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au long de ma thèse. J’ai beaucoup appris à leurs côtés au cours de ces trois années,

aussi bien sur le plan professionnel que personnel. J’ai particulièrement apprécié la
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Abstract

Air quality is a major health and environmental issue worldwide. Similarly, the accuracy

of wind resource assessment triggers significant economic and environmental repercussions.

In order to study these two topics, it is necessary to accurately determine local wind fields

using numerical models of micrometeorology. Such simulations are extremely sensitive to

meteorological conditions at the domain borders. Up to present, the boundary conditions

(BC) were estimated based on the results of larger scale simulations, which provide

information that is not accurate enough, or even incomplete, for local scale purposes. As

a matter of fact, the lack of knowledge about the BC represents a major source of error

and uncertainty for micrometeorological studies.

The potential sites for wind farm installation as well as built environments (urban

areas or industrial sites) can be equipped with instruments measuring meteorological

variables or pollutant concentration. The observations provided by these instruments

represent a second source of information, insufficiently exploited for micrometeorological

studies. Indeed, the in situ measurements are perturbed by the complex geometrical

features on sites and might be difficult to exploit. In order to improve the exactitude and

the accuracy of the BC, and consequently of the locale-scale atmospheric simulations,

data assimilation (DA) methods, suited to this micrometeorological problem, could be

applied to take benefit from the available observations.

So far, DA methods have been mainly developed for large-scale meteorology and

employed to correct the initial conditions (IC). In order to broaden the application scope

of DA to micrometeorology, existing DA methods must be adapted to be able to correct

the BC instead of IC.

Two of the existing DA methods seem compatible with computational fluid dynamics

(CFD) models used for micrometeorology over complex geometries: the back and forth

nudging (BFN) algorithm and the iterative ensemble Kalman smoother (IEnKS). We

have adapted these two methods, from a theoretical perspective, so as to include the BC

in the control variables. The performances of the adapted versions of the BFN algorithm

and the IEnKS have first been assessed with a simplified, 1D model of atmospheric

flow with two layers, based on the shallow-water equations. The BFN algorithm and

the IEnKS have then been tested in 2D and 3D with the atmospheric module of the

open-source CFD model Code Saturne.

The first study case with Code Saturne corresponds to a real application of wind
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Abstract

resource assessment in a mountainous region with steep topography where three me-

teorological masts have been installed during a few months and provided in situ wind

observations. The second case is a study of pollutant dispersion in an urban area, based

on the measurements of wind and pollutant concentration coming from the “Mock Urban

Setting Test” field campaign carried out in the USA. In this second case, the turbulence

is also included in the BC and thus in the control variables. For both studies, some

observations are assimilated and the remaining ones are used to validate the results.

The experiences performed for the wind resource assessment study have revealed

that the CFD models present too strong nonlinearities (flow recirculation after obstacles)

for the BFN algorithm, which is based on a linearity assumption. However, both cases

have shown the ability of the IEnKS to reduce the error and the uncertainty of the

BC by assimilating a few observations, with operationally affordable computational

costs. Consequently, the simulated wind fields with Code Saturne are also closer to the

validation observations and the confidence intervals are reduced. Eventually, the IEnKS

allows, in one case to estimate the wind potential, and in the other case to build the

pollution maps, with much more exactitude and accuracy.

Keywords

Air pollution, Air quality, Atmospheric dispersion, Back and forth nudging algorithm

(BFN), Boundary conditions, Computational fluid dynamics (CFD), Data assimilation,

Iterative ensemble Kalman smoother (IEnKS), Local scale simulation, Micrometeorology,

Wind potential, Wind resource assessment.
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Résumé

La qualité de l’air est un enjeu sanitaire et environnemental majeur. Par ailleurs,

l’estimation précise des potentiels éoliens est la source d’importantes retombées économiques

et environnementales. Pour étudier ces deux sujets, il est nécessaire de reconstituer

précisément les champs de vent locaux grâce à des modèles numériques de micro-

météorologie. Ces simulations sont extrêmement sensibles aux conditions météorologiques

aux limites du domaine d’étude. Jusqu’à présent, les conditions aux limites (CL) étaient

estimées à partir de simulations à plus grande échelle, qui fournissent des informations

imprécises, voire incomplètes pour l’utilisation à micro-échelle. Par conséquent, la

méconnaissance des CL représente une source majeure d’erreur et d’incertitude dans les

études micro-météorologiques.

Les sites susceptibles d’accueillir un parc éolien et les environnements bâtis (quartiers

urbains ou sites industriels) peuvent être équipés d’instruments de mesures météorologiques

et de concentration de polluants. Les observations fournies par ces instruments con-

stituent une seconde source d’information, jusqu’à ce jour peu exploitée pour les études

micro-météorologiques. En effet, étant à l’intérieur du domaine, les observations sont

perturbées par la géométrie complexe des sites étudiés. Afin d’améliorer la précision des

CL et donc des simulations atmosphériques à l’échelle locale, des méthodes d’assimilation

de données (AD) adaptées à cette problématique pourraient permettre de mettre à profit

les observations disponibles.

Jusqu’à présent, les méthodes d’AD ont été principalement développées pour répondre

aux besoins de la météorologie à grande échelle et donc utilisées pour corriger les conditions

initiales (CI). Afin d’élargir le champ d’application de l’assimilation de données aux

simulations à l’échelle locale, il faut adapter les méthodes d’AD pour qu’elles permettent

de corriger les CL plutôt que les CI.

Parmi les méthodes d’assimilation de données existantes, deux semblent compatibles

avec les modèles de mécanique des fluides atmosphérique (CFD) utilisés pour la micro-

météorologie en géométrie complexe : l’algorithme de nudging direct et rétrograde

(BFN) et le lisseur de Kalman d’ensemble itératif (IEnKS). Nous avons adapté ces deux

méthodes d’un point de vue théorique pour inclure les CL dans les variables de contrôle.

Les performances des versions adaptées du BFN et de l’IEnKS ont tout d’abord été

étudiées avec un modèle simplifié d’écoulement atmosphérique à deux couches en 1D,

basé sur les équations de Saint-Venant. Le BFN et l’IEnKS ont ensuite été testés en
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Résumé

deux puis trois dimensions avec le module atmosphérique du modèle open-source de CFD

Code Saturne.

Le premier cas d’étude avec Code Saturne correspond à une application réelle

d’estimation de potentiel éolien dans une région montagneuse au relief très accidenté

où trois mâts de mesure fournissent des observations de vent. Le second cas d’étude

correspond à une étude de dispersion de polluants en milieu urbain, basé sur les observa-

tions de vent et de concentration, provenant de la campagne de mesures � Mock Urban

Setting Test � aux USA. Dans ce second cas, la turbulence est également incluse dans les

conditions aux limites. Dans les deux cas, une partie des observations est utilisée pour

l’assimilation et le reste pour la validation des résultats.

Les expériences menées sur le premier cas ont révélé que les modèles de CFD présentent

des non-linéarités trop fortes (recirculations derrière les obstacles) pour l’algorithme

de BFN, fondé sur une hypothèse de linéarité. Les études avec cette méthode n’ont

donc pas été poursuivies. En revanche, les deux cas d’étude ont montré la capacité de

l’IEnKS à réduire l’erreur et l’incertitude sur les CL grâce à l’assimilation d’une petite

dizaine d’observations, en un nombre raisonnable de calculs. Par suite, l’écart entre les

champs de vent simulés et les observations de validation est également réduit. De même,

l’incertitude sur les simulations est plus faible. Finalement, l’IEnKS permet d’estimer le

potentiel éolien dans un cas et les concentrations en polluant dans l’autre, avec beaucoup

plus de précision.

Mots clés

Assimilation de données, Conditions aux limites, Dispersion atmosphérique, Estimation

de ressource éolienne, Lisseur de Kalman d’ensemble itératif (IEnKS), Micrométéorologie,

Mécanique des fluides numérique (CFD), Nudging direct et rétrograde (BFN), Pollution

de l’air, Potentiel éolien, Qualité de l’air, Simulation à l’échelle locale.
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Assimilation de données pour des

applications

micro-météorologiques avec le

modèle de mécanique des fluides

Code Saturne

Introduction

La qualité de l’air urbaine est un enjeu sanitaire et environnemental majeur. Par ailleurs,

l’estimation précise des potentiels éoliens présente d’importantes retombées économiques

et environnementales. Ces deux exemples d’applications micro-météorologiques requièrent

l’estimation précise des champs météorologiques (vent, turbulence, etc.) dans des do-

maines de quelques kilomètres carrés. Lorsque les domaines étudiés présentent des

éléments géométriques complexes (topographie escarpée, présence de bâtiments, etc.), les

modèles numériques utilisés pour simuler les conditions météorologiques doivent être suff-

isamment fins. Le développement de la puissance de calcul permet d’utiliser des modèles

de mécanique des fluides numériques (CFD) dans des conditions quasi-opérationnelles.

Le module atmosphérique du modèle open-source de CFD Code Saturne est utilisé pour

de nombreuses applications micro-météorologiques.

L’une des limites des modèles de CFD est leur sensibilité aux paramètres d’entrée, et

en particulier aux conditions aux limites (CL). En effet, les limites des domaines étudiés

en micro-météorologie sont généralement des frontières ouvertes pour lesquelles il faut

définir des CL. De plus, les temps d’intégration caractéristiques à l’échelle locale sont

généralement très supérieurs au temps nécessaire aux informations pour se propager dans

le domaine. Par conséquent, l’influence des conditions initiales (CI) s’estompe rapidement

et ce sont finalement les CL qui déterminent la solution. Les CL représentent donc une

source majeure d’incertitudes dans les simulations atmosphériques à l’échelle locale et

leur estimation précise est l’un des enjeux majeurs de la micro-météorologie.

Les différentes échelles caractéristiques rencontrées en météorologies interagissent
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continuellement. La turbulence qui agit à des échelles très fines affecte les conditions

météorologiques à méso-échelle. Réciproquement, les phénomènes météorologiques ayant

lieu à méso-échelle influencent l’évolution de la météorologie à l’échelle locale. Par

conséquent, les CL doivent refléter à la fois les variations méso-échelles et micro-échelles.

Pour ce faire, des méthodes de descente d’échelle ont été mises aux points afin d’estimer les

CI et les CL pour les simulations micro-météorologiques à partir de résultats de simulations

à méso-échelle. Toutefois, les différences de résolutions spatiales et temporelles entre les

domaines à méso- et micro-échelle sont telles que les CI et CL ainsi déterminées peuvent

être erronées ou ne pas contenir toute l’information nécessaire (influence des obstacles,

relief fin, etc.). Par exemple, les petites échelles de la turbulence sont rarement résolues

à méso-échelle alors qu’elles sont nécessaires à la définition des CI et des CL pour les

simulations à l’échelle locale. Ainsi, les méthodes de descente d’échelle fournissent une

première estimation des CL qui est pertinente et contient des informations liées aux

phénomènes météorologiques à grande échelle. Toutefois cela ne permet pas d’estimer

suffisamment précisément les CL pour une utilisation à micro-échelle. Il serait donc

bénéfique de pouvoir combiner l’estimation obtenue par descente d’échelle avec une autre

source d’informations.

Les sites susceptibles d’accueillir un parc éolien, les quartiers urbains et les sites

industriels sont généralement équipés d’instruments de mesures météorologiques et de

concentrations de polluants. Les observations fournies par ces instruments constituent une

seconde source d’information, jusqu’à ce jour utilisée essentiellement pour la validation

des modèles et non pour améliorer les simulations micro-météorologiques. En effet, étant à

l’intérieur du domaine, les observations sont perturbées par la géométrie complexe des sites

étudiés ce qui en complique l’exploitation. Une solution pour tenir compte des observations

disponibles au sein du domaine d’étude est d’utiliser des méthodes d’assimilation de

données (AD), adaptées à la problématique des simulations atmosphériques à l’échelle

locale.

L’AD cherche à combiner de façon optimale les deux sources d’informations disponibles :

la première estimation – ou ébauche – fournie par la descente d’échelle, et les observations.

Jusqu’à présent, les méthodes d’AD ont été principalement développées pour répondre

aux besoins de la météorologie à grande échelle. Or à grande échelle, les simulations atmo-

sphériques sont largement dominées par les CI, de telle sorte que l’AD est généralement

utilisée pour corriger les CI. L’enjeu du travail de thèse présenté dans ce document est

d’élargir le champ d’application de l’AD aux simulations à l’échelle locale. Pour ce faire,

il faut adapter les méthodes d’AD pour qu’elles puissent corriger les CL plutôt que les

CI. De façon imagée, il faut que les informations contenues dans les observations, qui

peuvent déjà “remonter dans le temps”, puissent également “remonter dans l’espace”.
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Méthodes d’assimilation de données

Après avoir effectué un état de l’art des techniques d’AD existantes, deux méthodes

ont été sélectionnées : l’algorithme de nudging direct et rétrograde (BFN) et le lisseur

de Kalman d’ensemble itératif (IEnKS). Ces deux méthodes ont été choisies car elles

semblent être adaptées à l’utilisation de modèles de CFD pour des simulations à l’échelle

locale. En effet, l’utilisation du modèle adjoint n’est pas requise et elles permettent les

calculs en parallèle, ce qui est nécessaire pour les simulations atmosphériques qui peuvent

être très coûteuses en temps de calcul. Ces deux méthodes ont été adaptées d’un point de

vue théorique pour inclure les CL dans les variables de contrôle. Le BFN est une méthode

itérative qui consiste à enchâıner des intégrations directes (temps croissant) et rétrogrades

(temps décroissant) du modèle, en incluant un terme de nudging dans les deux cas. En

considérant le cas particulier des équations de Saint-Venant – qui peuvent être utilisées

pour représenter de façon simplifiée l’atmosphère en deux couches – nous avons montré

que l’intégration rétrograde peut être effectuée en prenant l’opposé du champ de vitesse

et en intégrant le modèle avec des pas de temps positifs. La méthodologie ainsi obtenue

a été généralisée aux équations complètes de Navier-Stokes, résolues par le modèle de

CFD Code Saturne. Cette généralisation est basée sur une hypothèse de linéarité des

équations, qui n’est pas nécessairement vérifiée en pratique.

L’IEnKS est une méthode variationnelle d’ensemble : elle est fondée sur la minimisa-

tion d’une fonction de coût – qui mesure la distance à l’ébauche et aux observations – et

les statistiques de l’erreur d’ébauche sont représentées par un ensemble. La dérivation de

l’IEnKS dans le cas où les variables de contrôle sont les CL est analogue à la dérivation

classique pour laquelle les variables de contrôle correspondent aux CI. Si l’IEnKS présente

l’avantage de ne faire intervenir que très peu de paramètres, cette méthode reste néanmoins

sensible au choix de l’ensemble initial qui représente les statistiques d’erreur d’ébauche.

Nous avons proposé une méthode consistant à estimer en premier lieu la matrice de covari-

ance d’erreur d’ébauche à partir d’analyses statistiques de la climatologie (e.g., longues

séries temporelles d’observations ou de simulations). L’ensemble initial correspond alors

aux modes principaux de cette matrice, qui peuvent par exemple être déterminés grâce à

une décomposition en valeurs singulières.

Le 3D-Var est une méthode variationnelle qui est considérée ici comme une référence.

Cette méthode est disponible dans le module d’AD ADAO de la plateforme open-source

SALOME (http://www.salome-platform.org). Le gradient de la fonction de coût est ici

estimé par différences finies.

Première étude : les équations de Saint-Venant

Dans un premier temps, nous avons utilisé un modèle simplifié d’écoulement atmosphérique

en 1D, gouverné par les équations de Saint-Venant. Ce modèle a permis de tester et

comparer l’IEnKS, le BFN ainsi que le 3D-Var sur des cas à une dimension, pour lesquels
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la condition à la limite est réduite à une seule valeur de vitesse. Ce premier cas d’étude

a permis de valider le bon fonctionnement des méthodes adaptées à la prise en compte

des CL et d’effectuer plusieurs analyses de sensibilité. Nous avons ainsi vérifié que le

comportement de l’IEnKS et du BFN étaient en accord avec la théorie. En particulier

le BFN résout un problème fondamentalement différent de celui résolu par l’IEnKS et

le 3D-Var. Ainsi, l’IEnKS et le 3D-Var sont sensibles aux erreurs d’ébauche mais peu

aux erreurs d’observation alors que l’analyse donnée par le BFN est indépendante de

l’ébauche et est très sensible aux erreurs d’observation.

Les résultats de cette étude ont été publiés dans Defforge et al. (2018).

Deuxième étude : estimation de potentiel éolien

Le BFN et l’IEnKS ont ensuite été testés avec le module atmosphérique de Code Saturne

dans le contexte d’une étude de potentiel éolien pour un site à la topographie très escarpée.

La météorologie à méso-échelle dans la région englobant le site, simulée avec le modèle

WRF, est disponible pour une période de 3 ans. De plus, trois mâts météorologiques

étaient présents sur le site entre janvier et décembre 2007, fournissant des observations

de vitesse et de direction du vent à différents niveaux verticaux.

Dans un premier temps, nous avons considéré une coupe verticale dans le plan XZ

pour laquelle les CL correspondent à un unique profil vertical, défini en 21 niveaux, pour

la composante est-ouest du vent. Le vecteur de contrôle est alors de taille 21 et nous

avons effecté des expériences jumelles en créant des pseudo-observations à partir d’une

simulation de référence. Ce cas en 2D nous a permis de réaliser des analyses de sensibilité

aux différents paramètres des méthodes. En particulier, nous avons constaté que la

méthodologie mise en place pour le BFN n’est pas adaptée à ce cas où les non-linéarités

sont significatives (recirculation derrière les pics du relief). En effet, le fait d’effectuer

l’intégration rétrograde en prenant l’opposé du champ de vitesse n’est ici pas équivalent à

une intégration en temps rétrograde. Par conséquent nous n’avons pas poursuivi l’étude

du BFN et nous nous sommes concentrés sur l’IEnKS.

Dans un second temps, nous avons considéré le domaine entier en 3D et les CL ont été

définies en 20 profils verticaux répartis autour du domaine. Chaque profil est défini en 21

niveaux verticaux et contient les deux composantes de la vitesse horizontale. Le vecteur

de contrôle en 3D est donc de taille 840. Des expériences jumelles ont été effectuées sur

le domaine en 3D avec 30 pseudo-observations situées aux emplacements des trois mâts

de mesure et à différents niveaux verticaux.

Pour finir, nous avons reproduit des conditions opérationnelles d’estimation de la

ressource en utilisant la méthodologie WRAPP qui consiste à regrouper les situations

météorologiques simulées par WRF en un nombre réduit de classes (ici 50). Pour chaque

classe, une situation représentative est choisie et simulée avec Code Saturne. Dans l’étude

présentée ici, nous avons appliqué l’IEnKS pour chacune des 50 situations représentatives,
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l’ébauche étant donnée par les résultats de la simulation WRF correspondante. Nous avons

assimilé les 10 observations fournies par deux des mâts et celles provenant du troisième

mât ont permis de valider les résultats. Pour chacune des situations représentatives, nous

pouvons estimer l’énergie que produirait une éolienne, située à l’emplacement du mât

de validation, à partir des observations, de la simulation WRF, de la simulation avec

Code Saturne et les CL fournies par WRF, et de la simulation avec Code Saturne et les

CL corrigées par l’IEnKS. La moyenne de ces 50 potentiels, pondérés par la taille des

classes, donne une estimation du potentiel annuel. Nous avons ainsi mis en évidence

que l’utilisation de Code Saturne avec des CL imprécises ne donne pas des résultats

significativement différents de ceux obtenus avec WRF. En revanche, l’utilisation de

l’IEnKS avec 5 membres et 10 observations permet de nettement améliorer l’estimation

du potentiel éolien. De plus, l’IEnKS présente l’avantage de fournir une mesure de

l’incertitude sur les résultats après assimilation, donnée par la dispersion de l’ensemble a

posteriori. Nous avons ainsi montré que l’IEnKS permet également de réduire l’incertitude

sur le potentiel estimé.

Les résultats de cette étude ont été publiés dans Defforge et al. (2019a).

Troisième étude : dispersion en milieu bâti

La dernière étude s’inscrit dans un contexte de dispersion atmosphérique en milieu urbain.

Nous utilisons les nombreuses observations fournies par la campagne de mesure “Mock

Urban Setting Test” qui a été menée dans une ville idéalisée, reconstituée avec des

containers, dans le désert de l’Utah en septembre 2001. Le domaine simulé s’étend sur

348m × 348m × 50m et est centré sur les containers qui sont disposés selon une grille

de 12 par 10 containers, convrant une région de 200m× 200m. Les CL sont définies en

un unique profil vertical, situé en amont du domaine, pour les deux composantes de la

vitesse horizontale et l’énergie cinétique turbulente. Le profil est défini en 22 niveaux

verticaux de telle sorte que le vecteur de contrôle pour les expériences d’AD est ici de

taille 22. Au cours de cette campagne de mesures, plusieurs lâchers d’un gaz inerte

(propylène) ont été effectués et observés à l’aide de multiples instruments, mesurant

le vent et la concentration de gaz, installés dans et au-dessus de la canopée urbaine.

Nous avons étudié deux de ces lâchers correspondant à des conditions atmosphériques

neutre et stable. Pour chacun de ces deux cas, nous avons effectué deux expériences

d’assimilation : la première consistait à assimiler 14 observations de vent et la seconde

13 observations de concentration. Les observations restantes (une centaine) sont utilisées

pour la validation des résultats. L’ébauche est estimée à partir d’observations disponibles

à quelques centaines de mètres du domaine simulé.

Cette étude a montré que l’IEnKS avec peu de membres (5 ici) est capable de corriger

l’erreur et l’incertitude sur les CL et ainsi d’améliorer les simulations au sein du domaine.

L’analyse des deux expériences a montré que les variables assimilées sont mieux corrigées
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que les autres. En particulier, assimiler uniquement des observations de concentration en

quelques points permet de corriger le champ de concentration, en général en rectifiant la

direction du vent, même s’il peut subsister des erreurs dans le champ de vent. Puisque

la dispersion du gaz est largement déterminée par le vent, assimiler des observations

de vent permet de corriger le champ de vent et donc le champ de concentration. Ainsi,

l’assimilation d’observations de vent est plus efficace pour améliorer globalement la

simulation. Nous avons également effectué des expériences en assimilant 8 observations

de vent et 7 de concentration. Les résultats dans ce cas sont très légèrement meilleurs à

ceux obtenus en assimilant des observations de vent uniquement, notamment concernant

la turbulence. Dans tous les cas étudiés, la dispersion du gaz – qui est l’objectif final de

ce type d’études – est mieux représentée grâce à l’IEnKS.

Une publication est prévue avec les résultats de cette étude (Defforge et al., 2019b).

Conclusions

Les trois études menées dans le cadre de ce travail de thèse ont permis d’évaluer les

performances de deux méthodes d’AD pour des applications micro-météorologiques. Nous

avons mis en évidence le fait que le BFN (dans sa version proposée ici) ne peut être utilisé

dans des cas où les non-linéarités sont trop fortes, par exemple en présence de recirculations

après les obstacles. Même si nous n’avons pas poursuivi l’étude de cette méthode, les bons

résultats obtenus dans la première étude laissent envisager des perspectives positives pour

le BFN. En particulier, une amélioration possible serait d’utiliser une version linéarisée

du modèle pour l’intégration rétrograde. Les deux applications réelles ont montré que

l’IEnKS peut facilement être adapté à différentes études de micro-météorologie. Cette

méthode permet, en un nombre raisonnable de calculs, d’améliorer l’exactitude des

simulations en réduisant l’erreur sur les CL. De plus, la dispersion de l’ensemble donne

une estimation de l’incertitude sur l’analyse et nous avons montré que l’IEnKS permet

de réduire cette incertitude et donc d’améliorer la précision des CL et par suite des

simulations. De fait, le potentiel éolien ou les champs de concentration de polluant,

estimés à partir des champs de vents simulés par Code Saturne, sont également plus

justes et les incertitudes de ces estimations sont réduites.

Plusieurs analyses pourraient être menées pour améliorer encore les performances de

l’IEnKS. En particulier, il serait intéressant d’effectuer des analyses de sensibilité à la taille

de l’ensemble ou au nombre et à l’emplacement des observations. Par ailleurs, la mise en

place de méthodes de localisation pourrait s’avérer nécessaire dans certaines configurations

afin de prendre en compte les corrélations spatiales des variables assimilées. Enfin, nous

avons considéré ici des CL constantes et des simulations stationnaires. L’utilisation de

l’IEnKS pour résoudre des problèmes instationnaires représente un enjeu futur pour cette

méthode.

Enfin, l’IEnKS a ici été utilisé pour des applications micro-météorologiques avec
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Code Saturne. Toutefois, l’IEnKS étant non-intrusif, il pourrait tout à fait être appliqué

avec d’autres modèles et pour d’autres champs d’application comme les études climatiques

régionales, l’hydrologie, les feux de forêts, etc.
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Introduction

Many human activities are influenced by meteorology and it is therefore necessary to

fully understand the meteorological processes in order to represent them. For instance,

both wind engineering and air quality studies are largely dependant on meteorology at

local scale. These two fields of study are of direct relevance to environmental and health

issues and will constitute key topics in the near future. Moreover, they both are related

to Électricité de France (EDF) activities and future challenges.

Wind represents a clean and renewable source of energy that will largely continue to

develop in the coming years to meet the European and World agreements about energy

and climate change (e.g., Paris Agreement, signed in 2016, aims at keeping the increase

in global average temperature below 2◦C above pre-industrial levels). In 2018, the wind

power capacity worldwide reached 600GW, after a growth of 10.8% in 2017 and 9.8% in

2018. At the end of 2018, all the wind turbines installed over the world covered nearly

6% of the global electricity demand. The Global Wind Energy Council anticipates that

new installations will emerge to rise the global installed capacity to 840GW by 2022. In

Europe, the penetration level of wind energy in the electrical mix is of 11.6% and its

growth should accelerate in the coming years. Indeed, recent regulatory and economic

developments have substantially changed the European perspective for wind energy.

According to the European Wind Energy Association (EWEA) Central Scenario, 320GW

of wind energy capacity are expected to be installed in Europe by 2030 – 254GW onshore

and 66GW offshore (Fig. 1). This would represent a multiplication of the capacity by

more than two in comparison with the installed capacity in 2014 (129GW).

The projected development of new wind farms lets us anticipate the need for wind

resource assessment of new regions. This first step of any wind project consists in

estimating the hypothetical energy production of a future wind farm and it generally

determines if the project is economically feasible. As a result, it is crucial to very

accurately estimate the wind resource of any prospected site. The accuracy of this

estimation is particularly important as it allows to reduce the financial risks – and

the related over-costs – associated with the substantial investment necessary for the

construction of a wind farm. Wind farms generally extend over a few tens of kilometres

and prospected areas for the installation of new onshore farms are often in mountainous

regions where the steep relief affects the wind flow. Wind resource assessment for such

areas is thus particularly difficult.
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3Wind energy scenarios for 2030

 

Executive summary
Recent regulatory and economic developments in 
the EU have significantly changed the wind energy 
perspective for the next 15 years. In light of uncertain 
governance towards achieving EU climate and energy 
binding targets, EWEA updated the European wind 
energy industry’s vision to 2030.  

EWEA’s new Central Scenario expects 320 GW of wind 
energy capacity to be installed in the EU in 2030, 
254 GW of onshore wind and 66 GW of offshore 
wind. That would be more than twice as much as the 
installed capacity in 2014 (129 GW) and an increase 
of two thirds from the expected capacity installed in 
2020 (192 GW). Wind energy will produce 778 TWh 
of electricity, equal to 24.4% of the EU’s electricity 
demand. The wind energy industry will provide over 
334,000 direct and indirect jobs in the EU and wind 
energy installations in 2030 will be worth €474 bn. 
The 96,000 wind turbines installed on land and in the 
sea will avoid the emission of 436 million of tonnes 
(Mt) of CO2.

EWEA’s Low Scenario only foresees 251 GW of wind 
energy installations, 22% lower than in the Central 
Scenario, equal to meet 19% of EU electricity de-
mand in 2030. Such level of installations would 
mean 307,000 jobs in the wind energy sector, €367 
bn worth of investments, 339 Mt of CO2 emissions 
avoided and 76,000 wind turbines installed and con-
nected to the grid in 2030. 

The High Scenario expects 392 GW installed in 2030, 
23% higher than in the Central Scenario, equal to 
meet 31% of EU electricity demand. 366,000 jobs will 
be generated, as well as €591 bn of investments, 554 
Mt of CO2 emissions would be avoided and 114,000 
wind turbines generating electricity in the EU would be 
installed. 

FIGURE 1: EWEA CAPACITY SCENARIOS AND MACRO-ECONOMIC BENEFITS 
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Figure 1: EWEA capacity scenarios and macro-enconomic benefits (source: EWEA,

2015).

Air quality is a major health and environmental issue worldwide and especially in cities.

The World Health Organisation estimates that outdoor air pollution was responsible

for the premature death of some 4.2 million people worldwide in 2018. Air quality is

particularly poor in urban areas, where most of the population lives. Today, 55% of the

world population lives in urban areas and, according to the United Nations Organisation,

this rate is projected to reach 68% by 2050. As a consequence, the topic of outdoor

air quality is of growing interest in the scientific community. Outdoor air pollution

might be studied at different scales, both temporally and spatially. The layer of air

beneath the mean height of the buildings (resp. trees) constitutes the urban (resp. forest)

canopy layer. This layer is significantly affected by the obstacle canopy – defined as

the assemblage of buildings, trees, and other objects composing a town. The microscale

processes that take place in the urban canopy layer typically extend over a few meters to

several hundred meters in the horizontal direction and over a few hundred meters in the

vertical direction. The evolution of pollution at local scale is mainly driven by advection

– which transports the pollutants – and diffusion – which causes mixing – and pollutant

concentration is thus largely determined by the wind flow. As a result, estimating the

meteorological variables (wind, turbulence, etc.) inside the urban canopy layer is an

essential step to study pollutant dispersion.

Dispersion modelling is also necessary for emergency purposes related to hazardous,

and even radioactive, materials. Accidents and malicious activities (e.g., terrorist attacks)

might release hazardous materials into the atmosphere. These releases are more likely to

occur in industrial neighbourhoods or urban areas and can affect human health through

inhalation, ingestion of contaminated food or water, cloud or ground shine. In order to

respond to such incidents, governmental agencies – such as the Commissariat à l’énergie

atomique et aux énergies alternatives (CEA) in France – must be able to model the
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dispersion of the hazardous materials into the atmosphere.

Both wind resource assessment and atmospheric dispersion modelling require the

accurate estimation of the wind field – i.e., values of wind speed and direction at every

point of the domain – and turbulence, for local-scale domains. These very complex

micrometeorological fields are generally simulated with computational fluid dynamics

(CFD) models that are very sensitive to input parameters. In particular, atmospheric

simulations at local scale are largely determined by the meteorological conditions at

the boundaries of the domain: the boundary conditions (BC). Up to now, the BC

were estimated from the results of larger-scale models, which provide inaccurate, and

sometimes incomplete, information. The insufficient knowledge of the BC represents a

major source of uncertainty in micrometeorological studies.

In order to improve the atmospheric simulations at local scale, it is essential to

improve the accuracy of the BC. The potential sites for wind power development and the

built environments are often equipped with instruments measuring either meteorological

variables or pollutant concentrations. The observations supplied by these instruments

constitute a second source of information, relatively unexploited until now for micromete-

orological studies. Indeed, in situ observations are perturbed by the geometrical features

of the domain. Consequently, there is considerable scope for developing data assimilation

(DA) methods to take benefit from available observations in order to estimate the BC as

accurately as possible.

Up to now, DA methods have been mostly developed to meet the needs of large-scale

meteorology. However, at such scales the atmospheric simulations are largely driven by

initial conditions (IC) – i.e. the state of the meteorological variables at a given time

to forecast the state at the next time step. As a matter of fact, DA methods have

been mainly used to correct the IC. To date, DA methods allow to bring back in time

information contained in observations. In the present work, the main objective is to

revise such methods so that they bring information “back in space” and consequently

extend the use of DA to micrometeorology.

To achieve this goal, the first step consists in choosing one or several DA method(s)

appropriate for a use with CFD models in operational conditions. Next, a theoretical

study must show that the methods can be adapted to the micrometeorological problems.

And lastly, several tests have to be conducted to assess the efficiency of the methods

with a CFD model for operational studies.

This document presents in details the context and the results of this work. Chapter 1

describes the lower layer of the atmosphere where micrometeorological processes take

place and how these processes are modelled. This chapter also presents the methodologies

implemented for wind resource assessment and dispersion modelling. Chapter 2 is an

introduction to DA, reviewing the existing methods and the few cases where DA has been

applied to micrometeorological problems. In Chapter 3 we describe the two selected DA

methods, in their version adapted to atmospheric simulations at local scale. At first, a
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validation study for these two methods is conducted with a simple model representing the

atmosphere as a two-layers fluid flow, which resolves the shallow-water equations (SWE)

in 1D. The results of this study are described in Chapter 4 and have been published

in Defforge et al. (2018). The efficiency of the methods is then assessed in a context

of wind resource assessment with twin experiments and field observations in a region

with very complex topography. The twin experiments are conducted with a 2D domain

in the XZ plane and then with the complete 3D domain. Measurements provided by a

field campaign are eventually used in a cross-validation process. The object of Chapter 5

is to present this second study and to show the limitations of one of the two methods.

The results presented in Chapter 5 have been published in Defforge et al. (2019a). For

the second method, another study is described in Chapter 6, which corresponds to

dispersion modelling in urban area and uses the observations provided by the Mock

Urban Setting Test (MUST) field campaign. The experiments conducted in this urban

configuration aim at assessing the ability of the adapted DA method to assimilate a few

observations of wind or pollutant concentrations, within the urban canopy. Eventually,

the last chapter gives the conclusions of the present work and outline perspectives for

future works. Some theoretical developments have been performed in order to derive the

adapted versions of the DA methods. Similarly, the SWE have been studied in details

to perform the first study. Since these theoretical demonstrations are not essential to

the overall understanding of the work and for the sake of clarity of the main manuscript,

they have been added as supplementary information in Appendices B and A.
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Chapter 1

Micrometeorology

Introduction

Meteorology impacts many human activities and has thus been studied for more than a

century. Since atmospheric motions span a wide range of temporal and spatial scales –

from hundredths of seconds to thousands of years, and from millimetres to thousands

of kilometres – different subdomains of study have emerged. The two applications that

interest us in the present study – wind resource assessment and atmospheric dispersion

modelling – require accurate estimations of the meteorological variables (e.g., wind field,

turbulence, etc.) over domains of a few squared kilometres horizontally and up to a few

hundred meters above the ground. They consequently lie in the field of micrometeorology,

which focuses on the atmospheric phenomena and processes at small spatial and temporal

scales (Arya, 1988; Foken, 2017). In a first part, we present the vertical structure of

the atmosphere and especially focus on the lowest part, where micrometeorological

processes take place. To understand the origin of these processes, we then give the

basic laws of thermodynamics and dynamics governing them. Afterwards, We present

the different meteorological models, and in particular the atmospheric module of the

open-source computational fluid dynamics (CFD) model Code Saturne, and how the

models at different scales interact. Eventually, we briefly review the methodologies

applied for wind resource assessment and dispersion modelling.

1.1 The atmospheric boundary layer

1.1.1 Structure of the atmosphere

Both wind resource assessment and dispersion modelling focus on domains of a few

squared kilometres horizontally. In order to model meteorology in such domains, it is

first necessary to estimate the required vertical extent of the studied domains. To do so,

one should understand the vertical structure of the atmosphere.

The mass of the atmosphere is mainly concentrated near the ground: half of its mass

29



Chapter 1 Micrometeorology

is situated below 5500m and 99% are below 30km. This mass distribution justifies the

fact that meteorology focuses on the first 20km or so of the atmosphere. The vertical

profile of temperature in the atmosphere defines a vertical division of the atmosphere

into four layers (Fig. 1.1a).

• The troposphere is the lowest layer of the atmosphere, extending between the ground

and an altitude of 9km to 16km. In this layer the temperature decreases with

height. The troposphere upper limit is called the tropopause and its height varies

with latitude and weather conditions. Most of the meteorological phenomena occur

within the troposphere and almost all the air pollutants are emitted, transported,

and dispersed in this layer.

• The stratosphere, above the troposphere, extends up to 50km in altitude. Since the

temperature increases with height in the stratosphere, this layer is relatively stable

and there is little mixing there.

• The mesosphere is the region of the atmosphere extending between 50km and 80km.

In this layer the temperature decreases again with altitude such that the coldest

temperatures in the atmosphere occur at the upper limit of the mesosphere.

• The thermosphere is the uppermost layer of the atmosphere where the temperature

increases very rapidly with altitude.

The lowest part of the troposphere, which is in contact with the ground, is called

the atmospheric boundary layer (ABL) (Garratt, 1994) (Fig. 1.1b). The ABL is the

scene of the micrometeorological processes: numerous matter, heat, and momentum

exchanges, especially between the air and the underlying surface take place there. The

ABL structure is determined by both the dynamics and thermodynamics of the lower

atmosphere and the physical and thermal properties of the underlying surface. The ABL

thickness, commonly referred to as mixing depth, varies in space and time between several

tens of meters to a few kilometres. The mixing depth depends, in particular, on the

topography and land use of the underlying surface as well as the large-scale meteorological

conditions.

1.1.2 Dynamics of the atmospheric boundary layer

Dynamics of any fluid flows, such as the air in the atmosphere, is governed by fun-

damental laws of mass, energy, and momentum balance. Since numerical models of

micrometeorology solve the governing equations of the flow it is necessary to derive these

laws to understand, and thus properly apply, these models. In what follows, we will

give the governing differential equations based on the fundamental laws of dynamics

and thermodynamics. Detailed derivation of the conservation equations can be found in

books on fluid mechanics, dynamical meteorology, or geophysical fluid dynamics (e.g.,

Haltiner and Martin, 1957; Pedlosky, 1979; Dutton, 1995).
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1.1. The atmospheric boundary layer

(a) (b)

Figure 1.1: a) Vertical structure of the atmosphere (source: NCSU). b) Vertical structure

of the troposphere after (after Arya, 1988).

Conservation of mass

The law of mass conservation states that the mass of a system must be conserved.

Applying this law to an elementary volume of air yields the continuity equation. Using

the Einstein notation, it reads

∂ρ

∂t
+
∂ρui
∂xi

= 0, (1.1)

where ui is the i-th component of the flow velocity and ρ is the fluid density. This

equation mathematically represents the fact that the local rate of change in density must

be equal to the divergence of mass in all the directions. At the small scales considered in

the present work, the temporal variation of density ∂ρ/∂t is usually small compared to

the other terms and it is therefore neglected (Pielke, 2013). This anelastic approximation

allows to filter acoustic waves – which propagate very fast – from the solutions and still

take the compressibility of the fluid into account.

When the principle of mass conservation is applied to a particular species i present

in the air, one obtains the diffusion equation for the concentration of this species (ci):

∂ci
∂t

+ uj
∂ci
∂xj

= Dmi
∂2ci

∂xj∂xj
+Ri(c1, c2, ...cN , T ) + Si, (1.2)

where Dmi is the diffusion coefficient of species i, Ri is the rate of change of concentration

with time due to chemical reactions with other species – which depends on temperature

T – and Si represents other sources or sinks for this species.
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Momentum balance

The overall momentum of any solid or fluid in motion must be conserved. The application

of this principle to the fluid flow in an elementary volume yields:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ gi +

1

ρ

∂τij
∂xj

+ Ci, (1.3)

where p is the pressure, gi is i-th component of the gravity force, τij are the components of

the viscous stress tensor, and Ci is the i-th component of the Coriolis force. The left-hand

side terms represent the acceleration of the fluid – in a Lagrangian framework – which

can be decomposed between the time-dependent – i.e., the Eulerian acceleration – and

advection components. The right-hand side terms correspond to the pressure gradient,

the gravity force, the viscous effects of air, and the Coriolis effects due to the rotation of

the Earth. The system of equations formed by this equation of momentum balance and

the continuity equation (1.1) constitutes the Navier-Stokes equations which describe

the motion of any viscous fluid.

