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Abstract

The interest surrounding the study of crowd phenomena spanned during the last decade across
multiple fields, including computer vision, physics, sociology, simulation and visualization. There
are different levels of granularity at which crowd studies can be performed, namely a finer micro-
analysis, aimed to detect and then track each pedestrian individually; and a coarser macro-analysis,
aimed to model the crowd as a whole.

One of the most difficult challenges when working with human crowds is that usual pedes-
trian detection methodologies do not scale well to the case where only heads are visible, for a
number of reasons such as absence of background, high visual homogeneity, small size of the ob-
jects, and heavy occlusions. For this reason, most micro-analysis studies by means of pedestrian
detection and tracking methodologies are performed in low to medium-density crowds, whereas
macro-analysis through density estimation and people counting is more suited in presence of
high-density crowds, where the exact position of each individual is not necessary.

Nevertheless, in order to analyze specific events involving high-density crowds for monitor-
ing the flow and preventing disasters such as stampedes, a complete understanding of the scene
must be reached. This study deals with pedestrian detection in high-density crowds from a mono-
camera system, striving to obtain localized detections of all the individuals which are part of an
extremely dense crowd. The detections can be then used both to obtain robust density estimation,
and to initialize a tracking algorithm.

In presence of difficult problems such as our application, supervised learning techniques are
well suited. However, two different questions arise, namely which classifier is the most adapted
for the considered environment, and which data to use to learn from.

We cast the detection problem as a Multiple Classifier System (MCS), composed by two dif-
ferent ensembles of classifiers, the first one based on SVM (SVM-ensemble) and the second one
based on CNN (CNN-ensemble), combined relying on the Belief Function Theory (BFT) designing
a fusion method which is able to exploit their strengths for pixel-wise classification.

SVM-ensemble is composed by several SVM detectors based on different gradient, texture and
orientation descriptors, able to tackle the problem from different perspectives. BFT allows us to
take into account the imprecision in addition to the uncertainty value provided by each classi-
fier, which we consider coming from possible errors in the calibration procedure and from pixel
neighbor’s heterogeneity in the image space due to the close resolution of the target (head) and
descriptor respectively.

However, scarcity of labeled data for specific dense crowd contexts reflects in the impossibility
to easily obtain robust training and validation sets. By exploiting belief functions directly derived
from the classifiers’ combination, we therefore propose an evidential Query-by-Committee (QBC)
active learning algorithm to automatically select the most informative training samples.

On the other side, we explore deep learning techniques by casting the problem as a segmen-
tation task in presence of soft labels, with a fully convolutional network architecture designed to
recover small objects (heads) thanks to a tailored use of dilated convolutions. In order to obtain
a pixel-wise measure of reliability about the network’s predictions, we create a CNN-ensemble by
means of dropout at inference time, and we combine the different obtained realizations in the
context of BFT.

To conclude, we show that the dense output map given by the MCS can be employed not only
for pedestrian detection at microscopic level, but also to perform macroscopic analysis, bridging
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the gap between the two levels of granularity. We therefore finally focus our attention to people
counting, proposing an evaluation method that can be applied at every scale, resulting to be more
precise in the error and uncertainty evaluation (disregarding possible compensations) as well as
more useful for the modeling community that could use it to improve and validate local density
estimation.
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Synthèse en français

L’étude des phénomènes liés aux foules a évolué durant la dernière décennie en s’étendant à
plusieurs domaines dont la vision par ordinateur, la physique, la sociologie, ou la simulation et
visualisation. Les études sur les foules peuvent être réalisées à différents niveaux de granular-
ité, ainsi la micro-analyse vise à detecter et suivre chaque piéton individuellement, tandis que la
macro-analyse vise à modéliser la foule comme un unique objet (système) déformable.

L’un des défis de l’analyse de foules en vision par ordinateur est que les méthodologies clas-
siques utilisées pour la détection de piétons s’adaptent mal au cas où seulement les têtes sont vis-
ibles, de part l’absence d’arrière plan, l’homogénéité visuelle de la foule, la petite taille des objets
et la présence d’occultations très forts. Pour cette raison, la plupart des analyses microscopiques
exploitant des flux vidéo sont effectuées dans le cas de foules de faible ou moyenne densité, tandis
que les cas de foules très denses sont traités par analyse macroscopique basée sur l’estimation de
champs de densité s’affranchissant de la connaissance de la position exacte de chaque individu.

Toutefois, une analyse microscopique de la scène est nécessaire pour contrôler le flux et prévenir
des catastrophes tels que des bousculades y compris et notamment dans des foules très denses.
Cette thèse s’intéresse alors à la détection des piétons dans des foules très denses depuis un sys-
tème mono-camera, avec comme but d’obtenir des détections localisées de toutes les personnes.
Ces détections peuvent être utilisées soit pour obtenir un estimation robuste de la densité, soit
pour initialiser un algorithme de suivi. En présence des problèmes difficiles tels que notre appli-
cation, les approches à base d’apprentissage supervisé sont bien adaptées. Les deux questions qui
en découlent sont quel classifieur et quelles données utiliser pour l’apprentissage.

Pour notre problème de détection, nous considérons un système à plusieurs classifieurs (Mul-
tiple Classifier System, MCS), composé de deux ensembles différents, le premier basé sur les classi-
fieurs SVM (SVM-ensemble) et le deuxième basé sur les CNN (CNN-ensemble), et combinés dans
le cadre de la Théorie des Fonctions de Croyance.

Précisément, l’ensemble SVM est composé de plusieurs classifieurs SVM chacun exploitant les
données issues d’un descripteur différent (gradient, texture et orientation), afin d’appréhender
différentes caractéristiques des objets recherchés, à savoir les têtes des piétons. La Théorie des
Fonctions de Croyance nous permet de prendre en compte, en sus de la valeur d’incertitude fournie
par chaque classifieur, une valeur d’imprécision supposée correspondre soit à une imprécision
dans la procédure de calibration, soit à une imprécision spatiale due à la résolution des objets
recherchés versus les descripteurs considérés.

Cependant, le manque de données labellisées pour le cas spécifique des foules très denses nuit
à la génération d’ensembles de données d’entrainement et de validation robustes. Nous avons
alors proposé un algorithme d’apprentissage actif de type Query-by-Committee (QBC) qui per-
met de sélectionner automatiquement de nouveaux échantillons d’apprentissage. Cet algorithme
s’appuie sur des mesures évidentielles déduites des fonctions de croyance modélisant l’information
issue des différents classifieurs.

Pour le second ensemble, pour exploiter les avancées de l’apprentissage profond, nous avons
reformulé notre problème comme une tâche de segmentation en soft labels. Une architecture
entiérement convolutionelle a été conçue pour détecter les petits objets grâce à un ensemble de
convolutions dilatées. Nous nous sommes appuyés sur la technique du dropout pour obtenir un
ensemble CNN capable d’évaluer la fiabilité sur les prédictions du réseau lors de l’inférence. Les
réalisations de cet ensemble sont ensuite combinées dans le cadre des Fonctions de Croyance.
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Pour conclure, nous montrons que la sortie du MCS peut être utile non seulement pour la
détection de piétons au niveau microscopique, mais aussi pour l’analyse macroscopique, ce qui
nous a permis de relier les deux niveaux de granularité. Pour le comptage de personnes, nous
avons proposé une méthodologie d’evaluation multi-échelle, qui est à la fois plus informative car
elle contraint les compensations d’erreur, et très utile pour la communauté de modélisation car
elle lie incertitude (probabilité d’erreur) et imprécision sur les valeurs de densité estimées.
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Introduction

The problem

The study of crowded scenes gained traction in recent years, due to the increased frequency of
large scale social events, and due to the security risks linked to this context. Applications in this
area span from pedestrian detection for video surveillance, to human behaviour analysis and un-
derstanding, and to crowd density estimation. Despite the continuous improvement of computer
vision and machine learning techniques, several complex problems still remain, especially in pres-
ence of high-density crowd situations, which are indeed the most dangerous and need more effort
in order to understand the mechanisms that lead to crushes and stampedes possibly causing loss
of human lives.

A crowd, defined in [190] as “a large group of individuals in the same physical environment,
sharing a common goal”, is far more than a simple sum of individuals. It can assume different and
complex behaviours with respect to those of its composing individuals if they were alone. Collec-
tive characteristics can emerge, and people can lose their individualities and adopt the behaviour
of the crowd entity.

Safe crowd conditions can be usually assumed for densities up to two-three persons per square
meter, and a maximum acceptable flow of 80 persons per meter and minute. Progressive crowd
collapse usually occurs at a density of about six or seven persons per square meter, although the
situation can start to be dangerous with a density of four or five persons per square meter where
congestion can arise quickly, which implies high risk for people to stumble or fall (particularly in
presence of uneven ground). Crushes often happen during religious pilgrimages or large enter-
tainment events, where people are surrounded by other individuals on all the sides and cannot
move freely. Besides, people in a dense crowd cannot see what happens a few meters away from
them, and they are not aware of the pressure in front. In those situations, episodes of panic are fre-
quent as people feel constricted and cannot breathe, causing a natural desire to leave the crowd.
As people try to get away however, they cause actual waves, that advance progressively and inex-
orably towards the other people close to them, resulting in a domino effect where it is difficult for
the people involved to avoid falling and being trampled.

Problems related to queues of people aggravate this stop-and-go wave phenomenon. In such
situations, people will subconsciously reduce their distance and the so-called queuing effect will
create the impression of progress. If people have to wait long and are not informed about the rea-
son, they will indeed become impatient and may eventually start to push intentionally, assuming
that the progress can be accelerated. However, this will eventually cause a substantial compression
of the crowd, especially in the front of the queue. When the distance between people is small, there
will be also inadvertent body contacts, which can cause unintentional pushing and an inevitably
reduction of the proxemics [96], the personal space of each individual that represents the com-
fort zone during interpersonal communication. The transition from an acceptable situation with
rare body contacts to a stressful situation with frequent body contacts can happen quite abruptly,
and pushing others away can become unavoidable in order to be able to breathe. In fact, exces-
sive body compression can cause asphyxia, and the thermal heat of surrounding people can cause
weakening and fainting.

Unfortunately, during the last decades there have been numerous examples of such episodes,
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distributed all over the world. We can mention here the 1989 Hillsborough disaster, that with
96 fatalities and 766 injuries is the worst disaster in British sporting history; the crowd disaster
in 2010 during the Love Parade in Duisburg, where 21 people died and more than 500 were in-
jured; the 2014 Shanghai stampede, where 36 people were killed and 47 injured during the New
Year’s celebrations that gathered around 300.000 people in the city. Well documented episodes are
the numerous tragedies that happened at Makkah during the Hajj, the annual Islamic pilgrimage,
when the region has to accommodate nearly three million pilgrims in one month. In particular, in
1990, 1426 people were suffocated and trampled to death inside a pedestrian tunnel near Makkah.
In 2006, a stampede during the Stoning of the Devil ritual on the last day of the Hajj in Mina killed
at least 346 pilgrims and injured at least 289 more. A similar accident happened very recently, in
2015, where more than 2000 people were killed as soon as two large groups of pilgrims intersected
from different directions in the same street, in an area that was not previously identified as a dan-
gerous bottleneck. The high number of deaths caused by this accident makes it the deadliest Hajj
disaster in history.

It is believed that most major crowd disasters can be prevented by simple crowd management
strategies and monitoring. For example, by analysing some of the video sequences recorded dur-
ing the unfortunate event in Mina of 2006, the authors of [103] report abnormal patterns in the
flow that could have possibly been identified as early as 30 minutes before the tragedy happened.
In the same way, a posterior study of the Duisburg’s Love Parade disaster [105] through analysis
of publicly available video sequences helped in defining the most critical moments of the unfor-
tunate event, that happened due to a series of contributory causes. The authors provided also a
table to help assess the level of criticality of the situation in the crowd, stating that the presence of
stop-and-go waves is an indicator that the outflow capacity is considerably reduced and the situa-
tion may thus escalate quickly. These studies prove that in both cases an automated video analysis
system would have helped to understand what was going to happen, still being in time for taking
proactive measures to avoid or at least mitigate crowd disasters and preventing the ensuing stam-
pedes through carefully planned security measures.

Since both the world population and the number of large scale social events continue to in-
crease, it becomes more and more important to study the causes of these tragedies in order to
be able to design better infrastructures the could help in preventing future accidents while at the
same time increasing and not diminishing the comfort of participants.

As pointed out in [129, 163], crowded scene study becomes thus important for a number of
different yet interconnected applications:

• Visual surveillance – It is related to the implementation of automatic or semi-automatic
surveillance systems for public spaces that every day gather thousands of people, like rail-
way stations or shopping malls. Conventional surveillance systems expect one or more hu-
man observers in charge of monitoring video streams coming from an always increasing
number of camera sources. However, psycho-physical research has stressed severe limita-
tions in their ability to monitor simultaneous signals [252]. Alternatively, in an almost auto-
mated setting computer vision algorithms could help safety and security personnel in their
tasks of anomaly detection and raising alarms, providing flux statistics, congestion analysis
and prevention;

• Crowd management – It can be used for developing strategies to avoid crowd disasters like
the ones mentioned above, and ensure public safety during mass gathering events, for ex-
ample by preventing people to enter in highly crowded areas through access control or by
deviating the mass flow to avoid the creation of queues and bottlenecks. It can be useful also
for the creation of intelligent environments, e.g. taking real-time decisions on how to split a
crowd in a museum, based on the behaviour of the mass;

• Public space design – It is useful to perform a-priori studies and modeling of public spaces,
to be able to design better infrastructures that increase the efficiency and safety of crowded
areas such as train stations, airport terminals or buildings and open spaces for large scale

x



events, through the implementation of ad-hoc barriers and emergency exits at particular
locations. It can be used to validate or empower with real data mathematical models used
in crowd simulations as well.

Although the social relevance of the possible applications related to crowd studies, several
challenges still remain and need to be tackled by the different scientific communities, such as
Computer Vision, Applied Mathematics and Physics, Cognitive Psychology, Computer Graphics,
and possibly others. This makes crowd study a complex and highly multidisciplinary field of study.
However, despite the fact that the different scientific fields are studying the same physical entity,
i.e. a crowd composed by pedestrians, research ideas have evolved almost independently. The va-
riety of aspects that can be investigated reflects in the impossibility of having an unified framework
and in a lack of shared baselines on real scenarios.

CROWDS 

ANALYSIS

SYNTHESIS

Microscopic level
(object level)

Macroscopic level

Microscopic level
(particle level) 

Macroscopic level 

Pedestrian detection

People tracking

Individual unusual behaviour detection

Density estimation / People counting

Abnormal pattern detection

Flow segmentation

Individual interactions

Collision avoidance

Pedestrian flow through narrow gates

Collective behaviour understanding

Mass flow in panic situations

Figure 1: Proposed crowd taxonomy for crowd analysis and synthesis. The topics explored in the context of
this work are highlighted with bold, italic text.

To this extent, Fig. 1 proposes a taxonomy for crowd understanding, which includes two main
fields of study:

• Crowd Analysis, usually investigated by the Computer Vision community, aimed to analyze
real scenes for visual surveillance and crowd management;

• Crowd Synthesis, usually performed by Mathematics, Physics and Computer Graphics com-
munities, aimed to model the crowds in different scenarios, and to assist with infrastructure
and large scale event design through realistic simulations.

These two fields of study are indeed intrinsically connected. On the one hand, in the context of
crowd synthesis there exists the need to exploit real data concerning crowd dynamics to be able to
validate, calibrate and integrate macroscopic and microscopic models, in order to obtain always
better and more realistic simulations. On the other hand, simulated data could be useful to per-
form crowd analysis, both for augmenting the available training information regarding emergency
situations which is usually very scarce, and to create a common baseline for the validation of the
obtained results.

Besides, both crowd analysis and synthesis can be tackled at different levels of granularity,
depending on the interpretation of the concept of crowd:
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• The Microscopic level, that interprets the crowd as a (possibly structured) collection of pedes-
trians maintaining their own individualities;

• The Macroscopic level, that models the crowd as a single entity.

Both levels of granularity are equally important as they address different but nevertheless cru-
cial tasks for crowd understanding. If the first type strives to study the interactions among various
individual behaviours, by means of pedestrian detection and tracking, the second type takes a
broader view of the scene and computes indicators that can be later exploited in a model, both for
collective motion analysis in macroscopic simulations, and to validate simulated data with cues
like density estimation performed on real data.

Outline of the work

This work deals with single-camera crowd analysis, and it is organized to span between the two
levels of granularity, partially bridging the gap between theoretical field and the actual phenom-
ena, maintaining a Computer Vision perspective yet promoting and facilitating a joint effort be-
tween the different scientific fields. Indeed, our final aim is to propose a method for crowd analysis
that can be easily integrated in simulation models, from both microscopic and macroscopic points
of view.

Our objective is to perform pedestrian detection in high-density crowds from a mono-camera
system. The problem is slightly different with respect to previous works reported in literature,
in that high-density crowds are usually macroscopically studied (e.g. for density estimation pur-
poses), whereas individual detection is usually performed only in presence of low to medium den-
sity crowds. From our side, we strive to obtain localized detections of all the individuals which are
part of the dense crowd. The detections can be then used both to initialize a tracking algorithm,
and to obtain robust density estimation.

We start in Chapter 1 by an extensive examination of the state of art about the different fields
of study related to crowd understanding, namely crowd synthesis and analysis, highlighting their
complementarity and the need of a joint effort between the research communities.

Then, Chapter 2 introduces supervised learning along with classifier combination techniques,
which are the two main “building blocks” of the proposed approach which is indeed a Multiple
Classifier System (MCS) composed by two ensemble of classifiers, based on SVM (SVM-ensemble)
and CNN (CNN-ensemble) respectively.

Concerning SVM-ensemble, Chapter 3 highlights, among several SVM descriptors for pedes-
trian detection, those that are more adapted in the context of high-density crowds, relying on
different gradient, texture and orientation information, fact that increases the complementarity
among them which will be particularly useful when performing fusion.

To this extent, in Chapter 4, after a brief recall about Belief Function fundamentals, we propose
a fusion method among the SVM-ensemble members which is based on the Belief Function The-
ory (BFT) in order to take into account the imprecision in addition to the uncertainty value pro-
vided by each classifier. We focus our attention on two different types of imprecision that can arise
and are worth being better examined. Firstly, SVM is in its standard form a crisp classifier. In order
to obtain class probabilities, logistic regression is usually performed with respect to a calibration
set, considering the distances from the calibration samples to the learned separation hyperplane.
However, this process may be quite dependent on the chosen calibration set, especially in pres-
ence of overlapping classes due to the impossibility of finding a perfect separation plane. Thus, a
first source of imprecision is taken into account by obtaining a Basic Belief Assignment (BBA) for
every sample out of its SVM classification score, i.e. distance from the hyperplane, through a dis-
counting operation. Secondly, we note that the classification is performed densely for every pixel
of the tested image. Although neighboring pixels should provide similar values of uncertainty, in
practice this could not happen due to the close resolution of the detector and the target heads
respectively. For this reason, a second discounting is applied in the spatial domain, with respect
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to the heterogeneousness of a pixel neighborhood. The proposed BBA allocation takes thus into
account the local decision for every pixel and goes beyond a single value which is only based on a
global reliability computed for the whole classifier.

After BBA allocation, BFT provides specific rules for the fusion of the different sources of in-
formation. However, we note that final results can be quite dependent on the heterogeneity of
the training set being used. Finding the most informative samples to perform the training would
lead to a better class separation hyperplane, reducing thus the amount of imprecision out of the
classification. To this extent, Active Learning (AL) algorithms are designed in order to automati-
cally select the data from which to learn. We thus propose in Chapter 5 an evidential Query-By-
Committee (QBC) AL method that incrementally augments the training set with samples on which
the committee of classifiers, built from the SVM-ensemble, does not agree, quantifying the level of
disagreement with different evidential measures. We prove that our evidential QBC active learning
algorithm built from a set of carefully chosen classifiers is able to exploit at maximum the available
information, reaching high levels of accuracy also in presence of a small training set. In addition,
it leads to the simultaneous improvement of the single classifiers performance.

This approach is particularly well suited for applications where a complete analysis of spe-
cific scenes is required but at the same time the available labeled data for that specific scene is
scarce. In such situations, it is impossible to blindly apply recent deep learning techniques based
on complex models that are usually better in exploiting large quantity of heterogeneous data. Nev-
ertheless, in Chapter 6 we propose a deep learning based solution which casts the problem as seg-
mentation in presence of soft labels to perform pedestrian detection, with a network architecture
especially designed to recover small targets thanks to a tailored use of dilated convolutions.

The proposed network is then trained on a very limited amount of data. In such situations, the
reliability of pixel-wise predictions becomes a critical information to take into account, and in or-
der to obtain it in Chapter 7 we cast the learning model as a Bayesian Neural Network by applying
dropout at inference time to obtain several realizations of the same perturbed network (referred
to as the CNN-ensemble). Instead of just computing the standard deviation out of this ensemble,
we propose a BBA allocation that is based on a discounting of each source on the basis of its de-
viation from the median value of the distribution. The evidential combination then allows us to
obtain evidential measures of imprecision that can be interpreted as measures of robustness and
reliability of the network. The final MCS composed by both SVM-ensemble and CNN-ensemble is
finally presented, showing that in presence of scarce labeled data for the analysis of specific scenes
we can still exploit deep learning methods (with particular attention to regularization techniques)
by combining them with traditional classifiers such as SVM based on hand-crafted features and
more adapted to work with less data (selected through active learning).

Lastly, in Chapter 8 we show how the obtained dense map out of the MCS for pedestrian detec-
tion (and thus microscopic analysis) can be employed to perform also macroscopic analysis. We
finally focus our attention on people counting, proposing a validation method that can be applied
at every scale, resulting in a more precise error evaluation (disregarding possible local compensa-
tions) as well as a more pertinent method for the modeling community that could use it to improve
and validate local density estimation, partially bridging the gap between analysis and synthesis.

The thesis terminates with conclusion and perspectives, with a particular attention to the pos-
sible exploitation of temporal information (coming e.g. from optical flow) to perform data associ-
ation between detections at different frames.
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Chapter 1

Crowd understanding

Contents

1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Crowd Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Crowd Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Coupling crowd synthesis and analysis . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 State of the art

Following the taxonomy proposed in Fig. 1, we present the state-of-the-art methods for both
crowd analysis and synthesis. Even though this work deals with crowd analysis, we find it useful to
briefly recall the proposed models used by the simulation community, to highlight once again the
complementarity between the two fields.

1.1.1 Crowd Synthesis

Pedestrian flow can be modeled both at microscopic level, by postulating rules for the behaviour
of each individual with respect to his/her goal and to the possible interactions with other people
or obstacles, or at macroscopic level, by considering the pedestrian mass in an aggregate way. On
the one hand, microscopic approaches are useful to model individual interactions and collision
avoidance mechanisms, but they are computationally expensive as each individual is related to
a dynamics equation, constrained by the solutions for neighboring pedestrians, to be solved at
each timestep. Besides, the size of the system to be solved depends on the number of people to be
modeled. On the other hand, macroscopic models are computationally less expensive, allowing to
treat analytically much larger environments, but they lack in modeling single behaviours, although
being useful for collective motion analysis.

Regarding the microscopic description, several models have been proposed over the past decades.
One of the most popular ones is the Social Force Model [104] for pedestrian movement dynamics.
The model describes pedestrian motion dynamics taking into account personal goals and envi-
ronmental constraints. The motion of each individual is indeed determined by an attractive force
toward his/her destination, and a repulsive force with other individuals and objects in the neigh-
borhood. Parameters can be tuned in order to model the urgency and aggressiveness of each in-
dividual. The motivation behind this model comes from the Least-Effort Hypothesis, by which
people try to choose the least-effort route to reach their goal, together with the observed psycho-
logical tendency of human beings to maintain a social distance among individuals. However, it has
been noted that the repulsive term is too strict in some cases, as it is not linearly dependent on the
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number of pedestrians . This model has been later extended by including additional terms to sim-
ulate different behaviours, such as socially bounded groups of people moving together, queuing
behavior, and behavior in case of a panic situations [102, 189].

Recently, extensive experiments have been conducted to study the microscopic dynamics of
pedestrian flows through narrow doorways [194]. The flow results to be orderly for polite crowds,
with narrowly distributed time lapses between egresses, while increasing the fraction of partici-
pants with selfish behaviour the flow gets disorderly and vanishing time lapses tend to emerge.
Regardless of the behaviours of the participants to the experiments, the flow rate and other flow
properties such as the disorder in the passages and the pressure perceived by the participants ex-
hibit a simple dependence on the density in the exit zone. This suggests that in a macroscopic
approach, for a given composition of the crowd, the behavioural aspects can be left aside and con-
firms the key role played by the density parameter in determining the flow rate. However, in the
experiments people were not allowed to push their neighbours. In a real panic scenario, at high
densities the global flow rate will strongly depend on other parameters, such as the pressure in the
crowd.

Motivated by the difficulty to put in place large-scale experiments involving moving crowds,
the same authors of [194] performed another set of tests by exploiting the analogies between
crowds and granular matter, in presence of a static dense crowd perturbed by a cylindrical “in-
truder” [195]. Intruding a cylinder into a medium is actually a classical mechanical test, that al-
lows for the discrimination between granular media and viscous fluids. In the case of the crowd,
the authors found some similarities with respect to granular matter, such as a depletion behind the
intruder after his passage, and a fast decay of the perturbation in the transverse direction. Never-
theless, they found also some differences, such as the absence of high-density formed in front of
the intruder, and the displacement of the individuals almost exclusively directed laterally (outward
or inward), at odds with the loop-like pattern with retro-circulation eddies seen in grains. How-
ever, these differences were only visible when people were allowed to see the intruder approaching
them, while if the intruder was arriving from the back of the crowd, the analogy resulted to be ver-
ified. This fact is in accordance with [118] where the crowd is seen as a thinking fluid. Indeed, the
crowd presents some specificities which are proper to pedestrians, which are able to anticipate
and initiate a movement after a sensory stimulus (e.g. visual or auditory), without the need of the
touch of other grains in order to be able to move (self-propulsion).

Instead of setting the path of each person individually, the Boids Model [224] was proposed to
simulate the aggregate motion of groups of individuals using local rules. In particular, it aims to
reproduce the collective motion of a flock of birds using three rules that regulate the interactions,
namely separation, alignment and cohesion. The separation rule provides the collision-avoidance
behaviour, the alignment rule influences the individual velocity and direction such that it results to
be aligned with the neighborhood, while the cohesion rule simulate the tendency of an individual
to move closer to the average position of the local neighbours. This model reflects the lane forma-
tion phenomenon, by which it takes less effort for people to follow immediately behind someone
that is already moving in the same direction, rather than push others in the crowd.

The concept of crowd as a thinking fluid has been further developed in the Continuum Crowd
Model [261] to produce more realistic crowd behavior, being able to capture phenomena includ-
ing lane formation and short lived vortices during turbulent congestions. However, the contin-
uum crowd model is not appropriate for all crowd behaviors. For example, it does not take into
account the case where people are so tightly packed that contact forces between them dominate
the physics. It is also limited by the requirement that people move with a common goal. This in
particular could not be true in panic situations.

To this extent, macroscopic models for pedestrian flows specifically for panic situations have
been proposed [44, 89]. They are able to describe mass evacuation from a narrow corridor or
bridge, assuming that the escaping pedestrians have to pass through an exit after having passed
through an obstacle to regulate the evacuation process. The presence of the mentioned obstacle
indeed, following the Braess’ paradox, has been shown to favour a decrease in the time of evacua-
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tion, if carefully placed in a well-chosen position in front of the exit.
Macroscopic models can be also grounded on microscopic phenomenological observations.

This is the case of [29], that studies the collective evolution of crowds along footbridges from in-
dividual behaviours. In particular, the authors considered the macroscopic model proposed in
[208] and they provide a mathematical procedure to obtain, out of the equations governing the
motion of single individuals, an equation describing the collective evolution of the crowd. This
work is particularly interesting in that it stresses, in the context of crowd synthesis, the possibility
of microscopic and macroscopic descriptions to be employed altogether for a common cause.

1.1.2 Crowd Analysis

In the same spirit of crowd synthesis, crowd analysis as well can be performed at different levels of
granularity:

• A finer micro-analysis, aimed to detect and then track each pedestrian individually, usually
applied in presence of low-density to medium-density crowds;

• A coarser macro-analysis, aimed to study the crowd as a whole, particularly suitable for very
high-density crowds.

From a Computer Vision perspective, this two levels assume completely different approaches that
should be thus inspected independently.

1.1.2.1 Micro-Analysis

Microscopic analysis of crowds relies on the analysis of trajectories of the various moving entities
extracted from video sequences. This approach is generally divided in different steps:

1. Detection of the targets in the scene;

2. Tracking of the detected targets;

3. Analysis of the trajectories to extract dominant flow, unusual behaviours, etc.

Regarding the detection of the targets, although in the last years many efforts have been de-
voted to improve the performance of pedestrian detection, baseline methods cannot be always
applied in crowded contexts.

Pedestrian detection by itself is noticeably one of the most challenging categories of object de-
tection. There exists indeed a large variability in the local and global pedestrian’s appearance, due
to the variety of possible body shapes, or different styles and types of clothes and accessories which
may perturb the silhouette of the individuals. Besides, in real-world scenarios several people can
occupy the same region, partially occluding each other, and this phenomenon tends to become
not negligible with the increase of crowd density. The advances proposed in the literature are not
usually transferable to high-density crowd detections for multiple reasons, among which we can
recall the absence of background, the heavy occlusion of body parts, the high visual homogeneity
of the scene and the small size of the targets.

Traditionally, in the context of supervised learning the Histogram of Oriented Gradients (HOG)
descriptor [51] has been proposed for the scope, but its performance can be easily affected by the
presence of background clutter and occlusions. Alternatively, deformable part-based models [74]
consider the appearance of each part of the body and the deformation among parts for detection.
Pedestrians are modeled as collections of parts, firstly generated by learning local features such as
edgelets and orientation features, but in presence of severe occlusions and high visual homogene-
ity the various body parts can be hidden, and the difference between them becomes too slightly to
be exploited as clue. Background subtraction is also usually employed, to perform motion-based
detections. Beside removing potentially significant parts of the scene which do not contain objects
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of interest, background subtraction allows for the use of descriptors built upon the blobs associ-
ated to the foreground, such as their skeleton or the shape of the foreground connected com-
ponents [183]. Unfortunately, in a cluttered scene this approach is ineffective due to the limited
presence of background. Recently, neural networks which make use of a region proposal step have
been employed in the context of pedestrian detection, in conjunction with hand-crafted features
based on variants of Integrate Channel Features [183] (ICF) detector [110, 257], or stand-alone
[158, 294, 295]. Late fusion of multiple convolutional layers has been recently proposed in [263]
relying on Region Proposal Networks (RPNs), showing that earlier convolutional layers are better
at handling small-scale and partially occluded pedestrians. Again, in presence of dense crowds,
region proposal step loses its interest as the number of targets becomes too large to be tractable.

For all the highlighted limitations, a straightforward extension of the techniques designed for
pedestrian detection in non-crowded scenes is not suitable for dealing with crowded situations.
Furthermore, pedestrian detection in crowds highly depends on the level of crowd density, and
methods adapted to lower-density crowds may fail as the number of people in the scene increases.

In low-density crowds, object-level analysis can be successfully performed to identify the in-
dividuals in the scene. Haar wavelet transform can be used to extract the areas of the head-like
contour [167]. Alternatively, a combination between local and global features can be exploited to
obtain the probability of a person being present, comparing small patches of learned human ap-
pearance and occurrence distribution [154]. Temporal information can be also exploited in order
to build a spatio-temporal descriptor based on 3D gradients [140], or exploiting a cascade of clas-
sifiers of Haar-like features trained to deal with different motion directions [127]. However, these
methods are not suited to handle the presence of too many occlusions.

To this extent, a multiple camera setting can be exploited. The use of multiple cameras for
video analysis (mainly surveillance) is an extensive topic [2, 124], that has been applied also to
pedestrian detection in crowds. A small scale experiment has been proposed in [71], proving the
potential of multiple camera tracking in occluded scenes. This study proposes an effective solu-
tion for exploiting jointly hypotheses related to the presence of a head in multiple cameras, where
the consistency is evaluated using the pixel intensity information. Other methods [33, 125, 206,
214] heavily rely on foreground extraction, while [137] even requires feet visibility in order to work.

Unfortunately, cameras are usually placed with low pitch angles and would not observe suf-
ficient empty areas among proximate pedestrians in order to benefit from foreground extraction,
and frequent occlusions may make people feet invisible. Recently, [205] tackles these problems by
performing multiple camera based pedestrian detection exploiting low level information fusion.
The authors propose an unsupervised detection method which exploits the visual consistency of
the pixels in multiple views in order to estimate the pedestrian occupation, without the necessity
of performing any background segmentation and showing good performance even in presence
of high visual homogeneity. However, in all these works the considered scenes are rather small
and the crowd density is not extreme. Extending these types of solution to large scale scenarios
raises several difficult problems. Nevertheless, in many video surveillance circumstances several
cameras may not be available due to limitations of the infrastructures.

In a mono-camera situation and in presence of dense crowds, like the setting we are consid-
ering in this work, classifiers are usually trained to recognize heads, which in an occluded envi-
ronment are almost the only visible part of a person. Cameras tend indeed to be placed above the
heads of the people and tilted to face the scene downwards, thus reducing the amount of occluded
heads with respect to other body parts, allowing for the detection of head-shoulder aggregations,
i.e. the so-called Ω-shape [161]. Single classifiers however may fail due to the complexity of the
problem, and it becomes therefore essential to rely on multiple complementary visual detectors
which are able to provide different interpretations of the input data. The reader is referred to
Sec. 3.1 for a more detailed digression about state-of-the-art pedestrian detectors.

The obtained detections may then be used to initialize a tracker. Initial attempts [301, 302]
proposed effective approaches based on mean-shift [45] or based on 3D human models integrated
into a Bayesian framework, but these methods cannot handle properly persistent occlusions or
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multiple close-by subjects. A feature tracking algorithm, namely the Kanade-Lucas-Tomasi (KLT)
tracker [243], has been used in order to analyze the coherence of the movement through clustering
and assist the detection process to segment individuals in a crowd [218]. A clear limitation however
is the applicability of the method to only almost stationary crowds. KLT tracker has been employed
also in [226], after having obtained initial detections through the minimization of a joint energy
function incorporating scores of individual detections and local density estimation. Optical flow
is then used in [26] in conjunction with a totally unsupervised Bayesian clustering to detect targets
based on the assumption that points with similar motion vectors should be part of the same entity.
However, since rigid motion is assumed, the algorithm may fail in presence of arm movements or
in presence of particularly dense flow in the same direction.

Particle Filter (PF) framework can be used to perform visual tracking [16]. Over the years, a
number of extensions to the original framework that was only based on colour clues were pro-
posed, to be able to exploit a combination of colour and contour features [216], and to be able to
track multiple targets simultaneously [5, 198]. However, in presence of too many targets PF so-
lutions can become intractable, and optimizing detection assignments over a temporal window
scales more conveniently for a large number of targets [56, 271].

Finally, the knowledge of individual trajectories in a crowd can be exploited to identify the
main flow and detect possible unusual behaviours from some individuals. To this extent, [40]
presents a framework to automatically identify dominant motions in crowded scenes, indepen-
dently tracking low-level features using optical flow and clustering them into trajectories based
on longest common subsequences. Individual motions which are not coherent with dominant
flows are highlighted and marked as potentially unusual behaviours (e.g. a person making a U-
turn where all the people move towards the same goal). Without the need of tracking as well as
human labeling, [274] clusters moving pixels into atomic activities in a completely unsupervised
way, allowing to discover the different interactions in the crowd and to detect anomalies. However,
all these methods assumes dominant motions from which individual unusual behaviours can be
extracted, and they cannot be applied in case of unstructured crowded scenes where the motion of
individuals within a crowd appears to be random, with different participants moving in different
directions over time (although in case of high-density crowds this assumption could hold since
people proximity limits the freedom of movement).

Lastly, the complete knowledge of all the pedestrians composing a scene can be useful also
for the related application of people counting [160]. Detection-based approaches require indeed
a preliminary detection step, usually performed in a sliding window fashion, that allows for an
automatic inference of the number of people present in the scene by simply counting the number
of total detections obtained. Again, although being a successful strategy in presence of low density
crowd scenes, this method fails with higher levels of density characterized by strong occlusions
and background clutter.

1.1.2.2 Macro-Analysis

Macroscopic analysis, also referred to as holistic, interprets the crowd as a unique entity, being
particularly convenient when the crowd starts to become denser. This type of analysis is usually
employed for two different tasks which may assume different input data:

• People counting and density estimation, usually performed from still images coming from
possibly completely different scenes;

• Flow segmentation and abnormal motion pattern detection, assuming the availability of
video sequences.

Recently, automated crowd density estimation and counting has received attention for safety
control, playing an essential role in crowd monitoring. It can be useful indeed for measuring
the comfort level of the crowd and for preventing potential overcrowded situations. Besides the
aforementioned detection-based approaches, there exist also the so-called regression-based ones,
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which are indeed holistic methods more appropriate in presence of high-density crowds with
strong occlusions and clutter. This methods attempt to learn a mapping between features ex-
tracted from local image patches to their counts, in order to free from the necessity to formerly
localize each target. The initial works mainly use hand-crafted features [119, 155], while the more
recent works are rather based on Convolutional Neural Networks (CNNs) [164, 199, 245, 298]. For
a more comprehensive examination of the different methods, the reader is referred to Sec. 8.2. Ir-
respective of the method used for people counting, the main concern is that the results are usually
evaluated with respect to the whole testing images, allowing for possible error compensations and
not performing an analysis at every scale, which could be useful for the simulation community
interested also in local information in order to better characterize the crowd.

Other tasks that can be performed in a macroscopic setting are flow segmentation and abnor-
mal motion pattern detection, where motion pattern refers to a set of dominant displacements
observed in a crowded scene over a given time scale. In [6] the authors propose an approach to
segment the crowd flow and possibly to detect instabilities based on Lagrangian particle dynamics
and optical flow. Also [181] uses particle dynamics, learning normal behaviour in the scene using
a bag of words to detect abnormal ones, without the need of any segmentation.

A different approach [142] avoids the use of optical flow-based motion description by extract-
ing 3D spatio-temporal cuboids and computing spatio-temporal gradients of pixel intensities, rep-
resented using a 3D Gaussian Mixture Model (GMM). The authors model normal behaviour using
a Hidden Markov Model (HMM) and label a new observation as abnormal if it does not fit the
learned model. GMMs are employed as well in [230] to generate a model of normality, encoding
optical flow information using a 3D Grey Level Co-occurrence Matrix (GLCM). Temporal analysis
of GLCM-based texture measures has been employed recently in [168] for the detection of abnor-
mal activities.

An interesting approach appears in [78], where the crowd is modeled as an evolving graph in
time. The vertices of this graph correspond to a set of local features, which are spatially and tem-
porally connected using Delaunay triangulation and sparse tracking. This compact representation
preserves local information and bypasses any group segmentation step usually involved in micro-
scopic methods. However, sparse feature extraction and the proposed triangulation method are
not suited for high-density crowds where the proxemics between people is consistently reduced.

Abnormal motion pattern detection can be performed also to detect violent flows. The Violent
Flow (ViF) method is proposed in [99] to identify dangerous crowd flows in densely populated
areas using changes in optical flow magnitude. Criticisms about the inability of ViF to capture
potentially important changes in orientation are underlined in [88], where the authors introduce a
variant of the ViF descriptor that utilizes both orientation and magnitude of optical flow. A related
but different work is the framework proposed in [248], which is able to correctly identify multiple
crowd behaviors (bottlenecks, lanes, arches, and blocking) through stability analysis for dynamical
systems.

Generally, all these methods assume normal behaviour by learning a representation of it, and
find anomalies as evidences neglecting the learned baseline model. However, they show their
limitations when significant overlap of motion patterns is present in the scene, or when there is a
lack of consistency in the flow’s characteristic.

It should be finally noted that works related to density estimation could be easily extended for
abnormality detection in crowds, as in [283] where a Support Vector Machine (SVM) is trained on
top of the people counting stage, in order to detect potential danger due to overcrowdedness.

1.1.3 Coupling crowd synthesis and analysis

Crowd synthesis and analysis are two different fields of study that assume the use of totally dif-
ferent techniques to reach their scopes. However, since both of them involve the study of the
same physical entity - albeit from different perspectives - they could intrinsically benefit from
each other. Over the years, there have been several works about crowd synthesis helping analysis
and vice-versa, but open problems in both directions still remain.
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An interesting example of crowd analysis exploiting in an original way concepts related to
crowd synthesis is [181], which deals with abnormal crowd behaviour detection. It uses indeed the
concept of Social Force Model, by modeling the crowd as a collection of interacting particles with
associated attractive force (related to personal goal) and repulsive force (related to the psycholog-
ical tendency of human beings to maintain a certain distance with respect to other pedestrians
and the environment). In this way, the regions of anomalies in the abnormal frames are localized
using interaction forces.

More practically, a common problem of crowd analysis techniques is the limited availability of
labeled data, to perform both training and validation. The majority of algorithms rely indeed on a
training stage, which requires the existence of a considerable amount of data to learn from. Again,
labeled data are needed also to be able to perform a robust evaluation of the results. The task
of labeling the data is tiresome, as much as being inevitable. In presence of high-density crowd
images, the task is particularly time-consuming and prone to errors. For people tracking appli-
cations then individual trajectories should be also manually extracted. Besides this, there exists
also the intrinsic problem of scarce availability of data which represent emergency situations (e.g.
panic or violent episodes), which would be very interesting and useful to analyze. Visual evidences
of such scenarios would be also unsafe to reproduce in a controlled scenario. To this extent, there
exist some approaches which explore crowd simulations in order to obtain data to train or validate
crowd analysis techniques. Video sequences of dangerous situations are generated in [8], such as
blocked exits or individual collapses. Crowd simulation algorithms can be then used to generate
ground-truth data [7, 167] for validation purposes. A complete dataset, the Agoraset Dataset [48],
has been proposed to be used for evaluation of low-level video crowd analysis methods, such as
tracking or segmentation. It has been designed to reflect classic crowd flow observed in real life
situations, such as flow of humans in a free environment or in an environment with obstacles,
evacuation through a door, and crossing flows.

The advantages of using simulated data for crowd analysis are the possible control over the
simulation features, the possibility to generate an associated ground truth and to use the simu-
lated data to bootstrap machine learning techniques. However, using crowd simulations to help
analysis still presents some problems. Firstly, crowd simulators are based on mathematical models
that reproduce the average behaviours of the individuals, being not able to simulate totally unpre-
dictable behaviours. Secondly, as the main objective of computer vision analysis technique is to
be used in real-world situations, the realism of the simulations is a major issue despite recent ad-
vances of computer graphics techniques. This is related to the modeling of realistic humans (e.g.
different shapes and clothing), as well as realistic environments (e.g. surrounding structures, vary-
ing lightning conditions, camera perspective noise simulation and lens distortion), which compli-
cates the model and increases the number of its parameters.

To this extent, crowd analysis can be used to help crowd synthesis. In order to obtain realis-
tic scenarios, information from real world can be fed into a crowd simulator, as in [49] where an
optical flow-based method is used to capture the movements of people, generating more realistic
velocity fields over time. In [136] the authors propose a computer vision tool to provide useful in-
formation that could be helpful in the initial configuration of the particles of simulation models,
providing support in the validation phase as well.

