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Introduction

Machine Learning is a subfield of artificial intelligence at the frontier of computer science and
applied mathematics (statistics and as optimization). This discipline also partially overlaps
Data Science as it is based on collecting data which are analyzed and studied in order to
extract the substantial information that can be used for application at hand. Depending on
that application, the nature of the data can be multiple: it can consists of images, videos,
raw data, categorical data, trees, graphs, times series, etc.

Once the data are collected, and often completed and cleaned, they can be used for
several machine learning tasks such as regression when it comes, e.g. to predict the price of
a share or the price of a house according to its characteristics. They can also be exploited for
classification tasks when, e.g. one aims to discriminate a spam from a ham when receiving
an email, identify if a transaction is fraudulent or genuine, detect anomalies in a medical
examination such as a blood test. In both cases, the data are labeled using a variable y.
When we have a genuine transaction or a ham email, the example is usually labeled —1
(also called negative example) while it is labeled 1 (positive example) when it is an object of
interest like a spam or a fraudulent transaction. When such a labeled information is used in
a Machine Learning algorithm, we talk about supervised learning, and unsupervised learning
otherwise.

Driven by the application of fraud detection, we will focus, in this document, on binary
classification tasks. Our objective will be to learn a classifier h, also called an hypothesis,
using a collection of labeled data {x;,y;}I"; to classify new instances, where x; is a set of
descriptors.

This CIFRE thesis has been carried out in the context of a collaboration with the Blitz
SA company working in the field of bank fraud detection. When a customer pays for his
purchases in a store, he/she can use different payment medium, including checks. Blitz offers
its clients (mainly companies of the mass distribution) a way to secure checks transactions by
detecting so-called fraudulent payments which can be of two types: the use of a false check
(a check not produced by the bank) or an unpaid check, i.e. the use of check for which there
is not enough money on the bank account of the customer. Blitz only provides an advice and
the final decision is always made by the client.

The difficulty of this task is two fold: the first one is the huge amount of transactions the
company has to deal with per year as well as the response time of the algorithm which must
be of the order of ten milliseconds. Second, a fraud constitutes an extremely rare event: it

13



14 Introduction

represents less than 0.4% of the transactions while they cover 1% of the mass distribution
turnover.

This thesis is therefore part of the so-called imbalanced learning field, in other words,
where the class of interest is much less represented than the negative class. In such a context,
most classification algorithms, mainly based on the minimization of the error rate, lead to
the trivial solution of predicting all examples as negative. Thus, due to the imbalance in
the data, a way to achieve high performances (i.e. 99.6% in our context) is to predict all in-
stances as genuine, that is obviously totally inacceptable because one misses all the fraudulent
transactions.

More generally, learning in an unbalanced context is an important issue for the Machine
Learning community because of its wide range of applications (e.g. in bank, insurance and
tax fraud, in health, etc.) but also because of the intrinsic methodological difficulty of this
type of problem. There are many techniques to address this type of problem: learning a good
representation of the data in which the classification task is easier; assigning costs to different
classes to provide algorithms with a way to focus on the minority class; using sampling
methods to reduce the imbalance as done in Blitz.

Our objective in this thesis is to propose new strategies to tackle the issue of learning from
highly imbalanced data and apply them on fraud detection problem. We aim to propose new
algorithms which perform well in this setting and which improve the model used by the Blitz
company. We also dedicate a part of this thesis to theoretical contributions of learning from
imbalanced data by proposing new ways to optimize performance measures that are suited
for this context.

Our contributions are essentially divided into two parts. The first one focuses on the
development of so-called geometric algorithms, which determine a better representation for
discriminating transactions, by learning new features with which the classification is easier to
do. The second one uses theoretically founded costs assign to each class in order to improve
well suited performance measures for this context using a theoretical analysis. We also provide
a concrete application of that type of methods in order to improve the check fraud detection
process of the Blitz company by improving the benefits of its retailers.

Context of the thesis. This thesis was carried out in both in the Data Intelligence team
of the Laboratoire Hubert Curien UMR CNRS 5516, affiliated to the University Jean Monnet
in Saint-Etienne and the University of Lyon, and in the Blitz Business Services company in
Villefontaine, France. This work has been conducted under a CIFRE contract funded by the
ANRT (National Agency of Research and Technology).

About the Blitz Business Services company. The Blitz Business Services company
is located in Villefontaine, France. Its main activity is the check fraud detection and its
costumers are the mass distribution. It is also working on the optimization of the passage at
the payment office or the granting of payment facilities, such as the agreement of a payment
in several installments on online sales sites for example. Finally, Blitz develops an activity
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which consists of optimizing the use of reminder letters and calls when a report has been
drawn up for a person who does not have a valid ticket in public transports.

Contributions

This manuscript presents different contributions from both theoretical and practical aspects
to address the imbalanced learning issues. The main body of this thesis contains the contri-
butions of this thesis. Extensions and extended experiments are given in Appendix for the
sake readability.

This first part is composed of two chapters:

Chapter [1. In the first chapter, we introduce the field of Statistical Learning starting
from the learning of a model to its capacity of performing well on unseen data. It presents
the definition and notations useful for the rest of the document. We end this chapter by
introducing the problem of learning from imbalanced data and by illustrating the behavior
some Machine Learning algorithms when they face imbalanced data.

Chapter The second chapter focuses on the state of the art techniques used to tackle the
imbalanced learning issue. It introduces generalities on both anomaly and fraud detection in
the highly imbalanced learning scenarios. It is also dedicated to the presentation of relevant

performance metrics used in such a context.

In the second part of this thesis, we present two contributions based on geometrical approaches
to deal with imbalanced data. Both of them aim to learn the influence regions around the
positive examples, using (7) a metric learning approach in Chapter |3| and (ii) an adjusted
distance to positives in Chapter

Chapter @. Based on the assumption that frauds are locally closed to each otheIH, our first
contribution proposed a novel strategy based on Support Vector Data Description, a SVM
variant which aims to encompass a set of examples. We propose to modify the standard
formulation in order to create the largest area around each positive instances. The surface of
this area is optimized using a metric learning strategy and leads to ellipsoids in the feature
space for which size and orientation are controlled by a regularization term. By solving
the dual formulation of our optimization problem, we show that, compared to most metric
learning techniques, we have the semi definite positiveness of the learned metric for free.
We also derive generalization guarantees on the proposed method using the uniform stability
framework and show its effectiveness, in terms of F-Measure, compared to standard machine
learning algorithms combined with sampling methods. On the private dataset of Blitz, we
show that it possible to control either the recall and the precision of the model.

'Even though frauds are rare, a given fraudster usually acts quickly with the same strategy, leading to a
few positive examples in the same region of the feature space.
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Chapter[4. The positive examples of the training set have an important role when it comes
to detect new positives at test time. When we are working with distance-based algorithms,
such as the k-Nearest Neighbor algorithm, the distance to these positives is key. Instead of
applying a linear transformation of the data as it is usually done, we show that modifying the
distance of a new query only to positive examples is enough to significantly improve the k-
Nearest Neighbor algorithm. Our method has also the ability to control to false positive rate
and the false negative one. Furthermore, we show, on several datasets, that the performance
of the proposed algorithm can also be improved when it is combined with sampling strategies
and achieves at least better results than a metric learning approach or other modification of
the k-NN.

The third and last part of this thesis focuses on two contributions on cost-sensitive methods.
In Chapter [5, we optimize the F-measure and provide bounds on its optimality. Chapter [6]
uses this approach for a practical application: the optimization of the retailers benefits.

Chapter [5. The use of specific measure such as the F-measure has been shown to be more
relevant in the context of imbalanced learning. But its optimization remains a challenging
task due to its non linearity and non convexity. However, due to one property of the F-
measure, we are able to make link between its optimization and cost-sensitive learning, i.e.
learning by assigning different costs to each class. Using this fact, we propose new bounds
on the difference of F-measures between two classifiers. Thus, we are able to give bounds on
the optimal reachable F-measure. We also provide a geometric interpretation of the derived
bounds in the form of asymmetric cones. This last point is used to derive an iterative algorithm
which chooses the right costs to assign to each class in order to optimize the F-measure. We
show that the presented method is effective or even better than its competitors and only
requires a small number of iterations. From a theoretical aspect, we also show that the
proposed bounds are much tighter than the ones proposed in the literature

Chapter [6. Cost-sensitive approaches are relevant to address the imbalanced classification
issue. In this chapter, we propose to combine these approaches to tree-based algorithms for
the real application of the Blitz Company: the optimization of the retailers benefits. The
amount of money of a transaction is a relevant information for the classification task and
more attention should be paid on transactions with a large amount of money, something that
previous models did not take into account. Furthermore, a miss-classification on that type
of transactions has heavier consequences than the one with a small amount. We propose
a cost matrix and, thus, a loss function which aims to optimize the retailers benefits. We
also propose different tree-based methods to optimize such a loss. The experiments made in
this chapter show that it is possible to drastically increase the retailers benefits by the use
of a cost-sensitive approach and that the proposed gradient tree boosting algorithm achieves

better results than random forest algorithms.
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Appendix We provide an extension to the multi-class setting of the work presented in
Chapter [5. This extension includes the proofs and extended experiments.

Notations

All the notations used in this thesis are summarized in Table
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Introduction

Notation

Description

R, Rs
f0)
5l

N

Number of training instances

Dimension of the feature space

Scalar

Vector or a set of vectors

Entry ¢ in vector x

Vector 7 in the set of Vectors x

Matrix

Entry in row ¢ and column j of matrix X
Label

Input space, Output space, Hypothesis space
Distribution of the data

Sets of real and non negative real numbers
Set of Positive Semi Definite matrices
Sample

True Risk, Empirical Risk over S
Function

Norm

Absolute value

Hinge loss function

Dot product between vectors
Expectation

Probability

Loss function

Algorithm

Table 1: Notations.
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Chapter 1
Preliminaries

Abstract

In Machine Learning, the data and the loss function used to train a given model are
fundamental. In this chapter, we introduce Machine Learning by presenting the different
types of problems we meet throughout this thesis. First, we introduce the definition of
Risk, the quantity we aim to minimize in most of the optimization problems. We will
see that it is possible to provide theoretical guarantees on the performance of the learned
model using statistical tools such as concentration inequalities.

The second part of this introduction is dedicated to the loss functions and algorithms.
We detail the presentation of the latter as we will meet them all along this thesis. This
chapter ends by studying the behavior of some of them when one class becomes over-
represented compared to the other one, i.e. when the dataset becomes imbalanced.

1.1 Statistical Learning Theory

In this first section, we introduce the concept of empirical risk minimization, the key point of

the supervised learning algorithms in Machine Learning.

Let us consider X the input space of our data, also called the feature space and ) the
output spaceH The input space, i.e. the features used to describe the data can be of different
types: it can consist of continuous or discrete descriptors. In this thesis, we will focus on
continuous features, i.e. X C R% The output space can also vary from a task to another. It
can be discrete, real, or even a structured data. The nature of the output gives important
information on the nature of the problem and leads the user to choose the appropriate tools.

e When Y C R or Y = [0,1], i.e. when the output is a real value, the aim is to learn
either a score, a probability or to estimate a quantity as it is usually done in regression

tasks.

Note that there may be no output space, i.e. J = () as in unsupervised learning.

21
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e When Y = {—1,41} or {0,1} , i.e. the output is binary, we aim to classify the data
in two categories, also called classes. This type of tasks is called binary classification.
Note that the output can take more than two values, i.e. Y = {1,...,q} where ¢ is the
number of classes. In this case, we talk about multi-class classification.

To solve these different tasks, we use an algorithm .4 which aims at learning a function
h: X — Y called hypothesis. From a practical point of view, the joint distribution of the data
D = X x Y is unknown and we only have access to a collection of sample points, i.e. a set
of observations S = {(x;,v;)}i",, drawn ii.d. from D. The goal is then to learn a function
h using the sample S which is “good enough” on the given training sample but which is also

able to perform well on a new sample (x,y).

In the next section, we explain how the function h is learned and the meaning of perfor-

mance of an algorithm.

1.1.1 Empirical Risk Minimization

In order to solve a given task, the algorithm A needs a criterion to optimize, also called a
loss function usually denoted by £(h(-),:) : X x Y — R. In a regression task, it can be
based on the difference between the estimated value, h(x), and the true value y, for example
((h(x),y) = |h(x) —y| or (h(x) — y)%. In a classification task, the most natural way is to
consider the number of errors made by the classifier h. The considered loss function is then
defined by £(h(x),y) = 1 {j(x)£y} and is called 0-1 loss. However, because of its non convexity
and non differentiability, minimizing this loss is known to be NP-hard. That is why, we usually
change the 0-1 loss by a surrogate function (see Section .

Whatever h, we need to minimize its expected value over the distribution D, leading to
the True Risk.

Definition 1.1 (True Risk). Let £: X x Y — R a loss function and D the distribution of the
data. The True Risk R of an hypothesis h is defined by:

However, we can not compute this quantity in practice because the joint distribution D
of the data is unknown. We rather minimize the Empirical Risk, the average error over the

sample S.

Definition 1.2 (Empirical Risk). Let S = {(x;,y)}"; a collection of m examples drawn
i.4.d. from D and £: X x Y :— R. The Empirical Risk risk of an hypothesis h is defined by:
1 m
Rg(h) = m Zf(h(xi),yi)-

i=1
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We aim to minimize the empirical risk with the hope that the sample S is representative
of the unknown distribution. At the first glance, minimizing the empirical risk might be then
equivalent to minimizing the true/generalization risk. But this is not sufficient in general,
and the risk is to tend to an overfitting phenomenon.

It shows that it is important to fix some constraints on the hypothesis we can learn to
avoid such a situation. We present below a non exhaustive list of ways to constrain the learned
hypothesis.

Empirical risk minimization. The most straightforward solution is to fix in advance the
hypothesis space H, called a Set of Hypotheses or Class Function. Then, given this set of
hypotheses H, a sample S and a loss function ¢, we are looking for the hypothesis h as the
solution of:
h% = argmin Rg(h).
heH

If the size of H is small enough, we can avoid the situation previously described. However,
without any side information on the data, it is hard to choose the appropriate set of hypotheses
for the task at hand.

Structural risk minimization. [See Section 4.1 of |Vapnik (1995)] The idea here is to
choose a growing sequence of sets of hypotheses {H, }nen, i.e. the complexity or the number
of hypotheses is growing with n, and to choose the hypothesis A* solution of the following

minimization problem:
hy = argmin Rg(h) + pen(n,d).
heHn, neN

Compared to the previous formulation, a penalty term is added to the empirical risk. This
term measures the complexity/size of the set of hypotheses #,, and is a growing function of
n (note that it also depends on the dimension of the data). The aim is then to learn the
best hypothesis in the smallest set H,,. With such a formulation, we are able to find a good
trade-off between the empirical risk minimization and the complexity of the learned model,
i.e. find a hypothesis that is able to generalize well. But choosing a sequence of sets of
hypotheses remains hard in practice.

Regularized risk minimization. The preferred solution in practice, because easier to im-
plement, is to choose a set of hypotheses H sufficiently large enough and to add a constraint on
the parameters 0 of the learned model. The added constraint, A |6, is called a regularization

term and is associated to a regularization constant .

hg = ar]iggtin RE(h) + M 16]]-

With the parameter A, we are able to indirectly control the size or complexity of the set



24 Chapter 1. Preliminaries
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Figure 1.1: Evolution of the Empirical and True Risks according to the complexity of the set
of hypotheses.

of hypotheses by constraining the norm of the parameters of the model for instanc

In this last expression, the smaller the value of A is, the more importance we give on fitting
well the data.

In the same way, the greater A, the more importance we give on the complexity of the
learned model. The errors made by the algorithm become insignificant compared to the
control of the magnitude of the parameters . The risk is that, when A — oo we lead to an
under-fitting phenomenon without a good generalization capacity.

The aim is to learn a model with the appropriate value of A, i.e. to find a good trade-
off between the minimization of the empirical risk and the complexity of the hypothesis as
depicted in Figure To tune the value of A\, we typically use a k-fold cross-validation on
the training set: we separate the dataset into k—folds of regular size. We learn a hypothe-
sis/model using k — 1 folds and test its performance on the remaining one. The process is
repeated k—times and we keep the hypothesis/model which achieves the lowest empirical risk

in average.

Even if we can empirically assess the performance of a model on a test set, it is also
important to provide generalization guarantees in order to bound the performance of the
learned algorithm regarding its behavior at training time. The next section is dedicated to
this point and presents generalization bounds based on the complexity of the set of hypotheses

or on some properties on the loss function.

2In the rest of the thesis such a regularization constant will be called hyper-parameter instead of parameter
to distinguish them from the parameters of the learned hypothesis h.
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1.1.2 Generalization Bounds

A generalization bound has the following general form and is often referred to a Probably
Approzimately Correct (PAC) bound (Valiant, [1984)):

Pr(IR() = Rs()| = &) <, (1.1)

where ¢ > 0 and § € [0,1]. ¢ is an upper bound on the probability that the true risk
deviates from at least € from its empirical value. Looking at this bound, an immediate
consequence is that the lower the value of €, the greater (i.e. the closer to 1) the value
of . Furthermore, the closer from 0 both ¢ and ¢ are, the more reliable our estimation is.
Such a bound is usually derived using concentration inequalities such as Hoeffding (Hoeffding,
1963) or McDiarmid (McDiarmid, [1989) inequalities. The bound can be rewritten as
a probabilistic bound of convergence from the empirical estimate to its mean (Vapnik and
Chervonenkis, [1982; Valiant, |1984])

R() — Rs(-)| < e(6,m),

where ¢ is the rate of confidence on the given bound and ¢ is a function of the rate of con-
fidence and a decreasing function on the number of training examples. Such a bound holds
with probability at least 1 — § and the aim is to build a function (-) with a high rate of
convergence.

In the following, we will see how we can build such generalization bounds and that their con-
vergence rate is often ~ O(In(m)//m) or even O(1/y/m). Some of the presented frameworks
will be used in our contribution in Chapter [3|

Uniform Deviation

As stated before, generalization bounds are based on the convergence of empirical quantities
to their means (Vapnik and Chervonenkis, [1971) and resort on the law of large numbers.
Intuitively, the larger our training set is, the closer the empirical risk will be to the expected
value, i.e.:

1 m

Ji o) = Bl b))
1=

The bound is said to be uniform because it holds for any hypothesis h € H.

To get such a bound when the size of H is finite, we need to estimate the probability of the
following event:

{222 ’Rf(h) - Rg(h)’ > e} .

The probability of such an event can be estimated using the Hoeffding inequality and the
Union bound. It leads to the following result.
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Theorem 1.1. [Uniform generalization bound] Let H be a set of hypotheses of finite size, S
a training sample of size m drawn i.i.d. from D, £ a loss function which takes its values in
[0,1] and 6 > 0. Then, for any h € H, with probability at least 1 — 0§, we have:

In [H| + In(2/6)

RY(h) < Rg(h) + \/ o .

When the space H is not finite, e.g. in the case of a set of linear classifiers in R? where
the parameters which define a linear separator belong to R%*!, we need another method to
measure the size or complexity of the set of hypotheses. A way to measure the complexity is
the VC-dimension, noted VC(#) and introduced by Vapnik and Chervonenkis (1971).

Definition 1.3. Let X = {x;}", denotes a set of m exzamples and let H be a set of hypotheses.
The VC-dimension of H, VC(H) is the largest value of m such that, for any labelization of
the set X, there is h € H which correctly classifies all the instances.

Roughly speaking, VC(H) measures the risk of overtfitting the data whatever the labels
assigned. It allows to bound the generalization performance given a set of hypotheses without
any information on the used algorithm.

Theorem 1.2. [Uniform generalization bound with VC-dimension] Let H be a set of hypothe-
ses of VC-dimension VC(H), S = {x;,yi}I"¢ a training sample of size m drawn i.i.d. from
D and ¢ a loss function which takes its values in [0,1] Then, for any hypothesis h € H and
for all 6 > 0, with probability at least 1 — §, we have

2m
VCH) (In | —=—— | +1) +In(4/6)
RY(R) < RE(h) + ( <VC(H)> > : (1.2)

m

Note that the bound uniformly converges to zero when the size of the training set grows.
The convergence is faster when the VC-dimension of H is small. However, the rate of con-
vergence of this bound is O(In(m)/+/m), so the rate of convergence is lower than previously
stated in Theorem Thus, one drawback of such a complexity measure is to decrease
the rate of convergence. Furthermore the VC-dimension remains hard to compute in general
except for simple families of hypotheses, such that linear classifiers, or decision trees (Asian
et al., [2009).

To overcome these limitations, we can resort to the Rademacher complexity.

Rademacher complexity

The Rademacher complexity (Bartlett and Mendelson, [2003; Koltchinskii and Panchenko,
2000) has been also introduced to measure the complexity of a set of hypotheses. Informally,
it measures how the set of hypotheses is able to fit noise in the dataset.
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Definition 1.4. [(Empirical) Rademacher complezity] Let H be a family of functions and
S = {xi}", a fized sample of size m. Then, the empirical Rademacher complexity of H with

respect to S is defined as:

1 m
Rg(H) =E [sup — oih(x;)] ,
)= [sup 1 3 o)
where 0 = (01,...,0m) is a vector of Rademacher random variables, i.e. random variables

taking values in {—1,+1} both with probability 1/2.
The Rademacher complezity is the expectation of the above quantity on the distribution D of
the data:

R(H) = E[Rs(H))

Note that a similar measure of complexity has been introduced by Bartlett and Mendelson
(2003) using Gaussian variables instead of Rademacher ones.
Using Definition we can derive the following generalization bound.

Theorem 1.3. Let H be a family of hypotheses, £ a loss function taking its values in [0, 1]
and S a training set of examples of size m. Then, for all § > 0 and for all h € H, with
probability at least 1 — §, we have:

RUR) < RE(R) + 2R (H) + \/1“(2%5), (1.3)

RUR) < R&(h) +2Rs(H) +3 n%‘s. (1.4)

—_
~—

Even if the first bound remains impossible to compute, the second can be evaluated
because it only depends on the dataset. Compared to the bound based on the VC-dimension,
we can note that the Rademacher complexity accounts the training examples, and it can lead
to a higher convergence rate in O(1/y/m).

Despite the validity of the previous bounds, (1.2)) to , for all hypotheses, both remain
impossible to compute in some cases and require a huge number of examples to be relevant.
Indeed, they do not take into account the learning algorithm A and its main properties and
thus lead to pessimistic bounds. The two following results present generalization guarantees
that take into account the learning algorithm A.

Uniform Stability

This framework is more recent (Bousquet and Elisseeff, [2002) and is not directly based on a
measure of complexity of the set of hypotheses. It resorts on the concept of stability. Roughly
speaking, an algorithm is stable if its output does not change significantly under a small
modification of the training sample. More precisely, we focus on uniform stability: we are
looking for the greatest modification in the loss function under a small modification of the

training sample. A more formal definition is given below.
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Figure 1.2: Bound on the true risk with with respect to the complexity of the set of hypothesis.

Definition 1.5. [Definition 6 (Bousquet and Elisseeff, 2002)] A learning algorithm A has a

uniform stability in % with respect to a loss function £ and parameter set 0, with 5 a positive

constant if:

VS, Vi, 1 <i<m, sup |[l(fg,x) — £(fgi,x)| < %,

where S is a learning sample of size m, g the model parameters learned from S, Ogi the
model parameters learned from the sample S* obtained by replacing the it" example x; from
S by another example X, independent from S and drawn from D. £(0s,%) is the loss suffered

atx.

The constant 8 depends on the properties of the loss function but also on the regularization
term of the minimization problem. The property of uniform stability has been shown to hold
for a wide range of minimization problems (Bousquet and Elisseeff, 2002). Using the convezity
of the loss function and the McDiarmid inequality we get the following generalization bound
with a rate of convergence in O(1/y/m).

Theorem 1.4. [Theorem 12 (Bousquet and Elisseeff, |2002)] Let 6 > 0 and m > 1. For any
algorithm with uniform stability B/m, using a loss function ¢ bounded by K, with probability

at least 1 — & over the random draw of S we have:

26

R'(05) < R(0s) + - + (48 + K) I 1/5

om

where R(-) is the true risk and Rg(-) its empirical estimate over S.

3Note that the authors also provide a definition of stability in which an example is removed. For the sake of
convenience, we rather use this definition throughout this thesis. Indeed, we keep the same number of training
instances from a set to another.
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The previous bound has a global convergence rate in O(1/y/m) and depends on two
parameters: [ the constant of uniform stability of the algorithm A and K an upper bound
on the loss function /.

This generalization bound is more informative in practice and both terms are easy to
compute. Moreover, compared to the two previous frameworks, it is consistent with the
practice in Machine Learning, i.e. it takes into account the regularization term which is often

used in the minimization problems. We will use this framework in Chapter

Algorithmic Robustness

In the previous framework, the authors derive generalization guarantees driven by the fact
that a small change in the training set implies a small modification of the loss function value.
The robustness framework states that if a test sample is “similar”, in a sense that should be
defined, to a training one then the test error is close to the training error (Xu and Mannor),
2010, 2012). The definition of robustness of an algorithm A is itself defined using the notion
of Covering numbers (A. N. Kolmogorov, 1959).

Definition 1.6. [Covering number (van der Vaart and Wellner, |1996)] Let (S, p) be a metric
space and U a subset of S. We say that U CU is an e—cover of U, if for all w € U, there is
@ € U such that p(u, @) < e. Then, the e—covering number of T' is defined by:

N(e,U,p) = min{|| : U is an e — cover of U}.

This definition aims to define a partition of a space Z, on which two examples are said
to be similar if they lie on the same partition of the space, i.e. if they share the same
characteristics (e.g. the labels in a context of classification). The notion of Covering number
is particularly relevant in the context of Machine Learning. We consider that the space Z is
bounded and closed and all the inputs consist of vectors of finite dimension. So the space Z
is compact, thus, its e—covering number is finite.

Using this definition, the authors proposed a definition of robustness of an algorithm.

Definition 1.7. [Algorithmic robustness (Xu and Mannor, |2010)] Let S be a training sam-
ple of examples drawn i.i.d. from D, { a loss function. An algorithm A is said to be
(k,e(S))—robust if the space Z can be partitioned into k € N disjoints set denoted K;,i =
1,...,k such that, two elements that belong in the same set K; have a distance lower than

£(S) according to £, i.e.
Vz €S, z,z € K; — ‘E(hg,z) - E(hg,z’)‘ <e(9),
where hg is an hypothesis learned from A with S.

In this definition we directly see that there is a link between the number of sets and the
“size” of the sets used for the partition. Note that the authors (see Definition 8 of Xu and
Mannor| (2010)) also proposed a definition of pseudo-robustness in case that the previous
condition does not hold for any training sample S.
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The definition of robustness leads to another generalization bound which has the same
rate of convergence as uniform stability.

Theorem 1.5. [Theorem 8 (Xu and Mannor, 2010)] Let S be a set of m training examples
drawn i.i.d. from Z and ¢ a loss function bounded by K. Let also A be an (k,e(S))—robust
algorithm and hg the hypothesis learned from A with S. For all 6 > 0, with probability at

least 1 — 0 we have:

RY(hs) < Rb(hg) +(S) + K\/Qk‘ln@) +2In(1/8)

m

Both robustness and uniform stability bounds rely on the deviations of the loss function
value between samples. The main difference is that uniform stability measures this deviation
by replacing (or removing) an example from the training set S while, in the definition of
robustness, this deviation is measured between an example and another lying in the same set
in the partition of Z.

In Theorem we see that a tradeoff has to be made between k the number of sets used
to partition the space and £(S) the covering number. he bounds based on robustness can be
applied to a larger class of functions than the one based on uniform stability. For instance,
the convexity of the loss is not required here. However, having a sufficiently small ¢(.S) im-
plies to have a large value of k, thus a precise enough partition of the space. It implies that
such bounds are looser than the ones based on stability and require more examples to be tight.

Now that the theoretical context has been presented, we present some fundamental algo-
rithms and loss functions currently used in Machine Learning and which will be used in this

thesis.

1.2 Learning Algorithms

In the previous section, the generalization bounds based on uniform deviation and Rademacher
complexity have been presented for a loss ¢ function taking its values in [0, 1], typically, the
0-1 loss, in the context of classification. However, as said before, such loss is hard to optimize
from an algorithmic point of view due to its non-convexity and non-differentiability. So, we
rather use some convex (and sometimes differentiable) relaxation, also called surrogate losses,
to learn our hypothesis h(-,-), where the two variables are respectively the parameters w of
the model and an input x. Both the 0-1 loss and some of its surrogates are presented in
Figure

Among these surrogates, the hinge loss is used when training a Support Vector Ma-
chine (Boser et al., |1992; |Vapnik and Cortes, |1995). The hinge loss is used in the context of
classification and is defined by:

th(x)y) = [ =yh(w,x)],,
= max(0,1 — yh(w,x)).
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Figure 1.3: Examples of loss functions used for classification tasks: the hinge loss (linked to
the SVM algorithm), the logisitic loss (used in for logistic regression) and the exponential loss
(used in the context of boosting).

Another well known surrogate loss function is the exponential loss which is widely used
in the context of boosting (Friedman et al., 2000):

((h(x),y) = exp(=yh(x)).

Compared to the hinge loss, the exponential loss gives a more important weight on the errors
and never equals 0.

Finally the logistic loss, used when training a logistic regression model (Mohri et al., 2012),
is defined by:

(A00.9) = gy (1 +exp(—yh(x)).

Note that this definition holds when y € {—1,1} and h(x) belongs in R or [—1,1]. There is
another definition if we focus on the probability of belonging to a class or an other, i.e. if
y € {0,1} and h(x) € [0, 1], such variant (Cox, 1958) is defined by:

((h(x),y) =yln(l+exp(—h(x)))"" + (1 —y)n (1 i+ expl(—h(X))> ‘

Now we present the different algorithms which will be used in this thesis. The k-Nearest
Neighbors algorithm is used in Chapters [3| and [4, a variant of the support vector machine is
used in both Chapter [3|and Chapter [5| The logistic regression is used in the experiments of
Chapter [5] and the decision-tree based algorithms are used in Chapter [6] Due to the context
of this thesis which focus on fraud anomaly detection, all these algorithms are presented in
the context of binary classification, i.e. when the output space ) is {—1,1}.

1.2.1 k-Nearest Neighbors

The k-Nearest Neighbors algorithm (Cover and Hart, [1967) is a non parametric method which
does not impose any assumption on the underlying distribution. To predict the label of a
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new instance x’, it computes the “distances” between the new query x’ and the set of samples
x; € S. Then, using a selected k value, it looks for the k nearest neighbors of x’ and predicts
the label of x’ using a majority vote. An example of the use of the k-NN algorithm is drawn
on Figure[1.4] It shows the importance of the choice of the k value to predict the label of a
new instance. We see on this example that the new point is closed to points of both classes,
that is why its prediction varies according to k. It is “red” when k is equal to 3 or 5. However,
if we consider k =9, it is predicted “blue”.
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Figure 1.4: Illustration of the k-NN using the euclidean distance. We show that the predicted
label depends on the value of k.

For small values of k, for instance when k£ = 1, the algorithm assigns to the new example
x’ the same label as the one of its closest data in the training set, i.e. similar examples shall
share the same label. Such a rule is the simplest one and it has been shown by |Cover and Hart
(1967), when m is large enough, that the error rate is no more than twice the bayesian error,
i.e. the smallest error we can achieve given the distribution of the data. Conversely, when we
increase the value of k we tend to smooth our decision. When £ is very large (typically when
k = m), the label given to a new data is no more than the majority class in the dataset.

It raises one important question: which value of k shall we take? In practice, we usually
use a cross validation procedure to choose the best k value.

The dimensionality d of the data and the choice of the distance are also important for
such an algorithm. Indeed, when we are dealing with high-dimensional data, some features
(or attributes) sometimes non informative can have a huge impact in the computation of the
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distance. This leads to a classification based on non relevant features and poor performances.
It is often referred as the curse of the dimensionality.

To overcome this issue, several refinement of the method exists, the most common and
the one that will be used in Chapter is a weighted k-Nearest Neighbors|Dudani (1976)). The
idea is simple and consists in assigning weights to all training examples. A standard weight
is the use of the inverse of the distance (Liu and Chawla, [2011)). By this way, we give less
importance to the examples that are far from the tested one. Another possibility is to learn
a new representation of the data by projecting the data in a (better) latent space (He and
Wang, |2008; |Weinberger and Saul, |2009).

One drawback of this algorithm is that it needs to store the entire dataset and to compute
all the distances to the training samples to predict the label of a new one. However, we
can reduce the computation time and size using approaches based on the triangle inequal-
ity (Elkan, 2003), or on structured segmentations (Bentley, 1975 or by selecting the most
relevant instances of the training set as in Condensed Nearest Neighbor (Hart, 1968)).

Let us now detail the Support Vector Machine.

1.2.2 Support Vector Machine

The Support Vector Machine algorithm (SVM) is probably one of the most known and used
classification algorithm in Machine Learning (Vapnik and Cortes, |1995|) for binary classifica-
tion.

The SVM algorithm outputs an hypothesis h which returns the label of an example x.
This hypothesis is an (affine) hyperplane which separates the space into two spaces. e.g.
{—1,+1} as follows:

-1 if ,X)+b <0,
h(x) = sign[{w,x) + b] = it {w,x)
+1 if (w,x)+b>0.

When the two classes can be perfectly seperated, there are several hyperplanes, i.e. several
values of (w,b), which can well separate the data. The idea developed by Boser et al. (1992)
is to choose the one that has the largest margin. In Figure the margin ~ is defined by the
distance between the hyperplanes of equation (w, x)+b = £p. Note that we can rewrite these
equations as (w,x) + b = +1 by a normalization of (w,b). Let us now consider the points
x_ and x4 which lie on the two hyperplanes as depicted in Figure[1.5] Each of these vectors
can be decomposed as x = xV + XWL, where xV is colinear to w and x%V is orthogonal to

w. These remarks lead to the following relations:

hxy) —hix-) = 2,
(w,xi) +b— ((w,x_) +b) = 2,
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Figure 1.5: Illustration of the SVM algorithm when the problem is not linearly separable.
The circled points are the support vectors. The dotted lines represent the hyperplanes of
equation (w,x) + b = +p and the distance between the two hyperplanes is equal to 7.

(W, XY+ (w,x¥ )+ b— (W, x™) + (w,x¥ ) +b) = 2,
<W,XY|_V> —(w,x%) = 2,
2(w,xY) = 2.

Therefore, taking the norm on both sides and using the definition of v leads to:

2
v HX+H2 [wll,

Thus, maximizing the margin is equivalent to minimizing W The minimization problem
w

is then:

1
min — ||wl|
(w,b)ERIHL 2

s.t. yi((w,x;) +0) > 1, foralli=1,..,m.

This version of SVM is called the hard margin SVM. However, in most of the real cases, the
two classes are not linearly separable (see Figure , and some points violate the constraint.
So we need to define a relaxation of the optimization problem in which the errors are taken
into account. These errors take the form of a vector of slack variables € = (&1, ..., &) and are
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included in the optimization problem:

. 1 C —m
ﬁeRm,I(I"lVIE)ERd-H 2 HwH2 + m Zi:l &
s.t. Z/z(<W,Xz> + b) > 1-— 51‘7 for all i = 17 ey, (15)

& =0, foralli=1,...,m.