Energy balance

The total energy of a system is conserved, even though the energy can change form

(e.g., kinetic energy or heat). In the atmosphere, the source of energy that is mainly

studied is heat, which is transferred by conduction, convection, and radiation. The

variable commonly used to deal with heat in meteorology is the potential temperature

θ which allows to compare parcels of air from different heights in the atmosphere and

thus quantify the thermal instability of the air. It is defined for a parcel of air, initially

at temperature T and pressure p, as the temperature that the parcel would attain if

adiabatically brought to a standard reference pressure p0. The relation between T and θ

is given by the following equation:

θ = T

(
p0

p

)R∗/cp
, (1.4)

where R∗ is the gas constant for dry air, cp is the specific heat capacity at a constant

pressure, and p0 is a reference pressure level, usually set equal to 1000hPa.

To take into account the air moisture, the virtual potential temperature is defined

as the theoretical potential temperature of dry air that would have the same density as

moist air. It is related to the actual potential temperature by

θv = θ (1 + 0.61r − rL) , (1.5)

where r and rL are the mixing ratio of water vapour and liquid water in the air.

The application of the principle of energy conservation to heat in an elementary

volume of atmospheric air, written in terms of potential temperature, reads

∂θ

∂t
+ uj

∂θ

∂xj
=

1

ρCp

∂

∂xj

(
λ
∂θ

∂xj

)
+ Sθ, (1.6)
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1.1. The atmospheric boundary layer

where Cp is the specific heat at constant pressure, λ is the molecular thermal conductivity,

and Sθ is a source (or sink) term, mainly due to the latent heat of any evaporation

or condensation in the volume. This equation suggests that the potential temperature

of an air parcel is conserved in its motion, as long as only adiabatic transformations

(compression or expansion) occur. When diabatic effects are present (e.g., condensation,

evaporation) they represent sources (or sinks) of potential temperature.

1.1.3 Atmospheric stability and similarity theory

Atmospheric stability

The potential temperature can be seen as a ’normalized’ temperature such that its vertical

gradient characterizes the stability of the atmosphere. If we raise a cold air parcel (in

terms of potential temperature), initially below warm air, it becomes colder (and thus

heavier) than the surrounding air and therefore it goes back down: the atmosphere

is stable. On the contrary, if a warm air parcel, initially below cold air, rises, it is

found warmer (and lighter) than the surrounding air such that it continues rising: the

atmosphere is unstable. Mathematically, this leads to the three following configurations:

• if ∂θ
∂z > 0, the atmosphere is stable,

• if ∂θ
∂z = 0, the atmosphere is neutral,

• if ∂θ
∂z < 0, the atmosphere is unstable.

These classes of stability can be used to classify meteorological situations. The atmospheric

stability influences the dispersion of pollutants and the correspondence between the ABL

structure and the typical observed plume shapes is schematically shown in Figure 1.2.

Similarity theory

Similarity theories are based on dimensional analysis and provide empirical relationships

between variables of interest. Such theories are commonly used in micrometeorology

since the relations governing turbulent processes are not always analytically solvable.

A very commonly used similarity theory has been proposed by Monin and Obukhov

(1954) for stationary and horizontally homogeneous conditions with no radiation. It has

been developed to describe the vertical variations of wind speed and temperature, in

non-neutral conditions, as a function of the dimensionless height parameter

ζ = z/L, (1.7)

where L is the Monin-Obukhov (M-O) length. This length is defined as a combination of

the friction velocity (u∗), the surface potential temperature (θ0), and the kinematic heat

flux (w′θ′0):

L = − u3
∗

κ g
θ0
w′θ′0

, (1.8)
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Figure 1.2: Schematic depiction of plume shapes according to the atmospheric stability

level and the corresponding wind speed and temperature vertical profiles (source: Arya,

1988).

where κ ≈ 0.40 is the von Karman’s constant. The M-O length characterizes the ratio of

contributions from buoyant and shear productions to turbulence kinetic energy (TKE).

It is also used as a proxy for the stability of the atmosphere: it is unstable when L < 0

and stable when L > 0. When the atmosphere is neutral, by construction, |L| → ∞.

From a dimensional analysis, the M-O similarity theory defines universal functions

that empirically relate the dimensionless parameter ζ and the vertical gradients of velocity

and potential temperature:

z

u∗

dU

dz
=

1

κ
φm(ζ), (1.9)

z

θ∗

dθ

dz
=

1

κ
φh(ζ), (1.10)

where U is the mean horizontal wind speed at height z, θ∗ = −w′θ′0
u∗

is the friction

temperature, θ is the mean potential temperature at height z, and φm and φh are the

universal functions of momentum and heat respectively.

The integration of equations (1.9) and (1.10) with respect to z gives the logarithmic

vertical profiles of velocity and potential temperature:

U =
u∗
κ

[
log

(
z

z0

)
− ψm(ζ)

]
, (1.11a)

θ = θ0 +
θ∗
κ

[
log

(
z

z0T

)
− ψh(ζ)

]
, (1.11b)
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where z0 and z0T are the roughness lengths for momentum and heat and ψm and ψh are

defined as follows:

ψm(ζ) =

∫ z/L

z0/L
[1− φm(ζ)]

dζ

ζ
, (1.12a)

ψh(ζ) =

∫ z/L

z0T/L
[1− φh(ζ)]

dζ

ζ
. (1.12b)

(1.12c)

The universal M-O functions are determined using experimental data (e.g., Du Vachat

and Musson-Genon, 1982). Several definitions of these functions have been proposed

and a review of the different formulations is given in Foken (2006). One of the most

commonly used is the one proposed by Businger and Dyer (Businger, 1988):

φm(ζ) = φh(ζ) = 1 + 5ζ if 0 ≤ ζ < 1, (1.13)

φ2
m(ζ) = φh(ζ) = (1− 15ζ)−1/2 if − 5 < ζ < 0. (1.14)

From the M-O relations, vertical profiles of TKE k = 1
2

(
u′2 + v′2 + w′2

)
and of its

rate of dissipation ε can also be derived, as in Duynkerke (1988):

k =
u2
∗√
Cµ

(
φm(ζ)

φε(ζ)

)2

(1.15a)

ε =
u3
∗

κ(z + z0)
φε(ζ), (1.15b)

where Cµ is a constant and φε ≈ φm (Pahlow et al., 2001).

1.2 Modelling meteorology

The fundamental equations presented in the previous section, which govern the atmo-

spheric processes, are not solvable analytically. However, numerical models have been

developed to find approximated solutions to these systems of equations. As mentioned

above, atmospheric motions – and thus meteorology – span a wide range of temporal and

spatial scales (see Fig. 1.3). Consequently, several models exist and focus on different

ranges of scales. We present below the main classes of meteorological models.

1.2.1 Global and regional scale models

Spatial and temporal scales are linked: the phenomena occurring at large horizontal

scales generally also span long time scales (see Fig. 1.3). Consequently, global models,

which simulate the atmospheric flow over the whole Earth and regional – or continental

– models are usually run over long time periods to capture large-scale processes. In

order to limit the calculation times, the spatial and temporal resolution of the models

must be adapted to the size of the simulated regions. For instance, the global model

35



Chapter 1 Micrometeorology

Figure 1.3: Spatial and temporal scales of the atmospheric processes (after R. Gaston).

ARPEGE developed by Météo-France has an average spatial resolution of 16km and a

time step of 360s. The regional models AROME and Weather Research and Forecasting

(WRF), developed by Météo-France and NCAR respectively, have horizontal grid cells

of approximately 1km and a time resolution of 1min or less. The equations solved by

the different global and regional models may differ. All the equations are derived from

the Navier-Stokes equations but they generally include approximations in large-scale

models, in order to reduce the computational cost of the equations resolution. Moreover,

when the grid cells are large, the atmospheric phenomena occurring at small scales,

compared to the cell size, cannot be explicitly resolved and need to be parametrised.

The most common parametrisations include convective clouds, radiative transfers, and

cloud microphysics (e.g., Noilhan et al., 1989; Kain and Fritsch, 1993; McFarlane, 2011).

Subgrid phenomena might have a substantial influence on the atmospheric flow such

that a great research effort is carried out to improve the parametrisations in global and

regional models (e.g., Garuma, 2018).

1.2.2 CFD models for local-scale atmospheric simulations

To represent local-scale domains, CFD models are increasingly used. These models directly

solve the full Navier-Stokes equations such that they are computationally expensive.

The recent increase in computational capacities allows to use CFD models for many

atmospheric applications at local scale. Such models are generally used with meshes

which horizontal resolution spans from a few tens of meters to several meters and with

time steps down to a few seconds. Despite the relatively small size of grid cells used

in CFD models, turbulence might occur at scales smaller than the mesh resolution and

impact the flow at the scales resolved by the model. Consequently, different methodologies
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have been developed through the years to model turbulence, some of which are presented

below.

Modelling turbulence

Turbulence corresponds to the fluctuations, in time and space, of velocity, temperature,

and scalar concentrations, around their mean values. As the atmospheric motion in the

ABL is always turbulent, it is necessary to understand and represent turbulent exchanges

and mixing processes to study micrometeorology (e.g., Stull, 1988). We present here, in

a qualitative way, the three main techniques for modelling turbulence. These approaches

are based on the Navier-Stokes equations, and include more or less approximations.

Direct numerical simulation (DNS) The turbulent processes in the ABL involve a

wide range of time and length scales. In theory, it is possible to represent all these scales

by a direct simulation of the Navier-Stokes equations (DNS). This method numerically

solves the equations of the dynamics for all the scales involved in the turbulent processes.

To do so, DNS requires a very fine resolution to explicitly resolve the smallest scales of

motion (Kolmogorov length scale, typically 10−5m in the atmosphere) and a a sufficiently

large domain to represent the largest scales of interest (typically 103m in the atmosphere).

As a result, DNS is computationally very expensive and despite the significant increase in

computational capacities over the last decades, the DNS technique has only been applied

to low Reynolds-number flows, for which the ratio between the largest and smallest

scales is limited to a few hundreds. The Reynolds numbers encountered in the ABL is

typically of 108 such that the number of grid points necessary would be of 1024 and the

computational resources required by DNS would exceed the capacity of the most powerful

computers currently available. Still, this technique is very useful for research purposes.

Large eddy simulation (LES) The small scales of motion are the most computa-

tionally expensive to resolve. The approach adopted for LES is to spatially filter the

meteorological fields in order to remove subgrid scale information and explicitly simulate

the larger eddies only. The smaller scales are not resolved but their contribution to

energy dissipation and to turbulent processes are parametrised using subgrid models,

which are functions of resolved-scale variables. These parametrisations, necessary to

close the set of equations, are simpler than Navier-Stokes equations and faster to solve.

The effect of the low-pass filtering, applied in the LES approach, can be seen as time-

and spatial-averaging. This technique, although less faithful than DNS, requires less

computational resources and becomes increasingly popular.

Reynolds-averaged Navier-Stokes (RANS) modelling and turbulence closure

models For most of engineering and environmental applications, only the mean fields

(velocity, temperature, concentration, etc.) are of interest. The RANS approach is based
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on the Reynolds decomposition: each flow variable (x) is separated into its mean value

(x), which represents the large scales, and its fluctuating component with zero mean (x′),

which accounts for turbulent small-scale flow:

x = x+ x′. (1.16)

The averaging operator used in the previous equation theoretically corresponds to a

temporal mean over a given time period. Theoretically, the mean variables should then be

time independent. However, the time-dependent terms are generally kept in the derivation

of the RANS equations. The retention of these terms can be justified by the ergodicity

of turbulent flows and the different time scales involved in the system. According to

the ergodicity hypothesis, for statistically stationary processes, the temporal means are

equal to the ensemble means, which are time-dependent (Frisch and Kolmogorov, 1995).

Moreover, typical time scales of turbulent fluctuations – and thus the averaging period –

are generally much smaller than characteristic times of large-scale fluid motions. During

such long time periods, the mean variables are not necessarily stationary. These two

points can justify the assumed time-dependency of the mean variables considered in

RANS equations.

The Reynolds decomposition is applied to all the variables: the three velocity com-

ponents, the fluid density, the pressure, the potential temperature, and the species

concentrations. These variables are replaced by their Reynolds decomposition in the

equations of continuity (1.1), momentum conservation (1.3), heat (1.6), and pollutant

transport (1.2). The governing equations are then time-averaged to derive the Reynolds-

averaged equations:

∂ρ ui
∂xi

= 0, (1.17a)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ gi +

1

ρ

∂τij
∂xj

+ Ci −
∂u′iu

′
j

∂xj
, (1.17b)

∂θ

∂t
+ uj

∂θ

∂xj
=

1

ρCp

∂

∂xj

(
λ
∂θ

∂xj

)
+ Sθ −

∂u′jθ
′

∂xj
, (1.17c)

∂ci
∂t

+ uj
∂ci
∂xj

= Dmi
∂2ci

∂xj∂xj
+ Si −

∂u′jc
′
i

∂xj
. (1.17d)

Supplementary terms (u′iu
′
j) appear in the equation of momentum conservation

(1.17b). These terms are the components of the total stress tensor accounting for

turbulent fluctuations in fluid momentum and are called the Reynolds stresses. Due to

the nonlinearity of the Navier-Stokes equations, the RANS equations include some terms

related to turbulent flux that depend on unknown covariances of two fluctuating variables:

u′iu
′
j , u

′
jθ
′, and u′jc

′
i. The presence of these terms in the RANS equations constitutes the

closure problem of turbulence: there are more unknown variables than the number of

equations.
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Figure 1.4: The layer system corresponds to a crude discretisation of the troposphere

(light blue line) into two layers of constant density (dark blue line). The dynamics in the

upper layer is neglected and the bottom layer follows the shallow-water equations (SWE)

with a reduced gravity g′ = ∆ρ
ρ0
g.

Several models of turbulence have been proposed to solve this closure problem and

obtain a closed set of equations.

• The mixing length model is a method attempting to describe momentum trans-

fer by turbulence Reynolds stresses within the ABL by means of an eddy viscosity

(Prandtl, 1925). It is conceptually analogous to the mean free path in thermody-

namics: a fluid parcel will conserve its properties for a characteristic length, L,

before mixing with the surrounding fluid.

• The k-epsilon model is an improvement of the mixing length model and is now

the most common model used in CFD. It focuses on the mechanisms that affect

the TKE and consists in a set of two equations: one for the TKE k and one for its

dissipation rate ε (Launder and Spalding, 1974).

• Other turbulence models exist and research is still ongoing to improve them (e.g.,

second order closure, Umlauf and Burchard, 2005).

Since RANS models are more computationally efficient than LES models (Rodi, 1997)

they are still preferred to simulate the ABL flows over complex terrain and all the CFD

simulations performed in the present work use RANS turbulence modelling.

1.2.3 Shallow-layer model of the atmospheric boundary layer

The SWE are derived from the Navier-Stokes equations in the approximation of a small

layer height, compared to horizontal spatial scales. These equations can be used to
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represent atmospheric flows if the gravity g is replaced by the reduced gravity g′ = ρ−ρa
ρ g

to account for the small difference of density between the simulated ABL (ρ) and the free

atmosphere above (ρa), as shown on Figure 1.4. Moreover, the discretised ’level’ models –

which use, for instance, vertical finite-difference approximations – often chosen to simulate

continuously stratified fluid, can be shown to be equivalent to multi-layer models – where

SWE are applied to each layer (Audusse et al., 2006; Pedlosky, 1979). Therefore the

simple model described below can be considered as a crude vertical representation of the

atmosphere into two layers: the ABL which satisfies the SWE and the free atmosphere

above (see Fig. 1.4).

In one dimension, the two state variables of the SWE are the thickness of the fluid

layer (h, here the boundary layer), and the mean horizontal velocity (u) which are related

as follows, assuming that ground friction and diffusion are neglected:

∂X

∂t
+ M

∂X

∂x
= S, (1.18)

where X =

(
h

u

)
, M =

(
u h

g′ u

)
, and S =

(
0

−g′ ∂zr∂x

)
with zr the bottom topography.

The problem is well-posed if two boundary conditions (BC) are prescribed, one on h and

one on u (e.g., Abbott, 1966).

The nature of a flow is determined by the value of the Froude number, which is the

ratio of the flow inertia to the external forces: Fr ≡ u√
gh

. If Fr < 1 the flow is subcritical

(or fluvial), if Fr = 1 it is critical (or torrential), and if Fr > 1 the flow is supercritical.

Bernoulli equation

The 1D SWE with topography and without ground friction nor diffusion, equation 1.18,

can be solved analytically by the Bernoulli equation (1.19) (e.g., Goutal and Maurel,

1997) which is based on the energy conservation and states that the sum of the specific

head (Hs ≡ h+ u2

2g′ ) and the topographic elevation (zr) is conserved over the domain:

u2

2g′
+ h+ zr = H0, (1.19)

where H0 is the specific head determined at one point of the domain where the system

state is known.

Method of characteristics

In addition to Bernoulli equation, the 1D SWE can be solved using the method of

characteristics (Abbott, 1966; Lister, 1960). This method consists in using the two

eigenvalues of M (α+ = u + c and α− = u − c where c =
√
g′h is the wave speed) to
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(a)

(b)

Figure 1.5: (a) Example of CFD simulation with the atmospheric module of Code Saturne

over a wind farm (source: G. Angot). (b) Example of pollutant dispersion modelling in

the suburbs of Toulouse’s city, France.(source: Z. Gao).

derive a system of conservation equations:

(
∂

∂t
+ α+

∂

∂x

)
(u+ 2c) = 0 ⇐⇒ dR+

dt

∣∣∣∣
C+

= 0, (1.20a)

(
∂

∂t
+ α−

∂

∂x

)
(u− 2c) = 0 ⇐⇒ dR−

dt

∣∣∣∣
C−

= 0, (1.20b)

where R+ = u+ 2c and R− = u− 2c are the Riemann invariants, conserved along the

curves C+ and C− defined by

(C+) :
dx

dt
= α+ = u+ c, (1.21a)

(C−) :
dx

dt
= α− = u− c. (1.21b)

More details about the derivation of the SWE, their theoretical resolution, and the

model used to solve them can be found in Appendix A.

1.2.4 Atmospheric module of Code Saturne

Code Saturne is a free, open-source software developed and released by Électricité de

France (EDF) to solve CFD applications (Archambeau et al., 2004). It solves the Navier-

Stokes equations for 2D, 2D-axisymmetric, or 3D flows using a co-located finite volume

scheme. Code Saturne can be used for steady or unsteady simulations and to simulate

laminar or turbulent flows.

This model has the particularity to handle meshes with any type of cells (e.g., tetra-

hedral, hexahedral) and any type of grid structure (e.g., unstructured, block structured,

hybrid). There are several turbulence approaches available in Code Saturne including

the mixing length, k − ε, and LES.
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The atmospheric module of Code Saturne, has been developed by the Centre d’Enseignement

et de Recherche en Environnement Atmosphérique (CEREA) to simulate atmospheric

flows in the ABL. It is based on the standard version of Code Saturne to which supplemen-

tary developments have been added to model the specificities of the atmospheric dynamics.

This module is used for a wide range of quasi-operational applications, including wind

resource assessment and pollutant dispersion modelling (see Fig. 1.5).

In the atmospheric module of Code Saturne, the thermal effects in the ABL are taken

into account by the resolution of the equation of energy conservation, derived for the

potential temperature (see Eq. 1.6). Other thermal processes such as the buoyancy

effect (e.g., momentum balance, thermal production of turbulence) are also included.

The microphysics of water can also be represented by three variables (virtual potential

temperature, number of droplets, and water content) to study, for instance, fog formation

or cooling tower plumes (Bouzereau, 2004).

The BC for open boundaries (lateral or top) can be prescribed with different degree

of complexity: from simple vertical academic profiles to full 3D fields, interpolated from

larger-scale simulations (dynamical downscaling). The interactions with the ground

(momentum balance and heat exchange) are modeled and both a forest model (Zäıdi

et al., 2014) and an urban canopy model can be used when necessary. In addition, the

effect of solar and infrared radiation can be taken into account (Makké et al., 2016).

Code Saturne offers the possibility to transport scalars, which is particularly useful to

study pollutant dispersion (Milliez, 2006). Moreover, modules of gas-phase and particle

chemistry are available as well as sedimentation, wet scavenging, and deposition. These

options allow to study traffic pollution (Albriet et al., 2010) or air pollution in street

canyons (Thouron et al., 2019).

For wind resource assessment studies, it is possible to model the wake effect of wind

turbines.

The atmospheric module of Code Saturne is used in the present work to evaluate

the performances of the data assimilation (DA) methods in operational conditions (see

Chapters 5 and 6).

1.2.5 Relative importance of initial and boundary conditions

The resolution of Navier-Stokes equations requires the knowledge of the initial state of the

system – IC – and/or the state of the atmosphere at the domain boundaries – BC. The

atmospheric models (except for global models) have open boundaries: the borders of the

domain do not correspond to physical limits. Consequently the state of the atmosphere

outside the domain impacts its inner state and evolution through these open boundaries.

In order to take these mesoscale effects into account, the inner meteorology must be

forced by the prescription of BC representative of the mesoscale meteorology.

Depending on the characteristic length- and time-scales of the system, the IC and

BC do not equally influence the solution within the domain. In order to understand the
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(a) (b)

Figure 1.6: Relative importance of initial conditions (IC) and BC for a) large-scale

meteorology and b) local-scale meteorology. L, T , and U are typical scales of length,

time, and velocity. a) Except for the regions coloured in green, the solution in the domain

is mainly influenced by the IC. b) The solution is mainly influenced by the BC, except

for the blue region.

relative importance of IC and BC, we use here the method of characteristics previously

presented (see Section 1.2.3).

Figure 1.6a shows a schematic representation of a large-scale atmospheric domain

in the spatio-temporal space. For atmospheric flows, the wind speed is typically of the

order of magnitude of U ∼ 10m/s. Large-scale domains extend over L ∼ 1000km and

the simulations typically last T ∼ 1day ∼ 104s such that T × U/L ∼ 0.1. Consequently,

the spatial extent of the domain is much greater than the typical distance travelled by

the flow during a simulation: L� T × U . In Figure 1.6a, one of the two characteristic

curves is represented by an arrow and indicates that the solution in M depends on

the IC. It is similar for most of the points in the domain, except the ones in the two

green regions. On the contrary, small-scale meteorology corresponds to spatio-temporal

domains longer along the temporal axis than the spatial axis: L� T × U . We have seen

in Section 1.2.2 that micrometeorological applications are studied over domains of a few

kilometres (L ∼ 1km) and during characteristic time scales of T ∼ 1h ∼ 103s, such that

T × U/L ∼ 10. As a result, most of the points in the domain are influenced by BC –

except for the blue region – (Fig. 1.6b). Stationary simulations correspond to the limit

T →∞ and the steady-state of the system does not depend on the IC at all.

This schematic representation illustrates the fact that large-scale simulations are

largely determined by IC whereas for local-scale models, the solution is mainly influenced
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by BC. Note that the two cases presented here are somehow extremes and one could

imagine domains for which both the IC and BC substantially influence the inner solution.

This heuristic demonstration qualitatively justifies that, in order to improve the accuracy

of micrometeorological simulations, the inputs that have to be corrected are the BC.

1.2.6 Combining different scales

Turbulence is an example of how small-scale processes impact larger-scale meteorology;

their effects are taken into account through subgrid models or parametrisation (see

Section 1.2.2). Similarly, large-scale phenomena and processes impact micrometeorology.

For instance, CFD domains generally cover a few kilometres in the horizontal direction and

several hundred meters in the vertical direction. The mesoscale atmospheric phenomena

that often drive wind patterns occur at larger scales and cannot be captured by local-scale

models. Consequently, information from larger-scale meteorology must be provided to

CFD models, especially through the definition of the BC.

In order to combine informations from regional- and local-scale simulations, two types

of downscaling methods exist: statistical and dynamical.

Statistical downscaling

Statistical downscaling determines (statistical) relationships between predictors available

during a long time period (e.g., outputs of large-scale models or observations) and some

local-scale predictands (Wilby and Wigley, 1997). There are three categories of statistical

downscaling:

• Regression methods seek linear or nonlinear relationships between the predictors

and predictants. In wind resource assessment, regression methods are generally

called measure-correlate-predict (MCP) methods and are used to infer statistical

relations between a reference site where long-term measurements are available and

the nearby candidate site (Carta et al., 2013). While regression methods have a low

computational cost, they are reliable only for relatively flat regions and require a

well-developed measurement network. Moreover they generally underestimate the

variability of the predictands and thus poorly assess the impact of extreme events.

• Weather generators generate synthetic time series from realistic high-frequency

variablility (Wilks and Wilby, 1999). These stochastic models are generally applied

in climate change impact studies.

• Weather classification methods group predictors into a reduced number of classes

according to their similarities (e.g., wind speed and direction) during a training

period over which both predictand and predictors are available. The classes are

then used to reconstruct the long-term time series of predictand values.
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Figure 1.7: Representation of scale imbrication from meso- to local-scale models (source:

E. Leblebici).

Dynamical downscaling

Dynamical downscaling – or nesting – can be one-way or two-ways. One-way nesting

consists in extrapolating the results of large-scale simulations to force local-scale models,

generally through the definition of BC (e.g. Yamada, 2004; Probst and Cárdenas, 2010;

Rodrigues et al., 2016) (Fig. 1.7). With such method, the information only goes from

the mesoscale to the local-scale model. On the other hand, two-way nesting is based on

information sharing between the mesoscale and microscale models in both directions (e.g.,

Debreu and Blayo, 2008; Zajaczkowski et al., 2011; Chen et al., 2011). Nesting methods

are widely used for wind energy applications and urban studies. In both types of studies,

the shared information include meteorological variables. In dispersion modelling studies,

the pollutant concentration might also be taken into account by downscaling (Stocker

et al., 2012; Oldrini et al., 2017).

Although downscaling methods are efficient ways of including large-scale meteorology

in microscale simulations, the methods are not always fully satisfactory. For microscale

imbrications with CFD models, the difference in spatial and temporal resolution between

mesoscale and CFD domains might be very large and gives rise to several issues. The

mesoscale outputs might indeed lack accuracy or some information can be missing. The

initial guess of BC obtained from mesoscale outputs are generally incorrect and especially

near the ground, where the effect of complex terrain – poorly represented at the resolution

of mesoscale models – are the most important. Moreover, there might be inconsistencies

between the physics of models across scales. For instance, mesoscale models rarely

simulate the small scales of turbulence such that the outputs of mesoscale models do

not contain enough information about turbulence in the domain of interest (e.g., Muñoz-

Esparza et al., 2014). As a result, the state of the variables related to turbulence (e.g., k
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and ε) which must be provided as BC to CFD models must be empirically reconstructed.

Several studies have proposed methods to combine mesoscale and microscale models in

terms of turbulence, either for RANS models (Kunz et al., 2000; Baik et al., 2009; Tewari

et al., 2010; Castro et al., 2010; Kwak et al., 2015; Balogh and Parente, 2015, e.g.,) and

more recently with LES models (e.g., Liu et al., 2012; Nakayama et al., 2012; Michioka

et al., 2013).

1.3 Wind resource assessment

Wind resource assessment consists in evaluating the mean annual energy that could be

produced if a wind farm was installed at a specific site. The existing methods for assessing

the wind resource of a site are generally based on in situ measurements, mesoscale or

local-scale modelling, or on the use of meteorological reanalyses (Landberg et al., 2003;

Probst and Cárdenas, 2010; Blocken, 2014; Sanz Rodrigo et al., 2017).

1.3.1 Site measurements

Historically, the wind potential for a candidate site was assessed through statistical

analyses of the available wind measurements, recorded in the area of concern (e.g.,

Fagbenle et al., 2011). For instance, statistical downscaling methods mentioned in

Section 1.2.6 have been widely used to infer wind potential of a given site from observations

of a few locations (Sanz Rodrigo et al., 2017). However, due to the relatively high cost of

weather stations, the measurement network is generally coarse. Moreover, at least one

year of data is required to build climatology of a candidate site and in practice it appears

that longer time series are needed to well capture the climatology of a given site. These

requirements are not always fulfilled, either for economical or complexity reasons, and

the development of computational capacities have lead to the common use of linear and

nonlinear numerical models (Ayotte, 2008).

1.3.2 Mesoscale models

Numerical weather prediction (NWP) models generate mesoscale data that can be used in

the same way as on-site measurements (Al-Yahyai et al., 2010). Other mesoscale models

have been developed, one of the most popular being the WRF model (Skamarock et al.,

2005). In particular, this model is used with a resolution of 3km in space and 30min

in time to build the New European Wind Atlas which aims at becoming a standard

for site assessment (Witha et al., 2019). However, mesoscale models generally have too

coarse horizontal resolution, leading to several sources of uncertainties, especially when

the prospected site is in complex terrain. In order to accurately capture the effects of

complex geometrical features, it is necessary to have a sufficiently fine resolution either

in the measurement network or in the model.
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1.3.3 Mass-consistent models

Traditionally, microscale wind fields were obtained from mass-consistent diagnostic

models (Sherman and Sherman, 1978; Homicz, 2002). These models are based on mass

conservation and sometimes include additional parametrisation to represent microscale

effects (e.g., thermal slope flows). While these models can give somehow good results in

simple cases, they fail in representing some microscale phenomena such as recirculation

after obstacles or ABL profiles (e.g., Ehrhard et al., 2000). Mass-consistent models are

generally coupled with NWP models which provide an initial guess of the wind field

(Barcons et al., 2018).

1.3.4 Linear models

Linear models, such as WAsP CFD (Wind Atlas Analysis and Application Program)

which is widely used in the wind energy community (Mortensen et al., 1993), are based on

the linearisation of the momentum equation. Such linear models reduce the computational

cost of simulations and provide reasonable estimations for flat terrains or with small slopes.

However, they are not suitable when the topography is steep as the linearity assumption

is not valid any more (Ayotte and Hughes, 2004). Indeed, complex geographical features

(topography, buildings, etc.) substantially affect the wind flow, at relatively small scale,

and nonlinear models are necessary to better represent their effects.

1.3.5 CFD models

As described in Section 1.2, boundary layer flows can be simulated with CFD models.

With the development of computing capacities, the use of CFD modelling at local scale is

more and more frequent, especially over complex terrain (Cattin et al., 2006; Palma et al.,

2008; Blocken et al., 2015; Dhunny et al., 2017) and in urban areas (Kalmikov et al., 2010;

Simões and Estanqueiro, 2016; Wang et al., 2017). Given the large number of parameters

and choices required to perform CFD simulations, best practice guidelines for ABL flow

modelling as well as validation and verification methodology have been proposed (e.g.,

Franke et al., 2011; Casey and Wintergerste, 2000; Sanz Rodrigo et al., 2017). One of

the major differences between the several CFD models used in wind resource assessment

studies come from the model of turbulence as both RANS (e.g., Maurizi et al., 1998;

Castro et al., 2003) and LES models (e.g., Uchida and Ohya, 2008) have been applied in

previous studies. Such methods provide an approximation of the turbulence inputs which

might trigger errors within the simulated domain. However, it is still not practicable to

use DNS for operational wind resource assessment studies.

1.3.6 WRAPP methodology

Wind resource assessment might provide the mean spatial distribution of wind conditions.

However, it is not realistic, from a computational-cost perspective, to simulate a full year
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of meteorology with CFD or to calculate high-resolution maps of wind flow over too large

domains. Several methodologies, combining both statistical and physical downscaling

(see Section 1.2.6), have thus been developed to reduce the number of CFD simulations

to operationally affordable computational costs while being representative of a long-term

period (Frey-Buness et al., 1995; Frank and Landberg, 1997; Badger et al., 2014).

EDF R&D has developed a statistical-dynamical downscaling method based on

weather classification: the Wind Resource Assessment and Power Production (WRAPP)

methodology. It consists in coupling mesoscale model WRF with the atmospheric module

of the CFD model Code Saturne. The mesoscale model is run over a large domain which

includes the candidate site, for a long period of time (a few years). All the meteorological

situations thus simulated are clustered in a few hundreds of statistical classes. The classes

must be as homogeneous as possible and with the largest distance between the different

classes. The classes are calculated with a k-means clustering method which compares

hourly outputs of WRF, based on several variables such as wind speed and direction. The

atmospheric stability is also often taken into account by adding the M-O length – or any

other variable – as an additional dimension to the classification (e.g., Sanz Rodrigo et al.,

2008). For each class, a single situation is selected and considered as representative of the

whole class. This situation is then simulated with Code Saturne. The inlet conditions

for the CFD simulation are defined from an extrapolation of the WRF results, for the

representative situation, to the resolution of the Code Saturne domain (see Section 1.2.6).

The wind potential is evaluated for each of these representative situations and the

overall wind potential is calculated as the average over these few representative situations,

weighted by the size of the classes. This methodology has been applied in several wind

resource assessment studies at EDF R&D (Angot, 2018).

1.4 Atmospheric dispersion modelling

Outdoor air quality is a rising health issue, especially in large cities and developing

countries. Atmospheric dispersion modelling is necessary to estimate concentrations of

pollutants emitted from various sources and calculate high-resolution maps of pollution

over urban neighbourhoods or industrial areas. In turns, these maps are used for

many applications: urban environmental planning, emissions management, policy and

mitigation strategies evaluation, pollution episodes forecasting, building design, etc.

The flow field, and consequently the pollutant plume, are particularly difficult to

simulate in built environment. Indeed, the buildings substantially impact the dynamics

and the thermodynamics of the flow, and the dispersion of the pollutants. As a conse-

quence of the complexity of dispersion modelling in built environment, several studies

have focused on this topic (Holmes and Morawska, 2006).

Both the flow field and the dispersion might be modelled with different method-

ologies. The choice of the methodology is generally a compromise between precision
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and computation cost. For the flow field, the differences between the several models

and studies mainly come from the representation of turbulence. More details about the

available options to represent the turbulence in CFD models are given in Section 1.2.2.

Regarding the modelling of pollutant dispersion, various approaches also exist (Tominaga

and Stathopoulos, 2016). The most popular are box models, Gaussian plume models,

Lagrangian models, and Eulerian models, as detailed below.

1.4.1 Box model

Box models consist in treating the simulated domain as a box and applying the con-

servation of mass inside this box (e.g., Ragland, 1973). These models are based on

the assumption of uniform distribution of pollution inside the domain and they thus

estimate the volume-averaged pollutant concentration inside the domain, as a function

of time. The wind speed and direction are considered constant in time and uniform in

space. Despite the simplified treatment of meteorology, box models can include more

sophisticated chemical and photochemical modules which better represent the physics

and chemistry of particles within the atmosphere. These models are relatively easy to

use and may be useful to study simple cases. They have been used in several studies

to predict concentrations of ozone and other photochemical pollutants in urban areas

(e.g., Soetaert and Herman, 1995; Kunsch and Webber, 2000). However, the assumptions

are strong so that box models are imprecise and may be inadequate for several studies,

especially in complex environments.

1.4.2 Gaussian plume model

Gaussian models are very widely used in atmospheric dispersion modelling. Under steady

conditions and spatial homogeneity, the analytical solution of the transport equation is

a pollution plume which follows Gaussian distributions in both vertical and horizontal

directions (Bosanquet and Pearson, 1936). The Gaussian models consider that this

solution is valid in other situations. The width of the plume depends on vertical and

horizontal variances of the Gaussian distributions, determined empirically either by

stability classes (Pasquill, 1961) or travel time from the source.

Gaussian plume models assume that during the characteristic time for dispersion

(e.g., a few hours), the meteorological conditions and air pollutant emissions are constant.

Over complex terrain, under convective conditions, or at local scales, the assumption

of horizontal homogeneity of the wind field does not hold any more. In such cases,

Gaussian plume models are not appropriate. Moreover, the plume centreline trajectory is

assumed straight in Gaussian model, which is not suitable to model dispersion under low

wind conditions or too close to the source. Despite the simplicity of the mathematical

operations behind Gaussian models, which makes them easy to use – they require a small

number of inputs and low computer resources –, their limitations are too significant and
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these models are not appropriate for the micrometeorological applications studied in the

present work.

1.4.3 Lagrangian model

Lagrangian modelling consists in following pollution plume parcels – also called particles

– as they move in the atmosphere (e.g., Stohl et al., 2005). The model calculates the

statistics of the trajectories of a large number of particles. The concentration is then a

product of the probability density function thus computed and a source term. Lagrangian

models rely on a prior estimation of the meteorological fields inside the domain such as

the mean fluid velocity, turbulence, and molecular diffusion. These models are well suited

for dispersion modelling over flat terrain in steady conditions (Oettl et al., 2001; Raza

et al., 2001; Venkatesan et al., 2002; Tsuang, 2003) as well as unsteady conditions with

more complex geometries (Du, 2001; Hurley et al., 2003; Jung et al., 2003). However

these models might be computationally expensive as the number of particles increases

and the interaction between particles are difficult to take into account.

1.4.4 Eulerian model

Unlike Lagrangian models for which the frame of reference moves with the particles,

Eulerian models consider a fixed Cartesian frame and ’observe’ the particles flowing.

In this fixed frame, given the fields of wind and turbulence, Eulerian models solve the

equation of advection-diffusion for a scalar, which represents the pollutant concentration

(see Equation 1.2). In order to solve this equation for a continuous field, this equation is

discretised in time and space. Most CFD models – including Code Saturne – solve the

equation of advection-diffusion for scalars, in addition to Navier-Stokes equations, and thus

enter in the category of Eulerian models for dispersion. These models provide a complete

temporal and spatial description of the meteorology as well as pollutant transportation

within the domain. Moreover, as they directly solve the Navier-Stokes equations with

only a few approximations, including turbulence modelling, outputs of CFD models

are more physically realistic than box or Gaussian plume models. Furthermore, CFD

allows to precisely represent the buildings and to simulate the wind field, turbulence, and

temperature over complex terrain. Consequently, there is a growing consensus for using

CFD models in atmospheric dispersion modelling at local scale (Robins, 2003; Holmes

and Morawska, 2006; Blocken et al., 2013). In order to homogenize the results of studies

using CFD for dispersion modelling, especially for regulatory purposes, best practices

guidelines have been proposed (Franke et al., 2011; Blocken, 2015).

The counterpart of CFD modelling is the computational cost. Indeed, the finer the

resolution is, the longer is the computation. Similar to wind resource assessment, the

development of computational capacities allows to use CFD models for many dispersion

modelling studies. The same limitations hold, and methodologies have been developed to

assess air quality with CFD models during long time periods (Parra et al., 2010). Here
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again, one of the major issues related to the use of CFD models is the sensitivity to

several input parameters, and especially BC (Lateb et al., 2016). Both Eulerian and

Lagragian models are available in the atmospheric module of Code Saturne(Bahlali, 2018;

Bahlali et al., 2018). In the present study, we use the Eulerian model only and we aim at

improving the knowledge of the BC through DA.

One should note that the evolution of pollutants might also include chemical reactions.

