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Abstract

Numerical simulations at the pore scale are a way to study the behavior of multiphase
flows encountered in many natural processes and industrial applications. In this
work, liquid morphology and capillary action are examined at the pore-scale by
means of the multicomponent Shan-Chen lattice Boltzmann method (LBM). The
accuracy of the numerical model is first contrasted with theoretical solutions. The
numerical results are extended to complex microstructures beyond the pendular
regime.

The LBM has been employed to simulate multiphase flow through idealized gran-
ular porous media under quasi-static primary drainage conditions. LBM simulations
provide an excellent description of the fluid-fluid interface displacement through the
grains. Additionally, the receding phase trapped in the granular media in form of
pendular bridges or liquid clusters is well captured. Unfortunately, such simula-
tions require a significant computation time. A 2D model (Throat-Network model)
based on analytical solutions is proposed to mimic the multiphase flow with very
reduced computation cost, therefore, suitable to replace LBM simulations when the
computation resources are limited. The approach emphasizes the importance of sim-
ulating at the throat scale rather than the pore body scale in order to obtain the
local capillary pressure - liquid content relationships. The Throat-Network model
is a starting point for a hybrid model proposed to solve 3D problems. The hybrid
model combines the efficiency of the pore-network approach and the accuracy of
the LBM at the pore scale to optimize the computational resources. The hybrid
model is based on the decomposition of the granular assembly into small subsets, in
which LBM simulations are performed to determine the main hydrostatic properties
(entry capillary pressure, capillary pressure - liquid content relationship and liquid
morphology for each pore throat). Despite the reduction of computation time, it
is still not negligible and not affordable for large granular packings. Approxima-
tions by the Incircle and the MS-P method, which predict hydrostatic properties,
are contrasted with the results provided by LBM and the hybrid model. Relatively
accurate predictions are given by the approximations.

Key words: wet granular materials, capillary action, throat network, multi-
phase flow, lattice Boltzmann, pore scale
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Résumé

Les simulations numériques a 1’échelle du pore sont fréquemment utilisées pour
étudier le comportement des écoulements multiphasiques largement rencontrés dans
phénomenes naturels et applications industrielles. Dans ce travail, la morphologie
des structures liquides et ’action capillaire sont examinées a ’échelle des pores par la
méthode de Boltzmann sur réseau (LBM) a plusieurs composants selon le modele de
Shan-Chen. Les résultats numériques obtenus sont en bon accord avec les solutions
théoriques. Les simulations numériques sont étendues a microstructures complexes
au-dela du régime pendulaire.

La LBM a été utilisée pour modéliser I’écoulement multiphasique a travers un
milieu poreux idéalisé dans des conditions de drainage primaire quasi-statique. Les
simulations LBM ont fourni une excellente description du déplacement de I'interface
fluide-fluide a travers les grains. Pendant le drainage, les simulations LBM sont
capables de reproduire la déconnexion d’une phase dans le milieu granulaire sous
la forme de ponts pendulaires ou structures liquides complexes. Malheureusement,
le temps de calcul nécessaire pour ce type de simulations est assez élevé. Afin
d’optimiser les ressources de calcul, nous présentons un modele 2D (modele Throat-
Network) basé sur des solutions analytiques pour décrire 1’écoulement biphasique a
travers un ensemble de disques dans un temps de calcul tres réduit, donc le modele
2D est susceptible de remplacer les simulations LBM lorsque les ressources de calcul
sont limitées. L’approche souligne I'importance de simuler le probleme a ’échelle de
la gorge du pore pour obtenir les relations volume - pression capillaire locales. Le
modele Throat-Network est un point de départ pour le modele hybride proposé pour
résoudre les problemes en 3D. Le modele hybride combine 'efficacité de ’approche
réseau de pores et la précision du LBM a l’échelle des pores. Le modele hybride
est basé sur la décomposition de 1’échantillon en petits sous-domaines, dans lesquels
des simulations LBM sont effectuées pour déterminer les propriétés hydrostatiques
principales (pression capillaire d’entrée, courbe de drainage primaire et morpholo-
gie du liquide pour chaque gorge du pore). Malgré la réduction significative des
temps de calcul obtenus avec le modele hybride, le temps n’est pas négligeable et
les modélisations numériques d’échantillons de grandes tailles ne sont pas réalistes.
Les approximations données par les méthodes Incircle et MS-P, qui prédisent les
propriétés hydrostatiques, sont comparées a celles de LBM et du modele hybride.

Mots clés: matériau granulaire, capillarité, réseau de pores, écoulement mul-
tiphasique, drainage, saturation partielle, lattice Boltzmann
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Resum

Per tal d’estudiar els fluxos multifasics presents a molts processos naturals i indus-
trials és indispensable entendre les propietats fisiques dels sistemes multifasics a
escala microscopica. La morfologia dels fluids i les forces capil - lars s’investiguen
a l’escala del porus mitjancant el "multicomponent Shan-Chen lattice Boltzmann
method (LBM)”. La precisié del model numeric ha estat contrastada amb solucions
teoriques. Els resultats numerics s’han estes a microestructures liquides complexes
més enlla del regim pendular.

El LBM ha estat emprat per simular fluxos multifasics a través de medis porosos
sota condicions quasi-estatiques de drenatge. Les simulacions dutes a terme mit-
jancant el LBM proporcionen una descripcio excel - lent del moviment de la interficie
entre fluids a través de les particules solides. Durant el drenatge, les simulacions
numeriques son capaces de reproduir I'efecte del fluid atrapat dins el medi granular
en forma de ponts o estructures liquides complexes. Malauradament, aquestes si-
mulacions requereixen un temps de computacié molt elevat. Per tal d’optimitzar els
recursos de computacié, proposem un model 2D (model Throat-Network) basat en
solucions analitiques que permet reproduir fluxos multifasics a través d’'un conjunt
de discs amb un temps de computacié molt reduit. Per tant, aquest metode és una
alternativa que pot substituir les simulacions LBM quan els recursos de computacio
son escassos. El model Throat-Network destaca la importancia de tractar el pro-
blema a 'escala de la gola del porus per tal d’obtenir les relacions pressio capil - lar
- volum locals. Aquest enfocament és un punt de partida pel model hibrid que es
presenta per resoldre els problemes en 3D. El model hibrid combina 'eficacia del
model "Pore-Network” i la precisié del LBM a l’escala del porus. El model hibrid es
basa en la descomposicié d'una mostra granular en subdominis més petits, els quals
corresponen a les goles dels porus (la gola dels porus és l'espai que connecta dos
porus adjacents). Les simulacions LBM s’executen per a cada un dels subdominis
per tal de determinar les propietats hidroestatiques més rellevants (pressié capil - lar
d’entrada, la corba de pressi6 capil - lar - grau de saturaci6 i la morfologia liquida
per cada una de les goles del porus). Malgrat la reduccio significativa en el cost com-
putacional del model hibrid, els temps de calcul no sén menyspreables i poc realistes
per mostres granulars de grans dimensions. Les aproximacions donades pels metodes
de I’’Incircle” i el MS-P, que permeten estimar les propietats hidroestatiques, han
estat contrastades amb els resultats obtinguts amb LBM i el model hibrid.

Mots clau: material granular, capil - laritat, medi pords, flux multifasic,
drenatge, lattice Boltzmann
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General Introduction

General context

Multiphase materials cover a wide range of natural phenomena and engineering ap-
plications. This includes the rainwater infiltrated into the soil, landslide phenomena,
oil recovery, food industry, industrial bed reactors, etc. A better insight into the
properties and mechanisms of the flows through porous media is crucial to predict
the behavior of the multiphase flows.

Even though multiphase flows are extended to several scientific fields (chemistry,
mechanics, pharmacy, geosciences, biology, material science, etc), the present thesis
focus on partially saturated soils. Such soils are materials characterized by a solid
matrix and voids (pores). The pore space is typically occupied by fluids (for instance,
air and water). When the pore space is filled with a single phase (i.e. water), Darcy’s
law and Navier-Stokes equations describe the motion of the fluid within the porous
media. Unfortunately, the description of the flow becomes much more complex in
multiphase systems.

Processes like internal erosion, structural damage due to expansive soils and
reduction of the bearing capacity of shallow foundations caused by the desaturation
cracks above the phreatic level are classical examples of hydro-mechanical problems
that evidence the interest in controlling the mechanical behavior of unsaturated soils.

Experiments and macroscopic numerical methods are excellent approaches to
obtain the main physical properties. However, some difficulties may arise due to the
heterogeneous and discontinuous nature of granular materials. Local properties are
unaccessible or inaccurately described by experimental tests or macro-scale-based
methods.

Recent advances in computer technology enhanced the development of many
powerful and efficient numerical methods capable to reproduce the complex hydro-
mechanical interaction between phases at the pore scale. In such context, local
properties are employed to recover the processes manifested at the macro-scale.

Furthermore, numerical methods may help to have a better understanding of lig-
uid structures observed in granular media at low liquid saturation (pendular bridges,
trimers and other liquid clusters). The hydro-mechanical behavior of pendular bridge
has been investigated and implemented in many numerical models (Scholtes et al.
(2009); Scholtes et al) (2009)). However, less attention has been devoted to ex-
amine the mechanism of wet materials during the funicular regime. Nowadays,
three-dimensional images from X-ray tomography are a useful and common tool
to characterize the fluid morphology in the porous medium (Scheel et al| (2008);
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General Introduction

Turner et al) (2004); Sakellariou et al| (2004)). Despite these advances, very few at-
tempts have been carried out to obtain details of the liquid distribution within the
porous media (Melnikov et al! (2015); [Yuan et al) (2018)). In this thesis, the hydro-
mechanical behavior of liquid microstructures is evaluated in order to have a better
understanding of the hydrostatic properties and capillary forces during the funicular
and capillary regimes. The study has been possible through lattice Boltzmann simu-
lations (LBM) based on the multicomponent Shan-Chen model. The calibration and
validation of the numerical model are described in Chapter 2. Liquid morphology
and capillary pressure - saturation relationships are analyzed for typical liquid con-
figurations (pendular bridges, trimers, tetramers, etc ) in the latest part of Chapter
2.

A numerical approach based on the integration of the stresses over the grains
is considered to compute the capillary forces between solid objects in Chapter 3.
Such analysis may shed some light on the path of capillary forces during multiphase
flow, thus, we provide new tools to predict the hydro-mechanical phenomena of wet
granular materials.

Due to the natural ability to handle complex geometries, LBM is able to accu-
rately describe multiphase flows through porous media. Unfortunately, LBM, like
other fully resolved simulations, is computationally expensive. This work explores
the possibility of a hybrid model based on a decomposition of the granular assembly
to evaluate the hydro-mechanical properties within acceptable computation time and
maintain the geometrical discretization unaltered. Chapter 4 describes a 2D model
(Throat-Network model) inspired in previous pore-network models. The represen-
tation of the pore space in the 2D Throat-Network model (TN hereinafter) is based
on a regular triangulation of a disk assembly. Regarding the flow of the fluid phases
within the granular medium, pressure field and fluxes are evaluated by means of the
continuity equation for incompressible fluids. Details about the local conductances
and fluid-fluid interface location are found in Chapter 4. Some of the analytical
solutions employed in the TN model are not valid when the model is extended to
the third dimension. Therefore, multiphase algorithms need to be reformulated to
overcome the complexities of the pore geometry. In Chapters 5 and 6 we propose a
hybrid model that takes advantage of both the efficiency of the pore-network models
and the accuracy of direct fluid dynamics solutions obtained with LBM. In other
words, we rely on LBM simulations to determine the hydrostatic properties (capil-
lary forces, entry capillary pressure, capillary pressure - saturation curves, etc) at
the pore-scale to be further integrated in a pore-network model based on a regular
triangulation of the pore space. The multiscale approach provides an alternative
to a large LBM simulation by decomposing the granular assembly into small LBM
problems. Even though the hybrid model benefits from the pore-network approach
by optimizing the computational resources, the computation cost is not negligible.
Hence, Chapters 5 and 6 include a revision of approximations and empirical solu-
tions found in previous literature in order to improve and validate the local rules
that govern the multiphase flow.
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Chapter 1

Multiphase flow in granular
porous media

1.1 Introduction

Multiphase fluid flows in porous media occur in many natural and industrial pro-
cesses. Indeed, the study of the physics of multiphase flow through porous media
plays a crucial role in several scientific disciplines, such as soil mechanics, ground
water hydrology, oil engineering, industrial applications, etc. This thesis is carried
out in the field of soil mechanics, thus, the mechanical behavior and properties are
investigated in partially saturated soils (typically, air, water and solid particles).
The process of excavating, recompacting and other human actions on the soil result
in unsaturated granular materials. Another interesting type of wet material are the
swelling soils. These contain clays that are capable of absorbing water. The volume
of the soil can significantly change as a consequence of the penetration of water in
the pore space. The expansion of these soils may cause damage on foundations,
pavements and retaining walls. The last example of this brief introduction concerns
the partially saturated soils located over the water table. Due to capillary, water
rises to a certain height above the phreatic level (water table). During dry periods,
evaporation and evapotranspiration mechanism produce a gradual desaturation of
the soil that eventually shrink the soil. Therefore, cracks (desaturation fissures)
appear as the soils dry out.

Previous examples of partially saturated soils illustrate the hydro-mechanical
impact of the soil when the water content is changed. The macroscopic behavior of
unsaturated soils is not restricted to the amount of water and air, instead, mechanical
and hydraulic properties are susceptible to temperature changes, chemical reactions,
fluid flow, etc. All these phenomena evidence the need for exhaustive studies that will
help understand which parameters control the mechanical behavior of unsaturated
materials.

Overall, this chapter aims to review the previous work on the analysis of unsat-
urated soils and multiphase flow. In the first part, we introduce the physics and
mechanics of partially saturated granular material. The second part of the chapter
summarizes several numerical methods employed to explore the nature of multiphase
flow in porous media. Even though, current techniques allow micro- and macro-scale
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analysis of the multiphase flow, we will emphasize the pore-scale methods. Indeed,
microscopic analysis are essential to understand the capillary phenomena observed
at the pore scale and, therefore, determine the origin of many macroscopic behaviors.

1.2 Physics of multiphase flow

Many natural and industrial processes involve the flow of immiscible phases in porous
media. Some examples include environmental hydrogeology, storage in underground
reservoirs, riser reactors, crude oil recovery, gas-liquid flows in evaporators and con-
densers, fluidized beds, drvers, etc (Abriolal (1988); [Young (1993); Wang and Cheng
(1997); Blunt (2001); Pruess and Garcia (2002)).

In the last decades, experimental, theoretical and numerical approaches have
been used to study the intricate phenomena observed at the pore space (Lenormand
et al| (1983); Kueper et al| (1989); Helba et al| (1992)). A better understanding of
the processes at the micro-scale results in a better prediction of fluid flow and phase
distribution in porous media at the macro-scale.

In order to predict the behavior of multiphase flow, it is crucial to know the
governing equations that describe the physical phenomena. Unfortunately, the com-
plexity of multiphase flows and the difficulties encountered when solving the ruling
equations and closure laws of multiphase flows hinder a complete study of such flows.

1.2.1 Solid and fluid properties of single-phase flow

At the macro-scale, multiphase flow through porous media are characterized by two
important quantities: the porosity ¢ and the permeability k.

Porosity is defined as the ratio between the void pore space (V,) to the bulk
volume of a certain material (V;):

0= (1)

Permeability refers to the flow conductance of the solid matrix. It is related to
the geometrical features of the solid phase including particle size and shape, pore
size, and pore distribution. Hence, permeability is a characteristic of the porous

media, not the fluid. Fluid properties are included in the hydraulic conductivity

K
K= %, where p is the density of the fluid, g is gravity, 4 the dynamic viscosity

and K the intrinsic permeability of the soil. The hydraulic conductivity describes the
ability of fluid to flow through the porous media. Besides, the flow can be formulated
by Darcy’s law:

K
qz—E(Vp—pg) (1.2)

where q is the flux and Vp is the pressure gradient vector. Darcy’s law is only valid
when fluid flow is laminar (Re < 1).

The Navier-Stokes (N-S) equations govern the generic motion of viscous fluids.
These equations are obtained from Newton’s second law of motion for fluids. The
N-S equations under the assumption of isotropic pressure can be written as:
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P <8a—ltl +u-Vu) = —Vp+V-[u(Vu+ (Vu) )]+ V- [A(V-w)I]+F (1.3)

where p is the fluid density, u the fluid velocity, u the dynamic viscosity, A the
bulk viscosity, F the external forces and p the fluid pressure. The left-side of Eq.
corresponds to the inertial forces, whereas the right-side of Eq. stands for
the sum of pressure forces, viscous forces, and external forces applied to the fluid.
N-S equations are solved alongside the continuity equation:

ap

ot

Eq. @ states that an increase of density in a volume element must be balanced

by a mass influx into the element. N-S and continuity equations represent the
conservation of momentum and mass, respectively. It is worth noting that N-S
equations are usually too complex to be solved in a closed form. However, special
(but common) cases are considered to simplify the previous equations. For instance,

+V.-(pu)=0 (1.4)

in case of incompressible fluids, Eq. and reduce to:
au 2
p E—Fqu =—-Vp+uvV-u+F (1.5)
V-u=0 (1.6)

1.2.2 Multiphase flow

This thesis is focus on partially saturated soils. Such soils are a typical example of
multiphase systems, which are distinguished from a single-phase system due to the
presence of interfaces separating the fluid phases.

1.2.2.1 Macroscopic behavior

1.2.2.1.1 Dynamic characteristics

In the absence of gravity, muliphase flow is governed by the relative contribution
of viscous forces and the action of surface tension. The balance between these effects
is controlled by two dimensionless numbers: the viscosity ratio M and the capillary
number Ca. Such variables are responsible for the macroscopic pattern fluids adopt
inside the porous media (Lenormand ([1990)). Capillary number (Ca) expresses the
magnitude of the viscous forces relative to the effect of surface tension. Viscosity
ratio (M) illustrates the ratio of the invading fluid viscosity to the receding one.

Ca:ﬂy M:,uinv

Y H
where U;,, is the viscosity of the invading phase, i is the viscosity of receding
phase, v is the average velocity of the receding phase, and ¥ is the surface tension
between the two fluid phases.

(1.7)




Chapter 1 - Introduction - Multiphase flow in granular porous media

Very small capillary numbers (Ca < 1073) result in a flow dominated by capillary
forces whereas high Ca imply capillary forces are negligible compared to the viscous
forces. We emphasize that most of the simulations in this thesis are performed
under quasi-static conditions, therefore, Ca ~ 0 and viscous effects can be neglected.
Moreover, Ca is typically evaluated as a macroscopic parameter and not suitable
at the pore scale. The reason is the wide range of values the velocity of fluids can
have between the macro- and the pore scale (ILu et a1.| (|199d); boekar—Niasar and|
IHassanizadehI (bOlﬂ)) Viscosity ratio is defined as favorable when M > 1, while it
is referred as unfavorable if M < 1.

y log Ca
J»?g»gﬁ:. sl
Gk T Mo WhE =
"ﬁ,:‘mmaﬁ'r}"{" = ‘.
# A T A ‘
s ol stape™
Ece IRV displacement
5 PP Viscous
(b) “r .4 fingering
- 1
T, b
-4__
-8 Capillary
ﬂ"/' fingering

FC Application
(Ca~10% M~ 17.5)

Figure 1.1: Schematic representation of different flow patterns under various vis-
cosity ratios and capillary numbers, after boekar—Niasar and Hassanizadeh| (IQOIﬂ),
originally based on lLenormand et all (|1988|).

The phase diagram (see figure @) proposed by t[lenormand et al] (|1988|) shows
several flow patterns in the absence of gravity at different Ca and M. According to
figure b, viscous fingering takes place when M << 1 and Ca is sufficiently large.
The fluid invasion front can adopt two different patterns as function of the capillary
number for favorable M. If Ca is small, the non-wetting phase is distributed within
the porous medium in form of capillary fingering (figure a). On the contrary,
large Ca lead to a stable front displacement (figure ﬁc)

1.2.2.1.2 States of fluid content

In a typical multiphase porous system (i.e., water/air/soil, in which we assume
the water is the wetting-phase and the air is the non-wetting phase), the cohesion
of the soil strongly depends on the amount of water in the system. A qualitative
classification depending on the water content was defined by Newitt and Conway—l
|Jones| (|195é); Iveson et al.| (bOOlb; |Mitarai and Nori (bOO ):

o Pendular regime: At low moisture level, solid particles are connected by
liquid bridges.
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e Funicular regime: At this state, pendular bridges around the contact points
and liquid-filled pores coexist.

o Capillary regime: As the liquid content increases, several clusters are formed
after the coalescence of pendular bridges. Most of the pores are filled with
liquid in the capillary regime. The tensile strength of a system in the capillary
state is three times larger than the pendular regime (Cho et al) (1989)).

e Slurry regime: The liquid pressure is equal or higher than the air pressure.
The cohesive action vanishes in this state.

a) ; % b) g %
Figure 1.2: Schematic representation of the different states of liquid in a soil: a) Dry

material, b) pendular regime, c) funicular regime, d) capillary regime. Image taken
from Scholtes (2008).

C

A better understanding of the liquid structures and the capillary cohesion is
crucial to predict landslides or avalanches (Halsey and Leving (1998)). Furthermore,
practical applications in wet agglomerates could benefit from a better insight into
the behavior of partially saturated systems ([Turton (2008)). In this thesis, liquid
morphology is studied throughout pendular, funicular and capillary regimes.

1.2.2.2 Influence of the microscopic properties on the macroscopic be-
havior of soils

The global behavior of a soil strongly depends on the interparticle interactions at
the grain scale. Indeed, the macrocopic phenomena of dry, saturated and unsat-
urated granular media have their origin at the local scale. For this reason, it is
common to define macroscopic variables in terms of variables at the microscopic
scale, establishing a link between the two scales.

In this section we introduce two microscopic parameters that play a critical role
in the dynamics of interface displacement in porous media.

1.2.2.2.1 Wettability

According to Bear ([1972), miscible and immiscible fluid displacements are possi-
ble in deformable porous media. Miscible displacements refer to fluids in which there
are concentration gradients of a dispersed solute, whereas immiscible displacements
are the ones in which simultaneous flow of two or more immiscible fluids occur in
the porous medium (Martin (1962); Al-Gharbi (2004)). In this work, we focus on
immiscible two-phase flow in a porous medium. Additionally, immiscible multiphase
flows may not be in a steady-state and change the saturation of the system with
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respect to the rest of the fluids with time. The phases of the immiscible fluids are
separated by a fluid-fluid interface. The tension acting on the interface between the
two fluids relates the surface tension of each fluid with the solid phase through the
following equation (see figure [1.3):

fluid 2

Figure 1.3: Schematic representation of a fluid drop on a solid surface. Contact
angle and surface tensions are depicted.

Y"® —y" = ycosO (1.8)

where 6 is the contact angle, Y* is the interfacial tension between the solid
phase and the non-wetting phase, y"* is the surface tension between the solid and
the wetting phases, and ¥ is the surface tension between the wetting and the non-
wetting phases.

The contact angle is related to the wettability of a solid by a fluid. Moreover,
wettability has a strong influence on the fluid distributions in the porous medium.
Following the scheme displayed in figure B, fluid 1 is defined as wetting phase when
6 < m/2. Otherwise, if (6 > m/2), fluid 1 is referred as non-wetting phase.

The process known as drainage occurs when the non-wetting phase displaces the
wetting phase. Imbibition mechanism results after reversing the drainage process,
thus, causing the displacement of the non-wetting phase by the wetting phase.

1.2.2.2.2 Capillary pressure

Capillary pressure plays a key role in the description of multiphase flow in porous
media. Such flows involve immiscible fluids separated by a common fluid-fluid in-
terface. The thickness of this interface is typically of the nanometer-order. At
equilibrium, the curvature of the interface is related to the difference between the
non-wetting phase pressure (p™) and the wetting phase pressure (p"):

1 1
— W W T 1.9

where p, is the pressure differential (also referred as microscopic capillary pres-
sure), 7 is the surface tension between the two immiscible fluids and R} and R,
correspond to the principal radii of curvature.
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Eq. is valid locally for a meniscus of general shape. By assuming a spherical
meniscus of radius ry (for instance, considering the pore radius is equivalent to the
radius of the largest inscribed sphere that can be enclosed within the pore) Eq.
becomes:

2
pe==r (1.10)
Is

In the existing literature (Scheidegger et al| (1958); De la Cruz and Spanos
(1983)), the equilibrium relation for microscopic capillary pressure is extended to
define the macroscopic capillary pressure as follows:

pe =D~ (L.11)

where p™ and p" are the averaged non-wetting and wetting phase pressures over
the representative elementary volume of a porous medium.

Despite the fact that Eq @ is frequently used in quasi-static and dynamic flow,
Hassanizadeh and Gray| (1993) suggests that capillary pressure should be evaluated
on the interface, thus, averaged only over the fluid-fluid interface and not over the
volume. As a result, Hassanizadeh and Gray (1993) propose an alternative approach
to determine the macro-scale capillary pressure. They found that capillary pressure
is related to the change in free energy of the two fluid phases and all three interfaces
that results into a change in saturation. Therefore, capillary pressure is determined
as a function of the specific area of the fluid-fluid interface per unit volume (a™)
and the wetting phase saturation (S,,):

pe=f(@",Sw) (1.12)

1.2.2.3 Mechanics of partially saturated soils

For a long time, the difficulties encountered in analyzing the effects of partially
saturated granular media prevented a complete study of soil mechanics beyond dry
and fully saturated soils.

Terzaghi was the first author to investigate the mechanical response of saturated
deformable porous media. [Terzaghi (1936) introduced the concept of effective stress
stating that effective constraint (o7;) is a function of the total stress (o;;) and the

pore water pressure (p")”:

;=0 —p" (1.13)

After some vears, the previous concept was extended to a more general case
by Bishop and Blighti (1963) . They proposed the following expression suitable for
partially saturated soils:

o} = (0ij— ™)+ x8(p™ — p") = (61 — P™) + ABD: (1.14)

where p™ is the pressure of the air and xp is the Bishop parameter, which is
related to the degree of saturation. yp is 1 for a fully saturated material and 0 for
a dry soil.
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Fredlund et al] (1978) proposed to model the behavior of partially saturated soils
through two independent constitutive variables (o;; and p"). Accordingly, Alonso
et al) (1990) introduced one of the first elastoplastic models capable of describing the
mechanical behavior of unsaturated soils. The model is commonly termed Barcelona
Basic Model (BBM) and applies for slightly or moderately expansive soils, such as
unsaturated sands, silts, and clays of low plasticity.

q

Figure 1.4: Three-dimensional representation of the yield surface in the BBM (after
Alonso et al| (1990)).

BBM is based on the modified Cam clay model (MCC), as a matter of fact,
the three-dimensional yield surface illustrated in ﬁgure becomes the MCC ellipse
under saturated conditions (i.e., p. =0), where p is the mean stress and ¢ represents
the deviatoric stress.

Due to the simple formulation, BBM is easy to implement in numerical analy-
sis and rapidly became a popular model to describe many mechanical features of
unsaturated soils, such as wetting-induced swelling or collapse (Gens et al| (2006)).

Numerous models have been developed inspired by BBM to handle stress—strain
relations (Gens and Alonso (1992); Kohgo et al) (1993); Cui et al) (1996)). More
recent models incorporate suction-degree of saturation hysteresis into stress—strain
relationships (Gallipoli et al| (2003); Sheng et al) (2004); Thu et al) (2007)).

1.3 Numerical Models for multiphase flow - Lit-
erature review

The behavior of partially saturated granular media can be studied from an exper-
imental point or view. Due to high cost of some experimental devices and the
impossibility to measure some mechanical properties at certain scales, numerical
methods arise as an interesting alternative to obtain some insights into the physical
mechanisms of the multiphase flow within the porous media. The recent advances
in computer technology have created new opportunities to investigate the field of
multiphase flow. However, the complex geometry and non-linearity of the problems
still hinder the analysis without crude approximations. Accordingly, macroscopic
approaches are based on geometrical simplifications and transport properties are
taken from laboratory experiments. The main difficulty encountered by researchers
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to model multiphase flow from a global perspective is related to the local fluctua-
tions induced by the microscopic interactions between the fluids. Such interactions
modify the boundary conditions of the other fluid altering the global response. The
hydro-mechanical coupling gets even more complex to study when we deal with
deformable solid structures.

In contrast to the methods that adopt a macroscopic perspective, some works
(Kharaghani et al; (2012); Yuan and Chareyrg (2017); Sweijen et al| (2018)) opted
for a micro-scale approach. Such models account for the coupling between fluid flow
and deformation of the solid phase to investigate the hydro-mechanical behavior at
the pore scale. The following subsections provide a literature review of previous
works that tackled similar phenomena from different scales.

1.3.1 Scale of observation

Multiphase flow through granular media can be described following a macroscopic
continuum approach. The macro-scale continuum based models usually employ
empirical relationships or mathematical expressions to evaluate the global behavior.
However, the discontinuous and heterogeneous nature of granular materials hinders
the macroscopic study of this type of materials.

The need for a greater understanding of the underlying fundamentals and the
recent advances of computational fluid dynamics (CFD) enhanced the modeling at a
very small scale. Several fully resolved methods are found at this level. For instance,
the smoothed particle hydro-dynamics (SPH) has been employed to get microscopic
insight of the fluid flow in porous media (Jiang et al| (20074)). Another popular
model is the lattice Boltzmann method (LBM), based upon kinetic formulations of
the Boltzmann equation.

Finally, the mesocopic models act like a bridge between the micro- and macro-
scale. The discrete nature of granular media suggests that it is reasonable to charac-
terize the global behavior in terms of properties obtained at the pore- or grain-scale
instead of relying on mathematical forms based on parameters identified a posteriori
from experimental tests. Therefore, numerical modeling based on discrete elements
is seen as a promising tool to study the influence of local phenomena on the macro-
scopic behavior of granular materials.