The concept of data-driven simulations has been investigated recently in [15], where the au-
thors propose a framework to model both macroscopic and microscopic behaviours. Macroscopic
modeling is done extracting and clustering pedestrian trajectories from real videos, in order to
compute the velocity field associated with each exit region. Then, microscopic modeling exploits
both the Social Force Model and the computed velocity fields. The authors use real data recorded
from a drone, where the particular top-view position of the camera allows for an accurate mapping
of the environment as well as an accurate projection of the velocity fields to the ground plane. The
applicability of the method is then limited to low density crowds. In general, defining quantita-
tive metrics to evaluate the realism of a crowd simulation is still an open question, and needs the
availability of real data to validate the simulated one.
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Posterior analysis of specific crowded scenes can then help in the studies of mass gatherings
to ensure the security of future events. Many empirical studies have been performed during the
last years. Some of them exploit private video sequences of real episodes of stampedes. In [103]
for instance, the authors analyzed real video sequences from the 2006 stampede that happened
in Mina, revealing two subsequent, sudden transitions from laminar (i.e. ordered) to stop-and-
go and turbulent flows, which arise questions about the goodness of many previous simulation
models in presence of overcrowded unidirectional flows. However, this type of data representing
real emergency situations rarely exists and is generally difficult to obtain.

Other works assume an a-priori scene equipment with specific sensors, like [296] in which ac-
tive infrared counters have been employed to count the number of people by detecting the retro-
diffused light from each individual. The study, by analysing the recorded data during the 2011
Chinese lantern festival along with sensor information, has been effective in quantitatively inves-
tigating the properties of unidirectional flow in a crowded large street, estimating the capacity of
the street (which is indeed closely related to the maximum flow rate) that resulted to be higher with
respect to the recommended value of guidelines and specifications of facilities design in architec-
ture. This allowed to better exploit the available spaces in the subsequent editions of the event.
The work is also interesting because it stresses the differences between unidirectional large flows
and bidirectional unstructured flows, and the necessity of applying totally different models for the
two situations. However, it is not easy for every large scale event to find good open spaces where
to install the needed equipment, and there are (international) regulations to follow as well as pri-
vacy concerning issues that increase the difficulty in obtaining legal permissions of recordings and
sensor placing.

To this extent, other works exploit only publicly available sources, e.g. investigation reports
by public authorities and media, maps from Google Earth, 360◦ photographs, YouTube videos,
documents released by Wikipedia and other sources. An example is the posterior study of the
Duisburg’s Love Parade disaster [105], which helped in the definition of a common scale of sit-
uation criticality levels as long as the measures to face each stage, from access control to crowd
evacuation and emergency first aid disposal. The problem of this approach however resides in the
fragmentation of information and in the lack of synchronization and possibly agreement across
the various sources. The insight of these studies led to organizational changes that helped in the
organization of safer future editions of the events, pinpointing the necessity of posterior studies
tailored to the specific situations. To this extent, density estimation analysis at every scale will be
helpful in the definition of realistic models for unidirectional flows.

1.2 The Dataset

A major challenge in crowd analysis is the scarce availability of images or video sequences, which
can be used either for training or validation purposes. Usually, large datasets for pedestrian de-
tection and tracking in crowds using video sequence, like PETS2009 [70, 75] or EWAP [204] do not
deal with very high-density crowds but are rather adapted for applications where all the body of
the people is visible. To face occlusion problems, they can be composed of several synchronized
camera views placed in different locations, like PETS2009, or they can exploit almost vertical sin-
gle cameras, like EWAP. Besides, they usually focus on indoor detection, like the Mall Dataset [34],
where cameras are easy to install and there is an adequate level of environmental lightning. These
types of dataset are appropriate for applications such as person re-identification [91], i.e. when
the same person has to be repeatedly recognized by several cameras in order to track his or her
path, or behavior analysis and study of group dynamics and collision avoidance mechanisms. In
particular, the Grand Central Dataset [304] provides KLT keypoint trajectories extracted from the
video, and is well suited for understanding and learning crowd behaviors, although the crowd is
not very dense.

Conversely, high-density crowd large datasets are well adapted for the task of density estima-
tion but they do not suit our needs for two reasons. Some of them, like UCF-CC-50 [119] and the
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(a) (b)

(c) (d)

Figure 1.1: Example images coming from dataset composed by temporal sequences of images/frames, for
the task of pedestrian detection and tracking in low to medium dense crowds. (a), (b) Different views of
PETS2009 dataset; (c) Grand Central dataset; (d) Mall dataset.

more recent ShanghaiTech Dataset [293, 298] are composed by still images coming from differ-
ent scenes. This allows the learning algorithm to be more robust to scene variations, but limits
the applicability of the data just to a small subset of applications related to people counting, with
no possibility of an extension to people tracking. On the other hand, some other datasets deal
with video sequences of large crowds, but do not have labeled ground-truth with precise localiza-
tion coordinates for all the individuals, providing instead just the total number of people entering
and leaving the scene per frame, like PCDS [250], or the bounding box information of the salient
regions, like the Crowd Dataset [165]. In the same way, the very recent Crowd-11 dataset [69]
provides over 6000 video sequences of crowds, but the ground-truth is expressed in terms of brief
video-level based annotations describing the crowd rather than the individuals (it has indeed been
proposed for the different task of behavior understanding).

In the very recent past, thanks to the advances in computer graphics and related hardware, al-
ways more simulated datasets have been proposed. For example, the authors of [235] introduced a
new optical flow dataset exploiting the possibilities of recent video engines to generate sequences
with ground-truth optical flow for large crowds in different scenarios. However, their ground-truth
is expressed in terms of optical flow, and not precise trajectories of the individuals. On the con-
trary, the Agoraset dataset [48] provides simulated video sequences of high-density crowds along
with the positions of all the pedestrians, but the main problem is the lack in photo-realism of
the scene, so that the detection task loses its interest. Alternatively, JTA [72] dataset is a recently
proposed huge dataset for pedestrian pose estimation and tracking in urban scenarios created by
exploiting the highly photo-realistic video game Grand Theft Auto V developed by Rockstar North.
It includes 512 full-HD videos of 30 seconds along with 3D annotations for each frame. It presents
impressive realism of the scenes, however high-density scenarios are rare due to the specific game
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(a) (b)

(c) (d)

Figure 1.2: Example images coming from dataset of heterogeneous images of high-density crowds. (a), (b)
Different images of UCF_CC_50 dataset; (c), (d) Different images of ShanghaiTech dataset.

Figure 1.3: Example images from the JTA dataset.

environment (see Fig. 1.3).

The dataset used in this project is composed by gray-scale images acquired at Makkah during
very congested times of the Hajj period, in October 2012. It has been partially manually labeled
with head’s center coordinates as explained in Appendix A, in order to have different training, val-
idation and testing images. As shown in Fig. 1.4, the pictures in this dataset represent very highly
crowded scenes in which the people to be detected are really small and not entirely visible, i.e.
very vulnerable to occlusions, and difficult to detect because of the absence of static background.
Moreover, due to the dynamics of the scene, people are often side-viewed or back-viewed, dimin-
ishing the visual appearance available details. Thanks to the camera pitch angle, the human body
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Figure 1.4: Example image from the Makkah dataset (considered in the context of this work).

parts which are mostly visible are the heads, that will thus become our targets for the detection
task. Both for privacy reasons and implicit camera recording limits however, facial traits of the
people composing the crowd are not delineated, another factor that increases the difficulty of the
scene’s analysis. Nevertheless, a classifier can be efficiently trained to perform head-shoulder de-
tection, that is characterized by a distinctive omega-like shape in almost all view angles [161]. As
depicted in Fig. 1.5 however, our setting is definitely more difficult than the usual head-shoulder
detection problem and needs wider processing and discussion.

Figure 1.5: Comparison between a typical head used to perform head-shoulder detection (first image taken
from [159], RGB and rich in texture and information) with respect to examples of heads from our Makkah
dataset (grey-scale images with high clutter and frequent occlusions).
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2.1 Introduction

2.1.1 The role of machine learning in computer vision

The objective of computer vision is to implement systems with human-like perception capabili-
ties. Over the years, the field has evolved from pattern recognition and image processing appli-
cations to advanced methods of image understanding and knowledge-based vision. There has
been an increasing demand to address real-world problems, requiring algorithms which are able
to work under partial occlusion, high clutter, low contrast and changing environmental condi-
tions. To face these challenges, computer vision techniques must be robust and simultaneously
flexible with respect to the variety of possible given tasks.

At the same time, the field of machine learning uses statistical techniques to give computer
systems the ability to “learn from data”, i.e. progressively improve performance on a specific task.
With the recent advances in hardware and software, machine learning techniques can be exploited
by more and more practical applications. To this extent, computer vision provides interesting and
challenging problems to drive advances in the machine learning field. Machine learning tech-
nology has indeed a strong potential to contribute to the development of flexible learning-based
vision systems, with great generalization ability.
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2.1.2 Learning models

Machine learning includes several types of techniques, which can be divided into different groups
on the basis of specific learning models:

• Supervised Learning – In supervised learning the algorithm is given a set of samples along
with their actual labels, and it learns a mapping function from the samples to the set of
possible outputs, which can be used later to classify unseen test examples. The labeling of
the training data is usually done by an external mechanism (e.g. humans), hence the name
“supervised”;

• Unsupervised Learning – On the contrary, in unsupervised learning the samples do not come
along with their label. Unsupervised learning tries to find regularities in the unlabeled train-
ing data (such as different clusters under some metric space), infer the class labels and under
certain circumstances even the number of classes. The most common unsupervised learn-
ing technique is clustering;

• Reinforcement Learning – Reinforcement learning refers to goal-oriented algorithms, which
learn how to attain a complex objective. The algorithm starts from a blank state, and learns
to take decisions (or actions) given its current state by maximizing a quantifiable reward
signal. There is no concept of labeled/unlabeled data involved, rather the learning process
is done by iteratively trying sequences of actions and getting rewards until the integrated
reward signal is maximized;

• Semi-supervised Learning – Semi-supervised learning falls between supervised and unsu-
pervised learning. The algorithms in this category use a small amount of labeled samples in
conjunction with a large amount of unlabeled data, and are particularly useful in applica-
tions where it is difficult to obtain the labels of a large quantity of data, since it often requires
skilled human agent intervention. The cost associated with the labeling process may thus
make the building of a fully labeled training set infeasible, whereas the acquisition of un-
labeled data remains relatively inexpensive. A simple method to perform semi-supervised
learning is pseudo-learning, where a classifier is trained on a small amount of labeled data,
tested on the unlabeled one and re-trained on the whole dataset with the obtained estimated
labels. An alternative is co-training [18], that requires at least two views of the data. It first
learns a separate classifier for each view using any labeled examples, then the most con-
fident predictions of each classifier on the unlabeled data are used to iteratively construct
additional labeled training data;

• Active Learning – Active learning is similar to semi-supervised learning in that it uses both
labeled and unlabeled data, even though it is based on a completely different assumption.
Active learning allows indeed the algorithm to choose which training samples have to be
added to the training set, in order to enhance the performance of the classifier. The algo-
rithm starts with a small amount of labeled data, then the current model is tested on the
unlabeled data, and finally samples for which the model is the least certain are selected
for queries about their true label to an oracle. The main difference with respect to semi-
supervised learning resides thus in the fact that, once in the training set, a given sample
selected with active learning is surely associated with its corrected label (assigned by the or-
acle), but this is not necessarily true in semi-supervised learning. Nevertheless, there is the
need for an expert who annotates the samples selected by the algorithm.

In this work, we will focus our attention on supervised and active learning. In this Chapter,
we will summarize some of the most common supervised learning algorithms and the possible
ways of combining them. Later, in Chapter 5, we will go deeper into active learning, explaining its
necessity for our particular application.
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2.2 Supervised learning

Supervised learning is the task of learning a function that maps an input to an output based on
example input-output pairs. When the possible outputs are categories, we can speak of a classifi-
cation task. On the contrary, when the outputs live in a continuum space of values, we can speak
of a regression task. The boundary between these two tasks is however quite soft; for instance,
probability-predicting regression models can be used as part of a classifier by imposing a decision
rule (this is often done with logistic regression). Classifiers can be then categorized into proba-
bilistic, which produce probabilistic scored outputs, and non-probabilistic, which are only able
to discriminate between the different classes (although maybe providing non-calibrated scores).
However, the majority of classification algorithms have been extended to produce predictive con-
ditional probabilities of class labels given the input, even though they were not originally built on
any probabilistic framework. In other cases, such as SVM, the classifier has not been extended
to probabilistic framework, but it is still possible to get probability values out of the uncalibrated
classification scores by applying methods such as logistic regression.

2.2.1 Bias–variance trade-off

Whatever the algorithm chosen for the specific task, ideally we would like to obtain a model that
accurately captures the regularities of the training data while at the same time generalizing well
to unseen data. The bias–variance dilemma is thus the conflict in trying to simultaneously reach
these two goals, i.e. simultaneously minimize two different sources of error:

• Bias – An error due to limited flexibility of the algorithm to learn the true model from the
training dataset. High bias can cause an algorithm to fail to capture the structure exhibited
by the data (underfitting). The solution is usually to increase the complexity of the model;

• Variance – An error due to sensitivity to small fluctuations in the training set. High variance
can cause an algorithm to model noisy or unrepresentative training data, failing to general-
ize well during testing (overfitting). A first reason behind this could be the lack of sufficient
amount of training data. To mitigate overfitting then it is possible to apply regularization
techniques, that consist in penalizing some parameter values in order to control the flexibil-
ity and generalization ability of the model.

2.2.2 Notation

Before introducing some supervised learning algorithms which are used in this work, let us es-
tablish the notation for the following. We will denote the input variables, i.e. input features, as
x, and the output variables, i.e. target variables or labels as y . A pair

(
x(i ), y (i )

)
represents the i th

training sample (or example), so that the entire set of training samples we will use to learn from
– a list of m training samples

{(
x(i ), y (i )

)
: i ∈ {1, . . . ,m}

}
– is called training set. Each input feature

x(i ) is represented by a vector living in IRd , i.e. a d-dimensional vector, while the corresponding
y (i ) ∈Ω, where Ω is the set of possible labels (e.g., for binary classification Ω = {0,1}). The m x d
matrix containing all the feature vectors is called design matrix.

Denoting X the space of input values, and Y the space of output values, the goal of supervised
learning is, given a training set, to learn a function h : X 7→ Y so that h(x) is a “good” predictor
for the corresponding value of y . The function h(·) is called hypothesis function, and represents
the learned model that we will apply to unseen testing samples at inference time. Note that Y is
different from Ω, since the former represents the space of possible real output values, while the
latter represents the discrete set of possible labels to which the output can belong to.

We denote as Dtr ai n the portion of samples from the dataset used for training, as Dcal i b the
portion of samples that are used to validate the model’s parameters, and as Dtest the portion of
samples used to finally test the algorithm’s behavior in presence of unseen data in order to evaluate
it.

15



CHAPTER 2. SUPERVISED LEARNING AND CLASSIFIER COMBINATION

2.2.3 Logistic regression

Logistic regression is a probabilistic discriminative model, since it learns predictive probabilities
of class labels given the examples only. It relies on the sigmoid or logistic function σ, which maps
real-valued numbers into the unit interval. Denoting by θi the parameters (also called weights)
of the model, logistic regression maps a linear combination of the input entries along with their
weights into a non linear output which is the predictive probability.

Therefore, the hypothesis function will be of the form:

hθ(x) =σ(θᵀ ·x) =
1

1+e−θᵀ·x
, (2.1)

where θᵀ ·x = θ0 +∑d
j =1θ j ·x j following the convention of letting x0 = 1, and

σ(z) =
1

1+e−z , (2.2)

is called logistic function or sigmoid function. Note that σ(z), and hence hθ(x), is always bounded
between 0 and 1: σ(z) tends towards 1 as z →+∞, and tends towards 0 as z →−∞.

The set of parameters is learned from the training data Dtr ai n using maximum likelihood esti-
mation.

Considering a binary classification problem, let us assume that:

P(y = 1|x;θ) = hθ(x), (2.3)

P(y = 0|x;θ) = 1−hθ(x).

Equations (2.3) can be written in a more compact way as:

P(y |x;θ) = (hθ(x))y (1−hθ(x))1−y . (2.4)

Therefore, assuming m independent training examples, we can derive the likelihood of the
parameters to be maximized as:

L(θ) =
m∏

i =0
P(y (i )|x(i );θ), (2.5)

=
m∏

i =0

(
hθ(x(i ))

)y (i ) (
1−hθ(x(i ))

)1−y (i )

, (2.6)

which is equivalent to maximize the log-likelihood l (θ) = logL(θ) in order to avoid numerical prob-
lems:

l (θ) = logL(θ), (2.7)

=
m∑

i =0
y (i ) loghθ(x(i ))+

(
1− y (i )

)
log

(
1−hθ(x(i ))

)
. (2.8)

To solve this, gradient descent algorithm can be employed for the minimization of the negative
log-likelihood. The update of the parameters can be done once for all the training samples, or
sequentially using mini-batches of training data.

Note that a generalization for the multi-class classification problem exists, and takes the name
of Softmax regression (or Multinomial logistic regression), under the assumption that the classes
are mutually exclusive.
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2.2.4 Support Vector Machines

Support Vector Machines [21] (SVMs) are non-probabilistic models used for supervised binary
classification. They have been originally designed to perform linear classification, but they have
been extended to deal with the non-linear case by means of the kernel trick.

The main task of an SVM consists in predicting whether a test sample belongs to one of two
classes. For convenience, let us assume labels y (i ) ∈Ω = {−1,+1} and features x(i ) ∈ IRd .

2.2.4.1 Optimal margin classifier

Figure 2.1: Examples of several possible hyper-planes which solve the linearly separable classification prob-
lem on the given training data, for the bi-dimensional case.

Considering the case of linearly separable data, we could find a hyper-plane splitting the in-
puts such that samples of the same class would lay in the same region of the input space. To this
extent, a hyper-plane P can be defined as:

P : wᵀ ·x+b = 0, (2.9)

where w is the normal vector to P and b is the bias term which represents the intercept, so that |b|
‖w‖

is the distance from the hyper-plane to the origin. The problem is solved by assigning:

y (i ) =

 −1, if wᵀ ·x(i ) +b < 0,

+1, if wᵀ ·x(i ) +b ≥ 0.
(2.10)

However, without any further constraints, there is an infinite number of solutions to this prob-
lem. Figure 2.1 shows several possible hyper-planes for the bi-dimensional case. These hyper-
planes solve the separation problem for the training data, but may have different performance on
the unseen test samples. Among all the possible solutions, we should choose the one which pro-
vides the best generalization ability. Intuitively, this corresponds to choosing the separation plane
to be as far as possible from samples of both classes. The SVM learning function is thus computed
by maximizing the distance, i.e. the margin, between the hyper-plane and the closest training
input vector(s) for each label, as depicted in Fig. 2.2.

To this extent we now define two specific hyper-planes, representing the planes that cut through
the closest training examples on either side. We can call them support hyper-planes, because they
are defined from the feature vectors that do indeed support the planes, i.e. the support vectors:
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x2
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Figure 2.2: Illustration of a linear SVM for binary classification problem in the bi-dimensional space.

P1 : wᵀ ·x+b = +1, (2.11)

P2 : wᵀ ·x+b = −1,

In this way, points on or above P1 are assigned to y = +1, while points on or below P2 are
assigned to y = −1. From this, we can derive two conditions to be respected:

 wᵀ ·x(i ) +b ≥+1, if y (i ) = +1,

wᵀ ·x(i ) +b ≤−1, if y (i ) = −1.
(2.12)

We can write these constraints in a more compact way as:

y (i )
(
wᵀ ·x(i ) +b

)
−1 ≥ 0. (2.13)

Geometrically, regardless of the value of b, the distance between the two hyper-planes P1 and
P2, i.e. the margin we want to maximize, is equal to 2

‖w‖ . This corresponds to the following convex
quadratic minimization problem in its primal form:

minimize
w,b

1

2
‖w‖2

subject to y (i )
(
wᵀ ·x(i ) +b

)
≥ 1, i = 1, . . . ,m.

(2.14)

The solution to this problem gives the optimal margin classifier. Let us now talk about its dual
form, which is important for two reasons. Firstly, it allows us to use kernels to be able to work in
very high dimensional spaces. Secondly, it allows us to derive an efficient algorithm for solving the
optimization problem, namely the Sequential Minimal Optimization (SMO) [210].

2.2.4.2 Lagrangian dual form

The optimization problem reported in Eq. (2.14) can be rewritten in its Lagrangian dual form. To
do so, let us build the Lagrangian for the specific problem:
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L (w,b,α) =
1

2
‖w‖2 −

m∑
i =1

αi

[
y (i )

(
wᵀ ·x(i ) +b

)
−1

]
. (2.15)

where αi are the Lagrange multipliers, one for each constraint of the primal form. The Lagrangian
primal problem is:

min
w,b

max
α

L (w,b,α)

subject to αi ≥ 0, i = 1, . . . ,m.
(2.16)

Solving this problem involves setting to zero partial derivatives of L with respect to w and b:

∇wL (w,b,α) = w−
m∑

i =1
αi y (i )x(i ) = 0, (2.17)

∂L (w,b,α)

∂b
= −

m∑
i =1

αi y (i ) = 0. (2.18)

Equation (2.17) implies that

w =
m∑

i =1
αi y (i )x(i ). (2.19)

Substituting Eqs. (2.18) and (2.19) in the Lagrangian formulation of Eq. (2.15) we obtain the
Wolfe dual Lagrangian function:

W(α) =
m∑

i =1
αi − 1

2

m∑
i =1

m∑
j =1

αiα j y (i ) y ( j )
(
x(i )

)ᵀ
x( j ). (2.20)

The optimization problem is now called Wolfe dual problem:

maximize
α

W(α) =
m∑

i =1
αi − 1

2

m∑
i =1

m∑
j =1

αiα j y (i ) y ( j )〈x(i ),x( j )〉

subject to αi ≥ 0, i = 1, . . . ,m
m∑

i =1
αi y (i ) = 0.

(2.21)

The main advantage of the Wolfe dual problem over the Lagrangian problem is that the objec-
tive function W now depends only on the Lagrange multipliers.

When we solve the Wolfe dual problem, we obtain a vector containing all the αi Lagrange mul-
tipliers. However, our main goal was to find w and b. From Eq. (2.19) we can easily derive w. With
this, considering the constraints of the primal problem, we can derive b by taking the average of
the nearest positive support vector and the nearest negative support vector:

b = −
maxy (i )=−1(wᵀx(i ))+miny (i )=+1(wᵀx(i ))

2
. (2.22)

Finally, let us suppose to have solved the optimization problem and found the optimal value
of w in terms of αi s. Now, if we want to make a prediction for an unseen input xtest, we would use
the following hypothesis function:

h(xtest) = sign(wᵀxtest +b). (2.23)

Using Eq. (2.19), this can be rewritten as

h(xtest) = sign

(
m∑

i =1
αi y (i )〈x(i ),xtest〉+b

)
. (2.24)
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Note that αi will always be zero except for the support vectors. Hence, in order to make a
prediction, we have to calculate a quantity that depends only on the inner products between the
test sample and the support vectors (which are usually far less than the total number of training
samples). It is worth noting also that the dual form requires only the dot product of each input
vectors to be calculated, and this fact will be a key point for the application of the kernel trick
described in the following.

2.2.4.3 Kernels

Let us now consider the case of non-linearly separable data. Often there are non-linear patterns
in the data, and a linear classifier is not enough. The traditional way of transforming a linear
classifier in a non-linear one is by mapping the data to higher dimensions, from the input space
X to a feature space F using a non-linear function φ :X→F, where we hope that the transformed
data will be linearly separable. However, this approach does not scale well with the number of
features and in general the mapping can be expensive to compute.

Kernel methods solve this problem by avoiding the step of explicitly mapping the data to a high
dimensional feature space, by means of the kernel trick, that provides a bridge between linearity
and non-linearity for every problem that can be expressed in terms of dot products between two
vectors. If an algorithm is described solely in terms of inner products in the input space indeed,
it can be lifted into a feature space by replacing occurrences of those inner products by a kernel
function.

Specifically, a kernel function k implicitly performs a mapping φ to a higher dimensional vec-
tor space in which a dot product is defined (Hilbert space):

k(x,x′) = 〈φ(x),φ(x′)〉. (2.25)

The kernel k(x,x′) takes two inputs in the X input space and gives their similarity in the F

feature space:

φ :X→F, k :X×X→ IR. (2.26)

Now, since SVM optimization problem in its Wolfe dual form is indeed described only in terms
of dot products (cf. Eq. (2.21)), we can generalize it to use kernel functions:

maximize
α

W(α) =
m∑

i =1
αi − 1

2

m∑
i =1

m∑
j =1

αiα j y (i ) y ( j )k(x(i ),x( j ))

subject to αi ≥ 0, i = 1, . . . ,m
m∑

i =1
αi y (i ) = 0.

(2.27)

This translates into the following optimization problem in the primal form (cf. Eq. (2.14)):

minimize
w,b

1

2
‖w‖2

subject to y (i )
(
〈w,φ(x(i ))〉+b

)
≥ 1, i = 1, . . . ,m.

(2.28)

In order to make a prediction for an unseen input xtest (cf. Eq. (2.24)), we have now to compute
the similarity between xtest and the support vectors, computed through the kernel function:

h(xtest) = sign

( ∑
i∈SV

αi y (i )k(x(i ),xtest)+b

)
, (2.29)

with SV being the set of indexes of training samples corresponding to non-zero αi .
Note that not all functions can be employed as kernels. Given the training set composed by m

training samples x(1), . . . , x(m), the Kernel Matrix K, i.e. the Gram Matrix, is defined such that
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Table 2.1: Popular kernel functions between two input vectors x and x′.

Kernel Formulation

Linear k(x,x′) = axᵀx′+ c

Polynomial k(x,x′) = (axᵀx′+ c)d

Radial Basis Function (RBF) k(x,x′) = exp

(
−‖x−x′‖2

2σ2

)
Hyperbolic Tangent k(x,x′) = tanh(axᵀx′+ c)

Power k(x,x′) = −‖x−x′‖d

Log k(x,x′) = − log(‖x−x′‖d +1)

Chi-Square (χ2) k(x,x′) =
∑n

j =1

2x j x ′
j

x j+x ′
j
, x j , x ′

j ≥ 0

Histogram Intersection Kernel (HIK) k(x,x′) =
∑n

j =1 min(x j ,x ′
j ), x j , x ′

j ≥ 0

K(i , j ) = k(x(i ),x( j )). (2.30)

In order to be a valid kernel, i.e. a kernel which correctly performs a feature mapping φ :
k(x,x′) = 〈φ(x),φ(x′)〉,∀x,x′, some conditions must be satisfied. Firstly, the Kernel Matrix K has
to be symmetric, i.e. K(i , j ) = k(x(i ),x( j )) = k(x( j ),x(i )) = K( j , i ). Secondly, it has to be positive semi-
definite, in accordance with the Mercer’s theorem [123]. This ensures convexity of the optimization
problem and uniqueness of the solution.

Choosing the most appropriate kernel and fine-tuning its possible parameters highly depends
on the specific problem. Automatic kernel selection is possible although being not straightfor-
ward, as described in [111]. Kernel functions can be even learned, as in [185]. Table 2.1 reports
some typical choices of kernel functions along with their formulation. Almost all the kernels re-
quire the setting of one or more parameters, e.g. a and c regulates slope and intercept respectively,
σ regulates the width of the RBF kernel, d is the degree of polynomial used. While the majority of
kernels are positive semi-definite, some of them are only conditionally positive yet performing
well (Hyperbolic tangent, Power and Log kernels) [22].

2.2.4.4 Regularization

While mapping the data to a higher dimensional space generally increases the likelihood to be able
to find a linear separation, one cannot guarantee it. In some cases, the SVM optimization problem
outlined in Eq. (2.28) does not converge, since it is not possible to satisfy its constraints.

Figure 2.3: Optimal margin classifier changes in presence of a single outlier.

Moreover, even assuming that the nature of the problem is purely linear or may become linear
in a high dimensional space, it is necessary to take into account that training samples are often
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a result of noisy observations of real world data, yielding the training set to be often populated
by misclassified, ambiguous or outlier samples. Figure 2.3 shows the impact of a single outlier
point (added in the upper-left region in the right figure), which causes the decision boundary to
dramatically change the slope, resulting in a classifier which much smaller margin. We would like
thus to allow some points to be misclassified in order to obtain a larger margin which would result
in a more robust classifier, less sensitive to outliers present in the training data.

To this extent, we reformulate the primal optimization problem of Eq. (2.28) introducing a L1
regularization term as:

minimize
w,b,ξi

1

2
‖w‖2 +C

m∑
i =1

ξi

subject to y (i )
(
〈w,φ(x(i ))〉+b

)
≥ 1−ξi , i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m.

(2.31)

This corresponds to the Soft-Margin SVM problem formulation proposed in [47]. The ξi vari-
ables are the slack variables that allow an example to be within the margin (0 ≤ ξi ≤ 1) or to be
misclassified (ξi > 1). Note that

∑m
i =1 ξi is an upper bound on the number of misclassified exam-

ples, since an example is misclassified if the value of its slack variable is greater than one. The
parameter C > 0 controls the relative importance of simultaneously maximizing the margin and
minimizing the amount of misclassified examples. Small values of C allow for the presence of more
misclassified examples, obtaining a model which generalizes better but with the risk of running
into high-bias problem, i.e. underfitting. On the other hand, increasing the value of C, we increase
the penalty assigned to misclassified examples, therefore the resulting margin will be smaller and
we increase the risk of high-variance, i.e. overfitting. The optimal value of this parameter depends
on the application and the considered data, and can be found using cross-validation techniques.

Accordingly, the Wolfe dual problem of Eq. (2.27) becomes:

maximize
α

W(α) =
m∑

i =1
αi − 1

2

m∑
i =1

m∑
j =1

αiα j y (i ) y ( j )k(x(i ),x( j ))

subject to 0 ≤ αi ≤ C, i = 1, . . . ,m
m∑

i =1
αi y (i ) = 0.

(2.32)

Note that the only change made by the addition of the regularization term is in the constraints
relative to the admissible values ofαi , which now are upper-bounded by C. The problem continues
to be only dependent on the inner products, so that it continues to be easily kernelized. Moreover,
we can continue to use Eq. (2.29) to make predictions about unseen test samples, even though the
support vectors will now include the points within the margin and the misclassified ones, besides
the examples exactly on the margin as before.

2.2.5 Neural networks

With the term “Neural Networks” (NNs) we refer to a large family of machine learning algorithms.
They have originally been inspired by the biological neural systems (hence the name) which is
composed by billions of neurons connected through synapses. For a given neuron, the dendrite
receives signals from other neurons and then the cell body sums all the incoming signals. When
the sum reaches a threshold value, the neuron fires and the signal travels down the axon to the
other neurons. The amount of signal transmitted depends on the strength (synaptic weights) of
the connections.

In the same way, the basic building block of a neural network is a neuron, which is a compu-
tational unit. Neurons are interconnected among each others and the network can be trained to
learn the synaptic strengths (i.e. the weights w) that control the strength of influence of one neu-
ron on another. Then, the firing rate of the biological neuron is modeled through an activation
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Figure 2.4: Mathematical model of a biological neuron.

function f , which is usually non-linear. Like the human brain, a neural network acquires knowl-
edge through learning. Figure 2.4 shows this mathematical modelization of a biological neuron.
Each neural unit, i.e. perceptron, produces a single output value based on several inputs coming
from the output of other neural units. The generic expression of a neural unit output is thus:

y = f
(
wᵀx

)
(2.33)

where f is the activation function, w denotes the vector of weights, x is the vector of inputs, and b
is the bias term.

Neural Networks are modeled as collections of neurons that are connected in an acyclic graph
in a layered structure, so that the outputs of some neurons become inputs to other neurons of the
successive layer, but neurons within a single layer do not share connections. A N-layer network
consists therefore of an input layer, an output layer (which for classification task is usually fully-
connected and implements a classifier such as SVM or Softmax) and at least one intermediate
hidden layer. However, the input layer is not counted among the N layers, so that a single-layer
neural network describes a network without hidden layers. In this sense logistic regression or
SVM can be viewed as a special case of single-layer neural networks. The size of a NN is usually
measured in terms of its number of parameters, i.e. the total number of learnable weights and
biases.

Modern NNs are composed of many stacked layers (hence the name deep learning). Increasing
the number of layers indeed (and possibly their size), the capacity of the network (i.e. the space of
representable functions) increases. However, it may become easier to overfit the training data. To
prevent overfitting in NN there exist many techniques, such as loss regularization, weight decay,
dropout, or data augmentation.

Training a NN means learning from the labeled examples
(
x(i ), y (i )

)
, i = 1, . . . ,m, good values for

all the weights and the biases (i.e. learnable parameters) of the network. Note that input features
x(i ) in the case of a NN are raw inputs (images or signals in general), and the intermediate features
are directly learned by the network, contrarily to e.g. SVM where usually the input is a hand-crafted
vector obtained through some descriptor. In this sense, the learning process of a NN is referred to
as end-to-end. Often the neural network will discover complex features which are very useful for
the given task, but may be difficult for a human to understand since they do not have necessarily a
common meaning. In this sense, neural networks can be seen as black boxes, as it can be difficult
to understand the features they create.

Network parameter optimization is done by minimizing a Loss function with algorithms such
as Gradient Descent which iteratively update the weights in the direction of the optimal solution
evaluating the derivative of the loss function with respect to the weights, through the backpropaga-
tion technique, over the training samples. The learning rate determines how fast weights change.
Usually instead of using all the dataset, small batches of data are considered at each iteration (in
this case, the algorithm is called Batch Gradient Descent), and an epoch is a complete pass through
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the dataset which may require several iterations. Multiple epochs are then required to converge
to a stable solution. To increase the stability of the network and speed up convergence, batch nor-
malization [121] is often used. It normalizes the output of a previous layer by subtracting the batch
mean and dividing by the batch standard deviation.

The optimal parameter values W∗, namely the ones that allow to converge to a local minimum,
are then found through:

W∗ = argmin
W

L (W)+λ ·R(W),

= argmin
W

1

m

m∑
i =1

L
(

y (i ), ŷ (i )
)
+λ ·R(W), (2.34)

= argmin
W

1

m

m∑
i =1

L
(

y (i ), f
(
x(i );W

))
+λ ·R(W),

whereλ is the parameter that controls the impact of regularization introduced by the function R(·),
f (·) is the activation function and L (·) is the Loss function. Let us now investigate these different
terms.

2.2.5.1 Loss function

The Loss function is used to measure the inconsistency between predicted value ŷ and the actual
label y .

For classification tasks, the two most commonly used output layers are SVM and Softmax clas-
sifiers. In case of SVM classifier, the Hinge Loss is used:

L =
1

m

m∑
i =1

max(0,1− y (i ) · ŷ (i )), (2.35)

while in case of Softmax classifier the cross-entropy Loss is employed:

L =
1

m

m∑
i =1

[
y (i ) log(ŷ (i ))+ (1− y (i )) log(1− ŷ (i ))

]
. (2.36)

For regression tasks instead, it is common to compute the loss between the predicted quantity
and the true real-valued answer. Usually, the Mean Square Error (MSE) or L2 loss is used:

L =
1

m

m∑
i =1

(
y (i ) − ŷ (i )

)2
. (2.37)

2.2.5.2 Regularization

There are several ways of avoiding NN overfitting. The most common form of regularization is to
employ a regularization term directly in the objective function that sums with the data loss, i.e. the
R(W) function in Eq. (2.34). Usually, L2 regularization is used: for every weight w of the network,
the term 1

2λw2 is added to the objective, where λ is the regularization strength. Alternatively, L1
regularization adds for every weight the term λ|w | to the objective function.

Another commonly used regularization technique is dropout [251], which was initially pro-
posed in [106] as a form of regularization applied to neural network layers. Each element of a
layer’s output is kept with probability p, being otherwise set to 0 with probability (1−p). Dropout
improves the network’s generalization ability, mitigating thus the risk of overfitting.

Dropout is often presented as an ensemble technique [275], using a different set of hidden
units in every learning iteration. At each training step in a mini-batch, the learning procedure
with dropout acts like creating a different network (by randomly removing some units) which is
then trained using backpropagation as usual. Since at each epoch a different version of the same
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network is derived removing some neurons, mathematically this approximates ensemble aver-
aging. Then, at test time the whole network is used (no unit is removed) but with accordingly
scaled-down weights.

Other commonly used regularization strategies are early stopping and data augmentation. The
first one is a method to prevent overfitting by stopping the learning after a number of epochs if
the performance with respect to a defined measure does not improve on the validation set. The
second method consists in creating augmented versions of the images of the training dataset, to
improve the generalization abilities of the network, by common transformations such as contrast
and illumination changes, flipping and rotations applied randomly at every epoch.

2.2.5.3 Activation functions

The most commonly used activation functions are:

• Sigmoid – The sigmoid non-linearity takes the form of the sigmoid function previously shown
in Eq. (2.2). It takes a real-valued number and “squashes” it into the range between 0 and 1.
This activation function has been one of the first to be employed, since it is able to model
quite well the firing of a biological neuron. However, it is now rarely used because of two
major drawbacks:

1. Vanishing gradient problem – When the neuron’s activation saturates at either 0 or 1,
the gradient at these regions is almost zero, and almost no signal will flow through the
neurons, and no update will be performed in the chain of the backpropagation;

2. Not zero-centered outputs – This fact has implications on the gradient descent algo-
rithm, possibly introducing undesirable zig-zagging dynamics in the gradient updates
for the weights;

• Tanh – The Tanh, or hyperbolic tangent, takes the form:

f (z) = tanh(z) =
ez −e−z

ez +e−z . (2.38)

It can be seen as a scaled sigmoid function, and still suffers from vanishing gradient prob-
lem. However, since it “squashes” the values into the range between -1 and 1, its output is
zero-centered;

• ReLU – The Rectified Linear Unit (ReLU) is the most used activation function, and it com-
putes the function:

f (z) = max(0, z). (2.39)

It can therefore be implemented by simply thresholding a matrix of activations at zero. Be-
sides, due to its linear, non-saturating form, it has been found to accelerate greatly the con-
vergence of stochastic gradient descent compared to the sigmoid and Tanh functions. How-
ever, it can suffer from the dying ReLU problem, that is, a large gradient flowing through a
ReLU neuron could cause the weights to update in such a way that the neuron will never
activate again. This happens especially with a high learning rate, while setting a proper
learning rate mitigates the issue;

• Leaky ReLU – Leaky ReLU attempts to fix the dying ReLU problem, by allowing a small neg-
ative slope for negative values:

f (z) =

 z, if z ≥ 0,

αz, if z < 0,
(2.40)
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where α is a small constant (usually α = 0.01). However, the benefit of using Leaky ReLU over
simple ReLU is still unclear, as improvements are not systematically obtained using it.

2.3 Classifier combination

2.3.1 Motivation

Classifier ensembles have been receiving increasing attention over the last decades, with many
theoretical and empirical studies demonstrating the efficacy of ensembles over a single classifier
under different circumstances [23, 79]. From the No Free Lunch theorem [279] we know that there
is no universally optimal classification algorithm, and classifier combination stems from the im-
itation of the human nature, which is prone to seek several opinions before making any crucial
decision. As humans, we ponder indeed the individual opinions (perhaps based on a prior level of
confidence on the interlocutor), and combine them to reach a final decision [212].

According to [64], there are several theoretical and practical reasons why we may prefer an
ensemble system over a single classifier:

• Statistical reasons – A statistical limitation of a learning algorithm arises when the amount
of training data available is too small compared to the size of the hypothesis space. Without
sufficient data, the learning algorithm can find several hypothesis functions that give the
same accuracy on the training data, but are not able by themselves to generalize in presence
of new data. In other words, there is a large variance in the decision function selection pro-
cess (cf. Sec. 2.2.1). By building an ensemble out of all of these classifiers, the algorithm can
combine their results, reducing the risk of choosing the wrong classier and of overfitting;

• Representational reasons – On the contrary, in many applications the learned model is too
simple to approximate the optimal hypothesis function. This is the equivalent of having
a large bias problem (cf. Sec. 2.2.1). By performing a combination between different hy-
potheses, it may be possible to expand the space of representable functions and therefore to
reduce underfitting;

• Computational reasons – Beside the bias–variance trade-off, some classification algorithms
face computational issues, due to the fact that they may get stuck in local optima when
looking for the optimal decision function. Classification problems indeed are usually NP-
hard. An ensemble of classifiers can circumvent the local optima problem by varying the
initialization point among the committee.

In addition to these, there is another important motivation for the use of ensembles, as stated
in [212]. In the field of data fusion indeed, several sets of features are obtained from various
sources. They have however an intrinsically different nature, so that they cannot be used col-
lectively to train a single classifier in an effective way. In such cases, features obtained from each
source are used to train different classifiers whose outputs are later combined to make a more
informed decision.

2.3.2 Taxonomies of classifier ensemble methods

The variety of ensemble techniques have arisen several taxonomies in the literature, which aim to
categorize ensemble methods from different points of view.

Some of them concentrate on a particular classifier, or on a particular approach. For in-
stance, [240] focuses on a taxonomy for neural networks, while the more recent [281] focuses on
Multiple Classifier Systems (MCSs).

Kuncheva [148] firstly proposed a broader taxonomy by identifying four levels of questions
which are helpful to determine the perspective from which the combination problem can be tack-
led:
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A. Combination level – How are the individual inputs combined?

B. Classifier level – Do we use same or different classifiers? What base classifier is the best? How
many classifiers are needed? Should the classifiers be trained together or incrementally?

C. Feature level – Shall we use all features or use a subset for each classifier? How do we se-
lect/extract such subsets?

D. Data level – How can we manipulate the data submitted for training to the base classifiers
so as to ensure high diversity and high individual accuracy?

However, the more complete taxonomy remains Rokach’s one [227], which is based on five
different dimensions:

1. Combiner – It is responsible for combining the classifications of the various classifiers;

2. Building the ensemble – It deals with the way the ensemble is generated, i.e. each classifier
is trained independently or not;

3. Diversity – It answers to how diversity is ensured among the classifiers which compose the
ensemble;

4. Ensemble size – It determines the number of classifiers in the ensemble;

5. Universality – It is related to the fact that some ensemble approaches can be used with any
classifier model while others are tied to a specific classifier type.

We will now take advange of the various dimensions of Rokach’s taxonomy in order to investi-
gate all the different aspects of ensemble methods.

2.3.2.1 Combiner

There are several ways in which the classifier’s outputs can be combined. Firstly, we shall make the
distinction between classifiers whose outputs are labels and those whose outputs are continuous
values.

When combining classifier label outputs, the most straightforward way is to resort to a voting
system. Denoting by yn(x) the decision of the nth classifier about the test sample x, n = 1. . .N, and
by l the number of possible labels, Majority Voting is a system in which the combined decision is
the label which is predicted by the maximal number of classifiers:

ŷ(x) = argmax
yl∈Ω

∑
n

g (yn(x), yl ), (2.41)

where g (·, ·) is an indicator function defined as:

g (yn(x), yl ) =

 1, if yn(x) = yl ,

0, if yn(x) 6= yl .
(2.42)

Majority Voting is the standard baseline to compare with. A slight modification of this method
is the Unanimity Voting, in which a combined decision is given only if all the classifiers agree on
the label, rejecting otherwise the input x. If the classifiers in the ensemble are not of identical
accuracy, then the Weighted Majority Voting attempts to give the more competent classifiers more
power in making the final decision:

ŷ(x) = argmax
yl∈Ω

∑
n

wn g (yn(x), yl ). (2.43)
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In particular, each classification output has a strength proportional to its assigned weight wn ,
which can be fixed or dynamically determined for the specific instance to be classified. The accu-
racy level of the classifiers can be known a-priori, derived through analysis of the outputs or even
learned.