The dispersion models presented above do not include such phenomena and supplementary

models can be used to take them into account (e.g., Polyphemus, Mallet et al., 2007). In

the present work, and especially in Chapter 6, we consider inert tracer gases which are

only transported by the flow and are not affected by chemical reactions.
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Introduction to data assimilation

Contents

1.1 The atmospheric boundary layer . . . . . . . . . . . . . . . . . 29

1.1.1 Structure of the atmosphere . . . . . . . . . . . . . . . . . . . . 29

1.1.2 Dynamics of the atmospheric boundary layer . . . . . . . . . . 30

Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . 31

Momentum balance . . . . . . . . . . . . . . . . . . . . . . . . 32

Energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.1.3 Atmospheric stability and similarity theory . . . . . . . . . . . 33

Atmospheric stability . . . . . . . . . . . . . . . . . . . . . . . 33

Similarity theory . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2 Modelling meteorology . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.1 Global and regional scale models . . . . . . . . . . . . . . . . . 35

1.2.2 CFD models for local-scale atmospheric simulations . . . . . . 36

Modelling turbulence . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2.3 Shallow-layer model of the atmospheric boundary layer . . . . 39

Bernoulli equation . . . . . . . . . . . . . . . . . . . . . . . . . 40

Method of characteristics . . . . . . . . . . . . . . . . . . . . . 40

1.2.4 Atmospheric module of Code Saturne . . . . . . . . . . . . . . 41

1.2.5 Relative importance of initial and boundary conditions . . . . . 42

1.2.6 Combining different scales . . . . . . . . . . . . . . . . . . . . . 44

Statistical downscaling . . . . . . . . . . . . . . . . . . . . . . . 44

Dynamical downscaling . . . . . . . . . . . . . . . . . . . . . . 45

1.3 Wind resource assessment . . . . . . . . . . . . . . . . . . . . . 46

1.3.1 Site measurements . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.3.2 Mesoscale models . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.3.3 Mass-consistent models . . . . . . . . . . . . . . . . . . . . . . 47

1.3.4 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

53



Chapter 2 Introduction to data assimilation

1.3.5 CFD models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.3.6 WRAPP methodology . . . . . . . . . . . . . . . . . . . . . . . 47

1.4 Atmospheric dispersion modelling . . . . . . . . . . . . . . . . 48

1.4.1 Box model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.4.2 Gaussian plume model . . . . . . . . . . . . . . . . . . . . . . . 49

1.4.3 Lagrangian model . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.4.4 Eulerian model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Introduction

Many potential wind farms and built environments are equipped with instruments

measuring meteorological variables (wind, turbulence, temperature, etc.) or pollutant

concentration. Most of the time, these observation networks do not provide a satisfactory

spatial and temporal coverage: they are either permanent but sparse in space or spatially

dense but over a short period of time. Moreover, the complex geometrical features of

the studied sites might perturb the observations, thus complicating their exploitation.

Despite these difficulties, measurements available within the domains of interest represent

a great source of information in addition to mesoscale and computational fluid dynamics

(CFD) models. In this chapter, we first present the available measurement data for wind

resource assessment and dispersion modelling in terms of location, measured variables,

and frequency. In the subsequent sections, we introduce the mathematical formalism of

data assimilation (DA) and present the main DA methods developed so far. Eventually,

we review the application of DA in the context of CFD atmospheric simulations at local

scale.

2.1 Available observations

2.1.1 Observations in candidate sites for wind power

As mentioned in Section 1.3, the sites prospected for the installation of wind farms are

generally equipped with one or more meteorological (or met) masts which provide wind

and turbulence observations at local scale (see Fig. 2.1). The met masts – or towers – are

generally between 50m and 120m high, depending on the topography and the vegetation

nearby. Instruments are installed at various levels above the ground, one of which, if

possible, corresponds to the hub height (between 25m and 100m).

Since the wind speed is faster over the crests, the wind turbines – and thus the met

masts – are generally installed on crests and usually equipped with:

• anemometers that measure wind speed. Cup anemometers are historically used

to measure horizontal wind speed (
√
u2 + v2, where u and v are the two velocity

components in the horizontal plane). New technologies of sonic anemometers are
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now available, which provide localized but very frequent observations of the three

velocity components.

• wind vanes are used in combination with cup anemometers to measure the horizontal

wind direction.

• pressure, temperature, and relative humidity sensors are sometimes installed on

meteorological masts as well.

While traditional met masts have the advantage to be well understood and thus benefit

from broad acceptance and confidence for industrials and financiers, they are less conve-

nient to install and maintain. Indeed, met masts often require siting permits which are

long to obtain and ideally they should be maintained during at least one year to obtain

sufficiently long observed time series. Moreover, they supply very local information about

the wind field.

(a) Meteorological mast equipped with anemome-

ters and wind vanes.

(b) Sound Detection And Ranging (SODAR) in

hilly terrain.

Figure 2.1: Examples of instruments observing wind and usually installed in the context

of wind resource assessment

In the two last decades, remote sensing technologies have been strongly promoted in

the wind energy community since they better characterize the spatial wind variability

across a site (Clifton et al., 2013). These technologies allow to remotely measure wind

speed and direction, using instruments installed on the ground or mounted on airplanes
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or satellites. For wind resource assessment, both Light Detection And Ranging (LIDAR)

and SODAR technologies are increasingly used (Antoniou et al., 2003; Bingöl et al.,

2009). These two instruments are based on Doppler effect: a LIDAR emits pulsed laser

light while a SODAR uses sound waves to measure the wind speed. Recently, a new

technology named Wind Scanner has been developed to combine several LIDAR in order

to synchronously scan the different wind velocity components in every point (Mikkelsen

et al., 2008).

While anemometers provide localized, but frequent, observation data, LIDAR and

SODAR generally have a greater spatial coverage sampled at a lower frequency. Indeed,

remote sensing devices are able to measure wind speed up to 200m above the ground,

which is a significant advantage since turbines grow taller. In addition to this better

vertical coverage, remote sensing instruments also measure across the full rotor sweep.

Such instruments thus provide a much richer data set than met masts. Moreover,

remote sensing technologies are relatively easy to deploy leading to lower installation

costs compared to met masts, which compensates for higher purchase prices. However,

up to present, low confidence is granted to measurements provided by remote sensing

technologies and met masts remain the preferred solution for wind resource assessment.

Both met masts and remote sensing instruments provide partial representations of

the wind field over regions where wind farms could be installed, that are valuable for

wind resource assessment.

2.1.2 Observations in built environment

Measurements have been essential in the development of dispersion models. The obser-

vations might come from full-scale field measurements as well as wind tunnels (Robins,

2003; Xia et al., 2014; Lateb et al., 2016). As explained in Section 1.4, meteorological

fields represent a critical input for dispersion modelling. As a matter of fact, both wind

measurements and pollutant concentration data are useful for atmospheric dispersion

studies. During past decades, advances in technologies have provided scientists with

more accurate and cheaper instrumentation as well as improved methodologies to store

and process the available data (Grimmond, 2006).

Most urban areas do not satisfy the World Meteorological Organization (WMO)

requirements for site selection (Jarraud, 2008) due to the presence of buildings which

might disturb or obstruct the air flow. New guidelines for meteorological observation,

specific to urban areas, have thus been proposed (Oke, 2007). A review of urban

meteorological networks is proposed in Muller et al. (2013), who highlight the fact that

most small-scale sensor networks are installed in the context of short-term research and

are rarely maintained after the end of the projects. Consequently, the measurement data

are only available over short periods of time.

If several cities now dispose of a network of air quality monitoring, these networks are

usually too coarse to capture the high spatial and temporal variability of pollution within
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cities. For instance, in Paris, approximately 70 measurement stations are operated by

Airparif over a region extending up to 100km from Paris center. Since the variations of

air quality might occur at scales of a few meters, one can understand that this network,

though essential, is not fine enough. Similarly, other Official Air Quality Monitoring

Associations (AASQA) maintain measurement networks in several urban areas in France.

In addition to these permanent networks, some dedicated field campaigns have been

performed in different regions and provide highly dense spatial coverage, either within

actual cities (e.g., Moltchanov et al., 2015) or in reconstituted urban areas (Biltoft, 2001;

Hanna et al., 2012). Data provided by field campaigns are very valuable for model

calibration and methods testing.

In built environment, both meteorological and pollutant concentration observations are

available within the urban canopy, and sometimes above. These data provide information

about the state of the atmospheric boundary layer (ABL) and the air quality that could

be used to improve atmospheric simulations and dispersion modelling.

2.2 Data assimilation problem, definitions, and notation

The goal of DA is to improve the estimate of some control variables using all available

information. The control variables can include the state of a system or some model

parameters for which an a priori value is known, called background. The information

that is optimally combined by DA generally includes the background, the available

observations, the physical model, etc.

In what follows, the control vector of size l – which can correspond to initial conditions

(IC), boundary conditions (BC), model parameters, etc. – will be referred to as z, and

its first estimate or background is zb. The departure of the background from the true

value of the control vector corresponds to the background error εb:

εb = zb − zt, (2.1)

where the superscript ’t’ refers to the (unknown) truth. The background error is assumed

unbiased and only the random component of the error is considered here. The background

error covariance matrix B at time k is then defined by

[Bk]ij = E
[
[εb]i[ε

b]j

]
, (2.2)

where E represents the expectation operator. This matrix of Rm×m is symmetric and

positive semi-definite by construction.

The control vector at time k (zk) is related to the system state xk of size n by a

model Mk which may be nonlinear and vary in time:

xk =Mk(zk). (2.3)

This model is usually assumed perfect, though recent studies take the model errors into

account (e.g., Trémolet, 2006; Sakov et al., 2018).
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Figure 2.2: Example of DA process when the control vector corresponds to the IC: the

analysis optimally combines the pieces of information provided by the background and

the observations. The state of the system obtained from the numerical integration of

the model, initialised with the analysis IC is the background of the next analysis cycle

(source: Naratip Santitissadeekorn).

An observation operator Hk, which may also be nonlinear and vary in time, projects

the state’s space into the observation’s space. The available observations at tk (yk) are

related to the true state of the control vector by

yk = Hk(xt
k) + εok, (2.4)

where the vector of available observations is of size p and εok is the observation error. The

observation error includes the instrumental errors, induced by the measurement process,

and the representativeness errors, due to the fact that xk is a discrete representation of

the system state. The observation error is also assumed unbiased and the observation

error covariance matrix is defined in Rp×p by

[Rk]ij = E [[εo]i[ε
o]j ] . (2.5)

This matrix contains information about the uncertainty of the observations and possible

correlations between errors. In practice, R is often diagonal – thus assuming uncorrelated

observation errors – and constant in time.

Given the background and the observations, characterized by the background and

observation error covariance matrices, DA seeks to optimally combine these two sources

of information, from a mathematical perspective (Fig. 2.2).

2.3 Nudging methods

One of the first and most basic DA method is nudging, which consists in adding a

relaxation term to the dynamical equations (e.g., Section 5.2.2 of Kalnay (2003), Chapter

4 of Asch et al. (2016)). The relaxation, or feedback term is proportional to the distance

between the observations and the projection of the system state onto the observation

space:

xk =Mk(zk) + Kk [yk −Hk ◦Mk(zk)] , (2.6)
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where Kk is a gain matrix to be determined. An improvement of this method has

been recently developed: the back and forth nudging (BFN) algorithm which consists

of consecutive iterations of forward and backward integrations with nudging (Auroux

and Blum, 2005, 2008; Auroux et al., 2013). The BFN algorithm has been tested and

proved to converge on simple models where the control variables are the IC (Auroux and

Blum, 2008; Auroux et al., 2011; Auroux and Nodet, 2012). More details about the BFN

algorithm will be given in Section 3.2.

2.4 Variational methods

Apart from nudging, DA techniques developed so far and operationally implemented

are generally divided into two classes: statistical (or filtering) methods and variational

methods. Filtering methods seek to minimise the analysis error variance while variational

methods aim at minimising a constrained cost function. In what follows, we present the

variational approach, based on optimal control theory.

The cost function which is minimised by the variational methods, such as 3D-Var or

4D-Var (e.g. Kalnay, 2003; Asch et al., 2016), measures misfit of the state’s vector to the

available data (e.g., the departure of the control variable from the background estimate

and from the observations). We present in what follows the Bayesian derivation of the

3D-Var cost function.

2.4.1 Bayesian derivation of the cost function

DA might be formulated in a Bayesian framework, giving – in some sense – a consistent

theoretical answer to DA theory. Since 3D-Var performs analysis at a given time step

and for the sake of simplicity, we omit the subscript k referring to the time step in this

section.

In the Bayesian framework, the goal of variational methods is to maximise the

probability density function (pdf) – or likelihood – of the control vector, conditional to

some observations:

p(z|y). (2.7)

To express the filtering or smoothing pdf in terms of known variables, the control

vector is assumed to follow a Gaussian distribution with mean zb and the background

error covariance matrix is B:

p(z) = n
(
z|zb,B

)
, (2.8)

where n (a|a,A) is the normal distribution centred on a with covariance matrix A.

As mentioned above, the model is often assumed perfect and this assumption holds

in all the present work. We thus deduce the pdf of x conditional to z:

p(x|z) = δ [x−M(z)] , (2.9)
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where δ is the Dirac distribution defined here in Rn.

Given the state of the system, x, the observations are also assumed to follow a

Gaussian distribution:

p(y|x) = n (y−H(x)|0,R) . (2.10)

Bayes’ rule describes the likelihood of an event A, conditional to another event B

and is stated mathematically as follows:

p(A|B) =
p(B|A)p(A)

p(B)
. (2.11)

Using Bayes’ rule and equation (2.9), the pdf of z conditional to y reads

p(z|y) ∝ p(y|z)p(z)

∝ p (y|x =M(z)) p(z). (2.12)

A cost function can be derived from this pdf, satisfying:

p(z|y) ∝ exp (−J (z)) . (2.13)

The assumption of Gaussian distributions (Eq. 2.8 and 2.10), combined with the

equation (2.12), gives the expression of the cost function, written in the control space:

J (z) =
1

2
‖z− zb‖2B−1 +

1

2
‖y−F(z)‖2R−1 , (2.14)

where we use the notation ‖x‖2A = xTAx and F = H ◦M is the forward operator.

2.4.2 3D-Var

3D-Var algorithm corresponds to the minimisation of the cost function J given by

Equation (2.14). As mentioned above, 3D-Var is used when the observations are available

at the same time than the system state given by M(z). Note that in the case where z

corresponds to the IC, the model M coincides with identity and the forward operator is

simply equal to the observation operator.

If the forward operator is linearised in the vicinity of z, to obtain the matrix F (which

depends on z if F is nonlinear), the gradient of the cost function reads

∇J (z) = B−1(z− zb)− FTR−1 (y−F(z)) . (2.15)

In the case where F is linear, the cost function is convex and thus admits a minimum

reached for za such that ∇J (xa) = 0. The estimate of the control vector that minimises

the cost function corresponds to the optimal control vector and is called the analysis.

All the variables related to the analysis are referred to with the superscript ’a’ in what

follows. The 3D-Var analysis in a linear case is given by

za = zb +
(
B + FTR−1F

)−1
FTR−1

(
y−F(zb)

)
(2.16)
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and is equivalent to the Best Linear Unbiased Estimator (BLUE) which is derived from

a statistical approach. The analysis error covariance matrix is then equal to the inverse

of the Hessian of the quadratic cost function, H:

H−1 =
(
B−1 + FTR−1F

)−1
. (2.17)

When the control variables are the IC, the analysis state za can be propagated in time by

the model to give a first estimate for the next analysis cycle (see Fig. 2.2). Similarly, the

analysis error covariance matrix calculated at the end of an analysis provides an estimate

of the background error covariance matrix for the next cycle.

2.4.3 4D-Var

The difference between 3D- and 4D-Var comes from the length of the data assimilation

window (DAW): 3D-Var assimilates observation at only one time step – and thus looks

for the optimal value of the control vector at this unique time – whereas 4D-Var takes

into account observations from a whole DAW – and seeks the trajectory of several values

of the control vector that best fits the background and these observations.

Let us assume that observations are available between times t = 0 and t = L:

{yl}l=0...L. The filtering pdf is defined as the pdf of the control vector at the end of the

DAW (zL), conditional to past observations:

p(zL|y0, . . . ,yL). (2.18)

The smoothing pdf is the pdf of the control vector at any intermediate time k conditional

to past and future observations:

p(zk|y0, . . . ,yL), (2.19)

for any 0 ≤ k ≤ L. Smoothing might also be performed over the whole DAW, leading to

the smoothing pdf

p(z0, . . . ,xL|y0, . . . ,yL). (2.20)

Following a similar derivation as for 3D-Var, the 4D-Var cost function related to the

smoothing pdf (2.19) reads

J (zk) =
1

2
‖zk − zb

k‖2B−1
k

+
1

2

L∑

l=0

‖yl −Fl(zk)‖2R−1
l

, (2.21)

where Fl = Hl ◦Mk:l with Mk:l the model propagating the control vector at time k to

the system’ state at time l.

Once again, linearising the forward operator Fl in the vicinity of zk to obtain the

matrix Fl, the gradient of the cost function is given by

∇J (zk) = B−1
k (zk − zb

k)−
L∑

l=0

FT
l R−1

l (yl −Fl(zk)) . (2.22)
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The inverse of the Hessian of the cost function reads:

H−1 =

(
B−1
k +

L∑

l=0

FT
l R−1

l Fl

)−1

. (2.23)

If the forward operator is linear, the minimisation of the cost function is a quadratic

problem which is solved by

za
k = zb

k −H−1∇J (zk). (2.24)

In such a linear case, the statistical equivalent to 4D-Var is the Kalman filter (Kalman,

1960) which consists in a succession of BLUE analyses.

2.4.4 Minimization of the variational cost function

When the forward operator is not linear, the cost function in 3D-Var or 4D-Var algorithm

is numerically minimised, usually with a descent-based optimization method. Such

method require the estimation of the cost-function gradient, which corresponds to the

derivative of the cost function relative to an arbitrary perturbation. Once the gradient is

estimated, it is used to identify a direction that leads to lower cost.

The simplest method to estimate the gradient is based on finite differences, which

is easy to implement and does not depend on the dynamical model. For instance, the

ADAO module of the SALOME open-source platform (http://www.salome-platform.org)

offers the possibility to run 3D-Var with a finite-difference approximation of the gradient.

However, since the gradient must be calculated in all possible perturbation directions,

finite-increment methods are inefficient if the size of the control vector is large. Indeed, the

finite-difference approximation requires as many model integrations as control variables

(or twice for central differences).

A less expensive way to estimate the gradient of the cost-function is the adjoint

approach. The linearisation of the forward operator, introduced in equations (2.15) and

(2.22), corresponds to the tangent linear model of the forward operator (Fk), defined as

follows:

δyk = Fkδzk =
∂F
∂z
|zkδzk. (2.25)

The adjoint of the linear operator F is the linear operator F? such that, for any z1, z2,

< Fz1, z2 >=< z1,F
?z2 >, (2.26)

where <,> represents the inner product. For the inner product in the Euclidean space,

the adjoint model is equal to the transpose of the tangent linear:

F? = FT, (2.27)

which is the case in the derivation of the gradient of the cost function in Equations (2.15)

and (2.22). Consequently, running the adjoint model backward in time allows to explicitly
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calculate the gradient of the cost function with respect to any variable (Le Dimet and

Talagrand, 1986).

While the adjoint approach is relatively efficient (it only requires one integration of

the adjoint model), it involves the derivation and maintenance of the tangent linear and

the adjoint of the forward operator. Consequently, if these two operators are not available

– which is generally the case for CFD models – and the control vector is too large to

consider finite difference gradient estimation, variational methods are not appropriate.

2.5 Ensemble variational methods

Variational methods, such as 3D-Var or 4D-Var, have many advantages. By construction,

4D-Var seeks a trajectory that best fits all the observations available within the DAW and

is thus able to assimilate asynchronous observations. Variational methods can also handle

fully nonlinear analysis. However, we have previously highlighted that they require the

use of the tangent linear and adjoint models which are very expensive in terms of working

force. Each evolution of the direct model must be equivalently reported in the adjoint

model, such that the development and maintenance of adjoint models require as many

developers as direct models.

In the case where the observation operator is linear, 3D-Var is equivalent to the

optimal interpolation, which is a filtering method. If the model is also linear, 4D-Var is

equivalent to the Kalman filter at the end of the DAW and to the Kalman smoother (Cohn

et al., 1994) otherwise. These statistical methods also have advantages and especially

since the development of ensemble-based methods. The ensemble Kalman filter (EnKF)

has been first proposed by Evensen (1994) and consists in representing the error statistics

by an ensemble of N different estimations of the control vectors. As a result, the error

statistics are dynamically propagated by the model. Similarly, the ensemble Kalman

smoother (EnKS) has been proposed by Evensen et al. (2000) for smoothing problems.

The ensemble subspace corresponds to all the vectors z of the form:

z = zb + Aw, (2.28)

where A is the matrix of anomalies, defined as the departure of each ensemble member

from the ensemble mean – which is equal to zb – and w is a vector of coefficients of size

N . While variational methods use a full-rank representation of all errors – since they

deal with the full error covariance matrices – the counterpart of ensemble-based methods

is that the errors are only partially represented. Indeed, the size of the ensemble, used

to represent the error statistics, is generally smaller than the size of the control space,

leading to rank-deficiency. Consequently, only the leading modes of the error covariance

matrices are taken into account and the analysis is restricted to the subspace spanned by

these few modes.

The comparative studies between variational and ensemble methods have not shown

significant differences for synoptical meteorology (e.g., Lorenc, 2003; Kalnay et al., 2007;
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Yang et al., 2009). In fact, the EnKF slightly outperforms 4D-Var for small DAW because

the error estimates dynamically evolve with EnKF analyses. However, for longer DAW,

the evolution is less linear and 4D-Var gives better results than the EnKF (Bocquet and

Sakov, 2013).

Recently, ensemble variational methods have been developed, combining the advan-

tages of both variational and ensemble-based methods. A comprehensive review of the

ensemble variational methods can be found in Chapter 7 of Asch et al. (2016) and we

qualitatively present here the main idea of these methods.

Hybrid methods

Hybrid methods combine existing methods by running simultaneously two methods – one

statistical and one variational – and exchanging information between them, especially

regarding the error statistics. Consequently, it is mainly the error covariances that are

hybridized: one part is static as in 3D- or 4D-Var, and the other part comes from an

ensemble method such as the EnKF. One example of hybrid EnKF-3D-Var has been

introduced by Hamill et al. (2000). These methods avoid the rank-deficiency of the EnKF,

mentioned above, and still allow a dynamical evolution of the errors, yet they require the

development of two DA methods.

Ensemble of variational data assimilation

Ensemble of variational data assimilation (EDA) – or EnsVar – consists in running several

occurrences of a same variational method (e.g. 4D-Var) while perturbing the model, the

observations, and/or some model inputs that are not included in the control variables.

This method is the variational counterpart of the stochastic EnKF. The EDA provides

an ensemble of analyses from which flow-dependent error statistics can be estimated.

These ensembles can also be used to initialize the following analysis cycles or ensemble

predictions. EDA has been proved to be a successful deterministic and probabilistic

estimator in linear and nonlinear conditions with the Lorenz-90 chaotic model (Jardak

and Talagrand, 2018a,b). EDA methods have been operationally implemented in NWP

centers with 3D- and 4D-Var (Buehner et al., 2010b,a). For instance, Météo-France (Berre

et al., 2015) and the European Center for Medium-range Weather Forecasts (ECMWF)

(Bonavita et al., 2011, 2012) have setup an EDA system with their already available

4D-Var algorithm, in order to incorporate flow dependence of the errors. Consequently,

EDA systems overcome one of the two major limitations of variational methods. The

second limitation is the necessity to derive and maintain the tangent linear and the

adjoint. Since EDA systems are based on 4D-Var, they do not overcome this issue.
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4DEnVar

Some ensemble-based methods, such as the EnKF, do not require the tangent linear of

the observation operator as all the coefficients involving the tangent linear are estimated

from the ensemble. Similarly, the sensitivities of the simulated values within the DAW

to the control variables can be estimated using the ensemble (Liu et al., 2008). As a

consequence, the variational optimisation of 4D-Var can be performed in the ensemble

subspace defined by Equation (2.28) and thus avoid the use of the model adjoint. The

4DEnVar is based on such a preconditioning for the minimisation. An ensemble of

initial perturbations is propagated within the DAW and the adjoint is estimated as the

transpose of the matrix that represents the effect of the direct model in the ensemble

subspace. This DA method has been operationally implemented at Environment and

Climate Change Canada (Buehner et al., 2015).

The iterative ensemble Kalman smoother

The iterative ensemble Kalman smoother (IEnKS) is a four dimensional ensemble varia-

tional method heuristically derived from Bayes’ rule (Bocquet and Sakov, 2014). It is

an extension of the iterative ensemble Kalman filter (IEnKF) (Sakov et al., 2012) to

assimilate asynchronous observations. Both the IEnKF and IEnKS are mathematically

justified, which is not always the case of the previously mentioned ensemble variational

methods that have been developed for operational purposes. The rigorous mathematical

justification ensures that the approximations and limitations of the methods are well

understood at a theoretical level. The IEnKS is based on the iterative minimisation,

for instance using Gauss-Newton algorithm, of a cost function defined in the ensemble

subspace. It allows both to propagate the errors thanks to the ensemble and to perform

a 4D-variational analysis. By construction, it thus outperforms the EnKF, the EnKS,

and 4D-Var, which has been verified on several models (Bocquet and Sakov, 2013, 2014;

Haussaire and Bocquet, 2016). Moreover, the IEnKS can easily be parallelized. More

details about the derivation of the IEnKS will be given in Section 3.3.

2.6 Data assimilation for CFD atmospheric simulations at

local scale

Up to now, DA methods have generally been developed in the framework of large scale

meteorology (e.g., Kalnay, 2003; Asch et al., 2016). Since large scale simulations are

largely influenced by IC, DA methods are mostly used to improve the accuracy of this

model input. We have highlighted in Section 1.2.5 that local scale atmospheric simulations

are mainly determined by BC which are generally provided by larger scale models (see

Section 1.2.6) and thus might lack accuracy. In order to broaden the field of application

of DA to micrometeorology, the existing methods must be adapted to take BC into
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account. To make it simple, this comes to invert space and time: existing DA methods

are already able to propagate information back in time, while for micrometeorology we

would like to propagate information ’back in space’.

In DA literature, BC are rarely considered as control variables. In the field of wind

resource assessment, several studies have combined information from CFD models and

field measurements, though not using DA methods. For instance, in Tang et al. (2019)

the results of CFD simulations are used to infer statistical relations for wind speed

and direction between different locations. The on-site measurement data then provide

dynamical corrections to the reference solutions obtained from CFD simulations. Song

et al. (2014) have used the measurement from a single in situ anemometer to estimate the

boundary velocity that produces a flow field, simulated with a CFD model, the most in

agreement with the observation. This method requires the preliminary CFD computation

– and storage – of flow field with several possible values of inflow velocity. Moreover the

BC are defined by a unique value of velocity in this study. Similarly, Yan and Li (2016)

validate CFD simulations with on-site measurements and then combine the CFD results

for several wind directions with statistical meteorological data to produce a regional wind

map.

Recently, some aeronautic studies have applied DA methods with CFD simulations

to estimate some inflow parameters (Misaka et al., 2008; Kato et al., 2015). In other

CFD studies, simple nudging has been used for downscaling from mesoscale to microscale

atmospheric models (Zajaczkowski et al., 2011; Duraisamy et al., 2014), though differences

in resolution between the models might be problematic. More recently, Mons et al. (2017)

and Sousa et al. (2018) have used ensemble-based DA methods to estimate the incoming

wind direction and velocity used as inputs for CFD simulations, including only two

variables in the control vector.

In the present work, we propose to describe the BC with several vertical profiles of

velocity and turbulence, which correspond to hundreds of control variables. We thus use

DA to enhance the accuracy of CFD atmospheric simulations at local scale through the

correction of a large control vector of BC. In order to do so, and in light of the above,

we have selected both the BFN algorithm and the IEnKS to be adapted to microscale

atmospheric simulations.
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3.1 Introduction

In the context of local-scale atmospheric simulations with computational fluid dynamics

(CFD) models for operational purposes, several constraints limit the choice of data
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assimilation (DA) method. First, the adjoint model is rarely available for CFD models,

and in particular for the atmospheric module of Code Saturne. Moreover, the DA method

must be adapted to parallel computation and to nonlinear systems. Since both the

back and forth nudging (BFN) algorithm and the iterative ensemble Kalman smoother

(IEnKS) seem to fulfil these conditions they have been chosen here to perform DA with

the atmospheric module of Code Saturne at local scale. In the present chapter, we give

the theoretical derivation of these two methods, adapted to include, as control variables,

the boundary conditions (BC) prescribed at the limits of the CFD domain. We also briefly

present how 3D-Var is used in the present work as a reference method for comparison

purposes. We recall that we consider the DA problem defined by

• a control vector z ∈ Rl corresponding to the BC,

• a background zb ∈ Rl,

• a vector of available observations y ∈ Rp,

• a forward operator F = H ◦M which combines the model M : Rl 7→ Rn, where

x =M(z) ∈ Rn is the system state, and the observation operator H : Rn 7→ Rp.

The three methods described in the following sections are a priori appropriate to solve

this problem.

3.2 Back and forth nudging algorithm

3.2.1 Description of the method

The BFN algorithm has been developed by Auroux and Blum (2005, 2008) as an evolution

of the simple nudging (see Section 2.3). This algorithm has been tested and proved to

converge on simple cases of shallow water model (Auroux, 2008), diffusion (Auroux et al.,

2011), and transport (Auroux and Nodet, 2012) when the control variables correspond to

initial conditions (IC). In the present section, we give a derivation of the BFN, adapted

to take BC into account. To perform this derivation, we consider a simple model which

solves the 1D shallow-water equations (SWE) (see Eq. 1.18).

The relaxation term added to the dynamical equations in the nudging algorithm, is

proportional to the distance between the observations and the projection of the system

state into the observation space. The system of SWE thus becomes

∂X

∂t
+ M

∂X

∂x
= S + K [y−H(X)] , (3.1)

where K is a gain matrix.

The BFN algorithm is an iterative algorithm: iterations of forward and backward

integrations, both with nudging, are performed over a time period T during which
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observations are available. The evolution of the system is governed by the two following

equations:





(F)
∂X

(f)
k

∂t + M(f) ∂X
(f)
k

∂x = S + K
[
y−H(X

(f)
k )
]

for 0 ≤ t ≤ T, δt > 0,

(B)
∂X

(b)
k
∂t + M(b) ∂X

(b)
k

∂x = S− K̃
[
y−H(X

(b)
k )
]

for T ≥ t ≥ 0, δt < 0,

(3.2)

where K and K̃ are gain matrices, the superscripts (f) and (b) refer to forward and

backward variables, and the subscript ’k’ refers to the index of the BFN iteration (Auroux

and Blum, 2005).

For the SWE considered here, we perform the following changes of variables

t̃ = T − t, (3.3a)

ũ = −u, (3.3b)

X̃ =

(
h

ũ

)
, (3.3c)

M̃ =

(
ũ h

g ũ

)
. (3.3d)

As a result, the backward equation is exactly the same as the forward equation (1.18)

where u is formally replaced with ũ = −u. As a matter of fact, the backward integration

is similar to forward integration except that the velocity has to be ’inverted’. With

this convention, the time step δt is positive in both forward and backward integrations.

Consequently, this implementation of the BFN algorithm has the great advantage that

the same solver is used for the forward and backward integrations.

3.2.2 Prescription of boundary conditions in the BFN algorithm

For local-scale simulations, we have seen that the DA methods must be adapted to correct

the BC instead of the IC (see Section 1.2.5). Here we use the method of characteristics,

presented in Section 1.2.3, to show how BC have to be handled in both forward and

backward integrations of the BFN algorithm. The following demonstration is performed

in the simple case of unidimensional domain with only two layers of fluid (Fig. 1.4) and

neglecting both the Coriolis effect and the friction forces.

The method of characteristics allows to determine the input information that must be

prescribed to solve the SWE. In the present study, we consider flows that are subcritical

– or fluvial –, meaning that their velocities are smaller than the interface wave velocity.

For such flows, the information is propagated downstream and also upstream by the two

characteristic curves C+ and C− (Fig. 3.1a). Consequently, for the forward integration of

the BFN algorithm, it is necessary to specify a BC on each side of the domain of size L
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Figure 3.1: Characteristic curves along which the Riemann invariants are conserved in

the resolution of the SWE. a) Forward and b) backward integration of the SWE. The

blue curves (C+ and C̃−) transport the same invariant R+ = −R̃− from the upstream

boundary. The orange curves (C− and C̃+) transport the same invariant R− = −R̃+

from the downstream boundary. These characteristic curves are computed for a shallow

flow over a flat terrain, initially still with a constant inflow prescribed upstream and a

constant height downstream.

(e.g., Alcrudo and Garcia-Navarro, 1993). We prescribe here the upstream velocity (uL

on the left of the domain) and the downstream fluid height (hR on the right).

For the backward integration, we can demonstrate with the method of characteristics

that the Riemann invariants R̃+ = −u + 2
√
gh = −R− and R̃− = −u − 2

√
gh = −R+

are conserved along C̃+ and C̃−, respectively defined by

C̃+ :
dx

dt̃
= α̃+ = −u+

√
gh,

C̃− :
dx

dt̃
= α̃− = −u−

√
gh.

(3.4)

The curves C̃+ and C− (resp. C̃− and C+) are symmetrical with respect to the abscissa

axis and they transport the same Riemann invariant (Fig. 3.1).

This demonstration suggests that the BC that is prescribed on the left of the domain

in the forward integration (here uL) must be prescribed on the right in the backward

integration (here ũR). Similarly, the BC prescribed on the right in the forward integration

(here hR) must be prescribed on the left in the backward integration (here hL). We

consider positive values of velocity in the forward integrations, such that the BC that is

prescribed on the left of the domain is upstream of the flow. Since the velocity field is

inverted between the forward and the backward integrations, the upstream BC is on the

70



3.2. Back and forth nudging algorithm



Xk(t = 0)

uk
L

hk
R




=




X̃k−1(t̃ = T )
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ũk
R

hk
L




=




Xk(t = T )

−uk(x = L, t = T )

hk(x = 0, t = T )




Backward integration

X̃k(t̃ = T )
(B) ∂X̃k

∂t̃
+ M̃ ∂X̃k

∂x
= S+ K̃

[
y−H(X̃k)

]

(TB→F)

Figure 3.2: Diagram of the k-th iteration of the BFN algorithm. The transformations

(TF→B) and (TB→F) shift from forward system to backward system and vice versa. They

include a change of variable t̃ = T − t and an inversion of BC. In the case of SWE, the

backward integration is equivalent to performing an integration with positive time steps

but with ũ = −u.

right of the domain in the backward integration. Consequently, the velocity is prescribed

upstream and the height downstream in both forward and backward integrations.

3.2.3 Updating the boundary conditions with the BFN algoritm

The BC values for the k-th backward integration (ũR and hL) are given by the system

state on the right and left of the domain, respectively, at the end of the k-th forward

integration:

ũkR = −uk(x = L, t = T ), (3.5)

hkL = hk(x = 0, t = T ). (3.6)

Similarly, before the (k + 1)-th forward integration, the BC are updated (and velocity is

reversed) according to the state of the system at the end of the k-th backward integration

(Fig. 3.2).

At each iteration of BFN – defined as the succession of a forward and a backward

integrations – the control variables that are the BC (here uL and hR) are revised. After

a sufficient number of BFN iterations, the system converges toward an analysis state,

which depends in particular on the nudging matrices. The proof of convergence of the

BFN algorithm for the linearized SWE can be found in Appendix B.2. It is important to

note that the BFN algorithm does not solve the same problem as 3D-Var or the IEnKS.

In fact, the BFN algorithm assimilates several times each observation in order to correct

the system state. Except initially, it does not take into account any information on the

background statistics of errors. In theory, the analysis state obtained at convergence is
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independent of the background state (Auroux and Blum, 2005), whereas 3D-Var and the

IEnKS seek an optimal combination of the background and observations.

3.2.4 Length of the data assimilation window

During each integration (either forward or backward), a conflict might appear between

the prescribed external BC – i.e. the background – and the internal dynamic of the

system, modified by the nudging (see Appendix B.1 for more details). Moreover, the

shallow layer model used here does not have perfectly transparent boundaries, such that

the waves created by the nudging are spuriously reflected. To avoid these two problems,

the length of the period of model integration, T , has been chosen equal to the time

needed for the nudging information to propagate throughout the domain.

We have determined that the best practice consists in choosing the data assimilation

window (DAW) length equal to the time needed for the information coming from the

boundary and the nudging to propagate into the whole domain. For instance, let us

consider that the nudging is applied on u only, and that there are 5 observations in

x = {16, 32, 48, 64, 80}. The effect of the nudging from the first observation (x1 = 16m)

takes T1 =
∫ x=L
x=x1

dx
u+
√
g′h to reach the right boundary. Because nudging is applied at every

time step, the characteristic from (x1, t = 0) to (x = L, T1), in dashed, blue in Figure 3.3a,

carries the information from all the other observations. Similarly, the information from

the 5 observations reach the left boundary in T2 =
∫ x=L
x=x2

dx
u−
√
g′h where x2 = 80m is

the abscissa of the rightmost observation. The characteristic carrying upstream the

information from all the observations is the dashed, orange line in Figure 3.3a.

The characteristics starting from the points (x = 0, T2) and (x = L, T1), in blue and

orange respectively in Figure 3.3a, carry the information from both the observations

and the BC. These two characteristics intersect at t = T , time after which any point (x,

t) of the domain is influenced by all the observations, as well as the prescribed BC. In

fact, at least one characteristic passing through (x, t) carries information from all the

observations and one BC.

We want the DAW to be long enough to let the information coming from the nudging

spanning the whole domain but not too long to avoid mismatch between the prescribed

BC (strong constraint) and the forcing produced by the nudging. Consequently, the

length of the period of model integration has been chosen equal to the time needed for

the nudging information to propagate throughout the domain (T ). The iterations of

forward and backward integrations are performed over this time period.

We can see in Figure 3.3a that in the experiment described above T1 = 1.4s, T2 = 1.6s,

and T = 2.4s. The value of 2.4s is verified numerically as shown in Figure 3.3b: it is the

DAW for which the BFN converges the most rapidly.

We have verified this method to determine the best DAW length in other configurations:

with topography (bump, real profile) and for 1, 2, and 5 observations.

72



3.2. Back and forth nudging algorithm

0 20 40 60 80 100
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

x1 x2

T1 = 1.4 s

T2 = 1.6 s

T = 2.4 s

(a) Characteristics transporting nudg-

ing information over the domain.

0 2 4 6 8 10
BFN iterations

0.00

0.05

0.10

0.15

0.20

0.25
RM

SE
u

Prior
DAW = 2.0
DAW = 2.4
DAW = 3.0

(b) Evolution of the relative RMS error with BFN iter-

ations for different values of the DA window (DAW) in

second.

3.2.5 Implementation of the BFN algorithm with Code Saturne

Simple nudging

A nudging algorithm has been implemented in Code Saturne to assimilate observations

of any variable simulated by the model (except the pressure): velocity components,

turbulence variables (k, ε), scalar variables, etc. In order to perform nudging toward a

full 3D field – instead of punctual observations – this DA is a two-step process:

1. a first step consists in computing the analysis state given by the Best Linear

Unbiased Estimator (BLUE) (see Eq. 2.16)

2. afterwards, the meteorological field simulated by Code Saturne is nudged toward

the analysis state obtained at the end of the first step.

This methodology is similar to the ’analysis nudging’ available in the Weather Research

and Forecasting (WRF) meso-scale model.

For stationary flows, the first step of the method is performed only once, at a time

t0 indicated by the user and the nudging is applied at each subsequent steps. During

the spin-up period – defined as the period between the initial time and t0 – the model is
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integrated without nudging. After t0, nugding is included at every time step and during

the whole DAW, whose length is also indicated by the user.

The first step consists in a BLUE analysis, for a different DA problem compared to

the one discussed up to present (see the Introduction of the present chapter). The DA

problem solved in this first step is the following:

• the control vector corresponds to the system state (x ∈ Rn),

• the background is the result of the Code Saturne simulation at time t0,

• the observation operator is based on the linear interpolation of the simulated field

x in the cell containing the observation to the exact location of the observation.

