for all term s we have
s = us and s = ũs. Therefore we can apply the CS axiom, which gives us:

∀i ∈ {1, . . . , 4}, φ2, e4, e5, u
α
i , u

β
i , u

γ
i ∼ φ2, ẽ4, ẽ5, ũ

α̃
i , ũ

β̃
i , ũ

γ̃
i CS∗

φ2, α, β, γ ∼ φ2, α̃, β̃, γ̃

We let φ = φ2, e4, e5 and φ̃ = φ2, ẽ4, ẽ5.

Case i = 1 Let n be a fresh name, we start by the derivation P1 displayed in Figure 3.10. Using =-ind
we know that ε1 = ε2 = ε3 = false, and using the left injectivity of c this shows that e1 = e2 = e3 = false.
Therefore we know that:

uβ1 = vβ ≡ if e1 then 0 else if e2 then 0 else
(
if e3 then 0 else

(
uβ1
))

un1 = vn ≡ if e1 then 0 else if e2 then 0 else
(
if e3 then 0 else

(
un1
))

Hence we can apply the prf axiom, which shows that:

prf
φ, uα1 , v

β , uγ1 ∼ φ, uα1 , vn, u
γ
1 Equ

φ, uα1 , u
β
1 , u

γ
1 ∼ φ, uα1 , un1, u

γ
1

Similarly we show that:

prf
φ̃, ũα̃1 , ṽ

n, ũγ̃1 ∼ φ̃, ũα̃1 , ṽβ̃ , ũ
γ̃
1 Equ

φ̃, ũα̃1 , ũ
n
1, ũ

γ̃
1 ∼ φ̃, ũα̃1 , ũ

β̃
1 , ũ

γ̃
1

3.3. Pseudo-Random Number Generator 59

It remains to show that φ, uα1 , u
γ
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1 . We do this exactly like we did to get rid of the uβ1 and

ũβ̃1 . First we use FA, Trans and Fresh to get the derivation P2 displayed in Figure 3.10.
The formulas φ, uα1 , u

γ
1 ∼ φ, uα1 , u

n
1 and φ̃, ũα̃1 , ũ

n
1 ∼ φ̃, ũα̃1 , ũ

γ̃
1 are dealt with exactly like we did for

φ, uα1 , u
β
1 , u

γ
1 ∼ φ, uα1 , un1, u

γ
1 , introducing the corresponding conditional tests. We do not detail these two

cases, but notice that the right injectivity of c is needed for them.
We now need to show that φ, uα1 ∼ φ̃, ũα̃1 , which is done by applying the FA axiom several time:

φ2, n′R, n
′
T,H(c(g(φ2), n′T), kA) ∼ φ2, n′R, n

′
T,H(c(g(φ2), n′T), kB)

φ3 ∼ φ̃3

FA∗

φ, uα1 ∼ φ̃, ũα̃1
FA∗

Let ψ ≡ φ2, n′R, n
′
T, it is then easy to show that ψ,H(c(g(φ2), n′T), kA) ∼ ψ,H(c(g(φ2), n′T), kA) is derivable

using the fact that n′T is fresh in ψ, the right injectivity of c and the prf axiom.

Case i = 2 and 3 These case are very similar to the case i = 1, except that we need to use the Dup
axiom at some point to get rid of the double occurrence of γ (in case i = 2) or α (in case i = 3).

Case i = 4 Using (3.4) we know that

e4 = if ε4 then ε′4 else false e5 = if ε5 then ε′5 else false

Since booleans ε′4 ≡ π1(g(φ3)) =̇ n′T and ε5 ≡ n′R =̇ π1(g(φ3)) we have:

if ε′4 then ε5 else false = if ε′4 then n′R =̇ n′T else false
= if ε′4 then false else false
= false

And therefore, for all term v we have uv4 = 0. Similarly we have ũv4 = 0 This means that we have:

φ3 ∼ φ̃3
FA

φ, 0, 0, 0 ∼ φ̃, 0, 0, 0
Equ

φ, uα4 , u
β
4 , u

γ
4 ∼ φ̃, uα̃4 , u

β̃
4 , u

γ̃
4

We already showed in the case i = 1 that φ3 ∼ φ̃3 is derivable. �

3.3 Pseudo-Random Number Generator

A prng uses an internal state, which is updated at each call, and outputs a pseudo random number.
This can be modeled by a function G taking the internal state as input, and outputing a pair with the
new internal state and the generated pseudo random number (retrieved using the projections πS and
πo). Besides, a function initS is used to initialized the internal state with a random seed (which can be
hard-coded in the tag).

Definition 3.3. A prng is a tuple of polynomial functions (G, initS , πS , πo) such that for every PPTM
A and for every n, the following quantity is negligible in η:

|Pr (r ∈ {0, 1}η : A(πo(s0), . . . , πo(sn)) = 1)−Pr (r0, . . . , rn ∈ {0, 1}η : A(r0, . . . , rn) = 1)|

where s0 = G(initS(r, 1η)) and for all 0 ≤ i < n, si+1 = G(πS(si)).

This can be translated in the logic using the prng axioms.

Definition 3.4. We let prng be the set of axioms:

πo(s0), . . . , πo(sn) ∼ n0, . . . , nn
prng

when

{
s0 ≡ G(initS(n))

∀0 ≤ i < n, si+1 ≡ G(πS(si))

60 Privacy Proofs of RFID Protocols

The soundness of these axioms is an immediate consequence of Definition 3.3.

Proposition 3.1. The prng axioms are valid in any computational modelMc where (G, initS) is inter-
preted as a prng.

For each protocol where a strict separation exists between the cryptographic material used for random
number generation and the other primitives (e.g. encryption keys), pseudo random numbers generated
using a prng can be abstracted as random numbers.

Proposition 3.2. For every names n, (ni)i≤n and contexts U0, . . . , Un that do not contain these names,
the following formula is derivable using the structural axioms Axstruct and the prng axioms:

U0[πo(s0)], . . . , Un[πo(sn)] ∼ U0[n0], . . . , Un[nn]

where s0 ≡ G(initS(n)) and ∀0 ≤ i < n, si+1 ≡ G(πS(si)).

Proof. Let n, (ni)i≤n and U0, . . . , Un be such that U0, . . . , Un do not contain n, (ni)i≤n. Let s0 ≡
G(initS(n)) and ∀0 ≤ i < n, si+1 ≡ G(πS(si)). We want to give a derivation of:

U0[πo(s0)], . . . , Un[πo(sn)] ∼ U0[n0], . . . , Un[nn]

the structural axioms Axstruct and the prng axioms.
For all i, we let the context Ci and the names (npi,j)j be such that Ui ≡ Ci[(n

p
i,j)j] and Ci does not

contain any name (only function applications and holes). Then using the FA axiom we have:(
(npi,j)j

)
i≤n , (πo(si))i≤n ∼

(
(npi,j)j

)
i≤n , (ni)i≤n

Perm(
(npi,j)j , πo(si)

)
i≤n ∼

(
(npi,j)j , ni

)
i≤n

FA∗(
Ci[(n

p
i,j)j][πo(si)]

)
i≤n ∼

(
Ci[(n

p
i,j)j][ni]

)
i≤n

Now, we can use the Dup axiom to get rid of multiple occurrences of the same name: indeed if there exists
a name m such that m ≡ npi,j and m ≡ npi′,j′ then we can keep only one occurrence of m. Let m1, . . . ,ml

be such that for all i 6= j,mi 6= mj and {mi | i ≤ l} = {npi,j | i ≤ n, j}, then:

(mi)i≤n , (πo(si))i≤n ∼ (mi)i≤n , (ni)i≤n
Dup∗(

(npi,j)j
)
i≤n , (πo(si))i≤n ∼

(
(npi,j)j

)
i≤n , (ni)i≤n

Now by assumptions we know that {n, (ni)i≤n}∩{mi | i ≤ l} = ∅, therefore we can apply the Fresh axiom
for all i ≤ l to get rid of mi. Finally we conclude with the prng axiom:

(πo(si))i≤n ∼ (ni)i≤n
prng

(mi)i≤n , (πo(si))i≤n ∼ (mi)i≤n , (ni)i≤n
Fresh∗ �

Remark 3.3 (Forward Secrecy). We did not study forward secrecy of RFID protocols, but this could
easily be done. The standard forward secrecy assumption on a prng states that leaking the internal
state πS(sn) of the prng (e.g. with a physical attack on the RFID chip) does not allow the adversary to
gain any information about the previously generated names (πo(sn))i≤n. This could be expressed in the
logic using, for example, the following axioms:

πo(s0), . . . , πo(sn), πS(sn) ∼ n0, . . . , nn, πS(sn) when

{
s0 ≡ G(initS(n))

∀0 ≤ i < n, si+1 ≡ G(πS(si))
�

3.4 Conclusion

We gave a framework for formally proving the security of RFID protocols in the computational model,
by expressing Juels and Weis notion of Privacy in the Bana-Comon model, using our labelled transition
system approach. We then illustrated this method on two examples, providing formal security proofs. We
also showed that the security assumptions used in the proofs of these two protocols cannot be weakened
(at least not in an obvious way).

Chapter 4

The 5G-AKA Authentication Protocol
Privacy

The protocols and the privacy property studied in Chapter 3 are simple. Although the simplicity of this
case study makes it a good first application of the Bana-Comon approach, it leaves us wondering how the
method would fare on a more involved example. In this chapter, we remedy this problem, by studying a
complex protocol and property. More precisely, we investigate the security of the 5G-AKA authentication
protocol described in the 5G mobile communication standards.

5G-AKA is a new version of the AKA protocol, which tries to achieve a better privacy than the 3G and
4G versions, through the use of asymmetric randomized encryption. Nonetheless, we show that except
for the imsi-catcher attack, all known attacks against 5G-AKA privacy still apply. Therefore, we modify
the 5G-AKA protocol to prevent these attacks, while satisfying 5G-AKA efficiency constraints as much
as possible. Then, using the Bana-Comon indistinguishability logic, we formally prove that our protocol
is σ-unlinkable. This is a new security notion, which allows for a fine-grained quantification of a protocol
privacy. We also prove mutual authentication as a secondary result.

4.1 Introduction

Mobile communication technologies are widely used for voice, text and Internet access. These technologies
allow a subscriber’s device, typically a mobile phone, to connect wirelessly to an antenna, and from there
to its service provider. The two most recent generations of mobile communication standards, the 3G
and 4G standards, have been designed by the 3GPP consortium. The fifth generation (5G) of mobile
communication standards is being finalized, and drafts are now available [TS318]. These standards
describe protocols that aim at providing security guarantees to the subscribers and service providers.
One of the most important such protocol is the Authentication and Key Agreement (AKA) protocol,
which allows a subscriber and its service provider to establish a shared secret key in an authenticated
fashion. There are different variants of the AKA protocol, one for each generation.

In the 3G and 4G-AKA protocols, the subscriber and its service provider share a long term secret key.
The subscriber stores this key in a cryptographic chip, the Universal Subscriber Identity Module (USIM),
which also performs all the cryptographic computations. Because of the USIM limited computational
power, the protocols only use symmetric key cryptography without any pseudo-random number generation
on the subscriber side. Therefore the subscriber does not use a random challenge to prevent replay
attacks, but instead relies on a sequence number sqn. Since the sequence number has to be tracked by
the subscriber and its service provider, the AKA protocols are stateful.

Because a user could be easily tracked through its mobile phone, it is important that the AKA
protocols provide privacy guarantees. The 3G and 4G-AKA protocols try to do that using temporary
identities. While this provides some privacy against a passive adversary, this is not enough against an
active adversary. Indeed, these protocols allow an antenna to ask for a user permanent identity when it
does not know its temporary identity (this naturally happens in roaming situations). This mechanism is
abused by imsi-catchers [Str07] to collect the permanent identities of all mobile devices in range.

The imsi-catcher attack is not the only known attack against the privacy of the AKA protocols.
In [BHP+17], the authors show how an attacker can obtain the least significant bits of a subscriber’s

61

62 The 5G-AKA Authentication Protocol Privacy

sequence number, which allows the attacker to monitor the user’s activity. The authors of [AMR+12]
describe a linkability attack against the 3G-AKA protocol. This attack is similar to the attack on the
French e-passport [ACRR10], and relies on the fact that 3G-AKA protocol uses different error messages
if the authentication failed because of a bad Mac or because a de-synchronization occurred.

The 5G standards include changes to the AKA protocol to improve its privacy guarantees. In 5G-AKA,
a user never sends its permanent identity in plain-text. Instead, it encrypts it using a randomized
asymmetric encryption with its service provider public key. While this prevents the imsi-catcher attack,
this is not sufficient to get unlinkability. Indeed, the attacks from [AMR+12, BHP+17] against the 3G and
4G-AKA protocols still apply. Moreover, the authors of [FOR16] proposed an attack against a variant
of the AKA protocol introduced in [AMR+12], which uses the fact that an encrypted identity can be
replayed. It turns out that their attack also applies to 5G-AKA.

Objectives Our goal is to improve the privacy of 5G-AKA while satisfying its design and efficiency
constraints. In particular, our protocol should be as efficient as the 5G-AKA protocol, have a similar
communication complexity and rely on the same cryptographic primitives. Moreover, we want formal
guarantees on the privacy provided by our protocol.

RelatedWork There are several formal analysis of AKA protocols in the symbolic models. In [CKR18],
the authors use the Deepsec tool to prove unlinkability of the protocol for three sessions. In [AMR+12]
and [vdBVdR15], the authors use Proverif to prove unlinkability of AKA variants for, respectively, three
sessions and an unbounded number of sessions. In these three works, the authors abstracted away several
key features of the protocol. Because Deepsec and Proverif do not support the xor operator, they re-
placed it with a symmetric encryption. Moreover, sequence numbers are modeled by nonces in [AMR+12]
and [CKR18]. While [vdBVdR15] models the sequence number update, they assume it is always incre-
mented by one, which is incorrect. Finally, none of these works modeled the re-synchronization or the
temporary identity mechanisms. Because of these inaccuracies in their models, they all miss attacks.

In [BDH+18], the authors use the Tamarin prover to analyse multiple properties of 5G-AKA. For each
property, they either find a proof, or exhibit an attack. To our knowledge, this is the most precise symbolic
analysis of an AKA protocol. For example, they correctly model the xor and the re-synchronization
mechanisms, and they represent sequence numbers as integers (which makes their model stateful). Still,
they decided not to include the temporary identity mechanism. Using this model, they successfully
rediscover the linkability attack from [AMR+12].

We are aware of two analysis of AKA protocols in the computational model. In [FOR16], the authors
present a significantly modified version of AKA, called PRIV-AKA, and claim it is unlinkable. However,
we discovered a linkability attack against the protocol, which falsifies the authors claim. In [LSWW14],
the authors study the 4G-AKA protocol without its first message. They show that this reduced protocol
satisfies a form of anonymity (which is weaker than unlinkability). Because they consider a weak privacy
property for a reduced protocol, they fail to capture the linkability attacks from the literature.

Contributions This chapter contributions are:

• We study the privacy of the 5G-AKA protocol described in the 3GPP draft [TS318]. Thanks to the
introduction of asymmetric encryption, the 5G version of AKA is not vulnerable to the imsi-catcher
attack. However, we show that the linkability attacks from [FOR16, AMR+12, BHP+17] against
older versions of AKA still apply to 5G-AKA.

• We present a new linkability attack against PRIV-AKA, a significantly modified version of the
AKA protocol introduced and claimed unlinkable in [FOR16]. This attack exploits the fact that, in
PRIV-AKA, a message can be delayed to yield a state update later in the execution of the protocol,
where it can be detected.

• We propose the AKA+ protocol, which is a modified version of 5G-AKA with better privacy guar-
antees and satisfying the same design and efficiency constraints.

• We introduce a new privacy property, called σ-unlinkability, inspired from [HPVP11] and Vaude-
nay’s Strong Privacy [Vau07]. Our property is parametric and allows us to have a fine-grained
quantification of a protocol privacy.

4.2. The 5G-AKA Protocol 63

• We formally prove that AKA+ satisfies the σ-unlinkability property in the Bana-Comon model.
Our proof is for any number of agents and sessions that are not related to the security parameter.
We also show that AKA+ provides mutual authentication.

Outline In Section 4.2 and 4.3 we describe the 5G-AKA protocol and the known linkability attacks
against it. We present the AKA+ protocol in Section 4.4, and we define the σ-unlinkability property in
Section 4.5. We show how we model the AKA+ protocol using the Bana-Comon logic in Section 4.6, and
we describe the set of axioms we use in this chapter in Section 4.7. In Section 4.8, we state and sketch
the proofs of the mutual authentication and σ-unlinkability of AKA+. We prove mutual authentication
in Section 4.9. In Section 4.10, we give some acceptance characterization conditions, which we use in
Section 4.11 to prove that the AKA+ protocol is σ-unlinkable. Finally, we conclude in Section 4.14.

Starred Proofs and Sections Several proofs and sections of this chapter are annotated by a star ?,
followed by a page number. This indicates that they are technical, and that the rest of the chapter should
be understandable without reading them. The page number corresponds to the page the technical proof
or section ends.

4.2 The 5G-AKA Protocol

We present the 5G-AKA protocol described in the 3GPP standards [TS318]. This is a three-party au-
thentication protocol between:

• The User Equipment (UE). This is the subscriber’s physical device using the mobile communication
network (e.g. a mobile phone). Each UE contains a cryptographic chip, the Universal Subscriber
Identity Module (USIM), which stores the user confidential material (such as secret keys).

• The Home Network (HN), which is the subscriber’s service provider. It maintains a database with
the necessary data to authenticate its subscribers.

• The Serving Network (SN). It controls the base station (the antenna) the UE is communicating
with through a wireless channel.

If the HN has a base station nearby the UE, then the HN and the SN are the same entity. But this is
not always the case (e.g. in roaming situations). When no base station from the user’s HN are in range,
the UE uses another network’s base station.

The UE and its corresponding HN share some confidential key material and the Subscription Perma-
nent Identifier (supi), which uniquely identifies the UE. The SN does not have access to the secret key
material. It follows that all cryptographic computations are performed by the HN, and sent to the SN
through a secure channel. The SN also forwards all the information it gets from the UE to the HN. But
the UE permanent identity is not kept hidden from the SN: after a successful authentication, the HN
sends the supi to the SN. This is not technically needed, but is done for legal reasons. Indeed, the SN
needs to know whom it is serving to be able to answer to Lawful Interception requests.

Therefore, privacy requires to trust both the HN and the SN. Since, in addition, they communicate
through a secure channel, we decided to model them as a single entity and we include the SN inside the
HN. A description of the protocol with three distinct parties can be found in [BDH+18].

4.2.1 Description of the Protocol

The 5G standard proposes two authentication protocols, eap-aka′ and 5G-AKA. Since their differences
are not relevant for privacy, we only describe the 5G-AKA protocol.

Cryptographic Primitives As in the 3G and 4G variants, the 5G-AKA protocol uses several keyed
cryptographic one-way functions: f1– f5, f1,∗ and f5,∗. These functions are used both for integrity and
confidentiality, and take as input a long term secret key k (which is different for each subscriber).

A major novelty in the 5G version of AKA is the introduction of an asymmetric randomized encryption
{·}ne

pk. Here pk is the public key, and ne is the encryption randomness. Previous versions of AKA did
not use asymmetric encryption because the USIM, which is a cryptographic micro-processor, had no
randomness generation capabilities. The asymmetric encryption is used to conceal the identity of the
UE, by sending {supi}ne

pk instead of transmitting the supi in clear (as in 3G and 4G-AKA).

64 The 5G-AKA Authentication Protocol Privacy

UE

supi,guti, k, pkn, sqnu

HN

supi,guti, k, skn, sqnn

guti or {supi}ne
pkn

if guti was used: guti← UnSet

〈n , sqnn ⊕ f5k(n) , f1k(〈sqnn , n〉)〉

Input x:
nr, sqnr ← π1(x), π2(x)⊕ f5k(nr)
bmac ← f1k(〈sqnr , nr〉) = π3(x)
bsqn ← range(sqnu, sqnr)

sqnn ← sqnn + 1

sqnu ← sqnr f2k(nr)

bmac ∧ bsqn

“Auth-Failure”¬bmac

〈
sqnu ⊕ f5,∗k (nr) , f

1,∗
k (〈sqnu , nr〉)

〉
Input y:
sqn∗r ← π1(y)⊕ f5,∗k (n)

if f1,∗k (〈sqn∗r , n〉) = π2(y) then sqnn ← sqn∗r + 1

bmac ∧ ¬bsqn

Conventions: ← denotes assignments, and has a lower priority than the equality comparison operator =.

Figure 4.1: The 5G-AKA Protocol

Temporary Identities After a successful run of the protocol, the HN may issue a temporary identity,
a Globally Unique Temporary Identifier (guti), to the UE. Each guti can be used in at most one session
to replace the encrypted identity {supi}ne

pk. It is renewed after each use. Using a guti allows to avoid
computing the asymmetric encryption. This saves a pseudo-random number generation and the expensive
computation of an asymmetric encryption.

Sequence Numbers The 5G-AKA protocol prevents replay attacks using a sequence number sqn
instead of a random challenge. This sequence number is included in the messages, incremented after each
successful run of the protocol, and must be tracked and updated by the UE and the HN. As it may get
de-synchronized (e.g. because a message is lost), there are two versions of it: the UE sequence number
sqnu, and the HN sequence number sqnn.

State The UE and HN share the UE identity supi, a long-term symmetric secret key k, a sequence
number sqnu and the HN public key pkn. The UE also stores in guti the value of the last temporary
identity assigned to it (if there is one). Finally, the HN stores the secret key skn corresponding to pkn,
its version sqnn of every UE’s sequence number and a mapping between the gutis and the supis.

Authentication Protocol The 5G-AKA protocol is represented in Figure 4.1. We now describe an
honest execution of the protocol. First, the UE initiates the protocol by identifying itself to the HN,
which it can do in two different ways:

4.3. Unlinkability Attacks Against 5G-AKA 65

• It can send a temporary identity guti, if one was assigned to it. After sending the guti, the UE
sets it to UnSet to ensure that it will not be used more than once. Otherwise, it would allow an
adversary to link sessions together.

• It can send its concealed permanent identity {supi}ne
pkn

, using the HN public key pkn and a fresh
randomness ne.

Upon reception of an identifying message, the HN retrieves the permanent identity supi: if it received a
temporary identity guti, this is done through a database look-up; and if a concealed permanent identity
was used, it uses skn to decrypt it. It can then recover sqnn and the key k associated to the identity
supi from its memory. The HN then generates a fresh nonce n. It masks the sequence number sqnn
by xoring it with f5k(n), and mac the message by computing f1k(〈sqnn , n〉). It then sends the message
〈n , sqnn ⊕ f5k(n) , f1k(〈sqnn , n〉)〉.

When receiving this message, the UE computes f5k(n). With it, it unmasks sqnn and checks the
authenticity of the message by re-computing f1k(〈sqnn , n〉) and verifying that it is equal to the third
component of the message. It also checks whether sqnn and sqnu are in range1. If both checks succeed,
the UE sets sqnu to sqnn, which prevents this message from being accepted again. It then sends f2k(n)
to prove to HN the knowledge of k. If the authenticity check fails, an “Auth-Failure” message is sent.
Finally, if the authenticity check succeeds but the range check fails, UE starts the re-synchronization
sub-protocol, which we describe below.

Re-synchronization The re-synchronization protocol allows the HN to obtain the current value of
sqnu. First, the UE masks sqnu by xoring it with f5,∗k (n), mac the message using f1,∗k (〈sqnu , n〉) and
sends the pair 〈sqnu ⊕ f5,∗k (n) , f1,∗k (〈sqnu , n〉)〉. When receiving this message, the HN unmasks sqnu
and checks the mac. If the authentication test is successful, HN sets the value of sqnn to sqnu + 1. This
ensures that HN first message in the next session of the protocol is in the correct range.

guti Assignment There is a final component of the protocol which is not described in Figure 4.1 (as
it is not used in the privacy attacks we present later). After a successful run of the protocol, the HN
generates a new temporary identity guti and links it to the UE’s permanent identity in its database.
Then, it sends the concealed fresh guti to the UE. The sub-protocol used to send a fresh guti is not
used in the privacy attacks we present in the next session. Therefore, we omit its description.

4.3 Unlinkability Attacks Against 5G-AKA

We present in this section several attacks against AKA that appeared in the literature. All these attacks
but one (the imsi-catcher attack) carry over to 5G-AKA. Moreover, several fixes of the 3G and 4G
versions of AKA have been proposed. We discuss the two most relevant fixes, the first by Arapinis et
al. [AMR+12], and the second by Fouque et al. [FOR16].

None of these fixes are satisfactory. The modified AKA protocol given in [AMR+12] has been shown
flawed in [FOR16]. The authors of [FOR16] then propose their own protocol, called PRIV-AKA, and
claim it is unlinkable (they only provide a proof sketch). While analyzing the PRIV-AKA protocol, we
discovered an attack allowing to permanently de-synchronize the UE and the HN. Since a de-synchronized
UE can be easily tracked (after being de-synchronized, the UE rejects all further messages), our attack is
also an unlinkability attack. This is in direct contradiction with the security property claimed in [FOR16].
This is a novel attack that never appeared in the literature.

4.3.1 imsi-Catcher Attack

All the older versions of AKA (4G and earlier) are vulnerable to the imsi-catcher attack [Str07]. This
attack simply relies on the fact that, in these versions of AKA, the permanent identity (called the
International Mobile Subscriber Identity or imsi in the 4G specifications) is not encrypted but sent in
plain-text. Moreover, even if a temporary identity is used (a Temporary Mobile Subscriber Identity or
tmsi), an attacker can simply send a Permanent-ID-Request message to obtain the UE’s permanent
identity. The attack is depicted in Figure 4.2.

1The specification is loose: it only requires that sqnu < sqnn ≤ sqnu +C, where C is some constant chosen by the HN.

66 The 5G-AKA Authentication Protocol Privacy

UE Attackertmsi or imsi

“Permanent-ID-Request”
If tmsi received

imsi

Figure 4.2: An imsi-Catcher Attack

UEimsit HN
tauth ≡ 〈n , sqnn ⊕ f5k(n) , f1k(〈sqnn , n〉)〉

f2k(n)

UEimsi′ Attacker
tauth

“Auth-Failure”
If imsi′ 6= imsit

〈sqnu ⊕ f5,∗k (nr) , f
1,∗
k (〈sqnu , nr〉)〉

If imsi′ = imsit

Figure 4.3: The Failure Message Attack by [AMR+12].

This necessitates an active attacker with its own base station. At the time, this required specialized
hardware, and was believed to be too expensive. This is no longer the case, and can be done for a few
hundreds dollars (see [SSB+16]).

4.3.2 The Failure Message Attack

In [AMR+12], Arapinis et al. propose to use an asymmetric encryption to protect against the imsi-catcher
attack: each UE carries the public-key of its corresponding HN, and uses it to encrypt its permanent
identity. This is basically the solution that was adopted by 3GPP for the 5G version of AKA. Interestingly,
they show that this is not enough to ensure privacy, and give a linkability attack that does not rely on the
identification message sent by UE. While their attack is against the 3G-AKA protocol, it is applicable to
the 5G-AKA protocol.

The Attack The attack is depicted in Figure 4.3, and works in two phases. First, the adversary
eavesdrops a successful run of the protocol between the HN and the target UE with identity imsit, and
stores the authentication message tauth sent by HN. In a second phase, the attacker A tries to determine
whether a UE with identity imsi′ is the initial UE (i.e. whether imsi′ = imsit). To do this, A initiates a
new session of the protocol and replays the message tauth. If imsi′ 6= imsit, then the mac test fails, and
UEimsi′ answers “Auth-Failure”. If imsi′ = imsit, then the mac test succeeds but the range test fails, and
UEimsi′ sends a re-synchronization message.

The adversary can distinguish between the two messages, and therefore knows if it is interacting with
the original or a different UE. Moreover, the second phase of the attack can be repeated every time the
adversary wants to check for the presence of the tracked user imsit in its vicinity.

4.3. Unlinkability Attacks Against 5G-AKA 67

UEimsit HN{imsit}ne
pkn

UEimsi′ HN
{imsi′}n

′
e

pkn
/

{imsit}ne
pkn

tauth ≡ 〈n , sqnn ⊕ f5k(n) , f1k(〈sqnn , n〉)〉

Failure Message
If imsi′ 6= imsit

f2k(nr)
If imsi′ = imsit

Figure 4.4: The Encrypted imsi Replay Attack by [FOR16].

Proposed Fix To protect against the failure message attack, the authors of [AMR+12] propose that
the UE encrypts both error message using the public key pkn of the HN, making them indistinguishable.
To the adversary, there is no distinctions between an authentication and a de-synchronization failure.
The fixed AKA protocol, without the identifying message {imsi}ne

pkn
, was formally checked in the symbolic

model using the proverif tool. Because this message was omitted in the model, an attack was missed.
We present this attack in the next section.

4.3.3 The Encrypted imsi Replay Attack

In [FOR16], Fouque et al. give an attack against the fixed AKA proposed by Arapinis et al. in [AMR+12].
Their attack, described in Figure 4.4, uses the fact the identifying message {imsit}ne

pkn
in the proposed

AKA protocol by Arapinis et al. can be replayed.
In a first phase, the attacker A eavesdrops and stores the identifying message {imsit}ne

pkn
of an honest

session between the user UEimsit it wants to track and the HN. Then, every time A wants to determine
whether some user UEimsi′ is the tracked user UEimsit , it intercepts the identifying message {imsi′}n

′
e

pkn
sent by UEimsi′ , and replaces it with the stored message {imsit}ne

pkn
. Finally, A lets the protocol continue

without further tampering. We have two possible outcomes:
• If imsi′ 6= imsit then the message tauth sent by HN is mac-ed using the wrong key, and the UE

rejects the message. Hence the attacker observes a failure message.

• If imsi′ = imsit then tauth is accepted by UEimsi′ , and the attacker observes a success message.
Therefore the attacker knows if it is interacting with UE(imsit) or not, which breaks unlinkability.

4.3.4 Attack Against The PRIV-AKA Protocol

The authors of [FOR16] then propose the PRIV-AKA protocol, which is a significantly modified version
of AKA. The authors claim that their protocol achieves authentication and client unlinkability. But
we discovered a de-synchronization attack: it is possible to permanently de-synchronize the UE and the
HN. Our attack uses the fact that in PRIV-AKA, the HN sequence number is incremented only upon
reception of the confirmation message from the UE. Therefore, by intercepting the last message from the
UE, we can prevent the HN from incrementing its sequence number. We now describe the attack.

We run a session of the protocol, but we intercept the last message and store it for latter use. Note
that the HN’s session is not closed. At that point, the UE and the HN are de-synchronized by one. We
re-synchronize them by running a full session of the protocol. We then re-iterate the steps described
above: we run a session of the protocol, prevent the last message from arriving at the HN, and then

68 The 5G-AKA Authentication Protocol Privacy

run a full session of the protocol to re-synchronize the HN and the UE. Now the UE and the HN are
synchronized, and we have two stored messages, one for each uncompleted session. We then send the two
messages to the corresponding HN sessions, which accept them and increment the sequence number. In
the end, it is incremented by two.

The problem is that the UE and the HN cannot recover from a de-synchronization by two. We believe
that this was missed by the authors of [FOR16].2 Remark that this attack is also an unlinkability attack.
To attack some user UEimsi’s privacy, we permanently de-synchronize it. Then each time UEimsi tries to
run the PRIV-AKA protocol, it will abort, which allows the adversary to track it.

Remark 4.1. Our attack requires that the HN does not close the first session when we execute the
second session. At the end of the attack, before sending the two stored messages, there are two HN
sessions simultaneously opened for the same UE. If the HN closes any un-finished sessions when starting
a new session with the same UE, our attack does not work.

But this makes another unlinkability attack possible. Indeed, closing a session because of some later
session between the HN and the same UE reveals a link between the two sessions. We describe the attack.
First, we start a session i between a user UEA and the HN, but we intercept and store the last message
tA from the user. Then, we let the HN run a full session with some user UEX. Finally, we complete the
initial session i by sending the stored message tA to the HN. Here, we have two cases. If X = A, then the
HN closed the first session when it completed the second. Hence it rejects tA. If X 6= A, then the first
session is still opened, and it accepts tA.

Closing a session may leak information to the adversary. Protocols which aim at providing unlinka-
bility must explicit when sessions can safely be closed. By default, we assume a session stays open. In
a real implementation, a timeout tied to the session (and not the user identity) could be used to avoid
keeping sessions opened forever. �

4.3.5 Sequence Numbers and Unlinkability

We conjecture that it is not possible to achieve functionality (i.e. honest sessions eventually succeed),
authentication and unlinkability at the same time when using a sequence number based protocol with no
random number generation capabilities in the UE side. We briefly explain our intuition.

In any sequence number based protocol, the agents may become de-synchronized because they cannot
know if their last message has been received.3 Furthermore, the attacker can cause de-synchronization
by blocking messages. The problem is that we have contradictory requirements. On the one hand, to
ensure authentication, an agent must reject a replayed message. On the other hand, in order to guarantee
unlinkability, an honest agent has to behave the same way when receiving a message from a synchronized
agent or from a de-synchronized agent. Since functionality requires that a message from a synchronized
agent is accepted, it follows that a message from a de-synchronized agent must be accepted. Intuitively, it
seems to us that an honest agent cannot distinguish between a protocol message which is being replayed
and an honest protocol message from a de-synchronized agent. It follows that a replayed message should
be both rejected and accepted, which is a contradiction.

This is only a conjecture. We do not have a formal statement, or a proof. Actually, it is unclear how
to formally define the set of protocols that rely on sequence numbers to achieve authentication. Note
however that all requirements can be satisfied simultaneously if we allow both parties to generate random
challenges in each session (in AKA, only HN uses a random challenge). Examples of challenge based
unlinkable authentication protocols can be found in [HBD16].

4.4 The AKA+ Protocol

We now describe our principal contribution, which is the design of the AKA+ protocol. This is a fixed
version of the 5G-AKA protocol offering some form of privacy against an active attacker. First, we explicit
the efficiency and design constraints. We then describe the AKA+ protocol, and explain how we designed
this protocol from 5G-AKA by fixing all the previously described attacks. As we mentioned before,
we think unlinkability cannot be achieved under these constraints. Nonetheless, our protocol satisfies

2“the two sequence numbers may become desynchronized by one step [...]. Further desynchronization is prevented [...]”
(p. 266 [FOR16])

3Indeed, in an asynchronous communication system one never knows if the last message has been received.

4.4. The AKA+ Protocol 69

some weaker notion of unlinkability that we call σ-unlinkability. This is a new security property that we
introduce. Finally, we will show a subtle attack, and explain how we fine-tuned AKA+ to prevent it.

4.4.1 Efficiency and Design Constraints

We now explicit the protocol design constraints. These constraints are necessary for an efficient, inex-
pensive to implement and backward compatible protocol. Observe that, in a mobile setting, it is very
important to avoid expensive computations as they quickly drain the UE ’s battery.

Communication Complexity In 5G-AKA, authentication is achieved using only three messages: two
messages are sent by the UE, and one by the HN. We want our protocol to have a similar communication
complexity. While we did not manage to use only three messages in all scenarios, our protocol achieves
authentication in less than four messages.

Cryptographic primitives We recall that all cryptographic primitives are computed in the USIM,
where they are implemented in hardware. It follows that using more primitives in the UE would make
the USIM more voluminous and expensive. Hence we restrict AKA+ to the cryptographic primitives
used in 5G-AKA: we use only symmetric keyed one-way functions and asymmetric encryption. Notice
that the USIM cannot do asymmetric decryption. As in 5G-AKA, we use some in-expensive functions,
e.g. xor, pairs, by-one increments and boolean tests. We believe that relying on the same cryptographic
primitives helps ensuring backward compatibility, and would simplify the protocol deployment.

Random Number Generation In 5G-AKA, the UE generates at most one nonce per session, which is
used to randomize the asymmetric encryption. Moreover, if the UE was assigned a guti in the previous
session then there is no random number generation. Remark that when the UE and the HN are de-
synchronized, the authentication fails and the UE sends a re-synchronization message. Since the session
fails, no fresh guti is assigned to the UE. Hence, the next session of the protocol has to conceal the supi
using {supi}ne

pkn
, which requires a random number generation. Therefore, we constrain our protocol to

use at most one random number generation by the UE per session, and only if no guti has been assigned
or if the UE and the HN have been de-synchronized.

Summary We summarize the constraints for AKA+:
• It must use at most four messages per sessions.

• The UE may use only keyed one-way functions and asymmetric encryption. The HN may use these
functions, plus asymmetric decryption.

• The UE may generate at most one random number per session, and only if no guti is available, or
if re-synchronization with the HN is necessary.

4.4.2 Key Ideas

In this section, we present the two key ideas used in the design of the AKA+ protocol.

Postponed Re-Synchronization Message We recall that whenever the UE and the HN are de-
synchronized, the authentication fails and the UE sends a re-synchronization message. The problem is
that this message can be distinguished from a Mac failure message, which allows the attack presented
in Section 4.3.2. Since the session fails, no guti is assigned to the UE, and the next session will use
the asymmetric encryption to conceal the supi. The first key idea is to piggy-back on the randomized
encryption of the next session to send a concealed re-synchronization message. More precisely, we replace
the message {supi}ne

pkn
by {〈supi , sqnu〉}ne

pkn
. This has several advantages:

• We can remove the re-synchronization message that lead to the unlinkability attack presented in
Section 4.3.2. In AKA+, whenever the mac check or the range check fails, the same failure message
is sent.

• This does not require more random number generation by the UE, since a random number is already
being generated to conceal the supi in the next session.

70 The 5G-AKA Authentication Protocol Privacy

supi Sub-Protocol guti Sub-Protocol

assign-guti Sub-Protocol

Figure 4.5: General Architecture of the AKA+ Protocol

The 3GPP technical specification (see [TS318], Annex C) requires that the asymmetric encryption used
in the 5G-AKA protocol is the ecies encryption scheme, which is an hybrid encryption scheme. Hybrid
encryption schemes use a randomized asymmetric encryption to conceal a temporary key. This key is
then used to encrypt the message using a symmetric encryption, which is in-expensive. Hence encrypting
the pair 〈supi , sqnu〉 is almost as fast as encrypting only supi, and requires the UE to generate the same
amount of randomness.

HN Challenge Before Identification To prevent the Encrypted imsi Replay Attack of Section 4.3.3,
we add a random challenge n from the HN. The UE initiates the protocol by requesting a challenge
without identifying itself. When requested, the HN generates and sends a fresh challenge n to the UE,
which includes it in its response by mac-ing it with the supi using a symmetric one-way function Mac1

with key kidm . The UE response is now:〈
{〈supi , sqnu〉}ne

pkn
, Mac1

kidm
(〈{〈supi , sqnu〉}ne

pkn
, n〉)

〉
This challenge is only needed when the encrypted permanent identity is used. If the UE uses a temporary
identity guti, then we do not need to use a random challenge. Indeed, temporary identities can only be
used once before being discarded, and are therefore not subject to replay attacks. By consequence we
split the protocol in two sub-protocols:

• The supi sub-protocol uses a random challenge from the HN, encrypts the permanent identity and
allows to re-synchronize the UE and the HN.

• The guti sub-protocol is initiated by the UE using a temporary identity.
In the supi sub-protocol, the UE’s answer includes the challenge. We use this to save one message: the
last confirmation step from the UE is not needed, and is removed. The resulting sub-protocol has four
messages. Observe that the guti sub-protocol is faster, since it uses only three messages.

4.4.3 Architecture and States

Instead of a monolithic protocol, we have three sub-protocols: the supi and guti sub-protocols, which
handle authentication; and the assign-guti sub-protocol, which is run after authentication has been
achieved and assigns a fresh temporary identity to the UE. A full session of the AKA+ protocol comprises
a session of the supi or guti sub-protocols, followed by a session of the assign-guti sub-protocol. This
is graphically depicted in Figure 4.5.

Since the guti sub-protocol uses only three messages and does not require the UE to generate a
random number or compute an asymmetric encryption, it is faster than the supi sub-protocol. By
consequence, the UE should always use the guti sub-protocol if it has a temporary identity available.

The HN runs concurrently an arbitrary number of sessions, but a subscriber cannot run more than
one session at the same time. Of course, sessions from different subscribers may be concurrently running.
We associate a unique integer, the session number, to every session, and we use HN(j) and UEid(j) to
refer to the j-th session of, respectively, the HN and the UE with identity id.

One-Way Functions We separate functions that are used only for confidentiality from functions that
are also used for integrity. We have two confidentiality functions f and f r, which use the key k, and
five integrity functions Mac1–Mac5, which use the key km. We require that f and f r (resp. Mac1–Mac5)
satisfy jointly the prf assumption. This is a new assumption, which requires that these functions are
simultaneously computationally indistinguishable from random functions.

4.4. The AKA+ Protocol 71

Definition 4.1 (Jointly prf Functions). LetH1(·, ·), . . . ,Hn(·, ·) be a finite family of keyed hash functions
from {0, 1}∗ × {0, 1}η to {0, 1}η. The functions H1, . . . ,Hn are Jointly Pseudo Random Functions if, for
any PPTM adversary A with access to oracles Of1 , . . . ,Ofn :

|Pr(k : AOH1(·,k),...,OHn(·,k)(1η) = 1)−Pr(g1, . . . , gn : AOg1(·),...,Ogn(·)(1η) = 1)|

is negligible, where:
• k is drawn uniformly in {0, 1}η.
• g1, . . . , gn are drawn uniformly in the set of all functions from {0, 1}∗ to {0, 1}η.

Observe that if H1, . . . ,Hn are jointly prf then, in particular, every individual Hi is a prf.

Remark 4.2. While this is a non-usual assumption, it is simple to build a set of functions H1, . . . ,Hn

which are jointly prf from a single prf H. First, let (tagi(·))1≤i≤n be a set of tagging functions.
We require that these functions are unambiguous, i.e. for all bit-strings u, v and i 6= j we must have
tagi(u) 6= tagj(v). Then for every 1 ≤ i ≤ n, we let Hi(x, y) = H(tagi(x), y). It is straightforward to
show that if H is a prf then H1, . . . ,Hn are jointly prf. �

UE Persistent State Each UEid with identity id has a state stateidu persistent across sessions. It
contains the following immutable values: the permanent identity supi = id, the confidentiality key kid,
the integrity key kidm and the HN’s public key pkn. The states also contain mutable values: the sequence
number sqnu, the temporary identity gutiu and the boolean valid-gutiu. We have valid-gutiu = false
whenever no valid temporary identity is assigned to the UE. Finally, there are mutable values that
are not persistent across sessions. E.g. b-authu stores HN’s random challenge, and e-authu stores HN’s
random challenge when the authentication is successful.

HN Persistent State The HN state staten contains the secret key skn corresponding to the public key
pkn. Also, for every subscriber with identity id, it stores the keys kid and kidm , the permanent identity
supi = id, the HN version of the sequence number sqnid

n and the temporary identity gutiidn . It stores in
sessionid

n the random challenge of the last session that was either a successful supi session which modified
the sequence number, or a guti session which authenticated id. This is used to detect and prevent some
subtle attacks, which we present later. Finally, every session HN(j) stores in b-authjn the identity claimed
by the UE, and in e-authjn the identity of the UE it authenticated.

4.4.4 The supi, guti and assign-guti Sub-Protocols

We describe honest executions of the three sub-protocols of the AKA+ protocol. An honest execution is
an execution where the adversary dutifully forwards the messages without tampering. Each execution is
between a UE and HN(j).

The supi Sub-Protocol This protocol uses the UE’s permanent identity, re-synchronizes the UE and
the HN and is expensive to run. The protocol is sketched in Figure 4.6.

The UE initiates the protocol by requesting a challenge from the network. When asked, HN(j) sends
a fresh challenge nj . After receiving nj , the UE stores it in b-authu, and answers with the encryption of
its permanent identity together with the current value of its sequence number, using the HN public key
pkn. It also includes the mac of this encryption and of the challenge, which yields the message:〈

{〈supi , sqnu〉}ne
pkn

, Mac1
kidm

(〈{〈supi , sqnu〉}ne
pkn

, nj〉)
〉

Then the UE increments its sequence number by one. When it gets this message, the HN retrieves the
pair 〈supi , sqnu〉 by decrypting the encryption using its secret key skn. For every identity id, it checks
if supi = id and if the mac is correct. If this is the case, HN authenticated id, and it stores id in b-authjn
and e-authjn. After having authenticated id, HN checks whether the sequence number sqnu it received is
greater than or equal to sqnid

n . If this holds, it sets sqnid
n to sqnu + 1, stores nj in sessionid

n , generates
a fresh temporary identity gutij and stores it into gutiidn . This additional check ensures that the HN
sequence number is always increasing, which is a crucial property of the protocol.

If the HN authenticated id, it sends a confirmation message Mac2
kidm

(〈nj , sqnu + 1〉) to the UE. This
message is sent even if the received sequence number sqnu is smaller than sqnid

n . When receiving the

72 The 5G-AKA Authentication Protocol Privacy

UE

stateidu

HN(j)

staten
Request_Challenge

nj

Input nr: b-authu ← nr〈
{〈supi , sqnu〉}ne

pkn
, Mac1

kidm
(〈{〈supi , sqnu〉}ne

pkn
, nr〉)

〉
sqnu ← sqnu + 1 Input y:

〈idr , sqnr〉 ← dec(π1(y), skn)

bid
Mac ← π2(y) = Mac1

kidm
(〈π1(y) , nj〉)

∧ idr = id

bid
Inc ← bid

Mac ∧ sqnr ≥ sqnid
n

if bid
Mac then b-authjn, e-auth

j
n ← id

if bid
Inc then sqnid

n ← sqnr + 1

sessionid
n ← nj

gutiidn ← gutij

Mac2
kidm

(〈nj , sqnr + 1〉)
bMac

Input z:

bok ← z = Mac2
kidm

(〈b-authu , sqnu〉)
e-authu ← if bok then b-authu else fail

Figure 4.6: The supi Sub-Protocol of the AKA+ Protocol

confirmation message, if the mac is valid then the UE authenticated the HN, and it stores in e-authu the
initial random challenge (which it keeps in b-authu). If the mac test fails, it stores in e-authu the special
value fail.

The guti Sub-Protocol This protocol uses the UE’s temporary identity, requires synchronization to
succeed and is inexpensive. The protocol is sketched in Figure 4.7.

When valid-gutiu is true, the UE can initiate the protocol by sending its temporary identity gutiu.
The UE then sets valid-gutiu to false to guarantee that this temporary identity is not used again. When
receiving a temporary identity x, HN looks if there is an id such that gutiidn is equal to x and is not
UnSet. If the temporary identity belongs to id, it sets gutiidn to UnSet and stores id in b-authjn. Then it
generates a random challenge nj , stores it in sessionid

n , and sends it to the UE, together with the xor of
the sequence number sqnid

n with fkid(nj), and a mac:〈
nj , sqnid

n ⊕ fkid(nj) , Mac3
kidm

(〈nj , sqnid
n , gutiidn 〉)

〉
When it receives this message, the UE retrieves the challenge nj at the beginning of the message,
computes fkid(nj) and uses this value to unconceal the sequence number sqnid

n . It then computes
Mac3

kidm
(〈nj , sqnid

n , gutiu〉) and compares it to the mac received from the network. If the macs are
not equal, or if the range check range(sqnu, sqnid

n) fails, it puts fail into b-authu and e-authu to record
that the authentication was not successful. If both tests succeed, it stores in b-authu and e-authu the
random challenge, increments sqnu by one and sends the confirmation message Mac4

kidm
(nj). When receiv-

ing this message, the HN verifies that the mac is correct. If this is the case then the HN authenticated

4.4. The AKA+ Protocol 73

UE

stateidu

HN(j)

staten

gutiu
valid-gutiu

valid-gutiu ← false Input x:
bid ← gutiidn = x ∧ gutiidn 6= UnSet
if bid then gutiidn ← UnSet

b-authjn ← id
sessionid

n ← nj

〈nj , sqnid
n ⊕ fkid(nj) , Mac3

kidm
(〈nj , sqnid

n , gutiidn 〉)〉
bid

Input y:
nr, sqnr ← π1(y), π2(y)⊕ fkid(nr)
bacc ← π3(y) = Mac3

kidm
(〈nr , sqnr , gutiu〉))

∧ range(sqnu, sqnr)

if bacc then b-authu, e-authu ← nr
sqnu ← sqnu + 1

if ¬bacc then b-authu, e-authu ← fail

Mac4
kidm

(nr)
bacc

Input z:

bid
Mac ← (b-authjn = id) ∧ (z = Mac4

kidm
(nj))

bid
Inc ← bid

Mac ∧ sessionid
n = nj

if bid
Mac then e-authjn ← id

if bid
Inc then sqnid

n ← sqnid
n + 1

gutiidn ← gutij

Figure 4.7: The guti Sub-Protocol of the AKA+ Protocol

the UE, and stores id into e-authid
n . Then, HN checks whether sessionid

n is still equal to the challenge nj

stored in it at the beginning of the session. If this is true, the HN increments sqnid
n by one, generates a

fresh temporary identity gutij and stores it into gutiidn .

The assign-guti Sub-Protocol The assign-guti sub-protocol is run after a successful authenti-
cation, regardless of the authentication sub-protocol used. It assigns a fresh temporary identity to the
UE to allow the next AKA+ session to run the faster guti sub-protocol. It is depicted in Figure 4.8.

The HN conceals the temporary identity gutij generated by the authentication sub-protocol by
xoring it with f rkid(nj), and macs it. When receiving this message, UE unconceals the temporary identity
gutiidn by xoring its first component with f rkidm(e-authu) (since e-authu contains the HN’s challenge after
authentication). Then UE checks that the mac is correct and that the authentication was successful. If
it is the case, it stores gutiidn in gutiu and sets valid-gutiu to true.

74 The 5G-AKA Authentication Protocol Privacy

UE

stateidu

HN(j)

staten

〈gutij ⊕ f rkid(nj) , Mac5
kidm

(
〈
gutij , nj

〉
)〉

e-authid
n = id

Input x:
gutir ← π1(x)⊕ f rkidm(e-authu)

bacc ←
(
π2(x) = Mac5

kidm
(〈gutir , e-authu〉)

)
∧ (e-authu 6= fail)

gutiu ← if bacc then gutir else UnSet
valid-gutiu ← bacc

Figure 4.8: The assign-guti Sub-Protocol of the AKA+ Protocol

4.5 Unlinkability

We now define the unlinkability property we use, which is inspired from [HPVP11] and Vaudenay’s
privacy [Vau07].

Definition The property is defined by a game in which an adversary tries to link together some sub-
scriber’s sessions. The adversary is a PPTM which interacts, through oracles, with N different subscribers
with identities id1, . . . , idN , and with the HN. The adversary cannot use a subscriber’s permanent iden-
tity to refer to it, as it may not know it. Instead, we associate a virtual handler vh to any subscriber
currently running a session of the protocol. We maintain a list lfree of all subscribers that are ready to
start a session. We now describe the oracles Ob:

• StartSession(): starts a new HN session and returns its session number j.

• SendHN(m, j) (resp. SendUE(m, vh)): sends the message m to HN(j) (resp. the UE associated with
vh), and returns HN(j) (resp. vh) answer.

• ResultHN(j) (resp. ResultUE(vh)): returns true if HN(j) (resp. the UE associated with vh) has
made a successful authentication.

• DrawUE(idi0 , idi1): checks that idi0 and idi1 are both in lfree. If that is the case, returns a new
virtual handler pointing to idib , depending on an internal secret bit b. Then, it removes idi0 and
idi1 from lfree.

• FreeUE(vh): makes the virtual handler vh no longer valid, and adds back to lfree the two identities
that were removed when the virtual handler was created.

We recall that a function is negligible if and only if it is asymptotically smaller than the inverse of
any polynomial. An adversary A interacting with Ob is winning the q-unlinkability game if: A makes
less than q calls to the oracles; and it can guess the value of the internal bit b with a probability better
than 1/2 by a non-negligible margin, i.e. if the following quantity is non negligible in η:∣∣2×Pr

(
b : AOb(1η) = b

)
− 1
∣∣

Finally, a protocol is q-unlinkable if there are no winning adversaries against the q-unlinkability game.

Corruption In [HPVP11, Vau07], the adversary is allowed to corrupt some tags using a Corrupt
oracle. Several classes of adversary are defined by restricting its access to the corruption oracle. A strong
adversary has unrestricted access, a destructive adversary can no longer use a tag after corrupting it (it
is destroyed), a forward adversary can only follow a Corrupt call by further Corrupt calls, and finally a

4.5. Unlinkability 75

UEidA HNgutiA
. . .

. . .
/

UEidX where idX = idA or idB HN

NoGuti
idX = idA

gutiB
idX = idB

Figure 4.9: Consecutive guti Sessions of AKA+ Are Not Unlinkable.

weak adversary cannot use Corrupt at all. A protocol is C unlinkable if no adversary in C can win the
unlinkability game. Clearly, we have the following relations:

strong ⇒ destructive ⇒ forward ⇒ weak

The 5G-AKA protocol does not provide forward secrecy: indeed, obtaining the long-term secret of a UE
allows to decrypt all its past messages. By consequence, the best we can hope for is weak unlinkability.
Since such adversaries cannot call Corrupt, we removed the oracle from our definition.

Wide Adversary Remark that the adversary knows if the protocol was successful or not using the
ResultUE and ResultHN oracles (such an adversary is called wide in Vaudenay’s terminology [Vau07]).
Indeed, in an authenticated key agreement protocol, this information is always available to the adversary:
if the key exchange succeeds then it is followed by another protocol using the newly established key; while
if it fails then either a new key-exchange session is initiated, or no message is sent. Hence the adversary
knows if the key exchange was successful by passive monitoring.

4.5.1 σ-Unlinkability

In accord with our conjecture in Section 4.3.5, the AKA+ protocol is not unlinkable. Indeed, an adversary
A can easily win the linkability game. First, A ensures that idA and idB have a valid temporary identity
assigned: A calls DrawUE(idA, idA) to obtain a virtual handler for idA, and runs a supi and assign-guti
sessions between idA and the HN with no interruptions. This assigns a temporary identity to idA. We
use the same procedure for idB.

Then, A executes the attack described in Figure 4.9. It starts a guti session with idA, and intercepts
the last message. At that point, idA no longer has a temporary identity, while idB still does. Then, it
calls DrawUE(idA, idB), which returns a virtual handler vh to idA or idB. The attacker then starts a new
guti session with vh. If vh is a handler for idA, the UE returns NoGuti.4 If vh aliases idB, the UE returns
the temporary identity gutiA. The adversary A can distinguish between these two cases, and therefore
wins the game.

σ-Unlinkability To prevent this, we want to forbid DrawUE to be called on de-synchronized subscribers.
We do this by modifying the state of the user chosen by DrawUE. We let σ be an update on the state of
the subscribers. We then define the oracle DrawUEσ(idi0 , idi1): it checks that idA and idB are both free,
then applies the update σ to idib ’s state, and returns a new virtual handler pointing to idib . The (q, σ)-
unlinkability game is the q-unlinkability game in which we replace DrawUE with DrawUEσ. A protocol is
(q, σ)-unlinkable if and only if there is no winning adversary against the (q, σ)-unlinkability game. Finally,
a protocol is σ-unlinkable if it is (q, σ)-unlinkable for any q.

4This is the special constant message the user sends whenever a temporary identity is asked from him. This message
was omitted in the description of the protocol in Figure 4.7. We refer the reader to the next section for the complete formal
modeling of the AKA+ protocol.

76 The 5G-AKA Authentication Protocol Privacy

A

A

B

B

A

A

B

C

B

C

B

C

∼

Figure 4.10: Two indistinguishable executions. Square (resp. round) nodes are executions of the supi
(resp. guti) protocol. Each time the supi protocol is used, we can change the subscriber’s identity.

UEidA HN
guti

. . .

tauth
/

UEidA or UEidB HN

supi Session

/
tauth

guti Session

Figure 4.11: A Subtle Attack Against The AKA+
no-inc Protocol

Application to AKA+ The privacy guarantees given by the σ-unlinkability property depend on the
choice of σ. The idea is to choose a σ that allows to establish privacy in some scenarios of the standard
unlinkability game.5

We illustrate this on the AKA+ protocol. Let σul = valid-gutiu 7→ false be the function that makes the
UE ’s temporary identity not valid. This simulates the fact that the guti has been used and is no longer
available. If the UE ’s temporary identity is not valid, then it can only run the supi sub-protocol. Hence,
if the AKA+ protocol is σul-unlinkable, then no adversary can distinguish between a normal execution
and an execution where we change the identity of a subscriber each time it runs the supi sub-protocol.
We give in Figure 4.10 an example of such a scenario. We now state our main result:

Theorem 4.1. The AKA+ protocol is σul-unlinkable for an arbitrary number of agents and sessions when
the asymmetric encryption {_}__ is ind-cca1 secure and f and f r (resp. Mac1–Mac5) satisfy jointly the
prf assumption.

This result is shown later in the chapter. The intuition is that no adversary can distinguish between
two sessions of the supi protocol. Moreover, the supi protocol has two important properties. First, it re-
synchronizes the user with the HN, which prevents the attacker from using any prior de-synchronization.
Second, the AKA+ protocol is designed in such a way that no message sent by the UE before a successful
supi session can modify the HN ’s state after the supi session. Therefore, any time the supi protocol is
run, we get a “clean slate” and we can change the subscriber’s identity. Note that we have a trade-off
between efficiency and privacy: the supi protocol is more expensive to run, but provides more privacy.

4.5.2 A Subtle Attack

We now explain what is the role of sessionid
n , and how it prevents a subtle attack against the σul-

unlinkability of AKA+. We let AKA+
no-inc be the AKA+ protocol where we modify the guti sub-protocol

5Remark that when σ is the empty state update, the σ-unlinkability and unlinkability properties coincide.

4.6. Modeling in The Bana-Comon Logic 77

we described in Figure 4.7: in the state update of the HN ’s last input, we remove the check sessionid
n = nj

(i.e. bid
Inc = bid

Mac). The attack is described in Figure 4.11.
First, we run a session of the guti sub-protocol between UEidA and the HN, but we do not forward

the last message tauth to the HN. We then call DrawUEσul(idA, idB), which returns a virtual handler vh
to idA or idB. We run a full session using the supi sub-protocol with vh, and then send the message
tauth to the HN. We can check that, because we removed the condition sessionid

n = nj from bid
Inc, this

message causes the HN to increment sqnidA
n by one. At that point, UEidA is de-synchronized but UEidB is

synchronized. Finally, we run a session of the guti sub-protocol. The session has two possible outcomes:
if vh aliases to A then it fails, while if vh aliases to B, it succeeds. This leads to an attack.

When we removed the condition sessionid
n = nj , we broke the “clean slate” property of the supi sub-

protocol: we can use a message from a session that started before the supi session to modify the state
after the supi session. sessionid

n allows to detect whether another session has been executed since the
current session started, and to prevent the update of the sequence number when this is the case.

4.6 Modeling in The Bana-Comon Logic

We use the Bana-Comon logic to model the σul-unlinkability of the AKA+ protocol. To improve read-
ability, protocol descriptions often omit some details: e.g., in Section 4.4, we sometimes omitted the
description of the error messages. In other words, the AKA+ protocol presented in Section 4.4 is under-
specified. The failure message attack of [AMR+12] demonstrates that such details may be crucial for
security. Therefore, before proving the AKA+ protocol’s security, we need to fully formalize it, and to
make all assumptions explicit. We see two possible approaches:

• The first option, which we did not choose, consists in specifying the AKA+ protocol in the computa-
tional model. In that case, the agents are interactive Turing machines, which need to be described,
and the assumptions are properties of these machines. Since the σul-unlinkability property is game-
based, it directly applies to such a specification. Then, we translate the σul-unlinkability of this
protocol as the indistinguishability of two LTS. This require a tedious proof showing that the trans-
lation is sound. We also need to translate the assumptions into axioms of the logic. Finally, we
have to prove that the two LTS are indistinguishable in the logic.

• The other option, which we opted for, consists in directly describing the protocol in the Bana-
Comon logic, using a LTS. The assumptions on the protocol can be directly expressed in the logic
using axioms. This is simpler than describing the protocol and the assumptions as interactive
Turing machines and properties of these machines, and then translating them. Moreover, we do
not need any soundness proof. The problem with this approach lies in the security property, as
σul-unlinkability is a game-based property. Even though it is straightforward to express directly the
σul-unlinkability of a protocol using LTSs,6 we cannot establish a formal link between the game-
based and LTS-based properties, since the game-based setting was never fully formalized. Instead,
we informally argue that our formal LTS-based definition of σul-unlinkability corresponds to the
game-based definition of Section 4.5.1.

4.6.1 The AKA+ Protocol Action Trace

We let Sωid be a countable set of zero-arity function symbols, which are used to represent identities. We
are going to define the AKA+

N protocol, which is the AKA+ protocol on N identities Sid = {id1, . . . , idN}.
The full AKA+ protocol can be obtained from the protocols (AKA+

N)N∈N using a construction similar to
the one in Section 3.1.2, with a initial phase selecting the number of agents.

Symbolic State For every identity id ∈ Sid, we use several variables to represent UEid’s state. E.g.
sqnid

u and gutiidu store, respectively, UEid’s sequence number and temporary identity. Similarly, we have
variables for HN’s state, e.g. sqnid

n . We let Varsσ be the set of variables used in AKA+
N :

Varsσ =
⋃

a∈{u,n}
j∈N,id∈Sid

{
sqnid

a ,gutiida , e-auth
id
u , b-auth

id
u , e-auth

j
n

b-authjn, s-valid-guti
id
u , valid-guti

id
u , session

id
n

}

6As σul-unlinkability requires that the executions of specific scenarios of the protocol are indistinguishable.

78 The 5G-AKA Authentication Protocol Privacy

Transition System Qid
u :

E≤j−1
id puid(j, 0) puid(j, 1) puid(j, 2)

fuid(j)

E≤j−1
id tuid(j, 0) tuid(j, 1)

E≤j−1
id nsid(j)

Transition System Qjn:

pn(j, 0) pn(j, 1)

fn(j)

tn(j, 0) tn(j, 1)

Convention: where E≤jid = {puid(j0, i),tuid(j0, i), fuid(j0),nsid(j0) | j0 ≤ j}, the initial states of Qid
u

are puid(0, 0) and tuid(0, 0), and the initial states of Qjn are pn(j, 0) and tn(j, 0). Every state of Qid
u

and Qjn is final.

Figure 4.12: The Transition Systems Used to Define Valid Action Traces.

We recall that a symbolic state σ is a mapping from Varsσ to terms. Intuitively, σ(x) is a term representing
(the distribution of) the value of x.

Example 4.1. We can express the fact that gutiidu is unset in a symbolic state σ by having σ(gutiidu) ≡
UnSet. Also, given a state σ, we can state that σ′ is the state σ in which we incremented sqnid

u by having
σ′(x) be the term σ(sqnid

u) + 1 if x is sqnid
u , and σ(x) otherwise. �

Action Labels In the (q, σul)-unlinkability game, the adversary chooses dynamically which oracle it
wants to call. This is not convenient to use in proofs, as we do not know statically the i-th action of
the adversary. We prefer an alternative point-of-view, in which the trace of oracle calls is fixed. Then,
there are no winning adversaries against the σul-unlinkability game with a fixed trace of oracle calls if
the adversary’s interactions with the oracles when b = 0 are indistinguishable from the interactions with
the oracles when b = 1.

For every set of identities Sid, we use the following action labels L to represent symbolic calls to the
(q, σul)-unlinkability oracles:

• nsid(j) represents a call to DrawUEσul(id,_) when b = 0 or DrawUEσul(_, id) when b = 1.

• puid(j, i) (resp. tuid(j, i)) is the i-th user message in the session UEid(j) of the supi (resp. guti)
sub-protocol.

• fuid(j) is the only user message in the session UEid(j) of the assign-guti sub-protocol.

• pn(j, i) (resp. tn(j, i)) is the i-th network message in the session HN(j) of the supi (resp. guti)
sub-protocol.

• fn(j) is the only network message in the session HN(j) of the assign-guti sub-protocol.
The remaining oracle calls either have no outputs and do not modify the state (e.g. StartSession),
or can be simulated using the oracles above. E.g., since the HN sends an error message whenever the
protocol is not successful, the output of ResultHN can be deduced from the protocol messages.

Valid Action Traces We recall that an action trace τ is a finite sequence of action labels. Remark
that some sequences of actions do not correspond to a valid execution of the protocol. E.g. since the
session UEid(j) cannot execute both the supi and the guti protocols, a valid action trace cannot contain
both puid(j,_) and tuid(j,_). Similarly, the HN’s second message in the supi protocol cannot be sent
before the first message, hence pn(j, 1) cannot appear before pn(j, 0) in τ . This motivate the definition
of valid action traces.

Definition 4.2. Let (Qid
u)id∈Sid and (Qjn)j∈N be the transition systems in Figure 4.12. A trace τ =

ai0, . . . , ain is a valid action trace of the protocol AKA+
N if and only if τ is an interleaving of the words

wid1 , . . . , widN , w
0
n, . . . , w

l
n, . . . where:

4.6. Modeling in The Bana-Comon Logic 79

• for every 1 ≤ j ≤ N , widj is a run of Qidj
u .

• for every j ∈ N, wjn is a run of Qjn.

Example 4.2. We give valid action traces corresponding to the honest execution of AKA+
N between

UEid(i) and HN(j). If the supi protocol is used, we have the trace τ i,jsupi(id):

puid(i, 0), pn(j, 0),puid(i, 1),pn(j, 1),puid(i, 2), fn(j), fuid(i)

And if the guti sub-protocol is used, the trace τ i,jguti(id):

tuid(i, 0),tn(j, 0),tuid(i, 1),tn(j, 1), fn(j), fuid(i)

Which such notations, the left trace τl of the attack described in Figure 4.11, in which the adversary only
interacts with A, is:

tuA(0, 0),tn(0, 0),tuA(0, 1), τ1,1
supi(A),tn(0, 1), τ2,2

guti(A)

Similarly, we can give the right trace τr in which the adversary interacts with A and B:

tuA(0, 0),tn(0, 0),tuA(0, 1), τ0,1
supi(B),tn(0, 1), τ1,2

guti(B) �

4.6.2 The AKA+ Protocol Symbolic Outputs and State Updates

In Section 2.4 of Chapter 2, we represented the symbolic output tai and symbolic state update σupai of a
protocol P when executing the action ai ∈ L using terms with variables in {xin} ∪ Varsσ. Then, for any
action trace τ , this defined the symbolic trace:

s-tracePτ = (_, φi, σi)0≤i≤l

where φl is a finite sequence of ground terms representing the sequence of messages observed by the
adversary when executing the protocol P on the action trace τ , and σl is the symbolic state after τ .
Recall that in Chapter 2, we let φPτ be the last symbolic frame in s-tracePτ , i.e. φl. Similarly, we define
the last symbolic state σPτ , and the last message observe tPτ .

Definition 4.3. For every action trace τ and protocol P , if s-tracePτ = (_, φi, σi)0≤i≤l and t is the last
term in φl, i.e. φl ≡ _, t, then we let:

tPτ ≡ t σPτ ≡ σl

Moreover, if τ0 is the largest strict prefix of τ , i.e. τ = τ0, ai, then we let σin,Pτ ≡ σPτ0 be the symbolic state
before the execution of the last action; and φin,Pτ ≡ φPτ0 be the sequence of all messages observed during
the execution of τ , except for the last message.

Description of AKA+ We describe the symbolic messages and state updates of AKA+. In this
chapter, we only consider the AKA+ protocol. Therefore, when the number of identities N is irrelevant,
we omit the protocol name and write φτ , στ and tτ instead of φAKA+

N
τ , σAKA+

N
τ and tAKA+

N
τ . We start by

definition the initial frame φε and initial symbolic state.

Definition 4.4. The initial frame of the AKA+ protocol is φε ≡ pkn, and its initial symbolic state σε is
the function from Varsσ to terms defined by having, for every id ∈ Sid and j ∈ N:

σε(sqnid
u) ≡ sqn-initidu σε(sqnid

n) ≡ sqn-initidn σε(gutiidx) ≡ UnSet σε(e-auth
id
u) ≡ fail

σε(b-auth
id
u) ≡ fail σε(e-auth

j
n) ≡ fail σε(b-auth

j
n) ≡ fail σε(s-valid-guti

id
u) ≡ false

σε(valid-guti
id
u) ≡ false σε(sessionid

n) ≡ UnSet

80 The 5G-AKA Authentication Protocol Privacy

Now, for every action label ai, we define tai and σ
up
ai using the variables {xin} ∪Varsσ. As an example,

we describe the second message and state update of the session UEid(j) for the supi sub-protocol, which
corresponds to the action ai = puid(j, 1). We recall the relevant part of Figure 4.6:

UE

Input nr: b-authu ← nr〈
{〈id , sqnu〉}ne

pkn
, Mac1

km
(〈{〈id , sqnu〉}ne

pkn
, nr〉)

〉
sqnu ← sqnu + 1

First, we build a term representing the asymmetric encryption of the pair containing the UE’s permanent
identity id and its sequence number. The permanent identity id is simply represented using a constant
function symbol id, and UEid’s sequence number is stored in the variable sqnid

u . Finally, we use the
asymmetric encryption function symbol to build the term tencai ≡ {〈id , sqnid

u 〉}
nje
pkn

. Notice that the
encryption is randomized using a nonce nje, and that the freshness of the randomness is guaranteed by
indexing the nonce with the session number j. Finally, we can give tai and σ

up
ai :

tai ≡
〈
tencai , Mac1

kidm
(〈tencai , xin〉)

〉
σupai ≡

 sqnid
u 7→ suc(sqnid

u) e-authid
u 7→ fail

b-authid
u 7→ xin gutiidu 7→ UnSet

valid-gutiidu 7→ false

Remark that we omitted some state updates in the description of the protocol in Figure 4.6. For example,
UEid temporary identity gutiidu is reset when starting the supi sub-protocol. In the Bana-Comon model,
these details are made explicit.

The description of tai and σupai for the other actions can be found in Figure 4.13 and Figure 4.14.
Observe that we describe one more message for the supi and guti protocols than in Section 4.4. This is
because we added one message (puid(j, 2) for supi and tn(j, 1) for guti) for proof purposes, to simulate
the ResultUE and ResultHN oracles. Also, notice that in the guti protocol, when HN receives an
unassigned guti, it sends a decoy message to a special dummy identity iddum.

Remark 4.3. For every action trace τ = τ0, ai, the symbolic term tτ can be obtained from tai by
replacing every occurrence of xin by g(φinτ), and every state variable x ∈ Varsσ by σinτ (x). For example, if
ai = puid(j, 1), then tencτ ≡ {〈id , σinτ (sqnid

u)〉}n
j
e

pkn
and:

tτ ≡
〈
tencτ , Mac1

kidm
(〈tencτ , g(φinτ)〉)

〉
σupτ ≡

 sqnid
u 7→ suc(σinτ (sqnid

u)) e-authid
u 7→ fail

b-authid
u 7→ g(φinτ) gutiidu 7→ UnSet

valid-gutiidu 7→ false

We can get στ similarly. In Figure 4.13 and Figure 4.14, several intermediate terms are defined for some
action labels, e.g. acceptidai , msgidai . Here also we lift these definitions to action traces. For example, for
ai = puid(j, 2) and τ = _, ai, we let:

acceptidτ ≡ eq(g(φinτ),Mac2
kidm

(〈σinτ (b-authid
u) , σinτ (sqnid

u)〉)) �

4.6.3 Modeling σ-Unlinkability

We associate, to any execution of the (q, σul)-unlinkability game with a fixed trace of oracle calls, a pair
of action traces (τl, τr), which corresponds to the adversary’s interactions with the oracles when b is,
respectively, 0 and 1. We do this as follows:

• First, we consider a valid action trace τ on a set of identities Svh, seen as virtual handlers. The
trace τ is the sequence of oracle calls as seen by the adversary.

• We consider a mapping θl which associates, to every virtual handler in Svh, an identity in Sid,
where Sid = {id1, . . . , idN}. This mapping must check that new virtual handlers are associated to

4.6. Modeling in The Bana-Comon Logic 81

Case ai = nsid(j). σupai ≡ valid-gutiidu 7→ false

Case ai = puid(j, 0). tai ≡ Request_Challenge

Case ai = pn(j, 0). tai ≡ nj

Case ai = puid(j, 1). Let tencai ≡ {〈id , sqnid
u 〉}

nje
pkn

, then:

tai ≡
〈
tencai , Mac1

kidm
(〈tencai , xin〉)

〉
σupai ≡

{
sqnid

u 7→ suc(sqnid
u) e-authid

u 7→ fail valid-gutiidu 7→ false
b-authid

u 7→ xin gutiidu 7→ UnSet

Case ai = pn(j, 1). Let tdec ≡ dec(π1(xin), skn), and let:

acceptidiai ≡ eq(π2(xin),Mac1
kidim

(〈π1(xin) , nj〉)) ∧ eq(π1(tdec), idi)

inc-acceptidiai ≡ acceptidiai ∧ geq(π2(tdec), sqnidi
n)

tai ≡ if acceptid1

ai then Mac2
kid1m

(〈nj , suc(π2(tdec))〉)

else if acceptid2

ai then Mac2
kid2m

(〈nj , suc(π2(tdec))〉)
· · ·

else UnknownId

σupai ≡

sessionidi
n 7→ if inc-acceptidiai then nj else sessionidi

n

gutiidin 7→ if inc-acceptidiai then gutij else gutiidin

sqnidi
n 7→ if inc-acceptidiai then suc(π2(tdec)) else sqnidi

n

b-authjn, e-auth
j
n 7→ if acceptid1

ai then id1

else if acceptid2

ai then id2

· · ·
else UnknownId

Case ai = puid(j, 2).

acceptidai ≡ eq(xin,Mac2
kidm

(〈b-authid
u , sqnid

u 〉))
tai ≡ if acceptidai then ok else error
σupai ≡ e-authid

u 7→ if acceptidai then b-authid
u else fail

Case ai = fn(j).

msgidiai ≡ 〈gutij ⊕ f rkidi (n
j) , Mac5

kidim
(〈gutij , nj〉)〉

tai ≡ if eq(e-authjn, id1) then msgid1

ai

else if eq(e-authjn, id2) then msgid2

ai
· · ·

else UnknownId

Case ai = fuid(j). Let tguti ≡ π1(xin)⊕ f rkid(e-authid
u), then:

acceptidai ≡ eq(π2(xin),Mac5
kidm

(〈tguti , e-auth
id
u 〉)) ∧ ¬eq(e-authid

u , fail)

tai ≡ if acceptidai then ok else error

σupai ≡

{
valid-gutiidu 7→ acceptidai
gutiidu 7→ if acceptidai then tguti else UnSet

Convention: For every j ∈ N, gutij ∈ N .

Figure 4.13: The Symbolic Terms and States for nsid(j) and the supi and assign-guti Sub-Protocols.

82 The 5G-AKA Authentication Protocol Privacy

Case ai = tuid(j, 0).

tai ≡ if valid-gutiidu then gutiidu else NoGuti

σupai ≡
{

valid-gutiidu 7→ false e-authid
u 7→ fail

s-valid-gutiidu 7→ valid-gutiidu b-authid
u 7→ fail

Case ai = tn(j, 0). Let tidi⊕ ≡ sqnidi
n ⊕ fkidi (nj), then:

msgidiai ≡ 〈n
j , tidi⊕ , Mac3

kidim
(〈nj , sqnidi

n , gutiidin 〉)〉

acceptidiai ≡ eq(gutiidin , xin) ∧ ¬eq(gutiidin ,UnSet)
tai ≡ if acceptid1

ai then msgid1

ai

else if acceptid2

ai then msgid2

ai
· · ·

else msgiddum
ai

σupai ≡

gutiidin 7→ if acceptidiai then UnSet else gutiidin

sessionidi
n 7→ if acceptidiai then nj else sessionidi

n

b-authjn 7→ if acceptid1

ai then id1

else if acceptid2

ai then id2

· · ·
else UnknownId

Case ai = tuid(j, 1). Let tsqn ≡ π2(xin)⊕ fkid(π1(xin)), then:

acceptidai ≡ eq(π3(xin),Mac3
kidm

(〈π1(xin) , tsqn , gutiidu 〉)) ∧ s-valid-gutiidu ∧ range(sqnid
u , tsqn)

tai ≡ if acceptidai then Mac4
kidm

(π1(xin)) else error

σupai ≡

{
b-authid

u , e-auth
id
u 7→ if acceptidai then π1(xin) else fail

sqnid
u 7→ if acceptidai then suc(sqnid

u) else sqnid
u

Case ai = tn(j, 1).

acceptidiai ≡ eq(xin,Mac4
kidim

(nj)) ∧ eq(b-authjn, idi)

inc-acceptidiai ≡ acceptidiai ∧ eq(sessionidi
n , nj)

tai ≡ if
∨
i accept

idi
ai then ok else error

σupai ≡

sqnidi
n 7→ if inc-acceptidiai then suc(sqnidi

n)

else sqnidi
n

gutiidin 7→ if inc-acceptidiai then gutij else gutiidin

e-authjn 7→ if acceptid1

ai then id1

else if acceptid2

ai then id2

· · ·
else UnknownId

Convention: For every j ∈ N, gutij ∈ N .

Figure 4.14: The Symbolic Terms and States the guti Sub-Protocol.

4.6. Modeling in The Bana-Comon Logic 83

identities in lfree: for every identity id ∈ Sid, this mapping must be such that, at any point in τ ,
there is at most one virtual handler which is alive and mapped to id by θl. Similarly, we consider
a mapping θr for the right side.

• Finally, we let τl be the action trace obtained from τ by replacing the virtual handler by the cor-
responding concrete identities using θl, and re-numbering the session numbers. We define similarly
τr using θr. Then RNul contains the pair of action trace (τl, τr).

We define what it means for the AKA+
N protocol to be is σul-unlinkable.

Definition 4.5. The protocol AKA+
N is σul-unlinkable in any computational model satisfying the axioms

Ax if, for every (τl, τr) ∈ RNul , we can derive φτl ∼ φτr using Ax.

Proposition 4.1. RNul is reflexive, symmetric and transitive. Moreover, for every τ ∈ support(RNul), τ
is a valid action trace of AKA+

N .

Proof. We show this by induction over the valid action trace τvh, on virtual identities Svh, used to define
τ . We omit the details. �

Most Anonymised Trace Given an action trace τ ∈ support(RNul), there is a particular and unique
action trace τ which is the “most anonymised trace” corresponding to τ . Intuitively, τ is the trace τ
where we changed a user identity every time we could (i.e. every time nsid(_) appears). This is useful to
prove that the AKA+ protocol is σul-unlinkable, as it reduces the number of cases we have to consider:
we only need to show that we can derive φτ ∼ φτ for every τ ∈ support(RNul).

There is a small difficulty here: the number if identities in τ is not the same as in τ . Therefore, on the
right side we need to consider an execution of the AKA+ protocol with more identities. More precisely,
since the number of identities in τ is upper-bounded by |Sid| × |τ | = N × |τ |, it is sufficient to prove that
for every τ ∈ support(RNul), for every N ≥ N × |τ |, there exists a derivation of:

φ
AKA+

N
τ ∼ φ

AKA+
N

τ (4.1)

To do this, we consider a countable subset Sbid = {Ai | i ∈ N} of Sωid. The set Sbid is a set of base
identities. Then, for every base identity Ai, we have copies Ai = Ai,1, . . . ,Ai,C , . . . of Ai. The first copy
Ai,1 is always Ai, and all the copies are distinct function symbols. Moreover, for every (i, j) 6= (i′, j′), the
function symbols Ai,j and Ai′,j′ are distinct.

Definition 4.6. Given an identity Ab,c, we let fresh-id(Ab,c) = Ab,c+1, and given a base identity Ab,1 we
let copies-idC(Ab,1) = {Ab,i | 1 ≤ i ≤ C}. We require that all these identities are distinct:

Sωid =
⊎
i,j∈N{Ai,j}

where] denotes the disjoint union.

A basic action trace is an action trace using only base identities {Ab,1 | b ∈ N}.

Definition 4.7. An action trace τ is basic if it only uses network action labels and user action labels
Xid(_) where id is a base identity, i.e. id ∈ Sbid.

Then, for every basic action trace τ , we let τ be the most anonymised action trace corresponding to τ .

Definition 4.8. For every basic action trace τ , we let τ be the action trace obtained from τ by re-
placing, each time we encounter an action nsid(j), all subsequent actions with agent id by actions with
agent fresh-id(id):

τ =

{
nsνid(j), τ0[νid/id] when τ = nsid(j), τ0 and νid = fresh-id(id)

ai, τ0 when τ = ai, τ0 and ai 6∈ {nsid(j) | id ∈ Sid, j ∈ N}

Proposition 4.2. If τ is a valid basic action trace on identities Sid then τ is a valid action trace using
less than |Sid| × |τ | distinct identities.

Proof. The proof is straightforward by induction over τ . �

84 The 5G-AKA Authentication Protocol Privacy

We can check that for every (τl, τr) ∈ RNul we have τl = τr. Moreover, ∼ is a transitive relation.
Therefore, instead of proving that for every RNul (τl, τr) the formula in (4.1) Ax, it is sufficient to show
that for every τ ∈ support(RNul), we can derive:

φ
AKA+

N
τ ∼ φ

AKA+
N

τ

where N is larger than the number of distinct identities used in τ . Formally:

Proposition 4.3. Let Ax be a set of axioms including Trans and Sym. The AKA+
N protocol is σul-

unlinkable in any computational model satisfying some axioms Ax if for every τ ∈ support(RNul), for every
N ≥ N × |τ |, there is a derivation using Ax of:

φ
AKA+

N
τ ∼ φ

AKA+
N

τ

Proof. Let (τl, τr) ∈ RNul . Using Proposition 4.2, we know that τl and τr are valid action traces of
AKA+

N . Since τl = τr, and using the transitivity and symmetry axioms Trans and Sym, we get the
wanted derivation:

φ
AKA+

N
τl ∼ φ

AKA+
N

τl φ
AKA+

N
τr ∼ φ

AKA+
N

τr

φ
AKA+

N
τl ∼ φ

AKA+
N

τr

(Trans + Sym)∗

�

Notations We introduce some useful notations.

Definition 4.9. We define some functions on action traces:
• Given an action trace τ , we let ≺τ be the restriction of ≺ to the set of strict prefixes of τ , i.e.
τ2 ≺τ τ1 iff τ2 ≺ τ1 and τ1 ≺ τ .

• We extend ≺τ to symbolic actions as follows: we have ai ≺τ τ1 (resp. τ1 ≺τ ai) iff there exists τ2
such that h(τ2) = ai and τ2 ≺τ τ1 (resp. τ1 ≺τ τ2).

Definition 4.10. Given a basic trace τ and a basic identity id = Ai,0, we let ντ (id) be the identity Ai,l
where l is the number of occurrences of nsid(_) in τ .

4.6.4 Ghost Variable

To show that the AKA+
N protocol is σul-unlinkable, we need to know, for every identity id ∈ Sid, if there

was a successful supi session since the last nsid(_). To do this, we extend the set of variables Varsσ by
adding a ghost variable syncidu for every id ∈ Sid. We also extend the symbolic state updates of nsid(_)
and puid(j, 2) as follows:

• For ai = nsid(j):

σupτ ≡

{
valid-gutiidu 7→ false
syncidu 7→ false

• For ai = puid(j, 2):

σupτ ≡

{
e-authid

u 7→ if acceptidτ then σinτ (b-authid
u) else fail

syncidu 7→ σinτ (syncidu) ∨ acceptidτ

Remark that the variable syncidu is read only to update its value. It is not used in the actual protocol.
By consequence, the AKA+

N protocol is σul-unlinkable if and only if the extended AKA+
N protocol is

σul-unlinkable. We extend the initial symbolic state σε by adding σε(syncidu) ≡ false.

4.7 Axioms

In this section, we describe the set of axioms used to prove the AKA+ protocol σul-unlinkability. First,
we give the definitions of the non-standard joint cryptographic assumptions we use in Section 4.7.1, and
prove relations among them in Section 4.7.2. We translate these assumptions into axioms of the logic in
Section 4.7.3. Finally, we give the implementation axioms in Section 4.7.4, and some additional axioms
in Section 4.7.5.

4.7. Axioms 85

4.7.1 Joint Cryptographic Assumptions

In Section 2.5 of Chapter 2, we presented axioms for the cr-hk, euf-mac and prf cryptographic as-
sumptions. Unfortunately, we cannot use these axioms for AKA+, as the hash functions of this protocol
share the same secret key. Instead, we define variants of our cryptographic axioms for families of hash
functions which are jointly cr-hk, euf-mac or prf.

The functions H,H1, . . . ,Hl are jointly cr-hk if no adversary can build a collision for H(·, km), even
if it has oracle access to H(·, km), H1(·, km), . . . ,Hl(·, km).

Definition 4.11. A function H is cr-hk secure with a key jointly used by H1, . . . ,Hl if for every PPTM
A, the following quantity is negligible in η:

Pr
(
km : (m1,m2)← AOH(·,km),OH1(·,km),...,OHl(·,km)(1η),m1 6= m2 and H(m1, km) = H(m2, km)

)
where km is drawn uniformly in {0, 1}η.

Similarly, the functions H,H1, . . . ,Hl are jointly euf-mac if no adversary can forge a mac of H(·, km),
even if it has oracle access to H(·, km), H1(·, km), . . . ,Hl(·, km).

Definition 4.12. A function H is euf-mac secure with a key jointly used by H1, . . . ,Hl if for every
PPTM A, the following quantity is negligible in η:

Pr
(
km : (m,σ)← AOH(·,km),OH1(·,km),...,OHl(·,km)(1η),m not queried to OH(·,km) and σ = H(m, km)

)
where km is drawn uniformly in {0, 1}η.

Finally, the functions H,H1, . . . ,Hl are jointly prf if they are simultaneously computationally indis-
tinguishable from random functions g, g1, . . . , gl.

Definition 4.13. Let H1(·, ·), . . . ,Hn(·, ·) be a finite family of keyed hash functions from {0, 1}∗×{0, 1}η
to {0, 1}η. The functions H1, . . . ,Hn are Jointly Pseudo Random Functions if, for any PPTM adversary
A with access to oracles Of1 , . . . ,Ofn :

|Pr(k : AOH1(·,k),...,OHn(·,k)(1η) = 1)−Pr(g1, . . . , gn : AOg1(·),...,Ogn(·)(1η) = 1)|

is negligible, where:
• k is drawn uniformly in {0, 1}η.
• g1, . . . , gn are drawn uniformly in the set of all functions from {0, 1}∗ to {0, 1}η.

4.7.2 Relations Among Cryptographic Assumptions

It is well known that we have the following relation between the standard cryptographic assumptions:

prf ⇒ euf-mac ⇒ cr-hk

These relations have a joint version counterpart, which we prove below:

Joint prf ⇒ Joint euf-mac ⇒ Joint cr-hk

Proposition 4.4. If the functions H,H1, . . . ,Hl are jointly prf then H is euf-mac secure with a key
jointly used by H1, . . . ,Hl.

Proof. The proof is almost the same than the proof showing that if a function H is a prf then H is
euf-mac secure, and is by reduction. If H is not euf-mac secure with a key jointly used by H1, . . . ,Hl

then there exists an adversary A winning the corresponding game with a non-negligible probability. It is
simple to build from A an adversary B against the joint prf property of H,H1, . . . ,Hl.

First, B runs the adversary A, forwarding and logging its oracle calls. Eventually, A returns a pair
(m,σ). Then, B queries the first oracle on m, which returns a value σ′. Finally, B returns 1 if and only
if A never queried the first oracle on m and σ′ = σ. Then:

86 The 5G-AKA Authentication Protocol Privacy

• If B is interacting with the oracles OH(·,km),OH1(·,km), . . . ,OHl(·,km), its probability of returning 1
is exactly the advantage of A against the euf-mac game with key jointly used.

• If B is interacting with the oracles Og(·),Og1(·), . . . ,Ogl(·) where g, g1, . . . , gl are random functions,
then its probability of returning 1 is the probability of having g(m) = σ knowing that m was never
queried to g. Since g is a random function, this is less than 1/2η.

Since A has a non-negligible advantage against the euf-mac game with key jointly used, we deduce that
B has a non-negligible advantage against the joint prf game. �

Proposition 4.5. If H is euf-mac secure with a key jointly used by H1, . . . ,Hl then H is cr secure
with a key jointly used by H1, . . . ,Hl.

Proof. Assume that we have an adversary A against the joint cr-hk game. We are going to build an
adversary B against the joint euf-mac game. W.l.o.g. we can assume that:

• A makes at most p(η) calls to the hash oracle for OH1(·,km), where p is a polynomial.

• A never calls the hash oracle OH1(·,km) on the same value twice.

• A’s candidate collision pair (m1,m2) has been submitted to the oracle OH1(·,km). Moreover, m2 is
the last query to the oracle OH1(·,km).

• A’s output is a well-formed message only when it is a valid collision pair.
We use O~H(·,km) to denote the oracles OH1(·,km), . . . ,OHl(·,km). On input 1η, the adversary B does:

• First, it guesses randomly two indices i, j in J1, p(η)K. If i ≥ j, it aborts.
• Then, it simulates A, forwarding its calls to the oracles O~H(·,km), with two exceptions:

– The j-th query uj to the oracle OH1(·,km) is not forwarded. Instead, B sends to A the result of
the i-th query ui to the oracle OH1(·,km) (i.e. H1(ui, km)).

– If there is a j + 1-th query to OH1(·,km), B aborts.

• Finally, B gets a pair (m1,m2) from A. It checks whether m1 = ui and m2 = uj . If not, it aborts.
Otherwise, it returns (uj ,H1(ui, km)).

The probability of B winning the game is exactly the probability of B winning the game and not aborting.
Moreover, if B does not abort, A output a pair (m1,m2) which it believes is a valid collision. Therefore
B wins if and only if (m1,m2) is a valid collision. We use ρ1 for B random tape, and ρ2 for A random
tape.7 Then we can lower-bound the probability that B wins as follows:

Pr
(
ρ1, ρ2, km : BO~H(·,km)(ρ1, ρ2) wins

)
= Pr

(
ρ1, ρ2, km : BO~H(·,km)(ρ1, ρ2) wins ∧ ¬abort(B)

)
= Pr

(
ρ1, ρ2, km : (m1,m2)← AOB(ρ1,km)(ρ2) ∧ H1(m1, km) = H1(m2, km) ∧ ¬abort(B)

)
≥ Pr

(
ρ1, ρ2, km : (m1,m2)← AOB(ρ1,km)(ρ2) ∧ H1(m1, km) = H1(m2, km) ∧ ¬abort(B)

| AO~H(·,km)(ρ2) wins
)
×Pr

(
ρ2, km : AO~H(·,km)(ρ2) wins

)
Knowing thatAO~H(·,km)(ρ2) wins, the probability over ρ2 that B correctly guessed the index ofAO~H(·,km)(ρ2)’s
query of m1 to the oracle and the number of AO~H(·,km)(ρ2)’s queries is 1

p(η)2 . Hence:

≥ Pr
(
ρ1, ρ2, km : (m1,m2)← AOB(ρ1,km)(ρ2) ∧ H1(m1, km) = H1(m2, km) ∧ ¬abort(B)

| AO~H(·,km)(ρ2) wins ∧ guessed(B)
)
×Pr

(
ρ2, km : AO~H(·,km)(ρ2) wins

)
× 1

p(η)2

Knowing that B guessed properly, and that AO~H(·,km)(ρ2) wins, we know that the oracles OH(km) and
OB(ρ1, km) have the same outputs on A(ρ2)’s queries. By consequence:

≥ Pr
(
ρ1, ρ2, km : (m1,m2)← AO~H(·,km)(ρ2) ∧ H1(m1, km) = H1(m2, km) ∧ ¬abort(B)

| AO~H(·,km)(ρ2) wins ∧ guessed(B)
)
×Pr

(
ρ2, km : AO~H(·,km)(ρ2) wins

)
× 1

p(η)2

7Of course, B has access to ρ2 since it simulates A. But it only uses it for the simulation, not for its own coin tosses.