Borda count [107] is considered to be one of the simplest non-linear combination algorithm. It
consists of a a rank-based combination scheme where each classifier ranks the classes according
to their chances to be the correct (true) class, and then the sum of accumulated scores of each
label is calculated.

If the output of the classifier is a continuous value (probabilistic or not), voting approaches do
not exploit all the available information, and thus some combination function can rather by used.
Traditionally, some commonly employed combination functions are:

• Average: ŷ(x) = 1
N

∑N
n=1 yn(x),

• Median: ŷ(x) = mediann=1...N yn(x).

Note that the median function can be replaced by minimum or maximum functions for some
particular applications.

Assuming independent probabilistic classifiers, we can transform the classification for clas-
sifier decision regarding class yl into a probability Pn(y = yl |x) for every classifier n = 1. . .N, and
then use a product rule to obtain the joint probability across all the classifiers:

ŷ(x) = P(y = yl |x) =
N∏

n=1
Pn(y = yl |x). (2.44)

These combiners are all called non-trainable, because once the individual classifiers are trained,
their outputs can be fused to produce an ensemble decision, without any further training. On
the contrary, trainable combiners include Naive Bayes, Behavior-Knowledge Space (BKS), and also
Weighted Majority Voting where the various weights are learned.

In particular, using Naive Bayes classifier for combining various classifiers as in [228] assumes
that the classifiers predictions are conditionally independent given the class. Behavior-Knowledge
Space (BKS) [117] was proposed with the advantage of not relying on prerequisite hypotheses such
as the statistical independence of classifier outputs. It is based on a look-up table of dimensions
N× L which is learned at training time, where N is the number of classifiers and L the number
of possible labels in Ω. However, the method does not scale well in either the number of base
classifiers or the number of classes as there may be some configurations that are never visited.

We shall finally make a distinction between the probabilistic, evidential and fuzzy frameworks.
If the combination techniques proposed above are rather applicable in a probabilistic framework,
other frameworks imply the use of different rules of combination. Belief Function (BF) theory (also
called evidential) [59, 247], by making a distinction between imprecision and aleatory uncertainty
concepts, generalizes probability and set theories by providing a number of aggregation operators
which are useful in defining new combination rules. Since BF framework will play a key role in
the definition of the proposed method, we will explain it better in Chapter 4. Fuzzy set theory [13,
292] was conceived to present “soft” classification of elements, which is more adapted to the way
people create categories in the real world. Thanks to fuzzy set theory, possibility theory [291] was
later introduced to handle incomplete information.

2.3.2.2 Building the ensemble

This property refers to whether the various classifiers are dependent or independent. In a depen-
dent framework the outcome of a given classifier affects the subsequent classifier. Alternatively,
each classifier can be built independently and their results can be combined in some fashion in a
second moment.

Specifically, there are three main categories of topology: parallel, sequential or hybrid combi-
nations. In parallel fusion, the base classifiers work independently, and the feature vectors may
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or may not be learned from the same training examples. The output of a given classifier may not
be present in the input of another classifier [148]. In sequential fusion, base classifiers are stacked
in a sequential way and the decision of one classifier depends on a previous one [219]. This ap-
proach implies some kind of ranking or ordering of the classifiers, and usually the primary one is
the cheapest while the subsequent ones have higher exploitation cost [83]. Finally, there exists hy-
brid hierarchical fusion which consists in a combination of parallel and sequential architectures.

Among the parallel architectures, we can find Bagging and Multiple Classifier Systems (MCSs).
The first one is based on a set of weak classifiers (whose discriminative powers are slightly stronger
than the random one), while the second one relies on a smaller pool of stronger classifiers, not
necessarily derived from the same model.

Bagging [23] (Bootstrap Aggregating) produces N training sets, containing a subset of r sam-
ples from the initial one, by random sampling with replacement. This means that some observa-
tions may be repeated in each new training dataset. It is based on the non-parametric Bootstrap
sampling technique [233] which is a statistical method used to analyze the variability of an esti-
mate and quantify its uncertainty. Intuitively, if the estimate values are similar when training the
model with respect to different datasets (obtained by sampling from the original training set), then
we can have a high level of confidence in the estimate. The various decisions of the classifiers are
often combined using majority voting to obtain a global verdict. This method is particularly good
in presence of high-variance, to reduce overfitting.

A variation of bagging is Random Subspace Method (RSM), also called Feature Bagging, since
the same principle of bagging is applied to the feature space instead of to the sample set. Specifi-
cally, it consists in training the classifiers in random sub-spaces of dimensionality lower than the
dimensionality of the original space, obtained by sampling the features instead of the training
samples. Input vectors in high dimensional spaces are notoriously more prone to overfitting, and
this splitting can reduce the risk of this problem increasing the generalization ability of the whole
system. Random Forest [24] is a particular ensemble classifier that takes advantage of RSM. Specif-
ically, it operates by constructing a multitude of decision trees at training time and outputting the
class that is the mode of the classes (for classification) or mean prediction (for regression) of the
individual trees. Another established framework able to benefit from the information provided by
multiple features is the decision tree analysis. Recent work highlighted that intrinsic uncertainty
related to learning as well as uncertainty due to imprecise data may be jointly managed inside the
decision tree by defining entropy intervals from evidential likelihood [176].

Restricted to SVM as base classifier, also Multiple Kernel Learning (MKL) falls under the par-
allel architecture category. It is a well established methodology which aims to combine different
kernels relying on different data representations as a linear combination, by casting the informa-
tion fusion task as a convex optimization problem [90]. It provides a way to benefit simultaneously
from all the available features, automatically learning the optimal weights to linearly combine
them. The problem scales very well with the number of individual classifiers, but the main limita-
tion of MKL is the difficulty to interpret the final decision and to take into account the imprecision
coming from different sources.

On the other side, MCSs [281] are systems composed by few, strong, heterogeneous classifiers
which are usually learned from the same input data. For a given classification task, a MCS is gen-
erally able to exploit the strengths of the individual classifier models to produce a high quality
compound system overcoming the performance of the individual classifiers by combining them
with some combination rule able to exploit their complementarity.

Among the sequential architectures, we can recall Boosting (AdaBoost, Gradient Boosting), and
stacked generalization. They all assume a sequence of classifiers trained after the other taking into
account the previous model, but differ in the way the previous model is accounted for, and in the
number of classifiers involved (many weak classifiers in boosting, few and stronger classifiers in
stacking).

Boosting techniques [79] try to add new models that perform well where the previous models
exhibit low performance. AdaBoost [80] (Adaptive Boosting) is similar to bagging, in the sense
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that both methods rely on several weak classifiers trained on subsets of the initial training data.
However, unlike bagging, the observations are weighted and therefore some of them (the most
problematic to be classified) will take part in the new sets more often. In AdaBoost each classifier
is thus trained on the data on which the previous classifier failed, redistributing the weights after
each training step. Misclassified data increases its weights to emphasize the most difficult cases.
In this way, subsequent learners will focus on them during their training.

Another popular boosting technique is Gradient Boosting [81], which casts the boosting prob-
lem to an optimization problem and can be interpreted as an ensemble gradient descent algorithm
in function space. In Gradient Boosting, weak learners are added iteratively in such a way that the
loss function, generally dependent on error residuals, is minimized.

A variant of Gradient Boosting which has proven to be particularly successful in machine
learning competitions over the last years is XGBoost [39] (Extreme Gradient Boosting). It is based
on Newton-Raphson method for approximation (hence it is named sometimes Newton Boosting),
and it is useful in presence of trees-based classifiers, since it presents a clever penalization of trees
and a proportional shrinking of leaf nodes. Generally, XGBoost is faster than Gradient Boosting,
but this latter can be applied to a wider range of applications. Finally, as opposite to bagging,
boosting techniques are particularly good in case of high bias problems, but they tend to suffer in
presence of noisy data.

Another popular sequential architecture is stacked generalization [278] (or stacking), which
like MCS usually implies far less models than the ones needed for bagging or boosting and the use
of a heterogeneous pool of classifiers. However, unlike MCS, stacking uses a new model to learn
how to combine the predictions from previous models trained on the dataset. The predictions
from the existing models or sub-models are combined using a new one, and for this reason stack-
ing is often referred to as blending, as the predictions from sub-models are blended together. The
various models may be very different in nature, i.e. derived from different classifiers and blended
together with another one which is usually called the aggregator model.

Regarding hybrid architectures, we can recall [273], which combines MKL with stacked gen-
eralization in order to achieve greater computational efficiency and greater performance in terms
of predictive accuracy, by separating the kernel set into subsets, each subset of kernels leading
to a different combination of kernels which are then aggregated together into a single prediction.
Stacking is exploited also in [277] in conjunction with a bootstrap procedure to achieve further
improvements on the performance of bagging for regression problems.

2.3.2.3 Diversity

In an ensemble, the combination of the output of several classifiers is only useful if they provide
diverse responses, at least for some inputs [262]. Is it therefore important to be able to create di-
versified classifiers, which may lead to uncorrelated errors and may in turn improve classification
accuracy when combined [114].

Brown et al. [27] focuses on the different ways diversity can be achieved within the ensemble,
i.e. whether it is implicitly obtained by generating classifiers using different mechanisms (training
them on different learning data samples or on different region of the features space), or whether it
is explicitly ensured by a measured gain in diversity with some specific metric.

Implicit methods for inducing diversity involve:

• Partitioning the data points – This consists in training the base classifiers on different train-
ing sets, and it is particularly useful in two cases. Firstly, it allows us to apply bagging and
boosting methodologies which implies the subdivision of the original training set in smaller
ones obtained via (weighted) sampling of the input examples. Secondly, it is strongly con-
nected to the distributed data paradigm, where huge databases may impede to train the
classifiers under specified time constraints, imposing to resort to sampling techniques to
obtain manageable dataset partitions. A well known approach is cross-validated commit-
tee [144], which requires the minimization of overlapping between dataset partitions;
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• Using different parameters in the training of the individual classifiers – For example, use sev-
eral random weight initializations for neural networks, or several different regularization
hyper-parameters C for SVMs. A related approach is the use of Bayesian Neural Networks,
which learn a distribution over the network’s weights instead of point estimates [177, 191];

• Selecting subsets of features – It can be performed in many different ways. Firslty, RSM can be
applied in order to perform feature bagging (e.g. with a Random Forest classifier). Another
strategy may consist in selecting the classifier with the best performance for each partition
of the feature space, using a clustering algorithm to partition the feature space, instead of
a random sampling [147]. Then, we may carefully select different hand-crafted features to
tackle the classification problem from different perspectives (e.g. by creating an ensemble
of SVM classifiers based on different descriptors). Alternatively, information gain can be
employed as in [221] for actively selecting features combining the collected evidence over
time while taking into account the amount of available training data for each class. There
exists also Selective Multiple Kernel Learning (SMKL) method [253], which preserves the
sub-kernels with complementary information by guaranteeing the high discrimination and
large diversity of pre-selected sub-kernels. Again, [284] extended the single kernel boosting
method to multiple kernel boosting methods. Multiple kernels are used to construct a better
classifier, and a kernel sampling method is designed to only sample a subset of kernels for
combination in each iteration. Finally, a similar but different approach is presented in [87],
where a set of base classifiers for each test sample is dynamically selected on the basis of
a classification gain computed using a probabilistic model that exploits the outcome from
previous observations. In this way, each classifier in a large ensemble is viewed as a potential
observation that might inform the classification process itself.

• Choosing different label targets – In multi-class classification, each individual classifier may
solve a different classification task. An example of a classifier ensemble approach in this
category is the Error Correcting Output Code (ECOC) ensembles [65], where each classifier
solves a dichotomy, separating two groups of classes. It consists in representing each class
label by a code-word (string of “0” and “1” values only) of length N, where N is the number
of classifiers involved in the fusion. Then, each classifier discriminates between two subsets
ofΩ only, and outputs a binary value representing a subset of labels. To decide the label of a
test sample x, we choose the label having the closest code-word to the obtained code-word
of x, measured e.g. in terms of Hamming distance;

• Using different classifier models or hybrid ensembles – This corresponds to using MCSs or
stacked generalization techniques, where small pools of strong classifiers are combined in a
parallel or serial way respectively. In these methods, the diversification between the models
is ensured by using several, different classifiers, e.g. a multiple classifier system composed
by a convolutional neural network and a SVM combined in a unique output, or stacking of
k-Nearest Neighbors and Perceptron model aggregated by logistic regression. Hybrid ap-
proaches seek to exploit the strengths of the individual components, obtaining enhanced
performance by their combination.

Although the ensemble community agrees on the importance of ensuring diversity among the
various classifiers, the authors of [149] could not find a definitive connection between explicit
measures and the improvement of the accuracy. They also stress the fact that “diversity” and “in-
dependence” are not synonyms and are not necessarily related. Thus, they conclude that it is
unclear whether diversity explicit measures have any practical value in building classifier ensem-
bles, privileging the use of implicit techniques to intuitively ensure diversity in the creation of the
ensemble.

2.3.2.4 Ensemble size

There are three common approaches for determining the ensemble size:
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1. Pre-selection of the ensemble size – This is the most simple way to determine the ensem-
ble size, and relies on a hyper-parameter controlling the number of classifiers used in the
ensemble. Algorithms such as bagging or MCSs belong to this category;

2. Selection of the ensemble size while training – In this case, a new classifier is added to the
ensemble if its contribution to the ensemble performance is significant. Performance mea-
sures can include a variance reduction measure, or an accuracy-based measure. Usually
these algorithms also have a controlling parameter which bounds the maximum size of the
ensemble;

3. Overproduce and Select – This approach, also called ensemble pruning, derives from the ob-
servation that bigger ensembles are not necessarily better ensembles. As in decision tree in-
duction, it is sometimes useful to let the ensemble grow freely and then prune the ensemble
in order to get more effective and compact ensembles, to comply also with the accuracy–
cost trade-off. Different strategies involve pre-combining pruning, where the pruning is
performed before combining the classifiers based on their individual classification perfor-
mance measured on a separate validation set, and post-combining pruning, where classi-
fiers are rather removed from the ensemble if they provide insufficient contribution to the
collective [215].

Moreover, there exist several factors that may define how many component classifiers should
be used within an ensemble:

• Accuracy–Cost trade-off – Increasing the number of classifiers usually increases the compu-
tational cost related to their training; in addition, there is generally a limit in the possible
increase in accuracy due to the addition of new classifiers to the ensemble (besides the two
facts being not necessarily related);

• The nature of the classification problem – In some ensemble methods, the nature of the clas-
sification problem determines the number of classifiers;

• The amount of computational power available – For example, in independent methods the
number of processors available for parallel learning could be an upper bound on the num-
ber of classifiers that can be considered.

There exist some common approaches in determining the ensemble’s size, based on the type
and goodness of classifiers which are involved. To this extent, Fig. 2.5 gives a view of classifier
combination approaches in the space of ensemble’s size (denoted by N) and performance of the
individual base classifiers.

In the top-left corner there is the ideal system, composed by one yet perfect classifier. Increas-
ing the number of classifiers but remaining in the upper-left quarter, we find methods that rely
on small ensembles of strong classifiers. These types of systems are usually composed by models
derived from a heterogeneous pool of classifiers, and usually the fusion is done between their in-
dependent outputs, with ingenious combination rules to draw upon their diversity. They are thus
MCSs. Always in this part of the scheme, we can find classifier models combined through stacked
generalization. The combiner is a classifier itself, built upon the outputs of the individual clas-
sifiers. The individual outputs, i.e. class labels or degrees of support for the various classes, are
treated as intermediate features. Stacking treats the outputs of the individual classifiers as inputs
for a new trainable classifier, which itself constitutes the combiner. Unlike bagging or boosting,
stacking is used to combine a small number of models of different types. Generally, in presence of
small heterogeneous ensembles of strong classifiers, each ensemble member usually knows well
a part of the feature space only, so that their fusion can be seen as a cooperation.

On the contrary, in the bottom-right quarter we find large ensembles of weak classifiers. Pop-
ular ensemble methods in this group are bagging and boosting, where the committee of models
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Figure 2.5: Visual representation of classifier combination approaches. We place our work in the upper-left
quarter (figure partially inspired by [148]).

is derived from the same base classifiers e.g. changing the input data for the learning stage. Un-
like the previous case, here each ensemble member is supposed to have knowledge of the whole
feature space, even though not being very reliable. The fusion is done in a competitive situation
(an exception is feature bagging, where each classifier is trained with a different, limited set of
features).

Similarly to this subdivision, Valentini and Masulli [264] propose a dichotomized view of en-
semble techniques, dividing them into decision optimization methods and coverage optimization
methods. The former ones use a fixed set of carefully designed and highly specialized classifiers,
and the goal is to find an optimal combination of their classifications. The latter ones generate a
set of mutually complementary, generic classifiers that are combined to improve predictive per-
formance. In this sense, this division is analogous to the cooperative vs. competitive classifier
ensembles.

The upper-right quarter includes large ensembles of strong classifiers. However, this approach
is not that interesting, because of the redundancy in the classifier outputs which leaves no room
for diversity. It is a waste of resources, as the computational burden to perform the fusion would
be too expensive for the actual derived gain.

Finally, the bottom-left quadrant corresponds to small ensembles of weak classifiers. It rep-
resents the most challenging situation, because diversity must be ensured in such a way that no
accuracy is wasted, and that the classifiers complement each another. While being possible in the-
ory, this approach is practically not easy to put in place and represents an active area of research.

2.3.2.5 Universality

Universality (with respect to the base classifier) is a property which is related to the fact that some
ensemble approaches can be used with any classifier model, while others are tied to a specific
classifier type.

Among the classifier-dependent methods, we can recall [98, 172, 241] which were developed
specifically for neural networks. Other procedures were developed specifically for SVM [256], de-
cision trees [228] and logistic regression [238] classifiers. Examples of classifier-specific ensembles
are then the Random Forest and GXBoost, whose base classifiers are necessarily Random Trees. In
the same way, also MKL is restricted to the use of SVM classifiers, although with different kernels.

Alternatively, there are classifier-independent methods which can be applied on any given
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classifier or set of classifiers. Traditional bagging and boosting could be applied to any base clas-
sifiers (although in practice they are often used in conjunction with trees or, more in general, in-
expensive classifiers since they involve a large number of them). Among these methods we can
then find MCSs and ensembles created through stacking, where diversity in the type of classifiers
involved is necessary and encouraged.

2.3.3 Our approach as taxonomy’s entry

A contribution of this work is a MCS for pedestrian head detection in high-density crowds, that
will be explained over the next Chapters. Now, we are able to categorize the proposed method
with respect to Rokach’s five dimensions taxonomy:

1. Combiner – The combination is performed in the BF framework after the proposed BBA
allocation;

2. Building the ensemble – We rely on a MCS composed by an SVM-ensemble and a CNN-
ensemble. The SVM-ensemble is composed by several SVM classifiers trained with respect
to different features. We employ an SVM as base classifier for all the members of the ensem-
ble and we rely on different descriptors in order to obtain the feature vectors, which give
different view of the same input data. Conversely, the CNN-ensemble is given by the appli-
cation of dropout at inference time over a CNN especially designed to recover small objects
and to work with small amounts of data. Besides, our base classifiers being able to capture
different shades of the same input data, their fusion is done in a cooperative way;

3. Diversity – It is implicitly obtained by using the different classifiers obtained with respect
to different features which are able to capture different views of the same input data, both
hand-crafted (SVM-ensemble) and automatically learned (CNN-ensemble);

4. Ensemble size – We place our algorithm in the upper-left quarter of Fig. 2.5, as we exploit
indeed a small ensemble of rather strong SVM classifiers based on different descriptors in
order to perform fusion of their independent outputs, and a small ensemble of CNN realiza-
tions through dropout;

5. Universality – The proposed approach will be illustrated with respect to the use of SVM
and CNN as base classifiers. Regarding SVM, we have chosen the descriptors for our spe-
cific problem of pedestrian detection in high-density crowd, therefore the method is rather
application-dependent. Moreover, the proposed BBA allocation is performed in two succes-
sive steps, the first one being dependent on the fact that we rely on SVMs for classification.
The distance to the hyper-plane separation of the various samples will indeed play a key
role in determining the discounting factor to derive the associated BBA. Nevertheless, the
proposed method could be easily adapted to any classifier which provides a score as output
of the classification. Finally, considering a different application, the proposed MCS could be
easily applied with more adapted descriptors. Regarding the CNN-ensemble, the approach
will be illustrated on the basis of the proposed network but it can be applied to any fully
convolutional neural network with encoder-decoder structure.
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Chapter 3

SVM descriptors for pedestrian detection
in high-density crowds
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3.1 State of the art

Pedestrian detection in high-density crowds is a difficult task, especially because common meth-
ods applied in sparse scenes are not applicable in denser scenarios, for a number of reasons ex-
plained in Sec. 1.1.2.1, such as absence of background, heavy occlusions of body parts, high visual
homogeneity and small size of the targets.

When using traditional classifiers such as SVM, a feature engineering step is necessary in or-
der to design a distinctive representation of the object of interest. In such difficult applications
however, it is impossible to find a feature representation which is able to perfectly describe all the
different possible shades of pedestrian’s head appearance.

Among the appearance cues, the simplest descriptors rely on a local color histogram, which
may be associated to skin, hair or clothes. However, this approach is limited by multiple factors:
the object resolution needs to be relatively high, the color spaces are not discriminative enough
for difficult tasks, and lastly many surveillance cameras provide gray level data.

Over the last decade many descriptors have been proposed for face detection, starting from
the Viola-Jones [265] one. The Viola-Jones algorithm is an ensemble-based detector which exploit
a cascade of classifiers based on Haar features, usually trained with AdaBoost technique. However,
face detectors are unsuited for our application, since pedestrian faces are not detailed enough.

35



CHAPTER 3. SVM DESCRIPTORS FOR PEDESTRIAN DETECTION IN
HIGH-DENSITY CROWDS

Several effective approaches have been then proposed in the field of person re-identification
and human characterization, e.g. the viewpoint-invariant Ensemble of Local Features (ELF) [94],
the Symmetry-Driven Accumulation of Local Features (SDALF) [12], gBiCov [175] which is a com-
bination of Biologically Inspired Features (BIF) [225] and Covariance descriptors [113], local de-
scriptors encoded by Fisher Vectors [174], salience matching [299], and mid-level filter [300]. How-
ever, they are not adapted in presence of clutter and occlusions.

Among the descriptors related to the image gradient, the Histogram of Oriented Gradients
(HOG) descriptor [51] is very popular and has exhibited in various contexts an excellent perfor-
mance when used either in conjunction with a linear SVM, or with a histogram intersection kernel
(HIK) [270]. It has been proposed initially for pedestrian detection with all the visible body, but
it has been applied to the recognition of other objects. More generally, the contour related to the
specific shape of the head and shoulders is highly discriminative, but it may fade away due to
clutter. Supervised learning may be used in order to enhance the local edge map according to a
training contour dataset [269], but it is also advisable to rely on descriptors aimed at other fea-
tures than shape. More recently, curvature histograms [77], i.e. second order features, have been
employed as a natural expansion of first order features provided by HOG. However they are not
meaningful enough by themselves to exceed the performance of the latter and come at a higher
computational cost.

Another feature which has been often used for detection in crowded scenes is the Local Binary
Pattern (LBP) operator [196]. The traditional use of LBP is in texture classification, but due to its
local sampling strategy it exhibits a reasonable robustness to occlusion as well. Some alternative
solutions are the covariance matrix based descriptors [113], but the main advantages of LBP are
its compactness and low computational cost. Also related to texture representation, Gabor filter
banks have been used for head detection [159] to encode the local frequency and orientation.

Related to the field of image-based matching we can find Scale Invariant Feature Transform
(SIFT) [170] which is invariant to translations, rotations and scaling transformations in the image
domain and robust to moderate perspective transformations and illumination variations. It works
by accumulating statistics of local gradient directions of image intensities to give a summarizing
description of the local image structures in a neighbourhood around each interest point. The pro-
cedure of SIFT therefore includes mainly three steps: keypoints detection, descriptor assembling,
and keypoint association [282].

Over the years many variants have been proposed, like PCA-SIFT [132], CSIFT [1], SURF [11]
and ASIFT [187], just to cite some of them. PCA-SIFT exploits Principal Component Analysis
(PCA) [276] to be able to reduce the dimensionality of the resulting feature vector. CSIFT adds
color invariance to the basis of SIFT, allowing to not discard the available information present
in color images. Speeded Up Robust Features (SURF) is very similar to SIFT in its extent, but
it adopts different processing methods in every step, e.g. it uses a Hessian matrix to determine
candidate keypoints and adds a non-maxima suppression step, besides calculating Haar wavelet-
based gradients in a circular area rather than squared. These improvements allows for a gain in
performance. ASIFT (Affine SIFT) improves the performance in situations of strong affine issues,
by simulating the rotation of camera’s optical axis. Still inspired by SIFT, DAISY descriptor [258]
has been proposed to estimate dense depth maps from wide-baseline image pairs, showing high
robustness against many photometric and geometric transformations.

In their original formulations, these descriptors are used for matching sparse interest points
between different images. However, they have also been applied at dense grids (e.g. dense SIFT)
along with a supervised classifier, showing good performance thanks to their intrinsic robustness
to perspective and lighting variations. The SIFT expansion to the dense setting has been proposed
in [73], while SURF can be naturally adapted to be computed densely in an efficient way. DAISY
can also be computed efficiently at every pixel, and unlike SURF does not introduce artifacts that
degrade the matching performance when used densely.
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3.2 Considered descriptors

Among the different detectors it is not immediately clear which ones are suited for high-density
crowd pedestrian detection. In the following, we present the four descriptors used in this work,
explaining why they have been chosen and performing a validation of their parameters.

3.2.1 HOG

Gamma & 
colour 

normalization

Gradients 
computation

Cell 
histogram 

binning

Block 
normalization

HOG 
descriptor 
creation

Classifier
Input Image

Object / non-object
decision

Figure 3.1: Overview of HOG descriptor (figure inspired by [51]).

The Histogram of Oriented Gradients (HOG), introduced in [51], grasps the shape of interest
by histograms of local intensity gradients or edge directions. The basic idea behind it is that local
object appearance and shape can be well characterized by the distribution of local intensity gra-
dients or edge directions, even without precise knowledge of the corresponding gradient or edge
positions.

In practice, for each pixel, HOG is computed considering a large window around it, which is
in turn divided into small cells, and for each cell a local histogram of gradient directions is accu-
mulated. Figure 3.1 provides an overview of the various steps required in order to perform object
detection using the HOG descriptor:

• Gamma and colour normalization – The first step consists in a global gamma correction of
the input image, although it provides only a modest effect on performance as stated by the
authors;

• Gradient Computation – Gradients are computed at every location, after an optional Gaus-
sian smoothing. The authors tested several discrete derivative kernels, and linear 1D [−1,0,1]
kernel (with its transposed form for the vertical response) resulted to be the best;

• Cell histogram binning – At this point, the window around the pixel of interest is divided
into small cells. For each cell a histogram of gradient directions is accumulated, where the
vote of each pixel is weighted with respect to the magnitude of its gradient, introducing an
important source of non-linearity. The cells themselves can either be rectangular or radial
in shape, and the histogram channels are evenly spread over 0 to 180 degrees or 0 to 360
degrees, depending on whether the gradient is unsigned or signed. The authors found that
unsigned gradients used in conjunction with 9 histogram channels performed best in their
human detection experiments;

• Block normalization – Cells are then grouped into possibly overlapping blocks, and the his-
tograms contained in each cell are normalized for each block to take into account local
changes in lighting and contrast, for better invariance to illumination and shadowing. Sev-
eral block normalization schemes have been proposed, such as L2-norm, L2-Hys which is a
L2 normalization followed by a clipping operation to impose an upper bound on the maxi-
mum value (by default set to 0.2) and re-normalization, L1-norm and L1-sqrt, i.e. a L1 nor-
malization followed by square root. The block normalization step has been proved by the
authors to be essential, reducing the performance of almost 30% when not applied;

• HOG descriptor creation – The final descriptor is composed by concatenating all the normal-
ized cell histograms of every block in the detection window;

• Classifier – Once the descriptors have been obtained, we can train a classifier (e.g. a SVM)
with them, and later use it for decision about new samples (which will be also represented
in terms of HOG features).
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Table 3.1: Example of the basic LBP operator applied in a 3×3 neighborhood at central pixel c having gray-
scale value gc . The binary code is obtained by concatenating binary values from the top-left corner (g0

position) in a clock-wise fashion. In this example, the resulting binary code is 11010011, which corresponds
to the decimal label 211.

Pixel’s neighborhood: Gray-scale values: Binary thresholding:

g0 g1 g2

g7 gcgcgc g3

g6 g5 g4

250 127 10

44 444444 112

45 21 3

1 1 0

1 1

1 0 0

Since the HOG descriptor operates on localized cells, the method upholds invariance to geo-
metric and photometric transformations, except for object orientation. Moreover, as the authors
discovered, coarse spatial sampling, fine orientation sampling, and strong local photometric nor-
malization allows for the individual body movement of pedestrians being ignored as long as the
individuals maintain a roughly upright position. Indeed, upper body parts are not concerned in
significant appearance changing also in presence of pedestrian movements, and continue to keep
their discriminative power. For this reason, the HOG descriptor is suited for human detection, and
we decided to apply it in our high-density context as a head detector, for its ability of recognizing
human head-shoulder patterns robustly.

3.2.2 LBP

The Local Binary Pattern (LBP)[196] is a powerful texture descriptor, whose aim is to efficiently
summarize the local structures of an image. It has been applied to many applications, e.g. LBP-
based facial image analysis has been one of the most popular and successful applications of it in
recent years. The most important properties of LBP are its high tolerance to monotonic illumina-
tion changes and its computational simplicity.

The original LBP operator labels the pixels of a gray-scale image with decimal numbers, called
Local Binary Patterns or LBP codes, which encode the local structure around each pixel. Table 3.1
shows an example of the basic LBP operator. For each pixel, the 3×3 neighborhood is thresholded
with respect to the center pixel value, and the resulting string reading the neighbors’ values clock-
wise starting from the top-left corner is interpreted as a binary number and used as a label in its
decimal form.

Figure 3.2: Examples of extended LBP operators, i.e. LBP8,1, LBP16,2, LBP8,2.

One limitation of the basic LBP operator is that the small 3× 3 neighborhood is not enough
to capture dominant features in presence of larger scale structures. To perform texture detec-
tion at different scales, the operator has been later generalized to use neighborhoods of different
sizes [197]. A local neighborhood is defined with respect to a central pixel as a set of points evenly
sampled on a circle around it. The sampling points which do not fall exactly in the center of a pixel
are bilinearly interpolated. This allows the use of any radius and any number of sampling points in
the neighborhood. The notation LBPp,r denotes LBP operator computed with a neighborhood of
p sampling points on a circle of radius r . Figure 3.2 shows some examples of the extended LBPp,r

operator sampling scheme.
Formally, the LBP operator at (xc , yc ) location having a gray-scale value of gc is defined as:
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LBPp,r (xc , yc ) =
p−1∑
p=0

s(gp − gc )2p , (3.1)

where gp are the various gray-scale values of the surrounding pixels in the circle neighborhood,
and the function s(x) is defined as:

s(x) =

 1, if x ≥ 0,

0, if x < 0.
(3.2)

This formulation is by definition invariant to monotonic gray-scale transformations, being
able to preserve pixel intensity order in the local neighborhoods.

Also in [197], the authors extended the descriptor in order to obtain rotation invariance, by per-
forming circular clock-wise bit-wise right shifts so that a maximal number of the most significant
bits is 0. This version goes under the notation of LBPr i

p,r , where r i stands for “rotation invariant”.
However, it was shown that such a rotation-invariant definition of the LBP operator does not

necessarily provide discriminative information, since the frequency of occurrence of the many
possible individual patterns varies greatly. To this extent, the authors observed in [197] that only a
limited subset of the 2p patterns are indeed very discriminative, representing well local primitives
such as corners or edges, and holding most of the information related to texture. These patterns
are called uniform patterns, and present at most two transitions from 0 to 1 or vice-versa in the
corresponding binary string. For instance, patterns 00000000 (0 transitions), 00001111 (1 transi-
tion) and 00110000 (2 transitions) are considered as uniform, whereas 00110011 (3 transitions) or
01010101 (7 transitions) are not. The enhanced version of LBP which takes into account the uni-
formity of patterns is denoted LBPr i u2

p,r , where u2 means that uniform patterns with at most 2 0-1
(or 1-0) transitions.

Besides the higher discriminative power, the use of uniform patterns allows us also to limit
the number of possible value for the labels. For example, considering LBPr i

8,1, the label values
span between 0 (00000000 pattern) and 255 (11111111 pattern), for a total of 256 possible different
values. Now, considering LBPr i u2

8,1 , a simple look-up table allows us to assign a different label to
the various uniform patterns while at the same time placing in the same last bin all the patterns
which are not interesting, yielding to only 59 possible label values.

Finally, to obtain the texture descriptor, histograms of LBP labels are calculated over the region
of interest. Thus, the reduction of the number of possible values using uniform patterns is partic-
ularly important as it allows to obtain more compact yet highly discriminative feature vectors.

In this study, we employ the LBP operator to derive a descriptor for the following reasons.
Firstly, it can be noted that head-shoulder body parts of people in high-density crowds are so close
one to another that they look like a texture. Then, among the various texture descriptors LBP can
be computed fast and provides a compact representation which is particularly useful to mitigate
the risk of possible overfitting in applications where the training set is quite small.

Lastly, among the various applications of LBP, we shall mention that HOG and LBP have been
already used together in [272] to perform human detection with partial occlusion handling through
part detectors applied in ambiguous windows. Instead of simply concatenating the two feature
vectors corresponding to HOG and LBP, an LBP operator is computed for every cell of the HOG
descriptor, raising up an augmented HOG-LBP feature.

3.2.3 Gabor filter banks

Gabor filters in their two dimensional version have been firstly introduced in [55] with the purpose
of modeling simple receptive fields in striate cortex. Now, they are widely used in object recogni-
tion and texture segmentation, for capturing global and local information thanks to the flexibility
in the choice of spatial scales and orientations. An input image I(x, y) is convolved with a Gabor
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Figure 3.3: Examples of a Gabor filter bank composed by kernels at 5 scales and 8 orientations.

filter g (x, y), i.e. a 2D Gaussian function G(x, y), known as the envelope modulated by an oriented
complex sinusoidal signal s(x), called the carrier, at different scales and orientations. Gabor fil-
ters are thus band-pass filters which are able to detect image gradients of a specific frequency and
orientation.

Specifically, the two-dimensional complex Gabor function is defined as:

g (x, y) =
1

2πσxσy
·exp

((
1

2

(
x2

σ2
x
+ y2

σ2
y

)
+2πi f x +φ

))
, (3.3)

= G(x, y) ·exp
((

2πi f x +φ
))

,

where f and φ represent the frequency and the phase offset of the sinusoidal carrier function
respectively, while

G(x, y) =
1

2πσxσy
·exp

((
1

2

(
x2

σ2
x
+ y2

σ2
y

)))
, (3.4)

is the 2D Gaussian envelope. Parameters σx and σy are the standard deviations of the Gaussian
function in the two dimensions, regulating the ellipticity of the kernel.

The real and imaginary parts of the complex Gabor function can be computed as:

ℜ(
g (x, y)

)
= G(x, y) ·cos

(
2πi f x +φ

)
, (3.5)

ℑ(
g (x, y)

)
= G(x, y) · sin

(
2πi f x +φ

)
,

where i represents the imaginary unit i, which is defined by its property i 2 = −1.
A filter bank of Gabor functions gs,k (x, y) is generated by rotating and scaling the Gabor func-

tion of Eq. (3.3) as follows:

gs,k (x, y) = α−s g (x ′, y ′), (3.6)

with

x ′ = α−s (
x cosθk + y sinθk

)
, (3.7)

y ′ = α−s (−x sinθk + y cosθk
)

.

For given numbers of S scales and K orientations, α−s is a scaling factor that guarantees the
energy of the filter to be independent of the scale, s = 0, . . . ,S −1, while angles θk are computed as
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θk = kπ
K , k = 0, . . . ,K−1. Figure 3.3 shows an example of a Gabor filter bank composed by kernels at

S = 5 scales and K = 8 orientations.
Now, given an image patch I(x, y) ∈ IRM×N, its convolution with the Gabor filter bank gives raise

to S ×K filter responses such that:

Ws,k (x, y) = I(x, y)∗ gs,k (x, y). (3.8)

For a given scale s and orientation k, the corresponding attributes are computed as the mean
and standard deviation of the absolute value filter response over the image patch:

µs,k =
1

MN

M−1∑
i =0

N−1∑
j =0

∣∣Ws,k
∣∣, (3.9)

σs,k =

√√√√ 1

MN

M−1∑
i =0

N−1∑
j =0

(∣∣Ws,k
∣∣−µs,k

)2,

So that the final feature vector x is created by concatenating the resulting attributes computed
at every scale and orientation:

x =
[
µ0,0,σ0,0,µ0,1,σ0,1 . . . ,µS−1,K−1,σS−1,K−1

]
. (3.10)

The motivation behind our choice to employ Gabor filters lies in the fact that it is an efficient
way to perform multi-scale and multi-orientation analysis (the Gabor filter bank can be indeed
pre-computed), allowing at the same time to obtain a compact feature vector. Besides, due to the
absolute value of the filter response in the creation of the attributes, it does not matter for the
final feature whether a person appears dark on bright background or vice-versa, allowing for a
unified representation of people appearance as long as their responses to the different scales and
orientations are consistent.

Gabor filter banks have been already used in conjunction with LBP features, e.g. in [255]
for face recognition, firstly reducing their dimensionality through Principal Component Analysis
(PCA) and then fusing them together at feature-level using kernel discriminative common vector
methods, or in [297] for person re-identification exploiting a region covariance descriptor. Ga-
bor filters have been used also in conjunction with HOG, e.g. in [46] where the HOGG descriptor
is proposed by firstly applying a Gabor preprocessing that helps to emphasize the human body
shape and improves the posterior gradient accumulation done by the HOG algorithm. However,
the size of the resulting feature vector increases dramatically.

3.2.4 DAISY

DAISY is a more recent descriptor which has gained popularity particularly in the field of wide-
baseline stereo matching [258], while at the same time being designed for an effective dense com-
putation. Similarly to SIFT and Gradient Location and Orientation (GLOH) [186] descriptors,
DAISY involves the computation of histograms of gradient locations and orientations. The differ-
ences among them lie in two aspects. Firstly, DAISY replaces the weighted sums of gradient norms
used in SIFT and GLOH by convolutions of gradients in specific directions with several Gaussian
filters that can be computed very quickly. Secondly, as GLOH, DAISY uses a circular neighbor-
hood configuration instead of the rectangular grid used by SIFT, omitting however the PCA-based
dimensionality reduction performed by GLOH.

For a given input image, H orientation maps are firstly computed and then convolved several
times with Gaussian kernels of different Σ, on Q concentric layers having T circles centered on
sampled locations. Then, histograms of orientations are derived from the central location and
from all the sampled locations at every layer, and finally concatenated.

More specifically, for the given input image I, orientation maps Go are firstly computed, one
for each quantized direction o, 1 ≤ o ≤ H. They are formally defined as:
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Figure 3.4: DAISY descriptor structure.

Go =

(
∂I

∂o

)+
, 1 ≤ o ≤ H, (3.11)

where o is the orientation of the derivative and the “+” sign means that only positive values are
kept in order to preserve the polarity of the intensity changes, such that (a)+ = max(a,0).

Each orientation map, representing thus the image gradient norm for that direction at all pixel
locations, is then convolved several times with Gaussian kernels of different standard deviation
Σ values, in order to obtain the convolved orientation maps. For given Gaussian kernel GΣ and
orientation o:

GΣo = GΣ∗
(
∂I

∂o

)+
. (3.12)

The efficiency of the DAISY descriptor is particularly evident in this computation. Indeed,
since Gaussian filters are separable by nature, convolutions can be implemented very efficiently
and in particular convolutions with large Gaussian kernels can be obtained by several consecutive
convolutions with small ones, reducing the computational burden.

Figure 3.4 shows an example of the circular structure of the DAISY descriptor (which looks like
a flower, hence the name), computed around the central pixel which is indicated by the filled, red
dot. The other filled blue dots represents the sampled locations, namely T equally spaced points to
cover all directions, in Q concentric layers. Then, each circle on the image contains one histogram
vector of orientations which is built from the convolved orientation maps in different gradient
directions for each region, where the amount of Gaussian smoothing is proportional to the radius
of the circle, which increases in the outer rings.

For a given sampling location (x, y) in the image, its responses to the various convolved orien-
tation maps are accumulated in a H-dimensional histogram such that:

hΣi (x, y) =
[

GΣi
1 (x, y), . . . , ,GΣi

H (x, y)
]ᵀ

, (3.13)

where Σi represents the standard deviation of the Gaussian kernel for the particular layer, i =
1, . . . ,Q. In the original version of the paper, for the objective of wide-baseline stereo matching,

the various histogram vectors are independently normalized to the unit form (noted h̃Σi (x, y)),
but the authors suggest that different normalization schemes could be applied on the basis of the
considered application.
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Table 3.2: DAISY parameters.

Symbol Description

R Radius, i.e. distance from the center pixel to the outer most sampling point.

Q Number of concentric layers.

T Number of histograms in a single layer.

H Number of considered orientations, i.e. histogram bins.

Finally, the DAISY descriptor of a given pixel (x, y) can be composed by concatenating the
previously computed (normalized) vectors, starting from the central point and then considering
all the sampling points in the outer rings.

Table 3.2 gives a summary of the various parameters involved in the DAISY descriptor. The
number of total histogram used in the descriptors can be easily computed as S = QT+1. Since the
total descriptor is composed by the concatenation of the various histograms, its total size is SH.

There are several motivations behind our choice to employ the DAISY descriptor. As previously
stated, descriptors which are usually computed sparsely for stereo matching applications have
been shown to perform well even when computed densely and coupled with a supervised learn-
ing algorithm, thanks to their intrinsic robustness to scene variations and illumination changes.
Among these descriptors, DAISY has been proposed to be computed efficiently in the dense set-
ting, first reason why we have chosen it. Then, its Gaussian smoothing, together with the sampling
overlap, naturally enforce spatial consistency which is indeed important for pixel-wise detection
applications, showing more robustness to partial occlusions and ensuring a smoothly changing
descriptor for neighbor pixels. The amount of Gaussian smoothing is then proportional to the ra-
dius of each concentric circle, giving rise to larger Gaussian kernels in the outers rings. For this
reason, DAISY appears well suited for our application, as we benefit from a finer description of
the contour of the head and a coarser description moving away from it, removing noise in the
surroundings yet being able to consider spatial context information. Finally, the use of a circular
sampling grid is interesting for many reasons. Firstly, it naturally fits our detection target shape
(head). Then, it has been shown to have better localization properties with respect to the tradi-
tional grid used by SIFT, as stated in [186]. Lastly, combining an isotropic Gaussian kernel with a
circular grid makes DAISY descriptor naturally robust to rotational perturbations.

To our knowledge, this descriptor has not been previously used for head detection in crowds.

3.3 Single-descriptor SVM learning

3.3.1 SVM learning overview

Figure 3.5 gives an overview of the traditional learning procedure using SVM. Firstly, a training set
containing positive and negative training samples is collected. Then, for each sample location, a
window around it is considered and a feature vector is obtained applying the chosen descriptor.
Feature vectors are then fed to SVM which on the basis of the chosen kernel function returns a
model, which encapsulates the optimal decision boundary learned from the various training sam-
ples and the chosen hyper-parameter C to control the generalization ability.