1.3.2 Macroscopic continuum approach

Macro-scale models are based on continuum descriptions of flow. In particular, the
momentum and energy balance are considered in the integral form over finite volumes
to reproduce two-phase flow problems. Mechanical variables such as fluid velocity or
pressure appear as local mean variables, which are obtained by averaging over large
regions compared to the particle spacing but small compared with the whole system.
The continuum models based on the local average describe the motion of the fluid
and particles, however, the physical quantities of such models appear as formal terms
that must be determined empirically through phenomenological laws (Anderson and
Jackson ([1967); Catalano (2012)). In addition to that, the macroscopic nature of the
model results into averaged hydro-mechanical properties that hinder the analysis at
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the local scale (Catalano et al! (2014)).

According to Joekar-Niasar and Hassanizadeli (2012); Yuan (2016), the following
governing equations must be solved to have a continuum description of a two-phase
flow. Besides ignoring gravity, the equations below are restricted to a rigid solid
matrix and incompressible immiscible fluids:

Mass conservation of fluid phase:

0——+V-u°=0, o=nww (1.15)

where @ is the porosity, Sg the saturation of phase o, u° the velocity of phase
o, and w and nw refer to the wetting and non-wetting phases.

The velocity of the fluid phase (u®) is the local velocity derived from Darcy’s
law:

1 =
u = —FkGK(VpG), C =nw,w (1.16)

where u° = stands for the viscosity of phase o, k is the relative permeability
of phase o, K is the intrinsic permeability tensor and p© is the pressure of phase G.
Moreover, the pore volume conservation is ensured by:

S+ Spy =1 (1.17)

Finally, Buckley-Leverett’s assumption is taken into account:

dp.

nw w
= —_ = S
Pc=P p f(Sw), ds,,

=0 (1.18)

1.3.3 Pore-Network models

Pore-network models have been widely used to describe the motion of fluids through
porous media (Fatt et al! (1956); Fenwick et al) (1998)). The computation time of
pore-network models is significantly reduced after the idealization of the geometry
(Oren and Pinczewski (1995); Hilpert et al| (2000)). Thus, pore-network models
are frequently employed to simulate large domains that are hardly handleable with
micro-continuum models. Pore-network models manage to reduce the high complex-
ity of porous morphology by a discretization of the pore space. However, simplifica-
tions taken into the pore network models lead to a detriment of accuracy and make
the predictions less credible. Despite the idealization of the geometry, some studies
based on the pore-network approach (Blunt (2001)) have been proven successful to
simulate multiphase flow and obtain constitutive properties of unsaturated media
(such as the hysteresis of saturation curves, the study of the permeability, the effects
of wettability on the pore walls or the mass transfer between fluids).

The network topology is described by two characteristics (Joekar-Niasar and
Hassanizadeh (2012)): the spatial location of the pore bodies and the connectivity of
pore elements. Four different network topologies have been used in previous studies:
structured regular (the most common network), structured irregular (Koplik and
Lasseter (11985); Mogensen and Stenby (1998)), unstructured regular (King (1987);

10
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Blunt and King ([1991)) and unstructured irregular. Early network models were
based on square (2D) or cubic (3D) lattices with a constant coordination number of
four in 2D or six in 3D (Chandler et al. (1982); [oannidis and Chatzis (1993)). Recent
works (Dong and Blunt| (2009); Jivkov et al| (2013)) account for larger coordination
numbers by considering connectivity changes within the network.

In addition to the topology, the pore geometry has a strong influence on the flow
behavior. The shape of the pore bodies can be assumed as cubical (Joekar-Niasar
et al. (2010a); Raoof and Hassanizadeh (2013)) or spherical (Koplik and Lasseter
(1985)) nodes. Concerning the pore throats, the shape has been approached using
cylinders with different cross-sectional shapes (circular (Dias and Payatakes (1986);
Koplik and Lasseter (1985)), square (Singh and Mohanty (2003)). triangular Al-
Gharbi and Blunt (2005)), or with angular cross sections (Van Dijke and Sorbie
(2006)) to reproduce the phenomena of wetting phase flow in the corner.

Nowadays, it is possible to describe the complex geometry of the pore space more
accurately using advanced solutions that include pore throat roughness ([Tsakiroglou
and Fleury (1999); Tsakiroglou and Payatakes (2000)) and detailed cross-sections
extracted from high-resolution 3-dimensional images using X-ray microtomography
(Al-Raoush and Willson (2005)). Mapping real granular assemblies yields to irregu-
lar lattices (Piri and Blunt (2005); Xiong et al| (2016)). Consequently, reconstruction
algorithms are an essential aspect to build the pore-network models. Such algorithms
include the multi-orientation scanning method (Zhao et al. (1994)). medial axis al-
gorithms (Lindquist et al) (1996); Sheppard et al| (2005); Prodanovi¢ et al) (2006):
Jiang et al| (2007b)). Delaunay/Voronoi diagram-based methods (Bryant and Blunt
(1992); Pren and Bakkq (2003)). or the maximal ball algorithms Silin et al| (2003);
Silin and Patzek (2006); Al-Kharusi and Blunt (2007))).

The majority of pore-network models are quasi-static and the pore-scale displace-
ments occur when a threshold capillary pressure is exceeded. More details about
the motion of fluids in a pore-network are further explained in section [1.3.5.

1.3.4 Hydro-mechanical studies using the Discrete Element
Method

Several approaches have been developed in order to reproduce the physics of mul-
tiphase flow through porous media. Fluid flow may have a strong impact on the
mechanical behavior of saturated and partially saturated granular systems. Indeed,
fluid flowing through porous media exerts forces on the solid grains altering the solid
interactions. Additionally, changes in the solid matrix modify the flow field within
the granular assembly.

The mechanical behavior of the granular material is frequently based on the
popular Discrete Element Method (DEM) introduced by Cundall and Strack (11979).
Even though the DEM was conceived to deal with dry granular materials, some
works have extended the model to saturated and partially saturated granular media
including the fluid effects. Three different coupled DEM-fluid approaches can be
adopted depending on the scale:
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1.3.4.1 Continuum-based models

The continuum approach (also termed Macroscopic continuum approach) is fre-
quently employed to reproduce the motion of full saturated granular soils. In cou-
pled continuum-discrete models, a complete description of the system is possible by
solving the linear and angular momentum for each solid particle and the Navier—
Stokes equations to mimic the motion of the interstitial fluid. Some difficulties arise
when multiphase flow is considered. These models incorporate the local fluctuations
induced by the microscopic interactions between the fluids ensuring mass conser-
vation. As explained in section [1.3.2, macroscopic continuum approaches require
empirical laws and information about constitutive properties. Plus, these methods
rely on continuum formulations and _coarse-grid meshing for the fluid part (Kafui
et al, (2002); Zeghal and El Shamy| (2004)).

According to Catalang (2012), continuum-based models are incapable to describe
the single particle behavior, such limitation may add some difficulties in problems in
which heterogeneity plays an important role in the global behavior (shear banding
in cohesionless materials, microcracks in cohesive materials, etc). Although this
disadvantage constrains the applicability of the model, continuum-discrete couplings
perform numerical simulations in reasonable computation times.

1.3.4.2 Micro-scale continuum models

In recent years, several methods have appeared to predict the flow in porous media.
Lattice Boltzmann method (LBM) (Pan et al| (2004); Sukop et al. (2008)), volume
of fluid (VOF) method (Raeini et al| (2012)) or Lagrangian mesh-free methods ([Tar-
takovsky et al) (2007)) are examples of micro-scale continuum models employed in
the analysis of multiphase flow through porous media. Despite the high compu-
tational cost, these models have been proven successful to reproduce the physical
phenomena at different scales. Besides, the nature of these models make them suit-
able for complex geometries and benefit from computing parallelism.

Typically, micro-scale continuum models take into account the fluid-grain inter-
actions by a no-slip condition at the fluid—solid interface. We also emphasize that
most of the current coupled DEM-fluid models based on fully resolved methods are
limited to 2D due to the high computational cost when large granular assemblies are
considered, especially with multiphase flows. 2D DEM-LBM coupling is typically
used to investigate the behavior of a soil bed subject to a localized injected flow
(Cui et al] (2012, 2014)). Regarding the fluid mechanical interactions in full three-
dimensional systems, Han and Cundall (2013); Delenne et al| (2011), among others,
have developed several 3D DEM-LBM couplings. The Smoothed Particle Hydro-
dynamics (SPH) has also been coupled with DEM as a promising tool to simulate
solid-liquid mixtures as shown by Potapov et al| (2001); LLi et al| (2007). How-
ever, computations using SPH are usually slower compared with other grid-based
models (Crespo (2008)). Furthermore, SPH presents some difficulties to apply the
macroscopic viscosity (Li (2013)) and reproduce turbulent flows.

12
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1.3.4.3 Pore-Network approach

In order to have an acceptable computational cost, flow through porous media can
be described by means of Pore-Network (PN) models. The idealization of the pore
space as a network of connected pores and throats leads to a reduced number of
unknowns compared to micro-scale models. Up to now, very few works have been
devoted to couple PN models with mechanical models. For single-phase flow, [Tarumi
Land Hakuno ([1983) was the first attempt to incorporate the fluid interaction ef-
fects into the DEM. Their technique modified the micromechanical DEM to include
Darcy’s law that takes into account the pore water pressure. Following this ap-
proach, |Nakase et a1.| (|1999) proposed an alternative strategy where pore pressure
was considered in square-cell elements instead of at the pore level. More recently,
|Jing et a1.| (200]]) analyzed the mechanical behavior of the coupled stress-deformation
and fluid flow interaction in rock fracture. Despite the successful results, simulations
were restricted to 2D disk assemblies. Extending the approach to 3D spheres pack-
ing was a key point to reproduce realistic simulations and predict the macroscopic
properties.

Figure 1.5: a) Regular triangulation and his dual Voronoi’s graph in two dimensions
and in three dimensions. b) Elementary fluid domain (tetrahedron) in a triangulated
sphere assembly. Images taken from bhareyre et alJ (IZOIﬂ); lScholtés et alJ (b015|)

A three-dimensional pore-scale approach worth highlighting is the pore-scale fi-
nite volume (PFV) formulation of the viscous flow of an incompressible pore fluid.
The technique proposed by |Chareyre et a1.| (201ﬂ) is based on a decomposition of
the pore space into pore elements and local conductances. The discretization of the
pore space is performed by Regular Triangulations and their dual Voronoi graphs
applied to the sphere packings as illustrated in figure [l.5a. The implementation of
the PFV-DEM has provided successful results in one-phase flow problems (
|lan0 et a1.| (bOMl); Scholtes et al. (2015|); |Montellé et alJ ( 016|)). Even though the
PFV-DEM is capable to study the hydro-mechanical behavior of partially saturated
granular materials, its applicability is limited to the saturated regime. Therefore,
the PFV-DEM was extended into a model able to reproduce two-phase fluid flows.
Such approach is termed "Two-phase Pore-scale Finite Volume - Discrete Element
Method” (2PFV-DEM) and was developed by Yuan et al.| (201d). Recent research
(bweijen et a1.| (2017h); |Yuan and Chareyre (|2017|)) shows that two-phase fluid prob-
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lems are effectively solved using the 2PFV-DEM (see the example of figure @)

a)P'=7.25 $,=0.96 b)P=132 $,=0.18

Figure 1.6: Process of drainage performed with the 2PFV-DEM. Brown spherical
bodies are the solid phase, blue represents the wetting phase and grey is the non
wetting phase. Non-wetting phase invades the assembly from top. The wetting phase
is trapped in the sample in form of clusters after the drainage. Image taken from

hnd Chareyrel (|2017|)

The governing equations Eq. - proposed in Buckley-Leverett theory
are formulated to describe the fluid dynamics at the macro-scale, thus, not suitable

at the pore-scale. A new set of equations is proposed by boekar—Niasar and Has«l
Eanizadeh| (|2012) adapting the previous governing equations and taking into account
the following assumptions:

e Fluids are immiscible and incompressible.
» Rigid solid structure.

o Negligible inertial effects (low Reynolds numbers) in the pore throats.

1.3.4.3.1 Fluid phase

Let’s consider a pore unit i. The continuity equation for an incompressible fluid
is written as:

Vi +) 4ij=0 (1.19)
P

where V; is the volume of the pore body and g;; are the fluid fluxes from the
tetrahedron i to the adjacent tetrahedra j; to j4. Fluxes and pressure gradients are
assumed to have linear relation:

A..
qij :gijﬁ (1.20)

where A;; is the pressure drop between two adjacent bodies and it is related to the
capillary pressure and the fluid pressures at the neighboring pore bodies, L;; is the
distance between pores i and j, and g;; is related to the hydraulic conductance across
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the pore throat ij. The following definition has been proposed with satisfactory
results for g;; in the case of a saturated throat (Tong et al| (2012)):

gij=—522u (1.21)

where S{j is the area occupied by the fluid in facet and Rf’j is the hydraulic radius
(defined as the ratio between the volume occupied by the fluid and the area of
solid-fluid interface).

Based on the possible fluid configurations in two neighboring pore bodies and a
pore throat (Koplik and Lasseter (1985)), A;; can be expressed as:

Aij = p" =P} 457 (Pe,ij— pe,i) = 8} (Peij— Pe,j) (1.22)

where, p.; and p. ; are the capillary pressures of elements i and j, respectively,
and p.;; is the entry capillary pressure of pore throat ij. Thus, the volumetric flux
(Eq. ) is reformulated as:

(P! — p’}W + 57 (Pe,ij = Pei) — s;y(PC,ij —Pec,j))

qgij = 8ij I (1.23)

1.3.4.3.2 Solid phase

The total force Fi exerted on a solid particle k by two fluid phases includes the
contribution of the pressure considering both wetting and non-wetting phases (Ff )
and the effect of surface tension at the solid-wetting-nonwetting interface F.

F/ =F+F, (1.24)

1.3.5 Local rules for pore-scale models

In order to complete the pore-scale approach to simulate multiphase flow through
the porous system, some local rules need to be incorporated into the model. These
rules are considered for each pore to have a proper understanding of the phenomena
at the pore scale.

1.3.5.1 Entry capillary pressure

Let’s assume a pore body filled with the wetting phase. The non-wetting phase will
invade the body through the pore throat when the local capillary pressure is larger
than the entry capillary pressure of that pore throat. Several approaches can be con-
sidered to compute the entry capillary pressure. The most common approximations
are the Haines incircle method (Sweijen et al! (2016)) and the Mayer-Stowe-Princen
(MS-P) method (Joekar-Niasar et al| (2010h); Yuan et al] (2016)). Haines incir-
cle approximation (Haineg (1930)), "Incircle method” hereinafter, proposes that the
curvature of the interface passing through the pore throat can be assumed as a
sphere in contact with the spherical grains defining the pore throat. On the other
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hand, the MS-P method is based on a force balance for contact lines during the
invasion. MS-P model predicts the capillary pressure of the arc meniscus of a fluid
droplet of infinite length inside a cylindrical tube (Princen (1969): Mayer and Stowe
(1965): Ma et al) (1996)). The force balance proposed by (Mayer and Stowd, [1965;
Princen, 1969) can be written as:

YF=F'+F =0 (1.25)

where F? is the capillary force acting on the area of wetting - nonwetting interface
and F' is the contribution of the surface tension acting on the contact lines between
different phases.

a) C b) —

pore body

A

Figure 1.7: Pore geometry. (a) A pore defined by a tetrahedral element of the finite
volume decomposition. (b) Definition of a pore throat geometry. r¢ is the radius of the
meniscus; Ly, is the length of contact line between non-wetting and wetting phases; Ly
is the length of contact line between non-wetting and solid phases. Lo = Y (Luw~+Lys),
in which L¢// is termed effective entry pore throat perimeter. A%// is the planar project
area of non-wetting - wetting interface, and is termed effective entry pore throat area.
Image taken from [Yuan and Chareyre (2017).

The Regular Triangulation of the pore space leads to a pore subset surrounded
by four solid spheres whose centers are the vertices of the corresponding tetrahedron
as illustrated in figure @a . Likewise, the shape of the pore throat is defined by
each tetrahedral facet (see @b)) Furthermore, figure @b displays the parts occu-
pied by the different phases and interfaces. As the capillary pressure is increased,
the interfaces are displaced pushing the wetting phase towards the corners of the
throat. When the capillary pressure achieves the entry capillary pressure value, the
longitudinal curvature of the fluid-fluid interface is assumed to be zero as suggested
by (Joekar-Niasar et al., 2010b). thus, Rj — +eo in Eq.@. Following the assump-
tion proposed by Yuan and Chareyrg (2017), both fluid phase pressures are uniform

1

around the throat, hence, the transversal cross-sectional curvature — remains un-
2

changed for the different interfaces. Therefore, Eq @ is rewritten in the following

form to obtain the entry capillary pressure:

eV _ Y
Pe= R, = e (1.26)
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On the one hand, the capillary action can be determined by projecting the cap-
illary pressure on the pore throat section,

F? =A% p, (1.27)

where A°/7 is the area of the non-wetting phase in the pore throat (see figure @b)
On the other hand, the effect of the surface tension along the interface lines is
defined as:

Ft = anY"’ Lnsyns - Lns'}’ws (1'28)

where L, and L, are the total lengths of fluid-fluid interfaces and non-wetting
- solid interfaces respectively. Additionally, interfacial tensions, y*, y** and y are
related to the contact angle 6 according to Young’s equation:

Y* = ycos @ + y** (1.29)
Under perfectly wetting conditions, (6 = 07?), Eq. can be written as:

F' = (Lyyw+Lys)Y (1.30)

Both Eq. and can be expressed in terms of r¢, thus, Eq. m is

numerically solved to determine the entry capillary radius r¢. Finally, the entry
capillary pressure is obtained using Eq [1.26. For more details, the reader can refer
to Yuan and Chareyrd (}2017|)

Besides the MS-P and Incircle method, direct simulations using the LBM will be
used in this thesis to determine the entry capillary pressure for each pore throat.

22
~—

b) ¢) d) e) f)

Figure 1.8: Schematic representation of piston-like displacement after a LBM simu-
lation.

1.3.5.2 Interface displacement

The movement of the fluid-fluid interface is possible through snap-off and piston-
like displacements. These two mechanisms are well understood, however, previous
literature Prodanovié¢ and Bryant] (l2006); Sweijen et al, ( 2016]); lGladkikh and Bryantl
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() shows that there is still room for improvement in predicting drainage and
imbibition in porous media. When the non-wetting phase invades the pore space
filled with the wetting phase sweeping the receding fluid in the element (see figure

), the interface displacement is reversible and termed piston-like motion. On the
contrary, when the interface menisci exceeds the limits of stability, the configuration
becomes unstable and the non-wetting becomes disconnected as displayed in figure

(lYu and Wardlaw ( 198d))

Snap-off occurs more frequently with low capillary numbers, whereas piston-like
movement becomes dominant as the capillary number is increased. Furthermore, ac-
cording to lYu and Wardlaw (|1986); Blunt et al. (199j), snap-off can only occur under
unstable conditions when the piston-like motion is not possible due to topological
reasons.

a) d)

Figure 1.9: Schematic representation of snap-off sequence after a LBM simulation.

Both figures @ and @ illustrate that a capillary pressure increment results into
very different phase configurations depending on the capillary number. Additionally,
the two mechanisms of fluid motion also reveal discrepancies in terms of capillary
pressure - saturation curves as displayed in figure [l.10. In both scenarios, capillary
pressure reaches a constant value which corresponds to the entry capillary pressure
for a cylindrical pore with a circular cross section (see points "a” in figures [L.§,
and blue and red points ”a” in [L.10)). The meniscus of the interface increases as the
non-wetting phase penetrates the pore body (see points ”"b” in figures [L.§ 1.9 and

blue and red points ”"b” in [L.1(). This situation leads to a drastic pressure drop.
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In the piston-like displacement case, the non-wetting phase fully occupies the pore
body (configuration in between points "d” and ”e” in figure @), at this moment,
capillary pressure reaches a minimum value in figure [L.10. Capillary pressure rapidly
builds up until reaching the entry capillary pressure, then, the fluid-fluid interface
starts invading the bottom pore throat (see point “e” in figures and red point "e”
in [1.10). On the other hand, the case with relatively low capillary number leads into
an unstable interface that gets detached from the rest of the non-wetting phase (see
points ”d” and ”e” in figure and blue points "d” and "e” in [1.1(]). The new fluid
configuration depicted in figure [1.9e shows that the non-wetting phase has receded
back to the top pore throat, thus, the meniscus curvature becomes, once again, the
one from the cylindrical pore throat. Consequently, the capillary pressure suddenly
increases reaching the entry capillary pressure (see point “e” in figure and blue
point “e” in Eg; The snap-off phenomenon is repeated several times (see points
"h” and "i” in figure and blue points "h” and ”i” in ) before the pore body
and pore throats are completely filled with the non-wetting phase.

7 —— Snap-off
—— Piston

v [-

Figure 1.10: Saturation curve during snap-off and piston-like displacement after a
LBM simulation. Points indicated in the image correspond to the snapshots illus-
trated in figure and [1.9. Capillary pressure is evaluated as the difference between
the inlet (top of the non-wetting phase) and outlet (bottom of the wetting phase)
pressures. Viscous effects are subtractezd slg no pressure loss is depicted in the figure.

Pclicyl

Dimensionless capillary pressure p; = and distance D* = are considered.

eyl
Ry is the radius of the pore throat and y the height of the non-wetting front.

1.3.6 Microscale approach

Even though models based on continuum theory are excellent to mimic the flow
in a homogeneous medium, the mechanisms observed at the local scale are crucial
to understand the fundamentals of wet granular materials, especially in complex
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geometries or very heterogeneous media. Several models have been developed at the
micro-scale to reproduce such physical phenomena

In addition to the ability to simulate multiphase flow through complex geome-
tries, fully resolved methods do not rely on empirical relations. Moreover, these
methods are easy to implement and parallelize. Conversely, high computational
cost is associated with fully resolved methods. Consequently, realistic simulations
are restricted to small granular assemblies in computer clusters.

1.3.6.1 Lattice Boltzmann Method

Shan and Chenl (1993); Swift et al| (1995), among others, showed that the lattice
Boltzmann Method (LBM) is a powerful model capable to reproduce the motion of
multiphase flow. According to Boltzmann equation, a fluid is composed by many
particles. In order to avoid unaffordable calculations, particles are treated within a
probabilistic approach. In other words, Boltzmann equation uses particle probability
distribution functions f(x,v,t) instead of accounting for every particle’s position
and velocity. The probability density function describes the probability of finding a
particle at position x, at time ¢ with a certain velocity v. In the lattice Boltzmann
method, both space and time are discretized into a certain number of velocity vectors.
Instead of using a discrete form of macroscopic continuum equations (i.e., mass,
momentum, and energy), the discrete Boltzmann equation is solved to simulate the
fluid flow in two steps: the streaming step, in which particles move from node to
node on a lattice and a collision step in which particles are redistributed at each
node towards the equilibrium.

Several LBM models have been developed to describe the interfacial dynamics

and simulate multiphase flows in porous media. The following methods are briefly
described:

1.3.6.1.1 Color gradient method

Gunstensen et al| (1991) introduced the color gradient model inspired by the
Lattice Gas Cellular Automata. Two distribution functions are considered in this
model to reproduce the motion of two fluids. The particles of one component are
red-colored and the other are blue-colored. Surface tension is incorporated in the
model by adding an extra collision term in the model. Furthermore, a recoloring
step is introduced in the model to avoid diffusion and ensure the immiscibility of
the fluids. [Té6lke et al) (2006); Ahrenholz et al| (2008) improved the color gradient
model using a multiple relaxation time (MRT) collision scheme. The new features
increased the numerical stability and allowed the simulation of multiphase systems
of higher viscosity ratios. In addition to that, the surface tension can be tuned
independently of the viscosity ratio.

1.3.6.1.2 Shan-Chen model

In the Shan and Chen (SC) model, an interaction force between components (or
phases) is introduced to describe multiphase flows. This force modifies the colli-
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sion operator through an equilibrium velocity producing a repulsive effect between
the phases. Additionally, the forcing term enhances a consistent treatment of the
non-ideal non-monotonic equation of state (EOS). The Shan and Chen model can
describe multiphase flows using a single-component (SCMP) (Shan and Chen (1993))
or a multi-component (MCMP) scheme (Shan and Doolen (1995)). In the latter one,
different distribution functions are assigned to each component. The simplicity of
the Shan—Chen model explain why this is the most popular method to simulate mul-
tiphase flow. Despite the encouraging results reported in the field of porous media
(Pan et al, (2004); Ahrenholz et al) (2008)), SC model has several drawbacks that re-
stricts its applicability. The main limitation of the Shan-Chen model is the inability
to adjust surface tension, density ratio and viscosity ratio independently. Indeed,
some parameters must be determined through numerical experiments (Ahrenholz
et al| (2008); Huang et al| (2015)). Another problem frequently reported (Wagner
(2003)) in the Shan-Chen models are the spurious currents (unphysical velocities
near the interfaces). Recent works (Shan (2006)) have successfully reduced the spu-
rious currents adopting multirange pseudopotential forms.

1.3.6.1.3 Free-energy method

The free-energy (FE) model was originally introduced by Swift et al| (1996). FE
model includes the phase effects into the collision process through a thermodynamic
equilibrium function that incoporates non-ideal pressure tensor terms. Therefore,
surface tension is easily adjusted compared to other multiphase models. Unlike the
Shan-Chen model, the local momentum conservation is satisfied in the FE model
(Gupta and Kumar (2008)). Efforts have been devoted to handle immscible fluids
with large density ratios (Inamuro et al] (2004)). Unfortunately, the original FE
model is not Galilean invariant for the viscous terms in the Navier-Stokes equa-
tions (Lug (1998)). Further improvement was incorporated into FE by Holdych
et al] (1998) redefining the stress tensor, consequently, the Galilean invariance was
recovered to O(u?) (Huang et al| (2015)).

1.3.6.1.4 Comparison between the multiphase LBM models

We briefly compare the advantages and drawbacks of multiphase LBM including
the color gradient, the Shan—-Chen and the free energy model. The comparison in
table [L.1] is obtained from the analysis of Yang and Boek (2013); Huang et al| (2015)
and simulations performed with the fluid solver Palabos (Latt (2009)). It is worth
noting that values in table are rather orientative. Indeed, they show the capabil-
ity of each method in a certain aspect, however, it is important to keep in mind that
a feature achieved after the modification of the original model may have a reverse
effect on other properties. For instance, Zheng et al| (2006) proposed a Galilean-
invariant free-energy lattice Boltzmann model that is much simpler, conversely, the
model is only valid for a density ratio of 1.

Without going into excessive detail, the comparisons from previous literature
(Hou et al| (1997); Yang and Boek (2013); Huang et al| (2015)) remark the efficiency
and simplicity of the Shan-Chen models. In contrast, the large thickness of the
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diffusive interface may reduce the accuracy of the results in coarse grids compared
to the rest of the models. Another important feature associated to the Shan-Chen
model is the ability to handle high-density ratio systems.

In the color gradient and the Shan-Chen model, the desired contact angle can be
obtained by tuning the density of the solid nodes. On the contrary, the free-energy
model relies on density gradients on the solid boundaries to adjust the wetting
condition (Liu et al| (2013)). Furthermore, the surface tension in the free-energy
and color gradient models can be adjusted much more easily than the Shan-Chen
model.

Color
SCMP MCMP eradient Free-energy
Max density 10° 1000 10 10
ratio
Max viscosity
ratio i g 20 20
Interface
thickness 8 lu 8 lu 5 lu 3 lu
- Easy to Basy to Basy to More difficult
Wettability adjust adjust adjust to adjust
. Very Very Not so Not so
Efficiency efficient efficient efficient efficient
Inherent . . .
parallelism High Low High High

Table 1.1: Features, strengths and limitations of different multiphase models. Infor-
mation taken from [Yang and Boek (2013); Huang et al| (2015) and personal numerical
simulations.

1.3.6.2 Volume of fluid

Volume of fluid (VOF') method is an Eulerian method developed by Hirt and Nichols
(1981). In the VOF method, the interface is tracked using a scalar function that
ranges from 0 (fluid 1) to 1 (fluid 2). The scalar indicator represents the volume
fraction between the two fluids. Navier-Stokes equations are solved, alongside the
transport equation for the volume fraction to reproduce the motion of the fluids.
Advantages of VOF method are its simplicity and the conservation of mass during
the interface displacement. On the contrary, the difficulty to determine accurate
interface curvatures from the volume fraction function is the main drawback of the
model (Balcdzar et al) (2016)). Several works (Raeini et al| (2012); Balcazar et al.
(2016)) have coupled the VOF method with other flow solvers to simulate two-phase
flows.
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1.3.6.3 Smoothed particle hydrodynamics method

The smoothed particle hydrodynamics (SPH) is a mesh-free Lagrangian discretiza-
tion method originally introduced by Lucy (1977) for astrophysical problems. The
fluid is treated as a set of discrete particles in the SPH model. Each series of par-
ticles has inherent information. Based on these particles, SPH approximates the
numerical solutions of the equations of fluid dynamics using kernel and particle ap-
proximations (Wang et al) (2016)). The local physical properties (density, velocity,
etc) are determined for every group of particles following the governing equations.
Consequently, the fluid displacement is represented by the motion of particles. In
order to reproduce realistic simulations, SPH requires large numbers of particles that
significantly increase the computational cost. Despite this disadvantage, SPH is able
to simulate fluid flow through complex solid boundaries and capture the interface
with excellent accuracy. Such features are typically needed in multiphase flow sys-
tems. Indeed, extensive literature (Monaghan and Kocharyan (1995); Tartakovsky:
and Meakin (2005); Monaghan (2005)) proves the robustness of SPH for modeling
two-phase flows.