4.7. Axioms 87

In that case, we know that B does not abort and that the game is won. Therefore:

≥ Pr
(
ρ2, km : AO~H(·,km)(ρ2) wins

)
× 1

p(η)2

Which, by hypothesis, is non-negligible. �

4.7.3 Cryptographic Axioms

We translate these games in the logic for the two families of functions (Macj)1≤j≤5 and (f, f r). As
expected, these axioms are very similar to the axioms of Section 2.5 in Chapter 2. First, some definitions.

Definition 4.14. For every ground term u, we define three set of subterms of u:
• We let set-macjkm

(u) be the set of Macj terms under key km in u:

set-macjkm
(u) = {m | Macjkm

(m) ∈ st(u)}

• We let strict-set-macjkm
(u) be the set of mac-ed terms under key km and tag j in u appearing outside

a conditional:
strict-set-macjkm

(u) = {m | Macjkm
(m) ∈ strict-st(u)}

• For every g ∈ {f, f r}, we let set-prf gk(u) be the set of g terms under key k in u:

set-prf gk(u) = {m | gk(m) ∈ st(u)}

The axioms are given in Figure 4.15, and are sound under the appropriate cryptographic assumptions.

Proposition 4.6. The axioms in Figure 4.15 are valid in any computational model where:

crj (Maci)1≤i≤5 are jointly cr-hk
euf-macj ,p-euf-macj and cr-keyj6= (Maci)1≤i≤5 are jointly euf-mac
prf-macj (Maci)1≤i≤5 are jointly prf
prf-f and prf-f r (f, f r) are jointly prf

Proof. The proof are exactly the same than in Section 2.5 of Chapter 2. Therefore, we omit the details. �

Remark 4.4. Similarly to what we observed in Remark 2.4 of Chapter 2, the following axiom schema
is admissible using prf-macj + Trans:

~u, if
∨
i∈I eq(m,mi) then 0 else n ∼ ~v

~u, if
∨
i∈I eq(m,mi) then 0 else Macjkm

(m) ∼ ~v
when

fresh(n; ~u,m)

km vMac_· (_) ~u,m

{mi | i ∈ I} = set-macjkm
(~u,m)

By a notation abuse, we refer also to the axiom above as prf-macj . The same remark applies to prf-f
and prf-f r. �

Definition 4.15. We let Axcrypto be the set of cryptographic axioms:

Axcrypto = cca1 ∪
(
prf-macj

)
1≤j≤5

∪ prf-f ∪ prf-f r ∪
(
euf-macj

)
1≤j≤5

∪
(
crj

)
1≤j≤5

Proposition 4.7. The axioms in Axcrypto are valid in any computational model where the asymmetric
encryption {_}__ is ind-cca1 secure and f and f r (resp. Mac1–Mac5) are jointly prf.

Proof. For cca1, this is from Propositions 2.6. For the other axioms, we know using Proposition 4.4
and Proposition 4.5 that f and f r (resp. Mac1–Mac5) are jointly euf-mac and cr-hk. Therefore we can
conclude using Proposition 4.6. �

88 The 5G-AKA Authentication Protocol Privacy

Macjkm
(m1) = Macjkm

(m2)→ m1 = m2
when km vMac_· (_) m1,m2 (crj)

s = Macjkm
(m)→

∨
u∈S s = Macjkm

(u) when

{
km vMac_· (_) s,m

S = set-macjkm
(s,m)

(euf-macj)

s = Macjkm
(m)→∨

i∈I
bi ∧

∨
u∈Si

s = Macjkm
(u) when

km vMac_· (_) s,m

(bi)i∈I is a valid CS partition
∃(si,mi)i∈I s.t. ∀i ∈ I

[bi]si
.
= [bi]s ∧ [bi]mi

.
= [bi]m

Si = strict-set-macjkm
(si,mi)

(p-euf-macj)

Macjkm
(u) = Macjk′m(v) = false when

{
km, k

′
m vMac_· (_) u, v

km, k
′
m ∈ N

(cr-keyj6=)

~u, if
∨
i∈I eq(m,mi) then 0 else Macjkm

(m)
∼ ~u, if

∨
i∈I eq(m,mi) then 0 else n

when

fresh(n; ~u,m)

km vMac_· (_) ~u,m

{mi | i ∈ I} = set-macjkm
(~u,m)

(prf-macj)

~u, if
∨
i∈I eq(m,mi) then 0 else gk(m)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

when

fresh(n; ~u,m)

k vf·(_),f r· (_) ~u,m

{mi | i ∈ I} = set-prf gk(~u,m)

(prf-g)

Convention: 1 ≤ j ≤ 5 and g ∈ {f, f r}.

Figure 4.15: Axioms for Joint Cryptographic Assumptions

4.7.4 Axioms

We define the set of axioms Ax we use to prove that the AKA+ protocol provides mutual authentication
and σul-unlinkability. This set of axioms contains mostly axioms we presented in Chapter 2, plus some
additional axioms which are specific to the AKA+ protocol.

We define the set of constants Scst, which contains the set of identities Sωid, the integers 0 and 1, and
the special values UnSet, UnknownId, fail, defaut and error. This set does not include all the constants of
the AKA+, but only the ones whose interpretations must be distinct (this is enforced by an axiom later).

Definition 4.16. We define the set Scst of constant function symbols:

Scst := Sωid ∪ {UnSet,UnknownId, fail, defaut, error, 0, 1}

We now define the set of axioms Ax:

Definition 4.17. Ax is the set of axioms Ax = Axstruct ∪ Aximpl ∪ Axcrypto, where:
• Axstruct is the set of structural axioms, which are given in Figure 2.1 and Figure 2.2.

• Axcrypto is the set of cryptographic axioms in Figure 4.15, plus the cca1 axiom given in Section 2.6.1.

• Aximpl is the set of implementation axioms. It includes:

– The axioms Ax〈 , 〉, Axdec, Ax⊕ and Axbool from Section 2.5.2.
– The new axioms in Figure 4.16, which we describe below.

Description The only new axioms are the axioms in Figure 4.16. We quickly describe them:

4.7. Axioms 89

• The set Axeq of equality and dis-equality axioms:

πi(〈x1 , x2 , x3〉)
.
= xi for i ∈ {1, 2, 3} eq(A,B)

.
= false

6=-Const for every A,B ∈ Scst
s.t. A 6≡ B

• The set Axlen of length axioms:

len(u)
.
= len(s) len(v)

.
= len(t)

len(〈u , v〉) .
= len(〈s , t〉) len(id1)

.
= len(id2) for every id1, id2 ∈ Sωid

len(suc(sqn-initidu))
.
= len(sqn-initidu) for every id ∈ Sωid

len(sqn-initid1
u)

.
= len(sqn-initid2

u) for every id1, id2 ∈ Sωid

len(sqn-initidu)
.
= len(n) for every id ∈ Sωid, n ∈ N len(0x)

.
= x len(1x)

.
= x

len(x) 6 .= 0 when x ∈ Scst
len(u) 6 .= 0

len(〈u , v〉) 6 .= 0

len(v) 6 .= 0

len(〈u , v〉) 6 .= 0

A 6 .= B len(A) 6 .= 0 x 6 .= 0

Ax 6 .= By
l-neq

• The set Axinj of injectivity axioms:

¬eq(u, s) ∧ eq(〈u , v〉 , 〈s , t〉) .
= false

EQInj(〈· , _〉)
¬eq(v, t) ∧ eq(〈u , v〉 , 〈s , t〉) .

= false
EQInj(〈_ , ·〉)

¬eq(u, v) ∧ eq({u}ne
pk(n), {v}

n′e
pk(n′))

.
= false

EQInj({·}__)

• The set Axsqn of sequence number axioms:

range(u, v)
.
= eq(u, v) suc(u)

.
= u+ 1 sqn-initidn ≤ sqn-initidu

sqn-ini
for every id ∈ Sωid

φ[~u]
.
= true when ~u are ground terms

and Th(Z, 0, 1,+,−,=,≤) |= φ[~x]

Figure 4.16: The Set of Axiom Aximpl = Axite ∪ Axeq ∪ Axlen ∪ Axinj ∪ Axsqn.

• The set Axeq contains additional axioms satisfied by the equality function symbol eq(_,_). It
includes properties of triples and projections, and dis-equality axioms for the element of Scst. The
dis-equality axioms require that all the elements of Scst must be interpreted by distinct bit-strings:

eq(A,B)
.
= false

6=-Const for every A,B ∈ Scst s.t. A 6≡ B

• Axlen is the set of implementation axioms on the length function len(_). In particular, all identities
in Sωid must have the same lengths, and not be of length 0. Similarly, sequence numbers must have
the same lengths. There are also some axioms to reason on lengths, e.g.:

len(u)
.
= len(s) len(v)

.
= len(t)

len(〈u , v〉) .
= len(〈s , t〉)

len(u) 6 .= 0

len(〈u , v〉) 6 .= 0

len(v) 6 .= 0

len(〈u , v〉) 6 .= 0

• The set Axinj contains injectivity axioms for the pair and encryption. For example, for the pair, we
have the left injectivity axioms:

¬eq(u, s) ∧ eq(〈u , v〉 , 〈s , t〉) .
= false

EQInj(〈· , _〉)

• The set Axsqn contains sequence numbers axioms. In particular, it requires that:

90 The 5G-AKA Authentication Protocol Privacy

– The range and successor functions are, resp., an equality check and a by-one increment:

range(u, v)
.
= eq(u, v) suc(u)

.
= u+ 1

– Initially, the HN sequence number is no larger than the UE sequence number.

sqn-initidn ≤ sqn-initidu
sqn-ini

for every id ∈ Sωid

– For any term φ[] encoding of a boolean formula, if φ[~u] is valid in the first-order theory
Th(Z, 0, 1,+,−,=,≤) then φ[~u]

.
= true is a valid axiom.

φ[~u]
.
= true when ~u are ground terms and Th(Z, 0, 1,+,−,=,≤) |= φ[~x]

Notations In the rest of this chapter, the set of axioms Ax is fixed, and we stop to specify that we use
it: we say that we have a derivation of a formula φ to mean that φ can be deduced from Ax. Furthermore,
we say that φ holds when there is a derivation of φ.

Moreover, we abuse notations and write u = v instead of u .
= v. We can always disambiguate using

the context: if we expect a term, then u = v stands for the term eq(u, v), whereas if a formula is expected
then u = v stands for eq(u, v) ∼ true. We extends this to any boolean term: if b is a boolean term then
we say that b holds if we can show that b ∼ true holds. For example, στ (sqnid

u) ≥ στ (sqnid
n) holds if we

can show that geq(στ (sqnid
u), στ (sqnid

n)) ∼ true.

4.7.5 ? (p. 91) Additional Axioms

We present additional axioms, and show that they are logical consequences of the axioms Ax.

Definition 4.18. We let Simp denote a sequence of applications of R,FA and Dup, i.e.:

~s ∼ ~t
~u ∼ ~v Simp when ~s ∼ ~t

~u ∼ ~v (R+ FA + Dup)∗

Definition 4.19 (The indep-branch Axioms). Let ~u , ~b be ground terms, C[] an if-context and n, (ni)i∈I
nonces. If n, (ni)i∈I are distinct and such that fresh(n, (ni)i∈I ; ~u,~b , C[]), then the following inference rule
is an instance of the indep-branch axiom:

~u,C
[
~b � (ni)i∈I

]
∼ ~u, n

indep-branch

Proposition 4.8. The indep-branch axioms are a consequence of the Ax axioms.

Proof. To prove this, we first introduce the if-context C[] on the right to match the shape of the left side.
We then split the proof using CS, and conclude by applying Fresh. This yields the derivation:

∀i ∈ I, ~u,~b , ni ∼ ~u,~b , n
Fresh

~u,C
[
~b � (ni)i∈I

]
∼ ~u,C

[
~b � (n)i∈I

] CS∗

~u,C
[
~b � (ni)i∈I

]
∼ ~u, n

R
�

It is often convenient to apply the FA axiom under an if-context C.

Definition 4.20. Let ~v ,~b , (ui,j)i∈I,1≤j≤n, (u′i,j)i∈I,1≤j≤n be ground terms and C an if-context. Then
the following inference rule is an instance of the FAc axiom:

~v ,
(
C
[
~b � (ui,j)i∈I

])
1≤j≤n ∼ ~v

′,
(
C
[
~b ′ � (u′i,j)i∈I

])
1≤j≤n

~v , C
[
~b �

(
f((ui,j)1≤j≤n)

)
i∈I
]
∼ ~v ′, C

[
~b ′ �

(
f((u′i,j)1≤j≤n)

)
i∈I
] FAc

Proposition 4.9. The FAc axioms are a consequence of the Ax axioms.

4.8. Security of the AKA+ Protocol 91

Proof. First, we pull the f function outside of the if-context C using the homomorphism properties of
the if_then_else_. Finally we apply the FA axiom. This yields the derivation:

~v ,
(
C
[
~b � (ui,j)i∈I

])
1≤j≤n ∼ ~v

′,
(
C
[
~b ′ � (u′i,j)i∈I

])
1≤j≤n

~v , f
(
C
[
~b � (ui,j)i∈I

])
1≤j≤n ∼ ~v

′, f
(
C
[
~b ′ � (u′i,j)i∈I

])
1≤j≤n

FA

~v , C
[
~b �

(
f((ui,j)1≤j≤n)

)
i∈I
]
∼ ~v ′, C

[
~b ′ �

(
f((u′i,j)1≤j≤n)

)
i∈I
] R

�

Finally, the following axioms state that two encryptions with different randomness are almost never
equal. This requires that the encrypted messages are not of length zero.

Proposition 4.10. For every ground terms u, v, the following axiom is a consequence of the Ax axioms:

len(u)
.
= len(v) len(u) 6 .= 0

eq({u}ne
pk(n), {v}

n′e
pk(n))

.
= false

when

ne 6≡ n′e
fresh(ne, n′e;u, v)

n vpk(·),sk(·) u, v ∧ sk(n) vdec(_,·) u, v

Proof. We give directly the derivation:

pk(n), {u}ne
pk(n), len(v) ∼ pk(n), {u}ne

pk(n), len(v)
Refl

len(v) .= len(v)
Refl

len(v) .= len(1len(v))

pk(n), {u}ne
pk(n), {v}

n′e
pk(n) ∼ pk(n), {u}ne

pk(n), {1
len(v)}n

′
e

pk(n)

cca1

{u}ne
pk(n), {v}

n′e
pk(n) ∼ {u}

ne
pk(n), {1

len(v)}n
′
e

pk(n)

Restr

eq({u}ne
pk(n), {v}

n′e
pk(n))

.
= eq({u}ne

pk(n), {1
len(v)}n

′
e

pk(n))
FA

eq({u}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= false

eq({u}ne
pk(n), {v}

n′e
pk(n))

.
= false

Trans

To show eq({u}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= false, we use the transitivity axiom again:

eq({u}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= eq({0len(u)}ne

pk(n), {1
len(v)}n

′
e

pk(n)) eq({0len(u)}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= false

eq({u}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= false

Trans

Now, we give the derivation of the left premise:

pk(n), {1len(v)}n
′
e

pk(n), len(u) ∼ pk(n), {1len(v)}n
′
e

pk(n), len(u)
Refl

len(u)
.
= len(u)

Refl

len(u)
.
= len(0len(u))

pk(n), {u}ne
pk(n){1

len(v)}n
′
e

pk(n) ∼ pk(n), {0len(u)}ne
pk(n){1

len(v)}n
′
e

pk(n)

cca1

{u}ne
pk(n){1

len(v)}n
′
e

pk(n) ∼ {0
len(u)}ne

pk(n){1
len(v)}n

′
e

pk(n)

Restr

eq({u}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= eq({0len(u)}ne

pk(n), {1
len(v)}n

′
e

pk(n))
FA

And finally we prove the right premise eq({0len(u)}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= false:

eq(0, 1)
.
= false

6=-Const
len(0) 6 .= 0 len(u) 6 .= 0

eq(0len(u), 1len(v))
.
= false

l-neq

eq({0len(u)}ne
pk(n), {1

len(v)}n
′
e

pk(n))
.
= false

EQInj({·}__) +R
�

4.8 Security of the AKA+ Protocol

We now state the authentication and σul-unlinkability lemmas, and sketch the proofs. The full proofs are
given later, in Sections 4.9, 4.10 and 4.11.

92 The 5G-AKA Authentication Protocol Privacy

4.8.1 Mutual Authentication of the AKA+ Protocol

Authentication is modeled by a correspondence property [WL93] of the form “in any execution, if event
A occurs, then event B occurred”. This can be translated in the Bana-Comon indistinguishability logic.

Authentication of the User by the Network AKA+ guarantees authentication of the user by the
network if in any execution, if HN(j) believes it authenticated UEid, then UEid stated earlier that it had
initiated the protocol with HN(j).

We recall that e-authjn stores the identity of the UE authenticated by HN(j), and that UEid stores
in b-authid

u the random challenge it received. Moreover, the session HN(j) is uniquely identified by
its random challenge nj . Therefore, authentication of the user by the network is modeled by stating
that, for any valid action trace τ , if στ (e-authjn) = id then there exists some prefix τ ′ of τ such that
στ ′(b-auth

id
u) = nj . Let � be the prefix ordering on action traces, then:

Lemma 4.1. For every valid trace τ on Sid, id ∈ Sid and j ∈ N, we have:

στ (e-authjn) = id →
∨
τ ′�τ στ ′(b-auth

id
u) = nj

The key ingredients to show this lemma are necessary conditions for a message to be accepted by the
network. Basically, a message can be accepted only if it was honestly generated by a subscriber. These
necessary conditions rely on the unforgeability and collision-resistance of (Macj)1≤j≤5.

Necessary Acceptance Conditions Using the euf-macj and crj axioms, we can find necessary
conditions for a message to be accepted. We illustrate this on the HN’s second message in the supi sub-
protocol. We depict the beginning of the execution between session UEid(i) and session HN(j) below:

UEid(i) HN(j)

pn(j, 0)
nj

puid(i, 1)

〈
{〈id , sqnu〉}

nie
pkn

, Mac1km
(〈{〈id , sqnu〉}

nie
pkn

, nj〉)
〉

pn(j, 1)

We then prove that if a message is accepted by HN(j) as coming from UEid, then the first component
of this message must have been honestly generated by a session of UEid. Moreover, we know that this
session received the challenge nj .

Lemma 4.2. Let id ∈ Sid and τ be a valid trace on Sid ending with pn(j, 1). Then:

acceptidτ →
∨

τ1=_,puid(_,1)�τ

(
π1(g(φinτ)) = tencτ1 ∧ g(φinτ1) = nj

)
Proof sktech. Let tdec be the term dec(π1(g(φinτ)), skn). Then HN(j) accepts the last message iff the
following test succeeds:

π2(g(φinτ)) = Mac1
kidm

(〈π1(g(φinτ)) , nj〉) ∧ π1(tdec) = id

By applying euf-mac1 to the underlined part above, we know that if the test holds then π2(g(φinτ)) is
equal to one of the honest Mac1

kidm
subterms of π2(g(φinτ)), which are the terms:(
Mac1

kidm
(〈tencτ1 , g(φinτ1)〉)

)
τ1=_,puid(_,1)≺τ

(4.2)(
Mac1

kidm
(〈π1(g(φinτ1)) , nj1〉)

)
τ1=_,pn(j1,1)≺τ

(4.3)

Where ≺ is the strict version of �. We know that pn(j, 1) cannot appear twice in τ . Hence for every
τ1 = _,pn(j1, 1) ≺ τ , we know that j1 6= j. Since distinct nonces are never equal, except for a negligible
number of samplings, we derive that eq(nj1 , nj) = false. Using an axiom stating that the pair is injective
and the cr1 axiom, we can show that π2(g(φinτ)) cannot by equal to one of the terms in (4.3).

Finally, for every τ1 = _,puid(_, 1) ≺ τ , using cr1 and the pair injectivity axioms we derive that:(
Mac1

kidm
(〈π1(g(φinτ)) , nj〉) = Mac1

kidm
(〈tencτ1 , g(φinτ1)〉)

)
→ π1(g(φinτ)) = tencτ1 ∧ nj = g(φinτ1) �

We prove a similar lemma for tn(j, 1). Lemma 4.1’s proof is straightforward using these two properties.

4.9. Mutual Authentication of the AKA+ Protocol 93

Authentication of the Network by the User The AKA+ protocol also provides authentication of
the network by the user. That is, in any execution, if UEid believes it authenticated session HN(j) then
HN(j) stated that it had initiated the protocol with UEid. Formally:

Lemma 4.3. For every valid trace τ on Sid, id ∈ Sid and j ∈ N, we have:

στ (e-authid
u) = nj →

∨
τ ′�τ στ ′(b-auth

j
n) = id

This is shown using the same techniques than for Lemma 4.1.

4.8.2 σ-Unlinkability of the AKA+ Protocol

Lemma 4.2 gives a necessary condition for a message to be accepted by pn(j, 1) as coming from id. We
can actually go further, and show that a message is accepted by pn(j, 1) as coming from id if and only
if it was honestly generated by a session of UEid which received the challenge nj .

Lemma 4.4. Let id ∈ Sid and τ be a valid trace ending with pn(j, 1). There exists a derivation of:

acceptidτ ↔
∨

τ1=_,puid(_,1)�τ

(
g(φinτ) = tτ1 ∧ g(φinτ1) = nj

)

We prove similar lemmas for most actions of the AKA+ protocol. Basically, these lemmas state that a
message is accepted if and only if it is part of an honest execution of the protocol between UEid and HN.
This allow us to replace each acceptance conditional acceptidτ by a disjunction over all possible honest
partial transcripts of the protocol.

We now state the σul-unlinkability lemma:

Lemma 4.5. The AKA+
N protocol is σul-unlinkable in any computational model satisfying the axioms Ax.

Proof sktech. Using Proposition 4.3, we only need to show that for every valid basic action trace τ , there
exists a derivation of φτ ∼ φτ (where the left frame is a frame of the AKA+

N protocol, and the right frame
of the AKA+

N protocol for N large enough). The full proof is long and technical, and is by induction on
τ . Take a valid action trace τ , we assume by induction that there is a derivation of φinτ ∼ φinτ . We want
to build a derivation of φinτ , tτ ∼ φinτ , tτ using the inference rules in Ax.

First, we rewrite tτ using acceptance characterization lemmas, such as Lemma 4.4. This replaces each
acceptidτ by a case disjunction over all honest executions on the left side. Similarly, we rewrite tτ as a case
disjunction over honest executions on the right side. Our goal is then to find a matching between left
and right transcripts such that matched transcripts are indistinguishable. If a left and right transcript
correspond to the same trace of oracle calls, this is easy. But since the left and right traces of oracle
calls may differ, this is not always possible. E.g., some left transcript may not have a corresponding
right transcript. When this happens, we have two possibilities: instead of a one-to-one match we build
a many-to-one match, e.g. matching a left transcript to several right transcripts; or we show that some
transcripts always result in a failure of the protocol. Showing the latter is complicated, as it requires to
precisely track the possible values of sqnid

u and sqnid
n across multiple sessions of the protocol to prove

that some transcripts always yield a de-synchronization between UEid and HN. �

4.9 Mutual Authentication of the AKA+ Protocol

We now prove that the AKA+ protocol provides mutual authentication. This section is organized as
follows: we state some useful properties and necessary acceptance conditions in Section 4.9.1 (we postpone
the proofs of the necessary acceptance conditions to Section 4.9.5); then, we prove authentication of the
user by the network in Section 4.9.2, and authentication of the network by the user in Section 4.9.3; finally,
we prove that we actually have injective authentication of the network by the user in Section 4.9.4.

94 The 5G-AKA Authentication Protocol Privacy

4.9.1 Invariants and Necessary Acceptance Conditions

We start by proving some properties of the AKA+ protocol. First, we show that the sequence numbers
are always of the same length. This is an easy consequence of the length axioms.

Proposition 4.11. For every valid action traces τ, τ ′ on Sid, id1, id2 ∈ Sid and n ∈ N :

len(σinτ (sqnid1
u)) = len(σinτ (sqnid2

u)) len(σinτ (sqnid1
u)) = len(σinτ ′(sqnid1

u)) len(σinτ (sqnid1
u)) = len(n)

Proof. We show only the first equality, as the proofs of the other two equalities are similar. First, we
prove by induction over τ that for every id ∈ Sid, there exists an if-context C, terms ~b and integers (ki)i
such that:

σinτ (sqnid
u) = C[~b � (sucki(sqn-initidu))i)]

Therefore, let C1, C2, ~b1,~b2 and (k1
i)i, (k

2
j)j be such that:

σinτ (sqnid1
u) = C1[~b1 � (suck

1
i (sqn-initid1

u))i] σinτ (sqnid2
u)) = C2[~b2 � (suck

2
j (sqn-initid2

u))j]

Using the axioms in Axlen, we show that for every i, i′, j, j′:

len(suck
1
i (sqn-initid1

u)) = len(suck
1
i′ (sqn-initid1

u)) = len(suck
2
j (sqn-initid2

u)) = len(suck
2
j′ (sqn-initid2

u))

Therefore, using R we have a derivation of:

len(σinτ (sqnid1
u)) = len(σinτ (sqnid2

u)) �

The following proposition states that nn appears only in the HN public key pk(nn) and secret key
sk(nn), and that for every id ∈ Sid, the keys kid and kidm appear only in key position in Mac1–Mac5. These
properties will be useful to apply the cryptographic axioms later.

Proposition 4.12 (Invariant (inv-key)). For all valid action trace τ on Sid = {id1, . . . , idN}, we have:

nn vpk(·),sk(·) φτ ∧ sk(nn) vdec(_,·) φτ

∀1 ≤ i ≤ N, kidim vMac_· (_) φτ

∀1 ≤ i ≤ N, kidi vf·(_),f r· (_) φτ

Proof. The proof is straightforward by induction on τ . �

The following proposition states that if a user id has no valid temporary identity at instant τ2 (i.e.
στ2(gutiidu) = UnSet), and if every assign-guti sub-protocol session run by id between the instants τ2
and τi failed (i.e. for every τ1 = _, fuid(j1) such that τ2 ≺τ τ1 ≺τ τi, we have ¬acceptidτ1), then id does
not have a valid temporary identity at instant τi (i.e. σinτi(gutiidu) = UnSet). Formally:

Proposition 4.13. For every valid action trace τ on Sid, for every τ2 ≺τ τi and id ∈ Sid, we have:

στ2(gutiidu) = UnSet ∧
∧

τ1=_,fuid(j1)
τ2≺τ τ1≺τ τi

¬acceptidτ1 → σinτi(gutiidu) = UnSet

Proof. The proof is straightforward by induction on τi. �

We let session be the (partial) function mapping an action label ai to its network session number j.

Definition 4.21. We define the partial session function:

session(ai) = j when ai = x(j,_) where x ∈ {pn,tn, fn}

We let s-startedj(τ) be the predicate holding exactly on action traces where the j-th session of the
network started, i.e. where session(ai) = j for some ai appearing in τ .

Definition 4.22. For every action trace τ , we let s-startedj(τ) be true if and only if there exists ai ∈ τ
such that session(ai) = j.

4.9. Mutual Authentication of the AKA+ Protocol 95

We now describe some properties of AKA+. They are formally defined and shown after.
• The property (A1) states that the HN challenge nj cannot appear in the frame φτ if the session j

has not started yet. Formally, if ¬s-startedj(τ) then nj 6∈ st(φτ).

• The properties (A2) and (A3) give conditions under which some user sequence number has
changed.

• (A4) expresses the fact that two different users id1, id2 can never have the same temporary identities
on the server side. This is intuitive, as the server samples temporary identities uniformly at random,
and should never assign the same identity to two different users.

• (A5), (A6) and (A7) state that if the network accepts a message, then there is no ambiguity on
the sender. That is, for every id0 6= id1, we cannot have acceptid0

τ and acceptid1
τ simultaneously.

• Finally, (A8) says that if the user id believes he authenticated the session j of the network (i.e.
σinτ (e-authid

u) = nj), then it must have received the challenge nj when he started his current session
(i.e. σinτ (b-authid

u) = nj).

Proposition 4.14. Let τ = _, ai be a valid action trace on Sid, then:
1. (A1) If ¬s-startedj(τ) then nj 6∈ st(φτ).

2. (A2) For all τ0 = _,puid(j0, 2) � τ and τ1 = _,puid(j1, 2) � τ , if τ0 6= τ1 then:

σinτ0(sqnid
u) 6= σinτ1(sqnid

u)

3. (A3) For every τ0 = _,puid(j0, 2), τ1 = _,puid(j1, 1) such that τ1 ≺τ τ0, if j0 6= j1 then:

σinτ0(sqnid
u) 6= suc(σinτ1(sqnid

u))

4. (A4) For every id0, id1 ∈ Sid such that id0 6= id1:(
σinτ (gutiid0

n) 6= UnSet ∧ σinτ (gutiid1
n) 6= UnSet

)
→ σinτ (gutiid0

n) 6= σinτ (gutiid1
n)

5. (A5) , (A6) , (A7) If ai = pn(j, 1),tn(j, 0) or tn(j, 1), then for every id0 6= id1,(
¬acceptid0

τ

)
∨
(
¬acceptid1

τ

)
6. (A8) For every id ∈ Sid, j ∈ N, σinτ (e-authid

u) = nj → σinτ (b-authid
u) = nj.

Proof. All these properties are simple to show:
• (A1) is trivial by induction over τ .

• (A2) and (A3) both follow from the fact that if τ = _,puid(j, 1) then στ (sqnid
u) ≡ suc(σinτ (sqnid

u)),
and therefore στ (sqnid

u) > σinτ (sqnid
u).

• (A5) and (A7) follow easily from the unforgeability axioms euf-mac, and the collision resistance
axioms cr-key6=.

• To prove (A4), we first observe that for every id ∈ Sid, we initially have σε(gutiidn) ≡ UnSet, and
that the only value we store in gutiidn are UnSet or gutii for some i ∈ N. Therefore it is easy to
show that for every τn ≺ τ :

σinτn(gutiidn) 6= UnSet→
∨
i∈S

σinτn(gutiidn) = gutii

where S ⊆ N is the set of network session number appearing in τ . Moreover, we can only store
gutii in gutiidn at pn(i, 1) or tn(i, 1), and by validity τ cannot contain both pn(i, 1) and tn(i, 1).
We conclude observing that we cannot have acceptid0

τn and acceptid1
τn if τn = _,pn(i, 1) or _,tn(i, 1)

using (A5) and (A7). The result follows.

• (A6) is a consequence of (A4).

• (A8) follows from the fact that whenever a new session of the protocol is started, we reset both
b-authid

u and e-authid
u . Then e-authid

u is either set to fail or to b-authid
u . �

96 The 5G-AKA Authentication Protocol Privacy

We can now state and prove our first necessary acceptance conditions.

Lemma 4.6. Let τ = _, ai be a valid action trace on Sid, then:
1. (Acc1) If ai = pn(j, 1), then for every id ∈ Sid:

acceptidτ →
∨

τ0=_,puid(j0,1)≺τ

(
π1(g(φinτ)) = {

〈
id , σinτ0(sqnid

u)
〉
}n
j0
e

pkn
∧ g(φinτ0) = nj

)
2. (Acc2) If ai = puid(j, 2). Let τ1 = _,puid(j, 1) ≺ τ . Then:

acceptidτ →
∨

τ0=_,pn(j0,1)
τ1≺τ τ0

acceptidτ0 ∧ g(φinτ1) = nj0 ∧ π1(g(φinτ0)) = {〈id , σinτ1(sqnid
u)〉}n

j
e

pkn

To help the reader, we graphically represents how the instants τ1, τ0 and τ are situated:8

τ :

puid(j, 1)

τ1

pn(j0, 1)

τ0

puid(j, 2)

τ

3. (Acc3) If ai = tuid(j, 1) then:

acceptidτ →
∨

τ0=_,tn(j0,0)
τ0≺τ

(
acceptidτ0 ∧ π1(g(φinτ)) = nj0 ∧ π2(g(φinτ)) = σinτ0(sqnid

n)⊕ fk(nj0)

∧ σinτ (gutiidu) = σinτ0(gutiidn)

)

4. (Acc4) If ai = tn(j, 1) then:

acceptidτ →
∨

τ0=_,tuid(_,1)≺τ
acceptidτ0 ∧ π1(g(φinτ0)) = nj

Proof. The proof of this lemma is given later, in Section 4.9.5. �

4.9.2 Authentication of the User by the Network

We now prove that the AKA+ protocol provides authentication of the user by the network. Remark that
the lemma below subsumes Lemma 4.1.

Lemma 4.7. For every valid action trace τ on Sid, the AKA+ protocol provides authentication of the
user by the network:

∀ id ∈ Sid, j ∈ N, στ (e-authjn) = id →
∨
τ ′�τ

στ ′(b-auth
id
u) = nj

Moreover, if τ = _,tn(j, 1) then:

acceptidτ →
∨

τ0=_,tuid(_,1)≺τ
στ0(b-authid

u) = nj

Proof ?(p. 97). We prove this by induction on τ . First, for τ = ε we have that for every id ∈ Sid,
στ (e-authjn) ≡ fail 6= id by axiom 6=-Const. Therefore the property holds.

Let τ = _, ai. Let j ∈ N be a session number. Remark that if σupτ (e-authjn) = ⊥, and if the
authentication property holds just before the instant τ , i.e.:

∀id ∈ Sid, σinτ (e-authjn) = id →
∨
τ ′≺τ

σinτ ′(b-auth
id
u) = nj

then the authentication property for j holds at instant τ . Therefore we only need to consider the action
labels ai = pn(j, 1) and ai = tn(j, 1).

8We will often use such pictures in this chapter. They are particularly useful when more than two instants are being
considered simultaneously. Some conventions: the horizontal line represents the action trace whose name is on the left,
before the semi-column (e.g. “τ :” here); instants are represented in their order of appearance at the bottom of the horizontal
line; at the top of the line, we indicate (when it is known) the last action of an instant (e.g. here τ1 ends by puid(j, 1)).

4.9. Mutual Authentication of the AKA+ Protocol 97

• Case ai = pn(j, 1): Let id ∈ Sid. Using 6=-Const, we get that στ (e-authjn) = id→ acceptidτ . Using
(Acc1) of Proposition 4.14, we deduce that:

στ (e-authjn) = id→
∨

τ0=_,puid(j0,1)≺τ
g(φinτ0) = nj (4.4)

By validity of τ , there exists τ2 such that τ2 = _,pn(j, 0) ≺ τ . Let τ0 ≺τ τ2, we have ¬s-startedj(τ0).
Using (A1), we get that nj 6∈ st(φinτ0). It follows from axiom =-ind that g(φinτ0) 6= nj . Hence:∨

τ0=_,puid(j0,1)≺τ
g(φinτ0) = nj ↔

∨
τ0=_,puid(j0,1)
τ2≺τ τ0≺τ

g(φinτ0) = nj (4.5)

Let τ0 be such that τ2 ≺τ τ0 ≺ τ and τ0 = _,puid(j0, 1). Since στ0(b-authid
u) ≡ g(φinτ0), we have:

g(φinτ0) = nj → στ0(b-authid
u) = nj

Hence putting (4.4) and (4.5) together, we get:

στ (e-authjn) = id →
∨

τ0=_,puid(j0,1)
τ2≺τ τ0≺τ

στ0(b-authid
u) = nj

Since {τ0 | τ0 = _,puid(j0, 1) ∧ τ2 ≺τ τ0 ≺ τ} is a subset of {τ0 | τ0 � τ}, we deduce that:

στ (e-authjn) = id → →
∨
τ0�τ

σinτ0(b-authid
u) = nj

• Case ai = tn(j, 1): This case is similar to the previous one. First, we check that 6=-Const implies
that στ (e-authjn) = id→ acceptidτ . Moreover, using (Acc4), we know that:

acceptidτ →
∨

τ0=_,tuid(_,1)≺τ
acceptτ0 ∧ π1(g(φinτ0)) = nj

Moreover, for every τ0 = _,tuid(_, 1) ≺ τ , we have:

acceptidτ0 ∧ π1(g(φinτ0)) = nj → στ0(b-authid
u) = nj

Hence:

acceptidτ →
∨

τ0=_,tuid(_,1)≺τ
acceptτ0 ∧ π1(g(φinτ0)) = nj

→
∨

τ0=_,tuid(_,1)≺τ
στ0(b-authid

u) = nj

→
∨
τ0�τ

σinτ0(b-authid
u) = nj �

4.9.3 Authentication of the Network by the User

We prove that the AKA+ protocols provides authentication of the network by the user. We actually
prove the stronger result that for any valid action trace τ , if the authentication of UEid succeeded at
instant τ (i.e. σinτ (e-authid

u) 6= fail), then there exists some j ∈ N such that UEid authenticated HN(j).

Lemma 4.8. For all valid action trace τ on Sid, the AKA+ protocol provides authentication of the
network by the user. Formally, for every id ∈ Sid and j ∈ N, we let:

suc-authτ (id) ≡ στ (e-authid
u) 6= fail authτ (id, j) ≡ στ (b-authjn) = id ∧ nj = στ (e-authid

u)

Then:
∀id ∈ Sid, suc-authτ (id) →

∨
s-startedj(τ) authτ (id, j)

98 The 5G-AKA Authentication Protocol Privacy

Proof ?(p. 100). We prove this by induction on τ . First, for τ = ε we have that for every id ∈ Sid,
στ (e-authid

u) ≡ fail. Therefore the property holds. Let τ = τ0, ai, and assume by induction that:

∀ id ∈ Sid, suc-authτ0(id) →
∨

s-startedj(τ0) authτ0(id, j)

If for every j0 and id we have:

σupτ (b-authj0n) = ⊥ σupτ (e-authid
u) = ⊥

then, by induction hypothesis, we have authentication of the network by the user at τ . Therefore it
only remains to show that authentication holds for τ in the cases where ai is equal to pn(j, 1), puid(j, 1),
puid(j, 2), tuid(j, 0), tn(j, 0) or tuid(j, 1).

Before starting the case disjunction, remark that if we can prove that for every id0 ∈ Sid and j0 ∈ N:

(suc-authτ (id0) ∧ authτ (id0, j0)) ↔ (suc-authτ0(id0) ∧ authτ0(id0, j0)) (4.6)

Then we can directly conclude by applying the induction hypothesis. We now do a case disjunction on ai.
• Cases ai = puid(j, 1) and ai = tuid(j, 0). In both cases, we have στ (e-authid

u) ≡ fail, and therefore
the property trivially holds for id. Besides, for every id0 6= id and j0 ∈ N, (4.6) holds.

• Case ai = tuid(j, 1). For all id0 6= id and for all j0 ∈ N, we easily check that (4.6) holds. It only
remains to show that:

suc-authτ (id) →
∨

s-startedi(τ) authτ (id, i)

Let k ≡ kid. We observe that:

suc-authτ (id) → στ (e-authid
u) 6= fail

→ acceptidτ

→
∨

τ0=_,tn(j0,0)≺τ

(
acceptidτ0 ∧ π1(g(φinτ)) = nj0 ∧
π2(g(φinτ)) = σinτ0(sqnid

n)⊕ fk(nj0)

)
(by (Acc3))

Let τ0 = tn(j0, 0) such that τ0 ≺τ τ . Then:

π1(g(φinτ)) = nj0 ∧ acceptidτ → στ (e-authid
u) = nj0

Moreover using (A7) we know that acceptidτ0 → στ0(b-authj0n) = id. Using the validity of τ , we
can easily show that for all τ0 ≺ τ ′ � τ we have σupτ ′ (b-auth

j0
n) ≡ ⊥. We deduce that acceptidτ0 →

στ (b-authj0n) = id. Hence:

suc-authτ (id) →
∨

τ0=_,tn(j0,0)≺τ
authτ (id, j0) →

∨
s-startedj0 (τ)

authτ (id, j0)

• Case ai = puid(j, 2). For all id0 6= id and for all j0 ∈ N, we check that (4.6) holds. It remains to
prove that:

suc-authτ (id) →
∨

s-startedj(τ) authτ (id, j)

First, we observe that:

suc-authτ (id) → acceptidτ

→
∨

τ0=_,pn(j0,1)
τ1=_,puid(j,1)

τ1≺τ τ0

(
acceptidτ0 ∧ g(φinτ1) = nj0 ∧
π1(g(φinτ0)) = {〈id , σinτ1(sqnid

u)〉}n
j
e

pkn

)
(by (Acc2))

Let τ0 = _,pn(j0, 1), τ1 = _,puid(j, 1) such that τ1 ≺τ τ0. Let τ2 = _,pn(j0, 0), by validity of τ
we know that τ2 ≺τ τ0. Moreover, if τ1 ≺τ τ2 then by (A1) we have nj0 6∈ st(φinτ1), and therefore
using =-ind we obtain that g(φinτ1) 6= nj0 . Hence:

suc-authτ (id) →
∨

τ0=_,pn(j0,1)
τ1=_,puid(j,1)
τ2=_,pn(j0,0)
τ2≺τ τ1≺τ τ0

ψτ1τ2,τ0︷ ︸︸ ︷
acceptidτ ∧ acceptidτ0 ∧ g(φinτ1) = nj0 ∧ π1(g(φinτ0)) = {〈id , σinτ1(sqnid

u)〉}n
j
e

pkn

4.9. Mutual Authentication of the AKA+ Protocol 99

We know that g(φinτ1) = nj0 → στ1(b-authid
u) = nj0 , and that:

acceptidτ0 → στ0(b-authj0n) = id acceptidτ → στ (e-authid
u) = στ (b-authid

u)

We represent graphically all the information we have below:

τ :

τ2 = _,pn(j0, 0) τ1 = _,puid(j, 1) τ0 = _,pn(j0, 1) τ = _,puid(j, 2)

στ1(b-authid
u) =g(φinτ1)

=nj0

στ0(b-authj0n) = id

στ (e-authid
u) =στ (b-authid

u)

=nj0

It follows that ψτ1τ2,τ0 → authτ (id, j0). Hence:

suc-authτ (id) →
∨

τ0=_,pn(j0,1)
τ1=_,puid(j,1)
τ2=_,pn(j0,0)
τ2≺τ τ1≺τ τ0

authτ (id, j0) →
∨

s-startedj0 (τ)

authτ (id, j0)

• Case ai = pn(j, 1). For all id ∈ Sid and for all j0 ∈ N such that j0 6= j we have:

suc-authτ (id) ≡ suc-authτ0(id) authτ (id, j0) ≡ authτ0(id, j0)

Hence (4.6) holds. It only remains the case where id ∈ Sid and j0 = j. By validity of τ we
know that σinτ (b-authjn) ≡ fail. From 6=-Const it follows that σinτ (b-authjn) 6= id, and therefore
authτ0(id, j)↔ false.
To conclude this case, we only need to show that (suc-authτ (id) ∧ authτ (id, j)) ↔ false. We recall
that suc-authτ (id) ≡ στ (e-authid

u) 6= fail. The only instants that can set e-authid
u to something other

than fail are puid(_, 2) and tuid(_, 1). Formally, we show by induction on τ that:

στ (e-authid
u) 6= fail →

∨
τ0�τ

τ0=_,puid(_,2)
∨ τ0=tuid(_,1)

acceptidτ0 ∧ στ (e-authid
u) = στ0(e-authid

u) (4.7)

Therefore we only have to prove that for any τ0 in the disjunction above, we have:(
suc-authτ (id) ∧ authτ (id, j) ∧ acceptidτ0 ∧ στ (e-authid

u) = στ0(e-authid
u)
)
↔ false

We have two cases:
– Let τ0 = _,puid(j0, 2) � τ . By validity of τ , we know that there exists τ2 ≺τ τ0 such that
τ2 = _,puid(j0, 1). By (Acc2):

acceptidτ0 →
∨

τ1=_,pn(j1,1)
τ2≺τ τ1≺τ τ0

g(φinτ2) = nj1

Moreover, acceptidτ0 ∧ g(φinτ2) = nj1 → στ0(e-authid
u) = nj1 . Therefore:

acceptidτ0 ∧ στ (e-authid
u) = στ0(e-authid

u) →
∨

τ1=_,pn(j1,1)
τ2≺τ τ1≺τ τ0

στ (e-authid
u) = nj1

Since τ0 ≺ τ we know that for every τ1 = _,pn(j1, 1) ∈ {τ1 | τ2 ≺ τ1 ≺τ τ0}, j1 6= j. Using
=-ind we deduce that nj1 6= nj . Since authτ (id, j)→ nj = στ (e-authid

u), we obtain that:

acceptidτ0 ∧ στ (e-authid
u) = στ0(e-authid

u) ∧ authτ (id, j) →
∨

τ1=_,pn(j1,1)
τ2≺τ τ1≺τ τ0

nj = nj1

→ false

100 The 5G-AKA Authentication Protocol Privacy

– Let τ0 = _,tuid(j0, 1) � τ . We do a similar reasoning. By (Acc3):

acceptidτ0 →
∨

τ1=_,tn(j1,0)
τ1≺τ τ0

π1(g(φinτ0)) = nj1

Remark that acceptidτ0 ∧ π1(g(φinτ0)) = nj1 → στ0(e-authid
u) = nj1 . Hence:

acceptidτ0 ∧ στ (e-authid
u) = στ0(e-authid

u) →
∨

τ1=_,tn(j1,0)
τ1≺τ τ0

στ (e-authid
u) = nj1

By validity of τ , we know that for every τ1 = _,tn(j1, 0) such that τ1 ≺τ τ0, we have j1 6= j,
and by consequence nj1 6= nj . Since authτ (id, j)→ nj = στ (e-authid

u), we obtain that:

acceptidτ0 ∧ στ (e-authid
u) = στ0(e-authid

u) ∧ authτ (id, j) →
∨

τ1=_,tn(j1,0)
τ1≺τ τ0

nj = nj1

→ false

• Case ai = tn(j, 0). Again, for all id ∈ Sid and for all j0 ∈ N such that j0 6= j:

suc-authτ (id) ≡ suc-authτ0(id) authτ (id, j0) ≡ authτ0(id, j0)

Hence (4.6) holds. It only remains the case j0 = j. We know that σinτ (b-authjn) ≡ fail, therefore
suc-authτ0(id, j) = false, which in turn implies that:

(suc-authτ0(id) ∧ authτ0(id, j))↔ false

Moreover:
authτ (id, j) → nj = στ (e-authid

u)

Remark that στ (e-authid
u) ≡ σinτ (e-authid

u). Using (A1) we easily show that nj does not appear in
st(σinτ (e-authid

u)). Therefore ¬authτ (id, j) by =-ind. �

Using Lemma 4.8, we can prove Lemma 4.3, which we recall below:

Lemma (4.3). For every valid action trace τ on Sid, id ∈ Sid and j ∈ N, we have:

στ (e-authid
u) = nj →

∨
τ ′�τ στ ′(b-auth

j
n) = id

Proof. Let τ be a valid action trace. First, observe that στ (e-authid
u) = nj implies that στ (e-authid

u) 6= fail.
Therefore, using Lemma 4.8 we get that:

στ (e-authid
u) = nj → στ (e-authid

u) 6= fail
→ suc-authτ (id)

→
∨

s-startedj′ (τ) authτ (id, j′) (By Lemma 4.8)

Since (nj = στ (e-authid
u) ∧ nj

′
= στ (e-authid

u))↔ false if j 6= j′:

→ στ (b-authjn) = id

→
∨
τ ′�τ στ ′(b-auth

j
n) = id �

4.9.4 Injective Authentication of the Network by the User

We actually can show that the authentication of the network by the user is injective.

Lemma 4.9. For every valid action trace τ on Sid, the AKA+ protocol provides injective authentication
of the network by the user. Formally, for every id ∈ Sid and j ∈ N, we define the formula:

inj-authτ (id, j) ≡ authτ (id, j) ∧
∧

i 6=j
s-startedi(τ)

¬authτ (id, i)

Then:
∀id ∈ Sid, suc-authτ (id) →

∨
s-startedj(τ) inj-authτ (id, j)

4.9. Mutual Authentication of the AKA+ Protocol 101

Proof. First, we show that for id ∈ Sid and i0, i1 ∈ N with i0 6= i1:

suc-authτ (id)→ (¬authτ (id, i0) ∨ ¬authτ (id, i1)) (4.8)

Indeed:

suc-authτ (id) ∧ authτ (id, i0) ∧ authτ (id, i1) → ni0 = στ (e-authid
u) ∧ ni1 = στ (e-authid

u)

Using =-ind, we know that ni1 6= ni0 . Therefore:

ni0 = στ (e-authid
u) ∧ ni1 = στ (e-authid

u)→ false

This concludes the proof of (4.8). From Lemma 4.8 we know that:

∀id ∈ Sid, suc-authτ (id) →
∨

s-startedj(τ) authτ (id, j)

Moreover, using (4.8) we have that for every id ∈ Sid, j ∈ N:

suc-authτ (id) ∧ authτ (id, j) →
∧

i 6=j
s-startedj(τ)

¬authτ (id, i)

We deduce that:
∀id ∈ Sid, suc-authτ (id) →

∨
s-startedj(τ) inj-authτ (id, j) �

Finally, we prove that id authenticated j0 at τ if and only if nj0 = στ (e-authid
u).

Proposition 4.15. For every valid action trace τ , for every j0 ∈ N:

inj-authτ (id, j0) ↔ nj0 = στ (e-authid
u)

Proof. To do this we show both directions. The first direction is trivial:

inj-authτ (id, j0) → authτ (id, j0) → nj0 = σinτ (e-authid
u)

We now prove the converse direction:

nj0 = σinτ (e-authid
u) → suc-authτ (id) (Using =-ind)
→
∨

s-startedj1 (τ) inj-authτ (id, j1) (Lemma 4.9)

We conclude by observing that for every j1 6= j0:

nj0 = στ (e-authid
u) ∧ inj-authτ (id, j1) → nj0 = στ (e-authid

u) ∧ nj1 = στ (e-authid
u)

→ false (Using =-ind) �

4.9.5 ? (p. 104) Proof of Lemma 4.6

Proof of (Acc1). Let ai = pn(j, 1) and km ≡ kidm . Recall that:

acceptidτ ≡ eq(π1(dec(π1(g(φinτ)), skn)), id) ∧ eq(π2(g(φinτ)),Mac1
km

(〈π1(g(φinτ)) , nj〉))

We apply the p-euf-mac1 axiom (invariant (inv-key) guarantees that the syntactic side-conditions
hold):

acceptidτ → π2(g(φinτ)) = Mac1
km

(〈π1(g(φinτ)) , nj〉)

→
∨

τ0=_,puid(j0,1)≺τ
π2(g(φinτ)) = Mac1

km
(〈{
〈
id , σinτ0(sqnid

u)
〉
}n
j0
e

pkn
, g(φinτ0)〉)

Finally, we use cr1, EQInj(〈_ , ·〉) and EQInj(〈· , _〉) to show that for every τ0 = _,puid(j0, 1) ≺ τ :

Mac1
km

(〈π1(g(φinτ)) , nj〉) = Mac1
km

(〈{
〈
id , σinτ0(sqnid

u)
〉
}n
j0
e

pkn
, g(φinτ0)〉) →

π1(g(φinτ)) = {
〈
id , σinτ0(sqnid

u)
〉
}n
j0
e

pkn
∧ nj = g(φinτ0) �

102 The 5G-AKA Authentication Protocol Privacy

Proof of (Acc2). If ai = puid(j, 2). Let km ≡ kidm . Recall that:

acceptidτ ≡ g(φinτ) = Mac2
km

(
〈
σinτ (b-authid

u) , σinτ (sqnid
u)
〉
)

Graphically, we are in the situation:

τ :

puid(j, 1)

τ1

pn(j0, 1)

τ0

puid(j, 2)

τ

Part 1 We are going to apply the p-euf-mac2 axiom. We let:

S = {τ0 | τ0 = _,pn(j0, 1) ≺ τ}

and for all S0 ⊆ S we let:
bS0

=
(∧
τ0∈S0

acceptidτ0
)
∧
(∧
τ0∈S0

¬acceptidτ0
)

Then (bS0
)S0⊆S is a valid CS partition. It is straightforward to check that for every S0 ⊆ S, for every

τ0 = _,pn(j0, 1) ≺ τ , if τ0 ∈ S0 then we can rewrite [bS0]tτ0 into a term [bS0]tS0
τ0 by removing the branch

corresponding to acceptidτ0 . Therefore:

Mac2
km

(〈nj0 , suc(π2(dec(π1(g(φinτ0)), skn)))〉) ∈ set-mac2
km

(tS0
τ0) if and only if τ0 ∈ S0

Hence by applying the p-euf-mac2 axiom we get that:

acceptidτ →
∨
S0⊆S

bS0 ∧
∨

τ0∈S0

g(φinτ) = Mac2
km

(〈nj0 , suc(π2(dec(π1(g(φinτ0)), skn)))〉)

For S0 = ∅, we have:

¬
(∨
τ0∈S0

g(φinτ) = Mac2
km

(〈nj , suc(π2(dec(π1(g(φinτ0)), skn)))〉)
)

Hence:

acceptidτ →
∨

S0⊆S
S0 6=∅

bS0
∧
∨

τ0∈S0

g(φinτ) = Mac2
km

(〈nj , suc(π2(dec(π1(g(φinτ0)), skn)))〉)

→
∨
S0⊆S
S0 6=∅

∨
τ0∈S0

acceptidτ0 ∧ g(φinτ) = Mac2
km

(〈nj , suc(π2(dec(π1(g(φinτ0)), skn)))〉)

→
∨

τ0=_,pn(j0,1)
τ0≺τ

acceptidτ0 ∧ g(φinτ) = Mac2
km

(〈nj , suc(π2(dec(π1(g(φinτ0)), skn)))〉)

→
∨

τ0=_,pn(j0,1)
τ0≺τ

acceptidτ0 ∧
〈
σinτ (b-authid

u) , σinτ (sqnid
u)
〉

=〈
nj , suc(π2(dec(π1(g(φinτ0)), skn)))

〉 (cr2)

→
∨

τ0=_,pn(j0,1)
τ0≺τ

acceptidτ0 ∧ σ
in
τ (b-authid

u) = nj

∧ σinτ (sqnid
u) = suc(π2(dec(π1(g(φinτ0)), skn)))

(
EQInj(〈_ , ·〉)

and EQInj(〈· , _〉)

)

Part 2 It only remains to show that we can restrict ourselves to the τ0 such that τ1 ≺τ τ0. Using
(Acc1) we know that:

acceptidτ0 →
∨

τ′=_,puid(j′,1)
τ′≺τ τ0

π1(g(φinτ0)) = {
〈
id , σinτ ′(sqnid

u)
〉
}n
j′
e

pkn
∧ g(φinτ ′) = nj0

4.9. Mutual Authentication of the AKA+ Protocol 103

Let τ ′ = _,puid(j′, 1) such that τ ′ ≺τ τ0. We now show that if j′ 6= j then the tests fail, which proves
the impossibility of replaying an old message here. Assume j′ 6= j, then:

σinτ (sqnid
u) = suc(π2(dec(π1(g(φinτ0)), skn))) ∧ π1(g(φinτ0)) = {

〈
id , σinτ ′(sqnid

u)
〉
}n
j′
e

pkn

→ σinτ (sqnid
u) = suc(σinτ ′(sqnid

u))

→ false (By (A3))

We deduce that:

acceptidτ →
∨

τ0=_,pn(j0,1)
τ1≺τ τ0

acceptidτ0 ∧ g(φinτ1) = nj0 ∧ π1(g(φinτ0)) = {〈id , σinτ1(sqnid
u)〉}n

j
e

pkn
�

Proof of (Acc3). Let ai = tuid(j, 1) and k ≡ kid. We know that:

acceptidτ → π3(g(φinτ)) = Mac3
km

(〈π1(g(φinτ)) , π2(g(φinτ))⊕ fk(π1(g(φinτ))) , σinτ (gutiidu)〉)

We are going to apply the p-euf-mac3 axiom. We let S be the set of terms:

S = {τ0 | τ0 = _,tn(j0, 1) ≺ τ}

and for all S0 ⊆ S we let:
bS0

=
(∧
τ0∈S0

acceptidτ0
)
∧
(∧
τ0∈S0

¬acceptidτ0
)

Then (bS0
)S0⊆S is a valid CS partition. It is straightforward to check that for every S0 ⊆ S, for every

τ0 = _,tn(j0, 1) ≺ τ , if τ0 ∈ S then we can rewrite [bS0]tτ0 into a term [bS0]tS0
τ0 by removing the branch

corresponding to acceptidτ0 . Therefore:

Mac3
km

(〈nj0 , σinτ0(sqnid
n) , σinτ0(gutiidn)〉) ∈ set-mac3

km
(tS0
τ0) if and only if τ0 ∈ S0

Hence by applying the p-euf-mac3 axiom we get that:

acceptidτ →
∨
S0⊆S

bS0
∧
∨

τ0∈S0

π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ0(sqnid
n) , σinτ0(gutiidn)〉)

By cr3, EQInj(〈_ , ·〉) and EQInj(〈· , _〉) we know that for every τ0 = _,tn(j0, 1) ∈ S:

Mac3
km

(〈π1(g(φinτ)) , π2(g(φinτ))⊕ fk(π1(g(φinτ))) , σinτ (gutiidu). 〉) = Mac3
km

(〈nj0 , σinτ0(sqnid
n) , σinτ0(gutiidn).〉)

→ π1(g(φinτ)) = nj0 ∧ π2(g(φinτ))⊕ fk(π1(g(φinτ))) = σinτ0(sqnid
n) ∧ σinτ (gutiidu) = σinτ0(gutiidn). .

Using the idempotence of the ⊕ we know that:(
π1(g(φinτ)) = nj0 ∧ π2(g(φinτ))⊕ fk(π1(g(φinτ))) = σinτ0(sqnid

n)
)
→ π2(g(φinτ)) = σinτ0(sqnid

n)⊕ fk(nj0)

Moreover, remark that if S0 ∩ Sn = ∅, we have:

¬
∨
S0⊆S

bS0
∧
∨

τ0∈S0

π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ0(sqnid
n) , σinτ0(gutiidn)〉)

Putting everything together, we get that:

acceptidτ →
∨
S0⊆S
S0 6=∅

bS0
∧
∨

τ0∈S0

π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ0(sqnid
n) , σinτ0(gutiidn)〉)

→
∨
S0⊆S
S0 6=∅

∨
τ0∈S0

acceptidτ0 ∧ π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ0(sqnid
n) , σinτ0(gutiidn)〉)

→
∨

τ0=_,tn(j0,0)≺τ
acceptidτ0 ∧ π3(g(φinτ)) = Mac3

km
(〈nj0 , σinτ0(sqnid

n) , σinτ0(gutiidn)〉)

→
∨

τ0=_,tn(j0,0)≺τ
acceptidτ0 ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ0(sqnid
n)⊕ fk(nj0)

∧ σinτ (gutiidu) = σinτ0(gutiidn)
�

104 The 5G-AKA Authentication Protocol Privacy

Proof of (Acc4). We are going to apply the p-euf-mac4 axiom. We let S = {τ0 | τ0 = _,tuid(j0, 1) ≺ τ},
and for all S0 ⊆ S we let :

bS0 =
∧

τ0∈S0

acceptidτ0 ∧
∧

τ0∈S0

¬acceptidτ0

Then (bS0
)S0⊆S is a valid CS partition. It is straightforward to check that for every S0 ⊆ S, for every

τ0 = _,tuid(j0, 1) ≺ τ :

[bS0]tτ0 =

{
[bS0

]Mac4
km

(π1(g(φinτ0))) if τ0 ∈ S0

[bS0
]error if τ0 ∈ S0

Hence by applying the p-euf-mac4 axiom we get that:

g(φinτ) = Mac4
km

(nj)→
∨
S0⊆S

bS0
∧
∨

τ0∈S0

g(φinτ) = Mac4
km

(π1(g(φinτ0)))

Remark that for S0 = ∅, we have:

¬
(
bS0
∧
∨
τ0∈S0

g(φinτ) = Mac4
km

(π1(g(φinτ0)))
)

Hence:
g(φinτ) = Mac4

km
(nj)→

∨
S0⊆S
S0 6=∅

bS0 ∧
∨

τ0∈S0

g(φinτ) = Mac4
km

(π1(g(φinτ0)))

Let S0 ⊆ S with S0 6= ∅, and let τ0 ∈ S0. Using the cr4 axiom we know that:

g(φinτ) = Mac4
km

(nj) ∧ g(φinτ) = Mac4
km

(π1(g(φinτ0))) → π1(g(φinτ0)) = nj

Therefore:

g(φinτ) = Mac4
km

(nj)→
∨
S0⊆S
S0 6=∅

bS0
∧
∨

τ0∈S0

g(φinτ) = Mac4
km

(π1(g(φinτ0)))

→
∨
S0⊆S
S0 6=∅

bS0 ∧
∨

τ0∈S0

π1(g(φinτ0)) = nj

And using the fact that bS0
→ acceptidτ0 :

g(φinτ) = Mac4
km

(nj)→
∨

τ0=_,tuid(_,1)≺τ
acceptτ0 ∧ π1(g(φinτ0)) = nj �

4.10 Acceptance Condition Characterizations

In this section, we prove acceptance characterizations, i.e. necessary and sufficient conditions for a mes-
sage to be accepted by the user or the network. This section is organized as follows: we start by showing
some properties of the AKA+ protocol, which we use to obtain a first set of acceptance characterizations
in Section 4.10.1 and Section 4.10.3; then, using these conditions, we prove in Section 4.10.5 that the tem-
porary identity gutiidu is concealed until the subscriber starts a session of the guti sub-protocol; finally,
using the guti concealment property, we prove stronger acceptance characterizations in Section 4.10.6.

4.10.1 A First Acceptance Condition Characterization

Before proving our first acceptance characterizations, we show two properties of the AKA+ protocol.
The property (B1) states that the user and network sequence numbers are increasing, i.e. for every

valid action trace τ , and for every prefixes τ1, τ0 of τ such that τ0 � τ1, we have:

στ0(sqnid
u) ≤ στ1(sqnid

u) στ0(sqnid
n) ≤ στ1(sqnid

n)

4.10. Acceptance Condition Characterizations 105

τ :

tn(j0, 0)

τ0

tuid(ji, 1)

τi

tn(j0, 1)

τn

fn(j0)

τx

nsid(_) tuid(j, 1)

τ1

σinτ0(sqnid
n)

σinτi(sqnid
u) στi(sqnid

u) σinτ1(sqnid
u)

=

=

< ≤

Figure 4.17: Graphical Representation of the Proof of Proposition 4.16

The property (B2) is more complex. Let j0 be a network session that authenticated a user at instant
τ (i.e. στ (e-authj0n) 6= UnknownId), and let id be a user. We assume that id has been reseted since the
session j0, and that id already ran a full session of the AKA+ protocol: formally, τ = fuid(_) and
fn(j0) ≺τ nsid(_). Then either the HN session j0 did not authenticate id, or the current value value of
e-authid

u is not nj0 . In both case we have ¬inj-authτ (id, j0).
We show (B2) by contradiction, by proving that if it does not hold, then there is a sequence number

inconsistency. In that case, we prove that there exists an instant τ1 such that σinτ1(sqnid
u) < σinτ1(sqnid

u).
We describe in an informal fashion how this is done. First, we prove that when a message is accepted,
the user and network sequence numbers must be equal between some instants of the protocol executions
(we prove two such equalities). Moreover, the sequence number are not decreasing (B1), and the user
increments his sequence number at the instant tuid(_, 1) if it accepts. This allows us to obtain the
situation depicted in Figure 4.17. We will use this proof technique multiple times in this chapter.

Proposition 4.16. For every valid action trace τ = _, ai on Sid and identity id ∈ Sid:
• (B1) For every τ0 � τ1 � τ , for every x ∈ {u,n}, we have στ0(sqnid

x) ≤ στ1(sqnid
x).

• (B2) If ai = fuid(j) then for every and j0 ∈ N, if fn(j0) ≺τ nsid(_) then:

στ (e-authj0n) 6= UnknownId→ ¬inj-authτ (id, j0)

Proof ?(p. 106). Let τ = _, ai be a valid action trace and id ∈ Sid. The property (B1) is straightforward
by induction over τ1. Therefore, we focus on (B2).

Let τx = _, fn(j0) ≺ τ . We do a case disjunction on the sub-protocol used by the user:
• If there exists τ1 s.t. τ1 = _,tuid(j, 1) ≺ τ . By validity of τ , there exists τn ≺ τx with τn =

_,pn(j0, 1) or _,tn(j0, 1). We can check that τn ≺ τx ≺ τ1 ≺ τ .
Assume that τn = _,pn(j0, 1). The sub-protocols used by the user and the network are different.
In that case, it is very easy to show that we cannot have authentication. To prove this formally,
observe first that inj-authτ (id, j0)→ acceptidτ1 . Therefore, using (Acc3):

inj-authτ (id, j0) →
∨

τ2=_,tn(j2,0)
τ2≺τ1

στ1(e-authid
u) = nj2

For every τ2 = _,tn(j2, 0) ≺ τ1, we know that j2 6= j0 (since τn = _,pn(j0, 1)). Hence:

inj-authτ (id, j0) → στ1(e-authid
u) 6= nj0 → false

Which is what we wanted.
Now, assume that τn = _,tn(j0, 1). We give a graphical representation of this case in Figure 4.17.
The idea is that inj-authτ (id, j0) implies that UEid(j) must have accepted HN(j0) at instant τ1.
But since HN(j0) ran the guti sub-protocol at instant τn which is before τ1, is must have accepted
messages from a prior UEid(ji) session (with ji 6= j). It follows that HN(j0) must have accepted
two different UEid sessions, ji and j. This will yield a contradiction on sequence numbers.

106 The 5G-AKA Authentication Protocol Privacy

We now prove this formally. First, observe that στn(e-authj0n) 6= fail and στ (e-authj0n) = στn(e-authj0n).
Moreover, it is straightforward to check that for every valid action trace τ ′:

inj-authτ ′(id, j0) ∧ στ ′(e-authj0n) 6= UnknownId ∧ στ ′(e-authj0n) 6= fail

→ στ ′(e-auth
j0
n) = στ ′(b-auth

j0
n)

Hence we deduce that:

inj-authτ (id, j0) ∧ στ (e-authj0n) 6= UnknownId→ στ (e-authj0n) = στ (b-authj0n)

Since inj-authτ (id, j0)→ στ (b-authj0n) = id, we get that:

inj-authτ (id, j0) ∧ στ (e-authj0n) 6= UnknownId→ στ (e-authj0n) = id

Moreover, στ (e-authj0n) = id→ acceptidτn . Using (Acc4) on τn:

acceptidτn →
∨

τi=_,tuid(ji,1)≺τn
acceptidτi ∧ π1(g(φinτi)) = nj0

Let τ0 = tn(j0, 0) and τi = _,tuid(ji, 1) ≺ τn. Observe that τi 6= τ1. Using (Acc3), we get that:

acceptidτi ∧ π1(g(φinτi)) = nj0 → range(σinτi(sqnid
u), σinτ0(sqnid

n))→ σinτi(sqnid
u) = σinτ0(sqnid

n)

Recall that inj-authτ (id, j0) → acceptidτ1 . Moreover, inj-authτ (id, j0) → π1(g(φinτ1)) = nj0 . Hence
using (Acc3) again we get:

acceptidτ1 ∧ π1(g(φinτ1)) = nj0 → range(σinτ1(sqnid
u), σinτ0(sqnid

n))→ σinτ1(sqnid
u) = σinτ0(sqnid

n)

Putting everything together:

inj-authτ (id, j0) ∧ στ (e-authj0n) 6= UnknownId →

(
σinτi(sqnid

u) = σinτ0(sqnid
n)

∧ σinτ1(sqnid
u) = σinτ0(sqnid

n)

)
→ σinτ1(sqnid

u) = σinτi(sqnid
u)

Finally, acceptidτi → σinτi(sqnid
u) < στi(sqnid

u), and using (B1) we know that στi(sqnid
u) ≤ σinτ1(sqnid

u).
We deduce that:

inj-authτ (id, j0) ∧ στ (e-authj0n) 6= UnknownId → σinτ1(sqnid
u) = σinτi(sqnid

u) < σinτ1(sqnid
u)

→ false

This concludes this case.

• If there exists τ1 = _,puid(j, 2) ≺ τ . Let τ3 = _,puid(j, 1) ≺ τ1, we know that τx ≺ τ3. Remark
that inj-authτ (id, j0)→ acceptidτ1 , and using (Acc2) we easily get that:

acceptidτ1 →
∨

τ2=_,pn(j2,1)
τ3≺τ2≺τ1

στ1(e-authid
u) = nj2

Since no id action occurred between τ1 and τ , we have στ1(e-authid
u) = στ (e-authid

u). Moreover,
inj-authτ (id, j0) → στ (e-authid

u) = nj0 . Finally, for every τ2 = _,pn(j2, 1) such that τ3 ≺ τ2 ≺ τ1,
since τx ≺ τ3 we know that j2 6= j0. It follows that:

inj-authτ (id, j0) →
∨

τ2=_,pn(j2,1)
τ3≺τ2≺τ1

nj0 = nj2 → false �

We now prove a first acceptance characterization:

Lemma 4.10. For every valid action trace τ = _, ai on Sid and identity id ∈ Sid:

4.10. Acceptance Condition Characterizations 107

• (Equ1) If ai = fuid(j). For every τ0 = _, fn(j0) ≺ τ , we let:

fu-trn:τ0u:τ ≡

(
inj-authτ (id, j0) ∧ σinτ (e-authj0n) 6= UnknownId

∧ π1(g(φinτ)) = gutij0 ⊕ f rk(nj0) ∧ π2(g(φinτ)) = Mac5
km

(〈gutij0 , nj0〉)

)

Then:

acceptidτ ↔
∨

τ0=_,fn(j0)≺τ
τ0 6≺τ nsid(_)

fu-trn:τ0u:τ

Proof ?(p. 107). Using Lemma 4.9 we know that:

suc-authτ (id) →
∨

s-startedj0 (τ)

inj-authτ (id, j0)

Let k ≡ kid and km ≡ kidm . Since:

acceptidτ ≡ suc-authτ (id) ∧ π2(g(φinτ)) = Mac5
km

(〈π1(g(φinτ))⊕ f rk(σinτ (e-authid
u)) , σinτ (e-authid

u)〉)︸ ︷︷ ︸
EQMac

And since inj-authτ (id, j0) → suc-authτ (id) we have:

acceptidτ ↔
∨

s-startedj0 (τ)

inj-authτ (id, j0) ∧ EQMac

↔
∨

s-startedj0 (τ)

inj-authτ (id, j0) ∧ π2(g(φinτ)) = Mac5
km

(〈π1(g(φinτ))⊕ f rk(nj0) , nj0〉)

Using the p-euf-mac5 and cr5 axioms, it is easy to show that for every j0 ∈ N:

π2(g(φinτ)) = Mac5
km

(〈π1(g(φinτ))⊕ f rk(nj0) , nj0〉)→

(
π1(g(φinτ))⊕ f rk(nj0) = gutij0

∧ σinτ (e-authj0n) 6= UnknownId

)
if fn(j0) ∈ τ

false otherwise

Hence:

acceptidτ ↔
∨
τ0=_,fn(j0)≺τ

(
inj-authτ (id, j0) ∧ σinτ (e-authj0n) 6= UnknownId

∧ π1(g(φinτ)) = gutij0 ⊕ f rk(nj0) ∧ π2(g(φinτ)) = Mac5
km

(〈gutij0 , nj0〉)

)
↔

∨
τ0=_,fn(j0)≺τ fu-trn:τ0u:τ

We conclude using (B2):
acceptidτ ↔

∨
τ0=_,fn(j0)≺τ
τ0 6≺τ nsid(_)

fu-trn:τ0u:τ �

Using this acceptance characterization, we prove additional properties of the protocol:
• (B3): if the user has a valid temporary identity (i.e. στ (valid-gutiidu)), then the variable gutiidu is
not unset.

• (B4): if the network sequence number for id increased between two instants τ2 and τ1, then this
increase has been recorded by the variable sessionid

n : there must exists an instant τx between τ2 and
τ1 such that σinτ1(sessionid

n) = njx , where τx ends by tn(jx, 0), tn(jx, 1) or pn(jx, 1).

• (B5): the network sequence number is always smaller than the user sequence number: for every
id, we have στ (sqnid

n) ≤ στ (sqnid
u).

• (B6): if τ0 is the last reset of user id (i.e. τ0 = _,nsid(_) ≺ τ and τ0 6≺τ nsid(_)), and if id is
synced at an instant τ1 between τ0 and τ , then the network sequence number at instant τ1 is greater
than the user sequence number at the time of the reset (i.e. at τ0).

• (B7): if no assign-guti session took place since the last reset of user id, then id has no valid
temporary identity.

108 The 5G-AKA Authentication Protocol Privacy

Proposition 4.17. For every valid action trace τ = _, ai on Sid and identity id ∈ Sid:
• (B3) στ (valid-gutiidu) → στ (gutiidu) 6= UnSet.
• (B4) For every τ2 ≺τ τ1:

στ2(sqnid
n) < σinτ1(sqnid

n) →
∨

τ2≺τ τx≺τ τ1
τx=_,tn(jx,0),_,tn(jx,1) or _,pn(jx,1)

σinτ1(sessionid
n) = njx

• (B5) στ (sqnid
n) ≤ στ (sqnid

u).
• (B6) For every τ0 ≺τ τ1 such that τ0 = _,nsid(_) or ε, and such that τ0 6≺τ nsid(_), we have:

στ1(syncidu) → στ1(sqnid
n) > στ0(sqnid

u)

• (B7) If for all τ ′ � τ such that τ ′ 6≺τ nsid(_) we have τ ′ 6= _, fuid(_), then:

στ (valid-gutiidu) → false

4.10.2 ? (p. 111) Proof of Proposition 4.17

Proof of (B3). We show this by induction over τ . If τ = ε, we know from Definition 4.4 that σε(valid-gutiidu) ≡
false and σε(gutiidx) ≡ UnSet. Therefore the property holds. Let τ = τ0, ai, assume by induction that
the property holds for τ0. If ai is different from tuid(j, 0),puid(j, 1) and fu(j) then σupτ (valid-gutiidu) ≡
σupτ (gutiidu) ≡ ⊥, in which case we conclude immediately by induction hypothesis. We have three cases
remaining:

• If ai = tuid(j, 0) or ai = puid(j, 1) then σupτ (gutiidu) ≡ false. Therefore the property holds.
• If ai = fu(j), using (Equ1) we can check that:

acceptidτ →
∨

τ1=_,fn(j0)≺τ
τ1 6≺τ nsid(_)

στ (gutiidu) = gutij0 → στ (gutiidu) 6= UnSet

We conclude by observing that σε(valid-guti idu) ≡ acceptidτ . �

Proof of (B4). We prove this directly. Intuitively, this holds because if στ2(sqnid
n) < σinτ1(sqnid

n) then we
know that sqnid

n was updated between τ2 and τ1. Moreover, if such an update occurs at τx = _,pn(jx, 1)
or tn(jx, 1) then sessionid

n has to be equal to njx after the update. Finally, the fact that sessionid
n is equal

to njx for some τx between τ2 and τ1 with τx = _,tn(jx, 0), _,tn(jx, 1) or _,pn(jx, 1) is an invariant
of the protocol. Now we give the formal proof.

First, we remark that sqnid
n is updated only at pn(_, 1) and tn(_, 1). Moreover, each update either

left sqnid
n unchanged or increments it by at least one. Finally, it is updated at τx ≺ τ if and only if

inc-acceptidτx holds. If follows that:

στ2(sqnid
n) < σinτ1(sqnid

n) →
∨

τ2≺τ τx≺τ τ1
τx=,_,tn(jx,1) or _,pn(jx,1)

inc-acceptidτx

We know that for every τ2 ≺τ τx ≺τ τ1, if:
• τx =,_,pn(jx, 1) then inc-acceptidτx → στx(sessionid

n) = njx .
• τx = _,tn(jx, 1) then since inc-acceptidτx ≡ inc-acceptidτx ∧ σ

in
τx(sessionid

n) = njx , we know that
inc-acceptidτx → σinτx(sessionid

n) = njx . Besides, since sessionid
n is not updated at tn(jx, 1) we de-

duce that inc-acceptidτx → στx(sessionid
n) = njx .

Hence:
στ2(sqnid

n) < σinτ1(sqnid
n) →

∨
τ2≺τ τx≺τ1

τx=,_,tn(jx,1) or _,pn(jx,1)

στx(sessionid
n) = njx (4.9)

Let τ2 ≺τ τx ≺τ τ1 such that τx =,_,tn(jx, 1) or _,pn(jx, 1). Now, we prove by induction over τ ′ such
that τx � τ ′ ≺ τ1 that:

στx(sessionid
n) = njx →

∨
τx�τn�τ′

τn=_,tn(jn,0),_,tn(jn,1) or _,pn(jn,1)

στ ′(sessionid
n) = njn

4.10. Acceptance Condition Characterizations 109

If τ ′ = τx this is obvious. For the inductive case, we do a disjunction over the final action of τ ′. If
sessionid

n is not updated then we conclude by induction, otherwise we are in one of the following cases:
• If τ ′ = _,tn(j′, 0) then we do a case disjunction on acceptidτ ′ :

¬acceptidτ ′ → στ ′(sessionid
n) = σinτ ′(session

id
n) (4.10)

Hence:

¬acceptidτ ′ ∧ στx(sessionid
n) = njx

→
∨

τx�τn≺τ′
τn=_,tn(jn,0),_,tn(jn,1) or _,pn(jn,1)

στ ′(sessionid
n) = njn (By induction hypothesis and (4.10))

→
∨

τx�τn�τ′
τn=_,tn(jn,0),_,tn(jn,1) or _,pn(jn,1)

στ ′(sessionid
n) = njn (Relaxing the condition τn ≺ τ ′)

Moreover,
acceptidτ ′ → στ ′(sessionid

n) = nj
′
→

∨
τx�τn�τ′

τn=_,tn(jn,0),_,tn(jn,1) or _,pn(jn,1)

στ ′(sessionid
n) = njn

This concludes this case.

• If τn = _,pn(jn, 1) then the proof is the same than in the previous case, but doing a case disjunction
over inc-acceptidτ ′ .

Let τ0′ be such that τ1 = τ0
′, ai1. By applying the induction hypothesis to τ0′, we get:

στx(sessionid
n) = njx →

∨
τx�τn�τ0

′
τn=_,tn(jn,0),_,tn(jn,1) or _,pn(jn,1)

στ0′(session
id
n) = njn →

∨
τx�τn≺τ1

τn=_,tn(jn,0),_,tn(jn,1) or _,pn(jn,1)

σinτ1(sessionid
n) = njn

We conclude using (4.9) and the property above. �

Proof of (B5). We prove this by induction over τ . For τ = ε, from Definition 4.4 we know that
σε(sqnid

u) ≡ sqn-initidu and σε(sqnid
n) ≡ sqn-initidn . Using sqn-ini, we know that sqn-initidn ≤ sqn-initidu .

For the inductive case, let τ = τ0, ai and assume that the property holds for τ0. We have three cases:
• If ai is such that sqnid

n is not updated. Using (B1) we know that στ (sqnid
u) ≥ στ0(sqnid

u), and we
conclude by applying the induction hypothesis.

• If ai = pn(j, 1), then we do a case disjunction on inc-acceptidτ . If it is true then:

inc-acceptidτ →
∨

τ0=_,puid(j0,1)≺τ
στ (sqnid

n) = σinτ0(sqnid
u) (By (Acc1))

→
∨

τ0=_,puid(j0,1)≺τ
στ (sqnid

n) = σinτ0(sqnid
u) ∧ σinτ0(sqnid

u) ≤ στ (sqnid
u) (By (B1))

→στ (sqnid
n) ≤ στ (sqnid

u)

If inc-acceptidτ is false then ¬inc-acceptidτ → στ (sqnid
n) = σinτ (sqnid

n), and we conclude by applying
the induction hypothesis.

• If ai = tn(j, 1), then we do a case disjunction on inc-acceptidτ . First we handle the case where it is
true. We summarize graphically this case in Figure 4.18. Let τ2 = _,tn(j, 0) ≺ τ . We know that
inc-acceptidτ → σinτ (sessionid

n) = nj . Moreover:

σinτ (sessionid
n) = nj →

∧
τ2≺τ1≺τ

τ1=_,tn(jx,0),_,tn(jx,1) or _,pn(jx,1)

σinτ (sessionid
n) 6= njx

→ στ2(sqnid
n) ≤ σinτ (sqnid

n) (Using the contrapositive of (B4))

→ στ2(sqnid
n) = σinτ (sqnid

n) (Using (B1))

110 The 5G-AKA Authentication Protocol Privacy

τ :

tn(j, 0)

τ2

tuid(_, 1)

τ1

tn(j, 1)

τ

σinτ2(sqnid
n)

σinτ1(sqnid
u) στ1(sqnid

u)

σinτ (sqnid
n) στ (sqnid

n)

στ (sqnid
u)

= +1

=

+1 ≤

Figure 4.18: Graphical Representation Used in the Proof of (B5).

τ :

nsid(_)
or ε

τ0

puid(j, 1)

τi

pn(jx, 1)

τx

puid(j, 2)

τn τ1

στ0(sqnid
u) σinτi(sqnid

u)

στx(sqnid
n) στ1(sqnid

n)

≤
<

≤

Figure 4.19: Graphical Representation Used in the Proof of (B6).

We know that inc-acceptidτ → acceptidτ . Moreover, using (Acc3) and (Acc4), we check that:

acceptidτ →
∨

τ1=_,tuid(_,1)
τ2≺τ1≺τ

σinτ1(sqnid
u) = σinτ2(sqnid

n)

Besides, acceptidτ → στ1(sqnid
u) = σinτ1(sqnid

u) + 1, and using (B1) we know that στ1(sqnid
u) ≤

στ (sqnid
u). Finally, inc-acceptidτ → στ (sqnid

n) = σinτ (sqnid
n) + 1. Putting everything together:

inc-acceptidτ → στ (sqnid
n) ≤ στ (sqnid

u)

Which is what we wanted.
If inc-acceptidτ is false then ¬inc-acceptidτ → στ (sqnid

n) = σinτ (sqnid
n), and we conclude by applying

the induction hypothesis. �

Proof of (B6). First, observe that:

στ1(syncidu)→
∨

τn=_,puid(j,2)
τ0≺τn≺τ1

acceptidτn (4.11)

Let τn = _,puid(j, 2) such that τ0 ≺ τn ≺ τ1. Let τi = _,puid(j, 1) such that τi ≺ τn. We know that
τi ≺ τ0. We give a graphical summary of this proof in Figure 4.19. First, we apply (Acc2):

acceptidτn →
∨

τx=_,pn(jx,1)
τi≺τx≺τn

acceptidτx ∧ g(φinτi) = njx ∧ π1(g(φinτx)) = {〈id , σinτi(sqnid
u)〉}n

j
e

pkn
(4.12)

Let τx = _,pn(jx, 1) such that τi ≺ τx ≺ τn. Using (B1), we get that στ0(sqnid
u) ≤ σinτi(sqnid

u) and that
στx(sqnid

n) ≤ στ1(sqnid
n). There are two cases, depending on whether we have inc-acceptidτx .

• We know that inc-acceptidτx → στx(sqnid
n) = σinτi(sqnid

u) + 1 > σinτi(sqnid
u). Putting everything

together, we get that:

acceptidτn ∧ inc-acceptidτx → στ0(sqnid
u) < στ1(sqnid

n)

4.10. Acceptance Condition Characterizations 111

• We know that:

acceptidτx ∧ ¬inc-accept
id
τx ∧ π1(g(φinτx)) = {〈id , σinτi(sqnid

u)〉}n
j
e

pkn
→ σinτi(sqnid

u) < σinτx(sqnid
n)

Moreover, ¬inc-acceptidτx → σinτx(sqnid
n) = στx(sqnid

n). We recall that στ0(sqnid
u) ≤ σinτi(sqnid

u) and
that στx(sqnid

n) ≤ στ1(sqnid
n). Therefore:

acceptidτx ∧ ¬inc-accept
id
τx ∧ π1(g(φinτx)) = {〈id , σinτi(sqnid

u)〉}n
j
e

pkn
→ στ0(sqnid

u) < στ1(sqnid
n)

Using (4.12) and the two cases above, we get that acceptidτn → στ0(sqnid
u) < στ1(sqnid

n).
Since this is true for all τn = _,puid(j, 2) such that τ0 ≺ τn ≺ τ1, we deduce from (4.11) that

στ1(syncidu)→ στ0(sqnid
u) < στ1(sqnid

n) �

Proof of (B7). Let τns = ε or nsid(_) be such that τns � τ and τns 6≺τ nsid(_). We show by induction
over τ ′ with τns � τ ′ � τ that στ ′(valid-gutiidu) ≡ false.

For τ ′ = τns, this is true using from Definition 4.4 if if τns = ε, and from the protocol term definitions
if τns = nsid(_). The inductive case is straightforward. �

4.10.3 A Full Set of Acceptance Condition Characterizations

We now design acceptance condition characterizations for all relevant action labels.

Lemma 4.11. For every valid action trace τ = _, ai on Sid and identity id ∈ Sid:
• (Equ2) If ai = puid(j, 2). Let τ2 = _,puid(j, 1) such that τ2 ≺ τ . For every τ1 = _,pn(j1, 1), let:

supi-tr n:τ1u:τ2,τ ≡

 g(φinτ) = Mac2
kidm

(〈nj1 , suc(σinτ2(sqnid
u))〉)

∧ g(φinτ2) = nj1 ∧ π1(g(φinτ1)) = {〈id , σinτ2(sqnid
u)〉}n

j
e

pkn

Then:

acceptidτ ↔
∨

τ1=_,pn(j1,1)
τ2≺τ τ1

supi-tr n:τ1u:τ2,τ

• (Equ3) If ai = pn(j, 1). Then:

acceptidτ ↔
∨

τ1=_,puid(j1,1)
τ1≺τ

 g(φinτ1) = nj ∧ π1(g(φinτ)) = {〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn

∧ π2(g(φinτ)) = Mac1
kidm

(〈{〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn
, g(φinτ1)〉)

↔

∨
τ1=_,puid(j1,1)

τ1≺τ

g(φinτ1) = nj ∧ g(φinτ) = tτ1

• (Equ4) If ai = tuid(j, 1). For every τ1 = _,tn(j0, 0) such that τ1 ≺ τ , we let:

c-tr n:τ1u:τ ≡

π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ1(sqnid
n) , σinτ (gutiidu)〉) ∧ σinτ (s-valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n)) ∧ g(φinτ1) = σinτ1(gutiidn) ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

Then: (

c-tr n:τ1u:τ → acceptidτ1
)
τ1=_,tn(j0,0)

τ1≺τ
acceptidτ ↔

∨
τ1=_,tn(j0,0)

τ1≺τ

c-tr n:τ1u:τ

• (Equ5) If ai = tn(j, 1). Let τ1 = _,tn(j, 0) such that τ1 ≺ τ , and let id ∈ Sid. Then:

acceptidτ ↔
∨

τi=_,tuid(ji,1)
τ1≺τ τi

c-tr n:τ1u:τi ∧ g(φinτ) = Mac4
kidm

(nj)

112 The 5G-AKA Authentication Protocol Privacy

4.10.4 ? (p. 114) Proof of Lemma 4.11

Proof of (Equ2). Using (Acc2) we know that:

acceptidτ ↔
∨

τ1=_,pn(j1,1)
τ2≺τ τ1

acceptidτ ∧ g(φinτ2) = nj1 ∧ π1(g(φinτ1)) = {〈id , σinτ2(sqnid
u)〉}n

j
e

pkn

↔
∨

τ1=_,pn(j1,1)
τ2≺τ τ1

 g(φinτ) = Mac2
kidm

(〈nj1 , σinτ (sqnid
u)〉) ∧ g(φinτ2) = nj1

∧ π1(g(φinτ1)) = {〈id , σinτ2(sqnid
u)〉}n

j
e

pkn

Since σinτ (sqnid

u) ≡ suc(σinτ2(sqnid
u)):

↔
∨

τ1=_,pn(j1,1)
τ2≺τ τ1

 g(φinτ) = Mac2
kidm

(〈nj1 , suc(σinτ2(sqnid
u))〉) ∧ g(φinτ2) = nj1

∧ π1(g(φinτ1)) = {〈id , σinτ2(sqnid
u)〉}n

j
e

pkn

↔

∨
τ1=_,pn(j1,1)

τ2≺τ τ1

supi-tr n:τ1u:τ2,τ �

Proof of (Equ3). Using (Acc1) it is easy to check that:

acceptidτ ↔
∨

τ1=_,puid(j1,1)≺τ

 g(φinτ1) = nj. ∧ π1(g(φinτ)) = {〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn
:::::::::::::::::::::::::::::

∧ π2(g(φinτ)) = Mac1
kidm

(〈π1(g(φinτ))
::::::::

, nj. . 〉)

Which can be rewritten as follows (we identify above, using waves and dots, which equalities are used,
and which terms are rewritten):

↔
∨

τ1=_,puid(j1,1)≺τ

 g(φinτ1) = nj ∧ π1(g(φinτ)) = {〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn

∧ π2(g(φinτ)) = Mac1
kidm

(〈{〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn
, g(φinτ1)〉)

First, observe that:

{〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn
= π1(tτ1) Mac1

kidm
(〈{〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn
, g(φinτ1)〉) = π2(tτ1)

We conclude using the injectivity of the pair. �

Proof of (Equ4). Using (Acc3) we know that:

acceptidτ ↔
∨

τ1=_,tn(j0,0)
τ1≺τ

(
acceptidτ ∧ acceptidτ1 ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

)

Inlining the definition of acceptidτ1 :

↔
∨

τ1=_,tn(j0,0)
τ1≺τ

(
acceptidτ ∧ g(φinτ1) = σinτ1(gutiidn) ∧ σinτ1(gutiidn) 6= UnSet ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

)

Inlining the definition of acceptidτ :

↔
∨

τ1=_,tn(j0,0)
τ1≺τ

π3(g(φinτ)) = Mac3

km
(〈π1(g(φinτ)) , π2(g(φinτ))⊕ fk(π1(g(φinτ))) , σinτ (gutiidu)〉)

∧ σinτ (s-valid-gutiidu) ∧ range(σinτ (sqnid
u), π2(g(φinτ))⊕ fk(π1(g(φinτ))))

g(φinτ1) = σinτ1(gutiidn) ∧ σinτ1(gutiidn) 6= UnSet ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

4.10. Acceptance Condition Characterizations 113

We rewrite π1(g(φinτ)) into nj0 :

↔
∨

τ1=_,tn(j0,0)
τ1≺τ

π3(g(φinτ)) = Mac3
km

(〈nj0 , π2(g(φinτ))⊕ fk(nj0) , σinτ (gutiidu)〉)

∧ σinτ (s-valid-gutiidu) ∧ range(σinτ (sqnid
u), π2(g(φinτ))⊕ fk(nj0))

g(φinτ1) = σinτ1(gutiidn) ∧ σinτ1(gutiidn) 6= UnSet ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

We rewrite π2(g(φinτ))⊕ fk(nj0) into σinτ1(sqnid

n):

↔
∨

τ1=_,tn(j0,0)
τ1≺τ

π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ1(sqnid
n) , σinτ (gutiidu)〉)

∧ σinτ (s-valid-gutiidu) ∧ range(σinτ (sqnid
u), σinτ1(sqnid

n))

∧ g(φinτ1) = σinτ1(gutiidn) ∧ σinτ1(gutiidn) 6= UnSet ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

(4.13)

Let τ2 = _,tuid(j0, 0) ≺ τ . By validity of τ , there are no user id actions between τ2 and τ , and therefore
it is easy to check that σinτ (s-valid-gutiidu) → σinτ2(valid-gutiidu), and that σinτ (gutiidu) = σinτ2(gutiidu). More-
over, using (B3) we know that σinτ2(valid-gutiidu) → σinτ2(gutiidu) 6= UnSet. Therefore σinτ (s-valid-gutiidu) →
σinτ (gutiidu) 6= UnSet. It follows that:(

σinτ (gutiidu) = σinτ1(gutiidn) ∧ σinτ (s-valid-gutiidu)
)
→ σinτ1(gutiidn) 6= UnSet

Hence we can simplify (4.13) by removing σinτ1(gutiidn) 6= UnSet. This yields:

acceptidτ ↔
∨

τ1=_,tn(j0,0)
τ1≺τ

π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ1(sqnid
n) , σinτ (gutiidu)〉) ∧ σinτ (s-valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n)) ∧ g(φinτ1) = σinτ1(gutiidn) ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

↔

∨
τ1=_,tn(j0,0)

τ1≺τ

c-tr n:τ1u:τ

Finally, we check that for every τ1 = _,tn(j0, 0) such that τ1 ≺ τ , we have c-tr n:τ1u:τ → acceptidτ1 . �

Proof of (Equ5). Using (Acc4) we know that:

acceptidτ ↔
∨

τi=_,tuid(ji,1)≺τ
acceptidτ ∧ acceptτi ∧ π1(g(φinτi)) = nj

Moreover, using (Equ4) we know that:

acceptidτ ↔
∨

τi=_,tuid(ji,1)≺τ
τ2=_,tn(j2,0)≺τi

acceptidτ ∧ c-tr n:τ2u:τi ∧ π1(g(φinτi)) = nj

Let τ2 = _,tn(j2, 0) ≺ τi. Then we know that c-tr n:τ2u:τi → π1(g(φinτi)) = nj2 . Therefore using =-ind we
know that if j2 6= j:(

c-tr n:τ2u:τi ∧ π1(g(φinτi)) = nj
)
→
(
π1(g(φinτi)) = nj2 ∧ π1(g(φinτi)) = nj

)
→ false

Hence:

acceptidτ ↔
∨

τi=_,tuid(ji,1)
τ1≺τ τi

acceptidτ ∧ c-tr n:τ1u:τi ∧ π1(g(φinτi)) = nj

↔
∨

τi=_,tuid(ji,1)
τ1≺τ τi

acceptidτ ∧ c-tr n:τ1u:τi (Since c-tr n:τ1u:τi → π1(g(φinτi)) = nj)

114 The 5G-AKA Authentication Protocol Privacy

We inline the definition of acceptidτ :

↔
∨

τi=_,tuid(ji,1)
τ1≺τ τi

g(φinτ) = Mac4
kidm

(nj) ∧ σinτ (b-authjn) = id ∧ c-tr n:τ1u:τi

Using (Equ4), we know that for every τ1 = _,tn(j0, 0) such that τ1 ≺ τ , c-tr n:τ1u:τ → acceptidτ1 . Moreover,
using (A6) we know that acceptidτ1 → σinτ1(b-authjn) = id. Besides, σinτ1(b-authjn) = id→ σinτ (b-authjn) = id.
Hence c-tr n:τ1u:τ → σinτ (b-authjn) = id. By consequence:

acceptidτ ↔
∨

τi=_,tuid(ji,1)
τ1≺τ τi

g(φinτ) = Mac4
kidm

(nj) ∧ c-tr n:τ1u:τi �

4.10.5 gutiidu Concealment

Lemma 4.12. Let τ be a valid action trace on Sid and idx ∈ Sid. For every τa = _,tn(ja, 1) or
τa = _,pn(ja, 1) such that τa � τ , and for every τb = puidx(ji, 1) or τb = tuidx(ji, 1) such that τb ≺ τa, if:

{τ1 | τb ≺τ τ1} ∩ {puidx(j,_),tuidx(j,_), fuidx(j) | j ∈ N} ⊆ {puidx(ji, 2), fuidx(ji)}

Then there exists a derivation of:

inc-acceptidx
τa ∧ στb(b-auth

idx
u) = nja ∧ acceptidx

τb
→ g(φinτ) 6= gutija

Proof ?(p. 118). Let βτ be the term:

βτ ≡ inc-acceptidx
τa ∧ στb(b-auth

idx
u) = nja ∧ acceptidx

τb

For every τa � τx � τ , we let leakinτx be the vector containing the terms (in an arbitrary but fixed order):
• leakinτ0 if τx = τ0, ai0 and τa ≺ τx.
• The term βτ .
• All the keys except kidx , kidx

m and the asymmetric secret key skn.
• All elements of σinτx , except:

– All the user idx values, i.e. for every x, σinτx(xidx
u) 6∈ leakinτx .