The background error covariance matrix B associated with the meteorological field

simulated by Code Saturne (x) is very large (n× n). Consequently, it cannot be stored

and it is here parametrised by the Cressman function. Each coefficient is thus equal to

Bi,j = (1 + ri,j/R) exp(−ri,j/R), (3.7)

where ri,j is the distance between the points i and j and R is the radius of correlation.

This radius is specified by the user and may differ in the horizontal and vertical directions.

Back and forth nudging algorithm

The derivation of the BFN algorithm adapted to take the BC into account, presented

in Section 3.2.1 is specific to the 1D SWE. However, we keep the same methodology

when applied with the full Navier-Stokes equations with Code Saturne. Namely, both the

forward and backward integrations are performed with the nudging method explained in

the previous section. However, the velocity field is reversed for the backward integrations,

i.e., we perform a change of variable ũ = −u before between each forward and backward

integration. The BC are then updated at each BFN iteration, as explained in Section 3.2.3.

The principle of performing the backward integration with the same model as the

forward integration, while only reversing the velocity field, has been obtained for the 1D

SWE and extended to the Navier-Stokes equations. Theoretically, for the full Navier-

Stokes equations it is not equivalent and this assumption could be source of issues.

Moreover, we have already highlighted the fact that the BFN algorithm does not solve

the same DA problem as 3D-Var and the IEnKS since the background is not taken into

account and the observations are assimilated multiple times.

Despite these a priori limitations of the BFN algorithm, its relative simplicity, the

availability of the nudging algorithm in Code Saturne, as well as its intuitive functioning

make this algorithm very attractive. Consequently, the following chapters of this work

have tried to evaluate the ability of this method to assimilate in situ observations in

order to improve the accuracy of local-scale atmospheric simulations with Code Saturne.
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3.3 The iterative ensemble Kalman smoother

The IEnKS (Bocquet and Sakov, 2014) is an ensemble variational method of DA. As

a variational method, it is based on the minimisation of a cost function and as an

ensemble-based method, the analysis error space is spanned by a limited number of

vectors: the ensemble members. Since we consider stationary BC and we assume that

the model is perfect, there is here no difference between the filtering (IEnKF, Sakov

et al., 2012) and smoothing (IEnKS) formulations. Anticipating future applications with

unsteady BC, we will consider the smoothing method in what follows, keeping in mind

that it is here strictly equivalent to the filtering method. The IEnKS cost function is

the same as the one obtained in the derivation of 3D-Var (see Eq. 2.14 in Section 2.4.1),

however considered in the ensemble subspace. We give below the derivation of the cost

function in the ensemble subspace and its minimisation avoiding the use of the adjoint

model.

3.3.1 Derivation of the cost function in the ensemble space

Similarly to the derivation in Sakov et al. (2012) and Bocquet and Sakov (2014), we

consider a background ensemble of N members: Eb =
{
z[i]

}
i=1..N

, where index [i] refers

to the member index in the ensemble. Each member corresponds to a vector of BC.

The background ensemble is centred on the background vector of BC:

zb = z =
1

N
Eb1, (3.8)

where 1 is a vector of size N with all components equal to one. The (normalised) anomaly

matrix for z is defined in Rl×N as the departure of each member from the ensemble mean

(zb):

A =
1√
N − 1

[
z[1] − zb, z[2] − zb, ..., z[N ] − zb

]
. (3.9)

The background error covariance matrix is then estimated from the ensemble using the

previously defined anomaly matrix:

B = AAT. (3.10)

In fact, the spread of the background ensemble around its mean represents the uncertainty

of the background.

The ensemble space is smaller than the state space such that it is generally interesting

and more efficient to seek a solution to the DA problem in the ensemble space rather than

in the state space. The IEnKS seeks the linear combination of the ensemble members

that best describes the analysis BC. The coefficients of this linear combination are stored

in the weight vector w of size N . In practice, for a given value of the weight vector, the

corresponding vector of BC is

z = zb + Aw. (3.11)
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Replacing (3.10) and (3.11) in (2.14) and using the notation ‖x‖2 = xTx, the cost

function in the ensemble space reads

J̃ (w) =
1

2
‖y−H ◦M(zb + Aw)‖2R−1 +

1

2
‖w‖2. (3.12)

The cost function derived here is the same as that obtained in previous DA schemes

(e.g., Bocquet and Sakov, 2014), albeit replacing the IC by the BC.

3.3.2 Minimisation of the cost function in the ensemble space

In the following, the cost function (3.12) is minimized in the ensemble space following the

Gauss-Newton algorithm. In theory, it is equivalent to use other minimisation schemes

such as L-BFGS-B or Levenberg-Marquardt (Björck, 1996). In the present study, we

assume that the results are somehow insensitive to the minimisation scheme. A great

advantage of working in the ensemble space is that the calculation of the gradient of

the cost function does not require the full (in state space) adjoint nor the tangent linear

of the forward operator F . It is replaced by the use of the ensemble, thanks to the

pre-conditioning by A as in Liu et al. (2008) and Gu and Oliver (2007). Therefore, one

only requires the tangent linear of the operator transporting from the ensemble space to

the observation space:

Y(j) = [F ]′|z(j) A, (3.13)

where z(j) = zb +Aw(j), the index ’(j)’ refers to the iteration index in the Gauss-Newton

algorithm, and [F ]′|z(j) represents the adjoint of the forward operator.

The gradient and the approximate Hessian of the cost function are then given by

∇J̃(j) = w(j) −
(
Y(j)

)T
R−1

[
y−F(z(j))

]
and (3.14a)

H(j) = IN +
(
Y(j)

)T
R−1Y(j). (3.14b)

Using the ensemble, the matrix Y(j) can be directly estimated, without the need for

the estimation of [F ]′|z(j) . Moreover, the matrix Y(j) is of size p×N and since p and N

are generally small (especially in the cases we are interested in), the computation of Y(j)

and
(
Y(j)

)T
is not too expensive.

Using previously defined notation, the Gauss-Newton algorithm reads

w(j+1) = w(j) −H−1
(j)∇J̃(j)

(
w(j)

)
, (3.15)

where ∇J̃ is the gradient and H is the approximation of the Hessian of the cost function.

At each step of this iterative algorithm, the ensemble anomalies must be rescaled

such that the propagated ensemble is representative of the current estimate of the state

error. There are two methods to do so (Sakov et al., 2012; Bocquet and Sakov, 2012).

In the bundle variant, the ensemble is shrunk by a small factor ε then propagated and
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eventually inflated by 1/ε, which lead to

Y(j) = F
(
z(j)1TεA

)(
IN −

11T

N

)
1

ε
. (3.16)

In the transform variant, the ensemble is transformed before its propagation using the

ensemble transform matrix obtained at the previous iteration:

T(j) =

(
IN +

(
Y(j−1)

)T
R−1Y(j−1)

)− 1
2

, (3.17)

where IN is the identity matrix of size N ×N . The propagated ensemble is then rescaled

using the transform inverse to (3.17), which gives

Y(j) ≈ H ◦M
(
z(j)1T +

√
N − 1AT(j)

)(
IN −

11T

N

) T−1
(j)√

N − 1
. (3.18)

Since the two approaches give very similar results (Bocquet and Sakov, 2012), we use the

transform method in the present work.

In the two first studies (Chapters 4 and 5), to compute the gradient ∇J̃ , we assume

that averaging the ensemble of simulated observations is equivalent to applying the

forward operator to the mean BC:

F
(
z(j)1T +

√
N − 1AT(j)

) 11T

N
≈ F(z(j)). (3.19)

This linearity assumption is too strong when the observations correspond to values of

pollutant concentration such that in the last study (Chapter 6) we explicitly simulate

the mean of the ensemble (F(z(j))).

The solution of the cost function minimisation is referred to as wa and the optimal

vector of BC, according to the previously defined DA problem, is given by

za = zb + Awa. (3.20)

A posterior ensemble is obtained at the end of the analysis and its spread is informative

about the uncertainty of the analysis:

Ea = za1T +
√
N − 1A (Ha)−

1
2 U, (3.21)

where U is an orthogonal matrix of size N × N satisfying U1 = 1, used to keep the

ensemble centred on the analysis (here we set U = IN ).

The pseudo-code of Algorithm 1 details one analysis cycle of the IEnKS using the

transform variant and the Gauss-Newton minimisation algorithm, which is schematically

represented in Figure 3.4.

An analysis cycle corresponds to the assimilation of one vector of observations to

correct one control vector. In the present work, we consider a control vector of steady

BC such that we perform only one analysis cycle and stop the algorithm at this point.

In an unsteady context, several analysis cycles could be performed consecutively to

assimilate several vectors of observations and correct several control vectors (see Fig. 2.2).

In such cases, the results obtained at the end of the minimisation (za, Ea, etc.) could be

used as background information for a subsequent analysis cycle.
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Background ensemble: Eb = zb1T +
√
N − 1A. Initialisation: w = 0

mean anomalies

w (z′, Eb′)
z′ = zb + Aw

Eb′ = z′1T + AH−1/2

E′s
Model ys

Obs.
operator

dy

Obs.
y

∇J̃ , H∆w

+

wa, za = zb + Awa, Ea = za1T + A(Ha)−1/2

until ‖∆w‖ < e or ‖∆J̃ ‖ < eJ

Figure 3.4: One analysis cycle of the IEnKS. The background ensemble Eb is either

obtained by a forecast ensemble from the previous analysis cycle or given as an input of

the method. The best estimate of the weight vector wa is obtained by minimising the

cost function J̃ as shown by the cycle on the figure: for each value of w, a new ensemble

of BC (Eb′), centred on z′, is generated using the transform method. The model and the

observation operator are applied to this ensemble, which gives an ensemble of simulated

observations with mean ys that can be compared to the observations y. The increment

dy = y− ys and the spread of the ensemble of simulated observations around the mean

are used in the estimation of the gradient and Hessian of the cost function. The weight

w is thus updated following Gauss-Newton algorithm until the convergence criterion is

reached. At the end of the analysis, the best estimate of the control vector za and the

analysis ensemble Ea can be used as a first guess for the next analysis cycle.

78



3.3. The iterative ensemble Kalman smoother

Algorithm 1 A cycle of transform/Gauss-Newton IEnKS

Require: Transition model from BC (z) to steady state (xs): M, observation operator:

H, observation vector: y, background ensemble: Eb, and algorithm parameters: eJ , jmax.

U is an orthogonal matrix of size N ×N satisfying U1 = 1.

1. j = 0, w = 0

T = I

2. zb = z = Eb1/N

3. A = 1√
N−1

(
Eb − zb1T

)

4. repeat

5. z = zb + Aw

6. E0 = z1T +
√
N − 1AT

7. Es =M (E0)

8. ȳs = H (E0) 1/N

9. Y =
(
H (Es)− ȳs1

T
)

T−1
√
N−1

10. ∇J̃ = w−YTR−1(y− ȳs)

11. H = IN + YTR−1Y

12. Solve H∆w = ∇J̃

13. w := w−∆w

14. j := j + 1

15. T := H−1/2

16. J = wTw + (y− ȳs)
TR−1(y− ȳs)

until |∆J |J (0) < eJ or j ≥ jmax

17. za = zb + Awa

18. Ea = za1T +
√
N − 1A (Ha)−

1
2 U
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3.3.3 Criterion of convergence of the IEnKS inner minimisation algo-

rithm
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Figure 3.5: Evolution of (upper) the cost function (J ) and (lower) the norm of the

weight vector increment ‖∆w‖ with the inner iterations of the IEnKS for the 2D twin

experiment with 5 (blue) and 10 (green) members.

The IEnKS cost function is here minimised using a Gauss-Newton algorithm. The

convergence criterion for this iterative algorithm is usually defined by the fact that

the root mean square of w(j+1) − w(j) is smaller than a predefined precision level e:

‖∆w‖ < e.

With the CFD model Code Saturne, the cost function defined in 3.3.1 does not show a

clear global minimum. In fact, due to some model imprecisions, there is a small region in

the ensemble subspace where the cost function is minimal and nearly constant. When the

IEnKS has reached this region, the vector w might change more than a typical value of

e = 10−3 while the cost function is nearly constant (Fig. 3.5). In this case the algorithm

does not converge according to the criterion on ‖∆w‖, whereas the minimum of the cost

function has been reached. Consequently, we have defined a new criterion of convergence

related to the change in the value of the cost function, between two consecutive iterations,

relative to the initial value of the cost function. The algorithm is here stopped when
|J (j+1)−J (j)|

J (0) < eJ. In all the experiments discussed in this work, eJ = 10−2.

Note that, since the cost functions considered in the present work are not perfectly

convex, another possibility to find its minimum is inspired from simulated annealing
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methods. It consists in running jmax iterations of the IEnKS, and selecting the best

configuration, i.e., the value of the control vector which gives the smaller evaluation of

the cost function. This methodology has been applied in the last study of this work,

presented in Chapter 6.

3.4 3D-Var: a well-known method for comparison pur-

poses

3D-Var is based on the minimisation of the same cost function than the IEnKS, though

considered in the control space rather than in ensemble subspace (see Section 2.4.2). This

method has been widely used in data assimilation studies and is here used for comparison

purposes.

In the present study, the gradient of the cost-function is estimated using finite-

difference approximation of the gradient. The ADAO module of the SALOME open-

source platform (http://www.salome-platform.org) offers the possibility to run 3D-Var

with this approximation and minimises the cost function with a L-BFGS-B nonlinear,

constrained optimisation algorithm (Byrd et al., 1995). Since estimating the gradient

with finite differences is very computationally expensive, 3D-Var has been only used

when the size of the control vector remains small in Chapters 4 and 5.
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4.1 Introduction

To first test the two data assimilation (DA) methods previously described, we use a simple

representation of the atmospheric boundary layer (ABL) and the free troposphere above
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into two layers, using the shallow-water equations (SWE) which are an approximation of

the Navier-Stokes equations for shallow flows (see Section 1.2.3).

The equivalence between ’level’ models and ’layer’ models, together with the relative

simplicity of the SWE, motivate the use of a shallow-layer model to first test the DA

methods for atmospheric local-scale simulations, before applying them to computational

fluid dynamics (CFD) models. We acknowledge that the shallow-water model used here

is quite simple and that it is only a first step in the validation process of the methods,

that will be later tested on more complex cases.

In Section 4.2 we introduce the shallow-water model used to represent the atmosphere

and test the DA methods in the present study. We also present the experimental setup

applied here.

In Section 4.3 we show the results obtained with the three DA methods (the back

and forth nudging (BFN) algorithm, the iterative ensemble Kalman smoother (IEnKS),

and 3D-Var) with perfect observations. Afterwards, we compare the performances of the

methods, in particular their sensitivities to observation errors and to background errors.

In the last Section, we give some concluding remarks on this study and perspectives for

the subsequent one.

The results presented in this chapter have been published in Defforge et al. (2018).

4.2 Methods

4.2.1 Resolution of the shallow-water equations

In the present study, we consider flows that are subcritical and we prescribe the velocity on

the left of the domain: u(x = 0) = uL, and the fluid height on the right: h(x = L) = hR.

These boundary conditions (BC) are here considered constant in time and we look for

the steady state obtained with these BC.

The 1D SWE with topography and without ground friction nor diffusion (Eq. 1.18)

can be solved analytically by the Bernoulli equation (Eq. 1.19) (see Section 1.2.3). The

resolution of the Bernoulli equation is used to determine the steady state with two given

BC, when no other forcing than the topography takes action. When nudging is added to

the SWE, they are solved numerically by a finite-volume method (see Appendix A.4.1).

Figure 4.1 shows the results of the 1D SWE with the following BC: uL = 5.5m/s and

hR = 154m. This figure illustrates the steady state that is considered as the reference for

the DA experiments.

4.2.2 Experimental set-up

3D-Var, the BFN algorithm and the IEnKS are tested on a shallow-layer system with

one-dimensional twin experiments (synthetic observations are extracted from the reference

simulation). The experiments correspond to a channel of length L = 2500m with a
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Figure 4.1: Results of the 1D SWE over a realistic topography. The topography (zr)

is shown in black and the absolute height of the fluid (zr + h) is shown in blue. The

fluid area is coloured according to the vertical mean of the horizontal velocity (u). The

vertical dashed, red lines show the locations of the two velocity observations assimilated

in the following experiments.

realistic topography profile but without diffusion nor ground friction. The reduced gravity

is equal to g′ = 0.5g = 4.905m/s2, which corresponds to a ABL twice as dense as the

free atmosphere above. The reference state is shown in Figure 4.1 and the first guess (or

background) corresponds to the BC value ub
L = 4.4m/s, i.e. a background error of 20%.

The value of the downstream BC (hR = 154m) is unchanged between the reference

simulation and the background. In all the cases, we consider the steady state obtained

with constant BC. The initial state for the DA experiments is the steady state obtained

with the a priori BC: in Sections 4.3.1 and 4.3.2 the same initial state is used for all the

DA experiments (ub
L = 4.4m/s and hR = 154m), while in Sections 4.3.3 the background

ub
L differs between the realizations and the initial state varies accordingly. It is noteworthy

that for simulations performed until convergence, the initial conditions (IC) does not

influence the results, i.e. the steady state.

Two observations of the velocity, located at xo1 = 625m and xo1 = 1875m (see

Fig. 4.1), are extracted from the reference simulation and are kept exact, i.e. noise-free,

in Section 4.3.1 while they are noisy in Sections 4.3.2 and 4.3.3.

As noted in Section 3.2, the BFN does not have the same objective as 3D-Var

and the IEnKS. To allow a quite fair comparison between these methods, we consider

cases for which the uncertainty of the background is substantially larger than of the

observations. For 3D-Var and the IEnKS, the background error covariance matrix (B)

and the observation error covariance matrix (R) have been chosen diagonal with variances

of 1m2/s2 and 10−6m2/s2 respectively. In all the DA experiments with either 3D-Var or

the IEnKS, for each value of the left BC, the steady state is obtained analytically by the
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resolution of the Bernoulli equation (Eq. 1.19), without using the numerical modelling.

Equivalently, we could have integrated the numerical model during a long enough time

until reaching a steady state. For the IEnKS, the background ensemble of 2 members

corresponds to the two leading modes of the background error covariance matrix equal

to identity, obtained with a singular value decomposition (SVD). The 2 members are

recentred such that the ensemble mean is ub (see Fig. 4.2a). The convergence criteria is

set to e = 10−3.

For the BFN algorithm, the forward and backward integrations with nudging are

performed over a time period T , which corresponds to the time needed for the information

coming from the observations to reach the BC (see Section 3.2.4). Using the method of

characteristics we have estimated this time period to be T = 30s. The nudging is applied

every time step (δt = 0.5s) and the nudging matrices are the same in the forward and

backward integrations: K = kHT where k = 1s−1. This definition of nudging matrices

is equivalent to HTR−1, often used in nudging studies. In fact, here the observations

are independently perturbed by noise such that R is proportional to the identity matrix:

R = rI. On the other hand, the numerical scheme used to solve the SWE is explicit such

that the nudging coefficient must be smaller than one. In the present study, r = 10−6 and

0.25 (without and with noise respectively), in which case r−1 is too large. Consequently

we take the largest possible value for k, which is 1.

We assume that the BFN algorithm has converged when the relative variation of the

control vector (here the BC uL) between two consecutive iterations is smaller than 0.05%

during 5 consecutive iterations.

4.3 Results

4.3.1 Results with perfect observations

Figures 4.2a and 4.2b show the background in blue, the reference simulation in dashed

black, and the observations as red dots.

Figures 4.2a shows the steady state corresponding to the BC of the 2 ensemble

members (dotted, blue curves) and of the one calculated by the IEnKS analysis (orange

curve). In this simple case the IEnKS perfectly recovers the value of the BC, so does

3D-Var (not shown on the figure).

Figure 4.2b shows the steady state corresponding to the BC obtained after 1, 15,

and 33 BFN iterations in the experiment with perfect observations. A BFN iteration is

defined as one forward and one backward integrations. The BFN algorithm has converged

after 33 iterations, i.e. 66 model integrations over a period of T = 30s, and the BC

obtained is ua
L = 5.54m/s. The relative RMSE between the true state and the state

obtained with this value of BC is equal to 0.68%, when evaluated over the whole domain.

The results of both the IEnKS and 3D-Var are very good, though these methods

have a slightly higher computational cost. In fact, here the resolution of the Bernoulli
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Figure 4.2: Profiles of velocity obtained (a) at the end of the IEnKS analysis and (b)

after 1, 15, and 33 BFN iterations for the experiment with perfect observations. The

simulations are performed with a shallow-layer model without diffusion nor ground

friction.

equation (1.19) is not costly but in general cases – where no analytical solution is available

– the model should be integrated over a time window long enough to reach the convergence,

and consequently longer than the period T used in the BFN algorithm. In fact, each

iteration of the BFN algorithm (i.e. one successive forward and backward integrations)

requires nearly 30 times less computational resources than one analysis cycle of IEnKS

with two members or one finite-difference calculation for 3D-Var minimisation. However,

the IEnKS and 3D-Var can be partially parallelised, unlike the BFN algorithm. The

IEnKS is here still more efficient than 3D-Var as the minimisation of the cost function

only requires 2 iterations of the Gauss-Newton algorithm, i.e. this method requires 4

model integrations as we consider 2 ensemble members. In comparison, 3D-Var in ADAO

estimates the gradient by finite-differences such that each iteration of the optimisation

algorithm requires 2 model integrations. Here, 6 iterations are necessary to reach the

minimum of the cost function, which corresponds to 12 model integrations.

4.3.2 Results with noisy observations

In real studies, the observations are never perfect. Consequently, we have analysed the

ability of the DA methods to assimilate noisy observations.

We have generated an ensemble of 50 pairs of observation errors following a Gaussian

distribution with zero mean and a covariance matrix equal to 0.25I, where I is the 2× 2
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Figure 4.3: Boxplots corresponding to the analysis errors obtained with 50 pairs of noisy

observations using the IEnKS, 3D-Var, and the BFN algorithm. The bottom and top of

the boxes represent the 1st and 3rd quartiles, the green line corresponds to the mean, the

dashed orange line to the median, and the ends of the whiskers represent the minimum

and maximum of all the data.

identity matrix. For 3D-Var and the IEnKS, we thus set the observation error covariance

matrix to R = 0.25I in what follows.

Figure 4.3 shows boxplots corresponding to the distribution of the analysis errors for

the 50 cases with noisy observations, for each DA method. The analysis error is defined

as the difference between the value of the BC given by the analysis and the true value of

the BC:

εa = ua
L − ut

L. (4.1)

We observe that the three methods have small mean analysis errors (green line) and

quite small dispersions of the errors (blue boxes). The IEnKS and 3D-Var give good

results with small mean analysis errors (respectively −0.07m/s and −0.12m/s) and small

standard deviation (both 0.27m/s). The BFN algorithm gives the smallest mean analysis

error (0.01m/s) though the standard deviation around this mean is larger than for the

two other methods (0.5m/s). This larger variability shows that the BFN algorithm is

more sensitive to observation errors. It is consistent with the definition of the BFN,

which gives a large importance to observations. If observations are not perfect, the BFN

algorithm nudges the system toward a state that is close to these observations and which

might be different from the true state.

A useful measure of the uncertainty on the analysis is the precision, which is defined
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as the inverse of the analysis error variance:

pa =
1

σ2
a

. (4.2)

Theoretically, the analysis precision is the sum of the precisions of the background

and of the observations (Section 5.4.1 in Kalnay, 2003). The adjoint of the forward

operator H̃ can be estimated by the IEnKS and 3D-Var using either the ensemble

or finite differences. From this estimate, we deduce the precision of the observations:

po = H̃
T
R−1H̃ ≈ 39s2/m2. In this section, we analyse the sensitivity to the observation

errors only and the background is the same for the 50 experiments. Consequently, we

compare the analysis precisions to the observation precision. Both the IEnKS and 3D-Var

give precisions of 14s2/m2 which is smaller than the theoretical value, especially because

the statistical assumptions are not perfectly satisfied. However, the precisions are not

too low neither, indicating that the methods are not very sensitive to the observation

errors. In particular, for these two methods, the absolute value of the analysis error is

smaller than the background error (|εb| = |ub
L − ut

L| = 1.1m/s) for all the experiments.

This shows that the DA methods always help correct the BC. As mentioned above, the

BFN algorithm is intrinsically more sensitive to observation errors, which is consistent

with the smaller analysis precision of 4s2/m−2.

4.3.3 Analysis of sensitivity to the background error

We have also analysed the sensitivity of the DA methods to the first guess ub
L. Similar

to the sensitivity analysis to observation error, we have generated an ensemble of 20

background errors, following a Gaussian distribution with zero mean and a variance

of σ2
b = 1m2/s2, symmetrical with respect to zero. We have also generated 10 pairs of

observation errors, as in Section 4.3.2. The three DA methods have been tested on these

200 cases.

Figure 4.4 shows the analysis error against the background error for the IEnKS (blue

squares), 3D-Var (orange triangles), and the BFN algorithm (green dots). The markers

represent the absolute analysis error, averaged over the 10 pairs of noisy observations for

a same background error, and the errorbars indicate the standard deviation around these

mean values. The absolute values of the background error are represented by the grey

line (y = |x|): in the dotted areas the analysis error is greater than the background error,

indicating that the DA method does not help correct the simulations.

We observe in Figure 4.4 that the mean analysis errors of 3D-Var and the IEnKS

(blue squares and orange triangles) are proportional to the background error. This is

consistent with the Bayesian framework of these methods. We can also verify that the

sensitivity of the IEnKS and 3D-Var to the background error is quite small here, which

is in agreement with the fact that the background precision is here substantially smaller

than the observation precision. By construction, the BFN algorithm does not depend

on the background and we can verify here that the mean analysis error (green circles)
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Figure 4.4: Analysis error against background error for 20 values of background error

and for the three DA methods: the IEnKS (blue squares), 3D-Var (orange triangles),

and the BFN algorithm (green circles). The errorbars are centred on the mean analysis

error and show the standard deviation, calculated over 10 experiments with different

pairs of observation errors and a given background error. The dotted areas correspond

to absolute values of analysis error larger than the background error, i.e. the DA method

has increased the error.

is nearly constant. For neither of the three methods does the sensitivity to observation

error – represented by the length of the blue, orange, and green errorbars – depend on

the background error. We can verify here again that the green error bars are longer

than the blue and orange ones, indicating that the BFN algorithm is more sensitive to

observation errors than 3D-Var and the IEnKS.

Except for very small absolute background errors (< 0.4m/s), all the errorbars are

below the grey line (Fig. 4.4), indicating that in nearly all the cases, the three DA

methods help reduce the error on the BC. The cases with very small absolute backward

error (|εb|) correspond to cases for which the values of the background are very close to

the true state. However, the background error variance is still larger than the observation

error variance (σ2
b = 1m2/s2 > σo = 0.5m2/s2), which means that the confidence placed

in the background is smaller than the confidence in the noisy observations. Consequently,

in 3D-Var and the IEnKS a smaller weight is given to the background compared to

the one given to the observations. As the observations are noisy, the optimal control

vector – relative to the DA problem – might be further away from the true state than the

background. Consequently, the analysis error is somewhat larger than the background

error and in Figure 4.4 the errorbars go over the edges of the dotted region.
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The results with the BFN algorithm are consistent with the independence of the

analysis to the background error and with the quite large sensitivity to observation error,

highlighted in the previous section.

Another way to measure the sensitivity of the methods to background error is to look

at the mean analysis error and the standard deviation in the ensemble of 20 experiments

for each pair of noisy observations. The IEnKS analysis error depends little on the

background value: for each pair of noisy observations, the mean analysis error is smaller

than 0.5m/s and the standard deviation around this average value is smaller than 0.05m/s.

3D-Var gives similar results to the IEnKS, even though the standard deviations are slightly

larger, indicating that the method is somehow more sensitive to the background error.

This is consistent with Figure 4.4 in which the orange triangles follow a line with a larger

slope than the blue squares.

With this measure we can also confirm that the BFN algorithm is more sensitive to

observation error but less to background error than the two variational methods. In fact,

depending on the pair of observations considered, the mean analysis error - calculated

over the 20 analyses obtained with different background errors - vary from 0.12m/s to

1m/s. The standard deviations around theses means are all around 0.005m/s.

The analysis precision (Eq. 4.2) is a measure of the confidence in the analysis: the

higher the precision is, the lower is the uncertainty on the analysis. In this section,

both the background and the observations vary, thus the analysis precision should be

the sum of the precisions of the background (pb = 1
σ2
b

= 1s2/m2) and the precision of

the observations (po = 39s2/m−2, Section 4.3.2). Consequently the analysis precision

should theoretically be equal to pa = pb + po = 40s2/m2 which gives an estimation of the

standard deviation for the analysis velocity at boundary: σa =
√

1
40 = 0.16m/s. Overall,

considering all the 200 simulations for each method, the mean absolute analysis error is

equal to −0.007m/s for the IEnKS and 3D-Var and 0.026m/s for the BFN algorithm with

precisions of 8s2/m2 for the IEnKS and 3D-Var and 5s2/m2 for the BFN algorithm. The

analysis precisions of all the three methods are greater than the background precision,

which confirms that DA methods improve the estimation of the control vector.

Regarding computational efficiency, the BFN algorithm is always the most cost-

effective because it is not integrated until convergence. The IEnKS is more effective than

3D-Var in these cases since only two or three iterations of the Gauss-Newton algorithm

are necessary to minimise the cost function whereas for 3D-Var the minimisation by finite

differences requires at least 5 iterations.

4.4 Conclusions

The shallow-layer model offers an interesting representation of geophysical flows and

is often used for simple numerical experiments in meteorology and hydrology. In the

present study, we consider a 1D shallow-layer model in order to validate the numerical
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behaviour of the modified DA methods (the BFN algorithm, 3D-Var, and the IEnKS)

before applying them to more complex model and cases.

The first results presented here show the efficiency of these methods to assimilate a

few observations on cases with a complex one-dimensional geometry. The three methods

help correct the BC, and thus obtain a state that is closer to the true state than the first

guess. It has been shown that even if the observations are noisy and for a quite large

range of background errors, the three methods are nearly always able to improve the

estimation of the BC.

The IEnKS and 3D-Var depend little on the observation error but depend linearly on

the background error. The BFN algorithm is more sensitive to the observation errors

but not to the background. The behaviour of the three methods is in good agreement

with the theory and highlights the fundamentally different DA problem solved by 3D-Var

and IEnKS on one hand and the BFN algorithm on the other hand. Furthermore,

the BFN algorithm has the disadvantage of being sensitive to parameters such as the

nudging matrix, the length of the integration time window, and the location of the

observations. Here we have used a very simple nudging matrix and further investigation

could be performed to develop more complex observers, as in Auroux and Bonnabel

(2011), Apte et al. (2018) or Krstic et al. (2009), in order to correct fluid height with

velocity observations.

In this simple example, the IEnKS is the most efficient DA method as it gives the

smallest analysis error, with the greatest precision, and it requires less model integrations

than 3D-Var. However, the 1D case analysed in the present study is quite simple and

the control vector considered is a singleton. Further investigation on more complex

cases, especially with two horizontal dimensions and vertical profiles of velocity will be

performed in the following chapters to analyse the performances of the methods on larger

control vectors. Eventually, we will apply these methods to more realistic cases with the

CFD model Code Saturne.
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5.1 Introduction

Wind resource assessment is increasingly based on atmospheric simulations with computa-

tional fluid dynamics (CFD) models (Landberg et al., 2003; Franke et al., 2004; Blocken,

2014), especially over complex terrain (e.g., Cattin et al., 2006; Palma et al., 2008;

Blocken et al., 2015) and in built environment (e.g., Kalmikov et al., 2010; Simões and

Estanqueiro, 2016; Wang et al., 2017). We have largely explained in Chapter 1 the fact

that local-scale atmospheric simulations are very sensitive to geometrical features such as

topography, and boundary conditions (BC) (Yang et al., 2009). In fact, the time needed

for any information to propagate into a small-scale domain is much smaller than the
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characteristic integration time scale. Consequently, the influence of initial conditions (IC)

quickly vanishes with integration time, and the BC eventually control the solution. The

BC thus account for a major source of uncertainty in local-scale atmospheric simulations

and it is a challenge to accurately estimate them, especially for wind resource assessment.

To first estimate the IC and BC for CFD simulations at small scale, the results

of mesoscale simulations are generally used (e.g. Yamada, 2004; Probst and Cárdenas,

2010). However, due to the large difference in spatial and temporal resolution between

mesoscale and CFD domains the BC provided by mesoscale simulations are generally

incorrect and do not always contain all the information, such as turbulence estimations

(see Section 1.2.6). Consequently, mesoscale simulations provide useful information that

is not sufficient and should be combined to another source of information, if available, to

estimate the BC as accurately as possible.

The prospective sites for implantation of wind farms are often equipped with meteo-

rological instruments, such as anemometers or Light Detection And Ranging (LIDAR),

which supply wind measurements inside the domain of interest (Landberg et al., 2003)

(see Section 2.1.1). These observations provide supplementary information that could be

used with data assimilation (DA) methods to improve the knowledge of BC, and thus

increase the precision of atmospheric simulations over small domains.

We have previously explained that, among the existing DA methods, the back and

forth nudging (BFN) algorithm and the iterative ensemble Kalman smoother (IEnKS)

seem well suited to be applied with CFD simulations for operational purposes. Both

methods, in their versions adapted to correct the BC, have already been tested with a

1D shallow-layer model and proved to help correct BC in a simple case (Defforge et al.,

2018) (see Chapter 4).

The goal of the study presented in this chapter is to assess the ability of the adapted

version of the IEnKS and the BFN algorithm to improve 3D wind simulations. The

methods are evaluated in a context of wind resource assessment, by assimilating a few in

situ observations. We consider a real domain with very complex topography prospected

for the installation of a wind farm. This domain has already been studied at EDF R&D

for wind resource assessment and mesoscale simulations with the model Weather Research

and Forecasting (WRF) are available for three years in the same region. In addition,

a field campaign of wind observations has been performed on this site during a few

months (Fig. 5.1). In Section 5.2 we introduce the experimental set-up and define the

control vectors considered for the DA experiments. The 3D-Var method, which is usually

considered as a reference, is here applied with finite differences for comparison purposes.

We thus verify that this method can be applied to the CFD simulations with Code Saturne.

Then we explain the method used to estimate the background error covariance matrix

related to the control vector of BC. We first present the results obtained over a 2D

section of this domain in the vertical plane, with twin experiments (Section 5.3). Besides

reducing the computation cost – and thus allowing us to perform more sensitivity test –
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Figure 5.1: Topography of the studied site and location of the three meteorological masts,

with the vertical position of the instruments. The black dots along the borders represent

the vertical profiles of BC included in the 3D control vector.

this 2D case has the advantage to require the definition of BC on one side only and to

allow comparison with 3D-Var. In a second time, we consider the whole 3D domain with

four lateral boundaries. To gradually increase the complexity of the DA problem, the

IEnKS is tested over this 3D domain with twin experiments (Section 5.4) and then with

real observations in a cross validation process (Section 5.5). Eventually, some conclusions

are drawn from this study and perspectives for the following work are given.

The results presented in this chapter have been published in Defforge et al. (2019a).

5.2 Methods

5.2.1 Definition of the 2D and 3D control vectors

In this study, we consider stationary BC and steady-state wind fields simulated with the

CFD model Code Saturne. At first, we consider a 2D domain in a XZ plane for which the

vector of BC corresponds to the vertical profile of wind speed in the plane of the domain,

prescribed at the western boundary. We assume that, at the boundary, the wind is only

horizontal, such that we only analyse the west-east component of the velocity, referred to

as u. The control vector of BC corresponds to the values of u defined in 21 vertical levels.

For 3D studies, several vertical profiles along the four lateral boundaries – West,

South, East, and North - are required. Each border of the 3D Code Saturne domain

is 4km long, which corresponds to 6 grid points in the WRF domain (green squares in
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Fig. 5.3a). In order not to overestimate the horizontal correlations between the vertical

profiles, we only consider 6 vertical profiles of BC for each border, equally distributed

(red circles in Fig. 5.3a). In total, 20 vertical profiles are included in the control vector

and analysed. In 3D, both the west-east (u) and the south-north (v) components of the

wind velocity are considered and each profile is defined in 21 vertical levels, such that

the control vector in 3D is of size: l = 20× 21× 2 = 840.

5.2.2 Gradient tests for the tangent linear estimation for 3D-Var

To assess the performance of the minimisation algorithm, we have verified that the

tangent linear of the forward operator (F ′) is correctly estimated with finite differences:

F ′|(z)dz ≈ F (z + αdz)−F(z)

α
. (5.1)

By construction of the cost function, if the tangent linear is well estimated, then the

cost function is analytically well calculated. It is thus equivalent to perform the following

test with the tangent linear of the forward operator or with the cost function.

At first, we consider the Taylor residue for the tangent linear:

R(α) =
‖F (z + αdz)−F(z)− αF ′dz‖

‖F(z)‖ = O(α2). (5.2)

This residue should decrease as α2 when α decreases, until the machine precision is

reached.

The second test considers a residue ρ which is the ratio between a perturbation of

the forward operator and the tangent linear estimate (Zou et al., 1997; Li et al., 1993;

Koohkan, 2012):

ρ(α) =
‖F(z + αdz)−F(z)‖

‖αF ′dz‖ = 1 +O(α). (5.3)

When α tends to zero, ρ(α) should linearly converge towards unity.

Figure 5.2a shows the decrease of R(α) with respect to α and Figure 5.2b shows the

difference between the residue ρ(α) and 1, with respect to α. In both figures, the results

are presented for three different values of the differential increment (dz), which is used in

the finite-difference calculation. The point (in the space of dimension Rl) around which

the tangent linear is approximated, corresponds to the reference value of the 2D control

vector (see Section 5.2.1). In this case l = 21.

From Figs. 5.2a and 5.2b, one can see that a differential increment of 10−2 gives

goods results: the decrease of R(α) is close to α2 and the decrease of 1− ρ(α) is nearly

linear until it reaches a constant value. Thus the differential increment has been set to

dz = 10−2 for all the tests with 3D-Var in the present study.

5.2.3 Estimation of the background error covariance matrix

One of the major issues raised by DA methods is that they require the estimation of

the background and observation error covariance matrices. For ensemble-based methods,
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Figure 5.2: Verification tests of the tangent linear estimation for three values of the

differential increment, used in the finite difference approximation: 10−1, 10−2 and 10−2.

such as the IEnKS, the background error statistics are represented by a limited number of

vectors – the ensemble members – and the problem is to chose the background ensemble

for the first analysis cycle. In fact, for subsequent analysis cycles, the analysis ensemble

obtained at the end of a cycle can be used as the background ensemble for the next

analysis cycle. In the present study, we only consider one analysis cycle such that it is

crucial to appropriately choose the initial background ensemble.

In the present study, we first estimate the background error covariance matrix,

associated with the BC of the local-scale domain, in order to construct the background

ensemble. In fact, once the background error covariance matrix is known, the background

ensemble might either be randomly sampled, according to this matrix, or it might consist

of the eigenvectors associated with the largest eigenvalues of this matrix. The estimation

of the background error covariance matrix is here based on the statistical analysis of a

time series of the control vector associated with the BC. Such a time series is estimated

using the results of three years of simulation with the mesoscale model WRF (Skamarock

et al., 2005) at the location of the CFD domain. We thus quantify the uncertainty of

inflow BC using the results of the mesoscale model WRF, similar to what has been done

in Garćıa-Sánchez and Gorlé (2018). In what follows, we explain how we use three years

of WRF simulations to obtain a series of realisations of the 2D and 3D control vectors

and in particular how the profiles are extrapolated near the ground. Eventually, we

present the method used to construct the background error covariance matrix from these

time series.
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Figure 5.3: Methodology of the adaptation of WRF simulation results to estimate the

BC prescribed for Code Saturne simulations. a) View from above of the Code Saturne

boundaries of the 3D domain. They correspond to 160 vertical profiles shown as black

dots. The control vector only includes 6 vertical profiles per border, equally distributed,

shown as red disks on the figure. The wind speed values at each red disk is obtained from

a bilinear interpolation of the four closest WRF profiles (green squares). b) Example of

profile stretching near the ground, required due to the differences of topography resolution

between WRF and Code Saturne domains. The WRF profile (blue) is kept above ẑ and

replaced by the stretched power law (red) below.
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From WRF results to time series of control vector estimates

The WRF simulations cover a mesoscale domain of 54km × 54km, with a horizontal

resolution of 1km. Vertically, the domain extends up to 19km above the ground with

variable vertical resolution from 15.1m near the ground to 1.7km at the top of the domain.