1.3.6.4 Level-Set methods

The level-set (LS) method was introduced by Osher and Sethian (1988) as a tech-
nique to capture the position of a moving interface. The underlying idea of the LS
consists in tracking the fluid interface by means of a smooth function ¢y termed
"level set” function. Fluid 1 occupies the area in which ¢y > 0 whereas fluid 2 is
present in the region where ¢y < 0. The interface is represented by the set of points
where ¢y = 0. The motion of the interface is governed by a differential equation
for the level-set function. According to Gibou et al| (2007), the main advantage of
the level-set method is its ability to handle topological changes. On the other hand,
the level-set method is more prone to numerical error than other methods (Balcazar
et al) (2016)). The ability to track the fluid interface makes the level-set method
suitable for simulations of two-phase flow Sussman et al) (1999); Olsson and Kreiss
(2005)).
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Chapter 2

Calibration, validation and
applications of the Shan Chen -
Lattice Boltzmann Method

2.1 Introduction

This work presents case studies to assess the potential of a lattice Boltzmann method
(LBM) to analyze the stability and evolution of immiscible phases and their inter-
faces in generic cases. Such results can help improving pore-network approaches
developed in previous works such as [Yuan et al| (2016); Sweijen et al) (2017a); Suh
and Yun (2018).

The LBM is a mesoscopic model capable of simulating fluid dynamics in com-
plex geometries (Chen and Doolen (1998)). While conventional numerical methods
rely on discretizations of macroscopic continuum equations, LBM is based on micro-
scopic models and mesoscopic kinetic equations for fluids. Due to its simplicity and
capability to model fluid motion in complex boundaries, the LBM is very suitable
to simulate multiphase flow through porous media. Fundamentals of the LBM and
Shan-Chen model are briefly reviewed in PR.1.1l.

Many works using the LBM have focus on single-phase flow in porous media and
proven to be successful (Adrover and Giona ([1996); Koponen et al| (1998); Guo and
Zhag (2002)). However, multiphase LBM models employed to reproduce partially
saturated soils have less satisfactory results due to the complexities and difficulties
associated with the coexisting phases. Nevertheless, numerous articles based on
multiphase LBM evidence a growing interest in this field. Several multiphase LBM
models have been proposed in the literature (see section for more details):
the color model (Gunstensen et al| (1991))), the pseudopotential (Shan-Chen) model
(Shan and Chen (11993, 1994)) or the free-energy model (Swift et al) (1996)). The
so-called Shan-Chen model has single- and multi-component variants which both
apply to the problem of immiscible phases. The single-component method is sim-
pler. It has been used to simulate, for instance, flow in porous media with realistic
rock geometries (Boek and Venturoli (2010)) or the hysteretic response of idealized
sphere-pack systems in drainage-imbibition cycles (Pan et al} (2004)). More recently,
Son et al| (2016) investigated with this method the meniscus profile and the effect
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of contact angle on fluid displacement through polygonal capillary tubes. According
to Kamali et al! (2011)) however, the gas-liquid interfaces tend to be more diffused
in single component simulations, which may hinder the approach of strongly im-
miscible situations. Moreover, an advantage of the multi-components model is that
it allows to accurately simulate the fluids composition (Bao and Schaefer (2013)).
Nevertheless, fewer studies (Martys and Chen (1996); Porter et al) (2009)) have ap-
plied the multicomponent models to mimic multiphase flow in porous media. In this
work, multiphase flow is evaluated by means of the widely extended multicompo-
nent Shan-Chen LBM model using the open-source library Palabos written in C++
(Latt (2009)). The methods and examples presented henceforth, are implemented
in Palabos using C++ codes.

This chapter is organized as follows: a brief description of the lattice Boltzmann
method is found in section , section explains the way to compute and tune
surface tension and contact angle. Section also includes a method to evaluate
the curvature of the fluid-fluid interface; in section @, the model is validated by
contrasting analytical solutions and numerical results for the geometry and move-
ment of interfaces in capillary tubes and for pendular bridges between spheres; as an
example application, meniscus morphology and stability are studied in three-sphere,
four-sphere and seven-sphere systems in section P.4; finally, conclusions are drawn
in section R.5.

2.1.1 Lattice Boltzmann Method

The LBM has its origin in the lattice gas automata (LGA) (Frisch et al| (1986)),
a kinetic model based on discrete space-time field. While LGA method described
the evolution of individual particles on a lattice, the LBM solves a discrete kinetic
equation (Boltzmann’s equation) for a particle distribution function f°(x,t). Where
the superscript ¢ indicates the fluid component, x refers to the lattice node and ¢
is the time. In the LBM, the motion of fluid is described by the lattice Boltzmann
equation. Based on the simple and popular Bhatnagar-Gross-Krook (BGK) collision
operator (Bhatnagar et al) (1954)), the standard lattice Boltzmann equation can be
expressed as follows:

[ (X + €At 1+ Ar) — £ (xk, 1) = ;—ét(f/f(xkﬁ) — £ (%)) (2.1)

where 7° is the rate of relaxation towards local equilibrium, fk(y “? is the equi-

librium distribution function, Af is the time increment, ex are the discrete veloc-
ities which depend on the particular velocity model, in this work, D3Q19 (three-
dimensional space and 19 velocities) model is used, and k varies from 0 to Q —1
representing the directions in the lattice. The left-hand side of Eq. describes the
streaming step (particles move to the nearest node following its velocity direction)
whereas the right-hand side stands for the collision operator (particles arriving to
the nearest node modify their velocity towards a local equilibrium). The collision
operator corresponds to the viscous term in the Navier-Stokes equation.
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For the D3Q19 model, the discrete velocity set ex is written as:

(0,0,0) 1/3 k=0
ex =< (+1,0,0), (0, £1,0), (0, 0, +1) we=14 1/18 k=1, ..., 6
(£1, £1, £1) 1/36 k=7, ... , 18
(2.2)

where wy are the weight factors.

The local equilibrium fg’eq depends on the lattice type, the density and the
momentum (Latt et al| (2008)). Macroscopic variables at each node of the lattice
are recovered as the moments of the distribution functions:

— Density (moment of order 0):

P =Y 17 (2.3)
k

— Momentum (moment of order 1):

p°u® =Y e (2.4)
k

— Moment of order 2:
I1° = Zf,fekek (2.5)
k

The equilibrium distribution can be seen as an expansion of the Maxwell-Boltzmann’s
distribution function for low Mach numbers:

1 1 1
C.eq _ O 1+ — (e -u®®q) — o.eq .. 0.eq e. -u’-ed 2 2.6
fk P~ W +C%(k u ) 26%(“ u )+2C4(k u ) ( )

N

1
where ¢y = — is the speed of sound and u®*4 is the equilibrium velocity defined

‘v/§
as (Shan and Chenl (1993, 1994)):

T°F 4

uo-veq = u, + pc (27)
p°u®
! ZG TG
where u = o is an effective velocity and Fg is the total force (including
ZG o
TO'

body forces and the fluid-fluid interactions that will be presented in section )
acting on each component.
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2.1.1.1 Pseudopotential model

In the Shan and Chen model, a pairwise interaction force between components (or
phases) is introduced to describe multiphase flows. This force modifies the collision
operator through an equilibrium velocity producing a repulsive effect between the
phases.

In this work, we focus on biphasic mixtures (i.e., 0 = 2). Thus, two fZ(x,t) are
considered to model a fluid mixture containing two fluid components. Hereinafter,
p" and p™ will refer to the wetting and non-wetting phases. p, is defined as the
reference density which is set to p, = 1.

In the Shan-Chen model, the non-local force responsible for the fluid-fluid inter-
action can be expressed as:

Fo(x) = —¥(x) ) Gos ) Wi(x+ex)ex (2.8)
o k

where W} is the interparticle potential that induces phase separation and Ggg is
the interaction strength between components o, G.

Previous works (Shan and Chen (1994); Yuan and Schaefer] (2006); Huang et al.
(2011); Porter et al| (2012)) have employed several interparticle potentials. For
simplicity, we consider Wy = p; , as done by Pan et al] (2004). The interactions
within each component, G;; and Gy, are set equal to zero for biphasic mixtures.
On the other hand, the interactions between components, G1» = G», are set positive
in order to induce a repulsive force between the phases. Low values of Gi, lead to
dissolution processes seen in typical miscible mixtures. On the contrary, significantly
high values of Gy; result in almost immiscibile binary mixtures with sharp interfaces
prone to numerical instability. Thus, special attention must be paid when choosing
the interaction strength as it controls the surface tension and immiscibility of the
mixture.

According to Benzi et al| (2006); Sbragaglia and Belardinelli (2013), the interac-
tion force given by Eq. P.§ leads to a non-spherical pressure tensor P deduced from
the condition: —VP+ VP, = Fs(x) +F5(x) , where Py = Ic2(p° + p9) is the ideal
pressure tensor. Components of the pressure tensor can be computed as:

_ G N—-1 _ G - N—1
Pij(x) = c;[p° (x)+p° (x)]l;;+ ETG Y WO (x+ex)epier; + E‘PG wiP (X + ex)exiex;
k=0 k=0
(2.9)
Following Eq. @, the non-ideal equation of state (EOS) can be determined as:
p=cY p’+c Y Goo¥o¥s (2.10)
o o6

2.1.1.2 Bounce back condition

One of the most important aspects of simulating multiphase flow through a porous
medium to be taken into account is the behavior of fluids near the solid surface.
The fluid-solid interaction is implemented in the Shan-Chen model by a mid-grid
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bounce-back scheme applied at the boundaries (Succi (2001)). This scheme assigns
fluid properties to the solid wall.

The particle distribution function bounce-back scheme is used at the solid bound-
aries to obtain no-slip velocity conditions on the solid surface. The so-called bounce-
back scheme assumes that a particle distribution function streaming from a fluid
node towards a solid surface is bounced back in the reversed direction (Succi (2001)).
The easy implementation of the no-slip boundary condition enhances the simulation
of fluid flows through complex geometries.

2.1.1.3 Physical and LBM units

Correlating physical properties to lattice units is an essential task in order to simu-
late physical problems. Moreover, choosing the right conversion will avoid stability
problems and help us to have accurate results. As suggested in Latt (2008); Kriiger
et al| (2017); Thorne and Michael (2006), physical units can be related to lattice
units through unit conversion or dimensionless numbers such as the Reynold, the
Froude or the Bond number.

First of all, let’s summarize the main parameters involved in the physical and
the LB systems:

Quantity Physical SI units LB
parameter parameter
Distance between Ax m Sx
nodes
Time step At s ot
Velocity % m/s Vib
Density P kg /m’ Pip
Kinematic v /s Vio
viscosity
Pressure p kg/(m-s?) Dib

Table 2.1: Physical and lattice units used during numerical simulations.

Ax At
Conversion factors for length, time, velocity and density are: C, = Sy C = 5
X
Ax 6t

V= A S and Cp = pﬂ Similarly, we can find expressions for the kinematic
X b

viscosity and pressure:

2
« Kinematic viscosity: Cy = —=. Plus, kinematic viscosity is related to the relax-
t
ation time 7T as: )
1\ Ax~ 6t
2
V= T—= | —=— 2.11
s ( 2) At 82 (2.11)
+ Pressure:
C2
Cr=—= (2.12)
7
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This method presented above is consistent and can be applied to find other
quantities (tKriiger et al (fZOl?I)) Nevertheless, one important constraint must be
kept in mind. LBM is limited to low Mach numbers due to compressibility effects
that lead to numerical instabilities (tLatt (l2008); Sterling and Chen (|199d)). In
order to conduct numerical simulations of quasi-compressible flows and reduce the
numerical error, lattice Boltzmann velocities should be significantly smaller than the
speed of sound (v, << ¢g). Dimensionless numbers are extensively used to express
and overcome this limitation. The first step consists of converting the physical
system into a dimensionless system. After that, dimensionless units are transformed
into lattice units. For the sake of clarity, let’s use the Bond number to illustrate the
unit conversion in terms of dimensionless number. Bond number relates capillary
and gravitational forces and is defined as:

LZ
Bo= P& (2.13)

Y
where p is the fluid density, g is the gravity, L. a characteristic length and 7y the
surface tension. Bo must have the same value regardless the system of units. Thus,
pgl? plbglbLilb

Y Yib

Bo = is able to correlate the lattice Boltzmann and physical units.

Figure 2.1: Detailed fluid-fluid-solid phase transition. The blue color corresponds
to the non-wetting fluid, the red color is the wetting fluid and yellow is the solid
wall. The interface forms a contact angle of approximately 102° for a W, /po = 1.2.
A reference point situated 2 lattice units above the horizontal solid plate has been
proven sufficient to represent the contact angle accurately.

2.2 Model calibration

2.2.1 Contact angle

According to the literature (bchmieschek and Hartiné (bOOd); t[—Iuang et alj (hOO?I);
Son et al. (l2016)), one of the simplest way to tune the contact angle consists in
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adjusting the interparticle potential for the nodes of the lattice assigned at solid
phase. Thus, the wettability can be controlled by W, (see Eq. @)

We perform simulations of static droplets on a flat solid surface, and we analyze
the dependence of W,,,;; on the contact angle. The simulations are performed in a
150x150x 150 lattice domain. Once the simulation is stable and converged. the base
length (b) and the height (h) are measured. As suggested by |Yuan and Leel (b013|),
the geometrical characteristics of the droplet allows us to determine the contact

0 2h
angle 5= tan=1(=-) (see figure @) Some error is introduced during the base

measurement due to the thickness of the interface layer in the vicinity of the wall.
In order to overcome the problem, the base and height of the droplet are determined
from a reference point located 2 lattice units far from the interface layer (see figure

and further discussion of interface thickness in R.3.2.3).

180

160 1
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120

100

80 1

60 1

Contact angle 6 [°]

40 4

20 1

0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wetting parameter a1/ po [-]

Figure 2.2: Contact angle versus the density W,,,; of the solid phase.

2.2.2 Surface tension

Likewise, surface tension can be adjusted by tuning the interaction between different
fluid species. The typical numerical set-up to investigate the surface tension (y)
consist of a series of drops with different radii (R) inside a domain with periodic
boundary conditions.

Physically, the droplet and the surrounding fluid are at rest and the pressure
difference (p.) inside and outside the droplet is balanced by the surface tension
according to the Young-Laplace law:

_
pe="7 (2.14)

Figure @a depicts the pressure along a horizontal line that goes through the
droplet. Significant pressure fluctuations in the vicinities of the fluid-fluid are found
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due to the sudden change of density (lChen et all (lZOMj)) Figure @b shows the
variation of p. versus 1/R in dimensionless terms (R, is the radius of the smallest
droplet), where the linear relationship is evidenced. The slope of the linear fit is

the dimensionless interfacial tension y*, which is determined as y* = for

POC%RO
Gp, = 1.25. Different surface tension values are assessed for different interaction

strength parameters G (see figure

B.4).

1.2401 [Ap

p/(c2po) -]

b> 0.014
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Figure 2.3: a) Pressure along a horizontal line that crosses the droplet. The pressure
jump is balanced by the product of curvature and surface tension. b) Droplet test to
determine surface tension.

The surface tension can also be predicted based on a two-phase system with
a_flat interface having a constant pressure in both phases far from the interface
(IRowlinson and Widom| (12013|)) This technique has been adopted in many works
relying on the single-component Shan-Chen model (bhan and Chen| (|1994{); hen|
et al. (l2014l); Benzi et al (l2006); Shan (|2008|)) Even though literature is scarce on
the multicomponent model, some approaches have been carried out (Schmieschek
Land Hartingj (}ZOOQ)) In this current study, we provide some results using the flat-
interface test.

The pressure inside the bulk phases corresponds to the scalar quantity p. How-
ever, near the interface, due to the surface tension contribution, the pressure is
defined as a tensor incorporating different pressure components. Moreover, in or-
der to ensure the mechanical stability, the gradient of the pressure tensor must be
zero everywhere in the fluid (|Ono and Kondo| (|196d)). The symmetry of the surface
requires that p is a diagonal tensor p(x) = exexpxc(x) + eyeypyy(x) + eze;p - (x) with
Pax(x) = pzz(x), where x and z correspond to horizontal directions parallel to the flat
interface, y refers to the axis orthogonal to the planar interface and e; is a unit
vector in the j-direction. Furthermore, py, and p,; are function only of y, while py,
is a constant:

Puc(y) = p=(y) = pr(y) (2.15)

pw()=pny)=p (2.16)
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where pr and py are the transverse and normal components of the pressure.
Both pr and py can be computed using Eq. .

Consequently, surface tension can be obtained by evaluating the integral along
a flat interface of the mismatch between the normal and tangential components of
the pressure tensor (Rowlinson and Widom (2013)):

7=/_Z(pzv—m)dy=/w (p—pr(y))dy (2.17)

—o00

As evidenced in figure @, theoretical analysis and droplet test are in good
agreement.

® Droplet test

Predictions from planar interface
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—r 0.005 4
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Gpo [

Figure 2.4: Dependence of surface tension on the interaction strength G. Black line
represents the theoretical surface tensions obtained with Eq. . Red dots are the
values determined using the droplet test.

2.2.3 Curvature analysis

In order to analyze the multiphase flow, attention should be paid to the shape of
the fluid-fluid interface. Thus, in this section we furnish some tools to measure the
interface curvature following the work of Bush (2010).
Given a fluid-fluid interfacial surface S enclosed by an arbitrary volume element
V such as the one displayed in figure R.5, we can perform a force balance on V:
Inertial force = Body force + Hydrodynamic force exerted on S + Surface tension
force exerted along C

/Vpili—l;dv:/Vde+/Sw“W(n)+a)w(ﬁ)dS+/Cytdl (2.18)

where,

o dl refers to a length increment along the closed curve C that forms its boundary
(see figure @),
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e p is the fluid density,
o 7 is the surface tension,

o the stress vector representing the force exerted by fluid 2 (non-wetting phase)
on S (see figure @? is:

o™ (n) =n-T" (2.19)

« the stress vector representing the force exerted by fluid 1 (wetting phase) on
S is:

oV(@)=a-T"=—-n-TV (2.20)
The stress tensors are defined by means of the local fluid pressure and velocity
field as:

™V — _pnwi+”nw[vunw + (VunW)T] (2.21)

TV = —p"1+ " [Vu¥ + (Vu*)7] (2.22)

where u™ and u" are the dynamic viscosities, and u™¥, u¥ the velocity vectors.

Figure 2.5: Fluid-fluid interface deformed due to surface tension. Mean curvature
is determined by performing a force balance in a volume element V. Surface S and
contour C result from the intersection between V and the interface. n represents the
unit outward vector normal to S, dl the unit vector tangent to C and t the unit vector
normal to C and tangent to S.

Ignoring the acceleration and body forces, the force balance reads:

/ (@™ (n) + @ (R)]dS + / 1dl =0 (2.23)
S C
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By assuming static configurations, Eq. and are reduced to T"W = — p"wi
and TV = —p"I respectively. Thus, Eq. .23 can be rewritten as:

/S pendS+ /C ndi =0 (2.24)

where p. is the pressure difference between the two fluids. Eq. states that
pressure jump across a static interface is balanced by the curvature at the interface,
which is an integral form of the Young-Laplace equation (p. = —yV -n, where V-n
is the curvature), thus:

}//S(—V-n)ndS+ y/ctdl —0 (2.25)

(—V-n)/sndS—i-/Ctdl:O (2.26)

Finally, we can numerically evaluate the curvature of the interface given a volume
element (as in figure R.5):

_ et

V0= 2o
| snas]

(2.27)

2.3 Validation

Simple numerical simulations are performed and compared with analytical solu-
tions in order to validate the model. Detailed results are presented for quasi-static
displacement of interfaces inside cylindrical tubes and fluid bridges between two
spherical bodies.

2.3.1 Capillary rise

In order to test the accuracy of this model we perform a capillary rise test in a
cylindrical tube. If a tube with radius R is vertically introduced into a tank filled with
a liquid, the liquid rises or falls due to pressure drop through the curved interface.
As explained in section P.1.1.3, Bond number can be used to link the numerical
simulation to the physical system.

The following parameters have been considered to perform a capillary rise in a
tube:

1000-9.81-0.002%
0.07213 B

The Bond number corresponding to the physical system is: Bop,, =

plbgle,Zube,lb  1-g-20°
Yib T 0.042
in lattice units can be easily found, g, = 5.71-107>. The lattice system adopted in
this example leads to a velocity of v, = 0.0076, which is significantly smaller than
¢y == 0.5774 fulfilling the low-Mach number requirement explained in 2.1.1.3.
After performing the simulation including all the LBM input values, the fluid
rises until a height of 71.20/u (see figure @)

0.544. Since Bopp, = Boy, = 0.544 = , the value of gravity
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Quantity Physical Value in SI LB Value in LB
parameter units parameter units
Density p 1000kg /m> Pib 1
Characteristic length Riube 0.002m Riube 1 20
Surface tension Y 0.07213N/m| Yo 0.042
Contact angle 0 0° 61 0°
Gravity g 9.81m/s? 8ib ?

Table 2.2: Physical and lattice units used during the capillary rise simulation.

On the other hand, the pressure difference between the top and bottom of a
liquid column of height & can be computed as:

AP = pgh (2.28)
Eq. and can be rearranged to give the capillary rise equation:
2y 2-0.042
h= = — 73.561 2.29
PSRupe  1-5.71-1075-20 “ (2:29)

Consequently, the error between the analytical and the numerical simulation is:

htheory — Nsimutation . 73.56 —71.20
Riheory 73.52

ancy. On the one hand, the pressure difference and surface tension may not be
exactly balanced, leading to spurious currents. On the other hand, the interface
thickness is considerably large (= 6lu, which means that the thickness in the real
system is ~ 0.6mm) and it is not trivial to establish a threshold that splits the dif-
ferent fluids. Therefore, we conclude that numerical result matches almost perfect
with the theoretical solution despite the problems that cast doubt on the accuracy
of the simulation.

=0.0316. Two reasons may explain this discrep-

71.2 lu

Figure 2.6: Capillary rise in a 150x200x150 [u®> domain.

2.3.2 Flow through capillary tubes

In order to gain better understanding of multiphase flow at the pore scale, it is
common to idealize the pores throats as cylindrical capillary tubes (i;aroche et al
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()) Immiscible flow in such capillary tubes has been simulated with various
cross-sectional shapes (figure R.7).

The fluid displacement corresponds to drainage and it is imposed by includ-
ing mass sink and source terms in the time integration: wetting phase density is
decreased while non-wetting phase density is increased following the technique pro-
posed by tPan et al] (}2004]) In order to keep the flow quasi-static, the density is
only modified when its fluctuation on one time iteration, at interface nodes, is less
|Pit—Pit+1|)

o
out-of-equilibrium and the mass sink/source is delayed.

Otherwise, the solution is considered

el

Figure 2.7: Geometry of the simulated capillary tubes. The wetting phase adopts
different configurations in the corners depending on the cross-section shape. Dimen-

Pclc

than a fixed tolerance (Tol <

L

sionless capillary pressure p} = is evaluated considering the following character-

istics lengths: L.= Radius, for the circular cylinder; L.= Side length, for the square
cylinder; L.= Side length, for the triangular cylinder; L.= Distance between two ver-
tices, for the cylinder with curved boundaries.

2.3.2.1 MS-P method

As explained in section , the Mayer and Stowe-Princen (MS-P) model predicts
the capillary pressure and the curvature of the arc meniscus of a fluid droplet of
infinite length inside a cylindrical tube IPrmcenI |196q) h\/[ayer and Stowel ( 1965]),
t[\/Ia et al. (|199d)).

The assumptions of the MS-P method are:

o uniform capillary pressure;
e 1o longitudinal curvature away from the main terminal meniscus.

Under these assumptions the cross-sectional curvature kM5F (see figure ) is
given by Young-Laplace equation:

pe=k"y = Rl (2.30)

m

where R,;, is the radius of the arc meniscus.
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Furthermore, capillary pressure can be obtained from a force balance between
the two phases. The force due to the pressure difference on the cross-sectional area
must balance the force from surface tension at the interfaces. Thus,

AT = (Lpy + Lpscos0)y (2.31)

where Ly is the length of the line between the non-wetting phase and the solid,
Ly, is the perimeter of the interface between the wetting phase and the non-wetting
phase, and A%// is the area filled with the non-wetting phase.

The MS-P_method is used to determine the radius R, of the arc menisci com-
bining Eq. @ and :

A 2.32
Rpy=— " .
" Lyw + Lyscos® ( )

From now on, the MS-P is considered exact for cylindrical throats and used as a
reference for comparisons. The errors in LBM solutions will be evaluated using two
possible approaches:

MSP _ LB

P

Error, = (2.33)

pMSP

where pL8 is the entry pressure obtained in the saturation curves (figure @)

kM SP __ kLB

Errory = (2.34)

MSP

where kM5P is compared with the curvature of the main meniscus after achieving the
entry pressure. k-8 is found using Eq. R.27.

Tol = 7.5-107°
Tol = 5.0-107°
—@— Tol=35-10"°
10-1 4 —A— Tol =25-107°
~¥— Tol =1.0-10°
—— Tol =5.0-10°
o Tol = 1.0-107°
fg - Tol=1.0-10""7
LS Tol = 5.0-107°
T

102 . .

106 107 108

Iteration

Figure 2.8: Entry capillary pressure predicted by LBM and total number of time
iterations for different values of the tolerance. The error starts to increase significantly
from Tol = 107%.
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2.3.2.2 Results of sensitivity analysis

The invasion of a square tube has been repeated with different values of tolerance
(Tol mentioned above) to quantify the perturbation by dynamic effects. The entry
capillary pressure pﬁ’LB in the LBM simulations is deduced from drainage curves
similar to the plots in figure R.9. The total number of iterations and the difference
between pe’LB and the MS-P prediction for the different tolerance values are plotted
in figure P.§. Note that the difference is not expected to vanish even with very
small tolerance since geometrical discretization errors contribute to the difference
relatively independently of dynamic effects. In the sequel of this study we set the
tolerance value to 107>, as it leads to marginal dynamic errors.
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Figure 2.9: Primary drainage curves obtained by fluid displacement inside square-
shaped capillary tubes of different domain size. Dimensionless capillary pressure in-
creases until it reaches the entry pressure value (maximum capillary pressure). At
this point, invasion by the non-wetting phase starts and the meniscus breaks through.

When capillary pressure p. reaches the entry pressure value p¢, the wetting phase
is displaced and the non-wetting phase invades the capillary tube. The progression

of p. is evidenced in figure R.9. Hereinafter, p. is described in dimensionless terms:
2p.L
i = Pe €, where 7 is the surface tension and L. the characteristics length. The

primary drainage curves displayed in figure @ correspond to numerical simulations
of fluid displacements in a square-shaped capillary tube. Furthermore, several dis-
cretizations have been taken into account.

As seen in figure , mesh resolution has a non-negligible impact on the ac-
curacy of the results. As the spatial resolution is increased (same simulation has
been performed using the following domains: 40x40x160, 70x70x256, 90x90x320 and
110x110x384, from now, these domains are referred as L. =40, L. =70, L, =90, and
L. = 110), the error decreases considerably (figure M displays the error based on
Eq. @ and respectively). From figure a we deduce that the order of
convergence is 1.4 when the numerical solid wall coincides with the physical wall. In
the following section we propose a technique to increase the accuracy of the results
without adjustments in the mesh resolution.
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Figure 2.10: Convergence of the LBM result with mesh refinement, with regard to
error defined in Eq. @ on the left and error defined in Eq. on the right. Each
simulation is ran in parallel using 8 cores. L. is the characteristic length.

Figure 2.11: Principle of the wall retraction method. In the LBM mesh the solid
boundary is retracted by 2/u with respect to its real position, such that the fluid-fluid
contour p,,/p, = 0.7 is nearly coincident with the real boundary.

2.3.2.3 Numerical thickness of interfaces

The numerical thickness of the interfaces (see section and figures and )
is often considered an issue in the multicomponent Shan-Chen model. Physical
intermolecular interactions lead to a fluid-fluid interface thickness, however, the
thickness of the numerical film obtained with the multicomponent Shan-Chen model
(see figure R.1]) does not correspond to the physical thickness. Additionally, previous
works (Lee and Lin| (2005); Li and Luo| (2014)) have evidenced that a fluid-fluid
interphase of 4-6 lu is required for numerical stability. Some works (tBao and Schaefer
(l2013); btomo et al. (lZOld)) have attempted to increase the accuracy at fluid-solid
interface by introducing new boundary models. Despite the efforts and the better
results obtained near the solid region, numerical artifacts are still found underming
the global accuracy. In order to overcome this issue we redefine the solid boundaries
based on a wall retraction logic, to include part of the fluid-solid interface in the
region normally occupied by the solid phase. As suggested in figures @, .11 and
2.10, we now consider that fluid-solid interface is no longer aligned with the real
solid wall but two lattice units above.

The optimal contour _for the new solid boundaries is deduced from figure
Pressure error in figure m compares the capillary pressure obtained in Eq. .30
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Figure 2.12: Difference in capillary pressure between LBM and the theoretical value
deduced from meniscus geometry, as a function of the p" contour selected to define
the interface. Sub-figure on the upper-right corner shows details of the density con-
tours. On the right, interface profiles for different p" are superimposed. Both results
correspond to a square cylinder.

and the pressure resulting from Eq. using the effective area and perimeter
determined in the LBM simulation:

18 (Lnwrs+ Lns18cos0)
pe =Y Aeff.LB

(2.35)

The error between the MS-P solution and the LBM simulation reaches its mini-
mum at around p"/p, =~ 0.7, which corresponds approximately to the average den-
sity between both phases. In our results, this specific value of density was generally
reached approximately two nodes away from the solid nodes, which led to the deci-
sion to retract the walls by two lattice units.

This configuration is proven to be successful as evidenced in figure , where
the error for the non-aligned interface with the real solid wall is lower than the error
obtained without modifications. New boundaries are able to increase the quality of
results, especially for coarse resolution simulations. This adjustment is considered
for all the cases presented below. Additionally, figure suggests that the analysis
in terms of curvature is more convenient when the computational resources are lim-
ited. Indeed, the error for the coarsest grid in figure R.1( is around two time larger in
the pressure analysis. According to figure .10, finer meshes imply a better approxi-
mation when the error is evaluated in terms of pressure. However, there is not much
difference between the methods since low error values are observed in both cases.
Overall, figure R.10 indicates the strong impact of using the retracted boundary.
Such technique enhances an accurate analysis without the use of fine meshes and
the subsequent high computational cost. Furthermore, when wall retraction is con-
sidered, the error is not only smaller, but also the convergence becomes quadratic as
shown in figure m (without retracting wall, the convergence was superlinear with
an exponent of approximately 1.4), which is a substantial improvement.
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2.3.2.4 Results for different cross-sections

Numerical simulations have been performed in domain sizes of 80x80x256 lu> in order
to reproduce the quasi-static fluid flow inside different cylindrical tubes. Capillary
pressures in the tubes resulting from the numerical model are compared to the
analytical solution given by the MS-P method in figure 2.13.
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Figure 2.13: Deviation of LBM results from MS-P for different capillary tubes (see
figure R.7), in terms of capillary pressure and interface curvature, respectively.