In this formulation, we have to find a good compromise between the maximization of the
margin v and minimizing the number of errors by tuning the parameter C. If we take the
constraints into account, the optimization problem can be rewritten as follows:

m

1 C
i - — 1—y; ; bl, .
o el + m;[ yi((w, %)) +b],
However, such a problem is hard to optimize. When the dimension of the data is high,
the complexity is in general O(d®) (Chapelle, 2007). Thus, we usually solve what we call the
dual formulation of such a problem to improve the speed of convergence of the optimization

algorithm. We thus prefer to optimize the dual formulation given below:

max —% D it ey CiOGYiY XX+ Y0 i
st. 0< ;< % foralli=1,...,m, (1.6)
2it1 yici = 0.
The vector «c is the vector of Lagrangian variables. The way we get the dual problem is
fully described by Boyd and Vandenberghe (2004). The reader is also referred to Chapter

for a complete example. Note that the dual optimization problem is always a strictly concave
problem with respect to the dual variables. Thus, there exists one and only one solution.

If the dual formulation leads to an easier problem to solve when the number of data is
small, it does not solve the problem of non linear separability of the data. To tackle this
issue, we use what is commonly called the kernel trick. Instead of using the standard inner
product between two examples, we define a function K (-,-) which takes two vectors as input
and returns a real number. Such function K is called a kernel. We also denote by K its

associated matrix, that is (i) symmetric and (ii) positive semi-definite, i.e.:
(i) V (x,x') € R? x R%, we have: K(x,x') = K(x/,x),
(i) ¥ (xi,%;) € R? x R and V ¢ € RY, we have: ¢"Ke=Y1" ) Y7 cicj K (xi,%;) > 0.

These properties on the function (or matrix) K play a key role and lead to the following
result due to Mercer (Mercer, (1909)).

Theorem 1.6. [Mercer Theorem] Let X be a compact subset of R? and let K be a continuous

symmetric positive semi-definite function, i.e. a kernel. Then, there exists an orthonormal



36 Chapter 1. Preliminaries

basis of functions (®;)jen and a sequence (\j)jen, where X\j >0 for all j, such that:
K(x,x) =D 32;(x)®;(x) = (2(x), 2(x)),
j=1

where ®(x) = (VA P1(%), ..., /A P;(x),...) is the representation of X in a new space.

Thus, what we call the kernel trick is that there is no need to explicitly know the transfor-
mation ®, the knowledge of K is enough. Furthermore, it gives the possibility to project the
data in a higher dimensional space, called the latent space (possibly of infinite dimension) in

which the classes are linearly separable.

Introducing the kernel K, in the optimization problem leads to the following dual

formulation:

1
max  —5 >0 D jhy iy K (%, %) + 300 o,
st. 0<a; < —, foralli=1,...,m,
. m
> iy @i =0,
There exists a large number of kernel functions (see |Genton (2002) for a more complete

list of kernels) among which the most used are:
e Linear Kernel: K(x,x’) = (x,x’), which is the standard inner product.
Ix — x|

202
needs to be tuned. It controls the importance given to the similarity between two

e Gaussian Kernel: K(x,x') = exp— , where o is an hyper-parameter that
instances. The bigger this value is the less importance we give to two similar examples
and the more uniform is the role of each examples in the dataset.

However, regarding the dataset, there is no solution to determine which kernel is the most

appropriate to solve the classification task.

The next method belongs to the category of the Class Probability Estimator algorithms.
The objective is no more to predict a discrete label of a given example but its probability to

be in a certain class.

1.2.3 Logistic Regression

The Logistic Regression model, also called the logit model has been introduced in the middle
of the 20" century (Cox, [1958) but the use of logit models dates back to the end of the 19"
century (Cramer, [2003).

These models are close to SVM in the way that they also aim to learn a linear separator

between two classes. However, they differ since are used to estimate the probability that an
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example belongs to a given class, for instance the positive class: n = Pr(Y =1 | X). More
precisely, the logistic regression aims to compute the logarithm of the odds, i.e. the ratio of
the probabilities. Then we estimate the log of this ratio using a linear model:

Pry=1|=z)
. (Pr@ )

) = h(x) =b+ (x,w).

Thus, once the parameters of the model are learned, we can compute the probability of being
in class 1: exp(h(x))
Priy=1|z) = TT exp(h(x))
Such function is called a logistic function and takes its values in [0,1]. An example x; is
(usually) predicted in class 1 if Pr(y =1 | ) > 0.5, i.e. if h(x) > 0. Given a task and an
objective, we can choose to modify this threshold as we will see in the next chapter.
To estimate the parameters of the model, we maximize the likelihood of the data £(w, S),

where S is a set of m examples.

=1
= H Pr(Y =y | X =x;) x H PrY =y; | X = z;),
i=1,y,= i=1,y;=—1
1 1
B ﬁ ( 1 )2(1+yz) ( 1 >2(1yz)
- Ulireocne T+ oxp(h(x)) |

Note that we usually prefer to minimize the negative log-likelihood of the data. By doing

so, we find the logistic loss function introduced before. Therefore, the optimization problem
becomes:

) 1

min  —

w,bcRI+1 M

D “In (14 exp (—yi((w,x) +b))).
i=1

We divide the loss by a factor m in order to be consistent with the notion of empirical risk
previously defined. In order to avoid over-fitting, a regularization term of the form A ||w|| is

sometimes used. Thus, the optimization problem can be rewritten:

1 m
i - — In(1+exp(—y;((w,x;) +b Allw||.
I z; n (1 +exp (—yi((w,xi) +b))) + A [ w]

If SVMs and Logistic Regression models are similar geometrically speaking (they both
learn a hyperplane) and present similar regularized empirical risk, a closer look in the loss
functions shows that the Logistic Regression is sensitive to outliers in the data compared to
SVMs and thus can lead to completely different solutions. Indeed, the loss function associated
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to the Logistic Regression exponentially penalizes the errors.

The last algorithm we will present can be used for both regression and classification tasks.
It can return the probability of being of a given class, like the Logistic Regression or directly
assign the label as the SVM or the k-NN.

1.2.4 Decision Trees

Decision trees were introduced by |Quinlan (1986]) but the currently used version of Classifi-
cation and Regression Trees algorithm was well introduced by Breiman et al. (1984).

Decision trees consist of a series of rules that are successively applied to the dataset in
order to separate the data into two or more groups. Here, we will only focus on binary decision
trees, i.e. when a decision rule separates the data set in exactly two different sets.

The nature of the tree depends on the output space Y:
e when Y C R, we talk about regression tree,
e when Y = {—1, 1}, we talk about classification tree.

An example of classification tree is provided in Figure[1.6| with a toy dataset, in which we
aim to separate the two classes (male and female) using two descriptors (age and height) using
a set of rules. The initial dataset is composed of 4 females and 3 males. The first decision rule:
Age< 25 divides the initial dataset into two groups, one composed of two females and the
other one of 3 males and 2 females. The group on the left is pure and only contains females,
so we do not focus anymore on this one. Now, we apply a second decision rule: Height< 170
with which we are able to separate the remaining males and females.

Such an algorithm is able to (non linearly) separate a complex dataset when using a large
number of decision rules. To see how the decision rules are chosen, we define a criterion to

optimize.

For this purpose, we need two tools, a metric which evaluates the quality of a node and a
measure of improvement after a split, called the gain (Safavian and Landgrebe, 1991; Rokach
and Maimon, [2005).

The kind of used metrics depends on the type of tree we are dealing with. A list of such
metrics are provided by Rokach and Maimon (2005) among which:

e the Variance, used for regression trees:

where mpy denotes the number of examples in the node N and g the average value of

y; in the node.
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Age <25
Toy dataset

Yes | No
Age | Height | Sex | |
20 175 F
O @
40 175 M
28 172 M Height < 170
22 165 F
40 | 169 | F Yes | No
70 | 170 | F | |

CORCD

Figure 1.6: An example of classification tree.

e the Gini impurity used in classification tree. It measures the impurity of a node by
computing the proportion of each classes present in the node. For instance, in binary
classification H, the Gini impurity G of a node N is defined by:

Gy =Y pi(1—-pj)=2p(1-p), (1.7)
j=1,-1

where p; denotes the proportion of examples being in class j.

In the binary setting, the Gini impurity is a real value which belongs in [0,0.5]. A value
of 0 means that the node is pure, i.e. it contains only examples from one class. A value of
0.5 means that the node contains the same number of examples from both classes.

Let us now illustrate this notion. In the previous example (Figure [1.6) the Gini impurity

4 4 12
of the root is Groot = 2 X - —x = 1 while it is equal to 0 and % respectively on each

node after the first split. We have previously said that the node on the left was pure because
it contains only examples from one class. As this node is pure, its Gini Impurity can not be
improved.

The next step consists in choosing the optimal rule to split the dataset into two nodes.
This rule is chosen in order to minimize the Gini impurity at the end of the tree. For this
purpose, we define the Gini gain I' as follows:

[N |NR|
F = Gr — 7G 7G 5
oot (’NL +NR| Ny, + |N[ Ngr

L

“The definition can be extended to L classes and the Gini impurety is then defined by Gx = Zle p;i(1—pj),
where p; is the proportion of examples of class j in the node N.
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Figure 1.7: Illustration of the Gini Gain using the example presented in Figure [1.6] The
dotted green line represent the weighted sum of the Gini impurity of both nodes. The arrow

between the two dashed lines represents the Gini gain I'.

where Gy, and Gy, denote the Gini impurity of the node on the left, respectively on the
right.

Figure illustrates the use of the Gini impurity as a metric to build our decision tree
on the given example. The arrow between the two dashed lines represents the Gini gain I’
On this figure, we also see that the Gini function is concave. This concavity ensures the posi-
tiveness of the gain by the Jensen Inequality (Jensen, |1906) so that each split leads to a lower
classification error. Furthermore, at each step, we choose the feature and its corresponding
value which maximizes the gain I'. The decision rule is then applied and the node is separated

into two different nodes until getting pure leaves.

In practice, it is always possible to lead to such perfect leaves. However, building such
trees might tend to overfitting and bad performance in generalization. To overcome this issue,
we usually use a pruning strategy which can be controlled by parameters:

e the size/depth of the tree,

e the size of a node: minimum number of examples required in the node to make a new

split,
e the size of a leaf: minimum number of examples in both leaves after a split,
e a threshold on the gain: the minimum value of gain required to make a new split.

In the next section, we introduce the problematic of learning from imbalanced data.
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1.2.5 Behaviour toward Imbalanced Dataset

The previously presented algorithms work well when the two classes are balanced. However,
in some scenarios, the class of interest, such as a rare disease or fraudulent transactions, is less
represented. The over-represented class is called the majority class and the class of interest,
is called the minority class. We denote by p the number of examples in the minority class
and n the number of examples in the majority class. Two different metrics are usually used
to measure the imbalance in a dataset (or distribution): the Imbalance Ratio (I.R.) (Garcia
et al.l [2012) which is the number of positives over the number of negatives. Sometimes we
also use the rate of minority class examples to measure the disequilibrium in the data.

Imbalance Ratio = ™ and Minority Rate = .
p n-+p

In the following, we focus on two of the previously presented algorithms: a linear SVM
and the k-Nearest Neighbors algorithm. We aim to show how they perform on imbalanced
data. For this purpose, we consider the Sonar datase on which a PCA was applied to get
a representation in a 2-dimensional space. The true rate of minority examples in the dataset
is close to 46%. Thus, to reach a rate of 50% we have simply removed examples from the
majority class. After that, in order to decrease the rate of minority examples to respectively
35% and 20%, we remove examples from the minority class.

We represent the obtained classifiers on Figure We note first that, for both algorithms,
the classification error is decreasing at test time as the imbalance ratio increases. At a first
glance, minimizing the classification error (or a surrogate loss function) seems to be well
adapted to adress this issue. However if we focus on the left of Figure we note that the
linear SVM is predicting all the examples as negative, represented by the blue area, when the
rate of minority examples is less than 35%. So even if the error rate is low, the algorithm is
no more able to capture the minority class.

This comment also holds for the k-NN algorithm represented on the right of Figure
It struggles to detect examples from the minority class. As the number of minority exam-
ples decreases, the decision boundaries around the positives are drastically decreasing, so the
probability of being predicted positive becomes lower and lower.

5This dataset is available from the UCI repository: https://archive.ics.uci.edu/ml/index.php
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Algorithm: LinearSVm
Train Accuracy 57.14%, Test Accuracy 51.55%, Rate of Minority Examples 50.00%
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Algorithm: K-NN
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Algorithm: K-NN
Train Accuracy 100.00%, Test Accuracy 75.71%, Rate of Minority Examples 20.00%
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Figure 1.8: Hlustration of the decision surfaces of two standard classification algorithms: an
SVM on the left and the k—NN algorithm, with k£ = 3, on the right. We draw the decision
areas with respect to the rate of minority examples in the dataset: 50%, 35% and 20%
respectively. The minority class is represented in red and the majority one in blue.



Chapter 2
Learning from Imbalanced Data

Abstract

Learning from Imbalanced data is one of the most problematic issue when one aims
to deal with fraud and anomaly detection. Learning a classifier, in such a context leads
to neglect the minority class, which is the class of interest for the user. There are several
complementary solutions usable at different stages of the learning process, to address this
problem. They can be used during a pre-process with the main goal to balance the data
with sampling strategies. They can be used during the optimization of the model by
resorting to alternative loss functions, better suited than the classification error.

2.1 Introduction

In the previous chapter, we have introduced the problem of learning from imbalanced data
with toy examples. Imbalance often occurs when we aim to detect frauds or anomalies, i.e.
rare events in a collection of data.

In this first section, we define the problem of fraud and anomaly detection in the binary
classification settin We also present several applications where this kind of problem occurs.

2.1.1 Anomaly versus Fraud Detection

In the literature (Aggarwal, 2017), an anomaly is often considered as an outlier, i.e. an in-
stance which behavior deviates from the normality. From a statistical point of view, anoma-
lies can be seen as events that rarely occur, i.e. they lie in the tail of the distribution of the
data (Aggarwal, 2017; Phua et al., [2010) or far from the main clusters (Chawla and Gionis,
2013).

While anomalies can be considered as abnormal cases, it is often harder to detect a fraud
in the due to their similarity to a genuine behavior. For instance, in bank fraud detection, it

is harder to say if a transaction is a genuine one or not by just looking at the attributes that

!Note that the problem of imbalance also exists in a regression setting (Torgo et al., 2013, 2014; [Branco
et al., 2016).

43
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describe the transaction. We need experts to understand why the transaction is fraudulent
or even to be sure that a transaction is so. Indeed, a fraudster tries to behave as a normal
customer and to hide himself behind any other normal behavior. This is the reason why
frauds can occurs anywhere in the distribution of the data, unlike anomalies.

In bank fraud detection, the fraud can sometimes be easily detected when the fraudster
uses a stolen credit card several times in a small window of time. In this case, the fraud can
be described as a repeated and unusual event. But it is not always that simple.

As for anomalies, frauds are also rare events. But in some industrial contexts, such as
bank fraud detection, the rate of frauds can be close to 0.1% as for the data handled by the
Blitz company. The problem becomes much more complex than detecting anomalies.

Finally, unlike anomalies, frauds evolve with time. This is called concept drift (Wang
et al., 2003; |Dal Pozzolo et al. 2015). The fraudsters change their behavior to not be caught
and to adapt to the ongoing detection technique Therefore, the learned model has to be able
to detect a change in the behavior of the fraudsters.

To sum up, a fraud can be described as:

e an unusual event that occurs a very small amount of times,
e it can “uniformly” appears in the feature space,

e its characteristics are context dependent,

e it evolves with time.

2.1.2 A Wide Range of Applications in Fraud Detection

Imbalanced learning and fraud detection are present in many industrial problems.

A first example is the network security when dealing with intrusion detection (Kou et al.,
2004). The principle is to detect unauthorized persons who are (or at least try to be) connected
to a secured server in order to have access to confidential information. It can lead to a leak
of sensitive data, theft of industrial processes or suppression of important information for
a company. Such intrusions can be detected by monitoring the different computers which
have access to a given server. In the same area, the detection of fraudulent emails is also
a challenging task in fraud detection (Nizamani et al.| 2014). The fraudsters tend to lure a
person by sending an email that has a similar format than the one sent by the administrations.

Credit card fraud detection is maybe one of the most active domain, due to the amount
of money this type of fraud represents (Abdallah et al., [2016]). There are multiple credit card
frauds: it can be the use of a stolen credit card, the use of a counterfeit credit card or simply
the use of a card for which the identifier have been stolen (Bolton et al., [2001). Nowadays,
fraud is also reaching e-commerce new ways of payment as mobile phones. In this thesis, we
focus on check fraud detection which consists in using false checks to pay expensive products.
The fraudsters modify the information of real checks to produce false ones by changing the

series of numbers that identify the check.
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Predicted positive Predicted negative

(h(x) =1) (h(x) = 0)

Actual positive L )
True Positive (TP) | False Negative (FN)

(y=1)
Actual ti
¢ u(a neg)a ¢ | False Positive (TP) | True Negative (TN)
y =

Table 2.1: Confusion matrix for a binary classification task. The label is denoted by y and
the prediction by h(x).

There are several other domains in which the fraud detection is useful such as health
care insurance (Schiller, 2006) or automobile insurance (Artis et al.,[2002). The problem also
occurs in telecommunications (Shawe-Taylor et al., [1999) where a fraudster can subscribe to
a service for which he has no intention to pay or by taking a legitimate account that will be
used to make some calls which cannot be identified by the owner of the account and which
leads to costs (Yusoff et al., |2013). Another type of fraud is the fake news. We refer the
interested reader to |Abdallah et al. (2016)); |Chandola et al. (2009)); Aggarwal (2017); Kou

et al. (2004) for a more complete survey on the the fraud detection applications.

2.2 Performance Measures

In this section, we present different metrics or performance measures that are suited in a
binary imbalanced learning context. However, they can easily be extended to the multi-class
setting as it is shown in Appendix [A.

In imbalanced settings, we are not only interested in knowing whether the algorithm is
making a mistake or not. We also need to focus on the particular classes on which the mistakes
are made (see Table [2.1).

An example from the minority class predicted positive by the learned model is said to
be a True Positive (TP). If it is miss-classified it is called a False Negative (FN). Similarly,
for the majority class, a well classified example is called a True Negative (TN) and a False
Positive (FP) otherwise.

The most common performance metric used to evaluate an algorithm is the Accuracy, also
known as the complementary of the error rate. Using the notations of Table they are

defined as:

TP+TN FP+FN
Accuracy = EE Al and Error rate = L
m m

Let us consider a dataset in which we only have 1% of positive data. A simple way to
achieve a high accuracy (or a low error rate) is to predict all the instances as negative. In such
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a case, the performance of our classifier h is equal to 99%. At a first glance, we have learned a
hypothesis A which is able to perform well on our dataset. However, it has completely missed
all the interesting information and the class of interest for the user.

To overcome this issue, we need to use another performance measure which takes into
account the capacity of the predicted model h to capture the minority class. The Sensivity,
also known as Recall is defined as:

TP

Recall = m

By definition, the Recall returns the percentage of examples in the class of interest the model
is able to capture. The higher this value (i.e. the closer to 1), the more examples in the
minority class are retrieved. By measuring how a model is able to detect the examples that
belong to the minority class, the Recall seems to be a good candidate for a performance
measure to use in imbalanced scenarios. In the context of the thesis, having a high recall very
often involves refusing the transaction of most of the customers even if it is a genuine one.
It can lead to huge marketing impacts by losing customers for which the payment has been
refused. We also need to take into account how precise the model is in making decisions. The
Precision, also called Positive Predictive Value, is defined as:

TP

Precision = m

The Precision measures how a hypothesis h performs on the example predicted positive.
Other performance measures (Branco et al., 2016; Umberger et al., [2017; Konukoglu and

Ganz, 2014) based on the classification made by h are given below:

TN FN
True Negative Rate = m, False Negative Rate = mv

P TN
False Positive Rate = TPL TN Negative Predictive Value = TN+ FN'

Such measures can be seen as complementary to the Precision and Recall. As shown
before, the metric used depends on the user preference (Torgo and Ribeiro, 2007; |Torgo
and Lopes, 2011). For instance the True Negative Rate (also known as specificity) is the
complementary of the False Positive Rate, since that the sum of these two quantities is equal
to the number of negative examples in the dataset.

In check fraud detection, we have seen that it is important to take into account both the
precision and the recall of the model of the model This is the goal of the F-measure introduced
in the seventies (Rijsbergen, [1979).

2.2.1 F-measure

The F-measure is a good performance measure when a user wants to focus on the behavior
of a model on a minority class. It is highly used in information retrieval (Sanderson, |1994)



2.2. Performance Measures 47

Graph of the F-measure for B =1
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Figure 2.1: Illustration of the F-measure with 50 positive instances and 500 negative instances.
The axes represent respectively: FN, FP and the value of the F-measure.

and obviously in Fraud and Anomaly Detection (Gee, 2014} Bahnsen et al., [2014; Bolton and|
2002)). It is defined as the harmonic mean of the Precision and the Recall and depends

on a parameter [3:

7 (1 + B%)Precision x Recall (1+8%)1P B (14 B%)(P - FN)
P~ 732 x Precision + Recall (1482 TP+ B2FN+FP (1+B%)TP+ 32FN + FP’

An illustration of the F-measure is given in Figure [2.1] The F-measure is a flexible
measure. By modifying the 8 value, the user is able to control the importance of either the
Precision or the Recall. If § = 1 the same weight is given to both Precision and Recall. If
the user wants to give more importance to the recall, he can choose a value of 3 greater than
one. By choosing 8 < 1, he will give more importance to the precision.

Let us take an example of a sample of 1000 instances in which the minority class represents
1% of the data. So we have 10 positive examples for 990 negative ones. Let us also consider
two hypothesis, hy and hs, which have the following confusion matrices:

Predicted positive | Predicted negative

h1  Actual positive TP =3 FN7
Actual negative FP=0 TN = 990
Predicted positive | Predicted negative
ha  Actual positive TP =9 FN=1
Actual negative FP =3 TN = 987

Both of these classifiers have an error rate less than 1%. The first classifier, hy has a

Precision equal to 1 and a Recall equal to 0.3 while for the second classifier hs, these two
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values are respectively equal to 0.75 and 0.9. These two classifiers lead to completely different
F-measures (with 8 = 1): 0.46 for the first hypothesis and 0.82 for the second one. Despite
the high precision reached by the first classifier (equal to 1), the F-measure remains lower
than the one achieved by the hypothesis ho.

Compared to the Accuracy and despite how useful such a measure can be in imbalanced
scenarios, it remains hard to optimize. The F-measure presents two main drawbacks: (i) it is
non-linear and (ii) non convex, as depicted on Figure Because of (i), it is hard to derive
generalization guarantees for such a measure. Furthermore, we can not use standard gradient
descent algorithms to optimize it. Because of (ii), an optimization algorithm can fall into
local optima that might be far from the optimal solution. However, the literature is rich of
studies and algorithms which aim to deal with such a task (Zhao et al., 2013; Busa-Fekete
et al., [2015). A more complete state of the art is provided in Chapter [5|as the objective is to

provide a new algorithm to optimize the F-measure.

2.2.2 Other Performance Measures

The Class Weighted Accuracy, noted CW A and proposed by |Cohen et al. (2006) is similar
to the F-measure. However, it does not take into account the Precision anymore but the
Specificity instead, which is directly linked to the Precision of the model. It is expressed as a
convex combination of both Sensitivity (i.e. the Recall) and Specificity , i.e. for any o € [0, 1]
it can be expressed as:

CW A = «a x Sensitivity + (1 — «) x Specificity.

As for the S parameter of the F-measure, the user can also choose the value of the
parameter a.

Another evaluation metric used in imbalanced scenarios is the G-mean measure. As for
the Class Weighted Accuracy, its expression depends on both Sensitivity and Specificity. It
is the square root of the product of these two quantities:

G-mean = \/ Specificity x Sensitivity.

This measure is used in imbalanced scenarios because it takes into account the information
on both classes but gives the same importance to each class.

A last popular evaluation metric used in imbalanced scenarios is the AU ROC (Metz, 1978;
Hanley and McNeil, |1982; Cortes and Mohri, |2004)), the“Area Under the Receiver Operating
Curve”. This metric is used when the learned model returns a score, such as a confidence in
a given prediction. The training examples can be ranked according to this score and a curve
which plots the Recall according to the False Positive Rate is drawn using the different scores
obtained by the model (see Figure . The closer to 1 the value of the AUC is, the better
the model is.
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Figure 2.2: ROC and AU ROC for two different classifiers. The classifier associated to the

red curve achieves a larger AUC than the blue one.

Compared to the previous measures, the AU ROC allows us to can visualize the perfor-
mance of the model. Furthermore, it is usually used to choose the appropriate threshold
for the given task. It also gives the possibility to plot several models on a single graph and
choose the one best suited for a given purpose. The ideal model is the one that achieves a
True Positive Rate equal to 1 while the False Positive Rate remains close to 0, i.e. when all
the examples of the minority class have a greater score than the examples of the majority
class.

There exist other measures used in imbalanced scenarios, such as the Average Precision,
the H-measure or the Precision-Recall curve to cite a few (Frery et al., 2017; [Ferri et al.,[2009;
Jeni et al., 2013; |Branco et al., [2016; Behl et al., 2014)).

A complementary solution to overcome the issues related to imbalance learning consists in
balancing the dataset during a pre-process. We review in the next section the main strategies.

2.3 Pre-Processing

To avoid imbalanced situation, we can modify the distribution of the two classes using sam-
pling methods (Garcia and He, |2008)). This is maybe one of the most used solutions in such
a context (Chawla et al.,|2004). The main question is thus: How do we have to modify the
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dataset to improve the performance of the future used algorithm?

The sampling of the data is performed either by replicating and removing some examples
or creating new ones in an appropriate manner. The simplest procedure consists in doing this
in a random way (Chawla et al.,2004)), but several algorithms were also developed to focus on
specific regions of the feature space (Dittman et al.,|2014). Another method to “artificially”
balance the two classes is to assign different costs to the two classes. In this case, we talk
about Cost Sensitive Learning and it is related to what we will introduce in Section [2.3.3]

2.3.1 Undersampling Strategies

Assuming that information is redundant (Estabrooks et al., |2004)), a first way to reduce the
disequilibrium is to remove examples from the majority class. To get rid of this redundancy,
one can randomly discard examples from the majority class. This method is called Random
Undersampling (More,, 2016). It presents one interesting advantage: by reducing the number
of negative examples, the time required to learn a model also decreases. Other strategies
called directed under-sampling were developed to control the data removed from the dataset.
A first directed method has been introduced by Hart in 1968 for the Nearest Neighbor algo-
rithm (Hart, [1968]). It is called the Condensed Nearest Neighbor (CNN). Initially, this method
was designed to reduce the storage of training examples for the k-NN algorithm. However,
it can also be seen as an under-sampling strategy for the same reasons. The idea of this
strategy is to take a subset of the training data which contains all the training examples from
the minority class and a subpart of the instances from the majority class. Using this subset,
we classify instances from the whole training set using a 1-NN rule and remove examples that
are far from the decision boundaries i.e. not useful for the classification. However, this greedy
strategy is not stable and depends on the initial chosen sample. Furthermore, we have no
guarantee to converge towards the smallest meaningful subset.

Few years later, Ivan Tomek has proposed two modifications of the Condensed Nearest
Neighbor algorithm, one of which is called Tomek link (Tomek, 1976). To choose how to
remove examples from the training set, we consider two instances which do not belong to
the same class. They are said to form a Tomek Link if it does not exist any other examples
that are closer to the ones considered. In this case, the two examples are considered as
borderline instances and, in order to improve the decision frontier between the two classes,
the two examples can be removed from the training set. This method can also be used as an
under-sampling method by only removing instances from the majority class.

Other cleaning methods such as Edited Nearest Neighbor (ENN) introduced by Wilson
(1972) follow the same principle and aim to remove examples from the majority class for
which the label differs from its k-nearest neighbor. Another similar one, based on ENN is
called Neighberhood Cleaning Rule (NCL) (Laurikkala, 2001).

Finally, let us cite two methods which combine the previous mentioned ones: One Sided
Selection (Kubat et al.,|1997)) which results from the combination of the successive application
of Tomek Link and the Condensed Nearest Neighbor algorithm. The other one consists in
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Figure 2.3: Hlustration of some undersampling strategies: the top left plot is the original
dataset with 200 instances among which 10% belong to the minority class. The other figures
show respectively the results of the random under-sampling strategy, the Condensed Nearest
Neighbor and Tomek Link strategies. Positive instances are depicted in blue and the negative
ones in red.

applying CNN first followed by Tomek Link (del Jesus et al., [2006) The latter is preferred
to the former because it is less computationally expensive when one is dealing with a large
training set.

In Figure we illustrate on a toy dataset the behavior of some of the under-sampling
strategies. We note that the CNN procedure has removed a large number of examples from
the majority class. On the other hand, due to the sparsity of the minority class in the dataset,
we were not able to remove a lot of examples from the majority class using the Tomek Link
Procedure.

2.3.2 Oversampling Strategies

Another way to balance the two classes by avoiding loosing to much majority class information
is to increase the number of examples in the minority class. As for under-sampling methods,
we can do it by randomly selecting the examples we want to duplicate. Directed oversampling
strategies have been also developed to duplicate or create instances in the appropriate parts
of the feature space.
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The most popular one in the community is the SMOTE algorithm, i.e. the Synthetic
Minority Oversampling Technique (Chawla et al., [2002). This algorithm, presented in Algo-
rithm[2] uses the k nearest-neighbors belonging to the minority class to create a new one. One
of the nearest neighbor of the considered example is randomly selected and a new instance is
then created on the line (or the hyper-cube) between the considered example and the selected

nearest neighbor.

Algorithm 2: SMOTE Algorithm.
Input: A training sample S with P positive and N negative examples.

Input: k: number of nearest neighbors to consider.
Input: R: rate of minority (positive) example to SMOTE.

Set New = R x P: the number of synthetic instances Syn to be created.
Select randomly New instances among P and note setind their indexes
for all i in setind do
search the k nearest-neighbor of x;
consider P;, the i-th positive, and select randomly one of its nearest neighbors denoted
by NN;.
for all attributes attr of P, do
choose a number « € [0, 1]
set newattr = aP;lattr] + (1 — o) N N;[attr]
set Syn;[attr] = newattr
end for
end for
Output: A training sample S’ with S’ = S U Syn

This method has been shown to be more efficient than the standard random oversampling
one (Chawla et al., 2002). In this version, the procedure can be applied to any example in
the minority class, even if adding information is not necessary while this can be interesting

for borderline instances.

A variant of SMOTE algorithm called Border SMOTE proposed by Han et al. (2005)
tries to focus on borderline instances in the minority class by first detecting the“unsafe”
examples, i.e. for which a large enough number of its k—nearest neighbors belong to the
majority class. For these instances, a SMOTE algorithm is applied to force the algorithm
to capture the minority example in this region of the space. Meanwhile, if the number of
nearest neighbors in the majority class of the studied instances is small, nothing is done.
Following the same idea of generating data in appropriate regions of the space, Safe Level
SMOTE (Bunkhumpornpat et al., 2009) was developed. It can be considered as a smoother
version of Border SMOTE because the number of synthetic data generated depends on the
safe level of the minority examples where the safe level is the rate of minority examples among
the k—nearest neighbors. The safer an example is the more synthetic data are generated. For
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Figure 2.4: Illustration of two oversampling strategies: the first figure shows the original
2D dataset with 200 instances among which 10% belong to the minority class. The two
other figures represent the dataset respectively after applying the SMOTE and ADASYN
procedures.

an exhaustive list of the SMOTE based algorithms, the interested reader is referred to a recent
review done by Chawla et al. (Ferndndez et al., [2018). Among them, ADASYN (He et al.,
2008)) is very similar to SMOTE, as shown in Figure The difference lies in the use of a
distribution to automatically decide the number of synthetic data that has to be generated
for a given minority example.

In Chapter we will compare these sampling strategies and the k-Nearest Neighbor
algorithms to our Corrected Nearest Neighbor Algorithm.

Oversampling strategies can also be combined to under-sampling ones. Usually, SMOTE
is combined with either ENN or Tomek Link (Batista et al., [2003).

A last way to re-balance the two classes is to assign costs on each class. We talk about

cost-sensitive Learning.

2.3.3 Cost-Sensitive Learning

In most Machine Learning algorithms, when an example is miss-classified, the error suffered
by the classifier is counted 1, and 0 otherwise. However, let us take the bank fraud detection
problem. In this specific filed of application, it might be interesting to penalize the hypothesis
according to the nature of the errors.

This penalization can be applied either at the transaction level, where a weight is assigned
with respect to the amount of money involved (Bahnsen et al., |2013; |Correa Bahnsen et al.|
2017), or at class level, by taking into accounts, e.g. the potential dissatisfaction of the
customers whose transaction has been rejected. (i.e. false positives). This second boils down
to filling in the cost matrix presented in Table

This idea is called cost-sensitive learning that received much attention since the seminal
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Predicted positive | Predicted negative

(h(x) =1) (h(x) = 0)

Actual positive crp CEFN

Actual negative crp CTN

Table 2.2: Cost matrix for a binary classification task.

paper of Elkan (2001). Compared to sampling strategies, cost-sensitive methods do not
remove information (like undersampling) nor add new (potentially noisy) information (like
oversampling).

Furthermore, the meaning behind the given weights can be directed by the target appli-
cation and provided by the expert of the domain (Bahnsen et al., 2013).

On the other hand, [Liu and Zhou (2006) have studied the effect of the cost values when
they are assigned to the classes. They have shown that these weigths have to be asymmetric
to perform well. A study has been conducted to determine if the sampling methods perform
better than cost-sensitive ones (Lépez et al., [2012). The authors conclude that, in average,
one method is not better than the other and that the problem depends on the structure of
the data.

We will show how cost-sensitive methods can be used to improve the retailers benefits
in Chapter [6] of this thesis, by assigning costs that are example dependent. We will also
show that these methods can be used for theoretical studies. As we will see in Chapter
maximizing some complex performance measures can lead to cost-sensitive learning. This
is the case for all linear fractional performance measures such as the F-measure (Boyd and
Vandenberghe, [2004; Narasimhan et al., 2015b; [Parambath et al., [2014)).

2.4 Algorithms for Learning in Imbalanced Settings

In the previous section, we focused on how to prepare the data in imbalanced settings. We
will now focus on the different types of algorithms we can use to tackle the imbalance problem.

Due to the presented contributions in this manuscript, we will focus on SVM, Boosting
and Tree-based methods. Section gives a brief over-review on other types of algorithms.

2.4.1 SVM-based Methods

We have already seen the linear SVMs are not directly suited for imbalanced learning since
they are biased toward the majority class when the imbalance ratio is increasing in the dataset.
However, the SVM algorithm has hyperparameters that can be modified, or tuned, to achieve
our goal, such as the margin as proposed by [Yang et al.| (2009). It aims to reduce the bias and
refine the decision boundary for nonlinear SVMs. In fact, due to the simplicity of the linear
SVM and the complexity of the data in imbalanced scenarios, it has been shown that they
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poorly perform and, by introducing non linearity, i.e. using a kernel (Akbani et al., 2004), we
get better result in this context.

However, we still face the same problem: all the loss function used to train the model
are based on the accuracy. In (Morik et al., [1999; Wu and Srihari, 2003} |[Bach et al., 2006;
Masnadi-Shirazi and Vasconcelos, [2010)), the authors proposed to combine the power of cost-
sensitive learning and the nonlinear SVMs to improve their performances. It is done by
optimizing a different loss function which gives asymmetric weights to each class:

R
g}})g §HWH + ct Zi\y,-:l & —c— Zz’lyi:—l &,
st y(wWwld(x)+b) >1—x;, Vi=1,2..m,

>0 Vi=1,2,..,m,

where ¢4 and c_ are the weights given to the positive and negative classes respectively.

By this way, the authors can constrain the learned model to focus more on minority examples.