– The network’s guti value of user idx, i.e. σinτx(gutiidx
n) 6∈ leakinτx .

• For every τa � τn � τ such that τn = _, fn(j), the term Mac4
kidx
m

(nj).

• For every τa � τn � τ such that τn = _,pn(j, 1) thenMac4
kidx
m

(nj), for every τ2 = _,puidx(j2, 1) � τb,
the term Mac2

kidx
m

(〈nj , suc(σinτ2(sqnid
u))〉).

Let guti be a fresh name. We show by induction on τ1 in τa � τ1 ≺ τ that there are derivations of:

[βτ]
(
φτ1 , leakτ1 ,gutija

)
∼ [βτ] (φτ1 , leakτ1 ,guti) and βτ → στ1(gutiidx

n) = gutija

We depict the situation below:

τ :

tuidx(ji, 1)
or puidx(ji, 1)

τb

tn(ja, 1)
or pn(ja, 1)

τa τ1 τ

Case τ1 = τa First, βτ → inc-acceptidx
τa , and inc-acceptidx

τa → στa(gutiidx
n) = gutija . Therefore:

βτ → στa(gutiidx
n) = gutija

Then, we observe from the definition of leakτa that gutija 6∈ st(leakτa) (since στa(gutiidx
n) is not in

leakτa). Moreover gutija does not appear in φinτa and tτa . Besides, guti is a fresh name. By consequence
we can apply the Fresh axiom, and then conclude using Refl:[

βτ
](
φinτ1 , leak

in
τ1

)
∼
[
βτ
](
φinτ1 , leak

in
τ1

) Refl[
βτ
](
φinτ1 , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φinτ1 , leak

in
τ1 ,guti

) Fresh

4.10. Acceptance Condition Characterizations 115

τ :

puidx(jn, 1)

τn

tuidx(ji, 1)
or puidx(ji, 1)

τb

tn(ja, 1)
or pn(ja, 1)

τa

pn(j, 1)

τ1

σinτn(sqnid
u) σinτb(sqnid

u) στb(sqnid
u)

στa(sqnid
n) σinτ1(sqnid

n)

≤ +1

=

≤

Figure 4.20: Graphical Representation Used in the Proof of Lemma 4.12

Case τa ≺ τ1 Let ai be such that τ1 = _, ai. Assume by induction that we have derivations of:[
βτ
](
φinτ1 , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φinτ1 , leak

in
τ1 ,guti

)
(4.14)

βτ → σinτ1(gutiidx
n) = gutija (4.15)

Part 1 First, we show that:
βτ → στ1(gutiidx

n) = gutija

Since we know that (4.15) holds, we just need to look at the ai that update gutiidx
n to conclude:

• If ai = tn(j, 0). Using (4.14), we know that
[
βτ
]
g(φinτ1) 6= gutija . Hence using (4.15):

βτ → σinτ1(gutiidx
n) 6= g(φinτ1)

Which shows that βτ → ¬acceptidx
τ1 . This concludes this case.

• If ai = pn(j, 1). Since τa = tn(ja, 1) or pn(ja, 1), we know by validity of τ that ja 6= j. We give a
graphical summary of this proof in Figure 4.20. Using (Equ3) we know that:

acceptidx
τ1 →

∨
τn=_,puid(jn,1)

τn≺τ1

g(φinτn) = nj ∧ π1(g(φinτ1)) = {〈idx , σ
in
τn(sqnidx

u)〉}n
jn
e

pkn
(4.16)

Since ja 6= j we know that nj 6= nja . Moreover:

στb(b-auth
idx
u) = nja ∧ acceptidx

τb
→ g(φinτb) = nja

Hence βτ → g(φinτb) 6= nj . Moreover, for every τ ′ between τb and τ1, we know that τ ′ 6= puidx(_, 1).
Therefore we know that:

βτ ∧ acceptidx
τ1 →

∨
τn=_,puid(jn,1)

τn≺τb

g(φinτn) = nj ∧ π1(g(φinτ1)) = {〈idx , σ
in
τn(sqnidx

u)〉}n
jn
e

pkn

Let τn = _,puid(jn, 1) such that τn ≺ τb. We know that:

βτ → στa(sqnidx
n) = στb(sqnidx

u) = suc(σinτb(sqnidx
u))

Since στa(sqnidx
n) ≤ σinτ1(sqnidx

n) and σinτn(sqnidx
u) ≤ σinτb(sqnidx

u), we deduce that:

βτ ∧ acceptidx
τ1 ∧ g(φinτn) = nj → σinτ1(sqnidx

n) > σinτn(sqnidx
u)

Moreover:

βτ ∧ inc-acceptidx
τ1 ∧ g(φinτn) = nj ∧ π1(g(φinτ1)) = {〈idx , σ

in
τn(sqnidx

u)〉}n
jn
e

pkn

→ σinτ1(sqnidx
n) ≤ σinτn(sqnidx

u)

116 The 5G-AKA Authentication Protocol Privacy

Hence:

βτ ∧ acceptidx
τ1 ∧ g(φinτn) = nj ∧ π1(g(φinτ1)) = {〈idx , σ

in
τn(sqnidx

u)〉}n
jn
e

pkn
→ ¬inc-acceptidx

τ1

Using (4.16), this shows that:

βτ ∧ acceptidx
τ1 → ¬inc-accept

idx
τ1 (4.17)

This concludes this case.

• If ai = tn(j, 1). Since τa = tn(ja, 1) or pn(ja, 1), we know by validity of τ that ja 6= j. From the
induction hypothesis we know that βτ → σinτ1(gutiidx

n) = gutija . It is easy to check that:

σinτ1(gutiidx
n) = gutija → σinτ1(sessionidx

n) = nja

Hence, since j 6= ja:

βτ → σinτ1(sessionidx
n) = nja → σinτ1(sessionidx

n) 6= nj

→ ¬inc-acceptidx
τ1 → στ1(gutiidx

n) = σinτ1(gutiidx
n) = gutija

Which concludes this case.

Part 2 We now show that:[
βτ
](
φτ1 , leakτ1 ,gutija

)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

)
We do a case disjunction on ai. We only details the case where ai is a symbolic action of user id, with

id 6= idx, and the case where ai = fn(ja). All the other cases are similar to these two cases, and their
proof will only be sketched.

• If ai is a symbolic action of user id, with id 6= idx, then for every u ∈ leakτ1\leak
in
τ1 (resp. u ≡ tτ1)

we show that there exists a many-hole context Cu such that u ≡ Cu[φinτ1 , leak
in
τ1] and Cu does not

contain any nonce in N .
We only detail the case ai = fuid(j). First, observe that:

acceptidτ1 ≡

(
eq(π2(g(φinτ1)),Mac5

km
(〈π1(g(φinτ1))⊕ f rk(σinτ1(e-authid

u)) , σinτ1(e-authid
u)〉))

∧ ¬eq(σinτ1(e-authid
u), fail)

)

All the underlined subterms are in φinτ1 , leak
in
τ1 , therefore there exists Caccept such that acceptidτ1 ≡

Caccept[φ
in
τ1 , leak

in
τ1]. Remark that leakτ1\leak

in
τ1 = {σinτ1(valid-gutiidu), σinτ1(gutiidu)}. Moreover:

tτ1 ≡ if acceptidτ1 then ok else error σinτ1(valid-gutiidu) ≡ acceptidτ1

σinτ1(gutiidu) ≡ if acceptidτ1 then π1(g(φinτ1))⊕ f rk(σinτ1(e-authid
u)) else UnSet

Using the fact that all the underlined subterms are in φinτ1 , leak
in
τ1 , and using Caccept it is easy to

build the wanted contexts.
We then conclude using the FA rule under context, the Dup rule and the induction hypothesis:[

βτ
](
φinτ1 , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φinτ1 , leak

in
τ1 ,guti

)[
βτ
](
φinτ1 , leak

in
τ1 ,gutija , (Cu[φinτ1 , leak

in
τ1])u∈{tτ1 ,leakτ1\leakin

τ1
}
)

∼
[
βτ
](
φinτ1 , leak

in
τ1 ,guti, (Cu[φinτ1 , leak

in
τ1])u∈{tτ1 ,leakτ1\leakin

τ1
}
)

(FAc + Dup)∗

[
βτ
](
φτ1 , leakτ1 ,gutija

)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

) R

• If ai = fn(ja). It is easy to check that:

σinτa(e-authjan) 6= idx → σinτa(gutiidx
n) 6= gutija → σinτ (gutiidx

n) 6= gutija

4.10. Acceptance Condition Characterizations 117

Therefore using the induction property (4.15) we deduce that βτ → σinτa(e-authjan) = idx. More-
over by validity of τ , there are no session ja network actions between τa and τ1. It follows that
σinτa(e-authjan) = idx → σinτ1(e-authjan) = idx. Hence:

[βτ]tτ1 = [βτ]〈gutija ⊕ f rkidx (nja) , Mac5
kidx
m

(〈gutija , nja〉)〉

Observe that:[
βτ
](
φτ1 , leakτ1 ,gutija

)
=
[
βτ
](
φinτ1 , 〈gutija ⊕ f rkidx (nja) , Mac5

kidx
m

(〈gutija , nja〉)〉, leakinτ1 ,gutija
)

We are now going to apply the prf-f axiom on the left to replace gutija⊕ f rkidx (nja) with gutija⊕nf
where nf is a fresh nonce. For every τ2 = _, fuid(_) ≺ τ1, we use (Equ1) to replace every
occurrences of acceptτ2 in φinτ1 , leak

in
τ1 , βτ with:

γτ2 ≡
∨

τ3=_,fn(_)≺τ2
τ3 6≺τ2 nsid(_)

fu-trn:τ3u:τ2

which yields the terms φ′inτ1 , leak
′in
τ1 , β

′
τ . We can check that:

set-prf f
r

kidx (γτ2) ⊆ {np | ∃τ ′ = _, fn(p) ≺ τ1}

And that:
set-prf f

r

kidx (φ′inτ1 , leak
′in
τ1) = {np | ∃τ ′ = _, fn(p) ≺ τ1}

Therefore we can apply the prf-f axiom as wanted: first we replace φinτ1 , leak
in
τ1 , βτ by φ′inτ1 , leak

′in
τ1 , β

′
τ

using rule R; then we apply the prf-f axiom; and finally we rewrite all γτ2 back into acceptidx
τ2 .

Finally, we use the ⊕-indep axiom to replace gutija ⊕ nf with a fresh nonce n′f. This yields:[
βτ
](
φin
τ1 , 〈n

′
f , Mac5kidx

m
(〈gutija , nja〉)〉, leakin

τ1 ,gutija
)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

)
[
βτ
](
φin
τ1 , 〈gutija ⊕ nf , Mac5kidx

m
(〈gutija , nja〉)〉, leakin

τ1 ,gutija
)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

) ⊕-indep
[
βτ
](
φin
τ1 , 〈gutija ⊕ nf , Mac5kidx

m
(〈gutija , nja〉)〉, leakin

τ1 ,gutija
)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

) R
[
β′τ
](
φ′inτ1 , 〈gutija ⊕ f r

kidx (nja) , Mac5kidx
m

(〈gutija , nja〉)〉, leak′inτ1 ,gutija
)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

) prf-f[
βτ
](
φτ1 , leakτ1 ,gutija

)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

) R

We do a similar reasoning to replace Mac5
kidx
m

(〈gutija , nja〉) with a fresh nonce n′′f using the
prf-mac5 axiom (we omit the details):[

βτ
](
φinτ1 , 〈n

′
f , n
′′
f 〉, leak

in
τ1 ,gutija

)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

)[
βτ
](
φinτ1 ,

〈
n′f , Mac5

kidx
m

(〈gutija , nja〉)
〉
, leakinτ1 ,gutija

)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

) (R+ prf-mac5)∗

We then do the same thing on the right side, and use the FA axiom under context[
βτ
](
φinτ1 , n

′
f, n
′′
f , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φinτ1 , n

′
f, n
′′
f , leak

in
τ1 ,guti

)[
βτ
](
φinτ1 , 〈n

′
f , n
′′
f 〉 , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φinτ1 , 〈n

′
f , n
′′
f 〉 , leak

in
τ1 ,guti

) FAc[
βτ
](
φinτ1 , 〈n

′
f , n
′′
f 〉 , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φτ1 , leakτ1 ,guti

) Ax∗

Using the fact that βτ ∈ leakinτ1 , we have:[
βτ
](
φinτ1 , leak

in
τ1 ,gutija

)
, n′f, n

′′
f , ∼

[
βτ
](
φinτ1 , leak

in
τ1 ,guti

)
, n′f, n

′′
f ,[

βτ
](
φinτ1 , n

′
f, n
′′
f , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φinτ1 , n

′
f, n
′′
f , leak

in
τ1 ,guti

) Simp

We then conclude using Fresh twice:[
βτ
](
φinτ1 , leak

in
τ1 ,gutija

)
∼
[
βτ
](
φinτ1 , leak

in
τ1 ,guti

)[
βτ
](
φinτ1 , leak

in
τ1 ,gutija

)
, n′f, n

′′
f ∼

[
βτ
](
φinτ1 , leak

in
τ1 ,guti

)
, n′f, n

′′
f

Fresh2

118 The 5G-AKA Authentication Protocol Privacy

• We now sketch the proof of the induction property for the remaining cases:

– If ai = fn(j) with j 6= ja. First, we decompose tτ1 into terms of φinτ1 , leak
in
τ1 , except for the term:〈

gutij ⊕ f rkidx (nj) , Mac5
kidx
m

(〈gutij , nj〉)
〉

The rest of the proof goes as in case ai = fn(ja). On both side, we do the following:
∗ We apply the prf-f axiom to replace gutij ⊕ f rkidx (nj) with gutij ⊕ nf where nf is a fresh
nonce.

∗ We use the ⊕-ind axiom to replace gutij ⊕ nf with a fresh nonce n′f
∗ We apply the prf-mac5 axiom to replace Mac5

kidx
m

(〈gutij , nj〉) with a fresh nonce n′′f .
Finally we use Fresh to get rid of the introduced nonces n′f and n′′f .

– If ai = tn(j, 0). Using the induction hypothesis we know that βτ → ¬acceptidx
τ1 . We can

therefore rewrite all occurrences of acceptidx
τ1 into false under the condition βτ . This removes

all occurrences of σinτ1(gutiidx
n) in leakτ1\leak

in
τ1 and tτ1 . We can then decompose the resulting

terms into terms of φinτ1 , leak
in
τ1 .

– If ai = tn(j, 1). We can decompose leakτ1\leak
in
τ1 and tτ1 into terms of φinτ1 , leak

in
τ1 (we use the

fact that leakinτ1 contains Mac4
kidx
m

(nj)).
– If ai = pn(j, 0). This is trivial using Fresh.
– If ai = pn(j, 1). We use (Equ3) to rewrite all occurrences of acceptidx

τ1 in leakτ1\leak
in
τ1 and tτ1 :

acceptidx
τ1 ↔

∨
τ2=_,puidx (j2,1)

τ2≺τ1

g(φinτ2) = nj ∧ g(φinτ1) = tτ2

We can then decompose the resulting terms into terms of φinτ1 , leak
in
τ1 . This uses the fact that

the terms: (
Mac2

kidx
m

(〈nj , suc(σinτ2(sqnid
u))〉)

)
τ2=_,puidx (j2,1)

τ2≺τ1

are included in leakinτ1 , since {τ2 = _,puidx(j2, 1) | τ2 ≺ τ1} = {τ2 = _,puidx(j2, 1) | τ2 ≺ τb}.
– If ai is a symbolic action of user id, with id = idx, then either ai = puidx(ji, 2) or ai = fuidx(ji).

∗ If ai = puidx(ji, 2), then we show using (Equ2) that:

βτ →
(
acceptidx

τ1 ↔ g(φinτ1) = tτa
)

Therefore we can rewrite acceptidx
τ1 into g(φinτ1) = tτa under βτ in tτ1 . The resulting term

can be easily decomposed into terms of φinτ1 , leak
in
τ1 .

∗ ai = fuidx(ji). We do a similar reasoning, but using (Equ1) instead of (Equ2). We omit
the details. �

4.10.6 Stronger Characterizations

Using the guti concealment lemma, we can show the following stronger version of (Acc3):

Lemma 4.13. For every valid action trace τ = _, ai on Sid and identity id ∈ Sid:
• (StrAcc1) If ai = tuid(j, 1). Let τ1 = _,tuid(j, 0) such that τ1 ≺ τ , and let k ≡ kid. Then:

τ :

tuid(j, 0)

τ1

tn(j1, 0)

τ0

tuid(j, 1)

τ

acceptidτ →
∨

τ0=_,tn(j0,0)
τ1≺τ τ0

(
acceptidτ0 ∧ g(φinτ0) = σinτ1(gutiidu) ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ0(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ0(gutiidn)

)

4.10. Acceptance Condition Characterizations 119

Proof ?(p. 120). First, by applying (Acc3) we get that:

acceptidτ →
∨

τ0=_,tn(j0,0)
τ0≺τ

(
acceptidτ0 ∧ π1(g(φinτ)) = nj0 ∧ π2(g(φinτ)) = σinτ0(sqnid

n)⊕ fk(nj0)

∧ σinτ (gutiidu) = σinτ0(gutiidn)

)
(4.18)

We have acceptidτ → σinτ (s-valid-gutiidu), and σinτ (s-valid-gutiidu) → σinτ1(valid-gutiidu). Let τ0 = _,tn(j0, 0),
we know that acceptidτ0 → σinτ0(gutiidn) 6= UnSet. Therefore:

acceptidτ →
∨

τ0=_,tn(j0,0)
τ0≺τ

(
acceptidτ0 ∧ π1(g(φinτ)) = nj0 ∧ π2(g(φinτ)) = σinτ0(sqnid

n)⊕ fk(nj0)

∧ σinτ (gutiidu) = σinτ0(gutiidn) ∧ σinτ (gutiidu) 6= UnSet ∧ σinτ1(valid-gutiidu)

)

We want to get a contradiction if τ0 ≺ τ1. Let τ0 = _,tn(j0, 0) ≺ τ , and assume that τ0 ≺ τ1. If there
does not exists any τ2 such that τ2 = _, fuid(ji) ≺ τ1, then it is easy to show that σinτ (gutiidu) = UnSet.
In that case, from the equation above we get that ¬acceptidτ , which concludes this case.

Therefore, let τ2 be maximal w.r.t. ≺ such that τ2 = _, fuid(ji) ≺ τ1. We have τ2 6≺τ fuid(_).
Assume that there exists a user id action between τ2 and τ1. It is easy to show by induction over τ ′ in
τ2 ≺ τ ′ � τ1 that, since there are no fuid(_) action between τ2 and τ1, we have ¬σinτ1(valid-gutiidu). This
implies ¬acceptidτ , which concludes this case.

Therefore we can safely assume that there are no user id actions between τ2 and τ1. We deduce that
σinτ1(valid-gutiidu)→ acceptidτ2 . Hence acceptidτ → acceptidτ2 . By applying (Equ1) to τ2, we know that:

acceptidτ →
∨

τa=_,fn(ja)≺τ2
τa 6≺τ nsid(_)

fu-trn:τau:τ2 (4.19)

We recall that:

fu-trn:τau:τ2 ≡

(
inj-authτ2(id, ja) ∧ σinτ2(e-authjan) 6= UnknownId

∧ π1(g(φinτ2)) = gutija ⊕ f rk(nja) ∧ π2(g(φinτ2)) = Mac5
km

(〈gutija , nja〉)

)

Let τa = _, fn(ja) ≺ τ2 such that τa 6≺τ nsid(_). We know that there exists τn = _,pn(ja, 1) or
τn = _,tn(ja, 1) such that τn ≺ τa, and that fu-trn:τau:τ2 → acceptidτn . Let τi = _,puid(ji, 1) or _,tuid(ji, 1)
such that τi ≺ τ2. If τn ≺ τi, we show using (Acc1) if τn = _,pn(ja, 1) or (Acc4) if τn = _,pn(ja, 1)
that we have ¬fu-trn:τau:τ2 . Therefore, we assume that τi ≺ τn. We depict the situation below:

τ :

puid(ji, 1)
or tuid(ji, 1)

τi

pn(ja, 1)
or tn(ja, 1)

τn

fn(ja)

τa

fuid(ji)

τ2

tuid(j, 0)

τ1

tuid(j, 1)

τ

We check that fu-trn:τau:τ2 → στ2(gutiidu) = gutija . Moreover, since there are no user id actions between
τ2 and τ1 or between τ1 and τ , στ2(gutiidu) = σinτ (gutiidu). From (4.18), we know that acceptidτ →
σinτ (gutiidu) = σinτ0(gutiidn). It follows that:

acceptidτ ∧ fu-trn:τau:τ2 → σinτ0(gutiidn) = gutija (4.20)

If τ0 ≺ τn, then it is easy to check that σinτ0(gutiidn) 6= gutija . Therefore we have ¬(acceptidτ ∧ fu-trn:τau:τ2).
Now, we assume that τn ≺ τ0. Recall that we assumed τ0 ≺ τ1. Our goal is to apply the guti

concealment lemma (Lemma 4.12) to τ0 get a contradiction. We can check that the following hypothesis
of Lemma 4.12 is true:

{τ ′ | τi ≺τ0 τb} ∩ {puid(j,_),tuid(j,_), fuid(j) | j ∈ N} ⊆ {puid(ji, 2), fuid(ji)}

We deduce that:

inc-acceptidτn ∧ στi(b-auth
id
u) = nja ∧ acceptidx

τi → g(φinτ0) 6= gutija (4.21)

120 The 5G-AKA Authentication Protocol Privacy

We know that:
fu-trn:τau:τ2 → acceptidτi ∧ στi(b-auth

id
u) = nja (4.22)

Moreover, ¬inc-acceptidτn → στn(gutiidn) 6= gutija . It is then straightforward to check that ¬inc-acceptidτn →
στ0(gutiidn) 6= gutija . Therefore, using (4.20) we get that:

acceptidτ ∧ fu-trn:τau:τ2 ∧ ¬inc-accept
id
τn →

(
σinτ0(gutiidn) = gutija ∧ σinτ0(gutiidn) 6= gutija

)
→ false

Hence acceptidτ ∧ fu-trn:τau:τ2 → inc-acceptidτn . Therefore using (4.21) and (4.22), we get:

acceptidτ ∧ fu-trn:τau:τ2 → g(φinτ0) 6= gutija (4.23)

We have acceptidτ0 → g(φinτ0) = σinτ0(gutiidn). We get from this, (4.20) and (4.23) that:

acceptidτ ∧ fu-trn:τau:τ2 ∧ acceptidτ0 → false

This holds for every τa = _, fn(ja) ≺ τ2. We deduce from (4.19) that:

acceptidτ ∧ acceptidτ0 → false

Since we have this for every τ0 ≺ τ1, we can rewrite (4.18) to get:

acceptidτ →
∨

τ0=_,tn(j0,0)
τ1≺τ0≺τ

(
acceptidτ0 ∧ π1(g(φinτ)) = nj0 ∧ π2(g(φinτ)) = σinτ0(sqnid

n)⊕ fk(nj0)

∧ σinτ (gutiidu) = σinτ0(gutiidn)

)
(4.24)

To conclude, we observe that acceptidτ ∧ fu-trn:τau:τ2 → σinτ1(gutiidu) = gutija . We recall that acceptidτ0 →
g(φinτ0) = σinτ0(gutiidn). We conclude using (4.20) that:

acceptidτ ∧ fu-trn:τau:τ2 → σinτ1(gutiidu) = g(φinτ0)

Since this holds for every τa = _, fn(ja) ≺ τ2, we deduce from (4.19) that:

acceptidτ ∧ acceptidτ0 → σinτ1(gutiidu) = g(φinτ0)

Hence using (4.24) we get:

acceptidτ →
∨

τ0=_,tn(j0,0)
τ1≺τ0≺τ

(
acceptidτ0 ∧ π1(g(φinτ)) = nj0 ∧ π2(g(φinτ)) = σinτ0(sqnid

n)⊕ fk(nj0)

∧ σinτ (gutiidu) = σinτ0(gutiidn) ∧ σinτ1(gutiidu) = g(φinτ0)

)
�

We now prove the following strong acceptance characterization properties:

Lemma 4.14. For every valid action trace τ = _, ai on Sid and identity id ∈ Sid:
• (StrEqu1) If ai = fuid(j). Let τ2 = _,tuid(j, 0) or _,puid(j, 1) such that τ2 ≺ τ , then:

acceptidτ ↔
∨

τ2≺ττ1=_,fn(j0)

fu-trn:τ1u:τ

• (StrEqu2) If ai = tuid(j, 1). Let τ2 = _,tuid(j, 0) such that τ2 ≺ τ . Then for every τ1 such that
τ1 = _,tn(j1, 0) and τ2 ≺τ τ1, we let:

part-trn:τ1u:τ2,τ ≡

π1(g(φinτ)) = nj1 ∧ π2(g(φinτ)) = σinτ1(sqnid

n)⊕ fkid(nj1)

∧ π3(g(φinτ)) = Mac3
kidm

(〈nj1 , σinτ1(sqnid
n) , σinτ2(gutiidu)〉)

∧ g(φinτ1) = σinτ2(gutiidu) ∧ σinτ2(gutiidu) = σinτ1(gutiidn) ∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n))

Then:(

part-trn:τ1u:τ2,τ → acceptidτ ∧ acceptidτ1
)
τ1=_,tn(j1,0)

τ2≺τ τ1
acceptidτ ↔

∨
τ1=_,tn(j1,0)

τ2≺τ τ1

part-trn:τ1u:τ2,τ

4.10. Acceptance Condition Characterizations 121

• (StrEqu3) If ai = tn(j, 1). Let τ1 = _,tn(j, 0) such that τ1 ≺ τ . Let id ∈ Sid and τi, τ2 be such
that τi = _,tuid(ji, 1), τ2 = _,tuid(ji, 0) and τ2 ≺τ τ1 ≺τ τi. Let:

full-trn:τ1,τu:τ2,τi ≡ part-trn:τ1u:τ2,τi ∧ g(φinτ) = Mac4
kidm

(nj)

Then:(
full-trn:τ1,τu:τ2,τi → acceptidτ ∧ acceptidτi ∧ acceptidτ1

)
τ2=_,tuid(ji,0)

τi=_,tuid(ji,1)
τ2≺τ τ1≺τ τi

acceptidτ ↔
∨

τ2=_,tuid(ji,0)

τi=_,tuid(ji,1)
τ2≺τ τ1≺τ τi

full-trn:τ1,τu:τ2,τi

• (StrEqu4) If ai = puid(j, 2) then for every τ1 = _,pn(j1, 1) such that τ2 ≺τ τ1, we have:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → inc-acceptidτ1 ∧ σ
in
τ (sqnid

n)− στ1(sqnid
n) = 0

Moreover:
¬σinτ (syncidu) ∧ acceptidτ → στ (sqnid

u)− στ (sqnid
n) = 0

4.10.7 ? (p. 127) Proof of Lemma 4.14

Proof of (StrEqu1). First, we apply (Equ1):

acceptidτ ↔
∨

τ1=_,fn(j0)≺τ
τ1 6≺τ nsid(_)

fu-trn:τ1u:τ

Let τ1 = _, fn(j0) ≺ τ . Remark that if τ2 ≺ τ1 then τ1 6≺τ nsid(_). Hence to conclude we just need to
show that if τ1 ≺ τ2 then ¬fu-trn:τ1u:τ .

Let τi = _,puid(j, 2) or _,tuid(j, 1) such that τi ≺ τ . We do a case disjunction on τi:
• If τi = _,puid(j, 2). We know that fu-trn:τ1u:τ → acceptidτi , hence by applying (Acc2) to τi:

fu-trn:τ1u:τ →
∨

τx=_,pn(jx,1)
τ2≺τx≺τi

acceptidτx ∧ g(φinτ2) = njx ∧ π1(g(φinτx)) = {〈id , σinτ2(sqnid
u)〉}n

j
e

pkn

We know that fu-trn:τ1u:τ → g(φinτ2) = nj0 . We deduce that the main term of the disjunction above is
false whenever jx 6= j0. Hence we have ¬fu-trn:τ1u:τ if there does not exist any τ0 such that τ2 ≺ τ0 ≺ τi
and τ0 = _,pn(j0, 1).
If τ1 ≺ τ2 then we know that for every τ0, if τ0 = _,pn(j0, 1) ≺ τ then τ0 ≺ τ1, and by transitivity
τ0 ≺ τ2. Hence there does not exist any τ0 such that τ2 ≺ τ0 ≺ τi and τ0 = _,pn(j0, 1). We deduce
that if τ1 ≺ τ2 then ¬fu-trn:τ1u:τ holds, which is what we wanted.

• If τi = _,tuid(j, 1). We know that fu-trn:τ1u:τ → acceptidτi , hence by applying (StrAcc1) to τi:

fu-trn:τ1u:τ →
∨

τx=_,tn(jx,0)
τ2≺τx≺τi

(
acceptidτx ∧ g(φinτx) = σinτ2(gutiidu) ∧ π1(g(φinτi)) = njx

∧ π2(g(φinτi)) = σinτx(sqnid
n)⊕ fk(njx) ∧ σinτi(gutiidu) = σinτx(gutiidn)

)

Similarly to what we did for τi = _,puid(ji, 2), the main term above if false if jx 6= j0. Hence we
have ¬fu-trn:τ1u:τ if there does not exist any τ0 such that τ2 ≺ τ0 ≺ τi and τ0 = _,tn(j0, 0). Since
this is the case whenever τ1 ≺ τ2, we deduce that if τ1 ≺ τ2 then ¬fu-trn:τ1u:τ holds. �

Proof of (StrEqu2). We repeating the proof of (Equ4), but using (StrAcc1) instead of (Acc3). All
the reasonings we did apply, only the set of τ1 the disjunction quantifies upon changes. We quantify over
τ1 in {τ1 | τ1 = _,tn(j0, 0) ∧ τ2 ≺τ τ1} instead of {τ1 | τ1 = _,tn(j0, 0) ∧ τ1 ≺ τ}. We get that:

acceptidτ ↔
∨

τ1=_,tn(j0,0)
τ2≺τ τ1

π3(g(φinτ)) = Mac3
km

(〈nj0 , σinτ1(sqnid
n) , σinτ (gutiidu)〉) ∧ σinτ (s-valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n)) ∧ g(φinτ1) = σinτ1(gutiidn) ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ (gutiidu) = σinτ1(gutiidn)

122 The 5G-AKA Authentication Protocol Privacy

Since no user id action occurs between τ2 and τ , we know that:

σinτ (gutiidu) = σinτ2(gutiidu) σinτ (s-valid-gutiidu)↔ σinτ2(valid-gutiidu)

Using this, we can rewrite the characterization of acceptidτ as follows (we underline the subterms where
rewriting occurred):

acceptidτ ↔
∨

τ1=_,tn(j0,0)
τ2≺τ τ1

π3(g(φinτ)) = Mac3

km
(〈nj0 , σinτ1(sqnid

n) , σinτ2(gutiidu)〉) ∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n)) ∧ g(φinτ1) = σinτ1(gutiidn) ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ2(gutiidu) = σinτ1(gutiidn)

We rewrite σinτ1(gutiidn) into σinτ2(gutiidu):

↔
∨

τ1=_,tn(j0,0)
τ2≺τ τ1

π3(g(φinτ)) = Mac3

km
(〈nj0 , σinτ1(sqnid

n) , σinτ2(gutiidu)〉) ∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n)) ∧ g(φinτ1) = σinτ2(gutiidu) ∧ π1(g(φinτ)) = nj0

∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fk(nj0) ∧ σinτ2(gutiidu) = σinτ1(gutiidn)

Finally we re-order the conjuncts:

↔
∨

τ1=_,tn(j0,0)
τ2≺τ τ1

π1(g(φinτ)) = nj1 ∧ π2(g(φinτ)) = σinτ1(sqnid

n)⊕ fkid(nj1)

∧ π3(g(φinτ)) = Mac3
kidm

(〈nj1 , σinτ1(sqnid
n) , σinτ2(gutiidu)〉)

∧ g(φinτ1) = σinτ2(gutiidu) ∧ σinτ2(gutiidu) = σinτ1(gutiidn) ∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n))

↔

∨
τ1=_,tn(j0,0)

τ2≺τ τ1

part-trn:τ1u:τ2,τ

Finally, for every τ1 = _,tn(j1, 0)τ2 ≺τ τ1 we can check that:

part-trn:τ1u:τ2,τ → acceptidτ ∧ acceptidτ1 �

Proof of (StrEqu3). The proof that:

acceptidτ ↔
∨

τ2=_,tuid(ji,0)

τi=_,tuid(ji,1)
τ2≺τ τ1≺τ τi

full-trn:τ1,τu:τ2,τi

is exactly the same than the proof of (Equ5), but using (StrEqu2) instead of (Equ4).
Finally, it is straightforward to check that for every τ2 = _,tuid(ji, 0), τi = _,tuid(ji, 1) such that

τ2 ≺τ τ1 ≺τ τi we have:
full-trn:τ1,τu:τ2,τi → acceptidτ ∧ acceptidτi ∧ acceptidτ1 �

Proof of (StrEqu4). Let τ2 = _puid(j, 1) such that τ2 ≺ τ . Using (Equ2), we know that:

acceptidτ ↔
∨

τ1=_,pn(j1,1)
τ2≺τ τ1

supi-tr n:τ1u:τ2,τ

Therefore to prove (StrEqu4) it is sufficient to show that for every τ1 such that τ1 = _,pn(j1, 1) and
τ2 ≺τ τ1 we have:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → inc-acceptidτ1 ∧ σ
in
τ (sqnid

n)− στ1(sqnid
n) = 0 ∧ στ (sqnid

u)− στ (sqnid
n) = 0

Hence let τ1 with τ1 = _,pn(j1, 1) and τ2 ≺τ τ1.

4.10. Acceptance Condition Characterizations 123

τ :

puid(j, 1)

τ2

pn(j1, 1)

τ1

puid(j, 2)

τ

σinτ2(sqnid
u) στ2(sqnid

u)

σinτ1(sqnid
n)

σinτ1(sqnid
u)+1 =

≤<

Figure 4.21: First Graphical Representation Used in the Proof of Lemma 4.14

Part 1 First, we are going to show that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στ1(sqnid
n) = στ2(sqnid

u) (4.25)

We know that inc-acceptidτ1 → στ1(sqnid
n) = στ2(sqnid

u), which is what we wanted. Hence it only remains
to show (4.25) when ¬inc-acceptidτ1 . Using (B5) we know that στ1(sqnid

n) ≤ στ1(sqnid
u). By validity of τ

there are no user action between τ2 and τ , hence στ (sqnid
u) = στ2(sqnid

u). Observe that:

supi-tr n:τ1u:τ2,τ ∧ ¬inc-accept
id
τ1 → σinτ1(sqnid

n) > σinτ2(sqnid
u) στ2(sqnid

u) = σinτ2(sqnid
u) + 1

We summarize this graphically in Figure 4.21. We deduce that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ ¬inc-accept
id
τ1 → σinτ2(sqnid

u) < σinτ1(sqnid
n) ≤ σinτ2(sqnid

u) + 1

→ σinτ1(sqnid
n) = σinτ2(sqnid

u) + 1

→ στ1(sqnid
n) = στ2(sqnid

u) (4.26)

Which is what we wanted to show.

Part 2 We now show that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στ1(sqnid
n) > σinτ2(sqnid

n) (4.27)

First, notice that:

inc-acceptidτ1 → στ1(sqnid
n) = σinτ1(sqnid

n) + 1

→ στ1(sqnid
n) > σinτ1(sqnid

n)

→ στ1(sqnid
n) > σinτ2(sqnid

n) (By (B1))

Therefore we only need to prove:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ ¬inc-accept
id
τ1 → στ1(sqnid

n) > σinτ2(sqnid
n)

Which is straightforward:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ ¬inc-accept
id
τ1 → στ1(sqnid

n) = σinτ2(sqnid
u) + 1 (By (4.26))

→ στ1(sqnid
n) > σinτ2(sqnid

u)

→ στ1(sqnid
n) > στ2(sqnid

n) (By (B5))

Which concludes the proof of (4.27).

Part 3 We give the proof of:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στ (sqnid
n) = στ1(sqnid

n) ∧ στ (sqnid
u) = στ (sqnid

n) (4.28)

By validity of τ we know that στ (sqnid
u) = στ2(sqnid

u), therefore using (4.25) we know that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στ1(sqnid
n) = στ (sqnid

u)

To conclude, we need to show that sqnid
n was kept unchanged since τ1, i.e. that ¬σinτ (syncidu)∧supi-tr n:τ1u:τ2,τ

implies that στ1(sqnid
n) = στ (sqnid

n). This requires that no supi or guti network session incremented
sqnid

n . Therefore we need to show the two following properties:

124 The 5G-AKA Authentication Protocol Privacy

τ :

puid(j, 1)

τ2

pn(j1, 1)

τ1

pn(ji, 1) or tn(ji, 1)

τi

puid(j, 2)

τ

στ2(sqnid
u) =

suc(σinτ2(sqnid
u))

στ1(sqnid
n) =

suc(σinτ2(sqnid
u)) στi(sqnid

n) = σinτi(sqnid
n)

στ (sqnid
n)

στ (sqnid
u) =

σinτ (sqnid
u)=

=

= =

Figure 4.22: Second Graphical Representation Used in the Proof of Lemma 4.14

• supi: For every τ1 ≺τ τi such that τi = _,pn(ji, 1):

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → ¬inc-acceptidτi (4.29)

• guti: For every τ1 ≺τ τi such that τi = _,tn(ji, 1):

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → ¬inc-acceptidτi (4.30)

Assuming the two properties above, showing that (4.28) holds is easy. First, using (4.29) and (4.30) we
know that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στ (sqnid
n) = στ1(sqnid

n)

We know that στ (sqnid
u) = σinτ (sqnid

u). We deduce that στ (sqnid
n) = στ (sqnid

u), which concludes this
case. We summarize this graphically in Figure 4.22.

Part 4 (Proof of (4.29)) Let τ1 ≺τ τi such that τi = _,pn(ji, 1). Using (Acc1) we know that:

acceptidτi →
∨

τ ′=_,puid(j′,1)≺ττi
π1(g(φinτi)) = {

〈
id , σinτ ′(sqnid

u)
〉
}n
j′
e

pkn
∧ g(φinτ ′) = nji

We know that supi-tr n:τ1u:τ2,τ → g(φinτ2) = nj1 6= nji . Moreover from the validity of τ we know that for every
τ ′′ such that:

τ2 = _,puid(j, 1) ≺τ τ ′′ = _, ai′′ ≺τ τ = _,puid(j, 2)

We have ai′′ 6= puid(_,_). Hence:

supi-tr n:τ1u:τ2,τ ∧ acceptidτi →
∨

τ ′=_,puid(j′,1)≺ττ2
π1(g(φinτi)) = {

〈
id , σinτ ′(sqnid

u)
〉
}n
j′
e

pkn
∧ g(φinτ ′) = nji

Which implies that:

supi-tr n:τ1u:τ2,τ ∧ inc-acceptidτi →
∨

τ ′=_,puid(j′,1)≺ττ2
στi(sqnid

n) = suc(σinτ ′(sqnid
u))

We recall (4.25):
¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στ1(sqnid

n) = στ2(sqnid
u)

Let τ ′ = _,puid(j′, 1) ≺τ τ2. We know using (B1) that:

στ1(sqnid
n) ≤ στi(sqnid

n) στ ′(sqnid
u) ≤ στ2(sqnid

u)

Moreover using (A2) we know that στ ′(sqnid
u) 6= στ2(sqnid

u), hence στ ′(sqnid
u) < στ2(sqnid

u). We sum-
marize what we know graphically in Figure 4.23. Therefore:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ inc-acceptidτi

4.10. Acceptance Condition Characterizations 125

τ :

puid(j′, 1)

τ ′

puid(j, 1)

τ2

pn(j1, 1)

τ1

pn(ji, 1)

τi

στ ′(sqnid
u)

στ2(sqnid
u)

στ1(sqnid
n)

στi(sqnid
n)

<

=

=

≤

Figure 4.23: Third Graphical Representation Used in the Proof of Lemma 4.14

→
∨

τ ′=_,puid(j′,1)≺ττ2

(
στ ′(sqnid

u) < στ2(sqnid
u)∧στ2(sqnid

u) = στ1(sqnid
n)

∧στ1(sqnid
n) ≤ στi(sqnid

n)∧στi(sqnid
n) = στ ′(sqnid

u)

)

→
∨

τ ′=_,puid(j′,1)≺ττ2
στ ′(sqnid

u) < στ ′(sqnid
u)

→ false

Which concludes this proof.

Part 5 (Proof of (4.30)) Let τ1 ≺τ τi such that τi = _,tn(ji, 1). Using Lemma 4.7, we know that:

acceptidτi → σinτi(e-auth
j
n) = id →

∨
τ′=_,tuid(_,1)

τ′≺τ τi

στ ′(b-auth
id
u) = nji

Since supi-tr n:τ1u:τ2,τ → g(φinτ2) = nj1 , we know that supi-tr n:τ1u:τ2,τ → στ2(b-authid
u) = nj1 . As we know that

nj1 6= nji , we deduce that supi-tr n:τ1u:τ2,τ → στ2(b-authid
u) 6= nji . Moreover using the validity of τ we know

that στi(b-auth
id
u) = στ2(b-authid

u). Therefore:

supi-tr n:τ1u:τ2,τ ∧ acceptidτi →
∨

τ′=_,tuid(_,1)
τ′≺τ τ2

στ ′(b-auth
id
u) = nji

Let τ ′ = _,tuid(_, 1) with τ ′ ≺τ τ2. We know that στ ′(b-authid
u) = nji implies that στ ′(b-authid

u) 6= fail,
and therefore acceptidτ ′ holds:

στ ′(b-auth
id
u) = nji → στ ′(b-auth

id
u) 6= fail → acceptidτ ′

By applying (Acc3) we know that:

acceptidτ ′ →
∨

τi′=_,tn(j′i,0)≺ττ ′
π1(g(φinτ ′)) = nj

′
i

Since [acceptidτ ′]στ ′(b-auth
id
u) = [acceptidτ ′]π1(g(φinτ ′)) we deduce:

στ ′(b-auth
id
u) = nji → false if τ ′ ≺τ tn(ji, 0)

Hence if τ ′ ≺τ tn(ji, 0) we know that ¬
(
supi-tr n:τ1u:τ2,τ ∧ acceptidτi

)
, which is what we wanted to show.

Therefore let τi′ = _,tn(ji, 0), and assume τi′ ≺τ τ ′. We summarize graphically this below:

τ :

tn(ji, 0)

τi
′

tuid(_, 1)

τ ′

puid(j, 1)

τ2

pn(j1, 1)

τ1

tn(ji, 1)

τi

puid(j, 2)

τ

126 The 5G-AKA Authentication Protocol Privacy

We recall (4.27):
¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → σinτ2(sqnid

n) < στ1(sqnid
n)

Hence, using (B4) we know that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ →
∨

τ2�τx�τ1
τx=_,tn(jx,0) or _,tn(jx,1) or _,pn(jx,1)

στ1(sessionid
n) = njx

Since tn(ji, 0) ≺τ τ2 and τ1 ≺τ tn(ji, 1):

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στ1(sessionid
n) 6= nji

For every τ1 � τ ′′ we have:

στ ′′(sessionid
n) =

if inc-acceptidτ ′′ then nj

′′
else σinτ ′′(session

id
n) if τ ′′ = _,pn(j′′, 1)

if acceptidτ ′′ then nj
′′
else σinτ ′′(session

id
n) if τ ′′ = _,tn(j′′, 0)

σinτ ′′(session
id
n) otherwise

Since τ ′ 6≺τ tn(ji, 0), we know that after having set στ ′′(sessionid
n) to nj1 at τ1, it can never be set to nji .

Formally, we show by induction that:

στ1(sessionid
n) 6= nji → στ ′′(sessionid

n) 6= nji

We conclude by observing that σinτi(session
id
n) 6= nji → ¬inc-acceptidτi .

Part 6 To conclude the proof of (StrEqu4), it only remains to show that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → inc-acceptidτ1 (4.31)

Since supi-tr n:τ1u:τ2,τ → acceptidτ1 , and since:

acceptidτ1 ∧ ¬inc-accept
id
τ1 ↔ σinτ1(sqnid

n) > σinτ2(sqnid
u)

To show that (4.31) holds, it is sufficient to show that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → σinτ1(sqnid
n) ≤ σinτ2(sqnid

u)

We generalize this, and show by induction that for every τn such that τ2 � τn ≺τ τ1, we have:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στn(sqnid
n) ≤ σinτ2(sqnid

u)

If τn = τ2, this is immediate using (B5) and the fact that στn(sqnid
n) = σinτn(sqnid

n). Therefore let
τn >τ τ2, and assume by induction that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → σinτn(sqnid
n) ≤ σinτ2(sqnid

u)

We then have three cases:
• If τn 6= _,pn(_, 1) and τn 6= _,tn(_, 1), we know that στn(sqnid

n) = σinτn(sqnid
n), and we conclude

directly using the induction hypothesis.

• If τn = _,pn(jn, 1). Using (Equ3) we know that:

στn(sqnid
n) 6= σinτn(sqnid

n) → acceptidτn

→
∨

τx=_,puid(jx,1)
τx≺τ τn

 g(φinτx) = njn ∧ π1(g(φinτn)) = {〈id , σinτx(sqnid
u)〉}n

jn
e

pkn

∧ π2(g(φinτn)) = Mac1
kidm

(〈{〈id , σinτx(sqnid
u)〉}n

jn
e

pkn
, g(φinτx)〉)

︸ ︷︷ ︸

θτx

4.10. Acceptance Condition Characterizations 127

Since τn ≺τ τ1, we know that jn 6= j1. Moreover, supi-tr n:τ1u:τ2,τ → g(φinτ2) = nj1 . By consequence:

supi-tr n:τ1u:τ2,τ → g(φinτ2) 6= njn

Which shows that ¬(supi-tr n:τ1u:τ2,τ ∧ θτ2). Hence:

supi-tr n:τ1u:τ2,τ ∧ στn(sqnid
n) 6= σinτn(sqnid

n)→
∨

τx=_,puid(jx,1)
τx≺τ τ2

θτx

Observe that for every τx = _,puid(jx, 1) such that τx ≺τ τ2:

θτx → στn(sqnid
n) = if σinτn(sqnid

n) ≤ σinτx(sqnid
u) then σinτx(sqnid

u) else σinτn(sqnid
n)

Using (B1), we know that σinτx(sqnid
u) ≤ σinτ2(sqnid

u). Therefore we have the inequality:

θτx → στn(sqnid
n) ≤ if σinτn(sqnid

n) ≤ σinτx(sqnid
u) then σinτ2(sqnid

u) else σinτn(sqnid
n)

And using the induction hypothesis, we get that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ θτx → στn(sqnid
n) ≤ σinτ2(sqnid

u)

Hence:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ στn(sqnid
n) 6= σinτn(sqnid

n) → στn(sqnid
n) ≤ σinτ2(sqnid

u)

From which we deduce, using the induction hypothesis, that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στn(sqnid
n) ≤ σinτ2(sqnid

u)

• If τn = _,tn(jn, 1). Using (StrEqu2), we know that:

στn(sqnid
n) 6= σinτn(sqnid

n) → acceptidτn →
∨

τx′=_,tuid(jx,0)

τn′=_,tn(jn,0)
τx=_,tuid(jx,1)

τx′≺τ τn′≺τ τx≺τ τn

full-trn:τn
′,τn

u:τx′,τx

Let τx = _,tuid(jx, 1), τn′ = _,tn(jn, 0), τx′ = _,tuid(jx, 0) s.t. τx′ ≺τ τn′ ≺τ τx ≺τ τn. Then:

full-trn:τn
′,τn

u:τx′,τx ∧ inc-acceptidτn →
∧

τn′≺ττi≺ττn
¬inc-acceptidτi → στn′(sqnid

n) = σinτn(sqnid
n)

Moreover, since:

full-trn:τn
′,τn

u:τx′,τx ∧ inc-acceptidτn → σinτx(sqnid
u) = στn′(sqnid

n)

We deduce that:

full-trn:τn
′,τn

u:τx′,τx → στn(sqnid
n) = if inc-acceptidτn then suc(σinτx(sqnid

u)) else σinτn(sqnid
n)

By validity of τ , we know that jx 6= j and that τx ≺τ τ2. Therefore using (B1) we know that
στx(sqnid

u) ≤ σinτ2(sqnid
u). Moreover στx(sqnid

u) = suc(σinτx(sqnid
u)). Hence:

full-trn:τn
′,τn

u:τx′,τx → στn(sqnid
n) ≤ if inc-acceptidτn then σinτ2(sqnid

u) else σinτn(sqnid
n)

And using the induction hypothesis, we get that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ full-trn:τn
′,τn

u:τx′,τx → στn(sqnid
n) ≤ σinτ2(sqnid

u)

Hence:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ ∧ στn(sqnid
n) 6= σinτn(sqnid

n) → στn(sqnid
n) ≤ σinτ2(sqnid

u)

From which we deduce, using the induction hypothesis, that:

¬σinτ (syncidu) ∧ supi-tr n:τ1u:τ2,τ → στn(sqnid
n) ≤ σinτ2(sqnid

u) �

128 The 5G-AKA Authentication Protocol Privacy

4.11 Unlinkability

In this section, we prove the σul-unlinkability of the AKA+ protocol. To do this, we need, for every valid
basic action trace τ , to show that there exists a derivation of φτ ∼ φτ . We show this by induction on τ .

4.11.1 Resistance Against De-Synchronization Attacks

To show that the guti protocol is σul-unlinkable, we need the protocol the be secure against de-
synchronization attacks: for every agent id, the adversary should not be able to keep id synchronized in
the left protocol, while de-synchronizing ντ (id) in the right protocol.

Therefore, we need the range check on the sequence number to hold on the left if and only if the range
check holds on the right. More precisely, for every left identity id and matching right identity ντ (id), the
result of the range checks should be indistinguishable:

range(στ (sqnid
u), στ (sqnid

n)) ∼ range(στ (sqnντ (id)
u), στ (sqnντ (id)

n)) (4.32)

Unfortunately, this property is not a invariant of the AKA+ protocol, for two reasons:
• First, knowing that the range checks are indistinguishable after a symbolic execution τ is not enough

to show that they are indistinguishable after τ1 = τ, ai (for some ai). For example, take a model
where range(u, v) is implemented as a check that the difference between u and v lies in some interval:

[[range(u, v)]] if and only if [[u]]− [[v]] ∈ {0, . . . , D}

for some constant D > 0, and where suc is an increment by one. Then, a priori, we may have:

[[στ (sqnid
u)]]− [[στ (sqnid

n)]] = 0 ∈ {0, . . . , D}

[[στ (sqnντ (id)
u)]]− [[στ (sqnντ (id)

n)]] = D ∈ {0, . . . , D}

While (4.32) holds for τ , it does not hold for τ1 = τ,puid(j, 1). Indeed, after executing puid(j, 1):

[[στ1(sqnid
u)]]− [[στ1(sqnid

n)]] = 1 ∈ {0, . . . , D}

[[στ1(sqn
ντ1 (id)
u)]]− [[στ1(sqn

ντ1 (id)
n)]] = D + 1 6∈ {0, . . . , D}

To avoid this, we require that range(_,_) and suc(_) are implemented as, respectively, an equality
check and an integer by-one increment. Moreover, we strengthen the induction property to show
that the difference between the sequence numbers are indistinguishable, i.e.:

στ (sqnid
u)− στ (sqnid

n) ∼ στ (sqnντ (id)
u)− στ (sqnντ (id)

n) (4.33)

• Second, the property in (4.33) does not always hold: after a nsid(_) action, the agent id and
the network may be synchronized on the left (if, e.g., the supi protocol has just been successfully
executed), but ντ (id) is not synchronized with the network.
Even though the property does not hold, there is no σul-unlinkability attack. Indeed a desynchro-
nization attack would need the guti protocol to succeed on the left and fail on the right. But the
guti protocol requires that a fresh guti has been established between id (resp. ντ (id)) and the
network. This can only be achieved through a honest execution of the supi protocol. As such a
execution will re-synchronize the agent and the network sequence numbers on both side, there is no
attack.
To model this, we extended, in Section 4.6.4, the state with a new boolean variable, syncidu , that
records whether there was a successful execution of the supi protocol with agent id since the last
reset nsid(_). This variable is only here for proof purposes, and is never used in the actual protocol.
We can then state the synchronization invariant:

if στ (syncidu) then στ (sqnid
u)− στ (sqnid

n)

else error︸ ︷︷ ︸
sync-diffid

τ

∼ if στ (syncντ (id)
u) then στ (sqnντ (id)

u)− στ (sqnντ (id)
n)

else error︸ ︷︷ ︸
sync-diffντ (id)

τ

4.11. Unlinkability 129

4.11.2 The Case Term Construction

We give some definitions that are useful to handle sequences of if_then_else_ in terms.

Definition 4.23. Let L = (i1, . . . , il) be a list of indices, and (bi)i∈L, (ti)i∈L two list of terms. Then:

case
i∈L

((bi)i∈L : (mi)i∈L) ≡

{
if bi1 then mi1 else case

i∈L0

((bi)i∈L0 : (mi)i∈L0) when L 6= ∅ and L0 = (i2, . . . , il)

defaut otherwise

We often abuse notation, and write case
i∈L

(bi :mi) instead of case
i∈L

((bi)i∈L : (mi)i∈L).

Proposition 4.18. Let L = (i1, . . . , il) be a list of indices, and (bi)i∈L, (ti)i∈L two list of terms. If
(bi)i∈L is a CS partition, then for any permutation π of {1, . . . , l}, if we let Lπ = (iπ(1), . . . , iπl) then:

case
i∈L

(bi :mi) = case
i∈Lπ

(bi :mi)

In that case, we write case
i∈{i1,...,il}

(bi :mi) (i.e. we use a set notation instead of list notation).

Proof. The proof is straightforward by induction over |L|. �

If (bi)i∈L is such that (
∨
i∈L bi) = true then the case where all tests fail and we return defaut never

happens. This motivates the introduction of a second definition.

Definition 4.24. Let L = (i1, . . . , il) be a list of indices with l ≥ 1, and (bi)i∈L, (ti)i∈L two list of terms.
Then:

s-case
i∈L

((bi)i∈L : (mi)i∈L) ≡

{
if bi1 then mi1 else case

i∈L0

((bi)i∈L0
: (mi)i∈L0

) if L0 = (i2, . . . , il) and l > 1

m1 if l = 1

Proposition 4.19. For every list of terms (bi)i∈L and (ti)i∈L, if (
∨
i∈L bi) = true then:

case
i∈L

(bi :mi) = s-case
i∈L

(bi :mi)

Proof. We omit the proof. �

4.11.3 Strengthened Induction Hypothesis

We want to prove that for every valid action trace τ , we have a derivation of:

φ
AKA+

N
τ ∼ φ

AKA+
N

τ

for some N = C.N large enough (more precisely, C must be larger than |τ |). Instead of proving the
formula above, we prove that we have a derivation of the stronger formula:

φ
AKA+

N
τ , l-revealCτ ∼ φ

AKA+
N

τ , r-revealCτ

where l-revealCτ and r-revealCτ are terms used in the proof by induction on τ . Basically, we anticipate and
include in l-revealCτ and r-revealCτ elements that we will need later in the proof. Morally, they contain
terms representing information that can be safely leaked to the adversary, either because he already
knows it, or because he can learn this information later in the protocol execution.

Definition 4.25. Let τ = τ0, ai be a valid basic action trace on Sid and C an integer. Then revealCτ is a
list of elements of the form u ∼ v containing exactly the elements:

1. All the elements from revealCτ0 .

130 The 5G-AKA Authentication Protocol Privacy

2. For every identity id, let:

m-suci idτ ≡ [στ (valid-gutiidu)]στ (gutiidu)

Then, for every id ∈ Sid, revealCτ contains the following elements:

στ (valid-gutiidu) ∼ στ (valid-gutiντ (id)
u) m-suci idτ ∼ m-suci ντ (id)

τ στ (syncidu) ∼ στ (syncντ (id)
u)

sync-diffid
τ ∼ sync-diffντ (id)

τ

3. If ai 6= ns_(_) then for every identity id ∈ Sid:

στ (sqnid
u)− σinτ (sqnid

u) ∼ στ (sqnντ (id)
u)− σinτ (sqnντ (id)

u)

4. If ai = tuid(j, 0), then:
στ (s-valid-gutiidu) ∼ στ (s-valid-gutiντ (id)

u)

5. If ai = puid(j, 1), then:

{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
∼ {〈ντ (id) , σinτ (sqnντ (id)

u)〉}n
j
e

pkn

Mac1
kidm

(〈{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
, g(φinτ)〉) ∼ Mac1

kντ (id)
m

(〈{〈ντ (id) , σinτ (sqnντ (id)
u)〉}n

j
e

pkn
, g(φinτ)〉)

6. If ai = puid(_, 2), tuid(_, 1) or fuid(_):

στ (e-authid
u) ∼ στ (e-authντ (id)

u)

7. If tuid(j, 1) then for every τ1 = _,tn(j0, 0) such that tuid(j, 0) ≺τ τ1:

Mac4
kidm

(nj0) ∼ Mac4

kντ (id)
m

(nj0)

8. If ai = pn(j, 1) then for every id ∈ Sid, for every τ1 = _,puid(j1, 1) ≺ τ such that τ1 6≺τ nsid(_):

Mac2
kidm

(〈nj , suc(σinτ1(sqnid
u))〉) ∼ Mac2

kντ (id)
m

(〈nj , suc(σinτ1(sqnντ (id)
u))〉)

9. If ai = pn(j, 1) or ai = tn(j, 1), for every identity id ∈ Sid, we let:

net-e-authτ (id, j) ≡ eq(στ (e-authjn), id)

net-e-authτ (id, j) ≡
∨

id∈copies-idC(id)

eq(στ (e-authjn), id)

Then we ask that:

net-e-authτ (id, j) ∼ net-e-authτ (id, j)

10. If ai = fn(j) for every identity id ∈ Sid we let {id1, . . . , idlid} = copies-idC(id). We define:

t-suci-⊕τ (id, j) ≡ gutij ⊕ f rkid(nj)

t-suci-⊕τ (id, j) ≡ s-case
1≤i≤lid

(eq(στ (e-authjn), idi) : gutij ⊕ f rkidi (n
j))

t-macτ (id, j) ≡ Mac5
kidm

(〈gutij , nj〉)

t-macτ (id, j) ≡ s-case
1≤i≤lid

(eq(στ (e-authjn), idi) :Mac5
kidim

(〈gutij , nj〉))

Then we ask that:

gutij ∼ gutij

[net-e-authτ (id, j)] (t-suci-⊕τ (id, j)) ∼ [net-e-authτ (id, j)]
(
t-suci-⊕τ (id, j)

)
[net-e-authτ (id, j)] (t-macτ (id, j)) ∼ [net-e-authτ (id, j)]

(
t-macτ (id, j)

)

4.12.? Proof of Lemma 4.15 131

Let (ui ∼ vi)i∈I be such that revealCτ = (ui ∼ vi)i∈I . Then we let l-revealCτ = (ui)i∈I be the list of left
elements of revealCτ , and r-revealCτ = (vi)i∈I list of left elements of revealCτ (in the same order).

Lemma 4.15. Let N be a number of identities, τ a valid basic action trace on N identities, C a number
of copies larger than |τ | and N = C.N . Then there exists a derivation of:

φ
AKA+

N
τ , l-revealCτ ∼ φ

AKA+
N

τ , r-revealCτ

Proof. The proof is given in Section 4.12. �

Using this lemma, we can prove Theorem 4.1, which we recall below:

Theorem. The AKA+ protocol is σul-unlinkable for an arbitrary number of agents and sessions when
the asymmetric encryption {_}__ is ind-cca1 secure and f and f r (resp. Mac1–Mac5) satisfy jointly the
prf assumption.

Proof. Using Proposition 4.3, we only need to show that for every τ ∈ support(Rul), there is a derivation of:

φ
AKA+

N
τ ∼ φ

AKA+
N

τ (4.34)

Moreover, using Proposition 4.1, we know that for every τ ∈ support(Rul), τ is a valid action trace.
Moreover, τ uses only the identities {id1, . . . , idN}, and is by consequence a basic action trace. Therefore,
it is sufficient to prove that there exists a derivation of the formula in (4.34) for every valid basic action
trace τ . We conclude using the Restr rule and Lemma 4.15:

φ
AKA+

N
τ , l-revealCτ ∼ φ

AKA+
N

τ , r-revealCτ

φ
AKA+

N
τ ∼ φ

AKA+
N

τ

Restr
�

4.12 ? (p. 159) Proof of Lemma 4.15

The proof is by induction over τ . For τ = ε, we just need to check that the elements of item 2 of
Definition 4.25 are indistinguishable, which is obvious from the definition of σε in Definition 4.4.

We now show the inductive case: let τ = τ0, ai be a valid basic action trace on Sid, and let C ≥ |τ |.
From now on, the number of copies C is implicit, and we omit it (except when necessary). We want to
build of derivation of:

φτ , l-revealτ ∼ φτ , r-revealτ

By induction, we assume that there exists a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0

The proof is a case disjunction on the value of ai. Before starting, we assume that the following proposition
is true (we postpone its proof to the end of this chapter, in Section 4.13).

Proposition 4.20. For every basic valid action trace τ = _, ai on Sid
• (Der1) For every identity id ∈ Sid, for every τ1 such that τ1 ≺ τ and τ1 6≺τ nsid(_), there exist
derivations using only Simp of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
l-revealτ0 , σ

in
τ (syncidu) ∧ σinτ (sqnid

n) < σinτ1(sqnid
u)

∼ r-revealτ0 , σ
in
τ (syncντ (id)

u) ∧ σinτ (sqnντ (id)
n) < σinτ1(sqnντ (id)

u)

Simp

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
l-revealτ0 , σ

in
τ1(syncidu) ∧ σinτ1(sqnid

n) < σinτ (sqnid
u)

∼ r-revealτ0 , σ
in
τ1(syncντ (id)

u) ∧ σinτ1(sqnντ (id)
n) < σinτ (sqnντ (id)

u)

Simp

132 The 5G-AKA Authentication Protocol Privacy

• (Der2) If ai = fuid(j). For every id ∈ Sid, for every τ1 = _, fn(j0) ≺ τ such that τ1 6≺τ nsid(_):

– We have τ1 = _, fn(j0), τ = _, fuντ (id)(j), τ1 ≺τ τ and τ1 6≺τ nsντ (id)(_). Therefore, fu-trn:τ1u:τ
is well-defined.

– There is a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , fu-tr

n:τ1
u:τ ∼ φinτ , r-revealτ0 , fu-tr

n:τ1
u:τ

Simp

• (Der3) If ai = tuid(j, 1). For every τ1 = _,tn(j1, 0), τ2 = _,tuid(j, 0) such that τ2 ≺τ τ1:

τ :

tuid(j, 0)

τ2

tn(j1, 0)

τ1

tuid(j, 1)

τ

– We have τ2 = _,tuντ (id)(j, 0), τ1 = _,tuντ (id)(j, 1) and τ2 ≺τ τ1 ≺τ τ . Therefore, part-tr
n:τ1
u:τ2,τ

is well-defined.
– There is a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , part-tr

n:τ1
u:τ2,τ ∼ φinτ , r-revealτ0 , part-tr

n:τ1
u:τ2,τ

Simp

• (Der4) If ai = tn(j, 1). For every id ∈ Sid, τi = _,tuid(ji, 1), τ1 = _,tn(j, 0), τ2 = _,tuid(ji, 0)
such that τ2 ≺τ τ1 ≺τ τi:

τ :

tuid(ji, 0)

τ2

tn(j, 0)

τ1

tuid(ji, 1)

τi

tn(j, 1)

τ

– We have τ2 = _,tuντ1 (id)(ji, 0), τi = _,tuντ1 (id)(ji, 1) and τ2 ≺τ τ1 ≺τ τi ≺τ τ . Therefore,
full-tr

n:τ1,τ
u:τ2,τi is well-defined.

– There is a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , full-tr

n:τ1,τ
u:τ2,τi ∼ φinτ , r-revealτ0 , full-tr

n:τ1,τ
u:τ2,τi

Simp

Proof. The proof is given in Section 4.13 �

We now proceed with the proof of Lemma 4.15. Let ai be such that τ = _, ai.

4.12.1 Case ai = nsid(j)

We know that ai = nsντ (id)(j) and ντ (id) = fresh-id(ντ0(id)). Moreover, φτ ≡ φinτ and φτ ≡ φinτ . Hence
l-revealτ and l-revealτ0 coincide everywhere except on:

στ (valid-gutiidu) ∼ στ (valid-gutiντ (id)
u) sync-diffid

τ ∼ sync-diffντ (id)
τ m-suci idτ ∼ m-suci ντ (id)

τ

We conclude with the following derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , false, defaut, false ∼ φinτ , r-revealτ0 , false, defaut, false

Simp

φinτ , l-revealτ0 , στ (valid-gutiidu),m-suci idτ , sync-diff
id
τ

∼ φinτ , r-revealτ0 , στ (valid-gutiντ (id)
u),m-suci ντ (id)

τ , sync-diffντ (id)
τ

R

4.12.? Proof of Lemma 4.15 133

4.12.2 Case ai = pn(j, 0)

We know that ai = pn(j, 0). Here l-revealτ and l-revealτ0 coincides completely. Using invariant (A1) we
know that nj 6∈ st(φinτ), and nj 6∈ st(φτ0). Therefore we conclude this case using the axiom Fresh:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , n

j ∼ φinτ , r-revealτ0 , nj
Fresh

4.12.3 Case ai = puid(j, 1)

We know that ai = puντ (id)(j, 1). Here l-revealτ and l-revealτ0 coincides everywhere except on the pairs:

στ (valid-guti idu) ∼ στ (valid-guti ντ (id)
u) m-suci idτ ∼ m-suci ντ (id)

τ sync-diffid
τ ∼ sync-diffντ (id)

τ

στ (sqnid
u)− σinτ (sqnid

u) ∼ στ (sqnντ (id)
u)− σinτ (sqnντ (id)

u)

{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
∼ {〈ντ (id) , σinτ (sqnντ (id)

u)〉}n
j
e

pkn

Mac1
kidm

(〈{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
, g(φinτ)〉) ∼ Mac1

kντ (id)
m

(〈{〈ντ (id) , σinτ (sqnντ (id)
u)〉}n

j
e

pkn
, g(φinτ)〉)

Part 1 We know that στ (valid-guti idu) ≡ στ (valid-guti ντ (id)
u) ≡ false. We deduce that m-suci idτ =

m-suci ντ (id)
τ = defaut. It follows that:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , false, defaut ∼ φinτ , r-revealτ0 , false, defaut

FA∗

φinτ , l-revealτ0 , στ (valid-guti idu),m-suci idτ ∼ φinτ , r-revealτ0 , στ (valid-guti ντ (id)
u),m-suci ντ (id)

τ

R
(4.35)

Part 2 We have:

στ (sqnid
u)− σinτ (sqnid

u) = suc(σinτ (sqnid
u))− σinτ (sqnid

u) = 1

στ (sqnντ (id)
u)− σinτ (sqnντ (id)

u) = suc(σinτ (sqnντ (id)
u))− σinτ (sqnντ (id)

u) = 1

And:

sync-diffid
τ = [στ (syncidu)] (στ (sqnid

u)− στ (sqnid
n)) =

[
σinτ (syncidu)

] (
suc(sync-diffid

τ0)
)

Similarly, sync-diffντ (id)
τ =

[
σinτ (syncντ (id)

u)
](
suc(sync-diffντ (id)

τ0)
)
. Hence:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , σ

in
τ (syncidu), sync-diffid

τ0 ∼ φ
in
τ , r-revealτ0 , σ

in
τ (syncντ (id)

u), sync-diffντ (id)
τ0

Dup∗

φinτ , l-revealτ0 , sync-diff
id
τ , στ (sqnid

u)− σinτ (sqnid
u)

∼ φinτ , r-revealτ0 , sync-diff
ντ (id)
τ , στ (sqnντ (id)

u)− σinτ (sqnντ (id)
u)

Simp (4.36)

Part 3 Let sl ≡ len(〈id , σinτ (sqnid
u)〉). Using the cca1 axiom we directly have that:

φin
τ , l-revealτ0 , sl ∼ φin

τ , r-revealτ0 , sl

len(id) = len(ντ (id)) len(σin
τ (sqnid

u)) = len(σin
τ (sqnντ (id)u))

len(〈id , σin
τ (sqnid

u)〉) = len(〈ντ (id) , σin
τ (sqnντ (id)u)〉)

φin
τ , l-revealτ0 , {〈id , σin

τ (sqnid
u)〉}n

j
e

pkn
∼ φin

τ , r-revealτ0 , {〈ντ (id) , σin
τ (sqnντ (id)u)〉}n

j
e

pkn

cca1

(4.37)

Moreover, using Proposition 4.11, we know that:

len(σinτ (sqnid
u)) = len(σinτ (sqnντ (id)

u)) = len(sqn-initidu)

134 The 5G-AKA Authentication Protocol Privacy

We deduce that sl = len(〈id , sqn-initidu 〉), therefore:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , sl ∼ φinτ , r-revealτ0 , sl

and len(σinτ (sqnid
u)) = len(σinτ (sqnντ (id)

u))

This completes the derivation in (4.37).

Part 4 To conclude, it only remains to deal with the Mac1 terms. We start by computing set-mac1
kidm
:

set-mac1
kidm

(φinτ , l-revealτ0) =
{
〈{〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn
, g(φinτ1)〉 | τ1 = _,puid(j1, 1) ≺ τ

}
∪
{
〈π1(g(φinτ1)) , nj1〉 | τ1 = _,pn(j1, 1) ≺ τ

}
We want to get rid of the second set above: using (Equ3), we know that for every τ1 = _,pn(j1, 1) ≺ τ :

acceptidτ ↔
∨

τ2=_,puid(j2,1)
τ2≺τ τ1

 g(φinτ2) = nj ∧ π1(g(φinτ1)) = {〈id , σinτ2(sqnid
u)〉}n

j2
e

pkn

∧ π2(g(φinτ1)) = Mac1
kidm

(〈{〈id , σinτ2(sqnid
u)〉}n

j2
e

pkn
, g(φinτ2)〉)

 (4.38)

We let Ψ′ be the vector of terms φinτ , l-revealτ0 where we replaced every occurrence of acceptidτ1 (where
τ1 = _,pn(j1, 1) ≺ τ) by the equivalent term from (4.38). We can check that we have:

set-mac1
kidm

(Ψ′) =
{
〈{〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn
, g(φinτ1)〉 | τ1 = _,puid(j1, 1) ≺ τ

}
For every τ1 = _,puid(j1, 1) ≺ τ , using Proposition 4.11 we know that:

len(〈id , σinτ (sqnid
u)〉) = len(〈id , σinτ1(sqnid

u)〉)

Moreover, using the axioms in Axlen we know that len(〈id , σinτ (sqnid
u)〉) 6= 0. Therefore, using Proposi-

tion 4.10 we get that we have:

{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
6= {〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn

Hence by left injectivity of 〈· , _〉:

〈{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
, g(φinτ)〉 6= 〈{〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn
, g(φinτ1)〉

It follows that we can apply the prf-mac1 axiom to replace the following term by a fresh nonce n:

Mac1
kidm

(〈{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
, g(φinτ)〉)

We then rewrite every occurrence of the right-hand side of (4.38) into acceptidτ1 :

φinτ , l-revealτ0 , n ∼ φinτ , r-revealτ0Mac1

kντ (id)
m

(〈{〈ντ (id) , σinτ (sqnντ (id)
u)〉}n

j
e

pkn
, g(φinτ)〉)

φinτ , l-revealτ0 , Mac1
kidm

(〈{〈id , σinτ (sqnid
u)〉}n

j
e

pkn
, g(φinτ)〉)

∼ φinτ , r-revealτ0 , Mac1

kντ (id)
m

(〈{〈ντ (id) , σinτ (sqnντ (id)
u)〉}n

j
e

pkn
, g(φinτ)〉)

prf-mac1

We then do the same on the right side (we omit the details), and conclude using Fresh:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , n ∼ φinτ , r-revealτ0 , n

Fresh

φinτ , l-revealτ0 , n ∼ φinτ , r-revealτ0Mac1

kντ (id)
m

(〈{〈ντ (id) , σinτ (sqnντ (id)
u)〉}n

j
e

pkn
, g(φinτ)〉)

prf-mac1

We conclude the proof by combining the derivation above with the derivations in (4.35), (4.36) and (4.37),
and by using the induction hypothesis.

4.12.? Proof of Lemma 4.15 135

4.12.4 Case ai = pn(j, 1)

We know that ai = pn(j, 1). For every id ∈ Sid, let Mid be the set:

Mid = {τ2 | τ2 = _,puid(j1, 1) ≺ τ ∧ τ2 6≺τ nsid(_)}

Here l-revealτ and l-revealτ0 coincides everywhere except on the following pairs:(
sync-diffid

τ ∼ sync-diffντ (id)
τ

)
id∈Sid

(
net-e-authτ (id, j) ∼ net-e-authτ (id, j)

)
id∈Sid(

Mac2
kidm

(〈nj , suc(σinτ2(sqnid
u))〉) ∼ Mac2

kντ (id)
m

(〈nj , suc(σinτ2(sqnντ (id)
u))〉)

)
τ2∈Mid,id∈Sid

Part 1 Let id ∈ Sid, we consider all the new sessions started with identity id in τ :

{nsid(0), . . . ,nsid(lid)} = {nsid(i) | nsid(i) ∈ τ}

This induce a partition of symbolic actions in τ for identity id. Indeed, let k be such that id = Ak,0, and
for every −1 ≤ i ≤ lid, let idi = Ak,i+1. Then we define, for every −1 ≤ i ≤ lid:

T iid =

τ1 | τ1 = _,puid(j1, 1) ∧

nsid(i) ≺τ τ1 ≺τ nsid(i+ 1) if 0 ≤ i < lid

τ1 ≺τ nsid(0) if i = −1

nsid(lid) ≺τ τ1 ≺ τ if i = lid

And Tid = {τ1 | τ1 = _,puid(j1, 1) ∧ τ1 ≺ τ}. We have Tid =

⊎
−1≤i≤lid T

i
id, and for every −1 ≤ i ≤ lid:

∀τ1 ∈ T iid, ντ1(id) = idi and T iid =
{
τ1 | τ1 = _,puidi(j1, 1) ∧ τ1 ≺ τ1

}
Part 2 Using (Equ3) we know that:

acceptidτ ↔
∨

τ1=_,puid(j1,1)∈Tid

 g(φinτ1) = nj ∧ π1(g(φinτ)) = {〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn

∧ π2(g(φinτ)) = Mac1
kidm

(〈{〈id , σinτ1(sqnid
u)〉}n

j1
e

pkn
, g(φinτ1)〉)

︸ ︷︷ ︸

bidτ1

(4.39)

For all τ1 ∈ Tid, we let bidτ1 be the main term of the disjunction above.
Similarly, using (Equ3) on τ , we have that for every −1 ≤ i ≤ lid:

acceptidiτ ↔
∨

τ1=_,puid(j1,1)∈T iid

 g(φinτ1) = nj ∧ π1(g(φinτ)) = {〈idi , σinτ1(sqnidi
u)〉}n

j1
e

pkn

∧ π2(g(φinτ)) = Mac1
kidim

(〈{〈idi , σinτ1(sqnidi
u)〉}n

j1
e

pkn
, g(φinτ1)〉)

︸ ︷︷ ︸

b
idi
τ1

(4.40)

Moreover, if we let {idlid+1, . . . , idm} be such that:

copies-idC(id) = {id0, . . . , idlid}] {idlid+1, . . . , idm}

Then, for all i > lid, we have acceptidiτ ↔ false. Therefore, using (A5), we can show that:

net-e-authid
τ ↔

∨
−1≤i≤l

acceptidiτ (4.41)

Part 3 For every τ1, τ2 ∈ Tid such that τ1 6= τ2, τ1 = _,puid(j1, 1) and τ2 = _,puid(j2, 1), using
Proposition 4.10 and 4.11 we can show that:

bidτ1 ∧ b
id
τ2 → {〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn
= {〈id , σinτ2(sqnid

u)〉}n
j2
e

pkn
→ false

Similarly, for every τ1, τ2 ∈ T
idi
id such that τ1 6= τ2:

bidiτ1 ∧ b
idi
τ2 → false

136 The 5G-AKA Authentication Protocol Privacy

Moreover, since for all identities id1 6= id2, we have eq(id1, id2) = false we know that:

¬
(
acceptid1

τ ∧ acceptid2
τ

)
¬
(
acceptid1

τ ∧ acceptid2
τ

)
We deduce that:((

(bidτ1)τ1∈Tid

)
id∈Sid

,
∧

id∈Sid
¬acceptidτ︸ ︷︷ ︸
bunk

)
and

((
(bidiτ1)τ1∈T iid∧−1≤i≤lid

)
id∈Sid

,
∧

id∈copies-idC(Sid)¬accept
id
τ︸ ︷︷ ︸

bunk

)

are CS partitions. Besides, for all τ1 ∈ Tid we have:[
bidτ1
](
tτ = Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u)〉)
)

and [bunk] (tτ = UnknownId)

From Proposition 4.18 we deduce:

tτ = if ¬bunk then case
τ1∈Tid
id∈Sid

(bidτ1 :Mac2
kidm

(〈nj , suc(σinτ1(sqnid
u)〉))

else UnknownId
(4.42)

Similarly, for every −1 ≤ i ≤ lid, for every τ1 ∈ T id
i :[

bidiτ1
](
tτ = Mac2

kidim
(〈nj , suc(σinτ1(sqnidi

u)〉)
)

and
[
bunk

] (
tτ = UnknownId

)
Again, from Proposition 4.18 we deduce:

tτ = if ¬bunk then case
τ1∈Tiid
−1≤i≤lid

id∈Sid

(bidiτ1 :Mac2
kidim

(〈nj , suc(σinτ1(sqnidi
u)〉))

else UnknownId

Since Tid =
⊎
−1≤i≤lid T

i
id, and since ∀τ1 ∈ T iid, idi = ντ1(id), we know that:

tτ = if ¬bunk then case
τ1∈Tid
id∈Sid

(b
ντ1 (id)
τ1 :Mac2

k
ντ1

(id)
m

(〈nj , suc(σinτ1(sqn
ντ1 (id)
u)〉))

else UnknownId
(4.43)

Part 4 We are going to show that for every id ∈ Sid, −1 ≤ i ≤ lid, and τ1 = puid(j1, 1) ∈ T iid:

φinτ , l-revealτ0 , b
id
τ1 ∼ φ

in
τ , r-revealτ0 , b

idi
τ1

(4.44)

For this, we rewrite bidτ1 and bidiτ1 using, respectively, (4.39) and (4.40). First, remark that the following
pairs of terms are in revealτ0 :

(nj , nj)
(
{〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn
, {〈ντ1(id) , σinτ1(sqn

ντ1 (id)
u)〉}n

j1
e

pkn

)
(
Mac1

kidm
(〈{〈id , σinτ1(sqnid

u)〉}n
j1
e

pkn
, g(φinτ1)〉),Mac1

k
ντ1 (id)
m

(〈{〈ντ1(id) , σinτ1(sqn
ντ1 (id)
u)〉}n

j1
e

pkn
, g(φinτ1)〉)

)
Therefore:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , b

id
τ1 ∼ φ

in
τ , r-revealτ0 , b

idi
τ1

Simp (4.45)

This concludes the proof of (4.44). Combining this with (4.39), (4.40) and (4.41), we have:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 ,

(
bidτ1
)
τ1∈T iid,−1≤i≤lid ∼ φ

in
τ , r-revealτ0 ,

(
bidiτ1
)
τ1∈T iid,−1≤i≤lid

Simp

φinτ , l-revealτ0 , net-e-auth
id
τ ∼ φinτ , r-revealτ0 , net-e-auth

id
τ

Simp
(4.46)

4.12.? Proof of Lemma 4.15 137

And:
φinτ , l-revealτ0 ∼ φinτ , r-revealτ0

φinτ , l-revealτ0 ,
(
bidτ1
)
τ1∈T iid,−1≤i≤lid ∼ φ

in
τ , r-revealτ0 ,

(
bidiτ1
)
τ1∈T iid,−1≤i≤lid

Simp

φinτ , l-revealτ0 , bunk ∼ φinτ , r-revealτ0 , bunk
Simp

(4.47)

We can now prove that tτ ∼ tτ . First we rewrite tτ and tτ using, respectively, (4.42) and (4.43). Then
we split the proof with FA, and combine it with (4.45) and (4.47). This yields:

φinτ , l-revealτ0 ,
(
Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u))〉)
)
τ1∈Tid,id∈Sid

∼ φinτ , r-revealτ0 ,
(
Mac2

k
ντ1

(id)
m

(〈nj , suc(σinτ1(sqn
ντ1 (id)
u))〉)

)
τ1∈Tid,id∈Sid

φinτ , l-revealτ0 ,bunk,
(
bidτ1 ,Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u))〉)
)
τ1∈Tid,id∈Sid

∼ φinτ , r-revealτ0 ,bunk,
(
b
ντ1 (id)
τ1 ,Mac2

k
ντ1

(id)
m

(〈nj , suc(σinτ1(sqn
ντ1 (id)
u))〉)

)
τ1∈Tid,id∈Sid

φinτ , l-revealτ0 , tτ ∼ φinτ , r-revealτ0 , tτ
Simp

(4.48)

Notice that for every id ∈ Sid, Mid = T lidid . Therefore the Mac part in revealτ\revealτ0 appears in the
derivation above, i.e.:(

Mac2
kidm

(〈nj , suc(σinτ2(sqnid
u))〉),Mac2

kντ (id)
m

(〈nj , suc(σinτ2(sqnντ (id)
u))〉)

)
τ2∈Mid,id∈Sid

⊆
(
Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u))〉),Mac2

k
ντ1

(id)
m

(〈nj , suc(σinτ1(sqn
ντ1 (id)
u))〉)

)
τ1∈Tid,id∈Sid

(4.49)

Part 5 Let id ∈ Sid. Our goal is to apply the prf-mac2 hypothesis to Mac2
kidm

(〈nj , suc(σinτ1(sqnid
u))〉)

simultaneously for every τ1 ∈ Tid in:

Ψ ≡ φinτ , l-revealτ0 ,
(
Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u))〉)
)
τ1∈Tid,id∈Sid

Using (Equ2) we know that for every nsid(lid) ≺τ τi = _,puid(ji, 2):

acceptidτi ↔
∨

τ1=_,pn(j1,1)
τ2=_,puid(ji,1)
τ2≺τ τ1≺τ

g(φinτ) = Mac2
kidm

(〈nj1 , suc(σinτ2(sqnid
u))〉) ∧ g(φinτ2) = nj1 (4.50)

Let Ψ′ be the formula obtained from Ψ by rewriting every acceptidτi s.t. nsid(lid) ≺τ τi = _,puid(ji, 2)
using the equation above. Then we can check that for every τ1 ∈ Tid, there is only one occurrence of
Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u))〉) in Ψ′. Moreover:

set-mac2
id (Ψ′) \{〈nj , suc(σinτ1(sqnid

u))〉} ={
〈nj , suc(σinτ2(sqnid

u))〉 | τ2 ∈ Tid ∧ τ1 6= τ2
}

∪
{
〈nj0 , suc(π2(dec(π1(g(φinτi)), skn)))〉 | τi = _,pn(j0, 1) ≺ τ

}
To apply the prf-mac2 axioms, it is sufficient to show that for every element u in the set above, we have
(〈nj , suc(σinτ1(sqnid

u))〉 6= u:
• Using (A2) we know that for every τ1, τ2 ∈ Tid, if τ1 6= τ2 then σinτ2(sqnid

u)) 6= σinτ2(sqnid
u)). Hence:

〈nj , suc(σinτ1(sqnid
u))〉 6= 〈nj , suc(σinτ2(sqnid

u))〉

• for every τi = _,pn(j0, 1) ≺ τ , we have j0 < j, hence nj0 6= nj and by consequence:

〈nj , suc(σinτ1(sqnid
u))〉 6= 〈nj0 , suc(π2(dec(π1(g(φinτi)), skn)))〉

138 The 5G-AKA Authentication Protocol Privacy

We can conclude: we rewrite Ψ into Ψ′; we apply prf-mac2 for every τ1 ∈ Tid, replacing the term
Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u))〉) by a fresh nonce nj,τ1 ; and we rewrite any term of (4.50) back into acceptidτi .
Doing this for every identity id ∈ Sid, this yields:

φinτ , l-revealτ0 ,
(
nj,τ1

)
τ1∈Tid,id∈Sid

∼ φinτ , r-revealτ0 ,
(
Mac2

k
ντ1

(id)
m

(〈nj , suc(σinτ1(sqn
ντ1 (id)
u))〉)

)
τ1∈Tid,id∈Sid

φinτ , l-revealτ0 ,
(
Mac2

kidm
(〈nj , suc(σinτ1(sqnid

u))〉)
)
τ1∈Tid,id∈Sid

∼ φinτ , r-revealτ0 ,
(
Mac2

k
ντ1

(id)
m

(〈nj , suc(σinτ1(sqn
ντ1 (id)
u))〉)

)
τ1∈Tid,id∈Sid

(Simp + prf-mac2)∗

We do the same thing on the Big-side, which yields (we omit the details):

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 ,

(
nj,τ1

)
τ1∈Tid,id∈Sid

∼ φinτ , r-revealτ0 ,
(
nj,τ1

)
τ1∈Tid,id∈Sid

Fresh∗

φinτ , l-revealτ0 ,
(
nj,τ1

)
τ1∈Tid,id∈Sid

∼ φinτ , r-revealτ0 ,
(
Mac2

k
ντ1 (id)
m

(〈nj , suc(σinτ1(sqn
ντ1 (id)
u))〉)

)
τ1∈Tid,id∈Sid

(Simp + prf-mac2)∗

Combining this with (4.48), we get:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , tτ ∼ φinτ , r-revealτ0 , tτ

(4.51)

Part 6 We now deal with the sync-diffid
τ ∼ sync-diffντ (id)

τ part. We first handle the case where σinτ (syncidu)

is false. Observe that σinτ (syncidu) = σinτ0(syncidu), σinτ (syncντ (id)
u) = σinτ0(syncντ (id)

u) and that the pair of terms

(σinτ0(syncidu), σinτ0(syncντ (id)
u)) appears in revealτ0 . Moreover:

[¬σinτ (syncidu)]sync-diffid
τ = error [¬σinτ (syncντ (id)

u)]sync-diffντ (id)
τ = error

Hence:

l-revealτ0 , [σ
in
τ (syncidu)]sync-diffid

τ ∼ r-revealτ0 , [σ
in
τ (syncντ (id)

u)]sync-diffντ (id)
τ

l-revealτ0 ,σ
in
τ (syncidu), [σinτ (syncidu)]sync-diffid

τ , [¬σinτ (syncidu)]sync-diffid
τ

∼ r-revealτ0 ,σ
in
τ (syncντ (id)

u),[σinτ (syncντ (id)
u)]sync-diffντ (id)

τ ,[¬σinτ (syncντ (id)
u)]sync-diffντ (id)

τ

Simp

l-revealτ0 , sync-diff
id
τ ∼ r-revealτ0 , sync-diff

ντ (id)
τ

FA∗
(4.52)

Therefore we can focus on the case where σinτ (syncidu) is true. For all id ∈ Sid, we let:

inc-sqnid
τ ≡ π2(dec(π1(g(φinτ)), skidn)) ≥ σinτ (sqnid

n)

Then:

[σinτ (syncidu)]sync-diffid
τ = case

τ1∈Tid

bidτ1 :
if

(
σinτ (syncidu)

∧ inc-sqnid
τ

)
then σinτ (sqnid

u)− suc(σinτ (sqnid
n))

else [σinτ (syncidu)]sync-diffid
τ0

 (4.53)

And:

[σinτ (syncντ (id)
u)]sync-diffντ (id)

τ =

case
τ1∈T

idlid
id

bντ (id)
τ1

:
if

(
σinτ (syncντ (id)

u)

∧ inc-sqnντ (id)
τ

)
then σinτ (sqnντ (id)

u)− suc(σinτ (sqnντ (id)
n))

else [σinτ (syncντ (id)
u)]sync-diffντ (id)

τ0

 (4.54)

Take τ1 ∈ Tid, and let τi be such that τi = _,nsid(lid) and τi ≺ τ . We have two cases:

4.12.? Proof of Lemma 4.15 139

• If τ1 ≺τ nsid(lid), then using (B1) and (B6), we know that σinτ1(sqnid
u) ≤ σinτi(sqnid

u) and that
σinτ1(syncidu)→ σinτ1(sqnid

n) > σinτi(sqnid
u). We summarize this below:

τ :

puid(j1, 1)

τ1

nsid(lid)

τi

pn(j, 1)

τ

σinτ1(sqnid
u) σinτi(sqnid

u)

σinτ (sqnid
n)

≤
<

Hence ¬(bidτ1 ∧ σ
in
τ (syncidu) ∧ inc-sqnid

τ).
Now we look at the right protocol: since τ1 ≺τ nsid(lid), we know that ντ1(id) = idlid−p for some
p > 0. Hence ντ1(id) 6= idlid = ντ (id), which implies that:

b
ντ1 (id)
τ1 → acceptντ1 (id)

τ → ¬acceptντ (id)
τ →

∧
τ2∈T lidid

¬bντ (id)
τ2

We deduce that:

[bidτ1 ∧ σ
in
τ (syncidu)]sync-diffid

τ = [bidτ1 ∧ σ
in
τ (syncidu)]sync-diffid

τ0

[b
ντ1 (id)
τ1 ∧ σinτ (syncντ (id)

u)]sync-diffντ (id)
τ = [b

ντ1 (id)
τ1 ∧ σinτ (syncντ (id)

u)]sync-diffντ (id)
τ0

Since (sync-diffid
τ0 , sync-diff

ντ (id)
τ0) ∈ revealτ0 , we have:

l-revealτ0 , b
id
τ1 ∼ r-revealτ0 , b

ντ1 (id)
τ1

l-revealτ0 , b
id
τ1 , σ

in
τ (syncidu), sync-diffid

τ0 ∼ r-revealτ0 , b
ντ1 (id)
τ1 , σinτ (syncντ (id)

u), sync-diffντ (id)
τ0

Dup∗

l-revealτ0 , [b
id
τ1 ∧ σ

in
τ (syncidu)]sync-diffid

τ ∼ r-revealτ0 , [b
ντ1 (id)
τ1 ∧ σinτ (syncντ (id)

u)]sync-diffντ (id)
τ

FA∗

Combining this with (4.45), we can get rid of bidτ1 ∼ b
ντ1 (id)
τ1 :

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , [b

id
τ1 ∧ σ

in
τ (syncidu)]sync-diffid

τ

∼ φinτ , r-revealτ0 , [b
ντ1 (id)
τ1 ∧ σinτ (syncντ (id)

u)]sync-diffντ (id)
τ

(4.55)

• If τ1 6≺τ nsid(lid), then ντ1(id) = ντ (id). Let id = ντ (id), and using (4.53) and (4.54) we get that:

[bidτ1 ∧ σ
in
τ (syncidu)]sync-diffid

τ =
[
bidτ1 ∧ σ

in
τ (syncidu)

] (
σinτ (sqnid

u)− suc(σinτ (sqnid
n))
)

+ if bidτ1 ∧ σ
in
τ (syncidu) ∧ inc-sqnid

τ then -1 else 0

[bidτ1 ∧ σ
in
τ (syncidu)]sync-diffid

τ =
[
bidτ1 ∧ σ

in
τ (syncidu)

] (
σinτ (sqnid

u)− suc(σinτ (sqnid
n))
)

+ if bidτ1 ∧ σ
in
τ (syncidu) ∧ inc-sqnid

τ then -1 else 0

Hence using (4.45) we get:

φin
τ , l-revealτ0 , b

id
τ1 ∧ σ

in
τ (syncidu) ∧ inc-sqnid

τ ∼ φin
τ , r-revealτ0 , b

id
τ1
∧ σin

τ (syncidu) ∧ inc-sqnid
τ

φin
τ , l-revealτ0 , b

id
τ1 , σ

in
τ (sync

id
u), σin

τ (sqnid
u)− σin

τ (sqnid
n), bidτ1 ∧ σ

in
τ (sync

id
u) ∧ inc-sqnid

τ

∼ φin
τ , r-revealτ0 , b

id
τ1
, σin
τ (sync

id
u), σin

τ (sqnid
u)− σin

τ (sqnid
n), bidτ1 ∧ σ

in
τ (sync

id
u) ∧ inc-sqnid

τ

Dup

φin
τ , l-revealτ0 , [b

id
τ1 ∧ σ

in
τ (syncidu)]sync-diffid

τ ∼ φin
τ , r-revealτ0 , [b

id
τ1
∧ σin

τ (syncidu)]sync-diffid
τ

FA∗

We split the proof in two, depending on whether σinτ1(syncidu) is true or not.