After the training, the learned model can be applied to classify unseen samples, i.e. in our ap-
plication a dense classification over the test image pixels through a sliding window is performed.
Since SVM is a binary non-probabilistic classifier, its decision is performed using Eq. (2.29) provid-
ing thus just a binary label regarding the class of the test sample, giving rise to the final detection
image.
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Figure 3.5: SVM learning overview.

3.3.2 SVM score calibration

In order to obtain class probabilities from SVM uncalibrated scores, i.e. sample distances to the
hyperplane margin, a well established method proposed by Platt [211] consists in approximating
the posterior probability by learning the optimal parameters of a logistic sigmoid function (cf.
Sec. 2.2.3), relying on a calibration set independent from the training data.

In particular, given the training samples x(i ) ∈ IRn , i = 1, ...,m, labeled by y (i ) ∈Ω = {+1,−1}, de-
fined as feature vectors derived from a head detector, the binary SVM computes a decision func-
tion such that h(x) = sign

(
f (x)

)
(cf. Eq. (2.29)) is used to predict the label of the unseen test sample

x. In order to obtain class probability P(y = 1|x), the method proposed by Platt [211] approximates
the posterior probability by learning a logistic sigmoid function:

P(y = 1|x) ≈σλ0,λ1 ( f ) =
1

1+eλ0 f +λ1
. (3.14)

The optimal parameters (λ∗0 ,λ∗1 ) are then determined by solving a regularized maximum likeli-
hood problem, using a calibration set different from the SVM training one, or performing a n-fold
cross-validation on the training set. Moreover, in order to cope with possibly imbalanced calibra-
tion sets, target values y (i ) ∈Ω are replaced by y (i ) ∈ {

y+, y−
}

such that:

y+ =
N++1

N++2
, y− =

1

N−+2
, (3.15)

where N+ and N− are the numbers of positive and negative samples in the calibration set respec-
tively.

We have chosen to rely on a calibration set different from the training one, in order to avoid
possible overfitting problems. Besides, our calibration set is an image patch,so that the calibration
is performed on the real data distribution (this influences particularly the bias intercept λ1). For
each pixel of this image patch, its target value is directly derived from the related ground-truth,
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without considering pixels which are on the contour of the heads to avoid confusion in the label
assignment. Thus, starting from the ground-truth binary map indicating head centers, a dilation
with a circular structuring element of radius r1 is performed and the obtained 1-valued pixels are
assigned to the positive class. In the same way, a dilation with r2 > r1 allows to assign the negative
label to all the 0-valued pixels. Note that r1 and r2 values have been found empirically and should
be adapted to the considered training set.

Platt suggested to use the Levenberg-Marquardt algorithm to optimize the parameters, but
a Newton algorithm was later proposed and proven to be numerically more stable [166], so we
adopted it. In the same way, the authors suggested a reformulation of the minimization of the
negative log-likelihood problem in order to avoid numerical problems.

3.4 Single-descriptor results

3.4.1 SVM settings

We rely on a balanced training set composed by 2000 samples, i.e. 1000 positive and 1000 negative
points, carefully manually selected in order to span as much as possible across the sample char-
acteristics while at the same time remaining focused on the center of the heads, as explained in
Appendix A.

Platt’s calibration is performed on the basis of a calibration set to obtain probabilistic outputs.
Considering that a head diameter in our dataset spans between 6 and 12 pixels, r1 = 2 and Kernels
adapted to each descriptor has been chosen in order to exploit their distinctive features at maxi-
mum. Cross-validation is performed to set the parameters of each descriptor and kernel, as well
as to find the best C parameter (cf. Eq. (2.31)), and they are detailed in the following:

• HOG – We compute HOG descriptors in 24× 24 windows, in order to include information
about the immediate surrounding of the actual head while at the same time avoiding other
targets. A L2-hys normalization is applied for each block. For learning, we rely on the HIK.
C parameter is set to 0.01;

• LBP – Following the idea of [3], we subdivide the image in small regions from which his-
tograms are extracted and then concatenated, in order to enhance the locality of the LBP. A
LBPr i u2

1,8 is used over 12× 12 windows subdivided into four 6× 6 blocks. The choice of the
window size is sensitive, as larger windows result in wide detections, overflowing the actual
heads. Stride between blocks has also been tested but it does not provide consistent im-
provement. Following the example of [3] which employs on a χ2 distance as a dissimilarity
measure, we rely on a χ2 kernel function which has been shown to be positive definite and
suited for data generated from histograms [162]. C parameter is set to 0.1;

• Gabor Filter Banks (GABOR) – To build the final feature vector, instead of just concatenating
the raw responses of every filter in the bank, we subdivide the window around each pixel in
several blocks, and then we compute their first and second order statistics. We use a Gabor
filter bank of 5 scales and 4 orientations; a high number of scales is essential to obtain good
results, while increasing the number of orientations does not provide an effective gain in
performance. For each Gabor filter response image, we compute and concatenate mean
and standard deviation over 4×4 blocks on 16×16 windows to obtain the GABOR feature
vector. Then, a RBF kernel is considered for learning. C parameter is set to 10, while the σ

parameter of the RBF kernel is set to 2;

• DAISY – We use a radius R = 8 from the center to the outer ring, with Q = 3 number of layers
and T = 8 histograms of H = 8 bins at each layer. As for the HOG, the HIK is employed for
SVM classification. C parameter is set to 1.
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Table 3.3: Confusion matrix definition

Ground-truth Positive Ground-truth Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

3.4.2 Evaluation method

Since our primary objective is pedestrian detection in the context of high-density crowds, we
choose to perform an object-level analysis of the results. To this extent, we rely on Precision-
Recall (PR) curves that are able to show, for each possible threshold value, the trade-off between
precision and recall values which are defined as follows:

Precision =
TP

TP+FP
(3.16)

Recall =
TP

TP+FN
(3.17)

where TP, FP and FN are defined by the confusion matrix shown in Table 3.3.

Precision is therefore the fraction of relevant instances among the retrieved instances, while
Recall is the fraction of relevant instances that have been retrieved over the total amount of rele-
vant instances. Traditionally, the Area Under Precision-Recall Curve (AUPRC) is employed to eval-
uate the performance of an algorithm from its PR-curve.

Non-Maximum Suppression (NMS) is applied to obtain the detections at every threshold, set-
ting the radius of a head to r = 3, with 2r +1 minimum distance between two maxima (head cen-
ters) in order to avoid overlapping detections.

3.4.3 Results
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Figure 3.6: PR-curves of SVM trained with the different descriptors and kernels.
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Table 3.4: Precision-Recall Break Even Point and Area Under Precision-Recall Curve with the different de-
scriptors.

HOG LBP GABOR DAISY

PRBEP 0.57 0.63 0.59 0.67

AUPRC 0.58 0.63 0.58 0.68

Figure 3.6 shows the PR-curves of SVM trained with different features obtained through the in-
spected descriptors, namely HOG, LBP, GABOR and DAISY. As it is possible to notice, HOG and GA-
BOR provide lower precision values but are able to reach higher values of recall, whereas LBP and
DAISY provide better precision but are not able to reach the same levels of recall as the other two
descriptors. Overall, DAISY provides the best results and reveals to be a good choice for the given
task, even though it has been proposed in the context of a different application (stereo match-
ing), thanks to its intrinsic robustness to illumination and scene variation changes, along with its
Gaussian smoothing that enforces spatial consistency.

Figure 3.7 shows the results of the dense classification performed on a testing image patch after
SVM training with the different inspected descriptors. Results are shown in terms of colormaps of
the probabilistic output map obtained after the calibration procedure (in the first column), and
detections at the Precision-Recall Break Even Point (PRBEP) threshold, which is a useful operative
threshold value corresponding to the threshold for which precision is equal to recall (cf. Table 3.4).

In line with the tendency already observed in the PR-curves corresponding to the different
descriptors, HOG and GABOR provide noisier probability output maps and smaller output detec-
tions, which corresponds to lower values of precision (more false positives are generally present)
while at the same time higher recall values (more heads are detected, even though with small
blobs). These two descriptors seem to perform poorly when the background is cluttered with noisy
edges. Conversely, LBP and DAISY provide larger and rougher results, which reflects in higher pre-
cision values since the number of false positives is smaller. LBP can indeed filter out noise us-
ing the concept of uniform pattern, while DAISY can provide very smooth detections, due to the
Gaussian-based spatial sampling. Finally, note that HOG provides quite localized detections em-
ploying the largest window size, while LBP outputs large detection blobs relying on the smallest
window size.

The results obtained using single descriptors however, looking also at the PRBEP and AUPRC
values in Table 3.4, are not sufficient to perform a satisfactory analysis of the scene. They are nev-
ertheless useful in that they underline the complementarity among the chosen descriptors, which
is a desirable property in view of the design of a fusion strategy among them aimed at leveraging
their peculiarities.
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(a) Patch image

(b) Probabilistic output map - HOG (c) Detection map - HOG

(d) Probabilistic output map - LBP (e) Detection map - LBP

(f ) Probabilistic output map - GABOR (g) Detection map - GABOR

(h) Probabilistic output map - DAISY (i) Detection map - DAISY

Figure 3.7: Visualization of the results of the dense classification performed on a testing image patch after
SVM training with the different inspected descriptors, in terms of colormaps of the probabilistic output
map obtained after the calibration procedure (first column) and detections at PRBEP threshold.

48



Chapter 4

Taking into account imprecision with
Belief Function Framework

Contents

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Belief Function Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Belief representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Belief Functions combination . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Proposed BBA definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 BBA definition based on calibrated scores . . . . . . . . . . . . . . . . . . . . 53

4.3.2 BBA definition based on pixel neighborhood information . . . . . . . . . . . 56

4.3.3 BBAs combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 Final decision from the obtained BBA . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Motivation

In difficult applications such as high-density crowd analysis, an SVM model trained with features
obtained through a single descriptor may not be enough to reach satisfactory levels of perfor-
mance. Besides, the traditional learning method do not take into account possible imprecision
that may exist due to the specific classifier and/or data used in the training and calibration pro-
cesses. We therefore propose an ensemble composed of several SVM trained with different, com-
plementary yet independent descriptors. To handle both the uncertainty provided by the classifi-
cation and the related imprecision we propose a solution in the context of Belief Function Theory
(BFT). After an introduction about fundamental concept of BFT, we present the proposed fusion
strategy among the ensemble members.

4.2 Belief Function Theory

The Belief Function Theory (BFT) [59, 247], also known as Dempster-Shafer Theory (DST) [239]
or evidence theory, is a formal framework for reasoning with partial (uncertain, imprecise) infor-
mation or knowledge, representing thus a generalization of probability theory. It is also directly
connected to possibility theory [291] and fuzzy sets [13, 292].

Solving a real-world problem in the context of Belief Function framework typically involves
three different steps:
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1. Representing and modeling the available pieces of information using BF;

2. Manipulating and combining the resulting BFs;

3. Making decisions based on the computation of some BF.

While many tools have been proposed for the two latter steps, including several combination
rules and decision functions, modeling the initial (possibly partial, unreliable and/or imprecise)
information using BFT is still challenging for many applications. We will therefore propose to this
extent a BF definition for our ensemble of SVM classifiers.

We will now present an overview of BFT, with emphasis on the notions and operators useful for
our study, before explaining the proposed information modelization along with the motivations
behind it.

4.2.1 Belief representation

To handle both uncertainty and imprecision, Belief Functions (BFs) are defined on a larger hypoth-
esis set than in the case of the probabilistic framework. Specifically, if Θ denotes the discernment
frame, i.e. the set of mutually exclusive (singleton) hypotheses, BFs are defined on the set of the

subsets of Θ, noted 2Θ in reference to its number of elements: 2
∣∣Θ∣∣

, where |Θ| is the cardinal-
ity of Θ. The power set 2Θ is thus the set of all the possible disjunctions of the set of singleton
hypotheses inΘ.

4.2.1.1 Mass function

Definition 4.2.1 A mass function mΘ, specifying a Basic Belief Assignment (BBA), is a function

over the power set 2Θ, mΘ : 2Θ→ [0,1], which satisfies:∑
A⊆Θ

mΘ(A) = 1. (4.1)

Note that for conciseness the superscript indicating the discernment frame Θ can be omitted
when there is no ambiguity about such set.

Definition 4.2.2 A focal element (or focal set) of m is a subset A ⊆Θ such that m(A) > 0.

Definition 4.2.3 A mass function is said to be normalized if:

m(;) = 0, (4.2)

where ; is the empty set representing the null hypothesis of the given discernment frame.

Normalization property is usually applied under the closed-world assumption, in which Θ is
defined on an exhaustive set of hypotheses. Relaxing this hypothesis (open-world assumption)
allows us to consider the existence of unnormalized BBAs, where the mass on the empty set can
be interpreted as the degree of support of the hypothesis that the solution lies outsideΘ.

Definition 4.2.4 A mass function is said to be vacuous if it has Θ as unique focal element, i.e.
m(Θ) = 1.

A vacuous mass function represents thus the total ignorance.

Definition 4.2.5 A mass function is said to be categorical if it has only one focal element:

∃! A ⊂Ω s.t . m(A) = 1 (4.3)

A categorical mass function conveys certain but possibly imprecise information.
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Definition 4.2.6 A mass function is said to be Bayesian if it has only singleton hypotheses as focal
elements:

∀ A ⊆Ω s.t . m(A) > 0 ⇒|A| = 1. (4.4)

Bayesian BBAs represent thus precise information, as the masses on all the disjunctions repre-
senting partial ignorances or total ignorance (i.e. m(Θ)) are null. In this sense, BFT is an extension
of the probabilistic theory: a probability distribution boils down to a particular case of a mass
function, when information is modeled through a Bayesian BBA.

4.2.1.2 Belief and Plausibility functions

Belief (Bel) and Plausibility (Pl) functions are in one-to-one relationship with m.

Definition 4.2.7 Given a mass function m, Belief function is defined ∀A ⊆Θ as:

Bel(A) =
∑

B⊆A,B6=;
m(B). (4.5)

Definition 4.2.8 Given a mass function m, Plausibility function is defined ∀A ⊆Θ as:

Pl(A) =
∑

B∩A6=;
m(B). (4.6)

The Belief of A can be interpreted as the degree to which the evidence does not support A,
whereas the Plausibility of A can be seen as the degree to which the evidence is consistent with A.

It is important to notice that Bel and Pl functions may also be interpreted as upper and lower

bounds of probability [239] as they check the duality property: ∀A ∈ 2Θ, Pl(A) = 1−Bel(A), where
A denotes the complement of A with respect toΘ (equivalently, in the open-world assumption the
property becomes Pl(A) = Pl(Θ)−Bel(A)).

From the definition Pl(A) ≥ Bel(A),∀A ⊆ Θ. The equality holds in the case of Bayesian mass
functions, where the two representations are equivalent to a probability measure. The interval
[Bel(A),Pl(A)] represents thus the amount of imprecision associated to the related BBA, which can
span between 0 (for a Bayesian BBA) and 1 (for a vacuous BBA).

4.2.1.3 Discounting

The discounting operator can be employed in order to model the reliability of a source of infor-
mation [239]. Over the years, several discounting procedures have been proposed (contextual dis-
counting [184], contextual reinforcement [209] among the others), but the simplest one consists
in reallocating some mass toΘ (representing ignorance) by means of a discounting factor.

Definition 4.2.9 Given a discounting factor α ∈ [0,1], the discounted mass function αm is defined
as:

αm(A) = αm(A), ∀A ⊂Θ
αm(Θ) = αm(Θ)+1−α

(4.7)

This operation has the effect of weakening all masses and reinforcing m(Θ) (i.e. the mass on
the largest disjunction representing total ignorance). When α = 0, the information is considered
totally not reliable, and the resulting mass function is vacuous, whereas when α = 1, the informa-
tion is considered completely reliable and the mass function is not affected.
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4.2.2 Belief Functions combination

Several combination rules have been proposed over the years. We report here the definition of the
ones that will be used in the context of this work.

Definition 4.2.10 Given two mass functions m1 and m2 derived from two independent pieces of
evidence, the conjunctive rule of combination is defined as:

m1 ∩© m2 (A) =
∑

B∩C=A
m1(B)m2(C), ∀A ∈ 2Θ. (4.8)

This combination, also referred to as unnormalized Dempster’s rule, leads to a possibly non-
null mass on the empty set, which corresponds to the degree of conflict, K. Specifically, the degree
of conflict K between two mass functions is:

K =
∑

B∩C=;
m1(B)m2(C). (4.9)

The normalized version of the conjunctive combination can be then defined, and it is often
referred to as Dempster’s rule.

Definition 4.2.11 Given two mass functions m1 and m2 derived from two independent pieces of
evidence, the Dempster’s rule of combination is defined as:

m1 ⊕m2 (A) =
1

1−K

∑
B∩C=A

m1(B)m2(C),∀A ∈ 2Θ \ {;} ,

m1 ⊕m2 (;) = 0.

(4.10)

The Dempster’s rule both in its normalized and unnormalized form comes with properties of
commutativity and associativity. Moreover, when applied to Bayesian mass functions, it is equiv-
alent to the probabilistic product rule, stressing once again the generalization performed by the
evidential framework over the probabilistic one.

4.2.3 Decision making

Finally, after BBAs definition and combination, a decision can be taken. Several rules have been
proposed in the literature. Most popular ones only consider singleton hypotheses (in order to
avoid ambiguous decision) and are based on maximum of plausibility, credibility, or pignistic
probability [247].

Pignistic probability in particular is one of the most commonly used, since it allows us to give
a probabilistic interpretation to the BBA, by transforming a mass function into a probability mea-
sure with a pignistic transformation:

∀A ∈Θ, BetP(A) =
1

1−m(;)

∑
B⊇A

m(B)

|B| . (4.11)

Alternatively, more recently the Plausibility Probability function [41] (Pl_P), and its unnormal-
ized version called contour function, have been proposed. Pl_P also provides a probabilistic in-
terpretation of the mass function, while being more consistent with the Dempster’s rule, and is
defined as:

∀A ∈Θ, Pl_P(A) =
Pl(A)∑

B∈ΘPl(B)
. (4.12)
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4.3 Proposed BBA definition

In the context of SVM-based high-density crowd pedestrian detection, we consider that impreci-
sion can arise in two different and complementary ways: in the derivation of posterior probability
values from SVM decision scores, and later, from the spatial layout of the detections in the output
image space.

We propose a mass allocation that is robust to possible imprecision of the calibration functions
while at the same time taking into account the information coming from neighboring pixels in the
image space. Besides, it allows for an amount of discounting that is different at every pixel of the
classifier’s output map, and it is not only a constant value that merely reflects the reliability of the
detector, as is often done (e.g. [141]).

More specifically, let us explain better the origin and the modeling of these two different types
of imprecision into the definition of a BBA.

Note that in our case, denoting by H and H the two singleton hypotheses, “Head” and “Not Head”

respectively, the discernment frame is Θ =
{

H,H
}

, and the set of hypotheses is 2Θ =
{
;,H,H,Θ

}
.

Moreover, Belief and Plausibility boil down to: ∀A ∈Θ,

Bel(A) = m(A), (4.13)

Pl(A) = m(A)+m(Θ). (4.14)

4.3.1 BBA definition based on calibrated scores

The first source of imprecision that we take into account is related to the SVM score calibration
process. Indeed, as explained in Sec. 3.3.2, in order to obtain class probabilities from SVM uncali-
brated scores, a logistic sigmoid function σλ0,λ1 is learned (cf. Eq.( 3.14)) through an optimization
process that allows us to obtain the optimal sigmoid parameter pair (λ∗0 ,λ∗1 ) on the basis of a cali-
bration set different from the SVM training one.

Our system relying on multiple SVM classifiers, N different sigmoid parameter configurations
are learned: (λ∗0 ,λ∗1 )n refers to the sigmoid parameters estimated for classifier n, with n = 1, . . . ,N.

For each different test sample x, given its score sn , namely its distance to the hyperplane
boundary defined by classifier n, we now define an associated Bayesian BBA mB

n (i.e., BBA having
only singleton focal elements), from the posterior probability given by its score calibration proce-
dure:

mB
n (H) = σ(λ∗

0 ,λ∗
1 )n (sn),

mB
n (H) = 1−σ(λ∗

0 ,λ∗
1 )n (sn), (4.15)

mB
n (Θ) = 0,

mB
n (;) = 0.

This initial Bayesian BBA is only able to model the uncertainty about the class the sample
belongs to, relying on a calibration procedure that is assumed to be precise.

However, in difficult settings such as our application, a robust estimation of the sigmoid pa-
rameters is almost impossible to achieve, and few changes in the calibration set (cardinality or
in the samples within it) can cause the sigmoid to appear very different. In presence of a steep
transition between the two classes particularly, even a slight shift of the sigmoid may induce very
different probability values and possibly different decisions for quite numerous samples, espe-
cially in case of strong overlap between the two classes. Now, with Belief Function framework we
can naturally take into account the imprecision inherent to the sigmoid learning process. Instead
of deriving a simple probabilistic value through logistic regression, we aim at associating a BBA to
each unlabeled sample directly from its score and from the estimated sigmoid (from calibration
process).
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Xu et al. [285] proposed to extend the logistic calibration to derive a BBA that takes into ac-
count the number of samples per score value for calibration process. Such an approach is suitable
especially when the number of samples is small and when there is no overlapping between the
scores of the two considered classes. Otherwise, as shown in [150], in such difficult types of appli-
cations, it is hard for SVM to find a very large margin between the two classes and there can be a
consistent overlap between samples with different labels for the same score. However, since the
number of samples per score would be high, we would paradoxically not assign a high value of
imprecision to them.

Then, as an alternative we consider the BBA allocation proposed by [17]. It relies on the obser-
vation that (fuzzy) erosion and dilation (respectively opening and closing) are dual with respect
to complementation, and they can be interpreted as Belief and Plausibility functions: given a BBA

m0 derived from the output of a classifier, the following property holds: ∀A ∈ 2Θ,

Pl(A) = 1−Bel(A) ↔ δv (m0(A)) = 1−Ev (m0(A)), (4.16)

↔ φv (m0(A)) = 1−γv (m0(A)), (4.17)

where δv and Ev are the dilation and erosion operators respectively, with structuring element v ,
while φv and γv are the closing and opening operators.

The amount and shape of the possible imprecision is thus modeled through a structuring el-
ement. Now, we propose to interpret the erosion operator as a discounting operator, in the sense
that the obtained BBA will be less committed. Indeed, when applying erosion to m0(A) to derive

Bel(A),∀A ∈
{

H,H
}

, the mass onΘ is increased by the sum of the differences between initial values

and eroded values: m0(Θ) = m0(A)−Ev (m0(A))+m0(A)−Ev (m0(A)).
In our case, the initial (Bayesian) BBAs mB

n are provided by the learned sigmoid associated to
each classifier n, through the probabilistic calibration.

Then, the application of erosion and dilation operations to this sigmoid, with a structuring
element of width w defined as a segment line in the score domain, allows for the derivation of
two new sigmoid functions that are interpreted as lower and upper bounds of probability with
respect to the learned sigmoid, i.e. Bel and Pl functions of the obtained BBA. Due to the fact that
we consider a flat structuring element and to the intrinsic monotonically increasing profile of the
sigmoid function, considering classifier n, it is possible to easily derive:

Beln(H) = σ(λ∗
0 ,λ∗

1 )n (sn − w

2
), (4.18)

Pln(H) = σ(λ∗
0 ,λ∗

1 )n (sn + w

2
). (4.19)

Figure 4.1 shows an example of a sigmoid function learned on the calibration set, as well as the
two derived sigmoid functions (for two structuring elements of different widths), that represent
Bel and Pl functions and provide the interval of imprecision.

The interval between Bel and Pl functions embeds thus the amount of imprecision in the cali-
bration step we have to cope with. It takes low values for points far from the hyperplane boundary
for which the decision is already pretty sure, whereas on the contrary it takes high values in the
area near to the hyperplane margin, where even a slight difference in the parameters of the sig-
moid can change the decision. Then, previous BBA allocation allows us to model the fact that the
calibration function may be not perfectly fitted due to the difficulty in the definition of a robust
calibration set and to allocate large values of imprecision to the samples having their correspon-
dent score within the SVM margin, in the overlapping area.

Table 4.1 proposes a toy example to illustrate the considered BBA allocation based on SVM
scores. Let us suppose that for a given classifier the sigmoid’s optimal parameters have been found
to be λ∗0 = −2 and λ∗1 = −0.05 through Platt’s calibration based on logistic regression on the calibra-
tion set. Then, considering two different test samples x1 and x2, such that sx1 = −0.5 and sx2 = +2
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Figure 4.1: Example of a sigmoid function obtained with calibration, and derived Belief and Plausibility
bounds at different structuring element w sizes. In our case, “class 1” corresponds to the H hypothesis.

are their SVM scores (i.e. their distances to the classification hyperplane), Eq. (3.14) provides the
probability estimates P(y = 1|x1) = 0.28 and P(y = 1|x2) = 0.98. Note that for this example, where we
consider only one classifier, subscripts refer to different samples x1 and x2 and the classifier index
is omitted. Then, we can derive the associated Bayesian BBAs by simply assigning the probability
estimate to the mass on H, and by computing the mass on H accordingly. For example, consider-
ing sample x1, mB

x1
(H) = P(y = 1|x1) and mB

x1
(H) = 1−P(y = 1|x1). Then, by applying erosion with a

flat structuring element of width w (in the example w = 1) we can discount the mass on singleton
hypotheses by an amount computed with Eqs. (4.18) and (4.19), as the difference between Bel and
Pl. In this way we take into account the imprecision on the estimated sigmoid, and the smaller
the distance of a sample to the SVM hyperplane, the higher the amount of imprecision that will
be considered. In our example, sample x1 stands in the uncertain area between support vectors
(|sx1 < 1|), so that we know that a small change in the logistic optimal parameter estimation could
possibly lead to a significant change in the probability estimate. On the contrary, sample x2 has

Table 4.1: Example of BBA allocation based on calibrated scores, assuming λ∗0 = −2, λ∗1 = −0.05 and erosion
structuring element of width w = 1. Only the focal elements are reported. In this example, where we con-
sider only one classifier, subscripts refer to different samples x1 and x2 and the classifier index is omitted
for clarity of notation.

Score Bayesian BBA Imprecise score-based BBA

sx1 = −0.5
mB

x1
(H) = 0.28

mB
x1

(H) = 0.72

m̃x1 (H) = 0.12

m̃x1 (H) = 0.49

m̃x1 (Θ) = 0.39

sx2 = +2
mB

x2
(H) = 0.98

mB
x2

(H) = 0.02

m̃x2 (H) = 0.95

m̃x2 (H) = 0.01

m̃x2 (Θ) = 0.04
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an associated SVM score which is relatively high, and thus represents a test sample for which the
classification is quite sure and will not easily change even in presence of calibration inaccuracy.
With the proposed BBA allocation in the context of BF framework, we are therefore able to assign
a higher value of imprecision to sample x1 with respect to x2.

4.3.2 BBA definition based on pixel neighborhood information

Regarding the second type of imprecision, namely the spatial one, it comes from the fact that in
the context of high-density crowd pedestrian detection strong occlusions make the head of each
pedestrian barely visible. Besides, due to the specific geometry of the recordings, each head cor-
responds to few pixels. The most effective head detectors are based on features computed in sub-
windows around the pixel of interest, which further increases the spatial imprecision of the detec-
tion. For this reason, we model the spatial imprecision due to the close resolutions of object (head)
and descriptor respectively by performing opening operation in the spatial domain to discount the
BBA taking into account the neighborhood heterogeneousness.

In particular, the BBA allocation proposed is able to take into account both types of impreci-
sion, aiming to be more robust to possible imperfections of the learned sigmoid from which the
mapping from SVM scores to probability values is made, while at the same time taking into ac-
count the information coming from neighboring pixels in the image space. Practically, we process
two successive discounting steps on the initial Bayesian BBA derived from the learned sigmoid.
Firstly, having learned the sigmoid of classifier n by logistic regression, we define BBAs to model
the imprecision due to possible errors in the calibration, by applying an erosion operator in the
2D space where SVM calibration scores are projected with respect to their label. Then, we increase
the mass on Θ discounting the previous BBA by performing a morphological opening operation,
this time in the image space, to take into account neighbor pixels information based on the as-
sumption that they are likely to belong to the same class.

More in detail, dilation δw and erosion Ew operators depending on the structuring element
of width w are composed with the calibrated sigmoid σn relative to classifier n, in order to derive
the two different sigmoid functions, denoted (δw ◦σn) and (Ew ◦σn), representing Pln and Beln

functions (cf. Fig. 4.1) which can be evaluated on every score sx,n relative to sample x and classifier
n. This takes into account the imprecision of the calibration step.

Since we perform a dense classification of an entire testing image, our test samples coincide
with the pixels set belonging to the pixel domain, noted P . Now, to stress this dualism yet em-
phasizing the fact that we are considering the image space, we privilege from now on the notation
“pixel” x instead of “test sample” (used so far), although the two terms could be possibly used
interchangeably.

Then, for each pixel x and classifier n independently, we derive the ‘one-time’ discounted BBA
m̃x,n , so that at the end of this step we get a map (image) of BBAs

{
m̃x,n ,x ∈P

}
, where P is the

pixel domain. This image M̃n is composed by four layers corresponding to the mass values of

any hypothesis in
{
;,H,H,Θ

}
, respectively. Then, applying an opening to M̃n second and third

layers (i.e., the ones corresponding to singleton hypotheses), and increasing the Θ layer values
accordingly, the map Mn of the final BBAs mx,n is derived. This allows us to model the spatial
imprecision of the detectors.

Specifically, with sx,n being the SVM score given by classifier n associated to pixel x, we have:


∀x ∈P ,m̃x,n(H) = (Ew ◦σn)(sx,n),

∀x ∈P ,m̃x,n(H) = 1− (δw ◦σn)(sx,n),

∀x ∈P ,m̃x,n(Θ) = 1−m̃x,n(H)−m̃x,n(H).

(4.20)

whereσn is the learned sigmoid for classifier n, while (Ew ◦σn) and (δw ◦σn) its eroded and dilated
results respectively with a (flat) structuring element of width w , applied in the score space. Then,
in the image space,
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Table 4.2: Neighborhood spatial arrangement for samples x1 and x2. Corresponding mass allocations are
reported in Table 4.3.

neighborhood of sample x1: neighborhood of sample x2:

x11

x14 x1x1x1 x12

x13

x21

x24 x2x2x2 x22

x23

Table 4.3: Example of proposed BBA allocation after discounting based on SVM scores, for neighborhood
of samples x1 and x2 spatially arranged as reported in Table 4.2. BBA allocation for samples x1 and x2 is
already reported in Table 4.1.

m̃x11 m̃x12 m̃x13 m̃x14 m̃x21 m̃x22 m̃x23 m̃x24

H 0.8 0.2 0.7 0.01 0.95 0.94 0.98 0.95

H 0.19 0.4 0.2 0.8 0.04 0.03 0.01 0.03

Θ 0.01 0.4 0.1 0.19 0.01 0.03 0.01 0.02


Mn(;) = {0}x∈P ,

∀A ∈
{

H,H
}

,Mn(A) = γa

(
M̃n(A)

)
,

Mn(Θ) = {1}x∈P −Mn(H)−Mn(H),

(4.21)

where Mn(A) is the layer image associated to hypothesis A, ∀A ∈ 2Θ, and γa is the opening opera-
tor of parameter a applied in the image domain. A spatial Gaussian structuring element fitted in a
window of radius a is used, to better take into account the prior on the spatial consistency.

Note that the two morphological operations described are not commutative, since they are
applied in two different spaces, i.e. score and image domains, and we find it more natural to
firstly consider the imprecision due to the calibration step and later consider the imprecision in
the spatial context.

Let us continue with the toy example proposed in the previous section. As in the previous
example, the subscript related to the classifier is omitted as there is no ambiguity since only one
classifier is considered. Table 4.2 shows the spatial arrangement of neighbor samples around the

Table 4.4: Example of BBA allocation for samples x1 and x2. From the BBAs based on imprecise score
we derive the final BBAs applying a second discounting based on neighboring pixel heterogeneity (in this
example, with flat 4-connectivity structuring element).

Sample Imprecise score-based BBA Final BBA

x1

m̃x1 (H) = 0.12

m̃x1 (H) = 0.49

m̃x1 (Θ) = 0.39

mx1 (H) = 0.01

mx1 (H) = 0.19

mx1 (Θ) = 0.8

x2

m̃x2 (H) = 0.95

m̃x2 (H) = 0.01

m̃x2 (Θ) = 0.04

mx2 (H) = 0.94

mx2 (H) = 0.01

mx2 (Θ) = 0.05

57



CHAPTER 4. TAKING INTO ACCOUNT IMPRECISION WITH BELIEF
FUNCTION FRAMEWORK

Table 4.5: Example of probability of H in x neighborhood, x being the central pixel, given by four different
classifiers after score calibration.

classifiers 1 to 3: classifier 4:

0.7

0.5 0.60.60.6 0.5

0.5

0.5

0.5 0.10.10.1 0.5

0.5

considered x1 and x2. Let us suppose that neighbors have associated BBAs reported in Table 4.3
after BBA allocation based on SVM scores. BBA allocation for central samples x1 and x2 is already
reported in Table 4.1. Note that the spatial arrangement of the samples is fully independent from
their position in the score space. It is evident in the example that x2 has a more homogeneous
neighborhood with respect to x1. This reflects in a higher discounting for sample x1 (for simplicity,
in the example applying erosion with a flat 4-connectivity structuring element). Note that with
the Bayesian allocation we would have assigned to x1 a high mass on H, while taking into account
the two types of imprecision we end up with a BBA having a high value of ignorance, that will not
contribute a lot in the conjunctive combination with the other classifiers. On the contrary, the final
BBA allocation of x2 reflects its Bayesian counterpart, since its calibrated score is quite reliable and
its neighborhood is homogeneous.

4.3.3 BBAs combination

Considering the N different descriptors, N BBAs are defined as explained for every test sample, i.e.
pixel, x ∈P . According to the BBA obtained from descriptor n, the uncertainty of a head presence
in x ranges between Belx,n(H) = mx,n(H) and Plx,n(H) = mx,n(H)+mx,n(Θ), so that mx,n(Θ) repre-
sents the imprecision on the uncertainty value provided by nth descriptor for the given sample. In
the proposed model, the uncertainty comes from the binary classifier score, whereas the impre-
cision comes both from the initial score calibration and from spatial heterogeneity of uncertainty
values within the considered structuring element.

Finally, the combination between BBAs can be performed. As the descriptors are considered
cognitively independent, the Dempster’s rule or its unnormalized version, the conjunctive combi-
nation rule, are well-suited for this task.

In our case where |Θ| = 2, and considering mx,n BBAs allocation, the analytic result of the con-
junctive combination rule may be derived:



mx (A) =
∑

(B1,...,BN)∈{
A,Θ

}N
,

∃n∈[1,N]s.t .Bn =A

∏N
n=1 mx,n (Bn) ,∀A ∈

{
H,H

}
,

mx (Θ) =
∏N

n=1 mx,n (Θ) ,

mx (;) = 1−mx (H)−mx

(
H

)
−mx (Θ) .

(4.22)

The result is thus a single four-layer map M of BBAs mx, where the overall ignorance is reduced
as a result of the combination, but at the same time a conflict component may appear in each
pixel.

4.3.4 Final decision from the obtained BBA

Finally, for every sample, the decision is taken from its corresponding mx ( (7.8)).
Binary decision can be taken considering singleton hypotheses, e.g. from maximum of Be-

lief or Plausibility. To illustrate the interest of modeling imprecision in addition to uncertainty,
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Table 4.6: Mass allocation (both Bayesian and proposed one), combination (both with conjunctive and
Dempster’s rules) and decision (in bold) considering the example probability maps reported in Table 4.5.
For example simplicity, erosion with a flat 4-connectivity structuring element is used in the BBA allocation;
for comparison, normalized product of probability values is shown.

H H
{

H,H
}

;
mB

x,1 = mB
x,2 = mB

x,3 0.6 0.4 / /

mB
x,4 0.1 0.9 / /

mx,1 = mx,2 = mx,3 0.5 0.3 0.2 0

mx,4 0.1 0.5 0.4 0

mx, ∩©4
1

0.168 0.109 0.003 0.72

mx, ⊕4
1

0.6 0.389 0.011 0∏4
n=1 Px,n(H̃) ∀H̃ ∈

{
H,H

}
0.28 0.72 / /

let us consider the following example with a pixel belonging to a head and four different clas-
sifiers, i.e. sources, available to detect it. After the SVM training and Platt’s probabilistic cali-
bration procedures, as shown in Table 4.5 three of them provide a probability of H equal to 0.6
(Pn∈{1,2,3}(H) = 0.4); however punctual noise present in the fourth source leads to P4(H) = 0.9 (and
P4(H) = 0.1) so that decision based on product of probability values (normalized, so that the sum
of all the hypotheses is 1) would lead to the wrong label, H (note that the normalization does not
have any impact on the final decision but it is simply performed in order to obtain a well-defined
probability mass function). Now, using the proposed evidential approach, information coming
from the calibration process as well as from the pixel’s neighborhood in the image space are taken
into account to perform a tailored discounting of unreliable classification responses. In the con-
text of this example, for visualization purposes, we apply only the second discounting based on
spatial information. Table 4.6 shows that the evidential combination leads to the right decision,
H, both using the conjunctive combination rule and the Dempster’s rule.

However rather than obtaining a binary decision we would like to maintain soft decisions,
in order to derive more accurate statistics and to not lose available information for successive
processing. To this extent, pignistic probability (Eq. 4.11) associated to each pixel x in our setting
is computed as: ∀A ∈Θ,

BetPx(A) =
1

1−mx(;)
·
(
mx(A)+ mx(Θ)

2

)
. (4.23)

This allows us to assign a probabilistic interpretation to the resulting BBA associated to each
test sample, i.e. pixel.

In particular, we compute a single-layer BetP(H) image map where at every pixel the BetPx(H)
value will be differently normalized on the basis of the conflict value included in mx, represented
by the mass on the empty set.

4.4 Experimental results

In order to perform the experiments regarding the proposed BBA allocation and combination,
we employ an ensemble of SVM classifiers obtained using the different descriptors highlighted
in Chapter 3, namely HOG, LBP, GABOR and DAISY.

Figure 4.2 shows the sigmoid functions obtained through the calibration step, for each descrip-
tor considered, and the Bel and Pl functions that define the interval obtained by erosion using a
structuring element of size w = 0.5. Two important considerations can be made. Firstly, it be-
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Figure 4.2: Sigmoid functions obtained with the calibration step and associated Bel and Pl sigmoids, with
w = 0.5 size of structuring element. In red: example of the imprecision interval at SVM scor e = −1.

comes clear that with a larger structuring element we introduce more imprecision, allowing for
less committed BBAs. On the contrary, a smaller structuring element introduces less imprecision.
Secondly, considering the same size of the structuring element w , the interval between Bel and
Pl functions, namely the imprecision we took into account, is bigger in presence of the steeper
sigmoid functions like HOG and DAISY ones, for which even a small shift in the location would
possibly cause the final decision to be different for the same score, resulting in less committed
BBAs associated to each possible score. Conversely, scores from LBP and GABOR sigmoid func-
tions have higher absolute values and less overlap, meaning that the decision about them is pretty
stable, resulting in a smaller imprecision interval and thus in more committed BBAs.

Considering the effective choice of w value, we noticed that increasing the size of the structur-
ing element w , the precision in the fusion results consistently increases, stressing the importance
of the introduction of imprecision during calibration. However, increasing too much the size of
the structuring element is detrimental for the detections, because they become too much uncer-
tain and thus recall tends to decrease. For the experiments, we set w = 2, a good compromise that
allows us to reach high precision without harming the overall recall.

After obtaining BBAs out of the calibration procedure, the second discounting in the image
space is applied. For the experiments, we employ a spatial Gaussian structuring element of size
a = 2, which allows us to better model the desired spatial consistency with respect to a crisp struc-
turing element.

Figure 4.3 shows an example patch from an image of the dataset with its relative ground-truth,
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(a) Image patch (b) Ground-truth

(c) m HOG(H) (d) m HOG(Θ)

(e) m LBP(H) (f ) m LBP(Θ)

(g) m GABOR(H) (h) m GABOR(Θ)

(i) m DAISY(H) (j) m DAISY(Θ)

(k) m(H) (l) m(Θ)

Figure 4.3: Example of an image patch with its associated ground-truth, BBAs allocations for each different
detector and result after their combination.

where heads are highlighted in green. Then, for each different descriptor, BBAs allocation is shown
through the mass on the head hypothesis (which corresponds to Bel(H)) and total ignorance aris-
ing after discounting both in the calibration and image space. The last row presents the results
after the conjunctive combination rule. We notice again, as previously highlighted in Chapter 3,
that each source has a specific behavior, a fact which underlines their complementarity. HOG and
GABOR provide more localized detections, visible in the mass on H hypothesis, but more noise is
present. On the contrary, LBP and DAISY provide larger and rougher results. Each descriptor then
has higher values of ignorance in the pixels corresponding to the border of the heads, since their
neighborhood is not homogeneous in the image space, and their correspondent score is probably
in the area of uncertainty during calibration. With the conjunctive combination rule however, we
are able to consistently reduce the total ignorance as shown in Figure 4.3l, and the shape of the
head detections becomes very clear, as depicted in Figure 4.3k.

Figure 4.4 shows an example of the classification result on the basis of BetP(H) value at every
pixel obtained with the conjunctive combination rule after the proposed BBA allocation based on
the two consecutive discounting operations in the score and image spaces, hence the name Fusion
SIS, i.e. “Fusion (after BBA allocation) in Score and Image Space”. Results are shown both in terms
of output map and detections at a reasonable threshold (th = 0.8). This particular threshold choice
has been made in order to be able to recover the most confident detections while at the same time
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(a) Output BetP(H) map after Fusion SIS

(b) Detection map

(c) NMS result map

Figure 4.4: Fusion SIS results in terms of BetP(H) colormap, detections at a given threshold and non-
maximum suppression.

keeping them localized at the center of the head. Nevertheless, the learning process works at pixel
level, with a balanced training set, while in the testing image the number of pixels corresponding
to the two classes is unbalanced, hence the need for a quite high threshold (moreover, it is close
to the PRBEP threshold value). Results after NMS are then presented in Figure 4.4c, setting the
radius of a head r = 3, with 2r +1 minimum distance between two maxima (head centers) in order
to avoid overlapping detections, highlighting in green TPs, in red FNs and in blue FPs. Most of the
heads are correctly detected even in this condition of extreme density, while the number of false
detections is kept low. False negative heads can be explained by the presence of dark heads or low
contrast at the border.

Figure 4.5a and 4.5b provide a visual comparison of the fusion results obtained taking into ac-
count only spatial imprecision in the calibration or in the image domain separately, called Fusion
SS, i.e. “Fusion (after BBA allocation in) Score Space” and Fusion IS, i.e. “Fusion (after BBA alloca-
tion in) Image Space” respectively. The detections obtained with the two approaches are similar
in their locations, but are a bit larger taking into account imprecision during the calibration, while
they are spatially more consistent considering imprecision in the spatial domain. Problematic ar-
eas are in both cases mostly at the boundary of the detections, that corresponds to pixels having
their related score at lower distance from the hyperplane in the first case, and to pixels on which
neighborhood disagrees the most in the second case. Considering the proposed BBA definition
that takes into account both types of imprecision, namely Fusion SIS, whose result has been pre-
viously shown in Figure 4.4a, we are able to take the best out of the two approaches, obtaining
larger while at the same time spatially homogeneous detections.