The WRF simulations are available every hour and cover a three-year period. The local

scale domains used for Code Saturne simulations are much smaller. The 2D domain

extends over 8km along x-direction with a 25m horizontal resolution. In 3D the domain

extends over 4km× 4km with a horizontal resolution of 100m. The vertical resolution is

finer in Code Saturne than in WRF, especially near the ground: the first 100 meters are

described by only 4 vertical levels in WRF and 7 levels in Code Saturne.

To estimate the value of the control vector for each WRF result, we proceed in

two steps. First, we perform a horizontal bilinear interpolation from the four closest

WRF profiles to the location of each BC profile. Second, we perform specific processing

of the lowest vertical levels of the profile obtained after the first step. Indeed, the

topography is less precise in the WRF domain than in the Code Saturne domain, such

that the wind profiles do not necessarily cover the same vertical region in WRF and in

Code Saturne. The Code Saturne topography, which is more accurate, might be locally

higher or lower. In the 2D case studied here, the interpolated WRF profile starts at

an absolute height of 605m while the Code Saturne profile starts at 490m. The first 8

levels of Code Saturne (out of 21 levels in total) are not covered by the WRF domain.

The horizontally interpolated WRF profiles – obtained after the first step – have to

be vertically stretched to fit the Code Saturne grid near the ground. One should note

that the reverse situation where the Code Saturne topography is higher than the WRF

topography might also occur, in which case the WRF profiles should be contracted. The

methodology used to do so is detailed in the next paragraph.

We apply the two steps explained above to all the WRF results to obtain a series of

more than 2× 104 realisations of the control vector. Figure 5.4a shows an example of 50

values of the 2D control vector. This time series is used to construct the background

error covariance matrix, as explained in the last paragraph of this section.

Stretching (or contraction) of WRF profiles near the ground

In order to stretch (or contract) the WRF profiles on the Code Saturne grid, we assume

that the wind velocity profiles near the ground follow a power law, which is a commonly

used relationship between height above the ground and wind speed (Peterson et al.,

1978):

u(h) = uR

(
h

hR

)α
, (5.4)

where uR is the wind speed at a reference height hR and α is a coefficient which depends

on the stability of the atmosphere. One can easily prove that uR and hR are linked

such that we set hR = 500m in what follows and the power law is determined by two
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Figure 5.4: a) Example of 50 vertical profiles of wind velocity obtained from WRF results

interpolated to the location of the western boundary of the 2D Code Saturne domain

and stretched near the ground using a power law. The thicker, black line shows the

vertical profile of mean absolute velocity, averaged over the 2.104 profiles obtained from

3 years of WRF simulations. b) Background error covariance matrix for the vector of BC

prescribed for the 2D Code Saturne simulations. The correlations are estimated from

the climatological variability and the variances correspond to the mean WRF simulation

error.

independent parameters: uR and α. Note that we always refer to relative height above

the ground as h whereas z represents absolute altitude.

For each WRF simulation, we find the power law that best fits the wind profile

below ĥw, where the superscripts ’w’ and ’s’ refer to the variables in the WRF and

Code Saturne domains respectively and the variables with hat correspond to the values

at the level where the profiles must match. The level ĥw is estimated for each profile as

the height below which the WRF velocity increases with height. We thus obtain a couple

of parameters (uw
R, α) such that for any hw < ĥw the wind velocity simulated by WRF

(u(hw)) approximately follows the power law:

u(hw) ≈ uw
R

(
hw

hw
R

)α
. (5.5)

Figure 5.3b shows an example of WRF profile (blue) which is approximated by a power

law (green) below ẑ = ĥw + zw
0 , where zw

0 refers to the elevation of WRF topography

there.

To project the vertical wind profiles on the Code Saturne grid, we keep the same

power-law exponent α but we recalculate the reference velocity us
R such that the new

power-profile us(hs) matches the WRF profile at ẑ, where the simulated wind speed is û.
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Written in the frame relative to the Code Saturne topography, this junction height is

ĥs = ĥw + ∆z0 where ∆z0 = (zw
0 − zs

0) is the difference in topography between WRF and

Code Saturne. Consequently, we must have

us(ĥs) = us
R

(
ĥw + ∆z0

hR

)α
≡ û, (5.6a)

⇔ us
R = û

(
hR

ĥw + ∆z0

)α
. (5.6b)

Using the couple of parameters (us
R, α) thus obtained, we can compute the wind velocity

profile for all the Code Saturne vertical levels below ẑ, shown on red in Figure 5.3b. We

eventually obtain a full vertical profile by keeping the result of WRF simulation above

ẑ (blue curve in Fig. 5.3b) and completing it with the stretched power law below (red

curve in Fig. 5.3b).

Construction of the background error covariance matrix

We hypothesise that the background error covariance matrix, related to the vector of

BC, is a combination of the climatological variability in WRF simulations and of the

mean error made by WRF at a given height. We thus estimate the correlations of the

background error covariance matrix B from a climatological covariance matrix (V) and

the variances of B correspond to the estimated WRF errors (λ). Each coefficient of the

background error covariance matrix B is thus given by:

Bi,j =
Vij√
ViiVjj

√
λiλj . (5.7)

The climatological covariance matrix is estimated from the series of control vector

estimates, obtained from WRF simulations as explained in the previous section (Fig. 5.4a).

The matrix V thus represents the climatological variability of velocity, in time, simulated

by WRF and is very informative with respect to the patterns of covariances.

In order to get a background error covariance matrix that represents well the confidence

given in WRF results, we set the variances of B equal to the mean error made by WRF.

This error mainly depends on the distance to the ground (Shimada et al., 2011, Fig. 3a)

and increases with height. In fact, the influence of topography is smaller at higher levels

such that the WRF simulations are generally more precise there. From data shown in

Shimada et al. (2011), we can deduce an approximate expression of the mean absolute

WRF error as a function of height:

εw(h) =

{
|2− 3× h

2500 | if h < 2500m,

1 if h > 2500m.
(5.8)

For each of the l control variables, defined at the vertical level hi, we compute the

coefficient λi = εw(hi).

Figure 5.4b shows the background error covariance matrix associated with the error

for the background vector of BC, estimated using equation (5.7).
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5.2.4 Experimental set-up

At first we consider a 2D vertical section of the domain over realistic topography (Fig. 5.5).

The wind field is simulated over this 2D domain with the open-source CFD model

Code Saturne. In all the atmospheric simulations performed with Code Saturne in this

chapter, the flow is considered steady, the density is assumed constant, and turbulence is

modelled by a constant mixing length equal to 10m. The RANS closure model is used

such that the simulated variables, and therefore the velocity components, correspond

to temporal means (see Section 1.2.2). Symmetric BC are set for lateral faces (South

and North), the top boundary is an inlet and the eastern face is a free outlet. The inlet

vertical wind profile is prescribed at the western boundary. It is this vertical profile

defined in 21 vertical levels that we try to retrieve with DA. The BC are constant in time

and the simulations are run over a sufficiently long time for steady state to be reached.

A reference simulation is performed with a prescribed boundary profile, considered

as the truth, shown in Figure 5.5. We can see that horizontal wind accelerates over

crests, which therefore represent a preferred location to install wind turbines. Wind

speed values are observed at x = 1800m, corresponding to a local crest (dashed line in

Figure 5.5), and at five different heights above the ground: 10m, 25m, 50m, 75m, and

100m. These wind speed values constitute pseudo-observations used in the DA process.

To account for instrumental errors, which are generally of the order of magnitude of a

few centimetres per second, Gaussian white noise with a variance of 10−3m2/s2 is added

to these pseudo-observations. Observation error includes the instrument error and the

representativeness error which we represent by a diagonal observation error covariance

matrix

R = rI (5.9)

with r = 0.1m2/s2. Note that the observation error includes the representativity error in

addition to the instrumental error, which explains that r is larger than the variance of

the white noise added to the synthetic observations.

The departure of the background from the true profile of inlet wind velocity is

consistent with the background error covariance matrix B defined in Section 5.2.3. Note

that the largest eigenvalue of B is equal to 29.5m2/s2.

For 3D-Var, the increment used in the finite difference approximation is set to 10−2.

The control space, in which the cost function is minimised, corresponds to the vector of

BC, defined in 21 vertical levels.

For the IEnKS and 3D-Var, the same criterion of convergence is defined for the cost

function: the minimisation algorithm stops when the change in the cost function, relative

to the initial value of J , is smaller than eJ = 1%.
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Figure 5.5: Wind field simulated with Code Saturne over the 2D vertical domain. The

vertical dashed line shows the location of the virtual instrumented mast which provides

synthetic observations for the twin experiments.

5.3 Results of twin experiments in 2D

5.3.1 Results with the BFN

Parameters for the BFN algorithm

As explained in Section 3.2.5, the BFN algorithm can be applied with Code Saturne. Each

forward or backward integration includes nudging toward an analysis state, computed

as the Best Linear Unbiased Estimator (BLUE). This first step (BLUE) requires the

definition of a few parameters, and the values used in the present work are given below.

First, as explained in Section 3.2.4, we set the length of the spin-up period to 500 time

steps, where the time step varies in space and time between 0.1s and 100s. The length

of the data assimilation window (DAW) is also equal to 500 time steps, such that each

integration corresponds to 1000 time steps.

The background error covariance matrix for the BLUE analysis is parametrised by

a Cressman function with a given radius of influence. In the present study, we take

the horizontal radius equal to LH = 5000m and the vertical one is set to Lz = 200m

(Duraisamy et al., 2014). As mentioned in Section 4.2.2, the nudging matrix should be

of the same order of magnitude as R−1. Since R eigenvalues are equal to r = 0.1m2/s2,

the nudging matrices applied in both forward and backward integrations are equal to

K = kI with k = 10s/m and I the identity matrix.

Nonlinearity issue

Applying the BFN algorithm to the simulation with Code Saturne in 2D over complex

topography, we have faced an issue of non-reversibility of the integrations. In fact, if

the nudging term is set to zero, the sequential integration of the forward and backward
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(a)

(b)

Figure 5.6: Velocity field (a) at the beginning of the backward integration, obtained by

reversing the flow field obtained at the end of the forward integration and (b) at the end

of the backward integration. Both integrations are performed without nudging.
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equations should bring the system back to its initial state.

We have tested if this reversibility condition is satisfied with Code Saturne following

the methodology previously presented (see Section 3.2.5). The nudging coefficient is

thus set to k = 0s/m for this test. The system state obtained after one iteration – i.e.

successive forward and backward integrations – appears to be different from the initial

state. The observed differences mainly come from the nonlinearity effects of topography,

i.e. the recirculation after topography peaks.

In the backward integration, as the velocity field is reversed, the left side of any

topography peak – which corresponds to the upwind side in the forward integration –

becomes downwind. Consequently spurious recirculation form on the left side of the

topography peaks in the backward integration, whereas they should be on the right. We

can see in Figure 5.6 that the recirculation that is downwind at the end of the forward

integration – and thus upwind at the beginning of the backward integration – move

downwind during the backward integration. In particular, the left border of the domain

is near a peak and a recirculation form there. As a matter of fact, when the result of

the backward integration along the left border is used to prescribe the upstream BC for

the next forward integration, this spurious recirculation dramatically affects the vertical

profile of velocity (see Fig. 5.7). Consequently, the reversibility condition of the BFN

algorithm without nudging – in its version applied here – is not satisfied.

This experiment highlights that the nonlinearities induced by the steep topography

(recirculation after the peaks) are too strong and the backward integration cannot be

performed by simply reversing the flow. Consequently, the BFN algorithm that has been

developed for the 1D shallow-water equations (SWE) and presented above cannot be

applied in cases with strong linearity effects.

Sensibility analyses

We have performed sensibility analyses to assess the effect of several parameters on the

BFN results. First, we have tried to increase the vertical extent of the domain in order

to have the highest levels unperturbed by the nonlinear effects due to steep topography.

Even though the values of BC are kept unchanged at these high levels, the lowest levels

– which are the most important for the micrometeorological applications studied here –

are largely affected by the recirculation. Consequently this approach does not solve the

non-reversibility issue.

In a second time, we have varied the mixing length between L = 1m, L = 50m, and

L = 100m without any clear effect on the results. The length of the spin-up period

as well as the DAW have also been changed, differently for the forward and backward

integrations. We have also performed some sensibility analyses to the radius of influence

using in the Cressman function, both in the horizontal and vertical direction, and to the

nudging matrices. Here again, we have not found any clear consequence of varying these

two parameters.
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Figure 5.7: Left BC prescribed for the first forward integration and obtained after a one

forward and one backward integration, without nudging.

Perspectives for the BFN algorithm

The inadequacy of the revised version of the BFN algorithm to nonlinear cases have lead

us to put this method aside and to not test further this method. Some perspectives

have been foreseen, though we have not been able to implement them. First, the domain

could be extruded with flat topography on each side of the domain. This would prevent

from having recirculation affecting the downstream BC. Another possibility could be to

develop a linear version of the model that would be applied for the backward integration.

This solution would be similar to the adjoint approach for which the model used to

integrate the equations backward in time is a linearised version of the forward model.

5.3.2 Results with the IEnKS in 2D

In order to analyse the results obtained with DA methods, we consider two statistical

indicators. First, the error refers to the departure from the truth as defined in equation 2.1,

and corresponds to the ensemble mean. Second, the uncertainty is related to the ensemble

spread and refers to the confidence interval of the BC estimate, and of the resulting wind

field simulations. We also compute the root mean square error (RMSE) of the simulated

wind field with a given set of BC, compared to the wind field obtained when the reference

BC are prescribed.

With the 2D configuration presented above, we perform a sensitivity analysis to the

number of members and to the method used to generate the initial ensemble (not shown).

We consider ensembles of 2, 3, 5, 8, 10, and 20 members. For each ensemble size, we
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consider two methods of ensemble generation. In one case, the members correspond to the

eigenvectors associated with the largest eigenvalues of the singular value decomposition

(SVD) of the background error covariance matrix. The second method consists in

randomly sample the members, according to the background error covariance matrix.

With this second method, we repeat the experiment 15 times for each ensemble size.

In both cases, the ensembles are recentred to ensure that the anomaly matrix has zero

mean.

With the first method of ensemble generation based on SVD, the error in the analysis

BC and the global RMSE of the simulated wind field depend very little on the number

of members (not shown). Even with very small ensembles, the IEnKS is able to correct

the BC and to reduce the error in the simulated wind field. This is consistent with the

fact that the control variables are highly correlated in the vertical.

With random samplings of the ensemble members, on average, the error in the

BC and the RMSE of the wind field do not depend much on the number of members.

However, the variability of results obtained with the 15 ensembles of same size is quite

large, especially for small ensembles (2 or 3 members). With both methods of ensemble

generation, the IEnKS always converges in 2 or 3 iterations. The observed sensitivity to

random sampling for a given ensemble size motivates us to choose the method based on

SVD for the following experiments. Since the results are not sensitive to the number of

members with this method, we decide to keep 3 members for what follows.

We also verify that in the lower atmosphere (z < 800m), the analysis is nearly

insensitive to the background. We have randomly drawn 15 values for background

error, according to the same background error covariance matrix, and we assimilate the

same observations. The analysis profiles of BC are quite similar to each other below

800m, whereas in the upper layers of the atmosphere, the analysis depends more on

the background. These results are consistent with the fact that observations are only

available below 800m and that a large weight is given to the observations (R is much

smaller than B). In all the cases, the RMSE computed over the whole domain is smaller

for the analysis than for the background and the analysis RMSE is smaller than 0.5m/s

for the 15 experiments.

Finally, we perform a sensitivity analysis to verify that the results do not depend

on the parameters of the CFD simulations. In twin experiments, the results are almost

insensitive to the mixing length or to mesh resolution.

5.3.3 Comparison between the IEnKS and 3D-Var in 2D

The IEnKS and 3D-Var are both used to solve the DA problem defined in Section 5.2.4.

The control vector contains the 21 values of horizontal velocity, constituting the vertical

wind profile prescribed as western BC.

Figure 5.8 shows the results obtained with the IEnKS and 3D-Var in this 2D case.

The first panel (Fig. 5.8a) shows the vertical profiles of BC for the reference simulation
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Figure 5.8: Results in 2D with the IEnKS (ensemble of 3 members) and 3D-Var. a)

Vertical profile of velocity used as BC in 2D: truth (black), background (blue), and

analysis (IEnKS: orange and 3D-Var: dashed, green) profiles. The background (dotted

blue) and analysis (dotted orange) ensembles of the IEnKS are also shown. b) Departure

from the truth of the background and analysis vertical profiles of velocity used as BC in

2D. c) Departure from the true vertical profile of velocity simulated at the location of

observations, x = 1800m, for the background and analysis profiles. The noisy observations

(red dots) are also shown.

(black), the background (blue), and the analyses obtained with the IEnKS (orange) and

3D-Var (green). The background (dotted blue) and analysis (dotted orange) ensembles

are also shown. To better show the impact of the DA methods, the true values of velocity

are subtracted to present the background and analysis errors in the BC (Fig. 5.8b).

Similar errors are shown at the location of observations (x = 1800m) at the end of the

simulation (Fig. 5.8c). It can be seen that with both methods the error is largely reduced

for the BC, and thus within the domain, especially where observations are available.

The two methods give very similar results, which is consistent with the fact that they

minimize the same cost function.

Table 5.1 presents the error in the BC and the subsequent error in the simulated

velocity field. The maximum error and the mean absolute error (MAE) are given for the

BC. Regarding the error of the velocity field, we give the local maximum and the RMSE

computed over the whole 2D domain. These error statistics are given for the background

and for the analyses obtained with the IEnKS and 3D-Var. We can see from this table

the large sensitivity of the velocity field to BC. The error in the background BC is of

1.07m/s on average and smaller than 1.61m/s for all the control variables. However,

it triggers errors in the domain that locally reach 2.48m/s. The results presented in

Table 5.1 show that the two DA methods have the same capacity to greatly reduce the

error in the BC and thus in the whole velocity field.

In the table, we also give the number of integrations needed for the methods to

converge. The inner algorithm of the IEnKS converges in 2 iterations and we consider
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Error in
BC(m/s)

Error in
simu. velocity

field (m/s)

STD of simu.
ensemble

(m/s)
Nb of
integ.

max MAE max RMSE max mean

Background 1.61 1.07 2.48 1.06 1.39 0.59

IEnKS 0.35 0.14 0.35 0.15 0.28 0.13 6

3D-Var 0.34 0.13 0.34 0.15 110

Table 5.1: Results in 2D with the IEnKS (ensemble of 3 members) and 3D-Var on the

same case (same background and same observations). Error in the BC (maximum error

and mean absolute error - MAE), error in the simulated velocity field (local maximum

and root mean square error - RMSE), standard deviation (STD) of the ensemble of

simulated velocity fields (local maximum and average over the whole 2D domain), and

the number of model integrations necessary to obtain the analysis.

an ensemble of N = 3 members, such that the IEnKS requires only 6 integrations of

Code Saturne. The minimisation algorithm used for 3D-Var requires 5 iterations which

correspond to more than 100 integrations. In fact, for each iteration, l + 1 integrations

are required to estimate the gradient of the cost function by finite differences, where

l = 21 is the size of the control vector. In this case, the IEnKS is thus much more efficient

regarding computational cost.

The spread of the background ensemble, used in the IEnKS, characterizes the estimated

uncertainty of the background BC. Similarly, the spread of the updated ensemble, at the

end of the IEnKS analysis, provides a diagnostic of the posterior error for the BC. For

each ensemble member – which corresponds to a profile of BC – we run the CFD model

Code Saturne forced with these BC. We thus obtain background and analysis ensembles

of simulated wind fields. The spread of these ensembles characterise the accuracy of the

simulated wind field. Figure 5.9a shows the standard deviation (STD) of the ensemble

of simulated wind fields. The larger the STD is, the less precise is the velocity field,

simulated with the ensemble mean (here the background) prescribed as BC. We can see

that the STD is particularly large between 50m and 100m above the ground, especially

over local crests, where it is the most crucial for wind resource assessment. Figure 5.9b

shows the STD of the analysis ensemble which is everywhere smaller than the background

STD. As an example, we analyse more precisely the vertical profile of STD above a local

crest (x = 3600m, shown by the green triangle in Figure 5.9a). The vertical profiles

of STD of the background and analysis ensembles of simulated wind fields are shown

in Figure 5.9c. We can observe that thanks to the IEnKS, the uncertainty is largely

reduced near the ground – where observations are available – and that the influence of

observations vanishes with height. Even at high altitudes the IEnKS helps to reduce the

uncertainty in the simulations. This vertical pattern of analysis STD is observed in all

the 2D domain. It is observed that for 90% of the grid points, the STD is divided by
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Figure 5.9: Standard deviation of the ensemble of 2D velocity fields simulated with a) the

background ensemble members prescribed as BC and b) the analysis ensemble members.

c) Vertical profile of background (blue) and analysis (orange) uncertainty on u at a local

crest (x = 3600m, green triangle on panel a). The uncertainty corresponds to the STD

of the ensemble of simulated velocity fields.

more than 1.6 between the background and the analysis. The points where the STD is

not reduced are points where the background STD is already small. Table 5.1 gives the

local maximum of STD and its average value computed over the whole 2D domain. The

large decrease in these values of STD proves that, besides decreasing the mean error in

the BC, the IEnKS helps to increase the accuracy of the control vector estimate and

consequently of the simulated wind field.

The twin experiments performed in 2D have allowed to compare the performances

of the IEnKS with 3D-Var. In order to gradually increase the complexity of the test

cases, we first perform twin experiments with the 3D domain (Section 5.4) and then we

assimilate field measurements (Section 5.5).
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5.4. Results of twin experiments in 3D

5.4 Results of twin experiments in 3D

5.4.1 Experimental set-up

We consider in this section a 3D domain which extends from x = 0m to x = 4km, from

y = −2km to y = 2km, and from z = 288m to z = 2318m. As explained in Section 5.2.1,

the control vector in 3D is of size l = 840, which corresponds to 20 vertical profiles for

u and v, defined in 21 vertical levels (Fig. 5.3a). This control vector is too large to use

3D-Var with finite differences, consequently we only use the IEnKS in this 3D case.

The reference value of the control vector corresponds to one of the WRF results

projected on the finer, local grid, as explained in Section 5.2.3. The background is

obtained as a perturbation of this true vector of BC. The departure of the background

from the truth is randomly sampled from the background error covariance matrix B,

defined in Section 5.2.3.

We consider synthetic observations coming from 3 virtual instrumented masts located

at:

• x = 2000m and y = 0m (mast M80),

• x = 1750m and y = −1290m (mast M),

• x = 3670m and y = 605m (mast P).

For each mast, pseudo-observations of u and v are extracted at 10, 25, 50, 75, and

100m above the ground. Consequently, 30 observations are extracted from the reference

simulation and Gaussian white noise is added to them. The observation error covariance

matrix is R = 0.1Im2/s2.

The precision required for the IEnKS algorithm to stop is set to eJ = 1%.

5.4.2 Results with the IEnKS

The IEnKS has been tested on the 3D case with ensembles of 2, 5, 10, 15, 20, 30, and

50 members, all other things remaining equal – such as the background and the noisy

observations. We compare the analysis BC and the steady wind field, obtained when

these BC are prescribed, to the reference BC and wind field. In particular, we compute

the MAE of the BC and the RMSE of the wind field over the whole domain. The

sensitivity of the results to the number of members is rather small (not shown). The

MAE and the RMSE slightly decrease from 2 to 10 members and then increase again.

This could be explained by the fact that increasing the ensemble size increases the number

of degrees of freedom which is beneficial between 2 and 10 ensemble members. The

slight deterioration of the results with ensembles larger than 10 could be explained by

overfitting. In fact, the background error covariance matrix is not perfectly known and

increasing the ensemble size tends to represent more precisely the incorrect background
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Figure 5.10: Results of the IEnKS in 3D with 5 members. Relief (shaded) and horizontal

velocity field (arrows) in the plane of constant height above the ground h = 80m. The blue

squares represent the location of the three virtual masts providing pseudo-observations.

For the sake of visibility, only 3% of the horizontal velocity vectors are shown in the

figures. a) Reference velocity field obtained with true BC. b) Background error in the

velocity field. c) Analysis error in the velocity field.
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Error in BC
(m/s)

Error in simulated
velocity field (m/s)

STD of simulated
ensemble (m/s)

u v

max MAE max RMSE max mean max mean

Background 2.96 0.96 3.40 0.89 1.28 0.41 1.25 0.41

IEnKS 2.00 0.40 1.90 0.20 0.68 0.10 0.38 0.11

Table 5.2: Results in 3D with the IEnKS (ensemble of 5 members). Error in the BC

(maximum error and mean absolute error - MAE), error in the simulated velocity field

(local maximum and root mean square error - RMSE), and standard deviation (STD) of

the ensemble of simulated velocity fields for u and v (local maximum and average over

the whole 3D domain).

error statistics. Consequently the analysis is negatively affected. For the sake of numerical

efficiency we thus adopt an ensemble of 5 members in what follows.

Table 5.2 presents some statistics for the background and analysis errors. We can see

that the IEnKS helps to divide by more than 2 the MAE of the BC and thus to divide

by more than 4 the RMSE of the velocity field simulated in the whole domain. In this

case the IEnKS has converged in 3 iterations such that it has required 15 integrations of

Code Saturne.

Figure 5.10 shows the results obtained with an ensemble of 5 members, in the surface

defined by h = 80m, where h is the relative height above the ground. This height is

chosen because it corresponds to a typical hub height of wind turbine. The background

colors represent the topography of the domain, above which the arrows represent the

horizontal velocity field (only a subset is shown). Figure 5.10a shows the reference wind

field obtained with the true BC and Figure 5.10b and c show the departure from this wind

field for the background and the analysis. We can see in Figure 5.10b that the background

error is larger over higher topography. Figure 5.10c shows that the IEnKS allows to

largely reduce the error in the wind field, especially near the available observations.

Figure 5.11a shows the true, background, and analysis values of the vertical profile

of u prescribed as BC at x = 0m and y = −350m. Figure 5.11b shows the background

and analysis errors for this same profile of BC and Figure 5.11c shows the vertical profile

of u simulated at the location of the mast M80 (x = 2150m and y = 0m). We can see

that the analysis error at this location is greatly reduced thanks to the IEnKS. Note

that Figure 5.11 only shows the u velocity component for one of the 20 vertical profiles

included in the control vector. However, the conclusions drawn for this particular case

also hold for the v velocity component and for the other vertical profiles.

Figure 5.11a and b also show the background and analysis ensemble members. The

analysis ensemble is narrower than the background ensemble, meaning that the confidence

in the analysis has improved over that in the background. The STD of the velocity fields

obtained when the different members of the background ensemble are prescribed as BC
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Figure 5.11: Same as Fig. 5.8, for the 3D twin experiment. A logarithmic scale is used for

the vertical axis. a) Vertical profile of the BC on u located at x = 0m and y = −350m,

in the middle of the western boundary. The dotted, blue curves correspond to the

background ensemble members. b) Departure from the true profile of BC for u. The

dotted, orange curves correspond to the analysis ensemble members. c) Error in the

vertical profile of velocity simulated at the location of the mast M80 (x = 2000m and

y = 0m).

is indicative of the uncertainty in the background wind field. Figure 5.12a shows the

values of this background STD, for the u-component of velocity, for all the points in the

plane of constant height above the ground h = 80m (colors). The topography is also

shown (contours) and we can observe that the STD is generally larger above the crests.

This pattern of uncertainty is largely smoothed by the IEnKS, and the values of STD for

u and v are divided by more than 2 for 90% of the grid points between the STD of the

background and the analysis ensemble (see Fig. 5.12b). The local maxima of STD for u

and v and the mean calculated over the whole domain are given in Table 5.2. Globally,

the STD of the simulations with the analysis ensemble is smaller than 0.68m/s for u

and than 0.38m/s for v. Since the operational objective of DA in the present study is

mainly to improve the wind estimate above local crests – where wind turbines might be

installed – we present in Figure 5.12c the vertical profile of STD over a crest at x = 800m

and y = −1400m (green triangle on Fig. 5.12a). Figure 5.12c shows the vertical profile

of STD for u (solid line) and v (dashed line), simulated with the background (blue)

and analysis (orange) BC. For both velocity components, the IEnKS helps to largely

reduce the uncertainty in the simulated velocities, and especially near the ground where

observations are available.
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Figure 5.12: a) and b) are similar to Fig. 5.9a and Fig. 5.9b but for the 3D domain. Here

we show the STD in the plane of constant height above the ground h = 80m, for the

u-component of velocity only. The contours show topography. The blue squares represent

the locations of the three masts. c) Same as Fig. 5.9c but for the results in 3D for u and

v at x = 800m and y = −1400m, shown by the green triangle on panel a.

115



Chapter 5 Improving CFD atmospheric simulations at local scale for wind
resource assessment using data assimilation

5.5 Results with field measurements in 3D

5.5.1 Experimental set up

A field campaign has been performed over the 3D domain as described in Section 5.4.1,

between August and December 2007. The observations are available every 10 minutes

at 3 masts (M80, M, and P) whose location are given in Section 5.4.1 and shown in

Figure 5.10. We use here these observations in a cross-validation procedure: we assimilate

the observations provided by the masts M and P (classical cup anemometers and vanes

usually available for wind farms), and we compare the results to the observations provided

by the mast M80 (sonic anemometer).

The available observations at M and P are:

• wind speed at 30, 39, and 49m above the ground,

• wind direction at 30 and 47m above the ground.

Assimilating observations of wind direction is quite complex, especially because the wind

direction is not well defined for small wind speeds. Since wind direction does not change

much with altitude, we consider that the observations of wind direction at 47m are still

valid at 49m. Consequently, we convert the observations of wind speed and direction

to u and v values at 30 and 49m. At 39m we assimilate directly observations of wind

speed, as nonlinear observation operator is well handled by the IEnKS. In the following

experiments we thus assimilate 10 observations: the 2 wind components (u and v) at 2

heights (30 and 49m) and the wind speed at 1 height (39m) for the 2 masts (M and P).

To validate the results we use the sonic measurements available at the location of the

mast M80 and at 4 different heights above the ground (10, 25, 45, and 78m). The sonics

have a sample rate of 10 Hz and here we use the values averaged over 10 minutes.

To test the IEnKS in different meteorological situations and with different background

errors, the results of WRF simulations are clustered following the Wind Resource Assess-

ment and Power Production (WRAPP) methodology (see Section 1.3.6). The variables

considered here in the clustering method are the wind speed, the wind direction, and the

departure of the WRF results from the sonic observations. Using a k-means clustering

method, 18221 hourly WRF results are clustered in 50 classes and one representative

date and time is selected for each class (hereafter referred to as ’representative time’).

We thus perform the cross validation process for each of these 50 representative times.

The background corresponds to the result of the WRF simulation, projected on the

Code Saturne grid as explained in Section 5.2.3.

All the other parameters used in the IEnKS experiments are the same as for the 3D

twin experiments (Section 5.4.1).
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Figure 5.13: Scatter plot of observed versus simulated values for u and v at the location

of the mast M80 with (left) the background BC and (right) the analysis BC for the 50

representative situations. The Pearson coefficient is given in the legend.

5.5.2 Results of cross validation

We have performed an analysis cycle of the IEnKS for each of the 50 representative

times. The IEnKS generally converges in 4 to 6 iterations. The wind field simulated

with the analysis BC thus obtained are compared with the observations from the sonic

anemometers. Figure 5.13 shows that the agreement between the simulated and the

observed values of u and v at the location of the mast M80 is significantly better with

the analysis BC.

Figure 5.14a shows the analysis error – computed by comparing the simulations

to the observations at M80 – against the background error for the 50 representative

times. The size of the circles is proportional to the size of the class. We also show the

linear regression of the points (dashed orange). We can see that the IEnKS helps reduce

the error, except in some cases for which the background error is already small. The

regression line indicates that the larger the background error is, the larger the error

reduction – in average – by the IEnKS. This figure suggests that if the error between

WRF simulations and the available observations in the domain is quite small (< 1.5m/s)

it might not be beneficial to resort on DA.

Figure 5.14b shows the histograms of the errors of WRF simulations at the location

of the mast M80, when compared to sonic observations (green). The histograms are

representative of the 18221 situations as the representative times are duplicated according

to the class size. Similar histograms are shown for the error made by Code Saturne

simulations when the WRF results are used as BC (blue). These BC – and the simulations
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Figure 5.14: a) Analysis error versus background error for the different meteorological

situations representative of the 50 classes. The size of the circles represent the class size.

b) Histograms of the difference between simulation results and sonic observations.

– correspond to the background of the DA experiment. At the end of the IEnKS analysis,

the simulations with Code Saturne forced by the analysis BC are compared to the sonic

observations at M80 to obtain the orange histogram in Figure 5.14b. The mean error

made by WRF (green), Code Saturne before DA (blue), and Code Saturne after DA

(orange) are shown by the stars at the top of the figure. We can see that the use of CFD

model does not reduce much the error if the BC are imprecise. However, after a cycle of

the IEnKS, the distribution of the errors is largely shifted toward smaller errors and the

mean error is divided by 1.7.

To estimate the impact of DA in a context of wind resource assessment, we assume

that a unique wind turbine of 6MW wind turbine is installed at the location of the mast

M80. For each representative situation, we consider the wind speed, at 78 m above the

ground, given by: the sonic anemometer, WRF simulations, Code Saturne simulations

with the BC provided by WRF (referred to as CSb), and Code Saturne simulations

with the BC corrected by DA (referred to as CSa). Using the power curve of a 6MW,

we can estimate the corresponding power for each representative time. Eventually, we

average the 50 power values by weighting them according to the size of the classes. We

thus obtain a potential power for the wind turbine installed there. The wind power

potential computed from the measurements is equal to 2993kW, WRF results lead to an

estimation of 2098kW, CSb gives 1737kW, and CSa gives 2701kW (see Fig. 5.15). The

wind potential estimated with WRF results is underestimated by 30%, with CSb it is
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Figure 5.15: Wind potential estimated for one 80m hub height wind turbine installed at

the location of the mast M80 from the sonic anemometers observations, WRF simulations,

Code Saturne simulations forced with background BC (CSb), and Code Saturne simu-

lations forced with analysis BC (CSa). The errorbars represent the difference between

the minimum and maximum estimated potentials. For the observations (black) the two

estimations come from the observations provided by the sonic anemometer and the cup

anemometer. For the WRF simulations, they correspond it correspond to the image by

the power curve of the uncertainty on WRF wind fields. And for CSb and CSa we take

the maximum and minimum among the ensembles.

underestimated by 42%, and with CSa by less than 10%. Moreover, the uncertainty on

the wind resource estimate – which corresponds to the STD of the ensemble – is reduced

from 4.7% with CSb to 1.3% with CSa. Consequently, the use of the IEnKS to correct the

BC of the 50 representative times allows to largely reduce the error of the wind potential

estimation as well as the uncertainty in this estimate.

One can note that CSb gives worse results than WRF, whereas the mean error made

by WRF is larger than the one made by CSb. This might be explained by the nonlinearity

of the power curve and especially the effect of cut in (the wind turbine is cut if the wind

speed is smaller than 3m/s). Another source of explanation could be that WRF errors

are especially large in situations of strong wind, but the power curve reaches a plateau

after 13m/s such that these errors do not impact the wind potential computation.

Note that the observations, and thus all this study, are not available during a full year

but only for 8 months. Consequently these estimations are not perfectly representative

of the potential of this site. Moreover, a mast equipped with cup anemometers is located
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just next to the sonic anemometer. If the observations from the cup anemometer is used

to estimate the wind power potential, we obtain a value of 2895kW. The difference with

the value given previously, obtained with the sonic anemometer measurements, indicates

that the observations are not perfect and that the confidence interval is approximately

equal to 100kW.

5.6 Conclusions

In the present chapter, we have evaluated the performances the IEnKS and the BFN

algorithm in their versions adapted to take BC into account, instead of IC as in their

original derivation.

These new versions of the DA methods are tested here with twin experiments in two

and three dimensions. In 2D (vertical plane), the BC correspond to the vertical profile of

the east-west component of velocity prescribed on one side of the domain. The control

vector corresponds to the values of velocity defined in the 21 vertical levels. Both the BFN

algorithm and the IEnKS are tested in a configuration with 5 pseudo-observations. In this

configuration, we have highlighted that the revised version of the BFN algorithm cannot

be applied for this wind resource assessment application. Indeed, the generalisation of the

methodology – which has been developed for the SWE – to the Navier-Stokes equations is

based on a linearity assumption which is not satisfied in presence of complex geometrical

features (such as steep topography). Further investigation could be performed to better

quantify the limits of the BFN algorithm.

On the other hand, the IEnKS has been proved to be easily adapted to this wind

resource application. With an ensemble of 3 members it allows to divide by more than 7

the mean absolute error of the BC which leads to a large reduction of the global error

of the simulated wind field. Moreover, the IEnKS has the great advantage to provide

an uncertainty estimate for the analysis, thanks to the ensemble. We thus show that

the IEnKS helps to increase the accuracy of the BC and consequently of the wind field

simulated over the whole domain. 3D-Var is also used on this 2D case to provide a

comparative basis. In fact, the IEnKS and 3D-Var theoretically minimize the same cost

function, albeit for 3D-Var it is minimised in the control space whereas for the IEnKS the

cost function is defined and minimised in the ensemble space. Both methods give very

similar results, though the IEnKS is more efficient in this case, from a computational-cost

perspective.

Twin experiments are also performed with a complete 3D domain of 4km×4km×2030m.

In this case the control vector corresponds to the BC of wind velocity (both u and v

components) defined on the four sides of the domain. The control vector is here of size

840 and we consider 30 synthetic observations extracted from 3 virtual masts in the

domain. With a quite small ensemble (5 members), the IEnKS helps to improve the

estimate of BC and thus to reduce the global error inside the domain, by decreasing both
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the absolute error and the uncertainty in the estimate.

Finally, observations from a field campaign are used in a cross-validation process:

the observations from 2 masts are assimilated and the results are compared to the

observations provided by a third mast. We have shown that the use of the IEnKS with 5

members helps to reduce the error in most cases. The mean error is then largely reduced

which triggers a better estimation of the wind potential of this site. The results have

shown that in cases with a small background error (i.e. when the CFD simulations with

BC provided by mesoscale outputs are already close to observations), it might not be

beneficial to perform DA. Consequently a good practice could be to use DA only in

situations for which the background error is quite large (here larger than 1.5m/s).

In the three cases studied here, the IEnKS adapted to BC is proved to enhance the

accuracy of local scale atmospheric simulations in operationally affordable conditions.