140 The 5G-AKA Authentication Protocol Privacy

– If it is true, this is simple:(
σinτ1(syncidu) ∧ bidτ1 ∧ σ

in
τ (syncidu) ∧ inc-sqnid

τ

)
↔
(
bidτ1 ∧ σ

in
τ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)
)(

σinτ1(syncidu) ∧ bidτ1 ∧ σ
in
τ (syncidu) ∧ inc-sqnid

τ

)
↔
(
bidτ1 ∧ σ

in
τ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)
)

Hence using (4.45) we get:

φinτ , l-revealτ0 , σ
in
τ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)

∼ φinτ , r-revealτ0 , σ
in
τ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)

φinτ , l-revealτ0 , b
id
τ1 ∧ σ

in
τ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)

∼ φinτ , r-revealτ0 , b
id
τ1
∧ σinτ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)

Simp

φinτ , l-revealτ0 , σ
in
τ1(syncidu) ∧ bidτ1 ∧ σ

in
τ (syncidu) ∧ inc-sqnid

τ

∼ φinτ , r-revealτ0 , σ
in
τ1(syncidu) ∧ bidτ1 ∧ σ

in
τ (syncidu) ∧ inc-sqnid

τ

R

We conclude the case σinτ1(syncidu) using (Der1):

l-revealτ0 ∼ r-revealτ0
φinτ , l-revealτ0 , σ

in
τ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)

∼ φinτ , r-revealτ0 , σ
in
τ1(syncidu) ∧ σinτ1(sqnid

u) < σinτ (sqnid
n)

Simp

– If syncidu is false at τ1 and true at τ , then we know that there is an instant τ1 � τa such that
¬σinτa(syncidu) ∧ σinτa(syncidu). Since syncidu is only updated at instant puid(_,_) and nsid(_),
and since τ1 6≺τ nsid(_), the only possibilities are τa of the form _,puid(ja, 2). In that case,
we must have acceptidτa . Formally, it is straightforward to show by induction that:

bidτ1 ∧ ¬σ
in
τ1(syncidu) ∧ σinτ (syncidu) →

∨
τa=_,puid(ja,2)

τ1≺τ τa

¬σinτa(syncidu) ∧ acceptidτa (4.56)

Using (StrEqu4), we know that:

acceptidτa ∧ ¬σ
in
τa(syncidu) → στa(sqnid

u) = στa(sqnid
n)

We know that στa(sqnid
u) = σinτa(sqnid

u) and στa(sqnid
n) = σinτa(sqnid

n). Moreover using (B1):

στ1(sqnid
u) ≤ στa(sqnid

u) στa(sqnid
n) ≤ σinτ (sqnid

n)

Finally, we know that στ1(sqnid
u) = σinτ1(sqnid

u) + 1, and therefore στ1(sqnid
u) > σinτ1(sqnid

u).
We summarize this graphically in Figure 4.24. Therefore:

¬σinτa(syncidu) ∧ acceptidτa → σinτ1(syncidu) < σinτa(syncidn)

Hence we deduce from (4.56) that:

bidτ1 ∧ ¬σ
in
τ1(syncidu) ∧ σinτ (syncidu) → inc-sqnid

τ

Similarly, we show that:

bidτ1 ∧ ¬σ
in
τ1(syncidu) ∧ σinτ (syncidu) → inc-sqnid

τ

Hence using (4.45) we get:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , σ

in
τ1(syncidu), bidτ1 , σ

in
τ (syncidu) ∼ φinτ , r-revealτ0 , σinτ1(syncidu), bidτ1 , σ

in
τ (syncidu)

Dup∗

φinτ , l-revealτ0 ,¬σinτ1(syncidu) ∧ bidτ1 ∧ σ
in
τ (syncidu)

∼ φinτ , r-revealτ0 ,¬σinτ1(syncidu) ∧ bidτ1 ∧ σ
in
τ (syncidu)

Simp

φinτ , l-revealτ0 ,¬σinτ1(syncidu) ∧ bidτ1 ∧ σ
in
τ (syncidu) ∧ inc-sqnid

τ

∼ φinτ , r-revealτ0 ,¬σinτ1(syncidu) ∧ bidτ1 ∧ σ
in
τ (syncidu) ∧ inc-sqnid

τ

R

4.12.? Proof of Lemma 4.15 141

τ :

nsid(_)
or ε

τi

puid(j1, 1)

τ1

puid(ja, 2)

τa

pn(j, 1)

τ

σinτ1(sqnid
u)

σinτa(sqnid
n)

σinτa(sqnid
u)

σinτ (sqnid
n)

<

=

≤

Figure 4.24: Graphical Representation Used in the Proof of the Case pn(j, 1) of Lemma 4.15.

Combining the derivations we build above, we get a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0

φinτ , l-revealτ0 , [b
id
τ1 ∧ σ

in
τ (syncidu)]sync-diffid

τ ∼ φinτ , r-revealτ0 , [b
ντ1 (id)
τ1 ∧ σinτ (syncidu)]sync-diffid

τ

(4.57)

Part 7 It only remains to put everything together. First combining (4.45), (4.55) and (4.57), we get:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
....

φinτ ,l-revealτ0 ,
(
bidτ1 , [σ

in
τ (syncidu) ∧ bidτ1]sync-diffid

τ

)
τ1∈Tid

∼ φinτ ,r-revealτ0 ,
(
b
ντ1 (id)
τ1 , [σinτ (syncidu) ∧ bντ1 (id)

τ1]sync-diffid
τ

)
τ1∈Tid

φinτ , l-revealτ0 , [σ
in
τ (syncidu)]sync-diffid

τ ∼ φinτ , r-revealτ0 , [σ
in
τ (syncidu)]sync-diffid

τ

FA∗

Combine with (4.52), this yields:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , sync-diff

id
τ ∼ φinτ , r-revealτ0 , sync-diff

id
τ

We conclude the proof of this case by combining this derivation with (4.46) and (4.51) (recall that the
Macs in revealτ\revealτ0 were handled in (4.49)).

4.12.5 Case ai = puid(j, 2)

We know that ai = puντ (id)(j, 2). Here l-revealτ and l-revealτ0 coincides everywhere except on the pairs:

sync-diffid
τ ∼ sync-diffντ (id)

τ στ (e-authid
u) ∼ στ (e-authντ (id)

u) στ (syncidu) ∼ στ (syncντ (id)
u)

Therefore we are looking for a derivation of:

Φ ≡
φinτ , l-revealτ0 , sync-diff

id
τ , στ (e-authid

u), στ (syncidu), acceptidτ

∼ φinτ , r-revealτ0 , sync-diff
ντ (id)
τ , στ (e-authντ (id)

u), στ (syncντ (id)
u), acceptντ (id)

τ

(4.58)

Let τ2 = _,puid(j, 1) ≺ τ . We know that τ2 6≺τ nsid(_), and therefore τ2 = _,puντ (id)(j, 1). Also:

σinτ (b-authid
u) ≡ στ2(b-authid

u) ≡ g(φinτ2) σinτ (b-authντ (id)
u) ≡ στ2(b-authντ (id)

u) ≡ g(φinτ2)

Hence we can start deconstructing the terms using FA and simplifying with Dup:

φinτ , l-revealτ0 , sync-diff
id
τ , acceptidτ ∼ φinτ , r-revealτ0 , sync-diff

ντ (id)
τ , acceptντ (id)

τ

φinτ , l-revealτ0 , sync-diff
id
τ , accept

id
τ , g(φτ2)

∼ φinτ , r-revealτ0 , sync-diff
ντ (id)
τ , acceptντ (id)

τ , g(φτ2)

Simp

Φ
Simp

142 The 5G-AKA Authentication Protocol Privacy

Part 1 We now focus on acceptidτ . Let:

T = {τ1 | τ1 = _,pn(j1, 1) ∧ τ2 ≺τ τ1 ≺ τ}

Using (Equ2) we know that:

acceptidτ ↔
∨

τ1=_,pn(j1,1)∈T

 g(φinτ) = Mac2
kidm

(〈nj1 , suc(σinτ2(sqnid
u))〉) ∧ g(φinτ2) = nj1

∧ π1(g(φinτ1)) = {〈id , σinτ2(sqnid
u)〉}n

j
e

pkn

Using again (Equ2) on τ (which is a valid action trace) we also have:

acceptντ (id)
τ ↔

∨
τ1=_,pn(j1,1)∈T

 g(φinτ) = Mac2

kντ (id)
m

(〈nj1 , suc(σinτ2(sqnντ (id)
u))〉) ∧ g(φinτ2) = nj1

∧ π1(g(φinτ1)) = {〈idντ (id) , σinτ2(sqnντ (id)
u)〉}n

j
e

pkn

It is straightforward to check that the formulas above can be decomposed using FA into matching elements
of φinτ , l-revealτ0 ∼ φinτ , r-revealτ0 . Indeed, for every τ1 = _,pn(j1, 1) ∈ T , since τ2 ≺τ τ1 and τ2 6≺τ nsid(_):(
Mac2

kidm
(〈nj1 , suc(σinτ2(sqnid

u))〉),Mac2

kντ (id)
m

(〈nj1 , suc(σinτ2(sqnντ (id)
u))〉)

)
∈ revealτ0

(
nj1 , nj1

)
∈ revealτ0

(
{〈id , σinτ2(sqnid

u)〉}n
j
e

pkn
, {〈idντ (id) , σinτ2(sqnντ (id)

u)〉}n
j
e

pkn

)
∈ revealτ0

Hence:
φinτ , l-revealτ0 ∼ φinτ , r-revealτ0

φinτ , l-revealτ0 , accept
id
τ ∼ φinτ , r-revealτ0 , accept

ντ (id)
τ

(4.59)

Part 2 We focus on sync-diffid
τ . First we get rid of the case where σinτ (syncidu) is true. Indeed, we have:

[σinτ (syncidu)]sync-diffid
τ = [σinτ (syncidu)]suc(sync-diffid

τ0)

[σinτ (syncντ (id)
u)]sync-diffντ (id)

τ = [σinτ (syncντ (id)
u)]suc(sync-diffντ (id)

τ0)

And: (
sync-diffid

τ0 , sync-diff
ντ (id)
τ0

)
∈ revealτ0

(
σinτ (syncidu), σinτ (syncντ (id)

u)
)
∈ revealτ0

Therefore:

φinτ , l-revealτ0 , [¬σinτ (syncidu)]sync-diffid
τ ∼ φinτ , r-revealτ0 , [¬σinτ (syncντ (id)

u)]sync-diffντ (id)
τ

φinτ , l-revealτ0 , sync-diff
id
τ ∼ φinτ , r-revealτ0 , sync-diff

ντ (id)
τ

Simp

Similarly:

[¬σinτ (syncidu) ∧ ¬acceptidτ]sync-diffid
τ = error [¬σinτ (syncντ (id)

u) ∧ ¬acceptντ (id)
τ]sync-diffντ (id)

τ = error

Hence we can go one step further:

φinτ , l-revealτ0 ,accept
id
τ , [¬σinτ (syncidu) ∧ acceptidτ]sync-diffid

τ

∼ φinτ , r-revealτ0 ,accept
ντ (id)
τ ,[¬σinτ (syncντ (id)

u) ∧ acceptντ (id)
τ]sync-diffντ (id)

τ

φinτ , l-revealτ0 , accept
id
τ , sync-diff

id
τ ∼ φinτ , r-revealτ0 , accept

ντ (id)
τ , sync-diffντ (id)

τ

Simp
(4.60)

Part 3 Using (StrEqu4) twice, we know that for every τ1 ∈ T :

¬σinτ (syncidu) ∧ acceptidτ → sync-diffid
τ = 0 ¬σinτ (syncντ (id)

u) ∧ acceptντ (id)
τ → sync-diffντ (id)

τ = 0

Therefore we can extend the derivation in (4.60):

φinτ , l-revealτ0 , accept
id
τ ∼ φinτ , r-revealτ0 , accept

ντ (id)
τ

φinτ , l-revealτ0 , accept
id
τ , sync-diff

id
τ ∼ φinτ , r-revealτ0 , accept

ντ (id)
τ , sync-diffντ (id)

τ

Simp

We conclude using the derivation in (4.59) and the induction hypothesis.

4.12.? Proof of Lemma 4.15 143

4.12.6 Case ai = fn(j)

We know that ai = fn(j). Here l-revealτ and l-revealτ0 coincides everywhere except on the pairs:

gutij ∼ gutij

[net-e-authτ (id, j)]
(
t-suci-⊕τ (id, j)

)
∼ [net-e-authτ (id, j)]

(
t-suci-⊕τ (id, j)

)
[net-e-authτ (id, j)]

(
t-macτ (id, j)

)
∼ [net-e-authτ (id, j)]

(
t-macτ (id, j)

)
for every identity id ∈ Sid.

Part 1 Let id ∈ Sid. Using Lemma 4.7, we know that:

στ (e-authjn) = id →
∨
τ ′�τ

στ ′(b-auth
id
u) = nj

We check that:

tτ =

if net-e-authτ (A1, j) then
〈t-suci-⊕τ (A1, j) , t-macτ (A1, j)〉

else if net-e-authτ (A2, j) then
〈t-suci-⊕τ (A2, j) , t-macτ (A2, j)〉
· · ·

else UnknownId

tτ =

if net-e-authτ (A1, j) then

〈t-suci-⊕τ (A1, j) , t-macτ (A1, j)〉

else if net-e-authτ (A2, j) then

〈t-suci-⊕τ (A2, j) , t-macτ (A2, j)〉

· · ·
else UnknownId

Using the FA axiom, we split tτ and tτ as follows:(
net-e-authτ (Ai, j), [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

∼
(
net-e-authτ (Ai, j), [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

tτ ∼ tτ FA∗

Since: (
net-e-authτ (Ai, j), net-e-authτ (Ai, j)

)
∈ revealτ0

We just need to prove that there is a derivation of:

φinτ , l-revealτ0 ,
(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

∼ φinτ , r-revealτ0 ,
(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

Assume that we have a proof of

φinτ , l-revealτ0 ,
(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

∼ φinτ , l-revealτ0 ,
(
ni,j , n′i,j

)
i≤B

(4.61)

And:

φinτ , r-revealτ0 ,
(
ni,j , n′i,j

)
i≤B

∼ φinτ , r-revealτ0 ,
(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

(4.62)

Where for all {ni,j , n′i,j | 1 ≤ i ≤ B} are fresh distinct nonces. Since:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 ,

(
ni,j , n′i,j

)
i≤B ∼ φinτ , r-revealτ0 ,

(
ni,j , n′i,j

)
i≤B

Fresh

We can conclude using the transitivity axiom Trans and the induction hypothesis.

144 The 5G-AKA Authentication Protocol Privacy

Part 2 It only remains to give derivations of the formulas in (4.61) and (4.62). We only give the proof
for Eq. (4.62) (the derivation of (4.61) is similar).

Instead of doing the proof simultaneously for all i in {1, . . . , B}, we give the proof for a single i. We let
the reader check that the syntactic side-conditions necessary for the derivations for i and i′, with i 6= i′,
are compatible. Therefore the derivations can be sequentially composed, which yield the full proof.

Let 1 ≤ i ≤ B. By transitivity, we only have to show that:

φinτ , r-revealτ0 , ni,j , n
′
i,j ∼ φinτ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macτ (Ai, j) (4.63)

And:

φinτ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macτ (Ai, j)

∼ φinτ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)
(4.64)

Derivation of (4.64) Let {id1, . . . , idl} = copies-idC(idi). We define, for every 0 ≤ y ≤ l, the partially
randomized terms t-suci-⊕yτ (idi, j):

t-suci-⊕yτ (idi, j) ≡ if eq(στ (e-authjn), id1) then n1
i,j

· · ·
else if eq(στ (e-authjn), idy−1) then ny−1

i,j

else if eq(στ (e-authjn), idy) then gutij ⊕ f rkidy (nj)

· · ·
else gutij ⊕ f rkidl (n

j)

Remark that:

[net-e-authτ (Ai, j)]t-suci-⊕0
τ (idi, j) = [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j)

And that:

φinτ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macτ (Ai, j)

∼ φinτ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕lτ (idi, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

indep-branch

Hence by transitivity, to prove that there exists a derivation of Formula (4.64) it is sufficient to prove
that, for every 0 < y ≤ l, that we have a derivation of φy−1 ∼ φy, where:

φy−1 ≡ φinτ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕y−1
τ (idi, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

φy ≡ φinτ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕yτ (idi, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

Let 1 ≤ y ≤ B, we are going to give a derivation of φy−1 ∼ φy. This is done in two times:
• First, we are going to use the prf-f r axiom applied to f r, with key kidy , to replace gutij ⊕ f rkidy (nj)

with gutij ⊕ n′′yi,j (where n′′yi,j is a fresh nonce).
Observe that there is only one occurrence of f rkidy (nj) in φy−1 (and none in φy). Moreover:

set-prf f
r

kidy (φy−1, φy) \{nj} =
{
σinτ1(e-authid

u) | τ1 = _, fuidy (p) ≺ τ
}

∪ {np | τ1 = _, fn(p) ≺ τ}

Let τ1 = _, fn(p) ≺ τ . We know that p 6= j, and therefore that ¬(np = nj).We still need guards
for σinτ1(e-authid

u) = nj , for every τ1 = _, fuidy (p) ≺ τ . The problem is that we do not have
(σinτ1(e-authid

u) = nj) = false. We solve this problem by rewriting φy−1 (resp. φy) into the vector of
terms φ′y−1 (resp. φ′y) obtained by replacing any occurrence of accept

idy
τ1 by:

∨
τ0=_fn(j0)≺τ1
τ0 6≺τ1 nsidy (_)

(
inj-authτ1(idy, j0) ∧ σinτ1(e-authj0n) 6= UnknownId

∧ π1(g(φinτ1)) = gutij0 ⊕ f rkidy (nj0) ∧ π2(g(φinτ1)) = Mac5

k
idy
m

(〈gutij0 , nj0〉)

)
(4.65)

4.12.? Proof of Lemma 4.15 145

Which is sound using (Equ1). We then have:

set-prf f
r

kidy (φ′) = {np | τ1 = _, fn(p) ≺ τ}

Therefore we can apply the prf-f r axioms as wanted: first we replace φy−1 and φy by φ′y−1 and φ′y
using rule R; then we apply the prf-f r axiom; and finally we rewrite any term of the form (4.65)
back into accept

idy
τ1 .

• Then, we use the ⊕-ind axiom to replace gutij ⊕ n′′yi,j with nyi,j .

Derivation of (4.63) We use the same proof technique. We define, for every 0 ≤ y ≤ l, the partially
randomized terms t-macyτ (idi, j):

t-macyτ (idi, j) ≡ if eq(στ (e-authjn), id1) then n′1i,j
· · ·

else if eq(στ (e-authjn), idy−1) then n′y−1
i,j

else if eq(στ (e-authjn), idy) then Mac5

k
idy
m

(〈gutij , nj〉)

· · ·
else Mac5

kidlm
(〈gutij , nj〉)

Remark that:

[net-e-authτ (Ai, j)]t-mac0
τ (idi, j) = [net-e-authτ (Ai, j)]t-macτ (Ai, j)

And that:

φinτ , r-revealτ0 , ni,j , n
′
i,j ∼ φinτ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-maclτ (Ai, j)

indep-branch

Hence by transitivity, to prove that there exists a derivation of Formula (4.63) it is sufficient to prove
that, for every 0 < y ≤ l, that we have a derivation of ψy−1 ∼ ψy, where:

ψy−1 ≡ ψτ0 , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macy−1
τ (idi, j)

ψy ≡ ψτ0 , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macyτ (idi, j)

Let 1 ≤ y ≤ B, we are going to give a derivation of ψy−1 ∼ ψy. For this, we are going to use the
prf-mac5 axiom with key k

idy
m , to replace Mac5

k
idy
m

(〈gutij , nj〉) with a fresh nonce ñyi,j . Observe that

there is only one occurrence of Mac5

k
idy
m

(〈gutij , nj〉) in ψy−1 (and none in ψy). Moreover:

set-mac5
kidy (ψy−1, ψy) \

{
〈gutij , nj〉

}
=

{〈gutip , np〉 | τ1 = _, fn(p) ≺ τ}

∪
{
〈π1(g(φinτ1))⊕ f rk(σinτ1(e-authk

idy

u)) , σinτ1(e-authk
idy

u)〉 | τ1 = _, fn(p) ≺ τ
}

Let τ1 = _, fn(p) ≺ τ . Since gutij is a fresh nonce, using =-ind and the injectivity of the pair:

¬
(
〈gutij , nj〉 = 〈gutip , np〉

)
¬
(
〈gutij , nj〉 = 〈π1(g(φinτ1))⊕ f rk(σinτ1(e-authk

idy

u)) , σinτ1(e-authk
idy

u)〉
)

Therefore we can directly apply the prf-mac5 axiom, which concludes this case.

4.12.7 Case ai = fuid(j)

We know that ai = fuντ (id)(j). Here l-revealτ and l-revealτ0 coincides everywhere except on the pairs:

στ (valid-gutiidu) ∼ στ (valid-gutiντ (id)
u)

if στ (valid-gutiidu) then στ (gutiidu)

else defaut︸ ︷︷ ︸
m-suci idτ

∼ if στ (valid-gutiντ (id)
u) then στ (gutiντ (id)

u)

else defaut︸ ︷︷ ︸
m-suci ντ (id)

τ

146 The 5G-AKA Authentication Protocol Privacy

Moreover, we need to show that acceptidτ ∼ acceptντ (id)
τ .First, using FA and Dup, we check that it is

sufficient to give a derivation of:

φinτ , l-revealτ0 , accept
id
τ ,m-suci idτ ∼ φinτ , r-revealτ0 , acceptντ (id)

τ ,m-suci ντ (id)
τ (4.66)

Using (Equ1) twice:

acceptidτ ↔
∨

τ1=_,fn(j0)≺τ
τ1 6≺τ nsid(_)

fu-trn:τ1u:τ acceptντ (id)
τ ↔

∨
τ1=_,fn(j0)≺τ
τ1 6≺τ nsid(_)

fu-tr
n:τ1
u:τ

Let:

{j0, . . . , jl} = {i | τ ′ = _, fn(i) ≺ τ ∧ τ ′ 6≺τ nsid(_)}

We check that:

{j0, . . . , jl} = {i | τ ′ = _, fn(i) ≺ τ ∧ τ ′ 6≺τ nsντ (id)(_)}

For all 0 ≤ i ≤ l, let τji be such that τji = _, fn(ji) ≺ τ . One can check that:

m-suci idτ = if fu-trn:τj0u:τ then gutij0

else if fu-trn:τj1u:τ then gutij1

· · ·
else gutijl

m-suci ντ (id)
τ = if fu-tr

n:τj0
u:τ then gutij0

else if fu-tr
n:τj1
u:τ then gutij1

· · ·
else gutijl

We can now start giving a derivation of (4.66):

φinτ , l-revealτ0 ,
(
fu-trn:τjiu:τ

)
i≤l ∼ φ

in
τ , r-revealτ0 ,

(
fu-tr

n:τji
u:τ

)
i≤l

φinτ , l-revealτ0 ,
(
fu-trn:τjiu:τ

)
i≤l,

(
gutiji

)
i≤l ∼ φ

in
τ , r-revealτ0 ,

(
fu-tr

n:τji
u:τ

)
i≤l,

(
gutiji

)
i≤l

Dup∗

φinτ , l-revealτ0 , accept
id
τ ,m-suci idτ ∼ φinτ , r-revealτ0 , accept

ντ (id)
τ ,m-suci ντ (id)

τ

FA∗

Since for all 1 ≤ i ≤ l, (gutiji ∼ gutiji) ∈ revealτ0 . We conclude using (Der2) for every 0 ≤ i ≤ l:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 ,

(
fu-trn:τjiu:τ

)
i≤l ∼ φ

in
τ , r-revealτ0 ,

(
fu-tr

n:τji
u:τ

)
i≤l

FA∗

4.12.8 Case ai = tuid(j, 0)

Let id = ντ (id), we know that ai = tuid(j, 0). l-revealτ and l-revealτ0 coincides everywhere except on:

στ (valid-gutiidu) ∼ στ (valid-gutiidu) στ (s-valid-gutiidu) ∼ στ (s-valid-gutiidu) m-suci idτ ∼ m-suci idτ

Handling these is simple since:

στ (valid-gutiidu) ≡ false στ (valid-gutiidu) ≡ false στ (s-valid-gutiidu) ≡ σinτ (valid-gutiidu)

στ (s-valid-gutiidu) ≡ σinτ (valid-gutiidu) m-suci idτ = defaut m-suci idτ = defaut

Observe that:

tτ = if σinτ (valid-gutiidu) then m-suci idτ0 else NoGuti tτ = if σinτ (valid-gutiidu) then m-suci idτ0 else NoGuti

Since (σinτ (valid-gutiidu), σinτ (valid-gutiidu)) ∈ revealτ0 and (m-suci idτ0 ∼ m-suci idτ0) ∈ revealτ0 , we conclude:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , σ

in
τ (valid-gutiidu),m-suci idτ ,NoGuti ∼ φinτ , r-revealτ0 , σinτ (valid-gutiidu),m-suci idτ ,NoGuti

Dup∗

φinτ , l-revealτ0 , tτ ∼ φinτ , r-revealτ0 , tτ
Simp

4.12.? Proof of Lemma 4.15 147

4.12.9 Case ai = tn(j, 0)

We know that ai = tn(j, 0). Using (A6), we know that for every id 6= id′, ¬acceptidτ ↔ ¬acceptid
′

τ .
Therefore the answer from the network does not depend on the order in which we make the acceptidτ
tests. Formally, the following list of conditionals is a CS partition:(

(acceptidτ)id∈Sid
,
∧

id∈Sid

¬acceptidτ
)

To get a uniform notation, we let acceptiddum
τ ≡

∧
id∈Sid

¬acceptidτ , and Sext-id = Sid∪{iddum}. Hence using
Proposition 4.18 we get that:

tτ = case
id∈Sext-id

(acceptidτ :msgidτ)

We are now going to show that for every id ∈ Sext-id, the term msgidτ can be replaced by
〈
nj , n⊕id , nMac

id
〉

(where (n⊕id)id∈Sext-id and (nMac
id)id∈Sext-id are fresh distinct nonces). We will then conclude easily using the

Fresh axiom.
Let id1, . . . , idl be an arbitrary enumeration of Sext-id. For every 1 ≤ n ≤ l, and for every idi ∈

{id1, . . . , idl}, we let:

rnd-msgidin ≡

{〈
nj , n⊕idi , n

Mac
idi

〉
if i ≤ n

rnd-msgidiτ if i > n

And we let tn be the term tτ where the subterms msgidτ have been replaced by
〈
nj , n⊕id , nMac

id
〉
for the

first n identities:
tn ≡ case

id∈Sext-id
(acceptidτ : rnd-msgidn)

We check that t0 ≡ tτ .

Part 1 We now show that for every 1 ≤ n ≤ l, we have a derivation of:

φinτ , l-revealτ0 , tn−1 ∼ φinτ , l-revealτ0 , tn (4.67)

Let n be in {1, . . . , l}. Let id = idn, k = kid and km = kidm . We are going to apply prf-f axiom with key
k to replace fk(nj) by nid, where nid is a fresh nonce. Recall that:

msgidτ ≡ 〈nj , σinτ (sqnid
n)︸ ︷︷ ︸

usqn

⊕fkid(nj) , Mac3
kidm

(〈nj , σinτ (sqnid
n) , σinτ (gutiidn)〉)︸ ︷︷ ︸

uMac

〉

We let ψ be the context with one hole (which has only one occurrence) such that:

ψ[
〈
nj , usqn ⊕ fkid(nj) , uMac

〉
] ≡ φinτ , l-revealτ0 , tn−1 ψ[

〈
nj , n⊕id , n

Mac
id
〉
] ≡ φinτ , l-revealτ0 , tn

Let ψ0[] ≡ ψ[
〈
nj , usqn ⊕ [] , uMac

〉
]. Notice that:

set-prf fk (ψ0[]) =
{
π1(φinτ1) | τ1 = _,tuid(p, 1) ≺ τ

}
∪ {np | τ1 = _,tn(p) ≺ τ}

We want to get rid of the sub-terms of the form fk(π1(φinτ1)), for any τ1 such that τ1 = _,tuid(p, 1) ≺ τ .
To do this, for every τ1 = _,tuid(p, 1) ≺ τ , we let τ3 = _,tuid(jp, 0) ≺ τ , and we apply (StrEqu2) to
rewrite all occurrence of acceptidτ1 in ψ0 using:

acceptidτ1 ↔
∨

τ2=_,tn(j1,0)
τ3≺τ1τ2≺τ1τ1

part-trn:τ2u:τ3,τ1 (4.68)

This yields a vector of terms ψ′0[] with one hole. It is easy to check that:

set-prf fk (ψ′0[]) = {np | τ1 = _,tn(p) ≺ τ}

By validity of τ , we know that for every τ1 = _,tn(p) ≺ τ , we have p 6= j. Therefore using Fresh we have
¬(nj = nP). It follows that we can apply the prf-f axiom in ψ′0[fk(nj)], replacing fk(nj) by nid, which

148 The 5G-AKA Authentication Protocol Privacy

yields ψ′0[nid]. More precisely, we deconstruct the context ψ′0 using FA, without touching at the mac
terms, until we get ~w, fk(nj) ∼ ~w, nid, at which point we can apply the prf-f axiom. We then rewrite any
term of the form in (4.68) back into acceptidτ1 , obtaining ψ0[nid] ≡ ψ[

〈
nj , usqn ⊕ nid , uMac

〉
]. We then use

⊕-ind to replace usqn⊕ nid by n⊕id. For this, we use the fact that len(usqn) = len(nid) by Proposition 4.11.

~w, fk(nj) ∼ ~w, nid
prf-f

....
ψ′0[fk(nj)] ∼ ψ′0[nid]

FA∗

ψ[
〈
nj , n⊕id , uMac

〉
] ∼ ψ[

〈
nj , n⊕id , nMac

id
〉
]

ψ[
〈
nj , usqn ⊕ nid , uMac

〉
] ∼ ψ[

〈
nj , n⊕id , nMac

id
〉
]
⊕-ind

ψ′0[nid] ∼ ψ[
〈
nj , n⊕id , nMac

id
〉
]

R

ψ′0[fk(nj)] ∼ ψ[
〈
nj , n⊕id , nMac

id
〉
]

Trans

ψ[
〈
nj , usqn ⊕ fkid(nj) , uMac

〉
] ∼ ψ[

〈
nj , n⊕id , nMac

id
〉
]
R

φinτ , l-revealτ0 , tn−1 ∼ φinτ , l-revealτ0 , tn
R

We now the same thing with uMac, applying prf-mac3 axiom to replace uMac by nMac
id . The proof is

similar to the one we just did for prf-f, and we omit the details. We conclude using Refl. This yields:

ψ[
〈
nj , n⊕id , nMac

id
〉
] ∼ ψ[

〈
nj , n⊕id , nMac

id
〉
]
Refl....

ψ[
〈
nj , n⊕id , uMac

〉
] ∼ ψ[

〈
nj , n⊕id , nMac

id
〉
]

Part 2 Using the fact that t0 ≡ tτ and (4.67), and using the transitivity axiom, we get:

φinτ , l-revealτ0 , tτ ∼ φinτ , l-revealτ0 , tl

Moreover, using the indep-branch axiom we know that:

φinτ , l-revealτ0 , tl ∼ φinτ , l-revealτ0 , n
indep-branch

where n is a fresh nonce. Using transitivity again, we get a derivation of:

φinτ , l-revealτ0 , tτ ∼ φinτ , l-revealτ0 , n (4.69)

Repeating everything we did in Part 1, we can show that we have a derivation of:

φinτ , r-revealτ0 , n
′ ∼ φinτ , r-revealτ0 , tτ (4.70)

where n′ is a fresh nonce. We then conclude using the transitivity and Fresh:

(4.69)

φinτ , l-revealτ0 , tτ
∼ φinτ , l-revealτ0 , n

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , n ∼ φinτ , r-revealτ0 , n

′ Fresh

(4.70)

φinτ , r-revealτ0 , n
′

∼ φinτ , r-revealτ0 , tτ

φinτ , l-revealτ0 , tτ ∼ φinτ , r-revealτ0 , tτ
Trans

4.12.10 Case ai = tuid(j, 1)

We know that ai = tuντ (id)(j, 1). Let id = ντ (id). By validity of τ , we know that there exists τ2 =
_,tuid(j, 0) such that τ2 ≺ τ . Here l-revealτ and l-revealτ0 coincides everywhere except on:

στ (sqnid
u)− σinτ (sqnid

u) ∼ στ (sqnid
u)− σinτ (sqnid

u) στ (e-authid
u) ∼ στ (e-authid

u)(
Mac4

kidm
(nj0) ∼ Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1

First, using (StrEqu2) twice we know that:

acceptidτ ↔
∨

τ1=_,tn(j1,0)
τ2≺τ τ1

part-trn:τ1u:τ2,τ acceptidτ ↔
∨

τ1=_,tn(j1,0)
τ2≺τ τ1

part-tr
n:τ1
u:τ2,τ

4.12.? Proof of Lemma 4.15 149

Using (Der3) we know that for every τ1 = _,tn(j1, 0) such that τ2 ≺τ τ1 we have a derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0

φinτ , l-revealτ0 , part-tr
n:τ1
u:τ2,τ ∼ φinτ , r-revealτ0 , part-tr

n:τ1
u:τ2,τ

Simp (4.71)

Therefore we can build the following derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0

φinτ , l-revealτ0 ,
(
part-trn:τ1u:τ2,τ

)
τ1=_,tn(j1,0)

τ2≺τ τ1
∼ φinτ , r-revealτ0 ,

(
part-tr

n:τ1
u:τ2,τ

)
τ1=_,tn(j1,0)

τ2≺τ τ1

Simp

φinτ , l-revealτ0 , accept
id
τ ∼ φinτ , r-revealτ0 , accept

id
τ

Simp
(4.72)

Part 1 We can check that for every τ1 = _,tn(j1, 0) such that τ2 ≺τ τ1:

part-trn:τ1u:τ2,τ → στ (e-authid
u) = nj1 part-tr

n:τ1
u:τ2,τ → στ (e-authid

u) = nj1

¬acceptidτ → στ (e-authid
u) = fail ¬acceptidτ → στ (e-authid

u) = fail

And (nj1 , nj1) ∈ revealτ0 . Therefore we can decompose στ (e-authid
u) and στ (e-authid

u) using FA and get rid
of the resulting terms using (4.71) and (4.72):

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , accept

id
τ ,
(
part-trn:τ1u:τ2,τ , n

j1
)
τ1=_,tn(j1,0)

τ2≺τ τ1
, fail

∼ φinτ , r-revealτ0 , accept
id
τ ,
(
part-tr

n:τ1
u:τ2,τ , n

j1
)
τ1=_,tn(j1,0)

τ2≺τ τ1
, fail

Simp

φinτ , l-revealτ0 , if accept
id
τ then case

τ1=_,tn(j1,0)
τ2≺τ τ1

(part-trn:τ1u:τ2,τ : nj1) else fail

∼ φinτ , r-revealτ0 , if accept
id
τ then case

τ1=_,tn(j1,0)
τ2≺τ τ1

(part-tr
n:τ1
u:τ2,τ : nj1) else fail

Simp

φinτ , l-revealτ0 , στ (e-authid
u) ∼ φinτ , r-revealτ0 , στ (e-authid

u)
R

(4.73)

Part 2 Observe that for every τ1 = _,tn(j1, 0) such that τ2 ≺τ τ1:

part-trn:τ1u:τ2,τ → στ (sqnid
u)− σinτ (sqnid

u) = 1 part-tr
n:τ1
u:τ2,τ → στ (sqnid

u)− σinτ (sqnid
u) = 1

¬acceptidτ → στ (sqnid
u)− σinτ (sqnid

u) = 0 ¬acceptidτ → στ (sqnid
u)− σinτ (sqnid

u) = 0

It is then easy to adapt the derivation in (4.73) to get a derivation of (we omit the details):

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , στ (sqnid

u)− σinτ (sqnid
u) ∼ φinτ , r-revealτ0 , στ (sqnid

u)− σinτ (sqnid
u)

Simp (4.74)

Part 3 We finally take care of tτ and the Mac4 terms. First, we check that for every τ1 = _,tn(j1, 0)
such that τ2 ≺τ τ1:

part-trn:τ1u:τ2,τ → tτ = Mac4
kidm

(nj0) part-tr
n:τ1
u:τ2,τ → tτ = Mac4

kidm
(nj0)

¬acceptidτ → tτ = error ¬acceptidτ → tτ = error

Similarly to what we did in (4.73), we decompose tτ and tτ using (4.71) and (4.72). Omitting the detail
of the derivation, this yield:

φinτ , l-revealτ0 ,
(
Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1

∼ φinτ , r-revealτ0 ,
(
Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1

φinτ , l-revealτ0 , tτ ∼ φinτ , r-revealτ0 , tτ
Simp

150 The 5G-AKA Authentication Protocol Privacy

Observe that the Mac4 terms here are exactly the Mac4 terms in l-revealτ\l-revealτ0 . To conclude this
proof, it only remains to give a derivation of:

φinτ , l-revealτ0 ,
(
Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1

∼ φinτ , r-revealτ0 ,
(
Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1

For every τ1 = _,tn(j1, 0) such that τ2 ≺τ τ1, we are going to apply the prf-mac4 axiom with key kidm
to replace Mac4

kidm
(nj0) by a fresh nonce nτ1 . Let ψ ≡ φinτ , l-revealτ0 , observe that:

set-mac4
id (ψ) =

{
π1(g(φinτa)) | τa = _,tuid(ja, 1) ≺ τ

}
∪
{
njn | τn = _,tn(jn, 1) ≺ τ

}
Let:

T =
{
nj0 | τ1 = _,tn(j0, 0) ∧ τ2 ≺τ τ1

}
Our goal is to rewrite ψ into a vector of terms ψ1 such that set-mac4

id (ψ1)∩ T = ∅. This will allow us to
apply the prf-mac4 axiom. We are going to rewrite ψ as follows:

• Let τa = _,tuid(ja, 1) ≺ τ . By validity of τ , we know that τa ≺τ τ2, and that there exists
τb = _,tuid(ja, 0) ≺τ τa. Using (StrEqu2), we know that:

acceptidτa ↔
∨

τx=_,tn(jx,0)
τb≺τ τx≺τ τa

part-trn:τxu:τb,τa

We let αid
τa be the right-hand side of the equation above. Using this, we can check that:

tτa = if αid
τa then case

τx=_,tn(jx,0)
τb≺τ τx≺τ τa

(part-trn:τxu:τb,τa :Mac4
kidm

(njx)) else error

Let κid
τa be the right-hand side of the equation above. For every τx = _,tn(jx, 0), if njx ∈

set-mac4
id(αid

τa , κ
id
τa) then τx ≺τ τa. Therefore:

set-mac4
id
(
αid
τa , κ

id
τa

)
∩ T

⊆
{
njx | τx = _,tn(jx, 0) ∧ τx ≺τ τa

}
∩
{
nj0 | τ1 = _,tn(j0, 0) ∧ τ2 ≺τ τ1

}
=
{
njx | τx = _,tn(jx, 0) ∧ τx ≺τ τa ∧ τ2 ≺τ τx

}
By validity of τ , we know that τa ≺τ τ2. This implies that whenever τx ≺τ τa and τ2 ≺τ τx, we
have τx ≺τ τ2 ≺τ τx. Hence:

set-mac4
id
(
αid
τa , κ

id
τa

)
∩ T = ∅ (4.75)

Let ψ0 be ψ in which we replace, for every τa = _,tuid(ja, 1) ≺ τ , any occurrence of acceptidτa and
tτa by, respectively, αid

τa and κid
τa , for every τa. We then have:

set-mac4
id (ψ0) =

{
njn | τn = _,tn(jn, 1) ≺ τ

}
∪

⋃
τa=_,tuid(ja,1)

τa≺τ

set-mac4
id
(
αid
τa , κ

id
τa

)
And using (4.75), we know that:

set-mac4
id (ψ0) ∩ T =

{
njn | τn = _,tn(jn, 1) ≺ τ

}
(4.76)

• Let τn = _,tn(jn, 1) and τn′ = _,tn(jn, 0) such that τn′ ≺τ τn. Using (StrEqu3), we know that:

acceptidτn ↔
∨

τi
′=_,tuid(ji,0)

τi=_,tuid(ji,1)

τi
′≺τ τn′≺τ τi≺τ τn

full-trn:τn
′,τn

u:τi′,τi

Let λid
τn be the right-hand side of the equation above. We check that if njn ∈ set-mac4

id(λid
τn) then

there exists τi = _,tuid(ji, 1) such that τi ≺τ τn. Since τi ≺ τ , we know that ji 6= j. Therefore
τi ≺τ τ2, and we can show that:

set-mac4
id
(
λid
τn

)
∩ T = ∅ (4.77)

Let ψ1 be ψ0 in which we replace, for every τn = _,tn(jn, 1) and τn
′ = _,tn(jn, 0) such that

τn
′ ≺τ τn, any occurrence of acceptidτn by λid

τn . Using (4.76) and (4.77), we can check that:

set-mac4
id (ψ1) ∩ T = ∅

Which is what we wanted to show.

4.12.? Proof of Lemma 4.15 151

Part 4 Let τ1 = _,tn(j0, 0) be such that τ2 ≺τ τ1. For every τ1′ = _,tn(j′0, 0) be such that τ2 ≺τ τ1′,
if j′0 6= j0 then (nj

′
0 = nj0) ↔ false. Moreover, since set-mac4

id (ψ1) ∩ T = ∅, we know that for every
n ∈ set-mac4

id (ψ1), (n = nj0)↔ false.
We can therefore apply simultaneously the prf-mac4 axiom with key kidm for every τ1 = _,tn(j0, 0)

such that τ2 ≺τ τ1, to replace Mac4
kidm

(nj0) by a fresh nonce nτ1 . We then rewrite back ψ1 into ψ. This
yield the derivation:

φinτ , l-revealτ0 , (nτ1) τ1=_,tn(j0,0)
τ2≺τ τ1

∼ ζ

ψ1, (nτ1) τ1=_,tn(j0,0)
τ2≺τ τ1

∼ ζ
R

ψ1,
(
Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1
∼ ζ

prf-mac4

φinτ , l-revealτ0 ,
(
Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1
∼ ζ

R

where:
ζ ≡ φinτ , r-revealτ0 ,

(
(Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1

Observe that we never used the fact that τ was a basic trace of actions above, but only the fact that τ is
a valid trace of actions. Therefore the same reasoning applies to ζ, and for every τ1 = _,tn(j0, 0) such
that τ2 ≺τ τ1, we replace Mac4

kidm
(nj0) by a fresh nonce n′τ1 . We conclude using Fresh:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , (nτ1) τ1=_,tn(j0,0)

τ2≺τ τ1
∼ φinτ , r-revealτ0 ,

(
n′τ1
)
τ1=_,tn(j0,0)

τ2≺τ τ1

Fresh

φinτ , l-revealτ0 , (nτ1) τ1=_,tn(j0,0)
τ2≺τ τ1

∼ φinτ , r-revealτ0 ,
(
(Mac4

kidm
(nj0)

)
τ1=_,tn(j0,0)

τ2≺τ τ1

R+ prf-mac4

Which concludes this proof.

4.12.11 Case ai = tn(j, 1)

We know that ai = tn(j, 1). Here l-revealτ and l-revealτ0 coincides everywhere except on:

net-e-authτ (id, j) ∼ net-e-authτ (id, j) sync-diffid
τ ∼ sync-diffντ (id)

τ

Let id ∈ Sid, τi = _,tuid(ji, 1), τ1 = _,tn(j, 0), τ2 = _,tuid(ji, 0) such that τ2 ≺τ τ1 ≺τ τi:

τ :

tuid(ji, 0)

τ2

tn(j, 0)

τ1

tuid(ji, 1)

τi

ai = tn(j, 1)

τ

Let f ≡ full-trn:τ1,τu:τ2,τi and f ≡ full-tr
n:τ1,τ
u:τ2,τi . Using (Der4) we know that we have the following derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , f ∼ φinτ , r-revealτ0 , f

Simp (4.78)

Since f→ acceptidτ , we have:

[f ∧ σinτ (syncidu)]sync-diffid
τ = [f ∧ σinτ (syncidu)]

(
if σinτ (sessionid

n) = nj then suc(sync-diffid
τ0)

else sync-diffid
τ0

)

Case 1 Assume that τi = _,tuid(ji, 1) ≺τ nsid(_). Let τns = _,nsid(jns) be the latest session reset in
τ , i.e. τns ≺τ τ and τns 6≺τ nsid(_). We show by induction that for every τ ′ such that τns � τ ′ we have:

f ∧ σinτ (sessionid
n) = nj → στns(sqnid

n) = στ ′(sqnid
n) (4.79)

Let τ ′ be such that τns � τ ′:
• If τ ′ = τns then the property trivially holds.

152 The 5G-AKA Authentication Protocol Privacy

• If τns ≺τ τ ′. The only cases where sqnid
n is updated are pn(j′, 1) and tn(j′, 1):

– If τ ′ = _,pn(j′, 1): since τ = tn(j, 1) we know by validity of τ that j′ 6= j. Therefore:

inc-acceptidτ ′ → στ ′(sessionid
n) = nj

′
→ στ ′(sessionid

n) 6= nj → σinτ (sessionid
n) 6= nj

It follows that:

σinτ (sessionid
n) = nj → ¬inc-acceptidτ ′ → σinτ ′(sqnid

n) = στ ′(sqnid
n)

And we conclude by applying the induction hypothesis.
– If τ ′ = _,tn(j′, 1): since τ = tn(j, 1) and τ ′ ≺ τ , we know that j′ 6= j (by validity of τ).

Therefore:

σinτ (sessionid
n) = nj → ¬inc-acceptidτ ′ → σinτ ′(sqnid

n) = στ ′(sqnid
n)

And we conclude by applying the induction hypothesis.
This concludes the proof of (4.79). We prove by induction over τ ′ in nsid(jns) � τ ′ � τ that:

f ∧ σinτ (sessionid
n) = nj → ¬στ ′(syncidu) (4.80)

Let ai′ be such that τ ′ = _, ai′.
• The case ai′ = nsid(jns) is trivial since we then have στ ′(syncidu) = false.
• If ai′ 6= puid(_, 2), then since ns(jns) 6≺τ ns(_) we know that ai′ 6= ns(_). Hence σupτ ′ (sync

id
u) = ⊥,

which implies στ ′(syncidu) ≡ σinτ ′(syncidu). By induction hypothesis we know that:

f ∧ σinτ (sessionid
n) = nj → ¬σinτ ′(syncidu)

which concludes this case.
• If ai′ = puid(j′, 2). Let τ ′′′ = _,puid(j′, 1) � τ . By validity of τ we know that τns ≺τ τ ′′′. Using
(Equ2) we know that:

acceptidτ ′ ↔
∨

τ′′=_,pn(j′′,1)
τ′′′≺τ τ′′≺τ τ′

supi-tr n:τ
′′

u:τ ′′′,τ ′

And using (StrEqu4):

¬σinτ ′(syncidu) ∧ supi-tr n:τ
′′

u:τ ′′′,τ ′ → στ ′(sqnid
u)− στ ′(sqnid

n) = 0

Using (4.79), we know that:

f ∧ σinτ (sessionid
n) = nj → στns(sqnid

n) = σinτ ′′′(sqnid
n) ∧ στns(sqnid

n) = στ ′(sqnid
n)

Therefore:
f ∧ σinτ (sessionid

n) = nj → σinτ ′′′(sqnid
n) = στ ′(sqnid

n)

Using (B5) we know that σinτ ′′′(sqnid
n) ≤ σinτ ′′′(sqnid

u), and by (B1) we know that στ ′′′(sqnid
n) ≤

στ ′(sqnid
u). Moreover στ ′′′(sqnid

n) = suc(σinτ ′′′(sqnid
n)) < σinτ ′′′(sqnid

n). We summarize all of this
graphically in Figure 4.25. Putting everything together we get that:

f ∧ ¬σinτ ′(syncidu) ∧ supi-tr n:τ
′′

u:τ ′′′,τ ′ → στ ′(sqnid
u) < στ ′(sqnid

u) → false

We deduce that:

f ∧ ¬σinτ ′(syncidu) ∧ acceptidτ ′ →
∨

τ′′=_,pn(j′′,1)
puid(j′,1)≺τ τ′′≺τ τ′

f ∧ ¬σinτ ′(syncidu) ∧ supi-tr n:τ
′′

u:_,τ ′ → false

Moreover, using the induction hypothesis we know that:

f ∧ σinτ (sessionid
n) = nj → ¬σinτ ′(syncidu)

Therefore:

f ∧ σinτ (sessionid
n) = nj → ¬acceptτ ′ → ¬στ ′(syncidu)

4.12.? Proof of Lemma 4.15 153

τ :
τns

nsid(jns)

τ ′′′

puid(j′, 1)

τ ′′

pn(j′′, 1)

τ ′

puid(j′, 2)

σinτ ′′′(sqnid
n)

σinτ ′′′(sqnid
u) στ ′′′(sqnid

u)

στ ′(sqnid
n)

στ ′(sqnid
u)

=

=

≤

< ≤

Figure 4.25: First Graphical Representation Used in the Proof of the Case tn(j, 1) of Lemma 4.15.

This concludes the proof of (4.80). Using (4.80) we get that f ∧ σinτ (syncidu)→ σinτ (sessionid
n) 6= nj . Hence:

[f]sync-diffid
τ = [f ∧ σinτ (syncidu)]sync-diffid

τ0

We know that f → acceptντ2 (id)
τ . Moreover, ντ2(id) 6= ντ (id), hence using (A5) we know that f →

¬acceptντ (id)
τ . Hence:

[f]sync-diffντ (id)
τ = [f ∧ σinτ (syncντ (id)

u)]sync-diffντ (id)
τ0

Using the derivation in (4.78) and the fact that:(
σinτ (syncidu), σinτ (syncντ (id)

u)
)
∈ revealτ0

(
sync-diffid

τ0 , sync-diff
ντ (id)
τ0

)
∈ revealτ0

We can build the derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , f, σ

in
τ (syncidu), sync-diffid

τ0

∼ φinτ , r-revealτ0 , f, σ
in
τ (syncντ (id)

u), sync-diffντ (id)
τ0

Simp

φinτ , l-revealτ0 , [f]sync-diff
id
τ ∼ φinτ , r-revealτ0 , [f]sync-diff

ντ (id)
τ

Simp

(4.81)

Case 2 Assume that τi = _,tuid(ji, 1) 6≺τ nsid(_). We introduce the term θpn (resp. θtn) which states
that no supi (resp. guti) network session has been initiated which id between τ1 and τ :

θpn ≡
∧

τ′=_,pn(_,1)
τ1≺τ τ′

¬inc-acceptidτ ′ θtn ≡
∧

τ′=tn(_,0)
τ1≺τ τ′

¬acceptidτ ′

It is easy to show that: (
f ∧ σinτ (sessionid

n) = nj
)
↔ (f ∧ θpn ∧ θtn)

We are now going to show that for every τ1 � τ ′, P (τ ′) holds where P (τ ′):

P (τ ′) ≡ (f ∧ θpn) →
(
στ ′(gutiidn) = UnSet ∧ στ ′(sessionid

n) = nj ∧
∧

τ1≺τ τ′′�τ′
τ′′=tn(_,0)

¬acceptidτ ′′
)

(4.82)

Since f → acceptτ1 , we know that f → στ1(gutiidn) = UnSet. This shows that P (τ1) holds. Let τ1 ≺τ τ ′,
where τ ′ = τ ′0, ai

′, and assume P (τ ′0) holds by induction. We have four cases:
• If ai′ 6∈ {tn(_, 0),tn(_, 1),pn(_, 1)} then P (τ ′) ≡ P (τ ′0), which concludes this case.

• If ai′ = tn(_, 0), then using the induction hypothesis P (τ ′0) we know that f ∧ θpn → σinτ ′(gutiidn) =
UnSet. Therefore f∧ θpn → ¬acceptidτ ′ . We know that f∧ θpn → σinτ ′(session

id
n) = nj . We conclude by

observing that:

¬acceptidτ ′∧σinτ ′(gutiidn) = UnSet∧σinτ ′(sessionid
n) = nj →

(
στ ′(gutiidn) = UnSet ∧ στ ′(sessionid

n) = nj
)

• If ai′ = tn(j′, 1). Since τ ′ ≺ τ , we know that j 6= j′. Therefore σinτ ′(session
id
n) = nj → σinτ ′(session

id
n) 6=

nj
′
. We deduce that f ∧ θpn → ¬acceptidτ ′ . This concludes this case.

154 The 5G-AKA Authentication Protocol Privacy

• If ai′ = _,pn(_, 1). We know that f ∧ θpn → ¬inc-acceptidτ ′ . We conclude using the facts that:

¬inc-acceptidτ ′ → στ ′(sessionid
n) = σinτ ′(session

id
n) ¬inc-acceptidτ ′ → στ ′(gutiidn) = σinτ ′(gutiidn)

By applying (4.82) at instant τ0, we get that:(
f ∧ σinτ (sessionid

n) = nj
)
↔ (f ∧ θpn ∧ θtn) ↔ (f ∧ θpn) (4.83)

Part 1 Let τ ′ = _,pn(j′, 1), with τ1 ≺τ τ ′. Let τ ′0 = pn(j′, 0). Using (Equ3) we know that:

acceptidτ ′ ↔
∨

τa=_,puid(ja,1)

τ′0≺τ τa≺τ τ
′

 g(φinτa) = nj
′
∧ π1(g(φinτ ′)) = {〈id , σinτa(sqnid

u)〉}n
ja
e

pkn

∧ π2(g(φinτ ′)) = Mac1
kidm

(〈{〈id , σinτa(sqnid
u)〉}n

ja
e

pkn
, g(φinτa)〉)

︸ ︷︷ ︸

λτ′τa

(4.84)

We define:

τns =

{
nsid(jns) if there exists jns s.t. nsid(jns) ≺τ τ and nsid(jns) 6≺τ nsid(_).
ε otherwise

Let τa = _,puid(ja, 1) such that τ ′0 ≺τ τa ≺τ τ ′. Since τi = _,tuid(ji, 1) 6≺τ nsid(_), we have only three
interleavings possible: τa ≺τ τns, τns ≺τ τa ≺τ τ2, τi ≺τ τa. First, we are going to show that in the first
two cases we have:

f ∧ λτ
′

τa → ¬inc-acceptidτ ′

• If τa ≺τ τns, we have the following interleaving:

τ :

puid(ja, 1)

τa

nsid(_)

τns

tuid(ji, 0)

τ2

tn(j, 0)

τ1

pn(j′, 1)

τ ′

tn(j, 1)

τ

By definition of inc-acceptidτ ′ , and using the fact that λτ
′

τa → acceptidτ ′ we know that:

λτ
′

τa ∧ inc-acceptidτ ′ → σinτ ′(sqnid
n) ≤ σinτa(sqnid

u)

To conclude this case, we only need to show that:

λτ
′

τa ∧ inc-acceptidτ ′ → σinτa(sqnid
u) < σinτ ′(sqnid

n) (4.85)

From which we obtain directly a contradiction, implies that:

f ∧ λτ
′

τa → ¬inc-acceptidτ ′ when τa ≺τ τns (4.86)

The proof of (4.85) is by (B1) and (B6)9. We give a graphical representation in Figure 4.26.

• If τns ≺τ τa ≺τ τ2, we have the following interleaving:

τ :

nsid(_)
or ε

τns

puid(ja, 1)

τa

tuid(ji, 0)

τ2

tn(j, 0)

τ1

pn(j′, 1)

τ ′

tn(j, 1)

τ

We know that λτ
′

τa → στa(gutiidu) = UnSet, and that f → σinτ2(gutiidu). By (B3), we get f →
σinτ2(gutiidu) 6= UnSet. This means that gutiidu is unset at τa, but set at τ2. Therefore there

9Using the fact that f→ σin
τ2
(syncidu) and σin

τ2
(syncidu)→ στ ′ (syncidu)

4.12.? Proof of Lemma 4.15 155

τ :
τa

puid(ja, 1)

τns

nsid(jns)

τ ′

pn(j′, 1)

σinτa(sqnid
u) σinτns(sqnid

u)

σinτ ′(sqnid
n)

≤
<

Figure 4.26: Second Graphical Representation Used in the Proof of the Case tn(j, 1) of Lemma 4.15.

was a successful run of the protocol (supi or guti) between τa and τ2. More precisely, using
Proposition 4.13 we have:

f ∧ λτ
′

τa → στa(gutiidu) = UnSet ∧ σinτ2(gutiidu) 6= UnSet

→
∨

τ′′=_,fuid(j′′)
τa≺τ τ′′≺τ τ2

acceptidτ ′′ (4.87)

Let τ ′′ = _, fuid(j′′) such that τa ≺τ τ ′′ ≺τ τ2. We then have two cases:
– Assume j′′ = ja. In order to have acceptidτ ′′ , we need the supi or guti session j′′ to have been

executed before τ ′′. Intuitively, this cannot happen if j′′ = ja because the user session ja is
interacting with the network session j′, and τ ′′ ≺τ τ ′. Formally, using the fact that j′′ = ja
we are going to show that:

¬
(
λτ
′

τa ∧ acceptidτ ′′
)

(4.88)

First, by (Equ1) we know that:

acceptidτ ′′ →
∨

fn(jx)6<τ′′nsid(_)

inj-authτ ′′(id, jx)

→
∨

fn(jx)6<τ′′nsid(_)

σinτ ′′(b-auth
jx
n) = id ∧ σinτ ′′(e-auth

id
u) = njx

By (A8) we get:

→
∨

fn(jx)6<τ′′nsid(_)

σinτ ′′(b-auth
jx
n) = id ∧ σinτ ′′(b-auth

id
u) = njx (4.89)

We know that λτ
′

τa → σinτa(b-authid
u) = nj

′
. Moreover, using the validity of τ we know that

b-authid
u is not updated between τa and τ ′′, therefore λτ

′

τa → σinτ ′′(b-auth
id
u) = nj

′
. Putting this

together with (4.89), and using the fact that:(
σinτ ′′(b-auth

id
u) = njx ∧ σinτ ′′(b-auth

id
u) = nj

′)
→ false if jx 6= j′

We get:

acceptidτ ′′ ∧ λτ
′

τa → σinτ ′′(b-auth
j′

n) = id ∧ σinτ ′′(b-auth
id
u) = nj

′

Since τ ′′ ≺τ τ ′, we know that σinτ ′′(b-auth
j′

n) = fail. Hence:

→ σinτ ′′(b-auth
j′

n) = id ∧ σinτ ′′(b-auth
j′

n) = fail → false

Which concludes the proof of (4.88).
– Assume j′′ 6= ja. Intuitively, we know that acceptidτ ′′ implies that sqnid

u and sqnid
n have been

incremented and synchronized between τa and τ ′. Therefore we know that the test inc-acceptidτ ′
fails. Formally, we show that:

acceptidτ ′′ → στa(sqnid
u) < σinτ ′′(sqnid

n) (4.90)

156 The 5G-AKA Authentication Protocol Privacy

We give the outline of the proof. First, we apply (StrEqu1) to τ ′′. Then, we take τ ′′0 =
_, fn(je) ≺ τ ′′. We let τ ′′1 = _,pn(je, 1) or _,tn(je, 1) such that τ ′′1 ≺ τ ′′0 , and we do a case
disjunction on τ ′′1 :

∗ If τ ′′1 = _,pn(je, 1), then we use (StrEqu4) on it, and we show that στa(sqnid
u) <

σinτ ′′(sqnid
n) by doing a case disjunction on inc-acceptidτ ′′1 .

∗ If τ ′′1 = _,tn(je, 1), then we use (StrEqu2) on it, and we show that στa(sqnid
u) <

σinτ ′′(sqnid
n) using (B4)

We omit the details.
Using (B1) we know that σinτ ′′(sqnid

n) ≤ σinτ ′(sqnid
n) and σinτa(sqnid

u) ≤ στa(sqnid
u). Hence, we

deduce from (4.90) that:

acceptidτ ′′ → σinτa(sqnid
u) < σinτ ′(sqnid

n)

Moreover, by definition of inc-acceptidτ ′ , and using the fact that λτ
′

τa → acceptidτ ′ we know that:

λτ
′

τa ∧ inc-acceptidτ ′ → σinτ ′(sqnid
n) ≤ σinτa(sqnid

u)

Putting the two equations above together:

λτ
′

τa ∧ inc-acceptidτ ′ ∧ acceptidτ ′′ → false

Hence:
λτ
′

τa ∧ acceptidτ ′′ → ¬inc-acceptidτ ′

From (4.87), (4.88) and the equation above, we deduce that:

f ∧ λτ
′

τa →
∨

τ′′=_,fuid(j′′)
τa≺τ τ′′≺τ τ2

f ∧ λτ
′

τa ∧ acceptidτ ′′ →
∨

τ′′=_,fuid(j′′)
τa≺τ τ′′≺τ τ2

¬inc-acceptidτ ′

Hence:
f ∧ λτ

′

τa → ¬inc-acceptidτ ′ when τns ≺τ τa ≺τ τ2 (4.91)

Part 2 Using (4.86) and (4.91), we know that we can focus on the (partial) supi sessions that started
after τi, i.e. the sessions with transcript of the from λτ

′

τa , where τa = _,puid(ja, 1), τ ′ = _,pn(j′, 1) and
τi ≺τ τa ≺τ τ ′. Formally, we have:

(f ∧ θpn) ↔ f ∧
∧

τ′=_,pn(_,1)
τ1≺τ τ′

¬inc-acceptidτ ′

↔ f ∧
∧

τ′=_,pn(_,1)
τ1≺τ τ′

acceptidτ ′ → ¬inc-acceptidτ ′

↔ f ∧
∧

τ′=_,pn(j′,1)
τ′0=_,pn(j′,0)
τa=_,puid(ja,1)

τ1≺τ τ′
τ′0≺τ τa≺τ τ

′

λτ
′

τa → ¬inc-accept
id
τ ′ (By (4.84))

↔ f ∧
∧

τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

λτ
′

τa → ¬inc-acceptidτ ′ (By (4.86) and (4.91))

We represent graphically the shape of the interleavings that we need to consider:

τ :

nsid(_)
or ε

τns

tuid(ji, 0)

τ2

tn(j, 0)

τ1

tuid(ji, 1)

τi

puid(ja, 1)

τa

pn(j′, 1)

τ ′

tn(j, 1)

τ

4.12.? Proof of Lemma 4.15 157

τ2

tuid(ji, 0)

τ1

tn(j, 0)

τi

tuid(ji, 1)

τa

puid(ja, 1)

τ ′

pn(j′, 1)

τ

tn(j, 1)

σinτi(sqnid
u) σinτa(sqnid

u)

σinτ1(sqnid
n) σinτ ′(sqnid

n)

=

≤
<

Figure 4.27: Third Graphical Representation Used in the Proof of the Case tn(j, 1) of Lemma 4.15.

Part 3 We are now going to show that if at least one partial supi session that started after τi accepts
(i.e. f ∧ λτ ′τa holds), then we have σinτ (sessionid

n) 6= nj . First, from what we showed in Part 2, and using
(4.83) we know that:

¬
(
f ∧ σinτ (sessionid

n) = nj
)
↔ ¬f ∨

∨
τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa ∧ inc-acceptidτ ′

→ ¬f ∨
∨

τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa

We know show that the converse implication holds. In a first time, assume that for every τa =
_,puid(ja, 1) and τ ′ = _,pn(j′, 1) such that τi ≺τ τa ≺τ τ ′ we have:

f ∧ λτ
′

τa ∧ ¬inc-accept
id
τ ′ → σinτ (sessionid

n) 6= nj (4.92)

Then we know that:
¬f ∨

∨
τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa → ¬
(
f ∧ σinτ (sessionid

n) = nj
)

Therefore:
¬
(
f ∧ σinτ (sessionid

n) = nj
)
↔ ¬f ∨

∨
τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa (4.93)

We now give the proof of (4.92). Let τa = _,puid(ja, 1) and τ ′ = _,pn(j′, 1) such that τi ≺τ τa ≺τ τ ′.
We know that:

λτ
′

τa ∧ ¬inc-accept
id
τ ′ → σinτa(sqnid

u) < σinτ ′(sqnid
n) f → σinτ1(sqnid

n) = σinτi(sqnid
u)

Moreover by (B1) we know that σinτi(sqnid
u) ≤ σinτa(sqnid

u). We summarize this graphically in Figure 4.27.
We deduce that:

f ∧ λτ
′

τa ∧ ¬inc-accept
id
τ ′ → σinτ1(sqnid

n) < σinτ ′(sqnid
n)

Moreover:

σinτ1(sqnid
n) < σinτ ′(sqnid

n) →
∨

τx=pn(jx,1)
τ1≺τ τx≺τ τ′

inc-acceptidτx ∨
∨

τx=tn(jx,1)
τ1≺τ τx≺τ τ′

inc-acceptidτx

For every τx = pn(jx, 1) such that τ1 ≺τ τx ≺τ τ ′ we have jx 6= j. Therefore:∨
τx=pn(jx,1)
τ1≺τ τx≺τ τ′

inc-acceptidτx →
∨

τx=pn(jx,1)
τ1≺τ τx≺τ τ′

στx(sessionid
n) = njx → σinτ (sessionid

n) 6= nj

158 The 5G-AKA Authentication Protocol Privacy

And: ∨
τx=tn(jx,1)
τ1≺τ τx≺τ τ′

inc-acceptidτx →
∨

τx=tn(jx,1)
τ1≺τ τx≺τ τ′

σinτx(sessionid
n) = njx → σinτ (sessionid

n) 6= nj

This concludes the proof of (4.92).
The proofs in Part 1 to 3 only used the fact that τ is a valid action trace. We never used the fact

that τ is a basic trace. Therefore, carrying out the same proof, we can show that:

¬
(
f ∧ σinτ (sessionντ (id)

n) = nj
)
↔ ¬f ∨

∨
τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa (4.94)

Part 4 Let τa = _,puid(ja, 1) and τ ′ = _,pn(j′, 1) be such that τi ≺τ τa ≺τ τ ′. Observing that:(
nj
′
, nj
′)
∈ revealτ0

(
{〈id , σinτa(sqnid

u)〉}n
ja
e

pkn
, {〈ντ (id) , σinτa(sqnντ (id)

u)〉}n
ja
e

pkn

)
∈ revealτ0(

Mac1
kidm

(〈{〈id , σinτa(sqnid
u)〉}n

ja
e

pkn
, g(φinτa)〉),Mac1

kντ (id)
m

(〈{〈ντ (id) , σinτa(sqnντ (id)
u)〉}n

ja
e

pkn
, g(φinτa)〉)

)
∈ revealτ0

It is straightforward to show that we have a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , λ

τ ′

τa ∼ φinτ , r-revealτ0 , λ
τ ′

τa

Simp

Using (4.93) and (4.94), and combining the derivation above with the derivation in (4.78), we can build
the following derivation:

φinτ , l-revealτ0 ,∼ φinτ , r-revealτ0 ,

φinτ , l-revealτ0 , f ∧ ¬
∨

τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ ′τa ∼ φ
in
τ , r-revealτ0 , f ∧ ¬

∨
τa=_,puid(ja,1)

τ′=_,pn(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa

(Dup,FA)∗

φinτ , l-revealτ0 , f ∧ σinτ (sessionid
n) = nj ∼ φinτ , r-revealτ0 , f ∧ σinτ (sessionντ (id)

n) = nj
R

(4.95)

We know that:

[f]sync-diffid
τ = if f ∧ σinτ (syncidu) ∧ σinτ (sessionid

n) = nj then suc(sync-diffid
τ0)

else sync-diffid
τ0

[f]sync-diffντ (id)
τ = if f ∧ σinτ (syncντ (id)

u) ∧ σinτ (sessionντ (id)
n) = nj then suc(sync-diffντ (id)

τ0)

else sync-diffντ (id)
τ0

Hence, using (4.95) and the fact that:(
σinτ (syncidu), σinτ (syncντ (id)

u
)
∈ revealτ0

(
sync-diffid

τ0 , sync-diff
ντ (id)
τ0

)
∈ revealτ0

We have a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , [f]sync-diff

id
τ ∼ φinτ , r-revealτ0 , [f]sync-diff

ντ (id)
τ

Simp (4.96)

Part 5 Using (StrEqu3), we know that:

acceptidτ ↔
∨

τi=_,tuid(ji,1)

τ1=_,tn(j,0)
τ2=_,tuid(ji,0)
τ2≺τ τ1≺τ τi

full-trn:τ1,τu:τ2,τi

4.13.? Proof of Proposition 4.20 159

We split between the cases τi ≺τ τns and τi 6≺τ τns:

↔
∨

τi=_,tuid(ji,1)

τ1=_,tn(j,0)
τ2=_,tuid(ji,0)

τ2≺τ τ1≺τ τi≺τ τns

full-trn:τ1,τu:τ2,τi ∨
∨

τi=_,tuid(ji,1)

τ1=_,tn(j,0)
τ2=_,tuid(ji,0)

τns≺τ τ2≺τ τ1≺τ τi

full-trn:τ1,τu:τ2,τi

If τi ≺τ τns then ντ2(id) = ντi(id) 6= ντ (id), and if τi 6≺τ τns then ντ2(id) = ντi(id) = ντ (id). It follows,
using (StrEqu3) on τ , that:∨

id∈copies-idC (id)
id6=ντ (id)

acceptidτ ↔
∨

τi=_,tuid(ji,1)

τ1=_,tn(j,0)
τ2=_,tuid(ji,0)

τ2≺τ τ1≺τ τi≺τ τns

full-tr
n:τ1,τ
u:τ2,τi acceptντ (id)

τ ↔
∨

τi=_,tuντ (id)(ji,1)

τ1=_,tn(j,0)
τ2=_,tuντ (id)(ji,0)
τns≺τ τ2≺τ τ1≺τ τi

full-tr
n:τ1,τ
u:τ2,τi

Hence, using (4.81) if τi ≺τ nsid, and (4.96) if τi 6≺τ nsid, we can build the following derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , sync-diff

id
τ ∼ φinτ , r-revealτ0 , sync-diff

ντ (id)
τ

Simp

Part 6 Observe that:

net-e-authτ (id, j) ↔ acceptidτ net-e-authτ (id, j) ↔
∨

id∈copies-idC(id)

acceptidτ

We therefore easily obtain the derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , net-e-authτ (id, j) ∼ φinτ , r-revealτ0 , net-e-authτ (id, j)

Finally, we know that: ∨
id∈Sid

acceptidτ ↔
∨

id∈Sid
acceptidτ net-e-authτ (id, j)∨

id∈Sid,id∈copies-idC(id) accept
id
τ ↔

∨
id∈Sid

net-e-authτ (id, j)

It follows that:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 ,

∨
id∈Sid

net-e-authid
τ ∼ φinτ , r-revealτ0 ,

∨
id∈iddom net-e-authτ (id, j)

Simp

φinτ , l-revealτ0 ,
∨

id∈Sid
acceptidτ ∼ φinτ , r-revealτ0 ,

∨
id∈Sid,id∈copies-idC(id) accept

id
τ

R

φinτ , l-revealτ0 , tτ ∼ φinτ , r-revealτ0 , tτ
FA∗

4.13 ? (p. 168) Proof of Proposition 4.20

Proof of (Der1). We have two cases:
• either there exists l such that nsid(l) ≺ τ and nsid(l) 6≺τ nsid(_). In that case we have nsid(l) ≺τ τ1.
• or for every i, nsid(i) 6≺τ τ1.

Let id = ντ (id). We summarize this graphically in Figure 4.28. In both case, for every τ1 � τ ′ ≺ τ :(
στ ′(sqnid

u)− σinτ ′(sqnid
u), στ ′(sqnid

u)− σinτ ′(sqnid
u)
)
∈ revealτ0(

[σinτ (syncidu)]
(
σinτ (sqnid

n)− σinτ (sqnid
u)
)
, [σinτ (syncidu)]

(
σinτ (sqnid

n)− σinτ (sqnid
u)
))
∈ revealτ0

We know that:

σinτ (sqnid
u)− σinτ1(sqnid

u) = στ0(sqnid
u)− σinτ1(sqnid

u) =
∑
τ1�τ ′

στ ′(sqnid
u)− σinτ ′(sqnid

u)

160 The 5G-AKA Authentication Protocol Privacy

τ :

nsid(l) or ε τ1 τ

σinτ1(sqnid
u) σinτ (sqnid

u)

σinτ (sqnid
n)

σinτ (sqnid
n)− σinτ (sqnid

u)

σinτ (sqnid
u)− σinτ1(sqnid

u)

τ :

nsid(l) or ε τ1 τ

σinτ1(sqnid
u) σinτ (sqnid

u)

σinτ (sqnid
n)

σinτ (sqnid
n)− σinτ (sqnid

u)

σinτ (sqnid
u)− σinτ1(sqnid

u)

∼

Figure 4.28: First Graphical Representation of the Proof of (Der1)

And:

σinτ (syncidu) ∧ σinτ (sqnid
n) < σinτ1(sqnid

u)

↔ σinτ (syncidu) ∧
((
σinτ (sqnid

u)− σinτ1(sqnid
u)
)

+ [σinτ (syncidu)]
(
σinτ (sqnid

n)− σinτ (sqnid
u)
)
< 0
)

Similarly:
σinτ (sqnid

u)− σinτ1(sqnid
u) =

∑
τ1�τ ′

στ ′(sqnid
u)− σinτ ′(sqnid

u)

And:

σinτ (syncidu) ∧ σinτ (sqnid
n) < σinτ1(sqnid

u)

↔ σinτ (syncidu) ∧
(((

σinτ (sqnid
u)− σinτ1(sqnid

u)
)

+ [σinτ (syncidu)]
(
σinτ (sqnid

n)− σinτ (sqnid
u)
))
< 0
)

Putting everything together, we get:

l-revealτ0 ∼ r-revealτ0
l-revealτ0 , σ

in
τ (syncidu), [σinτ (syncidu)]

(
σinτ (sqnid

n)− σinτ (sqnid
u)
)
,
(
στ ′(sqnid

u)− σinτ ′(sqnid
u),
)
τ1�τ ′

∼r-revealτ0 , σinτ (syncidu), [σinτ (syncidu)]
(
σinτ (sqnid

n)− σinτ (sqnid
u)
)
,
(
στ ′(sqnid

u)− σinτ ′(sqnid
u),
)
τ1�τ ′

Dup∗

l-revealτ0 , σ
in
τ1(syncidu) ∧ σinτ (sqnid

n) < σinτ1(sqnid
u)

∼ r-revealτ0 , σ
in
τ1(syncidu) ∧ σinτ (sqnid

n) < σinτ1(sqnid
u)

Simp

The derivation of (4.20) is very similar. We omit the details, and only give the graphical representation
of its proof in Figure 4.29. �

Proof of (Der3). Since τ is valid, we know that for every τ ′, if τ2 ≺τ τ ′ then τ ′ 6= nsid(_). It follows
that τ2 = _,tuντ (id)(j, 0) and τ = _,tuντ (id)(j, 1). The fact that τ2 ≺τ τ1 is then straightforward.
Letting id = ντ (id), we can then check that part-trn:τ1u:τ2,τ and part-tr

n:τ1
u:τ2,τ are as described in Figure 4.30.

We have two cases.

Case 1 Assume that for all τ ′ ≺τ τ1 such that τ ′ 6≺τ nsid(_) we have τ ′ 6= _, fuid(_).
Then we know that for all τ ′ <τ τ1 such that τ ′ 6<τ nsντ (id)(_) we have τ ′ 6= _, fuντ (id)(_). Therefore

using (B7) twice we get:

part-trn:τ1u:τ2,τ → false part-tr
n:τ1
u:τ2,τ → false

4.13.? Proof of Proposition 4.20 161

τ :

nsid(l) or ε τ1 τ

σinτ1(sqnid
u)

σinτ1(sqnid
n)

σinτ (sqnid
u)

σinτ1(sqnid
n)− σinτ1(sqnid

u)

σinτ (sqnid
u)− σinτ1(sqnid

u)

τ :

nsid(l) or ε τ1 τ

σinτ1(sqnid
u)

σinτ1(sqnid
n)

σinτ (sqnid
u)

σinτ1(sqnid
n)− σinτ1(sqnid

u)

σinτ (sqnid
u)− σinτ1(sqnid

u)

∼

Figure 4.29: Second Graphical Representation for the Proof of (Der1)

part-trn:τ1u:τ2,τ ≡

π1(g(φinτ)) = nj1 ∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fkid(nj1). .

∧ π3(g(φinτ)) = Mac3
kidm

(〈nj1 , σinτ1(sqnid
n) , σinτ2(gutiidu)〉)

. .

∧ g(φinτ1) = σinτ2(gutiidu) ∧ σinτ2(gutiidu) = σinτ1(gutiidn)
::::::::::::::::::::::

∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n))

part-tr
n:τ1
u:τ2,τ ≡

π1(g(φinτ)) = nj1 ∧ π2(g(φinτ)) = σinτ1(sqnid
n)⊕ fkid(nj1)

. .

∧ π3(g(φinτ)) = Mac3
kidm

(〈nj1 , σinτ1(sqnid
n) , σinτ2(gutiidu)〉)

. .

∧ g(φinτ1) = σinτ2(gutiidu) ∧ σinτ2(gutiidu) = σinτ1(gutiidn)
::::::::::::::::::::::

∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n))

Figure 4.30: Terms part-trn:τ1u:τ2,τ and part-tr

n:τ1
u:τ2,τ in the Proof of (Der3).

Therefore we have a trivial derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , false ∼ φinτ , r-revealτ0 , false

FA

φinτ , l-revealτ0 , part-tr
n:τ1
u:τ2,τ ∼ φinτ , r-revealτ0 , part-tr

n:τ1
u:τ2,τ

R
(4.97)

Case 2 First, we are going to introduce various instants corresponding to previous sessions of the
protocol. Eventually, we will be in the situation depicted in Figure 4.31.

Assume that there exists τ3 = _, fuid(j0) such that τ3 ≺τ τ1, τ3 6≺τ nsid(_) and τ3 6≺τ fuid(_). Then
τ3 = _, fuντ (id)(_), τ3 <τ τ1, τ3 6<τ nsντ (id)(_) and τ3 6<τ fuντ (id)(_).

Assume that j0 = j, then we know that τ ≺τ τ3, which is absurd. Therefore j0 6= j. Using the validity
of τ , we know that τ3 cannot occur between τ2 = _,tuid(j, 0) and τ = _,tuid(j, 0). Hence τ3 ≺τ τ2.

162 The 5G-AKA Authentication Protocol Privacy

Let τns be the latest nsid(_), if it exists, or ε otherwise: τns = _,nsid(_) or ε and τns 6≺τ nsid(_).
Let τx be _,tuid(j0, 0) or _,puid(j0, 1) be the beginning of the UE session associated to τ3. We know
that τns ≺τ τx ≺τ τ3.

We know that part-trn:τ1u:τ2,τ → σinτ2(valid-gutiidu). As τ3 6≺τ fuid(_), we know that there are no fuid(_)
action between τ3 and τ2. If there exists an action by user id between τ3 and τ2, then we have either
τ3 ≺τ puid(_, 1) ≺τ τ2 or τ3 ≺τ tuid(_, 0) ≺τ τ2. In both case, valid-gutiidu is set to false, and cannot be
set back to something else without a fuid(_) action. It follows that if there exists a user action between
τ3 and τ2 then ¬σinτ2(valid-gutiidu). Using the same reasoning we have ¬σinτ2(valid-gutiidu) if there exists a
user action between τ3 and τ2. Hence in that case the derivation (4.97) works.

By consequence we now assume that:

{_,tuid(_),_,puid(_,_), fuid(_)} ∩ {τ ′ | τ3 ≺τ τ ′ ≺τ τ2} = ∅

It follows that ¬acceptidτ3 → ¬σinτ2(valid-gutiidu), hence part-trn:τ1u:τ2,τ → acceptidτ3 . Also, we deduce that
στ3(gutiidu) ≡ σinτ2(gutiidu). Applying (StrEqu1), we know that:

acceptidτ3 ↔
∨

τx≺ττa = _,fn(ja)≺ττ3
fu-trn:τau:τ3

Therefore:
part-trn:τ1u:τ2,τ ↔

∨
τx≺ττa = _,fn(ja)≺ττ3

fu-trn:τau:τ3 ∧ part-trn:τ1u:τ2,τ

Similarly, we show that στ3(gutiidu) ≡ σinτ2(gutiidu) and that:

part-tr
n:τ1
u:τ2,τ ↔

∨
τx≺ττa = _,fn(ja)≺ττ3

fu-tr
n:τa
u:τ3 ∧ part-tr

n:τ1
u:τ2,τ

We can start building the wanted derivation:

φinτ , l-revealτ0 ,
(
fu-trn:τau:τ3 ∧ part-trn:τ1u:τ2,τ

)
τx≺ττa = _,fn(ja)≺ττ3

∼ φinτ , r-revealτ0 ,
(
fu-tr

n:τa
u:τ3 ∧ part-tr

n:τ1
u:τ2,τ

)
τx≺ττa = _,fn(ja)≺ττ3

φinτ , l-revealτ0 ,
∨

τx≺ττa = _,fn(ja)≺ττ3
fu-trn:τau:τ3 ∧ part-trn:τ1u:τ2,τ

∼ φinτ , r-revealτ0 ,
∨

τx≺ττa = _,fn(ja)≺ττ3
fu-tr

n:τa
u:τ3 ∧ part-tr

n:τ1
u:τ2,τ

FA∗

φinτ , l-revealτ0 , part-tr
n:τ1
u:τ2,τ ∼ φinτ , r-revealτ0 , part-tr

n:τ1
u:τ2,τ

R

Let τa = _, fn(ja) be such that τx ≺τ τa ≺τ τ3. Let τb be _,tn(ja, 1) or _,pn(ja, 1) such that
τb ≺τ τa. To conclude, we just need to build a derivation of:

φinτ , l-revealτ0 , fu-tr
n:τa
u:τ3 ∧ part-trn:τ1u:τ2,τ ∼ φinτ , r-revealτ0 , fu-tr

n:τa
u:τ3 ∧ part-tr

n:τ1
u:τ2,τ

The proof consist in rewriting fu-trn:τau:τ3 ∧ part-tr
n:τ1
u:τ2,τ and fu-tr

n:τa
u:τ3 ∧ part-tr

n:τ1
u:τ2,τ such that they can be de-

composed (using FA) into corresponding parts appearing in revealτ0 . We do this piece by piece: the waved
underlined part first, the dotted underlined and the dashed underlined part. We represent graphically
the protocols executions in Figure 4.31.

Part 1 (Waves) We are going to give a derivation of:

φinτ , l-revealτ0 , fu-tr
n:τa
u:τ3 ∧ σ

in
τ2(gutiidu) = σinτ1(gutiidn) ∼ φinτ , r-revealτ0 , fu-tr

n:τa
u:τ3 ∧ σinτ2(gutiidu) = σinτ1(gutiidn)

Recall that στ3(gutiidu) ≡ σinτ2(gutiidu) and στ3(gutiidu) ≡ σinτ2(gutiidu). Hence it is sufficient to prove that:

φinτ , l-revealτ0 , fu-tr
n:τa
u:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn) ∼ φinτ , r-revealτ0 , fu-tr

n:τa
u:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

4.13.? Proof of Proposition 4.20 163

nsid(_)
or ε

τns

tuid(j0, 0)
or puid(j0, 1)

τx

tn(ja, 1)
or pn(ja, 1)

τb

fn(ja)

τa

fuid(j0)

τ3

tuid(j, 0)

τ2

tn(j1, 0)

τ1

tuid(j, 1)

τ

Figure 4.31: Graphical Representation of the Protocol Executions

We know that:
[fu-trn:τau:τ3]στ3(gutiidu) = [fu-trn:τau:τ3]gutija

Hence: (
fu-trn:τau:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

)
↔
(
fu-trn:τau:τ3 ∧ σ

in
τ1(gutiidn) = gutija

)
Intuitively, the only way we can have σinτ1(gutiidn) = gutija is:

• if the supi or guti network session ja accepts with the increasing sequence number condition.

• and if σinτ1(gutiidn) was not over-written between τb and τ1.
It is actually straightforward to show by induction that:

σinτ1(gutiidn) 6= gutija ↔
(
¬inc-acceptidτb ∨

∨
τ′=_,tn(j′,1)

or τ′=_,pn(j′,1)
τb≺τ τ′≺τ τ1

inc-acceptidτ ′ ∨
∨

τ′=_,tn(j′,0)
τb≺τ τ′≺τ τ1

acceptidτ ′
)

Hence:

fu-trn:τau:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

↔ fu-trn:τau:τ3 ∧ inc-acceptidτb ∧
∧

τ′=_,tn(j′,1)
or τ′=_,pn(j′,1)
τb≺τ τ′≺τ τ1

¬inc-acceptidτ ′ ∧
∧

τ′=_,tn(j′,0)
τb≺τ τ′≺τ τ1

¬acceptidτ ′

↔ fu-trn:τau:τ3 ∧ inc-acceptidτb ∧
∧

τ′=_,tn(j′,1)
or τ′=_,pn(j′,1)
τb≺τ τ′≺τ τ1

¬inc-acceptidτ ′ ∧
∧

τ′=_,tn(j′,0)
τb≺τ τ′≺τ τ1

g(φinτ ′) 6= gutija

For every τn = _,tn(_, 1) or _,pn(_, 1), we know that sqnid
n is incremented at τn if and only if

inc-acceptidτn is true. Therefore:

inc-acceptidτn ↔ σinτn(sqnid
n) < στn(sqnid

n)

Using the fact that σinτn(sqnid
u) = στn(sqnid

u), we can rewrite this as:

inc-acceptidτn ↔ σinτn(sqnid
n)− σinτn(sqnid

u) < στn(sqnid
n)− στn(sqnid

u)

Using this remark we can show that:

fu-trn:τa
u:τ3 ∧ στ3(gutiidu) = σin

τ1(gutiidn)

↔ fu-trn:τa
u:τ3 ∧

(
σin
τb(sqnid

n)− σin
τb(sqnid

u)

< στb(sqnid
n)− στb(sqnid

u)

)
∧

(
στb(sqnid

n)− στb(sqnid
u)

= σin
τ1(sqnid

n)− σin
τ1(sqnid

u)

)
∧
∧

τ′=_,tn(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= gutija

Doing exactly the same reasoning, we show that:

fu-tr
n:τa
u:τ3 ∧ στ3(gutiidu) = σin

τ1(gutiidn)

↔ fu-tr
n:τa
u:τ3 ∧

(
σin
τb(sqnid

n)− σin
τb(sqnid

u)

< στb(sqnid
n)− στb(sqnid

u)

)
∧

(
στb(sqnid

n)− στb(sqnid
u)

= σin
τ1(sqnid

n)− σin
τ1(sqnid

u)

)
∧
∧

τ′=_,tn(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= gutija

164 The 5G-AKA Authentication Protocol Privacy

We introduce some notation that will be used later: for every action trace τ = τ0, ai and identity id, we
let sync-diff-inid

τ ≡ sync-diffid
τ0 .