Figure shows good agreement between the numerical simulations and the
analytical solution. It is worth noting that larger errors are observed for cylinders of
triangular and curved boundaries cross-sections. This is attributed to the artificial
roughness introduced by the staircased surfaces. These cross-sections are not aligned
to the regular lattice grid. Furthermore, due to the bounce-back boundary condition,
these cases lead to mesh-dependent results. In fact, the asymmetry is evidenced in
figure .14, where the remaining liquid retained in the corners of the equilateral
triangle is different in some parts. Nonetheless, figure R.14 shows relatively similar
numerical and analytical profiles.

‘Wetting phase < LBM
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Non-wetting phase
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Figure 2.14: Staircased walls causing non-symmetry of the LBM solution (unequal
filling of the corners).
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2.3.2.5 Results for different orientations

The mesh dependency is frame dependent: it changes as function of the orientation
of the throat with respect to the axis of the grid. The evolution of the errors with
rotation is shown in figure .15, which reveals that the frame-dependent effects are
actually small (of the order of 1%, dominated by other errors).
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Figure 2.15: Error on pressure and curvature versus orientation of the throat (rela-
tive to LBM grid).

2.3.2.6 Accuracy as function of the analyzed height

To conclude, we review the hypothesis stating that MS-P solution is valid for cylin-
ders of infinite extension. Due to computation limitations, short domains had to be
considered, violating the assumption of droplets of infinite length. In order to test
the accuracy of the numerical results under these conditions, the error on pressure
has been plotted along a square cylinder. In other words, capillary pressure was com-
puted using Eq. R.31 for various positions of the cross-section in the final, nearly
fully invaded, configuration. On the left part of figure .16 we observe that the
remaining fluid in the corners is parallel to the cylinder walls (no longitudinal cur-
vature). It is concluded that H/L > 1 is sufficient to approach the situation assumed
for the MS-P method, i.e. the cross-section must be behind the main meniscus by a
distance approximately equivalent to the throat aperture.
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Figure 2.16: Evolution of the error on pressure by applying MS-P versus distance
from the main meniscus. Drainage of a square cylinder.
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2.3.3 Pendular bridge

The shape and volume of a pendular bridge between two spheres have been obtained
from the LBM simulations and compared to the theoretical solution for a range of
capillary pressure.

2.3.3.1 Porfile of pendular bridge

As explained in section [1.2.2.2.2, the Young-Laplace equation relates the capillary
pressure difference across a fluid-fluid interface to the curvature and surface tension
of the interface as:

1 1
where Ry and R; are the principal radii of curvature.
Furthermore, the profile of a capillary bridge can be described by the Young-
Laplace equation as demonstrated by h)e Bisschop and Rigolel (|198ﬂ). The mean
curvature (H,,) for a pendular bridge can be written in the following form:

/!

r B 1 _ Pe
(1+r2)32 r(1+r2)12 Ty

where r = r(x) specifies the radius neck of the capillary bridge at position x.
Due the impossibility of integrating Eq. analytically, several studies have used
Willett et a1.| (}ZOOd); Lian and

2H,, = (2.37)

numerical approaches to solve it (Lian et al. (1993);
Seville (2016); Bcholtés et a1.| (2009)).
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Figure 2.17: Overlapped capillary bridge profiles obtained numerically from LBM
and the theoretical solution for p; = 0.6.

2.3.3.2 Comparison between LBM and theoretical profiles

The simulation setup was as follows: a droplet of the wetting phase was inserted
between two identical spheres of radius R with a gap equal to 0.14 x R. Once a
stable state was reached, the volume of the liquid bridge was reduced slowly, by an

imposed mass sink, until p} = py =0.6. The shape of the pendular bridge when
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Figure 2.18: a) Volume versus capillary pressure for a pendular bridge from a LBM
simylation and the numerical solution of Laplace-Young equation. b) The relative error
is the difference between the simulated volume and the theoretical volume normalized
as V* =V/R3.

pi=0.6 is compared to the direct solution of Young-Laplace equation (Lian et al.
(1993)) in figure E Results show strong similarity. After reaching p} = 0.6 the
LBM simulation continued by further reducing the amount of wetting phase and
recording the volume of the simulated bridge for a quantitative comparison with
Young-Laplace solution. Figure m shows the volume-pressure relationship until
breakage. The LBM simulation and the Laplace-Young solution follow a very similar
trend, with a relative error generally lower than 1072
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Figure 2.19: Dimensionless rupture distances (§* = EC) of fluid bridges between two

spheres as a function of the dimensionless liquid bridge volume (V*), calculated from
Laplace-Young equation, LBM simulations and the cubic law.
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2.3.3.3 Rupture distance

Likewise, the critical distance S, (sphere separation that leads to breakage of the
bridge) can be compared. S, can be obtained on a theoretical basis: it is the distance
beyond which the Laplace-Young problem degenerates into a solutionless problem
(practically approached by an upper bound of the real solutions). Previous works
(ﬁ‘ian et alJ (|1993|)) have shown that S, is approximately proportional to the cubic
root of the volume of the bridge. This empirical relation is also compared to the
results.

Figure displays the rupture distance obtained by the different methods.
The LBM follows a correct trend yet the distance is systematically underestimated,
by 4% approximately. Therefore, it is less accurate than the cubic approximation.
The systematic underestimation can be explained by the difficulty to approach a
mechanically unstable solution numerically.

2.3.3.4 Sensitivity of mesh resolution

Unfortunately, a large computational cost is associated with LBM simulations.
Therefore, we are interested in the optimal resolution capable of providing accu-
rate results within acceptable computing times. A convergence test is carried out
by performing multiple LBM simulations of liquid bridges.
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Figure 2.20: Capillary pressure evolution vs time. Capillary pressure increases after
placing a liquid droplet between the spheres. Once the capillary pressure converges to
a steady value, the liquid is gradually removed/added to adjust the capillary pressure
to the desired value. The figure above displays the p’ — Time plot for a R/Ax =67, being
Ax the distance between nodes equal to 1 lattice unit. After convergence, capillary
pressure is increased until pf =0.8.

The configuration depicted in figure is reproduced for several mesh sizes
to investigate the resolution sensitivity. The initial state of each simulation is
set by placing a liquid droplet between the solid spheres. No adjustment is im-
posed until the pressure reaches a steady-state. This configuration is achieved when
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the theoretical capillary pressures, respectively. Once the convergence is completed,
we proceed to tune the capillary pressure by means of a mass sink/source in order
to attain the desired capillary pressure. In this reference case, pi = 0.8. Pressure
is conveniently increased (see figure R.2() or decreased until p} = 0.8. Plus, the
distance between the spherical grains is fixed to §* =0.2.
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Figure 2.21: a) Overlapped profiles obtained with the LBM and Young-Laplace
equation. b) Volume error vs mesh resolution. Simulations are performed in parallel
using a 24 core CPU.

After adjusting the capillary pressure to obtain the desired value (p¥ =0.8) and
reaching a static configuration, the bridge profile can be plotted and compared with
the theoretical solution. Figure R.21la displays the superimposed profiles, suggesting
that the finer the mesh is, the more accurate results are obtained. Results range
sphere radius from to R* = 16 to R* = 83, where R* is the dimensionless radius

R
defined as R* = Ar being Ax the distance between nodes equal to 1 lattice unit.

The error associated to the resolution is graphically represented in figure b in
terms of volume. Indeed, we observe that as the computational mesh resolution
is increased, LBM predictions get closer to the theoretical volume of the bridge.
Overall, figure R.21| indicates that space-discretization with R* < 16 are prone to
give inaccurate results (an error of ~20% is observed between LBM and theoretical
value). Whereas mesh resolution satisfying R* > 26 will lead to acceptable results
(errors of < 12%). As expected, the finest meshes (R* > 63) undoubtedly result in
excellent accuracy (errors of < 4%), though, this improvement incurs a non negligible
additional computational cost. Details about the relation between the accuracy and
computation time will be further discussed in section B.3.1.4.

2.4 Application examples

This section presents some applications of the LBM to model typical liquid mi-
crostructures of wet granular materials. Previous section analyzed the pendular
bridge between spherical bodies. In this section we extend the analysis to configura-
tions without rotational symmetry, thus, impossible to obtain from semi-analytical
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treatment. Liquid topology is evaluated for different liquid clusters. More specifi-
cally, groups of 3, 4 and 7 spheres are considered.

2.4.1 Trimer

Trimers are the liquid configurations obtained after the coalescence of three pendular
bridges formed between three adjacent particles. Trimers are one of the most com-
mon liquid structures during the funicular regime (bcheel et al.l (fZOOé); bemprebonl
@)) In this section, the evolution of these microstructures is evaluated
under drainage conditions by means of the LBM. Results are compared with numer-
ical data provided by Wang et al. ( 2017|) using Surface Evolver (SE). All geometrical
parameters and hydrostatic properties are adjusted to reproduce the test of Wang
(2017). These parameters are summarized in the following list:

— Radius of the spheres: R = 5mm
— Surface tension: y=0.051N/m
— Contact angle: 6 = 10°

— Three equal-sized spheres in contact.

The initial and final states are depicted in figure . The drainage is imposed
by removing liquid content. This phenomenon is typically observed during the evap-
oration or drying processes.

a) b)

Figure 2.22: a) Initial configuration corresponding to V* = 0.33. b) Final state
obtained after drainage the trimer. Three isolated liquid bridges are identified.

Following the ideas of previous works (lWang et al.l (l2017|); lMelnikov et al.l (b015|);
lGladkikh and Bryant] ( 0051)), trimers can be decomposed into simple units. Next
sections describe two approximations to determine the volume of the liquid clusters.

2.4.1.1 Pendular bridge approximation

According to lWang et al.l (bOl?I), the liquid content in a generic cluster can be
divided into three isolated bridges connecting the three spherical bodies (see figure
). In this scenario, the same amount of liquid is associated to each liquid bridge.
Moreover, the excess of liquid due to possible liquid intersections is ignored.
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Figure 2.23: Funicular regime decomposed into three pendular bridge. Image taken

from lWang et al.l (l2017|)

2.4.1.2 Gladkikh approximation

The approximation proposed by tMelnikov et a,l.l (bOld) based on Gladkikh’s method
(lGladkikh and Bryant (l‘ZOOd)) incorporates the volume of the pore throat in the

previous pendular bridge approximation. Following the idea of

(1927) that

the fluid-fluid interface between three solid grains adopts a spherical shape with
constant curvature, Melnikov et al. (b015) approach considers that liquid clusters
can be decomposed into three basic units: filled pore bodies, liquid bridges, and
menisci. All the isolated liquid configurations beyond the pendular bridge liquid
can be considered clusters. Furthermore, the smallest possible cluster is the so-
called trimer. lMelnikov et al] (2015) model assumes that a trimer is bounded by

two menisci located in neighboring tetrahedra on both sides of the

facet (pore throat)

and the common liquid bridges. This technique enhances a complete analysis of more
complex liquid clusters, for instance, Eemamers can be constructed from two trimers

sharing one liquid bridge (see figure

2)

Figure 2.24: a) Trimer cluster formed by three grains with centers P, P, and
P; . The meniscus (green region) has one contact point (Cj, C; and C3) with each
neighboring grain. Liquid bridges (blue regions) are illustrated as well. b) Cut section
through P, — C| — P4 is displayed. Point O is the center of the meniscus. lby4 and Iby3
are the liquid bridges between particles P — P, and P> — P3, respectively. The green
region below the meniscus shows the cut through the cylinder which approximates the

meniscus volume. c¢) Pentamer cluster Image taken from lMelnikov et alj (l201 )

The volume of the pore throat is approximated as the volum

e of a cylinder V,y

with the same axis as to normal of the pore throat, see figure .24

b. Thus, the liquid
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content of the trimer is expressed as the sum of the three liquid bridges (Vjigge) plus
the volume associated to the pore throat:

Virimer = chl + 38Vbridge (238)

Eq. PR.3§ includes a geometrical correction parameter € that accounts for the
missing volume between the main meniscus and the liquid bridges (see figure R.24b).
In this work, € =1.07 as done in Melnikov et al| (2015).

0.40

0.35 A

0.30 A

0.25 A

0.20 A

Ve

0.15 A

LBM
Surface Evolver

0.10 A

0.05 Pendular bridge approximation

HE

Gladkikh approximation

0.00

10! 100 10!
e [
Figure 2.25: Liquid volume vs. capillary pressure for spheres in contact under

drainage conditions. Comparison between semianalytical expressions, LBM and the
results for SE obtained in Wang et al. (2017).

The drainage effect in terms of capillary pressure is evidenced in figure in
logarithm scale. The liquid content decrease induces a rise of capillary pressure. We
emphasize the good agreement between_Surface Evolver and LBM in figure .
It is worth noting that results in figure R.25 are restricted to the funicular regime,
thus, further increase of capillary pressure would result in the transition towards the
pendular regime (see figure 2.222. The comparison is completed with the approxi-
mations detailed in sections P.4.1.1] and P.4.1.2. Gladkikh approximation provides
excellent results for low liquid contents (V* < 0.2). However, the curve starts diverg-
ing when V* > 0.2). The excess of amount of liquid observed in figure for the
Gladkikh approximation corresponds to account the same liquid volume two times
(volumes of pendular bridges and pore throat are overlapped). Reasonable results
are also obtained with the pendular bridge approximation. Overall, the pendular
approximation achieves a better description of the p —V* hysteresis than Gladkikh
approximation. This is evidenced in figure P.25, where the pendular approximation
follows an S-curve mimicking the same tendency observed in the numerical models.

2.4.2 Tetrahedron

In this section we study the evolution of a tetramer, a liquid cluster formed by
4 spherical grains, under different liquid contents (see figure R.26). Initially, the
wetting phase occupies the pore body, then, the wetting phase is progressively sucked
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to reproduce a drainage process. In the course of the simulation shown in figure
M we evidence the transition from the capillary regime to the funicular state, and
eventually, to the pendular regime. The first transition is depicted in the sequence
of points "b”, ”¢” and ”d” of figure R.26, where the non-wetting phase penetrates
one of the tetrahedron facets. After the transition (figure R.26d), the liquid cluster
becomes a trimer. The second transition is illustrated between points ”e” and "t”
of figure , in this case, the trimer splits into three pendular bridges.

a) b) c)

d)‘ e)‘ ‘

Figure 2.26: Interface evolution of a tetramer under drainage conditions. Side and
bottom views are depicted for six different liquid contents.

Decreasing the amount of liquid leads to an increment of capillary pressure, and
subsequently, to an_interface with higher curvatures. Such changes are evidenced
in figures .Qd and .27|. Moreover, we observe a relatively dynamic event between
V* 2 0.16 and V* = 0.20 due to the detachment of the wetting phase from one of
the solid bodies. This mechanism is responsible for the pressure jump displayed in
figure P.27. The dynamic evolution results in a rapid liquid redistribution between
the 3 other spherical grains forming a trimer (see figure d). A second liquid
reallocation is observed for V* =~ 0.04. At this moment, the trimer abruptly decays
into three isolated pendular bridges (see figure R.2Gf). The trimer rupture is revealed
with a new dynamic episode (see the pressure drop for V* ~ 0.04 in figure R.27).

Figure 2.27: p; —V* relationship of a tetramer under drainage conditions. Points
indicated in the image correspond to the snapshots illustrated in figure .
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2.4.3 Cluster

We extend the analysis performed in subsection to a higher geometrical con-
figuration, a liquid cluster formed by 7 equal-sized spheres.

a) b) c)

Figure 2.28: Interface evolution of a cluster under drainage conditions. Side and
bottom views are depicted for six different liquid contents.

Following the same process as in subsection , the wetting phase is grad-
ually removed. Consequently, the interface is displaced as shown in figure R.28.
An abrupt event is observed between figures R.28c and @d. Non-wetting phase
penetrates into the cluster causing a Haines jump. This phenomenon occurs when
the interface meniscus can no longer increase its curvature at the narrowest pore
throat, consequently, a rapid emptying is manifested before facing the next narrow
constriction. Haines jump corresponds to the transition from a quasi-static regime
to a dynamic invasion. Indeed, the slow drainage of the cluster was characterized by
a low Ca, however, the invasion of the non-wetting phase into the pore body results
into the redistribution of the liquid content within a very short time (high interfacial
velocities are observed as suggested by Armstrong et al.l (fZOl )). The evolution of
the capillary pressure along the drainage process is illustrated in figure 2.29. The
pressure jump is found for V* ~ 0.98 in figure .
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Figure 2.29: p} —V* relationship of a liquid cluster under drainage conditions. Points
indicated in the image correspond to the snapshots illustrated in figure .
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2.5 Conclusions

Hydrostatic properties and pore-scale morphology of immiscible phases have been
obtained by the multicomponent Shan-Chen LBM for systematic comparisons with
other methods. This chapter analyzed the discretization errors and provided guide-
lines to calibrate the method and minimize errors.

Two-fluid-phase flow through capillary tubes has been analyzed and compared
to the solution given by the MS-P method. Entry pressure, curvature and interface
profile obtained from LBM simulations converge to the analytical solution with mesh
refinement. The capillary bridges simulated between 2 spheres also converge to the
solution obtained directly from Laplace-Young equation, in terms of both shape and
rupture distance.

Discretization errors are introduced in part because of the solid boundaries:
curved surfaces are modeled as stair-cased lines, which may not approximate the
curved wall properly if the lattice resolution is not fine enough. In addition, the
numerical thickness of the fluid interfaces around the solids is also a source of error.
These discretization errors were found to scale nearly linearly with mesh size, and
relatively independently of rotations of the grid frame. For the error due to interfa-
cial thickness we showed (section R.3.2.2) that a significant reduction was possible
with appropriate geometrical corrections of the solid boundaries. This correction
leads to shrink the size of all solid objects by a mesh-dependent length to minimize
the mesh-dependency of the result. It improves the convergence of the results as
discretization errors decrease quadratically with the mesh size. This technique is,
therefore, systematically adopted throughout this thesis.

Finally, last section extents the research to more complex liquid structures. The
evolution of trimers under drainage condition has been compared with numerical
data provided by Wang et al| (2017) with satisfactory agreement. Additionally,
pendular and Gladkikh approximations have been tested and considered a reliable
tool to predict pi — V™ curves.
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Chapter 3

Capillary force analysis

3.1 Introduction

Capillary forces exerted on particles of granular materials have an important im-
pact on the macroscopic behavior. Low water contents in wet soils confer significant
capillary forces that increase the cohesion of the material (Hornbaker et al) (1997))).
Indeed, capillary effects are strongly influenced by the amount of water content.
Accordingly, there is major interest in understanding the hydro-mechanical proper-
ties of wet granular materials. At low water content, isolated pendular bridges are
formed between the solid particles.

Regarding the mechanical behavior, several studies have investigated the sensi-
tivity of capillary cohesion at the global scale (Groger et al| (2003); Richefeu et al.
(2006)). Although considerable research has been conducted at the macro-scale, ef-
forts should also be devoted to investigate the interactions at the pore scale due to
the major effect on the macroscopic phenomena. Since the pioneering work carried
out by Haines (1925); Fishey (1926), capillary forces are well studied in pendular
bridges.

The dependency of the capillary forces under pendular regime has been studied as
function of water content (Hotta et all (1974)), suction (Gras et al) (2013)) and sepa-
ration distance between particles (Willett et al| (2000); Lian et al. (1993)). Previous
studies (Richefeu et al| (2009); Scholtes et al| (2009); Jiang et al| (2004)) enhanced
the development of numerical models based on the discrete element method (DEM)
to simulate unsaturated media due to the incorporation of capillary forces exerted
by the pendular bridges. Nonetheless, these models are limited to low levels of wa-
ter content that ensure the pendular regime. When the water content is increased,
pendular bridges coalesce forming complex liquid morphologies (Scheel et al| (2008);
[veson et al| (2001)). The pendular regime vanishes and is replaced by the funicular
regime. At this point, the capillary cohesion tends to reach the maximum value
as suggested by Schubert (1984); Wang et al| (2017). Among the different liquid
clusters observed in the funicular regime, the trimer (cluster after the coalescence of
three pendular bridges formed by three adjacent particles) is found to be the most
characteristic (Semprebon et al) (2016); Badetti et al| (2018)).

Previous research (Urso et al) (1999, 2002)) has shown that capillary forces from
trimers can be analytically solved in 2D (and 3D in particular cases such in Gagneux
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and Millet| (2016)). Plus, the evolution of capillary forces under funicular regime
has been successfully modeled in 2D lattice Boltzmann simulations (Delenne et al.
(2015)). Difficulties arise when capillary forces are evaluated in a three-dimensional
space. The complexity of the liquid morphology hinders a generic analysis based
on Young-Laplace equation (Wang et al| (2017)). Thus, numerical approaches have
been adopted to investigate capillary forces during the funicular regime (Scheel et al.
(2008); Semprebon et al; (2016); Strauch and Herminghaus (2012); Wang et al.
(2017)). Recent literature (Wang et al| (2017)) analyzed the funicular regime under
static conditions by means of Surface Evolver (SE).

The goal of this chapter is to develop a capillary force analysis using the mul-
ticomponent Shan-Chen lattice Boltzmann method (Shan and Chenl (1993)). More
specifically, two main objectives are defined: On the one hand, in this chapter we
propose a method to evaluate the forces on solid objects using a multiphase LBM.
So far, the force analysis was limited to 1-phase flow. Boundary forces due to the
fluid flow have been investigated with LBM by means of the momentum exchange
algorithm (Ladd (1994); Mei et al| (2002); Caiazzo and Junk (2008)). However,
this algorithm is not suitable for multiphase flows due to a numerical film at the
fluid-solid interface (considered a typical problem in the multicomponent Shan-Chen
model as detailed in Chen et al) (2014)). On the other hand, the present method
complements the study of capillary forces of Wang et al| (2017) and Semprebon
et al| (2016). Although Surface Evolver is much faster in terms of computation time,
LBM is able to reproduce all the liquid morphologies (regardless the complexity of
the cluster structure) and simulations are not restricted to the quasi-static regime
(Ruiz-Cabello et al) (2009); Fischer et al) (2014)). Thus, forces can be evaluated
during snap-off, fast drainage or other dynamic events.

Throughout this chapter, we use the results provided by Wang et al| (2017) as a
benchmark to validate and test the accuracy of the method.

3.2 Methodology

Capillary forces derived from the theoretical solution for a pendular bridge are used
to validate the numerical model. Afterwards, the force evaluation method is pre-
sented.

For the purpose of this work, we use the following dimensionless variables:

2p.R
Capillary pressure: p} = p—c, where ¥ is the surface tension, R is the radius

of the spheres and p. is the capillary pressure.

F
— Force: Ff = —
27YR
V(t) : :
— Volume: V* = i where V(¢) is the volume at time z.
§7[R3

X
— Coordinates: x* = R and y* = Iy_e’ where x and y are the coordinates.
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d
— Separation between spheres: §* = R where d is the separation between the

spherical grains.

3.2.1 Theoretical capillary forces for a pendular bridge

Let’s consider an axially symmetric system of two solid spherical particles as shown
in figure B.1. When the system is at equilibrium, the attractive force at any slice
orthogonal to the axis is given as a contribution of the action of the surface tension
exerted by the nonwetting-wetting interface and the capillary force due to the pres-
sure difference between phases ( Fisheli ( 192d); oodrow et al.| (|1961)' Lambert andl
l\/alsamisl (IZOld)), thus:

F.(x) = mr(x)*pe + 27mr(x) ycosy (3.1)

where p. = p™ — p" is the pressure jump between the liquid bridge and the non-

wetting phase, r(x) is the radius of the bridge neck at any plane perpendicular to the

axis, 7 is the surface tension and y is the angle between the x-axis and the tangent
line at point A. Previous parameters are depicted in figure B.1l.

Figure 3.1: a) Liquid bridge scheme with the relevant parameters used to determine
the capillary force between the solid particles. b) Parameters from a capillary bridge
between two solid bodies of equal diameter separated a distance of $* = — =0.2 re-

produced by a LBM simulation. The static capillary bridge is obtained after imposing
a capillary pressure of p} = 0.4.

The radius in Eq. @ can be computed after solving Eq. . Hereinafter, the
dimensionless theoretical capillary force will be referred as F,.

3.2.2 LBM force evaluation method for multiphase flows

The motion of unsteady, viscous, immiscible multiphase fluids is described by the
Navier-Stokes momentum equation:

o [ u’ c c c c
p 74‘11 -Vu® | =V.- T +p°g (3.2)

where p is the density of phase o, u is the fluid velocity, g is the gravity vector
and T is the stress tensor. The stress tensor can be decomposed into the hydrostatic
and the deviatoric stress tensors:
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T—_pl+2 (uf’é" +u6§6) (3.3)
1 [Ou; Ou;
The deviatoric stress | S;; = = e + a can be reformulated in terms of
2 5x,- 5Xj
LBM quantities:
§i=—— (3.4)
AT '

where 7 is the relaxation time, c; the speed of sound and IT the moment of order
two of the distribution function (see Eq. R.5).

The force exerted on a solid body (see element Q in figure @) is computed by
integrating the stresses over the solid boundary (0Q):

Fe= | T-ndA (3.5)
5Q

where 0Q is the surface of the grain, n is the normal vector to the solid surface
and dA is the differential area.

2.00
1.75 1
1.50 1 = S
1.25 4 /
- Interface
100 1
0.75 1 A
0.50 1 e «
0.25 1 I
0.00 . ,
1038 1039 1040 1041
aR/v [-]

Figure 3.2: Horizontal stress along the vertical axis.

As evidenced in figure B.2 and discussed in previous works (lChevalier et al.l (bOlé);
lKistler and Schweizer (1997)), surface tension leads to perturbations in the normal
stress at the interface between two immiscible fluid. The deviatoric part represents
what is left over from the total stress when the spherical contribution is subtracted
from the pressure. Thus, the deviatoric part becomes significant at the interface.

In the Shan-Chen model, interactions properties similar to those of an additional
fluid are assigned to the solid nodes (lHuang et al.l (hOO?I)) This configuration re-
sults in a non-physical layer between the fluid and the solid (lChen et al] (2014)).
Therefore, heterogeneous and non real stresses are found in the solid vicinities. To
overcome the complexities presented near the solid objects, we propose to analyze
the stresses inside a volume element far from the solid-fluid interface (see element
Q' in figure B.3). Most of our research is conducted with sphere packings, hence,
spherical volume elements are taken into account. However, other elements, such as
cubes, tetrahedra, planes, ellipsoids may be considered.
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Figure 3.3: At the top left corner, several spherical volume elements (Q's) enclose
the spherical grain indicated as Q. The other images illustrate the surface obtained as
a result of the intersection (6Q') between the capillary liquid bridge and the spherical
volume element. Stresses are integrated over all the points of 6.

Thus, the force acting on the spherical grains is evaluated by the following inte-
gral:

Fe= | —[p&i; —c2(2T—1)S;;]dA (3.6)
Q/

where 6Q' is the surface resulting from the intersection between the spherical
volume element and the liquid bridge (see schemes in figure @) and dA is the
normal area vector as displayed at the bottom of figure @7

3.3 Results

3.3.1 Pendular bridge

The purpose of this section is to validate the numerical approach through theoretical
solutions. In particular, the LBM results are contrasted with the solution presented
in section B.2.1.

3.3.1.1 Sensitivity of the bundling sphere size

First of all, capillary force has been evaluated for different spherical volumes (see
the different Q' elements in figure @) using Eq. B.6. Results presented in figure
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are in good agreement with the theoretical solution provided that the radius of the
wrapping sphere is at least 5 lattice units larger than the radius of the solid sphere.
Rewy —R

——F > 5.

Indeed, large errors are observed when the bundling sphere is too close to the solid-
fluid interface as evidenced in figure B.4. Henceforward a spherical volume element
of 6 lattice units larger than the solid grain will be used during the force analysis.
Additionally, the force obtained with Eq. will be referenced as Fyp), , from now
on if we use a spherical element to evaluate the force acting on the objeyct.

The error drops to a constant low value for volume elements that:

2.00

FZBI\],S/E‘TY‘, -]

2 4 6 10 12

8
(Renv — R)/Ax []
Figure 3.4: Force evaluated for different spherical volume elements with radius R.,,
that enclose a spherical grain of radius R. Results are obtained for a pendular bridge

between two grains separated a distance $* = 0.1 under a capillary pressure of p} =1.7.

R
Mesh resolution: —22 — g3,

3.3.1.2 Force analysis during drainage process

In this section capillary forces are examined during drainage. The comparison be-
tween the LBM and the theoretical solution confirms the validity of the force evalu-
ation method. We evidence similar paths followed by LBM simulation and Laplace-
Young solution in figure B.5 when the liquid from the bridge is progressively removed.
Figure B.5a illustrates almost coincident curves for relatively large volumes. How-
ever, error increases rapidly when capillary pressure is high, and we approach the
breakage point. The high discrepancies observed at p ~ 15 in figure B.j are at-
tributed to the spurious currents (Shan (2006); Pooley and Furtado (2008)). These
currents are non-physical velocities that appear near the curved interfaces due to
the discretization of the space. Near the bridge rupture, interface is approaching an
unstable event. At this moment, the interface curvature is considerably high and the
contribution of the deviatoric stress in Eq. becomes the most significant part.
During the previous stages, spurious velocities were still present, however, their ac-
tion did not have a strong influence in the force analysis, and the hydrostatic action
in Eq. @ (which involves more accurate results) was predominant. Despite the
error introduced by the spurious velocities, the present method is able to track the
force during the drainage process with good accuracy.
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0.8

0.7 A

0.6

0.3

—— Theory
—— LBM

0.2 T T T T T T T T 0.2 T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 2 4 6

3 0 12 14 16
V* i [

Figure 3.5: Evolution of capillary force vs volume (a) and capillary force vs capillary
pressure (b) during the drainage of a liquid bridge. Results are obtained for a pendular
Ripm

=83.

bridge between two grains separated a distance S* =0.1. Mesh resolution:

3.3.1.3 Force analysis for different orientations

In order to illustrate that the applicability of the method is not mesh-dependent,
capillary force was evaluated for different angles between the z-axis and the bridge
axis. Figure shows that similar results are obtained for the same liquid bridge
when it is not aligned to the mesh. Thus, the force evaluation method can be
employed regardless the position of the spheres.