In fact, thanks to the IEnKS, the absolute error of the wind field is reduced as well

as the uncertainty associated with this error. As a consequence, the wind potential

is significantly better estimated thanks to the use of the adapted IEnKS. In the wind

resource assessment study presented here, the meteorological simulations are clustered in

50 classes, which is smaller than the usual practice at EDF R&D of using approximately

200 classes. It would be interesting to assess the sensitivity of the wind potential to

the number of classes. Moreover, since using the IEnKS increases the number of model

integrations by approximately 20, an interesting perspective would be to compare the

results obtained with 1000 classes without DA and with 50 classes and DA.
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6.1 Introduction

Atmospheric dispersion modelling is used for numerous applications: air quality assess-

ment, exposure indicators, support to air quality planning and directives, or in case of

nuclear emergency such as accident or malicious activities (e.g., Hanna et al., 2006; Kumar

et al., 2011; Benamrane et al., 2013). Many of these applications occur at local scale in

urban areas or around industrial sites where the presence of buildings makes the domain

geometry more complex. Since the evolution of pollutants in the atmosphere is mainly

driven by wind, dispersion modelling requires the knowledge of the meteorology over

small domains. As mentioned in Section 1.4, the micrometeorological inputs necessary to

study the aforementioned applications are often obtained as outputs of computational

fluid dynamics (CFD) models (e.g., Tominaga and Stathopoulos, 2013). Such models

generally offer the possibility to transport passive scalars and thus represent the evolution

of non-reactive tracers concentration. In order to represent reactive pollutants, the CFD

models can be coupled to chemistry or aerosol models (Albriet et al., 2010).

The CFD models used for dispersion modelling are very sensitive to input parameters,

related to the pollutant source term (location and mass rate) and to the meteorology. In

particular, we have discussed in Section 1.2.5 that the boundary conditions (BC) have a

substantial impact on the accuracy of the local-scale atmospheric simulations (Srebric

et al., 2008).

Observations are widely used for dispersion studies but mainly for validation purposes.

Up to present, the exploitation of observations through data assimilation (DA) has mostly

been performed to solve inverse problems for source identification (e.g., Krysta et al.,

2006; Davoine and Bocquet, 2007; Winiarek et al., 2012). In such studies, the assimilated

observations are pollutant concentration measurements and the typical spatial scales are

much larger than those considered in micrometeorology. So far, the wind and turbulence

observations available within built environments have rarely been included to improve

micrometeorological simulations. While these observations might be perturbed by the

geometrical features of the domain, they still contain useful information which could be

taken into account through DA. We have seen in Chapter 5 that the iterative ensemble

Kalman smoother (IEnKS) can be used to assimilate wind observations available within

prospected sites for the installation of wind farms and thus improve the accuracy of the

wind resource assessment.

In the present chapter, we evaluate the ability of the IEnKS to assimilate in situ wind

and concentration observations, perturbed by obstacles, to correct the meteorological
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BC prescribed for atmospheric simulations with a CFD model. To achieve this goal, we

use the measurements provided by the Mock Urban Setting Test (MUST) campaign,

described in Section 6.2. In Section 6.3 we present the experimental set-up and the

methods used to apply the IEnKS to this study. Section 6.4 summarises the results

obtained with the IEnKS by assimilating first wind observations, and then concentration

observations. Eventually, the conclusions of the present study are given in Section 6.5.

6.2 The MUST campaign

The MUST campaign was conducted in September 2001 at the U.S. Army Dugway

Proving Ground (DPG) Horizontal Grid test site (Biltoft, 2001; Yee and Biltoft, 2004).

The aim of this field campaign was to provide well-documented cases of urban dispersion

by acquiring both meteorological and dispersion observations. These datasets have been

widely used for urban model development and validation (e.g. Milliez and Carissimo,

2007, 2008; Winiarek, 2014; Bahlali, 2018).

The site is located in the Utah desert where containers form a regular array over a

200m square area. The containers are aligned on a 12 by 10 grid and each container is

12.2m long, 2.42m wide, and 2.54m high. Several trials have been performed and each

of them consists in a 15min release of a tracer gas (propylene) from a fixed position,

either within or immediately outside the container array, at a height between 0.15m

and 5.2m. Biltoft (2001) and Yee and Biltoft (2004) give a comprehensive description

of the experimental set-up and analyses of the results. Numerous instruments have

been provided by several organisations, such as the Army Research Laboratory (ARL),

Arizona State University (ASU), the DPG, the Defence Science Technology Laboratory,

Los Alamos National Laboratory (LANL), and the University of Utah (UU).

6.2.1 Meteorological measurements

Many meteorological instruments have been installed within and outside the MUST array

during the release experiments. Figure 6.1 is a view from above of the MUST domain

with the container array and the meteorological instruments within the domain.

Within the domain, numerous 2D and 3D sonics have been set up and provide

observations of mean wind speed and turbulence at a frequency of 10Hz. Information

about these instruments are given in the legend of Figure 6.1 and more details are available

in Biltoft (2001). As in Milliez (2006), for 2D sonics we estimate the 3D turbulence

kinetic energy (TKE) from its 2D value using the similarity theory as follows:

k3D = 1.3k2D. (6.1)

For each 15-min trial, Yee and Biltoft (2004) have extracted one 200-s quasi-steady

period during which meteorological variables as well as gas plume are nearly constant.

In the present study, we aim at representing the wind and concentration fields during
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Code Saturne domain
6-m tower (A, B, C, D):
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2D sonics (4, 8, 16m)
32-m tower (T):
3D sonics (4, 8, 16, 32m)
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3D sonics (LANL3D):
3.80m, 2.37m, 1.70m
2D sonics (LANL2D): 2m
5m-tower (UU): 3D sonics
(1, 1.8, 2.6, 3.7m)
3D sonics (ASU): 1.6m

Figure 6.1: Representation of the MUST array within the domain used for Code Saturne

simulations. The location of all meteorological instruments is also shown.

two of these periods as stationary simulations. The observations assimilated correspond

to the mean values, averaged over the 200-s period (i.e. 2000 sonic observations).

Other instruments are permanently installed in the vicinity of the MUST array

and provide supplementary information. In the present study we use observations

provided by a PWIDS and a SAMS, located less than 2km upwind of the containers

array. A SODAR system, located 400m north-east of the domain, also provides wind

and turbulence measurements, especially in upper layers of the atmosphere (see Fig. 6.2).

These instruments provide observation of the two components of the horizontal velocity

(u, v) at 2m above the ground for the PWIDS, at 10m for the the SAMS, and at several

levels between 15m and 200m above ground level in 5-m intervals for the SODAR.

6.2.2 Gas concentration measurements

In addition to the meteorological measurements, instruments measuring gas concentration

have been installed in the domain. These instruments are of two types:

• ultraviolet ion collector (UVIC) installed on the 6-meter towers, near the 32-meter

tower and at the center of the array. These instruments were calibrated over a

range of 0.01 to 1000ppmv.

• digital photo-ionization detectors (digiPID) located on the 32-meter tower and
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6.2. The MUST campaign

Figure 6.2: Map of the site around MUST array. The light orange pins represent the

corners of the container array. The location of the surface atmospheric measurement

system (SAMS) #8 (red), the Portable Weather Information and Display System (PWIDS)

M6 (blue), and the Sound Detection And Ranging (SODAR) (green) are also shown.
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Figure 6.3: Representation of the MUST array with the location of the instruments

measuring gas concentration.

along 4 east-west lines inside the containers array with a calibrated operating range

of 0.04 to 1000ppmv.

Figure 6.3 shows the location of the 48 digiPID and 26 UVIC. The observations of gas

concentration are available during all the 15-min trials with a frequency of 50Hz such

that the assimilated values are averaged over 10 000 observations (200s).

6.3 Methods

6.3.1 Experimental set-up

The meteorological field in the region containing the MUST array is simulated using

the atmospheric module of Code Saturne (see Section 1.2.4). The domain used for the

simulations is of size 348m× 348m horizontally and extends up to 50m in the vertical.

The domain is centred on the container array and includes a band of flat terrain outside

the array (77m on eastern and western sides and 87m on northern and southern sides).

The horizontal resolution is somehow coarse outside the MUST array (∆x = ∆y = 4m)

and refined inside the containers array up to 0.5m. The vertical resolution decreases with

altitude: from ∆z = 0.25m near the ground to ∆z = 7.8m for the uppermost layer (see

Fig. 6.4).

The turbulence is modelled using the k − ε model where k is the TKE and ε its

dissipation rate.

The BC correspond to one vertical profile, located in the middle of the southern

border or the domain. The profile is defined by 22 vertical levels for the 3 variables: u, v,
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Figure 6.4: Mesh used for the Code Saturne simulations. The points represent the cell

edges. (left) Slice at constant h = 1.5m and (right) slice a constant x = 115.5m.

and k. At the first time step of the model, the field of ε is computed in order to ensure

the equilibrium between turbulence production and dissipation. The values calculated

at the boundaries of the domain are kept as BC of ε for the next steps. The model is

integrated for 5000 iterations with a fixed time step of 0.1s, which is enough to reach a

steady state (Bahlali, 2018).

We consider two different trials of the MUST campaign:

• Neutral case which has been performed the 25th of September 2011 at 18:29

(2681829). The meteorological conditions at this time corresponded to neutral

stability conditions with an estimated Monin-Obukhov (M-O) length of L = 28000

(Yee and Biltoft, 2004). The pollutant source is located between two containers in

the bottom-left corner, at h = 1.8m above the ground.

• Stable case which has been performed the 26th of September 2011 at 21:57 (2692157).

The conditions were stable with an estimated M-O length of L = 130 (Yee and

Biltoft, 2004). The tracer gas is released from the roof of the first container in the

bottom-right corner, at h = 2.6m above the ground.

6.3.2 Anamorphosis for the turbulence kinetic energy

In the DA experiment, the control vector corresponds to the BC. While the two compo-

nents of the horizontal velocity, u and v, can be considered as Gaussian variables, it is

certainly not a valid hypothesis for the TKE. Indeed, the TKE is always positive and

analysing observations of k during all the trials shows that the probability density function

(pdf) of the TKE approximately follows an exponential distribution (see Fig. 6.6b).
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The cumulative distribution function (cdf) of the exponential distribution is

F (k) = 1− exp(−λk), (6.2)

where λ is the rate parameter. Since the IEnKS assumes the Gaussianity of the control

variables, we must use anamorphosis for the TKE.

The principle of anamorphosis is to find a bijection between the cdf of a non-Gaussian

variable (here k) and a Gaussian variable which is included in the control vector in place

of the non-Gaussian variable (Cohn, 1997; Bertino et al., 2003). We thus define a new,

non-physical variable γ following the normal law n(0, σγ) and its cdf is G(γ) such that

k = F−1 ◦G(γ) (6.3)

γ = G−1 ◦ F (k). (6.4)

The choice of the variance for γ (σγ) does not affect the DA experiment in general. Here,

as we apply an ensemble-based DA technique, the construction of the ensemble, and

especially its spread, depends on this variance. Consequently we chose it carefully and

more details will be given in the next section.

The control vector considered in the present study includes the 22 values of u, v, and

γ and its total size is l = 66. The dynamical model M includes one more step to convert

the values of γ into TKE values, then prescribed as BC for k.

6.3.3 Estimation of the background error variances and correlations

In order to construct the background ensemble necessary for the DA experiment with

the IEnKS, we first estimate the background error covariance matrix, B. The ensemble

anomalies are then determined as the leading modes of this matrix. The coefficients of

the background error covariance matrix are decomposed as the product of correlation

coefficients Ci,j and standard deviation of the individual background errors σi:

Bi,j = Ci,jσiσj . (6.5)

Correlation coefficients

In order to determine these Ci,j and σi coefficients, we have analysed the measurements

available for all the trials within the domain and above the containers. Indeed, as the

containers array is quite small, we can assume that the meteorological variables above the

urban canopy are homogeneous in the 348m× 348m region simulated with Code Saturne.

Consequently, we assume that the values of wind and turbulence measured above the

containers within the domain are representative of the values at the border of the domain

at the same vertical level.

We thus study the observations provided by:

1. the 6-m towers A, B, C, and D at 6m,
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Figure 6.5: Vertical correlations estimated from the horizontal anomalies of u, v, and k

for the South (S) and North (N) 16-m masts and the 32-m tower (T). Assuming that the

climatological correlations slightly overestimate the background error correlations, we set

the correlation length of the Balgovind function to R = 3m.

2. the 16-m towers North and South at 4m, 8m, and 16m,

3. the 32-m tower T at 4m, 8m, 16m, and 32m.

In order to estimate vertical and horizontal correlations that are representative of the

background error, we have analysed the horizontal anomalies of velocity (Au and Av).

The horizontal anomalies are defined as the departure of each observation from the spatial

mean computed at the same vertical level:

Axj = xji −
1

N j

Nj∑

i=1

xji , (6.6)

where x can be u or v, the superscript ’j’ refers to a given height above the ground (4m,

6m, 8m, or 16m), xji is the measurement of the i-th instrument at the j-th height, and N j

is the number of available observations at this height. The values of standard deviation

(STD) observed for these horizontal anomalies of velocity and k are relatively small, thus

confirming the assumption that the meteorological variables are somehow homogeneous

over the small domain considered here. It is important to recall that all the trials have

been selected with south-east to south-west wind. Consequently the asymmetric results

obtained for the u- and v-components of velocity can be explained by this bias in the

selection of the meteorological conditions for which the releases have been performed.

Figure 6.5 shows the vertical correlations evaluated for u, v, and k horizontal anomalies

from the observations provided by the towers N, S, and T at 4m, 8m, and 16m. The
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the observations of u and v above the canopy,

during all the trials. The dashed lines corre-

spond to the standard deviation calculated for
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Figure 6.6: Statistical analyses of the climatology used to determine the background

error variances.

horizontal anomalies of u and v show a light correlation in the vertical. We chose to

describe the vertical correlations with a Balgovind function (Balgovind et al., 1983) which

is usually applied to represent the spatial structure of error statistics (Winiarek, 2014).

The correlation coefficient Cij between two vertical levels i and j of the same profile is

hence assumed to be

Cij =

(
1 +

dij
R

)
exp

(
−dij
R

)
, (6.7)

where dij is the distance between the two levels and R is the correlation length to be

determined.

In the light of the correlations observed among the horizontal anomalies, and assuming

that the climatological correlations underestimate the background error correlations,

we have chosen a correlation length R = 3m for the three variables u, v, and k. The

corresponding Balgovind function is shown in Figure 6.5. We further assume that the

different variables (u, v, and k) are not correlated. Using this hypothesis and the

Balgovind correlation function (Eq. 6.7) with the correlation length given above, we

can construct the background error correlation matrix. This matrix must be multiplied

by the variances associated with each variable to get the background error covariance

matrix.
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Background error variances

The background error variances represent the uncertainty of the first estimate. Conse-

quently, these values may depend on the sources of information used to estimate the

background BC. In the present study, we try to recreate operational conditions where the

first estimate of the BC is quite poor whereas the observations are very accurate. However,

the MUST case is very specific and does not correspond to operational conditions. Indeed,

the trials have been performed in particular meteorological conditions – not necessarily

representative of the climatology in this region. Moreover, the container array is installed

in the middle of a desert area, such that the meteorological conditions outside the domain

are not perturbed by any geometrical features and remain spatially homogeneous. As a

result, we assume that the climatological variations observed during the several trials

for the velocity components and turbulence slightly underestimate the background error

variances. Using the climatological analyses (see Fig. 6.6a) and expert judgement, we

have set the background error variance for u and v to σb
uv = 5m/s. For the TKE, we

have estimated the rate parameter to be λk = 1.25s2/m2 (see Fig. 6.6b). We set the

variance of the anamorphosis variable γ to σb
γ = 5 to give as much weight to the velocity

components as TKE in the DA experiment.

Eventually, we obtain an estimate of the background error covariance matrix used to

define the background ensemble. The background ensemble corresponds to the N − 1

leading modes of the background error covariance matrix – i.e., eigenvectors associated

with the largest eigenvalues– with a N -th member necessary to recentre the ensemble.

The ensemble of N members thus formed is rotated using a random rotation matrix to

avoid having the N -th member too different from the other ones.

6.3.4 Observation error covariance matrix

The observation error covariance matrix R is diagonal, and the coefficients on the diagonal

are equal to

(σo)2Nxy (6.8)

where (σo)2 is the variance associated with the observation error and Nxy is the number

of observations available – and assimilated – at the same horizontal position but different

heights. This scaling factor aims at giving similar weight in the cost function to the

different areas of the domain and not favour regions that are more observed. Since the

extra-diagonal terms of R are assumed null – i.e., the observations are not correlated

–, with this form for R (Eq. 6.8) the part of the cost function associated with the
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observations reads

J o =
1

2
‖y−F(z)‖2R−1 (6.9a)

=

p∑

i=1

(R−1)ii(dyi)
2 (6.9b)

=
∑

j

∑Nxj,yj
i=1 (dyi)

2

(σo)2Nxj ,yj

, (6.9c)

where dy is the innovation term and the sum over j represents the different horizontal

positions where observations are available. Consequently, the cost function associated

with the observations is a sum of innovations, averaged for each horizontal position over

the different measurements there.

For wind observations, the STD of the observation error is set to σo
uv = 0.2m/s and

for concentration observations (after applying the logarithmic transformation defined by

Equation (6.17)) we set σo
c = 0.05.

6.3.5 Estimation of the background boundary conditions

Estimation from PWIDS, SAMS, and SODAR observations

The first estimate of the profile of BC for the wind speed (U) is assumed to follow the

semi-logarithmic profile given by the M-O similarity theory (see Section 1.1.3) (Stull,

1988):

U(z) =
UL
κ

(
log

(
z + z0

z0

)
+ 5

z

L

)
, (6.10)

where κ = 0.4 is the vón Karman constant, z0 is the roughness length which is set to

0.04m in the MUST domain (Yee and Biltoft, 2004), and L is the M-O length. The local

stress UL is estimated from the boundary layer height hABL and the surface stress u∗:

UL = u∗
(

1− z

hABL

)
. (6.11)

In Garratt (1994), the height of the boundary layer is estimated as follows: in neutral

conditions

hABL = 0.2u∗/|f |, (6.12)

and in stable conditions

hABL = 0.4
√
u∗L/|f |, (6.13)

where f is the Coriolis frequency, equal to f = 9.4 · 10−5rad/s here.

We also assume that the profile of TKE is consistent with the M-O similitude theory,

as given in Launder and Spalding (1974):

k =
U2
L√
Cµ

, (6.14)

ε =
U3
L

κ

(
1

z
+

4

L

)
. (6.15)
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(b) Vertical profile of perturbation,

added to the profile of wind direction

to construct the background BC.

Figure 6.7: Construction of the background BC: (a) the wind speed profile is given by

the semi-logarithmic law of M-O similitude theory. The constant profile of wind direction

(obtained from the average over the observed values) is perturbed by (b) a function which

decreases with altitude.

This scheme has been proved to be well suited for the MUST case (Milliez, 2006).

We first find the value of the surface stress u∗ that best fits the observations of

wind speed (see Table 6.1 for more details about the observations used to determine

u∗). The wind direction is assumed constant over the vertical profile, and the wind

direction value is obtained as an average over the available observations. For the Neutral

case, we find u∗ = 0.57m/s, which corresponds to an atmospheric boundary layer (ABL)

high of hABL = 1.21km, and the mean wind direction is equal to −42.2◦ (with a STD

among the observations of 2.6◦). For the Stable case, the estimated surface stress is

u∗ = 0.40m/s, hABL = 298m, the wind direction is estimated to 45.4◦ (with a STD among

the observations of 4◦). Figure 6.7aa shows in dashed, red the profiles of wind speed and

direction estimated from the observations (red dots) in the Neutral case.

Perturbation of the boundary conditions

As previously mentioned, the MUST case is very specific since the area surrounding

the container array is a flat desert and in absence of obstacle the wind field is spatially

homogeneous. As a matter of fact, the vertical profile of wind and turbulence observed
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by the PWIDS, SAMS, and SODAR – even though these instruments are quite far from

the container array – is a very good estimate of the BC. In fact, when the prescribed BC

are estimated as explained above, the mean error on the wind field inside the domain –

computed as the mean absolute error, compared to the available wind observations – is

smaller than 1.1m/s. This error is somehow smaller than what is usually encountered in

operational studies.

In order to make this study representative of an operational application, we empirically

perturb the BC according to the function

δX = δX0
α

(h/hL)4 + α
, (6.16)

where δX is the perturbation for the variable X, δX0 is the maximum perturbation

near the ground, h is the elevation, hL is the level at which the perturbation is equal

to pLδX0, and α = pL
1−pL (Fig. 6.7b). This function perturbs more the profile near the

ground than in the upper layers, which is representative of a typical background error.

In operational studies, the background is generally estimated from mesoscale simulations

or from observations nearby the domain under scrutiny.

Mesoscale models generally provide poorer estimations of the meteorological fields

near the surface, where the effect of topography – inaccurately represented in such

models – is greater. As a result, if mesoscale results are used to estimate the background,

it is likely that the background error is larger near the ground than in upper layers.

Similarly, the variability in time and space of the meteorological variables is greater in

the lower levels than in the uppermost ones. Consequently, the observations provided by

instruments a few hundred of meters away from the domain of interest, can generally be

considered as a good estimation of the BC above a few tens of meters from the ground

– even for cases where geometrical features perturb the wind field outside the studied

domain. However, in the lower levels, the background provided by such observations is

very likely to be wrong.

In order to be consistent with typical background errors, the perturbation that we

apply is larger near the ground and vanishes to zero with altitude (see Eq. 6.16). In the

present study, we perturb only the wind direction with different amplitudes and with

pL = 0.01 and hL = 50m (see Fig. 6.7a).

6.3.6 Assimilating observations of concentration

Values of gas concentration are always positive, such that the distribution of the observa-

tion errors cannot be considered as Gaussian. This issue can be overcome by assuming

that the observation error for concentration observations follow a log-normal distribution,

like in Liu et al. (2017). This study has also highlighted that the logarithmic function

might give too much weight to small concentration values. That is why they proposed to

add a threshold – constant – value ct in the logarithmic function. The innovation vector
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thus becomes

dy = ln (ct + y)− ln (ct +H ◦M(z)) . (6.17)

In the DA experiments involving concentration observations, we have set ct = 0.05ppmv.

6.3.7 Reference simulations

The MUST campaign has already been used in previous studies for validation purposes

(Milliez, 2006; Winiarek, 2014; Bahlali, 2018). The CFD simulations performed in these

studies corresponded to the 200s quasi-steady periods for each 15-min experiment, selected

by Yee and Biltoft (2004). The BC were estimated from the observations provided by

the sonic installed on the 16-m tower, at the southern edge of the domain (see Fig. 6.7a).

Since the tower is very close to the location where the BC are prescribed, the simulation

obtained with these BC are very close to the observations within the domain. The

departure from the wind observations assimilated is smaller than 0.5m/s in both the

Neutral and Stable cases. Consequently, these simulations are considered as references

and the results obtained with the IEnKS are compared to these references.

6.4 Results with the IEnKS and field measurements

6.4.1 Experimental set-up

As previously detailed, the domain used for the CFD simulations with Code Saturne is

of size 348m× 348m× 50m with unstructured mesh. The control vector considered in

the present chapter corresponds to a vertical profile of BC located in the middle of the

southern boundary of the domain. The profile is defined by 22 vertical levels, for three

variables: u, v, and γ (which is the anamorphosis variable representing k). Consequently

the control vector is of size l = 66.

The Neutral and Stable cases have been treated slightly differently and the differences

of parametrisation are summarised in Table 6.1.

For both Neutral and Stable cases, we show the results of two DA experiments aiming

at correcting the BC related to u, v, and k.

1. The first experiment consists in assimilating 14 observations of the two components

of the horizontal velocity (u, v). The analysis obtained in this first experiment is

referred to as ’Analysis W’.

2. In the second experiment, the IEnKS is applied to assimilate 13 observations of

tracer gas concentration. The analysis of this second experiment is named ’Analysis

C’.

The selected measurements for these two experiments, in the Neutral and Stable cases,

are detailed in Table 6.1.
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Neutral Stable

Observations for
background
construction

PWIDS (2m),

SAMS (10m), and

SODAR (45m)

SAMS (10m) and

SODAR (20 and 45m)

WD perturbation δWD0 = −10◦ δWD0 = −10◦

u, v assimilated

obs. (1st exp.)

Tower A at (2, 6m),

Sonic V3 (1.15m),

5-m tower (1, 1.8, 2.6, 3.7m)

Tower C (2, 6m),

Sonic V3 (1.15m),

5-m tower (1, 1.8, 2.6, 3.7m)

c assimilated obs.

(2nd exp.)

Towers C (1, 2, 3m)

and D (1, 2, 3m),

32-m tower (1, 2, 4, 6, 8, 10m),

DPID #26 (1.6m)

Towers A (1, 2, 3m)

and B (1, 2, 3m),

32-m tower (1, 2, 4, 6, 8, 10m),

DPID #23 (1.6m)

Table 6.1: The background BC are estimated by fitting a semi-logarithmic velocity

profile to the observations provided by the instruments indicated in the first row (see

Section 6.3.5). The vertical profile of wind direction (WD) is perturbed following equation

(6.16) with a perturbation near the ground given by the second row (see Fig. 6.7b). The

wind observations assimilated in the first experiments are given in the third row and the

second experiments assimilate concentration observations provided by the instruments

listed in the last row.

As mentioned in Section 6.3.3, the background error covariance matrix has diagonal

values equal to (σb
uv)

2 = 25m2/s2 and the observation error covariance matrix is diagonal

with σo
uv = 0.2m/s in the first experiments and σo

c = 0.05 in the second ones (see

Section 6.3.4). These choices lead to give more weight to the observations than the

background.

For all the experiments, the ensemble considered is composed of 5 members and the

convergence criterion is set to eJ = 0.01, which means that the iterative minimisation

algorithm is stopped when the variation of the cost function between two iterations is

smaller than 1% of the initial value of the cost function. If this criterion is not reached

after jmax = 10 iterations, the algorithm is stopped anyway. The analysis is set equal to

the value of the control vector which leads to the minimum of the cost function within

the available iterations – 10 or less if the algorithm has converged before.

The cross-validation is performed with all the wind, turbulence, and concentration

observations available during the studied trials and that are not assimilated in any of the

two experiments. These observations are referred to as ’validation observations’ in what

follows. For the Neutral case, there are 24 validation observations for u, 24 for v, 29 for

k, and 40 for c. For the Stable case, there are 24 validation observations for each of u

and v, 30 for k, and 44 for c. The small difference comes from some instruments that

were not working during the Neutral trial.

We present in what follows the results obtained for the two studied cases (Neutral

and Stable) and each of the two different experiments.
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6.4.2 Neutral case

With the BC perturbed as explained above, the departure of the simulated wind field to

the available u and v observations – selected for DA (see Table 6.1) – is in average of

1.44m/s. With the parametrisation given in Table 6.1, the optimal BC are obtained after

8 IEnKS iterations in the first experiment, and 4 in the second one.

Figure 6.8a and 6.9a show, for the reference simulation, the horizontal wind fields

(arrows) and the concentration fields (colors) at two constant heights above the ground:

h = 4m and h = 1m respectively. Note that, for the sake of clarity, arrows are represented

every 10m in Figure 6.8a and every 2m in Figure 6.9a. For similar reasons, we have

represented the concentration field in logarithmic scale. The Figures 6.8b, c, and d show

the error fields at h = 4m for the background, and the analyses of the two experiments.

We can see in Figure 6.8b that the background error for velocity is mostly along the

y axis. This means that the background velocity field underestimates the v-component

of the velocity and slightly the u-component. As a result, the incidence angle is larger

than the reference simulation (a) and the wind flow is less aligned with the containers.

Moreover, the wind speed is slightly smaller in the background simulation than in the

reference one. Consequently, the gas is less diluted by the wind and the concentration in

the plume is larger, which is shown by the highest positive values of error than negative

ones in Figure 6.8b. In addition, the background pollutant plume, which is somehow

aligned with the wind direction at this height, goes more to the left than the reference

plume. Consequently, the concentrations are overestimated on the left side of the plume

and underestimated on the right side.

We can observe in Figure 6.9a that the presence of obstacles tend to slow down and

tilt the wind flow to the right – in the alignment of the container array. Figure 6.9b

shows a similar view as Figure 6.9a but for the background simulation. The larger

departure between the background incidence angle and the alignment of the containers

triggers a greater effect of the obstacles on the background wind field: the wind speed

decelerates more within the container array in the background simulation than in the

reference one. Moreover, we can observe that the deviation of the wind flow due to

the obstacles is stronger, which results in recirculation near the source. In this regions

(bottom-left corner), the gas is thus propagated toward the south in the background

simulation, whereas this effect is lighter in the reference simulation. As a consequence,

the background simulation substantially overestimates the concentrations in this region.

Figure 6.8c shows that the error for the velocity field is largely reduced as compared

to the background simulation. As a result, the pollutant plume is more similar to the

reference and the error for the concentration field is also reduced to very small values.

Figure 6.9c shows the concentration and velocity fields within the urban canopy for the

Analysis W. We can see here again that the Analysis W is in very good agreement with

the reference in terms of wind direction, wind speed, and concentration values.

Figure 6.8d and Figure 6.9d show that for the Analysis C, the picture is more mixed.
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(b) Background (departure from reference)
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(c) Analysis W (departure from reference)
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(d) Analysis C (departure from reference)
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Figure 6.8: Results for the Neutral case. (a) View from above of the concentration field

in logarithmic scale (colors) and the velocity field (arrows) at h = 4m for the reference

simulation. (b) Departure of the background simulation from the reference regarding

the concentration field (colors) and the velocity field (arrows). Similar plots are shown

for (c) Analysis W and (d) Analysis C. Note that for the sake of visibility, an arrow is

plotted every 10m only.

141



Chapter 6 Improving dispersion modelling in built environments with CFD
using the iterative ensemble Kalman smoother

(a) Reference

5m/s
−190 −180 −170 −160

-y [m]

40

45

50

55

60

65

70

75

x
[m

]

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5

Co
nc

en
tr

at
io

n
[lo

g(
pp

m
v)

]
(b) Background

5m/s
−190 −180 −170 −160

-y [m]

40

45

50

55

60

65

70

75

x
[m

]

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5

Co
nc

en
tr

at
io

n
[lo

g(
pp

m
v)

]

142



6.4. Results with the IEnKS and field measurements

(c) Analysis W
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(d) Analysis C
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Figure 6.9: Results for the Neutral case near the pollutant source and at h = 1m. The

concentration (logarithmic scale, colors) and velocity (arrows) fields are shown for (a)

the reference simulation, (b) the background, (c) Analysis W, and (d) Analysis C. The

horizontal velocity vectors are represented every 2m only.
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Figure 6.10: Simulated versus observed values for the reference simulation (first row),

the background (second row), Analysis W (third row), and Analysis C (fourth row) for

the Neutral case. The scatter plots are shown for the two components of the horizontal

velocity (u, v), the TKE (k), and the concentration of the tracer gas (c). The Pearson

coefficient, the mean absolute error (MAE), and the root mean square error (RMSE)

are also calculated for each variable and simulation. All the available observations are

plotted and taken into account in the statistics calculations.
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Figure 6.11: MAE and RMSE calculated over the validation observations of u, v, k,

and c within the urban canopy (h < 2.5m) for the reference, background, and analyses

W and C in the Neutral case. The mean values are calculated as an average over

the errors, weighted by the inverse of the number of observations available at the same

location. Errorbars represent twice the standard deviation of the background and analysis

ensembles.
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Upstream, the error of velocity, shown in Figure 6.8d, is somehow aligned with the mean

flow. This means that the wind direction has been rectified in the BC. However, the wind

speed is still underestimated. Downstream, the downward arrows indicate that the error

for the v-component of velocity has been reduced but the error for u has increased. As a

result, the incidence angle of the wind flow is now too small and the pollutant plume far

from the source goes more to the right than the reference simulation. The remaining

errors for the wind speed and direction, or alternatively for u and v, explain the light

overestimation of the concentrations on the right side of the plume. Still, the errors for

concentrations are largely reduced between the background and Analysis C.

Figure 6.9d shows that near the pollutant source, the wind speed is still underestimated

though the effect of buildings is here less pronounced – due to the better alignment of the

wind flow with the containers. As a result of the faster wind speed, the concentrations

are slightly overestimated but the shape of the pollutant plume is very similar to the

reference within the canopy. In particular, the concentrations decrease with distance

from the source at a similar rate and, in the vicinity of the source, the recirculation has

vanished.

In order to further evaluate the benefit of the DA process, Figure 6.10 shows the

simulated versus observed values for the two wind components, the TKE, and tracer

concentration. These scatter plots are presented for the reference simulation, the back-

ground, and analyses W and C. All the available observations – even those assimilated –

are represented. Some error statistics – MAE, RMSE, and Pearson coefficient – are also

shown.

The error statistics shown in Figure 6.10 are calculated over all the available ob-

servations, taking into account all the observations – even the assimilated ones – and

without any specific averaging. However, some masts provide several observations at the

same horizontal location but at different vertical levels. In order to avoid giving more

weight to these well-observed locations, the errors are multiplied by a coefficient equal to

the inverse of the number of available observations (for the same variable) at the same

horizontal position. With this averaging convention, and considering only the validation

observations, we compute the MAE and the RMSE for all the ensemble members, the

background, and the analyses. Figure 6.11 shows the MAE and the RMSE, for the

background and analyses W and C, and the STD calculated over the background and

analysis ensembles (errorbars).

From Figures 6.10 and 6.11, we can confirm the conclusions drawn from the previous

analysis of the velocity and concentration fields. In the first experiment, the assimilation

of wind observations allows to largely reduce the error for u and v to levels very close

to that obtained with the reference simulation. As a result of a better estimation of

the wind field, there is a better agreement between observed and simulated values of

concentration and the error for c is significantly reduced.

On the other hand, assimilating observations of concentration do not necessarily
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improve the knowledge of the velocity field. In the present example, the error for v is

reduced whereas the error for u – which was quite small in the background simulation – is

increased. We can see again in Figure 6.10 that the velocities simulated with Analysis C

are underestimated. As mentioned above, even though errors subsist in the velocity field,

the dispersion is well represented. Consequently, the error of concentration estimations is

largely reduced.

In all the simulations – background and both analyses – the turbulence is underesti-

mated though the IEnKS helps slightly reduce this error. The small impact of the IEnKS

on turbulence BC (not shown) and consequently on the field of simulated TKE suggests

that in the present case the inflow turbulence does not impact much the gas dispersion.

In fact, most of the turbulence is formed due to the presence of obstacles.

Figure 6.11 also shows the STD of the ensembles, which provide a measure of

uncertainty for the simulated values of u, v, k, and c. We can see that assimilating

observations of wind, besides decreasing the error, also reduces the uncertainty of u,

v, and c. Assimilating observation of concentrations helps to substantially reduce the

uncertainty of the simulated concentrations, however the uncertainties of u and v remain

quite large.

Comparing the results obtained for the two experiments, one can see that assimilating

observations of wind velocity allows to better reduce the error and uncertainty of wind

values than assimilating observations of concentration. Since dispersion is mainly driven

by the wind flow, the error and uncertainty of concentrations are also significantly reduced

through the DA process. Assimilating observations of wind allows to better recover

the full state of the system and it is thus somehow more efficient than assimilating

observations of concentration.

6.4.3 Stable case

For the stable case, the BC first estimated from the observations provided by the SAMS

and the SODAR give particularly good results. The mean departure of the simulated

wind field with these BC, compared to the available observations, is equal to 0.6m/s. In

fact, as the meteorological conditions are stable, we can guess that the wind profile varies

very little spatially and the conditions observed a few hundreds of meters away from the

Code Saturne domain give a very good estimation of the BC.

Even with the background BC perturbed as explained in Section 6.3.5, the MAE to

the available observations, averaged over u and v observations is of 0.73m/s only in the

first experiment, and in the second experiment, the departure from the concentration

observations is initially equal to 1.3ppmv.

Figures 6.12a and 6.13a show the velocity and concentration fields simulated with

the reference BC. Figure 6.12b shows the departure from this reference simulation above

the containers (h = 4m). The field of velocity error is oriented toward the left, which

indicates that the background error is here again mainly along the v-component. In
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Figure 6.12: Same as Figure 6.8 but for the Stable case.
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Figure 6.13: Same as Figure 6.9 but for the Stable case.
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Figure 6.14: Same as Figure 6.10 but for the Stable case.
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Figure 6.15: Same as Figure 6.11 but for the Stable case.

addition, the wind speed is globally overestimated. We can see that the erroneous wind

speed and direction in the background simulation triggers a quite different behaviour

of the pollutant plume. Here it is the contrary compared to the Neutral case: since the

wind flow is more aligned with the containers in the background simulation and the wind

flow is too fast, the velocity field is less altered by the presence of obstacles and the

gas is more dispersed. This leads to a global underestimation of the concentrations in

the background simulation. Moreover, due to the error of wind direction, the pollutant

plume far from the source goes more to the left than the reference plume and tends to

spread more. This explains that the concentrations are overestimated on the left of the

plume and underestimated on the right.

We can verify in Figure 6.13b that the wind speed is less reduced in the container

array and that the wind flow is nearly aligned with the streets. As a result, the gas is

transported more to the left and substantial underestimation can be observed in the

top-left corner.

We perform the DA experiments starting from the background described above. The

optimal value of the BC is obtained after 5 IEnKS iterations in the first experiment, and

8 in the second one.

Similar to the results obtained in the Neutral case, the velocity field of Analysis W is

more similar to the reference than the background and the velocity errors are significantly

reduced (see Fig. 6.12c). There remains small errors of wind speed and direction such

that the deviation of the plume to the left subsists. The errors for concentrations are

still much smaller than for the background.
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Figure 6.13c shows that near the source the same conclusions hold: the wind field is

similar to the reference and the pollutant plume is more similar than the background,

though still slightly different. In particular, the plume is less spread toward the right such

that the concentration field in the bottom-left part of the figure is very similar to the

reference simulation, though in the top-left corner the concentrations are underestimated.

Figure 6.12d shows that the velocity errors for Analysis C are aligned with the

wind flow, which means that the wind direction has been corrected. A a result, the

pollutant plume is dispersed in the correct direction. However, the wind speed is still

overestimated such that the gas is more washed by the wind and the concentrations are

globally underestimated. The behaviour near the source is also better captured in terms

of region affected by the pollution, however the concentrations are somehow smaller than

the reference (see Fig. 6.13d).

Figures 6.14 and 6.15 show a comparison of the results obtained in the Stable case for

both experiments with the available observations. The results obtained in this Stable case

are very similar to those obtained with the Neutral case. The u-component of velocity

is already very well represented in the background, such that the IEnKS only allows to

reduce the uncertainty when wind observations are assimilated. For the Stable case, as

for the Neutral one, Analysis C leads to slightly worse estimations of u. Note that the

analysis errors for u and v are then of the same order of magnitude (approximately 1m/s

which is consistent with the fact that similar error statistics are considered for u and v.

Most of the background error comes from the v-component of velocity. This error

is corrected very efficiently in the first experiment but not in the second one. In this

case, the TKE is slightly overestimated in the background and the assimilation of wind

observations allows to somehow reduce this error but not the assimilation of concentration

observations.

Regarding the concentration, both Analysis W and C show errors that are significantly

reduced. However, Analysis C gives better results in terms of agreement between observed

and simulated values (see Fig. 6.14). We can observe in Figure 6.14 that low values

of concentration are underestimated in the first analysis. This is consistent with the

behaviour of the pollutant plume near the source presented above.

6.4.4 Additional tests

In addition to the results presented in the two previous sections, we have tested the

IEnKS with other parametrisations.

In particular, we have evaluated the performances of the IEnKS with different

background errors. We have performed the DA experiment with the unperturbed

background – estimated from the PWIDS, SAMS, and SODAR observations – with the

background perturbed with ∆WD = −10◦ and with ∆WS = 10m/s (not shown). In all

the cases, assimilating observations of the velocity components helps reduce the error and

the uncertainty of the simulated velocity field. Due to the important sensitivity of the
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plume dispersion to the wind field, the pollutant plume is generally also better captured.