In Tang et al.| (2009) and [Wang et al. (2012), the authors propose a more sophisticated
strategy. They both combine several pre-processing methods together, by assigning different
weights to both classes and using sampling methods such as SMOTE or Tomek Link to bal-
ance the two classes. In |Thai-Nghe et al. (2010), the authors go a little further by proposing
a procedure to choose the assigned costs.

Another type of SVM-based method used in imbalanced scenarios is the Fuzzy SVM ([Lin
and Wang, |2002). In standard SVM, all the points from the training equally contribute to
the learned decision boundary. The fuzzy property assumes that all the examples do not have
the same importance. This importance is introduced by adding a parameter s; on the slack
variables of the i—th example which translates the role played by the instance. The Fuzzy
SVMs can be made less sensitive to outliers, but they still poorly perform on imbalanced
data (Batuwita and Palade, 2013).

To overcome this issue Batuwita and Palade (2010), proposed to combine the fuzzy SVM
with a cost sensitive approach. The value of the fuzzy parameter s; becomes a parameter of
the imbalance ratio in order to delete the effect of the imbalance. Furthermore, this value
also depends on the distance of the example from the center of its class, i.e. the closer the
example is from the center of the class, the higher the fuzzy parameter is. This idea is based
on the assumption that examples that are close to the center from an important cluster of

same class instances.

Note there also exists an unsupervised version of the SVM algorithm called One class
Support Vector Machine (OCSVM) (Scholkopf and Smola, 2001) which has been studied for
anomaly detection. OCSVM does not use the label of the data anymore. The formulation of
the optimization changes in the following form:
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where the parameter p is the margin and v replaces the parameter C. In this formulation,
the parameter v is an upper bound on the fraction of outliers and a lower bound on the
fraction of support vectors (Scholkopf and Smola, 2001)). Basically, the OCSVM tries, in the
feature space induced by the transformation ®, to find a hyper-plane with the largest margin
for which, at most a fraction v of the training data lies under the hyper-plane. OCSVM
has been used for document classification (Manevitz and Yousef, 2001) and in computer
security (Heller et al., 2003]). Variants of OCSVM have been proposed to improve their per-
formance in anomaly detection, among which n—one class SVM (Amer et al., 2013) in which
the idea is to give less importance to the outliers that lie on the learned decision boundary.
This is done by introducing a variable which estimates the “normality” of a point.

2.4.2 Boosting

Boosting has also been shown to be a good candidate to address imbalanced problems. Boost-
ing is an ensemble method which combines the diversity of weak classifiers into a single and
strong classifier able to have better performance.

In practice, a weak classifier is a hypothesis h which achieves a slightly better performance
than random guessing. A well-known boosting algorithm of boosting is Adaboost (Freund

et al., [1999; Réatsch et al., 2001) which iteratively focuses on hard examples. More formally,
(0)

at the first stage, all the examples have the same weights w;, © = 1/m. Let us now assume

that j — 1 iterations were done so the examples have a weight equal to ng U and a classifier
h() is learned. The classification error €U) is then evaluate and used to update the weights

of the training sample using an exponential function as follows:

o) = log (1 ;(g”) and w@(j) _ ng1)exp(_a(JZ)(yj§h(])(Xi))’

where ZU) is a constant of normalization and a'9) is a weight assigned to the hypothesis A7)
which directly depends on its performance. The weighted function gives more weight to the
miss-classified examples and a new hypothesis is learned from this new distribution. The final
model is defined by F(-) = Zf:o BBk () and the sign of F(x;) is used to predict the label
of the example. This algorithm has been used to improve linear models and is also used for
imbalanced learning (Fan et al., [1999; Wang and Japkowicz, [2010)). In order to tackle the
imbalance issue, the authors combine this method with a cost-sensitive learning scheme, such
that the way the examples are re-weighted also depends on the class weights.
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2.4.3 Tree-Based Methods

Compared to SVM, Tree-based algorithms are able to directly introduce non linearity in
the learned model by partitioning the space according to the features. Decision trees are
often used in the context of imbalanced data (Cieslak and Chawla, |2008; [Parvin et al., [2013;
Correa Bahnsen et al., 2017) because they are (i) easier to learn and so suitable to deal with
large datasets, and (ii) interpretable (each path of the tree can be seen as a knowledge rule).

In decision tree learning, one has to set a number of hyper-parameters: the depth, the
number of examples in the leaves, a threshold, etc ... . These hyper-parameters are crucial
to avoid the main drawback of decision trees: the over-fitting phenomenon. This situation is
usually met when the minority examples are rare or isolated: some of the leaves will contain
at most one or two minority examples and the class boundaries will be too small so that new
minority examples will rarely fall into these leaves. To improve decision tree algorithms, the
use of hybrid approaches (Galar et al., [2012)) is widespread in the community. It consists
in mixing a sampling strategy or a cost-sensitive method with a learning algorithm (Lomax
and Vadera), 2013). By using a sampling strategy, the algorithm is able to focus on minority
examples even if they lie among a dense set of majority examples.

If a model over-fits, it will present a large variance during the test phase on multiple
datasets. A first way to reduce the variance of the model is to combine several decision trees
together where each of them is learned with a different sub-sample of the training set. This
ensemble approach is called the bagging and the use of bagging with decision trees leads to
the Random Forest (RF) algorithm (Breiman, [2001)).

In the RF algorithm, each tree t; is built using a sub-sample Si of the training set,
obtained by sampling strategies without replacement or by bootstrap. Each tree is built
independently which makes this algorithm even more useful in practice, due to its ability to
be performed in parallel (Khoshgoftaar et al., [2007)). In its original version, a majority vote
F(x;) is then made between the trees to predict the label of a new income x; where each tree
has the same weight in the final prediction:

T
F(xi)=> tu(xi).
k=1

The use of a random forest leads to more stable results, by avoiding the over-fitting
phenomenon. A variant of random forests consists in giving different weights to the trees
according to their performance or by learning the weights of each predictors in order to
improve the final decision (Zenko et al., 2001). The weights a* are learned in order to
optimize a loss function £ such that:

T
o = argmin E[¢{(F(x),y)] where F(x)= Z agtp(x).
acRT k=1

A very efficient method consists in combining decision trees with boosting. This led to
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the famous Gradient Boosting (Friedman, [2000)).

Gradient boosting has been shown to be very efficient to deal with classification problems,
and a very good candidate to address issues due to imbalanced data (Beygelzimer et al.,
2015; |Li et al., 2007). Unlike the well-known Adaboost algorithm (Freund and Schapire,
1999), gradient boosting performs an optimization in the function space rather than in the
parameter space. At each iteration, a weak learner fi is learned using the residuals (or the
errors) obtained by the linear combination of the previous models. The linear combination
F}, at time k is defined as follows:

Fy, = Fy—1 + o f, (2.1)

where Fj_q is the linear combination of the first £k — 1 models and «ay, is the weight given to
the k' weak learner. The weak learners are trained on the residuals r; = y; — F;_1(x;) of
the current model. These residuals are given by the negative gradient, —g;, of the used loss
function L with respect to the current prediction Fi_q(x;):

OL(y, sz—l(xi)):|
8Fk_1(xi) ’

ri = gr(xi) = — {

Once the residuals r; are computed, the following optimization problem is solved:

m
(frr k) = argn;in D (ri — af(x:))?.
& i=1
Finally, the update rule is applied.

This algorithm has been first developed for classification and regression trees, and most
of the work and libraries such as XGBoost (Chen and He)) are using decision trees as weak
learners. To be considered as weak learners, the learners mainly consist in decision stumps
or tree with a small depth. Gradient boosting, on the contrary of Adaboost allows to use
custom losses as we will see in Chapter [6]

2.4.4 Other Algorithms

The first sections have focused on SVM, Boosting and Tree-based algorithms. In this section,
we present other algorithms which can be used to detect anomalies or frauds using a notion
of distance between examples. We also present some techniques based on Metric Learning
used in imbalanced scenarios. We end this section by presenting how neural networks can be
also used.

Distance-Based Methods

A first category of distance-based outlier detection techniques and uses the k—NN algorithm.
A definition of outlier based on the distance was given by Knox and Ng| (1998):
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Definition 2.1. An instance x; in a sample S is a DB(n, D)-outlier if at least a fraction n

of the examples lies at a distance greater than D.

In other words, an example x; is an outlier if it lies to far from a cluster formed by most of
the points, i.e. if the point is isolated. Following the same idea, Breunig et al.| (2000) proposed
a way to assign a score to the examples according to their distance to their k nearest neighbors
and the reachability of these points among their neighbors. The proposed measure will return
a score close to 1 if an example is close to an homogeneous cluster of points and 0 otherwise, i.e.
if the point is isolated in the dataset or in a given cluster (Aggarwal, 2017;|Zhang et al., 2009).

The main drawbacks of such methods is that they depend on the considered metric used
to compute the distances between the examples. The use of an other distance may lead to
completely different results.

The standard metric used to compute the similarity between two points is the euclidean
distance defined by:

/

vx,x' € RY, dy(x,%) = ||lx — x| =

> (zr — w2

k=1

However, this distance gives the same weight to all the features and thus, fails to focus
on the most discriminative features. Therefore, to learn a new representation which aims
to separate better the two classes by learning the discriminative features. This domain of
machine learning is called Metric Learning (Weinberger and Saul, 2009; Bellet et al., 2013,
an area which typically aims to learn a suited projection M for the given task. In the context
of Mahalanobis Metric Learning, the new similarity measure between two examples is defined
by:

dp(x,x') = \/(x —x"TM(x —x').

To use dps as a true distance for the k—Nearest Neighbor algorithm it has to verify the
following axioms:

e dyr(x,x") > 0 for all x, %/,

e dyr(x,x') =0 if and only if x = %/,

o dps(x,x') = dpg(x',x) for all x,x/,

o dyr(x,x') < dpr(x,x") + dpg(x”,x') for all x,x" and x”.

In order for dps to be a distance, it suffices for M to be Symetric Positive Semi Definite
(PSD). In practice, the learned metric M € R?*? is often of rank I lower than the initial
dimension of data d if there are correlations. Therefore, finding a PSD matrix M leads to a
new representation in a lower dimensional space obtained with a matrix L deduced from the
Cholesky decomposition of M = LTL.
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Because the dimension of the new representation of the data is unknown, we rather learn
M, by adding the constraint that it should be PSD, instead of L. Furthermore, learning L
directly leads to non-convex optimization problems (Bellet et al., 2015)).

The main drawback of metric learning is the computation time. In fact, the metric M
is typically learned using the distance between similar and dissimilar pairs. The aim of this
metric is to bring together examples that are similar, i.e. belong to the same class and to
push away pairs of examples which do not belong to the same class. At each step of a metric
learning algorithm, such as in LMNN (Weinberger and Saul, [2009)), we need to project the
matrix M on the set of PSD matrices.

However, due to its capacity to learn a new representation of the data, metric learning
based techniques have been shown to be relevant for imbalanced learning (Wang et al., [2018;
Feng et al., 2018)).

In Chapter |3] we will present an algorithm for imbalanced learning based on a metric
learning approach for which the learned metric M is automatically PSD if we solve the dual

formulation.

Neural Networks based Methods

Deep Learning algorithms were also developed for imbalanced learning and anomaly detec-

tion (Lebichot et al., [2019) from both supervised and unsupervised perspectives.

A way to use deep learning approaches for anomaly detection can be done using auto-
encoders (Sakurada and Yairi, 2014; Zhou and Paffenroth,[2017). The aim of the auto-encoder
is to learn a representation of the data in a lower or greater dimensional space without loss
of information (i.e. a small error of construction). The auto-encoder is composed of two
parts, the encoder part: in which the representation is learned and a decoder part which
reconstructs the original example from the latent representation. The optimization problem

can be written as:
m

Ve, thq = argmin L D (% — 2 0 (xi))?,
L T i—1
where 1. represents the encoding function and 14 the decoding function. For anomaly detec-
tion, the majority class is given to train the auto-encoder. New instances are then passed into
the network and the reconstruction error is evaluated. When this error reaches high values
or greater values than the ones obtained during training, the example is considered to be an
anomaly (Williams et al., [2002).

We have seen that the use of sampling methods has been shown to be efficient for imbal-
anced scenarios. It gives the possibility to learn a better decision boundary to separate the
two classes.

Recently, a new type of algorithms, mainly used in computer vision has been developed to
improve a class of hypotheses by iteratively sampling new instances each time the hypothesis
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is updated. This method is called Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014). The idea is to iteratively improve the decision boundary of the learned classifier by
alternating a phase in which the classifier is updated with a phase in which data are generated.
These data have the particularity to be generated such that the classifier has to distinguish
between the generated instances and the real ones. This process is done by solving a min-max

problem:

min max (D, G) = B, [log(D(x))] + E=[log(1 — D(G(2))))

where D is the discriminator, i.e. the learned model, and G is the generator, where z repre-
sents the noise used to generate new examples.

In its basic formulation, GANs are trained on a single class of examples. A classifier is
trained to distinguish between the real and generated data. Once the classifier is trained, it
can be used to detect anomalies. An anomaly is then seen as an example created by the part
of the network that generates data. They can also be used in a supervised way by adding the
label as an information for the GANs (Douzas and Bacao, |2018). By doing so, they are used
as sampling strategy to generate example from both classes.

2.5 Conclusion

In this chapter, we gave an overview of the main approaches for tackling the imbalanced prob-
lem. Firstly, we introduced several performance metrics that are well suited for the context
of this thesis. Secondly, we described how the imbalance in the data can be reduced using
sampling techniques and how to force the classifiers to focus on the minority class examples
by giving them a higher weight. Lastly, we have introduced a very wide variety of algorithms
that are used in the field.

The contributions of this thesis consist in developing new techniques to deal with the
imbalanced classification issue and to apply them for check fraud detection. We propose to
study different aspects to address this problem (i.e. learning a new representation of the data,
assigning weights to each classes, etc.) and sometimes by combining several of the methods
described in this chapter in order to improve their performance. We also derive theoretical
guarantees in some of our contributions, guarantees that are often absent in the state of the
art.

Part [[T focuses on so-called geometric approaches for imbalanced classification by learning
a new representation of the data or modifying the distance of a new query to a positive
example. In Chapter [3] we propose a novel approach based on the One Class SVMs algorithm.
Our proposed method consists in the use of the proven frauds. They are used to build region
of the space for which a new data is likely to be a fraud, whose shape is that of an ellipsoid
by using metric learning techniques. In Chapter 4] we propose a modification of the k-nearest

neighbors algorithm which takes the sparsity of minority class examples into account by
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modifying the distance of new query to its nearest positive examples.

Part[[II is devoted to the use of cost-sensitive methods. In Chapter b} we propose to tackle
the issue of optimizing the F-measure. Based on our theoretical study and our proposed
bounds on the optimal F-measure, we derive an algorithm which iteratively choose the best
cost parameters to assign to each class to maximize the performance metric. In Chapter [6]
we propose several tree-based models to improve the model used by Blitz. These new models
include the amount of money involved in a transaction as a cost parameter in order to improve

the profits of Blitz customers.
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Chapter 3

Learning Maximum Excluding
Ellipsoids

This chapter is based on the following publications

Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Elisa Fromont, Amaury Habrard, and Marc
Sebban. Learning maximum excluding ellipsoids from imbalanced data with theoretical guarantees.
In Pattern Recognition Letters, volume 112, pages 310-316. Elsevier BV, 2018a

Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Elisa Fromont, Amaury Habrard, and Marc
Sebban. Apprentissage de spheéres maximales d’exclusion avec garanties théoriques. In Conférence

francophone sur I’Apprentissage Automatique (CAp-17), 2017

Abstract

In this chapter, we present a learning method from imbalanced data (like in fraud
detection) based on an unsupervised variant of the SVM called the Support Vector Data
Description. We revisit this unsupervised learning algorithm to propose M E?: Mazimum
Ezxcluding Ellipsoids. Assuming that minority examples are locally concentrated in some
regions of the space, the proposed approach aims to build an influence area around each
positive by rejecting the negative ones. The areas are optimized in the form of ellipsoids in
order to take into account the local specific geometry of the data using a metric learning
approach. Unlike standard metric learning methods, M E? does not require a complex
algorithm to learn and guarantee the PSD property of the metric. We show that, by
solving the dual formulation, we get this property on the metric for free.

We derive theoretical guarantees on our algorithm using the uniform stability frame-
work presented in Chapter Ill These guarantees prevent M E? from false alarms, i.e. from
predicting negative examples as positives. Experiments conducted on several imbalanced
datasets show the effectiveness of the proposed method compared to standard machine
learning algorithms. We also performed experiments on a real dataset from the Blitz
company.

65
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3.1 Introduction

In Chapter [2 we have seen that anomalies can be characterized by the fact they lie in the
tails of the distribution. Geometrically, it means that such points are far from clusters of
points, i.e. the distance between the anomaly and the center of a given cluster is greater than
the distance between all the points in a cluster and the center. This simple and intuitive idea
led to the unsupervised technique based on the Minimum Enclosing Ball Problem (Sylvester,
1857)). The goal is to find the smallest hypersphere which contains all the data where both the
center and the radius of the hypersphere must be learned. An illustration of the problem is
given in Figure (left). Given a collection of data {x;}I", we can write the corresponding
optimization problem as follows:

min R?,

Re (3.1)

st. |lxi—c|<R?) Vi=1,...,m.

For an anomaly detection task, it is now interesting to allow some points to lie outside the
sphere. Such points will be then considered as anomaly. The resulting optimization problem
aims to find a trade-off between the having the smallest radius and including all the points
in the learned sphere (Tax and Duin, |2004) More formally, the optimization problem m will

be rewritten as:

: M
an R* + 52211 &is
s.t. |Ixi —cl|?<R*+&, Vi=1,...,m, (3.2)

52207

where R and c are respectively the radius and the center of the ball and &; is the slack
variable associated to the i*" instance x;. The parameter 4 is tuned in order to control the
proportion of the data outside the sphere. (considered as anomalies - see Figure right).
In practice, the value of the parameter p is chosen so that it corresponds to the (supposedly
known) proportion of outliers in the dataset. Note that in Pauwels and Ambekar| (2011)), the
authors have shown that using the radius instead of the square of the radius in this formula-
tion is often preferable.

The optimization problem [3.2]is really similar to the optimization problem of the Support
Vector Machine where the term R? plays the same role as ||w|2, where w described the
learned hyperplane. Note the constraints are also similar from a problem to the other.

For these reasons, the Minimum Enclosing Ball Problem will be now referred as Support
Vector Data Description as presented by Tax and Duin (1999).

In the next section, we give an overview of SVDD based methods and present how this
unsupervised algorithm inspired us to propose Mazimum Excluding Ellipsoids (M E?) which
can be used to detect frauds in an imbalanced supervised setting.



3.2.  Support Vector Data Description 67

® data @ center @®: errors

Figure 3.1: Illustration of the Minimum Enclosing Ball Problem (on the left) and of Sup-
port Vector Data Description (on the right). The points outside the sphere (the errors) are
considered as by the algorithm.

3.2 Support Vector Data Description

It is worth noticing that there is a link between SVDD and the unsupervised Support Vector
Machine algorithm called One Class SVM (Scholkopf and Smola, 2001).
It has been shown (Elzinga and Hearn| [1972)) that the Problem [3.1| can be rewritten as:

. 1
min ] .

e (3.3)

1
st. clx;>p+ §HXZ||%, Vi=1,...,m,

1
where p = 5 (lcll3 — R?).
On the other hand, the optimization problem of the One Class SVM is as follows:
o1
min 2l — o
C,p

st. cl'x; >p, Vi=1,...,m,

1
where p' = p+ =||€2||3. If we assume that ||x;||2 is a constant for all i = 1,...,m, then we can
see the One Class SVM optimization problem as a particular case of SVDD.

While One Class SVM and SVDD are unsupervised methods, a supervised variant has

been proposed in [Tax and Duin| (2004). It aims to include the examples of the same class in

a ball and to exclude the examples from the other class. Note that it can also be used for

multi-class classification (Boujnouni et al., [2012) using multiple spheres, one sphere per class.

A refinement of this approach has been proposed later by Liu and Zheng (2006)), in which the

authors learn two linear separators, one that include the examples from a given a class and
the other which aims to exclude the examples from the other class. The first linear separator
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aims to embrace the data from one class while the second linear separator aims to exclude
the data from the other class. The objective is then to maximize the distance between these
two separators. Such a framework is close to the SVM which aims to maximize the margin
between the two classes. This type of algorithms works well when a class is located in a part
of the space, so that the data are (linearly) separable. To ensure this point, most of the papers
apply non linear transformations to the data (Le et al.| |2013; |Boujnouni et al., |2012; [Kang
et al., 2010; [Duan et al., 2016)) such as kernel methods. Even if the kernel-based methods
are effective, the computation of the kernel is often expensive (according to the number of
examples in the dataset) and does not scale well on most real datasets.

An interesting approach, which does not suffer from this drawback, is presented by [Wang
et al. (2010). The authors include a linear transformation of the data, in the form of a
Positive Semi Definite (PSD) matrix M in the SVDD optimization problem. To avoid high
computational costs, they set M to be the inverse of the covariance matrix, which allows the
induction of ellipsoids rather than spheres. Such objects are able to cover a larger volume in
the input space compared to the spheres (i.e. when M = 1I). Indeed, they are able to capture
betters the geometry of the data.

Following the assumption that frauds are locally concentrated in different regions of the
space, we follow the idea of |[Zhang et al. (2015)), i.e. we learn several local models. We also
assume that new frauds have more chance to appear near an existing one. For this reason,
each model will be built around a known fraud. For each model, centered at a positive
instance, we learn a linear transformation of the data. However, instead of computing the
covariance matrix locally, as it is done by Wang et al. (2010), we have optimize this linear
transformation under constraints. Combining local models with this metric learning-based

approach leads to our algorithm M E?, presented in the next section.

3.3 ME?: a Metric Learning-based Algorithm for Optimizing
Excluding Ellipsoids

In this section, we present the general formulation of our proposed method M EZ2. It aims to
create influence areas around each positive example and is based on the Support Vector Data
Description and a local metric learning approach which aims to build new representations of
the data. We show that the solution of the primal problem is a closed-form expression of the
solution of the dual formulation, which leads to an easier optimization problem.

3.3.1 Problem Formulation

Let S = {x;}"; be a sample of n negative instances (the majority class) and P = {cj}?:1
a set of p positive examples (the minority class), with n >> p, m = p + n and where each
X;,¢; are feature vectors of R?. We aim at maximizing ellipsoids centered at each positive
c € P excluding (most of) the negative data x;, ¢ = 1,...,n. Learning such ellipsoids boils
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down to optimizing a Mahalanobis distance, that is finding a positive semi-definite (PSD)
d x d matrix M € ST projecting the data linearly in a new space and allowing to obtain balls
centered at each positive example of maximum radius R. Note that the size of the projection
space is equal to the rank of matrix M. This is important because a small rank matrix (when
the features are correlated) may prevent the algorithm from over-fitting in the context of
learning local ellipsoids from a small number of examples. Let B be an upper bound of the
possible expected radius. Inspired from the slack formulation of SVDD (see Problem7 our
algorithm, called M E? for Maximum Excluding Ellipsoids, can be expressed in the following

form:

, 1
min_ 3 &+ p(B = B2+ MM -],

RM,¢
s.t. |x; —clf >R—&, Vi=1,...,n, (3.4)
§& >0,
B>R>0,

where ||x; — c|3; = (x; — ¢)TM(x; — ¢) is the learned Mahalanobis distance between a
negative example x; and a positive center c; £ is the vector of the slack variables (allowing
some constraint violations), u(B — R)% + A [|M — IH%_- is a regularization term with g, A > 0
the corresponding regularization parameters. Note that the upper bound B of the radius
is used in p(B — R)? to have a convex formulation allowing us to get a unique solution.
We choose two different parameters for each part of the regularization term to control the
surface area of the sphere in the transformed space and the complexity of the matrix M. The
parameter A gives the possibility to control the entries of the learned matrix, and therefore
the shape/orientation of the ellipsoid. In practice, the bigger A, the closer ||x; — c||3; to the
Euclidean distance (i.e. the ellipsoid looks like a ball). On the other hand, the parameter
controls the size of the learned ellipsoids.

An illustration of our algorithm is given in Figure[3.2l The points are drawn from a uniform
distribution in the unit square and the positive points (in red) are randomly selected. On the
right, we constrain M E? to learn spheres (i.e. ) is set to a large value such that M tends
to be the identity matrix). On the left, we allow M E? to optimize both the orientation and
the size of the ellipsoid. We can see that M E? can capture local peculiarities of the feature
space.

It is worth noticing that A and p are key parameters to deal with anomaly/fraud detection
in imbalanced settings. As stated in Chapter [2] standard accuracy-based loss functions are
not well suited to imbalanced scenarios as they tend to favor the majority class. That is why
other performance criteria like the F-measure might be preferred over the standard hinge,
exponential or logistic losses. Unfortunately, as already mentioned, optimizing directly the
F-measure is not feasible because of its non smoothness and non convexity. In our algorithm,
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Figure 3.2: Tllustration of the interest of learning ellipsoids (on the left) rather than simple
spheres (on the right). Optimizing the size and the orientation of the ellipsoids allows us to
better capture local peculiarities.

the parameters A and p have a direct impact on the F-measure by controlling the role played
by the precision and the recall in the learned model.

In Figure [3.3] we present an illustration of the surface area of the ellipsoids according to
increasing values of p (on the left) and A (on the right). We assume that the center of the
ellipsoid is the point (0,0) and the data is generated on an ellipsoid on which a noise is added.
As expected, the larger u, the larger the size of the ellipsoid. On the other hand, when A
grows, the Mahalanobis distance is more and more similar to the euclidean distance. Note
that there is a direct link between p and the recall and precision. Indeed, the larger y is, the
higher the number of false positives and the smaller the number of false negatives are. The
interpretation of the role played by A is a bit more subtle. Indeed, A controls the closeness
between M and the identity matrix. According to the local density of the points and the
need or not to stretch the ellipsoid, an increase of A\ will lead to an increase or decrease of the
surface area due to the use of the Identity matrix in our regularization term

Note that we can establish a relationship between ME? and a decision tree algorithm
(Quinlan, [1993). Indeed, in both cases, decision rules take the form of local geometric shapes
(an ellipsoid for M E? and a rectangle for a decision tree). In Figure we report on the
same toy example as in Figure the leaves learned by a decision tree algorithm containing
each positive example as well as the ellipsoids optimized by M E?. We can notice that while
decision trees build axis-parallel hyperplanes to generate the leaves, M E? has a better expres-
siveness allowing to control the shape, the orientation and the size of the ellipsoids. We think
that this is an interesting feature that can be favorably exploited to capture local specificities
of the feature space and better estimate the density function of the positives. Coupled to

'In fact, there are several matrix M such that |[M — I||3r = constant. Thus, all the coefficients m;; of M
shall be on the hypersphere of equation Eijﬂ(mi j — 8i;)* = constant where §;; is the Kronecker delta.



3.8. ME?: a Metric Learning-based Algorithm for Optimizing Excluding Ellipsoids 71

Figure 3.3: Illustration of the impact of p (on the left) and A (on the right) on the shape
and size of the learned ellipsoids. The yellow ellipsoids correspond to small values of p and A,
the green ellipsoids to medium values and the black ones to large values for both parameters.

the fact that we will derive generalization guarantees on the learned ellipsoids, we claim that
ME? is a good candidate to learn from highly imbalanced data.

In the next section, we present the dual formulation of M E?. Solving the dual problem is
interesting when learning local models because it requires a few number of examples, so the
problem presents a few number of variables.

3.3.2 Dual Version and Closed-Form Solution

Adding the constraint to the quantity we have to optimize, the Problem can also be
expressed in its dual form as:

n

Ll 8,61 REM) = -3 &4 p(B— R~ o (i —clfa~R+&) (35)
=1 =1

—Y &+ A M -1|% — BR+ (R - B),
=1

where @ = ()i=1,..n, are the dual variables associated to the constraint R — & —
Ixi —c|| < 0; v = (7i)i=1,..n the one associated to —§ < 0; f and 6 to —R < 0 and
R—-B<0.

We aim to rewrite the primal variables as a function of the dual variables. To do this, we
compute the derivatives of with respect to the primal variables.
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Figure 3.4: Boundaries of the decision rules with M E? and a decision tree algorithm. The
expressiveness of M E? is better to capture local specificities of the density function of the

positives.

VRL = > ai+2uR—2uB - B+, (3.6)
=1
1 .

Ve L = - Vi=1,...,n, (3.7)

The derivative of the Frobenius norm is:

oM 1|5 _
This last equality implies:
oL - T
N = = ag [(xk — ) (xx — ©)T] + 2A(M - T). (3.8)
i=1

We recall that the dual formulation is defined by taking the infimum of £L(R, M, ) and a
necessary condition for which the minimum is reached is when the derivative with respect to
the primal variables are equal to 0. This leads us to the following implications:

B—6+2uB-" q

3.6) = R=

D) 5
1
n
1

n

_ T

(3-8) = M—I+2)\Z;Oék(xk—c)(xk—c)-
1=
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The last equality shows that M is, by construction, positive semi definite as it is a convex
combination of positive semi definite matrices of rank 1. Furthermore, because of the addition
of the Identity matrix to the previous matrices, M is positive definite (PD). Fulfilling the PD
constraint for free is very important because it prevents the algorithm to perform a singular
value decomposition (in O(d?)) at each step of the gradient descent. Note also that M can
be seen as an optimized covariance-matrix for which the weight oy of each negative instance
is learned.

Let us now insert the closed form solution of M and R in in order to have the dual
formulation of Problem [3.41

Proposition 3.1. [Dual Formulation] Let {x;}}' | be a set of n negative examples and c a
positive example. We denote by G the Gram matriz defined by G;; = ((x; — ¢), (x; — ¢))
and by G’ the matriz of the Hadamardlﬂproduct of G with itself. Given the derivatives (3.6
to , the dual formulation of the optimization problem 1s defined by:

1 32
. T 7G/ Ja—
Zlgg o B\ m nxn>a+4ﬂ+4ﬂ+
al diag(G) — B%—ﬁ—i 1,)+3 B—i
1 .
s.t. 0<o; <—, Vi=1,...,n,
n
1876207

where 1,, (respectively 1,,x,) represents a vector of length n (respectively a matriz of size

n X n) where entries are equal to 1.

Proof. For the sake of clarity, let us first restate the Lagrangian and the expression of both
M and R.

L(a,B,6,7,R,&M) = Z§’+MB R)® Zm Zal i — cllfg — R+ &)
+A||M—I|rf—ﬁR+6<R—B>,

and

B—d0+2uB -0
24 ’

= I—i——Zak X — ¢)( xk—c)T

We now inject the expression of M in the expression of the Lagrangian. We first set
A=3" qillxi—c|3s and N = Tr(M—I)T(M —1I)) and we develop these two expressions.

2The Hadamard product of two matrices is the entry-wise product.
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The weighted sum of Mahalanobis distances A can be rewritten:

n

A = Z%(Xi - C)T(Xi —c)+ % Zaiak(xi — c)T(xk —c)(xg — c)T(xi —c),
i=1 i=1 k=1

1 n
= oldiag(G) + — Z ;o Gik G,

1
A = aldiag(G)+ —alGa,

where G is the Gram matrix defined by G;; = ((x; —c¢), (x; —c)) and G’ is the Hadamard
product of G with itself. Because G is PSD, so is G'.

Let us now focus on the expression of N. From now on, we set v, = x;, —c for convenience.
Let us denote by vg; = (x — ¢); the " element of the vector x; — c.

k=1 =1 j=1 k>l i=1 j=1
1 n d d 9 n d d
2 2 2
= N oy Z Vs Z vkj + m Z (677187 Z VEiVli Z VijVij | »
k=1 =1 j=1 k>l i=1 j=1
1 & 2 —
= R Z a%G%k + 47/\2 Z (OékOélelle) s
k=1 k>l
1
N = RGTG/Q

We do the same by replacing R by its expression in (3.6). For the sake of simplicity,
we only consider the terms of the Lagrangian where R appears and set D = u(B — R)? +
RY_ o+ d(R — B) — BR. We obtain:

—5+2uB-Y" 2 & —5+2uB-Y"
D = 4 B—ﬂ 6+ 2uB — 3 hoy +Zak B—d+2u D k=1 %
2 k=1 21
B—0+2uB -3 0 o B—0+2uB -3 5 o
+6 .y .
2u 2u

By developing each term we have:

n 2 n n
D = 41u <Zak> + 82407 —208-28> ap+20) oy
=1

k=1 k=1
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1 [ n 2 n n n 1
+— —(Zak> +52ak—52ak+BZak —f—;
k=1 k=1 k=1 k=1 K

0B—02—6) ak]
k=1

+i —/32+55—Bﬁ+52ak].

L k=1

We reduce and factorize this expression to have:

2 | 52 - B4 )
D <;ak> +B82+6 +;<B+2u_2u>+ﬁ<_3+2u>'

We can now express our Lagrangian with respect to a, 5 and § only as:

4\

(B+—>Zak+6< M).

We then have the dual Problem by minimizing the opposite of the above Lagrangian with

L(e.f.0) = —a"diag(G) - ~o’G aii (Zak> + 8%+

the associated constraints. ]

The dual formulation has the main advantage to be easier to solve than the primal one in
high dimensional spaces. While the use of such a model can be a barrier in the presence of a
very large amount of data, it should be remembered that we only learn local models, which,
therefore require a less number of data.

The next section is dedicated to the derivation of generalization guarantees of the proposed
algorithm.

3.4 Generalization Guarantees

One of our main contributions takes the form of a generalization guarantee on the algorithm
ME?. Since we learn a local model from a subset of training examples (i.e. the positive
example of interest and the negative examples in its close neighborhood), we need to prove
the ability of M E? to perform well in generalization - that is - to exclude correctly new
negative instances from the learned ellipsoid centered at this positive example. To do this,
we derive in this section a generalization bound according to the theoretical framework of
uniform stability.
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3.4.1 Uniform Stability

In this section, we briefly restate the definition of stability and the generalization bound based
on this notion.

Roughly speaking, an algorithm is stable if its output, in terms of difference between
losses, does not change significantly under a small modification of the training sample. This
variation must be bounded in O(1/n) in terms of infinite norm where n is the size of the
training set S 4.i.d. from an unknown distribution D.

Definition 3.1. [Definition 6 (Bousquet and Elisseeff, |2002)] A learning algorithm A has a
B

uniform stability in  with respect to a loss function £ and parameter set 0, with 3 a positive

constant if:

VS, Vi, 1 <i<mn, sup|l(fs,x) — £(0qi,%x)| < g,

where S is a learning sample of size n, 0g the model parameters learned from S, 0g: the model
parameters learned from the sample S* obtained by replacing the it" example x; from S by

another example x| independent from S and drawn from D. £(0g,x) is the loss suffered at x.

In this definition, S’ represents the notion of small modification of the training sample.
From Definition one can obtain the following generalization bound?}

Theorem 3.1. [Theorem 12 (Bousquet and Elisseeff, |2002)] Let § > 0 and n > 1. For any
algorithm with uniform stability 5/n, using a loss function bounded by K, with probability at

least 1 — & over the random draw of S':

R(65) < Rs(0s) + 20 + (48 + Ky oL,

where R(-) is the true risk and Rg(-) its empirical estimate over S.

3.4.2 Generalization Bound

Given a centroid c (representing a positive instance) and a learning sample S = {x;}!'
of negative instances drawn i.i.d. from an unknown probability distribution X'~ (i.e. the
marginal distribution of the negative examples), the set of parameters to be learned by M E?
is the pair (R, M). For convenience, we consider the following optimization problem that is
equivalent to Problem

1
min  — 7 (R M,x;) + u(B — R)?+ A||M — 1
ij[ 2 16( M, x;) + p( ) )‘H HF?

s.t. B>R>0,

where £(-) represents the loss such that ¢(R,M,x;) = [R* — ||x; — C||12VI]+ with [-], the hinge
loss function: [a], = max(a,0).