We now split the proof in two, depending on whether σinτb(sync
id
u) is true or false. Let ψ ≡ fu-trn:τau:τ3 ∧

σinτ2(gutiidu) = σinτ1(gutiidn) and ψ ≡ fu-tr
n:τa
u:τ3 ∧ σinτ2(gutiidu) = σinτ1(gutiidn). Using the fact that:(

σinτb(sync
id
u), σinτb(sync

id
u)
)
∈ revealτ0

We can build the derivation:

φinτ , l-revealτ0 , σ
in
τb

(syncidu) ∧ ψ,¬σinτb(sync
id
u) ∧ ψ ∼ φinτ , r-revealτ0 , σ

in
τb

(syncidu) ∧ ψ,¬σinτb(sync
id
u) ∧ ψ

φinτ , l-revealτ0 , σ
in
τb

(syncidu), σinτb(sync
id
u) ∧ ψ,¬σinτb(sync

id
u) ∧ ψ

∼ φinτ , r-revealτ0 , σ
in
τb

(syncidu), σinτb(sync
id
u) ∧ ψ,¬σinτb(sync

id
u) ∧ ψ

Dup

φinτ , l-revealτ0 , ψ ∼ φinτ , r-revealτ0 , ψ
Simp

We now build a derivation of φinτ , l-revealτ0 , σinτb(sync
id
u) ∧ ψ and of φinτ , l-revealτ0 ,¬σinτb(sync

id
u) ∧ ψ:

• Using the fact that we have σinτb(sync
id
u),we know that:

σinτb(sync
id
u) ∧ fu-trn:τau:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

↔ σinτb(sync
id
u) ∧ fu-trn:τau:τ3 ∧

(
sync-diff-inid

τb

< sync-diffid
τb

)
∧

(
sync-diffid

τb

= sync-diff-inid
τ1

)
∧
∧

τ′=_,tn(j′,0)
τb≺τ τ

′≺τ τ1

g(φinτ ′) 6= gutija

Similarly we get that:

σinτb(sync
id
u) ∧ fu-tr

n:τa
u:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

↔ σinτb(sync
id
u) ∧ fu-tr

n:τa
u:τ3 ∧

(
sync-diff-inid

τb

< sync-diffid
τb

)
∧

(
sync-diffid

τb

= sync-diff-inid
τ1

)
∧
∧

τ′=_,tn(j′,0)
τb≺τ τ

′≺τ τ1

g(φinτ ′) 6= gutija

Moreover, we know that:((
gutija ,gutija

)
∈ revealτ0

)
τ′=_,tn(j′,0)
τb≺τ τ′≺τ τ1

(
sync-diff-inid

τ1 , sync-diff-in
id
τ1

)
∈ revealτ0

(
sync-diff-inid

τb
, sync-diff-inid

τb

)
∈ revealτ0

(
sync-diffid

τb
, sync-diffid

τb

)
∈ revealτ0(

σinτb(sync
id
u), σinτb(sync

id
u)
)
∈ revealτ0

And using (Der2), we know that we have a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , fu-tr

n:τa
u:τ3 ∼ φinτ , r-revealτ0 , fu-tr

n:τa
u:τ3

Simp

Using this, we can rewrite σinτb(sync
id
u) ∧ ψ and σinτb(sync

id
u) ∧ ψ as two terms that decompose, using

FA, into matching part of revealτ0 . By consequence we can build the following derivation:

φinτ , l-revealτ0ψ ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , σ

in
τb

(syncidu) ∧ ψ ∼ φinτ , r-revealτ0 , σ
in
τb

(syncidu) ∧ ψ
Simp (4.98)

• We now focus on the case where we have ¬σinτb(sync
id
u).

First, assume that τb = _,tn(ja, 1). In that case, we know that fu-trn:τau:τ3 → acceptidτb . Since
acceptidτb → σinτb(sync

id
u), we get that (¬σinτb(sync

id
u) ∧ ψ) ↔ false. Similarly we have (¬σinτb(sync

id
u) ∧

ψ)↔ false. By consequence, we have a trivial derivation:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , false ∼ φinτ , r-revealτ0 , false

FA

φinτ , l-revealτ0 ,¬σinτb(sync
id
u) ∧ ψ ∼ φinτ , r-revealτ0 ,¬σinτb(sync

id
u) ∧ ψ

Simp

4.13.? Proof of Proposition 4.20 165

Now assume that τb = _,pn(ja, 1). Since τ3 = _, fuid(j0) ≺ τ , we know by validity of τ there
there exists τ ′ = _,puid(j0, 2) or _,tuid(j0, 1) such that τ ′ ≺τ τ3. It is straightforward to check
that if τ ′ = _,tuid(j0, 1) then since τb = _,pn(ja, 1) we have fu-trn:τau:τ3 ↔ false and fu-tr

n:τa
u:τ3 ↔ false.

Building the wanted derivation is then trivial.
Therefore assume that τ ′ = _,puid(j0, 2). Observe that fu-trn:τau:τ3 → acceptidτ ′ . We have two cases:

– Assume τ ′ ≺τ τb. Using (Equ2), we know that:

acceptidτ ′ →
∨

τn=_,pn(jn,1)
τx≺τ τn≺τ τ′

σid
τx(b-authid

u) = njn

→ σid
τx(b-authid

u) 6= nja (Since τ ′ ≺τ τb)

Moreover:
fu-trn:τau:τ3 → σid

τ ′(e-auth
id
u) = nja → σid

τx(b-authid
u) = nja

Therefore fu-trn:τau:τ3 → false. Similarly fu-tr
n:τa
u:τ3 → false. Hence we have a trivial derivation.

– Assume τb ≺τ τ ′. We summarize graphically the situation below:

nsid(_)
or ε

τns

puid(j0, 1)

τx

pn(ja, 1)

τb

puid(j0, 2)

τ ′

fuid(j0)

τ3

tn(j1, 0)

τ1

tuid(j, 1)

τ

First, since there are no id actions between τb and τ ′, we know that ¬σinτb(sync
id
u)→ ¬σinτ ′(syncidu).

Recall that fu-trn:τau:τ3 → acceptidτ ′ . Using (Equ2), it is simple to check that fu-trn:τau:τ3 ∧accept
id
τ ′ →

supi-tr n:τbu:τx,τ ′ . Therefore:

¬σinτb(sync
id
u) ∧ fu-trn:τau:τ3 → ¬σinτ ′(syncidu) ∧ acceptidτ ′

→ inc-acceptidτb
∧ σinτ ′(sqnid

n) = στb(sqnid
n)

∧ στ ′(sqnid
u) = στ ′(sqnid

n)
(By (StrEqu4))

Using again the fact that there are no id actions between τb and τ ′, we know that σinτb(sqnid
u) ≡

σinτ ′(sync
id
u). Moreover σinτ ′(sync

id
u) ≡ στ ′(syncidu), therefore σinτb(sqnid

u) = στ ′(syncidu). Similarly,
we know that στ ′(sqnid

n) ≡ σinτ ′(sqnid
n). Summarizing:

nsid(_)
or ε

τns

puid(j0, 1)

τx

pn(ja, 1)

τb

puid(j0, 2)

τ ′

fuid(j0)

τ3

tn(j1, 0)

τ1

tuid(j, 1)

τ

σinτb(sqnid
n)

σinτb(sqnid
u)

στ ′(sqnid
n)

στ ′(sqnid
u)

=

=

=

Therefore we get that:

¬σinτb(sync
id
u) ∧ fu-trn:τau:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

↔ ¬σinτb(sync
id
u) ∧ fu-trn:τau:τ3 ∧

(
στ ′(sqnid

n)− στ ′(sqnid
u)

= σinτ1(sqnid
n)− σinτ1(sqnid

u)

)
∧
∧

τ′=_,tn(j′,0)
τb≺τ τ

′≺τ τ1

g(φinτ ′) 6= gutija

166 The 5G-AKA Authentication Protocol Privacy

Besides, acceptidτ ′ → στ ′(syncidu). Since τ ′ ≺τ τ1 we know that στ ′(syncidu)→ σinτ1(syncidu). Hence:

¬σinτb(sync
id
u) ∧ fu-trn:τau:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

↔ ¬σinτb(sync
id
u) ∧ fu-trn:τau:τ3 ∧ sync-diffid

τ ′ = sync-diff-inid
τ1 ∧

∧
τ′=_,tn(j′,0)
τb≺τ τ

′≺τ τ1

g(φinτ ′) 6= gutija

Similarly:

¬σinτb(sync
id
u) ∧ fu-tr

n:τa
u:τ3 ∧ στ3(gutiidu) = σinτ1(gutiidn)

↔ ¬σinτb(sync
id
u) ∧ fu-tr

n:τa
u:τ3 ∧ sync-diffid

τ ′ = sync-diff-inid
τ1 ∧

∧
τ′=_,tn(j′,0)
τb≺τ τ

′≺τ τ1

g(φinτ ′) 6= gutija

And using (Der2), we know that we have a derivation of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , fu-tr

n:τa
u:τ3 ∼ φinτ , r-revealτ0 , fu-tr

n:τa
u:τ3

Simp

Moreover, we know that:((
gutija ,gutija

)
∈ revealτ0

)
τ′=_,tn(j′,0)
τb≺τ τ′≺τ τ1

(
sync-diff-inid

τ1 , sync-diff-in
id
τ1

)
∈ revealτ0

(
sync-diffid

τ , sync-diff
id
τ ′

)
∈ revealτ0

(
σinτb(sync

id
u), σinτb(sync

id
u)
)
∈ revealτ0

Similarly to what we did in (4.98), we can rewrite ¬σinτb(sync
id
u) ∧ ψ and ¬σinτb(sync

id
u) ∧ ψ as

two terms that decompose, using FA, into matching part of revealτ0 . By consequence we can
build the following derivation:

φinτ , l-revealτ0ψ ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 ,¬σinτb(sync

id
u) ∧ ψ ∼ φinτ , r-revealτ0 ,¬σinτb(sync

id
u) ∧ ψ

Simp

Part 2 (Dots) Using (StrEqu2) we know that part-trn:τ1u:τ2,τ → acceptidτ1 . Therefore, using (A6),
part-trn:τ1u:τ2,τ → ¬accept

id′
τ1 for every id′ 6= id. It follows that part-trn:τ1u:τ2,τ → tτ1 = msgidτ1 , and therefore:

part-trn:τ1u:τ2,τ → π2(tτ1) = σinτ1(sqnid
n)⊕ fkid(nj1)

And:
part-trn:τ1u:τ2,τ → π3(tτ1) = Mac3

kidm
(〈nj1 , σinτ1(sqnid

n) , σinτ1(gutiidu)〉)

Since no action from agent id occurs between τ2 and τ1, we know that σinτ1(gutiidu) = σinτ2(gutiidu). Hence:

part-trn:τ1u:τ2,τ → π3(tτ1) = Mac3
kidm

(〈nj1 , σinτ1(sqnid
n) , σinτ2(gutiidu)〉)

Hence we can rewrite part-trn:τ1u:τ2,τ as follows:

part-trn:τ1u:τ2,τ =

π1(g(φinτ)) = nj1 ∧ π2(g(φinτ)) = π2(tτ1). ∧ π3(g(φinτ)) = π3(tτ1).

∧ g(φinτ1) = σinτ2(gutiidu) ∧ σinτ2(gutiidu) = σinτ1(gutiidn)
::::::::::::::::::::::

∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n))

By a similar reasoning we rewrite part-tr

n:τ1
u:τ2,τ as follows:

part-tr
n:τ1
u:τ2,τ =

π1(g(φinτ)) = nj1 ∧ π2(g(φinτ)) = π2(tτ1). ∧ π3(g(φinτ)) = π3(tτ1).

∧ g(φinτ1) = σinτ2(gutiidu) ∧ σinτ2(gutiidu) = σinτ1(gutiidn)
::::::::::::::::::::::

∧ σinτ2(valid-gutiidu)

∧ range(σinτ (sqnid
u), σinτ1(sqnid

n))

4.13.? Proof of Proposition 4.20 167

Part 3 (Dash) Since part-trn:τ1u:τ2,τ → σinτ2(valid-gutiidu) we know that:

part-trn:τ1u:τ2,τ → σinτ2(gutiidu) = m-suci idτ

Besides, as σinτ2(valid-gutiidu)→ σinτ2(syncidu), and since σinτ2(valid-gutiidu)→ σinτ1(valid-gutiidu) (because τ2 ≺τ τ1
and τ2 6≺τ nsid(_)), we know that:

part-trn:τ1u:τ2,τ →
(
range(σinτ (sqnid

u), σinτ1(sqnid
n))↔

(
σinτ1(valid-gutiidu) ∧ σinτ (sqnid

u) = σinτ1(sqnid
n)
))

Similarly we have:

part-tr
n:τ1
u:τ2,τ → σinτ2(gutiidu) = m-suci idτ

part-tr
n:τ1
u:τ2,τ →

(
range(σinτ (sqnid

u), σinτ1(sqnid
n))↔

(
σinτ1(valid-gutiidu) ∧ σinτ (sqnid

u) = σinτ1(sqnid
n)
))

Moreover:(
m-suci idτ ∼ m-suci idτ

)
∈ revealτ0

(
σinτ2(valid-gutiidu) ∼ σinτ2(valid-gutiidu)

)
∈ revealτ0

Finally, using (Der1), we know that we have a derivation of:

l-revealτ0 ∼ r-revealτ0
l-revealτ0 , σ

in
τ1(valid-gutiidu) ∧ σinτ (sqnid

u) = σinτ1(sqnid
n)

∼ r-revealτ0 , σ
in
τ1(valid-gutiidu) ∧ σinτ (sqnid

u) = σinτ1(sqnid
n)

Simp

Part 4 (conclusion) To conclude, we combine the derivations of Part 1, Part 2 and Part 3. �

Proof of (Der4). Recall that:

full-trn:τ1,τu:τ2,τi ≡ part-trn:τ1u:τ2,τi ∧ g(φinτ) = Mac4
kidm

(nj)

τ :

tuid(ji, 0)

τ2

tn(j, 0)

τ1

tuid(ji, 1)

τi

tn(j, 1)

τ

The fact that τ2 = _,tuντ1 (id)(ji, 0), τi = _,tuντ1 (id)(ji, 1) and τ2 <τ τ1 <τ τi is straightforward
from (Der3). It is easy to check that:

full-tr
n:τ1,τ
u:τ2,τi ≡ part-tr

n:τ1
u:τ2,τi ∧ g(φinτ) = Mac4

k
ντ1

(id)
m

(nj)

Moreover, (Mac4
kidm

(nj),Mac4

k
ντ1

(id)
m

(nj)) ∈ revealτ0 . By (Der3), there exists a derivation using FA and
Dup of:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , part-tr

n:τ1
u:τ2,τ ∼ φinτ , r-revealτ0 , part-tr

n:τ1
u:τ2,τ

It is therefore easy to built the wanted derivation using only FA and Dup. �

Proof of (Der2). We recall that:

fu-trn:τ1u:τ ≡

(
inj-authτ (id, j0) ∧ σinτ (e-authj0n) 6= UnknownId

∧ π1(g(φinτ)) = gutij0 ⊕ f rk(nj0) ∧ π2(g(φinτ)) = Mac5
km

(〈gutij0 , nj0〉)

)

fu-tr
n:τ1
u:τ ≡

(
inj-authτ (ντ (id), j0) ∧ σinτ (e-authj0n) 6= UnknownId

∧ π1(g(φinτ)) = gutij0 ⊕ f rk(nj0) ∧ π2(g(φinτ)) = Mac5
km

(〈gutij0 , nj0〉)

)

168 The 5G-AKA Authentication Protocol Privacy

Let j0 ∈ N, and τ0 be such that τ = τ0, ai. It is straightforward to check that for any n ∈ N:

στ0(e-authj0n) = UnknownId︸ ︷︷ ︸
unk

↔
∧

1≤i≤B
¬net-e-authτ (Ai, j0)

στ0(e-authj0n) = UnknownId︸ ︷︷ ︸
unk

↔
∧

1≤i≤B
¬net-e-authτ (Ai, j0)

Since for all 1 ≤ i ≤ B:

(net-e-authτ (Ai, j0) ∼ net-e-authτ (Ai, j0)) ∈ revealτ0

and since fu-trn:τ1u:τ ∧ unk → false and fu-tr
n:τ1
u:τ ∧ unk → false, we deduce that:

φinτ , l-revealτ0 , bji ∧ ¬unk ∼ φinτ , r-revealτ0 , fu-tr
n:τ1
u:τ ∧ ¬unk

φinτ , l-revealτ0 , unk, false, fu-tr
n:τ1
u:τ ∧ ¬unk ∼ φinτ , r-revealτ0 , unk, false, fu-tr

n:τ1
u:τ ∧ ¬unk

Dup∗

φinτ , l-revealτ0 , unk, fu-tr
n:τ1
u:τ ∧ unk, fu-trn:τ1u:τ ∧ ¬unk

∼φinτ , r-revealτ0 , unk, fu-tr
n:τ1
u:τ ∧ unk, fu-tr

n:τ1
u:τ ∧ ¬unk

R

φinτ , l-revealτ0 , fu-tr
n:τ1
u:τ ∼ φinτ , r-revealτ0 , fu-tr

n:τ1
u:τ

R+ FA∗

From the definitions, we get that:

σinτ (b-authj0n) = id →
(
σinτ (e-authj0n) = id ∨ σinτ (e-authj0n) = UnknownId

)
Therefore:

fu-trn:τ1u:τ ∧ ¬unk → σinτ (e-authj0n) = id → net-e-authτ (id, j0)

Moreover:

net-e-authτ (id, j0) →

(
gutij0 ⊕ f rk(nj0) = [net-e-authτ (id, j0)]t-suci-⊕τ (id, j0)

∧ Mac5
km

(〈gutij0 , nj0〉) = [net-e-authτ (id, j0)]t-macτ (id, j0)

)

Using Proposition 4.15 on τ :

inj-authτ (id, j0) ↔ nj0 = σinτ (e-authid
u)

Using the observations above, we can rewrite fu-trn:τ1u:τ ∧ ¬unk as follows:

fu-trn:τ1u:τ ∧ ¬unk =

 nj0 = σinτ (e-authid
u) ∧ ¬unk

∧ π1(g(φinτ)) = [net-e-authτ (id, j0)]t-suci-⊕τ (id, j0)

∧ π2(g(φinτ)) = [net-e-authτ (id, j0)]t-macτ (id, j0)

Similarly, we can rewrite fu-tr

n:τ1
u:τ ∧ ¬unk as follows:

fu-tr
n:τ1
u:τ ∧ ¬unk =

nj0 = σinτ (e-authντ (id)

u) ∧ ¬unk

∧ π1(g(φinτ)) = [net-e-authτ (id, j0)]t-suci-⊕τ (id, j0)

∧ π2(g(φinτ)) = [net-e-authτ (id, j0)]t-macτ (id, j0)

We can now conclude the proof:

φinτ , l-revealτ0 ∼ φinτ , r-revealτ0
φinτ , l-revealτ0 , fu-tr

n:τ1
u:τ ∧ ¬unk ∼ φinτ , r-revealτ0 , fu-tr

n:τ1
u:τ ∧ ¬unk

R+ FA∗ + Dup∗
�

4.14. Conclusion 169

4.14 Conclusion

We studied the privacy provided by the 5G-AKA authentication protocol. While this protocol is not
vulnerable to imsi catchers, we showed that several privacy attacks from the literature apply to it. We
also discovered a novel desynchronization attack against PRIV-AKA, a modified version of AKA, even
though it had been claimed secure.

We then proposed the AKA+ protocol. This is a fixed version of 5G-AKA, which is both efficient
and has improved privacy guarantees. To study AKA+’s privacy, we defined the σ-unlinkability property.
This is a new parametric privacy property, which requires the prover to establish privacy only for a subset
of the standard unlinkability game scenarios. Finally, we formally proved that AKA+ provides mutual
authentication and σul-unlinkability for any number of agents and sessions. Our proof is carried out in
the Bana-Comon model, which is well-suited to the formal analysis of stateful protocols.

Chapter 5

Deciding Indistinguishability

The security proofs in the case studies of Chapter 3 and Chapter 4 are hand-made. Of course, this poses
the question of their validity. In particular, the security analysis of the AKA+ protocol in Chapter 4 is
very long and tedious, and would strongly benefit from some tool support. In this chapter, we try to
remedy to this problem by studying the problem of proof automation in the Bana-Comon equivalence
model. Our main result is the decidability of a subset of the axioms presented in Chapter 2, which
are a computationally sound, though incomplete, axiomatization of computational indistinguishability
for protocols, with a bounded number of sessions, whose security is based on an ind-cca2 encryption
scheme. Alternatively, our result can be viewed as the decidability of a family of cryptographic game
transformations. Our proof relies on term rewriting and automated deduction techniques.

5.1 Introduction

When trying to prove a protocol, there are three possible outcomes: either we find a proof, which gives
security guarantees corresponding to the attacker model; or we find an attack, meaning that the protocol
is insecure; or the tool or the user (for interactive provers) could not carry out the proof and failed to
find an attack. The latter case may happen for two different reasons. First, we could neither find a proof
nor an attack because the proof method used is incomplete. In that case, we need either to make new
assumptions and try again, or to use another proof technique. Second, the tool may not terminate on the
protocol considered. This is problematic, as we do not know if we should continue waiting, and consume
more resources and memory, or try another method.

This can be avoided for decidable classes of protocols and properties. Of course, such classes depend
on both the attacker model and the security properties considered. We give here a non-exhaustive
survey of such results. In the symbolic model, [CCZ10] shows decidability of secrecy (a reachability
property) for a bounded number of sessions. In [DOT17], the authors show the decidability of a secrecy
property for depth-bounded protocols, with an unbounded number of sessions, using Well-Structured
Transition Systems [FS01]. Chrétien et al [CCD15] show the decidability of indistinguishability properties
for a restricted class of protocols. E.g., they consider processes communicating on distinct channels and
without else branches. The authors of [CCD17] show the decidability of symbolic equivalence for a
bounded number of sessions, but with conditional branching.

In the computational model, we are aware of only one direct result. In [CCS13], the authors show the
decidability of the security of a formula in the BC model, for reachability properties, for a bounded num-
ber of sessions. But there is an indirect way of getting decidability in the computational model, through
a computational soundness theorem (e.g. [AR02]). A computational soundness theorem states that, for
some given classes of protocols and properties, symbolic security implies computational security. These
results usually make strong implementation assumptions (e.g. parsing assumptions, or the absence of
dishonest keys), and require that the security primitives satisfy strong cryptographic hypothesis. By com-
bining a decidability result in the symbolic model with a computational soundness theorem, which applies
to the considered classes of protocols and properties (e.g. [BMU12] for reachability properties, or [BMR14]
for indistinguishability properties), we obtain a decidability result in the computational model.

171

172 Deciding Indistinguishability

Contributions We tackle this problem in the Bana-Comon model. More precisely, we identify a subset
Ax of the axioms presented in Chapter 2 which is both decidable and expressive enough to carry out proofs
of security protocols. For this, we design a alternative set of axioms for the ind-cca2 cryptographic
assumption [BDPR98], which are more amenable to automated deduction than the axioms presented in
Chapter 2 (for ind-cca1). Our main result is the decidability of the problem:

Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

The main difficulty lies in dealing with equalities (defined through a term rewriting system R). First we
show the completeness of an ordered strategy by commuting rule applications. This allows us to have
only one rewriting modulo R at the beginning of the proof. We then bound the size of the terms after
this rewriting as follows: we identify a class of proof cuts introducing arbitrary subterms; we give proof
cut eliminations to remove them; and finally, we show that cut-free proofs are of bounded size w.r.t. the
size of the conclusion.

Game Transformations Our result can be reinterpreted as the decidability of the problem of deter-
mining whether there exists a sequence of game transformations [Sho04, BR06] that allows to prove the
security of a protocol. Indeed, one can associate to every axiom in Ax either a cryptographic assumption
or a game transformation.

Each unitary axiom in Ax (i.e. each atomic formula) corresponds to an instantiation of the ind-cca2

game. For instance, in the simpler case of ind-cpa security of an encryption {_}npk, no polynomial-time
adversary can distinguish between two cipher-texts, even if it chooses the two corresponding plain-texts.
Initially, the public key pk is given to the adversary, who computes a pair of plain-texts g(pk): g is
interpreted as the adversary’s computation. Then the two cipher-texts, corresponding to the encryptions
of the first and second components of g(pk), should be indistinguishable. This yields the unitary axiom:

{π1(g(pk))}npk ∼ {π2(g(pk))}npk

Similarly, non-unitary axioms correspond to cryptographic game transformations. E.g., the FA axiom:

~u ∼ ~v
f(~u) ∼ f(~v)

FA

states that if no adversary can distinguish between the arguments of a function call, then no adversary
can distinguish between the images. As for a cryptographic game transformation, the soundness of this
axiom is shown by reduction. Given a winning adversary A against the conclusion f(~u) ∼ f(~v), we build
a winning adversary B against ~u ∼ ~v: the adversary B, on input ~w (which was sampled from ~u or ~v),
computes f(~w) and then gives the result to the distinguisher A. The advantage of B against ~u ∼ ~v is
then the advantage of A against f(~u) ∼ f(~v), which is (by hypothesis) non negligible.

By interpreting every axiom in Ax as a cryptographic assumption or a game transformation, and the
goal formula ~u ∼ ~v as the initial game, our result can be reformulated as showing the decidability of the
following problem:

Input: An initial game ~u ∼ ~v.
Question: Is there a sequence of game transformations in Ax showing that ~u ∼ ~v is secure?

From this point of view, our result guarantees a kind of sub-formula property for the intermediate games
appearing in the game transformation proof. We may only consider intermediate games that are in a
finite set computable from the original protocol: the other games are provably unnecessary detours. To
our knowledge, our result is the first showing the decidability of a class of game transformations.

Scope and Limitations To achieve decidability, we had to remove or restrict some axioms. The most
important restriction is arguably that we do not include the transitivity axiom. The transitivity axiom
states that to show that ~u ∼ ~v, it is sufficient to find a ~w such that ~u ∼ ~w and ~w ∼ ~v. Obviously, this axiom
is problematic for decidability, as the vector of term ~w must be guessed, and may be arbitrarily large.
Therefore, instead of directly including transitivity, we push it inside the cca2 axiom schema, by allowing
instances of the cca2 axiom to deal simultaneously with multiple keys and interleaved encryptions. Of
course, this is at the cost of a more complex axiom. We do not know if our problem remains decidable
when we include the transitivity axiom.

5.2. Axioms 173

Applications The Bana-Comon indistinguishability model has been used to analyse RFID protocols,
in Chapter 3, and a variant of the AKA protocol in Chapter 4. Moreover, it has also been used by Scerri
and Stanley-Oakes to analyse a key-wrapping API [SS16], and by Bana, Chadha and Eeralla to prove
an e-voting protocol [BCE18]. Ideally, we would like future case studies to be carried out automatically
and machine checked. Because our procedure has a high complexity, it is unclear whether it can be used
directly for this. Still, our procedure could be a building block in a tool doing an incomplete but faster
heuristic exploration of the proof space.

CryptoVerif and EasyCrypt are based on game transformations, directly in the former and
through the pRHL logic in the latter. Therefore, our result could be used to bring automation to these
tools. Of course, both tools allow for more rules. Still, we could identify which game transformations
or rules correspond to our axioms, and apply our result to obtain decidability for this subset of game
transformations.

Related Works In [BCG+13], the authors design a set of inference rules to prove CPA and CCA
security of asymmetric encryption schemes in the Random Oracle Model. The paper also presents an
attack finding algorithm. The authors of [BCG+13] do not provide a decision algorithm for the designed
inference rules. However, they designed proof search heuristics and implemented an automated tool,
called ZooCrypt, to synthesize new CCA encryption schemes. For small schemes, this procedure can show
CCA security or find an attack in more than 80% of the cases. In 20% of the cases, security remains
undecided. Additionally, ZooCrypt automatically generates concrete security bounds.

In [JR12], the authors study proof automation in the UC framework [Can01]. They design a complete
procedure for deciding the existence of a simulator, for ideal and real functionalities using if-then-else,
equality, random samplings and xor. Therefore their algorithm cannot be used to analyse functionalities
relying on more complex functions (e.g., public key encryption), or stateful functionalities. This restricts
the protocols that can be checked. Still, their method is semantically complete (while we are complete
w.r.t. a fixed set of inference rules): if there exists a simulator, they will find it.

In [BDK+10], the authors show the decidability of the problem of the equality of two distributions, for
a specific equational theory (concatenation, projection and xor). Then, for arbitrary equational theories,
they design a proof system for proving the equality of two distributions. This second contribution has
similarities with our work, but differ in two ways.

First, the proof system of [BDK+10] shares some rules with ours, e.g. the R, Dup and FA rules. But
it does not allow for reasoning on terms using if_then_else_. E.g., they do not have a counterpart to the
CS rule. This is a major difference, as most of the difficulties encountered in the design of our decision
procedure result from the if_then_else_ conditionals. Moreover, there are no rules corresponding to
cryptographic assumptions, as our cca2 rules. Because of this and the lack of support for reasoning on
branching terms, the analysis of security protocols is out of the scope of [BDK+10].

Second, the authors do not provide a decision procedure for their inference rules, but instead rely on
heuristics.

Outline We introduce the axioms in Section 5.2, which include, in particular, the equality axioms R
and the cryptographic axioms cca2. In Section 5.3, we prove that the set of equality axioms R can
be defined using a convergent term rewriting system →R. In Section 5.4, we define the cryptographic
axioms cca2, and prove some properties of these axioms. We state the main result in Section 5.5, and
depict the difficulties of the proof. We prove several rule commutations in Section 5.6, which allow
us to obtain a complete ordered strategy for our fragment. In Section 5.7, we prove, through a cut
elimination procedure, that we can use an eager reduction strategy for some rules of R. We then define a
normal form for derivations, and prove that we can assume w.l.o.g. that derivations are in normal form in
Section 5.8. We prove key properties of terms appearing in derivation in normal form in Section 5.9, and in
Section 5.10 we characterize subterms that corresponds to detours in proof. We use this characterization
in Section 5.11 to show a first main proof cut elimination lemma. We prove a second main proof cut
elimination lemma in Section 5.12, and show that the resulting derivations contain only subterms of
bounded size. Finally, we conclude in Section 5.13.

174 Deciding Indistinguishability

uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)

u1, . . . , un ∼ v1, . . . , vn Perm
~u, t ∼ ~v, t′

~u ∼ ~v Restr for any s =R t,
~u, t ∼ ~v
~u, s ∼ ~v R

~u1, ~v1 ∼ ~u2, ~v2

f(~u1), ~v1 ∼ f(~u2), ~v2

FA\0 where f ∈ F\0
~u, t ∼ ~v, t′

~u, t, t ∼ ~v, t′, t′
Dup ~v ∼ ~u

~u ∼ ~v Sym

for any b, b′ ∈ T (F\if,N),
~w, b, (ui)i ∼ ~w′, b′, (u′i)i ~w, b, (vi)i ∼ ~w′, b′, (v′i)i
~w, (if b then ui else vi)i ∼ ~w′, (if b′ then u′i else v

′
i)i

CSnoif

Conventions: π is a permutation of {1, . . . , n}.

Figure 5.1: The Axioms Struct-Ax.

5.2 Axioms

For the strategy, we use only a subset of the axioms presented in Figure 2.2 of Chapter 2, with some
restrictions. Arguably, the most important restriction is the interdiction of the transitivity rule Trans.
Indeed, this rule requires to guess a intermediate term, which is, a priori, arbitrarily large. Before
discussing the restrictions on the axioms, we define some subsets of the set of function symbols F :

Definition 5.1. We let F\0, F\if and F\if,0 be the subsets of F defined by:

F\0 = F\{0(_)} F\if = F\{if_then_else_} F\if,0 = F\{0(_), if_then_else_}

Restrictions We give in Figure 5.1 the structural axioms used in this chapter. We comment on some
of the restrictions:

• We restrict the case study rule, by only considering instances of the rule where the conditionals b
and b′ are if-free. This restriction is used in the decidability proof, but might be unnecessary. We
let CSnoif be the rule:

~w, b, (ui)i ∼ ~w′, b′, (u′i)i ~w, b, (vi)i ∼ ~w′, b′, (v′i)i
~w, (if b then ui else vi)i ∼ ~w′, (if b′ then u′i else v

′
i)i

CSnoif when b, b′ ∈ T (F\if,N),

• We replace the equality rule Equ by a weaker rule R. Basically, instead of having the formula u = v
as premise (like in Equ), we require that u can be rewritten into v using a set equalities R (given
in Figure 5.2). We give details about this change later in this section.

• We use a modified version of the cca2 axioms, which already includes transitivity (as we did not
include it in the set of axioms). We give some high-level details later in this section, and present
the full axioms in Section 5.4.

• We reserve the function symbol 0/1 for the cca2 axioms. In particular, we forbid to apply the
Function Application rule FA\0 to 0(_). This is necessary for technical reasons, but may be
unnecessary for decidability. We let FA\0 be the rule:

~u1, ~v1 ∼ ~u2, ~v2

f(~u1), ~v1 ∼ f(~u2), ~v2

FA\0 where f ∈ F\0

Equality Axioms To handle equalities automatically, we are going to replace the equality axioms given
in Figure 2.1 by rewrite rules: we introduce a set of equalities R (given in Figure 5.2) and its congruence
closure =R. We split R in four sub-parts: R1 contains the functional correctness assumptions on the pair
and encryption; R2 and R3 contain, respectively, the homomorphism properties and simplification rules
of the if_then_else_; and R4 allows to change the order in which conditional tests are performed.

We then introduce a recursive set of rules to replace the equality rule Equ:

~u, t ∼ ~v
~u, s ∼ ~v R (s, t ground terms with s =R t)

5.2. Axioms 175

R1

πi(〈x1, x2〉) = xi

dec({x}zpk(y), sk(y)) = x

eq(x, x) = true

R2

{
f(~u, if b then x else y,~v) = if b then f(~u, x,~v) else f(~u, y,~v) (f ∈ F\if)
if (if b then a else c) then x else y = if b then (if a then x else y) else (if c then x else y)

R3

if b then x else x = x

if true then x else y = x

if false then x else y = y

if b then (if b then x else y) else z = if b then x else z
if b then x else (if b then y else z) = if b then x else z

R4

{
if b then (if a then x else y) else z = if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) = if a then (if b then x else y) else (if b then x else z)

Figure 5.2: R = R1 ∪R2 ∪R3 ∪R4

It turns out that there exists a convergent orientation →R of =R.1 We describe how we orient
equalities of R, and prove that the resulting term rewriting system is convergent, later, in Section 5.3.
Still, we anticipate and give the outlines of the orientation now.

We let R≤3 be R1∪R2∪R3. By orienting R≤3 from left to right, and carefully choosing an orientation
for the ground instances of R4, we can build a recursive convergent term rewriting system →R:

• First, we choose the orientation of the rules in R4. This is done by using a Lexicographic Path
Ordering [DJ90] on the conditionals, modified using a user-chosen total order �u on if-free R≤3-
irreducible conditionals. We show that the resulting term rewriting system is locally confluent.

• Then, we show local confluence and termination of our term rewriting system. We deduce that it
is convergent using Newman’s lemma.

Theorem 5.1. There exists an orientation →R4 of R4 such that the resulting term rewriting system
→R =→R≤3

∪ →R4
is convergent on ground terms.

The cca2 Axioms Before giving the cca2 axioms, we recall the ccas1 axioms from Section 2.6.1:

len(u) = len(v)

~w, {u}ne
pk(n) ∼ ~w, {v}ne

pk(n)

ccas1 when

{
fresh(ne; ~w, u, v)

n vpk(·),sk(·) ~w, u, v ∧ sk(n) vdec(_,·) ~w, u, v
(5.1)

Remark 5.1. We do not use the stronger cca1 axioms. The cca1 axiom schema allows to have a
different vectors of terms ~w and ~w ′ on the left and the right, but must be provided with a proof of
~w ∼ ~w ′. The ccas1 axioms are simpler and easier to handle. �

To extend this axiom to the ind-cca2 game, we need to deal with calls to the decryption oracle
performed after some calls to the left-right oracle. For example, consider the case where one call (u, v)
was made. Let α ≡ {u}ne

pk(n) and α′ ≡ {v}ne
pk(n) be the result of the call on, respectively, the left and the

right. A naive first try could be to state that decryptions are indistinguishable. That is, if we let s ≡ t[α]
and s′ ≡ t[α′], then dec(s, sk(n)) ∼ dec(s′, sk(n)). But this is not valid: for example, take u ≡ 0, v ≡ 1,
t ≡ g([]) (where [] is a hole variable). Then the adversary can, by interpreting g as the identity function,
obtain a term semantically equal to 0 on the left and 1 on the right. This allows him to distinguish
between the left and right cases.

1Actually, there are many such orientations, as we will see later.

176 Deciding Indistinguishability

We prevent this by adding a guard checking that we are not decrypting α on the left (resp. α′ on
the right): if not, we return the decryption dec(t[α], sk(n)) (resp. dec(t[α′], sk(n))) asked for, otherwise
we return a dummy message 0(dec(t[α], sk(n))) (resp. 0(dec(t[α′], sk(n)))). CCA2s is the (recursive) set
of unitary axioms:

~w, α,if eq(t[α], α) then 0(dec(t[α], sk(n)))

else dec(t[α], sk(n))

∼ ~w, α′,if eq(t[α′], α′) then 0(dec(t[α′], sk(n)))

else dec(t[α′], sk(n))

CCA2s

under the side-conditions of the ccas1 axioms in (5.1), plus a side-condition on length (that we omit here),
to account for the fact that we removed the premise len(u) = len(v). We do not prove validity of these
axioms yet, as we are going to use a modified version cca2 of this axiom schema:

• We are going to allow for any number of calls to the left-right oracle, by adding a guard for each
call. We use extra syntactic side-conditions to remove superfluous guards.

• In the axioms Struct-Ax given in Figure 5.1, we did not include the alpha renaming axiom α-equ.
Instead, our cca2 axiom schema is closed under α-renaming.

• We restrict t to be without if_then_else_ and 0(_). This is needed in the completeness proof.
• Finally, the axioms allow for an arbitrary number of public/private key pairs to be used simultane-
ously, and an instance of the axiom can contain any number of interleaved left-right and decryption
oracles calls.

Remark 5.2. The last point is what allows us to avoid transitivity in proofs. For example, consider four
encryptions, two of them (α and γ) using the public key pk(n), and the other two (β and δ) using the
public key pk(n′):

α ≡ {A}n0pk(n) β ≡ {B}n1pk(n′) γ ≡ {C}n0pk(n) δ ≡ {D}n1pk(n′)
Then the following formula is a valid instance of the cca2 axioms on, simultaneously, pk(n) and pk(n′):

α, β ∼ γ, δ cca2(pk(n), pk(n′))

However, proving the above formula using cca2 only on one key at a time, as in [BCL14], uses a hybrid
argument, which requires transitivity:

α, β ∼ α, δ cca2(pk(n′))
α, δ ∼ γ, δ cca2(pk(n))

α, β ∼ γ, δ �

5.2.1 Comments and Examples

Our set of axioms is not complete w.r.t. the computational interpretation semantics. Indeed, being
so would mean axiomatizing exactly which distributions (computable in polynomial time) can be dis-
tinguished by PPTMs, which is unrealistic and would lead to undecidability. E.g., if we completely
axiomatized ind-cca2, then showing the satisfiability of our set of axioms would show the existence of
ind-cca2 functions, which is an open problem.

Still, our axioms are expressive enough to complete concrete proofs of security. We illustrate this
on two examples: a proof of the simple formula from Example 2.3 and a proof of the security of one
round of the nsl protocol [Low95]. Of course, such proofs can be found automatically using our decision
procedure.

Example 5.1. We give a proof of the formula below:

if g() then n0 else n1 ∼ n

First, we introduce a conditional g() on the right to match the structure of the left side using R. Then,
we split the proof in two using the CSnoif axiom. We conclude using the reflexivity modulo α-renaming
axiom (this axiom is subsumed by cca2, therefore we do not include it in Ax).

g(), n0 ∼ g(), n Refl
g(), n1 ∼ g(), n Refl

if g() then n0 else n1 ∼ if g() then n else n
CSnoif

if g() then n0 else n1 ∼ n R
�

5.2. Axioms 177

Example 5.2 (Proof of nsl). We consider a simple setting with one initiator A, one respondent B and
no key server. An execution of the nsl protocol is given in Figure 5.3.

We write this in the logic. First, we let pkA ≡ pk(nA) and skA ≡ sk(nA) be the public/private key pair
of agent A (we define similarly (pkB, skB)). Since A does not wait for any input before sending its first
message, we put it into the initial frame:

φ0 ≡ pkA, pkB, {〈nA , A〉}
n0
pkB

Then, both agents wait for a message before sending a single reply. When receiving xA (resp. xB), the
answer of agent A (resp. B) is expressed in the logic as follows:

tA[xA] ≡ if eq(π1(dec(xA, skA)), nA) then
if eq(π2(π2(dec(xA, skA))),B) then
{π1(π2(dec(xA, skA)))}n2pkB

tB[xB] ≡ if eq(π2(dec(xB, skB)),A) then
{〈π1(dec(xB, skB)) , 〈nB , B〉〉}n1pkA

During an execution of the protocol, the adversary has several choices. First, it decides whether to
interact with A or B first. We focus on the case where it first sends a message to B (the other case is
similar). Then, it can honestly forward the messages or forge new ones. E.g., when sending the first
message to B, it can either forward A’s message {〈nA , A〉}n0pkB or forge a new message. We are going to
prove the security of the protocol in the following case (the other cases are similar):

• the first message, sent to B, is honest. Therefore we take xB ≡ {〈nA , A〉}n0pkB , and B answers:

tB[xB] =R {〈nA , 〈nB , B〉〉}n1pkA

• the second message, sent to A, is forged. Therefore we take xA ≡ g(φ1), where φ1 ≡ φ0, tB[xB]. As,
a priori, nothing prevents g(φ1) from being equal to tB[xB], we use the conditional eq(g(φ1), tB[xB])
to ensure that this message is forged. The answer from A is then:

s ≡ if eq(g(φ1), tB[xB]) then 0 else tA[g(φ1)] (5.2)

We show the secrecy of the nonce nB: we let t′B[xB] (resp. s′) be the term tB[xB] (resp. s) where we
replaced all occurrences of nB by 0. For example, t′B[xB] =R {〈nA , 〈0 , B〉〉}n1pkA

. This yields the goal:

φ0, tB[xB], s ∼ φ0, t
′
B[xB], s′ (5.3)

We let δ be the guarded decryption that will be used in the cca2 axiom:

δ ≡ if eq(g(φ1), tB[xB]) then 0(dec(g(φ1), skA))

else dec(g(φ1), skA)

(5.4)

and sδ be the term s where all occurrences of dec(g(φ1), skA) have been replaced by δ. We have s =R sδ.
We also introduce shorthands for some subterms of sδ: we let aδ, bδ and eδ be the terms eq(π1(δ), nA),
eq(π2(π2(δ))),B) and {π1(π2(δ))}n2pkB

. We define δ′, s′δ′ , a
′
δ′ , b
′
δ′ and e

′
δ′ similarly.

We then rewrite s and s′ into sδ and s′δ′ using R. Then we apply FA\0 several times, first to deconstruct
sδ and s′δ′ , and then to deconstruct aδ, bδ and a′δ′ , b

′
δ′ . Finally, we use Dup to remove duplicates, and

we apply cca2 simultaneously on key pairs (pkA, skA) and (pkB, skB) (we omit here the details of the
syntactic side-conditions that have to be checked):

φ0, tB[xB], nA, δ, eδ ∼ φ0, t
′
B[xB], nA, δ′, e′δ′

cca2

φ0, tB[xB], aδ, bδ, eδ ∼ φ0, t
′
B[xB], a′δ′ , b

′
δ′ , e

′
δ′

(FA\0,Dup)∗

φ0, tB[xB], sδ ∼ φ0, t
′
B[xB], s′δ′

(FA\0,Dup)∗

φ0, tB[xB], s ∼ φ0, t
′
B[xB], s′

R
�

178 Deciding Indistinguishability

{〈nA , A〉}n0pkB

{〈nA , 〈nB , B〉〉}n1pkA

{nB}n2pkB

A B

Figure 5.3: The nsl protocol.

Remark 5.3. The process of computing the formula in (5.3) from the protocol description can be done
automatically, using a simple procedure similar to the folding procedure from [BCL14]. The formula in
(5.3) has already been split between the honest and dishonest cases using the case study axiom CSnoif
(we omit the CSnoif applications to keep the proof readable). For example, the term in (5.2) is the “else”
branch of a CSnoif application on conditional eq(g(φ1), tB[xB]) (which does not contain nested conditionals,
as required by the CSnoif side-condition). �

5.3 The Term Rewriting System R

In this section, we orient the equalities in =R, and show that the resulting Term Rewriting System is
convergent. First, we recall the definition of a Lexicographic Path Ordering [DJ90].

Definition 5.2. Let �f be a total precedence over function symbols. The lexicographic path ordering
associated with �f is the total order on ground terms defined by:

s = f(s1, . . . , sn) � t = g(t1, . . . , tm) iff

∃i ∈ J1, nK s.t. si � t
or f = g ∧ ∀j ∈ J1,mK, s � tj ∧ s1, . . . , sn �lex t1, . . . , tn
or f �f g ∧ ∀j ∈ J1,mK, s � tj

Let �f be a total precedence on F ,N such that if_then_else_ is the smallest element (elements of
N are treated as function symbols of arity zero). We define the lexicographic path ordering � on ground
terms using �f .

Definition 5.3. Let � be the lexicographic path ordering on T (F ,N) using precedence �f .

Now, we want to have some leeway in the ordering of terms. We do this by letting �u be an arbitrary
total order on if-free conditionals that are R≤3-irreducible. We define the extension �lpo

u of �u to arbitrary
ground conditionals. Basically, �lpo

u compares if-free R≤3-irreducible conditionals using �u; conditionals
that are not if-free or not R≤3-irreducible are compared using �; and we choose the behavior of �lpo

u on
cross-cases (i.e. one if-free R≤3-irreducible conditional and one not if-free or not R≤3-irreducible) so as
to have a pre-order.

Definition 5.4. For any total ordering �u on ground if-free R≤3-irreducible terms, we let �lpo
u be the

relation defined by:

b�lpo
u a =

b �u a if a and b are if-free and R≤3-irreducible
b � a if a and b are not if-free or not R≤3-irreducible
true if a is if-free and R≤3-irreducible, and b is not
false if b is if-free and R≤3-irreducible, and a is not

We then order R4 using �lpo
u .

Definition 5.5. For any total ordering �u on ground if-free R≤3-irreducible terms, we let →R�u4
be the

ordering of R4 defined by:

if b then (if a then x else y) else z → if a then (if b then x else z) else (if b then y else z) (when b�lpo
u a)

if b then x else (if a then y else z)→ if a then (if b then x else y) else (if b then x else z) (when b�lpo
u a)

5.3. The Term Rewriting System R 179

Moreover, we let →R�u=→R1
∪ →R2

∪ →R3
∪ →R�u4

.

The term rewriting system→R�u is an orientation of the rules given in Figure 5.2. When the ordering
�u is irrelevant, we write →R instead of →R�u . We state the convergence theorem.

Theorem 5.2. For all �u, the term rewriting system →R�u is convergent on ground terms.

Observe that this result subsumes Theorem 5.1.

Proof. Using Newman’s lemma, we only need to prove that →R�u is locally confluent and terminating.

Local Confluence We show that all critical pairs are joinable. Normally, we would rely on some
automated checker for local confluence. Unfortunately, as we rely on a side-condition to orient R4 (using
a LPO), writing down the rules in a tool is not straightforward. By consequence we believe it is simpler
to manually check that every critical pair is joinable. We give below the most interesting critical pairs,
and show how we join them. For every critical pair, we underline the starting term.

• Critical Pairs R1/(R1∪R2∪R3∪R4): we only show the critical pairs involving π1(_) (the critical
pairs with π2(_) are similar), and for eq(_,_). The critical pairs involving dec(_,_) are similar
to the critical pairs involving π1(_), and the critical pairs for 0(_) are trivial.

if b then u else v ←2 if b then π1(〈u , w〉) else π1(〈v , w〉) ←
π1(〈if b then u else v , w〉) → if b then u else v

w ← if b then w else w ←2 if b then π1(〈w , u〉) else π2(〈w , v〉) ←
π1(〈w , if b then u else v〉) → w

true ← eq(if b then u else v, if b then u else v)

→ if b then eq(u, if b then u else v) else eq(v, if b then u else v)

→ if b then (if b then eq(u, u) else eq(u, v)) else eq(v, if b then u else v)

→ if b then eq(u, u) else eq(v, if b then u else v)

→ if b then true else eq(v, if b then u else v)

→∗ if b then true else true
→ true

• Critical Pairs R2/R2: we assume that b �lpo
u c. The other possible orderings are handled in the

same fashion.

if c then (if b then f(u, s) else f(v, s)) else (if b then f(u, t) else f(v, t)) ←2

if c then f(if b then u else v, s) else f(if b then u else v, t) ←
f(if b then u else v, if c then s else t)

→ if b then f(u, if c then s else t) else f(v, if c then s else t)

→2 if b then (if c then f(u, s) else f(u, t)) else (if c then f(v, s) else f(v, t))

→∗ if c then (if b then f(u, s) else f(v, s)) else (if b then f(u, t) else f(v, t))

• Critical Pairs R2/R3:

f(u,w)← f(if true then u else v, w)→ if true then f(u,w) else f(v, w)→ f(u,w)

f(u, v)← f(if b then u else u, v)→ if b then f(u, v) else f(u, v)→ f(u, v)

if b then f(u, s) else f(w, s) ←
f(if b then u else w, s) ←
f(if b then (if b then u else v) else w, s)

180 Deciding Indistinguishability

→ if b then f(if b then u else v, s) else f(w, s)

→ if b then (if b then f(u, s) else f(v, s)) else f(w, s)

→ if b then f(u, s) else f(w, s)

• Critical Pairs R2/R4: we assume that a �lpo
u b �lpo

u c �lpo
u d. The other possible orderings are

handled in the same fashion.

if d then (if b then (if a then u else v) else w) else (if c then (if a then u else v) else w) ←∗

if a then if d then (if b then u else w) else (if c then u else w)
else if d then (if b then v else w) else (if c then v else w)

←2

if a then (if (if d then b else c) then u else w) else (if (if d then b else c) then v else w) ←
if (if d then b else c) then (if a then u else v) else w

→ if d then (if b then (if a then u else v) else w) else (if c then (if a then u else v) else w)

• Critical Pairs R3/R3:
u← if true then u else u→ u

u← if true then u else v ← if true then (if true then u else v) else w

→ if true then u else w → u

if b then u else v ← if b then (if b then u else v) else (if b then u else v)

→ if b then u else (if b then u else v)→ if b then u else v

• Critical Pairs R3/R4:

if a then u else v ←
if b then (if a then u else v) else (if a then u else v)

→ if a then (if b then u else (if a then u else v)) else (if b then v else (if a then u else v))

→2 if a then if a then (if b then u else u) else (if b then u else v)
else if a then (if b then v else u) else (if b then v else v)

→2 if a then (if b then u else u) else (if b then v else v)

→2 if a then u else v

• Critical Pairs R4/R4: we assume that a �lpo
u b �lpo

u c. The other possible orderings are handled
in the same fashion.

if c then if b then (if a then u else s) else (if a then v else s)
else if b then (if a then u else t) else (if a then v else t)

←2

if c then (if a then (if b then u else v) else s) else (if a then (if b then v else u) else t) ←
if a then (if b then u else v) else (if c then s else t)

→ if b then (if a then u else (if c then s else t)) else (if a then v else (if c then s else t))

→2 if b then if c then (if a then u else s) else (if a then u else t)
else if c then (if a then v else s) else (if a then v else t)

→∗ if c then if b then (if a then u else s) else (if a then v else s)
else if b then (if a then u else t) else (if a then v else t)

Termination To prove termination, we let Fterm be the signature F to which we added a symbol ifb(,)
for every if-free R≤3-irreducible conditional b:

Fterm = F ∪
{
ifb(,) | b ∈ T (F\if,N), b is a R≤3-irreducible conditional

}

5.3. The Term Rewriting System R 181

→R′2

{
f(~u, ifb(x , y), ~v)→ ifb(f(~u, x,~v) , f(~u, y,~v)) (f ∈ F\if)

→R′3

iftrue(x , y)→ x

iffalse(x , y)→ y

ifb(x , x)→ x

ifb((ifb(x , y)) , z)→ ifb(x , z)
ifb(x , (ifb(y , z)))→ ifb(x , z)

→R0
4

if b then (if a then x else y) else z → if a then (if b then x else z) else (if b then y else z)

(b � a, a,b not if-free or not R≤3-irreducible)
if b then x else (if a then y else z)→ if a then (if b then x else y) else (if b then x else z)

(b � a, a,b not if-free or not R≤3-irreducible)

→R1
4

if b then (ifa(x , y)) else z → ifa((if b then x else z) , (if b then y else z))

(b not if-free or not R≤3-irreducible)
if b then x else (ifa(y , z))→ ifa((if b then x else y) , (if b then x else z))

(b not if-free or not R≤3-irreducible)

→R2
4

{
ifb((ifa(x , y)) , z)→ ifa((ifb(x , z)) , (ifb(y , z))) (b �u a)

ifb(x , (ifa(y , z)))→ ifa((ifb(x , y)) , (ifb(x , z))) (b �u a)

→Ri
{
if b then u else v → ifb(u , v) (b if-free and R≤3-irreducible)

Figure 5.4: The Relations →R′2
,→R′3

,→R0
4
,→R1

4
,→R2

4
and →Ri used for termination

This yields an infinite countable signature. We extend the precedence �f to Fterm by having the function
symbols {ifb(,)} be smaller than all the other function symbols, and ifb(,) �f ifa(,) if and only if
b �u a. Observe that the extended precedence is still a total order.

We then consider the term rewriting system→R′ on T (Fterm,N), defined by removing→R4 from→R

and adding all the rules in Figure 5.4:

→R′=→R1
∪ →R2

∪ →R′2
∪ →R3

∪ →R′3
∪ →R0

4
∪ →R1

4
∪ →R2

4
∪ →Ri

One can easily (but tediously) check that � is compatible with →R′ : the only non-trivial cases are
the cases in →R2

(the first rule is decreasing because f �f if_then_else_, the second rule using the
lexicographic order), in →R′2

(same arguments than for R2) and the cases in →R0
4
,→R1

4
,→R2

4
(where we

use the side conditions b � a, b �u a . . .).
Since � is a lexicographic path ordering we know that it is total and well-founded on ground-terms.

Therefore →R′ is a terminating term rewriting systems on ground terms.
To conclude, one just has to observe that for every ground terms u, v and integer n, if u→(n)

R v then
there exist u′, v′ such that u→!

Ri u
′, v →!

Ri v
′ and u′ →(≥n)

R′ v′. That is, we have the following diagram
(black edges stand for universal quantifications, red edges for existentials):

u v

u′ v′

∗
R

!Ri
∗
R′

!Ri

182 Deciding Indistinguishability

This result can be proved by induction on n. Since →R′ is terminating on ground terms, and since
any infinite sequence for →R can be translated into an infinite sequence for →R′ , it follows that →R is
terminating on ground terms. �

The normal form of term t by →R�u is of the form C[~b � ~u], where ~b, ~u are if-free terms in R-normal
form. We are going to call ~b the conditionals of t ↓R�u , and ~u its leaves.

Definition 5.6. An if-free term is a term that does not use the if_then_else_ function symbols. For
every if-free terms ~b, ~u, if t is the term C[~b � ~u] then we let cond-st(t) be the set of conditionals ~b, and
leave-st(t) be the set of terms ~u.

Example 5.3. Let b1, b2, t1, t2, t3 be if-free terms, and let s be the following term (we give the labelled
tree representation of s on the right):

if b1 then if b2 then t1 else t2
else t3

b1

b2

t1 t2

t3

Then cond-st(s) = {b1, b2} and leave-st(s) = {t1, t2, t3}. �

Interestingly, the leaves and conditionals of t ↓R�u do not depend on the order �u on ground condi-
tionals. Formally:

Proposition 5.1. Let �u and �′u be two total orderings on if-free R≤3-irreducible conditionals. Then
for every ground term t we have:

leave-st(t ↓R�u) = leave-st(t ↓
R�
′
u

) and cond-st(t ↓R�u) = cond-st(t ↓
R�
′
u

)

Proof. Let C,C ′ be two if-contexts such that t ↓R�u≡ C[~b � ~u] and t ↓
R�
′
u
≡ C ′[~b ′ � ~u′] where:

~b = leave-st(t ↓R�u) ~u = cond-st(t ↓R�u) ~b ′ = leave-st(t ↓
R�
′
u

) ~u ′ = cond-st(t ↓
R�
′
u

)

We know that C[~b � ~u]→∗
R�
′
u
C ′[~b ′ � ~u′]. Since the terms ~b, ~u, ~b ′ and ~u ′ are if-free and in R-normal form,

we can only apply the rules:

if b then x else x→ x

if true then x else y → x

if false then x else y → y

if b then (if b then x else y) else z → if b then x else z
if b then x else (if b then y else z)→ if b then x else z

if b then (if a then x else y) else z → if a then (if b then x else z) else (if b then y else z) (when b�lpo
u a)

if b then x else (if a then y else z)→ if a then (if b then x else y) else (if b then x else z) (when b�lpo
u a)

Moreover, if a term C1[~a1�~v 1] can be rewritten in one step into C2[~a2�~v 2] using one of the rules above then
~a2 ⊆ ~a1 and ~v 2 ⊆ ~v 1. Hence, by induction, ~b ′ ⊆ ~b and ~u ′ ⊆ ~u. Similarly, since C ′[~b ′ � ~u′]→∗R�u C[~b � ~u],
we get that ~b ⊆ ~b ′ and ~u ⊆ ~u ′. We deduce that ~b ≡ ~b ′ and ~u ≡ ~u ′. �

By consequence, for any term u, the sets leave-st(t ↓R) and cond-st(t ↓R) are always well-defined, by
taking an arbitrary ordering of if-free R≤3-irreducible conditionals.

5.4 The cca2 Axioms

We define and prove correct a recursive set of axioms for an ind-cca2 encryption scheme. For the sake
of simplicity, we first ignore all length constraints. We explain how length constraints are added and
handled to the logic in Section 5.4.2.

5.4. The cca2 Axioms 183

Multi-Users ind-cca2 Game Consider the following multi-users ind-cca2 game: the adversary
receives n public-keys. For each key pki, he has access to a left-right oracle OLR(pki, b) that takes two
messages m0,m1 as input and returns {mb}nrpki , where b is an internal random bit uniformly drawn at
the beginning by the challenger (the same b is used for all left-right oracles) and nr is a fresh nonce.
Moreover, for all key pairs (pki, ski), the adversary has access to an ski decryption oracle Odec(ski), but
cannot call Odec(ski) on a cipher-text returned by OLR(pki, b) (to do this, the two oracles use a shared
memory where all encryption requests are logged). The advantage of an adversary against this game and
the multi-user ind-cca2 security are defined as usual.

It is known that if an encryption scheme is ind-cca2 then it is also multi-users ind-cca2 (see [BBM00]).
Therefore, we allow multiple key pairs to appear in the cca2 axioms, and multiple encryptions over dif-
ferent terms using the same public key (each encryption corresponds to one call to a left-right oracle).

Decryption Guards If we want the following to hold in any computational model

dec
(
t
[
{u1}n1pk, . . . , {un}

nn
pk

]︸ ︷︷ ︸
s

, sk
)
∼ dec

(
t
[
{v1}n1pk, . . . , {vn}

nn
pk

]︸ ︷︷ ︸
s′

, sk
)

then we need to make sure that s is different from all {ui}nipk and that s′ is different from all {vi}nipk. This
is done by introducing all the unwanted equalities in if_then_else_ tests and making sure that we are
in the else branch of all these tests, so as to have a “safe call” to the decryption oracle. Moreover, the
adversary is allowed to use values obtained from previous calls to the decryption oracle in future calls.

To do this, we use the following function:

Definition 5.7. We define the function else∗ by induction:

else∗(∅, x) ≡ x
else∗ ((eq(a, b)) :: Γ, x) ≡ if eq(a, b) then 0(x) else else∗(Γ, x)

Example 5.4. Let u ≡ t[{v1}
n1r
pk, {v2}

n2r
pk]. Then:

else∗
((
eq(u, {v1}

n1r
pk), eq(u, {v2}

n2r
pk)
)
, dec(u, sk)

)
≡

if eq(u, {v1}
n1r
pk) then 0(dec(u, sk)) else if eq(u, {v2}

n2r
pk) then 0(dec(u, sk)) else dec(u, sk)

Morally, this represents a safe call to the decryption oracle. �

Definition of cca2 We use the following notations: for any finite set K of valid private keys, K vd ~u
holds if for all sk ∈ K, the secret key sk appears only in decryption position in ~u ; nodec(K, ~u) denotes that
for all sk(n) ∈ K, the only occurrences of n are in subterms pk(n); hidden-rand(~r ; ~u) denotes that for all
nr ∈ ~r , nr appears only in encryption randomness position and is not used with two distinct plaintexts.

We are now going to define by induction the cca2 axiom. In order to do this we define by induction
a binary relation RKccaa2 on cca2 executions, where K is the finite set of private keys used in the terms
(corresponding to the public keys sent by the challenger).

Definition 5.8. Let K be a set of private keys. (φ,Xenc,Xdec, σrand, θenc, λdec) is a cca2 execution if:
• φ is a vector of ground terms in T (F ,N).
• Xenc and Xdec are two disjoint sets of variables used as handles for, respectively, encryptions and

decryptions.
• σrand is a substitution from Xenc to N .
• θenc and λdec are substitutions from, respectively, Xenc and Xdec, to ground terms in T (F ,N).

σrand, θenc and λdec co-domains are the sets of, respectively, encryption randomness, encryption oracle
calls and decryption oracle calls in φ. Intuitively, we have:

(φ,Xenc,Xdec, σrand, θenc, λdec)RKccaa2 (ψ,Xenc,Xdec, σ′rand, θ′enc, λ′dec)

when we can build φ and ψ using function symbols, matching encryption oracle calls and matching
decryption oracle calls.

184 Deciding Indistinguishability

Definition 5.9. Let K be a finite set of private keys. We define the binary relation RKccaa2 by induction:

1. No Call to the Oracles: if K vd φ then (φ, ∅, ∅, ∅, ∅, ∅)RKccaa2 (φ, ∅, ∅, ∅, ∅, ∅) for every sequence φ
of ground terms in T (F ,N) such that nodec(K;φ).

2. Encryption Case: Let x a fresh variable that does not appear in Xenc ∪ Xdec, sk be a secret key
in K and pk the corresponding public key. Then:(

(φ, {u}nrpk),Xenc ∪ {x},Xdec, σrand ∪ {x 7→ nr}, θenc ∪ {x 7→ {u}nrpk}, λdec
)

RKccaa2
(
(ψ, {v}n

′
r

pk),Xenc ∪ {x},Xdec, σ′rand ∪ {x 7→ n′r}, θ′enc ∪ {x 7→ {v}
n′r
pk}, λ

′
dec
)

if there exist t, t′ ∈ T (F\0,N ,Xenc) such that:

• (φ,Xenc,Xdec, σrand, θenc, λdec)RKccaa2 (ψ,Xenc,Xdec, σ′rand, θ′enc, λ′dec)
• u ≡ tλdec, v ≡ t′λ′dec
• nodec(K; t, t′), which ensures that the only decryptions are calls to the oracle.
• fresh(nr, n′r;φ, u, ψ, v) and hidden-rand(Xencσrand ∪ Xencσ′rand;φ, u, ψ, v)

3. Decryption Case: Let sk ∈ K, pk the corresponding public key and z be a fresh variable. Then:(
(φ, else∗(l, dec(u, sk))) ,Xenc,Xdec ∪ {z}, σrand, θenc, λdec ∪ {z 7→ else∗(l, dec(u, sk))}

)
RKccaa2

(
(ψ, else∗(l′, dec(v, sk))) ,Xenc,Xdec ∪ {z}, σ′rand, θ′enc, λ′dec ∪ {z 7→ else∗(l′, dec(v, sk))}

)
if there exists t ∈ T (F\if,0,N ,Xenc,Xdec) such that:

• (φ,Xenc,Xdec, σrand, θenc, λdec)RKccaa2 (ψ,Xenc,Xdec, σ′rand, θ′enc, λ′dec)
• u ≡ tθencλdec and v ≡ tθ′encλ′dec.
• Consider the set Yu of variables x ∈ Xenc such that the encryption binded to x directly appears

in u, i.e. appears outside of another encryption. That is, x must appear in the term u where
we substituted every encryption {_}nxpk ∈ codom(θenc) by {0}nxpk :

xσrand ∈ u
{
{0}nxpk/{_}

nx
pk | {_}

nx
pk ∈ codom(θenc)

}
↓R

Then l is the sequence of guards l ≡ (eq(u, y1), . . . , eq(u, ym)) where (y1, . . . , ym) = sort(Yuθenc).
Similarly, l′ ≡ (eq(v, y′1), . . . , eq(v, y′m)) where (y′1, . . . , y

′
m) = sort(Yuθ′enc)2.

• nodec(K; t) and hidden-rand(Xencσrand ∪ Xencσ′rand;φ, u, ψ, v)

where sort is a deterministic function sorting terms according to an arbitrary linear order.

Remark 5.4. In the decryption case, we add a guard only for encryption that appear directly in u.
Without this restriction, we would add one guard eq(u, xθenc) for every x ∈ Xenc such that xθenc is an
encryption using public-key pk.

For example, if Xenc = {x0, x1, x2} and θenc = {x0 7→ α0, x1 7→ α1, x2 7→ α2} where:

α0 7→ {m0}n0pk α1 7→ {m1}n1pk α2 7→ {α1}n2pk

then to guard dec(g(α2), sk), we need to add three guards, eq(g(α2), α0), eq(g(α2), α1) and eq(g(α2), α2).
This yields the term:

if eq(g(α2), α0) then 0(dec(g(α2), sk))

else if eq(g(α2), α1) then 0(dec(g(α2), sk))

else if eq(g(α2), α2) then 0(dec(g(α2), sk))

else dec(g(α2), sk)

But here, the adversary, represented by the adversarial function g, is computing the query to the decryp-
tion oracle using only α2. Hence, it cannot use α1, which is hidden by the encryption, nor α0 which does

2Remark that we use, for v, the set Yu defined using u. As we will see later, this is not a problem because Yu = Yv .

5.4. The cca2 Axioms 185

not appear at all. Therefore, there is no need to add the guards eq(g(α2), α0) and eq(g(α2), α1), since g
has a negligible probability of returning α0 or α1.

To remove unnecessary guards when building the decryption oracle call dec(u, sk), we require that
eq(u, α) is added to the list of guards if and only if α ≡ {_}npk appears directly in u. This yields smaller
axioms, e.g. the term dec(g(α2), sk) is guarded by:

if eq(g(α2), α2) then 0(dec(g(α2), sk))

else dec(g(α2), sk)

Finally, the sort function is used to ensure that guards are always in the same order, which guarantees
that two calls with the same terms are guarded in the same way. �

We can now define the recursive set of axioms ccaa2 and show their validity. We also state and prove
a key property of these axioms.

Definition 5.10. ccaa2 is the set of unitary axioms φ ∼ ψµ, where µ is a renaming of names in N and
there exist two cca2 executions Y,Y ′ such that:

Y = (φ,Xenc,Xdec, σrand, θenc, λdec) Y ′ = (ψ,Xenc,Xdec, σ′rand, θ′enc, λ′dec) Y RKccaa2 Y
′

In that case, we say that (Y,Y ′) is a valid ccaa2 application, and φ ∼ ψµ is a valid ccaa2 instance.

Proposition 5.2. All formulas in ccaa2 are computationally valid if the encryption scheme is ind-cca2.

Proof. First, φ ∼ ψµ is computationally valid if and only if φ ∼ ψ is computationally valid. Hence,
w.l.o.g. we consider µ empty. Let Mc be a computational model where the encryption and decryption
symbol are interpreted as an ind-cca2 encryption scheme. Let φ ∼ ψ be a valid instance of ccaa2 such
that [[φ]] 6≈Mc [[ψ]] i.e. there is a PPTM A that has a non-negligible advantage of distinguishing these two
distributions.

Since φ ∼ ψ is an instance of cca2 we know that there exist two cca2 executions such that:

(φ,Xenc,Xdec, σrand, θenc, λdec)RKccaa2 (ψ,Xenc,Xdec, σ′rand, θ′enc, λ′dec)

We are going to build from φ and ψ a winning attacker against the multi-user ind-cca2 game. This
attacker has access to a LR oracle and a decryption oracle for all keys in K. We are going to build by
induction on RKccaa2 a algorithm B that samples from [[φ]] or [[ψ]] (depending on the oracles internal bit).
The algorithm B uses a memoisation technique: it builds a store whose keys are subterms of φ, ψ already
encountered and variable in Xenc ∪ Xdec, and values are elements of theMc domain.

1. (φ, ∅, ∅, ∅, ∅, ∅)RKccaa2 (φ, ∅, ∅, ∅, ∅, ∅): for every term t in the vector φ, B samples from [[t]] by induction
as follows:

• if t is in the store then B returns its value.
• nonce n: B draws n uniformly at random and stores the drawn value.
Remark that nodec(K, φ) ensures that n is not used in a secret key sk appearing in K, which
we could not compute. If it is a public key pk, either the corresponding secret key sk is such
that sk ∈ K and the challenger sent us a random sample from [[pk]], or sk does not appear in
K and then B can draw the corresponding key pair itself.

• f(t1, . . . , tn), then B inductively samples the function arguments ([[t1]], . . . , [[t1]]) and then sam-
ples from [[f]] ([[t1]], . . . , [[t1]]). B stores the value at the key f(t1, . . . , tn).

2. Encryption Case:(
(φ, {u}nrpk),Xenc ∪ {x},Xdec, σrand ∪ {x 7→ nr}, θenc ∪ {x 7→ {u}nrpk}, λdec

)
RKccaa2

(
(ψ, {v}n

′
r

pk),Xenc ∪ {x},Xdec, σ′rand ∪ {x 7→ n′r}, θ′enc ∪ {x 7→ {v}
n′r
pk}, λ

′
dec
)

Since we have fresh(nr, n′r;φ, u, ψ, v) we know that the top-level terms do not appear in the store.
It is easy to check that B inductive definition is such that B store has a value associated with every
variable in Xenc∪Xdec and that, if x ∈ Xenc, then the store value of x is either sampled from [[xθenc]]

186 Deciding Indistinguishability

or from [[xθ′enc]] (depending on the challenger internal bit), and that if x ∈ Xdec then the store value
of x is either sampled from [[xλdec]] or from [[xλ′dec]] (depending on the challenger internal bit). We
also observe that if the challenger internal bit is 0 then for all w:

OLR(pk, b)([[u]], [[v]]) = OLR(pk, b)([[u]], w)

Similarly if the challenger internal bit is 1 then for all w:

OLR(pk, b)([[u]], [[v]]) = OLR(pk, b)(w, [[v]])

B samples two values α, β such that if the challenger internal bit is 0 then α is sampled from [[u]]
and if the challenger internal bit is 1 then β is sampled from [[v]]. Therefore whatever the challenger
internal is bit, OLR(pk, b)(α, β) is sampled from OLR(pk, b)([[u]], [[v]]):

• α is sampled from [[u]] using the case 1 algorithm. Remark that when we encounter a decryption
under sk′ ∈ K, we know that it was already sampled and can therefore retrieve it from the
store.

• similarly, β is sampled from [[v]] using the case 1 algorithm.
The condition nodec(K; t, t′) ensures that no secret key from K appears in u, v anywhere else than
in decryption positions for already queried oracle calls (which can therefore be retrieved from the
store), and the two conditions fresh(nr, n′r;φ, u, ψ, v) and hidden-rand(Xencσrand∪Xencσ′rand;φ, u, ψ, v)
ensure that all randomness used by the challenger left-right oracles do not appear anywhere else
than in encryption randomness position for the corresponding left-right oracle calls.3

We store the result of the left-right oracle call at key x.
3. Decryption Case:

((φ, else∗(l, dec(u, sk))) ,Xenc,Xdec ∪ {z}, σrand, θenc, λdec ∪ {z 7→ else∗(l, dec(u, sk))})
RKccaa2 ((ψ, else∗(l′, dec(v, sk))) ,Xenc,Xdec ∪ {z}, σ′rand, θ′enc, λ′dec ∪ {z 7→ else∗(l′, dec(v, sk))})

We know that u ≡ tθencλdec and v ≡ tθ′encλ
′
dec. B uses the case 1 algorithm to sample γ from

[[tθencλdec]] or [[tθ′encλ
′
dec]] depending on the challenger internal bit. nodec(K; t) ensures that no call

to the decryption oracles are needed and hidden-rand(Xencσrand∪Xencσ′rand;φ, u, ψ, v) guarantee that
the randomness drawn by the challenger for LR oracle encryptions do not appear in t.
Observe that all calls to OLR(pk, b) have already been stored. Let x1θenc, . . . , xpθenc be the corre-
sponding keys in the store. Hence if γ is equal to any of the values stored at keys x1θenc, . . . , xpθenc
then B return [[0]](γ), otherwise B can call the decryption oracle Odec(sk) on γ.
As we observed in Remark 5.4, if the challenger internal bit is 0, checking whether γ is different
from the values sampled from [[x1θenc]], . . . , [[xpθenc]] amounts to checking whether γ is different from
the values sampled from [[y1]], . . . , [[ym]], except for a negligible number of samplings. Therefore we
are sampling from the correct distribution (up to a negligible number of samplings).
Moreover, the set of variables x ∈ Xenc such that the encryption binded to x in θenc appears directly
in the left decryption u:

xσrand ∈ u
{
{0}nxpk/{_}

nx
pk | {_}

nx
pk ∈ codom(θenc)

}
↓R

is exactly the set of variables x such that the encryption binded to x in θ′enc appears directly in the
right decryption v:

xσrand ∈ v
{
{0}nxpk/{_}

nx
pk | {_}

nx
pk ∈ codom(θ′enc)

}
↓R

Hence, if the internal bit is 1 then checking whether γ is different from the values sampled from
[[x1θ

′
enc]], . . . , [[xpθ

′
enc]] amounts to checking whether γ is different from the values sampled from

[[y′1]], . . . , [[y′m]], except for a negligible number of samplings.
We store the result at key z.

The attacker against the multi-user ind-cca2 game simply returns A(B). Since B samples either
from [[φ]] if b = 0 or from [[ψ]] if b = 1 (up to a negligible number of samplings), and since A has a
non-negligible advantage of distinguishing [[φ]] from [[ψ]] we know that the attacker has a non-negligible
advantage against the multi-user ind-cca2 game. �

3We omit for now the length check, which is dealt with later.

5.4. The cca2 Axioms 187

5.4.1 Closure Under Restr

To close our logic under Restr, we need the unitary axioms to be closed. Therefore, we let cca2 be the
closure of ccaa2 under Restr.

Definition 5.11. cca2 is the set of formula φ ∼ ψ such that we have the derivation:

φ′ ∼ ψ′
ccaa2

φ ∼ ψ Restr

The main contribution of this sub-section, given below, states that any instance ~u ∼ ~v of cca2 can
be automatically extended into an instance ~u ′ ∼ ~v ′ of ccaa2 of, at most, polynomial size.

Proposition 5.3. For every instance ~u ∼ ~v of cca2, there exists ~u1, ~v 1 such that ~u, ~u1 ∼ ~v ,~v 1 is an
instance of ccaa2 (modulo Perm) and |~u1|+|~v 1| is of polynomial size in |~u |+|~v |. We let completion(~u ∼ ~v)
be the formula ~u, ~u1 ∼ ~v ,~v 1.

Proof. We first show how to extend an instance of cca2 into an instance of ccaa2 . Let (ui)i∈I ∼ (vi)i∈I
be an instance of ccaa2 . Let I ′ ⊆ I, we want to extend (ui)i∈I′ ∼ (vi)i∈I′ into an instance of ccaa2 . Let
φ ≡ (ui)i∈I , ψ ≡ (vi)i∈I , since (ui)i∈I ∼ (vi)i∈I is an instance of ccaa2 we have:

(φ,Xenc,Xdec, σrand, θenc, λdec)RKccaa2 (ψ,Xenc,Xdec, σ′rand, θ′enc, λ′dec)

For all x ∈ Xenc ∪ Xdec, we let ix ∈ I be the index corresponding to xθencλdec ∼ xθ′encλ′dec. Moreover, for
all x ∈ Xdec, we let tix be the context used for the decryption in the definition of RKccaa2 (hence we have
xλdec ≡ else∗(l, dec(tixθencλdec), sk)).

Outline We are going to define I lr, I l, Ir ⊆ I and (ũi)i∈J , (ṽi)i∈J (where J = I lr ∪ I l ∪ Ir) such that:
• I lr, I l, Ir are pair-wise disjoints and I ′ ⊆ I lr.
• (ũi)i∈J ∼ (ṽi)i∈J is an instance of ccaa2 of polynomial size with respect to

∑
i∈I′ |ui|+ |vi|.

Intuitively, I lr is the subset of indices of I\I ′ of the terms that are subterm of (ui)i∈I′ ∼ (vi)i∈I′ on the
left and on the right, i.e. for all i ∈ I lr, ui ∈ st((ui)i∈I′) and vi ∈ st((vi)i∈I′). The terms whose index is
in I lr are easy to handle, as they are immediately bounded by the terms whose indices is in I ′.

Then, I l is the subset of indices of I\I ′ of the terms that are subterms of (ui)i∈I′ ∼ (vi)i∈I′ on the
left only (i.e. for every i ∈ I l, we only know that ui ∈ st((ui)i∈I′)). Terms with indices in I l are easy to
bound on the left, but not on the right. To bound the right terms, we introduce dummy messages (by
replace encryptions by encryption of g(), where g is an adversarial function symbol in G). Similarly Ir is
the subset of indices of I\I ′ of the terms that are subterms of (ui)i∈I′ ∼ (vi)i∈I′ on the right only.

First, we define I lr, I l, Ir, and then we define the corresponding ccaa2 instance (ũi)i∈J ∼ (ṽi)i∈J .

Inductive Definition of the Left and Right Appearance Sets We define by induction on i ∈ I ′
the sets I li , Iri ⊆ I. Intuitively, I li is the set of indices of I needed so that ui is well-defined (same for Iri
and vi). Let i ∈ I ′, we do a case disjunction on the rule applied to ui, vi in RKccaa2 :

• No Call to the Oracles: In that case we take I li = Iri = {i}.
• Encryption Case: let t, t′ ∈ T (F\0,N ,Xdec) such that ui ≡ {tλdec}__ and vi ≡ {t′λ′dec}__. To

have ui well-defined, we need all the decryptions in ui to be well-defined (same for vi). Hence let:

I li = {i} ∪
⋃

x∈Xdec∩st(t)
I lix Iri = {i} ∪

⋃
x∈Xdec∩st(t′)

Irix

• Decryption Case: recall that ui ≡ else∗(l, dec(u, sk)) where u ≡ tiθencλdec. Therefore we need all
encryption in Xenc ∩ st(ti) and decryption in Xdec ∩ st(ti) to be defined, on the left and on the right.
Hence we let:

I li = {i} ∪
⋃

x∈(Xdec∪Xenc)∩st(ti)
I lix Iri = {i} ∪

⋃
x∈(Xdec∪Xenc)∩st(ti)

Irix

188 Deciding Indistinguishability

We let:

I lr =
⋃
i∈I′

I li ∩
⋃
i∈I′

Iri I l =
⋃
i∈I′

I li ∩
⋃
i∈I′

Iri Ir =
⋃
i∈I′

I li ∩
⋃
i∈I′

Iri

These three sets are disjoint and form a partition of
⋃
i∈I′ I

l
i ∪ Iri . Remark that for every i ∈ I lj , ui is a

subterm of uj . Hence, for every i ∈ I lr ∪ I l, there exists j ∈ I ′ such that ui is a subterm of uj .

Building the New Instance We define (by induction on i) the terms (ũi)i∈J , by letting ũi be:
• ui when i ∈ I lr ∪ I l.
• {g()}npk when i ∈ Ir and ui is an encryption, with ui ≡ {_}npk.

• else∗(l̃, dec(ũ, sk)) when i ∈ Ir and ui is a decryption, where ui ≡ else∗(l, dec(u, sk)), u ≡ tiθencλdec,
l is the sequence of guards l ≡ (eq(u, y1), . . . , eq(u, ym)) where (y1, . . . , ym) = sort(Yuθenc). Then
we take:

– ũ ≡ tiθ̃encλ̃dec, where θ̃enc = {x 7→ ũix | x ∈ Xenc} and λ̃dec = {x 7→ ũix | x ∈ Xdec}.
– l̃ ≡ (eq(ũ, ỹ1), . . . , eq(ũ, ỹm)) where (ỹ1, . . . , ỹm) = sort(Yuθ̃enc).

Similarly, we define ṽi for every i ∈ J .

Conclusion Let J = I lr ∪ I l ∪ Ir. To conclude, we check that (ũi)i∈J ∼ (ṽi)i∈J :
• is a ccaa2 instance. This is done by induction on i ∈ J .
• is of polynomial size w.r.t. (ui)i∈I′ ∼ (vi)i∈I′ .
We omit the details of the proof of the first point.
For the second point, we first show by induction on i that |I li | ≤ |ui| and |Iri | ≤ |vi|. We deduce that:

|J | =
∣∣ ⋃
i∈I′

Iri ∪ I li
∣∣ ≤∑

i∈I′
|Iri |+ |I li | ≤

∑
i∈I′
|ui|+ |vi|

Let i ∈ I lr ∪ I l, we know that there exists j ∈ I ′ such that ui is a subterm of uj . Since ũi ≡ ui, we
deduce that |ũi| ≤ |uj | ≤

∑
j∈I′ |uj |+ |vj |.

Let i ∈ Ir. If ũi is an encryption then it is of constant size. Assume ũi is a decryption. Then ũi is the
decryption vi where any encryption whose index is in I lr has been replaced by its left counterpart, and
any encryption whose index is in Ir has been replaced by a dummy encryption (the case I l cannot happen,
since i ∈ Ir). Since there are at most |vi| − 1 such encryptions (as vi contain at least one occurrence
of the dec function symbol), and since any encryption with index in I lr or Ir is upper-bounded by∑
j∈I′ |uj |+ |vj |, we get that:

|ũi| ≤ |vi|+ (|vi| − 1).
∑
j∈I′
|uj |+ |vj | ≤ |vi|.

∑
j∈I′
|uj |+ |vj | ≤

(∑
j∈I′
|uj |+ |vj |

)2
We deduce that (ũi)i∈J ∼ (ṽi)i∈J is of polynomial size in

∑
j∈I′ |uj |+ |vj |. �

5.4.2 Length in the cca2 Axioms

If we want the formula {t}rpk ∼ {t′}r
′

pk′ to be a valid application of the cca2 axioms, we need to make
sure that t and t′ are of the same length. Since the length of terms depend on implementation details
(e.g. how is the pair 〈_ , _〉 implemented), we let the user supply implementation assumptions. We use a
predicate symbol EQL(_, _) in the logic, together with some derivation rules DL (supplied by the user),
and we require that they verify the following properties:

• Complexity: for every u, v, we can decide whether EQL(u, v) is a consequence of DL in polynomial
time in |u|+ |v|.

• Branch Invariance: for all terms b, u, v, t, if EQL(if b then u else v, t) is derivable using DL then
EQL(u, t) and EQL(v, t) are derivable using DL.

5.5. Main Result and Difficulties 189

Length(n) = lη Length(0le) = le

Length(u) = Length(u′) if u =R u
′ and Length(u), Length(u′) are not undefined

Length(〈u , v〉) = Length(u) + Length(v) + l〈 , 〉 ∀le.Length(padle(u)) = le

∀k.Length({u}npk) = k.l{block} + l{} if Length(u) = k.lblock

∀k.Length(dec(u, sk)) = k.lblock if Length(u) = k.l{block} + l{}

Length(if b then u else v) =

{
Length(u) if Length(u) = Length(v)

undefined otherwise

Figure 5.5: Definition of the Length partial function.

We add to all cca2 instances the side condition EQL(ml, mr) for every encryption oracle call on (ml,mr).
Then, we know that our cca2 instances are valid in any computational modelMc where the encryption
is interpreted as a ind-cca2 encryption scheme, and where the following property holds: for every ground
terms u, v, if EQL(u, v) is derivable using DL, then:

[[length(u)]]Mc = [[length(v)]]Mc

Example: Block Cipher We give here an example of derivation rules DL that axiomatize the fact
that the encryption function is built upon a block cipher, taking blocks of length lblock and returning
blocks of length l{block}. The length constant l{} is used to represent the constant length used, e.g., for
the IV and the HMAC.

We let L be a set of length constants, and we define a length expression to be an expression of the
form

∑
l∈L kl.l, where L is a finite subset of L and (kl)l∈L are positive integers. We consider length

expressions modulo commutativity (i.e. 3.l1 + 4.l2 ≈ 4.l2 + 3.l1), and we assume that for every length
expression le, there exists a function symbol padle ∈ F . Intuitively padle is function padding messages to
length l: if the message is too long it truncates it, and if the message is too short it pads it. Similarly,
we assume that for every le, we have a function symbol 0le ∈ F or arity zero which, intuitively, returns
le zeroes. Also, we assume that L contains the following length constants: l〈 , 〉, lenc, lblock, lη.

We define the Length (partial) function on terms in Figure 5.5. Then, we let DL be the (recursive) set
of unitary axioms:

Length(u) = Length(v) 6= undefined
EQL(u, v)

Proposition 5.4. The function Length is well defined, and the set of axioms DL satisfies the soundness
and branch invariance properties.

Proof. To check that Length is well defined, one just need to look at the critical pairs in the definition
and check that they are joinable. Soundness is easy, as JLengthKMc is just an under-approximation of
JlengthKMc in every computational modelMc where the encryption is interpreted as a block cipher, the
padding functions are interpreted as expected etc.

Finally, branch invariance follows directly from the definition of Length(if b then u else v). �

Remark 5.5. We can allow the user to add any set of length equations, as long as the branch invari-
ance property holds and the Length function is well-defined. E.g. one may wish to add equations like
Length(A) = Length(B) = Length(C) = lagent. �

5.5 Main Result and Difficulties

We let Ax be the conjunction of Struct-Ax and cca2. We now state our main result.

190 Deciding Indistinguishability

Theorem (Main Result). The following problem is decidable:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

We give here an overview of the problems that have to be overcome in order to obtain the decidability
result. Before starting, a few comments. We close all rules under permutations. The Sym rule commutes
with all the other rules, and the cca2 unitary axioms are closed under Sym. Therefore we can remove
Perm and Sym from the set of rules. Observe that CSnoif ,FA\0,Dup and cca2 are all decreasing rules,
i.e. the premises are smaller than the conclusion. The only non-decreasing rules are R, which may
rewrite a term into a larger one, and Restr, which we eliminate later. Therefore, to obtain a complete
and terminating strategy for Ax, we need to bound the size of the terms introduced when applying the
R rule. The main result of this chapter is a characterization of unnecessary rewritings, which will yield
a bound on the size of the premises of a useful R application. We will deduce an upper-bound on the
minimal proof of a formula, if it exists.

First, we define a way of describing fragments of our logic:

Definition 5.12. For every formula φ, we write P ` φ if P is a proof of φ.

Definition 5.13. Let Σ be the set of axiom names, seen as an alphabet. For all L ⊆ Σ∗, we let F(L) be
the fragment of our logic defined by: a formula φ is in the fragment iff there exists a proof P such that
P ` φ and, for every branch ρ of P , the word w obtained by collecting the axiom names along ρ (starting
from the root) is in L.

Example 5.5. The derivation in Example 5.1, page 176 is the fragments:

F (R · CSnoif · Refl) �

Necessary Introductions As we saw in Example 5.1, it might be necessary to use R in the “wrong
direction”, typically to introduce new conditionals. A priori, this yields an unbounded search space.
Therefore our goal is to characterize in which situations we need to use R in the “wrong direction”, and
with which instances. We identify two necessary reasons for introducing new conditionals.

• First, to match the shape of the term on the other side, like g() in Example 5.1:

if g() then n0 else n1 ∼ if g() then n else n
if g() then n0 else n1 ∼ n R

In this case, the introduced conditional is exactly the conditional that appeared on the other side of
∼. With more complex examples this may not be the case. Nonetheless, an introduced conditional
is always bounded by the conditional it matches.

• Second, we might introduce a guard in order to fit to the definition of safe decryptions in the cca2

axioms, as in (5.4) in Example 5.2. Here also, the introduced guard will be of bounded size. Indeed,
guards of dec(s, sk) are of the form eq(s, α) where α is a subterm of s. Therefore, for a fixed s,
there are a bounded number of them, and they are of bounded size.

These two (informally defined) conditions are actually sufficient: any other rewriting is a unnecessary
detour. We illustrate this on an example:

Example 5.6 (Cut Elimination). We consider a proof of s ∼ t where the CSnoif rule is applied on two
conditionals that have just been introduced by the R rule:

a, s ∼ b, t a, s ∼ b, t
if a then s else s ∼ if b then t else t

CSnoif
s ∼ t R

Here, the conditional a and b can be of arbitrary size. Intuitively, this is not a problem since any proof
of a, s ∼ b, t includes a proof of s ∼ t. �

The idea is that we can extract a proof of s ∼ t from any proof of a, s ∼ b, t. We prove this by showing
that Restr applications can be eliminated.

5.5. Main Result and Difficulties 191

Lemma 5.1 (Restr Elimination). If P ` ~u ∼ ~v with P in the fragment:

F
(
(CSnoif +R+ FA\0 + Dup + cca2 + Restr)∗

)
then there exists P ′ such that P ′ ` ~u ∼ ~v and P ′ contains no Restr applications. Moreover:

• the height of P ′ is no larger than the height of P .

• if P is in a fragment F(L) where L is closed by sub-words then P ′ is in F(L).

Proof. We do a proof by induction on the height of the derivation P of ~u ∼ ~v. More precisely, we prove
that for any height n and formula ~u ∼ ~v, for any derivation P of ~u ∼ ~v in the fragment:

F
(
(CSnoif +R+ FA\0 + Dup + cca2 + Restr)∗

)
such that P is of height n, there exists a derivation P ′ with no Restr of ~u ∼ ~v of height no larger than n.

Assume that we have a derivation P of ~u ∼ ~v where the last rule applied is Restr:

~u,~t ∼ ~v,~s
~u ∼ ~v Restr

We discriminate on the second last rule applied:
• If it is a unitary axiom we conclude easily using the fact that unitary axioms are closed under Restr.

• If it is a FA\0 axiom and ~t is not involved in this function application then P is of the form:

.... (A)

~u, ~u ′,~t ∼ ~v,~v ′,~t ′

f(~u), ~u ′,~t ∼ f(~v), ~v ′,~t ′
FA\0

f(~u), ~u ′ ∼ f(~v), ~v ′
Restr

To conclude, we apply the induction hypothesis to extract a proof of ~u, ~u ′ ∼ ~v,~v ′ in the wanted
fragment from (A). We conclude by applying the FA\0 rule:

.... (A)

~u, ~u ′,~t ∼ ~v,~v ′,~t ′

~u, ~u ′ ∼ ~v,~v ′ Restr

ind. hyp.
=⇒

.... (A′)
~u, ~u ′ ∼ ~v,~v ′

apply FA\0
=⇒

.... (A′)
~u, ~u ′ ∼ ~v,~v ′

f(~u), ~u ′ ∼ f(~v), ~v ′
FA\0

• If it is a FA\0 axiom and ~t is involved in this function application then P is of the form:

.... (A)

~u, ~u ′, ~u ′′ ∼ ~v,~v ′, ~v ′′

~u, ~u ′, f(~u ′′) ∼ ~v,~v ′, f(~v ′′)
FA\0

~u ∼ ~v Restr

By applying the induction hypothesis, we extract a proof of ~u ∼ ~v in the wanted fragment directly:

.... (A)

~u, ~u ′, ~u ′′ ∼ ~v,~v ′, ~v ′′
ind. hyp.