When concentration observations are assimilated, the mean error of concentrations

significantly decreases, and especially within the urban canopy (h < 2.5m). Note that

when the perturbation of the wind direction is reversed as compared to the results shown

above (∆WD = −10◦), the background error of the v-component of velocity is smaller

than the error of u and assimilating concentration observations tends to correct the

error of u but may worsen the v estimations. Introducing correlations between these two

variables, or considering different error statistics for u and v in the background error

covariance matrix, could help correct both components of velocity when assimilating

concentration observations.

The analyses obtained in the different experiments described above depend on the

background, even though this sensitivity is somehow small. It is consistent with the

fact that the weight given to the observations is much larger than the one given to the

background. This comes from the fact that the eigenvalues of the background error

covariance matrix are of the order of magnitude of 25 whereas the eigenvalues of R are

approximately 0.025. As a matter of fact, the part of the cost function associated with

the background

J b =
1

2
wTw (6.18)

is typically 10 times smaller than the term associated with the observations

J o =
1

2
‖y−H ◦M(zb + Aw)‖2R−1 . (6.19)

The influence of the radius of vertical correlation (see Eq. 6.7) has been assessed. A

very large radius (typically 50m) is equivalent to assume that the error is a bias, nearly

constant in the vertical, which is not representative of a typical background error as

explained in Section 6.3.5. As a result, assimilating observations in the canopy helps

correct the BC near the ground and the strong correlation tend to also modify the profile

in the upper levels. This might lead to increase the error in the higher atmosphere where

the background is typically small and no additional information is available (observations

are generally available a low altitudes).

Finally, we have also evaluated the performances of the method when both wind

and concentration observations are assimilated (not shown). In order to keep a similar

number of observations in total, we have considered 15 observations: 4 of u, 4 of v,

and 7 of concentration, in the Neutral and Stable case. The analyses obtained in these

experiments are very similar to the Analyses W: both the wind and concentration fields

are better estimated. In addition, the turbulence is corrected by the IEnKS. This

confirms that assimilating wind observations is somehow more efficient than assimilating

concentration observations only. Indeed, there is a causal connection between the velocity

and concentration fields and once the velocity field is well known, the dispersion is

necessarily better represented. In the present experiment, we add more information to
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the Analysis W by assimilating concentration observations, which tend to correct the

remaining variables that influence the concentration field, i.e. turbulence.

6.5 Conclusions

In this chapter, the IEnKS has been applied to a case of dispersion modelling in an urban

area. These DA experiments differ from the application of wind resource assessment

presented in Chapter 5 by the fact that the size of the control vector is smaller, though

it includes turbulence variables. Moreover, the final outcome of interest here is the

concentration of a tracer gas, which is nonlinearly related to the wind field and turbulence.

The MUST campaign has been widely studied and has the great advantage to provide

very numerous observations of wind velocity, turbulence, and gas concentration.

Among the several trials of gas release performed during the MUST campaign, we have

here selected two trials, corresponding to stable and neutral stability conditions. For each

of these two cases, we have performed two DA experiments assimilating either wind or

concentration observations. For all the experiments, the IEnKS helps reduce the error and

the uncertainty for the assimilated variables: either wind components or concentration.

Since dispersion is largely driven by wind, when velocity observations are assimilated, the

correction of the wind field through DA also leads to a better representation of pollutant

dispersion. Consequently, the causality relation between wind and dispersion explains

that assimilating observations of wind is more efficient to improve the overall dispersion

simulation. On the other hand, assimilating concentration observations modifies the

wind field in a way such that the error on u and v separately may increase. In general,

the wind direction is rectified – it is the parameter that influences the most dispersion –

and in turns the concentration field simulated with this new wind field is closer to the

observations.

In the experiments presented in this chapter, the errors in the TKE profile are poorly

corrected by the DA process. This could be explained by the fact that no information

directly related to the turbulence is added, since we do not assimilate observations of

turbulence. Moreover, even when concentration observations are assimilated, the error

for the TKE is not much reduced. This suggests that in the cases studied here, dispersion

is less sensitive to the inflow turbulence and that the turbulence is mostly created by the

obstacles. We have seen that assimilating observations of both wind and concentration

helps correct the TKE. One can imagine that assimilating observations of turbulence

variables would be another solution to rectify the BC related to turbulence.

We have assessed the small sensitivity of the method to the background error, consis-

tent with the larger confidence placed in the observations than the background. In this

study, we assume that the observation errors are uncorrelated, however this assumption

is probably incorrect especially for u and v. Consequently, it would be interesting to

perform further sensitivity analyses regarding the observation error covariance matrix.
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Moreover, we have here always worked with ensembles of 5 members and it would be

beneficial to assess the evolution of the performances of the IEnKS with the ensemble

size.

The two experiments presented here correspond to a similar (small) number of

observations and one could consider evaluating the sensitivity of the results to the number

and the position of the observations. Such an analysis could be particularly beneficial for

experimental design.

Another perspective would be to apply the IEnKS to the remaining trials performed

during the MUST campaign. In particular, the cases 2671934, 2672033, and 2672101

correspond to very stable atmospheric conditions such that the usual formulas to estimate

the vertical profile of BC cannot be applied. As a result, these cases are known to be

particularly difficult to simulate and it would be interesting to try recovering the BC

using the IEnKS (Kumar et al., 2015).
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The present work is part of the research effort of the Centre d’Enseignement et de

Recherche en Environnement Atmosphérique (CEREA) which performs several types of

micrometeorological studies such as wind resource assessment and pollutant dispersion

in built environments. Similarly, the dispersion of radioactive or chemical materials is

of great interest for the Commissariat à l’énergie atomique et aux énergies alternatives

(CEA). These micrometeorological applications require the accurate reconstruction of

meteorological fields (wind, turbulence, etc.) over local-scale domains. When the

domains under investigation contain complex geometrical features such as buildings or

steep topography, the use of computational fluid dynamics (CFD) model is recommended.

One of the counterparts of CFD models is their sensitivity to input parameters, and

especially to the boundary conditions (BC) required at the open boundaries of the domains.

Downscaling methods – which consist in extrapolating the results of mesoscale simulations

to first estimate the BC – are generally used to force the local-scale simulations with

mesoscale meteorology. However, such methods still present some errors and limitations.

When field measurements of meteorological variables or pollutant concentrations are

available, they represent a great source of information, not sufficiently exploited so

far. Applying data assimilation (DA) methods, appropriate for micrometeorological

applications, is a solution to take the available observations into account and improve

simulations.

In the present work, we have first chosen two DA methods that seemed adapted to

an usage with a CFD model in the context of local-scale atmospheric simulations: the

back and forth nudging (BFN) algorithm and the iterative ensemble Kalman smoother

(IEnKS). These two methods have been adapted here in order to take the BC into account,

instead of the initial conditions (IC) as in their original derivations.

For the IEnKS, a very similar mathematical derivation can be applied, albeit replacing

the IC by the BC in the control vector. While utilizing an ensemble to represent the

background error statistics has several advantages – avoiding the use of the model adjoint,

estimating the uncertainty, reducing the size of the problem, etc. – it requires an adequate

definition of the initial ensemble. The initial – or background – ensemble represents the

background error covariance matrix and can be built from the leading modes of this

matrix. The problem then comes to estimate the background error covariance matrix.

In the present work, we have proposed a method to estimate it, based on the statistical
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analysis of the climatological covariances. These covariances are evaluated from long

time series of mesoscale simulations or observations.

Regarding the BFN algorithm, a new implementation has been derived to correct

the BC with the algorithm iterations. In particular, we have proposed to perform the

backward integration with the forward model and positive time steps but with the

velocity field reversed. This equivalency is exact when the model considered solves the

shallow-water equations (SWE) and we have generalized this result to the CFD models.

The performances of the two DA methods have been evaluated on three different

studies, gradually increasing complexity. At first, we have considered a simple model of

atmospheric flow, based on the solution of the one-dimensional SWE. With this model,

the atmosphere is represented by two layers of fluid: the atmospheric boundary layer

(ABL) which is governed by the SWE and the free atmosphere above. This model has

been used to develop the methods and assess their performances. In particular, the small

size of the control vector has allowed us to compare the results obtained with the IEnKS

and the BFN algorithm to the results given by 3D-Var, considered here as a reference

method. Both methods have proved to greatly reduce the error of the BC and thus of

the simulated system state. The simplicity of the model has also allowed us to perform

several sensitivity analyses and to confirm that the behaviour of the two methods was in

agreement with the theory. In particular, the 3D-Var and the IEnKS on one hand, and

the BFN algorithm on the other hand solve fundamentally different DA problems.

The IEnKS and the BFN algorithm have then been tested with the atmospheric

module of Code Saturne. The second study corresponded to a real application of wind

resource assessment for a domain with very complex topography. At first, we have

considered a 2D slice and twin experiments, then we have performed twin experiments

in 3D, and finally we have assimilated observations provided by a field campaign. The

results obtained in this last configuration are validated with other observations, not

assimilated. This second study, has highlighted some limits of the revised version of the

BFN. In fact, the proposed method to perform the backward integrations is based on a

linearity assumption that fails with Code Saturne over steep topography. On the other

hand, the IEnKS has proved to greatly enhance the precision of the BC with a small

number of members and thus a reasonable number of model integrations. In addition, this

ensemble-based method has the great advantage to provide an estimate of the uncertainty

of the BC which is reduced through the DA process. We have highlighted in this study

that using Code Saturne for wind resource assessment does not necessarily improves the

wind potential estimation if the BC provided by downscaling are incorrect. However,

after the application of the IEnKS, the error and uncertainty of the wind potential are

both greatly reduced.

Finally, we have studied a case of pollutant dispersion in a built environment, based

on the Mock Urban Setting Test (MUST) field campaign with the IEnKS. Two different

stability conditions have been considered (neutral and stable) and in both cases two
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experiments have been performed to assess the ability of the method to assimilate either

wind or concentration observations within the urban canopy. The estimation of the

assimilated variables are better improved than the variables that are not assimilated. Due

to the large influence of wind field on dispersion, when wind observations are assimilated

the wind field is better represented and consequently the concentration field is also more

accurate. As a result, assimilating wind measurements is somehow more efficient to

improve the overall simulation. Assimilating both types of observations allows to also

improve the estimation of inflow turbulence. In all the cases analysed, the IEnKS with

a few ensemble members allow to greatly enhance the exactitude – i.e., the ensemble

mean – as well as the accuracy – i.e., the ensemble spread – of the simulated pollutant

dispersion, which the the main objective of this kind of studies.

While DA methods are widely used to correct the IC of large-scale atmospheric

simulations, only a few past studies applied such methods to improve atmospheric

simulations at local scale, and even fewer examples consider CFD models. The present

work is thus original as it provides first examples of the application of DA methods for

micrometeorological applications. Besides deriving new versions of two existing methods,

adapted to the issue of BC estimation, we have shown that one of the methods (IEnKS)

is very appropriate for micrometeorological studies in quasi-operational conditions. While

the BFN algorithm has not been further studied in the present work, it does not seem

to me that this DA method is fundamentally inappropriate for micrometeorological

applications with CFD model. Indeed, several potential improvements have been put

forward such as extruding the domain with flat borders or using a linearised version of

the model for the backward integration.

The results obtained with the IEnKS are very promising and it would be very

interesting to further improve this method. At first, we have highlighted that the

initialisation of the ensemble is a crucial step that might be problematic. A perspective

to improve this initialisation step comes with the evolution of the outputs of mesoscale

models. Indeed, weather forecast agencies tend to provide ensembles of mesoscale

simulations at a resolution increasingly fine. These ensembles could provide a very good

starting point to construct the background ensemble of BC for the application of the

IEnKS.

Another perspective for future works is related to the use of localisation to improve

the performances of the IEnKS. The main idea of localisation is that most geophysical

systems exhibit correlations that vanish with distance. A key approach to implement

localisation – when the control variables correspond to the system state – is called

“domain localisation” and comes to perform local analyses, taking into account only the

observations within a given radius of influence. Such a method is hardly transposable to

the present case where the control variables correspond to the BC. In fact, the area of

influence of a given observation is less clear. A second approach of localisation, called

“covariance localisation”, consists in filtering the spurious correlations obtained in the

161



Conclusions and perspectives

analysis error covariance matrix. This method has already been implemented with the

IEnKS (Bocquet, 2016) but in studies where the control variables correspond to IC. It

would be interesting to analyse how the localisation methods could be generalised in the

micrometeorological context where the control variables are the BC.

All the studies performed in the present work considered constant BC and steady

states obtained when these BC are prescribed. To broaden the application cases, one

could consider unsteady BC. Two approaches could be considered in such a case. First,

all the variables that define the unsteady BC could be included in a (very) large control

vector. The IEnKS would then assimilate asynchronous observations and try to recover

the “trajectory” of BC that best fits the observations. On the other hand, one could

divide the time period under scrutiny into consecutive (short) periods during which the

BC are considered constant. The methodology presented in the present work could then

be applied as it is, for each of these “steady” sub-periods. In such a case, several cycles

of analyses would be chained, so that the analysis ensemble of the previous cycle could

be used as the background ensemble of the next cycle. Both inflation and localisation

may be needed for unsteady studies.

For each of the present studies, we kept the same DA pattern: both the number

and location of the assimilated observations were unchanged. It would be interesting to

assess the sensitivity of the results to the number of observations as well as their location,

both horizontally and vertically. Such analyses could be particularly useful to study best

practices in terms of experimental design.

Eventually, we have here focused on local-scale atmospheric simulations and we

performed all the simulations with the CFD model Code Saturne. However, one of the

great advantages of the IEnKS is its modularity. Indeed, this DA method is non-intrusive

and can be quite easily adapted to other models of micrometeorology. One could imagine

to use the IEnKS for several other fields of applications. For instance wildfire studies also

require the precise estimation of the wind field in regions with possible complex terrain

and can benefit from using DA (Rochoux et al., 2013, 2015). On the other hand, climate

studies at regional scale face similar issues of high sensitivity to the resolution of the BC

that are estimated through downscaling (Rummukainen, 2010) and the IEnKS could be

used to improve their accuracy.
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Trémolet, Y., 2006: Accounting for an imperfect model in 4D-Var. Quart. J. Royal

Meteor. Soc., 132, 2483–2504. 57

Tsuang, B.-J., 2003: Quantification on the source/receptor relationship of primary pollu-

tants and secondary aerosols by a Gaussian plume trajectory model: Part I—theory.

Atmospheric Environ., 37, 3981–3991. 50

Uchida, T., and Y. Ohya, 2008: Micro-siting technique for wind turbine generators by

using large-eddy simulation. J. Wind. Eng. Ind. Aerodyn., 96, 2121–2138. 47

Umlauf, L., and H. Burchard, 2005: Second-order turbulence closure models for geo-

physical boundary layers. A review of recent work. Cont. Shelf Res., 25, 795–827.

39

Venkatesan, R., R. Mathiyarasu, and K. Somayaji, 2002: A study of atmospheric

dispersion of radionuclides at a coastal site using a modified Gaussian model and a

mesoscale sea breeze model. Atmospheric Environ., 36, 2933–2942. 50

Wang, B., L. Cot, L. Adolphe, S. Geoffroy, and S. Sun, 2017: Cross indicator analysis

between wind energy potential and urban morphology. Renew. Energy, 113, 989–1006.

47, 93

177



Bibliography

Wilby, R., and T. Wigley, 1997: Downscaling general circulation model output: a review

of methods and limitations. Prog. Phys. Geogr. Earth Environ., 21, 530–548. 44

Wilks, D. S., and R. L. Wilby, 1999: The weather generation game: a review of stochastic

weather models. Prog. Phys. Geogr. Earth Environ., 23, 329–357. 44

Winiarek, V., 2014: Dispersion atmosphérique et modélisation inverse pour la reconstruc-

tion de sources accidentelles de polluants. Ph.D. thesis, Université Paris-Est. 125, 132,
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Appendix A

Supplementary information about

the shallow water model of the

atmospheric boundary layer

We have seen in Section 1.2.3 that the SWE ca be used as a simple model of the ABL.

We provide in this appendix the theoretical derivation of the SWE for one, two, and

multi-layer cases. Afterwards, we give the analytical solutions to the one-layer SWE and

we present the method of characteristics, which is widely used to study these equations.

In particular, we show how this method indicates the type of inputs – either IC or BC –

required to solve the SWE in different configurations. In a last section, we briefly present

the shallow-layer model used as a simple representation of the atmosphere in two layers

in Chapter 4.

A.1 Derivation of the shallow-water equations

A.1.1 Governing equations for one layer

The SWE are derived from Navier-Stokes equations in the approximation of small fluid

height compared to horizontal spatial scales.

Using the Einstein notation, the Navier-Stokes equations read:




∂ρ
∂t + ∂ρui

∂xi
= 0

∂ui
∂t + uj

∂ui
∂xj

= −1
ρ
∂p
∂xi

+
∂Ri,j
∂xj

+ gi + Ci
(A.1)

where ui is the i-th component of the flow velocity, p is the pressure, ρ is the density, Ri,j

are the components of the stress tensor, gi is i-th component of the gravity force, and Ci

is the i-th component of the Coriolis force. The first equation expresses the conservation

of mass and the second one the conservation of momentum.

The flow motion equations can be time-averaged to give the Reynolds-averaged

Navier-Stokes equations (or RANS equations). The derivation of these equations uses the
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Reynolds decomposition, which separates each of the flow variable into the time-averaged

component and the fluctuating component (see Section 1.2.2). Due to the nonlinearity

of the Navier-Stokes equation, the velocity fluctuations appear in the RANS equations

in the Reynolds stress Ri,j . The closure problem aims at removing any reference to the

fluctuating components by modelling the Reynolds stress as a function of the mean flow.

The Boussinesq eddy viscosity assumption states that the momentum transfer caused by

turbulent eddies can be modelled with an eddy (or turbulence) viscosity, νt.

For incompressible Newtonian fluids, the mass continuity equation reads:

∂ui
∂xi

= 0 (A.2)

and the Stokes’ stress tensor is given by:

∂Ri,j
∂xj

= (ν + νt)
∂2ui
∂xj∂xj

(A.3)

where ν = µ
ρ is the kinematic viscosity and µ the dynamic viscosity.

The SWE are derived using the following assumptions:

• the 3-dimensional effects are negligible: w � (u, v)

• the pressure distribution is hydrostatic: ∂p
∂z = −ρg

We refer to η as the absolute height of the fluid surface, h is the fluid height, and zf

is the bottom topography:

η = h+ zf . (A.4)

In what follows, u and v refer to the components of the vertically-averaged horizontal

velocity.

The pressure at height z inside the fluid layer is:

p(z) = ρag(Ha − η) + ρg(η − z) (A.5)

where ρa and Ha refer to atmospheric density and geopotential height, and g is the gravi-

tational acceleration (g = 9.81m/s2). The atmosphere’s height is assumed homogeneous

along x- and y-axis such that the horizontal derivative of pressure reads:

∂p

∂xi
= (ρ− ρa)g

∂η

∂xi
(A.6)

for xi = x or y.

The above expression of the pressure gradient is replaced in the Navier-Stokes

equations (A.1) and the assumptions listed above are used to derive the SWE. The

non-conservative form of the 2-D SWE for one layer of fluid read:




∂h
∂t + ∂hu

∂x + ∂hv
∂y = 0

∂u
∂t + u∂u∂x + v ∂u∂y = −g′ ∂η∂x + 1

h
∂hDxx
∂x + 1

h
∂hDxy
∂y + fv + Fx

h + Sx
h

∂v
∂t + u ∂v∂x + v ∂v∂y = −g′ ∂η∂y + 1

h
∂hDyx
∂x + 1

h
∂hDyy
∂y − fu+

Fy
h +

Sy
h

(A.7)
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where Dij include viscous, turbulent, and dispersion effects, Si represents the surface

friction and Fi the bottom friction, g′ = ρ−ρa
ρ g is the reduced gravity, and f is the Coriolis

parameter.

When the fluid considered is water, ρa � ρ such that g′ ≈ g. In the present work,

we consider layers of air and this approximation is not valid; we need to keep g′. For

local scale simulations, the Coriolis effect is usually negligible and we will also neglect

the effect of diffusion and dispersion.

With these approximations, the equations can be written in the conservative form:




∂h
∂t + ∂hu

∂x + ∂hv
∂y = 0

∂hu
∂t + ∂

∂x(hu2 + 1
2g
′h2) + ∂

∂y (huv) = −g′h∂zf∂x + Fx + Sx

∂hv
∂t + ∂

∂x(huv) + ∂
∂y (hv2 + 1

2g
′h2) = −g′h∂zf∂y + Fy + Sy.

(A.8)

The non-conservative form can be obtained by expanding the derivatives using the product

rule. However, the non-conservative SWE do not hold across a shock or hydraulic jump,

such that the conservative form is preferred here.

A.1.2 Two-layer equations

We consider two layers superposed, both of them satisfying the SWE. The index ’1’ refers

to the top layer and ’2’ to the bottom one (Fig. A.1). The continuity equation in (A.7)

holds in each layer. However, the layers interact through the pressure expression. At

height z in the bottom layer, the pressure is given by:

p2(z) = ρag(Ha − η1) + ρ1gh1 + ρ2g(η2 − z).

Using the fact that η1 = zf +h2 +h1 and η2 = zf +h2, defining the reduced gravities:

g′1 = ρ1−ρa
ρ1

g and g′2 = ρ2−ρa
ρ2

g, and noting that ρ1−ρa
ρ2

= g′1
ρ1
ρ2

, the horizontal partial

derivative along xi reads:

∂p2

∂xi
= (ρ1 − ρa)g

∂h1

∂x
+ (ρ2 − ρa)g

∂h2

∂x
+ (ρ2 − ρa)g

∂zf
∂x

⇐⇒ 1

ρ2

∂p2

∂xi
= g′1

ρ1

ρ2

∂h1

∂x
+ g′2

∂h2

∂x
+ g′2

∂zf
∂x

.

(A.9)

For the top layer, we assume that there is no surface friction with the atmosphere at

rest but the bottom friction corresponds to the friction between the two fluid layers that

are approximated by the Manning equation:

−→
f 1 = −n

2
1g‖−→u1 −−→u2‖(−→u1 −−→u2)

h
1/3
1

(A.10)

where n1 is a Manning coefficient.

Similarly, the bottom friction for the lower layer is given by:

−→
f 2 = −n

2
2g‖−→u2‖−→u2

h
1/3
2

. (A.11)
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Replacing in A.8 and rearranging the terms, we obtain the system of conservative

equations for 2 layers:





∂h1

∂t
+
∂h1u1

∂x
+
∂h1v1

∂y
= 0

∂h1u1

∂t
+

∂

∂x
(h1u

2
1 +

1

2
g′1h

2
1) +

∂

∂y
(h1u1v1) = −g′1h1

∂

∂x
(η2) + f1,x

∂h1v1

∂t
+

∂

∂x
(h1v1u1) +

∂

∂y
(h1v

2
1 +

1

2
g′1h

2
1) = −g′1h1

∂

∂y
(η2) + f1,y

∂h2

∂t
+
∂h2u2

∂x
+
∂h2v2

∂y
= 0

∂h2u2

∂t
+

∂

∂x
(h2u

2
2 +

1

2
g′2h

2
2) +

∂

∂y
(h2u2v2) = −h2

∂

∂x
(g′2zf − g′1

ρ1

ρ2
h1) + f2,x −

ρ1

ρ2
f1,x

∂h2v2

∂t
+

∂

∂x
(h2u2v2) +

∂

∂y
(h2v

2
2 +

1

2
g′2h

2
2) = −h2

∂

∂y
(g′2zf − g′1

ρ1

ρ2
h1) + f2,y −

ρ1

ρ2
f1,y

(A.12)

x
0

z

zf

η2

η1

h2

h1

ρ2

ρ1

Figure A.1: Two-layers fluid.

A.1.3 Generalization to multi-layer case

We now consider a general case with N superposed layers governed by the SWE. The

layers are numbered from top to bottom.

We first define the surface height of the n-th layer:

ηn = zf +
N∑

k=n

hk, (A.13)

where hk is the fluid height of the k-th layer. Note that all the subscripts refer to the
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layer index. The reduced gravity for the n-th layer is

g′n =
ρn − ρa
ρn

g, (A.14)

where ρn is the fluid density of this layer. The friction forces between the n-th layer and

the ones below and above are

−→
Fn =

−→
fn −

ρn−1

ρn

−−→
fn−1 (A.15)

where
−→
fk = −n

2
kg‖−→uk −−−→uk+1‖

h
1/3
k

(−→uk −−−→uk+1) (A.16)

with the convention that f0 = 0, and −→u0 = −−−→uN+1 = 0. nk is the Manning coefficient for

the k-th layer, and −→ex and −→ey are the unit vectors along x and y. We also define the x-

and y-components of these forces: Fn,x =
−→
Fn · −→ex and Fn,y =

−→
Fn · −→ey .

We thus deduce the conservative form of SWE for any layer n, including friction

forces (A.17) (Benkhaldoun and Seaid, 2010; Kim and LeVeque, 2008):





∂hn
∂t

+
∂hnun
∂x

+
∂hnvn
∂y

= 0

∂hnun
∂t

+
∂

∂x
(hnu

2
n +

1

2
g′nh

2
n) +

∂

∂y
(hnunvn) = −hn

∂

∂x
(g′nηn+1 +

n−1∑

k=1

(g′k
ρk
ρn
hk)) + Fn,x

∂hnvn
∂t

+
∂

∂x
(hnunvn) +

∂

∂y
(hnv

2
n +

1

2
g′nh

2
n) = −hn

∂

∂y
(g′nηn+1 +

n−1∑

k=1

(g′k
ρk
ρn
hk)) + Fn,y

(A.17)

where un, vn are velocity-components for the n-th layer and zf is the topography.

A.2 Theoretical resolution of the 1D shallow-water equa-

tions

A.2.1 Bernoulli equation

The 1D SWE with topography and without friction can be solved analytically. The

non-conservative, stationary 1D SWE for one layer with topography read:





∂hu

∂x
= 0

u
∂u

∂x
+ g′

∂h

∂x
= −g′∂zf

∂x
.

(A.18)

The momentum equation in (A.18) can be rewritten as follows:

∂

∂x
(h+

u2

2g′
+ zf ) = 0 ⇐⇒ ∂

∂x
(Hs + zf ) = 0, (A.19)
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where Hs ≡ h + u2

2g′ is the specific charge. According to the continuity equation, the

discharge q = hu is conserved over the domain and the specific charge can also be

expressed as: Hs = h+ q2

2g′h2 .

The analytical solution is thus obtained with the Bernoulli equation (Goutal and

Maurel, 1997):

q2

2g′h2
+ h+ zf = H0 ⇐⇒

u2

2g′
+ h+ zf = H0, (A.20)

which stands that the sum of the specific charge and the topography height is conserved

over the domain.

A.2.2 Subcritical, critical and supercritical regimes

The regime of a flow is determined by the value of the Froude number, which is the ratio

of the flow inertia to the external forces:

Fr ≡ u√
gh
. (A.21)

If Fr < 1 the flow is subcritical, if Fr = 1 it is critical, and if Fr > 1 the flow is

supercritical. Figure A.2 shows the profile of Hs versus h. The minimum of Hs is reached

for the critical height hc ≡ ( q
2

g′ )
1
3 for which Fr = 1 and Hs(hc) = 3

2hc. For h < hc, the

regime is supercritical and for h > hc the regime is subcritical.

Figure A.2: Profile of the specific charge Hs versus fluid height h in the case where

g′ = 0.981m/s2 and q = 2.0m2/s.
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A.3 The method of characteristics

In addition to Bernoulli equation, the 1D SWE can be solved using the method of

characteristics (Abbott, 1966; Lister, 1960). We present here the derivation of this

method in the case of unidimensional domain without topography, with only one layer of

fluid, and without taking the Coriolis effect nor the friction forces into account.

The continuity and momentum equations (A.19) without topography can be written

as follows with X =

(
h

u

)
and M =

(
u h

g′ u

)
:

∂X

∂t
+ M

∂X

∂x
= 0. (A.22)

The eigenvalues of M are the roots of

det(M− λI) = 0

⇐⇒ (u− λ−
√
g′h)(u− λ+

√
g′h) = 0.

(A.23)

Consequently, M has two real eigenvalues: α+ = u+ c and α− = u− c where c =
√
g′h

is the wave speed. M is diagonalizable and can be decomposed as follows:

M = P−1DP, (A.24)

with D =

(
α+ 0

0 α−

)
and P =

(
g′ c

g′ −c

)
.

We deduce from this decomposition that:

∂X

∂t
+ P−1DP

∂X

∂x
= 0

⇔ P
∂X

∂t
+ DP

∂X

∂x
= 0.

(A.25)

Defining P1 =
(
g′ c

)
and P2 =

(
g′ −c

)
, equation (A.25) reads:





P1

(
∂X

∂t
+ α+

∂X

∂x

)
= 0

P2

(
∂X

∂t
+ α−

∂X

∂x

)
= 0

(A.26)

Using the fact that d(g′h) = d(c2) = 2cdc, the system of equations (A.26) becomes:




(
∂

∂t
+ α+

∂

∂x

)
(u+ 2c) = 0 ⇐⇒ dR+

dt

∣∣∣∣
C+

= 0

(
∂

∂t
+ α−

∂

∂x

)
(u− 2c) = 0 ⇐⇒ dR−

dt

∣∣∣∣
C−

= 0

(A.27)

These equations indicate that the Riemann invariants R+ = u+ 2c and R− = u− 2c

are conserved along the curves C+ and C− defined by

(C+) :
dx

dt
= α+ = u+ c (A.28a)

(C−) :
dx

dt
= α− = u− c (A.28b)
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Figure A.3: Characteristic curves C+ (blue lines) and C− (orange lines) in the subcritical

(a), critical (b), and supercritical (c) cases over a bump. The dotted area corresponds to

the region influenced by IC.

In the previous demonstration, the state vector was X =

(
h

u

)
. It would be

equivalent to work with X′ =

(
h

q

)
or X′′ =

(
q

u

)
. In particular, the same Riemann

invariants and the same characteristic curves are obtained.

Figure A.3 shows two members of the family of characteristic curves C+ (blue lines)

and two curves C− (orange lines) for the subcritical (a), critical (b), and supercritical

case (c). These curves are obtained from the integration of a shallow-layer model without

topography in an unsteady situation. In all cases, α+ > u such that the curves C+

transport information downstream faster than u. The dashed lines delimit the area that

is influenced by the IC (dotted regions). In the rest of the spatio-temporal domain, the

characteristic curves transport information from the BC.

A.3.1 Prescription of BC

On Figure A.3, the full lines represent the characteristic curves C+ (blue) and C− (orange)

that intersect at the point P (x = 50 and t = 250). On each characteristic curve,

a Riemann invariant is conserved and the state of the system in P, i.e. the value of
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XP =

(
hP

uP

)
, is the solution of

{
uP + 2

√
g′hP = R+ = RA

uP − 2
√
g′hP = R− = RB,

(A.29)

where RA (resp. RB) is the value of the Riemann invariant R+ (resp. R−) in A (resp. B).

In the subcritical and supercritical cases (Fig.A.3a and A.3c), the values of the Riemann

invariants in A and B are given by BC. In the critical case (Fig. A.3b), the Riemann

invariant in A corresponds to BC and in B to IC.

In the subcritical case (Fig. A.3a), as Fr < 1, the eigenvalue α− is negative such that

the characteristic curves C− transport information upstream (orange line). Consequently

the state of the system in P is determined by two BC: one upstream (A) and one

downstream (B).

In the critical case (Fig. A.3b), the curves C− are vertical because α− = 0, such that

any point in the domain is influenced by IC and the upstream BC.

The supercritical case (Fig. A.3c) is similar to the subcritical case because IC influence

only a small part of the domain. However, Fr > 1 so α− > 0 and both characteristic

curves transport information from upstream to downstream. The state in P is determined

by two upstream BC.

As a conclusion, to ensure the uniqueness of the solution to the 1D SWE, two

conditions must be prescribed that depend of the flow regime.

• If the flow is subcritical: two BC, one upstream and one downstream.

• If the flow is critical: one upstream BC and one IC.

• If the flow is supercritical: two upstream BC.

A.3.2 Phase speeds for two-layer systems

The method of characteristics can be applied to one-dimensional two-layer flows, especially

for the discretization, by means of finite volume schemes, of the system of partial

differential equations governing the flow (Benkhaldoun and Seaid, 2010; Castro et al.,

2001):




∂h1

∂t
+
∂h1u1

∂x
= 0

∂h1u1

∂t
+

∂

∂x
(h1u

2
1 +

1

2
g′1h

2
1) = −g′1h1

∂

∂x
(h2 + zf ) + f1

∂h2

∂t
+
∂h2u2

∂x
= 0

∂h2u2

∂t
+

∂

∂x
(h2u

2
2 +

1

2
g′2h

2
2) = −h2

∂

∂x
(g′2zf − g′1

ρ1

ρ2
h1) + f2 −

ρ1

ρ2
f1

(A.30)
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where the subscripts 1 and 2 refers to the top and bottom layer respectively (Fig. A.1).

This system can be rewritten in a more compact form:





∂W1

∂t
+
∂F (W1)

∂x
= B1,2(W1)

∂W2

∂x
+ Φ1

∂W2

∂t
+
∂F (W2)

∂x
= B2,1(W2)

∂W1

∂x
+ Φ2

(A.31)

where W1 and W2 are the vectors of conserved variables, F and Φ are the flux and source

terms:

Wi(x, t) =

(
hi(x, t)

qi(x, t)

)
, i = 1, 2, (A.32a)

F (Wi) =

(
hiui

hiu
2
i + 1

2g
′
ih

2
i

)
, (A.32b)

B1,2(W1) =

[
0 0

−g′1h1 0

]
, (A.32c)

B2,1(W2) =

[
0 0

−g′1rh2 0

]
, (A.32d)

Φ1 =

(
0

−g′1h1
∂zf
∂x + f1

)
, (A.32e)

Φ2 =

(
0

−g′2h2
∂zf
∂x + f2 − rf1

)
, (A.32f)

where r = ρ1
ρ2

.

The calculation of the eigenvalues of the two-layer system (A.31) is not trivial. If

the two layers were uncoupled, the eigenvalues of the Jacobian matrix ∂F
∂W would give

the eigenvalues of each separate system. Similar to the one-layer system (A.22), the

eigenvalues would be

ui ±
√
g′hi, i = 1, 2 (A.33)

where ui = qi
hi

is the averaged velocity of the i-th layer.

The two layers being coupled, the eigenvalues are more difficult to calculate. The

system (A.31) can be rewritten as follows:

∂W

∂t
+A(W)

∂W

∂x
= Φ(x,W), (A.34)
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where

W =

[
W1

W2

]
(A.35a)

Φ(x,W) =

[
Φ1(x,W1)

Φ2(x,W2)

]
(A.35b)

A(W) =

[
A(W1) −B1,2(W1)

−B2,1(W2) A(W2)

]
(A.35c)

A(Wi) =
∂F

∂Wi
=

[
0 1

− q2i
h2i

+ g′ihi 2 qihi

]
(A.35d)

From equation (A.34), it is clear that the eigenvalues of the system are those of the

matrix A(W), which are the solutions of the characteristic equation:

(
λ2 − 2u1λ+ u2

1 − g′1h1

) (
λ2 − 2u2λ+ u2

2 − g′2h2

)
= (

g′1
g′2
r)g′1h1g

′
2h2. (A.36)

We define r′ =
g′1
g′2
r = ρ1−ρa

ρ2−ρa .

For r′ � 1, the eigenvalues of the system (A.34) approach (A.33). In the case r′ ≈ 1

and u1 ≈ u2, a first-order approximation of the eigenvalues is given in Benkhaldoun and

Seaid (2010), where gh1, gh2, and r are formally replaced with g′1h1, g′2h2, and r′:

λ±ext = Um ±
√
g′1h1 + g′2h2, (A.37a)

λ±int = Uc ±

√√√√(1− r′) g′1h1g′2h2

g′1h1 + g′2h2

(
1− (u2 − u1)2

(1− r′)(g′1h1 + g′2h2)

)
, (A.37b)

where the mean and convective velocities are defined by

Um =
g′1h1u1 + g′2h2u2

g′1h1 + g′2h2
, (A.38a)

Uc =
g′1h1u2 + g′2h2u1

g′1h1 + g′2h2
. (A.38b)

The two external eigenvalues λ±ext are related to the barotropic component of the flow

and the two internal eigenvalues λ±int are related to the baroclinic component. These

eigenvalues are real only if the following inequality on the Richardson number Ri is

satisfied:

Ri ≡ (1− r′)g
′
1h1 + g′2h2

(u2 − u1)2
> 1. (A.39)

This inequality is a necessary condition for the system (A.34) to be hyperbolic and thus

have real solutions.
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A.4 Shallow-layer model for micrometeorology

A.4.1 Finite-volume method for shallow-layer flows

The SWE for each layer (A.17) are solved by a second-order accurate finite-volume

scheme of Godunov type approach. The fluxes at interfaces between cells are computed

using a HLLE (Harten, Lax, van Leer, and Einfeldt) Riemann solver with pressure-based

wave-speed estimate (Mingham and Causon, 1998; Toro, 2009). The interface fluxes are

directly constructed from a suitable averaged interface state, which is obtained from the

fastest leftward and rightward moving characteristics. The model also includes:

• the possibility of simulating a multi-layer flow;

• bottom and inter-layer friction, using Manning’s equation;

• the possibility to prescribe a topography.

In the presence of topography, the left and right values of interface fluxes may differ

and, in order to estimate the Riemann state, a well-balanced numerical scheme with

non-negative height reconstruction has been used as in Zeitlin and Bouchut (2010). To

solve the multi-layer shallow-layer problem, we have used a splitting method with an

upwinding dispersive correction scheme (Zeitlin and Bouchut, 2010).

The CFL condition is defined by

∆t ≤ ∆x

aSCHR
. (A.40)

where aSCHR is the sum of the speed involved in the CFL condition for nonnegativity

of the hydrostatic reconstruction scheme (aHR) (Benkhaldoun and Seaid, 2010; Castro

et al., 2001), and the speed associated with the dispersive correction scheme (aJ)(Zeitlin

and Bouchut, 2010):

aSCHR = aHR + aJ . (A.41)

The speed aHR is estimated as follows:

aHR = max(|λ±ext|, |λ±int,k|) (A.42a)

λ±ext = Um ±

√√√√
N∑

k=1

g′khk (A.42b)

λ±int,k = Uc,k ±
√
g′k

hkhk+1

hk + hk+1
[1− (uk − uk+1)2

g′k(hk + hk+1)
] for 1 ≤ k < N (A.42c)

Um =

∑N
k=1 g

′
khkuk∑N

k=1 g
′
khk

(A.42d)

Uc,k =
g′khkuk+1 + g′k+1hk+1uk

g′khk + g′k+1hk+1
. (A.42e)
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A.4.2 Validation of the shallow water model

Subcritical, critical, and supercritical regime

The behaviour of the model in subcritical, critical, and supercritical regimes has been

tested over a small bump centred on x = 80 and with a maximum height of 0.5m (black

line in Fig. A.4). A constant value of flow rate is prescribed on the left of the domain

(qL) and a constant fluid height is prescribed on the right for subcritical and critical cases

and on the left for the supercritical case (hR). The values of qL and hR are given in

Table A.1 and g′ = 0.1g = 0.981m2/s which corresponds to a layer of air slightly denser

than the atmosphere above (ρ = 1.11ρa). After a transition regime, the simulated system

reaches a stationary state that is considered as the result of the simulation.

Regime Fr qL hR

Subcritical 0.4 2.0 3.0

Critical 1 2.0 2.309

Supercritical 2 2.0 1.0

Table A.1: Values of prescribed BC.

The simulated profiles are compared with the analytical solution obtained from the

resolution of the Bernoulli equation (A.20), the value of H0 being determined on the

right of the domain (H0 =
q2L

2g′h2R
+ hR).

(a) Subcritical case (b) Critical case (c) Supercritical case

Figure A.4: Analytical solution and numerical simulation of the behaviour of subcritical,

critical, and supercritical flows over a bump.