3If this result was proposed in the context of regression and classification tasks, the proof techniques are
general enough - by considering generic bounded and lipschitz losses - so that it also holds for the setting
considered in this section.
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The true risk is defined by R(M, R) = E,._ - [¢(M, R,x)] and its empirical estimate over
the sample S by Rg(M,R) = 23 | ¢(M, R,x;). We also denote the regularization term
as N(M,R) = u(B — R)? + \|M — I||3T Let us define K such that max,. y- [x| < K and
|c| < K. Fg represents the objective function to be minimized, i.e.:

Fs(M, R) = Rg(M, R) + N(M, R).

Note here that it can easily be checked that our loss function £ is convex with respect to M
and R. To prove a generalization bound on our algorithm M E?, we need to prove that our
setting verifies the definition of uniform stability. For this purpose, we first prove that our
loss function is actually k-lipschitz with respect to its first two arguments.

Lemma 3.1. The loss { is k-lipschitz w.r.t to M and R with k = max(1,4K?), i.e. for any
(M,R) € ST x RT, (M, R') € ST x RT and Vx € R?:

6(M, R, x) — (M, R',x)| < k||(M, R) — (M, R,
where ||(M, R) — (M, R')|| = |R — R'| + |M — M| .

Proof.

|€((M7 R),X) - E((M/7 R/),X)‘ ‘ [R - HX - CH%/I]-i- - [R/ - HX - CH%/I’]

)

_l’_

< |R=R|+|Ix—clix = lIx = clie ). (3.9)
= (‘R—R/‘—F‘(X—C)T(M—M/)(X—C)’),
< (|R—R|+4K* M -M/| ), (3.10)

< max(1,4K%)(|R — R'| + |M - M| ).

Line (3.9) uses the fact that the hinge loss is 1-lipschitz and a property of the absolute value.
Line l) can be obtained by the Cauchy-Schwarz inequalityﬁ and classic properties on
norms. ]

We now need a technical lemma on the objective function Fl.

Lemma 3.2. Let S be a learning sample, let Fg and Fq: be two objective functions with
respect to two samples S and S° (as defined in Definition and let (M, R) and (M?, R?)
be their respective minimizers. We also define A(M, R) = (M!, R") — (M, R) and recall that
N(M,R) = u(B - R)?+\||M — IH%_— For all t € [0,1], we have:

N(M, R) — N((M, R) +tA(M, R)) + N((M?, R") — N((M*, R%) — tA(M, R))
< 2t max(1,4K?)

[AMM, R)[|.

4For any vectors x,y € R? we have (x,y) < ||x|l2]ly|l2-
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Proof. Since ¢ (the hinge loss) is convex, so is the empirical risk and thus for all ¢ € [0, 1] we
have the two following inequalities:

Rgi((M, R) + tA(M, R)) — Rgi(M, R) < tRgi(M', R") — tRgi(M, R)

and

Rgi(M', RY) —tA(M, R)) — Rgi(M', R") < tRgi(M, R) — tRgi (M, R).
We get the second inequality by swapping the role of (M, R) and (M, RY). If we sum these
two inequalities, the right hand side vanishes and we obtain:

Rgi (M, R)+tA(M, R))—Rgi(M, R)+Rgi((M’, R")—tA(M, R))—Rg: (M, R") <0. (3.11)
By assumption on (M, R) and (M?, R%) we have:
Fs(M, R) - Fs((M, R) + tA(M,R)) < 0,
Foi (MY, RY) — Fgo((M!, R') — tA(M, R)) < 0,
then, summing the two previous inequalities and using , we get:
Rsi((M,R) +tAM, R)) — Rs((M,R) + tA(M, R)) — Rg:(M, R) + Rs(M, R)
+u[(B—R)?+ (B—R")?—(B—(R+tAR))>— (B — (R' —tAR))?]
FAM = I|F + M- T)% — M+ tAM - I||7 — [M' —tAM - I||3] < 0. (3.12)

We now focus on the first part of the previous inequation. For the sake of simplicity, let

us set:
H=TRg((M,R)+tAM,R)) — Rgi( M, R) — Rs((M, R) + tA(M, R)) + Rs(M, R).
We will use Lemma [B.1] to bound this term:
H < |Rgi((M,R)+tAM,R)) —Rgi(M,R) — Rs((M, R) + tA(M, R)) + Rs(M, R)|,
LST 0((M, R) + tAM, R),xi) — ~ 3 6((M, R) + tA(M, R), x;)

n ) n
x;ES? X, €S

IN

+Z€MRxl ZEMRXZ,
xX; €S xZES’

[6((M, R) +tA(M, R),x;) — (M, R), x;)
—(((M, R) +tA(M, R),x,) + £(M, R),x})|,

IN
3=

IN

% [0((M, R) + tA(M, R),x;) — £((M, R), x;)|

+% [0((M, R) + tA(M, R),x;) — (M, R),x;)| ,

2t max(1,4K?)
n

o < 1AM, R)]|.

We have successively applied the definition of the empirical risk and triangle inequality to get
the previous inequalities. The last one is obtained using Lemma ]
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With this result, we are able to prove the uniform stability property of our algorithm.

Proposition 3.2. There exists a positive constant ) such that the algorithm M E? is uniformly
2 1,4K%))?

stable with 8 = (max'( _ )

nmin(u, \)

1
Proof. Setting t = 3 from previous Lemma, we have:

max 2
phi(R) + Apon) < WD A gy (313)
where
FilR) = (B~ R + (B~ R — (B~ (R+ 3 (R~ R))}* ~ (B~ (R~ L(R' ~ F))?* (3.14)
and

2 2

M) = [M =5 = M+ 50— )~

i - mE - HM MM T ]
(3.15)

f

. ) 1 if j=k,
In the following, we will also set d;, =
0 otherwise.

By developing Equation we get:
. 1 ,
fR) = (B—RP+(B-R)?-2B- J(R+ R
. A , 1 ,
= 2B2 _2B(R+R)+ R*+ R" 2 <32 ~ B[R+ R')+ (R + RZ)2> :

fi(R) = % (R—RY)".

Similarly for Equation (3.15]), we have:

2 2

) 1 ) 1 )
M) = IM-I|%+||M 1% - Hz(MJrM’) —1 - HQ(MJFM’) ~1 L
. 1 ,
= M =T+ M- = 5 (M=) + (M- D
d
. 1 ‘
30 (M 5 (M 500 = M+ M~ 20007
Gk=1
1 [ & . d .
= 5| 2o (M = 80)* + (MG = 030)%] | = > [(M — d50) (MG — 35)]
Jik=1 k=1
d
1 .
= 5 D[V = 65)% — (M = 656)°]

jk=1
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d
1 A
= 53 M- M
k=1
1 in2
fo(M) = §HM—MH;'

We can then write the Inequality (3.13) as:

2max(1,4K?)

i P2 i 2
u(R R)—l—)\HM MHfg -

1AM, R)||. (3.16)

Recall that: |A(M, R)|| = |R— R'| + | M’ — MHf Because we are working in a space
of finite dimension, all the norms are equivalent, i.e. there exists a positive constant n such
that, V(R, R") € RT, V(M,M") € ST x ST we have:

i i i i||2
n(|R— R+ ||[M—M|| ,)? < (R- R+ | M- M. (3.17)
Finally, combining the previous inequalites, we have:
. . i i 2 2max(1,4K?
mins, \n | A(ML B[ < min(, MR~ R)? + M - M) < 220D A gy

thus,

2max(1,4K?)

|A(M, R)| nmin(, \)

Starting from the left-hand side of Definition and applying Lemma [3.1] once and the
previous inequality, leads to our final result.

(M, R), %) — (((M, R, %)] < max(1, 4K)|A(M, R)].
#max )2
= mymin(,u,)\)( (1, 4K7))"

O

To prove the generalization bound, it remains to show that our loss function ¢ is bounded.
Because of the use of a hinge loss function, we directly have the following bound for our loss

function ¢:

¢(M, R),x) < B.

Given the stability constant and the fact that the loss is bounded, using Theorem (3.1} we
obtain our final result:

Theorem 3.2. Let § > 0 and n > 1, there exists a constant n > 0, such that with probability
at least 1 — 6 over the random draw over S, we have for any (M, R) solution of Problem|3.4.2:

R(M, R) < Rg(M, R) +

4(max(1,4K?))? <8(max(1,4K2))2 > Inl/é

nnmin(u, \) nmin(u, \) 2n
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Proof. We simply combine Proposition the previous remark and Theorem O

This generalization bound holds for any positive center c. If one has p positive centers, by
the union bound, we can extend the previous result for each of the p centers with probability
1 —¢/p showing that the models output can control negative instances with high probability.
We can notice here that even if the bound suggests an independence from the number of
features d, it turns out that the dimensionality of the feature space is intrinsically captured
by the hyper-parameters g and A which is consistent with the fact that the dependency on
d has already been noted for any Mahalanobis-based metric learning algorithm (Verma and
Branson, [2015)).

The presented bound depends on an unknown parameter 1 > 0. However, if the value of
7 is closed to 0, the bound will be loose. In the following section, we briefly discuss a lower

bound on 7.

3.4.3 About the Parameter n

We can note that all the parameters of our algorihm ME? are involved in the previous
generalization bound (that is, B, u, A). It turns out that the constant of uniform stability,
thus our bound, also depends on the parameter n which appears when we use the fact that
two norms are equivalent in a space of finite dimension (see the proof of Proposition . To
be usable in practice (for example, to check its empirical convergence on a given problem),
this bound has to get rid of 7.

We first rewrite the inequation in which the parameter 1 appears in the above mentioned
proof.

n(| R~ R+ ||M~M|,)? < (R - R)? + M - M3

Let us set M — M’ = AM and R — R' = AR. We can rewrite the previous inequality as:
n(|AR|+ |[AM[|z)? < (AR)” +[|AM]|%,

(AR)? + |AM| %
(JAR[+ [M] )2

IN

A n

It is worth noticing that the larger 7, the tighter the bound. Therefore, we need to find
the largest value of 1 which satisfies the previous inequality. This worst optimal value for 7 is
2, .2
Tt +y

W. It is well known
rTy

then given by the minimum of the function f defined by f(z,y) =

that for all x and y we have:
2%+ 9% > 2xy and thus (z + )% < 2(2* 4 2).
We get:

2+ y2 % 4 y2 1
> > - =1
(x+y)? ~ 2(z% +y?)

f(xay): 5_
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Finally, the bound can be rewritten as:

R(M,R) < Rs(M,R) +

8(max(1,4K?))? (16(max(1,4K2))? ) In1/6
2n

nmin(u, A) min(u, A)

Thus, the convergence of our bound is, at worst, two times slower.

3.5 Experiments

3.5.1 Algorithms and Datasets

In this section, we aim at evaluating the behavior of M E? with respect to some machine

learning algorithms described below. Those methods have been selected to characterize some
specificities of M E?.

e Since we established a link between our local ellipsoids and the rules induced by decision

trees in the form of local rectangles (Figure , we compare ME? with standard
decision trees (DT). The objective here is to show that the learned ellipsoids better
capture the local information of the input space.

To deal with imbalanced datasets, a commonly used strategy (as seen in Chapter [2)
consists in sampling the data to fix the imbalance problem. Therefore, we also learn
a decision tree DT (resp. DTy ) after a pre-processing step which consists in over-
sampling (with replacement) the minority class examples (resp. under-sampling
the majority class examples). We also combine the two previous approaches (DT ).
Finally, we applied a SMOTE-like strategy (Chawla et al., 2002) (DTgyorg) which
creates synthetic minority class examples in the neighborhood of the positive examples.
The goal of this comparison is to show how M E? behaves even if it does not resort to
sampling processes.

When the proportion of positive examples is too small, some Support Vector Data
Description methods (SVDD) (Azami et al., 2014; Pauwels and Ambekar, [2011; Tax
and Duin, 2004) - like one-class SVMs (Pauwels and Ambekar, [2011) - address the
anomaly detection problem as an unsupervised outlier detection task. We run here one-
class SVMs with two kernels: a linear kernel (LOCSVM) and a RBF kernel (KOCSVM).
The objective of this comparison is to check if M E? makes a good use of the few positive
labels compared to unsupervised methods. We also made use of the labels and run
standard linear SVMs (LSVM), and RBF kernel-based SVMs (KSVM).

All the classifiers are trained using the corresponding machine learning packages in

that is C50 for the decision trees, €1071 for the SVMs, DMwR for SMOTE and Rsolnp
for M E?.

Shttps://www.r-project.org/
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Dataset Nb. of ex. | Nb. of feat. IR
Yeast3 1484 8 10.9%
Abalone 4 177 8 10.7%
Wine 1599 11 3.3%
Abalone 17 2 338 8 2.5%
Yeast6 1484 8 2.4%
Abalone 20 1916 8 1.4%

Bank Fraud 15 000 17 1%

Table 3.1:  Number of instances, number of features, Imbalance Ratio (i.e. number of

positives over the number of instances).

The experiments are performed on 6 datasets coming from the UCI and KEEL databasesﬂ
and a subset of the dataset of the Blitz Company on the bank fraud detection task. Their
characteristics (number of examples, features, imbalance ratio IR) are described in Table
Note that the categorical variables have been replaced by binary features. For example, in the
Abalone dataset, the attribute V.= {M, I, F'} is changed into three new features M=(1,0,0),
1=(0,1,0) and F=(0,0,1).

3.5.2 Experimental Setup

As explained before, the classic accuracy is not a suitable criterion to address issues due to the
presence of imbalanced data. For this reason, we evaluate the algorithms using the F-measure
(see Section [2.2)).

For each series of experiments, the dataset is separated into a training/validation set S
(80% of the total number of examples) and a test set (20%). We use then a 2-fold cross-
validation on S while preserving the same IR in each fold to tune the parameters of the
different methods. Each experiment is repeated 10 times and the reported results are the

average over the 10 trials.

Remember that we learn an ellipsoid centered at each positive example of S. This ellipsoid
defines in some way the local region of the projection space which is under the influence of
the considered positive example. In this context, at both validation (to tune the parameters)
and test time, a query x’ is associated to its closest positive example Ny/ (with respect to the
Euclidean distance) in the training set. Then, in order to take into account the local density
of positives and negatives in the corresponding ellipsoid, and following the idea suggested in
(Barandela et al., |2003)), we apply the following decision rule, x” will be predicted as positive
if:

5These datasets can be found either on the UCI Repository (https://archive.ics.uci.edu/ml/datasets.html)
or the KEFEL website in the “Imbalanced data sets for classification”  repository
(http://sci2s.ugr.es/keel /imbalanced.php?order=ir#sub60).
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Algorithm Yeast3 Abalone Wine Abalonel7 Yeast6 Abalone20 Bank Fraud Time
DT 0.77 £ 0.06 | 0.64 = 0.03 0.00 £ 0.00 0.00 £ 0.00 | 0.51 £ 0.23 | 0.10 £ 0.15 0.00 £ 0.00 3.2
DTo 0.75 £+ 0.06 0.64 £ 0.04 0.06 £ 0.09 0.35 £ 0.08 0.45+0.12 | 0.30 = 0.15 | 0.04 £ 0.03 3.5
DTy 0.76 £ 0.08 | 0.67 £ 0.03 | 0.09 + 0.11 0.28 + 0.11 0.49 £+ 0.11 0.19 + 0.20 0.04 + 0.03 2.4
DTou 0.72 £ 0.04 0.61 £ 0.04 0.15 £ 0.06 0.34 £ 0.05 0.36 £ 0.12 | 0.30 £ 0.12 | 0.05 £ 0.04 2.6
DTsamore || 0.65 £ 0.10 0.57 £ 0.07 0.14 £ 0.12 0.24 £ 0.09 0.18 £ 0.09 0.27 £ 0.13 0.04 £ 0.03 28.1
LSVM 0.67 £ 0.05 0.62 £ 0.01 0.14 £ 0.08 0.294 0.01 0.30 £ 0.05 0.23 £ 0.02 0.03 £ 0.02 702.5
RBFSVM 0.66 £ 0.09 0.63 £ 0.03 0.07 £ 0.08 0.17 £ 0.06 0.36 £ 0.09 0.13 £ 0.13 0.00 £ 0.00 39.2
LOCSVM 0.01 £ 0.02 0.11 £ 0.03 0.02 £ 0.07 0.10 £ 0.05 0.00 £ 0.00 0.05 £ 0.13 0.03 £ 0.01 28.3
KOCSVM || 0.01 £0.02 | 0.21 £0.04 | 0.01 +0.07 | 0.06 £ 0.03 | 0.00 £0.00 | 0.05=+0.11 | 0.00 £ 0.00 | 1472.0
ME? 0.67 £ 0.06 0.61 £ 0.03 | 0.20 £+ 0.09 | 0.46 £+ 0.07 | 0.46 £ 0.08 | 0.30 £ 0.07 | 0.05 £ 0.02 2.9

Table 3.2: Comparison of the methods in terms of F-Measure over 10 runs. The best results

are indicated in bold font. Values in parenthesis represent the standard deviation. The last

column reports the average running time (in seconds) for one run.

1. It is inside the ellipsoid centered at N,s. This means that x’ is actually under the

influence of Ny, which occurs when the corresponding learned Mahalanobis distance
verifies: [x' — Nyl|lmy , < R, where My, is the PSD matrix learned by ME?
corresponding to the ellipsoid centered at Ny and Ry, is its associated radius.

. Its nearest neighbor in the ellipsoid is a positive example w.r.t the learned local distance

1% = x|[My -
X

Otherwise, x’ is predicted as negative.

Note that the hyper-parameters p and A are tuned respectively in the range {0.75,0.8,0.85,

0.9,0.95,1,2,10} and {10 22:_6 by maximizing the F-Measure for each local model according

to the previous rule.

3.5.3 Results

The results are reported in Table The datasets are sorted from the least to the most
imbalance ratio to see the effect of M E? with a decreasing rate of positive examples. We can

make the following remarks:

e On average, M E? gives better results than the other methods even if it does not resort

to sampling processes. As shown in Figure[3.5] its average rank over the 7 datasets, 2.6
is better than the others. If we focus on the 5 datasets with large imbalance ( Wine,
Abalonel7, Yeast6, Abalone20 and the Bank Fraud), M E? is even better with an average
rank of 1.4.

For the first two datasets (i.e. Yeast3 and Abalone) where the rate of positive examples
is greater than 10%, our method is not very useful. This behavior can be explained in
two different ways: (i) when the number of learned ellipsoids grows, their overlapping
is larger and larger and therefore the False Positive rate increases; (ii) a large number
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Figure 3.5: Average ranks over all the datasets (on the left) and over the five most imbalanced
datasets (on the right).

of ellipsoids induces an increasing risk of generating close ellipsoids with different orien-
tations and shapes. About this second point, an interesting perspective would consist
in constraining close positive examples to have similar ellipsoids.

e Compared with decision trees, these experiments show that M E? has a much better
capacity to capture the local specificities of the feature space than the local rectangles
learned by decision trees. For three datasets, it is worth noticing that decision trees
even do not capture anything (Wine, Abalonel7, Abalone20).

e The results obtained by one-class SVMs are much worse than the other methods. This
behavior shows that for all the datasets, including the bank fraud database, the positive
examples cannot be considered as outliers - that is - being distant from other obser-
vations. Moreover, these results show that the underlying distribution of the minority
class is likely to be multimodal.

e ME? works better than standard SVMs while the latter use a re-weighting scheme in
the objective function to balance the data.

We also report in Table the average running time for one run of each method. We
can see that since M E? learns matrices that directly satisfy the positive semi definiteness,
our method is effective, i.e. very close to decision trees. Furthermore, M E?, as the other
algorithms, can be easily parallelized. However, note that if one uses M E? without paral-
lelizing the learning of the p ellipsoids, the running time will be on average p times the result
reported in Table But M E? will be still efficient (at least better then kernelized-SVMs)
since p is supposed to be very small in highly imbalanced scenarios.
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3.5.4 On the Impact of the Regularization Parameters p and A

As already mentioned before, ;r and A have an impact respectively on the size and on the
shape/orientation of the learned ellipsoids. Therefore, if they are properly tuned, those two
parameters should allow us to control the rates of False Positives (FP) and False Negatives
(FN) which are involved in the Precision and Recall and thus in the F-Measure. To illustrate
the capacity of M E? to control FP and/or FN, we used the F, 3-Measure which is defined as

follows:
Precision x Recall

Fs=(1 2y,
p = +B)(52><PT€CiSi0n)+Recall

and can be rewritten as:

(1+B8%) x TP

Fa=
P T A+ B)xTP+pB2x FN + FP’

where TP and TN are respectively the rates of true positives and true negatives. It is known
that the larger 3 (resp. the smaller) the larger the role played by FN (resp. FP) in Fg. We
performed the following series of experiments: for different values of 8 in the range ]0,10], we
run M E? on the bank fraud detection task by tuning for each learned ellipsoid the parameters
(i, A) with respect to the Fj-Measure. We chose this dataset because of its Imbalance Ratio
and almost because its consists of real data for a real application. We report on Figure
the FP and FN rates associated to each value of 3. This figure illustrates that M E? is able
to find good pairs (A, u) maximizing FP while 3 is growing. Said differently, according to the
application at hand, M E? will be able to play with A and p to favors either the Recall or the

Precision.

3.6 Conclusion

In this chapter, we have presented a method to learn Maximum Ezcluding Ellipsoids in the
context of imbalanced binary classification tasks. Our algorithm, called M E?, is simple,
because based on local linear models, and theoretically supported by generalization guarantees
that have been derived by using the uniform stability framework. We have shown that our
method is particularly efficient and robust when the rate of positive examples is very small.
The reason comes from the fact that M E? is able to learn decision boundaries in the form
of ellipsoids (via a metric learning-based strategy) that are optimized locally to best fit the
specificities of the space.

ME? is based on a very simple decision rule looking for the nearest ellipsoid to a test
query. We think that this rule may benefit from further investigation, e.g. by considering
a combination of ellipsoids to predict the label of a test data. This would be possible by
considering a graph over the ellipsoids centers where information would be shared like in an
information network. Besides, from a theoretical point of view, we have derived a guarantee
on the learned matrix M and radius R. Since our decision rule is close to a nearest neighbor
classifier decision rule, it would be interesting to establish a link between the quality of M
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Figure 3.6: False positive and false negative rates according to an increasing value of 3 in the

Fg-measure.

and R and the generalization error of such a classifier. Another perspective would be to par-
tition the positive example space and constrain the ellipsoids to be similar at least in terms of
orientation (using some regularization) if they have been learned from the same cluster. We
have also compared the decision areas between M E? and a decision tree algorithm, a possible
extension can be a Random Forest of M E?. The idea is to build several ellipsoids around a
given positive examples using a subset of the training examples and a subset of the features.
Finally, in a context of fraud detection where the fraud strategy tends to evolve through time,
developing an online version of our algorithm might be relevant to better capture distribution
shifts.

Note that the decision rule used in this chapter is based on the Nearest-Neighbor algorithm
and finding frauds highly depends on the distance to the closest center of an ellipsoid, thus
the center of a known fraud. In the next chapter, we focus on the k-NN algorithm and show

how we can adjust the distance function to better learn from imbalanced data.
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Chapter 4

A Corrected Nearest Neighbor
Algorithm Maximizing the
F-Measure from Imbalanced Data

This chapter is based on the following submission

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, and Marc Sebban.
An adjusted nearest neighbor algorithm maximizing the f-measure from imbalanced data. In In Pro-
ceedings of the 31st International Conference on Tools with Artificial Intelligence (ICTAI-2019), 2019a

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, and Marc Sebban.
Une version corrigée de ’algorithme des plus proches voisins pour 'optimisation de la f-mesure dans
un contexte déséquilibré. In Conférence francophone sur I’Apprentissage Automatique (CAp-19), 2019b

Abstract

In the previous chapter, we have seen that the distance to positive examples is a
key information to take into account in imbalanced scenarios. The previous work built
excluding areas over which a new query has no chance to be a fraud. The decision rule
was based on Nearest-Neighbor algorithm applied between a new query and the (positive)
centers of the learned ellipsoids On the other hand, when a NN classifier is directly applied
on highly imbalanced dataset, composed of a few positives and a huge number of negatives,
the probability for the nearest neighbor to belong to the majority class is much larger
than that of the minority class. Indeed, small Voronoi regions for the positives (as we
have seen in Chapter |1|) drastically reduce the chance of being predicted positive. Based
on this observation and a simple geometrical idea, we introduce an algorithm that weights
the distance between a query sample and any positive training example. This leads to
a modification of the Voronoi regions and thus of the decision boundaries of the NN
algorithm. We provide a theoretical justification about the weighting scheme needed

89
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9

Figure 4.1: Impact on the Voronoi regions according to the weighted distance to the positive

g yQ ._

instances. On the left, the Voronoi regions around the positives are small. The risk to generate
false negatives (FN) at test time is large. On the right: by increasing too much the regions
of influence of the positives, the probability to get false positives (FP) grows. In the middle:
an appropriate trade-off between the two previous situations.

to reduce the False Negative rate while controlling the number of False Positives. We
perform an extensive experimental study on many public imbalanced datasets. The results
presented in this chapter show that our method is very effective and, interestingly, yields
the best performance when combined with state of the art sampling methods.

4.1 Introduction

One peculiarity of imbalanced datasets can be interpreted from a geometric perspective. As
illustrated in Figure4.1| (left) which shows the Voronoi cells on an artificial imbalanced dataset
(where two adjacent cells have been merged if they concern examples of the same class), the
regions of influence of the positive examples are much smaller than that of the negatives.
This explains why at test time, in imbalanced learning, the risk to get a false negative is high,
leading to a low F-measure. Note that increasing the regions of influence of the positives
would allow us to reduce FFN and improve the F-measure. However, not controlling the
expansion of these regions may have a dramatic impact on F'P, and so on the F-Measure, as
illustrated in Figure (right).

The main contribution of this chapter is about the problem of finding the appropriate
trade-off (Figure (middle)) between the two above-mentioned extreme situations (large
FP or FN) both leading to a low F-Measure. A natural way to increase the influence of
positives may consist in using generative models (like GANs (Goodfellow et al., 2014))) to
sample new artificial examples, mimicking the negative training samples. However, beyond
the issues related to the parameter tuning, the computation burden and the complexity of
such a method, using GANSs to optimize the precision and recall is still an open problem (see
(Sajjadi et al., 2018) for a recent paper on this topic).

An other strategy, close to the use of GAN, consists in generating positive examples at
the decision boundary as depicted on the Figure to find a good trade-off between F'P and
FN. On this figure, the grey circles represent the area where a new query is more likely to
be negative, also called negative area. It is represented by a sphere of radius equal to the
distance to its nearest-neighbor. With the generation of points, we will be able to drastically
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Figure 4.2: Decision boundary without (left) and with (right) the generation of positive
points. The grey circles represent the region in which a new query is considered as negative.
The green crosses represent the generated positives at the frontier and the dotted green line
corresponds the new decision boundary.

increase the positive influence (see Figure right). However, this can lead to a new deci-

sion boundary which can lie in the negative area and, thus, to a highest ratio of false positives.

That is why, we show in this chapter that a much simpler strategy can be used by modi-
fying the distance exploited in a k-nearest neighbor (NN) algorithm (Cover and Hart, |1967)
which enjoys many interesting advantages, including its simplicity, its capacity to approxi-
mate asymptotically any locally regular density, and its theoretical rootedness (Luxburg and
Bousquet, 2004; [Kontorovich and Weiss, 2015; Kontorovich et al., 2016). k-NN also bene-
fited from many algorithmic advances during the past decade in the field of metric learning,
alming at optimizing under constraints the parameters of a metric, typically the Mahalanobis
distance, as done in LMNN (Weinberger and Saul, |2009) or ITML (Davis et al., 2007) (see
(Bellet et al., 2015) for a survey). Unfortunately, existing metric learning methods are ded-
icated to enhance the k-NN accuracy and do not focus on the optimization of criteria, like
the F-measure, in scenarios where the positive training examples are scarce. A geometric
solution to increase, at a very low cost, the region of influence of the minority class consists
in modifying the distance when comparing a query example to a positive training sample.
More formally, we show in this chapter that the optimization of the F-Measure is facilitated
by weighting the distance to any positive by a coefficient v € [0, 1] leading to the expansion
of the Voronoi cells around the minority examples. An illustration is given in Figure 4.1
(middle) which might be seen as a good compromise that results in the reduction of FFN
while controlling the risk to increase F'P. Note that our strategy boils down to modifying
the local density of the positive examples. For this reason, we claim that it can be efficiently
combined with SMOTE-based sampling methods whose goal is complementary and consists,
as already presented, in generating examples on the path linking two (potentially far) positive

neighbors. Our experiments will confirm this intuition.
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4.2 Related Work

In this section, we present the main strategies that have been proposed in the literature to
address the problem of learning from imbalanced datasets with the k-nn classifier. Some of
them have already been cited in Chapter 2, We enter a bit more into details in this section
and show where the notions of and closeness are involved in these approaches.

We consider a training sample S = {(x;,4i),i = 1,...,m} of size m, drawn from an
unknown joint distribution Z = &X' x ), where X = RP? is the feature space and Y = {—1,1} is
the set of labels. Let us assume that S = S, U S_ with m positives € S, and m_ negatives

€ S_ where m = m4 +m_.

4.2.1 Distance-based Methods

Several strategies have been devised to improve k-NN. The oldest method is certainly the one
presented in (Dudani, [1976) which consists in associating to each neighbor a voting weight
that is inversely proportional to its distance to a query point x. The assigned label 3 of x is
defined as: )
y= Z Yi X m,
x; EKNN(x)

where kNN(x) stands for the set of the k nearest neighbors of x. An other method consists
in learning the weight associated to an example (Hajizadeh et al., [2014)).

In (Barandela et al., 2003), the authors account both the label and the distance to the
neighbors (x;,y;) to define a weighted metric d’ from the euclidean distance d, as follows:

d(x,x;) = (@> Vp d(x,x;),

m
where m; is the number of examples in the class y;. As we will see later, this method falls
in the same family of strategies as our contribution, aiming at weighting the distance to the
examples according to their label. However, three main differences justify why our method
will be better in the experiments: (i) d’ is fixed in advance while we will adapt the weight that
optimizes the F- measure; (ii) because of (i), d’ needs to take into account the dimension p of
the feature space (and so will tend to d as p grows) while this will be intrinsically captured in
our method by optimizing the weight given the p-dimensional space; (iii) d’ is useless when

™ would tend to be uniform) while our method

combined with sampling strategies (indeed,
will allow us to weight differently the original positive examples and the ones artificially
generated.

Another way to assign weights to each class, which is close to the sampling methods, is
to duplicate the positive examples according to the Imbalance Ratio: m_/m.. Thus, it can
be seen as a uniform over-sampling technique, where all positives are replicated the same
number of times. However, note that this method requires to work with k£ > 1.

A last family of methods that try to improve k-NN is related to metric learning. LMNN (Wein-

berger and Saul, 2009) or ITML (Davis et al., |2007) are two famous examples which optimize
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under constraints a Mahalanobis distance dng(x,%;) = v/(x — x;) TM(x — x;) parameterized
by a positive semidefinite (PSD) matrix M. Such methods seek a linear projection of the
data in a latent space where the Fuclidean distance is applied. As we will see in the following,
our weighting method is a specific case of metric learning which looks for a diagonal matrix -
applied only when comparing a query to a positive example - and that behaves well in terms
of F-Measure.

4.2.2 Sampling Strategies

As already mentioned in the previous chapters, one way to overcome the issues induced by the
lack of positive examples is to compensate artificially the imbalance between the two classes.
Sampling strategies (Fernandez et al., 2018) have been proven to be very efficient to address
this problem. It turns out that, in most of them, the k-NN rule is involved.

The Synthetic Minority Over-sampling Technique (Chawla et al., 2002) (SMOTE) over-
samples a dataset by creating new synthetic positive data. For each minority example x,
it randomly selects one of its k£ nearest positive neighbors and then creates a new random
positive point on the line between this neighbor and x. This is done until some desired ratio
is reached.

Borderline-SMOTE (Han et al., [2005) is an improvement of the SMOTE algorithm. While
the latter generates synthetic points from all positive points, BorderLine-SMOTE only focuses
on those having more negatives than positives in their neighborhood. More precisely, new
points are generated if the number n of negatives in the k-neighborhood is such that k/2 <
n <k.

The Adaptive Synthetic (He et al., 2008) (ADASYN) sampling approach is also inspired
from SMOTE. By using a weighted distribution, it gives more importance to classes that are
more difficult to classify, i.e. where positives are surrounded by many negatives, and thus
generates more synthetic data for these classes.

Two other strategies combine an over-sampling step with an under-sampling procedure.
The first one uses the Edited Nearest Neighbors (Wilson, [1972) (ENN) algorithm on the top
of SMOTE. After SMOTE has generated data, the ENN algorithm removes data that are
miss-classified by their k nearest neighbors. The second one combines SMOTE with Tomek
link (Tomek, 1976). A Tomek link is a pair of points (x;,x;) from different classes for which
there is no other point x;, verifying d(x;,x) < d(x;,%;) or d(xk,x;) < d(x;,%;). In other
words, x; is the nearest neighbor of x; and vice-versa. If so, one removes the example of
(x4,%;) that belongs to the majority class. Note both strategies tend to eliminate the over-
lapping between classes.

Interestingly, we can note that all the previous sampling methods try to overcome the
problem of learning from imbalanced data by resorting to the notion of k-neighborhood. This
is justified by the fact that k-NN has been shown to be a good estimate of the density at
a given point in the feature space. In our contribution, we stay in this line of research.
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Rather than generating new examples, that would have a negative impact from a complexity
perspective, we locally modify the density around the positive points. This is achieved by
re-scaling the distance between a test sample and the positive training examples. We will
show that such a strategy can be efficiently combined with sampling methods, whose goal
is complementary, by potentially generating new examples in regions of the space where the

minority class is not present.

4.3 Our Proposed Strategy

In this section, we present our vk—NN method which works by scaling the distance between
a query point and positive training examples by a factor.

4.3.1 A Corrected k—NN algorithm

Statistically, when learning from imbalanced data, a new query x has more chance to be
close to a negative example due to the rarity of positives in the training set, even around the
mode of the positive distribution. We have seen two families of approaches that can be used
to counteract this effect: (i) creating new synthetic positive examples, and (ii) changing the
distance according to the class. The approach we propose falls into the second category.

We propose to modify how the distance to the positive examples is computed, in order to
compensate for the imbalance in the dataset. We artificially bring a new query x closer to
any positive data point x; € S; in order to increase the effective area of influence of positive
examples. The new measure d, that we propose is defined, using an underlying distance d
(e.g. the euclidean distance) as follows:

d(x,x;) itx; € S_,

dy(x,%x;) =
! v-d(x,x;) ifx; € Sy.

As we will tune the v parameter, this new way to compute the similarity to a positive
example is close to a Mahalanobis-distance learning algorithm, looking for a PSD matrix,
as previously described. However, the matrix M is restricted to be 42 - I, where I refers to
the identity matrix. Moreover, while metric learning typically works by optimizing a convex
loss function under constraints, our v is simply tuned such as maximizing the non convex
F-Measure. Lastly, and most importantly, it is applied only when comparing the query to
positive examples. As such, d, is not a proper distance, however, it is exactly this which
allows it to compensate for the class imbalance. In the binary setting, there is no need to
have a v parameter for the negative class, since only the relative distances are used. In the
multi-class setting with K classes, we would have to tune up to K — 1 values of ~.