1.8 1

1.0 1 /\\

0.8

0 10 20 3 40 50 60 70 80

Rotation angle [°]
Figure 3.6: Error force evaluated for different rotation angles between the axis
that passes through the two sphere centers and the z-axis. Simulations correspond

to a capillary pressure of p; = 0.4 and a separation distance of §* = 0.2 between the

R
spheres. Mesh resolution: LBM _ 50.

3.3.1.4 Sensitivity of mesh resolution

Due to the large computational cost associated with LBM simulations, it is crucial
to find the optimal resolution capable of providing accurate results within acceptable
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computing times. The convergence test is carried out following the steps explained
in section P.3.3.4.
The theoretical capillary force is determined in terms of bridge geometry (Eq.

@ and B.1)). By assuming a dimensionless capillary pressure of pX = 0.4, the radius
neck is r* = 113 = 0.52. The radius r of Eq. @ (see figure @) is evaluated at the

plane that passes through the origin where the neck radius is minimum. Replacing

2pcR
r*ziandpﬁz Pe

R in Eq. @ results in the following theoretical force expression:

Fo = n(r*R)z% 1 2nr Ry (3.7)

In terms of dimensionless variables, Eq. @ becomes: F, = 0.54

According to Eq. , capillary force remains constant regardless the value of
r(x). After adjusting the capillary pressure in the LBM simulations to obtain the
desired value (p} = 0.4) and reaching a static configuration as shown in figure @b,
capillary forces are evaluated for the range of resolutions. In this particular test,
capillary forces are not evaluated using a spherical volume element as displayed in
figure B.3. Instead, stresses are analyzed with Eq. . Thus, measuring the radius
of the neck (rrpy(x)) for different values of x we can compute the capillary force
using Eq. @ reformulated as:

ok . nr[%BMPC,LBM +27rgmYcosOLpm (3 8)
LBM.p 2nripuR )

1.4 1
—m— Az/Ris —A— Az/Ry
Ax/Rog Az/Re3
- 1.3 1 —v— Az/R;; —e— Az/Rss
I 12 = s = = - —8—§8——8§—*8
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*
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» «
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Distance from the center of the bridge neck - d/S [-]
Figure 3.7: Capillary forces error as function of mesh size and distance (d) from
the center of the bridge neck. All the simulations correspond to a capillary pressure of

pr =0.4 and a separation distance of §* = 0.2 between the spheres. Force is evaluated
with Eq. after computing the radius neck for each LBM simulation.

Figure @ evidences almost identical forces are obtained along the bridge axis.
Even the coarsest mesh leads to a constant capillary force regardless the position of
the analyzed point. These results suggest that in spite of the larger error of coarse
meshes. no discrepancies are found between different local curvatures. Additionally,
figure @ shows the results for different mesh resolutions. Notwithstanding the over-
estimation of capillary forces for low resolutions, good agreement is found between
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the theoretical force and the LBM simulations. It should be noted that the force
analysis provided in figure based on Eq. @ is restricted to capillary bridges. As
we will see in the next section, more complex morphologies are present in partially
saturated media. The method explained in section B.2.2 overcomes such limitations.

—_—

Figure @ displays the comparison for different resolutions between the theo-
retical force and the LBM force evaluated using Eq. @ (with a spherical volume
element). As expected, capillary force error decreases with the mesh refinement.

R
Figure @ implies that error does not significantly reduce for LBM

> 50. Moreover,

. ... Rism
error associated with

> 33 is found to be acceptable. Thus, we strongly rec-

R
LM - 25,

LBM simulations conducted with smaller grains may cause the detriment of the ac-
curacy while finer meshes lead to long computation times without substantial error
reduction.

ommend using spherical grains satisfying the following condition 40 >

2 % 10°

1.25 a) / b)
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Figure 3.8: Converging mesh test for a pendular bridge. Capillary force errors
are obtained for different mesh resolutions. Results are shown with linear (a) and
logarithmic scale (b). Capillary force error vs computing time to reach convergence is
displayed in linear (c) and logarithmic scale (d). Simulations correspond to a capillary
pressure of pi = 0.4 and a separation distance of §* = 0.2 between the spheres.
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3.3.1.5 Further considerations on the characteristic length

Even though adopting a reference spherical radius of R € [25 —40]lu is encouraged,
the accuracy of the LBM is strongly related to the curvature of the fluid-fluid in-
terface. Thus, we might have better performances adapting the geometric LBM
parameters arguing in terms of curvature rather than the mean grain radius. Un-
fortunately, choosing a reference interface curvature is an intricate task due to the
complex liquid morphology observed inside porous media. Yet, results from pen-
dular bridge test (sections and B.3.1.4) and capillary tubes (section )
may shed some light on the subject. The reference curvature should not be confused
with the local radii of curvatures or the mean curvature. The reference curvature
is the one that will be reproduced several times in the simulation having a strong
impact on the phenomenon. Therefore, in porous media simulations, very small
pores should be excluded in the curvature criterion, even if they have a coarse repre-
sentation. Otherwise, the computation time would rapidly increase. Let’s illustrate
the different concepts of curvature with the pendular bridge example. As shown in
figure B.1la, the liquid bridge has two radii of curvature. Radii can be either positive
or negative depending on the geometry of the bridge. In figure El]a Ry >0 and
R, < 0. According to Young-Laplace equation (see Eq. ), capillary pressure
is proportional to the sum of principal curvatures. In a cartesian framework, the
mean curvature for a pendular bridge can be written as in Eq. R.37. Additionally,
as detailed in section , it is possible to determine the maximum separation
between the spheres, given a certain liquid volume, before the liquid bridge vanishes.
This separation is termed rupture distance. Finally, it is crucial to adopt a space
discretization that balance optimally the computation time and the quality of the
results. In this case, an adequate solution consists in setting the reference curva-
ture equal to the rupture curvature. Such technique ensures interface curvatures
over the reference. Consequentely interfaces are accurately represented until the
breaking point.

Discretization Pendular bridge Square tube
Curvature [lu~'] | Volume error | Force error | Time [hours] Curvature
error
1/9 0.134 0.241 0.6 0.083
1/12 0.110 0.189 1.1 0.061
1/17 0.071 0.062 3.8 0.044
1/20 0.037 0.041 13.9 0.036

Table 3.1: Summarized errors and computation times for different mesh resolutions.
Discretization errors are described as function of curvature for two tests: pendular
bridge (see figures b and @) and fluid displacement through a capillary tube
with a square cross-section (see figure )

Sensitivity analysis of the mesh resolution have been conducted as function of
volume and force for the pendular bridge test (see figures .21 and @), and cur-
vature for the capillary tube (see figure ) The conversion from these results to
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a comprehensive framework in terms of curvature has been carried out as follows:
First, we evaluated the transversal curvature (in lu~!) of the wetting phase remain-
ing in the corner (see figure R.12) for the different spacial-resolution displayed in
figure R.10. We point out that such analysis is performed for the fluid displacement
test through a capillary tube with a square cross-section. The curvature values are
listed in the first column in table B.1. In addition, the errors found in the previ-
ous chapter (figure R.10) are also included in the last column (”Square tube”) of
table B.1. Concerning the pendular bridge simulations, suction has been adjusted
(following the procedure explained in 2.3.3.5) to match the mean curvature to the
transversal curvature found for the capillary tubes. We emphasize that, regard-
less of the mesh resolution, all pendular bridge simulations are evaluated under the
same pr. Volume and force error are summarized in table (column indicated as
"Pendular bridge”) as well as the computation time to reach a stable state.

0.30

[ ] %Tidge’ rl4
X  Firidge
0.25 4 bridge
u V}ube x M2
---- Linear fit
0.20 A —a— Timeyiqge 10

0.10 4

Computational time [hours]
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0.65 0"06 0.67 0.68 0.69 O.IIO 0.'11 0.12
Curvature [lu™"]

Figure 3.9: Summarized errors and computation times for different mesh resolutions.
The errors are plotted in terms of curvature for two tests: pendular bridge (see figures
b and @) and fluid displacement through a capillary tube with a square cross-
section (see figure ) A linear regression line of the error upon the curvature is
included.

The results compiled in table @ are also available graphically in figure @
From this analysis, we evidence that low curvatures (as a result of fine meshes), k <
0.055Iu~", lead to huge computational costs without a significant gain in accuracy.
Thus, we recommend adjusting the geometric LBM parameters to enhance critical
reference curvatures that k € [0.06 —0.09]/u~'. Although the curvature criterion is
difficult to implement due to the complex geometry of granular media, we believe
that it provides orientative information that can be taken into account when it
comes to decide the dimensions of the computational domain. Furthermore, this
method could be extremely useful for multiphase flow through porous media with
regular sphere-packings (Genty and Pot (2014)) or regular arrays of circular cylinders
(Daneyko et al| (2011)). In such cases, knowing the geometry in advance may
help predict the critical curvature (for instance, the one associated to the entry
capillary pressure). It is worth noting that, beyond porous media, this criterion

65



Chapter 3 - Capillary force analysis

offers advantages to other research fields where the typical curvature in multiphase
flow is easy to estimate. Consequently, the applicability of the curvature criterion
is highly constrained by the possibility to determine a reference curvature.
Another interesting feature reflected in figure is the disparate error values
resulting from the force, curvature and volume analysis. All the approaches follow,
approximately, linear trends. However, we observe that both curvature (for the
capillary tube) and volume (pendular bridge) errors are considerably smaller than
the error associated to the capillary force. In particular, a scaling factor of two
is found for coarse meshes between Vp,izee and Fpigg. errors. Results in figure
suggest a strong sensitivity of force evaluation to the resolution of the mesh. The
dependency on the spacial discretization has a lower effect on the analysis of volume
and curvature. This conclusion should be taken into account when choosing the
lattice spacing. Therefore, depending on the phenomenon and mechanisms we are
investigating, grid resolutions will have different impact on the results.

3.3.2 Liquid clusters

In this section we extend the force study to complex liquid configurations impossible
to be studied through analytical solutions.

By increasing the liquid content in a granular assembly in the pendular regime,
the liquid bridges coalesce resulting into more complex liquid phase morphologies
such as the dimer, trimer, pentamer, etc. Recent studies (Badetti et al| (2018)) sug-
gest that trimers and large clusters compose the majority of the liquid configurations
during the funicular regime. The complex liquid morphologies encountered during
the funicular regime hinder a detailed analysis on the cohesive strength. However,
some studies (Richefeu et al| (2016); Mitarai and Nori (2006)) have attempted to
describe the relationship between cohesion and saturation degree.

=1
A
c H
K] : :
é Pendular : Funicular 1 Capillary
8 : :
>
= =
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0 5 : 1 Sr

Figure 3.10: Qualitative diagram of cohesive stress - liquid content relationship.
We have modified the image taken from Wang et al. (2017)).

Capillary cohesion rapidly increases during the pendular regime as the liquid
content is incremented. Adding more liquid triggers the transition from the pendular
regime to the funicular state. During the funicular regime, the increment of the
amount of liquid within the granular media leads to a smooth increase of cohesive
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strength (Cohesive stress - saturation degree relationship is schematically displayed
in figure @) Even though the capillary forces dependency on the saturation degree
is not fully understood during the funicular regime, previous research (Wané et al.
(2017); Mitarai and Noril (2006)) show that during this state, capillary cohesion
reaches the maximum value.

Hereafter, forces are investigated for clusters of three and four spherical grains
with filled pore throats under drainage conditions.

3.3.2.1 Three-sphere case

Forces are evaluated in the funicular regime for three spherical bodies of equal diame-
ter and compared with experimental data and other numerical results. Experimental
measurements were taken by Wang et al.l (lZOl?) following the test designed by Lam-
berd (2007). Furthermore, the experimental data were contrasted with numerical
results obtained with Surface Evolver in lWang et al.l (2017|). All geometrical param-
eters and hydrostatic properties are adjusted to reproduce the test of
() These parameters are summarized in the following list:

— Radius of the spheres: R = 0.93mm
— Surface tension: y=0.073N/m

— Two different liquid volumes are considered: V* =0.178 and V* = 0.2
3.3.2.1.1 Force evaluated during the displacement of one sphere

The effect of the separation of one particle from the others is studied in this
section. Initially, the three spheres are in contact and the liquid volume is fixed.

Then, one of the spheres is displaced and the separation is progressively increased
while the volume is kept constant.

a)

Figure 3.11: Evolution of the funicular regime for different displacements. Images
are obtained after LBM simulations under volume controlled conditions. On the left,
the top sphere has a vertical displacement of D* = 0. Right figure displays the fluid
configuration corresponding to a vertical displacement of D* = 0.39.

Figure shows the configuration of the 3 spheres at the initial state on the
left. The configuration after increasing the inter-particle distance is depicted on the
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D
right of figure . The displacement of the top sphere is defined as D* = R where

D is the distance shown in figure . Capillary forces are determined throughout
the simulation. It is pertinent to mention that contact angle was not constant during
the experimental tests (Wang et al| (2017)). The equilibrium contact angle adopts
values between the so-called advancing contact angle and receding contact angle
due to chemical heterogeneities and physical imperfections of the solid surface as
explained by Tadmor (2004). Wang et al| (2017) used polynomial fitting equations
to mimic the experimental contact angles in the Surface Evolver (SE) simulations.
Concerning the LBM simulations performed in this chapter, the equilibrium contact
angle is set to 8 ~ 0°. Although the previous literature (Wang et al. (2013); Zhang
and Kwok (2004)) has studied the contact angle hysteresis using multiphase LBM,
it is still unclear how to determine the macroscopic quantities of advancing and
receding contact angles. Therefore, we warn the reader that, in our simulations, the
variations of the contact angle are not imposed to match the advancing and receding
angles. In the LBM | the contact angle remains very small (6 ~ 0°) throughout all
the simulations.
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Figure 3.12: Comparison between the experimental results and the numerical ap-
proaches for V* =0.178. The experimental results and Surface Evolver data have been
obtained from Wang et al| (2017). Three spheres of equal diameter in contact are set
as initial configuration. One of the spherical grains is progressively displaced from the
rest. a) Capillary force acting on the separating sphere is evaluated during the process.
b) Force error between the experimental results and the numerical approaches.

Figure shows the comparison of LBM, SE and experiments. Capillary force
increases at the beginning of the test due to the pinning effect. As summarized by
Willett et al| (2003), the so-called pinning effect is manifested when a force acts on
the liquid and the three-phase contact line remains stationary between intermediate
values of the contact angle limits. When one of these limits is reached, the three-
phase contact line slips. According to Wang et al| (2017); Willett et al| (2003);
Joanny and De Gennes ([1984), pinning mechanism leads to an increment in the
force with increasing the inter-particle distance. After reaching the peak, the test
proceeds under slip condition resulting to a decrease in capillary force with increasing
the separation distance. Figure B.12 shows similar paths for all the approaches. We
highlight the good accuracy of the maximum capillary force (similar peak values
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are observed in figure a). On the other hand, SE curve is shifted respect the
experimental results and LBM curve is not capable to mimic accurately the same
pinning effect (an expected result, considering that contact angle is fixed to 6 ~ 0°).
Indeed, SE and experimental curves are steeper than the LBM curve for D* < 0.2.
Even though the effects of advancing/receding contact angles are not incorporated,
we find that LBM solutions offer an accurate prediction of the capillary forces.

The differences between the numerical approaches and the experiments are il-
lustrated in figure b. High errors are observed when the three spheres are in
contact. The errors rapidly drop and stabilize as the particle is detached from the
others. Both SE and LBM can give acceptable results in this test.

In order to enhance a better comparison between the SE and LBM, we remove
the dependency of the contact angle by setting the SE contact angle equal to 8 = 0°
(SE data is taken from Wang et al| (2017)). Figure @a shows the evolution of
the capillary force for different inter-particle distances. Good agreement is found
between the two numerical approaches, especially, after D* > 0.1
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Figure 3.13: Comparison between the experimental results and the numerical ap-
proaches for V* = 0.2. The Surface Evolver results have been obtained from Wang
et al| (2017). Three spheres of equal diameter in contact are set as initial configura-
tion. One of the spherical grains is progressively displaced from the rest. a) Capillary
force acting on the separating sphere is evaluated during the process. b) pi —D* curve
is determined during a LBM simulation.

Finally, figure b illustrates the variation of capillary pressure with the inter-
particle distance.

3.3.2.1.2 Force evaluated under drainage conditions

The present section investigates the effect of decreasing the liquid content of
the trimer. Three spheres in contact have been considered to reproduce the test of
Wang et al. (2017). Contact angle is set to 8 = 0° and the initial amount of liquid
is V* =0.33. The initial and final states can be found in figure R.22.

When V* < 0.04_the trimer is replaced by three un-coalesced pendular bridges
as shown in figure 2.22. This configuration is not reached in figure B.14. Hydro-
static properties were evaluated and tracked until the last stable configuration of the
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trimer, thus no result_is depicted for the three isolated bridges resulting from the
trimer decay. Figure B.14 shows that the liquid content decrease induces a rise of
capillary pressure. Besides, the reduction of liquid content results in an increment
of the capillary forces.
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Figure 3.14: a) Liquid volume vs. capillary force for spheres in contact under
drainage conditions. Comparison between pendular approximation, LBM and the
results for SE obtained in Wang et al) (2017). b) Evolution of capillary force with the
suction. Comparison between LBM and the results for SE obtained in Wang et al.
(2017) in logarithmic scale

Overall, figure displays similar paths for the Surface Evolver and LBM
approaches. Yet, the accuracy is lower than the volume-suction curves (see section
Epzllll) The comparison is completed with the pendular approximation based on
sections 2.4.1.]J and m According to Wang et al) (2017), the liquid content in
a trimer can be divided into three isolated bridges connecting the three spherical
bodies (see figure .23). Thus, the capillary force acting on each spherical grain is
given by the contribution of two capillary bridges. The force of each pendular bridge
is based on the equations detailed in B.2.1. The pendular approximation provides
higher capillary forces than LBM and SE for large liquid contents. On the contrary,
the pendular approximation converges to the LBM for very small liquid contents
(V* 2 0.04). At this saturation degree, the trimer is reaching an unstable state,
such that further liquid volume decrease will cause the trimer decay. Then, the
liquid cluster is going to be replaced by 3 isolated pendular bridges (see figure R.22).
Consequently, we suggest that due to the difficulties of distinguishing the clusters
that are about to convert from the funicular to the pendular regime, we should rely
on numerical methods as long as it is possible.

3.3.2.2 Tetramer case

This section explores the transition from the funicular regime to the pendular state
for a group of four spherical grains in terms of capillary forces. The capillary pressure
- saturation curves and liquid morphologies studied in section P.4.2 under drainage
conditions are complemented with the present force analysis. To the best of our
knowledge, this study is the first to report capillary forces on tetramers (clusters
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made up of 4 spheres), however, it is worth mentioning that a similar analysis was
performed by Grof et all (2008]) to investigate the strength of liquid clusters of 4
circular disks (2D) as function of the liquid saturation.

& O

Figure 3.15: Capillary forces are evaluated under drainage conditions on the spher-
ical bodies depicted in green.

The liquid structure is displayed in figure . In particular, capillary forces
are computed exclusively on the spheres depicted in green. The initial state of the
simulation corresponds to the capillary state. Therefore, the void space between the
spheres is filled with the wetting phase. The image sequence displayed in figure
shows the transition from capillary regime to the pendular state passing through the
funicular regime as the liquid volume is gradually removed.
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Figure 3.16: Evolution of capillary force with the liquid content under drainage
conditions on the green spherical grain of figure B

The _change of the capillary force induced by the liquid removal is illustrated in
figures a and B.18b. First, we will focus on the spherical grain depicted in green
in figure a The capillary force on the solid grain decreases monotonously as the
drainage goes on (see figure a) and gets completely detached from the rest of
the cluster when V* &~ (0.18. Capillary forces are decomposed into y- and z-axis in
figure B.17 (coordinates are found in figure B.15). Additionally, the pressure peak is
achieved before entering into the funicular regime (p’ a~4.55) as evidenced in figures
5.14 and B.17b.
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Figure 3.17: Force analysis on the green spherical grain of figure a. a) Evolution
of capillary force with the liquid content under drainage conditions. b) Capillary force
vs suction. In both cases, forces have been decomposed into the vertical and horizontal
contributions

Now, let’s discuss about the capillary force exerted on the green sphere displayed
in figure B.15b. Six states are found in figure B.1§ through the drainage process:

A -
B-

C -

Initial state, the cluster is completely filled.

Capillary forces build up during the drainage. Capillary force reaches a peak
before the detachment between the interface and the solid grain begins.

The interface is rapidly displaced during the transition from the tretramer
to the trimer. The event results in a capillary force drop. According to the
research carried out by Grof et al) (2008), the position and size of the force
drop strongly depends on the contact angle. Several configurations adopted by
the interface during the transition are reflected in the non-monotonic capillary
pressure path of figure @a.

The fluid-fluid interface is fully detached from the fourth sphere, the new
configuration is a trimer.

As drainage continues, the capillary force slowly increases. The interface
adopts higher curvature as a consequence of the capillary pressure increment.

Another drop in terms of capillary force (much smaller than the previous one
though) indicates the transition from the funicular regime to the pendular
state. The force has a flat maximum during the pendular regime (similar to
the situation observed in figure for a single bridge).

One of the most remarkable things that can be inferred from figure is that
the maximum capillary force is found at the very beginning of the funicular regime.

This

is when the structure is filled with liquid but the non-wetting phase is about

to invade the pore body and modify the liquid morphology to replace the tretramer

by a

trimer. This is consistent with the findings of Grof et al| (2008) in which a

clear maximum located at the capillary/funicular transition was found for a group
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Figure 3.18: Force analysis on the green spherical grain in figure b. a) Evolution
of capillary force with the liquid content under drainage conditions. b) Capillary force
vs suction.

of 4 disk particles. Overall, the results show significant similarities with the work
performed by |Grof et al.| (|200 ). In particular, brof et al| (|2008|) results for a 4-
disk-packing are not only in good qualitative agreement with figure B.1§ in terms of
peak position, but also with the capillary force - liquid content curves.

The fact that the maximum capillary force exerted on the green sphere displayed
in figure B.15b is located between the pendular and the capillary regimes supports
the idea introduced by |Mltara1 and N oril (I‘ZOO ); tRlchefeu et al| l2016| Both studies
observed that in wet granular materials, cohesion increases beyond the coalescence
of pendular bridges reaching a maximum during the funicular regime, and decreasing
again in the capillary regime. Such hysteresis is qualitatively illustrated in figure
.10 and B.19. Indeed, tRlchefeu et al| bOld ) suggests that funicular regime should be
split into: primary funicular state, where the capillary bridges merge one another,
and secondary funicular state, where the liquid volume percolates and groups of
particles become fully immersed. The two states are separated by the cohesion
peak (see figure ). The cohesion strength - liquid content curve obtained by
hichefeu et al] (2016) for a 2D granular packing evidenced a maximum cohesion at
S, ~ 0.4 (slightly after the pendular/funicular transition). It is worth highlighting
that tRlchefeu et al| ( 2016|) simulations were performed by increasing the amount of
liquid from an initial pendular state. Conversely, IMltaral and Nor1'| (EOOG) suggested
that cohesive stress - saturation relationship varies significantly in the funicular state,
thus, it is impossible to determine the location of the peak without experiments
or numerical simulations. Nonetheless, the results of the present work and the
conclusion drawn by |Grof et al| t2008) show that, under drainage conditions, the
maximum capillary strength take place right after the capillary /funicular transition.
Such observations reinforce the conclusions asserted by lBaltodano Gouldiné (2006).
In their work, cohesion strength of unsaturated sands was studied as function of the
liquid content. lBaltodano—Gouldng (I‘ZOOGI ) argued that cohesion has two peak values
in the entire range of degree of saturation. The first peak occurring at saturations
ranging from [15% —35%]|. A second peak takes place at about [50% — 65%] for the
loose sand samples, and [80% — 90%]| for dense specimens. A conceptual illustration
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regarding the double-peak behavior is illustrated in figure .
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Figure 3.19: Conceptual illustration of soil-liquid retention regimes (a) and cohesive
strength - liquid content relationship (b). We have modified the image taken from
Baltodano-Goulding (2006).

The analysis of previous works (Wang et al) (2017); Baltodano-Goulding (2006);
Richefeu et al) (2016); Mitarai and Nori (2006)) and the results of this thesis suggest
that cohesion is maximized during the transition between regimes: pendular/funicu-
lar when we increase the liquid content to initially dry grains, and capillary/funicular
transition when the saturation is decreased from a fully saturated granular assem-
bly (see figure B.19). Many factors (i.e. soil properties, boundary conditions, etc)
influence the position and magnitude of the two peaks. Therefore, different hydro-
mechanical behaviors are expected and found in previous literature (double-peak
behavior in Baltodano-Goulding (2006); Lu et al| (2007) or single peak in Richefeu
et all (2016); Grof et al| (2008)).

In this context, it is worth mentioning the work of Yuan et al! (2018). They
examined the link between the effective stress and the contact stress in partial satu-
rated soils. Contact stress were obtained averaging micromechanical quantities and
found extremely close to the effective stress. In recent years, it is common to assume
xB = Sw. thus, capillary action is due to the term S, p. of Bishop’s expression (see
Eq. [1.14). According to Yuan et al| (2018), the unique relationship between yp and
Sy may describe the macroscopic behavior in terms of the p. —S,, curve (thus, on
the system geometry) and the saturation changes in porous media (drainage and/or
imbibition).

3.4 Conclusion

In this study, capillary forces were investigated during the pendular and funicular
regime. Lattice Boltzmann simulations were performed using the Shan-Chen multi-
phase model. We developed a method to evaluate the forces acting on solid objects
in contact with two or more fluids. Our approach is based on the integration of
stresses around the solid bodies. The volume element used for the integration is
slightly larger than the solid object, thereby, we overcome the difficulties associated
with the non-physical numerical film around the solid boundary.

This method is validated by the theoretical solution given by Young-Laplace
equation for a pendular bridge. Plus, the sensitivity of the mesh resolution and

74



Chapter 3 - Capillary force analysis

the orientation of the mesh have been tested. LBM simulations are also contrasted
with the theoretical solution during the drainage of the liquid bridge. Fairly good
agreement is found between LBM and the theoretical solution. Nevertheless, cap-
illary forces become inaccurate for significant low liquid volumes. Such scenario
corresponds to liquid configurations with narrow liquid bridges close to the rupture
point. At this stage, spurious velocities present in the fluid-fluid interface have a
non negligible influence in the capillary force leading to inaccurate results.

The method presented in this chapter complements the mesh sensitivity analysis
performed in sections b.S.Qd and 2.3.3.4!. The global analysis depicted in figure
implies that reasoning in terms of curvature is a key point to choose the mesh reso-
lution. Unfortunately, the complex and heterogeneous geometry inherent in porous
media hinders the implementation of a curvature criterion. The analysis illustrated
in figure also shows that accuracy of capillary forces is strongly influenced by
the mesh resolution (at least, more than other parameters such as the liquid content
and curvature).

The work extends the research carried out by Wang et al| (2017). The good
agreement between the LBM results, the theoretical solutions and the experiments
leads to the conclusion that our simulations are able to evaluate the capillary forces
with similar accuracy as the models based on energy minimization. We believe LBM
simulations are better suited for complex liquid morphologies and dynamic states
than Surface Evolver, however the high computational cost associated with LBM
may restrict its applicability. Thus, further studies in this direction are needed to
distinguish the field of application for each numerical approach. The discrepancies
become significant when the liquid volume is low and trimers approach the breaking
point. Unfortunately, experimental data are lacking to contrast the numerical results
on drainage tests. Furthermore, the pendular approximation is also presented in
this chapter. Such approximation can be used when the computational resources
are limited.

The results obtained for the tretramer case in terms of capillary force support
the idea of previous research that the highest cohesion values take place during the
regime transitions. The evolution of capillary forces exerted on the particles at the
pore scale might explain the global response of wet granular materials since similar
behavior at the macro-scale has been reported in literature. Notwithstanding the
previous findings, the dependence of the cohesive force is strongly influenced by the
separation distance between the solid particles. Therefore, we recommend further
analysis on a wide a range of liquid saturations and separation distances for similar
microstructures (groups of 4 solid spheres). The position and magnitude of the co-
hesion peak should also be studied in granular assemblies with different geometric
characteristics (dependence on particle size distribution, void ratio, etc). Addition-
ally, cohesion - saturation curves should be performed under different conditions in
order to have better insight on the qualitative analysis summarized in figure .
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Chapter 4

A 2D Throat-Network model for
three-phase flow in porous media

4.1 Introduction

The Throat-Network (TN) approach of the present chapter offers an accurate de-
scription of the geometry of the pore space and the evolution of the menisci in 2D. In
this work, fluid flow is governed by capillary and viscous forces. Diffusion effects and
gravity are neglected. Numerous articles have already studied multiphase flow con-
trolled by capillarity (Bakke et al| (1997); Hilpert and Miller (2001)). Nonetheless,
the geometrical simplifications of the complex nature may hinder the description of
the phenomena. Plus, some works with 3D pore networks (Gao et al| (2012)) opted
to remove the isolated liquid structures (trimer, pentamer and other clusters) as
they are prone to numerical error. In order to overcome the difficulties related to
geometrical idealization, we propose a numerical model in 2D based on analytical
solutions and a network extracted from the pore geometry as detailed in Gladkikh
and Bryant (2005); Yuan et al, (2016). Additionally, the present approach empha-
sizes the importance of simulating at the meniscus/throat scale (rather than the
pore body scale) to avoid the limitations associated to imbibition in porous media
(Vogel et al| (2005); Patzek et al) (2000)).