Figure 4.5c provides a visual comparison with a straightforward fusion solution which simply
performs the product of the probabilities given by each independent detector at every pixel, with-
out considering imprecision from calibration nor neighborhood information. There are just few
heads for which the detection is pretty sure, and the size of the detections is always underesti-
mated, since in order to have a confident detection all the sources must agree. Instead, taking into
account possible sources of imprecision as proposed, we obtain more committed and smoother
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(a) Output BetP(H) map after Fusion SS

(b) Output BetP(H) map after Fusion IS

(c) Product output map

Figure 4.5: Comparison between fusion results after Fusion SS and Fusion IS in terms of BetP(H), and sim-
ple product of probabilities.

detections, that can be more useful as starting point for later stages such as tracking applications.
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Figure 4.6: (a) Fusion results in terms of PR-curves, after conjunctive combination rules with the three
investigated BBA allocations; (b) PR-curves of the comparison of the proposed Fusion SIS, product of prob-
abilities, MKL and the original four detectors.

A quantitative study using the three different proposed approaches separately is given by Fig-
ure 4.6a, where PR-curves are derived after NMS. Even if the three curves are similar, as the results
are obtained after the NMS operation that flattens the already highlighted visible differences be-
tween the methods, the plot stresses the complementarity between the two approaches that take
into account only a single source of imprecision (i.e. score or image space). The fusion after the
proposed BBA allocation that performs two successive discounting operations gives indeed the
best result. Indeed, we are able to tackle the problem of sparse false positives due to the unreli-
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Table 4.7: PRBEP and AUPRC with the different fusion strategies.

Fusion SS Fusion IS Fusion SIS Product MKL

PRBEP 0.73 0.73 0.74 0.69 0.70

AUPRC 0.77 0.77 0.78 0.74 0.72

ability of the descriptors while at the same time increasing the number and homogeneity of the
detections.

Figure 4.6b shows a comparison of the proposed fusion approach with respect to the sim-
ple product of probabilities, MKL [90] and the original four sources, i.e. detectors. The results
obtained with the proposed method provides overall better values both for precision and recall,
highlighting once again the importance of considering imprecision both in the calibration and in
the image space. Product of probabilities, while being better than the original sources, is not as
good as the evidential fusion that is able to take into account the imprecision in addition to the
uncertainty of each classifier. Regarding MKL, although it is able to reach higher values of pre-
cision thanks to the learned weights associated to each kernel, it does not exploit the available
information in such a way to not lose detections, being not able to reach high values of recall.

Still in the context of a quantitative analysis, Table 4.7 provides quantitative values for PRBEP
and AUPRC with the different fusion strategies. Again, the proposed evidential fusion clearly out-
performs product of probabilities and MKL, and show the importance of taking into account pos-
sible sources of imprecision both in the score and image space.

These results conclude a first part of the work which aims to exploit the complementary nature
of different descriptors providing orthogonal views of complex data. In the following Chapter, we
will focus our attention on building competitive ensemble of classifiers using a limited amount of
labeled training instances.
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Evidential QBC Active Learning
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5.1 Motivation

Until this point, results have been shown on the basis of different SVM models trained with the
same training set composed of manually carefully selected samples. For instance, positive samples
have been selected in order to span across the greatest number of diverse heads appearance, e.g.
for our datasets roughly the same number of dark-veiled women, white-veiled women, men with
and without a hat, while at the same time presenting a “good” shape, i.e. only slightly occluded
and with a rather well-contrasted background, in order to not employ very specific points for the
learning that could lead to overfit being not very representative of the actual class distribution. In
the same way, negative samples have been carefully selected as “difficult” points, e.g. shoulder’s
centers whose shape remind that of a head, casual circular structures, hands, clothes, floor (even
though seldom visible), and more generally any point which could lead to a high response in terms
of gradient or texture.

To illustrate the necessity of a well-defined training set, Fig. 5.1 compares the results obtained
in the previous Chapter using the manually carefully selected samples, with the results obtained
using a random training set (enforcing a minimum distance between selected points in the image
for fairness). As we see, the classifiers are really sensitive to the choice of the samples, providing
very different levels of performance after the fusion among them with the two different training
sets. Thus, it is important to define a training set which spans over all the possible shades of sample
characteristics while at the same time remaining focused on the specific targets.
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Figure 5.1: PR-curves of Fusion SIS in presence of two different training sets used to train the SVM classifiers
(based on different descriptors) that compose the ensemble.

However, a somehow clear distinction among head types is generally impossible to be per-
formed. Moreover, the notion of “good” positive samples and the notion of how “difficult” a point
could be in order to be classified are quite subjective. Nevertheless, there is still a gap between
which samples a human could think the classifier needs, and which ones are actually the most
informative according to it.

To this extent, Active Learning (AL) has been proposed [42]. It relies on the assumption that
if a learning algorithm is allowed to choose data from which to learn, it will reach better levels of
performance with less training data [236]. AL algorithms work by posing “queries” to an oracle
(e.g. a human annotator) about instances to be labeled. This approach is well-motivated by many
machine learning applications, where unlabeled data may be abundant, but manually labeling is
expensive, difficult and very time-consuming, from text classification [287] to robotics [35] and
medical image classification [109] among others.

For this reason, we find that AL suits perfectly our needs. Instead of carefully labeling positive
and negative instances, hard and laborious task which does not even guarantee that the chosen
samples will be the best ones according to the classifiers, we exploit the ground-truth maps as
oracle to obtain the right label, letting the algorithm choose which points to add to the training
set.

Note that having ground-truth maps at our disposal, we could simply use all the pixels of an
image as different training samples. However, this approach is not feasible for multiple reasons.
Firstly, the training data would be extremely unbalanced between positive and negative exam-
ples. Secondly, for computational reasons. SVM are indeed rather computationally expensive. The
complexity depends on the number of support vectors and algorithm used to solve the quadratic
optimization, but regardless of the exact algorithm used the asymptotic computational cost of
solving the SVM QP problem grows at least like O(m2) where m is the number of training sam-
ples when C is small, and like O(m3) when C gets larger [20]. Moreover, space complexity (which
is O(m2)) would become an issue as well, since the kernel matrix would become too large to be
stored entirely in memory.

Lastly, it is hard to obtain precise ground-truth maps which are able to discriminate between
head and background at pixel level: due to the high visual homogeneity of the images, it may
be difficult to assign to a specific class pixels which are on the head’s contours. Even worse, if
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inserted in the training set the contour pixels could possibly confuse the classifier since their exact
label is not immediately clear even for a human annotator. Redundant information coming from
neighboring pixels is then useless since only the support vectors contribute in the definition of the
separation hyperplane.

For all these reasons, it is crucial to be able to automatically select a relatively small training
set composed by informative samples, where the measure of informativeness is directly given by
the classifier (or ensemble of classifiers like in our case), with respect to some metrics.

5.2 Active Learning overview

There are two main scenarios in which the AL algorithm may ask queries about the samples to
label:

• Stream-based (selective) sampling – The learner obtains one unlabeled instance at a time, in
a sequential way from some streaming data source, and it must decide on the fly whether
to query for the label and add it to the training set, or simply discard it. This decision can
be taken in several ways. For example, one approach is to define a measure of utility or in-
formation content, such that instances with higher utility are more likely to be queried [50].
Another approach is to explicitly compute parts of the instance space that are still ambigu-
ous, i.e. regions of uncertainty, and query only the incoming instances that fall within it [43];

• Pool-based sampling – Pool-based AL [157] relies on an initial small set of labeled instances,
L , and a larger set of unlabeled ones, U . Batches of informative training samples are itera-
tively selected from U and added to L , with respect to some heuristics, after a query about
their actual label. Contrarily to stream-based approaches, it evaluates and ranks the entire
collection of unlabeled data (or a selected part of it) before choosing the best sample to add
to the training set on the basis of the current model.

Pool-based sampling appears to be the most popular method employed for applied research in
AL, while stream-based selective sampling is more common in the theoretical literature. Indeed,
situations where a large pool of unlabeled samples is available are common and the cost of labeling
remains an issue for many applications.

To select the right samples to query, many strategies have been proposed. The most popular
ones are uncertainty sampling and Query by Committee (QBC), with many variants in order to
balance exploitation of the current classifiers and exploration of the feature spaces [31]. They can
be applied both in the context of stream-based and pool-based learning, but since in this work we
rely on a pool of unlabeled samples in the following we will describe these two strategies mainly
for this context.

5.2.1 Uncertainty sampling

Uncertainty sampling [156] consists in iteratively requesting labels for training instances whose
class remains uncertain, despite the information provided by the previously labeled instances. In
this way the learning algorithm can focus its attention on the examples it finds confusing, selec-
tively adjusting the boundary between classes. Popular strategies consist in querying the instance
whose predicted output is the least confident or with maximum entropy. In the context of SVM
classification the prevailing method is to select the samples which are closer to the separation
hyperplane margin [234, 259].

More recently, DUAL [67] and QUIRE [116] methods have been proposed. The former is based
on a density weighted uncertainty sampling based on estimated future residual error reduction
after each actively sampled point, while the latter aims at selecting both informative and repre-
sentative examples on the basis of a prediction of the uncertainty for the yet unlabeled samples.
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The authors of [25] consider instead the diversity between samples, proposing a selection strat-
egy which aims at reaching a trade-off between the minimum distance from the hyperplane mar-
gin and the maximum angle between the hyperplanes defined by each sample feature. In the
context of image classification, diversity among the selected samples can be reached using spatial
information as well, such as in [203], where the authors propose three criteria to favor samples
distant from the ones already present in the training set, namely an Euclidean distance, a distance
based on the Parzen window method applied in the spatial domain, and a distance that maximizes
the spatial entropy variation value to distribute spatially the training samples as widely as possible.

Although uncertainty sampling offers an intuitive and flexible solution for augmenting the
training set, this framework is suited in its standard form for relying on a single classifier and is
therefore not really useful to be investigated further in the context of this work which is in fact
based on ensembles. Besides, precisely because it is based on a single classifier, it has been criti-
cized of being quite shortsighted, as the utility scores are based on the output of just a single hy-
pothesis that, trained by definition on little data tends to bias the active learning sampling strategy.
The use of multiple classifiers is useful to mitigate or circumvent this issue, and will be explored
further in the context of our application.

5.2.2 Query-By-Committee

On the other hand, QBC [237] exploits a committee of classifiers and operates by asking for the
label of the sample on which the ensemble disagrees the most. This approach is better suited
for more complex classification tasks which benefit from multiple classifiers providing different
interpretations of the input data, such as the application we consider here.

When deploying a QBC algorithm three questions may arise:

1. How to build the committee set? – Usually generic ensemble learning algorithms explained
in Sec. 2.3.2.2 are used for the construction of the committee. Query-by-bagging [23] or
query-by-boosting [80] can be used to train weak classifiers on (weighted) randomly sam-
pled variations of the training data set. Alternatively, a single model can be exploited and
many variations of it can be derived, e.g. changing its intrinsic parameters, like in [180] for
naive Bayes, using the Dirichlet distribution over model parameters;

2. How to quantify the disagreement among committee members in order to define a strategy
to select the new samples? – There exists a variety of heuristics to measure the disagree-
ment among a classifier ensemble, but surely the most popular ones are (Soft) Vote Entropy
(SVE) [236], and Kullback-Leibler (KL) divergence [146]. Other measures include Jensen-
Shannon divergence [182], a smoothed version of KL divergence, and F-compliment [192],
based on the F1-measure. A combination between Vote Entropy and KL divergence is pro-
posed in [303] in the specific context of stream-based QBC, where a continuous stream of
samples is given as input and the active learner must decide if it is worth or not asking for
the true label. Recently, [133] proposed an interesting method to merge diversity and den-
sity measures in the instance selection, to ensure variety within the batch and in the whole
training set;

3. How to obtain a final robust classification? – Finally, the classification is usually performed
at every iteration on the basis of the committee member responses. Common combination
methods have been discussed in Sec. 2.3.2.1. Typically in the context of QBC a (weighted)
average among the various results is performed, or the model that provides the best perfor-
mance (according to a given metric, e.g. accuracy) is simply retained.

However, a clear limitation of traditional QBC approaches is that the selection of the new sam-
ples to be added to the training set is performed independently from the (optional) committee
member combination, that is only used to derive statistics for evaluation purposes. The possible
information arising from the combination of the committee members is not exploited.
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From our part, the definition of the fusion strategy based on BF framework presented in Chap-
ter 4 allows us to naturally have at our disposal several clues to quantify the disagreement between
committee members. The result of the source combination indeed is a BBA associated to every
unlabeled sample, that intrinsically contains conflict and ignorance components. For this reason
once again we find it appropriate to work in the evidential domain: from the one hand, through the
definition of appropriate BBAs we can model the imprecision over the uncertainty value provided
by each classifier; on the other hand, the BF framework directly provides indicators to quantify the
disagreement between committee members.

5.3 Evidential QBC Active Learning

We thus propose a QBC algorithm that takes a committee of models which are all trained on the
same training set, but representing competing hypotheses supported by different SVM classifiers
based on gradient, texture and orientation descriptors described in Section 3.2, so that we find it
natural to build a set of classifiers with them. Firstly, we use BF framework to perform fusion be-
tween the different pedestrian detectors, as explained in Sec. 4.3, and then we propose and inves-
tigate different evidential-based measures for the selection of the batch of new training samples,
in a pool-based sampling setting.

The evidential framework is therefore not only involved in the combination of the sources to
obtain a robust decision, but it plays at the same time an original role in the definition of new
sample selection strategies at each iteration of the AL process.

After having built C , the committee of classifiers of cardinality |C | = N sources, QBC relies on
some heuristics to measure the disagreement among them, in order to find the most informative
samples to add to the training set L . We moreover ensure diversity among samples in two different
and complementary ways: firstly in the feature space, following the work of [25], by a maximum
angle between the hyperplanes defined by each sample feature; secondly, in the image space, by
a minimum Euclidean distance applied in the spatial domain between instances already in the
training set and in the current batch.

In the following, we investigate traditional disagreement metrics such as Soft Vote Entropy and
KL divergence, as well as new evidential-based disagreement measures.

5.3.1 Traditional disagreement measures in QBC and their limitations

Specifically, given the set of mutually exclusive hypotheses Θ =
{

H,H
}

and the committee C of

classifiers of cardinality N, Soft Vote Entropy asks for the label of the unlabeled sample such that:

x∗SVE = argmax
x∈U

∑
y∈Θ

PC

(
y | x

)
log

(
1

PC

(
y | x

))
, (5.1)

where U is the set of unlabeled samples (U ⊂P ), and

PC

(
y | x

)
=

1

N

N∑
n=1

Pn
(
y | x

)
, (5.2)

is the average or consensus probability that y is the correct label according to the committee. Soft
Vote Entropy is thus essentially an ensemble generalization of entropy-based uncertainty sam-
pling. The log function, here and from now on, represents the logarithm to the base 2.

On the other hand, the KL divergence strategy adds a sample to the training set such that:

x∗KL = argmax
x∈U

1

N

N∑
n=1

DKL
(
Px,n‖Px,C

)
, (5.3)

where Px,n = Pn
(
y | x

)
and Px,C = PC

(
y | x

)
for simplicity of notation, while DKL is the KL diver-

gence that quantifies the disagreement as the average divergence between the prediction of each
classifier n in the committee and the consensus PC , and is defined as:
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DKL
(
Px,n‖Px,C

)
=

∑
y∈Θ

Pn
(
y | x

)
log

(
Pn

(
y | x

)
PC

(
y | x

))
. (5.4)

The conceptual difference behind SVE and KL resides in the way they quantify the disagree-
ment. Considering a committee of classifiers, the consensus probability PC

(
y | x

)
between them

could be uniform in two different cases. Firstly, all the classifiers have an uniform distribution
among the hypotheses, so that the consensus distribution is also uniform. Secondly, the classifiers
strongly disagree between them, but since the consensus is an average between their responses, it
ends up being uniform among all the hypotheses as well. In the first case, all the classifiers agree
that the label is uncertain, while in the second case they strongly support a different label. Since
SVE only considers consensus, it cannot distinguish between the two cases. On the other hand,
KL divergence would favor samples with uncertain consensus because of conflicting predictions
given by the classifiers.

Besides these highlighted limitations, the mentioned measures do not exploit the possible in-
formation arising from the combination among the committee members, and the final result on
which evaluation is performed is not taken into account in the selection of the new samples based
on their maximization.

5.3.2 Proposed evidential disagreement measures

On our side, after having performed the combination between the various sources in the BF frame-
work, the result is the map M where at each sample, i.e. pixel x of the image corresponds a BBA
mx that incorporates a different evidence of belonging to a certain class (head or not head), as
well as a component of ignorance that remains after the combination, and conflict between the
sources, i.e. the masses onΘ and ; respectively that come from the conjunctive combination. We
can therefore extend the concept of Soft Vote Entropy to the evidential framework, to define new
evidential measures of disagreement among committee members. The Maximum Entropy (ME)
strategy will add to the training set sample such that:

x∗ME = argmax
x∈U

H(mx), (5.5)

where in our case mx is the BBA associated to the unlabeled sample x, obtained after the ex-
plained BBA allocations and conjunctive combination (cf. Sec. 4.3), and H(·) is a definition of the
entropy function in the evidential domain.

Several definitions of evidential entropy have been proposed over the past decades, with the
aim of measuring the degree of total uncertainty of a BBA, but a formulation satisfying all the
desired properties still remains an open issue.

Table 5.1 summarizes some popular definitions, that we intend to investigate as heuristics to
measure the disagreement among the committee members and therefore select the new training
points. Some of them, like Höhle [108], Yager [288] and Nguyen [193] definitions are only able to
measure the conflicting portion of uncertainty. Pal definition [200, 201] is an extension of Nguyen’s
one, taking into account also the cardinality of each focal element. The definition given by Dubois
and Prade [68], on the contrary, captures only the non-specificity portion of uncertainty, quan-
tifying how a BBA is imprecise. The most non-specific BBA is given by the vacuous BBA having
m(Θ) = 1, while the most specific BBAs are the Bayesian ones, so that non-specificity is a measure
of how a BBA is committed among the various hypotheses. The formulation given by Lamata and
Moral [153] and the more recent Deng [57] and Jiroušek and Shenoy [126] ones, combine both con-
flicting and non-specificity components in different ways. Regarding the conflicting part, Lamata
et al. use Yager’s definition which relies on the plausibility function, Deng uses Nguyen’s formula-
tion while Jiroušek et al. interpret it in a completely different way, as the Shannon’s entropy of the
plausibility probability function Pl_P [41], an alternative representation to pignistic probability for
translating BBAs into probabilistic framework. Regarding the non-specificity component, Lamata
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Table 5.1: Evidential entropy definitions given BBA m with discernment frameΘ

Reference Entropy formulation

Höhle [108] HO(m) =
∑

A∈2Θ
m(A) log

(
1

Bel(A)

)
Yager [288] HY(m) =

∑
A∈2Θ

m(A) log
(

1
Pl(A)

)
Nguyen [193] HN(m) =

∑
A∈2Θ

m(A) log
(

1
m(A)

)
Pal et al. [200, 201] HP(m) =

∑
A∈2Θ

m(A) log
( |A|

m(A)

)
Dubois and Prade [68] HDP(m) =

∑
A∈2Θ

m(A) log(|A|)
Lamata and Moral [153] HLM(m) = HY(m)+HDP(m)

Deng [57] HD(m) = HN(m)+∑
A∈2Θ

m(A) log
(
2|A|−1

)
Jiroušek and Shenoy[126] HJS(m) =

∑
A∈ΘPl_P(A)log

(
1

Pl_P(A)

)
+HDP(m)

Jousselme et al. [128] HJ(m) =
∑

A∈ΘBetP(A)log
(

1
BetP(A)

)

et al. and Jiroušek et al. rely on Dubois and Prade definition, while Deng provides a brand new for-
mulation. Alternatively, Jousselme et al. [128] firstly perform a pignistic transformation from BBA
to probability mass function through BetP, and then apply Shannon’s entropy on it. A similar defi-
nition, called pignistic entropy, appears in [63], in the context of the Dezert-Smarandache Theory
(DSmT) [61, 62], that is a variant of the classical Dempster-Shafer Theory (DST). Since we indeed
rely on DST, we refer in the following to Jousselme’s definition. The advantage of such a formula-
tion for our application is that since it is based on the BetP function, there is a direct link between
it and the final map we use for decision and, possibly, crowd density evaluation application, which
will be further explored as a possible application in the context of crowd macro-analysis.

Besides entropy-based criteria, the masses on Θ and ; can be directly exploited as indicators
for the selection of the new samples. It is possible to directly derive two simple strategies, based
on Maximum Ignorance (MI) and Maximum Conflict (MC) respectively:

x∗MI = argmax
x∈U

mx (Θ) , (5.6)

x∗MC = argmax
x∈U

mx (;) . (5.7)

where in our case mx is the BBA associated to the unlabeled sample x, obtained after the explained
BBA allocations and conjunctive combination (cf. Sec. 4.3).

Equation (5.6) favors the selection of new points for which all the classifiers do not have enough
information to decide about their actual class, i.e. samples with maximal mass on the compound
hypothesis. On the contrary, Eq. (5.7) supports the selection of points on which the classifiers
disagree the most about their actual label, i.e. samples with maximal mass on the empty set.
In Eq. (5.7) we choose to use a measure of total conflict derived from the conjunctive combina-
tion rule as disagreement measure. In [53, 54] total conflict is separated into internal and ex-
ternal components. Internal conflict quantifies the (self-)inconsistency of the nth source, while
external conflict is only based on the interaction between sources and does not integrate any self-
inconsistency. The authors of [60] in particular agree with this subdivision, and they propose con-
flict measurements based on contour functions, making no a-priori assumptions regarding the
possible dependence between sources.

The concepts of conflict and ignorance have already been used in the context of single classifier
uncertainty sampling-based AL in [173], but with totally different meanings from those in the BF
framework. In their work, conflict models the extent to which a new query point lies in the conflict
region between two or more classes (whereas for us it refers to conflicting beliefs from different
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Table 5.2: Example of the computation of evidential-based disagreement measures based on different mass
allocations mx1 , . . . ,mx4 . The sample related to the bold value in each column is the one that is chosen to be
added to the training set according to MC, MI and ME criteria with the related entropy measures.

; H H Θ BetP(H) HO HY HN HP HDP HLM HD HRP HJ

mx1 0.01 0.1 0.1 0.79 0.5 0.67 0.03 0.93 1.72 0.8 0.83 2.19 1.8 1

mx2 0.79 0.1 0.1 0.01 0.5 1.02 0.88 1.23 1.27 0.05 0.94 1.3 1.05 1

mx3 0.4 0.1 0.1 0.4 0.5 0.86 0.09 1.25 1.92 0.66 0.75 2.31 1.66 1

mx4 0.1 0.79 0.01 0.1 0.93 0.24 0.05 0.59 0.7 0.11 0.16 0.76 0.61 0.35

classifiers), while ignorance represents the distance of a new query point from the training sam-
ples seen so far, so that it is higher in areas of the version space not represented yet (while for us it
is higher when for all the classifiers the point resides in their uncertainty area - in a sense, the two
definitions are completely the opposite). Always in the different context of uncertainty sampling,
in [242] there is a distinction between insufficient-evidence and conflicting-evidence uncertain-
ties, but the concept of evidence does not refer to BF framework, but it is rather measured as a
weighted similarity of a given sample to the support vectors.

We expect that the inclusion of samples with high ignorance or conflict (defined in the BF
framework) will be beneficial for the learning process, respectively in order to sharpen the decision
boundaries between the classes for all the classifiers and to reduce the overall conflict between the
various sources. However, the former strategy exploits examples which are near the current deci-
sion margins in all the feature spaces, and it is not able to solve possible conflicts but it just adjusts
the boundaries, while the latter allows for an exploration of the version spaces to select points
which are not yet represented by the current models, but it could be prone to outlier selection.
In this sense they are complementary strategies, and they should be used in conjunction with a
criterion able to balance them. Alternatively, we expect entropy-based disagreement to be able to
naturally find a trade-off between them as a measure of information gain.

Table 5.2 shows an example of four BBAs associated to different samples, and the decision
about which sample to query based on the different evidential entropy criteria (i.e. the sample re-
lated to the bold value in each column). In particular, mx1 has a high component of ignorance, mx2

is a very conflicting BBA, mx3 is not committed about any singleton hypothesis and at the same
time has a high amount of both ignorance and conflict, while mx4 is very committed about H hy-
pothesis. The value of BetP(H) is also shown, to highlight the fact that the probabilistic framework
assigns the same value to the first three BBAs even if they are intrinsically very different one from
the others. As we expect, no measure selects mx4 to be added to the training set, since it is quite
committed while not conflicting and it would not provide much information. On the contrary,
the first three BBAs are selected based on the different measures. A clear limitation of MI and MC
criteria is that they fail detecting BBAs with relatively high values of both conflict and ignorance:
MI selects mx1 while MC selects mx2 , but they do not consider mx3 at all, even if it represents a po-
tentially interesting sample to add to the training set. Conversely, entropy-based criteria are able
to better consider the relative allocation of masses through the various hypotheses. Using Höhle
and Yager definitions of entropy, mx2 is selected, highlighting their tendency to detect conflicting
instances. Nguyen and Pal favor the selection of mx3 , prioritizing samples which are both not very
committed and conflicting, even if Nguyen is more sensitive to conflict while Pal gives more im-
portance to the ignorance component. Dubois and Prade’s formulation of entropy favors samples
with high ignorance, not being able to capture the conflict component. Among the three compos-
ite formulations that aim at taking into account both conflict and non-specificity (i.e., Lamata and
Moral, Deng, Jiroušek and Shenoy), we can notice that they all prioritize different samples, but
there is only a slightly difference among the entropy values associated to the first three BBAs. This
suggests the fact that they would probably select the three of them to be part of the same batch. In
the same way, Jousselme’s definition based on BetP(H) encourages a diversity in terms of BBAs in
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Figure 5.2: Evidential Query-By-Committee Active Learning flowchart.

the same batch, allowing to tackle different types of issues at the same time (i.e., conflicting and/or
not committed BBAs).

5.3.3 Global overview of the proposed evidential QBC process

Figure 5.2 shows the complete flowchart of the proposed evidential QBC method, in opposition to
Fig. 5.3 which shows the flowchart of the traditional approach. After the learning step, BF frame-
work is involved in three operations, namely in the BBA allocation procedure through successive
discounting, in the combination of sources that allows us to obtain a BetP(H) map used for eval-
uation, and in the derivation of evidential entropy map which guides the selection of the most
informative samples to add to the training set for the subsequent iteration of the active learning
procedure.

The proposed evidential QBC differs from the traditional one. First of all, from the score maps
given by SVM classifications we do not derive probabilistic maps through logistic regression, but
we perform a BBA allocation that takes into account two possible sources of imprecision, namely
in the estimation of the sigmoid parameters to perform logistic regression and, later, in the image
space. Then, the conjunctive combination rule is able to take into account the information pro-
vided by the different sources, discounted accordingly to their pixel-wise evaluated reliability. At
this stage, the obtained BBA map M can be used either for evaluation, through the computation
of the BetP(H) map, or to compute the evidential entropy map, from which the samples with maxi-
mum entropy are extracted and added to the labeled samples set L . Note that in case of Maximum
Ignorance or Maximum Conflict criteria, the evidential entropy map would not be computed, and
the samples would directly be chosen maximizing ignorance and conflict channels, M (Θ) and
M (;) respectively.

The conjunctive use of BF both in the combination and in the derivation of the disagreement
measures in the AL process allows us to overcome the limitation of traditional QBC where (op-
tional) combination and disagreement computation are performed independently.
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Figure 5.3: Traditional Query-By-Committee Active Learning flowchart.

In the following section, we will investigate all the proposed evidential-based disagreement
measures as well as the traditional ones in the context of our application.
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5.4 Experimental results

For the QBC algorithm, we thus build the committee C of classifiers with the four SVM pedestrian
detectors, namely HOG, LBP, GABOR and DAISY, explained in Sec. 3.2. Such a committee is quite
heterogeneous since each classifier contributes providing a different view of the data, so that the
explained fusion strategy is applied at every iteration, both to obtain the image map of the BetP(H)
on which we compute statistics, and to choose the samples to add to the training set on the basis
of the different evidential-based proposed heuristics.

In the context of AL, the choice of the evaluation metrics is not trivial. The recent study carried
out by [220] indeed have pointed out that most of the evaluations of AL approaches in the literature
have focused on a single performance measure, and have shown that the improvements provided
by AL for one performance measure often comes at the expense of another measure. Besides this,
the most used metric is accuracy, which intrinsically depends on the choice of a threshold so that
a question arises about how much of the observed improvement is due to the effective learning
and how much of it is simply due to a shift in the optimal decision threshold. Moreover, accuracy
metric is not relevant in presence of highly imbalanced data. To solve this last problem, popular
measures are Precision, Recall, and F1 score, but they still require a threshold.

For all these reasons, we choose to evaluate our method on the basis of two different measures,
which do not depend on a threshold and at the same time are suited in the presence of imbalanced
data, namely AUPRC and PRBEP (i.e., the value corresponding to the point of the curve where Pre-
cision is equal to Recall). These two metrics are computed on the BetP(H) map, applying non
maxima suppression (NMS) at every threshold to identify the targets (as done already in Chap-
ter 4).

We conducted our tests starting from a random training set of 500 samples arriving up to 2000
samples, with a batch size of 100 samples per iteration added on the basis of the discussed dis-
agreement measures. The pool of unlabeled samples U from which the active learning solution
can choose the samples to add to the training set is composed by more than 760K samples, which
are labeled according to the ground-truth map of the corresponding image.

5.4.1 Comparison between the proposed evidential disagreement measures
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Figure 5.4: AUPRC and PRBEP at every iteration using ME criterion with different evidential entropy dis-
agreement measures, MC and MI criteria.

Figure 5.4 shows the AUPRC and PRBEP for every iteration using the proposed Maximum En-
tropy (ME) with the different evidential entropy definitions, Maximum Conflict (MC) and Maxi-
mum Ignorance (MI) criteria. It is possible to see an improvement of both metrics with all the
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investigated disagreement measures, stressing the robustness of the method and the fact that the
approach is well-suited to our application. All the curves tend to flatten towards the end of the
process, which means that the final number of samples represents a suitable training set size.

We also note that some curves have higher performance even when relying on a small size of
the training set (i.e., are faster to converge). This means that those query strategies are imme-
diately able to select the most informative samples to add to the training set. There are indeed
some differences among the results achieved using the various definitions. It is clear that entropy
formulations which focus on conflict (e.g., the Yager one) provide better results with respect to
Dubois-Prade definition which focus only on the non-specificity, already in presence of a small
training set size. Moreover, considering both imprecision and conflict components seems to be
beneficial, in particular using Lamata and Moral’s composite definition. Note that also that the
simple Jousselme’s entropy-based criterion appears quite beneficial both in terms of AUPRC and
PRBEP. In general, the best strategies appear to be the ones that encourage diverse samples inside
the same batch in terms of BBA structure, that is to say, both conflict and ignorance components
have to be taken into account, with a slight preference for samples with conflicting BBAs.

Considering the results obtained with the two simple evidential criteria solely based on con-
flict and ignorance, these approaches do not reach the performance of entropy-based disagree-
ments. As expected, selecting the samples on the basis of maximum conflict allows for a steeper
improvement at the beginning, where exploration of the version space is very important, but after
some iterations the curves tend to flatten. On the contrary, the samples with high values of igno-
rance are mostly useful when the size of the training set begins to be consistent, and it becomes
important to exploit the current feature spaces to adjust the boundaries. This behavior reflects the
importance to pass from an initial exploration to a final exploitation of the data. To this extent,
evidential QBC based on Maximum Entropy criterion is able to naturally find a trade-off between
the two necessities.

In the following, we choose Lamata and Moral’s entropy definition as the more competitive
criterion among the evidential entropy formulations. Indeed, it outperforms other formulations
when considering AUPRC metric, which is a key indicator since it takes into account the whole
Precision-Recall curve, and at the same time has good performance in terms of PRBEP.

5.4.2 Comparison with traditional approaches
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Figure 5.5: AUPRC and PRBEP at every iteration. Comparison of evidential-based disagreement measures
with traditional ones.

In order to evaluate the benefit for the active learning procedure of the proposed BBA alloca-
tion used in conjunction with evidential disagreement measures, Fig. 5.5 reports the AUPRC and
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PRBEP curves related to two different levels of comparison.
Firstly, we evaluate the difference with respect to a result reached using purely probabilistic

reasoning. We perform the Bayesian BBA allocation from the output of each classifier after Platt’s
regression, without applying any discounting neither in the score space nor in the image space,
and we apply the normalized conjunctive combination rule (i.e. Dempster rule): in this way, the
classifiers combination boils down to simple product of probabilities. Then, on the resulting prob-
abilistic map, we apply the traditional SVE and KL disagreement measures, as well as a baseline
that simply adds randomly drawn samples at every iteration. Moreover, to quantify exactly the
benefit of the proposed BBA allocation over the Bayesian one, we aim at converting the proposed
evidential disagreement measures to the Bayesian framework. MC and MI do not apply, since
Bayesian BBAs have null masses on conflict and ignorance respectively. Transposing the evidential
entropy definitions to the Bayesian framework, we notice that all the formulations (except Dubois-
Prade’s one which is always null being mostly related to ignorance, and Jiroušek and Shenoy’s one)
boil down to:

H(m) = m(H)log

(
1

m(H)

)
+m(H)log

(
1

m(H)

)
. (5.8)

Curves related to this first comparison are the ones referred to as “Bayesian” in the plots’ leg-
end of Fig. 5.5. Clearly, evidential approach based on ME criterion (cf. “ME - Lamata and Moral”
curves) outperforms all the probabilistic ones with respect to both AUPRC and PRBEP. Besides,
the fact that there is a consistent gap between the proposed evidential Maximum Entropy and the
corresponding curve in the Bayesian framework (Bayesian ME) indicates that the detector combi-
nation with the proposed BBA allocation is significantly superior to a simple product of probabil-
ities.

In order to show that the performance gain is not only due to the relevant BBA allocation,
but also to the good choice of disagreement measure for active learning, we propose a second
type of comparison. Now, we perform indeed the proposed evidential BBA allocation, obtaining
a BetP(H) map that we interpret in this case as a probability map to compute SVE, KL and the
random baseline in a probabilistic framework. This allows us to focus on the benefit of the BF
framework vs. probabilistic one only with respect to the new sample selection step, to see exactly
the impact of evidential measures in the selection of the new samples being not biased by the
detector combination result. The related curves are referred to as “Semi-evidential” in Fig. 5.5,
since the BF framework is only involved in the BBA allocation and combination but not in the
sample selection step.

Entropy-based criteria, namely Semi-evidential SVE and the proposed evidential ME, outper-
form the others, both in terms of AUPRC and PRBEP. However, although reaching almost the same
performance as the evidential ME at the very end of the process, SVE is not able to select the
most informative samples from the beginning, showing a much slower convergence. In particular,
entropy-based evidential criterion results to be the best one, due to the ability of BF framework
to model in a finer way the actual information contained in each sample, highlighting the impor-
tance of the coupling between the fusion of the classifiers and the definition of the disagreement
measures.

We can notice how KL strategy, which was expected to select conflicting samples based on
the consensus probability, does not seem to be very efficient in this context, performing even
worse than random sampling both in the semi-evidential and in the Bayesian comparisons. This is
against what we observed in the comparison of the various evidential-based entropies in Sec. 5.4.1,
where the definitions that focus on the conflict are indeed the most successful ones. This fact
shows that the evidential framework is more able to model the conflict among the various com-
mittee members, through the mass on ;, with respect to the probabilistic framework that models
it in terms of divergence from the consensus probability.

Finally it is worth remarking the fact that the proposed evidential ME strategy is able to reach
the best performance obtained by the Random strategy using only half (or less) data (cf. “ME -
Lamata and Moral” and “Semi-evidential Random” curves).
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5.4.3 Correlation analysis

The aim of correlation analysis between the various disagreement measures is to understand bet-
ter how they may differ from one another and the similarity between them. To this extent, we apply
the proposed MC, MI and ME criteria with all the investigated entropy measures on the basis of
the BetP(H) map obtained after BBA allocation and combination. Traditional SVE, KL and the ran-
dom sampling are also performed on the basis of the BetP(H) map obtained after BBA allocation,
interpreting it as a probability map, to focus only on the new sample selection step (following the
semi-evidential approach).

Figure 5.6 shows the correlation matrix in terms of percentage of common samples between
the different points selected at every iteration on the basis of the investigated criteria, excluding
the initial common 500 samples, so that only the ones selected with respect to the various strate-
gies are taken into account in the computation. We do not plot all the iterations but we focus on
the first iterations, where variations are more visible, and on the last one in order to give a sight of
the general behavior. We note that in general, going on with the iterations, the different training
sets tend to diverge, sign that the size of the considered pool of unlabeled samples U is indeed ap-
propriate in the sense that the various methods have enough freedom being not constrained by the
data. Correlation is especially evident considering the various evidential disagreement measures.
Many definitions are correlated to ignorance, and as expected, Dubois and Prade’s entropy is very
close to it. Yager’s entropy and Lamata and Moral’s one, on the contrary, are very correlated one to
each other and have a consistent overlap with the conflict measure. Nguyen and Pal correlation
is also highlighted, and it is easily explainable by the fact that Pal’s formulation extends Nguyen’s
one, taking into account also the cardinality of the focal elements (in our case, in presence of two
singleton hypotheses, only the term that refers to the compound set slightly changes). Again, Pal’s
training set seems very correlated to Jiroušek-Shenoy’s and Deng’s ones, which are two composite
formulations aiming to take into account both conflict and non-specificity. KL divergence seems
totally uncorrelated to any other measure, except for the conflict with a marginal degree.

To better understand the degree of correlation between the different measures, Fig. 5.7 shows a
visual comparison of the maps obtained with the various entropy definitions for the first iteration
of the AL process, so that we can compare them on the basis of the same training set. Figure 5.7a
represents a selected part of the unlabeled samples pool U . After the evidential combination of the
classifiers, the result is the image map M of BBAs mx associated to every pixel x, shown in terms
of Belief in Fig. 5.7b, conflict in Fig. 5.7c, and ignorance in Fig. 5.7d. Soft Vote Entropy 5.7e and KL
divergence 5.7f maps are shown as well for comparison with all the investigated evidential entropy
measures. Once again, we notice the correlation between ignorance and Dubois-Prade entropy
in Fig. 5.7k, while the other entropy measures seem more correlated to the conflict, although to
different extents. Generally, evidential entropy maps are able to model in a finer way the actual
information contained at every pixel locations, so that the regions of interest for the AL process
are better enhanced with respect to SVE and KL.

The figure visually shows where and how the entropy measures correlate. While previous Fig.
5.6 provides only a global estimation of the correlation (scalar value), Fig. 5.7 allows for a qualita-
tive visualization of the spatial variation of the correlation. Entropy is higher where the individual
detectors are discordant, and the images show that this happens frequently on the border of the
heads, because the various classifiers provide different detection sizes (e.g. HOG and GABOR pro-
vide more localized detections while LBP and DAISY provide coarser blobs). There are some areas
that correspond to a head where entropy is high, and it means that just a part of the classifier com-
mittee succeeds in detecting it. We also note that some shoulders of the people may present high
entropy values. Specifically, this happens when one or some classifiers miss-classify shoulders as
heads due to their similar rounded visual appearance. Finally, it is interesting to visualize that the
maps usually agree on the location of maximum entropy (borders of the heads, heads detected
only by some classifiers, shoulders areas which confuse some classifiers), while at the same time
they provide different amounts of entropy for the same location, and this is what allows the AL to
choose different samples and thus to obtain such diverse training set at the end of the process.

78



CHAPTER 5. EVIDENTIAL QBC ACTIVE LEARNING

R
SVE KL
M

C M
I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P
M

E-L
M

M
E-D

M
E-J

S
M

E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

R
SVE KL
M

C M
I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P
M

E-L
M

M
E-D

M
E-J

S
M

E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

R
SVE KL
M

C M
I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P
M

E-L
M

M
E-D

M
E-J

S
M

E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

R
SVE KL

M
C M

I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P

M
E-L

M
M

E-D

M
E-J

S
M

E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

R
SVE KL
M

C M
I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P
M

E-L
M

M
E-D

M
E-J

S
M

E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

R
SVE KL
M

C M
I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P
M

E-L
M

M
E-D

M
E-J

S
M

E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f )

Figure 5.6: Correlation between samples added during successive AL iterations with different strategies,
for the initial iterations and the last ones. R = Random, SVE = Soft Vote Entropy, KL = Kullback-Leibler
divergence, MC = Maximum Conflict, MI = Maximum Ignorance, ME = Maximum Entropy: O = Höhle, Y =
Yager, N = Nguyen, P = Pal et al., DP = Dubois and Prade, LM = Lamata and Moral, D = Deng, JS = Jiroušek
and Shenoy, J = Jousselme.
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(a) Patch image from U

(b) Belief M (H) (c) Conflict M (;)

(d) Ignorance M (Θ) (e) Soft Vote Entropy

(f ) KL divergence (g) Höhle entropy

(h) Yager entropy (i) Nguyen entropy

(j) Pal entropy (k) Dubois and Prade entropy

(l) Lamata and Moral entropy (m) Deng entropy

(n) Jiroušek and Shenoy entropy (o) Jousselme entropy

Figure 5.7: Different maps obtained using the investigated evidential disagreement measures for a selected
patch of the unlabeled samples pool U (in Fig. (a)) with corresponding BBA allocation M . SVE and KL
maps are shown as well for comparison.
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Figure 5.8: Visual comparison of the detections obtained at the first iteration of the process (500 training
samples), on the left, and the last iteration (2000 training samples selected using Lamata and Moral Max-
imum Entropy criterion), on the right. Results are shown in terms of colormap of the BetP(H) map in the
first row and detections at PRBEP in the second row. Small patches with the different sources involved in
the combination are shown for reference in the third row (namely SVM classifier with HOG, LBP, GABOR,
DAISY descriptors).
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Figure 5.9: PR-curves for the individual classifiers, as well as the fusion between them, for the first and the
last iterations of the AL process. PR-curves for the single descriptors are reported as well to see their evo-
lution thanks to the active learning procedure. For the sample selection, we compare Lamata and Moral’s
strategy with the random selector (which benefits only from a larger training set).
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5.4.4 Global benefit of evidential QBC active learning

Figure 5.8 provides a visual comparison between the first and the last iterations of the process,
during which the training set increased from 500 samples (on the left) to 2000 training samples
(on the right), selected with the Maximum Entropy criterion using Lamata and Moral’s definition.
The classification results are shown both in terms of colormap of the BetP(H) (soft detections) in
the first row, and detections at the PRBEP threshold in the second row. Moreover, detections using
the individual sources that compose the committee of classifiers are shown in the last row (HOG,
LBP, GABOR, DAISY respectively), in order to highlight their complementarity and the necessity
of an adapted fusion between them. While the colormap is useful to identify regions with higher
values, and to immediately see that at the end of the process we obtain a less noisy and sharper
map, the detections superimposed on the input image are indeed useful to evaluate the actual
location of the detections and the presence of false positives (areas with high values which do not
correspond to an actual head) or false negatives (heads which are not detected).

The detections are provided here for the value of threshold at which precision is equal to recall
(i.e. the PRBEP), which is a reasonable compromise since it allows us to have the same number
of false positives and false negatives. PRBEP is equal to 0.74 for the first iteration, meaning that
at the beginning of the process for this particular threshold 26% of the heads are lost while at the
same time 26% of the detections are not actual heads. At the end of the process, PRBEP becomes
0.835, meaning that we obtain an improvement of almost 10% with the proposed approach, both
in terms of precision and recall.