Before formalizing the y£—NN algorithm that will leverage the distance d.,, we illustrate in
Figure on 2D data, the decision boundary induced by a nearest neighbor binary classifier
that uses d,. We consider an elementary dataset with only two points, one positive and one
negative. The case of v = 1, which is a traditional 1-NN is shown in a thick black line.



4.8. Our Proposed Strategy 95

Figure 4.3: Evolution of the decision boundary based on d,, for a 1-NN classifier, on a 2D
dataset with one positive (resp. negative) instance represented by a blue cross (resp. orange
point). The value of ~ is given on each boundary (v = 1 on the thick line).

Figure 4.4: Behavior of the decision boundary according to the v value for the 1-NN classifier
on two toy datasets. The positive points are represented by blue crosses and the negatives
by orange points. The black line represents the standard decision boundary for the 1-NN
classifier, i.e. when v = 1.

Lowering the value of «v below 1 brings the decision boundary closer to the negative point,
and eventually tends to surround it very closely. In Fig two more complex datasets are
shown, each with two positive points and several negative examples. As intuited, we see that
the v parameter allows to control how much we want to push the boundary towards negative
examples.

We can now introduce the vk—NN algorithm (see Algo [3) that is parameterized by a ~y
parameter. It has the same overall complexity as k—NN. The first step to classify a query
X is to find its k nearest negative neighbors and its k£ nearest positive neighbors. Then, the
distances to the positive neighbors are multiplied by v, to obtain d,. These 2k neighbors
are then ranked and the k closest ones are used for classification (with a majority vote, as
in k—NN). It should be noted that, although d, does not define a proper distance, we can
still use any existing fast nearest neighbor search algorithm, because the actual search is done
(twice but) only using the original distance d.
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Algorithm 3: Classification of a new example with vA—NN

Input : a query x to be classified, a set of labeled samples S = S U S_, a number
of neighbors k, a positive real value -, a distance function d
Output: the predicted label of x

NN~ D~ « nn(k,x,5_) // nearest negative neighbors with their distances
NNT, DT « nn(k,x,S) // nearest positive neighbors with their distances
Dt < ~.DF

NN, « firstK (k, sortedMerge((NN~, D7), (NNT,DT)))

Y« +if [NV NNNT| > & else — // majority vote based on NN,
return y

4.3.2 Theoretical analysis

In this section, we formally analyze what could be a good range of values for the « parameter
of our corrected version of the k—NN algorithm. To this aim, we study what impact v has
on the probability to get a false positive (and false negative) at test time and explain why
it is important to choose v < 1 when the imbalance in the data is significant. The following
analysis is made for £k = 1 but note that the conclusion still holds for a k-NN.

Proposition 4.1. (False Negative probability) Let d(x,xy) = vyd(x,x4), Vy > 0, be our
modified distance used between a query x and any positive training example x4, where d(x, X4 )
is some distance function. Let F'N~(z) be the probability for a positive example z to be a false

negative using Algorithm (@) The following result holds: if v <1,
FN,(z) < FN(z)

Proof. (sketch of proof) Let € be the distance from z to its nearest-neighbor N,. z is a false

negative if N, € S_ that is all positives x’ € S are outside the sphere Se(z) centered at z
Y

of radius % Therefore,

FN,(z) = [] (1 - P(x' €S- (z))) - (1 - P(x' €: (z)))”” (4.1)
x'eSy

while
FN(z) = (1-P(x' € S.(z)))"". (4.2)
Solving (4.1)) < (4.2) implies v < 1. O

This result means that satisfying v < 1 allows us to increase the decision boundary around
positive examples (as illustrated in Figure , yielding a smaller risk to get false negatives
at test time. An interesting comment can be made from Eq. and about their
convergence. As m. is supposed to be very small in imbalanced datasets, the convergence
of FN(z) towards 0 is pretty slow, while one can speed-up this convergence with F'N,(z) by
increasing the radius of the sphere S% (z), that is taking a small value for ~.
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Proposition 4.2. (False Positive probability) Let FP,(z) be the probability for a negative
example z to be a false positive using Algorithm (@ The following result holds: if v > 1,

FP,z) < FP(z).
Proof. (sketch of proof) Using the same idea as before, we get:

FPy(z)= [] (1- P €8(2) = (1 - P(X € S;e(2)))"" (4.3)
x'eS_

while
FP(z) = (1- P(x' € 8.(z))" . (4.4)

Solving (4.3) < (4.4) implies v > 1. O

As expected, this result suggests to take v > 1 to increase the distance d,(z,x4) from a
negative test sample z to any positive training example x; and thus reduce the risk to get a
false positive. It is worth noticing that while the two conclusions from Propositions and
are contradictory, the convergence of F'P,(z) towards 0 is much faster than that of F'N,(z)
because m_ >> m4 in an imbalanced scenario. Therefore, fulfilling the requirement v > 1
is much less important than satisfying v < 1. For this reason, we will impose our Algorithm
to take v €]0,1[. As we will see in the experimental section, the more imbalanced the
datasets, the smaller the optimal ~y, confirming the previous conclusion.

4.4 Experiments

In this section, we present an experimental evaluation of our method on public and real private
datasets with comparisons to classic distance-based methods and state of the art sampling
strategies able to deal with imbalanced data. All results are reported using k£ = 1 and 3.

4.4.1 Experimental setup

For the experiments, we use several datasets from the classic UCI H and KEEL E] repositories.
The main properties of the datasets are summarized in Table including the imbalance
ratio (IR).

All the datasets are normalized using a min-max normalization such that each feature lies
in the range [0,1]. We randomly draw 80%-20% splits of the data to generate the training
and test sets respectively. Hyperparameters are tuned with a 10-fold cross-validation over the
training set. We repeat the process over 5 runs and average the results in terms of F-measure
Fi. In a first series of experiments, we compare our method, named vk—NN, to 6 other

distance-based baselines:

"https://archive.ics.uci.edu/ml/datasets.html
®https://sci2s.ugr.es/keel/datasets.php
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DATASETS SIZE | DIM | %+ | %— IR
BALANCE 625 4 |46.1 ] 53.9 1.2
AUTOMPG 392 7 37.5 | 62.5 1.7
IONO 351 34 | 35.9 | 64.1 1.8
PIMA 768 8 34.9 | 65.1 1.9
WINE 178 13 | 33.1 | 66.9 2
GLASS 214 9 |327]67.3| 2.1
GERMAN 1000 | 23 30 70 2.3
VEHICLE 846 18 | 23.5 | 76.5 3.3
HAYES 132 4 22.7 | 77.3 3.4
SECMENTATION | 2310 | 19 | 14.3 | 85.7 6
ABALONES 4177 | 10 | 13.6 | 86.4 | 6.4
YEAST3 1484 | 8 11 89 8.1
PAGEBLOCKS 0473 | 10 | 10.2 | 89.8 | 8.8 1
SATIMAGE 6435 | 36 | 9.7 [90.3 | 9.3
LIBRAS 360 | 90 | 6.7 | 93.3 14
WINE4 1599 | 11 3.3 | 96.7 | 29.2
YEAST6 1484 | 8 2.4 1976 | 41.4
ABALONE17 4177 | 10 1.4 | 98.6 | 71.0
ABALONE20 4177 | 10 0.6 | 99.4 | 159.7

Table 4.1: Information about the studied datasets sorted by imbalance ratio.

the classic k—Nearest Neighbor algorithm (k—NN),

the weighted version of k—NN using the inverse distance as a weight to predict the label
(wk—NN) (Dudani, 1976),

e the class weighted version of k—NN (cwk—NN) (Barandela et al., 2003)),

the k—NN version where each positive is duplicated according to the IR of the dataset
(dupk—NN),

e the metric learning method LMNN (Weinberger and Saul, 2009).

We set the number of nearest neighbors to k = 3 for all methods. The hyperparameter p of
LMNN, weighting the impact of impostor constraints (see (Weinberger and Saul, 2009) for
more details), is tuned in the range [0, 1] using a step of 0.05. Our  parameter is tuned in
the range [0, 1] using a step of 0.1.

3We experimentally noticed that using a larger range for v leads in fact to a potential decrease of per-
formances due to overfitting phenomena. This behavior is actually in line with the analysis provided in

Section
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DATASETS 3—NN DUPE—NN wk—NN cwk—NN LMNN vk—NN

BALANCE 0.954 (0.017) | 0.954 (0.017) | 0.957 (0.017) | 0.961 (0.016) | 0.965 (0.009) | 0.952 (0.032)
AUTOMPG 0.808 (0.077) | 0.826 (0.033) | 0.810 (0.076) | 0.815 (0.060) 0.827 (0.054) | 0.835 (0.023)
IONO 0.752 (0.053) | 0.859 (0.021) | 0.756 (0.060) | 0.783 (0.033) 0.890 (0.039) | 0.924 (0.016)
PIMA 0.500 (0.056) | 0.539 (0.033) | 0.479 (0.044) 0.514 (0.060) 0.499 (0.070) | 0.562 (0.028)
WINE 0.881 (0.072) | 0.852 (0.057) | 0.881 (0.072) | 0.862 (0.099) | 0.950 (0.036) | 0.861 (0.079)
GLASS 0.727 (0.049) | 0.733 (0.061) | 0.736 (0.052) 0.730 (0.041) 0.710 (0.062) | 0.761 (0.051)
GERMAN 0.330 (0.030) | 0.449 (0.037) | 0.326 (0.030) | 0.347 (0.043) 0.323 (0.054) | 0.465 (0.025)
VEHICLE 0.891 (0.044) | 0.867 (0.027) | 0.891 (0.044) 0.873 (0.026) | 0.958 (0.020) | 0.874 (0.043)
HAYES 0.036 (0.081) 0.183 (0.130) 0.050 (0.112) 0.239 (0.068) 0.036 (0.081) | 0.541 (0.092)

SEGMENTATION | 0.859 (0.028) | 0.862 (0.018) | 0.877 (0.028) 0.844 (0.022) | 0.888 (0.035) | 0.845 (0.025

)
ABALONES 0.243 (0.028) | 0.318 (0.018) | 0.241 (0.028) | 0.328 (0.022) 0.247 (0.066) | 0.348 (0.031)
YEAST3 0.634 (0.066) | 0.670 (0.034) | 0.634 (0.066) | 0.690 (0.021) | 0.667 (0.055 0.686 (0.042)
PAGEBLOCKS 0.842 (0.020) | 0.850 (0.024) | 0.849 (0.019) | 0.847 (0.030) | 0.855 (0.036) | 0.844 (0.023)
SATIMAGE 0.454 (0.039) | 0.457 (0.027) | 0.454 (0.039) 0.458 (0.027) | 0.487 (0.026) | 0.433 (0.018)
LIBRAS 0.722 (0.228) | 0.704 (0.279) | 0.722 (0.228) | 0.706 (0.229) | 0.677 (0.220) | 0.684 (0.223)
WINE4 0.031 (0.069) | 0.090 (0.086) | 0.031 (0.069) 0.000 (0.000) 0.000 (0.000) | 0.093 (0.036)
YEASTG6 0.503 (0.302) | 0.449 (0.112) | 0.502 (0.207) | 0.342 (0.073) | 0.505 (0.231) | 0.574 (0.172)
ABALONEL7 0.057 (0.078) | 0.172 (0.086) | 0.057 (0.078) 0.077 (0.032) 0.000 (0.000) 0.084 (0.017)
ABALONEZ20 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.140 (0.123) | 0.000 (0.000) 0.094 (0.046)

( MEAN ( 0.538 (0.070) T 0.570 (0.058) T 0.540 (0.070) T 0.556 (0.054) T 0.552 (0.058) T 0.603 (0.054) W

Table 4.2: Results for 3—NN on the datasets. The values correspond to the mean F-measure
Fy over 5 runs. The standard deviation is indicated between brackets. The best result on
each dataset is indicated in bold.

In a second series of experiments, we compare our method to the five oversampling strate-
gies described in Section[4.2.2} SMOTE (Chawla et al.,[2002), Borderline-SMOTE (Han et al.,
2005), ADASYN (He et al., 2008), SMOTE with ENN (Wilson, 1972), SMOTE with Tomek
links (Tomek, 1976). The number of generated positive examples is tuned over the set of
ratios % € {0.1,0.2,...,0.9,1.0} and such that the new ratio is greater than the original one

before sa;npling. Other parameters of these methods are the default ones used by the package
ImbalancedLearn (Lemaitre et al., 2017) of Scikit-learn.

4.4.2 Results

In this section, we provide the results using k—NN algorithm with £ = 1 and k = 3. The
results with k = 1 are used to illustrate the study conducted in Section [.3.2l However, we
will see that the value of k£ does not change the results and leads to the same conclusion.
The results using distance-based methods are provided in Table Overall, our vk—NN
approach performs much better than its competitors by achieving an improvement of at least
3 points on average, compared to the 2nd best method (DUPk—NN). The different k—NN
versions fail globally to provide models efficient whatever the imbalance ratio. The metric
learning approach LMNN is competitive when IR is smaller than 10 (although algorithmically
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Figure 4.5: Comparison of different sampling strategies averaged over the 19 public datasets.
OS refers to the results of the corresponding sampling strategy and OS + ~ to the case when
the sampling strategy is combined with vk-NN. k—NN and vk—NN refers to the results of
these methods without oversampling as obtained in Table for £k = 3 on the right and for
k =1 on the left. (numerical values for these graphs are provided in supplementary material)

more costly). Beyond, it faces some difficulties to find a relevant projection space due to the
lack of positive data. The efficiency of vk—NN is not particularly sensitive to the imbalance

ratio.

The results for our second series of experiments, focusing on sampling strategies, are
reported on Figure We compare each of the 5 sampling methods with the average
performances of 3—NN and vk-NN obtained over the 19 public datasets reported in Table [4.2]
Additionally, we also use vk—NN on the top of the sampling methods to evaluate how both
strategies are complementary. However, in this scenario, we propose to learn a different ~
value to be used with the synthetic positives. Indeed, some of them may be generated in
some true negative areas and in this situation it might be more appropriate to decrease the
influence of such synthetic examples. The « parameter for these examples is then tuned in the
range [0, 2] using a step of 0.1. If one can easily observe that all the oversampling strategies
improve the classic k— NN, none of them is better than our vk-NN method showing that our
approach is able to deal efficiently with imbalanced data. Moreover, we are able to improve
the efficiency of vk-NN when it is coupled with an oversampling strategy. The choice of the
oversampler does not really influence the results. The gains obtained by using a sampling
method with vk-NN for each dataset is illustrated in Figures and (top).

To study the influence of using two ~ parameters when combined with an oversampling
strategy, we show an illustration (Figure (left)) of the evolution of the F-measure with
respect to the + values for synthetic and real positive instances. The best F-measure is
achieved when the v on real positives is smaller than 1 and when the « on synthetic positives
is greater than 1, justifying the interest of using two parameterizations of v. In Figure
(right), we show how having two 7 values gives the flexibility to independently control the
increased influence of real positives and the one of artificial positives.
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Figure 4.6: (Left) An example of heatmap that shows the best couple of 7 for the OS+vyk—NN
strategy on the yeast6 dataset with SMOTE and Tomek links. (Right) Illustration, on a toy
dataset, of the effect of varying the ~ for generated positive points (in grey) while keeping a
fixed v = 0.4 for real positive points.

We now propose a study on the influence of the imbalance ratio on the optimal ~-
parameter. We consider the Balance dataset which has the smallest imbalance ratio that
we increase by iteratively randomly under-sampling the minority class over the training set.
We report the results on Figures and (bottom). As expected, we can observe that the
optimal v value decreases when the imbalance increases. However, note that from a certain
IR (around 15), v stops decreasing to be able to keep a satisfactory F-Measure.

4.4.3 Comparison with M E?

In the previous chapter, we have seen that M E? classification rule is also based on the the
distance of a new query to its nearest neighbor. For this reason, we propose to compare vk-NN
with M E? in this section using the datasets described in Chapter [3| For a fair comparison
with M E?, vk-NN is Applied with & = 1 and a simple 2-fold cross validation is used to tune
the parameter . The results of this experiment is presented in Table and show that
ME? outperforms ~vk-NN on most of the datasets and especially on the most imbalanced
ones. This observation means that the use of a single parameter to modify the distance to
a positive example is not enough. While vk-NN uniformly modifies the distance to positives
in the space, M E? takes the geometry of the data into account (i.e. the importance of each
feature) to compute the distance to the positive examples. Thus, we think that the proposed
algorithm can be greatly improved by learning a similarity matrix M which will be used in
the computation of the distance to positive examples. Furthermore M E? is also building a
frontier outside which any new query is automatically predicted negative, a frontier that does
not exist with vk-NN.
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DATASETS YEAST3 ABALONE WINE ABALONELT YEAST6 ABALONE20 | BANK FRAUD
vk-NN 0.67 £ 0.05 | 0.60 + 0.02 | 0.10 £+ 0.07 0.05 £+ 0.08 0.39 £ 0.15 0.11 £ 0.11 0.03 £+ 0.03
ME? 0.67 £ 0.06 | 0.61 £ 0.03 | 0.20 £+ 0.09 | 0.46 + 0.07 | 0.46 + 0.08 | 0.30 £+ 0.07 0.05 £+ 0.02

Table 4.3: Comparison of M E? with vk-NN with k& = 1. The values correspond to the mean
F-measure Fj over 10 runs. The standard deviation is indicated between brackets. The best
result on each dataset is indicated in bold.

4.5 Conclusion

In this chapter, we have proposed a new strategy that addresses the problem of learning from
imbalanced datasets, based on the k—NN algorithm and that modifies the distance to the
positive examples. It has been shown to outperform its competitors in term of Fi-measure.
Furthermore, the proposed approach is complementary to oversampling strategies and can
even increase their performance. Our vk—NN algorithm, despite its simplicity, is highly
effective even on real data sets.

Two lines of research deserve future investigations. We can note that tuning =y is equivalent
to building a diagonal matrix (with 42 in the diagonal) and applying a Mahalanobis distance
only between a query and a positive example. This comment opens the door to a new
metric learning algorithm dedicated to optimizing a PSD matrix under F-Measure-based
constraints. If one can learn such a matrix, the second perspective will consist in deriving
generalization guarantees over the learned matrix. In addition, making v non-stationary (a

~(x) that smoothly varies in X') would increase the model flexibility.
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Chapter 5

From Cost-Sensitive Classification
to Tight F-measure Bounds

This chapter is based on the following publications

Kevin Bascol, Rémi Emonet, Elisa Fromont, Amaury Habrard, Guillaume Metzler, and Marc Sebban.
From cost-sensitive classification to tight F-measure bounds. In In Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics (AISTATS-19), 2019

Kevin Bascol, Rémi Emonet, Elisa Fromont, Amaury Habrard, Guillaume Metzler, and Marc Seb-
ban. Un algorithme d’optimisation de la F-mesure par pondération des erreurs de classification. In

Conférence francophone sur I’Apprentissage Automatique (CAp-18), 2018

Abstract

We have seen that the F-measure is a classification performance criterion, especially
suited when dealing with imbalanced datasets. As this measure is non convex and non lin-
ear, its optimization remains a challenging task. In this chapter, we present the derivation
of tight bounds on the optimal F-measure using cost-sensitive methods, i.e. by assigning
costs on false positives and false negatives. Rewriting the F-measure as a linear fractional
function, we show that the optimization of the F-measure can be reduced to a cost-
sensitive task where the costs depend on an unknown parameter t. We then show that
we can upper-bound the difference of F-measures between their respective proportion of
false negatives and false positives and two values of ¢ to get our final bound. A geometric
interpretation of this bound is then given and used to create a new algorithm, CONE,
which aims to iteratively optimize the F-measure by building non-reachable areas in the
(t, F')—space and that directly looks for the value of ¢ for which we can hope maximizing
the F-measure.

The effectiveness of the proposed approach is tested on several imbalanced datasets.
We show that the derived bounds are much tighter than the existing one introduced

107
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in [Parambath et al. (2014) From an experimental point of view, we show that our algo-

rithm converges to the optimal value. Finally, we provide evidences that CONE is able
to reach at least comparable and even better results than some state of the art methods
with less iterations.

5.1 Related Work

We have seen that the F-measure (van Rijsbergen, |1974) is a performance measure used in

classification to evaluate the ability of a classifier to predict the labels of new instances with
a good recall and a good precision (as an harmonic mean of these two measures). It is the
most commonly used measure in imbalanced settings where using the accuracy of the classifier
would greatly favor the majority class (Chandola et al., [2009; Lopez et al.| [2013). As already
mentioned, this measure can be parameterized by a constant 8 that controls the relative

importance of the precision and the recall. For 8 < 1 (resp. 8 > 1), more importance is
given to the precision (resp. recall). When g = 1, they are considered equally important.
The F-measure can be expressed in terms of the true positive rate and true negative rate of
the model. These rates are count-based measures which makes the F-measure, in addition to

being non convex, unsuitable for direct optimization (Narasimhan et al., 2015a)).

Several methods have been proposed to optimize such a measure. They can roughly be

separated into two categories: Decision Theoretic Approaches (DTA) (Dembczyniski et al.|
2017)) which try to find the classifier that maximizes the expectation of the F-measure. More
precisely, these methods usually fit a probabilistic model during the training followed by an in-

ference procedure at test time (Decubber et al.,[2018). The probabilistic model can be learned

by optimizing a “simpler” surrogate function (e.g., (Dembczynski et al., [2011; Janschel [2005;
Ye et al., [2012; [P.M. Chinta and Murty, 2013)). The second category consists of Empiri-
cal Utility Mazimization (EUM) methods that learn multiple accurate models with different

parameters and keep the model that maximizes the F-measure (Busa-Fekete et al., 2015;
lJoachims| 2005; Musicant et al.l [2003} [Parambath et al., 2014}; [Zhao et al., 2013; Narasimhan|
. Here, the parameters can be the different classification thresholds for proba-
bilistic models (Busa-Fekete et al., 2015 |Joachims, |2005; |Zhao et al.,|[2013; Narasimhan et al.,
or the costs on the classification errors for cost-sensitive methods (Musicant et al.,
2003; [Parambath et al., 2014; Koyejo et al.| 2014). [Ye et al. (2012) have shown that these
two types of approaches asymptotically give the same results. They also propose heuristics

to decide on the category to use depending on the context.

The work presented in this chapter falls into the FUM based-methods and is built from
a cost-sensitive classification approach that has been shown to be relevant and efficient to
optimize the F-measure (Parambath et al., 2014).

For this reason, we have decided to compare our work with the one presented by
et al.| (2014); Parambath et al.| (2014) and Narasimhan et al. (2015a). Both authors used a
cost-sensitive approach in a different manner, using either SVMs or a Class Probability Fsti-

mator (CPE) such as Logistic Regression as classification algorithms.
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To maximize the F-measure, Koyejo et al.| (2014) proposed two different approaches, each
of which is based on CPE which gives the probability n(x) that an example x belongs to a
given class, typically the positive class y = 1, n(x) = Pr(y = 1 | x). This probabilistic model
is learned by minimizing a surrogate of the 0-1 loss and the returned probability is compared
to a threshold § to decide in which class the examples belong to. This decision threshold
is tuned in order to optimize the F-measure on a validation set. Despite its simplicity, this
method has been shown to be F-consistent, i.e. the estimated value of the F-measure con-
verges to the optimal value when the number of examples is growing.
A similar approach is proposed in the same paper. This time, the authors learn their prob-
abilistic model using a weighted surrogate ¢ of the 0-1 loss parameterized by a constant §.
This parameter is used to assign costs on false negatives and false positives as follows:

ls(n,y) = (1= 6)Ly=13£(n, 1) + 61—y £(n, 0),

where 7 is the CPE and #4(n, 1) (resp. £(n,0)) is the value of the surrogate when a positive
example is missclassified (resp. when a negative example is missclassified). The use of § as
a weighted parameter of the loss function is not innocent. In fact, Scott| (2012) has shown
that the optimal classifier used to optimize this loss is sign[n(x) — d]. It remains to find the
best threshold, thus, the best costs to assign to each class, to maximize the F-measure. For
this purpose, the authors proposed to make a grid on [0,1] and to find the value of ¢ that
maximizes the F-measure on a validation set. This method constitutes the main weakness of
their method from a practical aspect by requiring a sufficiently fine grid.

The use of a grid is also proposed by Parambath et al.| (2014) to optimize the F-measure.
However, they present their study in the framework of fractional-linear functions, i.e. func-
tions defined as the ratio of two affine functions. The authors make an interesting link between
the definition of the F-measure and cost-sensitive learning using the fact that the F-measure
is fractional-linear as we will see in the next section. Using this fact, they are able to provide
a bound on the optimal F-measure, a bound we aim to improve in this chapter. We will show
that, in practice, this bound is not informative unless the used grid is small enough. This
method suffers from the same practical weakness as the previous approach.

Choosing the cost to assign to each class is crucial if we aim to optimize the F-measure and
using a simple grid to find the optimal costs can be time consuming. To overcome this issue,
Narasimhan et al. (2015b|) proposed an algorithm to iteratively update the costs assigned to
each class (and the optimal threshold undirectly). Like |Parambath et al. (2014), this method
is based on the fractional linear property of the F-measure and on the bisection method (Boyd
and Vandenberghe, [2004). It has been shown to be more effective and faster than a grid based
method. The weakness of their method lies in the fact that a single CPE is learned which
is totally independant from the cost function and we will show that it is possible to improve
the performance by learning a model per cost without falling in the weakness of |Parambath
et al. (2014) and Koyejo et al.| (2014).
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According to the above mentioned reasons, our contribution in this chapter is in three-fold:
1. From a theoretical perspective, we improve the bound given by |Parambath et al. (2014)),
2. We give a geometric interpretation of the obtained bound,

3. We derive an algorithm, CONE, which updates the cost to assign to each class using
our bound.

The next section introduces the required notations and definitions used for our purpose.

5.2 Theoretical Bounds

In this section, we present how we can derive a tight bound on the optimal F-measure using
the cost-sensitive framework and the pseudo-linearity property of the F-measure. We only
present these results in the binary setting but they can easily be extended to the multi-class

settin

5.2.1 Notations

Let X = (x1,..., X ), where x; € R?, be the set of m training instances and Y = (y1, ..., Ym)
their corresponding labels, where y € {0,1}. Let H be a family of hypotheses e.g., linear
separators.

Let P (resp. N) be the proportion of positive (resp. negative) instances. We also denote
by e = e(h) the vector (e;,ez) where e; and ez are respectively the proportion of false
negatives (FN) and false positives (FP) obtained by a classifier h € H on a dataset S. We
then denote as £(H) the set of all possible error profiles e(h) for a given set of hypotheses
H: an error profile e = (e, ez) is in E(H) if there exists an hypothesis h € H that yields
proportions of e; false negatives and es false positives.

Let us recall the definition of the F-measure for any value of 5:

(1+ %) (P - FN)
(14+B2)P—FN + FP’

Fg =

Using the above notations, the F-measure, Fj(e), defined in terms of the error profile e can

be rewritten as:

1+ B85 (P—e

This second writing will allow us to lighten the notations later on by manipulating the
error vector e. Furthermore, in the following, we will replace Fz(e) by F'(e) since the used
F-measure will always depend on 8 > 0.

!See Appendix |A.1 for complete details about the multi-class setting.
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5.2.2 Pseudo linearity property

As shown in Equation , the F-measure is a linear-fractional function, i.e. it can be written
as the ratio of two affine functions of the error profile. We briefly recall how to show that the
F-measure is a pseudo-linear function, which is one of the main properties of linear-fractional
functions. This property is the starting point of our main theoretical result.

Definition 5.1. [Pseudo Convezity |Rapcsak (1991)] A real differentiable function f defined

on an open convex set C C R? is said to be pseudo-convex if for every e, e € C,

(Vf(e), (e —e) >0 = f(e) > f(e),
where V f denotes the gradient of the function f.
The pseudo-convexity is used to define the pseudo-linearity as shown below.

Definition 5.2. [Pseudo Linearity] A function f defined on an open convex C is said to be

pseudo-linear if both f and —f are pseudo-convex.
A first step consists in showing that the F-measure is pseudo-linear.
Proposition 5.1. The F-measure is a pseudo-linear function.

Proof. We need to show that both F' and —F are pseudo-convex, i.e. for all e,e’ € E(H), we

have:
(VF(e),(e' —e)) >0 = F(e) > F(e). (5.2)

For all e,e’ € £(H) the gradient of the F-measure is defined by:

1+ 32 B2P + ey
(L+p2)P—e14+e)?\ P—er |

VF(e)=—

We now develop the left hand side of the implication ([5.2):

0< (VE(e), (' —e)),

2
= ((1+ 52;1:—561 + €3)? [(B2P + e2) (e} — 1) + (P —e1)(ey — e2)] -

14
(1+5%)P —e1 + e2)

Dividing both sides of the previous inequality by — 5 <0, we get:

0 < —(B2P+e)(el —e1) = (P —er)(ez — ea),
0 < —B*P(e] —e1) — €lea + eres + Pley — €h) + ereh — eres,

0 < —B2P(e} —e1) + P(eg — €b) + erehy — elea,
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0 < — B%Pe} + *Pey + Pey — Pely + erey — €les.
We then separate the terms on both sides of the inequality as follows:
—B%Péey + Pey — € e2 > — 3?Pe; + Pely — e1€l

— ﬁQPe/l + Pey — eles — P(e; +¢€)) > — B%Pe; + Pely — e1ely — P(e1 + €)),
— —— — —

—(1+ %) Pé + Pey — eeg — Pey > —(1 + %) Pe; + Pely — erey — Pél.

Then, we add eje} on both sides and factorize the expression

—(1+ B)Pé; + Pes — ches — Per+exéy > —(1+ f2)Pey + Py — erchy — Pé) + exel,

—(14B3)Pey + (P —e)es—(P —¢))ey > —(1+4B*)Pey+ (P —e1)eh—(P —ey)e).
Finally, by adding (1 + 8?)P? on both sides we get:

(1+BHP(P—¢€) —(P—é))ei+ (P —¢é))es > (1+BHP(P—e)) — (P —ep)e] + (P —ey)éb,

(P—eN)((L+ )P —er+e2) = (P—e)((1+5%)Pe) +e)),

(P_ell) > (P_el)
(1+B%)P—¢|+eh, — (1+62)P —e1+e’

(14 B%) (P —¢€)) S (14 B%)(P —e1)
(14+8)P—¢ +ey, =~ (1+p2)P —e1+er’

F(e') > F(e).

The proof is similar for —F. We have shown that both F' and —F are pseudo-convex so F’ is
pseudo-linear. ]

Using this property, we are able, using a result from Cambini and Martein| (2009) to give a
link between the F-measure and a cost-sensitive function, i.e. a function which assigns weights
to each class.
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Figure 5.1: Level sets of the F-measure for § = 1 in the (e, e5) —space with the corresponding
value of the F-measure.

Proposition 5.2. [Theorem 3.3.9 from|Cambini and Martein (2009)] Let f be a non-constant
differentiable function on an open convexr set C C R4, q > 0. Then f is pseudo-linear on C if

and only if the following properties hold:
(i) each of the level sets of f is the intersection of C with a hyperplane;
(i) Vf(e) #0 for alle € C.

Let us consider the set of error profiles {e € R? | (1+3?)P —ej +e3 > 0} (which is always
the case in practice with the F-measure). Then according to the previous theorem, we rewrite

(1) as follows:
There is a : R — R2 and b : R — R such that

F(e) =t < (a(t),e) +b(t) =0,
which can be rewritten:
(a(F(e)),e) +b(F(e)) = 0. (5.3)

The above proposition is illustrated on Figure The level sets are represented in the
(e1,e2)—space by the straight lines which can be seen as affine hyperplanes in a space of any
dimension.

For the F-measure, the functions a and b are defined by a(t) = (14 5% —t,t) and b(t) =
(1+ B2)P(t —1). The term (a(t),e) can be seen as a weighted error loss function, and thus
a(t) can be seen as the costs to assign to each class.

This loss function, thus its associated empirical risk will be used, essentially in the exper-
imental part, as the quantity to minimize to maximize the F-measure. The link between the
minimization of such a risk and the F-measure maximization is explained in the Proposition

4 of Parambath et al.| (2014) and is mainly based on the pseudo-linearity of the F-measure.
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5.2.3 Bounds on the optimal F-measure

We now show the importance of the function a and of the parameter ¢ to characterize the
difference of F-measures between any two error profiles.

Step 1: impact of a change in the error profile

We first derive the relation between the difference in F-measures and the difference in error
profiles. Let e and € be any two error profiles and F(e) and F(e') the corresponding F-
measures.

From the pseudo-linearity property (Equation ), we have:

0 = (a(F(e)),e)+b(F(e)), (5.4)
0 = (a(F(e),€) +b(F(e)). (5.5)

We now develop (a(F(e’)),e — €’) and make the difference in F-measures appears in its

expression.

(a(F(e)),e—€) = (a(F(e')) e) +b(F(e)),

= (a(F(e')) —a(F(e)),e) + P(1+ %) (F(e/) - F(e)),

= (e2—e1)(F(e') = F(e)) + P(1+ *)(F(e) - F(e)),

(a(F(e),e—€)= (F(e)—F(e)) - ((1+ BHP —e1 +e3),

where the second line uses Equation . The third one uses the linearity of the inner
product and the definition of b. The fourth one uses Equation and the last line uses the
definition of a and b defined in Section [£.2.2]

Now we can rewrite the difference in F-measures as:

where ®¢ =

(1+B82)P—e1 +ey

Step 2: a first bound on the F-measure F(€')

We suppose that we have a value of ¢ for which a weighted-classifier with weights a(t) has
been learned. This classifier has an error profile e and a F-measure F(e). Note that the value



5.2. Theoretical Bounds 115

t used to trained the model is not the value of the F-measure, i.e. F(e) # t. We keep this
notation for the sake of simplicity in the following. We now imagine a hypothetical classifier
which leads to an error profile e* the optimal error profile, i.e. the one that maximized the
F-measure and for which we have F'(e*) = t* (see Proposition 4 of Parambath et al.| (2014)).
Starting from the result obtained in Equation , we have:

Fle') — Fle) = . <<a<t*>,e> - <a<t*>,e*>> ,

Y <<a<t>,e> F( — t)(er —en) - <a<t*>,e*>) ,
——

< B, < —(a(t*),e*) + (a(t),e*)+e1 + (t* — t)(e2 — el)> ,
< Do ((t—t7)(e5 —el) +er+ (" —t)(ea —e1)),
F(e*) — F(e) < ®ee1+ Do (e2 —e1 — (€5 —€]))(t" —1). (5.7)

We have successively used the linearity of the inner product, introduced a(t) and its definition
in the first three equalities. The first inequality uses (a(t),e) < (a(t),epest) + €1, the sub-
optimality of the a(t)-weighted-error classifier. The value of €1 represents the excess of risk
of the classifier which aims to minimize the a(t)-weighted-error. More precisely, it represents
the difference of risks between our classifier and the best classifier hpest (in terms of a(t)-
weight-error) in our set of hypotheses H. We denote by ep.s: the error profile associated to

hbest-
We are interested in upper bounding the optimal value of the F-measure using equa-

tion .

For this purpose, we consider any possible value of ¢’, for which we learn a hypothetical
classifier with weights a(t'), that gives us an error profile € and a F-measure F(e'). If ¢
happens to be the optimal value which, by weighting the errors with a(¢’), maximizes the

F-measure then F(e’) = t’ for € = argmin (a(t’), é). Equation (5.7) can then be applied and
écE(H)
gives:

F(e)—F(e) < ®ee1 +Po-(e2 —e1 — (ehy — €)' — 1)

By this way, the above equation can be interpreted in terms of two distinct variables: (i)
the value ¢’ and (ii) the achieved F-measure F(e’) (if ¢ would be optimal) with respect to

the value t'. Driven by this dissociation between the weighting ¢ and the F-measure F'(€'),
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Section explains how it can be used to look for the optimal weighting parameter t* and,
thus, to the optimal value F'(e*). But before giving the interpretation of our bound, it remains
to show that the difference €/, — €} can be tightly bounded.