=⇒
.... (A′)

~u ∼ ~v

• If it is CSnoif :

.... (A)

~w 0, ~w 1, b, (ui)i∈I∪J ∼ ~w ′0, ~w
′
1, b
′, (u′i)i∈I∪J

.... (B)

~w 0, ~w 1, b, (vi)i∈I∪J ∼ ~w ′0, ~w
′
1, b
′, (v′i)i∈I∪J

~w 0, ~w 1, (if b then ui else vi)i∈I∪J ∼ ~w ′0, ~w
′
1, (if b

′ then u′i else v
′
i)i∈I∪J

CSnoif

~w 0, (if b then ui else vi)i∈I ∼ ~w ′0, (if b
′ then u′i else v

′
i)i∈I

Restr

192 Deciding Indistinguishability

We apply the induction hypothesis twice:
.... (A)

~w 0, ~w 1, b, (ui)i∈I∪J ∼ ~w ′0, ~w
′
1, b
′, (u′i)i∈I∪J

~w 0, b, (ui)i∈I ∼ ~w ′0, b
′, (u′i)i∈I

Restr

ind. hyp.
=⇒

.... (A′)
~w 0, b, (ui)i∈I ∼ ~w ′0, b

′, (u′i)i∈I

.... (B)

~w 0, ~w 1, b, (vi)i∈I∪J ∼ ~w ′0, ~w
′
1, b
′, (v′i)i∈I∪J

~w 0, b, (vi)i∈I ∼ ~w ′0, b
′, (v′i)i∈I

Restr

ind. hyp.
=⇒

.... (B′)
~w 0, b, (vi)i∈I ∼ ~w ′0, b

′, (v′i)i∈I

We obtain the derivation:
.... (A′)

~w 0, b, (ui)i∈I ∼ ~w ′0, b
′, (u′i)i∈I

.... (B′)
~w 0, b, (vi)i∈I ∼ ~w ′0, b

′, (v′i)i∈I
~w 0, (if b then ui else vi)i∈I ∼ ~w ′0, (if b

′ then u′i else v
′
i)i∈I

CSnoif

• The Dup and R axioms are trivial to handle. �

Remark 5.6. In the proof, we need the cca2 axioms to be closed under Restr. Note that this created
some problems, which we dealt with earlier, in Section 5.4.1. �

Using this lemma, we can deal with Example 5.6 by doing a proof cut elimination. More generally,
by induction on the proof size, we can guarantee that no such proof cuts appear. This is the strategy
we are going to follow: look for proof cuts that introduce unbounded new terms, eliminate them, and
show that after sufficiently many cut eliminations all the subterms appearing in the proof are bounded by
the (R-normal form of the) conclusion. But a proof may contain more complex behaviors than just the
introduction of a conditional followed by a CSnoif application. For example the conditional being matched
could have been itself introduced earlier to match another conditional, which itself was introduced to
match a third conditional etc.

Example 5.7. We illustrate this on an example. When it is more convenient, we write terms containing
only if_then_else_ and other subterms (handled as constants) as binary trees; we also index some
subterms with a number, which helps keeping track of them across rule applications. Consider the
derivation: (A)

a1, b2, b3, u4, w5, u6, v7 ∼ d1, c2, d3, s4, t5, r6, p7

a1

b2

u4 b3

w5 u6

v7

∼

d1

c2

s4 d3

t5 r6

p7

FA(3)
\0

if a then u else v ∼ if c then s else t R

where p ≡ if c then s else t. Here the conditionals b, d and the terms w, r are, a priori, arbitrary. Therefore
we would like to bound them or remove them through a cut elimination. The cut elimination technique
used in Example 5.6 does not apply here because we cannot extract a proof of a ∼ c.

But we can extract a proof of b2, b3 ∼ c2, d3. Using the axioms soundness, this means that in every
appropriate computational model, [[b, b]] ≈ [[c, d]]. Therefore, no adversary can distinguish between getting
twice the same value sampled from [[b]] and getting a pair of values sampled from [[c, d]]. In particular,
[[c]]η,ρ = [[d]]η,ρ, except for a negligible number of random tapes ρ. �

A First Key Lemma A natural question is to ask whether the semantic equality [[c]] = [[d]] implies a
syntactic equality. While this is not the case in general, there are fragments of our logic in which this
holds. To define such a fragment, we annotate the rules FA\0 by the function symbol involved, and we
let FAs = {FAf | f ∈ F\if,0} be the restriction of FA\0 to function symbols different from if_then_else_.
Formulas that can be proven in the fragment F(FAs

∗ · Dup∗ · cca2) have a particular shape, which is
completely characterized by the rules applied in the derivation:

5.5. Main Result and Difficulties 193

Proposition 5.5. For all b, b′ ∈ T (F ,N), if b ∼ b′ is in the fragment F(FAs
∗ · Dup∗ · cca2) then

b ≡ C[~w, (αi)i, (decj)j], b′ ≡ C[~w, (α′i)i, (dec
′
j)j] and the cca2 instance applied is (up-to α-renaming):

~w, (αi)i, (decj)j ∼ ~w, (α′i)i, (dec
′
j)j

where (αi, α
′
i)i are the encryption oracle calls and (decj , dec

′
j)j are the decryption oracle calls.

Proof. This is easy immediate by induction on the proof derivation. �

Using this characterization, we proof the following key lemma:

Lemma 5.2. For all b, b′, b′′, if b, b ∼ b′, b′′ is in the fragment F(FAs
∗ · Dup∗ · cca2) then b′ ≡ b′′.

Proof. From Proposition 5.5 we have:

b ≡ Cl[~w l, (αli)i∈Il , (dec
l
j)j∈Jl] b′ ≡ Cl[~w l, (α′li)i∈Il , (dec

′l
j)j∈Jl]

b ≡ Cr[~w r, (αri)i∈Ir , (dec
r
j)j∈Jr] b′′ ≡ Cr[~w r, (α′ri)i∈Ir , (dec

′r
j)j∈Jr]

Assume that Cl 6≡ Cr. Let p be the position of a hole of Cl such that p is a valid position but not a
hole position in Cr (if this is not the case, invert b′ and b′′). Then we have three cases:

• The hole at b|p is mapped to a term u ∈ ~w l. Then, we can rewrite the proof such that p is a hole
position in both terms.

• The hole at b|p is mapped to an encryption oracle call {m}ne
pk(n) in b and {m′}ne

pk(n) in b′. Since
{m}ne

pk(n) is an encryption in the cca2 application, we know from the freshness side-condition that
ne does not appear in ~w r. But since Cr|p is not a hole, the proof of b, b ∼ b′, b′′ includes the sub-proof:

. . . , ne ∼ . . . , n′e
cca2

....
. . . ,m, pk(n), ne ∼ . . . ,m′, pk(n), ne
. . . , {m}ne

pk(n) ∼ . . . , {m
′}ne

pk(n)

FA\0

Since ne is a name in N and cannot be modified by any rules in {R,FAs,Dup}. Therefore ne ∈ ~w r.
This contradict the freshness side-condition. Absurd.

• If the hole at b|p is mapped to a decryption oracle call decli0 in b. Since Cr|p is not a hole, and since
function applications on FAs cannot be applied on the if_then_else_ function symbols we know
that there exists m,m′ such that decli0 ≡ dec(m, sk(n)) and dec′li0 ≡ dec(m′, sk(n)). Moreover, since
decli0 is a decryption in the cca2 application, we know from the key-usability side-condition that
sk(n) appears only in decryption position in ~w r. Then the reasoning we have in the previous cases
applies here. Indeed, we know that Cr|p is not a hole, hence the proof of b, b ∼ b′, b′′ includes one of
the following sub-proofs:

. . . , sk(n) ∼ . . . , sk(n)
cca2

....
. . . ,m, sk(n) ∼ . . . ,m′, sk(n)

. . . , dec(m, sk(n)) ∼ . . . , dec(m′, sk(n))
FA\0

or

. . . ,m, n ∼ . . . ,m′, n
cca2

....
. . . ,m, n ∼ . . . ,m′, n

. . . ,m, sk(n) ∼ . . . ,m′, sk(n)
FAsk

....
. . . ,m, sk(n) ∼ . . . ,m′, sk(n)

. . . , dec(m, sk(n)) ∼ . . . , dec(m′, sk(n))
FA\0

Hence either n ∈ ~w r or sk(n) ∈ ~w r. Absurd. �

Using this lemma, we can deal with Example 5.7 whenever the proof of a1, b2, b3 ∼ d1, c2, d3 lies in
the fragment F(FAs

∗ · Dup∗ · cca2). Using a first time the lemma on b2, b3 ∼ c2, d3 we obtain c ≡ d, and
using again the lemma on a1, b2 ∼ d1, c2 (since d ≡ c) we deduce a ≡ b. Hence:

a1, b2, b3, u4, w5, u6, v7 ∼ d1, c2, d3, s4, t5, r6, p7 ≡ a1, a2, a3, u4, w5, u6, v7 ∼ c1, c2, c3, s4, t5, r6, p7

194 Deciding Indistinguishability

Therefore, using Lemma 5.1, we can extract a proof:

.... (A′)
a1, u4, v7 ∼ c1, s4, p7

Where, we recall, p ≡ if c then s else t. Hence we have the cut elimination:

.... (A′)
a1, u4, v7 ∼ c1, s4, p7

a1

u4 v7
∼

c1

s4 c

s t

FA\0

if a then u else v ∼ if c then s else t R

Notice that all sub-terms above are bounded, although the conditional c appears twice on the right.

Proof Sketch We sketch the outline of the completeness proof:
• Commutations: first we show that we can assume that rules are applied in some given order. We
prove this by showing some commutation results and adding new rules.

• Proof Cut Eliminations: through proof cut eliminations, we guarantee that every conditional
appearing in the proof is α-bounded. Intuitively a conditional is α-bounded if it is a subterm of
the conclusion or if it guards a decryption appearing in an α-bounded term.

• Decision Procedure: we give a procedure that, given a goal formula t ∼ t′, computes the set of
α-bounded terms for this formula. We show that this procedure computes a finite set, and deduce
that the proof search is finite. This yields an effective algorithm to decide our problem.

5.6 Commutations and Cut Eliminations

In this section we show, through rule commutations, that we can restrict ourselves to proofs using rules
in some given order. This is done through two rule commutations lemmas, and a proof cut elimination.
In the next section, we show how this restricts the shapes of the terms appearing in a proof.

5.6.1 Rule Commutations

Everything in this subsection applies to any set U of unitary axioms closed under Restr. We specialize
to cca2 later. We start by showing a set of rule commutations of the form w ⇒ w′, where w and w′ are
words over the set of rule names. An entry w ⇒ w′ means that a derivation in w can be rewritten into a
derivation in w′, with the same conclusion and premises. Here are the basic commutations we use:

Lemma 5.3. The following rule commutations are correct:

Dup ·R ⇒ R · Dup
Dup · FA\0 ⇒ FA∗\0 · Dup
Dup · CSnoif ⇒ CSnoif · Dup

FA\0 ·R ⇒ R · FA\0
FA\0 · CSnoif ⇒ R · CSnoif · FA\0

Proof. The commutations can be found in Figure 5.6. �

Using these rules, we obtain a first restriction.

Lemma 5.4. For any set of unitary axioms U closed under Restr, the ordered strategy:

F((CSnoif +R)∗ · FA∗\0 · Dup
∗ · U)

is complete for F((CSnoif + FA\0 +R+ Dup + U)∗).

5.6. Commutations and Cut Eliminations 195

Delay FA\0
• FA\0 · CSnoif ⇒ R · CSnoif · FA\0:

~w 1, ~w 2, b, (ui)i∈I∪J ∼ ~w ′1, ~w
′
2, b
′, (u′i)i∈I∪J ~w 1, ~w 2, b, (vi)i∈I∪J ∼ ~w ′1, ~w

′
2, b
′, (v′i)i∈I∪J

~w 1, ~w 2, (if b then ui else vi)i∈I∪J ∼ ~w ′1, ~w
′
2, (if b

′ then u′i else v
′
i)i∈I∪J

CSnoif

~w 1, (if b then ui else vi)i∈I , f(~w 2, (if b then ui else vi)i∈J)
∼ ~w ′1, (if b

′ then u′i else v
′
i)i∈I , f(~w ′2, (if b

′ then u′i else v
′
i)i∈J)

FA\0

Can be rewritten into:

~w 1, ~w 2, b, (ui)i∈I∪J ∼ ~w ′1, ~w
′
2, b
′, (u′i)i∈I∪J

~w 1, b, (ui)i∈I , f(~w 2, (ui)i∈J)
∼ ~w ′1, b

′, (u′i)i∈I , f(~w ′2, (u
′
i)i∈J)

FA\0
~w 1, ~w 2, b, (vi)i∈I∪J ∼ ~w ′1, ~w

′
2, b
′, (v′i)i∈I∪J

~w 1, b, (vi)i∈I , f(~w 2, (vi)i∈J)
∼ ~w ′1, b

′, (v′i)i∈I , f(~w ′2, (v
′
i)i∈J)

FA\0

~w 1, (if b then ui else vi)i∈I , if b then f(~w 2, (ui)i∈J) else f(~w 2, (vi)i∈J)
∼ ~w ′1, (if b

′ then u′i else v
′
i)i∈I , if b

′ then f(~w ′2, (u
′
i)i∈J) else f(~w ′2, (v

′
i)i∈J)

CSnoif

~w 1, (if b then ui else vi)i∈I , f(~w 2, (if b then ui else vi)i∈J)
∼ ~w ′1, (if b

′ then u′i else v
′
i)i∈I , f(~w ′2, (if b

′ then u′i else v
′
i)i∈J)

R

• FA\0 ·R ⇒ R · FA\0:

~u1, ~v 1 ∼ ~u ′1, ~v ′1
~u,~v ∼ ~u ′, ~v ′ R

~u, f(~v) ∼ ~u ′, f(~v ′)
FA\0

⇒
~u1, ~v 1 ∼ ~u ′1, ~v ′1

~u1, f(~v 1) ∼ ~u ′1, f(~v ′1)
FA\0

~u, f(~v) ∼ ~u ′, f(~v ′)
R

Delay Dup
• Dup ·R ⇒ R · Dup.
If the R rules involves a term which is not duplicated then this is trivial. Assume the R rewriting
involves a duplicated term, and that t =R s and t′ =R s

′:

~u,~v , s ∼ ~u ′, ~v ′, s′

~u,~v , t ∼ ~u ′, ~v ′, t′ R

~u,~v , t, ~v , t ∼ ~u ′, ~v ′, t′, ~v ′, t′
Dup

⇒
~u,~v , s ∼ ~u ′, ~v ′, s′

~u,~v , s, ~v , s ∼ ~u ′, ~v ′, s′, ~v ′, s′
Dup

~u,~v , t, ~v , t ∼ ~u ′, ~v ′, t′, ~v ′, t′ R

• Dup · FA\0 ⇒ FA∗\0 · Dup.
Similarly if the FA\0 rules does not involve a duplicated term then this is trivial. Otherwise:

~u,~v , ~w ∼ ~u ′, ~v ′, ~w ′

~u,~v , f(~w) ∼ ~u ′, ~v ′, f(~w ′)
FA\0

~u,~v , f(~w), ~v , f(~w) ∼ ~u ′, ~v ′, f(~w ′), ~v ′, f(~w ′)
Dup

⇒

~u ∼ ~u ′

~u,~v , ~w ,~v , ~w ∼ ~u ′, ~v ′, ~w ′, ~v ′, ~w ′
Dup

~u,~v , f(~w), ~v , ~w ∼ ~u ′, ~v ′, f(~w ′), ~v ′, ~w ′
FA\0

~u,~v , f(~w), ~v , f(~w) ∼ ~u ′, ~v ′, f(~w ′), ~v ′, f(~w ′)
FA\0

• Dup · CSnoif ⇒ CSnoif · Dup. Commutation of Dup with CSnoif is similar.

Figure 5.6: Function Application and Duplicate Rules Commutations

196 Deciding Indistinguishability

Proof. Using Lemma 5.3, we commute all the Dup to the right, which yields F((CSnoif +R+FA\0)∗·Dup∗·U).
Then, we commute all FA\0 to the right, stopping at the first Dup. �

Example 5.8. We give an example of such a proof rewriting:

x ∼ z
π1(〈x , y〉) ∼ z R

g(π1(〈x , y〉)) ∼ g(z)
FA\0

g(π1(〈x , y〉)), g(π1(〈x , y〉)) ∼ g(z), g(z)
Dup

⇒

x ∼ z
x, x ∼ z, z Dup

x, g(x) ∼ z, g(z)
FA\0

g(x), g(x) ∼ g(z), g(z)
FA\0

g(π1(〈x , y〉)), g(π1(〈x , y〉)) ∼ g(z), g(z)
R

�

Splitting the FA\0 Rule To go further, we split the function application rules FA\0 as follows: if the
deconstructed symbol is if_then_else_ then we denote the function application by FA\0(b, b′), where b, b′
are the involved conditionals; if the deconstructed symbol f is in F\if,0, then we denote the function
application by FAf . We give below the two new rules:

~w, a, u, v ∼ ~r, b, s, t
~w, if a then u else v ∼ ~r, if b then s else t

FA(b, b′)
~u,~v ∼ ~s,~t

~u, f(~v) ∼ ~s, f(~t)
FAf

The set of rule names is now infinite, since there is a rule FA\0(b, b′) for every pair of ground terms b, b′.
Intuitively, we want to use R at the beginning of the proof only. This is helpful since, as we observed

earlier, all the other rules are decreasing (i.e. premises are smaller than the conclusion). The problem is
that we cannot fully commute CSnoif and R. For example, in:

a1, u1 ∼ c1, s1

a, u ∼ c, s R
a2, v1 ∼ c2, t1
a, v ∼ c, t R

if a then u else v ∼ if c then s else t
CSnoif

(5.5)

we can commute the rewritings on u, v, s and t, but not on a and c because they appear twice in the
premises, and a1 and a2 may be different (same for c1 and c2).

We solve this by adding new rules to track relations between branches. We first give simplified
versions. For every if-free ground conditionals a and c in R-normal form, we introduce the rules:

~u,C
[
a a

a

]
∼ ~v, C ′

[
c c

c

]
~u,C[a] ∼ ~v, C ′[c] 2Boxs a1, u ∼ c1, s a2, v ∼ c2, t

if a1 a2
a
then u else v ∼ if c1 c2

c
then s else t

CSs
�

where
a
is a new symbol of sort bool2 → bool, and of fixed semantics: it ignores its arguments and

has the semantics [[a]]. Intuitively, a1 a2
a
stands for the conditional a, and a1, a2 are, respectively, the

left and right versions of a. Then, using these rules, we can rewrite the derivation in (5.5):

a1, u1 ∼ c1, s1 a2, v1 ∼ c2, t1
if a1 a2

a
then u1 else v1 ∼ if c1 c2

c
then s1 else t1

CSb
�

if a a
a
then u else v ∼ if c c

c
then s else t

R

if a then u else v ∼ if c then s else t 2Boxs

The 2Boxs allows to introduce two versions of a and c, which can be independently rewritten. Using this,
we can do both rewritings before applying the CSs

� rule.
Let us define formally the unrestricted rules. First, we denote B the set of new function symbols.

Definition 5.14. We let B be the set of function symbols:

F ∪ { _ _
b
| b if-free ground conditional}

We need the functions in B to block the if-homomorphism to ensure that for all a c
b
∈ st(t),

[[a]] = [[c]] = [[b]]. Therefore the set of equalities R2 is not extended to B. For example we have:

if a then c else d e
b
6→∗R if a then c e

b
else d e

b

The R rule is replaced by R� which has an extra side-condition: R� can rewrite ~w, u[s] into ~w, u[t] as long
as ~w, u[s]’s boxed conditionals

{
a c

b
∈ st(~w, u[s])

}
contain t’s boxed conditionals

{
a c

b
∈ st(t)

}
.

5.6. Commutations and Cut Eliminations 197

Definition 5.15. We let R� be the following axiom schema:

~w, u[t] ∼ ~v
~w, u[s] ∼ ~v

R� when s =R t and { a c
b
∈ st(t)} ⊆ { a c

b
∈ st(~w, u[s])}

The side-condition ensures that no new arbitrary a c
b
is introduced. New boxed conditionals are

only introduced through the 2Box rule. Similarly, the FA\0 axiom is not extended to B: boxed conditionals
can only be open using the CS� rule.

Example 5.9. We give two examples of valid application of the R� rules. The first R� application is
valid because we do not introduce any boxed conditional on the left, and because we remove a boxed
conditional on the right. The second R� application is valid because the introduced boxed conditional
already appears in the conclusion:

if eq(g({0}npk), {0}npk) then dec(g({0}npk), sk)

else dec(g({0}npk), sk)

∼ v

dec(g({0}npk), sk) ∼ if a c
b
then v else v

R�

if a c
b
then (if a c

b
then u else w)

else v
∼ t

if a c
b
then u else v ∼ t

R�

�

When boxing a conditional c, we want the term c� indexing the box c c
c�

to characterize c’s
semantics in a proof invariant way. By consequence, we replace all boxes a1 a2

a
in c by a, and we

normalize the resulting term. Formally, we introduce the following erasure function which removes boxed
conditional:

Definition 5.16. We let 2erase be the function defined on if-free ground terms by:

2erase(t) ≡

2erase(b) if t ≡ b1 b2

b

n if t ≡ n and n ∈ N
f(2erase(t1), . . . , 2erase(tn)) if t ≡ f(t1, . . . , tn) and f 6= if_then_else_

Example 5.10. We give a simple example with a term containing only one boxed conditional a c
b
:

2erase
(
eq(if a c

b
then u else v,A)

)
≡ eq(if b then u else v,A) �

This function is used to define the full (not simplified) versions of 2Box and CS�:

Definition 5.17. We let 2Box and CS� be the axioms:

~u,C
[
a a 2erase(a)↓R

]
∼ ~u ′, C ′

[
a′ a′ 2erase(a′)↓R

]
~u,C[a] ∼ ~u ′, C ′[a′] 2Box when a, a′ ∈ T (F\if ∪ B,N)

~w, a1, (ui)i ∼ ~w′, a′1, (u
′
i)i ~w, a2, (vi)i ∼ ~w′, a′2, (v

′
i)i

~w,
(
if a1 a2

a
then ui else vi

)
i
∼ ~w′,

(
if a′1 a′2

a′
then u′i else v

′
i

)
i

CS� when a, a′ ∈ T (F\if,N)

Remark that for the CS� rule to be sound we need [[a1]], [[a2]] and [[a]] to be equal, up to a negligible
number of samplings (same for a′1, a′2 and a). This is not enforced by the rules, so it has to be an invariant
of our strategy.

Definition 5.18. A term t is well-formed if and only if for every a c
b
∈ st(t), a =R c =R b. We lift

this to formulas as expected.

Proposition 5.6. The following rules preserve well-formedness:

R�, 2Box,CS�,FAs, {FA\0(b, b′)},Dup

Besides, R�, CS� and 2Box are sound on well-formed formulas.

Proof. The only rule not obviously preserving well-formedness is R�, but its side-conditions guarantee
the well-formedness invariant. The only rule that is not always sound is CS�, and it is trivially sound on
well-formed formulas. �

Remark 5.7. We extend cond-st to terms in T (B,N) in a non-obvious way, by erasing all boxes.
Formally, for all t ∈ T (B,N), we let:

cond-st(t) = cond-st(2erase(t)) �

198 Deciding Indistinguishability

Ordered Strategy We can now give the new rule commutations.

Lemma 5.5. The following rule commutations are correct:

FAs · FA\0(b, b′) ⇒ R · FA\0(b, b′) · FAs
∗ · Dup

CS� ·R� ⇒ R� · CS�

CS� · 2Box ⇒ R� · 2Box · CS�

Proof. The rule commutations can be found in Figure 5.7. �

This allows to have R� rules only at the beginning of the proof.

Lemma 5.6. For any set of unitary axioms U closed under Restr, the ordered strategy:

F((2Box +R�)∗ · CS∗� · {FA\0(b, b′)}∗ · FAs
∗ · Dup∗ · U)

is complete for F((CSnoif + FA\0 +R+ Dup + U)∗).

Proof. We start from the result of Lemma 5.4, split the FA\0 rules and commute rules until we get:

F((CSnoif +R)∗ · {FA\0(b, b′)}∗ · FAs
∗ · Dup∗ · U)

We then replace all applications of CSnoif by 2Box ·CS�. All a a
a
introduced are immediately “opened”

by a CS� application, hence we know that the side-conditions of R� hold every time we apply R. Therefore
we can replace all applications of R by R�, which yields:

F((CS� + 2Box +R�)∗ · {FA\0(b, b′)}∗ · FAs
∗ · Dup∗ · U)

Finally we commute the CS� applications to the right. �

5.6.2 The Freeze Strategy

We now show that we can restrict the terms on which the rules in {FA\0(b, b′)} can be applied: when we
apply a rule in {FA\0(b, b′)}, we “freeze” the conditionals b and b′ to forbid any further applications of
{FA\0(b, b′)} to them.

Example 5.11. Let ai ≡ if bi then ci else di (i ∈ {1, 2}), we want to forbid the following partial deriva-
tion to appear:

b1, c1, d1, u1, v1 ∼ b2, c2, d2, u2, v2

a1, u1, v1 ∼ a2, u2, v2
FA\0(b1, b2)

if a1 then u1 else v1 ∼ if a2 then u2 else v2
FA\0(a1, a2)

�

For this, we define a new function symbol arity one, which allows to freeze a conditional and prevent
applications of {FA\0(b, b′)}. Basically, when we apply a rule in {FA\0(b, b′)} on the conditionals b1 and b2:

b1 ≡ if a1 then u1 else v1 b2 ≡ if a2 then u2 else v2

We replace, in the premise, a1 by a1 in b1 and a2 by a2 in b2. Then, we show that we can restrict ourselves
to proofs where we never apply FA\0 on a frozen if_then_else_ conditional.

Definition 5.19. Let be a new function symbol of arity one. For every ground term s, we let s̃ be:

s̃ ≡

{
if b then u else v if s ≡ if b then u else v
s if s ∈ T (F\if,N)

Moreover we replace every FA\0(b1, b2) by the rule BFA(b1, b2) which freezes conditionals b1 and b2:

5.6. Commutations and Cut Eliminations 199

• FAs · FA\0(b, b′) ⇒ R · FA\0(b, b′) · FAs
∗ · Dup

~u,~v, b, s, t ∼ ~u′, ~v′, b′, s′, t′

~u,~v, if b then s else t ∼ ~u′, ~v′, if b′ then s′ else t′
FA\0(b, b′)

~u, f(~v, if b then s else t) ∼ ~u′, f(~v′, if b′ then s′ else t′)
FAf

Can be rewritten into:

~u, b, s, ~v, t ∼ ~u′, b′, s′, ~v′, t′

~u, b, ~v, s, ~v, t ∼ ~u′, b′, ~v′, s′, ~v′, t′
Dup

~u, b, f(~v, s), f(~v, t) ∼ ~u′, b′, f(~v′, s′), f(~v′, t′)
FA(2)

f

~u, if b then f(~v, s) else f(~v, t) ∼ ~u′, if b′ then f(~v′, s′) else f(~v′, t′)
FA\0(b, b′)

~u, f(~v, if b then s else t) ∼ ~u′, f(~v′, if b′ then s′ else t′) R

• CS� ·R� ⇒ R� · CS�:

(w1
j)j , b1, (u

1
i)i ∼ (w′1j)j , b

′
1, (u

′1
i)i

(wj)j , a1, (ui)i ∼ (w′j)j , a
′
1, (u

′
i)i

R�

(w2
j)j , b2, (v

1
i)i ∼ (w′2j)j , b

′
2, (v

′1
i)i

(wj)j , a2, (vi)i ∼ (w′j)j , a
′
2, (v

′
i)i

R�

(wj)j , (if a1 a2
b
then ui else vi)i ∼ (w′j)j , (if a′1 a′2

b′
then u′i else v′i)i

CS�

can be rewritten into:

(w1
j)j , b1, (u

1
i)i ∼ (w′1j)j , b

′
1, (u

′1
i)i (w2

j)j , b2, (v
1
i)i ∼ (w′1j)j , b

′
2, (v

′1
i)i

(if b1 b2
b
then w1

j else w2
j)j , (if b1 b2

b
then u1

i else v1i)i

∼ (if b′1 b′2
b′

then w′1j else w′2j)j , (if b′1 b′2
b′

then u′1i else v′1i)i

CS�

(wj)j , (if a1 a2
b
then ui else vi)i ∼ (w′j)j , (if a′1 a′2

b′
then u′i else v′i)i

R�

• CS� · 2Box ⇒ R� · 2Box · CS�. Let b, b′ ∈ T (F\if ∪ B,N), and let:

b� ≡ b b 2erase(b)↓R and b′� ≡ b′ b′ 2erase(b′)↓R

Then the following proof:

(wj [b�])j , a1[b�], (ui[b�])i ∼ (w′j [b
′
�])j , a

′
1[b
′
�], (u

′
i[b
′
�])i

(wj [b])j , a1[b], (ui[b])i ∼ (w′j [b
′])j , a

′
1[b
′], (u′i[b

′])i
2Box (wj [b])j , a2[b], (vi[b])i

∼ (w′j [b
′])j , a

′
2[b
′], (v′i[b

′])i

(wj [b])j ,
(
if a1[b] a2[b]

a
then ui[b] else vi[b]

)
i
∼ (w′j [b

′])j ,
(
if a′1[b

′] a′2[b
′]

a′
then u′i[b′] else v′i[b′]

)
i

CS�

can be rewritten into:

(wj [b�])j , a1[b�], (ui[b�])i
∼ (w′j [b

′
�])j , a

′
1[b
′
�], (u

′
i[b
′
�])i

(wj [b])j , a2[b], (vi[b])i
∼ (w′j [b

′])j , a
′
2[b
′], (v′i[b

′])i(
if a1[b�] a2[b]

a
then wj [b�] else wj [b]

)
j
,
(
if a1[b�] a2[b]

a
then ui[b�] else vi[b]

)
i

∼
(
if a′1[b

′
�] a′2[b

′]
a′

then w′j [b′�] else w
′
j [b
′]
)
j
,
(
if a′1[b

′
�] a′2[b

′]
a′

then u′i[b′�] else v
′
i[b
′]
)
i

CS�

(
if a1[b] a2[b]

a
then wj [b] else wj [b]

)
j
,
(
if a1[b] a2[b]

a
then ui[b] else vi[b]

)
i

∼
(
if a′1[b

′] a′2[b
′]

a′
then w′j [b′] else w′j [b′]

)
j
,
(
if a′1[b

′] a′2[b
′]

a′
then u′i[b′] else v′i[b′]

)
i

2Box

(wj [b])j ,
(
if a1[b] a2[b]

a
then ui[b] else vi[b]

)
i

∼ (w′j [b
′])j ,

(
if a′1[b

′] a′2[b
′]

a′
then u′i[b′] else v′i[b′]

)
i

R�

The commutation with an application of 2Box in the right branch is exactly the same.

Figure 5.7: Function Application and Boxed Case Study Rules Commutations

200 Deciding Indistinguishability

Definition 5.20. We let BFA be the rule:

~w1, b̃1, u1, v1 ∼ ~w2, b̃2, u2, v2

~w1, if b1 then u1 else v1 ∼ ~w2, if b2 then u2 else v2
BFA(b1, b2)

We let {BFA(b1, b2)} be the restriction of {BFA(b1, b2)} to instances where b1 and b2 are not frozen.
Finally, we let UnF be the rule which unfreezes all conditionals: every b is replaced by b.

Example 5.12. If the conditionals b′ is if-free then:

b0

a0 b1

a1 a2

, s, t ∼ b′, s′, t′

 b0

a0 b1

a1 a2

s t

∼ b′

s′ t′

BFA and

b0

a0 b1

a1 a2

, s, t ∼ b′, s′, t′

b0

a0 b1

a1 a2

, s, t ∼ b′, s′, t′

UnF

�

We can extend the Restr elimination procedure of Lemma 5.1 to deal with the new rules CS� and
2Box (but not R�):

Lemma 5.7. If P ` ~u ∼ ~v with P in the fragment:

F
(
(CS� + 2Box + FA\0 + Dup + cca2 + Restr)∗

)
then there exists P ′ such that P ′ ` ~u ∼ ~v and P ′ contains no Restr applications. Moreover:

• the height of P ′ is no larger than the height of P .

• if P is in a fragment F(L) where L is closed by sub-words then P ′ is in F(L).

Proof. This is the same proof than for Lemma 5.1, without the R case and replacing the CSnoif axiom by
the CS� axiom. Note that the 2Box rule is trivial to handle. �

We can state the following ordered strategy lemma:

Lemma 5.8. For any set of unitary axioms U closed under Restr, the ordered strategy:

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · U)

is complete for F((CSnoif + FA\0 +R+ Dup + U)∗).

Basically, the proof consists in eliminating all proof cuts of the shape given in Example 5.11. The
cut elimination is simple, though voluminous. Before starting the proof, we define the induction ordering
used in the proof.

Proof ordering Let us consider the following well-founded order on proofs: a proof is interpreted by
the multi-set of pair (b, b′) appearing as (potentially frozen) labels of BFA applications where we erased
the function symbol . We then order these multi-set using the multi-set ordering �mult, which is induced
by the product ordering �×, which itself is built upon an arbitrary total rewrite ordering on ground terms
without boxes � (e.g a LPO for some arbitrary precedence over function symbols).

Example 5.13. Assume that b1 ≡ if b then a else c and b2 ≡ if b′ then a′ else c′. Let P1 be the derivation:

b, a, c, u1, v1 ∼ b′, a′, c′, u2, v2

b, a, c, u1, v1 ∼ b′, a′, c′, u2, v2

UnF

b̃1, u1, v1 ∼ b̃2, u2, v2

BFA(b, b′)

if b1 then u1 else v1 ∼ if b2 then u2 else v2
BFA(b1, b2)

5.6. Commutations and Cut Eliminations 201

And P2 be the derivation:

b, a, c, u1, v1 ∼ b′, a′, c′, u2, v2

b̃, ã, c̃, u1, v1 ∼ b̃′, ã′, c̃′, u2, v2

UnF

b̃, ã, u1, v1, c̃, u1, v1 ∼ b̃′, ã′, u2, v2, c̃′, u2, v2

Dup

b̃, ã, u1, v1, if c then u1 else v1 ∼ b̃′, ã′, u2, v2, if c′ then u2 else v2

BFA(c, c′)

b̃, if a then u1 else v1, if c then u1 else v1 ∼ b̃′, if a′ then u2 else v2, if c′ then u2 else v2

BFA(a, a′)

if b then (if a then u1 else v1) else (if c then u1 else v1)

∼ if b′ then (if a′ then u2 else v2) else (if c′ then u2 else v2)

BFA(b, b′)

if b1 then u1 else v1 ∼ if b2 then u2 else v2
R

Observe that P1 and P2 are two different derivations of the same formula. P1 and P2 are respectively
interpreted as the multi-sets:

{(b1, b2), (b, b′)} and {(b, b′), (a, a′), (c, c′)}

Remark that when interpreting the derivation as multi-sets, we unfroze the conditionals. The conditionals
b, a, c (resp. b′, a′, c′) are strict subterms of b1 (resp. b2), therefore we have (b1, b2) �× (b, b′), (b1, b2) �×
(a, a′) and (b1, b2) �× (c, c′). Hence:

{(b1, b2), (b, b′)} �mult {(b, b′), (a, a′), (c, c′)}

By consequence, P2 is a smaller proof of if b1 then u1 else v1 ∼ if b2 then u2 else v2 than P1. �

Proof of Lemma 5.8. First we are going to show a cut elimination strategy to get rid of the deconstruction
of frozen conditionals introduced by:

~w1, b̃1, u
′
1, v
′
1 ∼ ~w2, b̃2, u

′
2, v
′
2

~w1, if b1 then u1 else v1 ∼ ~w2, if b2 then u2 else v2
BFA(b1, b2)

Assume now that u ∼ v is not provable without deconstructing frozen conditionals introduced as
described above. We consider a proof P1 of u ∼ v that we suppose minimal for �mult. We consider the
first conditionals (b1, b2) (starting from the bottom) which are deconstructed. We let b1 ≡ if b then a else c
and b2 ≡ if b′ then a′ else c′, we know that our proof has the following shape:

.... (A3)

~x, b, a, c, ~y ∼ ~x ′, b′, a′, c′, ~y ′

~x, b̃1, ~y ∼ ~x ′, b̃2, ~y ′
BFA(b, b′)

.... (A2)

~w 1, b̃1, u1, v1 ∼ ~w 2, b̃2, u2, v2

~w 1, if b1 then u1 else v1 ∼ ~w 2, if b2 then u2 else v2
BFA(b1, b2)

.... (A1)

C[if b1 then u1 else v1] ∼ C[if b2 then u2 else v2]
u ∼ v R

Where C is a one-hole context. Since (b1, b2) are the first conditionals deconstructed in this proof we
know that C is such that the hole does not appear in a conditional branch. This proof can be rewritten

202 Deciding Indistinguishability

as the following proof P2:
.... (A3)

~x, b̃, ã, c̃, ~y ∼ ~x ′, b̃′, ã′, c̃′, ~y ′.... (A2)

~w 1, b̃, ã, c̃, u1, v1 ∼ ~w 2, b̃′, ã′, c̃′, u2, v2

~w 1, b̃, ã, u1, v1, c̃, u1, v1 ∼ ~w 2, b̃′, ã′, u2, v2, c̃′, u2, v2

Dup

~w 1, b̃, ã, u1, v1, if c then u1 else v1 ∼ ~w 2, b̃′, ã′, u2, v2, if c′ then u2 else v2

BFA(c, c′)

~w 1, b̃, if a then u1 else v1, if c then u1 else v1 ∼ ~w 2, b̃′, if a′ then u2 else v2, if c′ then u2 else v2

BFA(a, a′)

~w 1, if b then (if a then u1 else v1) else (if c then u1 else v1)

∼ ~w 2, if b then (if a′ then u2 else v2) else (if c′ then u2 else v2)

BFA(b, b′)

.... (A1)

C[if b then (if a then u1 else v1) else (if c then u1 else v1)]

∼ C[if b′ then (if a′ then u2 else v2) else (if c′ then u2 else v2)]

C[if b1 then u1 else v1] ∼ C[if b2 then u2 else v2]
R

u ∼ v R

One can check that A1 remains the same in the second proof tree since the hole in C is not in a conditional
branch. The A1, A2, A3 parts are the same in both proofs, so let M be the interpretation of A1, A2, A3

as a multi-set. Then the interpretation of P1 and P2 are, respectively, the multi-sets:

M ∪ {(b1, b2), (b, b′)} and M ∪ {(b, b′), (a, a′), (c, c′)}

Therefore P2 is a strictly smaller proof of u ∼ v than P1 (this is almost the same multi-sets than in
Example 5.13). Absurd. �

5.7 Shape of the Terms

Most of the completeness results shown before are for any set of unitary axioms closed under Restr. We
now specialize these results to cca2, to get some further restrictions.

When applying the unitary axioms cca2, we would like to require that terms are in R-normal form,
e.g. to avoid the application of cca2 to terms with an unbounded component, such as π1(〈u , v〉).
Unfortunately, the side-conditions of cca2 are not stable by R. E.g., consider the cca2 instance:

{if eq(g(nu), nu) then A else B}nrpk(n) ∼ {C}
nr
pk(n)

cca2

The R-normal form of the left term is:

if eq(g(nu), nu) then {A}nrpk(n) else {B}nrpk(n)

which cannot be used in a valid cca2 instance, since the conditional eq(g(nu), nu) should be somehow
“hidden” by the encryption. To avoid this difficulty, we use a different normal form for terms: we try to
be as close as possible to the R-normal form, while keeping conditional branching below their encryption.
This normalization strategy preserves the shape of the terms required by the cca2 axiom, as well as its
side-conditions. In other word, if ~u ∼ ~v is a valid cca2 instance then its normalization ~un ∼ ~vn is also a
valid cca2 instance. We illustrate this on an example. The term:{

if (if b then a else c) then {if d then u else v}n1pk else w
}n2
pk

is normalized as follows: {
if b then if a then {if d then u else v}n1pk else w

else if c then {if d then u else v}n1pk else w

}n2

pk

(5.6)

Observe that cca2 side-conditions are preserved. For example, the condition on occurrences of encryption
randomness in (5.6) holds: e.g. the randomness n1 is only used for the encryption {if d then u else v}n1pk.

5.7. Shape of the Terms 203

5.7.1 Definitions

We omit the rewriting strategy for now. Instead, we describe the final shape of the terms, and prove
some of their properties terms. We let A� be the ordered strategy from Lemma 5.8, and we define several
restriction of A�:

F
(
(2Box +R�)∗· CS∗�·{BFA(b, b′)}∗ · UnF ·FAs

∗ · Dup∗ · cca2

)
(A�)

F
(
CS∗�·{BFA(b, b′)}∗ · UnF ·FAs

∗ · Dup∗ · cca2

)
(ACS�)

F
(
{BFA(b, b′)}∗ · UnF ·FAs

∗ · Dup∗ · cca2

)
(ABFA)

F
(
FAs
∗ · Dup∗ · cca2

)
(AFAs)

The rule CS� is the only branching rule, therefore, after applying all the CS� rules, we can associate to
each branch l of the proof a left cca2 trace Sl = (Kl,Rl, El,Dl) of the cca2 axiom, where Kl, Rl, El and
Dl are the sets of, respectively, secret keys, encryption randomness, encryptions and decryptions on the
left side. Similarly we have a right cca2 trace S ′l = (K′l,R′l, E ′l ,D′l).

Definition 5.21. A cca2 trace S is a tuple (K,R, E ,D) where:
• K ⊆ {sk(n) | n ∈ N} is a set of secret keys.

• R ⊆ N is a set of encryption randomness.

• E ⊆ {{m}ne
pk(n) | ne ∈ R ∧ sk(n) ∈ K} is a set of encryptions.

• D ⊆ {dec(m, sk(n)) | sk(n) ∈ K} is a set of decryptions.
Given a cca2 instance φ ∼ ψ and its corresponding ccaa2 application:

(_,Xenc,Xdec, σrand, θenc, λdec)RKccaa2 (_,Xenc,Xdec, σ′rand, θ′enc, λ′dec)

we define the left cca2 trace S = l-trace(φ ∼ ψ) by:

S = (K,Xencσrand,Xencθenc,Xdecλdec)

We define similarly its right cca2 trace S ′ = r-trace(φ ∼ ψ).

Let φ ∼ ψ be a cca2 instance and S = l-trace(φ ∼ ψ) be its left cca2 trace. We use S to define the
normal form of the terms appearing, on the left, in branch using the cca2 instance φ ∼ ψ. This is done
through four mutually inductive definitions:

• S-encryption oracle calls are well-formed encryptions.

• S-decryption oracle calls are well-formed decryptions.

• S-normalized basic terms are terms built using function symbols in F\if,0 and well-formed encryp-
tions and decryptions.

• S-normalized simple terms are combinations of normalized basic terms using if_then_else_.
Later, we prove that all intermediate terms in proofs can be assumed to be in these normal forms. To
keep the proof tractable, this will be done in two steps. Therefore we introduce two versions of some
forms. E.g., we define S-simple terms to be terms having a particular form, and S-normalized simple
terms to be S-simple terms satisfying some further properties.

A public/private key pair is valid if the same name has been used to generate the keys.

Definition 5.22. A valid public/private key pair is a pair of terms (pk(n), sk(n)) where n is a name.

An S-encryption oracle call is a valid encryption in E of the form {u}ne
pk, where ne is a valid encryption

randomness in R, pk is a valid public/private key pair appearing in K and the encrypted plain-text u is,
inductively, a S-normalized simple term.

Definition 5.23. A S-encryption oracle call is a term of the form {u}ne
pk where:

• {u}ne
pk ∈ E , ne ∈ R, (pk, sk) is a valid public/private key pair and with sk ∈ K.

• u is a S-normalized simple terms.

204 Deciding Indistinguishability

 t1 tn· · ·

~b

nr

pk

eq(t, α1)

0(dec(t, sk)) · · ·

eq(t, αn)

0(dec(t, sk)) dec(t, sk)

Encryption Oracle Call Decryption Oracle Call

Convention: α1, . . . , αn are the encryptions of E under pk appearing directly in t.

Figure 5.8: Shapes of Encryption and Decryption Oracle Calls

Similarly, a S-decryption oracle calls t is valid decryption in D under secret key sk ∈ K such that all
other encryptions and decryptions appearing directly in t, either in guards or in the decrypted term, are
themselves S-encryption oracle calls and S-decryption oracle calls.

Definition 5.24. A S-decryption oracle call is a term of the form C [~g � (si)i≤p] in D where:
• (pk, sk) is valid public/private key pair and sk ∈ K.
• There exists a context u if-free and in R-normal form, and a term t such that:

t ≡ u[(αj)j , (deck)k] ∀i < p, si ≡ 0(dec(t, sk)) sp ≡ dec(t, sk) ∀g ∈ ~g, g ≡ eq(t, αj)

• For all j, αj is a S-encryption oracle call.

• For all k, deck is a S-decryption oracle call.
(αj)j are called u’s encryptions. We often write (deck)k to denote a vector of decryption oracle calls.

Figure 5.8 gives a visual representation of the shapes of encryption and decryption oracle calls.
A S-basic term is a term build using S-encryption oracle calls, S-decryption oracle calls, function

symbols in F\if,0 and names in N , with some restrictions. More precisely, we require that:
• We do not use names in R, as this would contradict cca2 randomness side-conditions.

• We do not decrypt terms using secret keys in K.

Definition 5.25. A S-basic term is a term of the form U [~w, (αj)j , (deck)k] where:
• U and ~w are if-free, U does not contain 0(_), fresh(R; ~w) and nodec(K, ~w).

• (αj)j are S-encryption oracle calls.

• (deck)k are S-decryption oracle calls.
A S-basic conditional is a S-basic term of sort bool.

A S-normalized basic term is a a S-basic term that has been built without introducing any R-redex.

Definition 5.26. A S-normalized basic term is a S-basic term of the form U [~w, (αj)j , (deck)k] where:
• (αj)j are encryptions under (pkj , skj)j , and (deck)k are decryptions under (pkk, skk)k.

• U [~w, ({[]j}0pkj)j , (dec([]k, skk))k] is in R-normal form.

A S-normalized basic conditional is a S-normalized basic term of sort bool.

Finally, a S-simple term is a term build using only S-basic term and the if_then_else_ function
symbols. Moreover, if we use only S-normalized basic term, then we get an a S-normalized simple term.

Definition 5.27. A S-simple term (resp. S-normalized simple term) is a term of the form C[~b�~u] where:

5.7. Shape of the Terms 205

• C is an if-context.
• ~b are S-basic conditionals (resp. S-normalized basic conditionals).
• ~u are S-basic terms (resp. S-normalized basic terms).

Remark 5.8. For all term u, the guards of a Sl-decryption oracle calls are Sl-normalized basic terms.
But the leaves of S-decryption oracle calls are not S-normalized basic terms, because they do not satisfy
the condition nodec(K, ·). �

Orderings The inductive definition of S-normalized basic terms naturally gives us a well-founded
relation <Sind between S-normalized basic terms, S-normalized simple terms, S-decryption oracle calls
and S-encryption oracle calls.

Definition 5.28. <Sind is the reflexive and transitive closure of the relation <S defined as:
• For all S-encryption oracle call t ≡ {u}rpk, u <S t.
• For all S-decryption oracle call:

t ≡ C [~g � (si[(αj)j , (deck)k])i≤p]

for all j, αj <S t and for all k, deck <S t.
• For all S-normalized basic term t ≡ U [~w , (αj)j , (deck)k], for all j, αj <S t and for all k, deck <S t.

• For all S-normalized simple term t ≡ C[~b � ~u], ∀b ∈ ~b, b <S t and ∀u ∈ ~u, u <S t.

We let ≤Sbt be union of the restriction of <Sind to the instances where the left term is a S-normalized
basic term, and the set of guards appearing in the right-term. Formally:

Definition 5.29. Let <′Sind be the reflexive and transitive closure of the order <′S , which has the same
definition than <S , apart for the S-decryption oracle call:

• For all S-decryption oracle call:

t ≡ C [~g � (si[(αj)j , (deck)k])i≤p]

for all j, αj <′S t; for all k, deck <′S t; and for all b ∈ ~g , b <′S t.
We finally define ≤Sbt by requiring that for every terms u, v:

u ≤Sbt v iff u <′Sind v and u is a S-normalized basic term

5.7.2 Eager Reduction for AFAs

We state here a key result about the AFAs = F(FAs
∗ ·Dup∗ ·cca2) fragment, which deals with the following

proof cut: when trying to prove that u ∼ u′ holds, one may rewrite u and u′ into, respectively, π1(〈u , v〉)
and π1(〈u′ , v′〉), using R. The problem is that v and v′ are arbitrary large terms, which makes the proof
space unbounded. E.g. this is the case in the following proof:

.... (P)

u, v ∼ u′, v′

π1(〈u , v〉) ∼ π1(〈u′ , v′〉)
FAπ1 · FA〈 , 〉

u ∼ u′ R

Of course there is a shortcut here: P is a proof of u, v ∼ u′, v′, hence by Restr we have a proof of u ∼ u′.
Using the Restr elimination procedure (Lemma 5.1), we obtain a proof Pcut of u ∼ u′ such that Pcut is no
larger than P . By generalizing this proof cut elimination, we are going to show that if we have a proof
P `AFAs

β ∼ β′ where β and β′ are basic terms, then we can rewrite β and β′ into normalized basic terms
γ, γ′ such that there exists P ′ no larger than P with P ′ `AFAs

γ ∼ γ′.
To prove this, we may have to extract several sub-proofs of P , and then recombine them into a single

proof P ′. While the rule FAs and Dup can be easily re-combined, this is not the case for cca2. Therefore,
given a finite family of cca2 instances (~ui ∼ ~vi)i∈I , we give a sufficient condition guaranteeing that they
can be recombined into a single proof (~ui)i∈I ∼ (~vi)i∈I .

206 Deciding Indistinguishability

Definition 5.30. For every proof P in AFAs , we let instance(P) be the unique cca2 instance used in P .

Example 5.14. If P is the proof:

~w, (αi)i∈I , (decj)j∈J ∼ ~w, (α′i)i∈I , (dec
′
j)j∈J

cca2

....
C[~w, (αi)i∈I , (decj)j∈J] ∼ C[~w, (α′i)i∈I , (dec

′
j)j∈J]

FAs
∗ · Dup∗

then instance(P) is the cca2 instance ~w, (αi)i∈I , (decj)j∈J ∼ ~w, (α′i)i∈I , (dec
′
j)j∈J . �

We say that a cca2 instance φ is a sub-instance of another cca2 instance ψ if the set of encryptions
and decryptions of φ are included into, respectively, the set of encryptions and decryptions of ψ. Moreover,
we require that the symmetric part of φ contains only sub-terms of the symmetric part of ψ.

Definition 5.31. A cca2 instance:

~w0, (αi)i∈I0 , (decj)j∈J0 ∼ ~w0, (α
′
i)i∈I0 , (dec

′
j)j∈J0

is a sub-instance of a cca2 instance:

~w, (αi)i∈I , (decj)j∈J ∼ ~w, (α′i)i∈I , (dec
′
j)j∈J

if and only if st(~w0) ⊆ st(~w), I0 ⊆ I and J0 ⊆ J .

The following proposition allows to re-combine several proofs P1, . . . , Pn, as long as there exists a
cca2 instance ~u ∼ ~v such that for every i, instance(Pi) is a sub-instance of ~u ∼ ~v.

Proposition 5.7. Let (βn)n∈N and (β′n)n∈N be such that for every n ∈ N , there exists a proof Pn `AFAs
βn ∼ β′n. If there exists a cca2 instance ~u ∼ ~v such that for every n, instance(Pn) is a sub-instance of
~u ∼ ~v, then there exists P such that:

• P `AFAs
(βn)n∈N ∼ (β′n)n∈N

• instance(P) is a sub-instance of ~u ∼ ~v.
• P contain the same number of FAs rules than the derivations P1, . . . , PN altogether.

Proof. Axioms FAs and Dup verify a frame property. More precisely:

if
~u ′ ∼ ~v ′
~u ∼ ~v Ax then for every ~wl, ~wr of the same length

~wl, ~u
′ ∼ ~wr, ~v

′

~wl, ~u ∼ ~wr, ~v
Ax

Therefore we can easily combine all proofs (Pn)n∈N . For every n ∈ N , we let instance(Pn) ≡ ~un ∼ ~u ′n.
Moreover, we let (~vn)n∈N ∼ (~v ′n)n∈N be the formula obtained from (~un)n∈N ∼ (~u ′n)n∈N by removing all
duplicates, and where for every n, ~vn ⊆ ~un and ~v ′n ⊆ ~u ′n. Then we have the derivation:

(~vn)n∈N ∼ (~v ′n)n∈N
(~un)n∈N ∼ (~u ′n)n∈N

Dup∗

....
(βn)n∈N ∼ (β′n)n∈N

Now, we want to conclude by applying the cca2 axiom. The problem is that cca2 does not verify the
frame property. But using the fact that for every n, ~un ∼ ~u ′n is a sub-instance of ~u ∼ ~v, and that
(~vn)n∈N ∼ (~v ′n)n∈N does not contain duplicates, we can check that (~vn)n∈N ∼ (~v ′n)n∈N is a sub-instance
of ~u ∼ ~v. Hence we have a valid derivation in AFAs . �

Lemma 5.9. Let P `AFAs
β ∼ β′ and S,S ′ be the, respectively, left and right cca2 trace corresponding

to instance(P). If β and β′ are, respectively, S-basic term and S ′-basic term then there exist γ =R β and
γ′ =R β

′ such that:
• γ and γ′ are, respectively, S-normalized basic term and S ′-normalized basic term.

5.7. Shape of the Terms 207

• There exists P ′ such that P ′ `AFAs
γ ∼ γ′, instance(P ′) is a sub-instance of instance(P) and P ′

contains less FAs rules than P .

Proof. Let S = (K,R, E ,D). We prove the lemma by induction on the number of FAs rules in P . If P
has no FAs application, then we have three cases:

• β and β′ are identical, up to α-renaming. In that case, we can check that γ ≡ β ↓R and γ′ ≡ β′ ↓R
satisfy the wanted properties.

• β and β′ are, resp., a S-encryption oracle call and a S ′-encryption oracle call. Since an S-encryption
oracle call is also a S-normalized basic term, we conclude by taking γ ≡ β and γ′ ≡ β′.

• β and β′ are, resp., a S-decryption oracle call and a S ′-decryption oracle call. Similarly, a S-
decryption oracle call is also a S-normalized basic term. We conclude by taking γ ≡ β and γ′ ≡ β′.

For the inductive case, β and β′ must start with the same function symbol. Hence:

β ≡ f(β1, . . . , βn) β′ ≡ f(β′1, . . . , β
′
n)

First, we check that β1, . . . , βn are S-basic terms. Indeed, the only way that some βi could not be a
S-basic term was if β was an S-encryption oracle call or a S-decryption oracle call. Then, f must be
{_}__ or dec(_,_):

• in the former case, β ≡ {_}ne
_ where ne ∈ R and one of the βi is equal to ne. Since β is a S-basic

term, we know that fresh(R; ne). Contradiction.

• in the latter case, β ≡ dec(_, sk(n)) where sk(n) ∈ K. Since β is a S-basic term, we know that
nodec(K, sk(n)). Contradiction.

Hence β1, . . . , βn are S-basic terms. Similarly β′1, . . . , β′n are S ′-basic terms.
Using Lemma 5.1, we know that for every i, we can extract from P a proof of Qi `AFAs

βi ∼ β′i. One
can check that the procedure described in Lemma 5.1 is such that P has as many FA\0 applications than
all the (Qi)i altogether. By induction hypothesis, let:

P1 `AFAs
γ1 ∼ γ′1, . . . , Pn `AFAs

γn ∼ γ′n

be such that for every i, γi =R βi, γ′i =R β′, γi is a S-normalized basic term and γ′i is a S ′-normalized
basic term, instance(Pi) is a sub-instance of instance(P) and Pi has less FAs applications than Qi. By
Proposition 5.7, there exists a proof P ′ of:

P ′ `AFAs
(γn)n∈N ∼ (γ′n)n∈N

such that instance(P ′) is a sub-instance of instance(P) and P ′ has as many FAs applications than the
(Pi)i altogether. Since Pi has less FAs applications than Qi, and since P has as many FAs applications
than all the (Qi)i altogether, P ′ has less FAs applications than P .

f(β1, . . . , βn) and f(β′1, . . . , β
′
n) can only have R1 redexes at the top-level. If they have no R1 redexes,

then f(β1, . . . , βn) and f(β′1, . . . , β
′
n) are, respectively, S-normalized basic term and S ′-normalized basic

term. We conclude by applying FAf :

.... (P ′)
γ1, . . . , γn ∼ γ′1, . . . , γ′n

f(γ1, . . . , γn) ∼ f(γ′1, . . . , γ
′
n)

FAf

Therefore, assume f(β1, . . . , βn) or f(β′1, . . . , β
′
n) have a R1 redex. We have several cases:

• Both left and right sides can be reduced by πi(〈x1 , x2〉)→ xi. W.l.o.g. we assume i = 1:

〈γ1 , γ2〉 ∼ 〈γ′1 , γ′2〉
π1(〈γ1 , γ2〉) ∼ π1(〈γ′1 , γ′2〉)

FAπ1

We look at the next rule in P ′:

– If it is cca2, then 〈γ1 , γ2〉 and 〈γ′1 , γ′2〉 are the same terms, up to α-renaming. We conclude
by taking γ ≡ γ1 and γ′ ≡ γ′1.

208 Deciding Indistinguishability

– Or it is a function application:

.... (Q)

γ1, γ2 ∼ γ′1, γ′2
〈γ1 , γ2〉 ∼ 〈γ′1 , γ′2〉

FA〈 , 〉

π1(〈γ1 , γ2〉) ∼ π1(〈γ′1 , γ′2〉)
FAπ1

Using Lemma 5.1, we extract from Q a proof Q′ `AFAs
γ1 ∼ γ′1 no larger than Q. We conclude

by taking γ ≡ γ1 and γ′ ≡ γ′1:

.... (Q′)
γ1 ∼ γ′1

π1(〈γ1 , γ2〉) ∼ π1(〈γ′1 , γ′2〉)
R

(5.7)

• Only one side can be reduced by πi(〈x1 , x2〉) → xi. Therefore the next rule applied in (P ′) must
be cca2 (since the head function symbols differ). But in a cca2 application, we cannot have
〈_ , _〉 ∼ f ′(_) with f ′ 6= 〈 , 〉. Contradiction.

• Both sides can be reduced by dec({x}rpk(n), sk(n)) → x. Hence n = 2, γ1, γ2 ≡ {u}rpk(n), sk(n),
γ′1, γ

′
2 ≡ {u′}r

′

pk(n′), sk(n′) and P ′ is of the form:

{u}rpk(n), sk(n) ∼ {u′}r′pk(n′), sk(n′)

dec({u}rpk(n), sk(n)) ∼ dec({u′}r′pk(n′), sk(n′))
FAdec

We look at the next rule applied on {u}rpk(n),_ ∼ {u
′}r′pk(n′),_. If it is a function application then

we have a shortcut using Lemma 5.1, as we did for (5.7). If it is cca2, we have two cases:

– {u}rpk(n) and {u′}r′pk(n′) are the same terms, up to α-renaming. We conclude by taking γ ≡ u

and γ′ ≡ u′.
– {u}rpk(n) and {u′}r′pk(n′) are, respectively, a S-encryption oracle call and a S ′-encryption oracle

call. Then sk(n) ∈ K. Since γ2 ≡ sk(n) and γ2 is a S-normalized basic term, we know that
nodec(K, sk(n)). Contradiction.

• Only one side can be reduced by dec({x}rpk(n), sk(n))→ x. Then (P ′) is necessarily of the form:

{t}rpk(n), sk(n) ∼ {t′}r′p′ , sk
′(n′)

dec({t}rpk(n), sk(n)) ∼ dec({t′}r′p′ , sk
′(n′))

FAdec

We look at the next rule applied to {t}rpk(n) and {t′}r′p′ :

– If it is cca2, then p′ ≡ pk(n′). Therefore the right side can be reduced by dec({x}rpk(n′), sk(n′))→
x. Contradiction.

– If it is FA{_}__ then there is a proof of _pk(n), sk(n) ∼ _, p′, sk(n′), which implies that p′ ≡
pk(n′). Therefore the right side can be reduced by dec({x}rpk(n′), sk(n′))→ x. Contradiction.

• Both side can be reduced by eq(x, x)→ true. In this case the proof cut elimination is trivial.

• Only one side can be reduced by eq(x, x)→ true. Therefore we have a proof of the form:

t, t ∼ t′, t′′

eq(t, t) ∼ eq(t′, t′′)
FAeq(,)

Using Lemma 5.2 we know that t′ ≡ t′′, therefore both side can be reduced by eq(x, x) → true.
Contradiction. �

5.8. Proof Form 209

5.8 Proof Form

5.8.1 Early Proof Form

We showed in Lemma 5.8 that:

F
(
(2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs

∗ · Dup∗ · cca2

)
(A�)

is complete for F((CSnoif + FA\0 +R+ Dup + cca2)∗). Let us consider a proof P following this ordering.
The only branching rule in A� is the CS� rule, which has two premises. Hence after having completed
all the CS� applications we know that the proof will be non-branching and in ABFA. We want to name
each branch of the proof tree, and its corresponding instance of the cca2 axiom. To do so, we index each
branch of the proof tree P by some l ∈ L where L is a finite set of labels,

Definition 5.32. We let `b be the proof system ` with branch annotations. When P `b t ∼ t′, we let
label(P) be the set of labels annotating the branches in P , and for all l ∈ label(P), we let instance(P, l)
be the cca2 instance used in branch l.

When applying the CS� rule on two boxed conditionals b1 b2
b
and b′1 b′2

b′
, we know that the

sub-proofs of b1 ∼ b′1 and b2 ∼ b′2 lie in the fragment ACS� . This gives us useful information on the shape
of the terms. To use this, we define the extractl and extractr functions which allow to retrieve the left and
right sub-proofs of, respectively, b1 ∼ b′1 and b2 ∼ b′2.

Definition 5.33. Given a proof P ` ~u ∼ ~v and a position h in the proof P such that:

P|h =
~w , b1, (ui)i ∼ ~w ′, b′1, (u

′
i)i ~w , b2, (vi)i ∼ ~w ′, b′2, (v

′
i)i

~w ,
(
if b1 b2

b
then ui else vi

)
i
∼ ~w ′,

(
if b′1 b′2

b′
then u′i else v

′
i

)
i

CS�

We let extractl(h, P) be proof of b1 ∼ b′1 extracted from P|h, and extractr(h, P) be proof of b2 ∼ b′2
extracted from P|h, using the Restr elimination procedure described in the proof of Lemma 5.7.

Using this, we define what are proofs in early proof form.

Definition 5.34. For all terms t, t′ and proofs P such that P `bACS�
t ∼ t′, we say that P proof in early

proof form if t and t′ are of the following form:

t ≡ C
[(

bhl bhr
bh

)
h∈H
� (ul)l∈label(P)

]
∧ t′ ≡ C

[(
b′hl b′hr

b′h

)
h∈H
� (u′l)l∈label(P)

]
where H is a set of positions in P such that:

• for all h ∈ H, the rule applied at position h in P is a CS� rule on the conditionals:(
bhl bhr

bh
, b′hl b′hr

b′h

)
• Let Phl = extractl(h, P) and Phr = extractr(h, P), then:

Phl `bACS�
bhl ∼ b′hl and Phr `bACS�

bhr ∼ b′hr

and these two proofs are in early proof form.

• label(Phl) ⊆ label(P), and for all l ∈ label(Phl), instance(Phl , l) is a sub-instance of instance(P, l)
(same for label(Phr)).

• For all l ∈ label(P), the proof of ul ∼ u′l extracted from P is in the fragment ABFA.
Moreover, we let cs-pos(P) ≡ H.

Proposition 5.8. For all terms t, t′ and proofs P such that P `ACS�
t ∼ t′, there exists a labelling P ′ of

P such that P ′ `bACS�
t ∼ t′ and P ′ is in early proof form.

210 Deciding Indistinguishability

Proof. We can check that the proof P has the wanted shape and is properly labelled by induction on the
size of the proof, by observing that for all h ∈ cs-pos(P) and x ∈ {l, r}, extractx(h, P) is of size strictly
smaller that P . We only need to do some α-renaming to have the labelling of the sub-proofs coincide.

Finally we can check that the resulting proof Q is such that for all h ∈ cs-pos(Q), x ∈ {l, r}, for all l ∈
label(extractx(h, P)), the cca2 instance instance(extractx(h, P), l) is a sub-instance of instance(P, l). This
follows from the fact that extractx(h, P) is obtained through the Restr elimination procedure from P . �

We define below the set index(P) of all positions of P where a CS� rule is applied. This includes the
set of positions cs-pos(P), as well as the CS� applications in sub-proofs of conditionals b ∼ b′. This set
is naturally ordered using the prefix ordering on positions.

Definition 5.35. Let P `bACS�
t ∼ t′ in early proof form.

• We let index(P) be the set of indices where CS� rules occur in the proof P :

index(P) = cs-pos(P) ∪
⋃

h∈cs-pos(P)

index (extractl(h, P)) ∪ index (extractr(h, P))

• For all h, h′ ∈ index(t, P), we let < be the ancestor relation on positions, defined by h < h′ if and
only if h is a strict prefix of h′.

• For all h = hx, where h ∈ index(P) and x ∈ {l, r}, we let cs-posP (h) = cs-pos(extractx(h, P)). When
there is no ambiguity on the proof P , we write cs-pos(h) instead of cs-posP (h).

We define the set h-branch(l) of positions of P where a CS� rule is applied on the branch l. Of course,
for all l ∈ label(P), ε ∈ h-branch(l) since ε is the index of the toplevel proof P .

Definition 5.36. Let P `bACS�
t ∼ t′ in early proof form. For all l ∈ label(P), we define:

h-branchP (l) = {hx | h ∈ index(P) ∧ x ∈ {l, r} ∧ l ∈ label(extractx(h, P))} ∪ {ε}

We abuse the notation and say that h ∈ h-branchP (l) if there exists x ∈ {l, r} such that hx ∈ h-branchP (l).
In that case, we say that x is the direction taken at h in l.

We omit the proof P when there is no ambiguity, writing h-branch(l) instead of h-branchP (l).

5.8.2 Shape of the Terms

For all proofs in A�, all R rewritings are done at the beginning of the proofs in the (2Box + R�)∗ part,
and, afterwards, all rules (apart from Dup) only “peel off” terms by removing the top-most function
symbol. Therefore the terms just after (2Box+R�)∗ characterize the shape of the subsequent proof. This
observation is illustrated in Figure 5.9. Recall that for all P `bACS�

t ∼ t′ in early proof form, we have:

t ≡ C
[(

bhl bhr
bh

)
h∈H
� (ul)l∈label(P)

]
and t′ ≡ C

[(
b′hl b′hr

b′h

)
h∈H
� (u′l)l∈label(P)

]
where for all l ∈ label(P), the extraction from P of the sub-proof of ul ∼ u′l is in the fragment ABFA.
Therefore, for every l, ul and u′l are of the form:

ul ≡ Dl

[
(βi,l)i∈Il � (γm,l)m∈Ml

]
u′l ≡ Dl

[
(β′i,l)i∈Il � (γ′m,l)m∈Ml

]
where Dl is an if-context and:

• (βi,l)i∈Il and (β′i,l)i∈Il are conditionals such that the sub-proofs (βi,l ∼ β′i,l)i∈Il extracted from P
are in AFAs .

• (γj,l)j∈Ml
and (γ′j,l)j∈Ml

are terms such that the sub-proofs (γj,l ∼ γ′j,l)j∈Ml
extracted from P are

in AFAs .
Using these notation, we give some definitions:

Definition 5.37. Let P `bACS�
t ∼ t′ in early proof form. For every l ∈ label(P), we let:

• (b, b′) ≤ε,lcs∼cs (t ∼ t′, P) if and only if there exists h0 ∈ cs-pos(P) such that b ≡ bh0 and b′ ≡ b′h0 .

5.8. Proof Form 211

(
bhl bhr

bh

)
h∈H

γn0,0

(βi,0)i

γ0,0

· · ·

γnm,m

(βi,m)i

γ0,m

FAs
∗

FAs
∗

··
·

FAs
∗

ACS�

··
·

ACS�

CS∗�

{BFA(b, b′)}∗

Figure 5.9: The shape of the term is determined by the proof.

• (β, β′) ≤ε,lc∼c (t ∼ t′, P) if and only if there exists i ∈ Il such that β ≡ βi,l and β′ ≡ β′i,l
• (γ, γ′) ≤ε,ll∼l (t ∼ t′, P) if and only if there exists m ∈Ml such that γ ≡ γm,l and γ′ ≡ γ′m,l.

Remark 5.9. Let P `bACS�
t ∼ t′ in early proof form and L = label(P). Then:

t ≡ C
[
_ �

(
Dl

[
(β)β≤ε,lc (t,P) � (γ)γ≤ε,ll (t,P)

])
l∈L

]
and t′ ≡ C

[
_ �

(
Dl

[
(β′)β′≤ε,lc (t′,P) � (γ′)γ′≤ε,ll (t′,P)

])
l∈L

]
�

These relations allow use to obtain all pairs of terms appearing at the root level in P . We naturally
define the asymmetric relation ≤x from ≤x∼x:

Definition 5.38. Let P `bACS�
t ∼ t′ in early proof form. For every l ∈ label(P) and x ∈ {c, l, cs}, we let:

∀s. s ≤ε,lx (t, P) if and only if (s,_) ≤ε,lx∼x (t ∼ t′, P)

Let h ∈ index(P) and x ∈ {l, r}. We lift these relations to hx using the proof extractx(h, P).

Definition 5.39. Let P `bACS�
t ∼ t′ in early proof form. Let l ∈ label(P), h ∈ index(P), x ∈ {l, r} and

b, b′ be such that extractx(h, P) is a proof of b ∼ b′. Then:
• For any ∆ ∈ {c∼c, l∼l, cs∼cs}:

∀s, s′. (s, s′) ≤hx,l
∆ (t ∼ t′, P) if and only if (s, s′) ≤ε,l∆ (b ∼ b′, extractx(h, P))

• For any ∆ ∈ {c, l, cs}:

∀s. s ≤hx,l
∆ (t, P) if and only if s ≤ε,l∆ (b, extractx(h, P))

Remark 5.10. We extend these notations to proofs P such that P `bA� t ∼ t
′. Let P ′ be such that:

P ≡ P ′

t ∼ t′
(2Box +R�)∗

and P ′ `bACS�
t0 ∼ t′0, then (s, s′) ≤h,l

∆ (t ∼ t′, P) if and only if (s, s′) ≤h,l
∆ (t0 ∼ t′0, P

′) for any
∆ ∈ {c∼c, l∼l, cs∼cs}. We have a similar definition for ∆ ∈ {c, l, cs}. �

212 Deciding Indistinguishability

5.8.3 Proof Form and Normalized Proof Form

Definition 5.40. Let P `bACS�
t ∼ t′ in early proof form and L = label(P). Let Sl be the left trace of

the cca2 instance used in branch l, and S ′l be the right trace of instance(P, l):

SPl = l-trace(instance(P, l)) S ′Pl = r-trace(instance(P, l))

We say that P is in proof form if and only if, for every l ∈ L:
• for every h ∈ cs-pos(P) and x ∈ {l, r}, the proof extractx(h, P) is in proof forms.

• (β, β′) ≤ε,lc∼c (t ∼ t′, P), β is a S-basic term and β′ is a S ′-basic term.

• (γ, γ′) ≤ε,ll∼l (t ∼ t′, P), γ is a S-basic term and γ′ is a S ′-basic term.
We obtain the definition of normalized proof form by replacing, in the definition above, basic term by
normalized basic term, and proof form by normalized proof form.

We write P `npf t ∼ t′ whenever P is a proof of t ∼ t′ in normalized proof form.

Let P `npf t ∼ t′, we already defined the set of conditionals ≤h,l
c (t, P) used in the BFA rules in the

sub-proof P of at index h and branch l. In the case of proof in normalized proof form, these conditionals
are normalized basic conditional. Similarly the set of leaf terms ≤h,l

l (t, P) in the sub-proof of P of at
index h and branch l is a set of normalized basic terms. Recall that a basic term may contain other
basic terms in its subterm. Hence we can define the set of all normalized basic terms appearing in the
subterms of ≤h,l

c (t, P)∪ ≤h,l
l (t, P).

Definition 5.41. For every P `npf t ∼ t′, for every term s, s ≤h,l
bt (t, P) if and only if there exists

u(≤h,l
c ∪ ≤

h,l
l)(t, P) such that s ≤Slbt u.

5.8.4 Restriction to Proofs in Normalized Proof Form

Definition 5.42. We let cca2 be the restriction of cca2 to cases ~w , (αi)i, (decj)j ∼ ~w ′, (α′i)i, (dec
′
j)j

where:
• (αj)j , (α

′
j)j are encryption oracle calls.

• (decj)j , (dec
′
j)j are decryption oracle calls.

Lemma 5.10. The following strategy is complete for F((CSnoif + FA\0 +R+ Dup + cca2)∗):

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · cca2)

Proof. By Lemma 5.8, the following strategy is complete for F(CSnoif + FA\0 +R+ Dup + cca2):

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · cca2) (A�)

For every proof P `b t ∼ t′ in this fragment, we let LP = label(P) the set of branch indices of P .
Moreover, we let SPl = (KPl ,RPl , EPl ,DPl) be the left trace of the cca2 instance of branch l, i.e. SPl =
l-trace(instance(P, l)). Finally, we define the order <lP as follows: for all u, u′ ∈ EPl ∪ DPl , we let u <lP u

′

hold if u is a strict subterm of u′.
We are going to show that for every proof P of t ∼ t′ in A�, there exists a proof Q of t ∼ t′ such that

for every l ∈ label(Q), EQl and DQl are sets of, respectively, SQl -encryption oracle calls and SQl -decryption
oracle calls, and the right part of Q and P are the same. We prove this by induction on the number of
elements of

⋃
l EPl ∪ DPl that are not SPl -encryption oracle calls or SPl -decryption oracle calls.

Let P be a proof of t ∼ t′, l ∈ LP and let u minimal for <lP which is not a SPl -encryption oracle call
or a SPl -decryption oracle call. We have two cases:

• If u ∈ EPl is an encryption. We know that u ≡ {m}nrpk where the corresponding secret key sk is in
KPl . Let (αk)k be EPl ∩ st(m), and (decn)n be DPl ∩ st(m). Let C be the smallest context such that:

m ≡ C[(αk)k, (decn)n]

5.8. Proof Form 213

From the definition of cca2, we know that C[] does not contain the 0(_) function symbol. We
let A be an if-context and (Bi[])i, (Um[])m be if-free contexts in R-normal form such that C[] =R

A[(Bi[])i � (Um[])m]. Let m0 be the term:

m0 ≡ A[(Bi[(αk)k, (decn)n])i � (Um[(αk)k, (decn)n])m]

We know that m0 =R m. We are going to show that m0 is a SPl -simple term. Since C[] does not
contain the 0(_) function symbol, we know that the contexts (Bi[])i and (Um[])m do not contain
0(_). By minimality of u, we know that the (αk)k are SPl -encryption oracle calls, and the (decn)n
are SPl -decryption oracle calls. For every k, αk is of the shape αk ≡ {_}nkpkk . For every n, we let
skn be the secret key used in decn. Assume that there is some i such that:

m̃ ≡ Bi[({[]k}nkpkk)k, (dec([]n, skn))n]

is not in R-normal form. Since Bi[] is in R-normal form, we can only have a redex at one of the
encryption. More precisely, there must exist some k such that dec({[]k}nkpkk , skk) is a subterm of m̃.
By consequence, skk is a subterm of Bi[]. But since skk ∈ KPl , we know that st(Bi) does not contain
skk (skk can only appear in DPl). Contradiction. Hence m̃ is in R-normal form, which implies that
(Bi[(αk)k, (decn)n])i are SPl -normalized basic terms. Similarly we prove that (Um[(αk)k, (decn)n])m
are SPl -normalized basic terms. Hence m0 is a SPl -normalized simple term.
We then rewrite, using R, every occurrence of {m}nrsk by {m0}nrsk in branch l of P . We check that this
yields a valid proof Q. The only difficulty lies in making sure that the side-conditions of the cca2

application for the decryptions still holds. Their is one subtlety here: an encryption α ≡ {mα}nαpk
must be guarded in some dec(u0, sk) iff it appears directly in u0. This side-condition is preserved
as it is stable by any R rewriting (hence in particular the rewriting of {m}nrsk into {m0}nrsk).
We can check that the resulting proof Q of t ∼ t′ has a smaller number of terms in EQl ∪ D

Q
l

which are not SQl -encryption oracle calls or SQl -decryption oracle calls. Since all other branches
l′ ∈ LP \{l} are left unchanged, and since the right part of the proof (corresponding to t′) is also
left unchanged we can conclude using the induction hypothesis.

• One can check that the case where u ≡ C[(ge)e � (sa)a≤p] ∈ DPl is a decryption cannot happen. �

We are now ready to prove that `npf is complete.

Lemma 5.11. The restriction of the fragment A� to formulas provable in `npf is complete for:

F((CSnoif + FA\0 +R+ Dup + cca2)∗)

Proof. Using Lemma 5.10, the following strategy is complete for F((CSnoif + FA\0 +R+ Dup + cca2)∗):

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · cca2)

First we show that this strategy remains complete even if with restrict it to proofs such that the terms
after (2Box + R�)∗ are in proof form. Let `ACS�

t ∼ t′, we want to find t0 =R t, t′0 =R t′ and P ′ such
that P ′ `npf t ∼ t′.

By Proposition 5.8, we know that there exists P such that P `bACS�
t ∼ t′. Let h ∈ index(P), x ∈ {l, r},

h = hx, and let bh, b′h be such that extractx(h, P) `bACS�
bh ∼ b′h. First, we prove that we can ensure

that for every (β, β′)(≤h,l
c∼c ∪ ≤

h,l
l∼l)(t ∼ t′, P), the terms β and β′ are, respectively, SPl -basic term and

S ′Pl -basic terms. We know that:

β ≡ B[~w , (αj)j , (deck)k] β′ ≡ B[~w , (α′j)j , (dec
′
k)k]

where B and B′ are if-free and ~w , (αj)j , (deck)k ∼ ~w , (α′j)j , (dec
′
k)k is a sub-instance of instance(P, l).

Since this is a sub-instance, we know that fresh(RPl ; ~w) and nodec(KPl , ~w). Moreover, using the fact
that instance(P, l) is a cca2 instance, we know that (αj)j and (deck)k are, respectively, SPl -encryption
oracle calls and SPl -decryption oracle calls. Therefore if ~w is if-free then β is a SPl -basic term.

214 Deciding Indistinguishability

Assume that ~w is not if-free. Then there exists contexts Be, Bc, B0, B1 such that:

B ≡ Be[if Bc then B0 else B1]] =R if Bc then Be[B0] else Be[B1]

Let t0 be the term obtained from t by replacing this occurrence of β by:

if Bc[~w , (αj)j , (deck)k] then (Be[B0])[~w , (αj)j , (deck)k] else (Be[B1])[~w , (αj)j , (deck)k]

Similarly we define t′0 by replacing β′ by the corresponding term. Then t0 =R t and t′0 =R t′. Moreover
it is easy to check that the formula t0 ∼ t′0 is provable in `bACS�

, as we replaced one BFA application by

three BFA applications (without changing the encryptions, decryptions or branches of the proof etc ...).
We replaced B by three terms Bc, Be[B0], Be[B1] containing strictly less if then else applications.

Hence, by induction, we ensure that all such contexts B are if-free, by repeating the proof rewriting
above. We deduce that there exists a proof Q of t ∼ t′ where Q is in proof form.

To obtain a normalized proof form, we only have to apply the Lemma 5.9 to all branches l, and to
commute the new R rewriting to the bottom of the proof. �

5.9 Properties of Normalized Basic Terms

5.9.1 Basic Term Extraction

Definition 5.43. We call a conditional context a context C[]~x such that all holes appear in the conditional
part of an if_then_else_. Formally, for every position p, if C|p is a hole []x then p = p′.0 and there exist
u and v such that:

C|p′ ≡ if []x then u else v

We say that u is an almost conditional context if u a conditional context or a hole.

Example 5.15. We give an example of a conditional context C with two holes on the left, and a context
C ′ which is not a conditional context on the right (since it has holes in leaf positions):

C ≡

a

 []x

c d

t0 []y

t1 t2

t3
and C ′ ≡

a

 []x

c d

t0 b

[]y []z

t3

�

The main goal of this subsection is to show the following lemma.

Lemma 5.12. For all P `npf t ∼ t′, for all h, l and β, β′ ≤h,l
bt (t, P), there exists an almost conditional

context β̃′[] such that:

β′ ≡ β̃′ [β] and leave-st(β ↓R) ∩ cond-st
(
β̃′[] ↓R

)
= ∅

Before delving in the proof, we would like to remark that the above lemma is not entirely satisfactory.
Consider the following example:

β0 ≡ eq({if b then s else t}nrpk(n), 0)

=R if b then eq({s}nrpk(n), 0)︸ ︷︷ ︸
β0
0

else eq({t}nrpk(n), 0)︸ ︷︷ ︸
β1
0

β1 ≡ eq({if β0
0 then u else u}n

′
r

pk(n), 0)

where β0
0 , β

1
0 6∈ cond-st(u ↓R) and s 6=R t. Then β0

0 , β
1
0 6∈ cond-st(β1 ↓R), because β0

0 disappear using
the rule if x then y else y → y in R. Hence, Lemma 5.12 could choose β̃1 ≡ β1. Of course this situation
cannot occur, as we cannot have β0

0 be a subterm of β1 (this contradicts the freshness side-condition of

5.9. Properties of Normalized Basic Terms 215

encryptions’ randomnesses in the cca2 axiom). But we cannot rule this situation out simply by applying
the lemma, we have to make a more in-depth analysis. We would like to a stronger version of this lemma
that somehow directly “includes” the above observation.

To do this we introduce over-approximations leave-st(·) and cond-st(·) of, respectively, leave-st(· ↓R)
and cond-st(· ↓R). Then, we show that Lemma 5.12 holds for leave-st(·) and cond-st(·).

Definition 5.44. We define the function leave-st from the set of terms to the set of if-free terms in
R-normal form:

leave-st(u0, . . . , un) = ∪i≤nleave-st(ui) leave-st(if b then u else v) = leave-st(u, v)

leave-st(f(u0, . . . , un)) =
{
f(v0, . . . , vn) ↓R| ∀i ≤ n, vi ∈ leave-st(ui)

}
(∀f ∈ F\if ∪N)

We define the function cond-st from the set of terms to the set of if-free conditionals in R-normal form:

cond-st(u0, . . . , un) = ∪i≤ncond-st(ui) cond-st(f(~u)) = cond-st(~u) (∀f ∈ F\if ∪N)

cond-st(if b then u else v) = cond-st(b) ∪ leave-st(b) ∪ cond-st(u, v)

Remark 5.11. There are multiples over-approximations. For example, assuming that b, u, v, w, s, t are
if-free terms in R-normal forms, there in an over-approximation in the if_then_else_ case:

leave-st
((b

u b

v w

)
↓R
)

= {u,w} leave-st
(b

u b

v w

)
= {u, v, w}

There in another over-approximation in the f case:

leave-st
(
f
(

b

u v
,

b

s t

)
↓R
)

= {f(u, s), f(v, t)}

leave-st
(
f
(

b

u v
,

b

s t

))
= {f(u, s), f(u, t), f(v, s), f(v, t)}

cond-st() inherits from leave-st() over-approximations, and also over-approximates in the if then else
case. E.g., while cond-st(t ↓R) never contains conditionals which are spurious in t, the set cond-st(t) may:

cond-st
(

b

u u
↓R
)

= ∅ cond-st
(

b

u u

)
= {b}

�

leave-st(·) is a sound over-approximation of leave-st(· ↓R). Moreover, leave-st(·) and leave-st(· ↓R)
coincides on terms in R-normal form. The same properties hold for leave-st(·) and leave-st(· ↓R).

Proposition 5.9. leave-st and cond-st are sound over-approximations:
• For all u→∗R u′, leave-st(u) ⊇ leave-st(u′). Moreover leave-st(u ↓R) = leave-st(u ↓R).
• For all u→∗R u′, cond-st(u) ⊇ cond-st(u′). Moreover cond-st(u ↓R) = cond-st(u ↓R).

Proof. The facts that leave-st(u ↓R) = leave-st(u ↓R) and cond-st(u ↓R) = cond-st(u ↓R) are straight-
forward to show. Let us prove by induction on →∗R that for all u →∗R u′, leave-st(u) ⊇ leave-st(u′).
If u ≡ u′ this is immediate, assume that u →R v →∗R u′. By induction hypothesis we know that
leave-st(v) ⊇ leave-st(u′). Therefore, we only need to show that leave-st(u) ⊇ leave-st(v). We do a case
disjunction on the rule applied at u→R v (we omit the redundant or obvious cases):

• u ≡ if b then (if b then s else t) else w and v ≡ if b then s else w then:

leave-st(u) = leave-st(s) ∪ leave-st(t) ∪ leave-st(w)

⊇ leave-st(s) ∪ leave-st(w)

= leave-st(v)

216 Deciding Indistinguishability

• u ≡ if b then s else s and v ≡ s then:

leave-st(u) = leave-st(s) = leave-st(v)

• u ≡ if (if b then a else c) then s else t and v ≡ if b then (if a then s else t) else (if c then s else t):

leave-st(u) = leave-st(s) ∪ leave-st(t) = leave-st(v)

• u ≡ if b then (if a then s else t) else w and v ≡ if a then (if b then s else w) else (if b then t else w):

leave-st(u) = leave-st(s) ∪ leave-st(t) ∪ leave-st(w) = leave-st(v)

• u ≡ f(~w , if b then ~s else ~t) and v ≡ if b then f(~w ,~s) else f(~w ,~t) then:

leave-st(u) = {f(~w ′, ~w ′′) ↓R| ∀i, w′i ∈ leave-st(wi) ∧ ∀j, w′′j ∈ leave-st(sj) ∪ leave-st(tj)}
⊇ {f(~w ′, ~w ′′) ↓R| ∀i, w′i ∈ leave-st(wi) ∧ ∀j, w′′j ∈ leave-st(sj)}
∪ {f(~w ′, ~w ′′) ↓R| ∀i, w′i ∈ leave-st(wi) ∧ ∀j, w′′j ∈ leave-st(tj)}

⊇ leave-st(f(~w ,~s)) ∪ leave-st(f(~w ,~t))

⊇ leave-st(v)

• (u ≡ πi(〈s1 , s2〉), v ≡ si), (u ≡ dec({m}nrpk(n), sk(n)), v ≡ m) and (u ≡ eq(x, x), v ≡ x) are trivial.

Similarly, we show by induction on→∗R that for all u→∗R u′, cond-st(u) ⊇ cond-st(u′). If u ≡ u′ this is
immediate, assume that u→R v →∗R u′. By induction hypothesis we know that leave-st(v) ⊇ leave-st(u′).
Therefore, we only need to show that leave-st(u) ⊇ leave-st(v). We do a case disjunction on the rule
applied at u→R v (we omit the redundant or obvious cases):

• u ≡ if b then (if b then s else t) else w and v ≡ if b then s else w then:

cond-st(u) = cond-st(s, t, w) ∪ cond-st(b) ∪ leave-st(b)

⊇ cond-st(s, w) ∪ cond-st(b) ∪ leave-st(b)

⊇ cond-st(v)

• (u ≡ if b then (if a then s else t) else w, v ≡ if a then (if b then s else w) else (if b then t else w))
and (u ≡ if b then s else s, v ≡ s) are simple.

• u ≡ if (if b then a else c) then s else t and v ≡ if b then (if a then s else t) else (if c then s else t)
then:

cond-st(u) = cond-st(b, a, c, s, t) ∪ leave-st(b, a, c) = cond-st(v)

• u ≡ f(~w , if b then ~s else ~t) and v ≡ if b then f(~w ,~s) else f(~w ,~t) then:

cond-st(u) = cond-st(b, ~w ,~s,~t) ∪ leave-st(b) = cond-st(v)

• (u ≡ πi(〈s1 , s2〉), v ≡ si), (u ≡ dec({m}nrpk(n), sk(n)), v ≡ m) and (u ≡ eq(x, x), v ≡ x) are
trivial. �

Corollary 5.1. For every term u, leave-st(u) ⊇ leave-st(u ↓R) and cond-st(u) ⊇ cond-st(u ↓R).

Let us show the following helpful propositions:

Proposition 5.10. For all Sl-normalized basic terms β, β′ if:

leave-st(β) ∩ leave-st(β′) 6= ∅

then we have Sl-normalized basic terms B[~w , (αj)j , (δ
k)k] and B[~w , (α′j)j , (δ′k)k] such that:

β ≡ B[~w , (αj)j , (δ
k)k] β′ ≡ B[~w , (α′j)j , (δ

′k)k]

∀j, leave-st(αj) ∩ leave-st(α′j) 6= ∅ ∀k, leave-st(δk) ∩ leave-st(δ′k) 6= ∅

5.9. Properties of Normalized Basic Terms 217

Proof. We have Sl-normalized basic terms B[~w , (αj)j , (δ
k)k] and D[~w ′, (α′j)j , (δ′k)k] such that:

β ≡ B[~w , (αj)j , (δ
k)k] β′ ≡ D[~w ′, (α′j)j , (δ

′k)k]

Since β, β′ are Sl-normalized basic terms, we know that:

B[~w , ({[]j}__)j , (dec([]k,_))k] D[~w ′, ({[]j}__)j , (dec([]k,_))k]

are in R-normal form, that B[], D[], ~w , ~w ′ are if-free and that B[], D[] do not contain 0(_). Hence:

leave-st(β) =
{
B[~w , (aj)j , (d

k)k] | ∀j, aj ∈ leave-st(αj) ∧ ∀k, dk ∈ leave-st(δk)
}

leave-st(β′) =
{
D[~w ′, (a′j)j , (d

′k)k] | ∀j, a′j ∈ leave-st(α′j) ∧ ∀k, d′k ∈ leave-st(δ′k)
}

Similarly to what we did in the proof of Lemma 5.2, we prove that we can assume that B[] ≡ D[]
by induction on the number of hole positions in B[] or D[] such that (B[])|p differs from (D[])|p (modulo
hole renaming). Knowing that B[] ≡ D[], it is then straightforward to show that:

~w ≡ ~w ′ ∀j, leave-st(αj) ∩ leave-st(α′j) 6= ∅ ∀k, leave-st(δk) ∩ leave-st(δ′k) 6= ∅

The base case is trivial, let us prove the inductive case. Let B[~w , (aj)j , (d
k)k] and D[~w ′, (a′j)j , (d′k)k]

be such that:

∀j, k. aj ∈ leave-st(αj) ∧ dk ∈ leave-st(δk) ∀j, k. a′j ∈ leave-st(α′j) ∧ d′k ∈ leave-st(δ′k)

and:
B[~w , (aj)j , (d

k)k] ≡ D[~w ′, (a′j)j , (d
′k)k] ∈ leave-st(β) ∩ leave-st(β′)

First, observe that if a position p is valid in both B[] and D[], and is not a hole in both contexts, then
B[] and D[] coincide on p.

Let p be the position of a hole in B[] such that p is a valid position in D[], but not a hole (if p is not
valid in D[], invert B[] and D[]). We then have three cases depending on (B[])|p:

• B contains a hole []x at position p such that β|p ∈ ~w . Then let D̃ be the context D in which we
replaced the term at position p by []y (where y is a fresh hole variable) and let ~̃w′ be the terms ~w ′

extended by β|p (binded to []y). Then B differs D̃ on a smaller number of hole position, therefore
we can conclude by induction hypothesis.

• B contains a hole []x at position p such that β|p is an encryption oracle call {m}nrpk(np). Since
{m}nrpk(np) ∈ El is an encryption in an instance of a cca2 application, we know from the freshness
side-condition that nr does not appear in ~w and that nr ∈ Rl.
Moreover since β′ is a Sl-normalized basic term, we know that fresh(Rl; ~w ′). But since p is a valid
non-hole position in D, we have nr ∈ ~w ′. Absurd.

• Similarly if B contains a hole []x at position p such that β|p is a decryption oracle call dec(m, sk(n)).
Since dec(m, sk(n)) is a decryption oracle call we know that sk(n) ∈ Kl. Moreover since β′ is a
Sl-normalized basic term, we know that nodec(Kl, ~w ′). But since p is a valid non-hole position in
D, we know that either sk(n) ∈ ~w ′ or n ∈ ~w ′. Absurd. �

We can now state the following proposition.