Overall, this work aims to set a preliminary study for the attainment of a nu-
merical model with a better prediction of multiphase displacement through porous
media. Thus, this chapter acts as a proof of concept for upcoming hybrid models
based on pore-network approaches and semi-analytical expressions (Chareyre et al.
(2017)). The accuracy of the model is tested with the results provided by a multi-
component Shan-Chen lattice Boltzmann method (Shan and Chen ([1993)).

4.2 Throat-Network model based on analytical so-
lutions

Following the idea of Blunt et al| (2002); Sinha and Wang (2007), the present model
evaluates the position of the fluid-fluid interface by means of Young-Laplace equa-
tion and the pressure field in the network. Two immiscible phases are considered
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Figure 4.1: According to the Young-Laplace equation (Eq. ), the pressure jump
(p™ — p") across a fluid-fluid interface is proportional to the product of the surface

1
tension and the curvature of the interface <k = R>'
m

(typically air and water). Plus, conservation of mass is assumed within each pore
body.

4.2.1 Pore-scale decomposition

Pore bodies and throats are studied after a decomposition of the pore space (as pre-
sented in Chareyre et al| (2012)). A regular triangulation is considered to represent
the topology of the pore space (Helba et al| (1992); Thompson and Fogler (11997);
Bryant and Johnson (2003)). In this particular case, the three vertices of the tri-
angle correspond to the three particle centers. This scheme is adopted because the
domain is divided into nearest-neighbor groups of three disks. In a dense particle
packing, each group defines a pore body. Moreover, two adjacent cells result in a
connecting pore throat (see figure {.9). Hence, this decomposition leads to a throat
network model where geometric features are well represented.

4.2.2 (Governing equations

According to the Young-Laplace equation (Blunt et al| (2002); Young et al{ (1805)),
the pressure jump across a fluid-fluid interface is proportional to product of the
surface tension and the curvature of the interface (see figure {.1)):

1 1
=p™"-p'=y—+— 4.1

where p. is the capillary pressure, p™ and p" are the non-wetting phase and
wetting phase pressures respectively, ¥ is the surface tension, and Ry and R, are
the principal radii of curvature. Since our research is limited to 2D, we adopt the
following Young-Laplace expression:

1
pe=p"™—p"= yR—cose (4.2)

m

where 6 is the contact angle and R, is the radius of the meniscus. From now

on, we assume a contact angle of 8 ~ 0, yet the model can be trivially extended to
0 #0.
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a) Gy b)

Figure 4.2: a) Triangular elements after the decomposition. g;; is the flux between
pore bodies i and j. Fluid interface at time ¢ is displayed with a dashed line. At
time ¢ + Ar the flow towards element j leads to a new configuration depicted with
a _continuous line. b) Geometrical quantities of a pore throat following the steps of
Chareyre et al] (2012).

During the interface displacement due to suction, p. is increased and the radii
of menisci are reduced according to Eq. @ The non-wetting phase starts invading
the pore body when the diameter of the meniscus is equal to the length of the pore
throat (the minimum distance between two solid bodies), i.e. 2Ry = Lipoar, S€€
figure @ for a graphical explanation. At this moment, the corresponding capillary
pressure is called entry capillary pressure:

_ 2
Lthroat

pe (4.3)

In reality (a three-dimensional space), fluid displacement is rather complex to
be simulated due to the difficulties to determine the entry pressure pf. Indeed,
p¢ is usually found after some simplifications. Haines ([1927) proposed that entry
pressure is inversely proportional to the radius of a sphere that is in contact with
the particles that define the pore. Recent research (Yuan et al| (2016)) based on the
MS-P method Mayer and Stowe (1965); Princen (1969) assumes that entry pressure
p¢ corresponds to a cylindrical throat of infinite length tangent to the solid particles
at the narrowest cross section. Regarding the 2D simulations, the complexity of the
problem is conveniently reduced. Three-dimensional problems can be simplified into
2D in particular cases such as the study of flow perpendicular to random cylindrical
rods (Saito and De Lemos (2005)) or the evaluation of permeability in fibrous porous
media (Spaid and Phelan Jy (1997)).

For the sake of simplicity, we consider samples with incompressible fluids and
static particles. Thus, Eq. [1.19 presented in section becomes:

3
Z qgij = 0 (4.4)
j=1

where g;; is the flux between pore bodies i and j (see figure @a).
Moreover, as introduced in section [1.3.4.3.1], the flux g;; can be expressed, at low
Reynolds numbers, in terms of an inter-pore gradient:
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Pi—Dj
L;j

qij = &ij (4.5)

where p; — p;j is the pressure difference between two adjacent cells, L;; is the length
of the pore throat defined as the distance between the Voronoi vertices (the Voronoi
diagram is dual to the Delaunay triangulation), and g;; is the local conductance that
can be evaluated as:

2
lin?j
8ij =X (4.6)
ij m
where /;; is the length of the aperture of the throat, u is the fluid dynamic
viscosity, Rf’j is the hydraulic radius of the pore defined as Rf’j = g” . (¢;; is the

13
shaded area occupied by the fluid in figure @b and Q;; the perimeter {)f solid-fluid
interface displayed in figure 4.2b), and yx is the non-dimensional conductance factor,
which will be assumed equal to 0.5 as in Chareyre et al| (2012). See figure @b
to have a better idea of the geometrical quantities. Essentially, Eq. has been
adjusted from Eq. [1.2]] to handle the parameters in a 2D framework.

4.2.3 Boundary conditions

Eq. @ is modified for those throats connecting a filled and an empty pore body, in
other words, the pore throats that include a fluid-fluid interface (from now on, they
will be called "open” throats). In this particular case, expression Eq. is replaced
by:

Pext — Pi+ Pe

4.7
Li,ext ( )

Giext = &i,ext
In order to mimic the displacement of the interface, a source or a sink is intro-
duced in Eq. @:

3

Y qi;=0 (4.8)

Jj=1

where ® adopts positive values for imbibition or condensation processes and
negative values for drainage and evaporation. If ® = 0, no source is taken into
account.

To conclude the set of boundary conditions, a fixed external pressure (pey) is
imposed in the non-wetting reservoir.

4.2.4 Multiphase algorithm

Following the steps of Bakke et al] (1997) and Sinha and Wang (2007), we can
determine the pressure field of our network after solving the following set of linear
equations:
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QP=f (4.9)

where Q is a sparse matrix including the information of the conductivities, P is
the matrix containing the pressure values of the triangular cells (P is unknown) and
f represents the sources and/or sinks. The internal values of f are only non-zero for
the interface throats in which a source or a sink is fixed.

Independently of having a "source” or a "sink”, the following procedure is carried
out for each time step:

1. The pressure field is determined after solving Eq. @ Each cell has a certain
pressure.

2. Capillary pressure, p¢, is computed for all the interfaces (thus, the "open”
throats). If p. achieves the entry pressure (p. = p¢) the fluid penetrates the
throat and begins invading the cell.

3. Fluxes are evaluated with Eq. @ and @ for each throat.

4. The position of the interface is found as function of the capillary pressure.

The radius of the meniscus is found following Eq. @, hence, R, = l The

Pc
interface corresponds to the arc of circle tangent to the two disks that form
the throat.

5. The mechanism is repeated for each time step.

4.2.4.1 Local rules

During the drainage or imbibition process, the radii of the menisci increase or de-
crease as a consequence of the fluid redistribution. Several local rules have been
taken into account to reproduce the motion of multiphase flow:

- Once the non-wetting phase breaks through a throat (p. = p¢), the radius of
the meniscus quickly build up to keep the flow that invades the cell. This
phenomenon is called Haines jump (Haines (1930)) and it’s rather unstable.
Even though quasi-static approaches are frequently adopted in this chapter, the
geometric configuration of the porous media leads to several dynamic events.
Indeed, as the capillary pressure increases, fluid-fluid interfaces are displaced
towards the narrow throats. After achieving the entry capillary pressure, the
non-wetting phase rapidly invades the wide pore space. Such invasion results
into a pressure drop associated to the quick change of meniscus curvature.
This phenomenon is illustrated in the image sequence of figure #.4.

- Isolated liquid bridges or clusters can form during drainage, this phenomenon is
well described in the model as shown in figure f.4d. Liquid bridges are treated
as disconnected structures that can also increase or decrease their volume
if they are under condensation/evaporation. The interface of the bridges is
updated according to the mean value of capillary pressure and Eq. . This
feature can be optionally turned off if we consider that clusters are isolated
and liquid mass is unaltered.
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- During the invasion of a cell, a meniscus splits into two menisci when_the
interface gets in contact with a solid object (see sequence between figures Qa
and @.4b). Mass is conserved during the whole process.

- Likewise, two menisci can merge into a single meniscus if there is a contact
point between the two interfaces (see figure Y.7).

4.2.5 Hydro-mechanical Throat-Network coupled model for
partially saturated porous media (TN-DEM)

In this section, we propose a hydro-mechanical coupling between the Throat-Network
model and the Discrete Element Method, termed as “TN-DEM?”. After solving the
fluid forces on the solid phase as shown in Eq. @, the DEM can be employed to
reproduce the mechanical response of the solid grains. DEM was proposed originally
by Cundall and Strack (1979) and has become a popular tool in the study of granular
media.

In this chapter, the solid particles are idealized as disks interacting with each
other. Each particle k is identified by its radius Ry, mass my and rotational inertia
I;.. Particle motion is described by Newton’s second law. Thus:

mkdd% =F§ +F2 +FL (4.10)
where uy is the translational velocity of particle k, Fy, is the contribution of the
contact forces, F§ is the gravitational force and Flf( is the fluid force acting on the
solid grain (computed using Eq. )
This work is based on a linear contact model, in which the force-displacement
relationship between two solid bodies is represented by linear springs. The relation-
ship is defined by the normal and shear stiffness, k, and k;, respectively, and an
inter-particle friction angle ¢..
The normal forces Fy, are directly computed from the relative normal displace-
ment §, between each pair of particles (see figure .3a):

F,=Fn=k,6n (4.11)

As illustrated in figure @a, particles in contact are allowed to overlap among
each other. Such overlap reflects the deformation near the contact.

Concerning the tangential component, Fg is computed at each time step as func-
tion of the increment of tangential relative displacement Aug:

AFg = Fit = kAust  —  F) = F () 4 AR (4.12)

The normal stiffness can be expressed in terms of the bulk modulus of the nu-
merical assembly and the radius of the interacting particles:

R4 -Rp

ky = 2F - A B
Rs +Rp

(4.13)
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| Fytang,
kN
\ Aug
— Futand,

Figure 4.3: (a) Definition of normal particle displacement. (b) Normal and shear
stiffnesses at contacts. Schemes of elastic-plastic contact model: Normal (c) and
tangential (d) interaction law. Images taken from (Catalang, 2012; Yuan, 2016).

The shear stiffness is defined as function of k,, and a dimensionless parameter a
related to the Poisson’s ratio:

The shear strength follows the Coulomb friction law. We denote Fg as the upper
limit of the tangential force, then, tangent sliding occurs when:

| Fs ||> Futang, (4.15)

The implementation of the TN-DEM model is based on the open-source code
“Yet Another Dynamical Engine” (YADE) platform (Smilauer and Chareyre (2010)).
YADE has been employed for particle-fluid coupling (Chareyre et al) (2012); Lominé
et all (2013)), analysis of soil-structure interaction (Effeindzourou et al) (2016)),
FEM-DEM coupling (Guo and Zhag (2014)), etc.

4.3 Results

Several examples are illustrated in this section in order to validate the accuracy of
the model and the ability to track the motion of fluid-fluid interfaces.

Hereinafter, results will be presented in terms of the following dimensionless
variables:

V(t
— Volume: V* = ‘E ), where V(¢) is the volume at time ¢ and V, is the initial
volume. ’
R
— Capillary pressure: p; = pLy, where 7y is the surface tension and R is the

average disk radius. p. is the average capillary pressure, hence, p, = pex —

NZ]]VZI pj, where N is the number of cells.

X
— Coordinates: x* = R and y* = %, where x and y are the coordinates and R is

the average disk radius.
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4.3.1 Slow drainage

This scenario considers a quasi-static drainage of an isolated cluster (see figure @)
with very low capillary number (Ca = 5-107%). The wetting phase is gradually
removed from the meniscus located in the throat formed by particles B and C. We
have divided the dying process into 4 points to highlight the main characteristics
throughout the drainage process:

a

) b)

0 1 2 3 4 5 60 1 2 5 6
z*[-] z*[-]
5
— TN
4 — LBM
b
i
% o a
9 d
C
1_

04 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.4: Comparison of interface position and saturation curve between LBM and
TN models. Quasi-static drainage is assumed. Various liquid contents are displayed:
a) V*=0.98,b) V* =0.81, ¢) V*=0.69 and d) V* =0.51.

« a) An isolated liquid cluster made up of 6 disks of different diameter is the

starting point. The system is in equilibrium and fully saturated. The initial
geometric configuration and the starting point of the saturation curve are
displayed in figure §.4a.

b) Capillary pressure is slowly increased to guarantee quasi-static conditions,

hence, according to Eq. , the meniscus radii are reduced. Once the entry
2

pressure is achieved | p, = Rl - pﬁ), the non-wetting phase pene-
roat

m
trates the pore body (see figure ). The throat between particles E and
D is the widest one, thus, the one with lower entry pressure and the first to
be invaded. The instant before the invasion of pore throat D-E corresponds
to the peak displayed on the saturation curve of figure §.4b. Then, a sud-
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den dynamic jump is observed, this phenomenon was mention before, referred
as Haines jump. At this stage, fluid motion is considered dynamic and the
quasi-static conditions imposed during drainage are no longer fulfilled. The
fast invasion of the pore (see transition between points ”a” and ”b”_in figure

) results into a pressure drop (see the saturation curve of figure @), con-
sequently, the rest of the "open” pore throats are refilled to keep the volume
constant. Finally, the meniscus touches a solid surface (disk A) splitting into
two menisci that have the same curvature. At this moment, throat D-E is
considered "empty”. Besides, throats A-E and A-D become "open” throats.
Once the dynamic event is over, capillary pressure starts building up again in
order to continue the drainage process under quasi-static conditions (see the
increasing path after point "b” in the pX —V* curve of figure §.4).

 ¢) The non-wetting phase keeps invading the cluster (see figure Qc) After the
invasion of throat D-E, the widest "open” throat is the one between particles
A and E (even though it might not be visible to the plain eye). Therefore,
throat A-E is the next to be invaded. During the process we observe almost a
perfect match between the interface obtained with the TN and LBM models.
Regarding the saturation curve, very similar paths are found using the two
different models.

o d) By the end of the drainage process (see figure @d), two pendular bridges (E
- F and F - G) and a small cluster remain present and disconnected. Results
obtained with the Throat-Network model are in good agreement with the
lattice Boltzmann simulations.

4.3.2 Fast drainage

In this example, the same configuration as in subsection is assumed, however,
in this scenario the suction rate is increased. Therefore, we proceed to quickly drain
the liquid content (Ca =5-1073). The liquid phase is removed from the meniscus of
ﬁethroat formed by particles B and C with a higher suction rate than subsection

3.1,

As evidenced in figure @a the non-wetting phase penetrates through throat D-E
as in the previous subsection . In contrast, after the first invasion, non-wetting
phase does not follow the same path (see figure §.5b). Due to the viscous effects, a
significant pressure gradient is found between the adjacent triangle of throat A-D.
Despite the fact that throat A-E has a lower entry pressure than A-D, the capillary
pressure achieves higher values in throat A-D than throat A-E. Consequently, the
non-wetting phase flows through throat A-D.

Regarding the accuracy of the TN model, we observe that results are consistent
with the LBM simulations even though saturation curves are not as close as they
were in the quasi-static regime.

A relevant feature observed in figure @b is the non-constant curvature of the
meniscus of throat A-D obtained with LBM. The strong pressure gradient is the
driving force that leads to a dynamic displacement of the interface. On the contrary,
all the menisci provided by the Throat-Network model correspond to circular arcs. In
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Figure 4.5: Comparison of interface position and saturation curve between LBM
and TN models. Fast drainage is considered. Various liquid contents are displayed:
a) V¥*=0.75 and b) V* = 0.68.

spite of the non-circular menisci obtained with LBM, the TN interfaces follow almost
the same path and very few differences are observed. In contrast of subsection @,
the viscous forces play an important role in the fast drainage situation. Thus, menisci
adopt a wider range of radius. Even though there is a slight mismatch between some
interfaces, we consider that the TN model is able to mimic the menisci interfaces
realistically under more dynamic conditions.

The peaks observed in the saturation curve correspond to the non-wetting phase
invasions of throats E-D and A-D. It is worth noting that the first peak is almost
coincident with the one obtained under quasi-static conditions. A non-negligible
difference is observed between LBM and TN model saturation curves in the lowest
point between the peaks. The approximation in Eq. is the main reason of the
mismatching and it hinders the evaluation of the fluid motion. Notwithstanding
these difficulties, the TN model is still able to reproduce the dynamic behavior.

Figure @ illustrates the pressure gradient inside the cluster. The column on
the left displays the evolution of the pressure field according to the TN model.
On the right, the discrepancies between the pressure field obtained with the LBM
pj,LB - P;TN

* *
pLB,max o pLB,min

and the TN are depicted as +100, where pyg . and prp ., are,
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Figure 4.6: Evolution of pressure field during a fast drainage. On the top row, the
pressure in each cell obtained with the TN model. At the bottom row, the difference in
terms of pressure between LBM and TN models. Various liquid contents are displayed:
a) V*=1.00, b) V* =0.86, and c) V* =0.72.

respectively, the maximum and minimum capillary pressure obtained with LBM. At
the beginning of the simulation, no significant pressure differences are observed as
shown in figure §.Ga. Figure ¢.6b displays the fluid configuration and pressure field
at the beginning of the invasion of the first pore throat (throat D-E). We _point out
the low pressure values (dark colors are observed on the left of figure §.Gb) as a
consequence of the high capillary pressure (see the first peak of the saturation curve
in figure {.5). Moreover, the bottom row of figure 4.6b evidences a nearly negligible
error between the LBM and the TN pressure fields. Finally, the pressure gradient
becomes more visible in figure §.Gc after the invasion of the second throat (throat
A-D). The negative values observed at the bottom of figure @c suggest that TN
model tends to overestimate the pressure field. Nonetheless, ﬁgure@ shows the
error is considerably low during the drainage process, therefore, the TN model is
suitable to study the pressure field.

4.3.3 Imbibition of a macropore

This section illustrates a typical phenomenon observed in porous media: coalescence.
Isolated or trapped clusters usually merge/coalesce during imbibition. More partic-
ularly, we simulate a macropore under imbibition conditions. The flux is imposed
on the interfaces so that capillary pressure decreases. Therefore, menisci get larger
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and merge once they touch other menisci (see figure @) The number of menisci
is reduced (as the radii increase) until the macropore is almost fully saturated (see
figure @c)

Except for very few cases, menisci curvature decrease (interfaces move towards
wider pore spaces). Thus, quasi-static conditions are assured throughout the simu-
lation. The lack of dynamic events leads to an almost perfect match between LBM
and TN profiles (see figure K.7). It should be underlined that capillary pressure -
saturation curves (see figure {1.7) are also in good agreement, however, slight discrep-
ancies are noticed at the small pressure drops. Those jumps correspond to minor
Haines’ events that occur when the wetting phase passes through the throat and
starts occupying a wider space. Only a few of Haines jumps take place during the
imbibition macropore, thus, dynamic effects are insignificant compared to the ones
observed in previous sections 4.3.]] and {.3.2. Additionally, figure underscores
the fact that p. — V* relationship gets smoother (due to the lower menisci curva-
tures) as the wetting phase fills the macropore. Overall, LBM and TN results are
coincident, suggesting that TN is capable to reproduce the coalescence mechanism.
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Figure 4.7: Comparison of interface position between LBM and TN models. The

capillary pressure is deliberately reduced to force the imbibition of the macropore. The

menisci begin merging with other menisci as they increase the radii. Gradually, the

system is getting more saturated. Various liquid contents are displayed: @ v*=1.01,
V*=1.03 and © V* = 1.09.
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4.3.4 Pore refillig

The present section aims to reproduce the "pore refilling” mechanism. As we mention
in the previous examples, the motion of the fluid-fluid interface from a narrow throat
to a wide pore body results into a Haines jump, and subsequently, to a quick fluid
redistribution. Technically, a strong dynamic event could lead to the refilling of a
pore throat that was already empty. In order to mimic this phenomenon, we have
adopted the disk configuration displayed in figure #£.§. Quasi-static conditions have
been assumed to ensure drainage kinetics. The most remarkable events during the
drainage processa are listed below:

3.5 a) TN
—LBM

3.0

2.57

- 2.0

1.59

1.0

0.5

Figure 4.8: Comparison of interface position between LBM and TN models. Various
liquid contents are displayed: a) V*=0.97, b) V* =0.82, ¢) V* =0.80, d) V* = 0.69,
e) V¥*=0.58 and f) V* =0.54.
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o a) The 5-disk assembly is initially fully saturated as shown in figure @a.

e b) The non-wetting phase penetrates through throat A-B. The A-B menis-
cus slightly grows until it encounters disk C. Figure §.8b evidences that cell
ABC is not much wider than throat A-B. Consequently, capillary pressure is
marginally reduced (no relevant pressure drop is observed) after reaching the
entry capillary pressure of throat A-B (see figure @)

« ¢) A-B meniscus splits into two menisci when reaches disk C. The new config-
uration is a cluster formed of 4 disks (B-C-D-E) and an isolated bridge (A-C).
The advance of the interface continues while capillary pressure is increased
(see figure @)

e d) The D-E meniscus interface keeps increasing its curvature until invading
the pore throat. At this stage, capillary pressure (entry capillary pressure for
throat D-E) reaches the peak in ﬁgure@

e ¢e) The arc meniscus D-E displaces the wetting phase filling the pore body
contained by particles B-C-D-E. The rapid invasion causes a pore refilling. All
the menisci reduce their curvature. The most remarkable fluid displacement is
found at throat B-C. The dynamic action induced by the Haines jump starts
filling the ABC pore body. Besides the refilling mechanism illustrated in §.8e,
we observe the significant pressure drop that triggers the refilling phenomenon
in figure §.9.

o f) ABC pore body is completely refilled with the wetting phase. From the
last three images of the sequence (figures §.8d, k.8e and ), we evidence
that non-wetting phase penetrates the cluster through throat D-E and pushes
the liquid cluster towards the left side, eventually refilling the cell made up
of particles A-B-C. The simulation was stopped when the arc meniscus D-E
touched disk C.

— TN
— LBM

%

05 06 07 08 0.9 10

Vel

Figure 4.9: Comparison of capillary pressure - liquid content curve between LBM
and TN models. The liquid contents of figure are included in this image.
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Excellent agreement is found between the numerical models (TN and LBM).
Slight differences are only revealed during the Haines jump (see figure 1.8e). Re-
garding the capillary pressures - saturation curves, the predicted capillary pressure
curve obtained with the TN model is in good agreement with LBM. Once again,
some discrepancies become evident during the dynamic event (see points "e” and
”d” in figure @)

4.3.5 Drainage within porous media

After validating the TN model for the local mechanisms described in previous exam-
ples, we now consider a drainage-imbibition cycle in a small 2D granular assembly
consisting of equal-sized disks.
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Figure 4.10: Comparison between fluid distributions of TN (left images for each
column where wetting phase is depicted in light blue) and LBM (right images for
each column where wetting phase is depicted in dark blue) models during the drinage.
Various liquid contents are displayed: a) V* =1.00, b) V* =0.92, ¢) V* =0.81, d)
V*=0.66, ¢) V* =0.44 and f) V* =0.38.

Initially, the sample is fully saturated with the wetting phase (see figure a).
Impermeable walls are considered along the vertical sides. A pressure gradient
between the two phases is imposed to trigger the motion of the interface. As a
consequence, the non-wetting phase advances through the porous medium passing
through the widest throats. Figure .10 shows the complete sequence of drainage for
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the TN and LBM models. In particular, the fluid distributions displayed in figure
m correspond to different liquid contents during drainage. The saturations for
each model were matched as closely as possible. It should be noted that numeri-
cal simulations were not controlled for liquid content, instead, flux was adjusted to
drain the granular assembly.

Figures b, c and d show that non-wetting phase advances according
to a stable displacement, as a matter of fact, three pore throats are invaded almost
at the same moment. In this example, Ca ~ 7-1072, such capillary number infers
quasi-stationary regime is not fully satisfied. These flow properties accompanied by
a similar width among the three invaded pore throats, lead to a stable non-wetting
front. Conversely, the final part of the drainage (figures @e and @.10f), is driven
by a process that shares some similarities to those of fingering mechanism. It should
be reminded that in Chapter 1 (section [1.2.2.1.1]), we indicate, as suggested by
Lenormand (11990), that capillary number and dynamic viscosity ratio are the two
main parameters that affect the fluid displacement behavior.
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Figure 4.11: Number of invaded cells VS coincident cells.

Qualitative good agreement is observed for the fluid distributions. We emphasize
that both LBM and TN follow almost the same pattern throughout the drainage.
The main discrepancy is found in the isolated liquid clusters. Both models are
able to capture the wetting phase trapped in the porous media during drainage.
However, figure t.10f shows that TN model includes several pendular bridge and a
couple of trimers, whereas the LBM model ends with very few bridges. The sequence
illustrated in figure B.1( evidences that liquid bridges obtained with LBM decrease
their volume much faster than the TN model. The reason is associated to the mass
transfer between liquid clusters through a solid surface. Physically this corresponds
to the film flow over particle surfaces. This phenomenon is well represented by the
mulicomponent SC-LBM. On the other hand, laminar flow over solid surface is not
an available feature in the current TN model.
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The good accuracy revealed in figure is quantitatively summarized in figure
m. Essentially, figure .11 accounts for the invasion sequence. The coincident
cells (pore bodies) between LBM and TN models are evaluated during the drainage
as the cells are progressively invaded. As suggested in figure @, TN and LBM
models not only end up with very similar fluid distribution, but also follow the same
preferential path. In average, 91 % of the cells are coincident between LBM and TN
model during drainage.

18 35 53 7.0 88105 12.3 14
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Figure 4.12: Comparison between fluid distributions of TN (left images for each
column where wetting phase is depicted in light blue) and LBM (right images for each
column where wetting phase is depicted in dark blue) models during the imbibition.
Various liquid contents are displayed: g) V* =0.40, h) V* =0.48, i) V* = 0.51 and j)
V*=10.60.

Imbibition starts from the end-point of the drainage simulation (see figure f).
Figure @ indicates that LBM and TN follow significantly different fluid patterns.
The main reason is, once again, related to the diffusive interface typically associ-
ated to the multicomponent Shan-Chen LBM. Fluid flowing over solid surfaces is
evidenced in the LBM sequence of figure .12, Mass transfer becomes relevant when
two solid objects are close. Due to the diffusive layer between the fluid and the
solid (lChen et al.l (l2014l), the wetting phase rises up through the solid-fluid inter-
face. During the imbibition procedure, liquid bridges are spontaneously formed as
a_consequence of the vapor diffusion. This phenomenon is physically explained by
tForcada ( 1993]): first, liquid films spread over the solid surfaces. Then, if the solid
surfaces are close enough, a fluctuation might change the thickness of the film. When
the films get in contact, surface tension forces pull the liquid towards the junction
and a bridge is formed. The formation of pendular bridges eases the presence of
trapped non-wetting fluid. The size of the residual non-wetting phase during the
imbibition varies depending on the pore topology.

On the other hand, no trapping is possible in the TN model. A frontal displace-
ment of the wetting phase is observed in all the TN imbibition sequence (see figure
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). In order to improve the TN model, it would be desirable to incorporate the
absorption of the wetting phase into a laminar liquid film over the solid surfaces.
Such feature could be a potential improvement to enhance the mass transfer process
between solid bodies.

Despite the general disagreement depicted in figure , we observe that differ-
ences are significantly reduced if we neglect the trapped non-wetting phase and focus
on the main front displacement. In fact, figure 4.12j shows that wetting phase dis-
tributions occupy the left side of the granular assembly while no significant changes
(non-wetting phase is present during the imbibition) are observed on the right re-
gion. Thus, TN gives an acceptable agreement with LBM when the non-wetting
phase in residual areas are not taken into account.
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Figure 4.13: Comparison of pi —V* curves obtained from the TN and LBM simu-
lations. The liquid contents of figures and are included in this image.

Drainage and imbibition p7 — V™ curves are presented in figure . The liquid
contents associated to the fluid distributions of figures 4.10 and m are incorporated
in figure Y.13 with vertical lines. Relatively good agreement is observed between
the TN and LBM drainage curves. Results are not as encouraging as the fluid
distribution patterns in figure #.10 or the examples of local phenomena presented
in previous subsections. Notwithstanding local differences, the same behavior and
trend are observed in both drainage curves. The three most prominent p} peaks
(V¥ ~0.44, V* = 0.76 and V* =~ 0.91) are found for very similar liquid contents.
Such peaks appear when the non-wetting phase faces significant narrow pore throats.
Important Haines jumps are observed for the first two peaks (V* ~ 0.76 and V* ~
0.91). It is particularly interesting to relate the three dynamic events to the fluid
distribution depicted in figure {.10:

o First peak - Capillary pressure builds up as the non-wetting phase advances
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following a stable displacement (figure a) until reaching the entry capillary
pressure that leads to the invasion of the wide pore bodies below the top
granular layer (see figure b).

o Second peak - The non-wetting phase occupies the widest pore bodies after the
first invasions. Then, capillary pressure is increased as the drainage proceeds
(see figure c). The non-wetting phase penetrates through the pore throats
(figure d) when the meniscus curvature attains the critical curvature as-
sociated to the entry pressure. The second important invasion is accompanied
by another pressure drop.

o Third peak - The non-wetting phase flows through three preferred paths as
displayed in figure ff.10e. Such invasion occurs with a gentle slope in the p} —V*
curve, specially in the LBM simulation. Finally, the non-wetting phase breaks
ugh the bottom disk layer and the drainage simulation is stopped (figure
1.10f).