Step 3: a tight bound on €}, — €]

The bound described by Equation remains actually incomplete as stated before. To
complete this bound we need to study the difference e}, — e}. We aim to bound this difference
according to the sign of ¢ — ¢’ and under the constraint that €’ is such that F(e’) > F(e) in
order to have a tighter bound.

We first need a preliminary result to explain if we have to give an upper bound or a lower

bound on e — €.

Lemma 5.1. The difference (e1 — e2)(t) is increasing when e(t) is obtained from an optimal

weighted-classifier trained with costs a(t).

Proof. Let t > t', e(t) and e(t') the vector of missclassified examples obtained with an optimal
classifier (in the Bayes sense) trained with costs a(t) and a(t’) respectively. We thus have the

following inequalities:
toea(t)+(1+ B2 —t)er(t) <t-ex(t)+ (1 +p%—1t)er(t),

and
Vees(t) + (L4 B —t) er(t) <t ealt) + (1+ B — 1) ex(t).

By multiplying the second equation by —1 and summing the two equations, we get:
(t—t)(er(t) —e2(t) = (t — ) (ex(t) — e2(t)).

Thus:
el(t') — eg(t/) S el(t) — 6’2(25).
O

According to this Lemma the difference (e; — e2)(t) is an increasing function of ¢, thus,
when ¢/ < t, e —e; — (e, —€]) < 0 and €, — €} shall be maximized to have a tight bound that
preserves this inequality. Similarly, when ¢’ > ¢, we have to minimize the difference ¢/, — €.
Maximizing (resp. minimizing) this difference consists of a constraint optimization problem.

The following Lemma gives the analytical solution of the two optimization problems.

Lemma 5.2. Let e be the error profile obtained with an hypothesis h learned with the cost
function a(t). Let € be an error profile such that F(€') > F(e). Then the difference e — €}

s equal to:

e1(B2P + e3)
e'cE(H) P—e
s.t. F(e')>F(e)

Moo = maz (e —€}) = ez + min <N — e9, > when t <t,
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and

P _
Min = min (e —¢€)) = —e; (P —e1) when t > t.

o' CE(H) " B2P ey
s.t. F(e')>F(e)

Proof. Before computing the value of both My.x and My, we show that it is possible to

rewrite the constraint of the optimization problem as a linear constraint over a rectangle.

a) Rewriting the constraint

In the binary setting, we recall that e = (e1,e2) and € = (e, €)). The constraint F(e') >

Fs(e) can be rewritten:

OAB (P —€) OAB (P —e1)

> )
(1+ B2)P —¢€)| + ¢, (1+B2)P —e1 + €9

(P—eD[(14BHP —e1+e3] > (P—e)[(1+ B3P — € +¢€)),
(L7 — (14 B2)Pel + (P —€})(ea —e1) > (L+=ATP7 — (14 %) Pey + (P — e1)(eh — €}),
(1+ 52)]3(61 — 6/1) + P(eg —e1 + 6/1 — 6/2) > 626/1 — 616/2 + erel — exe]

From now on, we set: €] = e; + a1 and €, = ea + ag. In other words, we study how €’ shall
deviate from e to solve our optimization problem. We can then write:

—(1 + ﬁ2>POz1 + P(Oq — Ckg) > 62(61 + 061) — 61(62 + ch),

a1 (—(1+BHP+ P —ey)+as(—P+e1) >0,

a1(B%P +es) < —ag(P —e).

We thus have the linear constraint:

—ag(P —e1)

<
a1 ﬂ2p + e2

Furthermore, the optimization problem has to be solved over a rectangle because oy €
[—e1, P — e1] and ag € [—eq, P — eg] by definition of € and because e € [0, P] x [0, N]. This
set of constraints is represented in Figure In the following, we also denote by ® the line

of equation:
—Ozg(P — 61)
ﬁQP + e2

We are now ready to compute the value of both M, and Mypiy.

(5.8)

o] =
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<5}
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a; — a
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25}

o (o]

Figure 5.2: Geometric representation of the optimization problem. The rectangle represents
the constraint (ae, 1) € [—ea, N — e3] X [e1, P — e1]. The white area represents the set of
value (ag,aq) for which the inequality constraint holds. The four figures represent the four
possibilities for the position of the line ® on the rectangle. Given the constraints of the
optimization problem, the two cases represented at the bottom never happen.

b) Computation of M.y

According to the previous step, our optimization problem can be rewritten:

max g — (1,
o
—Oég(P — 61)

B2P +ey
IS [—el,P— 61],

st. a1 <

Q9 € [—CQ,N — 62].

The optimization problem consists of maximizing a difference under a polygon set of
constraints. To maximize the difference, we should maximize the value of ay and minimize
the value of «q, i.e. the solution is located in the bottom right region of each graph of
Figure A quick study of these figures shows that the lowest value of a; we can reach is

—€1.
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We shall now study where the line © intersects the rectangle to have the solution with
respect to ag. If © does not intersect the line of equation a; = —ej in the rectangle (i.e.
it intersects with the right side of the rectangle) then ay = N — es. Else, it intersects with

the bottom face of the rectangle, then we determine the value of ay using Equation (/5.8)) and
(ﬂQP + 62)61

a9 =
P—61

Finally, the solution of the optimization problem is:

2
o= (v (¥ - ),

and the optimal value M, is defined by:

(B2P + 62)61) ‘

Mpax = €2 + min (N — e,
P*Bl

It remains now to compute the value of My,

c) Computation of My,

According to Step 1: the optimization problem can be rewritten:

min oo — aq,
«
—OZQ(P — 61)

ﬁ2P—|—€2 ’
a1 € [—el,P — 61],

st. a1 <

ag € [—eg, N — eg].

The set of constraints remains unchanged. However, to minimize this difference, we have
to maximize the value of a7 and minimize the value of ag, i.e. we are interested in the upper
left region of each rectangles. In each case represented in Figure[5.2] we see that the minimum
of ag is equal to —es.

If we have a look at the two figures at the bottom of Figure |5.2] we see that the optimal
value of oy is equal to P — e;. However, this value is not in the image of the function of asg

defined by Equation ([5.8). In fact, according to this same Equation, the image of ag = —eo
62(P — 61)

B2P + es
cases that never happen and the intersection of ® with the rectangle of constraints is on left

is equal to which is lower than P —e;. So the two figures at the bottom represent

part of the rectangle.

Finally, the solution of the optimization problem is:

(a1, q9) = <€;g];:r?2) : €2> ;
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and the optimal value M,,;, is defined by:

GQ(P — 61)

Mpin = —e1 — 752P+€2 .

Step 4: bounds on the F-measure F(e)

Proposition 5.3. Let e be the error profile obtained with a classifier trained with the pa-
rameter t and F(e) its associated F-measure value. Let us also consider ®o as defined in
Equation (5.6) and e1 > 0 the sub-optimality of our linear classifier. Then for all t' < t:

F(e') < F(e) + ®ee1 + e - (€2 — €1 — Mpnaz) (' — 1),

where M4z = maz el — e
maz e”GE(H) ( 2 1)
s.t. F(e")>F(e)

and, for all t' > t:
F(e’) < F(e) + Pee1 + Do - (62 —e1 — Mmin)(t/ — t),

where M im = min e — e,
man e”eg(H) ( 2 l)
s.t. F(e")>F(e)

Proof. This result is a consequence of Lemmas and O

With this first result, we give an upper bound on the reachable F-measures for any value
of ' given an observed value of F-measure with the parameter ¢t. The bounds depend on the
values of both M,,;, and M,,., depending on the sign of ¢ — ¢’ which leads to non symmetric
slopes in the (¢, F')—space.

The above proposition leads to the followings bounds on the optimal F-measure.

Corollary 5.1. Given the same assumptions and considering t* the value of t for which the
best cost-sensitive learning algorithm leads to a model with an error profile €* associated to

the optimal F-measure, we have: if t* < t:
Fle*) < F(e) + Boe1 + Bo - (62— €1 — Mynaa) (1 — 1),

and, if t* > t:
F(e*) < F(e) + ®eer + Pe - (€2 — €1 — Mpin) (t* — 1).

This means that if we learn a model with a parameter t sufficiently close to t* then, we
guarantee to reach the optimal F-measure up to a constant equal to ®ee;.

In the next section, we present how we can use these theoretical bounds to propose a new
algorithm to optimize the F-measure iteratively.
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F) F)

1 1
2M(1)80
F F
t t
0 ; 0 ;

Figure 5.3: Geometric interpretation of our bound on the left and the one from |[Parambath
et al. (2014)) on the right. Note that our “cone” is not symmetric compared to the other one.
On the left, the slanted values represent the slope of our cone on each side : ®g-(€2—€1—Mnaz)
and D¢ - (e2 — €1 — Mopin).

5.3 CONE Algorithm

In this section, we provide a geometric interpretation of Proposition and a comparison to
the bound introduced in [Parambath et al. (2014). We also show how this theoretical result can
be an inspiration to create an algorithm, CONE for Cone-based Optimal Next Evaluation,
which optimizes the F-measure by wrapping a cost-sensitive learning algorithm.

5.3.1 Unreachable regions

In Figure (left), we give a geometric interpretation of the result from Proposition in
the 2-D space. In this (¢, F') graph, the previous near-optimality result yields an upper cone
of values where F'(e*) cannot be found. More precisely, when a model is learned for a given
value of ¢ (with weights a(t)), we measure the value F'(e) of this model and, given these
two numbers, we are able to draw an upper cone which represents the unreachable values of
F-measure for any ¢’ on the x-axis. Furthermore, given 1, the sub-optimality of the cost-
sensitive learning algorithm for the weighted 0-1 loss, ®ee; corresponds to the vertical offset
of this cone, which means that the peak of the cone is located at (¢, F(e) + ®ee1).

Note that, even if the authors were focusing on asymptotic results, the bound given
in |Parambath et al.| (2014) can also be interpreted geometrically.

For the sake of clarity, we restate the Proposition 5 of |Parambath et al. (2014) for our

purpose:

Proposition. Let t,t' € [0,1] and e1 > 0. Suppose that there is ® > 0 such that for all
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e, e € E(H) satisfying F(€') > F(e), we have:
F(e') — F(e) > ®(a(t'),e — €'). (5.9)

Furthermore, suppose that we have the two following conditions

(@) lla(t) —a(t)]2 < 2[t =¥

) (a).e) < _min (a(t).") +<1.

Let us also set M = max ||€"||2, then we have:
e (H)

F(e') < F(e) + ®ey + 4M® [t — .

According to the authors, the point (7) is a consequence of a of being Lipschitz continuous
with Lipschtiz constant equal to 2. The point (i7) is just the expression of the sub-optimality
of the learned classifier.

Proof. For all e,e € E(H) and t,t’ € [0, 1], we have:

(a(t),&) = (a(t) —a(t'),€) + (a(t), &),
—_————

< (a(t'), &) +2M |t' — |,

where we have successively applied the Cauchy-Schwarz inequality and (7). Then:

i t),e") < mi ), ey +2M |t —t| = (a(t)),e) +2M |t/ —¢|, 5.10
Jon (at).e’) < min (a(t),e") |t —t| = (a(t'), €) |t — | (5.10)
where €' denotes the error profile learned by the optimal classifier trained with the cost
function a(t’) and is such that F(e') > F(e). Then, writing (a(t'),e) = (a(t') — a(t),e) +
(a(t),e) and applying the Cauchy-Schwarz inequality, we have:

(a(t'),e) < (a(t),e) +2M |t' —t|,
N——

< min (a(t),e’) +e1+2M|t' —t|,
o CE(H)

<(a(t'),e) +er +4M |t' — ],

where the second inequality comes from (ii) and the last inequality comes from Equa-

tion (|5.10). By plugging this last inequality in Inequality , we get the result.
Furthermore, the existence of the constant ® has been proved by the authors and is equal

to (B2P)~L O

This bound also defines a cone which is, this time, symmetric with a slope equal to 4® M,
as illustrated in Figure (right). Using real datasets, we will compare, in Section the
cones produced by this bound and ours.
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5.3.2 CONE: A bound-inspired algorithm

We now leverage the previous geometric interpretation to design CONE, an iterative al-
gorithm that wraps a cost-sensitive classification algorithm (e.g., a weighted SVM). The
pseudo-code of CONE is described in Algorithm [3]and an illustration is given in Figure
At every iteration i, CONE proposes a new value t; (with findNext) to be used by the
cost-sensitive algorithm.

Algorithm 4: CONE
Input: training set S,

Input: weighted-learning algorithm wLearn,
Input: stopping criterion shouldStop.

Output: t, classifier and F.

Initialize Ty = {0,1}, Zp = @ and ¢ = 1.
repeat

t; = findNextT(Z;—1, Tyal)

classifier; = wLearn(1 + 8% —t;, t;, S)

F; = Fg(classifier;, S)

V; = unreachableZone(t;, F;, S, classifier;)

Z,=2Z,_1UYV;
Tval = Tval U {tz}
t=1+1

until shouldStop(i, classifier;, Z;, Tyal)

The choice of t; is based on the area Z;_1 which we define as the union of all cones obtained
from previous iterations. t; is chosen to reduce the maximum value of F' for which (¢, F') is
not in any previous cone. To achieve this goal, CONE keeps track of a list T}, initialized
with the values 0 and 1, and enriched at each iteration with the values of ¢ that have been
considered. The selection of t; is done as follows: (i) search the value ¢,,; which maximizes
Fraz(t) = max{F, (t,F) ¢ Z;_1}, (ii) search for the greatest value ¢; in T},4 such that ¢; < top
and the smallest value ¢, such that ¢,y < t,. (iii) take the middle of the interval [t;,t,] as the
output, i.e. t; = %(tl + ).

The cost sensitive classification algorithm then provides a new value of F; obtained from
the cost ¢; and classifier;, which is used to refine the unreachable area as Z; = Z;_1 UV,
where V; is the cone corresponding to (¢;, F;). In the case where there are multiple values of
t that maximize F),q.(t) (e.g., at the beginning, or when some range of ¢t values yield F' = 1),
CONE selects as toy the middle of the widest range at the first stage (i) (see the white
dotted lines in Figure .

From a practical perspective, Z; can be represented as a combination of linear constraints

or as a very dense grid of binary values (a rasterization of [0, 1] x [0, 1], the (¢, F') space).
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F)
1

0

Figure 5.4: Illustration of the CONE algorithm in the middle of its fourth iteration. The
colored areas represent the unreachable regions in the (¢, F)-space.

Both approaches can be made efficient (and negligible compared to wLearn). The stopping
criterion shouldStop can take different forms including a fixed number of iterations, a fixed
time budget, or some rules on the current best F-measure and the current upper bound
mazy Fina:(t). While CONE selects a single next value of ¢, it can easily be generalized to
produce multiple values of ¢ to consider in parallel (to exploit parallel computing of multiple
instances of wlLearn).

By always selecting a t; that is in the middle of two previously tested t-values, CONE
performs a progressive refinement of a grid. We can (and do, in practice) restrict the values
of ¢t in the (¢, F)-space that the algorithm considers. More precisely, we can limit the depth
of the progressive refinement to an integer value k. In this case, CONE will do at most

2k — 1 iterations, in order to cover all possible values on a grid with stride 2% However, as

the procedure is driven by the theoretical bounds. We will see in Section that CONE
finds good models in its very first iterations.

5.4 Experiments

In this section, we perform an experimental comparison of our bounds with the results ob-
tained in [Parambath et al.| (2014) and study the behavior of the CONE algorithm on several
datasets.

5.4.1 Datasets and experimental settings

The Table describes the datasets we used for our experiments, with their corresponding
Imbalance Ratio (I.R.). The higher this ratio, the more one should expect that optimizing
the classification accuracy is a bad choice in terms of trade-off between precision and recall.
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Dataset L Instances J Classes L LR. L Features
Adult 48 842 2 3.19 123
Abalonel0 4174 2 5.64 10
SatImage 6 400 2 9.3 36
IJCNN’01 141 691 2 9.39 22
Abalonel2 4174 2 15.18 10
PageBlocks 5 500 2 22.7 10
Yeast4 1484 2 28.1 8
Wine4 1 599 2 29.2 11
Letter 20 000 26 1.32 16
News20 19 928 20 1.12 62061
BLITZ [2690414] 2 [n71| 17

Table 5.1: Datasets details. The Imbalance Ratio (I.R.) is the ratio between negative and

positive instances (or between sizes of the largest and smallest classes, in a multiclass setting).

The datasets IJCNN’01 and News20 are obtained from LIBSVMZ The other ones come from
the UCI repositorylﬂ

We reproduce the experimental setting from Parambath et al.| (2014) which we describe
here. For datasets with no explicit test set, i of the data is kept for testing. The training
set is split at random, keeping % as the validation set, used to select the hyper-parameters
using the Fj-measure. The penalty constraint of the SVM classifiers (hyper-parameter C)
is considered in {276,275 ... 26}, In the experiments, ¢ is taken in [0, 1] as ¢ belongs in the
image space of the F-measure. Thus the class weights a(t) belongs to [0, 1+ 3%]. The maximal
number of training iterations is set to 50000. Fitting the intercept of the classifiers is achieved
by adding a constant feature with value 1. We report the test-time Fj-measure averaged over
5 experiments.

We consider two different base cost-sensitive classification algorithms (both implementa-
tions use LIBLINEAR): linear SVM and Logistic Regression (LR) for a fair comparison with
Koyejo et al.| (2014). We report the performance of 5 different approaches:

e using a single standard classification algorithm with hyper-parameters tuned on the

F-measure,

e an additional baseline (with the ;g subscript), which consists in using a cost that re-
balances the classes (the cost ¢ of a false negative is the proportion of positive examples
in the dataset and the cost of a false positive is 1 — ¢),

e the Grid wrapper proposed in [Parambath et al.| (2014]) that regularly splits the interval

’https://www.csie.ntu.edu.tw/~cjlin/libsvm/
3https://archive.ics.uci.edu/ml/datasets.html
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[0, 1] of ¢ values,
e the algorithm CONE derived from our theoretical study,

e algorithm 2 from Narasimhan et al. (2015b) based on the bisection method.

About £;. The value of ¢; (in all presented bounds) represents the a(t)-weighted sub-
optimality of the classifier, compared to the best one from the hypothesis class. This sub-
optimality cannot be computed efficiently as it would require a learning algorithm that pro-
duces optimal classifiers in terms of a(t)-weighted error. Our goal is not on estimating e1,
we then set &1 = 0 which is computationnaly free, and shown by the experiment to be a
reasonable choice both in terms of bound analysis (the bound is most of the time respected)
and in terms of overall results from the CONE algorithm.

5.4.2 Evaluation of the tightness of the bound

In this section, we aim at illustrating and showing the tightness of our bounds. To do so,
we consider the (¢, F') values obtained by 19 weighted-SVM learned on a regular grid of ¢
values. For these same 19 models, we consider the cones obtained from our bounds and
from [Parambath et al.| (2014). We do not provide figures for all the datasets but only for two.
We illustrate the tightness of our bounds on two datasets: Adult and Abalonel?2, that have
been chosen because they are different in terms of number of instances, number of features

and imbalance ratios.

Impact of €;. Both our bounds and the one from [Parambath et al. (2014) are impacted
by 1 which shows up as an offset, multiplied by ®, for our bounds, and by ® in the other
one. As &, < @, our bounds are less impacted by an increased 1. With the 19-SVM setting,
Figure shows the evolution of the maximum still-achievable F-measure depending on the
value of €1, with a hard maximum at 1. The values of €1 are expressed in number of points
for an easier interpretation.

The bound from [Parambath et al. (2014) gives loose guarantees and the aggregate bound
is most of the time above 1. The values can, for example, start at ' =1 and end up at F' =3
on the Abalone12 dataset. This representation shows once again that our bounds are very
tight.

Visualizing unreachable zones. The grayed-out areas in Figure are the unreachable
zones. For both methods, this figure shows that the guarantees obtained with our bounds are
much more relevant than the ones from Parambath et al. (2014). Our bounds give unreachable
zones that go very close to the empirical points.

Looking at the cones with our tight bounds, we see that sometimes a point is in the cone
generated by another point. This looks like a violation of our bounds but it rather shows
that €1 cannot be considered to be 0 in the current setting. Naturally, €1 # 0 comes from the
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Bound in function of &, on Adult Bound in function of €1 on Abalonel2
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Figure 5.5: Bounds on the F-measure as a function of €1, the unknown sub-optimality of
the SVM learning algorithm. Results are shown on two datasets: Adult (left) and Abalonel2
(right). The Grid algorithm refers to the method presented in |[Parambath et al.| (2014).

fact that the weighted-SVM is not robust and not optimal in terms of weighted 0-1 loss. Our
intuition is that the SVM is less and less optimal as the weights become more extreme, such
as when ¢ gets closer to 0.

Bounds’ evolution across iterations. We now study how the training performance and
the overall bounds evolve as we add more models. In CONE, adding a model means doing
one more iteration, while with the grid approach of |Parambath et al. (2014) it requires to
re-learn all models (as all grid locations change). Figure illustrates that CONE tends
to produce better models at a lower cost. This figure also outlines the fact that our upper
bound is tight and goes down quickly as we add models.

5.4.3 Performance in F-measure at test time

Finally, we compare the performance of CONE (SVM( ), based on the SVM algorithm against
its competitors: LR p for the method of Narasimhan et al. (2015b), LR; z. and LR” for Koyejo
et al. (2014) and SVM¢g/LR¢ for the method of |[Parambath et al. (2014). We present the
results of all methods in Table [5.4.3, still giving a budget of 19 models for CONE and Grid
based method. Overall, CONE performs at least as well as its competitors in average, and
the very best results are obtained by combining CONE with thresholding.

The baseline of using a simple SVM completely fails on half of the datasets. The improved
SVM which consists in rebalancing the classes (SVM; g ) still performs worse than the other
approaches on average, and on most datasets. Even with thresholding, the approaches that
learn a single model (LR and LR? ) are still outperformed by the ones that learn multiple
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Figure 5.6: Unreachable region obtained from the same 19 (¢, F') points corresponding to
learning weighted-SVMs on a grid of ¢ values. Cones are shown for the Adult (left) and
Abalonel?2 (right) datasets, and with the bound from Parambath et al.| (2014) (top) and with
our tighter bounds (bottom).

models with different class-weights, like ours (all subscripts ¢) and the grid one (subscripts
). This last result shows that it is insufficient to solely rely on tuning the threshold of a
single model. In average, both CONE and the grid approach outperform all other considered
methods, including the bisection algorithm LRp. We see that the results of CONE are very
similar to the grid approach SVMg. However, looking at Figure [5.8| at the bottom, we see
that the proposed method is able to reach higher values with a limited number of iterations,
i.e. after training fewer models.



5.5. Conclusion 129

5.5 Conclusion

In this chapter, we have presented new bounds on the F-measure based on a cost-sensitive
classification approach. These bounds have been shown to be tighter than existing ones and
less sensitive to the sub-optimality of the learned classifier (¢1). Furthermore, we have shown
that our bounds are useful from a practical point of view by deriving CONE, an algorithm
which iteratively selects class weights to reduce the overall upper bound on the optimal F-
measure. CONE has been shown to perform at least as well as its competitors on various
datasets.

The presented work can be extended to any fractional-linear functions such as Jaccard
index. Indeed, the development presented in Section [5.2.3|is F-measure independent and can
lead to a similar proposition as Proposition but the values of both ®¢, M,;, and Mgz
depend on the performance measure.

Finally, note that we only focus in this work on linear classifiers such as SVMs or Logistic
Regression. A first perspective would be the refinement of our theoretical framework for
exploring more efficiently the search space or extensions to more difficult contexts such as
SGD-based algorithms used with neural networks. We also aim to estimate, experimentally
and/or theoretically, the sub-optimality 1 of the classifier using the work from Bousquet et al.
(2004) for several algorithms. Indeed, the sub-optimality of the classifier is directly linked to
the value of ¢ and, in our CONE algorithm, this would lead to a vertical translation of the
“cone”. Thus it will modify the way the different values of ¢ are explored.
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Figure 5.7: Training performance of CONE versus the grid approach from |[Parambath et al.
(2014)), together with their respective bounds. Results are shown on two datasets: Adult

(left) and Abalonel2 (right). We suppose €; = 0, which explains that we observe empirical
values that are higher than our upper bound (on Abalonel2).
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Dataset || SVM [ SVMyr | SVMe | SVMc | SVME [ LRT | LRTx | LRE | LRs

Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) | 66.4 (0.1) 66.5 (0.1) | 66.5 (0.1) | 66.5 (0.1) | 66.6 (0.1)
Abalonel0 0.0 (0.0) | 30.9 (.2 | 324 @.3) | 32.2 (08 | 31.8 (1.9 30.8 (2.2) | 30.7 (1.9) | 30.7 (1.9) | 31.6 (0.6)
Satimage 0.0 (0.0) | 23.4 (@.3) | 204 (5.3) | 206 (5.6) | 30.9 (2.0 21.2 (11.1) | 28.6 (1.9) | 28.6 (1.9) | 21.4 (4.6)
IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.6 (0.6) | 61.6 (0.6) | 62.6 (0.4) 59.4 (0.5) | 56.5 (0.3) | 56.5 (0.3) | 59.2 (0.3)
Abalonel2 0.0 (00) | 16.8 (2.7) | 16.8 (42) | 183 3.3) | 16.3 (3.0) 15,5 1) | 17.0 @3.3) | 17.0 @3.3) | 17.7 3.7
Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 66.4 (3.2) | 62.8 (3.9) | 67.6 (4.0) 59.2 (8.1) | 55.9 (6.4) | 55.9 (6.4) | 55.7 (5.7)

Yeast 0.0 (0.0) | 29.4 (2.9) | 38.6 (7.1) | 39.0 (7.5) | 35.4 (15.6) 37.4 (10.1) | 39.9 (6.5) | 27.6 (6.8) | 27.6 (6.8)

Wine 0.0 (0.0) | 15.6 (5.2) | 20.0 (6.4) | 22.7 (6.0) | 19.3 (7.9 21.5 @3.7) | 25.2 (a5) | 25.2 (a5) | 18.3 (7.2

Letter 75.4 (©0.7) | 749 (0.8) | 80.8 (0.5 | 81.0 (0.3) | 81.0 (0.4) 82.9 (0.3) | 82.9 (0.3) | 82.9 (0.3) | 74.9 (0.5)
News20 90.9 (©.1) | 91.0 (0.2) | 91.1 (o.1) | 91.0 (0.1) | 91.0 (0.1) 90.6 (0.1) | 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2)
Average || 32.1 (om) | 440 (23) | 495 (29) [ 496 (25 | 50.4 3.0) [ 48.8 (10) | 48.2 (23) [ 49.1 (36) | 470 9)
BLITZ || 0.0 0o | 00 0o | 75 02 [ 89 01| 44 e2[[ 24 05| 24 05 [ 50 @2 73 03

Table 5.2: Classification F-Measures for § = 1 with SVM and Logistic Regression algorithms.
SVM¢ and LRE are reproduced experiments of [Parambath et al. (2014) and the subscript
I.r. is used for the classifiers trained with a cost depending on the Imbalance Ratio. The
subscript p corresponds to the bisection algorithm presented by Narasimhan et al.| (2015b)).
LR” and LR? . are reproduced experiments of Koyejo et al. (2014)). Finally the ¢ stands for
our wrapper CONE and SVME designed as a combination using the CONE + threshold.
Reported F-measure values are averaged over 5 experiments (standard deviation between

brackets).
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Figure 5.8: F-measure obtained on the test set for four considered approaches on Adult (top)
and Abalonel2 (bottom) datasets, plotted as a function of the computing budget (number of
weighted SVM to learn).




Chapter 6
Tree Based Cost-Sensitive Learning

This chapter is based on the following publication

Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Elisa Fromont, Amaury Habrard, and Marc
Sebban. Tree-based cost sensitive methods for fraud detection. In International Symposium on Intel-
ligent Data Analysis(IDA- 2018), pages 213-224. Springer International Publishing, 2018b

Abstract

In bank fraud detection, the impact of each case depends on the amount of money
involved in the transaction. In this chapter, we aim to improve fraud detection model used
by the Blitz Company currently based on random forests. We first propose a cost-sensitive
splitting criterion for decision trees that takes into account the cost of each transaction
and we extend it with a decision rule for classification with tree ensembles. We then
propose a new cost-sensitive loss to train a gradient boosting model. Both methods are
shown to be particularly relevant in the context of imbalanced data. The experiments are
conducted on a Blitz dataset and we show that, using a cost sensitive approach, we are
able to increase the retailer’s benefits up to 1,43% compared to the current used model.

6.1 Introduction

The current model used by the Blitz company for fraud detection is a tree-based model where
several non cost-sensitive trees are built and combined in order to predict if a new transaction
is a fraud or not. Due to the fact that the model does not directly take into account some
information on the amount of money involved in transaction, it fails to give more importance
to expensive transactions. However, for Blitz’s customers, all the frauds cannot be considered
as equal: refusing a genuine transaction with a small amount of money does not have the
same consequences as refusing a more costly one.

Inspired by the literature on imbalanced data (see Chapter , we propose a cost-sensitive
method to take into account the amount of each transaction to improve the retailers’ profits.
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‘ Predicted Positive (fraud) Predicted Negative (genuine)

Actual Positive (fraud) crp, CFN,
Actual Negative (genuine) CFP, CTN,

Table 6.1: Cost Matrix associated to each example of the training set.

Starting from the currently used tree-based model, we modify the splitting criterion of the
learning algorithm using a cost matrix. In a second part, we present a gradient boosting
model which aims to optimize a surrogate of our loss function based on a given cost-matrix.

6.2 Problem Formulation

6.2.1 Notations

As in the rest of this document, we focus in this chapter on binary supervised classification
(fraud vs. non fraud). Let S = ((x1,¥1),..-(Xm, Ym)) be a set of m training instances where
J

i' is used to denote

x; € R? and y; € {0,1} are their corresponding labels. The notation z
the value of the j* variable of the instance i. The label 0 will be used for the negative or
majority class (i.e. the genuine transactions) and the label 1 for the positive or rare class
(i.e. the frauds). Let us remind that we denote by S the set of my positive examples and
S_ the set of m_ negative ones (here m_ >> m4 ). We will also note y; the label predicted
by our learned model for the instance i. We use the notation p for the predicted probability
that an example belongs to the minority class. F' is the output of the learned model, such
that. p; = F(x;) is the probability that the transaction x; is fraudulent. A threshold is then

used to predict the final label.

6.2.2 Cost Sensitive Model and Loss Function

Our goal is to maximize the profits of the retailers by predicting, with decision trees, which
transactions are genuine or not. While training the trees, the company might like to introduce
some costs assigned to the training examples, according to the adequacy between the actual
label of the transaction and the predicted one (see Table [6.1). For instance, the retailers
will gain money by accepting a genuine transaction, i.e. cry, > 0, where T'N stands for
True Negative or genuine transactions correctly classified. However, if the retailers accept a
fraudulent one, they will loose the amount of the transaction cpy, < 0, where F'N stands for

False Negative or fraudulent transaction predicted as a genuine one.

In this chapter, we use a similar cost-sensitive approach as the one presented in |Cor-
rea Bahnsen et al.| (2017). However, instead of only minimizing the money loss due to the

acceptation of a fraud, we rather focus on maximizing the retailers profits, i.e. we aim at
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maximizing the loss function L defined as follows:

m
Ly | 9) =Y Wi@icrr, + (1= di)ern,) + (1= yi) icrp, + (1= Gi)ern,)] - (6.1)
=1

In the following, we use the word “profit” instead of “cost” because it is more meaningful
for the retailers.

We show how this loss function can be optimized while learning decision trees.

6.3 Cost Sensitive Decision Trees

We recall that classification trees (see Chapter 1| for more details) usually split the nodes
according to an “impurity” measure. One such measure is the Gini index of a set of m
instances (x;,y;) defined as follows: Gini = 1 — chzl p2, where pj denotes the probability
to belong to the class k£ and C' is the number of classes (C' = 2 in our case). In this chapter,
the splitting criterion is based on the cost matrix defined in Table We do not want to

minimize an impurity but to maximize the retailer profits according to the cost matrix.

6.3.1 Splitting Criterion and Label Assignment

Our splitting criterion I'g on a given set of training instances S of size m is:

I'g = % Z (%CFP¢($i) + %CTNi(mi)) + Z (%CTPi($i) + %cFNi(mi)) , (6.2)

i€S_ i€Sy

where the first term corresponds to the profits due to genuine transactions and the second to
the frauds.

Note that this quantity depends on the transaction amount of each example in S through
the costs c¢. The best attribute A is the one which mazimizes the quantity:

> Tg —Ts.

v€Children(A)

Note that this quantity is very similar to the common splitting criterion used to minimize
the Gini impurity up to the number of examples in the parent node. We simply take the
opposite of the classical gain and divide it by the number of instances in the parent node.

The values I's, are computed using Equation on each set S,. It differs from the
splitting criterion used in |Correa Bahnsen et al. (2017) where the splits minimize the cost of
wrongly accepting or blocking the transactions.

Once the induction tree stopping criterion is reached (see Section , a class label is
associated to each leaf of the tree. For the sake of clarity, we introduce the following notations:
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e 7o(l): the average profit associated to the leaf [ if all the instances are predicted as

genuine:

’Yo(l):}’ Z CTN; + Z CFN; | >

i:x;EINS_ ix; €lNSy

e ~1(t): the average profit associated to the leaf [ if all instances are predicted as frauds:

71(1)—”1’ Z crp, + Z crp; |

1:x; €EINS %, €INS_

where |I| denotes the number of examples in the leaf [ and 7 : x; € I NS denotes the
index i of the example x; both in leaf [ and in the set S.

A leaf is assigned the label 1 if 7 > 79, i.e. all the transactions in a given leaf are predicted
fraudulent if the associated average profit is greater than the one associated when all instances

are predicted genuine.

Note that this strategy can be easily extended to ensembles of trees (Breiman, [2001). In
this case, a standard decision rule consists in applying a majority vote over the whole set
of the T learned decision trees. However, this decision rule does not take into account the
probability score that can be associated to each tree prediction using the class distribution of
the examples in the leaf [(x;) (as inSahin et al. (2013)). Following this idea, we suggest here
to label an instance as positive if the average 71 (x) of the average profits v; (I(x;)) over the
T trees is greater than 7 (x), where I7(x;) is the leaf of the j tree containing x;:

6.4 Cost Sensitive Gradient Boosting

We present here a proper cost-sensitive loss function in order to implement it in a gradient
boosting algorithm in an efficient way. Let us first present XGBoost (Chen and Guestrin,
2016))

6.4.1 An Introduction to XGBoost

XGBoost. is a tree gradient boosting algorithms (defined in Chapter . We first explain how
the weights are computed for each leaf, then we explain the splitting criterion that is used.
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Computing the optimal weight of a leaf
We consider a loss L and the following optimization problem:

L

i=1 Jj=1

A
where SL and 5 Zle( f;t))2 are two regularization terms used to control the number of

leaves and the weight of each leaf f](t) for the learned tree.