PRBEP threshold is a traditional operative point for many applications and we find it reason-
able to adopt it for visualization purposes. The exact values of the thresholds are th = 0.8 for the
first iteration (on the left) and th = 0.55 for the last iteration (on the right). Although the exact
values are not really meaningful in themselves, it is interesting to notice the initial bias toward a
high threshold, that can be explained by the fact that at the beginning of the process the training
set is balanced (i.e. it has the same number of positive and negative samples), while at the end of
the process it tends to have more negative samples, reflecting the actual data distribution.

Overall, the proposed evidential fusion, which is able to take into account imprecision both
during calibration and in the image space, results to be suited for this application. Besides, the AL
algorithm is able to select samples which are indeed useful to improve the performance of all the
classifiers, a fact which results in a significant and visible improvement of the final BetP(H) map.
At the end of the AL process, the detections are more localized, sharper and a lot of false positives
which were present at the beginning have been successfully removed.

To highlight the importance of coupling the fusion strategy with the AL process, Fig. 5.9 shows
different Precision-Recall (PR) curves, for the various single classifiers as well as for their fusion.
The curves are shown for the first and last iterations, in order to illustrate the relative improvement
in terms of performance for all the classifiers.

Besides showing that fusion results are better than individual detectors (which is not manda-
tory true), the figure has two main purposes. Firstly, it shows the improvement due to AL, com-
paring the first iteration with the last one for every classifier and their fusion, so that we can see
that AL is effective since performance has increased for every classifier at the end of the process.
Secondly, considering the fusion result, it shows that the improvement is not only due to the in-
creased size of training set but also to the chosen sample selection strategy. The image underlines
indeed the consistent gap between the two fusion results at the last iteration, which corresponds to
random sample selector and maximum entropy sample selector (considering Lamata and Moral’s
entropy definition). This fact underlines the importance of having defined an adapted fusion strat-
egy which is able to take into account imprecision while at the same time providing clues for the
AL process.
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Chapter 6

CNNs for pedestrian detection in
high-density crowds
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6.1 Motivation and related works

In the object detection community, deep learning emerges in the last years as an alternative ap-
proach to established methods working with hand-crafted features. Nevertheless, it frees from the
necessity of feature engineering, even though this comes at the expense of larger datasets usually
needed for training, and the impossibility to easily interpret the results.

Despite the success of deep learning however, as stated in [294], the particular task of pedes-
trian detection is still a difficult problem and hand-crafted features still appear to be of critical
importance. They are indeed intrinsically designed to obtain finer resolution with respect to com-
monly employed networks which fails at detecting small details mostly due to the presence of
pooling layers. Neural networks are therefore usually used in conjunction with traditional meth-
ods like ICF detector [110, 257], and even when used alone [158, 295] the variability of scale and
appearance of the various individuals is so high that the task is far from being solved. A very re-
cent work [286] exploits the concept of Omega-shape which is learned in a deep framework to
handle partial occlusion. However, this work and in general all state-of art methods in pedestrian
detection rely on a region proposal step to isolate the targets, but in presence of dense crowds it
becomes inapplicable due to the large number of people.
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For the similar context of face detection, the recent work presented in [112] proposes a CNN
able to detect faces at extremely small scales, by rescaling the input with respect to different scaling
factors and merging the different response maps to obtain the final detections. The method has
shown to be very robust to small scale objects, blur, and partial occlusions, but it is still targeted
to a different problem with respect to our application. Indeed, in face detection the facial features
play an important role to increase the discriminative power of the detector.

Recently, for the task of spatially dense classification, Fully Convolutional Networks [169] (FCNs)
emerges. They are a particular type of CNN especially used for semantic segmentation applica-
tions, where each pixel of the image has to be labeled with respect to the object it belongs, instead
of just obtaining a unique label for all the image as it is done in classification. For this reason, we
cast our problem of head detection as a segmentation task in presence of soft labels, since we do
not have information about the precise contour of every head.

In the following, after a review about CNNs and architectures for semantic segmentation us-
ing FCNs, we will formulate our problem in terms of segmentation using soft labels and show its
relevance in terms of results with respect to two different architectures, a state-of-art UNet [229]
and a proposed architecture inspired by [97].

6.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a particular type of neural networks (cf. Sec. 2.2.5)
which make explicit assumption about the fact that input data are images, so that they can better
encode spatial constraints and reduce the total amount of parameters in the network.

CNNs are still composed by several layers containing neurons with weights and biases which
are learned by minimizing a loss function through backpropagation. They also still present a fully
connected layer as last layer where a classifier (SVM or Softmax) is used to provide the object label
for the task of classification.

Regular NNs involves the use of fully connected hidden layers, where each neuron is fully con-
nected to all the neurons of the successive layer. However, this approach do not scale well in
presence of inputs in the form of images, as the number of parameters of the network would soon
explode and become intractable. Moreover, full connectivity possibly leads to overfit.

On the contrary, CNNs constrain the architecture in such a way that their layers have neurons
arranged in a 3D volume of given width, height, and depth. Moreover, neurons in a layer are only
connected to a small region of the layer before, so that local consistency of image data is exploited.
Every layer of a CNN transforms thus by means of a differentiable function an input 3D volume
into an output 3D volume which is usually deeper, until the last fully connected layer which is
employed for classification.

...

Input convolutional layer pooling layer
fully connected 

layer output

Figure 6.1: Visual example of a CNN. The input volume (bidimensional in the image but usually 3D) is
convolved with a set of kernels (i.e. learnable weights, 4 in the example, applied at every pixel location
assuming stride=1). The spatial dimension of the resulting 3D volume is then reduced through pooling,
while fully connected layer is used for classification (in the example the output is assigned to 7 different
classes).
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6.2.1 CNN layers

Specifically, there are mainly three different types of layers which can be stacked to compose a
CNN architecture: convolutional layers, pooling layers and fully connected layers, as depicted in
Fig. 6.1. Let us now examine the different layers along with their different purposes.

6.2.1.1 Convolutional layers

Convolutional layers are the main building blocks of a CNN. The parameters of a convolutional
layer consist of a set of learnable weights, or filters, with small spatial extent along width and height
dimensions but extending through the full depth of the 3D input volume. During the forward pass,
each filter slides through the input over the width and height dimensions and is convolved with
the input volume itself. This convolution operation produces a 2-dimensional activation map that
gives the responses of that filter at every spatial position. To produce the 3D output volume, the
activation maps given by every filter are stacked along the depth dimension. The number of filters
used in one layer is a hyperparameter that corresponds thus to the depth of its 3D output volume.

Note that each neuron is connected to only a local region of the input volume. The spatial
extent (along width and height) of this connectivity is the receptive field, or filter size, that is a hy-
perparameter which is usually set to quite small values (i.e. 3×3 or 5×5). It has been nevertheless
shown that it is better to stack more layers with small filters than using less layers with larger filters,
thanks to the activation functions at every layer which increase the non-linear response ability of
the model. Still, the extent of connectivity along the depth axis is equal to the depth of the input
volume: connections are local in space, but always full along the entire depth of the input volume.
In this way, increasing the number of filters used throughout the layers, we increase the output
depth.

(a) (b) (c)

Figure 6.2: Example of dilated convolutions. Red dots specify the cells where the filter is applied, while
green cells highlight the receptive field. (a) 1-dilated convolution (3×3 receptive field); (b) 2-dilated convo-
lution (7×7 receptive field); (c) 4-dilated convolution (15×15 receptive field). Image taken from [290].

Other hyperparameters to set are the stride at which the filters are slided through the input
(larger strides will produce spatially smaller output volumes), and the padding which allows us
to pad the input volume around the borders so that the spatial size of the output volume can be
controlled and preserved with respect to the input (usually, zero-padding is used). Then, in [290],
dilated convolutions have been introduced specifically for dense prediction. They systematically
aggregate multi-scale contextual information without losing resolution, by supporting an expo-
nential expansion of the receptive field through the layers without loss of resolution or coverage.
Figure 6.2 shows an example of dilated convolutions, highlighting different patterns of filter appli-
cation with respect to the dilation size. Note that the number of parameters associated with each
layer does not change with respect to the dilation size, while at the same time the receptive field
grows exponentially.
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The second important feature of CNN with respect to regular networks is parameter sharing.
Indeed, by the assumption that for image inputs the same feature is useful to be computed at every
different spatial positions, each filter has the same parameters throughout the spatial volume. In
other words, as the filter moves around the input volume the same weights and biases are being
applied in the forward pass and learned during backpropagation. Each filter therefore is useful to
perform a certain transformation across the whole image (this is in contrast with fully connected
neural networks, which can have different weight values for every connection). Denoting a single
2D slice of depth as a depth slice, all neurons in a single depth slice are using the same weights
and the forward pass is computed for every depth slice as a convolution of the neuron’s weights
with the input volume (this is why the layer is called “convolutional”, and why the set of learnable
weights are referred to as “filter” or “kernel”).

Parameter sharing along with the use of a receptive field makes the total number of parameters
of a CNN to be far less than the ones of fully connected networks.

6.2.1.2 Pooling layer

The function of the pooling layers is to progressively reduce the spatial size of the representation,
decreasing thus the amount of parameters and computation required by the network. They are
usually inserted after the convolutional layers and operates independently on every depth slice of
the input. Pooling layers perform a spatial downsampling of the volume, preserving the volume
depth.

The most common pooling function is a MAX operation, which is performed in a sliding-
window fashion throughout the input volume, and gets the biggest value on the window as output,
although also average or sum pooling exists.

6.2.1.3 Fully connected layers

Fully connected layers are called like this because their neurons have full connections to all acti-
vations in the previous layer. They are usually placed at the end of the network, to perform classi-
fication, so that the general layer patterns of a CNN becomes:

Input →
[

[conv → acti v] ·N → pool
]
·M → [FC → acti v] ·K → FC

where conv represents a convolutional layer, acti v the activation function (cf. Sec. 2.2.5.3) - usu-
ally a ReLU, pool the (optional) pooling layer, and FC the fully connected layer, while N, M and K
are the numbers of repeated layer patterns within brackets.

While the series of convolutional layers along with their activation functions and possibly
pooling operations allows us to learn a set of meaningful features, fully connected layers placed at
the end learn non-linear combinations of these features.

6.2.2 Fully Convolutional Networks for semantic segmentation

Fully Convolutional Networks (FCNs) have been proposed in [169] as particular types of CNNs for
the task of segmentation, as they allow us to perform dense per-pixel predictions by taking input
of arbitrary size and producing correspondingly-sized output. Typical classification networks take
fixed-sized inputs and produce non-spatial outputs, by assigning a single class (label) to the whole
image, whereas FCNs allows us to obtain a dense output map where a different label is assigned
for every pixel of the input image.

The name comes from the fact that they contain only convolutional layers (along with their
non-linear activations and possibly pooling), but no fully connected layers at the end of the layers’
chain. In this way, there is no necessity of performing any patchwise training or region proposal.
On the contrary, each pixel of the image is used for training, and in the same way at inference
time a prediction score is obtained for every pixel of the testing image. This allows us to take into
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account the full context of the image, which is an advantage with respect to patch-based CNNs
both in terms of efficacy and efficiency.

The structure of a FCN is that of an encoder-decoder: initial encoder layers produce low res-
olution representations of the input data in its context, while the decoder part recover spatial in-
formation refining the spatial precision and localization of the output. While the encoder part is
rather similar with respect to the different proposed fully convolutional networks (e.g. a VGG-like
architecture [244] deprived of its final fully connected layers), the decoder part varies more.

In the original FCN [169] the decoder is composed by a stack of deconvolution layers (along
with their activation functions), with learnable parameters. This allows for a non-linear upsam-
pling learning, but increases the number of total parameters. SegNet [10] proposes a decoder that
uses pooling indices computed in the max-pooling step of the corresponding encoder’s layer to
perform non-linear upsampling, eliminating the need of learnable parameters. Recently, DeepLab [38]
achieves very good results by combining FCN with conditional random fields (CRFs).

In the context of medical image analysis, U-Net [229] has been proposed and shown to be very
effective also in presence of small training datasets. In order to perform precise localization, high
resolution features from the contracting (encoder) path are concatenated with the corresponding
opposing learnable deconvolution layers of the expansive (decoder) path, through a mechanism
called skip connections.

6.3 Head detection in high-density crowds

We choose to cast our specific problem of head detection in high-density crowds as a segmentation
task, in the sense that we want to assign a different label (foreground or background since it is a
binary problem) to each different pixel of the image, depending whether or not it belongs to a
head. Given an input image, we aim thus at performing dense prediction by estimating an output
map of the same size of the input where pixels that belong to a head are labeled as foreground.

This problem can be indeed related to two different applications of image segmentation, i.e.
natural image segmentation for scene understanding and medical image segmentation. Our im-
ages represent real-world rich environments, like in natural images, while at the same time pre-
senting small and cluttered objects to detect, like cell nuclei.

However, attention must be payed with respect to two different concerns related to our ap-
plication, namely the impossibility to obtain a precise ground-truth map and the impossibility to
have huge labeled datasets at our disposal. These two aspects will be investigated in the following.

6.3.1 Soft labels definition

Semantic segmentation is different from the usual classification task in one important way. Given
an input image, classification techniques assign a unique label to the entire image, whereas seg-
mentation assigns a different label to each pixel of the image. To do so, usually ground-truth maps
are available at pixel resolution, with sharp boundaries between one class and another based on
the contour of the various objects present in the scenes.

In our specific environment, precise labeling to perform head detection is usually impossible
to achieve, due to the presence of clutter and occlusion problems that make the contour of the
heads barely distinguishable from the background, in addition to the very small size of the targets.
A precise definition of head borders is thus difficult even for a human operator, beside being a
tiresome and time consuming task (in a single image almost thousand heads should be precisely
pixel-wise labeled for the considered dataset). Moreover, commonly used datasets do not come
with precise segmentation ground-truth but rather with just a list of coordinates that indicate the
center of the heads.

For these reasons, we investigate the problem of head detection from partially labeled data,
namely where only the center of each head is dot-annotated as explained in Appendix A, with only
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a prior knowledge about the average radius of a head in pixels (possibly with respect to its location
in the image in case of strong perspective variation due to camera tilt).

Starting from the dotted annotation, we could derive a segmentation ground-truth by simply
performing a dilation with a circular structuring element centered in each annotation location in
the image space. This would result in a binary map with circular blobs whose pixels would take
a value of 1. However, this approach presents many drawbacks. Firstly, heads are not precisely
circular and regular, so that the circular approximation of the contours would introduce errors
at the boundaries. Secondly, in presence of strong occlusions, head contours would not have a
circular shape as part of the head would be covered by another one. Lastly, in presence of many
close heads we would obtain a single blob in the ground-truth map, loosing the information about
the number of heads gathered together along with their center locations.

Figure 6.3: Ground-truth map as cumulative Gaussian distributions, one per head. The score associated to
each pixel of the ground-truth map is the sum of the contributions of each Gaussian at the given location.
In the image, scores span from blue (low) to yellow (high).

To face these issues, we propose a soft label definition of the ground-truth map through the use
of cumulative Gaussian distributions. Starting from the binary ground-truth map with 1-valued
label for each head center location (xc , yc ), we apply a cumulative Gaussian smoothing such that
the ground-truth map for each head is expressed in terms of a Gaussian distribution as:

(x, y) ∼ η ·N (
(xc , yc ),σh

)
, (6.1)

where η is a scaling factor to face the class imbalance problem, while 2σh is the expected head
radius.

We consider Gaussian distributions as they are infinitely differentiable functions presenting
tails which vanish at infinity, being able to model well the uncertainty about the precise head con-
tour locations. We apply a cumulative Gaussian smoothing in the sense that the final ground-truth
map is the sum of Gaussian distributions derived from each head center locations. The resulting
map is not a probability distribution by itself, but rather the score associated to each pixel repre-
sents the sum of probabilities that any head, occluded or not, is located at that position, directly
facing in this way also the problems of close and occluded heads. In presence of close heads in-
deed, maxima would still indicate the head center locations, while in presence of occluded heads
the evidence of the partially visible head will be reinforced through the cumulative sum. Figure
6.3 shows an example of ground-truth map obtained with the proposed soft labels.

While performing dotted annotation is much more efficient than performing precise segmen-
tation labeling, it can still be imprecise. It is nevertheless difficult even for a trained operator to
precisely indicate the center of each head present in the scene. Ground-truth Gaussian smooth-
ing is thus also able to mitigate location errors in the annotated ground-truth, that could have a
higher impact considering sharp-defined objects in presence of small targets (for instance, con-
sider the impact of a mislocation error in the ground-truth of just two pixels in presence of a five
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pixels radius head).
To summarize, we find that the introduction of soft labels through cumulative Gaussian distri-

butions is beneficial for several reasons:

• It avoids a clear definition of the borders which is practically impossible for such difficult
applications, while at the same time allowing us to obtain a spatial extent of the heads;

• It helps in presence of occlusions by reinforcing the evidence of the presence of an occluded
yet partially visible head, since the Gaussian distributions are summed up in each pixel;

• It allows us to easily retrieve the various head center locations in presence of close heads
that would result in a single blob, thanks to the Gaussian maxima, i.e. it provides an efficient
way to perform instance segmentation (explained later);

• It mitigates the impact in the loss function of mislocation errors in the ground-truth head
locations;

• It allows us not to loose the information about the number of people present in the image
thanks to the cumulative sum of contributions.

Note that the last point is particularly important because it allows us to perform people count-
ing directly from the obtained output map, by simply performing an integration over the entire
image or region of interest. This will be explained further in Chapter 8.

6.3.2 Data augmentation

Another important aspect that must be inspected while applying deep learning methods is the
availability of large training datasets. Like with all the other supervised learning techniques in-
deed, a huge number of training data reflects in a better learning capability. This fact is partic-
ularly noticeable in presence of very deep neural networks, where the high discriminative power
comes at the expense of a high risk of overfitting especially in presence of small training sets.

As already pointed out, in the context of high-density crowd analysis the datasets are usually
small since data may be difficult to acquire and are nevertheless hard to label for a human an-
notator. In order to be able to apply deep learning techniques in presence of such small labeled
datasets, special care must be taken not to run into overfit while at the same time performing a
robust training.

Besides the various traditional techniques such as parameter regularization or the more recent
dropout technique (cf. Sec. 2.2.5.2), a powerful way to prevent network overfitting is called data
augmentation. It allows us to exploit the available images in the most efficient way. To cope with
small training datasets indeed, synthetic new data are created starting from the available ones,
applying several different modifications to the original images.

The motivation behind it resides in noticing that the available data have been necessarily ac-
quired under a limited variety of conditions (e.g. illumination, orientation, scale, . . . ). Data aug-
mentation is thus capable of improving the invariance and robustness of the network to various
conditions. The dataset is artificially augmented with modified versions of the original training
data, making the network more invariant to objects slightly different than the ones encountered
during training.

The specific types of augmentation to be applied differ with respect to the considered appli-
cation. For example, landmark perturbation is often applied in face recognition problems, but is
not applicable in the context of pedestrian detection where facial features of the people are not
visible. Again, vertical flip (or similar 180° rotation) is usually applied in traditional object classifi-
cation problems but it is not meaningful in our context since pedestrians in (moving) crowds are
standing up on their feet.

We therefore apply horizontal flip, Gaussian noise, salt and pepper noise, brightness and con-
trast changes. The type of augmentation is applied randomly at each training epoch with a given
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probability, so that only a subset of them are performed together. Finally, note that since we are
dealing with a segmentation problem, any data augmentation procedure that performs an affine
transform or flip must be applied to the ground-truth map as well.

6.3.3 Loss function

As explained in Sec. 6.2.2 there exist several FCNs suited for the task of semantic segmentation. In
order to be able to apply them to our specific problem however, some modifications are necessary.

FCNs usually cast segmentation as a dense classification problem, in the sense that each pixel
is assigned to a given class (where the number of classes is discrete). For this reason, they com-
monly employ loss functions suited for this task, e.g. cross-entropy (weighted, in case of class im-
balance). We are rather interested in performing regression, since after the cumulative Gaussian
soft labeling seen in Sec. 6.3.1 the pixels of the ground-truth map (and thus our desired output) are
not labeled with their class but rather with a real value resulting from the accumulation of head
distributions. Since output values are not discrete (disregarding the unavoidable discretization of
the Gaussian function over the pixel domain) and possibly not bounded, we choose to use a L2
loss, as a straightforward yet efficient pixelwise estimate of the distance between two 2D maps.

Note that the parameter η of Eq. (6.1) is equivalent to weight the loss for the positive class
for classification problem employing weighted cross-entropy loss. The parameter η is particularly
important since higher its value, higher the impact of each single pixel belonging to a head in the
loss function, and must be set taking into account the expected crowd density (lower the density
higher its value, as per-pixel class imbalance would be more relevant).

6.3.4 Network architectures

Among the various architecture for semantic segmentation, we tested the U-Net [229], that has
been proposed in the biomedical field and is now a state-of-art network, and we propose a network
inspired by [97] that makes use of dilated convolution to be able to recover small objects, proposed
in the field of remote sensing imagery. Note that we tried to use also UResNet [95], an encoder-
decoder network inspired by both U-Net and ResNet using residual blocks, but the training data
at our disposal resulted to be not enough to train this type of network with a too high number of
parameters.

6.3.4.1 U-Net

The U-Net architecture [229] is a state-of-the-art segmentation network which has been originally
introduced for medical image segmentation. We have chosen to use this network because it has
been shown to be very effective even relying on small training datasets, used in conjunction with a
massive data augmentation that makes an efficient use of the available training data, while at the
same time being efficient at inference time.

The U-Net, whose structure is presented in Fig. 6.4, is built upon the original FCN [169] that
introduced the idea of transposed convolutional layers (also called up-convolutions or deconvo-
lutions) in order to reconstruct the output map. However, it improves the latter in some aspects.

Firstly, it presents a symmetric structure between the encoder part, which performs feature
extraction by taking into account context information, and the decoder part, which reconstruct
the output map. The use of pooling layers in the contracting path reduces the spatial extent of the
3D volume, which is then increased in the expansive path in a mirrored way by means of learn-
able deconvolutions, up to the original size of the input image. This gives to the architecture the
peculiar “U-shape”, hence the name U-Net.

The use of pooling layer allows for an important reduction of the number of parameters of the
network, contributing to the efficacy of the network even in presence of small training datasets
being robust to overfitting. Note that the original paper proposes to use learnable deconvolutions
in the expansive path, but other implementations of the U-Net propose to use simple upsampling,
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Figure 6.4: U-Net architecture. The “U-shape” (hence the name) is given by the encoder-decoder structure
containing a descending path for context extraction (encoding), and an ascending path for output map re-
construction (decoding). The grey arrows represent the skip connections which allows for the combination
of upsampled reconstructions and encoded feature maps.

which has no parameters and allows for an even more extreme reduction of the number of total
parameters. The downside however is that this latter do not exploit weights to combine the spatial
information in a smart way, so transposed convolutions can potentially handle more fine-grained
detail. This is why we rely on the original architecture, since in our application we have to detect
extremely small objects.

Another novelty introduced by the U-Net is the use of skip-connections. The result of each
up-convolution in the expansive path indeed is concatenated with the corresponding opposing
features obtained in the contracting path. This operation is essential to avoid producing too coarse
output maps and to perform precise localization of the target objects.

6.3.4.2 FE+LFE

In the context of remote sensing image analysis, the authors of [97] highlighted a major problem
of segmentation in presence of small and densely aggregated objects. The use of pooling layers
indeed tends to degrade the output resolution so that details of the very small objects are lost. In
these situations, even the use of shortcuts like skip-connections in the U-Net could not be enough
to recover small targets.

Pooling layers are however important, for two different reasons. Reducing the spatial dimen-
sion of the 3D volume, they allow for a larger context consideration without increasing the recep-
tive field of the filters, and to reduce the number of total parameters to be learned by the network.

In order to enlarge the receptive field of the filters going deeper with the layers, without de-
grading the output resolution nor increasing the filters’ size (thus increasing the number of pa-
rameters), dilated convolutions can be exploited. Linearly increasing the dilation factor through
the layers’ chain will result in an exponential enlargement of the receptive field that is therefore
able to capture larger context and recover smaller objects. Context information is indeed crucial
in recovering small objects, as pointed out in [112].

The authors of [97] however noticed that aggressively increasing dilation factors through the
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Layers

FE Conv 3×3, F = 16, D = 1

Conv 3×3, F = 32, D = 1

Conv 3×3, F = 32, D = 2

Conv 3×3, F = 64, D = 2

Conv 3×3, F = 64, D = 3

LFE Conv 3×3, F = 64, D = 2

Conv 3×3, F = 64, D = 2

Conv 3×3, F = 64, D = 1

Conv 3×3, F = 64, D = 1

Conv 1×1, F = 1, D = 1

Table 6.1: Detailed architecture of the proposed network inspired by [97], where F is the number of filters
and D is the dilation factor to perform dilated convolutions. It is possible to notice the symmetric structure
of the dilations whose factor increases in the Front End (FE) module, allowing us to increase the receptive
field, and decreases in the Local Feature Extraction (LFE) module, aggregating local features to obtain spa-
tial consistency in the output map. Note that each convolutional layer is followed by batch normalization
(except the last layer) and ReLU activation function.

network’s layers in a straightforward way is detrimental in aggregating local features. Dilation
causes weights to skip information between cells, and this results in a bad modelisation of the
structure of small objects, presenting grid patterns in the final output.

To solve this problem, they propose a network without pooling layers that conversely concate-
nates a Front End (FE) module of increasing dilation factors, with a Local Feature Extraction (LFE)
module of decreasing dilation factors, arranged in a symmetrical way. The FE module is thus able
to consider larger context for small objects detection, while the LFE module enforces the spatial
consistency of the output by gathering spatial information decreasing the dilation size.

The Front End architecture employed in [97] is a VGG network [244] deprived of the final classi-
fier layer (to obtain a fully convolutional network) and deprived of the max pooling layers. Instead
of the latter, dilation factors are increased at the corresponding network depth. Then, the LFE
module keeps invariant the number of filters and the kernel size, while decreasing the dilation
factors up to one, in a specular way with respect to the FE.

The only drawback of such an architecture is that with respect to the U-Net it needs more
memory to perform backward and forward passes, because feature maps at each layer have al-
ways the same size as the original input since there is no pooling operation. Thus, we propose a
modified architecture (shown in Table 6.1) that keeps the memory use manageable by reducing
the number of filters at each convolutional layer.

The choice of the reduction of the number of filters per layer has nevertheless two purposes.
On the one hand, it allows us to fulfill hardware constraints (NVIDIA Geforce GTX1080 graphic
card with 8GB of video memory), while on the other hand it helps in preventing the network to
overfit, as we know we are going to train it with small datasets. To this extent, also batch normal-
ization has been added on top of each convolutional layer, for faster convergence.

Note that to obtain a “simpler” network to prevent overfitting we could have conversely de-
creased the number of total layers. However, we preferred to reduce the number of filters per layer
for two reasons. Firstly, decreasing the number of layers would have prevented the network to
learn more complex features. Secondly, we would have not entirely exploited the benefit of in-
creasing/decreasing dilation factors. Moreover, we found that adding many layers with a dilation
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factor of 3 was too heavy, and for this reason we preferred to add a single central layer with such a
big dilation (however, this depends on the expected size of the targets).

6.3.5 A remark on the last layer

Whatever the fully convolutional network used, another modification to the usual structure of
fully convolutional networks regards the last layer. Usually, the layers’ chain terminates with a
convolutional layer, without any activation function that would apply a non-linear transformation
which is usually not needed. In our specific application however, the desired output values are real
values which are possibly positively unbounded (a pixel’s score is indeed the sum of contributions
given by all the surrounding Gaussian distributions representing surrounding heads), while at the
same time loosing their meaning as long as they take values under zero.

By definition, being a cumulative sum of Gaussian distributions, the ground-truth maps ob-
tained through the soft labeling procedure contain values which are always greater than or equal
to zero. In this way, by simply integrating the map over a region of interest we can obtain the
number of people present in that area. Conversely, if the integration over a given region of the
ground-truth map is exactly zero, it means that there are no people in that particular area. It is
therefore impossible to have in the ground-truth maps negative pixel values, as it is not possible
to have a negative number of people present in a given area. By setting the last layer as a convolu-
tional one however, we would allow the network to possibly produce negative output values which
would be the origin of noise in the estimation of the number of people.

For this reason, we propose to use an activation function in the last layer which bounds the
values at zero, like the sigmoid or the ReLU. For example a sigmoid activation as last layer is used
in [120], to constrain the output values between 0 and 1. For our particular application however,
the sigmoid is not suited for two main different reasons. Firstly, since the sigmoid function tends
toward zero without really reaching it, punctual noise would become more evident. Secondly,
since it saturates at 1, we loose the meaning of “cumulative” output: when two heads are one next
to the other, they would result in a single large blob and the score of each pixel would no more
represent the cumulative sum of surrounding heads contributions.

On the contrary, we propose to use a ReLU activation function in the last layer. It has the effect
of a threshold, setting all the negative values to zero. Nevertheless, since it is integrated inside
the network, it has beneficial effects on backpropagation with respect to a simple post-processing
thresholding. In this way, the network learns easily to return zero for background pixels, being
able at the same time to suppress a part of the background noise. The local density estimation is
therefore also enhanced, since the network looses its tendency to compensate between low and
high values adding noise.

6.4 CNN Results

6.4.1 Network training

To illustrate the benefit of the proposed deep learning approach inspired by semantic segmen-
tation for pedestrian detection with soft labels, the two considered networks are trained on two
different datasets: the Makkah dataset exploited so far and a dataset containing images of pedes-
trians captured in Regent’s Park (from now on, the dataset will be referred to as Regent’s Park).

In order to have more freedom on the batch size choice, while allowing at the same time for
a more diverse data augmentation within each batch, Makkah images have been split in three,
obtaining 35 training images of size 475×534. Although at first sight this can be seen as a small
training set, consider that in each image there are approximately 300 heads, very densely spatially
arranged, so that each image is able to convey a lot of information. Moreover, in fully convolutional
networks each pixel contributes to the final output and can be seen as a different “training point”,
and in our case we have more than 250K pixels per image. Considering that a head diameter spans
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between 8 and 12 pixels, pixel-level class imbalance issue is solved by setting η = 150 in Eq. (6.1)
(value empirically obtained through validation).

Regent’s Park dataset, on the contrary, contains 140 training images with about 40 heads per
image. The head size is approximately the same as in Makkah dataset, but the number of peo-
ple per image is far less. Nevertheless, it is worth to consider it for two reasons, namely to test
the proposed approach also in presence of lower crowd densities to show the robustness of the
method, and to validate the data imbalance solution in presence of an extreme class mispropor-
tion (η = 1500).

The two networks are trained by using an Adam stochastic optimizer [138], with a learning rate
of 10−2 for U-Net and 7× 10−3 for the proposed FE+LFE (exact values have been found through
validation). In both cases, the weights of the convolutional layers are initialized with the Kaiming
He method [101], which has proven to be particularly adapted for deep networks relying on ReLU
activation functions.

Early stopping with a patience of 20 epochs is used in order to terminate the learning process
when the networks stop improving on the validation set. This contributes also to mitigating the
risk of overfitting. A question arises now, namely how to evaluate the performance of the net-
works (either on the validation set to perform early stopping and obtain the best model, or more
generally to perform inference on unseen testing images).

6.4.2 Evaluation method

Due to the soft label definition, the proposed approach is able to provide as output a score map in
which each pixel is associated to a real value representing an accumulation of head distributions.
In this way, we are able to perform two tasks at a time, namely density estimation by integration,
and pedestrian detection. Let us now concentrate on this latter.

In order to perform pedestrian detection from the heads occupation map, we have to turn
again the problem from a semantic segmentation-like task into an instance segmentation one. In-
stance segmentation is considered nowadays one of the most challenging issues, overcoming se-
mantic segmentation because, besides estimating a different label per pixel, it is devoted at group-
ing pixels belonging to different objects of the same type in different instances. Particularly, in the
case of our application, it is aimed at obtaining different blobs of pixels associated to every head
and possibly splitting a single blob containing two different instances in two different close heads
which partially overlap.

This is not however straightforward because the number of instances is initially unknown.
Some methods like Mask R-CNN [100] jointly estimate the semantic segmentation mask along
with bounding boxes of each target to perform instance segmentation, at the expense of a more
complicated network structure. Alternatively, there exist extensions of U-Net to perform a joint
estimation of the segmentation mask and of the boundaries of each objects (by treating them as a
different class), but this can work only in presence of well-shaped borders, thus not in our case.

From our side, the peculiarity of the proposed soft labels definition directly gives a solution to
the problem, as anticipated in Sec. 6.3.1. Since our output map is a cumulative map of Gaussian
distributions, we can simply divide the various heads by getting the location of the maxima of such
distributions and applying an inverted watershed algorithm [14] that performs a flooding process
starting from these maxima.

However, note that the network estimates output values which are defined on all the positive
domain, so that the spatial extent of the detections would be indefinitely large considering pixels
of extremely small values. In order to constrain the size of the detections to a reasonable area, once
again we refer to the derived ground-truth map with soft labels, where we expect the head radius
to be equal to 2σh . Thus, we set to zero all the values of the output map which are less than τ, that
corresponds to the Gaussian function evaluated at distance 2σh from the labeled center, without
forgetting the scaling factor η:

τ = ηN((xc ,yc ),σh)(2σh). (6.2)
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(a)

(b)

Figure 6.5: (a) Pedestrian semantic segmentation on a test image from the Makkah dataset, with respect to
τ threshold defined in (6.2). Background pixels are black, while white pixels are white. (b) Pedestrian in-
stance segmentation derived from the semantic one, by applying the watershed algorithm over the peaks of
the estimated head distributions. The different colors represent independent, possibly partially occluded,
heads.

Figure 6.5a shows the semantic segmentation result after τ thresholding, while Fig. 6.5b shows
the instance segmentation result with watershed algorithm.

Having turned the problem into an instance segmentation one, the evaluation has to be made
at component level, and not pixel-wise such as in semantic segmentation. To do so, we associate
to every detection a different global score, which expresses the likelihood of being a real head,
given by the maximum of that detection blob (we could think about weighting it with respect to
the detection size, but the results would not dramatically change), and we rank the detections in
descending order of global scores.

In this way, we can use the mean Average Precision (mAP), which is a standard metric for mea-
suring the performance of object detectors. It can nevertheless be seen as an approximation of the
area under precision-recall curve, and it is faster to compute than considering each (discretized)
threshold, resulting to be particularly adapted to be evaluated at every epoch on the validation
images, in order to possibly early stop the training to avoid overfitting.

After having ranked the detections by descending global scores, precision and recall are com-
puted at every rank r, i.e. incorporating the first r detections in the computation. Precision at rank
r is defined as the proportion of all the detections ranked r or more which are really TP, whereas
recall at rank r is defined as the ratio between the number of TP ranked r or more and the total
number of ground-truth detections.

Then, mAP is computed as the average on every image (of the validation or testing set) of the
integral of the curve obtained by taking, for each different value of recall, the maximum precision
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for that value of recall or higher.
A question arises, namely how to discriminate between TP and FP detections. To this extent,

the standard approach is to calculate the Intersection over Union (IoU) between ground-truth and
detected blobs. It is defined as the ratio between the number of pixels which belong to both
the ground-truth and the detection (intersection), and the number of pixels which belong to the
ground-truth or the detection (union). Then, a detection is considered TP if its associated IoU is
over a predefined value I (in case a detection does intersect with more than one ground-truth
blob, only the one with the highest IoU is labeled as TP, while the others are labeled as FP). We will
thus refer to mAPIoU=I as the mAP calculated with a IoU threshold of I .

Note that we employ mAP on the validation set to perform early stopping because its maxi-
mization is more relevant than just considering the model that gives the lower loss on the valida-
tion images, as the loss is computed pixel-wise while the mAP takes into account the notion of
“detection” yet being easy to compute. Regarding the final evaluation on the testing set, we will
still compute mAP, and we will also compute standard precision-recall curves.

6.4.3 Results

Makkah mAPIoU=0.3 mAPIoU=0.5

U-Net 0.86 0.74

FE+LFE 0.88 0.74

Table 6.2: Quantitative results of the two considered networks on the Makkah dataset. Results are shown in
terms of mAP with 0.3 and 0.5 IoU thresholds.

Regent’s Park mAPIoU=0.3 mAPIoU=0.5

U-Net 0.88 0.76

FE+LFE 0.88 0.78

Table 6.3: Quantitative results of the two considered networks on the Regent’s Park dataset. Results are
shown in terms of mAP with 0.3 and 0.5 IoU thresholds.

We are firstly interested in a comparison between the state-of-the-art U-Net and the proposed
FE+LFE network. To do so, we compute the mAP scores with both I = 0.3 and I = 0.5. Standard
deviation σh for the creation of soft labels is set to 3. Tables 6.2 and 6.3 show the mAP scores for
both architectures for Makkah and Regent’s Park datasets respectively. For standard applications
it is common to set I = 0.5; however, considering our specific problem, we realize that this could
be too strict. In presence of such a difficult application, imprecision in the ground-truth labeling
of the head’s centers can have a noticeable impact in the resulting IoU. This fact is accentuated
by the presence of very small targets. For this reason, we relax the IoU threshold to 0.3, in order
to tolerate a small misplacement on the location of the head. We nevertheless provide results for
both thresholds.

The two different architectures provide comparable performance in terms of mAP on both
datasets. The proposed FE+LFE results to be slightly better than the U-Net. However, consider
that the number of parameters of the FE+LFE is considerably less with respect to U-Net, prov-
ing the importance of having defined an architecture that, although with less number of filters, is
especially crafted for small object detection. Moreover, note that the overall performance of the
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method remains similar in presence of two different datasets, showing its robustness with vary-
ing number of training images and with varying crowd density. This is indeed a very desirable
property.

(a)

(b)

Figure 6.6: Pedestrian detection results on (a) Makkah and on (b) Regent’s Park Dense datasets, with the
proposed FE+LFE network. Red blobs are ground-truth heads, green blobs are TP detections (i.e. detections
which are successfully associated to a ground-truth blob, with a IoU threshold equal to 0.3), and blue blobs
represent FP detections.

Figure 6.6 shows the results on both datasets of the pedestrian detections obtained consid-
ering an IoU threshold I = 0.3 and a standard deviation in the soft label definition σh = 3, with
the proposed FE+LFE network. Ground-truth detections are depicted in red, and detections are
overlaid on top of them. Green blobs represent thus TP detections, namely detections which are
successfully associated to a ground-truth blob, while blue blobs represent FP detections. Again,
note the ability of the network to adapt itself to different levels of density.

Now, let us concentrate on the challenging Makkah dataset, and investigate a particular design
choice that we made, i.e. the use of a ReLU activation function in the last layer to avoid negative
values in the output map. Fig. 6.7 shows the effect of both sigmoid and ReLU functions which
indeed eliminate negative values in two different ways, i.e. by non-linearly scaling the values be-
tween 0 and 1, and by thresholding at 0 respectively. In particular, the choice of the ReLU appears
to be the most appropriate. The sigmoid function adds noise in the background, since it tends to-
ward zero without ever reaching it (this is visible in the background of Fig. 6.7c which is dark-grey
rather than black), and it saturates at high values making worthless the notion of “cumulative”
head distributions. Conversely, ReLU is good at suppressing background noise while at the same
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(a) (b) (c) (d)

Figure 6.7: Effect on the output map of different activation functions in the last layer. (a) test image patch;
(b) corresponding soft-labeled ground-truth; (c) output map with sigmoid activation function in the last
layer; (d) output map with ReLU activation function in the last layer.

time not scaling the values in a non-linear way.

(a) Image patch

(b) Output map of FE+LFE

(c) Output map of U-Net

Figure 6.8: Output maps on a testing patch image with the proposed FE+LFE network and with the U-Net
network.

Still considering the Makkah dataset, Fig. 6.8 shows a qualitative comparison of the output
maps obtained with the FE+LFE and U-Net networks. Visually, both solutions provide well-shaped
and localized detections. FE+LFE in particular gives a less noisy output map compared to U-Net.

In order to perform a quantitative evaluation of the FE+LFE and U-Net networks, Fig. 6.9 shows
the PR-curves after NMS using the two different architectures, while Table 6.4 shows the corre-
sponding PRBEP and AUPRC values on the Makkah dataset. The proposed FE+LFE network clearly
outperforms U-Net, reaching notably higher values of precision, highlighting once again the im-
portance of having defined an architecture capable of precisely detecting small objects.

Note that it is not completely fair to compare PR-curves obtained using deep learning meth-
ods with the ones obtained using the supervised learning techniques seen in previous Chapters
(e.g. the one in Fig. 5.9 obtained applying the proposed Evidential QBC Active Learning). In fact,
the two methods have different purposes. The proposed SVM-based active learning is particu-
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Figure 6.9: PR-curves using FE+LFE and U-Net deep architectures.

Table 6.4: Precision-Recall Break Even Point and Area Under Precision-Recall Curve with the different deep
architectures.

FE+LFE U-Net

PRBEP 0.90 0.89

AUPRC 0.92 0.89

larly adapted in situations where we have a specific problem (pedestrian detection in very dense
crowds) and an extremely small training set (e.g. 2000 samples). Conversely, the proposed deep
learning solution is adapted to perform generic pedestrian detection in crowds of varying den-
sity (possibly cross-scene, if trained accordingly), with small yet consistent training datasets (even
though we rely on a small number of images, consider that a single image contains more than
250K pixels that can be seen as different training samples for the particular fully convolutional
architecture type).

Rather than naively compare the two methods, having seen that they are intended to solve
different problems, we can ask ourselves how the deep learning solution would work in presence
of even less training data. Even further, we can think about a fusion of the results obtained with
active learning and the deep learning results trained with the same amount of limited data. These
subjects will be better explored in the next Chapter.
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CNN-ensemble and evidential Multiple
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7.1 Motivation

So far, two different methods to perform pedestrian detection have been proposed. The first one
(Chapter 3, Chapter 4, Chapter 5) is based on SVM and it is particularly adapted in situations where
we want to solve a specific problem (i.e. high-density crowd pedestrian detection) using very few
labeled data (around 2000 training samples). Working in the BF framework with multiple SVM
descriptors, we have designed a BBA allocation that takes into account possible errors in the score
calibration and in the pixel-wise detection in the image space, and an active learning procedure
being able to directly exploit evidential functions in order to select the most informative training
samples.

Conversely, in Chapter 6 we inspected deep learning solutions to perform pedestrian detection
in a more general way. We proposed a fully convolutional network especially designed to recover
small objects by the use of dilated convolutions, showing the robustness of the method to varia-
tions in the crowd density (i.e. from sparse to very dense crowds). In this context however, the
training of the considered networks has been done relying on a larger labeled dataset.

Even though deep learning solutions tend to outperform the other supervised learning tech-
niques when trained on large amounts of data, applying them effectively in presence of few labeled
data is nowadays an open issue. Most of the existing works are devoted to finding the best network
for cross-scene pedestrian detection or counting trained with huge datasets, but few attention is
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given to specific real-setting problems where training data are hard to obtain and therefore out-
of-the-box networks cannot be used, as they consist in models with billions of parameters too
complex to be learned with respect to the available data.

Nonetheless, in recent years many regularization techniques have been proposed to tackle
the problem of overfitting, from data augmentation to early stopping and dropout, besides the
traditional weight decay. These techniques used together could help in applying deep learning
techniques also in presence of small datasets. Indirectly, also batch normalization has shown to
be important contributing to a faster convergence.