In general, TN and LBM simulations follow the same p} —V* drainage curve.
The main difference is associated to the smoothness of the lines. LBM simulation
follows a smooth drainage curve. Whereas TN has a saw-like curve. Both following
the same trend and able to reproduce the main dynamic effects. The reason of these
differences is related to viscosity. Even though we have imposed the same viscosity
ratio (M = 1), TN fluctuations observed in figure suggest that LBM drainage
occurs under a more dissipating process than the TN simulation.

During imbibition, it is evident that there is less agreement between LBM and
TN simulations. Different slopes are found in figure @ Moreover, local events,
such as the wetting phase invasion through narrow pore throats, are not coincident
in the imbibition curves. The main source of inaccuracy is the important role played
by the film flow in the LBM simulation. Due to the formation of pendular bridges
during the imbibition, the fluid distribution is strongly modified (see figure )
hindering the comparison of the p} —V* imbibition curves.

4.3.6 TN-DEM results

This section presents the results obtained with the TN-DEM approach for the sim-
ulation of a biaxial test in drained conditions. Vertical (y-axis) compression at
constant strain rate and constant lateral (x-axis) stress were applied. The simula-
tion was performed on a 2D mono-disperse granular assembly. We reproduce _two
different scenarios: a dry specimen and a partially saturated sample (see figure )

The following parameters were employed in the TN-DEM model to generate and
evaluate the hydro-mechanical response of the two granular assemblies:

— Number of particles: N, = 500

— Inertial number: A = _rR =6.9-1077
\V Giso / P
: : : kn
— Dimensionless normal stiffness: ¢ = o = 13.33
* Oiso
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Figure 4.14: Evolution of the phases of a dry and a wet granular assembly during a
biaxial test. The saturation degree of the partially saturated sample is: S,, =0.12. The
configurations of the granular assembly are illustrated for different vertical strains: a)
€y =0,b) &, =0.14 and ¢) ¢, =0.23

— Stiffness ratio: I]z—s =0.25

n

— Inter-particle friction coefficient: 45¢

— Wall-particle friction: 0°

where 7 is the shear rate, R is the radius of the grains, p is the density of the
grains, Ojs, is the isotropic pressure, k, is the normal stifness and kg is the shear
stiffness.

After the generation of the specimen, the granular assembly was isotropically
consolidated under a constant pressure of oj5,. Then, the sample was vertically
compressed with the top wall moving downward and the bottom wall moving upward
at a constant velocity. Meanwhile, horizontal pressure on the granular assembly
remained constant.
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The macroscopic mechanical responses of the two granular assemblies are de-
scribed in terms of the following dimensionless variables:

o Deviatoric stress: ¢* =
Oiso

e Volumetric strain: g,

where the deviatoric stress (¢*) is obtained by subtracting the main stresses
(oyy — oxx), thus, it is responsible for the distortion of the soil, and the volumetric
strain (g,) refers to the unit change in volume.

Figure illustrates the typical macroscopic behavior of a dense sand. We ob-
serve that both dry and unsaturated sample have similar deviatoric stress - vertical
strain and volumetric strain - vertical strain curves. Figure a shows the devia-
toric stress increases with a nonlinear behavior until reaching the peak (¢* ~ 1.0).
The increment of &, after the peak leads to a constant residual g*. Concerning
the €,y — &, relationship displayed in figure b, the volumetric strain reveals a
weak compression first, then €, increases (expansion of the sample) with the verti-
cal strain. This mechanical behavior is in good agreement with the experimental
observation on dense sands.
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Figure 4.15: Stress-strain relationship of a dry and a wet granular assemblies during
a biaxial test. a) Deviatoric stress - vertical strain and b) Volumetric strain-vertical
strain curves.

4.4 Conclusion

The present work presents a pore-throat network model capable to model three-phase
flow in 2D porous media made of packed circular particles. This model overcomes the
difficulties related to the geometric simplification of most of pore-network models.
The position of the interface is well described and proven to be almost identical to the
LBM fluid-fluid interface in most of the basic examples (simulations from section
1.3.1 to {.3.4). Saturation curves and pressure field are also in good agreement.
Throughout the elementary simulations, it becomes evident that TN model can
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handle several local events such as: Haines jump (figure Q), meniscus rupture into
independent menisci (figure @b), coalescence of two menisci (figure {1.7) and pore
refilling due to dynamic effects (figure {.§). Moreover, the algorithm of the current
Throat-Network model strongly reduces the computation time respect to the lattice
Boltzmann simulations. In particular, TN model speeds up the computation time
with a factor of 20-40 depending on the simulation.

We remark that TN applies to both quasi-static and dynamic flow. Even though
accounting for different kinds of flows overcomes the difficulties of previous models
to deal with dynamic fluid displacement, the TN model is restricted to simulations
in a 2D granular medium consisting of disks.

The accuracy of the TN model is slightly reduced in the drainage-imbibiton cycle
of a 2D granular assembly. The front of the advancing phase is not able to perfectly
mimic the interface displacement obtained with LBM. However, the fluid pattern
observed during the drainage is almost coincident and the pf —V* curves are reason-
ably similar. Overall, TN captures correctly the dynamic events and the non-wetting
preferred paths. Unfortunately, several mismatches are found during the imbibition
procedure. Such discrepancies are attributed to the mass transfer mechanisms as-
sociated to the LBM simulations. The diffusion process allows the reconnection of
the wetting phase trapping the non-wetting phase in the porous medium, whereas in
the TN model, no trapping (of the non-wetting phase) is possible. Film flow mech-
anism should be considered for future developments in the TN model. However, we
argue that imbibition simulation performed with LBM matches the reality since the
film of the wetting phase around the solid surface is much thicker than the one ob-
served in a physical framework. Therefore, the diffusive films easily interact forming
bridges between particles. The lack of diffusion mechanism in the TN model con-
trasts with the excess of mass transport observed in the LBM. Consequently, very
few similarities are manifested during imbibition.

In the future, TN model could be employed to study the three typical displace-
ment patterns in terms of the capillary number and viscosity ratio: capillary finger-
ing, viscous fingering, and stable displacement (see section [1.2.2.1. I) Huang et al.
(2014) studied the flow pattern through 2D porous media as function of M and
Ca. The present model (TN) is a potential tool to validate and complement their
work. In particular, TN could provide new insight into the transitions from stable
displacement to capillary fingering.

In this chapter we have also introduced the Throat-Network - Discrete Element
Method coupling scheme, referred as TN-DEM. The coupling has been implemented
by means of the open-source code YADE-DEM. This model is devoted to simulate
the two-phase fluid flow in deformable poly-disperse 2D granular materials. The cap-
illary forces induced by the motion of the wetting phase are evaluated for each solid
disk. Then, the fluid forces are incorporated in the DEM to solve the contact forces
and displacements of the solid grains. The macroscopic mechanical response has
been analyzed for a mono-disperse granular assembly containing 500 disks during
a biaxial compression test. The simulation has been performed using a completely
dry sample (DEM) and a partially saturated assembly (TN-DEM). No significant
differences between the dry and unsaturated samples are evidenced during the bi-
axial test. Such results suggest that, in this scenario, liquid clusters have a low
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effect on the macroscopic mechanical behavior. Consequently, TN is suitable for
applications involving hydro-mechanical analysis, such as the volumetric and shear
strength behaviors under different loading-unloading.

The analytical solutions used in the present 2D model are no longer valid in 3D,
however, new efforts (Chareyre et al) (2017)) are geared towards the simulation of
multiphase flow in 3D systems to complement previous works in the same field (Blunt
et al) (2002); Sinha and Wang (2007); Yuan et al| (2016)). In this direction, this
work can be a starting point to set the basis for a new model based on semianalytical
expression able to mimic three-phase flow through porous media. In fact, next
chapter is devoted to develop a hybrid model that combines the efficiency of the
Pore-Network approach and the accuracy of the LBM to evaluate the local rules at
the pore scale.
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Chapter 5

Study of an isolated pore throat

5.1 Introduction

In previous chapters we evidenced that capillary pressure plays a crucial role in
determining the motion of fluids within the porous media. Overall, capillary pressure
increases gradually during drainage. However, abrupt pressure drops appear when
the non-wetting phase passes through a narrow pore throat to penetrate into a wider
pore body (Haines (1930)). Such instability is caused when locally, the capillary
pressure exceeds the entry capillary pressure (pé < pc). p¢ can be approximated
by the Incircle method (Sweijen et al| (2016)), the Mayer-Stowe-Princen (MS-P)
method (Joekar-Niasar et al) (2010b); Yuan et al| (2016)), or direct fluid simulations.

Direct fluid dynamics simulations based on computational fluid dynamics (CFD)
are suitable to reproduce the motion of multiphase flows with excellent accuracy
at the pore-scale. However, such models present computational limitations at the
macro-scale. Several studies based on the lattice Boltzmann method (LBM) (Pan
et al} (2004); Van Kats and Egbertd (1999); Ahrenholz et al| (2008)) and Smoothed
Particle Hydrodynamics (SPH) (Tartakovsky and Meakin (2006)) simulations have
successfully described the interface displacement in complex geometries. Even though
both methods are easily parallelized, simulations are restricted to relatively small
domains due to the high computation cost. Additionally, recent works (Raeini et al.
(2012)) have analyzed the evolution of the fluid-fluid interface by means of the
volume-of-fluid (VOF) method.

In contrast, more computationally efficient methods have been developed to avoid
the tedious and expensive computation demand of CFD methods. Such methods
rely on estimations and approximations that predict the behavior of multiphase flow
within an acceptable computation time in detriment of the accuracy. Pore-network
(PN) models have been largely used to predict the motion of fluids through porous
media (Fatt et al) (1956); Fenwick et al| (1998); Blunt (2001)). PN models manage
to reduce the computation time by simplifying the pore geometry.

This chapter establishes preliminary steps for a Hybrid model in which small
subsets of a granular system are extracted from a granular assembly. Each subdo-
main is solved using direct simulations, in particular, LBM simulations. The fluid
displacement through porous media of an initially saturated assembly is strongly
influenced by the distribution of the entry capillary pressure. It is, thus, crucial to
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determine p¢ for every LBM elementary problem. In addition to the accuracy given
by the LBM to find p¢ for each pore throat, useful hydrostatic properties are accessi-
ble from direct simulations (pendular rings formed between particles, capillary force,
pressure and velocity fields, p. —S,, curves, etc). The results are provided for differ-
ent geometric configurations. Moreover, the local properties obtained for individual
pore throats by means of the LBM are compared to approximation methods (MS-
P and Incircle methods), which are an interesting choice when the computational
resources are limited.

5.2 Pore-scale Volume Decomposition

The pore-scale network is based on the 2PFV-DEM scheme developed by [Yuan
and Chareyre (2017), which combines a three-dimensional triangulation method
and DEM for simulating the hydro-mechanical couplings in deformable granular
materials.

The same triangulation method is employed in this study to create the network
implementing some new extensions to adapt the computational domain for the LBM
simulations. Herein we briefly recall the essential part of the method in order to
introduce the new features. More details about 2PFV-DEM scheme can be found
in Yuan et al} (2016); Yuan and Chareyre (2017).

In a multiphase system (a water-air-soil aggregation in soil mechanics, for in-
stance), the solid is idealized to be a random packing of poly-disperse spheres, which
is created by Yade-DEM (Smilauer et al| (2015)). The pore space is decomposed
into large pore bodies and narrow pore throats by using the Regular Triangulation
(RT) method. RT may be seen as a weighted form of the classical Delaunay triangu-
lation, where the weight accounts for the size of each sphere. Its dual Voronoi graph

is entirely contained in the pore space, thus, the graph can be used to describe the
path available to the fluids (see figure @)

a) b) )

O pore body
O
O QQ

Figure 5.1: (a) Decomposition of void space by Regular Triangulation method and
(b) corresponding Voronoi graph in 2D based on the 2PFV-DEM scheme of [Yuan and
Chareyre (2017). (c) a pore unit in 3D.

pore throat

solid

In the triangulated geometry of 2PFV-DEM, a pore body is defined as the irregu-
lar cavity within a tetrahedron, and bounded by four solid spheres (whose centers are
the vertices of the corresponding tetrahedron). A pore throat is defined by the cross-
sectional area extending within a tetrahedral facet (2D object). Pair interactions
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(including solid-solid contacts) act along the edges (1D object) of the triangulation.
Finally, the 0D points are attached to the solid objects.
5.3 Pore-scale approximations

Following the triangulation scheme described in @, a sphere packing can be de-
composed as shown in figure @ The topology of the pore throats is described by
each elementary subset. In particular, the shape of a pore throat is defined by the
cross-sectional area extending within a tetrahedral facet (see figure p.3).

c)
Simulation of each
pore throat
Figure 5.2: Decomposition of the granular assembly (a) into small subsets (b). Each
subset is made up of 3 spheres (c).

b)

a)
Decomposition
into subsets

ﬁ

As detailed in section , entry capillary pressure is one of the main factors
controlling drainage. The following criterion is considered to reproduce the non-
wetting phase invasion: if the capillary pressure (p.) is larger than the entry pressure
(Pt < pc), the non-wetting phase invades the pore body. Thus, the displacement of
the non-wetting phase is directly linked to the capillary pressure.

o Qo°
=0 a

Figure 5.3: Top view of the computing domain after the decomposition.

During the fluid displacement, the interface adopts very complex shapes. In fact,
the interface menisci observed in a typical subset as depicted in figure @c show no
translational or rotational symmetry. According to Laplace-Young equation, the
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analysis of the meniscus shape requires solving a nonlinear, second-order, partial
differential equation, which involves a high computational cost. Due to this limi-
tation, it seems reasonable to consider other approaches that can predict the entry
capillary pressure and the meniscus shape. In this chapter, we employ direct fluid
simulations based on the LBM to determine the main hydro-mechanical properties.
Nonetheless, for practical purposes, when the computational resources are limited,
semianalytical expression can be used to predict the entry capillary pressure. The
most common approximations are the Haines Incircle method (Sweijen et al. (2016))
and the Mayer-Stowe-Princen (MS-P) method (Joekar-Niasar et al, (2010b); Yuan
et al) (2016)).

5.3.1 MS-P

Mayer-Stowe-Princen (MS-P) model predicts the capillary pressure of the arc menis-
cus of a fluid droplet of infinite length inside a cylindrical tube (Princen (11969);
Mayer and Stowe (1965); Ma et al| (1996)).

In the 2PFV-DEM scheme, the entry capillary pressure p¢ of the pore throat is
computed by following the MS-P method, which employs the balance of forces on
the non-wetting - wetting interface in the transient state. The balance on a specific
throat is written as:

Y F(pc) =F°(pc) +F'(pc) =0 (5.1)

where, FP is the capillary force acting on pore throat section domain and F* is the
total tension force along multi-phase contact lines (see figure b). p¢ is the value
of p¢ such that Y F(p.) = 0.

5.3.2 Haines Incircle approximation

Haines Incircle approximation (Haineg (1930)), "Incircle method” hereinafter, pro-
poses that the curvature of the interface passing through the pore throat is that of
a sphere in contact with the spherical grains defining the pore throat. Therefore,
the entry capillary pressure is p& = 27y/rins, where 7 is the surface tension and rip; is
the radius of the circle inscribed in the pore throat.

5.3.3 LBM simulation of a single throat

This section provides an alternative method to determine the entry capillary pres-
sure (p¢) for each pore throat. Instead of using the MS-P or Incircle approximations,
hydrostatic properties are obtained from direct fluid dynamics simulations. As ex-
plained in section b.2, the pore space is decomposed into a series of throat-domains
defined by a regular triangulation (see figure p.2). The decomposition leads to a
list of pore throats that are solved independently. A multicomponent multiphase
Shan-Chen LBM is employed to simulate the motion of the fluids and estimate the
primary drainage curve and the entry capillary pressure for each pore throat. The
computation domain is a triangular-shaped prism defined by three solid walls or-
thogonal to the pore throat (plane defined by the three spheres as evidenced in figure

b). Each of these solid boundaries passes through two of the spheres centers (two
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vertex of the triangle defined by the 3 spheres centers). The reader is directed to
figures and for a more comprehensive view. A contact angle of 90 degrees
is imposed on the boundaries to mimic symmetrical conditions for each solid wall.
Moreover, the domain is enclosed by two triangles at the top and bottom of the
prism representing the inlet and outlet sections of the LBM simulations.

a) b)

Figure 5.4: Invasion by a non-wetting phase of a pore throat formed by three spheres.
Notice the translucent third sphere in front of the other spheres.

Initially, both wetting and non-wetting phases are in equilibrium for each ele-
mentary problem. Figure shows the evolution of a typical subset configuration.
In this case, the pore throat is formed by three equal-sized spheres in contact. The
mass source and sink at the nodes located in the inlet and outlet sections are imposed
to gradually increase the capillary pressure. Such increment triggers the displace-
ment of the fluid-fluid interface (see figures 5.2c and figure p.4). The curvature of
the interface increases as the capillary pressure builds up.

MS-P Incircle

T

v T

0.60 1

0.52 4

0.50 A
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e []
Figure 5.5: Volume change and capillary pressure upon invasion of the throat, super-
imposed with entry capillary pressure predicted by the MS-P and the Incircle methods.
Three snapshots displaying vertical and horizontal slices of the simulation evidence
the liquid morphology before, during and after the pore invasion.

2p.R
The evolution of normalized capillary pressure (p} = p—c, where 7 is the surface

tension, R is the radius of the spheres and p, is the capillary pressure) during the
invasion is related to the change of volume of the wetting phase in figure p.5. p. is
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defined as the difference between the averaged non-wetting (p™) and wetting phase
(p") pressures for the nodes far from the diffusive interface:

pe=p™—p" (5.2)
The di‘r/nensionless volume is defined as:
t
V= 4&, where V(t) is the volume at time 7 .
§7TR3

The entry capillary pressure p¢ is defined as the maximum value reached by p;
during the invasion process. When p. reaches the entry capillary pressure (p. =
p¢), the non-wetting phase penetrates into the pore body (see figures and @)
Immediately after the invasion, the interface meniscus expands leading to a reduction
of the capillary pressure. This procedure is repeated for all the pore throats of the
sample. Thus, p¢ is determined for all the subsets and incorporated into the global
problem handled by the pore-network.

d) 1.0{ — MSP
— Incircle
— LBM
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Figure 5.6: Non-wetting phase invasion of a pore throat formed by three equal-sized
spheres in contact. a) Fluid-fluid interface deforming due to increments of capillary
pressure. b) Vertical slice providing a detailed view of the incipient pore throat. c)
Horizontal slice cutting the spheres in half. Wetting phase is accumulated in the
corners while in the center non-wetting phase fills the pore throat. d) Overlapped
MS-P, Incircle and simulated profiles.
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LBM results are compared to the entry pressure given by the MS-P method in
figure @ for a particular case: Three equal-sized spherical particles in contact. The
MS-P is applied considering a cylindrical throat with solid walls defining the same
cross-sectional shape as the three spheres (see figure @c and @d) It is clear that
after this crude simplification the MS-P is not expected to yield an exact value of
the entry capillary pressure, yet evaluating the corresponding error is of interest
since the same simplification has been used by previous authors (see e.g. Yuan et al.
(2016)). Another classical approximation of the entry pressure also considered is the
Incircle method (Haines (1930); Sweijen et al) (2017a)).

For this particular throat geometry, the MS-P prediction underestimates the
maximum pressure from LBM with a relative error of -0.114 (see figure p.5). The
error is of the same sign but significantly smaller with the Incircle method (-0.049).
It confirms the trend that was suggested previously on the basis of macroscopic
water retention data (Sweijen et al. (2017a)).

Finally, figure @ displays the state when p} = p- and the non-wetting phase
starts invading the pore body. The liquid morphology is depicted in figures p.6a
and @b. Figure @E shows a slice going through sphere centers to visualize the arc
menisci between the beads, in the corners of the pore throat. Figure @d offers a
comparison with the interface geometry which is assumed for determining p¢ ana-
lytically in the MS-P and the Incircle method, respectively. Interestingly, the MS-P
profile is approximating details of the solution in a more realistic way - including in-
plane curvature, although the best prediction of p¢ is obtained using Haines Incircle
method (figure @) The mathematical reason of this inversion is due to the mean

curvature value k = R + 7 being calculated differently in the two methods. Haines
Incircle method takes1 the %neniscus as a spherical cap, hence the principal radii of
curvature R; and R; are taken both equal to the radius of the inscribed sphere. The
MS-P method, on the other hand, is based on the assumption of no longitudinal
curvature, hence if Ry is taken as the in-plane curvature, it leaves Ry = co. For the
same in-plane curvature, the pressure difference Ap = ky from MS-P would thus be
half the value from Incircle method. Underestimating the in-plane curvature by the
Incircle turns out to be more than balanced by this factor two on the mean curva-
ture, and it finally gives the best approximation. Additionally, @b evidences that
the longitudinal meniscus curvature is a non-zero value, which technically breaks
the MS-P assumption of a droplet of infinite length. Even so, MS-P is capable to
reproduce accurately the arc menisci (see figure p.6d) after the invasion and predict
reasonable entry capillary pressures.

5.4 Validation of the decomposition scheme

As a validation step for the upcoming Hybrid model based on a decomposition of a
granular assembly into multiple pore throats, we analyze and compare the results for
a horizontal granular layer made up of spheres (see figure 5.7) and the widest pore
throat (the first to be invaded). The differences between the two simulations are
therefore crucial to decide whether the Hybrid model provides a reliable prediction.

The granular bed is illustrated on the top of each row in figure in different
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projections ( a) perspective view, b) top view and c) front view). Likewise, the
single pore throat based on the decomposition scheme is depicted at the bottom of
cach row in figure p.7. A low capillary number (Ca =~ 0.0001) is imposed in both
simulations to ensure a quasi-static drainage. Capillary pressure is increased for both
computational domains in order to reproduce drainage mechanism. As a result, the
non-wetting phase breaks through the granular layer passing through the widest
pore throat. The same phenomenon is observed for the elementary subset. Overall,
figure evidences almost coincident liquid morphologies throughout the drainage.
It is worth_noting the similar evolution of the meniscus shape after the invasion
(see figure @c) Additionally, the final liquid configuration of the subset analysis
suggests that only one liquid bridge out of three is possible after the invasion (see
figure p.1b). The remaining wetting phase is well reproduced in the decomposed
scenario, with shape and volume very similar to the result with the full layer.

Figure 5.7: Evolution of the interface during a drainage simulation. A granular
layer is depicted on the top of each row. The assembly is initially saturated and
drained until the non-wetting phase penetrates the layer. The invasion of the throat is
reproduced a second time following the decomposition scheme at the bottom of each
row. The interface displacement is displayed in a) perspective view, b) top view and
c) front view.
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Analogous results are found in quantitative terms. The primary drainage curve
is plotted in figure for both LBM simulations. Suction is evaluated for different

L(t
interface heights (L* = #, where L, is the initial height of the lower point of the
0
main meniscus). Good agreement is observed between the two curves. We emphasize
the similarity of the entry capillary pressure values and the lack of discrepancies
during the drainage.

—e— Decomposed system

—*— Full granular layer

124

0.6 0.7 08 0.9 10
L*

Figure 5.8: Capillary pressure evolution during the drainage simulations depiected
in figure p.1.

It is worth to point out the Haines jump observed in figures %nd @ This
phenomenon was observed in previous chapters (see figures R.28 and {1.4). During the
Haines jumps, the velocity field increases locally near the interface and reduces back
to a quasi-static regime after the liquid redistribution. As detailed by Berg et al.
(2013), capillary forces accelerate the meniscus interface whereas the inertial and
viscous forces resist to the fluid redistribution. In our test, inertial forces are larger
prllehr()at ~15
interial flow. Up to now, Haines jumps were basically observed for individual pore
throats, however, typical saturated granular materials are drained in cascade-like
events. This is an important feature to take into account in an environment with
multiple throats as shown in the next chapter.

than the viscous forces (Re/Ca = ), which is associated to a capillary-

5.5 Parametric study of an isolated pore throat

Pore-space filling during the fluid displacement is strongly influenced by the pore
geometry and the fluid distribution in the adjacent pores (Berg et al| (2013)). In this
section we investigate the effect of the geometrical configuration on the saturation
curves. More specifically, the influence of the inter-particle distances or radius ratio is
studied in four scenarios: 1) the three spherical beads are equally separated from each
other, thus, a pore throat formed by three particles symmetrically placed that gets
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wider as the inter-particle distance increases. 2) One of the solid spheres is shifted
away from the rest, meaning that two particles are always in contact. 3) Similar to
case 2) but the two immobilized spheres are not touching. 4) The radius ratio of the
third sphere is modified. Besides the sensitivity of these geometrical parameters on
the p —V* relationship, the accuracy of the MS-P and Incircle methods to evaluate
the interface profiles is tested.

Before going into details, it should be mentioned that hereinafter, we will usually
distinguish narrow and wide pore throat. The size of a pore throat is frequently
assumed to the radius of the circle fitting within its narrowest point, thus, the
Incircle radius (rins). Therefore, wide and narrow por throats cover a range of rip
that varies from nanometer to hundreds of micrometers. In this part of the thesis, we
will refer to narrow throats those that satisfy the following condition: rj,s < 0.4-R.
In contrast, wide thorats correspond to rj,s of same (or larger) order of magnitude
as the radius of the spheres (rj,;s > R).

5.5.1 Three spheres equally separated

We perform LBM simulations for subsets defined by 3 equal-sized spheres arranged
to form equilateral triangles (see figure ISE) Thus, the length of each triangle side is:
L=2-R+d, where R is the radius of the particles and d is the separation between

two spheres. From now on, the dimensionless separation distance is expressed as
d

St = 3 The main hydrostatic properties are investigated for pore throats with

separation distances ranging from §* = 0 (three spheres in contact) to $* = 0.8.

a) S* =0.2 b) S*:OE) Incircle
2.0 —— MSP
—— LBM

5/

0.0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5
o* e

Figure 5.9: Overlapped MS-P, Incircle and LBM profiles when the 3 spherical
bodies are moved away from each other. a) §* =0.2 and pi:zB =15.0. b) §*=0.5 and

P:ZZB =8.4.

Figure @ displays slices going through sphere centers to visualize the arc menisci
between the spheres. In particular, figure @ illustrates two pore throats of different
size. In figure p.9a, we observe a narrow pore throat. This configuration enhances
the existence of arc menisci between each particle pair. Such liquid morphology was
already found in figure p.G. The wetting phase gradually retreats as p. increases and
the fluid interface becomes more curved. According to Young-Laplace equation, the
interface shape at the moment of the invasion is given by the mean curvature (critical
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curvature) associated to the entry pressure. Consequently, at the narrowest part of
the pore throats (open edges of the triangle displayed in figure p.9a), the meniscus
cannot exceed the critical curvature, which entails the presence of the wetting phase
in the pore throat corners. As illustrated in figure 5.9a, the amount of liquid in the
narrowest areas given by the MS-P and LBM are relatively similar, however, less
agreement is found with the Incircle method.

On the other hand, a wider pore throat is evidenced in figure @b. In this case,
the pore geometry enhances the invasion of the non-wetting phase through the pore
throat. Due to the wide aperture observed in figure 5.9b, the critical curvature is
significantly lower than in the previous example. Therefore, the non-wetting phase
passes through the pore throat as a stable advancing front rather than adopting
sharped curved shapes. Furthermore, in this scenario, the non-wetting phase reaches
all the corners and manage to invade the whole pore space. Consequently, the
wetting phase is entirely displaced leaving no trace in the particle-pair edges (see
figure ). This phenomenon is well described by the MS-P approximation, which
considers that wetting phase trapping does not occur. Whereas the Incircle method
fails to reproduce the shape of the interface during the invasion.

4 16 20 24 1.1

8 12
a) $*=0.2 b) §*=0.5

o \ N
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0.8 > 0.8
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Figure 5.10: Capillary pressure - saturation relationships for a primary drainage of
pore throats formed by three spheres equally separated. a) $* =0.2. b) §* =0.5.

Figure shows the results of the test in_terms of capillary pressure and satu-
ration. Regarding the narrow aperture, figure p.10a evidences a very abrupt event at
pi = pe® ~15.0. At this moment, a Haines jump takes place since the non-wetting
phase passes from a narrow throat into a wider pore body. The drop in capillary
pressure results into a rapid interface displacement. On the contrary, @b shows a
less prominent peak for p} = p- ~ 8.4. After reaching the entry capillary pressure,
pr barely decreases. In contrast to the narrow aperture, the non-wetting phase inva-
sion occurs under fully quasi-static conditions (no Haines jump is observed). Indeed,
the interface shape is not strongly modified after the invasion of the pore throat. In
this case, the pore throat - body ratio is closer to 1 than in the previous scenario,
which turns to have a weaker impact on the entry pressure and the prominence of
the pX —V* curve.

We remark that the drainage of the pore throat displayed in figure @a eventu-
ally leads to the formation of pendular rings around the sphere-pairs. A graphical
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evidence of the pendular bridges after the drainage is found in figure a. The
presence of disconnected and trapped wetting phase in the pore throats as pendular
bridges is only reported for $* <0.2. Larger distances, as evidenced in figure p.9b
and p.11b, lead to a convex meniscus that advances through the wide pore throat
without leaving wetting phase behind, thus, the non-wetting phase invades all the
region that was previously occupied by the wetting phase.

So go

Figure 5.11: a) Pendular regime observed after the drainage of a pore throat with
S*=0.2. b) Fluld interface passes through the pore throat without wetting phase
trapping for §* =0.5.