Proposition 5.11. For all Sl-normalized basic terms β, β′, we have β ≡ β′ whenever:

leave-st(β) ∩ leave-st(β′) 6= ∅

Proof. We show this by induction on |β|+|β′|. Using Proposition 5.10 we know that we have Sl-normalized
basic terms B[~w , (αj)j , (δ

k)k], B[~w , (α′j)j , (δ′k)k] such that:

β ≡ B[~w , (αj)j , (δ
k)k] β′ ≡ B[~w , (α′j)j , (δ

′k)k]

∀j, leave-st(αj) ∩ leave-st(α′j) 6= ∅ ∀k, leave-st(δk) ∩ leave-st(δ′k) 6= ∅

218 Deciding Indistinguishability

To conclude we only need to show that for all j, leave-st(αj) ∩ leave-st(α′j) 6= ∅ implies that αj ≡ α′j

and that leave-st(δk)∩ leave-st(δ′k) 6= ∅ implies that δk ≡ δ′k. The former is immediate, as leave-st(αj)∩
leave-st(α′j) 6= ∅ implies that αj ≡ {m}nrpk(n) and α′j ≡ {m′}nrpk(n). Since α

j , α′j ∈ El and since there is as
most one Sl-encryption oracle call with the same randomness, we have m ≡ m′. It only remains to show
that for all k, δk ≡ δ′k. Since δk, δ′k are Sl-decryption oracle calls we know that

δk ≡ C [~g � (si)i≤p] δ′k ≡ C ′ [~g ′ � (s′i)i≤p′]

where:
• There exists contexts u, u′, if-free and in R-normal form, such that:

∀i < p, si ≡ 0(dec(u[(αj)j , (deck)k], sk)) sp ≡ dec(u[(αj)j , (deck)k], sk)

∀g ∈ ~g , g ≡ eq(u[(αj)j , (deck)k], αg) where αg ∈ (αj)j

∀i < p′, s′i ≡ 0(dec(u′[(α′j)j , (dec
′
k)k], sk′)) s′p ≡ dec(u′[(α′j)j , (dec

′
k)k], sk′)

∀g ∈ ~g ′, g ≡ eq(u′[(α′j)j , (dec
′
k)k], α′g) where α′g ∈ (α′j)j

• (αj)j , (α
′
j)j are Sl-encryption oracle calls.

• (deck)k, (dec
′
k)k are Sl-decryption oracle call.

Since leave-st(δk)∩ leave-st(δ′k) 6= ∅, and since u, u′ are if-free and in R-normal form we know that u ≡ u′,
for all j, leave-st(αj) ∩ leave-st(α′j) and for all k, leave-st(deck) ∩ leave-st(dec′k). It follows, by induction
hypothesis, that for all j, αj ≡ α′j and for all k, deck ≡ dec′k. We only have to check that the guards are
the same. Since δk, δ′k ∈ Dl, we know from the definition of the cca2 axioms that δk (resp. δ′k) has one
guard for every encryption α ∈ El such that α ≡ {_}npk and n appear directly in sp (resp. s′p). Since we
showed that sp ≡ s′p, we deduce that δk, δ′k have the same guards. Since guards are sorted according to
an arbitrary but fixed order (the sort function in the definition of RKccaa2), we know that δk ≡ δ′k. �

Corollary 5.2. For all P `npf t ∼ t′, for all h, l:
(i) for all β, β′ ≤h,l

c (t, P) if leave-st(β ↓R) ∩ leave-st(β′ ↓R) 6= ∅ then β ≡ β′.
(ii) for all γ, γ′ ≤h,l

l (t, P) if leave-st(γ ↓R) ∩ leave-st(γ′ ↓R) 6= ∅ then γ ≡ γ′.

(iii) for all β ≤h,l
c (t, P), γ ≤h,l

l (t, P) if leave-st(β ↓R) ∩ leave-st(γ ↓R) 6= ∅ then β ≡ γ.

We can now show the following lemma, which subsumes Lemma 5.12:

Lemma 5.13. For all P `npf t ∼ t′, for all h, l and β, β′ ≤h,l
bt (t, P), there exists an almost conditional

context β̃′[] such that:

β′ ≡ β̃′ [β] and leave-st(β ↓R) ∩ cond-st
(
β̃′[]
)

= ∅

Proof. Let l ∈ label(P). We prove by mutual induction on the definition of Sl-normalized simple terms, Sl-
normalized basic terms, Sl-encryption oracle calls and Sl-decryption oracle calls that for every u ∈ st(β′)
such that u is in one of the four above cases, there exists a conditional context uc[] such that:

u ≡ uc [β] leave-st(β ↓R) ∩ cond-st (uc[]) = ∅ leave-st(~u c) = leave-st(~u)

Moreover if u is a Sl-normalized basic term then there exists an almost conditional context ud[] such
that:

u ≡ ud [β] leave-st(β ↓R) ∩
(
cond-st (ud[]) ∪ leave-st (ud[])

)
= ∅

• Normalized Simple Term: Let u ≡ C[~b � ~s], where ~b are Sl-normalized basic conditionals and
~s are Sl-normalized basic terms. Let ~bd[] and ~s c[] be contexts obtained from ~b,~s by induction
hypothesis such that ~b,~s ≡ ~bd[β], ~s c[β] and:

leave-st(~s c[]) = leave-st(~s) leave-st(β ↓R) ∩
(
cond-st

(
~bd[], ~s c[]

)
∪ leave-st

(
~bd[]

))
= ∅

5.9. Properties of Normalized Basic Terms 219

Moreover:

cond-st(C[~bd[] � ~s c[]]) = cond-st(~bd[], ~s c[]) ∪ leave-st(~bd[])

leave-st(C[~bd[] � ~s c[]]) = leave-st(~s c[]) = leave-st(~s) = leave-st(C[~b � ~s])

Hence we can take ~u c ≡ C[~bd[] � ~s c[]].
• Normalized Basic Term: Let u ≡ B[~w , (αi)i, (dec

j)j] be a Sl-normalized basic term. Let
(αic)i, (α

i
d)i and (decjc)j , (dec

j
d)j be the contexts obtained by applying the induction hypothesis

to (αi)i and (decj)j . Using the fact that:

leave-st
(
(αic)i, (dec

j
c)i
)

= leave-st
(
(αi)i, (dec

j)i
)

and since B and ~w are if-free, one can check that:

leave-st
(
B[~w , (αic)i, (dec

j
c)j]
)

= leave-st
(
B[~w , (αi)i, (dec

j)j]
)

It is then immediate to check that uc ≡ B[~w , (αic)i, (dec
j
c)j] satisfies the wanted properties.

It remains to construct the context ud[]. If leave-st(β ↓R) ∩ leave-st(u) = ∅ then ud ≡ uc satisfies
the wanted properties. Otherwise using Proposition 5.11 we know that β ≡ u, hence we can take
ud ≡ [].

• Encryption Oracle Call: The proof done for the normalized basic term case applies here.
• Decryption Oracle Call: The proof done for the normalized simple term case applies here. �

5.9.2 Well-Nested Sets

Definition 5.45. A simple term C[~a �~b] is said to be flat if ~a,~b are if-free terms in R-normal forms.

Definition 5.46. We let well-nested be the smallest relation between sets (C,D) of flat terms such that:
(a) (C,D) is well-nested if for every C0[~a0 �~b0] ∈ C:

∀C[~a �~b] ∈ C ∪ D, ~b0 ∩ ~a = ∅

(b) (C,D) is well-nested if for every β0 ≡ C0[~a0 �~b0] ∈ C:
(i) For all β ≡ C[~a �~b] ∈ C ∪ D, there exist two if-contexts C ′β , C

′′
β such that:

β =R if β0 then C ′β [~a ′β �~b ′β] else C ′′β [~a ′′β �~b ′′β]

where ~a ′β ,~a
′′
β ⊆ ~a\~b0 and ~b ′β ,~b

′′
β ⊆ ~b .

(ii) The following couples of sets are well-nested:({
C ′β [~a ′β �~b ′β] | C[~a �~b] ∈ C

}
,
{
C ′β [~a ′β �~b ′β] | C[~a �~b] ∈ D

})
({
C ′′β [~a ′′β �~b ′′β] | C[~a �~b] ∈ C

}
,
{
C ′′β [~a ′′β �~b ′′β] | C[~a �~b] ∈ D

})
Proposition 5.12. If (C,D) verifies the property (a) above, then it satisfies properties (i) and (ii).

Proof. Trivial by taking C ′β ≡ C ′′β ≡ C. �

Definition 5.47. We let head be the partial function defined on terms such that for all f ∈ F , for all
terms ~t , head(f(~t)) ≡ f .

Definition 5.48. For all conditional contexts C0, C1, we let C0 tc C1 be the conditional context, if it
exists, defined as follows: pos(C1 tc C2) = pos(C0) ∩ pos(C1) and for all position p in pos(C0 tc C1):

(C0 tc C1)|p ≡

a if head((C0)|p) ≡ head((C1)|p) ≡ a (a ∈ F ∪N)

[]x if (C0)|p ≡ []x ∧
(
head((C1)|p) ≡ []x ∨ head((C1)|p) ≡ a

)
(a ∈ F ∪N)

[]x if (C1)|p ≡ []x ∧
(
head((C0)|p) ≡ []x ∨ head((C0)|p) ≡ a

)
(a ∈ F ∪N)

If such a conditional context does not exist, then C0 tc C1 is the special element undefined. We also let:

undefined tc C0 ≡ C0 tc undefined ≡ undefined

220 Deciding Indistinguishability

Example 5.16. For all conditionals a, b, c, d, e, f and terms t0, . . . , t3 , if we let:

C0 ≡ a

 []x

c d

t0 e

t1 t2

t3

C1 ≡ []y b

c d

t0 []z

t1 t2

t3

C2 ≡ a

[]w

t0 e

t1 t2

t3

Then we have:

C0 tc C1 ≡ []y []x

c d

t0 []z

t1 t2

t3

C1 tc C2 ≡ []y

[]w

t0 []z

t1 t2

t3

C0 tc C2 ≡ C2

�

Definition 5.49. We let vc be the relation on conditional contexts defined as follows: for all conditional
contexts C0, C1, we let C0 vc C1 hold if pos(C1) ⊆ pos(C0) and for all position p in pos(C1):

if head((C1)|p) ≡

{
a then head((C0)|p) ≡ a where (a ∈ F ∪N)

[]x then head((C0)|p) ∈ F ∪N ∪ {[]x}

Moreover we let C0 vc undefined for all conditional context C0 (and undefinedvc undefined).

Example 5.17. Using the conditional contexts defined in Example 5.16, we have, for example, the
following relations:

C0 vc C2 vc

[]v

[]w

t0 e

t1 t2

t3

v
c

a

[]w

t0 []u

t1 t2

t3

vc

[]v

[]w

t0 []u

t1 t2

t3

v
c

�

Proposition 5.13. Let Scc be the set of conditional contexts extended with undefined. Then (Scc,tc,vc)
is a semi-lattice. That is, we have the following properties:
(i) tc is associative, commutative, idempotent.

(ii) vc is an pre-order (i.e. reflexive and transitive).

(iii) For all C0, C1 ∈ Scc, we have C0 vc (C0 tc C1) and C1 vc (C0 tc C1). Moreover (C0 tc C1) is the
least upper-bound of C0 and C1.

5.9. Properties of Normalized Basic Terms 221

Proof. These properties are straightforward to show, we are only going to give the proof that (C0 tc C1)
is the least upper-bound of C0 and C1. Assume that there is C such that:

C0 vc C vc C0 tc C1 C1 vc C vc C0 tc C1

If C0tcC1 ≡ undefined then one can check that C ≡ undefined. Otherwise we know that pos(C0tcC1) =
pos(C0) ∩ pos(C1), and that:

pos(C0) ⊇ pos(C) ⊇ pos(C0 tc C1) pos(C1) ⊇ pos(C) ⊇ pos(C0 tc C1)

Hence pos(C) = pos(C0tcC1). Using the fact that CvcC0tcC1 we know that for all position p ∈ pos(C),
if head((C0 tc C1)|p) = a (with a ∈ F ∪ N) then head(C|p) = a. If head((C0 tc C1)|p) = []x then either
head(C|p) = []x or head(C|p) = a (with a ∈ F ∪ N). In the former case there is nothing to show,
in the the latter case observe that head((C0 tc C1)|p) = []x implies that either head((C0)|p) = []x or
head((C1)|p) = []x. W.l.o.g. assume head((C0)|p) = []x. Then using the fact that C0 vc C, we know that
head((C0)|p) = []x implies that head((C0)|p) = []x. Absurd.

Therefore ∀p ∈ pos(C), head(C|p) = head((C0 tc C1)|p). Moreover pos(C) = pos(C0 tc C1). Hence
C ≡ C0 tc C1. �

Let C0, C1 ∈ Scc such that C0 vc C1. Moreover, assume that:

∀p, p′ ∈ pos(C1), (C1)|p ≡ (C1)|p′ ≡ []x ⇒ (C0)|p ≡ (C0)|p′

Then, we know that C0 and C1 coincides on pos(C1). Therefore, any →R reduction done on C1 can be
mimicked on C0. We simultaneously reduce C1 and C0, which yields the terms C ′1 and C ′0, where C ′1 is
in R-normal form. Then the conditionals of C ′1 which do not have hole variables (i.e. cond-st(C ′1 ↓R) ∩
T (F\if,N)) all appear directly as subterm of C ′0, hence are in cond-st(C ′0).

Proposition 5.14. For every C0, C1 ∈ Scc, if C0 vc C1 and if:

∀p, p′ ∈ pos(C1), (C1)|p ≡ (C1)|p′ ≡ []x ⇒ (C0)|p ≡ (C0)|p′

then cond-st(C1 ↓R) ∩ T (F\if,N) ⊆ cond-st(C0).

Proof. Assume that C0vc C1, with C0, C1 6= undefined (the cases C0 = undefined and C1 = undefined are
easy to handle, with the convention that cond-st(undefined) = ∅), and that:

∀p, p′ ∈ pos(C1), (C1)|p ≡ (C1)|p′ ≡ []x ⇒ (C0)|p ≡ (C0)|p′ (5.8)

First we show that we can extend this property as follows:

∀p, p′ ∈ pos(C1), (C1)|p ≡ (C1)|p′ ⇒ (C0)|p ≡ (C0)|p′ (5.9)

Let q = p · q0 and q = p′ · q0 be positions in pos(C1). Since (C1)|p ≡ (C1)|p′ , we know that head((C1)|q) ≡
head((C1)|q′).

• If head((C1)|q) ≡ a (with a ∈ F∪N) then, from the fact that C0vcC1 we get that head((C0)|q) ≡ a,
and that head((C0)|q′) ≡ a.

• If head((C1)|q) ≡ []x then using (5.8) we get that (C0)|p ≡ (C0)|p′ .

Then, we show by induction on the length of the reduction sequence that for all C ′1 such that C1 →∗R C ′1,
there exists C ′0 such that C ′0vc C

′
1, (5.8) holds for C ′0, C ′1 and C0 →∗R C ′0. Graphically (hypothesis are in

black, goals are in red):

C0 C1

C ′0 C ′1

(5.8) holds

(5.8) holds

vc

vc

R∗ R∗

222 Deciding Indistinguishability

Let →R′ be →R without the non left-linear rules, which are:

if x then y else y → y dec({x}rpk(y), sk(y))→ x

if w then (if w then x else y) else z → if w then x else z

if w then x else (if w then y else z)→ if w then x else z

We mimic all reduction→R on C1 by a reduction on C0, while maintaining vc and the invariant of (5.8).
Mimicking rules in →R is easy as they are left-linear. To mimic rules in (→R \ →R′), we use (5.9).

Therefore let C ′1 be in R-normal form such that C1 →∗R C ′1. Let C ′0 be such that C ′0vc C
′
1,(5.8) holds

for C ′0, C ′1 and C0 →∗R C ′0. C ′1 is of the form D[~b,~b [] � ~u] where ~b, ~u are if-free and in R-normal form, ~b
does not contain any hole variable and ~b [] is a vector of hole variables. Therefore:

cond-st(C1 ↓R) ∩ T (F\if,N) = cond-st(C ′1) ∩ T (F\if,N) = ~b

Finally, we observe that ~b ⊆ cond-st(C ′0), and that cond-st(C ′0) ⊆ cond-st(C0) by Proposition 5.9. �

Lemma 5.14. For all P `npf t ∼ t′, for all h, l, the following couple of sets is well-nested:({
β ↓R| β ≤h,l

c (t, P)
}
,
{
γ ↓R| γ ≤h,l

l (t, P)
})

Proof. We do this proof in the case h = ε. The other cases are identical.

Part 1 We consider an arbitrary ordering (βi)1≤i≤imax
of:

{β | β ≤h,l
c (t, P)}

Using Lemma 5.13, we know that all i 6= i0, there exists a conditional context β̃i such that:

βi ≡ β̃i [βi0] and leave-st(βi0 ↓R) ∩ cond-st
(
β̃i
)

= ∅

From now on we use β(i0)
i to denote this conditional context, and []i0 the hole variable used in the

conditional contexts {β(i0)
i | 1 ≤ i ≤ imax}. We extend this notation to i0 = 0 by letting β(0)

i ≡ βi.
Let 1 ≤ i ≤ imax, and let l0, . . . , ln be a sequence of distinct indices in {0, . . . , imax} such that l0 = 0.

Using Proposition 5.13.((iii)) we know that for every 0 ≤ j0 ≤ n, if i 6= lj0 then:

β
(lj0)
i vc tcj≤nβ

(lj)
i

Using Proposition 5.14, we deduce that:

cond-st
(
β

(lj0)
i

)
⊇ cond-st

(
tcj≤n β

(lj)
i ↓R

)
∩ T (F\if,N)

Which implies that:
leave-st(βlj0 ↓R) ∩ cond-st

(
tcj≤n β

(lj)
i ↓R

)
= ∅ (5.10)

Moreover, if n = n0 + 1 and i 6= ln+1, we can check that:

tcj≤n0
β

(lj)
i ≡

(
tcj≤n0+1 β

(lj)
i

)
{tcj≤n0

β
(lj)
ln0+1

/[]ln0+1
}

=R if
(
tcj≤n0

β
(lj)
ln0+1

)
then

(
tcj≤n0+1 β

(lj)
i

)
{true/[]ln0+1}

else
(
tcj≤n0+1 β

(lj)
i

)
{false/[]ln0+1}

(5.11)

Part 2 Similarly, let (γm)1≤m≤mmax
be an arbitrary ordering of:

{γ | γ ≤h,l
l (t, P)}

Let 1 ≤ i0 ≤ imax. For every m, we have γ(i0)
m such that:

γm ≡ γ(i0)
m [βi0] and leave-st(βi0 ↓R) ∩ cond-st

(
γ(i0)
m

)
= ∅

Moreover, we let γ(0)
m ≡ γm. Let 1 ≤ m ≤ mmax, and let l0, . . . , ln be a sequence of distinct indices in

{0, . . . , imax} such that l0 = 0. We have equations corresponding to (5.10) and (5.11), with tcj≤nγ
(lj)
m

instead of tcj≤nβ
(lj)
i .

5.9. Properties of Normalized Basic Terms 223

Part 3 Consider the following family of couples of sets:{((
tcj≤n β

(lj)
i {ej/[]lj | j ≤ n} ↓R

)
1≤i≤imax

,
(
tcj≤n γ(lj)

m {ej/[]lj | j ≤ n} ↓R
)

1≤m≤mmax

) ∣∣
l0, . . . , ln distinct indices in {0, . . . , imax} s.t. l0 = 0 and (ej)1≤j≤n ∈ {true, false}n

}
(5.12)

We show by decreasing induction on n, starting from n = imax + 1 down to n = 0, that all the elements
above are well-nested.

Let l0, . . . , ln be distinct indices in {0, . . . , imax} such that l0 = 0, and let (ej)1≤j≤n ∈ {true, false}n.

Base case If n = nmax + 1 then from (5.10) we get that for every l 6= i in {1, . . . , imax}:

leave-st(βl ↓R) ∩ cond-st
((
tcj≤n β

(j)
i

)
{ej/[]j | j ≤ n} ↓R

)
= ∅

Moreover:
leave-st

((
tcj≤n β

(j)
l

)
{ej/[]j | j ≤ n} ↓R

)
⊆ leave-st(βl ↓R)

Hence:

leave-st
((
tcj≤n β

(j)
l

)
{ej/[]j | j ≤ n} ↓R

)
∩ cond-st

((
tcj≤n β

(j)
i

)
{ej/[]j | j ≤ n} ↓R

)
= ∅ (5.13)

Similarly, for every 1 ≤ m ≤ mmax:

leave-st
((
tcj≤n β

(j)
l

)
{ej/[]j | j ≤ n} ↓R

)
∩ cond-st

((
tcj≤n γ(j)

m

)
{ej/[]j | j ≤ n} ↓R

)
= ∅

By consequence, the following set is well-nested:((
tcj≤n β

(j)
i {ej/[]j} ↓R

)
1≤i≤imax

,
(
tcj≤n γ(j)

m {ej/[]j} ↓R
)

1≤m≤mmax

)
Inductive Case If n ≤ nmax 6= 0, then from (5.11) we get that for every l 6= i in {1, . . . , imax}:(
tcj≤n β

(lj)
i

)
{elj/[]lj | j ≤ n} =R

if
((
tcj≤n β

(lj)
ln+1

)
{elj/[]lj | j ≤ n}

)
then

(
tcj≤n+1 β

(lj)
i

)
{elj/[]lj | j ≤ n}{true/[]ln+1

}

else
(
tcj≤n+1 β

(lj)
i

)
{elj/[]lj | j ≤ n}{false/[]ln+1}

As we did for (5.13), we can show that for every i 6= ln+1:

leave-st(tcj≤nβ
(lj)
ln+1
↓R) ∩ cond-st

((
tcj≤n+1 β

(lj)
i

)
{elj/[]lj | j ≤ n+ 1} ↓R

)
= ∅

Where eln+1 is either true or false. Similarly, for every m:

leave-st(tcj≤nβ
(lj)
ln+1
↓R) ∩ cond-st

((
tcj≤n+1 γ

(lj)
m

)
{elj/[]lj | j ≤ n+ 1} ↓R

)
= ∅

Moreover, by induction hypothesis, we know that:((
tcj≤n+1 β

(lj)
i

)
{elj/[]lj | j ≤ n+ 1} ↓R

)
i
,
((
tcj≤n+1 γ

(lj)
i

)
{elj/[]lj | j ≤ n+ 1} ↓R

)
i

)
is well-nested for eln+1

≡ true and for eln+1
≡ false. We deduce that the following set is well nested:((

tcj≤n β
(lj)
i

)
{elj/[]lj | j ≤ n} ↓R

)
i
,
((
tcj≤n γ

(lj)
i

)
{elj/[]lj | j ≤ n} ↓R

)
i

)
Conclusion Recall that β(l0)

i ≡ β(0)
i ≡ βi. Hence:({

β ↓R| β ≤ε,lc (t, P)
}
,
{
γ ↓R| γ ≤ε,ll (t, P)

})
is the couple of sets: ((

tcj≤0 β
(lj)
i

)
↓R
)

1≤i≤imax
,
((
tcj≤0 γ

(lj)
m

)
} ↓R

)
1≤m≤mmax

)
which is the family of well-nested sets in (5.12), and is therefore well-nested. �

224 Deciding Indistinguishability

5.10 Spurious Conditionals and Persistent Leaves

An if-free conditionals b is spurious in a term t if, when we normalize t, the conditional b disappears. For
example, the conditional b is spurious in if b then 0 else 0.

Definition 5.50. An if-free conditional b is said to be spurious in a term t if b ↓R 6∈ cond-st(t ↓R).

An if-free term u is persistent in a term t if, when we normalize t, the term u does not disappear. For
example, n0 is persistent in if b then n0 else if b then n1 else n2, but n2 is not.

Definition 5.51. An if-free terms u is said to be persistent in a term t if u ↓R∈ cond-st(t ↓R).

The notion of spurious set is related to the notion of spurious conditional. A set of position S in a
term is a spurious set if we can safely replace in t the terms at positions S by true.

Definition 5.52. A set of positions S is spurious in a term t if it is non-empty and t[true/x | x ∈ S] =R

t[false/x | x ∈ S] =R t. A spurious set is minimal (resp. maximal) if it has not strict spurious subset
(resp. overset), and a spurious set is rooted if there exists p ∈ S such that ∀p′ ∈ S, p ≤ p′ (i.e. is a
common ancestor of all positions in S).

Example 5.18. Let a ≡ eq(A, 0) and b ≡ eq(B, 0) be two conditionals. Consider the following term t:

if b then if a then if b then T else U
else V

else if a then T
else if a then V else V

Then the conditional b is spurious in t, since b is not a subterm of t ↓R≡ if a then T else V . Moreover
the conditional a is a subterm of t ↓R, hence is not spurious. Nonetheless, the set of position S = {220}
is spurious. Indeed we have:

if b then if a then if b then T else U
else V

else if a then T
else if a

220
then V else V

=R if b then if a then if b then T else U
else V

else if a then T

else if true
220

then V else V

=R if b then if a then if b then T else U
else V

else if a then T

else if false
220

then V else V �

First Objective Let t be a term, and a be a spurious conditional in t such that a is a sub-term of t.
If this happens in a proof P `npf t ∼ t′, we would like to find a proof-cut elimination getting rid of a. A
way of building such a cut elimination is to find a set of positions S which is spurious in both t and t′,
and such that for every p ∈ S and t|p ≡ a. Then, under some conditions on S, we may be able to obtain
a proof P ′ `npf t{true/S} ∼ t′{true/S}. If we can repeat this proof cut sufficiently many times, we may
eventually remove all occurrences of a in t.

Our first goal is the following: given a term t and a spurious conditional a in t, and given a set of
positions S such that for every p ∈ S and t|p ≡ a, we give sufficient conditions under which S is a spurious
set in t. This is done in Section 5.10.1.

5.10. Spurious Conditionals and Persistent Leaves 225

Second Objective Consider a proof P `npf t ∼ t′, where t is of the form:

t ≡ C[(βi)i∈I � (γj)j∈J]

where (βi)i∈I and (γj)j∈J are S-normalized basic terms and S is the left cca2 trace of P . Remember
that we showed in Corollary 5.2.(ii) that for every j, j′ ∈ J :

leave-st(γj ↓R) ∩ leave-st(γj′ ↓R) 6= ∅ implies that γj ≡ γj′

This followed from the fact that given a leaf u ∈ leave-st(γj ↓R), there exists a unique way of completing
u into a S-normalized basic term. Moreover, we will see later that |γj | is bounded by |u|. Assume that
we can show that, for every j, leave-st(γj ↓R) contains a persistent term in t, i.e. that leave-st(γj ↓R) ∩
leave-st(t ↓R) is non-empty. Since leave-st(t ↓R) is bounded by the size of the normal form of t, we just
bounded the size of the set {γj | j ∈ J}.

Therefore, a way of bounding the size of the S-normalized basic terms (γj)j∈J is to show that they
all have a persistent leaf. In other word, we want to prove that we can assume, w.l.o.g., that for every j:

leave-st(γj ↓R) ∩ leave-st(t ↓R) 6= ∅

This is a key lemma to show decidability. In Section 5.10.2, we give sufficient conditions for this to hold.

5.10.1 Spurious Conditionals to Spurious Sets

We give sufficient conditions under which a set of positions S is spurious in a term t.

Lemma 5.15. Let a,~a,~b ,~c be if-free conditionals in R-normal form. Let s be the context:

τ [] ≡ B
[
~c �
(
~w , if C[~b � ~a, []] then u else v

)]
Let t be the term τ [a], and assume that a is spurious in t, and that:

• a 6∈ ~a ∪~b ∪ {true, false} ∪ cond-st(u ↓R) ∪ cond-st(v ↓R).

• a 6∈ ρ where ρ is the set of conditionals appearing on the path from the root to if C[~b�~a, a] then u else v.
Then t ≡ τ [a] =R τ [true].

Proof. We start by observing that:

if C[~b � ~a, a] then u else v =R if a then if C[~b � ~a, true] then u else v

else if C[~b � ~a, false] then u else v

Let Cu[~bu � ~tu] and Cv[~bv � ~tv] be the R-normal forms of u and v. Let Cl, Cr be such that :

if C[~b � ~a, true] then u else v =R Cl[~bu,~bv,~b ,~a � ~tu,~tv]

if C[~b � ~a, false] then u else v =R Cr[~bu,~bv,~b ,~a � ~tu,~tv]

Since a 6∈ cond-st(u ↓R), cond-st(v ↓R) we know that a 6∈ ~bu,~bv. Moreover since a 6∈ ~a ∪~b we know
that a 6∈ ~bu,~bv,~b ,~a . Therefore:

a 6∈ cond-st(Cl[~bu,~bv,~b ,~a � ~tu,~tv]) a 6∈ cond-st(Cr[~bu,~bv,~b ,~a � ~tu,~tv])

We get rid in Cl and Cr of all the conditionals appearing in ρ. We let ~a l and ~a r be such that:

~a l ⊆ ~bu,~bv,~b ,~a\ρ ~a r ⊆ ~bu,~bv,~b ,~a\ρ

and C ′l , C
′
r such that:

B
[
~c �
(
~w ,Cl[~bu,~bv,~b ,~a � ~tu,~tv]

)]
=R B

[
~c �
(
~w ,C ′l [~a

l � ~tu,~tv]
)]

(5.14)

B
[
~c �
(
~w ,Cr[~bu,~bv,~b ,~a � ~tu,~tv]

)]
=R B

[
~c �
(
~w ,C ′r[~a

r � ~tu,~tv]
)]

(5.15)

We know that a 6∈ ~a l and a 6∈ ~a r.

226 Deciding Indistinguishability

c1

c2

w2 c3

cn

if C[~b � ~a] then u
else v

wn

w3

w1

Figure 5.10: Example of if-context B′

Case 1 If there exists c0 ∈ ~c such that the path ρ from the root of t to if C[~b �~a] then u else v contains
one of the following shapes, where solid edges represent one element of the path ρ, and dotted edges
represent a summary of a part of the path ρ.

c0

c0

(A)
c0

c0

(B)

true

(C)

false

(D)

In these four cases, the result is easy to show, since we can do any rewriting we want. For example, in
case (A), we use the fact that:

if x then y else (if x then v else z)→∗R if x then y else (if x then v′ else z) (for all term v′)

to rewrite (if C[~b � ~a, a] then u else v) into the term (if a then if C[~b � ~a, true] then u else v else).

Case 2 Let s[] be such that t ≡ s[if C[~b � ~a] then u else v]. If none of the shapes of Case 1 occurs,
then we know that there exists B′ and ~ω such that s[] =R B

′ [~c � (~ω , [])] and the path ρ′ from the root
of s to [] is a subset of ρ and does not contain duplicates, true and false. The existence of such a B′ is
proved by induction on the number of duplicate conditionals, true and false occurring on ρ′: indeed since
the shape (A) and (B) (resp. (C) and (D)) are forbidden in ρ, we know that if we have a duplicate (resp.
true or false) then we can always rewrite B such that the hole containing s does not disappear.

Let ρ′ = c1, . . . , cn, we take B′ minimal, i.e. only a branch c1, . . . , cn. We give an example of such an
if-context in Figure 5.10.

Wet let ~ω = w1, . . . , wn, and we have:

s =R B
′ [c1, . . . , cn � w1, . . . , wn, []]

We let �u be a total ordering on if-free conditional in R-normal form such that the n + 1 maximum
elements are c1 �u · · · � cn �u a. For every y, we let Wi[~d i � ~e i] be the R�u -normal form of wi. Then:

s =R B
′
[
c1, . . . , cn �

(
Wi[~d i � ~e i]

)
i≤n, []

]
We get rid of any occurrence of c1, . . . , cn in (~d i)i. For every i, we let W ′i [~d ′i � ~e ′i] be terms in R-normal
form such that ~d ′i ∩ {cj | j ≤ i} = ∅ and:

s =R B
′
[
c1, . . . , cn �

(
W ′i [~d

′
i � ~e ′i]

)
i≤n, []

]

5.10. Spurious Conditionals and Persistent Leaves 227

Using (5.14) and (5.15) we get:

t =R B
′
[
c1, . . . , cn �

(
W ′i [~d

′
i � ~e ′i]

)
i≤n,

if a then C ′l [~a
l � ~tu,~tv]

else C ′r[~a
r � ~tu,~tv]

]

It is then quite easy to show by induction on the length of the reduction sequence that there exists a
sequence 1 ≤ i1 < · · · < ik ≤ n and an if-context B′′ such that:

t ↓R�u ≡

(
B′
[
c1, . . . , cn �

(
W ′i [~d

′
i � ~e ′i]

)
i≤n,

if a then C ′l [~a
l � ~tu,~tv]

else C ′r[~a
r � ~tu,~tv]

])
↓R�u

≡ B′′
[
ci1 , . . . , cik �

(
W ′ij [

~d ′ij � ~e
′
ij]
)
j≤k,

(
if a then C ′l [~a

l � ~tu,~tv]
else C ′r[~a

r � ~tu,~tv]

)
↓R�u

]

We deduce from this that a is spurious in:

if a then C ′l [~a
l � ~tu,~tv] else C ′r[~a r � ~tu,~tv]

Since a will stay the top-most conditional in the R-normal form of this term (because of the order �u
we chose), and since a 6= true a 6= false and a 6∈ ~a l,~a r, there is only one rule that can be applied:
if a then x else x→ x. Consequently:

C ′l [~a
l � ~tu,~tv] =R C ′r[~a

r � ~tu,~tv]

Hence:

t =R B
′
[
c1, . . . , cn �

(
W ′i [~d

′
i � ~e ′i]

)
i≤n, C

′
l [~a

l � ~tu,~tv]
]

=R s
[
C ′l [~a

l � ~tu,~tv]
]

=R B
[
~c �
(
~w ,C ′l [~a

l � ~tu,~tv]
)]

Hence using (5.14) we get:

t =R B
[
~c �
(
~w ,Cl[~bu,~bv,~b ,~a � ~tu,~tv]

)]
=R B

[
~c �
(
~w , if C[~b � ~a, true] then u else v

)]
�

5.10.2 Persistent Terms

Let a be a conditional and s[] be a context. The following proposition give sufficient conditions under
which the persistent terms of s[a] are exactly the persistent terms of s[true] and s[false].

Proposition 5.15. Let a, (~a i,~b i)i, (~c j ,~t j)j be if-free terms in R-normal form such that for every i,
a 6∈ ~a i ∪~b i ∪ ~c j, and let s[] be a context such that:

s[] ≡ B
[(
Ci[~a i, [] �~b i, []]

)
i
�
(
Dj [~c j , [] � ~t j]

)
j

]
Then leave-st(s[a] ↓R) = leave-st(s[true] ↓R) ∪ leave-st(s[false] ↓R).

Proof. We know that s[a] =R if a then s[true] else s[false]. Let �u be a total order on if-free conditionals
in R-normal form such that a is minimal. It is straightforward to check that:

s[a] ↓R�u ≡ (if a then s[true] else s[false]) ↓R�u

≡

{
(s[true]) ↓R�u if s[true] =R�u s[false]
if a then (s[true]) ↓R�u else (s[false]) ↓R�u otherwise

Therefore:
leave-st(s[a] ↓R�u) = leave-st(s[true] ↓R�u) ∪ leave-st(s[false] ↓R�u)

The wanted result follows from Proposition 5.1. �

228 Deciding Indistinguishability

We show the following technical proposition, that we use later in this section. Given a conditional
a and two terms tl and tr, we give sufficient conditions under which a persistent term in tl or tr is a
persistent term in if a then tl else tr.

Proposition 5.16 (Persistent Term Lifting). Consider the terms:

C[~a �~b] tl ≡ Bl
[(
Cli [~a

l
i �~b li]

)
i
�
(
Dl
j [~c

l
j � ~t lj]

)
j

]
tr ≡ Br

[(
Cri [~ari �~bri]

)
i
�
(
Dr
j [~c

r
j � ~trj]

)
j

]
where:

• For every x ∈ {l, r}, i and j, the terms ~axi ,~bxi ,~cxj ,~txj are if-free and in R-normal form.

• ~a,~b are if-free, in R-normal form and (~a ∪~b) ∩ {true, false} = ∅.

• ~b ∩ (
⋃
x∈{l,r},i ~a

x
i ,
~bxi) = ∅ and ~b ∩ (

⋃
x∈{l,r},j ~c

x
i) = ∅.

• ~a ∩~b = ∅.
Then:

leave-st(tl ↓R) ∪ leave-st(tr ↓R) ⊆ leave-st
(

(if C[~a �~b] then tl else tr) ↓R
)

Proof. We prove this by induction on |~a |.

Base Case If |~a | = 0 then C[~a � ~b] ≡ b, where b is if-free. Let �u be any total order on if-free
conditionals in R-normal form such that b is minimal. We then let Dl[~a l � ~t l] and Dr[~ar � ~tr] be the
R�u -normal form of tl and tr. By Proposition 5.1, we know that:

leave-st(tl ↓R) = leave-st(tl ↓R�u) = leave-st
((
Dl[~a l � ~t l]

)
↓R�u

)
(5.16)

Using the fact that (~a li,
~b li)i and ~c lj ,~t

l
j)j are if-free and in R-normal form, it is simple to show by

induction on the length of the reduction that ~a l ⊆ (~a li,
~b li)i, (~c

l
j)j . Since b 6∈ (

⋃
x∈{l,r},i ~a

x
i ,
~bxi) and

b 6∈ (
⋃
x∈{l,r},j ,~c

x
j), this shows that b 6∈ ~a l. Similarly ~ar ⊆ (~ari ,

~bri)i, (~c
r
j)j and b 6∈ ~ar.

(if b then tl else tr) ↓R�u≡
(
if b then Dl[~a l � ~t l] else Dr[~ar � ~tr]

)
↓R�u

Since b is and if-free conditional in R-normal form minimal for �u, since Dl[~a l � ~t l] and Dr[~ar � ~tr] are
in R�u -normal form, since b 6∈ {true, false} and since b 6∈ ~a l ∪ ~ar, there is only one rule that may be
applicable: if b then x else x→ x. Therefore:

(if b then tl else tr) ↓R�u ≡

{
tl ↓R�u if tl =R�u tr

if b then tl ↓R�u else tr ↓R�u otherwise

Which shows the wanted result.

Inductive Case Assume that the result holds for m, and consider ~a, a of length m+ 1. First:

if C[~a, a �~b] then tl else tr =R if a then if C[~a, true �~b] then tl else tr

else if C[~a, false �~b] then tl else tr

Let sl[] be a context such that sl[a] ≡ tl and a 6∈ cond-st(sl[] ↓R). Similarly, let sr[] be such that sr[a] ≡ tr
and a 6∈ cond-st(sr[] ↓R). We are going to rewrite the then branch to replace any occurrence of a by true.
Similarly, we rewrite the else branch to replace any occurrence of a by false.

Moreover, we get rid of true and false in C[~a, true�~b] and C[~a, false�~b]. Let C ′[~a ′ �~b ′] and C ′′[~a ′′ �~b ′′]
be such that:

C[~a �~b] =R if a then C ′[~a ′ �~b ′] else C ′′[~a ′′ �~b ′′]

5.10. Spurious Conditionals and Persistent Leaves 229

with ~a ′ ∪ ~a ′′ ⊆ ~a\{a} and ~b ′ ∪~b ′′ ⊆ ~b\{a}. Then:

if C[~a, true �~b] then tl else tr =R if C ′[~a ′ �~b ′] then sl[true] else sr[true]

if C[~a, false �~b] then tl else tr =R if C ′′[~a ′′ �~b ′′] then sl[false] else sr[false]

We start by checking that the induction hypothesis on the red framed term. The first condition is trivial,
we check the other:

• Since ~a ′ ⊆ ~a , ~b ′ ⊆ ~b and (~a ∪~b) ∩ {true, false} = ∅, we know that (~a ′ ∪~b ′) ∩ {true, false} = ∅.
• The term sl[a] is obtained from tl by replacing every occurrence of a by true. Hence, since true 6∈ ~b ,
~b ′ ⊆ ~b and:

~b ∩ (
⋃
x∈{l,r},i ~a

x
i ,
~bxi) = ∅ ~b ∩ (

⋃
x∈{l,r},j ~c

x
i) = ∅

We know that the third condition holds.

• Since ~a ′ ⊆ ~a , ~b ′ ⊆ ~b and ~a ∩~b = ∅, we know that ~a ′ ∩~b ′ = ∅.
By applying the induction hypothesis, we deduce that:

leave-st(sl[true] ↓R) ∪ leave-st(sr[true] ↓R) ⊆ leave-st(if C ′[~a ′ �~b ′] then sl[true] else sr[true] ↓R)

Similarly, by applying the induction hypothesis on the rewriting of the blue framed term, we get:

leave-st(sl[false] ↓R) ∪ leave-st(sr[false] ↓R) ⊆ leave-st(if C ′′[~a ′′ �~b ′′] then sl[false] else sr[false] ↓R)

Finally, we apply again the induction hypothesis (with m = 0) to the term u below:

u ≡ if a then leave-st(if C ′[~a ′ �~b ′] then sl[true] else sr[true] ↓R)

else leave-st(if C ′′[~a ′′ �~b ′′] then sl[false] else sr[false] ↓R)

We get that:

leave-st(u ↓R) ⊇ leave-st
(

leave-st(if C ′[~a ′ �~b ′] then sl[true] else sr[true] ↓R) ↓R
)

∪ leave-st
(

leave-st(if C ′′[~a ′′ �~b ′′] then sl[false] else sr[false] ↓R) ↓R
)

By applying Proposition 5.15 twice, we know that:

leave-st(tl ↓R) ∪ leave-st(tr ↓R) =

leave-st(sl[true] ↓R) ∪ leave-st(sr[true] ↓R) ∪ leave-st(sl[false] ↓R) ∪ leave-st(sr[false] ↓R)

Hence we deduce that:

leave-st(tl ↓R) ∪ leave-st(tr ↓R) ⊆ leave-st(u ↓R) = leave-st(if C[~a, a �~b] then tl else tr ↓R) �

We are now ready to prove the main lemma of this section, which, under some conditions, shows that
all leaf term γ of a term t has a persistent leaf.

Lemma 5.16. Let s be a term of the form:

s ≡ A
[
~d �
(
Bl
[(
βi,l
)
i
�
(
γj,l
)
j

])
l

]
such that:
(i) ~d are if-free and in R-normal form, and for every i, l, cond-st(βi,l ↓R) ∩ leave-st(βj,l ↓R) = ∅.

230 Deciding Indistinguishability

(ii)
(
~d ∪

⋃
i,l leave-st(βi,l ↓R)

)
∩ {true, false} = ∅.

(iii) For every positions p < p′ in A[_ � (Bl)l] such that s|p ≡ ζ and s|p′ ≡ ζ ′, we have:

leave-st(ζ ↓R) ∩ leave-st(ζ ′ ↓R) = ∅

(iv) For every l, i, j, leave-st(βi,l ↓R) ∩ leave-st(βj,l ↓R) 6= ∅ implies that βi,l ≡ βj,l.
(v) For every l, the following couple of sets is well-nested:

({βi,l ↓R| i} , {γj,l ↓R| j})

then for every l, j, γj,l contains a persistent term in s, i.e. leave-st(γj,l ↓R) ∩ leave-st(s ↓R) 6= ∅.

Proof. We start by showing that the property holds when ~d = ∅ and A ≡ []. We deal with the general
case afterward.

Part 1 For all i, j, we let Ci[], Dj [] be if-contexts and ~a i, ~b i,~c j , ~t j be if-free terms in R-normal form
such that:

~a i ≡ cond-st(βi ↓R) ~b i ≡ leave-st(βi ↓R) ~c i ≡ cond-st(γj ↓R) ~t i ≡ leave-st(γj ↓R)

βi ↓R ≡ Ci[~a i �~b i] γj ↓R ≡ Dj [~c j � ~t j]

We know that:
s =R B

[(
Ci[~a i �~b i]

)
i
�
(
Dj [~c j � ~t j]

)
j

]
satisfying conditions (i) to (v). We prove the proposition by structural induction on B[].

Part 1: Base Case The base case is simple. It suffices to notice that since ~c,~t are if-free and in
R-normal form:

leave-st(s ↓R) = leave-st(D[~c � ~t] ↓R) ⊆ ~t

Part 1: Inductive Case Consider:

s ≡ if C0[~a0 �~b0] then Bl
[(
Ci[~a i �~b i]

)
i∈Il
�
(
Dj [~c j � ~t j]

)
j∈Jl

]
else Br

[(
Ci[~a i �~b i]

)
i∈Ir
�
(
Dj [~c j � ~t j]

)
j∈Jr

]
Using the well-nested hypothesis, for every j ∈ I l ∪ Ir, there exist two if-context C ′j , C ′′j such that:

Cj [~a j �~b j] =R if C0[~a0 �~b0] then C ′j [~a
′
j �~b ′j] else C ′′j [~a ′′j �~b ′′j]

where ~a ′j ,~a ′′j ⊆ ~a j\~b0 and ~b ′j ,~b ′′j ⊆ ~b j . Similarly, for every j ∈ J l ∪ Jr, there exist D′j , D′′j such that:

Dj [~c j � ~t j] =R if C0[~a0 �~b0] then D′j [~c
′
j � ~t ′j] else C ′′j [~c ′′j � ~t ′′j]

where ~c ′j ,~c ′′j ⊆ ~a j\~b0 and ~t ′j ,~t ′′j ⊆ ~t j . Then:

s ≡ if C0[~a0 �~b0] then Bl
[(
C ′i[~a

′
i �~b ′i]

)
i∈Il
�
(
D′j [~c

′
j � ~t ′j]

)
j∈Jl

]
strue

else Br
[(
C ′′i [~a ′′i �~b ′′i]

)
i∈Ir
�
(
D′′j [~c ′′j � ~t ′′j]

)
j∈Jr

]
sfalse

We want to show that for all j ∈ J l ∪ Jr, ∃t ∈ ~t j . t ∈ leave-st(s ↓R). Let j ∈ J l (the proof for j ∈ Jr
is similar). We are going to apply the induction hypothesis to strue (for j ∈ Jr, we apply the induction
hypothesis to sfalse). Lets check that the premises hold for strue:

5.11. Proof Cut Elimination 231

• (i) and (ii) trivially hold.
• For (iii), we use the fact that we know that the property holds in s for every positions ε < p < p′

in if [] then Bl else Br, and the fact that for every i ∈ I l ∪ Ir, ~b ′i ⊆ ~b i.
• Checking that (iv) holds is straightforward. Assume that there exists i, j ∈ I l such that ~b ′i∩~b ′j 6= ∅.
Since ~b ′i ⊆ ~b i and ~b ′j ⊆ ~b j we know that ~b i ∩~b j 6= ∅. Therefore Ci[~a i �~b i] ≡ Cj [~a j �~b j]. Hence:

C ′i[~a
′
i �~b ′i] ≡ C ′j [~a ′j �~b ′j] C ′′i [~a ′′i �~b ′′i] ≡ C ′′j [~a ′′j �~b ′′j]

• Using the inductive property of well-nested couples (item (iv)) we know that the following couple
of sets is well-nested:({

C ′i[~a
′
i �~b ′i] | i ∈ I l ∪ Ir ∪ {0}

}
,
{
D′j [~c

′
j � ~t ′j] | j ∈ J l ∪ Jr

}
j

)
Since, for every (C,D), (C′,D′), if (C,D) is well-nested and C′ ⊆ C ∧ D′ ⊆ D then (C′,D′) is well-
nested, we know that the following couple of sets is well-nested:({

C ′i[~a
′
i �~b ′i] | i ∈ I l ∪ {0}

}
,
{
D′j [~c

′
j � ~t ′j] | j ∈ J l

}
j

)
We can apply the induction hypothesis to strue, which shows that for all j ∈ J l, there exists t ∈ ~t ′j such
that t ∈ leave-st(strue ↓R). To conclude, we have to lift this to leave-st(s ↓R).

Let S = I l ∪ Ir ∪ {0} ∪ J l ∪ Jr, and S′ = S\{0}. We apply Proposition 5.16 to show that t ∈
leave-st(s ↓R). The only difficulty lies in showing that:

~b0 ∩
(⋃

i∈S′ ~a
′
i,~a
′′
i ,
~b ′i,~b

′′
i ,~c
′
i,~c
′′
i

)
= ∅

We know that b0 ∩
(⋃

i∈S′ ~a
′
i,~a
′′
i ,~c
′
i,~c
′′
i

)
= ∅ (since ~a ′i ⊆ ~a i\~b0, . . .), so it only remains to show that:

~b0 ∩
⋃
i∈S′

~b ′i,~b
′′
i = ∅ (5.17)

For every i ∈ S′, we know that ~b ′i ⊆ ~b i and ~b ′′i ⊆ ~b i. Hence, if ~b0 ∩~b ′i 6= ∅ or ~b0 ∩~b ′′i 6= ∅ then ~b i ∩~b0 6= ∅.
Since C0[] is at the root of s, we know using (iii) that ~b i ∩~b0 = ∅. Hence (5.17) holds.

Part 2 For the general case, we just observe that we can take:

B[] ≡ A[([]d)d∈~d � (Bl[])l]

We only need to check that the property (i)-(v) are verified for B[]. Properties (i)-(iv) are straightforward.
For (v), we only observe that, since ~d are if-free and in R-normal form, if (C,D) is well-nested then
(C ∪ ~d,D) is well-nested. �

5.11 Proof Cut Elimination

Consider a proof P `npf t ∼ t′. Lemma 5.16 shows that, under some conditions, any normalized basic
term γ ≤ε,ll (t, P) has a persistent leaf in t, i.e. leave-st(γ ↓R) ∩ leave-st(t ↓R) 6= ∅. To apply this lemma,
we need to have a proof P satisfying the hypothesis of Lemma 5.16. We give simplified version of these
conditions below:
(i) for every β, β′ ≤ε,lc (t, P), we have cond-st(β ↓R) ∩ leave-st(β ↓R) = ∅.
(ii)

(⋃
β≤ε,lc (t,P) leave-st(β ↓R)

)
∩ {true, false} = ∅.

(iii) For every β, β′ ≤ε,lc (t, P) and positions p < p′ in t such that t|p ≡ β and t|p′ ≡ β′, we have:

leave-st(β ↓R) ∩ leave-st(β′ ↓R) = ∅

(iv) For every β, β′ ≤ε,lc (t, P), if leave-st(β ↓R) ∩ leave-st(β′ ↓R) 6= ∅ then β ≡ β.

232 Deciding Indistinguishability

(v) The following couple of sets is well-nested:({
β ↓R| β ≤ε,lc (t, P)

}
,
{
γ ↓R| γ ≤ε,ll (t, P)

})
For each property above, we give the proposition or lemma proving that it holds, or we announce in
which section we will prove it.
(i) In other word, this means that every normalized basic terms has disjoint conditionals and leaves.

We will prove this in Section 5.11.2.

(ii) For this to hold, we need to prove that, w.l.o.g., we can assume that true and false do not appear
in the leaves of normalized basic terms. We will show this in Section 5.11.1.

(iii) This requires two non-trivial proof cut, which we explain in Section 5.11.3. It relies on Lemma 5.2.

(iv) This is a consequence of Proposition 5.11, which we already proved.

(v) We showed that these sets are well-nested in Lemma 5.14.
The rest of this section is organized as follows: in Section 5.11.1 we deal with (ii), by showing that we

can assume that true and false do not appear in proof in normal proof form; in Section 5.11.2 we prove
that conditionals and leaves of basic terms are disjoints, which we need for (i); in Section 5.11.3, we give
examples of proof cut elimination used to obtain (iii); finally, in Section 5.11.4, we use Lemma 5.16 to
prove that we can assume, w.l.o.g., that every leaf term appearing t has a persistent leaf in t.

5.11.1 Removing True and False From Basic Terms

In this section, we prove that we can assume, w.l.o.g., that true and false do not appear in the leaves of
normalized basic terms.

Key Observation Let s be an if-free in R-normal form, s can be rewritten into a complex term u:

u ≡ C
[(
Di[~a i �~b i]

)
i
� ~t
]

that is not if-free. Basically, the following proposition shows that as long as the term u does not contain
true and false conditionals, the term s will always appear in the right-most and left-most branches of C.
This is actually an invariant preserved by the term rewriting system R without the rules:

if true then v else w → w if false then v else w → w

Proposition 5.17. For all if-free term s in R-normal form, if s =R C
[(
Di[~a i �~b i]

)
i
� ~t
]
where:

• ~t ∪
⋃
i(~a i ∪~b i) are if-free and in R-normal form.

• For every i such that Di[~a i �~b i] is a term appearing on the left-most (resp. right-most) branch of
C, we have that false 6∈ ~a i ∪~b i (resp. true 6∈ ~a i ∪~b i).

Then the left-most (resp. right-most) element of ~t is s.

Proof. If suffices to show that the existence of a decomposition satisfying these two properties is preserved
by →R, which is simple. We conclude by observing that since s is if-free, the only decomposition of s ↓R
into C

[(
Di

[
~a i �~b i

])
i
� ~t
]
is such that C ≡ []. Hence ~t is a single element u, and u ≡ s ↓R≡ s. �

We would like to prove that for every b, there exists no derivation of b ∼ true or b ∼ false. Such
derivations would be problematic since true and false are conditionals of constant size, but b could be
of any size (and we are trying to bound all conditionals appearing in a proof). Also, the else branch
of a true conditional can contain anything and is, a priori, not bounded by the proof conclusion. Using
Proposition 5.17 we proved above, we show that there exists no proof of b ∼ true or false, as long as b is
if-free and the proof is in the fragment A�.

Proposition 5.18. Let b an if-free conditional in R-normal, with b 6≡ false (resp. b 6≡ true). Then there
exists no derivation of b ∼ false (resp. b ∼ true) in A�.

5.11. Proof Cut Elimination 233

. . .

(
bhl bhr

bh

)
h∈H

βp0

βpn

γ . . .

. . .

. . .

. . .

Figure 5.11: Shape of the Term in the Proof of Proposition 5.18

Proof. We prove only that there is no derivation of b ∼ false in A� (the proof that there is no derivation
of b ∼ true in A� is exactly the same). We prove this by contradiction. Let b an if-free conditional
in R-normal form which is not true and false, and let P be such that P `npf b ∼ false. We choose the
conditional b such that its proof P is of minimal size.

First the minimality of the derivation implies that for all h ∈ index(P), for all b0 such that b0 ≤h
cs (b, P)

or b0 ≤h
cs (false, P), b0 6=R false. Let H = cs-pos(P). We now focus on the left-most branch of the proof.

First Part Let l ∈ label(P). First we show that for all β ≤ε,lc (b, P), β 6=R false. Assume that this is
not the case, let β =R false and β′ be such that (β, β′) ≤ε,lc∼c (b ∼ false, P). If β =R β

′ =R false then there
is an easy proof cut elimination which yields a smaller proof P ′ of b ∼ false.

Hence assume β′ 6=R false. If β =R false then leave-st(β ↓R) = leave-st(false ↓R) = {false}. Since β is
a normalized basic conditional (for the cca2 trace S of its branch in P), and since false is a normalized
basic conditional, using Proposition 5.11 we have β ≡ false.

There exists a derivation of β ∼ β′ in F(FAs
∗ · Dup∗ · cca2). Since β ≡ false, no rules in FAs are

applied. Therefore the derivation is only an application of cca2, which is not possible. Similarly we do
not have β 6=R false and β′ =R false.

Part 2 Using Proposition 5.11 we know that β 6=R false implies that for all u ∈ leave-st(β ↓R), u 6≡
false. Moreover, for any term w, w ↓R does not contain false in its conditionals (or we could apply
if false then x else y → y). Hence for every a ∈ cond-st(β ↓R), a 6≡ false.

We let (γ, γ′) ≤ε,ll (b ∼ false, P) be the left-most elements (as shown in Figure 5.11). For all a ∈
cond-st(γ ↓R), a 6≡ false. Hence if we let u0 ∈ leave-st(γ ↓R) be the left-most leave element of γ ↓R, then
by Proposition 5.17 we know that u0 ≡ b. Recall that b 6=R false.

Similarly, by applying the exact same reasoning to the other side, we know that the left-most leaf
element u′0 of γ′ ↓R is false, and by Proposition 5.11 we get that γ′ ≡ false. Since there exists a derivation
of γ ∼ γ′ in F(FAs

∗ ·Dup∗ ·cca2), no rule in FAs is applied. Therefore the derivation is only an application
of cca2. Contradiction. �

Thanks to this proposition, we can ensure that any proof P of t ∼ t′ does not contain a CS� or BFA
application on true or false: if we have a CS� or BFA application on (true, true) or (false, false) then there
is an easy proof cut elimination, and the previous proposition ensures that there are no CS� or BFA
applications on (true, b), (b, true), (false, b) or (b, false) (with b 6=R false, true).

234 Deciding Indistinguishability

Proposition 5.19. For all P `npf t ∼ t′, there exists P ′ such that P ′ `npf t ∼ t′ and for all l ∈
label(P ′), h ∈ index(P ′), x ∈ {l, r} we have:

∀β ∈
(
(≤hx,l

c ∪ ≤hx
cs)(t, P ′)

)
∪
(
(≤hx,l

c ∪ ≤hx
cs)(t′, P ′)

)
, {false, true} ∩ leave-st(β ↓R) = ∅

Proof. Through simple proof cut eliminations, We can construct a proof P ′ from P such that:

{(true, true), (false, false)} ∩ (≤hx,l
c∼c (t ∼ t′, P)∪ ≤hx

cs∼cs (t ∼ t′, P)) = ∅

Then using Proposition 5.18 we know that for all:

(β, β′) ∈ (≤hx,l
c∼c (t ∼ t′, P)∪ ≤hx

cs∼cs (t ∼ t′, P))

the conditionals β and β′ are such that β 6=R false and β′ 6=R false (same with true). Finally if β 6=R false
then using Proposition 5.11 we know that for every u ∈ leave-st(β ↓R), u 6≡ false (idem with true). �

5.11.2 Basic Terms have Disjoints Conditionals and Leaves

We now prove that every normalized basic terms has disjoint conditionals and leaves.Let β be a normalized
basic terms. First. we show that every conditional term b in cond-st(β ↓R) is the leaf of another normalized
basic term β′, which is a strict subterm of β. Therefore, if cond-st(β ↓R) ∩ leave-st(β ↓R) 6= ∅ then there
exists β′ such that leave-st(β ↓R) ∩ leave-st(β′ ↓R) 6= ∅. Using Proposition 5.11, we deduce that β ≡ β′,
which contradicts the fact that β′ is a strict sub-term of β.

First, we define the set of normalized basic conditionals appearing in a term t.

Definition 5.53. For all term t, we let <Sbc t be the set of S-normalized basic conditional appearing in
t, defined inductively by:

• If t is a S-normalized simple term C[~b � ~u], then:

<Sbc t = ~b ∪
(
<Sbc ~b

)
∪
(
<Sbc ~u

)
• If t is a S-normalized basic term B[~w , (αi)i, (decj)j], then:

<Sbc t =
⋃
i

<Sbc αi ∪
⋃
j

<Sbc decj

• For every S-encryption oracle call t ≡ {u}rpk, then:

<Sbc t = <Sbc u

• For every S-decryption oracle call C[~b � ~u], let s, sk be such that s is if-free and the terms in ~u are
of the form 0(dec(s[(αi), (decj)j], sk)) or dec(s[(αi), (decj)j], sk). Then:

<Sbc t = ~b ∪
(
<Sbc ~b

)
∪
⋃
i

<Sbc αi ∪
⋃
j

<Sbc decj

We show that the over-approximated set of conditionals cond-st(β) is exactly the over-approximated
set of leaves of the normalized basic conditionals that are subterm of β.

Proposition 5.20. For every term β such that β is a S-normalized basic term, S-normalized simple
term, S-decryption oracle call or S-encryption oracle call:

cond-st(β) =
⋃

u<Sbcβ

leave-st(u)

Proof. We prove this by induction on the order <Sind, which, we recall, is the order stemming from S-
normalized basic terms, S-normalized simple terms, S-decryption oracle calls or S-encryption oracle calls
mutually inductive definitions.

5.11. Proof Cut Elimination 235

Base Case If β is minimal for <Sind, then we have the following cases:

• S-decryption oracle call: β is of the form C[~b � ~u], and there exists s, sk such that terms in ~u are
of the form 0(dec(s, sk)) or dec(s, sk), and s is if-free. Moreover by minimality of β the vector of
terms ~b must be empty, since for all b ∈ ~b , b is a S-normalized basic term.
Hence cond-st(β) = ∅. Finally since β is minimal there are no u such that u <Sbc β.

• S-encryption oracle call case cannot happen, as β would not be minimal.

• S-normalized basic term: β contains no if then else symbol, hence cond-st(β) = ∅. Moreover since
β is minimal there are no u such that u <Sbc β.

• S-normalized simple term case cannot happen, as β would not be minimal.

Inductive Case Let β be such that for all β′ 6= β, if β′ <Sind β then the property holds for β′.
• S-normalized basic term: β is of the form B[~w , (αi)i, (decj)j]. The result is then immediate by
induction hypothesis and using the definition of cond-st(·) and <Sbc:

cond-st(β) =
⋃
i

cond-st(αi) ∪
⋃
j

cond-st(deci) (By definition of cond-st(·))

=
⋃
i

⋃
u<Sbcαi

leave-st(u) ∪
⋃
j

⋃
u<Sbcdecj

leave-st(u) (By induction hypothesis)

=
⋃

u<Sbcβ

leave-st(u) (By definition of <Sbc)

• S-decryption oracle call: t is of the form C[~g � ~u], where there exists s, sk such that terms in ~u are
of the form 0(dec(s[(αi), (decj)j], sk)) or dec(s[(αi), (decj)j], sk), and s is if-free. Then:

cond-st(β) =
⋃
i

cond-st(αi) ∪
⋃
j

cond-st(deci) ∪ cond-st(~g) ∪ leave-st(~g)

(By definition of cond-st(·))

=
⋃
i

⋃
u<Sbcαi

leave-st(u) ∪
⋃
j

⋃
u<Sbcdecj

leave-st(u) ∪
⋃

u<Sbc~g

leave-st(u) ∪ leave-st(~g)

(By induction hypothesis: remark that guards in ~g are S-normalized basic terms s.t. ~g ≤Sbt β)

=
⋃

u<Sbcβ

leave-st(u) (By definition of <Sbc)

• S-encryption oracle call: t is of the form {s}rpk, then:

cond-st(β) = cond-st(s) (By definition of cond-st(·))

=
⋃
u<Sbcs

leave-st(u) (By induction hypothesis)

=
⋃

u<Sbcβ

leave-st(u) (By definition of <Sbc)

• S-normalized simple term: t is of the form C[~b � ~v]. Then:

cond-st(β) = cond-st(~b) ∪ cond-st(~v) ∪ leave-st(~b) (By definition of cond-st(·))

=
⋃

u<Sbc
~b

leave-st(u) ∪
⋃

u<Sbc~v

leave-st(u) ∪ leave-st(~b) (By induction hypothesis)

=
⋃

u<Sbcβ

leave-st(u) (By definition of <Sbc) �

236 Deciding Indistinguishability

We can now prove that every normalized basic terms has disjoint conditionals and leaves, using
Proposition 5.11 and the result above.

Proposition 5.21. Let P `npf t ∼ t′. Then for all h, l for all β ≤h,l
bt (t, P), cond-st(β) ∩ leave-st(β) = ∅.

Proof. Let h, l and β ≤h,l
bt (t, P) be such that cond-st(β)∩ leave-st(β) 6= ∅. By Proposition 5.20 this means

that there exists a SPl -normalized basic term u <Slbc β such that leave-st(u) ∩ leave-st(β) 6= ∅.
By Proposition 5.11, u ≡ β. But u <Slbc β implies that u is a strict subterm of β. Absurd. �

5.11.3 Proof Cuts on Branches

For the hypothesis (iii) of Lemma 5.16 to hold, we need to make sure that the same conditional never
appear twice in the same branch4. Therefore, we need to show that if some normalized basic term β
appears twice in the same branch, then there is a proof cut. We have three possibilities:

• The two occurrences of β are involved in BFA applications.
• The two occurrences of β are involved in CS� applications.
• One occurrence of β is with an BFA application, the other with a CS� applications.

We only present proof cut eliminations for the first two cases. We deal with the cross case later.

BFA Rule We already used this cut elimination to deal with Example 5.7 for conditionals involved in
BFA applications. The cuts we want to eliminate are of the form:

a1, a2, u3, v4, w5 ∼ b1, c2, r3, s4, t5
a1

a2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b1

c2

r3 s4

t5

︸ ︷︷ ︸
τ

BFA
(2)

(5.18)

Using Lemma 5.1, we extract a proof of a1, a2 ∼ b1, c2, which, thanks to the ordered strategy, is in
F(FAs

∗ · Dup∗ · cca2). From Lemma 5.2 we get that b ≡ c. We then replace (5.18) by:

a1, u3, w5 ∼ b1, r3, t5
a1

u3 w5

∼
b1

r3 t5

BFA

σ ∼ τ R

We retrieve a proof in A� by pulling R to the beginning of the proof.

CS� Rule The CS� case is more complicated. E.g., take two boxed CS� conditionals for the same if-free
conditional a, and two arbitrary CS� conditionals for the right side:

a�i ≡ ali ari
a

(i ∈ {1, 2}) b�1 ≡ bl1 br1
b
c�2 ≡ cl2 cr2

c

Consider the following cut:
.... (A)

al1, a
l
2, u3 ∼ bl1, cl2, r3

.... (B)

al1, a
r
2, v4 ∼ bl1, cr2, s4

.... (C)

ar1, w5 ∼ br1, t5
a�1

a�2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b�1

c�2

r3 s4

t5

︸ ︷︷ ︸
τ

CS(2)
�

4Indeed, we recall that Proposition 5.11 shows that if leave-st(β ↓R) ∩ leave-st(β′ ↓R) 6= ∅ then β ≡ β′.

5.11. Proof Cut Elimination 237

As we did for BFA, we can extract from (A), using Lemma 5.1, a proof of al1, al2 ∼ bl1, c
l
2. But using the

ordered strategy, we get that this proof is in ACS� , which we recall is the fragment:

F(CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · cca2)

Therefore we cannot apply Lemma 5.2. To deal with this cut, we generalize Lemma 5.2 to the case where
the proof is in ACS� . For this, we need the extra assumptions that al1, al2, bl1, cl2 are if-free, which is a
side-condition of CS�.

Lemma 5.17. For every terms a, a′, b, c with if-free R-normal forms, if a =R a′ and P `npf a, a′ ∼ b, c
then b =R c.

Proof. Let t ≡ 〈a , a〉 and t′ ≡ 〈b , c〉, we know that there exists P ′ such that P ′ `npf t ∼ t′ since
P `npf a, a′ ∼ b, c. Using Proposition 5.19, we can assume that for every h ∈ index(P), l, x:

∀β ∈
(
(≤hx,l

c ∪ ≤hx,l
cs)(t, P ′)

)
∪
(
(≤hx,l

c ∪ ≤hx,l
cs)(t′, P ′)

)
, {false, true} ∩ leave-st(β ↓R) = ∅

Let (γ, γ′) ≤ε,ll (t ∼ t′, P) be the left-most elements of t and t′. By Proposition 5.17 we know that
〈a , a〉 ↓R∈ leave-st(γ ↓R) and 〈b , c〉 ↓R∈ leave-st(γ′ ↓R). More precisely we know that 〈b , c〉 is the
left-most element of γ′ ↓R.

Since γ ∼ γ′ is provable in F(FAs
∗ ·Dup∗ ·cca2), we know that there exist SPl -normalized basic terms

γ1, γ2 and S ′Pl -normalized basic terms γ′1, γ′2 such that γ =R 〈γ1 , γ2〉, γ′ =R 〈γ′1 , γ′2〉, and γ1, γ2 ∼ γ′1, γ′2
is provable in F(FAs

∗ · Dup∗ · cca2).
Moreover a ∈ leave-st(γ1 ↓R) and a ∈ leave-st(γ2 ↓R), hence leave-st(γ1 ↓R) ∩ leave-st(γ2 ↓R) 6= ∅. By

Proposition 5.11 we deduce that γ1 ≡ γ2.
Therefore there exists a proof of γ1, γ1 ∼ γ′1, γ′2 in F(FAs

∗ ·Dup∗ · cca2). By Lemma 5.2, γ′1 ≡ γ′2. We
conclude by observing that since 〈b , c〉 is the let-most element of γ′ ↓R, b and c are the left-most element
of, respectively, γ′1 and γ′2. Therefore b ≡ c. �

We now deal with the cut above. Using Lemma 5.17, we know that b =R c. Since b, c are in R-normal
form, b ≡ c and therefore b�1 =R� b =R� c�2 (using well-formedness). Similarly a�1 =R� a =R� a�2 . This
yields the (cut-free) proof:

.... (A′)

al1, u3 ∼ bl1, r3

.... (C)

ar1, w5 ∼ br1, t5
a�1

u3 w5

∼
b�1

r3 t5

CS�

σ ∼ τ R�

where (A′) is extracted from (A) by Lemma 5.7. Finally, to get a proof in A�, we commute the R�

rewriting to the beginning.

5.11.4 Main Lemma

Definition 5.54. A directed path δ~ρ is a sequence (b0, d0), . . . , (bn, dn) where b0, . . . , bn are conditionals
and d0, . . . , dn (the directions) are in {then, else}.

Two directed paths δ~ρ and δ~ρ ′ have the same directions if:
• they have the same length.
• the sequences of directions d0, . . . , dn and d′0, . . . , d′n extracted from, resp., δ~ρ and δ~ρ ′, are equal.

Given a directed path δ~ρ, we let ~ρ stands for the sequence of conditionals extracted from δ~ρ.

Example 5.19. Let s be the term of Example 5.3, which we recall below:

if b1 then if b2 then t1 else t2
else t3

Then δ~ρ = (b1, then), (b2, else) is the directed path corresponding to the branch starting at the root of s
and ending at the term t2. Moreover, ~ρ = b1, b2. �

238 Deciding Indistinguishability

Definition 5.55. Let P `npf t ∼ t′, we know that t is of the form:

t ≡ C
[(

bhl bhr
bh

)
h∈H
�
(
Dl

[
(β)β≤ε,lc (t,P) � (γ)γ≤ε,ll (t,P)

])
l∈L

]
For all l, we let:

• δcs-pathε,l(t, P) be the directed path of conditional occurring from the root of t to Dl[] in P .
• δcs-pathε,l∼ (t ∼ t′, P) be the directed path of pairs of conditionals occurring from the root of (t, t′)
to Dl[] in P .

We extend this to all h ∈ index(P), x ∈ {l, r} by having:
δcs-pathhx,l(t, P) = δcs-pathε,l(b, extractx(h, P))

and δcs-pathhx,l
∼ (t ∼ t′, P) = δcs-pathε,l∼ (b ∼ b′, extractx(h, P))

where extractx(h, P) is a proof of b ∼ b′.

We let the depth of a position h in P to be the number of nested applications of the CS� rule to h.

Definition 5.56. Let P `npf t ∼ t′. For every h ∈ index(P), we let if-depthP (h) be the depth of h in P ,
defined by:

if-depthP (h) =

0 if h ∈ cs-pos(P)

1 + if-depthP l(h) if ∃g ∈ cs-pos(P) s.t. h ∈ index(P l) where P l = extractl(g, P)

1 + if-depthP r(h) if ∃g ∈ cs-pos(P) s.t. h ∈ index(P r) where P r = extractr(g, P)

Lemma 5.18. Let P `npf t ∼ t′. There exists P ′ such that P ′ `npf t ∼ t′ and for all h ∈ index(P ′) with
h 6= ε, for all x ∈ {l, r}, if we let h = hx and P h = extractx(h, P ′) be the proof of bh ∼ b′h then for all
l ∈ label(P h):
(a) The proof P h does not use the {BFA(b, b′)} rules.
(b) cs-pathh,l(t, P) (resp. cs-pathh,l(t′, P)) does not contain two occurrences of the same conditional.

(c) For all γ ≤h,l
l (t, P ′), (bh ↓R) ∈ leave-st(γ ↓R) and for all γ′ ≤h,l

l (t′, P ′), (b′h ↓R) ∈ leave-st(γ′ ↓R).

(d) For all β ≤ε,lc (t, P ′), leave-st(β ↓R) ∩ cs-pathε,l(t, P) = ∅ (same for t′).
(e) For all γ ≤ε,ll (t, P ′), leave-st(t ↓R) ∩ leave-st(γ ↓R) 6= ∅ (same for t′).

Proof. Using Proposition 5.19, we know that we have P such that P `npf t ∼ t′ and for all l ∈ label(P), h ∈
index(P), x ∈ {l, r} we have:

∀β ∈
(
(≤hx,l

c ∪ ≤hx,l
cs)(t, P)

)
∪
(
(≤hx,l

c ∪ ≤hx,l
cs)(t′, P)

)
, {false, true} ∩ leave-st(β ↓R) = ∅ (5.19)

First, we rewrite the proof P so that all CSnoif applications are of the form:

b, (ui)i ∼ b′, (u′i)i b, (vi)i ∼ b′, (v′i)i
(if b then ui else vi)i ∼ (if b′ then u′i else v

′
i)i

CSnoif (5.20)

We prove by induction on n, starting with the inner-most CSnoif conditionals, that there exists P such
that P `npf t ∼ t′, (5.19) is true for P and the following properties hold for all h, h′ ∈ index(P):
(i) If if-depthP (h) ≥ n then the extractl(h, P) and extractr(h, P) do not use the {BFA(b, b′)} rules.
(ii) If if-depthP (h) ≥ n then for all x, l, cs-pathhx,l(t, P) and cs-pathhx,l(t′, P) do not contain two occur-

rences of the same conditional.
(iii) If if-depthP (h) ≥ n then for all x, if extractx(h, P) is the proof of b ∼ b′ then for all l, for all

γ ≤hx,l
l (t, P), (b ↓R) ∈ leave-st(γ ↓R) and for all γ′ ≤hx,l

l (t′, P), (b′ ↓R) ∈ leave-st(γ′ ↓R).
(iv) If if-depthP (h) < n then for all h, h′ ∈ index(P) such that h ≤ h′, if we let h′′ be such that h′ = h ·h′′

and x be such that h′′ ∈ index(extractx(h, P)), then for all x′, for all l ∈ label(extractx′(h′, P)), we
have

δcs-pathhx,l(t, P) ⊇ δcs-pathh
′
x′ ,l(t, P)

Let nmax be the maximal if-depth in the proof of t ∼ t′:

nmax = max
h∈index(P)

if-depthP (h)

5.11. Proof Cut Elimination 239

δcs-pathh0,l(t, P)

•b

β

δ~ρ

•
b

FAs

δcs-pathh0,l(t′, P)

•b′

β′

δ
~ρ ′

•
b′

FAs

{CS�(b, b′)}

{BFA(b, b′)}

A�

Figure 5.12: Corresponding occurrences of b and b′ in the proof of Lemma 5.18

Base Case We are going to show that the invariants hold at nmax + 1. Invariants (i), (ii) and (iii) are
obvious, since there exists no h such that if-depthP (h) ≥ nmax + 1; and invariant (iv) is a consequence of
the rewriting done in (5.20).

Inductive Case: Assume that the property holds for n+ 1 and let us show that it holds for n.

Step 1 Let l ∈ label(P) and h0 ∈ h-branch(l) such that if-depthP (h0) = n. Let x0 ∈ {l, r} and h0 = h0x0 .
We start by showing that for all l, for all β ≤h0,l

c (t, P), if there exists b ∈ cs-pathh0,l(t, P) such that
b ∈ leave-st(β ↓R) then there exists (b, b′) ∈ cs-pathh0,l∼ (t, P) and (β, β′) ≤h0,l

c∼c (t ∼ t′, P) s.t.:
• b′ ∈ leave-st(β′ ↓R).

• There exists a directed path δ~ρ (resp. δ~ρ ′) of the conditionals occurring from the root of β ↓R (resp.
β′ ↓R) to a leave b (resp. b′) such that δ~ρ ⊆ δcs-pathh0,l(t, P) (resp. δ~ρ ′ ⊆ δcs-pathh0,l(t, P)).

This is described in Figure 5.12.
Let β ≤h0,l

c (t, P) and b ∈ cs-pathh0,l(t, P) such that b ∈ leave-st(β ↓R). We know that there exists b′

and β′ such that (b, b′) ∈ cs-pathh0,l∼ (t, P) and (β, β′) ≤h0,l
c∼c (t ∼ t′, P).

Let h ∈ cs-pos(extractx0(h0, P)) and x be the direction taken in l at h be such that extract(h, P) is
the rule CS�(b, b′). We know that extractx(h, P) is a proof of a ∼ a′, where a =R b and a′ =R b′. As
if-depth(h) = n + 1 we know by induction hypothesis (i) that extractx(h, P) does not uses {BFA(b, b′)}.
Hence the set ≤ε,ll (a, extractx(h, P)) is the singleton {γl} and the set ≤ε,ll (a′, extractx(h, P)) is the
singleton {γ′l}. Let H = index(extractx(h, P)), we have:

a ≡ C
[
(bg)g∈H � (γla)la

]
a′ ≡ C

[
(b′g)g∈H � (γ′la)la

]
By induction hypothesis (iii) we know that b ∈ leave-st(γl ↓R) and b′ ∈ leave-st(γ′l ↓R). γl and β are

Sl-normalized basic terms, hence using Proposition 5.11 we know that β ≡ γl. We can extract from the
branch l of P a proof of γl, β ∼ γ′l, β′ in F(FAs

∗ · Dup∗ · cca2). Therefore, using Lemma 5.2, we get that
β′ ≡ γ′l. Since b′ ∈ leave-st(γ′l ↓R), we deduce that b′ ∈ leave-st(β′ ↓R). This concludes the proof of the
first bullet point.

We now prove the second bullet point. By induction hypothesis (iv) we know that:
δcs-pathh0,l(t, P) ⊇ δcs-pathhx,l(t, P) δcs-pathh0,l(t′, P) ⊇ δcs-pathhx,l(t′, P)

By definition of ~ρ, cond-st(γl ↓R) = cond-st(β ↓R) ⊇ ~ρ. We can do better, and obtained an inclusion in
the directed conditional path. First, we know that:

240 Deciding Indistinguishability

• a ≡ C
[
(bg)g∈H � (γla)la

]
, a =R b and b is if-free and in R-normal form.

• Invariant (ii) holds, hence δcs-pathhx,l(t, P) does not contain two occurrences of the same condi-
tional.

• δcs-pathhx,l(t, P) does not contain true and false.
The existence of a decomposition as described above is invariant by (chunks of) →R�u reductions, for a
well-chosen ordering �u. At the end of the reduction, we have b. By looking at the reduction backward,
we see that b is a leaf of γl ↓R�u , such that the directed path δ~ρ from the root of γl ↓R�u to b is included
in the path from the root of a to γl.

We deduce that δ~ρ ⊆ δcs-pathhx,l(t, P). By consequence, δ~ρ ⊆ δcs-pathh0,l(t, P). Similarly we show
that δ~ρ ′ ⊆ δcs-pathh0,l(t′, P).

Step 2 By doing some proof cut elimination, we can guarantee that for all l, for all β ≤h0,l
c (t, P):

leave-st(β ↓R) ∩ cs-pathh0,l(t, P) = ∅

Assume this is not the case: using Step 1 we have:
δ~ρ ⊆ δcs-pathh0,l(t, P)

δ
~ρ ′ ⊆ δcs-pathh0,l(t′, P)

Therefore we can rewrite β and β′ into, respectively, b and b′ (this is possible because we have an inclusion
between the directed paths, not just the paths). We can then rewrite b and b′ into true if we are on the
then branch of b and b′ (i.e. x = l), and false if we are on the else branch (i.e. x = r). Finally we get rid
of true and false using R, and check that the resulting proof verifies (5.19) and the induction invariants.

Step 2 b. Then we show that we can assume that (ii) holds through some proof rewriting, while
maintaining invariant (iv).

Let (a, a′), (b, b′) ≤h0
cs∼cs (t, P) such that a ≡ b and they are on the same branch l. Since they are

on the same branch, we can extract a proof Q `npf a, a ∼ a′, b′. Moreover a ↓R, a′ ↓R, b′ ↓R are if-free,
therefore by Lemma 5.17 we have a′ ≡ b′. We then do our standard proof cut elimination to get rid of
the duplicate. We need to make sure that this preserves invariant (iv): this follows from the fact that
invariant (iv) holds for P at depth n+ 1 and that the cut takes place at depth n.

Step 3 We then show that (iii) holds. Let bh0 , b′h0 be such that extractx0(h, P) `npf bh0 ∼ b′h0 . We
know that:

bh0 ≡ C
[(

bhl bhr
bh

)
h∈Hh0

�
(
Dh0
l

[
(β)

β≤h0,l
c (t,P)

� (γ)
γ≤h0,l

l (t,P)

])
l∈Lh0

]
where Hh0 = cs-pos(extractx0(h0, P)) and Lh0 = label(extractx0(h0, P)).

To prove that for all l, for all γ ≤h0,l
l (t, P), we have bh0 ↓R∈ leave-st(γ ↓R), we only need to show

that the hypotheses of Lemma 5.16 hold for bh0 (then we do the same thing with b′h0 to show that for all
γ′ ≤h0,l

l (t′, P) we have b′h0 ↓R∈ leave-st(γ′ ↓R)):
• (5.16.i): the only difficulty lies in proving that for all β ≤h0,l

c (t, P), cond-st(β ↓R) ∩ leave-st(β ↓R) = ∅,
which is shown in Proposition 5.21.

• (5.16.ii): this is a consequence of the fact that (5.19) holds for P .

• (5.16.iii): for pairs in (cs-pathh0,l(t, P))2 this was shown in Step 2 b. For couples of positions
in Dh0

l ×D
h0
l we have a proof cut elimination (which we already described in Section 5.11.3): let

p < p′ be the positions in bh0 of β0, β1 ≤h0,l
c (t, P) on the same branch such that leave-st(β0) ∩

leave-st(β1) 6= ∅. By Proposition 5.11 we know that β0 ≡ β1. Let β′0, β′1 be the conditionals at
positions, respectively, p and p′ in b′h0 . We know that (β0, β

′
0), (β1, β

′
1) ≤h0,l

c (t ∼ t′, P). We can
extract from P a proof of:

β0, β0 ∼ β′0, β′1
in F(FAs

∗ · Dup∗ · cca2), hence using Lemma 5.2 we get that β′0 ≡ β′1. Therefore we can do the
following proof cut elimination: if p′ is on the then branch of p then we can rewrite β1 and β′1
into true in, respectively, bh0 and b′h0 . We then rewrite the two terms using R to remove the true
conditionals. This yields a new proof Q in proof normal form, such that (5.19) and the induction
invariants hold. We do a similar cut elimination with false if p′ is in the else of p.
Finally the result proven at Step 2 shows that we do not have cross cases cs-pathh0,l(t, P)×Dh0

l .

5.12. Bounding the Basic Terms 241

• (5.16.iv): this is a consequence of Corollary 5.2.(i).

• (5.16.v): this is a consequence of Lemma 5.14.

Step 4 We conclude by showing that we can get rid of the {BFA(b, b′)} applications.
Using Corollary 5.2.(ii) and the proof Q constructed at Step 3, we know that for all γ, γ′ ≤h0,l

l (t, Q),
γ ≡ γ′ (and the same holds for (t′, Q)). Therefore there is a proof cut elimination that allows us to
remove all {BFA(b, b′)} applications, by rewriting:

Dl

[
_ � (γ)

γ≤h0,l
l (t,Q)

]
and Dl

[
_ � (γ′)

γ≤h0,l
l (t′,Q)

]
into, respectively, γ0 and γ′0 (where γ0 ≤h0,l

l (t, Q) and γ′0 ≤
h0,l
l (t′, Q)).

Conclusion To conclude, we can first observe that the properties (a),(b) and (c) are implied by, re-
spectively, (i), (ii) and (iii) for n = 0. The proof that (d) (resp. (e)) holds is exactly the same than the
one we did at Step 2 (resp. Step 3). �

5.12 Bounding the Basic Terms

5.12.1 α-Bounded Conditionals

We are ready to do the final proof cut eliminations, which will yield derivation of bounded size w.r.t.
|t ↓R |+ |t′ ↓R |. To bound the size of cut-free derivations, we are going to bound the size of all normalized
basic terms and case-study conditionals appearing in such derivations. To do this, we first introduce the
notion of (t, P)-α-bounded terms, where P `npf t ∼ t′, and then prove that (t, P)-α-bounded terms
are of bounded size w.r.t. |t ↓R | + |t′ ↓R |. Basically, a term β in ≤h,l

bt (t, P) or cs-pathh,l(t, P) is
(t, P)-α-bounded if we are in one of the following case:

• β is a normalized basic term, and β has a leaf term appearing in st(t ↓R). Since β is uniquely
characterized by its leaf terms, this bound β.

• Let β′ be the term matching β on the right. If β′ shares a leaf term with st(t′ ↓R), then, by the
previous observation, β′ is bounded. Since β and β′ differ only by the content of their encryptions,
this also bound β.

• If β is a case-study conditional (i.e. in cs-pathh,l(t, P)), and if there exists a (t, P)-α-bounded
normalized basic term ε such that β appears in ε’s leaf terms. Indeed, since ε is bounded, it has
finitely many leaf terms, which are of bounded size. Hence β is also of bounded size.

• If β is a normalized basic terms used in the sub-proof of b ∼ b′, where b and b′ are (t, P)-α-bounded
case-study conditionals, and if b appears in β’s leaf terms. Again, since β is uniquely characterized
by any of its leaf terms, and since b is bounded, we know that β is bounded.

• Finally, if β is a decryption guard of some decryption oracle call d, where d appears in a (t, P)-α-
bounded normalized basic term ζ. Since ζ is bounded, and since β is a sub-term of ζ, the term β
is also bounded.

We formally define what is a (t, P)-α-bounded terms.

Definition 5.57. For all P `npf t ∼ t′, the set of (t, P)-α-bounded terms is the smallest subset of:{
β | ∃h, l. β ≤h,l

bt (t, P)
}
∪
{
b | ∃h. b ∈ cs-pathh,l(t, P)

}
such that for all h, l, for all β (≤h,l

bt ∪cs-path
h,l) (t, P), β is (t, P)-α-bounded if:

• Base case: h = ε and leave-st(β ↓R) ∩ st(t ↓R) 6= ∅.
• Base case: h = ε and there exists β′ such that:

(β, β′) (≤ε,ll∼l ∪ ≤
ε,l
c∼c ∪cs-path

ε,l) (t ∼ t′, P)

and leave-st(β′ ↓R) ∩ st(t′ ↓R) 6= ∅.

242 Deciding Indistinguishability

• Inductive case, same label: β ∈ cs-pathh,l(t, P) and there exists ε ≤h,l
bt (t, P) such that ε is

(t, P)-α-bounded and β ∈ leave-st(ε ↓R).

• Inductive case, different labels: β ≤h,l
bt (t, P), there exists h′ such that h ∈ cs-pos(h′) and

b ∈ cs-pathh
′,l(t, P) such that b is (t, P)-α-bounded and b ∈ leave-st(β ↓R).

• Inductive case, guard: β ≤h,l
bt (t, P), there exists ε ≤h,l

bt (t, P) such that:

– ε ≡ B[~w , (αi)i, (decj)j] is (t, P)-α-bounded.
– β is a guard of a SPl -decryption oracle call d ∈ (decj)j .

We continue our proof cut eliminations, starting from the derivations constructed in Lemma 5.18.
We let P `npfα t ∼ t′ be the restriction of `npf to derivations satisfying the properties guaranteed by
Lemma 5.18 which use only (t, P)-α-bounded terms. Moreover, we require that no basic conditionals
appears twice on the same branch.

Definition 5.58. For all proof P , term t, t′, we write P `npfα t ∼ t′ if:
(I) P `npf t ∼ t′ and the properties (a) to (e) of Lemma 5.18 hold.

(II) The following sets are sets of, respectively, (t, P)-α-bounded and (t′, P)-α-bounded terms:{
β | ∃h, l. β ≤h,l

bt (t, P ′)
}
∪
{
b | ∃h. b ≤h

cs (t, P ′)
}{

β′ | ∃h, l. β′ ≤h,l
bt (t′, P ′)

}
∪
{
b′ | ∃h. b′ ≤h

cs (t′, P ′)
}

(III) For every l ∈ label(ε), for every path ~ρ of SPl -normalized basic conditional from the root of t to
some leave, ~ρ does not contain any duplicates. The same property must hold for t′.

We now prove the last proof cut elimination lemma.

Lemma 5.19. `npfα is complete for `npf.

Proof. Let P be such that P `npf t ∼ t′, where P is obtained using Lemma 5.18. Therefore P satisfies
the item (I) of Definition 5.58. Now, we are going to build from P a proof P ′ of t ∼ t′ that satisfies the
item (II) and (III) of Definition 5.58.

We are going to show that, if there exists β in:{
β | ∃h, l. β ≤h,l

bt (t, P ′)
}
∪
{
b | ∃h. b ≤h

cs (t, P ′)
}

such that β is not (t, P)-α-bounded, then there is a cut elimination removing β (we describe the cut
elimination used later in the proof). Moreover, the resulting proof will have a smaller number of basic
terms which are not (t, P)-α-bounded, hence we will conclude by induction. First, we want to pick a
term β maximal for a carefully chosen relation.

Order <g Let <g be the transitive closure of the relation �g on:⋃
h∈index(P)

{
(β, h) | ∃l.β ≤h,l

bt (t, P)
}
∪

⋃
h∈index(P)

{
(b, h) | ∃l.b ∈ cs-pathh,l(t, P)

}
defined by:

(ζ, h)�g (ζ ′, h′) iff

h = h′ ∧ ζ, ζ ′ ≤h,l

bt (t, P) ∧ ζ is a guard of some decryption oracle call d ∈ st(ζ ′)
h = h′ ∧ ζ ∈ cs-pathh,l(t, P) ∧ ζ ′ ≤h,l

bt (t, P) ∧ ζ ∈ leave-st(ζ ′ ↓R)

h > h′ ∧ ζ ≤h,l
bt (t, P) ∧ ζ ′ ∈ cs-pathh

′,l(t, P) ∧ ζ ′ ∈ leave-st(ζ ↓R)

First we show that <g is a strict order. As it is transitive, we just need to show that it is an antisymmetric
relation. For all h, the restriction <h

g of <g to:{
(β, h) | ∃l.β ≤h,l

bt (t, P)
}
∪
{

(b, h) | ∃l.b ∈ cs-pathh,l(t, P)
}

5.12. Bounding the Basic Terms 243

is a strict order, as it is included in the embedding relation. To show that <g is a strict order on its full
domain, we simply use the facts that for all h, <h

g is a strict order and that when we go from the domain
of <h

g to the domain of <h′
g , we have h′ > h.

W.l.o.g. we assume that (β, h) is maximal for <g among the set of terms that are not (t, P)-α-bounded.
Consider an arbitrary l such that h ∈ h-branch(l). Since β is not (t, P)-α-bounded, we know that if β is
a guard of some decryption oracle call d ∈ st(ζ) with ζ ≤h,l

bt (t, P), then ζ is not (t, P)-α-bounded. By
maximality of β, it follows that if β ≤h,l

bt (t, P) then β is not a decryption guard of any ζ ≤h,l
bt (t, P).

Case h = ε First we are going to describe what to do for h = ε. From Lemma 5.18.(e), we know that
for every l ∈ label(P), for all γ ≤ε,ll (t, P), the basic term γ is (t, P)-α-bounded. Therefore β 6≤ε,ll (t, P).
Moreover, from Lemma 5.18.(d) we get that β ≤ε,lc (t, P) and β ∈ cs-pathε,l(t, P) are mutually exclusive.
Putting everything together, we have three cases:
(i) either β (6≤ε,ll ∪ ≤ε,lc) (t, P) and β 6∈ cs-pathε,l(t, P).

(ii) or β (6≤ε,ll ∪ 6≤ε,lc) (t, P) and β ∈ cs-pathε,l(t, P).

(iii) β (6≤ε,ll ∪ 6≤ε,lc) (t, P) and β 6∈ cs-pathε,l(t, P).
We first focus on case (i). We explain how to deal with (ii) and (iii) later.

• (i), Part 1 Assume that we are in case i). Let β′ be such that (β, β′) (≤ε,lc∼c) (t ∼ t′, P). Since β is
not (t, P)-α-bounded we know that for all u ∈ leave-st(β ↓R), for all u′ ∈ leave-st(β′ ↓R), u and u′
are spurious in, respectively, t and t′. We let:

t ≡ C
[
~b cs �Dl

[
(βi)i∈J � (γm)m∈M

]
,∆
]

t′ ≡ C
[
~b ′cs �Dl

[
(β′i)i∈J � (γ′m)m∈M

]
,∆′
]

where, for every i ∈ J , (βi, β
′
i) ≤ε,lc∼c (t ∼ t′, P), and for every m ∈ M , (γm, γ

′
m) ≤ε,ll∼l (t ∼ t′, P).