We recall that the models are learned in an additive manner, so let us denote g)(t_l), the
predicted value by the first ¢ — 1 functions fj, i.e. g)l(tfl) = 22;11 ) (x;) = FO-D(x;). Let
us now study how the next model is learned. For this purpose, we rewrite the quantity
to minimize as follows:

L

i (— A
DLl + O + L+ 5D (6.4)

=1 j=1

In practice, Chen and Guestrin (2016) only consider a second order approximation of the

function they aim to optimize. This second order approximation is done with respect to the
(t=1)

predicted value at the previous iteration, i.e. ¥, . We will denote by respectively g and

h the first and second order derivatives of the function L with respect to §~1). We can
rewrite (6.4) as follows:
m . 1 \ L
L (t— t
> [L@i, 9 + filxi)g () + 2f?<xi>h<xi>} ALY (65)
i=1 Jj=1

(®)

Remember that we aim to learn the function f(t) = (fj )j=1,...,c- So let us consider a leaf

j and denote by I; the set of index ¢ such that x; falls in the leaf [;. Thus, using (6.5]), the
function f]@ shall minimize the following quantity V:

V= X o) + 5 O i) (02 (6.

i€l
This function is convex and the minimum is given by the solution of Euler’s equation, i.e.
the function f® for which the gradient vanishes. This solution is given by:

Ziel]- 9(xi)
Dier, h(xi) + A

Y= (6.7)

The splitting criterion

Once the optimal weight is found for each leaf (6.7]), we can compute the optimal value V*
of the loss by using , we get:
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Ziejj 9(xi) 1 ( Zielj 9(xi) )2

V= ; - g(m)zidj TSR (A + h(x:)) TS, b £

(Zielj Q(Xi))z 1 (Zig;j .(J(Xz))2
T TS A R A 250 )+ A

1 (Sier, 90)
23, h) N

This formula is used to measure the quality of a leaf. It can be seen as a generalized

V=

formula for Gini Impurity for any loss function. Using this new measure, they define their
splitting criterion, i.e. the gain associated to a split, as follows:

1 (ZielL Q(Xi)) 2 (E’LEIR g(xi)>2 (XCicr Q(Xi))2

+ —
2 ZieIL h(xi) + A Zz’eIR h(xi) + A D h(xi) +A

_57

where I = It U Iy for a binary tree and the parameter S is used to control the number of

leaves.

6.4.2 Cost-Sensitive Loss for Gradient Tree Boosting

In this section, we aim to use the framework presented in [Buja et al. (2005]) to give a proper
formulation of our loss function in the context of a boosting algorithm, using the gain
matrix presented in Table
Using a Bayes rule for classification (Elkan, 2001)), an instance i is predicted fraudulent if
Y1 > Yo, l.e:
picrp, + (1 — pi)erp, — picen, — (1 — pi)ern, > 0,

where p; denotes the probability of the instance to be a genuine transaction. It gives us a
threshold over which the transaction is rejected (or predicted fraudulent):

CTN; — CFP,
pi > . : = S;.
CTP, — CFN; T CTN; — CFP,

Using the threshold s;, our cost-weighted miss-classification loss can be rewritten as:

m

1
L(y [ p) = - Z (icrp, + (1 = yi)erp) Lp>s; + (icen, + (1 —yi)ern, ) lp,<s;-  (6.8)
i=1

Then, following the framework presented in Buja et al. (2005)), L(y | p) can be rewritten
as follows:
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m

1
L(y [ p) = - Z&‘ [yi(1 = si)Lp,<s, + (1 — yi)silp,>s,]
=1

m
- % > (ierr, + (1 = yi)ern,), (6.9)
i=1

where 1 is an indicator function and where we use the fact that s = s1 s+ sl <5 and set

& = crN, — crp, + crp, — crpN, Which is positive in our context. In fact, crny > cpp: we earn

more if we correctly classify a genuine transaction. Furthermore, if we accept a fraudulent

transaction then we loose a par of the transaction amount, otherwise we earn nothing, i.e.
0=crp > cpnN-

The first part of Equation , which we will note Lg,, corresponds to the cost-sensitive loss

introduced in Buja et al. (2005) with s; € [0,1]. Each term of the sum is multiplied by a

constant & which depends on the data. The second term represents the maximum that our

loss can reach if the predictions were perfect. Note that this second term does not depend on

pi. Therefore, we want to minimize:

1 m
argmin E,[L(y | p)] = argmin E,, | — g &Ls,(yi | pi)| -
pe[0,1] ! pel0,1] Ylm i=1

However, it has been shown that in the context of Boosting, it is more convenient to use
an exponential approximation (Friedman, 2000). We adapt it to consider the output of a
prediction model F' directly in our approach as follows

bs, = (1 — Si)yie_F(xi) +s;(1 — yi)eF(xi).

Evy [ls,
Solving (m = 0, we obtain the link function ¢; between p;, the probability of being a
VX4
fraud and F; = F(x;), the output of the model:
- 1
1+ —e 2k
S;

and its inverse 1), s given by:

X 1— e\ /2 N 1/2
eFi:< 8?) <1f’p‘> . (6.10)

The way to transform the output of a boosting model into a probability (the calibration

process) plays a key role in the performance of the predictive algorithm. It has been shown
that we can achieve at least the same performance with a well calibrated boosting model as a

!By accepting a fraudulent transaction or a transaction from an account without funds, a store has the
option of reselling the receivable (at a price lower than the amount of the check) to a private organization that
will recover the amount of the transaction.

2Note that there exists a direct link between a predicted probability and the output of a model. See Section
3 of [Friedman et al.| (2000) and Section 4 of [Buja et al.| (2005) for further details.
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cost-sensitive one (Nikolaou et al., 2016). However, the use of a cost-sensitive matrix is more
flexible and meaningful for Blitz’s customers.
It is worth noticing that we can use Equation (6.10) to provide a smooth approximation

of the indicator function, such that:

—s\Y2/ i \V?
1. < = .
= < S > 1 —pi ‘

Note that: p; > s; < wl( > s = efi>1 = F,>0. So it is enough to check
the sign of the score to predict the label of each transaction. Finally, we are minimizing an

upper bound L of L:
Liy|p) < L(y | F) = Z&[ e g 5;(1 —yy)el

When defining the optimal separation or the calculation of the optimal parameters of
the model, we noticed, in the previous section, that only the first and second derivatives are
necessary. We thus compute the first and second order derivatives of L for each instance i
with respect to Fj. They are given by:

oL . 7 £

o —¢ [—(1—31) i si(1—yi)e ]
and o

o°L ' _ £ £

78}3;2 =& [(1 — 5i)yie” + si(1—yi)e } .

6.5 Experiments

In this section, we evaluate the decision rule presented in Section and the loss function
presented in Section We compare the results of our method on the retailers’ profits
compared to a classic Random Forest (RF) algorithm based on the Gini impurity criterion

(baseline).

6.5.1 Dataset and Experiments

The Blitz dataset consists of 10 months of bank transactions of a retailer. The first six months
are used as the training set (1,663,009 transactions) and the four remaining ones as the test
set (1,012,380 transactions). The data are described by 17 features and are labeled as fraud
or genuine. The Imbalance Ratio (IR) of the dataset is equal to 0.33%.

The first series of experiments compares the random forest baseline (RF) to the tree
ensemble algorithm which uses the decision rule presented in Section (RFx). We made
different variants of the decision rule:
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1. RF o each leaf is labeled according to the majority class of the examples that fall
into the leaf. Thus the output of each tree is in {0,1}. The voting criterion is detailed
below.

2. RF pnaxprof: €ach leaf is labeled to maximize the profits (i.e. benefits) over the set of all
examples in the leaf (the label is 0 if 79 > 1 and 1 otherwise).

3. RF jmean-prof: this model is the one described in Section

For each tree ensemble algorithm, we have used 24 trees with the same maximum depth.
Furthermore, for the models RF, RF,;of and RF axprof, the ensemble classifies a transaction
as“fraud” if at least 9 trees agree on this positive class (these hyperparameters are the same as
the ones used currently by the Blitz company thus they are chosen for the sake of comparison).

The second series of experiments is dedicated to the analysis of the gradient boosting
approaches. We compare our approach GBy,.f, presented in Section with three gradient
boosting algorithms which aim to minimize the logistic loss:

1. GBtunepre: the threshold has been chosen so that we have the same precision on the
validation set as the model RF in the training phase.

2. GBiune-prof: the threshold has been chosen to maximize the benefits on the validation
dataset.

3. GBiune-r1: the threshold has been chosen to maximize the F-Measure F} on the vali-
dation dataset.

For each of these three experiments, we need a validation dataset to choose the optimal
threshold over which a transaction is predicted as fraudulent. For this purpose, the training
set is split into two sets: the first one is used to train the model and the other is used to find the
best threshold for the given criterion we want to optimize. To do so, the first four months of
transactions constitute the training set, the two remaining months are used as the validation
set. Finally these three experiments have been conducted on the same training/validation set
and the algorithms were implemented in R |°| using the package XGBoost.

For privacy reasons, the explicit expressions of crp,, crp,, crn;, crn, of the cost matrix
can not be given. Note that they are simple functions of the amount of money M considered
in each transaction. For example, we define cpp, as follows cpp, = h(M) — (, where ( is
a parameter used to translate in financial terms, the dissatisfaction of the customer whose

transaction has been rejected.

6.5.2 Results

To measure the performance of each algorithm, we measure the gap between the maximum
profits, i.e. the profits obtained if no error is made, and the profits given by the algorithms.

3https://www.r-project.org/
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We use the classic performance measures that are often used in an imbalanced setting such
as the Precision, Recall and F-Measure.

All the experiments have been conducted with the same cost matrix where ( = 5. The
results are presented in Table We first notice that we are able to reduce the gap to
the maximum profits of 1.43%: from 2.99% with the Random Forest model to 1.56% with
the gradient boosting model GBy,of. To give an idea to the reader, having a 1% gap to the
maximum profits represents a loss of 43,000 euros. So, by reducing the gap to 1.43%, we
increase the profits of the retailer by 60,000 euros.

Regarding the Random Forest models, we note that the proposed approaches are able to
improve the profits of the retailer compared to the RF model. However, we note that RF,.f,
which uses the number of examples and their labels to predict the class of the examples in
the leaves, gives similar performance as RF even if it is built differently. This means that
the way to label the leaves has, at least, the same importance as the way to build the trees.
The models RF paj-prof and RF pean-prof Which directly use the notion of average profits in
each leaf are the two models that give the best results, in terms of both profits, recall and
F-Measure even if the precision is reduced. This is explained by the fact that refusing a
genuine transaction will have small impact on the retailers profits while accepting a fraud
will represent a loss for the retailers that is close to the amount of money in the transaction.
Using only our proposed Random Forest algorithm, we are able to reduce the gap to 1.18%.

If we focus now on gradient boosting models, we first note that the model GByyne-pre is
the one with the highest precision. On the other hand, the other models have a significantly
smaller precision but exhibit a higher recall: by maximizing the profits they actually try the
highest number of frauds. As mentioned previously, our cost-sensitive approach GByp,of is
the one that achieves the best results in terms of profits. But it has also the worst precision
(18.8%) for the reasons given in the previous paragraph. This model provides also better
results than GByupe-prof Which emphasizes the interest of a cost-sensitive approach compared
to a simple classification model. However, we note that the GBiune.r1 model is not the one
achieving the best F-Measure at test time. Note that the Fj score remains low for each
presented algorithms. We think that low values are observed because of the complexity of the
data and the problem: frauds are rare and spread in the entire data set, thus making them
comparable to noise whose behavior is difficult to capture.

In a second part, we want to analyze the effect of the parameter {. Indeed, some retailers,
for marketing reasons, do not want to reject the transactions of good customers, i.e. they
prefer to have a higher precision on their predictions. A simple way to take this into account
in our model is to increase the value of ¢. Figure[6.1]shows the impact of the parameter ¢ on
the Precision, Recall and F}, while the gap to the maximum profits is still evaluated with
¢ = 5. Recall that some retailers do not want to reject the payment of the good customers,
however, the model which maximizes is the one with the lowest precision (16.6%). So, it can
be interesting to propose to the retailers several models using different values of { and give
them the choice of the compromise between profits and precision. We first notice that the
higher the value of ¢, the higher the precision and the smaller the recall. However, we see
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. Gap max ..
Experiments Precision Recall Fy
profits

RF 2.99% 68.1% 5.66% 10.5%
RF o 2.88% 73.8% 4.71% 8.86%
RF naj-prof 1.81% 30.2% 10.6% 15.7%
RF ean-prof 1.87% 30.3% 9.52% 14.5%
GBiune-pre 3.01% 61.0% 6.49% 11.7%
GB tune-prof 2.26% 19.1% 16.6% 17.8%
GBiuneF1 2.70% 45.4% 9.24% 15.4%
GBprot 1.56% 18.8% 13.3% 15.6%

Table 6.2: Gap to the maximal benefits of each algorithm. In this table, the value of { was
set to 5. The results are separated into two groups: Random Forest RF models and Gradient
Boosting GB models.

that it is possible to reach a precision which is twice superior to the GBy,of one by setting
¢ = 20 and the gap will still be low with a value of 1.94%.

50-
40 -
Measures
8 30- F-Measure
% =8= Gap Max Profits
= =0= Precision
20~ Recall
k
0 i ]
0 10 20 30 40 50

Figure 6.1: Influence of the parameter ¢ in the definition of Crp,. We illustrate the behavior
of the Precision, Recall and F} according to (. We also represent the gap to the maximum
profits with respect to {. If the model is learned with the ¢ values indicated on the x-axis,
the gap is computed with ( = 5 for a fair comparison. By doing so, we are able to see the
evolution of the other quantities (Precision, Recall and F}) with respect to ¢ while keeping

the same formula to compute the gap.
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6.6 Conclusion

We have presented different cost-sensitive tree-based learning strategies to detect frauds in
imbalanced retail transaction data. The first strategy is a tree ensemble algorithm which uses
a new decision rule which tries to directly optimize the retailer profit. The second one is a
gradient boosting algorithm which optimizes a new cost-sensitive loss function. Experiments
show that our cost-sensitive algorithms increase the retailers’ benefits by 1,43% compared to
non cost-sensitive ones and that the gradient boosting approach outperforms all its competi-
tors.

The model presented in this chapter has also been used by the company to compare their
performance with the ones of their competitors. For their costumer, it gives an idea of how
much they can save by taking the service proposed by the company and how much they can

save with the same service proposed by a competitor.



Conclusion and Perspectives

In this thesis, we addressed the problem of learning from imbalanced data in the context of
fraud and anomaly detection. The work achieved during this thesis was intended to be eclectic
and explored different ways to address the problem of learning in this non trivial setting. Our
contributions are mainly separated into two categories: geometric and cost-sensitive ones.
In the former, we learned with M E? a new representation of the data around each known
frauds in order to build risky areas. We also modify the distance to existing frauds in order
to increase Voronoi cells and thus the model capacity to capture new frauds. In the latter,
we assign costs to each class of examples in order to optimize a suited performance metric for
imbalanced scenarios, that is the F-measure, but also to improve the current model of check
fraud detection algorithm used by the Blitz company. The contributions of this thesis are
both algorithmic and theoretical and led to several papers, among them three were published
in international conferences (ICTAI, AISTATS and IDA) and one in an international journal
(Pattern Recognition Letter). This work also leads to several communications in a french

conference (CAp).

Summary of the contributions

There are many techniques in place to address the learning problem in an imbalanced context.
This may involve (i) sampling methods to balance the different classes, (ii) learning a new
representation of the data in which the classification problem is easier; (iii) exploring the
optimization of new cost functions and performance metrics that more adapted to this type
of context.

A metric learning method has been the first research axis of this thesis. We studied the
notion of risk areas around proven frauds and derived theoretical guarantees on the learned
linear projection. This first contribution, essentially theoretical, was to measure how stable
the risk areas are, that is, what are the guarantees that a non-fraudulent transaction is
predicted to be fraudulent at test time. This work has shown how important the distance to
positive examples (or existing frauds) is when learning from imbalanced data. This comment
led to our second contribution for which we proposed an adjusted distance in a Nearest
Neighbor algorithm. A brief theoretical study explained why it is necessary to compare a test
example with a positive data if we want to increase the performance of our model in terms

of F-measure. Many experiments have confirmed this claim.
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The use of cost-sensitive approaches has constituted the core of our second research axis.
Assigning a more important weight on the minority class examples has been shown to be
relevant in such context. However, we have shown that this has to be done very carefully.
Out third contribution is dedicated to the design of an algorithm which automatically selects
the optimal weights to assign to each class for a given set of performance metrics. The
proposed algorithm is based on a thorough theoretical study providing potential weighting
areas where it is possible to maximize the F-measure. But the use of cost-sensitive methods
also presents more concrete applications such as the implementation and optimization of
cost functions that have a concrete meaning for the industrial world. Our last contribution
used this type of model to improve Blitz’s fraud detection system. We proposed a new cost
function to optimize a company’s profits. This new model takes into account the amount of

a transaction in decision-making, which was not the case until now in Blitz.

Perspectives

Beyond the perspectives given in the different chapters, we would like to provide some possible
extensions of the contributions of this thesis.

In Chapter |3 a part of the contribution was to provide generalization guarantees on the
learned decision areas. A first perspective would be to directly derive generalization guaran-
tees on the F-measure. The main difficulty with the F-measure comes from its non-linearity.
We wish to exploit the link between the weighted error function and the performance in terms
of F-measure developed in Chapter |5l Using the uniform stability framework (Bousquet and
Elisseeff, [2002) on the weighted error function, we aim to draw the link between the ob-
served F-Measure and the expected F-measure at test time. Due to its non-linearity, another
possibility to study the performance in terms of F-measure would be to use the bootstrap
estimation theory (Efron, |1979; Xu and Goodacre, 2018). We might provide confidence in-
tervals on the estimation and thus on the expected F-measure at test time. It might be also
interesting to study the convergence of the proposed algorithm in Chapter |[5| which has only
been shown in practice.

Regarding the company, several improvements can be made on the currently used fraud
detection system. The model is updated every month, assuming that the change in the
fraud distribution is significant after a month. However, it would be interesting to set up a
method of drift detection to automate the updating of the model (Baena-Garcia et al., 2006;
de Lima Cabral and de Barros, 2018) which could lead to a dramatic improvement of the
used system. This opens the door to the development of new domain adaptation methods.

The company is currently working on adding new information in the model that can be
provided by the retailers: the family of products bought by the customers. This information
can be used to detect suspicious behavior because some of these families are more risky than
others. However, this information is very parsimonious and takes the form of very large feature
vectors with a lot of zeros. To benefit from this new attribute, we will need to study sparsity-
inducing learning methods. In this same direction, we also aim to develop a new type of models
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which takes the history of the retailers’ customers into account. This information is currently
based on variables that contain information about the customers history. An interesting
perspective would consist in using Long Short Term Memory Networks (LSTM) (Hochreiter
and Schmidhuber, [1997)) in order to account the history more precisely.
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Appendix A

Extensions of Chapter 5

A.1 An extension to the multi-class setting

In this section, we consider consider that the output space is Y = 1,..., L, where L is the
number of classes in the data. In this context, given an hypothesis h € H learned from a
training sample S, the errors that A makes can be summarized in an error profile e = E(h) €
R2E defined as:

E(h) = (FNy(h),FPy(h),...,FNy(h),FP(h)),

where FN;(h) (resp. FP;(h)) is the proportion of False Negative (resp. False Positive) that h
yields for class 1.

In a multi-class setting with L classes, Py, k = 1, ..., L denote the proportion of examples
in class k and e = (ey,e9,...,ea1,_1,€21) is used to denote the proportions of misclassified
examples composing the error profile.

In this setting, we are interested in optimizing the multi-class-micro F-measure, mcF'(e)
defined by:

Fle) = (14821 =P =3 pyean1)
(1+B2)(1 = P1) = Yy ean1+er
In this section, we aim to derive all the results presented in the binary case in the multi-

class setting.

A.1.1 Pseudo-linearity

Proposition. The multi-class-micro F-measure, mcF, is a pseudo-linear function with re-

spect to e.
Proof. As in the binary cases, we have to prove that both mcF and —mcF. The gradient of

the multi-class-micro F-measure, mcFg, is defined by:

- ? 1— P — Y5 peo w.r.t. eq,
VmeF(e) = (1+5%) L= D k=2 €2k—1 1

149

(1+82)(1—P1) — Y pean—1+e1 21— Py) + e w.r.t. ey, Vk=2,.., L.
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The proof is similar to the proof of Proposition we simply have to do the following
changes of notation in the proof:

L
er Z€2k—1,
k=2

ey < ey,
P <« 1—P1.

A.1.2 A tight bound on the optimal micro F-measure

As it was done in the binary case, we will use the property of pseudo-linearity of mcF'(e) to
bound the difference of micro F-measure in terms of the parameters of our weighted function.
First, we introduce the definition of our weighted function a : R — R?*L and express the
difference of micro F-measure of two error profiles in function of the two error profiles.

In this section, for the sake of creadability, we will set ey, = Zé:z €2k_1-

Step 1: impact of a change in the error profile

Using the property of pseudo-linearity, we can show that it exists two functions a : R — R
and b: R — R defined by:

0 = (a(mcF(e)),e) + b(mcF(e)),
where:

14+p82—t foreg_1, k=2,....L
a(t) = {t for eq, and b(t) = (t—1)(1+ 5%)(1 - P)).

0 otherwise,
From these definitions we can write:

(a(mcF(e')),e —€) = (a(mcF(e')),e) + b(mcF(e')),

= (a(mcF(e')) — a(mcF(e)),e) — b(mcF(e)) + b(mcF(e)),

= (mcF(e') —mcF(e))(1+ 5% (1 - P,)

+ (mcF(e') — mcF(e))e\l/—_l/— (mcF(e) — mcF(e'))\e\L’,/

= (mcF(€') —mcF(e))((1+ B%)(1— P1) —ep +e1).
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We can now write the difference of micro-F-measure as:

/ — 1 -(a(mcF(e)),e — €
mcF(e') —mcF(e) = A+ —P)—erte1) (a(mcF(e)), )

= ®e-(a(meF(e),e — ¢),

where:
1

R G G o g

Step 2: a bound on the micro F-measure mcF'(e)

Let t € [0,1]. Let us suppose that we have learned a classifier h with the cost function a(t).
This classifier leads to an error profile e and a micro-F-measure mcF'(e). We now imagine
a hypothetical classifier that is learned with weights a(t'), and we denote by €’ the error
profile of this classifier. For any value of ¢’ € [0, 1], we derive an upper bound on the on the
F-measure mcF(e’) that this hypothetical classifier can achieve.

meF(e') —meF(e) = @, - (a(t'), e — €),

<o ((1'—t)(e1 —ep) +e1— (' —t)(e) —eL)),

< Dee1 + Do - (1 —ep — (e —€l)) (' — ).

In the previous development, we have used the linearity of the inner product and the
definition of a. The first inequality uses the sub-optimality of the learned classifier. We then
use the definition of the function a.

As in the binary cases, the quantity e} — e/ remains unknown but we try to optimize this
difference according to the sign of ¢ — ¢ and under the constraint mcF(e’) > mcF(e). So the
last inequality becomes:

mcF(e) < mcF(e) + ®Poey + Peler — e, — Muax)(t' — 1), if ' <t
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mcF(e') < mcF(e) + Poey + Pe(er — e, — Mpin)(H —t), if ¢ >t

where Myax = max (e —e) and My, = min (e —elf).
e’"eE(H) e’€E(H)
s.t. F(e)>F(e) s.t. F(e")>F(e)

These two inequalites are the consequence of Lemma [5.1] adapted to the present setting.
It remains to compute the values of both M. and Mpy,i,. Unfortunately, in the next section,

we will see that we can not give an explicit value of these numbers.

A.1.3 Computation of M., and M,

To compute the value of both My,.x and My, we use the same development as done in the
binary setting. We do not write how to derive the new set of constraints. We now search how
to modify the vector e in order to improve the F-Measure and to maximize (or minimize)
the difference: €} — ¢/, where €’ = e + a . Thus, the original optimization problem can be

rewritten as an optimization problem on c.

Computation of M,

L
max a1—§ 02k—1,
«

k=2

L 2
1—-P
s.t. a1<—Za2k_1 B 1L)+61 ,
P 1—P =) ) peak1

aj € [—e1, P —eq],

aok—1 € [—eap—1, Po—1 —eg—1], Vb =2,..., L.

Then we add the quantity e; — ey, to this result to have the value M,,4-

Computaion of My,

L
min a1—§ Q2k—1,
«

k=2

21-P
st. a1 < — Zagk_1 p ( 1L) el R
P 1—P =) ) g€k 1

a1 € [—61,P1 — 61],

aop—1 € [—eap—1, Pag—1 — €ap—1], Vk =2, ..., L.

Then we add the quantity e; — ey, to this result to have the value M.

In the multi-class, we have to look for a solution of an optimization problem where the
set of constraints consists of polyhedron and a hyperplane. Due to the dimensionality of the
problem, we can not use the same trick as in the binary setting. However, such optimization

problem can easily be solved by any solver.
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Figure A.1: Comparison of our bound and one the one provided by Parambath et al. (2014)
and their respective performance according to the number of steps/grid size (above). Com-

parson of the performance of different algorithms (below).

The next section is dedicated to the experimental evaluation of the proposed method on

multiclass datasets.

A.1.4 Extended Experiments

We do not provide all the graphs, we will simply compare the performance of several algo-
rithms and our bounds with the one provided by |[Parambath et al. (2014). On both datasets,
the performance of our proposed approach is similar to the one based on a grid it is emphasizes
on the News20 dataset. The bounds of both methods are the same, on this dataset, during
the training phase due to a value of F-measure closed to 1. However our bound remains more
informative after 10 iterations on the Letter dataset.

Finally, Tables provide the F-measure values at different steps/ size of the grid to
emphasize the fact that only few iterations are enough to at least better perform than state
of the art methods.
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Table A.1:
tions/grid steps to respectively 2,8 and 15 (standard deviation between brackets).

Mean F-Measure over 5 experiments and limiting the number of itera-

Datasets || SVM | SVMyn | SVMg | SVM¢ || LR [ LRys | LRg | LRg | LRe
Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.2) | 66.2 (0.3) || 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.6 (0.1) | 66.2 (0.1)
Abalonel0 0.0 (0.0) | 309 (12) | 32.6 (1.4) | 30.7 (1.1) 0.0 (0.0) | 31.9 (14) | 31.6 (06) | 31.9 (.7) | 324 (1.9
Satimage 0.0 (0.0) | 234 (4.3) 6.1 (12.2) 5.9 (11.8) 0.5 (0.9) | 24.2 (5.3) | 21.4 (4.6) 6.2 (12.3) 6.1 (12.2)
IJCNN 44.5 (0.4) | 53.3 (0.4) | 60.7 (0.4) | 61.6 (0.5) 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 56.8 (0.3) | 58.3 (0.3)
Abalonel2 0.0 (0.0) | 16.8 (2.7) 0.0 (0.0 0.0 (0.0) 0.0 (0.0) | 180 3.5) | 17.7 (3.7) 2.8 (3.4) | 13.3 (3.5
Pageblocks 48.1 (5.8) | 39.6 (4.7) | 65.0 (7.6) | 63.3 (4.1) 48.6 (3.3) | 42.4 (5.2) | 55.7 (5.7) | 62.7 (7.1) | 58.3 (6.8)
Yeast 0.0 (0.0) | 294 (2.9) | 30.9 (7.2) | 25.4 (17.5) 2.5 (5.0) | 29.0 3.5) | 35.4 (15.6) | 27.8 (20.0) | 33.0 (18.3)
Wine 0.0 (0.0) | 15.6 (5.2) 0.0 (0.0) | 11.7 (11.1) 0.0 (0o0) | 14.6 3.2) | 18.3 (7.2 8.7 (11.2) | 15.6 (6.7)
Letter 75.4 (0.7) | 74.9 (0.8) | 80.7 (0.5) | 80.4 (0.5) 82.9 (0.3) | 82.9 (0.3) | 749 (0.5) | 82.9 (0.2) | 82.8 (0.2)
News20 90.9 (©0.1) | 91.0 (0.2) | 90.9 (0.2) | 91.0 (0.2) 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.2) | 90.6 (0.1)
Average [[ 321 (o) | 44.0 23) | 433 (a0) [ 436 @71 [ 334 0 [ 451 @3) [ 470 o) [ 43.7 @6 | 457 Go)
Datasets || SVM | SVMyr | SVMg | SVM¢ || LR [ LRis | LRs | LRg | LRc
Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)
Abalonel0 0.0 0.0 | 30.9 (.2) | 32.6 (1.4) | 32.6 (1.0) 0.0 0.0) | 31.9 (.4 | 31.6 (0.6) | 32.1 (0.8) | 31.4 (2.2
Satimage 0.0 (0.0) | 23.4 (4.3) | 20.2 (47) | 20.6 (5.6) 0.5 (0.9 | 24.2 (5.3) | 21.4 (46) | 20.3 (5.0) | 20.5 (5.0
IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.9 (0.7) | 61.5 (0.5) || 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 58.0 (0.4) | 581 (0.3)
Abalonel2 0.0 (00) | 16.8 (2.7) | 16.9 (2.9 | 18.3 (3.3) 0.0 (00) | 180 @35 | 17.7 3.7 | 17.5 3.4 | 181 @3.7)
Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 65.8 (4.3) | 62.8 (3.9) 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 60.0 (8.8) | 59.4 (7.5)
Yeast 0.0 (0.0) | 294 (2.9 | 33.3 (12.2) | 39.0 (7.5) 2.5 5.0) | 29.0 35 | 35.4 (15.6) | 39.4 (8.5) | 38.9 (8.6)
Wine 0.0 (0.0) | 15.6 (5.2) | 19.5 (6.2) | 22.4 (6.1) 0.0 (0.0) | 14.6 (3.2) | 18.3 (7.2) | 187 (5 | 21.1 (5.2
Letter 75.4 (0.7) | 74.9 (0.8) | 80.6 (0.4) | 80.5 (0.4) 82.9 (0.3) | 82.9 (0.3) | 74.9 (0.5) | 82.9 (0.2) | 82.9 (0.3)
News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.1) | 90.6 (0.1)
Average H 32.1 (0.7) ‘ 44.0 (2.3) | 48.8 (3.3) | 495 (2.9 H 33.4 (1.0 ‘ 45.1 (2.3) ‘ 47.0 (3.9 ‘ 48.6 (3.2) ‘ 48.8 (3.3)
Datasets || SVM | SVM;g | SVMg SVWMc [[ LR | LRig. | LR | LR¢ | LRe
Adult 62.5 (0.2) | 64.9 (0.3) | 66.4 (0.1) | 66.5 (0.1) 63.1 (0.1) | 66.0 (0.1) | 66.6 (0.1) | 66.5 (0.1) | 66.5 (0.1)
Abalonel0 0.0 0.0) | 309 (1.2) | 32.6 (1.4) | 32.6 (1.0) 0.0 (0.0) | 31.9 (1.4) | 31.6 (0.6) | 32.1 (0.8) | 31.4 (2.2
Satimage 0.0 (0.0) | 23.4 (.3) | 20.2 (4a7) | 20.6 (5.6) 0.5 (0.9) | 24.2 (5.3) | 21.4 (4a6) | 20.3 (5.0) | 20.5 (5.0
IJCNN 44.5 (0.4) | 53.3 (0.4) | 61.9 (0.7) | 61.5 (0.5) 46.2 (0.3) | 51.6 (0.3) | 59.2 (0.3) | 58.0 (0.4) | HB8.1 (0.3)
Abalonel2 0.0 (0.0) | 16.8 (2.7 | 16.9 (2.9) | 18.3 (3.3 0.0 (00) | 180 @3.5) | 17.7 @3.7) | 17.5 (3.4) | 181 3.7
Pageblocks || 48.1 (5.8) | 39.6 (4.7) | 65.8 (4.3) | 62.8 (3.9) 48.6 (3.3) | 424 (5.2) | 55.7 (5.7) | 60.0 (8.8) | 9.4 (7.5)
Yeast 0.0 (0.0) | 294 (29 | 33.3 (12.2) | 39.0 (7.5) 2.5 (5.0) | 29.0 35 | 35.4 (156) | 39.4 (8.5) | 38.9 (8.6)
Wine 0.0 (0.0) | 15.6 (5.2) | 19.5 (6.2) | 22.4 (6.1) 0.0 (0.0) | 14.6 (3.2) | 183 (7.2) | 18.7 (a5 | 21.1 (5.2
Letter 75.4 (.7 | 74.9 (0.8) | 80.6 (0.4) | 80.5 (0.4) 82.9 (0.3) | 82.9 (03) | 74.9 (0.5 | 82.9 (0.2) | 82.9 (0.3)
News20 90.9 (0.1) | 91.0 (0.2) | 91.0 (0.1) | 91.0 (0.2) || 90.6 (0.1) | 90.6 (0.1) | 89.4 (0.2) | 90.6 (0.1) | 90.6 (0.1)
Average H 32.1 (0.7) | 44.0 (2.3) | 48.8 (3.3) | 49.5 (2.9 H 33.4 (10) | 45.1 (2.3) | 47.0 (3.9) | 48.6 (3.2) | 48.8 (3.3)
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B.1 Introduction

L’apprentissage machine est un sous-domaine de l'intelligence artificielle se situant a la frontiere
entre 'informatique et les mathématiques appliquées (statistiques et optimisation). Cette dis-
cipline recoupe aussi en partie la science des données puisqu’elle est basée sur la collecte de
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d’informations qui sont analysées et étudiées afin d’en extraire les informations substantielles
qui pouvant étre utilisées pour des applications spécifiques. Selon 'application, la nature des
données peut étre multiple : il peut s’agir d’images, de vidéos, de données brutes, de données
catégorielles, d’arbres, de graphes, de séries chronologiques, etc.

Une fois que les données sont collectées, et souvent complétées et nettoyées, elles peuvent
étre utilisées pour plusieurs taches d’apprentissage telles que la régression quand il s’agit, par
exemple, de prédire le prix d’une action ou le prix d’'une maison selon ses caractéristiques.
Elles peuvent également étre exploitées pour des taches de classification lorsque, par exem-
ple, on vise a distinguer un spam d’un mail "normal” lors de la réception d’un e-mail. Nous
pouvons également chercher & identifier si une transaction est frauduleuse ou authentique,
a détecter des anomalies dans un examen médical comme un test sanguin. Dans tous les
cas, les données sont étiquetées a ’aide d’une variable y que 'on appelle 1’étiquette. Lorsque
nous avons une transaction authentique ou un courriel classique, 'exemple est généralement
étiqueté -1 (aussi appelé exemple négatif) alors qu'il est étiqueté 1 (exemple positif) lorsqu’il
s’agit d’un objet d’intérét comme un spam ou une transaction frauduleuse. Lorsqu’une
telle information étiquetée est utilisée dans un algorithme d’apprentissage machine, on parle
d’apprentissage supervisé, et d’apprentissage non supervisé le cas échéant.

Portés par 'application a la détection de fraude, nous nous intéresserons, au sein de ce
document, plus particulierement a la classification binaire. Notre objectif est d’apprendre
un classifieur h, également appelé hypothese, en utilisant un ensemble de données étiquetées
Xi, Yiir, afin de classer de nouveaux exemples, oll x; désigne I’ensemble des caractéristiques
de l'individu 1.

Cette these CIFRE a été effectué en collaboration avec I’entreprise Blitz Business Ser-
vices, une PME travaillant sur la détection de fraude bancaire par cheque. Lorsqu’un client
souhaite régler ses achats en magasin, il dispose de plusieurs moyens de paiements comme
le cheque, 'espeéce ou la carte bancaire. L’entreprise Blitz offre & ses clients (principalement
les enseignes de la Grande Distribution) un moyen de sécuriser les transactions par cheques
en détectant des transactions dites frauduleuses qui peuvent étre de deux natures différentes:
elles peuvent correspondre a l'utilisation d’un faux-cheques, i.e. un chéque qui n’est pas issu
d’un établissement bancaire; ou une transaction impayée, lorsque que le cheque est encaissé
mais que le propriétaire du cheque ne dispose pas de suffisamment de fonds sur son compte
bancaire. L’entreprise Blitz n’a qu’un role de conseil et la décision finale reste a la charge de
ses clients.