Figure A.4a shows the behaviour of a subcritical flow over a bump. The flow is

subcritical so it corresponds to a case where Fr < 1 ⇐⇒ u <
√
g′h. Consequently,

in the conservation of momentum equation, the second term of the right-hand side

predominates and there is an approximate balance between the variation of height and

the variation of topography: ∂h
∂x ≈ −

∂zf
∂x . Where the topography increases, the height

decreases and vice-versa. The vertical velocity adjusts to ensure continuity, leading to

an acceleration over the bump. It is in agreement with the fact that if zf increases, the
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specific charge Hs has to decrease. In the subcritical regime, ∂Hs
∂h > 0 (Fig. A.2), and h

has to decrease to reduce the specific charge.

On the contrary, if the flow is supercritical as on Figure A.4c, the Froude number is

greater than 1. Consequently, the first term in the equation of momentum conservation

predominates and the convection balances the variation of topography: u∂u∂x ≈ −g′
∂zf
∂x .

Where the topography increases, the velocity decreases and – due to continuity – the

height increases over the bump. Here again, the observed increase of height over the

bump is in agreement with the fact that ∂Hs
∂h < 0 in the supercritical regime such that

the height has to increase to reduce the specific charge and compensate the increase of

topography.

Figure A.4b shows the case where the flow is critical over the bump with a hydraulic

jump after.

Hydraulic jump Let us derive the necessary conditions to obtain this particular

situation where the flow is exactly critical at the top of the bump and thus transits from

a subcritical regime before the bump to a supercritical regime after the bump. Just after

the bump, a hydraulic jump occurs to allow the flow to come back to a subcritical regime

and satisfy the downstream boundary condition. Consequently, there are 4 different

states:

• upstream, before the bump (subcritical): h1, u1

• above the bump (critical): hc, uc

• after the bump and before the jump (supercritical): h2, u2

• downstream, after the jump: h3, u3

First, the critical regime is reached over the bump if the specific charge at this point is

equal to the critical specific charge: Hc = Hs(h = hc) = 3
2hc. The conservation of Hs+zf

implies that the specific charge before and after the bump must be H1 = H2 = Hc+zf,max
where zf,max is the height of the bump. Two different heights (h+ and h−) are solution

of the equation

Hs(h) = H1 = H2 ⇐⇒ h+
q2

2g′h2
= H1 = H2. (A.43)

For the sake of simplicity, we ordinate these solutions: h+ > h−. The greater solution

(h+) corresponds to a subcritical flow and the smaller one (h−) to a supercritical flow.

We thus deduce that h1 = h+ and h2 = h−.

While the specific charge is conserved between the upstream condition and the top of

the bump, the hydraulic jump triggers a loss of charge. Consequently, the downstream

specific charge is smaller than the upstream one: H2 > H3. The specific charge decreases

with h in the supercritical regime and since we assume that the topography is flat after

the bump (z2 = z3), we deduce that h2 < h3. This justifies that, in order to observe a
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stationary jump the flow must be supercritical before the jump (h2, u2) and then transits

towards a subcritical regime after the jump (h3, u3).

Therefore flow transits from a subcritical regime before the bump where the height is

equal to h1 = h+ to a supercritical regime with a fluid height h2 = h−. At the top of the

bump the flow is critical. To have a hydraulic jump, the downstream boundary condition

on height must ensure that the flow is subcritical downstream.

The heights and velocities before (h2, u2) and downstream (h3, u3) the jump must

satisfy the conservation of mass:

h2u2 = h3u3 = q (A.44)

and the conservation of momentum flux:

h2u
2
2 +

1

2
gh2

2 = h3u
2
3 +

1

2
gh2

3. (A.45)

From these two equations, one can derive the Bélanger equation which relates the two

heights from either side of the hydraulic jump:

h3 =
h2

2
(

√
1 + 8

q2

g′h3
2

− 1). (A.46)

If the height prescribed downstream corresponds to a subcritical regime satisfying the

Bélanger equation, a hydraulic jump occurs after the bump to make the junction between

the supercritical regime just after the bump and the subcritical regime downstream

imposed by the BC.

In the present example, we have:

q = 2.0m2/s (A.47a)

zf,max = 0.5m (A.47b)

hc = (
q2

g′
)
1
3 = 1.597m (A.47c)

Hc =
3

2
hc = 2.396m (A.47d)

H1 = H =2= Hc + zf,max = 2.896m (A.47e)

h1 = h+ = 2.593m and h2 = h− = 1.051m (A.47f)

h3 = 2.309m. (A.47g)

These theoretical values are verified numerically as shown on Figure A.4b.

Wind fields over topography show regions of speed up over the peaks of topography and

lower velocities in valleys. This corresponds to subcritical case (Fig. A.4a) consequently

only this case will be studied in what follows.
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Validation with and without friction

For a simple, flat, and slanted bottom, it is possible to verify the performance of the

model to simulate friction forces by comparing the numerical simulation to the analytical

solution. In stationary regime for unidimensional domain with only one layer of fluid

and friction forces, the equation of momentum conservation reads:

d

dx
(hu2 +

1

2
g′h2) = −g′hdzf

dx
− n2gu2

h1/3
. (A.48)

Using the continuity equation that ensures the spatial conservation of the discharge:
dq
dx = 0, a first-order differential equation on h can be derived:

(g′ − q2

h3
)
dh

dx
= −g′dzf

dx
− g n

2q2

h10/3
. (A.49)

The solution to this equation gives an analytical solution for comparison with the

results of numerical simulations (Fig. A.5). Different values of the Manning coefficient

are tested, in particular n = 0 to verify that Hs + zf is conserved.

(a) n = 0 (b) n = 0.02 (c) n = 0.05

Figure A.5: Analytical solution and numerical simulation of the height and horizontal

velocity of fluid over a slanted bottom, with and without friction.
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B.1 Effect of boundary conditions and forcing on wave

equation

B.1.1 Generalisation of d’Alembert solution of wave equation

The so-called d’Alembert formula gives the unique solution to the Cauchy problem:





∂2φ

∂t2
− c2∂

2φ

∂x2
= 0

with initial conditions φ(x, 0) = f(x) and
∂φ

∂t
(x, 0) = g(x)

(B.1)

Here we adapt the d’Alembert formula for the case where the solution is subject to BC

instead of IC.

At first, we will consider a transport equation constrained BC , whose unique solution

is given by Lemma 1. We use the following notation: ∂tf = ∂f
∂t and ∂xf = ∂f

∂x .

Lemma 1 (Duhamel formula for BC problem). We consider the transport equation with

BC in x = a ∈ R+ {
∂tψ + c∂xψ = f(x, t), t ≥ 0, x ≥ a
ψ(a, t) = ψa(t), t ≥ 0.

(B.2)

There is a unique solution ψ ∈ C1([a,+∞[×[a,+∞[) given by

ψ(x, t) = ψa

(
t− x− a

c

)
+

1

c

∫ x

a
f

(
s, t+

s− x
c

)
ds. (B.3)

Proof. If f ≡ 0 then the solution is obtained with the method of characteristics. We

define the family of characteristic curves C of equation

t = t0 +
x− a
c

, (B.4)
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for any fixed (a, t0) in R2
+. These curves satisfy

dx

dt
= c. (B.5)

The function ψ is constant along each of these characteristics:

dψ|(C) = ∂tψdt+ ∂xψdx (B.6)

= ∂tψdt+ ∂xψcdt (B.7)

= (∂tψ + c∂xψ)dt (B.8)

= 0. (B.9)

For any (x, t) ∈ R2
+, there is a t0 = t− x−a

c such that the corresponding characteristic

goes through (x, t) and (a, t0). Consequently,

ψ(x, t) = ψ (a, t0) = ψa

(
t− x− a

c

)
. (B.10)

Now, if f 6= 0 we can note that

1

c
∂tψ + ∂xψ =

1

c
f

⇐⇒ dψ

dx
|(C) =

1

c
f.

The integration between a and x, along C, of the previous equation gives:

ψ

(
x, t0 +

x− a
c

)
= ψ (a, t0) +

1

c

∫ x

a
f

(
s, t0 +

s− a
c

)
ds

⇐⇒ ψ (x, t) = ψa

(
t− x− a

c

)
+

1

c

∫ x

a
f

(
s, t+

s− x
c

)
ds.

In other words, Duhamel’s formula states that the value of φ for any (x, t), is equal

to the value of the BC at the extremity of the characteristic (C: dx
dt = c) plus the integral

of the forcing function f along this characteristic between the boundary and (x, t).

Now that we have the solution to a forced transport equation constrained by BC, we

can prove the d’Alembert theorem which gives the solution to wave equations with BC.

Theorem 1 (d’Alembert formula for BC problem). Consider g ∈ C2(R+) and h ∈ C1(R+),

then there is a unique solution φ ∈ C2(R+ × R+) to the Cauchy problem

{
∂2
t φ− c2∂2

xu = 0, t ≥ 0, x ≥ 0

φ(a, t) = f(t), ∂xφ(a, t) = g(t), t ≥ 0 and a ∈ R+

(B.11)

which is given by the following formula:

φ(x, t) =
f
(
t+ x−a

c

)
+ f

(
t− x−a

c

)

2
+
c

2

∫ t+x−a
c

t−x−a
c

g(s)ds. (B.12)
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Proof. Let us consider φ a solution of equation (B.11) of class C2(R+ × R+). We define

ψ = ∂tφ+ c∂xφ such that

∂tψ − c∂xψ = (∂t − c∂x)(∂t + c∂x)φ

= (∂2
t − c2∂2

x)φ

= 0.

Consequently, ψ is solution of the Cauchy problem
{
∂tψ − c∂xψ = 0

ψ(a, t) = f ′(t) + cg(t).
(B.13)

Using Lemma 1 where we formally replace c by −c, we know that there is a unique

solution, given by:

ψ(x, t) = f ′
(
t+

x− a
c

)
+ cg

(
t+

x− a
c

)
. (B.14)

As ∂tφ+ c∂xφ = ψ and φ(a, t) = f(t), the Lemma 1 gives the expression of φ:

φ(x, t) = f

(
t− x− a

c

)
+

1

c

∫ x

a
ψ

(
s, t+

s− x
c

)
ds

= f

(
t− x− a

c

)
+

1

2

∫ x

a

2

c
f ′
(
t+

2s− x− a
c

)
ds+

∫ x

a
g

(
t+

2s− x− a
c

)
ds

=
f
(
t+ x−a

c

)
+ f

(
t− x−a

c

)

2
+
c

2

∫ t+x−a
c

t−x−a
c

g(s)ds (B.15)

Reciprocally, it is easy to verify that the formula (B.12) is a solution of class C2(R+×
R+) for the problem (B.11).

We can understand d’Alembert formula with characteristics C+: dx
dt = c and C−:

dx
dt = −c, as shown on Figure B.1 whose intersection with the boundary delimits the

section of the border (between t− x−a
c and t+ x−a

c ) that influences the solution at (x, t).

In fact, d’Alembert formula stands that for any (x, t) the value of φ is obtained by

φ(x, t) = φ(a, t) + (x− a)∂xφ|a, (B.16)

where φ(a, t) and ∂xφ|a are the average values of f and g over the boundary section

between in t+ x−a
c and t− x+a

c . The average boundary value is

φ(a, t) =
f
(
t+ x−a

c

)
+ f

(
t− x−a

c

)

2
, (B.17)

and the average space derivative is

∂xφ|a =
1(

t− x−a
c

)
−
(
t+ x−a

c

)
∫ t+x−a

c

t−x−a
c

g(s)ds =
c

2(x− a)

∫ t+x−a
c

t−x−a
c

g(s)ds. (B.18)

.
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Figure B.1: Graphical explanation of d’Alembert formula in the case a = 0. The two

characteristic lines passing through P (x, t) transport the BC from t− x
c and t+ x

c .

B.1.2 The forced wave equation with homogeneous BC

In this section we consider a forcing term F ∈ C0(R+ × R+) and we seek the solution φ

to the forced wave equation
∂2φ

∂t2
− c2∂

2φ

∂x2
= F, (B.19)

on [a,+∞[×[a,+∞[, subject to the homogeneous BC: φ(x = a, t) = 0 and ∂φ
∂x (x = a, t) =

0.

We first seek a Green’s function G(x, t; y, τ) that obeys the simpler problem where

the forcing term is replaced by δ-functions in both space and time variables:
(
∂2

∂t2
− c2 ∂

2

∂x2

)
G = δ(x− y)δ(t− τ) (B.20)

The Green’s function must satisfy the same BC than φ:

G(x = a, t; y, τ) = 0 and ∂G
∂x (x = a, t; y, τ) = 0 (B.21)

Knowing G, the solution of the problem (B.19) is given by the convolution of the Green’s

function with the forcing function:

φ(x, t) =

∫ ∞

a

∫ ∞

0
F (y, τ)G(x, t; y, τ)dydτ. (B.22)

To find the Green’s function, we will consider the Fourier transform with respect to time,

and its inverse, defined as follows:

f̃(ξ) =
∫∞
−∞ f(t)e−iξtdt and f(t) = 1

2π

∫∞
−∞ f̃(ξ)e−iξtdξ. (B.23)
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We take the Fourier transform with respect to time of the equation (B.20):

−ξ2G̃− c2∂
2G̃

∂x2
= δ(x− y)e−iξτ

⇐⇒ ∂2G̃

∂x2
+
ξ2

c2
G̃ =

−1

c2
δ(x− y)e−iξτ .

(B.24)

The function G̃(x, ξ; y, τ) is thus the solution of a second order partial differential

equation (PDE), subject to the BC:

G̃(x = a, ξ; y, τ) = 0 and ∂G̃
∂x (x = a, ξ; y, τ) = 0 (B.25)

To solve this PDE, we first consider the associate homogeneous equation and then we

will use the method based on the variation of parameters to find a particular solution

to (B.24). The general solution is then the sum of the homogeneous and the particular

solutions.

The homogeneous equation corresponding to equation (B.24) is:

∂2G̃h
∂x2

+
ξ2

c2
G̃h = 0, (B.26)

which is solved by

G̃h(x, ξ; y, τ) = λ1(ξ; y, τ)ei
ξ
c
x + γ1(ξ; y, τ)e−i

ξ
c
x, (B.27)

where λ1 and γ1 are constants with respect to x.

Now we consider the inhomogeneous equation (B.24) and we use the method of

variation of parameters to seek a particular solution of the form:

G̃0(x, ξ; y, τ) = λ(x, ξ; y, τ)ei
ξ
c
x + γ(x, ξ; y, τ)e−i

ξ
c
x (B.28)

We deduce that ∂xλ and ∂xγ must satisfy the following system of equation:




ei
ξ
c
x∂λ

∂x
+ e−i

ξ
c
x∂γ

∂x
= 0

i
ξ

c
ei
ξ
c
x∂λ

∂x
− iξ

c
e−i

ξ
c
x∂γ

∂x
=
−1

c2
δ(x− y)e−iξτ .

(B.29)

The solutions of this system are:




∂λ(x, ξ; y, τ)

∂x
=
−δ(x− y)

2iξc
e−i

ξ
c
xe−iξτ

∂γ(x, ξ; y, τ)

∂x
=
δ(x− y)

2iξc
ei
ξ
c
xe−iξτ .

(B.30)

If we integrate between 0 and x we obtain the expression of λ:

λ(x, ξ; y, τ) =

∫ x

0

−δ(s− y)

2iξc
e−i

ξ
c
se−iξτds+ C1(ξ; y, τ)

=





−e−i ξc ye−iξτ
2iξc

+ C ′1(ξ; y, τ) if x ≥ y

C ′1(ξ; y, τ) otherwise

= −Θ(x− y)
e−i

ξ
c
ye−iξτ

2iξc
+ C ′1(ξ; y, τ),
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where Θ(x) is the Heaviside step function, defined for any x ∈ R by

Θ(x) =

{
0 if x ≤ 0,

1 if x > 0.
(B.31)

Similarly,

γ(x, ξ; y, τ) = Θ(x− y)
ei
ξ
c
ye−iξτ

2iξc
+ C ′2(ξ; y, τ). (B.32)

Eventually, the particular solution is given by

G̃0(x, ξ; y, τ) =
−Θ(x− y)e−iξτ

ξc
sin

(
ξ

c
(x− y)

)
+ C ′1(ξ; y, τ)ei

ξ
c
x + C ′2(ξ; y, τ)e−i

ξ
c
x.

(B.33)

The general solution is the sum of the solution to the homogeneous equation and the

particular solution:

G̃(x, ξ; y, τ) = G̃h+G̃0 =
−Θ(x− y)e−iξτ

ξc
sin

(
ξ

c
(x− y)

)
+C ′′1 (ξ; y, τ)ei

ξ
c
x+C ′′2 (ξ; y, τ)e−i

ξ
c
x,

(B.34)

where C ′′1 = C ′1 + λ1 and C ′′2 = C ′2 + γ1.

Since y is defined on [a,+∞[, Θ(a − y) = 0 for any y. As a result, to satisfy the

prescribed BC, C ′′1 and C ′′2 must satisfy:

C ′′1 e
i ξ
x
a + C ′′2 e

−i ξ
x
a = 0 (B.35a)

C ′′1 e
i ξ
x
a − C ′′2 e−i

ξ
x
a = 0. (B.35b)

We deduce that C ′′1 = C ′′2 = 0.

Consequently the solution to the problem given by equation (B.24) and BC (B.25) is

G̃(x, ξ; y, τ) = −Θ(x− y)
e−iξτ

ξc
sin

(
ξ

c
(x− y)

)
. (B.36)

To recover the Green’s function G, we have to compute the inverse Fourier transform of

G̃, which is defined by

G(x, t; y, τ) =
1

2π

∫ ∞

−∞
−Θ(x− y)

e−iξτ

ξc
sin

(
ξ

c
(x− y)

)
eiξtdξ. (B.37)

To compute this inverse Fourier transform, let us define the function

u(t) =

∫ ∞

−∞

sin
(
ξ
c (x− y)

)

,
ξeiξtdξ (B.38)

such that

G(x, t; y, τ) =
−Θ(x− y)

2πc
u(t− τ). (B.39)
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We first compute the derivative of u:

u(t) =

∫ ∞

−∞

sin
(
ξ
c (x− y)

)

ξ
iξeiξtdξ

=

∫ ∞

−∞

ei
ξ
c
(x−y) − e−i ξc (x−y)

2i
ieiξt

=
1

2

∫ ∞

−∞
e
iξ
(
t+

(x−y)
c

)
− eiξ

(
t− (x−y)

c

)
dξ

= π

[
δ

(
t+

(x− y)

c

)
− δ

(
t− (x− y)

c

)]
. (B.40)

The last result is obtained using the fact that the inverse Fourier transform of e−iξα is
1

2π

∫∞
−∞ e

−iξαeitξdξ = δ(t− α).

To obtain the expression of u(t), we integrate u between 0 and t. Since u(0) =
∫ +∞
−∞

sin(ξ x−y
c

)

ξ dξ = π, we get

u(t) =

∫ t

0
π

[
δ

(
s+

(x− y)

c

)
− δ

(
s− (x− y)

c

)]
ds+ u(0)

= π

[
Θ

(
t+

(x− y)

c

)
−Θ

(
t− (x− y)

c

)
+ 2Θ (−(x− y))

]
.

Replacing in the expression ofG (B.39) and using the fact that Θ (x− y) Θ (−(x− y)) =

0, we obtain

G(x, t; y, τ) =
Θ(x− y)

2c

[
Θ

(
t− τ − (x− y)

c

)
−Θ

(
t− τ +

(x− y)

c

)]
. (B.41)

Using this Green’s function in equation (B.22), the solution of the forced wave

equation can be written as

φ(x, t) =

∫ ∞

a

∫ ∞

0
F (y, τ)

Θ(x− y)

2c

[
Θ

(
t− τ − (x− y)

c

)
−Θ

(
t− τ +

(x− y)

c

)]
dydτ

=
1

2c

∫ x

a

[∫ t− (x−y)
c

0
F (y, τ)dτ −

∫ t+
(x−y)
c

0
F (y, τ)dτ

]
dy

=
−1

2c

∫ x

a

∫ t+
(x−y)
c

t− (x−y)
c

F (y, τ)dτdy

=

∫ x

a

[
c

2

∫ t+
(x−y)
c

t− (x−y)
c

−1

c2
F (y, τ)dτ

]
dy.

(B.42)

Comparing with equation (B.12), we can see that for any y < x, the term

c

2

∫ t+
(x−y)
c

t− (x−y)
c

−1

c2
F (y, τ)dτ

corresponds to the d’Alembert solution to the unforced wave equation with inhomogeneous

BC given by

φ(x = y, t) = 0 and ∂φ
∂x (x = y, t) = −1

c2
F (y, t). (B.43)
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Hence, the solution (B.42) of the forced wave equation can be viewed as the superposition

of the influences of the forcing term −1
c2
F , which acts similarly to a BC (here on the space

derivative of φ) for each y < x.

B.1.3 Application to the shallow-water equations

Linearisation of shallow-water equations

We consider the decomposition of the state variables u and h around the constant mean

state

(
H

U

)
:

{
u = U + u′

h = H + h′
(B.44)

where u′ and h′ are the perturbations around the mean, such that u′ � U and h′ � H.

Replacing in the 1D SWE without topography (A.22) and neglecting the terms of second

order in u′ or h′, we get 



∂h′

∂t
+ U

∂h′

∂x
+H

∂u′

∂x
= 0.

∂u′

∂t
+ U

∂u′

∂x
+ g

∂h′

∂x
= 0.

(B.45)

For the sake of simplicity, we omit the apostrophe in what follows.

We perform a change of variable
{
X = x− Ut
τ = t

(B.46)

such that, for any functional A,

∂xA = ∂XA (B.47)

∂t = −U∂XA+ ∂τA. (B.48)

The linearised SWE (B.45) thus become:




∂h

∂τ
+H

∂u

∂X
= 0

∂u

∂τ
+ g

∂h

∂X
= 0

(B.49a)

(B.49b)

Then we combine equations (B.49a) and (B.49b) as follows

∂(B.49a)

∂τ
−H∂(B.49b)

∂X
⇒ ∂2h

∂τ2
− gH ∂2h

∂X2
= 0

∂(B.49b)

∂τ
− g∂(B.49a)

∂X
⇒ ∂2u

∂τ2
− gH ∂2u

∂X2
= 0

We can define the state vector φ(X, τ) =

(
h(X, τ)

u(X, τ)

)
which then satisfies the wave

equation
∂2φ

∂τ2
− c2 ∂

2φ

∂X2
= 0 (B.50)
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with c2 = gH. We have shown that the linearised unidimensional SWE can be written

as a wave equation.

Linearised shallow-water equations with forcing

We have previously proved that the Cauchy problem with prescribed BC admits a unique

solution (see Appendix B.1.1). For the linearised SWE, we consider the following Cauchy

problem: 



∂2φ

∂t2
− c2 ∂

2φ

∂X2
= 0

φ(X = −Ut, t) = f(t) and
∂φ

∂X
(X = −Ut, t) = g(t)

(B.51)

where X = x− Ut.
Since the point where the BC is applied depends on t, the formula derived above

should not be used directly. However, in the case of subcritical flow we have U � c such

that c+ U ≈ c and c− U ≈ c. Using these approximations, the expression of φ is given

by the modified d’Alembert formula (B.12), by formally replacing ’x’ by X = x−Ut and

’a’ by −Ut:

φ(X, t) =
f
(
t+ X+Ut

c

)
+ f

(
t− X+Ut

c

)

2
+
c

2

∫ t+X+Ut
c

t−X+Ut
c

g(s)ds

⇐⇒ φ(x, t) =
f
(
t+ x

c

)
+ f

(
t− x

c

)

2
+
c

2

∫ t+x
c

t−x
c

g(s)ds (B.52)

Similarly, we can deduce from equation (B.42) the solution to the linearised SWE

with forcing:

φ(X, t) =

∫ X

−Ut

[
c

2

∫ t+
(X−Y )

c

t− (X−Y )
c

−1

c2
F (Y, τ)dτ

]
dY

⇐⇒ φ(x, t) =

∫ x

0

[
c

2

∫ t+
(x−y)
c

t− (x−y)
c

−1

c2
F (y, τ)dτ

]
dy, (B.53)

where we performed the change of variable y = Y + Ut in the integral.

The major advantage of linear theory is that the general solution to the linearised

SWE with forcing and inhomogeneous BC is the superposition of the solution with forcing

and homogeneous BC (B.53) and of the solution without forcing and with inhomogeneous

BC (B.52).

Effect of nudging on the shallow-water equations

Let us start again from the 1D SWE (B.45), adding nudging terms Kh(hobs − h) and

Ku(uobs − u) to the continuity and momentum equations respectively. Here again, the

lowercase variables refer to the perturbations around the mean state in the linearised

SWE. Kh (resp. Ku) is the nudging coefficient on h (resp. u) and hobs (resp. uobs) is the
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vector of observed fluid height (resp. velocity). Performing the same change of variables

and combination of the equations as previously, the wave equation B.50 becomes:

∂2φ

∂τ2
− c2 ∂

2φ

∂X2
=

∂

∂τ

(
Kh(hobs − h)

Ku(uobs − u)

)
− ∂

∂X

(
HKu(uobs − u)

gKh(hobs − h)

)
(B.54)

At first, we consider the case where Kh = 0 and we focus on the wave equation

relative to u:
∂2u

∂τ2
− c2 ∂

2u

∂X2
=

∂

∂τ
[Ku(uobs − u)] (B.55)

This is a forced wave equation where the forcing is F (X, τ) = ∂τ [Ku(uobs − u)]. From

the change of variables (B.46), we obtain ∂τ = ∂t + U∂x and consequently

F (x, t) = (∂t + U∂x) [Ku(uobs − u)] . (B.56)

If the steady state is reached, ∂t = 0 such that the forcing is of the same sign than

U ∂
∂x [Ku(u′obs − u′)]. We assume that:

• U > 0,

• there is only one observation,

• the effect of nudging is only local, i.e. Ku = kδ(x− xobs) where δ is the Kronecker

delta and xobs the abscissa of the observation.

Consequently Ku(uobs − u) is zero everywhere except for x = xobs, where it is positive if

uobs > u (and negative otherwise). ∂
∂x [Ku(uobs − u)] is thus non-zero only for x = xobs

where it is positive if uobs > u > 0 (case 1) or if uobs < u < 0 (case 2) (upstream

calculation of the gradient) and negative otherwise (cases 3 and 4). We have previously

shown that a forcing term has the same effect at any (x0, t0) than BC of the form

∂xu(x = y, t0) =
−1

c2
F (y, t0) (B.57)

for all y < x0. In our example, the forcing triggered by the nudging induces that the

velocity is constant everywhere (∂xu
′ = 0) except at x = xobs where it decreases in cases

1 and 2 (−1
c2
F (y, t0) < 0), and increases in cases 3 and 4 (−1

c2
F (y, t0) > 0).

We have verified numerically this influence of nudging on the profile of u in the four

different cases. The steady profiles of u obtained with nudging are shown in Figure B.2.

We notice that in all cases, the downstream value of u is further from the true state

than upstream. If the upstream velocity is prescribed as a Dirichlet BC (uL = ub),

u on the first half of the domain is equal to the ub and on the second half, the error

u− ut is greater. Thus nudging has a counter-productive effect. In fact the nudging acts

similarly to an intern BC, so the system is over-constrained. A solution to this problem

of over-constraint would be to release the upstream BC on u and prescribe a Neumann

BC: ∂xu = 0.
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(a) Case 1: ut > ub > 0
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(b) Case 2: ut < ub < 0
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(c) Case 3: ub > ut > 0
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Figure B.2: Effect of nudging on u for different cases.
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Figure B.3: Profile of the fluid height and

velocity contours at the end of the for-

ward integration with nudging (steady state

reached). The location of the points (L, A,

N, B, R) used in the demonstration are also

shown.
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Figure B.4: Characteristic curves that inter-

sect on the points A, N, and B.

Understanding the effect of forcing with the method of characteristics

Another approach to understand the effect of nudging on the SWE is to use the method

of characteristics. Let us consider the case 1 mentioned above: the background value of

u is smaller than the true value and U > 0. We further assume that the steady state is

reached. We consider 5 points in the domain as shown on Figure B.3:

• L on the left boundary (hL = 614.9m,uL = 4.56m/s)

• A just before the observation (hA = 614.9m,uA = 4.56m/s)

• N at the observation location and where nudging is applied (hN = 615.8m,uN =

4.63m/s)

• B just after the observation (hB = 616.7m,uB = 4.55m/s)

• R on the right boundary (hR = 616.7m,uR = 4.55m/s)

Figure B.4 shows the characteristic curves that intersect at point A, B, and N. Since

we consider a steady state, there is no variation in time, i.e. along the vertical axis.

Consequently the system is in the same state in L and L′, and in R and R′. Along the

characteristic curves, the Riemann invariants R+ = u+ 2
√
g′h and R− = u− 2

√
g′h are
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conserved. We deduce the following equalities:

usN + 2
√
g′hsN = uL + 2

√
g′hL (B.58a)

usN − 2
√
g′hsN = uR − 2

√
g′hR (B.58b)

uA + 2
√
g′hA = uL + 2

√
g′hL (B.58c)

uA − 2
√
g′hA = uN − 2

√
g′hN (B.58d)

uB + 2
√
g′hB = uN + 2

√
g′hN (B.58e)

uB − 2
√
g′hB = uR − 2

√
g′hR (B.58f)

where usN and hsN are the solutions from the conservation of Riemann invariants. uN

and hN define the state of the system after applying nudging:
{

uN = usN + δu

2
√
g′hN = 2

√
g′hN − δh

(B.59)

where δu and δh represent the effects of nudging term on u and h. If the nudging only

applies to u and if ut > ub, then δu > 0. From equation (B.45), we deduce that δh > 0.

Replacing equation B.59 in equations B.58 gives us:

{
uA + 2

√
g′hA = usN + 2

√
g′hsN

uA − 2
√
g′hA = usN − 2

√
g′hsN + δu + δh

⇐⇒





uA = usN +
δu + δh

2

2
√
g′hA = 2

√
g′hsN −

δu + δh
2

.

(B.60)

Similarly 



uB = usN +
δu − δh

2

2
√
g′hB = 2

√
g′hsN +

δu − δh
2

.

(B.61)

These equations are numerically verified here.

Consequently, due tu nudging, uA > uB and hA < hB. If the value of uL is prescribed

by the BC, the steady state with nudging will be such that uA = uL and uB < uL. As

a result, the distance from the true state, and thus the error, is larger in B than in A

where it is equal to the background error: the nudging has a counter-productive effect.

As suggested in the previous section, if the BC on u is a Neumann condition, the effect

of nudging can propagate upstream and downstream and the solution gets closer to the

true state.

B.2 Proving the convergence of the BFN algorithm

B.2.1 Evolution of the Riemann invariants

The 1D SWE without topography and with nudging are given below:

{
∂th+ h∂xu+ u∂xh = Kh(ho −Hh(h))

∂tu+ u∂xu+ g′∂xh = Ku(uo −Hu(u))

(B.62a)

(B.62b)
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where Kh and Ku are the nudging matrices, ho and uo the observation vectors, and Hh
and Hu are the observation operators. In what follows we assume that the observation

operators are linear and that the nudging matrices are proportional to the transpose of

Hh and Hu:

Kh = khHT
h and Ku = kuHT

u (B.63)

where kh and ku are positive scalars.

Due to nudging, the Riemann invariants are not conserved any more. To determine

how these quantities evolve along the characteristics

C+ :
dx

dt
= u+

√
g′h (B.64a)

C− :
dx

dt
= u−

√
g′h (B.64b)

we combine equations (B.62a) and (B.62b) as follows:





(B.62b) +

√
g′

h
× (B.62a)

(B.62b)−
√
g′

h
× (B.62a)

⇐⇒





d
(
u+ 2

√
g′h
)

dt
|C+ = Ku(uo −H(u)) +

√
g′

h
Kh(ho −H(h))

d
(
u− 2

√
g′h
)

dt
|C− = Ku(uo −H(u))−

√
g′

h
Kh(ho −H(h))

(B.65)

In what follows we only consider the characteristic C+ but similar derivation can

be obtained along C−. The observations ho and uo are random variables whose means

correspond to the true state (ht, ut) and the observation errors (εh and εu) follow normal

distributions with variances σ2
h and σ2

u respectively:

ho(i) = ht(i) + εh(i), εh ∼ N (0, σ2
h) (B.66)

uo(i) = ut(i) + εu(i), εu ∼ N (0, σ2
u). (B.67)

B.2.2 Convergence of BFN algorithms for linearised SWE

At first, we consider the SWE linearised around the constant mean state

(
H

U

)
(see

Eq. B.45). In this linearised approximation, the characteristic equations become

C± :
dx

dt
≈ U ±

√
g′H, (B.68)

and the Riemann invariants

R± = u′ ±
√
g′

H
h′. (B.69)

In this section we omit the apostrophe such that lower-case variables refer to pertur-

bations. Assuming that the truth and the background have the same average state

(
H

U

)
,

the nudging does not impact the characteristic equations. Consequently, characteristics

are straight lines with constant slope that are identical with and without nudging. The
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evolution of Riemann invariants with nudging along the characteristic curves, derived in

equation (B.65), becomes




d

(
u+

√
g′
Hh

)

dt
|C+ = Ku (uo −H(u)) +

√
g′

H
Kh (ho −H(h)) ,

d

(
u−

√
g′
Hh

)

dt
|C− = Ku (uo −H(u))−

√
g′

H
Kh (ho −H(h)) .

(B.70)

Since we assume that Kh = khHT and Ku = kuHT, the right hand sides of above

equations are zero except if an observation is available at i. Consequently, while C+ is

out of the area of influence of any observation, the Riemann invariant is conserved:

u(i+ 1) +

√
g′

H
h(i+ 1) = u(i) +

√
g′

H
h(i), (B.71)

where i and i+ 1 are two consecutive points along C+. And if an observation is available

at i, the Riemann invariant at i+ 1 is given by

u(i+ 1) +

√
g′

H
h(i+ 1) = u(i) +

√
g′

H
h(i) +

(
ku[uo(i)− u(i)] +

√
g′

H
kh[ho(i)− h(i)]

)
δt,

(B.72)

where δt is the time increment between i and i+ 1. Note that δt does not depend on i

because C has a constant slope. This relation of recurrence can be easily solved assuming

that ku = kh = k.

When the characteristic reaches the right boundary, it has crossed N observations

and the expression of the Riemann invariant at the border is equal to

u(L) +

√
g′

H
h(L) = ut(0) +

√
g′

H
ht(0) + (1− kδt)N

[
u(0) +

√
g′

H
h(0)− ut(0)−

√
g′

H
ht(0)

]

+kδt
N−1∑

j=0

(1− kδt)jε(N − 1− j)

(B.73)

where ε = εu +
√

g′
H εh. The last term of right-hand side corresponds to the stochastic

part which has zero mean and the other terms correspond to the deterministic part of

u+
√

g′
Hh.

We have previously seen that the equations governing the backward integration

of the BFN are the same than the forward equations, albeit replacing u by ũ = −u.

Consequently we can easily deduce the expressions of ũ −
√

g′
H h̃ along C̃−, which is

identical to C+:

ũ(0)−
√
g′

H
h̃(0) = ũt(L)−

√
g′

H
h̃t(L) + (1− k̃δt)N

[
ũ(L)−

√
g′

H
h̃(L)− ũt(L) +

√
g′

H
h̃t(L)

]

+k̃δt
N−1∑

j=0

(1− k̃δt)j ε̃(N − 1− j)

(B.74)
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where ε̃ = εu −
√

g′
H εh.

We first consider that the observations are perfect (εh = εu = 0). If we refer to the

j-th BFN cycle with superscript ’(j)’, the relations between forward and backward states

are as follows:
h(j+1)(0) = h̃(j)(0), u(j+1)(0) = −ũ(j)(0)

h̃(j)(L) = h(j)(L), ũ(j)(L) = −u(j)(L)
(B.75)

Combining equations (B.73), (B.74), and (B.75) we deduce that

u(j+1)(0) +

√
g′

H
h(j+1)(0)−

(
ut(0) +

√
g′

H
ht(0)

)
=

(1− kδt)N (1− k̃δt)N
[
u(j)(0) +

√
g′

H
h(j)(0)− ut(0)−

√
g′

H
ht(0)

]

(B.76)

Iterating (B.76), we obtain the expression of the errors on u +
√

g′
Hh at any BFN

cycle p:

u(p)(0)+

√
g′

H
h(p)(0)−

(
ut(0) +

√
g′

H
ht(0)

)
= (Γ)p

[
u(0)(0) +

√
g′

H
h(0)(0)− ut(0)−

√
g′

H
ht(0)

]

(B.77)

where Γ = (1− kδt)N (1− k̃δt)N .

From this relation, we deduce the conditions that kδt and k̃δt must be smaller than 1 to

ensure that the error vanishes. This proves that, under this condition, u(p)(0)+
√

g′
Hh

(p)(0)

converges toward the true state ut(0) +
√

g′
Hh

t(0) with BFN iterations.

We can perform the same derivation along C− – which comes to formally replace

’
√

g′
H ’ by ’−

√
g′
H ’ – we obtain that

u(p)(0)−
√
g′

H
h(p)(0) −→

p→+∞
ut(0)−

√
g′

H
ht(0). (B.78)

We deduce from these two conclusions that:

u(p)(0) −→
p→+∞

ut(0), (B.79a)

h(p)(0) −→
p→+∞

ht(0). (B.79b)

Similarly, we could prove that the state of the system along the right boundary

converge toward the true state with BFN iterations:

u(p)(L) −→
p→+∞

ut(L), (B.80a)

h(p)(L) −→
p→+∞

ht(L). (B.80b)

This demonstration is bases on the invariance of the characteristics with nudging,

which means that the background and the true state correspond to the same mean state.

212



B.2. Proving the convergence of the BFN algorithm

If this assumption is not satisfied, the characteristics are perturbed by nudging and the

characteristics in the nudged system do not correspond to the true characteristics any

more. We consider in the present work that the departure of the perturbed characteristics

from the unperturbed ones is small enough such that the previous demonstration is still

valid.

213


	Remerciements
	Abstract
	Résumé
	Assimilation de données pour des applications micro-météorologiques avec le modèle de mécanique des fluides Code_Saturne
	List of symbols
	Introduction
	Micrometeorology
	The atmospheric boundary layer
	Modelling meteorology
	Wind resource assessment
	Atmospheric dispersion modelling

	Introduction to data assimilation
	Available observations
	Data assimilation problem, definitions, and notation
	Nudging methods
	Variational methods
	Ensemble variational methods
	Data assimilation for CFD atmospheric simulations at local scale

	Data assimilation methods adapted to local-scale atmospheric simulations
	Introduction
	Back and forth nudging algorithm
	The iterative ensemble Kalman smoother
	3D-Var: a well-known method for comparison purposes

	Application of data assimilation to 1D shallow-water equations and comparison of the different methods
	Introduction
	Methods
	Results
	Conclusions

	Improving CFD atmospheric simulations at local scale for wind resource assessment using data assimilation
	Introduction
	Methods
	Results of twin experiments in 2D
	Results of twin experiments in 3D
	Results with field measurements in 3D
	Conclusions

	Improving dispersion modelling in built environments with CFD using the iterative ensemble Kalman smoother
	Introduction
	The MUST campaign
	Methods
	Results with the IEnKS and field measurements
	Conclusions

	Conclusions and perspectives
	Bibliography
	Supplementary information about the shallow water model of the atmospheric boundary layer
	Derivation of the shallow-water equations
	Theoretical resolution of the 1D shallow-water equations
	The method of characteristics
	Shallow-layer model for micrometeorology

	Supplementary information about the BFN algorithm
	Effect of boundary conditions and forcing on wave equation
	Proving the convergence of the BFN algorithm