5.5.2 One distant sphere

Following the previous subsection, we now investigate the hydrostatic response of a
system formed by three spheres, in which one of them is moved away from the other
two. The gap between the moving sphere and the two other spheres is illustrated in
figures .12, p.13a, p.14 and pH.15b. Plus, the distance is expressed in dimensionless

terms as: D* = R Liquid morphology and p} —V* curves are studied for distances

ranging from D* = 0.0 to D* = 0.8. We first investigate the sensitivity of the results
when the two remaining spheres are in contact, afterwards, we will evaluate the
results when the rest of the spheres are kept separated within a constant distance
while the third sphere is moved away.

Figure 5.12: Overlapped MS-P, Incircle and LBM profiles when one of the grains
is moved away from the other two while the rest remain in contact. a) D* =0.1 and
P:,’ZB =24.4. b) D*=0.4 and P::EB =13.2.
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Similarly to section , we observe that narrow throats (figure a) require
high interface curvatures to penetrate the pore neck and occupy the pore body. The
narrow and complex pore geometry is not only responsible for the sharp interfaces,
but also a determinant factor in the amount of wetting phase present in the corners.
On the contrary, in situations including pore bodies slightly larger than the throats

(figure b , the pore space filling occurs with an advance of relatively flat front
(low mterface curvature). The most noticeable aspect observed in figure is the
amount of wetting phase located in the particle pairs. The liquid content changes
much less for the edge linking the two spheres in contact. The meniscus recedes
much more on the other edges with larger gaps. When D* > 0.4, due to topological
reasons, the wetting phase is only found in the corner of the two touching spheres.

1.1 1.1

a) D=0.1 b)D=0.4 — LBM
—— MSP

1.0 1 —_— 1.0

— —— Incircle
0.9 1 > 0.9
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Figure 5.13: Capillary pressure - saturation relationships for a primary drainage of
pore throats formed by three spheres in which one of them is moved away from the
others that remain in contact. a) D* =0.1. b) D* =0.4.

The morphological discrepancies observed in figur are also revealed in terms
of capillary pressure - saturation curves. Figure p.13a shows a clear peak (p
24.4) followed by a sudden pressure drop Whereas the wider throat ( ﬁgure ﬁb
achieves a smoother peak at p* = p;** ~ 13.2, then, the non-wetting phase slowly
invades the pore body. The lack of a dynamic event (no Haines jump observed)
in the latter case is manifested in figure Eb with a gentle reduction of capillary
pressure.

The next example illustrates a typical configuration found in very loose granular
materials. It is common in such systems to deal with three solid objects that do
not share a single contact point. In particular, we consider two spheres that remain
immobilized throughout the simulation with a constant separation (see bottom par-
ticles in figure ) The third sphere is initially in contact with_the other two.
Then, it is gradually moved away from the rest as shown in figure p.14.

Two important results are evident from figure . First, the profiles predicted
by the approximations are far from the LBM meniscus interface. MS-P offers a bet-
ter description of the meniscus than the Incircle method, however, differences are
much more relevant in this case than previous examples (see figures and p.12).
Secondly, the significant distance that separates the two grains at the bottom of
figure E prevents the formation of a bridge between this particles-pair, nonethe-
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Incircle
—— MSP
—— LBM

P00 02 om0 0% 1.[65) 125 150 1. X } ) . 75 100 [?25 150 175 200
Figure 5.14: Overlapped MS-P, Incircle and LBM profiles when one of the grains
is moved away from the other two. The rest of the spheres are not in contact. a)
D*=0.0 and p,jp=14.8. b) D* =0.44 and p_j, = 8.4.

less, Incircle method fails to account for this feature and a meniscus is displayed in
figure wlb. Instead, the lack of a bridge between the bottom spheres is properly
estimated with the MS-P method.
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Figure 5.15: Capillary pressure - saturation relationships for a primary drainage of
pore throats formed by three spheres in which one of them is moved away from the
others while the rest are not in contact. a) D* =0.0. b) D* = 0.44.

All the examples presented so far indicate that MS-P method provides reliable
results in terms of interface profile as long as the particles are close to each other.
Discrepancies arise when the particles are moved away from the others. On the
contrary, figure p.15 shows pi —V* behavior is analogous to the one observed in
previous sphere configurations. Thus, entry capillary pressure predictions are less
influenced by the geometrical configuration than the interface profile. Moreover,
figure H.15 evidences wider pore throats lead to better MS-P predictions in detriment
of the Incircle results that overestimate the entry capillary pressure.
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5.5.3 Influence of the radius ratio

Several studies have evaluated the effect of the particle shape on the mechanical
behavior of a granular assembly (bavarretta et al. (M); Yang and Lug (2015)).
Along that same line, we now investigate the influence of different radius ratios on
ps—V* curves and meniscus profiles. The two spheres located at the bottom (see
figure @) remain unchanged (R;), whereas the radius of the third sphere (R;) is

modified according to the radius ratio a* = R—l ranging from a* = 0.4 to a* =2.0.
2
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Figure 5.16: Overlapped MS-P, Incircle and LBM profiles for different radius ratios.
a) a* =0.4 and P:,’ZB =12.0. b) @* =1.8 and p:’zB =16.4.

Both figures and reinforce the content covered in the previous examples,
which basically emphasize the idea that narrow pore throats (see the increasing py*
Incircle predictions with the radius ratio in figure , hence, rj,, is reduced as
a* increases) are well described in terms of interface profile by the MS-P and entry
capillary pressure by the Incircle method. Predictions become less credible when the
particles are separated (in terms of dimensionless distances). Figure p.17a (wider
pore throat) shows a reversed situation in which MS-P method estimate p;** with

better accuracy than the Incircle method.
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Figure 5.17: Capillary pressure - saturation relationships for a primary drainage of
pore throats of different radius ratios. a) a* =0.4. b) a* =1.8.
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An interesting feature depicted in figure is the prominence of the p} peaks.
Due to the monodisperse spheres considered in previous examples, prominent peaks
g 1%

were detected in narrow pore throats (see figures p.10a, p.13a and a) and _gentle
peaks were manifested for wide pore throats (see figures p.10b, .13b and p.15b).
The reverse situation is revealed in figure H.17, in which the narrow pore throat
caused by the radius enlargement also leads to a smoother throat-body transition,
and the subsequent gentle peak.

The parametric analysis of the present section is completed with an error com-
parison between the LBM results and the approximations obtained in previous con-
figurations. From figures @, .12, b.14 and p.14 it is clear that the MS-P method
is capable to reproduce the meniscus profile in a more realistic way than the Incircle
method. Figures m, .13, .15 and .@? however, show the Incircle method is
slightly better in predicting the entry capillary pressure, specially when narrow pore
throats are considered (high a* values and low D* and S* distances).

1.00 1.00

a) ‘ —%— MSP b)
@9

0.75 —e— Incircle 0.75 1

0.50 0.50 4

e

o

S
o
o
S

e
o
S

= —0.25 9 ~—__.'/)‘—_—N\)‘\’\’\'

—0.50 1

.00

y pressure error [-|

> —0.25

Ty pressure error |-]

Entr

Ent

—0.50 1

—0.75 —0.75 1

—1.00 T T T T T T T T T —1.00 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
*

1.00

o

0.75

I
o
=]

o
31

> —0.25 1

|
=]
b
St

Entry pressure error [-]
Entry pressure error |-

—0.50 1

|
o
15
S

—0.75 1 —0.75

—1.00

00 01 02 03 04 05 06 07 08
D[]

Figure 5.18: Error obtained for the MS-P method and the Incircle approximation.

Error is evaluated for different bead configurations: a) When the separation between

the solid grains is the same for all the pairs. b) When one of the particles is moved

away from the rest while the other two remain in contact. ¢) When one of the particles

is moved away with the rest separated a constant distance. d) When the radius ratio
is modified for one of the spheres.

A quantitative analysis is displayed in figure where the entry pressure ob-
tained with the approximations has been compared to the LBM results. First, we
observe that, regardless the throat size, MS-P nearly always underestimates the
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entry pressure. Plus, the Incircle approximations offers better results than the MS-
P method for narrow throats (low D* and S§*, and high a* ). The results reported
throughout the sensitivity analysis indicate MS-P is preferred to determine the inter-
face profile for all the sphere configurations. However, the best method to predict the
entry capillary pressure may not be a trivial choice. As explained before, relatively
narrow apertures are accurately described with the Incircle method. Unfortunately,
more ambiguous results are found for wide throats (high D* and §*, and low a* ), fi-
gures p.18a and b show that Incircle method is the best choice to determine pg*,
whereas MS-P method approximates the entry capillary pressure better for the cases
depicted in figures H.18c and p.18d. In order to clarify the remaining uncertainties
and reach clear conclusions, we strongly recommend further parametric studies (ac-
curacy of the methods as function of the distances and the radius ratio). Regardless
of the approach we choose, it is worth emphasizing that error is, in general, lower
than 25%, hence, acceptable for simulations that must be carried out with a very
limited computation time.

5.5.4 Drainage-Imbibition cycle of a throat formed between
3 equal-sized spheres

In this section we simulate two-fluid-phase flow through a porous throat during a
drainage - imbibition cycle. In this example, the pore throat is composed by three
equally sized spheres forming an irregular triangle. As we know, capillary pressure
controls the distribution of fluids in the porous media, thus, we are particularly in-
terested to investigate the p: — V™ hysteresis during drainage and imbibition. The
sequence of the drainage and imbibition mechanism is depicted in figures .19 and
5.2(), respectively. Additionally, the Ea@,es observed during the simulation are indi-
21

cated in the p: —V* curve of figure

SO R So?

Figure 5.19: Interface evolution through a pore throat during drainage. The non-
wetting phase penetrates the throat once the entry pressure is reached.

Capillary pressure was increased until reaching the peak, p} = p.“ ~ 16.2 (figures
b and p.21b). In this case, the throat is sufficiently narrow to trigger a dynamic
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movement of the fluid interface. Such phenomenon is accompanied by a pressure
drop (ﬁgures MC and EIIC) It is interesting to point out the slope change at point
"c¢” in the p} —V* curve of figure p.21]. The reason for this local event is the contact
of the meniscus with the artificial solid walls that enclose the computational domain
defined by the three particle centers. The presence of the solid walls restricts the
size of the pore body and modify the meniscus shape. The non-wetting phase keeps
invading the pore space until a small amount of the wetting fluid is disconnected and
trapped in a corner as a pendular bridge (figures .19d and 5.21d). At this moment,
the non-wetting phase advances as a stable front without changing its curvature,
hence, capillary pressure remains constant.

P o f
So P

Figure 5.20: Interface evolution through a pore throat during imbibition. The
wetting phase is displaced towards the top refilling the pore throat.

The microscopic behavior of imbibition in porous media is much more compli-
cated than drainage (lOren et alj (|1997| tPatzek et all (bOOd . In the simulation,
the starting point for the imbibition is the final configuration after drainage (figures

e and e . The flow is imposed so that wetting phase is filling the throat.
From figures p.20f and @f we observe that the fluid is displaced by piston-type
imbibition with no changes in curvature. At point "f” (figures b.20f and f), the
meniscus gets in contact with the spherical objects inducing a change of curvature.
Indeed, capillary pressure increases to accommodate higher curvatures that ease the
motion of the interface towards the pore throat. The main terminal meniscus merges
with liquid bridge at point "g” (figures p g and @ ), this local event results into
a small perturbation in the pc V* curve. Right after the coalescence, the interface
keeps increasing its curvature until the wetting phase is able to pass through the
throat (peak point in figure @) Finally, the capillary pressure decreases as the
fluid interface adopts smoother shapes (figures p.20h and p.21h).

It is worth mentioning that throughout this thesis we have assumed quasi-static
conditions for most of the simulations. Dynamic events, such as the Haines jump,
are only revealed when the non-wetting phase passes from a narrow throat to a
wide body. Furthermore, as detailed in section [1.3.5.2, two mechanisms govern
the interface displacement: snap-off and piston-type displacement. Previous studies
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Figure 5.21: p; —V” relationship at a pore throat under a drainage-imbibition cycle.

(Lenormand (]1986)) have evidenced that pore geometry and fluid flow determines
which mechanisms occur. Nonetheless, it is remarkable to convey that no snap-off
episode has been obtained in any LBM simulations. This situation might be ex-
plained by the specific features of sphere packings, which produce a limited contrast
between pore and throat size.

5.6 Conclusions

The study of a single pore throat provides preliminary evidence of the accuracy of
direct LBM simulations at the throat scale for the upcomming Hybrid model. The
relevant hydrostatic properties can be extracted from each throat. In contrast to
approximation methods in which the entry capillary pressure is the only significant
parameter used to predict the invasion of the pore throat, direct LBM simulations
provide a full and detailed description of the volume - pressure relationship for the
throat. Beyond the p. —V curves, LBM simulations capture the liquid morphology
during the drainage. Consequently, capillary forces can be evaluated by means of
the analysis explained in Chapter 3 during the pore throat invasion.

The encouraging results from the granular layer - pore throat comparison show
that local properties are barely altered after the decomposition of the granular layer
into subsets. The good agreement in terms of p. —V curve and interface shape
validates the applicability of the Hybrid method.

The last part of this chapter was devoted to systematically explore the influence
of the radius ratio and pore throat/body size ratio on the p. —V curves and interface
profiles. In most cases, there is a pressure reduction after invading the pore throat
(after reaching the entry capillary pressure). The magnitude of the pressure jump
is directly linked to the pore throat/body size ratio: the narrower the pore throat,
the larger the pressure difference. Assuming that LBM simulations reproduce a re-
alistic description of the fluid motion through the porous media, the accuracy of the
approximation methods was tested. From the comparison with geometrical approx-
imation methods, we conclude that Incircle method is generally more accurate than
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MS-P (though not always). Conversely, the interface profile was better predicted
by the MS-P than by the Incircle method.
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Chapter 6

Hybrid multiscale model for
partially saturated media based on
a pore network approach and LBM

6.1 Introduction

We present a Hybrid model based on a pore-network approach that enables a de-
composition of the granular assembly into small subsets. Lattice Boltzmann simula-
tions are performed for each pore throat to determine the hydrodynamic properties
(entry capillary pressure, primary drainage curve, liquid morphology, etc) at the
micro-scale. The local properties obtained with LBM are incorporated at the net-
work to carry out the simulation at a larger scale. This strategy leads to a significant
decrease of the computation time at the sample-scale compared to a fully resolved
method. Therefore, the Hybrid method combines the efficiency of the pore-network
approach and the accuracy of the LBM as suggested by Chareyre et al, (2017)).

As an application case, we perform a fully resolved LBM drainage of a 40-sphere
packing. A low capillary number (Ca = 0.0001) is considered to ensure quasi-static
conditions. Such simulation provide reference data for the Hybrid model and other
approximations. This includes capillary pressure - saturation relations, the resid-
ual wetting phase entrapment and fluid invasion paths. As reported in Berg et al.
(2014); Edery et al| (2018), slow drainage are usually characterized by large pres-
sure fluctuations (Haines jumps) that can produce significant burst events. This is
consistent with our results that evidence sudden rapid advances of the non-wetting
phase through a series of pores.

6.2 Flow through a 40-sphere packing

This section presents the results of a drainage process in an assembly of 40 spheres.
A full LBM simulation has been performed and is taken as the reference solution.
The results are compared with the Hybrid model alongside the MS-P and Incircle
methods.
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on a pore network approach and LBM

6.2.1 Numerical setup

A random sphere pack is created by the open-source code YADE. A cubic box of
10 mm x 10 mm x 10 mm is defined in which 40 polydisperse spheres are packed.
The mean sphere radius is 1.26 mm. The generation of the pore network by regular
triangulation is inherited from the 2PFV-DEM scheme, which is implemented in

C++ (lChareyre et alj (l‘ZOl )) using the CGAL library (tBoissonnat et al.l (l‘ZOOd))

The following assumptions are made during the numerical simulations:

D e e

i
I
4
|
)
I

Figure 6.1: Top and bottom views of the 40-sphere packing. The blue isosurface
indicates the interface between the two fluids. On the right, the porous membrane
located at the bottom of the assembly is displayed.

— Drainage is evaluated under quasi-static flow.

— We assume perfect wetting of the solid by the wetting phase.

6.2.2 Full LBM simulation

This fully resolved LBM simulation is intended to give a data set to benchmark future
numerical simulations. Data is submitted to Open Science Framework repository

([Montellé\l (

0121)). The dataset includes VTK Image Data files with all the essential

information to visualize and evaluate the phase distribution, pressure and velocity

field.

The following parameters have been considered to perform the LBM simulation:

— Each lattice unit (lu) spacing represents 0.00005 m. This spatial discretization
leads to a computational domain of 220x250x220 [u® and a mean radius of 25.3

lu.

— A quasi-static flux is imposed by a mass sink/source located at the inlet and
outlet. Flow is only modified when the density fluctuation on one time itera-

tion, at interface nodes, is less than a fixed tolerance (Tol =107 <

|Pit — Pir+1]

4

Such tolerance leads to a macroscopic capillary number of Ca ~ 0.0001.

— Contact angle: 6 ~ 0°.
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Figure 6.2: Evolution of the interface between the two fluids during a drainage
simulation of a 40-sphere packing. For the sake of clarity, the bottom row of the figure
includes translucent spheres. a) V* =60, b) V* =35, ¢) V* =20 and d) V* =11.

Initially, the granular assembly is completely saturated (see figure @a). A
porous membrane is located at the bottom of the sample in order to prevent the
non-wetting phase to reach the outlet and ensure a complete drainage (see right
image in figure p.1)).

Figure 6.3: Distribution of the wetting phase after the drainage simulation of a 40
sphere packing. The wetting phase is trapped in some areas of the sample as pendular
bridges, trimers or more complex clusters.

The displacement of the interface is controlled by an imposed flux between the
non-wetting reservoir (top of the sample) and_the wetting reservoir (bottom of the
granular assembly). As illustrated in figure .2, the non-wetting phase advances
through the porous media occupying the pore space of the sample. The steady
regime is evidenced in figure 6.4, where the pressure field for the wetting phase is
mapped for a vertical slice. No significant pressure differences are observed in the
wetting phase. The interface flows towards the bottom driven by the flux invading
the largest pores first. Capillary pressure is increased and recorded until all the
nodes above the porous plate are filled with the non-wetting phase (see figure @d)
At this moment, the remaining wetting phase is trapped in the granular assembly
in form of liquid clusters.

123



Chapter 6 Hybrid multiscale model for partially saturated media based
on a pore network approach and LBM
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Figure 6.4: Pressure field for the wetting phase. Quasi-static drainage ensures
homogeneous pressure values. In addition to that, we observe a pressure drop due to

the porous membrane located at the bottom. Notice the non-physical pressure values
at the interface caused by the spurious currents as suggested in Connington and Leel

(2012).

6.2.3 Comparison of the methods

In this section the results obtained with the fully resolved LBM (section ) are
confronted with the predictions given by the Hybrid, the MS-P and the Incircle
models. The accuracy and computation time to determine the main hydrostatic
properties are evaluated for all the methods.

The generation and triangulation of the granular assembly follows the same pro-
cedure described in the numerical setup (subsection [.2.1]). The following conditions
are set in the Hybrid, MS-P and Incircle models after the decomposition reported
in subsection @l

— The 40-sphere packing yields a network of 212 pores cells and 382 pore throats
after the decomposition.

— Simulations start with 29 cells connected to the non-wetting phase reservoir
at the top of the sample.

1lu
0.00005m
and a quasi-static flux to enhance a fair comparison with the fully resolved
LBM simulation. More particularly, both scenarios consider the same tolerance
(Tol — 105 < Pt — Pir+ 1]

o

— The Hybrid method considers the same spatial discretization

) that ensures an imposed flux under low capillary

numbers.

After the generation and triangulation, either the Hybrid model or a approxima-
tion method is implemented. Figure shows the flow chart for both possibilities.
From the fixed pore space topology, the entry capillary pressure of each throat can
be computed separately after direct LBM simulations or by means of the approxima-
tion methods (MS-P or Incircle). Other local hydrostatic properties are obtained (or
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predicted in case of using an approximation method) during this step (i.e. p.—S,, re-
lationships and liquid morphology). Such properties are assembled and incorporated
into the network to solve the global problem. The next step consists in defining the
initial boundary conditions. At this point, the drainage simulation starts. For each
invasion step, the boundary conditions are updated (fluid pressures of the phase
reservoirs are modified) whereas the drainage and entrapment mechanisms are im-
plemented in the "Two-phase flow calculation” step.

YADE
Generation of a
Pa |a bOS granular packing

'

Triangulation

N\

Approximation
methods
(MS-P or Incircle)

AV

Microscopic properties are assembled
to solve the global problem

v

Definition of boundary conditions

v

Run =

v

Update of boundary conditions

Y

Two-phase flow calculation

Direct LBM
simulations

for each pore throat

Local properties are determined

Figure 6.5: Coupled DEM-flow algorithm. Local properties can be computed after
direct LBM simulations (Hybrid model) or approximation methods (MS-P or Incircle).

The implementation of the Hybrid model is based on the open-source code “Yet
Another Dynamical Engine” (YADE) platform (Smilauer and Chareyre (2010)).
YADE is an extensible open-source C++ framework that allows the development
of three dimensional discrete numerical models. Likewise, the fluid flow solution for
each pore throat by means of direct LBM simulations is based on the open-source
library Palabos written in C++ (Latt (2009)). LBM simulations are generated
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and solved using a C++ code. Conversely, Python language is used for construc-
tion, simulation control and postprocessing for the remainig tasks, that includes
generation of the sphere packing, triangulation, definition of boundary conditions,
drainage control, etc. Additionally, Boost.Python C++ library is incorporated to
export classes and objects between C+-+ and Python programming languages.

6.2.3.1 Capillary pressure — saturation relationship

Capillary pressure - liquid content curves for primary drainage are studied in this
subsection. The comparison between predicted saturation curves and numerical data
is presented in figure .6a. Both Incircle (green) and Hybrid (blue) curves reproduce
the full LBM capillary curve (black) with excellent accuracy. MS-P follows the same
trend and good agreement is found, however, the curve is slightly undervalued in
terms of capillary pressure. The underestimation of the capillary pressure values
was already manifested in figure p.5. Despite the better results in terms of interface
profile shown in figure p.4, Incircle approximation offers a more accurate description
of the saturation curve.
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Figure 6.6: a) Primary drainage curves obtained with different methods. b) Error

associated to the Hybrid, Incircle and MS-P when predicting the primary drainage
curve.

The full LBM model has a smooth transition at the beginning of the drainage
until reaching a steady capillary pressure (p} =9.8) that leads to the first intrusion
of the non-wetting phase in the sample. Such intrusion is revealed in the finger-like
fluid distribution observed in figure 6.2b, where it is clear that the non-wetting phase
penetrates through a preferred path to almost reach the porous membrane at the
bottom. Conversely, the rest of the models show a steeper transition before starting
the main invasion.

It is worth to point out the similar wetting phase content (V* € [8 — 10.5]) ob-
tained at the end of the simulation. At this stage, liquid still remains in form of
continuous phase in trapped regions of the granular assembly. Entrapped wetting
phase is found as pendular bridges and trimers (see figure f.3). Such configura-
tions are possible in the funicular regime. According to Flemmer (1991)), the upper
limit that distinguishes the pendular and funicular regimes corresponds to a wetting

126



Chapter 6 Hybrid multiscale model for partially saturated media based
on a pore network approach and LBM

phase saturation degree of S,, = 34.1%, which woud lead to a volume of V* & 20.
This limit was obtained for equal-sized spherical particles and a porosity of 0.4.
Thus, the limit may be different for our case due to the different size of the spheres.
Indeed, we observe that, even though many pendular bridges are found at the end
of the simulation, some trimers or more complex liquid structures are manifested
in figure @ below the §,, bound fixed by Flemmer (1991), which suggests that the
pendular/funicular transition threshold might be different for polydisperse spheres.

The divergence between the full LBM simulation and the predictive models is
displayed in figure @b. Despite the evident discrepancy between MS-P and the full
LBM simulation at the beginning of the drainage, all the approaches give a decent
representation of the saturation curve.

Figure p.6a accounts exclusively for the liquid of the filled pore bodies whereas
the liquid bridges or menisci volumes are not included (except for the fully resolved
LBM curve in which the real liquid volume is considered). Thus, only the volume
of the filled tetrahedra is considered. We have followed different approaches to
incorporate the missing volume:

— Regarding the Hybrid method, we include the liquid content from every ele-
mentary LBM simulation. For instance, adding the volume on the upper part
of the slice that passes through the three grain centers (see figure %&). By
means of the p., —V relationship for each pore throat (see figure as an
example), we can recover the volume of the wetting phase between the men-
sicus and the tetrahedron facet for a certain p.. Indeed, this is a substancial
improvement that enables a continuous tracking of the liquid content during
the drainage without simplifications.

— MS-P and Incircle approximation must rely on the decompositions explained
in section , in which we stated that a liquid cluster is formed by three
basic units: filled pore body, liquid bridges, and meniscus. Following Wang
et al) (2017), the liquid content in a trimer is divided into three isolated bridges
connecting the three spherical bodies (see figure R.23). Hence:

NP Nien m
V= Z Vpore,i + o Z Z Vbridge,i,k (61)
i=0 i=0 k=0

where the volume of the wetting phase V is obtained from the sum of all the
filled pore bodies and menisci in the interface. Vjor,; stands for the volume of
the pore body contained within the tetrahedral cell i, N, the number of filled
pore bodies, Ny, denotes the number of menisci (facets of the tetrahedral
elements that separate two phases), m is the parameter that indicates the
number of bridges that can formed between each particle pair (m ranging
from 0 to 3), and o accounts for the portion of liquid bridge included in the
tetrahedron. Note that for every meniscus, only a portion of the liquid bridge
volume is considered (o). The whole liquid volume associated to a certain
particle pair is accounted as the sum of bridge portions of the same edge for
different tetrahedral cells.
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Another approach to compute the liquid content above the tetrahedral facets
that separate two phases is based on the Gladkikh approximation detailed in
section . Unlike the Pendular approximation, in this case, we include
the volume between the meniscus and the tetrahedral facet as a cylindrical
body V.y;. Consequently, Eq. @ is written as:

Np Ninen m
V= Z Vporej + Z (((X + 8) Z Vbridge,uk + chl) (62)
i=0 i=0 k=0

where € is a parameter that accounts for the missing volume between the main
meniscus_and the liquid bridges (see figure @b) In this work, € =0.07 as
done in Melnikov et al| (2015).

Previous approaches account for all the liquid content within the granular as-
sembly enhancing a more realistic view. The new drainage curves are illustrated in
figure p.7. The new formulation is included in the p} —V* curves with dashed lines.
The Hybrid method is indicated as "Hybrid - Modified” when it includes all the lig-
uid volumes. MS-P and Incircle method are designated with the words "Pendular”
or "Gladkikh” depending on the approximation they are based on. The compar-
ison between the previous analysis and the volumes added in figure shows no
significant differences. A modest improvement is observed in the Hybrid and MS-P
models. Incircle method, instead, shifted to the higher-error side. Despite using a
more realistic description of the interface shape and obtaining slightly better pX —V*
relationships in the Hybrid and MS-P models, we observe a weak influence of the
extra liquid volume in form of meniscus above the tetrahedral facets.
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Figure 6.7: Primary drainage curves obtained with different methods including
meniscus. MS-P and Incircle account for the extra volume by means of the Pendular
(a) and Gladkikh approximation (b).

The average error is quantified for each method in table @ The error is also
evaluated incorporating the volume contained beneath the menisci and above the
facets separating two phases. We emphasize that the lowest error is achieved for the
"Hybrid - Modified” method.
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Incircle ‘ Incircle - P ‘ Incircle - G ‘ MS-P ‘ MS-P - P ‘ MS-P - G ‘ Hybrid ‘ Hybrid - M
49% | 59% | 68% [135% | 11.7% | 123% | 59% | 44%

Table 6.1: Average error associated to the Hybrid, Incircle and MS-P methods when
predicting the primary drainage curve. The letter P stands for the volume added
using the pendular approximation. The letter G stands for the volume added using
the Gladkikh approximation. The letter M stands for the volume added when the
liquid in the outer part of the facet is included for the Hybrid method.

6.2.4 Computation time

The main purpose of this chapter is to optimize the computational effort by re-
placing fully resolved methods (full LBM drainage in this work) with alternative
models that are computationally more efficient. In this section, MS-P and Incircle
approximations are excluded from the comparison due to the low computation cost
associated with these two models.

The simple formulation of LBM makes it highly suitable for parallel computing
(Kandhai et al) (1998)). For this reason, the results shown for the full LBM model
could be executed on 24 cores in parallel. In contrast, one single core per throat
has been_employed to run the Hybrid model. Computation times are summarized
in table . In order to enhance the comparison between the full LBM and the
Hybrid model, the elapsed real time is converted into CPU time, hence, the amount
of time of the Hybrid model as if we had 24 available cores. As detailed in table
@, the CPU time for the full LBM corresponds to 29.6 days. On the other hand,
by using the Hybrid model, the computational cost is reduced down to 11.2 days.
This means that the full LBM model takes about 264 % more CPU time than the
Hybrid model.

Method | CPU time [days] |
Full LBM 29.6
Hybrid 11.2
Hybrid modified 2 6.9

Table 6.2: Execution times to complete the drainage simulation of a 40-sphere pack-
ing using 24 parallel computing cores (Full LBM). 1 single CPU core was used for
each pore throat for the Hybrid model. We also present the computation time for the
Hybrid model when the pore throats that take more than 48 hours are removed and
replaced by the Incircle approximation (Hybrid modified 2).

As shown in figure @, pore throat LBM simulations can adopt a wide range of
computation time. Some geometric configurations, such as pore throats with large
cross-sectional area or high elongation (the relationship between the maximum and
minumin length of the pore throat indicate the elongation) usually require a larger
computational domain that leads to more demanding tasks. Peaks in figure @
are relatively rare and most of the LBM Hybrid simulations are carried out in a
few hours. Pore throats with complex and large geometric domains correspond to
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Figure 6.8: Computation time for each pore throat.

isolated cases as illustrated in figure @ The vast majority of pore throats are
evaluated within 1 day. Plus, a significant amount of pore throats need less than 5
hours to provide all the hydrostatic properties to the pore-network model.
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Figure 6.9: Number of throats divided into 5 different computation time groups.
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