Simultaneously, a criticism that is often made of deep learning methods is the fact that they act
like “black-boxes”, making it hard for their users to interpret the obtained results. This limitation
is highly relevant when learning from small amounts of data, where a measure of model uncer-
tainty would be particularly important. To this extent Bayesian Neural Networks (BNNs, Bayesian
NNs) offer a probabilistic interpretation of deep learning models by inferring distributions over the
models’ weights, allowing to measure model uncertainty, but they are usually practically limited.
Recently, an ensemble-based method relying on the use of dropout at inference time has been
proposed in [86], allowing to obtain several realization sampled from the same network with ran-
domly dropped-out units at test time, from which average and standard deviation are computed
to obtain a more robust output along with a confidence measure on the prediction.

Following this line of work, we intend to investigate the use of deep learning techniques in
presence of small training datasets for specific applications (i.e. in our case high-density crowd
pedestrian detection). Again, the use of ensemble methods is important for two different reasons.
Firstly, it acts as another regularization technique to mitigate the risk of overfitting (cf. statistical
reasons in Sec. 2.3.1); secondly, it allows us to measure the model confidence about each predic-
tion.

Even further, we intend to perform fusion of the results previously obtained through SVM-
based evidential QBC active learning (from now on referred to as SVM-ensemble) and the deep
learning ensemble solution here proposed (CNN-ensemble) trained on the same very small amount
of data. The final result will therefore be a Multiple Classifier System composed by two different
ensembles, one based on SVM and the other one based on CNN, proving that deep learning tech-
niques can be applied also in presence of extremely small datasets for solving targeted problems,
and can benefit from the fusion with another strong classifier.

7.2 Representing model uncertainty in deep learning

Obtaining a measure of uncertainty of a model trained with deep learning techniques is not triv-
ial. The general training of deep learning models allows us to obtain the best model parameters
through backpropagation, but they are usually only point estimates. These parameters are then
kept fixed at inference time in the forward pass to perform prediction. However we cannot easily
know whether a trained model is certain about its output. Binary classifiers such as SVM on the
contrary provide a score (in the case of SVM the sample distance from the hyperplane margin) that
can be interpreted to understand if the model is making sensible predictions or just almost ran-
domly guessing. However, none of these classifiers provide credible or confidence intervals about
their predictions.

Let us consider a toy example of a network trained to recognize multiple classes of dog breeds.
If an image of a cat is given as input at inference time, it would anyway return a probability for
this cat to belong to each class of dog breeds. These probabilities (generally obtained through
Softmax) are often erroneously interpreted as model confidence scores, but they are not. A model
in fact can be uncertain about its predictions even in presence of a possibly high Softmax output.
In the considered example, the model would be uncertain about how to classify the cat, since it has
not seen any cat during its training being able to discriminate only between dog breeds, but the
cat image would anyhow be assigned to dog breeds with different probabilities. Another example
is given by adversarial inputs, which can be incorrectly labeled even with very high probabilities.
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We want the network to be able to measure predictive uncertainty, that is the confidence it has
with respect to the prediction it makes (ideally, in the example above, we would like the network
to convey high uncertainty when fed with the cat input).

This is particularly important for applications related to real-settings such as autonomous
driving or security access to critical systems, where relying on model uncertainty to adapt deci-
sion making is crucial, and generally for applications for which only a small amount of data is
available for the training. In such situations it becomes important to know if a network is uncer-
tain about a prediction because it has never seen a similar example during the training, or because
of its limited representational capacity.

7.2.1 Bayesian Neural Networks

BNNs have been firstly studied extensively in [177, 191] and more recently in [19, 93, 139], some-
times being referred to as variational techniques. They are based on the observation that an in-
finitely wide neural network with distributions placed over its weights converges to a Gaussian
process [191], thus, considering finite NNs, they are mathematically equivalent to an approxima-
tion of the probabilistic deep Gaussian process [52].

In order to obtain model uncertainty estimates, BNNs place a prior probability distribution
over each networks’ weight. In this way, they potentially offer robustness to overfitting during
training along with uncertainty estimates about the predictions.

However, the applicability of these types of models is quite limited, and they have not been
largely followed up by the deep learning community. If on the one hand Bayesian probability the-
ory offers mathematically grounded tools to reason about model uncertainty, on the other hand
they come usually with prohibitive computational costs. BNNs have shown indeed to be quite
difficult to work with, often requiring the optimization of many more parameters with respect to
standard networks.

In order to obtain the posterior distribution over the weights, variational inference has been
applied to approximate it [93]. An alternative inference approximation for Bayesian NNs based
on Monte Carlo techniques has been proposed in [191] that do not rely on any prior assumptions
about the form of the posterior distribution. Both methods however had limited practical suc-
cess. Sampling-based variational inference and stochastic variational inference have been then
introduced thanks to recent advances in the field, but also in this case the models come with a
prohibitive computational cost [139].

A mixture of Gaussian priors over each weight has been employed in [19], allowing the authors
to improve the model performance compared to [93]. However also this method remains compu-
tationally too expensive, since it increases the number of model parameters without considerably
increasing the model capacity. This makes the approach difficult to use with large complex mod-
els as the increase in number of parameters could prevent its applicability with limited hardware
capacity.

To conclude, generally existing approaches to obtain model confidence do not scale to com-
plex models and present limited applicability requiring the development of new models from
scratch (common deep learning frameworks do not support these methodologies).

7.2.2 MC-dropout

Recently, the authors of [86] developed a new theoretical framework by casting dropout (and its
variants) in deep NNs as approximate Bayesian inference in deep Gaussian processes. The foun-
dation of this theory directly provides tools to model the uncertainty without the need to change
neither the model architecture nor the objective function.

The authors have shown that a neural network with arbitrary depth and non-linearities, with
dropout applied at every layer, is mathematically equivalent to an approximation of the probabilis-
tic deep Gaussian process. This means that the optimal weights found through the optimization
of a NN with dropout are the same as the optimal variational parameters in a Bayesian NN with
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the same structure. Further, this means that a network already trained with dropout is indeed a
BNN.

Moreover, this result is valid not only using dropout, but also its variants such as DropCon-
nect [266] or multiplicative Gaussian noise [251], i.e. using any Stochastic Regularization Tech-
nique (SRT). SRTs are techniques used to regularize a deep learning model through the injection
of stochastic noise directly into it (the most popular technique is dropout which switches off units
with respect to a previously set probability). The intuition is that SRTs approximately integrate
over the models’ weights, so that they can be interpreted as performing approximate inference
and, as a result, uncertainty information can be extracted.

Practically, after training the network, Monte Carlo (MC) methods are used at test time to draw
samples from a Bernoulli distribution across the network’s weights, by performing T stochastic for-
ward passes through the network with dropout. This is why the method is known as MC-dropout.
Note that this does not require any additional parametrization, and from this it is easy to derive
the sample mean by averaging the results and the standard deviation that can be interpreted as
predictive uncertainty.

In this way once again we obtained an ensemble method, composed now by T different realiza-
tions given by dropping out different units of the network at each forward pass. This method has
several advantages, i.e. it is easily adaptable to complex models and does not require any change
to the model architecture or optimization procedure, besides being very easy to implement in
practice.

We shall finally mention a different but related approach, that cannot be considered as ap-
proximate inference in BNNs but nevertheless can be used to estimate model uncertainty relying
on ensemble learning. This technique builds an ensemble of deterministic models (each model in
the ensemble produces a point estimate rather than a distribution) by independently training the
same network on the same dataset many times with different weights initialization. Then, at infer-
ence time, an average is made to obtain a prediction and the prediction uncertainty is measured
through the variance of the outputs of all the models.

Very recently, [152] proposed deep ensembles based on this idea, relying also on adversarial
training [92, 254] to smooth predictive distributions, treating the ensemble built in this way as
a uniformly-weighted mixture model and approximating the ensemble prediction as a Gaussian
whose mean and variance are the ones of the mixture respectively.

However, this approach is not always suitable for a number of reasons. Firstly, training many
neural networks can be a long process. Secondly, even if this approach is anyhow computation-
ally more efficient than many Bayesian approaches presented in the previous section, its produced
uncertainty estimates lack in many ways [84]. Lastly, the use of mechanisms such as batch normal-
ization allows for faster convergence to a robust solution even with different weights initialization,
making this process unprofitable in many cases.

7.3 CNN-ensemble

MC-dropout has been successfully applied in different applications, from segmentation for scene
understanding [134] to camera re-localization [135], allowing to model the predictive uncertainty
through standard deviation of the stochastic realizations obtained with dropout. Now, we want to
formulate the Bayesian counterpart of the proposed FE+LFE network that uses MC-dropout to get
samples from the posterior distribution over the network’s weights.

7.3.1 Bayesian FE+LFE

For the definition of the Bayesian FE+LFE we follow the formulation of Bayesian SegNet [134],
which is built upon SegNet [10] network for pixel-wise segmentation.

Given a list of training inputs x and corresponding outputs y , we are interested in finding the
posterior distribution over the network’s convolutional weights, W:
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p(W|x, y), (7.1)

which captures the most likely weights to have generated our outputs given the observed data.
However, this posterior distribution is generally intractable, and needs to be approximated. To this
extent, variational inference can be used, that allows us to approximate the intractable posterior
through a function q(W) over the network’s weights. This function is learned by minimizing the
KL divergence between this approximating distribution and the actual posterior:

DKL(q(W)||p(W|x, y)). (7.2)

As proposed in [85], given a CNN with L layers of dimension K×K, we define the approximating
variational distribution q(Wi ) for every convolutional layer i with units j as:

Wi = Mi ·diag([zi , j ]Ki

j =1), (7.3)

zi , j ∼ Bernoulli(pdrop
i ) i = 1, . . . ,L, j = 1, . . . ,Ki−1,

where zi , j are Bernoulli distributed random variables with probabilities pdrop
i (i.e. dropout proba-

bilities), and Mi contains the variational parameters to optimize. Note that dropout probabilities
pdrop

i could also be optimized, but as in [134] we kept them fixed to an equal constant value found
through validation. In this way, as proven in [85], we obtain the approximate model of the Gaus-
sian process.

Now, we train the network and we sample the posterior distribution over the weights using
dropout at test time, performing T different forward passes through the network. As a result for a
given testing image we obtain T different realization maps M̂1, . . . ,M̂T, output of different dropout-
perturbed versions of the original network. Classically, the mean map Mµ, given by the mean
value evaluated independently for each pixel, is interpreted as the final prediction map, while the
standard deviation map Mσ is interpreted as an estimate of the predictive uncertainty. However,
we propose once again to work in the BF framework, that we consider more suited to model the
specific imprecision of each different realization obtained with dropout. In the following, we will
explain the proposed BBA allocation for every realization that will allow us to perform a robust
fusion among them as well as to obtain evidential measures of predictive uncertainty for every
pixel of the final output map.

7.3.2 BBA allocation for CNN-ensemble

While being an easy yet mathematically grounded approach to obtain a measure of uncertainty
out of any kind of deep network, the method presented above has some drawbacks. Firstly, for
practical reasons, often we can perform only a limited number of forward passes, and the mean
value could not be so representative of the actual distribution especially in presence of outliers.
The second problem, as reported in [84] (in particular in Sec. 3.3.2) is more theoretical, and comes
from the fact that the obtained uncertainty is not calibrated (it can scale differently for differ-
ent datasets) and usually underestimated (variational inference is known indeed to underestimate
predictive variance).

Leaving partially apart the mathematical ground in favor of an analysis more adapted to our
specific setting, we shall note that median has been shown to be a more robust estimator than
the average in presence of outliers. In the same way, instead of relying on the standard deviation,
we can better employ the Median Absolute Deviation (MAD), which is a robust measure of the
variability of a univariate sample of quantitative data. The MAD is a robust statistic, being more
resilient to outliers than the standard deviation. In this latter indeed the distances from the mean
value are squared, so large deviations are more weighted and outliers can heavily influence it. In
the MAD conversely, large deviation of a small number of outliers is irrelevant.

In our context, given the T realization maps, the MAD map MMAD is defined as:
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MMAD = median

( ∣∣∣∣M̂i −median

({
M̂

}T

1

) ∣∣∣∣ )
, (7.4)

where median

({
M̂

}T

1

)
is the median over all the T realizations.

However, even with the use of these statistics the problem of finding a good representation of
the model predictive uncertainty is not completely solved. To this extent, we propose to rely once
again on the Belief Function framework to obtain a better estimation of the model imprecision
given the T realizations that can be interpreted as different sources for an evidential combination.
In order to do so, we need to perform BBA allocation.

We have T maps M̂1, . . . ,M̂T which corresponds to the T output realizations obtained with for-
ward passes through the network with dropout, and we are interested in finding a BBA allocation
to perform the combination among them and derive evidential measures of imprecision.

Firstly, we can derive Bayesian BBA maps MB
1 , . . . ,MB

T , four-layer images where a BBA is as-
sociated to each pixel x of each realization, so that we obtain T maps of BBAs

{
mB

x,t ,x ∈P
}
, where

P is the pixel domain and t = 1, . . . ,T. These Bayesian BBAs maps are 4-layers images where each

layer corresponds to the mass values of any hypothesis in
{
;,H,H,Θ

}
. MB

t (A) corresponds to

the layer image associated to hypothesis A for the realization (source) t . Note that in this prelim-
inary Bayesian BBA allocation, layer images corresponding to non-singleton hypotheses are null,
by definition. So, for each source t , with t = 1, . . . ,T:



MB
t (;) = {0}x∈P ,

MB
t (H) = M̂t ,

MB
t (H) = 1−M̂t ,

MB
t (Θ) = {0}x∈P .

(7.5)

Now, we want to take into account the reliability of the pixel-wise prediction given by every
source in order to perform a pixel-wise tailored discounting. Note that this would be impossible
in the probabilistic framework; moreover, we are not just computing an overall source discounting,
but rather each pixel of each source will be discounted differently on the basis of its reliability.

To measure this latter, we take inspiration from the MAD. For each source t , we compute a
discounting coefficient map Γt :

{
γx,t

}
x∈P such that a different coefficient γx,t is associated to

every pixel of each source,

Γt = α

(
1−

(∣∣∣∣M̂t −median

({
M̂

}T

1

)∣∣∣∣)) . (7.6)

In this way, we discount more pixels whose value is more distant to the median value among
the T realizations, since they are supposed to be less representative (even possibly outliers). The α
parameter is a scaling factor which allows us to control the amount of discounting.

Applying the proposed discounting, we derive the following BBAs map for every source t : ∀A ∈{
H,H

}
,


Mt (;) = {0}x∈P ,

Mt (A) = Γt ?MB
t (A),

Mt (Θ) = {1}x∈P −Mt (H)−Mt (H),

(7.7)

where M1?M2 represents the Hadamard product between matrices M1 and M2.
To combine the T different maps to obtain a single output map M with BBAs associated to

each pixel x, i.e. {mx}x∈P , we use the conjunctive combination rule (cf. Eq. (4.8)). Note that al-
though the different maps are not independent being sampled from the same distribution, we
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choose to employ the conjunctive rule rather than the cautious rule [58], which is usually more
adapted in case of non-distinct items of evidence since no elementary item of evidence would be
counted twice. Indeed, we want to exploit redundant information to enforce our belief in an ev-
idence if by sampling on the posterior distribution we get similar pieces of evidence. In our case
where |Θ| = 2, the analytic result using the conjunctive combination rule may be easily derived:

∀A ∈
{

H,H
}

,



mx (A) =
∑

(B1,...,BT)∈{
A,Θ

}T
,

∃t∈[1,T]s.t .Bt =A

∏T
t=1 mx,t (Bt ) ,

mx (Θ) =
∏T

t=1 mx,t (Θ) ,

mx (;) = 1−mx (H)−mx

(
H

)
−mx (Θ) .

(7.8)

The result is thus a four-layer map M of BBAs mx, that can be used to derive evidential mea-
sures of uncertainty about the network prediction. To this extent, we can obtain the ignorance map
as M (Θ), that represents the remaining ignorance which has been decreased by the combination
but not completely solved, indicating a lack of sufficient information during training to perform
a reliable prediction. Likewise, M (;) is often interpreted as a conflict map [151], and presents
higher values for pixels whose prediction completely disagrees through the various realizations.

Finally, in every pixel x the decision is taken from mx. As already seen, pignistic probability
may be used to give a probabilistic interpretation to the BBAs. The BetP(H) map can be computed
with Eq. (4.23). This allows us to assign a BetPx(H) value to the resulting BBA associated to each
pixel x that will be differently normalized on the basis of its conflict value, mx(;).

Table 7.1: Example of different values obtained sampling the posterior distribution with MC-dropout tech-
nique with T=4, for two different pixels x1 and x2, along with the corresponding discounting coefficient γx,t

obtained with Eq. (7.6) setting α = 0.5. After having performed the conjunctive combination among the
discounted BBAs, BetPx(H) and mx(Θ) results are shown for the two pixels x1 and x2.

t = 1 t = 2 t = 3 t = 4 median γx,1 γx,2 γx,3 γx,4 BetPx(H) mx(Θ)

x1 0.8 0.8 0.82 0.82 0.81 0.99 0.99 0.99 0.99 0.87 0.06

x2 0.01 0.99 0.27 0.73 0.5 0.51 0.51 0.77 0.77 0.5 0.2

To illustrate the benefit of the explained BBA allocation for the CNN-ensemble, Table 7.1 pro-
poses a toy example where MC-dropout is applied to sample the posterior distribution obtaining
T=4 realizations, for two different pixels x1 and x2. Then, discounting coefficients γx,t are derived
using Eq. (7.6), setting α = 0.5. After having performed the conjunctive combination among the
discounted BBAs, BetPx(H) and mx(Θ) are shown for the two pixels x1 and x2. The posterior dis-
tribution sampled for pixel x1 presents similar values with respect to the one sampled for pixel
x2, so that all the realizations are close to the median value and thus we obtain high discounting
coefficients that reflect in reliable BBAs that do not need to be much discounted. Conversely, x2

presents a sampled distribution which is more spread out, so that more discounting (i.e. lower
discounting coefficients) is applied. This fact reflects in higher value of ignorance for x2, that may
be interpreted as higher predictive uncertainty.

7.3.3 Global overview of CNN-ensemble

In order to provide a global overview of the CNN-ensemble method, Fig, 7.1 and Fig. 7.2 shows
two different flowcharts, namely for the proposed evidential approach and for the traditional one
respectively. After having trained the CNN and obtained a model, this latter is used at inference
time to set the optimal weights of the network to perform inference on unseen images. We then
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Bayesian FE+LFE - Proposed evidential approach
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Figure 7.1: Proposed CNN-ensemble that performs evidential fusion of the T realizations obtained through
MC-dropout.

Bayesian FE+LFE - Traditional approach
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Figure 7.2: CNN-ensemble that traditionally compute mean and standard deviation from the T realizations
obtained through MC-dropout.

appy the MC-dropout strategy that by randomly dropping out units with probability pdrop allows
us to obtain T different realizations of the same posterior distribution.

Now, the traditional strategy computes the mean and the standard deviation out of the T real-
izations, obtaining Mµ and Mσ maps which can be interpreted as a more robust output map and
as a measure of model’s predictive uncertainty respectively. With the proposed method instead,
after having obtained the T realizations we perform a pixelwise BBA allocation based on the devia-
tion from the median value, which allows us to obtain four-layers BBA maps that can be combined
together with the conjunctive combination rule. After the combination, the resulting BetP(H) map
is interpreted as a robust output, while the resulting mass on the compound set, i.e. M (Θ) is in-
terpreted as a measure of model’s predictive uncertainty, representing the total ignorance which
has not been completely solved by the combination.

7.3.4 Results of CNN-ensemble

The use of an ensemble, along with the already discussed regularization techniques, allows us
to apply a deep learning-based solution even in presence of a very small dataset. In particular,
as training set we use the pool of data available for the active learning solution for choosing the
new samples to add to the training set, noted U , i.e. the pool of unlabeled samples for the active
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Table 7.2: Precision-Recall Break Even Point and Area Under Precision-Recall Curve with the different ar-
chitectures trained on the same limited amount of data.

SVM-ensemble CNN CNN-ensemble Mean CNN-ensemble Fusion

PRBEP 0.81 0.85 0.85 0.86

AUPRC 0.86 0.89 0.90 0.90

learning. Note that in the traditional active learning an oracle is supposed to answer about the
true label of a sample only when it has been chosen by the algorithm to be added to the set, so that
U is indeed a pool of yet unlabeled samples. In our case, the pool is not unlabeled as we dispose
of ground-truth maps, nevertheless for consistency we keep the notation “U ”. Note also that the
active learning solution do not use all the available data in U , but selects only 2000 samples out
of it; nonetheless, we consider this a rather fair comparison between the two classifiers since the
data available to the two methods is a-priori the same.

The training of the deep learning solutions on the small training set U has been possible only
with the FE+LFE network (and not with the U-Net which to start to converge needs at least four
times the data in U ), thanks to its global relatively small number of parameters kept low by the use
of few filters per layer. In order to obtain the CNN-ensemble, we applied MC-dropout method.
Dropout is added in the central layers as in [134], i.e. before and after the bottleneck layer with
dilation factor equal to 3 (cf. Table 6.1). The probability of dropout pdrop is set to 0.2 since the
default value of 0.5 resulted to be detrimental for the final result. The number of realizations T is
fixed to 10.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

SVM-ensemble
CNN
CNN-ensemble Mean
CNN-ensemble Fusion

Figure 7.3: PR-curves of SVM-ensemble and deep learning solutions. All the classifiers disposed of the same
amount of (limited) data for the training.

Figure 7.3 shows the PR-curves obtained in Chapter 5 with the active learning solution based
on the use of a committee of SVMs (denoted as “SVM-ensemble”) with the deep learning-based
solutions obtained training the network on the same limited amount of data. Specifically, after
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training the FE+LFE network, “CNN” refers to the output map obtained with the traditional for-
ward pass to perform inference. “CNN-ensemble Mean” and “CNN-ensemble Fusion” refer in-
stead to the use of MC-dropout to obtain the ensemble, combining the members through the
traditional average operator and with the proposed evidential approach respectively. Table 7.2
provides quantitative values for PRBEP and AUPRC with the same names notation.

As it is possible to see both from Fig. 7.3 and from Table 7.2, deep learning-based solutions
tends to outperform SVM-based one, most noticeably regarding the precision values. Neverthe-
less, SVM has been trained with a chosen fraction of the available samples pool U , with respect to
deep learning-based methods that are able to exploit all the available data.

The use of the CNN-ensemble to perform inference rather than the usual forward pass is ben-
eficial especially in increasing the recall values, meaning that the ensemble is able to retrieve
more heads. Note that there is not a great difference between the mean output map Mµ (CNN-
ensemble Mean) and the BetP(H) map after having performed the fusion of the T realizations
(CNN-ensemble Fusion), although this latter is slightly better. However, having defined a BBA
allocation for each realization allows us to have a final BBA map that can be easily combined to-
gether with the BBA map given by the SVM-ensemble.

(a) Image patch (b) Output map of FE+LFE

(c) Output map of CNN-ensemble Fusion, i.e. BetP(H) (d) Ignorance map of CNN-ensemble Fusion, i.e. M (Θ)

(e) Output map of CNN-ensemble Mean, i.e. Mµ (f ) Standard deviation map of CNN-ensemble, i.e. Mσ

Figure 7.4: Output maps on a testing image patch with the deep learning solutions trained on the same
amount of limited data, as well as model’s predictive uncertainty outputs through traditional standard de-
viation and proposed evidential ignorance.

Figure 7.4 shows the final output maps for a given image patch, considering the traditional
forward pass for inference in Fig. 7.4b with respect to the CNN-ensemble based output maps in
Fig. 7.4c and Fig. 7.4e, respectively obtained through the proposed BBA allocation and evidential
fusion, and through the classical average of the T realizations. Figure 7.4d and Fig. 7.4f instead,
represent the ignorance map after the evidential conjunctive combination and the classical stan-
dard deviation map respectively, which can be interpreted as a measure of predictive uncertainty.
The predictive uncertainty map obtained with the proposed evidential method is clearly more pre-
cise in the localization of areas where the model is uncertain, while the standard deviation map
although being useful is less localized and noisier.

110



CHAPTER 7. CNN-ENSEMBLE AND EVIDENTIAL MULTIPLE CLASSIFIER
SYSTEM

7.4 Final Multiple Classifier System

Until now we have proposed two different ensemble-based methods based on two different clas-
sifiers, namely SVM and CNN, and shown that they can achieve remarkable performance even
when trained on a small amount of data. In order to obtain the final MCS, we intend to perform a
fusion between the two ensembles. Note that this is not straightforward, since in presence of few,
strong classifiers the fusion strategy must be particularly well-designed in order to exploit their
respective strengths (cf. Sec. 2.3.2.4).
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Figure 7.5: Proposed evidential Multiple Classifier System flowchart.

Figure 7.5 shows the overall flowchart of the final evidential MCS. Starting from the initial pool
of samples U , we perform in a parallel way the SVM-based active learning procedure to select the
most informative samples to be added to L , while at the same time we train the FE+LFE network
on U .

To summarize, the evidential QBC active learning procedure consists of the following steps:

• Training the four different SVM classifiers based on different features, i.e. HOG, LBP, GABOR
and DAISY (explained in Chapter 3);

• Performing BBA allocation for each pixel of each source, taking into account possible im-
precision in the score calibration procedure and in the image space, and combining them
through the conjunctive combination rule as explained in Chapter 4;
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• Selecting the new samples to be added to the SVM training set L based on evidential en-
tropy disagreement measures, as explained in Chapter 5.

At the end of the evidential QBC procedure, the result is a single four-layers BBA map (MSVM)
with a BBA associated to each pixel that intrinsically contains evidence of belonging to H and H,
i.e. MSVM(H) and MSVM(H) respectively, as well as a component of ignorance (MSVM(Θ)) which is
not solved through the combination and a component of conflict (MSVM(;)) that arises through
the combination itself.

Regarding the second component of the MCS, namely the deep learning-based one, it also
consists of several steps:

• Training the FE+LFE network (whose architecture is presented in Chapter 6) based on the
small training dataset U ;

• Applying MC-dropout procedure at inference time to obtain the T realizations, as explained
in the previous Section 7.2;

• Performing BBA allocation for each realization to model the network’s predictive uncertainty
about each pixel’s prediction based on the deviation from the median value of the sampled
posterior distribution, and combining them through the conjunctive combination rule, as
explained in the previous Section 7.3.

The output of the proposed evidential CNN-ensemble is thus a single four-layers BBA map
(MCNN), where each pixel contains evidence of belonging to ;,H,H,Θ respectively. Here we inter-
pret the ignorance value related to each pixel as the model’s predictive uncertainty about it, being
able thus to model the imprecision in addition to the uncertainty value provided by the network.

After having combined a relatively high number of sources through the conjunctive rule both
to obtain MSVM and MCNN, we note that they both contains not negligible masses on the empty set
representing the conflict that arises through the combinations. While the mass on theΘ focal ele-
ment indeed naturally decreases thanks to the combinations, the more conjunctive combinations
we perform, the more the mass on the empty set inevitably increases. This could lead to dispro-
portionate values of conflict with respect to the masses on the other focal elements. To solve this
issue, classically Dempster’s rule is adopted or a normalization of the BBAs is lately performed, but
in this way the conflicting mass would be equally spread over the remaining hypothesis. Instead,
as done in [151], we focus on the normalization included in Yager’s combination rule [289] that, in
the absence of knowledge about the conflict origin, transfers it to the ignorance component.

Finally, the conjunctive combination rule is performed between the normalized MSVM and
MCNN, obtaining the final BBA map M which can be used either for decision, computing the
associated BetP(H) map, and to obtain a measure of the imprecision about the final prediction,
naturally given by M (Θ).

7.4.1 Results of the evidential MCS

To illustrate the benefit of the final evidential MCS, Figure 7.6a shows the PR-curve of the pro-
posed approach described with the flowchart reported in Fig. 7.5, where the SVM-ensemble and
CNN-ensemble BBA output maps are combined together after Yager’s normalization. PR-curves of
SVM-ensemble and CNN-ensemble alone are reported as well, to show the improvement obtained
thanks to their fusion.

Figure 7.6b shows the comparison of the proposed approach with respect to two other strate-
gies, namely the fusion between SVM-ensemble and the result of a simple discounting performed
on the mean map Mµ based on the standard deviation values in Mσ, and the product of BetP(H)
maps (interpreted as probability maps) given by the two ensembles. The two initial sources SVM-
ensemble and CNN-ensemble are reported as well with dotted lines. Values of PRBEP and AUPRC
for the considered approaches are then detailed in Table 7.3.
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Figure 7.6: (a) PR-curves of SVM-ensemble and CNN-ensemble, along with their combination SVM+CNN
ensemble; (b) Comparison in terms of PR-curves of the proposed SVM+CNN ensemble with respect to prod-
uct of BetP(H) maps given by the two ensembles, and a fusion between the SVM-ensemble BetP(H) map
with the result of a simple discounting performed on the mean map Mµ based on the standard deviation
values in Mσ.

Table 7.3: Precision-Recall Break Even Point and Area Under Precision-Recall Curve of the BetP(H) result
with the proposed MCS composed by SVM+CNN ensemble, as well as a comparison with respect to product
of BetP(H) maps given by the two ensembles, and a fusion between the SVM-ensemble BetP(H) map with
the result of a simple discounting performed on the mean map Mµ based on the standard deviation values
in Mσ. SVM-ensemble and CNN-ensemble performances are reported as reference.

SVM-ens. CNN-ens. SVM+CNN ens. SVM+CNN std dev. disc. Product

PRBEP 0.81 0.86 0.87 0.86 0.86

AUPRC 0.86 0.90 0.92 0.89 0.90

Both from the PR-curves and from the values reported in the table, we can see that the ev-
idential fusion of the two ensembles preceded by Yager’s normalization resulted to be the best
approach. Conversely, both the product of probabilities and the simpler discounting method fail
to exploit all the available information so that the final result do not improve on CNN-ensemble or
rather worsen it. This is due to the fact that, being already a map of BBAs obtained after the fusion
of the T realizations, CNN-ensemble’s BetP(H) map is more informative than the mean map on
which we apply a hand-crafted discounting (even though tailored with respect to standard devia-
tion).

Finally, we can notice that the the proposed MCS system (i.e. SVM+CNN ensemble) is able to
reach a value of AUPRC=0.92, which equals the one obtained training the FE+LFE network with all
the available data (cf. Table 6.4). This proves that, in presence of few labeled data, the joint use of
two classifiers (in our case SVM and CNN) is able to reach competitive performance.

Figure 7.7 provides visual results obtained testing the proposed evidential MCS on a given
image patch, in terms of BetP(H) output map, detection map at the threshold corresponding to
the PRBEP, and the final ignorance map of the system. The obtained BetP(H) map presents well-
localized and well-shaped detections. Regarding the ignorance map, which we interpret as the
global system’s predictive uncertainty, we notice that it presents higher values in the surrounding
of the heads. This is due to the fact that we applied Yager’s normalization before the combination
of the two ensembles based on the different classifiers, reversing the conflict mass (which is higher
at the border of the heads) on the compound set. Thus, a part of the ignorance is not solved with
the final combination resulting in the obtained map. Nevertheless, disregarding from the high val-
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(a) Image patch (b) Output map of SVM+CNN ensemble, i.e. BetP(H)

(c) Detections at PRBEP threshold (d) Ignorance map of SVM+CNN ensemble, i.e. M (Θ)

Figure 7.7: Visual results obtained testing the proposed evidential MCS on an image patch, in terms of
BetP(H) output map, detection map at the threshold corresponding to the PRBEP, and the final ignorance
map of the system.

ues on the head’s borders, the map is interesting in that it highlights the regions where none of the
classifiers (nor the SVM nor the deep learning-based one) were able to give a committed answer
about the predicted pixel’s value.
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8.1 Motivation

The objective of this work is to propose methods to perform a complete analysis of specific scenes,
that can be useful both for crowd analysis and for synthesis. The modeling community needs in-
deed detailed information about the studied scene, in order to propose always improved simu-
lations that can be used for two tasks. Firstly, one aim is to help in infrastructure assessment for
prevention and security purposes through simulations; secondly, simulations can be used to de-
rive synthesized data that can increase the size of the training set for analysis algorithms, since
real-settings data are usually scarce.

To this extent, we have proposed a pedestrian detection method in high-density crowds which
is naturally predisposed also for the task of density estimation. Instead of providing as output
(whatever the classifier used, or combinations among them) a list of bounding boxes representing
the various pedestrians (strategy that do not scale well with the number of people in the crowd),
we output real-valued maps which can in turn be analyzed to recover each pedestrian location, as
seen until now, or to perform people counting and density estimation.

In this Chapter we explore thus the classifiers and ensembles seen so far, for the specific task
of density estimation starting from real-valued outputs which can be interpreted as density maps.
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We propose a new evaluation method which can be performed at multiple scales, and by
means of BFT we derive upper and lower bounds to the local people count which provides an im-
precision interval around the estimation. This overcomes two major limitations that exist in the
literature when measuring the performance of a density estimator, namely the fact that a single
global number is provided which represents the overall number of people in the image, without
any idea about the uncertainty of the estimation and without performing local density estimation
at multiple scales.

8.2 State of the art

Crowd counting and density estimation are two related applications which are of paramount im-
portance when performing a macroscopic analysis of the scene. One of the reasons for which the
urban infrastructure sector has not fully taken advantage of vast available video data is indeed the
difficulty to extract accurately macroscopic observations in high-density conditions.

Although it does not require precise target localization, density estimation inside crowds is
still a challenging problem, due to phenomena such as strong occlusion and visual homogeneity.
For this reason, the problem of people counting in high-density crowds has attracted significant
attention from researchers in the recent past, using a variety of approaches, initially based on
hand-crafted features and more recently on learnable ones. A number of surveys are available
focusing on traditional methods [171, 231] and deep learning techniques [246] respectively.

Classically, the different methods for people counting are subdivided with respect to the par-
ticular approach they are based on:

• Counting by Detection – Firstly performs pedestrian detection and then derives the number
of people directly from the number of detections;

• Counting by Regression – Learns a mapping between features extracted from image patches
to their counts;

• Counting by Density Estimation – Learns a mapping between patch features and correspond-
ing object density maps, incorporating thus spatial information in the learning process.

8.2.1 Counting by Detection

Most of the initial research was focused on Counting by Detection (CD), which is a straightfor-
ward way of approaching counting by delegating the task to a detection algorithm [66, 74]. In this
framework, a sliding window detector is used to detect people in the scene and the number of
people is simply obtained by counting the overall detections. Many different classifiers based on
hand-crafted descriptors have been used for this task. For example, in [160] a part-based detector
is used along with a boosting technique for specific body parts such as heads and shoulders.

The main inconvenience of this approach is that relying on the detector to provide crisp de-
tections requires to perform thresholding and non-maximal suppression, which are not adapted
in the case of close or partially occluded objects. For this reason, these methods can be successful
in low-density crowd scenes but they do not scale well in presence of high-density crowds.

8.2.2 Counting by Regression

Counting by Regression (CR) approaches aim to map image features to the number of objects be-
ing present [30, 36]. These methods consist basically in two different steps, namely low-level fea-
ture extraction and regression modelling. Once global and local traditional features (such as LBP,
HOG, GLCM) have been extracted, different regression techniques such as linear regression [202],
piecewise linear regression [32], ridge regression [37], are used to learn a mapping from these fea-
tures to the actual count of people in the crowd.
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Initial works relying on CR and its variations based on region clustering [32] or motion pat-
terns [218] were not aimed at tackling high-density crowds. Count estimation in small crowds is
performed in [188] relying on accurate camera calibration and area of projection. However, this
strategy is ideally suited for crowds that may be divided into groups of relatively homogeneous
densities. In [178] self-organizing neural maps are used to infer the crowd density from image tex-
ture, but the task is aimed at identifying the correct density range rather than accurate counting,
particularly in a high-density crowd.

In presence of high-density crowds, [119] claims that no single feature is reliable enough to
provide sufficient information for an accurate counting, due to severe occlusions, foreshortening
and perspective variations. They thus extract different types of features that capture different in-
formation, i.e. Fourier analysis along with head detections and SIFT interest point based counting
in local neighborhoods. They propose a multi-scale approach where people counts at localized
patches are computed independently. These local counts are then globally constrained in a multi-
scale Markov Random Field (MRF) framework to get an estimate of count for the entire image.

More recently, [82, 267] were among the first works to rely on deep learning for the task of
crowd counting. The former used a modified version of the AlexNet [143], by replacing the last
fully connected layer with a single neuron to output the people count. The latter proposed to
classify the image into various classes, i.e. very high density, high density, medium density, low
density and very low density using a multi-stage CNN.

Even though in occluded scenes CR methods have been shown to be better suited than CD
ones, their main limitation is that they do not infer the actual object locations (although their
output may be used as a prior for guiding detection and tracking [226]).

8.2.3 Counting by density estimation

Lempitsky et al. [155] were the first researchers to propose a completely different framework, based
on performing counting by simultaneously estimating a density map, i.e. Counting by Density
Estimation (CDE). In this way, the number of people in a particular area is directly inferred by
integrating over that area. They proposed to learn a linear mapping between between local patch
features and corresponding object density maps, incorporating thus spatial information in the
learning process. Since this seminal work will be fundamental for our objective, we will detail it
better in Sec. 8.3.

Motivated by the fact that for complex scenes a linear regression model may be too simple,
in [207] a non-linear mapping between local patch features and density maps is learned through
random forest regression. Regression trees are also used in [76] to alleviate the computational cost
required to solve the optimization program of [155].

Over the last years, deep learning advancements significantly improved the state-of-the-art
performance of people counting in high-density crowds. Although there exist some deep learning-
based methods which can be identified as CR, most of the recent methods are based on the esti-
mation of a density map, therefore falling under CDE category.

Multi-column Convolutional Neural Network [298] (MCNN) proposes to build a network that
is composed by three parallel columns corresponding to filters with receptive fields of different
sizes (large, medium, small), to model the density maps corresponding to heads at different scales.
Then, the output of the three columns is fused together by learnable 1 × 1 convolutions (and
not by simply averaging the features as classically done in Multi-column Deep Neural Networks
(MDNNs)). This method ensures robustness to large variation in object scales.

Again, to take into account possible scale variations, Hydra CNN [199] is trained with pyramid
of image patches extracted at multiple scales. These are fed to different Counting CNNs (CCNNs),
whose outputs are concatenated and fed to the main body of the network, which consists of two
fully-connected layers followed by ReLu, dropout layer and a final fully connected layer to esti-
mate the object density map. While the different CCNNs extract image features at different scales,
the body is able to learn a high-dimensional representation that fuses their multi-scale outputs
performing a multi-scale non-linear regression.
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To maintain a scale-aware approach yet reducing the number of parameters that is usually
high when using multi-column networks, a single column fully convolutional network is proposed
in [179], by incorporating the scale information into the model with a multi-scale averaging step
during prediction. At inference time, the network is fed with multiple scales of the same image.
The crowd count is estimated for each scale and the final count is obtained by taking an average
of all the estimates.

Cascaded Multi-task CNN is then proposed in [245], to simultaneously learn a density map
along with a classification of the crowd into various density levels. Classifying crowd count into
various levels is equivalent to coarsely estimating the total count in the image. In this sense, they
incorporate a high-level prior into the density estimation network, enabling the layers in the net-
work to learn globally relevant discriminative features.

Very recently, CSRNet [164] has been proposed to overcome some limitations of multi-column
approaches, such as the need of a large amount of training time due to the high number of pa-
rameters, and a branch structure which may not be always effective for specific scene congestion
levels. CSRNet presents a fully convolutional structure composed by two parts, i.e. a front-end
module (VGG-16 deprived of the fully connected layers), and a back-end module which makes
massive use of 2-dilated convolutions being able to aggregate the multi-scale contextual informa-
tion as well as to maintain the output resolution.

Whatever the density map learning method used, in the context of CDE framework there is the
need to have at training time ground-truth density maps (which possibly take into account per-
spective correction), rather than just a number specifying the number of people being present in
the image as for CR. These ground-truth density maps are usually obtained by placing a Gaussian
on each head center, as already explained in Sec. 6.3.1 (as previously anticipated in that section in-
deed, the proposed network is designed to be able to tackle at the same time pedestrian detection
and density estimation tasks).

Perspective correction can be directly applied on ground-truth maps if the geometry of the
scene is known. Alternatively, in [298] the authors propose geometry-adaptive kernels. By observ-
ing that in high-density crowds the head size of a person is directly related to the distance from the
head centers of the neighbors, the standard deviation of each Gaussian kernel (which regulates
its spatial spread) is adaptively determined based on its average distance to the neighbors. The
ground-truth density maps created using this technique incorporate distortion information with-
out the use of perspective maps; however, it is an effective technique only in presence of constant
density throughout the image space.

8.3 Learning to count

We now propose a learning-to-count strategy with a generic detection algorithm which benefits
from a counting regressor in order to identify crowded subregions with inadequate head detection
performance, and to improve their representativeness in the training set.

Our basic assumption is that in some contexts where CDE is known to perform more defi-
ciently, this behavior is not only due to the regression step, but rather to a lack of appropriated
data during the learning step. Thus, we propose to mediate through a feedback loop the perfor-
mance estimated during the regression step. This feedback aims to improve the quality of the
input data in areas where the image characteristics are unreliable.

8.3.1 The MESA distance

Under a regularized risk framework, the general objective of CDE methods is to recover a transform
defined by a parameter w which maps an estimated density map F to a user-specified ground-
truth map G (obtained by placing Gaussian kernels at each head location). This may be formulated
as:
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ŵ = argmin
w

(
w2 +λ

m∑
i =1

D(G(·),F(·|w))
)
, (8.1)

where m is the number of training images, D is a distance measure and λ a scalar weighting pa-
rameter. Note that the factor ŵ relating the numerical output to the actual pedestrian count is
equal to 1 for deep-learning based methods trained on actual density maps, but in the general
case it may be determined as in [155] on a validation set.

In [155], the authors address a major limitation of image-level regressors based on Eq. (8.1)
when using as distance measure an absolute or squared difference between the sums over the
entire images. Such simple approach requires a large variety of image samples during training.
Therefore, they propose a new distance called MESA, which takes into account the mapping penalty
for all the possible boxes B within the 2D box space B of mapping and ground-truth areas:

DMESA(G,F) = max
B∈B

∣∣∣ ∑
x∈B

G(x)− ∑
x∈B

F(x)
∣∣∣, (8.2)

where x ∈ B represents each pixel of the box B.

The significant strengths of this distance are an improved robustness to additive local noise,
as well as the ability to exploit not only the ground-truth count but also its spatial layout.

With respect to existing image-level regressors, we consider that the MESA approach is better
suited for high-density annotated images for the following two reasons. Firstly, as a L∞ distance
between combinatorial sub-area vectors of the ground-truth and of the score map provided by the
detector, the MESA distance is ideally suited for a feedback strategy which is aimed at identifying
subareas where the input map should be improved. Secondly, many applications such as physical
modeling of crowds rely on local density estimations, and through the set of boxes B, the MESA
distance considers all image scales in order to achieve better robustness of density estimation
across the whole scale space.

8.3.2 Active Learning for count regression

We propose to apply the MESA distance to the probabilistic output of a general detection algo-
rithm, and use the subregion (box) with the most violated constraint provided by the regression
in order to select new informative training examples for the detector. In this way, the potential
nonlinearity between the feature space and the mapping is dealt with by the learning step, and
the regression is used secondarily to pinpoint badly mapped image parts which can provide new
valuable training samples. In this sense, the algorithm may be seen as an objective-driven active
learning with the aim of count regression. Indeed, the objective itself (count regression in our case)
is directly involved into the choice of the new training samples that will improve the estimations.

We consider a generic binary classifier which provides for each tested instance (pixel) x a score
s(x) representing the probability of x belonging to the positive class P(y = 1|x). Our aim is to recover
the scalar factor ŵ which maps a density F(x) = ŵ s(x) based on Eqs. (8.1) and (8.2).