La difficulté de ce type de tache est double: la premiere consiste a considérer et traiter un
nombre important de transactions chaque année et de fournir une réponse (i.e. un conseil) a
ses clients en un temps tres limité (de 'ordre de la dizaine de millisecondes. Deuxiémement,
une fraude constitue ce que 'on appelle un éveénement rare: ces fraudent représentent unique-
ment 0.4% des transactions alors que cela représente plus de 1% du chiffre d’affaire de la
grande distribution.

Cette these s’inscrit donc dans un contexte d’apprentissage dans un domaine déséquilibré.
En d’autres termes, lorsque la classe qui intéresse 1'utilisateur est sous représenté par rapport
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aux autres classes. Dans un tel contexte, la plupart des algorithmes de classification, essen-
tiellement basés sur la minimisation du taux d’erreurs, conduisent a des solutions triviales
et prédisent tous les exemples comme étant négatifs ou non frauduleux. Ainsi, en raison
du fort déséquilibre présent dans nos données, un moyen aisé de parvenir a de treés bonnes
performances (plus de 99,6%) consiste a prédire toutes les transactions comme étant non
frauduleuses, ce qui est inconcevable car nous passons totalement & c6té du probleme que ’'on
s’est posé.

Plus généralement, apprendre dans un contexte déséquilibré revét d’un enjeu majeur dans
la communauté en Apprentissage Machine & cause de son large champ applicatif dans le con-
texte bancaire, médical ou encore dans le milieu des assurances. Cela représente également
un grand challenge pour la communauté car il nécessite de revoir completement les algo-
rithmes qui existent pour qu’ils puissent répondre a notre tache. Plusieurs techniques ont été
développé en ce sens comme ’apprentissage de nouvelles représentations des données qui per-
mettent de classer plus facilement les données, 'attribution de poids aux différentes erreurs
effectuées par l'algorithme ou 'utilisation de méthodes d’échantillonnages pour rééquilibrer
les différentes classes en présence.

L’objectif de cette these est de proposer de nouvelles stratégies qui permettent de traiter le
probleme d’apprentissage dans un contexte déséquilibré et de les appliquer a la problématique
de détection de fraudes. On se propose de développer de nouveaux algorithmes adaptés a ce
contexte et qui permettent d’améliorer le modele de classification utilisé par ’entreprise Blitz.
Une partie de cette these est également dédiée a des contributions plus théoriques dans le cadre
de 'apprentissage dans un domaine déséquilibré en proposant de nouvelles fagon d’optimiser
des mesures de performances adaptées a notre contexte.

Les contributions de cette these se divisent deux parties. La premiere partie se concen-
tre sur des approches dites géométriques dans lesquelles des algorithmes d’apprentissage de
représentations sont développées. Cette nouvelle représentation permettant une meilleure
classification des données a l’aide d’hypotheses simples. Dans un deuxieéme temps nous
étudions une approche par pondérations des erreurs afin d’améliorer I’optimisation de mesures
de performances adaptées a ce contexte et nous proposons également une application concrete
de ce type de méthodes en développant de nouvelles approches permettant d’améliorer le
systeme de l'entreprise Blitz, i.e. en proposant un algorithme permettant d’optimiser la
marge de la grande enseigne.

Contexte de la theése. Cette these a été effectué au sein de I’équipe Data Intelligence
du Laboratoire Hubert Curien UMR, CNRS 5516, affilié a I’Université Jean-Monnet a Saint-
Etienne et a I’Université de Lyon. Elle a également été conduite au sein de I'entreprise Blitz
Business Services se situant a Villefontaine, France. Ce travail a été effectué sous un contrat
CIFRE financé par 'ANRT (Agence Nationale pour la Recherche Technologique).

A propos de ’entreprise Blitz Business Services. La société Blitz Business Services

est située a Villefontaine, France. Son activité principale est la détection de fraude par
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cheque et ses clients sont la Grande Distribution. Elle travaille également sur I'optimisation
du passage en caisse ou sur l'octroi de facilités de paiement, comme ’accord d’un paiement
en plusieurs mensualités sur des sites de vente en ligne par exemple. Enfin, Blitz développe
une activité qui consiste a optimiser I'utilisation des lettres de rappel et des appels lorsqu’une
contravention a été établi pour une personne ne disposant pas d’un titre de transport valable
dans les transports publics (SNCF).

Contributions

Ce manuscrit présente différentes contributions a la fois théoriques et pratiques pour aborder
les questions d’apprentissage dans un contexte déséquilibré. Le corps principal de cette these
contient les contributions de cette these. Les extensions et les expériences supplémentaires

sont exposées en annexe pour une meilleure lisibilité.
La premiere partie se décompose en deux chapitres:

Chapter[L. Dans ce premier chapitre, nous présentons le domaine de 'apprentissage statis-
tique: de 'apprentissage d’un modele jusqu’a sa capacité a bien fonctionner sur des données
non visualisées mais issues de la méme distribution. Il présente également les définitions et
les notations utiles pour le reste du document. Nous terminons ce chapitre en introduisant le
probleme de l'apprentissage a partir de données déséquilibrées et en illustrant le comporte-
ment de certains algorithmes d’apprentissage machine lorsqu’ils sont confrontés a de telles
données.

Chapter Le deuxieme chapitre se concentre sur I’état de 'art des techniques utilisées
pour aborder la question de ’apprentissage déséquilibré. Il introduit des généralités sur la
détection des anomalies et des fraudes dans les scénarios d’apprentissage tres déséquilibrés.
Il est également consacré a la présentation des indicateurs de performance pertinents utilisés

dans un tel contexte.

Dans la deuxieme partie de cette these, nous présentons deux contributions basées sur des
approches géométriques pour traiter des données déséquilibrées. Les deux visent a apprendre
les régions d’influence autour des exemples positifs, en utilisant 'approche d’apprentissage
métrique (i) dans le chapitre [3|et (i) une distance ajustée par rapport aux données positives
dans le chapitre

Chapter Partant de 'hypothese que les fraudes sont localement concentrées les unes aux
autres [} Notre premiere contribution propose une nouvelle stratégie basée sur les Support
Vector Data Description, une variante des SVM qui vise a rassembler des exemples ensembles.

'Méme si les fraudes sont rares, un fraudeur donné agit généralement rapidement avec la méme stratégie,
conduisant a quelques exemples positifs dans une méme région de I'espace.
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Nous proposons d’en modifier la formulation standard afin de créer la plus grande surface
autour de chaque instance positive que ’on appellera zone a risques. La surface de cette zone
est optimisée a I'aide d’une stratégie d’apprentissage de métrique et conduit a des ellipsoides
dans notre espace initial, pour lequel la taille et ’orientation sont controlées par des termes
de régularisations. En résolvant la formulation duale de notre probleme d’optimisation, nous
montrons que, comparé a la plupart des techniques d’apprentissage de métrique, le caractere
semi définie positif de la métrique est obtenu ”gratuitement”. Nous obtenons également
des garanties de généralisation sur la méthode proposée en utilisant le cadre de stabilité
uniforme et montrons son efficacité, en termes de F-Mesure, par rapport aux algorithmes
d’apprentissage machine standard combinés a des méthodes d’échantillonnage. Sur I’ensemble
de données privées de Blitz, nous montrons qu’il est possible de controler soit le rappel, soit
la précision du modele en jouant sur les hyper-parametres.

Chapter [4. Les exemples positifs de I'ensemble d’entrainement ont un réle important
lorsqu’il s’agit de détecter de nouveaux positifs en phase de test. Lorsque nous travaillons
avec des algorithmes basés sur la distance, comme ’algorithme k- plus proches voisins, la
distance par rapport & ces points positifs est essentielle. Au lieu d’appliquer une transfor-
mation linéaire des données comme c’est habituellement le cas, nous montrons qu’il suffit de
modifier la distance d’une nouvelle requéte uniquement par rapport exemples positifs pour
améliorer significativement cet algorithme. Notre méthode a aussi la capacité de controler le
taux de faux positifs et de faux négatifs. De plus, nous montrons, sur plusieurs ensembles de
données, que la performance de 'algorithme proposé peut aussi étre améliorée lorsqu’il est
combiné avec des stratégies d’échantillonnages et atteint des performances au moins égales a
des approches d’apprentissage de métrique ou une autres variantes du k-NN.

La troisieme et derniere partie de cette theése se concentre sur deux contributions sur les
méthodes sensibilisation aux cotits. Dans le chapitre nous optimisons la F-mesure et
fournissons des bornes sur sa valeur maximale. Le chapitre [6] utilise cette approche pour une
application pratique : I'optimisation des bénéfices des de la Grande Distribution.

Chapter [5. L’utilisation de mesures spécifiques telles que la F-mesure s’avere plus perti-
nente dans le contexte d’un apprentissage déséquilibré. Mais son optimisation reste une tache
difficile en raison de sa non-linéarité et de sa non convexité. Cependant, en raison d’une
propriété de la F-mesure, nous sommes en capacité de faire le lien entre son optimisation
et I'apprentissage par pondération des erreurs, c’est-a-dire I’apprentissage en assignant des
couts différents a chaque classe. Partant de ce constat, nous proposons de nouvelles bornes
sur la différence de F-mesure entre deux hypotheéses. Ainsi, nous sommes en mesure de don-
ner des limites sur la mesure F-mesure optimale atteignable. Nous fournissons également
une interprétation géométrique de ces bornes sous forme de cones asymétriques. Ce dernier
point permet de dériver un algorithme itératif qui choisit les bons cotts a affecter a chaque
classe afin d’optimiser la mesure de performance étudiée. Nous montrons que la méthode
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présentée est au moins tout aussi efficace que ses concurrents et ne nécessite qu’un petit nom-
bre d’itérations pour parvenir a de meilleurs résultats. D’un point de vue théorique, nous
montrons également que les bornes proposées sont beaucoup plus fines, précises, que celles
proposées dans la littérature.

Chapter[6. Les approches par pondération des erreurs sont pertinentes pour régler la ques-
tion du déséquilibre de la classification. Dans ce chapitre, nous proposons de combiner ces
approches a des algorithmes basés sur des arbres dans un cadre applicatif pour la société Blitz
: Poptimisation des bénéfices pour les distributeurs. Le montant d’une transaction est une
information pertinente dans le cadre de la classification d’une transaction. Une plus grande at-
tention doit étre accordée aux transactions avec un fort montant, ce que les modeles précédents
ne prenaient pas en compte. De plus, une classification erronée sur ce type d’opérations a
des conséquences plus lourdes que celle d’un petit montant. Nous proposons matrice de
pondération des résultats de la classification et, par conséquent, une fonction de perte qui
vise & optimiser les bénéfices de la Grande Distribution. Nous proposons également différentes
méthodes fondées sur des arbres pour optimiser cette marge. Les expériences réalisées dans
ce chapitre montrent qu’il est possible d’augmenter considérablement la marge dela grande
enseigne en utilisant une approche par pondération des erreurs et que 'algorithme de Gra-
dient Tree Boosting proposé donne de meilleurs résultats que les algorithmes fondés sur les
foréts aléatoires.

Appendice Nous fournissons une extension au contexte multi-classe du travail présenté
dans le chapitre [5| Cette extension inclut les preuves et des expériences supplémentaires.

B.2 Résumé des Chapitres

B.2.1 Résumé du Chapitre

Ce premier chapitre introduit permet de présenter le contexte dans lequel s’inscrit cette these,
a savoir I'apprentissage statistiques. Plus précisément ’apprentissage de modele prédictif
permettant la résolution de certaines taches, comme de la classification d’images ou encore
Iestimation de grandeurs statistiques ou réelles. Apres avoir présenté les différentes taches
que 'on peut rencontrer dans l'apprentissage statistique, nous présentons son formalisme de
fagon plus concise ainsi que ses fondements. A savoir (i) comment apprendre un algorithme
capable de répondre a des besoins précis a ’aide sur les données disponibles, (ii) s’assurer que
le modele appris par notre algorithme est capable de généraliser, i.e. d’étre performant sur des
données non connues lors de "apprentissage du modele mais issues de la méme distribution.
Pour répondre a ces deux points, nous commencons par introduire la notion de risque qui
est au coeur du domaine de ’apprentissage machine. Nous poursuivons notre introduction
en abordant la question du choix de I’espace des hypotheses que nous nous autorisons pour
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résoudre le probleme que 'on se pose. Bien définir ’espace des hypotheses va permettre a
I’algorithme de se focaliser sur des hypotheses a la fois performante sur les données dites
d’entrainements mais également sur les données futures. Nous présentons ensuite la théorie
PAC-Bayésienne qui permet de dériver des garanties en généralisation sur ’hypothese apprise
vis-a-vis du risque que 'on a cherché a optimiser. Nous en développons trois grands axes
différents qui permettent de répondre a la question de la performance en généralisation.

Apres avoir introduit le formalisme de ’apprentissage statistique, nous présentons quelques
modeles simples ainsi que des fonctions de cotts, attachées a la notion de risque, adaptées
aux contextes de classification et de régression. Nous présentons également différents modeles
de classification que nous serons amenés a rencontrer tout au long des différents chapitres.
Finalement, nous terminons ce premier chapitre en introduisant le contexte de cette these:
I’apprentissage dans un contexte déséquilibré, nous montrons que les outils classiques d’apprentissage
s’averent inefficaces en négligeant I'information importante que représente la classe minori-
taire. Une définition ainsi que différents exemples viennent souligner la difficulté que représente
I’apprentissage machine dans un tel contexte.

B.2.2 Résumé du Chapitre

Dans ce chapitre, nous présentons ’apprentissage dans un contexte déséquilibré et plus
précisément de la détection de fraudes. Nous commencons par discuter de la distinction
entre anomalies et fraudes, bien que partageant une caractéristique commune, a savoir une
sous-représentativité dans les données, il est important de les distinguer car les techniques per-
mettant d’aborder la détection de fraude sont différentes de celle de la détection d’anomalies.
Nous poursuivons la description de la notion de fraude en montrant que cette derniere est
présente dans de nombreux contextes industriels. Pour aborder le probleme de détection
de fraudes et donc d’apprentissage dans un contexte déséquilibré, nous avons vu qu’il est
nécessaire de définir de nouveaux outils plus approprié a ce contexte mais également de nou-
velles techniques

Cela commence par la présentation de criteres de mesures de performances qui vont per-
mettre de mesurer la capacité qu’a un algorithme a effectuer un nombre minimal d’erreurs
tout en étant capable de retrouver des exemples de la classe minoritaire. Nous présentons un
choix non exhaustif de ces mesures de performance en s’attachant a souligner leurs différences.

Dans un second temps, nous nous concentrons sur les données et sur les techniques per-
mettant de traiter le probleme de déséquilibre : (i) les méthodes d’échantillonnage et (ii) la
pondération des différentes classes. Nous verrons que les méthodes d’échantillonnage per-
mettent de rééquilibrer les données par le biais de la création, duplication ou encore simple
suppression de données. Les algorithmes d’échantillonnage sont nombreux et nous présentons
les plus connus d’entre eux. Il est également possible d’affecter un poids aux différentes
classes en présence. Ces deux méthodes ont pour objectif de contraindre les algorithmes a se
concentrer sur les exemples de la classe minoritaire.

D’un point de vue algorithmique, ces derniers restent les mémes que dans un contexte
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d’apprentissage classique dit équilibré. Nous verrons que le simple fait de coupler des al-
gorithmes classiques avec des méthodes d’échantillonnage permet de traiter le probleme de
déséquilibre. Nous présentons un large panel d’algorithmes présentés dans 1’état de 'art et
qui se proposent de résoudre le probleme de 'apprentissage dans un contexte déséquilibré:
I’apprentissage de représentation, 'utilisation de la notion de distance, le boosting, les SVM
et leurs variantes, les réseaux de neurones, etc ...

Nous finissons ce chapitre en présentant les différents axes abordés dans les contributions
de cette these.

B.2.3 Résumé du Chapitre

Ce premier chapitre des contributions de la these s’inscrit dans le cadre du développement
d’une approche géométrique pour traiter le probleme du déséquilibre. Les fraudes, si elles
sont générées par une méme personne et dans une courte période de temps, présentent des
caractéristiques tres similaires. D’un point de vue géométrique, elles partagent donc des
caractéristiques semblables. Cela se traduit par la présence de petits groupes de fraudes que
I’on peut retrouver dans tout ’espace.

Nous commencgons par introduire un probleme simple de détection d’anomalies qu’est
celui de "apprentissage de la plus petit sphere d’inclusion. Nous montrons que ce probleme
d’optimisation est tres proche de celui des One Class SVM, un algorithme de classification
non supervisé. Nous expliquons ensuite comment nous partons de ces modeles existants
pour proposer un modele qui sera construit autour de chaque fraude connue et qui sera en
mesure des capturer de nouvelles fraudes localisées & proximité et prenant la forme de zone
a risque. Afin de mieux appréhender la géométrie des données et de construire des zones
a risque les plus grandes possibles, nous couplons notre méthode avec un apprentissage de
métrique. L’apprentissage de métrique peut nécessiter de nombreuses opérations de calcul
afin de garantir le coté semi défini positif de la matrice. Cependant, nous montrons qu’en
cherchant a résoudre le probleme dual, dont nous détaillons le développement, le caractere
semi défini positif peut-étre obtenu sans effort.

Une analyse théorique vient compléter cette premiere contribution en se basant sur la
notion de stabilité. Cette analyse permet de garantir que la métrique M tend a se stabiliser
lorsque le nombre de données augmente, ce qui permet de garantir une certaine performance
du modele sur de nouvelles données. En effet, nous montrons que nous sommes en mesure
de controler le nombre de faux positifs de notre modele. D’un point de vue expérimentale,
nous montrons que la méthode proposée est capable d’étre tout aussi performante que des
algorithmes d’apprentissage classiques méme couplés avec des stratégies d’échantillonnage.

B.2.4 Résumé du Chapitre

Le chapitre précédent a montré a quel point la distance a une donnée de la classe minoritaire
(i.e. une fraude) était importante pour nous permettre de retrouver de nouvelles fraudes.

Poursuivant dans cette méme optique, nous proposons, dans ce chapitre, une version modifiée
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de ’algorithme des plus proches voisins. Cette nouvelle contribution a pour but de modifier la
fagon dont est calculée la distance a un exemple positif afin de la rapprocher pour permettre
de retrouver de nouvelles fraudes. Cependant, le modele appris est contraint a ne pas générer
trop d’erreurs, i.e. trop de faux positifs. Pour cela, les distance aux données positives sont
pondérées par un facteur v qui est optimisé de fagon & maximiser la F-mesure.

Une étude théorique montre que, dans un contexte déséquilibré, ce parametre + peut-étre
choisi plus petit que 1 et que nous avons tout intérét a rapprocher de toutes nouvelles données
tests, les positifs existants. Des résultats expérimentaux sur des jeux de données issus de la
communauté viennent illustrer ce résultat théorique.

Finalement, nous montrons qu’en dépit de sa simplicité, ce modele est plus efficace que les
méthodes de I'état de ’art reposants sur les plus proches voisins mais aussi sur ’apprentissage
de représentation comme 'apprentissage de métriques. En outre, 'algorithme proposé s’avere
particulierement efficace lorsqu’il est combiné a des stratégies d’échantillonnage et montre
que les points générés par ces méthodes d’échantillonnage s’apparentent majoritairement a
du bruit plus qu’a une réelle information permettant d’améliorer les résultats en classification.

B.2.5 Résumé du Chapitre

Ce chapitre s’inscrit dans le deuxieme axes des contributions de cette these : I’approche par
pondération des erreurs. Ce cinquieme chapitre de cette these présente des contributions
a la fois théoriques et pratiques sur 'optimisation d’une mesure de performance dans un
contexte déséquilibré la F-mesure. Cette mesure présente plusieurs aspects qui rendent son
optimisation complexe: (i) elle est non linéaire contrairement a des mesures comme le taux
d’erreur et (ii) elle est non convexe ce qui complexifie la tache des algorithmes d’optimisation.

Cependant, nous montrons qu’il est possible de réduire le probleme d’optimisation de la
F-mesure en un probléme de minimisation d’une version pondérée du risque empirique, i.e.
en pondérant les erreurs effectués sur chaque classe. Nous montrons le lien entre les deux
problemes en établissant la propriété de pseudo-linéarité de la F-mesure. La principale diffi-
culté reste alors la recherche des couts optimaux, i.e. de la pondération optimale des erreurs.
Pour cela, nous commencons par établir des résultats théoriques entre la F-mesure obtenue
lorsqu’un modele est appris avec une certaines pondération des erreurs et la plus grande F-
mesure que l'on puisse obtenir si nous avions appris un modele avec un autre parametre de
pondération des erreurs. La borne obtenue dépend de I’écart entre le parametre courant de
pondération et une autre valeur quelconque. Ce résultat permet également de mesurer 1’écart
a la F-mesure optimale. D’un point de vue géométrique, nous montrons que la borne obtenue
peut étre interprétée sous la forme d’un cone asymétrique dans ’espace défini par le parametre
de pondération et de la F-mesure. De premieres expériences montrent que la borne obtenue
est beaucoup plus fine que des résultats existants et permet de largement élagué ’espace de
recherche des cofits optimaux.

Dans un deuxiéme temps, nous proposons une contribution algorithmique. En effet, on
se propose d’utiliser cette interprétation géométrique pour construire un algorithme itératif
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qui va permettre de rechercher les colits optimaux permettant d’optimiser la F-mesure.
L’algorithme proposé se montre (i) tout aussi efficace que d’autres algorithmes d’optimisation
de la F-mesure et (ii) nécessite un faible nombre d’itérations pour converger.

B.2.6 Résumé du Chapitre [6]

Dans ce dernier chapitre de la theése, nous nous proposons d’appliquer des méthodes par
pondération des erreurs a une application industrielle concrete : I'optimisation de la marge
d’une enseigne de la grande distribution. Ce chapitre se propose de modifier le modele de
détection de fraudes employé par I’entreprise Blitz Business Services qui repose uniquement
sur une performance en terme de classification des erreurs et se fonde la combinaison d’arbres
de décisions.

Nous commencons par présenter la matrice de colts que nous allons employer dans le
cadre de notre travail. Cette derniere présente la particularité d’attribuer un poids a chaque
terme de la matrice de confusion et non uniquement aux erreurs effectuées par ’algorithme.
Ces poids ont également la particularité d’étre exemple dépendants. Nous montrons en-
suite comment inclure cette nouvelle information dans I’apprentissage d’arbres de décisions
pour générer des modeles qui vont prendre en compte le montant du cheque, et donc d’une
éventuelle fraude. Afin de pouvoir se comparer au modele existant, plusieurs arbres sont
construits et plusieurs régles d’attributions des étiquettes aux feuilles des arbres (ou encore a
la combinaison des arbres) sont testées afin de pouvoir maximiser la marge de 'enseigne.

Dans une deuxiéme partie nous nous proposons d’employer un autre modele a base d’arbres
et fondé sur le gradient boosting. Apres avoir rappelé la fonction de colt utilisée, nous
présentons comment l'injecter dans ce type de modele afin qu’elle soit directement optimisée
et montrons que la seule optimisation d’une version exponentielle de notre loss est efficace
pour résoudre le probleme posé. Finalement nous montrons qu’il est nécessaire de fournir la
gradient et le hessien de notre fonction objective pour notre probleme d’optimisation.

Des expériences sur des données privées viennent montrer I'intérét de cette modification a
I’échelle de ’entreprise. Elles montrent qu’il est possible d’augmenter fortement la marge des
enseignes tout en leur laissant une certaine flexibilité dans le choix des coefficients attribués
a notre matrice de couts. Flexibilité dont le client ne disposait avec ’ancien modele et dont
le probleme d’optimisation se révélait, a leurs yeux, peu significatif.

B.3 Conclusions

Dans cette these, nous avons abordé le probleme de 'apprentissage a partir de données
déséquilibrées dans le contexte de la détection des fraudes. Le travail réalisé au cours de
cette these se voulait éclectique et explorait différentes facons d’aborder le probleme de
I’apprentissage dans ce contexte non trivial. Nos contributions sont principalement réparties
en deux catégories : les contributions géométriques et les contributions par pondérations
des erreurs. Dans le premier cas, nous avons appris avec M E? une nouvelle représentation
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des données autour de chaque fraude connue afin de construire des zones a risque. Nous
modifions également la distance par rapport aux fraudes existantes (ou données positives)
afin d’augmenter les cellules de Voronoi et donc la capacité du modele a capturer de nou-
velles fraudes. Dans ce dernier cas, nous attribuons des poids & chaque classe d’exemples
afin d’optimiser une mesure de performance adaptée aux scénarios déséquilibrés, c’est-a-dire
la F-mesure, mais aussi d’améliorer le modele actuel d’algorithme de détection de fraude par
cheque utilisé par la société Blitz. Les contributions de cette these sont a la fois algorith-
miques et théoriques et ont donné lieu a la publication de plusieurs articles dont trois dans des
conférences internationales (ICTAI, AISTATS et IDA) et une publications dans une revue
internationale (Pattern Recognition Letter) ainsi que des communications dans une conférence
frangaise (CAp).

Résumé des contributions

Il existe de nombreuses techniques pour aborder le probleme d’apprentissage dans un con-
texte déséquilibré. Cela peut impliquer (i) des méthodes d’échantillonnage pour équilibrer les
différentes classes, (ii) 'apprentissage d’une nouvelle représentation des données dans laque-
lle le probleme de classification est rendu plus aisé ; (iii) explorer 'optimisation de nouvelles
fonctions de couts et de nouveaux indicateurs de performance plus adaptés a ce type de
contexte.

Une méthode d’apprentissage de métrique a constitué le premier axe de recherche de
cette these. Nous avons étudié la notion de zones a risque autour des fraudes avérées et avons
dérivé des garanties théoriques sur la projection linéaire apprise. Cette premiere contribution,
essentiellement théorique, visait & mesurer la stabilité des zones de risque, c’est-a-dire les
garanties qu’une opération non frauduleuse est susceptible d’étre frauduleuse au moment du
test. Ce travail a montré 'importance de la distance par rapport aux exemples positifs (ou aux
fraudes existantes) lorsqu’on apprend a partir de données déséquilibrées. Cette observation a
conduit a notre deuxieme contribution pour laquelle nous avons proposé une distance ajustée
pour l'algorithme du plus proche voisin. Une breve étude théorique a expliqué pourquoi il
est nécessaire de comparer un exemple de test avec une donnée positive et d’en modifier la
fagon dont est calculée la distance si I’on veut augmenter les performances de notre modele en
terme de F-mesure. De nombreuses expériences ont viennent confirmer cette étude théorique.

L’utilisation d’approche par pondération des erreurs a constitué le cceur de notre deuxieme
axe de recherche. L’attribution d’un poids plus important aux exemples de la classe minori-
taire s’est avérée pertinente dans un tel contexte. Cependant, nous avons montré que cela doit
étre fait avec beaucoup de prudence. Notre troisieme contribution est dédiée a la conception
d’un algorithme qui sélectionne automatiquement les poids optimaux a attribuer a chaque
classe pour un ensemble donné de mesures de performance. L’algorithme proposé est basé sur
une étude théorique approfondie fournissant des zones de pondération potentielles ou il est
possible de maximiser la F-mesure. Mais 'utilisation de méthodes sensibles aux cotits présente
aussi des applications plus concretes telles que la mise en ceuvre et 'optimisation de fonctions
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de cofits qui ont une réelle signification pour le monde industriel. Notre derniére contribution
utilisait ce type de modele pour améliorer le systeme de détection des fraudes de Blitz. Nous
avons proposé une nouvelle fonction de cotit pour optimiser les profits d’une enseigne de la
Grande Distribution. Ce nouveau modele tient compte du montant d’une transaction dans

la prise de décision, ce qui n’était pas le cas jusqu’a présent dans ’entreprise.

Perspectives

Au-dela des perspectives présentées dans les différents chapitres, nous aimerions fournir
quelques extensions possibles des contributions de cette these.

Dans le chapitre[3] une partie de la contribution était de fournir des garanties de généralisation
sur les domaines de décision appris. Une premiere perspective consisterait a dériver directe-
ment des garanties de généralisation sur la F-mesure. La principale difficulté de la mesure F
vient de sa non-linéarité. Nous souhaitons exploiter le lien entre la fonction d’erreur pondérée
et la performance en terme de F-mesure développée au chapitre [5. En utilisant le cadre de
stabilité uniforme (Bousquet and Elisseeff, 2002)) sur la fonction d’erreur pondérée, nous vi-
sons a établir le lien entre la F-mesure observée pendant ’entrainement et la mesure F prévue
au moment du test. En raison de sa non-linéarité, une autre possibilité pour étudier la perfor-
mance en termes de F-mesure serait d’utiliser la théorie d’estimation bootstrap (Efron, (1979;
Xu and Goodacre, 2018). Nous pourrions fournir des intervalles de confiance sur I’estimation
et donc sur la F-mesure espérée au moment du test. Il pourrait également étre intéressant
d’étudier la convergence de I'algorithme proposé au chapitre [5|qui n’a été démontrée que dans
la pratique.

En ce qui concerne I’entreprise, plusieurs améliorations peuvent étre apportées au systeme
de détection de fraudes actuellement utilisé. Le modele est mis a jour chaque mois, en sup-
posant que le changement dans la distribution de la fraude est significatif aprés un mois.
Cependant, il serait intéressant de mettre en place une méthode de détection de dérive pour
automatiser la mise & jour du modele (Baena-Garcia et al., [2006; de Lima Cabral and de Bar-
ros, [2018) qui pourrait potentiellement conduire & une amélioration du systeme utilisé. Cela
ouvre la porte au développement de nouvelles méthodes d’adaptation de domaines.

La société travaille actuellement sur I’ajout de nouvelles informations dans le modele qui
peut étre fourni par les enseignes : les familles de produits achetées par ses clients. Ces infor-
mations peuvent étre utilisées pour détecter des comportements suspects car certaines de ces
familles sont plus risquées que d’autres. Cependant, cette information est tres parcimonieuse
et prend la forme de tres gros vecteurs de caractéristiques avec beaucoup de zéros. Pour
tirer profit de cette information, nous devons étudier des méthodes d’apprentissage parci-
monieuses. Dans le méme but, nous cherchons également a développer de nouveaux types
de modeles qui prennent en compte I’historique des clients de la Grande Enseigne. Cette
information sur I’historique des clients est actuellement contenu dans des variables. Afin de
s’affranchir de ces variables et de disposer d’une information plus ”pure”, une perspective
intéressante consisterait a utiliser les Long Short Term Memory Networks (LSTM) (Hochre-
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iter and Schmidhuber, [1997) afin de rendre compte plus précisément de ’historique.
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Abstract. Fraud and anomaly detection, or more generally learning in an imbalanced context, is a task very often
encountered in industrial applications. Detecting these anomalies is a major challenge in today’s society due to its
potential economic consequences. BLITZ Business Services is confronted with this type of problem in the context of
the fight against check fraud. These frauds represent 0.4% of the transactions but millions of euros of losses per year
for its customers. Dealing with fraud data, and more generally with imbalanced data, is a complex task for most
current learning algorithms because of the under-representation of frauds over non-frauds. The techniques are also as
diverse and varied as the nature of the frauds encountered and range from sampling strategy, representation learning,
optimization of measures appropriate to an imbalanced context or the construction of classification algorithms combining
the advantages of several of the former. This thesis is intended to be eclectic, in the same way as the techniques present
in the state of the art and is divided into two main axes: (i) a so-called geometric approach in which we propose
metric learning algorithms for data classification and (ii) a cost-sensitive approach that we use for both theoretical and
practical purposes. Our first contribution is based on learning local models around known frauds in order to build risky
areas. It is based on the assumption that a new fraud is very likely to occur in the neighborhood of a known fraud. A
theoretical study accompanies this algorithm to ensure that the number of false positives generated by the algorithm
remains controlled. In our second contribution, we propose a version the k—Nearest Neighbors algorithm adapted to
the imbalanced context. In this study, we propose to analyze how the distance from a new query to a fraud should
be modified in order to optimize a measure adapted to this context: the F-measure, through cross validation. This
measure is at the heart of our third contribution, which is mainly theoretical. We propose to derive a bound on the
optimal F-measure from the pseudo-linearity property of this measure, the errors made by the hypotheses learned and a
cost-sensitivity approach. The theoretical bounds obtained are then used to build an iterative algorithm for optimizing
the F-measure, algorithm that is at least as efficient as its competitors. Our fourth and final contribution is industrial
and aims to combine the use of tree-based models and cost sensitivity to improve BLITZ existing system by offering a
profit optimization system for its customers.

Résumeé. La détection de fraudes et d’anomalies, ou plus généralement I’apprentissage dans un contexte déséquilibré,
est une tache trés souvent rencontrée dans de nombreuses applications industrielles. Détecter ces anomalies revét un
enjeu majeur dans notre société actuelle de par ses conséquences économiques. La société BLITZ Business Services est
confrontée & ce type de problématique dans le cadre de la lutte contre la fraude par chéques. Ces fraudes représentent
0.4% des transactions pour ses clients mais des millions d’euros de pertes par an. Les données de fraudes sont difficiles
pour la plupart des algorithmes actuels de par cette sous-représentativité des fraudes par rapport aux non-fraudes.
Les techniques d’analyse sont aussi diverses et variées que la nature des fraudes rencontrées et vont de la stratégie de
ré-échantillonnage, d’apprentissage de représentation, 'optimisation de mesures appropriées & un contexte déséquilibré
ou encore la construction d’algorithmes de classification combinant plusieurs autres algorithmes. Cette theése se veut
éclectique, a I'image des techniques présentes dans I’état de lart, et se divise en deux grands axes : (i) une approche dite
géométrique dans laquelle nous proposons des algorithmes d’apprentissage de métrique pour la classification de données
et (ii) une approche par sensibilité aux coilits que nous utilisons & la fois dans un but théorique mais aussi pratique.
Notre premiere contribution repose sur ’apprentissage de modeles locaux autour de fraudes avérées afin de construire
des zones a risque. Elle part du postulat qu’une nouvelle fraude a de trés grandes chances d’apparaitre & proximité d’une
fraude connue. Une étude théorique accompagne cet algorithme permettant d’assurer que le nombre de faux positifs
générés par 'algorithme reste contrélé. Dans notre deuxiéme contribution, nous proposons une version de ’algorithme
des k plus proches voisins plus adaptée au contexte déséquilibré. Dans cette étude, essentiellement expérimentale, nous
nous proposons d’étudier la fagon dont doit étre modifiée la distance d’un nouvel exemple & une fraude afin d’optimiser
une mesure adaptée a ce contexte : la F-mesure, par le biais de la validation croisée. Cette mesure est au centre de
notre troisiéme contribution qui se veut principalement théorique. Nous proposons de dériver une borne sur la F-mesure
optimale & partir de la propriété de pseudo-linéarité de cette mesure, des erreurs effectuées par I’hypothése apprise
et d’une approche par sensibilité aux colits. Ces bornes théoriques obtenues sont ensuite utilisées pour construire un
algorithme itératif d’optimisation de la F-mesure, algorithme qui est tout aussi performant que ces concurrents. Notre
quatrieme et derniere contribution est industrielle et a pour but de combiner 'utilisation de modeles a base d’arbres et
de sensibilité aux cotlts pour améliorer le systéme existant de la société BLITZ en proposant un systéme d’optimisation
des bénéfices de ses clients.