Moreover, we assume that for every i ∈ J , the hole []i (which is mapped to βi) appears exactly once
in Dl. We define the set of indices I = {i ∈ J | β ≡ βi}. Using Corollary 5.2.(i), we know that:

I = {i ∈ J | leave-st(β ↓R) ∩ leave-st(βi ↓R) 6= ∅}

We know that we have a proof of (βi)i∈I ∼ (β′i)i∈I in the fragment F(FAs
∗ ·Dup∗ ·cca2). Therefore:

∀b, b′ ∈ {β′i | i ∈ I}, b ≡ b′ ≡ β′ (5.21)

Indeed, if |I| = 1 then this is obvious, and if |I| > 1 we use Lemma 5.2 (since all the terms on the
left are the same). We let I ′ = {i ∈ J | β′ ≡ β′i}. Using the same proof than for I, we know that
I ′ = {i ∈ J | leave-st(β′ ↓R) ∩ leave-st(β′i ↓R) 6= ∅}. We deduce from this that:

∀b, b′ ∈ {βi | i ∈ I ′}, b ≡ b′ ≡ β (5.22)

From (5.21) we get that I ⊆ I ′ and conversely from (5.22) we get that I ′ ⊆ I. Therefore we have
the equality I = I ′.

• (i), Part 2 For every i 6∈ I, using Lemma 5.12 on β we know that there exists β̃i[] such that:

β̃i[β] ≡ βi and leave-st(β ↓R) ∩ cond-st(β̃i[] ↓R) = ∅

Similarly, for every m ∈M , there exists γ̃m[] such that:

γ̃m[β] ≡ γm and leave-st(β ↓R) ∩ cond-st(γ̃m[] ↓R) = ∅

Then we have:

t ≡ C
[
~b cs �

(
Dl

[
(βi)i∈J � (γm)m∈M

]
,∆
)]

≡ C
[
~b cs �

(
Dl

[(
(β)i∈I , (β̃i[β])i 6∈I

)
� (γ̃m[β])m∈M

]
,∆
)]

244 Deciding Indistinguishability

Let Cβ [~bβ � ~uβ] ≡ β ↓R. We have:

Dl

[(
(β)i∈I , (β̃i[β])i 6∈I

)
� (γ̃m[β])m∈M

]
=R if Cβ [~bβ � ~uβ] then Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃m[true])m∈M

]
else Dl

[(
(false)i∈I , (β̃i[false])i 6∈I

)
� (γ̃m[false])m∈M

]
Since ~uβ = leave-st(β ↓R), for every u ∈ ~uβ , i ∈ J and m ∈ M , we know that u 6∈ cond-st(β̃i[] ↓R)
and u 6∈ cond-st(γ̃m[] ↓R). Let ~ρ be the conditionals appearing on the path from the root of t to
Dl[_]. Using Lemma 5.18.(d), we know that ~uβ ∩ ~ρ = ∅. Let (uo)o∈O be such that ~u ≡ (uo)o∈O.
By applying Lemma 5.15 to all u we know that:

C

~b cs �
if Cβ

[
~bβ � ~uβ

]
then Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃i[true])m

]
else Dl

[(
(false)i∈I , (β̃i[false])i6∈I

)
� (γ̃i[false])m

],∆

=R C

~b cs �
if Cβ

[
~bβ � (true)o

]
then Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃i[true])m

]
else Dl

[(
(false)i∈I , (β̃i[false])i6∈I

)
� (γ̃i[false])m

],∆

=R C
[
~b cs �

(
Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃i[true])m

]
,∆
)]

(5.23)

• (i), Part 2.b We do exactly the same thing on the other side: for all i 6∈ I we know that there
exists β̃′i[] such that:

β̃′i[β
′] ≡ β′i and leave-st(β′ ↓R) ∩ cond-st(β̃′i[] ↓R) = ∅

And, for every m ∈M , there exists γ̃′m[] such that:

γ̃′m[β′] ≡ γ′m and leave-st(β′ ↓R) ∩ cond-st(γ̃′m[] ↓R) = ∅

Then by the same reasoning we have:

t′ ≡ C
[
~b ′cs �

(
Dl

[
(β′i)i � (γ′m)m∈M

]
,∆′
)]

≡ C
[
~b ′cs �

(
Dl

[(
(β′)i∈I , (β̃

′
i[β
′])i6∈I

)
� (γ̃′m[β′])m∈M

]
,∆′
)]

=R C
[
~b ′cs �

(
Dl

[(
(true)i∈I , (β̃′i[true])i 6∈I

)
� (γ̃′m[true])m∈M

]
,∆′
)]

(5.24)

Observe that corresponding sub-terms of (5.23) and (5.24) can be matched to corresponding sub-
terms of t and t′. It is straightforward to build a proof of the equivalence of (5.23) and (5.24) using
P , except for the cca2 applications side-conditions. We argue why the side-conditions carry over
from the derivation P later in the proof.

• (ii) and (iii) The case (ii) works similarly to the case (i), except that we use Lemma 5.17 instead
of Lemma 5.2. The case (iii) is exactly like the case (i) when taking I = ∅.

Case h 6= ε In that case, thanks to Lemma 5.18.(a), we know that β 6≤h,l
c (t, P). We have three cases:

(a) either β ≤h,l
l (t, P): using Lemma 5.18.(c), there exists h0, b

h such that h ∈ cs-pos(h0), bh ∈
cs-pathh0,l(t, P) and (bh ↓R) ∈ leave-st(β ↓R). Since h ∈ cs-pos(h0) implies that h0 < h, we
know that β <g b

h. We then have two cases. Either bh is (t, P)-α-bounded, and then using the
inductive case for different labels of the definition of (t, P)-α-bounded terms, we know that β is
(t, P)-abounded. Absurd. Or bh is not (t, P)-α-bounded, which contradicts the maximality of β
among the set of terms which are not (t, P)-abounded. Absurd.

(b) either β 6≤h,l
l (t, P) and β ∈ cs-pathh,l(t, P): this case is done exactly like case (ii).

(c) either β 6≤h,l
l (t, P) and β 6∈ cs-pathh,l(t, P): this case is done exactly like case (iii).

5.12. Bounding the Basic Terms 245

Valid Proof Rewriting We do the rewritings described above for every h such that (β, h) is maximal
for <g, and for every l such that β ≤h,l

bt (t, P) or β ∈ cs-pathh,l(t, P), simultaneously. It remains to check
that this is a valid cut elimination. The only difficulty lies in checking that all the side-conditions of the
cca2 axiom hold. This is tedious, but here are the key ingredients:

• β is not a guard, and the encryptions that need to be guarded in a decryption are invariant by our
proof cut elimination. Therefore decryptions that were well-guarded before are still well-guarded
after the cut.

• We did the proof rewriting simultaneously for all h such that (β, h) is maximal for <g. Consider
h′ such that (β, h′) is not maximal for <g: then there exists h such that (β, h) is maximal for <g
and h < h′. Therefore, the sub-proof at index h′ is removed by the proof rewriting. This ensure
that, for all branch l where a rewriting occurred, we removed all occurrences of β. Therefore, if
an encryption used to contain β then all occurrences of this encryption have been rewritten in the
same way. This guarantees that the freshness condition on encryption randomness still holds.

• The length constraints on encryption oracle calls still holds thanks to the branch invariance property
of the length predicate EQL(_, _).

Conclusion This concludes the proof of the second bullet point of the definition `npfα . The third bullet
point is much simpler. We want to show that for all l ∈ label(ε), for every path ~ρ of SPl -normalized basic
conditional from the root of t to some leave, ~ρ does not contain any duplicates. We show this by proof cut
elimination as follows: let (β, β′0) ≤ε,lc∼c (t, P) and (β, β′1) ≤ε,lc∼c (t, P), using Lemma 5.2 we have β′0 ≡ β′1.
Since they are on the same branch, one may rewrite the lowest occurrence of β and β′0 into their then
branch (we could also use the else branch). This yield a smaller proof, and one can check that all the
other properties are invariant of this proof cut elimination. We directly concludes by induction. �

5.12.2 Bounding the Number of Nested Basic Conditionals

We use the previous lemma to bound the number of basic conditionals appearing in a proof P `npfα

t ∼ t′. Looking at the definition of (t, P)-α-bounded terms, one may try to show that for every β ∈
(≤h,l

bt (t, P) ∪ cs-pathh,l(t, P)), if β is (t, P)-α-bounded then there exists u ∈ leave-st(β ↓R) such that
u ∈ st(t ↓R)∪ st(t′ ↓R). Since st(t ↓R)∪ st(t′ ↓R) is finite, and since a basic term is uniquely characterized
by any of its leaves, this would allow us to bound the number of basic terms appearing in P `npfα t ∼ t′.

Unfortunately, this is not always the case. Indeed, consider (β, β′) ≤h,l
c (t ∼ t′, P) such that β′ has a

leaf term appearing in t′, but β shares no leaf term with β′ nor t:

leave-st(β ↓R) ∩ leave-st(β′ ↓R) = ∅ leave-st(β ↓R) ∩ st(t ↓R) = ∅ leave-st(β′ ↓R) ∩ st(t′ ↓R) 6= ∅

β′ is α-bounded since it shares a leaf term with t′, and using the second case, β is α-bounded too. But
β shares no leaf term with t and t′.

Still, we can bound β. Since (β, β′) ≤h,l
c (t ∼ t′, P), we observe that β ≡ B[~w , (αi)i, (decj)j] and

β′ ≡ B[~w , (α′i)i, (dec
′
j)j]. Using the fact that leave-st(β′ ↓R) ∩ st(t′ ↓R) and that β is a Sl-normalized

basic term, we know that every leaf u ∈ leave-st(β ↓R) is in st(t′ ↓R), modulo the content of the Sl-
encryption oracle calls. This motivate the introduction of the notion of leaf frame.

Leaf frame Let β be a Sl-normalized basic term, and u, v ∈ leave-st(β ↓R) be leaf terms of β. Then
u and v only differ by their encryptions. That is, if one replace all the zero decryptions 0(dec(_, sk))
by dec(_, sk), and all the leaves of encryptions {m}npk by {[]α}npk (where α is the unique term of El such
that α ≡ {_}npk) in u and in v then you get the same context. We formalize this below, and use it to
generalize Proposition 5.11.

Definition 5.59. Let P `npfα t ∼ t′ and l be a branch label in label(P). We define the left leaf frame
l-framePl of β ∈ (≤h,l

bt (t, P) ∪ cs-pathh,l(t, P)) inductively as follows:

l-framePl (s) ≡

{[]α}npk if ∃α ≡ {m}npk ∈ EPl ∧ s ≡ {_}npk
dec(l-framePl (s), sk) if sk ∈ KPl ∧ s ≡ 0(dec(s, sk))

l-framePl (v) if s ≡ if b then u else v
f((l-framePl (ui))i) otherwise

246 Deciding Indistinguishability

We also let l-framePl (β) be l-framePl (β) where we make every hole variable appear at most once, by
replacing a hole variable []α occurring at position p in β by []α,p.

We define the right leaf frame r-framePl (and its underlined version r-framePl) of β ∈ (≤h,l
bt (t′, P) ∪

cs-pathh,l(t′, P)), using E ′Pl instead of EPl .

Remark 5.12. We have two remarks:
• We state some results only for l-frame. The corresponding results for r-frame are obtained by
symmetry.

• The hole variables in l-framePl (β) are annotated by both the position p of the hole and the encryption
α that appears at p in β. By consequence, if two normalized basic terms β and β′ are such that
l-framePl (β) and l-framePl (β′) share a hole variable []α,p, it means that β and β′ contain the same
encryption α at the same position p. This is crucial, as we want l-framePl to uniquely characterize
normalized basic terms. �

Example 5.20. For all SPl -decryption oracle call dec guarding dec(s[(αi)i, (decj)j], sk), if for all i, αi ≡
{_}nipki then:

l-framePl (dec) ≡ dec
(
s
[(
{[]αi}

ni
pki

)
i
,
(
l-framePl (decj)

)
j

]
, sk
)

We also give an example of l-framePl . Assuming that α0 ≡ {A}n0pk and α1 ≡ {B}n1pk are encryptions in EPl :

l-framePl (〈α0 , 〈α1 , α0〉〉) ≡ 〈{[]α0,00}n0pk , 〈{[]α1,100}n1pk , {[]α0,110}n0pk〉〉 �

Proposition 5.22. Let P `npfα t ∼ t′ and l ∈ label(P). Let b be an if-free term in R-normal form. For
every Sl-normalized basic terms γ, if b ∈ leave-st(γ ↓R) then l-framePl (b) ≡ l-framePl (γ).

Proof. This is by induction on the size of γ. �

Proposition 5.23. Let P `npfα t ∼ t′ and l ∈ label(P). For every Sl-normalized basic terms β, β′, if
l-framePl (β) ≡ l-framePl (β′) then β ≡ β′.

Proof. The proof is exactly the same than for Proposition 5.11. �

Proposition 5.24. Let P `npfα t ∼ t′ and l ∈ label(P). For all h, if (b, b′) ≤h,l
cs∼cs (t ∼ t′, P) then there

exists h′ and (γ, γ′) (≤h′,l
c∼c ∪ ≤

h′,l
l∼l) (t ∼ t′, P) such that b ∈ leave-st(γ ↓R) and b′ ∈ leave-st(γ′ ↓R).

Proof. Let h, x be such that h = hx. Let h0 ∈ cs-pos(extractx(h, P)) and x0 be such that x0 is the direction
taken in l at position h0, and such that Q = extractx0(h0, P) is a proof of b ∼ b′.

Using the fact that the sub-proofs of CS� conditionals of P do not use the BFA rule, we know that Q
lies in the fragment:

F(CS� · FAs
∗ · Dup∗ · cca2)

Let (γ, γ′) ≤ε,ll∼l (b ∼ b′, Q). Using the property (c) of Lemma 5.18 (which holds thanks to `npfα), we know
that b ∈ leave-st(γ ↓R) and b ∈ leave-st(γ′ ↓R). �

Proposition 5.25. Let P `npfα t ∼ t′ and l ∈ label(P). For all h, if (β, β′) (≤h,l
c∼c ∪ ≤

h,l
l∼l ∪cs-path

h,l
∼) (t ∼

t′, P) then l-framePl (β) ≡ r-framePl (β′).

Proof. First we deal with the case (β, β′) (≤h,l
c∼c ∪ ≤

h,l
l∼l) (t ∼ t′, P). We know that we can extract a proof

Q (from P) such that Q `npfα β ∼ β′ and Q is in the fragment F(FAs
∗ · Dup∗ · cca2). The result follows

from the definitions of l-framePl and r-framePl .
Now we deal with the case (β, β′) (cs-pathh,l∼) (t ∼ t′, P). Using Proposition 5.24 we know that there

exists h′ and (γ, γ′)(≤h′,l
c∼c ∪ ≤

h′,l
l∼l)(t ∼ t′, P) such that β ∈ leave-st(γ ↓R) and β′ ∈ leave-st(γ′ ↓R). Since β

is if-free and in R-normal form, we obtain that l-framePl (β) ≡ l-framePl (γ) by applying Proposition 5.22.
Similarly r-framePl (β′) ≡ r-framePl (γ′). Moreover, from the previous case, we get that l-framePl (γ) ≡
r-framePl (γ′). Hence l-framePl (β) ≡ r-framePl (β′). �

Proposition 5.26. Let P `npfα t ∼ t′ and l ∈ label(P). For every Sl-normalized basic terms β, β′,
l-framePl (β) ≡ l-framePl (β′) if and only if l-framePl (β) ≡ l-framePl (β′).

5.12. Bounding the Basic Terms 247

Proof. This is obvious, since the hole variable annotations in l-framePl uniquely characterize both the
position of the hole and the encryption appearing at this position. �

Proposition 5.27. Let P `npfα t ∼ t′ and l ∈ label(P). For every Sl-normalized basic terms β, β′ and
substitutions θ, θ′, if l-framePl (β)θ ≡ l-framePl (β′)θ′ then l-framePl (β) ≡ l-framePl (β′).

Proof. We prove this by induction on the size of β. The base case is trivial, lets deal with the inductive
case. Let β and β′ be SPl -normalized basic terms, we know that β ≡ B[~w , (αi)i, (decj)j] where:

• for every i, αi ≡ {mi}nipki ∈ E
P
l .

• for every j, decj is a decryption oracle call for dec(sj , skj) in DPl .
Similarly, we have a decomposition of β′ into B′[~w ′, (α′i)i, (dec

′
j)j]. By definition of l-framePl , and using

the fact that fresh(RPl ; ~w), we have:

l-framePl (β) ≡ B[~w , ({[]αi}
ni
pki

)i, dec(l-framePl (sj), skj)]

Similarly:
l-framePl (β′) ≡ B′[~w ′, ({[]α′i}

n′i
pk′i

)i, dec(l-framePl (s′j), sk
′
j)]

We have three cases:
• Either β ≡ {m}npk ∈ EPl . Then l-framePl (β) ≡ {[]β,0}npk. By definition of l-frame, and using the
fact that l-framePl (β)θ ≡ l-framePl (β′)θ′, we get that β′ is of the form {m′}npk. We deduce from the
freshness side condition of n that m′ ≡ m.

• Or β ≡ dec where dec is a SPl -decryption oracle call guarding dec(s, sk). Then l-framePl (β) ≡
dec(l-framePl (s), sk)µ, where µ is the substitution that lifts positions of s into positions of dec(s, sk),
i.e. for every α ∈ EPl and position p ∈ pos(s):

µ([]α,p) ≡ []α,0·p

By definition of l-frame, and using the fact that l-framePl (β)θ ≡ l-framePl (β′)θ′ and that β′ is a
SPl -normalized basic term, we get that β′ is also some dec′ where dec′ is a SPl -decryption oracle
call guarding dec(s′, sk).
Moreover we have l-framePl (s)µθ ≡ l-framePl (s′)µθ, and s, s′ are SPl -normalized basic terms. Hence
by induction hypothesis l-framePl (s) ≡ l-framePl (s′), which concludes this case.

• Or we are not in one of the two cases above. Then, there exists f ∈ F\if,0 s.t. β ≡ f(u1, . . . , un)
and β′ ≡ f(u′1, . . . , u

′
n), where u1, . . . , un and u′1, . . . , u

′
n are SPl -normalized basic term. Hence

l-framePl (β) and l-framePl (β′) both starts with the function symbol f .
Moreover, if we let, for very 1 ≤ i ≤ n, µi be the lifting substitution such that, for every α ∈ EPl
and position p, µi([]α,p) ≡ []α,i·p, then:

l-framePl (β) ≡ f(l-framePl (u1)µ1, . . . , l-framePl (un)µn)

l-framePl (β′) ≡ f(l-framePl (u′1)µ1, . . . , l-framePl (u′n)µn)

We apply θ to the equations above, and use the fact that l-framePl (β)θ ≡ l-framePl (β′)θ:

f(l-framePl (u1)µ1θ, . . . , l-framePl (un)µnθ) ≡ l-framePl (β)θ

≡ l-framePl (β′)θ

≡ f(l-framePl (u′1)µ1θ, . . . , l-framePl (u′n)µnθ)

Hence, for every 1 ≤ i ≤ n, l-framePl (ui)µiθ ≡ l-framePl (u′i)µiθ. By induction hypothesis, we deduce
that l-framePl (ui) ≡ l-framePl (u′i). Therefore l-framePl (β) ≡ l-framePl (β′). �

Definition 5.60. We let <st be the strict, well-founded, subterm ordering.

248 Deciding Indistinguishability

Nested Sequences of Basic Conditionals We want to bound the number of nested basic conditional
appearing in P `npfα t ∼ t′. Using the contrapositive of Proposition 5.23, we know that when β <st β

′ we
have l-framePl (β) 6≡ l-framePl (β′). Moreover, using Proposition 5.26 and Proposition 5.27, we know that
l-framePl (β) 6≡ l-framePl (β′) implies that l-framePl (β)θ 6≡ l-framePl (β′)θ′ (for every substitutions θ, θ′).

Therefore, for any sequence of nested SPl -normalized basic conditionals:

β1 <st · · · <st βn

and for any substitutions θ1, . . . , θn, we know that (l-framePl (βi)θi)1≤i≤n is a sequence of pair-wise distinct
terms. Tu use this, we prove that there there exists a sequence of substitutions θ1, . . . , θn such that:{

l-framePl (β1)θ1, . . . , l-framePl (βn)θn
}
⊆ B(t, t′)

where B(t, t′) is a set of bounded size w.r.t. |t|+|t′|. Since the (l-framePl (βi)θi)1≤i≤n are pair-wise distinct,
using a pigeon-hole argument we get that n ≤ |B(t, t′)|.

We outline the end of this sub-section. First, we define the set of terms B(t, t′), and show the existence
of the substitutions (θi)i. Then, we bound the size of B(t, t′). Finally, we bound the number of nested
basic conditional n using a pigeon-hole argument.

Definition 5.61. Let u be an if-free term. We let ζK(u) be the set of terms obtained from u by replacing
some occurrences of 0(dec(w, sk)) by dec(w, sk) (where sk ∈ K), non-deterministically stopping at some
encryptions. Formally:

ζK(u) =

{dec(v, sk) | w ∈ v ∈ ζK(w)} if u ≡ 0(dec(w, sk)) and sk ∈ K
{u} ∪ {{v}nrpk(n) | v ∈ ζK(m)} if u ≡ {m}nrpk(n) and sk(n) ∈ K
{f(v1, . . . , vn) | ∀i, vi ∈ ζK(ui)} otherwise, where u ≡ f(u1, . . . , un)

Moreover, given a set of ground terms S, we let guardsK(S) be an over-approximation of the set of guards
of terms in S:

guardsK(S) =
{
eq(s, α) | dec(s, sk(n)) ∈ S ∧ α ≡ {_}_pk(n) ∈ st(s) ∧ sk(n) ∈ K

}
Definition 5.62. Let Sk(t) be the set of private keys appearing in t ↓R, i.e. Sk(t) = {sk(n) | sk(n) ∈
st(t ↓R)}. For every term t, we let B(t) be the set:

B(t) =
⋃

K⊆Sk(t)

⋃
u ∈ st(leave-st(t ↓R))

∨u ∈ st(cond-st(t ↓R))

ζK(u) ∪ guardsK(ζK(u))

Moreover, we let B(t, t′) = B(t) ∪ B(t′).

Proposition 5.28. Let P `npfα t ∼ t′ and l ∈ label(P). Let β be a SPl -normalized basic conditional.
Then, for every u ∈ leave-st(β ↓R), there exists θ such that l-framePl (β)θ ∈ ζK(u).

Proof. We show this by induction on |β|.
• If β is an encryption {m}npk ∈ EPl , then l-framePl (β) ≡ {[]β,0}npk and:

leave-st(β ↓R) =
{
{v}npk | v ∈ leave-st(m ↓R)

}
Let u ∈ leave-st(β ↓R), there exists um ∈ leave-st(m ↓R) such that u ≡ {um}npk. Let θ be the
substitution mapping []β,0 to um. Then:

l-framePl (β)θ ≡ {um}npk ≡ u ∈ ζKPl (u)

• If β is a decryption oracle call in DPl for dec(s, sk), the:

leave-st(β ↓R) ⊆ {dec(us, sk) | us ∈ leave-st(s ↓R)} ∪ {0(dec(us, sk)) | us ∈ leave-st(s ↓R)}

5.12. Bounding the Basic Terms 249

Let u ∈ leave-st(β ↓R), there exists us ∈ leave-st(s ↓R) such that u ≡ dec(us, sk) or u ≡ 0(dec(us, sk)).
Since s is a SPl -normalized basic term, by induction hypothesis we have θ such that l-framePl (s)θ ∈
ζKPl (us). Moreover:

l-framePl (β) ≡ dec(l-framePl (s)µ, sk)

where µ is a renaming of hole variables. Let θ′ = µ−1θ, then:

l-framePl (β)θ′ ≡ dec(l-framePl (s)µµ−1θ, sk) ≡ dec(l-framePl (s)θ, sk) ∈ ζKPl (u)

• Otherwise, β ≡ f(β1, . . . , βn) where, for every 1 ≤ i ≤ n, βi is a SPl -normalized basic term. Then,
using the fact that β is a SPl -normalized basic term, we check that:

leave-st(β ↓R) ⊆ {f(v1, . . . , vn) | ∀i, vi ∈ leave-st(βi ↓R)}

Let u ∈ leave-st(β ↓R), there exists v1, . . . , vn such that for every 1 ≤ i ≤ n vi ∈ leave-st(βi ↓R) and
u ≡ f(v1, . . . , vn). By induction hypothesis, there exists θ1, . . . , θn such that for every 1 ≤ i ≤ n:

l-framePl (βi)θi ∈ ζKPl (vi)

For very 1 ≤ i ≤ n, let µi be the lifting substitution such that, for every α ∈ EPl and position p,
µi([]α,p) ≡ []α,i·p. Then:

l-framePl (β) ≡ f(l-framePl (β1)µ1, . . . , l-framePl (βn)µn)

Observe that the substitutions (µiθi)1≤i≤n have disjoint domains. Let θ = µ1θ1 . . . µnθn. Then:

l-framePl (β)θ ≡ f(l-framePl (β1)µ1θ1, . . . , l-framePl (βn)µnθn)

We know that f cannot be the function symbol 0(_) (since FA\0 cannot be applied on 0(_)). It
follows that:

f(l-framePl (β1)µ1θ1, . . . , l-framePl (βn)µnθn) ∈ ζKPl (u) �

We lift the previous result to α-bounded conditionals.

Lemma 5.20. Let P `npfα t ∼ t′, l a branch label in label(P), h a proof index and β ∈ (≤h,l
bt (t, P) ∪

cs-pathh,l(t, P)). If β is (t, P)-α-bounded then there exists a substitution θ s.t. l-framePl (β)θ ∈ B(t, t′).

Proof. We prove this by induction on the well-founded order underlying the inductive definition of (t, P)-
α-bounded terms.

• Base case: Assume h = ε and leave-st(β ↓R) ∩ st(t ↓R) 6= ∅. Let u ∈ leave-st(β ↓R) ∩ st(t ↓R), we
have u in R-normal form and if-free, therefore u ∈ st(leave-st(t ↓R) ∪ cond-st(t ↓R)). Moreover, by
Proposition 5.28, there exists θ such that l-framePl (β)θ ∈ ζKPl (u). Hence l-framePl (β)θ ∈ B(t, t′).

• Base case: Assume h = ε and there exists β′ such that:

(β, β′) (≤ε,ll∼l ∪ ≤
ε,l
c∼c ∪ ≤εcs∼cs) (t ∼ t′, P) and leave-st(β′ ↓R) ∩ st(t′ ↓R) 6= ∅

By Proposition 5.25 we know that l-framePl (β) ≡ r-framePl (β′). By Proposition 5.26, we deduce
that l-framePl (β) ≡ r-framePl (β′). From the previous case we know that there exists θ such that
r-framePl (β′)θ ∈ B(t′). Therefore l-framePl (β)θ ∈ B(t′).

• Inductive case, same label: Assume β ∈ cs-pathh,l(t, P) and that there exists ε ≤h,l
bt (t, P)

such that ε is (t, P)-α-bounded and β ∈ leave-st(ε ↓R). By induction hypothesis we have θ such
that l-framePl (ε)θ ∈ B(t, t′). We know that β is if-free and in R-normal form and that ε is a SPl -
normalized basic term. Therefore, by Proposition 5.22, we have l-framePl (β) ≡ l-framePl (ε). Hence,
using Proposition 5.26, l-framePl (β)θ ∈ B(t, t′).

• Inductive case, different labels: Similar to the previous case.

• Inductive case, guard: If there exists ε ≤h,l
bt (t, P) such that:

– ε ≡ B[~w , (αi)i, (decj)j] is (t, P)-α-bounded.

250 Deciding Indistinguishability

– β is a guard of a SPl -decryption oracle call d ∈ (decj)j .

By induction hypothesis there exists θ such that l-framePl (ε)θ ∈ B(t, t′). Moreover let (pki)i and
(ni)i be such that ∀i, αi ≡ {_}nipki . Then:

l-framePl (ε) ≡ B
[
~w ,
(
{[]αi}

ni
pki

)
i
,
(
l-framePl (decj)

)
j

]
Therefore there exists a renaming of hole variables µ such that l-framePl (d)µθ ∈ st(l-framePl (ε)θ).
Since B(t, t′) is closed under st, this implies that:

l-framePl (d)µθ ∈ B(t, t′)

d is of the form dec(s, sk) where sk ∈ K. Since members of guardsK(_) are of the form eq(_,_), we
know that there exists some u ∈ st(leave-st(t ↓R) ∪ cond-st(t ↓R)) such that l-framePl (d)µθ ∈ ζK(u).
Since β is a guard of d, β is of the form eq(s, α) where α is an encryption under key pk (corresponding
to sk) and randomness n appearing directly in s. It follows that:

l-framePl (d) ≡ dec(l-framePl (s), sk) l-framePl (β) ≡ eq(l-framePl (s), {[]α}npk)

Since α appears directly in s, and since l-framePl (d)µθ ∈ ζK(u), there exists θ′ such that:

l-framePl (β)θ′ ∈ guardsK(ζK(u)) ⊆ B(t, t′) �

We now bound the size of B(t).

Proposition 5.29. For every term t, for every u ∈ B(t), we have |u| ≤ |t ↓R |. Moreover:

|B(t)| ≤ |t ↓R |2.2|t↓R|

Proof. An over-approximation of the set of terms ζK(u) is obtained from u by choosing a subset of
positions of u where decryptions over keys in K occur, and removing 0 before the subterms at these
positions (if there is one). Hence each element of ζK(u) is of size at most |u|. Moreover, for every
u ∈ st(leave-st(t ↓R) ∪ cond-st(t ↓R)), we have u ∈ st(t ↓R), and therefore |u| ≤ |t ↓R |. Therefore the set
ζK(u) contains terms of size at most |t ↓R |.

Let dec(s, sk) ∈ ζK(u), then |dec(s, sk)| = |s|+ 3 and for every α appearing in s:

|eq(s, α)| = |s|+ |α|+ 1 ≤ 2|s|+ 1 ≤ 2|dec(s, sk)| ≤ 2|t ↓R |

Hence the set guardsK(ζK(u)) contains terms of size at most 2|t ↓R |. We deduce that for every v ∈ B(t),
|v| ≤ 2|t ↓R |. Moreover, by upper-bounding the positions of dec(s, sk) where an encryption might be,
there are at most |s| − 1 ≤ |t ↓R | − 1 such α, independently of the set of keys K. It follows that:∣∣∣ ⋃

K⊆Sk(t)

guardsK(ζK(u))
∣∣∣ ≤ |ζK(u)|.(|t ↓R | − 1)

Independently of the set of keys K chosen, we have at most |st(t ↓R)| ≤ |t ↓R | choices for u, and the
set
⋃
K⊆Sk(t) ζK(u) contains at most 2|u| ≤ 2|t↓R| elements (we choose the positions where we remove 0s).

Hence: ∣∣∣ ⋃
K⊆Sk(t)

ζK(u) ∪ guardsK(ζK(u))
∣∣∣ ≤ ∣∣∣ ⋃

K⊆Sk(t)

ζK(u)
∣∣∣+
∣∣∣ ⋃
K⊆Sk(t)

guardsK(ζK(u))
∣∣∣

≤ |ζK(u)|+ (|t ↓R | − 1).|ζK(u)| ≤ |t ↓R |.2|t↓R|

By consequence:
|B(t)| ≤ |t ↓R |.|t ↓R |.2|t↓R| ≤ |t ↓R |2.2|t↓R| �

Finally, we apply a pigeon-hole argument to bound the number of nested basic terms.

Lemma 5.21. Let P `npfα t ∼ t′. Let l be a branch label in label(P), h a proof index. Let (βi)i≤n such
that for all i, βi ≤h,l

bt (t, P). If β1 <st · · · <st βn then n ≤ |B(t, t′)|.

5.12. Bounding the Basic Terms 251

Proof. For every i 6= j, we know, using Proposition 5.23, that l-framePl (βi) 6≡ l-framePl (βj). By Proposi-
tion 5.26, we deduce that l-framePl (βi) 6≡ l-framePl (βj). Since P `npfα t ∼ t′, we know that for every i, βi
is (t, P)-α-bounded. Using Lemma 5.20, we deduce that for every i, there exists a substitution θi such
that:

l-framePl (βi)θi ∈ B(t, t′)

Using the contrapositive of Proposition 5.27, we have that for every i 6= j:

l-framePl (βi)θi 6≡ l-framePl (βj)θj

Therefore, by a pigeon-hole argument, n ≤ |B(t, t′)|. �

5.12.3 Candidate Sequences

Let P `npfα t ∼ t′. For all n ≤ |B(t, t′)|, we are going to define the set Un of normalized basic terms that
may appear in P using n nested basic terms. We then show that these sets are finite and recursive, and
give an upper-bound on their size which does not depend on n. This allows us to conclude by showing
that the existence of a proof using our (complete) strategy is decidable.

Definition 5.63. An α-context C is a context such that all holes appear below the encryption function
symbol, with proper randomness and encryption key. More precisely, for every position p ∈ pos(C), if
C|p ≡ [] then p = p′ · 0 and there exist two nonces n, nr such that C|p′ ≡ {[]}nrpk(n).

Moreover, we require that every hole appears at most once.

Remark 5.13. For every β ≤h,l
bt (t, P), the context l-framePl (β) is an α-context. �

Let t and t′ be two ground terms. We now define what is a valid candidate sequence (Un,An)n∈N for
t, t′. Basically, Un corresponds to basic terms at nested depth n that could appear, on the left, in a proof
of `npfα t ∼ t′, while An is the set of left encryptions oracle calls built using basic terms in Un−1.

Definition 5.64. Let t, t′ be two terms. A sequence of pairs of sets of ground terms (Un,An)n∈N is a
valid candidate sequence for t, t′ if:

• U0 = B(t, t′) and A0 = ∅.
• For n ≥ 0, An+1 can be any set of terms that satisfies the following constraints (with the convention
that A−1 = ∅): An+1 contains An, and for all α ∈ An+1\An, α ≡ {D[~b � ~u]}nrpk(np) where:

– ~b ∪ ~u are in Un−1 and there exists {_}nr_ ∈ st(t ↓R) ∪ st(t′ ↓R).

– for every branch ~ρ ⊆ ~b of D[~b � ~u], ~ρ does not contain duplicates.
– An does not contain any terms of the form {_}nr_ .

• For n > 0, we let Un+1 is the set of term defined from Un and An as follows: Un+1 contains Un,
plus any element that can be obtained through the following construction:

– Take a α-context C such that there exists θ with Cθ ∈ B(t, t′).
– Let []1, . . . , []a be the variables of C, and let α1, . . . , αa be encryptions in An. For all 1 ≤ k ≤ a,

let si be such that {si}__ ≡ αi ∈ An.
– Let v0 ≡ C[(si)1≤i≤a]. Then let v be the term obtained from v0 as follows: take positions
p1, · · · , po ∈ pos(C) such that for all 1 ≤ i ≤ o, C|pi ≡ dec(_, ski) (where ski is a valid private
key, i.e. of the form sk(ni)); for every 1 ≤ i ≤ o, replace in v0 the subterm dec(s, sk) at position
p by D[~g � ~w], where ~g are terms in Un of the form eq(s, α) (with α ≡ {_}nα_ ∈ An and α

directly appears in s) and ∀w ∈ ~w , w ≡ dec(s, sk) or w ≡ 0(dec(s, sk)).

Proposition 5.30. Let P `npfα t ∼ t′. For l ∈ label(P), there exists a valid candidate sequence
(Un,An)n∈N for t, t′ such that:⋃

h

≤h,l
bt (t, P) ⊆

⋃
n<|B(t,t′)|

Un and
⋃
h

cs-pathh,l(t, P) ⊆
⋃

n<|B(t,t′)|
leave-st (Un ↓R)

252 Deciding Indistinguishability

Proof. First, we show that there exists a valid candidate sequence such that the inclusion holds when
taking the union over N on the right, and s.t. for every n, An contains only valid encryptions in EPl , i.e.:

S =
⋃
h

≤h,l
bt (t, P) ⊆

⋃
n<+∞

Un and
⋃
n∈N
An ⊆ EPl (5.25)

Before starting the construction of the valid candidate sequence, we make some observations: if one fixes
(An)n∈N, there is at most one sequence (Un)n∈N such that (Un,An)n∈N is a valid candidate sequence.

Moreover this sequence is non-decreasing in (An)n∈N. More precisely, if (Un,An)n∈N and (U ′n,A′n)n∈N
are valid candidate sequences such that for every n, An ⊆ A′n, then for every n, Un ⊆ U ′n.

We now describe a procedure that recursively construct S ′ ⊆ S and a valid candidate sequence
(Un,An)n∈N such that S ′ is a subset of

⋃
n≤+∞ Un (eventually, we will show that S ′ = S). Moreover we

require (An)n∈N to be minimal in the following sense: if α ≡ C[~b � ~u] is in An+1\An then there exists
v ∈ ~b ∪ ~u such that v ∈ Un\Un−1 (in other words, we add new encryptions in An as soon as we can).

Initially we take An = ∅ for every n, (Un)n∈N such that (Un,An)n∈N is a valid candidate sequence
and S ′ = ∅. While S ′ 6= S, we pick an element β in S\S ′ such that β is minimal for <st in S\S ′. Then
we add β to S ′ and update (An)n∈N as follows:

Case 1 If β is minimal for <st in S, we have β of the form B[~w , (αi)i∈I , (decj)j∈J]. By minimality of β,
we have I = ∅ and for all j ∈ J , decj has no encryptions in EPl , and by consequence no guards. It follows
that β is if-free and in R-normal form, hence l-framePl (β) ≡ β. By consequence, using Lemma 5.20, we
get that β ∈ B(t, t′) = U0 (since U0 does not depends on the sets (An)n∈N).

Case 2 Let β such that for all β′ <st β, β′ ∈ S ′. Since S ′ ⊆ ∪n∈NUn, and since {β′ | β′ <st β} is finite,
there exists nm such that:

{β′ | β′ <st β} ∩
(
≤h,l

bt (t, P) ∪ cs-pathh,l(t, P)
)
⊆

⋃
0≤n≤nm

Un

From Lemma 5.20 we have a substitution θ such that:

l-framePl (β)θ ∈ B(t, t′)

We then just need to show that we can obtain β from l-framePl (β) using the procedure defining Unm+1:

• For all encryption α ≡ {m}npk ∈ st(β) ∩ EPl , we know that m ≡ C[~b � ~u] where ~b, ~u <st β. Hence
~b, ~u are in ∪0≤n≤nmUn. We then have two cases:

– either ∪n∈NAn already contains an encryption α′ with randomness n. Since ∪n∈NAn ⊆ EPl ,
and using the side-condition of the cca2 application, we know that α ≡ α′ ∈ ∪n∈NAn. By
minimality of the (An)n∈N we know that α ∈ Anm+1.

– or ∪n∈NAn does not contain an encryption with randomness n. Then we simply add α to An′ ,
where n′ ≤ nm + 1 is the smallest possible: we know that there exists such a n′ since adding α
to An yields, after completion of the (Un)n∈N, a valid candidate sequence (one can check that
for all branch ~ρ of C[~b � ~u], ~ρ does not contain duplicates, using the third bullet point of the
definition of `npfα).

Then we replace in l-framePl (β) the holes []α,_ by {C[~b � ~u]}npk. This produce a term v0.

• Finally we also replace in v0 every occurrence of dec(_, sk) or 0(dec(_, sk)) in st(l-framePl (β)) by
the corresponding SPl -decryption oracle call, which is possible since the guards ~g of this decryption
oracle calls are such that ~g <st β, hence are in ∪0≤n≤nmUn.

Conclusion We show that when S = S ′ we have:

S ∩
⋃

n<+∞
Un = S ∩

⋃
n<|B(t,t′)|

Un (5.26)

5.12. Bounding the Basic Terms 253

Assume that S ∩ U|B(t,t′)|−1 (S ∩ U|B(t,t′)|, take β ∈ S ∩ (U|B(t,t′)|\U|B(t,t′)|−1). We know that β ≡
B[~w , (αi)i, (decj)j] and that there is an encryption α in (αi)i or in the encryptions of the (decj)j such
that α ∈ A|B(t,t′)|−1\A|B(t,t′)|−2 (otherwise β would be in S ∩ U|B(t,t′)|−1). Let α ≡ {C[~b � ~u]}npk, by
minimality of the (An)n∈N we know that there is some v ∈ ~b ∪ ~u such that v ∈ U|B(t,t′)|−1\U|B(t,t′)|−2.
Since β is in S and since v is a SPl -normalized basic term appearing in β we know that v ∈ S. Let
β0 ≡ β, β1 ≡ v, we have v ∈ S ∩ (U|B(t,t′)|−1\U|B(t,t′)|−2). By induction we can build a sequence of terms
βn, for n ∈ {0, . . . , |B(t, t′)|} such that for all 0 ≤ n ≤ |B(t, t′)|, βn ∈ S ∩ (U|B(t,t′)|−i\U|B(t,t′)|−(i+1)) and
βn+1 <st βn (with the convention U−1 = ∅). We built a sequence of terms in S, strictly ordered by <st
and of length |B(t, t′)|+ 1. This contradicts Lemma 5.21. Absurd.

To finish, it remains to show that:⋃
h

cs-pathh,l(t, P) ⊆
⋃

n<|B(t,t′)|
leave-st (Un ↓R)

Let b in
⋃

h cs-path
h,l(t, P). Using Proposition 5.24 we know that there exists γ ≤h′,l

bt (t, P) such that
b ∈ leave-st(γ ↓R). Since γ ∈

⋃
n<|B(t,t′)| Un ↓R, we have b ∈

⋃
n<|B(t,t′)| leave-st (Un ↓R). �

Proposition 5.31. For all terms u, let Cu be the set of α-contexts:

Cu = {C | ∃θ. Cθ ≡ u ∧ every hole appears at most once}

and Cαu be Cu quotiented by the α-renaming of holes relation. Then |Cαu | ≤ 2|u|.

Proof. The set of contexts Cαu can be injected in the subsets of positions of u as follows: for every context
C, associate to C the set of positions of u such that C|p is a hole. This is invariant by α-renaming and
uniquely characterizes C modulo hole renaming. It follows that there are less element of Cαu than subsets
of pos(u), i.e. 2|pos(u)| = 2|u|. �

Proposition 5.32. Let t and t′ be two ground terms, N = |t ↓R | + |t′ ↓R |. For every valid candidate
sequence (Un,An)n∈N and n ∈ N:

|An| ≤ N |Un| ≤ N2.23.N

Proof. For every n, An contains only terms of the form α ≡ {m}nrpk, where {_}nr_ ∈ st(t ↓R) ∪ st(t′ ↓R).
Moreover, An cannot contain two encryptions using the same randomness. Therefore |An| ≤ N .

For every n, the only leeway we have while constructing the terms in Un is in the choice of the α-
context C, as the content of the encryptions is determined by An−1, and the guards that are added are
determined by Un−1. The α-context C is picked in the following set:⋃

u∈B(t,t′)

Cαu

which, using Proposition 5.29 and Proposition 5.31, we can bound by:∣∣∣ ⋃
u∈B(t,t′)

Cαu
∣∣∣ ≤

∑
u∈B(t,t′)

|Cαu | ≤
∑

u∈B(t,t′)

22.N ≤ N2.2N .22.N = N2.23.N �

Proposition 5.33. Let t, t′ be two ground terms and N = |t ↓R | + |t′ ↓R |. For every valid candidate
sequence (Un,An)n∈N and n ∈ N:

∀u ∈
⋃

n<|B(t,t′)|
Un, |u| ≤ 2Q(N) . 24.N

Where Q(X) is a polynomial of degree 4.

Proof. Even though there are at most |B(t, t′)|.N2.23.N distinct basic terms appearing in branch l at
proof index h, these terms may be much larger. Let Un (resp. An) be an upper bound on the size of a
term in Un (resp. An). Then for every 0 ≤ n < |B(t, t′)| and α ∈ An+1\An, α is of the form {C[~b �~u]}npk,

254 Deciding Indistinguishability

where ~b, ~u are in Un and C is such that no term appears twice on the same branch. Recall that we call
branch the ordered list of inner conditionals, which does not include the final leaf. If follows that C is
of depth at most |Un| + 1, and therefore has at most 2|Un|+2 − 1 conditional and leaf terms. To bound
|C[~b �~u]|, we need to bound the size of each of its internal and leaf terms, which we do using Un. We get:∣∣C[~b � ~u]

∣∣ ≤ |C|+ |C| . Un ≤ 2.|C| . Un ≤ 2|Un|+3 . Un

since Un is greater than 1 (terms can not be of size 0). Therefore |α| ≤ 4 + 2|Un|+3 . Un. Using the bound
from Proposition 5.32, we can take:

An = 4 + 2N
2.23.N+3 . Un

Now let u ≡ C[(αi)i∈I , (decj)j∈J] in Un+1\Un. We know that ∀i ∈ I, |αi| ≤ An. There are at most
|C| hole occurrences in C, hence |I| ≤ |C| and |J | ≤ |C|. To bound |u|, we also need to bound the
size of the decryption guards. There are at most N guards for each decryption (since only element of
An may be guarded, and |An| ≤ N), and each guard is in Un, so of size bounded by Un. Moreover,
guarded decryptions have at most N + 1 leaf, where each life is of size at most |C[(αi)i∈I , ([])j∈J]|+ 1 ≤
|C|+ |I|.An + 1. Hence every decryption’s size is upper-bounded by:

N +N.Un + (N + 1).(|C|+ |I|.An + 1)

Finally |C| is such that there there exists θ such that Cθ ∈ B(t, t′), hence |C| ≤ 2.N using Proposition 5.29.
Hence, assuming Un ≥ N (which will be the case):

|C[(αi)i∈I , (decj)j∈J]| ≤ |C|+ |I|.An + |J |.(N +N.Un + (N + 1).(|C|+ |I|.An + 1))

≤ 2N + 2N.An + 2N.(N +N.Un + (N + 1).(2N + 2N.An + 1))

Seen as a multi-variate polynomial in N , An and Un, we have only monomials N , N.An, N2, N2.Un, N3

and N3.An. Hence there exists a constant L such that:

u ≤ L.N3(An + Un) ≤ L.N3(4 + 2N
2.23.N+3.Un + Un)

Hence there exists some polynomial Q0 of degree two such that u ≤ 2Q0(N).23N

.Un. We let U0 = N , and
Un+1 = 2Q0(N).23N

.Un. Then:

U|B(t,t′)|−1 ≤ 2|B(t,t′)|.Q0(N).23N

.Un ≤ 2N
2.2N .Q0(N).23N

.Un ≤ 2N
2.Q0(N).24N

.Un

Hence we have a polynomial Q(N) = N2.Q0(N), which is of degree four. �

Corollary 5.3. Let P `npfα t ∼ t′ and N = |B(t, t′)|. For l ∈ label(P) and for all proof index h:

∀u ∈
(
≤h,l

bt (t, P) ∪ cs-pathh,l(t, P)
)
, |u| ≤ 2Q(N) . 24.N

Proof. Direct consequence of Proposition 5.30 and Proposition 5.33. �

To conclude, we only need to bound the number of nested CS� conditionals.

Proposition 5.34. Let P `npfα t ∼ t′ and (hi)1≤i≤n be a sequence of indices of P such that for every
1 ≤ i < n, hi+1 ∈ cs-posP (hi) and h1 = ε. Then n ≤ |B(t, t′)|+ 1. Moreover |label(P)| ≤ 2|B(t,t′)|.

Proof. Let l ∈ label(P) be such that hn ∈ h-branch(l). The proof consists in building an increasing
sequence of SPl -normalized basic terms β1 <st · · · <st βm from (hi)1≤i≤n of length m ≥ n. We then
concludes using Lemma 5.21.

If hn 6= ε, then hn is of the form hnxn . We know that extractxn(hn, P) is a proof of bn ∼ b′n in ACS� .
Moreover bn ↓R is in cs-pathhn−1,l(t, P) and is (t, P)-α-bounded. Be definition of (t, P)-α-bounded terms,
we know that there exists (βn,j)1≤j≤kn (with kn ≥ 1) such that:

• for all 1 ≤ j ≤ kn, βn,j ≤hn−1,l
bt (t, P).

• bn ↓R∈ leave-st(βn,1 ↓R).

5.13. Conclusion 255

• βn,kn ≤
hn−1,l
l (t, P).

• for all 1 ≤ j < kn, βn,j is a guard of a decryption in βn,j+1, and therefore βn,j <st βn,j+1.

If hn−1 6= ε, then since βn,kn ≤
hn−1,l
l (t, P) is (t, P)-α-bounded, and since for any β ≤hn−1,l

bt (t, P), βn,j
is not a guard of β, we know that we are in the inductive case with different labels of the definition of
(t, P)-α-bounded terms. Therefore there exists bn−1 ∈ cs-pathhn−2,l(t, P) such that bn−1 ∈ leave-st(βn,kn).

We then iterate this process until we reach ε, building sequences (βi,j)1<i≤n,1≤j≤ki and (bi)1<i≤n.
Since for all i, bi−1 ∈ leave-st(βi,ki ↓R) and bi−1 ∈ leave-st(βi−1,1 ↓R) we know, using Proposition 5.11,
that βi,ki ≡ βi−1,1. Therefore we have:

βn,1 <st · · · <st βn,kn ≡ βn−1,1 <st · · · <st βn−1,kn−1
· · · <st β3,k3 ≡ β2,1 <st · · · <st β2,k2

Moreover, for all i we have ki ≥ 1, therefore we built an increasing sequence of SPl -normalized basic
terms of length at least n− 1. It follows, using Lemma 5.21, that n− 1 ≤ |B(t, t′)|.

To upper-bound |label(P)|, we only need to observe that we cannot have two CS� applications on
the same conditional in a given branch. Consider the binary tree associated to the CS� applications in
P , labelled by the corresponding CS� conditionals (say, on the left). Then this tree is of depth at most
|B(t, t′)|, and therefore has at most 2|B(t,t′)| leaves. �

Theorem (Main Result). The following problem is decidable in 3-NExpTime:
Input: A ground formula ~u ∼ ~v .
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

Proof. Let ~u = u1, . . . , un, ~v = v1, . . . , vn and:

t ≡ 〈u1 , 〈. . . , 〈un−1 , un〉〉〉 t′ ≡ 〈v1 , 〈. . . , 〈vn−1 , vn〉〉〉

Using the FA〈_ ,_〉 axiom, we know that if ~u ∼ ~v is derivable then t ∼ t′ is derivable. Conversely, we
show that t ∼ t′ is derivable then ~u ∼ ~v is derivable. For every 3 ≤ i ≤ n, let ρi[] be the i-th projection
defined using π1 and π2 by:

∀n > i ≥ 1, ρi ≡ π1(πi−1
2 ([])) ρn[] ≡ πn−1

2 ([])

Then:
t ∼ t′

(ρi[t])1≤i≤n ∼ (ρi[t
′])1≤i≤n

FA∗\0

~u ∼ ~v R

Hence t ∼ t′ is derivable iff ~u ∼ ~v is derivable. Moreover, the corresponding proof of ~u ∼ ~v is of
polynomial size in the size of the proof of t ∼ t′. Therefore w.l.o.g. we can focus on the case |~u | = |~v | = 1.

Let N = |st(t ↓R)| + |st(t′ ↓R)|. Using Proposition 5.34, we have bounded the number of branches
of the proof tree (by 2N

2.2N), and the number of nested CS� conditionals. For every branch, we non-
deterministically guesses a set of α-bounded basic terms that can appear in a proof P of P `npfα t ∼ t′

using the valid candidate sequence algorithm (in polynomial time in O(N.23.N .2Q(N).24.N

), using Propo-
sition 5.32 and Proposition 5.33). Then the procedure guesses the rule applications, and checks that
the candidate derivation is a valid proof. This is done in polynomial time in the size of the candidate
derivation. Remark that to check whether the leaves are valid cca2 instances we use the polynomial-time
algorithm describe in Proposition 5.3. Finally, since |t ↓R | is at most exponential with respect to |t|, this
yields a 3-NExpTime decision procedure that shows the decidability of our problem. �

5.13 Conclusion

We designed a decision procedure for a fragment of the Bana-Comon indistinguishability logic. This allows
to automatically verify that a protocol satisfies some security property. Our result can be reinterpreted,
in the cryptographic game transformation setting, as a cut elimination procedure that guarantees that
all intermediate games introduced in a proof are of bounded size w.r.t. the protocol studied.

A lot of work remains to be done. First, our decision procedure is in 3-NExpTime, which is a high
complexity. But, as we do not have any lower-bound, there may exist a more efficient decision procedure.

256 Deciding Indistinguishability

Finding such a lower-bound is another interesting direction of research. Then, our completeness result was
proven for cca2 only. We believe it can be extended to more primitives and cryptographic assumptions.
For example, signatures and euf-cma are very similar to asymmetric encryption and ind-cca2, and
should be easy to handle (even combined with the cca2 axioms).

Chapter 6

Conclusion

There exist many tools for proving reachability or equivalence properties in the Dolev-Yao model, such
as ProVerif, Tamarin or Deepsec. These tools are often semi of fully automatic, reasonably efficient and
precise, and have been successfully used to analyse several security protocols. Unfortunately, the situation
is much less satisfactory in the computational model, where most tools are interactive (e.g. EasyCrypt
and F∗) or semi-automatic, such as CryptoVerif. As this model offers stronger guarantees than the
Dolev-Yao model, it is crucial that progress be made there.

Therefore, our goal was to develop and study formal method techniques for proving computational
indistinguishability of cryptographic protocols that are amenable to proof automation. The Bana and
Comon equivalence model seemed to be a promising candidate for this. In this model, the security of a
protocol is expressed as the unsatisfiability of a set of first-order logic formulas. This approach provides
strong guarantees, as security in the Bana-Comon model implies security in the computational model.
Moreover, this is a symbolic approach, in which the protocol execution is modeled using first-order terms.
By consequence, it is potentially amenable to automated deduction techniques.

In this thesis, we showed that the Bana-Comon approach indeed fulfills our requirements, i.e. that it
can be used to complete security proofs of real-world protocols (in particular of privacy properties), and
that proof automation is indeed possible in this model. We did this through three different contributions.

Model and Axioms In Chapter 2, we presented the Bana-Comon model for indistinguishability, with
a small extension to allow for protocols with an unbounded number of sessions. Then, we presented
our first important contribution, which is the design of axioms of the logic for some frequent protocol
functions (e.g. the ⊕), and for several cryptographic hypothesis (ind-cca1, cr-hk, euf-cma and prf).

Case Studies We showed the usefulness of the Bana-Comon approach and of our axioms through
several studies. In Chapter 3, we expressed a notion of privacy in the Bana-Comon logic, and proved that
two simple RFID protocols, lak+ and kcl+, provide privacy under the prf assumption. Moreover, we
showed that this assumption is somehow optimal, by providing attacks when the cryptographic hypothesis
are weakened.

In Chapter 4, we studied the 5G-AKA authentication protocol, and showed that several unlinkability
attacks against older versions of this protocol apply to it. Moreover, we found a new attack against the
PRIV-AKA protocol, which is a significantly modified version of the AKA protocol claimed secure by its
authors. Then, we proposed a fixed version of the 5G-AKA protocol, and proved that it provides some
form of unlinkability. Again, the proof uses the Bana-Comon logic, and is for any number of agents and
sessions independent from the security parameter.

Decidability Result Lastly, we argued that the Bana-Comon approach can be used to perform fully
automated proofs of security protocols in Chapter 5. In this chapter, we proved the decidability of
a set of axioms of the Bana-Comon logic which are computationally sound, though incomplete, under
the ind-cca2 cryptographic assumption. Basically, our result can be interpreted as the decidability
of a family of cryptographic game transformations. The proof relies on term rewriting and automated
deduction techniques such as proof cut eliminations. This is the most theoretical result of this thesis.

257

258 Conclusion

6.1 Future Works

There are many interesting lines of research for future works, and a lot remains to be done.

Extending the Model We presented axioms for four cryptographic hypotheses, but there exist many
more cryptographic primitives and hypothesis for which axioms remain to be designed. More interestingly,
we would like to find conditions under which a security proof in the Bana-Comon model, which is for
any number of sessions independent from the security parameter, can be lifted to a security proof for a
polynomial number of sessions. Fixing this short-coming of the Bana-Comon method would help make
this approach more attractive to cryptographers.

Scope of the Decidability Result It would be interesting to study the limits and the scope of the
decidability result. First, a limitation of our decidability result is its rigidity: the result is proved for a
fixed axiomatization, and in a non-modular way. We would like to design general sufficient conditions
under which the satisfiability problem associated to a set of Bana-Comon axioms is decidable. This seems
a good way of extending the result to more cryptographic primitives, such as signatures or hash functions.

Second, we only have an upper bound on the complexity of the satisfiability problem. We would like
to improve on the current bound, which is pretty high, and to find a matching lower bound. In a similar
vein, it would be interesting to prove that if we extend the set of axioms, either the satisfiability problem
becomes undecidable, or it has a very high complexity.

The AKA+ Protocol There are several questions related to the AKA+ protocol. First, our security
analysis is in a simplified two-party setting. It would be nice to prove that the protocol is secure in the
more complex three-party setting, with an honest or dishonest Serving Network. Moreover, we would like
to prove that the AKA+ protocol is at a sweet spot between privacy and the amount of random number
generation on the user side, as we conjectured. In other words, we want to prove an impossibility result
stating that no protocol with as much random number generation as AKA+ can provide more privacy.

Proof Automation While the security proofs of the two RFID protocols of Chapter 3 remain tractable,
the proofs for the AKA+ protocol in Chapter 4 are extremely tedious and lengthy. This highlights the
need for mechanized proofs in the Bana-Comon indistinguishability logic, in an automated or interactive
fashion. Unfortunately, the proofs of the AKA+ protocol are out-of-scope of the decidability result of
Chapter 5: first because the cryptographic hypothesis are different (prf vs ind-cca2); and second,
because the axiom system used to prove the AKA+ protocol is much more expressive than the axiom
system of the decision result. It seems unlikely that the decidability result can be extended to the full
axiom system of the AKA+ protocol proofs.

Of course, the obvious and usual solution is to drop either completeness or termination. In the case
of the AKA+ protocol, there is one interesting avenue of research, which originates in the observation
that around half of the intermediate properties shown in the AKA+ security proofs are correspondence
properties. Basically, they are formula schemata of the following form:

∀τ, ψτ →
∨

{τ ′|τ ′�τ∧θ(τ,τ ′)}
φτ,τ ′

where τ an τ ′ are instants of the protocol execution; ψτ and φτ,τ ′ are simple formulas, typically con-
junctions of literals; and θ(τ, τ ′) is an instant constraint, e.g. τ ′ = _, fn(j) ∧ τ ′ 6= τ . Moreover, the
cryptographic axioms for unforgeability and collision-resistance are of the same form. We believe that,
for this fragment of the logic, it should be possible to design a reasonably efficient proof search strategy.
If successful, this would allow to mechanize half of the AKA+ proofs, and would be a major first and
necessary step in the direction of full automation.

Bibliography

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green,
J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
Benjamin VanderSloot, Eric Wustrow, Santiago Zanella Béguelin, and Paul Zimmermann.
Imperfect forward secrecy: How diffie-hellman fails in practice. In ACM Conference on
Computer and Communications Security, pages 5–17. ACM, 2015.

[ABF18] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus: Mobile values,
new names, and secure communication. J. ACM, 65(1):1:1–1:41, 2018.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, pages 107–121. IEEE Computer Society, 2010.

[AF04] Martín Abadi and Cédric Fournet. Private authentication. Theor. Comput. Sci., 322(3):427–
476, 2004.

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. In Public Key Cryptography, volume 3386 of Lecture
Notes in Computer Science, pages 65–84. Springer, 2005.

[AMR+12] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin Redon,
and Ravishankar Borgaonkar. New privacy issues in mobile telephony: fix and verification.
In the ACM Conference on Computer and Communications Security, CCS’12, pages 205–
216. ACM, 2012.

[AR02] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). J. Cryptology, 15(2):103–127, 2002.

[BAS12] Gergei Bana, Pedro Adão, and Hideki Sakurada. Computationally complete symbolic at-
tacker in action. In FSTTCS, volume 18 of LIPIcs, pages 546–560. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

[BBD+17a] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
messy state of the union: taming the composite state machines of TLS. Commun. ACM,
60(2):99–107, 2017.

[BBD+17b] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Haw-
blitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay R. Lorch,
Kenji Maillard, Jianyang Pan, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro,
Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella
Béguelin, and Jean Karim Zinzindohoue. Everest: Towards a verified, drop-in replacement
of HTTPS. In SNAPL, volume 71 of LIPIcs, pages 1:1–1:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

259

260 Bibliography

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-
user setting: Security proofs and improvements. In EUROCRYPT, volume 1807 of LNCS,
pages 259–274. Springer, 2000.

[BC12] G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker. In Principles of Security and Trust, 2012, volume 7215 of LNCS,
pages 189–208. Springer, 2012.

[BC16] Gergei Bana and Rohit Chadha. Verification methods for the computationally complete
symbolic attacker based on indistinguishability. IACR Cryptology ePrint Archive, 2016:69,
2016.

[BCC+15] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, and Xavier Rival. Static analysis and verification of aerospace software by ab-
stract interpretation. Foundations and Trends in Programming Languages, 2(2-3):71–190,
2015.

[BCE18] Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. Formal analysis of vote privacy using
computationally complete symbolic attacker. In ESORICS (2), volume 11099 of LNCS,
pages 350–372. Springer, 2018.

[BCG+13] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine Lakhnech,
Benedikt Schmidt, and Santiago Zanella Béguelin. Fully automated analysis of padding-
based encryption in the computational model. In ACM Conference on Computer and Com-
munications Security, pages 1247–1260. ACM, 2013.

[BCK09] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound implemen-
tations of equational theories against passive adversaries. Inf. Comput., 207(4):496–520,
2009.

[BCL14] G. Bana and H. Comon-Lundh. A computationally complete symbolic attacker for equiv-
alence properties. In 2014 ACM Conference on Computer and Communications Security,
CCS ’14, pages 609–620. ACM, 2014.

[BDF+14] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and
Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking and fixing authentication
over TLS. In IEEE Symposium on Security and Privacy, pages 98–113. IEEE Computer
Society, 2014.

[BDH+18] David A. Basin, Jannik Dreier, Lucca Hirschi, Savsa Radomirovi’c, Ralf Sasse, and Vincent
Stettler. A formal analysis of 5G authentication. In the ACM Conference on Computer and
Communications Security, CCS’18. ACM, 2018.

[BDK+10] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, Yassine Lakhnech, and Vincent La-
porte. On the equality of probabilistic terms. In Edmund M. Clarke and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers,
volume 6355 of LNCS, pages 46–63. Springer, 2010.

[BDPA14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The making of
KECCAK. Cryptologia, 38(1):26–60, 2014.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among
notions of security for public-key encryption schemes. In CRYPTO, volume 1462 of LNCS,
pages 26–45. Springer, 1998.

[Ber08] Daniel J. Bernstein. The Salsa20 family of stream ciphers. In The eSTREAM Finalists,
volume 4986 of Lecture Notes in Computer Science, pages 84–97. Springer, 2008.

Bibliography 261

[BGHB11] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin. Computer-aided security proofs
for the working cryptographer. In Advances in Cryptology - CRYPTO, 2011, volume 6841
of LNCS, pages 71–90. Springer, 2011.

[BHO13] Gergei Bana, Koji Hasebe, and Mitsuhiro Okada. Computationally complete symbolic
attacker and key exchange. In ACM Conference on Computer and Communications Security,
pages 1231–1246. ACM, 2013.

[BHP+17] Ravishankar Borgaonkar, Lucca Hirshi, Shinjo Park, Altaf Shaik, Andrew Martin, and
Jean-Pierre Seifert. New adventures in spying 3G & 4G users: Locate, track, monitor, 2017.
Briefing at BlackHat USA 2017.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

[Bla] Bruno Blanchet. ProVerif: Cryptographic protocols verifier in the formal model. available
at http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Sympo-
sium on Security and Privacy, page 86. IEEE Computer Society, 2004.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Trans. Dependable Sec. Comput., 5(4):193–207, 2008.

[BMR14] Michael Backes, Esfandiar Mohammadi, and Tim Ruffing. Computational soundness results
for proverif - bridging the gap from trace properties to uniformity. In POST, volume 8414
of Lecture Notes in Computer Science, pages 42–62. Springer, 2014.

[BMU12] Michael Backes, Ankit Malik, and Dominique Unruh. Computational soundness without
protocol restrictions. In ACM Conference on Computer and Communications Security,
pages 699–711. ACM, 2012.

[BP05] Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of dolev-
yao-style XOR. In ESORICS, volume 3679 of Lecture Notes in Computer Science, pages
178–196. Springer, 2005.

[BPW06] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the BRSIM/UC sound-
ness of dolev-yao models with hashes. In ESORICS, volume 4189 of Lecture Notes in
Computer Science, pages 404–423. Springer, 2006.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In EUROCRYPT, volume 4004 of LNCS, pages 409–426.
Springer, 2006.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145. IEEE Computer Society, 2001.

[CB13] Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with proverif.
In POST, volume 7796 of Lecture Notes in Computer Science, pages 226–246. Springer, 2013.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

[CCD15] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace equivalence
for protocols with nonces. In CSF, pages 170–184. IEEE Computer Society, 2015.

[CCD17] V. Cheval, H. Comon-Lundh, and S. Delaune. A procedure for deciding symbolic equivalence
between sets of constraint systems. Inf. Comput., 255:94–125, 2017.

http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/

262 Bibliography

[CCS13] Hubert Comon-Lundh, Véronique Cortier, and Guillaume Scerri. Tractable inference sys-
tems: An extension with a deducibility predicate. In CADE, volume 7898 of LNCS, pages
91–108. Springer, 2013.

[CCZ10] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zalinescu. Deciding security prop-
erties for cryptographic protocols. application to key cycles. ACM Trans. Comput. Log.,
11(2):9:1–9:42, 2010.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203.
Plenum Press, New York, 1982.

[Chi07] Hung-Yu Chien. SASI: A new ultralightweight RFID authentication protocol providing
strong authentication and strong integrity. IEEE Trans. Dependable Secur. Comput.,
4(4):337–340, October 2007.

[CK17] H. Comon and A. Koutsos. Formal computational unlinkability proofs of RFID protocols.
In 30th Computer Security Foundations Symposium, 2017, pages 100–114. IEEE Computer
Society, 2017.

[CKKW06] Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi. Computationally
sound symbolic secrecy in the presence of hash functions. In FSTTCS, volume 4337 of
Lecture Notes in Computer Science, pages 176–187. Springer, 2006.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC: deciding equivalence
properties in security protocols theory and practice. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, pages 529–546. IEEE, 2018.

[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic methods
in computational analysis of cryptographic systems. J. Autom. Reasoning, 46(3-4):225–259,
2011.

[CL73] Chin-Liang Chang and Richard C. T. Lee. Symbolic logic and mechanical theorem proving.
Computer science classics. Academic Press, 1973.

[CW11] Véronique Cortier and Bogdan Warinschi. A composable computational soundness notion.
In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011, pages 63–74. ACM, 2011.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644–654, 1976.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B), pages 243–320.
Elsevier and MIT Press, 1990.

[DOT17] Emanuele D’Osualdo, Luke Ong, and Alwen Tiu. Deciding secrecy of security protocols for
an unbounded number of sessions: The case of depth-bounded processes. In CSF, pages
464–480. IEEE Computer Society, 2017.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, 2002.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE
Trans. Information Theory, 29(2):198–207, 1983.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for
large scale elections. In AUSCRYPT, volume 718 of Lecture Notes in Computer Science,
pages 244–251. Springer, 1992.

[FOR16] Pierre-Alain Fouque, Cristina Onete, and Benjamin Richard. Achieving better privacy for
the 3gpp AKA protocol. PoPETs, 2016(4):255–275, 2016.

Bibliography 263

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography, 2001.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cam-
bridge University Press, 2001.

[HBD16] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying privacy-type
properties: The unbounded case. In IEEE Symposium on Security and Privacy, SP 2016,
pages 564–581. IEEE Computer Society, 2016.

[HPVP11] Jens Hermans, Andreas Pashalidis, Frederik Vercauteren, and Bart Preneel. A new RFID
privacy model. In ESORICS, volume 6879 of Lecture Notes in Computer Science, pages
568–587. Springer, 2011.

[Hüt02] Hans Hüttel. Deciding framed bisimilarity. Electr. Notes Theor. Comput. Sci., 68(6):1–18,
2002.

[JLM05] Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the picture: Sound-
ness of formal encryption in the presence of active adversaries. In ESOP, volume 3444 of
Lecture Notes in Computer Science, pages 172–185. Springer, 2005.

[JR12] Charanjit S. Jutla and Arnab Roy. Decision procedures for simulatability. In ESORICS,
volume 7459 of LNCS, pages 573–590. Springer, 2012.

[JW09] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. ACM Trans. Inf. Syst.
Secur., 13(1):7:1–7:23, November 2009.

[KCL07] I. J. Kim, E. Y. Choi, and D. H. Lee. Secure mobile RFID system against privacy and
security problems. In Security, Privacy and Trust in Pervasive and Ubiquitous Computing,
2007. SECPerU 2007. Third International Workshop on, pages 67–72, July 2007.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, 1996.

[LAK06] Sangshin Lee, Tomoyuki Asano, and Kwangjo Kim. RFID mutual authentication scheme
based on synchronized secret information. In Symposium on cryptography and information
security, 2006.

[LBdM07] Tri Van Le, Mike Burmester, and Breno de Medeiros. Universally composable and forward-
secure RFID authentication and authenticated key exchange. In Feng Bao and Steven
Miller, editors, Proceedings of the 2007 ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2007, Singapore, March 20-22, 2007, pages 242–252.
ACM, 2007.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Inf.
Process. Lett., 56(3):131–133, 1995.

[Low97] Gavin Lowe. A hierarchy of authentication specification. In CSFW, pages 31–44. IEEE
Computer Society, 1997.

[LSWW14] Ming-Feng Lee, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. Anonymity
guarantees of the UMTS/LTE authentication and connection protocol. Int. J. Inf. Sec.,
13(6):513–527, 2014.

264 Bibliography

[MSCB13] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The tamarin prover for the symbolic anal-
ysis of security protocols. In 25th International Conference on Computer Aided Verification,
CAV’13, pages 696–701. Springer-Verlag, 2013.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the presence
of active adversaries. In TCC, volume 2951 of Lecture Notes in Computer Science, pages
133–151. Springer, 2004.

[NL15] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF protocols. RFC 7539, RFC
Editor, May 2015. http://www.rfc-editor.org/rfc/rfc7539.txt.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

[OP08] Khaled Ouafi and Raphael C.-W. Phan. Privacy of recent RFID authentication protocols.
In Liqun Chen, Yi Mu, and Willy Susilo, editors, Information Security Practice and Expe-
rience, 4th International Conference, ISPEC 2008, Sydney, Australia, April 21-23, 2008,
Proceedings, volume 4991 of Lecture Notes in Computer Science, pages 263–277. Springer,
2008.

[PCER08] Pedro Peris-Lopez, Julio César Hernández Castro, Juan M. Estévez-Tapiador, and Arturo
Ribagorda. Advances in ultralightweight cryptography for low-cost RFID tags: Gossamer
protocol. In Kyo-Il Chung, Kiwook Sohn, and Moti Yung, editors, Information Security
Applications, 9th International Workshop, WISA 2008, Jeju Island, Korea, September 23-
25, 2008, Revised Selected Papers, volume 5379 of Lecture Notes in Computer Science, pages
56–68. Springer, 2008.

[Sat89] Mahadev Satyanarayanan. Integrating security in a large distributed system. ACM Trans.
Comput. Syst., 7(3):247–280, 1989.

[Sce15] Guillaume Scerri. Proofs of security protocols revisited. PhD thesis, École Normale
Supérieure de Cachan, 2015.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR
Cryptology ePrint Archive, 2004:332, 2004. https://eprint.iacr.org/2004/332.

[SS16] Guillaume Scerri and Ryan Stanley-Oakes. Analysis of key wrapping apis: Generic policies,
computational security. In IEEE 29th Computer Security Foundations Symposium, CSF
2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 281–295. IEEE Computer Society,
2016.

[SSB+16] Altaf Shaik, Jean-Pierre Seifert, Ravishankar Borgaonkar, N. Asokan, and Valtteri Niemi.
Practical attacks against privacy and availability in 4g/lte mobile communication systems.
In 23rd Annual Network and Distributed System Security Symposium, NDSS. The Internet
Society, 2016.

[Str07] Daehyun Strobel. IMSI catcher. Ruhr-Universität Bochum, Seminar Work, 2007.

[TS318] TS 33.501: Security architecture and procedures for 5G system, September 2018.

[Unr10] Dominique Unruh. The impossibility of computationally sound XOR. IACR Cryptology
ePrint Archive, 2010:389, 2010.

[Vau07] Serge Vaudenay. On privacy models for RFID. In ASIACRYPT 2007, 13th International
Conference on the Theory and Application of Cryptology and Information Security, LNCS,
pages 68–87. Springer, 2007.

[vdBVdR15] Fabian van den Broek, Roel Verdult, and Joeri de Ruiter. Defeating IMSI catchers. In ACM
Conference on Computer and Communications Security, CCS’15, pages 340–351. ACM,
2015.

http://www.rfc-editor.org/rfc/rfc7539.txt
https://eprint.iacr.org/2004/332

Bibliography 265

[VDR08] Ton Van Deursen and Sasa Radomirovic. Attacks on RFID protocols. IACR Cryptology
ePrint Archive, 2008:310, 2008.

[WL93] T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In Proceedings
1993 IEEE Computer Society Symposium on Research in Security and Privacy, pages 178–
194, May 1993.

General Index

A
Acceptance condition

characterization, 104, 106, 111, 120
necessary-, 92, 96, 118

Arity, 16
Asymmetric encryption, 3
Authentication, 96, 97

injective-, 100
mutual-, 92

Axiom, 28
equality-, 29
function application, 30
structural-, 29

C
cca2

execution, 183
sub-instance, 206
trace, 203

Computational indistinguishability, 21
Computational model, 6
Computational soundness, 7
Context, 18

α-, 251
almost conditional-, 214
conditional-, 214
If-, 18

Corruption, 74
Cryptographic axioms, 35

cca2, 187
ccaa2 , 185
cca1, 35
cr-hk, 37
prf, 42
prng, 59
euf-mac, 38
Joint cr-hk, 85
Joint prf, 70, 85
Joint euf-mac, 85

Cryptographic primitives, 2

D
Directed path, 237
Dolev-Yao, 6

E
Eager reduction, 205
Equivalence properties, 5
Execution

computational-, 24
symbolic, 26

F
Formula, 17

interpretation-, 19
valid-, 19

Forward secrecy, 60
Function symbols, see Signature F

G
Ghost variable, 84
Globally Unique Temporary Identifier, 64
gutiidu concealment, 114

H
Hash function, 3
Home Network, 63

I
Implementation axioms, 33

boolean axioms Axbool, 34
decryption axioms Axdec, 33
pair axioms Ax〈 , 〉, 33
xor axioms Ax⊕, 33

International Mobile Subscriber Identity, 65
Ax-Interpretation, 35

L
Labelled transition system, 22
Leaf frame, 245

267

268 General Index

Lexicographic Path Ordering, 178

M
Message Authentication Code, 3
Model, 19

computational-, 20

N
Name, 16

P
Path

directed, see Directed path
Permanent Identify, see Subscription

Permanent Identifier
Position, 18
Precedence, 178
Privacy, 46

Fixed Trace, 50
trace, 49

Probability measure on infinite tapes, 15
Proof form, 212

early, 209
normalized, 212

Protocol, 22
AKA (simplified), 2
5G-AKA, 63
kcl, 46, 50
kcl+, 51
lak, 53
lak (stateless), 54
lak+, 55
nsl, 176
PRIV-AKA, 67
RFID, see RFID
compatible-, 25
indistinguishability-, 25
sub-

guti, 72
assign-guti, 73
supi, 71

Pseudo-random number generator, 59

R
Restr Elimination, 190
RFID, 46

S
S-basic term, 204

normalized, 204
S-decryption oracle call, 204
S-encryption oracle call, 203
S-normalized basic conditional, 204
S-simple term, 204

normalized, 204
Semantics, 18

classical-, 18
computational-, 20

Sequence Number, 64
Serving Network, 63
Set

spurious-, 224
well-nested-, see Well-nested set

Signature F , 16
adversarial function symbols G, 16
protocol function symbols Fp, 16

Sort, 16
Subscription Permanent Identifier, 63
Symbolic

frame, 24
state, 24

Symbolic model, see Dolev-Yao
Symmetric encryption, 2

T
Temporary identity, see Globally Unique

Temporary Identifier
Term, 16

(t, P)-α-bounded-, 241
ground-, 19
if-free, 182
interpretation-, 19
persistent-, 224
simple-, 219
spurious-, 224
sub-, 16

Term rewriting system, 178
convergent, 179

Trace
action-, 25
basic action-, 83
computational-, 24
valid action-, 78

Trace properties, 5
Type, 16

U
Unlinkability, 74

σ-, 75, 80
User Equipment, 63

V
Valid candidate sequence, 251
Valid public/private key pair, 203

W
Well-nested set, 219

Symbols Index

Symbols
C[_ �_], 18
RKccaa2 , 184
[w ∈ Ω : f(w)], 15
≈Mc , 25
arity(f), 16
T (_), 16
tc, 219
Mc, 20
codom, 15
cs-posP , 210
dom, 15
extractl, 209
extractr, 209
F, 190
fresh, 35
h-branchP , 210
head, 219
hidden-rand, 183
if-depthP , 238
φPτ , 26
l-trace, 203
δq, 22
enbl, 22
N , 16
|=M, 19
µω, 16
nodec, 183
φ-s-tracePτ , 26
pos(t), 18
δ~ρ, 237
→R�u , 179
r-trace, 203
[[_]]M, 19
session(ai), 94
s-startedj(τ), 94
∼n, 17
priv-ltsn,mb (P), 50
priv-ltsb(P), 48
2erase, 197

Axrfid, 51
Axstruct, 31
Struct-Ax, 176
index(P), 210
instance(P), 206
label(P), 209
s-traceP (τ), 26
vC , 35
types(f), 16
var(t), 16
revealCτ , 129
prng, 59

A
5G-AKA agents

HN, 63
SN, 63
UE, 63

5G-AKA identities
guti, 64
imsi, 65
supi, 63

AKA+ action labels
tn(j, i), 78
tuid(j, i), 78
fn(j), 78
fuid(j), 78
puid(j, i), 78
nsid(j), 78
pn(j, i), 78

AKA+ constants
fail, 79, 88
sqn-initidn , 79
sqn-initidu , 79
UnknownId, 88
UnSet, 79, 88

AKA+ partial transcripts
c-tr n:τ1u:τ , 111
full-trn:τ1,τu:τ2,τi , 121
fu-trn:τ1u:τ , 107

269

270 Symbols Index

part-trn:τ1u:τ2,τ , 120
supi-tr n:τ1u:τ2,τ , 111

AKA+ properties
(A1), 95
(A2), 95
(A3), 95
(A4), 95
(A5), 95
(A6), 95
(A7), 95
(A8), 95
(B1), 105
(B2), 105
(B3), 108
(B4), 108
(B5), 108
(B6), 108
(B7), 108
(Der1), 131
(Der2), 132
(Der3), 132
(Der4), 132
Characterizations
(Equ1), 107
(Equ2), 111
(Equ3), 111
(Equ4), 111
(Equ5), 111
(StrEqu1), 120
(StrEqu2), 120
(StrEqu3), 121
(StrEqu4), 121

Necessary conditions
(Acc1), 96
(Acc2), 96
(Acc3), 96
(Acc4), 96
(StrAcc1), 118

AKA+ state variables
b-authjn, 77
b-authid

u , 77
e-authjn, 77
e-authid

u , 77
gutiidn , 77
gutiidu , 77
sqnid

n , 77
sqnid

u , 77
valid-gutiidu , 77
syncidu , 84
sessionid

n , 77
s-valid-gutiidu , 77

AKA+ term vectors
leakinτ , 114
l-revealCτ , 131
r-revealCτ , 131

AKA+ terms
authτ (id, j), 97
φτ , 79
στ , 79
φinτ , 79
inj-authτ (id, j), 100
σinτ , 79
m-suci idτ , 130
net-e-authτ (id, j), 130
suc-authτ (id), 97
sync-diffid

τ , 128
t-macτ (id, j), 130
t-suci-⊕τ (id, j), 130
net-e-authτ (id, j), 130
t-macτ (id, j), 130
t-suci-⊕τ (id, j), 130
tτ , 79

AKA+ trace and identity functions
copies-idC , 83
fresh-id, 83
ντ , 84
�, 84
≺τ , 84
τ , 83

Axioms
R, 174
R�, 197
cca2, 212
cr-keyj6=, 88
FA\0, 174
F\if, 16
BFA, 200
prf-g, 88
prf-macj , 87, 88
sqn-ini, 89, 90
cca1, 37
ccas1, 36
cr, 38
euf-mac, 39
p-euf-mac, 40
p-euf-macs, 40
prf, 42, 43
prng, 59
crj , 88
euf-macj , 88
p-euf-macj , 88
=-ind, 31
=-refl, 29
=-subst, 29
=-sym, 29
=-trans, 29
6=-Const, 89
2Box, 197
BFA, 200
CS, 31

Symbols Index 271

CSnoif , 174
Dup, 31
Equ, 29
FA, 30
FA(b, b′), 196
FAf , 196
Fresh, 31
H-len, 51
IFT, 31
Perm, 29
Refl, 31
Restr, 30
Sym, 31
Trans, 31
l-neq, 89
CS�, 197
CCA2s, 176
id-len, 51
EQInj({·}__), 89
EQInj(〈_ , ·〉), 89
EQInj(〈· , _〉), 89

B
Boolean functions

=̇, 34
↔̇, 34
¬̇, 34
→̇, 34
∨̇, 34
∧̇, 34

D
Deducibility relations

`npfα , 242
`b, 209
`npf, 212
`, 190

F
Fragments

A�, 203
ACS� , 203
AFAs , 203
ABFA, 203

L
Leaf frames

l-framePl , 245
r-framePl , 245

l-framePl , 245
r-framePl , 245

O
Orders

vc, 220
�lpo
u , 178
�, 178
�f , 178
�u, 179

P
Proof sub-term relations

<Sbc, 234
δcs-path, 238
δcs-path∼, 238
≤Sbt, 205
≤c, 211
≤cs, 211
≤l, 211
≤c∼c, 211
≤cs∼cs, 210
≤l∼l, 211
<′Sind, 205
<Sind, 205

S
Set of subterms

cond-st(u), 182
leave-st(u), 182
set-mack(u), 39
set-macjkm

(u), 87
set-prf gk(u), 87
strict-set-mack(u), 40
strict-set-macjkm

(u), 87
strict-st(u), 40
st(u), 16
over-approximation
cond-st(u), 215
leave-st(u), 215

Sets of function symbols
B, 196
G, 16
F\if, 174
F\if,0, 174
F\0, 174
Fp, 16
F , 16

Titre : Preuves symboliques de propriétés d’indistinguabilité calculatoire

Mots clés : Protocoles de sécurité, Sécurité calculatoire, Preuves automatiques, Indistinguabilité

Résumé : Notre société utilise de nombreux
systèmes de communications. Parce que ces
systèmes sont omniprésents et sont utilisés pour
échanger des informations sensibles, ils doivent être
protégés. Cela est fait à l’aide de protocoles cryp-
tographiques. Il est crucial que ces protocoles as-
surent bien les propriétés de sécurité qu’ils affirment
avoir, car les échecs peuvent avoir des conséquences
importantes. Malheureusement, concevoir des pro-
tocoles cryptographiques est notoirement difficile,
comme le montre la régularité avec laquelle de nou-
velles attaques sont découvertes. Nous pensons que
la vérification formelle est le meilleur moyen d’avoir
de bonnes garanties dans la sécurité d’un protocole: il
s’agit de prouver mathématiquement qu’un protocole
satisfait une certaine propriété de sécurité.
Notre objectif est de développer les techniques
permettant de vérifier formellement des propriétés
d’équivalence sur des protocoles cryptographiques,
en utilisant une méthode qui fournit de fortes ga-
ranties de sécurités, tout en étant adaptée à des
procédures de preuve automatique. Dans cette thèse,
nous défendons l’idée que le modèle Bana-Comon
pour les propriétés d’équivalences satisfait ces objec-

tifs. Nous soutenons cette affirmation à l’aide de trois
contributions.
Tout d’abord, nous étayons le modèle Bana-Comon
en concevant des axiomes pour les fonctions usuelles
des protocoles de sécurités, et pour plusieurs hy-
pothèses cryptographiques. Dans un second temps,
nous illustrons l’utilité de ces axiomes et du modèle en
réalisant des études de cas de protocoles concrets:
nous étudions deux protocoles RFID, KCL et LAK,
ainsi que le protocole d’authentification 5G-AKA, qui
est utilisé dans les réseaux de téléphonie mobile.
Pour chacun de ces protocoles, nous montrons des
attaques existentes ou nouvelles, proposons des ver-
sions corrigées de ces protocoles, et prouvons que
celles-ci sont sécurisées. Finalement, nous étudions
le problème de l’automatisation de la recherche de
preuves dans le modèle Bana-Comon. Pour cela,
nous prouvons la décidabilité d’un ensemble de
règles d’inférences qui est une axiomatisation cor-
recte, bien que incomplète, de l’indistingabilité calcu-
latoire, lorsque l’on utilise un schéma de chiffrement
IND-CCA2. Du point de vue d’un cryptographe, cela
peut être interprété comme la décidabilité d’un en-
semble de transformations de jeux.

Title : Symbolic Proofs of Computational Indistinguishability

Keywords : Security protocols, Computational security, Automatic proofs, Indistinguishability

Abstract : Our society extensively relies on commu-
nications systems. Because such systems are used
to exchange sensitive information and are pervasive,
they need to be secured. Cryptographic protocols are
what allow us to have secure communications. It is
crucial that such protocols do not fail in providing
the security properties they claim, as failures have
dire consequences. Unfortunately, designing crypto-
graphic protocols is notoriously hard, and major pro-
tocols are regularly and successfully attacked. We
argue that formal verification is the best way to get
a strong confidence in a protocol security. Basically,
the goal is to mathematically prove that a protocol sa-
tisfies some security property.
Our objective is to develop techniques to formally ve-
rify equivalence properties of cryptographic protocols,
using a method that provides strong security guaran-
tees while being amenable to automated deduction
techniques. In this thesis, we argue that the Bana-
Comon model for equivalence properties meets these

goals. We support our claim through three different
contributions.
First, we design axioms for the usual functions used in
security protocols, and for several cryptographic hypo-
thesis. Second, we illustrate the usefulness of these
axioms and of the model by completing case studies
of concrete protocols: we study two RFID protocols,
KCL and LAK, as well as the 5G-AKA authentica-
tion protocol used in mobile communication systems.
For each of these protocols, we show existing or new
attacks against current versions, propose fixes, and
prove that the fixed versions are secure. Finally, we
study the problem of proof automation in the Bana-
Comon model, by showing the decidability of a set
of inference rules which is a sound, though incom-
plete, axiomatization of computational indistinguisha-
bility when using an IND-CCA2 encryption scheme.
From a cryptographer’s point of view, this can be seen
as the decidability of a fixed set of cryptographic game
transformations.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Contents
	Introduction
	The Context
	Example: the AKA- Protocol
	Cryptographic Primitives
	The AKA- Protocol

	Security Properties
	Attacker Models
	Symbolic Model
	Computational Model
	Computational Soundness
	The Bana-Comon Model

	Limitations of the State of the Art
	Contributions
	RFID Protocols
	The AKA Protocol
	Deciding Indistinguishability

	Outline of the Thesis

	The Model
	Preliminaries
	Syntax
	Syntax of the Logic
	Positions and Contexts

	Semantics
	Sorted First-order Semantics
	Computational Models

	Protocol and Their Semantics
	Labelled Transition Systems
	Computational Execution
	Symbolic Execution

	Axioms
	Structural Axioms
	Implementation Axioms

	Cryptographic Assumptions and Axioms
	The CCA1 Axioms
	The CR-HK Axioms
	EUF-MAC Axioms
	PRF Axioms

	Conclusion

	Privacy Proofs of RFID Protocols
	Security Properties
	Privacy of RFID Protocols
	Privacy Labelled Transition System

	Two RFID Protocols
	A Known Attack on KCL
	KCL+, a Revised Version of KCL
	The LAK Protocol
	A Stateless Revised Version of LAK
	The LAK+ Protocol

	Pseudo-Random Number Generator
	Conclusion

	The 5G-AKA Authentication Protocol Privacy
	Introduction
	The 5G-AKA Protocol
	Description of the Protocol

	Unlinkability Attacks Against 5G-AKA
	IMSI-Catcher Attack
	The Failure Message Attack
	The Encrypted IMSI Replay Attack
	Attack Against The PrivAKA Protocol
	Sequence Numbers and Unlinkability

	The AKA+ Protocol
	Efficiency and Design Constraints
	Key Ideas
	Architecture and States
	The SUPI, GUTI and ASSIGN-GUTI Sub-Protocols

	Unlinkability
	sigma-Unlinkability
	A Subtle Attack

	Modeling in The Bana-Comon Logic
	The AKA+ Protocol Action Trace
	The AKA+ Protocol Symbolic Outputs and State Updates
	Modeling sigma-Unlinkability
	Ghost Variable

	Axioms
	Joint Cryptographic Assumptions
	Relations Among Cryptographic Assumptions
	Cryptographic Axioms
	Axioms
	Additional Axioms

	Security of the AKA+ Protocol
	Mutual Authentication of the AKA+ Protocol
	Sigma-Unlinkability of the AKA+ Protocol

	Mutual Authentication of the AKA+ Protocol
	Invariants and Necessary Acceptance Conditions
	Authentication of the User by the Network
	Authentication of the Network by the User
	Injective Authentication of the Network by the User
	Proof of Lemma 4.6

	Acceptance Condition Characterizations
	A First Acceptance Condition Characterization
	Proof of Proposition 4.17
	A Full Set of Acceptance Condition Characterizations
	Proof of Lemma 4.11
	GUTI Concealment
	Stronger Characterizations
	Proof of Lemma 4.14

	Unlinkability
	Resistance Against De-Synchronization Attacks
	The Case Term Construction
	Strengthened Induction Hypothesis

	Proof of Lemma 4.15
	Case ai = NS(j)
	Case ai = PN(j,0)
	Case ai = PU(j,1)
	Case ai = PN(j,1)
	Case ai = PU(j,2)
	Case ai = FN(j)
	Case ai = FU(j)
	Case ai = TU(j,0)
	Case ai = TN(j,0)
	Case ai = TU(j,1)
	Case ai = TN(j,1)

	Proof of Proposition 4.20
	Conclusion

	Deciding Indistinguishability
	Introduction
	Axioms
	Comments and Examples

	The Term Rewriting System R
	The CCA2 Axioms
	Closure Under Restr
	Length in the CCA2 Axioms

	Main Result and Difficulties
	Commutations and Cut Eliminations
	Rule Commutations
	The Freeze Strategy

	Shape of the Terms
	Definitions
	Eager Reduction for Afas

	Proof Form
	Early Proof Form
	Shape of the Terms
	Proof Form and Normalized Proof Form
	Restriction to Proofs in Normalized Proof Form

	Properties of Normalized Basic Terms
	Basic Term Extraction
	Well-Nested Sets

	Spurious Conditionals and Persistent Leaves
	Spurious Conditionals to Spurious Sets
	Persistent Terms

	Proof Cut Elimination
	Removing True and False From Basic Terms
	Basic Terms have Disjoints Conditionals and Leaves
	Proof Cuts on Branches
	Main Lemma

	Bounding the Basic Terms
	alpha-Bounded Conditionals
	Bounding the Number of Nested Basic Conditionals
	Candidate Sequences

	Conclusion

	Conclusion
	Future Works

	Bibliography
	General Index
	Symbols Index