Computing the MESA distance may be cast efficiently as a max 2D subarray problem, while
determining ŵ requires solving a convex QP with a combinatorial number of linear constraints
in a tractable manner using cutting-plane optimization [155]. Concurrently with solving for the
optimal ŵ , we identify the box B̃ corresponding to the maximal mapping error, i.e. the box with
maximal MESA distance with respect to the ground-truth map. This allows us to select inside B̃
the most informative samples that would improve at the next learning iteration the score in the
critical area B̃.

For illustrating our method, we rely on an SVM classifier along with the HOG descriptor. We
adopt an uncertainty sampling approach (cf. Sec. 5.2.1), which iteratively requests the labels for
the instances whose classes are the most uncertain, i.e. in the context of SVM, the instances which
are the closest to the separation hyperplane [234].
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Since our potential training set is quite large, we adapt [25] which considers the diversity be-
tween samples. In particular, the authors propose a selection strategy which aims to reach a trade-
off between:

• The minimum distance from the hyperplane margin;

• The maximum angle between the hyperplanes defined by each sample.

Denoting I∗ the pool of indexes of available samples with a distance from the hyperplane less
than one, the training batch S is built by incrementally adding a new example xt such that:

t = argmin
i∈I∗\S

(
β‖ f (xi )‖+ (1−β)max

j∈S
k∗(xi ,x j )

)
, (8.3)

where ‖ f (xi )‖ is the distance of the sample xi to the separation hyperplane, and where, given the
two sample hyperplanes hi and h j and the kernel function k, we have:

k∗(xi ,x j ) =| cos(∠(hi ,h j )) |= | k(xi ,x j ) |√
k(xi ,xi )k(x j ,x j )

. (8.4)

The β parameter can be tuned to control the trade-off between the classical strategy which
takes into account only the distance from the hyperplane and the new approach that combines it
with the diversity measure.

Since it is prohibitively costly to compute angles among all the available instances in I∗, we
propose a greedy preliminary selection of a potential sample set. Denoting by H the learning
batch size, we select the KH examples closest to the hyperplane by using a priority queue over
the potential training set with a negligible computational overhead. Then we apply the exhaustive
diversity search in terms of cosine similarity among these KH samples, by caching only a K2H2

element Gramm matrix. For our needs, we found that K = 10 is adequate, but higher values will
promote more diversity with an increased computational cost.

Figure 8.1 shows a visual representation of the proposed AL algorithm for count regression.

Figure 8.1: A visual representation of the AL for count regression algorithm workflow.

8.3.3 Perspective correction

A detector which has been trained with examples of varying size provides similar pixel-level scores
for identical objects which have different sizes in pixels due to the perspective change. This would
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affect significantly the MESA hyperparameter ŵ which could only settle for an inadequate com-
promise among the various sizes.

Similarly to [76], we compute a perspective map MD based on an accurate camera-to-ground
pose estimation [4]. Then we are able to compensate the distortion for pixel x by multiplying the
detector score s(x) with the corresponding factor provided by the distortion map MD:

ŝ(x) = MD(x)s(x). (8.5)

8.3.4 Results

We compared our new active learning approach with two widely used methodologies: the classi-
cal strategy which selects the closest examples to the separation hyperplane, from now on called
distance, and the diversity strategy proposed by [25] explained in Sec. 8.3.2. In order to prove the
effectiveness of AL, we compared it also with a random strategy, which iteratively selects random
examples from the pool.

(a) (b)

Figure 8.2: (a) Comparison between different active learning strategies. (b) Impact of perspective correction
on count estimation.

Figure 8.2a shows the Mean Absolute Error (MAE), namely the absolute error in terms of people
count with respect to the ground-truth, averaged over all the testing images. Perspective correc-
tion is applied for all the methods. The random strategy does not provide meaningful improve-
ments as the training set becomes larger. On the contrary, the errors of all the active learning
techniques significantly drop from the beginning. In particular the distance approach improves
slower, and presents some oscillations even towards the final iterations, while errors for the di-
versity strategy, and for the proposed approach called MESA+diversity drop immediately and then
remain stable towards the end, highlighting the importance of the variety between the selected
samples. It is possible to notice that for the first iterations the samples selected by the two methods
based on diversity are the same. This happens because the box selected using the MESA distance
as the most violated one is very large.

Figure 8.2b shows the importance of the perspective correction for the MESA regression, which
compensates the head size variation with respect to the camera. The perspective correction step
is crucial in order to obtain a low MAE and a stable behavior.

The proposed approach is applicable to relatively small training sets made up of a few thou-
sands of compact head annotations. Prior information about the geometry of the scene may be
easily integrated as well into the algorithm through a perspective correction map. Overall, the
proposed strategy is fairly easy to deploy for a given scene.
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However, it presents some limitations as well. Firstly, it is based on the use of a single classifier
(SVM+HOG), and we observed that it is not easily applicable to other descriptors which benefit
less from the addition to the training set of punctual problematic samples. Secondly, although
multi-scale information is taken into account to obtain ŵ , MAE statistic used in the experiments
refers only to the global scale and do not take into account local density estimation. Finally, the
people count is given as a real-valued number, without highlighting the possible imprecision in
the estimation, that can come from the classifier itself and the data it uses to learn from.

For all these reasons, we now propose a new evaluation strategy for ensemble-based methods
which can be performed at multiple scales and provides bounds to the estimated count.

8.4 A new evaluation method

Once the output of a density estimator is available, there are multiple avenues for interpreting
the result and evaluating the quality of the output. From a traditional point of view, the baseline
error is the L2 distance between the output and the density ground-truth. Two metrics then are
widely used as performance indicators for crowd counting, namely the Mean Absolute Error and
the (Root) Mean Squared Error ((R)MSE). They are defined as:

MAE =
1

N

N∑
n=1

∣∣yn − ŷn
∣∣, (8.6)

MSE =
1

N

N∑
n=1

(yn − ŷn)2, (8.7)

where N is the number of images in the testing dataset, yn is the actual count, and ŷn is the esti-
mated count for image n.

Beside this measure of quality, other indicators are generally useful as well:

1. The repeatability of the algorithm, which aims to evaluate the agreement between the re-
sults of successive measurements of the same observation, carried out under the same con-
ditions of measurement [122]. In our particular context, we interpret repeatability as the
stability of the output when the configuration of the crowd (in terms of the distribution of
the low-density and high-density areas) under a given camera evolves at a large temporal
scale (compared with the typical dynamics of pedestrians);

2. The short-term stability of the density estimator, which characterizes how the output is af-
fected by small, continuous changes in the pedestrian configuration (caused typically by the
ongoing occlusions).

Thus, if repeatability indicates that based on a good performance at a specific moment one
may expect a good performance for a different configuration of the crowd at a later time, short-
term stability ensures that the output value is not affected locally in a significant manner by a
slight change in the input, which denotes a good generalization capability. However, especially
for the second indicator which is intrinsically local, global error evaluation metrics (such as the
L2 distance mentioned above) are not adapted since the local perturbations will be summed and
the output will benefit from the compensation of the fluctuations, according to the central limit
theorem.

All the more so, the density estimation in the case of crowds has a particular interest regard-
ing the locality of the estimation. Some phenomena such as the propagation of the stop-and-go
waves, or the perturbation of the flow by a static or dynamic obstacle, can be studied only by rely-
ing on the spatio-temporal variation of the density, where the spatial scale is of the order of the di-
rect interaction and observability distance among the pedestrians (0.5-2m). These considerations
underline the need to evaluate the density quality using a criterion which is able to characterize
the output at multiple scales, going from global to local.
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Based on the fundamental idea which is behind the MESA distance, we have adopted for our
purpose a multi-scale error function that we denote Eσ as the union Eσ = {Eσ1 , · · · ,Eσn }, where Eσi

denotes the set of all errors computed for a specific scale:

Eσi =

{∣∣∣ ∑
x∈S j

G(x)− ∑
x∈S j

F(x)
∣∣∣,∀S j ∈Si

}
. (8.8)

Here, Si denotes the set of all square boxes of a given size li that may be contained within the
image space. The largest size l1 is defined by the largest square fitting inside the image space, and
for i > 1 we have:

li =
li−1

δ
, (8.9)

where the scale factor δ controls the transition between consecutive scales and is set typically in
the range [1.1,2]. A minimal value lmi n is set in order to avoid considering squares below a very
small size comparable to the direct interaction distance between two pedestrians such as 0.3-0.4m
for example, and thus ln is the last size for which ln > lmi n .

One significant drawback of Eq. (8.8) is that the error magnitudes depend on the actual density
of the crowd and cannot be used as such in order to evaluate it on images with various degrees of
density. Thus, it is highly informative to rely as well on a normalized error measure that we denote
as the relative multi-scale error function Ẽσ, constructed similarly except for the fact that now we
normalize the local errors by the local density:

Ẽσi =

{∣∣∣∑x∈S j
G(x)−∑

x∈S j
F(x)∑

x∈S j
G(x)

∣∣∣,∀S j ∈Si

}
. (8.10)

The relative error computation requires however to check whether the denominator
∑

x∈S j
G(x)

is sufficiently large in order to avoid division by small values. For our experiments, we impose at
least half a head to be present, i.e.

∑
x∈S j

G(x) > 0.5, which is verified almost every time for high-
density crowds and for scales which remain relevant for a physical interpretation.

In order to compute the values required by Eqs. (8.8) and (8.10), the process may be accelerated
significantly by using the Integral Histogram [213] trick, given that the most intensive task is to
compute sums over rectangular supports defined in the bounded image space.

8.4.1 Multi-scale error statistics

For each scale, some relevant statistics are computed on the elements of the corresponding error
vector, Eσi . Assuming the absence of a significant bias of the density estimator, the elements of
Eσi should follow a folded normal distribution. However, in order to preserve the generality of the
analysis, we compute the median mσi along with the lower and upper quartiles q25

σi
and q75

σi
, as

well as the maximum value observed in Eσi denoted as Mσi , which corresponds thus to the largest
overestimation or underestimation observed for the considered scale in all the analyzed locations.

The corresponding statistics m̃σi , q̃25
σi

, q̃25
σi

,M̃σi for the relative error vector Ẽσi are computed in
a similar manner.

Although this type of multi-scale analysis is more informative than the single value provided
by MAE, offering a statistical analysis based on the aggregation of multiple boxes information at
the same scale, it is not able as such to provide real uncertainty bounds that can be tied to an error
rate.

8.4.2 Uncertainty bounds

An additional limitation of current density estimators is the absence of an uncertainty range pro-
vided along with the scalar density. Ranges on the pedestrian count are greatly needed, as the
trade-off between safety concerns and optimal use of infrastructure capacity promotes different
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levels of congestion in different contexts. Count estimation with an uncertainty range has been
proposed in [9] for the similar task of counting penguins in the wild, but the ranges are derived by
the fact that the dataset has been dot-annotated by several people.

We instead propose a generic approach for evaluating the uncertainty about the output of a
crowd density estimator. Then, we apply the proposed evaluation on a multi-scale domain derived
from the image lattice, which allows us to characterize the estimator performance locally as well.

Until now, we created two ensembles in the context of BFT, an SVM-ensemble and a CNN-
ensemble, obtained though BBA allocations that account for different types of imprecision that
may arise from the specific base classifier. Whatever this latter, the result of the fusion among the
ensemble members is a multiple layers map of BBAs M from which we derive the BetP(H) map.

Now, we propose a multi-scale evaluation strategy which computes for each considered scale
S indicators based on all squared subdomains S ∈Si . These indicators use the derived upper and
lower density bounds s

¯
(S), s(S) such that:

s
¯
(S) = ŵ

∑
x∈S

Belx(H), (8.11)

s(S) = ŵ
∑
x∈S

Plx(H). (8.12)

The factor ŵ relating the numerical output to the actual pedestrian count may be determined
with Eq. (8.1) on a validation set consisting of BetP(H) maps.

We then calculate for Si the Prediction Error Probability (PEP) as:

PEPi =
∣∣∣{S ∈Si |G(S) ∉ [s

¯
(S), s(S)]}

∣∣∣/|Si |, (8.13)

and the Relative Imprecision (RI) interval as:

RIi =
( ∑

S∈Si

(s(S)− s
¯
(S))/G(S)

)
/|Si |, (8.14)

where G(S) is the ground-truth count over S. We take S1 as the set of the largest possible squares
which fit the image space, and then we use a scale factor δ to reduce the square side for subsequent
scales, according to Eq. (8.9)

The RI criterion highlights the size of the imprecision interval around the estimated count,
while the PEP criterion indicates the error rate of the prediction, namely whether the ground-truth
count for the considered region is outside the estimated interval. Thus, a two-axis plot present-
ing the evolution of RI vs. PEP across multiple scales and for different estimators allows one to
compare them and to select an operating point with an explicit uncertainty tied to a desired error
rate.

8.5 Results

8.5.1 Multi-scale statistical evaluation

In order to perform a multi-scale evaluation of the density estimators, we apply the error functions
proposed in Eqs. (8.8) and (8.10) and we perform the multi-scale analysis presented in Sec. 8.4.1.

Figures 8.3 and 8.4 show the results obtained with SVM classifier and FE+LFE network respec-
tively. Statistics are computed for 20 scales, where scale 1 represents the largest one (i.e. given by
the largest square that fits into the image). Results are computed for every box of the image at a
given scale, and then they are shown in terms of the median mσi of the obtained error distribution
at every scale, along with lower and upper quartiles q25

σi
and q75

σi
.

Figure 8.3 shows the comparison of multi-scale error statistics for SVM-ensemble classifiers
obtained with the proposed evidential QBC AL method using Lamata and Moral’s entropy defini-
tion (explained in Chapter 5), with respect to the baseline that builds a training set with random
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Figure 8.3: Comparison of multi-scale error statistics for SVM-ensemble classifiers obtained with the pro-
posed evidential QBC active learning using Lamata and Moral’s entropy definition (first row) vs. random
sample selector (second row), in terms of absolute errors Eσi (first column) and relative errors Ẽσi (second
column).

samples. Overall, the benefits introduced by the active learning procedure are not only useful to
perform microscopic analysis through pedestrian detection, but also to more accurately perform
macroscopic analysis through density estimation. Specifically, active learning is better at estimat-
ing local density, proved by the fact that the relative errors at larger scales (i.e. smaller boxes) for
the active learning solution are lower than the errors of the random baseline, presenting at the
same time smaller variation around the median value among the various boxes at a given scale.

Figure 8.4 shows the comparison of multi-scale error statistics computed with the proposed
FE+LFE network trained with a limited amount of data (i.e. the pool of the available samples for
the active learning approach), and trained with all the available data. Compared to SVM, we no-
tice that with deep-learning based solutions the errors are more consistent at every scale, proven
by the almost constant median relative error throughout the different scales. This is indeed a very
desirable property for a density estimator. Training the network with more data, besides reduc-
ing the overall errors at every scale, seems to be particularly important in order to obtain more
consistent results for every box at a given scale, since the bounds given by the quartiles values are
smaller.

However, although being more informative than traditionally employed global metrics such
as MAE, this type of multi-scale evaluation is only able to offer a statistical analysis based on the
aggregation of multiple boxes information at the same scale, without providing real uncertainty
bounds around the estimation that are more useful for a complete analysis of the scene, especially
for the synthesis community that could tie the uncertainty bounds to an error rate.
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Figure 8.4: Comparison of multi-scale error statistics for the proposed FE+LFE network trained on a limited
amount of data (first row) and trained with all the available data (second row), in terms of absolute errors
Eσi (first column) and relative errors Ẽσi (second column).

8.5.2 Multi-scale uncertainty bounds evaluation

To overcome the limitations of the multi-scale statistical analysis performed in the previous Sec-
tion, we evaluate now the different density estimators based on the proposed two-axis plot eval-
uation explained in Sec. 8.4.2, that allows us to evaluate not only density point estimates but also
uncertainty bounds associated to the estimations.

Note that only in presence of an ensemble of classifiers, one is able to apply the evidential com-
bination among them and thus obtain besides the probabilistic output map Bel(H) also upper and
lower bounds provided by Pl(H) and Bel(H) maps respectively. To this extent, we did experiments
using the proposed evidential SVM-ensemble and CNN-ensemble. Concerning CNN-ensemble,
note that to obtain it the probability of dropout pdrop is set to 0.5, a larger value with respect to
the one set in the previous Chapter to perform pedestrian detection, but that resulted to be more
appropriate for the density estimation task.

Figure 8.5 shows the results of the density estimator evaluation with the proposed RI vs. PEP
plot at multiple scales and with respect to different discounting amounts, regulated by the α pa-
rameter of Eq. (7.6) for the CNN-ensemble based approaches, and performing additional global
discounting for the SVM-ensemble. In the figures, each horizontal cluster of points corresponds
to a different discounting factor.

Specifically, Figs. 8.5a and 8.5b show the results when applying the proposed uncertainty bound
evaluation to ensembles obtained with the FE+LFE and U-Net networks respectively. Ideally, an
estimator should predict with a high confidence (low PEP) that the estimated count is within a
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Figure 8.5: Density estimator evaluation with the proposed RI vs. PEP plot at multiple scales and with
different discounting amounts. Each horizontal cluster corresponds to a different discounting factor. (a)
CNN-ensemble based on FE+LFE network; (b) CNN-ensemble based on U-Net; (c) CNN-ensemble based
on FE+LFE network trained on a limited amount of data; (d) SVM-ensemble.

small RI interval. One may increase the size of the RI interval by decreasing the α parameter in
Eq. (7.6), in order to obtain better prediction accuracy (at the expense of a larger RI). We tested dif-
ferent discounting factors, corresponding to horizontally aligned clusters of dots. For each cluster,
each dot depicts the performance obtained at a different scale, with a scale factor δ = 1.1, S1 be-
ing the largest scale. Both networks perform better at larger scales, due to error compensation.
The proposed FE+LFE network outperforms U-Net, showing the importance of preserving spatial
information without pooling operations in presence of small targets while increasing at the same
time the contextual information with dilations, not only to perform pedestrian detection but also
to perform density estimation.

Figure 8.5d shows the results of the density estimation obtained with the SVM-ensemble ob-
tain with the evidential QBC active learning procedure. Moreover, Fig. 8.5c shows the results ob-
tained training the proposed FE+LFE network with a smaller amount of data (i.e. the pool of unla-
beled samples U available for AL). This allows us to perform two different types of analysis. Firstly,
we can perform a fairer comparison between the two ensemble of classifiers. To this extent, we
notice that FE+LFE, even when trained on less data, outperforms the SVM-based approach, espe-
cially at larger scales. Nonetheless, the two methods exhibit almost identical performance when
considering the smaller scales. Secondly, it is interesting to evaluate the same network trained
with different amounts of data. According to Figs. 8.5a and 8.5c, we see that a larger training set is
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beneficial for density estimation especially at larger scales. However, considering smaller scales,
the performance gap is consistently reduced, indicating thus an implicit limit in the network ca-
pacity (increasing the number of layers and/or filters per layer could help, paying attention to
overfitting).

(a) Image patch S,
G(S) = 12.3

(b) BetP(H) output map,
s(S) = 12.01

(c) M (Θ) output map,
s(S)− s

¯
(S) = 3.2

Figure 8.6: Visual results of the density estimation map along with the estimated uncertainty bounds.

Figure 8.6 provides a visual example of uncertainty bounds computation around the estimated
count, with respect to CNN-ensemble obtained with the FE+LFE network. Figure 8.6a shows an
image patch with corresponding ground-truth count (obtained after Gaussian smoothing). Fig-
ure 8.6b shows the resulting BetP(H) map which represents the scalar density estimation map,
while Fig. 8.6c shows the imprecision map M (Θ) (in our case for pixel x the imprecision value
Plx(H)−Belx(H) is equal to mx(Θ)). The values in M (Θ) may be interpreted as the predictive un-
certainty, and provide a bound for the density estimation itself. For the given region S indeed, by
integrating over the BetP(H) map we obtain the estimated number of people within it. Similarly,
integrating over the M (Θ) map we obtain the imprecision interval s(S)− s

¯
(S). Then, the corre-

sponding RI interval is given by (s(S)−s
¯
(S))/g (S) = 0.26, so that we can conclude that in S there are

12.01±13% heads, i.e. s(S) ∈ [10.4,13.6]. Moreover, from Fig. 8.6c we can notice that, in addition to
head edges, ignorance is particularly high on heads with lower gradient on the borders and strong
clutter, reflecting in a smaller confidence about the prediction. Finally as expected, we underline
the desirable effect of ignorance being higher in circularly-shaped areas (e.g. shoulders, or round
dark blobs) which are similar to heads, even if they have a low corresponding score.
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Conclusion

In this work we address the problem of high-density crowd understanding by proposing a Multiple
Classifier System in a mono-camera setting that can be employed to perform both microscopic
and macroscopic analysis of the scene.

Chapter 1 introduces state of the art methods about crowd research, which comprises two
main fields of study, i.e. crowd analysis, mostly performed by the Computer Vision commu-
nity through the analysis of real scenes, and crowd synthesis, mostly performed by Mathematics,
Physics and Computer Graphics communities, that deals with crowd simulations. We point out
the fact that although focusing on the same entity, i.e. a crowd, the two fields have evolved almost
independently over the years. Nevertheless, we highlight some works where crowd synthesis and
analysis benefit from each other, and we aim at placing our work in this category since we propose
methods to perform complete analysis of specific scenes, which can be easily fed into simulations
and may be later exploited by the synthesis community.

Chapter 2 introduced the theory related to two major aspects of this work, i.e. the supervised
learning techniques that have been exploited (namely logistic regression, SVM and neural net-
works) and a general introduction about ensemble methods. We indeed propose the use of en-
semble methods to perform supervised detection, through the definition of a heterogeneous MCS
based on both SVM and CNN classifiers.

Chapter 3 firstly highlights the SVM descriptors that are more adapted to perform pedestrian
detection in high-density crowds, and then provides their results on the Makkah dataset that we
use to validate our methods. By analysing the results using a single descriptor we understand that
a single descriptor is not enough in presence of difficult applications. We nonetheless underline
the complementarity among the chosen descriptors, a highly desirable property required in order
to be able to perform a successful fusion among them.

To this extent, in Chapter 4 we propose a fusion method in the context of Belief Function The-
ory which is able to consider the imprecision in addition to the uncertainty value provided by the
classifiers. After an introduction about fundamental concepts of BFT, we propose a BBA alloca-
tion which is based on the fact that imprecision in SVM learning can come from two different
sources, namely during the logistic calibration procedure to derive probabilistic outputs out of
the SVM scores (distance from the hyperplane margin), and in the image space due to neighbor-
hood heterogeneity which is caused by the close resolution of the objects (heads) and descriptor
respectively which is computed at every pixel through a sliding window.

Noting that the obtained results are generally highly dependent on the training set, especially
in presence of few data, we put in place in Chapter 5 a QBC active learning procedure to allow
the algorithm to automatically choose the data from which to learn. We propose three criteria in
the evidential framework which are based on maximizing an evidential entropy measure (several
definitions are tested), conflict or ignorance components. While the Maximum Conflict criterion
adds to the training set points about which the initial sources, i.e. descriptors, completely disagree,
the Maximum Ignorance criterion adds to the training set points about which all classifiers agree
about the fact that they are not at all certain about the true label. The Maximum Entropy criterion
results to be a trade-off between the two, being able to select automatically informative training
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samples balancing exploration of the feature space and exploitation of the current hyperplane
margins. We show that, by integrating the evidential combination of the SVM classifiers in the
learning loop, the results are much better because the information coming from the combination
itself is exploited in the choice of the training samples for the subsequent iteration. The proposed
SVM-ensemble is therefore composed of the four SVM detectors described, trained on the training
set defined through the proposed active learning strategy.

We then investigate deep learning solutions for our problem. In Chapter 6 we propose to cast
the detection problem as a segmentation problem in presence of soft labels, since we do not have
at our disposal labeled segmentation ground-truth but just sample coordinates. We thus model
each head as a Gaussian in a cumulative context such that the evidences of a head’s presence
weighted by the Gaussian are summed up for each pixel. Regarding the chosen network architec-
ture, we propose the use of a Front End module with increasing dilation factors in convolutional
layers to consider more context, followed by a Local Feature Extractor module which aggregates
the features by decreasing the convolution dilation factor. The absence of pooling layers then al-
lows for the detection of extremely small objects.

In Chapter 7 we point out a major criticism that is often made to deep learning techniques,
namely the fact that they often act as black-boxes, rendering difficult the interpretation of the
final results. We therefore cast the network as a BNN and propose the use of the MC-dropout
method to draw samples from a Bernoulli distribution over the network weights. In this way we
once more rely on ensemble methods, obtaining a CNN-ensemble which is composed of multiple
dropout-perturbed versions of the same network. Still in the context of BFT, we propose a BBA
allocation which is based for each pixel on its distance to the median value of the realizations,
and we perform an evidential combination of the sources. Then, we show that the proposed BBA
allocation provides better results in terms of detections on the BetP(H) map rather than the tradi-
tional averaging operation. In the same way, predictive uncertainty estimated after the evidential
combination as the ignorance mass results to be visually more indicative than traditional standard
deviation to highlight possibly problematic areas for the learned model. Lastly, after Yager’s nor-
malization of the two ensembles (SVM and CNN based ones), they are fused together and show
competitive performance even in the presence of a small training set.

Finally, in Chapter 8 we tackle crowd analysis at a macroscopic level to perform density esti-
mation and people counting. After an introduction about the related state of the art, we highlight
a major limitation in the evaluation of common density estimators, namely the fact that the eval-
uation is performed at a global scale, allowing for local compensations, and without providing
any uncertainty bounds about the estimated count. From our part, we propose a new evaluation
method which exploits a generic ensemble of classifiers in order to obtain evidential upper and
lower bounds to the actual count with plausibility and belief functions respectively.

The designed MCS based on the joint use of both SVM-based and CNN-based ensembles al-
lows us to obtain high levels of performance even in the presence of a limited amount of training
data, as it is often the case in the field of specific crowd studies. The output of the MCS is a proba-
bilistic map, and this allows us to be able to easily perform both microscopic and the macroscopic
analysis. Indeed, detections can be obtained by a simple thresholding operation (e.g. PRBEP is
common operative threshold), while density estimation can be performed by integrating over each
(local) region of interest. For this reason, we find that the proposed approach helps in reaching a
complete understanding of a given scene and could be easily integrated into simulation models
concerning both levels of granularity. The analysis of specific scenes is indeed very important for
many applications to avoid more stampedes and crowd disasters in the future. It can be useful
both for an a-priori study of urban space and architectural design, to validate simulated models,
and for an a-posterior analysis of crowded situations, to be able to model more realistic scenarios.

However, in order to reach a complete understanding of a given scene while at the same time
being robust to scene variations, several challenges still remain open and will be listed in the fol-
lowing section.
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Future work

The dataset

First of all, there is the need of validating the proposed approach with other datasets. The avail-
ability of dot-annotated dataset for high-density crowds composed of video sequences of specific
scenes is still very scarce, but we hope that in the future more data will be available to the com-
munity thanks to the involvement of more and more researchers in the field of high-density crowd
studies.

Concerning the SVM-ensemble, the applicability of the method to different datasets remains
to be validated. We think that a multi-scale extension of the considered descriptors should be
explored in presence of possibly strong perspective variation, possibly considering dimensionality
reduction techniques on the final feature vectors. Concerning the CNN-ensemble instead, the
deep learning solutions are notably more robust to different data, and the performed validation
of the proposed network on the Regent’s Park dataset (which presents generally larger heads and
medium-density crowd) shows the robustness of the method to scale and density variations.

Still concerning the training data, we could think to extend the proposed method on the whole
images of the Makkah dataset (cf. Fig. A.1 in Appendix A). However, performing dot-annotation
for the upper part of the Makkah images is sometimes impossible even for a trained human (be-
sides being a hard and time-consuming task implying the availability of trained people to perform
it). Nevertheless, we could think about taking into account another source of imprecision in the
system, namely the imprecision about ground-truth labeling information which is used for the
training. However, it is still not clear how to model this type of imprecision in the context of BFT
at inference time.

Lastly, in presence of datasets with synchronized multiple views, it will be interesting to exploit
multiple cameras to perform a fusion of the detections obtained with our single camera-based ap-
proach. Multiple cameras have been successfully exploited in [71] and more recently in [205],
proving the potential of multiple views in presence of occluded scenes. However, in these works
the crowd density is not extreme and extending this type of solutions to very dense scenarios will
not be trivial, besides the fact that up to our knowledge at present no annotated datasets com-
posed of multiple cameras in presence of a high-density crowd exist.

Toward tracking

In order to really reach a complete understanding of the scene, temporal information has to be
exploited. This work lays the foundation for the design of a tracking-by-detection approach that,
starting from the probability map of the detections at time t, tracks each person individually in
the high-density crowd for the subsequent frames. This would be very useful to obtain precise in-
sights about abnormal behaviours, or to study possible bottlenecks that prevent the other people
to advance.

As done in [226], density estimation information can be directly exploited in the system, e.g.
through the minimization of a joint energy function incorporating both probability scores of in-
dividual detections and local density estimation. From our part, we dispose also of uncertainty
bounds around the estimated density, and of an associated prediction error probability that could
be exploited as well.

Figure 8.7 shows the preliminary results of data association performed on two consecutive
frames through Hungarian Algorithm [145]. The preliminary results obtained show that this is
nonetheless a promising avenue to be better examined.

The Hungarian Algorithm (known also as Kuhn-Munkres algorithm) is a combinatorial opti-
mization algorithm that solves the assignment problem in polynomial time. The problem is repre-
sented by a cost matrix, which in our case indicates the cost of associating each detection at time
t0 with each detection and time t1, and the algorithm finds the optimal associations on a one-to-
one basis in order to minimize the overall cost. We design the cost of association of two detections
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Figure 8.7: Preliminary data association results.

at frame t0 and t1 respectively as the distance between the detection at frame t1 and the projection
of the detection at frame t on t1 through Optical Flow.

Specifically, we firstly employ the proposed MCS in order to obtain probability output maps
(i.e. BetP(H) maps) both at frame t0 and t1. Detections are then obtained through NMS at the
PRBEP threshold. Denoting by p0,i = (x0,i , y0,i ) the coordinates of the i th detection at frame t0, and
by p1, j = (x1, j , y1, j ) the coordinates of the j th detection at frame t1, the cost of associating the two
detections is given by:

C(i , j ) =
∥∥∥p1, j −pproj

1,i

∥∥∥ (8.15)

where pproj
1,i is the projection of p0,i at frame t1 through Optical Flow computed following [28].

Hungarian algorithm has been successfully employed to perform object tracking through data
association, e.g. in [115] where hierarchical association is performed at different levels, firstly
among reliable tracklets and then refining the final trajectories. The concept of weak and strong
detections on the basis of a confidence score has been exploited also in [232] in the context of
online multi-target tracking, resulting to be beneficial for real-time performance. For this reason,
we think that information coming from the final BBA map should be exploited in order to perform
tracking taking into account the reliability of each detection. Even further, we can think about
associating a single BBA to every detection starting from the BBAs at pixel level which compose
the detection itself, and then performing BBA tracking. Nonetheless, tracking-by-detection ap-
proaches in the context of BFT have been successfully proposed e.g. in [222, 223], being able to
model the imprecision about the location of each (possibly fragmented) detection.

Finally, note that in order to precisely evaluate the tracking algorithm, annotations for each
frame of the sequence are needed and should be performed (for the moment the annotated images
of the Makkah dataset are temporally independent frames), or a new dataset which has this type
of temporally-consistent annotations should be considered.

Exploring deep-learning

Over the last years, deep learning made advances that allowed for major breakthroughs in com-
puter vision and image processing fields. However, there is still much room of improvement and
the methodologies are bound to continue to evolve in the near future. For this reason, we think
that several paths exist in order to improve our method taking into account deep learning solu-
tions.

Firstly, concerning the loss function, the use of the optimal transport or Wasserstein distance
when confronting the output to the ground-truth map is a very promising perspective, but the
computational cost is significantly higher. However, recent works [249] explore the applicability of
this family of distances for 2D domains. With respect to the simple L2 loss function, the Wasser-
stein distance should be more adapted to data which represent density information.

Secondly, an important avenue to be considered is the possible learning of spatio-temporal
representations, e.g. with the use of 3D convolutions [260], providing as input of the network
temporal sequences (3D volumes) instead of 2D images, to jointly perform detection and tracking.
The problem of 3D convolutions resides in the higher number of training parameters required.
They are usually applied only in presence of small 3D volumes due to the high computational
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cost required to compute and store the gradients and high memory consumption. The training
of a 3D CNN is thus very computationally expensive and the model size has a quadratic growth
with respect to the number of layers compared to 2D CNNs, making it extremely difficult to train a
very deep 3D CNN. However, recent advances propose the use of pseudo-3D convolutions [217] by
simulating 3×3×3 convolutions with 1×3×3 convolutional filters in the spatial domain plus 3×1×1
convolutions to construct temporal connections on adjacent feature maps in time. They show
performance improvements over traditional techniques by encapsulating pseudo 3D convolutions
inside residual blocks, obtaining thus a Pseudo-3D (P3D) ResNet, in the contexts of video action
recognition, action similarity labeling and scene recognition. The applicability of the P3D ResNet
in presence of 3D volumes with large 2D extent is still to be proven but constitutes an interesting
research path.

Lastly, we could think of a joint use of deep learning techniques and Belief Function frame-
work. Instead of deriving final BBAs starting from Bayesian BBAs and then applying a discounting
which is based on the availability of an ensemble of maps, we could design a network that di-
rectly outputs a BBA associated to each pixel which intrinsically contains information about the
reliability of pixel’s prediction in the mass on Θ. How to directly measure the reliability of pixel’s
prediction within the forward pass is however still unclear and deserves better investigation.

Exploring active learning

In this work we employed active learning with an ensemble of SVM classifiers to automatically
select the most informative training samples on the basis of evidential measures of disagreement
computed after having performed the combination among committee members. We devised three
different criteria, namely Maximum Conflict, Maximum Ignorance and Maximum (evidential) En-
tropy. The conflict we consider is simply given by the mass on the empty set. However, other con-
flict measures exist and it would be interesting to test them. For example, in [60] the authors pro-
posed a conflict measurements based on contour functions, making no prior assumptions about
the possible dependence between sources.

Active learning is classically employed in presence of traditional classifiers (or ensemble). It is
indeed based on iteratively training the classifier by adding the new selected data to the training
set, so that the training procedure must be somehow lightweight. For this reason it has seldom
been applied to deep-learning based methods, which require the optimization of millions of pa-
rameters during the training step. However, in recent years, the applicability of active learning
techniques in presence of deep networks is being more and more explored.

For example [131] proposes a fine tuning in a continuous learning scenario. Fine tuning is an
approach which is included in transfer learning methods, i.e. methods where knowledge gained
during training of one type of problem is used to train another related task or domain. In fine-
tuning, a model is learned based on some training data, and then it is specialized by retraining it
(or part of it) on some more data. This is often done for image classification tasks related to specific
domains, where a network is trained on the huge ImageNet dataset and then it is specialized by
training the last layers on the new data proper to the particular application (which possibly include
other classes as well). In this way, the first layers are kept frozen because they deals with generic
feature representation, while we let the network update the weights of the final layers which are
related to specific feature extraction. The amount of layers to re-train depends on the quantity of
new data available and also on the specific task. Continuous fine tuning becomes thus a way to
perform a lightweight partial re-training of the network including the new samples which can be
chosen in an active learning scenario.

How to select the samples to be added to the network training set is still unclear. In [130]
the authors propose a new generalization of the Expected Model Output Change (EMOC) princi-
ple [236] for deep architectures to actively select relevant batches of unlabeled examples for anno-
tation. In [268] instead, new samples are added based on least confidence or marginal confidence
criteria, i.e. in a multi-class context selecting the samples whose Softmax score for the predicted
class is the the lowest, or selecting the samples with smallest difference between the scores asso-
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ciated to the first and second most probable class labels predicted by the classifiers.
Finally, an interesting approach is proposed in [280] where active and reinforcement learning

are jointly exploited. Classically, methods for active learning involve strategies such as selecting
the data points for which the model is the most uncertain, or for which an ensemble of classifiers
mostly disagrees, in order to pick the examples which are expected to be the most informative ones
based on some heuristics. The authors of [280] go even further, proposing the use of reinforcement
learning to learn which are the best samples to consider based on the choice of a reward function
which rewards accurate predictions and penalizes incorrect predictions and label requests.

We thus think that it will be interesting to evaluate active learning solutions not only related to
SVM classifier but also with respect to the CNN-based one. In our context however, since a fully
convolutional network is employed, the active learning task would imply the selection of informa-
tive images (or region of interests) rather than single pixels as is done with SVM. This could be done
e.g. considering areas with highest relative imprecision interval performing density estimation, in
order to link both microscopic and macroscopic analysis.
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Appendix A

Ground-truth labeling

The Makkah dataset used in this project is composed by sequences of gray-scale images acquired
by multiple cameras at Makkah during very congested times of the Hajj period, in October 2012.
The cameras used for the recordings are robotic cameras (AVT Guppy PRO) mounted statically
in different places of the Great Mosque’s central square in order to observe the high-density pil-
grim crowd from different perspectives. Each camera recorded video sequences of the crowd (at a
frame-rate of 8Hz), providing gray-level regular image frames of the visible spectrum.

Figure A.1: Example image from the Makkah dataset. The region of interest considered in this work is
highlighted in red.

Figure A.1 shows an image from the dataset considered in the context of this mono-camera
based work. The highlighted region of interest allows us to perform both a microscopic and a
macroscopic analysis, and roughly contains 900-1000 heads per image.

In order to obtain the ground-truth information which is useful both to build the training set
and to perform evaluation on the validation and testing sets, annotations are needed. Dot anno-
tations have been manually performed through a web interface especially designed for the task,
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where the user is asked to choose the image to label and then to discriminate between the various
types of heads.

In anticipation of the possible extension of the work to multi-class analysis indeed, different
classes of pedestrians have been identified specifically for this dataset, i.e. women with white veil,
women with black veil, men with hat, men without hat. Figure A.2 shows an example of labeling,
where the user has clicked in the center of each head to perform the annotations.

Figure A.2: Example of ground-truth labeling.

Figure A.3: Example of positive and negative sample labeling to manually select samples to add to the
training set.

The interface can be used both to perform ground-truth labeling for an entire image, as shown
in Fig. A.2, and also to manually build a training set with positive and negative samples. To this
extent, Fig. A.3 shows an example of an image where the user clicked on some specific locations
both to obtain positive and negative samples to be added to a training set. Different classes of neg-
ative samples have been identified as well, i.e. floor, clothes and shoulders (which are particularly
difficult for their peculiar shape which is similar to a head in some cases).

Note that to maintain the method’s generalization ability, in the context of this work we con-
sidered the generic binary problem head vs. not head. Having defined the different classes allows
us nevertheless to easily obtain diverse training sets, where the appearance of both positive and
negative samples is able to span over the different types. Note that for the proposed active learning
procedure only ground-truth maps are needed, decreasing the burden of the annotation that has
to be performed by the user only for the positive class.

The web interface allows us finally to download the annotations, which are saved as lists of
triplets “label x y” for each image, where label is an integer corresponding to the sample’s class,
while x and y corresponds to the sample’s coordinates (head’s center).
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Résumé: Cette thèse s’intéresse à la détection des piétons 

dans des foules très denses depuis un système mono-camera, 

avec comme but d’obtenir des détections localisées de toutes 

les personnes. Ces détections peuvent être utilisées soit pour 

obtenir une estimation robuste de la densité, soit pour initialiser 

un algorithme de suivi. Les méthodologies classiques utilisées 

pour la détection de piétons s’adaptent mal au cas où seulement 

les têtes sont visibles, de part l’absence d’arrière-plan, 

l’homogénéité visuelle de la foule, la petite taille des objets et 

la présence d’occultations très fortes. En présence de 

problèmes difficiles tels que notre application, les approches à 

base d’apprentissage supervisé sont bien adaptées. Nous 

considérons un système à plusieurs classifieurs (Multiple 

Classifier System, MCS), composé de deux ensembles 

différents, le premier basé sur les classifieurs SVM (SVM-

ensemble) et le deuxième basé sur les CNN (CNN-ensemble), 

combinés dans le cadre de la Théorie des Fonctions de 

Croyance (TFC). L’ensemble SVM est composé de plusieurs 

SVM exploitant les données issues d’un descripteur différent. 

La TFC nous permet de prendre en compte une valeur 

d’imprécision supposée correspondre soit à une imprécision 

dans la procédure de calibration, soit à une imprécision 

spatiale. 

Cependant, le manque de données labellisées pour le cas des 

foules très denses nuit à la génération d’ensembles de données 

d’entrainement et de validation robustes. Nous avons proposé 

un algorithme d’apprentissage actif de type Query-by-

Committee (QBC) qui permet de sélectionner automatiquement 

de nouveaux échantillons d’apprentissage. Cet algorithme 

s’appuie sur des mesures évidentielles déduites des fonctions 

de croyance. Pour le second ensemble, pour exploiter les 

avancées de l’apprentissage profond, nous avons reformulé 

notre problème comme une tâche de segmentation en soft 

labels. Une architecture entièrement convolutionelle a été 

conçue pour détecter les petits objets grâce à des convolutions 

dilatées. Nous nous sommes appuyés sur la technique du 

dropout pour obtenir un ensemble CNN capable d’évaluer la 

fiabilité sur les prédictions du réseau lors de l’inférence. Les 

réalisations de cet ensemble sont ensuite combinées dans le 

cadre de la TFC. Pour conclure, nous montrons que la sortie du 

MCS peut être utile aussi pour le comptage de personnes. Nous 

avons proposé une méthodologie d’évaluation multi-échelle,  

très utile pour la communauté de modélisation car elle lie 

incertitude (probabilité d’erreur) et imprécision sur 

les valeurs de densité estimées. 
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Summary: This study deals with pedestrian detection in high-

density crowds from a mono-camera system. The detections 

can be then used both to obtain robust density estimation, and 

to initialize a tracking algorithm. One of the most difficult 

challenges is that usual pedestrian detection methodologies do 

not scale well to high-density crowds, for reasons such as 

absence of background, high visual homogeneity, small size of 

the objects, and heavy occlusions. We cast the detection 

problem as a Multiple Classifier System (MCS), composed by 

two different ensembles of classifiers, the first one based on 

SVM (SVM-ensemble) and the second one based on CNN 

(CNN-ensemble), combined relying on the Belief Function 

Theory (BFT) to exploit their strengths for pixel-wise 

classification. SVM-ensemble is composed by several SVM 

detectors based on different gradient, texture and orientation 

descriptors, able to tackle the problem from different 

perspectives. BFT allows us to take into account the 

imprecision in addition to the uncertainty value provided by 

each classifier, which we consider coming from possible errors 

in the calibration procedure and from pixel neighbor's 

heterogeneity in the image space. 

However, scarcity of labeled data for specific dense crowd 

contexts reflects in the impossibility to obtain robust training 

and validation sets. By exploiting belief functions directly 

derived from the classifiers' combination, we propose an 

evidential Query-by-Committee (QBC) active learning 

algorithm to automatically select the most informative training 

samples. On the other side, we explore deep learning 

techniques by casting the problem as a segmentation task with 

soft labels, with a fully convolutional network designed to 

recover small objects thanks to a tailored use of dilated 

convolutions. In order to obtain a pixel-wise measure of 

reliability about the network's predictions, we create a CNN-

ensemble by means of dropout at inference time, and we 

combine the different obtained realizations in the context of 

BFT. Finally, we show that the output map given by the MCS 

can be employed to perform people counting. We propose an 

evaluation method that can be applied at every scale, providing 

also uncertainty bounds on the estimated density. 
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